Superexchange interactions in orthorhombically distorted titanates RTiO_3 ($R = \text{Y}, \text{Gd}, \text{Sm}$ and La)

I V Solovyev
Computational Materials Science Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
E-mail: solovyev.igor@nims.go.jp

Abstract. Starting from the multiorbital Hubbard model for the t_{2g}-bands of RTiO_3 ($R = \text{Y}, \text{Gd}, \text{Sm}$ and La), where all the parameters have been derived from the first-principles electronic structure calculations, we construct an effective superexchange (SE) spin model, by treating transfer integrals as a perturbation. We consider four approximations for the SE interactions: (i) the canonical crystal-field (CF) theory, where the form of the occupied t_{2g}-orbitals is dictated by the CF splitting at each Ti-site and three extensions of the CF theory, namely (ii) the relativistic one, where occupied orbitals are confined within the lowest Kramers doublet obtained from the diagonalization of the CF and relativistic spin–orbit (SO) interactions; (iii) the finite-temperature extension, which considers the effect of thermal orbital fluctuations near the CF configuration on interatomic interactions between the spins; (iv) the many-electron extension, which is based on the diagonalization of the full Hamiltonian constructed in the basis of two-electron states separately for each bond of the system. The main results are summarized as follows. (i) Thermal fluctuations of the orbital degrees of freedom can substantially reduce the value of the magnetic transition temperature. (ii) The relativistic SO coupling is generally responsible for anisotropic and antisymmetric Dzyaloshinsky–Moriya interactions. All interactions are rigorously derived and their implications for the magnetic properties of RTiO_3 are discussed. (iii) The CF theory, although applicable for YTiO_3 and high-temperature structures of GdTiO_3 and SmTiO_3, breaks down in the case of LaTiO_3. In the latter, the CF splitting is small. Therefore, the many-electron effects in the bonds as well as the relativistic SO interaction start to play an important role. It is argued that the combination of these two effects could be responsible for the AFM character of interatomic correlations in LaTiO_3. (iv) The SE interactions in YTiO_3 strongly depend on...
the details of the crystal structure. Crystal distortions in the low-temperature structure tend to weaken the ferromagnetic interactions.

Contents

1. Introduction 2
2. Crystal structure 4
3. Parameters of the Hubbard model 4
4. SE interactions in the one-electron approximation 7
 4.1. CF theory for the SE interactions at $T = 0$ 9
 4.2. Relativistic SO interaction and the effective spin Hamiltonian 10
 4.3. Thermal fluctuations of the orbital degrees of freedoms 12
5. Multi-determinant approach for SE interactions 14
6. Summary and conclusions 19

Acknowledgments 20

Appendix A. RPA for the magnetic transition temperature in many-atomic case 21
Appendix B. Mean-field approximation for the magnetic transition temperature in the case of the noncollinear spin arrangement 21

References 22

1. Introduction

Recently, the titanium perovskites $RTiO_3$ (where R is the rare-earth element or Y) have attracted considerable attention. These formally isostructural and isoelectron materials, crystallize in the orthorhombic space group D_{2h}^{16} and have only one electron in the t_{2g}-shell of the Ti-atoms. Nevertheless, the magnetic properties of $RTiO_3$ appear to be extremely sensitive to the magnitude and details of the lattice distortion. More distorted compounds with $R = \text{Yb}–\text{Gd}$ (including YTiO_3) appear to be ferromagnetic (FM). The Curie temperature (T_C) typically varies from about 30 K ($R = \text{Y}$ and Gd) to 60 K ($R = \text{Dy, Ho and Tm}$) [1]–[3]. Less distorted compounds ($R = \text{Sm}–\text{La}$) form the so-called G-type antiferromagnetic (AFM) structure, where all nearest-neighbor (NN) spins are coupled antiferromagnetically. The Néel temperature (T_N) varies monotonically from 146 K (LaTiO_3) to 48 K (SmTiO_3). The complete phase diagram of $RTiO_3$ can be found in [2].

The origin of the FM–AFM transition and, more generally, the microscopic physical picture underlying the behavior of these Mott–Hubbard insulators with partially filled t_{2g}-shell is a matter of considerable debate. Different types of theories ranging from the degenerate orbital liquid [4] to the distortion-controlled crystal-field (CF) splitting of the atomic t_{2g}-levels [5]–[7] have been proposed. The main obstacle with the setting of the proper physical model is related to the fact that there are too many model parameters, which can drastically change the picture if they are chosen in an uncontrollable way. For example, the orbital liquid state is rapidly deteriorated by the lattice distortion away from the simple cubic structure. The conventional CF theories [5, 7] crucially depend on the choice of the dielectric constant, which controls the magnitude of the t_{2g}-level splitting. Thus, in unbiased theories for $RTiO_3$, it is very important to reduce to the minimum all arbitrariness related to the choice of the model parameters by using...
for these purposes first-principles electronic structure calculations. This direction is sometimes called ‘the realistic modeling of strongly correlated systems’ [8].

Our previous works [8]–[10] were devoted to construction of the parameter-free lattice fermion model (more specifically—the multiorbital Hubbard model) for the low-energy t_{2g}-bands of distorted perovskite oxides

$$\hat{H}_{LF} = \sum_{ij} \sum_{a\beta} h_{ij}^{a\beta} \hat{c}_{ia}^\dagger \hat{c}_{j\beta} + \frac{1}{2} \sum_{ij} \sum_{a\beta \gamma} U_{a\beta \gamma} \hat{c}_{ia}^\dagger \hat{c}_{i\gamma}^\dagger \hat{c}_{j\beta} \hat{c}_{i\delta}.$$

(1)

The model itself is specified in the basis of six Wannier orbitals (the so-called spin–orbitals), which are denoted by Greek symbols, each of which is a combination of two spin ($s = \uparrow$ or \downarrow) and three orbital ($m = 1, 2, 3$) variables. The site-diagonal part of $\hat{h}_{ij} = \|h_{ij}^{a\beta}\|$ includes the CF Hamiltonian \hat{h}_{ij}^{CF} and the relativistic spin–orbit (SO) interaction \hat{h}_{ij}^{SO}. The off-diagonal ($i \neq j$) elements of \hat{h}_{ij} stand for the transfer integrals $\hat{t}_{ij} = \|t_{ij}^{a\beta}\|$. Both \hat{h}_{ij}^{CF} and \hat{t}_{ij} are diagonal with respect to the spin indices. $U_{a\beta \gamma}$ are the matrix elements of screened Coulomb interactions. All parameters were determined in the ab initio fashion, in the frameworks of the density functional theory. Other details can be found in the original work [11] as well as in the review article [8].

In this paper, we discuss how the lattice fermion model (1) for the t_{2g} compounds can be further mapped onto the spin-1/2 model of the general form

$$\hat{H}_S = \sum_{\langle ij \rangle} (\hat{\sigma}_i, \hat{A}_{ij} \hat{\sigma}_j),$$

(2)

where \hat{A}_{ij} is the three-dimensional tensor, describing various interactions between spins at the sites i and j. It can be further decomposed into isotropic Heisenberg (J_{ij}), antisymmetric Dzyaloshinsky–Moriya (d_{ij}) and symmetric anisotropic (\tilde{t}_{ij}) interactions1, so that the model itself can be rewritten as

$$\hat{H}_S = - \sum_{\langle ij \rangle} J_{ij} (\hat{\sigma}_i, \hat{\sigma}_j) + \sum_{\langle ij \rangle} (d_{ij}, [\hat{\sigma}_i, \hat{\sigma}_j]) + \sum_{\langle ij \rangle} (\hat{\sigma}_i, \tilde{t}_{ij} \hat{\sigma}_j),$$

(3)

where $\hat{\sigma}_i = (\hat{\sigma}_i^\dagger, \hat{\sigma}_i^y, \hat{\sigma}_i^z)$ is the vector of Pauli matrices in the spin subspace and the prefactor S^2 for $S = 1/2$ is included in the definition of the model parameters \hat{A}_{ij}, J_{ij}, d_{ij} and \tilde{t}_{ij}. Thus, J_{ij} is the scalar, $d_{ij} = (d_{ij}^x, d_{ij}^y, d_{ij}^z)$ is the vector and $\tilde{t}_{ij} = \|t_{ij}^{ab}\|$ (where a and b denote the x-, y- or z-components in the orthorhombic coordinate frame) is the three-dimensional tensor satisfying the condition $\tau_{ij}^{xx} + \tau_{ij}^{yy} + \tau_{ij}^{zz} = 0$. The notation $(\hat{\sigma}_i, \hat{\sigma}_j)$ stands for the inner product and $[\hat{\sigma}_i \times \hat{\sigma}_j]$ for the cross product of the vectors $\hat{\sigma}_i$ and $\hat{\sigma}_j$.

The goal of this work is twofold. On the one hand, we will discuss different levels of approximations for the superexchange (SE) interactions underlying derivation of the spin Hamiltonian (2). On the other hand, we investigate the accuracy of realistic modeling for different types of materials. Particularly, how far one can go with the description of not only qualitative but also quantitative aspects of interatomic magnetic interactions in $RTiO_3$. For these purposes we will consider four characteristic compounds: FM YTiO$_3$ and GdTiO$_3$, and G-type AFM SmTiO$_3$ and LaTiO$_3$. We will also present details of the parameters of the Hubbard Hamiltonian (1) and interatomic magnetic interactions (2–3). After a brief introduction on the crystal structure of $RTiO_3$ (section 2) and description of parameters of the Hubbard Hamiltonian as derived from the first-principles electronic structure calculations (section 3), we

1 Note that for the spin $1/2$, the single-ion anisotropy term is absent.
will turn directly to the analysis of the SE interactions. We will start with the one-electron approximation (referring to the form of the ground-state wavefunction in the atomic limit) and consider different types of one-electron theories, such as the conventional CF theory at $T = 0$ (section 4.1), CF theory with the relativistic SO interactions, which explains the appearance of anisotropic and antisymmetric Dzyaloshinsky–Moriya interactions (section 4.2). We will also estimate the effect of thermal fluctuations of the orbital degrees of freedom on the interatomic interactions between the spins (section 4.3). In section 5, we will consider a many-electron extension of the SE theory, where the ground-state wavefunction is determined from the diagonalization of two-electron Hamiltonians constructed separately for each bond of the system. Particularly, we will argue that the behavior of LaTiO$_3$ is drastically different from other compounds. If in YTiO$_3$, GdTiO$_3$ and SmTiO$_3$ the type of the magnetic ground state is mainly determined by the CF splitting, which is clearly larger than the energy gain caused by the virtual hoppings underlying the SE processes and the relativistic SO interaction, in LaTiO$_3$ all three factors are at least comparable making the situation less straightforward. This revives the idea of our earlier work [9], and now we will explicitly show how the combination of many-electron effects in the bonds and the relativistic SO interaction may explain the AFM character of interatomic correlations in LaTiO$_3$. Finally, a brief summary of the work and the main conclusions will be presented in section 6.

2. Crystal structure

The titanates $RTiO_3$ ($R =$ Y, Gd, Sm and La) crystallize in the orthorhombic space group D_{2h}^{16} in Schönflies notations (no. 62 in International Tables). An example of the crystal structure with the notations of four Ti-atoms composing the primitive cell is shown in figure 1 for the case of YTiO$_3$ [12].

All calculations have been performed in the experimental crystal structure. The low-temperature (LT) structure is currently available only for YTiO$_3$ and LaTiO$_3$, which was measured at $T = 2$ K [2] and $T = 8$ K [13], respectively. Moreover, in order to make a direct comparison with our previous work [8, 10], we also used another set of parameters for YTiO$_3$, corresponding to room temperature (RT) [12]. For SmTiO$_3$ and GdTiO$_3$, the crystal structure was taken from [2], correspondingly for $T = 100$ and 290 K.

Other details of the crystal structure and their implications for the properties of t_{2g}-compounds can be found in the previous publications [8, 10].

3. Parameters of the Hubbard model

In this section, we summarize parameters of the Hubbard model (1), as obtained from the first-principles electronic structure calculations. The procedure used for the construction of the low-energy model (1) as well as for the calculation of the model parameters was described in detail in [8, 11]. It is true that the procedure itself relies on a number of approximations. Nevertheless, we would like to emphasize that apart from these approximations, we did not use any adjustable parameters. In this sense, the procedure is parameter-free.

Note however that the CF splitting calculated in [9] is incorrect, because it does not take into account the nonsphericity of the Madelung potential [5]. A similar problem exists in [6]. The situation was discussed in [10].
Figure 1. Crystal structure of YTiO$_3$. The Y atoms are indicated by the big blue spheres, the Ti are indicated by the medium red spheres, and the oxygen atoms are indicated by the small green spheres. The symbols a, b and c stand for the orthorhombic translations. Different Ti-atoms are shown by numbers.

Basically, there are three sets of the model parameters describing

1. the CF splitting of the atomic t_{2g}-levels,
2. the transfer integrals,
3. the on-site Coulomb and exchange interactions.

The behavior of parameters of the CF is explained in table 1, which shows the eigenvalues and eigenvectors obtained after the diagonalization of \hat{h}_{CF}. One can clearly see that the CF splitting tends to quench the orbital degrees of freedom for all considered compounds, except LaTiO$_3$: the lowest level, split off by the crystal field, is nondegenerate and separated from the next level by an energy gap of at least 100 meV. Thus, in the atomic limit, the single electron occupies the lowest t_{2g}-level, and the degeneracy of the ground state is lifted by the CF. The CF splitting decreases in the order YTiO$_3$ → GdTiO$_3$ → SmTiO$_3$ → LaTiO$_3$. Especially, in LaTiO$_3$ the CF splitting is exceptionally small. In YTiO$_3$, there is a clear dependence of the CF splitting on the crystal structure. Basically, there are two effects: (i) the order of the middle and highest t_{2g}-levels is reversed in the RT structure (in comparison with the LT one); (ii) the CF splitting itself is substantially smaller in the RT structure. The structure of t_{2g}-orbitals, which are split by the crystal field, is rather similar in YTiO$_3$, GdTiO$_3$ and SmTiO$_3$: apart from some numerical differences, the coefficients of the expansion over the basis function have similar values and similar phases. The same tendencies are clearly seen in the RT structure of YTiO$_3$.
Table 1. Eigenenergies (measured in meV from the lowest energy) and eigenvectors obtained after the diagonalization of the CF Hamiltonian \hat{h}_{CF}. The eigenvectors are expanded over the basis of the xy, yz, z^2, zx and $x^2 - y^2$ orbitals, in the orthorhombic coordinate frame.

Compound	Energies	Orbitals
YTiO$_3$ (RT)	109 0.46, 0.70, 0.14, 0.08, -0.52	0 -0.13, 0.45, 0.38, -0.61, 0.51
YTiO$_3$ (LT)	144 0.10, -0.33, 0.37, -0.66, -0.57	0 -0.19, 0.40, 0.33, -0.57, 0.61
GdTiO$_3$	126 0.17, -0.14, 0.37, -0.67, -0.60	0 0.43, 0.80, 0.15, 0.09, -0.39
SmTiO$_3$	191 0.38, 0.85, 0.04, 0.21, -0.30	0 -0.16, 0.50, 0.21, -0.42, 0.71
LaTiO$_3$	37 0.20, 0.46, -0.26, 0.78, -0.28	0 -0.06, -0.85, -0.15, 0.34, -0.37
	61 -0.27, -0.15, -0.17, 0.41, 0.84	

after interchanging the middle and highest t_{2g}-levels. Nevertheless, the structure of the t_{2g}-levels in LaTiO$_3$ appears to be different.

The behavior of transfer integrals in the NN bonds is explained in table 2. The transfer integrals are presented in the local coordinate frame of orbitals, which diagonalize the crystal field (see table 1).

The screened on-site Coulomb interactions for the t_{2g}-band are expressed through $3 \times 3 \times 3 \times 3$ matrices, in the basis of three Wannier orbitals [8, 10, 11]. For the distorted compounds, the structure of these matrices is rather complex and may involve many independent parameters. These matrices are directly used in the next section for the analysis of SE interactions without any additional approximations or simplifications. Nevertheless, just for explanatory purposes in this section, the full matrix $\|U_{\alpha\beta\gamma\delta}\|$ was fitted in terms of two Kanamori parameters [14]: the Coulomb interaction \mathcal{U} between the same t_{2g}-orbitals and the exchange interaction \mathcal{J}. The fitting implies that $\|U_{\alpha\beta\gamma\delta}\|$ has the same symmetry as in the spherical environment of isolated atoms. For example, in the process of fitting, it was assumed that the Coulomb interaction \mathcal{U}' between different t_{2g}-orbitals is related to \mathcal{U} and \mathcal{J} by the identity $\mathcal{U}' = \mathcal{U} - 2\mathcal{J}$ [14], and the parameter \mathcal{U} is the same for all three t_{2g}-orbitals. The results of such fitting are shown in table 3. The screening of the Coulomb interaction \mathcal{U} is sensitive to the local environment in solids: generally, \mathcal{U} is larger for the more distorted YTiO$_3$ and smaller for the least distorted LaTiO$_3$ [8]. On the contrary, the exchange interaction \mathcal{J} is less sensitive to the details of the screening and the proximity to the atomic limit [15].
Table 2. Transfer integrals in the bonds 1–2 and 1–3 (measured in meV) in the local coordinate frame corresponding to the diagonal representation of the CF splitting. The positions of the atomic sites are explained in figure 1. Transfer integrals in other bonds can be obtained from \hat{t}_{12} and \hat{t}_{13} using the symmetry operations of the space group D_{2h}^{16}.

Compound	\hat{t}_{12}	\hat{t}_{13}
YTiO$_3$ (RT)	$\begin{pmatrix} -8 & 91 & 13 \\ -4 & -66 & 0 \\ 193 & 11 & -32 \end{pmatrix}$	$\begin{pmatrix} -29 & 71 & -12 \\ 71 & 82 & -38 \\ -12 & -38 & 102 \end{pmatrix}$
YTiO$_3$ (LT)	$\begin{pmatrix} -36 & 26 & 96 \\ 185 & -8 & 39 \\ -26 & -7 & -68 \end{pmatrix}$	$\begin{pmatrix} -49 & -12 & 64 \\ -12 & 97 & -33 \\ 64 & -33 & 114 \end{pmatrix}$
GdTiO$_3$	$\begin{pmatrix} -48 & 54 & 85 \\ 171 & 6 & 23 \\ -56 & -20 & -79 \end{pmatrix}$	$\begin{pmatrix} -34 & 13 & 80 \\ 13 & 98 & -24 \\ 80 & -24 & 143 \end{pmatrix}$
SmTiO$_3$	$\begin{pmatrix} -83 & 43 & 81 \\ 159 & 39 & 27 \\ -45 & -23 & -84 \end{pmatrix}$	$\begin{pmatrix} -10 & 1 & 101 \\ 1 & 114 & -12 \\ 101 & -12 & 143 \end{pmatrix}$
LaTiO$_3$	$\begin{pmatrix} -62 & 130 & 94 \\ -14 & -5 & 94 \\ 76 & 76 & -69 \end{pmatrix}$	$\begin{pmatrix} 142 & -70 & 78 \\ -70 & 90 & 53 \\ 78 & 53 & 53 \end{pmatrix}$

Table 3. Results of fitting of the effective Coulomb interactions in terms of two Kanamori parameters: the intraorbital Coulomb interaction U and the exchange interaction J. All energies are measured in eV.

Compound	U	J
YTiO$_3$ (RT)	3.45	0.62
YTiO$_3$ (LT)	3.40	0.62
GdTiO$_3$	3.28	0.62
SmTiO$_3$	3.29	0.62
LaTiO$_3$	3.20	0.61

4. SE interactions in the one-electron approximation

The SE interaction in the bond i–j is related to the gain of the kinetic energy, which is acquired by an electron residing at the atomic site i in the process of virtual hoppings in the subspace of unoccupied orbitals at the atomic site j, and vice versa [16, 17]. Let us consider first the approximation adopted in [10, 18], where the energy gain caused by virtual hoppings in the bond i–j was computed in the following way:

$$\mathcal{T}(\varphi_i, \varphi_j) = -\left\langle G \left| \hat{t}_{ij} \left(\sum_M |\hat{P}_j j M \rangle \langle j M | \hat{P}_i \rangle \right) \hat{t}_{ji} \right| (i \leftrightarrow j) \right\rangle G.$$

New Journal of Physics 11 (2009) 093003 (http://www.njp.org/)
Namely, we start with the lattice of isolated atoms, each of which accommodates one electron, and describe the ground-state wavefunction of such a reference system by the single Slater determinant G. Since in the atomic limit there is only one t_{2g}-electron per one Ti-site, this is essentially one-electron problem and all many-electron effects emerge only in the process of virtual hoppings. Typically, this justifies the use of the single-determinant approximation for G in the case of titanates [10]. By denoting the occupied one-electron orbitals at the sites i and j as φ_i and φ_j, respectively, the Slater determinant G for the bond $i-j$ takes the following form:

$$|G(1, 2)\rangle = \frac{1}{\sqrt{2}}\left[\varphi_i(1)\varphi_j(2) - \varphi_i(2)\varphi_j(1)\right],$$

where the symbols ‘1’ and ‘2’ stand for the coordinates of two electrons, associated with the sites i and j. After that we treat the transfer integrals t_{ij} as a perturbation. Since the Coulomb repulsion U (and U') is large, it is sufficient to consider the excited configurations accommodating only two t_{2g}-electrons, which contribute to the second order perturbation theory with respect to t_{ij}. The eigenvalues and eigenvectors of such excited configurations at the site j are denoted as E_{jM} and $|jM\rangle$, respectively. They are obtained after the diagonalization of the Coulomb interactions,

$$\frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\gamma\delta} \hat{c}_i^\dagger \hat{c}_j^\dagger \hat{c}_i \hat{c}_j,$$

in the basis of all possible two-electron Slater determinants at the site j. For six t_{2g} spin-orbitals, there are $6(6-1)/2 = 15$ such determinants [10]. Thus, each $|jM\rangle$ is constructed from several Slater determinants and takes into account the correct multiplet structure in the atomic limit. Examples of the atomic multiplet structures corresponding to the exciting two-electron configurations can be found in [10]. $\hat{\mathcal{P}}_j$ in (4) is a projector operator, which enforces the Pauli principle and suppresses any transfer of an electron into the subspace of occupied orbitals at the site j. In practice, $\hat{\mathcal{P}}_j$ projects $|jM\rangle$ into the subspace spanned by the Slater determinants of the form

$$|G_{i\rightarrow j}(1, 2)\rangle = \frac{1}{\sqrt{2}}\left[\psi_j(1)\varphi_j(2) - \psi_j(2)\varphi_j(1)\right],$$

where φ_j is the occupied orbital at the site j and ψ_j is any orbital residing at the site j, which can be reached from φ_j by the transfer integrals t_{ij}.

Thus, the expression (4) for the energy gain combines elements of the one-electron approximation for $|G\rangle$ with the exact many-electron treatment for the excited two-electron states. On the one hand, since $|jM\rangle$ is a combination of several Slater determinants, the method takes into account some many-electron effects in the atomic limit, which may have interesting consequences on the magnetic properties of RTiO$_3$. On the other hand, the form of $|G\rangle$ is restricted by the single Slater determinant. In this sense, this is an one-electron approach. That is why in the following, we will refer to the expression (4) as a one-electron approximation for the SE interactions. The multi-determinant analog of (4) will be considered in section 5.

3 For example, in the case of the AFM spin alignment in the bond $i-j$, the excited configuration $\uparrow \downarrow$ is decomposed into two-electron singlet and triplet states, that leads to the additional energy gain in equation (4). This effect additionally stabilizes the AFM interactions, as is manifested for example in somewhat stronger canting of spin magnetic moments away from the collinear FM alignment in the ground state of YTiO$_3$ in comparison with results of the mean-field Hartree–Fock approximation [8, 10].
4.1. CF theory for the SE interactions at $T = 0$

In the CF theory, it is assumed that the form of the occupied orbitals $\{\varphi_i\}$ is totally controlled by the crystal field, which is much larger than the energy gain caused by the virtual hoppings (4) as well as the energies of thermal fluctuations. Then, in the one-electron approximation, the isotropic spin couplings J_{ij} are related to the energy gains (4) by the following expression:

$$2J_{ij} = T_{ij}^{↑↑} - T_{ij}^{↓↓},$$

where $T_{ij}^{↑↑} \equiv T(\varphi_i^{↑}, \varphi_j^{↑})$ and $T_{ij}^{↓↓} \equiv T(\varphi_i^{↓}, \varphi_j^{↓})$, and the indices \uparrow and \downarrow explicitly show the spin states of the occupied orbitals φ_i and φ_j. The values of J_{ij} between the nearest and some next NNs are listed in table 4. It also shows the corresponding type of the magnetic ground state expected in the RTiO$_3$ compounds. The magnetic transition temperature is estimated in the random phase approximation (RPA, appendix A).

Thus, in the CF theory, the ground state appears to be FM in the case of GdTiO$_3$ and SmTiO$_3$, and A-type AFM in the case of LaTiO$_3$. The ground state of YTiO$_3$ depends on the crystal structure: FM and A-type AFM for the RT and LT structures, respectively. Nevertheless, as we will see in the next section, both structures yield the same type of noncollinear magnetic ground state, which combines elements of the FM and A-type AFM ordering within one magnetic structure, when the relativistic SO interaction is taken into account. To a certain extent the FM interactions in RTiO$_3$ can be also stabilized by considering explicitly the e_g-band of these compounds [5]. Nevertheless, at the present stage the situation is not completely clear because the same effects would act against the G-type AFM ground state in the case of SmTiO$_3$ and LaTiO$_3$.

The magnetic interactions in YTiO$_3$ (RT) are in reasonable agreement with the ones obtained in the Hartree–Fock approximation for the Hubbard model (1) with the same parameters of the crystal structure ($J_{12} = 3.2$ to 3.9 meV and $J_{13} = 1.0$ to 1.2 meV, depending on the magnetic state [10]). To a certain extent, the same is true for LaTiO$_3$, although since the CF splitting is small and allows for the additional change of the orbital ordering in each magnetic state [17], the parameters of interatomic magnetic interactions obtained in the Hartree–Fock approximation for LaTiO$_3$ exhibit a strong dependence on the magnetic state in which they are calculated ($J_{12} = 1.0$ to 4.5 meV and $J_{13} = -1.2$ to -4.9 meV [10]). Nevertheless, results of the CF theory (table 4) are within the parameters range obtained previously in the Hartree–Fock approximation for LaTiO$_3$ [10].

RPA considerably reduces the magnetic transition temperature in comparison with the mean-field approach. This effect is particularly strong in YTiO$_3$ due to the quasi-two-dimensional character of the SE interactions, which according to the Mermin–Wagner theorem suppresses the long-range magnetic order at finite T [19]4. Nevertheless, J_{13} is finite and the reduction of the magnetic transition temperature has only logarithmic dependence of the anisotropy $g = |J_{13}|/J_{12}$ of NN interactions: $T_{C,N} \sim -(\ln g)^{-1}$ [20]5. Therefore, the transition

4 Strictly speaking, this behavior does not seem to be consistent with the experimental inelastic neutron scattering data, which are typically interpreted in terms of the three-dimensional isotropic Heisenberg model [21]. However, at present there is no clear consensus on this matter, neither on the theoretical nor on the experimental side. For example, the experimental orbital-ordering pattern determined in [22] is more consistent with the anisotropic (quasi-two-dimensional) structure of interatomic magnetic interactions [10, 23]. Thus, the problem requires additional study, both on the theoretical and experimental sides.

5 Moreover, the dependence $T_{C,N} \sim -(\ln g)^{-1}$ can be further modified by the longer range interactions J_{23} and J_{23} between the neighboring ab-planes.
temperature remains finite. Moreover, the Curie temperature is overestimated by factor two even in the case of YTiO$_3$. The correct G-type AFM ground state is reproduced neither in SmTiO$_3$ nor in LaTiO$_3$.

4.2. Relativistic SO interaction and the effective spin Hamiltonian

In the relativistic generalization of the CF theory, the occupied orbital φ_i at each Ti-site is obtained after the diagonalization of the one-electron Hamiltonian $\hat{h}^\text{CF}_i + \hat{h}^\text{SO}_i$, which combines the CF and the relativistic SO interaction $\hat{h}^\text{SO}_i = (\xi_i/2)(\sigma_i, I_i)$, where $\xi_i \approx 20$ meV is related to the spherical part of the one-electron potential [8]. The Hamiltonian is constructed in the basis of six t_{2g}-spin–orbitals. The lowest eigenstate obtained after the diagonalization is the Kramers doublet, whose eigenvectors can be formally denotes as φ_i^1 and φ_i^2. Then, we consider a linear combination

$$\varphi_i^{\pm a} = c^{1}_i \varphi_i^1 + c^{2}_i \varphi_i^2,$$

and find the coefficients c^{1}_i and c^{2}_i from the condition that the averaged spin moment, $\epsilon_i^{\pm a} = \langle \varphi_i^{\pm a} | \hat{\sigma}_i | \varphi_i^{\pm a} \rangle$ corresponding to $\varphi_i^{\pm a}$, has the maximal projection along the $\pm a = \pm x, \pm y$ and $\pm z$ axes in the orthorhombic coordinate frame. Then, we use these orbitals in the expression (4) for the energy gain, and calculate 36 parameters $T(\varphi_i^{\pm a}, \varphi_j^{\pm b})$ corresponding to all possible combinations of $\pm a$ and $\pm b$ at the sites i and j. In the one-electron (mean-field) approximation, the magnetic part of $T(\varphi_i^{\pm a}, \varphi_j^{\pm b})$ should correspond to the energies, which are obtained from (2) by replacing the Pauli matrices $\hat{\sigma}_j$ by the unit vectors e_{ij}^\pm, describing different directions of spin at the site i. In total, the magnetic part of $T(\varphi_i^{\pm a}, \varphi_j^{\pm b})$ is characterized by nine independent parameters, which constitute the tensor \hat{A}_{ij} of interatomic magnetic interactions. The values of \hat{A}_{ij} for two inequivalent NN bonds are given in table 5 and the decomposition of \hat{A}_{ij} into J_{ij}, d_{ij}

Compound	J_{12}	J_{13}	J_{23}	J_{2y}	$T_{C,N}$	GS
YTiO$_3$ (RT)	3.23	0.45	0.03	-0.16	74 (154)	F
YTiO$_3$ (LT)	2.93	-0.14	0.03	-0.16	85 (144)	A
GdTiO$_3$	2.79	0.68	0.07	-0.17	79 (138)	F
SmTiO$_3$	0.68	1.60	0.07	-0.03	41 (68)	F
LaTiO$_3$	1.41	-4.88	0.30	0.13	93 (164)	A

The actual procedure was based on the numerical maximization of the function $(\epsilon_{ij}^{kua}/\epsilon_{ij}^{kud})|\epsilon_{ij}^{kua}/\epsilon_{ij}^{kud}|^{1/2}$, where $\epsilon_{ij}^{kua} = (\pm 1, 0, 0)$, $\epsilon_{ij}^{kvd} = (0, \pm 1, 0)$ and $\epsilon_{ij}^{kzc} = (0, 0, \pm 1)$. The procedure does not uniquely specify the phase of $\varphi_i^{\pm a}$. Nevertheless, the tensor \hat{A}_{ij} of interatomic magnetic interactions does not depend on this phase.

New Journal of Physics 11 (2009) 093003 (http://www.njp.org/)
which is quite consistent with the decrease of the CF splitting in the same direction (see table 3). Particularly, in YTiO$_3$, there is a considerable weight of the both A- and F-components parallel to the c-axis, respectively. By comparing the values of the magnetic transition temperature in the mean-field approximation (appendix B) one can clearly see that the magnetic interactions d_{ij} and \hat{t}_{ij} of the relativistic origin steadily increase in the direction YTiO$_3$ → GdTiO$_3$ → SmTiO$_3$ → LaTiO$_3$, which is quite consistent with the decrease of the CF splitting in the same direction (see table 1). Nevertheless, it is interesting to note that the relativistic SO interaction also contributes to the isotropic interactions J_{ij}, and all of them decrease (with some exception of LaTiO$_3$) after taking into account the SO interaction in comparison with results of the pure CF theory in table 4.

The directions of the magnetic moments in the ground state and the values of the magnetic transition temperature in the mean-field approximation (appendix B) are summarized in table 7. As expected, the magnetic ground state is noncollinear. The type of the magnetic ground state for the space group D_{2h}^{16} can be formally denoted as X–Y–Z, where X, Y and Z is the magnetic structure (F, A, C or G) formed by the projections of the magnetic moments onto the orthorhombic axes a, b and c, respectively. By comparing the values of the magnetic transition temperature with the ones reported in table 4, one can clearly see that the SO interaction tends to additionally increase T_C, despite the fact that all isotropic interactions J_{ij} decrease. Moreover, the SO interaction alone does not solve the problem of the magnetic ground state of LaTiO$_3$, which is expected to be of the C–F–A type and does not include the experimentally observed G-component. The magnetic ground state of other compounds is of the G–A–F type. Particularly, in YTiO$_3$, there is a considerable weight of the both A- and F-components parallel to the orthorhombic b- and c-axes, respectively. The weight of the G-component parallel to the a-axis is negligibly small. The main difference between the RT and LT structures is in the relative weight of the A- and F-components (the former is larger in the LT structure). On the

Compound	\hat{A}_{12}	\hat{A}_{13}
YTiO$_3$ (RT)	(−3.11, 0.22, 0.06)	(−0.38, −0.07, −0.25)
YTiO$_3$ (LT)	(−2.89, 0.26, −0.33)	(0.19, −0.01, −0.10)
GdTiO$_3$	(−0.91, −2.66, 0.48)	(−0.01, 0.18, −0.31)
SmTiO$_3$	(−0.70, −0.42, −2.84)	(0.22, 0.34, −0.65)
LaTiO$_3$	(−0.66, 0.72, −1.07)	(−1.49, −0.05, −0.13)

and \hat{t}_{ij} is presented in table 6. One can clearly see that the magnetic interactions d_{ij} and \hat{t}_{ij} of the relativistic origin steadily increase in the direction YTiO$_3$ → GdTiO$_3$ → SmTiO$_3$ → LaTiO$_3$, which is quite consistent with the decrease of the CF splitting in the same direction (see table 1). Nevertheless, it is interesting to note that the relativistic SO interaction also contributes to the isotropic interactions J_{ij}, and all of them decrease (with some exception of LaTiO$_3$) after taking into account the SO interaction in comparison with results of the pure CF theory in table 4.
on interatomic magnetic interactions between the spins. For these purposes, it is convenient in this section, we consider the effect of thermal fluctuations of the orbital degrees of freedom associated with the NN bonds 1–2 and 1–3 as obtained in the CF theory with the relativistic SO interaction. All interactions are measured in meV. The positions of the atomic sites are explained in figure 1.

Table 6. Isotropic Heisenberg interactions ($J_{i,j}$), antisymmetric Dzyaloshinsky–Moriya interactions ($d_{i,j}$), and symmetric anisotropic ($\hat{r}_{i,j}$) interactions associated with the NN bonds 1–2 and 1–3 as obtained in the CF theory with the relativistic SO interaction. All interactions are measured in meV. The positions of the atomic sites are explained in figure 1.

Compound	J_{12}	d_{12}	\hat{r}_{12}	J_{13}	d_{13}	\hat{r}_{13}
YTiO$_3$ (RT)	3.16	−0.21	(0.05, 0.22, 0.07)	0.41	−0.25	(0.37, 0.03, −0.07, 0)
		−0.01	(0.22, 0.05, 0.10)	0	0	(0.07, 0.02, 0)
YTiO$_3$ (LT)	2.90	−0.42	(0.02, 0.12, 0.04)	−0.18	−0.10	(0.31, 0.01, −0.01, 0)
		−0.37	(0.12, 0.05, 0.06)	(0)	0	(0, 0, 0)
GdTiO$_3$	2.76	−0.52	(−0.02, 0.15, 0.05)	0.63	−0.22	(0.34, 0.01, −0.03, 0)
		−0.65	(0.15, 0.10, 0.10)	0	0	(0, 0, 0)
SmTiO$_3$	0.65	−0.83	(−0.02, 0.16, 0.07)	1.55	−0.13	(0.34, 0.06, −0.05, 0)
		−1.15	(0.16, 0.09, 0.10)	0	0	(0, 0, −0.03, 0)
LaTiO$_3$	0.99	−1.26	(0.14, 0.31, −0.50)	−3.36	−0.56	(0.33, 0.34, 0)
		−0.74	(0.31, −0.20, −0.45)	−4.48	(0)	(0.34, −0.27, 0)
		−1.53	(−0.50, −0.45, 0.06)	0.00	0	(0, 0, −0.06)

Table 7. Magnetic ground state, direction of magnetization in the ground state and the magnetic transition temperature ($T_{C,N}$, measured in K) in the mean-field approximation as obtained in the CF theory with the relativistic SO interaction. The vector of magnetization is referred to the site 1 in figure 1. Similar vectors at other Ti-sites of the primitive cell are obtained by applying the symmetry operations of the space group D_{6h}^{14}.

Compound	Ground state	Direction of magnetization	$T_{C,N}$
YTiO$_3$ (RT)	G–A–F	(−0.02, −0.54, 0.84)	164
YTiO$_3$ (LT)	G–A–F	(−0.05, −0.89, 0.45)	148
GdTiO$_3$	G–A–F	(−0.12, −0.38, 0.92)	150
SmTiO$_3$	G–A–F	(−0.35, −0.20, 0.91)	94
LaTiO$_3$	C–F–A	(−0.21, −0.47, 0.86)	197

other hand, in SmTiO$_3$ there is a substantial weight of the G-type AFM component along the a-axis. The magnetic structures obtained for YTiO$_3$ (RT) and LaTiO$_3$ are consistent results of the Hartree–Fock calculations, which were considered in the previous publication [10].

4.3. Thermal fluctuations of the orbital degrees of freedoms

In this section, we consider the effect of thermal fluctuations of the orbital degrees of freedom on interatomic magnetic interactions between the spins. For these purposes, it is convenient...
to work in the local coordinate frame corresponding to the diagonal representation of the CF Hamiltonian \(\hat{h}^{\text{CF}} \) at each atomic site. Then, we assume that for each projection of spin, the three-component occupied \(t_{2g} \)-orbital at the site \(i \) can be presented in the form of the real vector

\[
v_i = \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \cos \phi_i \\ \sin \theta_i \sin \phi_i \end{pmatrix},
\]

in the basis of three CF orbitals listed in table 1, where \(0 \leq \theta_i \leq \pi/2 \) and \(0 \leq \phi_i \leq 2\pi \) due to the invariance of both CF and pair interactions (4) with respect to the inversion \(v_i \rightarrow -v_i \). In these notations, the point \(\theta_i = \phi_i = 0 \) corresponds to the lowest CF orbital. This situation was already considered in section 4.1 in the limit of large CF splitting. However, since the CF splitting is finite, other orbital configurations can contribute to the thermodynamic averages of physical quantities at elevated temperatures. Thus, similar to section 4.1, we assume that the CF splitting is much larger than the energy gain (4) caused by the virtual hoppings, but can become comparable with the energies of thermal fluctuations, and consider the finite-temperature extension of the CF theory. Then, the thermal average of (4) is given by

\[
T_{ij}(T) = \int d\Omega_i W(\theta_i, \phi_i) \int d\Omega_j W(\theta_j, \phi_j) T(\theta_i, \phi_i, \theta_j, \phi_j),
\]

where

\[
\int d\Omega_i = \frac{1}{2\pi} \int_0^{2\pi} d\phi_i \int_0^{\pi/2} \sin \theta_i d\theta_i,
\]

\[
W(\theta_i, \phi_i) = \frac{1}{Z_i} \exp \left\{ -\frac{(v_i, \hat{h}^{\text{CF}} v_i)}{k_B T} \right\},
\]

\[
Z_i = \int d\Omega_i \exp \left\{ -\frac{(v_i, \hat{h}^{\text{CF}} v_i)}{k_B T} \right\},
\]

and \(T(\theta_i, \phi_i, \theta_j, \phi_j) \) is the pair interaction (4) constructed from the occupied \(t_{2g} \)-orbitals of the form (5) for either FM (\(\uparrow\uparrow \)) or AFM (\(\uparrow\downarrow \)) configurations of spins (in the following denoted as \(T_{ij}^{\uparrow\uparrow} \) and \(T_{ij}^{\uparrow\downarrow} \), respectively). The numerical integration in (6) was performed by using the Metropolis algorithm [24, 25]. An example of the temperature dependencies of \(T_{ij}^{\uparrow\uparrow}(T) \) and \(T_{ij}^{\uparrow\downarrow}(T) \) for YTiO\(_3\) and LaTiO\(_3\) is shown in figure 2. Then, using \(T_{ij}^{\uparrow\uparrow}(T) \) and \(T_{ij}^{\uparrow\downarrow}(T) \), one can evaluate the temperature dependence of interatomic interactions between the spins, \(2J_{ij}(T) = T_{ij}^{\uparrow\uparrow}(T) - T_{ij}^{\uparrow\downarrow}(T) \), averaged over all orbital configurations, and self-consistently solve the equation for the magnetic transition temperature in RPA (appendix A), where the value of \(T_{C,N} \) is used as the argument of \(J_{ij}(T) \), and the procedure is repeated until reaching self-consistency with respect to \(T_{C,N} \). Then, we obtain the following values of the Curie temperature \(T_C = 60, 68 \) and \(37 \) K for YTiO\(_3\) (RT), GdTiO\(_3\) and SmTiO\(_3\), respectively. YTiO\(_3\) (LT) and LaTiO\(_3\) are expected to develop the A-type AFM order with the Néel temperature \(T_N = 64 \) and \(52 \) K, respectively. Thus, the thermal fluctuations systematically decrease the values of the magnetic transition temperature (by 10–44%). As expected, the largest change is observed in

\footnote{The behavior of GdTiO\(_3\) and SmTiO\(_3\) is rather similar to that of YTiO\(_3\) and not discussed here.}

New Journal of Physics **11** (2009) 093003 (http://www.njp.org/)
Figure 2. Thermal averages of pair interactions $T_{ij}(T)$ for the FM (↑↑) and AFM (↑↓) configurations of spins in the bonds 1–2 and 1–3 calculated for the LT structure of YTiO$_3$ (left) and LaTiO$_3$ (right). The atomic positions are explained in figure 1.

LaTiO$_3$, which has the smallest CF splitting, and in YTiO$_3$, due to the quasi-two-dimensional character of interatomic interactions. Nevertheless, SmTiO$_3$ remains FM and LaTiO$_3$ remains A-type AFM, contrary to the experimental data.

5. Multi-determinant approach for SE interactions

By summarizing the results of the previous sections, we note the following shortcomings of the one-electron approach:

- In the case of LaTiO$_3$ and SmTiO$_3$, it fails to predict the correct G-type AFM ground state. Although small G-type AFM component (along the a-axis) is expected in the theoretical magnetic ground state of SmTiO$_3$ after including the relativistic SO interaction, that of LaTiO$_3$ does not involve the G-type AFM arrangement.
- Even for the FM compounds YTiO$_3$ and GdTiO$_3$, the magnetic transition temperature is typically overestimated by a factor of two. To a certain extent, it can be reduced by thermal fluctuations of the orbital degrees of freedom. On the other hand, the relativistic SO interaction acts in the opposite direction and additionally increases T_C (at least on the level of the mean-field approximation).

In this section, we investigate whether these problems can be resolved by considering the many-electron effects.

As was pointed out at the beginning of section 4, the main drawback of all the previous considerations was that, although the expression (4) for the energy gain takes into account the
many-electron effects in the intermediate configurations t_{2g}^2, which can be reached in the process of virtual hoppings, it was combined with the one-electron approximation for the ground-state wavefunction G in the atomic limit. The purpose of this section is to go beyond this one-electron approximation and to clarify the role played by the many-electron effects in the problem of SE interactions. Namely, for each bond $i-j$, we construct the complete basis of two-electron Slater determinants of the form,

$$ |S(1,2)\rangle = \frac{1}{\sqrt{2}} \left[\psi_i(1)\psi_j(2) - \psi_i(2)\psi_j(1) \right]. $$

(7)

where ψ_i denotes the one-electron spin–orbital residing at the site i. In practice, these orbitals were obtained from the diagonalization of the CF Hamiltonian \hat{h}_{CF} (table 1). In total, there are six such spin–orbitals and 36 Slater determinants of the form (7). Then, for each bond, we calculate matrix elements of the pair interactions

$$ T^{SS'}_{ij} = - \left\langle S \left| \sum_M \frac{\hat{J}_M |jM\rangle \langle jM| \hat{J}_M}{E_{jM}} \right| \hat{t}_{ij} + (i \leftrightarrow j) \right| S' \right\rangle, $$

(8)

in the basis of these Slater determinants, and combine them with the matrix elements of one-electron operators of the CF \hat{h}_{CF}^{CF} and (optionally) the SO interaction \hat{h}_{ij}^{SO}. The corresponding 36×36 Hamiltonian matrix is denoted as $\hat{H}_{ij} = \|H_{ij}^{SS'}\|$. Then, the spectrum of two-electron states in each bond is obtained after the diagonalization of \hat{H}_{ij}. Thus, the basic idea (and approximation) behind this treatment is that the entire lattice is divided into ‘molecules’, and the electronic structure of each ‘molecule’ can be considered independently from other ‘molecules’. We will mainly focus on the origin of AFM correlations in LaTiO$_3$.

First, let us discuss the results without relativistic SO interaction. The spectrum of two-electron states, obtained after the diagonalization of \hat{H}_{ij} for the bonds 1–2 and 1–3 is shown in figure 3. There is a drastic difference of LaTiO$_3$ from other compounds. In YTiO$_3$, SmTiO$_3$ and GdTiO$_3$, four low-energy levels, including one spin-singlet and three degenerate spin-triplet states, are clearly separated from the next states by an energy gap of at least 100 meV , corresponding to the value of the CF splitting (table 1). However, in LaTiO$_3$, the singlet–triplet splitting in the low-energy part of the spectrum is at least comparable with the energy gap separating these levels from the next two-electron states. For example, in the bond 1–3, the singlet–triplet splitting is about 20 meV . However, the next level is located only 4 meV higher than the triplet state. Thus, the CF theory, although applicable for YTiO$_3$ and high-temperature structures of SmTiO$_3$ and GdTiO$_3$, definitely breaks down in the case of LaTiO$_3$, where the splitting of the two-electron levels caused by the SE effects in the low-energy part of the spectrum is at least comparable with the CF splitting.

The parameter of the isotropic exchange coupling in the bond $i-j$ can be expressed through the energies of the low-lying spin-singlet (E_S) and spin-triplet (E_T) states,

$$ J_{ij} = \frac{1}{4} (E_S - E_T), $$

where the prefactor $1/4$ stands for S^2, which according to (3) is already included to the definition of J_{ij}. The obtained parameters are listed in table 8 together with the values of the magnetic transition temperature $T_{C,N}$ estimated in the RPA (appendix A). By comparing them with the values obtained in the one-electron approximation (table 4), one can clearly see that the two-electron effects tend to additionally stabilize the FM interactions. Generally, the values
Figure 3. Spectrum of two-electron states obtained after the diagonalization of pair and CF interactions in the complete basis of Slater determinants separately for the bonds 1–2 and 1–3 (the atomic positions are explained in figure 1).

of all FM interactions J_{ij} increase in the two-electron approach, while the magnitude of the AFM interactions J_{13} in LaTiO$_3$ and in the LT phase of YTiO$_3$ decreases. Particularly, J_{13} nearly vanishes in the case of YTiO$_3$ (LT), resulting in the two-dimensional character of NN interactions. However, due to the next-NN interactions between the planes, T_N remains finite. Nevertheless, only in YTiO$_3$ (LT) do the two-electron effects tend to decrease the magnetic transition temperature. This behavior is solely related to the quasi-two-dimensional character of interatomic magnetic interactions.
Table 8. Parameters of isotropic exchange coupling (J_{ij}, measured in meV) derived from the singlet–triplet splitting of the low-energy levels, which were obtained from the diagonalization of pair and CF interactions in the complete basis of two-electron Slater determinants separately for each bond of the system; corresponding magnetic transition temperatures ($T_{C,N}$ measured in K) obtained in the RPA; and the type of the magnetic ground state. Depending on the magnetic ground state, the notations T_C and T_N stand for the Curie and Néel temperature, respectively.

Compound	J_{12}	J_{13}	J_{23}	J_{23}'	$T_{C,N}$	GS
YTiO$_3$ (RT)	3.68	0.64	0.03	−0.16	104	F
YTiO$_3$ (LT)	3.34	0	0.03	−0.16	79	A
GdTiO$_3$	3.39	0.98	0.07	−0.17	116	F
SmTiO$_3$	1.43	2.00	0.03	0.07	87	F
LaTiO$_3$	2.82	−4.17	0.30	0.14	138	A

Figure 4. Spectrum of two-electron states obtained for the LT structure YTiO$_3$ (left) and LaTiO$_3$ (right) after the diagonalization of pair, CF and relativistic SO interactions in the complete basis of Slater determinants, separately for the bonds 1–2 and 1–3 (the atomic positions are explained in figure 1).

Thus, it seems unlikely that the two-electron effects alone will stabilize the G-type AFM ground state in the case of LaTiO$_3$. Therefore, we investigate the last possibility related to the relativistic SO interaction. For most of the considered systems, the SO interaction is small in comparison with the CF splitting and does not significantly change the distribution of the two-electron states. The typical example for the LT structure of YTiO$_3$ is shown in figure 4, which is practically identical to the spectrum without the SO interaction (figure 3). For the FM systems, the splitting of the low-lying spin-triplet states by the SO interaction is very small. Nevertheless,
Table 9. Parameters of interatomic spin correlations in the ground state calculated separately for each bond of the system after the diagonalization of the two-electron Hamiltonian including pair, CF and relativistic SO interactions. The atomic positions are explained in figure 1.

Compound	$\|\langle \hat{\sigma}_i^a \hat{\sigma}_j^b \rangle \|$	$\|\langle \hat{\sigma}_i^a \hat{\sigma}_j^b \rangle \|$
YTiO$_3$ (RT)	$(0.03 -0.91 -0.35)$	$(-0.40 0.83 -0.29)$
YTiO$_3$ (LT)	$(-0.92 0.08 -0.29)$	$(0.83 0.21 -0.44)$
GdTiO$_3$	$(0.10 -0.89 -0.42)$	$(-0.91 0.25 -0.28)$
SmTiO$_3$	$(-0.95 0 -0.23)$	$(0.25 -0.14 -0.93)$
LaTiO$_3$	$(0.32 -0.43 0.85)$	$(0.28 0.93 -0.07)$

below we will see that this splitting may have rather interesting consequences for the magnetic properties. Again, one clear exception is LaTiO$_3$, where the strength of the SO interaction ($\xi = 21$ meV) is comparable with the CF splitting and the energy gain caused by the virtual hoppings, and only in LaTiO$_3$ does the spectrum of two-electron states change significantly when the relativistic SO interaction is taken into account. In order to understand the character of magnetic interactions, we calculate the parameters of interatomic spin correlations in the ground state

$$\langle \hat{\sigma}_i^a \hat{\sigma}_j^b \rangle = \langle \Psi | \hat{\sigma}_i^a \hat{\sigma}_j^b | \Psi \rangle,$$

where Ψ is the two-electron wavefunction for the bond $i-j$, corresponding to the lowest eigenvalue of $\hat{H}_{i,j}$. These parameters are listed in table 9. The diagonal matrix elements ($a = b$) describe the longitudinal spin correlations. If $\langle \hat{\sigma}_i^a \hat{\sigma}_j^a \rangle > 0$, the correlations are FM. If $\langle \hat{\sigma}_i^a \hat{\sigma}_j^a \rangle < 0$, they are AFM. The off-diagonal elements ($a \neq b$) describe the transverse correlations, which are related to the noncollinear spin arrangement in the bond $i-j$. Generally, the longitudinal correlations are strongly anisotropic. For example, within one bond the correlations can easily become either FM or AFM, depending on the direction in the orthorhombic lattice. The transverse correlations, which are solely caused by the relativistic SO interaction, can also be strong and comparable with the longitudinal ones.

For the FM systems, this picture may substantially differ from the one without the SO interaction. However, it should be noted that the details of the ground state in the FM case are determined by the small splitting of the low-lying spin-triplet levels by the SO interaction.
For most of the systems this splitting is small and typically varies from a few hundredths of meV to one meV. For example, for the FM bond 1–2 in \(\text{YT}_{\text{Ti}}\text{O}_3\) (LT), the second and third levels are split from the lowest one by 0.56 and 0.59 meV, respectively. Therefore, when the temperature exceeds \(T \sim 0.6 \text{ meV}/k_B \approx 7 \text{ K}\), the proper picture for the magnetic interactions in this compound would correspond to the (thermal) average \(\langle \hat{\sigma}_1^a \hat{\sigma}_2^b \rangle \) over the low-lying ‘spin-triplet’ states. For the 1–2 bond in \(\text{YT}_{\text{Ti}}\text{O}_3\) (LT) this procedure yields the following tensor:

\[
\begin{pmatrix}
0.33 & 0.01 & -0.03 \\
-0.01 & 0.33 & 0.04 \\
0.03 & -0.04 & 0.32
\end{pmatrix}
\]

Similar results can be obtained for other systems forming the FM bonds. After the averaging, the longitudinal spin correlations become isotropic, while all transversal correlations are considerably smaller. This behavior is consistent with the form of the interatomic magnetic interactions tensor \(A_{ij}\) obtained on the level of the one-electron approximation (table 5). Another effect which can mix the two-electron states within the lowest manifold of certain bond is related to the virtual hopping in neighboring bonds, which involve one of the atomic sites of the original bond. Note that the many-electron effects will mix the lowest CF orbital at a certain atomic site with other states. The symmetry of these states as well as the magnitude of the mixing will generally be different for different bonds. Since each atom participates in several bonds, this effect will lead to the additional mixing of the low-lying (spin-triplet) states obtained from the diagonalization of the two-electron Hamiltonian separately for each bond of the system. Nevertheless, the quantitative estimate of this effect requires a more rigorous solution of the many-electron problem, which is beyond the scope of the present work.

In the case of \(\text{La}_{\text{Ti}}\text{O}_3\), all longitudinal correlations in the bond 1–3 are AFM, while the transversal correlations are small. The correlations in the bond 1–2 are strongly anisotropic: if \(yy\) - and \(zz\)-components favor the FM coupling, the \(xx\)-correlations are AFM. The splitting between the lowest and the next two two-electron levels in the bond 1–2 is about 4 meV, which is considerably larger than the splitting obtained in other (more distorted) compounds. Therefore, the effect is expected to be more robust against the thermal fluctuations mixing the spin-triplet states. Strong transversal correlations are also expected. Thus, the \(xx\)-correlations appear to be AFM simultaneously in the bonds 1–2 and 1–3, consistent with the G-type AFM structure. On the basis of this analysis, we expect that if the G-type AFM order occurred in \(\text{La}_{\text{Ti}}\text{O}_3\), it would be more likely developed by the \(x\)- (\(a\)-) projections of the magnetic moments in the orthorhombic coordinate frame.

6. Summary and conclusions

Starting from the multiorbital Hubbard Hamiltonian for the \(t_{2g}\)-bands of orthorhombically distorted titanates \(R\text{TiO}_3\) (\(R = \text{Y}, \text{Gd}, \text{Sm} \text{ and La}\)), where all the parameters were derived from first-principles electronic structure calculations, we considered different levels of approximations for the construction of the spin-only SE model. Namely, after considering the conventional CF theory, where all interatomic magnetic interactions are solely determined by occupied \(t_{2g}\)-orbitals, that are split off by the crystal distortion, we consecutively incorporate the effects of the relativistic SO interaction, thermal fluctuations of the orbital degrees of freedom, and many-electron effects related to the virtual electron hoppings in the bonds.
Even in the conventional CF theory, the interatomic magnetic interactions appear to be extremely sensitive to the details of the orbital structure, and a small change of the orbital structure, caused by either crystal distortions or thermal fluctuations, can have a profound effect on the magnetic properties.

Particularly, the use of the room- and low-temperature structure for YTiO$_3$ provides rather different sets of parameters of the spin Hamiltonian. The additional distortion in the LT structure tends to weaken the FM interactions: it substantially reduces the FM coupling J_{12} in the orthorhombic ab-plane and makes the coupling along the c-axis weakly AFM. A similar tendency was reported for LaTiO$_3$, where the use of the LT structure [13] could help to stabilize the G-type AFM state [5, 7, 26]. Apparently, some of the problems encountered in the present work, such as the incorrect magnetic ground state in SmTiO$_3$ and the overestimation of the Curie temperature in GdTiO$_3$, may be resolved by using the LT structural data for these compounds, which are not available today.

Moreover, the thermal fluctuations of the orbital degrees of freedom near the CF configuration can substantially reduce the value of the magnetic transition temperature (up to 40%).

The relativistic SO interaction, which is responsible for the appearance of anisotropic and antisymmetric Dzyaloshinsky–Morita interactions, leads to the noncollinear magnetic alignment. The role of the relativistic effects increases in the direction YTiO$_3$ → GdTiO$_3$ → SmTiO$_3$ → LaTiO$_3$, when the crystal distortion decreases.

The CF theory, although applicable for YTiO$_3$ and high-temperature structures of GdTiO$_3$ and SmTiO$_3$, definitely breaks down in the case of LaTiO$_3$, which has the smallest CF-splitting and where other factors, such as the relativistic SO interaction and many-electron effects in the bonds, start to play an important role. Particularly, we found that the combination of the latter two factors could explain the G-type AFM character of interatomic correlations in LaTiO$_3$.

Finally, it should be noted that our analysis is based solely on the experimental crystal structure available today and assuming that this crystal structure is rigidly fixed. The relatively small energy splitting between the ground state and low-lying excited configurations with the same spin symmetry, observed particularly in LaTiO$_3$ (figures 3 and 4), may also indicate the importance of vibronic (or pseudo Jahn–Teller) effects, which could further lower the symmetry of the system via electron–phonon interactions. To a certain extent, this would be similar to the statement that the crystal structure of RTiO$_3$ is not well defined today (and in fact is still in the process of slow but steady refinement). This is certainly an interesting and important problem, which may change some of the conclusions of the present work. However, it is not easy to evaluate these effects at the present stage. The small energy splitting alone does not necessarily guarantee structural instability, as the final answer also depends on the softness of the lattice as well as on the symmetry and magnitude of the electron–phonon coupling between the ground and excited states. According to first-principles electronic structure calculations [23, 26], no profound instability of the experimental structure was found, at least within the orthorhombic D_{2h}^{16} symmetry.

Acknowledgments

I thank Alexey Mozhegorov and Yukitoshi Motome for useful discussions. This work was partly supported by a Grant-in-Aid for Scientific Research in Priority Area ‘Anomalous Quantum Materials’ and a Grant-in-Aid for Scientific Research (C) No. 20540337 from the Ministry of Education, Culture, Sport, Science and Technology of Japan.
Appendix A. RPA for the magnetic transition temperature in many-atomic case

In this appendix, we present the generalization of the well-known expression for the magnetic transition (Curie or Néel) temperature in the RPA:

\[T_{C,N} = \frac{S(S+1)}{3k_B S^2} \left(\sum_{\mathbf{q}} \frac{1}{J(\mathbf{q}) - J(\mathbf{q})} \right)^{-1}, \tag{A.1} \]

where \(J(\mathbf{q}) \) is the Fourier image of \(J_{ij} \) and \(\mathbf{Q} \) is the vector describing the magnetic structure in the ground state, to the case of the complex lattices containing \(n \) magnetic atoms in the primitive cell.

First, we transform the parameters of the Heisenberg model to the local coordinate frame: \(J_{ij} \rightarrow \tilde{J}_{ij} = s_{ij} J_{ij} \), where \(s_{ij} = +1 \) and \(-1 \) corresponds to the FM and AFM arrangement of spins in the bond \(i-j \) in the magnetic ground state. For a collinear magnetic configuration, this procedure is equivalent to the shift of the origin of the Brillouin zone in the right-hand side of (A.1). Then, we construct the dynamical matrix:

\[\hat{\mathbf{J}}(\mathbf{q}) = \| \tilde{J}_{\ell \ell'} - \tilde{J}_{\ell \ell'}(\mathbf{q}) \|, \]

where

\[\tilde{J}_{\ell \ell'}(\mathbf{q}) = \frac{1}{N} \sum_{i \in \ell} \sum_{j \in \ell'} \tilde{J}_{ij} e^{i(\mathbf{q} \cdot \mathbf{R}_i - \mathbf{R}_j)} \]

is the Fourier image of \(\tilde{J}_{ij} \) acting between the atomic sublattices \(\ell \) and \(\ell' \), \(N \) is the number of primitive cells,

\[\tilde{J}_{\ell} = \sum_{\ell' = 1}^{n} \tilde{J}_{\ell \ell'}(0), \]

and \(\mathbf{R}_i \) is the radius-vector of the site \(i \). Then, by diagonalizing \(\hat{\mathbf{J}}(\mathbf{q}) \), one can find its eigenvalues \(\omega_{\ell}(\mathbf{q}) \) (the ‘magnon energies’) and by repeating the RPA arguments [27] derive the following expression for the magnetic transition temperature:

\[T_{C,N} = \frac{nS(S+1)}{3k_B S^2} \left(\sum_{\mathbf{q}} \sum_{\ell = 1}^{n} 1/\omega_{\ell}(\mathbf{q}) \right)^{-1}. \]

Appendix B. Mean-field approximation for the magnetic transition temperature in the case of the noncollinear spin arrangement

The mean-field approximation for the relative magnetization \(\sigma_i(T) \), which is the temperature average of \(\hat{\mathbf{J}}_i \), is formulated in the following way. The mean field (or the molecular field), corresponding to the spin Hamiltonian (2), is given by

\[h_i = \sum_j \hat{A}_{ij} \sigma_j(T). \]

Also known as the Tyablikov approximation, renormalized spin-wave theory or the spherical Heisenberg model [20, 27, 28].

New Journal of Physics 11 (2009) 093003 (http://www.njp.org/)
Then, the temperature average of $\hat{\sigma}_i$ in the molecular field h_i has the following form:

$$\sigma_i(T) = \frac{h_i}{|h_i|} B_S \left(\frac{|h_i|}{k_B T} \right),$$ \hspace{1cm} (B.1)

where B_S is the Brillouin function for the spin $S = 1/2$ [28]. The equation (B.1) is solved self-consistently. The transition temperature is defined as the minimal temperature for which $\sigma_i(T) = 0$.

References

[1] Greedan J E 1985 *J. Less-Common Met.* **111** 335
[2] Komarek A C, Roth H, Cwik M, Stein W-D, Baier J, Kriener M, Bourée F, Lorenz T and Braden M 2007 *Phys. Rev. B* **75** 224402
[3] Knafo W, Meingast C, Boris A V, Popovich P, Kovaleva N N, Yordanov P, Maljuk A, Kremer R K, Löhneysen H V and Keimer B 2009 *Phys. Rev. B* **79** 054431
[4] Khaliullin G and Maekawa S 2000 *Phys. Rev. Lett.* **85** 3950
[5] Mochizuki M and Imada M 2004 *New J. Phys.* **6** 154
[6] Pavarini E, Yamasaki A, Nuss J and Andersen O K 2005 *New J. Phys.* **7** 188
[7] Schmitz R, Entin-Wohlman O, Aharony A, Harris A B and Muller-Hartmann E 2005 *Phys. Rev. B* **71** 144412
[8] Solovyev I V 2008 *J. Phys.: Condens. Matter* **20** 293201
[9] Solovyev I V 2004 *Phys. Rev. B* **69** 134403
[10] Solovyev I V 2006 *Phys. Rev. B* **74** 054412
[11] Solovyev I V 2006 *Phys. Rev. B* **73** 155117
[12] Maclean D A, Ng H-N and Greedan J E 1979 *J. Solid State Chem.* **30** 35
[13] Cwik M et al 2003 *Phys. Rev. B* **68** 060401
[14] Kanamori J 1963 *Prog. Theor. Phys.* **30** 275
[15] Solovyev I V 2005 *Phys. Rev. Lett.* **95** 267205
[16] Anderson P W 1959 *Phys. Rev.* **115** 2
[17] Kugel K I and Khomskii D I 1982 *Sov. Phys.—Usp.* **25** 231
[18] Solovyev I V 2008 *New J. Phys.* **10** 013035
[19] Mermin N D and Wagner H 1966 *Phys. Rev. Lett.* **17** 1133
[20] Nagaev E L 1988 *Magnetics with Complex Exchange Interactions* (Moscow: Nauka)
[21] Ulrich C, Khaliullin G, Reehuis M, Ivanov A, He H, Taguchi Y, Tokura Y and Keimer B 2002 *Phys. Rev. Lett.* **89** 167202
[22] Akimitsu J, Ichikawa H, Eguchi N, Miyano T, Nishi M and Kakurai K 2001 *J. Phys. Soc. Japan* **70** 3475
[23] Sawada H and Terakura K 1998 *Phys. Rev. B* **58** 6831
[24] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 *J. Chem. Phys.* **21** 1087
[25] Jorgensen W L 2000 *Theor. Chem. Acc.* **103** 225
[26] Okatov S, Poteryaev A and Lichtenstein A 2005 *Europhys. Lett.* **70** 499
[27] Tyablikov S V 1975 *Methods of Quantum Theory of Magnetism* (Moscow: Nauka)
[28] Mattis D C 2006 *The Theory of Magnetism Made Simple* (Singapore: World Scientific)