Few-quintuple Bi$_2$Te$_3$ nanofilms as potential thermoelectric materials

Gang Zhou & Dong Wang

MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China.

The thermoelectric transport properties of p-type Bi$_2$Te$_3$ nanofilms with various quintuple layers (QL) were systematically investigated based on ab initio electronic structure calculations and Boltzmann transport equations. Our results demonstrated that p-type few-quintuple Bi$_2$Te$_3$ nanofilms could exhibit high thermoelectric performance. It was found out that the 1QL Bi$_2$Te$_3$ nanofilm had the highest ZT value as compared with other nanofilms, which is mainly attributed to the significant enhancement of the density of states near the edge of the valence band resulting from the strong coupling between the top and bottom electronic states and the quantum confinement effect. The dependence of the thermoelectric transport properties on carrier concentration and temperature was also discussed in detail, which can be useful for searching high-efficiency few-quintuple Bi$_2$Te$_3$ thermoelectric nanofilms.

Thermoelectric materials have attracted intense interest due to their potential applications in cooling and power generation$^{1-5}$. The performance of thermoelectric devices depends on the dimensionless figure of merit, ZT, which is defined as

$$ZT = \frac{S^2\sigma T}{k_l + k_e},$$

where S is the Seebeck coefficient, T is the temperature, σ is the electrical conductivity, k_l is the lattice thermal conductivity and k_e is the thermal conductivity of the electronic carriers. To achieve a high ZT, it requires maximizing the Seebeck coefficient and electrical conductivity but minimizing the thermal conductivity. In general, the thermal conductivity can be minimized by introducing nanostructures into the thermoelectric materials to increase phonon scattering$^{6-8}$, the Seebeck coefficient can be enhanced by quantum confinement effects9,10, and the electrical conductivity can be improved by adjusting the carrier concentration through doping11,12, however, the interdependence among these parameters makes the maximization of ZT a challenge so far.

Among various thermoelectric materials, Bi$_2$Te$_3$ and its solid solutions have been investigated intensely because they possess outstanding thermoelectric properties at room temperature, which is due to the high degeneracy at the edges of their energy bands. The ZT value of the Bi$_2$Te$_3$-based thermoelectric materials has been improved by many approaches such as the synthesis of nanostructured bulk materials or nanocomposites with a precise control of the size, structure, composition and carrier concentration as well as the deposition of various thin films by melt-spinning, sputtering, evaporation and molecular beam epitaxy$^{13-16}$. Recently, Bi$_2$Te$_3$ has been demonstrated as a three-dimensional (3D) topological insulator, which further stimulates a strong research interest in this material17. Bulk Bi$_2$Te$_3$ crystallizes in a rhombohedral unit cell with the space group D_{3d}^3 ($R3m$) and has a layered structure with five atomic layers referred to as a quintuple layer (QL)18,19. The interaction between two adjacent QL is of the weak van der Waals type, which allows one to disassemble Bi$_2$Te$_3$ crystal into its quintuple building block20. The experimental results have shown that the exfoliated quintupiles and ultrathin few-quintuple films have a low thermal conductivity, which is favorable to improve the thermoelectric performance20. Very recently, an efficient thermoelectric conversion was observed in the atomic monolayer steps of Bi$_2$Te$_3$ (n-type) and Sb$_2$Te$_3$ (p-type) QL by scanning photoinduced thermoelectric current probe21. Theoretically, P. Ghaemi et al. have discovered that nanometer-scale Bi$_2$Te$_3$ thin film generates a hybridization-induced band gap of the unconventional surface states, which can lead to an increased thermoelectric performance at low temperatures22. Recent theoretical researches show that Bi$_2$Te$_3$ nanofilms have enhanced thermoelectric properties20,21. B. Qiu et al. have studied the thermal conductivity of the few-quintuple Bi$_2$Te$_3$ nanofilms by using molecular dynamics simulation and have shown that nanoporous Bi$_2$Te$_3$ nanofilms display significantly reduced...
thermoelectric transport coefficients. Previous calculations confirmed that it is an effective approach to predict the thermoelectric transport properties of bulk materials and nanosystems. By solving the Boltzmann transport equations, S and σ, can be obtained as:

\[\sigma = A^{(0)} \]

\[S = \frac{1}{eT} \left(\frac{A^{(1)}}{A^{(0)}} \right) \]

Computational methods

First-principles calculation. The calculation of the energy band structure has been performed by using the projector augmented wave (PAW) method within the framework of density functional theory and Boltzmann transport equations to provide a microscopic description of the thermoelectric properties of few-quintuple Bi₂Te₃ nanofilms. Our results demonstrate that p-type few-quintuple Bi₂Te₃ nanofilms can exhibit high thermoelectric performance and thus they can stand as a promising candidate for nanoscale thermoelectric applications.

Calculation of the transport properties. In this work, the semi-classical Boltzmann equations with the relaxation time approximation were used to evaluate the thermoelectric transport coefficients. Previous calculations confirmed that it is an effective approach to predict the thermoelectric transport properties of bulk materials and nanosystems. By solving the Boltzmann transport equations, S and σ, can be obtained as:

\[\sigma = A^{(0)} \]

\[S = \frac{1}{eT} \left(\frac{A^{(1)}}{A^{(0)}} \right) \]

Results and discussion

Band structure. The ab initio electronic band structures of Bi₂Te₃ bulk material and nanofilms with various thicknesses are shown in Fig. 2. The spin-orbit interaction was taken into account in the calculation, which was proved to be essential for calculating the electronic structures of Bi₂Te₃ and our results for bulk Bi₂Te₃ (Fig. 2(a)) are in good agreement with the data reported in previous work. As shown in Figs. 2(b–f), band structures of the Bi₂Te₃ nanofilms are similar to each other except for the significant difference in band gap and energy spacing between adjacent bands. Firstly, the indirect band gap decreases with increasing the film thickness. For example, the
The band gap is about 320 meV for 1QL film (Fig. 2(b)) and it disappears when the film thickness increases to 3QL (Fig. 2(d)). Secondly, the energy spacing between the adjacent bands decreases with increasing the number of QL. The reasons are that with the thickness increasing, the coupling between the top and bottom electronic states and the quantum confinement effect on the electrons in the nanofilm are weakened. It is also noteworthy to point out that the conduction bands of all five nanofilms are much more dispersive than the valence bands.

The density of states (DOS) for the Bi$_2$Te$_3$ nanofilms with various thicknesses is shown in Fig. 3. The DOS near the edge of the valence band has a sharper and larger peak than that near the edge of the conduction band due to flatter valence bands (as shown in Fig. 2). It can be observed from Fig. 3 that the total DOS for 1 QL Bi$_2$Te$_3$ nanofilm displays staircase-like behavior near the edges of conduction bands and valence bands, induced by the quantum confinement effect in quasi-2D systems. With the number of QL decreasing, the spacing between the peaks (singularity) of the DOS significantly increases, which is consistent with the change of the energy spacing between the adjacent bands.

Transport properties. Based on the calculated electronic band structures, the thermoelectric transport coefficients of the few-quintuple Bi$_2$Te$_3$ nanofilms can be evaluated by the methods presented in Sec. II. It is well known that the standard density functional theory usually underestimates the band gaps of semiconductors. In order to achieve a better agreement with the experimental results, the band gaps of the nanofilms were adjusted to match the experimental data by applying the so-called scissor operator in our calculations. Similar treatments have been widely adopted in previous publications.

Fig. 4 shows the calculated electrical conductivity, Seebeck coefficient, power factor and figure-of-merit of the perfect p-type Bi$_2$Te$_3$ films with different QL and p-type bulk Bi$_2$Te$_3$, as a function of carrier concentration at 300 K. As shown in Fig. 4(a), the electrical conductivity of all the p-type Bi$_2$Te$_3$ nanofilms increases with increasing carrier concentration. In contrast, the Seebeck coefficient decreases with increasing carrier concentration and in general the Seebeck coefficient for the thinner nanofilm is larger than that for the thicker nanofilm at the same carrier concentration (Fig. 4(b)). This can be explained by the following discussion. Taking into account that Maxwell-Boltzmann approximation is justified in the region of $E_F = E_V \gg k_B T$, S can be expressed as a function of n:

$$S = -\frac{k_B}{e} \ln \left(\frac{n}{N_V} \right) + \frac{k_B}{e} A_V, \quad (8)$$

where N_V is the effective density of states at the edge of the highest valence band and A_V represents a scattering factor of the semiconductor. N_V can be expressed as

$$N_V = \int_{-\infty}^{E_V} g_V(\varepsilon) \exp\left[-(E_V - \varepsilon)/k_B T\right] d\varepsilon, \quad (9)$$

where $g_V(\varepsilon)$ is the density of states. Eq. (8) directly reveals that the magnitude of S decreases with increasing n, as shown in Fig. 4(b). In addition, with the number of QL decreasing, the DOS near the edge of the valence band increases due to the quantum confinement effect (Fig. 3), leading to an increase of N_V and hence an enhancement of S. It is worth noting that S of 1QL Bi$_2$Te$_3$ nanofilm is significantly larger than those of other nanofilms, which results from the significantly increased DOS near the edge of the valence band.
enhanced DOS near the edge of the valence band induced by the strong coupling between the top and bottom electronic states and the quantum confinement effect. The electrical conductivity σ increases with increasing carrier concentration n, whereas the Seebeck coefficient S decreases, therefore, there is an optimized carrier concentration, n_{opt}, at which the power factor is maximized (as shown in Fig. 4(c)). The n_{opt} to obtain the maximum power factor for Bi$_2$Te$_3$ nanofilms with various QL occurs in the range from 0.3×10^{20} cm$^{-3}$ to 5×10^{20} cm$^{-3}$. In general, the n_{opt} increases with decreasing the number of QL. The n_{opt} can be derived as:

$$n_{\text{opt}} = N_V \exp(-2 + A_V).$$

Eq. (10) reveals that the n_{opt} for the power factor is proportional to N_V. With the number of QL decreasing, the DOS near the edge of the valence band increases, thus, N_V rises and hence n_{opt} increases (as shown in Fig. 4(c)). Figure 4(d) shows that the dependence of ZT on the carrier concentration is similar to that of the power factor, indicating that the carrier concentration is a key parameter to adjust the thermoelectric performance of the few-quintuple films. The n_{opt} to obtain the highest ZT value is in the range from 0.1×10^{20} cm$^{-3}$ to 1.5×10^{20} cm$^{-3}$. The perfect 1QL film has the largest ZT value of 1.0 at an n_{opt} of 1.5×10^{20} cm$^{-3}$. The n_{opt} for the ZT is different from that for the power factor because of the effect of the electronic thermal conductivity that is related to the carrier concentration. We have calculated the thermoelectric transport properties of bulk Bi$_2$Te$_3$ by using the value of 2.2×10^{-14} s at 300 K22 for the relaxation time and the value of 1.5 W/mK at 300 K36 for the phonon thermal conductivity. Our calculated results are in excellent agreement with the previous theoretical32 and experimental data36. It can be seen from Fig. 4 that the electrical conductivity of bulk Bi$_2$Te$_3$ is larger while the seebeck coefficient is smaller in most range of carrier concentrations, as compared with those of Bi$_2$Te$_3$ nanofilms at a fixed carrier concentration. The optimized ZT value of bulk Bi$_2$Te$_3$ is about 0.6, which is smaller than that of 1QL Bi$_2$Te$_3$ nanofilm (Fig. 4(d)).

Fig. 5 shows the calculated electrical conductivity, Seebeck coefficient, power factor and figure of merit of the perfect 1QL Bi$_2$Te$_3$ nanofilm as a function of carrier concentration at different temperatures. As shown in Fig. 5(a), at a fixed carrier concentration the electrical conductivity decreases with increasing temperature, mainly because the scattering rate of the carriers increases and the relaxation time decreases with increasing temperature (as shown in Table 1). In contrast, the S slightly increases with increasing the temperature at a fixed carrier concentration, as shown in Fig. 5(b). This is mainly because when the temperature rises, the term, $\exp(-\left(E_V - \varepsilon\right)/k_B T)$ with $\varepsilon < E_V$, in Eq. (9) increases and then it leads to an increasing N_V. Due to the reduction of σ, the power factor decreases with increasing temperature and the n_{opt} to obtain the maximum power factor shifts to a larger value (Fig. 5(c)). Fig. 5(d) shows that the dependence of ZT on the temperature is reversed as compared with that of the power factor. Although the power factor decreases with raising temperature, ZT value increases because both phonon and electron thermal conductivity decrease. The peak values of ZT for the p-type perfect 1QL Bi$_2$Te$_3$ film are 1.0 and 1.9 at 300 K and 800 K, respectively.

Figs. 6(a) and 6(b) summarize the dependence of the optimized ZT (at n_{opt}) of the p-type perfect and nanoporous Bi$_2$Te$_3$ nanofilms with various QL on temperature, respectively. As shown in Fig. 6(a), for all of the perfect nanofilms, their optimized ZT values increase with increasing temperature and 1QL nanofilm has the highest optimized ZT value in the entire temperature range as compared with other nanofilms. The temperature dependence of optimized ZT value has also been found in the previous study of thermoelectric properties of 1QL Bi$_2$Te$_3$ nanofilm25. For the nanofilms with a thickness larger than 1QL, their ZT values are close to each other because they possess approximately similar DOS near the edge of the valence band. Therefore, the molecular dynamics simulations showed that the phonon thermal conductivity can be significantly reduced by introducing structure defects such as nanopore26. Considering the fact that phonon thermal conductivity can be significantly reduced by introducing defects without significantly sacrificing the thermoelectric power factor $S^2\sigma$,18 which has
been seen as a main strategy to enhance the thermoelectric properties of materials and has been confirmed by a lot of experimental works. We give the calculated results of thermoelectric properties of nanoporous Bi$_2$Te$_3$ nanofilms by assuming that introduction of nanopores don’t influence the electronic structure and power factor of nanofilms. Due to the reduction of phonon thermal conductivity, the p-type Bi$_2$Te$_3$ nanofilms with nanopore defects exhibit a significantly improved ZT value as compared with the perfect nanofilms. Particularly, the 1QL nanoporous Bi$_2$Te$_3$ nanofilms can achieve an optimized ZT value of 2.65 at room temperature, as shown in Fig. 6(b). The temperature dependence of the optimized ZT values of the p-type Bi$_2$Te$_3$ nanofilms with nanopore defects becomes complicated in comparison to that of the perfect nanofilms. This can be explained by the following discussions. By using the Wiedemann–Franz law: $\kappa_e = L\sigma T$, the ZT may be written as follows:

$$ZT = \frac{S^2 L}{\kappa_e (1 + S/\kappa_e)}$$ \hspace{1cm} (11)

For perfect Bi$_2$Te$_3$ nanofilms, the phonon dominates thermal transport ($\kappa_l \gg \kappa_e$), and ZT increases with temperature mainly due to that κ_l decreases with temperature. For nanoporous Bi$_2$Te$_3$ nanofilms, κ_l remains constant over the entire temperature range and ZT depends on temperature through S and κ_e according to Eq. (11). In this case, the values of κ_l and κ_e at optimized carrier concentration are comparable to each other. The temperature dependence of the optimized ZT values of nanoporous Bi$_2$Te$_3$ nanofilms is less prominent than that of perfect nanofilms, and several factors including S and κ_e as well as its magnitude relative to κ_l come into effect. We hope that these predictions could provide a clue for experimental researchers to optimize the thermoelectric performance of Bi$_2$Te$_3$ nanofilms.

Conclusions

In summary, we have employed a combination of first-principles electronic structure and Boltzmann transport calculations to predict the thermoelectric transport properties of few-quintuple Bi$_2$Te$_3$ nanofilms. Our results show that p-type Bi$_2$Te$_3$ nanofilms could be good candidates for thermoelectric nanomaterials, provided that the phonon thermal conductivity can be decreased by introducing structure defects without significantly sacrificing the thermoelectric power factor, and p-type 1QL nanofilm with nanopore defects can...
achieve an upper-limit ZT value of 2.65 at room temperature. It was found that the p-type 1QL Bi$_2$Te$_3$ nanofilm as compared with other nanofilms has the highest ZT value, which is mainly attributed to the significantly enhanced density of states resulting from the strong coupling between the top and bottom electronic states and the quantum confinement effect. The dependence of thermoelectric transport properties on doping level and temperature was investigated in detail, which provides guidance for future experiments to optimize ZT value of p-type Bi$_2$Te$_3$ nanofilms with few quintuple layers. The type of calculation reported in this work represents a valuable investigation tool to study the thermoelectric properties of quasi-2D nanomaterials.

1. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
2. Dresselhaus, M. S. et al. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 19, 1043–1053 (2007).
3. Liang, W. et al. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 9, 1689–1693 (2009).
4. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
5. Permnich, K., Kössner, B. & Ratcliff, B. Field-effect-modulated Seebeck coefficient in organic semiconductors. Nat. Mater. 7, 321–325 (2008).
6. Balandin, A. & Wang, K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998).
7. Hochbaum, A. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).
8. Zhou, G. L., Li, L. L. & Li, G. Enhancement of thermoelectric figure of merit in bismuth nanofilms. J. Appl. Phys. 109, 114311 (2011).
9. Zhou, G. L., Li, L. L. & Li, G. Enhancement of thermoelectric figure of merit in bismuth nanofilms. Appl. Phys. Lett. 97, 023112–023114 (2010).
10. Taskhildie, A. Large enhancement of the thermoelectric figure of merit in a 3D quantum well. Nanotechnology 20, 405401–405406 (2009).
11. Zhao, Y., Dyck, J. S., Hernandez, B. M. & Burda, C. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982–4983 (2010).
12. Yu, B. et al. Enhancement of thermoelectric properties by modulation–doping in silicon germanium alloy nanocomposites. Nano Lett. 12, 2077–2082 (2012).
13. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth telluride bulk alloys. Science 320, 634–638 (2008).
14. Venkatasubramanian, R., Sivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).
15. Fan, S. et al. p-type Bi$_x$Sb$_{1-x}$Te$_3$ nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104–182106 (2010).
16. Sun, Z., Liu, F., Shen, X. & Chen, L. Tellurization: An Alternative Strategy to Construct Thermoelectric Bi$_2$Te$_3$ Films. J. Phys. Chem. C 115, 16167–16171 (2011).
17. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
18. Zahid, F. & Lake, R. Thermoelectric properties of Bi$_2$Te$_3$ atomic quintuple thin films. Appl. Phys. Lett. 97, 212102 (2010).
19. Li, X., Ren, H. & Luo, Y. Electronic structure of bismuth telluride quasi-two-dimensional crystal: A first principles study. Appl. Phys. Lett. 98, 083113–083115 (2011).
20. Goyal, V., Teweldebrhan, D. & Balandin, A. Mechanically–exfoliated stacks of thin films of Bi$_2$Te$_3$ topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 97, 133117–133119 (2010).
21. Lung, H. J. et al. Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides. Nano Lett. 14, 4030–4035 (2014).
22. Ghaemi, P., Mong, R. S. & Moore, J. E. In-Plane Transport and Enhanced Thermoelectric Performance in Thin Films of the Topological Insulators Bi$_2$Te$_3$ and Bi$_2$Se$_3$. Phys. Rev. Lett. 105, 166603–166606 (2010).
23. Zhang, J. et al. Enhanced thermoelectric performance of a quintuple layer of Bi$_2$Te$_3$. J. Appl. Phys. 116, 023706 (2014).
24. Qiu, B. & Ruan, X. Thermal conductivity prediction and analysis of few-quantum-well Bi$_2$Te$_3$ thin films: A molecular dynamics study. Appl. Phys. Lett. 97, 183107–183109 (2010).
25. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
26. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).