Global Genetic Determinants of Mitochondrial DNA Copy Number

Hengshan Zhang1, Keshav K. Singh2

1 Hengshan Zhang, Department of Central Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, China, 2 Departments of Genetics, Pathology, Environmental Health, Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States of America

Abstract

Many human diseases including development of cancer is associated with depletion of mitochondrial DNA (mtDNA) content. These diseases are collectively described as mitochondrial DNA depletion syndrome (MDS). High similarity between yeast and human mitochondria allows genomic study of the budding yeast to be used to identify human disease genes. In this study, we systematically screened the pre-existing respiratory-deficient Saccharomyces cerevisiae yeast strains using fluorescent microscopy and identified 102 nuclear genes whose deletions result in a complete mtDNA loss, of which 52 are not reported previously. Strikingly, these genes mainly encode protein products involved in mitochondrial protein biosynthesis process (54.9%). The rest of these genes either encode protein products associated with nucleic acid metabolism (14.7%), oxidative phosphorylation (3.9%), or other protein products (13.7%) responsible for bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis and iron homeostasis. Thirteen (12.7%) of the genes encode proteins of unknown function. We identified human orthologs of these genes, conducted the interaction between the gene products and linked them to human mitochondrial disorders and other pathologies. In addition, we screened for genes whose defects affect the nuclear genome integrity. Our data provide a systematic view of the nuclear genes involved in maintenance of mitochondrial DNA. Together, our studies i) provide a global view of the genes regulating mtDNA content; ii) provide compelling new evidence toward understanding novel mechanism involved in mitochondrial genome maintenance and iii) provide useful clues in understanding human diseases in which mitochondrial defect and in particular depletion of mitochondrial genome plays a critical role.

Citation: Zhang H, Singh KK (2014) Global Genetic Determinants of Mitochondrial DNA Copy Number. PLoS ONE 9(8): e105242. doi:10.1371/journal.pone.0105242

Editor: Nagendra Yadava, UMASS-Amherst/Tufts University School of Medicine, United States of America

Received April 14, 2014; Accepted May 19, 2014; Published August 29, 2014

Copyright: © 2014 Zhang, Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All data are included within the manuscript.

Funding: Studies reported in this manuscript were supported in part by Veterans Administration grant 1I01BX001716 and National Institutes of Health (NIH) R01CA121904 (to KKS). Funding agencies has no role in design or data collection.

Competing Interests: Co-author Keshav Singh is a PLOS ONE Editorial Board member. The authors confirm that this does not alter their adherence to PLOS ONE Editorial policies and criteria, as detailed online in the guide for authors (http://www.PLOSone.org/static/editorial/action#competing).

* Email: kksingh@uab.edu

Introduction

Mitochondria are the sites of vital cellular functions such as the synthesis of the cellular energy by oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, amino acid, and heme biosynthesis [1]. Deleterious mitochondrial DNA (mtDNA) mutations have been reported to cause a broad spectrum of cellular and organismal responses including apoptosis, carcinogenesis, aging and neurological degeneration, and are an important cause of inherited disease. For example, mtDNA missense mutations have been associated with ophthalmological and neurological diseases known as Leber’s Hereditary Optic Neuropathy (LHON), and Neurogenic muscle weakness, Ataxia and Retinitis Pigmentosa (NARP). Transfer RNA mutations are now known for Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF); Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Symptoms (MELAS); and Maternally Inherited Myopathy and Cardiomyopathy (MMC). Another frequently described pathology associated with reduced mtDNA content is mtDNA depletion syndromes (MDS), a group of severe diseases of childhood. The affected persons usually suffer from quantitative decrease in copy number of mtDNA with progressive pathophysiological disorders and subsequent death in their first year of life [2,3]. To date, over 100 heritable disorders have been attributed to defects in mitochondrial function in humans, and new mitochondrial disease genes are still being identified [4].

Human mtDNA contains one single control region called the D-loop that controls mtDNA replication and transcription of mtDNA-encoded OXPHOS genes. Mutation in the D-loop region is a universal feature and has been reported in all tumors examined to date [5–7]. Mutations in the D-loop region result in altered binding affinities of the nuclear proteins involved in mtDNA replication and transcription leading to the depletion of mtDNA content [8]. Consistent with this notion, our laboratory recently reported a near absence of mtDNA-encoded cytochrome c-oxidase subunit II expression in more than 40% of breast and ovarian tumors [9]. Other laboratories measured mtDNA directly in paired normal and tumors and reported a decrease in mtDNA content in breast [10,11], renal [12], hepatocellular [13,14], gastric [15] and prostate tumors [16]. Reduced mtDNA is shown
to decrease mtOXPHOS activity in renal tumors [17]. A study also demonstrated that decrease in mtDNA content correlates with tumor progression and prognosis in breast cancer patients [18]. Indeed our studies demonstrate that reduced mtDNA content leads to tumorigenic phenotype in vitro [19]. These studies suggest that mtDNA homeostasis plays an important role in tumorigenesis and may contribute to Warburg effect.

The maintenance of functional mitochondria in yeast and higher eukaryotic cells is governed by genes present in mitochondrial DNA and genes located in chromosomal DNA [20]. Human mtDNA encodes 13 polypeptide components of the respiratory-chain enzyme complexes (Complex I, III, IV, and ATP synthase) and houses genes specifying 2 rRNA and 22 tRNA that are components of mitochondrial proteins synthesis system [21]. All of the remaining over 98% mitochondrial components are encoded by nuclear genes and targeted to the organelle by specific mitochondrial import systems. These include majority of OXPHOS proteins, the metabolic enzymes, the DNA and RNA polymerases, the ribosomal proteins, and the mtDNA regulatory factors [22]. Although mitochondria possess their own translational machinery, they largely depend on these proteins to fulfill their functions. In either mitochondria or cytoplasm, protein synthesis takes place on ribosomal subunits, where the genetic information transcribed into mRNA is translated into protein. Mitochondrial ribosomal RNAs which together with mitochondrial ribosomal proteins (MRPs) are components of ribosomal subunits. The genes for mitochondrial ribosomal proteins are mostly encoded in the nuclear genome [23–25]. The process of protein synthesis on the ribosome consists of three phases including initiation, elongation and termination.

So far, our knowledge concerning the genes that are involved in the maintenance of mitochondrial genome is incomplete [26,27], and little is known about the nuclear genes and pathways whose inactivation lead to a loss or reduction of mtDNA [28–30]. The budding yeast Saccharomyces cerevisiae can grow and divide in the absence of respiration or mtDNA, and its mitochondrial is a highly functionally similar with human mitochondria, providing a particularly suitable model for identifying nuclear gene involvement in the maintenance of the mitochondrial genome. We screened respiratory-deficient S. cerevisiae strains, which belong to class III strains identified by Steinmetz and coworkers recently using the whole-genome pool of yeast deletion mutants [31]. Importantly, our analyses led to identification of a total number of 102 nuclear genes whose absence results in a complete loss of mtDNA, 52 of which are not reported previously. We also extended our effort to find human orthologs of the identified yeast genes and analyzed the possible roles of the orthologs in human diseases. Additionally, we performed CAN1 forward-mutation assay on the yeast mutants in an effort to screen for genes whose defect affect the integrity of nuclear genome in yeast.

Materials and Methods

Yeast strains, media and reagents

The yeast strains used in this study were wild-type BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and its 466 haploid deletion mutants with deficiencies in growth on non-fermentable substrates [31]. The strains were grown in standard media including yeast extract/peptone/dextrose (YPD) medium or
Gene deleted	Human ortholog	Wild-type function
RML2	LOC51069	Mitochondrial ribosomal protein L2 of the large subunit protein biosynthesis
RSM18		Component of the mitochondrial ribosomal small subunit, protein biosynthesis
FIL1		Mitochondrial ribosome recycling factor, protein biosynthesis
MSR1	LOC63875	Nuclear-encoded mitochondrial protein, arginyl-tRNA synthetase, protein biosynthesis
MRP18	LOC63875	Mitochondrial ribosomal protein of the large subunit, protein biosynthesis, mitochondrial genome maintenance
MEF2		Mitochondrial elongation factor G-like protein, protein synthesis elongation
MRP24		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP23	MRPL13	Mitochondrial ribosomal protein of the large subunit Protein biosynthesis
MSD1	FLJ10514	Mitochondrial aspartyl-tRNA synthetase, protein biosynthesis
MRP51		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MRP40		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP16		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP21		Mitochondrial ribosomal protein, protein biosynthesis
MRP55	MRP55	Mitochondrial ribosomal protein SS, Protein biosynthesis
MRP37		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis, mitochondrial
MRP11		Mitochondrial ribosomal protein of the large subunit, protein biosynthesis
MRP32		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
YDR115W	MRPL34	Putative mitochondrial ribosomal protein of the large subunit, protein biosynthesis
MRP7		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP35	PBP	Mitochondrial ribosomal protein of the large subunit Protein biosynthesis
MRP528		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MRP20	MRPL23	Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
RPL1B	RPL10A	Cytosolic 60S large subunit ribosomal protein, protein biosynthesis
MRP9	MRPL3	Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP25		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP27		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
YCR024C	FLJ23441	Mitochondrial asn-tRNA synthetase, Protein biosynthesis
MRP17	C15orf4	Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP7		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MSE1		Nuclear-encoded mitochondrial protein, glutamyl-tRNA synthetase, protein biosynthesis
MRP2	MRPS14	Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MSF1	LOC91893	Mitochondrial phenylalanine-tRNA ligase alpha chain, Protein biosynthesis
MRP20		Mitochondrial ribosomal protein, protein biosynthesis
MRP38		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
MRP31		Mitochondrial ribosomal protein, Protein biosynthesis
MEF1	EFG	Mitochondrial translation elongation factor G, Protein synthesis elongation
MRP56		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
DIA4	FLJ20450	Probable mitochondrial seryl-tRNA synthetases, Pseudohyphal growth
TUF1	TUFM	Mitochondrial translation elongation factor Tu
MSY1	LOC51067	Mitochondrial tyrosyl-tRNA synthetase
MSW1		Mitochondrial tryptophanyl-tRNA synthetase
MRN1		Mitochondrial peptide chain release factor, protein synthesis
ISM1	FLJ10326	Mitochondrial isoleucyl-tRNA synthetase
RSM23		Mitochondrial ribosomal protein of the small subunit
RSM22		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
RSM27		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
RSM7		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MSK1	KARS	Mitochondrial lysine-tRNA synthetase
RSM19		Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MTG1		Peripheral GTPase of the mitochondrial inner membrane, protein biosynthesis and ribosome assembly
synthetic complete medium (SC) lacking the appropriate amino acid.

Fluorescent microscopy

Patches of the wild-type and each individual deletion strain were made on YPD plates and incubated at 30°C for two days. Cells were picked up and spread across a clean glass slide after blended with 10 μl of H2O. Cells were then air-dried and fixed with methanol and acetic acid (3:1) for 15 minutes at room temperature followed by washing twice in PBS. Cells were again air-dried and stained with the VECTASHIFLD mounting media with DAPI (1.5 μg/ml, Vector Laboratories, CA.) for 15 minutes at room temperature. Cells were visualized using an optimized filter under Nikon microscope with FISHView system (Applied Spectral Imaging, Inc. Carlsbad, CA) and images were captured with a CCD camera.

Interaction analysis of identified genes

Yeast genes of interest were screened for interaction with the program Pathway Assist (version 3.0, Stratagene Corp. La Jolla, CA), and interactions among these genes were analyzed. Pathway Assist is a software tool for biological pathway analysis. It allows for the identification and visualization of pathways, gene regulation networks and protein interaction maps. The software program utilizes a natural language processor to extract information from databases such as Pub Med to provide direct associations.

Nuclear mutation spectra

The wild-type strain BY4741 and each individual deletion strain were grown in 96-well YPD plates at 30°C for 2 days. 5 μl aliquot of each of these cultures was then spotted on SC arginine-dropout plates containing 60 mg/liter canavanine and incubated for 4 days to detect the presence of canavanine-resistant mutants (Canr). Each spot was scored as follows: 0 for spots with 0–5 Canr colonies, similar to the wild-type strain; + for spots with 6–10 colonies; ++ for spots with 11–15 colonies; +++ for spots with >16 colonies or confluent. All mutants with a score of + or greater were further tested by performing the CAN1 forward mutation test by growing cells in 5 ml of YPD to saturation followed by plating an aliquot onto YPD and the SC arginine-dropout canavanine-containing plates after washing and diluting in sterilized water.

Table 1. Cont.

Gene deleted	Human ortholog	Wild-type function
MRPL51		Mitochondrial ribosomal protein of the large subunit, Protein biosynthesis
YNR036C	MRPS12	Putative mitochondrial ribosomal protein of the small subunit, protein biosynthesis
MRPS8	GTPBP5	Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
MTG2		Mitochondrial GTP binding protein required for mitochondrial translation
MRPS16	MRPS16	Mitochondrial ribosomal protein of the small subunit, Protein biosynthesis
YNL081C		Putative mitochondrial ribosomal protein of the small subunit, Protein biosynthesis

doi:10.1371/journal.pone.0105242.t001

Table 2. Genes involved in nucleic acid metabolism.

Gene deleted	Human ortholog	Wild-type function
RPO41		DNA-directed RNA polymerase, transcription from mitochondrial promoter
MGM101		DNA binding, mitochondrial genome maintenance
ABF2	HMG4	DNA binding, mitochondrial genome maintenance
RNR4	RRM2	Ribonucleotide reductase small subunit, DNA replication
SSQ1	HSPA9B	Mitochondrial heat shock protein 70, DNA dependent DNA replication
MSH1	MSH3	Mitochondrial DNA mismatch repair
MIP1		Mitochondrial DNA polymerase catalytic subunit, DNA- dependent DNA replication
FZO1		Mitochondrial integral membrane protein involved in mitochondrial fusion and maintenance of mitochondrial genome
MET7	FPG5	Tetrahidrofolylpolyglutamate synthase, required for methionine synthesis and for maintenance of mitochondrial DNA, involved in one-carbon compound metabolism
PET56	FLJ22578	Ribose methyltransferase for mitochondrial 21 S rRNA
NAM2	XIA60028	Mitochondrial leucyl-tRNA synthetase, mRNA binding
SLV3	SUPV3L1	Mitochondrial ATP-dependent RNA helicase, RNA catabolism
HMI1		Mitochondrial inner membrane localized RNA helicase, maintenance of the mitochondrial genome
AEP3		Peripheral mitochondrial inner membrane protein, mRNA metabolism
MRH4	US-100K	Mitochondrial RNA helicase, ribosome biogenesis

doi:10.1371/journal.pone.0105242.t002
The numbers of Can^r colonies with respect to viable cells were determined after 4–5 days at 30°C. These experiments were performed by growing five independent cellular isolates for each strain. CAN1 gene of yeast encodes a transmembrane amino acid transporter that renders the cell sensitive to a lethal arginine analog, canavanine. Any inactivating mutation in this gene results in a Can^r phenotype. Thus, the frequency of Can^r colonies measures spontaneous nuclear mutational events [32,33].

Statistics Analysis

Statistical analysis for the mutations frequency was performed using Student’s t-test assuming unequal variance. In all cases, statistical significance was determined at the 0.05 level.

Results

Genetics screen for mtDNA depletion

We performed a systematic screen of yeast mutants to identify genes whose deletions led to a complete loss of mtDNA. Among the respiratory defective strains screened, 102 were found to have no mtDNA, of which 52 were not reported previously. The screen was performed twice in a blind manner with regard to the identity of the deleted ORFs, and consistent results were obtained. The representative image profile of mtDNA depletion is shown in Figure 1.

Defects in mitochondrial protein synthesis induce depletion of mtDNA

We found that 56 of the 102 yeast strains (54.9%) that lost their mtDNA were associated with deletions of genes which function in mitochondrial protein synthesis. It is shown in Table 1 that these genes encode 38 mitochondrial ribosomal proteins (37.3%), 9 aminoacyl-tRNA synthetases, amino acid activating enzymes (8.8%) and 7 protein products involved in mitochondrial ribosome recycling or assembly, mitochondrial translation elongation, peptide chain release, all of which are essential components for protein translation process. In addition, 1 of these genes encodes cytosolic 60S large subunit ribosomal protein.

Defects in nucleic acid metabolism induce depletion of mtDNA

Among 102 no-mtDNA yeast strains, 15 (14.7%) were found to have deletions of genes involved in nucleic acid metabolism such as DNA or RNA polymerase transcription, DNA binding, replication or repair, one-carbon compound metabolism (Table 2).

mtDNA depletion resulting due to defects in oxidative phosphorylation

We also found that among the 102 identified mutants, 4 (3.9%) have disruptions of nuclear genes responsible for mitochondrial

Gene deleted	Human ortholog	Wild-type function
ATP5S0		F1F0-ATPase complex, OSCP subunit, ATP synthesis coupled proton transport
ATP5F1		F1F0-ATPase complex, F0 subunit B, ATP synthesis coupled proton transport
F1F0-ATPase complex, subunit h, ATP synthesis coupled proton transport		
TXNL2	Mitochondrial matrix protein involved in the synthesis/assembly of iron-sulfur centers	

Table 3. Genes involved in Oxidative Phosphorylation.

Gene deleted	Human ortholog	Wild-type function
PDXX	Involved in bud-site selection	
Component of the mitochondrial inner membrane m-AAA protease, mitochondrial intermembrane space protein import, assembly of mitochondrial enzyme complexes		
Mitochondrial inner membrane chaperone that specifically facilitates the assembly of cytochrome-c oxidase		
Vacular protein sorting-associated protein, Golgi to vacuole transport		
Protein-nucleus import		
Protein involved in folding of mitochondrially synthesized proteins in the mitochondrial matrix, member of the DnaJ family of molecular chaperones		
Sphingolipid long chain base kinase, sphingolipid metabolism, calcium-mediated signaling		
Mitochondrial intermembrane space protein import, Protein complex assembly		
Protein disulfide isomerase, protein folding		
Mitochondrial protoporphyrinogen oxidase, heme biosynthesis		
Mitochondrial intermediate peptidease, cleaves N-terminal residues of a subset of proteins upon import, iron homeostasis		
Phosphopantetheine: protein transferase, activates mitochondrial acyl carrier protein, lipid transport		
Protein required for maturation of mitochondrial and cytosolic Fe/S proteins, localizes to the mitochondrial intermembrane space, iron transport		
Putative mitochondrial carrier protein, manganese ion transport		

Table 4. Genes involved in other biological processes.

Gene deleted	Human ortholog	Wild-type function
MIPEP	Metabolic process of iron homeostasis and antioxidant function	
LCPX	Lipid metabolism and transport	
PPOX	Mitochondrial proteoporphyrinogen oxidase, heme biosynthesis	
MIPP	Mitochondrial intermediate peptidease, cleaves N-terminal residues of a subset of proteins upon import, iron homeostasis	
OSCP	Mitochondrial intermembrane space protein import, Protein complex assembly	
DCP	Mitochondrial disulfide isomerase, protein folding	
MAE	Mitochondrial matrix protein, involved in the synthesis/assembly of iron-sulfur centers	

Defects in mitochondrial protein synthesis induce depletion of mtDNA

We found that 56 of the 102 yeast strains (54.9%) that lost their mtDNA were associated with deletions of genes which function in mitochondrial protein synthesis. It is shown in Table 1 that these genes encode 38 mitochondrial ribosomal proteins (37.3%), 9 aminoacyl-tRNA synthetases, amino acid activating enzymes (8.8%) and 7 protein products involved in mitochondrial ribosome recycling or assembly, mitochondrial translation elongation, peptide chain release, all of which are essential components for protein translation process. In addition, 1 of these genes encodes cytosolic 60S large subunit ribosomal protein.

Defects in nucleic acid metabolism induce depletion of mtDNA

Among 102 no-mtDNA yeast strains, 15 (14.7%) were found to have deletions of genes involved in nucleic acid metabolism such as DNA or RNA polymerase transcription, DNA binding, replication or repair, one-carbon compound metabolism (Table 2).

mtDNA depletion resulting due to defects in oxidative phosphorylation

We also found that among the 102 identified mutants, 4 (3.9%) have disruptions of nuclear genes responsible for mitochondrial

Gene deleted	Human ortholog	Wild-type function
MIPEP	Metabolic process of iron homeostasis and antioxidant function	
LCPX	Lipid metabolism and transport	
PPOX	Mitochondrial proteoporphyrinogen oxidase, heme biosynthesis	
MIPP	Mitochondrial intermediate peptidease, cleaves N-terminal residues of a subset of proteins upon import, iron homeostasis	
OSCP	Mitochondrial intermembrane space protein import, Protein complex assembly	
DCP	Mitochondrial disulfide isomerase, protein folding	
MAE	Mitochondrial matrix protein, involved in the synthesis/assembly of iron-sulfur centers	

Table 3. Genes involved in Oxidative Phosphorylation.

Gene deleted	Human ortholog	Wild-type function
ATP5S0		F1F0-ATPase complex, OSCP subunit, ATP synthesis coupled proton transport
ATP5F1		F1F0-ATPase complex, F0 subunit B, ATP synthesis coupled proton transport
F1F0-ATPase complex, subunit h, ATP synthesis coupled proton transport		
TXNL2	Mitochondrial matrix protein involved in the synthesis/assembly of iron-sulfur centers	

Table 4. Genes involved in other biological processes.

Gene deleted	Human ortholog	Wild-type function
PDXX	Involved in bud-site selection	
Component of the mitochondrial inner membrane m-AAA protease, mitochondrial intermembrane space protein import, assembly of mitochondrial enzyme complexes		
Mitochondrial inner membrane chaperone that specifically facilitates the assembly of cytochrome-c oxidase		
Vacular protein sorting-associated protein, Golgi to vacuole transport		
Protein-nucleus import		
Protein involved in folding of mitochondrially synthesized proteins in the mitochondrial matrix, member of the DnaJ family of molecular chaperones		
Sphingolipid long chain base kinase, sphingolipid metabolism, calcium-mediated signaling		
Mitochondrial intermembrane space protein import, Protein complex assembly		
Protein disulfide isomerase, protein folding		
Mitochondrial protoporphyrinogen oxidase, heme biosynthesis		
Mitochondrial intermediate peptidease, cleaves N-terminal residues of a subset of proteins upon import, iron homeostasis		
Phosphopantetheine: protein transferase, activates mitochondrial acyl carrier protein, lipid transport		
Protein required for maturation of mitochondrial and cytosolic Fe/S proteins, localizes to the mitochondrial intermembrane space, iron transport		
Putative mitochondrial carrier protein, manganese ion transport		
Genes involved in synthetic lethal without mtDNA

The absence of mitochondrial function is usually accompanied by a rapid drop in the levels of mitochondrial proteins. This is due to the fact that mitochondria are essential for the synthesis and assembly of iron-sulfur centers (Table 3). Components of the iron-sulfur cluster biosynthesis or iron homeostasis require mtDNA for their expression. These include the large and small ribosomal subunits and genes encoding the proteins of the F1F0-ATPase complex. Moreover, mitochondrial F1F0 ATP synthase, intermembrane space protein import, and vacuolar protein sorting also require mtDNA. Atp11p and Atp12p are both molecular chaperones involved in the synthesis of iron-sulfur centers. We therefore screened for human ATP12 cDNA complements yeast mutants of ATP11 and ATP12, which are required for the growth of the strains devoid of mtDNA. Human orthologs of yeast genes and their involvement in mitochondrial diseases. They are the genes encoding MutS, E. coli homolog associated with deficiency of Endometrial carcinoma; DNA Pol h involved in deficiency of progressive external ophthalmoplegia and male infertility; proto- porphyrinogen oxidase associated with deficiency of porphyria variegate; ATPase family gene 3-like 2 associated with deficiency of hereditary spastic paraplegia; and three mitochondrial ribosomal proteins, L3, S12 and S14, which are linked to moebius syndrome 2, and deafness, autosomal dominant nosyndromic sensorineural 4 and 7, respectively (Table 6) [38–41].

mtDNA depletion due to other cellular defects

In addition, the complete depletion of mtDNA in 14 (13.7%) strains stems from a variety of other defects including bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis or iron homeostasis (Table 4).

mtDNA depletion due to deletions of genes involved in unknown function

The remaining 13 yeast mutants (12.7%) identified lost their mtDNA completely due to the deletions of nuclear genes whose protein products are not yet established functionally (Table 5).

Genes involved in synthetic lethal without mtDNA

In an attempt to identify the genes whose inactivation leads to cell death when mtDNA was depleted we screened for 466 mutants strains for viability on YPD. Among the strains we screened we identified two novel genes encoding Atp11p and Atp12p, which are clearly required for growth of the strains devoid of mtDNA. Atp11p and Atp12p are both molecular chaperones required for the assembly of β and α subunits into the F1 sector of mitochondrial F1F0 ATP synthase, respectively [34,35]. Human homologs of these proteins were also identified recently and they act in a manner analogous to their yeast counterpart. Moreover, human ATP12 cDNA complements yeast ATP12Δ disruption mutant. Both the ATP11 and ATP12 genes are broadly conserved in eukaryotes and are expressed in a wide range of tissues [35,36]. More recently, a human respiratory chain complex V deficiency was attributed to a mutation in the assembly gene ATP12Δ [37]. In addition, the viability of vps36Δ mutant was also found to be dependent on mtDNA as shown in Figure 2. However, depletion of mtDNA in vps36A background led to only reduced growth and not the complete lack of growth as found in case of Atp11 and 12 mutants. VPS36 gene encodes a component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome. We identified four other genes whose inactivation leads to synthetic lethality in strains devoid of mtDNA. These include CDC73, NTA1, BZZ1, and TIM18. CDC73 is described to be a component of the Paflp complex, binds to and modulates the activity of RNA polymerases I and II and is involved in modification of some histones, and telomere maintenance. NTA1 is an amidase which removes the amide group from asparagine and glutamine residues to generate proteins with N-terminal aspartate and glutamate residues. These proteins are described to be targets of ubiquitin-mediated degradation. BZZ1p regulates actin polymerization. TIM18p is a subunit of the mitochondrial TIM22 complex which mediates the assembly and stability of the complex.

Human orthologs of yeast genes and their involvement in mitochondrial diseases

When we extended our screen to humans, we found 49 human orthologs of the identified 102 yeast genes whose absence led to a complete loss of mtDNA. Of these, 7 were genes known to be involved in mitochondrial related diseases. They are the genes encoding MutS, E. coli homolog associated with deficiency of Endometrial carcinoma; DNA Poly involved in deficiency of progressive external ophthalmoplegia and male infertility; protoporphyrinogen oxidase associated with deficiency of porphyria variegate; ATPase family gene 3-like 2 associated with deficiency of hereditary spastic paraplegia; and three mitochondrial ribosomal proteins, L3, S12 and S14, which are linked to moebius syndrome 2, and deafness, autosomal dominant nosyndromic sensorineural 4 and 7, respectively (Table 6) [38–41].

Genetic interaction among the identified nuclear mtDNA depletor genes

All 102 identified genes were loaded into Pathway Assist. Of those genes, 77 were recognized by the program (Figure 3), and were thus subjected to subsequent analysis. The ‘Find Only Direct Interaction’, ‘Find Common Regulators’ and ‘Find Common Targets’ features of the software were used to build a network of connections starting with the 77 genes. As a result, 53 genes were shown to have direct and multiple binding relationships, including 34 genes to encode mitochondrial large or small subunit ribosomal proteins and 19 genes encoding protein products involved in mitochondrial aminoacyl-tRNA synthetase, intermembrane space

Gene deleted	Human ortholog	Wild-type function
YGR102C	Mitochondrial, biological process unknown	
YGR150C	Mitochondrial, biological process unknown	
YPR116W	Mitochondrial, biological process unknown	
YOR305W	Mitochondrial, biological process unknown	
YLR091W	Mitochondrial hypothetical protein, biological process unknown	
QRI5	Mitochondrial protein of unknown function	
YOR199W	Biological process unknown	
YOR205C	Hypothetical protein, Biological process unknown	
QRI7	LOC64172	Mitochondrial, biological process unknown
YDR065W	Mitochondrial hypothetical protein, biological process unknown	
YDR114C	Biological process unknown	
CAF17	LOC200205	Mitochondrial protein, biological function unknown
SOV1	Hypothetical protein, protein function unknown	

Table 5. Genes involved in unknown biological processes.

doi:10.1371/journal.pone.0105242.t005
protein import, assembly of iron-sulfur centers or nucleic acid metabolism. The remaining 24 genes recognized by the program were found to be regulated by 11 common regulators including the genes ABF1, REB1, RTG3, LEU3, DAL81, FKH2, SMP1, SUM1, SIP4, HAP4 and a small molecule ATP. Each common regulator was found in the database and regulates 2 or more

Figure 2. Interactions between the genes identified in this study and others using Pathway Assist. The genes loaded from the current study are shown as light green ovals with pink centers, and those shown as pink or green ovals are genes or small molecule considered as common regulators derived from the database. (A) Direct binding relationship among 53 loaded genes is shown, and lines depict direct binding relationships. Of the 53 such genes, 34 were the components of the mitochondrial large or small ribosomal protein constituents. (B) Common regulation relationship among 24 loaded genes and 11 molecules, common regulators found in the database, is displayed. Arrows depict the genes regulated by the regulators.

doi:10.1371/journal.pone.0105242.g002
loaded genes. These common regulators function as transcription factors to regulate expression of the handful of yeast genes. It should be pointed out that we found 2 human orthologs, FCMD and KLF8, of the common regulators LEU3 and SUM1, respectively, associated with human disorders. The protein encoded by FCMD gene regulates the migration and assembly of neurons during cortical histogenesis, and mutations in this gene may lead to Fukuyama congenital muscular dystrophy [42]. Abnormal expression of the KLF8 has been implicated in mental retardation [43].

Increased frequency of nuclear genome mutation in strains defective in mitochondrial function

Our previous studies suggest that disruption of OXPHOS function due to depletion of mtDNA leads to mutation in nuclear genome. We therefore determined the frequency of mutation in all 466 mutant strains screened, suggesting that these genes play a role in the maintenance of normal nuclear genome integrity (Table 7). Together, these studies identify key mitochondrial metabolic pathways which play important roles in protecting the integrity of nuclear genome.

Discussion

To gain insights into the genetic contribution of nuclear genes to maintaining mitochondrial genome stability, we have taken a systematic approach to the identification of nuclear genes by screening a set of yeast deletion strains demonstrating a complete loss of mtDNA. Our screen led to the identification of 102 such genes, which may be classified into the following five categories. The first category includes 56 genes involved in the mitochondrial protein synthesis. The second category consists of 15 genes related to nucleic acid metabolism. The third category is composed of 4 genes required for mitochondrial OXPHOS. The fourth category is 14 genes required for various other biological processes such as bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis or iron homeostasis. The final category includes 13 genes that have not been well defined for the mechanism by which they affect mtDNA maintenance. Of the 102 genes identified, 52 were not reported previously. Our work therefore provides a new set of nuclear genes tightly controlling mtDNA copy number in yeast cells.

It is striking that over 50% of the identified mutants completely lost their mtDNA due to a defect in mitochondrial protein synthesis. The phenotype suggests that the wild-type genes of these nuclear mutants play crucial roles in the mtDNA maintenance by governing mitochondrial protein translation system. Consistent with this observation, an earlier study showed that yeast mutant strains, totally blocked in mitochondrial protein synthesis due to a disruption of genes coding for either mitochondrial aminoacyl-tRNA synthetases, an elongation factor, or a putative protein of mitochondrial ribosomes, undergo a rapid quantitative conversion to rho- derivatives [44]. Another study also found that growth of yeast in the presence of inhibitors of mitochondrial protein synthesis induces a high frequency of rho- strains [45]. Our study thus provides strong support for the notion that mitochondrial translation is required for the maintenance of mitochondrial genome stability. A dysfunction in the synthesis of mitochondrial ribosomal protein components appears to be a primary cause leading to the observed loss of mtDNA. In our observations, 38 out of the 56 protein synthesis-deficient strains with a disappearance of mtDNA (67.9%) are dysfunctional in synthesizing the mitochondrial large or small ribosomal subunit proteins. This is conceivable considering that the ribosome, consisting of rRNA species and MRPs, plays a central role in protein translation process. In yeast, mitochondrial ribosome contains at least 90 proteins encoded by the nuclear genome [46]. They are normally synthesized in cytoplasm and transported into the mitochondria, where they are assembled into large or small ribosomal subunits, coordinately providing a place for mitochondrial protein synthesis [47]. The close interactions between ribosomal protein constituents are also revealed by the PathwayAssist analysis data. The fact that direct binding relationship exists among the 53 ribosomal protein encoding genes indicates that protein products of these genes interact actively. Alternatively, the observed loss of mtDNA in protein synthesis-deficient strains may be a secondary effect caused by the absence of a specific aminoacyl-tRNA synthetase responsible for activating an amino acid to be incorporated into a protein chain, or some other proteins products involved in mitochondrial ribosome recycling or assembly, mitochondrial translation elon-
Figure 3. Mitochondrial DNA dependence of yeast strain viability. \textit{atp11}, \textit{atp12}, \textit{vps36}, \textit{BY4741(wt)} and \textit{tim18} (positive control) (DUNN and JENSEN 2003) strains were streaked out onto YPD plates containing 25 µg/ml ethidium bromide and allowed to grow for 3 days at 30°C to induce loss of mtDNA. To identify strains killed by the EtBr treatment, cells from YPD-EtBr plates were streaked to YPD plates lacking EtBr, and allowed to grow at 30°C for 3 days. doi:10.1371/journal.pone.0105242.g003
orthologs of the 102 identified yeast genes whose deletions led to maintenance.

other nuclear-encoded factors are also involved in the mtDNA metabolism, DNA binding, DNA replication, one-carbon compound metabolism and RNA or DNA helicase. Expectedly, one of these genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6). The corresponding diseases include genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6). The corresponding diseases include genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6).

A set of complete mtDNA loss in a handful of yeast mutants was caused by other defects than mitochondrial protein translation process as shown in Table 2–4. This include 15 mutants (14.7%) defective in nucleic acid metabolism such as RNA polymerase synthesis, DNA binding, DNA replication, one-carbon compound metabolism and RNA or DNA helicase. Expectedly, one of these strains is the MIP1 mutant. This gene encodes a 140-kDa polypeptide with both polymerization and 3′→5′ exonuclease proofreading activities, playing an essential role for the replication of mtDNA. In agreement with our observation, a few prior studies showed that disruption of MIP1 gene might reduce the mtDNA copy number in cells [48,49]. Besides, 4 (3.9%) mutants were defective in mitochondrial oxidative phosphorylation such as ATP synthesis and iron-sulfur center assembly; 14 (13.7%) mutants defective in the processes like bud-site selection, mitochondrial protein import, assembly of cytochrome-c oxidase, protein sorting, sphingolipid metabolism, protein folding and small molecule metabolism. Additionally, 15 mutants (12.7%) have deletions of genes whose functions are still unknown so far. These striking multiple causes resulting in a complete loss of mtDNA suggest that apart from the mitochondrial protein synthesis process, many other nuclear-encoded factors are also involved in the mtDNA maintenance.

When we extended our screen to humans, we found 47 human orthologs of the 102 identified yeast genes whose deletions led to the complete loss of mtDNA. Of these orthologs, 8 were already found to be involved in human mitochondrial diseases. These include genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6). The corresponding diseases include genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6). The corresponding diseases include genes encoding four mitochondrial ribosomal proteins, Pol γ, protoporphyrinogen oxidase, ATPase and a protein associated with DNA mismatch repair (Table 6).

Table 7. Frequency of canavanine gene mutation in yeast deletion strains with mitochondrial dysfunction.

Gene deleted	Can' frequency (× 10⁻⁹) (mean ± SEM)	Wild-type function
BY4741 (WT)	122.0±10.4	Protein involved in mitochondrial homologous DNA recombination and in transcription regulation
MHR1	2644.9±245.7	Subunit of the NusA histone acetyltransferase complex molecular function unknown
YNL136W	3901.9±957.9	Required for mismatch repair in mitosis and meiosis
MLH1	8095.8±650.0	Mitochondrial 3′-5′ exonuclease for RNA 3′ ss-tail
MSU1	4099.9±556.5	Mitochondrial ribosomal protein of the small subunit, protein biosynthesis
MRPS28	5655.9±98.2	Mitochondrial, biological process unknown
YOR022C	307.4±61.4	Mitochondrial integral membrane protein involved in mitochondrial fusion and maintenance of the mitochondrial genome
FZO1	364.5±54.1	Mitochondrial inner membrane protein, required for proteolytic processing of Cox2p and its assembly into cytochrome c oxidase
COX20	472.1±89.7	Molecular function unknown
YDR512C	640.1±57.3	Vacular acification
VM421	2396.6±394.4	Required for stability and translation of COX1 mRNA
PETF09	428.1±67.4	Mitochondrial elongation factor G-like protein
MEF1	315.4±22.1	Molecular function unknown
YLR091W	398.5±54.6	Mitochondrial ribosomal protein of the small subunit
RSM22	714.4±108.1	DNA helicase involved in mitochondrial DNA repair and telomere/DNA recombination
PIF1	1345.8±55.7	Mitochondrial DNA-binding protein involved in mitochondrial DNA replication and recombination
ABF2	1478.6±161.0	Proline-tRNA ligase activity

* p < 0.05. doi:10.1371/journal.pone.0105242.t007

To study the effect of different gene deletions on nuclear genome integrity, we measured the frequency of nuclear point
mutations using the CAN1-forward mutation. Caravanine is lethal to yeast cells and enters the cell via the arginine permease, encoded by the CAN1 gene. Cells that can synthesize arginine and acquire a mutation in CAN1 gene are therefore able to grow on medium lacking arginine and containing caravanine. We found that the deletion of each of seventeen nuclear genes resulted in higher frequency of the mutations with respect to the wild-type, suggesting that these genes are important to maintain nuclear genome stability.

In conclusion, we have identified a set of nuclear genes whose absence lead to a loss of mtDNA, and provide new conceivable evidence in elucidating how mtDNA content is maintained by nuclear genes. An increased understanding of orthologous human genes will help to determine the pathological consequences resulting from changes in mtDNA content.

Author Contributions
Conceived and designed the experiments: KKS. Performed the experiments: HZ. Analyzed the data: KKS HZ. Contributed to the writing of the manuscript: HZ KKS.
47. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, et al. (2014) Architecture of the large subunit of the mammalian mitochondrial ribosome Nature 505: 515–519.

48. Spelbrink JN, Toivonen JM, Hakkart GA, Kurkela JM, Cooper HM, et al. (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. The Journal of Biological Chemistry 275: 24818–24828.

49. Jazayeri M, Andrejev A, Will Y, Ward M, Anderson CM, et al. (2003) Inducible expression of a dominant negative DNA polymerase-\(\gamma\) depletes mitochondrial DNA and Produces a \(\rho^0\) phenotype. The Journal of Biological Chemistry 278: 9823–9830.

50. de Clare M, Oliver SG (2013) Copy-number variation of cancer-gene orthologs is sufficient to induce cancer-like symptoms in Saccharomyces cerevisiae BMC Biology 2511: 24.

51. O’Brien TW, O’Brien BJ, Norman RA (2005) Nuclear MRP genes and mitochondrial disease. Gene 354: 147–151.

52. Yis U, Uyanik G, Heck PB, Smitka M, Nobel H, et al. (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Neuromuscular Disorders 21: 29–30.

53. Wang WF, Li J, Du LT, Wang LL, Yang YM, et al. (2013) Krüppel-like factor 8 overexpression is correlated with angiogenesis and poor prognosis in gastric cancer. World Journal of Gastroenterology 19: 4309–4315.