Activation of ADP-Glucose Pyrophosphorylase Gene Promoters by a WRKY Transcription Factor, AtWRKY20, in Arabidopsis thaliana L. and Sweet Potato (Ipomoea batatas Lam.)

Takafumi Nagata1, Hiromichi Hara1, Kazuyuki Saitou2, Akiko Kobashi1, Kengo Kojima1, Takashi Yuasa2 and Osamu Ueno2

(1 Graduate School of Bioresource and Bioreenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan; 2Faculty of Agriculture (Graduate School), Kyushu University, Fukuoka 812-8581, Japan)

Abstract: ADP-glucose pyrophosphorylase (AGPase) catalyzes the first limiting step in starch biosynthesis in plants. However, the direct transcriptional activator of the AGPase genes has not yet been determined. We have isolated a WRKY transcription factor cDNA, AtWRKY20, from Arabidopsis thaliana and purified the corresponding protein. Transient expression of AtWRKY20 by particle bombardment enhanced expression of the promoter of ApL3, encoding a sugar-inducible AGPase large subunit gene of A. thaliana, in leaves of A. thaliana. AtWRKY20 bound to the ApL3 promoter in vitro. The expression of AtWRKY20 was strongly induced by sucrose or, to a lesser extent, by mannitol, and the expression pattern of the ApL3 gene mimicked that of the AtWRKY20 gene. Transient expression experiments demonstrated that AtWRKY20 also activated the promoter of Koganesengan ibAGP1 encoding an AGPase small subunit gene of sweet potato var. Koganesengan. A 5′-end deletion analysis revealed a negative regulatory region from −1371 to −641 and a positive regulatory region from −640 to −180 in the Koganesengan ibAGP1 promoter. AtWRKY20 interacted directly with the region between positions −623 and −490 in the Koganesengan ibAGP1 promoter. These results suggest that AtWRKY20 functions directly as a transcriptional activator of the ApL3 promoter and regulates the expression of ApL3 induced by sucrose or osmoticum in A. thaliana. Moreover, AtWRKY20 can enhance the expression of the Koganesengan ibAGP1 promoter directly in sweet potato.

Key words: ADP-glucose pyrophosphorylase, Arabidopsis thaliana L., Promoter, Sweet potato cv. Koganesengan, Transactivation, WRKY.

For further improvement of crop productivity, a higher starch content in the sink organs is an important breeding target. Direct introduction of genes by genetic engineering seems an attractive and quick method for increment in the starch content. ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27), a key enzyme in starch biosynthesis, catalyses the conversion of glucose-1-phosphate to ADP-glucose, which serves as a direct substrate for starch synthesis (Preiss, 1984). Nakatani and Komeichi (1992) reported a positive correlation between AGPase activity and the starch content in the tuberous roots of sweet potato. Three mechanisms are known to regulate AGPase activity: (i) transcriptional regulation (Müller-Röber et al., 1990; Sokolov et al., 1998; Akihiro et al., 2005; Nagata and Saitou, 2009); (ii) allosteric regulation, via glycerate-1-phosphate and inorganic phosphate (Sowokinos and Preiss, 1982); and (iii) post-translational redox modification in response to sugars (Tiessen et al., 2002; Hendriks et al., 2003; Michalska et al., 2009). AGPase is a heterotetramer in higher plants and is composed of two large and two small subunits (Morell et al., 1987). Each subunit is encoded by a different gene. Six genes encode proteins with homology to AGPase in the Arabidopsis thaliana genome (Crevillén et al., 2005). Two of these genes encode small subunits, ApS1 (locus number At5g48300) and ApS2 (locus number At1g05610), and the other four encode...
large subunits, ApL1 to ApL4 (locus numbers At1g19220, At1g27680, At4g39210, and At2g21590, respectively).

In sweet potato (Ipomoea batatas Lam.), five cDNA clones encoding two small subunits and three large subunits of AGPase have been cloned and designated ibAGP1 and ibAGP2 (Bae and Liu, 1997; Noh et al., 2004), and ibAGP1-L1, ibAGP1-L2, and ibAGP1-L3 (Harn et al., 2000), respectively. Both ibAGP1 and ibAGP2 are expressed in the tuberous root, leaf, and stem tissues of sweet potato. The levels of ibAGP1 mRNA can be enormously increased by applying sucrose exogenously to detached leaves, whereas the transcript level of ibAGP2 remains almost unaffected by this treatment (Bae and Liu, 1997). Moreover, the ibAGP1 promoter is upregulated by increasing the endogenous sucrose contents of tuberous roots, whereas the ibAGP2 promoter is downregulated (Kwak et al., 2006).

Because a single transcription factor is frequently involved in expression of multiple genes for a metabolic pathway, it might be possible to modulate biological processes including numerous enzymatic reactions, such as starch biosynthesis, by using a single transcription factor. WRKY genes belong to a gene superfamily of transcription factors that are involved in the regulation of various biological processes, including pathogen defense, senescence, and development (Ülker and Somssich, 2004). WRKY gene products have either one or two WRKY domains, each containing a 60-amino acid region with a novel zinc finger-like motif. WRKY proteins bind to the DNA sequence motif 5′-(T)TGAC(C/T)-3′, known as the W-box (Eulgem et al., 2000). WRKY proteins can activate or repress transcription (Rushton et al., 2010). A WRKY transcription factor in barley, SUSIBA2, has been shown to bind to W-box and sucrose-responsive elements (SUREs) (Grierson et al., 1994) in the promoter of the isoamylase promoters (SUREs) (Grierson et al., 1994) in the promoter of the isoamylase1 gene as an activator (Sun et al., 2003). A WRKY transcription factor in sweet potato, SPF1, is able to bind to the sugar-responsive sporamin and β-amylase promoters (Ishiguro and Nakamura, 1994), and this suggests that SPF1 acts as a repressor (Rook et al., 2006). In A. thaliana, Masaki et al. (2005) reported an activator of Spo11-LUC2 (ASML2; locus number At3g12890), which is a protein belonging to CCT (Constans, Constans-like, TOC1) domain proteins, functions as a transcriptional activator of ApL3, and expression of ASML2 gene is enhanced by sugars in A. thaliana. However, DNA-binding transcriptional activators that regulate the expression of the AGPase genes in response to sugar have not been identified.

Analysis of A. thaliana genome sequences revealed 74 WRKY genes (Ülker and Somssich, 2004), although the nuclear genome size of A. thaliana is the smallest among flowering plants (Leutwiler et al., 1984). Sweet potato is a hexaploid having much larger genome size than A. thaliana, but WRKY transcription factors except SPF1 have not been reported in sweet potato. Our ultimate objective is to identify a novel transcriptional activator of AGPase gene promoters in response to sugar in sweet potato. As an approach to this goal, we first used A. thaliana to identify WRKY transcription factors that activate the expression of the AGPase genes in plants, and then we tried to apply the A. thaliana findings to sweet potato. Here, we studied a WRKY transcription factor, AtWRKY20 (locus number At4g26640), functions directly as a transcriptional activator of the ApL3 promoter in response to sugars in A. thaliana, and examined functional and physical interactions with AtWRKY20 and the promoter of ibAGP1 to assess a possible function of AtWRKY20 as a transcriptional activator in sweet potato.

Materials and Methods

1. Plant materials

Seeds of Amborella trichopoda L. ecotype Columbia were sown on rockwool and grown by hydroponics in a growth chamber under a 12 hr photoperiod with a light intensity of 100 μmol m−2 s−1, a relative humidity of 60%, and at 20°C. The hydroponic medium contained 2.5 mM potassium phosphate buffer (pH 5.5), 2 mM MgSO4, 2 mM Ca(NO3)2, 5 mM KNO3, 50 μM iron (III) monosodium ethylenediaminetetraacetate, 10 μM NaCl, 70 μM H3BO3, 14 μM MnCl2, 1 μM ZnCl2, 0.5 μM CuSO4, 0.01 μM CoCl2, and 0.2 mM Na2MoO4.

Sweet potato plants (Ipomoea batatas Lam. cv. Kogenesengan) were grown in a growth chamber under a 12 hr photoperiod with a light intensity of 250 μmol m−2 s−1, a relative humidity of 70%, and at 25°C as described previously (Saitou et al., 1997).

2. Construction of vectors for the transient expression assay

To make a reporter construct in A. thaliana, we excised the ubiquitin promoter and LR clonase recombination cassette of the pANDA-mini vector (Miki and Shimamoto, 2004), and inserted a Gateway RfA cassette (Invitrogen, Carlsbad, CA, USA) and a Renilla LUCIFERASE gene (hRluc) of the phRG-B vector (Promega, Madison, WI, USA) into the HindIII/SacI site of the pANDA-mini vector, generating RfA-hRluc. A total of 875 bp of the ApL3 5′ flanking region (761 bp of promoter region plus 112 bp of untranslated region (UTR)) was amplified from genomic DNA of A. thaliana by polymerase chain reaction (PCR) using two primers as follows: the forward primer 5′-CAGC CGCTACCAGCCATTGGACAATTCTT3′, and the reverse primer 5′-CGTTTGAATCTGGGAAGACCAAGAA3′. The fragment of the ApL3 promoter was ligated into the pENTR11A/D-TOPO® vector (Invitrogen, Carlsbad, CA, USA), and was then inserted into RfA-hRluc with an LR reaction (Invitrogen).

Genomic DNA was extracted from tuberous roots of...
sweet potato cv. Koganesengan as described by Murakami et al. (1986), with minor modifications. A total of 1415 bp of the Koganesengan \(\text{ibAGP1} \) 5'-flanking region (\(p-1371 \); 1371 bp of promoter region plus 44 bp of 5' untranslated region) was amplified from genomic DNA of tuberous roots by PCR using two primers as follows: the forward primer 5'-\text{CCCAAGCTTGGGGCTCATAACTTACTAGTTCAGA} TGGG-3' which incorporated a \(\text{Hin} \) II site (underlined) to the 5'-end of the PCR product, and the reverse primer (RP) 5'-\text{GGGATCCCGCTCTCTGCGGACTTTGGAG}-3' which incorporated a \(\text{Bam} \) HI site (underlined) in its 3'-end. PCR amplification was carried out for 35 cycles under the following standard conditions: denaturation (98°C for 10 s), annealing (65°C for 30 s), extension (68°C for 2 min) using KOD-Plus-Ver.2 (TOYOBO, Osaka, Japan). DNA sequencing was performed at Macrogen Inc. (Seoul, Korea).

Only three nucleotides in the Koganesengan \(\text{ibAGP1} \) promoter (accession number AB535526) were substituted as compared with the \(\text{ibAGP1} \) promoter of cv. Yulmi (Koak et al., 2006), at nucleotide positions −922, −483 and −266 of the Koganesengan \(\text{ibAGP1} \) promoter. To make constructs for the transient expression vectors in sweet potato, the \(\text{hRluc} \) gene of the phRG-B vector (Promega, Madison, WI, USA) was ligated to the \(\text{BamH} / \beta \text{-GLUCURONIDASE} \) gene, and generating \(\text{pCaMV35S} \text{hRluc} \). Deletion fragments of the Koganesengan \(\text{ibAGP1} \) promoter, \(p-640 \) and \(p-179 \) (640 and 179 bp, respectively, of the promoter region plus 44 bp of the 5' UTR) were amplified using as forward primers that incorporated a \(\text{HindIII} \) site (underlined) to their 5'-ends: 5'-\text{CCCAAGCTTGGGCAACAGCCAGCATTAGGAG} TGGG-3' and 5'-\text{CCCAAGCTTTGGGCTCATAACTTACCTAGTTCAGA} TGGG-3', respectively. The common reverse primer used was \(5\prime-\text{CCCAAGCTTGGGGCTCATAACTTACTAGTTCAGA} \) 3' which added a \(\text{BamHI} \) site (underlined) in its 3'-end. PCR amplification was carried out for 35 cycles under the following standard conditions: denaturation (98°C for 10 s), annealing (65°C for 30 s), extension (68°C for 2 min) using KOD-Plus-Ver.2 (TOYOBO, Osaka, Japan). DNA sequencing was performed at Macrogen Inc. (Seoul, Korea).

The resultant plasmids were named \(\text{hRluc}-\text{p} \). Deletion fragments of the Koganesengan \(\text{ibAGP1} \) promoter, \(\text{ibAGP1} \) promoter, and LR clonase recombination cassette. The resulting plasmid was named \(\text{hRluc}-\text{p} \). The −90p35S \text{Ω} promoter lacks potential sites for binding to WRKY.

3. Transient expression assay

DNA-coated microparticles were prepared by the CaCl2/ spermidine method as described by Sanford et al. (1995). A 500 ng aliquot of the reporter construct and 400 ng of −90p35S \(\text{Ω} \)-\text{Luc}, and if needed, 250 ng of the effector construct, were mixed with 375 \(\mu \)g of gold particles (1.0 Micron Gold, Bio-Rad Laboratories, Hercules, CA, USA) in the presence of 0.1 M spermidine and 2.5 M CaCl2. Uppermost mature leaves of 1-day-old A. thaliana plants were bombarded from the reverse side with plasmid-coated gold particles (375 \(\mu \)g per bombardment) using a biolistic gun device (PDS-1000/He; Bio-Rad Laboratories), with the stopping screen positioned 3 cm below the rupture discs, the target leaves positioned 3 cm below the stopping screen, and a helium pressure of 4.5 MPa. After 2 hr of incubation, bombarded leaves were cut from plants, and submerged in 100 mM sucrose solution for 19 hr at 20°C in the dark.

In sweet potato, a 400 ng aliquot of the \(p-1371 \)-\text{hRluc} plasmid and 400 ng of −90p35S \(\text{Ω} \)-\text{Luc}, and if needed, 20 ng of the effector construct, were mixed with 375 \(\mu \)g of gold particles (1.0 Micron Gold, Bio-Rad Laboratories) in the presence of 0.1 M spermidine and 2.5 M CaCl2. Petioles with the leaf intact, were cut from plants grown in the growth chamber and the cut edges of these leaf-petiole cuttings were submerged in distilled water at 25°C in the dark for 24 hr, and then in 150 mM sucrose solution for another 24 hr. Next, petioles were transversely cut into 2 mm-thick sections and were positioned on Murashige and Skoog media (Murashige and Skoog, 1962) in petri dishes. A biolistic gun device (PDS-1000/He; Bio-Rad Laboratories) was used to deliver plasmid-coated gold particles (375 \(\mu \)g per bombardment), with the stopping screen positioned 3 cm below the rupture disc, the target tissue positioned 3 cm below the stopping screen, and a helium pressure of 9.3 MPa. The bombarded cross-sections were then incubated for 18 hr at 25°C in the dark.

Bombarded leaves or petioles were homogenized with a pestle in an ice-cold mortar, and were measured for \(\text{Renilla} \) and firefly luciferase (\(\text{LUC} \)) activities with the Dual-Luciferase® reporter assay system (Promega) according to
the manufacturer’s instructions, using a luminometer (GloMax™ 20/20n; Promega) to assess chemiluminescence. The Renilla LUC activity values were normalized to firefly LUC activity values for differences in transformation efficiency.

4. Production of the recombinant AtWRKY20

pET2la(+) (Novagen, Madison, WI, USA) and pGEX KG (GE Healthcare UK Ltd., Little Chalfont, UK) were digested with HindIII and Psp, and a fragment of pET-2la(+) containing the histidine (His) tag coding sequence was ligated into a pGEX KG fragment containing the GLUTATHIONE S-TRANSFERASE (GST) gene. The resultant plasmid was named pGEX KG ori-His6.

The sequence encoding AtWRKY20 was amplified by PCR using oligonucleotide primers (5’-CACCGTGGGGATTCCTTTACCTAAGAAGATC-3’) and (5’-TCAGGCTCCCTCCGGAATCGAA-3’) as a reverse primer. The PCR conditions for AtWRKY20 were 94ºC for 30 s, 65ºC for 30 s, and 72ºC for 2 min. The PCR result was confirmed by ethidium bromide. The image of the stained gel was recorded with a gel image analyzer (Molecular Imager FX; Bio-Rad Laboratories). The image density of each stained PCR product was analyzed using Quantity One software (Bio-Rad Laboratories). The image density of each stained PCR product was normalized to an internal control, the 18S rRNA gene.

6. Reverse transcription-polymerase chain reaction (RT-PCR) experiment

Uppermost mature leaves were cut from 11-day-old plants of A. thaliana, and submerged in distilled water, 100 mM sucrose, or 100 mM mannitol solution for 19 hr at 20ºC in the dark. Total RNA was isolated from the treated leaves by a method described by Nagata and Saitou (2009) with minor modification. First-strand cDNA was synthesized from 2 μg total RNA, pretreated with a Message Clean™ kit (Gen Hunter, Nashville, TN, USA), using a Takara RNA PCR kit (AMV) Ver. 3.0 (Takara Bio Inc., Otsu, Japan) with random hexamer, according to the manufacturer’s instructions. Semi-quantitative RT-PCR was performed with 1/5 for AtWRKY20 or 1/40 for ApL3 of the first-strand reaction mix, with the following gene-specific primers: 5’-CACCGTGGGGATTCCTTTACCTAAGAAGATC-3’ as a forward primer and 5’-TCAGGCTCCCTCCGGAATCGAA-3’ as a reverse primer for AtWRKY20; 5’-TGAGGAAGAAGATCCGAACTTAAAGAAGATC-3’ as a forward primer and 5’-TGAGGTGTTTGGCCGGAAGTAAAGGAG-3’ as a reverse primer for ApL3. As a loading control, the 18S rRNA gene was amplified using primers, 5’-GGTGTCTCAGGATGTAAGAGTATGCAACGACATGATG-3’ and 5’-TCAGGCTCCCTCCGGAAGTAAAAGAAG-3’ as a reverse primer. The PCR conditions for AtWRKY20 were 94ºC for 30 s, 65ºC for 30 s, and 72ºC for 2 min. The PCR conditions for ApL3 were 94ºC for 30 s, 65ºC for 30 s, and 72ºC for 1 min 30 s. The reaction was repeated for 13–32 cycles to obtain an appropriate amount of DNA. The cycle numbers were determined to avoid the saturation of DNA amplification. PCR products were separated on a 1.5% agarose gel, followed by 1 hr staining with ethidium bromide. The image of the stained gel was recorded with a gel image analyzer (Bio-Rad Laboratories). The image density of each stained PCR product was analyzed using Quantity One software (Bio-Rad Laboratories). To confirm gene-specific amplification, we cloned and fully sequenced the amplified products.

Results and Discussion

1. Effect of AtWRKY20 on the expression of the ApL3 promoter

Using the PLACE Web Signal Scan program (http://www.dna.affrc.go.jp/PLACE/), we identified three Wbox core sequences (5’T-GAC-3’) that could interact with WRKY transcription factors in the ApL3 promoter. To isolate a cDNA clone for WRKY transcription factor that regulates the expression of ApL3, we compared 74 WRKY proteins of A. thaliana with sweet potato SPF1, which belongs to the WRKY superfamily of plant transcription factors. By using the BLASTP 2.2.17 program (http://blast.genome.jp/), with the default parameters, AtWRKY20 (locus number At4g26640) shared the highest sequence
We examined whether AtWRKY20 modulates the transcriptional activity of ApL3 promoter by performing transient expression experiments. Mature leaves were bombarded with either the reporter construct alone or the reporter construct in combination with the effector (Fig. 1A). Co-bombardment of the reporter construct in combination with the AtWRKY20 construct as the effector increased Renilla LUC activity by nearly 3-fold compared with the activity measured with bombardment by the reporter construct alone (Fig. 1B). Renilla LUC activity did not vary significantly with co-introduction of the control vector. These results suggest that AtWRKY20 enhances expression of the ApL3 promoter, although SPF1 is known as a repressor in sweet potato (Rook et al., 2006).

2. Binding of AtWRKY20 to the ApL3 promoter

A DNA fragment that contained the ApL3 promoter region from −134 to −27 was labeled with digoxigenin (Fig. 2A). The DNA fragment included all of three W-box core sequences (5’-TGAC-3’) in the ApL3 promoter. In an electrophoretic mobility shift assay, no binding signal was detected in reactions without protein (Fig. 2B, lane 1) or with Histagged GST (lane 2). Addition of the AtWRKY20 protein efficiently retarded the mobility of the probe, revealing a shift band (lane 3). These results indicate that AtWRKY20 interacts directly with the ApL3 promoter.
3. Effects of sugars on the expression of *AtWRKY20* and *ApL3* genes

The expression of *AtWRKY20* was strongly induced by sucrose or, to a lesser extent, by mannitol (Fig. 3). The sucrose-induced increase in expression levels of *AtWRKY20* appeared independent of changes in osmotic pressure, as mannitol could not mimic the effect of sucrose. Sucrose induced strong expression of *ApL3* (Fig. 3). Mannitol was also able to induce the *ApL3* gene expression, but slightly. The expression pattern of the *ApL3* gene mimicked that of the *AtWRKY20* gene, suggesting that *AtWRKY20* is a transcriptional activator in modulating sucrose- or osmolality-induced expression of the *ApL3* gene.

4. Effects of *AtWRKY20* and ASML2 on the expression of the Koganesengan *ibAGP1* promoter

Co-bombardment of the reporter construct with the *AtWRKY20* construct as the effector increased *Renilla* LUC activity by nearly 4-fold compared with the activity measured with bombardment by the reporter construct alone (Fig. 4). ASML2 failed to activate the reporter *Renilla* LUC gene, and *Renilla* LUC activity did not vary significantly with co-introduction of the control vector. These results indicate that *AtWRKY20* enhances expression of the Koganesengan *ibAGP1* promoter in sweet potato, but ASML2 does not.

Transcript levels of both a single functional *A. thaliana* small subunit gene, *ApS1*, and the *A. thaliana* large subunit gene, *ApL3*, are strongly increased when sucrose is fed to detached leaves (Sokolov et al., 1998). However, *ApS1* showed a sucrose-insensitive expression pattern under normal physiological conditions when mature *A. thaliana* plants were irrigated with sucrose-containing Murashige and Skoog medium, whereas *ApL3* was induced by irrigation with the sucrose-containing medium (Crevillén et al., 2005). These observations suggest that the sucrose-mediated regulation mechanism for the expression of the small subunit gene may be different from that for the large subunit gene. The promoter of *ibAGP1* encoding the AGPase small subunit of sweet potato was activated by *AtWRKY20* (Fig. 4), which is a transcriptional activator of *ApL3* promoter in the modulation by sucrose signaling in *A. thaliana*. On the other hand, ASML2, which enhances the expression of *ApL3*, did not activate the *ibAGP1* promoter. It is likely that the distinction in the sucrose-mediated regulation mechanism between small subunit and large subunit genes includes the difference in effects on the expression of small subunit gene promoter between *AtWRKY20* and ASML2.

5. 5’-end deletion analysis of the Koganesengan *ibAGP1* promoter

Deletion up to position −641 from −1371 of the Koganesengan *ibAGP1* promoter enhanced *Renilla* LUC activity (Fig. 5), suggesting the presence of a negative regulatory element in the region between positions −1371 and −641. Further deletion up to position −180 in the construct dramatically reduced *Renilla* LUC activity compared with the −640 bp promoter fragment construct. This indicates that there is a positive regulatory element in
the region between positions −640 and −180, and that this element is important for enhanced expression of the Koganesengan ibAGP1 gene.

6. Binding of AtWRKY20 to the Koganesengan ibAGP1 promoter

A DNA fragment that contained the Koganesengan ibAGP1 promoter region from −623 to −426 was used as probe P1 (Fig. 6A). The P1 probe included one of the SURE-like fragments (SURE1) and two W-box core sequences (W-box1 and W-box2). In an electrophoretic mobility shift assay, addition of the AtWRKY20 protein efficiently retarded the mobility of the P1 probe, revealing two shift bands (Fig. 6B, lane 2). The P2 probe, which was a shorter version of the P1 probe without SURE1, bound to AtWRKY20, and only one shift band was detected (lane 4). Deletion of the SURE1 and W-box from the P1 probe (P5) effectively abolished the interactions (lane 6). On the other hand, with the P4 probe, which included SURE1 and W-box1, the assay detected two shift bands (lane 8). No retardation bands were detected with the P5 probe, which consisted of the Koganesengan ibAGP1 promoter region from −373 to −157. These results indicate that AtWRKY20 interacts directly with the region between positions −623 and −490 in the Koganesengan ibAGP1 promoter, but AtWRKY20 does not bind to W-box2, W-box3 and SURE2.

In conclusion, AtWRKY20 functions directly as a transcriptional activator of the ApL3 promoter, and regulates the expression of ApL3 induced by sucrose or osmoticum in A. thaliana. Moreover, AtWRKY20 can enhance the expression of the Koganesengan ibAGP1 promoter directly in sweet potato. The AtWRKY20 gene is a promising candidate to use in genetic engineering for improving sweet potato.

Acknowledgements

We gratefully acknowledge the receipt of pE2113-GUS.
from Drs. Ichiro Mitsuhara and Yuko Ohashi, National Institute of Agrobiological Resources, Japan. We also thank RIKEN BioResource Center (Tsukuba, Japan) for providing the RIKEN Arabidopsis full-length cDNA clones (pda01430 and pda08813).

References

Alahiho, T., Mizuno, K. and Fujimura, T. 2005. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol. 46: 937-946.

Bae, J.M. and Liu, J.R. 1997. Molecular cloning and characterization of two novel isoforms of the small subunit of ADP-glucose pyrophosphorylase from sweet potato. Mol. Gen. Genet. 254: 179-185.

Caclkovski, I., Wanke, D., Birkenbihl, R.P. and Somsich, I.E. 2008. Studies on DNA-binding selectivity of WRKY transcription factors lead structural clues into WRKY-domain function. Plant Mol. Biol. 68: 81-92.

Crevillén, P., Ventriglia, T., Pinto, F., Orca, A., Mérida, A. and Romero, J.M. 2005. Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J. Biol. Chem. 280: 8143-8149.

Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.

Grierson, C., Du, J.S., Zahala, M., Beggs, K., Smith, C., Holdsworth, M. and Betan, M. 1994. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J. 5: 815-826.

Harn, C.H., Bae, J.M., Lee, S.S., Min, S.R. and Liu, J.R. 2000. Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels. Plant Cell Physiol. 41: 1235-1242.

Hendriks, J.H., Kolbe, A., Gibon, Y., Stitt, M. and Geigenberger, P. 2003. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 133: 838-849.

Ishiguro, S. and Nakamura, K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SFP1, that recognizes SP8 sequences in the 5' upstream regions of genes encoding for sporamin and β-amylase from sweet potato. Mol. Gen. Genet. 244: 563-571.

Knaak, M.S., Noh, S.A., Oh, M.J., Huh, G.H., Kim, K-N., Lee, S.W., Shin, J.S. and Bae, J.M. 2006. Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in rice in response to sucrose content in storage roots. Gene. 366: 87-96.

Leemhuis, L.S., Hough-Exams, B.K. and Muyers, R.M. 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194: 15-23.

Masaki, T., Mitsui, N., Tsukagoshi, H., Nishii, T., Hattori, T., Morikami, A. and Nakamura, K. 2005. Activation tagging of a gene for a protein with novel class of CCT-domain activates expression of a subset of sugar-inducible genes in Arabidopsis thaliana. Plant J. 43: 142-152.

Michalska, J., Zauber, H., Buchanan, B.B., Cezudo, F.J. and Geigenberger, P. 2009. NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Natl. Acad. Sci. USA 106: 1035-1040.

Miki, D. and Shimamoto, K. 2004. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45: 490-495.

Mitsuhara, I., Ugaki, M., Hirochika, H., Ohshima, M., Murakami, T., Gotob, Y., Katayose, Y., Nakamura, S., Hounkra, R., Nishimuta, S., Ueno, K., Mochizuki, A., Tanimoto, H., Tange, H., Osaki, Y. and Ohashi, Y. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37: 89-93.

Morell, M.K., Bloom, M., Knowles, V. and Preiss, J. 1987. Subunits and Ohashi, Y. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37: 89-93.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-479.

Müller-Röber, B.T., Kossmann, J., Hannah, I.C., Willmitzer, L. and Sonnewald, U. 1998. One of two different ADP-glucose
pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. *Mol. Gen. Genet.* 224: 136-146.

Nagata, T. and Saitou, K. 2009. Regulation of expression of D3-type cyclins and ADP-glucose pyrophosphorylase genes by sugar, cytokinin and ABA in sweet potato (*Ipomoea batatas* Lam.). *Plant Prod. Sci.* 12: 434-442.

Nakatani, M. and Komeichi, M. 1992. Relationship between starch content and activity of starch synthase and ADP-glucose pyrophosphorylase in tuberous root of sweet potato. *Jpn. J. Crop Sci.* 61: 463-468.

Noh, S.A., Kook, M.S., Lee, H.S., Huh, G.H., Liu, J.R., Shin, J.S. and Bar, J.M. 2004. Genomic organizations of two small subunit ADP-glucose pyrophosphorylase genes from sweetpotato. *Gene* 339: 173-180.

Preiss, J. 1984. Biosynthesis of starch and its regulation. In J. Preiss ed, *The Biochemistry of Plants*, Academic Press, San Diego. 81-254.

Rook, F., Hadlington, S.A., Li, Y. and Bevan, M.W. 2006. Sugar and ABA response pathways and the control of gene expression. *Plant Cell Environ.* 29: 426-434.

Rashotte, A.J., Somwisch, I.E., Ringer, P. and Shen, Q.J. 2010. WRKY transcription factors. *Trends Plant Sci.* 15: 247-258.

Saitou, K., Araki, T. and Agata, W., Kubota, F. and Nakayama, K. 1997. Expression of sucrose synthase in sweet potato. *Jpn. J. Crop Sci.* 66: 624-631.

Sanford, J.C., Smith, F.D. and Russell, J.A. 1993. Optimizing the biolistic process for different biological applications. *Method Enzymol.* 217: 485-509.

Seki, M., Aron, P., Nishiyama, Y., Harashizaki, Y. and Shinozaki, K. 1998. High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. *Plant J.* 15: 707-720.

Seki, M., Narusaka, M., Kamata, A., Ishida, J., Satoh, M., Sakurai, T., Nakajima, M., Enju, A., Akiyama, K., Oono, Y., Muramatsu, M., Hayashizaki, Y., Kawai, J., Harshin, P., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shimagawa, A. and Shinozaki, K. 2002. Functional annotation of a full-length Arabidopsis cDNA collection. *Science* 296: 141-145.

Sekolov, L.N., Déjardin, A. and Ecleczkowski, I.A. 1998. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in *Arabidopsis thaliana* (thale cress). *Biochem.* 336: 681-687.

Sowokinos, J.R. and Preiss, J. 1982. Pyrophosphorylases in *Solanum tuberosum* III. Purification, physical and catalytic properties of ADP-glucose pyrophosphorylase in potatoes. *Plant Physiol.* 69: 1459-1466.

Sun, C., Paluvi, S., Olsson, H., Boren, M., Ahlendberg, S. and Jansson, C. 2003. A novel WRKY transcription factor, SUSDIA2, participates in sugar signaling in barley by binding to the sugar-responsive element of the iso1 promoter. *Plant Cell* 15: 2076-2092.

Tiessen, A., Hendriks, J.H., Stitt, M., Brandes, A., Gibson, Y., Farve, E.M. and Geigenberger, P. 2002. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose phosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. *Plant Cell* 14: 2191-2213.

Ülker, B. and Somssich, I.E. 2004. WRKY transcription factors: from DNA binding towards biological function. *Curr. Opin. Plant Biol.* 7: 491-498.

* In Japanese with English abstract.