TENTATIVE DETECTION OF ELECTRIC DIPOLE EMISSION FROM RAPIDLY ROTATING DUST GRAINS

DOUGLAS P. FINKBEINER¹,² AND DAVID J. SCHLEGEL

Princeton University, Department of Astrophysics, Peyton Hall, Princeton, NJ 08544

CURTIS FRANK

University of Maryland, Department of Astronomy, College Park, MD 20742-2421

AND

CARL HEILES

University of California, Berkeley, Department of Astronomy, 601 Campbell Hall, Berkeley, CA 94720

Received 2001 July 5; accepted 2001 October 22

ABSTRACT

We present the first tentative detection of spinning dust emission from specific astronomical sources. All other detections in the current literature are statistical. The Green Bank 140 foot telescope was used to observe 10 dust clouds at 5, 8, and 10 GHz. In some cases, the observed emission was consistent with the negative spectral slope expected for free-free emission (thermal bremsstrahlung), but in two cases it was not. One H II region (LPH 201.663+1.643) yields a rising spectrum, inconsistent with free-free or synchrotron emission at the ~10 σ level. One dark cloud (L1622) has a similar spectrum with lower significance. Both spectra are consistent with electric dipole emission from rapidly rotating dust grains ("spinning dust"), as predicted by Draine & Lazarian.

Subject headings: cosmic microwave background — diffuse radiation — dust, extinction — ISM: clouds — radiation mechanisms: thermal — radio continuum: ISM

1. INTRODUCTION

In the last decade, the COBE satellite and several ground- and balloon-based experiments (QMAP, Saskatoon, MAXIMA, BOOMERANG, TOCO, DASI, CBI, and others) have greatly increased our knowledge of cosmic microwave background (CMB) radiation. Some of these careful observations of the microwave sky have also revealed new and surprising features in the interstellar medium at 14 GHz < ν < 53 GHz. At frequencies above 100 GHz (λ < 3 mm), the emission from Galactic cirrus is consistent with thermal emission. This emission is a broken power law, with the break at ~ 500 GHz, interpreted by Finkbeiner, Davis, & Schlegel (1999) as emission from two dust components. Although this interpretation fits the data from 100 to 3000 GHz, a dramatic deviation arises at lower frequencies. This deviation motivates the work presented here.

The COBE/DMR data (7° FWHM) exhibit dust-correlated emission at 90 GHz at approximately the level predicted by a detailed model of the thermal dust spectrum based on DIRBE and FIRAS data (Finkbeiner et al. 1999). In the other DMR channels there is a pronounced excess — more than a factor of 10 at 31.5 GHz (Kogut et al. 1996). The 19 GHz data from Cottingham's thesis (Cottingham 1987; Boughn et al. 1992) also indicate such an excess (de Oliveira-Costa et al. 1998). This microwave excess appears in the Saskatoon experiment as well, but with less significance (de Oliveira-Costa et al. 1997). Owens Valley Radio Observatory (OVRO) observations in a ring around the north celestial pole at 14 and 31 GHz have demonstrated a correlation of 14 GHz emission with dust at the highest resolution (7°) to date, but at a level ~1000 times brighter than the expected thermal (vibrational) dust emission (Leitch et al. 1997). This excess has been called the "mystery component" (de Oliveira-Costa et al. 2001).

The spectral shape of these early measurements is consistent with free-free emission from ionized gas, motivating a comparison with Hz maps. Leitch et al. (1997) noted the weakness of Hz emission in the OVRO fields and concluded that only T > 10⁶ K gas (e.g., shock-heated gas in a supernova remnant) could produce the observed emission. The observed emission, however, would require an energy injection rate at least 2 orders of magnitude greater than that provided by supernovae (Draine & Lazarian 1998a). Another possibility is magnetic dipole emission from ferromagnetic or ferrimagnetic grains, resulting from thermal fluctuations in the magnetization of the grain material. This component is certainly present at some level but is subdominant in the current data (Draine & Lazarian 1999).

The currently favored emission mechanism is electric dipole emission from rapidly rotating dust grains, an idea first proposed by Erickson (1957) and improved upon by Ferrara & Dettmar (1994). Recent work by Draine & Lazarian (1998b) has refined this idea and shown that ion encounters with dust grains are the dominant spin-up mechanism, leading to concrete predictions of emission as a function of the temperature, density, and ionization fraction of the surrounding gas. This emission mechanism has never been unambiguously observed but can be made to agree with the observed microwave data for reasonable model parameters. It was previously impossible to tell if the excess emission results from spinning dust or free-free emission because the predicted spectral slope is similar for 20 GHz < ν < 60 GHz, and earlier observations were insufficient to rule out either mechanism. The Tenerife data (de Oliveira-Costa et al. 1999) at 10 and 15 GHz have good leverage on the spectral shape but provide only a statistical detection by

¹ Also University of California, Berkeley, Department of Astronomy.
² Hubble Fellow.

³ Note that this mechanism has nothing to do with grain rotation.
cross-correlation. To date, no one has observed spinning dust emission from a specific source.

The spinning dust is expected to have an emission peak at \(\sim 15 \) GHz (in temperature units) and to be dominated by free-free below \(\sim 5 \)–\(10 \) GHz, so by choosing frequencies in this range, one can hope to unambiguously detect this component. We have obtained data for several dust clouds at 5, 8, and 10 GHz, a frequency range over which the spinning dust spectrum differs measurably from that of free-free or synchrotron emission.

2. OBSERVING STRATEGY

This study used the NRAO\(^4\) 43 m ("140 foot") telescope at Green Bank shortly before its decommissioning on 1999 July 19. Cassegrain C-band (5 GHz) and X-band (8–10 GHz) receivers were used with a 300 MHz bandwidth and gave a typical system temperature of 30–60 K.

Data were obtained during two runs, 1999 April 22–27 and June 1–6. The nutating subreflector on the 140 foot can switch at up to 2.5 Hz with a 12° throw. Switching is restricted by hardware to a position angle of 292°5 (east of north) for the X-band (8–10 GHz) receiver. A second level of switching was accomplished by driving the telescope along the position angle direction at a rate of \(\rightangle \), completing a 48° scan every 16 s (Figs. 1 and 2).

During the scan, the on–off difference was recorded by a digital continuum recorder (DCR) for every chop. The same strip was then observed in the "reverse" direction, a sequence requiring nearly 1 minute for a round trip (including turnaround time). During the turnaround time, a calibration noise source was flashed at 1 Hz. In C band

\(^4 \) The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Fig. 1.—Scan location for the LPH cloud (black lines) overplotted on SHASSA (Gautad et al. 2001) H\(\alpha \) (grayscale) and SFD98 \(E(B - V) \) (mag) (contours). Contour levels are 1, 1.5, 2, and 3 mag. H\(\alpha \) brightness is measured in rayleighs with the scale on the right. \(1 \) R = \(10^4/4\pi \) photons cm\(^{-2}\) s\(^{-1}\) sr\(^{-1}\).

Fig. 2.—Scan location for L1622 (black lines) overplotted on H\(\alpha \) (grayscale) and SFD98 \(E(B - V) \) (mag) (contours).

(5 GHz), switching is restricted to a direction orthogonal to the scan line, so switching was not performed at 5 GHz.

The beam of the 140 foot telescope at 5 GHz (6' FWHM) is well matched to the Schlegel, Finkbeiner, & Davis (1998, hereafter SFD98) 100 k\(\mu \)m map, to which the data are compared in \S 3. At 8 and 10 GHz, multiple parallel scans were performed to subsample a 6' Gaussian beam. For a typical system temperature of 40 K and 200 ms integration (2 Hz switch, so four samples per second with 50 ms blanking time) we obtain a theoretical sensitivity of 7.3 mK per difference per polarization. Typically, 1 hr was spent on each target in each band, yielding a theoretical sensitivity of \(\sim 1 \) mK per polarization per pointing. Observations were also attempted at 18 GHz, but the system temperature was too high to obtain any useful data. The 14 GHz receiver was not available at the time of our observing run.

A bandwidth of 300 MHz was used throughout the run. RFI affected a negligible number of the measurements, and these are easily found and discarded later in the analysis.

3. ANALYSIS

The DCR records the difference between the on position and off position some 12° away as the telescope scans over a target. The P.A. of the chop is fixed at 292°5, so as not to interfere with point source measurements when scanning east-west or north-south. This arrangement is ideal for point sources because the off never crosses the source and the baseline difference is easily established when the on position is away from the source. When observing the diffuse interstellar medium (ISM), there is no local zero-brightness position to compare to along the scan. We therefore scan parallel to the chop direction to reduce the problem to one dimension.

The measured difference for each chop (Fig. 3a) is dominated by sidelobe and atmospheric contamination and drifts with time. All these effects are generally smooth functions of time and are removed with a low-order polynomial fit with appropriate outlier rejection. The data are then
For the diffuse H II region LPH 201.663 + 1.643: (a) observed differences vs. time; (b) differences folded vs. R.A. for forward (black line) and return (gray line) scans; (c) data (dashed line) and SFD98-based (solid line) prediction using the conversion factor for 10 GHz from de Oliveira-Costa et al. (1999) for the forward scan; (d) correlation of data vs. prediction for the forward scan; (e) same as (c) for the return scan; and (f) same as (d) for the return scan. "folded" by plotting as a function of sky position (Fig. 3b) to reveal the beam-convolved and differenced structure on the sky. Because of sidelobe and atmospheric contamination, an artificial slope is present in these plots; it is also fitted and removed. The data are binned in right ascension and the median of each bin is overplotted. Note that for the source LPH 201.663 + 1.643 shown in Figure 3, there is a difference between forward and reverse scans. In the forward direction, the on position is slightly less than 12' ahead of the off position because the telescope is moving east. In the reverse direction, on is slightly more than 12' away as the telescope drives west. This means that forward and reverse scans must be analyzed separately, even though they are overplotted in Figure 3b.

Finally, we consider the correlation slope between predicted and observed emission. Because of the double-switched observing strategy, it is impossible to uniquely recover the observed flux of an object. A suitable template, however, may be convolved with the same observing strategy and compared to observation. The SFD98 100 μm and
temperature maps are used to predict a microwave brightness temperature (Figs. 3c and 3e) using the factor of 50 μK at 10 GHz per $I_{100 \mu m}$ in MJy sr$^{-1}$ (de Oliveira-Costa et al. 1999). The correlation slope is then measured and tabulated; it should be consistent with 1 at 10 GHz for a correct prediction and vary at other frequencies with the shape of the spinning dust spectrum. Separate numbers are tabulated for each combination of polarization and direction (Table 1). The prediction includes a factor of $\frac{1}{5}$ for single-polarization measurements, so RCP and LCP are combined by averaging, not adding. Values in the table may be multiplied by 50 to obtain units in order to compare to, e.g., de Oliveira-Costa et al. 1999. Note that L1622 was observed twice at 8.25 GHz.

3.1. Calibration

For calibration standards, we use the fits of C. Salter (2001, private communication), who follows Kuehr et al. (1981) in using the form $S = a_0 + a_1 x + a_2 \exp(-x)$, where $x = \log_{10} v$, v is in MHz, and S is in Jy. With $a_0 = 3.523$, $a_1 = -0.779$, and $a_2 = -3.732$ for 3C 138, we obtain $S(5, 8.25, 9.75 \text{ GHz}) = (3.54, 2.50, 2.22) \text{ Jy}$. This agrees with a simple power-law fit to 87GB (Gregory & Condon 1991) and the Wright et al. (1991) survey to within 2%. Cross-checks were done with 3C 245 and BL Lac, and agreed to 5%. The definitive calibration was determined by 3C 138, however, because it was observed near L1622 and LPH 201.663 + 1.643 in both space and time.

4. RESULTS

Of the targets observed (Table 2), two clouds show significant dust-correlated emission at 5–10 GHz. The non-detection of the other targets is not very surprising because the parameters describing the physical properties of these clouds span a wide range of values, so the relative intensities may vary widely. Both of the detected clouds (L1622 and LPH 201.663 + 1.643) show a steep rise from 8 to 10 GHz, with the 5 GHz brightness apparently contaminated by free-free (Table 3). In order to compare these results to previous correlation measurements, results from several experiments are overplotted on the Draine & Lazarian (1998b) models in Figure 5. All data and model curves are normalized to emission per H atom for ease of comparison. In practice this is done by normalizing to SFD98 $E(B-V)$ values and then applying a conversion factor. The free-free emission curves corresponding to two values of $E(B-V)$ are shown.

Table 1

Name	v	$I_{100 \mu m}$	I_{100}	I_{100}^\prime	I_{100}''		
L1622	5.00	1.29 ± 0.39	3.49 ± 0.84	0.48 ± 0.38	0.35 ± 0.77	1.31 ± 0.25	
L1622	8.25	1.25 ± 0.29	0.26 ± 0.37	0.67 ± 0.41	0.52 ± 0.35	0.75 ± 0.17	
L1622	8.25	1.14 ± 0.37	1.24 ± 0.44	1.05 ± 0.38	1.11 ± 0.33	1.13 ± 0.19	
L1622	9.75	1.65 ± 0.67	0.76 ± 0.77	0.84 ± 0.73	0.78 ± 0.65	1.03 ± 0.35	
LPH	5.00	53.16 ± 5.28	57.01 ± 5.68	54.12 ± 5.39	58.05 ± 5.90	55.41 ± 2.77	20.0
LPH	8.25	25.45 ± 1.69	25.92 ± 1.91	29.16 ± 1.93	29.50 ± 2.25	27.22 ± 0.96	28.4
LPH	9.75	23.96 ± 2.09	23.33 ± 1.70	27.89 ± 2.49	27.17 ± 1.90	25.25 ± 0.99	25.4

Note.—Correlation slopes for forward and return scans of RCP and LCP polarizations. These correlation slopes are for T_B vs. a prediction of 50μK per $I_{100 \mu m}$, where $I_{100 \mu m}$ is the DIRBE temperature-corrected IRAS intensity at 100 μm in MJy sr$^{-1}$. This temperature-corrected map may be obtained by dividing the SFD98 $E(B-V)$ prediction by 0.0184.

The prediction used includes a factor of $\frac{1}{5}$ for single-polarization measurements, so RCP and LCP are combined by averaging, not adding. Values in the table may be multiplied by 50 to obtain units in order to compare to, e.g., de Oliveira-Costa et al. 1999. Note that L1622 was observed twice at 8.25 GHz.

Table 2

Name	$\sigma_{12000.0}$	$\delta_{12000.0}$	Result	Comment
L1622	05 54 23	+01 46 54	Detected	Dark cloud
LPH	06 36 40	+10 46 28	Detected	Diffuse H II
L1591	06 09 55	+13 44 34	ND	Dark cloud
IRAS	07 225-1617	-16 23 21	Weak	IRAS source
IRAS	15 55 15	-25 49 40	No 10	IRAS source
VSS II-79	16 33 58	-23 43 48	Negative correlation	Near L1709C
IRAS	18 17 29	-11 58 52	Eight only	Near H II
IRAS	19 46 08	+29 33 34	ND	IRAS source
IRAS	23 36 23	+48 28 01	ND	IRAS source
IRAS	23 37 28	+48 32 18	ND	IRAS source

Note.—List of targets observed. Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. ND = not detected. Most of these have other names in the literature. VSS II-79 has a significant negative correlation with dust emission, perhaps from an H II shell around the dust filament. LPH = Lockman et al. 1996, IRAS = Joint IRAS Science Working Group 1985, L = Lynds 1962, and VSS = Vrba, Strom, & Strom 1976.
Fig. 4.—Same as Fig. 3 but for L1622. Notice that the correlation slope is approximately unity in this region.

NAME	\(N(H) \times 10^{21} \text{ cm}^{-2}\)	\(j/(5 \text{ GHz} \div n_H)\) 8.25 GHz	9.75 GHz	
L1622	18	7.8 ± 3.9	6.6 ± 1.3	10.1 ± 3.4
LPH	27	147 ± 17	191 ± 7	247 ± 10

Note.—\(N(H)\) is estimated by using the SFD98 \(E(B-V)\) extinction estimate and a conversion factor of \(N(H)/E(B-V) = 8 \times 10^{21} \text{ cm}^{-2} \text{ mag}^{-1}\).
where \(c \) is the Euler constant (\(c = 0.577 \)) and is the Gaunt factor for free-free. For microwave frequencies, a useful approximation is

\[
g_{ff} = \frac{3^{1/2}}{\pi} \left[\ln \frac{(2kT)^{3/2}}{\pi e^2 v_m^2 h^2} - \frac{5\gamma}{2} \right], \quad v_p \ll v \ll \frac{kT}{h},
\]

where \(\gamma \) is the Euler constant (\(\gamma \approx 0.577 \)) and \(v_p \) is the plasma frequency (Spitzer 1978). Evaluating for \(v = 10^{16} \) Hz and \(T = 10^4 \) K we find \(g_{ff} \approx 4.69 \) and \(J(10 \text{ GHz}) = 78.8 \text{ Jy sr}^{-1} \text{ cm}^{-1} \) for \(\text{EM} = 1 \text{ pc cm}^{-6} \). The emission measure for

\[
\langle n_e n_p \rangle / \langle n_H \rangle \text{ are shown, with the upper curve determined by an emission measure derived from the Hx survey}\text{ of Gaustad et al. (2001).}
\]

Because free-free emission clearly contributes to the measured signal, it is desirable to have an independent limit on the free-free and show that it is consistent with our measurements. This limit may be derived from Hx as follows. The emission coefficient \(j_v \) for free-free, with electrons assumed to interact with ions of charge \(Z \), free and particle density \(n_i \), is

\[
j_v = 5.44 \times 10^{-16} \frac{g_{ff} Z_i^2 n_e n_i}{T^{1/2}} e^{-v/kT} \text{ Jy sr}^{-1} \text{ cm}^{-1},
\]

where \(g_{ff} \) is the Gaunt factor for free-free. For microwave frequencies, a useful approximation is

\[
\text{Prospects}
\]

There are compelling reasons to pursue this project with an interferometer in the southern hemisphere, such as the Cosmic Background Imager (CBI; Padin et al. 2001). The synthesized beam is 5–8′, well matched to the 6′ of the IRAS (Beichman et al. 1988) map as reprocessed SFD98. CBI has 10 channels from 26 to 36 GHz providing spectral information with high sensitivity. Many prospective targets
are in the southern half of the sky toward the Galactic center. The frequency coverage is not ideal for separation of free-free from spinning dust, but the high sensitivity (41 μK in 900 s for the highest resolution configuration) should allow clean detections and easy comparison with the Jonas, Baart, & Nicolson (1998) Rhodes/HartRAO survey at 2.326 GHz for free-free removal. The Degree Angular Scale Interferometer (DASI; Halverson et al. 1998) has many of the same properties but a larger beam of about 20', and is therefore more appropriate for comparison with the Rhodes/HartRAO data (20').

The recently launched Microwave Anisotropy Probe (MAP; Bennett et al. 1997) has full-sky coverage at 22, 30, 40, 60, and 90 GHz with beams of 56', 41', 32', 21', and 14' (FWHM), respectively. These data will complement the interferometer data nicely. With data from these projects, a decisive detection of spinning dust emission may be possible in the near future.

6. CONCLUSIONS

We have explored a far-IR–selected sample of dust clouds spanning a wide range of IR color temperature, column density, and ionization fraction. Our target selection procedure rejected the radio-bright H II regions as poor targets because free-free was expected to overwhelm spinning dust emission. In spite of this prejudice, one H II region (from the LPH catalog of diffuse H II regions in Lockman, Pisano, & Howard 1996) made the list and provided a very significant detection. A dark cloud, L1622, was also detected and found inconsistent with free-free emission at a lower confidence. This is the first detection of a rising spectrum source at 8–10 GHz consistent with spinning dust. The amplitude of this emission per H atom apparently varies by a factor of at least 30, somewhat more than theoretically expected. Some adjustment of model parameters will be needed to explain the brightness of LPH 201.663+1.643, but the current model of Draine & Lazarian could possibly accommodate the new data (B. T. Draine 2001, private communication).

Note that magnetic dipole emission from ferromagnetic or ferrimagnetic grains (Draine & Lazarian 1999) is substantially weaker than the observed signal from LPH 201.663+1.643, but significant contributions from such a mechanism cannot currently be ruled out.6 Other attempts have been made to explain the large variation using 12 μm emission as a tracer of the small grain population (de Oliveira-Costa et al. 2001). We caution that the interpretation of these data must remain tentative until a larger sample meeting the criteria in § 5 can be obtained.

Cold neutral clouds are an obvious target choice for future work because free-free emission is likely to be subdominant in them. Diffuse ionized gas also appears to be an excellent target, since ion-dust interactions are effective at spinning up the grains. As long as the density is low, as in the LPH list (Lockman et al. 1996), H II regions may be the optimal targets for future work with DASI, CBI, and MAP.

This measurement is rather tenuous, as was the discovery of Galactic radio emission 60 years ago (Reber 1940). The signal was immediately interpreted as free-free (Henyey & Keenan 1940) but was later recognized as synchrotron radiation. Those emission mechanisms are now essential tools for ISM research in the Milky Way and distant galaxies. With the expected increase in astronomical capability at microwave frequencies in the near future, we anticipate that spinning dust will make a useful addition to this toolbox.

We would like to thank the staff at Green Bank, especially Dana Balser, who spent 20 hours helping us with the back-end software on the first day. Bruce Draine provided model emissivities and helpful discussions. Peter McCullough and John Gaustad provided Hz data in the regions of interest prior to publication. Shaul Hanany, Al Kogut, Alex Lazarian, Jay Lockman, and George Smoot provided helpful comments on the manuscript. Computers were partially provided by a Sun AEGP grant. D. P. F. is a Hubble Fellow, and was partially supported by NASA grant NAG 5-7833. D. J. S. is partially supported by the Sloan Digital Sky Survey. This work was also supported in part by NSF grants 95-30590 and 00-97417 to C. H. This research made use of the NASA Astrophysics Data System. The Green Bank 140 foot telescope was operated by the National Radio Astronomy Observatory (NRAO), which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

6 Because this emission may be ~30% polarized for aligned grains of strongly magnetic material, polarization measurements would be helpful.

REFERENCES

Bennett, C. L, et al. 1997, A&AS, 191, 8701
Boughn, S. P., Cheng, E. S., Cottingham, D. A., & Fixsen, D. J. 1992, ApJ, 391, L49
Cottonham, D. A. 1987, Ph.D. thesis, Princeton Univ.
de Oliveira-Costa, A., et al. 1999, ApJ, 527, L9
de Oliveira-Costa, A., & Kogut, A., Devlin, M. J., Netterfield, C. B., Page, L. A., & Wollack, E. J. 1997, ApJ, 482, L17
de Oliveira-Costa, A., Tegmark, M., Page, L., & Boughn, S. 1998, ApJ, 509, L9
Draine, B. T., & Lazarian, A. 1998a, ApJ, 494, L19
Draine, B. T., & Lazarian, A. 1998b, ApJ, 508, 157
———. 1999, ApJ, 512, 740
Erickson, W. C. 1957, ApJ, 126, 480
Ferrara, A., & Dettmar, R. J. 1994, ApJ, 427, 155
Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, ApJ, 524, 867
Gaustad, J. E., McCullough, P. R., Rosing, W., & Van Buren, D. 2001, PASP, 113, 1326
Gregory, P. C., & Condon, J. J. 1991, ApJS, 75, 1011
Halverson, N. W., Carlstrom, J. E., Dragovan, M., Holzapfel, W. L., & Kovac, J. 1998, Proc. SPIE, 3357, 416
Henyey, L. G. & Keenan, P. C. 1940, ApJ, 91, 625
Joint IRAS Science Working Group. 1985, IRAS Point Source Catalogue (Washington, DC: US GPO)
———. 1988, IRAS Catalogs and Atlases: Explanatory Supplement, ed. C. A. Beichman, G. Neugebauer, H. J. Habing, P. E. Clegg, & T. J. Chester (Washington, DC: US GPO)
Jonas, J. L., Baart, E. E., & Nicolson, G. D. 1998, MNRAS, 297, 977
Kogut, A., et al. 1996, ApJ, 464, L5
Kuehr, H., Witzel, A., Pauliny-Toth, I. I. K., & Nauber, U. 1981, A&AS, 45, 367
Lazarian, A, & Draine, B. T. 2000, ApJ, 536, L15
Leitch, E. M., Readhead, A. C. S., Pearson, T. J., & Myers, S. T. 1997, ApJ, 486, 123
Lockman, F. J., Pisano, D. J., & Howard, G. J. 1996, ApJ, 472, 173 (LPH)
Lynds, B. T. 1962, ApJS, 7, 1
Padin, S., et al. 2001, ApJ, 549, L1
Parker, E. R. 1949, ApJ, 110, 104
Parker, E. R., & Tinsley, B. M. 1966, ApJ, 144, 1225
Parker, E. R., & Tinsley, B. M. 1968, ApJ, 149, 663
Parker, E. R., & Tinsley, B. M. 1976, ApJ, 203, 668
Parker, E. R., & Tinsley, B. M. 1977, ApJ, 214, 601
Parker, E. R., & Tinsley, B. M. 1978, ApJ, 223, 557
Parker, E. R., & Tinsley, B. M. 1979, ApJ, 227, 601
Parker, E. R., & Tinsley, B. M. 1980, ApJ, 241, 601
Parker, E. R., & Tinsley, B. M. 1981, ApJ, 248, 123
Parker, E. R., & Tinsley, B. M. 1982, ApJ, 251, 123
Parker, E. R., & Tinsley, B. M. 1983, ApJ, 267, 551
Parker, E. R., & Tinsley, B. M. 1984, ApJ, 289, 123
Parker, E. R., & Tinsley, B. M. 1985, ApJ, 296, 123
Parker, E. R., & Tinsley, B. M. 1986, ApJ, 299, 123
Parker, E. R., & Tinsley, B. M. 1987, ApJ, 299, 123
Parker, E. R., & Tinsley, B. M. 1988, ApJ, 299, 123
Padin, S., et al. 2001, ApJ, 549, L1
Parker, E. R., & Tinsley, B. M. 1989, ApJ, 299, 123
Parker, E. R., & Tinsley, B. M. 1990, ApJ, 299, 123
Padin, S., et al. 2001, ApJ, 549, L1
Reber, G. 1940, ApJ, 91, 621
Schlegel, D. J., Finkbeiner, D. P., & Davis M. 1998, ApJ, 500, 525 (SFD98)
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: Wiley)
Vrba, F. J., Strom, S. E., & Strom, K. M. 1976, AJ, 81, 958
Wright, A. E., et al. 1991, MNRAS, 251, 330