Complex curves in hypercomplex nilmanifolds with \mathbb{H}-solvable Lie algebras

Yulia Gorginyan

July 27, 2022

Abstract

An operator I on a real Lie algebra \mathfrak{g} is called a complex structure operator if $I^2 = -\text{Id}$ and the $\sqrt{-1}$-eigenspace $\mathfrak{g}^{1,0}$ is a Lie subalgebra in the complexification of \mathfrak{g}. A hypercomplex structure on a Lie algebra \mathfrak{g} is a triple of complex structures I, J and K on \mathfrak{g} satisfying the quaternionic relations. We call a hypercomplex nilpotent Lie algebra \mathbb{H}-solvable if there exists a sequence of \mathbb{H}-invariant subalgebras

$$\mathfrak{g}_1 \supset \mathfrak{g}_2 \supset \cdots \supset \mathfrak{g}_{k-1} \supset \mathfrak{g}_k = 0,$$

such that $[\mathfrak{g}_i^\mathbb{H}, \mathfrak{g}_i^\mathbb{H}] \subset \mathfrak{g}_{i+1}^\mathbb{H}$. We give examples of \mathbb{H}-solvable hypercomplex structures on a nilpotent Lie algebra and conjecture that all hypercomplex structures on nilpotent Lie algebras are \mathbb{H}-solvable. Let (N, I, J, K) be a compact hypercomplex nilmanifold associated to an \mathbb{H}-solvable hypercomplex Lie algebra. We prove that, for a general complex structure L induced by quaternions, there are no complex curves in a complex manifold (N, L).

Contents

1 Introduction 2
 1.1 Complex nilmanifolds 2
 1.2 \mathbb{H}-solvable Lie algebras 3
 1.3 Examples of \mathbb{H}-solvable algebras 4
1 Introduction

1.1 Complex nilmanifolds

Recall that a nilmanifold N is a compact manifold that admits a transitive action of a nilpotent Lie group G. Any nilmanifold is diffeomorphic to a quotient of a connected, simply connected nilpotent Lie group G by a cocompact lattice Γ [Mal].

A complex nilmanifold could be defined in two different ways. A complex parallelizable nilmanifold [W] is a compact quotient of a complex nilpotent Lie group by a discrete, cocompact subgroup. This is not the definition we use. We define a complex nilmanifold as a quotient of a nilpotent Lie group with a left-invariant complex structure by a left action of a cocompact lattice.

Nilmanifolds provide examples of non-Kähler complex manifolds. One of the first examples of a non-Kähler complex manifold was given by Kodaira [Has1], see also [Th]. It is a complex surface called the Kodaira surface with the first Betti number $b_1 = 3$. It was proven in [BG] that a complex nilmanifold does not admit a Kähler structure unless it is a torus. Moreover, in [Has] Hasegawa proved that a nilmanifold that is not a torus is never homotopically equivalent to any Kähler manifold.
Example 1.1: The Kodaira surface could be obtained as a quotient of the group of matrices of the form

\[
G := \begin{cases}
\begin{pmatrix}
1 & x & z & t \\
0 & 1 & y & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} : x, y, z, t \in \mathbb{R}
\end{cases}
\]

by the subgroup \(\Gamma \) of the similar matrices with integer entries.

Example 1.2: The example of a complex nilmanifold that is obtained from a complex Lie group is an Iwasawa manifold. It is a compact quotient of the 3-dimensional complex Heisenberg group \(G \) by a cocompact, discrete subgroup \(\Gamma \) of the corresponding matrices with the Gaussian integer entries. Unlike the Kodaira surface, the Iwasawa manifold is parallelizable, that is, its tangent bundle is trivial as a holomorphic bundle.

1.2 \(\mathbb{H} \)-solvable Lie algebras

Let \(g = \text{Lie} G \) denote the Lie algebra of a nilpotent Lie group \(G \).

Definition 1.3: A subalgebra \(g^{1,0} \subset g \otimes_{\mathbb{R}} \mathbb{C} \) which satisfies \(g^{1,0} \oplus \overline{g^{1,0}} = g \otimes_{\mathbb{R}} \mathbb{C} \) and \([g^{1,0}, g^{1,0}] \subset g^{1,0}\) defines a complex structure operator \(I \in \text{End}(g) \). Subspaces \(g^{1,0} \) and \(\overline{g^{1,0}} = g^{0,1} \) are \(\sqrt{-1} \) and \(-\sqrt{-1} \) eigenspaces of the operator \(I \) respectively.

Let \(\mathbb{H} \) be the quaternion algebra. Recall that \(\mathbb{H} \) is generated by \(I, J \) and \(K \) satisfying the quaternionic relations:

\[
I^2 = J^2 = K^2 = -\text{Id}, \quad IJ = -JI = K. \tag{1.1}
\]

Definition 1.4: Let \(g \) be a nilpotent Lie algebra. A hypercomplex structure on \(g \) is a triple of endomorphisms \(I, J, K \in \text{End}(g) \) which satisfies the conditions (1.1) and defines the complex structures in the sense of Definition 1.3.

Denote by \(g_i^I := g_i + I g_i \) the smallest \(I \)-invariant Lie subalgebra which contains the commutator subalgebra \(g_i = [g_{i-1}, g], i \in \mathbb{Z}_{>0} \). Reformulating
the result of S. Salamon [S, Theorem 1.3], D. Millionschikov in [Mil, Proposition 2.5] has shown that

\[[g^I_k, g^I_k] \subset g^I_{k+1} \]

and

\[g^I_1 := [g, g] + I[g, g] \neq g. \]

Hence, a sequence of complex-invariant Lie subalgebras

\[g \supset g^I_1 \supset \cdots \supset g^I_n = 0 \]

terminates for some \(n \in \mathbb{Z}_{>0} \). It is natural to ask a similar question about the hypercomplex nilpotent Lie algebras: is the algebra \(\mathbb{H}g_1 := [g, g] + I[g, g] + J[g, g] + K[g, g] \) equal to \(g \) or not?

We introduce a notion of an \(\mathbb{H} \)-solvable nilpotent Lie algebra. Define inductively \(\mathbb{H} \)-invariant Lie subalgebras: \(g^H_i := \mathbb{H}[g^H_{i-1}, g^H_{i-1}] \), where \(g^H_1 = \mathbb{H}[g, g] \).

Definition 1.5: A hypercomplex nilpotent Lie algebra \(g \) is called \(\mathbb{H} \)-solvable if there exists \(k \in \mathbb{Z}_{>0} \) such that

\[g^H_1 \supset g^H_2 \supset \cdots \supset g^H_{k-1} \supset g^H_k = 0. \]

Such a filtration corresponds to an iterated hypercomplex toric bundle, see [AV]. Clearly, this holds if and only if \(g^H_{i-1} \subsetneq g^H_i \) for any \(i \in \mathbb{Z}_{>0} \).

There are no known examples of hypercomplex Lie algebras which are not \(\mathbb{H} \)-solvable.

Conjecture 1.6: All hypercomplex structures on a nilpotent Lie algebra \(g \) are \(\mathbb{H} \)-solvable.

1.3 Examples of \(\mathbb{H} \)-solvable algebras

An example of an \(\mathbb{H} \)-solvable Lie algebra is given by an abelian complex structure. Let us recall the definition.

Definition 1.7: Let \(g \) be a nilpotent Lie algebra with a complex structure. Suppose that \([g^{1,0}, g^{1,0}] = 0 \). This complex structure is called an abelian complex structure.
It was already known that a nilpotent Lie algebra that admits an abelian hypercomplex structure is \mathbb{H}-solvable [AV, Proposition 4.5], see also [Rol, Corollary 3.11].

The main purpose of this article is to prove the following theorem:

Theorem 1.8: Let (N, I, J, K) be a hypercomplex nilmanifold, and assume that the corresponding Lie algebra g is \mathbb{H}-solvable. Then there are no complex curves in the complex nilmanifold (N, L), where $L = aI + bJ + cK$, $L^2 = -\text{Id}$ for all $(a, b, c) \in S^2$ except of a countable set $R \subset S^2$.

To give an example of an \mathbb{H}-solvable Lie algebra with a non-abelian hypercomplex structure, we need a construction described below. The *quaternionic double* was introduced in the work [SV]. Let (X, I_X) be a complex manifold which admits a torsion-free flat connection $\nabla : TX \to TX \otimes \Lambda^1 X$ which also satisfies $\nabla I = 0$. For a fixed point $x \in X$ consider the monodromy group $\text{Mon}(\nabla) \subset \text{GL}(T_x X)$. Suppose that there exists a lattice $\Lambda_x \subset T_x X$ in a fiber which is preserved by the action of the monodromy group: $\text{Mon}(\nabla) \Lambda_x = \Lambda_x$. Then we can construct the set $\Lambda \subset TX$ via all parallel transportation of Λ_x. Define a manifold $X^+ := TX/\Lambda$. It is fibered over X with fibers $T_x X/\Lambda_x$ are compact tori. It makes sense since for each $x \in X$ the intersection $\Lambda \cap T_x X$ is a lattice continuously depending on $x \in X$. The manifold $X^+ = TX/\Lambda$ is called the *quaternionic double*. It was shown in [SV] that there is a pair of almost complex structures

$$I := \begin{pmatrix} I_X & 0 \\ 0 & -I_X \end{pmatrix}, \quad J := \begin{pmatrix} 0 & -\text{Id} \\ \text{Id} & 0 \end{pmatrix}$$

on X^+ which are integrable and satisfy the quaternionic relations.

Theorem 1.9: (Soldatenkov, Verbitsky) Let X^+ be the quaternionic double of an affine complex manifold X. If X is non-Kähler, then X^+ does not admit an HKT-metric [SV].

It was shown in [DF], see also [BDV], that any abelian hypercomplex nilmanifold is HKT.

Example 1.10: To provide an example of an \mathbb{H}-solvable Lie algebra with a non-abelian hypercomplex structure, we first define the Kodaira surface, following [Has], see also [AV, Example 1.7]. Consider the Lie algebra $g =$
such that the only non-zero commutator is \([x, y] = z\). The complex structure is given by \(Ix = y\) and \(Iz = t\). There exists an operator \(\nabla^+ : g \times g \to g\) defined by the formula

\[
\nabla^+_a b := \frac{1}{2}([a, b] + I[a, b]), a, b \in g
\]

We extended \(\nabla^+\) to a left-invariant connection on the Lie group \(G\), also denoted by \(\nabla^+\). It is easy to see that the connection \(\nabla^+\) is complex-linear, torsion-free and flat. Therefore, we could define the quaternionic double of the Kodaira surface. It is a nilmanifold associated with the Lie algebra \(g^+ = g \oplus g\), with the commutator defined as follows:

\[
[(a, b), (c, d)] := ([a, b], \nabla^+_a d - \nabla^+_c b).
\]

The hypercomplex structure on \(g^+\) is defined as follows:

\[
I(a, b) = (Ia, -Ib), \quad J(a, b) = (-b, a), \quad K(a, b) = (-Ib, -Ia).
\]

Then

\[
g^+_1 := [g^+, g^+] = [g \oplus g, g \oplus g] = \langle \lambda z, \mu z \rangle, \lambda, \mu \in \mathbb{R}.
\]

Hence \(g^+_2 = 0\) (because there are no non-trivial commutators on the second step), which implies the \(\mathbb{H}\)-solvability of \(g^+\). From Theorem 1.9 it is clear that the hypercomplex structure on \(g^+\) is non-abelian.

This gives an example of an \(\mathbb{H}\)-solvable Lie algebra with a non-abelian complex structure.

Example 1.11: Let \((N, I, J, K)\) be a hypercomplex manifold. Fix a point \(p \in N\) and consider the set \(g^{(d)}\) of smooth vector fields such that \(X \in g^{(d)}\) has zero of order \(d\) at \(p\). Notice that the filtration \(g^{(d)}\) is \(\mathbb{H}\)-invariant with the commutator \([g^{(d)}, g^{(k)}] \subset g^{(d+k-1)}\). Therefore, the quotient \(g^{(2)}/g^{(n)}\) is an \(\mathbb{H}\)-solvable algebra.

Acknowledgments: I am thankful to Misha Verbitsky for turning my attention to this problem, his support and attention during the preparation of this paper.
2 Preliminaries

2.1 Nilpotent Lie algebras

Let G be a real nilpotent Lie group, and \mathfrak{g} its Lie algebra. The descending central series of a Lie algebra \mathfrak{g} is the chain of ideals defined inductively:

$$
\mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_k \supset \cdots,
$$

where $\mathfrak{g}_0 = \mathfrak{g}$ and $\mathfrak{g}_k = [\mathfrak{g}_{k-1}, \mathfrak{g}]$. It is also called the lower central series of \mathfrak{g}.

Definition 2.1: A Lie algebra \mathfrak{g} is called nilpotent if $\mathfrak{g}_k = 0$ for some $k \in \mathbb{Z}_{>0}$.

Let \mathfrak{g} be a Lie algebra and \mathfrak{g}^* its dual space. Recall that for any $\alpha \in \mathfrak{g}^*$ the Chevalley–Eilenberg differential $d : \mathfrak{g}^* \rightarrow \Lambda^2 \mathfrak{g}^*$ is defined as follows

$$
d\alpha(\xi, \theta) = -\alpha([\xi, \theta]),
$$

where $\xi, \theta \in \mathfrak{g}$. It extends to a finite-dimensional complex

$$
0 \rightarrow \mathfrak{g}^* \rightarrow \Lambda^2 \mathfrak{g}^* \rightarrow \cdots \rightarrow \Lambda^n \mathfrak{g}^* \rightarrow 0 \quad (2.1)
$$

by the Leibniz rule: $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\tilde{\alpha}} \alpha \wedge d\beta$, where $\alpha, \beta \in \mathfrak{g}^*$ and $n = \dim_{\mathbb{R}} \mathfrak{g}$. The condition $d^2 = 0$ is equivalent to the Jacobi identity.

2.2 A short review of the Maltsev theory

Following Maltsev’s papers [Mal] and [Mal2] we are going to consider only nilpotent groups without torsion.

Definition 2.2: A nilmanifold is a compact manifold which admits a transitive action of a nilpotent Lie group.

Recall that a lattice Γ is a discrete subgroup of a topological group G such that there exists a regular finite G-invariant measure on the quotient $\Gamma \backslash G$.

The famous Maltsev’s theorem states that any nilmanifold N is diffeomorphic to a quotient of a connected, simply connected nilpotent Lie group.
Let \(G \) be a cocompact lattice \(\Gamma \). The group \(\Gamma \) is isomorphic to the fundamental group \(\pi_1(N) \) of the nilmanifold \(N \) and \(G \) is the Maltsev completion of the group \(\Gamma \approx \pi_1(N) \) [Mal].

Definition 2.3: A group \(G \) is called complete if for each \(g \in G \) there exists \(n \in \mathbb{Z}_{>0} \) such that the equation \(x^n = g \) has solutions in \(G \).

Definition 2.4: Let \(G \) be a subgroup of a complete nilpotent group \(\hat{G} \). Suppose that for any \(g \in \hat{G} \) there exists \(n \in \mathbb{Z}_{>0} \) such that \(g^n \in G \). Then \(\hat{G} \) is called the Maltsev completion of a group \(G \).

Let \(g_\mathbb{Q} \) be a nilpotent Lie algebra over the field of rational numbers \(\mathbb{Q} \). We identify \(g_\mathbb{Q} \) with a subspace of a real nilpotent Lie algebra \(g = g_\mathbb{Q} \otimes \mathbb{R} \), and call \(g_\mathbb{Q} \) the rational lattice of \(g \).

Definition 2.5: A rational structure in a real nilpotent Lie algebra \(g \) is a rational lattice \(g_\mathbb{Q} \) such that \(g \cong g_\mathbb{Q} \otimes \mathbb{R} \).

Definition 2.6: Let \(\Gamma \) be a lattice in a connected, simply connected nilpotent Lie group \(G \). Then its associated rational structure is the \(\mathbb{Q} \)-span of \(\log \Gamma \subset g \), where \(g = \text{Lie} \, G \) is the Lie algebra. If \(g \) has a rational structure related to a \(\mathbb{Q} \)-algebra \(g_\mathbb{Q} \subset g \) then there exists a discrete subgroup \(\Gamma \) such that \(\log \Gamma \subset g_\mathbb{Q} \) and the quotient \(\Gamma \backslash G \) is compact [CG, Theorem 5.1.7].

Let \(\Gamma \) be a discrete subgroup of a connected, simply connected Lie group \(G \). By Theorem 2.7 the Maltsev completion \(\hat{\Gamma} \) is the unique closed connected subgroup of \(G \) such that a left quotient \(\Gamma \backslash \hat{\Gamma} \) is compact.

Theorem 2.7: (Maltsev) Let \(G \) be a finitely generated nilpotent group without torsion. Then there exists a nilpotent, complete and torsion-free group \(\hat{G} \) such that \(\hat{G} \) is a completion of \(G \). Moreover, all the completions of \(G \) are isomorphic [Mal2]. Finally, \(\hat{G} = \text{exp} \, g_\mathbb{Q} \) is the set of rational points in a real nilpotent Lie group \(G \) with the Lie algebra \(g \) admitting a rational lattice \(g_\mathbb{Q} \).

2.3 Hypercomplex nilmanifolds

Let \(X \) be a smooth manifold. Recall that an almost complex structure on \(X \) is an endomorphism \(I \in \text{End}(TX) \) satisfying \(I^2 = -\text{Id} \). The Nijenhuis
tensor N_I associated to the almost complex structure I is given by the formula
\[N_I(X, Y) = [X, Y] + I[IX, Y] + I[X, IY] - [IX, IY]. \]

An almost complex structure is called **integrable** if its Nijenhuis tensor vanishes.

Remark 2.8: $N_I = 0$ if and only if $[TX^{1,0}, TX^{1,0}] \subset TX^{1,0}$.

Theorem 2.9: (Newlander–Nirenberg) If I is an integrable almost complex structure on X, then X admits the structure of a complex manifold compatible with I.

Definition 2.10: A **complex nilmanifold** is a pair (N, I), where $N = \Gamma \backslash G$ is a nilmanifold obtained from a nilpotent Lie group G and I an integrable left-invariant almost complex structure on G.

By definition, I is left-invariant if the left translations $L_g : (G, I) \rightarrow (G, I)$ are holomorphic. Notice that the Lie group G does not need to be a complex Lie group, but in the case when it does both left and right translations on G are holomorphic.

Let X be a smooth manifold equipped with three integrable almost complex structures $I, J, K \in \text{End}(TX)$, satisfying the quaternionic relations $I^2 = J^2 = K^2 = -\text{Id}$ and $IJ = K = -JI$. Such a quadruple (X, I, J, K) is called a **hypercomplex manifold**. Obata [Ob] proved that there exists a unique torsion-free connection ∇^{Ob} preserving the complex structures:
\[\nabla^{Ob}I = \nabla^{Ob}J = \nabla^{Ob}K = 0. \]

The connection ∇^{Ob} is called the **Obata connection**.

A hypercomplex structure induces a complex structure $L = aI + bJ + cK$ for each $(a, b, c) \in \mathbb{R}^3$ such that $a^2 + b^2 + c^2 = 1$ and the set of such structures is identified in a natural way with $S^2 \cong \mathbb{C}P^1$.

Consider the product $X \times \mathbb{C}P^1$, where X is a hypercomplex manifold. The **twistor space** $\text{Tw}(X)$ of the hypercomplex manifold X is a complex manifold where the complex structure is defined as follows. For any point $(x, L) \in X \times \mathbb{C}P^1$ the complex structure on $T_{(x,L)} \text{Tw}(X)$ is L on T_xX and the standard complex structure $I_{\mathbb{C}P^1}$ on $T_L\mathbb{C}P^1$. This almost complex structure...
on the twistor space of a hypercomplex manifold is always integrable [K], [Besse, Theorem 14.68]. The space Tw(X) is equipped with the canonical holomorphic projection \(\pi : \text{Tw}(X) \to \mathbb{CP}^1 \). The fiber \(\pi^{-1}(L) \) at a point \(L \in \mathbb{CP}^1 \) is biholomorphic to the complex manifold \((X, L)\).

Definition 2.11: Let \(\Gamma \) be a cocompact lattice in a nilpotent Lie group \(G \) with a left-invariant hypercomplex structure. Then the manifold \(N = \Gamma \backslash G \) is called a hypercomplex nilmanifold.

2.4 Positive bivectors on a Lie algebra

Consider a nilpotent Lie group \(G \) with a left-invariant complex structure \(I \in \text{End}(T G) \). Recall that a complex structure operator on a Lie algebra \(g \) can be given by a decomposition of the complexification \(g_{\mathbb{C}} = g \otimes \mathbb{C} \) satisfying \(g_{\mathbb{C}}^1 = \{ X | X \in g_{\mathbb{C}}, I(X) = \sqrt{-1}X \} \) and \([g^1_0, g^1_0] \subset g^1_0 \) by Definition 1.3.

Denote the \(k \)-th exterior power of \(g^1_0 \) (resp. \(g^0_1 \), \(g^1_0 \)) by \(\Lambda^k g^1_0 \) (resp. \(\Lambda^k g^0_1 \)). Consider the graded algebra of \((p, q)\)-multivectors \(\Lambda^* g \otimes \mathbb{C} = \bigoplus_{p,q} \Lambda^{p,q} g \).

Definition 2.12: The elements of the space \(\Lambda^{1,1} g \subset \Lambda^2 g \) are called \((1,1)\)-bivectors or just bivectors.

A non-zero real bivector \(\xi \in \Lambda^{1,1} g \) is called **positive** if for any non-zero \(\alpha \in \Lambda^1 g^* \) one has \(\xi(\alpha, I\alpha) \geq 0 \).

The Lie bracket gives a linear mapping \(\delta_1 : \Lambda^2 g \to g \), defined as \(\delta_1 : x \wedge y \mapsto [x, y] \). Such a mapping extends by the formula (2.2) below to the finite-dimensional complex of \(k \)-multivectors, i.e. \(\delta_m : \Lambda^{m+1} g \to \Lambda^m g \)

\[
0 \to \Lambda^{2n} g \xrightarrow{\delta_{2n-1}} \cdots \to \Lambda^2 g \xrightarrow{\delta_1} g \xrightarrow{\delta_0} 0
\]

and it is dual to the Chevalley-Eilenberg complex (2.1). The boundary operator \(\delta_{k-1} \) can be written as follows

\[
\delta_{k-1}(x_1 \wedge \cdots \wedge x_k) = \sum_{r<s} (-1)^{r+s+1} [x_r, x_s] \wedge x_1 \wedge \cdots \wedge \hat{x}_r \wedge \cdots \wedge \hat{x}_s \wedge \cdots \wedge x_k.
\]

(2.2)

Definition 2.13: A complex curve in a complex manifold \((X, I)\) is a 1-dimensional compact complex subvariety \(C_I \subset X \).
Let $C_I \subset N$ be a complex curve in a complex nilmanifold (N, I) and $\omega \in \Lambda^2 g^*$ a two-form. We identify $\Lambda^2 g^*$ with the space of left-invariant 2-forms on the Lie group G, which descends to the space of 2-forms $\Lambda^2(N)$ on the nilmanifold $N = \Gamma \backslash G$.

Consider a functional ξ on the space of 2-forms $\Lambda^2 g^*$:

$$\xi_{C_I}(\omega) := \int_{C_I} \omega.$$
(2.3)

Such a functional defines a bivector $\xi \in \Lambda^2 g^1$.

3 Positive bivectors on a quaternionic vector space

We start with a sequence of linear-algebraic lemmas. Let V be a finite-dimensional vector space over \mathbb{C} and V^* its dual. Denote by (V, I) the pair of a vector space V with a complex structure $I \in \text{End}(V)$ on it.

Recall that the kernel of a bivector $\xi \in \Lambda^{1,1} V$ is the following set:

$$\ker \xi = \{ x \in V^* \mid \xi(x, \cdot, \cdot) = 0 \} \subset V^*.$$
(3.1)

We denote the space of positive bivectors with respect to the complex structure I on a vector space V by $\Lambda^{1,1}_{I, \text{pos}} V$.

Lemma 3.1: Let (V, I) be a vector space with a complex structure I and $\xi \in \Lambda^{1,1}_{I, \text{pos}} V$ a non-zero positive bivector. Let $V_1^* := \{ x \in V^* \mid \xi(x, Ix) = 0 \}$. Then $V_1^* = \ker \xi$.

Proof: From the definition (3.1) it is obvious that $\ker \xi \subset V_1^*$. Suppose that $x \in V_1^*$ and $x \notin \ker \xi$. Then $0 \neq [x] \in V/\ker \xi$. On the space $V/\ker \xi$ the bivector ξ is positive definite because it has no kernel and it is diagonalizable. Hence, $\xi(x, Ix) > 0$, which is a contradiction.

Let W_1 be a subspace of a vector space (W, I) and consider two maps: $p : W \rightarrow W/W_1$ and $\overline{p} : \Lambda^2 W \rightarrow \Lambda^2(W/W_1)$. There are two subspaces of

$\text{H}^* = \text{H}^*(\mathfrak{g})$ by Theorem 4.1 a complex curve C_L corresponds to the bivector ξ_{C_L}.

1Since the homology $H_*(N) = H_*(\mathfrak{g})$ by Theorem 4.1 a complex curve C_L corresponds to the bivector ξ_{C_L}.
Lemma 3.1: \(\Lambda^2 W : \Lambda^2 \ker p = W_1 \wedge W_1 \) and \(\ker \tilde{p} = W \wedge W_1 \). It is obvious that \(\Lambda^2 \ker p \subset \ker \tilde{p} \). We are going to show that \(\Lambda^1_{I, \text{pos}} W_1 \cap \ker \tilde{p} = \Lambda^1_{I, \text{pos}} W_1 \cap \Lambda^2 \ker p \).

Proof: Denote by \(W^\perp_1 \subset W^* \) the annihilator of the subspace \(W_1 \); it is isomorphic to the dual of the quotient \((W/W_1)^* \). Since \(\xi \in W \wedge W_1 \), we have \(\langle W^\perp_1, W^\perp_1 \rangle = 0 \). Therefore, \(W^\perp_1 \subset \ker \xi \) by Lemma 3.1. So, \(\xi_{|_{W^\perp_1 \cap W^\perp_1}} = 0 \), which implies that \(\xi \in \Lambda^2 W_1 \).

Recall that for any pair of orthogonal complex structures \(I, J \in \mathbb{H} \), one has

\[
J(\Lambda^{p,q}_I V) = \Lambda^{q,p}_I V, \tag{3.2}
\]

where the action of the complex structures \(I \) and \(J \) extended from \(\Lambda^{1,0}_I V \) and \(\Lambda^{0,1}_I V \) to \((p, q) \)-bivectors by a multiplicativity. Indeed, \(I \) and \(J \) anticommute on \(\Lambda^1(V) \) which implies \(J(\Lambda^{1,0}_I V) = \Lambda^{0,1}_I V \) and \(J(\Lambda^{0,1}_I V) = \Lambda^{1,0}_I V \).

Consider the operator \(W_I : \Lambda^* V_I \to \Lambda^* V_I \) defined by the formula \(W_I(\xi) = \sqrt{-1}(p-q)\xi \), where \(\xi \in \Lambda_I^{p,q} V_I \). Notice that the elements \(W_I, W_J, W_K \) generate the Lie algebra \(\mathfrak{su}(2) \) and the complex structures \(I, J \) and \(K \) are the the elements of the Lie group \(SU(2) \) related to them, \(I = \exp \frac{\pi W_I}{2}, J = \exp \frac{\pi W_J}{2} \) and \(K = \exp \frac{\pi W_K}{2} \) [V2].

Lemma 3.3: Let \(V \) be a quaternionic vector space and \(\Lambda^{1,1}_{I, \text{pos}} V \subset \Lambda^2 V \) the space of positive \((1,1)\)-bivectors on \((V, I)\). Then \(\Lambda^{1,1}_{I, \text{pos}} V \cap \Lambda^{1,1}_{I', \text{pos}} V = 0 \) for distinct complex structures \(I \) and \(I' \).

Proof: Denote the intersection \(R_{I, I'} := \Lambda^{1,1}_{I, \text{pos}} V \cap \Lambda^{1,1}_{I', \text{pos}} V \). First, suppose that \(I' = -I \), the non-zero bivector \(\xi \in R_{I,-I} \), and let \(\alpha \in V^* \). Then \(\xi(\alpha, I\alpha) > 0 \) and \(\xi(\alpha, -I\alpha) < 0 \), so there is no such a bivector \(\xi \).

Assume that \(I' \neq -I \). Then suppose that \(J \in \mathbb{H} \) is orthogonal to \(I \) and \(IJ = -JI, J^2 = -\text{Id} \). It is clear that as \(I \neq \pm I' \), \(I \) is not proportional to \(I' \), then \(I' \) can be written in a form \(I' = aI + bJ \) for some \(a, b \in \mathbb{R}, b \neq 0 \).

Let \(\xi \in R_{I, I'} \). Since \(\xi \) is a \((1,1)\)-bivector, \(W_I(\xi) = W_{I'}(\xi) = 0 \). Hence, \(W_K(\xi) = 0 \) because \(W_I \) and \(W_{aI + bJ} \) generate the Lie algebra \(\mathfrak{su}(2) \) [V2]. We obtain that \(\xi \) is an \(\mathfrak{su}(2) \)-invariant bivector. It is therefore invariant under the multiplicative action \(J(\xi)(\alpha, \beta) := \xi(J\alpha, J\beta) \) of \(J \in SU(2) \). Consider

\[
0 \leq \xi(\alpha, I\alpha) = \xi(J\alpha, JJ\alpha) = -\xi(J\alpha, I\alpha) = -\xi(\beta, I\beta), \tag{3.3}
\]
where $\beta = J\alpha$. However, $-\xi(\beta, I\beta) \leq 0$, hence $\xi = 0$. ■

Corollary 3.4: The intersection of the set of positive bivectors and $SU(2)$-invariant bivectors contains only zero bivector.

Proof: Follows from the formula (3.3). An invariant bivector has to be positive for different complex structures, which is impossible by Lemma 3.3. ■

4 Homology of a leaf of a foliation

Recall that a CW-space X with the fundamental group $\pi_1(X) = \pi$ and the higher homotopy groups $\pi_i(X) = 0$ for $i > 1$ is called a $K(\pi, 1)$-space of Eilenberg–MacLane or just $K(\pi, 1)$-space. Since the universal covering of a nilpotent Lie group is contractible, the nilmanifold $N = \Gamma \backslash G$ with the fundamental group $\pi_1(N) \approx \Gamma$ is a $K(\Gamma, 1)$-space. The cohomology of the group Γ is defined as $H^*(K(\Gamma, 1), \mathbb{Q})$.

In [N] Nomizu showed that the de Rham cohomology of a nilmanifold $N = \Gamma \backslash G$ can be computed using the left-invariant differential forms on the Lie group G.

Theorem 4.1: (Nomizu, [N, Theorem 1]) Let $N = \Gamma \backslash G$ be a nilmanifold and (Λ^*g^*, d) is the Chevalley–Eilenberg complex. The natural inclusion of the complex of the left-invariant differential forms $\Omega^{inv}(G)$ on the nilpotent Lie group G into the de Rham algebra on the nilmanifold $\Omega^{inv}(N)$ induces the isomorphism of the corresponding cohomology $H^*(g, \mathbb{R}) \approx H^*(N, \mathbb{R})$. ■

Since the nilmanifold N is $K(\Gamma, 1)$, the homology $H_*(N, \mathbb{R}) \approx H_*(\Gamma, \mathbb{R})$, hence $H_*(\Gamma, \mathbb{R}) \approx H_*(g, \mathbb{R})$. Pickel showed that instead of real coefficients we can take the rational ones, i.e. $H^*(\Gamma, \mathbb{Q}) \approx H^*(g, \mathbb{Q})$ as well [P].

Consider a nilpotent Lie group G and let Γ be its discrete subgroup, $\hat{\Gamma} \subset G$ the Mal’tsev completion of Γ, and define the Lie group $\hat{\Gamma}_R := \exp(\log(\hat{\Gamma}) \otimes \mathbb{R})$. By Theorem 2.7, Γ is a lattice in $\hat{\Gamma}_R$. Since the quotients $\Gamma \backslash G$ and $\Gamma \backslash \hat{\Gamma}_R$ are both $K(\Gamma, 1)$, we have $H_*(\Gamma \backslash G) = H_*(\Gamma \backslash \hat{\Gamma}_R)$. From Theorem 4.1 follows that $H_*(\Gamma \backslash \hat{\Gamma}_R) = H_*(\text{Lie} \hat{\Gamma}_R)$, where $\text{Lie} \hat{\Gamma}_R \subset g$ is the Lie algebra of $\hat{\Gamma}_R$ and $H_*(\text{Lie} \hat{\Gamma}_R)$ denotes the cohomology of the Chevalley–Eilenberg homology complex (2.1).
Let \(N = \Gamma \backslash G \) be a nilmanifold, \(\mathfrak{g} \) the Lie algebra of the Lie group \(G \) and \(\mathfrak{f} \subset \mathfrak{g} \) a Lie subalgebra. Let \(F := \exp \mathfrak{f} \subset G \) be the corresponding Lie group. For each \(x \in G \) define a subgroup of the lattice \(\Gamma \) as follows:

\[
\Gamma_x = \{ \gamma \in \Gamma \mid x\gamma x^{-1} \in F \}. \tag{4.1}
\]

In other words, \(\Gamma_x = \Gamma \cap x^{-1}F \).

Recall that a **distribution** on a smooth manifold \(X \) is a sub-bundle \(\Sigma \subset T X \). The distribution called **involutive** if it is closed under the Lie bracket. A **leaf** of the involutive distribution \(\Sigma \) is the maximal connected, immersed submanifold \(L \subset X \) such that \(TL = \Sigma \) at each point of \(L \). The set of all leaves is called a **foliation**.

The algebra \(\mathfrak{f} \) defines a left-invariant foliation \(\Sigma \) on \(G \). The leaves \(\mathcal{L}_x \) of the corresponding foliation on \(\Gamma \backslash G \) are diffeomorphic to \(\Gamma_x \backslash xF \) for each \(x \in G \).

Definition 4.2: A subalgebra \(\mathfrak{f} \subset \mathfrak{g} \) is said to be **rational** with respect to a given rational structure \(\mathfrak{g}_Q \) on \(\mathfrak{g} \) if \(\mathfrak{f}_Q := \mathfrak{g}_Q \cap \mathfrak{f} \) is a rational structure for \(\mathfrak{f} \), i.e. \(\mathfrak{f} = \mathfrak{f}_Q \otimes \mathbb{R} \).

Remark 4.3: The **rational homology of the leaf** \(\mathcal{L}_x \) of the foliation \(\Sigma \) is equal to

\[
H_*(\mathcal{L}_x, Q) := H_*(\Gamma_x \backslash xF, Q) = H_*(\mathfrak{f}_Q), \tag{4.2}
\]

where \(H_*(\mathfrak{f}_Q) \) is the homology of the complex dual to the rational Chevalley–Eilenberg complex (2.1). The last equality makes sense because of **Theorem 4.1** and \([P]\).

Consider the natural map of homology

\[
j : H_*(\mathcal{L}_x, Q) \longrightarrow H_*(N, Q), \tag{4.3}
\]

associated with the immersion \(\mathcal{L}_x \longrightarrow N \). Notice that \(j \) does not have to be injective.

Claim 4.4: Let \(N \) be a nilmanifold and \(X \subset N \) a subvariety tangent to the foliation \(\Sigma \) generated by the left translates of a Lie subalgebra \(\mathfrak{f} \subset \mathfrak{g} \). Then the fundamental class \([X] \in H_*(N, \mathbb{Q})\) belongs to the image of \(H_*(\mathfrak{f}_Q) \)
in $H_*(N, Q)$, where the map $\tau : H_*(f_Q) \longrightarrow H_*(N, Q)$ is obtained from (4.2) and (4.3).

Proof: Let X be a subvariety in a leaf of the foliation $\Sigma \subset TN$ and let $F := \exp f$. A leaf of Σ is diffeomorphic to $\Gamma_x \setminus xF$, hence $[X] \in \tau(H_*(\Gamma_x \setminus xF, Q))$, where we identified $H_*(\Gamma_x \setminus xF, Q) = H_*(f_Q)$.

5 Finale

Let (\mathfrak{g}, I, J, K) be a hypercomplex nilpotent Lie algebra. Define inductively

$$\mathfrak{g}_i^H := \mathfrak{h}[\mathfrak{g}_{i-1}^H, \mathfrak{g}_{i-1}^H],$$

where $\mathfrak{g}_i^H = \mathfrak{h}[\mathfrak{g}, \mathfrak{g}]$ and let $a_i := \mathfrak{g}_i^H/\mathfrak{h}[\mathfrak{g}_{i-1}^H, \mathfrak{g}_{i-1}^H]$ be the corresponding commutative quotient algebra, $i \in \mathbb{Z}_{>0}$.

Observe that for any commutative Lie algebra \mathfrak{a} its second homology group coincides with the space of all bivectors, $H_2(\mathfrak{a}, \mathbb{R}) = \Lambda^2 \mathfrak{a}$. Denote by $\Lambda_{L, pos}^{1,1} \mathfrak{a}$ the set of positive $(1,1)$-bivectors with respect to the complex structure L.

Proposition 5.1: Let \mathfrak{a} be a commutative hypercomplex Lie algebra, and $\mathfrak{s} \subset \Lambda^2 \mathfrak{a}$ a countable set of non-zero bivectors. Then for all $L \in \mathbb{CP}^1$ except at most a countable number, the intersection $\Lambda_{L, pos}^{1,1} \mathfrak{a} \cap \mathfrak{s} = \emptyset$.

Proof: By Lemma 3.3 for any non-zero $\xi \in \mathfrak{s}$ there exists at most one complex structure $L_\xi \in \mathbb{CP}^1$ such that $\xi \in \Lambda_{L_\xi, pos}^{1,1} \mathfrak{a}$. The union $\bigcup_{\xi \in \mathfrak{s}} L_\xi$ is at most countable, hence for any $L \in \mathbb{CP}^1 \setminus \bigcup_{\xi \in \mathfrak{s}} L_\xi$ the intersection $\Lambda_{L, pos}^{1,1} \mathfrak{a} \cap \mathfrak{s}$ is empty. □

Let Σ_i be the foliation on a nilmanifold N generated by the left-translates of the Lie subalgebra $\mathfrak{g}_i^H \subset \mathfrak{g} = T_eG$ and $\mathfrak{L}_{x,i} \subset N$ a leaf of the foliation Σ_i. The leaf $\mathfrak{L}_{x,i}$ is diffeomorphic to the left quotient $\Gamma_x \setminus xF_i$, where $F_i = \exp \mathfrak{g}_i^H \subset G$.

Consider the natural projection

$$p_i : \mathfrak{g}_{i-1}^H \longrightarrow a_i.$$
Let \(r_i \) be the corresponding map of the second homology:
\[
r_i : H_2(g_i^{H^1}) \longrightarrow H_2(a_i) = \Lambda^2 a_i.
\]
Then the image of a homology class in \(H_2(g_i^{H^1}) \) defines a bivector on the commutative Lie algebra \(a_i \).

Denote by \(g_i^{H^1}_Q = g_i^{H^1} \cap g_Q \). Let \(s_i := r_i(H_2(g_i^{H^1}_Q)) \subset \Lambda^2 a_i \) and \(R \subset \mathbb{CP}^1 \) be a union of
\[
R_i := R[s_i] \subset \mathbb{CP}^1
\]
the set of complex structures \(L \) such that there exists a positive bivector \(\xi \in s_i \cap \Lambda^1_{L^{pos}} a_i \). By Proposition 5.1, the set \(R_i \) is countable.

Definition 5.2: Let \(\Sigma_k \) be a holomorphic foliation obtained from the Lie subalgebra \(g_k^L = g_k + Ig_k \). A transversal Kähler form \(\omega_k \) with respect to the holomorphic foliation \(\Sigma_k \) is a closed positive \((1,1)\)-form, such that \(\ker \omega_k \) is precisely the tangent space of the foliation, i.e. \(\omega_k(\Sigma_k) = 0 \).

Proposition 5.3: Let \(C_L \) be a complex curve in a complex nilmanifold \((N, L)\), where \(L \in \mathbb{CP}^1 \) \(R_i \) and the set \(R_i \subset \mathbb{CP}^1 \) is defined in (5.1). Suppose that \(C_L \) is tangent to the foliation \(\Sigma_{i-1} \) defined by \(g_i^{H^1} \) as above. Then it is also tangent to \(\Sigma_i \).

Proof: From Claim 4.4 it follows that the fundamental class \([C_L] \in H_2(N, Q) \) of the curve \(C_L \) belongs to \(j(H_2(\Sigma_{i-1}, Q)) \subset H_2(N, Q) \), where \(j \) is the standard map on the rational second homology (4.3). Theorem 4.1 allows us to identify the fundamental class \([C_L] \in H_2(N, Q) \) with the bivector \((2.3)\) \(\xi_{C_L} =: \xi \). Under the projection \(r_i \) the fundamental class \([C_L] \) is mapped to the bivector \(r_i(\xi) \in \Lambda^2 a_i \). From the definition of the set \(R_i \) we know that \(\xi \in \ker r_i \) and from Lemma 3.2 follows that \(\xi \in \Lambda^1_{L^{pos}} \ker p_i = \Lambda^1_{L^{pos}} g_i^{H^1} \).

Suppose that \(\omega_{i-1} \in r_i^*(\Lambda^1_{L^{pos}} a_i^*) \) is a transversal Kähler form of the foliation \(\Sigma_{i-1} \). Then \(\int_{C_L} \omega_{i-1} > 0 \) unless \(C_L \) lies in the leaf of the foliation \(\Sigma_{i-1} \). However, \(\int_{C_L} \omega = 0 \) because \(\omega_{i-1} \) is closed (otherwise, referring to the analogue of Stokes’ theorem, we obtain that the volume of a compact manifold is equal zero). Since \(g_i^{H^1} \supset g_i^{H^1}_Q \) we have \(\omega_{i-1} \in \Lambda^1_{L^{pos}}(g_i^{H^1})^* \subset \Lambda^1_{L^{pos}}(g_i^{H^1^*})^* \). Hence, \(g_i^{H^1} \subset \ker \omega_{i-1} \). Hence, \(\omega_{i-1} \) is a transversal Kähler form with respect to the foliation \(\Sigma_i \) and \(C_L \) lies in a leaf of \(\Sigma_i \). \(\blacksquare \)
Assume that for some $k \in \mathbb{Z}_{>0}$ the following sequence terminates:

$$g^H_1 \supset g^H_2 \supset \cdots \supset g^H_{k-1} \supset g^H_k = 0,$$ \hspace{1cm} (5.2)

i.e. the Lie algebra g is H-solvable, see also Definition 1.5.

Corollary 5.4: Let $L \in \mathbb{C}P^1 \setminus R$, where $R = \bigcup R_i$ is the countable subset defined in (5.1), and assume that the sequence (5.2) terminates to zero. Then the complex nilmanifold (N, L) contains no complex curves.

Proof: Suppose that the sequence (5.2) vanishes on the k-th step, i.e. $\Sigma_k = \{0\}$. Then Corollary 5.4 follows from the Proposition 5.3 and the induction on i. ■

Theorem 5.5: Let (N, I, J, K) be a hypercomplex nilmanifold and assume that the corresponding Lie algebra is H-solvable. Then there are no complex curves in the general fiber of the holomorphic twistor projection $T^w(N) \rightarrow \mathbb{C}P^1$.

Proof: Follows from Corollary 5.4. ■

References

[AV] Abasheva A., Verbitsky M., *Algebraic dimension and complex subvarieties of hypercomplex nilmanifolds*, https://doi.org/10.48550/arXiv.2103.05528 (Cited on pages 4 and 5.)

[BDV] Barberis M. L., Dotti I. G., Verbitsky M. *Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry*, Math. Res. Lett. 16 (2009), no. 2, 331–347. (Cited on page 5.)

[BG] Benson C., Gordon C. S., *Kähler and symplectic structures on nilmanifolds*, Topology, 27(4), 513–518, 1988 (Cited on page 2.)

[Besse] Besse A. L., *Einstein manifolds*, Classics in Mathematics, Springer-Verlag, Berlin, 2008, Reprint of the 1987 edition. (Cited on page 10.)

[CG] Corwin L., Greenleaf F. P., *Representations of Nilpotent Lie Groups and Their Applications. Part I, Basic Theory and Examples*, Cambridge Univ. Press, Cambridge, UK, 1990 (Cited on page 8.)
Yulia Gorginyan
Complex curves in hypercomplex nilmanifolds with solvable Lie algebras

[DF] Dotti I., Fino A., *Hyperkähler torsion structures invariant by nilpotent Lie groups*, Class. Quantum Gravity, 2002 (Cited on page 5.)

[Has1] Hasegawa, K., *Complex and Kähler structures on compact solvmanifolds*, (English summary) Conference on Symplectic Topology. J. Symplectic Geom. 3 (2005), no. 4, 749–767 (Cited on page 2.)

[Has] K. Hasegawa. *Minimal models of nilmanifolds*, Proc. Amer. Math. Soc., 106(1): 65-71, 1989. (Cited on pages 2 and 5.)

[K] Kaledin D., *Integrability of the twistor space for a hypercomplex manifold*, Selecta Math. New Series, 4 (1998), 271–278 (Cited on page 10.)

[Mal] Maltsev A. I., *On a class of homogeneous spaces*, Izv. Akad. Nauk. Armyan. SSSR Ser. Mat. 13 (1949), 201-212. (Cited on pages 2, 7, and 8.)

[Mal2] Maltsev A. I., *Nilpotent torsion-free groups*, Izv. Akad. Nauk SSSR Ser. Mat., 13:3 (1949), 201–212 (Cited on pages 7 and 8.)

[Mil] Millionschikov D. V., *Complex structures on nilpotent Lie algebras and descending central series*, Rend. Semin. Mat. Univ. Politec. Torino 74 (2016), no. 1, 163–182. (Cited on page 4.)

[N] Nomizu K., *On the cohomology of compact homogeneous space of nilpotent Lie group*, Ann. of Math. (2) 59 (1954), 531-538. (Cited on page 13.)

[Ob] Obata M., *Affine connections on manifolds with almost complex, quaternionic or Hermitian structure*, Jap. J. Math., 26 (1955), 43-79. (Cited on page 9.)

[P] Pickel P. F., *Rational cohomology of nilpotent groups and Lie algebras*, Comm. Algebra 6 (1978), no. 4, 409–419. (Cited on pages 13 and 14.)
[Rol] Rollenske S., *Dolbeault cohomology of nilmanifolds with left-invariant complex structure*, Complex and differential geometry, 369-392, Springer Proc. Math., 8, Springer, Heidelberg, 2011. (Cited on page 5.)

[S] Salamon S. M., *Complex Structures on Nilpotent Lie Algebras*, J.Pure Appl. Algebra, 157 (2001), 311–333. (Cited on page 4.)

[SV] Soldatenkov A., Verbitsky M., *Holomorphic Lagrangian fibrations on hypercomplex manifolds*, International Mathematics Research Notices 2015 (4), 981-994 (Cited on page 5.)

[Th] Thurston W. P., *Some simple examples of symplectic manifolds*, Proc. Amer. Math. Soc. 55 (1976), 467-468. (Cited on page 2.)

[V2] Verbitsky M., *Quaternionic Dolbeault complex and vanishing theorems on hyperkahler manifolds*, Compos. Math. 143 (2007), no. 6, 1576–1592 (Cited on page 12.)

[W] Winkelmann J., *Complex analytic geometry of complex parallelizable manifolds*, Mém. Soc. Math. Fr. (N.S.) No. 72-73, 1998 (Cited on page 2.)

Yulia Gorginyan
Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina, 110
Jardim Botânico, CEP 22460-320
Rio de Janeiro, RJ - Brasil
also:
Laboratory of Algebraic Geometry,
National Research University (HSE),
Department of Mathematics, 6 Usacheva Str.
Moscow, Russia
ygorginyan@hse.ru