CUDA-accelerated geodesic ray-tracing for fiber-tracking

Citation for published version (APA):
van Aart, E., Sepasian, N., Jalba, A. C., & Vilanova, A. (2011). CUDA-accelerated geodesic ray-tracing for fiber-tracking. International Journal of Biomedical Imaging, 2011, 698908-1/12. Article 698908.
https://doi.org/10.1155/2011/698908

DOI:
10.1155/2011/698908

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023
CUDA-Accelerated Geodesic Ray-Tracing for Fiber-Tracking

Evert van Aart1,2, Neda Sepasian1,2, Andrei Jalba1, Anna Vilanova2

1Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
2Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Correspondence should be addressed to Evert van Aart, e.v.aart@tue.nl

June 17, 2011

Abstract

Diffusion Tensor Imaging (DTI) allows to non-invasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multi-threaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times.

1 Introduction

Diffusion-Weighted Imaging (DWI) is a recent, non-invasive Magnetic Resonance Imaging (MRI) technique that allows the user to measure the diffusion of water molecules in a given direction. Diffusion Tensor Imaging (DTI) \cite{1} describes the diffusion measured with DWI as a second-order tensor. DWI works on the knowledge that the diffusion of water molecules within biological tissue is influenced by the microscopic structure of the tissue. The theory of Brownian motion dictates that molecules within a uniform volume of water will diffuse randomly in all directions, i.e., the diffusion is isotropic. However, in the presence of objects that block the diffusion of water, the diffusion will become anisotropic. In fibrous tissue, the diffusion of water will be large in the direction parallel to the fibers, and small in perpendicular directions. Therefore, DWI data is used to deduce and analyze the structure of fibrous tissue, such as the white matter of the brain, and muscular tissue in the heart. DWI data has been used during the planning stages of neurosurgery \cite{2}, and in the diagnosis and treatment of certain diseases, such as Alzheimer’s disease \cite{3}, multiple sclerosis \cite{4}, and strokes \cite{5}. Since the tissue of the white matter is macroscopically homogeneous, other imaging techniques, such as T2-weighted MRI, are unable to detect the structure of the underlying fibers, making DWI uniquely suitable for in-vivo inspection of white matter.

The process of using the measured diffusion to reconstruct the underlying fiber structure is called fiber-tracking. Many different fiber-tracking algorithms have been developed since the introduction of DTI. This paper focuses on an approach in which fibers are constructed by finding geodesics on a Riemannian manifold defined by the DTI data. This technique has several advantages over existing ones, such as its relatively low sensitivity to measurement noise, and its ability to identify multiple solutions between two points, which makes it suitable for analysis of complex structures.

One of the largest downsides of this algorithm is that it is computationally expensive. Our goal is to overcome this problem by mapping the existing algorithm onto the highly parallel architecture of a Graphical Processing Unit (GPU), using the CUDA programming language. Since fibers can be computed independently of each other, the fiber-tracking algorithm can be meaningfully parallelized. As a result, the running time can be reduced by a factor of up to 40, compared to a multi-threaded CPU implementation. The paper describes the structure of the CUDA implementation, as well as the relevant design considerations.

In the next section, we discuss the background theory related to our method, including DTI and the geodesic ray-tracing algorithm. Next, we give an overview of past research related to the GPU-based acceleration of fiber-tracking algorithms. In Section 4, the implementation of the geodesic ray-tracing algorithm on a GPU using CUDA is discussed. Next, we show benchmarking
results and optimization strategies for the CUDA implementation in Section 5, followed by a discussion of the results in Section 6, and a conclusion in Section 7.

2 Background

2.1 Diffusion Tensor Imaging

DTI allows us to reconstruct the connectivity of the white matter, thus giving us greater insight into the structure of the brain. After performing DWI for multiple different directions, we can model the diffusion process using a second-order tensor D [1, 6]. D is a 3x3 positive-definite tensor, which can be visualized as an ellipsoid defined by its eigenvectors and eigenvalues, as shown in Figure 1. Using the eigenvalues of a tensor, we can quantify its level of anisotropy using anisotropy measures [7, 8]. In areas with nearly isotropic diffusion, tensor ellipsoids will be nearly spherical, and anisotropy measure values will be low, while in areas with highly anisotropic diffusion (due to the presence of fibers), ellipsoids will be sharp and elongated, and anisotropy values will be high. In anisotropic areas, the eigenvector corresponding to the largest eigenvalue (the main eigenvector) will indicate the direction of the fibrous structure.

![Figure 1: 3D glyphs visualizing diffusion tensors. The orientation and sharpness of the glyphs depend on the eigenvectors and eigenvalues of the diffusion tensor, respectively. In this image, the glyphs have been colored according to the orientation of the main eigenvector (e.g., a main eigenvector of (1, 0, 0) corresponds to a red glyph, while a main eigenvector of (0, 0, 1) corresponds to a blue glyph. This image was generated in the DTITool [9].](image)

2.2 Fiber-Tracking Algorithms

DTI Fiber-Tracking is the process of digitally reconstructing the pathways of fibers in fibrous tissue using the DTI tensor data, with the aim of deducing the structure of the tissue. A common approach to fiber-tracking is to track lines from one or more seed points, using a set of differential equations. The most straightforward fiber-tracking algorithm (generally called the streamline method) uses the direction of the main eigenvector as the local orientation of the fibers [10]. Thus, a fiber in biological tissue may be reconstructed by integration of the main eigenvector, using an Ordinary Differential Equation (ODE) solver such as Euler’s method. Figure 2 illustrates the relation between the diffusion tensors and the resulting fiber trajectories. Fiber-tracking algorithms based on this approach have been shown to achieve acceptable results [11, 12], but are limited in their accuracy by a high sensitivity to noise and to the partial volume effect [13, 14].

One possible solution to the limitations of classic streamline methods is to use a global minimization solution, for example a front-propagation method. In such a method, a front is propagated from a seed point throughout the entire volume [15, 16, 17]. The local propagation speed of the front depends on the characteristics of the DTI image, and fibers are constructed by back-tracing through the characteristics of the front. A subset of these front-propagation methods use the theory of geodesics to find potential fiber connections [17, 18, 19]. These algorithms generally compute the geodesics (defined as the shortest path through a tensor-warped space) by solving the stationary Hamilton-Jacobi (HJ) equation. Geodesic algorithms have been shown to produce good results, and are generally more robust to noise than simple streamline methods. One disadvantage, however, is that they generally only find a single possible connection between target regions, which is often not the correct solution in very complex areas. Furthermore, research has shown it is possible to have multiple fiber connections between regions of the white matter [20].

2.3 Geodesic Ray-Tracing for Fiber-Tracking

The focus of this paper is a relatively new fiber-tracking algorithm based on geodesics, as proposed by Sepasian et al [21, 22]. The main advantages of this algorithm, compared to those discussed in the previous section, are the fact that it provides a multi-valued solution (i.e., it allows us to find multiple geodesics between regions in the brain), and the fact that is is able to detect fibers in regions with low anisotropy (e.g., regions of the white matter with crossing fiber bundles). In Figure 3, we show that this algorithm is capable of detecting complex
Figure 2: *Left:* Small group of fibers generated using a simple streamline method. The main eigenvectors of the diffusion tensors determine the local orientation of the fibers. *Right:* Fibers showing part of the Cingulum and the corpus callosum. Both the glyphs in the left image and the plane in the right image use coloring based on the direction of the main eigenvector, similar to Figure 1. Both images were generated in the DTITool [9].

structural features, such as the divergence of the 3 callosum, which cannot be captured using streamline-based methods. Detailed validation of this algorithm is considered beyond the scope of this paper; for an in-depth discussion on the validity and applicability of the algorithm, we refer the reader to the works by Sepasian et al [21, 22].

A geodesic is defined as the shortest path on a Riemannian manifold. This is a real, differentiable manifold, on which each tangent space is equipped with a so-called *Riemannian metric*, which is a positive-definite tensor. Roughly speaking, the elements of the metric tensor are an indication of the cost of (or energy required for) moving in a specific direction. For DTI data, an intuitive choice for the metric is the inverse of the diffusion tensor. Large values in the DTI tensor correspond to small values in its inverse, indicating low diffusion costs, and vice versa. Locally, a geodesic will tend to follow the direction with the lowest metric value, which is analogous to the direction with the highest diffusion. We define the Riemannian metric as $G = D^{-1}$, where D is the diffusion tensor.

In the algorithm discussed in this paper, the trajectory of a fiber is computed iteratively by numerically solving a set of ODEs. The ODEs used to compute the trajectory of the fiber are derived from the theory of geodesics in a Riemannian manifold, as shown below.

Let $\mathbf{x}(\tau)$ be a smooth, differentiable curve through a volume described by parameter $\tau = [0, T]$, with derivative vector $\dot{\mathbf{x}}(\tau)$. We define the Riemannian length of $\mathbf{x}(\tau)$ as follows

$$L(\mathbf{x}) = \int_0^T \sqrt{\dot{\mathbf{x}}^T G \dot{\mathbf{x}}} d\tau$$

(1)

The geodesic is the line that minimizes the geodesic length of Equation 1. We can use the Euler-Lagrange equations to translate this function to a set of ODEs, as described in detail by Jost et al [23].

Let \dot{x}^γ and \ddot{x}^γ be the first and second derivatives with regard to τ, respectively, of the geodesic for dimension $\gamma = (1, 2, 3)$. The ODEs that allow us to compute the geodesics are given by the following equation

$$\ddot{x}^\gamma + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \Gamma^\gamma_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta = 0,$$

(2)

where $\Gamma^\gamma_{\alpha\beta}$ are the so-called *Christoffel symbols*, defined as follows

$$\Gamma^\gamma_{\alpha\beta} = \sum_{\sigma=1}^{3} \frac{1}{2} \left[g^{\sigma\alpha} \left(\frac{\partial}{\partial x_\alpha} g_{\beta\sigma} + \frac{\partial}{\partial x_\beta} g_{\alpha\sigma} - \frac{\partial}{\partial x_\sigma} g_{\alpha\beta} \right) \right].$$

(3)

Here, g_{ij} represents element (i, j) of the inverse diffusion tensor, while g^{ij} represents an element of the original diffusion tensor. We note that, in order to compute all Christoffel symbols, we need to compute the derivatives of the inverse DTI tensor in all three dimensions.

Given an initial position and an initial direction, we can construct a path through the 3D DTI image, using the second-order Runge-Kutta ODE solver. The initial position is usually specified by the user, who is interested in a particular area of the tissue (in our case, the white matter). For the initial direction, we can use a large number of directions per seed points (distributed either uniformly on a sphere, or around the main eigenvector), and see which of the resulting fibers intersect
some user-specified target region. Doing so increases our chances of finding all valid connections between the seed point(s) and the target region(s).

This approach, which is referred to as the Region-to-Region Connectivity approach, requires a suitable Connectivity Measure [24], which quantifies the strength of the connection between seed point and target region. In other words, this measure symbolizes the probability that a computed geodesic corresponds to an actual fibrous connection in the white matter. While this paper does not discuss the implementation of the Region-to-Region Connectivity approach, we do note that in order to reliably find all geodesics between the seed point(s) and the target region, we need to compute a large amount of trajectories in all directions. This need for a large amount of fibers, in combination with the high computational complexity of the algorithm itself, motivates our decision to parallelize the geodesic ray-tracing algorithm.

3 Related Work

The possibility of using the GPU to accelerate fiber-tracking algorithms (using CUDA or other languages) has recently been explored in other literature [25, 26, 27, 28]. These implementations use either geometric shaders or fragment shaders to accelerate the streamline tracking algorithm. With the exception of Mittmann et al. [28], who introduce a stochastic element, these papers all use the simple streamline method for fiber-tracking, in which the main eigenvector of the DTI tensor is used as the direction vector for the integration step. In addition to using algorithms with a lower computational complexity than the geodesic ray-tracing algorithm discussed in Section 2.3, these implementations differ from ours in the sense that they use GPU shaders to compute the fibers, while we use CUDA, which offers higher flexibility and a more gentle learning curve than programmable GPU shaders [29].

More recently, Mittmann et al. introduced a GPU implementation of a simple streamline algorithm using CUDA [30]. Compared to a multi-threaded CPU implementation, this GPU implementation allows for a significantly higher frame rate, enabling real-time, interactive exploration of large groups of fibers. The speedup factor, based on the number of frames per second, is between 10 and 20 times. The paper’s main focus, however, is interactivity, and a technical discussion of the advantages and limitations of CUDA in the context of fiber-tracking algorithms is omitted.

Jeong et al. [31] have developed a CUDA implementation of a fiber-tracking algorithm based on the Hamilton-Jacobi equation, which computes the fiber pathways by propagating a front throughout the entire volume. Their solution parallelizes the propagation of the front by dividing the DTI image into blocks of 43 voxels, after which the front is propagated through a number of such blocks in parallel. This approach has been shown to be 50 to 100 times faster than sequential implementations of similar algorithms on a CPU.
However, as stated in Section 2.3, the HJ algorithm on which they base their implementation is not able to find multiple connections between target regions. Furthermore, the front-propagation algorithm used by Jeong et al. requires a fundamentally different parallelization approach from our ray-tracing method.

We therefore conclude that ours is the first CUDA-aided acceleration of a fiber-tracking algorithm of this complexity. As will be shown in the next sections, the complex nature of the algorithm introduces a number of challenges to the parallelization process. Furthermore, the advantages of the geodesic ray-tracing algorithm, as discussed in Section 2.3, suggest that its implementation will also have practical applications.

4 Geodesic Fiber-Tracking on the GPU using CUDA

4.1 Algorithm Overview

In Section 2.3, we introduced a system of ODEs which can be used to compute the trajectory of a fiber, given an initial position and direction. The basis of our algorithm is an ODE solver which numerically solves Equation 2 using a fixed integration step length. Specifically, let \(x_\gamma^i \) be the coordinate of point \(i \) along the fiber for dimension \(\gamma \), and let \(\dot{x}_\gamma^i \) be the local direction of the fiber in this point. Using Euler as the ODE solver, we can compute \(x_\gamma^{i+1} \) and \(\dot{x}_\gamma^{i+1} \) (i.e., the position and direction at the next time step) as follows,

\[
x_\gamma^{i+1} = x_\gamma^i + h\dot{x}_\gamma^i
\]

\[
\dot{x}_\gamma^{i+1} = \dot{x}_\gamma^i - h \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \Gamma_{\alpha\beta}^{\gamma} x_\alpha^i \dot{x}_\beta^i.
\]

Here, \(h \) is a fixed step size, and \(\Gamma_{\alpha\beta}^{\gamma} \) is the Christoffel symbol as defined in Equation 3. In the implementation described below, we use a second-order Runge-Kutta ODE solver instead of the Euler solver, but the basic method of numerically solving the system of ODEs remains the same. When computing the Christoffel symbols, the four required tensors (inverse DTI tensors and its three derivates) are interpolated using trilinear interpolation.

To summarize, a single integration step of the ODE solver consists of the following actions:

1. Compute the inverse diffusion tensor and its derivative in all three dimensions for the eight voxels surrounding the current fiber point \((x_\gamma^i) \).
2. Interpolate the four tensors at the current fiber point.
3. Compute all Christoffel symbols. According to Equations 2 and 3, we require nine symbols per dimension, for a total of 27 symbols. However, using the symmetric qualities of the diffusion tensor (and therefore, of its inverse and the derivates of its inverse), we can reduce this to 18 unique symbols.
4. Using the Christoffel symbols, compute the position and direction of the next fiber point.
5. Repeat steps 1 through 4 until some stopping condition is met. By default, the only stopping condition is the fiber leaving the volume of the DTI image.

We note that the first step may be performed as a pre-processing step. While this increases the amount of memory required by the algorithm, it also significantly decreases the number of required computations per integration step. This pre-processing step has been implemented in CUDA, but due to its trivial implementation and relatively low running time (compared the that of steps 2 through 5), we do not discuss it in detail, instead focusing on the actual tracking process. Figure 4 summarizes the tracking process of steps 2 through 5, assuming the four input tensors have been computed in a pre-processing step.

4.2 CUDA Overview

The Region-to-Region Connectivity approach outlined in Section 2.3 presents us with one significant problem: it requires the computation of a large number of geodesics. In combination with the relatively complex ODEs presented in Equation 2 (compared to the ODEs used for simpler fiber-tracking methods), this makes this approach computationally expensive. Our aim is to overcome this hurdle by implementing the algorithm in CUDA, of which we give a quick overview in this section.

NVIDIA’s Compute Unified Device Architecture (CUDA) [32] is a way to facilitate General-Purpose computing on Graphics Processing Units (GPGPU). Modern GPUs contain large number of generic processors in parallel, and CUDA allows a programmer to utilize this large computational power for non-graphical purposes. In CUDA, a kernel (usually a small, simple function), is executed in parallel by a large number of threads, each working on one part of the input data. In a typical execution pattern, the host PC first uploads the input data to the GPU, then launches a number of threads that execute the kernel. The resulting data is then either downloaded back to the host PC, or drawn on the screen.

A CUDA-enabled GPU generally consists of the device memory, which is between 512MB and 2GB on most modern GPUs, and a number of multiprocessors [33]. Each multiprocessor contains eight scalar processors (in
most current-generation GPUs; newer generations will have more scalar processors per multiprocessor); a register file; a shared memory block, which enables communication between the scalar processors; and an instruction unit, which dispatches instructions to the processors. The type of parallelism in these multiprocessors is called Single Instruction, Multiple Threads (SIMT), which differs from Single Instruction, Multiple Data (SIMD) in the sense that the threads have some level of independence. Ideally, all active threads in a multiprocessor will execute the same instruction at the same time; however, unlike SIMD, SIMT also allows for branching threads using if-statements. While this does allow the programmer to create more complex kernels, it also adds an overhead in terms of execution time, since the different branches must be executed sequentially. Therefore, it is best to avoid branching behavior in kernels where possible.

One other important consideration when designing CUDA algorithms is the memory hierarchy. The two memory blocks local to each multiprocessor - the register file and the shared memory - both have low memory access latencies. However, the available space in these two memory blocks is limited, with typical values of 16kB for the shared memory, and 16 or 32 kB for the register file. The device memory has far more storage space, but accessing this memory adds a latency of between 400 and 900 clock cycles [34]. The device memory contains four different memory spaces:

- **Constant Memory**, a small, read-only block best used for constant values;
- **Texture Memory**, a read-only space optimized for texture reads;
- **Global Memory**, the main random-access memory space;
- **Local Memory**, a per-thread extension of the register file.

Local memory is used when the register file of a multiprocessor cannot contain all variables of a kernel. Since access latencies to the device memory are very high, the use of large kernels is generally best avoided. As a general rule, communication between the device memory and the multiprocessors should be kept as low as possible. A second important guideline is that the size of the kernels, in terms of the number of registers per thread and the amount of shared memory used per thread block, should be kept small. Doing so will allow the GPU to run more threads in parallel, thus increasing the occupancy of the scalar processors (i.e., the percentage of time that each scalar processor is active). The structure of a CUDA-enabled GPU is illustrated in Figure 5.

4.3 CUDA Implementation

Keeping in mind the advantages and limitations of CUDA as discussed in Section 4.2, we can design a CUDA implementation for the algorithm introduced in Section 2.3. As mentioned in step 3 of the algorithm as outlined in Section 4.1, we require the derivatives of the inverse of the DTI tensor in all three dimensions. We intuitively see that computing these derivatives for each point along the fiber would be far too costly in terms of the number of instructions, as computing these derivatives for all eight surrounding voxels (using two-sided numerical derivation) would require the inver-
sion of 32 diffusion tensors. Therefore, we decide to pre-
compute them instead.

This gives us four input tensors per voxel: the diffu-
sion tensor, and the three derivatives of its inverse. With
six unique elements per tensor and four bytes per value,
this gives us a memory requirement of $4 \times 6 \times 4 = 96$
Bytes per voxel. The algorithm also has the seed points
as input, which contain the initial position and direction
for each fiber. These seed points are determined by the
user, for example by specifying a region of interest in
the image.

The output of the algorithm consists of a number of
fibers, each consisting of a list of 3D coordinates. In
post-processing steps, these fiber can be filtered through
the target region(s) and sorted according to their Connectiv-
ity Measure value, but these steps are not part
of the CUDA implementation discussed herein. Since
CUDA does not support dynamic memory allocation,
we hard-coded a limit in the number of iteration steps
for each fiber, and statically allocated an output array
per fiber of corresponding size. We note here that the
choice of this limit may impact performance: for high
limits, more fibers will terminate prematurely (due to
leaving the volume), leading to lower occupancy in later
stages of the algorithm, while for lower limits, the start-
up overhead of the CUDA algorithm may become rele-
vant.

We intuitively recognize two different approaches for
parallelization of the geodesic ray-tracing algorithm: per-
region parallelization, and per-fiber parallelization.
The per-region approach would entail loading a small
region of the image into the shared memory of a mul-
tiprocessor, tracking a number of fibers through this re-
region (using one thread per fiber), and then loading the
next region. While this approach would guarantee low
memory bandwidth requirements between the multi-
processors and the device memory, it is impractical due
to two reasons. First, it is impossible to guarantee that
a region will contain a sufficient number of fibers to
enable meaningful parallelization. Second, due to the
limited size of the shared memory, these regions would
be very small (no more than approximately 160 voxels
per region), which would defeat the purpose of this ap-
proach. In other words, this approach requires some de-
gree of spatial coherence between the fibers, and since we
do not know their trajectories beforehand, ensuring this
spatial coherence is highly impractical.

We therefore use the per-fiber parallelization ap-
proach, in which each thread computes a single fiber.
The main advantage of this approach is that it does not
require any spatial coherence between the fibers to ef-
ciently utilize the parallelism offered by the GPU. As
long as we have a high number of seed points, all scalar
processors of the GPU will be able to run their own
threads individual of the other threads, thus minimizing
the need for elaborate synchronization between threads,
and guaranteeing a stable computational throughput
for all active processors. The main disadvantage of this
approach is that it requires a higher memory through-
put than the per-region approach, as it does not allow
us to avoid redundant memory reads.

The kernel that executes the fiber-tracking process ex-
ecutes the following steps, as summarized in Figure 4:

1. Fetch the initial position and direction of the fiber.
2. For the current fiber position, fetch the diffusion
tensor and the derivatives of its inverse, using tri-
linear interpolation.
3. Using these four tensors, compute the Christoffel symbols, as defined in Equation 3.

4. Using the symbols and the current direction, compute the next position and direction of the fiber, using the ODEs of Equation 2 with a second-order Runge-Kutta step.

5. Write the new position to the global memory.

6. Stop if the fiber has left the volume or the maximum number of steps has been reached. Otherwise, return to Step 2.

4.4 Using Texture Memory

As noted in the previous section, the main disadvantage of the per-fiber parallelization approach is that it does not allow us to avoid redundant reads. We can partially solve this problem by storing the input images in texture memory, rather than in global memory. Unlike global memory reads, texture memory reads are cached through a number of small caches. These caches can contain about 8 kB per multiprocessor, although the actual amount varies per GPU. While we argue that cached memory reads could reduce the required memory throughput, we note that the lack of spatial coherence between the fibers, coupled with the small cache sizes, will largely negate the positive effects of cached memory reads.

A second, more important advantage of the texture memory is the built-in texture filtering functionality. When reading texture data from a position located between grid points, CUDA will apply either nearest-neighbor or linear interpolation using dedicated texture filtering hardware. When storing the input data in the global memory, all interpolation must be done in-kernel, which increases both the number of instructions per integration step, and the amount of memory required by the kernels. By delegating the interpolation process to this dedicated hardware, we are able to reduce both the size and the computational complexity of the kernels. The size is especially important in this case, as smaller kernels allow for a higher degree of parallelism.

While we expect the use of texture-filtering interpolation to be beneficial for the running time of our algorithm (which we will demonstrate in the next section), we do identify one possible trade-off. One property of in-kernel interpolation is that the values of the eight surrounding voxels can be stored in either the local memory of the thread, or in the shared memory of the multiprocessor. Doing so increases the size of the threads, but also allows them to reuse some of this data, thus reducing the memory throughput requirements. Using texture-filtering interpolation, we cannot store the surrounding voxel values, so we need to read them again in every integration step. Thus, in-kernel interpolation may require a significantly lower memory throughput than texture-filtering interpolation, especially for small step sizes (in which case it takes multiple steps for a fiber to cross a cell). We analyze this trade-off through experimentation in the next section.

5 Experiments and Results

For the experiments presented in this section, we used a synthetic data set of 1024 x 64 x 64 voxels with 2048 predefined seed points. The seed points were distributed randomly to mimic the low spatial coherence of the fibers, and their initial directions were chosen in such a way that no thread would terminate prematurely due to its fiber leaving the volume (i.e., all fibers stay within the volume for the pre-defined maximum number of integration steps, running parallel to the long edge of the volume). While neither the shape of the volume nor the fact that no fibers leave the volume prematurely can be considered realistic, this does allow us to benchmark the algorithm under maximum load.

All experiments were conducted on an NVIDIA GTX 260, a mid-range model with 24 multiprocessors (for a total of 192 scalar processors) and 1 GigaByte of device memory [35].

It should be noted that we only consider the actual fiber-tracking process for our benchmarks. The data preparation stage (which includes preprocessing and inverting the tensors, and computing the derivatives of the inverse tensors) has also been implemented in CUDA, but is considered outside of the scope of this paper due to its low complexity, trivial parallelization, and low running times compared to the tracking stage. On the GTX 260, the data preparation stage requires roughly 50 milliseconds per million voxels [36], and only needs to be executed once per image. The overhead resulting from the communication between the CPU and GPU lies in the order of a few milliseconds.

5.1 Texture Filtering versus In-Kernel Filtering

In Section 4.4, we stated that using the dedicated texture filtering hardware for the trilinear interpolation step of our algorithm would significantly reduce the size and complexity of our kernel, allowing for an increase in performance. We also identified a possible trade-off: for small step sizes, in-kernel interpolation might be faster than texture-filtering interpolation, as the former allows for data reuse, while the latter does not. We test this hypothesis by varying the step size between 0.05 (i.e., twenty steps per cell on average), and 0.5 (two steps). The measured running times for the two proposed interpolation methods are shown in Figure 6. From this we, can conclude that, while small step sizes do indeed reduce the running times for in-kernel interpolat-
Figure 6: Running time for varying step size for in-kernel interpolation (blue) and texture-filtering interpolation (red).

5.2 Limiting Factor

The performance of CUDA programs is usually limited either by the maximum memory throughput between the device memory and the multiprocessors, or by the maximum computational throughput of the scalar processors. To find out which of these two is the limiting factor for our algorithm, we first compute its performance in terms of memory throughput and computational throughput.

- When computing 2048 fibers, each executing 4096 integration steps, the algorithm takes approximately 165 milliseconds to complete. For each integration step, a single thread needs to read 8 voxels * 4 tensors * 6 unique tensor elements * 4 bytes = 768 bytes, and it writes 12 bytes (3D coordinates of the new point). This gives us a total memory transfer of 780 * 2048 * 4096 ≈ 6.54 GB. Dividing this by the running time, we get an effective memory throughput of approximately 3.97 GB/s, which is well below the maximum 111.9 GB/s of the GTX 260.

- To compute the computation throughput in FLOPS (floating-point operations per second), we first decompile the CUDA program using the decuda software. By inspecting the resulting code, we learn that each integration step uses 256 floating-point instructions. Note that this does not include any instructions needed for interpolation, since we are using the dedicated texture filtering hardware for this purpose. The algorithm performs a total of 256 * 2048 * 4096 = 2,147,483,648 floating-point operations, giving us a computational throughput of roughly 13 GFLOPS. Again, this is well below the specified maximum of the GTX 260, which is 715 GFLOPS.

Since neither the memory throughput nor the computational throughput is close to the specified maximum, we need to determine the limiting factor in a different way. We first rule out the computational throughput as the limiting factor by replacing the current second-order Runge–Kutta (RK2) ODE solver by a simple Euler solver. This does not reduce the amount of data transferred between device memory and multiprocessors, but it does reduce the number of floating-point operations per integration step from 256 to 195. This however does not significantly impact the running time (165.133 ms for RK2 versus 165.347 ms for Euler), indicating that the computational throughput (i.e., processor load) is not a limiting factor in our case.

To prove that the memory throughput is indeed the limiting factor, we need to reduce the amount of data read in each integration step, without changing the number of instructions. We do so by using the knowledge that the four input tensors of our synthetic data set share a number of duplicate values. By removing some of the redundant reads, we can reduce the memory requirements of each thread, without compromising the mathematical correctness of the algorithm. The results of this experiment are listed in Table 1. From this, we can conclude that the performance of our algorithm is limited by the memory throughput, despite the actual throughput being significantly lower than the theoretical maximum of the GTX 260. Possible explanations for this discrepancy are listed in Section 6.

Data/Step (Byte)	Time (ms)	Bandwidth (GB/s)
768	165.133	38.8
640	134.124	40.0
512	103.143	41.6
384	90.554	35.6

Table 1: Effects on the running time and total memory throughput of changing the amount of data read per voxel.

5.3 Speed-Up Factor

5.3.1 Setup

To evaluate the performance of our CUDA implementation, we compare its running times to those of a C++ implementation of the same algorithm running on a modern CPU. In order to fully explore the performance gain, we use four different CUDA-supported GPUs: the Quadro FX 770M, the GeForce 8800 GT, the GeForce GTX 260, and the GeForce GTX 470. The important specifications of these GPUs are shown in Table 2. It should be noted that our CUDA implementation was developed for the GTX 260, and was not modified for execution on the other GPUs. In particular, this means that we did not optimize our algorithm to make use of
Table 2: Specifications of the GPUs in the benchmark test of Section 5.3. Source: nvidia.com.

	Device Memory (MB)	Memory Bandwidth (GB/s)	Number of Scalar Processors
Quadro FX 770M	512	25.6	32
GeForce 880 GT	512	57.6	112
GeForce GTX 267	896	111.9	192
GeForce GTX 470	1280	133.9	448

Table 3: Benchmark results for GPU and CPU implementation of the geodesic ray-tracing algorithm. For each configuration, we show the running time (T) in seconds, and the Speed-Up factor (SU) relative to the best CPU timing, see Figure 7.

Number of Seeds	CPU FX 770M	CPU 8800 GT	CPU GTX 260	CPU GTX 470		
	T	T SU				
1024	1.403	0.761	0.273	0.225	0.087	16.1
2048	2.788	1.388	0.448	0.244	0.093	30.0
3072	4.185	1.995	0.760	0.256	0.107	39.1
4096	5.571	2.772	0.900	0.301	0.139	40.0

the improved CUDA features of the more recent GTX 470 GPU.

The CPU running the C++ implementation is an Intel Core i5 750, which has four cores, with a clock speed of 2.67 GHz. In terms of both date of release and price segment, the i5 750 (released in fall 2009) is closest to the GTX 470 (spring 2010); at the time of writing, both are considered mid- to high-range consumer products of the previous generation.

For this benchmark, we use a brain DTI image with dimensions of $128 \times 128 \times 30$ voxels. Seed points are placed in a small, two-dimensional region of 22 by 4 voxels, located in a part of the corpus callosum. An approximation of the seed region, as well as the resulting fibers, is shown in Figure 8. Seed points are randomly placed within this region, with a random initial direction. The number of seed points varies from 1024 to 4096. This test thus closely mimics a real-life application of the ray-tracing algorithm, as demonstrated in Figure 8.

5.3.2 CPU Implementation

Our C++ implementation of the algorithm features support for multiple threads of execution (multi-threading), which allows it to utilize the parallelism offered by the CPU’s four cores. Let S be the number of seed points and N the number of threads. We assign S/N seed points to each CPU thread, thus having each thread compute S/N fibers. We have measured the running times of this CPU implementation for several different values of N, and with S set to 4096 points. The results of this benchmark can be seen in Figure 7. From these results, we can conclude that parallelizing the CPU implementation (using essentially the same fiber-level parallelism as for our GPU implementation) can reduce the running times by a factor of roughly 4.5. The fact that the performance increases for N larger than the number of cores can be attributed to the fact that a CPU core can switch to a different thread when the active thread is waiting for data from the main memory of the PC. From Figure 7, we can also conclude that 64 threads is the best configuration for this algorithm and this CPU.

5.3.3 GPU Benchmark Results

We performed the same benchmarking experiment on the four CUDA-enabled GPUs, and we compared the running times to those of the best CPU configuration. The results for this test are shown in Table 3. From the results, we can conclude that our CUDA implementation significantly reduces the running time of the ray-tracing algorithm. Even on a mid-range GPU for lap-
tops like the FX 770M, the running time is reduced by a factor of roughly two times. Using a high-end, recent GPU like the GTX 470, we are even able to achieve a speed-up factor of 40 times, which greatly increases the applicability of the algorithm. The differences in speed-up factors between the GPUs can be explained in part by the differences in bandwidth - which was identified as the limiting factor in Section 5.2 - and by the number of processors.

6 Discussion

In previous sections, we described a CUDA implementation of a geodesic fiber-tracking method. This CUDA program uses the knowledge that fibers can be computed independently of one another to parallelize these computations, thus reducing running times by a factor of up to 40 times, compared to multi-threaded CPU implementations of the same algorithm.

While the algorithm does allow for meaningful parallelization, we do note two problems that make full exploitation of the parallelism offered by the GPU challenging:

- The algorithm requires a large amount of internal storage; between the four input tensors, the Christoffel symbol, and the position and direction of the fiber, even the most efficient version of our implementation still required 43 registers per thread, while typical values for CUDA algorithms are between 8 and 32.

- More importantly, the algorithm requires a large amount of data transfer, and as a result, the memory throughput becomes its limiting factor. This problem is far from trivial to solve, and while some options do exist, they all have their own downsides.
 - Reducing the number of bits per input value would lower the required memory throughput, but comes at the cost of reduced accuracy.
 - Allowing fibers to reuse the input data used for interpolation greatly increases the size of the kernel, and does not work with texture-filtering interpolation, the use of which has been shown to be very beneficial in our case.
 - Sharing the input data between threads in one multiprocessor requires some sort of spatial coherence between the fibers, which is extremely difficult to guarantee.

As noted, the memory throughput between the device memory and the multiprocessors is the limiting factor for our performance. However, as noted in Section 5.2, the actual throughput is well below the theoretical maximum of the device. Below, we list some possible causes for this difference.

- Most Random-Access Memory (RAM) configurations experiences a certain overhead when subsequent reads access different parts of a data range. Since a low spatial locality of the seed points will lead to such scattered access pattern, this overhead may explain our relatively low memory throughput.

- According to CUDA documentation [32], texture reads have been optimized for 2D spatial locality, presumably using a space-filling curve. The absence of spatial locality prevents our algorithm from utilizing these optimizations.

- The throughput of the texture fetching and filtering units may become a limiting factor when large numbers of voxels are involved. The documentation of the GTX 260 states that it should be able to process 36.9 billion texels per second [33], while our implementation only loads 39 billion bytes (of multi-byte texels) per second. However, this figure is based on 2D bilinear interpolation, while we use 3D trilinear interpolation.

We expect the first point to be the main contributing factor, though we have not conducted experiments to either prove or disprove this hypothesis.

The GPU-based acceleration of the geodesic ray-tracing algorithm for DTI is a useful technique, but its implementation poses several challenges. Part of the problem in accelerating numerical integration algorithms such as the one under discussion in the paper, is that it almost inevitably introduces unpredictable memory access patterns, while existing CUDA algorithms generally use access patterns that are more regular and predictable, and thus easier to optimize. This is a fundamental problem without an easy solution, and one that is not restricted to CUDA-enabled GPUs, but applies to other parallel platforms as well. Still, despite our implementation achieving sub-optimal performance, we do believe that its significant speed-up factor of up to 40 times, coupled with the low cost and high availability of CUDA-enabled hardware, make it a practical solution to the computational complexity of the geodesic ray-tracing algorithm for fiber-tracking, and a good starting point for future acceleration of similar algorithms.

7 Conclusion and Future Work

In this paper, we discussed the GPU-based acceleration of a geodesic ray-tracing algorithm for fiber-tracking for DTI. One of the advantages of this algorithm is its ability to find multi-valued solutions, i.e., multiple possible connections between regions of the white matter.
However, the high computational complexity of the algorithm, combined with the fact that we need to compute a large amount of trajectories if we want to find the right connection, make it slow compared to similar algorithms. To overcome this problem, we accelerated the algorithm by implementing a highly parallel version on a GPU, using NVIDIA’s CUDA platform. We showed that despite the large kernel size and high memory requirements of this GPU implementation, we were able to speed up the algorithm by a factor of up to 40. This significant reduction in running time using cheap and widely available hardware greatly increases the applicability of the algorithm.

Aside from further optimization of our current GPU implementation, with the aim of further reducing its running time, we identify two possible extensions of the work presented in this paper.

- At the moment, the computed fibers are downloaded back to the CPU, where they are post-processed and subsequently visualized. A more direct approach would be to directly visualize the fibers computed by our algorithm, using the available rendering features of the GPU. If we can also implement the necessary post-processing steps in CUDA, we can significantly reduce the amount of memory that needs to be transferred between the CPU and the GPU, thus accelerating the complete fiber-tracking pipeline.

- The Region-to-Region Connectivity method is a valuable application of the geodesic ray-tracing algorithm. This method introduces three extra steps:

 1) computation of a suitable Connectivity Measure, either while tracking the fibers or during a post-processing step;
 2) Filtering the computed fibers through a target region;
 3) Sorting the remaining fibers according to their Connectivity Measure, and showing only those fibers with high CM values.

 These three steps have currently been implemented on a CPU, but implementing them on a GPU can reduce the overall processing time of the fiber-tracking pipeline, as noted above.

- The DTI model is limited in its accuracy by its inability to model crossing fibers. High Angular Resolution Diffusion Imaging (HARDI) aims to overcome this limitation by measuring and modeling the diffusion in more directions [37]. An extension of the algorithm presented in Section 2.3 which uses HARDI data rather than DTI data would theoretically be more accurate, particularly in complex areas of the white matter. Such an extension may for example be realized by using the Finsler metric tensor (which depends both on the position and local orientation of the fiber), rather than the Riemannian metric tensor [38]. While the extended algorithm for HARDI would likely be more complex in terms of both number of computations and amount of required memory, a CUDA-based acceleration using the parallelization principles presented in this paper will still be significantly faster than any CPU implementation.

We note that, while these extensions would be valuable additions, the current CUDA implementation al-
ready provides a practical and scaleable solution for the acceleration of geodesic ray-tracing.

References

[1] P. J. Basser, J. Mattiello and D. LeBihan. "Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo," in *Journal of Magnetic Resonance*, Volume 103, Issue 3, Pages 247-254, 1994.

[2] A. F. M. DaSilva, D. S. Tuch, M. R. Wiegell and N. Hadjikhanzi. "A Primer on Diffusion Tensor Imaging of Anatomical Substructures," in *Neurosurgery, Focus*, Volume 15, Issue 1, E4, 2003.

[3] S. E. Rose, F. Chen, J. B. Chalk, F. O. Zelaya, W. E. Strugnell, M. Benson, J. Semple and D. M. Doddrell. "Loss of Connectivity in Alzheimer's Disease: An Evaluation of White Matter Tract Integrity with Colour Coded MR Diffusion Tensor Imaging," in *Journal of Neurology, Neurosurgery & Psychiatry*, Volume 69, Issue 4, Pages 528-530, 2000.

[4] M. Filippi, M. Cercignani, M. Inglese, M. A. Horsfield and G. Comi. "Diffusion Tensor Magnetic Resonance Imaging in Multiple Sclerosis," in *Neurology*, Volume 56, Pages 304-311, 2001.

[5] D. K. Jones, D. Lythgoe, M. A. Horsfield, A. Simmons, S. C. Williams, and H. S. Markus "Characterization of White Matter Damage in Ischemic Leukoaraiosis with Diffusion Tensor MRI," in *Stroke*, Volume 30, Pages 393-397, 1999.

[6] C. G. Koay, L. -C. Chang, J. D. Carew, C. Pierpaoli, P. J. Basser. "A Unifying Theoretical and Algorithmic Framework for Least Squares Methods of Estimation in Diffusion Tensor Imaging," in *Journal of Magnetic Resonance*, Volume 182, Pages 115-125, 2006.

[7] P. J. Basser and C. Pierpaoli. "Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI," in *Journal of Magnetic Resonance*, Volume 111, Issue 3, Pages 209-219, 1996.

[8] P. van Gelderen, P. M. H. de Vleeschouwer, D. DesPres, J. Pekar, P. C. van Zijl, C. T. Moonen. "Water Diffusion and Acute Stroke," in *Magnetic Resonance in Medicine*, Volume 31, Issue 2, Pages 154-163, 1994.

[9] Eindhoven University of Technology, Department of Biomedical Engineering, Biomedical Image Analysis Group. "DTITool," bmia.bmt.tue.nl/Software/DTITool, 2010.

[10] S. Mori, S. Wakana, P. C. van Zijl and L. M. Nagae-Poetscher. "MRI atlas of human white matter," Elsevier, Berlin, 2005.

[11] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi. "In Vivo Fiber Tractography Using DT-MRI Data," in *Magnetic Resonance in Medicine*, Volume 44, Issue 4, Pages 625-632, 2000.

[12] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. McKinstry, H. Burton and M. E. Raichle. "Tracking Neuronal Fiber Pathways in the Living Human Brain," in *Proceedings of the National Academy of Sciences of the United States of America*, Volume 96, Issue 18, Pages 10422-10427, 1999.

[13] M. Lazar, D. M. Weinstein, J. S. Tsuruda, K. M. Hasan, K. Arfanakis, M. E. Meyerand, B. Badie, H. A. Rowley, V. Haughton, A. Field and A. L. Alexander. "White matter tractography using diffusion tensor deflection," in *Human Brain Mapping*, Volume 18, Issue 4, Pages 306-321, 2003.

[14] C. Poupon, J.-F. Mangin, C. A. Clark, V. Frouin, J. Régis, D. Le Bihan, I. Bloch. "Towards Inference of Human Brain Connectivity from MR Diffusion Tensor Data," in *Medical Image Analysis*, Volume 5, Issue 1, Pages 1-15, 2001.

[15] M. Jackowski, C. Y. Kao, M. Qui, R. T. Constable and L. H. Staib, "White matter tractography by Anisotropic Wavefront Evolution and Diffusion Tensor Imaging," in *Medical Image Analysis*, Volume 9, Issue 5, Pages 424-440, 2005.

[16] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pelégrin-Issac and H. Benali. "Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography," in *International Journal of Biomedical Imaging*, Volume 2008, Article ID 320195, 2008.

[17] A. Lenglet, R. Deriche and O. Faugeras. "Inferring White Matter Geometry from Diffusion Tensor MRI: Application to Connectivity Mapping," in *Lecture Notes in Computer Science*, Volume 3024, Pages 127-140, 2004.

[18] L. O'Donnell, S. Haker and C. F. Westin. "New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space," in *International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI’02*, Volume 5, Issue 1, Pages 459-466, 2002.

[19] E. Prados, S. Soatto, C. Lenglet, J. P. Pons, N. Wotawa, R. Deriche, O. Faugeras and S. Soatto. "Control Theory and Fast Marching Techniques for
Brain Connectivity Mapping,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1, Pages 1076-1083, 2006.

[20] G. J. M. Parker, C. A. Wheeler-Kingshott and G. J. Barker. “Distributed Anatomical Connectivity Derived from Diffusion Tensor Imaging,” in Proceedings of Information Processing in Medical Imaging, Lecture Notes in Computer Science, Volume 2082, Pages 106-120, 2001.

[21] N. Sepasian, J. H. M. ten Thije Boonkkamp, A. Vilanova and B. M. ter Haar Romeny. “Multi-valued Geodesic Based Fiber Tracking for Diffusion Tensor Imaging,” in MICCAI Workshop on Computational Diffusion MRI (CDMRI), Pages 104-120, 2009.

[22] N. Sepasian, A. Vilanova, L. Florack, and B. ter Haar Romeny. “A Ray Tracing Method for Geodesic-Based Tractography in Diffusion Tensor Images,” in Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), 2008.

[23] J. Jost. “Riemannian Geometry and Geometric Analysis,” Springer, 5th Edition, Pages 13-28, 2008.

[24] L. Astola, L. M. J. Florack and B. M. Ter Haar Romeny. “Measures for Pathway Analysis in Brain White Matter using Diffusion Tensor Imaging,” in Proceeding of Information Processing in Medical Imaging, Lecture Notes in Computer Science, Volume 4584, Pages 642-649, 2007.

[25] A. Köhn, J. Klein, F. Weiler and H.-O. Peitgen. “A GPU-based Fiber Tracking Framework using Geometry Shaders,” in Proceedings of SPIE Medical Imaging 2009, Volume 7261, Pages 72611J-72611J-10, 2009.

[26] P. Kondratieva, J. Krüger and R. Watermann. “The Application of GPU Particle Tracing to Diffusion Tensor Field Visualization,” in Proceedings of IEEE Visualization 2005, Page 10, 2005.

[27] T. McGraw and M. Nadar. “Stochastic DT-MRI Connectivity Mapping on the GPU,” in IEEE Transactions on Visualization and Computer Graphics, Volume 13, Issue 6, Pages 1504-1511, 2007.

[28] A. Mittmann, E. Comunello and A. von Wangenheim. “Diffusion Tensor Fiber Tracking on Graphics Processing Units,” in Computerized Medical Imaging and Graphics, Volume 32, Issue 7, Pages 521-530, 2008.

[29] T.-T. Wong. “Shader Programming vs CUDA,” from 2008 IEEE World Congress on Computational Intelligence, 2008.