Magnetic Field Expansion Out of a Plane: Application to Inverse Cyclotron Muon Cooling

T. L. Hart1 and D. J. Summers, U. Mississippi-Oxford, University, MS 38677, USA

K. Paul, Tech-X Corporation, Boulder, CO 80303, USA

Abstract

In studies of the dynamics of charged particles in a cyclotron magnetic field, the specified field is generally B_z in the $z = 0$ midplane where B_r and B_θ are zero. $B_r(r, \theta, z)$ and $B_\theta(r, \theta, z)$ are simple to determine through a linear expansion which assumes that B_z is independent of z. But, an expansion to only first order may not be sufficient for orbit simulations at large z. This paper reviews the expansion of a specified $B_z(r, \theta, z = 0)$ out of the $z = 0$ midplane to arbitrary order, and shows simple examples worked out to 4th order.

Keywords: muon ionization cooling, neutrino factory, muon collider

1 Introduction

Many programs and software packages simulate orbits of charged particles in magnetic fields as noted in Table 1. Some use a single reference orbit and represent the magnetic field as a series of matrices, one for each magnetic element. Other programs allow more realistic spiral orbits by using magnetic field equations or interpolated magnetic field maps for point to point Runge-Kutta track integrators. Some programs such as COSY Infinity use exact analytical determination of magnetic field derivatives; others use numerical differentiation. An important preliminary step before simulation of fields produced by magnets is investigation of orbit dynamics in an idealized magnetic field which satisfies Maxwell’s equations in vacuum to sufficient order. Magnetic fields for cyclotrons \cite{1} are most conveniently expressed in cylindrical (r, θ, z) coordinates in which the z direction is the cyclotron rotation axis. In many applications, an ideal field is specified in the cyclotron median plane which is the $z = 0$ plane where B_r and B_θ vanish. Determination of (B_r, B_θ, B_z) for $z \neq 0$ to sufficient order (beyond 1st order) is necessary for detailed orbit and dynamics studies \cite{2}. Reduction of the phase space of a muon beam through ionization cooling in an inverse cyclotron is being researched \cite{3} as part of the muon R&D for possible future facilities such as a neutrino factory and muon collider \cite{4}.

2 Expansion of Field Out of the Midplane

The importance of correct field expansion for reliable particle tracking simulation and beam dynamics analysis has been recognized, and the expansion around the reference orbit of a bent-solenoid geometry has been calculated \cite{14}. Expansions to eighth order are done with the aid of Mathematica. A static magnetic field can be expanded out of a plane because it must satisfy the source-free Maxwell equations in vacuum, $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = 0$. Only $\partial B_x/\partial y = \partial B_y/\partial x$ constrains fields in the plane, so any function can be used for B_z. One gets the three field components out of the plane as follows

$$\frac{\partial B_z}{\partial z} = -\frac{\partial B_x}{\partial x} - \frac{\partial B_y}{\partial y} \quad \frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial y} \quad \frac{\partial B_y}{\partial z} = \frac{\partial B_z}{\partial x}$$

The expansion of a magnetic field specified in a plane has been addressed by Zgoubi for cartesian coordinates \cite{15}. Zgoubi uses Taylor expansion with $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = 0$. Here we work out a solution in cylindrical coordinates to arbitrary order. Median plane antisymmetry is assumed so that

1tlh@fnal.gov
Table 1: Computer programs for tracking charged particles in magnetic fields and designing accelerators.

Program	Tracking in Matter	Tracking Volume	Tracking Method	Reference
G4Beamline (GEANT4)	yes	unlimited	Point to Point	5
VORPAL	yes	unlimited	Point to Point	6
ICOOL	yes	near a line	Point to Point	7
Methodical Accelerator Design (MAD-X)	no	near a line	Matrices or Points	8
SYCH	no	near a line	Matrices or Points	9
Zgoubi	no	unlimited	Point to Point	10
COSY Infinity	yes	unlimited	Transfer Maps or Points	11
CYCLOPS and GOBLIN	no	near a plane	Point to Point	12
OptiM	yes	near a line	Matrix Elements	13

\[
B_r(r, \theta, 0) = 0 \quad B_\theta(r, \theta, 0) = 0
\]

\[
B_r(r, \theta, z) = -B_r(r, \theta, -z) \quad B_\theta(r, \theta, z) = -B_\theta(r, \theta, -z) \quad B_z(r, \theta, z) = B_z(r, \theta, -z)
\]

With \(B \equiv B_z(r, \theta, z = 0) \) the magnetic field is

\[
B_r = \frac{z}{r} \frac{\partial B}{\partial r} - \frac{z^3}{6} \frac{\partial}{\partial r} \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} + \frac{1}{r^2} \frac{\partial^2 B}{\partial \theta^2} \right) + \ldots
\]

\[
B_\theta = \frac{z}{r} \frac{\partial B}{\partial \theta} - \frac{z^3}{6} \frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} + \frac{1}{r^2} \frac{\partial^2 B}{\partial \theta^2} \right) + \ldots
\]

\[
B_z = B - \frac{z^2}{2} \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} + \frac{1}{r^2} \frac{\partial^2 B}{\partial \theta^2} \right) + \ldots
\]

which is

\[
B_r = z \frac{\partial B}{\partial r} + \frac{\partial}{\partial r} \left[\sum_{n=1}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)^n B \right]
\]

\[
B_\theta = z \frac{\partial B}{\partial \theta} + \frac{1}{r} \frac{\partial}{\partial \theta} \left[\sum_{n=1}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)^n B \right]
\]

\[
B_z = B + \left[\sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)^n B \right]
\]

A rigorous proof of these expansions is provided in the final section of this paper.

In most implementations of simulating a magnetic field, the expansions of \((B_r, B_\theta, B_z)\) cannot be expressed in closed form. In such cases, only a finite number of terms of the magnetic field expansion can be used. The order of the expansion is defined as the highest power of \(z\) in the summation. To odd (even) order \(m\), \(B_r\) and \(B_\theta\) have \(\frac{m+1}{2}\) \((\frac{m}{2})\) terms while \(B_z\) has \(\frac{m+1}{2}\) \((\frac{m+2}{2})\) terms. When \(B\) is expanded to odd order, \(\nabla \times B = 0\) and \(\nabla \cdot B \neq 0\); when \(B\) is expanded to even order, \(\nabla \cdot B = 0\) and \(\nabla \times B \neq 0\). An even order expansion with \(\nabla \cdot B = 0\) is needed to satisfy the Hamiltonian and allow a symplectic map [16].
3 Example Fields to 4th Order

This section shows some example midplane fields $B_z(r, \theta, z = 0)$ expanded to 4th order to obtain $B_r(r, \theta, z)$, $B_\theta(r, \theta, z)$, and $B_z(r, \theta, z)$. These example fields have fairly simple radial and azimuthal dependences and were checked with Mathematica. The 4th order expansion of a more complex field, one with a constant radial field index, k and spiral angle, α, such as $B_z(z = 0) = c r^k(1 - f \sin(N(\theta - \tan \alpha \ln(r/r_0))))$, yields pages of output so that the use of a program such as Mathematica is necessary. Mathematica includes a command which produces output in FORTRAN or C syntax which can be copied directly into a routine which generates a grid of magnetic field points. Example Mathematica and FORTRAN files are presented in Appendices A and B.

3.1 B Only Dependent on Radius (No Sectors)

In this case, $B(r, \theta, z = 0)$ is $B(r, z = 0)$ so that

$$B_r = z \frac{\partial B}{\partial r} - \frac{z^3}{6} \frac{\partial}{\partial r} \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} \right)$$

$$B_\theta = 0$$

$$B_z = B(r, z = 0) - \frac{z^2}{2} \left(\frac{\partial^2 B}{\partial r^2} + \frac{1}{r} \frac{\partial B}{\partial r} \right) + \frac{z^4}{24} \left(\frac{\partial^4 B}{\partial r^4} + \frac{\partial^2}{\partial r^2} \left(\frac{1}{r} \frac{\partial B}{\partial r} \right) + \frac{1}{r} \frac{\partial^3 B}{\partial r^3} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial B}{\partial r} \right) \right)$$

An example of such a field is a non-sectored field in the middle of Helmholtz coils. At $z = 0$, the B_z is maximal at $r = 0$ and decreases very slowly with radius so that $\partial B/\partial r$ and higher derivatives are small, but still large enough to provide weak focusing in r and z.

3.2 Azimuthal Field Sectors: No Spiral Angle nor Midplane Radial Dependence

For this field $B(r, \theta, z = 0)$ is $B(\theta, z = 0)$: an example is $B = B_0(1 - f \sin(N\theta))$ so that

$$B_r = \frac{1}{3} \left(\frac{z}{r} \right)^3 (f B_0 N^2 \sin(N\theta))$$

$$B_\theta = -\frac{z}{r} (f B_0 N \cos(N\theta)) - \frac{1}{6} \left(\frac{z}{r} \right)^3 (f B_0 N^3 \cos(N\theta))$$

$$B_z = B_0(1 - f \sin(N\theta)) - \frac{1}{2} \left(\frac{z}{r} \right)^2 (f B_0 N^2 \sin(N\theta)) + \frac{1}{24} \left(\frac{z}{r} \right)^4 (f B_0 N^2 \sin(N\theta))(4 - N^2)$$

A sectored field such as this provides stronger focusing in z than a non-sectored field.

3.3 Azimuthal Field Sectors: Constant Spiral Angle, No Radial Field Index

For this field, $B(r, \theta, z = 0)$ is $B(\theta, z = 0)$: a field with constant spiral angle α is

$$B = B_0(1 - f \sin[N(\theta - \tan \alpha \ln(r/r_0))])$$

so that

$$B_r = \frac{z}{r} (f B_0 N \tan \alpha)(\cos[N(\theta - \tan \alpha \ln(r/r_0))]) + \frac{1}{6} \left(\frac{z}{r} \right)^3 (f B_0 N^2 \sec^2 \alpha)(N \tan \alpha \cos[N(\theta - \tan \alpha \log(r/r_0))]) + 2 \sin[N(\theta - \tan \alpha \log(r/r_0))])$$
B_θ = -\frac{z}{r} (fB_0 N) (\cos[N(\theta - \tan \alpha \ln(r/r_0))] - \frac{1}{6} \left(\frac{z}{r} \right)^3 (fB_0 N^3 \sec^2 \alpha) (\cos[N(\theta - \tan \alpha \ln(r/r_0)])

B_z = B_0 (1 - f \sin[N(\theta - \tan \alpha \ln(r/r_0)]) - \frac{1}{2} \left(\frac{z}{r} \right)^2 (fB_0 N^2 \sec^2 \alpha) (\sin[N(\theta - \tan \alpha \ln(r/r_0)]) + \frac{1}{24} \left(\frac{z}{r} \right)^4 (fB_0 N^2 \sec^2 \alpha) \{ -N^2 \sec^2 \alpha \sin[N(\theta - \tan \alpha \ln(r/r_0)]) + 4(\sin[N(\theta - \tan \alpha \ln(r/r_0)]) + N \tan \alpha \cos[N(\theta - \tan \alpha \ln(r/r_0)])\}

The spiraled magnetic field provides stronger focusing in z than the non-spiraled sectored field. When \alpha = 0, the magnetic field components reduce to those of the previous azimuthally sectored field with no spiral angle nor midplane radial dependence.

3.4 Azimuthal Field Sectors: No Spiral Angle, Constant Radial Field Index

k = \frac{r}{B_z(z = 0)} \frac{\partial B_z(z = 0)}{\partial r}

For this field, B(r, \theta, z = 0) = cr^k (1 - f \sin(N\theta)). Then

B_r = \left(\frac{z}{r} \right) (cr^k) k (1 - f \sin(N\theta)) - \frac{1}{6} \left(\frac{z}{r} \right)^3 (cr^k) (k - 2) (fN^2 \sin(N\theta) + k^2 (1 - f \sin(N\theta)))

B_\theta = -\left(\frac{z}{r} \right) (cr^k) fN \cos(N\theta) - \frac{1}{6} \left(\frac{z}{r} \right)^3 (cr^k) (fN \cos(N\theta)) (N^2 - k^2)

B_z = cr^k (1 - f \sin(N\theta)) - \frac{1}{2} \left(\frac{z}{r} \right)^2 (cr^k) (fN^2 \sin(N\theta) + k^2 (1 - f \sin(N\theta))) + \frac{1}{24} \left(\frac{z}{r} \right)^4 (cr^k) \left[fN^2 \sin(N\theta)(2(k^2 - 2k + 2) - N^2) + (k - 2)^2 k^2 (1 - f \sin(N\theta)) \right]

4 Proof of Expansion Out of the Plane

Let

\mathbf{B}(r, \theta, z) = \hat{r} B_r(r, \theta, z) + \hat{\theta} B_\theta(r, \theta, z) + \hat{z} B_z(r, \theta, z) \equiv \mathbf{B}_\perp(r, \theta, z) + \hat{z} B_z(r, \theta, z),

\mathbf{B}_\perp(r, \theta, z) = \sum_{k=0}^{\infty} A_k(r, \theta) z^k,

\mathbf{B}(r, \theta, z) = \sum_{k=0}^{\infty} B_k(r, \theta) z^k,

For any vector field \mathbf{V} and scalar field S,

\nabla_\perp \cdot \mathbf{V}_\perp = \frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{V}_r) + \frac{1}{r} \frac{\partial V_\theta}{\partial \theta},

\nabla_\perp \cdot \mathbf{S} = \frac{\partial S}{\partial r} + \hat{\theta} \frac{\partial S}{\partial \theta},

\nabla_\perp^2 \mathbf{S} \equiv \nabla_\perp \cdot (\nabla_\perp \mathbf{S}) = \frac{\partial^2 S}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2 S}{\partial \theta^2}

It is necessary and sufficient to show that the specification of \mathbf{B}_0(r, \theta), \nabla \cdot \mathbf{B} = 0, \nabla \times \mathbf{B} = 0 \Rightarrow
\[A_{2n+1}(r, \theta) = \frac{(-1)^n}{(2n+1)!} \nabla \cdot \left((\nabla^2)\nabla B_0\right)\] for \(n \geq 1\) and
\[B_{2n}(r, \theta) = \frac{(-1)^n}{(2n)!} \left(\nabla^2\nabla B_0\right)\] for \(n \geq 1\).

Note that \(B\) was defined as \(B_0(r, \theta)\).

\[\forall \cdot \mathbf{B} = 0 \Rightarrow \left(\nabla \cdot \mathbf{B} + \hat{z} \frac{\partial}{\partial z}\right) = \nabla \cdot \mathbf{B} = \sum_{k=0}^\infty (\nabla \cdot A_k) \hat{z}^k + \sum_{k=1}^\infty k B_k \hat{z}^{k-1} = \sum_{k=0}^\infty \left((\nabla \cdot A_k) + (k+1) B_{k+1}\right) \hat{z}^k = 0 \Rightarrow (\nabla \cdot A_k) + (k+1) B_{k+1} = 0 \Rightarrow B_{k+1} = -\frac{1}{k+1}(\nabla \cdot A_k) \] for \(k = 0, 1, 2, \ldots\)

\[\forall \times \mathbf{B} = 0 \Rightarrow \left(\nabla \times \mathbf{B} + \hat{z} \frac{\partial}{\partial z}\right) = (\nabla \times \mathbf{B}) + \hat{z} \nabla \times \mathbf{B} = \sum_{k=0}^\infty \left((\nabla \cdot A_k) \hat{z}^k + \sum_{k=1}^\infty k B_k \hat{z}^{k-1}\right) = \sum_{k=0}^\infty \left((\nabla \cdot A_k) + (k+1) B_{k+1}\right) \hat{z}^k = 0 \Rightarrow (\nabla \cdot A_k) + (k+1) B_{k+1} = 0 \Rightarrow A_{k+1} = \frac{1}{k+1}(\nabla \cdot B_k) \] for \(k = 0, 1, 2, \ldots\)

\[B_{k+1} = -\frac{1}{k+1}(\nabla \cdot A_k)\] and \(A_{k+1} = \frac{1}{k+1}(\nabla \cdot B_k) \Rightarrow B_{k+2} = -\frac{1}{(k+2)(k+1)} \left(\nabla \cdot \left((\nabla \cdot B_k)\right)\right) = -\frac{1}{(k+2)(k+1)} \nabla^2 B_k\]

\[k = 0 \Rightarrow A_1 = \nabla \cdot B_0\]
\[B_2 = -\frac{1}{2} \nabla^2 \cdot B_0\]

\[A_0 = 0\]
\[B_1 = 0\]

\[k = 1 \Rightarrow A_2 = \frac{1}{2} \nabla \cdot B_1 = 0\]
\[B_3 = -\frac{1}{3!} \nabla^2 \cdot B_1 = 0\]

\[k = 2 \Rightarrow A_3 = \frac{1}{3} \nabla \cdot B_2 = -\frac{1}{3!} \nabla \cdot \left(\nabla^2 \cdot B_0\right) = -\frac{1}{3!} \nabla \cdot \left(\nabla^2 B_0\right)\]
\[B_4 = -\frac{1}{(3)(2)} \nabla^2 \cdot B_2 = \frac{1}{(3)(2)} \nabla^2 \cdot \left(\nabla^2 B_0\right) = \frac{1}{4} \nabla^2 B_0\]
\[B_{2n-1} = 0 \text{ for } n \geq 1 \]

\[k = 2n \Rightarrow \]

\[A_{2n+1} = \left(\frac{-1}{(2n+1)!} \right)^n \left(\vec{\nabla}^2 \right)_\perp^n B_0 \]

\[B_{2n} = \left(\frac{-1}{(2n)!} \right)^n \left(\vec{\nabla}^2 \right)_\perp^n B_0 \text{ for } n \geq 1 \]

The proof is complete.

5 Summary

The procedure for expanding a specified \(B_z(r, \theta, z = 0) \) out of the \(z = 0 \) midplane is described. Examples of expansions out to 4th order are included. Fig. 1 shows an example of a magnetic field.

![Magnetic Field Example](image)

Figure 1: \(B_z(x, y, z = 0) = 1.77r^{0.6}(1 + \sqrt{2}\cos(6\theta))(1 + \tanh(25(r - 0.2)))/2 \) including the outer 6-sector focus field which merges into the inner magnetic bottle. \(B_z(x, y, z = 0) \) ranges from -0.6 to 3.2 Tesla. The inner bottle field is generated by two \(r = 0.2 \) m circular coils, located 0.2 m above and below the midplane. The \(B_z \) field at \(r = 0, z = 0 \) is 2.4 Tesla.

This work was supported by National Science Foundation Award 757938, DOE grant DE-FG05-91ER40622, and DOE SBIR DE-FG02-08ER85044. Many thanks to T. Roberts, R. Fernow, J. Gallardo, S. Berg, A. Garren, M. Berz, A. Bogacz, and R. Palmer for their advice and help.

References

[1] J. J. Livingston, “Principles of Cyclic Particle Accelerators,” (1961) ISBN-139780442048228;
E. D. Courant and H. S. Snyder, “Theory of the Alternating Gradient Synchrotron,” Annals Phys. 3 (1958) 1.

[2] D. Jeon, “Compact Finite Difference Method for Calculating Magnetic Field Components of Cyclotrons,” J. Comput. Phys. 132 (1997) 167; D. Jeon, “Finite Difference Method for Calculating Magnetic Field Components Off-Median Plane Using Median Plane Field Data,” J. Comput. Phys. 117 (1995) 55.

[3] D. Summers et al., “6D Muon Ionization Cooling with an Inverse Cyclotron,” AIP Conf. Proc. 821 (2006) 432; D. J. Summers et al., “6D Ionization Muon Cooling with Tabletop Rings,” Int. J. Mod. Phys. A20 (2005) 3851; Kevin Paul, E. Cormier-Michel, T. Hart, and D. Summers, “Recent Developments in Simulations of an Inverse Cyclotron for Intense Muon Beams,” AIP Conf. Proc. 1299 (2010) 676; K. Paul et al., “End-to-End Simulation of an Inverse Cyclotron for Muon Cooling,” PAC-2011-MOP051; T. Hart et al., “Magnetic Field Expansion Out of a Plane... Cyclotron Development,” PAC-2011-WEP190; J. Eades and L. Simons, “Deceleration in an Anticyclotron... Low Energy \(\mu^- \) Beam from the PSI Anticyclotron,” Hyperfine Interact. 76 (1993) 273;
A Appendix: Mathematica Example

An example of a Mathematica file which evaluates the coefficients of $B_z(r, \theta, z = 0) = c r^k (1 + f \cos(N\theta))$ up to 4th order is shown. This $B_z(r, \theta, z = 0)$ is simpler than the field of Fig. 4 so that the example file and output are reasonably short and clear. The example file also formats the expressions of the coefficients to FORTRAN. The next appendix is an example FORTRAN routine which uses the output FORTRAN expressions from this file to generate a grid of magnetic field points used by a G4Beamline input file (Appendix C). This Mathematica file shows the output of each Mathematica command indented.

(* Set b as Bz(z = 0) with (r, t) as radius and theta. *)

\[b[r_, t_] = (c r^k)(1+f \cos[n (t)]) \]

(* Set trans as d^2b/dr^2 + (1/r)db/r + (1/r^2)d^2b/dt^2. *)

\[trans[r_, t_] = D[b[r, t], {r, 2}] + (1/r)D[b[r, t], {r, 1}] + (1/r^2)D[b[r, t], {t, 2}] \]

\[-c f n^2 r^{-2+k} \cos[n t] + c k r^{-2+k} (1+f \cos[n t]) + c (-1+k) k r^{-2+k}(1+f \cos[n t]) \]

(* FullSimplify does an algebraic simplification *)

\[\text{FullSimplify}[%] \]

\[c r^{-2+k} (k^2+f (k-n) (k+n) \cos[n t]) \]

(* trans2 is a double application of the derivatives of trans. *)

\[\text{trans2}[r_, t_] = D[\text{trans}[r, t], {r, 2}] + (1/r)D[\text{trans}[r, t], {r, 1}] + (1/r^2)D[\text{trans}[r, t], {t, 2}] \]

\[-c f (-3+k) (-2+k) n^2 r^{-4+k} \cos[n t] + c (-3+k) (-2+k) k r^{-4+k} \]

\[(1+f \cos[n t]) + c (-3+k) (-2+k) (-1+k) k r^{-4+k} (1+f \cos[n t]) + \]

8
\[-c f k n^2 r^{-2+k} \cos[n t]-c f (-1+k) k n^2 r^{-2+k} \cos[n t]+c f n^4 r^{-2+k} \cos[n t]/r^{2+1/r} (-c f (-2+k) n^2 r^{-2+k} \cos[n t]+c (-2+k) k r^{-3+k} (1+f \cos[n t])+c (-2+k) (-1+k) k r^{-3+k} (1+f \cos[n t])/(1+f \cos[n t]))\]

FullSimplify[%]
\[c r^{-4+k} ((-2+k)^2 k^2+f (-2+k-n) (k-n) (-2+k+n) (k+n) \cos[n t])\]

(* Set field components, apply simplifications, convert to *)
(* FORTRAN format. *)

(* Use o1, o2, o3, and o4 as switches to set order of expansion. *)
(* For 2nd order, set o1 = 1, o2 = 1, o3 = o4 = 0. *)

(* Set the 0th, 2nd, and 4th order terms of Bz(z). *)

bz0[r_,t_] = b[r,t]
\[c r^{-k} (1+f \cos[n t])\]

FullSimplify[%]
\[c r^{-k} (1+f \cos[n t])\]

FortranForm[%]
\[c*r**k*(1 + f*\cos(n*t))\]

bz2[r_,t_] = -(o2)(z^2/2)trans[r,t]
\[-(1/2) o2 z^2 (-c f n^2 r^{-2+k} \cos[n t]+c k r^{-2+k} (1+f \cos[n t])+c (-1+k) k r^{-2+k} (1+f \cos[n t]))\]

FullSimplify[%]
\[-(1/2) c o2 r^{-2+k} z^2 (k^2+f (k-n) (k+n) \cos[n t])\]

FortranForm[%]
\[-(c*o2*r**(-2 + k)*z**2*(k**2 + f*(k - n)*(k + n)*\cos(n*t)))/2.\]

bz4[r_,t_] = (o4)(z^4/24)trans2[r,t]
\[
1/24 o4 z^4 (-c f (-3+k) (-2+k) n^2 r^{-4+k} \cos[n t]+c (-3+k) (-2+k) k r^{-4+k} (1+f \cos[n t])+c (-3+k) (-2+k) (-1+k) k r^{-4+k} (1+f \cos[n t])+(-c f k n^2 r^{-2+k} \cos[n t]-c f (-1+k) k n^2 r^{-2+k} \cos[n t]+c f n^4 r^{-2+k} \cos[n t]/r^{2+1/r} (-c f (-2+k) n^2 r^{-2+k} \cos[n t]+c (-2+k) k r^{-3+k} (1+f \cos[n t])+c (-2+k) (-1+k) k r^{-3+k} (1+f \cos[n t])))\]

FullSimplify[%]
\[
1/24 c o4 r^{-4+k} z^4 ((-2+k)^2 k^2+f (-2+k-n) (k-n) (-2+k+n) (k+n))\]
\[
\cos(n \cdot t))
\]

FortranForm[%]
\[
(c*o4*r**(4 + k)*z**4*
- ((-2 + k)**2*k**2 +
f*(-2 + k - n)*(k - n)*(-2 + k + n)*(k + n)*\cos(n*t))/24.
\]

(* Set the 1st and 3rd order terms of Br(z). *)
br1[r,t] = (o1)z D[b[r,t],{r,1}]
\[
c \cdot k \cdot o1 \cdot r^{(-1+k)} \cdot z \cdot (1+f \cos(n \cdot t))
\]

FullSimplify[%]
\[
c \cdot k \cdot o1 \cdot r^{(-1+k)} \cdot z \cdot (1+f \cos(n \cdot t))
\]

FortranForm[%]
\[
c*k*o1*r**(-1 + k)*z*(1 + f*\cos(n*t))
\]

br3[r,t] = -(o3)(z^3/6)D[trans[r,t],{r,1}]
\[
-(1/6) \cdot o3 \cdot z^3 \cdot (-c \cdot f \cdot (-2+k) \cdot n^2 \cdot r^{(-3+k)} \cdot \cos(n \cdot t)) +
c \cdot (-2+k) \cdot k \cdot r^{(-3+k)} \cdot (1+f \cdot \cos(n \cdot t)) +
c \cdot (-2+k) \cdot (-1+k) \cdot k \cdot r^{(-3+k)} \cdot (1+f \cdot \cos(n \cdot t))
\]

FullSimplify[%]
\[
-(1/6) \cdot c \cdot (-2+k) \cdot o3 \cdot r^{(-3+k)} \cdot z^3 \cdot (k^2+f \cdot (k-n) \cdot (k+n) \cdot \cos(n \cdot t))
\]

FortranForm[%]
\[
-(c*(-2 + k)*o3*r**(-3 + k)*z**3*
- (k**2 + f*(k - n)*(k + n)*\cos(n*t)))/6.
\]

(* Set the 1st and 3rd order terms of Btheta(z). *)
bt1[r,t] = (o1)z (1/r) D[b[r,t],{t,1}]
\[
-c \cdot f \cdot n \cdot o1 \cdot r^{(-1+k)} \cdot z \cdot \sin(n \cdot t)
\]

FullSimplify[%]
\[
-c \cdot f \cdot n \cdot o1 \cdot r^{(-1+k)} \cdot z \cdot \sin(n \cdot t)
\]

FortranForm[%]
\[
-(c*f*n*o1*r**(-1 + k)*z*\sin(n*t))
\]

bt3[r,t] = -(o3)(z^3/6)(1/r)D[trans[r,t],{t,1}]
\[
-1/(6 \cdot r) \cdot o3 \cdot z^3 \cdot (-c \cdot f \cdot k \cdot n \cdot r^{(-2+k)} \cdot \sin(n \cdot t)) -
c \cdot f \cdot (-1+k) \cdot k \cdot n \cdot r^{(-2+k)} \cdot \sin(n \cdot t) +
c \cdot f \cdot n^3 \cdot r^{(-2+k)} \cdot \sin(n \cdot t))
\]
FullSimplify[\%]

\[
\frac{1}{6} c f (k-n) n (k+n) o3 r^{(-3+k)} z^3 \sin(n t)
\]

FortranForm[\%]

\[
(c f (k - n) n (k + n) o3 r^{(-3 + k)} z^3 \sin(n t))) / 6.
\]

B Appendix: FORTRAN Example

This program takes the output expressions of $B_z(z)$, $B_r(z)$, and $B_\theta(z)$ from Mathematica and prints out a grid of magnetic field values recast as B_x, B_y, and B_z. The output file generated by this routine is fort.71. With further formatting described in the initial comments of the routine, the output file can be used by a G4Beamline input file to generate a magnetic field for an anticyclotron simulation. In this example, the field components are expanded to 4th order in z.

```fortran
PROGRAM FOURTH_ORDER_ARXIV_EXAMPLE

C
C Prints out grid of (Bx, By, Bz) in (x, y, z) for a file suitable for the
C G4Beamline command 'fieldmap'.
C
C The output of this program is fort.71.
C
C Distances in the fort.71 file are in mm., and magnetic fields are
C in tesla. (Distances in this FORTRAN routine are in meters.)
C
C The following must be added to fort.71 for the file to work in G4Beamline:
C
C grid X0=[smallest x] Y0=[smallest y] Z0=[smallest z] nX=[number of x points]
C nY=[number of y points] nZ=[number of z points] dX=[dist. between x points]
C dY=[dist. between y points] dZ=[dist. between z points]
C data
C
C IMPLICIT NONE

INTEGER I,J,L

REAL*8 x,y,z,r,t
REAL*8 bz0,bz2,bz4,br1,br3,bt1,bt3
REAL*8 bx,by,bz,br,bt

REAL*8 PI,E
REAL*8 b,c,k,s,f,n

REAL*8 o1,o2,o3,o4

E = 2.718281828d+0
PI = ACOS(-1.0d+0)

C $B_z(z=0) = (c r^k)(1+f \cos(n t))$
```

11
C Bz(z = 0) parameters
b = 25.0d+0
c = 1.77d+0
k = 0.6d+0
s = (PI/180.0d+0)*0.0d+0
f = sqrt(2.0d+0)
n = 6.0d+0

C o1 through o4 set the order of the expansion in z of Bz(z=0)
C 4th order: o4 = o3 = o2 = o1 = 1
C 3rd order: o4 = 0, o3 = o2 = o1 = 1
C 2nd order: o4 = o3 = 0, o2 = o1 = 1
C 1st order: o4 = o3 = o2 = 0, o1 = 1
C 0th order: o4 = o3 = o2 = o1 = 0

o1 = 1.0d+0
o2 = 1.0d+0
o3 = 1.0d+0
o4 = 1.0d+0

C Loop over x, y, z
DO 100 I = 1, 201
 DO 200 J = 1, 201
 DO 300 L = 1, 61

C x, y, z, r in meters
C t in radians
C br, bt, bz in Tesla

x = -1.01d+0 + 0.01d+0*I
y = -1.01d+0 + 0.01d+0*J
z = -0.31d+0 + 0.01d+0*L

r = sqrt(x*x+y*y)
t = atan2(y,x)

C br, bt, bz formula determined through and copied and pasted from Mathematica

C bz terms up to 4th order
bz0 = c*r**k*(1 + f*Cos(n*t))
bz2 = -(c*o2*r**(-2 + k)*z**2*(k**2 + f*(k - n)*(k + n)*Cos(n*t)))/2.
bz4 = (c*o4*r**(-4 + k)*z**4*
 - ((-2 + k)**2*k**2 +
 f*(-2 + k - n)*(k - n)*(-2 + k + n)*(k + n)*Cos(n*t)))/24.

C br terms up to 4th order
br1 = c*k*o1*r**(-1 + k)*z*(1 + f*Cos(n*t))
\[br3 = -(c*(-2 + k)*o3*r^{-3 + k}*z^3 - (k^2 + f*(k - n)*(k + n)\cos(n*t)))/6. \]

C bt terms up to 4th order

\[bt1 = -(c*f*n\cdot o1*r^{-1 + k}*z\cdot \sin(n*t)) \]

\[bt3 = (c*f*(k - n)*n\cdot (k + n)*o3*r^{-3 + k}*z^3\cdot \sin(n*t))/6. \]

C Add each order to get bz, br, bt

\[bz = bz0 + bz2 + bz4 \]

\[br = br1 + br3 \]

\[bt = bt1 + bt3 \]

C Transform br, bt to bx, by

\[bx = br\cdot \cos(t) - bt\cdot \sin(t) \]

\[by = br\cdot \sin(t) + bt\cdot \cos(t) \]

WRITE(71,174) 1000*x,1000*y,1000*z,bx,by,bz,0.0

174 FORMAT(F8.1,",",F8.1,",",F8.1,",",F9.3,",",F9.3,",",F9.3,"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
C Appendix: G4Beamline Example

An example G4Beamline input file of positive muons being decelerated in an anticyclotron is shown. The file `testfield6sectorrk06_0d_2nd_order_cos_example.dat` as specified in the `fieldmap field grid` command is needed to generate the outer sectored focusing field. The inner magnetic bottle is generated by the field from two current carrying coils. Muons lose energy by passing through 1.0° lithium hydride wedges. The uniform 1.0° wedge angle in this example file is simpler than the moderator configuration used for the anticyclotron. The anticyclotron includes an inner cylinder of 0.1 bar helium and six LiH wedges whose thickness decreases adiabatically from 4.2 mm at $r = 550$ mm to 0.008 mm at $r = 65$ mm. The output is a root file, `AllTracks.root`, which shows all the kinematic information of each muon along its orbit, and which can be opened by Historoot.

```g4beamline
* example G4Beamline file for anticyclotron simulation, April 11, 2011 *
* # use TJR recommended physics routines
physics QGSP_BERT doStochastics=1 disable=Decay

# reference particle with no stochastic processes
particlecolor reference=1,1,1
reference referenceMomentum=180 particle=mu+ \n    beamX=0.0 beamY=500.0 beamZ=0.0 meanXp=0.0 meanYp=0.0 rotation=X90,Z90

# simulate 3 muons with stochastic processes (since doStochastics=1)
beam gaussian particle=mu+ nEvents=3 \n    beamX=0.0 beamY=500.0 beamZ=0.0 meanXp=0.0 meanYp=0.0 \n    sigmaX=0 sigmaY=0 sigmaXp=0 sigmaYp=0 \n    meanMomentum=180.00 sigmaP=0 meanT=0 sigmaT=0 rotation=X90,Z90

# keep only positive muons
trackcuts keep=mu+ maxTime=200000.0

# output file for Historoot showing kinematic information for orbits
trace nTrace=3 format=root filename=AllTracks.root oneNTuple=1 primaryOnly=1

# output file for Historoot showing kinematic information when particles are lost
beamlossntuple loss_ntuple format=ascii

param maxStep=5. SteppingVerbose=1

# lithium hydride, density (0.82 g/cm^3) from Wikipedia
material lih z=4 a=8 density=0.82 state=s

# Define LiH wedges, each with 1 degree angle
tubs gascylinder_1 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=30-0.5 finalPhi=30+0.5 color=1,0,0 material=lih
    tubs gascylinder_2 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=90-0.5 finalPhi=90+0.5 color=1,0,0 material=lih
    tubs gascylinder_3 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=150-0.5 finalPhi=150+0.5 color=1,0,0 material=lih
    tubs gascylinder_4 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=210-0.5 finalPhi=210+0.5 color=1,0,0 material=lih
    tubs gascylinder_5 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=270-0.5 finalPhi=270+0.5 color=1,0,0 material=lih
    tubs gascylinder_6 innerRadius=2 outerRadius=600 length=200 \n    initialPhi=330-0.5 finalPhi=330+0.5 color=1,0,0 material=lih
```

14
Define coils of inner magnetic bottle
coil coil1
innerRadius=195
outerRadius=205
length=50
material=Vacuum
filename=coil1.dat

coil coil2
innerRadius=195
outerRadius=205
length=50
material=Vacuum
filename=coil2.dat

Set currents for magnetic bottle coils which provide inner bottle magnetic field
solenoid c1
 coilName=coil1
 current=(0.2)*10803.6
 color=0.3,1,0
 alternate=0

dsolenoid c2
 coilName=coil1
 current=(0.2)*10803.6
 color=0.3,1,0
 alternate=0

Grid of magnetic field points for outer sectored field
fieldmap field_grid file=test_bfield_no_poly_bottle_6sector_rk06_0d_2nd_order_beq25_cos.dat

Place wedges, coils, and magnetic field map grid
place gascylinder_1 z=0
place gascylinder_2 z=0
place gascylinder_3 z=0
place gascylinder_4 z=0
place gascylinder_5 z=0
place gascylinder_6 z=0

place c1 x=0 y=0 z=200
place c2 x=0 y=0 z=-200

place field_grid x=0 y=0 z=0

Fig. 2 shows a Histotroot visualization of the orbits of three muons in this G4Beamline example simulation. The muons stop in about 125 ns.

D Appendix: ICOOL Example

Another program which can simulate an anticyclotron with lithium hydride wedges is ICOOL [7]. The coordinate system of ICOOL is an \((x, y, z)\) coordinate system in which the \(z\) coordinate is along the beamline. This can be converted to an \((r, \theta, z)\) system by incorporating a bent solenoid so that \(x\) becomes \(-r\), \(y\) becomes
Figure 2: Orbits of three color coded muons in an G4Beamline simulated anticyclotron. This output is generated by Histotroot. The orbits show the transition between the outer sectored field and the inner azimuthally symmetric magnetic bottle.

z, and the reference path coordinate, z, becomes θ. ICOOL does not have the visualization capabilities of G4Beamline so software to check element placement, orbits, and dynamics must be added. ICOOL can do its own magnetic field expansion \cite{ICOOL} to check an orbit at a particular radius. This can provide a cross check of G4Beamline.

ICOOL can be run on UNIX, PC, and Macintosh platforms. The command file needs to be called for001.dat. In this particular application of ICOOL, two more input files are used: for003.dat which defines each particle of the beam and for056.dat which defines the magnetic field. The output file in the example simulation is for009.dat which lists the kinematic information of each particle. Postprocessing of this file is needed to visualize the orbits and to evaluate the dynamics.

Information about ICOOL including a User’s Guide and Reference Manual can be found at

https://pubweb.bnl.gov/~fernow/icool/v326/

The next sections show example input files which generate an anticyclotron simulation when the executable icool from

https://pubweb.bnl.gov/~fernow/icool/v326/icool.exe

is run.

D.1 input for001.dat command file

This command file uses a bent solenoid magnetic field to simulate a cyclotron field. The BSOL command sets the initial muon momentum to 0.18 GeV/c, the inverse radius of the bent solenoid to $2.0 \, m^{-1}$, and reads the amplitude, period, and initial offset of the sinusoidal vertical magnetic field ($B_y(z)$ where y is vertical and z is along the reference path) from the file fort.56. In this ICOOL example, muons lose energy by passing through 1.0° lithium hydride wedges. The magnetic field in this example does not vary with radius.
is in the G4Beamline example of Appendix C. The geometry of the anticyclotron is specified by sregions. One sregion of the lithium hydride wedge is followed by 10 sregions of vacuum, and the sequence of 11 sregions is repeated 600 times. The total length of the 11 sregions is 0.523598775 m which corresponds to 1/6 of the circumference of a 0.5 m circle. This arrangement is set for a 6-sector anticyclotron with a bent solenoid radius of 0.5 m.

test ring 180 MeV (H5b)

$cont npart=200 nsections=1 varstep=.false. nprnt=-3 prlevel=1
ntuple=.false. rtuple=.false. rtuplen=1 output1=.true. phasemodel=3
fsav=.false. fsavset=.true. izfile=140 bgen=.false. $

$bmt $ 121.1 !ntyp typ(1=e 2=mu 3=pi 4=K 5=p) frac dist(1=gauss 2=ring)
-0.010 0.019 0.0 0.0 0.203 !means: x y z px py pz
0.0425 0.0425 .18 .030 .030 0.024 !sigmas: 1
1 !correlations
2 .19 .40 0 !palmer GeV/A^2 beta

$ints ldecay=.false. declev=1 ldedx=.true. lstrag=.true. lscatter=.true.
delev=2 straglev=4 scatlev=4 $

$snh $ $nsc $ $nzh $ $nrh nrhist=0 $
$nem $
$ncv $

SECTION

REFP 2 .18 0.0 3 !typ refp t0 grad0 mode (3=const p 4=with acc)

DENS
LIH 1
BEGS

!=== CELL !---------------- regular cell 1 .FALSE.

BSOL ! multipole field input 4.56 .180 5 1 1 1 1 1 1 1 1 2.0 ! mode, file, momentum, order, 1/r switch, 10 scale-factors, 1/r

!===

REPEAT 1200

OUTPUT
SREGION 1 ! define a region

17
LiH VAC ! LiH material surrounded by vacuum

WEDGE
 1 0.5 0.01 180 1.0 1.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
 .05 1 0.001 ! length, 1 radial subregion, step
 1 0. 2 ! radial extent
NONE ! no associated field
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
 .05 1 0.001 ! length, 1 radial subregion, step
 1 0. 2 ! radial extent
NONE ! no associated field
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
 .05 1 0.001 ! length, 1 radial subregion, step
 1 0. 2 ! radial extent
NONE ! no associated field
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
 .05 1 0.001 ! length, 1 radial subregion, step
 1 0. 2 ! radial extent
NONE ! no associated field
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
.05 1 0.001 ! length, 1 radial subregion, step
1 0. 2 ! radial extent
NONE ! no associated field
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
.05 1 0.001 ! length, 1 radial subregion, step
1 0. 2 ! radial extent
NONE ! no associated field
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
.05 1 0.001 ! length, 1 radial subregion, step
1 0. 2 ! radial extent
NONE ! no associated field
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
0. 0. 0. 0. 0. 0. 0. 0.

OUTPUT
SREGION ! define a region
.05 1 0.001 ! length, 1 radial subregion, step
1 0. 2 ! radial extent
NONE ! no associated field
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
VAC ! vacuum
CBLOCK ! cylindrical block geometry
0. 0. 0. 0. 0. 0. 0. 0.
D.2 input for 003.dat beam file

This input file defines the initial positions and momenta of three input muons. The initial positions are set to zero with respect to the 0.5 m reference radius of the bent solenoid field. The initial momentum of the three muons is 0.18 GeV/c in the z direction.

```
title
0 0 0 0 0 0 0 0
1 0 2 0 0.0000E+00 1.0
0.00E-00 0.0000E+00 0.0000E+00 0.0000E-03 0.0000E+00 1.8000E-01 0 0 0 0 0 0
2 0 2 0 0.0000E+00 1.0
0.00E-00 0.0000E+00 0.0000E+00 0.0000E-03 0.0000E+00 1.8000E-01 0 0 0 0 0 0
3 0 2 0 0.0000E+00 1.0
0.00E-00 0.0000E+00 0.0000E+00 0.0000E-03 0.0000E+00 1.8000E-01 0 0 0 0 0 0
```

D.3 input for 056.dat field file

This file sets the parameters of the bent solenoid field. This field is sinusoidal with respect to the z coordinate (In ICOOL, the vertical component is y and z is the coordinate along the reference path.). The period is about 0.5236 m corresponding to 1/6 the circumference of a circle with reference radius of 0.5 m. The field is independent with respect to radius and depends on the z coordinate as $B_y(z) = 1.168 - 1.651 \cos(2\pi z/0.5236)$ where the field is in Tesla and the distance is in meters.

```
test 6 sector anticyclotron
0.523598775 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1
n s d a q
0 0 0 1.167764501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
1 0 0 -1.651468395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
```

D.4 output for 009.dat file

The following shows the kinematic information of the reference muon and the three muons through one wedge region and one vacuum region. Each data line wraps around to form three actual lines.

```
#test ring 180 MeV (H5b)
# units = [s] [m] [GeV/c] [T] [V/m]
# evt par typ flg reg time x y z
Px  Py  Pz  Bx  By  Bz  wt  Ex  Ey  Ez  arc
polX  polY  polZ
0 0 2 0 1 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
```
The orbit in the LAB (x, y) plane can be viewed with Historoot which can be obtained by downloading G4Beamline from www.muonsinc.com. With for009.dat as the input file to Historoot, the orbit in the LAB (x, y) frame is obtained by plotting \((x + 0.5\ m) \cos(z/0.5\ m)\) vs. \((x + 0.5\ m) \sin(z/0.5\ m)\). The radius is the LAB frame of the anticyclotron is \((x + 0.5\ m)\) where \(x\) is the horizontal coordinate with respect to the ICOOL reference path which has a bent solenoid radius of curvature 0.5 m. Fig. 3 shows the orbits of three muons in this example ICOOL anticyclotron simulation which are stopped in about 200 ns.
Figure 3: Orbits of three color coded muons in an ICOOL simulated anticyclotron. The output is generated by Historoot. Each point in the orbit is at the location of the end of an sregion. Unlike the G4Beamline simulation, the magnetic field in this ICOOL simulation is independent of radius and does not include an inner magnetic bottle.