Elemental analysis and the impact of Sr substitution on magnetic properties of Nd_{(1-x)}Sr_{(x)}MnO₃ (x = 0; 0.5 and 1) perovskite manganite

A M R Dharmayanti¹, D R Munazat¹, D S Razaq¹, B Kurniawan¹, Q Mustaghfiroh², D Nanto³ and D Handoko¹

¹Department of Physics, Faculty of Mathematic and Sciences, Universitas Indonesia Depok 16424, Indonesia
²Department of Physics, Chungbuk National University, Cheongju 28644, South Korea
³Department of Physics Education, Syarif Hidayatullah State Islamic University, Jakarta 15412, Indonesia

Email: djati.handoko@ui.ac.id

Abstract. The series sample of Nd_{(1-x)}Sr_{(x)}MnO₃ (x = 0; 0.5 and 0.1) has been prepared with sol-gel method. The elemental compound or chemical characterization of Nd_{(1-x)}Sr_{(x)}MnO₃ (x = 0; 0.5 and 0.1) were obtain using Energy Dispersive X-Ray Spectroscopy (EDS). The EDS results show that the elements were all presents in the sample, which also verified that the sample has successfully synthesized. The Vibrating Sample Magnetometer (VSM) was used to measure the magnetic properties of the sample under room temperature. The results show that the material is all soft magnetic with the magnetization decrease as the temperature decrease.

1. Introduction
The research in substituted perovskite structure of rare-earth manganite with general formula A_{1-x}B_xMnO₃ (A = rare-earth and B = alkaline earth) have been investigated extensively due to their unique properties such as critical behavior, magnetoresistance and magnetocaloric effect [1, 2]. Currently, some reports explore the properties of Nd_{(1-x)}Sr_{(x)}MnO₃ perovskite-type manganites with various amounts of substitution [3]. The characteristic of the magnetic behavior of rare-earth perovskite manganite such as NdMnO₃ is also being studied generally [4]. It has attracted much attention because it potentially being the candidate for several technology applications with a lot of advantages such as easy to fabricate, cheap, high in resistivity and chemical stability which bring the possibility to the material to become the magnetic refrigeration in a room temperature [5, 6].

Changing the temperature of heat treatment sample preparation or giving the variant amount of substitution on A-site could tune the magnetic properties of the material [7]. Partially substituting strontium in the parental compound leads to a ferromagnetic phase under room temperature [8]. Divalent alkaline metal such as Sr impacts the magnetic behavior of the perovskite material, which influenced by the double exchange interaction between Mn³⁺ and Mn⁴⁺ [9]. The different value of Curie temperature (Tₖ) was also obtain from Nd_{(1-x)}Sr_{(x)}MnO₃ material [10]. The high value of Tₖ will
be obtained as the amount of substitution increase in the sample [11]. It is also interesting to note that varying the applied magnetic field could also influence the value of T_C [12]. The research still continues to investigate the correlation between the morphology and the properties of the material. In this work, we present a study of elemental and magnetic properties of $Nd_{1-x}Sr_xMnO_3$ ($x = 0; 0.5$ and 1) that were prepared using sol–gel method.

2. Method

Sol-gel method was used to prepare the sample of $Nd_{1-x}Sr_xMnO_3$ ($x = 0; 0.5$ and 1). $Sr(NO_3)_2$ (purify ≥ 99.0 %), Nd_2O_3 (purify ≥ 99.0 %), and $Mn(NO_3)_2.4H_2O$ (purify ≥ 98.5 %) and $C_6H_8O_7.H_2O$ were used as precursors. All of the materials were calculated by stoichiometry and weighted by digital balance. Before continuing the sol-gel process, neodymium oxide needs to be converted into neodymium nitrate ($Nd(NO_3)_3$) by reacting it with the nitric acid solution. Next, all precursors were dissolved using double distilled water and mixed into the beaker glass with constant stirring and heat treatment until it reached 80 ºC. Ammonium solution was added into the solution to get pH = 7. The solution were mixed using magnetic stirrer under constant temperature until it changed into gel form. Samples were dried at 110 ºC and calcined at 600 ºC, each sample was mashed into powder using a mortar and compacted into a pellet form with 10 tons of pressure for 2 minutes. Last, sample was sintered for 6 hours at 1200 ºC to grow a crystal bonds. The crystal structural and morphological property of the sample was examined using a Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and Vibrating Sample Magnetometer (VSM).

3. Results and Discussion

The samples were characterized by Scanning Electron Microscope (SEM) to identify the morphology of the sample. The grain size of the sample was able to identify using 5.10^3 magnification. The morphology of the sample obtained from SEM was shown in figure 1, it can be seen that the sample with Sr substitution has the smallest grain among all. It is also in good agreement with previous research [13]. To prove the existence of Nd, Sr, and Mn, the EDS result was shown in figure 2.

![Figure 1](image1.png)

*Figure 1. SEM image at 5.10^3 magnification of (a) $NdMnO_3$, (b) $Nd_{0.5}Sr_{0.5}MnO_3$ and (c) $SrMnO_3$."

![Figure 2](image2.png)

*Figure 2. The results of EDS Spectra (a) $NdMnO_3$ and (b) $Nd_{0.5}Sr_{0.5}MnO_3$."
The measurement of the composition using EDS was presented in Table 1. It shows the amount of each element that exists in the sample. Every element that was used in the synthesis process were present in the table, it could be stated that the sample has successfully synthesized. Even the results show a different amount of element, at $x = 0.5$ the atomic ratio of Nd was 9.96% and Sr was 8.21% indicated that the amount of strontium successfully substituted into Nd. The different results obtain from EDS results due to its function as semi-quantitative analysis, even the state of the sample itself could not be seen, the different amount of substitution could influence the magnetic properties of the sample.

Concentration	Element	Weight ratio (wt%)	Atomic ratio (at%)	Total (%)
$x = 0$	Nd	23.78	17.25	100
	Mn	55.84	16.53	
	O	20.38	66.22	
	Nd	33.85	9.96	
	Sr	16.95	8.21	
$x = 0.5$	Mn	25.92	20.03	100
	O	23.28	61.79	
	Sr	43.57	18.15	
$x = 1$	Mn	29.00	19.26	100
	O	27.43	62.59	

The magnetic properties of the sample were identified using Vibrating Sample Magnetometer (VSM). The measurement was performed under room temperature. The results was shown in figure 3, it could be seen that the graph shows decreasing phenomena due to the amount of strontium that was substituted to the NdMnO$_3$.

Figure 3. The graph magnetization in magnetic field (M vs H) of Nd$_{1-x}$Sr$_x$MnO$_3$ ($x = 0; 0.5$ and 0.1) with inset (a) is magnetization of Nd$_{0.5}$Sr$_{0.5}$MnO$_3$, which all performs under the room temperature.

The hysteresis loop of the sample was shown in figure 4. It shows that the material is soft magnetic as the small value coercivity and remanence. The parameter was shown in table 2. Due to limit of VSM equipment then the magnetic saturation of the sample can not be seen under room temperature. All the samples are paramagnetic which in good agreement with the previous results [15, 16].
Figure 4. The hysteresis loop (M vs H) behavior of of Nd\textsubscript{(1-x)}Sr\textsubscript{x}MnO\textsubscript{3} (x = 0; 0.5 and 0.1) and inset (a) is hysteresis loop of Nd\textsubscript{0.5}Sr\textsubscript{0.5}MnO\textsubscript{3}. The measurement are perform under the room temperature.

Table 2. Results of VSM analysis of Nd\textsubscript{(1-x)}Sr\textsubscript{x}MnO\textsubscript{3} (x = 0; 0.5 and 0.1).

x	Coercivity (Oe)	Remanence (emu/g)	Magnetization (emu/g)
0	88.17	5.3 × 10^{-2}	1.37
0.5	66.22	3.0 × 10^{-2}	10.10
1	288.51	6.6 × 10^{-3}	0.18

4. Conclusions
The investigation of elemental analysis and magnetic properties sample of Nd\textsubscript{(1-x)}Sr\textsubscript{x}MnO\textsubscript{3} (x = 0; 0.5 and 0.1) has been done on the sample. The sample was successfully synthesized as the results of EDS shows that all the element were presented in the sample. The morphology of the sample that was measured by SEM shows that each sample has a different size of grain which could lead to the different properties of the sample. The magnetic properties of the sample were measured using VSM shows that the sample has a small value of remanence and coercivity which shows that the sample is soft magnetic under room temperature.

Acknowledgments
The research was funded by Universitas Indonesia, Depok, Indonesia refer to research grant PUTI Prosiding 2020 no NKB-1024/UN2.RST/HKP.05.00/2020 which support this work.

References
[1] Ayadi F et al 2012 Effect of monovalent doping on the physical properties of La 0.7Sr 0.3MnO 3 compound synthesized using sol-gel technique IOP Conf. Ser. Mater. Sci. Eng. 28(1) 1–8
[2] Garcia J 1995 Magnetic properties of NdNi\textsubscript{(1-x)}Co\textsubscript{x}O\textsubscript{3} samples: Evidence of spin-glass behavior Phys. Rev. B 51(6)
[3] Venkatesh R, Sethupathi K, Pattabiraman M and Rangarajan G 2007 Magnetocaloric effect in single-crystalline Nd1-xSr\textsubscript{x}MnO3 (x=0.3, 0.5) J. Magn. Magn. Mater. 310(2) pp. 2813–2814
[4] Salcedo-Gallo J S, Rodriguez-Patiño D F, Alzate-Cardona J D, Barco-Ríos H and Restrepo-Parra E 2018 Magnetocaloric effect and magnetic properties in NdMnO₃ perovskite: A Monte Carlo approach Phys. Lett. Sect. A Gen. At. Solid State Phys. 382(31) 2069–2074

[5] Koubaa M, Koubaa M C and Cheikhrouhou A 2009 Magnetic and Magnetocaloric Properties of Monovalent Substituted La0.65M0.3M ’ 0.05MnO3 (M=Ba, Ca and M ‘=Na, Ag, K) Perovskite Manganites Phys. Procedia, 2(3) 997–1004

[6] Ghodhbane S, Dhahri A, Dhahri N, Hlil E K and Dhahri J 2013 Structural, magnetic and magnetocaloric properties of La 0.8Ba0.2Mn1-xFeO3 compounds with 0 ≤ x ≤ 0.1 J. Alloys Compd. 550 358–364

[7] Ahmed A M, Mohamed H F, Paixão J A and Mohamed S A 2018 Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites J. Magn. Magn. Mater. 456 217–222

[8] M’nasri R, Cheikhrouhou-Koubaa W, Koubaa M and Cheikhrouhou A 2012 Effect of strontium substitution on the physical properties of Nd 0.5Ca 0.5-xSr xMnO 3(0≤x≤0.5) manganites IOP Conf. Ser. Mater. Sci. Eng. 28(1)

[9] Samoshkina Y E, Edelman I S, Rautskii M F and Molokeev M S 2019 Correlation between magneto-optical and transport properties of Sr doped manganese films J. Alloys Compd. 782 334–342

[10] Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S and Park J G 2008 Tricritical point and magnetocaloric effect of Nd1-xSr xMn O3 J. Appl. Phys. 103(7) 1–4

[11] Sankarraj S, Aravindan S, Yuvakkumar R, Sakthipandi K and Rajendran V 2009 Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd1-xSrMnO3 perovskite materials J. Magn. Magn. Mater. 321(21) 3611–3620

[12] Das S, Ahmmad B and Basith M A 2020 Thermal stability of the crystallographic structure of nanocrystalline Nd0.7Sr0.3MnO3 manganite with enhanced magnetic properties AIP Adv. 095135 1–10

[13] Medisa A, et al 2020 The Structural and Morphological Properties of Nanosized 855(3) 78–83

[14] Estemirova S, Mitrofanov V, Kozhina G and Fetisov A 2016 Phase relationship, structural and magnetic properties of Nd-deficient Nd0.95-xCaMnO2.93±δ J. Magn. Magn. Mater. 399 32–40

[15] Nanto D , et al 2012 Magnetocaloric effect and refrigerant capacity of non-stoichiometric Nd 0.5Sr 0.5MnO 3 single crystalline IEEE Trans. Magn. 48(11) 3995–3998

[16] Battle P D, Gibb T C and Jones C W 1988 The structural and magnetic properties of SrMnO3: A reinvestigation J. Solid State Chem. 74(1) 60–66