Competing Risks Analysis on Times to Commit Crimes

Jenq-Daw Lee
Graduate Institute of Political Economy
National Cheng Kung University
Tainan, Taiwan 70101
ROC

Cheng K. Lee
Targeting Modeling Team
Insight & Innovation
Division of Marketing
Wachovia Corporation
Charlotte, North Carolina 28244
USA

Abstract
A trivariate Weibull survival model using competing risks concept is applied on studying recidivism of committing 3 types of crimes – sex, violent and others. The assumption of independence of time to commit each type of crimes is relaxed so that the association of the time to recidivism between any two types of crimes can be evaluated. We found that the correlation of time to recidivism between sex crimes and violent crimes are more correlated than other pairs. Probability of experiencing a charged arrest of other crimes is greater than a charged arrest of violent crimes followed by a charged arrest of sex crimes for an individual after release.

Keywords: survival analysis; competing risks; trivariate Weibull.

1. INTRODUCTION
Survival analysis technique has been applied on criminology in finding time (also known as survival time or failure time in survival analysis) to recidivism, the probability of recidivism at a given time (also known as the survival probability in survival analysis), and the risk of recidivism at a specific time (also known as the hazard rate) given no crime activities prior to the specific time. Hill et al. (2008) applied Kaplan-Meier estimates, a non-parametric method, on predicting recidivism on sexual offenders. Bhati (2007) studied numbers of crimes averted by incapacitation using a semi-parametric hazard function without assuming any distribution. Loza et al. (2005) applied survival analysis on finding the probability of failures for 3 risk groups on reincarceration criterion. Using Cox’s proportional model with covariates including some social capital factors, Liu (2005) studied time to recidivism on prisoners in China. Benda (2005) also used Cox’s proportional model with demographic covariates to predict recidivism on a boot camp’s graduates. Escarela et al. (2000) applied the competing risks concept in analyzing recidivism of three types of reconviction assuming that times to the reconviction of the three types are independent. They also had done a thorough survey on literature of applying survival analysis on criminology.
As did Escarela et al. (2000), in this article, these 3 types of crimes compete with each other for an individual’s recidivism defined as time to a charged arrest. That is every individual after release is facing 3 events of committing sex crimes, committing violent crimes and committing other crimes. To study the times to a specific event, we let the time to commit each type of crimes be a random variable of the Weibull distribution and, therefore, a trivariate Weibull survival model is proposed. Also, some covariates are incorporated into the model to analyze the relationship with the random variables. The assumption of the independence among the 3 random variables is relaxed so that correlations between each pair of the variables can be calculated.

In Section 2, the description of the data set and the preliminary analysis are provided. The analysis using the proposed trivariate Weibull survival model is in Section 3. We conclude the article with a discussion.

2. DATA AND PRELIMINARY STUDY
2.1. The Data Set
The data studied in this article is Recidivism of Prisoners Released in 1994 downloaded from The Interuniversity Consortium for Political and Social Research (ICPSR) at the University of Michigan. The data of 38,624 observations recorded the most 3 serious charges of prisoners released in 15 states in 1994. The hierarchy from the most serious to the least serious is murder, rape, violent crimes and non-violent crimes. The ICPSR study number of this data set is 3355. After deleting observations without age at release and time served, the number of the data analyzed is 33,740.

As did Escarela et al. (2000), we create the same types of convicted charges for the prisoners in prison and also for the charged arrests after 1994’s release. The 3 types of convicted charges and charged arrests are sex crimes, violent crimes and others. In survival analysis, the time to an event is the random variable to be studied. The event, in this article, is the recidivism defined as the first charged arrest of one of the 3 types of crimes after 1994’s release. To study the association of time to the most serious charged arrests after release, we let E_1 be the first charged arrest of sex crimes, E_2 be the first charged arrest of violent crimes, E_3 be the first charged arrest of other crimes, X_1 be time to E_1, X_2 be time to E_2, and X_3 be time to E_3. Again, E_1, E_2, E_3, X_1, X_2, and X_3 are defined after the release date in 1994 for each individual.

As it is mentioned, the original data recorded the 3 most serious crimes of each charged arrest. We let the hierarchy of these 3 types of crimes defined by Escarela et al. be sex, violence and others. In our setting, E_1, E_2, and E_3 are the 3 events competing to each other for the occurrence to each individual after his or her release. An individual is said to be uncensored due to event E_i when E_i occurred, and censored when E_i did not occur, $i = 1, 2, 3$. Each individual might experience any, both, all or none of the 3 events. When E_1, E_2, or E_3 occurred, the corresponding X_1, X_2, and X_3 were observed. When E_1, E_2, or E_3 did not occur, X_1, X_2, and X_3 are set to be 1,096 days because each released individual was followed up for 3 years after the release date. There were 519 individuals arrested on the same day of release. To accommodate these observations, we set the first day of follow-up as the day of release. Table 1 shows the number of individuals with 8 combinations of the occurrences of the 3 events.
2.2. Preliminary Study
First, in Figure 1, we plot the cumulative hazard function using Kaplan-Meier estimates for each event assuming the 3 events are independent. The cumulative hazard curves of a constant slope suggest that X_1 and X_2 have constant hazard rates while X_3 has a decreasing hazard rate because of decreasing slopes in the cumulative hazard. Interpretations are that the risk of committing first charged sex crime or first charged violent crime does not increase or decrease when days passed by after release. However, the risk of committing first charged other crime decreases when days passed by after release. Based on these findings, we choose Weibull distribution as the marginal survival function for X_1, X_2, and X_3 for the proposed trivariate Weibull survival function. In Weibull survival function $\exp \left[-\left(\frac{x}{\lambda} \right)^\gamma \right]$, the hazard rate $\frac{\gamma}{\lambda} x^{\gamma-1}$ increases when the shape parameter γ is greater than 1, the hazard rate decreases when the shape parameter γ is less than 1, and the hazard rate remains constant when the shape parameter γ equals 1. Figure 1 also indicates that, at any given time, individuals have the lowest risk of committing sex crimes and the highest risk of committing other crimes after release. Because the data recorded the 3 most serious charged offenses at each arrest and, based on the original data, 9,766 arrests have at least two different types offenses charged simultaneously, it is reasonable to assume that the times to commit the 3 types of crime are positively correlated.

3. DATA ANALYSIS USING THE TRIVARIATE WEIBULL SURVIVAL FUNCTION
Using the multivariate Weibull model by Lee and Wen (2006), the proposed trivariate Weibull survival function for X_1, X_2, and X_3 is constructed as

$$S_{X_1,X_2,X_3}(x_1,x_2,\ldots,x_n) = \exp \left\{ - \left[\frac{x_1}{\lambda_1} + \frac{x_2}{\lambda_2} + \frac{x_3}{\lambda_3} \right]^\alpha \right\}$$

where $\alpha (0 < \alpha \leq 1)$ measures the association among the 3 random variables. X_1, X_2, and X_3 are independent when α equals 1. The scale parameters λ_1, λ_2, and λ_3 are positive as well as the shape parameters γ_1, γ_2, and γ_3. The proposed trivariate Weibull model can also be constructed using the well known Gumbel Copula with Weibull marginal. All the estimates are obtained by maximizing the log-likelihood function derived from the trivariate Weibull survival function. The likelihood function is

$$L(\Theta) = \prod_{i=1}^{N} f_{X_1,X_2,X_3}(t_{x_{1i}},t_{x_{2i}},t_{x_{3i}})^{p_{i}}$$

$$\times \left(-\frac{\partial}{\partial x_1} S_{X_1,X_2,X_3}(x_1,x_2,x_3) \right)_{x_1=t_{x_{1i}},x_2=t_{x_{2i}},x_3=t_{x_{3i}}}^{p_{i2}}$$

$$\times \left(-\frac{\partial}{\partial x_2} S_{X_1,X_2,X_3}(x_1,x_2,x_3) \right)_{x_1=t_{x_{1i}},x_2=t_{x_{2i}},x_3=t_{x_{3i}}}^{p_{i3}}$$
where \(f_{x_1,x_2,x_3} \) is the joint probability density function of the trivariate Weibull model, \(t_{x_1} \), \(t_{x_2} \), and \(t_{x_3} \) are the observed time to, respectively, \(E_1 \), \(E_2 \), and \(E_3 \) of \(i \)th individual, \(t_c \) is the censoring time equal to 1,096 for all individuals with no charged arrests before the end of the study, and \(p_1, p_2, p_3, p_4, p_5, p_6, \) and \(p_7 \) are case indices corresponding to the event indices in Table 1. When \(p_1 \) equals 1 and all other case indices are 0, the first component of the likelihood function accounts for individuals experiencing \(E_1 \), \(E_2 \), and \(E_3 \). When \(p_2 \) equals 1 and all other case indices are 0, the second component of the likelihood function accounts for individuals experiencing only \(E_1 \). When \(p_3 \) equals 1 and all other case indices are 0, the third component of the likelihood function accounts for individuals experiencing only \(E_2 \). When \(p_4 \) equals 1 and all other case indices are 0, the fourth component of the likelihood function accounts for individuals experiencing only \(E_3 \). When \(p_5 \) equals 1 and all other case indices are 0, the fifth component of the likelihood function accounts for individuals experiencing \(E_1 \) and \(E_2 \). When \(p_6 \) equals 1 and all other case indices are 0, the sixth component of the likelihood function accounts for individuals experiencing \(E_1 \) and \(E_3 \). When \(p_7 \) equals 1 and all other case indices are 0, the seventh component of the likelihood function accounts for individuals experiencing \(E_2 \) and \(E_3 \). When all the case indices equal 0, the last component in the likelihood function accounts for individuals experiencing no events and censored at the end of the study. The values of the case indices to the corresponding cases are in Table 1. Each component is derived by extending the bivariate case of Lawless (1982).

First, the model is fitted with no covariates and the results are in Table 2. All the parameter estimates are significantly different from zero. The 3 shape parameters are less than 1 which indicates that \(X_1 \), \(X_2 \), and \(X_3 \) have decreasing hazard rates. That is, for a released individual after a period of time of crime free activity, the risk of committing first charged sex crime, first charged violent crime or first charged other crime decreases the next day. The association measurement \(\alpha \) is 0.251 indicating some correlations among \(X_1 \), \(X_2 \), and \(X_3 \). Applying the formulas by Lee and Wen (2006), the correlation coefficient
between X_1 and X_2 is 0.555 (0.552, 0.559), between X_1 and X_3 is 0.529 (0.525, 0.533), and between X_2 and X_3 is 0.532 (0.528, 0.534). The 95% confidence intervals are in the parentheses using Fisher’s z transformation formulas (Krishnamoorthy & Xia, 2007). The three pairs of correlation coefficient are between 0.4 and 0.6 which indicates that the times of committing any pair of the crimes have a moderate correlation suggested by Guldford’s interpretation of correlation coefficient (Cukier & Panjwani, 2007). From the parameter estimates in Table 2, we calculate the hazard rates of X_1, X_2, and X_3 at t. The results shown in Table 3 indicate that given no charged arrests prior to t, for an individual released in 1994, the descending order of probability of experiencing a charged arrest is other crimes, violent crimes and sex crimes.

In order to find what variables contribute to the time of committing the first charged crime, we let each scale parameter be the exponential function of the covariates defined in Table 4. The model is then fitted with these defined covariates. Table 5 shows that all the coefficient estimates are significantly different from zero except the parameter estimate of sex treatment program and the estimate of Crime_for_1994_release_dummy2 corresponding to X_1. To quantify some comparisons, we use Carroll’s (2003) formula to calculate hazard ratio or relative hazard for the Weibull distribution. Carroll (2003) also gave a formula to calculate the variance of hazard ratio. However, because of the different parameterizations of the Weibull function, we use the total differential technique (Fisher & Fisher, 2000) for the variance calculation. Within the same type of crime convicted before 1994’s release, all the hazard ratios are calculated for each covariate while other covariates are kept constant. The results are shown in Table 6. For individuals that were jailed due to sex crimes, the interpretation of the hazard ratio of males to females is that, after the 1994’s release, males have 2.552 times probability of experiencing a charged arrest of sex crimes than females on the ith day given that no charged arrests prior to the ith day. By the same interpretation, males jailed due to violent crimes have 1.863 times probability of experiencing the same crime type of charged arrest on the ith day given that no charged arrests prior to the ith day. And, males jailed due to other crimes have 1.430 times probability of experiencing the same crime type of charged arrest on the ith day given that no charged arrests prior to the ith day. For other covariates, Individuals with longer serving time have lower probability of experiencing the same crime type of charged arrest after release. Individuals with higher averaged number of arrests have higher probability of experiencing the same crime type of charged arrest after release. Non-white individuals have higher probability of experiencing the same crime type of charged arrest than white individuals after release. One interesting finding is that the probability of experiencing the same type of charged arrest after release was not lowered for individuals who participated in sex treatment programs or education programs while they were in prison.

Conclusions

In this article, we use a trivariate Weibull model to study the recidivism of 3 types of crimes. With the relaxation of independence assumption, we do find that there exists correlation between each pair of random variables that are times to commit the 3 types of crimes after release. By using the trivariate model, not only are we able to calculate the hazard rates of the 3 random variables that a released individual was facing at any given day, but also we are able to compare the hazard rates of a released individual within the
same type of crimes with different covariates. The trivariate model can be extended to a multivariate model with a higher dimension when more types of crimes are defined.

REFERENCES

Benda, B. B. (2005). Gender Differences in Life-Course Theory of Recidivism: A Survival Analysis. *International Journal of Offender Therapy and Comparative Criminology*, 49: 325—342.

Bhati, A. S. (2007). Estimating The Number of Crimes Averted by Incapacitation: An Information Theoretic Approach. *Journal of Quantitative Criminology*, 23: 355—375.

Carroll, K. J. (2003). On The Use and Utility of The Weibull Model in The Analysis of Survival Data. *Controlled Clinical Trials*, 24: 682—701.

Cukier, M. and Panjwani, S. (2007). A Comparison between Internal and External Malicious Traffic. *The 18th IEEE International Symposium on Software Reliability*, 5-9: 109--114.

Escarela, G., Francis, B., and Soothill, K. (2000). Competing Risks, Persistence, and Desistance in Analyzing Recidivism. *Journal of Quantitative Criminology*, 16: 385--414.

Fisher, F. E. and Fisher, J. R. (2000). Probability *Applications in Mechanical Decision*, CRC Press, New York.

Hill, A., Habermann, N., Klusmann, D., Berner, W., and Briken, P. (2008). Criminal Recidivism in Sexual Homicide Perpetrators. *International Journal of Offender Therapy and Comparative Criminology*, 52: 5—20.

Krishnamoorthy, K. and Xia, Y. (2007). Inferences on Correlation Coefficients: One-Sample, Independent and Correlated Cases. *Journal of Statistical Planning and Inference*, 137: 2362--2379.

Lee, K. C., and Wen, M. (2006). A Multivariate Weibull Distribution Model, working paper, http://arxiv.org/abs/math/0609585

Lawless, J. F. (1982). *Statistical Models and Methods for Lifetime Data*, John Wiley and Sons, New York, USA.

Liu, J. (2005). Predicting Recidivism in A Communitarian Society: China. *International Journal of Offender Therapy and Comparative Criminology*, 49: 392--409.

Loza, W., Neo, L. H., Shahinfar, S. and Loza-Fanous, A. (2005). Cross-Validation of The Self-Appraisal Questionnaire: A Tool for Assessing Violent And Nonviolent Recidivism with Female Offenders. *International Journal of Offender Therapy and Comparative Criminology*, 49: 547--560.
Fig 1. Kaplan-Meier Cumulative Hazard of X_1, X_2, and X_3.

Fig 2. Trivariate Weibull Hazard of X_1, X_2, and X_3.

U.S. Department of Justice, Bureau of Justice Statistics. (2002). *Recidivism of Prisoners Released in 1994*, Washington, DC.
Table 1

Case	Number	Event Occurred	Case Indices
1	114	E_1, E_2, E_3	$p_1=1; p_2=0; p_3=0; p_4=0; p_5=0; p_6=0; p_7=0;$
2	402	E_1	$p_1=0; p_2=1; p_3=0; p_4=0; p_5=0; p_6=0; p_7=0;$
3	2006	E_2	$p_1=0; p_2=0; p_3=1; p_4=0; p_5=0; p_6=0; p_7=0;$
4	13177	E_3	$p_1=0; p_2=0; p_3=0; p_4=1; p_5=0; p_6=0; p_7=0;$
5	62	E_1, E_2	$p_1=0; p_2=0; p_3=0; p_4=0; p_5=1; p_6=0; p_7=0;$
6	287	E_1, E_3	$p_1=0; p_2=0; p_3=0; p_4=0; p_5=0; p_6=1; p_7=0;$
7	3852	E_2, E_3	$p_1=0; p_2=0; p_3=0; p_4=0; p_5=0; p_6=0; p_7=1;$
8	13840	None	$p_1=0; p_2=0; p_3=0; p_4=0; p_5=0; p_6=0; p_7=0;$

Table 2

Parameter	Estimate	95% Confidence Interval
α	0.475	(0.465, 0.484)
γ_1	0.777	(0.747, 0.808)
λ_1	9926.352	(8722.389, 11130.315)
γ_2	0.804	(0.789, 0.819)
λ_2	2742.914	(2652.181, 2833.647)
γ_3	0.659	(0.651, 0.668)
λ_3	1543.809	(1507.125, 1580.493)

Table 3

Random Variable	Hazard Rate	Variance	
X_1	$0.000608t^{0.223}$	$\frac{2.694 \times 10^{-9} - 9.472 \times 10^{-10} \times \log(t) + 9.032 \times 10^{-11} \times \log^2(t)}{t^{0.445}}$	
X_2	$0.00138t^{0.196}$	$\frac{3.614 \times 10^{-9} - 1.207 \times 10^{-9} \times \log(t) + 1.076 \times 10^{-10} \times \log^2(t)}{t^{0.392}}$	
X_3	$0.00521t^{0.341}$	$\frac{1.566 \times 10^{-8} - 5.508 \times 10^{-9} \times \log(t) + 5.352 \times 10^{-10} \times \log^2(t)}{t^{0.681}}$	
parameter	variable	Description	
-----------	----------	-------------	
λ_1	sex_dummy	male=1; female=0	
	log_tmsrv	logarithm of time served in month for 1994 imprisonment	
	average number of arrests by age	average number of arrests divided by age at release	
	race	white=0; non white=1;	
	sextrt	participated in sex treatment program=1; not participated in sex treatment program=0;	
	crime_for_1994_release_dummy1	sex crimes: crime_for_1994_release_dummy1=1 and crime_for_1994_release_dummy2=0	
	crime_for_1994_release_dummy2	violent crimes: crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=1	
	other crimes:	crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=0	
λ_2	sex_dummy	male=1; female=0	
	log_tmsrv	logarithm of time served in month for 1994 imprisonment	
	average number of arrests by age	average number of arrests divided by age at release	
	race	white=0; non white=1;	
	educat	participated in education program=1; not participated in education program=0;	
	crime_for_1994_release_dummy1	sex crimes: crime_for_1994_release_dummy1=1 and crime_for_1994_release_dummy2=0	
	crime_for_1994_release_dummy2	violent crimes: crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=1	
	other crimes:	crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=0	
λ_3	sex_dummy	male=1; female=0	
	log_tmsrv	logarithm of time served in month for 1994 imprisonment	
	average number of arrests by age	average number of arrests divided by age at release	
	race	white=0; non white=1;	
	educat	participated in education program=1; not participated in education program=0;	
	crime_for_1994_release_dummy1	sex crimes: crime_for_1994_release_dummy1=1 and crime_for_1994_release_dummy2=0	
	crime_for_1994_release_dummy2	violent crimes: crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=1	
	other crimes:	crime_for_1994_release_dummy1=0 and crime_for_1994_release_dummy2=0	
Parameter	Estimate	95% Confidence Interval	
-----------------------------------	----------	-------------------------	
\(\alpha \)	0.522	(0.512, 0.533)	
\(\gamma_1 \)	0.812	(0.780, 0.844)	
\(\lambda_1 \)			
Intercept	10.994	(10.508, 11.480)	
Sex	-1.154	(-1.587, -0.720)	
Logarithm of tmsrv	0.069	(0.024, 0.115)	
Average number of arrests by age	-1.597	(-1.817, -1.377)	
Race	-0.184	(-0.280, -0.089)	
Sex treatment program	-0.073	(-0.496, 0.350)	
Crime_for_1994_release_dummy1	-0.600	(-0.718, -0.481)	
Crime_for_1994_release_dummy2	-0.134	(-0.288, 0.021)	
\(\gamma_2 \)	0.871	(0.855, 0.887)	
\(\lambda_2 \)			
Intercept	8.821	(8.693, 8.948)	
Sex	-0.714	(-0.820, -0.608)	
Logarithm of tmsrv	0.138	(0.116, 0.159)	
Average number of arrests by age	-1.834	(-1.909, -1.759)	
Race	-0.443	(-0.487, -0.399)	
Education program	-0.145	(-0.198, -0.092)	
Crime_for_1994_release_dummy1	0.397	(0.338, 0.455)	
Crime_for_1994_release_dummy2	-0.205	(-0.260, -0.150)	
\(\gamma_3 \)	0.706	(0.697, 0.715)	
\(\lambda_3 \)			
Intercept	7.858	(7.754, 7.962)	
Sex	-0.507	(-0.594, -0.420)	
Logarithm of tmsrv	0.178	(0.157, 0.198)	
Average number of arrests by age	-2.152	(-2.220, -2.084)	
Race	-0.396	(-0.437, -0.354)	
Education program	-0.243	(-0.292, -0.193)	
Crime_for_1994_release_dummy1	0.656	(0.600, 0.711)	
Crime_for_1994_release_dummy2	0.113	(0.058, 0.167)	
Jailed and rearrested after release due to sex crime	Hazard Ratio	95% Upper Limit	95% Lower Limit
--	--------------	-----------------	-----------------
Males vs. females	2.552	2.415	2.690
Log of Tmsrv increased by 1 unit	0.945	0.906	0.984
Number of arrests over age at release increased by 1 unit	3.658	3.610	3.706
Non-white vs. White	1.161	1.095	1.228
Participated sex treatment program vs. did not	1.061	0.737	1.384

Jailed and rearrested after release due to violent crime	Hazard Ratio	95% Upper Limit	95% Lower Limit
Males vs. females	1.863	1.813	1.912
Log of Tmsrv increased by 1 unit	0.887	0.866	0.908
Number of arrests over age at release increased by 1 unit	4.939	4.927	4.952
Non-white vs. White	1.471	1.445	1.497
Participated education program vs. did not	1.134	1.094	1.175

Jailed and rearrested after release due to other crime	Hazard Ratio	95% Upper Limit	95% Lower Limit
Males vs. females	1.430	1.387	1.473
Log of Tmsrv increased by 1 unit	0.882	0.866	0.899
Number of arrests over age at release increased by 1 unit	4.571	4.561	4.581
Non-white vs. White	1.322	1.300	1.344
Participated education program vs. did not	1.187	1.158	1.216