Lepton Anomalous Magnetic Moments in an S_4 Flavor-Symmetric Extra U(1) Model

Yasuhiro Daikoku1,* and Hiroshi Okada2,3,†

1Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
2Asia Pacific Center for Theoretical Physics (APCTP) - Headquarters San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea
3Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

(Dated: December 1, 2020)

Abstract

We study supersymmetric extra U(1) model with S_4 flavor symmetry. The flavor symmetry not only stabilizes proton but also suppresses the flavor changing processes without raising the supersymmetry breaking scale. After the flavor symmetry is broken, the Yukawa hierarchy is realized by the Froggatt-Nielsen mechanism. The relevant Peccei-Quinn scale for axion dark matter: $f_a/M_P \sim 10^{-5}$ accounts for small up quark mass. The muon mass scale: $m_\mu/M_W \sim 10^{-3}$ is related to the $O(10^{-6})$ mass degeneracy of right-handed neutrinos, from which we can identify the relevant scale of right-handed neutrino mass for baryon asymmetry of the Universe as TeV. Due to the existence of the extra higgsinos, the discrepancies of the anomalous magnetic moments of the muon and electron between the standard model predictions and the observations are explained by the chargino-sneutrino contributions simultaneously.

*Electronic address: yasu_daikoku@yahoo.co.jp
†Electronic address: hiroshi.okada@apctp.org
I. INTRODUCTION

The standard model (SM) is a successful theory of gauge interactions; however, there are many unsolved issues, such as how to generate the Yukawa hierarchy, the tiny mass of neutrino and the baryon asymmetry of the Universe (BAU), how to stabilize the electroweak scale \(M_W \sim 10^2 \text{GeV} \) against the Planck scale \(M_P \sim 10^{18} \text{GeV} \) quantum corrections, why the strong interaction conserves CP and what dark matter is. With introducing heavy right-handed neutrino (RHN), the smallness of neutrino mass and the origin of baryon asymmetry are accounted for simultaneously by the seesaw mechanism [1] and leptogenesis [2] respectively. The well known solution of the Yukawa hierarchy problem is the Froggatt-Nielsen mechanism [3]. The strong-CP problem is solved by the Peccei-Quinn mechanism [4] which accommodates a candidate for dark matter; axion [5].

The elegant solution of the large scale hierarchy problem is supersymmetry (SUSY) [6] which is the main target of the LHC. The existence of a light Higgs boson (such as 125GeV [7]) supports the idea of SUSY. Furthermore, it is well known that the long-standing problem of the discrepancy of muon anomalous magnetic moment \((g - 2)_\mu (\equiv 2a_\mu) \) between the SM prediction and the experimental value [8]:

\[
\Delta a_\mu = a_\mu(\text{exp}) - a_\mu(\text{SM}) = (27.9 \pm 7.6) \times 10^{-10},
\]

(1)
can be explained by SUSY [9]. If this explanation is true, then some light sparticles should exist, hence SUSY is verifiable for the LHC or a future collider.

In the minimal supersymmetric standard model (MSSM), as the Higgs superfields \(H^U \) and \(H^D \) are vector-like under the SM gauge symmetry \(G_{\text{SM}} = \text{SU}(3)_c \times \text{SU}(2)_W \times \text{U}(1)_Y \), we can introduce a \(\mu \) term:

\[
\mu H^U H^D,
\]

(2)
into the superpotential. The natural size of the parameter \(\mu \) is \(O(M_P) \), however, \(\mu \) must be \(O(M_W) \) in order for the electroweak gauge symmetry to break. This is the so-called \(\mu \) problem, which is solved by making the Higgs superfields chiral under a new U(1) symmetry. Based on the \(E_6 \)-inspired extra U(1) model [10], we can eliminate a fundamental \(\mu \) term from the superpotential and introduce a trilinear term:

\[
\lambda S H^U H^D,
\]

(3)
which is converted into an effective μ term when the singlet S develops an $O(1\text{TeV})$ vacuum expectation value (VEV) [11]. To prevent the squared masses of sleptons from receiving large D-term contribution of the U(1), we introduce the U(1) under which the lepton doublet L is neutral. The new gauge symmetry requires additional Higgs superfields which contribute to the lepton anomalous magnetic moments.

Though we can account for $(g - 2)_\mu$ in this framework, some problems remain. The extra U(1) symmetry requires colored Higgs superfilelds G, G^c to cancel gauge anomaly and replaces the baryon- and lepton-number violating terms in the MSSM by single G interactions:

$$GQQ + G^c U^c D^c + G^c U E^c + G^c Q L + G N^c D^c,$$

which induce too rapid proton decay. Successful leptogenesis requires 10^{11}GeV scale RHN, which contradicts with the low reheating temperature as $T_{RH} < 10^7\text{GeV}$ which is required to avoid an overproduction of the gravitino [12]. Moreover, such a large mass scale is not testable for a collider. The light slepton induces too large flavor changing processes such as $\mu \rightarrow e + \gamma$ when the soft SUSY breaking squared masses are non-universal as is naively expected [13]. The extra Higgs bosons induce additional contributions to flavor changing process [14]. These problems give additional information about the flavor structure.

To solve these problems, we introduce a flavor symmetry. There are many candidates of continuous flavor symmetries such as U(1) [15] SU(2) [16], SU(3)[17]. In this paper, we adopt a discrete S_4 flavor symmetry [18, 19]. Assigning the RHNs to singlet and doublet, the resonant leptogenesis is realized, which resolves the contradiction between the reheating temperature and the RHN mass scale by reducing later [20]. Assigning the left-handed leptons and quarks to singlets and doublets respectively, the flavor violating processes are suppressed by a degeneracy of the sfermion mass [21][22]. The Yukawa hierarchies of the quarks and the charged leptons are realized by assigning the right handed fermions to singlets. In this case, the discrepancy of the size of representations between left-handed and right-handed fermions causes suppression of mass in the same manner as SU(2)$_W$. We should keep in mind that the hierarchy between fermion mass scale and the Planck scale is generated by the discrepancy of the size of the representations of SU(2)$_W$ between the left-handed and right-handed fermions. We adopt this manner for suppressing single G-interactions, too. Assigning G, G^c to triplets, the single G interactions are forbidden. The
existence of S_4 triplets compels all fermions to consist of three generations to cancel gauge
anomaly, which is the possible answer to the question, why three generations exist, (or to
the Rabi’s question, “Who ordered that?”). The number of generations is fixed to the size of
the flavor representation of G, G^c which we call “G Higgs” (generation-number-imprinted-
colored-Higgs). If the G Higgs decays dominantly to the RHN, the seesaw mechanism and
leptogenesis may be verified directly at a collider experiment. The G Higgs is a Rosetta
stone to decipher the undeciphered part of flavor physics. The LHC or a future collider may
reveal what is imprinted in the particle.

Recent observation of the fine structure constant [23] gives new prediction to the electron
$(g - 2)_e$, which has small discrepancy with experimental value [24]:

$$\Delta a_e = a_e(\text{exp}) - a_e(\text{SM}) = -(8.7 \pm 3.6) \times 10^{-13}.$$ \quad (5)

Several papers studying both $g - 2$ anomalies based on SUSY can be found in the literature
[25]. As the universal new physics contribution gives wrong prediction:

$$\frac{m^2_{\mu}a_{\mu}(\text{NP})}{m^2_{\mu}a_{\mu}(\text{NP})} \simeq 1,$$ \quad (6)

for the experimental value:

$$\frac{m^2_{\mu}\Delta a_{\mu}}{m^2_{\mu}\Delta a_{\mu}} \simeq -14,$$ \quad (7)

there should be a non-trivial flavor structure. Several attempts to explain it based on flavor
symmetry or on other frameworks can be found in the literatures ([26] [27]). In this paper
we explain both $g - 2$ anomalies simultaneously based on our model.

II. SYMMETRY BREAKING

A. Gauge symmetry

We extend the gauge symmetry from G_{SM} to $G_{\text{32111}} = G_{\text{SM}} \times U(1)_S \times U(1)_Z$, and
introduce new superfields N^c, S, G, G^c which are embedded in the 27 representation of E_6
with quark and lepton superfields Q, U^c, D^c, L, E^c and Higgs superfields H^U, H^D. Here, N^c
is the RHN, S is the G_{SM} singlet, and G, G^c are colored Higgses. The two U(1) charges, X
and Z are defined by the linear combinations of Q_ψ and Q_χ as

$$X = \frac{\sqrt{15}}{4} Q_\psi + \frac{1}{4} Q_\chi, \quad Z = -\frac{1}{4} Q_\psi + \frac{\sqrt{15}}{4} Q_\chi,$$ \quad (8)
TABLE I: G_{32111} assignment of superfields. Here the x, y, z and q_S are charges of $U(1)_X$, $U(1)_Y$, $U(1)_Z$ and $U(1)_S$, and Y is hypercharge. The charges of $U(1)_\psi$ and $U(1)_\chi$ (Q_ψ and Q_χ) are also given.

where $E_6 \supset SO(10) \times U(1)_\psi \supset SU(5) \times U(1)_\chi \times U(1)_\psi$.

The definition of $U(1)_S$ charge under which the left-handed lepton is neutral is given by

$$Q_S = \sqrt{\frac{2}{5}} Y + \sqrt{\frac{3}{5}} X,$$

which is automatically anomaly free. Note that it is impossible to embed G_{32111} in E_6. The charge assignment of the superfields are given in Table 1. To break $U(1)_Z$, we add new vector-like superfields Φ, Φ^c, where Φ^c is the same representation as the RHN N^c under the G_{32111}, and its anti-representation Φ originates from 27^*. To discriminate between N^c and Φ^c, we introduce Z_2^Φ symmetry under which Φ^c and Φ are odd. The invariant superpotential under these symmetries is given by

$$W_{32111} = W_0 + W_S + W_G + W_\Phi,$$

$$W_0 = Y^U H^U Q^c U^c + Y^D H^D Q D^c + Y^E H^D L E^c + Y^N H^U N^c + \frac{1}{M_P} Y^M \Phi \Phi N^c N^c,$$

$$W_S = k S G G^c + \lambda S H^U H^D,$$

$$W_G = Y^Q Q G Q Q + Y^{UD} G^c U^c D^c + Y^{UE} G U^c E^c + Y^{QL} G^c Q L + Y^{DN} G D^c N^c,$$

$$W_\Phi = M_\Phi \Phi \Phi^c + \frac{1}{M_P} (\Phi \Phi^c)^2 + \cdots ,$$
where $M_P = 2.4353 \times 10^{18}\text{GeV}$ is the reduced Planck scale. Since the interactions in W_S drive the squared mass of S to be negative through renormalization group equations, the $U(1)_S$ symmetry is broken spontaneously and the $U(1)_S$ gauge boson Z' acquires the mass

$$m(Z') \simeq \frac{\sqrt{5}}{2} g_S \langle S \rangle,$$

where $\langle H^D \rangle \ll \langle S \rangle$ is assumed based on the experimental constraint for Z'_ψ [28]:

$$m(Z'_\psi) > 3900\text{GeV}. \tag{16}$$

The constraint for the Z' mass is not far from this bound. In this paper we assume $\langle H^{U,D} \rangle / \langle S \rangle \sim O(10^{-2})$.

If $M_\Phi = 0$ in W_Φ and the origin of the potential $V(\Phi, \Phi^c)$ is unstable, then Φ, Φ^c develop large VEVs along the D-flat direction of $\langle \Phi \rangle = \langle \Phi^c \rangle = V$, $U(1)_Z$ is broken, and the $U(1)_Z$ gauge boson Z'' acquires the mass

$$m(Z'') = \frac{4}{3} \sqrt{\frac{5}{2}} g_Z V. \tag{17}$$

After the gauge symmetry breaking, since the R-symmetry defined by

$$R = Z_2^\Phi \exp \left[\frac{i\pi}{4} (g_S - 2y + 3z) \right], \tag{18}$$

remains unbroken, the lightest SUSY particle (LSP) is stable.

B. Flavor symmetry

The superpotential defined in Eq.(10)-(14) has the following problems. As the interaction W_G induces a proton decay that is too fast, it must be strongly suppressed. The mass parameter M_Φ in W_Φ must be forbidden in order to allow for $U(1)_Z$ symmetry breaking. In W_0, the contributions to flavor-changing processes from the extra Higgs bosons must be suppressed. These problems should be solved by flavor symmetry.

If we introduce S_4 flavor symmetry and assign G, G^c to be triplets, then W_G [defined in Eq. (13)] is forbidden. This is because any products of doublets and singlets of S_4 do not contain triplets. However, as the existence of a G Higgs with a lifetime longer than 0.1s spoils the success of big bang nucleosynthesis (BBN), the S_4 symmetry must be broken. Therefore we assign Φ^c to be a triplet in order to break $U(1)_Z$ and S_4 at the same time and
assign Φ to be a doublet and a singlet in order to forbid $M_\Phi \Phi \Phi^c$. With these assignments, S_4 symmetry is broken due to the VEV of Φ^c and the effective trilinear terms which correspond to W_G are induced from nonrenormalizable terms. The size of the VEV of Φ is fixed by the
superpotential

\[W_{X\Phi} = \frac{1}{M_P} \left[X^{14} + Y^X X^{10}(\Phi\Phi^c)^2 + X^6(\Phi\Phi^c)^3 + X^6(\Phi\Phi^c)^4 + X^4(\Phi\Phi^c)^5 + X^2(\Phi\Phi^c)^6 + (\Phi\Phi^c)^7 \right], \]

(19)

and the soft SUSY-breaking terms as follows:

\[\langle X \rangle = \langle \Phi \rangle = 10^{-\frac{5}{12}}, \]

(20)

where \(X \) is a gauge singlet. We assume that the global minimum of the potential \(V(X, \Phi, \Phi^c) \) is at the \(S_3 \)-symmetric vacuum and along with the D-flat direction of \(U(1) \) as follows:

\[\langle \Phi_1 \rangle = \langle \Phi_2 \rangle = 0, \quad \langle X \rangle = \langle \Phi_3 \rangle = \sqrt{3} \langle \Phi_1^c \rangle = \sqrt{3} \langle \Phi_2^c \rangle = \sqrt{3} \langle \Phi_3^c \rangle = V \equiv 10^{-\frac{5}{12}} M_P. \]

(21)

The assignments of the other superfields are determined based on the following criteria:

1) the mass matrices of quarks and leptons are consistent with the observed mass hierarchies and the Cabibbo-Kobayashi-Maskawa (CKM) and Maki-Nakagawa-Sakata (MNS) matrices;
2) the third-generation Higgses \(H^U_3, H^D_3 \) are specified as the dominant component of MSSM Higgses;
3) the experimental constraints for the flavor violating processes are satisfied;
4) the resonant leptogenesis mechanism works;
5) an accidental Peccei-Quinn \(U(1) \) global symmetry is included;
6) two anomalies in \((g - 2)_e \) and \((g - 2)_\mu \) are accounted for. The representation of all superfields under the flavor symmetry is given in Table 2.

In order to realize the Yukawa hierarchies, we introduce gauge singlet flavon superfields \(F_{1,2,3}^{A,B,C}, R_i, T_i \) and fix their VEVs as follows:

\[\frac{\langle F_{1,2,3}^A \rangle}{M_P} = \epsilon^3 (c_a, s_a, 1), \quad \frac{\langle F_{1,2,3}^B \rangle}{M_P} = \epsilon^3 (\alpha c_b, \beta s_b, 1), \quad \frac{\langle F_{1,2,3}^C \rangle}{M_P} = \epsilon^3 (c_c, s_c, 1), \]
\[\frac{\langle R_i \rangle}{M_P} = \epsilon^5 (c_R, s_R), \quad \frac{\langle T_i \rangle}{M_P} = \epsilon^5 (c_T, s_T), \quad \epsilon = 0.1, \quad |\alpha| = |\beta| = 1, \]
\[c_x \equiv \cos \theta_x, \quad s_x \equiv \sin \theta_x \quad (x = a, b, c, R, T, \cdots), \]

(22)

where \(\alpha \) and \(\beta \) are complex. In this paper, we assume that the original Lagrangian has CP symmetry and all parameters in it are real. Therefore the complex VEVs given in Eq. (22) induce spontaneous CP violation.

The superpotentials of \(F_{1,2,3}^X \) are given by

\[W_{FX} = \frac{1}{M^4} \left[(E_2^X)^2 + (F_3^X)^2 E_2^X + (F_3^X)^4 \right] E_3^X, \]

(23)
for $X = A, B, C$, respectively, where $E_2 X = (F_1 X)^2 + (F_2 X)^2$ and $E_3 X = 3(F_1 X)^2 F_2 X - (F_2 X)^3$ are S_4 invariants. The S_4 invariants $E_2^3 E_3, F_3^3 E_2 E_3, F_3^4 E_3$ have nine different spurions $a_{1,2,\ldots,9}$:

$$E_2^3 E_3 = a_1 F_1^6 F_2 + a_2 F_1^4 F_2^3 + a_3 F_1^2 F_2^5 + a_4 F_2^7, \quad (24)$$

$$F_3^2 E_2 E_3 = a_5 F_1^4 F_2 F_3^2 + a_6 F_1^2 F_2^3 F_3^2 + a_7 F_2^5 F_3^2, \quad (25)$$

$$F_3^4 E_3 = a_8 F_1^2 F_2 F_3^4 + a_9 F_2^3 F_3^4, \quad (26)$$

where $a_1 = 3, a_2 = 5, a_3 = 1, a_4 = -1, a_5 = 3, a_6 = 2, a_7 = -1, a_8 = 3, a_9 = -1$ and F_i is the S_4 doublet and F_3 is the singlet. Since the number of spurions ($= 9$) is larger than the dimension ($= 3$) of the vector space spanned by the nine charge vectors as follows:

$$a_1 : (6, 1, 0), \quad a_2 : (4, 3, 0), \quad a_3 : (2, 5, 0), \quad a_4 : (0, 7, 0), \quad a_5 : (4, 1, 2), \quad a_6 : (2, 3, 2), \quad (27)$$

$$a_7 : (0, 5, 2), \quad a_8 : (2, 1, 4), \quad a_9 : (0, 3, 4); \quad \text{for} \quad F_1 (-1, 0, 0), \quad F_2 (0, -1, 0), \quad F_3 (0, 0, -1),$$

spontaneous CP violation is not forbidden (see [30]).

The scale of VEV is fixed as follows. If the superpotential of the gauge singlet superfield Ψ is given by

$$W = \frac{\Psi^n}{n M_P^{n-3}}, \quad (28)$$

then the potential of Ψ is given by

$$V(\Psi) = m_\Psi^2 |\Psi|^2 - \left(\frac{A \Psi^n}{M_P^{n-3}} + h.c. \right) + \left(\frac{|\Psi^{n-1}|^2}{M_P^{2n-6}} \right), \quad (29)$$

where $m_\Psi \sim A \sim m_{\text{SUSY}} \sim O(1) \text{TeV}$ is assumed. At the global minimum $\langle \Psi \rangle \neq 0$, because each of the terms in the potential should be balanced, the scale of the VEV is fixed by

$$\frac{\langle \Psi \rangle}{M_P} = \left(\frac{m_{\text{SUSY}}}{M_P} \right)^{1/(n-2)}. \quad (30)$$

We assume that the effect of SUSY breaking in the hidden sector is mediated by gravity and induces soft SUSY-breaking terms in the observable sector. Since these terms are non-universal in general, large flavor-changing processes are induced by the sfermion exchange. From the experimental constraints on them, the assignments of quarks and leptons under the flavor symmetry are restrictive.

After the flavor symmetry breaking, the soft breaking scalar squared mass matrices become non-diagonal. For the Higgs scalars, this gives the mixing mass terms

$$V \supset m_{UB}^2\epsilon^3(H_3^U)^*(c_c H_1^U + s_c H_2^U) + m_{DB}^2 \epsilon^3(H_3^D)^* H_i^D (c_c H_1^D + s_c H_2^D) + m^2 \epsilon^5 (S_1)^* (c_s S_2 + s_s S_3) + h.c., \quad (31)$$
which compel the extra Higgs scalars to develop VEVs as

\[
\langle H_i^U \rangle = N_U \epsilon^3 (c_c, s_c) v_u, \quad \langle H_i^D \rangle = N_D \epsilon^3 (c_c, s_c) v_d, \quad \langle S_1 \rangle = O(\epsilon^5) v_s, \quad (32)
\]

where we put

\[
\langle H_3^U \rangle = v_u = 150.7 \text{GeV}, \quad \langle H_3^D \rangle = v_d = 87.0 \text{GeV}, \quad \sqrt{v_u^2 + v_d^2} = v = 174.0 \text{GeV},
\]

\[
\langle S_2 \rangle = c_s v_s, \quad \langle S_3 \rangle = s_s v_s, \quad \langle S \rangle = \sqrt{\langle S_2 \rangle^2 + \langle S_3 \rangle^2} = v_s \geq 9581 \text{GeV}. \quad (33)
\]

The constraint for \(v_s\) is derived from Eq.(16) and the assumption: \(g_S(1 \text{TeV}) = g_Y(1 \text{TeV}) = 0.3641\). As the same effects affect the flavons, the VEV directions given in Eq.(21) are perturbed as follows:

\[
\langle \Phi_1 \rangle \sim \langle \Phi_2 \rangle \sim O(\epsilon^6) V, \quad \sqrt{3} \langle \Phi_a^c \rangle = (1 + O(\epsilon^6)) V, \quad \langle F_A^4 \rangle = \epsilon^3 (c_a + O(\epsilon^6)) M_P, \quad \cdots \quad (34)
\]

and so on. Note that the dominant parts of the scalar squared mass matrices of the extra Higgs and G Higgs are diagonal and degenerated. Due to the smallness of VEVs of the extra Higgs bosons, the superpartners of the extra Higgs and G Higgs also have diagonal and degenerated mass matrices. Therefore the trace of \(S_4\) flavor symmetry is imprinted in their mass spectra which may be testable for the LHC or a future collider.

C. Accidental Peccie-Quinn symmetry

In this paper, we adopt axion-flavon unification scenario [31] which can be embedded into the non-abelian flavor symmetric models, for example: \(A_4\) [32], \(D_6\) [33], \(T'\) [34], \(SL_2(F_3)\) [35] and into the supersymmetric model: [36] too. As the cut off scale of our model is the Planck scale \(M_P\), the way to embed the axion into flavon is restrictive. For the allowed region of the PQ scale: \(10^8(\text{SN1987A}) < f_a < 10^{12}(\text{Dark Mater}) \text{GeV}\), the order of the effective Yukawa coupling is given by

\[
Y_{\text{eff}} = \frac{f_a}{M_P} \sim 10^{-10} \sim 10^{-6}, \quad (35)
\]

which is not sizable for the second and third generation Yukawa couplings. In this paper we identify \(Y_{\text{eff}}\) as the up quark Yukawa coupling [37].

At the leading order, the potential of flavons \(R_i, T_i\) is given by

\[
V = m^2_R |R|^2 + m^2_T |T|^2 - \frac{A}{M_P} (R^4 T + \text{h.c.}) + \frac{1}{M_P} \left[|R|^4 + |4R^3 T|^2 \right], \quad (36)
\]
where $m_{R} \sim m_{T} \sim m_{SUSY}$ is assumed and unimportant S_{4} indexes are omitted. As this potential is invariant under the redefinition of fields as
\begin{equation}
R \rightarrow e^{i\theta} R, \quad T \rightarrow e^{-4i\theta} T, \quad U_{1}^{c} \rightarrow e^{-i\theta} U_{1}^{c},
\end{equation}
it has an accidental Peccei-Quinn U(1) symmetry [38], hence the strong-CP problem is solved by the Peccei-Quinn mechanism. We assume that the F-flat direction: $R = 0, T = \infty$ is stabilized due to the positive squared mass m_{T}^{2}. The phase of flavon a defined by
\begin{equation}
R = f_{a} e^{ia/f_{a}}, \quad T = f_{a} e^{-4ia/f_{a}}, \quad f_{a} = 10^{13} \text{GeV},
\end{equation}
takes the role of axion, where f_{a} is a $U(1)_{PQ}$ breaking scale.

Taking account of next leading order superpotential
\begin{equation}
W_{PQB} = \frac{(RT^{4})^{3}(F^{B})^{3}X^{4}}{M_{P}^{19}} = \frac{\epsilon^{13}}{M_{P}^{12}}(RT^{4})^{3},
\end{equation}
this accidental U(1) symmetry is explicitly broken and the low energy axion potential is modified as
\begin{equation}
V_{a} = -\Lambda_{QCD}^{4} \cos \left(\theta_{0} + \frac{a}{f_{a}}\right) - \frac{\epsilon^{13} m_{SUSY} f_{a}^{15}}{M_{P}^{12}} \cos(45a/f_{a}),
\end{equation}
which sifts the global minimum from $\theta_{QCD} = 0$ to
\begin{equation}
\theta_{QCD} = \frac{45\epsilon^{13} m_{SUSY} f_{a}^{15}}{M_{P}^{12} \Lambda_{QCD}} \sim 10^{-27}.
\end{equation}
As the experimental constraint on the neutron electric moment: $\theta_{QCD} < 10^{-10}$ is satisfied, this U(1) symmetry has sufficient quality.

The density parameter of the coherent oscillation of the axion is evaluated as
\begin{equation}
\frac{\Omega_{a}}{\Omega_{CDM}} \sim \theta_{i}^{2} \left(\frac{f_{a}}{10^{12} \text{GeV}}\right)^{7},
\end{equation}
where θ_{i} is the initial value of the strong-CP phase when the QCD potential of the axion is switched on. In this paper, we assume $\theta_{i} \sim 0.3$ and dark matter is dominated by the axion. As the domain wall number of this model is $N_{DW} = 1$, our model is free from a domain wall problem of the axion. Furthermore, we assume that the flavor symmetry is not recovered both during inflation (e.g. due to the negative Hubble induced mass terms) and after reheating (due to the low reheating temperature) hence a domain wall problem of the discrete flavor symmetry is avoided [39]. As the flavon multiplets, including the axino which is the superpartner of the axion, have TeV scale mass, the thermal production of them is suppressed due to the low reheating temperature.
III. QUARK SECTOR

The superpotential of the quark sector is given by

\[W = H_3^U Q Y^U U^c + H_3^D Q Y^D D^c + H_i^U Q Y_{i1}^U U^c + H_i^D Q Y_{i1}^D D^c, \]

(43)

where the Yukawa matrices are given by

\[
Y^U = \begin{pmatrix}
\epsilon^6 Y_1 U^c_R & -\epsilon^3 Y_2 s_c & \epsilon^4 Y_3 U^c_b \\
\epsilon^6 Y_1 s_R & \epsilon^4 Y_2 c & \epsilon^4 Y_3 U^c_b \\
\epsilon^{25} Y_5 U^c & \epsilon^{22} Y_6 U^c & Y_9 U^c
\end{pmatrix}, \quad Y_i^U = \begin{pmatrix}
\epsilon^9 Y_{i11} U^c & \epsilon^6 Y_{i12} U^c & \epsilon^9 Y_{i13} U^c \\
\epsilon^9 Y_{i21} U^c & \epsilon^6 Y_{i22} U^c & \epsilon^9 Y_{i23} U^c \\
\epsilon^{28} Y_{i31} U^c & \epsilon^{25} Y_{i32} U^c & \epsilon^3 Y_{i33} U^c
\end{pmatrix}, \quad (44)
\]

\[
Y^D = \begin{pmatrix}
\epsilon^5 Y_1 D s_a & \epsilon^4 Y_2 D c_a & \epsilon^4 Y_3 D c_b \\
-\epsilon^5 Y_1 D c_a & \epsilon^4 Y_2 D s_a & \epsilon^4 Y_3 D s_b \\
\epsilon^{24} Y_5 D & \epsilon^{23} Y_6 D & \epsilon^2 Y_9 D
\end{pmatrix}, \quad Y_i^D = \begin{pmatrix}
\epsilon^{23} Y_{i11} D & \epsilon^{22} Y_{i12} D & \epsilon^{22} Y_{i13} D \\
\epsilon^{23} Y_{i21} D & \epsilon^{22} Y_{i22} D & \epsilon^{22} Y_{i23} D \\
\epsilon^{42} Y_{i31} D & \epsilon^{41} Y_{i32} D & \epsilon^{20} Y_{i33} D
\end{pmatrix}. \quad (45)
\]

As the Kähler potential receives the effect of the flavor violation, the superfields must be redefined as

\[
U^c \rightarrow V_K(U) U^c, \quad D^c \rightarrow V_K(D) D^c, \quad Q \rightarrow V_K(Q) Q, \quad (46)
\]

\[
V_K(U) = \begin{pmatrix}
1 & \epsilon^9 k_{12} U s_R & \epsilon^{10} k_{13} U a^U \\
\epsilon^9 k_{12} s_R & 1 & \epsilon^7 k_{23} U a^U \\
\epsilon^{10} k_{13} (a^U_1)^* & \epsilon^7 k_{23} (a^U_2)^* & 1
\end{pmatrix}, \quad (47)
\]

\[
V_K(D) = \begin{pmatrix}
1 & i \epsilon^7 k_{12} D s_{2b} & \epsilon^7 k_{13} D a^D \\
-\epsilon^7 k_{12} s_{2b} & 1 & \epsilon^6 k_{23} D a^D \\
\epsilon^7 k_{13} (a^D_2)^* & \epsilon^6 k_{23} (a^D_2)^* & 1
\end{pmatrix}, \quad (48)
\]

\[
V_K(Q) = \begin{pmatrix}
1 & \epsilon^6 k_{12} Q a_Q & \epsilon^4 k_{3} Q c_b a \\
\epsilon^6 k_{12} (a_Q)^* & 1 & \epsilon^4 k_{3} Q s_b \beta \\
\epsilon^4 k_{3} c_b a^* & \epsilon^4 k_{3} s_b \beta^* & 1
\end{pmatrix}. \quad (49)
\]
in order to get canonical kinetic terms [40]. As the result, the quark Yukawa matrices are redefined as

\[
(Y^U)' = V_K^T(Q)Y^UV_K(U), \quad (Y^{U1})' = V_K^T(Q)Y^{U1}V_K(U),
\]

\[
(Y^D)' = V_K^T(Q)Y^DV_K(D), \quad (Y^{D1})' = V_K^T(Q)Y^{D1}V_K(D),
\]

\[
(Y^U)' = \begin{pmatrix}
Y_1^U c_R e^6 & -Y_2^U s_R e^3 & O(e^4) \\
Y_1^U s_R e^6 & Y_2^U c_c e^3 & O(e^4) \\
O(e^{10}) & O(e^7) & Y_3^U
\end{pmatrix}, \quad (Y^U_i)' = \begin{pmatrix}
e^6 & e^6 & e^7 \\
e^6 & e^6 & e^7 \\
e^{13} & e^{10} & e^3
\end{pmatrix},
\]

\[
(Y^D)' = \begin{pmatrix}
Y_1^D s_a e^5 & Y_2^D c_a e^4 & Y_4^D \alpha_c e^4 \\
-Y_1^D c_a e^5 & Y_2^D s_a e^4 & Y_4^D \beta_s e^4 \\
O(e^9) & O(e^8) & Y_3^D e^2
\end{pmatrix}, \quad (Y^D_i)' = \begin{pmatrix}
e^{23} & e^{22} & e^{22} \\
e^{23} & e^{22} & e^{22} \\
e^{27} & e^{26} & e^{20}
\end{pmatrix}.
\]

Likewise, the Higgs superfields must be redefined as

\[
H^U \rightarrow V_K(H^U)H^U, \quad H^D \rightarrow V_K(H^D)H^D,
\]

\[
V_K(H^U) = \begin{pmatrix}
1 & \rho_1 e^6 & k_U c_c e^3 \\
\rho_1^* e^6 & 1 & k_U s_c e^3 \\
k_U c_c e^3 & k_U s_c e^3 & 1
\end{pmatrix},
\]

\[
V_K(H^D) = \begin{pmatrix}
1 & \rho_2 e^6 & k_D c_c e^3 \\
\rho_2^* e^6 & 1 & k_D s_c e^3 \\
k_D c_c e^3 & k_D s_c e^3 & 1
\end{pmatrix},
\]

hence the order of the elements in \((Y^{D1})'\) is modified to

\[
(Y_i^{D1})'' = (Y_i^{D1})' + O(e^3)(Y^D)' = \begin{pmatrix}
e^8 & e^7 & e^7 \\
e^8 & e^7 & e^7 \\
e^{12} & e^{11} & e^5
\end{pmatrix}.
\]

On the other hand, the changes of \((Y^U)'\), \((Y^D)'\), \((Y^{U1})'\) are negligible. Since the contributions to the quark mass matrices from the extra Higgs bosons through \((Y^{U1})'\), \((Y^{D1})'\) are negligible, the quark mass matrices are approximated as

\[
M'_U = (Y^U)'v_u, \quad M'_D = (Y^D)'v_d.
\]

These matrices are diagonalized by the superfields redefinitions

\[
U \rightarrow L_U U, \quad D \rightarrow L_D D, \quad U^c \rightarrow R_U U^c, \quad D^c \rightarrow R_D D^c,
\]
from which we get

\[
(L_U)^T = \begin{pmatrix}
 c_e & s_e & \epsilon^4 \\
 -s_e & c_e & \epsilon^4 \\
 \epsilon^4 & \epsilon^4 & 1
\end{pmatrix},
\]

\[
R_U = \begin{pmatrix}
 1 & (Y^U_1/Y^U_2)s_U\epsilon^3 & \epsilon^{10} \\
 -(Y^U_1/Y^U_2)s_U\epsilon^3 & 1 & \epsilon^7 \\
 \epsilon^{10} & \epsilon^7 & 1
\end{pmatrix}, \quad \theta_U = \theta_R - \theta_c, \tag{60}
\]

\[
(L_D)^T = \begin{pmatrix}
 s_a & -c_a & -(Y^D_4/Y^D_3)\epsilon^2 \\
 c_a & s_a & -(Y^D_4/Y^D_3)\epsilon^2 \\
 (Y^D_4/Y^D_3)\epsilon^2 & (Y^D_4/Y^D_3)\epsilon^2 & 1
\end{pmatrix},
\]

\[
R_D = \begin{pmatrix}
 1 & \epsilon^5 & \epsilon^5 \\
 \epsilon^5 & 1 & \epsilon^4 \\
 \epsilon^5 & \epsilon^4 & 1
\end{pmatrix}, \tag{62}
\]

\[
L^T_U M'_U R_U = \text{diag}(m_u, m_c, m_t) = \text{diag}(Y^U_1 c_U\epsilon^6, Y^U_2\epsilon^3, Y^U_3\epsilon^1)v_u, \tag{63}
\]

\[
L^T_D M'_D R_D = \text{diag}(m_d, m_s, m_b) = \text{diag}(Y^D_1\epsilon^5, Y^D_2\epsilon^4, Y^D_3\epsilon^2)v_d, \tag{64}
\]

\[
V_{CKM} = L^T_U L_D = \begin{pmatrix}
 s_{a-c} & c_{a-c} & (c_c b_c \alpha^* + s_c b_c \beta^*)r_D \epsilon^2 \\
 -c_{a-c} & s_{a-c} & -(s_c b_c \alpha^* - c_c b_c \beta^*)r_D \epsilon^2 \\
 -(s_a c_b s_c - c_a s_b b_c)r_D \epsilon^2 & -(c_a c_b \alpha^* + s_a s_b \beta^*)r_D \epsilon^2 & 1
\end{pmatrix}, \tag{65}
\]

\[
s_{a-c} = \sin(\theta_a - \theta_c), \quad r_D = Y^D_4/Y^D_3.
\]

The experimental values of the CKM matrix elements:

\[
\begin{pmatrix}
 |V_{ud}| & |V_{us}| & |V_{ub}| \\
 |V_{cd}| & |V_{cs}| & |V_{cb}| \\
 |V_{td}| & |V_{ts}| & |V_{tb}|
\end{pmatrix} = \begin{pmatrix}
 0.974 & 0.227 & 0.361 \times 10^{-2} \\
 0.226 & 0.973 & 4.05 \times 10^{-2} \\
 0.854 \times 10^{-2} & 3.98 \times 10^{-2} & 1
\end{pmatrix}, \tag{66}
\]

\[
J = \text{Im}(V_{us} V_{cb} V_{cs}^*) = 3.00 \times 10^{-5}, \tag{67}
\]

are realized by tuning the five parameters: \(\theta_{a,b,c}, r_D, \arg(\alpha\beta^*)\). The experimental values of quark running masses at 1 TeV [28][41]:

\[
m_u = 1.17 \times 10^{-3}, \quad m_c = 0.543, \quad m_t = 148.1, \tag{68}
\]

\[
m_d = 2.40 \times 10^{-3}, \quad m_s = 4.9 \times 10^{-2}, \quad m_b = 2.41 \text{ (GeV)}, \tag{69}
\]

14
are realized by the Planck scale boundary values:

\[
\begin{align*}
|Y_{1U}| &= 1.5, \\ |Y_{2U}| &= 0.71, \\ |Y_{3U}| &= 0.28, \\ |Y_{1D}| &= 0.38, \\ |Y_{2D}| &= 0.78, \\ |Y_{3D}| &= 0.38,
\end{align*}
\]

(70)

where we have used the renormalization factors given in Ref. [21]. As these parameters are consistent with the assumption that all of the factor \(Y \) are \(O(1) \), the quark mass hierarchy is realized without fine-tuning. In our definition, \(Y = O(1) \) means that \(10^{-0.5} < Y < 10^{0.5} \) is satisfied. The soft SUSY-breaking squared mass matrices of the squarks are given by

\[
\begin{align*}
\frac{m_{U}^{2}}{m^{2}} &= \begin{pmatrix} O(1) & \epsilon^{9} & \epsilon^{10} \\ \epsilon^{9} & O(1) & \epsilon^{7} \\ \epsilon^{10} & \epsilon^{7} & O(1) \end{pmatrix}, \\
\frac{m_{D}^{2}}{m^{2}} &= \begin{pmatrix} O(1) & \epsilon^{7} & \epsilon^{7} \\ \epsilon^{7} & O(1) & \epsilon^{6} \\ \epsilon^{7} & \epsilon^{6} & O(1) \end{pmatrix}, \\
\frac{m_{Q}^{2}}{m^{2}} &= \begin{pmatrix} 1 & \epsilon^{6} & \epsilon^{4} \\ \epsilon^{6} & 1 & \epsilon^{4} \\ \epsilon^{4} & \epsilon^{4} & O(1) \end{pmatrix},
\end{align*}
\]

(71) (72) (73)

and the squark A-term matrices are given by

\[
\begin{align*}
V &\supset -v_{u}UA_{U}U^{c} - v_{d}DA_{D}D^{c} + h.c. \\
A_{U} &= \begin{pmatrix} A_{1}^{U}c_{R}\epsilon^{6} & -A_{2}^{U}s_{c}\epsilon^{3} & A_{3}^{U}O(\epsilon^{4}) \\ A_{1}^{U}s_{R}\epsilon^{6} & A_{2}^{U}c_{c}\epsilon^{3} & A_{3}^{U}O(\epsilon^{4}) \\ A_{5}^{U}O(\epsilon^{10}) & A_{6}^{U}O(\epsilon^{7}) & A_{3}^{U} \end{pmatrix}, \\
A_{D} &= \begin{pmatrix} A_{1}^{D}s_{a}\epsilon^{5} & A_{2}^{D}c_{a}\epsilon^{4} & A_{3}^{D}\alpha_{b}\epsilon^{4} \\ -A_{1}^{D}c_{a}\epsilon^{5} & A_{2}^{D}s_{a}\epsilon^{4} & A_{3}^{D}\beta_{b}\epsilon^{4} \\ A_{5}^{D}O(\epsilon^{9}) & A_{6}^{D}O(\epsilon^{8}) & A_{3}^{D}\epsilon^{2} \end{pmatrix},
\end{align*}
\]

(74) (75) (76)

where these matrices are defined for canonically normalized superfields. The sizes of parameters \(m, A_{n}^{X} \) are assumed to be \(O(\text{TeV}) \). After the diagonalization of the Yukawa matrices,
the squared mass and A-term matrices are given by

\[
(m_{U})_{SCKM} = R_{U}^{\dagger} m_{U}^{2} R_{U} = m^{2} \begin{pmatrix}
O(1) & e^{3} & e^{10} \\
 e^{3} & O(1) & e^{7} \\
e^{10} & e^{7} & O(1)
\end{pmatrix},
\]

(77)

\[
(m_{D})_{SCKM} = R_{D}^{\dagger} m_{D}^{2} R_{D} = m^{2} \begin{pmatrix}
O(1) & e^{5} \\
 e^{5} & O(1) & e^{4} \\
e^{5} & e^{4} & O(1)
\end{pmatrix},
\]

(78)

\[
(m_{Q})_{SCKM} = L_{(U, D)}^{\dagger} m_{Q}^{2} L_{(U, D)} = m^{2} \begin{pmatrix}
1 & e^{(6, 4)} & e^{(4, 2)} \\
e^{(6, 4)} & 1 & e^{(4, 2)} \\
e^{(4, 2)} & e^{(4, 2)} & O(1)
\end{pmatrix},
\]

(79)

\[
(A_{U})_{SCKM} = L_{U}^{T} A_{U} R_{U} = \begin{pmatrix}
A_{U}^{c} e^{6} & A e^{9} & A e^{4} \\
 A e^{6} & A_{U}^{c} e^{3} & A e^{4} \\
 A e^{10} & A e^{7} & A_{U}^{c}
\end{pmatrix},
\]

(80)

\[
(A_{D})_{SCKM} = L_{D}^{T} A_{D} R_{D} = \begin{pmatrix}
A_{D}^{c} e^{5} & A e^{8} & A e^{4} \\
 A e^{9} & A_{D}^{c} e^{4} & A e^{4} \\
 A e^{7} & A e^{6} & A_{D}^{c}
\end{pmatrix},
\]

(81)

The off-diagonal elements of the squark mass matrices contribute to the flavor and CP violation through the squark exchange, on which severe constraints are imposed. With the mass insertion approximation, the most stringent bound for the squark mass M_{Q} is given by ϵ_{K} as

\[
\sqrt{\frac{\text{Im}[(m_{Q})_{12}(m_{D})_{12}]}{M_{Q}^{4}}} = \epsilon_{K}^{4.5} < 4.4 \times 10^{-4} \left(\frac{M_{Q}}{\text{TeV}}\right) \rightarrow M_{Q} > 72\text{GeV},
\]

(82)

where $M_{Q} = M(\text{gluino}) = M(\text{squark})$ is assumed [13]. This bound is very weak and the SUSY flavor-changing-neutral-current (FCNC) problem is solved. The contribution to the FCNC from the extra Higgs is also suppressed enough due to the small Y_{UI}, Y_{DI}. For example, the constraint from $D^{0} - \bar{D}^{0}$ mixing gives very weak constraint: $m_{H} > 2.5\text{GeV}$ for the extra Higgs boson mass[14].
IV. LEPTON SECTOR

The superpotential of the lepton is given by

\[W = H_3^U LY^N N^c + H_3^D LY^E E^c + H_4^D L Y_{EI} E^c + M_N N^c Y_M N^c. \]

(83)

After the redefinition of superfields:

\[E^c \rightarrow V_K(E)E^c, \quad N^c \rightarrow V_K(N)N^c, \quad L \rightarrow V_K(L)L, \quad H^U \rightarrow V_K(H^U)H^U, \quad H^D \rightarrow V_K(H^D)H^D, \]

(84)

the kinetic terms are canonically normalized and the Yukawa matrices are given by

\[(Y^N)' = \epsilon^6 \begin{pmatrix} \alpha c_b c_Y^1 N + \beta s_b s_Y^2 N + Y_5^N & \alpha c_b s_c Y_4^N + \beta s_b c_c Y_3^N & Y_7^N (\alpha c_b s_c + \beta s_b c_c) \\ \alpha c_b s_Y^3 N + \beta s_b c_c Y_4^N & \alpha c_b c_c Y_2^N + \beta s_b s_c Y_1^N + Y_5^N & Y_7^N (\alpha c_b c_c - \beta s_b s_c) \\ Y_6^N (\alpha c_b s_a + \beta s_b c_a) & Y_6^N (\alpha c_b c_a - \beta s_b s_a) & Y_9^N (\alpha c_b c_a + \beta s_b s_a) + Y_0^N \end{pmatrix}, \]

(85)

\[(Y^E)' = V_K^T (L) Y^E V_K (E) = \begin{pmatrix} \epsilon^6 Y_1^E & \epsilon^8 & \epsilon^6 \\ \epsilon^6 Y_2^E & \epsilon^8 & \epsilon^6 \\ \epsilon^6 & \epsilon^8 & \epsilon^6 \end{pmatrix}, \]

(86)

\[(Y_1^{EI})' = V_K^T (L) Y_1^{EI} V_K (E) = \begin{pmatrix} \epsilon^8 & Y_2^{EI} & \epsilon^6 \\ -\epsilon^2 Y_1^{EI} & \epsilon^8 & \epsilon^6 \\ \epsilon^8 & \epsilon^6 & \epsilon^8 \end{pmatrix}, \]

(87)

\[(Y_2^{EI})' = V_K^T (L) Y_2^{EI} V_K (E) = \begin{pmatrix} \epsilon^8 & Y_2^{EI} & \epsilon^6 \\ \epsilon^8 & \epsilon^6 & \epsilon^6 \end{pmatrix}, \]

(88)

\[(Y^M)' = \begin{pmatrix} Y_1^M & \epsilon^6 & \epsilon^6 \\ \epsilon^6 & Y_1^M & \epsilon^6 \\ \epsilon^6 & \epsilon^6 & Y_3^M \end{pmatrix}. \]

(89)

The charged lepton mass matrix is given by

\[M'_E = \langle H_3^D \rangle (Y^E)' + \langle H_4^D \rangle (Y_4^{EI})' = \begin{pmatrix} \epsilon^5 (Y_1^E + Y_1^{EI} N_D) s_c & \epsilon^3 (Y_2^E + Y_2^{EI} N_D) c_c & \epsilon^8 \\ -\epsilon^5 (Y_1^E + Y_1^{EI} N_D) c_c & \epsilon^3 (Y_2^E + Y_2^{EI} N_D) s_c & \epsilon^8 \\ \epsilon^{11} & \epsilon^9 & \epsilon^8 \end{pmatrix} v_d. \]

(90)
This matrix is diagonalized by the superfields redefinition

$$E \rightarrow L_E E, \quad E^c \rightarrow R_E E^c,$$

$$\begin{align*}
(L_E)^T &= \begin{pmatrix} s_c & -c_c & \epsilon^6 \\ c_c & s_c & \epsilon^6 \\ \epsilon^6 & \epsilon^6 & 1 \end{pmatrix}, \\
R_E &= \begin{pmatrix} 1 & \epsilon^{14} & \epsilon^9 \\ \epsilon^{14} & 1 & \epsilon^7 \\ \epsilon^9 & \epsilon^7 & 1 \end{pmatrix},
\end{align*}$$

from which we get

$$L_E^T M'_E R_E = \text{diag}(m_e, m_\mu, m_\tau) = \text{diag} \left((Y_1^E + Y_1^{EI} N_D)\epsilon^5, (Y_2^E + Y_2^{EI} N_D)\epsilon^3, Y_3^E \epsilon^2\right) v_d. \quad (94)$$

The experimental values of the charged lepton running masses at 1 TeV [41]:

$$m_e = 4.895 \times 10^{-4} \text{ (GeV)}, \quad m_\mu = 0.1033 \text{ (GeV)}, \quad m_\tau = 1.757 \text{ (GeV)}, \quad (95)$$

are realized by setting the parameters at 1 TeV as

$$Y_1^E + Y_1^{EI} N_D = 0.56, \quad Y_2^E + Y_2^{EI} N_D = 1.19, \quad Y_3^E = 2.02. \quad (96)$$

The seesaw neutrino mass matrix is given by

$$M_\nu = (L_E)^T (Y_N)^\dagger [M_N (Y_M)^\dagger]^{-1} [(Y_N)^\dagger]^T L_E, \quad (97)$$

which is diagonalized as

$$U_{\text{MNS}}^T M_\nu U_{\text{MNS}} = \text{diag}(m_1, m_2, m_3), \quad (98)$$

where U_{MNS} is the Maki-Nakagawa-Sakata matrix. Since there are too many parameters in M_ν, we cannot give any prediction for the neutrino mass and the elements of MNS matrix except for the mass scales

$$M_N = M_P \left(\frac{\langle X \rangle}{M_P}\right)^{10} \left(\frac{\langle \Phi_3 \rangle}{M_P}\right)^2 = 10^{-15} M_P = 1 \text{ TeV}, \quad m_\nu = \frac{(\epsilon^6 v_u)^2}{M_N} \sim 10^{-2} \text{ eV}. \quad (99)$$

The soft SUSY-breaking squared-mass matrices of the sleptons are given by

$$\frac{m_E^2}{m^2} = \begin{pmatrix} O(1) & \epsilon^8 & \epsilon^9 \\ \epsilon^8 & O(1) & \epsilon^{11} \\ \epsilon^9 & \epsilon^{11} & O(1) \end{pmatrix}, \quad \frac{m_L^2}{m^2} = \begin{pmatrix} 1 & \epsilon^6 & \epsilon^6 \\ \epsilon^6 & 1 & \epsilon^6 \\ \epsilon^6 & \epsilon^6 & O(1) \end{pmatrix}, \quad (100)$$
and the slepton A-term matrices are given by

\[
V \supset - \langle H^D_3 \rangle E A^E E^c - \langle H^D_1 \rangle E A^E_I E^c + h.c., \quad (101)
\]

\[
A^E = \begin{pmatrix}
A_E^1 c_5 c c^3 & A^8 \\
-A^1_E c_5 c c^3 & A^8 \\
A^1 E^{11} & A^9 & A^2 E^{c_2}
\end{pmatrix}, \quad (102)
\]

\[
A^E_{1I} = \begin{pmatrix}
A^8_E & A^2 E^{11} \\
-\epsilon^2 A^1 E^I & A^6 E^{11} \\
A^8 E & A^6 E^c
\end{pmatrix}, \quad A^E_{2I} = \begin{pmatrix}
\epsilon^2 A^1 E^I & A^6 E^{11} \\
A^8 E & A^2 E^{11} \\
A^8 E & A^6 E^c
\end{pmatrix}, \quad (103)
\]

where these matrices are defined for canonically normalized superfields. We define the effective A-term matrix as follows:

\[
(A^E)'_{v_d} = A^E \langle H^D_3 \rangle + A^E_{1I} \langle H^D_1 \rangle + A^E_{2I} \langle H^D_2 \rangle, \quad (104)
\]

\[
(A^E)' = \begin{pmatrix}
(A^1_E)' s c_5 & (A^2_E)' c c^3 & A^8 \\
-(A^1_E)' c c^3 & (A^2_E)' s c^3 & A^8 \\
A^1 E^{11} & A^9 & A^2 E^{c_2}
\end{pmatrix}, \quad (105)
\]

After the diagonalization of the charged lepton Yukawa matrix, the squared-mass matrices and the effective A-term matrix are given by

\[
(m^2_{E})_{\text{SMNS}} = R^T_E m^2_E R_E = m^2 \begin{pmatrix}
O(1) & e^8 & e^9 \\
e^8 & O(1) & e^7 \\
e^9 & e^7 & O(1)
\end{pmatrix}, \quad (106)
\]

\[
(m^2_{L})_{\text{SMNS}} = L^T_E m^2_L L_E = m^2 \begin{pmatrix}
1 & e^6 & e^6 \\
e^6 & 1 & e^6 \\
e^6 & e^6 & O(1)
\end{pmatrix}, \quad (107)
\]

\[
(A^E)_{\text{SMNS}} = L^T_E (A^E)' R_E = \begin{pmatrix}
A^E_{1I} e^5 & A^9 E^c \\
A^e^{11} & A^2 E^c e^3 \quad A^8 \\
A^e^{11} & A^9 & A^2 E^{c_2}
\end{pmatrix}. \quad (108)
\]

As the (1, 1) element of $(A^E)_{\text{SMNS}}$ is real at leading order, the SUSY contribution to the electric dipole moment of the electron is negligible. Based on the consideration of the lepton
flavor violation, the most stringent bound for the slepton mass M_L is given by $\mu \rightarrow e + \gamma$ as

$$\frac{v_d}{M_L} < 1.4 \times 10^{-6} \left(\frac{M_L}{300 \text{GeV}} \right) \sqrt{\frac{\text{Br}(\mu \rightarrow e\gamma)_{\text{exp}}}{4.2 \times 10^{-13}}} \rightarrow M_L > 4.3 \text{GeV},$$

(109)

where $M_L = M(\text{slepton}) = M(\text{photino})$ is assumed.

For the canonically normalized superfields, the RHN mass matrix is given by

$$M_R = M_N(Y^M)' ,$$

(110)

whose eigenvalues M_1, M_2, M_3 give the degenerated mass spectrum of RHNs as follows:

$$M_1 \simeq M_2 = M_1(1 + \epsilon^6) \rightarrow \delta_N = \frac{M_2 - M_1}{M_1} \sim \epsilon^6.$$

(111)

In this paper, we assume N^c_3 is the heaviest RHN, hence $M_2 < M_3$. The right-handed sneutrinos have the same spectrum. In the early Universe, the out-of-equilibrium decay of n^c_1 and N^c_1 generates a lepton asymmetry which is transformed into a baryon asymmetry by the electroweak sphaleron process. Following Ref.[42], the baryon asymmetry is given by

$$B_f \sim -\frac{\kappa \epsilon_{CP}}{3 g_*},$$

(112)

where $g_* = 340$ is the degree of freedom of radiation, κ is the dilution factor given by

$$\kappa \sim \left(\frac{1}{K \text{ln } K} \right) ,$$

$$K = \left(\frac{\Gamma(M_1)}{2H(M_1)} \right), \Gamma(M_1) = \frac{K_{11}M_1}{8\pi}, \quad H(M_1) = \sqrt{\frac{\pi^2 g_* M_1^4}{90 M_P^2}}, \quad K_{ij} = \frac{1}{3} \sum \text{Tr} (Y^N_{li} ' Y^N_{lj}),$$

(113)

and ϵ_{CP} is given by

$$\epsilon_{CP} = -\frac{1}{2\pi} \frac{\text{Im}(K^2)}{K_{11}} \left(\frac{2\sqrt{x} + \sqrt{x} \ln \left(1 + \frac{x}{x} \right)}{x - 1} \right) \simeq -\frac{\text{Im}(K^2)}{2\pi K_{11} \delta_N}, \quad x = \frac{M_2^2}{M_1^2} \sim 1 + 2\delta_N.$$

(114)

From the order estimations

$$K_{12} \sim K_{11} \sim \epsilon^{12}, \quad K \sim 6 \left(\frac{\text{TeV}}{M_1} \right), \quad \epsilon_{CP} \sim 10^{-6}, \quad M_1 \sim 1000 \text{GeV},$$

(115)

we get the observed baryon asymmetry, $B_f \sim 10^{-10}$. This mechanism works even at the low reheating temperature as $T_{RH} < 10^7 \text{GeV}$ which is required for avoiding gravitino overproduction.
V. HIGGS SECTOR

A. Higgs bosons

For the canonically normalized superfields, the superpotential of the Higgses up to $O(\epsilon^3)$-terms is given by

\[
W = \lambda_2 S_2 H_3^U H_3^D + \lambda_3 S_3 H_3^U H_3^D \\
+ \lambda_4 S_2 (H_1^U H_1^D + H_2^U H_2^D) + \lambda_5 S_3 (H_1^U H_1^D + H_2^U H_2^D) \\
+ \epsilon^3 \lambda_6 S_2 (c_c H_1^U + s_c H_2^U) H_3^D + \epsilon^3 \lambda_7 S_3 (c_c H_1^U + s_c H_2^U) H_3^D \\
+ \epsilon^3 \lambda_8 S_2 H_3^U (c_c H_1^D + s_c H_2^D) + \epsilon^3 \lambda_9 S_3 H_3^U (c_c H_1^D + s_c H_2^D),
\]

from which we get the Higgs potential as

\[
V = -m_{H_3}^2 |H_3^U|^2 + m_{H_3}^2 |H_3^D|^2 + m_{S_1}^2 |S_1|^2 - m_{S_2}^2 |S_2|^2 - m_{S_3}^2 |S_3|^2 \\
+ m_{H_3}^2 (|H_1^U|^2 + |H_2^U|^2) + m_{H_3}^2 (|H_1^D|^2 + |H_2^D|^2) - m_{S_2}^2 (S_2 S_3 + S_2 S_3^*) \\
- \epsilon^3 m_{D_U}^2 [(c_c H_1^U + s_c H_2^U)^* H_3^U + h.c.] - \epsilon^3 m_{D_U}^2 [(c_c H_1^D + s_c H_2^D)^* H_3^D + h.c.]
\]

\[
- A_2 [S_2 H_3^U H_3^D + h.c.] - A_3 [S_3 H_3^U H_3^D + h.c.] \\
- A_4 [S_2 (H_1^U H_1^D + H_2^U H_2^D) + h.c.] - A_5 [S_3 (H_1^U H_1^D + H_2^U H_2^D) + h.c.] \\
- \epsilon^3 A_6 [S_2 (c_c H_1^U + s_c H_2^U) H_3^D + h.c.] - \epsilon^3 A_7 [S_3 (c_c H_1^U + s_c H_2^U) H_3^D + h.c.] \\
- \epsilon^3 A_8 [S_2 H_3^U (c_c H_1^D + s_c H_2^D) + h.c.] - \epsilon^3 A_9 [S_3 H_3^U (c_c H_1^D + s_c H_2^D) + h.c.]
\]

\[
+ \lambda_2 H_3^U H_3^D + \lambda_4 (H_1^U H_1^D + H_2^U H_2^D) \\
+ \epsilon^3 \lambda_6 (c_c H_1^U + s_c H_2^U) H_3^D + \epsilon^3 \lambda_8 (c_c H_1^D + s_c H_2^D)^2 \\
+ \lambda_3 H_3^U H_3^D + \lambda_5 (H_1^U H_1^D + H_2^U H_2^D) \\
+ \epsilon^3 \lambda_7 (c_c H_1^U + s_c H_2^U) H_3^D + \epsilon^3 \lambda_9 (c_c H_1^D + s_c H_2^D)^2 \\
+ \lambda_2 S_2 H_3^U + \lambda_3 S_3 H_3^D + \epsilon^3 \lambda_8 S_2 (c_c H_1^D + s_c H_2^D) + \epsilon^3 \lambda_9 S_3 (c_c H_1^D + s_c H_2^D)^2
\]
\[
\begin{align*}
&+ |\lambda_2 S_2 H_3^U + \lambda_3 S_3 H_3^U + \epsilon^3 \lambda_6 S_2 (c_c H_1^U + s_c H_2^U) + \epsilon^3 \lambda_7 S_3 (c_c H_1^U + s_c H_2^U)|^2 \\
&+ |\lambda_4 S_2 H_1^D + \lambda_5 S_3 H_1^D + \epsilon^3 \lambda_6 S_2 (c_c H_2^D + \epsilon^3 \lambda_7 S_3 H_3^D)|^2 \\
&+ |\lambda_4 S_2 H_2^D + \lambda_5 S_3 H_2^D + \epsilon^3 \lambda_6 S_2 (c_c H_3^D + \epsilon^3 \lambda_7 S_3 H_3^D)|^2 \\
&+ |\lambda_4 S_2 H_1^U + \lambda_5 S_3 H_1^U + \epsilon^3 \lambda_6 S_2 (c_c H_2^U + \epsilon^3 \lambda_7 S_3 H_3^U)|^2 \\
&+ |\lambda_4 S_2 H_2^U + \lambda_5 S_3 H_2^U + \epsilon^3 \lambda_6 S_2 (c_c H_3^U + \epsilon^3 \lambda_7 S_3 H_3^U)|^2 \\
&+ \frac{1}{8} g_y^2 \left[|H_a^U|^2 - |H_a^D|^2 \right]^2 + \frac{1}{8} g_2^2 \sum_{A=1}^{3} \left[(H_a^U)^* \sigma_A H_a^U + (H_a^D)^* \sigma_A H_a^D \right]^2 \\
&+ \frac{9}{2} g_s^2 \left[|S_a|^2 - |H_a^D|^2 \right]^2, \tag{118}
\end{align*}
\]

where

\[g_s = \frac{\sqrt{10}}{12} g_S. \tag{119} \]

With the definition of the charged, the CP-even neutral, and the CP-odd neutral Higgs bosons

\[
H_a^U = \begin{pmatrix} u_a^+ \\ u_a + i p_a \end{pmatrix}, \quad H_a^D = \begin{pmatrix} d_a + i q_a \\ d_a \end{pmatrix}, \quad S_a = s_a + i r_a, \tag{120}
\]

their mass matrices are defined as follows:

\[
\begin{align*}
V & \ni (u_a^+, d_a^+) \\
&+ (p_a, q_a, r_a) \begin{pmatrix} m_{ab}(U^+U^-) & m_{ab}(U^+D^-) \\ m_{ab}(D^+U^-) & m_{ab}(D^+D^-) \end{pmatrix} \begin{pmatrix} u_b^- \\ d_b^- \end{pmatrix} \\
&+ (u_a, d_a, s_a) \begin{pmatrix} m_{ab}(U^0U^0) & m_{ab}(U^0D^0) \\ m_{ab}(D^0U^0) & m_{ab}(D^0D^0) \end{pmatrix} \begin{pmatrix} u_b \\ d_b \end{pmatrix} + \begin{pmatrix} m_{ab}(S^0S^0) \end{pmatrix} \begin{pmatrix} s_b \end{pmatrix}. \tag{121}
\end{align*}
\]
After imposing the constraints which are derived from the potential minimum condition on the elements of matrices, we get

\[
m_{ab}^2(U^+ U^-) = m_{ab}^2(U U) = m_{ab}^2(U^0 U^0) = \\
\begin{pmatrix}
m_H^2 + \lambda_{23}^2 v_s^2 & 0 & \epsilon^3 M_{BU}^2 c_c \\
0 & m_H^2 + \lambda_{45}^2 v_s^2 & \epsilon^3 M_{BU}^2 s_c \\
\epsilon^3 M_{BU}^2 c_c & \epsilon^3 M_{BU}^2 s_c & A_{23} v_s v_u / v_d
\end{pmatrix}, \tag{122}
\]

\[
m_{ab}^2(D^+ D^-) = m_{ab}^2(D D) = m_{ab}^2(D^0 D^0) = \\
\begin{pmatrix}
m_{DD}^2 + \lambda_{45}^2 v_s^2 - D_s & 0 & \epsilon^3 M_{BD}^2 c_c \\
0 & m_{DD}^2 + \lambda_{45}^2 v_s^2 - D_s & \epsilon^3 M_{BD}^2 s_c \\
\epsilon^3 M_{BD}^2 c_c & \epsilon^3 M_{BD}^2 s_c & A_{23} v_s v_u / v_d
\end{pmatrix}, \tag{123}
\]

\[
m_{ab}^2(U^+ D^-) = m_{ab}^2(U D) = -m_{ab}^2(U^0 D^0) = \\
\begin{pmatrix}
A_{45} v_s & 0 & \epsilon^3 A_{67} v_s c_c \\
0 & A_{45} v_s & \epsilon^3 A_{67} v_s s_c \\
\epsilon^3 A_{89} v_s c_c & \epsilon^3 A_{89} v_s s_c & A_{23} v_s
\end{pmatrix}, \tag{124}
\]

\[
m^2(D^+ U^-) = m_{ab}^2(D U) = -m_{ab}^2(D^0 U^0) = [m_{ab}^2(U^+ D^-)]^T \tag{125}
\]

\[
m_{ab}^2(S S) = \\
\begin{pmatrix}
m_{S_1}^2 + D_s & 0 & 0 \\
0 & m_{S_4}^2 (s_s / c_s) & -m_{S_4}^2 \\
0 & -m_{S_4}^2 & m_{S_4}^2 (c_s / s_s)
\end{pmatrix}, \tag{126}
\]

\[
m_{ab}^2(S^0 S^0) = \\
\begin{pmatrix}
m_{S_1}^2 + D_s & 0 & 0 \\
0 & 18 g_s^2 c_s^2 v_s^2 + m_{S_4}^2 (s_s / c_s) & 18 g_s^2 c_s s_s v_s^2 - m_{S_4}^2 \\
0 & 18 g_s^2 c_s^2 s_s v_s^2 - m_{S_4}^2 & 18 g_s^2 s_s^2 v_s^2 + m_{S_4}^2 (c_s / s_s)
\end{pmatrix}, \tag{127}
\]

\[
D_s = 9 g_s^2 v_s^2, \tag{128}
\]

\[
\lambda_{nm} = \lambda_n c_s + \lambda_m s_s, \tag{129}
\]

\[
A_{nm} = A_n c_s + A_m s_s, \tag{130}
\]

\[
M_{BU}^2 = (\lambda_{23} \lambda_{67} + \lambda_{45} \lambda_{89}) v_s^2 - m_{BU}^2, \tag{131}
\]

\[
M_{BD}^2 = (\lambda_{23} \lambda_{89} + \lambda_{45} \lambda_{67}) v_s^2 - m_{BD}^2, \tag{132}
\]
where \(O(v_{u,d}) \) contributions are neglected. After the field redefinitions as

\[
\begin{pmatrix}
X_1 \\
X_2 \\
X_3
\end{pmatrix} = \begin{pmatrix}
cc -sc \\
sc \\
0
0
0
1
\end{pmatrix} \begin{pmatrix}
X_1' \\
X_2' \\
X_3'
\end{pmatrix}, \quad X = (H^U, H^D),
\]

\begin{equation}
(133)
\end{equation}

we get approximately diagonalized mass matrices

\[
\begin{pmatrix}
m^2_{ab}(U^+ U^-) & \\
m^2_{ab}(U^+ D^-) & \\
m^2_{ab}(S^0 S^0)
\end{pmatrix}' = \begin{pmatrix}
m^2_{HU} + \lambda^2_{45} v^2_s & 0 & e^3 M^2_{BU} \\
0 & m^2_{HU} + \lambda^2_{45} v^2_s & 0 \\
e^3 M^2_{BU} & 0 & A_{23} v_u v_d / v_u
\end{pmatrix},
\]

\begin{equation}
(135)
\end{equation}

\[
\begin{pmatrix}
m^2_{ab}(U^+ D^-) & \\
m^2_{ab}(D^+ D^-) & \\
m^2_{ab}(S^0 S^0)
\end{pmatrix}' = \begin{pmatrix}
m^2_{HD} + \lambda^2_{45} v^2_s - D_s & 0 & e^3 M^2_{BD} \\
0 & m^2_{HD} + \lambda^2_{45} v^2_s - D_s & 0 \\
e^3 M^2_{BD} & 0 & A_{23} v_u v_u / v_d
\end{pmatrix},
\]

\begin{equation}
(137)
\end{equation}

\[
\begin{pmatrix}
m^2_{ab}(SS) & \\
m^2_{ab}(S^0 S^0)
\end{pmatrix}' = \begin{pmatrix}
m^2_{S_1} + D_s & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & m^2_{S_1} / c_s s_s
\end{pmatrix},
\]

\begin{equation}
(138)
\end{equation}

\[
\begin{pmatrix}
m^2_{ab}(S^0 S^0)
\end{pmatrix}' = \begin{pmatrix}
m^2_{S_1} + D_s & 0 & 0 \\
0 & 18 g_s^2 v^2_s & 0 \\
0 & 0 & m^2_{S_4} / c_s s_s
\end{pmatrix}.
\]

\begin{equation}
(139)
\end{equation}

In order to get the mass of the lightest neutral Higgs boson, we take account of \(O(v_{u,d}) \) contributions and diagonalize the mass matrix by the field redefinition as

\[
\begin{pmatrix}
u_3 \\
d_3 \\
s_2 \\
s_3
\end{pmatrix} = \begin{pmatrix}
v_u / v & -v_d / v & 0 & 0 \\
v_d / v & v_u / v & 0 & 0 \\
0 & 0 & c_s - s_s \\
0 & 0 & s_s & c_s
\end{pmatrix} \begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_3 \\
\phi_4
\end{pmatrix},
\]

\begin{equation}
(140)
\end{equation}
then we get the squared masses of $\phi_{1,2,3,4}$ as follows:

\begin{align}
 m_1^2 &= \frac{1}{2}(g_Y^2 + g_2^2)(v_u^2 - v_d^2)/v^2 + 4(\lambda_2^2 + \lambda_3^2)v_u^2v_d^2/v^2 = [0.0687 + 0.75(\lambda_2^2 + \lambda_3^2)]v^2, \quad (141) \\
 m_2^2 &= A_{23}v_s v_d^2/v_u v_d + O(v^2), \\
 m_3^2 &= 18 g_s^2 v_s^2, \\
 m_4^2 &= m_{S_4}^2/c_s s_s. \\
\end{align}

where $g_Y = 0.357, g_2 = 0.65$ are substituted into Eq.(141). Here, m_1 is a tree level contribution to the mass of the lightest CP-even neutral Higgs boson ϕ_1. While the two contributions from λ_2 and λ_3 to m_1 are additive, the contributions from them to the higgsino mass: $\lambda_{23}v_s$ could be destructive, and if so, which enhances the lepton $g - 2$ through reducing the higgsino mass. The experimental value 125GeV is realized by adding the one-loop contribution from the stop [43]

\begin{equation}
 \Delta m_1^2 \simeq \frac{3m_T^2}{4\pi^2} \ln \frac{m_T^2}{m_i^2}, \quad (145)
\end{equation}

where m_T is stop mass. The one-loop contributions from the G Higgses assist to push up the Higgs mass [44].

B. G Higgs

The mass terms for the G Higgses are derived from the superpotential:

\begin{equation}
 W = k_2 S_2 G_a G^c_a + k_3 S_3 G_a G^c_a, \quad (146)
\end{equation}

from which mass terms are given by

\begin{align}
 V &\supset m_G^2 |G|^2 + m_{G^c}^2 |G^c|^2 - A_{k_{23}} v_s G_a G^c_a + h.c. \\
 &+ |k_2 G_a G^c_a + \lambda_2 v_u v_d|^2 + |k_3 G_a G^c_a + \lambda_3 v_u v_d|^2 + k_{23}^2 |v_s G|^2 + |v_s G^c|^2) + D-terms, \quad (147) \\
 A_{k_{23}} &= A_{k_2} c_s + A_{k_3} s_s, \quad k_{23} = k_2 c_s + k_3 s_s. \quad (148)
\end{align}

Due to the S_4 symmetry, the triplets G, G^c have unified mass matrices as follows:

\begin{equation}
 V \supset (G_a, G^c_a) M_G^2 \begin{pmatrix} G_a \\ (G^c_a)^{*} \end{pmatrix}, \quad (149)
\end{equation}

\begin{equation}
 M_G^2 = \begin{pmatrix} m_G^2 + (k_{23} v_s)^2 - \frac{1}{3} m_{Z^c}^2 & (k_2 \lambda_2 + k_3 \lambda_3) v_u v_d - A_{k_{23}} v_s \\
 (k_2 \lambda_2 + k_3 \lambda_3) v_u v_d - A_{k_{23}} v_s & m_{G^c}^2 + (k_{23} v_s)^2 - \frac{1}{3} m_{Z^c}^2 \end{pmatrix}. \quad (150)
\end{equation}
The interaction terms for the G-Higgses are given by

\[W_G = GQY^Q Q + G^c U^c Y^{UD} D^c + GU^c Y^{UE} E^c + G^c QY^Q L + GD^c Y^{DN} N^c, \]

(151)

where the coupling matrices are given by

\[Y^{QQ} = \begin{pmatrix} \epsilon^{21} & \epsilon^{21} & \epsilon^{19} \\ \epsilon^{21} & \epsilon^{21} & \epsilon^{19} \\ \epsilon^{19} & \epsilon^{19} & \epsilon^{17} \end{pmatrix}, \quad Y^{UD} = \begin{pmatrix} \epsilon^{28} & \epsilon^{27} & \epsilon^{27} \\ \epsilon^{25} & \epsilon^{24} & \epsilon^{24} \\ \epsilon^{24} & \epsilon^{23} & \epsilon^2 \end{pmatrix}, \]

(152)

\[Y^{UE} = \begin{pmatrix} \epsilon^{24} & \epsilon^{22} & \epsilon^{42} \\ \epsilon^{21} & \epsilon^{36} & \epsilon^{39} \\ \epsilon^{20} & \epsilon^{35} & \epsilon^{38} \end{pmatrix}, \quad Y^{QL} = \begin{pmatrix} \epsilon^{25} & \epsilon^{25} & \epsilon^{25} \\ \epsilon^{25} & \epsilon^{25} & \epsilon^{25} \\ \epsilon^{23} & \epsilon^{23} & \epsilon^{23} \end{pmatrix}, \quad Y^{DN} = \begin{pmatrix} \epsilon^{24} & \epsilon^{24} & \epsilon^{24} \\ \epsilon^{23} & \epsilon^{23} & \epsilon^{23} \\ \epsilon^2 & \epsilon^2 & \epsilon^2 \end{pmatrix}. \]

(153)

As \(Y^{QQ}, Y^{UE}, Y^{QL} \) do not cause any observable effect, they are out of our consideration. At the SCKM basis, \(Y^{UD}, Y^{DN} \) are redefined as follows:

\[(Y^{UD})_{SCKM} = R^T_U V^T_K (U) Y^{UD} V_K (D) R_D = \begin{pmatrix} \epsilon^{17} & \epsilon^{16} & \epsilon^{12} \\ \epsilon^{14} & \epsilon^{13} & \epsilon^9 \\ \epsilon^7 & \epsilon^6 & \epsilon^2 \end{pmatrix}, \]

(154)

\[(Y^{DN})_{SCKM} = R^T_D V^T_K (D) (Y^{DN}) V_K (N) = \begin{pmatrix} \epsilon^7 & \epsilon^7 & \epsilon^7 \\ \epsilon^6 & \epsilon^6 & \epsilon^6 \\ \epsilon^2 & \epsilon^2 & \epsilon^2 \end{pmatrix}. \]

(155)

As the large elements in the \((3, 3)\)-entry of \((Y^{UD})_{SCKM} \) and the third row of \((Y^{DN})_{SCKM} \) induces very fast decay of \(G, G^c \), the success of BBN is not spoiled. Further more, if \(G \to n + b \) is the dominant decay mode of \(G \), we can verify the RHN directly at a collider experiment. These couplings also open the dangerous channel to the proton decay. The dominant contributions to the proton decay are induced by the couplings

\[(Y^{us}) (Y^{dn}) = (\epsilon^{16})(\epsilon^7) = \epsilon^{23}, \quad (Y^{ud}) (Y^{sn}) = (\epsilon^{17})(\epsilon^6) = \epsilon^{23}. \]

(156)

Multiplied by the factor

\[\frac{\epsilon^6 v_u}{M_R} \sim \epsilon^6, \]

(157)

which comes from \(N^c - \nu \) mixing, the dimension-less coefficient of the 4-Fermi operator

\[\mathcal{L} \supset \frac{c_{ud\nu}}{M^2(G)} \bar{u}d\bar{\nu}s, \]

(158)
is estimated as

\[c_{uds\nu} \sim \epsilon^{29}, \]

(159)

which is consistent with the experimental bound for \(p \rightarrow K^+ + \nu \):

\[c_{uds\nu} < 10^{-27}. \]

(160)

As the single G interactions violate \(B + L \) while they conserve \(B - L \), they may assist the \(B + L \) violating process which converts a lepton number to a baryon number. The dominant terms which contribute to this process are given by

\[
W = \epsilon^2 Y_{UD} (G_1^c + G_2^c + G_3^c) U_3^c D_3^c \\
+ \epsilon^2 Y_{DN}^D [\sqrt{3}(G_2 - G_3)N_1^c + (G_1 + G_2 - 2G_3)N_2^c] D_3^c \\
+ \epsilon^8 Y_{DN}^D (G_1 + G_2 + G_3) D_3^c (c_N N_1^c + s_N N_2^c).
\]

(161)

The contributions from the first line and the second line in Eq.(161) to the term

\[
(\epsilon^2 Y_{UD}^D)(\epsilon^2 Y_{DN}^D) U_3^c D_3^c N_i^c D_3^c,
\]

(162)

is canceled due to the mass degeneracy in G Higgs [45]. As any linear combinations of \(G_a \) which are gotten by unitary transformation are assumed to be mass eigenstates, we can move to more convenient view point. Up to \(O(\epsilon^2) \), since we can assign the \(S_3 \) singlet

\[G_D = \frac{G_1 + G_2 + G_3}{\sqrt{3}} \]

(163)

to a diquark and the \(S_3 \) doublet

\[G_{Li} = \left(\frac{G_2 - G_3}{\sqrt{2}}, \frac{G_1 + G_2 - 2G_3}{\sqrt{6}} \right) \]

(164)

to a leptoquark, the baryon number and the lepton number are conserved respectively. However they are violated by including the \(O(\epsilon^8) \) terms. The contribution to Eq.(162) is induced by the first line and third line in Eq.(161). Requiring the process \(n + \bar{t} \rightarrow b + b \) is in equilibrium, we get the constraint

\[
1 < \frac{\Gamma(n + \bar{t} \rightarrow b + b)}{H(m_N)} \sim 10^{12}\epsilon^{10}(Y_{UD}^D Y_{DN}^D)^2 \frac{m_N^4}{m_G^4} \sim 10^{-8}(Y_{UD}^D Y_{DN}^D)^2, \]

(165)

which is difficult to be satisfied. Therefore the terms in Eq.(161) do not have significant impact on leptogenesis.
C. LSP

As the R-parity is conserved in this model, the LSP is stable. We identify the singlino s_1 as the LSP which has a tiny mass

$$m(s_1) \sim \frac{(\epsilon^6 v_u)(\epsilon^6 v_d)}{\lambda_{23} v_s} \sim 10^{-2}\text{eV}.$$ \hfill (166)

Although s_1 is not the dominant component of dark matter, it may help to explain the delay of structure formation [46]. Furthermore, s_1 behaves as an extra neutrino, which changes the effective number of neutrinos to ([47])

$$N_{\text{eff}} = 3.097,$$ \hfill (167)

where $m_{Z'} < 4700\text{GeV}$ is assumed. This extra contribution softens the Hubble tension between the distance ladder method [48] and the CMB data [49].

The interaction of the bino which is the LSP of MSSM is given by

$$\mathcal{L} \supset ig_Y \frac{\epsilon^6 v_d}{m_{\text{SUSY}}} (H_3^U)^* \lambda_Y s_1,$$ \hfill (168)

from which the bino lifetime is calculated as follows:

$$\Gamma(\lambda_T \rightarrow H + s_1) \sim \frac{a_Y m_{\text{SUSY}}}{\epsilon^6 v_d} \left(\frac{m_{\text{SUSY}}}{m_{\text{SUSY}}}\right) \sim 10^{-4}\text{eV} \rightarrow \tau(\lambda_Y) \sim 10^{-11}\text{sec},$$ \hfill (169)

which is consistent with the standard cosmology. The NLSP in our model is the lighter of two linear combinations of two singlinos $s_{2,3}$ which must be heavier than 100MeV to avoid the longer lifetime than 1sec [50]. It is easy to give such a tiny mass to the NLSP.

VI. LEPTON ANOMALOUS MAGNETIC DIPOLE MOMENTS

Here, we evaluate the lepton anomalous magnetic moments. The $(g - 2)_\mu$ has 3.7σ discrepancy between the SM prediction and the experimental value as given in Eq.(1). For the $(g - 2)_e$, there is 2.4σ discrepancy between the new SM prediction and the experimental value as given in Eq.(5). These gaps are filled by the SUSY contributions. While the flavor blind contribution gives Eq.(6), the experimental observation Eq.(7) does not obey it. This discrepancy reflects non-trivial flavor structure of new physics. In our model, this comes from the structure of charged lepton Yukawa matrices.
In the basis that the charged lepton and Higgs mass matrices are diagonalized, the Yukawa interactions of the charged lepton are given by

$$W_E = H_A^D L \begin{pmatrix} e^2 Y^E_1 & e^6 & e^7 \\ e^8 & Y^E_2 & e^7 \\ e^8 & e^6 & e^5 \end{pmatrix} E^c + H_B^D L \begin{pmatrix} e^8 & -Y^E_1 & e^7 \\ e^2 Y^E_1 & e^6 & e^7 \\ e^8 & e^6 & e^{13} \end{pmatrix} E^c + H_C^D L \begin{pmatrix} e^5 Y^E_1 & \epsilon^{15} & e^8 \\ e^{17} & e^3 Y^E_2 & e^8 \\ e^{11} & e^9 & e^2 Y^E_3 \end{pmatrix} E^c,$$

(170)

where $H_A^D = (H_1^D)'$ and $H_B^D = (H_2^D)'$ are mass eigenstates defined by Eq.(133). These interactions induce $\mu \to e + \gamma$ process and the experimental constraint for the branching ratio

$$BR(\mu \to e \gamma) = \frac{48\pi^3 \alpha_{em}}{G_F^2} \left(\frac{e^6 Y^E_2}{192\pi^2 m_{A,B}^2} \right)^2 < 4.2 \times 10^{-13},$$

(171)

which gives the lower mass bound for $H_{A,B}^D$ as

$$\frac{m_{A,B}}{\sqrt{Y^E_2}} > 15\text{GeV},$$

(172)

where $\alpha_{em} = 1/137$ and $G_F = 1.166 \times 10^{-5}\text{GeV}^{-2}$ are used. This constraint is easily satisfied.

The chargino and the neutralino mass matrices are given by

$$\mathcal{L} = -\chi_+^T M_C \chi_- - \frac{1}{2} \chi^T M_N \chi - \lambda_{45} v_s (h_B^U)^+ (h_B^D)^- - \lambda_{45} v_s (h_B^D)^0 (h_B^U)^0 + h.c.,$$

(173)

$$M_C = \begin{pmatrix} \lambda_{45} v_s & e^3 \lambda_{67} v_s & g_2 N_U e^4 v_u \\ e^3 \lambda_{87} v_s & \lambda_{23} v_s & g_2 v_u \\ g_2 N_D e^4 v_d & g_2 v_d & M_2 \end{pmatrix},$$

(174)
which are diagonalized by bi-unitary translation and unitary translation respectively as

$$\chi_T = (h_A^D)^-, (h_3^D)^-, w^-),$$

$$\chi_T = (h_A^U)^+, (h_3^U)^+, w^+),$$

$$w^\pm = \mp i\lambda_1 - \lambda_2^\pm/\sqrt{2},$$

$$\chi_T = (h_A^U, h_3^U, h_A^D, h_3^D, i\lambda_Y, i\lambda_2^3),$$

which are diagonalized by bi-unitary translation and unitary translation respectively as

$$\chi_+ = U\chi^T_+, \quad \chi_- = D\chi^T_-, \quad U^T M_3 D = \text{diag}(\mu_1, \mu_2, \mu_3),$$

$$\chi = V\chi^T, \quad V^T M_N V = \text{diag}(\xi_1, \xi_2, \cdots, \xi_6),$$

from which we calculate the one-loop contributions to the muon and electron $g-2$ as follows:

$$a_{\mu,e}(\text{SUSY}) = a_{\mu,e}(\chi^\pm) + a_{\mu,e}(\chi^0) + a_{\mu,e}(h_B),$$

$$a_{\mu}(\chi^\pm) = \frac{m_\mu}{16\pi^2 m^2(N)} \sum_{a=1,2,3} \left\{ \frac{1}{3} m_\mu (|C_{\mu,a}^L|^2 + |C_{\mu,a}^R|^2) f_C(x_a) - 3 \mu_a \text{Re}[C_{\mu,a}^L (C_{\mu,a}^R)^*] g_C(x_a) \right\},$$

$$a_e(\chi^\pm) = \frac{m_e}{16\pi^2 m^2(N)} \sum_{a=1,2,3} \left\{ \frac{1}{3} m_e (|C_{e,a}^L|^2 + |C_{e,a}^R|^2) f_C(x_a) - 3 \mu_a \text{Re}[C_{e,a}^L (C_{e,a}^R)^*] g_C(x_a) \right\},$$

$$f_C(x) = \frac{1}{(1-x)^4} \left(1 + \frac{3}{2} x - 3 x^2 + \frac{1}{2} x^3 + 3 x \ln x \right),$$

$$g_C(x) = \frac{1}{(1-x)^3} \left(1 - \frac{4}{3} x + \frac{1}{3} x^2 + \frac{2}{3} \ln x \right),$$

$$x_a = \frac{m_a^2}{m^2(N)}, \quad m^2(N) = m_L^2 + \frac{g_3^2 + g_2^2}{4} (v_d^2 - v_u^2),$$

$$C_{\mu,a}^L = Y_2^E D_1 a + \epsilon Y_2^F D_2 a,$$

$$C_{\mu,a}^R = - g_2 U_{3a},$$
\[C_{e,a}^L = \epsilon^2 Y_1^E D_{1a} + \epsilon^5 Y_1^E D_{2a}, \]
\[C_{e,a}^R = -g_3 U_{3a}, \]
(190)
(191)

\[a_\mu(\chi^0) = -\frac{m_\mu}{16\pi^2 m^2(E)} \sum_{a=1}^{6} \left\{ \frac{1}{6} m_\mu (|N_{\mu,a}^L|^2 + |N_{\mu,a}^R|^2) f_N(y_a) + \xi_a \text{Re}[N_{\mu,a}^L N_{\mu,a}^R]^* g_N(y_a) \right\}, \]
(192)

\[a_e(\chi^0) = -\frac{m_e}{16\pi^2 m^2(E)} \sum_{a=1}^{6} \left\{ \frac{1}{6} m_e (|N_{e,a}^L|^2 + |N_{e,a}^R|^2) f_N(y_a) + \xi_a \text{Re}[N_{e,a}^L N_{e,a}^R]^* g_N(y_a) \right\}, \]
(193)

\[f_N(x) = \frac{1}{(1-x)^4} (1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x), \]
(194)

\[g_N(x) = \frac{1}{(1-x)^3} (1 - x^2 + 2x \ln x), \]
(195)

\[y_a = \frac{\xi_a^2}{m^2(E)}, \quad m^2(E) = m_L^2 + \frac{g_Y^2 - g_2^2}{4} (v_d^2 - v_u^2), \]
(196)

\[N_{\mu,a}^L = -Y_2^E V_{3a} - \epsilon^3 Y_2^E V_{4a}, \]
(197)

\[N_{\mu,a}^R = \frac{g_2}{\sqrt{2}} V_{6a} + \frac{g_Y}{\sqrt{2}} V_{5a}, \]
(198)

\[N_{e,a}^L = -\epsilon^2 Y_1^E V_{3a} - \epsilon^5 Y_1^E V_{4a}; \]
(199)

\[N_{e,a}^R = \frac{g_2}{\sqrt{2}} V_{6a} + \frac{g_Y}{\sqrt{2}} V_{5a}; \]
(200)

\[a_\mu(h_B) = \frac{m_\mu |Y_2^E|^2}{16\pi^2} \left(\frac{f_C(x_B) - f_N(y_B)}{3m^2(N) - 6m^2(E)} \right), \]
(201)

\[a_e(h_B) = \frac{m_e |Y_1^E|^2}{16\pi^2} \left(\frac{f_C(x_B) - f_N(y_B)}{3m^2(N) - 6m^2(E)} \right), \]
(202)

\[x_B = \frac{\lambda_{45} v_s^2}{m^2(N)}, \quad y_B = \frac{\lambda_{45} v_s^2}{m^2(E)}, \]
(203)

where \(m_L\) is the \(S_1\)-doublet left-handed slepton mass. In calculating the neutralino contributions, we omitted the negligible contributions from the right-handed slepton: \(E_{1,2}\), the singlino, and the \(U(1)_S\) gaugino.

At the degenerated mass and large \(N_U\) limit:

\[m_L = \mu_1 = \mu_2 = \mu_3, \quad N_U \gg 1, \]
(204)

31
then we get
\[a_\mu = \frac{g_2^2 v_\mu N_U v_u m_\mu}{32\pi^2 m_L^2} = 27 \times 10^{-10} \left(\frac{200\text{GeV}}{m_L} \right)^2 \left(\frac{N_U}{13} \right) \left(\frac{Y_{EI}}{0.4} \right), \]
(205)

\[\frac{m_\mu^2 a_e}{m_e^2 a_\mu} = \frac{\epsilon^2 Y_{EI}^2 m_\mu}{Y_{EI}^2 m_e} \approx \frac{2Y_{EI}^1}{Y_{EI}^2}. \]
(206)

The experimental values given in Eq.(1) and Eq.(5) are realized by putting by hand as
\[m_L = 200\text{GeV}, \quad N_U = 13, \quad Y_{EI}^1 = -2.8, \quad Y_{EI}^2 = 0.4. \]
(207)

Assuming \(N_D = 1 \) and imposing Eq.(96), we get
\[N_D = 1, \quad Y_1^E = 3.36, \quad Y_2^E = 0.79. \]
(208)

The values of coupling constants at the Planck scale:
\[Y_1^E(M_P) = 1.77, \quad Y_{EI}^1(M_P) = -1.47, \quad Y_2^E(M_P) = 0.42, \quad Y_{EI}^2(M_P) = 0.21, \]
(209)

are consistent with the \(O(1) \) criterion. The enhancement of the \((g - 2)_e\) compared to the \((g - 2)_\mu\) is originated from a large cancellation between two terms in the electron mass:
\[m_e = (Y_1^E + Y_{EI}^1 N_D)\epsilon v_d. \]

We give the numerical estimations of both \(g - 2 \) as follows. We define three parameter sets:

\begin{align*}
\text{Model A} & : \quad 200 < \min(|M_2|, |\lambda_{23} v_s|) < 1000\text{GeV}, \quad \max(|M_2|, |\lambda_{23} v_s|) = 1.1 \times \min(|M_2|, |\lambda_{23} v_s|), \\
& \quad |\lambda_{45} v_s| = 2 \times \min(|M_2|, |\lambda_{23} v_s|), \\
\text{Model B} & : \quad 200 < |\lambda_{45} v_s| < 1000\text{GeV}, \quad \min(|M_2|, |\lambda_{23} v_s|) = 1.2 |\lambda_{45} v_s|, \\
& \quad \max(|M_2|, |\lambda_{23} v_s|) = 1.4 |\lambda_{45} v_s|, \\
\text{Model C} & : \quad 700 < |M_2|, |\lambda_{23} v_s|, |\lambda_{45} v_s| < 1000\text{GeV},
\end{align*}
(210)

and the common parameter set:
\[200 < |\lambda_{67} v_s|, |\lambda_{89} v_s|, m_L < 1000\text{GeV}, \quad |M_Y| = 0.5 |M_2|, \]
(213)

\[0.2 < |Y_{1,2}^E| < 3.0, \quad 0.2 < |Y_{1}^{EI}| < 3.0, \quad 0.2 < |Y_{2}^{EI}| < 0.4, \quad 0.5 < |N_{U,D}| < 10 \]
(214)

Taking account of the RGE factor
\[\frac{Y^E(M_S)}{Y^E(M_P)} = 1.9, \]
(215)
for $Y_{1,2}^{E}, Y_{1}^{EI}$, we have imposed the $O(1)$ criterion on the Yukawa couplings at M_{P}. In Model A, as the extra higgsinos are decoupled, the advantage of large $Y_{1,2}^{EI}$ is not available unlike in the cases of Model B and Model C. In Model C, an accidental degeneracy of the mass parameters could enhance the mixing angle of the higgsinos, which is prevented in Model A and Model B. Note that such a enhancement needs fine-tuning and so is unnatural. We focus on the lightest charged SUSY particle in the loop whose mass is defined as

$$\mu_{L} = \min(|\mu_{1}|, |\mu_{2}|, |\mu_{3}|, m(E)).$$ (216)

The results are shown in Figure 1. The constraints for both $g-2$ give the upper bounds of μ_{L} as follows:

$$\mu_{L} < 375\text{GeV} (\text{Model A}), \quad \mu_{L} < 660\text{GeV} (\text{Model B}), \quad \mu_{L} < 940\text{GeV} (\text{Model C}).$$ (217)

While the contributions to both $g-2$ from the extra higgsino are suppressed in Model A, this contributions are not suppressed and raise the upper bound of μ_{L} in Model B. In Model C, an accidental degeneracy of the diagonal elements of the chargino mass matrix enhances the off-diagonal elements of the mixing matrices U, D, which raises the upper bound of μ_{L} further. Eq.(7) and Eq.(206) give the condition:

$$\frac{Y_{1}^{EI}}{Y_{2}^{EI}} \simeq -7;$$ (218)

which is satisfied for the numerical calculation as shown in Figure 2. There is a tendency that the condition $Y_{1}^{EI}/Y_{2}^{EI} > -4$ (green points) gives the smaller $|\Delta a_{e}|$ and the condition $Y_{1}^{EI}/Y_{2}^{EI} < -10$ (red points) gives the smaller $|\Delta a_{\mu}|$. The allowed region in $\Delta a_{e} - \Delta a_{\mu}$ plane is dominated by the blue points which satisfy the condition $-10 \leq Y_{1}^{EI}/Y_{2}^{EI} \leq -4$.

VII. CONCLUSIONS

We have considered an S_{4} flavor symmetric extra $U(1)$ model that accounts for dark matter and a baryon asymmetry. In this model, we assume that dark matter is dominated by an axion so that the smallness of the up quark mass is understood by the smallness of the Peccei-Quinn scale. Furthermore, we assume that the muon mass is induced by
FIG. 1: Lepton anomalous magnetic moments of electron (left) and muon (right) for Model A(top), Model B(middle) and Model C(bottom). Blue points satisfy both Eq.(1) and Eq.(5), green points satisfy only Eq.(1), and red points satisfy only Eq.(5).

the result of the symmetry breaking of the S_3 subgroup. In this case, successful resonant leptogenesis requires TeV scale RHNs, therefore it may be possible to verify the nature of the RHN by a future collider. As the TeV scale seesaw mechanism requires very small neutrino Yukawa couplings, the most relevant interaction of the RHN for a collider experiment is the interaction with the G-Higgs. Our model also accounts for two lepton $g-2$ anomalies.
FIG. 2: Anomalous magnetic moments of electron and muon for Model B. Green, blue and red points correspond to $Y_{1}^{EI}/Y_{2}^{EI} > -4$, $-10 \leq Y_{1}^{EI}/Y_{2}^{EI} \leq -4$ and $Y_{1}^{EI}/Y_{2}^{EI} < -10$ respectively. The vertical (horizontal) dotted lines mean the 1σ bounds for the muon (electron) anomalous magnetic moment.

without causing too large flavor violation. Our numerical estimation shows that the typical upper mass bound of the lightest charged SUSY particle in the loop is about 660 GeV. We can expect to prove the existence of supersymmetry and the flavor symmetry by a future collider.

Acknowledgments

This research was supported by an appointment to the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government. This was also supported by the Korean Local Governments - Gyeongsangbuk-do Province and Pohang City (H.O.). H. O. is sincerely grateful for the KIAS member.

[1] P. Minkowski, “$\mu \to e\gamma$ at a Rate of One Out of 10^9 Muon Decays?,” Phys. Lett. 67B (1977) 421, T. Yanagida, in Proc. “Workshop on the Baryon Number of the Universe and Unified Theories,” edited by O. Sawada and A. Sugamoto (1979), p. 95, M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Freedman (1979), p. 315, R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Non-conservation,” Phys. Rev. Lett. 44 (1980) 912-915.
[2] M. Fukugita and T. Yanagida “Baryogenesis Without Grand Unification,” Phys. Lett. B 174 (1986) 45-47.

[3] C. D. Froggatt and H. B. Nielsen “Hierarchy of Quark Masses, Cabibbo Angles and CP-violation,” Nucl. Phys. B 147 (1979) 277, A. Davidson and K. C. Wali, “Universal Seesaw Mechanism?,” Phys. Rev. Lett. 59, 393 (1987), A. Davidson, M. Koca and K. C. Wali, “U(1) as the Minimal Horizontal Gauge Symmetry,” Phys. Rev. Lett. 43, 92 (1979).

[4] R. D. Peccei and H. R. Quinn “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38, 1440(1977), R. D. Peccei and H. R. Quinn “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D 16 (1977) 1791, A. Davidson and K. C. Wali, “Minimal Flavor Unification Via Multigenerational Peccei-quinn Symmetry,” Phys. Rev. Lett. 48, 11 (1982), A. Davidson, V. P. Nair and K. C. Wali, “Peccei-Quinn Symmetry as Flavor Symmetry and Grand Unification,” Phys. Rev. D 29, 1504 (1984),

[5] M. S. Turner, “Cosmic and local mass density of “invisible” axions,” Phys. Rev. D 33 (1986) 889-896.

[6] H. P. Nilles, “Supersymmetry, Supergravity and Particle Physics,” Phys. Rep. 110 (1984) 1, S P. Martin, “A Supersymmetry Primer,” [hep-ph/9709356v5].

[7] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1-29 [arXiv:1207.7214[hep-ex]], CMS Collaboration, “Observation of a new boson at a Mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716 (2012) 30-61 [arXiv:1207.7235[hep-ex]], ATLAS, CMS collaboration, G. Aad et al., “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV,” JHEP 08 (2016) 045 [arXiv:1606.02266[hep-ex]].

[8] Muon g-2 Collaboration, H. Brown et al., “Precise measurement of the positive muon anomalous magnetic moment,” Phys. Rev. Lett. 86 (2001) 2227-2231 [arXiv:hep-ex/0102017], Muon g-2 Collaboration, G. Bennet et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. 73 (2006) 072003 [arXiv:hep-ex/0602035], F. Jegerlehner and A. Nyffeler, “The Muon g-2,” Phys. Rep. 477 (2009) 1-110 [arXiv:0902.3360], A. Keshavarzi, D. Nomura, and T. Teubner, “Muon g-2 and $\alpha(M_Z^2)$: a new data-based analysis,” Phys. Rev. D 97 (2018) no.11, 114025 [arXiv:1802.02995[hep-ph]].
M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$,” Eur. Phys. J. C 80 (2020) 241 [arXiv:1908.00921[hep-ph]], M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g-2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data,” Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436[hep-ph]], M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang “Reevaluation of the Hadronic Contributions to the Muon $g-2$ and to $\alpha(M_Z^2)$,” Eur. Phys. J. C 71 (2011) 1515 [arXiv:1010.4180[hep-ph]], T. Aoyama et al “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rep. 887 (2020) 1-166 [arXiv:2006.04822[hep-ph]], A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull “Hadronic vacuum polarization: $(g-2)_\mu$ versus global electroweak fits,” Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886[hep-ph]].

[9] T. Moroi “The Muon Anomalous Magnetic Dipole Moment in the Minimal Supersymmetric Standard Model,” Phys. Rev. D 53 (1996) 6565, Erratum: [Phys. Rev. D 56 (1997) 4424] [hep-ph/9512396].

[10] F. Zwirner, “Phenomenological Aspects of E_6 Superstring-inspired Models,” Int. J. Mod. Phys. A3 (1988) 49, J L. Hewett and T. G. Rizzo, “Low-energy Phenomenology of Superstring-inspired E_6 Models,” Phys. Rep. 183 (1989) 193.

[11] D. Suematsu and Y. Yamagishi, “Radiative Symmetry Breaking in a Supersymmetric Model with an Extra U(1),” Int. J. Mod. Phys. A10 (1995) 4521.

[12] M. Kawasaki, K. Kohri and T. Moroi, “Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles,” Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426], M. Kawasaki, K. Kohri, T. Moroi, Y. Takaesu “Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles,” Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211[hep-ph]].

[13] F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, “A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model,” Nucl. Phys. B 477 (1996) 321-352.

[14] B. A. Campbell, J. Ellis, K. Enqvist, M. K. Gaillard and D. V. Nanopoulos, “SUPERSTRING MODELS CHALLENGED BY RARE PROCESSES,” Int. J. Mod. Phys. A2 (1987) 831-890.

[15] E. Dudas, S. Pokorski, and C. A. Savoy “Soft scalar masses in supergravity with horizontal U(1)-x gauge symmetry,” Phys. Lett. B 369 (1996) 255-261 [hep-ph/9509410].
[16] M. Dine, R. Leigh, and A. Kagan “Flavor symmetries and the problem of squark degeneracy,” Phys. Rev. D 48 (1993) 4296-4274 [hep-ph/9304299], A. Pomarol and D. Tommasini “Horizontal symmetries for the supersymmetric flavor problem,” Nucl. Phys. B 466 (1996) 3-24 [hep-ph/9507462].

[17] S. Antusch, S. F. King, M. Malinsky, and G. G. Ross “Solving the SUSY Flavour and CP Problem with Non-Abelian Family Symmetry and Supergravity,” Phys. Lett. B 670 (2009) 383-389 [arXiv:0807.5047[hep-ph]].

[18] R. Howl and S. F. King, “Exceptional Supersymmetric Standard Models with non-Abelian Discrete Family Symmetry,” JHEP 0805 (2008) 008 [arXiv:0802.1909[hep-ph]], Y. Daikoku and H. Okada, “$S_4 \times Z_2$ Flavor Symmetry in Supersymmetric Extra U(1) Mode,” Phys. Rev. D 82 (2010) 033007 [arXiv:0910.3370[hep-ph]].

[19] See also the following references for review papers: G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211 [hep-ph]], H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552 [hep-th]], H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys. 858 (2013) 1, Springer, S. F. King and C. Luhn, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340 [hep-ph]], S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018 (2014) [arXiv:1402.4271 [hep-ph]].

[20] A. Pilaftsis and T. E. J. Underwood “Resonant Leptogenesis,” Nucl. Phys. B 692 (2004) 303-345 [hep-ph/0309342], T. Hambye, J. March-Russell and S. M. West “TeV scale resonant leptogenesis from supersymmetry breaking,” JHEP 0407 (2004) 070 [hep-ph/0403183].

[21] Y. Daikoku and H. Okada, “Phenomenology of S_4 flavor symmetric extra U(1) model,” Phys. Rev. D 88 (2013) 015034 [arXiv:1303.7056[hep-ph]].

[22] Y. Daikoku and H. Okada, “PeV scale right-handed neutrino dark matter in an S_4 flavor-symmetric extra U(1) model,” Phys. Rev. D 91 (2015) 075009 [arXiv:1502.07032[hep-ph]].

[23] P. H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360 (2018) 191 [arXiv:1812.04130[physics.atom-ph]].

[24] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment,”, Phys. Rev. D 97 (2018) no.3, 036001 [arXiv:1712.06060[hep-ph]].
[25] B. Dutta and Y. Mimura “Electron g-2 with flavor violation in MSSM,” Phys. Lett. B 790 (2019) 563-567 [arXiv:1811.10209[hep-ph]], M. Endo and W. Yin “Explaining electron and muon g-2 anomaly in SUSY without lepton-flavor mixings,” JHEP 08 (2019) 122 [arXiv:1906.08768[hep-ph]], M. Badziak and K. Sakurai “Explanation of electron and muon g-2 anomalies in the MSSM,” JHEP 10 (2019) 024 [arXiv:1908.03607[hep-ph]].

[26] A. E. Cárcamo Hernández, D. T. Huong and H. N. Long “A minimal model for the SM fermion flavor structure, mass hierarchy, dark matter, leptogenesis and the g-2 anomalies,” Phys. Rev. D 102 (2020) 055002 [arXiv:1910.12877[hep-ph]], N. Haba, Y. Shimizu and T. Yamada “Muon and Electron g-2 and the Origin of Fermion Mass Hierarchy,” Prog. Theor. Exp. Phys. 2020, 093B05 (2020) [arXiv:2002.10230[hep-ph]].

[27] S. Jana, V. P. Kovilakam, and S. Saad “Resolving electron and muon $g-2$ within the 2HDM,” Phys. Rev. D 101 (2020) no.11, 115037 [arXiv:2003.03386[hep-ph]], S. Jana, P. K. Vishnu, W. Rodejohann, and S. Saad “Dark matter assisted lepton anomalous magnetic moments and neutrino masses,” Phys. Rev. D 102 (2020) no.7, 075003 [arXiv:2008.02377 [hep-ph]], G. Hiller, C. Hormigos-Feliu, D. F. Litim, and T. Steudtner “Anomalous Magnetic Moments from Asymptotic Safety,” Phys. Rev. D 102 (2020) 071901 [arXiv:1910.14062[hep-ph]], G. Hiller, C. Hormigos-Feliu, D. F. Litim, and T. Steudtner “Model Building from Asymptotic Safety with Higgs and Flavor Portals,” Phys. Rev. D 102 (2020) 095023 [arXiv:2008.08606[hep-ph]].

[28] P. A. Zyla et.al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[29] S. Pakvasa and H. Sugawara, “Discrete Symmetry And Cabibbo Angle,” Phys. Lett. B 73 (1978) 61, E. Ma, “Neutrino Mass Matrix from S_4 Symmetry,” Phys. Lett. B 632 (2006) 352 [hep-ph/0508231], C. Hagedorn, M. Lindner and R. N.Mohapatra, “S_4 Flavor Symmetry and Fermion Masses: Towards a Grand Unified theory of Flavor,” JHEP0606 (2006) 042 [hep-ph/0602244], Y. Koide, “S_4 Flavor Symmetry Embedded into SU(3) and Lepton Masses and Mixing,” JHEP0708 (2007) 086 [arXiv:0705.2275 [hep-ph]], F. Bazzocchi and S. Morisi, “S_4 as a natural flavor symmetry for lepton mixing,” Phys. Rev. D 80 (2009) no.096005, [arXiv:0811.0345 [hep-ph]].

[30] H. E. Haber and Z.Surujon “Group-theoretic Condition for Spontaneous CP Violation,” Phys. Rev. D 86 (2012) 075007 [arXiv:1201.1730[hep-ph]].

[31] Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama “Flaxion: a minimal extension to solve puzzles in the standard model,” JHEP 01(2017)096 [arXiv: 1612.05492[hep-ph]], L. Cal-
ibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan “Minimal axion model from flavor,” Phys. Rev. D 95 (2017) no.9, 095009 [arXiv: 1612.08040[hep-ph]].

[32] F. Björkeroth, E. J. Chun and S. F. King “Accidental Peccei-Quinn Symmetry from Discrete Flavour Symmetry and Pati-Salam,” Phys. Lett. B 777 (2018) 428-434 [arXiv:1711.05741[hep-ph]].

[33] M. Linster and R. Ziegler “A Realistic U(2) Model of Flavor,” JHEP 08 (2018)058 [arXiv: 1805.07341[hep-ph]].

[34] C. D. Carone and M. Merchand “Flavor from the double tetrahedral group without supersymmetry: flavorful axions and neutrinos,” Phys. Rev. D 100 (2019) no.3, 035006 [arXiv:1904.11059[hep-ph]].

[35] Y. H. Ahn “Compact model for Quarks and Leptons via flavored-Axions,” Phys. Rev. D 98 (2018) no.3, 035047 [arXiv:1804.06988[hep-ph]].

[36] Y. Ema, D. Hagihara, K. Hamaguchi, T. Moroi, K. Nayakayama “Supersymmetric Flaxion,” JHEP 04 (2018) 094 [arXiv:1802.07739[hep-ph]].

[37] R. D. Peccei, T. T. Wu and T. Yanagida, Phys. Lett. B 172 (1986) 435, L. M. Krauss and F. Wilczek, Phys. Lett. B 173 (1986) 189, Cheng-Wei Chiang, M. Takeuchi, Po-Yan Tseng, and T. T. Yanagida “Muon g-2 and rare top decays in up-type specific variant axion models,” Phys. Rev. D 98 (2018) 095020 [arXiv:1807.00593].

[38] H. Baer, V. Barger and D. Sengupta “Gravity safe, electroweak natural axionic solution to strong CP and SUSY μ problems,” Phys. Lett. B 790 (2019) 58-63 [arXiv:1810.03713[hep-ph]].

[39] S. Chigusa, S. Kasuya and K. Nakayama “Flavon Stabilization in Models with Discrete Flavor Symmetry,” Phys. Lett. B 788 (2019) 494-499 [arXiv:1810.05791[hep-ph]], S. Chigusa, S. Kasuya and K. Nakayama “Novel Flavon Stabilization with Trimaximal Neutrino Mixing,” Phys. Rev. D 100 (2019) 015030 [arXiv:1905.11517].

[40] J. R. Espinosa and A. Ibarra, “Flavor Symmetries and Kähler Operators,” JHEP 0408 (2004) 010 [hep-ph/0405095].

[41] Zhi-xhong Xing, He Zhang and Shun Zhou, “Updated Values of Running Quark and Lepton Masses,” Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419[hep-ph]], Zhi-zhong Xing, He Zhang and Shun Zhou, “Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body higgs decays,” Phys. Rev. D86 (2012) 013013 [arXiv:1112.3112[hep-ph]].

[42] L. Covi, E. Roulet and F. Vissani, “CP violationg decays in leptogenesis scenarios,” Phys. Lett.
B 384 (1996) 169 [arXiv:hep-ph/9605319].

[43] Y. Okada, M. Yamaguchi and T. Yanagida, “Upper Bound of the Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard Model,” Prog. Theor. Phys. 85 (1991) 1.

[44] Y. Daikoku and D. Suematsu, “Mass bound of lightest neutral Higgs scalar in the extra U(1) models,” Phys. Rev. D 62 (2000) 095006 [hep-ph/0003205], Y. Daikoku and D. Suematsu, “Radiative symmetry breaking and Higgs mass bound in the NMSSM,” Prog. Theor. Phys. 104 (2000) 104 [hep-ph/0003206].

[45] Y. Daikoku and H. Okada, “ Suppressing Proton Decay by Cancellation in S_4 Flavor Symmetric Extra U(1) Model,” Prog. Theor. Phys. 128 (2012) 1229-1250 [arXiv:1202.3506[hep-ph]].

[46] J. Hamann and J. Hasenkamp, “A new life for sterile neutrinos: resolving inconsistencies using hot dark matter,” J. Cosmol. Astropart. Phys. 10 (2013) 044 [arXiv:1308.3255v2[astro-ph.CO]].

[47] J. P. Hall and S. F. King, “Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E_6SSM with Massless Inert Singlinos,” JHEP1106 (2011) 006 [arXiv:1104.2259v3[hep-ph]].

[48] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D.Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM,” Astrophys. J. 876, 85 (2019), [arXiv:1903.07603 [astro-ph.CO]].

[49] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209 [astro-ph.CO]].

[50] R. Nevzorov “E_6 inspired SUSY models with Custodial Symmetry,” Int. J. Mod. Phys. A33 (2018) 1844007 [arXiv:1805.08260[hep-ph]].