An acetonic extract and secondary metabolites from the endolichenic fungus *Nemania* sp. EL006872 exhibit immune checkpoint inhibitory activity in lung cancer cell

Mücahit Varlı1, Huong T. Pham2, Seong-Min Kim1, İsa Taş1, Chathurika D. B. Gamage1, Rui Zhou1, Sultan Pulat1, So-Yeon Park1, Nüzhet Cenk Sesal3, Jae-Seoun Hur4, Kyo Bin Kang2 and Hangun Kim1*

1College of Pharmacy, Sunchon National University, Sunchon, South Korea, 2College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea, 3Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey, 4Korean Lichen Research Institute, Sunchon National University, Sunchon, South Korea

Background: Endolichenic fungi (ELF), which live inside the lichen thallus, contain many secondary metabolites that show various biological activities. Recent studies show that lichen and ELF secondary metabolites have antioxidant, antibacterial, antifungal, cytotoxic, and anticancer activities.

Purpose: Here, the effects of an ELF extract and its bioactive compounds were investigated on the H1975 cell line focusing on immune checkpoint marker inhibition.

Methods: An ELF was isolated from the host lichen *Bryoria fuscescens* (Gyelnik) Brodo and D. Hawksw and identified the species as *Nemania* sp. EL006872. The fungus was cultured on agar medium and acetonic extracts were obtained. Secondary metabolites radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting.

Results: The cell viability assay revealed that extracts from *Nemania* sp. EL006872 and the isolated secondary compounds had low cytotoxicity. The crude extract, radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting.

Abbreviations: AhR, Aryl hydrocarbon receptor; BaP, benzo[a]pyrene; DMSO, Dimethyl sulfoxide; ELF, endolichenic fungi; GITRL, Glucocorticoid-induced TNFR-related protein ligand; ICOSL, Inducible T Cell Costimulator Ligand; ITS, internal transcribed spacer; MFI, Mean Fluorescence Intensity; PDA, potato dextrose agar; PD-L1, programmed death-ligand 1.
Introduction

Exposure to environmental pollutants and tobacco smoke is an important public health problem involving major pollutant benzo[a]pyrene (BaP) (Poirier, 2004; Taş et al., 2019b). Sources of BaP include coal tar (Zielinski et al., 1996), cigarette smoke, automobile exhaust fumes (Tancell et al., 1995), smoke generated by combustion of organic material, and grilled food (Aygün and Kabadayi, 2005). Exposure to BaP causes lung cancer and systemic inflammation (Shi et al., 2017). Lung cancer is the most common cause of cancer-related death worldwide (Gomes et al., 2014). BaP-mediated modulation of gene transcription occurs through activation of the aryl hydrocarbon receptor (AhR) or via DNA damage (Shimizu et al., 2000; Hockley et al., 2007; Vázquez-Gómez et al., 2018). Upon exposure to BaP and tobacco smoke, AhR induces expression of an important immune checkpoint, programmed death ligand 1 (PD-L1) (Wang et al., 2019). Therefore, development of new effective agents or cancer immune therapy treatments is required (Jain et al., 2018).

Lichens, symbiotic organisms comprising fungi and algae (or cyanobacteria), have attracted much attention as a source of therapeutic agents for the treatment of numerous diseases, including cancer (Zhou et al., 2017; Yang et al., 2018b, 2018a; Taş et al., 2019a; Tas et al., 2019; Lee et al., 2021). Similar to endophytes living inside plants, endolichenic fungi (ELF) live inside lichen thalli (Honegger et al., 2013). Many studies have identified secondary metabolites in ELF (Wijeratne et al., 2012, 2010; Wang et al., 2010; Li et al., 2015, 2012; He et al., 2012; Jiao et al., 2015). In recent years, it has been reported that microbes as produce different secondary metabolites, including antioxidant, antiviral, anti-Alzheimer, anti-inflammatory, UV protectant, antimicrobial and anticancer activities (Padhi et al., 2019a; Agrawal et al., 2020). Endolichenic fungi secondary metabolites can be classified into the different chemical groups, steroids, terpenoids, xanthones, quinones, peptides, sulphur-containing chromones, etc (Yang et al., 2018b; Padhi et al., 2019b). More than 40,000 terpenoid compounds have been isolated from natural sources and, especially, diterpenoids can be found in all areas of life, and are secondary metabolites of fungi and plants (Zhang and Feng, 2022). Due to their structural diversity and bioactivity, diterpenoids may be potential alternative therapies. Studies show that fungal diterpenoids have cytotoxic, anti-inflammatory, antimicrobial, anti-MRSA, antiviral, and antihypertensive properties (Ling et al., 2014; Büschleb et al., 2016; Hu et al., 2020; Min et al., 2020).

Cancer immunotherapy aims to strengthen the human immune system, thereby enabling it to eliminate cancer cells (Li et al., 2016). The fundamental rationale underlying cancer immunotherapy lies in utilization of specific antibodies and T cells that enable the immune system to discriminate the tiniest biochemical differences between cancer and normal cells (Rojas-Martínez et al., 2017). Tumors use multiple immune regulatory mechanisms to inhibit their antitumor immune effects. Immune checkpoints are inhibitory pathways that physiologically balance co-stimulatory pathways to fine-tune immune responses. Regarding the two components of an immune checkpoint, molecules expressed by immune cells are often referred to as immune checkpoint receptors, while those expressed by antigen-presenting cells, tumor cells or other cell types are called immune checkpoint ligands (Foy et al., 2016; Gibney et al., 2016). Overexpression of immune checkpoint ligands by tumor cells affects tumor-specific T cell immunity in the cancer microenvironment. Since most tumor immune escape mechanisms based on these checkpoints block effector cell functions, antitumor immunity can be restored by antibodies that block inhibitory receptor-ligand interactions, thereby inactivating the immune checkpoint ligands (Carosella et al., 2015).

In this study, the aim was to identify the immunotherapeutic potential of Nemania sp. EL006872 extracts, and its diterpenoids metabolites, radianspenes C and D, and dahliane D, particularly in the context of immune checkpoint inhibition. To the best of our knowledge, few studies have examined the efficacy of radianspenes and dahlianes as potential immunotherapy agents.

Materials and methods

Sample collection, isolation and identification of the endolichenic fungus

The lichen samples of Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw were collected in 2019 during the field trips in Mt. Uludağ (40°06′00.73″N, 29°16′59.79″E), Bursa, Turkey, organized by Prof.
Sears from Dept. of Plant Diseases and Microbiology, Marmara University, Istanbul, Turkey. Voucher samples (KoLRI 052660) has been deposited at the Korean Lichen and Allied Bioresource Center (KOLABIC) in the Korean Lichen Research Institute (KoLRI), Sunchon National University, Korea (https://cc.aris.re.kr/kolabic). Endolichenic fungi were isolated with the surface sterilization method (Guo et al., 2003).

Fungus internal transcribed spacer sequencing conducted as already depicted (Yang et al., 2018b). The endolichenic fungus is cultured on potato dextrose agar (PDA) (BD Difco, Sparks, MD, United States). DNA was extracted from ELF's using a DNeasy Plant Mini Kit following the manufacturer's protocols (Qiagen, Hilden, Germany). The ITS (internal transcribed spacer) region of the rDNA was amplified with the common using primers ITS1F (5′-CTTGGT CATT TAGAGGAA GGTAA-3′) (Gardes and Bruns, 1993) and L5S (5′-ATCCTGAGGGAAA CTCG-3′) (Vilgalys and Hester, 1990). The strain used in this study (EL006872), was identified as Nemania sp. by the BLAST search of the ITS sequence, which showed 99.81% similarity against Nemania sp. genotype 184 (GenBank Accession No. JQ761782.1). The ITS sequence of Nemania sp. EL006872 is available in Supplementary Table S1.

Pure culture and metabolites extraction

Potato dextrose agar (PDA) (BD Difco, Sparks, MD, United States) powder (39 g) was prepared into 1 L distilled water, which was then boiled and mixed to dissolve the powder. The mixture was autoclaved. The autoclaved PDA solution was cooled down to 55–60°C and then directly transferred into the petri dishes. Petri dishes were cooled to room temperature. ELF's were transferred to be cultured on agar in each petri dish. The dishes were then filtered with agar and lyophilized. The lyophilization was cooled to room temperature. ELF's were cooled to room temperature. The dried crude extract (2.7 g) was suspended in water, then successively extracted with n-hexane and ethyl acetate (EtOAc). A Waters 600 HPLC system (Waters Co., Milford, MA, United States) equipped with a Hector-M C18 column (250 mm × 10 mm, 5 μM, RS Tech, Daejeon, Korea) or a Spurisi C18 EP column (250 mm × 10.0 mm, 5 μM, Dikma Technologies, Foothill Ranch, CA, United States) was used for the purification of compounds 1–3 from the EtOAc fraction. The EtOAc fraction (78.9 mg) was further separated by preparative HPLC (Hector C18 column, 4 ml/min, MeCN-0.1% formic acid in H2O 20:80 → 80:20) into five subfractions (E1–E5). Compounds 1 (1.0 mg, tR = 10.0 min) and 2 (1.3 mg, tR = 8.0 min) were purified from the subfraction E4 by preparative HPLC (Spurisi C18 EP column, 4 ml/min, MeCN-0.1% formic acid in H2O 45:55 → 58:42). Compound 3 (0.7 mg, tR = 11.5 min) was obtained from the subfraction E4 by preparative HPLC (Spurisi C18 EP column, 4 ml/min, MeCN-0.1% formic acid in H2O 45:55 → 58:42). NMR spectra were obtained using a Bruker Avance III HD 500 spectrometer (Bruker BioSpin, Bilicera, MA, United States) (Supplementary Table S2; Supplementary Figures S1-S13).

Isolation and structure elucidation

The dried crude extract (2.7 g) was suspended in water, then successively extracted with n-hexane and ethyl acetate (EtOAc). A Waters 600 HPLC system (Waters Co., Milford, MA, United States) equipped with a Hector-M C18 column (250 mm × 10 mm, 5 μM, RS Tech, Daejeon, Korea) or a Spurisi C18 EP column (250 mm × 10.0 mm, 5 μM, Dikma Technologies, Foothill Ranch, CA, United States) was used for the purification of compounds 1–3 from the EtOAc fraction. The EtOAc fraction (78.9 mg) was further separated by preparative HPLC (Hector C18 column, 4 ml/min, MeCN-0.1% formic acid in H2O 20:80 → 80:20) into five subfractions (E1–E5). Compounds 1 (1.0 mg, tR = 10.0 min) and 2 (1.3 mg, tR = 8.0 min) were purified from the subfraction E4 by preparative HPLC (Spurisi C18 EP column, 4 ml/min, MeCN-0.1% formic acid in H2O 45:55 → 58:42). Compound 3 (0.7 mg, tR = 11.5 min) was obtained from the subfraction E4 by preparative HPLC (Spurisi C18 EP column, 4 ml/min, MeCN-0.1% formic acid in H2O 45:55 → 58:42). NMR spectra were obtained using a Bruker Avance III HD 500 spectrometer (Bruker BioSpin, Bilicera, MA, United States) (Supplementary Table S2; Supplementary Figures S1-S13).

Cell culture

H1975 non-small lung cancer cell line was used in this research. H1975 cell was cultured in RPMI (GenDepot, Katy, TX, United States) supplemented with 10% fetal bovine serum (GenDepot, Katy, TX, United States) and 1% penicillin streptomycin solution. Cells were incubated in 5% CO2 in a humidified atmosphere at 37°C.

Cell viability assay

Extract and pure compounds were dissolved in DMSO (Sigma-Aldrich, St. Louis, MO, United States). Cells were seeded at a density of 3 × 10^5 cells/well in 96-well plates, grown overnight, and then treated with crude extract and pure compounds. After incubation, 15 μL methyl thiazolyl tetrazolium (MTT) reagent (Sigma-Aldrich) was added to each well, and the samples were incubated for an additional 4 h. After 4 h, the supernatants were removed, and formazan crystals were dissolved in 150 μL DMSO. Absorbance was measured at 570 nm, and was determined using a microplate reader with Gen5 (v2.03.1) software (BioTek, Winooski, VT, United States).

Clonogenic assay

H1975 cells were seeded at a density of 1000–1500 cells/well in RPMI 1640 and incubated overnight. After 72 h, media containing the crude extract and indicated compounds or DMSO was replaced with fresh medium for 12 days. Colonies were fixed with methanol, and stained with 0.5% crystal violet. Then, the plating efficiency and survival rate of the control group and treatment group cells were determined. Next, the plating efficiency of the control group and treatment groups were determined (Le et al., 2022).

Quantitative reverse-transcription PCR

Quantitative RT-PCR (qRT-PCR) was conducted as already depicted. H1975 were plated at a density of 2 x 10^3 cells/well on 6-
well plate and grown overnight. Cells were treated with crude extract, pure compounds, and benzo[a]pyrene or DMSO. Total RNA was isolated from H1975 cells using RNAiso Plus (TaKaRa, Otsu, Japan). 1 mg of RNA was converted to cDNA using M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA, United States). qPCR was performed using SYBR Green (Enzymomics, Seoul, Korea). qRT-PCR reactions and analyses were performed on a CFX instrument (Bio-Rad, Hercules, CA, United States). Primers used for qRT-PCR were as follows: GAPDH (forward) 5′-atccacatctccagagcga-3′ and (reverse) 5′-aagtgtagctgaccttggc-3′; PD-L1 (forward) 5′-ggagattagatcctgaaacaca-3′ and (reverse) 5′-aacgggaatgtaatctgcta-3′; AhR (forward) 5′-attgtgcagtcgccatc-3′ and (reverse) 5′-aagcaggctgtcaggct-3′.

Results

Nemania sp. EL006872 crude extract shows immune checkpoint inhibitory activity

Figure 1A shows the *Nemania* sp. EL006872 culture. First of all, cell viability assay using acetonic extract of *Nemania* sp. EL006872 was performed to determine the cytotoxic activity of the extract (10 µg/mL). As a result, acetonic extracts of the *Nemania* sp. EL006872 that maintained H1975 cell viability were tested for future experiments (Figure 1B).

Exposure to benzo[a]pyrene (BaP) increases expression of PD-L1 by lung epithelial cells, likely mediated via AhR (Wang et al., 2019). Recent reports suggest that aromatic hydrocarbon receptor (AhR) interacts with metabolites and derivatives such as kynurenine (Esser, 2016; Kawajiri and Fujii-Kuriyama, 2017; Gutiérrez-Vázquez and Quintana, 2018). AhR induces expression by BaP. Overexpression of AhR in many cancers triggers production of toxic metabolites via overexpression of CYP1A1 and CYP1B1 (Harrigan et al., 2004). H1975 non-small lung cancer cell line was used because previous studies show that it overexpresses PD-L1 (Chen et al., 2015; Yan et al., 2016). A hallmark of cancer is that the cells can evade attack by host immune cells. Carcinoma cells may express many immune inhibitory signaling pathways that induce immune cell apoptosis and dysfunction. Programmed death ligand-1 (PD-L1) binds to programmed death-1 (PD-1) expressed by dendritic cells, B cells, T cells, and the natural killer T cells to inhibit their anticancer effects (Chen et al., 2016).

Next, the effects of *Nemania* sp. EL006872 crude extract on expression of AhR and PD-L1 mRNA in BaP exposed H1975 cells were examined. qRT-PCR revealed that expression of PD-L1 and AhR mRNA in BaP exposed H1975 cell was downregulated by pretreatment of acetone extracts of *Nemania* sp. EL006872 (Figures 1C,D). Subsequently, in order to observe the surface protein expression, flow cytometry was used to examine the effects of *Nemania* sp. EL006872 extract, on BaP-induced expression of PD-L1 by H9175 cells. The results showed that increased surface protein level of PD-L1 in BaP exposed condition were diminished by EL006872 extract, on BaP-induced expression of PD-L1 by H9175 cells. The effects of isolated diterpenes on the transcriptional regulator AhR and the immune checkpoint marker PD-L1 in H1975 cells exposed to BaP

Effect of isolated diterpenes on the transcriptional regulator AhR and the immune checkpoint marker PD-L1 in H1975 cells exposed to BaP

LC-MS analysis on the crude extract of *Nemania* sp. EL006872 revealed the presence of multiple compounds
Successive chromatography yielded three purified compounds, which were identified as radianspenes C and D, and dahliane D (Figure 2B) by comparing their NMR spectra with those reported in the literature (Ou et al., 2012; Wu et al., 2015). Although the LC-MS chromatogram showed other major peaks, they were not able to be purified due to the trace amounts. None of these isolates were cytotoxic to H1975 lung cancer cells up to 30 μM (Supplementary Figure S1); therefore, concentrations of 7.5, 15, and 30 μM (~2.5, 5, 10 μg/mL) were used in subsequent biological assays.
To evaluate the biological activity of isolated compounds, the expression of AhR and PD-L1 mRNA level were checked as shown in Figures 1C,D. Unexpectedly, our results showed that all of three compounds, radianspenes C and D, and dahliane D, reduced the expression of the AhR and PD-L1 mRNA (Figures 3A,B). To further confirmation and characterization, flow cytometry analysis was performed to investigate the bioactive compounds on cell surface expression of PD-L1 upon exposure of BaP in H1975 cells. The results showed that radianspenes C and D, and dahliane D, downregulated PD-L1 surface protein level in a dose-dependent manner on BaP exposed condition (Figures 4A,B).

Radianspenes C and D, and dahliane D, reduce expression of multiple immune checkpoint proteins

Next, the inhibitory effects of ELF-derived compounds on expression of multiple immune checkpoint markers (i.e., PD-L1, ICOSL, and GITRL) were evaluated. Expression of PD-L1, GITRL, and ICOSL were downregulated by radianspenes C and D, and dahliane D, in a dose-dependent manner. In addition, the expression of the transcriptional regulator AhR was also investigated. The level of AhR protein decreased upon treat to ELF-derived compounds. Thus, radianspenes C and D, and dahliane D, exert potent inhibitory effects against multiple immune checkpoints (Figure 5).
Evaluated the PD-L1 surface protein activity on benzo[a]pyrene induction condition, treated with radianspenes C and D, and dahliane D. H1975 cells were treated with radianspenes C and D and dahliane D at 7.5, 15, and 30 µM (2.5, 5, 10 µg/mL) 4 h prior to exposure benzo[a]pyrene (1 µM) and then cells were incubated for 72 h, and PD-L1 surface protein level was measured using flow cytometry. Relative PD-L1 MFI value was determined by flow cytometry (A,B). MFI: mean fluorescence intensity. *p < 0.05; **p < 0.01; ***p < 0.001; NS, no significant difference when compared with the BaP-treated group or between indicated group.
Radianspenes C and D, and dahliane D, have anti-proliferative effects in H1975 cells

To investigate the anti-proliferative potential of the ELF-derived compounds in vitro, a clonogenic assay was performed in H1975 cells. Cancer cell proliferation and tumor growth are the defining features of cancer progression (Taş et al., 2021). The proliferative capacity of the H1975 cells were suppressed significantly by radianspenes C and D, and dahliane D, in a dose-dependent manner (Figure 6). Thus, the diterpenoid compounds radianpene C and D, and dahliane D, show anti-proliferative activity. The highest concentration of radianpene C (30 μM) inhibited colony formation to the greatest extent.

Discussion

Here, the effects of an ELF extract and isolated secondary metabolites on immune checkpoints in non-small lung cancer cells were investigated. This study identified (Figure 7) 1) the ELF species Nemania sp. EL006872 was isolated from Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw; 2) Nemania sp. EL006872 showed immune checkpoint inhibition activity through suppressing AhR and PD-L1 mRNA and surface protein expression in BaP exposed H1975 cells; 3) radianpenes C and D, and dahliane D were isolated from Nemania sp. EL006872 crude extract and found to have bioactivity; 4) radianpenes C and D, and dahliane D suppresses the expression of multiple immune checkpoints including PD-
Radianspenes C and D, and dahliane D showed anti-proliferative activity. Radianspenes C and D, and dahliane D, are secondary metabolites (diterpenoids) found in fungi (Zhang and Feng, 2022). A previous study showed that radianspene C from *Coprinus radians* showed cytotoxic effect on MDA-MB-435 human breast cancer cells with an IC_{50} value of 0.91 µM (Ou et al., 2012). Another study isolated the fungus *Verticillium dahliae* from the intestine of the insect *Coridius chinensis*, and identified new guanacastane-type diterpenoids (dahlianes A–K) (Wu et al., 2015; Zhang et al., 2019). Previously, dahlianes A–D were tested against human cancer cell lines (HepG2, MCF-7, and HT-29) and found to be non-cytotoxic, even at a concentration of 50 µM (Wu et al., 2015). Here, it was found that none of the secondary metabolites were toxic effects to H1975 cells at concentrations up to 30 µM (Supplementary Figure S1).

The non-cytotoxic effect of radianspenes C, D and dahliane D isolated from the extract on cell viability is consistent with the results of the crude extract. Our results show that the crude extract and pure components can be used safely at a concentration of 10 µg/mL.

Surgery, radiotherapy, and chemotherapy are the standard treatments for cancer; however, their effects are limited, necessitating development of new therapeutic options such as antitumor immunotherapy (Lemjabbar-Alaoui et al., 2015; Jain et al., 2018). Studies carried out under the umbrella of cancer immunotherapy have led to development of strategies that prevent inactivation of T cells by blocking immune checkpoints with an antibody (Pardoll, 2012). In our study, focuses were made on the PD-1/PD-L1, ICOS/ICOSL, and GITR/GITRL pathways in cancer cells. The most studied and well known mechanism is inhibition of PD-L1 on tumor cells, and the PD-1 and CTLA-4 signaling pathways in T cell cells.
CTLA-4 and PD-1 pathway inhibitors include Ipilimumab, Tremelimumab, Pembrolizumab, Nivolumab, Pidilizumab, Durvalumab, and Atezolizumab (Buchbinder and Desai, 2016). Previous studies show that PD-L1 is induced by BaP via AhR (Wang et al., 2019). Here, crude extract from Nemania sp. EL006872, and isolated secondary metabolites, inhibit expression of PD-L1 and AhR on non-small lung cancer cell exposed to BaP.

The ICOS/ICOSL (CD275/CD278) pathway regulates the Treg population and, subsequently, tumor development (Amatore et al., 2020). Expression of ICOS/ICOSL regulates the CD4+, CD8+, and FoxP3+ regulatory effector cell populations. Overexpression of ICOS ligand is associated with reduced patient survival (Burmeister et al., 2008; Marinelli et al., 2018). Many studies examined molecules targeting different immune checkpoints. For example, GSK3359609, JTX-2011, MEDI-570, and KY1044 inhibit ICOS (Solinas et al., 2020). Another immune checkpoint marker is GITRL (glucocorticoid-induced tumor necrosis factor receptor-related protein ligand), which plays a role in immune cell activation, survival and signaling (Wang et al., 2021). Targeting the GITRL-GITR pathway activates CD4+ and CD8+ T cells, thereby promoting tumor suppression (Durham et al., 2017). Studies on the interaction between immune checkpoint signaling pathways and other signaling pathways, and its inhibition in different immunological diseases, are continuing.

Conclusion

The ELF extract inhibit immune checkpoint ligands in cancer cells exposed to BaP, an environmental pollutant. Radianspenes C and D, and dahliane D, suppress multiple immune checkpoint markers in lung cancer cells. The Nemania sp. EL006872 crude extract and its secondary metabolites have the potential for use as support therapies, and to act as templates for development of new target molecules to overcome drug resistance. Our study shows that radianspenes C and D, and dahliane D, can be isolated from ELF and used to conduct research into the treatment of cancer and other diseases related to immune checkpoints. Future studies will examine the
molecular mechanisms of action and in vivo effects of *Nemania* sp. EL006872 secondary metabolites on immunoregulation and tumor growth.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

MV and HK conceived and designed the experiments. MV, S-MK, IT, CG, RZ, SP, and S-YP performed the biological experiments. MV, S-MK, and IT prepared the acetic extract samples for screening. HP and KBK isolated the single compounds. NCS and J-SH contributed materials. MV and HK analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Research Foundation of Korea grant (NRF-2020R1C1C1007832, NRF-2018K1A3A1A39087314) funded by the Korea government (MSIP) and the Scientific and Technological Research Council of Turkey (TÜBİTAK), grant no 2188752.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.986946/full#supplementary-material

References

Agrawal, S., Deshmukh, S. K., Reddy, M. S., Prasad, R., and Goel, M. (2020). Endophytic fungi: A hidden source of bioactive metabolites. *South Afr. J. Bot.* 134, 163–186. doi:10.1016/j.sajb.2019.12.008

Amatore, F., Gorvel, L., and Olive, D. (2020). Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. *Expert Opin. Biol. Ther.* 20, 141–150. doi:10.1080/13596551.2020.1693540

Aygün, S. F., and Kabadayı, F. (2005). Determination of benzo(a)pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. *Int. J. Food Sci. Nutr.* 56, 581–585. doi:10.1080/09637480500465436

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. *N. Engl. J. Med.* 373, 1627–1639. doi:10.1056/nejmoa1507643

Buchbinder, E. I., and Desai, A. (2016). CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition. *Am. J. Clin. Oncol.* 39, 98–106. doi:10.1097/COC.0000000000000239

Burmeister, Y., Lischke, T., Dahler, A. C., Mage, H. W., Lam, K.-P., Coyle, A. J., et al. (2008). ICOS controls the pool size of effector-memory and regulatory T cells. *J. Immunol.* 180, 774–782. doi:10.4049/jimmunol.180.2.774

Büschleb, M., Dorich, S., Hanessian, S., Tao, D., Schenthal, K. B., and Overman, L. E. (2016). Synthetic strategies toward natural products containing contiguous sterogenic quaternary carbon atoms. *Angew. Chem. Int. Ed. Engl.* 55, 4156–4186. doi:10.1002/anie.201507549

Carosella, E. D., Ploussard, G., LeMaoult, J., and Degrandchamps, F. (2015). A systematic review of immunotherapy in urologic cancer: Evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. *Expert Opin. Biol. Ther.* 15, 47–66. doi:10.1517/14728222.2014.923834

Chen, J., Jiang, C. C., Jin, L., and Zhang, X. D. (2016). Regulation of PD-L1: A novel role of pro-survival signalling in cancer. *Ann. Oncol.* 27, 409–416. doi:10.1093/annonc/mdw615

Chen, N., Fang, W., Zhan, J., Hong, S., Tang, Y., Kang, S., et al. (2015). Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC. Implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. *J. Thorac. Oncol.* 10, 910–923. –923. doi:10.1097/JTO.0000000000000500

Durham, N. M., Holowec, K., MacGill, R. S., McGlinchey, K., Leow, C. C., and Robbins, S. H. (2017). GITR ligand fusion protein agonist enhances the tumor antigen-specific CD8 T-cell response and leads to long-lasting memory. *J. Immunother. Cancer 5*, 47–52. doi:10.1186/s40425-017-0247-0

Euser, C. (2016). "The aryl hydrocarbon receptor in immunity: Tools and potential," in Methods in molecular biology (Towota, New Jersey, United States: Humana Press), 239–257. doi:10.1007/978-1-4939-3139-2_16

Foy, S. P., Mandl, S. J., Cruz, T. D., Cote, J. J., Gordon, E. J., Trent, E., et al. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. *Cancer Immunol. Immunother.* 5, 353–549. doi:10.1007/s00262-016-1816-7

Gardès, M., and Bruno, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. *Mol. Ecol.* 2, 113–118. doi:10.1111/j.1365-294X.1993.TB00005.X

Gibney, G. T., Weiner, I. M., and Atkins, M. B. (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. *Lancet. Oncol.* 17, e542–e551. doi:10.1016/S1470-2045(16)30406-5

Gomez, M., Tenreiro, A. L., Coelho, A., Araújo, A., and Medeiros, R. (2014). The role of inflammation in lung cancer. *Bauel Springer*, 1–23. doi:10.1007/978-3-6348-0837-8_1
endolichenic actinobacteria and fungi in the Lower Devonian lichen Funbio.2013.05.003

Harrigan, J. A., Verina, C. M., Mgagirre, B. P., Ersing, N., Box, H. C., Maccabia, A. E., et al. (2004). DNA adduct formation in precision-cut rat liver and lung slices exposed to benz[a]pyrene. Toxicol. Sci. 77, 307–314. doi:10.1093/toxsci/kfh303

He, J. W., Chen, G. D., Gao, H., Yang, F., Li, X. X., Peng, T., et al. (2012). Hepatokides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp., and Phthorophora sp. Fitteropisi 83, 1987–1991. doi:10.1101/fst.2012.05.002

Hockley, S. L., Arth, V. M., Brewer, D., Te Poele, R., Workman, P., Giddings, I., et al. (2007). AHR- and DNA-damage-mediated gene expression responses induced by benz[a]pyrene in human cell lines. Chem. Res. Toxicol. 20, 1797–1810. doi:10.1021/tx070252n.SUPPL_FILE/TX700252N-FILE004

Honegger, R., Axe, L., and Edwards, D. (2013). Bacterial epibionts and endolichenic fungus Coniochaeta sp. Honegger, R., Axe, L., and Edwards, D. (2013). Bacterial epibionts and endolichenic fungus Coniochaeta sp.

Hu, Y. J., Li, L., Han, J. C., Min, L., and Li, C. C. (2020). Recent advances in the total synthesis of natural products containing eight-membered carbocycles (2009–2019). Chem. Rev. 120, 5910–5953. doi:10.1021/acs.chemrev.0c00455/ASSET/IMAGES/MEDIUM/CR0C00455_0044

Jiao, Y., Li, G., Wang, H. Y., Liu, J., Li, B. X., Zhang, L. L., et al. (2015). New diclofenac acid bridged bicyclo[m.n.1] ring systems via type II [5 + 2] cycloaddition. Org. Lett. 17, 2229–2232. doi:10.1021/acs.orglett.5b01938

Jin, P., Jain, C., and Velcheti, V. (2018). Role of immune-checkpoint inhibitors in lung cancer. Ther. Adv. Respir. Dis. 12, 252–264. doi:10.1177/1753466619833394

Jin, P., Jain, C., and Velcheti, V. (2018). Role of immune-checkpoint inhibitors in lung cancer. Ther. Adv. Respir. Dis. 12, 5910–5953. doi:10.1021/acs.chemrev.0c00455/ASSET/IMAGES/MEDIUM/CR0C00455_0044

Jin, P., Jain, C., and Velcheti, V. (2018). Role of immune-checkpoint inhibitors in lung cancer. Ther. Adv. Respir. Dis. 12, 5910–5953. doi:10.1021/acs.chemrev.0c00455/ASSET/IMAGES/MEDIUM/CR0C00455_0044

Kosanic, M., Manoljovic, N., Jankovic, S., Stanojkovic, T., and Rankovic, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major depsipeptide nobilamide i inhibits cancer cell motility and tumorigenicity via aryl hydrocarbon receptor mediated tobacco-induced PD-L1 expression and is suppressed by an AhR/Src/ERK axis that promotes inflammatory and tumorigenic effects of environmental pollutants found in diesel exhaust emissions. Sci. Total Environ. 619, 179–186. doi:10.1016/j.scitotenv.2017.08.037

Kosanic, M., Manoljovic, N., Jankovic, S., Stanojkovic, T., and Rankovic, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major depsipeptide nobilamide i inhibits cancer cell motility and tumorigenicity via aryl hydrocarbon receptor mediated tobacco-induced PD-L1 expression and is suppressed by an AhR/Src/ERK axis that promotes inflammatory and tumorigenic effects of environmental pollutants found in diesel exhaust emissions. Sci. Total Environ. 619, 179–186. doi:10.1016/j.scitotenv.2017.08.037

Kosanic, M., Manoljovic, N., Jankovic, S., Stanojkovic, T., and Rankovic, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major depsipeptide nobilamide i inhibits cancer cell motility and tumorigenicity via aryl hydrocarbon receptor mediated tobacco-induced PD-L1 expression and is suppressed by an AhR/Src/ERK axis that promotes inflammatory and tumorigenic effects of environmental pollutants found in diesel exhaust emissions. Sci. Total Environ. 619, 179–186. doi:10.1016/j.scitotenv.2017.08.037

Kosanic, M., Manoljovic, N., Jankovic, S., Stanojkovic, T., and Rankovic, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major depsipeptide nobilamide i inhibits cancer cell motility and tumorigenicity via aryl hydrocarbon receptor mediated tobacco-induced PD-L1 expression and is suppressed by an AhR/Src/ERK axis that promotes inflammatory and tumorigenic effects of environmental pollutants found in diesel exhaust emissions. Sci. Total Environ. 619, 179–186. doi:10.1016/j.scitotenv.2017.08.037

Kosanic, M., Manoljovic, N., Jankovic, S., Stanojkovic, T., and Rankovic, B. (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major depsipeptide nobilamide i inhibits cancer cell motility and tumorigenicity via aryl hydrocarbon receptor mediated tobacco-induced PD-L1 expression and is suppressed by an AhR/Src/ERK axis that promotes inflammatory and tumorigenic effects of environmental pollutants found in diesel exhaust emissions. Sci. Total Environ. 619, 179–186. doi:10.1016/j.scitotenv.2017.08.037

Liu, G., Wang, H., Zhu, R., Sun, L., Wang, L., Li, M., et al. (2012). Phaeoaphirin A-F, cytotoxic pyrrolequinones from an endolichenic fungus, Phaeoaphira sp. Nat. Prod. Lett. 25, 142–147. doi:10.1080/2006014b

Li, X. B., Zhou, Y. H., Zhu, R. X., Chang, W. Q., Yuan, H. Q., Gao, W., et al. (2015). Identification and biological evaluation of secondary metabolites from the endolichenic fungus aspergillus versicolor. Chem. Biodivers. 12, 575–592. doi:10.1002/cbdv.201401041r

Li, Y., Li, F., Jiang, F., Lv, X., Zhang, R., Lu, A., et al. (2016). A mini-review for cancer immunotherapy: Molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int. J. Mol. Sci. 17, E1151. doi:10.3390/ijms17071151

Ling, C., Fu, L., Gao, S., Chu, W., Wang, H., Huang, Y., et al. (2014). Design, synthesis, and structure-activity relationship studies of novel thiourea pleuromutilin derivatives as potent antibacterial agents. J. Med. Chem. 57, 4772–4795. doi:10.1021/jm500312x

Martelli, O., Nabissi, M., Morelli, M. B., Torquati, L., Amantini, C., and Santoni, G. (2018). ISOCS-2 as a potential therapeutic target for cancer immunotherapy. Curr. Protein Pept. Sci. 19, 1107–1113. doi:10.2174/13892037196661808099913
metabolites: Biogenetically related heptaketides of the endolichenic fungus Corynespora sp. (1). *J. Nat. Prod.* 73, 1156–1159. doi:10.1021/np900684v

Wijeratne, E. M. K., Bashyal, B. P., Liu, M. X., Rocha, D. D., Gunaherath, G. M. K. R., U’Ren, J. M., et al. (2012). Geopyxins A-E, ent-kaurane diterpenoids from endolichenic fungal strains geopyxis aff. Majalis and geopyxis sp. AZ2066: Structure-activity relationships of geopyxins and their analogues. *J. Nat. Prod.* 75, 361–369. doi:10.1021/np200769q

Wu, F. B., Li, T. X., Yang, M. H., and Kong, L. Y. (2015). Guanacastane-type diterpenoids from the insect-associated fungus Verticillium dahliae. *J. Asian Nat. Prod. Res.* 18, 117–124. doi:10.1080/10286020.2015.1061511

Yan, F., Pang, J., Peng, Y., Molina, J. R., Yang, P., and Liu, S. (2016). Elevated cellular PD1/PD-L1 expression confers acquired resistance to cisplatin in small cell lung cancer cells. *PLoS ONE* 11, e0162925. doi:10.1371/journal.pone.0162925

Yang, Y., Bae, W. K., Lee, J. Y., Choi, Y. J., Lee, K. H., Park, M. S., et al. (2018a). Potassium usnate, a water-soluble usnic acid salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. *Sci. Rep.* 8, 16234–16311. doi:10.1038/s41598-018-34709-9

Yang, Y., Bae, W. K., Nam, S. J., Jeong, M. H., Zhou, R., Park, S. Y., et al. (2018b). Acetonic extracts of the endolichenic fungus EL002332 isolated from Endocarpon pusillum exhibits anticancer activity in human gastric cancer cells. *Phytomedicine* 40, 106–115. doi:10.1016/j.phymed.2018.01.006

Zhang, F. L., and Feng, T. (2022). Diterpenes specially produced by fungi Structures, biological activities, and biosynthesis (2010–2020). *J. Fungi* 8, 244. doi:10.3390/JOF8030244

Zhang, H., Yang, M. H., Li, Y., Cheng, X. B., Pei, Y. H., and Kong, L. Y. (2019). Seven new guanacastane-type diterpenoids from the fungus Verticillium dahliae. *Fitoterapia* 133, 219–224. doi:10.1016/J.FITOTE.2019.01.009

Zhou, R., Yang, Y., Park, S. Y., Nguyen, T. T., Seo, Y. W., Lee, K. H., et al. (2017). The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. *Sci. Rep.* 7, 8136–8213. doi:10.1038/s41598-017-08822-1

Zielinska, I., Osowiecka, B., Liszyńska, B., Ciesińska, W., Polaczek, J., and Kubica, K. (1996). Benzo[a]pyrene in coal tar pitch: Chemical conversion in situ by alkylation. *Fuel* 75, 1543–1548. doi:10.1016/0016-2361(96)00115-9