Nonterminating transformations and summations associated with some \(q \)-Mellin–Barnes integrals

Howard S. Cohl\(^\dagger \) and Roberto S. Costas-Santos\(^\S \)

\(^\dagger \)Applied and Computational Mathematics Division, National Institute of Standards and Technology, Mission Viejo, CA 92694, USA

URL: http://www.nist.gov/itl/math/msg/howard-s-cohl.cfm

E-mail: howard.cohl@nist.gov

\(^\S \)Dpto. de Física y Matemáticas, Universidad de Alcalá, c.p. 28871, Alcalá de Henares, Spain

URL: http://www.rscosan.com

E-mail: rscosa@gmail.com

Received June 13, 2022 in final form ????; Published online ????
doi:10.3842/JOURNAL.202*.

Abstract. In many cases one may encounter an integral which is of \(q \)-Mellin–Barnes type. These integrals are easily evaluated using theorems which have a long history dating back to Slater, Askey, Gasper, Rahman and others. We derive some interesting \(q \)-Mellin–Barnes integrals and using them we derive transformation and summation formulas for nonterminating basic hypergeometric functions. The cases which we treat include ratios of theta functions, the Askey–Wilson moments, nonterminating well-poised \(\binom{3}{2} \), nonterminating very-well-poised \(\binom{5}{4} \), \(\binom{8}{7} \), products of two nonterminating \(\binom{2}{1} \)'s, square of a nonterminating well-poised \(\binom{2}{1} \), and nonterminating \(\binom{12}{11} \) and \(\binom{10}{9} \).

Key words: \(q \)-calculus; nonterminating basic hypergeometric functions; nonterminating transformations; nonterminating summations; integral representations; \(q \)-Mellin–Barnes integrals; Askey–Wilson polynomials; Askey–Wilson moments

2020 Mathematics Subject Classification: 33D15; 33D60

1 Preliminaries

There have existed in the past some very important \(q \)-Mellin–Barnes integrals. Some important examples include those given by Askey–Wilson [4, (2.1)], Nassrallah–Rahman [9, (6.3.9)] as well as those given in Askey–Roy [3, (2.8)] and in Gasper [8, (1.8)]. In this paper we take advantage of the powerful methods following the pioneering work of Bailey [5, Chapter 8], and his student Slater which were fully recapitulated by Gasper & Rahman in [9, Chapter 4]. We are able to use well-known formulas for certain highly symmetric basic hypergeometric functions to obtain new \(q \)-Mellin–Barnes integrals and from them derive a new class of transformation and summation formulas.

We adopt the following set notations: \(\mathbb{N}_0 := \{0\} \cup \mathbb{N} = \{0, 1, 2, \ldots\} \), and we use the sets \(\mathbb{Z}, \mathbb{R}, \mathbb{C} \) which represent the integers, real numbers and complex numbers respectively, \(\mathbb{C}^* := \mathbb{C} \setminus \{0\} \), and \(\mathbb{C}^\dagger := \{z \in \mathbb{C}^* : |z| < 1\} \). We also adopt the following notation and conventions. Given a set \(a := \{a_1, \ldots, a_A\} \), for \(A \in \mathbb{N} \), then we define \(a_{[k]} := a \setminus \{a_k\} \), \(1 \leq k \leq A \), \(ba := \{b a_1, b a_2, \ldots, b a_A\} \), \(a + b := \{a_1 + b, a_2 + b, \ldots, a_A + b\} \), where \(b, a_1, \ldots, a_A \in \mathbb{C} \).

Remark 1.1. Observe in the following discussion we will often be referring to a collection of constants \(a, b, c, d, e, f \). In such cases, which will be clear from context, then the constant \(e \) should not be confused with Euler’s number \(e \), the base of the natural logarithm, i.e., \(\log e = 1 \). Observe the different (roman) typography for Euler’s number.
We assume that the empty sum vanishes and the empty product is unity. We will also adopt the following symmetric sum notation.

Definition 1.2. For some function \(f(a_1, \ldots, a_n; b) \), where \(b \) is some set of parameters. Then

\[
\prod_{i=1}^{a_1; a_2, \ldots, a_n} f(a_1, a_2, \ldots, a_n; b) := f(a_1, a_2, \ldots, a_n; b) + \text{idem}(a_1; a_2, \ldots, a_n),
\]

where “\(\text{idem}(a_1; a_2, \ldots, a_n) \)” after an expression stands for the sum of the \(n - 1 \) expressions obtained from the preceding expression by interchanging \(a_1 \) with each \(a_k, k = 2, 3, \ldots, n \).

Definition 1.3. We adopt the following conventions for succinctly writing elements of sets. To indicate sequential positive and negative elements, we write

\[
\pm a := \{a, -a\}.
\]

We also adopt an analogous notation

\[
e^{\pm i\theta} := \{e^{i\theta}, e^{-i\theta}\}.
\]

In the same vein, consider the numbers \(f_s \in \mathbb{C} \) with \(s \in S \subset \mathbb{N} \), with \(S \) finite. Then, the notation \(\{f_s\} \) represents the set of all complex numbers \(f_s \) such that \(s \in S \). Furthermore, consider some \(p \in S \), then the notation \(\{f_s\}_{s \neq p} \) represents the sequence of all complex numbers \(f_s \) such that \(s \in S \setminus \{p\} \).

Consider \(q \in \mathbb{C}^\dagger \), \(n \in \mathbb{N}_0 \). Define the sets

\[
\Omega_q^n := \{q^{-k} : k \in \mathbb{N}_0, 0 \leq k \leq n-1\}, \tag{1.2}
\]

\[
\Omega_q := \Omega_q^\infty = \{q^{-k} : k \in \mathbb{N}_0\}, \tag{1.3}
\]

\[
\Upsilon_q := \{q^k : k \in \mathbb{Z}\}. \tag{1.4}
\]

In order to obtain our derived identities, we rely on properties of the \(q \)-shifted factorial \((a; q)_n\). We refer to \((a; q)_n\) as a \(q \)-shifted factorial (it is also referred to as a \(q \)-Pochhammer symbol). For any \(n \in \mathbb{N}_0 \), \(a, b, q \in \mathbb{C} \), the \(q \)-shifted factorial is defined as

\[
(a; q)_n := (1-a)(1-aq) \cdots (1-aq^{n-1}). \tag{1.5}
\]

One may also define

\[
(a; q)_\infty := \prod_{n=0}^{\infty} (1-aq^n), \tag{1.6}
\]

where \(|q| < 1\). Furthermore, one has the following identities

\[
(a^2; q)_\infty = (\pm a, \pm q^{1/2}a; q)_\infty \tag{1.7}
\]

\[
(a^2; q^2)_\infty = (\pm a; q)_\infty. \tag{1.8}
\]

One also has

\[
(q^{-n}a; q)_\infty = (q^{-n}a; q)_n(a; q)_\infty. \tag{1.9}
\]
One also has the definition of the q-gamma function, namely \cite[1.9.1]{12}:

$$\Gamma_q(x) := \frac{(q;x)_\infty}{(1-q)x^{-1}(q^x;x)_\infty},$$ \hspace{1cm} (1.10)

and also the gamma function $\Gamma : \mathbb{C} \setminus -\mathbb{N}_0 \to \mathbb{C}$ defined in \cite[(5.2.1)]{7}. Note that \cite[p. 13]{12}

$$\lim_{q \to 1^-} \Gamma_q(x) = \Gamma(x).$$ \hspace{1cm} (1.11)

We will also use the following notational product conventions, $a_k \in \mathbb{C}$, $k \in \mathbb{N}$, $b \in \mathbb{C} \cup \{\infty\}$,

$$(a_1, \ldots, a_k|q)_b := (a_1|q)_b \cdots (a_k|q)_b,$$ \hspace{1cm} (1.12)

$$\Gamma_q(a_1, \ldots, a_k) := \Gamma_q(a_1) \cdots \Gamma_q(a_k),$$ \hspace{1cm} (1.13)

$$\Gamma(a_1, \ldots, a_k) := \Gamma(a_1) \cdots \Gamma(a_k).$$ \hspace{1cm} (1.14)

The basic hypergeometric series, which we will often use, is defined for $z \in \mathbb{C}$, $q \in \mathbb{C}^\dagger$, $s \in \mathbb{N}_0$, $r \in \mathbb{N}_0 \cup \{-1\}$, $b_j \not\in \Omega_q$, $j = 1, \ldots, s$, as \cite[(1.10.1)]{12}:

$$r+1\phi_s\left(\begin{array}{c} a_1, \ldots, a_{r+1} \cr b_1, \ldots, b_s \end{array}; q, z \right) := \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_{r+1}; q)_k}{(q, b_1, \ldots, b_s; q)_k} (-1)^k q^{(r+1)k} \sum_{r}^z k^r.$$ \hspace{1cm} (1.15)

For $s > r$, $r+1\phi_s$ is an entire function of z, for $s = r$ then $r+1\phi_s$ is convergent for $|z| < 1$, and for $s < r$ the series is divergent unless it is terminating. Note that when we refer to a basic hypergeometric function with arbitrary argument z, we simply mean that the argument does not necessarily depend on the other parameters, namely the a_j’s, b_j’s or q. However, for the arbitrary argument z, it very-well may be that the domain of the argument is restricted, such as for $|z| < 1$.

We will use the following notation $r+1\phi_s^m$, $m \in \mathbb{Z}$ (originally due to van de Bult & Rains \cite[p. 4]{15}), for basic hypergeometric series when some parameter entries are equal to zero. Consider $p \in \mathbb{N}_0$. Then define

$$r+1\phi_s^p\left(\begin{array}{c} a_1, \ldots, a_{r+1} \cr b_1, \ldots, b_s \end{array}; q, z \right) := r+p+1\phi_s^p\left(\begin{array}{c} a_1, a_2, \ldots, a_{r+1}, 0, \ldots, 0 \cr b_1, b_2, \ldots, b_s \end{array}; q, z \right),$$ \hspace{1cm} (1.16)

$$r+1\phi_s^p\left(\begin{array}{c} a_1, \ldots, a_{r+1} \cr b_1, \ldots, b_s \end{array}; q, z \right) := r+1\phi_{s+p}\left(\begin{array}{c} a_1, a_2, \ldots, a_{r+1} \cr b_1, b_2, \ldots, b_s, 0, \ldots, 0 \end{array}; q, z \right),$$ \hspace{1cm} (1.17)

where $b_1, \ldots, b_s \not\in \Omega_q \cup \{0\}$, and $r+1\phi_s^0 = r+1\phi_s$. The nonterminating basic hypergeometric series $r+1\phi_s^m(a; b; q, z)$, $a := \{a_1, \ldots, a_{r+1}\}$, $b := \{b_1, \ldots, b_s\}$, is well-defined for $s + r + m \geq 0$. In particular $r+1\phi_s^m$ is an entire function of z for $s + r + m > 0$, convergent for $|z| < 1$ for $s + r + m = 0$ and divergent if $s + r + m < 0$ unless it is terminating. Note that we will move interchangeably between the van de Bult & Rains notation and the alternative notation with vanishing numerator and denominator parameters which are used on the right-hand sides of (1.16) and (1.17).

The geometric series is given by \cite{1}:

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1 - z},$$ \hspace{1cm} (1.18)
provided \(|z| < 1\). The \(q\)-binomial theorem is given by \([12, (1.11.1)]\)
\[
1\phi_0\left(\begin{array}{c} a \\ - ; q, z \end{array} \right) = \frac{(az; q)_{\infty}}{(z; q)_{\infty}},
\]
(1.19)
provided \(|z| < 1\) for convergence of the left-hand side nonterminating basic hypergeometric series.

1.1 The theta function and the partial theta function

The theta function \(\vartheta(z; q)\) (sometimes referred to as a modified theta function \([9, (11.2.1)]\)) is defined by Jacobi’s triple product identity and is given by \([9, (1.6.1)]\) (see also \([13, (2.3)]\))
\[
\vartheta(z; q) := \frac{(z, q/z; q)_{\infty}}{(q; q)_{\infty}} = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(n+1)/2} z^n.
\]
(1.20)
where \(z \neq 0\). Note that \(\vartheta(q^n; q) = 0\) if \(n \in \mathbb{Z}\). We will adopt the product convention for theta functions for \(a_k \in \mathbb{C}\) for \(k \in \mathbb{N}\), namely
\[
\vartheta(a_1, \ldots, a_k; q) := \vartheta(a_1; q) \cdots \vartheta(a_k; q).
\]
A particular ratio of theta function satisfies the following useful identity
\[
\frac{(a, q/a; q)_{\infty}}{(qa, 1/a; q)_{\infty}} = \frac{\vartheta(a; q)}{\vartheta(qa; q)} = -a,
\]
(1.21)
where \(a \neq 0\).

The partial theta function \(\Theta(z; q)\), described as such because it only involves the partial sum contribution for \(n \geq 0\) in (1.20) as opposed to summing over all integers as in the theta function, is defined as follows with alternative representations.

Theorem 1.4. Let \(q \in \mathbb{C}^\dagger, p \in \mathbb{N}, z \in \mathbb{C}^*, \ |z| < 1\). Then
\[
\Theta(z; q) := \frac{1}{(q; q)_{\infty}} \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)/2} z^n = \frac{1}{(q; q)_{\infty}} \phi_0\left(\begin{array}{c} q \\ - ; q, z \end{array} \right)\]
(1.22)
\[
= \frac{1}{(q; q)_{\infty}} \phi_0\left(\begin{array}{c} q^{1/p} \\ - ; q^{1/p}, (-1)^{p-1} z \end{array} \right)\]
(1.23)
\[
= (z; q)_{\infty} \phi_0^{-2}\left(\begin{array}{c} - \\ z ; q, q \end{array} \right)\]
(1.24)
\[
= \frac{(z; q)_{\infty}}{(q; q)_{\infty}} \phi_1\left(\begin{array}{c} - \\ z ; q, qz \end{array} \right)\]
(1.25)
\[
= \frac{(z; q)_{\infty}}{(q; q)_{\infty}} \phi_3\left(\begin{array}{c} \pm i\sqrt{z}, \pm i\sqrt{qz} \\ -q, \pm z \end{array} ; q, q \right)\]
(1.26)

Proof. The representation (1.22) follows the definition of nonterminating basic hypergeometric series (1.15). The representation (1.23) follows from direct substitution using (1.15). The representations (1.24), (1.25) follow from \([12, (1.13.8-9)]\). The representation (1.26) follows from Andrews & Warnaar’s formula for a product of partial theta functions \([2, Theorem 1.1]\)
\[
\Theta(a; q)\Theta(b; q) = \frac{(a, b; q)_{\infty}}{(q; q)_{\infty}} \phi_3\left(\begin{array}{c} \pm \sqrt{ab}, \pm \sqrt{\frac{ab}{q}} \\ a, b, \frac{ab}{q} \end{array} ; q, q \right)\]
(1.27)
with the substitutions $(a, b) \mapsto (z, -q)$ and the identity [7, (20.4.3)]

$$\Theta(-q; q) = (-q, -q; q)_\infty. \quad \tag{1.28}$$

This completes the proof. ■

1.2 Some theorems involving q-Mellin–Barnes integrals

Now we present a result which allows one to evaluate integrals of products and ratios of infinite q-shifted factorials in terms of sums of non-terminating basic hypergeometric functions. The following result is a special case ($t = 1$) of the more general result which appears in [6, Theorem 2.1]. Note that we adopt a representation for the contour integral as in [9, (4.9.3)]. However, there are several other alternative integral representations which can be used (see [9, §4.9]).

Theorem 1.5. Let $q \in \mathbb{C}^+$, $m \in \mathbb{Z}$, $\sigma \in (0, \infty)$, $a := \{a_1, \ldots, a_A\}$, $b := \{b_1, \ldots, b_B\}$, $c := \{c_1, \ldots, c_C\}$, $d := \{d_1, \ldots, d_D\}$ be sets of non-zero complex numbers with cardinality $A, B, C, D \in \mathbb{N}_0$ (not all zero) respectively with $|c_k| < |q|$, $|d_l| < 1/\sigma$, for any $a_i, b_j, c_k, d_l \in \mathbb{C}^*$ elements of a, b, c, d, and $z := e^{i\psi}$. Define the q-Mellin–Barnes integral

$$G_m := G_m(a, b, c, d; \sigma, q) := \frac{(q; q)_\infty}{2\pi} \left(\frac{1}{\sigma} \right) \int_{C}^\infty \frac{(b^a, a^*_z; q)_\infty}{(d^c, c^*_z; q)_\infty} e^{im\sigma} d\psi, \quad \tag{1.29}$$

such that the integral exists. Then

$$G_m(a, b, c, d; \sigma, q) = G_m(b, a, d, c; \sigma, q), \quad \tag{1.30}$$

if $|c_k|, |d_l| < \min\{1/\sigma, \sigma\}$. Furthermore, let $d_lc_k \not\in \Omega_q$. If $D \geq B$, $d_l/d_k \not\in \Omega_q$, $l \neq l'$, then

$$G_m = \sum_{k=1}^{D} \frac{(d_k a, b/d_k; q)_\infty d_k^m}{(d_k c, d_k/d_k; q)_\infty} \left(\frac{d_k c, q d_k/b}{d_k a, q d_k/d_k} \right), \quad \tag{1.31}$$

and/or if $C \geq A$, $c_k/c_k' \not\in \Omega_q$, $k \neq k'$, then

$$G_m = \sum_{k=1}^{C} \frac{(c_k b, a/c_k; q)_\infty c_k^m}{(c_k d, c_k/c_k; q)_\infty} \left(\frac{c_k d, q c_k/a}{c_k b, q c_k/c_k} \right), \quad \tag{1.32}$$

where the nonterminating basic hypergeometric series in (1.31) (resp. (1.32)) is entire if $D > B$ (resp. $C > A$), convergent for $|q^{-m}b_1 \cdots b_B| < |d_1 \cdots d_D|$ if $D = B$ (resp. $|q^{-m}a_1 \cdots a_A| < |c_1 \cdots c_C|$ if $C = A$), and divergent otherwise.

Proof. See proof of [6, Theorem 2.1]. ■

One can convert the integral in the above theorem to a form which is more similar to that which appears in Mellin–Barnes integrals by replacing the infinite q-shifted factorials with q-gamma functions using (1.10).

Corollary 1.6. Let $q \in \mathbb{C}^+$, $m \in \mathbb{Z}$, $a := \{a_1, \ldots, a_A\}$, $b := \{b_1, \ldots, b_B\}$, $c := \{c_1, \ldots, c_C\}$, $d := \{d_1, \ldots, d_D\}$ be sets of non-zero complex numbers with cardinality $A, B, C, D \in \mathbb{N}_0$ (not all zero) respectively, $\Sigma a_j := \sum_{j=1}^{A} a_j, \Sigma b_j := \sum_{j=1}^{B} b_j, \Sigma c_j := \sum_{j=1}^{C} c_j, \Sigma d_j := \sum_{j=1}^{D} d_j$, and $|q| \in (0, \infty)$, $|q^\sigma|, |q^{-\sigma}| < \min\{|q|^{\sigma}, |q|^{-\sigma}\}$, $d_l + c_k \not\in -\mathbb{N}_0$, for any $a_i, b_j, c_k, d_l \in \mathbb{C}^*$ elements of a, b, c, d. Define

$$I_m := I_m(a, b, c, d; \sigma, q) := \int_{\log q}^{\log q} \frac{\Gamma_q(d + \sigma - ix, c - \sigma + ix)}{\Gamma_q(b + \sigma - ix, a - \sigma + ix)} q^{imx} (1 - q)^{(ix - \sigma)(C - D + B - A)} dx. \quad \tag{1.33}$$
Then if \(D \geq B, d_l - d_{l'} \not\in -\mathbb{N}_0, l \neq l' \), one has
\[
I_m = \frac{2\pi(1-q)q^{m\sigma}}{-\log q} \sum_{k=1}^{D} \frac{\Gamma_q(d_k + c, d[k] - d_k)}{\Gamma_q(d_k + a, b - d_k)} q^{md_k(1-q)^{d_k(C-D-B-A)}}
\]
\[
\times_{B+C\Phi B+D-1} \left(\frac{q^{d_k+c}}{q^{d_k+a}}, q^{1+d_k-b} \right) ; q, q^{m+(D-B)(1+d_k)+\sum b_j-\sum d_j} , \quad (1.34)
\]
and if \(C \geq A, c_k - c_{k'} \not\in -\mathbb{N}_0, k \neq k' \), one has
\[
I_m = \frac{2\pi(1-q)q^{m\sigma}}{-\log q} \sum_{k=1}^{C} \frac{\Gamma_q(c_k + d, c[k] - c_k)}{\Gamma_q(c_k + b, a - c_k)} q^{-mc_k(1-q)^{-c_k(C-D-B-A)}}
\]
\[
\times_{A+D\Phi B+C-1} \left(\frac{q^{c_k+d}}{q^{c_k+b}}, q^{1+c_k-a} \right) ; q, q^{-m+(C-A)(1+c_k)+\sum a_j-\sum c_j} . \quad (1.35)
\]

Proof. Using (1.31), (1.32), we respectively start along the lines of Askey & Roy [3, p. 368] and use the map \((\mathbf{a}, \mathbf{b}, \mathbf{c}, J, e^{i\psi}) \mapsto (q^{j}, q^{b}, q^{c}, q^{d}, q^{x}, q^{jx})\). This completes the proof. \(\blacksquare\)

Note that
\[
\lim_{q \to 1^-} \frac{-\log q}{1-q} = 1 . \quad (1.36)
\]

So certainly in the case where all infinite \(q \)-shifted factorials are composed of parameters which do not have leading negative factors, we can convert the integral in Theorem 1.9 to one which resembles a Mellin–Barnes integral in the \(q \to 1^- \) limit (1.11). It is this reason that we refer to these integrals as \(q \)-Mellin–Barnes integrals. It is also clear that there are situations where the \(q \to 1^- \) limit either vanishes or is is perhaps not well-defined. This is a technicality may or may not be easily addressed.

Now consider the situation where \(D = B \) and \(C = A \). This produces the following result.

Corollary 1.7. Let \(q \in \mathbb{C}^1, m \in \mathbb{Z}, \mathbf{a} := \{a_1, \ldots, a_A\}, \mathbf{b} := \{b_1, \ldots, b_B\}, \mathbf{c} := \{c_1, \ldots, c_A\}, \mathbf{d} := \{d_1, \ldots, d_B\} \) be sets of non-zero complex numbers with cardinality \(A, B, C, D \in \mathbb{N}_0 \) (not all zero) respectively, \(\Sigma a_j := \sum_{j=1}^{A} a_j, \Sigma b_j := \sum_{j=1}^{B} b_j, \Sigma c_j := \sum_{j=1}^{A} c_j, \Sigma d_j := \sum_{j=1}^{B} d_j, \) and \(|q|^\sigma \in (0, \infty), |q^a|, |q^d| < \min\{|q|^\sigma, |q|^{-\sigma}\}, d_l + c_k \not\in -\mathbb{N}_0, \) for any \(a_i, b_j, c_k, d_l \in \mathbb{C}^* \) elements of \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \). Then
\[
\int_{\frac{\pi}{\log q}}^{\frac{\pi}{\log q}} \frac{\Gamma_q(d + \sigma - ix, c - \sigma + ix)}{\Gamma_q(b + \sigma - ix, a - \sigma + ix)} q^{imx} \, dx = \frac{2\pi(1-q)q^{m\sigma}}{-\log q} A . \quad (1.37)
\]
If \(d_l - d_{l'} \not\in -\mathbb{N}_0, l \neq l' \) one has
\[
A = \sum_{k=1}^{B} \frac{\Gamma_q(d_k + c, d[k] - d_k)q^{md_k}}{\Gamma_q(d_k + a, b - d_k)} A^{B \Phi A + B-1} \left(\frac{q^{d_k+c}}{q^{d_k+a}}, q^{1+d_k-b} \right) ; q, q^{m+\sum b_j-\sum d_j} , \quad (1.38)
\]
and if \(c_k - c_{k'} \not\in -\mathbb{N}_0, k \neq k' \) one has
\[
A = \sum_{k=1}^{A} \frac{\Gamma_q(c_k + d, c[k] - c_k)q^{-mc_k}}{\Gamma_q(c_k + b, a - c_k)} A^{B \Phi A + B-1} \left(\frac{q^{c_k+d}}{q^{c_k+b}}, q^{1+c_k-a} \right) ; q, q^{-m+\sum a_j-\sum c_j} , \quad (1.39)
\]
where \(|q^{m+\sum b_j-\sum d_j}| < 1 \) and \(|q^{-m+\sum a_j-\sum c_j}| \) respectively.
We now take the limit as \(q \to 1^- \) and obtain the following result.

Corollary 1.8. Let \(a := \{a_1, \ldots, a_A\} \), \(b := \{b_1, \ldots, b_B\} \), \(c := \{c_1, \ldots, c_C\} \), \(d := \{d_1, \ldots, d_D\} \), \(A, B \in \mathbb{N}_0 \) (not both zero) respectively, for any \(a_i, b_j, c_k, d_l \in \mathbb{C}^\ast \) elements of \(a, b, c, d \), \(\Sigma_j := \sum_{j=1}^A a_j \), \(\Sigma b_j := \sum_{j=1}^B b_j \), \(\Sigma c_j := \sum_{j=1}^C c_j \), \(\Sigma d_j := \sum_{j=1}^D d_j \), \(\sigma \in (0, \infty) \). Define

\[
B := B(a, b, c, d) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Gamma(d + \sigma - ix)\Gamma(c + \sigma + ix)}{\Gamma(b + \sigma - ix)\Gamma(a + \sigma + ix)} \, dx. \tag{1.40}
\]

Then

\[
B = \sum_{k=1}^B \frac{\Gamma(d_k + c, d[k] - d_k)}{\Gamma(d_k + a, b - d_k)} A^{d_k}B^{A-B} \left(\frac{d_k + c, 1 + d_k - b}{d_k + a, 1 + d_k - d[k]} ; 1 \right) \tag{1.41}
\]

\[
= \sum_{k=1}^A \frac{\Gamma(c_k + d, c[k] - c_k)}{\Gamma(c_k + b, a - c_k)} A^{c_k}B^{A-B} \left(\frac{c_k + d, 1 + c_k - a}{c_k + b, 1 + c_k - c[k]} ; 1 \right), \tag{1.42}
\]

where \(\Re(\Sigma_j + \Sigma b_j - \Sigma c_j - \Sigma d_j - 1) > 0 \), so that the generalized hypergeometric series are convergent.

Proof. Starting with Corollary 1.7 and taking the limit \(q \to 1^- \) using (1.36) completes the proof. \(\blacksquare \)

If one can write a basic hypergeometric function with a specific argument as a symmetric sum of two nonterminating basic hypergeometric functions with argument \(q \), then there is the following useful consequence of Theorem 1.5.

Theorem 1.9. Let \(q \in \mathbb{C}^\dagger \), \(a := \{a_1, \ldots, a_A\} \), \(c := \{c_1, \ldots, c_C\} \), be sets of non-zero complex numbers with cardinality \(A, C \in \mathbb{N}_0 \) (not both zero) respectively, \(d := \{d_1, d_2\} \), \(c_k d_l \notin \Omega_q \), \(z = e^{i\psi}, \sigma \in (0, \infty) \), \(d_1, d_2 \in \mathbb{C}^\ast \), such that \(|c_k| < \sigma \), \(|d_1|, |d_2| < 1/\sigma \), for any \(c_k \in c \). Define

\[
H(a, c, d; q) := \prod_{1 \leq i < j \leq C} \frac{(d_1 a; q)_\infty}{(d_2 a; q)_\infty} C^{\phi_{A+1}} \left(\frac{d_1 c}{d_1 a, q d_1/d_2} ; q, q \right) \tag{1.43}
\]

\[
= \frac{(d_1 a; q)_\infty}{(d_2 a; q)_\infty} C^{\phi_{A+1}} \left(\frac{d_1 c}{d_1 a, q d_1/d_2} ; q, q \right) + \frac{(d_2 a; q)_\infty}{(d_1 a, q d_1/d_2; q)_\infty} C^{\phi_{A+1}} \left(\frac{d_2 c}{d_2 a, q d_2/d_1} ; q, q \right), \tag{1.44}
\]

where \(d_1/d_2 \notin \Omega_q \), \(l \neq l' \), and if \(C \geq A + 2 \),

\[
J(a, c, d; f, q) := \prod_{k=1}^C \frac{\partial(f c_k d_1, f c_k d_2; q)(a/c_k; q)_\infty}{(c_k d, c[k]/c_k; q)_\infty} \times A^{2+\phi_{C-1}} \left(\frac{c_k d, q c_k/a}{q c_k/c[k]} ; q, \frac{q(q c_k) C^{A+2} a_1 \cdots a_A}{d_1 d_2 c_1 \cdots c_C} \right), \tag{1.45}
\]

where \(c_k/c_{k'} \notin \Omega_q \), \(k \neq k' \), and \(A+2+\phi_{C-1} \) is convergent for \(C = A + 2 \) if \(|q a_1 \cdots a_A| < |d_1 d_2 c_1 \cdots c_C| \), and is an entire function if \(C > A + 2 \). Then

\[
\int_{\pi}^{\pi} \frac{((f d_1, q d_2; q)_\infty, (f d_2, q d_1; q)_\infty)}{(d_1, d_2; q)_\infty, (c^2; q)_\infty} \, d\psi = \frac{2\pi \partial(f, f d_1^2; q)}{(q; q)_\infty} H(a, c, d; q) \tag{1.46}
\]

\[
= \frac{2\pi}{(q; q)_\infty} J(a, c, d; f, q), \quad (C \geq A + 2), \tag{1.47}
\]
and none of the arguments of the modified theta functions are equal to some q^n, $m \in \mathbb{Z}$.

Proof. See proof of [6, Theorem 2.4]. \hfill \blacksquare

Theorem 1.10. Let $q \in \mathbb{C}^\dagger$, $a := \{a_1, \ldots, a_A\}$, $c := \{c_1, \ldots, c_C\}$, be sets of non-zero complex numbers with cardinality $A, C \in \mathbb{N}_0$ (not both zero) respectively, $d := \{d_1, d_2\}$, $c_k + d_i \notin -\mathbb{N}_0$, $|q^\sigma| \in (0, \infty)$, $q^{d_1}, q^{d_2} \in \mathbb{C}^*$, such that $|q^\sigma| < |q|^\sigma$, $|q^{d_1}|, |q^{d_2}| < |q|^{-\sigma}$, for any $c_k \in c$, and fractional powers take their principal values. Then

$$
\int_{\log q}^{1-q} \frac{(1-q)^{(C-A-2)(ix-\sigma)} \Gamma_q(d+\sigma-ix,c-\sigma+ix) \Gamma_q((d_1+f,d_2+1-f)+\sigma-ix,(f-d_2,1-d_1-f,a)-\sigma+ix)}{\Gamma_q(d_1+f,d_2+1-f)+\sigma-ix,(f-d_2,1-d_1-f,a)-\sigma+ix) \Gamma_q(a+d_1)} (\frac{q^{c+d_1}}{q^{c+d_1}}, q^{1+d_1-d_2}; q, q) \Gamma_q(c+d_1, d_2-d_1)
$$

$$
= \frac{2\pi(1-q)}{-\log q} (1-q)c_k(C-A-2) \Gamma_q(c+k+d, c[k] - c_k) \prod_{k=1}^C \Gamma_q(a-c_k, 1-c_k-d_1-f, 1+c_k+d_2-f, c_k+d_1+f, -c_k-d_2-f) \times A + 2\phi C - 1 \left(\frac{q^{c+k+d}}{q^{1+c_k-c_k[k]}}, q, q^{(C-A-2)(1+c_k)+\Sigma a_j-\Sigma c_j-d_1-d_2} \right). \hfill (1.49)
$$

Proof. Using (1.46), (1.47), we respectively start along the lines of Askey & Roy [3, p. 368] and use the map $\{a, c, d, \sigma, e^{i\psi}\} \mapsto (q^a, q^c, q^d, q^\sigma, q^{ix})$ and the definition of the q-gamma function (1.10). This completes the proof. \hfill \blacksquare

By assuming that $C = A + 2$, then the problematic $(1-q)^{C-A-2}$ terms become unity. This produces the following result.

Theorem 1.11. Let $q \in \mathbb{C}^\dagger$, $a := \{a_1, \ldots, a_A\}$, $c := \{c_1, \ldots, c_{A+2}\}$, be sets of non-zero complex numbers with cardinality $A \in \mathbb{N}_0$, $d := \{d_1, d_2\}$, $c_k + d_i \notin -\mathbb{N}_0$, $|q^\sigma| \in (0, \infty)$, $d_1, d_2 \in \mathbb{C}^*$, such that $|q^{ix}| < |q|^\sigma$, $|q^{d_1}|, |q^{d_2}| < |q|^{-\sigma}$, for any $c_k \in c$, and fractional powers take their principal values. Then

$$
\int_{\log q}^{1-q} \frac{\Gamma_q(d+\sigma-ix,c-\sigma+ix) \Gamma_q((d_1+f,d_2+1-f)+\sigma-ix,(f-d_2,1-d_1-f,a)-\sigma+ix)}{\Gamma_q(d_1+f,d_2+1-f)+\sigma-ix,(f-d_2,1-d_1-f,a)-\sigma+ix) \Gamma_q(a+d_1)} (\frac{q^{c+d_1}}{q^{c+d_1}}, q^{1+d_1-d_2}; q, q) \Gamma_q(c+d_1, d_2-d_1)
$$

$$
= \frac{2\pi(1-q)}{-\log q} \prod_{k=1}^C \Gamma_q(a-c_k, 1-c_k-d_1-f, 1+c_k+d_2-f, c_k+d_1+f, -c_k-d_2-f) \times A + 2\phi C - 1 \left(\frac{q^{c+k+d}}{q^{1+c_k-c_k[k]}}, q, q^{(C-A-2)(1+c_k)+\Sigma a_j-\Sigma c_j-d_1-d_2} \right). \hfill (1.51)
$$
We now take the limit as \(q \to 1^- \) to obtain the following result.

Theorem 1.12. Let \(a := \{a_1, \ldots, a_A\} \), \(c := \{c_1, \ldots, c_{A+2}\} \), be sets of non-zero complex numbers with cardinality \(A \in \mathbb{N}_0 \), \(d := \{d_1, d_2\} \), \(c_k + d_l \not\in \mathbb{N}_0 \), \(\sigma \in (0, \infty) \), \(d_1, d_2 \in \mathbb{C}^* \), such that \(|c_k| < \sigma\), \(|d_1|, |d_2| < 1/\sigma\), for any \(c_k \in c \), \(\Re(\Sigma a_j - \Sigma c_j + 1 - d_1 - d_2) > 0 \). Then

\[
\int_{-\infty}^{\infty} \frac{\Gamma(d + \sigma - ix, c - \sigma + ix) dx}{\Gamma((d_1 + f, d_2 + 1 - f) + \sigma - ix, (f - d_2, 1 - d_1 - f, a) - \sigma + ix)}
\]

\[
= \frac{2\pi}{\Gamma(f, 1 - f, d_1 - d_2 + f, d_2 - 1 - d_1 - f)} \prod_{k=1}^{d_1; d_2} \frac{\Gamma(c + d_1, d_2 - d_1)}{\Gamma(a + d_1)} A^{A+2} F_{A+1}^{A+2} \left(\frac{c + d_1}{a + d_1, 1 + d_1 - d_2}; 1 \right) (1.52)
\]

\[
= 2\pi \sum_{k=1}^{C} \frac{\Gamma(c_k + d, c_{[k]} - c_k)}{\Gamma(a - c_k, 1 - c_k - d_1 - f, 1 + c_k + d_2 - f, c_k + d_1 + f, - c_k - d_2 + f)}
\]

\[
\times A^{A+2} F_{A+1}^{A+2} \left(\frac{c_k + d, 1 - a + c_k}{1 + c_k - c_{[k]}}; 1 \right). (1.53)
\]

Proof. Start with Theorem 1.11 and letting \(q \to 1^- \) produces (1.52), (1.53). The convergence of the generalized hypergeometric functions are unity is given by [7, (16.2.2)]. This completes the proof. \(\blacksquare \)

Remark 1.13. As just indicated, it is often feasible to convert integrals of products of infinite \(q \)-shifted factorials to integrals of products of \(q \)-gamma functions. This makes a direct \(q \)-analogue with \(q \)-Barnes integrals for the integrals in question. In some cases we have undertaken this recasting for the integrals which appear below. For instance in Corollary 4.2 we recast the integral of a well-poised \(\phi_2 \) in terms of an integral of products of terms given by \(\Gamma_q \) and \(\Gamma_{q^2} \).

In Theorem 6.1, we are able to write the integral of a very well-poised \(\psi \) as an integral of \(\psi \)-Barnes integral of products of terms given by \(\Gamma_q \) and \(\Gamma_{q^2} \), and in this case a clear \(q \to 1^- \) limit exists and is computed. Other cases such as Theorems 5.1, 8.1, 8.3 and 9.4 can also be written as products of terms involving \(\Gamma_q \) and \(\Gamma_{q^2} \), and for Theorem 9.1 it can be recast similarly as above but also including terms of the form \(\Gamma_{q^3} \). However, we will leave these recastings to the reader.

2 A \(q \)-Barnes integral for a ratio of theta functions

If one would like to integrate a ratio of an arbitrary product of theta functions as a \(q \)-Barnes integral then Theorem 1.5 provides a powerful tool to evaluate this integral which provides insight into the connection between theta functions and partial theta functions. This will be seen in the following theorem.

Theorem 2.1. Let \(q \in \mathbb{C}^+ \), \(z = e^{i\psi} \), \(\sigma \in (0, \infty) \), \(b \in \mathbb{C}^B \), \(d \in \mathbb{C}^D \) with \(D \geq B \) such that \(|q|/\sigma < |d_k| < 1/\sigma\) for \(k = 1, \ldots, D \), and \(d_l/d_k \not\in \mathbb{T}_q \) for any \(d_l, d_k \in d \) with \(l \neq k \). Then

\[
\int_{-\pi}^{\pi} \frac{\vartheta(b^\sigma; q)}{\vartheta(d^\sigma; q)} e^{im\psi} d\psi = \frac{2\pi\sigma^m}{(q; q)_{\infty}} G_m \left(\frac{q}{b}, \frac{q}{d}, (q, d; \sigma, q) \right). (2.1)
\]

If \(D \geq B \) then

\[
G_m = \frac{1}{(q; q)_{\infty}} \sum_{k=1}^{D} \frac{\vartheta(b/d_k; q) d_k^m}{\vartheta(d_k/d_k; q)} \psi_0^{D-B} \left(q; q, q^m (q d_k)^{D-B} b_1 \cdots b_B d_1 \cdots d_D \right), (2.2)
\]
which is an entire function and for $D = B$, there is a specialized sum using the geometric series (1.18), provided $|b_1 \cdots b_B| < |d_1 \cdots d_D|

\begin{align*}
G_m = \frac{1}{(q; q)_{\infty}} \sum_{k=1}^{D} \frac{\vartheta(b/d_k; q)d_k^m}{\vartheta(d_k|d_k; q)} \frac{1}{1 - q^n b_1 \cdots b_B \overline{d_1 \cdots d_B}}.
\end{align*}

(2.3)

Moreover, for $D > B$, one also has

\begin{align*}
G_m = \frac{(q^{D-B}; q^{D-B})_{\infty}}{(q; q)_{\infty}} \sum_{k=1}^{D} \frac{\vartheta(b/d_k; q)d_k^m}{\vartheta(d_k|d_k; q)} \Theta \left(-\frac{q^m(-qd_k)^{D-B}b_1 \cdots b_B}{d_1 \cdots d_D}; q^{D-B} \right).
\end{align*}

(2.4)

Proof. Start with the integral on the left-hand side of (2.1) and replace the theta function with its definition (1.20) in terms of infinite q-shifted factorials. Then we can easily identify the sets $a = q/b$, $c = q/d$. Direct substitution of these sets using Theorem 1.5 provides (2.1). The utilization of (1.31) with these sets provides (2.2). Due to the symmetric nature of the arguments (1.32) yields the same expression in terms of nonterminating basic hypergeometric functions. The function which appears in the representation of the q-Mellin–Barnes integral of a ratio of theta functions

\begin{align*}
g_p(z; q) := \frac{1}{(q; q)_{\infty}} \sum_{n=0}^{\infty} \left((-1)^n q^{n(\frac{1}{2})} \right)^{D-B} z^n
\end{align*}

is connected to the partial theta function (see §1.1). The necessary relation is given by

\begin{align*}
g_p(z; q) = (q^{D-B}; q^{D-B})_{\infty} \Theta((-1)^{D-B-1} z; q^{D-B}).
\end{align*}

(2.5)

Inserting this relation in (2.2) yields (2.4). If $D = B$ then the nonterminating basic hypergeometric series can be evaluated using the geometric series (1.18). This provides the form of (2.3) which completes the proof.

3 Symmetric representation of the Askey–Wilson moments

Define the Askey–Wilson weight function

\begin{align*}
w_q(x; a|q) := \frac{(e^{\pm \rho \theta}; q)_{\infty}}{(ae^{\pm \rho \theta}, be^{\pm \rho \theta}, ce^{\pm \rho \theta}, de^{\pm \rho \theta}; q)_{\infty}} = \frac{\left(\pm e^{\pm \rho \theta}, \pm q^{\frac{1}{2}} e^{\pm \rho \theta}; q \right)_{\infty}}{(ae^{\pm \rho \theta}, be^{\pm \rho \theta}, ce^{\pm \rho \theta}, de^{\pm \rho \theta}; q)_{\infty}},
\end{align*}

(3.1)

where $a := \{a, b, c, d\}$, $x = \cos \theta \in [-1, 1]$, $a, b, c, d \notin \Omega_q$ and we have used the identity (1.7). Then, the moments of the Askey–Wilson polynomials are given by

\begin{align*}
\mu_n = \frac{(q, ab, \ldots, cd; q)_{\infty}}{4\pi(abc|cd; q)_{\infty}} \int_{-\pi}^{\pi} w_q(x; a|q) \cos^n \theta \, d\theta,
\end{align*}

(3.2)

where $\{ab, \ldots, cd\} := \{ab, ac, ad, bc, bd, cd\}$, and μ_n has been normalized so that $\mu_0 = 1$ (see [11, p. 170]).

Due to the $z = e^{\rho \theta}$ dependence of the second equality of the Askey–Wilson weight function (3.1) and a judicious use of the binomial theorem, the moments of the Askey–Wilson polynomials (3.2) are given by a q-Mellin–Barnes integral. Using the method of integral representations for nonterminating basic hypergeometric functions (see Theorem 1.5) we are able to obtain a form symmetric in the parameters a, b, c, d for the moments of the Askey–Wilson polynomials.
Theorem 3.1. Let $n \in \mathbb{N}_0$, $q \in \mathbb{C}^\dagger$, $a, b, c, d \in \mathbb{C}^*$, $a, b, c, d \not\in \Omega_q$. Then, the moments of the Askey–Wilson polynomials can be given by

$$
\mu_n = \frac{(ab, \ldots, cd; q)_\infty}{2^{n+1}(abcd; q)_\infty} \sum_{k=0}^{n} \frac{\binom{n}{k}}{(k; q)_\infty} \times \frac{\binom{\frac{1}{ab}; q}_\infty a^{n-2k}}{(ab, ac, ad, \frac{b}{a}, \frac{c}{a}, \frac{d}{a}; q)_\infty} 6W_5\left(a^2; ab, ac, ad; q^\frac{1+n-2k}{abcd}\right),
$$

(3.3)

where $a/b, a/c, a/d, b/c, b/d, c/d \not\in \Upsilon_q$.

Proof. Start with the left-hand side of (3.3) and take account of (3.2). Applying the binomial theorem [7, (1.2.2)] to the $\cos^n \theta$ produces

$$
\cos^n \theta = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} e^{i\theta(n-2k)}.
$$

(3.4)

Applying Theorem 1.5 with $m = n - 2k \in \mathbb{N}_0$ and $(A, B, C, D) = (4, 4, 4, 4)$, given by

$$
a = b := \{\pm 1, \pm \sqrt{q}\}, \ c = d := \{a, b, c, d\},
$$

(3.5)

produces the right-hand side of (3.3) by substituting the variables in (1.29). This completes the proof. □

Remark 3.2. In Kim & Stanton (2014) [11, Theorem 2.10], a representation for the Askey–Wilson moments which are symmetric in the parameters a, b, c, d is given. Let $t \in \mathbb{C}$. Then

$$
\mu_n = \sum_{k=0}^{n} (-q)^k \binom{ta, tb, tc, td; q)_k}{(t^2, abcd; q)_k} 8W_7\left(t^2; q^{-k}, \frac{t}{a}, \frac{t}{b}, \frac{t}{c}, \frac{t}{d}; q, q^kabcd\right)
$$

$$
\times \sum_{s=0}^{n+1} \left(\binom{n}{s} - \binom{n}{s-1}\right) \sum_{p=0}^{n-2s-k} \binom{k+p}{k} q^{k+p+2s-n} q^{(2s+p-n)+(k+1)t^2p+2s-n},
$$

(3.6)

where [12, (1.9.4)]

$$
\left[\begin{array}{c} n \\ k \end{array}\right]_q := \frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}}.
$$

(3.7)

It is interesting to note that both (3.6) and (3.3) are symmetric in the parameters a, b, c, d. Define $4 := \{1, 2, 3, 4\}$. The representation (3.6) is a finite sum over a lattice given by

$$
\{0, \ldots, n\} \times \{0, \ldots, n+1\} \times \{0, \ldots, n-2s-k\},
$$

(3.8)

for each terminating very-well-poised $8W_7$. On the other hand (3.3) is a finite sum over a rectangular lattice given by $\{0, \ldots, n\} \times 4$ for each nonterminating very-well-poised $6W_5$.
Four and five-term transformations for a nonterminating well-poised $3\phi_2$

Let $q, z \in \mathbb{C}^\dagger$, $\tau \in (0, \infty)$, $a, b, c, h \in \mathbb{C}^*$, $\frac{qa}{b}, \frac{qa}{c} \notin \Omega_q$, $h, h\frac{qa}{bcz} \notin \Upsilon_q$, $w = e^{i\eta}$. In [6, Corollary 2.15], we presented an integral for a nonterminating well-poised $3\phi_2$, namely

$$3\phi_2 \left(\frac{qa}{b}, \frac{qa}{c}; q, z\right) = \frac{(q, a, \frac{qa}{b}; q)_\infty}{2\pi i \theta(h, \frac{wa}{bcz}; q)(\frac{qa}{b}, \frac{qa}{c}; q)_\infty}$$

$$\times \int_{-\pi}^{\pi} \left(\frac{\sqrt{bcz}}{\sqrt{q^{2a}}} h \frac{\sqrt{bcz}}{\sqrt{q^{2a}}}, q \phi \frac{\sqrt{bcz}}{\sqrt{q^{2a}}} q \phi \frac{w}{\sqrt{q^{2a}}} \frac{w}{\sqrt{q^{2a}}}; q\right)_\infty \frac{d\eta}{\eta}, \quad (4.1)$$

where the maximum modulus of the denominator factors in the integrand is less than unity. This integral (4.1) followed from the following transformation of a nonterminating well-poised hypergeometric series, presented in cf. [9, (III.35)]

$$3\phi_2 \left(\frac{qa}{b}, \frac{qa}{c}; q, z\right) = \frac{(bcz/q^2 q^a; q)_\infty}{(bcz/q^a; q)_\infty} 5\phi_4 \left(\pm \sqrt{q}, \pm \sqrt{q^a}, \frac{qa}{bcz}, q; q\right)$$

$$+ \frac{(a, b, c, \frac{qa}{b}, \frac{qa}{c} z, \frac{qa}{bcz}; q)_\infty}{(qa/b, qa/c, qa/bcz; q)_\infty} 5\phi_4 \left(\pm \frac{bcz}{q^{2a}}, \frac{bcz}{q^{2a}}, \frac{qa}{bcz}, \frac{b^2 c^2 z^2}{q^2 a}; q, q\right). \quad (4.2)$$

Remark 4.1. In order to simplify the constraints for the nonterminating infinite q-shifted factorial terms, modified theta functions and nonterminating basic hypergeometric series expressions which we will present below, we will avoid adding the constraints which must occur in order to prevent vanishing denominator factors which are not defined. For example, in (4.1) one must require the constraints

$$\frac{qa}{b}, \frac{qa}{c} \notin \Omega_q, \quad h, h\frac{qa}{bcz} \notin \Upsilon_q,$$

and in (4.2) one must require the constraints

$$z, bcz, \frac{qa}{b}, \frac{qa}{c}, bcz, \frac{b^2 c^2 z^2}{q^2 a} \notin \Omega_q, \quad \frac{bcz}{a} \notin \Upsilon_q.$$

Since it is obvious and sometimes tedious to know for which values this happens, we will avoid inserting such constraints in the results below.

Corollary 4.2. Let $q \in \mathbb{C}^\dagger$, $a, b, c, z \in \mathbb{C}^*$, $|q^2| < 1$. Then

$$3\phi_2 \left(q^a, q^b \frac{q^c}{q}; q, q^z\right) = \frac{-\log(q)(1+q)^{b+c+z-2r-\frac{3}{2}}}{2\pi (-q, \pm q; q)_\infty (1-q)^{b+c+z-2r+\frac{3}{2}}}$$

$$\times \frac{\Gamma(q)(f, 1-f, 1+f+a-b-c-z, 1+b+c+z-f-1-a, 1+a-b, 1+a-c)}{\Gamma(q)(a, 1+a-b-c)}$$

$$\times \int_{-\frac{\pi}{\log(q)}}^{\frac{\pi}{\log(q)}} \left(1+q\right)^{2ix} \frac{\Gamma_q\left((\frac{b+c+z}{2}+ix\tau), (\frac{a-b-c-z}{2}+ix\tau)\right)}{\Gamma_q\left((\frac{b+c+z}{2}-f, f+\frac{a-b-c-z}{2}+ix\tau)\right)}$$

$$\times \frac{\Gamma_q\left((\frac{b+c+z}{2}-a, 1+a-b-c, 1+a+b-c, 1+a+b-c, 3(b+c+z)^2-a-1+i\pi\tau)\right)}{\Gamma_q((1-f+\frac{b+c+z}{2}-a, 1+a+c-z-b, 1+a+b-c, 3(b+c+z)^2-a-1)+i\pi\tau)} \, dx. \quad (4.3)$$
Proof. Start with (4.1) let \((a, b, c, z) \mapsto (q^a, q^b, q^c, q^z)\), and use the definition of the \(q\)-gamma function (1.10), and also (1.8) to convert the \((\pm a; q)_\infty\) terms. This completes the proof. ■

One can now use Theorem 1.9 to derive a five-term representation of a nonterminating very-well-poised \(3\phi_2\) with arbitrary argument.

Theorem 4.3. Let \(q, z \in \mathbb{C}^\dagger\), \(a, b, c, h \in \mathbb{C}^\ast\), and we assume there are no vanishing denominator factors (see Remark 4.1), e.g., \(qa/b, qa/c \notin \Omega_q\), and \(h, ha/(bcz) \notin \Upsilon_q\). Then

\[
3\phi_2\left(\frac{a, b, c}{qa/b, qz/c}; q, z\right)
\]

\[
= \frac{\vartheta(hz^{-1}, hq_{bcz}/q)(a, b, c, \frac{b^2c^2z^2}{q^2a}; q)_\infty}{\vartheta(h, q_{bcz}/q)(aq_{bcz}, q_{bcz}/c, \frac{b^2c^2z^2}{q^2a}, z; q)_\infty} \left(5\phi_4\left(\frac{q, q, qa, qz}{b, c, qa, b^2c^2z^2}; q, q\right)\right)
\]

\[
+ \frac{1}{2}\vartheta(h, q_{bcz}/q)(q_{bcz}, qa/c; q)_\infty \times \left[\frac{\vartheta(h\sqrt{a}, hq_{bcz}/q)(\sqrt{q/a}, q_{bcz}/c, \sqrt{q/qa}; q)_\infty}{(\sqrt{a}, q_{bcz}/\sqrt{q/qa}, q_{bcz}; q)_\infty} \left(5\phi_4\left(\frac{\sqrt{a}, b, c, q_{bcz}}{\sqrt{qa}, \sqrt{qa}, \sqrt{qa}, \sqrt{qa}}; q, q\right)\right)
\]

\[
- \frac{\vartheta(hq_{bcz}, hq_{bcz}/q)(q_{bcz}, qa/c; q)_\infty}{(q_{bcz}, q_{bcz}, qa/c, q_{bcz}; q)_\infty} \left(5\phi_4\left(\frac{\sqrt{qa}, \sqrt{qa}, \sqrt{qa}, \sqrt{qa}, \sqrt{qa}}{q, q^2, \sqrt{qa}b, \sqrt{qa}c}; q, q\right)\right)\right]\]

(4.4)

Proof. In the integrand of (4.1), the sets of parameters are given by \((A, C, D) = (3, 5, 2)\), given by

\[
a := \left\{q\sqrt{\frac{abz}{c}}, q\sqrt{\frac{acz}{b}}, \sqrt{\frac{b^3c^3z^3}{qa}}\right\}, \quad c := \left\{\pm\sqrt{bcz}, \pm\sqrt{qbcz}, q\sqrt{\frac{az}{bc}}\right\},
\]

(4.5)

\[
d := \left\{\sqrt{\frac{a}{bcz}}, \sqrt{\frac{bcz}{q^2a}}\right\}.
\]

(4.6)

Now we use (1.47) with the sets of parameters given in (4.5), (4.6) using (1.46). This completes the proof. ■

If one chooses a \(h = q^n z\) then since \(\vartheta(q^n; q) = 0\) for all \(n \in \mathbb{Z}\), the five-term transformation reduces to a four-term transformation. Then replacing the infinite \(q\)-shifted factorials with arguments involving \(q^n\) and \(q^{-n}\) using (1.6), (1.9) produces the following simplified result.

Theorem 4.4. Let \(q, z \in \mathbb{C}^\dagger\), \(a, b, c \in \mathbb{C}^\ast\), and we assume there are no vanishing denominator
In this section we present a $5\phi_2$ transformation for nonterminating q-hypergeometric series. Then replacing the infinite sum by a shifted Mellin–Barnes integral for a nonterminating very-well-poised $5W_4$ series, which completes the proof.

Theorem 5.1. Let $q, z \in \mathbb{C}^+$, $a, b, c \in \mathbb{C}$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then

$$
3\phi_2\left(\frac{a, b, c}{qa^q}, \frac{qa}{b}; q, z\right) = \frac{(a; q)_\infty}{2\theta(z; q)(\frac{qa}{b}, \frac{qa}{c}; q)_\infty}
$$

$$
\pm \sqrt{a} \times \frac{\theta(\frac{q\sqrt{a}z}{qa^q}; \frac{q\sqrt{a}c}{qa^q}; \frac{q\sqrt{a}}{qa^q}; q)_\infty}{\theta(\frac{qa}{b}; \frac{qa}{c}; \frac{qa}{c}; q)_\infty}
\begin{pmatrix}
\phi(\frac{b, c}{qa^q}; \frac{qa}{b}, \frac{qa}{c}; \frac{qa}{c}; q)_\infty \\
\phi(\frac{b, c}{qa^q}; \frac{qa}{b}, \frac{qa}{c}; \frac{qa}{c}; q)_\infty
\end{pmatrix}
\begin{pmatrix}
\frac{qa}{b}, \frac{qa}{c}, \frac{qa}{c}; q, q) \\
\frac{qa}{b}, \frac{qa}{c}, \frac{qa}{c}; q, q)
\end{pmatrix}
$$

Proof. Choose $h = q^zn$ in Theorem 4.3. Then since $\theta(q^n; q) = 0$ for all $n \in \mathbb{Z}$, the five-term transformation reduces to a four-term transformation. Then replacing the infinite q-shifted factorials with arguments involving q^n and q^{-n} using (1.6), (1.9), the factors involving n all cancel, which completes the proof.

Similarly, if one chooses a $h = q^n$ then the five-term transformation reduces to a four-term transformation.

Theorem 4.5. Let $q, z \in \mathbb{C}^+$, $a, b, c \in \mathbb{C}$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then

$$
3\phi_2\left(\frac{a, b, c}{qa^q}, \frac{qa}{b}; q, z\right) = \frac{(a, qa^q; q)_\infty}{2\theta(z^{-1}; q, \frac{qa}{b}, \frac{qa}{c}; q)_\infty}
$$

$$
\pm \sqrt{a} \times \frac{\theta(\frac{b, c}{qa^q}; \frac{qa}{b}, \frac{qa}{c}; \frac{qa}{c}; q)_\infty}{\theta(\frac{qa}{b}; \frac{qa}{c}, \frac{qa}{c}; q)_\infty}
\begin{pmatrix}
\phi(\frac{b, c}{qa^q}; \frac{qa}{b}, \frac{qa}{c}; \frac{qa}{c}; q)_\infty \\
\phi(\frac{b, c}{qa^q}; \frac{qa}{b}, \frac{qa}{c}; \frac{qa}{c}; q)_\infty
\end{pmatrix}
\begin{pmatrix}
\frac{qa}{b}, \frac{qa}{c}, \frac{qa}{c}; q, q) \\
\frac{qa}{b}, \frac{qa}{c}, \frac{qa}{c}; q, q)
\end{pmatrix}
$$

Proof. Choose $h = q^n$ in Theorem 4.3. Then since $\theta(q^n; q) = 0$ for all $n \in \mathbb{Z}$, the five-term transformation reduces to a four-term transformation. Then replacing the infinite q-shifted factorials with arguments involving q^n and q^{-n} using (1.6), (1.9), the factors involving n all cancel, which completes the proof.

5 Two, Four and five-term transformations for nonterminating very-well-poised $5W_4$

In this section we present a q-Mellin–Barnes integral for a nonterminating very-well-poised $5W_4$ series.

Theorem 5.1. Let $q, z \in \mathbb{C}^+$, $\tau \in (0, \infty)$, $a, b, c, h \in \mathbb{C}$, $w = e^{i\eta}$, $h \sqrt{\frac{qa}{bc}} \notin \mathbb{T}_q$, and we assume there are no vanishing denominator factors (see Remark 4.1) and the maximum modulus of the
denominator factors in the integrand must have maximum modulus less than unity so that the integral converges. Then

\[
5W_4(a; b, c; q, z) = \frac{(q, qa, qa, qa; q)_\infty}{2\pi i \vartheta(h, h qb; q)(\frac{qa}{c}, \frac{qa}{c}, \frac{qa}{c}; q)_\infty}
\times \int_{-\pi}^{\pi} \left((\sqrt{\frac{bcz}{qa}}, h h \sqrt{\frac{qa}{bcz}} \frac{c}{w}, (h, h \sqrt{\frac{qa}{bcz}}, \sqrt{\frac{qa}{bcz}}, \sqrt{\frac{qa}{c}}, \sqrt{\frac{qa}{bcz}}) \frac{w}{e} ; q)_\infty \right) \eta d\eta. \quad (5.1)
\]

Proof. The integral for a nonterminating very-well-poised 5W_4 with arbitrary argument z (5.1) follows from the following transformation of a very-well-poised 5W_4 in terms of a sum of two nonterminating balanced 5\phi_4(q, q) basic hypergeometric series \[9, (3.4.4)]

\[
5W_4(a; b, c; q, z) = \frac{\left(\frac{q b^2 c^2 z^2}{qa}, qbcz; q\right)_\infty}{\left(\frac{q b^2 c^2 z^2}{qa}, \frac{bcz}{qa}; q\right)_\infty} 5\phi_4 \left(\pm \sqrt{\frac{qa}{b}}, \pm \sqrt{\frac{qa}{c}}, \frac{qa}{bc}, q, q \right)
+ \frac{(qa, bz; q)_\infty}{\left(\frac{qa}{b}, \frac{qa}{c}, z; q\right)_\infty} 5\phi_4 \left(\pm \frac{bz}{\sqrt{q}}, \pm \sqrt{\frac{qa}{bc}}, \frac{qa}{bc}, q, q \right). \quad (5.2)
\]

Now apply Theorem 1.9 with \((A, C, D) = (3, 5, 2)\), given by

\[
a := \left\{ \sqrt{\frac{qabz}{c}}, \sqrt{\frac{qacz}{b}}, \sqrt{\frac{q b^2 c^2 z^3}{a}} \right\}, \quad c := \left\{ \pm \sqrt{bcz}, \pm \sqrt{qbcz}, \sqrt{\frac{qaz}{bc}} \right\}, \quad (5.3)
\]

\[
d := \left\{ \sqrt{\frac{qa}{bcz}}, \sqrt{\frac{bcz}{qa}} \right\}, \quad (5.4)
\]

which generates the integral in (5.1) using (1.46). Clearly \(h, h \frac{qa}{bcz} \notin \Omega_q\) since then one would have vanishing denominator factors which are not defined. Similarly one must avoid vanishing denominator factors for other infinite q-shifted factorials. Furthermore, the denominator factors in the integrand must have maximum modulus less than unity so that the integral converges. This completes the proof. \[\blacksquare\]

Now we apply (1.47) using the parameters \(a, c, d\) defined in (5.3), (5.4). Since \(C = 5\), we generate a five-term transformation for the general nonterminating very-well-poised 5W_4. This is given in the following theorem.

Theorem 5.2. Let \(q, z \in \mathbb{C}^\dagger, a, b, c, h \in \mathbb{C}^*, w = e^{i\eta}, \) and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following five-term transformation
for a nonterminating very-well-poised $5W_4$ with argument z:

$$5W_4(a; b, c; q, z) = \frac{(qa, \frac{b^2c^2z^2}{qa}, \frac{q}{b}; q)_\infty}{\vartheta(h, h \frac{qa}{bcz}; q)(\frac{b^2c^2z^2}{a}, \frac{q}{b}; \frac{qa}{c}; q)_\infty} \times \left(\vartheta(h \sqrt{qa}, h \frac{\sqrt{qa}}{bcz}; q)(\frac{\sqrt{qa}}{b}, \frac{\sqrt{qa}}{c}, bcz \sqrt{\frac{q}{a}}; q)_\infty \right)_{5\phi_4} \left(\frac{\sqrt{qa}, \frac{zq}{\sqrt{qa}}, \frac{zc}{\sqrt{qa}}, \frac{bcz}{\sqrt{qa}}}{-q, \pm \sqrt{q}, \pm \frac{qbc}{\sqrt{qa}}; q, q} \right)$$

One can force the last term to vanish by setting for $n \in \mathbb{Z}$, $h = q^n z^{-1}$ or $h = q^{n-1} \frac{bc}{a}$, providing a naturally symmetric four-term transformation for a nonterminating very-well-poised $5W_4$ with argument z.

Theorem 5.3. Let $n \in \mathbb{Z}$, $q, z \in \mathbb{C}^1$, $a, b, c \in \mathbb{C}^*$, $w = e^{in}$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following four-term transformations
for a nonterminating very-well-poised \(5W_4 \) with argument \(z \):

\[
5W_4(a; b, c; q, z) = \frac{(qa, \frac{b^2 c^2 z^2}{qa}, \frac{qa}{bc}; q)_{\infty}}{2\vartheta(q^n z, q^{n+1} \frac{a}{bc}; q)(-q, -\frac{b^2 c^2 z^2}{a}, \frac{qa}{b}, \frac{qa}{c}; q)_{\infty}} \\
\times \left(\frac{\vartheta(q^{n+\frac{1}{2}} z \sqrt{a}, \frac{q^{n+\frac{1}{2}} z \sqrt{a}}{bc}; q)(\sqrt{q^2}; \frac{\sqrt{qa}}{b}, \frac{\sqrt{qa}}{c}, \frac{bcz \sqrt{\frac{a}{q}}}{q}; q)_{\infty}}{(\pm \sqrt{q}, \sqrt{qa}, \frac{\sqrt{qa}}{bcz \sqrt{\frac{a}{q}}}; q)_{\infty}} 5\phi_4 \left(\sqrt{qa}, \frac{qb}{\sqrt{qa}}, \frac{qc}{\sqrt{qa}}, \frac{bcz}{\sqrt{qa}}, \frac{qbc}{\sqrt{qa}}; q, q \right) - q, \pm \sqrt{q}, \sqrt{\frac{qbc}{\sqrt{qa}}}; q, q \right) \\
+ \frac{\vartheta(-q^{n+\frac{1}{2}} z \sqrt{a}, -\frac{q^{n+\frac{1}{2}} z \sqrt{a}}{bc}; q)(-\frac{\sqrt{qa}}{b}, -\frac{\sqrt{qa}}{c}, -bcz \sqrt{\frac{a}{q}}; q)_{\infty}}{(\pm \sqrt{q}, -\sqrt{qa}, -\frac{\sqrt{qa}}{bcz \sqrt{\frac{a}{q}}}; q)_{\infty}} 5\phi_4 \left(-\frac{q}{\sqrt{a}}, -\frac{qb}{\sqrt{a}}, -\frac{qc}{\sqrt{a}}, -\frac{bcz}{\sqrt{a}}, -\frac{qbc}{\sqrt{a}}; q, q \right) - q, \pm q^\frac{1}{2}, -\frac{qbc}{\sqrt{a}}; q, q \right) \\
+ \frac{\vartheta(q^{n+\frac{1}{2}} z \sqrt{a}, q^{n+\frac{1}{2}} \frac{\sqrt{a}}{c}; q)(\sqrt{\frac{qa}{c}}; \frac{q}{\sqrt{qa}}, -\frac{qa}{c}, \frac{bcz \sqrt{\frac{a}{q}}}{q}; q)_{\infty}}{(\pm \frac{1}{\sqrt{q}}, q \sqrt{qa}, \frac{qa}{bc}, \frac{bcz}{qa}; q)_{\infty}} 5\phi_4 \left(q \sqrt{a}, -\frac{qb}{\sqrt{a}}, -\frac{qc}{\sqrt{a}}, -\frac{bcz}{\sqrt{a}}, -\frac{qbc}{\sqrt{a}}; q, q \right) - q, \pm q^\frac{1}{2}, \frac{qbc}{\sqrt{a}}; q, q \right) \\
= \frac{(qa, \frac{b^2 c^2 z^2}{qa}, \frac{qa}{bc}; q)_{\infty}}{2\vartheta(q^{n-\frac{1}{2}} \frac{bc}{a}, q^{n-\frac{1}{2}} \frac{z}{c}; q)(-q, -\frac{b^2 c^2 z^2}{a}, \frac{qa}{b}, \frac{qa}{c}; q)_{\infty}} \\
\times \left(\frac{\vartheta(q^{n-\frac{1}{2}} \frac{bc}{a}, q^{n-\frac{1}{2}} \frac{z}{c}; q)(\sqrt{q^2}; \frac{\sqrt{qa}}{b}, \frac{\sqrt{qa}}{c}, -bcz \sqrt{\frac{a}{q}}; q)_{\infty}}{(\pm \sqrt{q}, \sqrt{qa}, \frac{\sqrt{qa}}{bcz \sqrt{\frac{a}{q}}}; q)_{\infty}} 5\phi_4 \left(\sqrt{qa}, \frac{qb}{\sqrt{qa}}, \frac{qc}{\sqrt{qa}}, \frac{bcz}{\sqrt{qa}}, \frac{qbc}{\sqrt{qa}}; q, q \right) - q, \pm \sqrt{q}, \sqrt{\frac{qbc}{\sqrt{qa}}}; q, q \right) \\
+ \frac{\vartheta(-q^{n-\frac{1}{2}} \frac{bc}{a}, -q^{n-\frac{1}{2}} \frac{z}{c}; q)(-\frac{\sqrt{qa}}{b}, -\frac{\sqrt{qa}}{c}, -bcz \sqrt{\frac{a}{q}}; q)_{\infty}}{(\pm \sqrt{q}, -\sqrt{qa}, -\frac{\sqrt{qa}}{bcz \sqrt{\frac{a}{q}}}; q)_{\infty}} 5\phi_4 \left(-\sqrt{qa}, -\frac{qb}{\sqrt{a}}, -\frac{qc}{\sqrt{a}}, -\frac{bcz}{\sqrt{a}}, -\frac{qbc}{\sqrt{a}}; q, q \right) - q, \pm q^\frac{1}{2}, -\frac{qbc}{\sqrt{a}}; q, q \right) \\
+ \frac{\vartheta(q^{n} \frac{bc}{\sqrt{qa}}, q^{n-1} \frac{z}{c}; q)(\sqrt{\frac{qa}{c}}; \frac{q}{\sqrt{qa}}, \frac{qa}{c}, \frac{bcz \sqrt{\frac{a}{q}}}{q}; q)_{\infty}}{(\pm \frac{1}{\sqrt{q}}, q \sqrt{qa}, \frac{qa}{bc}, \frac{bcz}{qa}; q)_{\infty}} 5\phi_4 \left(q \sqrt{a}, -\frac{qb}{\sqrt{a}}, -\frac{qc}{\sqrt{a}}, -\frac{bcz}{\sqrt{a}}, -\frac{qbc}{\sqrt{a}}; q, q \right) - q, \pm q^\frac{1}{2}, \frac{qbc}{\sqrt{a}}; q, q \right).
(5.7)

Proof. Start by inserting \(h \in \{q^n z, q^{n-1} \frac{bc}{q} \} \) respectively in Theorem 5.2. This forces the last term to vanish producing a four-term transformation for a nonterminating very-well-poised \(5W_4 \) with arbitrary argument \(z \). Note that we have used the identity \((-1; q)_{\infty} = 2(-q; q)_{\infty}\). This completes the proof.

Remark 5.4. Note that one can also choose \(h \in \pm q^n \left\{ \frac{1}{\sqrt{qa}}, \frac{bcz}{\sqrt{qa}}, \frac{1}{\sqrt{qa}} \right\} \), in Theorem 5.2 with \(n \in \mathbb{Z} \) and this will also produce four-term transformation formulas for nonterminating very-well-poised \(5W_4 \). However, we leave the representation of these transformation formulas to the reader.
6 Three and four-term transformations for the nonterminating very-well-poised \varPhi_7

By starting with Bailey’s transformation of a sum of two nonterminating balanced $4\phi_3$ basic hypergeometric functions expressed as a very-well-poised \varPhi_7 we derive an integral representation for the nonterminating very-well-poised \varPhi_7.

Theorem 6.1. Let $q \in \mathbb{C}^1$, $a, b, c, d, e, f, h \in \mathbb{C}^*$, $\sigma \in (0, \infty)$, $z = e^{i\psi}$ such that $|q^2a^2| < |bcdef|$, $h\sqrt{\frac{def}{qa}} \not\in \mathcal{Y}_q$. Then, one has the following integral representation for a nonterminating very-well-poised \varPhi_7:

$$
\varPhi_7\left(a; b, c, d, e, f; q, \frac{q^2a^2}{bcdef}\right) = \frac{(q, qa, qa, qa, qa, d, e, f; q)_\infty}{2\pi \vartheta(h, h\frac{def}{qa}; q)(\frac{qa}{a}, \frac{qa}{e}, \frac{qa}{f}; q)_\infty} \\
\times \int_{-\pi}^{\pi} \left((h\sqrt{\frac{def}{qa}}, \frac{q}{\sqrt{\frac{def}{qa}}})^\sigma, (h\sqrt{\frac{def}{qa}}, \frac{q}{\sqrt{\frac{def}{qa}}})^\sigma, (\frac{q^2a^2}{bcdef}, (\frac{q^2a^2}{bcdef})^\sigma; q)_\infty \right) d\psi,
$$

where the maximum modulus of the denominator factors in the integrand is less than unity and we assume there are no vanishing denominator factors (see Remark 4.1).

Proof. We start with Bailey’s transformation of a nonterminating very-well-poised \varPhi_7 [7, (17.9.16)]

$$
\varPhi_7\left(a; b, c, d, e, f; q, \frac{q^2a^2}{bcdef}\right) = \frac{(\frac{qa}{a}, \frac{qa}{e}, \frac{qa}{f}; q)_{\infty}}{(\frac{qa}{a}, \frac{qa}{e}, \frac{qa}{f}; q)_{\infty}} 4\phi_3 \left(\frac{qa}{a}, \frac{qa}{c}, \frac{qa}{f}; q, q\right) \\
+ \frac{(\frac{q^2a^2}{bcdef}, \frac{q^2a^2}{bcdef}; q, q, d, e, f; q)_{\infty}}{(\frac{q^2a^2}{bcdef}, \frac{q^2a^2}{bcdef}; q, q, d, e, f; q)_{\infty}} 4\phi_3 \left(\frac{q^2a^2}{bcdef}, \frac{q^2a^2}{bcdef}; q, q\right),
$$

and applying Theorem 1.9 with

$$
a := \left\{ \frac{(qa)^2}{b\sqrt{def}}, \frac{(qa)^2}{c\sqrt{def}} \right\}, \quad c := \left\{ \sqrt{\frac{qa}{e}}, \sqrt{\frac{qa}{f}} \right\}, \quad d := \left\{ \sqrt{\frac{def}{qa}}, \sqrt{\frac{def}{qa}} \right\}, \quad (6.3)
$$

completes the proof.

In the following, we will adopt Bailey’s W notation for a nonterminating very-well-poised \varPhi_6 of argument unity (see for instance, [10, p. 2])

$$
W(a; b, c, d, e, f) := \varPhi_6\left(\frac{a}{2}, 1 + a - b, 1 + a - c, 1 + a - d, 1 + a - e, 1 + a - f; 1\right),
$$

which is absolutely convergent if [7, (16.2.2)]

$$
\Re(2a - (b + c + d + e + f) + 2) > 0.
$$

(6.5)
Theorem 6.2. Let \(a, b, c, d, e, f, \sigma \in \mathbb{C}, h \in \mathbb{C} \setminus \mathbb{Z}, d+e+f-a-1,2+a-d-e-f, a-b+1, a-c+1, a-d+1, a-e+1, a-f+1 \not\in -\mathbb{N}_0 \). Then

\[
W(a; b, c, d, e, f) = \frac{1}{2\pi} \Gamma(h, 1-h, h+d+e+f-a-1, 2+a-h-d-e-f) \times \Gamma(a-b+1, a-c+1, a-d+1, a-e+1, a-f+1) \times \int_{-\infty}^{\infty} \Gamma\left(\frac{d+e+f-a-1}{2} - \sigma + ix, \frac{a+1-d-e-f}{2} + \sigma + ix, \frac{3}{2}(a+1) - b - c - d+e+f+e+ix\right) \times \Gamma\left(\frac{a+1-f-d-e}{2} + \sigma + ix, \frac{a+1+d-e-f}{2} + \sigma + ix, \frac{a+1+e-d-f}{2} + \sigma + ix\right) \times \Gamma\left(\frac{3}{2}(a+1) - b - d+e+f+e+ix\right) \frac{\Gamma(\sigma)}{\Gamma(\sigma +1)} dx. \tag{6.6}
\]

Proof. First use the map \((a, b, c, d, e, f, h, e^{i\psi}) \mapsto (q^a, q^b, q^c, q^d, q^e, q^f, q^{i\psi})\) in (6.1). This converts the \(sW_7\) to

\[
sW_7\left(q^a; q^b, q^c, q^d, q^e, q^f; q, q^{2a+2-b-c-d-e-f}\right) \tag{6.7}
\]

which in the limit as \(q \to 1^-\) becomes \(W(a; b, c, d, e, f)\). On the right-hand side of (6.1), the infinite \(q\)-shifted factorials can be converted to \(q\)-gamma functions using [9, (1.35)]. Upon taking the limit as \(q \to 1^-\) this completes the proof. \(\blacksquare\)

Now we present a theorem which gives a representation for a nonterminating very-well-poised \(sW_7\) given as a sum of four balanced \(\phi_3(q)\)’s.

Theorem 6.3. Let \(q \in \mathbb{C}^1, a, b, c, d, e, f, h \in \mathbb{C}^* \) such that \(|q^2a^2| < |bcdef|\), and we assume there are no vanishing denominator factors (see Remark 4.1). Then

\[
sW_7\left(a; b, c, d, e, f; q, q^{2a^2} \text{bcdef}\right) = \vartheta(h, h \text{def}; q) \vartheta(qa, qa; qa, qa, qa, qa; q, q) \times \vartheta(hf, hf; q) \vartheta(qa, qa; qa, qa; qa, qa; q, q) \times \vartheta(hd, hd; q) \vartheta(qa, qa; qa, qa; qa, qa; q, q) \times \vartheta(he, he; q) \vartheta(qa, qa; qa, qa; qa, qa; q, q)
\]

\[
(\phi_3(q; q, qa, qa, qa, qa, qa, qa; qa, qa, qa, qa, qa, qa; q, q)) \tag{6.8}
\]

Proof. Applying \(a, c\) and \(d\) in (6.3) to (1.47) produces the result. \(\blacksquare\)

Remark 6.4. If one takes either \(d, e, f\) equal to \(q^{-n}\) for some \(n \in \mathbb{N}_0\) then (6.8) becomes Watson’s \(q\)-analogue of Whipple’s theorem [7, (17.9.15)].
Remark 6.5. Also, we were trying to get Bailey’s transformation of a nonterminating very-well-poised $8W_7$ as a sum of two balanced $4\phi_3$’s, [7, (17.9.16)] as a limit case of the (6.8), but we weren’t able to. Note also we weren’t able to express (6.8) as a sum of two nonterminating very-well-poised $8W_7$’s (a la [9, (III.37)]) either, although originally we had high hopes.

As the parameter h is free, one may choose $h = q^nbc/(qa) or h = q^{n+2}a^2/(bcdef)$ in (6.8). Then the first term in (6.8) vanishes and you are left with a symmetric sum of three $4\phi_3$’s as a representation of a nonterminating very-well-poised $8W_7$, namely the following theorem.

Remark 6.6. One might also consider the limit of (6.8) as $h \to \infty$. However, this limit produces a multiplicative elliptic function in proportion, which is doubly periodic on the entire complex plane. Therefore this limit does not exist.

Theorem 6.7. Let $n \in \mathbb{Z}, q \in \mathbb{C}^\dagger, a, b, c, d, e, f \in \mathbb{C}^*$ such that $|q^2a^2| < |bcdef|$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then

$$
8W_7\left(a; b, c, d, e, f; q; \frac{q^2a^2}{bcdef}\right) = \frac{(qa, qa, qa, qa, qa, qa, qa, qa, qa \cdots)}{\varphi(qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa \cdots)}
$$

$$
\times \varphi(qa, qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa \cdots)
$$

$$
\cdot 4\phi_3\left(\frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa} \cdots\right).
$$

Proof. Choose $h = q^nbc/a$ in (6.8). This causes the first term to vanish and one is left with a symmetric sum of three nonterminating balanced $4\phi_3$’s as a representation of the nonterminating very-well-poised $8W_7$, namely the following theorem.

Alternatively one could have chosen $h = q^{n+2}a^2/(bcdef)$ in (6.8). This produces the following result.

Theorem 6.8. Let $n \in \mathbb{Z}, q \in \mathbb{C}^\dagger, a, b, c, d, e, f \in \mathbb{C}^*$ such that $|q^2a^2| < |bcdef|$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then

$$
8W_7\left(a; b, c, d, e, f; q; \frac{q^2a^2}{bcdef}\right) = \frac{(qa, qa, qa, qa, qa, qa, qa, qa, qa \cdots)}{\varphi(qa, qa, qa, qa, qa, qa, qa, qa, qa \cdots)}
$$

$$
\times \varphi(qa, qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa, qa/qa \cdots)
$$

$$
\cdot 4\phi_3\left(\frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa}, \frac{qa}{qa} \cdots\right).
$$

Proof. Replace $h = q^{n+2}a^2/(bcdef)$ in (6.8) and simplifying completes the proof.

Remark 6.9. Note that one can also choose for $n \in \mathbb{Z}, h \in q^n\left\{\frac{1}{\varphi}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q}, \frac{1}{q} \cdots\right\}$, and then the four-term representation of the nonterminating very-well-poised $8W_7$ in (6.8) reduces to a three-term transformation. However, these representations are not symmetric and we leave their depictions to the reader.

7 Summation and transformation formulas for nonterminating balanced very-well-poised $8W_7$

By starting with Bailey’s three-term transformation formula for a nonterminating very-well-poised $8W_7$, we are able to prove a generalized q-beta integral which will be useful to generate...
Nonterminating transformations and summations for some q-Mellin–Barnes integrals

Further transformation and summation formulas in the special case where the nonterminating very-well-poised nW_k are also balanced.

Theorem 7.1. Let $q \in \mathbb{C}^+$, $\sigma \in (0, \infty)$, $a, b, c, d, e, h \in \mathbb{C}^*$, $h, h\sqrt{b} \notin \mathbb{Y}_q$, $z = e^{i\psi}$. Then, one has the following q-Mellin–Barnes integral:

$$\int_{-\pi}^\pi \frac{(h\sqrt{b}, q, q\sqrt{b}/z, (h\sqrt{b} \sqrt{\frac{b}{a}}, \pm \sqrt{b}, q\sqrt{ab}, \sqrt{b} \sqrt{ab} (\frac{b}{a})^3 cde) \frac{z}{q}; q)_\infty}{((\sqrt{b} \sqrt{\frac{b}{a}})^2, (\pm q\sqrt{b}, \sqrt{ab}, c, d\sqrt{b}, c\sqrt{a}, \sqrt{b} \sqrt{a}, \sqrt{b} \sqrt{a}, \sqrt{b} \sqrt{a}, \sqrt{b} \sqrt{a}; \pi; q)_\infty} d\psi$$

$$= 2\pi \frac{\vartheta(h, h\sqrt{b}/; q)(qa, qa/c, qa/bc, qa/cde; q)_\infty}{(qa/c, qa/c, qa/c, qa/cde; q)_\infty},$$

(7.1)

where the maximum modulus of the denominator factors in the integrand is less than unity and we assume there are no vanishing denominator factors (see Remark 4.1).

Proof. Start with Bailey’s three-term transformation of a nonterminating very-well-poised $8W_7$ [9, (III.37)]. Then as in the discussion surrounding [9, (2.11.7)], replace f using the substitution $qa^2 = bcd ef$. The converts the nonterminating very-well-poised $8W_7$ with argument bd/a to a nonterminating very-well-poised $6W_5$ with the same argument. This nonterminating very-well-poised $6W_5$ can then be summed using the nonterminating sum for a nonterminating very-well-poised $6W_5$ [9, (II.20)]

$$6W_5(a; b, c, d; q; qa/bcd) = \frac{(qa, qa/c, qa/c; q)_\infty}{(qa/c, qa/c, qa/c; q)_\infty}. \quad (7.2)$$

The remaining two nonterminating very-well-poised $8W_7$’s both now have argument q and the application of Theorem 1.9 with $(A, C, D) = (6, 8, 2)$, given by

$$a := \left\{ \pm \sqrt{b}, q\sqrt{ab}, q\sqrt{ab}, \sqrt{ab}, \frac{b}{a}\frac{3}{2} cde \right\}, \quad (7.3)$$

$$c := \left\{ \sqrt{ab}, \pm q\sqrt{b}, b\frac{3}{2} \sqrt{a}, \sqrt{a}d, \sqrt{a}e, \sqrt{b}, \frac{b}{a}\frac{3}{2} cde \sqrt{b} \right\}, \quad (7.4)$$

$$d := \left\{ \sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \right\}, \quad (7.5)$$

generates the integral in (7.1). This completes the proof. ■

Now that we’ve generated the definite integral in Theorem 7.1, we can apply (1.47) to this definite integral to obtain in principle, a new summation theorem which is an eight-term sum of nonterminating very-well-poised $8W_7$’s with argument q. However, when one applies (1.47), two of the terms vanish because of leading factors of q^{-1} in the list of numerator infinite q-shifted factorials. So we are left with a summation formula for six-terms each of which are nonterminating very-well-poised $8W_7$’s with argument q. This is given as follows.

Theorem 7.2. Let $q \in \mathbb{C}^+$, $a, b, c, d, e, h \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following six-term summation
formulas for nonterminating balanced very-well-poised \mathcal{W}_7 with argument q:

\[
\vartheta(ha, b, c, d, e; qa^2; q, q)_{\infty} + \vartheta(hb, h a^2, b c d e; qa^2; q, q)_{\infty} = \vartheta(hb, h a^2, b c d e; qa^2; q, q)_{\infty},
\]

Proof. Starting with Theorem 7.1, we apply (1.47). This produces an eight-term sum of nonterminating very-well-poised \mathcal{W}_7's with argument q. However two of the terms vanish because of the appearance of leading factors of q^{-1} in the numerator infinite q-shifted factorials. This leaves us with six-terms each of which are nonterminating very-well-poised \mathcal{W}_7's with argument q, which completes the proof.

Corollary 7.3. Let $n \in \mathbb{Z}$, $q \in \mathbb{C}^\dagger$, $a, b, c, d, e \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one produces the following six-term transformation...
Proof. Taking $h = q^n$ and $h = q^n b / a$, respectively in in Theorem 7.2 produces transformation formulas for nonterminating very-well-poised $s W_7$ with argument q given by (7.7), (7.8). This completes the proof.

Corollary 7.4. Let $n \in \mathbb{Z}$, $q \in \mathbb{C}^\dagger$, $a, b, c, d, e \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following five-term summation
formulas for nonterminating balanced very-well-poised sW_7 with argument q:

$$
\frac{\vartheta(q^{n+1} \frac{a}{b c d e}, q^{n-1} c d e \frac{a}{a^2}; q)(\pm \frac{b c d e}{a}, \frac{q a^2}{a}, \frac{b c d e}{a}, \frac{b d e}{a}, \frac{b^2 c^2 d^2 e^2}{a}; q)_{\infty}}{(\pm \frac{b c d e}{a^2}, \frac{q a^2}{a}, \frac{b c d e}{a}, \frac{b d e}{a}, \frac{b^2 c^2 d^2 e^2}{a}; q)_{\infty}}
\times sW_7\left(\frac{q^2 a^3}{b^2 c^2 d^2 e^2}, \frac{q a^2}{b c d e}, \frac{q a}{b c e d}, \frac{q a}{b d e c}, \frac{q a^2}{c d e}; q, q\right)
\times sW_7\left(\frac{b^2}{a}; b, b, a, a, a, a, c d e; q, q\right)
$$

Proof. Take $h \in \{q^n a^{-1}, q^n b\}$, with $n \in \mathbb{Z}$, in Theorem 7.2 and the first term following the symmetric sum vanishes and one obtains five-term summation formulas which produce (7.9), (7.10) respectively. This completes the proof.

Corollary 7.5. Let $n \in \mathbb{Z}$, $q \in \mathbb{C}^\dagger$, $a, b, c, d, e \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following five-term summation
formulas for nonterminating balanced very-well-poised \(sW_7 \) with argument \(q \):

\[
\vartheta(q^{n-1}bcde/a, q^{n-1}cde/ab; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
sW_7 \left(a; b, c, d, e, \frac{q a^2}{bcde}; q, q \right)
\]

\[
+ b; c, d, e
\]

\[
\vartheta(q^{n-1}b^2cde/ab^2; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
sW_7 \left(b^2/a; b, c, d, e, \frac{q a}{bcde}; q, q \right)
\]

\[
= \vartheta(q^{n-1}b^3cde/ab^3; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
(b, c, d, e, \frac{b}{a}, \frac{c}{a}, \frac{d}{a}, \frac{e}{a}, \frac{q a}{bcde}; q)^\infty
\]

\[
= \vartheta(q^{n-1}a^2cde/ab^2; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
sW_7 \left(\frac{b^2}{a}; b, c, d, e, \frac{q a}{bcde}; q, q \right)
\]

(7.11)

\[
+ b; c, d, e
\]

\[
\vartheta(q^{n-1}ab/cde; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
sW_7 \left(\frac{b^2}{a}; b, c, d, e, \frac{q a}{bcde}; q, q \right)
\]

\[
= \vartheta(q^{n-1}a/cde; q) (\pm \frac{q}{\sqrt{a}}; a, b, c, d, e; \frac{qa}{bcde}; q)^\infty \]

\[
(b, c, d, e, \frac{b}{a}, \frac{c}{a}, \frac{d}{a}, \frac{e}{a}, \frac{q a}{bcde}; q)^\infty
\]

(7.12)

Proof. Take \(h \in \{q^{n-1}bcde/ab, q^{n+1}a/cde\} \) with \(n \in \mathbb{Z} \), in Theorem 7.2 and the second term following the symmetric sum vanishes and one obtains five-term summation formulas which produce (7.11), (7.12) respectively. This completes the proof. \(\blacksquare \)

Remark 7.6. Note that one can also choose \(h \in q^n \left\{ \frac{1}{b}, \frac{1}{c}, \frac{1}{d}, \frac{1}{e}, \frac{b^2}{a}, \frac{c^2}{a}, \frac{d^2}{a}, \frac{e^2}{a} \right\} \), in Theorem 7.2 with \(n \in \mathbb{Z} \) and this will also produce five-term summation formulas for nonterminating balanced very-well-poised \(sW_7 \). However, we leave the representation of these summation formulas to the reader.

8 Gasper & Rahman’s product formula for a product of two nonterminating \(\phi_1 \)’s and for the square of a nonterminating well-poised \(\phi_1 \)

This section follows from two formulas which can be found in Gasper & Rahman, namely [9, (8.8.18)] (8.1).

\[
\phi_1 \left(a, b; c; q, z \right) \phi_1 \left(a, \frac{q a}{c}; q, z \right)
\]

\[
= \frac{(az, abz/c; q)_{\infty}}{(z, bz/c; q)_{\infty}} \psi_5 \left(a, \frac{c}{b}, \pm \sqrt{\frac{a}{b}}, \pm \sqrt{\frac{q a c}{b^2}}; q, q \right)
\]

\[
+ \frac{(a, az, bz, c, \frac{q a z}{c}; q)_{\infty}}{(z, z, c, \frac{q a}{b}, c/bz; q)_{\infty}} \psi_5 \left(az, bz, \frac{q a z}{c}, \frac{abz}{c}, \frac{q b z}{c}; q, q \right).
\]

(8.1)
and [9, (8.8.12)]

\[
\left(2\phi_1\left(a, \frac{b}{q}; q, z\right)\right)^2 = \left(a, \frac{b^2}{q}; q\right)_\infty 5\phi_4\left(a, \frac{qa}{b^2}, \frac{\sqrt{qa}}{b}; -\frac{qa}{b}\right)_{az, \frac{qa}{b}} 5\phi_4\left(az, \frac{qa}{b}, \frac{q^2a}{b^2}; q\right)_{q, q} \\
+ \left(az, \frac{qa}{b}, \frac{q^2a}{b^2}; q\right)_{q, q} 5\phi_4\left(az, \frac{qa}{b}, \frac{q^2a}{b^2}; q\right)_{q, q}.
\]

However, (8.2) follows directly from their product formula (8.1) using the substitution \(c = qa/b\).

8.1 Gasper & Rahman’s product of two nonterminating \(2\phi_1\)’s

Using a product formula for a product of two nonterminating \(2\phi_1\)’s with modulus of the argument less than unity, one can obtain a \(q\)-Mellin–Barnes integral as its representation.

Theorem 8.1. Let \(q, z \in \mathbb{C}^\dagger, \sigma \in (0, \infty)\), \(a, b, c, h \in \mathbb{C}^*, w = e^{i\psi}, h\sqrt{bz} \not\in \Upsilon_q\), and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following \(q\)-Mellin–Barnes integral for a product of two nonterminating \(2\phi_1\)’s with arbitrary argument \(z\):

\[
\int_{-\pi}^{\pi} \frac{(h\sqrt{bz}, \frac{q}{h}\sqrt{b\overline{z}}, a, b\sqrt{b\overline{z}}, qa\sqrt{b\overline{z}}, a\sqrt{b\overline{z}}\overline{c}, qw\sigma; q)}{(\sqrt{b\overline{z}}, \frac{q}{h}\sqrt{b\overline{z}}, a, b\sqrt{b\overline{z}}, qa\sqrt{b\overline{z}}, a\sqrt{b\overline{z}}\overline{c}, qw\sigma; q)} d\psi = \frac{2\pi \vartheta(h, h\sqrt{c}b; q)(z, c, qa\sqrt{b\overline{z}}; q)_\infty 2\phi_1\left(a, \frac{b}{c}; q, z\right) 2\phi_1\left(a, \frac{qa}{c}; q, z\right)}{(q, a, \frac{b}{c}, \frac{w}{q}; q)_\infty},
\]

where the maximum modulus of the denominator factors in the integrand is less than unity.

Proof. Start with the formula for a product of two nonterminating \(2\phi_1\) , namely (8.1). Now use Theorem 1.9 with the following sets of parameters with \((A, C, D) = (4, 6, 2)\)

\[
a := \left\{\sqrt{bcz}, a\sqrt{b\overline{z}}\overline{c}, qa\sqrt{b\overline{z}}, a\sqrt{b\overline{z}}\overline{c}\right\}, c := \left\{a\sqrt{b\overline{z}}\overline{c}, \sqrt{c\overline{b}}, \pm\sqrt{ac}, \pm\sqrt{aqc}\right\},
\]

\[
d := \left\{\sqrt{c\overline{b}}, b\overline{z}\right\}.
\]

This completes the proof. ■

Now we take advantage of the \(q\)-Mellin–Barnes integral for a product of two nonterminating \(2\phi_1\)’s with arbitrary argument \(z\) with modulus less than unity to obtain a six-term transformation for the product of two nonterminating \(2\phi_1\)’s with modulus of the argument less than unity.

Theorem 8.2. Let \(q, z \in \mathbb{C}^\dagger, a, b, c, h \in \mathbb{C}^*, h, h\sqrt{c}b \not\in \Upsilon_q\), and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following six-term representation for
a product of two nonterminating \(2\phi_1\)’s with arbitrary argument \(z\):
\[
2\phi_1\left(\frac{a}{c}, \frac{b}{z}; q, z\right) 2\phi_1\left(\frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{z}; q, z\right) = \frac{1}{\vartheta(h, h; \frac{c}{b}; q)}
\]
\[
\times \left(\vartheta(ha, h\frac{c}{ab}; q)\frac{\left(\frac{c}{a}, \frac{c}{ab}, \frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{c}; q\right)_\infty}{(c, \frac{c}{ab}, \frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{c}; q)_\infty}\vartheta_5\left(a, b, \frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{c}, \frac{ab}{z}; q, q\right) + \vartheta(h\frac{c}{z}, h\frac{c}{z}; q)\frac{\left(\frac{a}{c}, \frac{b}{c}, \frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{c}; q\right)_\infty}{(z, z, c, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q)_\infty}\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right) + \vartheta(h\frac{c}{z}, h\frac{c}{z}; q)\frac{\left(\frac{a}{c}, \frac{b}{c}, \frac{\sqrt{a}}{c}, \frac{\sqrt{b}}{c}; q\right)_\infty}{(-1, 1; z, c, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q)_\infty}\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)\right)
\]
\[
\times \left(-q, \pm \sqrt{q}, q\sqrt{\frac{ab}{c}}, q\sqrt{\frac{ab}{c}}\right)\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right) + \left(-q, \pm \sqrt{q}, q\sqrt{\frac{ab}{c}}, q\sqrt{\frac{ab}{c}}\right)\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
+ \left(-q, \pm \sqrt{q}, q\sqrt{\frac{ab}{c}}, q\sqrt{\frac{ab}{c}}\right)\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q\right)_\infty\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
+ \left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q\right)_\infty\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
+ \left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q\right)_\infty\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q\right)_\infty\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)
\]
\[
\times \left(-q, \pm \sqrt{q}, q\sqrt{\frac{ab}{c}}, q\sqrt{\frac{ab}{c}}\right)\vartheta_5\left(\frac{qa}{b}, \frac{qa}{b}, \frac{ab}{c}, \frac{ab}{c}; q, q\right)\right).
\]

\textbf{Proof.} Applying \(a, c\) and \(d\) in (8.4), (8.5) to (1.47) and connecting with Theorem 8.1 completes the proof.
8.2 Gasper & Rahman’s formula for the square of a nonterminating well-poised \(_2\phi_1 \)

Using the formula for the square of a nonterminating well-poised \(_2\phi_1 \) with modulus of the argument less than unity one can obtain a \(q \)-Mellin–Barnes integral as its representation.

Theorem 8.3. Let\(q, z \in \mathbb{C}^\dagger \), \(a, b, h \in \mathbb{C}^* \), \(\sigma \in (0, \infty) \), \(\frac{h}{b} \sqrt{\frac{qa}{z}} \not\in \text{Y}_q \), \(w = e^{i\psi} \). Then, one has the following \(q \)-Mellin–Barnes integral for the square of a nonterminating well-poised \(_2\phi_1 \) with arbitrary argument \(z \):

\[
\int_{-\pi}^{\pi} \left(\begin{array}{c}
\frac{h}{b} \sqrt{\frac{qa}{z}}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \pm \sqrt{a z}, \frac{1}{b} \sqrt{q a z}, -\sqrt{q a z}
\end{array} \right)_{\infty} d\psi \left(\begin{array}{c}
\frac{h}{b} \sqrt{\frac{qa}{z}}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \pm \sqrt{a z}, \frac{1}{b} \sqrt{q a z}, -\sqrt{q a z}
\end{array} \right)_{\infty} \left(\begin{array}{c}
a, b \frac{q a}{b} \frac{q a}{b} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \frac{1}{b} \sqrt{\frac{q}{a z}}, \frac{1}{b} \sqrt{\frac{q}{a z}}, \frac{1}{b} \sqrt{\frac{q}{a z}}
\end{array} \right)_{\infty} \right) = 2 \pi \vartheta \left(\begin{array}{c}
\frac{h}{b} \sqrt{\frac{qa}{z}}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z}, b \sqrt{\frac{a}{q} z} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \pm \sqrt{a z}, \frac{1}{b} \sqrt{q a z}, -\sqrt{q a z}
\end{array} \right)_{\infty} \left(\begin{array}{c}
a, b \frac{q a}{b} \frac{q a}{b} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \pm \sqrt{a z}, \frac{1}{b} \sqrt{q a z}, -\sqrt{q a z}
\end{array} \right)_{\infty} \left(\begin{array}{c}
a, b \frac{q a}{b} \frac{q a}{b} \\
\frac{1}{b} \sqrt{\frac{q}{a z}}, \pm \sqrt{a z}, \frac{1}{b} \sqrt{q a z}, -\sqrt{q a z}
\end{array} \right)_{\infty} \right) \right)^2, \tag{8.7}
\]

where the maximum modulus of the denominator factors in the integrand is less than unity and we assume there are no vanishing denominator factors (see Remark 4.1).

Proof. Start with the formula for the square of a nonterminating well-poised \(_2\phi_1 \), namely (8.2). Now use Theorem 1.9 with the following sets of parameters with \((A, C, D) = (3, 5, 2)\)

\[
a := \left\{ \sqrt{q a z}, b \sqrt{\frac{a z^3}{q}}, \sqrt{q a z^3} \right\}, \quad c := \left\{ b \sqrt{\frac{a z}{q}}, b \sqrt{\frac{a z}{q}}, b \sqrt{\frac{a z}{q}}, b \sqrt{\frac{a z}{q}} \right\}, \tag{8.8}
\]

\[
d := \left\{ \frac{1}{b} \sqrt{\frac{q a}{z}}, b \sqrt{\frac{z}{q a}} \right\}. \tag{8.9}
\]

This completes the proof. \(\blacksquare \)

Now we take advantage of the \(q \)-Mellin–Barnes integral for the square of a nonterminating well-poised \(_2\phi_1 \) with arbitrary argument \(z \) with modulus less than unity to obtain a five-term transformation for the square.

Theorem 8.4. Let\(q, z \in \mathbb{C}^\dagger \), \(a, b, h \in \mathbb{C}^* \), and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following five-term representation for a square of
a nonterminating well-poised $2\phi_1$ with arbitrary argument z:

\[
(2\phi_1\left(\frac{a}{b}, \frac{b}{a}; q, z\right))^2 = \frac{1}{\vartheta(h, h, \frac{qa}{b}; q)} \times \left(\frac{\vartheta(ha, h, \frac{q}{b}; q)(\frac{q}{b}, \frac{qa}{b}, \frac{qa}{b}; q)^\infty}{(\frac{qa}{b}, \frac{qa}{b}, \frac{q}{b}; q)^\infty} \times 5\phi_4\left(a, b, \frac{b^2}{a}, \frac{b^2}{a}, \frac{q}{z}, \frac{z}{b}^2, \pm b\sqrt{q}, -b; q, q\right) \right.
\]

\[
+ \vartheta(h, \frac{qa}{b}, \frac{h}{z}; q)(a, a, b, b, \frac{b^2}{a}, \frac{b^2}{a}, \frac{q}{z}; q)^\infty \times 5\phi_4\left(\frac{q}{a}; \frac{z}{b}, \frac{qa}{b}, \frac{qa}{b}, \frac{q}{z}; q, q\right)
\]

\[
+ \vartheta(h, \frac{q}{b}, h, h, \frac{q}{z}; q)(\sqrt{q}, a, \frac{q}{b}, \frac{b^2}{q}; q)^\infty 5\phi_4\left(\sqrt{q}, \frac{a\sqrt{q}}{b}, \frac{b\sqrt{q}}{a}, \frac{b^2}{q}; q, q\right)
\]

\[
+ \vartheta(-h, h, \frac{q}{b}, h, h, \frac{q}{z}; q)(\sqrt{q}, a, \frac{q}{b}, \frac{b^2}{q}; q)^\infty 5\phi_4\left(-\sqrt{q}, -\frac{a\sqrt{q}}{b}, -\frac{b\sqrt{q}}{a}, -\frac{b^2}{q}; q, q\right)
\]

\[
+ \vartheta(-h, h, \frac{q}{b}, h, h, \frac{q}{z}; q)(-1, a, -\frac{a}{b}, \frac{q}{b}, \frac{b^2}{q}; q)^\infty 5\phi_4\left(-q, -bz, -\frac{q}{a}, -\frac{b^2}{q}; q, q\right)
\]

Proof. Applying a, c and d in (8.8), (8.9) to (1.47) and connecting with Theorem 8.1 completes the proof. □

Remark 8.5. If you choose for some $n \in \mathbb{Z}$, $h \in q^n \left\{\frac{1}{a}, \frac{b^2}{\sqrt{q}}, \frac{b^2}{\sqrt{q}}, z, \pm \frac{b}{\sqrt{q}}, \pm \frac{b}{\sqrt{q}}, -\frac{b}{\sqrt{q}}, -b\right\}$, then the five-term transformation formula for the square of a nonterminating well-poised $2\phi_1$ with arbitrary argument z in (8.10) reduces to a four-term transformation formula. However we leave the representation of these transformation formulas to the reader.

An interesting application of this expansions (8.2), (8.10) are given in the following corollary which gives nonterminating four-term and two-term summation theorems for sums of nonterminating $4\phi_3$’s.

Corollary 8.6. Let $q \in \mathbb{C}^*$, $a, b, h \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then, one has the following analogues of the Bailey-Daum q-Kummer
sum in the specialization as $z = -q/b$ for the square of the nonterminating well-poised $2\phi_1$:

$$\frac{(-q, -q; q)\infty (qa, qa, qa^2 q^2; q^2)\infty}{(-\frac{q}{b}, -\frac{q}{b}, \frac{qa}{b}; q)\infty}$$

$$= \frac{(-b, -\frac{qa}{b}; q)\infty}{(-\frac{q}{b}, -\frac{b}{a}, \frac{qa}{b}; q)\infty} 4\phi_3 \left(\pm \frac{a\sqrt{a}}{b}, \frac{qa}{b} a, \frac{\pm qa}{b} ; q, q \right)$$

$$+ \frac{(-q, -q, a, -\frac{qa}{b}; q)\infty}{(\frac{qa}{b}, -\frac{q}{b}, -\frac{b}{a}, \frac{qa}{b}; q)\infty} 4\phi_3 \left(\pm \sqrt{q}, -b, -\frac{q}{a}, -\frac{q}{b} ; q, q \right)$$

$$= \frac{1}{\vartheta(h, -h^a_q ; q)} \left(\vartheta(\frac{q}{b}, -h^q_{a\sqrt{a}} ; q) \left(\frac{\vartheta(a, a, \pm b, b ; q)\infty}{(\vartheta(a, a, a, b ; q)\infty \right) \varphi_3 \left(\frac{\pm qa}{b} a, \frac{\pm qa}{b} b, \pm \sqrt{q} ; q, q \right)$$

$$+ \frac{\vartheta(h^a_{a\sqrt{a}}, -h^q_{a\sqrt{a}} ; q)(\sqrt{q}, a, -b, \frac{qa}{b}, q)\infty}{(-1, -\sqrt{q}, -\frac{q}{b}, \frac{qa}{b}, -\sqrt{q} b ; q\infty} 4\phi_3 \left(\frac{a\sqrt{a}}{b}, \pm \frac{\sqrt{q}}{a}, \pm \sqrt{q} ; q, q \right)$$

$$+ \frac{\vartheta(-h^a_{a\sqrt{a}}, h^q_{a\sqrt{a}} ; q)(-\sqrt{q}, a, -b, \frac{qa}{b}, q)\infty}{(-1, \sqrt{q}, -\frac{q}{b}, \frac{qa}{b}, -\sqrt{q} b ; q\infty} 4\phi_3 \left(\frac{-a\sqrt{a}}{b}, -\frac{\sqrt{q}}{a}, \pm \sqrt{q} ; q, q \right).$$

Proof. Simply start with (8.2), (8.10), let $z = -q/b$ and then compare the resulting expressions to the Bailey-Daum q-Kummer sum [7, (17.6.5)]

$$2\phi_1 \left(\frac{a, b}{\sqrt{q}} ; q, -\frac{q}{b} \right) = \frac{(-q, -q; q)\infty (qa, qa, qa^2 q^2; q^2)\infty}{(-\frac{q}{b}, \frac{qa}{b}; q)\infty},$$

where $|q| < b$. For the expression which arises from (8.10) one of the term vanishes due to the appearance of a unity factor in one of the numerator infinity q-shifted factorials. This completes the proof.

Remark 8.7. If you choose for some $n \in \mathbb{Z}, h \in q^n \left\{ \frac{1}{a}, -b, \frac{b^2}{a}, -\frac{q}{b}, \pm \frac{b}{\sqrt{q}}, \pm \sqrt{q} \right\}$, then the four-term summation theorem in (8.12) reduces to a three-term summation theorem. However we leave the representation of these summation theorems to the reader.

Remark 8.8. We also note that using the following transformation of a nonterminating well-poised $2\phi_1$ to a nonterminating very-well-poised $8W_7$ cf. [9, (8.8.16)]

$$2\phi_1 \left(\frac{a, b}{\sqrt{q}} ; q, z \right) = \frac{(-z, az, \pm z b \sqrt{q}; q)\infty}{(z, -az, \pm z b \sqrt{q}; q)\infty} W_7 \left(-\frac{az}{q} ; b z, \pm \sqrt{az}, \pm \sqrt{qa} b ; q, -bz \right),$$

where we assume there are no vanishing denominator factors (see Remark 4.1). Hence, the above formulas can also be expressed as a product of two nonterminating very-well-poised $8W_7$’s. However, we leave the representations of these formulas to the reader. Furthermore since the nonterminating $2\phi_1$ can also be expressed in terms of a nonterminating $2\phi_2$ [7, (17.9.1)], and as well as a sum of two $2\phi_2$’s with vanishing numerator parameter [7, (17.9.3)] or as a sum of two $3\phi_2$’s with vanishing denominator parameter [7, (17.9.3.5)], there are many alternative ways to represent the above formulas as well as in the previous section.
9 Verma & Jain’s transformations for a very-well-poised nonterminating $12W_{11}$ and $10W_9$

In a paper by Verma & Jain (1982) [16], the authors present examples of transformation formulas for very-well-poised basic hypergeometric series. In this section we exploit several of these formulas to derive integral representations for these nonterminating very-well-poised basic hypergeometric series and then use the integral representations to derive new transformations for these nonterminating very-well-poised basic hypergeometric series. We will focus in particular on a formula they derived for very-well-poised $12W_{11}$ and $10W_9$.

9.1 The Verma–Jain $12W_{11}$ transformation

Using a transformation for a nonterminating very-well-poised $12W_{11}$ as a sum of two nonterminating balanced $6\phi_5$ with argument q we derive the following integral representation.

Define the notation $\omega a := \{a, \omega a, \omega^2 a\}$ for $a \in \mathbb{C}$, $\omega = e^{\frac{2\pi}{3}}$, the cube root of unity. Note that $\omega^3 = 1$, $\omega^5 = \omega^2 = \omega^4 = \omega^{-2} = \omega$.

Theorem 9.1. Let $q \in \mathbb{C}^1$, $\omega = e^{\frac{1}{3}(2\pi i)}$, $\sigma, h, a, x, y, z \in \mathbb{C}^*$. Then

$$12W_{11} \left(a; x, qx, q^2x, y, qy, q^2y, z, qz, q^2z; q^3; \frac{q^3a^4}{(xyz)^3} \right)$$

$$\begin{align*}
&= \frac{(q, qa, qa \ xy, qa \ yz, qa \ xz; q)_{\infty}}{2\pi \theta(h, h \ \frac{xyz}{qa}; q)(\frac{qa}{x}, \frac{qa}{y}, \frac{qa}{z}; a; q)_{\infty}} \\
&\times \int_{-\pi}^{\pi} \left((h \ \frac{xyz}{qa}, q) \sqrt{\frac{qa \ xy}{xyz}}, (h \ \frac{xyz}{qa}, q) \sqrt{\frac{qa \ yz}{xyz}}, (h \ \frac{xyz}{qa}, q) \sqrt{\frac{qa \ xz}{xyz}}, \omega \sqrt{\frac{qa \ yz}{xyz} - \frac{qa \ xz}{xyz}}; q \right)_{\infty} \\
&\times \left((\sqrt{\frac{qa \ xy}{xyz}}, q) \sqrt{\frac{qa \ xz}{xyz}}, (\sqrt{\frac{qa \ xz}{xyz}}, q) \sqrt{\frac{qa \ yz}{xyz}}, \omega \sqrt{\frac{qa \ xz}{xyz} - \frac{qa \ yz}{xyz}}; q \right)_{\infty},
\end{align*}$$

(9.1)

where the maximum modulus of the denominator factors in the integrand is less than unity and we assume there are no vanishing denominator factors (see Remark 4.1).

Proof. Start with the transformation formula for a nonterminating very-well-poised $12W_{11}$ in terms of a sum of two balanced $6\phi_5$ with argument q [16, 6.1]:

$$12W_{11} \left(a; x, qx, q^2x, y, qy, q^2y, z, qz, q^2z; q^3; \frac{q^3a^4}{(xyz)^3} \right)$$

$$\begin{align*}
&= \frac{(qa, qa \ xy, qa \ yz, qa \ xz; q)_{\infty}}{(qa \ x, qa \ y, qa \ z; q)_{\infty}} \ 6\phi_5 \left(\frac{x, y, z, \omega a^\frac{1}{3}}{qa \ ay}, \pm \sqrt{a}, \pm \sqrt{qa^\frac{1}{3}}; q, q \right) \\
&\quad + \frac{(x, y, z, q^4a^3; q)_{\infty}}{(qa \ x, qa \ y, qa \ z; q)_{\infty}} \ 6\phi_5 \left(\frac{q^3a^3}{(xyz)^3}, q; \omega \frac{q^4a^4}{(xyz)^3}; q, q \right),
\end{align*}$$

(9.2)

Now use Theorem 1.9 with the following sets of parameters with $(A, C, D) = (3, 5, 2)$

$$a := \left\{ \pm \frac{q^\frac{1}{3} a}{\sqrt{xyz}}, \pm \frac{qa}{\sqrt{xyz}} \right\}, \quad c := \left\{ \sqrt{\frac{qax}{yz}}, \sqrt{\frac{qay}{xz}}, \sqrt{\frac{qaz}{xy}}, \omega \frac{q^\frac{1}{2} a^\frac{5}{3}}{\sqrt{xyz}} \right\},$$

(9.3)

$$d := \left\{ \sqrt{\frac{xyz}{qa}}, \sqrt{\frac{qax}{yz}} \right\}.$$

(9.4)

This completes the proof. ■
Now we compute a six-term transformation for the $12W_{11}$.

Theorem 9.2. Let $q \in \mathbb{C}^\dagger$, $\omega = e^{2\pi i}$, $a, x, y, z \in \mathbb{C}^*$, and we assume there are no vanishing denominator factors (see Remark 4.1). Then

$$12W_{11}\left(a; x, qx, q^2x, y, qy, q^2y, z, qz, q^2z; q^3, \frac{q^3a^4}{(xyz)^3}\right) = \frac{(qa, x, y, z, qa, y, qa, z, qa^3; q)_{\infty}}{\vartheta(h, h, \frac{yxz}{qa}; q)(\frac{qa}{x}, \frac{qa}{y}, \frac{qa}{z}; a; q)_{\infty}}$$

$$\times \left(\left(\frac{x; y, z}{(x, y, z; \frac{q_1}{xyz}; \omega_1; \omega_1^3; q)_{\infty}}\right)^{6\varphi_5}\left(x, \frac{qa}{y}, \frac{qa}{z}; \frac{q_1}{xyz}; \omega_1\right)
ight) \times \left(\frac{1}{(\omega, \omega^2; q)_{\infty}}\prod_{\omega_1} \vartheta(h\omega, h, \frac{q_1}{xyz}; q)(\frac{q_1}{xyz}; \frac{q_1}{xyz}; \omega; \omega_1^3; q)_{\infty}\right)^{6\varphi_5}.$$

(9.5)

Proof. Applying a, c and d in (9.3), (9.4) to (1.47) and connecting with Theorem 9.1 completes the proof.

Remark 9.3. If you choose for some $n \in \mathbb{Z}$, $h \in q^n\left\{\frac{1}{z}, \frac{1}{y}, \frac{1}{x}, \frac{qa}{xy}, \frac{qa}{xz}, \frac{qa}{yz}, \frac{\omega}{aq}, \frac{\omega}{a^3q}\right\}$, then the six-term transformation in (9.5) reduces to a five-term transformation. However we leave the representation of these transformations to the reader.

9.2 The Verma–Jain $10W_9$ transformation

There is a transformation for a $10W_9$ represented as a sum of two balanced $5\phi_4(q)$ which we originally located in [14, (7.11)], where it refers the reader to [16, (4.1)]. In this subsection we exploit this transformation to write the $10W_9$ as a q-Mellin–Barnes integral and then from there to obtain five and four term transformation formulas for the $10W_9$.

Theorem 9.4. Let $q \in \mathbb{C}^\dagger$, $a, b, x, y, z, \sigma \in \mathbb{C}^*$, $w = e^{i\psi}$. Then

$$10W_9\left(a^2; b^2, x, qx, y, qy, z, qz; q^2, \frac{q^3a^6}{bxyz}\right) = \frac{(q, qa, x, y, z, qa, x, qa, y, qa, z; q)_{\infty}}{2\pi \vartheta(h, h, \frac{yxz}{qa}; q)(\frac{qa}{x}, \frac{qa}{y}, \frac{qa}{z}; q)_{\infty}}$$

$$\int_{-\pi}^{\pi} \left(\frac{h}{a\sqrt{xyz}} q, \frac{qa}{\sqrt{xyz}} q, \frac{q}{\sqrt{xyz}} q, \frac{qa}{\sqrt{xyz}} q, \frac{q^2}{\sqrt{xyz}} q, \frac{qa}{\sqrt{xyz}} q, \frac{q^2}{\sqrt{xyz}} q; q\right)_{\infty} d\psi,$$

(9.6)

where the maximum modulus of the denominator factors in the integrand is less than unity and we assume there are no vanishing denominator factors (see Remark 4.1).
Proof. Start with \[16, (4.1)\]

\[
10W_9 \left(a^2; b^2, x, qx, y, qy, z, qz; q^2, \frac{q^3a^6}{(bxyz)^2} \right)
\]

\[
= \frac{(qa^2, qa^2, qa^2, qa^2; q)_\infty}{(qa^2, qa^2, qa^2, qa^2; q)_\infty} \frac{(x, y, z, \pm \sqrt{q} a; q)_\infty}{(x, y, z, \pm \sqrt{q} a; q)_\infty} \frac{5\phi_4}{(x, y, z, \pm \sqrt{q} a; q)_\infty} \frac{5\phi_4}{(x, y, z, \pm \sqrt{q} a; q)_\infty}
\]

where we have replaced \((a, b) \mapsto (a^2, b^2)\) in the original reference. Note that in \[16, (4.1)\] there is a typo in the second term, namely the numerator factor \(q^2a^2/(bxyz)\) should be replaced with \(q^2a^2/(bxyz)\). Furthermore note that this same formula appears also in \[14, (7.11)\], however there are several typos in the second term of their formula. Now use Theorem 1.9 with the following sets of parameters with \((A, C, D) = (3, 5, 2)\)

\[
a := \left\{ \pm \frac{qa^2}{\sqrt{xyz}}, \frac{3a^3}{b^2\sqrt{xyz}} \right\}, \quad c := \left\{ \frac{qa^2}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}} \right\},
\]

\[
d := \left\{ \frac{1}{a}, \sqrt{a}, a, \frac{q}{\sqrt{xyz}} \right\}.
\]

This completes the proof.

Now we compute a five-term transformation for the \(10W_9\).

Theorem 9.5. Let \(q \in \mathbb{C}^1, a, b, x, y, z \in \mathbb{C}^2\), and we assume there are no vanishing denominator factors (see Remark 4.1). Then

\[
10W_9 \left(a^2; b^2, x, qx, y, qy, z, qz; q^2, \frac{q^3a^6}{(bxyz)^2} \right) = \frac{(\pm qa, x, y, z, qa^2, qa^2, qa^2, qa^2; q)_\infty}{(\pm qa, x, y, z, qa^2, qa^2, qa^2, qa^2; q)_\infty} \frac{(x, \pm \sqrt{q} a; q^2, \frac{q^3a^6}{(bxyz)^2})}{(x, \pm \sqrt{q} a; q^2, \frac{q^3a^6}{(bxyz)^2})} \frac{\phi_4}{(x, \pm \sqrt{q} a; q^2, \frac{q^3a^6}{(bxyz)^2})} \frac{\phi_4}{(x, \pm \sqrt{q} a; q^2, \frac{q^3a^6}{(bxyz)^2})}
\]

where we have replaced \((a, b) \mapsto (a^2, b^2)\) in the original reference. Note that in \[16, (4.1)\] there is a typo in the second term, namely the numerator factor \(q^2a^2/(bxyz)\) should be replaced with \(q^2a^2/(bxyz)\). Furthermore note that this same formula appears also in \[14, (7.11)\], however there are several typos in the second term of their formula. Now use Theorem 1.9 with the following sets of parameters with \((A, C, D) = (3, 5, 2)\)

\[
a := \left\{ \pm \frac{qa^2}{\sqrt{xyz}}, \frac{3a^3}{b^2\sqrt{xyz}} \right\}, \quad c := \left\{ \frac{qa^2}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}}, \frac{q^a}{\sqrt{xyz}} \right\},
\]

\[
d := \left\{ \frac{1}{a}, \sqrt{a}, a, \frac{q}{\sqrt{xyz}} \right\}.
\]

This completes the proof.

Proof. Applying \(a, c\) and \(d\) in \(9.8, 9.9\) to \(1.47\) and connecting with Theorem 9.4 completes the proof.
Remark 9.6. If you choose for some \(n \in \mathbb{Z}, h \in q^n \left\{ \frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{q a^2}{x y}, \frac{q a^2}{x z}, \frac{q a^2}{y z}, \frac{b}{\sqrt{q a}}, \pm \frac{q^{3} a^3}{b xy z} \right\} \), then the five-term transformation in (9.10) reduces to a four-term transformation. However we leave the representation of these transformations to the reader.

Acknowledgements

Much appreciation to Jimmy McLaughlin for introducing the first author to the literature on partial theta functions and to Tom Koornwinder for valuable discussions. R.S.C-S acknowledges financial support through the research project PGC2018–096504-B-C33 supported by Agencia Estatal de Investigación of Spain.

References

[1] G. E. Andrews. The geometric series in calculus. American Mathematical Monthly, 105(1):36–40, 1998.

[2] G. E. Andrews and S. O. Warnaar. The product of partial theta functions. Advances in Applied Mathematics, 39(1):116–120, 2007.

[3] R. Askey and R. Roy. More q-beta integrals. The Rocky Mountain Journal of Mathematics, 16(2):365–372, 1986.

[4] R. Askey and J. Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Memoirs of the American Mathematical Society, 54(319):iv+55, 1986.

[5] W. N. Bailey. Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics, No. 32. Stechert-Hafner, Inc., New York, 1964.

[6] H. S. Cohl and R. S. Costas-Santos. Utility of integral representations for basic hypergeometric functions and orthogonal polynomials. To appear in: The Ramanujan Journal, Special Volume Dedicated to Dick Askey, 2022.

[7] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.5 of 2022-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[8] G. Gasper. q-extensions of Barnes’, Cauchy’s, and Euler’s beta integrals. In Topics in mathematical analysis, volume 11 of Ser. Pure Math., pages 294–314. World Sci. Publ., Teaneck, NJ, 1989.

[9] G. Gasper and M. Rahman. Basic hypergeometric series, volume 96 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Richard Askey.

[10] W. Groenevelt. The Wilson function transform. International Mathematics Research Notices, (52):2779–2817, 2003.

[11] J. S. Kim and D. Stanton. Moments of Askey-Wilson polynomials. Journal of Combinatorial Theory. Series A, 125:113–145, 2014.

[12] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal polynomials and their q-analogues. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder.
[13] T. H. Koornwinder. On the equivalence of two fundamental theta identities. *Analysis and Applications*, 12(6):711–725, 2014.

[14] M. Rahman and A. Verma. Quadratic transformation formulas for basic hypergeometric series. *Transactions of the American Mathematical Society*, 335(1):277–302, 1993.

[15] F. J. van de Bult and E. M. Rains. Basic hypergeometric functions as limits of elliptic hypergeometric functions. *Symmetry, Integrability and Geometry: Methods and Applications*, 5(059), 2009.

[16] A. Verma and V. K. Jain. Transformations of nonterminating basic hypergeometric series, their contour integrals and applications to Rogers-Ramanujan identities. *Journal of Mathematical Analysis and Applications*, 87(1):9–44, 1982.