Longitudinal alterations of pulmonary VO\(_2\) on-kinetics during moderate-intensity exercise in competitive youth cyclists are related to alterations in the balance between microvascular O\(_2\) distribution and muscular O\(_2\) utilization.

Matthias Hovorka\(^1,2,3\), Bernhard Prinz\(^1\), Dieter Simon\(^1\), Manfred Zöger\(^1\), Clemens Rumpl\(^1\) and Alfred Nimmerichter\(^*\) \(^1,2\)

1 Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria, 2 Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria, 3 Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria

Purpose: The main purpose of the current study was to investigate the dynamic adjustment of pulmonary oxygen uptake (VO\(_2\)) in response to moderate-intensity cycling on three occasions within 15 months in competitive youth cyclists. Furthermore, the muscle \(\Delta\text{deoxy[heme]}\) on-kinetics and the \(\Delta\text{deoxy[heme]}\)-to-VO\(_2\) ratio were modeled to examine possible mechanistic basis regulating pulmonary VO\(_2\) on-kinetics.

Methods: Eleven cyclists (initial age, 14.3 ± 1.6 y; peak VO\(_2\), 62.2 ± 4.5 mL min\(^{-1}\) kg\(^{-1}\)) with a training history of 2–5 years and a training volume of ∼10 h per week participated in this investigation. VO\(_2\) and \(\Delta\text{deoxy[heme]}\) responses during workrate-transitions to moderate-intensity cycling were measured with breath-by-breath spirometry and near-infrared spectroscopy, respectively, and subsequently modeled with mono-exponential models to derive parameter estimates. Additionally, a normalized \(\Delta\text{deoxy[heme]}\)-to-VO\(_2\) ratio was calculated for each participant. One-way repeated-measures ANOVA was used to assess effects of time on the dependent variables of the responses.

Results: The VO\(_2\) time constant remained unchanged between the first (∼24 s) and second visit (∼22 s, \(P > 0.05\)), whereas it was significantly improved through the third visit (∼13 s, \(P = 0.006–0.013\)). No significant effects of time were revealed for the parameter estimates of the \(\Delta\text{deoxy[heme]}\) response (\(P > 0.05\)). A significant \(\Delta\text{deoxy[heme]}\)-to-VO\(_2\) ratio “overshoot” was evident on the first (1.09 ± 0.10, \(P = 0.006\)) and second (1.05 ± 0.09, \(P = 0.047\)), though not the third (0.97 ± 0.10, \(P > 0.05\)), occasion. These “overshoots” showed strong positive relationships with the VO\(_2\) time constant during exercise.
Introduction

The dynamic response of pulmonary oxygen uptake (VO_2) following a square-wave transition from rest to moderate-intensity [i.e., below the gas exchange threshold (GET)] constant-workrate exercise is characterized by three phases (pulmonary VO_2 on-kinetics). The first increase in pulmonary VO_2 during phase I (i.e., cardiodynamic phase) is largely dictated by a fast increase in cardiac output; and hence, pulmonary blood flow during the first 15–20 s of the transition. The subsequent exponential increase during phase II (i.e., fundamental phase) drives the pulmonary VO_2 toward its projected steady-state (phase III) (1, 2). The fundamental phase is described by the time constant (τ_P), which (i) reflects the time to achieve 63% of the projected phase II response (3) and (ii) coincides within ~10% with a surrogate of muscular VO_2 (i.e., kinetics of muscle phosphocreatine breakdown) in children (4). Therefore, the fundamental phase τ_P can be used as a substitute of muscular VO_2 on-kinetics and provide useful information regarding the dynamic adjustment of the metabolic processes located in the working myocytes (3).

Pulmonary VO_2 on-kinetics during moderate-intensity exercise have been extensively studied in healthy and diseased adults, whereas data in (endurance trained) children and adolescents are limited (3, 5). Previous studies revealed no significant differences of the fundamental phase τ_P between prepubertal children and young adults (6–8), whereas more recent investigations showed smaller τ_P values (i.e., faster on-kinetics) in prepubertal children vs. young adults (9–12). Cross-sectional comparisons between endurance-trained and untrained youth reported either faster (13, 14) or similar (15) fundamental phase τ_P in the endurance-trained vs. untrained participants. However, to the best of the authors knowledge, no study has yet investigated longitudinal alterations of pulmonary VO_2 on-kinetics during moderate-intensity exercise in endurance trained youth. Furthermore, there has been considerable debate on the regulatory factors of the dynamic VO_2 response following a transition to moderate-intensity exercise between those favoring metabolic limitations and those supporting oxygen (O_2) delivery limitations (16, 17). Technologies like portable near-infrared spectroscopy (NIRS) devices applied together with established methods (e.g., breath-by-breath spirometry) have been previously used to investigate muscle O_2 delivery/utilization relationships [e.g., Δdeoxygenated[heme]-to-VO_2 ratio] in children/adolescents and adults (11, 13, 14, 18–20); and thus, have the potential to further strengthen the understanding of the mechanistic bases regulating (changes of) VO_2 on-kinetics (16, 21). For example, Marwood et al. (13) showed faster pulmonary VO_2 and capillary blood flow on-kinetics in trained vs. untrained adolescents, whereas no significant differences in Δdeoxygenated[heme] on-kinetics have been observed. The authors concluded that proportional enhancements in O_2 delivery and utilization capacity determined the faster pulmonary VO_2 on-kinetics reported in the trained group (13). Further, Murias et al. (19, 20) revealed that training induced improvements of pulmonary VO_2 on-kinetics in adults are associated with a reduction of the Δdeoxygenated[heme]-to-VO_2 ratio; and thus, an improved balance between microvascular O_2 distribution and local muscular O_2 utilization.

The main purpose of the current study was to investigate changes of pulmonary VO_2 on-kinetics in response to moderate-intensity exercise in competitive youth cyclists over a period of 15 months, and to model Δdeoxygenated[heme] on-kinetics and the Δdeoxygenated[heme]-to-VO_2 ratio to examine possible mechanisms regulating (changes of) the adjustment of oxidative phosphorylation. We hypothesized a speeding over time of the pulmonary VO_2 on-kinetic response concomitant with no changes of the Δdeoxygenated[heme] on-kinetics. Additionally, we expected a reduction of the Δdeoxygenated[heme]-to-VO_2 “overshoot”

the first (r = 0.66, P = 0.028) and second visit (r = 0.76, P = 0.007). Further, strong positive relationships have been observed between the individual changes of the fundamental phase τ_P and the Δdeoxygenated[heme]-to-VO_2 ratio “overshoot” from occasion one to two (r = 0.70, P = 0.017), and two to three (r = 0.74, P = 0.009).

Conclusion: This suggests that improvements in muscle oxygen provision and utilization capacity both occurred, and each may have contributed to enhancing the dynamic adjustment of the oxidative “machinery” in competitive youth cyclists. Furthermore, it indicates a strong link between an oxygen maldistribution within the tissue of interrogation and the VO_2 time constant.

KEYWORDS near-infrared spectroscopy, pulmonary kinetics, youth cyclists, longitudinal, oxidative phosphorylation, microvascular blood flow, oxygen uptake, muscular oxygen utilization
with time and a positive relationship between (changes of) the \(\Delta \text{deoxygenated heme} \)-to-\(\text{VO}_{2} \) “overshoot” and fundamental phase \(\tau_{p} \) for all occasions.

Materials and methods

Participants

Eight male and three female youth cyclists with a training history of 2–5 years participated in the current investigation. All cyclists performed a regular endurance-training volume of \(\sim \)10 h per week throughout the study duration, were members of the junior national team, attended a local sports high school, and regularly competed at national and international level competitions in road cycling, mountain bike XC, and track cycling. The cyclists were part of the same training group, and the whole training process was supervised by one experienced coach who followed a polarized training intensity distribution approach throughout the study duration. Prior to the study, the participants and their legal guardians were informed of the experimental procedures and gave written informed consent to participate. All documents and procedures were submitted to, and approved by, the institutional review board and the study was conducted in accordance with the Declaration of Helsinki.

Experimental design

Participants visited the laboratory twice within 2 weeks on three occasions within 15 months (Occasion 1: 1st month, Occasion 2: 8th month, Occasion 3: 15th month). Body mass and stature were measured with an electronic scale and stadiometer (Seca 813 and 213, Seca, Hamburg, Germany) and adipose tissue thickness (ATT) at the musculus vastus lateralis was determined using a skinfold caliper (Harpenden, Baty International, Burgess Hill, United Kingdom) before a graded ramp exercise test (GXT) was conducted during the first visit. On a subsequent visit, participants performed one square-wave transition from a baseline workrate to moderate-intensity for 6 min and a cool-down of 3 min at 40 W. Participants were asked to maintain a cadence between 90 and 100 rpm during the GXT. They breathed through a low-resistance impeller turbine mounted on a face mask to continuously measure gas exchange and pulmonary ventilation with a portable open circuit spirometry (MetaMax 3B, Cortex Biophysik, Leipzig, Germany). The gas analysers were calibrated with gases of known concentrations \([15.99 \text{ Vol\%} \text{ oxygen } (\text{O}_2), 4.99 \text{ Vol\%} \text{ carbon dioxide } (\text{CO}_2), \text{Cortex Biophysik, Leipzig, Germany}] \) and air flow and volume were calibrated with a 3-L syringe (Type M 9474-C, Cortex Biophysik, Leipzig, Germany). \(\text{VO}_2\text{peak} \), \(\text{HR}_\text{peak} \), and peak respiratory exchange ratio \((\text{RER}_\text{peak}) \) were defined as the highest continuous 30 s average throughout the test. The V-slope method was used to determine the GET (22) which was subsequently visually verified by inspection of an increase of the ventilatory equivalent of \(\text{CO}_2 \), without a concomitant change of the ventilatory equivalent of \(\text{O}_2 \), RCP was determined as the first systematic decrease in end-tidal partial pressure of \(\text{CO}_2 \) with a concomitant increase of the ventilatory equivalent of \(\text{O}_2 \). It was subsequently visually verified by inspection of the second disproportional increase in minute ventilation (23).

Square-wave transition

The square-wave transition was conducted to determine pulmonary \(\text{VO}_2 \) and local muscular deoxygenation on-kinetics. The required workrate for the square-wave transition was determined after the completion of the GXT as 90% GET. A 3 min baseline at 40 W was followed by a step increase in workrate to moderate-intensity for 6 min and a cool-down of 3 min at 40 W. Participants were asked to maintain a cadence between 90 and 100 rpm during the test. Pulmonary ventilation and gas exchange were continuously measured breath-by-breath as described above. Local muscular deoxygenation of the right m. vastus lateralis was determined using a multi-distance continuous-wave NIRS device (PortaMon, Artinis, Elst, The Netherlands). The NIRS probe was covered in a transparent household plastic film and tightly taped on the cleaned and shaved belly of the muscle, midway between the lateral epicondyle of the femur and the greater trochanter. The probe was further fixed with an elastic bandage and covered with a black hose to minimize movement artifacts and the influence of extraneous light sources, respectively. The NIRS device consisted of three photodiodes emitting light at a wavelength of 762 to 850 nm and a photon detector detecting photons emerging form the interrogated tissue. Light source-detector distances of 30, 35, and 40 mm enabled a penetration depth of 15–20 mm. The device utilized the modified Beer-Lambert law to calculate relative changes of the local tissue deoxygenation status. The \(\Delta \text{deoxygenated heme} \) signal was used for the “physiological calibration” described in the following paragraph.
Following the completion of the square-wave transition protocol, a(n) ischemia/hyperaemia calibration was conducted to normalize the Δdeoxygen[heme] signal to its maximal “physiological” range. For this purpose, participants laid down on a massage table in a supine position. A blood pressure cuff (Ulrich medical, Ulm, Germany) attached to a cuff inflator (heidi™ mein Tourniquet, Ulrich medical, Ulm, Germany) was placed proximally of the NIRS probe and inflated to a pressure of ~300 mmHg for 5 min followed by an instantaneous release of the pressure. The Δdeoxygen[heme] plateau during the ischemic phase and the Δdeoxygen[heme] minimum during the hyperaemic phase of the calibration represents 100 and 0% deoxygenation in the tissue interrogated by the NIRS device. This “physiological calibration” allows the obtainment of “semiquantitative” tissue deoxygenation indices and thus the comparison between participants with differing [heme] and/or adipose tissue thickness (21). As suggested previously, this normalized Δdeoxygen[heme] signal was used for further analysis (21).

Data analysis

Pulmonary \(\dot{V}O_2 \) on-kinetic data modeling

The pulmonary breath-by-breath \(\dot{V}O_2 \) data were filtered by removing aberrant breaths that lay outside more than four standard deviations (SD) of the local mean of five data points. The filtered data then were linearly interpolated to receive second-by-second data. These 1-s interpolated data were time-aligned that time zero represents the onset of exercise for each individual. Data of the first 15 s of the square-wave transition were excluded from the analysis to account for the cardiodynamic phase (24, 25), and a mono-exponential model was applied to model the fundamental phase of the pulmonary \(\dot{V}O_2 \) on-kinetics (Equation 1).

\[
\dot{V}O_2(t) = BL + A_p \cdot (1 - e^{-\frac{(t-TD_p)}{\tau_p}})
\]

where \(\dot{V}O_2(t) \) represents the pulmonary \(\dot{V}O_2 \) at a given time \(t \), \(BL \) is defined as the mean pulmonary \(\dot{V}O_2 \) between -60 and -10 s of baseline cycling, \(A_p \) is considered as the steady-state increase of pulmonary \(\dot{V}O_2 \) above BL, \(TD_p \) is the time delay relative to the onset of exercise and \(\tau_p \) represents the pulmonary \(\dot{V}O_2 \) time constant. The data were modeled from 15 s to the end of the exercise. The parameter estimates were subsequently estimated by least-squares non-linear regression analysis (GraphPad Prism 9.1.2, GraphPad Software Inc., San Diego, USA).

Δdeoxygen[heme] on-kinetic data modeling

The normalized Δdeoxygen[heme] data were averaged to 1-s bins and left-shifted that time zero represents the onset of exercise and subsequently modeled with a mono-exponential model (Equation 2). The start of the exponential increase was identified as the time at which the Δdeoxygen[heme] signal started to systematically increase by one SD above baseline (18). Data were fitted up to 140 s, or, where a Δdeoxygen[heme] overshoot relative to end-exercise was identified visually, to the peak value of this overshoot (18).

\[
\Delta\text{deoxygen}[\text{heme}] (t) = A_m \cdot (1 - e^{-\frac{(t-TD_m)}{\tau_m}})
\]

where \(\Delta\text{deoxygen}[\text{heme}] (t) \), \(A_m \), \(TD_m \), and \(\tau_m \) represent the tissue deoxygenation status at any time \(t \), the asymptotic amplitude, the time delay and the time constant of the Δdeoxygen[heme] response, respectively. The MRT_m was calculated as the sum of TD_m and \(\tau_m \).

Δdeoxygen[heme]-to-\(\dot{V}O_2 \) ratio modeling

In addition to the on-kinetic responses, a normalized Δdeoxygen[heme]-to-\(\dot{V}O_2 \) ratio was derived from the actual data profiles of pulmonary \(\dot{V}O_2 \) and Δdeoxygen[heme] for each individual. A ratio of 1.00 represents a steady-state value between \(\dot{V}O_2 \) delivery and utilization, whereas an “overshoot” beyond values of 1.00 indicates a slower adjustment of microvascular \(\dot{V}O_2 \) delivery in proportion to the \(\dot{V}O_2 \) demand; and hence, is thought to represent a temporary maldistribution of \(\dot{V}O_2 \) within the working muscles (17, 19, 26, 27). Briefly, the second-by-second pulmonary \(\dot{V}O_2 \) and Δdeoxygen[heme] data were normalized that 0 % corresponds to the baseline values and 100% reflects the steady-state response of pulmonary \(\dot{V}O_2 \) and Δdeoxygen[heme]. To account for the cardiodynamic phase, the normalized pulmonary \(\dot{V}O_2 \) data were time-aligned that time zero represents the onset of the fundamental phase of the pulmonary \(\dot{V}O_2 \) response. Subsequently, the data were averaged to 5-s bins and a mean normalized Δdeoxygen[heme]-to-\(\dot{V}O_2 \) ratio was calculated for each individual from 15 to 120 s (26). The start and end point of 15 and 120 s coincide with the start of the ratio “overshoot” and the point at which all participants Δdeoxygen[heme] and pulmonary \(\dot{V}O_2 \) responses reached their amplitude, respectively.

Statistical analyses

Descriptive data are presented as mean ± SD. Shapiro-Wilk and Mauchly tests were used to examine assumptions of normality and sphericity, respectively. One-way repeated-measures ANOVA were used to determine possible effects of time on the dependent variables of the pulmonary \(\dot{V}O_2 \) and Δdeoxygen[heme] on-kinetic responses and the results of the GXT. Bonferroni correction was used for pairwise comparisons where appropriate. T-tests were applied to assess a significant “overshoot” (i.e., >1.00) of the normalized
Results

Participants characteristics and results of the GXT are presented in Table 1. The one-way repeated-measures ANOVA revealed significant effects of time on stature \(F_{(1,14,11.43)} = 10.579, P = 0.006 \), body mass \(F_{(1,14,11.41)} = 11.284, P = 0.005 \), and workrate corresponding to 90% GET \(F_{(1,18,11.81)} = 6.996, P = 0.018 \) and RCP \(F_{(1,16,11.56)} = 13.685, P = 0.003 \), absolute \(\dot{V}O_2 \) at GET \(F_{(1,29,12.91)} = 7.122, P = 0.015 \) and RCP \(F_{(1,22,12.15)} = 8.189, P = 0.011 \), relative \(\dot{V}O_2 \) at RCP \(F_{(2,20)} = 8.398, P = 0.002 \), and RER\(_{\text{peak}}\) \(F_{(2,20)} = 4.218, P = 0.030 \), whereas no significant effect of time was reported on the remaining parameters \(P = 0.116–0.724 \). The pairwise comparisons revealed increases in stature and body mass from the first to the second occasion \(P = 0.002 \) and \(0.005 \) for stature and body mass, respectively) and third occasion \(P = 0.011 \) and \(0.008 \) for stature and body mass, respectively.

| Occasion | Age (y) | Stature (cm) | Body mass (kg) | ATT m. vastus lateralis (mm) | Workrate 90% GET (W) | \(\dot{V}O_2 \) at GET (mL min\(^{-1}\)) | \(\dot{V}O_2 \) at GET (%\(\dot{V}O_2 \)peak) | Workrate RCP (W) | \(\dot{V}O_2 \) at RCP (mL min\(^{-1}\)) | \(\dot{V}O_2 \) at RCP (%\(\dot{V}O_2 \)peak) | HRpeak (beats min\(^{-1}\)) | RERpeak | \(\dot{W} \)peak (W) | \(\dot{V}O_{\text{peak}} \) (mL min\(^{-1}\) kg\(^{-1}\)) | \(\dot{V}O_{\text{peak}} \) (mL min\(^{-1}\)) |
|---------------|------------|--------------|----------------|----------------------------|----------------------|--|--|--------------------------|--|--|--------------------------|-----------|----------------|---------------------------|----------------|----------------|-------------------|
| 1 | 14.3 ± 1.6 | 163.1 ± 12.9 | 52.7 ± 12.1 | 5.2 ± 1.5 | 125 ± 25 | 1.780 ± 394 | 54.9 ± 4.8 | 215 ± 45 | 2.616 ± 586 | 80.4 ± 4.3 | 197 ± 5 | 1.21 ± 0.3 | 290 ± 54 | 62.2 ± 4.5 | 3,259 ± 728 |
| 2 | 15.9 ± 1.6*| 165.3 ± 12.9*| 54.3 ± 12.2* | 5.3 ± 1.3 | 128 ± 25 | 1.800 ± 407 | 52.8 ± 3.3 | 229 ± 44 | 2.650 ± 561 | 77.9 ± 6.7 | 196 ± 5 | 1.17 ± 0.3* | 308 ± 59* | 63.1 ± 6.1 | 3,409 ± 746 |
| 3 | 15.6 ± 1.6*| 168.5 ± 12.1*| 57.6 ± 11.3* | 6.4 ± 1.4 | 137 ± 24 | 2.021 ± 380** | 57.3 ± 6.9 | 258 ± 55** | 3.036 ± 688** | 85.1 ± 6.9** | 195 ± 7 | 1.19 ± 0.06 | 324 ± 64* | 62.0 ± 6.0 | 3,551 ± 669 |

\(\Delta \dot{V}O_2 \) (heme)-to-\(\dot{V}O_2 \) ratio

A significant effect of time on the normalized \(\Delta \dot{V}O_2 \) (heme)-to-\(\dot{V}O_2 \) ratio was revealed \(F_{(2,20)} = 4.717, P = 0.021 \). Post-hoc tests showed that the ratio was lower on occasion three compared to one \(P = 0.021 \). The normalized \(\Delta \dot{V}O_2 \) (heme)-to-\(\dot{V}O_2 \) ratio was significantly higher than \(1.00 \) on test occasion one \((1.09 ± 0.10, P = 0.006) \) and two \((1.05 ± 0.09, P = 0.047) \), whereas it was not significantly higher on occasion three \((0.97 ± 0.10, P = 0.151; \text{Table 2}) \). The \(\Delta \dot{V}O_2 \) (heme)-to-\(\dot{V}O_2 \) ratio showed a strong positive relationship with the fundamental phase \(\tau \) on test occasion one \((r = 0.66, P = 0.028) \) and two \((r = 0.76, P = 0.007) \), though this relationship was not significant on occasion three \((r = 0.40, P = 0.220; \text{Figures 2A–C}) \). Further, a strong positive relationship was observed between the change of the fundamental phase \(\tau \) and the \(\Delta \dot{V}O_2 \) (heme)-to-\(\dot{V}O_2 \) ratio from occasion one to two \((r = 0.70, P = 0.017) \), and two to three \((r = 0.74, P = 0.009; \text{Figures 2D,E}) \).
Discussion

The present study examined longitudinal changes in pulmonary VO$_2$ and Δdeoxy[heme] on-kinetics, and the Δdeoxy[heme]-to-VO$_2$ ratio in response to moderate-intensity exercise in trained youth cyclists over a period of 15 months. The main findings were: (i) Partially in line with our hypothesis, the fundamental phase τ_p showed no significant change from the first to the second visit, whereas τ_p decreased significantly from the first/second to the third visit. (ii) In line with our hypothesis, no significant changes of the Δdeoxy[heme] on-kinetic parameter estimates were observed during the current investigation. (iii) A transient Δdeoxy[heme]-to-VO$_2$ overshoot relative to the steady-state value of \sim1.00 was present on test occasion one and two, whereas this overshoot was abolished on occasion three. (iv) A strong positive relationship between the Δdeoxy[heme]-to-VO$_2$ ratio overshoot and the fundamental phase τ_p was revealed during the first and second visit, though this relationship was attenuated during the third visit. (v) A strong positive correlation was observed...
between the change of the fundamental phase τ_p and the Δdeoxy[heme]-to-$\dot{V}O_2$ ratio from occasion one to two, and two to three.

Longitudinal changes of the on-kinetic responses

The fundamental phase τ_p reported on test occasions one and two (~24 and ~22 s, respectively) are in line with previous investigations in endurance-trained adolescents of similar age (~22–26 s) (13, 14). However, the τ_p reported on test occasion three (~13 s) is well below these values (i.e., faster) and coincides with $\dot{V}O_2$ on-kinetics found in well- to highly-trained adult cyclists, rowers or runners (28–33), and a Belgian Junior cycling champion (3). Due to the lack of a control group in the present investigation, it is difficult to interpret whether the observed speeding of the fundamental phase τ_p may be attributed to the endurance training performed by the youth cyclists. Previous studies have shown that the fundamental phase τ_p is either faster (9–12) or similar (6–8) in untrained prepubertal children compared with untrained young adults. Thus, it seems likely to suggest that the herein reported speeding of the $\dot{V}O_2$ on-kinetic response may be largely ascribed to the endurance training performed by the youth cyclists. The notion of a trainable on-kinetic response in youth is further supported by investigations revealing faster pulmonary $\dot{V}O_2$ on-kinetics in trained vs. untrained youth (13, 14).

The time course for the dynamic adjustment of the Δdeoxy[heme] signal (i.e., τ_m and MRT$_m$) remained constant throughout the study. This in line with previous cross-sectional studies reporting no significant differences in Δdeoxy[heme] on-kinetics between trained and untrained adolescents (13, 14). In concert with the speeding of the fundamental phase τ_p, this indicates a proportional enhancement of microvascular O_2 provision and O_2 utilization capacities (13, 14) between test occasion one/two and three herein. This is supported by studies showing faster heart rate on-kinetics, indicative of an enhanced bulk blood flow, in trained vs. untrained prepubertal children (13), and an increase in muscle oxidative capacity in response to endurance training in youth (34, 35). However, it is noteworthy to mention that an elevated bulk blood flow does not ultimately mean that there was a faster local O_2 distribution. Overall, it may be suggested that improvements in local muscular O_2 distribution and O_2 utilization capacities both occurred, and each may have contributed to improving the pulmonary $\dot{V}O_2$ on-kinetic response observed herein. Again, due to the lack of a control group it is difficult to interpret whether these adaptations may be attributed to exercise training. However, since previous studies reported a higher percentage of type I muscle fibers (36) and faster capillary blood flow kinetics (11) in male children/adolescents compared to adults, and an elevated oxidative enzyme content (37) in male and female adolescents compared to adults, it seems appropriate to associate the above-mentioned adaptations with the exercise training performed by the youth cyclists in the current study.

Possible mechanistic basis

The Δdeoxy[heme] signal showed a τ_m of ~7–10 s during the early phase of the transient which was not affected by time in the present investigation. This is in line with previous investigations showing similar τ_m values (~7–9 s) in adolescents which were not affected by training status and/or age (11, 13, 14). The steady Δdeoxy[heme] signal during the early phase of the exercise transition suggests a precise matching of local O_2 distribution to utilization in the area of interrogation (16). This notion is in line with studies showing a similar pattern of O_2 distribution/utilization indices (i.e., intracellular PO_2, arterio-venous O_2 difference) in animal myofiber preparations (38–40) and human limbs (41). Since muscle $\dot{V}O_2$ increases immediately after the onset of exercise (41, 42), a concomitant instant increase in local O_2 distribution is mandatory to preserve this early “steady-state.” Such a rapid increase in capillary blood flow; and thus, microvascular O_2 delivery, has been previously shown early during the transient (43, 44). Together, this indicates intracellular mechanisms other than regional
O₂ maldistribution to constrain the adjustment of oxidative phosphorylation during the first \(\sim\) 10 s of the transient.

Following this early “homeostasis” between microvascular O₂ provision and O₂ demand within the working myofibers, \(\Delta\text{deoxy[heme]}\) increased exponentially, and a \(\Delta\text{deoxy[heme]}\)-to-\(\dot{\text{VO}}_2\) overshoot was evident on test occasion one and two, though not on occasion three. The \(\Delta\text{deoxy[heme]}\)-to-\(\dot{\text{VO}}_2\) overshoot has been previously interpreted as a greater reliance on O₂ extraction in proportion to the O₂ demand within the muscle tissue (17, 19, 26, 27). Together, this indicates that on average a temporal mismatch between local O₂ distribution and O₂ demand following the first \(\sim\) 10 s after exercise onset is evident on occasion one and two, though not three. A mitigated or abrogated \(\Delta\text{deoxy[heme]}\)-to-\(\dot{\text{VO}}_2\) overshoot indicates a reduced reliance on O₂ extraction and thus, a more precise matching between microvascular O₂ provision and utilization within the tissue of interrogation (17, 19, 26, 27). This may result in a less pronounced fall in microvascular PO₂; and hence, an elevated driving force regulating the capillary-to-myocyte O₂ flux resulting in a higher potential for oxidative phosphorylation during the transition (45, 46). This is supported by: (i) The strong positive relationships observed between the extent of the \(\Delta\text{deoxy[heme]}\)-to-\(\dot{\text{VO}}_2\) overshoot and the fundamental phase \(\tau_p\) on occasion one and two (Figures 2A–C), and by the fast \(\tau_p\)
observed on occasion three where the Δdeoxy[heme]-to-VO₂ overshoot and hence, an O₂ maldistribution, was abrogated. (ii) The strong positive correlation between the change of the Δdeoxy[heme]-to-VO₂ ratio and the fundamental phase τ_p from occasion one to two, and two to three (Figures 2D,E).

Limitations

One limitation resides in the NIRS measurement *per-se* (e.g., probe placement, small tissue of interrogation). To at least partially counteract these issues, we implemented a standardized operating procedure regarding probe placement to minimize the influence of spatial heterogeneities within the tissue of interest and followed the specific recommendations recently stated by Barstow (21). Limitations related to the modeling of the Δdeoxy[heme]-to-VO₂ ratio have been discussed extensively elsewhere (17, 21, 26). Briefly, modeling simulations revealed that the currently used method is rather conservative in estimating the “overshoot;” and hence, conclusions would have been unaffected by using another modeling approach (26). The use of only one exercise transition may be considered as a further limitation. Recent studies have shown that multiple transitions increase the confidence in the parameter estimates of the VO₂ and Δdeoxy[heme] on-kinetics (25, 47) and thus, decrease the smallest change detectable with confidence. However, the herein reported 95% confidence intervals for the fundamental phase τ_p (∼4–5 s) and τ_m (∼2–4 s) are within acceptable boundaries (13, 14), and the mean ∼8–11 s decrease in τ_p between occasion one/two and three is at least similar to the smallest change detectable with confidence in youth by using one exercise transition (47). The lack of a control group may be considered another limitation. However, since previous investigations showed a slowing or no change of the pulmonary VO₂ on-kinetic response with aging, and a lower potential for oxidative metabolism (e.g., % type I fibers and/or oxidative enzyme content) in adults vs. youth [for review see: (5)] it seems appropriate to attribute the speeding of the pulmonary VO₂ on-kinetic response reported herein to the endurance-training performed by the youth cyclists.

Conclusion

The data of the current investigation in competitive youth cyclists showed that the fundamental phase τ_p and hence, muscle VO₂ on-kinetics, was not affected by time from the first to the second, though from the first/second to the third visit. Concomitant with the unchanged Δdeoxy[heme] on-kinetics, this indicates a proportional improvement in muscle O₂ distribution and O₂ utilization capacity between the second and third visit, and both may have contributed to improve the pulmonary VO₂ on-kinetic response observed herein. Furthermore, the data presented herein indicate a strong link between an O₂ maldistribution within the tissue of interrogation evident during exercise transitions on occasion one and two, and the fundamental phase τ_p in trained youth cyclists.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and approved by Review Board, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

Author contributions

AN conceived and designed the research. BP, CR, MH, and MZ conducted the experiments. DS, MH, and MZ analyzed the data. DS and MH interpreted the results of the experiments. AN, BP, and MH drafted the manuscript. All authors were involved in the revision and approval of the final version of the manuscript.

Funding

This research was supported by Gesellschaft für Forschungsförderung Niederösterreich m.b.H. (Grant No. SC18-014).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. Whipp B, Ward S, Lamarr N, Davis J, Wasserman K. Parameters of ventilatory and gas exchange during exercise. J Appl Physiol. (1982) 52:1506–13. doi: 10.1152/jappl.1982.52.6.1506
2. Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. (1972) 33:351–6. doi: 10.1152/jappl.1972.33.3.351
3. Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. (2012) 2:933–96. doi: 10.1002/cphy.c000072
4. Barker AR, Welsman JR, Fulford I, Welford D, Williams CA, Armstrong N. Muscle phosphocreatine and pulmonary oxygen uptake kinetics in children at the onset and offset of moderate intensity exercise. Eur J Appl Physiol. (2008) 102:727–38. doi: 10.1007/s00424-007-0630-1
5. McNarry MA. Oxygen uptake kinetics in youth. characteristics, interpretation, and application. Pediatr Exerc Sci. (2019) 31:175–83. doi: 10.1123/peex.2018-0177
6. Springer C, Barstow TJ, Wasserman K, Cooper DM. Oxygen uptake and heart rate responses during bipy exercise in children and adults. Med Sci Sports Exerc. (1991) 23:71–9. doi: 10.1249/00005768-199101000-00012
7. Williams CA, Carter H, Jones AM, Doust JH. Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol. (2001) 90:1700–6. doi: 10.1152/jappl.2000.90.5.1700
8. Cooper DM, Berry C, Lamarr N, Wasserman K. Kinetics of oxygen uptake and heart rate at onset of exercise in children. J Appl Physiol. (1985) 59:211–7. doi: 10.1152/jappl.1985.59.1.211
9. Armon Y, Cooper D, Flores R, Zanconato S, Barstow T. Oxygen uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol. (1991) 70:841–8. doi: 10.1152/jappl.1991.70.2.841
10. Fawker SG, Armstrong N, Potter CR, Welsman JR. Oxygen uptake kinetics in children and adults after the onset of moderate-intensity exercise. J Sports Sci. (2002) 20:319–26. doi: 10.1080/0264041021015375699
11. Leclair E, Berthoin S, Borel B, Thervenet D, Carter H, Baquet G, et al. Faster pulmonary oxygen uptake kinetics in children vs. adults due to enhancements in oxygen delivery and extraction. Scand J Med Sci Sports. (2013) 23:705–12. doi: 10.1111/j.1600-0838.2012.04416.x
12. Breese BC, Barker AR, Armstrong N, Jones AM, Williams CA. The effect of baseline metabolic rate on pulmonary O₂ uptake kinetics during very heavy intensity exercise in boys and men. Respir Physiol Neurobiol. (2011) 11:1108–11. doi: 10.1016/j.resp.2011.01.013
13. Marwood S, Roche D, Rowland T, Garrard M, Unnithan VB. Faster pulmonary oxygen uptake kinetics in trained vs. untrained male adolescents. Med Sci Sports Exerc. (2010) 42:127–34. doi: 10.1249/mss.0b10e3e3181a20d0
14. Unnithan VB, Roche DM, Garrard M, Holloway K, Marwood S. Oxygen uptake kinetics in trained adolescent females. Eur J Appl Physiol. (2015) 115:213–20. doi: 10.1007/s00421-014-3005-8
15. Cleuziou C, Lecoq AM, Candau R, Courtex D, Guenon P, Obert P. Kinetics of oxygen uptake at the onset of moderate or heavy exercise in trained and untrained prepupal children. Sci. Sports. (2002) 17:291–6. doi: 10.1076/0765-1597(2002)00169-7
16. Poole DC, Barstow TJ, McDonough P, Jones AM. Control of oxygen uptake during exercise. Med Sci Sports Exerc. (2008) 40:462–74. doi: 10.1249/mss.0b10e3e3181e52e9
17. Murias JM, Spencer MD, Paterson DH. The critical role of O₂ provision in the dynamic adjustment of oxidative phosphorylation. Exerc Sport Sci Rev. (2014) 42:4–11. doi: 10.1016/j.exss.2013.03.005
18. Breese BC, Saynor ZL, Barker AR, Armstrong N, Williams CA. Relationship between (non)linear phase ii pulmonary oxygen uptake kinetics with skeletal muscle oxygenation and age in 11-15 year olds. Exp. Physiol. (2019) 104:1929–41. doi: 10.1113/epjopen.2018.06.1506
19. Murias JM, Kowalchuk JM, Paterson DH. Speeding of Vo² kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local O₂ distribution. J Appl Physiol. (2011) 111:1410–5. doi: 10.1152/japplphysiol.00620.2011
20. Jones AM, Kirby BS, Clark IE, Rice HM, Fulkerson E, Wylie LL, et al. Physiological demands of running at 2-hour marathon race pace. J Appl Physiol. (2021) 130:369–79. doi: 10.1152/japplphysiol.00647.2020
21. Koppo K, Bouckaert J, Jones AM. Effects of training status and exercise intensity on phase II Vo² kinetics. Med Sci Sports Exerc. (2004) 36:225–32. doi: 10.1139/j.1520-0291.2004.00314.x
22. Ingham SA, Carter H, Whyte GP, Doust JH. Comparison of the oxygen uptake kinetics of club and olympic champion rowers. Med Sci Sports Exerc. (2007) 39:865–71. doi: 10.1093/mss/msl136
23. Berger NJ, Jones AM. Pulmonary O² uptake on-kinetics in sprint-endurance trained athletes. Appl Physiol Nutr Metabol. (2007) 32:383–93. doi: 10.1113/j106.1109
24. Inglis EG, Lannetta D, Murias J. Association between Vo² kinetics and Vo²max and V̇O₂peak in groups differing in fitness status. Eur J Appl Physiol. (2021) 21:6. doi: 10.1007/s00421-021-04623-6
25. Kidding AE, Winter EM, Fysh M. A comparison of pulmonary oxygen uptake kinetics in children versus adults of different age and distance runners. Int J Sports Med. (2006) 27:419–26. doi: 10.1055/s-2005-865778
26. Fournier M, Ricci J, Taylor AW, Ferguson R, Montpetit RR, Chaitman BR. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc. (1982) 14:453–6. doi: 10.1249/00005768-19820600-00008
27. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand. (1973) 93:397–9. doi: 10.1111/j.1399-6576.1973.tb09414.x
28. Glennmark B, Hedberg G, Jansson E. Changes in muscle fibre type from adolescence to adulthood in women and men. Acta Physiol Scand. (1992) 146:251–9. doi: 10.1111/j.1399-6576.1992.tb09414.x
29. Haralambie G. Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bull Eur Physiopathol Respir. (1982) 18:65–74.
30. Behnke BJ, Kindig CA, Musch TI, Koga S, Poole DC. Dynamics of microvascular oxygen pressure across the rest-exercise transition in rat skeletal muscle. Respir Physiol. (2001) 126:53–63. doi: 10.1016/S0034-5687(01)00195-5
31. Kindig CA, Howlett RA, Hogan MC. Effect of extracellular P₀₂ on the fall in intracellular P₀₂ in contracting single myocytes. J Appl Physiol. (2003) 94:1964–70. doi: 10.1152/japplphysiol.00893.2002
32. Grassi B, Hogan M, Greenhall P, Hamann J, Kelley K, Aschenbach W, et al. Oxygen uptake on-kinetics in dog gastrocnemius in situ following activation of pyruvate dehydrogenase by dichloracetate. J Physiol. (2002) 548:195–207. doi: 10.1113/jphysiol.2001.012984
33. Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD. Muscle O₂ uptake kinetics in humans: implications for metabolic control. J Appl Physiol. (1996) 80:988–98. doi: 10.1152/jappl.1996.80.3.988
42. Krstrup P, Jones AM, Wilkerson DP, Calbet JAL, Bangsbo J. Muscular and pulmonary O\textsubscript{2} uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol. (2009) 587:1843–56. doi: 10.1113/jphysiol.2008.166397

43. Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ. Muscle capillary blood flow kinetics estimated from pulmonary O\textsubscript{2} uptake and near-infrared spectroscopy. J Appl Physiol. (2005) 98:1820–8. doi: 10.1152/japplphysiol.00907.2004

44. Harper AJ, Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ. Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Exp Physiol. (2006) 91:661–71. doi: 10.1113/expphysiol.2005.032904

45. Manoir GR, DeLorey DS, Kowalchuk JM, Paterson DH. Kinetics of Vo\textsubscript{2} limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. Eur J Appl Physiol. (2010) 108:607–17. doi: 10.1007/s00421-009-1263-7

46. Koga S, Okushima D, Barstow TJ, Rossiter HB, Kondo N, Poole DC. Near-infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis. Physiol Rep. (2017) 5:13402. doi: 10.14814/phy2.13402

47. Nimmerrichter A, Breese BC, Prinz B, Zoeger M, Rumpl C, Williams CA. Test-retest reliability of pulmonary oxygen uptake and muscle deoxygenation during moderate- and heavy-intensity cycling in youth elite-cyclists. J Sports Sci. (2020) 38:2462–70. doi: 10.1080/02640414.2020.1792115