Influence of conflicts of interest on public positions in the COVID-19 era, the case of Gilead Sciences

Yanis Roussel, Didier Raoult

PII: S2052-2975(20)30062-7
DOI: https://doi.org/10.1016/j.nmni.2020.100710
Reference: NMNI 100710

To appear in: New Microbes and New Infections

Received Date: 6 May 2020
Revised Date: 14 May 2020
Accepted Date: 4 June 2020

Please cite this article as: Roussel Y, Raoult D, Influence of conflicts of interest on public positions in the COVID-19 era, the case of Gilead Sciences, New Microbes and New Infections, https://doi.org/10.1016/j.nmni.2020.100710.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.
Title Page

Full-length title: Influence of conflicts of interest on public positions in the COVID-19 era, the case of Gilead Sciences

Author list: Yanis ROUSSEL1,2, Didier RAOULT1,2

Affiliations:

1 Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France.

2 Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille, Evolution Phylogénie et Infections (MEPHI).

Corresponding author: Didier Raoult, IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 5, France. Tel: +33 (0)4 91 32 43 75; fax: + 33 (0)4 91 38 77 72. Email: didier.raoult@gmail.com
Abstract

Fundings and gifts from the pharmaceutical industry have an influence on the decisions made by physicians and medical experts. In the context of the COVID-19 epidemic, several treatments are available to treat patients infected with the virus. Some are protected by patents, such as remdesivir, others are not, such as hydroxychloroquine. We wanted to observe the possible correlation between the fact, for an academic doctor in infectious diseases, of having benefited from funding by Gilead Sciences, producer of remdesivir, and the public positions taken by this doctor towards hydroxychloroquine. Our results show a correlation (correlation coefficient = 1) between the amount received from the Gilead Sciences company and public opposition to the use of hydroxychloroquine in France. This should open up the debate on the role of the interest links of doctors with pharmaceutical companies in the medical and scientific public debate.
Introduction

The influence of private interests on scientific research is a well studied research object (Lexchin 1993) (Dana, 2003) (Blumenthal, 2004). If the payment of substantial sums is recognized as a source of conflicts of interest, small gifts or meals offered are more tolerated. However, it has been shown that they influence the behavior of those who receive them (Katz, 2003). “There’s no such thing as a free lunch” claimed Nobel Prized Milton Friedman (Friedman, 1975). For example, it has been shown that intense contact with pharmaceutical companies is significantly associated with the prescription of recent drugs (Watkins, 2003), or more expensive drugs when an alternative exists (Sharma, 2018). The low value of these gifts does not take away from their influence: doctors who are offered meals by the pharmaceutical industry prescribe more promoted drugs (Dejong, 2016). The influence of these gifts is not well perceived by doctors, who consider it less influential than what their patients estimate (Gibbons, 1998). Doctors are aware that gifts from industry can influence their colleagues, but few recognize that they can influence them themselves (Steinman, 2001).

In France, since Law No. 2011-2012 of December 29, 2011 (1), companies producing or marketing pharmaceutical products are required to make public all the agreements they conclude, in particular with healthcare professionals, as well as the benefits (including meals and the costs paid for attending conferences) and the remuneration they grant them. It is the laboratories which are obliged to declare these payments which show a link of interest. A public site whose consultation is open to the public lists all these declarations: transparence-sante.gouv.fr. Since the start of the Coronavirus epidemics, the public authorities had to push or limit the use of candidate treatments for COVID-19. These decisions have become the subject of public debates, in the written, digital, television and radio press. To inform the debates, infectious disease physicians were asked by the media to give their point of view on the use of the different treatments.

Candidate treatments for COVID-19 can be divided into two categories: those that are protected by a patent held by a pharmaceutical company, such as Remdesivir, Kaletra - before Abbvie abandoned its rights to the drug following negative studies on COVID19 (Cao, 2020). Others are generic:
hydroxychloroquine, azithromycin. 39 companies are currently manufacturing hydroxychloroquine
(Million, 2020) The choice of the drug by the public authorities therefore translates into a significant
gain or loss for the various laboratories which hold the rights to a candidate molecule.

The conflict between hydroxychloroquine and remdesivir, started by a publication listing both as
treatment candidates (Wang, 2020), has grown considerably, with announcements and counter-
announcements as well as contradictory articles (Gautret, 2020) (Gautret, 2020) (Chen, 2020) (Chen,
2020) (Huang, 2020) (Tang, 2020) (Mahevas, 2020) (Magagnoli, 2020), which had a significant
influence on the share price of the company Gilead Sciences, listed on the NASDAQ (See for example
the statement by Anthony Fauci (2) from April 29, 2020, synchronized with an article published in the
Lancet at the same time (Wang, 2020)). It therefore seems relevant to us to focus on the links of
interest between Gilead Sciences and various opinion leaders, infectious disease physicians in France
that are now stakeholders of this health crisis.

This debate led us to wonder about the role of pharmaceutical companies in the current therapeutic
debate. We particularly question the laboratories that hold rights to a candidate molecule, in particular
Gilead Sciences with Remdesivir. Are the medical researchers who have spoken in recent weeks in the
debate on the use of hydroxychloroquine in a position of a conflict of interest? This is the question we
wanted to answer by studying the links of interest between Gilead Sciences, producer of Remdesivir,
and the doctors who took a stand for or against hydroxychloroquine.

Materiel and methods

To establish the list of French academic infectious disease physicians, we used the list of members of
CMIT (Council of Teachers in Infectious and Tropical Diseases). In the list we obtained, 98 medical
researchers were identified. Public interventions were defined as a direct expression of opinion in a
media, academic or not academic. Non-academic newspapers included national newspapers, regional
newspapers, television channels, radio channels. For each member of the CMIT, we did a systematic
search on Google News to identify press reports containing the word Hydroxychloroquine and quoting
this member of the CMIT. We carefully read their interventions and classified their positioning on a
scale of 1 to 5, 1 meaning that they were very unfavorable to the use of hydroxychloroquine, 5 that
they were very favorable to it. “Very favorable” was defined as “having expressed a call for
generalization of the use of hydroxychloroquine, or reporting a successful use of the treatment in the
physician’s facility”. “Favorable” was defined as “having recognized a positive effect of
hydroxychloroquine, while waiting for confirmation of results for taking further position”. “Neutral”
was defined as “expressing the need for more studies for making any comment of the efficiency of the
treatment”. “Unfavorable” was defined as “while still waiting for more results, expressing negative
comments about hydroxychloroquine”. “Very unfavourable” was defined as “expression of anger
towards the mediatisation of hydroxychloroquine, or a strict opposition towards the generalization of
the use of hydroxychloroquine”.

Using the eurofordocs.fr website which aggregates the data from the transparence-sante.gouv.fr
website, we listed the links of interest with the Gilead Sciences laboratory of all CMIT members, as
well as their links of interest with all companies subject to the declaration on the Transparency Health
platform. We finally established the average of the sums received from Gilead Sciences for each of the
categories of researchers established by their positioning with respect to hydroxychloroquine;
similarly, we have averaged the amounts received by all reporting companies. We performed a
Spearman correlation test to explore the relation between position towards hydroxychloroquine and
funding received by Gilead Sciences.

Results

A total of € 678,527 was paid by the company Gilead Sciences, manufacturer of Remdesivir in 7
years, to doctors who are members of CMIT (Table 1). This represents an average of € 6,924 per
doctor. All reporting companies combined, a total of € 4,603,098 was paid to CMIT physicians
between 2013 and 2019 (Table 2). There is a strict correlation (Spearman test, p=0.017) between the
position of doctors towards hydroxychloroquine and the average amount paid to them by the company
Gilead Sciences between 2013 and 2019. In all, only 13 doctors out of 98 CMIT members did not receive any benefit, remuneration or agreement from the Gilead Sciences company between 2013 and 2019. Among these 13 doctors, 7 were very favorable to the use of hydroxychloroquine, 1 favorable, 1 neutral and 4 have not taken a position. On the opposite, among the 13 doctors that received the most important funding from Gilead Sciences, 6 were very unfavorable to the use of hydroxychloroquine, 1 unfavorable, 3 neutral and 3 have not taken a position.

Discussion

In this short work, we wanted to observe the influence of conflicts of interest, in the time of COVID was confirmed. Not surprisingly, we have shown a correlation but we have been impressed by the level of correlation, which is perhaps one of the explanations for the violence of the debate that has taken place concerning the use of hydroxychloroquine. None of the studies involving Remdesivir (Wang, 2020) or Lopinavir/Ritonavir (Cao, 2020) could show any effectiveness of these drugs in the could show effectiveness in the prevention of mortality or the reduction, and reduction of the the viral load of COVID-19, whereas 4 studies have now shown significant differences on: clinical course, radiological course, mortality, viral load (Million, 2020) (Yu, 2020) (Huang, 2020) (Membrillo de Novales, 2020). In addition, the issue of conflict of interest goes beyond that of practitioners, and also undoubtedly affects publishers and conference organizers, who also have links of interest with the most dynamic pharmaceutical manufacturers. The COVID crisis will make it possible to re-analyze many things, including the issue of conflicts of interest, a problem which is absolutely not resolved in many countries of the world, including France. It does not concern only doctors, this matter also concerns publishers and organizers of medical events, who are subject to the same types of financial conflicts. It is interesting to notice that major measures have been taken in France to fight conflicts of interest in politics, including mandatory declarations of patrimony during the course of the mandates of representatives to a national authority (HATVP), such measures have not been taken in the medical field.
References

(1) LOI n° 2011-2012 du 29 décembre 2011 relative au renforcement de la sécurité sanitaire du médicament et des produits de santé
https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000025053440&categorieLien=id (last consulted 05/05/2020)

(2) Erika Edwards, Remdesivir shows promising results for coronavirus, Fauci says, NBC News, 29/04/2020 https://www.nbcnews.com/health/health-news/coronavirus-drug-remdesivir-shows-promise-large-trial-n1195171 (last consulted 05/05/2020)

Blumenthal, D. (2004). Doctors and Drug Companies. New England Journal of Medicine, 351(18), 1885–1890. doi:10.1056/nejmhr042734

Katz D, Caplan AL, Merz JF. All gifts large and small: toward an understanding of the ethics of pharmaceutical industry gift-giving. Am J Bioeth. 2003;3(3):39-46. doi:10.1162/15265160360706552

Friedman, Milton, There's No Such Thing as a Free Lunch, Open Court Publishing Company, 1975. ISBN 087548297X.

Watkins, C. (2003). Characteristics of general practitioners who frequently see drug industry representatives: national cross sectional study. BMJ, 326(7400), 1178–1179. doi:10.1136/bmj.326.7400.1178

Sharma M, Vadhariya A, Johnson ML, Marcum ZA, Holmes HM. Association between industry payments and prescribing costly medications: an observational study using open payments and medicare part D data. BMC Health Serv Res. 2018;18(1):236. Published 2018 Apr 2. doi:10.1186/s12913-018-3043-8

DeJong C, Aguilar T, Tseng CW, Lin GA, Boscardin WJ, Dudley RA. Pharmaceutical Industry-Sponsored Meals and Physician Prescribing Patterns for Medicare Beneficiaries [published correction appears in JAMA Intern Med. 2016 Sep 1;176(9):1411-2]. JAMA Intern Med. 2016;176(8):1114–1122. doi:10.1001/jamainternmed.2016.2765

Dana J, Loewenstein G. A social science perspective on gifts to physicians from industry. JAMA. 2003;290(2):252-255. doi:10.1001/jama.290.2.252

Gibbons RV, Landry FJ, Blouch DL, et al. A comparison of physicians' and patients' attitudes toward pharmaceutical industry gifts. J Gen Intern Med. 1998;13(3):151-154. doi:10.1046/j.1525-1497.1998.00048.x

Lexchin J. Interactions between physicians and the pharmaceutical industry: what does the literature say?. CMAJ. 1993;149(10):1401-1407.

Steinman MA, Shlipak MG, McPhee SJ. Of principles and pens: attitudes and practices of medicine housestaff toward pharmaceutical industry promotions. Am J Med. 2001;110(7):551-557. doi:10.1016/s0002-9343(01)00660-x

Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19 [published online ahead of print, 2020 Mar 18]. N Engl J Med. 2020;NEJMoa2001282. doi:10.1056/NEJMoa2001282

Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial [published online ahead of print, 2020 Mar 20]. Int J Antimicrob Agents. 2020;105949. doi:10.1016/j.ijantimicag.2020.105949

Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study [published online ahead of print, 2020 Apr 11]. Travel Med Infect Dis. 2020;101663. doi:10.1016/j.tmaid.2020.101663

Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z. 2020. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv 2020.03.22.20040758; https://doi.org/10.1101/2020.03.22.20040758

Chen J, Liu D, Lui L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. 2020. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) 49:0-0 https://doi.org/10.3785/j.issn.1008-170

Huang M, Tang T, Pang P, Li M, Ma R, Lu J, Shu J, You Y, Chen B, Liang J, Hong Z, Chen H, Kong L, Qin D, Pei D, Xia J, Jiang S, Shan H. Treating COVID-19 with Chloroquine. 2020. J Mol Cell Biol. In press. https://doi.org/10.1093/jmcb/mjaa014

Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, Wu Y, Xiao W, Liu S, Chen E, Chen W, Wang X, Yang J, Lin J, Zhao Q, Yan Y, Xie Z, Li D, Yang Y, Liu L, Qu J, Ning G, Shi G, Xie Q. 2020. Hydroxychloroquine in patients with COVID-19: an open-label, randomized, controlled trial. medRxiv 2020.04.10.20060558; https://doi.org/10.1101/2020.04.10.20060558

Mahevas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, Gallien S, Lepeule R, Tali Szwebel TA, Lescure X, Schlemmer F, Matignon M, Khellaf M, Crickx E, Terrier B, Morbieu C, Legendre P, Dang J, Schoindre Y, Pawlotski JM, Michel M, Perrodeau E, Carlier N, Roche N, De Lastours V, Mouthon L, Audureau E, Ravaud P, Godeau B, Costedoat N. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. 2020. medRxiv 2020.04.10.20060699; https://doi.org/10.1101/2020.04.10.20060699

Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS, Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020.04.16.20065920; https://doi.org/10.1101/2020.04.16.20065920

Yeming Wang, Dingyu Zhang, Guanhua Du, Ronghui Du, Jianping Zhao, Yang Jin, Shouzhi Fu, Ling Gao, Zhenshun Cheng, Qiaofu Lu, Yi Hu, Guangwei Luo, Ke Wang, Yang Lu, Huadong Li, Shuzhen Wang, Shunan Ruan, Chengqing Yang, Chunlin Mei, Yi Wang, Dan Ding, Feng Wu, Xin Tang, Xianzhi Ye, Yingchun Ye, Bing Liu, Jie Yang, Wen Yin, Aili Wang, Guohui Fan, Fei Zhou, Zhibo Liu, Xiaoying Gu, Jiuyang Xu, Lianjun Shang, Yi Zhang, Lianjun Cao, Tingting Guo, Yan Wan, Hong Qin, Yushen Jiang, Thomas Jaki, Frederick G Hayden, Peter W Horby, Bin Cao, Chen Wang, Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial, The Lancet, Published Online April 29, 2020 https://doi.org/10.1016/ S0140-6736(20)31022-9
Million M, Lagier J-C, Gautret P, Colson P, Fournier P-E, Amrane S, Hocquart M, Mailhe M, Esteves-Vieira V, Doudier B, Aubry C, Correard F, Giraud-Gatineau A, Roussel Y, Berenger C, Cassir N, Seng P, Zandotti C, Dhiver C, Ravaux I, Tomei C, Eldin C, Tissot-Dupont Hervé, Honoré Sté, Stein A, Jacquier A, Deharo J-C, Chabrière E, Levasseur A, Fenollar F, Rolain J-M, Obadia Y, Brouqui P, Drancourt M, La Scola B, Parola P, Raoult D. Full-length title: Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France, Travel Medicine and Infectious Disease (2020), doi: https://doi.org/10.1016/j.tmaid.2020.101738

Yu B, Wang DW, Li C. Hydroxychloroquine application is associated with a decreased mortality in critically ill patients with COVID-19, posted as a preprint May 01, 2020, MedRxiv, https://www.medrxiv.org/content/10.1101/2020.04.27.20073379v1 (last consulted 06/05/2020)

Mingxing Huang, Man Li, Fei Xiao, Jiabi Liang, Pengfei Pang, Tiantian Tang, Shaoxuan Liu, Binghui Chen, Jingxian Shu, Yingying You, Yang Li, Meiwen Tang, Jianhui Zhou, Guanmin Jiang, Jingfen Xiang, Wenxin Hong, Songmei He, Zhaoqin Wang, Jianhua Feng, Changqing Lin, Yinong Ye, Zhilong Wu, Yaocai Li, Bei Zhong, RuiLin Sun, Zhongsi Hong, Jing Liu, Huili Chen, Xiaohua Wang, Zhonghe Li, Duanqing Pei, Lin Tian, Jinyu Xia, Shanping Jiang, Nanshan Zhong, Hong Shan, posted as a preprint May 04, 2020, MedRxiv, https://www.medrxiv.org/content/10.1101/2020.04.26.20081059v1 (last consulted 06/05/2020)

Membrillo de Novales, F.J.; Ramírez-Olivencia, G.; Estébanez, M.; de Dios, B.; Herrero, M.D.; Mata, T.; Borobia, A.M.; Gutiérrez, C.; Simón, M.; Ochoa, A.; Martínez, Y.; Aguirre, A.; Alcántara, F.D.A.; Fernández-González, P.; López, E.; Campos, S.; Navarro, M.; Ballester, L.E. Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study. Preprints 2020, 2020050057 (doi: 10.20944/preprints202005.0057.v1).

This work was supported by the French Government under the “Investments for the Future” programme managed by the National Agency for Research (ANR), Méditerranée-Infection 10-IAHU-03.
Table 1: Links of interest with Gilead Sciences between 2013 and 2019 depending on the position towards hydroxychloroquine (HCQ)

Position towards HCQ	Number	Average (€)	Median (€)	Extreme (€)	Extreme + (€)
Very favorable	8	52	0	0	417
Favorable	6	1524	1208	0	4773
Neutral	14	9729	2729	0	48006
Unfavorable	7	11085	10547	234	31731
Very Unfavorable	9	24048	26950	122	52812
Did not take position	54	4421	2143	0	36706
TOTAL	98	6924	2188	0	52812

Table 2: Links of interest with pharmaceutical companies between 2013 and 2019 depending on the position towards hydroxychloroquine (HCQ)

Position towards HCQ	Number	Average (€)	Median (€)	Extreme (€)	Extreme + (€)
Very favorable	8	6649	1558	42	30875
Favorable	6	10913	9999	42	24840
Neutral	14	62858	26339	585	291755
Unfavorable	7	61519	57529	11842	100358
Very Unfavorable	9	157939	130250	7498	543673
Did not take position	54	32451	19766	0	241267
TOTAL	98	46970	21978	0	543673
YR and DR contributed to the conception of the study, analyzed the results, wrote and revised the manuscript. YR collected the data. DR supervised the work realized.