Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection

Zoi Lanara, Efstathia Giannopoulou, Marta Fullen, Evangelos Kostantinopoulos, Jean-Christophe Nebel, Haralabos P Kalofonos, George P Patrinos and Cristiana Pavlidis

Abstract

A large number of common disorders, including cancer, have complex genetic traits, with multiple genetic and environmental components contributing to susceptibility. A literature search revealed that even among several meta-analyses, there were ambiguous results and conclusions. In the current study, we conducted a thorough meta-analysis gathering the published meta-analysis studies previously reported to correlate any random effect or predictive value of genome variations in certain genes for various types of cancer. The overall analysis was initially aimed to result in associations (1) among genes which when mutated lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer. We have meta-analysed 150 meta-analysis articles which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total) including various racial groups and other population groups (native Americans, Latinos, Aborigines, etc.). Our results were not only consistent with previously published literature but also depicted novel correlations of genes with new cancer types. Our analysis revealed a total of 17 gene-disease pairs that are affected and generated gene/disease clusters, many of which proved to be independent of the criteria used, which suggests that these clusters are biologically meaningful.

Keywords: Cancer, Meta-analysis, Gene, Association, Interaction, Single-nucleotide polymorphism, Alleles, Clustering

Introduction

Cancer is the result of a complicated process that involves the accumulation of both genetic and epigenetic alterations in various genes [1]. The somatic genetic alterations in cancer include point mutations, small insertion/deletion events, translocations, copy number changes and loss of heterozygosity [2]. These changes either augment the action and/or expression of an oncoprotein or silence tumour suppressor genes. Single-nucleotide polymorphism (SNP) is the most common form of genetic variation in the human genome. Although common SNPs for disease prediction are not ready for widespread use [3], recent genome-wide association studies (GWASs) using high-throughput techniques have identified regions of the genome that contain SNPs with alleles that are associated with increased risk for cancer such as FGFR2 in breast cancer [4-7].

The knowledge on gene mutations that predispose tumour initiation or tumour development and progress will give an advantage in cancer patients' treatment. Despite the complexity and variability of cancer genome, numerous studies have examined the correlation of genome variation with cancer development and progression [8]. However, ambiguous results have been generated from the attempt to link genome variants with cancer prediction or detection. A literature search revealed that even among several meta-analyses, there were unclear results and conclusions.

We have, therefore, conducted a thorough meta-analysis of meta-analysis studies previously reported to correlate the random effect or predictive value of genome variations in certain genes for various types of cancer. The aim of the overall analysis was the detection of
correlations (1) among genes whose mutation might lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer.

Methods
We performed a thorough field synopsis by studying published meta-analysis studies involving the association of various types of cancer with SNPs located in certain genomic regions. For each published meta-analysis included in our study, we also investigated the number of patients (cases) and controls, date, type of study, study group details (e.g. gender, race, age, etc.), measures included, allele and genotype frequency and also the outcome of each study, i.e. if there was an association or not, the interactions noticed in each of these studies, etc.

We have meta-analysed 150 meta-analysis articles (Additional file 1), which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total). The meta-analyses that have been meta-analysed included various racial groups, e.g. Caucasians, Far Eastern populations (Asian, Chinese, Japanese, Korean, etc.), African-American and other population groups (native Americans, Latinos, Aborigines, etc.). Three types of studies were included: (1) pooled analysis, (2) GWAS and (2) other studies, e.g. search in published reports. Collected data consisted of a list of genes, genomic variants and diseases with a known genotype-phenotype association (whether or not a given variation has an impact on susceptibility to a given disease). The principle of our study was to use data mining techniques to find groups (referred to as clusters hereafter) of genes or diseases that behave similarly according to related data. Such groupings will make it possible to find different cancer types susceptible to similar genotypes as well as different genes associated to similar cancer types. Furthermore, our approach would facilitate predicting whether susceptibility to one type of cancer may be indicative of predisposition to another cancer type. Moreover, the association between a group of genes and a given phenotype may suggest that these genes interact or belong to the same biochemical pathway. In order to allow data mining analysis, genotype-phenotype associations had to be classified within a fixed set of categories, i.e. yes/small yes/may/no. Moreover, genes or diseases with fewer than two entries were not considered in our analysis since their clustering would not be meaningful.

Then, data were processed using a state-of-the-art general purpose clustering tool, CLUTO [9]. Data analysis consisted in finding the tightest and most reliable groupings. Since CLUTO offers a wide range of methods, and many different scoring schemes can be used to estimate similarity between genotypes or phenotypes, cluster reliability was assessed by their robustness to clustering criteria (details are provided in Additional file 1). As a consequence, each putative association has been qualified as either ‘highly consistent’ or ‘moderately consistent’. The biological significance of those clusters was, first, evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [10,11], a biological database and web resource of known and predicted protein-protein interactions. The STRING database contains information from numerous sources, including experimental data, computational prediction methods and public text collections. It is widely accessible, and it is regularly updated. Second, literature research was performed to complete this initial evaluation.

Results and discussion
In this study, we performed a meta-analysis of published meta-analysis studies to investigate possible correlations among genes and SNPs and various types of cancer, as well as among gene-gene and/or gene-environmental interactions. Furthermore, an advanced literature research was applied in order to evaluate our results obtained from our meta-analysis. Our data were not only consistent with previously published literature but we have also depicted novel correlations of genes with new types of cancer. Our analysis showed a total of ten cancer-related genes that are affected (Table 1).

Correlation of SNPs’ genes with various types of cancer
The association highlighted by our meta-analysis between the CYP2E1 gene and colorectal cancer (CRC), head and neck cancer (HNC) and liver cell carcinoma (LLC) is supported by published data [33-39,44,121]. An additional literature search to evaluate our initial results revealed novel correlations of the gene combination CYP2E1 and GSTM1 with prostate cancer (PC) susceptibility, lung cancer (LC) and bladder cancer (UBC) as shown in Table 1 [126-128]. A similar correlation was found in CRC using a knock-down model [32,40,41]. Studies not only confirm the possibility of association between the CCND1 gene and breast cancer (BC) [25] but also suggest involvement with squamous cell carcinoma (SCC), oesophageal cancer (EC), oral cancer (OC) and malignant glioma (MG), as arisen from the interaction between the CCND1 and CCND3 genes [26,122-124]. This is further corroborated in mouse model studies that show association of CCND1 with BC [25,27-31,153] and PC [125].

Moreover, as far as the ERCC2 is concerned along with the association of ERCC1 gene with BC and LC which is already confirmed [14-17,21,22], we have also identified from our further literature search on humans the existence of an association with OC [26] and with HNC [129-131]. There were no similar mouse studies that could confirm or overrule our findings.

Our findings regarding the GSTP1 gene are confirmed by the published literature [39,46-55]. Furthermore, we
have noticed an association with PC derived from the combination of GSTM1 and CYP1A1 [126,128,132,133]. Likewise, previous experimental evidence supports the association we found between the MTHFR gene and BC [63,134] and gastric cancer (GC) [59,60]. An association was also found between MTHFR gene with other types of cancer, such as acute lymphoblastic leukaemia (ALL) [135,136,154], LC [137], UBC coming from interaction between CTH and GSTM1 [138], CRC [139], non-Hodgkin's lymphoma (NHL) [140,141], BC [64] and HNC [142]. Specifically, in the case of NHL, the gene combination of MTHFR and TYMS might influence the susceptibility to NHL [140,141].

Concerning TGFBI, apart from the BC [64] that was confirmed from the results of our further literature search on humans and on mouse model [75,76], we have noticed also the following associations with gastric dysplasia, LC, pancreatic cancer (PanC) and BC [77,143-146]. Also, an association of TGFBI with CRC was found using a mouse model [147].

In addition for TPS3 gene, we have observed in the results of our meta-analysis that it is associated with BC, UBC, CRC, EC and LC [80-87,96-104,108-111,113,149]. We have observed also that TPS3 gene might be associated with OC [88,148], too. Concerning the literature research on knockout mice, we have confirmed the associations with BC [89-94] and LC [114-117], and we have found also associations with ovarian cancer (OVCa) [150], GC [151] and OC [152]. Moreover for the VEGFA gene, based on further literature TGFBI research, we have confirmed the association with BC [120], but we had not found any other evidence supporting the association with other types of cancer.

Correlations between groups of genes and various types of cancer

We have examined and confirmed the highly consistent gene clustering results over further literature search via STRING. Our search revealed additional types of cancer, except from the types that we have studied in our meta-analysis that seems to be related with pair of genes.
STRING database reports binding interaction between GSTP1 and GSTM1 genes, activating interaction between MMP2 and EGF genes, between VEGFA and IL1B genes and between MMP-9 and IL8 genes (Table 3). The application of our machine learning method has highlighted that those pair of genes have similar association profiles and, therefore, might be involved in the same pathways. The genes that do not appear in the associations do not probably correlate with the presence of a certain type of cancer.

First, in our meta-analyses, we observed that the interaction between IL6 and TGFBI genes was associated to the following types of cancer: BC, CRC, GC, LC and PC as shown in Table 4. Although further literature search on humans could not validate our highly consistent results, we discovered that these interactions are associated to additional types of cancer, such as HNC [187], CRC [158], renal cancer (RC), small cell lung cancer

Table 2 Summary of genes and SNPs identified by further literature search as positively correlated with various cancers

Gene	Cancer type	rs number	SNPs	Other name	References
CCND1	OC	rs603965	c.870G>A		[26,122-124]
CCND1	PC	rs603965	c.870G>A		[125]
CYP2E1	PC	NA	NA		[126]
CYP2E1	LC	NA	NA		[127]
CYP2E1	UBC	NA	NA		[128]
CYP2E1	OC	NA	NA		[40]
ERCC2	OC	rs1799793,rs13181	p.D312N, p.K751Q		
ERCC2	HNC	rs1799793,rs13181	p.D312N, p.K751Q		
GSTP1	PC	rs1695	p.I105V		[126,128,132,133]
MTHFR	BCC	rs1801131	c.677C>T, c.1298A>C		
MTHFR	ALL	rs1801131	c.677C>T, c.1298A>C		
MTHFR	LC	rs1801131	c.677C>T, c.1298A>C		
MTHFR	UBC	rs1801131	c.677C>T, c.1298A>C		
MTHFR	CC	rs1801131	c.677C>T, c.1298A>C		
MTHFR	NHL	rs1801131	c.677C>T, c.1298A>C		
MTHFR	HNC	rs1801131	c.677C>T, c.1298A>C		
TGFBI	GC	rs1982073	c.29C>T		[143]
TGFBI	LC	rs1982073	c.29C>T		[144]
TGFBI	PC	rs1982073	c.29C>T		[145]
TGFBI	PC	rs1982073	c.29C>T		[146]
TGFBI	CRC	rs1982073	c.29C>T		[147]
TP53	EmCa	rs1042522/rs17878362	p.R72P		
TP53	PC	rs1042522/rs17878362	p.R72P		
TP53	OVCa	rs1042522/rs17878362	p.R72P		
TP53	GC	rs1042522/rs17878362	p.R72P		
TP53	OC	rs1042522/rs17878362	p.R72P		

NA not available.

Table 3 Putative gene-gene associations with various cancer types

Gene associations	Considered phenotypes	Comments	STRING confirmation	Literature confirmation
TGFBI	IL6	4	Binding interaction	[Reference]: study type
MMP2	EGF	3	Based on 'yes'	Activating interaction
VEGFA	IL1B	2	Activating interaction	
MMP9	IL8	4	Based on 'may'	Activating interaction
MMP1	MMP3	5	Based on 'may'	KEGG: same process
malignant melanoma (MM) [189-192] and OVCa. Additionally, regarding our further research on the interaction between IL6 and TGFB1 genes on mouse models, we have confirmed our initial results principally for BC [155-157] and PC [159] and have noticed associations with epithelial cancer [194], skin tumour [195], LC [196], OVCa and cervical cancer (CC) [197,198] and HNSCC [199]. Second, we found that the interaction between MMP-2 and EGF was associated with LC, BC and GC (Table 4). Subsequently with a further literature search, we have confirmed the association with BC osteolysis [163,164] and also found new associations with EC [200], LC, RC and PC [162]. Furthermore, in some cases, we have observed the association of the aforementioned genes with OSCC [201]. In this study, EGF induced MMP-1 expression that is required for type I collagen degradation. In addition, MMP-1 is also associated with human papillomavirus [202] and BC [165]. Another interesting interaction that was revealed from our analysis was between the VEGFA and IL1B genes that were associated with BC and GC (Table 4). After proceeding with a further literature search, we have not found similar results - except from one report [171] - but we have identified additional associations with HNC, ALL, laryngeal carcinoma and MM [203-206]. For MMP-9 and IL8 interaction, there was no study confirming our initial results for BC, CRC and GC on neither humans nor mouse models. We have observed though that there was evidence for an association with nasopharyngeal carcinoma [171], LC [177,178] and UBC [207]. Similarly, we could not find any study that could support the interactions between MMP-1 and MMP-3 and GSTP1 with GSTM1, although two studies confirmed that GSTP1 and GSTM1 interactions could be associated with BC [182,183] (Table 4).

Table 4 Summary of gene-gene interactions and the corresponding SNPs in these genes

Gene 1	Gene 2	Cancer type	SNP's gene 1 rs number	SNP's other name	SNP's gene 2 rs number	SNP's other name	References (gene 1)	References (gene 2)	Supporting references
IL6	TGFB1	BC	rs1800709	c.-174G>C	rs1800469, rs1800470	c.-509C>T, p.T29C	[56] [67-70,72-74]	[155-157]	
IL6	TGFB1	CRC	rs1800709	c.-174G>C	rs1800470	p.T29C	[57] [71]	[158]	
IL6	TGFB1	GC	rs1800709	c.-174G>C	rs1800470	p.T29C	[57] [71]	[158]	
IL6	TGFB1	LC	rs1800709	c.-174G>C	rs1800470	p.T29C	[57] [71]	[158]	
IL6	TGFB1	PC	rs1800709	c.-174G>C	rs1800470	p.T29C	[57] [71]	[158]	
MMP2	EGF	LC	rs2438650	c.-1306C>T	rs4444903	c.61A>G	[160] [161]	[162]	
MMP2	EGF	BC	rs2438650	c.-1306C>T	rs4444903	c.61A>G	[160] [161]	[163-165]	
MMP2	EGF	GC	rs2438650	c.-1306C>T	rs4444903	c.61A>G	[160] [161]	[163-165]	
VEGFA	IL1B	BC	rs3025039	c.936C>T	rs114327	NA	[166-169] [170]	[171]	
VEGFA	IL1B	GC	rs699947	c.-2578C>A	rs1143634	NA	[172] [170]	[171]	
VEGFA	IL1B	NA	rs16944	NA	rs16944	NA	[170] [171]	[171]	
VEGFA	IL1B	GC	rs3025039	c.936C>T	rs3087258	NA	[45] [173]	[171]	
VEGFA	IL1B	GC	rs699947	c.-2578C>A	NA	IL1B-31-ami	[95] [173]	[171]	
MMP9	IL8	BC	rs3918242	c.-1562C>T	rs4073	c.-251A>T	[160] [174]	[171]	
MMP9	IL8	CRC	rs3918242	c.-1562C>T	rs4073	c.-251A>T	[160] [174]	[171]	
MMP9	IL8	GC	rs3918242	c.-1562C>T	rs4073	c.-251A>T	[160] [174]	[171]	
MMP9	IL8	LC	rs3918242	c.-1562C>T	rs4073	c.-251A>T	[160] [174]	[171]	
MMP1	MMP3	BC	rs1799750	c.-1607 1G>2G	rs3025058	c.-1171 5A>6A	[176] [176]	[176]	
MMP1	MMP3	CRC	rs1799750	c.-1607 1G>2G	rs3025058	c.-1171 5A>6A	[176] [176]	[176]	
MMP1	MMP3	HNC	rs1799750	c.-1607 1G>2G	rs3025058	c.-1171 5A>6A	[176] [176]	[176]	
MMP1	MMP3	LC	rs1799750	c.-1607 1G>2G	rs3025058	c.-1171 5A>6A	[176] [176]	[177,178]	
MMP1	MMP3	OVCa	rs1799750	c.-1607 1G>2G	rs3025058	c.-1171 5A>6A	[176] [176]	[176]	
GSTP1	GSTM1	CRC	rs1695	pJ105V	rs1065411	GSTM1 present/null	[45] [179]	[179]	
GSTP1	GSTM1	BC	rs1695	pJ105V	rs1065412	GSTM1 present/null	[180] [181]	[182,183]	
GSTP1	GSTM1	OVCa	rs1695	pJ105V	rs1065413	GSTM1 present/null	[184] [184]	[186]	
GSTP1	GSTM1	UBC	rs1695	pJ105V	rs1065414	GSTM1 present/null	[185] [186]	[186]	

These were identified in our meta-analysis. Their correlation with various cancer types is also shown. NA not available.
types of cancer such as BCC, metatypical cancer of the skin [208], colorectal adenoma and RC [209,210], and for GSTPI and GSTM1, endometrial cancer (EmCa) [211], LC [212], multiple myeloma (observed no significant association to prostatic adenoma and adenocarcinoma) [213], PC [133,214], ALL [215], chronic myeloid leukaemia [216] and PanC [217].

We have then attempted to depict the various types of cancers according to the number of SNPs and genes and/or gene clusters found from our meta-analysis to be meaningfully associated with certain cancer types. Our data indicate that BC is correlated more often than the other types of cancer both with the number of SNPs (Figure 1A) as well as with the number of genes or gene clusters (Figure 1B). This observation underlies the heterogeneity of BC, indicating that it is, most likely, not a single disease but a spectrum of related disease states.

Conclusions

In essence, our meta-analysis study generated clusters of genes and diseases, many of which proved to be independent of the criteria used, which suggests that these clusters are most likely biologically meaningful. Preliminary study of some clusters and of our results shows that indeed these genes interact. As regards the associations, with a further literature analysis on human and mouse models, we have also found meaningful gene associations related to other cancer types not previously reported in the literature, an observation that warrants further investigation.

Figure 1 The distribution of various cancer types. According to (A) the number of SNPs per cancer type and (B) the number of genes or gene correlations per cancer type. By extrapolating the data in Tables 1, 2, 3 and 4, it seems that the number of genome variations and genes is profoundly bigger in BC, probably indicating that this type of cancer is not a single disease but, most likely, a spectrum of related disease states.

Additional file

Additional file 1: Genes and cancer types included in this meta-analysis.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZL carried out the data collection, result analysis and participated in the manuscript preparation. EG participated in the manuscript preparation and data analysis. MF participated in the result and statistical analysis and manuscript revision. EK participated in the data collection and manuscript revision. JCN carried out the result and statistical analysis and participated in the manuscript preparation. HPK participated in the manuscript preparation. GPP participated in the design of the study, data analysis and manuscript preparation. CP conceived of the study, participated in its design and coordination as well as manuscript preparation. All authors read and approved for the final manuscript.

Acknowledgements

This study was conducted to fulfil the requirements of an undergraduate thesis, jointly with the Universities of Trieste, Italy and Patras, Greece. This work was partly funded by the University of Patras research budget and a European Commission grant (GENSPHEN; FP7-200754) to GPP.

Author details

1Faculty of Mathematical, Physical and Natural Sciences, Department of Biological Sciences, University of Trieste, Trieste 34128, Italy. 2School of Health Sciences, Department of Pharmacy, University of Patras, University Campus, Rio, Patras 26504, Greece. 3Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, Patras 26504, Greece. 4School of Computing and Information Systems, Faculty of Science, Engineering and Computing, Kingston University, London SW15 3DW, UK.

Received: 25 March 2013 Accepted: 1 May 2013 Published: 5 June 2013
References

1. Lea IA, Jackson MA, Li X, Bailey S, Peddada SD, Dun nick J. Genetic pathways and mutation profiles of human cancers: site- and exposure-specific patterns. Carcinogenesis 2007, 28(9):1851–1858.

2. Dutt A, Bero A, Kim YY, Yang SJ, Noh DY, Kang D, Kwack K. Current status of genome-wide association studies in cancer. Hum Genet 2011, 130(1):59–78.

3. Wang HC, Liu CS, Wang CH, Tsai RY, Tsai CW, Wang RF, Chang CH, Chen YS. Search Tool for the Retrieval of Interacting Genes/Proteins. 2010, 1(1):301.

4. Rae JM, Skaar TC, Hilsenbeck SG, Oesterreich S. Structural mutations in cancer: mechanistic and functional insights. Trends Genet 2012, 28(1):55–59.

5. Inaki K, Liu ET. The role of single nucleotide polymorphisms in breast cancer metastasis. Breast Cancer Res 2010, 1(3):R114.

6. Dutt A, Beroukhim R. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561–D568.

7. Jiang Z, Li C, Xu Y, Cai S, Wang X. Association between XPD polymorphisms and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat 2010, 123(3):203–20.

8. Lopez-Lazaro M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 2010, 16(3–4):144–153.

9. Rasmussen MD, Deshpande MS, Karypis G, Johnson J, Crow JA, Retzel EF. A novel polymorphism of XPD in breast cancer in the women's environment, cancer, and radiation epidemiology (WECARE) study. Cancer Epidemiol Biomarkers Prev 2011, 20(3):313–316.

10. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Bork P, von Mering C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561–D568.

11. Search Tool for the Retrieval of Interacting Genes/Proteins. www.string-db.org.

12. Simard J, Lesage S, Bouchard P, Wu G, Jian Y. A comprehensive analysis of SNP-SNP interactions for breast cancer. Hum Genet 2011, 1(3):135.

13. Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: a meta-analysis involving 22 case-control studies. Cancer Epidemiol Biomarkers Prev 2011, 20(3):313–316.

14. Wang HC, Liu CS, Wang CH, Tsai RY, Tsai CW, Wang RF, Chang CH, Chen YS. Search Tool for the Retrieval of Interacting Genes/Proteins. 2010, 1(1):301.

15. Liu ET. Structural mutations in cancer: mechanistic and functional insights. Trends Genet 2012, 28(1):55–59.

16. Lanara 2. Dutt A, Beroukhim R. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561–D568.

17. Jiang Z, Li C, Xu Y, Cai S, Wang X. Association between XPD polymorphisms and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat 2010, 123(3):203–20.

18. Lopez-Lazaro M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 2010, 16(3–4):144–153.

19. Rasmussen MD, Deshpande MS, Karypis G, Johnson J, Crow JA, Retzel EF. A novel polymorphism of XPD in breast cancer in the women's environment, cancer, and radiation epidemiology (WECARE) study. Cancer Epidemiol Biomarkers Prev 2011, 20(3):313–316.

20. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Bork P, von Mering C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561–D568.

21. Search Tool for the Retrieval of Interacting Genes/Proteins. www.string-db.org.

22. Simard J, Lesage S, Bouchard P, Wu G, Jian Y. A comprehensive analysis of SNP-SNP interactions for breast cancer. Hum Genet 2011, 1(3):135.

23. Lys751Gln and Asp312Asn gene polymorphism and lung cancer risk: a meta-analysis involving 22 case-control studies. Cancer Epidemiol Biomarkers Prev 2011, 20(3):313–316.

24. Wang HC, Liu CS, Wang CH, Tsai RY, Tsai CW, Wang RF, Chang CH, Chen YS. Search Tool for the Retrieval of Interacting Genes/Proteins. 2010, 1(1):301.

25. Search Tool for the Retrieval of Interacting Genes/Proteins. www.string-db.org.

26. Simard J, Lesage S, Bouchard P, Wu G, Jian Y. A comprehensive analysis of SNP-SNP interactions for breast cancer. Hum Genet 2011, 1(3):135.
42. Tang, K. L., Yang, Z. X., Xu, X., Yu, Y., Sun, L., Chen, Y., Song, G., He, L., Qin, S. The PstI/Ral and Dral polymorphisms of CYP2E1 and head and neck cancer risk: a meta-analysis based on 21 case-control studies. BMC Cancer 2010, 10:575.

43. Lu, D., Yu, X., Du, Y. Meta-analyses of the effect of cytochrome P450 2E1 gene polymorphism on the risk of head and neck cancer. Mol Biol Rep 2011, 38:2409–2416.

44. Garcia, S.A., Cutrone OA, de Carvalho MB, Gattas G. Polymorphisms in alcohol metabolizing genes and the risk of head and neck cancer in a Brazilian population. Alcohol Alcohol 2010, 45(3):16–12.

45. Economoupolos KP, Sergentanis TN: GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer 2010, 46(9):1617–1631.

46. Ebrihinkhani-M, Asgharian AM, Nouriaib F, Ebahminkhan K, Vali N, Abbasi F, Zali MR. Association of GSTM1, GSTT1, GSTP1 and CYP1E1 single nucleotide polymorphisms with colorectal cancer in Iran. Pathol Oncol Res 2012, 18(3):651–656.

47. Sameer AS, Qadri D, Siddiqi MA: GSTP1 1105V polymorphism and susceptibility to colorectal cancer in Kashmiri population. DNA Cell Biol 2012, 31(3):74–9.

48. Wang, J., Joshi AD, Corral R, Siegmund KD, Martinez ME, Haile RW, Marchand LL, Martinez ME, Waite J, Wu, J, Yang, W, Wang, J, Yang, W, Yang, W, Yang, W, Yang, W, Yang, W. Lack of association between polymorphism of colorectal cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat 2010, 123(2):499–506.

49. Xu, B., Niu, XB, Wang, ZD, Cheng, W, Tong, N, Mi, YY, Zeng, W, Chen, L., Zhou, Y., Jiang, J. Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis of 46 case studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat 2010, 123(2):499–506.

50. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feiglson HS, Thun MJ, Calle EE. Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomarkers Prev 2007, 16(11):2760–2762.

51. Skjæbøe CF, Sæbøe M, Hjartaker A, Grotmol T, Hansteen IL, Tei T, Hoff G, Kure EH. Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer 2007, 7:228.

52. Talseth BA, Meldrum C, Suchy J, Kurzawski J, Lappe J, Lubinski J, Scott RJ. Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Int J Cancer 2009, 124(10):2409–2416.

53. Kure EH. Colorectal carcinomas and adenomas. Int J Cancer 2009, 124(10):2409–2416.

54. Gaustadnes M, Orntoft TF, Jensen JL, Torring N. Association of polymorphisms in one-carbon metabolism genes and colorectal cancer risk. J Cancer Epidemiol Biomarkers Prev 2009, 18(11):2718–2722.

55. Garbukov E, Litviakov NV, Stakhova MN, Malinovskaia EA, Denisov EV, Grigor’eva ES, Nazarenko MS, Seniokov SV, Guseva EP, Kolobov VA, Makhov VN, Belavskaya VA, Cherdyntseva NV. Genetic and clinical and pathological characteristics of breast cancer in premenopausal and postmenopausal women. Adv Genet 2008, 21:643–653.

56. Liu JH, Xue K, Xue K. Association of GSTM1, GSTT1, GSTP1 and CYP2E1 single nucleotide polymorphisms with colorectal cancer in Iran. Pathol Oncol Res 2012, 18(3):651–656.

57. Qin LX, Zhang J, Li WH, Zhang QL, Yu H, Wang BY, Wang LP, Wang J, Wang HU, Lai XJ, Luo ZQ, Wu XR. Lack of association between methylenetetrahydrofolate reductase gene G1298C polymorphism and breast cancer susceptibility. Mol Biol Rep 2011, 38(4):2289–2299.

58. Peremp’muter VM, Zviranov SV, Slonimskiai EM, Kitsska NG, Garbukov E, Litviakov NV, Stakhova MN, Malinovskaia EA, Denisov EV, Grigor’eva ES, Nazarenko MS, Seniokov SV, Guseva EP, Kolobov VA, Makhov VN, Belavskaya VA, Cherdyntseva NV. Genetic and clinical and pathological characteristics of breast cancer in premenopausal and postmenopausal women. Adv Genet 2008, 21:643–653.
80. Chunder N, Mandal S, Roy A, Roychoudhury S, Panda CK, Rebbeck TR: Inherited genetic predisposition in breast cancer. A population-based perspective. Cancer 1999, 86(11 Suppl):2493–2501.

81. Bennett CN, Green JE: Lanara http://www.humgenomics.com/content/7/1/14

82. Alsner J, Jensen V, Kyndi M, Offersen BV, Vu P, Borresen-Dale AL, Overgaard J, Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Mathoulin-Portier MP, Viens P, Cowen D, Bertucci F, Houvenaeghel G, Kompier LC, van Tilborg AA, Zwarthoff EC: Bladder cancer: novel molecular characteristics, diagnostic, and therapeutic implications. Urol Oncol 2010, 28(1):91–96.

83. Jarmalaite S, Andrekute R, Susdzelis K, Huragalvien-Pusniaken K, Jankievicius F: Promoter hypermethylation in tumour suppressor genes and response to interleukin-2 treatment in breast cancer: a pilot study. J Cancer Res Clin Oncol 2010, 136(7):847–854.

84. Lin HY, Huang CH, Yu TJ, Wu YJ, Yang MC, Lung FY: p53 codon 72 polymorphism as a progression index for bladder cancer. Oncol Rep 2012, 27(4):1193–1199.

85. Dahabreh II, Linardou H, Bouzika P, Varvarigou V, Murray S: TP53 Arg72Pro polymorphism and colorectal cancer risk: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2010, 19(7):1840–1847.

86. Economoupolou KP, Sengentarins TN, Zagoori F, Zagofts GC: Association between p53 Arg72Pro polymorphism and colorectal cancer risk: a meta-analysis. Onkologie 2010, 33(12):666–674.

87. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Dong JH, Zhang L, Xu J, Shi W, Ren YC: TP53 codon 72 polymorphism and colorectal cancer susceptibility: a meta-analysis. Mol Biol Rep 2011, 38(8):4847–4853.

88. Goodman JE, Mechanic LE, Luke BT, Ambs S, Chanock S, Harris CC: Exploring SNP-SNP interactions and colon cancer risk using polymorphism interaction analysis. Int J Cancer 2006, 118(7):1790–1797.

89. Zhang Y, Liu L, Tang Y, Chen C, Wang Q, Xu Y, Yang C, Miao X, Wei S, Chen J, Nie S: Polymorphisms in TP53 and MDM2 contribute to higher risk of colorectal cancer in Chinese population: a hospital-based, case-control study. Mol Biol Rep 2012, 39(9):9661–9668.

90. Lopez I, PO L, Tucci P, Alvarez-Vilain F, AC R, Marin M: Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene 2012, 499(1):81–87.

91. Kanaan Z, Rai SN, Eichenberger MR, Barnes C, Dworak AM, Weller C, Cohen E, Roberts H, Keskey B, Petras RE, Crawford NP, Galandiuk S, Arakhtal R: Association of Arg72Pro of P53 polymorphism with colorectal cancer susceptibility risk in Malaysian population. Asian Pac J Cancer Prev 2011, 12(11):2993–2996.

92. Wang B, Wang D, Jiang L, Liu D, Liu D, Hu J, Jin H: Pro variant of TP53 Arg72Pro contributes to esophageal squamous cell carcinoma risk: evidence from a meta-analysis. Eur J Cancer Prev 2010, 19(4):299–307.

93. Zhao Y, Wang F, Shan S, Qiu X, Li X, Jiao F, Wang J, Du Y: Genetic polymorphism of p53, but not GSTP1, is association with susceptibility to esophageal cancer risk - a meta-analysis. Int J Med Sci 2010, 7(5):300–308.

94. Bashash M, Yavari P, Heslop TG, Shah A, Jadid A, Babaei M, Le N, Brooks-Wilson A, Malekzadeh B, Badji C: Comparison of two diverse populations, British Columbia, Canada, and Ardabil, Iran, indicates several variables associated with gastric and esophageal cancer survival. J Gastrointest Cancer 2011, 42(1):40–45.

95. Duenas M, Santos M, Aranda JF, Bietza C, Martinez-Cruz AB, Lorz C, Taron M, Cruizels EM, Rodriguez-Peralto JL, Martin M, Larrañaga P, Dahabreh J, Stathopoulos GP, Posdel R, Souanno Y, Garcia-Escudero E: Mouse p53-deficient cancer models as platforms for obtaining genomic predictors of human cancer clinical outcomes. PLoS One 2012, 7(8):e42494.

96. Perez-Morales R, Mendez-Ramirez I, Castro-Hernandez C, Martinez-Ramirez OC, Gonssebatt ME, Rubio J: Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer. Genet Mol Biol 2011, 34(4):546–552.

97. Dekk KB, Michalowska AM, Yoon CY, Krummey SM, Hoenerhoff MJ, Kavanagh C, LC IM, Demayo FJ, Lionnol I, Deng CX, Lee YY, Medina D, Shih JH, Green JE: Identification of an integrated 5404 Tt-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res 2007, 67(17):8035–8038.
115. Campling BG, el-Dein YS: Clinical implications of p53 mutations in lung cancer. Methods Mol Med 2003, 75:53–77.

116. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T: Requirement for NF-kappaB signaling in a mouse model of lung adenocarcinoma. Nature 2009, 462(7269):104–107.

117. Fujinawa T, Gai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA: Therapeutic consequences of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 1994, 86(19):1458–1462.

118. Jiang DK, Yao L, Ren WH, Wang WZ, Peng B, Yu L: TP53 Arg72Pro polymorphism and endometrial cancer risk: a meta-analysis. Med Oncol 2011, 28(4):1129–1135.

119. Chen MB, Li C, Shen WX, Guo YJ, Shen W, Lu PH: Association of a LSP1 gene rs3817198T>C polymorphism with breast cancer risk: evidence from 33,920 cases and 35,671 controls. Mol Biol Rep 2011, 38(7):4687–4695.

120. Bachelard RE, Crago A, Chung J, Wenda MT, Shaw LM, Robinson G: Mercurio AM: Vascular endothelial growth factor is an autocrine survival factor for neoproliferating breast carcinoma cells. Cancer Res 2001, 61(15):5409–5416.

121. Eriksson L, Ahluwalia M, Spiewak J, Lee G, Sarma DS, Roomi M, Farber E: Distinctive biochemical pattern associated with resistance of hepatocytes in hepatocyte nodules during liver carcinogenesis. Environ Health Perspect 1983, 49:171–174.

122. Volm M, Koomagi R, Rittgen W: Clinical implications of cyclins, cyclin-dependent kinases, RB and E2F1 in squamous-cell lung carcinoma. Int J Cancer 1998, 79(3):294–299.

123. Anayama T, Furutani M, Takeuchi T, Sonobe H, Sasaguri S, Matsumoto M, Ohtsuki Y: Insufficient effect of p27(KIP1) to inhibit cyclin D1 in human esophageal cancer in vitro. Int J Oncol 2001, 18(1):151–155.

124. Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G: Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol 1999, 9(3):435–442.

125. Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, Tindal EA, Wang Y, Burd CJ, Groh EM, Hoang HN, Giles GG, Severi G, Hayes VM, Henderson BE, Le Marchand L, Kolonel LN, Haiman CA, Boffa R, Gornella LG, Knudsen ES, Rui H, Hershman SM, Sutherland RL, Knudsen KE: Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. J Natl Cancer Inst 2004, 96(18):1344–1351.

126. Mutata M, Watanabe M, Yamamaka M, Kubota Y, Ito H, Naqio M, Kato T, Kamataki T, Kawamura J, Yatani R, Shiraih Y: Genetic polymorphisms in cytokrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett 2001, 165(2):171–177.

127. Umebayashi T: Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to lung cancer-relevance to smoking. Instr Clin Lab Med 1996, 54:2153–2157.

128. Murray GJ, Taylor VE, McKay JA, Weaver RJ, Ewen SW, Melvin WT, Burke MD: Expression of xenobiotic metabolizing enzymes in tumours of the bladder and neck cancer: a meta-analysis based on 7,122 subjects. Int J Cancer 2004, 113(5):606–613.

129. Jonson T, Albrechtsson E, Axelsson J, Heidenblad M, Gorunova L, Johansson B, Hoglund M: Altered expression of TGFBR2 receptors and mitogenic effects of TGFβ in pancreatic carcinomas. Int J Oncol 2001, 19(1):71–81.

130. Makrigiorgos G, Ichiho H, Miyazono K: Different signals mediate transforming growth factor-beta 1-induced growth inhibition and extracellular matrix production in prostate cancer cells. Exp Cell Res 1993, 207(1):11–7.

131. Maggio-Price L, Treuting P, Bielefeldt-Ohmann H, Seamons A, Drivdahl R, Whittby D, Kang D, Chancro S, Rothman N, Armstrong BK: One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet 2007, 122(5):529–533.

132. Suzuki T, Matsuo K, Hasagawa Y, Hiraki A, Waki K, Hirose K, Saito T, Sato S, Ueda R, Tajima K: One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: case–control study. Cancer Sci 2007, 98(14):1439–1446.

133. Kim SH, Lee SH, Choi YL, Wang LH, Park CK, Shin YK: Extensive alteration in the expression profiles of TGFβ pathway signaling components and TP53 is observed along the gastric dysplasia-carcinoma sequence. Histol Histopathol 2008, 23(12):1439–1452.

134. Gemma A, Umebayashi K, Hagishara Y, Kato A, Kusudo S: Mechanism of resistance to growth inhibition by transforming growth factor-beta 1 (TGF-beta 1) in primary lung cancer and new molecular targets in therapy. Gan To Kagaku Ryoho 2000, 27(8):1233–1239.

135. Hirshfield KM, Rebeck TR, Levine AJ: Germline mutations and polymorphisms in the origins of cancers in women. J Clin Oncol 2010, 28(12):1672–1679.

136. Panzen P, Ichiho H, Miyazono K: Different signals mediate transforming growth factor-beta 1-induced growth inhibition and extracellular matrix production in prostate cancer cells. Exp Cell Res 1993, 207(1):11–7.

137. Kamataki T, Kawamura J, Yatani R, Shiraih Y, Genetic polymorphisms in cytokrome P450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett 2001, 165(2):171–177.

138. Jonson T, Albrechtsson E, Axelsson J, Heidenblad M, Gorunova L, Johansson B, Hoglund M: Altered expression of TGFBR2 receptors and mitogenic effects of TGFβ in pancreatic carcinomas. Int J Oncol 2001, 19(1):71–81.

139. Krajnovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghabghi A: Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics 2004, 4(1):66–72.

140. Petro BG, Janez J, Vito D: Gene–gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 2007, 48(4):785–792.

141. Matakoda A, El Gaita R, Rudd MF, Webb EL, Bridle H, Eisen T, Houlston RS: Prognostic significance of folate metabolic polymorphisms for lung cancer. Br J Cancer 2007, 97(2):247–252.

142. Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanoock S, Welch R, Tardón A, Serra C, Canato A, Dosenceri M, García-Closas M: Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer 2007, 120(11):2452–2458.

143. Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, Albertsen H, Pottery JD: Samowitz WS: Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis 2007, 28(8):1672–1679.

144. Weiner AS, Beresina OV, Voronina EN, Voropaeva EN, Boyarkish UA, Pospelova TI, Filipenko ML: Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin's lymphoma. Leuk Res 2011, 35(4):508–515.

145. Lee KM, Lan Q, Kricher A, Purdie MP, Gaulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chancro S, Rothman N, Armstrong BK: One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet 2007, 122(5):529–533.

146. Suzuki T, Matsuo K, Hasagawa Y, Hiraki A, Waki K, Hirose K, Saito T, Sato S, Ueda R, Tajima K: One-carbon metabolism-related gene polymorphisms and risk of head and neck squamous cell carcinoma: case–control study. Cancer Sci 2007, 98(14):1439–1446.

147. Jonson T, Albrechtsson E, Axelsson J, Heidenblad M, Gorunova L, Johansson B, Hoglund M: Altered expression of TGFBR2 receptors and mitogenic effects of TGFβ in pancreatic carcinomas. Int J Oncol 2001, 19(1):71–81.

148. Gemma A, Umebayashi K, Hagishara Y, Kato A, Kusudo S: Mechanism of resistance to growth inhibition by transforming growth factor-beta 1 (TGF-beta 1) in primary lung cancer and new molecular targets in therapy. Gan To Kagaku Ryoho 2000, 27(8):1233–1239.
154. de Jonge R, Hooijsberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ, Peters GJ, Ravindranath Y, Peters R, Lindemans J: Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005, 106(2):717–720.

155. Saffert T, Thach M, Mescharinova MI, Rivas MA, Elzalda PV, Venyaminova AG, Schillauf R, Francois JC: Small interfering RNA targeted to IGFR-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PloS One 2012, 7(1):e29213.

156. Calogero RA, Cordero F, Forni G, Cavallo F: Inflammation and breast cancer. Inflammatory component of mammary carcinogenesis in ErbB2 transgenic mice. Breast Cancer Res 2007, 9(4):211.

157. Schiff R, Osborne CK: Endocrinology and hormone therapy in breast cancer: new insight into estrogen receptor-alpha function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Res 2005, 7(5):205–211.

158. Lahm H, Petral-Malec D, Yilmaz-Ceyhan A, Fischer JR, Lorenzoni M, Givel JC, Lacroix M, Body JJ: Association of a vascular endothelial growth factor LH, Deng Z-C: Gene expression profile for angiogenic factors and cancer progression in Cancer Genet Cytogenet 159. Yu C, Yao Z, Jiang Y, Keller ET: Vascular endothelial growth factor polymorphisms in folate-related genes on in vitro methotrexate cancer model. Eur J Cancer 2005, 41(1):7–19.

160. Peng B, Cao L, Ma X, Wang W, Wang D, Yu L: Genetic polymorphisms of IGFR-IR and cancer risk: a meta-analysis. Cancer Epidemiol 2010, 34(2):150–156.

161. Willmarth NE, Ethier SP: Breaking down bone: new insight into site-specific mechanisms of breast cancer osteolysis mediated by metalloproteinases. Cancer Epidemiol 2008, 32(3):253–259.

162. Singh V, Parmar D, Singh MP: Do single nucleotide polymorphisms in xenobiotic metabolizing genes determine breast cancer susceptibility and treatment outcomes? Cancer Invest 2008, 26(8):769–783.

163. Curran JE, Weinstein SR: Polymorphisms of glutathione S-transferase T1 and lung cancer susceptibility. Cancer Lett 2000, 153(1–2):113–120.

164. Economopoulou KP, Sergentanis TN, Mihos NF: Glutathione S-transferase T1, T2, and T1 polymorphisms and ovarian cancer risk: a meta-analysis. Int J Gynecol Cancer 2010, 20(5):732–737.

165. Zeng FF, Liu SY, Wei W, Yao SP, Zhu S, Li KS, Wan G, Zhang HT, Zhong M, Wang BY: Genetic polymorphisms of glutathione S-transferase T1 and bladder cancer risk: a genetic analysis. Clin Exp Med 2010, 10(1):59–68.

166. Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, Tsukuda M, Nagahara T, Yago T, Matsuda H, Yanoma S: Single nucleotide polymorphisms in folate-related genes on in vitro methotrexate cancer: new insight into estrogen receptor-alpha function and its implication for endocrine therapy resistance in breast cancer. Breast Cancer Res Treat 2010, 124(1):177–183.

167. Sun B, Li JM, Tong N, Tao J, Li PC, Song NH, Zhang W, Wu HF, Feng NH, Hua LX, Yegua 936C>T polymorphism and breast cancer risk: evidence from 5,729 cases and 5,868 controls. Breast Cancer Res Treat 2011, 125(2):489–493.

168. Qiu LX, Wang K, Yang S, Mao C, Zhao L, Yao L, Zhang J, Zhang QL, Sun S, Xue K: Current evidences on vascular endothelial growth factor polymorphisms and breast cancer susceptibility. Mol Biol Rep 2011, 38(4):2117–2123.

169. Yang DS, Park KH, Woo OH, Woo SU, Kim AR, Lee ES, Lee JB, Kim YH, Kim JS, Seo JH: Association of a vascular endothelial growth factor 936C>T polymorphism with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2011, 125(3):849–853.

170. Xue B, Li JM, Tong N, Tao J, Li PC, Song NH, Zhang W, Wu HF, Feng NH, Hua LX, VEGFA 936C>T polymorphism and cancer risk: a meta-analysis. Cancer Genet Cytogenet 2010, 198(1):17–22.

171. Liu X, Wang Z, Yu J, Lei G, Wang S: Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a meta-analysis. Breast Cancer Res Treat 2010, 124(3):821–825.

172. Oh JS, Kucab JE, Bushel PR, Martin K, Bennett L, Collins J, DiAugustine RP, Barrett JC, Afshari CA, Dunn SE: Insulin-like growth factor-1 inscribes a gene expression profile for angiogenic factors and cancer progression in breast epithelial cells. Neoplasia 2002, 4(3):204–217.

173. Cao C, Ying T, Fang Jj, Sun SF, Lv D, Chen ZB, Ma HY, Yu YM, Ding Ql, Shu LH, Dong ZC: Polymorphism of vascular endothelial growth factor –2578CA with cancer risk: evidence from 11263 subjects. Med Oncol 2011, 28(4):1169–1179.

174. Xue H, Liu B, Pan X, Hu H, Huang G: Interleukin-18 and interleukin-1RN polymorphisms and gastric cancer risk: a meta-analysis. J Gastroenterol Hepatol 2010, 25(10):1604–1617.

175. Gao LB, Pan XM, Jia J, Liang WB, Rao L, Xie H, Zhu Y, Li SL, Lv ML, Deng W, Chen TY, Wei YG, Zhang L, Liao J: IL-8-251A/T polymorphism is associated with decreased cancer risk among population-based studies: evidence from a meta-analysis. Eur J Cancer 2010, 46(s):1333–1343.
mouse models: valuable tools for evaluation of new therapeutic strategies for secondary liver cancers. *J Biomed Biotechnol* 2009, 2009:437284.

197. Hiss D: Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. *Journal of Oncology* 2012, 2012:737961.

198. Luo J, Solimini NL, Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. *Cell* 2000, 136(5):823–837.

199. Chen Z, Yan B, Van Waes C: In situ detection of PCR-amplified metalloproteinase cDNAs, and MMP7 gene promoter and risk of colorectal adenoma. *Int J Cancer* 2006, 116(3):270–278.

200. Shimada Y, Imamura M: Genetic polymorphisms of MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma. *Int J Cancer* 2005, 113(5):636–641.

201. Ziober BL, Turner MA, Palefsky JM, Banda MJ, Kramer RH: The role of the NF-kappaB transcriptome and proteome as biomarkers in human head and neck squamous cell carcinomas. *Biomark Med* 2008, 2(4):409–426.

202. Nuovo GJ: Adenoviral-mediated gene therapy of human bladder cancer with antisense interleukin-8. *Onco Rep* 2001, 12(6):365–372.

203. Inoue K, Wood CG, Slaton JW, Karashima T, Sweeney P, Dinney CP: The role of the NF-kappaB transcriptome and proteome as biomarkers in human head and neck squamous cell carcinomas. *Biomark Med* 2008, 2(4):409–426.

204. Stachel D, Albert M, Meilbeck R, Kreutzer B, Haas RJ, Schmid I: Metatypical cancer of the skin. *J Biomed Biotechnol* 2012, 2012:457284.

205. Saadat I, Saadat M: The association between glutathione S-transferase gene polymorphisms and pancreatic cancer in a central European Slavonic population. *Mutat Res* 2009, 680(1–2):78–81.

206. Ouyepian VA, Vinogradova E, Sherstneva ES: Cytochrome P4501A1, glutathione S-transferase M1 and T1 gene polymorphisms in chronic myeloid leukemia. *Genetika* 2010, 46(10):1360–1362.

207. Vrana D, Pikhart H, Mohelnikova-Duchanova B, Holcatova I, Strnad R, Slamova A, Schejbalova M, Ryika M, Susova S, Soucek P: The association between glutathione S-transferase gene polymorphisms and pancreatic cancer in a central European Slavonic population. *Mutat Res* 2009, 680(1–2):78–81.

Cite this article as: Lanara et al.: Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. *Human Genomics* 2013 7:14.