Pattern Dynamics in a Predator-Prey Model with Diffusion Network

Wenjie Yang, Qianqian Zheng, Jianwei Shen, and Qing Hu

1School of Science, Xuchang University, Xuchang, Henan 461000, China
2School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Correspondence should be addressed to Jianwei Shen; phdshen@126.com

1.Introduction

Turing instability was first investigated in the reaction-diffusion system [1], and it is constantly being promoted to explain the dynamical mechanism [2, 3]. Asllani et al. pointed out that the directed network could induce Turing instability when an indirect network does not work [4, 5]. Meanwhile, tuning the topology structure of the system can create or destroy patterns in a reaction-diffusion system [6]. Mimar et al. proved that the pattern formation's topological properties are determined by complex interaction [7]. Although spontaneous patterns [8] are associated with the dominance of eigenvectors and eigenvalues [9–11], the dynamical mechanism of the random network in pattern formation remains to be uncovered.

Since the Lotka–Volterra model was proposed in the early twentieth century, some biological mechanisms were explained in the predator-prey system [12–18]. Chang et al. researched the dynamics in the predator-prey system on complex networks and found that Turing instability caused by delay can generate spiral waves [19]. Liu et al. showed the effect of network and diffusion on the ecological balance of the predator-prey system [20]. Upadhyay and Bhattacharya studied the differences between the aqueous and terrestrial environments in predator-prey networks and tried to explain their biological mechanism [21]. Astarloa et al. tried to use the joint species distribution modeling to reveal the coexistence problem of prey and predator in the Bay of Biscay [22]. Although previous work shows that diffusion and randomness influence the Turing pattern significantly, the random network's effect on the distribution of predator and prey should be carefully evaluated.

To reveal the natural mechanism of biological invasion, we intend to investigate the random diffusion network's effect on the network-organized predator-prey model's stability. First, we obtain the conditions under which Turing bifurcation arises. Second, we find an estimated region of all the eigenvalues of the Laplacian matrix, the sufficient stability conditions in the network-organized predator-prey model. Third, we explain the network-organized Turing instability by the mean-field approximation and comparison principle. Also, we estimate the Turing instability range about link probability and diffusion and try to explain the mechanism of biological invasion. Last, we illustrate our theoretical results through numerical simulation.

2. A Network-Organized Predator-Prey Model

For the convenience of subsequent research, we first give some necessary symbolic rules. The network Laplacian
matrix \(L = \{ L_{ij} \} \) can be treated as \(L_{ij} = \Lambda_{ij} - k_{ij} \delta_{ij} \), and all the eigenvalues of \(L \) are \(\Lambda = \{ \Lambda_i \} \). The eigenvectors \(\phi_i \in \mathbb{R}^n \) of \(\Lambda_i \) satisfy \(L \phi_i = \Lambda_i \phi_i, i = 1, \ldots, n \). \(L \) is real symmetric, and we choose an orthonormal basis for \(\phi_i \phi_j = \delta_{ij} \), where the degree of node \(i \) is \(k_i \), and \(\delta_{ij} \) is the Kronecker delta function.

We consider the following prey-predator system:

\[
\begin{align*}
\frac{dx}{dt} &= x[r_1 - a_{11}x - a_{12}y], \\
\frac{dy}{dt} &= y[r_2 + a_{21}x - a_{22}y],
\end{align*}
\]

(1)

where \(x \) and \(y \) are prey and predator, respectively. \(r_1 \) represents the intrinsic growth rate, \(a_{12} \) is the proportionality coefficient of predator and prey, and \(a_{21} \) is the growth rate of the predator; the predator increases exponentially with ratio \(r_2 \) (actually \(r_2 < 0 \) means the number of predators decreases exponentially). According to Samuelson’s assumptions [23], \(a_{11} \) and \(a_{22} \) represent increasing returns or decreasing returns, respectively. Among them, \(a_{ij} > 0 \) (\(< 0 \)), \(i \neq j \).

Correspond to increasing returns (decreasing returns). System (1) correspond to the mixed-income when \(a_{11}a_{22} \leq 0 \).

System (1) always has three equilibria \(E_0 \equiv (0,0), E_1 \equiv (r_1/a_{11}, 0), \) and \(E_2 \equiv (0, r_2/a_{22}) \). System (1) also have fourth equilibrium point \(E_3 \equiv (x^*, y^*) \equiv (r_1a_{22} - r_2a_{12}/a_{11}a_{22} + a_{12}a_{21}, r_1a_{12}/a_{11}a_{22} + a_{12}a_{21}) \) when \(r_1a_{22} - r_2a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0, r_1a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0, r_1a_{22} - r_2a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0 \).

On the basis of Hopf bifurcation’s definition, we need to satisfy \(tr(I_{E}) = 0, det(J_{E}) > 0 \). The critical value for bifurcation is a positive root of \(tr(I_{E}) = 0 \) and the bifurcation parameter is \(a_{12} = a_{12}^* \) which satisfies \(det(J_{E}) > 0 \),

\[
a_{12} = \frac{(r_1 + r_2)a_{11}a_{22} + r_1a_{21}a_{22}}{r_2a_{11}} \equiv a_{12}^*,
\]

(2)

Then, we give the condition of Hopf bifurcation. Firstly, we verify the transversality condition [24],

\[
\begin{align*}
\frac{d}{da_{12}} tr\left(J(x^*, y^*)\right) |_{a_{12} = a_{12}^*} &= -\frac{a_{12}(a_{11} + a_{21})(r_1a_{21} + r_2a_{22})}{a_{11}a_{22} + a_{12}a_{21}} \neq 0, \\
&= -\left(\frac{r_2a_{11}}{a_{11} + a_{21}}\right) \neq 0.
\end{align*}
\]

Then, we compute the first Lyapunov coefficient [25]. Let \(a_{12} = a_{12}^* \), then \((x^*, y^*) = (-r_2/a_{11} + a_{21}), (r_2a_{11}/a_{21}a_{11} + a_{21}) \). Making the following shift

\[
\begin{align*}
X &= x - x^*, \\
Y &= y - y^*.
\end{align*}
\]

(4)

(1) becomes

\[
\begin{align*}
\frac{d}{dt} \left[tr\left(J(x^*, y^*)\right)\right] &|_{a_{12} = a_{12}^*} = -\frac{a_{12}(a_{11} + a_{21})(r_1a_{21} + r_2a_{22})}{a_{11}a_{22} + a_{12}a_{21}} \neq 0, \\
&= -\left(\frac{r_2a_{11}}{a_{11} + a_{21}}-\frac{r_2a_{11}}{a_{11} + a_{21}}\right) \neq 0.
\end{align*}
\]

where \(\Delta = a_{10}a_{01} - a_{10}^*a_{01}^* \neq 0, \), and if \(l_1 < 0 \) (\(> 0 \)) , the Hopf bifurcation is supercritical (resp. subcritical).

When \(r_1a_{22} - r_2a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0, r_1a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0, r_1a_{22} - r_2a_{12}/a_{11}a_{22} + a_{12}a_{21} > 0 \), \(E_3 \) changes its stability, and Hopf bifurcation occurs if \(a_{12} = a_{12}^* \).

Typically, the distribution of individuals is spatially heterogeneous. So, we research (1) with a reaction-diffusion and network as follows:

\[
\begin{align*}
\frac{dx_i}{dt} &= x_i[r_1 - a_{11}x_i - a_{12}y_i] + d_1 \nabla^2 x_i, \\
\frac{dy_i}{dt} &= y_i[r_2 + a_{21}x_i - a_{22}y_i] + d_2 \nabla^2 y_i,
\end{align*}
\]

(7)

where \(d_1, d_2 \) are the diffusion constants.

Generally, we can regard diffusion as an interplay between network nodes. In this article, we consider a distinctive interaction between nodes. So the network-organized system (7) is
\[
\frac{dx_i}{dt} = x_i \left[r_i - a_{1i}x_i - a_{12}y_i \right] + d_i \sum_j L_{ij} x_i, \\
\frac{dy_i}{dt} = y_i \left[r_i + a_{21}x_i - a_{22}y_i \right] + d_i \sum_j L_{ij} y_i.
\]

The linearized network-organized system of the system (8) is

\[
\frac{dx_i}{dt} = \alpha_{10} x_i + \alpha_{01} y_i + d_i \sum_j L_{ij} x_i, \\
\frac{dy_i}{dt} = \beta_{10} x_i + \beta_{01} y_i + d_i \sum_j L_{ij} y_i.
\]

The general solution of the linear network-organized system can be expressed as [3].

\[
x_i = \sum_{k=1}^{N} c_k \rho_k e^{\lambda_k t} \phi_k^i, \\
y_i = \sum_{k=1}^{N} c_k \rho_k e^{\lambda_k t} \phi_k^i,
\]

where \(\sum_{j} L_{ij} \phi_j^k = \Lambda_{ik} \phi_k^i \).

Substituting the general solution into system (9), the Jacobian matrix \(B_i \) (\(i = 1, \ldots, n \)) is

\[
B_i = \begin{pmatrix} \alpha_{10} + d_i \Lambda_i & \alpha_{01} \\ \beta_{10} & \beta_{01} + d_i \Lambda_i \end{pmatrix},
\]

where all the eigenvalues of matrix \(L \) can be represented as \(\Lambda_i (0 = \Lambda_1 > \Lambda_2 > \cdots > \Lambda_N) \). Then, system (8) has the following characteristic function:

\[
\lambda^2 + p_{\Lambda_i} \lambda + q_{\Lambda_i} = 0,
\]

where

\[
p_{\Lambda_i} = \alpha_{01}, \quad q_{\Lambda_i} = d_i \alpha_{10} \Lambda_i^2 + \left(\alpha_{10} d_i + \beta_{10} \right) \Lambda_i + \alpha_{10} \beta_{01} + \alpha_{01} \beta_{10}.
\]

Turing instability occurs when there is a \(\Lambda_i \) with \(\text{Re} \lambda > 0 \). From (12),

\[
4d_i \alpha_{10} \beta_{01} + \alpha_{01} \beta_{10} + (\alpha_{10} d_i + \beta_{10})^2 = 0.
\]

We can get the Turing instability's critical value about \(\Lambda \) (Skim \(d_i = 0.1562 d_j \)) in the reaction-diffusion system Figure 1. Note \(k_1^2, k_2^2, (k_3^2, k_4^2) \) as two solutions of \(\text{Re} \lambda (k^2) = 0, \text{Re} \lambda (k^2) > 0 \) holds if \(k^2 \in B = \{ \lambda | k_1^2 < \lambda < k_2^2 \} \). Figure 2 \((d_j = 2) \). Turing instability of the reaction-diffusion system is the Turing instability’s prerequisite in the network-organized system. Based on the Gershgorin circle theorem [9,10], we have.

(i) Result 1: \(k_{\text{max}} = \max[k_i], k_{\text{min}} = \min[k_i] \) and \(\Lambda_i \) is the eigenvalue of the Laplacian matrix \(L \), then, \(\Lambda_i \in C = \{ \Lambda_i - 2k_{\text{max}} < \Lambda_i \leq 0 \} \).

(ii) Result 2: in a network-organized system, a system remains stable when no eigenvalue of \(L \) stays at the instability range \(\Lambda \cap B = \Phi \) Turing instability occurs when \(\Lambda \cap B \neq \Phi \), and \(B \cap C \neq \Phi \) (\(C \) is the set of the eigenvalues of Laplacian matrix) induces the occurring of instability.

To study the mechanism of the network-organized system’s stability, we research (8) through the comparison principle: let \(x_i = x^* + \varepsilon \tilde{x}_i \) and \(y_i = y^* + \varepsilon \tilde{y}_i \), where \(0 < \varepsilon \ll 1 \). Substituting \(x_i, y_i \) in (9), expanding in \(\varepsilon \), we can get the linearized system:

\[
\frac{d\tilde{x}_i}{dt} = \alpha_{10} \tilde{x}_i + \alpha_{01} \tilde{y}_i + d_i L \tilde{x}_i, \\
\frac{d\tilde{y}_i}{dt} = \beta_{10} \tilde{x}_i + \beta_{01} \tilde{y}_i + d_i L \tilde{y}_i.
\]

We resolve the first-order perturbations into \(\phi_i \)'s eigenfunction expansions, to consider the system’s stability. Let

\[
\tilde{x}_i = \tilde{X}_i \phi_i, \tilde{y}_i = \tilde{Y}_i \phi_i, \text{ for each } i = 1, \ldots, n.
\]
Substituting (15) into (20) and noting the properties of ϕ_i, we obtain

$$\frac{d\hat{X}_i}{dt} = \alpha_{i0} \hat{X}_i + \alpha_{01} \hat{Y}_i + d_1 \lambda_i \hat{X}_i,$$

$$\frac{d\hat{Y}_i}{dt} = \beta_{i0} \hat{X}_i + \beta_{01} \hat{Y}_i + d_2 \lambda_i \hat{Y}_i.$$

(16)

Using the comparison principle from [26], we note

$$\frac{d^2Y}{dt^2} + P(t) \frac{dY}{dt} + Q(t) Y = 0,$$

(17)

where $Q(t) < 0$. We eliminate one of \hat{X}_i or \hat{Y}_i from (16), then

$$\frac{d^2\hat{X}_i}{dt^2} + p_{\lambda_i} \frac{d\hat{X}_i}{dt} + q_{\lambda_i} \hat{X}_i = 0,$$

$$\frac{d^2\hat{Y}_i}{dt^2} + p_{\lambda_i} \frac{d\hat{Y}_i}{dt} + q_{\lambda_i} \hat{X}_i = 0,$$

(18)

where $p_{\lambda_i}, q_{\lambda_i}$ are as in (12). Then, we obtain the generalized condition:

$$\alpha_{i0} \beta_{01} + \alpha_{01} \beta_{10} + (d_1 \beta_{01} + d_2 \alpha_{10}) \lambda_i + d_1 d_2 \lambda_i^2 < 0.$$

(19)

Assume that the instability condition (19) holds. Then, the homogeneous state $(x_i, y_i) = (x^*, y^*)$ is unstable under the rth Turing mode (15).

We also consider the system (8) through the mean-field theory:

$$\frac{dx_i}{dt} = f(x_i, y_i) + d_1 \left(H^x - k_i x_i\right),$$

$$\frac{dy_i}{dt} = g(x_i, y_i) + d_2 \left(H^y - k_i y_i\right),$$

(20)

where $H^x = \sum_{j=1}^{n} A_{ij} x_j, H^y = \sum_{j=1}^{n} A_{ij} y_j$ and k_i is the network’s degree. We let other nodes stay at equilibrium (x^*, y^*), and rewrite the single-node system,

$$\frac{dx_i}{dt} = x_i \left[r_1 - a_{11} x_i - a_{12} y_i\right] + d_1 \left(x^* - k_i x_i\right),$$

$$\frac{dy_i}{dt} = y_i \left[r_2 + a_{21} x_i - a_{22} y_i\right] + d_2 \left(y^* - k_i y_i\right).$$

(21)

Therefore, it is easy to obtain the characteristic equation:

$$\lambda^2 + p_k \lambda + q_k = 0,$$

(22)

where $p_k = -(\alpha_{i0} + \beta_{01}) + d_1 k_i + d_2 k_i, q_k = \alpha_{i0} \beta_{01} + (\alpha_{i0} d_2 + \beta_{01} d_1) k_i + d_1 d_2 k_i^2$. Assume λ_1 and λ_2 are two eigenvalues of system (22). Then system (21) is stable when $d_1 = d_2 = 0$, namely $p_k > 0$, so $\lambda_1 + \lambda_2 = -p_k < 0$. If $q_k > 0$, then, the system (21) is unstable. To sum up, we can use the comparison principle (the mean-field theory) to conclude that the system (8) is unstable when $q_{\lambda_i} < 0 (q_k < 0)$.

3. Numerical Simulation

We give some numerical analysis based on the earlier theoretical analysis. From Figure 3, if we choose $r_1 = 1, r_2 = -1, a_{11} = -1.15, a_{21} = 2, a_{22} = 1$, the equilibrium point (x^*, y^*) is asymptotically stable, namely, ecological balance persists as long as there is no biological invasion. That means the predator and the prey can coexist. The equilibrium $(x^*, y^*) = (1.1326, 1.2651)$ is unstable, and Hopf bifurcation occurs Figure 4, when a_{12} passes through the critical value $a_{12}^* = 1.7271$. Because $l_1 = 8.2123 > 0$, the Hopf bifurcation is subcritical, the prey-predator system shows periodic changes; thus, this state is easy to destroy. The equilibrium point (x^*, y^*) becomes unstable, when $a_{12} = 1.8271 > a_{12}^*$.

As diffusion is a vital factor in the distribution of predator and prey, we should not ignore migration. So we construct the random network and transform it into the Laplacian matrix L_{ij}. And we consider how the random network affects the equilibrium point’s stability when (7) is stable.

Based on the above theoretical analysis, the Turing instability in the reaction-diffusion equation is a precondition for Turing instability in a network-organized system. Turing instability occurs in a reaction-diffusion equation when Turing bifurcation parameters d_1 and d_2 are in a certain range Figure 1. Namely, diffusion behavior is universal and allowed, but the relative diffusion rate needs to be within a specific range; otherwise, the ecosystem will be out of balance and destroyed.

To observe Turing instability in the network-organized, we should guarantee $d_1 < 0.1562 d_2$ while changing p. However, the Laplacian matrix eigenvalues are $\Lambda_1, \Lambda_2, \ldots, \Lambda_N, N$ is the number of nodes, and k^2 is continuous in a reaction-diffusion system. In other words, the distribution of $-\Lambda_i$ determines the system stability. The critical point is $d_{1c} = 0.3124$ when $d_2 = 2$. The range of eigenvalues Λ_i could be obtained by result 1. The eigenvalues of L are discrete and included in the continuous region Figure 2.

The red region shows the estimated range of Turing instability about (p, d_1) in Figure 5. Besides, we obtain the estimated range of p, $(d_1 \ln N/d_1 N) > p > (1/N^2)$, which determines the system dynamical behavior and network characteristics. Moreover, $p = \ln N/N$ is the critical value between the connected network and sparse network [27]. Anyway, the invasive rate of species and p in the predator-prey network play a vital role in balancing the native biological system.

Let the value of (p, d_1) lie in the blue region shown in Figure 5 (here, we set $p = 0.00006, d_1 = 0.1124$), then,
Figure 4: Linear stability analysis. The relationship between \(\text{Re}\lambda \) about \(-\Lambda_i (k^2)\) when \(r_1 = 1, r_2 = -1, a_{11} = -1.158, a_{12} = 1, a_{21} = 2, a_{22} = 1, \) and \(p = 0.1, d_2 = 2 \). The critical values are \(\Lambda_c = -3.35, d_{1c} = 0.3124 \).

Figure 5: The region of instability about \(d_1 \) and \(p \).

Figure 6: (a) Instability region (left) of random network and pattern formation (right) in random network when \(p = 0.00006, d_1 = 0.1124 \). (b) The bifurcation about \(d_1 \) when \(p = 0.00006 \).
there is no point $\Lambda_i(k^2)$ in the instability region $\Lambda \cap (1.7, 21.1) = \emptyset$ (result 2) (Figure 6(a)) and the equilibrium is stable (Figure 6(a)). We verified the correctness of the previous analysis with bifurcation diagrams (Figure 6(b)). We can conclude that with a fixed predator invasion rate and a fixed prey invasion rate, the link probability between two different systems will negatively impact the entire predator-prey network stability. Even the predator-prey network’s diffusion induces the species extinction.

Figure 7 shows an example of p that belongs to the red region in Figure 5, such as $p = 0.08, d_1 = 0.1124 < d_{1c} = 0.3124$, almost all of $\Lambda_i(k^2)$ in instability region Figure 7(a) left(up) and 7(a) right(up) shows that Turing instability occurs. If $p = 0.08$ and $d_1 = 1.1124 > d_{1c} = 0.3124$ (i.e., (p, d_1) in the blue region in Figure 5), there is no point $\Lambda_i(k^2)$ in the instability region (Figure 7(a), left(down)), the system is stable (Figure 7(a), right(down)). We also verified the correctness of the previous analysis with a bifurcation diagram (Figure 7(b)).
The ecological interpretation is that the system is less stable when the invasion rate of the prey is lower when the link probability of predator-prey systems is fixed. Conversely, if we want to keep the predator-prey system stable, the invasion rate of the prey needs to be decreased.

4. Conclusion

This paper theoretically derives Turing instability conditions [28–31] in a predator-prey network and carries out a detailed numerical study. We study the effects of diffusion and link probability on pattern formation in a random system. The smaller the invasion rate d_1 of the prey undergoes, the easier the predator-prey network Turing instability. Meanwhile, Turing instability occurs when the link probability p falls in the approximate region $(d_1 \ln N/d_0(N)) > p > (N^2/1)$, which depends on the system characteristics.

Regarding an explanatory biological mechanism, the link probability and the invasion rate significantly influence the entire predator-prey network stability. The lower the invasion rate of the prey is, the less stable it is. Conversely, the prey invasion rate can be increased if we want to keep the predator-prey system stable. That means we can find an equilibrium point between native and invasive species by adjusting the diffusion probability and species’ invasion rate. Finally, we obtain the estimated region of p, $(d_1 \ln N/d_0(N)) > p > (1/N^2)$. Thus, invasion rate of species and the link probability in the predator-prey network play a key role in balancing the native biological system.

Data Availability

All data and codes can be found on Baidu Wangpan (password: reff) and Baidu.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11772291,12002297), Basic research Project of Universities in Henan Province (21zx009), Young Talent Support Project of Henan (2020HYTP012), Key scientific research projects of Henan Institutions of Higher learning in 2021 (21B130004), and Program for Science and Technology Innovation Talents in Universities of Henan Province (22HASTT018).

References

[1] A. Turing, “The chemical basis of morphogenesis,” Trans.-R.Soc.B, vol. 237, pp. 37–72, 1952.
[2] H. G. Othmer and L. E. Scriven, “Instability and dynamic pattern in cellular networks,” Journal of Theoretical Biology, vol. 32, no. 3, pp. 507–537, 1971.
[3] H. Nakao and A. S. Mikhailov, “Turing patterns in network-organized activator-inhibitor systems,” Nature Physics, vol. 6, no. 7, pp. 544–550, 2010.
[4] M. Aslani, D. M. Busiello, T. Carletti, D. Fanelli, and G. Planchon, “Turing patterns in multiplex networks,” Physical Review A, vol. 90, no. 4, Article ID 042814, 2014.
[5] M. Aslani, J. D. Challenger, F. S. Pavone, L. Sacconi, and D. Fanelli, “The theory of pattern formation on directed networks,” Nature Communications, vol. 5, no. 1, p. 4517, 2014.
[6] M. Aslani, T. Carletti, and D. Fanelli, “Tune the topology to create or destroy patterns,” The European Physical Journal B, vol. 89, no. 12, p. 260, 2016.
[7] S. Mimar, M. M. Juane, J. Park, A. P. Muñuzuri, and G. Ghoshal, “Turing patterns mediated by network topology in homogeneous active systems,” Physical Review A, vol. 99, no. 6, 2019.
[8] Z. G. Song and J. Xu, “Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays,” Cognitive Neurodynamics, vol. 7, no. 6, pp. 505–521, 2013.
[9] S. Hata and H. Nakao, “Localization of Laplacian eigenvectors on random networks,” Scientific Reports, vol. 7, no. 1, p. 1121, 2017.
[10] Q. Zheng, J. Shen, and Y. Xu, “Turing instability in the reaction-diffusion network,” Physical Review E, vol. 102, no. 6, Article ID 062215, 2020.
[11] G. Cencetti, F. Battiston, T. Carletti, and D. Fanelli, “Turing-like patterns from purely reactive systems,” 2019, https://arxiv.org/pdf/1909.05524.pdf.
[12] I. M. Bomze, “Lotka-Volterra equation and replicator dynamics: a two-dimensional classification,” Biological Cybernetics, vol. 48, no. 3, pp. 201–211, 1983.
[13] J. Li, “Dynamics of age-structured predator-prey population models,” Journal of Mathematical Analysis and Applications, vol. 152, no. 2, pp. 399–415, 1990.
[14] S. Ruan and D. Ruan, “Global analysis in a predator-prey system with nonmonotonic functional response,” SIAM Journal on Applied Mathematics, vol. 61, no. 4, pp. 1445–1472, 2001.
[15] D. Pal and G. P. Samanta, “Effects of dispersal speed and strong Allee effect on stability of a two-patch predator-prey model,” International Journal of Dynamics and Control, vol. 6, no. 4, pp. 1484–1495, 2018.
[16] S. Saha and G. P. Samanta, “Influence of dispersal and strong Allee effect on a two-patch predator-prey model,” International Journal of Dynamics and Control, vol. 7, no. 4, pp. 1321–1349, 2019.
[17] G. P. Samanta, "Analysis of a nonautonomous delayed predator-prey system with a stage structure for the predator in a polluted environment," International Journal of Mathematics and Mathematical Sciences, vol. 2010, pp. 1–18, Article ID 891812, 2010.
[18] Y. S. Ji, J. W. Shen, and X. C. Mao, “Pattern formation of Brusselator in the reaction-diffusion system,” Discrete and Continuous Dynamical Systems - S, 2022, in Press.
[19] L. Chang, C. Liu, G. Sun, Z. Wang, and Z. Jin, “Delay-induced patterns in a predator-prey model on complex networks with diffusion,” New Journal of Physics, vol. 21, no. 7, Article ID 073035, 2019.
[20] C. Liu, L. Chang, Y. Huang, and Z. Wang, “Turing patterns in a predator-prey model on complex networks,” Nonlinear Dynamics, vol. 99, no. 4, pp. 3313–3322, 2020.
[21] S. Upadhyay and S. Bhattacharya, “A spectral graph theoretic study of predator-prey networks,” 2019, https://arxiv.org/abs/1901.02883.
A. Astarloa, M. Louzao, G. Boyra et al., "Identifying main interactions in marine predator-prey networks of the Bay of Biscay," *ICES Journal of Marine Science*, vol. 76, no. 7, pp. 2247–2259, 2019.

H. I. Freedman, *Deterministic mathematical models in population ecology*, Marcel Dekker, New York, NY, U.S.A, 1980.

Y. Lv, Z. Zhang, R. Yuan, and Y. Pei, "Effect of harvesting and prey refuge in a prey-predator system," *Journal of Biological Systems*, vol. 22, no. 01, pp. 133–150, 2014.

Y. Kuznetsov, *Elements of Applied Bifurcation Theory*, Springer-Verlag, New York, NY, U.S.A, 2nd ed edition, 1995.

N. McCullen and T. Wagenknecht, “Pattern formation on networks: from localised activity to Turing patterns,” *Scientific Reports*, vol. 6, no. 1, Article ID 27397, 2016.

N. Iqbal, R. C. Wu, and B. Liu, "Pattern formation by super-diffusion in FitzHugh-Nagumo model," *Applied Mathematics and Computation*, vol. 313, pp. 245–258, 2017.

Q. Zheng and J. Shen, “Turing instability induced by random network in FitzHugh-nagumo model," *Applied Mathematics and Computation*, vol. 381, no. 1, Article ID 125304, 2020.

Q. Zheng, J. Shen, and Y. Xu, "Spontaneous activity induced by Gaussian noise in the modified FitzHugh-nagumo model," *Neural Plasticity*, vol. 2020, Article ID 6651441, 2020.

Y. Ji and J. Shen, "Turing instability of Brusselator in the reaction-diffusion," *Complexity*, vol. 2020, Article ID 1572743, 2020.

Q. Zheng, J. Shen, and Z. Wang, “pattern formation and oscillations in reaction-diffusion model with p53-mdm2 feedback loop,” *International Journal of Bifurcation and Chaos*, vol. 29, no. 14, Article ID 1930040, 2019.