Estrogen receptor alpha dinucleotide repeat polymorphism in Japanese patients with autoimmune thyroid diseases
Yoshiyuki Ban¹, Matsuo Taniyama¹, Teruaki Tozaki²;³, Motowo Tomita² and Yoshio Ban¹

Address: ¹Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan, ²Department of Physiological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan. and ³Department of Molecular Genetics, Laboratory of Racing Chemistry, Tochigi-ken, Japan.
E-mail: Yoshiyuki Ban - yshsban@ns2.cc.showa-u.ac.jp Matsuo Taniyama - taniyama@ns2.cc.showa-u.ac.jp Teruaki Tozaki - ttozaki@nyc.odn.ne.jp Motowo Tomita - tomitam@pharm.showa-u.ac.jp Yoshio Ban - yshsban@ns2.cc.showa-u.ac.jp

Abstract
Background: The autoimmune thyroid diseases (AITDs), comprising Graves' disease (GD) and Hashimoto's thyroiditis (HT), appear to develop as a result of complex interactions between predisposing genes and environmental triggers. Susceptibility to AITDs is conferred by genes in the human leukocyte antigen (HLA) and genes unlinked to HLA, including the CTLA-4 gene. Recently, an association to some estrogen receptor (ER)α genotypes with breast cancer, hypertension, osteoporosis, generalized osteoarthritis, and some autoimmune diseases such as rheumatoid arthritis has been reported. We have analyzed a dinucleotide (TA)n repeat polymorphism lying upstream of the human ERα gene in patients with AITDs and in normal subjects.

Results: Seventeen different alleles were found in 130 patients with GD, 93 patients with HT, and 190 control subjects. There was no significant difference in the distributions of ERα alleles between patients and controls.

Conclusions: The present results do not support an association between the ERα gene and AITD in the Japanese population.

Background
Autoimmune thyroid diseases (AITDs), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), are the most common human autoimmune diseases and are responsible for significant morbidity in premenopausal women. AITDs are caused by immune responses to the thyroid gland. In GD, the autoimmune process results in production of thyroid-stimulating antibodies and leads to hyperthyroidism, whereas in HT, the end result is thyroid cell death and hypothyroidism [1,2].

The pathogenesis of AITDs involves complex interactions between genetic and environmental factors [3,4]. The genetic relations between GD and HT and the familial and sporadic forms of these diseases are unclear. This problem, until now, has been addressed by studying a variety of candidate genes, primarily via association studies. Because it has been assumed that immune dysregulation and/or thyroid antigen presentation are involved in AITD, the candidate genes that have been tested comprised genes involved in immunoregulatory pathways and genes encoding for the major thyroid autoantigens. These genes included the human leukocyte antigen (HLA) [5], immunoglobulin H heavy chain [6], T cell receptor [7], interleukin-1 receptor antagonist [8], interferon-γ [9], thyroid stimulating hormone receptor [10,11], thyroid peroxidase [12], and cytotoxic T lymphocyte antigen-4 (CTLA-4) genes [13]. With the excep-
tion of the HLA and CTLA-4 loci, the candidate genes examined gave either negative or equivocal results. Recently, the existence of an estrogen receptor (ER)α gene polymorphism has made clear, and its association to some variant ERα genotypes with breast cancer [14,15], hypertension [16], osteoporosis [17,18], generalized osteoarthritis [19], and some autoimmune diseases such as rheumatoid arthritis [20] has been reported.

The ERα gene on chromosome 6q24-q27 is organized into eight exons and seven introns extending over approximately 140 kilobases [21]. ERα belongs to the nuclear hormone receptor superfamily and modulates the transcription of target genes in response to estrogen, a potent immunomodulatory hormone [22]. Estrogens appear to play a central role in the immune response and immune-mediated diseases [22]. In view of the possible role of estrogens in the pathogenesis of AITDs, we have analyzed a dinucleotide (TA)n repeat polymorphism lying upstream of the human ERα gene in patients with AITDs and in normal subjects.

Results

Seventeen different alleles were found in 130 patients with GD, 93 patients with HT, and 190 controls subjects. The various alleles were designated as ERα1 through ERα17 according to their sizes, which ranged from 164 to 198 bp. The distribution of ERα alleles in the three groups is shown in Table 1. Allele frequencies in our GD patients and our control subjects did not differ significantly (X² = 15.49, 16 degrees of freedom, p = 0.49). Allele frequencies in our HT patients and our control subjects also did not differ significantly (X² = 14.62, 16 degrees of freedom, p = 0.55).

Table 1: Allele frequencies of the ERα gene polymorphism in patients with AITDs and in control subjects

ERα polymorphism	Graves' disease n=130, (260 alleles), (%)	Hashimoto's thyroiditis n=93, (186 alleles), (%)	Controls n=190, (380 alleles), (%)
allele *1	20 (7.7%)	13 (7.0%)	24 (6.3%)
allele *2	40 (15.3%)	34 (18.3%)	88 (23.2%)
allele *3	49 (18.7%)	25 (13.4%)	58 (15.3%)
allele *4	32 (12.3%)	26 (14.0%)	39 (10.3%)
allele *5	7 (2.7%)	2 (1.1%)	13 (3.4%)
allele *6	10 (3.8%)	8 (4.3%)	12 (3.2%)
allele *7	19 (7.3%)	12 (6.5%)	23 (6.1%)
allele *8	10 (3.8%)	12 (6.5%)	16 (4.2%)
allele *9	15 (5.8%)	10 (5.4%)	23 (6.1%)
allele *10	11 (4.2%)	10 (5.4%)	15 (3.9%)
allele *11	17 (6.5%)	12 (6.5%)	37 (9.7%)
allele *12	14 (5.4%)	12 (6.5%)	18 (4.7%)
allele *13	10 (3.8%)	7 (3.8%)	10 (2.6%)
allele *14	5 (1.9%)	2 (1.1%)	2 (0.5%)
allele *15	1 (0.4%)	0 (0%)	1 (0.3%)
allele *16	0 (0%)	0 (0%)	1 (0.3%)
allele *17	1 (0.4%)	1 (0.5%)	0 (0%)

The number of subjects is shown with the corresponding percentage in parentheses.

Discussion and Conclusions

ERα belongs to the nuclear hormone receptor superfamily and modulates the transcription of target genes in response to estrogen [22]. Recent studies have shown the presence of ERαs on the cells involved in the immune response, namely thymocyte, macrophages and endothelial cells [22]. Particular attention has been focused on the dose-dependent influence of estrogen on the immune response, which appears to be related to the clinical symptoms of autoimmunity (i.e. the effects of pregnancy or oral contraceptive pills) [22]. The influence of estrogens on cytokine production by target cells, through interference with their transcriptional activity, has also been the focus of various studies [22]. The effect of estrogens on the expression of the protooncogenes and oncosuppressor genes involved in programmed cell death (apoptosis) might also be relevant to human autoimmunity, in particular the uncontrolled synovial lining cell hyperplasia associated with rheumatoid arthritis and the prolonged T-cell survival in systemic lupus erythematosus [22]. Thus, we investigated the relation between a dinucleotide (TA)n repeat polymorphism lying upstream of the human ERα gene and AITDs. Our data did not appear to indicate any association between the ERα gene and the AITDs analyzed. This result might indicate of a large diversity in the genetic background of AITDs, although this
observation deserves further analysis in a larger group of AITD patients.

Materials and Methods

Subjects
One hundred and thirty unrelated Japanese women with GD and 93 unrelated Japanese women with HT were included in this study. GD was diagnosed on the basis of clinical symptoms and biochemical confirmation of hyperthyroidism, including diffuse goiter, ophthalmopathy, elevated radioactive iodine uptake, and thyroid hormone levels. HT patients had documented clinical and biochemical hypothyroidism requiring thyroid hormone replacement therapy and showed autoantibodies against thyroglobulin. One hundred and ninety unrelated Japanese women without clinical evidence or family history of any autoimmune diseases were selected as normal control subjects. The research protocol was approved by the ethics committee of our hospital, and informed consent was obtained from all patients and controls.

Determination of microsatellite polymorphism by polymerase chain reaction
Genomic DNA was isolated from whole blood with a Genomix kit (Talent, Trieste, Italy). Microsatellite marker loci were typed with fluorescence-based methods [23,24]. The polymerase chain reaction (PCR) was performed with oligonucleotide primers designed to amplify a polymorphic (TA)n repeat at 1174-base pair upstream of the human ERα gene [18]. PCR was performed in a total volume of 20 μl of the following mixture: 100 ng of human genomic DNA; 5 pmol of each primer (Cy-5’-GAAGATGTTTCCGCACAT-3’; 5’-GCAGAAT-CAATATCCAGATG-3’); 200 μM of each dNTPs; 2 μl of 10× reaction buffer (Takara Shuzo Co., Kyoto, Japan); and 1 unit of Taq DNA polymerase (Takara Shuzo Co.). Thirty PCR cycles of 2 min at 94°C, 1 min at 58°C, and 1 min at 74°C were performed. The amplified fragments were analysed by electrophoresis with an automatic DNA sequencer using 8% or 6% polyacrylamide gels containing 7 M Urea (Amersham Pharmacia Biotech, Buckinghamshire, UK). The raw data were converted to dinucleotide repeat polymorphic band patterns with the use of a software program (Amersham Pharmacia Biotech,). The length of TA repeat in each amplified product was determined by comparison with a ladder of control DNAs.

Statistical Analyses
Comparisons between the various alleles in patients with AITDs and in controls were made with the X²-test, and p < 0.05 was considered significant. Fisher's exact test was used when necessary. The relative risk was calculated by Woolf's method [25].

Acknowledgments
This work was supported in part by the High-Technology Research Center Project from the Ministry of Education, Science, Sports and Culture of Japan.

References
1. Davies TF. The pathogenesis of Graves’ disease. In Werner and Ingbar’s the Thyroid. A Fundamental and Clinical Text. Edited by Braverman LE, Utiger RD. Philadelphia: Lippincott-Raven, 1996, 525-536
2. Weetman AP. Chronic autoimmune thyroiditis. In Werner and Ingbar’s the Thyroid. A Fundamental and Clinical Text. Edited by Braverman LE, Utiger RD. Philadelphia: Lippincott-Raven, 1996, 738-748
3. Tomer Y, Barbesino G, Greenberg DA, Davies TF. The immunogenetics of autoimmune diabetes and autoimmune thyroid disease. Trends Endocrinol Metab 1997, 8:63-70
4. Tomer Y, Davies TF. Infection, thyroid disease and autoimmune thyroid disease in a North American Caucasian population. J Clin Endocrinol Metab 1996, 81:4476-4478
5. Farid NR, Bear JC. The human major histocompatibility complex and endocrine disease. Endocr Rev 1981, 2:50-86
6. Nakao Y, Matsumoto H, Plyazaki T, Nishihati K, Takatsuki K, Kusakawa R, Nakayama S, Iizumi S, Fujita T, Tsujii K: IgG heavy chain al- lotypes (Gm) in autoimmune diseases. Clin Exp Immunol 1980, 42:20-26
7. Pickerill AP, Watson PF, Tandon N, Weetman AP: T cell receptor beta chain gene polymorphisms in Graves’ disease. Acta Endo- crinal (Copenh) 1993, 128:499-502
8. Cuddihy RM, Bahn RS: Lack of an association between alleles of interleukin-1 receptor antagonrist genotype and Graves’ disease and Graves’ disease in a United Kingdom and Hong Kong Chinese patients: case control and family-based studies. Thyroid 1998, 8:777-780
9. Siegmund T, Usadel KH, Donner H, Braun J, Walfish PG, Badenhoop K: Interferon-g gene microsatellite polymorphisms in patients with Graves’ disease. Thyroid 1998, 8:1013-1017
10. De Roux N, Shields DC, Misrahi M, Ratanachaiyavong S, McGregor AP, Milgrom E: Analysis of the thyrotropin receptor as a candidate gene in familial Graves’ disease. J Clin Endocrinol Metab 1996, 81:3483-3486
11. Allahabadia A, Heward JM, Mijovic C, Carr-Smith J, Daykin J, Cockram C, Barnett AH, Sheppard MC, Franklin JA, Gough SC: Lack of association between polymorphism of the thyrotropin receptor gene and Graves’ disease in a Chinese population: case control and family-based studies. J Clin Endocrinol Metab 1998, 83:445-450
12. Pirro MT, De Filippis V, Di Cerbo A, Scillitani A, Liuzzi A, Tassi V: Thyroperoxidase microsatellite polymorphism in thyroid disease. Thyroid 1995, 5:461-464
13. Yanagawa T, Hidaka Y, Guimares V, Soliman M, DeGroot LJ: CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 1995, 80:41-45
14. Hill SM, Fuqua SAW, Chalmess GC, Greene GL, McGuire WL: Estrogen receptor expression in human breast cancer associat- ed with an estrogen receptor gene restriction fragment length polymorphism. Cancer Res 1989, 49:145-148
15. Yaitl L, Dupont WD, Cavender DR, Perry FF: Analysis of the Pvu II restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res 1992, 52:77-83
16. Lehrer S, Rabin J, Kalir T, Schachter BS: Estrogen receptor variant and hypertension in women. Hypertension 1993, 21:439-441
17. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraishi M, Orimo H: Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996, 11:306-311
18. Sano M, Inoue S, Hosoi T, Ouchi Y, Emi M, Shiraishi M, Orimo H: Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 1995, 217:378-381
19. Ushiyama T, Ueyama H, Inoue K, Nishioka J, Ohkubo J, Hukuda S: Es- trogen receptor gene polymorphism and generalized osteo- arthritis. J Rheumatol 1998, 25:134-137
20. Ushiyama T, Mori K, Inoue K, Hukuda S, Nishioka J, Hukuda S: Association of oestrogen receptor gene polymorphisms with age at onset of rheumatoid arthritis. Ann Rheum Dis 1999, 58:7-10
21. Ponglikitmongkol M, Green S, Chambon P: Genomic organization of the human oestrogen receptor gene. EMBO J 1988, 7:3385-3388
22. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi AT: Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 1995, 13:217-226
23. Reed PW, Davies JL, Copeman JB, Bennett ST, Palmer SM, Pritchard LE, Gough SCL, Kawaguchi Y, Cordell Hj, Balfour KM, Jenkins SC, Powell EE, Vignal A, Todd JA: Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet 1994, 7:390-395
24. Pritchard LE, Kawaguchi Y, Reed PW, Copeman JB, Davies JL, Barnett AH, Bain SC, Todd JA: Analysis of the CD3 region and type 1 diabetes: application of fluorescence-based technology to linkage disequilibrium mapping. Hum Mol Genet 1995, 4:197-202
25. Woolf B: On estimating the relation between blood group and disease. Ann Hum Genet 1955, 19:251-253

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/content/backmatter/1471-2350-1-1-b1.pdf