Smoking behaviours and indoor air quality: a comparative analysis of smoking-permitted versus smoke-free homes in Dhaka, Bangladesh

Tarana Ferdous, Kamran Siddiqi, Sean Semple, Caroline Fairhurst, Ruaraidh Dobson, Noreen Mdege, Anna-Marie Marshall, S M Abdullah, Rumana Huque

Abstract

Introduction Exposure to secondhand smoke (SHS) is a health risk to non-smokers. Indoor particulate matter (PM) is associated with SHS exposure and is used as a proxy measure. However, PM is non-specific and influenced by a number of environmental factors, which are subject to geographical variation. The nature of association between SHS exposure and indoor PM—studied primarily in high-income countries (HICs) context—may not be globally applicable. We set out to explore this association in a low/middle-income country setting, Dhaka, Bangladesh.

Methods A cross-sectional study was conducted among households with at least one resident smoker. We inquired whether smoking was permitted inside the home (smoking-permitted homes, SPH) or not (smoke-free homes, SFH), and measured indoor PM concentrations using a low-cost instrument (Dylos DC1700) for at least 22 hours. We describe and compare SHF and SFH and use multiple linear regression to evaluate which variables are associated with PM level among all households.

Results We surveyed 1746 households between April and August 2018; 967 (55%) were SFH and 779 (45%) were SFH. The difference between PM values for SFH (median 27 µg/m³, IQR 25) and SPH (median 32 µg/m³, IQR 31) was 5 µg/m³ (p<0.001). Lead participant’s education level, being a non-smoker, having outdoor space and smoke-free rule at home and not using kerosene oil for cooking were significantly associated with lower PM.

Conclusions We found a small but significant difference between PM concentrations in SPH compared with SFH in Dhaka, Bangladesh—a value much lower than observed in HICs.

Introduction

Exposure to secondhand smoke (SHS) is a serious health hazard among non-smoking adults and children. The harmful consequences of SHS mostly affect women and children by causing lower respiratory infections, middle ear disease, tuberculosis, chronic obstructive pulmonary disease and exacerbation of asthma. Globally, every year, around 890 000 lives and 10.9 million disability-adjusted life years are lost because of SHS exposure.

There are several well-accepted objective methods to assess SHS exposure such as measurement of nicotine or particulate matter (PM) in the air or cotinine in body fluids as a biomarker of inhaled nicotine. While nicotine and cotinine are tobacco specific, airborne PM is not. Despite this, indoor PM concentration has been widely used as a marker of SHS and is a useful indicator for evaluating indoor smoke-free policies. PM concentrations have also been shown to be several times higher in smoking-permitted homes (SPH) compared with smoke-free homes (SFH). The nature of association between PM and SHS is based on data collected from high-income countries (HICs) and little is known about the presence and magnitude of these associations in the rest of the world. We aimed to study the association between indoor PM levels and SHS in a lower/middle-income country (LMIC) setting, where most of the previous studies have looked at PM in relation to stoves or cooking fuels. This is important for two reasons. First, the number of smokers is rising in LMICs with an accompanying increase in SHS exposure. Second, PM is influenced by a wide range of outdoor (eg, motor vehicles, construction, industrial processes, desert dust) and indoor (eg, cooking and biomass fuel combustion) sources, which are likely to differ between HIC and LMIC contexts. For example, there is higher ambient air pollution, use of a range of domestic fuels and greater air exchange rates through ventilation in many LMIC settings compared with HICs. As low-cost PM counting instruments such as the Dylos DC1700 are becoming increasingly accessible in LMICs, it is timely to assess if PM can be used as a marker of SHS in such settings.

In this paper, we compare indoor PM concentrations between SFH and SPH, and identify other factors that may be associated with differences in concentrations.

Methodology

Study design and settings

This cross-sectional design used baseline data collected as part of a cluster randomised controlled trial (cRCT) called Muslim Communities Learning About Second-hand Smoke in Bangladesh (MCLASS)
This cRCT aimed to evaluate the effectiveness and cost-effectiveness of a community-based intervention to improve domestic indoor air quality in Dhaka, Bangladesh. We included 1746 recruited households.

Study participants

We recruited households with at least one adult resident who smoked cigarettes or other forms of tobacco (eg, bidi, shisha) regularly (at least 25 out of 30 days/month) and at least one other non-smoking resident. We excluded households that used coal or biomass fuel for cooking or other domestic purposes since we expected that such combustion sources would mask the effect of smoking on indoor PM$_{2.5}$ concentrations. Each household nominated a ‘lead participant’ who consented and completed the household questionnaire. There were no restrictions on which member of the household the lead participant could be, provided they were an adult resident; they could be either a smoker or a non-smoker.

Data

Data were collected by trained field investigators. A structured questionnaire was used to collect household-level data including: number of adults, children, smokers and bedrooms; presence of adjacent outdoor spaces (such as garden, yard, balcony or veranda); type of fuel used for cooking (electric/liquefied petroleum gas (LPG)/natural gas/biogas, kerosene); indoor smoking rules for residents and visitors; and asset index value. Since household income is a fluctuating variable and often subject to measurement bias, asset index was used as a proxy measure for household wealth and hence their long-run economic status.

Questions on access to electricity, flush toilet, fixed telephone, veranda; type of fuel used for cooking (electric/liquefied petroleum gas (LPG)/natural gas/biogas, kerosene); indoor smoking rules for residents and visitors; and asset index value. Since household income is a fluctuating variable and often subject to measurement bias, asset index was used as a proxy measure for household wealth and hence their long-run economic status.

Since household income is a fluctuating variable and often subject to measurement bias, asset index was used as a proxy measure for household wealth and hence their long-run economic status.

For categorical variables, a small number of households allowed visitors to smoke inside the home but not residents, these were classed as SPH in the main analyses, but exploratory descriptive analyses of PM$_{2.5}$ values were conducted with these households reallocated to the SFH group.

Ordinary least squares multiple linear regression was conducted including all households with the outcomes of average and maximum household PM$_{2.5}$ (μg/m3) values, and household-level and lead participant-level characteristics as independent variables. We specified three different models for each outcome. The first only included lead participant-level independent variables. The second included both lead participant-level and household-level independent variables. The third added SFH/SPH status to the model. Goodness of fit in each model was assessed using the adjusted R^2 statistic. Model assumptions were checked using a QQ plot to assess the normality of residuals, and a scatter plot of fitted values versus residuals, and White’s test to assess heteroscedasticity. Residuals from the models using untransformed outcome data were not normally distributed, so PM$_{2.5}$ data were log-transformed for the final analysis models, which significantly improved model fit (see online supplemental material 1).

For each model, we assessed multicollinearity (using the variance inflation factor (VIF), where a VIF greater than 10 may suggest concerning correlation between the explanatory variables. Statistical significance was assessed using two-sided tests at the 5% level. We used Stata V.15 for all analysis.

RESULTS

Data were collected between April and August 2018, for 1801 households. Data for 55 households could not be used as at least 22 hours of PM$_{2.5}$ measurements were not achieved. We therefore analysed data from 1746 households; 967 (55%) were SPH and 779 (45%) were SFH (table 1).

SPH tend to have fewer adult residents, fewer bedrooms, not have outdoor space and not use electricity for cooking as compared with SFH. Average household PM$_{2.5}$ concentration was significantly higher among SPH than SFH (mean 43.2 (SD 40.6, median 32.0) compared with 38.4 (SD 34.3, median 27.0); $p<0.001$). ‘One-minute household maximum PM$_{2.5}$ concentration’ was also significantly higher among SPH than SFH (mean
In additional analyses, in which we reallocated SPH homes where smoking was permitted by visitors only (21 households) to the SFH group, the mean and maximum PM$_{2.5}$ values were almost identical to the original categories.

To demonstrate differences in short-term concentrations within homes where smoking did and did not take place, the distribution of minute-by-minute PM$_{2.5}$ concentrations in SPH and SFH is shown in figure 1. SPH were significantly right-shifted compared with SFH indicating more individual minutes at higher concentrations (Kolmogorov-Smirnov test p<0.001). Overall, 5.6% of minutes in SPH had concentrations higher than 150.4 µg/m3 (the US Environmental Protection Agency’s threshold for ‘very unhealthy’ concentrations) compared with 4.2% of minutes in SFH.

Lead participants in SPH were more likely to be men, to have completed fewer years’ education and to be a current smoker than in SFH (table 2). In addition, smoker lead participants in SPH tended to smoke more cigarette and have a higher daily consumption compared with SFH.

In the first model for mean PM$_{2.5}$, we observed that years of education (p<0.001) and smoking status (p<0.001) of the lead participant are statistically significantly associated with air quality (table 3). The effect of education is very small; however, for every additional year of education, the average household PM$_{2.5}$ value reduces by a factor of 0.98 (95% CI 0.97–0.99). The mean PM$_{2.5}$ value of the households for which the lead participant is a smoker is, on average, 1.31 times higher (95% CI 1.14–1.51) than households where the lead participant is not a smoker.

In the second model for mean PM$_{2.5}$, education level (p<0.001) and smoking status (p=0.003) of lead participant remain statistically significant correlates, with similar magnitudes of effect. In addition, use of kerosene as a cooking fuel was found to almost double the indoor air pollution (multiplies expected value of mean PM$_{2.5}$ by 1.95, 95% CI 1.65–2.32, p<0.001) relative to households that do not use kerosene, while having an outdoor space is associated with a significant reduction in average PM$_{2.5}$ by a factor of 0.86 (95% CI 0.81–0.92, p<0.001).

In the third model, the magnitude and significance of the covariates affecting the air quality were found to be reasonably consistent with the previous model. In addition, there was evidence that SPH status is predictive of PM$_{2.5}$ (p=0.02), though the difference is very small; the average estimated PM$_{2.5}$ value was 8% higher (95% CI 1%–15%) in SPH relative to SFH.

The VIF ranged from 1.39 to 1.40 for all three models and no evidence of heteroscedasticity was found in any of the models.

Household characteristics	Smoke-free homes (n=779)	Smoke-permitted homes (n=967)	Total (n=1746)	Associated test p value	
Number of adults in household	Mean (SD) 2.5 (0.8)	2.3 (0.7)	2.4 (0.8)	<0.001§	
	Median (min, max) 2 (1, 6)	2 (1, 6)	2 (1, 6)		
Number of children in household	Mean (SD) 1.4 (1.1)	1.4 (1.1)	1.4 (1.1)	0.39§	
	Median (min, max) 1 (0, 7)	1 (0, 6)	1 (0, 7)		
Number of smokers	Mean (SD) 1.1 (0.3)	1.1 (0.3)	1.1 (0.3)	0.05§	
	Median (min, max) 1 (1, 3)	1 (1, 3)	1 (1, 3)		
Number of bedrooms	Mean (SD) 1.5 (0.7)	1.3 (0.6)	1.4 (0.7)	<0.001§	
	Median (min, max) 1 (0, 6)	1 (1, 5)	1 (0, 6)		
Home has outdoor space, n (%)	Yes 495 (63.5)	450 (65.5)	945 (54.1)	<0.001‡	
	No 284 (36.5)	517 (35.5)	801 (45.9)		
Fuel used for cooking, n (%)	Electricity 77 (9.9)	70 (7.2)	147 (8.4)	0.05‡	
	LPG/natural gas/biogas 705 (90.5)	902 (93.3)	1607 (92.0)	0.03‡	
	Kerosene 29 (3.7)	33 (3.4)	62 (3.6)	0.73‡	
Asset index	Mean (SD) 0.4 (4.9)	0.3 (4.4)	0.4 (4.7)	<0.001§	
	Median (min, max) −0.5 (−0.9, 44)	−0.3 (−0.8, 44)	−0.3 (−0.9, 44)		
Maximum PM$_{2.5}$ value (µg/m3)*	Mean (SD) 309.3 (285.8)	372.6 (290.4)	344.3 (290.0)	<0.001§	
	Median (min, max) 208.0 (21.0, 1376.0)	286.0 (20.0, 1304.0)	248.5 (20.0, 1376.0)		
	IQR 342	419	377		
Mean PM$_{2.5}$ value (µg/m3)†	Mean (SD) 38.4 (34.3)	45.2 (40.6)	42.2 (38.0)	<0.001§	
	Median (min, max) 27.0 (2.0, 290.0)	32.0 (1.0, 422.0)	30.0 (1.0, 422.0)		
	IQR 25	31	28		

*Maximum PM$_{2.5}$ value: maximum 1 min derived value for each household.
†Mean PM$_{2.5}$ value: an average of 1440 min of data was collected for each household.
§Mann-Whitney U test.
¶Χ2 test.

LPG, liquefied petroleum gas; PM$_{2.5}$, particulate matter.
PM$_{2.5}$ in all three models (table 4). In models 2 and 3, an increase in household asset index was observed to be associated with a very small but statistically significant decrease in maximum PM$_{2.5}$ as were the lead participant not being a smoker, having outdoor space and not using kerosene for cooking, though these effects were larger. In model 3, age of the lead participant was statistically significant but the magnitude of the effect was negligible. On average, the maximum PM$_{2.5}$ was 1.17 times higher than in SFH (95% CI 1.06–1.28, p=0.001).

DISCUSSION

In this cross-sectional analysis, we used baseline data collected as part of the MCLASS II cRCT. This study of 1746 households is the largest of its kind to measure PM$_{2.5}$ over a whole 24-hour period using low-cost air particle monitors in an LMIC setting, and the first to specifically investigate the use of such devices to assess SHS concentrations in homes in an LMIC setting. We show that it is feasible to conduct a large scale, population-based

Table 2 Characteristics of household lead stratified by whether the home is defined as being 'smoke free' or not

Lead participant’s characteristics	Smoke free homes (n=779)	Smoke-permitted homes (n=967)	Total (n=1746)	Associated test p value
Age (years) Mean (SD)	39.5 (12.5)	40.5 (12.5)	40.1 (12.5)	0.12*
Gender, n (%)				
Male	724 (92.9)	939 (97.1)	1663 (95.2)	<0.001†
Female	55 (7.1)	28 (2.9)	83 (4.8)	
Highest education years, n (%)				
Mean (SD)	6.4 (5.0)	4.1 (4.2)	5.1 (4.7)	<0.001*
Current smoking status, n (%)				
Non-smoker	133 (17.1)	42 (4.3)	175 (10.0)	<0.001†
Smoker	646 (82.9)	925 (95.7)	1571 (90.0)	
Among the smoker lead participants	n (%)=646 (41.1)	n (%)=925 (58.9)	n (%)=1571 (100.0)	
Only cigarette smoker, n (%)	645 (99.8)	895 (96.8)	1540 (98.0)	<0.001†
Other	1 (0.2)	30 (3.2)	31 (1.9)	
Only bidi smoker, n (%)				
Bidi	7 (1.1)	70 (7.6)	77 (4.9)	<0.001†
Other	639 (98.9)	855 (92.4)	1494 (95.1)	
Median (min, max)	10 (3, 20)	10 (4, 40)	10 (3, 40)	
Total tobacco product (cig/bidi) consumed/day	Mean (SD)	10.3 (5.5)	14.4 (7.9)	<0.001*
			12.7 (7.3)	
Number of days smoked any tobacco product in last 30 days	Mean (SD)	29.6 (1.3)	29.9 (0.6)	<0.001†
			29.8 (0.9)	
	Median (min, max)	30 (25, 30)	30 (20, 30)	30 (20, 30)

* T-test.
†X2 test.
‡Mann-Whitney U test.
indoor air quality study in an LMIC. Just over half of our studied households allowed smoking in the home. These households tended to have fewer adult residents and bedrooms, access to outdoor space and use natural gas/LPG for cooking in comparison to SFH. The difference in median daily household PM$_{2.5}$ concentrations was only 5 μg/m3, similar to than seen in our study of 32 μg/m3 (median 3 μg/m3). Alternative possible explanations for this difference. Outdoor PM$_{2.5}$ values are much higher in Dhaka than London or other cities in HICs. We purposefully took the indoor PM$_{2.5}$ measurements during the rainy season in Bangladesh to minimise the impact of outdoor air pollution, as PM$_{2.5}$ concentrations are highly seasonal in Dhaka. Furthermore, our study site, Mirpur, is in one of the most populated areas in Dhaka, and two large construction activities (metro rail and a flyover) were conducted in the last few years in this area, which might have elevated the background PM$_{2.5}$ level. However, our study is limited by a lack of data on outdoor PM$_{2.5}$ concentration over the course of the baseline measurement period. Continuous ambient air pollution data are available only from one monitor at the US Embassy in central Dhaka, far from Mirpur, which (given the local sources previously identified) is unlikely to represent local ambient PM$_{2.5}$. Second, many of our study households were living in slums where housing is generally poorly constructed and likely to have high levels of outdoor to indoor air exchange. Another possible explanation of the high PM$_{2.5}$ concentrations measured in homes could be the use of insecticide mosquito coils that were burned inside some homes due to a dengue fever outbreak in Dhaka during our study period. Previous work has suggested that burning mosquito coils can generate PM$_{2.5}$ mass that is equivalent to several cigarettes. Other plausible reasons for a smaller difference in PM$_{2.5}$ concentrations between SPH and SFH could be related to the behaviour of household members. For instance, a possible Hawthorne effect may exist, which may influence participants’ awareness and behaviour during the 24-hour PM$_{2.5}$ concentration measurement as devices were visibly present. Measuring for a longer period could be a possible solution to avoid this Hawthorne effect, however, a study in the UK showed that the average of a full 6-day measurement provided similar results to the first 24 hours. Moreover, in SPH it is possible that smokers prefer to smoke outside the home when they are with friends, colleagues or common peer groups and, consequently, smokers in Dhaka city may smoke less frequently inside the home compared with smokers who smoke at home in the UK. This may also support our finding that having outdoor space is a crucial factor for designing an intervention to reduce indoor SHS as this is an ‘opportunity’ in the COM-B model (a behavioural system that connects three essential conditions: capability, opportunity and motivation).

Table 3 What factors predict average PM value? Three multiple linear regression models with log-transformed mean PM$_{2.5}$ value as the outcome

Variable (reference variable)	Model 1 (characteristics of lead participant)	Model 2 (characteristics of lead participant and household)	Model 3 (characteristics of lead participant and household and their indoor smoking policy at home)
Age	0.32	0.43	0.30
Gender (male)			
Female	0.19	0.28	0.26
Highest education grade	-0.02	-0.02	-0.02, <0.001***
Lead participant smoking status (non-smoker)			
Smoker	0.27 (0.13 to 0.41)	0.22 (0.07 to 0.36)	0.19 (0.05 to 0.34)
Asset index	-0.02	0.51	-0.002 (0.01 to 0.00)
Number of adults in household		0.17	-0.03 (0.09 to 0.02)
Number of children in household		0.17	0.02 (0.01 to 0.05)
Number of smokers		0.90	-0.003 (0.13 to 0.12)
Number of bedrooms		0.06	0.05 (0.09 to 0.11)
Home has outdoor space (yes)			
Yes	-0.15	<0.001***	-0.14 (0.20 to 0.07)
Fuel used for cooking			
Kerosene	0.67 (0.50 to 0.84)	<0.001***	0.67 (0.51 to 0.84)
Indoor smoking policy of home (smoke-free home)			
Smoke-permitted home		0.08	0.02**
Total observations	1746	1746	1746
F (probability)	18.8 (<0.001***	14.6 (<0.001***	13.9 (<0.001***
Adjusted R²	0.039	0.079	0.081

P value significance level: 10% (*), 5% (**), 1% (**). LPG, liquefied petroleum gas; PM$_{2.5}$, particulate matter.
Table 4 What factors predict maximum PM value? Three multiple linear regression models with log-transformed maximum PM$_{2.5}$ value as the outcome

Variable (reference variable)	Model 1 (characteristics of lead participant)	Model 2 (characteristics of lead participant and household)	Model 3 (characteristics of lead participant and household and their indoor smoking policy at home)			
	Coefficient (95% CI)	P value	Coefficient (95% CI)	P value	Coefficient (95% CI)	P value
Age	−0.003 (−0.01 to 0.00)	0.07*	−0.004 (−0.01 to 0.00)	0.09*	−0.004 (−0.01 to 0.00)	0.04**
Gender (male)						
Female	−0.005 (−0.27 to 0.26)	0.97	−0.04 (−0.30 to 0.23)	0.79	−0.03 (−0.29 to 0.23)	0.83
Highest education grade	−0.04 (−0.05 to 0.03)	<0.001***	−0.03 (−0.04 to 0.02)	<0.001***	−0.03 (−0.04 to 0.02)	<0.001***
Lead participant smoking status (non-smoker)						
Smoker	0.32 (0.12 to 0.51)	0.001**	0.25 (0.04 to 0.45)	0.02**	0.20 (−0.00 to 0.41)	0.05*
Asset index						
Number of adults in household			−0.01 (−0.02 to 0.00)	0.02**	−0.01 (−0.02 to 0.00)	0.02**
Number of children in household			−0.05 (−0.13 to 0.03)	0.19	−0.04 (−0.12 to 0.04)	0.30
Number of smokers			0.02 (−0.02 to 0.06)	0.39	0.02 (−0.02 to 0.07)	0.27
Number of bedrooms			−0.01 (−0.18 to 0.17)	0.92	−0.03 (−0.21 to 0.14)	0.74
Home has outdoor space (no)			0.11 (0.03 to 0.19)	0.008**	0.11 (0.03 to 0.19)	0.007**
Fuel used for cooking (electricity/LPG/natural gas/biogas)						
Kerosene			0.83 (0.59 to 1.07)	<0.001***	0.84 (0.61 to 1.08)	<0.001***
Indoor smoking policy of home (smoke-free home)						
Smoke-permitted home					0.16 (0.06 to 0.25)	0.001**
Total observations	1746		1746		1746	
F (probability)	22.7 (<0.001***)		15.4 (<0.001***)		15.1 (<0.001***)	
Adjusted R²	0.047		0.083		0.089	

P value significance level: 10% (*), 5% (**), 1% (***). LPG, liquefied petroleum gas; PM$_{2.5}$, particulate matter.

According to this model, presence of this ‘opportunity’ can potentially influence the ‘motivational’ behaviour for keeping the home smoke free.

We found that use of kerosene as a cooking fuel was a strong predictors of indoor PM$_{2.5}$ concentrations. Other studies in LMICs have also found a similar association. For instance, in India, the PM$_{2.5}$ value was doubled among kerosene users compared with LPG users (mean 109, SD 14 µg/m3 vs 57, 7 µg/ m3), and in Nepal the PM$_{2.5}$ value was increased about 146% (95% CI 103%–200%) in kerosene users compared with LPG users (mean 109, SD 14 µg/m3 vs 57, 7 µg/m3).

Our study also found that the daily household PM$_{2.5}$ concentrations decreased with an increase of each education year of the household lead participant. This is consistent with the literature that the education level of the household head is an important factor for keeping the household SHS free. For instance, a study in Greece showed that SHS exposure significantly declined with increase of education level. Furthermore, one study among women in Bangladesh showed the same association between SHS exposure and education level as our study; however, another study in China did not show any association.

Our regression results show a low adjusted R2 value (0.039–0.081 and 0.047–0.089), which explains that there are many possible explanatory variables that should be considered, given that different behavioural effects and lack of outdoor air pollution data are involved, as discussed earlier.

A likely potential driver for reductions in smoking prevalence in HICs is the implementation of smoke-free legislation in restaurants, bars and other public, indoor premises. However, in many LMICs such legislation is often poorly implemented or enforced and the social norms in the majority of homes in LMICs still permit smoking indoors. Importantly, many smokers are unable to smell tobacco smoke, which makes them unaware of the level of tobacco-related exposure. Considering these, an objective measurement is required to measure the concentration of SHS and to promote a smoke-free environment. In this study we measured the concentration of indoor SHS (PM$_{2.5}$) and found that PM$_{2.5}$ is generally higher in SPH compared with SFH. Although this study showed the feasibility of implementing a large-scale indoor air quality study in LMIC settings, the small difference of PM$_{2.5}$ between SPH and SFP indicates to use PM$_{2.5}$ as a marker of SHS in such settings is challenging and would require confirmation through further studies in similar context. There are considerable practical challenges using optical particle counters such as the Dylos to measure exposure to SHS in LMIC settings.
and humidity can influence the measurement of PM$_{2.5}$ using these devices, though the effect is likely to have been systematic across both types of households given that we measured during the months when humidity is relatively stable across a 24-hour average. Background or ambient PM$_{2.5}$ concentrations can also make it difficult to detect the additional PM$_{2.5}$ generated by smoking indoors, particularly when smoking is only occasional. To address this we carried out our measurements during months when reference monitors from the US Embassy indicated that ambient PM$_{2.5}$ concentrations were lowest and most stable. Our use of 1-minute time resolved data also facilitated identification of the differences between SFH and SPH as demonstrated in our figure 1.

This study was conducted only in urban setting and due to movement restriction in highly secured areas, the higher-income population could not be included. However, this was a large scale study with a big sample population, therefore, most of the urban features were captured. These findings can be shared with different stakeholders and policymakers in Bangladesh and other LMICs where there are high concentrations of SHS indoors. These data may help develop preventive interventions to encourage household members to reduce smoking indoors. Additionally, more research is required to understand what type of interventions have the potential to be effective in changing the behaviour of those smokers who continue to smoke indoors at home in LMIC settings.

REFERENCES

1. Drope J, Schluger N, Cahn Z. The tobacco atlas. Atlanta: American cancer society and vital strategies, 2018. Available: https://tobaccoatlas.org/wp-content/uploads/2018/03/TobaccoAtlas_6thEdition_LoRes_Rev0318.pdf
2. Cook DG, Strachan DP. Health effects of passive smoking-10: summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax 1999;54:357–66.
3. Jones LL, Hassanien A, Cook DG, et al. Parental smoking and the risk of middle ear disease in children: a systematic review and meta-analysis. Arch Pediatr Adolesc Med 2012;166:18–27.
4. Leung CC, Lam TH, Ho KS, et al. Passive smoking and tuberculosis. Arch Intern Med 2010;170:287–92.
5. Obeng M, Jaakkola MS, Woodward A, et al. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet 2011;377:139–46.
6. Apelberg BJ, Hepp LM, Avila-Tang E, et al. Environmental monitoring of secondhand smoke exposure. Tob Control 2013;22:147–55.
7. Hyland A, Travers MJ, Dresler C, et al. A 32-country comparison of tobacco smoke derived particle levels in indoor public places. Tob Control 2008;17:159–65.
8. Brennan E, Cameron M, Warne C, et al. Secondhand smoke drift: examining the influence of indoor smoking bans on indoor and outdoor air quality at pubs and bars. Nicotine Tob Res 2010;12:271–7.
9. Semple S, von Tongeren M, Galea KS, et al. UK smoke-free legislation: changes in PM$_{2.5}$ concentrations in bars in Scotland, England, and Wales. Ann Occup Hyg 2010;54:272–80.
10. Bohac DL, Hewett MJ, Kapkhann KH, et al. Secondhand smoke exposure in the nonsmoking section: how much protection? Nicotine Tob Res 2013;15:1265–72.
11. Cains T, Cannata S, Rouls R, et al. Designated “no smoking” areas provide partial to no protection from environmental tobacco smoke. Tob Control 2004;13:17–22.
12. Leaderer BP, Hammond SK. Evaluation of vapor-phase nicotine and respiratory suspended particle mass as markers for environmental tobacco smoke. Environ Sci Technol 1991;25:770–7.
13. Klepeis NE, Belletiere J, Hughes SC, et al. Fine particles in homes of predominantly low-income families with children and smokers: key physical and behavioral determinants to inform indoor-air-quality interventions. PLoS One 2017;12:e0177718.
14. Butz AM, Breyss P, Rand C, et al. Household smoking behavior: effects on indoor air quality and health of urban children with asthma. Matern Child Health J 2011;15:460–8.
15. Organization WH. Control RHT, research for international tobacco control. WHO report on the global tobacco epidemic, 2008: the MPOWER package. The global tobacco crisis, 2008.
16. Olasky SJ, Levy D, Moran A. Second hand smoke and cardiovascular disease in low and middle income countries: a case for action. Glob Heart 2012;7:e155:151–60.
17. Smith KR. Fuel combustion, air pollution exposure, and health: the situation in developing countries. Annu Rev Energy Environ. 1993:18:529–66.
18. Organization WH. Exposure to household air pollution for 2016, 2018. Available: https://www.who.int/aio/pollution/hap/exp_pollution_status_2018.pdf?ua=1
19. Semple S, Ibrahim AE, Apsley A, et al. Secondhand smoke exposure in the nonsmoking section: how much protection? Nicotine Tob Res 2013;15:1265–72.
20. Butz AM, Breyss P, Rand C, et al. Household smoking behavior: effects on indoor air quality and health of urban children with asthma. Matern Child Health J 2011;15:460–8.
21. Filmer D, Pritchett LH. Estimating wealth effects without expenditure data–or tears: an application to educational enrollments in states of India. Demography 2001;38:115–32.
22. Lindeman RH. Introduction to bivariate and multivariate analysis. Glenview, Ill: Scott, 1980.
23. Chesser A, Austin G. The finite-sample distributions of heteroskedasticity robust Wald statistics. J Econometrics 1991;47:153–73.
Register F. Environmental protection agency (EPA), National ambient air quality standards for particulate matter, 2013. Available: https://www.federalregister.gov/documents/2013/01/15/2012-30946/national-ambient-air-quality-standards-for-particulate-matter

Semple S, Apsley A, Azmina Ibrahim T, et al. Fine particulate matter concentrations in smoking households: just how much secondhand smoke do you breathe in if you live with a smoker who smokes indoors? *Tab Control* 2015;24:e205–11.

Islam M, Afrin S, Ahmed T, et al. Meteorological and seasonal influences in ambient air quality parameters of Dhaka city. *J Civ Eng* 2015;43:67–77.

Liu W, Zhang J, Hashim JH, et al. Mosquito coil emissions and health implications. *Environ Health Perspect* 2003;111:1454–60.

McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. *J Clin Epidemiol* 2014;67:267–77.

Semple S, Turner S, O’Donnell R, et al. Using air-quality feedback to encourage disadvantaged parents to create a smoke-free home: results from a randomised controlled trial. *Environ Int* 2018;120:104–10.

Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. *Implement Sci* 2011;6:42.

Andresen PR, Ramachandran G, Pai P, et al. Women’s personal and indoor exposures to PM2.5 in Mysore, India: Impact of domestic fuel usage. *Atmos Environ* 2005;39:5500–8.

Pokhrel AK, Bates MN, Acharya J, et al. PM2.5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels. *Atmos Environ* 2015;113:159–68.

Rachiots G, Barbouni A, Katsioulis A, et al. Prevalence and determinants of current and secondhand smoking in Greece: results from the global adult tobacco survey (GATS) study. *Bri J Open* 2017;7:e013150.

Fischer E, Minnewegen M, Kuneider U, et al. Prevalence and determinants of secondhand smoke exposure among women in Bangladesh, 2011. *Nicotine Tob Res* 2015;17:58–65.

Cai L, Wu X, Goyal A, et al. Multilevel analysis of the determinants of smoking and second-hand smoke exposure in a tobacco-cultivating rural area of Southwest China. *Tab Control* 2013;22:ii16–20.

Nazar G. Smoke-free legislation and active smoking, second hand smoke exposure and health outcomes in low-and middle-income countries. London School of Hygiene & Tropical Medicine, 2017.

Gee IL, Semple S, Watson A, et al. Nearly 85% of tobacco smoke is invisible—a confirmation of previous claims. *Tab Control* 2013;22:429.

Han I, Synanski E, Stock TH. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban air. *J Air Waste Manag Assoc* 2017;67:330–40.

Okello G, Mortimer K, Lawin H, et al. Quantifying exposure to respiratory hazards in sub-Saharan Africa: planning your study. *African J Respir Med* 2020;14.

Bangladesh Meteorological Department. Monthly humidity normal data, 2020. Available: http://live3.bmd.gov.bd/p/Monthly-Humidity-Normal-Data/