DEPENDENCE CONTROL CHART USING MAXIMUM COPULA ENTROPY

SEYEDEH AZADEH FALLAH MORTEZANEJAD, RUOCHEN WANG, GHOLAMREZA MOHTASHAMI BORZADARAN, KIM PHUC TRAN

1, 2 School of Automotive and Traffic Engineering, Jiangsu University, Jiangsu, China.
3 Department of Statistics, Faculty of Mathematical Sciences Ferdowsi University of Mashhad, Mashhad, Iran.
4 Univ. Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France.
5 International Chair in DS & XAI, International Research Institute for Artificial Intelligence and Data Science, Dong A University, Danang, Vietnam.

ABSTRACT. Statistical quality control methods are noteworthy to producing standard production in manufacturing processes. In this regard, there are many classical manners to control the process. Many of them have a global assumption around the distributions of the process data. They are supposed to be Normal, but it is clear that it is not always valid for all processes. Such control charts made some wrong decisions that waste funds. So, the main question while working with multivariate data set is how to find the multivariate distribution of the data set, which saves the original dependency between variables. To our knowledge, a copula function guarantees dependence on the result function. It is not enough when there is no other fundamental information about the statistical society, and we have just a data set. Therefore, we apply the maximum entropy concept to deal with this situation. In this paper, first of all, we get the joint distribution of a data set from a manufacturing process that needs to be in-control while running the production process. Then, we get an elliptical control limit via the maximum copula entropy. Finally, we represent a practical example using the method. Average run lengths are calculated for some means and shifts to show the ability of the maximum copula entropy. In the end, two practical data examples are presented, and the results of our method are compared with the traditional way based on Fisher distribution.

1. Introduction

Shannon entropy has been introduced first by [24] since 1948. Afterwards, it is applied in many different fields. The maximum entropy principle was presented by [11] since 1957. Jaynes exerted the Lagrange function according to some constraints to find the maximum entropy distribution. Such papers as [14, 27, 13] studied the maximum entropy concept. After that, it is used wieldy by authors until recent years as [4, 8, 29].

The maximum entropy principle is a good method of finding the unknown distribution of a univariate data set because it does not need any strong presumption about

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52, 34K20, 39B82.
Key words and phrases. Control chart; Maximum entropy; Copula function; Spearman’s rho; T^2-Hotelling statistic.
distribution. Working well with ill-posed conditions and not requiring large sample sizes makes it a suitable choice. Although all benefits of the maximum entropy concept, it can be difficult for some researchers to define more constraints for multivariate data sets to preserve the original dependency between different variables of multivariate data. A specialist needs to save it in the result distribution function. Some papers like [6, 35, 20, 5, 26, 22, 18] linked the maximum entropy principle and copula function. Generally, by the aim of both concepts, we get a copula density function by a maximum copula entropy via adding some simple constraints according to intended dependency measures. So, the maximum copula function has the same dependency on the existing data. Finally, the Sklar theorem [28] helps easily to get the multivariate distribution function whose dependency is the same as the available data.

In this paper, we would like to peruse manufacturing process data which generates multivariate data sets with unknown distributions. Typically they are assumed to be Normal distributions. This assumption is incorrect in general cases. So, technical assistants need to know the distribution. In this regard, the main point is to transfer the original dependency to the result density function. Thus, we are working on this issue to combine the maximum entropy principle and copula function. As mentioned, the maximum entropy principle is applied to find the empirical multivariate distribution, and the copula function cares about the dependency. Our predestinate data is bivariate and also dependent. So, we estimated its distribution by the maximum entropy principle for some simulated dependency measures based on Spearman’s rho and Blest measures. In the next step, we apply the \(T^2 \)-Hotelling statistic, which is common for dealing with a multivariate data set. Afterwards, we compute the statistical quality control for these kinds of data. These control limits are reliable because the dependency is paid attention to while calculating them.

The proceeds of this paper are: In section 2, some basic concepts of copulas and dependent measures are determined. In section 3, we present univariate and bivariate distributions with the calculation procedure. The purpose of the bivariate case is to compare functionally with the result function of the next section. In section 4, we explain the procedure of finding a bivariate maximum entropy distribution concerning some intended constraints. Then, we clarify the maximum copula entropy according to corresponding conditions. We apply Shannon entropy for both cases. In the process of acquiring the maximum copula entropy, we exert some dependence measures to transfer the dependency of an available data set to the final function. In the following section, we use the maximum copula entropy to get the joint density function of the data set using the Sklar theorem. In section 5, we represent the \(T^2 \)-Hotelling statistic and illustrate how to find the statistical control limits for bivariate data set with its original dependency saved by the maximum copula function and describe how to compute \(ARLs \). In section 6, we calculate the coefficients of the maximum copula entropy for some instance values of dependence measures along with their surface plots shown in the figures. Then, we estimate the upper control limit for some different means with their corresponding \(ARLs \). In section 7, two practical data examples are discussed in detail. In section 8, we make a conclusion and statements of the paper.
2. Copula function definition

Statistics researchers consider copula functions as an advanced method of dealing with data sets. It has many beneficial properties in saving dependency of the data to raise the precision. For example, the copula function is applied to generate random variate from a set with the same dependency whose distribution is unknown. Sklar introduced copula functions since 1959 in [28] applying one-dimensional marginal functions to build multivariate distributions. Fisher (1997) [9] was the first published paper in statistics using the copula function, and also Schweizer and Wolff [23] are the pioneers. After that, this concept was wieldy used in many different papers like [16, 32, 34]. In this paper, we focus on the copula function mixed with other functions to build multivariate distributions. Fisher (1997) [9] was the first published paper in statistics using the copula function, and also Schweizer and Wolff [23] are the pioneers. After that, this concept was widely used in many different papers like [16, 32, 34]. In this paper, we focus on the copula function mixed with other functions to build multivariate distributions.

A two-dimensional copula is a function defined on I^2 where $I = [0,1]$ with the following properties:

- for every $u,v \in I$:
 \[C(u,0) = C(0,v) = 0, \quad C(u,1) = u, \quad C(1,v) = v, \]
- for all u_1, u_2, v_1, v_2 in I such that $u_1 \leq u_2$ and $v_1 \leq v_2$:
 \[C(u_2,v_2) + C(u_1,v_1) - C(u_2,v_1) - C(u_1,v_2) \geq 0. \]

In multivariate data studying, copula functions have a valuable rule based on the Sklar theorem.

Theorem 2.2. Let $H(\cdot, \cdot)$ be a joint distribution function for random variables X and Y whose marginal functions are $F_X(\cdot)$ and $F_Y(\cdot)$. Then a copula $C(\cdot, \cdot)$ exists such that

\[H(x,y) = C(F_X(x), F_Y(y)), \quad \forall x, y \in \mathbb{R}. \tag{2.1} \]

$C(\cdot, \cdot)$ is unique if $F_X(\cdot)$ and $F_Y(\cdot)$ are continuous; otherwise, $C(\cdot, \cdot)$ can be uniquely defined on the joint support set $S(X,Y)$. Reciprocally, let $C(\cdot, \cdot)$ be a copula function, and $F_X(\cdot)$ and $F_Y(\cdot)$ be univariate distribution functions. Then $H(\cdot, \cdot)$ in (2.1) is the corresponding joint distribution function respect to the margins.

The key in the copula topic is this theorem, which is applied in several articles with different issues. The theorem gives us a connection between the copula function and the joint distribution function. In the following paper, some dependence measures are exerted. The first measure is Spearman’s rho evaluating coordination and incoordination between variables. Spearman’s rho definition is based on [15]. Let (X_1,Y_1), (X_2,Y_2), and (X_3,Y_3) be three vectors of independent random variables whose joint distribution function is $H(\cdot, \cdot)$ with margins $F_X(\cdot)$ and $F_Y(\cdot)$ and their corresponding copula function is $C(\cdot, \cdot)$. The Spearman’s rho is determined by the below formula whose domain is in $[−1,1]$:

\[\rho = 3P((X_1 - X_2)(Y_1 - Y_3) > 0) - P((X_1 - X_2)(Y_1 - Y_3) < 0). \]

The following theorem in [19] applied copula function to compute Spearman’s rho.

Definition 2.1. A two-dimensional copula is a function defined on I^2 where $I = [0,1]$ with the following properties:

- for every $u,v \in I$:
 \[C(u,0) = C(0,v) = 0, \quad C(u,1) = u, \quad C(1,v) = v, \]
- for all u_1, u_2, v_1, v_2 in I such that $u_1 \leq u_2$ and $v_1 \leq v_2$:
 \[C(u_2,v_2) + C(u_1,v_1) - C(u_2,v_1) - C(u_1,v_2) \geq 0. \]
Theorem 2.3. Suppose X and Y be two independent random variables with copula $C(\cdot, \cdot)$. Then, Spearman’s measure is calculated by:

$$\rho = 3Q(C, \Pi) = 12 \int_{I^2} udvC(u, v) - 3 = \int_0^1 \int_0^1 C(u, v)du dv - 3.$$

The other used measures are related to Blest rank correlations adapted from [1] called the first, second, and third Blest’s measures:

$$\nu_1 = 2 - 12 \int \int_{I^2} (1 - u)^2 v c(u, v) du dv, \quad \nu_1 \in [-1, 1],$$

$$\nu_2 = 2 - 12 \int \int_{I^2} u (1 - v)^2 c(u, v) du dv, \quad \nu_1 \in [-1, 1],$$

$$\eta = 6 \int \int_{I^2} u^2 v^2 c(u, v) du dv - \frac{1}{5}, \quad \eta \in [0, 1].$$

As we can see, the density copula function is required for all presented scales. If we work with a real data set, then the distribution and copula function are unknown. A logical recommendation is to put pre-estimators based on the sample data. The primary aim of this paper is to appraise the copula and joint distribution function. Paper [6] determined the estimations in the article as well, but before the presentation, it needs to define some notations. n is the sample size, and u_n and v_n are defined for $t = 1, \ldots, n$:

$$u_t = \frac{1}{n} \sum_{i=1}^{n} 1(X_i \leq X_t) = \frac{R_t}{n + 1},$$

$$v_t = \frac{1}{n} \sum_{i=1}^{n} 1(Y_i \leq Y_t) = \frac{S_t}{n + 1},$$

where $1(\cdot)$ is the indicator function. The pre-estimation of explained dependencies are:

$$\hat{\rho} = \frac{12}{n^3 - n} \sum_{t=1}^{n} R_t S_t - 3 \frac{n + 1}{n - 1},$$

$$\hat{\nu}_1 = \frac{2n + 1}{n - 1} - \frac{12}{n^2 - n} \sum_{t=1}^{n} \left(1 - \frac{R_t}{n + 1}\right)^2 S_t,$$

$$\hat{\nu}_2 = \frac{2n + 1}{n - 1} - \frac{12}{n^2 - n} \sum_{t=1}^{n} R_t \left(1 - \frac{S_t}{n + 1}\right)^2,$$

$$\hat{\eta} = \frac{6}{n^2 - n} \sum_{t=1}^{n} \left(\frac{R_t}{n + 1}\right)^2 \left(\frac{S_t}{n + 1}\right)^2 - \frac{(1/5)n + 1}{n - 1}. $$

By the copula and entropy principle, we can find out the unclear distribution of any set in the following.
3. Maximum entropy principle

The entropy was introduced by Shannon in [24, 25]. The Shannon entropy is applicable in statistics and broadly used in many other fields like mathematics, physics, computer science, economics, etc. Jaynes explained the maximum entropy principle in [11] since 1957, which has many advantages like being unbiased, suitable for small sample sizes, no need for strong assumptions, etc. The maximum entropy concept is an applied way to find the unknown distribution of a data set. It gets a compatible distribution for available information. In this manner, we use the maximum entropy principle to approximate margins and joint distribution.

In the following, we describe how to find univariate maximum copula entropy according to the Shannon, which is useful for getting marginal functions. Then, the bivariate function is presented. The Shannon entropy for random variable X in the continuous case is the differential entropy as follows:

$$
H_S(f_X) = \int_{S_X} -\log f_X(x) dF_X(x),
$$

where S_X is univariate support set, and $f_X(x)$ is its density function. The next step is to add some constraints. Kagan et al. [14] extended some conditions on the entropy. So, some mandatory and optional constraints have to be defined on the univariate density function:

$$
\begin{cases}
\int_{S_X} dF_X(x) = 1, \\
E(g_i(X)) = m_i(x), \ j = 1, \ldots, k,
\end{cases}
$$

where k is the number of optional constraints, $m_i(x)$ for $j = 1, \ldots, k$ are known based on the available data whose corresponding functions are $g_i(X)$. The first condition guarantees the result is a valid statistical density. The Lagrange function for this case is:

$$
L(f_X, \lambda_0, \ldots, \lambda_k) = -\int_{S_X} \log f_X(x) dF_X(x) - \lambda_0\left\{\int_{S_X} dF_X(x) - 1\right\} \ (3.1)
$$

$$
-\sum_{i=1}^{k} \lambda_i \left\{\int_{S_X} g_i(x, y) dF_X(x) - m_i(x)\right\}.
$$

After differentiating and setting it to zero, the final univariate maximum entropy is as below:

$$
f_X(x) = \exp(-\lambda_0 - \Sigma_{i=1}^{k} \lambda_i g_i(x)), \ x \in S_X.
$$

So, we briefly expiated how to get the maximum entropy function for the case with one variable. That is helpful in the proceeding of joint distribution function based on copula. It is worth to describe for the bivariate state because we would like to compare functionally the result of pure entropy function with the outcome of the manner combining with copulas. By the way, we will make a joint density function based on the maximum entropy. So, the bivariate form of Shannon entropy is:

$$
H_S(f_{X,Y}) = \int_{S(X,Y)} -\log f_{X,Y}(x, y) dF_{X,Y}(x, y),
$$

which is for X and Y whose density and distribution function are $f_{X,Y}(x, y)$, and $F_{X,Y}(x, y)$ respectively, and $S(X,Y)$ is the joint support set. Some intended constraints are needed to find the joint maximum entropy distribution as well:

$$
\begin{align*}
\int \int_{S(X,Y)} dF_{X,Y}(x, y) &= 1, \\
E(g_i(X,Y)) &= m_i(x, y), \ j = 1, \ldots, k',
\end{align*}
$$

where $m_i(x, y)s$ for $j = 1, \ldots, k'$ are some known moments, which are calculated based on the available data set. $g_i(X,Y)s$ for $j = 1, \ldots, k'$ are corresponding functions to $m_i(\cdot, \cdot)s$. k' is the number of constraints on moments, which does not have to be equal to k. $dF_{X,Y}(x, y)$ is the full differential of $F_{X,Y}(x, y)$. Then the maximum entropy distribution is gotten by applying the Lagrange function made of Shannon entropy and its corresponding constraints as well:

$$
L(f_{X,Y}, \lambda_0, \ldots, \lambda_{k'}) = -\int_{S(X,Y)} \log f_{X,Y}(x, y)dF_{X,Y}(x, y)
$$

$$
- \lambda_0 \{\int_{S(X,Y)} dF_{X,Y}(x, y) - 1\}
$$

$$
- \sum_{i=1}^{k'} \lambda_i \{\int_{S(X,Y)} g_i(x, y)dF_{X,Y}(x, y) - m_i(x, y)\}.
$$

Then, the Lagrange function should be differentiated for $f_{X,Y}(\cdot)$, and by using the Kuhn-Tucker method, joint maximum entropy distribution is found:

$$
f_{X,Y}(x, y) = \exp(-\lambda_0 - \sum_{i=1}^{k'} \lambda_i g_i(x, y)), \ (x, y) \in S(X,Y). \quad (3.2)
$$

In the next section, the copula concept is added to the maximum entropy procedure to make the effect of available dependency on data. Function $f_{X,Y}(x, y)$ is not as reliable as the result of the maximum copula entropy.

4. Joint distribution function via maximum copula entropy method

In this section, we would like to present a feasible method of finding multivariate distribution affected by the dependency between variables. For simplicity of calculations and notations, we discuss the bivariate data set. Although there is the main question while working with a multivariate data set whose distribution is unknown, the maximum entropy seems fine for this purpose. The question is, how to found the distribution with the same original dependency between corresponding variables? The copula function replies to the question as well. Generally, function (3.2) is upgraded by copula function to preserve the dependency. Here, we suppose to mix these two major concepts to estimate a fit distribution. We are keen on representing how to find the maximum copula entropy. First of all, the copula entropy based on the Shannon definition is:

$$
\mathcal{H}_S(c) = \int \int_{I^2} -c(u, v) \log c(u, v)du dv,
$$

where

$$
c(u, v) = \frac{\partial^2 C(u, v)}{\partial u \partial v}.
$$

The maximum copula entropy has to be found out based on some constraints ensuring the result function is the copula. These essential constraints according to [6]
are for $i = 1, \ldots, r$:
\[
\begin{align*}
\int_{I_2} c(u,v)dv &= 1, \\
\int_{I_2} u^i c(u,v)dv &= \frac{1}{i+1}, \\
\int_{I_2} v^i c(u,v)dv &= \frac{1}{i+1},
\end{align*}
\]
where r is the counter of constraints and the bigger choice of r, the more accurate creature of the result function compared with copulas. Here, we would like to add other equations based on some measures of dependence that should be estimated while dealing with real data sets to get a copula function. This copula has the same dependency as the available data set. These constraints are related to ρ, ν_1, ν_2, and η. According to [6, 7], some phrases have approximately equal Lagrange coefficients. For example, in paper [18], when they put different coefficients for each constraint in a simulation study, their results were almost the same. It comes from the symmetricity of the maximum copula function. Thus, we incorporate some of them to reduce the Lagrange coefficients. Synchronization is significantly important while dealing with real data because the number of computations reduces saving time and energy. The incorporations are obvious and explained more in the following. After reduction, the optional conditions are:
\[
\begin{align*}
\int_{I_2} uv c(u,v)dv &= \frac{\rho + 3}{12}, \\
\int_{I_2} u^2 v c(u,v)dv &= \frac{2\nu_1 + 2}{12}, \\
\int_{I_2} u^2 v^2 c(u,v)dv &= \frac{\eta + \frac{1}{6}}{6},
\end{align*}
\]
(4.1)
where ρ, ν_1, and η are Spearman’s rho, Blest measures I, and III, respectively. It is worth mentioning that the value of (7.1) is Blest measure II. To find the maximum copula entropy, we have to apply the Lagrange function and Kuhn-Tucker method as well as before, and the result copula function is:
\[
c(u,v) = \exp \left(-1 - \lambda_0 - \sum_{i=1}^r \lambda_i (u^i + v^i) - \lambda_{r+1} uv - \lambda_{r+2} (u^2 v + uv^2) - \lambda_{r+4} u^2 v^2 \right), \; \forall u, v \in [0,1].
\]
(4.2)
The values of λ_i for $i = 0, \ldots, r + 4$ are gotten by applying $c(u,v)$ in the intended constraints, and a system of equations has to be solved. In practice, dependence measures must be estimated first, but the copula function is required in their computations. In section 2, some pre-estimators are determined to solve this problem. We find copula functions under some estimated dependence measures in section 6. By the way, after getting the copula density function related to the dependence measures, their joint density functions can be obtained by this formula:
\[
f_{X,Y}(x,y) = c(u,v)f_X(x)f_Y(y),
\]
(4.3)
where $f_X(\cdot)$ and $f_Y(\cdot)$ are marginal functions gotten by the maximum entropy principle based on Shannon’s definition. In this regard, the functions (3.2) and (4.3) can be functionally compared. Although (3.2) has no effect of dependency, the (4.3) highly performs the dependency in data, which was our aim. So, the joint density function of dependence data is gotten via the maximum entropy and copula function. The maximum entropy principle is applied because it is the best choice for the lack of details. It helps us to fit a distribution when there is incomplete information, and the sample size is not large enough. The copula function keeps the original dependency between variables of the data set. Thus, the result of the joint density function is reasonable for our goal. In the next
section, we present T^2-Hotelling statistics because control limits are designed for multivariate cases.

5. New control chart using T^2-Hotelling

In the previous section, we had some estimated dependence measures. We got the unknown joint density function of a data set. The goal is to work on data sets obtained from a manufacturing process, and we would like to control the process over time. We need the appropriate statistical control limits $[LCL, UCL]$ to control the production process. These limits depend on the joint density function of the process and are generally unknown in practice. Some classical methods exist that have a strong assumption on their distribution. The distribution is supposed to be Normal, which is overall for every data received from any production process. This assumption is invalid in many procedures. So, a decision based on such limits is wrong and wastes many funds. The purpose of this paper is to use the density function (4.3) to compute the proper control limits. It has some advantages mentioned in the following. First, it is not a general distribution for all processes and is gotten separately for each. Second, the data dependency is considered in it, which is its superiority concerning (3.2). For this aim, we suppose to apply T^2-Hotelling statistic to deal with a multivariate data set. We need the joint density function represented in (4.3) to find the proper control limits. First of all, we present the T^2-Hotelling statistic for a random vector \mathbf{X} with mean vector μ and variance-covariance matrix Σ as:

$$T^2_{\text{Hotelling}} = (\mathbf{X} - \mu)' \Sigma^{-1} (\mathbf{X} - \mu).$$

In our case of study, we have:

$$\begin{cases}
X \\ \mu \\ \Sigma^{-1}
\end{cases} = \begin{pmatrix} X \\ Y \end{pmatrix},
\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix},
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

where $a_{12} = a_{21}$. It is obvious that T^2-Hotelling is a positive statistic, and the corresponding LCL is 0 because it measures the distance. So, the lower the value, the closer the quality is to the standards. Therefore, we have to solve this equation to get the UCL:

$$P(T^2_{\text{Hotelling}} \leq UCL) \geq 1 - \alpha,$$

where α is the first type of error and negligible. Then, we have:

$$1 - \alpha \leq P((X - \mu)' \Sigma^{-1} (X - \mu) \leq UCL) = P(a_{11}(X - \mu_X)^2 + a_{22}(Y - \mu_Y)^2 + 2a_{12}(X - \mu_X)(Y - \mu_Y) \leq UCL) = \int \int \{ (x,y)|a_{11}(x - \mu_X)^2 + a_{22}(y - \mu_Y)^2 + 2a_{12}(x - \mu_X)(y - \mu_Y) \leq UCL \} f_{X,Y}(x,y) \, dx \, dy.$$

We need the value of UCL to satisfy the last equation. These control limits are based on the dependency of two variables X and Y, whose dependence reflects on $f_{X,Y}(\cdot, \cdot)$. In statistical quality control is common to use average run lengths (ARL) to show the performance of the limits. There are two types: first, ARL_0.
based on the first type of error α meant the number of samples to be taken from the process to see an out-of-control sample unit under a controlled situation:

$$ARL_0 = \frac{1}{\alpha}.$$

The second ARL_1 is according to the second type of error β defined as the number of samples taken under controlled conditions until one selection is outside of the control range:

$$ARL_1 = \frac{1}{1 - \beta}.$$

Note that their distributions are geometric. In the next section, we use this method to find the statistical control limits and their ARLs for a simulation study.

6. Simulation example of a manufacturing process

In many studies with numerical data, the main questions are how to find the distribution of the data set, which can be univariate or multivariate, but the distribution of the existing data set is unknown in almost all research. So, they need a statistical estimator of distributions. The entropy concept is well known and used in many fields of study. The maximum entropy principle is a statistical method to find the best distribution dealing with inadequate information. Moreover, it acts acceptable with small sample sizes as well. Some intended constraints are required for maximum entropy methods based on such available information as moments. So, no strong assumptions are needed, which is another benefit of this method. While dealing with the univariate data set, it is easy to use the entropy procedure, and we are not worried about the loss of dependency between variables. In section 3, we found a joint distribution function according to some constraints whose result function is (3.2), which is relatively dependence free. An important question is how intended conditions are defined to keep the original dependency between multivariate data sets. Which kinds of constraints guarantee the original dependency in the result distribution function? One way to reply to these questions is by using the copula functions. So, we find a copula function with the same dependency as the data set. To do this, we use the maximum entropy to get a copula function named the maximum copula entropy. We define some constraints under some dependency measures of data considering copula. Then, the result function has the same dependency on the available data set. The maximum copula function is transferred to the joint distribution function by the Sklar theorem. Thus, the unknown distribution of the practical set is obtained with the same dependency.

In this paper, we introduced a feasible way to get the distribution of an available data set by applying the maximum copula entropy. Afterwards, we get statistical control limits by exerting the joint density function, so the control limits are built with the original dependency between variables. Thus, the decision according to the limits is reliable. In the following, the power of the charts is exhibited by simulation study for different steps of shifts. Five groups of dependent measures are determined first in Table 1, and all changes are applied for all groups. The scales are Spearman’s rho, Blest I, and III used in the number of conditions. Coefficients of $c(u, v)$ are calculated for dependence groups represented in Table 2 as well as their corresponding surface plots in Figure 1. The Lagrange coefficients are estimated according to the function (4.2) with $r = 5$. Various dependency values affect differently on the maximum copula function. We use those copula functions
Table 1. Triple measures for five dependency groups.

Group	μ_1	μ_2	μ_3	μ_4	μ_5
1	0.8	0.7	0.6	0.5	0.4
2	0.9	0.8	0.7	0.6	0.5
3	1.0	0.9	0.8	0.7	0.6
4	0.1	0.2	0.3	0.4	0.5
5	0.4	0.5	0.6	0.7	0.8

to get the joint density functions of some samples with different means. The surface plots of (4.3) for several options are drawn in Figure 2. Note that if function (3.2) is used, all surfaces are the same for different dependencies, but the maximum copula function (4.3) is various for dependency groups. Several dependence measures have efficacy on the density function, so ignoring them leads to misunderstandings of production process features.

In Table 3, there are three means for X and Y, which are $\mu_X = 2, 3, 7,$ and $\mu_Y = 1, 5, 6$. These means are applied to find the marginal functions of X and Y. They are estimated via a univariate maximum entropy method, as presented in

Table 2. Coefficients of the maximum copula entropy

Lagrange coefficients	Group 1	Group 2	Group 3	Group 4	Group 5
λ_0	40.1356	30.13206	-3.15432	-1.84656	-4.821063
λ_1	-2.17493	-15.57211	7.616138	8.793615	5.759666
λ_2	4.386328	29.610883	7.028438	5.3629853	2.70847688
λ_3	-2.375348	-23.534393	-8.588718	-10.031483	-4.76472062
λ_4	2.245444	14.944912	1.69029514	1.0202138	5.99591234
λ_5	9.539834	-2.398979	0.879453	19.045948	20.27722
λ_6	6.8476116	47.9971059	-89.0290744	-113.6687411	-544.5555534
λ_7	-6.614438	-41.816905	386.8804704	1104.927338	4800.811622
λ_8	6.3949248	407.919666	-396.860862	-1101.230397	-4230.971444

Table 3. UCL with confidence level of $1 - \alpha$ for some means and different measures of dependence whose copula coefficients are in Table 2. The first type of error is approximating 0.05 respectively to each case.

Dependence groups	$\mu_X = 2, \mu_Y = 1$	$\mu_X = 3, \mu_Y = 5$	$\mu_X = 7, \mu_Y = 6$			
$1 - \alpha$	UCL	$1 - \alpha$	UCL	$1 - \alpha$	UCL	
Group 1	0.950022	2.57147	0.950025	2.56468	0.950093	2.66865
Group 2	0.950009	6.05817	0.950427	6.55508	0.950271	6.76327
Group 3	0.950053	8.51533	0.950405	8.50172	0.950129	8.49172
Group 4	0.950069	8.6212	0.950074	8.59518	0.950285	8.60911
Group 5	0.950016	8.11819	0.950027	8.04674	0.950587	8.17985

Table 4. ARL_0 with $\alpha = 0.05$ for different means.

Different means	$\mu_X = 2, \mu_Y = 1$	$\mu_X = 3, \mu_Y = 5$	$\mu_X = 7, \mu_Y = 6$			
Dependence group	Mean	Variance	Mean	Variance	Mean	Variance
Group 1	31.355	819.878	27.937	710.053	22.862	464.647
Group 2	23.544	464.647	25.016	529.356	22.404	418.417
Group 3	31.075	792.829	8.928	50.836	23.537	501.814
Group 4	23.517	565.758	22.044	423.617		
Group 5	23.157	509.240	23.198	462.193		

The ARL_0 values are calculated with different mean and variance values for each group to understand the effect of means and variances on the ARL_0.
dependence control chart using maximum copula entropy

(a) $\rho = -0.4$, $\nu_1 = -0.5$, and $\eta = 0.2$

(b) $\rho = -0.1$, $\nu_1 = -0.18$, and $\eta = 0.45$

(c) $\rho = 0$, $\nu_1 = 0$, and $\eta = 0.5$

(d) $\rho = 0.1$, $\nu_1 = 0.18$, and $\eta = 0.55$

(e) $\rho = 0.4$, $\nu_1 = 0.5$, and $\eta = 0.8$

Figure 1. Surface plots of Copula density functions for Table 2

section 3. The basic negligible first type of error is 0.05. In this regard, the UCLs satisfy equation (5.1). Tables 4, 5, 6, 7 consist means and variance of ARL_0 and ARL_1. All ARL is recalculated 1000 times. According to ARL_0’s definition, the bigger ARL_0, the better performance of the control limits. The base value of ARL_0 for $\alpha = 0.05$ is 20. The efficiency of the maximum copula entropy is better than
(a) $\mu_X = 2$, $\mu_Y = 1$ for group 1

(b) $\mu_X = 2$, $\mu_Y = 1$ for group 2

(c) $\mu_X = 3$, $\mu_Y = 5$ for group 1

(d) $\mu_X = 3$, $\mu_Y = 5$ for group 3

(e) $\mu_X = 7$, $\mu_Y = 6$ for group 4

(f) $\mu_X = 7$, $\mu_Y = 6$ for group 5

Figure 2. Surface plots of density functions for (4.3) based on different means and dependency groups.

the basic in Table 4, where almost all of them are greater than 20. Conversely of ARL_0, the smaller ARL_1, the superior implementation of the control chart. Some steps of shifts are needed to calculate ARL_1 that we make a mean model of changes
for X and Y as:

$$
\begin{align*}
\mu'_X &= \mu_X + \delta_X \sigma_X, \\
\mu'_Y &= \mu_Y + \delta_Y \sigma_Y,
\end{align*}
$$

This paper aims to detect soft shifts that classical manners are unable to discover. The control chart is mighty because it is based on a fit distribution of data, but the traditional basic distribution is Normal and global for all process data. The ARL_1 method of generating is related to its definition. So, we do not use the β in the calculations. In this regard, the corresponding β is gotten by ARL_1’s values. For example, when $ARL_1 = 4.171$ for $\mu_X = 2$ and $\mu_Y = 1$ in group 1, the β is computed about 0.24. This β is affected by the α considering equation (5.1) applied in the UCL calculations. ARL_{18} are provided for different margins in Tables 5, 6, and 7 for shift steps 0.1, 0.5, and 1. Their mean and variance approximately obey the features of geometric distribution as well, and they are decreasing as the shifts are becoming larger. Since ARL_{18}s are so small with an error of 0.05, they prevent wastage of capital and energy, and the accuracy of decisions is increased by using such control limits. Thus, the control limits of the maximum copula entropy have a preferable performance for undesirable soft shifts, which is difficult to detect for traditional methods. As a result, they are also suitable for observing larger changes. Thus, while using the control limit, we can ensure that a wide range of changes is easily detectable.

Table 5. ARL_1 when $\mu_X = 2$ and $\mu_Y = 1$

X's shifts	Y's shifts	Dependence groups	Group 1	Group 2	Group 3	Group 4	Group 5				
		Mean	variance	Mean	variance	Mean	variance	Mean	variance		
$\delta_X = 0.1$	$\delta_Y = 0$	32.542	1022.783	28.012	698.124	22.856	441.109	24.063	472.730	21.795	383.931
$\delta_X = 0.5$	$\delta_Y = 0.5$	4.565	9.099	12.276	111.641	11.118	95.347	11.322	98.064	10.817	85.862
$\delta_X = 1$	$\delta_Y = 1$	1.288	7.932	6.916	26.941	7.260	25.841	7.963	36.621	7.106	30.961

Table 6. ARL_1 when $\mu_X = 3$ and $\mu_Y = 5$

X's shifts	Y's shifts	Dependence groups	Group 1	Group 2	Group 3	Group 4	Group 5						
		Mean	variance	Mean	variance	Mean	variance	Mean	variance				
$\delta_X = 0.1$	$\delta_Y = 0$	32.815	971.826	8.912	36.347	22.372	479.534	25.903	359.030	21.148	384.032		
$\delta_X = 0.5$	$\delta_Y = 0.5$	4.416	7.219	5.200	13.793	11.304	91.144	10.994	81.304	10.551	78.850	9.347	72.502
$\delta_X = 1$	$\delta_Y = 1$	4.164	6.061	4.269	7.605	7.288	31.601	7.418	31.317	6.960	27.062		

Table 7. ARL_1 when $\mu_X = 2$ and $\mu_Y = 1$

X's shifts	Y's shifts	Dependence groups	Group 1	Group 2	Group 3	Group 4	Group 5						
		Mean	variance	Mean	variance	Mean	variance	Mean	variance				
$\delta_X = 0.1$	$\delta_Y = 0$	32.815	971.826	8.912	36.347	22.372	479.534	25.903	359.030	21.148	384.032		
$\delta_X = 0.5$	$\delta_Y = 0.5$	4.416	7.219	5.200	13.793	11.304	91.144	10.994	81.304	10.551	78.850	9.347	72.502
$\delta_X = 1$	$\delta_Y = 1$	4.164	6.061	4.269	7.605	7.288	31.601	7.418	31.317	6.960	27.062	9.347	72.502
7. Real data examples

In this paper, we investigate a new method of finding statistical control limits. We estimate the dependence distribution via the maximum entropy principle and copula function. The copula function is used to preserve the main dependency in the database. A simulation section is added to show the performance of the presented method. Finally, we are going to peruse two areal data examples.

7.1. A production process quality. The first example is chosen from [21], whose data includes eleven different quality variables from a production process. The data set has 30 samples provided over time. In this regard, we are focusing on the first two quality characteristics as what paper [30] has done. The data with some notices are in Table 9. The quality variables are nominated as X and Y, respectively. Since the first phase of the data is required to obtain control limits, it is assumed that the first twenty samples belong to phase one. In this example, we discuss in detail how to get the UCL via the paper method. The first step is to calculate the marginal distribution of the variables by their means:

\[
\begin{align*}
&\left\{ \int_{S_X} dF_X(x) = 1, \\
&\int_{S_X} x \ dF_X(x) = 0.53845, \\
&\int_{S_Y} dF_Y(y) = 1, \\
&\int_{S_Y} y \ dF_Y(y) = 59.9369. \\
\end{align*}
\]

The maximum Shannon entropy for margins are:

\[
\begin{align*}
&f_X(x) = \exp(0.619060 - 1.857182 \ x), \ x \in S_X, \\
&f_Y(y) = \exp(-5.27750420 + 0.01221784 \ y), \ y \in S_Y.
\end{align*}
\]

The next step is to figure out the joint density function based on the copula function. We calculate the dependencies via the estimators presented in section 2 or any other available estimators that are possible to use. Note that the presented estimators are sufficient when the sample size is large enough and depend on the data. The estimated dependency values are:

\[
\begin{align*}
&\hat{\rho} = 0.5636842, \\
&\hat{\eta} = 0.7218584, \\
&\hat{\nu}_1 = 0.2685579, \\
&\hat{\nu}_2 = 0.2972395.
\end{align*}
\]

Table 7. ARL$_1$ when $\mu_X = 7$ and $\mu_Y = 6$

X's shifts	Y's shifts	Dependence groups									
		Group 1	Group 2	Group 3	Group 4	Group 5					
$\delta_X = 0.1$	$\delta_Y = 0$	3.914	394.884	28.830	714.140	22.774	431.966	21.991	488.466	21.228	476.971
$\delta_Y = 0.1$	40.635	494.840	28.452	523.843	19.254	346.922	20.044	327.204	19.099	288.448	
$\delta_Y = 0.5$	4.666	6.986	12.600	115.441	11.122	89.440	11.036	112.924	10.422	84.729	
$\delta_Y = 1$	1.165	6.893	6.761	29.426	7.545	31.372	7.305	31.392	7.022	35.216	
$\delta_X = 0.5$	$\delta_Y = 0$	38.526	138.524	27.462	695.818	22.065	454.189	24.345	496.639	23.314	354.673
$\delta_Y = 0.5$	40.390	344.134	24.840	528.936	24.840	528.936	20.150	335.994	19.935	337.481	
$\delta_Y = 1$	4.544	5.573	11.725	123.402	10.381	75.765	11.321	103.358	10.172	79.866	
$\delta_X = 1$	$\delta_Y = 0$	40.114	158.322	29.314	788.088	22.813	479.399	25.077	532.555	22.919	435.996
$\delta_Y = 0.5$	41.539	403.188	28.385	672.166	18.661	281.556	20.320	310.596	18.940	294.849	
$\delta_Y = 0.5$	4.628	7.666	12.666	117.483	10.385	82.205	10.801	85.260	10.313	79.566	
$\delta_Y = 1$	1.281	7.292	6.739	31.503	7.374	36.881	7.040	28.521	6.801	27.964	
Then, we have to make the constraints for calculation of maximum copula entropy:

\[
\begin{align*}
\int_{0}^{1} c(u, v) dudv &= 1, \\
\int_{0}^{1} u^i c(u, v) dudv &= \frac{1}{i+1}, \text{ for } i = 1, \ldots, 5, \\
\int_{0}^{1} v^i c(u, v) dudv &= \frac{1}{i+1}, \text{ for } i = 1, \ldots, 5, \\
\int_{0}^{1} uv c(u, v) dudv &= \frac{2 + \rho + s + 2}{12}, \\
\int_{0}^{1} u^2 v c(u, v) dudv &= \frac{2 - \rho + s + 2}{12}, \\
\int_{0}^{1} uv^2 c(u, v) dudv &= \frac{-u^2 + v^2}{6}.
\end{align*}
\]

(7.1)

The second and third conditions, and also the fifth and sixth are merged to reduce the calculations as we explained them before. The maximum copula entropy concerning the Shannon is gotten:

\[
c(u, v) = \exp \left(-1021.614 + 4921.810 (u + v) - 7979.657 (u^2 + v^2) \right. \\
+ 3137.956 (u^3 + v^3) + 4030.942 (u^4 + v^4) \\
- 3786.658 (u^5 + v^5) - 15640.705 \, uv \\
\left. + 14459.561 (u^2 v + uv^2) - 13364.703 \, u^2 v^2 \right), \ \forall u, v \in [0, 1].
\]

(7.2)

Therefore, the joint distribution function is computed by (4.3), multiply \(c(u, v) \) by the margins, and substituting \(u \) and \(v \) by \(F_X(x) \) and \(F_Y(y) \), respectively. Moreover, we calculate the maximum entropy function of the first 20 samples with different numbers of constraints shown in Table 8. The joint density is so simpler than the maximum copula entropy. We see in Table 8 that the function is almost constant when the number of constraints is 9 and 11. So, the function is an overestimation in these cases. Therefore, we choose one of the density functions with 3, 5, and 7 constraints. In this regard, we plot them in Figure 3 to decide which of them is a proper choice. The density function is underestimation in Figure 3a. Also, it seems to be an incomplete plot on the tail in Figure 3b. The maximum entropy approximates the joint density function based on 7-constraint well shown in Figure 3c. Thus, the joint density function-based maximum entropy is:

\[
f_{X, Y}(x, y) = \exp \left(-0.26667567 + 0.038575779 x - 0.03869815 y \\
- 4.83540788 x^2 + 0.13326476 y^2 \\
+ 0.4454878 x^3 - 1.1088612 e^{-0.3} y^3 \right), \ (x, y) \in \mathbb{R}(X, Y).
\]

(7.3)

The final step is to get the \(UCL \), and (5.1) have to be solved for the \(UCL \). The \(UCL \) is 3.03649 for the copula-based density (7.2) and is 7.716048 for the maximum entropy function (7.3) at confidence level 95. It means that the \(UCL \) with a lack of data dependency is less sensitive than the control limits, which means the dependency. Thus, we use \(UCL = 3.03649 \) related to the maximum copula entropy. Montgomery [17] explained that after calculating quality control limits, all sample from phase one has to be plotted to ensure that all samples are under control. Then, the control limits are reliable. On other hand, if one or more point is out-of-control, they have to be removed from data-based. This process continues until all members of the sample are within control. In Table 9, four stages are presented to find \(UCL \), which keeps all samples in-control. We draw the first 20 samples along with the \(UCL \) in Figure 4. Five points are above the control limit in the first stage in Table 9. So, we have to build another \(UCL \) in the lake of those samples which are not
Table 8. Coefficients of the maximum entropy for the first example

Lagrange coefficients of	Number of constraints				
	3	5	7	9	11
constant	1.165902193	9.15643066e-01	0.26667567	0.90774436	6.90774436
y	8.95395228	5.18912321e-01	3.10375775	4.01656926e-01	3.89226302e-01
x	0.05155643	1.17912219e-01	0.80369815	2.1049601e-01	2.26416444e-01
x^2	0	4.1910035e-01	4.83490788	5.42286027e-01	5.82301818e-01
y^2	0	9.61419909e-01	1.32357690e-01	2.53176086e-01	2.58789304e-01
x^3	0	0	4.4544877e-01	7.23516916e-01	7.76340871e-01
y^3	0	0	1.08880112e-01	2.9305921e-01	2.92761868e-01
x^4	0	0	0	9.04176969e-01	9.76943317e-01
y^4	0	0	0	5.14660099e-01	5.18601582e-01
x^5	0	0	0	0	1.01649513e-01
y^5	0	0	0	0	2.90900000e+01

Figure 3. Surface plots of maximum entropy density functions for Table 8

(A) Three constraints based (B) Five constraints based (C) Seven constraints based

in-control. The T^2-Hotelling values for the second phase are calculated based on the first 20 samples in stage 1. Bold values of samples are out-of-control, but this result is not reliable. The reason is that all points of phase one are not in-control in the first stage. We have to remove those points and build another UCL as we
do in the second stage shown in Table 9. Thus, we recalculate the UCL in stage 2 with the remaining 15 points. To do this, we must do all the calculations from the beginning. So, the marginal distributions are:

$$
\begin{align*}
 f_X(x) &= \exp(1.605991 - 1.833068 x), \quad x \in S_X, \\
 f_Y(y) &= \exp(-4.29706292 + 0.01254347 y), \quad y \in S_Y.
\end{align*}
$$

The dependency measures are:

$$
\begin{align*}
 \hat{\rho} &= 0.6349206, \\
 \hat{\eta} &= 0.9525656, \\
 \hat{\nu}_1 &= 0.3331598, \\
 \hat{\nu}_2 &= 0.1635767.
\end{align*}
$$

So, the maximum copula entropy is:

$$
c(u, v) = \exp(-1022.656 + 4126.525 (u + v) - 3264.327 (u^2 + v^2) \\
- 6298.043 (u^3 + v^3) + 11897.127 (u^4 + v^4) \\
- 6017.781 (u^5 + v^5) - 14318.753 uv \\
+ 12658.220 (u^2v + uv^2) - 11146.407 u^2v^2), \quad \forall u, v \in [0, 1].
$$

The second UCL is 3.44277, and the only point, sample 17, is out-of-control. The process of calculation is continued to the third step, where the UCL is 3.44287. This control chart calculation process is in Figure 5 for the second and third stages. We have to perform these preliminary steps on phase one when we are not sure whether the data of phase one are under control or not. We achieve a data set by filtration, which has the desired quality and controlled conditions. In the fourth step, we get the control limit that includes all the in-control samples of phase one. So, this limit of control will be reliable, and we are sure about its fine quality. The final
Sample 17 is out-of-control.

Sample 5 is out-of-control.

Figure 5. Control plots of stage 2 and 3. In each stage, samples 17 and 5 are removed in order to find a suitable UCL.

UCL is 2.87983. The second part of the sample in Table 9 shows different values of T^2-Hotelling statistics for the rest of the data in the second phase. The bold values are out-of-control samples in each stage. We conclude that the control limits of the lower stage are not accurate enough to detect all unwanted changes in the process. So, we upgrade our determined control limit and increase the sensitivity of the UCL by removing out-of-control samples from phase one.

7.2. A flood events. The second example is from Yue [33], where there are three variables, duration, volume, and peak, for the flood from 1919 to 1995. We select this example to say that the new control limit introduced in this paper is not proposed just for manufacturing processes, but also we use it to check the weather conditions in case of a storm. So, the specialists can use this control chart in research based on their needs. The flood data was recorded in the Madawaska river basin in Quebec province, Canada. Cheng and Mukherjee [2] made a T^2-Hotelling control chart for the first two variables. They assumed the first 70 samples belong to phase one, and the rest is in phase two. In this subsection, we make a proper control limit for the data according to the durations and volumes of floods. The variables are offered as X and Y. The computation steps are briefly discussed here. As we mentioned in 7.1, the first step of the calculation is to get the marginal distribution for phase one of the data. The margins are gotten according to the maximum entropy principle concerning Shannon entropy based on the means. Those are 80.25714 and 9084.657 for X and Y, respectively. So, the density functions are:

\[
\begin{align*}
 f_X(x) &= \exp(-4.4864427 - 0.0108226 x), \quad x \in S_X, \\
 f_Y(y) &= \exp(-9.640157 - 2.759943e^{-05} y), \quad y \in S_Y.
\end{align*}
\]
Table 9. The sample along with the corresponding T^2-Hotelling values of the four different stages are presented to get the reliable control limits and detect the samples that have the undesired quality.

Num	X	Y	T^2-Hotelling			
	Stage 1	Stage 2	Stage 3	Stage 4		
1	0.567	60.558	0.77889186	0.535972443	0.3215308	0.4509497
2	0.528	60.301	12.10309519			
3	0.55	59.724	0.85588887	1.171614371	1.59655417	2.3039141
4	0.562	61.102	1.42908941	2.229342121	1.98567071	1.9418344
5	0.438	59.834	1.85653453	3.18258805	3.64453123	–
6	0.255	60.228	0.20325866	0.45589055	0.96401561	1.8910921
7	0.598	60.736	0.74307954	0.895362303	0.71368338	0.85169014
8	0.896	59.281	1.68145583	2.961685111	2.94101239	2.34183875
9	0.347	60.154	0.07992998	0.006054248	0.00036386	0.1801993
10	0.531	60.64	0.50788714	1.096695083	1.2515963	1.6608542
11	0.381	59.785	1.14767429	2.274062228	2.24026394	1.8069142
12	0.385	59.673	1.32897174	3.114198984	3.07684593	2.6533813
13	0.44	60.489	0.27777134	0.36945331	0.42608305	0.66120081
14	0.458	61.060	5.46768391			
15	0.354	59.788	0.16303415	0.026380466	0.05956984	0.0050643
16	0.469	58.64	4.11715102			
17	0.471	59.574	2.18971477	4.558227247		
18	0.457	59.718	4.107079641			
19	0.564	60.901	1.17923852	1.366136788	1.25019801	1.2191211
20	0.664	60.18	9.51709933			

In this example, we assume that the dependencies between the variables have not changed over 110 years, and the dependency measures over these years are:

\[
\hat{\rho} = 0.4722444, \quad \hat{\eta} = 0.860833, \quad \nu_1 = 0.456628, \quad \nu_2 = 0.4514329
\]

The copula function according to these measures and the presented conditions in 7.1 are:

\[
c(u, v) = \exp (6.580167 - 13.431977 (u + v) - 11181.767618 (u^2 + v^2) + 21517.583701 (u^3 + v^3) - 10246.181394 (u^4 + v^4) - 91.652515 (u^5 + v^5) + 22505.173734 uv - 21703.580642 (u^2v + uv^2) + 20931.154327 u^2v^2), \quad \forall u, v \in [0, 1].
\]

So, the joint density function of X and Y is gotten by substituting the marginal and copula functions inside (4.3). Also, the corresponding Lagrange coefficients for the maximum entropy in the absence of dependency are shown in Table 10. It seems
that the maximum entropy is unable to approximate the joint density function well in this example because almost all coefficients are zero except the constants. In this case, the maximum entropy principle is useless in the bivariate mood in the lack of copula function.

The upper control limit is calculated by solving equation (5.1) concerning \(UCL \),

\[
\Phi(x, y) = \exp(-3.41630047 - 0.01171986 x) + \exp(-8.597681 - 3.231503 e^{-0.5} y)
\]

which is 6.85875. Figure 6b is related to this part of the calculations. Four points of the sample are out-of-control, whose corresponding data is in Table 11. So, we have to remove them and repeat the computations for the second stage. In this level, the four points are omitted from data-based, and new marginal distributions are:

\[
\begin{align*}
 f_X(x) &= \exp(-3.41630047 - 0.01171986 x), \quad x \in \mathbb{S}_X, \\
 f_Y(y) &= \exp(-8.597681 - 3.231503 e^{-0.5} y), \quad y \in \mathbb{S}_Y.
\end{align*}
\]

Since no change in the dependence between the two variables is assumed, the same copula function is used for this calculation step. The final \(UCL \) is 6.89478. All 66 points of the data set are in the new statistical control limit shown in Figure ??.

The \(T^2 \)-Hotelling values of phase two for two different stage is exhibited in Table 11 as well as the Hotelling statistics for phase one. The bold values are detected as out-of-control according to each step. There is an interesting point in the results. Sample numbers 81 and 84 in the first stage are known as out-of-control samples, while in the second stage they are within the control range. Comparing the duration and volumes of the samples along with the other in-control data, we realize that the detection in the second stage is nearly correct.

Table 10. Coefficients of the maximum entropy for the second example

Lagrange coefficients of	\(4 \)	\(5 \)	\(6 \)	\(7 \)	\(9 \)	\(11 \)
constant	6.80775512	6.80775528	6.80775528	6.80775528	6.80775528	
\(x \)	2.52320306e-20	1.89317065e-20	1.9941296e-20	2.43325314e-20	6.98894516e-20	
\(y \)	2.68918963e-20	1.56112289e-20	9.9682550e-20	4.6889415e-20	4.2184301e-20	
\(x^2 \)	0	1.40512786e-20	9.56958455e-20	6.4689580e-20	4.35926235e-20	
\(y^2 \)	0	3.30579597e-20	2.16519544e-20	1.42162559e-20	9.36199805e-20	
\(x^3 \)	0	0	6.59103562e-20	4.45937035e-20	2.99144194e-20	
\(y^3 \)	0	0	1.39919868e-20	1.28496368e-20	8.61978341e-20	
\(x^4 \)	0	0	0	2.17860956e-20	1.46145572e-20	
\(y^4 \)	0	0	0	0	1.03690706e-20	
\(y^5 \)	0	0	0	0	8.61978341e-20	

8. CONCLUSION

In manufacturing processes, several procedures release a multivariate data set. They reflect the quality of some different product specifications. In statistical quality control, the main goal is to monitor such data, but their distribution is unknown. So, it is hard to define fitting control limits to the process. There are some traditional methods to deal with these situations, but there is a strong assumption around distribution. This assumption makes them weak in performance, and far from efficient to detect small shifts in several processes. In this paper, we find a joint density function and then get a control chart. The fundamental way is to link the maximum entropy principle and copula functions. The idea of inserting the
copula is to preserve the original dependency of the data and transfer it to the estimated distribution. In this regard, we apply T^2-Hotelling statistics while dealing with multivariate data. It is common to approximate T^2-Hotelling distribution via Fisher distribution when the data set has a Normal distribution, but it is not true in general. By the aim of this paper, we calculate a UCL without T^2-Hotelling distribution through the maximum copula entropy. In the end, we add a simulation study and find copula functions based on some dependency measures such as Spearman’s rho and Blest. We draw some maximum copula functions and their corresponding density functions to show the dependency effect. The goal is to get the unknown multivariate distribution of manufacturing process data whose variables are dependent. Then, we would like to find a statistical quality control limit according to this distribution for all data. The problem with classical methods is that variable dependencies are not paid attention to. We use average run lengths as well to show the ability of our manner. So, ARL_0s and ARL_1s are provided, which display the capability in some small changes. Two practical data studies are considered here to show the performance in reality. We explain the details in the first example to show how to calculate the control limit in this method. Also, in this part, the maximum copula entropy performed well when we compared in-control data with out-of-control data. The overall implementation of the introduced control chart is shown by some simulation situations and some empirical data based. The new control chart is offered for some production processes having strict standards.

Figure 6. The second example control plots. In stage 2, samples 2, 3, 4, and 61 are removed in order to get a appropriate UCL.

(A) The out-of-control samples are detected. (B) New control limit is defined according to the rest of samples.
Table 11

The flood duration and volume are represented as X and Y, respectively. Two columns belong to T^2-Hotelling values for two-stage of calculations. The first 70 samples belong to phase one, and the rest of them were getting from phase two. The bold numbers are out-of-control.

Num	X	Y	Phase One	Stage 1	Stage 2		
1	100	1267	3.354222	1.8473622	66	90	1408
5	110	748	4.5197161	6.046848	61	135	1559
6	78	9763	0.2739085	0.1649276	62	68	595
7	108	11121	5.646929	2.5170934	63	80	943
8	107	10859	1.5921871	2.4871464	64	67	731
9	104	8327	2.7416352	3.6108401	65	97	1353
10	100	13093	2.9710682	3.3107484	66	97	1603
11	120	12825	3.6243646	1.9670686	67	79	6490
12	90	9951	0.2059688	0.4829272	68	78	702
13	60	5236	2.1493989	2.0612484	69	56	565
14	102	5581	1.3955113	0.5008385	70	76	730
15	113	12740	2.6442529	4.6867936	71	85	858
16	52	11174	5.9031359	3.2846364	72	104	906
17	42	4780	3.5439271	2.5578361	73	78	678
18	113	14890	4.9135088	3.7998012	74	73	1015
19	52	6344	3.6146027	1.6142880	75	71	804
20	109	9177	2.7975218	3.8406411	76	105	1017
21	57	7133	1.1782444	0.9583856	77	85	1749
22	53	6865	1.6122285	1.3791327	78	97	871
23	52	8518	2.6325365	2.2908402	79	85	1002
24	42	8704	1.4546252	0.1070693	80	78	1328
25	56	6907	1.299942	0.0587037	81	44	4338
26	78	8647	0.0289760	0.0913817	82	75	104
27	48	7489	2.9749943	2.5568044	83	42	2206
28	79	13002	1.1901633	0.5311963	84	81	984
29	89	8788	0.3795855	0.6968466	85	96	7068
30	47	5002	2.9675896	2.8187962	86	66	3522
31	43	5167	3.2853682	3.1499098	87	57	323
32	109	10282	2.8083791	3.0983275	88	130	805
33	70	10828	1.7185807	1.3582842	90	65	4999
34	66	8923	0.6354128	0.3884304	91	61	9437
35	62	11401	3.9154258	3.4377056	92	45	557
36	85	6620	1.9126326	2.2092621	93	71	7419
37	48	8386	4.0302452	3.6011954	94	17	7302
38	48	8189	2.8056545	2.4299114	95	78	5382
39	56	6414	1.4363055	1.2508755	96	82	5976
40	60	9000	1.505225	1.2369053	97	29	585
41	69	9406	0.5920748	0.3694947	98	81	8289
42	70	7235	0.9389919	0.6914723	99	93	1094
43	76	8187	0.1389648	0.1214804	100	84	4344
44	97	7684	2.2681425	2.8699778	101	67	6388
45	61	3306	1.5741601	1.5040676	102	72	398
46	87	8026	0.6734587	0.9096995	103	98	3156
47	91	8949	2.5996186	2.4966748	104	71	2936
48	130	11904147	0.0129327	105	54	1239	
49	11172	2.7586222	2.2934935	106	55	516	
50	76	8640	0.0472092	0.0178691	107	80	1778
51	55	6899	1.387351	1.1591632	108	76	6184
52	65	9532	0.9730274	0.6125219	109	85	8883
53	81	12925	1.1590281	0.7928158	110	98	30195
References

1. Blest, D. C. (2000). Theory and methods: Rank correlation—an alternative measure. Australian and New Zealand Journal of Statistics, 42(1), 101-111.
2. Cheng, Y., Mukherjee, A. (2014, December). One Hotelling T 2 chart based on transformed data for simultaneous monitoring the frequency and magnitude of an event. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 764-768). IEEE.
3. Cerqueti, R., Rotundo, G., Ausloos, M. (2018). Investigating the configurations in cross-shareholding: A joint copula-entropy approach. Entropy, 20(2), 134.
4. Cesari, A., Reißer, S., Bussi, G. (2018). Using the maximum entropy principle to combine simulations and solution experiments. Computation, 6(1), 15.
5. Chen, L., Singh, V. P., Guo, S., Zhou, J., Ye, L. (2014). Copula entropy coupled with artificial neural network for rainfall-runoff simulation. Stochastic Environmental Research and Risk Assessment, 28(7), 1755-1767.
6. Chu, B. (2011). Recovering copulas from limited information and an application to asset allocation. Journal of Banking and Finance, 35(7), 1824-1842.
7. Chu, B., Satchell, S. (2016). Recovering the most entropic copulas from preliminary knowledge of dependence. Econometrics, 4(2), 20.
8. Fallah Mortezanejad, S. A., Borzadaran, G. M., Gildeh, B. S. (2019). An entropic structure in capability indices. Communications in Statistics-Theory and Methods, 1-11.
9. Fisher NI (1997) Copulas. In: Kotz S, Read CB, Banks DL (eds) Encyclopedia of Statistical Sciences, Update Vol 1. Wiley, New York, pp 159-163.
10. Hand, D. J., Daly, F., McConway, K., Lunn, D., Ostrowski, E. (1993). A Handbook Of Small Data Sets. CRC Press.
11. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.
12. Jian, M. (2019). Discovering Association with Copula Entropy. arXiv preprint arXiv:1907.12268.
13. Johnson, R., Shore, J. (1983). Comments on and correction to" Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy"(Jan 80 26-37)[Corresp.]. IEEE transactions on Information Theory, 29(6), 942-943.
14. Kagan, A. M., Limul, Y. V., Rao, C. R. (1973). Extension of darmois-skitovic theorem to functions of random variables satisfying an addition theorem. Communications in Statistics-Theory and Methods, 1(5), 471-474.
15. Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53(284), 814-861.
16. Liu, Z., Guo, S., Xiong, L., Xu, C. Y. (2018). Hydrological uncertainty processor based on a copula function. Hydrological Sciences Journal, 63(1), 74-86.
17. Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley and Sons.
18. Mortezanejad, S. A. F., Borzadaran, G. M., sadeghpour Gildeh, B. (2019). Joint dependence distribution of data set using optimizing Tsallis copula entropy. Physica A: Statistical Mechanics and its Applications, 121897.
19. Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York. MR2197604.
20. J. Plantadosi, P. Howlett, J. Borwein, Copulas with maximum entropy, Optimization Letters 6 (1) (2012) 99–125.
21. Quesenberry, C. P. (2001). The multivariate short-run snapshot Q chart. Quality Engineering, 13(4), 679-683.
22. Rahmani Shamsi, J., Dolati, A. (2018). Rank based Least-squares Independent Component Analysis. Journal of Statistical Research of Iran JSRI, 14(2), 247-266.
23. Schweizer, B., Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4), 879-885.
24. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
25. Shannon, C. E., Weaver, W. (1949). The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver. University of Illinois Press.
26. Singh, V. P., Zhang, L. (2018). Copula–entropy theory for multivariate stochastic modeling in water engineering. Geoscience Letters, 5(1), 6.
27. Shore, J., Johnson, R. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, 26(1), 26-37.
28. Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8, 229-231.
29. Sutter, T., Sutter, D., Esfahani, P. M., Lygeros, J. (2019). Generalized maximum entropy estimation. Journal of Machine Learning Research, 20, 138.
30. Vargas, N. J. A. (2003). Robust estimation in multivariate control charts for individual observations. Journal of Quality Technology, 35(4), 367-376.
31. Wang, X., Song, R., Mu, Z., Song, C. (2020). An image NSCT-HMT model based on copula entropy multivariate Gaussian scale mixtures. Knowledge-Based Systems, 193, 105387.
32. Wang, Z., Wang, Z., Yu, S., Zhang, K. (2019). Time-dependent mechanism reliability analysis based on envelope function and vine-copula function. Mechanism and Machine Theory, 134, 667-684.
33. Yue, S. (2001). A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes, 15(6), 1033-1045.
34. Zhang, X., Jiang, H. (2019). Application of Copula function in financial risk analysis. Computers and Electrical Engineering, 77, 376-388.
35. N. Zhao, W. T. Lin, A copula entropy approach to correlation measurement at the country level, Applied Mathematics and Computation 218 (2) (2011) 628-642.