Intraspecific diversity of durum wheat (*Triticum durum* Desf.): a unified classification

O.A. Lyapunova

Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
lyapuolga@yandex.ru

Abstract. The Department of Wheat Genetic Resources of the All-Russian Research Institute of Plant Genetic Resources (VIR) had developed and published in 1979 a classification of the genus *Triticum* L., which is based on the genomic composition of species and the presence or absence of a number of main genes that govern the “classification” traits. The grounds have been laid by F. Körnicke and J. Percival, and supplemented by N.I. Vavilov and K.A. Flaksberger. The classification, which is most often referred to as the “Classification of *Triticum* by Dorofeev et al.,” belongs to a number of the main modern classifications of the genus. This is the world’s first standardized system that contains all known intraspecific (infraspecific) taxa of wild and cultivated wheat species. A detailed classification makes it possible to identify a wide variety of forms in the genus *Triticum* L. and its individual species, which is especially important for collections preserved in genetic seed banks. The use of the intraspecific classification of the genus *Triticum* L. greatly simplifies the identification of the VIR collection accesses introduced from various sources or checking accession identity after regeneration in the field. However, the direct use of such a voluminous classification meets several difficulties. Therefore, we propose a unified intraspecific classification of durum wheat, based on the description of only 16 main botanical varieties out of 131 described so far, which have complexes of morphological traits of the spike and kernel that occur most frequently in durum wheat collections. The remaining 115 botanical varieties, which have additional traits, get their name by the addition of the abbreviated Latin name of one or another additional trait to the main name. Having mastered this way of describing the morphological traits of accessions, any user can easily navigate oneself in the systematized intraspecific diversity of collections. The purpose of this work is to acquaint the reader with the intraspecific classification of durum wheat (*Triticum durum* Desf.) developed at VIR and to offer its simplified version, which is based on the identification of the main and additional morphological traits of the spike and kernel.

Key words: durum wheat (*Triticum durum*); intraspecific classification; complexes of morphological traits; inheritance of traits; botanical variety.

For citation: Lyapunova O.A. Intraspecific diversity of durum wheat (*Triticum durum* Desf.): a unified classification. Vavilovskii Zhurnal Genetiki i Selektssi = Vavilov Journal of Genetics and Breeding. 2021;25(3):260-268. DOI 10.18699/VJ21.029

Внутривидовое разнообразие твердой пшеницы (*Triticum durum* Desf.): унифицированная классификация

О.А. Ляпунова

Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР), Санкт-Петербург, Россия
lyapuolga@yandex.ru

Аннотация. В отделе генетических ресурсов пшеницы ВНИИ генетических ресурсов растений (ВИР) разработана и в 1979 г. опубликована система рода *Triticum* L., базирующаяся на учете геномного состава видов и наличии или отсутствии у них ряда главных генов, контролирующих «классификационные» признаки. Она основана на исследованиях F. Körnicke и J. Percival, дополненных Н.И. Вавиловым и К.А. Фляксбергером. Эту систему, известную как “Classification of *Triticum* by Dorofeev et al.,” относят к ряду основных современных классификаций рода. Это первая в мире стандартизированная система, содержащая все известные внутривидовые (инфраспецифические) таксоны диких и культурных видов пшеницы. Она дает возможность идентификации большого разнообразия форм при работе с рядом *Triticum* L. и отдельными его видами, что особенно важно для коллекций, сохраняемых в генетических банках семян. Применение внутривидовой классификации рода *Triticum* L. для идентификации образцов коллекции ВИР, интродуцированных из различных источников или поступивших после полевого размножения для по-
Introduction

Durum wheat (*Triticum durum* Desf.) is characterized by a wide diversity of varieties and forms. Like any set, this diversity should be systematized to better understand the relationships between its constituent units. Classification (from the Latin word *classis* – category, class, and *facio* – do, make) is a method aimed at organizing a system of subordinate groups, in which these units are combined on the basis of similarity in certain essential properties (Subbotin, 2001). The product of the classification is a system. Plant systematics is a branch of botany that deals with the classification of plants. The term “systematic” (systematic botany) was introduced by the Swedish naturalist Carl von Linné in 1751 in his work “Philosophy of Botany” (Linnaeus, 1989). The term “taxonomy” was introduced by the Swiss botanist Augustin Pyrame de Candolle, the creator of the natural system of plants classification – the de Candolle system – and designated the theory of plant classification, according to the rules of which taxa are arranged in the system (de Candolle, 1813). In his treatise “On the Origin of Species…”, the English naturalist Charles Robert Darwin considered the terms taxonomy and systematic as synonyms (Darwin, 1859). However, systematics studies not only the diversity of organisms, but also the causes and ways of its appearance, and includes taxonomy and nomenclature.

The history of the genus *Triticum* L. classification begins with C. Linnaeus (Linnaeus, 1737), who is considered by most triticologists as the author of the genus Wheat. Over 300 years of its existence, the Linnaeus classification has undergone numerous interpretations, which are associated with the inclusion or subsequent exclusion of certain cultivated and wild species from it.

The system of the genus *Triticum* L. developed at the Department of Wheat Genetic Resources of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) (Dorofeev et al., 1979), was built up on the research of such triticologists as F. Körnicke (1885) and J. Percival (1921), and further revised and supplemented by N.I. Vavilov (1935) and K.A. Flaksberger (Flaksberger, 1935; Flaksberger et al., 1939). The system is based on taking into account the genomic composition of species and the presence or absence of a number of major genes that govern systematically important traits.

In accordance with this system of the genus, durum wheat (*T. durum* Desf.) is treated as a separate species in the rank of the species, which was first described by the French botanist R.L. Desfontaines (1798). The species includes two subspecies: *subsp. durum* and *subsp. horanicum* Vav. The latter is a subspecies of the most dense-ear wheats, with a complex of specific morphological characters. Subsp. *durum* is a subspecies of durum wheat proper, within which six groups of botanical varieties (convairieties) are distinguished, namely *convar. durum, durocompactum* Flaksb., *aglossicon* Dorof. et A. Filat., *villosum* (Jakubz.) Dorof. et A. Filat., *falcatum* (Jakubz.) Dorof. et A. Filat., *caucasicum* (Dorof.). Dorof. In turn, *convar. durum* includes three subconvairieties: *subconvar. durum, muticum* (Orlov) Dorof. et A. Filat., and *duroromosum* Dorof. (Table 1). At the time of the creation of the classification by V.F. Dorofeev et al. (1979), the genus *T. durum* Desf. numbered 120 botanical varieties and 29 forms in 20 varieties. As a result of subsequent studies, 11 more botanical varieties and 12 forms were identified (Lyapunova, 2017, 2019).

The classification, which is most often referred to as the Classification of *Triticum* by Dorofeev et al., belongs to a number of the main modern classifications of the genus *Triticum* L. This was the first standardized classification that contained all known intraspecific taxa of wild and cultivated wheat species. A similar classification, a development of previous classifications based on the use of a comparative genetic approach, was proposed by N.P. Goncharov (Goncharov, 2002, 2005, 2009; Goncharov et al., 2007). In contrast to hexaploid wheats, the species classification of which can be constructed using only five main genes (Goncharov, 2011), in tetraploid species only Polish wheats and Isphan emmer wheat can differ oligogenically (Watanabe et al., 1996; Watanabe, 1999). In all other species, only a part of taxonomically important traits has simple genetic control. This refers, e.g., to tetra-awnedness in the majority of *T. carthlicum* Nevski varieties (Haque et al., 2011)

1 The gene has been recently introgressed into hexaploid wheat and mapped (Dobrovolskaya et al., 2020).
ness (Barulina, 1937; Watanabe et al., 2004) or awnlessness (Goncharov et al., 2003).

Such a detailed classification makes it possible to identify a wide diversity when working with the genus *Triticum* L. as a whole and/or with its individual species, which is especially important for large-scale collections preserved in genetic seed banks.

The use of intraspecific classification of the genus *Triticum* L. greatly simplifies the identification of the VIR collection accessions introduced from various sources, or when checking accession identity after regeneration in the field. However, apart from the researchers at the Department of Wheat Genetic Resources of VIR, few people use this approach in their practical work, and there are several reasons for this. First, both the monograph itself (Dorofeev et al., 1979) and the accompanying “Identifier of Wheat” (Dorofeev et al., 1980) have not been reprinted for more than 40 years and became a bibliographic rarity, which makes it difficult for national breeders and other wheat researchers to use it (Chikida, 2020). After the collapse of the USSR, the genetic banks of the COMECON (Council for Mutual Economic Assistance – an economic organization from 1949 to 1991 under the leadership of the Soviet Union that comprised the countries of the Eastern Bloc along with a number of socialist states elsewhere in the world) countries stopped working according to a common pattern, although many of them continue to use the system developed by V.F. Dorofeev et al. (1979).

Second, there is still no translation of these works into English, although there was an international project on the translation of this monograph (Knüpffer et al., 2003), which makes it impossible for the staff of foreign genetic seed banks to get acquainted with this classification. Third, only the long-term practice of identifying accessions by the name of a botanical variety makes it possible to carry out this laborious work promptly and without difficulty. For instance, durum wheat alone requires remembering names of 131 varieties and their meaning. One of the ways to reduce the number of hard-to-remember names may be unification as a standardization method aimed at reducing the number of objects by combining several characters. It assumes selection of the optimal number of objects, botanical varieties in our case, limited to a reasonable minimum and leads to a certain uniformity. This greatly simplifies the practical use of the classification.

The objective of this work is to acquaint the reader with the intraspecific classification of durum wheat (*Triticum durum* Desf.) developed at VIR, and to offer its simplified analog based on the identification and illustration of the main and additional morphological characters of the ear and kernel.

Materials and methods

Here, we propose a unified intraspecific classification of the durum wheat species, based on the description of only 16 main botanical varieties which have the most commonly occurring sets of morphological characters of the ear and kernel, and

Table 1. Intraspecific differentiation of the species *Triticum durum* Desf.
Groups (convar.) and subgroups (subconvar.)

Subsp. durum
durum – group of botanical varieties of durum wheats proper, includes three subgroups:
durum – durum wheat proper
muticum – awnless durum wheat
duroramosum – wheat durum with a branching spike
durocompactum – group of botanical varieties of durum wheats with a dense spike
aglossicon – group of botanical varieties of liguleless durum wheats
villosum – the Palestinian group of botanical varieties of durum wheats with a rough spike and strong hairy of leaf
falcatum – group of botanical varieties of falcatum durum wheats (grain has a sickle-shaped depression)
caucasicum – the Caucasian groups of botanical varieties of durum wheats
horanicum Vav.
–
Total botanical varieties
Внутривидовое разнообразие твердой пшеницы

(Trityum durum Desf.): унифицированная классификация

О.А. Ляпунова

2021

25 • 3

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА И ТАКСОНОМИЯ РАСТЕНИЙ / MOLECULAR GENETICS AND PLANT TAXONOMY

263

Table 2. The main spike and kernel characters used to describe the intraspecific diversity of durum wheat

Character	Option	Abbreviated Latin designation
Glume color	White or stramineous (Fig. 1)	
	Red (Fig. 2)	
	White or red in combination with black (black-blue)* that shows up in the glume central part (Fig. 3)	nigro-
	White or red in combination with smoked-grayish (bluish-gray) that shows up in the glume central part (Fig. 4, 5)	glauco-
	White or red in combination with black along the edge of glume (form) (Fig. 6)	triste-
Glume pubescence	Glabrous glume (Fig. 7)	
	Pubescent glume (Fig. 8)	
Kernel color ** (Fig. 9)	White	
	Red	
	Purple	violacea-
Awns presence	Normal awns (7 cm and longer) (Fig. 10)	
	Awnless (awns are either absent or awn-like projections shorter than 2.0 cm are available) (Fig. 11)	mutico-
Awns color (see Fig. 10, 11)	Same color as of glumes	
	Black	

* The blue tint is due to the presence of a waxy coating on the spike glumes. ** Kernels with light yellow, yellow and amber-yellow color are attributed to the group of white-colored ones; while those with light brown, brown and amber-brown color are grouped as red-colored kernels (The International Comecon List of Descriptors..., 1984). Durum wheat kernels are mostly vitreous, therefore the color that is defined as white, is in fact amber-yellow.

Table 3. The most frequent complexes of spike and kernel characters in durum wheat and their Latin name

Name of the complex of characters	Kernel color	Glume color	Awn color	Name of the complex of characters	Kernel color	Glume color	Awn color
leucurum (Alef.) Koern.	White	White	White	valenciae Koern.	White	White	White
leucosletan (Alef.) Koern.	Black	Black	White	melanopus (Alef.) Koern.	White	Black	Black
hordelormata (Host.) Koern.	Red	Red	White	italicum (Alef.) Koern.	Red	Red	White
erythromelian Koern.	Black	Black	White	apulicus Koern.	Black	Black	White
affine Koern.	Red	White	White	durum	Red	White	White
reichenbachii Koern.	Black	Black	White	africamen Koern.	Black	Black	White
muriense Koern.	Red	Red	White	aegyptiacum Koern.	Red	Red	Black
pseudoalexandrinum Flaksb.	Black	Black	White	niloticum Koern.	Black	Black	White

retain their author’s name (Table 2). The remaining botanical varieties, which have additional characters, get their name by the addition of this or that additional character to the main abbreviated Latin name (Table 3). Such a way of describing and quickly memorizing intraspecific diversity was proposed for common wheat in (Zuev et al., 2019). This work has been successfully published twice and is in great demand both domestically and among employees of foreign genetic seed banks.

Results

Basic and additional morphological characters of durum wheat

The intraspecific description system is based on botanical varieties, the names of which are determined by a set of morphological characters of the ear and kernel. These sets were distinguished by a combination of such features as the presence or absence of glume pubescence, glume color...
A description of each botanical variety must include a set of main features: the presence/absence of glume pubescence, the color of the glume and kernel, the presence/absence of awns on the lemma, and the color of awns. The set of characters revealed by a specimen is designated by the corresponding Latin name given by the author (see Table 3).

To describe a specimen that possesses one of these sets of characters, but in combination with an additional character, like color of the glume, different length of awns, their color, etc., abbreviated Latin names of these characters are used (Table 4). In the case of durum wheat, these names are added to the name of the main set in the case of peduncle pubescence (piloso-) or awns smoothness (levi-), or when they determine the names of groups or subgroups of botanical varieties, i.e., dense-eared (-compactus); with the crescent-shaped kernel (falcato-); with the branching ear (ramoso-), non-ligulate (quasi-), with the densely pubescent leaf blade and sheath of the leaf, and with the hard glume (villoso-). Along with the characters of the ear and kernel, Table 4 contains that of the ligula absence, which is the only character of the leaf taken into account when describing botanical varieties.
Таблица 4. Дополнительные признаки колоса и зерна, используемые для описания интраспектической диверсии твердой пшеницы

Свойство	Опция	Латинское наименование
Спиноденситет	Легкое или среднее (рис. 12)	-
	Густой (d ≥ 40) (рис. 13)	-compactus
Форма зерна	Овальная или удлиненная (рис. 9)	-
	Полукороткая (смешанная) (рис. 14)	falcato-
Вторичный стручок	Предоступление вторичного стручка, или двойных или тройных колосков на узле главного стручка (рис. 15)	ramoso-
Педунил	Гладкий (рис. 16)	-
	Волосистый (рис. 16)	piloso-
Присутствие лигул	Присутствие лигул (рис. 17)	-
	Отсутствие лигул	quasi-
Грубизна влагалища	Гладкий	-
	Волосистый	piloso-
Количество влагалища зерен	Густое влагалище зерна, кошна зерен	villoso-

Рис. 12. Легкий колос твердой пшеницы.
Рис. 13. Густой колос твердой пшеницы.
Рис. 14. Полукороткая форма зерна.
Рис. 15. Ветвящийся колос твердой пшеницы.
Рис. 16. Волосистый столбик.

Рис. 17. Нелигулантная (a) и лигулантная (b) растения твердой пшеницы (из: Flaksberger, 1935).

Рис. 18. Зуравьи: гладкое (a), слабо волнистое (b), сильно волнистое (c) (из: Flaksberger, 1935).
Table 5. Character complexes found in the awnless durum wheat accessions

Latin names of character complexes	Glume color	Color of awn-like projections	Botanical variety name by K.A. Flaksberger (1935)	Botanical variety name by V.F. Dorofeev et al. (1979)
Glabrous glume				
1. White spike, white kernel				
mutico-leucurum	White	White	var. candidans Meist.	candidans Meist.
mutico-lecomelan	Black		mutico-lecomelan Lyapun.	
mutico-nigro-lecomelan	Black on the white background	–	f. quatuor-unum Flaksb.	muticalbiprovinciale Flaksb.
2. Red spike, white kernel				
mutico-hordeiforme	Red	Red	var. sub-australe Perciv.	subaustrale Perciv.
mutico-hordeiforme-compactus			yesilkoense Gökg.	
mutico-erythromelan	Black	–	muticerthromelan Lyapun.	
mutico-nigro-erythromelan	var. australe Perciv.	–		australe Perciv.
3. White spike, red kernel				
mutico-affine	White	White	var. schechurini Meist.	schechurini Meist.
mutico-nigro-reichenbachii		–	f. quatuordecim-unum Flaksb.	muticalbobscurum Flaksb.
4. Red spike, red kernel				
mutico-murciense	Red	Red	var. Stebuti Flaksb.	stebuti Meist.
mutico-nigro-alexandrinum	Black on the red background	Black	f. quindecim-unum Flaksb.	muticoscurum Dorof. et A. Filat.
Pubescent glume				
5. White spike, white kernel				
mutico-valenciae	White	–	f. unum-quindecim Flaksb.	muticovalenciae Dorof. et A. Filat.
mutico-melanopus	Black	–	muticomelanopus (A. Filat. et Schaid.) Lyapun.	
mutico-nigro-melanopus	Black on the white background	–	f. quatuor-quinque Flaksb.	muticobeuflii Flaksb.
6. Red spike, white kernel				
mutico-italicum	Red	–	f. duo-quinque Flaksb.	maticitalicum Dorof. et A. Filat.
mutico-apulicum	Black	–	muticapulicum Lyapun.	
mutico-nigro-apulicum	Black on the red background	–	f. sex-quinque Flaksb.	muticoaerulescens Flaksb.
7. White spike, red kernel				
mutico-nigro-africanum	Black on the white background	–	–	muticonazilliense Gökg.

Unified intraspecific classification of durum wheat (*Triticum durum* Desf.)

The proposed unified intraspecific classification is a simplified analog of the durum wheat key (Dorofeev et al., 1980). The whole diversity is arranged in the form of tables, where the names of varieties according to K.A. Flaksberger (1935) and V.F. Dorofeev et al. (1979) are given for comparison, which allows a user to establish a correspondence between the form being described and the botanical variety. The botanical varieties are presented in accordance with the main characters in the following sequence: the awned and awnless forms are presented in Table 5 and Supplementary2.

In the first place, these tables present botanical varieties with non-pubescent glumes and different color combinations of the glume and kernel, and then those with the pubescent glumes in the same order.

2 Supplementary material is available at: http://vavilov.elpub.ru/jour/manager/files/Suppl_Lyapunova_Engl.pdf
Acquaintance with the durum wheat intraspecific classification, which was created at VIR and contained all the known intraspecific taxa of the time as well as the subsequently added ones, will make it possible to analyze all the intraspecific diversity of the main cultivated tetraploid species *Triticum durum* Desf. The proposed simplified analog version, based on the identification of the main and additional morphological characters of the ear and kernel, can help any user simplify the systematization of the intraspecific diversity contained in any collection and easily navigate it.

References

Barulina E.N. Comparative genetic study of *Triticum* species: I. Genetics of the *ligula* trait in different chromosomal wheat species: *T. vulgare* Vill., *T. compactum* Host, *T. durum* Desf. Trudy po Prikladnoy Botanike, Genetike i Selektsi = Proceedings on Applied Botany, Genetics, and Breeding. 1937;(5):127-166. (in Russian)

Chikida N.N. Contribution of academician Vladimir Filimonovich Dorofeev to the development of agricultural and biological sciences. *Pisma v Vavilovskii Zhurnal Genetiki i Selektsi* = Pisma v Vavilov Journal of Genetics and Breeding. 2020;6(1):18-36. DOI 10.1134/S102795407110075.

Dorofeev V.F., Filatenko A.A., Migushova E.F. Identification Keys to wheat. Leningrad: Sel’khozgiz Publ., 1939;63-92. (in Russian)

Dobrovolskaya O.B., Dresvyannikova A.E., Badaeva E.D., Popo­lov A.A., Golovnina K.A. Comparative genetic analysis of diploid naked wheat *Triticum sinsukiae* and the progenitor *T. monococcum* accession. *Russ. J. Genet.* 2007;43(11):1248-1256. DOI 10.1134/ S102795407110075.

Dorofeev N.P., Mintina R.L., Anfikova N.A. Inheritance of awnlessness in tetraploid wheat species. *Russ. J. Genet.* 2003;39:463-466.

Haque M.A., Martinek P., Kobayashi S., Kita I., Ohwaku K., Wata­nabe N., Kuboyama T. Microsatellite mapping of genes for semi­dwarfism and branched spike in *Triticum durum* Desf. var. *ramo­soobscurum* Jakubz. “Vetvistokoloskaya”. *Genet. Resour. Crop Evol.* 2012;59:831-837. DOI 10.1007/s10722-011-9722-5.

Haque M.A., Takayama A., Watanabe N., Kuboyama T. Cytological and genetic mapping of the gene for four-awned phenotype in *Triticum carthlicum* Nevski. *Genet. Resour. Crop Evol.* 2011;58(7): 1087-1093. DOI 10.1007/s10722-010-9644-7.

Knüppfer H., Morrison L.A., Filatenko A.A., Hammer K., Morgou­nov A., Faberová I. English translation of the 1979 Russian taxonomic monograph of *Triticum* L. by Dorofeev et al.: project progress report. 2003. Available at: https://wheat.pw.usda.gov/ggpages/ GrainTax/anuscript_Dorofeev_extended.html

Könirckie F. Der Weizen. In: Königricke F., Werner H. (Eds.). Hund­buch des Getreidebaus. Bd. 1. Berlin: Verlag von Paul Parey, 1885; 22-114.

Lachman J., Martinek P., Kotikova Z., Šulc’s M. Genetics and che­mistry of pigments in wheat grain – A review. *J. Cereal Sci.* 2017; 74:145-154. DOI 10.1016/j.jcs.2017.02.007.

Linnaeus C. *Critica Botanica*. Leiden. 1737. Available at: http:// ru.knowledgr.com/09901965/CriticaBotanica

Linnaeus C. Philosophy of Botany. Moscow: Nauka Publ., 1989. (in Russian)

Lyapunova O.A. Intraspécific classification of durum wheat: New bo­talonical varieties and forms. *Russ. J. Genet. Appl. Res.* 2017;7(7): 757-762. DOI 10.1134/S2079059717070048.

Lyapunova O.A. Types of *Triticum durum* Desf. intraspecific taxa pre­served in the VIR herbarium (WIR). *Vavilovia*. 2019;2(3):23-38. DOI 10.30901/2658-3860-2019-3-23-38. (in Russian)

McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Ap­pels R., Xia X.C. Catalogue of gene symbols for wheat. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClass List.jsp

Pericz C. The Wheat Plants. London: Duckworth and Co., 1921.

Subbotin A.L. Classification: New Philosophical Encyclopedia. M.: *Mysl* Publ., 2001. Available at: https://philbib.ru/library/collection/newphilenc/document/HASH01b0ca7a433b0eb3f681b0. (in Russian)

The International Comexon List of Descriptors for the Genus *Triticum* L. Leningrad: VIR, 1984. (in Russian)
Intraspecific diversity of durum wheat (Triticum durum Desf.): a unified classification

Vavilov N.I. Botanical and geographical bases of breeding. In: Theoretical Foundations of Plant Breeding. Vol. 1. General Plant Genetics. Moscow: Sel’khoziz Publ., 1935;17-75. (in Russian)

Watanabe N. Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosomes. Euphytica. 1999;106:39-43. DOI 10.1023/A:1003589117853.

Watanabe N., Nakayama A., Ban T. Cytological and microsatellite mapping of the genes determining liguleless phenotype in durum wheat. Euphytica. 2004;140:163-170. DOI 10.1007/s10681-004-2425-7.

Watanabe N., Yotani Y., Furuta Y. The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica. 1996;91:235-239. DOI 10.1007/BF00021076.

Zuev E.V., Amri A., Brykova A.N., Pyukkenen V.P., Mitrofanova O.P. Atlas of Bread Wheat (Triticum aestivum L.) Genetic Diversity Based on Spike and Kernel Characters. 2nd ed. St. Petersburg: Kopi-R Publ., 2019. (in Russian)

ORCID ID
O.A. Lyapunova orcid.org/0000-0003-2164-4510

Acknowledgements. The work was performed within the framework of the State Task according to the theme plan of VIR, Project No. 0662-2019-0006 "Search for and viability maintenance, and disclosing the potential of hereditary variation in the global collection of cereal and groat crops at VIR for the development of an optimized genebank and its sustainable utilization in plant breeding and crop production".

The author thanks the reviewers for their contribution to the peer review of this work.

Conflict of interest. The author declares no conflict of interest.

Received October 23, 2020. Revised December 10, 2020. Accepted December 10, 2020.