Exploring the Landscape of Ectodomain Shedding by Quantitative Protein Terminomics

Kazuya Tsumagari¹,², Chih-Hsiang Chang¹, Yasushi Ishihama¹,³,*

¹Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
²Eisai-Keio Innovation Laboratory for Dementia, Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan.
³Department of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

*Correspondence: yishham@pharm.kyoto-u.ac.jp
Tel: +81-75-753-4555 / Fax: +81-75-753-4601

Abstract

Ectodomain shedding is a proteolytic process that regulates the levels and functions of membrane proteins. Dysregulated shedding is linked to severe diseases, including cancer and Alzheimer’s disease. However, the exact cleavage sites of shedding substrates remain largely unknown. Here, we explore the landscape of ectodomain shedding by generating large-scale, cell-type-specific maps of shedding cleavage sites. By means of N- and C-terminal peptide enrichment and quantitative mass spectrometry, we quantified protein termini in the culture media of 10 human cell lines and identified 411 cleavage sites on the ectodomain of 132 membrane proteins whose proteolytic terminal fragments are downregulated in the presence of a broad-spectrum metalloprotease inhibitor. A major fraction of the presented cleavage sites was identified in a cell-type-specific manner, and mapped onto receptors, cell adhesion molecules, and protein kinases and phosphatases. We confidently identified 86 cleavage sites as metalloprotease substrates by means of knowledge-based scoring.

Keywords

ectodomain shedding, cleavage site, protein terminomics, metalloprotease, membrane protein, proteomics, mass spectrometry, secretome, proteolysis, degradomics
Introduction

Membrane proteins have critical physiological roles, and their abundance and functions are tightly controlled through multiple mechanisms, including ectodomain shedding (shedding), which is a form of limited proteolysis that liberates the extracellular domain of membrane proteins (Huovila et al., 2005; Lichtenthaler et al., 2018; Weber and Saftig, 2012). Shedding contributes to cellular interactions with the environment by releasing active cytokines, growth factors or other mediators from their membrane-bound precursors, or conversely, by reducing the levels of receptors and adhesion proteins at the cell surface (Huovila et al., 2005; Weber and Saftig, 2012). Shedding often triggers further proteolysis within the transmembrane domain – known as regulated intramembrane proteolysis (RIP) – thereby releasing the intracellular domain into the cytoplasmic region. These processes enable bi-directional signal transduction (Beard et al., 2019; Reiss and Saftig, 2009; Weber and Saftig, 2012).

A protease involved in shedding is specifically referred to as a sheddase. Distinct sheddases may cleave the same substrate at different sites, generating multiple proteoforms that may exhibit different biological functions and activities (Niedermaier and Huesgen, 2019). For instance, the difference of cleavage sites of amyloid precursor protein (APP) by a disintegrin and metalloprotease 10 (ADAM10) and by beta-site APP cleaving enzyme 1 (BACE1) is critical for the pathogenesis of Alzheimer’s disease (Chow et al., 2010). Therefore, it is important to identify cleavage sites in order to achieve a precise understanding of the physiological roles of shedding.

Discovery and analysis of large numbers of proteoforms is the exclusive domain of liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based proteomics (Aebersold et al., 2018; Olsen and Mann, 2013). For the identification of shedding substrates, it is preferable to investigate the proteins secreted into the cell culture media, rather than those remaining in the membrane, because the secretome is much less complex than the membrane proteome. Additionally, the fragments remaining in the membrane are often unstable due to further proteolytic events such as RIP and lysosomal degradation (Güner and Lichtenthaler, 2020; Merilahti and Elenius, 2019). By using established hydrazide chemistry, 18 metalloprotease substrates in the culture media were identified (Tsumagari et al., 2017); most of the membrane proteins are glycosylated (Apweiler et al., 1999). However, this approach did not lead to precise identification of the cleavage sites. In fact, knowledge of the cleavage sites of shedding substrates is limited, despite its importance. In standard shotgun proteomics, only peptides delimited by the specificity of the employed digestive enzymes are considered.
Moreover, there is difficulty in consistently identifying proteolytic termini generated by shedding in semi-specific searches, since peptides may result from specific cleavage only at one terminus, while the other terminus may be generated by non-specific cleavage (Niedermaier and Huesgen, 2019). Thus, terminal peptide enrichment from secreted proteins coupled with semi-specific search should be employed in order to efficiently identify shedding cleavage sites.

Prudova et al. employed the terminal amine isotopic labeling of substrates (TAILS) method (Kleifeld et al., 2010) for N-terminal peptide enrichment and identified 201 and 19 cleavage products formed by recombinant MMP-2 and MMP-9, respectively (Prudova et al., 2010). However, there are still obstacles to the large-scale detection of cleavage sites generated by endogenous sheddases in living cells. First, terminal peptide enrichment strategies generally consist of multiple steps including some chemical reactions, and therefore relatively large amounts of samples are needed. Second, the protein amounts in the culture media are much smaller than those obtained from cell lysates, and thus it is hard to prepare sufficiently large samples for terminal peptide enrichment. Finally, C-terminomics specifically remains a challenging task, because the enrichment efficiency is greatly inferior to that of the N-terminal counterpart due to the difficulty in chemically modifying the carboxy group (Niedermaier and Huesgen, 2019).

Recently, our group developed a simple and rapid methodology for N-terminal peptide enrichment, in which N-terminal peptides of TrypN digests are isolated by strong cation exchange (SCX) chromatography at low pH (Chang et al., 2020). Earlier reports have demonstrated that C-terminal peptides generated by trypsin digestion are eluted first in SCX, together with acetylated N-terminal peptides (Alpert et al., 2010; Gauci et al., 2009; Helbig et al., 2010), and we discovered here this feature enables the identification and quantification of C-terminal peptides on a comparable scale to that of the N-terminal counterparts with the same amount of input (Figure S1A, B). Here, we applied these sensitive terminomics methodologies to conduct the first large-scale study of shedding cleavage sites targeted by endogenous metalloproteases, which have emerged as the major sheddase family. We quantitatively identify putative metalloprotease-regulated ectodomain shedding cleavage sites based on the results of broad-spectrum metalloprotease inhibitor treatment, and provide an overview of their positional and functional landscape.

Results

Sensitive terminomics workflow enables efficient identification and reproducible
Quantification of N- and C-Termini in the Secretome

To achieve large-scale detection of metalloprotease cleavage sites on membrane proteins, we employed a quantitative terminomics workflow consisting of shedding activation with phorbol 12-myristate 13-acetate (PMA) (Huovila et al., 2005), broad-spectrum metalloprotease inhibitor BB-94 (batimastat) treatment, SCX-based terminal peptide enrichment (Alpert et al., 2010; Chang et al., 2020; Helbig et al., 2010) (Figure S1A-D), TMT labeling and nanoLC/MS/MS measurement (Figure A-C).

We investigated secreted protein fractions across a panel of ten human cell lines stimulated with PMA following BB-94 treatment (Figure 1A, B). Samples were prepared in triplicate for each condition. The digest of 10 µg protein per replicate was subjected to terminal peptide enrichment: thus, in total only 1.2 mg of protein was utilized in the whole of this study. Terminal peptide enrichment was performed by SCX-StageTip (Adachi et al., 2016; Rappsilber et al., 2007), as described in the legend of Figure S1C, D and in the Methods section. Note that N-terminal peptides were TMT-labeled after enrichment, since the TMT tag alters the charge of peptides and affects enrichment efficiency (Figure 1C). For C-terminomics, the flow-through and the 0.5% TFA-eluted fraction were separately collected and subjected to LC/MS/MS (Figure S1D). Triplicates of controls and of BB-94-treated samples were multiplexed using 6-plexed TMT reagents (Figure 1D). We analyzed the TMT-labeled terminal peptides by high-resolution Orbitrap mass spectrometry considering a wide search space in semi-specific search mode (Niedermaier and Huesgen, 2019). Semi-specific search was performed using the Andromeda search engine on MaxQuant (Cox and Mann, 2008; Cox et al., 2011) against the SwissProt human protein database, including isoform sequences. TMT-reporter intensities were normalized by the trimmed mean of M values (TMM) method (Robinson and Oshlack, 2010).

Our strategy led to the identification of 6,189 N-termini and 6,694 C-termini in total. These included 5,952 proteolytic N-termini and 5,848 proteolytic C-termini, which are non-native protein termini and might have been generated by proteolysis (Figure 1E, Table S1-S2). In C-terminomics, C-terminal peptides accounted for 38% and 13% on average of the identified peptides in the flow-through and the 0.5% TFA-eluted fractions, respectively (Figure S1E). Of identified proteolytic termini, 832 N- and 674 C-termini were derived from membrane proteins (14.0% and 11.5% of the respective proteolytic terminome), which were defined using the UniProtKB Keywords ‘transmembrane’ or ‘GPI-anchor’. Figure S2-3 summarizes the reproducibility of three replicates. For individual conditions, there was excellent reproducibility in the peak intensity of identified peptides, with Pearson correlation coefficients in the ranges of $R >0.93$ (0.98 on average).
for N-terminomics and $R > 0.97$ for C-terminomics (0.99 on average). We created volcano plots with truncation at the false discovery rate (FDR) of 0.05 and artificial within-groups variance (S_0) of 0.1 (default parameters) using Perseus (Tyanova et al., 2016) (Figure S4, 5), which yielded 336 proteolytic N-termini and 477 proteolytic C-termini that were significantly downregulated upon BB-94 treatment (Figure 1E). Importantly, these included 249 proteolytic N-termini (74.1% of downregulated proteolytic N-termini) and 245 proteolytic C-termini (51.4% of downregulated proteolytic C-termini) mapped on membrane proteins, affording a total of 489 cleavage sites (Table S3). Note that some cleavage sites were presented by both proteolytic N- and C-terminal peptides. As our results show (Figure 1F), proteolytic terminal peptides derived from membrane proteins account for a small fraction of the total proteolytic terminal peptides, which is one reason why they are so difficult to detect with MS. Our workflow enabled efficient identification and quantification of both proteolytic N- and C-termini of membrane proteins, highlighting a major strength of our methodology for achieving deep analysis of membrane protein cleavage sites with a limited amount of material.

BB-94 selectively downregulates proteolytic termini of membrane proteins in the secretome

The number of downregulated termini varied among investigated cell lines (Figure 2A). U-251 MG cells have the highest number of downregulated termini, while MCF-7 have the lowest number. First, we examined the subcellular distribution of downregulated proteins using Gene Ontology (GO) term enrichment analysis by DAVID (v6.8; https://david.ncifcrf.gov/) (Huang et al., 2009). We found strong enrichment for terms that evoke membrane proteins, such as plasma membrane and cell surface (Figure 2B). In addition, in most samples, except the N-terminome of SK-BR-3, proteolytic termini of membrane proteins were downregulated by BB-94, while the abundances of proteolytic termini of non-membrane proteins were not changed (Figure 2C, D). These results indicate that BB-94 broadly and selectively targets the cleavage of membrane proteins, which would be useful for studying metalloprotease-dependent shedding. In addition, the provided cleavage site information in living cells should facilitate an understanding of the mechanism of action of BB-94.

Topological analysis of downregulated membrane proteins and positional analysis of the cleavage sites

We found that some of the downregulated membrane protein cleavage sites are localized at or around signal peptide cleavage sites (Figure S6A). We excluded 56 sites within ±5
amino acids from the signal peptide cleavage sites from further analyses in this study. Notably, the sequences around the signal peptide cleavage sites showed overrepresentation of AxA at P3-P1 (three to one amino acids upstream of the cleavage sites), which is the motif of canonical signal peptidases (Figure S6B) (Paetzel et al., 2002). Topological analysis of the remaining 433 sites revealed that single-pass type I membrane proteins, which have their N-termini in the extracellular region, are the majority (378 sites, 87.3%), followed by GPI-anchor proteins (21 sites, 4.8%), single-pass type II membrane proteins, which have the C-termini in the extracellular region (17 sites, 3.9%), and multi-pass membrane proteins, which span the membrane more than once (10 sites, 2.3%) (Figure 3A). We identified five BB-94-downregulated cleavage sites on the extracellular domain of three multi-pass membrane proteins (cadherin EGF LAG seven-pass G-type receptor 2, G-protein coupled receptor 126, and Immunoglobulin superfamily member 1), although how these proteins were secreted into the culture media is unclear.

We examined the cleavage positions of single-pass type I and type II membrane proteins and GPI-anchor proteins. Of the 416 cleavage sites, 394 sites (94.7%) were distributed on the extracellular domain, confirming that BB-94 targets ‘ectodomain shedding’ (Figure 3B). Notably, we found that metalloprotease-regulated proteolysis occurred in close proximity to the cell surface: 174 sites (44.2%) were within 200 amino acids from the transmembrane domain or GPI-anchor site, which evidently suggests that large portions of the extracellular domains are released by shedding. This trend is consistent with previous findings on individual shedding substrates (Hinkle et al., 2004; Shirakabe et al., 2011; Zheng et al., 2004), and thus validates our results. On the other hand, 15 BB-94-downregulated sites were mapped within the transmembrane domain (Figure 3B), including three APP cleavage sites considered to be cleaved by γ-secretase (corresponding to amyloid β 37, 38, and 40) (Takami et al., 2009) (Figure S6C), and this suggests that our dataset includes cleavage sites generated downstream from metalloprotease-dependent shedding (Brown et al., 2000; Edwards et al., 2008; Reiss and Saftig, 2009). Interestingly, these downregulated cleavage sites inside the transmembrane domain were likely to be located at the extracellular side (Figure 3C). γ-Secretase cleaves APP in a stepwise manner, in which APP is first cleaved at the membrane-cytoplasm boundary, followed by successive tri- or tetrapeptide trimming (Takami et al., 2009). Consequently, the resulting terminus may be positioned at the extracellular side. Notably, in addition to APP, we identified five downregulated proteins (ALCAM in A431 and HCT 116; GLG1 in HCT 116; PIGR in A431; SDC1 in A431, A-549, HCT 116, HeLa, PC-3, SH-SY5Y, SK-BR-3, and U-251 MG; SDC4 in HCT 116) with
cleavage sites on the extracellular domain and inside the transmembrane domain in the same cell line (Table S3). These proteins could have roles in bi-directional signal transduction across the cell membrane (Beard et al., 2019; Reiss and Saftig, 2009; Weber and Saftig, 2012).

Functional characterization of ectodomain shedding

We functionally characterized the downregulated cleavage sites on the extracellular domain as metalloprotease-regulated shedding cleavage sites (394 cleavage sites on 119 proteins; Figure 3B). DAVID enrichment analysis (Huang et al., 2009) for GO term biological processes revealed significant enrichment for cell adhesion proteins (Figure 4), which is consistent with a previous study (Tsumagari et al., 2017). In addition, we found enrichment of proteins related to cell migration, including CD44, whose shedding is important for CD44-dependent cell migration (Nagano and Saya, 2004). Analysis of GO terms of molecular function showed that shedding targets central components of signal transduction, such as receptors and protein tyrosine kinases/phosphatases. Importantly, we observed that shedding liberates a large portion of the extracellular domain (Figure 3B), which is the main functional region of membrane proteins, on a proteomic scale. Thus, overall, our results indicate that shedding regulates fundamental biological events by modulating membrane protein functions.

Cell-type-specificity of shedding

Differently processed proteoforms can exhibit distinct physiological properties (Chow et al., 2010; Hu et al., 2006; La Marca et al., 2011; Willem et al., 2006). Whereas most BB-94-downregulated membrane proteins contain one cleavage site, interestingly no less than 65 cleavage sites were identified on neuronal cell adhesion molecule (NrCAM) (Figure 5A). This indicates that proteolysis can produce an impressive number of proteoforms, and may critically contribute to the complexity of the human proteome.

A large population of the identified shedding substrates was cell-type-specific rather than globally identified, at both the cleavage site and protein levels (Figure 5B, C), suggesting that shedding occurs depending on the individual functions of the cells. Sixty proteins were found in one cell line, while only one protein, 36-kDa vesicular integral membrane protein VIP36 coded by the LMAN2 gene, was found commonly in all investigated cell lines. VIP36 is a validated shedding substrate (Shirakabe et al., 2011). Intriguingly, the VIP36 protein was cleaved at the same site (F298-L299) across all analyzed cell lines. In the previous study, western blotting in combination with amino acid substitution at expected cleavage sites failed to identify the precise cleavage site of...
VIP36 (Shirakabe et al., 2011), but the site we identified here is positioned just within the expected region (Figure 5D), which again validates our result and underscores the strength of our strategy. VIP36 is a lectin domain-containing transmembrane protein that functions as a cargo receptor transporting glycoproteins. While shedding of the VIP36 protein plays a critical role in phagocytosis in Raw 264.7 cells (Shirakabe et al., 2011), the role of VIP36 shedding in other cell types is unknown.

We identified cell-line-specific shedding substrate proteins in nine cell lines, except for MCF-7. Astrocytoma-derived U-251 MG cells yielded the highest number of substrates (Figure 5E), and 24 proteins were uniquely identified in U-251 MG cells. To investigate the functions of these U-251 MG cell-specific substrates, we investigated protein-protein interactions of these substrate proteins using the STRING database (v11.0; https://string-db.org/) (Szklarczyk et al., 2019), which resulted in significantly more interactions than would be expected for a random protein set of similar size with a P-value of 6.13e-11 (calculated by STRING) (Figure 5F). Interestingly, enrichment analysis revealed that these U-251 MG cell-specific substrates are related to typical functions of neurons, such as axon development and axon guidance, rather than those of astrocytes (Figure 5G). This may indicate that shedding contributes to cellular communication across different cell types in the central nervous system.

Evaluation of metalloprotease-regulated shedding cleavage sites using PWM scoring

As mentioned above, our results include cleavage sites downstream of the initial metalloprotease cleavages. Therefore, to identify the direct cleavage sites by metalloproteases with greater confidence, we evaluated the identified ectodomain cleavage sites of type-I membrane proteins and GPI-anchored proteins, whose N-terminal regions are located on the extracellular surface, using position weight matrix (PWM) scoring (Imamura et al., 2017) with the accumulated substrate information in the MEROPS protease database (v.12.1, https://www.ebi.ac.uk/merops/index.shtml) (Rawlings et al., 2018). Although ADAM17 and ADAM10 are major sheddases (Huovila et al., 2005), the numbers of their registered substrate cleavage sites are much fewer than those of other metalloproteases due to the relative absence of studies on their cleavage sites, despite their physiological importance. We concatenated *in vitro* substrate information to the MEROPS-registered substrates (Tucher et al., 2014), which yielded 225 and 381 cleavage site sequences for ADAM10 and ADAM17, respectively. In addition we further selected 14 sheddases (matrix metalloprotease (MMP) -2, -3, -7, -8, -9, -12, -13, MT1-MMP, legumain, meprin β, cathepsin S, cathepsin L, furin and
proprotein convertase subtilisin/kexin 7 (PCSK7)) from various families, based on following criteria: described as canonical or part-time sheddases in a recent review (Lichtenthaler et al., 2018); having a number of registered substrates in MEROPS greater than one hundred.

We computed substrate sequence PWMs for these individual shaddases (Figure 6A, S7). Importantly, individual shaddases showed distinct substrate preference signatures. Overall, most metalloproteases, except meprin β, commonly exhibit a preference for hydrophobic residues such as Leu and Ile at the P1′ position (one amino acid downstream of the cleavage site), and for Pro and other hydrophobic residues at the P3 position (three amino acids upstream of the cleavage sites); these trends are consistent with previous reports (Eckhard et al., 2016; Tucher et al., 2014). ADAM10 characteristically exhibits a preference for bulky hydrophobic residues such as Tyr, Trp and Phe, which reflects their structural differences (Seegar et al., 2017). Furin and PCSK7 showed known RxxR or RxKR cleavage motifs at P4-P1 (Seidah et al., 2013). Legumain and meprin β showed preferences for Asp/Asn at P1 and acidic residues at P1′, respectively. Given that the PWMs are validated, they can provide a basis for scoring identified putative shedding sites of the respective shaddases.

We calculated PWM scores between more than 6000 relationships (16 shaddases x 378 cleavage sites) (Figure 6B, Table S4). Clustering analysis revealed a group of 86 cleavage sites high-scored for metalloproteases, including the α cleavage site of APP mediated by ADAM10 (Figure 6B, C; Table 1). This cluster also included the VIP36 cleavage site that was commonly identified in the analyzed cultured cells (Figure 5D). Notably, although these proteins were previously known to undergo shedding, in many cases, the exact cleavage sites that we identified here have not been reported.

We also found another cluster, which involving the RxxR motif of furin and PCSK7 (Figure 6B, D). These serine proteases are considered as part-time shaddases, which mainly function as proprotein convertases, but can additionally participate in shedding (Lichtenthaler et al., 2018). The downregulation of these cleavages upon BB-94 treatment might be a secondary or later event following the inhibition of metalloproteases, rather than being due to direct inhibition by BB-94.

Comparison of the distances from the transmembrane domain to the cleavage site in the metalloprotease cluster, the RxxR cluster, and the remaining sites revealed that the cleavage sites in the metalloprotease cluster are located closer to the cell surface (Figure 6E). Furthermore, the cleavage sites close to the membrane (<200 amino acids in Figure 3B) are significantly enriched in metalloprotease cluster cleavage sites with the P-value of 2.5e-3 (Fisher’s exact test). These results confirm that metalloproteases shed...
their substrates at positions close to the membrane.

Discussion

Here, we have demonstrated that SCX-based N- and C-terminal peptide enrichment in combination with high-resolution mass spectrometry allows reproducible quantification of thousands of protein termini derived from membrane proteins in culture supernatant, with limited amounts of materials. As our protocol of C-terminomics consists of simple steps, including isobaric tagging and tip-based SCX, it should prove to be a practically useful platform not only for identification of shedding substrates in the supernatant, but also for conventional C-terminomics of cells and tissues. The results were validated by the observation of membrane-protein-selective downregulation by BB-94. Broadly speaking, shedding occurs in the vicinity of the cell surface, thus liberating a large portion of the extracellular domain. Also, shedding targets the main components of signal transduction including protein tyrosine kinases/phosphatases and receptors. We successfully identified the cleavage site of VIP36, which could not be fully clarified by amino acid substitution and western blotting studies (Shirakabe et al., 2011), and interestingly this was the only cleavage site commonly identified across the 10 investigated cell lines. The importance of investigating diverse cell types is highlighted by the substantial differences of shedding pattern across the analyzed cell lines. We focused on the function of U-251 MG cell-unique shedding and found that the released proteins are important for the environment, rather than the cells themselves. Overall, our results provide further support for the idea that shedding contributes to cellular communication. Many of the identified putative substrate proteins were previously reported to undergo shedding, and here we have unveiled the exact cleavage sites. We wish to emphasize that this is the first study in which native shedding is overviewed at the cleavage site level on a proteome-wide scale across multiple cell types.

Our data set contains cleavage sites generated downstream of metalloprotease-dependent shedding. In addition, all fragments may be further processed by a wide range of extracellular endo- and exopeptidases. We therefore evaluated identified metalloprotease-regulated cleavage sites by PWM scoring, which we previously employed to evaluate protein kinase-phosphorylation site relationships (Imamura et al., 2017). We successfully found cleavage sites high-scored for metalloproteases, which could represent the direct substrates of the metalloproteases. In addition, we found a cluster high-scored for furin and PCSK7, which have a clear cleavage motif, RxxR.
Proteolytic processing by these proteases is mainly involved in the maturation of membrane proteins. These proteases might be activated as a result of drastic upregulation of membrane protein turnover by PMA-activated shedding. We observed distinct signatures of PWMs even for ADAMs and MMPs, which have extremely similar preferences. In the future, accumulating knowledge of cleavage sites should enable even more powerful approaches, such as machine learning, for confident prediction of sheddase-cleavage site relationships.

Our data set provides a useful resource to support hypothesis-driven studies on shedding. It seems clear that a technological breakthrough in proteomic identification of shedding cleavage sites is needed, not only from a scientific viewpoint, but also for therapeutic purposes, given the involvement of shedding in various diseases, including cancer, cardiovascular disease, inflammation, and neurodegeneration (Edwards et al., 2008; Herrlich and Herrlich, 2017; Weber and Saftig, 2012). It has been suggested that cells shed different membrane proteins depending upon external stimulation (Dang et al., 2013; Huovila et al., 2005), i.e., cells selectively shed substrates in response to different stimuli. However, how shedding is made specific has long been enigmatic. Most shedding is mediated by ADAM10 and ADAM17, and these sheddases share many substrates (Gooz, 2010; Huovila et al., 2005). In addition, sheddases generally have broad amino acid preferences, and do not require a specific amino acid at any position surrounding the cleavage site. Consequently, it is extremely difficult to understand the basal mechanisms that determine shedding targets. Our strategy presented here enables systematic investigation of changes of shedding at the site level and should facilitate work to identify critical factors that regulate shedding by means of proteomics studies.

Acknowledgments

We thank Eito Yamamoto (Kyoto University) for assisting in the development of the C-terminal peptide enrichment protocol, and Atsuko Sehara-Fujisawa (Kyoto University) for providing SH-SY5Y cells. K.T. was supported by a fellowship for young scientists from the Japan Society for the Promotion of Science (JSPS). This work was supported by the JST Strategic Basic Research Program, CREST (grant No. 18070870), and by a JSPS Grant-in-Aid for Scientific Research (No. 17H05667).
Author Contributions

Conceptualization, K.T. and Y.I.; Methodology, K.T. and C-H.C.; Formal analysis, K.T.; Investigation, K.T.; Resources, K.T.; Writing – Original Draft, K.T.; Writing – Review & Editing, Y.I.; Visualization, K.T.; Supervision, Y.I.; Project Administration, Y.I.; Funding Acquisition, K.T. and Y.I.

Declaration of Interests

The authors declare no competing interests.
Figures

Figure 1. Experimental design and quantitative terminomics workflow for large-scale analysis of cleavage sites by metalloproteases.

(A) List of investigated cultured cell lines (10 human cancer cell lines).

(B) Experimental design. Cells were treated with DMSO or BB-94 for 1 h, followed by PMA treatment for 1 h. Triplicate samples were prepared for each condition.

(C) Workflow of sample preparation. Proteins were digested with either TrypN or LysC and trypsin. Note that N-terminal peptides were TMT-labeled after terminal peptide enrichment, while C-terminal peptide enrichment was performed following TMT-labeling. See figure S1C, D for details.

(D) Triplicate shedding-positive samples (PMA + DMSO) and shedding-negative samples (PMA + BB-94) were labeled as shown with TMT channels and form a TMT-6plex.

(E) Summary of the number of identified termini and resulting cleavage sites. The parenthesized numbers show those significantly downregulated by BB-94.

(F) Pie chart depicting the ratio of proteolytic termini mapped on membrane proteins in total proteolytic termini. The white areas show non-membrane proteins, and the areas highlighted with colors show membrane proteins. N, N-termini; C, C-termini.
Figure 2. Overview of the BB-94-downregulated proteolytic terminome in the supernatant.

(A) Distribution of the number of downregulated proteolytic termini mapped on membrane proteins and non-membrane proteins in the respective cell lines.

(B) Enrichment analysis on GO term cellular components performed by DAVID (v8.0). The top ten significant terms are shown, with Bonferroni-adjusted P-values. The parenthesized numbers show the number of proteins.

(C, D) The log$_2$-transformed ratios (BB-94/DMSO) of proteolytic termini are compared between membrane proteins and non-membrane proteins in the respective cell lines. The P-values were calculated with the Wilcoxon rank sum test and a Bonferroni adjustment was applied. $***$, $P<0.005$; $**$, $P<0.001$; $*$, $P<0.05$; N.S., not significant.
Figure 3. Topological analysis of downregulated membrane proteins and positional analysis of the cleavage sites.
(A) Percentages of the various topologies of membrane proteins identified with downregulated cleavage sites.
(B) The distribution of the distance (number of amino acids) from the transmembrane domain or GPI-anchor site to the cleavage site is depicted for single-pass type-I and type-II membrane proteins and GPI-anchored proteins. The section surrounded with a red box is shown in detail above. The cleavage sites mapped on the intracellular region are toward the minus direction. TM, cleavage sites are within the transmembrane domain.
(C) Relative cleavage positions of the cleavage sites within the transmembrane domain of single-pass type I and type II membrane proteins. Values represent the length (number of amino acids) from the extracellular region to the cleavage site, divided by the total length (number of amino acids) of the transmembrane domain.
Figure 4. Functional analysis of metalloprotease-regulated shedding substrates.
DAVID enrichment analysis of metalloprotease-regulated shedding substrates according to GO term biological processes (blue) and molecular functions (green). The top ten significant terms are shown, with Bonferroni-adjusted P-values. The parenthesized numbers show the numbers of proteins.
Figure 5. Occurrence and cell type-specificity of shedding.

(A) The distribution of the number of cleavage sites per protein is depicted for single-pass type-I and type-II transmembrane proteins and GPI-anchored proteins.

(B, C) Histograms depicting the number of shedding substrate identified in 1 to 10 cell lines at the cleavage site level (B) and at the protein level (C).

(D) VIP36 cleavage site. The amino acids that were previously suggested to be essential for cleavage are highlighted in red (Shirakabe et al., 2011). The sequence of the peptide identified in this study is underlined.

(E) Distribution of the number of metalloprotease-regulated cleavage sites in the respective cell lines. The number of cleavage sites specifically identified in each cell type is highlighted in color.

(F, G) Protein interaction network of shedding substrate proteins specifically identified in U-251 MG cells (F). Proteins without any interactions are excluded. Significantly enriched Reactome and GO terms of interest are shown with the Benjamini-adjusted P-values (G), and the proteins annotated with these terms are highlighted in color (F). All analyses were performed by STRING (v11). The network was visualized using Cytoscape (v3.8.0). Node size reflects the number of connections (direct edges), and edge line width reflects the combined score calculated by STRING.
Figure 6. PWM scoring of downregulated cleavage sites.

(A) Heatmap depicting the cosine similarity between PWMs for 16 selected sheddases shown in figure S7. High similarity is highlighted in red, while low similarity is highlighted in blue. Sheddases are ordered by clustering based on the cosine distances (1 – cosine similarity).

(B) Hierarchical clustering analysis of PWM scores. High-scored sites are highlighted in red, while low-scored sites are highlighted in blue. A cluster of cleavage sites high-scored for metalloproteases (metalloprotease cluster) and a cluster for furin and PCSK7 (RxxR cluster) are enclosed with solid-line and dashed-line boxes, respectively.

(C, D) Sequence logos of cleavage sites in the metalloprotease cluster (C) and in the RxxR cluster (D) generated by iceLogo (https://iomics.ugent.be/icelogoserver/). Dashed line shows the cleavage site.

(E) The distances from the transmembrane domain or GPI-anchor site to the cleavage site are compared between the metalloprotease cluster, the RxxR motif cluster, and the remaining sites. The P-values were calculated with the Wilcoxon rank sum test and Bonferroni adjustment was applied. **, \(P = 1.26e-07 \); *, \(P = 8.82e-4 \); N.S., not significant.
Table

Table 1. List of cleavage sites grouped into the metalloprotease cluster.

Accession	Gene name	Protein name	Cleavage site	P1	ADAM10	ADAM17	
P55283	CDH4	Cadherin-4	TIGA	VAAA	724	5.10	8.23
Q9H3T3	SEMA6B	Semaphorin-6B	GPGR	LTPA	55	3.64	2.35
P01506	PRNP	Major prion protein	GAAA	AGAV	117	4.54	5.51
P01506	PRNP	Major prion protein	AAAG	AVVG	119	3.74	4.51
P01506	PRNP	Major prion protein	AGAA	AAGA	116	4.24	4.67
P01506	PRNP	Major prion protein	AAGA	VVGG	120	6.91	9.05
P55291	CDH15	Cadherin-15	GAAA	LLAG	594	8.07	6.95
Q96NY8	PVRL4	Nectin-4	DPQE	DSGK	337	-6.80	-4.09
P18827	SDC1	Syndecan-1	GPKE	GEAV	101	-6.35	-5.73
P98172	EFNB1	Ephrin-B1	GAGS	GSSG	224	-0.33	-2.67
P10586	PTTPRF	Receptor-type tyrosine-protein phosphatase F	GPFQ	EVDG	364	-4.41	-2.74
Q13308	PTK7	Inactive tyrosine-protein kinase 7	VPEE	SEGP	689	-6.23	-1.29
Q13308	PTK7	Inactive tyrosine-protein kinase 7	HPAS	EAEI	136	-6.89	-4.66
P30466	HLA-B	HLA class I histocompatibility antigen, B-18 alpha chain	ISVG	YVDG	50	2.44	-0.77
P05067	APP	Amyloid beta A4 protein	HHQK	LVFF	687	6.61	1.80
P22223	CDH3	Cadherin-3	EVQR	LTVT	348	2.66	3.67
P0C7UO	ELFN1	Protein ELFN1	YAAE	VVG	258	2.81	7.02
P09603	CSF1	Macrophage colony-stimulating factor 1	KAFL	LVQD	87	5.31	4.01
P01506	PRNP	Major prion protein	HMAG	AAAA	114	3.98	5.00
Q5ZPR3	CD276	CD276 antigen	VSLQ	VAAP	137	3.27	5.51
Q8WVN6	SECTM1	Secreted and transmembrane protein 1	GAEP	QSAP	138	1.12	-0.59
P05067	APP	Amyloid beta A4 protein	VLAN	MISE	579	2.09	0.35
O60462	NRP2	Neuronal cell adhesion molecule 2	PISA	FAGE	806	3.02	2.37
P29317	EPHA2	Ephrin type-A receptor 2	QVQA	LTOE	509	3.96	3.43
Q13308	PTK7	Inactive tyrosine-protein kinase 7	TPAG	SIEA	488	2.16	1.41
UniProt ID	Protein Name	Short Description	Accession	Description	E-value	Log10(p-value)	
-----------	-------------------------------------	---	-----------	-------------	----------	----------------	
Q9BRK3	MXRA8	Matrix-remodeling-associated protein 8	AAAG	SSVV	33	1.45	1.31
P98172	EFN B1	Ephrin-B1	ASGG	SSGD	225	0.27	-0.01
O75056	SDC3	Syndecan-3	GSSA	AQLP	371	0.53	0.62
Q14126	DSG2	Desmoglein-2	VLEG	MVEE	279	-2.71	-3.98
Q7Z5N4	SDK1	Protein sidekick-1	AVSA	QVEA	1998	1.79	-1.62
P27824	CANX	Calnexin	VVGG	MIEA	472	0.93	-0.12
P16422	EPCAM	Epithelial cell adhesion molecule	DVAY	YFEK	214	0.56	-1.84
P09758	TACSTD2	Tumor-associated calcium signal transducer 2	DAAY	YFER	224	-0.05	-1.47
P55287	CDH11	Cadherin-11	NAEA	YILN	608	2.10	3.07
P18827	SDC1	Syndecan-1	EGEA	VLP	104	-0.61	3.95
Q92823	NRCAM	Neuronal cell adhesion molecule	FVPY	LIKV	817	2.38	3.18
Q9Y6N7	ROBO1	Roundabout homolog 1	VIPF	LVPG	841	1.12	0.81
Q8N126	CADM3	Cell adhesion molecule 3	PTAM	IRPD	236	1.10	2.31
P30480	HLA-B	HLA class I histocompatibility antigen, B-7 alpha chain	TLGS	MYGC	121	-1.28	-1.22
P22223	CDH3	Cadherin-3	EPVC	YVTA	460	-1.00	2.00
P04626	ERBB2	Receptor tyrosine-protein kinase erbB-2	TACP	YNYL	300	2.36	-1.11
Q13740	ALCAM	CD166 antigen	EADE	ISDE	513	-4.86	-1.57
Q9Y6N7	ROBO1	Roundabout homolog 1	PQPA	IFWR	381	-2.50	-2.20
Q6YHK3	CD109	CD109 antigen	PSEA	ISLS	1330	-1.14	1.18
Q08174	PCDH1	Protocadherin-1	NAEL	VYSL	541	0.24	4.81
Q9Y624	F11R	Junctional adhesion molecule A	TSNA	VRME	226	-1.04	0.15
P78504	JAG1	Protein jagged-1	HPCY	NSGT	792	1.70	-0.26
P10586	PTPR F	Receptor-type tyrosine-protein phosphatase F	QPNT	EYSF	1071	-8.26	-4.91
P16070	CD44	CD44 antigen	DYP	SNPT	170	-3.85	-4.47
Q15262-2	PTPR K	Receptor-type tyrosine-protein phosphatase kappa	PDPA	KQTD	745	-5.87	-4.31
Q92896	GLG1	Golgi apparatus protein 1	SDLA	MQVM	1135	-3.57	-1.88
Q13308	PTK7	Inactive tyrosine-protein kinase 7	NSCN	IKHT	671	-6.94	-1.51
P98155	VLDLR	Very low-density lipoprotein receptor	ICIN	LKGG	412	-0.49	-2.39
ID	Accession	Description	Symbol	Start	End	log2FoldChange	pValue
---------	-----------	--	---------	-------	------	---------------	---------
Q92823	NRCAM	Neuronal cell adhesion molecule	LIIN	107	-2.44	-3.91	
Q92823	NRCAM	Neuronal cell adhesion molecule	APQN	369	2.19	1.59	
Q13332	PTPRS	Receptor-type tyrosine-protein phosphatase S	DPQP	1275	5.02	4.15	
Q92823	NRCAM	Neuronal cell adhesion molecule	HPNG	980	0.61	0.51	
P12830	CDH1	Cadherin-1	GAAG	693	-7.43	-0.27	
P22223	CDH3	Cadherin-3	DPAG	484	-0.57	1.40	
P18827	SDC1	Syndecan-1	ATGA	242	0.99	3.08	
P30480	HLA-C	HLA class I histocompatibility antigen, Cw-7 alpha chain	DLRS	156	-3.91	1.61	
Q14574	DSC3	Desmocollin-3	TPAA	475	2.20	0.76	
Q14517	FAT1	Protocadherin Fat 1	PPPF	3477	2.92	2.73	
P32926	DSG3	Desmoglein-3	TMPF	209	3.29	3.82	
Q13740	ALCAM	CD166 antigen	NVSA	502	2.41	4.33	
Q92896	GLG1	Golgi apparatus protein 1	LAMQ	1137	2.46	3.50	
Q92823	NRCAM	Neuronal cell adhesion molecule	PAMA	1158	1.61	4.36	
Q14210	LY6D	Lymphocyte antigen 6D	PSYT	72	0.27	-0.23	
P35613	BSG	Basigin	EPMG	211	-0.01	2.09	
P58658	EVA1C	Protein eva-1 homolog C	DPSG	294	-2.14	-0.98	
P10586	PTPRF	Receptor-type tyrosine-protein phosphatase F	TPAQ	1254	-0.07	-4.15	
Q12907	LMAN2	Vesicular integral-membrane protein VIP36	SVNF	298	3.04	3.67	
P18827	SDC1	Syndecan-1	ASQG	245	0.55	-1.12	
P35052	GPC1	Glypican-1	HPQL	182	3.64	0.73	
Q14210	DSG2	Desmoglein-2	EIQF	570	5.13	4.76	
P15151	PVR	Poliovirus receptor	EVQK	153	1.30	3.26	
Q14210	LY6D	Lymphocyte antigen 6D	LQGQ	76	0.94	3.05	
P98172	EFNB1	Ephrin-B1	GPGA	222	1.06	2.28	
P78504	JAG1	Protein jagged-1	AVAE	1054	-1.10	3.13	
Q92823	NRCAM	Neuronal cell adhesion molecule	EVSG	702	-1.68	0.85	
P05067	APP	Amyloid beta A4 protein	ELLP	608	1.35	3.06	
Q92823	NRCAM	Neuronal cell adhesion molecule	TPEG	950	-0.12	3.10	
P30508	HLA-C	HLA class I histocompatibility antigen, Cw-12 alpha chain	EPRF	46	0.07	4.02	
The cleavage sites grouped into the metalloprotease cluster shown in Figure 6B are listed. The order from top to bottom is the same to that of the cluster. Accession, UniProtKB accession number; Cleavage site, ±4 amino acids flanking the cleavage site; P1, the first upstream amino acid of the cleavage site; ADAM10/ADAM17, PWM score for ADAM10 and ADAM17.

Accession	Gene	Description	Cleavage Site	ADAM10/ADAM17 PWM	Score		
P08581	MET	Hepatocyte growth factor receptor	GFMF	LTDQ	228	6.58	1.36
Q08174	PCDH1	Protocadherin-1	KKYF	LQTT	457	-0.81	-2.64
P30480	HLA-C	HLA class I histocompatibility antigen, Cw-7 alpha chain	EPRF	ISVG	46	-1.41	2.74
Methods

Cell culture

Basically, cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; FUJIFILM Wako) supplemented with 10% fetal bovine serum (Gibco), 100 U/mL penicillin and 100 μg/mL streptomycin (FUJIFILM Wako) on 15 cm culture dish at 37°C in a humidified incubator with 5% CO2. PC-3 cells were cultured in Roswell Park Memorial Institute 1640 medium (RPMI1640; FUJIFILM Wako) with the same supplements as listed above. SH-SY5Y cells and U-251 MG cells were cultured in DMEM/Ham’s F-12 (FUJIFILM Wako) including non-essential amino acids (FUJIFILM Wako) and the same supplements as listed above. We did not perform specific authentication of the cell lines used in this study.

Nine dishes of 90% confluent cells per condition were prepared. Supernatants of three dishes were pooled during supernatant collection to make a biological replicate.

Inhibitor treatment and supernatant preparation

Cells were washed with phosphate-buffered saline (PBS; FUJIFILM Wako) three times and incubated for 1 h with Hanks’ balanced salt solution containing Ca2+ and Mg2+ (HBSS (+); FUJIFILM Wako) together with 10 μM BB-94 (Selleck) or DMSO (FUJIFILM Wako) for inhibitor pretreatment. Then, the buffer was replaced with fresh HBSS (+) containing 1 μM PMA (FUJIFILM Wako) and 20 μM BB-94 or DMSO, and the cells were incubated for 1 h. The supernatants were quickly collected on ice, and centrifuged at 7,180 g for 30 min to remove cell debris. Then 2 mM ethylenediaminetetraacetic acid (EDTA; DOJINDO), 2 mM ethyleneglycol bis(2-aminoethyl ether)-N,N,N,N tetraacetic acid (EGTA; DOJINDO), 1 mM phenylmethylsulfonyl fluoride (PMSF; FUJIFILM Wako) and 0.1x protease inhibitor cocktail (Sigma-Aldrich) were added to the supernatant to inhibit further proteolytic degradation, and the solution was stored at -80°C until use.

Protein purification and digestion

Culture media were concentrated up to ~50-fold using an Amicon® Ultra filter (3,000 NMWL; Merck), acidified with 2.5% trifluoroacetic acid (TFA; final concentration), and further concentrated using a SpeedVac (Thermo Fisher Scientific). Proteins were reconstituted with 100 μL water and purified by methanol-chloroform precipitation, for which the protein solution was successively mixed with 300 μL methanol, 75 μL chloroform, and 225 μL water and centrifuged at 21,000 g for 5 min. The resulting pellet was washed with 225 μL methanol and dissolved in phase-transfer surfactant (PTS) buffer (Masuda et al., 2009) containing 100 mM 2-amino-2-(hydroxymethyl)-1,3-
propanediol hydrochloride (Tris-HCl, pH 8.5), 12 mM sodium deoxycholate (SDC; FUJIFILM Wako), 12 mM sodium N-lauroylsarcosinate (SLS; FUJIFILM Wako). The protein concentration was determined by means of bicinchoninic acid (BCA) assay (Thermo Fisher Scientific). For each condition, 10 µg of protein was reduced with 10 mM dithiothreitol (DTT; FUJIFILM Wako) and alkylated with 40 mM 2-chloroacetamide (CAA; Sigma-Aldrich). Digestion was performed according to the PTS protocol (Chang et al., 2020; Masuda et al., 2009). Briefly, for C-terminomics, the protein solution was 5-fold diluted with 50 mM ammonium bicarbonate, and proteins were sequentially digested with LysC (1:50, w/w; FUJIFILM Wako) for 3 h at 37 °C and trypsin (50:1, w/w; Promega) overnight at 37 °C. In the case of N-terminomics, following 10-fold dilution with 10 mM CaCl₂, proteins were digested with TrypN (1:50, w/w; Protifi) overnight at 37 °C. Note that TrypN can be replaced with LysargiNase (Merck, Cat#EMS0008). Digestion was stopped with 0.5% TFA (final concentration), and the detergents were removed by liquid-liquid extraction using an equal volume of ethyl acetate. Peptides were purified with a reversed-phase SDB-XC StageTip (Rappsilber et al., 2007).

TMT labeling

Peptides were dissolved in 5 µL of 200 mM 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid (HEPES; DOJINDO)-NaOH (pH 8.5), mixed with 0.1 mg of TMT reagents dissolved in 5 µL of acetonitrile (ACN), and agitated at room temperature for 1 h. Excessive reagents were quenched with 0.33% hydroxylamine (final concentration), and the solution was acidified with 1% TFA (final concentration). Note that N-terminal peptides were TMT-labeled after N-terminal peptide enrichment, and then 6-plexed peptides were mixed. ACN was evaporated using a SpeedVac. Labeled peptides were purified using a reversed-phase SDB-XC StageTip (Rappsilber et al., 2007).

N-Terminal peptide enrichment

The TrypN digest of 10 µg protein was dissolved in 50 µL of N-loading buffer (2.5% formic acid (FA), 30% ACN) and loaded onto a StageTip with 16-gauge double-plug CationSR membranes (GL Sciences), which had been successively preconditioned with 50 µL methanol, 50 µL 80% ACN containing 0.1% TFA, 100 µL 500 mM ammonium acetate containing 30% ACN, and 300 µL N-loading buffer. Following peptide loading, the StageTip membranes were washed with 50 µL N-loading buffer, and the wash solution was collected together with the flow-through fraction as the N-terminal peptides-enriched fraction. This fraction was evaporated using a SpeedVac and TMT-labeled as described.
C-Terminal peptide enrichment

A mixture of 6-plexed TMT-labeled peptides was dissolved in 150 µL of C-loading buffer (0.15% TFA, 30% ACN), divided into three parts, and subjected to C-terminal peptide enrichment using three StageTips. A solution of peptides in 50 µL C-loading buffer was loaded onto a StageTips with 16-gauge double-plug CationSR membranes (GL Sciences), which had been successively preconditioned with 50 µL methanol, 50 µL 80% ACN containing 0.1% TFA, 100 µL 500 mM ammonium acetate containing 30% ACN, and 300 µL C-loading buffer. Subsequently, peptides were eluted with 0.5% TFA containing 30% ACN (0.5% TFA fraction). The flow-through fraction and the 0.5% TFA fraction were separately collected and evaporated.

Liquid Chromatography/Tandem Mass Spectrometry

For N-terminal peptide analysis, one-third of the peptides was injected, and triplicate analyses were carried out (3 LC/MS/MS runs per cell line). For C-terminal peptide analysis, three sets of flow-through and 0.5% TFA fractions were subjected to single shot analysis (6 LC/MS/MS runs per cell line) (Figure S1C, D).

A nanoLC/MS/MS system comprising an UltiMate 3000RSLCnano pump (Thermo Fisher Scientific) and an Orbitrap Fusion Lumos tribrid mass spectrometer (Thermo Fisher Scientific) was employed. Peptides were injected by an HTC-PAL autosampler (CTC Analytics), loaded on a 15 cm fused-silica emitter self-packed with ReproSil-Pur C18-AQ (3 µm; Dr. Maisch), and separated by a linear gradient, that is, 5% B for 1 min, 5−15% B in 4 min, 15−45% B in 100 min, 40−99% B in 5 min, and 99% B for 10 min (Solvent A, 0.5% acetic acid; solvent B, 0.5% acetic acid in 80% ACN) at the flow rate of 500 nL/min. Peptides were ionized at 2,400 V. All MS1 spectra were acquired over the range of 375−1500 m/z in the Orbitrap analyzer (resolution = 120,000, maximum injection time = 50 ms, automatic gain control = 4e5). For the subsequent MS/MS analysis, precursor ions were selected and isolated in top-speed mode (cycle time = 3 sec, isolation window = 1.4 m/z), activated by higher-energy collisional dissociation (HCD; normalized collision energy = 38), and detected in the Orbitrap analyzer (resolution = 50,000, maximum injection time = 105 ms, automatic gain control = 1e5). Dynamic exclusion time was set to 30 sec.

LC/MS/MS raw data processing

LC/MS/MS raw data were processed using MaxQuant (v.1.6.7.0) with the Andromeda
search engine (Cox and Mann, 2008; Cox et al., 2011). Database search was implemented against the UniprotKB/SwissProt (2019_3) human database including isoform sequences concatenated with commonly observed contaminant protein sequences set in MaxQuant. Two analysis groups were made in MaxQuant, enabling one combined analysis for TrypN with N-terminal free semi-specificity and trypsin/P with C-terminal free semi-specificity. The following parameters were applied: 10-plexed TMT quantification at the MS2 level, precursor mass tolerance of 4.5 ppm, fragment ion mass tolerance of 20 ppm, and minimal peptide length of 7 amino acids. Cysteine carbamidomethylation was set as a fixed modification, while methionine oxidation and acetylation on the protein N-terminus were allowed as variable modifications. False discovery rates were estimated by searching against a reversed decoy database and filtered for <1% at the peptide-spectrum match, peptide and protein level.

Protein inference

In terminomics, isoforms are often indistinguishable due to limited sequence coverage. Thus, we used the canonical isoform for bioinformatics analysis of membrane proteins, if the peptide can be derived from the canonical isoform. If not, we employed the leading protein given by MaxQuant.

Peptide list processing and normalization of TMT-reporter intensities

Firstly, peptides derived from contaminant proteins such as keratins and bovine serum-derived proteins were excluded. We utilized peptides with no missed cleavages for analyses. TMT-reporter intensities were log2-converted and normalized in individual cell lines by the trimmed mean of M values (TMM) method (Robinson and Oshlack, 2010) on an R framework with the Bioconductor edgeR package (v. 3.28.1) using the default parameters.

Statistical and bioinformatics analysis

Using Perseus (v.1.6.7.0) (Tyanova et al., 2016), we performed two-sample Welch t-tests to identify terminal peptides with a significant alteration upon BB-94 treatment employing a 5% permutation-based FDR filter. Proteolytic events were considered significantly altered if at least one of the N- and C-terminal peptides was significantly altered.

Membrane proteins were annotated with the UniProt Knowledgebase (UniProtKB) keywords “transmembrane” or “GPI-anchor”. Membrane protein topologies and positions of the transmembrane domain and GPI-anchor site were retrieved from UniProtKB, and
further analyses were performed using Microsoft Excel.

Other statistics analyses were performed in the R framework (v.3.6.1) with the exactRankTests package (v.0.8-31), psych package (v.1.9.12.31) and pheatmap package (v.1.0.12). Bioinformatics analysis was performed using DAVID (v.6.8) (Huang et al., 2009), STRING (v.11.0) (Szklarczyk et al., 2019), and Cytoscape (v.3.8.0) (Shannon et al., 2003). Sequence logos were created using IceLogo (v.1.0) (Colaert et al., 2009).

PWM construction and scoring

Flanking sequences surrounding substrate cleavage sites for sheddases were obtained from the MEROPS database (Rawlings et al., 2018) and the previous study (Tucher et al., 2014). Sequences including non-natural amino acids were excluded. PWM construction and PWM score computation were performed essentially as described previously (Imamura et al., 2017). Briefly, the PWM score was computed by summing log₂ weights for the flanking ±4 residues surrounding each cleavage site.

Supplemental Information

Supplemental Figures S1-S7

Figure S1. Terminal peptide enrichment by SCX.

(A, B) Digestion with TrypN yields peptides with at least a +2 charge with Lys or Arg and an α-amino group at the N-terminus (Type C). On the other hand, peptides derived from protein N-termini have a +1 charge with neither Lys nor Arg, and only His-containing peptides with an unmodified N-terminus have a +2 charge (Type A). In addition, digestion with trypsin yields internal peptides with at least a +2 charge (Type B). In this case, C-terminal peptides without His have a +1 charge and those with His have a +2 charge (Type A). Based on these facts, we isolated N-terminal peptides and C-terminal peptides using SCX at low pH, respectively. Note that acetylated N-terminal peptides generated by trypsin/LysC digest have a 0 or +1 charge and are isolated with C-terminal peptides.

(C) For N-terminal peptide enrichment, TrypN-digested peptides were dissolved in 2.5% formic acid (FA) containing 30% acetonitrile (ACN) and loaded on the SCX-StageTip. The flow-through fraction was collected. Following TMT-labeling, the isolated N-terminal peptides were analyzed in triplicate.

(D) TMT-labeled peptides were divided into three parts and subjected to C-terminal
peptide enrichment using three SCX-StageTips. Peptides were dissolved in 0.15% trifluoroacetic acid (TFA) containing 30% ACN and loaded on the SCX-StageTip. The flow-through and the 0.5% TFA-eluted fractions were separately collected and subjected to single shot analysis.

(E) Efficiency of C-terminal peptide enrichment. As described above, acetylated N-terminal peptides were isolated together with C-terminal peptides.

Figure S2. Reproducibility of N-terminomics.

Logarithmized normalized TMT-reporter intensities of N-terminal peptides are plotted against each other for triplicate determinations in each condition, and the corresponding Pearson correlation coefficients are shown.

Figure S3. Reproducibility of C-terminomics.

Logarithmized normalized TMT-reporter intensities of C-terminal peptides are plotted against each other for triplicate determinations in each condition, and the corresponding Pearson correlation coefficients are shown.

Figure S4. Volcano plots for each cell line in N-terminomics.

For quantified N-terminal peptides in the respective cell lines, volcano plots were created using Perseus with truncation at the false discovery rate of 0.05 and an artificial within groups variance (S_0) of 0.1. N-Terminal peptides of membrane proteins are highlighted in color, and proteolytic termini are highlighted with filled circles.

Figure S5. Volcano plots for each cell line in C-terminomics.

For quantified C-terminal peptides in the respective cell lines, volcano plots were created using Perseus with truncation at the false discovery rate of 0.05 and an artificial within groups variance (S_0) of 0.1. C-Terminal peptides of membrane proteins are highlighted in color, and proteolytic termini are highlighted with filled circles.

Figure S6. Signal peptide cleavage sites and APP γ-cleavage sites, related to Figure 3.

(A) Distribution of the distance (number of amino acids) from the predicted signal peptide cleavage site to the identified cleavage site.

(B) Sequence logo of the cleavage sites located in the vicinity of the predicted signal peptide cleavage sites (±4 amino acids) generated by iceLogo. The dashed line shows the cleavage site.
(C) Downregulated γ-cleavage sites within the transmembrane domain of APP. The arrowheads indicate the identified cleavage sites, and the numbers indicate the length (number of amino acids) of generated amyloid β peptides.

Figure S7. PWMs for 16 selected sheddases.
For the selected sheddases, PWMs were computed based on the sequences of ±4 amino acids flanking the substrate cleavage sites reported in MEROPS.

Supplemental Data S1-S4

Table S1-S2. List of all quantified terminal peptides.
All quantified N-terminal peptides and C-terminal peptides are listed in Table S1 and Table S2 respectively.

Table S3. List of membrane protein cleavage sites significantly downregulated upon BB-94 treatment.

Table S4. Result of PWM score computation.
References

Adachi, J., Hashiguchi, K., Nagano, M., Sato, M., Sato, A., Fukamizu, K., Ishihama, Y., and Tomonaga, T. (2016). Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal. Chem. 88, 7899–7903.

Aebersold, R., Agar, J.N., Amster, I.J., Baker, M.S., Bertozzi, C.R., Boja, E.S., Costello, C.E., Cravatt, B.F., Fenselau, C., Garcia, B.A., et al. (2018). How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214.

Alpert, A.J., Petritis, K., Kangas, L., Smith, R.D., Mechtler, K., Mitulović, G., Mohammed, S., and Heck, A.J.R. (2010). Peptide orientation affects selectivity in ion-exchange chromatography. Anal. Chem. 82, 5253–5259.

Apweiler, R., Hermjakob, H., and Sharon, N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta - Gen. Subj. 1473, 4–8.

Beard, H.A., Barniol-Xicota, M., Yang, J., and Verhelst, S.H.L. (2019). Discovery of cellular roles of intramembrane proteases. ACS Chem. Biol. 14, 2372–2388.

Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. (2000). Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 100, 391–398.

Chang, C.-H., Chang, H.-Y., Rappsilber, J., and Ishihama, Y. (2020). Isolation of protein N-terminal peptides by charge-mediated position-selective enrichment using strong cation exchange chromatography. BioRxiv 2020.06.15.153684.

Chow, V.W., Mattson, M.P., Wong, P.C., and Gleichmann, M. (2010). An overview of APP processing enzymes and products. Neuromolecular Med. 12, 1–12.

Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J., and Gevaert, K. (2009). Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372.

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J. V., and Mann, M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805.

Dang, M., Armbruster, N., Miller, M.A., Cermen, E., Hartmann, M., Bell, G.W., Root, D.E., Lauffenburger, D.A., Lodish, H.F., and Herrlich, A. (2013). Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc.
Natl. Acad. Sci. U. S. A. 110, 9776–9781.

Eckhard, U., Huesgen, P.F., Schilling, O., Bellac, C.L., Butler, G.S., Cox, J.H., Dufour, A., Goebeler, V., Kappelhoff, R., auf dem Keller, U., et al. (2016). Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol. 49, 37–60.

Edwards, D.R., Handsley, M.M., and Pennington, C.J. (2008). The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289.

Gauci, S., Helbig, A.O., Slijper, M., Krijgsvedl, J., Heck, A.J.R., and Mohammed, S. (2009). Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493–4501.

Gooz, M. (2010). ADAM-17: the enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 45, 146–169.

Güner, G., and Lichtenthaler, S.F. (2020). The substrate repertoire of γ-secretase/presenilin. Semin. Cell Dev. Biol. 105, 27–42.

Helbig, A.O., Gauci, S., Raijmakers, R., Van Breukelen, B., Slijper, M., Mohammed, S., and Heck, A.J.R. (2010). Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell. Proteomics 9, 928–939.

Herrlich, P., and Herrlich, A. (2017). ADAM metalloprotease-released cancer biomarkers. Trends in Cancer 3, 482–490.

Hinkle, C.L., Sunnarborg, S.W., Loiselle, D., Parker, C.E., Stevenson, M., Russell, W.E., and Lee, D.C. (2004). Selective roles for tumor necrosis factor α-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family. The juxtamembrane stalk determines cleavage efficiency. J. Biol. Chem. 279, 24179–24188.

Hu, X., Hicks, C.W., He, W., Wong, P., MacKlin, W.B., Trapp, B.D., and Yan, R. (2006). Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525.

Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

Huovila, A.-P.J., Turner, A.J., Pelto-Huikko, M., Kärkkäinen, I., and Ortiz, R.M. (2005). Shedding light on ADAM metalloproteinases. Trends Biochem. Sci. 30, 413–422.

Imamura, H., Wagih, O., Niiinae, T., Sugiyama, N., Beltrao, P., and Ishihama, Y. (2017). Identifications of putative PKA substrates with quantitative phosphoproteomics and primary-sequence-based scoring. J. Proteome Res. 16, 1825–1830.
Kleifeld, O., Doucet, A., Auf Dem Keller, U., Prudova, A., Schilling, O., Kainthan, R.K., Starr, A.E., Foster, L.J., Kizhakkedathu, J.N., and Overall, C.M. (2010). Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat. Biotechnol. 28, 281–288.

Lichtenthaler, S.F., Lemberg, M.K., and Fluhrer, R. (2018). Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J. 37, e99456.

La Marca, R., Cerri, F., Horiuchi, K., Bachi, A., Feltri, M.L., Wrabetz, L., Blobel, C.P., Quattrini, A., Salzer, J.L., and Taveggia, C. (2011). TACE (ADAM17) inhibits Schwann cell myelination. Nat. Neurosci. 14, 857–865.

Masuda, T., Saito, N., Tomita, M., and Ishihama, Y. (2009). Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell. Proteomics 8, 2777–2777.

Merilahti, J.A.M., and Elenius, K. (2019). Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 38, 151–163.

Nagano, O., and Saya, H. (2004). Mechanism and biological significance of CD44 cleavage. Cancer Sci. 95, 930–935.

Niedermaier, S., and Huesgen, P.F. (2019). Positional proteomics for identification of secreted proteoforms released by site-specific processing of membrane proteins. Biochim. Biophys. Acta - Proteins Proteomics 1867, 140138.

Olsen, J. V., and Mann, M. (2013). Status of large-scale analysis of posttranslational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444–3452.

Paetzol, M., Karla, A., Strynadka, N.C.J., and Dalbey, R.E. (2002). Signal peptidases. Chem. Rev. 102, 4549–4580.

Prudova, A., auf dem Keller, U., Butler, G.S., and Overall, C.M. (2010). Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894–911.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906.

Rawlings, N.D., Barrett, A.J., Thomas, P.D., Huang, X., Bateman, A., and Finn, R.D. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632.

Reiss, K., and Saftig, P. (2009). The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Semin. Cell Dev. Biol. 20, 126–137.
Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25.

Seegar, T.C.M., Killingsworth, L.B., Saha, N., Meyer, P.A., Patra, D., Zimmerman, B., Janes, P.W., Rubinstein, E., Nikolov, D.B., Skiniotis, G., et al. (2017). Structural basis for regulated proteolysis by the α-secretase ADAM10. Cell 171, 1638-1648.e7.

Seidah, N.G., Sadr, M.S., Chrétien, M., and Mbikay, M. (2013). The multifaceted proprotein convertases: Their unique, redundant, complementary, and opposite functions. J. Biol. Chem. 288, 21473–21481.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.

Shirakabe, K., Hattori, S., Seiki, M., Koyasu, S., and Okada, Y. (2011). VIP36 protein is a target of ectodomain shedding and regulates phagocytosis in macrophage Raw 264.7 cells. J. Biol. Chem. 286, 43154–43163.

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613.

Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima-Kawashima, M., Funamoto, S., and Ihara, Y. (2009). γ-Secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 13042–13052.

Tsumagari, K., Shirakabe, K., Ogura, M., Sato, F., Ishihama, Y., and Sehara-Fujisawa, A. (2017). Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation. Genes to Cells 22, 237–244.

Tucher, J., Linke, D., Koudelka, T., Cassidy, L., Tredup, C., Wichert, R., Pietrzik, C., Becker-Pauly, C., and Tholey, A. (2014). LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J. Proteome Res. 13, 2205–2214.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (pro)teomics data. Nat. Methods 13, 731–740.

Weber, S., and Saftig, P. (2012). Ectodomain shedding and ADAMs in development. Development 139, 3693–3709.

Willem, M., Garratt, A.N., Novak, B., Citron, M., Kaufmann, S., Rittger, A., DeStrooper, B., Saftig, P., Birchmeier, C., and Haass, C. (2006). Control of peripheral nerve
myelination by the β-secretase BACE1. Science. 314, 664–666.
Zheng, Y., Saftig, P., Hartmann, D., and Blobel, C. (2004). Evaluation of the contribution of different ADAMs to tumor necrosis factor α (TNFα) shedding and of the function of the TNFα ectodomain in ensuring selective stimulated shedding by the TNFα convertase (TACE/ADAM17). J. Biol. Chem. 279, 42898–42906.