Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ

YAO, Yong T, ALDERSON, Kim L and ALDERSON, Andrew
<http://orcid.org/0000-0002-6281-2624>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/13604/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

YAO, Yong T, ALDERSON, Kim L and ALDERSON, Andrew (2016). Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ. Cellulose, 23 (6), 3429-3448.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Electronic Supplementary Material

Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose I_β

Journal: Cellulose

Yong T. Yao1, Kim L. Alderson2 and Andrew Alderson3*

1National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin150080, China

272 Phillips Lane, Liverpool, L37 4BQ, UK

3Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK

Email: A.Alderson@shu.ac.uk
Online Resource Table 1. Unit-cell parameters for cellulose Iβ: comparison between experiment (Nishiyama et al. 2002) and predictions from force fields employed by Materials Studio and Cerius².

	\(V (\text{Å}^3) \)	\(a (\text{Å}) \)	\(b (\text{Å}) \)	\(c (\text{Å}) \)	\(\gamma(\text{°}) \)
Experiment	658.3(1)	7.784(8)	8.201(8)	10.380(1)	96.5
Materials Studio					
Compass	628.6	7.563	8.049	10.432	98.1
Dreiding	723.4	8.105	8.604	10.633	102.7
Universal	767.9	8.704	8.637	10.267	95.8
CVFF	656.1	7.652	8.136	10.615	96.8
PCFF	679.8	7.737	8.368	10.625	98.8
Cerius²					
CVFF	656.1	7.652	8.136	10.615	96.8
PCFF	679.8	7.736	8.368	10.625	98.8
Online Resource Table 2. Bond lengths for cellulose \(I_\beta \): comparison between experiment (Nishiyama et al. 2002) and predictions from force fields employed by *Materials Studio*.

	Expt	Universal	Dreiding	Compass	PCFF	CVFF
Corner chain						
c4-o1	1.44	1.427	1.446	1.422	1.433	1.42
o1-c1	1.415	1.421	1.442	1.428	1.436	1.418
c1-c2	1.53	1.534	1.55	1.513	1.548	1.552
c2-c3	1.51	1.546	1.551	1.501	1.537	1.546
c3-c4	1.516	1.55	1.557	1.508	1.548	1.562
c4-c5	1.497	1.555	1.562	1.515	1.555	1.564
c5-o5	1.441	1.417	1.445	1.429	1.432	1.45
o5-c1	1.426	1.413	1.442	1.427	1.427	1.449
c5-c6	1.52	1.532	1.549	1.514	1.548	1.536
c6-o6	1.416	1.397	1.425	1.427	1.425	1.428
c2-o2	1.43	1.403	1.427	1.437	1.438	1.426
c3-o3	1.442	1.404	1.425	1.435	1.434	1.426
Centre chain						
c4-o1	1.439	1.432	1.442	1.424	1.433	1.424
o1-c1	1.429	1.416	1.44	1.426	1.433	1.42
c1-c2	1.525	1.537	1.547	1.51	1.544	1.549
c2-c3	1.514	1.543	1.55	1.504	1.54	1.553
c3-c4	1.53	1.554	1.559	1.511	1.551	1.565
c4-c5	1.538	1.549	1.562	1.513	1.552	1.559
c5-o5	1.416	1.416	1.445	1.428	1.43	1.443
o5-c1	1.406	1.414	1.44	1.419	1.419	1.431
c5-c6	1.559	1.533	1.55	1.516	1.549	1.532
c6-o6	1.415	1.4	1.426	1.426	1.424	1.428
c2-o2	1.426	1.406	1.42	1.432	1.432	1.418
c3-o3	1.417	1.405	1.426	1.436	1.434	1.427
Online Resource Table 3

Force-field bond angle predictions compared with the experimental data of Nishiyama et al. 2002.

	χ (°)	χ' (°)	ψ (°)	ϕ (°)
Corner chain				
Expt	170.3	-70	-142.3	-98.5
Dreiding	176.3	-62	-156	-88.6
Universal	172	-67.4	-153	92.4
PCFF	167.8	-71.5	-148.9	-92.6
Compass	170.3	-67.1	-153.1	-87.5
CVFF1	169.4	-69.3	-144.7	-94.7
Centre chain				
Expt	158	-83	-147.1	-88.7
Dreiding	170	-68.6	-150.3	-91.3
Universal	167.7	-71.3	-157.6	-91.1
PCFF	168	-69.6	-146.2	-97
Compass	173.1	-50.2	-154.9	-83.6
CVFF1	178.8	-59.3	-142.4	-92.5
Online Resource Table 4. Compliance coefficients (GPa\(^{-1}\)) for cellulose I\(_\beta\) predicted using the CVFF1, CVFF2 and CVFF3 models.

\(s_{ij}\)	CVFF1	CVFF2	CVFF3
\(s_{11}\)	0.047635	0.057615	0.477859
\(s_{12}\)	-0.014451	-0.017566	-0.300745
\(s_{13}\)	-0.001113	-0.001026	0.002259
\(s_{22}\)	0.025547	0.030879	0.231860
\(s_{23}\)	-0.001177	-0.001193	-0.003469
\(s_{33}\)	0.005376	0.004963	0.005567
\(s_{44}\)	0.109768	0.161612	0.156454
\(s_{55}\)	0.309345	0.677733	1.645820
\(s_{66}\)	0.211735	0.314473	0.523760
Online Resource Figure 1. Hydrogen bonding networks in the corner (left) and center (right) sheets of cellulose I$_\beta$ predicted from the CVFF1 model. Carbon, oxygen and hydrogen atoms are colored grey, red and white, respectively. Hydrogen bonds are indicated by dotted lines. For clarity, only the oxygen atoms participating in the hydrogen bonding are identified.