Dynamics, Control and Secure Transmission
Electronic Circuit Implementation of a new 3D Chaotic System in Comparison with 50 Reported Systems

Khaled Benkouider¹, Toufik Bouden¹, Aceng Sambas², Mohamad Afendee Mohamed³ *, Ibrahim Mohammed Sulaiman³,⁴, Mustafa Mamat³ and Mohd Asrul Hery Ibrahim⁵

¹Automatic Department, University of MSB Jijel, Ouled Aissa, Jijel 18000, Algeria
²Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya, West Java 46196, Indonesia.
³Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, Kuala Terengganu 21300, Malaysia.
⁴Department of Mathematics and Statistics, School of Quantitative Sciences, College of Art and Sciences, Universiti Utara Malaysia, Kedah, Malaysia.
⁵Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan 16100 Kota Bharu Kelantan, Malaysia

Corresponding author: Mohamad Afendee Mohamed (e-mail: mafendee@unisza.edu.my).

This project is funded by the Center for Research Excellence, Incubation Management Center, Universiti Sultan Zainal Abidin, Malaysia

ABSTRACT The very high demand for chaotic systems in the fields of sciences, particularly in secure communication, leads numerous researchers to build novel systems. This work announces a new easy to implement 3D chaotic system with five quadratic nonlinearities and three positive parameters, the proposed system is complex with larger bandwidth compared to at least 50 other systems that have been described. It contains eight terms and it can generate chaotic, periodic and quasi-periodic behaviors. The main dynamical properties of the proposed system are studied using Kaplan-Yorke dimension (KPY), Lyapunov exponents, bifurcation diagrams, multistability, equilibrium points stability and dissipativity. Then, the eight terms system feasibility is verified using Multisim software by designing its electronic circuit. In addition, active controllers are designed for leading the proposed system to achieve stability, tracking a desired dynamic and synchronizing with an identical model. Finally, using drive response synchronization, a novel secure communication electrical circuit design is built based on the suggested approach. The findings from numerical experiment demonstrated the new system’s success in completing the encryption/decryption process, as well as its secured transmission technique.

INDEX TERMS Bandwidth; chaotic communication; chaotic systems; circuit simulation; command and control systems

I. INTRODUCTION

After Lorenz first developed Lorenz chaotic system in 1963 [1], which proved that a three-dimensional system can generate a chaotic behavior with one positive Lyapunov exponent; many other chaotic systems was introduced in literature based on the Lorenz model or by constructing new models [2-8].

Chaotic systems are applicable in several fields, including secure communication schemes [9-11], physics [12], robotics [13], economy [14], lasers [15] and ecology [16]. Which make the construction of new chaotic systems an obligatory in line with the current demand for complex systems of this kind.

In addition, since the famous work of Pecora and Caroll [17], which proved the possibilities of synchronizing two identical chaotic systems having different initial guess, many of synchronization methods are employed for synchronizing chaotic systems, which include backstopping control [18], sliding mode control [19], adaptive control [20], active control [21], and so on.

In the current digital age, there has been a lot of interest on secure communication links due to the dramatic rise of online shopping, banking and trading transaction and this trend is set to increase exponentially in future [22]. In effect, it does not take much effort to realize that there will be a significant increase of users of digital communication
and technology in the next decade and further. Consequently, for chaos-based communication, there is a need to develop new chaotic systems with large bandwidth in order to cover the secure communication between the huge numbers expected of users.

Also, the existence of multistability phenomenon in certain chaotic systems is very interesting, it is means that the system not only exhibits chaotic behaviour with extreme sensitivity to the initial values; but also it can generate coexistence of different chaotic attractors depending only on its initial conditions. Multistability making a chaotic system more complex and more useful to use in many application that require complexity, especially in secure communication.

This study suggested the first new and easy to implement 3D chaotic system with five quadratic nonlinearities which is more complex and has larger bandwidth than at least 50 other systems that have been described, major properties of the announced system are investigated via theoretical and analytical methods. Also, Multisim software is used in designing and realizing an electronic circuit with the aim of validating the developed 3D model. In addition, active controllers are designed for leading the proposed system to achieve stability, tracking a desired dynamic and synchronizing. Finally, using drive response synchronization, a novel secure communication electrical circuit design is built based on the new announced system.

The rest part of the paper is designed as follows: In section 2, dynamical properties of the proposed system have been investigated using Kaplan-Yorke dimension, Lyapunov exponents, bifurcation diagrams, dissipativity, multistability and equilibrium points stability, also a comparison of the suggested system with 50 previously reported systems is introduced in section 3. The circuit schematic of the new model is realized using Multisim software in section 4. In section 5, active controllers are designed and applied to control the new system. Also, a new secure communication electronic circuit schematic is implemented based on the suggested three-dimensional chaotic system. Lastly, conclusions are dressed in section 6.

II. DYNAMICAL PROPERTIES OF THE NEW SYSTEM
A. New chaotic system

The new 3D chaotic system contains eight terms with five quadratic nonlinearities and three positive constant parameters defined by the algebraic equations that follows:

\[
\begin{align*}
 x_1 &= -a x_1 x_3 + b x_2 (1 - x_3) \\
 x_2 &= c x_3 x_3 - x_1^2 \\
 x_3 &= -x_1 - x_2 + x_1^2
\end{align*}
\]

(1)

Where the state variables denoted by \(x_1 \), \(x_2 \) and \(x_3 \) while \(a, b \) and \(c \) are the positive constant coefficients. By choosing \((1, 1, 1)\) as the initial conditions and \(a = 1.1, b = 13 \) and \(c = 11 \) as the parameters values; the proposed system \((1)\) exhibit a complex chaotic behavior as depicted in Figure 1.

For the previous parameters values, the Lyapunov exponents of system \((1)\) are obtained using Wolf’s algorithm, results are shown in Figure 2 as:

\[
L_1 = 1.051, \quad L_2 = 0.000, \quad L_3 = -3.745
\]

(2)

As depicted in Figure 2 there are one negative exponent, one zero exponent, and one positive Lyapunov exponents. So, the suggested system is chaotic, and the corresponding KYD is computed as follow:

\[
D_{KY} = 2 + \frac{L_1 + L_2}{|L_3|} = 2.281
\]

(3)

The KYD is fractional, implying that the new eight terms system \((1)\) demonstrate a complicated chaotic behavior.

![Chaotic attractors of the new system (1)](image-url)
B. Equilibrium points stability

The following equations are used to determine the points of equilibrium of the suggested system (1):

\[
\begin{align*}
-ax_3 + bx_2 (1-x_3) &= 0 \\
(dx_3 - x_1^2 &= 0 \\
-x_1 - x_2^2 &= 0
\end{align*}
\]

(4)

By considering the previous values of parameters, three equilibrium points is obtained as the following:

\[
E_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, E_3 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}
\]

(5)

The Jacobian system (1) is described as:

\[
J(E_i) = \begin{bmatrix} -ax_3 & b - bx_2 & -ax_1 - bx_2 \\ dx_3 - 2x_1 & 0 & cx_1 \\ -1 & 2x_2 & -1 \end{bmatrix}
\]

(6)

We can investigate the stability nature of the new chaotic system (1) by linearizing it at each point of equilibrium using the following characteristic equation:

\[
|J(E_i) - \lambda I| = 0 \quad \text{and} \quad i = 1, 2, 3
\]

(7)

Table I: Equilibrium Points Stability
E_i

E_1
E_2
E_3

C. Dissipativity

The sum of Lyapunov exponents (2) is negative, so it is clear that the proposed eight terms system defined by (1) is dissipative. Therefore, orbits of the whole of system (1) are ultimately constricted to a particular subset of zero volume, and the asymptotic motion relaxes on a chaotic attractor.

D. Bifurcation analysis

The bifurcation parameter a versus system (1) dynamical behaviors is analyzed using Lyapunov exponents spectrum and bifurcation diagram presented in Figures 3 and 4, respectively, as parameter a varies.
F. Multistability and coexisting attractors

Let \(X_0, Y_0 \) be two different initial values for the new 3-D system (1), where:
\[
X_0 = (-1, -1, 2) \quad \text{(Blue color)}
\]
\[
Y_0 = (-2, 0, 3) \quad \text{(Red color)}
\]

Fix \(b=13, c=11 \) and vary \(a \), it can be proved from the numerical simulations that the new 3-D system (1) is multistable. When \(a=0.9 \), we can see from Figure 9 that system (1) has coexistence of two different chaotic attractors starting from \(X_0 \) and \(Y_0 \) for the same values of parameters. Coexistence of one chaotic attractor and one periodic attractor starting from \(Y_0 \) and \(X_0 \) respectively are determined when \(a=9.6 \) as depicted in Figure 10. When \(a=6.6 \), we can see from Figure 11 that system (1) has coexistence of two different periodic attractors starting from \(X_0 \) and \(Y_0 \) for the same values of parameters.

The obtained results enable us to observe the phenomenon of multistability, this strange phenomenon proves the high complexity of the new system (1), which make it very suitable to use in engineering applications that require complexity; especially, chaos communication.

E. Frequency spectrum and bandwidth

The bandwidth of a chaotic system should be large in order to completely cover the masked signal in chaos-based secure transmission applications. This is not the case in many of reported chaotic systems, which the frequency spectrum of its signals is not broad enough. Therefore, it is of great significance to construct new chaotic systems with larger bandwidth than existing ones.

Figure 8 shows the normalised average frequency spectrum of the signal generated by the second state variable \(x_2 \) of system (1). The novel chaotic system has a bandwidth (BWT) of about 15, that is greater when compared it to more than 50 chaotic systems documented in the study, indicated in Table II.
III. COMPARISON BETWEEN THE NEW CHAOTIC SYSTEM AND 50 REPORTED SYSTEMS

Based on many studies:

1. The Kaplan-York dimension (KYD) is a measure of a chaotic system’s unpredictability and complexity. The higher the Kaplan-York dimension, the more complex the chaotic behaviour [23].

2. A chaotic system’s carrier signal’s bandwidth (BWT) should be big enough to cover the disguised information. In chaotic-based secure communications, large bandwidth is essential for achieving high data rate transmission [24]. In this section, a comparison between the Kaplan-York dimension and the bandwidth of the proposed chaotic system (1) with those of 50 reported chaotic systems is introduced. This comparison proved that the proposed model has a larger bandwidth and it is more complex when compared to more than 50 considered systems, making it more helpful in a wide range of applications; especially in secure communication (see Table II).

TABLE II

Different reported chaotic systems with Kaplan-York dimension and bandwidth

No.	System	Dynamics	KYD	BWT
1	Lorenz [25]	\(\dot{x}_1 = 10(x_2 - x_1) \) \(\dot{x}_2 = 28x_1 - x_2 - x_1x_3 \) \(\dot{x}_3 = x_1x_2 - 2.667x_3 \)	2.062	4
2	Chen [26]	\(\dot{x}_1 = 35(x_2 - x_1) \) \(\dot{x}_2 = -x_1x_3 - 7x_1 + 28x_2 \) \(\dot{x}_3 = -3x_3 + x_1x_2 \)	2.175	6
3	Rossler [27]	\(\dot{x}_1 = -x_2 - x_3 \) \(\dot{x}_2 = x_1 + 0.2x_2 \) \(\dot{x}_3 = 0.2 + x_3(x_1 - 5.7) \)	2.013	1
4	Chen et al. [28]	\(\dot{x}_1 = 4.6x_1 + x_2 - x_1x_3 \) \(\dot{x}_2 = x_1x_3 - x_3 - 12x_2 \) \(\dot{x}_3 = -x_1 - 5x_3 + x_1x_2 \)	2.010	8.5
5	Li [29]	\(\dot{x}_1 = 40(x_2 - x_1 + 0.16x_1x_3) \) \(\dot{x}_2 = 55x_1 - 20x_2 - x_1x_3 \) \(\dot{x}_3 = -0.65x_1^2 + x_1x_2 + 1.83x_3 \)	2.112	5
6	Zhou et al. [30]	\(\dot{x}_1 = 10(x_2 - x_1) \) \(\dot{x}_2 = 16x_1 - x_1x_3 \) \(\dot{x}_3 = x_1x_2 - x_3 \)	2.097	3
	Reference	Equations	Value	
---	--------------------	--	-------	---
7	Lu [31]	\[\begin{align*} x_1 &= 36(x_2 - x_1) \\		
 & 20x_2 - x_1x_3 \\
 & x_3 &= x_1x_2 - 3x_3 \end{align*} \] | 2.066 | 7 |
| 8 | Lorenz [32] | \[\begin{align*} \dot{x}_1 &= 16(x_2 - x_1) \\
 & 45.92x_1 - x_2 - x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 2.667x_3 \end{align*} \] | 2.066 | 6 |
| 9 | Lorenz [33] | \[\begin{align*} \dot{x}_1 &= 10(x_2 - x_1) \\
 & 142x_1 - x_2 - x_1x_3 \\
 & \dot{x}_3 &= -2.667x_3 + x_1x_2 \end{align*} \] | 2.089 | 7 |
| 10| Cai et al. [34] | \[\begin{align*} \dot{x}_1 &= 20(x_2 - x_1) \\
 & 14x_1 + 10.6x_2 - x_1x_3 \\
 & \dot{x}_3 &= x_1^2 - 2.8x_3 \end{align*} \] | 2.164 | 6 |
| 11| Tigan et al. [35] | \[\begin{align*} \dot{x}_1 &= 2.1(x_2 - x_1) \\
 & 30x_1 - x_2 - x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 0.6x_3 \end{align*} \] | 2.121 | 1 |
| 12| Modified Lu [36] | \[\begin{align*} \dot{x}_1 &= 35(x_2 - x_1 + x_2x_3) \\
 & 14x_2 - x_3x_3 \\
 & \dot{x}_3 &= x_1x_2 - 5x_3 \end{align*} \] | 2.034 | 7 |
| 13| Liu et al. [37] | \[\begin{align*} \dot{x}_1 &= 10(x_2 - x_1) \\
 & 40x_1 - x_1x_3 \\
 & \dot{x}_3 &= 4x_2^2 - 2.5x_3 \end{align*} \] | 2.116 | 1 |
| 14| Li et al. [38] | \[\begin{align*} \dot{x}_1 &= 5(x_2 - x_1) \\
 & 55x_1 - 5x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 2x_3 \end{align*} \] | 2.101 | 8 |
| 15| Munmuangsaen et al. [39] | \[\begin{align*} \dot{x}_1 &= 5(x_2 - x_1) \\
 & -x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 90 \end{align*} \] | 2.230 | 7 |
| 16| Liu et al. [40] | \[\begin{align*} \dot{x}_1 &= -x_2^2 - x_1 \\
 & 2.5x_2 - 4x_1x_3 \\
 & \dot{x}_3 &= 4x_1x_2 - 5x_3 \end{align*} \] | 2.119 | 2 |
| 17| Zhu et al. [41] | \[\begin{align*} \dot{x}_1 &= -x_1 - 1.5x_2 + x_2x_3 \\
 & 2.5x_2 - x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 4.9x_3 \end{align*} \] | 2.166 | 4 |
| 18| Liu et al. [42] | \[\begin{align*} \dot{x}_1 &= 10(x_2 - x_1) \\
 & 16x_1 - x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 2.66x_3 \end{align*} \] | 2.027 | 4 |
| 19| Pan [43] | \[\begin{align*} \dot{x}_1 &= 60(x_2 - x_1) + 0.4x_2x_3 \\
 & -35x_1 + 25x_2 - x_1x_3 \\
 & \dot{x}_3 &= x_1x_2 - 0.83x_3 - 0.65x_1^2 \end{align*} \] | 2.063 | 5 |
	Equation	Value	Table Entry
20	$x_1 = (x_2 - x_1)$	2.276	1
	$x_2 = 0.5x_2 - x_1x_3$		
	$x_3 = x_1x_2 - 0.5$		
21	$x_1 = x_2$	2.053	1
	$x_2 = x_1 + x_1$		
	$x_3 = x_1x_2 + 2x_2^2 - 0.35$		
22	$x_1 = 10(x_2 - x_1)$	2.057	2
	$x_2 = 6x_2 - x_1x_3$		
	$x_3 = x_2^2 - 3x_3$		
23	$x_1 = -16x_1 + 0.5x_1x_3$	2.105	1
	$x_2 = 10x_2 - 6x_1x_3$		
	$x_3 = -5x_3 + 18x_2$		
24	$x_1 = 30(x_2 - x_1)$	2.033	3
	$x_2 = 15x_3 + x_1x_3$		
	$x_3 = -x_1^2 - 11x_3$		
25	$x_1 = 10(x_2 - x_1) + x_2x_3^2$	2.037	6
	$x_2 = 5x_1 + x_1x_3^2$		
	$x_3 = -6x_2^2 - 5x_3$		
26	$x_1 = 10(x_2 - x_1)$	2.038	4
	$x_2 = -7x_2 - x_1x_3$		
	$x_3 = -0.2x_1^2 + x_1x_2 - 50$		
27	$x_1 = x_2$	2.117	1
	$x_2 = x_3 - 0.5x_2$		
	$x_3 = -6x_1^2 - 2.85x_2$		
28	$x_1 = 0.5x_2x_3 - 16x_1$	2.105	4
	$x_2 = 10x_2 - 6x_1x_3$		
	$x_3 = 18x_2^2 - 5x_3$		
29	$x_1 = 6(x_2 - x_1)$	2.015	7
	$x_2 = 9x_1 - x_1x_3$		
	$x_3 = x_1x_2 - x_3$		
30	$x_1 = -x_2^2 - 2.667x_1$	2.061	3
	$x_2 = 10(x_3 - x_1)$		
	$x_3 = 27.3x_2 - x_3 + x_1x_2$		
31	$x_1 = 19x_2 - 20x_1 - x_3$	2.011	6
	$x_2 = 20x_1 + 8x_2 - 20x_3x_1$		
	$x_3 = 5x_1x_2 - 8.5x_3 + x_1(x_3 - 8)$		
	Author(s)	System Description	
---	-------------------------	--	---
32	Su [56]	\[
\begin{align*}			
\dot{x}_1 &= 5x_2 - 18x_1 \\			
\dot{x}_2 &= 10x_3 - 2x_1x_3 \\			
\dot{x}_3 &= -x_3 + 5x_2^2 \\			
\end{align*}			
\]	2.044		
33	Akgul [57]	\[
\begin{align*}			
\dot{x}_1 &= 1.8x_2 - 1.8x_1 \\			
\dot{x}_2 &= -7.2x_2 + x_1x_3 + 0.02x_3 \\			
\dot{x}_3 &= 2.7x_3 + x_1^2x_2 - 0.07x_3^2 \\			
\end{align*}			
\]	2.024		
34	Zhang [58]	\[
\begin{align*}			
\dot{x}_1 &= -2x_1 + 10x_2x_3 \\			
\dot{x}_2 &= -6x_2^3 + 3x_1x_3 \\			
\dot{x}_3 &= 3x_3 - x_1x_2 \\			
\end{align*}			
\]	2.025		
35	Gholamin et al. [59]	\[
\begin{align*}			
\dot{x}_1 &= -4x_1 + 3x_2x_3 \\			
\dot{x}_2 &= x_2 - 7x_1x_3 \\			
\dot{x}_3 &= x_3 + 2x_1x_2 \\			
\end{align*}			
\]	2.055		
36	Lai et al. [60]	\[
\begin{align*}			
\dot{x}_1 &= 5(x_2 - x_1) \\			
\dot{x}_2 &= 2x_1x_3(x_2^2 - 9) \\			
\dot{x}_3 &= 1 - x_1x_2 \\			
\end{align*}			
\]	2.196		
37	Tuna et al. [61]	\[
\begin{align*}			
\dot{x}_1 &= x_2^2(x_3 - 1.3) \\			
\dot{x}_2 &= -x_1(x_3^2 + 1.3) \\			
\dot{x}_3 &= -x_2(1.3x_1 - x_2) - 4(x_3 - 1.3) \\			
\end{align*}			
\]	2.191		
38	Vaidyanathan et al. [62]	\[
\begin{align*}			
\dot{x}_1 &= 30(x_2 - x_1) + 14x_2^2x_3 \\			
\dot{x}_2 &= 14x_2^2 - x_1x_3^2 \\			
\dot{x}_3 &= x_1x_2 - 4.5x_3 \\			
\end{align*}			
\]	2.136		
39	Volos et al. [63]	\[
\begin{align*}			
\dot{x}_1 &= -x_2 \\			
\dot{x}_2 &= -x_3 \\			
\dot{x}_3 &= -0.7x_3 - x_1 + 0.00038\sinh(x_2) \\			
\end{align*}			
\]	2.173		
40	Jay et al. [64]	\[
\begin{align*}			
\dot{x}_1 &= 32x_2 - 33x_1 - x_3 \\			
\dot{x}_2 &= 46.6x_4 + 12x_2 - 10x_1x_4 \\			
\dot{x}_3 &= \pm10x_1x_2 - 6x_3 + x_1(\pm x_3 - 11) \\			
\end{align*}			
\]	2.16		
41	Sambas et al. [65]	\[
\begin{align*}			
\dot{x}_1 &= x_2x_3 \\			
\dot{x}_2 &= x_1	x_3	- x_2	x_1
\dot{x}_3 &=	x_1	- x_2^2 \\	
\end{align*}			
\]	2.072		
42	Yang et al. [66]	\[
\begin{align*}			
\dot{x}_1 &= x_1x_3 \\			
\dot{x}_2 &= x_1^2 - x_2 \\			
\dot{x}_3 &= 1 - 4x_1 \\			
\end{align*}			
\]	2.112		
43	Lassoued et al. [67]	\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= -x_3 - x_2 - 2.625x_1 + 0.25x_1|x_1| \\
\end{align*}
\] | 2.124 |
IV. CIRCUIT IMPLEMENTATION OF THE NEW SYSTEM

This section presents an equivalent electronic circuit for our defined easy to use chaotic system (1), the electronic circuit is designed using Multisim software as depicted in Figure 12.

![Electronic circuit schematic of the chaotic system (1)](image)

By affixing the law of Kirchhoff to Figure 12 circuit, it will generate nonlinear equations described as the following:

\[
\begin{align*}
 x_1 &= -\frac{1}{C_1 R_1} x_1 x_3 - \frac{1}{C_1 R_2} x_2 x_3 + \frac{1}{C_1 R_3} x_2 \\
 x_2 &= \frac{1}{C_2 R_4} x_1 x_3 - \frac{1}{C_2 R_5} x_1^2 \\
 x_3 &= -\frac{1}{C_3 R_6} x_1 - \frac{1}{C_3 R_7} x_3 + \frac{1}{C_3 R_8} x_2^2
\end{align*}
\]

The circuit components values are selected as:

\[
R_1 = 1\Omega, R_2 = 1\Omega, R_3 = 1\Omega, R_4 = 1\Omega, R_5 = 1\Omega, R_6 = 1\Omega, R_7 = 1\Omega, R_8 = 1\Omega, C_1 = C_2 = C_3 = C_4 = 1nf
\]

From Figures 13, 14 and 15 it can be seen the existence of the experiment chaotic attractors which are similar to the ones obtained by Matlab simulation. These results illustrate the physical feasibility of the proposed chaotic system (1).
are the functions

\[
\begin{align*}
\dot{e}_1 &= x_1 - x_{1d} \\
\dot{e}_2 &= x_2 - x_{2d} \\
\dot{e}_3 &= x_3 - x_{3d}
\end{align*}
\]

So,

\[
\begin{align*}
\dot{e}_1 &= -ax_1x_3 + bx_2x_3 - be_{x_2} + O_{s_1} \\
\dot{e}_2 &= cx_1x_3 - x_2^2 + O_{s_2} \\
\dot{e}_3 &= x_2^2 - e_{x_1} - e_{x_2} + O_{s_3}
\end{align*}
\]

Theorem 1. Suppose the functions for the active control is chosen as follows:

\[
\begin{align*}
O_{s_1} &= ax_3x_5 + bx_2x_3 - be_{x_2} - e_{x_1} \\
O_{s_2} &= -cx_1x_5 + x_2^2 - e_{x_2} \\
O_{s_3} &= -x_2^2 + e_{x_1}
\end{align*}
\]

Then, the state errors’ dynamics is said to converge asymptotically to zero. Therefore, the controlled system (10) converges to the point of equilibrium \(E_4 = (0, 0, 0)\).

Proof: The state errors’ dynamics (13) is re-written as follows, using the active control functions provided in (14):

\[
\begin{bmatrix}
\dot{e}_1 \\
\dot{e}_2 \\
\dot{e}_3
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
e_{x_1} \\
e_{x_2} \\
e_{x_3}
\end{bmatrix}
\]

Therefore,

\[
\begin{bmatrix}
\dot{e}_1 \\
\dot{e}_2 \\
\dot{e}_3
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
e_{x_1} \\
e_{x_2} \\
e_{x_3}
\end{bmatrix}
\]

Since the eigenvalues for the states matrix are negatives, then, based on Routh-Hurwitz condition [75]; the errors dynamics are stables, ensuring the convergence of the controlled new system (10) to equilibrium.

Simulation results:

System (10) initial conditions and parameters are chosen as \((x_1, x_2, x_3) = (1,1,1)\) and \(a = 4, b =13\) and \(c =11\) respectively.

Active controllers is switched on at \(t =150s\). Simulation results are depicted in Figures 16, 17 and 18.

The results shows that all the three new system state variables generate a complex chaotic behaviour before \(t =150s\) by deactivating the active controllers. After that (when \(t \geq 150s\), the controllers are activated and it is
obvious that all state variables converge quickly to zero (converge to the equilibrium point \(E_i \)).

So, results of simulation proving the efficiency of the new active controllers (14) for controlling the new chaotic system (1) to equilibrium.

\[
e_{1i} = x_1 - x_{1d}, \quad e_{2i} = x_2 - x_{2d}, \quad e_{3i} = x_3 - x_{3d} \quad (18)
\]

with

\[
(x_{1d}, x_{2d}, x_{3d}) = (f(t), f(t), f(t)) \quad (19)
\]

By considering system (17) and the desired state (19), we obtained the following state errors dynamics:

\[
\begin{align*}
\dot{e}_{1i} &= x_1 - f(t) \\
\dot{e}_{2i} &= x_2 - f(t) \\
\dot{e}_{3i} &= x_3 - f(t)
\end{align*}
\]

So,

\[
\begin{align*}
\dot{e}_{1i} &= -\alpha x_3 + bx_2(1-x_3) - f(t) + P_{s_1} \\
\dot{e}_{2i} &= cx_1x_3 - x_3^2 - f(t) + P_{s_2} \\
\dot{e}_{3i} &= -x_1 + x_3 - x_3^2 - f(t) + P_{s_3}
\end{align*}
\]

Theorem 2. Suppose the functions for the active tracking control is chosen as:

\[
\begin{align*}
P_{s_1} &= \alpha x_3 + bx_2(1-x_3) - f(t) \\
P_{s_2} &= -cx_1x_3 + x_3^2 + f(t) \\
P_{s_3} &= x_1 - x_3^2 + f(t)
\end{align*}
\]

The dynamical of state errors will be converge asymptotically to zero. Therefore, system (17) is controlled to track any desired function of time \(f(t) \).

Proof: The dynamics of state errors (20) can be recast using the active control tracking functions provided in (21), as follows:

\[
\begin{align*}
\dot{e}_{1i} &= -e_{1i} \\
\dot{e}_{2i} &= -e_{2i} \\
\dot{e}_{3i} &= -e_{3i}
\end{align*}
\]

Therefore,

\[
\begin{bmatrix}
\dot{e}_{1i} \\
\dot{e}_{2i} \\
\dot{e}_{3i}
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
e_{1i} \\
e_{2i} \\
e_{3i}
\end{bmatrix}
\]

Because all of the state matrix's eigenvalues are negative, the errors dynamics are stable, ensuring that the controlled new system (17) converges to the function \(f(t) \) according to the Routh-Hurwitz criterion [75].

B. Design of active controllers for tracking control of the new chaotic system

In this subsection, an active tracking control law is calculated for the proposed system for tracking any desired function of time \(f(t) \).

For that, the controlled system is considered as follows:

\[
\begin{align*}
\dot{x}_1 &= -\alpha x_1 x_3 + bx_2(1-x_3) + P_{s_1} \\
\dot{x}_2 &= cx_1x_3 - x_3^2 + P_{s_2} \\
\dot{x}_3 &= -x_1 + x_3 - x_3^2 + P_{s_3}
\end{align*}
\]

(17)

where \(P_{s_1}, P_{s_2} \) and \(P_{s_3} \) is the functions for the active trailing control to be obtained, and the state errors are described by:

\[
\begin{align*}
e_{1i} &= x_1 - x_{1d}, \quad e_{2i} = x_2 - x_{2d}, \quad e_{3i} = x_3 - x_{3d} \quad (18)
\end{align*}
\]
• Simulation results:
 System (17) initial conditions and parameters are given as \((x_1, x_2, x_3) = (1, 1, 1)\) and \(a = 4, b = 13\) and \(c = 11\) respectively. The function of time \(f(t)\) is chosen as \(f(t) = 4\sin(0.5t)\). Active tracking controllers is switched on at \(t = 150s\), simulation results are depicted in Figures 19, 20 and 21.

 The results shows that all the three new system state variables generate a complex chaotic behaviour when the active controllers are deactivated (when \(t < 150s\)). After that (when \(t \geq 150s\)), the controllers are activated and it can be seen that all state variables switch quickly to exhibit a sine wave behaviour and to track the sine function \(f(t) = 4\sin(0.5t)\).

 So, simulation findings proving the success of the suggested active tracking controllers (21) for controlling the new chaotic system (1) in tracking any desired function of time including \(f(t) = 4\sin(0.5t)\).

\[
\begin{align*}
\dot{x}_1 &= -ax_1x_3 + bx_2(1 - x_3) \\
\dot{x}_2 &= cx_1x_3 - x_2^2 + Q_s_1 \\
\dot{x}_3 &= -x_1x_3 + x_2^2 + Q_s_1
\end{align*}
\]

C. Design of active controllers for synchronizing the proposed chaotic system

In this subsection, we use active control to synchronise two identical new chaotic systems (1) with differing initial values.

The master system is demonstrated as the following:

\[
\begin{align*}
\dot{x}_1 &= -ax_1x_3 + bx_2(1 - x_3) \\
\dot{x}_2 &= cx_1x_3 - x_2^2 + Q_s_1 \\
\dot{x}_3 &= -x_1x_3 + x_2^2 + Q_s_1
\end{align*}
\]

The, the slave system is described as:

\[
\begin{align*}
\dot{x}_1 &= -ax_1x_3 + bx_2(1 - x_3) + Q_s_1 \\
\dot{x}_2 &= cx_1x_3 - x_2^2 + Q_s_2 \\
\dot{x}_3 &= -x_1x_3 + x_2^2 + Q_s_2
\end{align*}
\]

where functions of active control represented by \(Q_{s_1}, Q_{s_2}\) and \(Q_{s_3}\) are to obtained, and the state errors are described by:

\[
e_{s_1} = x_{s_1} - x_{m_1}, \quad e_{s_2} = x_{s_2} - x_{m_2}, \quad e_{s_3} = x_{s_3} - x_{m_3}
\]

By considering systems (24), (25) and (26), the dynamic state errors is obtained:

\[
\begin{align*}
\dot{e}_{s_1} &= a(x_{s_1}x_{3_m} - x_{m_1}x_{s_3}) + b(x_{2_m}x_3 - x_{2_m}x_{s_3}) + be_{s_1} + Q_{s_1} \\
\dot{e}_{s_2} &= c(x_{s_1}x_{3_m} - x_{m_1}x_{s_3}) - (x_{1_m}^2 - x_{2_m}^2) + Q_{s_2} \\
\dot{e}_{s_3} &= -e_{s_1} + x_{2_m}^2 - x_{2_m}^2 + Q_{s_3}
\end{align*}
\]

Theorem 3. Suppose the active control functions is chosen as follows:

\[
\begin{align*}
Q_{s_1} &= -a(x_{m_1}x_{s_3} - x_{m_1}x_{s_3}) - b(x_{2_m}x_{m_3} - x_{2_m}x_{s_3}) - be_{s_1} - e_{s_1} \\
Q_{s_2} &= c(x_{m_1}x_{3_m} - x_{m_1}x_{s_3}) + (x_{1_m}^2 - x_{2_m}^2) - e_{s_2} \\
Q_{s_3} &= -x_{2_m}^2 + x_{2_m}^2 + e_{s_3}
\end{align*}
\]

Then, the dynamical state errors will asymptotically converge to zero. As a result, the master (24) and slave (25) systems will be synced.

Proof: The dynamics of state errors (27) can be simplified using the active control functions given in (28).

\[
\begin{align*}
\dot{e}_{s_1} &= -e_{s_1} \\
\dot{e}_{s_2} &= -e_{s_2} \\
\dot{e}_{s_3} &= -e_{s_3}
\end{align*}
\]

Therefore,
Because all of the states matrix's eigenvalues are negative, the error dynamics are stable, ensuring synchronisation between the master and slave systems (24) according to the Routh-Hurwitz criterion [75].

Simulation results:
The master and slave systems' initial conditions defined in (24) and (25) are selected as (1,1,1) and (−5,7,−15) respectively.

Active controllers is switched on at $t = 150\tau$, simulation results are depicted in Figures 22, 23 and 24.

The results shows that all the three state synchronization errors evolve chaotically with time by deactivating the active controllers (when $t < 150\tau$). After that (when $t \geq 150\tau$), the controllers are activated, then, the convergence all the state synchronization errors to zero is very obvious.

So, simulation findings showing the feat of the new active controllers (28) to synchronize two new identical chaotic systems (1) starting from various initial guesses.

$$
\begin{bmatrix}
\dot{e}_{x_1} \\
\dot{e}_{x_2} \\
\dot{e}_{x_3}
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
e_{x_1} \\
e_{x_2} \\
e_{x_3}
\end{bmatrix}
$$

(30)

VI. SECURE COMMUNICATION CIRCUIT DESIGN BASED ON THE NEW CHAOTIC SYSTEM

To demonstrate the applicability of the proposed system (1) in securing communications, we create a new secure communication circuit schematic centered around the proposed system and employing drive response synchronization, with the use of a single state variable to attain strong self-synchronization.

A. Drive Response Synchronization

In this subsection, we present the synchronization electronic circuit schematic of two identical new chaotic systems (1) starting from different initial values using drive response method. We use the proposed system (1) as a master system, also as a slave system. The driving variable generated by the master system ensures the synchronization of states of the master system and the states of the slave system.

The slave system presented below is described by considering the proposed eight terms chaotic system (1) as a master system:

$$
\begin{align*}
\dot{y}_1 &= -ay_1y_3 + by_2(1-y_3) \\
\dot{y}_2 &= cy_1y_3 - y_1^2 \\
\dot{y}_3 &= -y_1 - y_3 + y_2^2
\end{align*}
$$

(31)

By selecting the master system’s second state variable of the x_2 as the driving variable, the slave system become as the following:

$$
\begin{align*}
\dot{y}_1 &= -ay_1y_3 + bx_2(1-y_3) \\
\dot{y}_3 &= -y_1 - y_3 + x_2^2
\end{align*}
$$

(32)

Electronic circuit schematic of the drive response synchronization between master system and slave system is depicted in Figure 25.

The initial condition of system (1) and (32) are chosen as (1,1,1) and (−5,−10) respectively. Time evolutions of the first states (x_1 and y_1) are depicted in Figure 26; Figure 27 shows the time evolution of the third states (x_3 and y_3).

The drive response approach was successful in synchronizing the two identical master and slave chaotic systems starting from differing initial circumstances, as shown in simulation results in Figures 26 and 27.
FIGURE 2. Electronic circuit schematic of the master system

FIGURE 3. Time evolution of master system first state \(x_1 \) (red color) and slave system first state \(y_1 \) (blue color)

FIGURE 4. Time evolution of master system third state \(x_3 \) (red color) and slave system third state \(y_3 \) (blue color)

FIGURE 5. Circuit schematic of the drive response synchronization

FIGURE 6. Electronic circuit of the secure communication scheme

FIGURE 7. Electronic circuit schematic of the master system
FIGURE 30. Electronic circuit schematic of the slave system

FIGURE 31. Electronic circuit schematic of the encryption process
B. Secure communication circuit implementation

In this subsection, a secure communication electronic circuit schematic is designed using the new eight terms chaotic system (1) and based on the drive response synchronization. Then, its experiment simulation results are obtained using Multisim software.

Figure 28 shows the electronic circuit design for the secure communication strategy created for the new chaotic system. We can see that two signals are transmitted from the transmitter to the receiver, the first one is the driving variable x_2 so as to complete synchronization between the master system and the slave system, the second signal transmitted is the encrypted message m.

The encrypted message \bar{m} is obtained using the electronic circuit schematic depicted in Figure 31 based on the linear equation define below:

$$\bar{m} = -\left(k_1 \times m + k_2 \times w + k_3 \times x_1 + k_4 \times x_3 \right) \quad (33)$$

where x_1, x_3 represent the master system’s state variables, m is the clear message, w is a wrong message assumed to be known which is included to increase the complexity of the encrypted message; k_1, k_2, k_3, k_4 are parameters (constant) used as an additional transmission secret key.

When the synchronization is achieved, the decrypted message \hat{m} is reconstructed in the receiver using the electronic circuit schematic depicted in Figure 32 based on the linear equation defined below:

$$\hat{m} = -\frac{1}{k_1} \left(\bar{m} + k_2 \times w + k_3 \times y_1 + k_4 \times y_3 \right), \quad k_1 \neq 0 \quad (34)$$

where y_1, y_3 representing the slave system’s state variables, \bar{m} is the encrypted message and w is the same wrong message as in the transmitter.

For computational simulation:
We used the following constant parameters for the encryption and decryption functions:

$$k_1 = k_2 = k_3 = k_4 = 1 \quad (35)$$

Case 1: the sine wave is chosen as the clear message to be communicated as shown in Figure 33 and the triangle wave as the wrong message to be included in the encryption and decryption functions as shown in Figure 34. Figure 35 depicts the encrypted message’s complicated chaotic behaviour, demonstrating the effectiveness of the encrypting process in concealing the clear information. The decrypted message is shown in Figure 36, and it is identical to the clear message. Figure 37 depicts the convergence of the message reconstruction error to zero after synchronization, indicating that the decryption procedure was successful in reconstructing the original message.
Case 2: The triangle wave is used as the clear message to be transmitted, while the sine wave is used as the wrong message in the encryption and decryption processes. Clear message, wrong message, encrypted message, decrypted message and message reconstruction error are plotted in Figures 38, 39, 40, 41 and 42 respectively.

The proposed secure communication electronic circuit schematic based on the novel eight terms chaotic system (1) was shown to be successful in completing the secure transmission/reception procedure.
VII. CONCLUSION

This paper suggested a new three-dimensional eight terms chaotic system with five quadratic nonlinearities for the first time. The new system is more complicated and has a wider bandwidth than at least 50 other chaotic systems studied recently. Dynamical analysis of the new system are widely studied via many tools which include: phase portraits, equilibrium points, dissipativity, multistability, bifurcation diagram and Lyapunov exponents spectrum. The physical feasibility of our proposed theoretical model is proved by using Multisim software to design the equivalent electronic circuit. After that, control of the proposed chaotic system for achieving stability, tracking and synchronization is studied and applied using active controllers, the obtained results illustrate the effectiveness of the suggested control laws. Finally, employing drive response synchronization, a new secure communication electronic circuit schematic is derived for the new chaotic system. Multisim simulation findings show that the proposed circuit schematic completed the secure transmission/reception process successfully.

We are convinced that the new 3D chaotic system with its easy to implement secure communication electronic circuit schematic, multistability and large bandwidth would be useful in the near future for real-world secure transmission systems.

ACKNOWLEDGMENT

This project is funded by the Center for Research Excellence, Incubation Management Center, Universiti Sultan Zainal Abidin, Malaysia

REFERENCES

[1] Lorenz, E. N. (1963). Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2).

[2] Sambas, A., Vaidyanathan, S., Telo-Cuautle, E., Abd-El-Atty, B., Abd El-Latif, A. A., Guiller-Fernández, O., Sukono, Hidayat, Y., & Gundara, G. (2020). A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption. IEEE Access, 8, 137116-137132.

[3] Sambas, A., Mamat, M., Arafa, A. A., Mahmoud, G. M., Mohamed, M. A., & Sanjaya, W. S. (2019). A new chaotic system with line of equilibria: dynamics, passive control and circuit design. International Journal of Electrical & Computer Engineering (2088-8708), 9(4), 2365-2376.

[4] Mobayen, S., Kingni, S. T., Pham, V. T., Nazarimehr, F., & Jafari, S. (2018). Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system. International Journal of Systems Science, 49(3), 617-630.

[5] Sambas, A., Vaidyanathan, S., Zhang, S., Zeng, Y., Mohamed, M. A., & Mamat, M. (2019). A new double-wing chaotic system with coexisting attractors and line equilibrium: bifurcation analysis and electronic circuit simulation. IEEE Access, 7, 115454-115462.

[6] Sambas, A., Vaidyanathan, S., Bonny, T., Zhang, S., Hidayat, Y., Gundara, G., & Mamat, M. (2021). Mathematical Model and FPGA Realization of a Multi-Stable Chaotic Dynamical System with a Closed Butterfly-Like Curve of Equilibrium Points. Applied Sciences, 11(2), 788.

[7] Pham, V. T., Volos, C., Kapitaniak, T., Jafari, S., & Wang, X. (2018). Dynamics and circuit of a chaotic system with a curve of equilibrium points. International Journal of Electronics, 105(3), 385-397.

[8] Akgul, A., Hussain, S., & Pehlivan, I. (2016). A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik, 127(18), 7062-7071.

[9] Ren, H. P., Yin, H. P., Bai, C., & Yao, J. L. (2020). Performance improvement of chaotic baseband wireless communication using echo state network. IEEE Transactions on Communications, 68(10), 6525-6536.

[10] Wang, J., Yu, W., Wang, J., Zhao, Y., Zhang, J., & Jiang, D. (2019). A new six-dimensional hyperchaotic system and its secure communication circuit implementation. International Journal of Circuit Theory and Applications, 47(5), 702-717.

[11] Benkouider, K., Halimi, M., & Bouden, T. (2019). Secure communication scheme using chaotic time-varying delayed system. International Journal of Computer Applications in Technology, 60(2), 175-182.

[12] Nagy, P., & Tasnádi, P. (2019, August). Visualization of chaotic attractors in 3D as motivating tool for introductory physics course. In Journal of Physics: Conference Series (Vol. 1286, No. 1, p. 012028). IOP Publishing.

[13] Vaidyanathan, S., Sambas, A., Mamat, M., & Sanjaya, M. (2017). A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot. Archives of Control Sciences, 27(4), 541-554.

[14] Asano, T., & Yokoo, M. (2019). Chaotic dynamics of a piecewise linear model of credit cycles. Journal of Mathematical Economics, 80, 9-21.

[15] Wishon, M. J., Li, N., Choi, D., Citrin, D. S., & Locquet, A. (2018). Chaotic laser voltage: An electronic entropy source. Applied Physics Letters, 112(26), 261101.

[16] Villacorta-Rath, C., Souza, C. A., Murphy, N. P., Green, B. S., Gardner, C., & Strugnell, J. M. (2018). Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. Molecular Ecology, 27(1), 54-65.

[17] Pecora, L. M., & Carroll, T. L. (1991). Synchronizing chaotic circuits. IEEE Trans. Circ. Sys, 38, 453-456.
[18] Sambas, A., Vaidyanathan, S., Moroz, I. M., Idowu, B., Mohamed, M. A., Mamad, M., & Sanjaya, W. S. (2021). A simple multi-stable chaotic jerk system with two saddle-foci equilibrium points: Analysis, synchronization via backstepping technique and MultiSim circuit design. International Journal of Electrical & Computer Engineering. 2038-8708, 11(4), 2941-2952.

[19] Kumar, S., Matouk, A. E., Chaudhary, H., & Kant, S. (2021). Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques. International Journal of Adaptive Control and Signal Processing, 35(4), 484-497.

[20] Vaidyanathan, S., & Volos, C. (2015). Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Archives of Control Sciences, 25(3).

[21] Benkouider, K., Boudren, T., & Halimi, M. (2019, April). Dynamical analysis, synchronization and circuit implementation of a new Hyperchaotic system with line equilibrium. In 2019 6th international conference on control, decision and information technologies (CoDIT) (pp. 1717-1722). IEEE.

[22] Kharel, R. (2011). Design and implementation of secure chaotic communication systems (Doctoral dissertation, Northumbria University).

[23] Frederickson, P., Kaplan, J. L., Yorke, E. D., & Yorke, J. A. (1983). The Liapunov dimension of strange attractors. Journal of differential equations, 49(2), 185-207.

[24] Qi, G., Chen, G., & Zhang, Y. (2008). On a new asymmetric chaotic system. Chaos, Solitons & Fractals, 37(2), 409-423.

[25] Lorenz, E. N. (1963). Deterministic nonperiod flow. Journal of the atmospheric sciences, 20(2), 130-141.

[26] Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(07), 1465-1466.

[27] Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397-398.

[28] Chen, Z., Yang, Y., & Yuan, Z. (2008). A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos, Solitons & Fractals, 38(4), 1187-1196.

[29] Li, D. (2008). A three-scroll chaotic attractor. Physics Letters A, 372(4), 387-393.

[30] Zhou, W., Xu, Y., Lu, H., & Pan, L. (2008). On dynamics analysis of a new chaotic attractor. Physics Letters A, 372(36), 5773-5777.

[31] Lü, J., Chen, G., Cheng, D., & Celikovsky, S. (2002). Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos, 12(12), 2917-2926.

[32] Sparrow, C. (2012). The Lorenz equations: bifurcations, chaos, and strange attractors (Vol. 41). Springer Science & Business Media.

[33] Sparrow, C. (2012). The Lorenz equations: bifurcations, chaos, and strange attractors (Vol. 41). Springer Science & Business Media.

[34] Cai, G., & Tan, Z. (2007). Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain systems, 1(3), 235-240.

[35] Tigan, G., & Opris, D. (2008). Analysis of a 3D chaotic system. Chaos, Solitons & Fractals, 36(5), 1315-1319.

[36] Wang, G., Zhang, X., Zheng, Y., & Li, Y. (2006). A new modified hyperchaotic Lü system. Physica A: Statistical Mechanics and its Applications, 371(2), 260-272.

[37] Liu, C., Liu, T., Liu, L., & Liu, K. (2004). A new chaotic attractor. Chaos, Solitons & Fractals, 22(5), 1031-1038.

[38] Li, X. F., Chu, Y. D., Zhang, J. G., & Chang, Y. X. (2009). Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor. Chaos, Solitons & Fractals, 41(5), 2360-2370.

[39] Munmuangsaen, B., & Srisuchinwong, B. (2009). A new five-term simple chaotic attractor. Physics Letters A, 373(44), 4038-4043.

[40] Liu, Y., & Yang, Q. (2010). Dynamics of a new Lorenz-like chaotic system. Nonlinear Analysis: Real World Applications, 11(4), 2563-2572.

[41] Zhu, C. X., Liu, Y. H., & Guo, Y. (2010). Theoretical and numerical study of a new chaotic system. Intelligent Information Management, 2(02), 104.

[42] Liu, Y., & Yang, Q. (2010). Dynamics of a new Lorenz-like chaotic system. Nonlinear Analysis: Real World Applications, 11(4), 2563-2572.

[43] Pan, L., Zhou, W., Fang, J. A., & Li, D. (2010). A new three-scroll unified chaotic system coined. International Journal of Nonlinear Science, 10(4), 462-474.

[44] Pehlivan, I., & UYAROGLU, Y. (2010). A new chaotic attractor from general Lorenz system family and its electronic experimental implementation. Turkish Journal of Electrical Engineering & Computer Sciences, 18(2), 171-184.

[45] Wei, Z. (2011). Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 376(2), 102-108.

[46] Li, X., & Ou, Q. (2011). Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dynamics, 65(3), 255-270.

[47] Li, C., Li, H., & Tong, Y. (2013). Analysis of a novel three-dimensional chaotic system. Optik, 124(13), 1516-1522.

[48] Kim, D., & Chang, P. H. (2013). A new butterfly-shaped chaotic attractor. Results in Physics, 3, 14–19.

[49] Abooeec, A., Yaghini-Bonabi, H. A., & Jahan-Motlagh, M. R. (2013). Analysis and circuitry realization of a novel three-dimensional chaotic system. Communications in Nonlinear Science and Numerical Simulation, 18(5), 1235-1245.

[50] Qiao, Z., & Li, X. (2014). Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Mathematical and Computer Modelling of Dynamical Systems, 20(3), 264-283.

[51] Deng, K., Li, J., & Yu, S. (2014). Dynamics analysis and synchronization of a new chaotic attractor. Optik-International Journal for Light and Electron Optics, 125(13), 3071-3075.

[52] Gholizadeh, A., Nik, H. S., & Jajarini, A. (2015). Analysis and control of a three-dimensional autonomous chaotic system. Appl. Math. Inf. Sci, 9, 739-747.

[53] Wu, X., He, Y., Yu, W., & Yin, B. (2015). A new chaotic attractor and its synchronization implementation. Circuits, Systems, and Signal Processing, 34(6), 1747-1768.

[54] Singh, P. P., Singh, J. P., & Roy, B. K. (2014). Synchronization and anti-synchronization of Lu and Bhalekar-Gejji chaotic systems using nonlinear active control. Chaos, Solitons & Fractals, 69, 31-39.

[55] Alsafaifeh, Q. H., & Al-Arnii, M. S. (2011). A new chaotic behavior from Lorenz and Rossler systems and its electronic circuit implementation. Circuits and Systems, 2(02), 101.

[56] Su, K. (2015). Dynamic analysis of a chaotic system. Optik, 126(24), 4880-4886.
[57] Akgul, A., Hussain, S., & Pehlivan, I. (2016). A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik, 127(18), 7062-7071.

[58] Zhang, M., & Han, Q. (2016). Dynamic analysis of an autonomous chaotic system with cubic nonlinearity. Optik, 127(10), 4315-4319.

[59] Gholamin, P., & Sheikhani, A. R. (2017). A new three-dimensional chaotic system: Dynamical properties and simulation. Chinese journal of physics, 55(4), 1300-1309.

[60] Lai, Q., Huang, J., & Xu, G. (2016). Coexistence of multiple attractors in a new chaotic system. Acta Phys. Pol. B, 47(10), 2315-2323.

[61] Tuna, M., & Fidan, C. B. (2016). Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik, 127(24), 11786-11799.

[62] Vaidyanathan, S., & Rajagopal, K. (2016). Analysis, Control, Synchronization and LabVIEW Implementation of a Seven-Term Novel Chaotic System.

[63] Volos, C., Akgul, A., Pham, V. T., Stouboulos, I., & Kyprianidis, I. (2017). A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dynamics, 89(2), 1047-1061.

[64] Singh, J. P., & Roy, B. K. (2018). A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems. Nonlinear Dynamics, 93(3), 1211-1248.

[65] Sambas, A., Vaidyanathan, S., Zhang, S., Putra, W. T., Mamat, M., & Mohamed, M. A. (2019). Multistability in a Novel Chaotic System with Perpendicular Lines of Equilibrium: Analysis, Adaptive Synchronization and Circuit Design. Engineering Letters, 27(4), 744-751.

[66] Yang, Q., & Qiao, X. (2019). Constructing a New 3D Chaotic System with Any Number of Equilibria. International Journal of Bifurcation and Chaos, 29(05), 1950060.

[67] Lassoued, A., Boubaker, O., Dhifaoui, R., & Jafari, S. (2019). Experimental Observations and Circuit Realization of a Jerk Chaotic System With Piecewise Nonlinear Function. In Recent Advances in Chaotic Systems and Synchronization (pp. 3-21). Academic Press.

[68] Vaidyanathan, S., Abba, O. A., Betchewe, G., & Aldou, M. (2019). A new three-dimensional chaotic system: its adaptive control and circuit design. International Journal of Automation and Control, 13(1), 101-121.

[69] Lien, C. H., Vaidyanathan, S., Sambas, A., Sampath, S., & Mamat, M. (2019, October). A new 3-D chaotic system with four quadratic nonlinear terms, its global chaos control via passive control method and circuit design. In IOP Conference Series: Materials Science and Engineering (Vol. 621, No. 1, p. 012013). IOP Publishing.

[70] Kapitanikai, T., Mohammadi, S., Mekhilef, S., Alsaadi, F., Hayat, T., & Pham, V. T. (2018). A New Chaotic System with Stable Equilibrium: Entropy Analysis, Parameter Estimation, and Circuit Design. Entropy, 20(9), 670.

[71] Xu, G., Shekoffey, Y., Akgul, A., Li, C., & Panahi, S. (2018). A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy, 20(2), 86.

[72] Idowu, B. A., Vaidyanathan, S., Sambas, A., Oluoso, O. I., & Onma, O. S. (2018). A new chaotic finance system: Its analysis, control, synchronization and circuit design. In Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (pp. 271-295). Springer, Cham.

[73] Jinjie, H., & Guangming, S. (2018, June). A new chaotic system and its synchronization with phase spatial rotation. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 193-196). IEEE.

[74] Lai, Q., Akgul, A., Varan, M., Kengne, J., & Erguzel, A. T. (2018). Dynamic analysis and synchronization control of an unusual chaotic system with exponential term and coexisting attractors. Chinese Journal of Physics, 56(6), 2837-2851.

[75] PARks, P. C. (1962, October). A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 58, No. 4, pp. 694-702). Cambridge University Press.

Khaled Benkouider received the MS degree in Automatic Control from the University of Jijel, Jijel, Algeria, 2015. His MS research was on secure communications based on chaotic systems. He received the Ph.D. degree from the University of Jijel in 2021. His main research interests include dynamical systems, control systems, delayed systems, LPV systems, chaotic systems synchronization, transmission security and watermarking.

Toufik Bouden received engineer diploma (1992), MSc (1995) and PHD (2007) degrees in Automatics and Signal processing from Electronics Institute of Annaba University, Algeria. He is currently a full professor in Mathematics department and he was the head of non destructive testing laboratory at Jijel University, Algeria. His research focuses on signal and image processing adapted to non destructive testing and materials characterization, biometry, transmission security and watermarking, transmission, fractional system analysis, synthesizes and control.

Aceng Sambas is currently a Lecturer at the Muhammadiyah University of Tasikmalaya, Indonesia since 2015. He received his Ph.D in Mathematics from the Universiti Sultan Zainal Abidin (UniSZA), Malaysia in 2020. His current research focuses on dynamical systems, chaotic signals, electrical engineering, computational science, signal processing, robotics, embedded systems and artificial intelligence.
Mohamad Afendee Mohamed received his PhD in Mathematical Cryptography in 2011 and currently serves as an associate professor at Universiti Sultan Zainal Abidin. His research interests include both theoretical and application issues in the domain of data security, and mobile and wireless networking.

Ibrahim Mohammed Sulaiman received the Ph.D. degree in fuzzy systems from the Universiti Sultan Zainal Abidin (UniSZA), Malaysia, in 2018. Since 2019, he has been a Postdoctoral Researcher with the Faculty of Informatics and Computing, UniSZA. He has published research articles in various international journals and attended international conferences. His research interests include numerical research, fuzzy nonlinear systems, and unconstrained optimization.

Mustafa Mamat is currently a Professor and the Dean of Graduate School at Universiti Sultan Zainal Abidin (UniSZA), Malaysia since 2013. He was first appointed as a Lecturer at the Universiti Malaysia Terengganu (UMT) in 1999. He obtained his PhD from the UMT in 2007 with specialization in optimization. Later on, he was appointed as a Senior Lecturer in 2008 and then as an Associate Professor in 2010 also at the UMT. To date, he has successfully supervised more than 60 postgraduate students and published more than 150 research papers in various international journals and conferences. His research interests include conjugate gradient methods, steepest descent methods, Broydens family and quasi-Newton methods.

Mohd Asrul Hery Ibrahim was born in Kelantan, Malaysia. He received the B.Sc. degree in financial mathematics and the M.Sc. degree in applied mathematics from the Universiti Malaysia Terengganu, Malaysia. He is currently pursuing the Ph.D. degree in mathematical sciences with the Universiti Sultan Zainal Abidin. He is also working with Universiti Malaysia Kelantan as a Senior Lecturer and the Director of the Publication and Rating Division. He writes regularly and has published more than 50 scientific articles in journals, and national and international conferences. His current research interests include optimization, numerical analysis, business mathematics, and business statistics.