Proton pump inhibitor administration delays rebleeding after endoscopic gastric variceal obturation

Won Seok Jang, Hyun Phil Shin, Joung Il Lee, Kwang Ro Joo, Jae Myung Cha, Jung Won Jeon, Jun Uk Lim

Abstract

AIM: To clarify the efficacy of proton pump inhibitors (PPIs) after endoscopic variceal obturation (EVO) with N-butyl-2-cyanoacrylate.

METHODS: A retrospective study was performed on 16 liver cirrhosis patients with gastric variceal bleeding that received EVO with injections of N-butyl-2-cyanoacrylate at a single center (Kyung Hee University Hospital at Gangdong) from January 2008 to December 2012. Medical records including patient characteristics and endoscopic findings were reviewed. Treatment results, liver function, serum biochemistry and cirrhosis etiology were compared between patients receiving PPIs and those that did not. Furthermore, the rebleeding interval was compared between patients that received PPI treatment after EVO and those who did not.

RESULTS: The patient group included nine males and seven females with a mean age of 61.8 ± 11.7 years. Following the EVO procedure, eight of the 12 patients that received PPIs and three of the four non-PPI patients experienced rebleeding. There were no differences between the groups in serum biochemistry or patient characteristics. The rebleeding rate was not significantly different between the groups, however, patients receiving PPIs had a significantly longer rebleeding interval compared to non-PPI patients (22.2 ± 11.2 mo vs 8.5 ± 5.5 mo; P = 0.008). The duration of PPI use was not related to the rebleeding interval. A total of six patients, who had ulcers at the injection site, exhibited a shorter rebleeding interval (16.8 ± 5.9 mo) than patients without ulcers (19.9 ± 3.2 mo), though this difference was not statistically significant.

CONCLUSION: PPI therapy can extend the rebleeding interval, and should therefore be considered after EVO treatment for gastric varices.
INTRODUCTION

Bleeding from gastric varices (GV) is difficult to control and is associated with a high risk for rebleeding and high mortality[1]. Fundic varices, increasing variceal size, presence of a red spot, and advanced liver disease are all associated with a high risk for hemorrhage and gastric variceal bleeding[2-8]. Although control of variceal bleeding has improved over the past two decades, it is still the most serious and fatal complication of portal hypertension and chronic liver disease[4-6]. Current methods to manage and prevent GV bleeding include endoscopic treatments such as sclerotherapy and band ligation, transjugular intrahepatic portosystemic shunts, and balloon-occluded retrograde transvenous obliteration. Of these, endoscopic variceal obliteration (EVO) with N-butyl-2-cyanoacrylate (Histoacryl) can be performed as a first-line treatment[7]. The first report on the use of tissue adhesive agents to control GV bleeding was by Soehendra et al[8] in 1986. The injection of a cyanoacrylate can produce primary hemostasis in 70%-95% of patients with acute GV bleeding, with an early rebleeding rate that ranges from 0% to 28% within 48 h[9,10], though with complications such as delayed bleeding or rebleeding due to glue cast, ulcer, infection, and embolism[11].

Bleeding from the ulcer after EVO occurs in up to 13% of patients[11-13]. Studies have shown that antacids can improve post-injection ulcers in the esophagus, and also suggest that proton pump inhibitors (PPIs) could be used to treat post-sclerotherapy ulcers complicated by bleeding[14-16]. However, there are few reports that address the effectiveness of PPIs for GV treated by injection therapy. Therefore, the purpose of this study was to retrospectively evaluate the association between the rebleeding interval and the use of PPIs after EVO.

MATERIALS AND METHODS

Patient data

A total of 16 patients who underwent EVO for GV bleeding at the Kyung Hee University Hospital between January 2008 and December 2012 were retrospectively enrolled in the study. Written informed consent was obtained from each subject in accordance with the Declaration of Helsinki (1989) of the World Medical Association. PPI administration and duration were randomly determined according to each patient’s physician. Three kinds of full dose PPIs including 40 mg pantoprazole, 20 mg rabeprazole, and 20 mg omeprazole were orally administered within 24 h after EVO. No serious postoperative complications were observed, such as distant embolization, sepsis, mesentery hematoma or hemoperitoneum, and no patient deaths occurred during hospitalization.

The PPI use group (n = 12) following EVO received a full dose of PPI orally every morning for an average of 11.7 wk. Of the 12 patients that received PPIs and three of the four non-PPI patients experienced rebleeding. The group that received PPIs had a significantly longer rebleeding interval compared to those that did not (22.2 ± 11.2 mo vs 8.5 ± 5.5 mo; P = 0.008) (Figure 1). Although the mean patient age in the PPI group was older, the difference was not significant. Six patients had...
Gastric variceal bleeding is challenging to control and is associated with a high mortality rate of 30%-50%. A majority of survivors will experience rebleeding, and a large percentage will die in the year following an episode. Although bleeding occurs less frequently in gastric compared to esophageal varices, GV bleeding tends to be more severe, requiring more red blood cell transfusions and with a higher mortality rate. Numerous studies have indicated that treatment of GV with EVO and cyanoacrylate injection resulted in a hemostasis ranging from 58% to 100% and a rebleeding rate of 0%-40%22,23, with a reported 28.5% of patients experiencing rebleeding within the first year24, though one study reported that half of patients with poor hepatic function experienced rebleeding within the first 6 wk25. Rebleeding can occur if the obstruction is incomplete, or if the glue cast breaks down before the variceal fibrosis matures. The rebleeding rate can be reduced by complete variceal obliteration, assessed by careful palpation with the injector, ensuring that only drops of glue and blood effuse from the injection site after retraction of the injector, or by computed tomography 3-5 d after the procedure. Obstruction of the vessel by the injected cyanoacrylate induces an inflammatory response followed by chronic granuloma formation and fibrosis due to the extrusion of the glue through previously embolized vessels26.

In this study, we observed that extravascular injection of a mixture of cyanoacrylate and lipiodol produced oval-shaped polymerization products with irregular margins. These submucosal glue polymers can induce caseous necrosis27 and explain the occurrence of gastric ulceration28. This ulcer type has a high probability of vessel exposure, and the abundance of vessels in the stomach wall can increase the severity and prolong the inflammation. Furthermore, exposure to gastric acid may suppress ulcer healing29. Therefore, adjuvant therapy with PPIs, the most potent pharmacologic agents for inhibiting gastric acid secretion29 may prove to be beneficial for GV patients. Patients with ulcers in this study showed shorter rebleeding intervals compared to those without, although the small number of cases prevented this difference from achieving significance. Overall, however, the results of this study support the use of acid suppression therapy, which delayed GV rebleeding after EVO.

This study has some limitations, including a possibility of selection bias due to the retrospective design, such as a bias for PPI use based on the clinician’s subjective findings. However, the potential for recall bias was substantially reduced as all the data were recorded immediately after individual treatment. This study group size was too small to properly evaluate different PPIs, or their duration of use. Therefore, additional prospective studies with a larger population should be used to further elucidate the benefits and effectiveness of various PPI therapies in patients with GV treated by EVO.

DISCUSSION

Portal hypertension can result in the formation of gastric and esophageal varices. Many patients with cirrhosis experience an increase in the number of varices during their lifetime. GV are present in 30% of patients with compensated cirrhosis, and up to 60% of patients with decompensated cirrhosis, at the time of diagnosis. Variceal growth accompanies the progression of liver failure, with esophageal varices progressing at rate of 9% per year in patients with cirrhosis. Christensen et al reported that detection of esophageal varices in a cirrhotic cohort increased from 12% to 90% over ten years.

Variceal bleeding is associated with a morality rate of 30%-50%. A majority of survivors will experience rebleeding, and a large percentage will die in the year following an episode. Although bleeding occurs less frequently in gastric compared to esophageal varices, GV bleeding tends to be more severe, requiring more red blood cell transfusions and with a higher mortality rate. Numerous studies have indicated that treatment of GV with EVO and cyanoacrylate injection resulted in a hemostasis ranging from 58% to 100% and a rebleeding rate of 0%-40%, with a reported 28.5% of patients experiencing rebleeding within the first year, though one study reported that half of patients with poor hepatic function experienced rebleeding within the first 6 wk. Rebleeding can occur if the obstruction is incomplete, or if the glue cast breaks down before the variceal fibrosis matures. The rebleeding rate can be reduced by complete variceal obliteration, assessed by careful palpation with the injector, ensuring that only drops of glue and blood effuse from the injection site after retraction of the injector, or by computed tomography 3-5 d after the procedure. Obstruction of the vessel by the injected cyanoacrylate induces an inflammatory response followed by chronic granuloma formation and fibrosis due to the extrusion of the glue through previously embolized vessels.

In this study, we observed that extravascular injection of a mixture of cyanoacrylate and lipiodol produced oval-shaped polymerization products with irregular margins. These submucosal glue polymers can induce caseous necrosis and explain the occurrence of gastric ulceration. This ulcer type has a high probability of vessel exposure, and the abundance of vessels in the stomach wall can increase the severity and prolong the inflammation. Furthermore, exposure to gastric acid may suppress ulcer healing. Therefore, adjuvant therapy with PPIs, the most potent pharmacologic agents for inhibiting gastric acid secretion may prove to be beneficial for GV patients. Patients with ulcers in this study showed shorter rebleeding intervals compared to those without, although the small number of cases prevented this difference from achieving significance. Overall, however, the results of this study support the use of acid suppression therapy, which delayed GV rebleeding after EVO.

This study has some limitations, including a possibility of selection bias due to the retrospective design, such as a bias for PPI use based on the clinician’s subjective findings. However, the potential for recall bias was substantially reduced as all the data were recorded immediately after individual treatment. This study group size was too small to properly evaluate different PPIs, or their duration of use. Therefore, additional prospective studies with a larger population should be used to further elucidate the benefits and effectiveness of various PPI therapies in patients with GV treated by EVO.

COMMENTS

Background

Proton pump inhibitors (PPIs) are widely used after endoscopic variceal ligation. Endoscopic variceal obturation (EVO) can be performed for gastric variceal bleeding, but little is known about the effect of PPIs after EVO.

Research frontiers

Gastric variceal bleeding is challenging to control and is associated with a high mortality rate of 30%-50%. A majority of survivors will experience rebleeding, and a large percentage will die in the year following an episode. Although bleeding occurs less frequently in gastric compared to esophageal varices, GV bleeding tends to be more severe, requiring more red blood cell transfusions and with a higher mortality rate. Numerous studies have indicated that treatment of GV with EVO and cyanoacrylate injection resulted in a hemostasis ranging from 58% to 100% and a rebleeding rate of 0%-40%, with a reported 28.5% of patients experiencing rebleeding within the first year, though one study reported that half of patients with poor hepatic function experienced rebleeding within the first 6 wk. Rebleeding can occur if the obstruction is incomplete, or if the glue cast breaks down before the variceal fibrosis matures. The rebleeding rate can be reduced by complete variceal obliteration, assessed by careful palpation with the injector, ensuring that only drops of glue and blood effuse from the injection site after retraction of the injector, or by computed tomography 3-5 d after the procedure. Obstruction of the vessel by the injected cyanoacrylate induces an inflammatory response followed by chronic granuloma formation and fibrosis due to the extrusion of the glue through previously embolized vessels.

In this study, we observed that extravascular injection of a mixture of cyanoacrylate and lipiodol produced oval-shaped polymerization products with irregular margins. These submucosal glue polymers can induce caseous necrosis and explain the occurrence of gastric ulceration. This ulcer type has a high probability of vessel exposure, and the abundance of vessels in the stomach wall can increase the severity and prolong the inflammation. Furthermore, exposure to gastric acid may suppress ulcer healing. Therefore, adjuvant therapy with PPIs, the most potent pharmacologic agents for inhibiting gastric acid secretion may prove to be beneficial for GV patients. Patients with ulcers in this study showed shorter rebleeding intervals compared to those without, although the small number of cases prevented this difference from achieving significance. Overall, however, the results of this study support the use of acid suppression therapy, which delayed GV rebleeding after EVO.

This study has some limitations, including a possibility of selection bias due to the retrospective design, such as a bias for PPI use based on the clinician’s subjective findings. However, the potential for recall bias was substantially reduced as all the data were recorded immediately after individual treatment. This study group size was too small to properly evaluate different PPIs, or their duration of use. Therefore, additional prospective studies with a larger population should be used to further elucidate the benefits and effectiveness of various PPI therapies in patients with GV treated by EVO.

Table 1 Comparison of bleeding risk factors

Characteristic	Non-PPI group	PPI group	P-value
Age (yr)	55.3 ± 2.1	63.4 ± 3.7	0.075
Total bilirubin (mg/dL)	2.2 ± 0.9	1.7 ± 0.5	0.652
Albumin (g/dL)	3.0 ± 0.4	2.8 ± 0.1	0.579
Prothrombin time (INR)	1.7 ± 0.3	1.6 ± 0.1	0.721
Creatinine (mg/dL)	1.1 ± 0.2	1.1 ± 0.1	0.936
MELD score	15.8 ± 3.2	14.2 ± 1.3	0.671

MELD: Model for end-stage liver disease; INR: International normalized ratio; PPI: Proton pump inhibitor.
risk for rebleeding. Therapies that include the use of PPIs to prevent bleeding after EVO are gaining popularity, and thus research clarifying their efficacy is needed.

Innovations and breakthroughs

In several studies, the use of analsols after sclerotherapy was shown to improve post-injection esophageal ulcers, but has not been well studied for treatment of gastric varices. Despite the limited number of patients, this study suggests that PPIs may delay rebleeding caused by endoscopic sclerotherapy.

Applications

EVO with N-butyl-2-cyanoacrylate can be performed as a first-line treatment for gastric varices. However, rebleeding at the injection site can occur after EVO. Although PPIs may help to minimize rebleeding, their use after EVO has not been well studied. The results of the present study indicate that patients receiving EVO for treatment of gastric varices show delayed rebleeding with PPI use.

Terminology

PPIs inhibit gastric hydrogen potassium ATPases and are potent inhibitors of gastric acid secretion. EVO consists of the injection of tissue adhesive agents into the vances for the occlusion of vessels. N-butyl-2-cyanoacrylate is an injectable liquid material that when polymerized provides strong tension that can be used to control bleeding from vascular structures.

Peer review

The authors examined PPI therapy in patients undergoing EVO for treatment of gastric varices. The results are especially useful for endoscopists, as there are currently no specific guidelines concerning PPI usage after EVO. The results suggest that PPIs can delay rebleeding, and indicate that larger, prospective studies are warranted to further evaluate these beneficial effects.

REFERENCES

1. Sarin SK, Lahoti D, Saxena SP, Murthy NS, Makwana UK. Prevalence, classification and natural history of gastric varices: a long-term follow-up study in 568 portal hypertension patients. *Hepatology* 1992; 16: 1343-1349 [PMID: 1446890]

2. Sarin SK, Jain AK, Jain M, Gupta R. A randomized controlled trial of cyanoacrylate versus alcohol injection in patients with isolated fundic varices. *Am J Gastroenterol* 2002; 97: 1010-1015 [PMID: 12003381 DOI: 10.1111/j.1572-0241.2002.00522.x]

3. Kind R, Guglielmi A, Rodella L, Lombardo F, Catalanò F, Ruzzene A, Borzellino G, Girlanda R, Leopardi F, Pratticò C, Cordiano C. Bucrylate treatment of bleeding gastric varices. *Dig Dis Sci* 2008; 53: 544-550 [PMID: 17597405 DOI: 10.1007/s10620-007-9882-5]

4. Marques P, Maluf-Filho F, Kumar A, Matuguina SE, Sakai P, Ishioka S. Long-term outcomes of acute gastric variceal bleeding in 48 patients following treatment with cyanoacrylate. *Dig Dis Sci* 2008; 55: 823-828 [PMID: 17797405 DOI: 10.1007/s10620-007-9882-5]

5. Bhasin DK, Siyad I. Variceal bleeding and portal hypertension: new lights on old horizon. *Endoscopy* 2004; 36: 120-129 [PMID: 14756309 DOI: 10.1055/s-2004-814179]

6. Lunderquist A, Börjesson B, Owman T, Bengmark S. Isobutyl 2-cyanoacrylate (bucrylate) in obliteration of gastric coronary vein and esophageal varices. *AJR Am J Roentgenol* 1979; 130: 1-6 [PMID: 413393 DOI: 10.2214/ajr.130.1.413393]

7. García-Tsay G, Sanyal AJ, Grace ND, Carey W. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. *Hepatology* 2007; 46: 922-938 [PMID: 17879556 DOI: 10.1001/jp20971907]

8. Soehendra N, Nam VC, Grimm H, Kempeener I. Endoscopic obliteration of large esophagogastric varices with bucrylate. *Endoscopy* 1986; 18: 25-26 [PMID: 3512261 DOI: 10.1055/s-2007-1013041]

9. Noophun P, Kongkam P, Gonlachanvit S, Rerknimitr R. Bleeding gastric varices: results of endoscopic injection with cyanoacrylate at King Chulalongkorn Memorial Hospital. *World J Gastroenterol* 2005; 11: 7531-7535 [PMID: 16437729]

10. Kojima K, Imazu H, Matsumura M, Honda Y, Umemoto N, Moriyasu H, Orihashi T, Uejima M, Morioka C, Komeda Y, Uemura M, Yoshih H, Fuku H. Sclerotherapy for gastric fun-
Soehendra N, Grimm H, Nam VC, Berger B. N-butyl-2-cyanoacrylate: a supplement to endoscopic sclerotherapy. *Endoscopy* 1987; 19: 221-224 [PMID: 3500847 DOI: 10.1055/s-2007-1018288]

Huang YH, Yeh HZ, Chen GH, Chang CS, Wu CY, Poon SK, Lien HC, Yang SS. Endoscopic treatment of bleeding gastric varices by N-butyl-2-cyanoacrylate (Histoacryl) injection: long-term efficacy and safety. *Gastrointest Endosc* 2000; 52: 160-167 [PMID: 10922085 DOI: 10.1067/mge.2000.104976]

Lee YT, Chan FK, Ng EK, Leung VK, Law KB, Yung MY, Chung SC, Sung JJ. EUS-guided injection of cyanoacrylate for bleeding gastric varices. *Gastrointest Endosc* 2000; 52: 168-174 [PMID: 10922086 DOI: 10.1067/mge.2000.107911]

Dhiman RK, Chawla Y, Taneja S, Bieras R, Sharma TR, Dhillawari JB. Endoscopic sclerotherapy of gastric variceal bleeding with N-butyl-2-cyanoacrylate. *J Clin Gastroenterol* 2002; 35: 222-227 [PMID: 12192197 DOI: 10.1097/00004836-200209000-00005]

Akahoshi T, Hashizume M, Shimabukuro R, Tanoue K, Tomikawa M, Okita K, Gotoh N, Konishi K, Tsutsumi K, Sugimachi K. Long-term results of endoscopic Histoacryl injection sclerotherapy for gastric variceal bleeding: a 10-year experience. *Surgery* 2002; 131: S176-S181 [PMID: 11821807]

Mostafa I, Omar MM, Nouh A. Endoscopic control of gastric variceal bleeding with butyl cyanoacrylate in patients with schistosomiasis. *J Egypt Soc Parasitol* 1997; 27: 405-410 [PMID: 9257597]

Caldwell SH, Hespenheide EE, Greenwald BD, Northup PG, Patrie JT. Enbucrilate for gastric varices: extended experience in 92 patients. *Aliment Pharmacol Ther* 2007; 26: 49-59 [PMID: 17555421 DOI: 10.1111/j.1365-2036.2007.03351.x]

Brothers MF, Kaufmann JC, Fox AJ, Deveikis JP. n-Butyl 2-cyanoacrylate—substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies. *AJNR Am J Neuroradiol* 1989; 10: 777-786 [PMID: 2505505]

Kunstlinger F, Brunelle F, Chaumont P, Doyon D. Vascular occlusive agents. *AJR Am J Roentgenol* 1981; 136: 151-156 [PMID: 6779563 DOI: 10.2214/ajr.136.1.151]

Woodward SC, Herrmann JB, Cameron JL, Brandes G, Pulaski EJ, Leonard F. Histotoxicity of cyanoacrylate tissue adhesive in the rat. *Ann Surg* 1965; 162: 113-122 [PMID: 14308782 DOI: 10.1097/00000658-196507000-00017]

Shaheen NJ, Stuart E, Schmitz SM, Mitchell KL, Fried MW, Zacks S, Russo MW, Galanko J, Shrestha R. Pantoprazole reduces the size of postbanding ulcers after variceal band ligation: a randomized, controlled trial. *Hepatology* 2005; 41: 588-594 [PMID: 15726698 DOI: 10.1002/hep.20593]

Boparai KS, Dekker E, Van Eeden S, Polak MM, Bartelsman JF, Mathus-Vliegen EM, Keller J, van Noesel CJ. Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of MYH-associated polyposis. *Gastroenterology* 2008; 135: 2014-2018 [PMID: 19013464]

P- Reviewer: Karsan H, Maluf-Filho F, Sato T S- Editor: Ma N L- Editor: A E- Editor: Wang CH
