Preliminary experiments demonstrating a “directed” Maxwell’s granular demon

Frank Corrales¹, Yuri Nahmad²*, Ernesto Altshuler¹*

¹ Group of Complex Systems and Statistical Physics, University of Havana, 10400 Habana, Cuba
² Instituto de Física, Zona Universitaria San Luis Potosí, SLP 78290, México

* ealtshuler@fisica.uh.cu
* yuri@ifisica.uaslp.mx

Abstract

In this paper, we design a system of two symmetrical containers communicated by an aperture, in which a granular gas of glass spheres is created by shaking laterally the whole system in a planetary mill. If the aperture consists in a symmetrical hole, the two halves end up with the same number of grains after some time when initially all particles are into in one of the containers. However, when a funnel-like aperture is used, a robust symmetry breaking is induced: if all the grains are originally deposited in the container facing the wide side 95% of the grains pass to the opposite side in a relatively small time.

Introduction

Granular matter in motion is known to display many unexpected behaviors: “Brazil-nuts” effects [1] and wave patterns [2] in vibrated grains; ticking sand in hourglasses [3], avalanches and uphill solitary waves in granular flows [4,5], “revolving rivers” in conical sandpiles [6], gravity-independent penetration of intruders in granular beds [7] and many others [8].

We concentrate here on one of the most puzzling granular phenomena: dense versus dilute phase separation into indistinguishable and equivalent communicated compartments, spontaneously occurs in vibrated granular systems.

It was first observed by Schlichting and Nordmeier in 1996 [9] and then approached experimentally or theoretically by others [10–15]. Such effects have been generically called granular Maxwell demons. One of their common features is the spontaneous of the specific direction of the symmetry breaking; the formation of the cluster takes place randomly either in the left or in the right containers.

In granular demons the symmetry breaking is believed to occur due to the dissipative collisions between grains. Thanks to that, if a set of colliding particles locally decreases the gas “temperature” (i.e., the average kinetic energy of the particles), new grains collide with those and cool down, resulting in the amplification of the fluctuation: a large cluster (or clusters) [14,16] can be eventually formed into one of the connected containers, then breaking the symmetry.

In this paper, we “catalyze” –so to speak– the classical two-compartment granular Maxwell demon: by using a funnel-like geometry of the aperture between the two spaces containing a granular gas, we promote a symmetry breaking in their densities even under the same experimental conditions where it does not arise using a conventional, symmetric aperture. Moreover, we are able to control (or direct) in what direction the symmetry will be broken.
Materials and methods

Our experimental setup consists in a cubic container of 10 cm-side divided into two equal volumes by a vertical wall along the diagonal direction. The two volumes are communicated by a funnel-like channel of 14 mm height, with large and small holes of diameters 21 and 4 mm, respectively, as shown in “Fig. 1(a)”. Two cubical boxes like that are mounted into a planetary mill, describing the motion sketched in “Fig. 1(b)”.

![Fig 1. The experimental setup. (a) Glass cube split into two equal spaces using a funnel-like aperture. The small particles are 2 mm diameter glass beads. (b) Top view of the planetary shaker where two gas containers are simultaneously studied (The main platform revolves clockwise around the vertical axis O at 1 Hz, while each container revolves counterclockwise around O’ at 0.75 Hz, corresponding to the “rotation 3” in the planetary mill’s rotation indicator). The curved arrows indicate the rotational motion of the different parts of the device.](image)

As a result, the system experiences a strong agitation. In a typical experiment, 10000 glass beads (each one with a mass of 0.01 g) are introduced into the volume corresponding to the wide side of the funnel aperture (Space 1 in “Fig. 2”). Due to the strong agitation, they behave like a granular gas. “Fig. 2” shows snapshots taken from top, at different moments, where the total of 10000 grains occupied space 1.

![Fig 2. Directing a Maxwell granular demon. Snapshots taken from the top of one of the boxes at (a) before starting the experiment, and (b) 200, (c) 500 and (d) 3000 seconds after the beginning of the experiment, which started with a total of 10000 beads into semi-space 1. The bright spots are spurious reflections associated to the light emitting diodes used to illuminate the photographs.](image)
In order to quantify in detail the temporal evolution of the particle distribution, we performed experiments where the planetary mill was turned off every few seconds after the beginning of the experiment, and the number of beads into the originally empty space was determined by weighting them. Then, the beads were put back and the agitation was re-started.

Results

The two upper curves in “Fig. 3” show the temporal evolution of the number of glass beads in the half-container that was originally empty (each curve correspond to one of two identical boxed mounted on the planetary mill). As can be seen, nearly 95% of the beads have passed to the opposite space after 2000 seconds. The inset illustrates that, the time evolution approaches a power law.

![Fig 3. Time evolution of the number of particles for three different types of barriers.](image)

The bottom curves correspond to a similar experiment, except for the fact that the 10000 beads have been originally situated in the container facing the small aperture of the funnel. As can be seen, only 5% of the beads have managed to pass to the opposite space, in good agreement with the previous experiment.

Finally, the pair of curves shown in the middle of the graph correspond to an aperture consisting in a simple hole of 4 mm diameter. At the beginning of the experiment, the 10000 beads were deposited on one of the halves. After 6500 seconds (not shown in the graph of “Fig. 3”), the two half-spaces contain 50% of the beads: the symmetry has not been broken. However, the inset shows a power law relaxation in the number of beads, just as in the case of the first experiment. It is worth noting that, if this experiment is started with 50% of the beads into each half –i.e.,
the common practice in analogous experiments [9]—the final proportions are maintained, within small fluctuations. Moreover, the symmetry is not broken even for smaller agitation strengths, a somewhat unexpected result in the light of Egger’s model [10].

Conclusion

With the introduction of the funnel-like aperture we have “catalyzed” the Maxwell demon effect in a system where it does not appear using a symmetric connection between containers. We produce the effect even when the system starts from the opposite symmetry—i.e., the container initially full is emptied to fill up the opposite one. Our system is closer to the original Maxwell’s idea than usual experiments, in the sense that the symmetry breaking action is triggered by a “selective” element (the funnel-like aperture), instead of depending on the random formation of clusters in any of the two symmetrical containers. The funnel also increases the evolution speed of the system: while the symmetry is reversed within 2000 seconds, the substitution of the funnel by a symmetrical hole takes more than twice as much time to reach the symmetric state (see “Fig. 3”, top and middle curves, respectively). Even when our aperture is very small compared to the separating wall (its area is just a 3% of the total wall area), the presence of the funnel introduces a “ratchet effect” capable of changing the overall dynamics of the granular system in a relatively small time. In fact, related effects have been observed at a microscopic scale in silicon membranes with asymmetric pores, when acting as “massive parallel brownian ratchets” [17], and in millimetric disks, as they diffuse through a membrane made of asymmetric pores [18].

Supporting information

S1 File. Experimental data corresponding to “Fig. 3”. (PDF)

S2 Video. Sample video corresponding to “Fig. 2b”.

References

[1] Knight JB, Jaeger HM, Nagel SR. Vibration-induced size separation in granular media: The convection connection. Physical Review Letters. 1993;70(24):3728.

[2] Melo F, Umbanhowar P, Swinney HL. Transition to parametric wave patterns in a vertically oscillated granular layer. Physical Review Letters. 1994;72(1):172.

[3] Le Pennec T, Maloy KJ, Hansen A, Ammi M, Bideau D, Wu Xl. Ticking hour glasses: experimental analysis of intermittent flow. Physical Review E. 1996;53(3):2257.

[4] Altshuler E, Toussaint R, Martínez E, Sotolongo-Costa O, Schmittbuhl J, Maloy K. Revolving rivers in sandpiles: from continuous to intermittent flows. Physical Review E. 2008;77(3):031305.

[5] Martínez E, Pérez-Penicet C, Sotolongo-Costa O, Ramos O, Maloy K, Douady S, et al. Uphill solitary waves in granular flows. Physical Review E. 2007;75(3):031303.

[6] Altshuler E, Ramos O, Martínez E, Batista-Leyva A, Rivera A, Bassler K. Sandpile formation by revolving rivers. Physical Review Letters. 2003;91(1):014501.

[7] Altshuler E, Torres H, González-Pita A, Sánchez-Colina G, Pérez-Penicet C, Waitukaitis S, et al. Settling into dry granular media in different gravities. Geophysical Research Letters. 2014;41(9):3032–3037.
[8] Kadanoff LP. Built upon sand: Theoretical ideas inspired by granular flows. Reviews of Modern Physics. 1999;71(1):435.

[9] Schlichting HJ, Nordmeier VH. Strukturen im Sand-kollektives Verhalten und Selbstorganisation bei Granulaten. Math Naturwiss Unterr. 1996;49(??):323.

[10] Eggers J. Sand as Maxwell’s demon. Physical Review Letters. 1999;83(25):5322.

[11] Brey JJ, Moreno F, García-Rojo R, Ruiz-Montero M. Hydrodynamic Maxwell Demon in granular systems. Physical Review E. 2001;65(1):011305.

[12] van der Weele K, van der Meer D, Versluis M, Lohse D. Hysteretic clustering in granular gas. EPL (Europhysics Letters). 2001;53(3):328.

[13] Jean P, Bellenger H, Burban P, Ponson L, Evesque P. Phase transition or Maxwell’s demon in granular gas? Poudres and Grains. 2002;13(3):27–40.

[14] Isert N, Maß CC, Aegerter CM. Influence of gravity on a granular Maxwell’s demon experiment. The European Physical Journal E: Soft Matter and Biological Physics. 2009;28(2):205–210.

[15] Opsomer E, Noirhomme M, Vandewalle N, Ludewig F. How dynamical clustering triggers Maxwell’s demon in microgravity. Physical Review E. 2013;88(1):012202.

[16] Falcon É, Wunenburger R, Évesque P, Fauve S, Chabot C, Garrabos Y, et al. Cluster formation in a granular medium fluidized by vibrations in low gravity. Physical Review Letters. 1999;83(2):440.

[17] Matthias S, Müller F. Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. Nature. 2003;424(6944):53–57.

[18] Shaw RS, Packard N, Schröter M, Swinney HL. Geometry-induced asymmetric diffusion. Proceedings of the National Academy of Sciences. 2007;104(23):9580–9584.