Supplementary Material

1 Supplementary Data

2-Amino-3-cyano-7-hydroxy-4-(3-nitrophenyl)-4H-chromene (4b)

Yield: 94%; M.p. 166-168 °C; \(^1\)HNMR (300 MHz, DMSO-d\(_6\)): 4.82 (1H, s, CHAr), 6.19 (1H, d, J=8.8 Hz, ArH), 6.59 (1H, d, J=9.6 Hz, ArH), 6.77 (1H, d, J=9.6 Hz, ArH), 6.97 (2H, s, NH\(_2\)), 7.33 (2H, d, J=9.6 Hz, ArH), 7.86 (2H, d, J=9.6 Hz, ArH), 9.69 (1H, s, OH).

2-Amino-3-cyano-7-hydroxy-4-(4-methylphenyl)-4H-chromene (4c)

Yield: 91%; M.p. 185-187 °C; \(^1\)HNMR (300 MHz, DMSO-d\(_6\)): 2.51 (3H, s, CH\(_3\)), 4.72 (1H, s, CHAr), 6.21 (1H, d, J=9.6 Hz, ArH), 6.70 (1H, d, J=9.6 Hz, ArH), 6.84 (1H, d, J=10.4 Hz, ArH), 7.03 (2H, s, NH\(_2\)), 7.17 (2H, d, J=9.6 Hz, ArH), 7.48 (2H, d, J=9.6 Hz, ArH), 9.63 (1H, s, OH).

2-Amino-3-cyano-7-hydroxy-4-(4-methoxyphenyl)-4H-chromene (4p)
Yield: 88%; M.p. 208-210 °C; 1HNMR (300 MHz, DMSO-d$_6$): 3.71 (3H, s, OCH$_3$), 4.53 (1H, s, CHAr), 6.18 (1H, d, J=8.8 Hz, ArH), 6.45 (1H, dd, J=7.2, 2.4 Hz, ArH), 6.77 (1H, d, J=8.4 Hz, ArH), 6.84 (2H, s, NH$_2$), 7.25 (2H, d, J=8.4 Hz, ArH), 7.83 (2H, d, J=9.2 Hz, ArH), 9.78 (1H, s, OH).

2 Supplementary Figures and Tables

2.1 Supplementary Figures

Supplementary Scheme 1.
Supplementary Scheme 2.
2.2 Supplementary Tables

Table 1. Optimization table of photocatalyst, solvent and visible-light for the synthesis of 4a\(^a\)

![Chemical Reaction](image)

Entry	Photocatalyst	Light Source	Solvent (3 mL)	Time (min)	Isolated Yields (%)
1	__	White light (18 W)	H\(_2\)O/EtOH (2:1)	15	57
2	Na\(_2\) eosin Y (0.2 mol%)	White light (18 W)	H\(_2\)O/EtOH (2:1)	5	78
3	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	H\(_2\)O/EtOH (2:1)	5	93
4	Na\(_2\) eosin Y (1 mol%)	White light (18 W)	H\(_2\)O/EtOH (2:1)	5	93
5	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	EtOAc	5	67
6	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	EtOH	5	63
7	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	MeOH	10	52
8	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	H\(_2\)O	5	70
9	Na\(_2\) eosin Y (0.5 mol%)	White light (18 W)	__	10	75
	Reaction Conditions				
---	--				
10	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	H$_2$O/EtOH (1:1)	5	79
11	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	H$_2$O/EtOH (1:2)	5	72
12	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	Toluene	20	46
13	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	CHCl$_3$	25	27
14	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	THF	25	32
15	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	CH$_2$Cl$_2$	25	30
16	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	DMSO	15	42
17	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	DMF	25	36
18	Na$_2$ eosin Y (0.5 mol%)	White light (18 W)	CH$_3$CN	10	49
19	Na$_2$ eosin Y (0.5 mol%)	Green light (18 W)	H$_2$O/EtOH (2:1)	5	81
20	Na$_2$ eosin Y (0.5 mol%)	Blue light (18 W)	H$_2$O/EtOH (2:1)	5	76
21	Na$_2$ eosin Y (0.5 mol%)	—	H$_2$O/EtOH (2:1)	20	<5
22	Na$_2$ eosin Y (0.5 mol%)	White light (10 W)	H$_2$O/EtOH (2:1)	5	71
23	Na$_2$ eosin Y (0.5 mol%)	White light (12 W)	H$_2$O/EtOH (2:1)	5	80
24	Na$_2$ eosin Y (0.5 mol%)	White light (20 W)	H$_2$O/EtOH (2:1)	5	93
25		White light (18 W)	H$_2$O/EtOH (2:1)	5	51

Erythrosin B (0.5 mol%)

	Reaction Conditions			
26	White light (18 W)	H$_2$O/EtOH (2:1)	5	53
Phenanthrenequinone (0.5 mol%)

27

Rhodamine B (0.5 mol%)

28

Acenaphthenequinone (0.5 mol%)

29

Riboflavin (0.5 mol%)

30

9H-Xanthen-9-one (0.5 mol%)

31
Fluorescein (0.5 mol%)

32

White light (18 W) H₂O/EtOH (2:1) 5 68

Rose bengal (0.5 mol%)

*Reaction conditions: benzaldehyde (1 mmol), malononitrile (1 mmol), resorcinol (1 mmol) in visible-light, various solvents and photocatalysts at rt.

Supplementary Table 1.

Table 2. Photoexcited Na₂ eosin Y as photocatalyst for synthesis of 2-amino-4H-chromene scaffolds.
Compound	Reaction Time	Yield	Melting Point	
4a	5 min	93%	234-236 °C	
			Lit. 232-234 °C [27]	
4b	5 min	94%	166-168 °C	
			Lit. 168-170 °C [32]	
4c	3 min	91%	185-187 °C	
			Lit. 186-188 °C [28]	
4d	10 min	88%	223-225 °C	
			Lit. 222-224 °C [24]	
4e	7 min	91%	179-181 °C	
			Lit. 180-182 °C [33]	
4f	5 min	95%	192-194 °C	
			Lit. 190-192 °C [32]	
4g	10 min	84%	249-251 °C	
			Lit. 250-252 °C [23]	
4h	5 min	86%	187-189 °C	
			Lit. 189-191 °C [27]	
4i	5 min	92%	194-196 °C	
			Lit. 194-196 °C [24]	
Compound	Reaction Time	Yield	Melting Point	Literature Melting Point
----------	---------------	-------	---------------	--------------------------
4j	9 min	87%	200-202 °C	198-200 °C [35]
4k	5 min	92%	211-213 °C	210-212 °C [24]
4l	3 min	93%	146-148 °C	148-150 °C [29]
4m	7 min	89%	175-177 °C	176-178 °C [35]
4n	3 min	94%	227-229 °C	228-231 °C [25]
4o	3 min	96%	227-229 °C	228-231 °C [25]
4p	7 min	88%	208-210 °C	210-212 °C [29]
4q	10 min	83%	259-261 °C	257-259 °C [27]
4r	3 min	96%	160-162 °C	162-163 °C [34]
Table 3. The comparison between the catalytic capacity of some catalysts in this worka

Entry	Catalyst	Conditions	Time/Yield (%)	References
1	glycine	H$_2$O, sonication	9 min/94	[22]
2	mesolite	EtOH, reflux	30 min/93	[23]
3	potassium phthalimide	H$_2$O, reflux	12 min/94	[24]
No.	Catalyst/Reactant	Reaction Conditions	Time	Ref.
-----	-----------------------------------	------------------------------	------	------
4	MgFe$_2$O$_4$NPs	EtOH, 65 °C	12 min/74	[25]
5	POM@Dy-PDA	EtOH/H$_2$O, reflux	15 min/95	[26]
6	P4VPy-CuI	H$_2$O, reflux	15 min/94	[27]
7	nanozeolite clinoptilolite	H$_2$O, reflux	15 min/92	[28]
8	WELFSA	H$_2$O, rt	1.5 h/88	[29]
9	tungstic acid functionalized SBA-15	H$_2$O, 100 °C	12 min/86	[30]
10	MIL-101(Cr)-SO$_3$H	H$_2$O, 100 °C	180 min/82	[31]
11	[Et$_2$NH(CH$_2$)$_2$CO$_2$H][AcO]	solvent-free, 60 °C	12 min/92	[32]
12	{[4,4′-BPyH][C(CN)$_3$]$_2$}	solvent-free, 80 °C	15 min/90	[33]
13	DBU	EtOH, MW, 50 °C	3 min/94	[34]
14	hydrotalcite	H$_2$O, 60 °C	4 h/95	[35]
15	Na$_2$ eosin Y	visible light irradiation, H$_2$O/EtOH (2:1), rt	5 min/93	This work

a Based on the three-component reaction of benzaldehyde, malononitrile and resorcinol.

Supplementary Table 3.