Dibenzochrysene Enables Tightly Controlled Docking and Stabilizes Photoexcited States in Dual-Pore Covalent Organic Frameworks

Niklas Keller, Torben Sick, Nicolai Bach, Andreas Koszalkowski, Julian Rotter, Dana D. Medina, Thomas Bein

Submitted date: 30/08/2019 • Posted date: 30/08/2019
Licence: CC BY-NC-ND 4.0

Citation information: Keller, Niklas; Sick, Torben; Bach, Nicolai; Koszalkowski, Andreas; Rotter, Julian; Medina, Dana D.; et al. (2019): Dibenzochrysene Enables Tightly Controlled Docking and Stabilizes Photoexcited States in Dual-Pore Covalent Organic Frameworks. ChemRxiv. Preprint.

Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving a specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4′,4″,4‴-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.60 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COFs feature broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the new DBC tetra-connected node is expected to enable the synthesis of a large family of strongly p-stacked, highly ordered 2D COFs with promising optoelectronic properties.

File list (2)

* M0819 Keller Sick DBC archive.docx (1.15 MiB) view on ChemRxiv download file
* Supporting Information Keller Sick archive.docx (4.83 MiB) view on ChemRxiv download file
Dibenzochrysene Enables Tightly Controlled Docking and Stabilizes Photoexcited States in Dual-Pore Covalent Organic Frameworks

Niklas Keller,† Torben Sick,† Nicolai N. Bach,† Andreas Koszalkowski,† Julian M. Rotter,† Dana D. Medina*, and Thomas Bein†*

† Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany

ABSTRACT
Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving a specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4′,4″,4‴-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.60 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COFs feature broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the
new DBC tetra-connected node is expected to enable the synthesis of a large family of strongly \(\pi \)-stacked, highly ordered 2D COFs with promising optoelectronic properties.
Covalent organic frameworks (COF) are crystalline polymers formed by covalently connecting relatively rigid and geometrically defined organic building blocks to form larger molecular components. Usually, the covalent linkages are achieved through slightly reversible condensation reactions such as boronic esters,1 boroxines,2 imines,3 imides4 or others.5-7 The high porosity and great structural diversity and tunability and thermal stability of these frameworks make them attractive candidates for applications in energy storage,8-10 gas storage,11-13 proton conduction,14-16 optoelectronics17-22 and molecular separations.23-25 While in 3D COFs the backbones consist of covalently connected building blocks in all dimensions, in 2D COFs individual polymer layers stack in a defined manner to form molecular columns and 1D pores. This mode of layer assembly is governed by weak dispersive π-stacking interactions between adjacent layers. These crystalline and porous materials offer numerous options regarding structural design, as tailoring of the pore size, shape and molecular interface is mainly governed by the selection of the building blocks. In the context of optoelectronics, this involves the potential ability to precisely manipulate the COFs’ electronic properties such as the optical absorption, charge carrier mobility26-30 or photoluminescence.2, 7, 31-32 The incorporation of heteroatoms within the structures enables the chemical linkage of different building blocks via strong covalent bonds, for example boron atoms in the case of boronic esters and boroxines or nitrogen atoms in the case of imines, imides or others. However, heteroatoms exhibit electrostatic repulsion in an eclipsed stacking of adjacent layers, which results in slight lateral offsets.33 Especially large and polarizable heteroatoms within adjacent COF layers prefer a stacking with lateral offsets with respect to one another.34-35 This phenomenon can also have a strong effect on the stacking distance of adjacent layers and thereby the overall long-range order in the framework.36 Furthermore, the polarization of certain chemical bonds may affect the stability of the frameworks.37 Strategies aimed at controlling stacking interactions through steric considerations include the implementation of sterically demanding pyrene building blocks for enforcing predefined offset stacking angles38 or the usage of propeller-like building blocks in imine-based frameworks.39 In the latter case, the propeller-like building blocks define specific molecular docking sites for adjacent COF sheets, thereby enforcing a perfectly eclipsed stacking of adjacent layers. However, due to the steric demands of molecular docking sites such as 4,4′,4″-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA)40, the stacking distance of adjacent layers of the resulting dual-pore kagome COF structures is comparably large. The enlarged stacking distance in combination with out-of-plane rotated building blocks may
have an influence on the π-electron overlap of adjacent COF layers and on the conjugation within each COF layer.

Dibenzochrysene (DBC) is a rigid molecular building block consisting of four benzene rings fused to a naphthyl unit. This molecular configuration can be envisioned as a fused ETTA analogue which enables a more subtle rotation of the attached phenyl rings out of plane compared with ETTA. Therefore, the incorporation of DBC into a framework is expected to drastically reduce the steric constraints for stacking, allowing for more closely packed molecular assemblies. In addition, DBC and its derivatives exhibit attractive photophysical properties and charge carrier mobilities. This combination of properties is promising for the realization of highly ordered materials based on DBC nodes with features encoded for optoelectronic applications. In the context of framework materials, COF-based optoelectronic devices are still rare and further breakthroughs in molecular design are anticipated to enable the construction of efficient devices.

Herein, we investigate the possibility to generate highly ordered COF structures by means of a molecular node intended to induce close π-stacking distances while providing specific docking sites for obtaining a high degree of order. For this purpose we utilized dibenzo[g,p]chrysene, DBC, as a structure-directing node. We synthesized a series of DBC-containing imine COFs with linear dialdehydes, namely terephthalaldehyde (TA), 4,4’-biphenyldicarbaldehyde (Biph) and thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TT). We present a detailed structural analysis showing the formation of highly crystalline and porous frameworks featuring outstanding crystal quality with hexagonal faceting. Furthermore, the photophysical properties of the DBC-based COFs namely UV-vis absorption as well as steady-state and time-resolved photoluminescence (PL) were studied. Here, TT DBC-COF featured broad light absorption covering large parts of the visible spectrum. Strikingly, the Biph DBC-COF powder showed extended PL lifetimes exceeding 2-14 ns with 62% of the overall signal.

RESULTS AND DISCUSSION
The DBC-based COF series was synthesized by the (slightly) reversible reaction of DBC with the respective linear dialdehydes TA, Biph, and TT to form imine-based COFs (Figure S10-S12). Briefly, 30 µmol of the linear dialdehyde and 15 µmol of the fourfold amine functionalized DBC
(DBCTA) were suspended in a mixture of benzyl alcohol and mesitylene (500 µL) in a culture tube. After the addition of 50 µL of acetic acid (6 M), the sealed tubes were kept in an oven at 120 °C for 72 h. The resulting precipitate was isolated by filtration, rinsed and finally Soxhlet extracted with anhydrous THF for 2 h. After vacuum-drying, the COF powders were examined concerning crystallinity, porosity and photophysical properties (for more details on the synthesis procedures see SI).

Figure 1: a) Structure of the DBC-containing COFs (schematic). b-d) PXRD patterns of the TA, Biph, and TT DBC-COFs with Pawley-refined simulations. The insets show higher order reflections in magnification.
X-ray diffraction (XRD) analysis of the obtained powders revealed highly crystalline materials with sharp and intense reflections at small diffraction angles and multiple additional high order reflections at higher diffraction angles (Figure 1b-d). To confirm the formation of a kagome dual-pore hexagonal structure, simulations of the possible crystal structures were carried out assuming an AA model layer arrangement in the hexagonal space group P6 (see section 7 in the SI). Using this model, the experimental diffraction pattern was fully indexed and the observed reflections were attributed to hkl 100, 110, 200, 210, 120, 300, 220, 310, 400 and 500 (by order of appearance) indicating the excellent crystallinity and the formation of a kagome structure in all the examined samples (Figure). For all the DBC-COFs, the observed reflection at around 23.9°2θ is attributed to the 001 plane, which directly corresponds to the π-stacking distance. Accordingly, a similar d-spacing of about 3.6 Å was calculated for the examined DBC-COFs.

Nitrogen physisorption isotherms of the COFs exhibit a mixture of type I and type IVb isotherm shapes with two steep nitrogen uptakes, the one at low partial pressures indicating the presence of a micropores system and the one at relatively higher partial pressures characteristic for capillary condensation associated with mesoporous systems (< 5 nm) (Figure 2a and Figure S6-S8). This confirms that DBC-COFs adopt a dual-pore structure similar to their ETTA-COF analogs. Pore size distributions based on carbon with a QSDFT kernel for cylindrical pores show excellent agreement with the structurally modeled pore sizes (Error: Reference source not found – S8). The DFT-calculated pore sizes were 1.50 nm and 2.89 nm (simulated 1.5 nm and 2.9 nm), 1.73 nm and 3.68 nm (simulated 1.7 nm and 3.7 nm) and 1.45 nm and 3.10 nm (simulated 1.5 nm and 3.1 nm) for TA DBC-COF, Biph DBC-COF, and TT DBC-COF, respectively. The BET surface areas and pore volumes of 2050 m2g$^{-1}$ and 1.23 cm3g$^{-1}$ (TA DBC-COF), 2170 m2g$^{-1}$ and 1.39 cm3g$^{-1}$ (Biph DBC-COF) as well as 1230 m2g$^{-1}$ and 0.67 cm3g$^{-1}$ (TT DBC-COF) can be compared to predicted accessible Connolly surface areas and pore volumes of 2090 m2g$^{-1}$ and 0.90 cm3g$^{-1}$ (TA DBC-COF), 2490 m2g$^{-1}$ and 1.31 cm3g$^{-1}$ (Biph DBC-COF) and 2260 m2g$^{-1}$ and 1.12 cm3g$^{-1}$ (TT DBC-COF), respectively.

Thermogravimetric analysis preformed under synthetic air flow revealed that DBC-COFs are thermally stable, while significant weight loss associated with structural degradation is detected at around 450 °C, and the degradation process terminates at around 600 °C with a complete weight loss (Figure S19).
Morphological investigations of the DBC-COFs using scanning electron microscopy (SEM) revealed well-defined crystallites of different sizes, ranging from 10 to 150 nm, forming large intergrown objects (Figure S1). In the case of Biph DBC-COF, the agglomerated particles consist of faceted hexagonally shaped crystals, this is in excellent agreement with a parallel report illustrating the high crystallinity of Biph-DBC COF.

Transmission electron microscopy (TEM) micrographs show the highly crystalline nature of the COFs (Figure S2). Strikingly, the Biph DBC-COF exhibits large numbers of hexagonally faceted single crystals sized about 50 to 100 nm throughout the sample (Error: Reference source not found).

In comparison to the previously reported ET TA systems with the same linear dialdehydes, namely TA, Biph, and TT, the reflections associated with the stacking distances in PXRD pattern are shifted from about 19.5°2θ to 23.9°2θ, corresponding to a reduction of stacking distances of about 4.6 Å (for TA ET TA-COF, Biph ET TA-COF, and TT ET TA-COF) to 3.6 Å (TA and TT DBC-COFs), 3.7 Å (Biph DBC-COF). This drastically decreased stacking distance (by almost 1.0 Å) for each DBC-containing COFs is attributed to the more planar (gently curved) shape of the chrysene building block compared to the more sterically demanding ET TA node. The influence of the linear dialdehyde on the stacking distance is apparently less dominant, though being still detectable.

Reported single crystal structures of the core elements of the different 4-connected COF building blocks, i.e., ET TA and DBC, clearly indicate the influence on the bond angles and steric requirements of the differently linked aromatic groups. In ET TA, an average dihedral angle of 47.3° was determined, while in DBC the average angle reduces to 24.7°. Here, the angles were determined for two intersecting planes created, in ET TA, by the ethylene bond and the sequentially connected two carbon atoms in the aromatic substitution. The dihedral angle for the corresponding chrysene molecule was determined in the same manner by considering the same atom connectivity (Error: Reference source not found). Therefore, using a DBC node results in a COF kagome structure and connectivity similar to the ET TA-COF analogs, but the presence of a rigid naphthyl unit strongly reduces the torsion/rotation of the attached aromatic groups compared to the aromatic groups connected to the ethylene unit in ET TA. These findings are in line with the reported dihedral angles for ET TA and DBC. As a result, the π-stacking distance between adjacent COF layers is expected to be reduced while the existing DBC torsion angle is
still sufficient to act as a specific docking site for the successive layers. This is expected to enable defined $\pi-\pi$-interactions in the stacks and improved π orbital overlap within the individual layers allowing for extended electron delocalization.

Figure 2: a) Nitrogen physisorption isotherm of Biph DBC-COF. b) SEM and c) TEM micrographs of Biph DBC-COF.

Next, we investigated the photophysical properties of the DBC-COFs by means of UV-vis, PL and TCSPC spectroscopies. The influence of the respective linear building block on the optical absorption can be clearly seen in the absorbance spectra recorded for the DBC-COF powders (see Figure 3 and S13). While the phenyl-based linear linkers TA and Biph exhibit light brown color and comparable absorption features and absorption onsets at around 550 to 580 nm, the incorporation of the thiophene-based TT shifts the steep onset to longer wavelengths at around 650 nm. Consequently, the TT DBC-COF exhibits dark red color and a comparably smaller band gap, which was calculated by Tauc plot. Assuming a direct optical band gap for the DBC-COFs, we obtained a band gap of 2.00 eV for the TT DBC-COF. In comparison, the direct optical band gaps of TA DBC-COF and Biph DBC-COF were calculated to be 2.30 eV and 2.38 eV, respectively (Figure S14). In the context of extended conjugation within the COF layers, the TT DBC-COF exhibits a clear red-shifted absorption onset compared to its ETTA analogue. This extended absorbance can be attributed to the effect of closely packed molecular aggregates and larger π-electron delocalization attained by the geometry of the DBC node.
Figure 3: (a) Optical absorption spectrum (black) of Biph DBC-COF powder measured in diffuse reflectance mode, and PL ($\lambda_{\text{exc}} = 378$ nm, red) spectrum of Biph DBC-COF. (b) PL decay curve of Biph DBC-COF (red) and 4PE-2P COF (grey), the ETTA-based COF. The samples were illuminated at 378 nm with a pump fluence of ~ 0.99 nJ cm$^{-2}$; the emission was monitored at 724 and 643 nm, respectively (model decay in cyan).

TA and Biph DBC-COFs exhibit similar PL spectra consisting of two distinct emission bands at around 640 and 720 nm, where the latter features stronger emission intensity. TT BCD-COF is slightly red-shifted and reveals a broader PL maximum at 760 nm with a slight shoulder at 660 nm. For all the investigated DBC-COFs, the PL covers a broad spectral range from the visible to the near-infrared (see Figure 3 and S15). In comparison to the individual emission of the pristine, molecular components, the PL maxima of all DBC-COFs are significantly red-shifted, which points toward the formation of new electronic structure through the framework chemistry (Figure S14).

To study the PL decay dynamics, time-correlated single photon counting (TCSPC) was employed using a pulsed 378 nm laser under nitrogen atmosphere (section 12 in the SI), revealing the lifetimes of the photoexcited singlet states generated in the DBC-COF powders. The obtained decay curves were fitted with a tri-exponential function. The longest lifetimes were observed for the Biph DBC-COF, which features a long-time decay constant of 14.1 ns (12%) (see Figure 3). The additional two exponential time constants indicate 2.8 ns (50%) and 0.7 ns (38%). For the TA DBC-COF lifetimes of up to 7 ns were detected and the TT DBC-COF showed the fastest decay times for this series of DBC-COFs of up to 5 ns (for more details see SI).
As illustrated, small modifications in the molecular structure of the building blocks can strongly impact the structural properties of the COF, here, a stacking distance reduced by about 1.0 Å was obtained with a DBC node. In addition, indications for enhanced photophysical properties in DBC-COF were observed. To study the differences in the photophysical properties of these two COF families, we compared the PL decay dynamics of DBC-COFs featuring tight molecular stacks with the ones of their ETTA-based COF analogues. For all the examined COFs the decay profiles were fitted with tri-exponential decay functions. In general, the decay times obtained for the DBC-COFs were significantly longer, leading to overall longer PL lifetimes (see Figure 3 and section 12 in the SI). The Biph DBC-COF exhibits the longest lifetimes, of more than 10 ns longer compared to its corresponding 4PE-2P COF analog. 4PE-2P COF features PL decay times of 3.6 ns (11%) as the long-time constant, the rest of the PL signal (90%) arises from fast decay channels below 1 ns (0.8 ns (50%) and 0.14 ns (39%)). We postulate that in DBC-COF the structural features greatly influence the PL decay and induce a stabilization of the photoexcited species in the COF.

CONCLUSION
In this study, we have established dibenzo[g,p]chrysene (DBC) as a novel structural node for the construction of 2D COFs, serving as a specific docking site for the synthesis of flattened structural analogues of the well-studied ETTA-based COFs. Different DBC-COFs were synthesized with different linear linkers to not only vary the pore sizes but more importantly the photophysical properties. DBC-COFs show extraordinarily high crystallinity, porosity and structural precision, which is reflected in the formation of hexagonally faceted single crystals. Strikingly, in comparison with ETTA-based COF analogues the π-stacking distance of adjacent layers was drastically reduced by 1 Å, from about 4.6 Å in ETTA-COFs to about 3.6 Å in DBC-COFs. Among the newly synthesized, tightly π-stacked DBC-COFs, TT DBC-COF is viewed to be a promising candidate for photovoltaic applications, as it combines a relatively small band gap and a steep absorption onset with a broad optical absorption ranging from the UV deep into the visible. The time-resolved photoluminescence profile of Biph DBC-COF shows remarkably long lifetimes, partially exceeding 10 ns. In general, the DBC-COFs showed significantly slower decay dynamics in contrast to their ETTA analogues. Further mechanistic investigations in our
laboratories regarding the charge carrier dynamics in these intriguing molecular frameworks are expected to shed light on the impact of the building blocks and the nature of the layer stacking on the optoelectronic properties. In view of the above, dibenzochrysene-based COFs represent a promising platform of tuneable molecular framework materials with intriguing prospects for optoelectronic applications.

EXPERIMENTAL METHODS

Tetranitro-DBC

DBC (1.0 g, 3.0 mmol) was slowly added with stirring at 0 °C to a mixture of 10 mL nitric acid (≥ 99%) and 10 mL glacial acetic acid. After 10 min at 0 °C the solution was stirred at 100 °C for 2 h. The solution was poured into an ice-water mixture. The resulting precipitate was filtered, washed with 1,4-dioxane and recrystallized from nitrobenzene. After filtration and extensive washing with ethanol, 1.1 g of a yellow solid of tetranitro-DBC with 69% yield were obtained. MS-EI: calculated (m/z): 508.066, measured (m/z): 508.065.

Tetraamino-DBC (adapted from Lu et al.59)

Under argon, tetranitro-DBC (500 mg, 0.98 mmol) was dissolved in 80 mL of anhydrous THF in a flame-dried 500 mL flask. Approximately 2.3 g of Raney-nickel catalyst slurry was added to the mixture with stirring. Hydrazine monohydrate (0.67 mL, 8.8 mmol) was added dropwise to the stirred mixture. The resulting solution was heated to reflux for two hours. The solution was allowed to cool to room temperature and filtered. The filtrate was dried under reduced pressure, giving 320 mg of a yellowish-greenish solid with 84% yield. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 8.15 (d, J = 8.8 Hz, 4H, CH), 7.56 (d, J = 2.3 Hz, 4H, CH), 6.90 (dd, J = 8.8, 2.3 Hz, 4H, CH), 5.39 (s, 8H, NH2). MS-EI: calculated (m/z): 388.169, measured (m/z): 388.168.

Synthesis of TA DBC-COF

In a 6 mL culture tube, terephthalaldehyde (4.02 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 9:1). After adding 50 µL of acetic acid (aqueous, 6 M) the tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.07 mg (58%) as a light brown powder.
Synthesis of Biph DBC-COF

In a 6 mL culture tube, 4,4'-biphenyldicarboxaldehyde (6.31 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 1:1). After adding 50 µL of acetic acid (aqueous, 6 M) the culture tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.47 mg (50%) as a brown powder.

Synthesis of TT DBC-COF

In a 6 mL culture tube, thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (5.89 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 9:1). After adding 50 µL of acetic acid (aqueous, 6 M) the tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.87 mg (55%) as a red powder.

Synthesis of analogue 4PE COFs

The ETTA-based COFs, 4PE-1P, 4PE-2P and 4PE-TT, are well-studied COF systems. Their synthesis here was carried out under the reported conditions previously reported in the literature.51

Characterization Methods

All reagents and solvents were obtained from in house supply or commercial suppliers and used as received. Acetic acid (in house supply), benzyl alcohol (BnOH, anhydrous, Sigma-Aldrich), 4,4'-biphenyldicarboxaldehyde (Biph, >98%, TCI), 1,4-dioxane (anhydrous, Sigma Aldrich), dibenzo[g,p]chrysene (DBC, >98%, TCI), ethanol (anhydrous, Sigma Aldrich), hydrazine monohydrate (Sigma Aldrich), mesitylene (anhydrous, Sigma-Aldrich), nitrobenzene (anhydrous, Sigma Aldrich), Raney-Nickel slurry (Sigma Aldrich), terephthalaldehyde (TA, 99%, Sigma-Aldrich), tetrahydrofuran (THF, extra dry, stabilized, Acros Organics). Thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TT, >93%, TCI) was recrystallized from N,N-dimethylformamide (DMF, anhydrous, 99.8%, Sigma-Aldrich).

12
Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV 400 and AV 400 TR spectrometers. Proton chemical shifts are expressed in parts per million (δ scale) and are calibrated using residual non-deuterated solvent peaks as internal reference (e.g. DMSO-d₆: 2.50 ppm).

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR data are reported in wavenumbers (cm⁻¹).

UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer equipped with a 150 mm integrating sphere. **Diffuse reflectance spectra** were collected with a Praying Mantis (Harrick) accessory and were referenced to barium sulfate powder as white standard.

Nitrogen sorption isotherms were recorded on a Quantachrome Autosorb 1 at 77 K within a pressure range of $p/p^0 = 0.001$ to 0.98. Prior to the measurement of the sorption isotherms the samples were heated for 24 h at 120 °C under turbo-pumped vacuum. For the evaluation of the surface area the BET model was applied between 0.05 and 0.3 p/p^0. Pore size distributions were calculated using the QSDFT equilibrium model (desorption branch) with a carbon kernel for cylindrical pores. Connolly surfaces were generated using an N₂-sized probe ($r = 0.184$ nm) at a 0.025 nm grid interval.

Thermogravimetric analysis (TGA) measurements were performed on a Netzsch Jupiter ST 449 C instrument equipped with a Netzsch TASC 414/4 controller. The samples were heated from room temperature to 900 °C under a synthetic air flow (25 mL min⁻¹) at a heating rate of 10 K min⁻¹.

Powder X-ray diffraction (PXRD) measurements were performed using a Bruker D8 Discover with Ni-filtered Cu-Kα radiation and a LynxEye position-sensitive detector (scan speed of 4 s per 0.01 °2θ). Experimental XRD data were used for Pawley refinement to optimize the hypothetical structure.

The initial **structure models of the COFs** were built using the Forcite module of the Accelrys Materials Studio software package. We applied the space group with the highest possible symmetry, i.e. P6, considering the propeller-like conformation of the central building blocks.
Using this coarse model, we determined the unit cell parameters via Pawley refinement of our PXRD data.

Transmission electron microscopy (TEM) was performed on an FEI Titan Themis equipped with a field emission gun operated at 300 kV.

Scanning electron microscopy (SEM) images were recorded with a JEOL 6500F and an FEI Helios NanoLab G3 UC scanning electron microscope equipped with a field emission gun operated at 3-5 kV.

Photoluminescence (PL) and **time-correlated single photon counting (TCSPC)** data were processed with a FluoTime 300 from PicoQuant GmbH. The samples were photo-excited using lasers with suitable wavelengths according to the sample absorption, i.e. 378 nm, 403 nm or 507 nm wavelength (LDH-P-C-375, LDH-P-C-405, and LDH-P-C-510, respectively, all from PicoQuant GmbH) pulsed at 500 kHz, with a pulse duration of ~100 ps and fluence of ~300 nJcm$^{-2}$/pulse. The samples were exposed to the pulsed light source set at 3 μJcm$^{-2}$/pulse fluence for ~10 minutes prior to measurement to ensure stable sample emission. The PL was collected using a high-resolution monochromator and photomultiplier detector assembly (PMA-C 192-N-M, PicoQuant GmbH).

ASSOCIATED CONTACT

AUTHOR INFORMATION

*bein@lmu.de

dana.medina@cup.uni-muenchen.de

ORCID

Torben Sick: 0000-0003-4684-7971

Thomas Bein:0000-0001-7248-5906

Dana D. Medina 0000-0003-4759-8612
Author Contributions

†These authors contributed equally to this work.

ACKNOWLEDGMENTS

The authors are grateful for funding from the German Science Foundation (DFG) for SPP 1613, the NIM Excellence Cluster (DFG), and GRK 2112 (DFG) and from the Free State of Bavaria (research networks ‘Solar Technologies Go Hybrid’ and UMWELTnanoTECH) research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-3013)/ERC grant Agreement 321339. The authors thank Dr. Markus Döblinger for electron microscopy.

REFERENCES

1. Côte, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166-1170.
2. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D., A Photoconductive Covalent Organic Framework: Self-Condensed Arene Cubes Composed of Eclipsed 2d Polypyrene Sheets for Photocurrent Generation. Angew. Chem. Int. Ed. Engl. 2009, 48 (30), 5439-42.
3. Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M., A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131 (13), 4570-1.
4. Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y., Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks. Nat. Commun. 2014, 5, 4503.
5. Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M., Crystalline Covalent Organic Frameworks with Hydrazine Linkages. J. Am. Chem. Soc. 2011, 133 (30), 11478-81.
6. Kuhn, P.; Antonietti, M.; Thomas, A., Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chem. Int. Ed. Engl. 2008, 47 (18), 3450-3.
7. Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D., An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 2013, 135 (46), 17310-3.
8. Yang, H.; Zhang, S.; Han, L.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y.; Huang, C.; Yi, Y.; Liu, H.; Li, Y., High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. ACS Appl Mater Interfaces 2016, 8 (8), 5366-75.
9. DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Rodriguez-Calero, G. G.; Bisbey, R. P.; Abruna, H. D.; Dichtel, W. R., Rapid and Efficient Redox Processes within 2d Covalent Organic Framework Thin Films. ACS Nano 2015, 9 (3), 3178-83.
10. Hu, Y.; Dunlap, N.; Wan, S.; Lu, S.; Huang, S.; Sellinger, I.; Ortiz, M.; Jin, Y.; Lee, S.-h.; Zhang, W., Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. J. Am. Chem. Soc. 2019, 141 (18), 7518-7525.
11. Lee, G. Y.; Lee, J.; Vo, H. T.; Kim, S.; Lee, H.; Park, T., Amine-Functionalized Covalent Organic Framework for Efficient So2 Capture with High Reversibility. Sci Rep 2017, 7 (1), 557.
12. Ding, S. Y.; Wang, W., Covalent Organic Frameworks (Cofs): From Design to Applications. *Chem Soc Rev* 2013, 42 (2), 548-68.
13. Furukawa, H.; Yaghi, O. M., Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. *J. Am. Chem. Soc.* 2009, 131 (25), 8875-83.
14. Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R., A Mechanochemically Synthesized Covalent Organic Framework as a Proton-Conducting Solid Electrolyte. *J. Mater. Chem. A* 2016, 4 (7), 2682-2690.
15. Xu, H.; Tao, S.; Jiang, D., Proton Conduction in Crystalline and Porous Covalent Organic Frameworks. *Nat. Mater.* 2016, 15 (7), 722-6.
16. Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R., Phosphoric Acid Loaded Azo (-N Horizontal Linen-) Based Covalent Organic Framework for Proton Conduction. *J. Am. Chem. Soc.* 2014, 136 (18), 6570-3.
17. Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Döblinger, M.; Feldmann, J.; Knochel, P.; Bein, T., Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. *ACS Nano* 2014, 8 (4), 4042-4052.
18. Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser, M.; Medina, D. D.; Dogru, M.; Löbermann, F.; Trauner, D.; Hartschuh, A.; Bein, T., Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction. *J. Am. Chem. Soc.* 2014, 136 (51), 17802-17807.
19. Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T., Spectrally Switchable Photodetection with near-Infrared-Absorbing Covalent Organic Frameworks. *J. Am. Chem. Soc.* 2017, 139 (34), 12035-12042.
20. Wuttke, S.; Medina, D. D.; Rotter, J. M.; Begum, S.; Stassin, T.; Ameloot, R.; Oschatz, M.; Tsotsalas, M., Bringing Porous Organic and Carbon-Based Materials toward Thin-Film Applications. *Adv. Funct. Mater.* 2018, 28 (44).
21. Jakowetz, A. C.; Hinrichsen, T. F.; Ascherl, L.; Sick, T.; Calik, M.; Auras, F.; Medina, D. D.; Friend, R. H.; Rao, A.; Bein, T., Excited-State Dynamics in Fully Conjugated 2d Covalent Organic Frameworks. *J. Am. Chem. Soc.* 2019, 141 (29), 11565-11571.
22. Zhang, Y.; Hu, Y.; Zhao, J.; Park, E.; Jin, Y.; Liu, Q.; Zhang, W., Covalent Organic Framework-Supported Fe–Tio2 Nanoparticles as Ambient-Light-Active Photocatalysts. *J. Mater. Chem. A* 2019, 7 (27), 16364-16371.
23. Han, X.; Zhang, J.; Huang, J.; Wu, X.; Yuan, D.; Liu, Y.; Cui, Y., Chiral Induction in Covalent Organic Frameworks. *Nat. Commun.* 2018, 9 (1), 1294.
24. Liu, L. H.; Yang, C. X.; Yan, X. P., Methacrylate-Bonded Covalent-Organic Framework Monolithic Columns for High Performance Liquid Chromatography. *J Chromatogr A* 2017, 1479, 137-144.
25. Guan, X.; Li, H.; Ma, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S., Chemically Stable Polyarylether-Based Covalent Organic Frameworks. *Nat. Chem.* 2019, 11 (6), 587-594.
26. Medina, D. D.; Petrus, M. L.; Jumabekov, A. N.; Margraf, J. T.; Weinberger, S.; Rotter, J. M.; Clark, T.; Bein, T., Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. *ACS Nano* 2017, 11 (3), 2706-2713.
27. Cai, S.-L.; Zhang, Y.-B.; Pun, A. B.; He, B.; Yang, J.; Toma, F. M.; Sharp, I. D.; Yaghi, O. M.; Fan, J.; Zheng, S.-R.; Zhang, W.-G.; Liu, Y., Tunable Electrical Conductivity in Oriented Thin Films of Tetrathiafulvalene-Based Covalent Organic Framework. *Chemical Science* 2014.
28. Patwardhan, S.; Kocherzhenko, A. A.; Grozema, F. C.; Siebbeles, L. D. A., Delocalization and Mobility of Charge Carriers in Covalent Organic Frameworks. *J. Phys. Chem. C* 2011, 115, 11768-11772.

29. Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X.; Seki, S.; Stoddart, J. F.; Yaghi, O. M., Covalent Organic Frameworks with High Charge Carrier Mobility. *Chem. Mater.* 2011, 23, 4094-4097.

30. Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valchev, V.; Qiu, S.; Fang, Q., Three-Dimensional Tetraphiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. *J. Am. Chem. Soc.* 2019.

31. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D., A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. *Angew. Chem. Int. Ed. Engl.* 2008, 47 (46), 8826-30.

32. Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D., Highly Emissive Covalent Organic Frameworks. *J. Am. Chem. Soc.* 2016, 138 (18), 5797-800.

33. Lukose, B.; Kuc, A.; Frenzel, J.; Heine, T., On the Reticular Construction Concept of Covalent Organic Frameworks. *Beilstein J Nanotechnol* 2010, 1, 60-70.

34. Haase, F.; Gottschling, K.; Stegbauer, L.; Germann, L. S.; Gutzler, R.; Duppel, V.; Vyas, V. S.; Kern, K.; Dinnebier, R. E.; Lotsch, B. V., Tuning the Stacking Behaviour of a 2d Covalent Organic Framework through Non-Covalent Interactions. *Materials Chemistry Frontiers* 2017, 1 (7), 1354-1361.

35. Lukose, B.; Kuc, A.; Heine, T., The Structure of Layered Covalent-Organic Frameworks. *Chemistry* 2011, 17 (8), 2388-92.

36. Lohse, M. S.; Rotter, J. M.; Margraf, J. T.; Werner, V.; Becker, M.; Herbert, S.; Knochel, P.; Clark, T.; Bein, T.; Medina, D. D., From Benzodithiophene to Diethoxy-Benzodithiophene Covalent Organic Frameworks – Structural Investigations. *CrystEngComm* 2016, 18 (23), 4295-4302.

37. Xu, H.; Gao, J.; Jiang, D., Stable, Crystalline, Porous, Covalent Organic Frameworks as a Platform for Chiral Organocatalysts. *Nat. Chem.* 2015, 7 (11), 905-912.

38. Auras, F.; Ascherl, L.; Hakimioun, A. H.; Margraf, J. T.; Hanusch, F. C.; Reuter, S.; Bessinger, D.; Doblinger, M.; Hettstedt, C.; Karaghiosoff, K.; Herbert, S.; Knochel, P.; Clark, T.; Bein, T., Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2d Covalent Organic Frameworks. *J. Am. Chem. Soc.* 2016, 138 (51), 16703-16710.

39. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W.; Auras, F.; Bein, T., Molecular Docking Sites Designed for the Generation of Highly Crystalline Covalent Organic Frameworks. *Nat. Chem.* 2016, 8, 310-316.

40. Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X., One-Step Construction of Two Different Kinds of Pores in a 2d Covalent Organic Framework. *J. Am. Chem. Soc.* 2014, 136 (45), 15885-8.

41. Ueda, Y.; Tsuji, H.; Tanaka, H.; Nakamura, E., Synthesis, Crystal Packing, and Ambipolar Carrier Transport Property of Twisted Dibenzo[G,P]Chrysene. *Chem Asian J* 2014, 9 (6), 1623-8.

42. Xie, Z.; Wang, B.; Yang, Z.; Yang, X.; Yu, X.; Xing, G.; Zhang, Y.; Chen, L., Stable 2d Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. *Angew. Chem. Int. Ed.* 2019.

43. Khatua, R.; Sahoo, S. R.; Sharma, S.; Thangavel, R.; Sahu, S., Anisotropic Charge
Transport Properties of Chrysene Derivatives as Organic Semiconductor: A Computational Study. *Journal of Physical Organic Chemistry* **2018**, *31* (10), e3859.

44. Liu, X.-Y.; Tang, X.; Zhao, Y.; Zhao, D.; Fan, J.; Liao, L.-S., Dibenzo[G,P]Chrysene: A New Platform for Highly Efficient Red Phosphorescent Organic Light-Emitting Diodes. *Dyes and Pigments* **2017**, *146*, 234-239.

45. Medina, D. D.; Sick, T.; Bein, T., Photoactive and Conducting Covalent Organic Frameworks. *Adv. Energy Mater.* **2017**, *7* (16), 1700387.

46. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (Iupac Technical Report). *Pure Appl. Chem.* **2015**, *87* (9-10), 929-1069.

47. Sick, T.; Keller, N.; Bach, N. N.; Koszalkowski, A.; Rotter, J. M.; Medina, D. D.; Bein, T., Dibenzochrysene Enables Tightly Controlled Docking and Stabilizes Photoexcited States in Dual-Pore Covalent Organic Frameworks. *ChemRxiv* **2019**.

48. Zhang, G. F.; Chen, Z. Q.; Aldred, M. P.; Hu, Z.; Chen, T.; Huang, Z.; Meng, X.; Zhu, M. Q., Direct Validation of the Restriction of Intramolecular Rotation Hypothesis Via the Synthesis of Novel Ortho-Methyl Substituted Tetrphenylethenes and Their Application in Cell Imaging. *Chem Commun (Camb)* **2014**, *50* (81), 12058-60.

49. Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M., Synthesis of Bn-Fused Polycyclic Aromatics Via Tandem Intramolecular Electrophilic Arene Borylation. *J Am Chem Soc* **2011**, *133* (46), 18614-7.

50. Lu, J.; Zhang, J., Facile Synthesis of Azo-Linked Porous Organic Frameworks Via Reductive Homocoupling for Selective Co2 Capture. *J. Mater. Chem. A* **2014**, *2* (34), 13831-13834.

51. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W.; Auras, F.; Bein, T., Molecular Docking Sites Designed for the Generation of Highly Crystalline Covalent Organic Frameworks. *Nat. Chem.* **2016**, *8* (4), 310-316.
SUPPORTING INFORMATION

Dibenzochrysene Enables Tightly Controlled Docking and Stabilizes Photoexcited States in Dual-Pore Covalent Organic Frameworks

Niklas Keller,† Torben Sick,† Nicolai N. Bach,† Andreas Koszalkowski,† Julian M. Rotter,† Dana D. Medina†,* and Thomas Bein†,*

† Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany

TABLE OF CONTENTS

1 Materials and Methods ... 2
2 Synthetic Procedures .. 4
3 SEM ... 5
4 TEM ... 6
5 X-Ray Diffraction Analysis .. 7
6 Sorption .. 9
7 Structural Simulations of DBC-COFs .. 11
8 Crystallographic Data .. 16
9 IR Spectroscopy .. 17
10 UV-Vis Spectroscopy ... 19
11 Photoluminescence Spectroscopy ... 20
12 Time-Correlated Single Photon Counting ... 21
13 Thermogravimetric Analysis ... 25
14 Elemental Analysis .. 26
15 NMR ... 28
16 References .. 29
1 Materials and Methods

All reagents and solvents were obtained from in house supply or commercial suppliers and used as received. Acetic acid (in house supply), benzyl alcohol (BnOH, anhydrous, Sigma-Aldrich), 4,4’-biphenyldicarboxaldehyde (Biph, >98%, TCI), 1,4-dioxane (anhydrous, Sigma Aldrich), dibenzo[g,p]chrysene (DBC, >98%, TCI), ethanol (anhydrous, Sigma Aldrich), hydrazine monohydrate (Sigma Aldrich), mesitylene (anhydrous, Sigma-Aldrich), nitrobenzene (anhydrous, Sigma Aldrich), Raney-Nickel slurry (Sigma Aldrich), terephthaldehyde (TA, 99%, Sigma-Aldrich), tetrahydrofuran (THF, extra dry, stabilized, Acros Organics). Thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TT, >93%, TCI) was recrystallized from N,N-dimethylformamide (DMF, anhydrous, 99.8%, Sigma-Aldrich).

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV 400 and AV 400 TR spectrometers. Proton chemical shifts are expressed in parts per million (δ scale) and are calibrated using residual non-deuterated solvent peaks as internal reference (e.g. DMSO-d6: 2.50 ppm).

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum BX II FT-IR system and a Thermo Scientific Nicolet™ 6700 FT-IR spectrometer in transmission mode. IR data are reported in wavenumbers (cm⁻¹).

UV-Vis spectra were recorded using a Perkin-Elmer Lambda 1050 spectrometer equipped with a 150 mm integrating sphere. Diffuse reflectance spectra were collected with a Praying Mantis (Harrick) accessory and were referenced to barium sulfate powder as white standard.

Nitrogen sorption isotherms were recorded on a Quantachrome Autosorb 1 at 77 K within a pressure range of $p/p^0 = 0.001$ to 0.98. Prior to the measurement of the sorption isotherms the samples were heated for 24 h at 120 °C under turbo-pumped vacuum. For the evaluation of the surface area the BET model was applied between 0.05 and 0.3 p/p^0. Pore size distributions were calculated using the QSDFT equilibrium model (desorption branch) with a carbon kernel for cylindrical pores. Connolly surfaces were generated using an N₂-sized probe (r = 0.184 nm) at a 0.025 nm grid interval.
Thermogravimetric analysis (TGA) measurements were performed on a Netzsch Jupiter ST 449 C instrument equipped with a Netzsch TASC 414/4 controller. The samples were heated from room temperature to 900 °C under a synthetic air flow (25 mL min\(^{-1}\)) at a heating rate of 10 K min\(^{-1}\).

Powder X-ray diffraction (PXRD) measurements were performed using a Bruker D8 Discover with Ni-filtered Cu-K\(\alpha\) radiation and a LynxEye position-sensitive detector (scan speed of 4 s per 0.01 °2θ). Experimental XRD data were used for Pawley refinement to optimize the hypothetical structure.

The initial **structure models of the COFs** were built using the Forcite module of the Accelrys Materials Studio software package. We applied the space group with the highest possible symmetry, i.e. \(P6\), considering the propeller-like conformation of the central building blocks. Using this coarse model, we determined the unit cell parameters via Pawley refinement of our PXRD data.

Transmission electron microscopy (TEM) was performed on an FEI Titan Themis equipped with a field emission gun operated at 300 kV.

Scanning electron microscopy (SEM) images were recorded with a JEOL 6500F and an FEI Helios NanoLab G3 UC scanning electron microscope equipped with a field emission gun operated at 3-5 kV.

Photoluminescence (PL) and **time-correlated single photon counting** (TCSPC) data were processed with a FluoTime 300 from PicoQuant GmbH. The samples were photo-excited using lasers with suitable wavelengths according to the sample absorption, i.e. 378 nm, 403 nm or 507 nm wavelength (LDH-P-C-375, LDH-P-C-405, and LDH-P-C-510, respectively, all from PicoQuant GmbH) pulsed at 500 kHz, with a pulse duration of ~100 ps and fluence of ~300 nJ cm\(^{-2}\)/pulse. The samples were exposed to the pulsed light source set at 3 \(\mu\)J cm\(^{-2}\)/pulse fluence for ~10 minutes prior to measurement to ensure stable sample emission. The PL was collected using a high-resolution monochromator and photomultiplier detector assembly (PMA-C 192-N-M, PicoQuant GmbH).
2 Synthetic Procedures

Tetranitro-DBC

DBC (1.0 g, 3.0 mmol) was slowly added with stirring at 0 °C to a mixture of 10 mL nitric acid (≥ 99%) and 10 mL glacial acetic acid. After 10 min at 0 °C the solution was stirred at 100 °C for 2 h. The solution was poured into an ice-water mixture. The resulting precipitate was filtered, washed with 1,4-dioxane and recrystallized from nitrobenzene. After filtration and extensive washing with ethanol, 1.1 g of a yellow solid of tetranitro-DBC with 69% yield were obtained. MS-EI: calculated (m/z): 508.066, measured (m/z): 508.065.

Tetraamino-DBC (adapted from Lu et al.1)

Under argon, tetranitro-DBC (500 mg, 0.98 mmol) was dissolved in 80 mL of anhydrous THF in a flame-dried 500 mL flask. Approximately 2.3 g of Raney-nickel catalyst slurry was added to the mixture with stirring. Hydrazine monohydrate (0.67 mL, 8.8 mmol) was added dropwise to the stirred mixture. The resulting solution was heated to reflux for two hours. The solution was allowed to cool to room temperature and filtered. The filtrate was dried under reduced pressure, giving 320 mg of a yellowish-greenish solid with 84% yield. 1H NMR (400 MHz, DMSO-d6) δ
(ppm): 8.15 (d, J = 8.8 Hz, 4H, CH), 7.56 (d, J = 2.3 Hz, 4H, CH), 6.90 (dd, J = 8.8, 2.3 Hz, 4H, CH), 5.39 (s, 8H, NH₂). MS-EI: calculated (m/z): 388.169, measured (m/z): 388.168.

Synthesis of TA DBC-COF

In a 6 mL culture tube, terephthalaldehyde (4.02 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 9:1). After adding 50 µL of acetic acid (aqueous, 6 M) the tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.07 mg (58%) as a light brown powder.

Synthesis of Biph DBC-COF

In a 6 mL culture tube, 4,4'-biphenyldicarboxaldehyde (6.31 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 1:1). After adding 50 µL of acetic acid (aqueous, 6 M) the culture tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.47 mg (50%) as a brown powder.

Synthesis of TT DBC-COF

In a 6 mL culture tube, thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (5.89 mg, 30.0 µmol) and DBCA (5.83 mg, 15.0 µmol) were suspended in a mixture of BnOH and mesitylene (500 µL, v:v 9:1). After adding 50 µL of acetic acid (aqueous, 6 M) the tube was sealed and heated at 120 °C for 72 h. The resulting precipitate was filtered and rinsed with anhydrous THF before Soxhlet extraction with anhydrous THF for 12 h. The final product was vacuum-dried, to yield 5.87 mg (55%) as a red powder.

Synthesis of analogue 4PE COFs

The ETTA-based COFs, 4PE-1P, 4PE-2P and 4PE-TT, are well-studied COF systems. Their synthesis here was carried out under the reported conditions previously reported in the literature.²

3 SEM
Figure S1: SEM images of TA DBC-COF (a), Biph DBC-COF (b) and TT DBC-COF (c). A hexagonal morphology is visible for many of the crystallites.

4 TEM

Figure S2: TEM images of TA DBC-COF (a), Biph DBC-COF (b) and TT DBC-COF (c). The long-range order of the hexagonal crystallites is apparent from the large domains of about 50 to 100 nm.
5 X-Ray Diffraction Analysis

Figure S3: Pawley refinement of TA DBC-COF. Experimental (black), Pawley refined simulation (red), difference (navy) and Bragg positions (olive) show good agreement of experimental and simulated PXRD patterns.

Figure S4: Pawley refinement of Biph DBC-COF. Experimental (red), Pawley refined simulation (black), difference (navy) and Bragg positions (olive) show good agreement of experimental and simulated PXRD patterns.
Figure S5: Pawley refinement of TT DBC-COF. Experimental (blue), Pawley refined simulation (black), difference (navy) and Bragg positions (olive) show good agreement of experimental and simulated PXRD patterns.
6 Sorption

Figure S6: Nitrogen physisorption isotherm of TA DBC-COF (a) and the corresponding PSD with a QSDFT carbon equilibrium kernel for cylindrical pores reveal the dual-pore COF-structure (b).

Figure S7: Nitrogen physisorption isotherm of Biph DBC-COF (a) and the corresponding PSD with a QSDFT carbon equilibrium kernel for cylindrical pores reveal the dual-pore COF-structure (b).
Figure S8: Nitrogen physisorption isotherm of TT DBC-COF (a) and the corresponding PSD with a QSDFT carbon kernel for cylindrical pores reveal the dual-pore COF-structure (b).

The first steep uptakes at very low p/p^0 in Figures S6 – S8 indicate the micropore filling, while the second one ($p/p^0 = 0.15$ to 0.35) represents the capillary condensation within the mesopores, respectively. Due to the comparably small size of the mesopores (≤ 4 nm), a type IVb physisorption isotherm without a hysteresis loop is obtained. The pore size distribution was calculated from the equilibrium branch (desorption) with QSDFT with a carbon kernel for cylindrical pore geometry, respectively.
7 Structural Simulations of DBC-COFs

Space group: P6 with an AA-hexagonal eclipsed stacking (AA-H).

Table S1: Fractional atomic coordinates for the unit cell of AA-H calculated with Materials Studio v7.0 modeling program for TA DBC-COF.

Atom	x/a	y/b	z/c
C1	0.48191	0.48325	0.48052
C2	0.55441	0.51297	0.42694
C3	0.52066	0.55641	0.54156
C4	0.59020	0.54403	0.29244
C5	0.62475	0.54203	0.29230
C6	0.62425	0.50820	0.42101
C7	0.58821	0.47561	0.51286
C8	0.55272	0.47667	0.48965
C9	0.44374	0.40906	0.63294
C10	0.44115	0.37230	0.64931
C11	0.47408	0.36870	0.58695
C12	0.51035	0.40275	0.52521
C13	0.51377	0.44046	0.52582
N14	0.65911	0.50510	0.45965
N15	0.46921	0.32992	0.56729
C16	0.49663	0.32108	0.62398
C17	0.69535	0.53248	0.40083

Atom	x/a	y/b	z/c
H18	0.59210	0.57034	0.18775
H19	0.65141	0.56709	0.19352
Atom	x/a	y/b	z/c
------	-------	-------	-------
C1	0.48657	0.48523	0.40595
C2	0.54747	0.51934	0.47987
C3	0.51209	0.54571	0.33928
C4	0.57621	0.54952	0.58548
C5	0.60724	0.55217	0.64763
C6	0.61072	0.52399	0.61072
C7	0.58252	0.49341	0.52786

Table S2: Fractional atomic coordinates for the unit cell of AA-H calculated with Materials Studio v7.0 modeling program for Biph DBC-COF.

P6\(^{(168)}\) – hexagonal

\[a = b = 4.6299(9) \text{ nm}, \ c = 0.4017(6) \text{ nm}\]

\[\alpha = \beta = 90^\circ, \ \gamma = 120^\circ\]
Atom	x/a	y/b	z/c
C8	0.55050	0.48998	0.47046
C9	0.46428	0.42667	0.20464
C10	0.46592	0.39731	0.18524
C11	0.49474	0.39752	0.29305
C12	0.52262	0.42804	0.38814
C13	0.52182	0.45850	0.39736
N14	0.63973	0.52397	0.64491
N15	0.49293	0.36755	0.31443
C16	0.51695	0.35928	0.35322
C17	0.67165	0.54914	0.67079
C18	0.69733	0.54129	0.67394
C19	0.72920	0.56440	0.54611
C20	0.75392	0.55532	0.51221
C21	0.74763	0.52321	0.61062
C22	0.71632	0.50088	0.75625
C23	0.69152	0.50981	0.78764
C24	0.77174	0.51343	0.55738
C25	0.76261	0.48184	0.41627
C26	0.78678	0.47255	0.35085
C27	0.82080	0.49480	0.42288
C28	0.82988	0.52607	0.57053
C29	0.80569	0.53521	0.63833
H30	0.57550	0.57078	0.62568
H31	0.62702	0.57457	0.71974
H32	0.58659	0.47382	0.50670
H33	0.44290	0.42517	0.12112
H34	0.44592	0.37570	0.09814
H35	0.54311	0.42699	0.45890
H36	0.67735	0.57358	0.66739
Table S3: Fractional atomic coordinates for the unit cell of AA-H calculated with Materials Studio v7.0 modeling program for TT DBC-COF.

Atom	x/a	y/b	z/c
C1	0.0338	0.48331	0.55114
C2	0.03593	0.45208	0.66021
C3	0.06869	0.45123	0.67445
C4	0.10173	0.48243	0.58930
C5	0.10105	0.51468	0.51320
C6	0.06812	0.51646	0.51685
N7	0.13190	0.47895	0.58251
C8	0.16786	0.50433	0.56654
C9	0.19472	0.49415	0.53650
S10	0.18458	0.44890	0.46926
C11	0.23115	0.46555	0.45473
C12	0.25258	0.50249	0.50360
C13	0.23222	0.51956	0.55076
C14	0.25154	0.44857	0.40208

P6 (168) – hexagonal

\[a = b = 4.0444(2) \text{ nm}, \quad c = 0.3782(7) \text{ nm} \]

\[\alpha = \beta = 90^\circ, \quad \gamma = 120^\circ \]
Atom	x/a	y/b	z/c
C15	0.28904	0.47401	0.41620
S16	0.29915	0.51912	0.49306
C17	0.31599	0.46407	0.37540
C18	0.48282	0.48310	0.49344
N19	0.44993	0.48486	0.43522
C20	0.44981	0.51846	0.47705
C21	0.41555	0.51758	0.48434
C22	0.38229	0.48620	0.40126
C23	0.38319	0.45469	0.30274
C24	0.41632	0.45455	0.31703
N25	0.35176	0.48897	0.42046
H26	0.06849	0.42769	0.74564
Atom	x/a	y/b	z/c
H27	0.12536	0.53671	0.44594
H28	0.17600	0.53155	0.57639
H29	0.24348	0.54707	0.58927
H30	0.24031	0.42112	0.35984
H31	0.30814	0.43753	0.31501
H32	0.41364	0.53983	0.55603
H33	0.35995	0.43173	0.22183
H34	0.41493	0.43116	0.23370
H35	0.01350	0.42866	0.73592
8 Crystallographic Data

Figure S9: The calculated dihedral angle (green) of (a) ETTA and (b) DBC cores of the respective amine-functionalized building blocks. The molecular models are based on reported crystallographic data for the respective compounds, ETTA4 and DBC5. It is evident that the dihedral angle of ETTA is much larger (47.3°) due to steric crowding caused by the phenyl-substituted ethylene moiety. In the case of DBC, the aromatic rings fused to the naphthalene core force the system to stay more planar (dihedral angle of 24.7°).
9 IR Spectroscopy

Figure S10: IR spectra of tetranitro- (a) and tetraamino-DBC (DBCA) (b).

Figure S11: IR spectra of TA (a), Biph (b) and TT (c) precursors.
Figure S12: IR spectra of the synthesized DBC-COFs, namely TA DBC-COF (a), Biph DBC-COF (b) and TT DBC-COF (c).
10 UV-Vis Spectroscopy

Absorption spectra of the DBC-COFs were collected from solid samples in diffuse reflectance mode and transferred into absorption spectra by applying the Kubelka Munk equation.

Figure S13: Optical absorption spectra of the DBC-COFs (a) vs. the analogue 4PE COFs (b) measured as diffuse reflectance spectra of the solid and converted with the Kubelka Munk equation.

Figure S14: Tauc plots of the DBC-based COFs with a linear fit illustrated in orange.
11 Photoluminescence Spectroscopy

Figure S15: (a) Normalized PL spectra of the solid precursors tetraamino-DBC, TT, Biph and TA obtained with 378 nm excitation. By far the highest emission intensity resulted from excitation of DBC. (b) Normalized PL spectrum of DBC measured as solution in 1,4-dioxane (50 µM) and excited by a 378 nm laser. A strong emission could be detected at 480 nm.

Figure S16: PL spectra of TA, Biph and TT DBC-COF (a) and of 4PE-1P, -2P and -TT COF (b). All compounds were measured as solids.
12 Time-Correlated Single Photon Counting

Figure S17: (a) PL decay of TA DBC-COF excited at 378 nm and measured at the maximum of the PL emission at 718 nm. (b) PL decay of 4PE-1P COF excited at 378 nm and measured at the maximum of the PL emission at 597 nm. Experimental decay: black (TA DBC-COF), grey (4PE-1P COF) dots, tri-exponential fit of the decay: cyan line.

Figure S18: (a) PL decay of Biph DBC-COF excited at 378 nm and measured at the maximum of the PL emission at 724 nm. (b) PL decay of 4PE-2P COF excited at 378 nm and measured at the maximum of the PL emission at 643 nm. Experimental decay: red (Biph DBC-COF), wine-red (4PE-2P COF) dots, tri-exponential fit of the decay: cyan line.
Figure S19: (a) PL decay of TT DBC-COF excited at 378 nm and measured at the maximum of the PL emission at 758 nm. (b) PL decay of 4PE-TT COF excited at 378 nm and measured at the maximum of the PL emission at 683 nm. Experimental decay: blue (TA DBC-COF), green (4PE-TT COF) dots, tri-exponential fit of the decay: cyan line.

Table S4: PL decay times of TA DBC-COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

τ / ns	error / ns	fractional intensity / %
τ_1	6.3 ± 0.2	15
τ_2	1.1 ± 0.02	65
τ_3	0.25 ± 0.01	20
Table S5: PL decay times of Biph DBC-COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

τ / ns	error / ns	fractional intensity / %	
τ_1	14.1	±0.6	12
τ_2	2.8	±0.06	50
τ_3	0.71	±0.02	38

Table S6: PL decay times of TT DBC-COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

τ / ns	error / ns	fractional intensity / %	
τ_1	5.0	±0.1	25
τ_2	1.0	±0.02	60
τ_3	0.20	±0.01	15

Table S7: PL decay times of 4PE-1P COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

τ / ns	error / ns	fractional intensity / %	
τ_1	3.2	±0.2	8
τ_2	0.66	±0.01	54
τ_3	0.12	±0.004	38
Table S8: PL decay times of 4PE-2P COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

\(\tau \) / ns	error / ns	fractional intensity / %	
\(\tau_1 \)	3.6	\(\pm 0.1 \)	11
\(\tau_2 \)	0.80	\(\pm 0.01 \)	50
\(\tau_3 \)	0.14	\(\pm 0.003 \)	39

Table S9: PL decay times of 4PE-TT COF shown above. The given errors are uncertainties from the fit and hence do not reflect the real time-resolution of the setup. The latter is limited by the laser pulse duration of around 100 ps.

\(\tau \) / ns	error / ns	fractional intensity / %	
\(\tau_1 \)	4.5	\(\pm 0.4 \)	5
\(\tau_2 \)	0.65	\(\pm 0.01 \)	41
\(\tau_3 \)	0.14	\(\pm 0.003 \)	54
Thermogravimetric Analysis

Figure S20: Thermogravimetric analysis of DBC COFs. TA DBC-COF (black), Biph DBC-COF (red) and TT DBC-COF (blue) are all stable until 350 °C under a heating rate of 10°C/min and under synthetic air (N₂/O₂ V/V 79.5/20.5, 25 mL min⁻¹).
14 Elemental Analysis

Table S10: Elemental analysis of TA DBC-COF bulk material compared with the calculated mass percentages.

Element	TA DBC-COF	
	Theoretical percentage	Measured percentage
N	9.58	8.49
C	86.28	77.68
H	4.14	4.70

Table S11: Elemental analysis of Biph DBC-COF bulk material compared with the calculated mass percentages.

Element	Biph DBC-COF	
	Theoretical percentage	Measured percentage
N	7.60	7.63
C	88.02	83.35
H	4.38	4.59
Table S12: Elemental analysis of TT DBC-COF bulk material compared with the calculated mass percentages.

Element	TT DBC-COF	Theoretical percentage	Measured percentage
N	7.90	7.01	
C	71.16	65.73	
H	2.84	3.19	
S	18.09	16.64	

The differences between theoretical and measured atomic percentages are tentatively attributed to COF structures having a certain number of defects (missing building blocks).
15 NMR

1H, 400 MHz, DMSO-d_6

Figure S21: 1H NMR spectrum of DBCA: 1H NMR (400 MHz, DMSO-d_6) δ (ppm): 8.15 (d, $J = 8.8$ Hz, 4H, C(1)H), 7.55 (d, $J = 2.3$ Hz, 4H, C(2)H), 6.9 (dd, $J = 8.8, 2.3$ Hz, 4H, C(3)H), 5.39 (s, 8H, NH$_2$).
Tetraamino-DBC

13C, 100 MHz, DMSO-d_6

Figure S22: 13C NMR spectrum of DBCA. 13C NMR (100 MHz, DMSO-d_6) δ (ppm): 146.3, 130.7, 128.9, 122.1, 120.3, 115.3, 105.5.

16 References

1. Lu, J.; Zhang, J., Facile Synthesis of Azo-Linked Porous Organic Frameworks Via Reductive Homocoupling for Selective CO$_2$ Capture. J. Mater. Chem. A 2014, 2 (34), 13831-13834.
2. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döbling, M.; Clark, T.; Chapman, K. W.; Auras, F.; Bein, T., Molecular Docking Sites Designed for the Generation of Highly Crystalline Covalent Organic Frameworks. Nat. Chem. 2016, 8 (4), 310-316.
3. Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S. W., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (Iupac Technical Report). In Pure Appl. Chem., 2015; Vol. 87, p 1051.
4. Zhang, G.-F.; Chen, Z.-Q.; Aldred, M. P.; Hu, Z.; Chen, T.; Huang, Z.; Meng, X.; Zhu, M.-Q., Direct Validation of the Restriction of Intramolecular Rotation Hypothesis Via the Synthesis of Novel Ortho-
Methyl Substituted Tetraphenylethenes and Their Application in Cell Imaging. *Chem. Commun.* **2014**, *50* (81), 12058-12060.

5. Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M., Synthesis of Bn-Fused Polycyclic Aromatics Via Tandem Intramolecular Electrophilic Arene Borylation. *J. Am. Chem. Soc.* **2011**, *133* (46), 18614-18617.
