The Weyl group of type A_1 root systems extended by an abelian group*

Georg W. Hofmann

May 19, 2021

Abstract

We investigate the class of root systems R obtained by extending an A_1-type irreducible root system by a free abelian group G. In this context there are two reflection groups with respect to a discrete symmetric space T associated to R, namely, the Weyl group W of R and a group U with a so-called presentation by conjugation. We show that the natural homomorphism $U \rightarrow W$ is an isomorphism if and only if an associated subset $T^{ab} \setminus \{0\}$ of $G_2 = G/2G$ is 2-independent, i.e. its image under the map $G_2 \rightarrow G_2 \otimes G_2$, $g \mapsto g \otimes g$ is linearly independent over the Galois field \mathbb{F}_2.

Mathematics Subject Classification 2000: 20F55, 17B65, 17B67, 22E65

Key Words and Phrases: Weyl group, root system, presentation by conjugation, discrete symmetric space

1 Introduction

We consider a root system R extended by an abelian group G, a notion that is introduced in [Yos04]. It generalizes the concepts of extended affine root systems (see [AAB+97], for instance) and affine root systems in the sense of [Sai85], both of which are generalizations of root systems of affine Kac-Moody algebras (see [MP95], for instance). The Weyl group W of R is not necessarily a Coxeter group, so a more general presentation is needed to capture the algebraic structure of W. The group U is given by the so-called presentation by conjugation with respect to R:

$$U \cong \langle (\hat{r}_\alpha)_{\alpha \in R^\times} \mid \hat{r}_\alpha = \hat{r}_\beta \text{ if } \alpha \text{ and } \beta \text{ are linearly dependent}, \hat{r}_\alpha^2 = 1, \hat{r}_\alpha \hat{r}_\beta \hat{r}_\alpha^{-1} = \hat{r}_{\alpha(\beta)} \rangle; \text{ for } \alpha, \beta \in R \rangle.$$

There is a natural group homomorphism from U onto W.

*The research for this article was supported by a postdoctoral fellowship at the Department of Mathematics and Statistics at Dalhousie University.
Question Is $U \to W$ injective? In other words, does W have the presentation by conjugation with respect to R?

This question has been studied for various root systems in [Kry00], [Aza99], [Aza00], [AS07], [AS08], [Hof07], [Hof08].

In this note we investigate the case that R is of type A_1, i.e. the underlying finite root system consists of two roots. This type of root system R allows for less rigidity then other types and is therefor of special interest as a prototype. We prove the following result that allows an answer to the question above using an algorithmic approach.

Suppose R is a type A_1 root system extended by a free abelian group G. Then a subset T^{ab} of $G_2 = G/2G$ can be associated to it in a natural way. This subset is called 2-independent, if its image under $G_2 \to G_2 \otimes G_2, g \mapsto g \otimes g$ is a linearly independent set.

Theorem The natural homomorphism $U \to W$ is an isomorphism if and only if $T^{ab} \setminus \{0\}$ is 2-independent in G_2.

This result provides an attractive alternative to a characterization proved in [AS08] using so-called integral collections. Our answer to the question above is more general than that in [AS08] as G is not required to be finitely generated.

We expect that the idea of 2-independence that we have introduced will play an important role in understanding the question for root systems of the types B_n and C_n.

2 Discrete symmetric spaces and their reflection groups

In this section we provide the basic terminology for the following sections. The notion of a discrete symmetric space is a special case of the symmetric spaces introduced in [Loo69]. The associated category of reflection groups is introduced in [Hof08] and more details can be found there.

Definition 2.1 (Discrete symmetric space) Let T be a set with a (not necessarily associative) multiplication

$$\mu : T \times T \to T, \ (s,t) \mapsto s \cdot t.$$

Then the pair (T,μ) is called a discrete symmetric space if the following conditions are satisfied for all s, t and $r \in T$:

(S1) $s \cdot s = s$,
(S2) $s \cdot (s \cdot t) = t$,
(S3) $r \cdot (s \cdot t) = (r \cdot s) \cdot (r \cdot t)$.

By abuse of language, we will sometimes say that T is a discrete symmetric space instead of saying that (T, μ) is a discrete symmetric space. If $s \cdot t = t$ for all s and $t \in T$ then we call μ the trivial multiplication.

For the remainder of this section, let T be a discrete symmetric space.

Definition 2.2 (Reflection group) Let X be a group acting on T. We will denote the element in T obtained by x acting on t by $x.t$. Let $q_X : T \rightarrow X, t \mapsto t^X$ be a function. Then (X, q_X) is called a T-reflection group, if the following conditions are satisfied:

1. (G1) The group X is generated by the set $T^X := \{ t^X \mid t \in T \}$.
2. (G2) For all s and $t \in T$ we have $t^X.s = t \cdot s$.
3. (G3) For all s and $t \in T$ we have $t^X.s^{X}(t^X)^{-1} = (t.s)^X$.
4. (G4) For every $t \in T$ we have $(t^X)^2 = 1$.

If we do not need to specify the map \cdot^X we will also say that X is a reflection group instead of saying that (X, \cdot^X) is a reflection group.

Definition 2.3 (Reflection morphism) Let X and Y be T-reflection groups. Then a group homomorphism $\varphi : X \rightarrow Y$ is called a T-morphism, if $\varphi(t^X) = t^Y$ for every $t \in T$.

Let the group U be given by the presentation $U := \langle (t^U)_{t \in T} \mid (t^U)^2 = 1 \text{ and } t^U.s^{U}(t^U)^{-1} = (t.s)^U \text{ for } s \text{ and } t \in T \rangle$. There is map $\cdot^U : T \rightarrow U, t \mapsto t^U$ associated to the presentation. An action of U on T can be defined satisfying $t^U.s = t.s$ for all s and $t \in T$. With respect to this action the pair (U, \cdot^U) is a T-reflection group. There is a unique T-morphism from U into any other T-reflection group.

Definition 2.4 The pair (U, \cdot^U) is called the initial T-reflection group.

3 Type A₁ root systems extended by an abelian group

In this section we introduce the concept of a type A₁ root system extended by an abelian group G in an ad hoc manner. Thus we avoid presenting the details of the definition for more general types.

Let $(G, +)$ be an abelian group. Define the multiplication

$$G \times G \rightarrow G, \ (g, h) \mapsto g \cdot h = 2g - h. \quad (1)$$
Now let T be a generating subset of G such that $0 \in T$ and $G \cdot T \subseteq T$. It is straightforward to verify that T with the restriction of the multiplication above is a discrete symmetric space. The set $R := T \times \{1, -1\}$ is a type A_1 root system extended by the abelian group G in the sense of [Yos04] or [Hof08].

Consider the two-element group $\mathcal{V} := \{1, -1\}$ with its action on G characterized by $-1g = -g$ for all $g \in G$. Set $\mathcal{A} := G \times \mathcal{V}$. Then \mathcal{A} acts on T via

$$(g, v).t = 2g + vt.$$

The map

$$\cdot^A : T \to \mathcal{A}, \ t \mapsto t^A = (t, -1)$$

turns \mathcal{A} into a T-reflection group.

In general, if B is a group, A is an abelian group, and $f : B \times B \to A$ is a cocycle, then the set $A \times B$ with the multiplication given by

$$(a, b)(a', b') = (a + a' + f(b, b'), bb')$$

defines a group denoted by $A \times f B$ which is a central extension of B.

The set $(G \wedge G) \times G \times \mathcal{V}$ with the multiplication

$$(l, g, v)(l', g', v') := (l + l' + g \wedge (vg'), g + vg', vv')$$

is a group. We denote it by $(G \wedge G) \wedge \times G \times \mathcal{V}$. It can equally be interpreted as the semidirect product of the Heisenberg group $(G \wedge G) \wedge \times G$ with \mathcal{V} or a central extension of \mathcal{A} by $G \wedge G$ with cocycle $f : \mathcal{A}^2 \to G \wedge G$, $((g, v), (g', v')) \mapsto g \wedge (vg')$.

Set

$$\cdot^W : T \to (G \wedge G) \wedge \times G \times \mathcal{V}, \ t \mapsto t^W = (0, t, -1).$$

Let W be the subgroup of $(G \wedge G) \wedge \times G \times \mathcal{V}$ generated by T^W. Then (W, \cdot^W) is a T-reflection group with the action of W on T induced by the action of \mathcal{A} on T.

Definition 3.1 The group W is called the Weyl group of R.

This definition of the Weyl group coincides with the definition of Weyl groups given in [Hof08] if G is free abelian and the one given in [Aza99] if G is finitely generated free abelian.

4 The abelian 2-group case

In this section we investigate the case where G is an elementary abelian 2-group. So we may think of G as a vector space over the Galois field \mathbb{F}_2 with two elements. From it immediately follows that T has the trivial multiplication.
Denote by $G \otimes_{\text{sym}} G$ the subgroup of $G \otimes G$ generated by the elements of the set $\{v \otimes v \mid v \in G\}$. The group homomorphism

$$G \otimes G \to G \otimes_{\text{sym}} G$$

characterized by $g \otimes h \mapsto g \otimes h - h \otimes g$

factors through $G \wedge G$ giving a group homomorphism

$$\pi : G \wedge G \to G \otimes_{\text{sym}} G$$

characterized by $u \wedge v \mapsto u \otimes v - v \otimes u$.

If B is an ordered basis of G then $\{b_1 \wedge b_2 \mid b_1 < b_2 \in B\}$ is a basis of $G \wedge G$. Its image under π is linearly independent, so π is injective.

Define the map

$$\varphi : (G \wedge G) \times \wedge G \to G \otimes_{\text{sym}} G, \ (t,g) \mapsto (\pi(t) + g \otimes g).$$

Theorem 4.1 The map φ is a group isomorphism such that $\varphi(0,g) = g \otimes g$ for all $g \in G$.

Proof. To see that φ is a group homomorphism let $s, t \in G \wedge G$ and $g, h \in G$. Then

$$\varphi((s,g)(t,h)) = \varphi(s + t + g \wedge h, g + h)
= \varphi(s) + \pi(t) + g \otimes h + h \otimes g + (g + h) \otimes (g + h)
= \varphi(s) + \pi(t) + g \otimes g + h \otimes h = \varphi(s,g) + \varphi(t,h).$$

It is clear that φ is surjective, since it has a generating set in its image.

Since we are working with characteristic 2, the map

$$G \to G \vee G, \ v \mapsto v \vee v$$

is an injective group homomorphism. We denote by $G \vee_{\text{sym}} G$ the additive subgroup of $G \vee G$ generated by $\{g \vee g \mid g \in G\}$. So we have a group isomorphism

$$G \vee_{\text{sym}} G \to G.$$

Its composition with the quotient homomorphism $G \otimes_{\text{sym}} G \to G \vee_{\text{sym}} G$ yields a homomorphism

$$\sqrt{\cdot} : G \otimes_{\text{sym}} G \to G$$

satisfying $\sqrt{g \otimes g} = g$.

It vanishes on the image of π, since

$$\sqrt{\pi(g \wedge h)} = \sqrt{g \otimes h - h \otimes g} = \sqrt{g \otimes h + h \otimes g}
= \sqrt{(g + h) \otimes (g + h)} - \sqrt{g \otimes g} - \sqrt{h \otimes h}
= g + h - g - h = 0$$

for all g and $h \in G$.

To show that \(\varphi \) is injective, let \((t,v) \in \ker(\varphi) \), so \(\pi(t) = v \otimes v \). Taking the square root on both sides yields \(0 = v \). We conclude \(\pi(t) = 0 \). Since \(\pi \) is injective we obtain \(t = 0 \).

In this section the action of \(V \) on \(G \) is trivial, so the reflection group \(A \) is given by the direct product \(A = G \times V \). The Weyl group \(W \) is given as the subgroup of \(((G \wedge G) \times G) \times V \) generated by the image of \(\pi \):

\[
\pi^W: T \to ((G \wedge G) \times G) \times V, \quad t \mapsto t^W = (0, t, -1).
\]

Due to the preceding theorem, the Weyl group can also be given as the subgroup of \((G \otimes \text{sym} G) \times V \) generated by the image of \(\pi \):

\[
\pi^W: T \to (G \otimes \text{sym} G) \times V, \quad t \mapsto t^W = (t \otimes t, -1).
\]

Let \(F := F(T \setminus \{0\}) \) be the free vector space on the set \(T \setminus \{0\} \) with the embedding \(\iota: T \setminus \{0\} \to F \). The initial reflection group is given by \(U = F \times V \) with the map

\[
T \to U, \quad t \mapsto \begin{cases} \iota(t), -1 & \text{if } t \neq 0 \\ (0, -1) & \text{if } t = 0. \end{cases}
\]

Definition 4.2 A subset \(M \) of \(G \) is called 2-dependent, if the elements of the set \(\{g \otimes g \mid g \in M\} \) are linearly dependent in \(G \otimes G \). The set \(M \) is called 2-independent if it is not 2-dependent.

Example 4.3

a) A linearly independent subset \(M \) of \(G \) is 2-independent, due to the homomorphism \(\sqrt{\cdot} \) used in the proof of Theorem 4.1.

b) Set \(G = (\mathbb{F}_2)^2 \). Then the set \(M \) of all nonzero vectors in \(G \) is 2-independent, since the matrices

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
\]

are linearly independent.

c) Set \(G = (\mathbb{F}_2)^n \). Any subset \(M \) of \(G \) with cardinality \(|M| > \frac{n(n+1)}{2} \) is 2-dependent, since \(\text{dim}_{\mathbb{F}_2} (G \otimes \text{sym} G) = \frac{n(n+1)}{2} \).

Theorem 4.4 The reflection morphism \(\mathcal{U} \to \mathcal{W} \) is injective if and only if the set \(T \setminus \{0\} \) is 2-independent in \(G \).

Proof. We will use the form of the Weyl group \(W \) given in (2). Suppose \(\mathcal{U} \to \mathcal{W} \) is not injective. Then there is a non-trivial element in its kernel. This element can be written as \((\sum_{i=1}^n \iota(t_i), \sigma) \in G \otimes \text{sym} G \times V \) for distinct elements \(t_1, t_2, \ldots, t_n \in T \setminus \{0\} \) and \(\sigma \in V \). It follows that \(\sigma = 1 \) and \(\sum_{i=1}^n t_i \otimes t_i = 0 \). So \(t_1, t_2, \ldots, t_n \) are 2-dependent. This implies that \(T \setminus \{0\} \) is 2-dependent.
Conversely, suppose $T \setminus \{0\}$ is 2-dependent, say $\sum_{i=1}^{n} t_i \otimes t_i = 0$ for distinct elements $t_1, t_2, \ldots, t_n \in T \setminus \{0\}$ and $n \geq 1$. Then $\left(\sum_{i=1}^{n} t_i, 0 \right)$ is a nontrivial element in the kernel of $U \to W$. \hfill \blacksquare

Denote the reflection morphism $U \to W$ above by φ. Then Example 4.3 yields

Corollary 4.5

(i) The map φ is injective if $T \setminus \{0\}$ is a basis of G.

(ii) The map φ is not injective if $|T \setminus \{0\}| > \frac{n(n+1)}{2}$, where $n = \dim(G)$.

(iii) If $T = G$, then φ is an isomorphism if and only if $\dim(G) \leq 2$.

5 The free abelian case

In this section let G be a free abelian group. We will reduce the situation to that of the former section. More details can be found in [Hof08] Section 2, in particular in Construction 2.10.

Let U be the initial T-reflection group and let W be the Weyl group. The abelianizations U^ab and W^ab are T^ab-reflection groups, where T^ab is the image of T under the quotient homomorphism $G \to G_2 = G/2G$. This is a discrete symmetric space with the trivial multiplication. More precisely U^ab is the initial T^ab-reflection group and $W^\text{ab} = (G_2 \wedge G_2) \times G_2 \times V$ is the Weyl group for the discrete symmetric space T^ab.

The T-reflection morphism $U \to W$ yields a T^ab-morphism $U^\text{ab} \to W^\text{ab}$ and there is a group homomorphism ψ making the following diagram commute:

$$
\begin{array}{ccc}
\ker(U \to W) & \longrightarrow & U \\
\downarrow \psi & & \downarrow \psi \\
\ker(U^\text{ab} \to W^\text{ab}) & \longrightarrow & U^\text{ab} \\
\end{array}
$$

According to [Hof08] Theorem 4.16 the map ψ is an isomorphism. With Theorem 4.4 we have obtained the main result of this article:

Theorem 5.1 The T-reflection homomorphism $U \to W$ is an isomorphism if and only if $T^\text{ab} \setminus \{0\}$ is 2-independent in $G/2G$.

Corollary 4.5 gives more information in some specific cases. In particular, it confirms the observation made in [Hof07] and [AS08] that $U \to W$ is not always injective. If n is the rank of G then testing for 2-dependence involves testing for linear dependence of $|T \setminus \{0\}|$ vectors in an $n(n+1)/2$-dimensional vector space over the Galois field \mathbb{F}_2. This is more practical than testing for the existence of a so-called non-trivial integral collection according to [AS08] Theorem 5.16. This theorem also requires G to be finitely generated, a hypothesis that we don’t require for our Theorem 5.1.
The hypotheses “free” for G is only used to apply Theorem 4.16 of [Hof08]. We would be interested in understanding if it could be weakened to “torsion free”, “involution free” or even omitted completely.

References

[AAB+97] B. N. Allison, S. Azam, S. Berman, Y. Gao, and A. Pianzola. Extended affine Lie algebras and their root systems. Memoirs of the American Mathematical Society, 126(603), March 1997.

[AS07] S. Azam and V. Shahsanaei. Simply laced extended affine Weyl groups (a finite presentation). Publ. Res. Inst. Math. Sci., 43(2):403–424, 2007.

[AS08] S. Azam and V. Shahsanaei. Presentation by conjugation for A_1-type extended affine Weyl groups. J. Algebra, 319(4):1428–1449, 2008.

[Aza99] S. Azam. Extended affine Weyl groups. J. Algebra, 214(2):571–624, 1999.

[Aza00] S. Azam. A presentation for reduced extended affine Weyl groups. Comm. Algebra, 28(1):465–488, 2000.

[Hof07] G. W. Hofmann. Weyl groups with Coxeter presentation and presentation by conjugation. J. Lie Theory, 17:337–355, 2007.

[Hof08] G. Hofmann. The abelianizations of Weyl groups of root systems extended by abelian groups. J. Algebra, 2008. To appear.

[Kry00] Y. Krylyuk. On automorphisms and isomorphisms of quasi-simple Lie algebras. J. Math. Sci. (New York), 100(1):1944–2002, 2000.

[Loo69] O. Loos. Symmetric spaces. I: General theory. W. A. Benjamin, Inc., New York-Amsterdam, 1969.

[MP95] R. V. Moody and A. Pianzola. Lie Algebras With Triangular Decompositions. John Wiley and Sons, 1. edition, 1995.

[Sai85] K. Saito. Extended affine root systems. I. Coxeter transformations. Publ. Res. Inst. Math. Sci., 21(1):75–179, 1985.

[Yos04] Y. Yoshii. Root systems extended by an abelian group and their Lie algebras. J. Lie Theory, 14(2):371–394, 2004.