ON THE CLUSTER STRUCTURES IN COLLATZ LEVEL SETS

MARKUS SIGG

Abstract. The cluster structures that can be observed in the first few level sets of the Collatz tree are maintained through all its levels, provided that the orbit steadiness
\[
\prod_{k \in R(n) \mod 6 \equiv 4} \frac{k - 1}{k}
\]
of the elements \(n \) of the Collatz tree is suitably bounded from below, where \(R(n) \) denotes the Collatz orbit of \(n \).

Keywords: Collatz function, Collatz tree.
AMS subject classification 2010: 11B83.

1. The Question

Let \(\mathbb{N} \) be the set of positive integers. By \(c : \mathbb{N} \to \mathbb{N} \) we denote the Collatz function (see [1]), defined by
\[
c(n) := \begin{cases}
\frac{n}{2} & \text{if } n \text{ is even}, \\
3n + 1 & \text{if } n \text{ is odd}.
\end{cases}
\]
We are interested in the level sets \(L_\nu := \{ n \in \mathbb{N} : c^\nu(n) = 1 \land c^i(n) \neq 1 \text{ for } i < \nu \} \) for \(\nu \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \), whose elements are listed in [2]. It is easy to see that
\[
L_{\nu+1} = \{2n : n \in L_\nu\} \uplus \left\{ \frac{n - 1}{3} : 4 < n \in L_\nu, n \equiv 4 \pmod{6} \right\}.
\]
(1)
The level sets for the first some dozens values of \(\nu \) exhibit a cluster structure. For example, the 72 elements of \(L_{20} \) are given by the seven clusters
\[
\{18, 19\},
\{112, 116, 117, 120, 122\},
\{704, 720, 724, 725, 736, 738, 739, 744, 746, 753, 802, 803, 804, 805, 806\},
\{4352, \langle 20 \rangle, 4849\},
\{24576, \langle 17 \rangle, 29126\},
\{163840, 172032, 174080, 174592, 174720, 174752, 174760, 174762\},
\{1048576\},
\]
where \(\langle x \rangle \) is short for a list of \(x \) intermediate elements. Of course the largest number 1048576 equals \(2^{20} \), and [1] makes plausible that the elements of a cluster have about six times the size of the elements of the previous cluster: Each cluster \(C \) of \(L_\nu \) gives a cluster \(2C \) of \(L_{\nu+1} \), and the second set in [1] contributes to the cluster below that one. An additional cluster appears at the bottom end in \(L_{\nu+1} \) whenever there exists an \(n \equiv 4 \pmod{6} \) in the lowest cluster of \(L_\nu \). The question suggests itself whether the pattern extends to all level sets or whether, for large \(\nu \), the clusters eventually dissolve so much that they overlap.

Date: December 20, 2020.
2. The answer (under a provision)

A closer investigation of the issue shows that the product of quotients $\frac{k-1}{k}$ for orbit elements $k \equiv 4 \pmod{6}$ controls the evolution of the cluster shapes. We introduce the orbit steadiness function $\sigma : \mathbb{N} \to [0, 1]$ by

$$\sigma(n) := \prod_{k \in R(n), k \equiv 4 \pmod{6}} \frac{k-1}{k} \quad \text{for } n \in \mathbb{N},$$

where $R(n) := \{c^i(n) : i \in \mathbb{N}_0\}$ is the orbit set of n, and with $\mathcal{C} := \bigcup_{\nu \in \mathbb{N}_0} L_\nu$

$$\sigma_0 := \inf_{n \in \mathcal{C}} \sigma(n).$$

For $\nu \in \mathbb{N}_0$, by

$$S_{\nu, \kappa} := \left[\sigma_0, \frac{2^\nu}{6^\kappa}, \frac{2^\nu}{6^\kappa}\right] \quad \text{for } \kappa \in \mathbb{N}_0$$

we define “slots” for the clusters of the level set L_ν. Then, given $\nu \in \mathbb{N}_0$ and $n \in L_\nu$, setting $I_\alpha := \{i \in \{1, \ldots, \nu\} : c^{i-1}(n) \equiv \alpha \pmod{2}\}$ for $\alpha \in \{0, 1\}$ and $\kappa := |I_1|$ yields

$$n = \prod_{i=1}^\nu \frac{c^{i-1}(n)}{c^i(n)} = \prod_{i \in I_0} \frac{c^{i-1}(n)}{c^i(n)} \cdot \prod_{i \in I_1} \frac{c^{i-1}(n)}{c^i(n)} = 2^{|I_0|} \prod_{i \in I_1} \frac{c^i(n)-1}{3^\kappa} = \frac{2^\nu-\kappa}{3^\kappa} \sigma(n) = \frac{2^\nu}{6^\kappa} \sigma(n),$$

which gives $n \leq \frac{2^\nu}{6^\kappa}$ and $n \geq \sigma_0 \frac{2^\nu}{6^\kappa}$, hence $n \in S_{\nu, \kappa}$. This proves

$$L_\nu \subset \bigcup_{\kappa \in \mathbb{N}_0} S_{\nu, \kappa} \quad \text{for all } \nu \in \mathbb{N}_0.$$

For $\nu \in \mathbb{N}_0$, the slots $S_{\nu, \kappa}$ for $\kappa \in \mathbb{N}_0$ are pairwise disjoint if $\sigma_0 > \frac{1}{6}$. Numerical evidence indicates $\sigma_0 \approx 0.5152$. The slightly weaker assumption $\sigma_0 > \frac{1}{2}$ gives $\max_{\kappa \in \mathbb{N}} S_{\nu, \kappa} < \frac{1}{3} \min_{\kappa \in \mathbb{N}} S_{\nu, \kappa-1}$ for all $\kappa \in \mathbb{N}$, i.e. a clear separation of the slots and the persistence of the cluster pattern in all level sets of the Collatz tree.

To get a trustworthy statement, a proven lower bound for σ_0 would of course be preferable.

3. A remark

We admitted only elements of the Collatz tree in the definition of σ_0. This does not make a difference if the Collatz conjecture is true, because then $\mathcal{C} = \mathbb{N}$. However, at this point it cannot be excluded that, in case of the falsehood of the Collatz conjecture, the orbit steadiness of some $n \in \mathbb{N} \setminus \mathcal{C}$, i.e. some n with a non-trivial cyclic or a diverging orbit, might be smaller than σ_0. This is why, in an abundance of caution, and because it is sufficing for the application, we decided for \mathcal{C} instead of \mathbb{N}.

References

[1] J. C. Lagarias, The $3x + 1$ problem: An Overview, pp. 3–29 in The Ultimate Challenge: The $3x + 1$ Problem (J. C. Lagarias, Ed.), Amer. Math. Society, Providence, RI2010.

[2] T. D. Noe, Sequence [A127824] in The Online Encyclopedia of Integer Sequences (2010), published electronically at https://oeis.org.

Freiburg, Germany

Email address: mail@markussigg.de