Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity*

Received for publication, January 31, 2001, and in revised form, April 3, 2001
Published, JBC Papers in Press, April 10, 2001, DOI 10.1074/jbc.M100938200

Jayne A. Keifer‡§, Denis C. Guttridge§, Brian P. Ashburner§, and Albert S. Baldwin, Jr.‡§**

From the ‡Curriculum in Genetics and Molecular Biology, the §Department of Biology, and the ¶Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295

The sedative and anti-nausea drug thalidomide, which causes birth defects in humans, has been shown to have both anti-inflammatory and anti-oncogenic properties. The anti-inflammatory effect of thalidomide is associated with suppression of cytokine expression and the anti-oncogenic effect with inhibition of angiogenesis. It is presently unclear whether the teratogenic properties of thalidomide are connected in any way to the beneficial, anti-disease characteristics of this drug. The transcription factor NF-κB has been shown to be a key regulator of inflammatory genes such as tumor necrosis factor-α and interleukin-8. Inhibition of NF-κB is associated with reduced inflammation in animal models, such as those for rheumatoid arthritis. We show here that thalidomide can block NF-κB activation through a mechanism that involves the inhibition of activity of the IκB kinase. Consistent with the observed inhibition of NF-κB, thalidomide blocked the cytokine-induced expression of NF-κB-regulated genes such as those encoding interleukin-8, TRAF1, and c-IAP2. These data indicate that the therapeutic potential for thalidomide may be based on its ability to block NF-κB activation through suppression of IκB kinase activity.

Thalidomide was distributed in the late 1950s as a sedative and an anti-nausea medication for first trimester pregnancy (1). Prenatal use of the drug, however, produced severe developmental defects to the human fetus, including limb deformities (2). Investigation into the mechanism of action by thalidomide demonstrated that it acts as a teratogen and not as a mutagen (3, 4). The teratogenic properties of thalidomide are poorly understood but have been proposed to involve the production of reactive oxygen species leading to subsequent DNA damage (5). Although the correlation of birth defects with use of thalidomide led to its removal from the market, continued clinical use established that thalidomide possesses immunomodulatory and anti-angiogenic properties, both of which are currently under investigation (6–9). Diseases such as erythema nodosum leprosum (10–12), rheumatoid arthritis (13–16), and cancer (17–19) are currently being treated with thalidomide. Although its mechanism of action remains unclear. As an immunomodulator (20, 21), thalidomide has been shown to suppress lipopolysaccharide-induced production of TNFα1 (22, 23) and IL-12 (24, 25), two cytokines critical for the induction of cellular immune responses. The anti-angiogenic properties of thalidomide have been demonstrated by its ability to inhibit growth factor-induced neovascularization in rabbit (26) and mouse corneal assays (27). Neovascularization occurs through a process that requires the induction of a number of cellular genes including IL-8 (28, 29). Transcriptional up-regulation of IL-8, as well TNFα and IL-12, can occur through activation of the transcription factor NF-κB (30).

NF-κB is a DNA-binding factor, originally identified as a regulator of immunoglobulin κ light chain gene expression (31), that functions as a dimer of subunits of a family of ubiquitously expressed transcription factors (32, 33). Five mammalian members of the family have been identified as follows: p50/NF-κB1, p65/RelA, c-Rel, RelB, and p52/NF-κB2. Although numerous homodimeric and heterodimeric forms of this factor have been identified, classic NF-κB is composed of the p50-p65 heterodimer. In unstimulated cells, the majority of NF-κB is localized to the cytoplasm where it is tightly bound to the inhibitory proteins of the IκB family. Specifically, IκBα is a key molecular target involved in the regulation of NF-κB transcription factors during inflammatory responses. Upon stimulation by extracellular inducers of NF-κB, such as TNFα or IL-1β (30), IκBα is rapidly phosphorylated by the IκB kinase (IKK) complex on serine residues 32 and 36 (34). This phosphorylation leads to the ubiquitination and subsequent degradation of IκBα by the proteasome followed by nuclear translocation of NF-κB. Once NF-κB enters the nucleus, it can positively regulate the expression of genes involved in the immune and inflammatory response, such as IL-8, IL-12, and TNFα (35). Additionally, NF-κB is known now to be a critical regulator of the oncogenic process through its ability to regulate genes involved in cell growth, suppression of apoptosis, and metastasis (36–38). We demonstrate here that NF-κB DNA binding is inhibited by thalidomide through a mechanism that involves the suppression of IKK activity. Consistent with its ability to block NF-κB binding, we show that thalidomide also inhibits the expression of IL-8 message as well as other NF-κB-dependent genes. Our data provide a molecular mechanism to potentially explain the anti-inflammatory and anti-oncogenic properties of thalidomide.

MATERIALS AND METHODS

Cell Culture—Human Jurkat T cell lymphocytes were maintained in RPMI 1640 plus 10% fetal bovine serum and antibiotics. The human vascular endothelial cell line EA.hy926 (a gift from Cora Jean S. Edgell, University of North Carolina, Chapel Hill) was maintained in Dulbecco

* This work was supported in part by NCI Grants CA72771 and CA75080 (to A. S. B.) from the National Institutes of Health and American Cancer Society Grant PPF9903801 (to D. C. G.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Supported by Predoctoral Training Grant NRSA in Genetics T32 GM07092 from the National Institutes of Health.

‡ To whom correspondence should be addressed: Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295. Tel.: 919-966-3652; Fax: 919-966-0444; E-mail: jhall@med.unc.edu.

1 The abbreviations used are: TNFα, tumor necrosis factor-α; IKK, IκB kinase; IL, interleukin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MHC, major histocompatibility complex; EMSA, electrophoretic mobility shift assays.
co’s modified Eagle’s medium H supplemented with 10% fetal bovine serum, 1× hypoxanthine/aminopterin/thymidine medium supplement (Sigma) and antibiotics.

Cell Treatment— Cells were treated with 10 (Jurkat) or 5 ng/ml (EA.hy926) human recombinant TNFα (Promega) diluted in phosphate-buffered saline (PBS) for 12 h. Cells were also treated with 10 nM TRAF2 shRNA (SBC, 0.1% SDS for 5 min at 60 °C). Filters were washed 2 times with 20 mM Tris, pH 8.0, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA (washing buffer) or 20 mM Tris, pH 7.7, 10% glycerol, 1 mM dithiothreitol, 1 mM EDTA (final salt concentration buffer) to adjust to 400 mM with NaCl. The cytoplasmic and nuclear extracts were prepared from Jurkat cells by centrifugation (Jurkat). Post-treatment, the cells were harvested by scraping (EA.hy926) or by centrifugation (Jurkat), washed 2 times with phosphate-buffered saline, and lysed, on ice, in 3 pellet volumes of cytoplasmic extract buffer (10 mM HEPES, pH 7.6, 60 mM KC1, 1 mM EDTA, 0.2 (EA.hy926) or 0.075% (Jurkat) Nonidet P-40, 1 mM dithiorthreitol, 1 mM phenylmethylsulfonyl fluoride, and 2.5 μg/ml each of aprotinin, leupeptin, and pepstatin). The final salt concentration was adjusted to 400 mM with NaCl. The cytoplasmic and nuclear extracts were cleared by centrifugation, and supernatants were transferred to new tubes. A final concentration of 20% glycerol was added to the cytoplasmic extracts. Both nuclear and cytoplasmic extracts were assayed for protein concentrations using a Bio-Rad protein assay dye that incorporates the Bradford method. All extracts were stored at 70 °C until analyzed.

Electrophoretic Mobility Shift Assays (EMSA)— Equal amounts of nuclear extract (5 μg of protein) were incubated for 15 min at room temperature with a 32P-labeled DNA probe containing an NF-κB-binding site from the class I MHC promoter (5′-CAGGCGTCCGGAATGTCCTCCATCTCAGATCTCTCTC-3′) or an Oct-1-binding site (5′-TGCTGAATCCGAATCTCAGAA-3′) in binding buffer (10 mM Tris, pH 7.7, 10% glycerol, 1 mM dithiothreitol, 1 mM EDTA) plus 2 μg of poly(dI-dC) (Amersham Pharmacia Biotech). The final salt concentration was adjusted to 50–100 mM with NaCl. Complexes were separated on a 5% non-denaturing polyacrylamide gel, dried, and visualized by autoradiography. For supershift assays, nuclear extracts were preincubated for 15 min with 1–2 μl of rabbit polyclonal antibodies raised against the NF-κB family subunits p65 (Rockland Co., Gilbertsville, PA) or p50 (Santa Cruz Biotechnology, Inc. Santa Cruz, CA) prior to the addition of the DNA probe.

Reporter Gene Assay— Transient transfections were performed using Superfect (Qiagen Inc., Valencia, CA) and 5 μg of a luciferase reporter construct containing 3 tandem wild-type or mutated NF-κB-binding sites from the promoter region of the class I MHC promoter (a gift from Bill Kozlowski, University of Wisconsin, Madison). 24 h post-transfection, the cells were either not treated or treated with TNFα or without thalidomide for specified times. Cells were harvested by centrifugation, washed with phosphate-buffered saline, and lysed with 1× Reporter Lysis Buffer (Promega) according to the manufacturer’s instructions. Luciferase assays were performed in duplicate using equal amounts of protein with 200 μl of luciferin (Sigma) as the substrate (39). Relative light units were measured with an AutoLumat LB953 luminometer (Berthold Analytical Instruments, Inc, Nashua, NH) and standardized to light units obtained from transfections performed with salmon sperm DNA.

Northern Analysis— RNA was isolated using the RNeasy Total RNA Kit as recommended by the manufacturer (Qiagen). Samples were run on a formaldehyde-agarose gel and transferred overnight to nylon filter. Cross-linking of the RNA to the nylon filter was done using a UV cross-linker (Stratagene, La Jolla, CA). Membranes were probed for IL-8 mRNA expression and GAPDH mRNA (loading control) using randomly labeled probe (Amersham Pharmacia Biotech) at 68 °C in Quickhyb (Stratagene) solution as recommended by the manufacturer. Washes were performed twice in 2× SSC, 0.1% SDS for 15 min at 42 °C, and once with 1× SSC, 0.1% SDS for 5 min at 60 °C. Filters were exposed to film overnight.

Ribonuclease Protection Assay— EA.hy926 endothelial cells were treated for 60 min with TNFα (5 ng/ml) alone or in the presence of thalidomide (40 μg/ml) or Me2SO (40 μl). Cells were scraped, and total RNA was harvested using Trizol solution (Life Technologies, Inc.). Using a custom made RiboquantTM Multiprobe RNase Protection Assay System (Pharmingen) containing a template of the NF-κB-responsive genes as follows: TRAF1, TRAF2, A1/Bfl-1, c-IAP2, IL-8, and IκBα, RNAs were hybridized overnight and subjected to RNase treatment as recommended by the manufacturer. Annealed protected RNA products were fractionated by SDS-PAGE and analyzed by autoradiography.

Western Blot Analysis— Cells were treated either not treated or treated with TNFα or TNFα plus thalidomide for specified times and harvested by centrifugation in ice-cold phosphate-buffered saline containing phosphatase inhibitors (40). Equal amounts (500 μg) of whole cell extracts were immunoprecipitated using an antibody against the β subunit of IKK (a gift of Dr. F. Mercurio, Signal Pharmaceuticals, San Diego, CA). Kinase activity was determined by incubating the immunoprecipitates with 4 μg of GST-βLeu (amino acids 1-54) wild-type substrate or a mutated form of IκBα (S23T,S36T) in the presence of [γ-32P]ATP, as described previously (40). The immunoprecipitates were subjected to SDS-PAGE, dried, and visualized by autoradiography.

Quantitative Analysis— Autoradiographs were captured and stored for analysis using a gel capturing system that utilizes the NIH Image software. Gel captures were quantified using volume quantitation and local median background correction using Molecular Dynamics ImagequantTM software program.

RESULTS AND DISCUSSION

Thalidomide Blocks NF-κB Induction by the Inflammatory Cytokines TNFa and IL-1β— Previous reports have provided evidence that thalidomide can inhibit the DNA binding activity of NF-κB (41, 42). However, these reports did not address whether the observed inhibition of DNA binding affected NF-κB transcriptional activity. Furthermore, the mechanism by which thalidomide suppresses NF-κB remains unknown. To gain insight into these unanswered questions, we first assayed NF-κB DNA binding activity in Jurkat T cells treated with both an inflammatory cytokine and thalidomide. We examined the potential effects of thalidomide treatment on NF-κB activation by stimulating cells with 10 ng/ml TNFα for 10 min in the presence or absence of thalidomide (Fig. 1A). As expected, NF-κB was induced within 10 min after TNFα treatment as seen by increased DNA binding activity (Fig. 1A, compare lanes 1 and 2). Based on the average of five independent experiments, TNFα-induced binding of NF-κB was inhibited by 62% when thalidomide was added to the cells simultaneously with cytokine treatment (Fig. 1A, lanes 6 and 7) as measured by volume quantitation (see “Materials and Methods”). Treatment of cells with thalidomide (Fig. 1A, lanes 4 and 5) or Me2SO alone (lane 3) had no effect on basal NF-κB DNA binding activity. Thalidomide treatment also had no inhibitory effect on the binding of a second transcription factor, Oct-1 (Fig. 1B). Furthermore, direct addition of thalidomide to TNFα-treated nuclear extracts did not affect the binding of NF-κB to the DNA (data not shown). These data indicate that suppression of NF-κB binding by thalidomide is not due to interference between the transcription factor and the DNA, but rather that thalidomide acts specifically to inhibit TNFα-induced NF-κB activity and not as a general transcription factor inhibitor. Supershift assays indicate that the major NF-κB complex induced by TNFα stimulation was the p50-p65 heterodimer (Fig. 1C).

To determine whether thalidomide could inhibit the induction of NF-κB by other stimuli, we tested its effect on NF-κB activation by the inflammatory cytokine IL-1β. Jurkat cells were treated with IL-1β in the absence or presence of thalidomide, and nuclear extracts were prepared from cells harvested at the specified time points (Fig. 1D). As seen with TNFα-thalidomide co-treatment, the presence of thalidomide at the time of IL-1β induction suppressed activation of NF-κB. We
NF-κB Activity Is Inhibited by Thalidomide

Fig. 1. Thalidomide inhibits DNA binding activity of the p50/p65 NF-κB heterodimer in the presence of the inducers TNFα and IL-1β. A, Jurkat T lymphocytes were either not treated (lane 1) or treated with 10 ng/ml TNFα (lane 2), MeSO (DMSO) (lane 3), thalidomide (Thal) alone at 40 μg/ml (lane 4), or 10 μg/ml (lane 5), or thalidomide plus TNFα for 10 min (lanes 6 and 7). Cells were harvested, and nuclear extracts were prepared and analyzed by EMSA. The data shown are representative of five independent experiments. B, cells were treated as in A, and EMSA was repeated with nuclear extracts incubated with a DNA probe containing either an NF-κB-binding site (lanes 1–3) or an Oct-1-binding site (lanes 4–6). C, nuclear extracts were preincubated with antibodies (Ab) raised against various NF-κB subunits and analyzed by EMSA. D, cells were either untreated (lane 1) or treated with IL-1β (10 ng/ml) in the presence (lanes 3, 5, and 7) or absence (lanes 2, 4, and 6) of thalidomide at the indicated time points and analyzed by EMSA. Supershift analysis was performed using the p65 (lane 8) or the p50 (lane 9) antibodies.

found both heterodimer and homodimer forms of NF-κB were inhibited at 10 and 20 min (Fig. 1D, lanes 5 and 7) post-induction but not at 5 min (Fig. 1D, compare lanes 2 and 3). Supershift analysis exhibits authentic NF-κB complexes being induced following IL-1β treatment (Fig. 1D, lanes 8 and 9). Overall, these data indicate that thalidomide can block NF-κB activation by cytokines that utilize distinct upstream signaling pathways, suggesting that the mechanism of suppression by thalidomide acts at a downstream site that is common to both the IL-1β and TNFα signaling cascades.

Suppression of NF-κB Transcriptional Activity by Thalidomide—To determine if thalidomide inhibited NF-κB transcriptional activity, we performed transient assays using a reporter plasmid containing three wild-type (A) or mutant (B) NF-κB-binding sites from the class I MHC promoter upstream of a luciferase gene. Jurkat cells were transiently transfected using a reporter plasmid containing three wild-type or mutated NF-κB sites, indicating that the inhibition does not block general transcriptional responses (Fig. 2B). These results demonstrate that thalidomide not only acts to inhibit NF-κB DNA binding activity but also inhibits the ability of NF-κB to activate gene expression.

Inhibition of IL-8 Gene Expression in Endothelial Cells by Thalidomide—Thalidomide is being used as a cancer therapy partly based on its ability to inhibit neovascularization (26, 27). Angiogenic factors such as IL-8 are transcriptionally regulated by NF-κB, and TNFα-dependent angiogenesis requires the activation of NF-κB for the expression of IL-8 (28). We were interested in evaluating the effect of thalidomide on NF-κB in endothelial cells. To do this we assayed binding activity by utilizing EA.hy926 endothelial cells, a clonal cell line derived from the human umbilical vein endothelial cells (43). We treated these cells with TNFα (5 ng/ml) in the absence or presence of thalidomide and analyzed nuclear extracts by EMSA (Fig. 3A). As expected, TNFα treatment led to an increase in NF-κB DNA binding activity at 10 min (Fig. 3A, lane 2) as compared with the untreated control (Fig. 3A, lane 1). As seen previously with Jurkat T cells, thalidomide treatment of EA.hy926 cells at the time of induction inhibited this increase (Fig. 3A, lane 3). The major complex observed in TNFα activation of endothelial cells is the p50-p65 heterodimer as observed by the supershifted complexes (Fig. 3A, lanes 4 and 5). These results demonstrate that thalidomide is an effective inhibitor of inducible NF-κB activity in endothelial cells. The ability of thalidomide to inhibit NF-κB activation in Jurkat cells as well as endothelial cells indicates that the inhibitory action is not cell type-specific.

Since thalidomide can inhibit activation of an NF-κB reporter gene, we sought to determine if it could inhibit the
transcriptional activation of an endogenous NF-κB-regulated gene. Endothelial cells were treated with TNFα, with or without thalidomide exposure, and RNA was isolated for Northern blot analysis (Fig. 3B). TNFα treatment alone (lanes 3, 5, 7, and 9) increased the expression of IL-8 mRNA as compared with untreated cells (Fig. 3B, lanes 1 and 2). However, thalidomide treatment inhibited the expression of IL-8 mRNA by 56% (as measured by volume quantitation) at 1 h (Fig. 3B, lane 4). Treatment of the cells for longer time points inhibited the TNFα-induced activation of gene expression by ~90% (lanes 6, 8, and 10) as compared with TNFα alone. Therefore, the ability of thalidomide to inhibit the binding activity of NF-κB, as seen by EMSA, correlates well with the inhibition of NF-κB-regulated endogenous gene expression at the 1-h time point but results in an even greater inhibition of gene expression at the 3–6-h time points. Development of angiogenesis in certain models is dependent on the expression of IL-8 (28, 44). Since IL-8 is transcriptionally regulated by NF-κB and inhibited by thalidomide, we propose that one mechanism whereby thalidomide blocks the TNFα-induced expression of IL-8 is through the inhibition of NF-κB-regulated expression of IL-8 and potentially other angiogenic factors.

NF-κB regulates genes involved in inflammatory responses as well as genes associated with the inhibition of apoptosis. The ability of thalidomide to function as an anti-inflammatory agent is likely due, in part, to its ability to block the induction of inflammatory gene expression through the inhibition of NF-κB. To test the effect thalidomide exposure has on the regulation of other NF-κB-dependent genes, we implemented a ribonuclease protection assay. By using an ribonuclease protection assay template specific for several NF-κB-regulated genes (Fig. 4), we examined the effect of thalidomide treatment on NF-κB-dependent gene expression. RNA was harvested from untreated EA.hy926 endothelial cells, cells treated with TNFα, and cells co-treated with TNFα and thalidomide or Me2SO. The RNA was hybridized to the radioactively labeled, in vitro transcribed DNA template. As expected, TNFα induced the expression of several NF-κB-regulated genes (Fig. 4A, lane 2). Consistent with the ability of thalidomide to inhibit NF-κB DNA binding activity, thalidomide not only has the ability to inhibit TNFα-induced expression of IL-8 but can also inhibit the inducible expression of other NF-κB-regulated genes such as TRAF1, TRAF2, A1/Bfl-1, c-IAP2, and IL-2Ra (Fig. 4A, lane 3). Treatment of cells with Me2SO in the presence of TNFα has no effect on gene expression (Fig. 4A, lane 4). These data indicate that thalidomide blocks the TNFα-induced expression of several NF-κB-regulated genes.

Thalidomide Inhibits IKK Activity—We have demonstrated that thalidomide can inhibit NF-κB activation in response to different cytokines that utilize distinct upstream pathways. This suggests that the inhibitory action of thalidomide on NF-κB binding lies downstream of the cytokine-receptor interaction and recruitment of associated factors but upstream of the induction of NF-κB nuclear translocation. Both TNFα and IL-1β signal NF-κB activation through the induction of IKK (30, 45–48). IKK activation results in the phosphorylation of IκBo on serine residues 32 and 36, which ultimately leads to the degradation of this inhibitor (49–52). Since thalidomide is capable of inhibiting DNA binding activity, as well as inhibiting the transcription potential of NF-κB, we performed Western blot analysis to determine what effect thalidomide has on the regulation of the NF-κB inhibitory protein, IκBo. Cytoplasmic extracts from cells treated with TNFα alone or in combination with thalidomide were examined for the presence of IκBo (Fig. 5). Although untreated cells contain high levels of IκBo (lane 1), TNFα treatment resulted in the degradation of 85% (measured by volume quantitation) of the protein by 30 min following cytokine exposure (Fig. 5, lanes 2–4). This degradation was followed by an almost complete resynthesis of IκBo by 60 min (Fig. 5, lane 5). However, when thalidomide
NF-κB Activity Is Inhibited by Thalidomide

Fig. 5. Degradation of IκBα is inhibited by thalidomide. Jurkat cells were either not treated or treated with TNFα in the presence or absence of thalidomide (Thal) for the indicated time points. Cells were harvested by centrifugation, and cytoplasmic extract proteins were separated by 10% SDS-PAGE gel and transferred to nitrocellulose. The membrane was analyzed for degradation of IκBα with an anti-IκBα antibody (upper panel). The membrane was stripped and reprobed for expression of α-tubulin to control for loading (lower panel). The data presented are representative of two independent experiments.

Fig. 6. Thalidomide inhibits IKK activity. Cells were either not treated or treated with TNFα alone or simultaneously with thalidomide at 40 μg/ml for the specified times. Whole cell extracts were prepared, and 500 μg of protein was immunoprecipitated with an anti-IKKβ antibody. Antibodies were incubated with wild-type GST-IκBα fusion protein in the presence of [γ-32P]ATP. The immunoprecipitates were run on a 10% SDS-PAGE gel, dried, and exposed to film. The data are representative of two independent experiments. B, cells were treated with thalidomide for 30 min prior to TNFα stimulation. Whole cell extracts were harvested and analyzed by in vitro kinase assay as stated in A.

The ability of thalidomide to inhibit IKK activity likely explains the suppression of NF-κB activity by interfering with the transcriptional activity of NF-κB. We show that thalidomide inhibits the phosphorylation of IκBα by altering IKK activity. In summary, the data indicate that NF-κB is a molecular target for thalidomide action, potentially serving as a unifying theme to explain the ability of thalidomide to suppress inflammatory responses as well as inhibit angiogenesis.

Acknowledgments—We thank Sandy Westerheide and Raquel Sitcher for critical reading of the manuscript.

REFERENCES

1. Lenz, W. (1988) Teratology 38, 203–215
2. McBride, W. G. (1977) Teratology 16, 79–82
3. Ashby, J., Tinwell, H., Callander, R. D., Kimber, I., Clay, P., Galloway, S. M., Hill, R. B., Greenwood, S. K., Gaulden, M. J., Ferguson, M. J., Vogel, E., Nivard, M., Parman, T., Wiley, M. J., and Wells, P. G. (1999) Nat. Med. 5, 489–490
4. Hales, B. F. (1999) Nat. Med. 5, 489–490
5. Parman, T., Wiley, M. J., and Wells, P. G. (1999) Nat. Med. 5, 582–585
6. Minchinton, A. I., Fryer, K. H., Wendt, R. K., Clow, K. A., and Hayes, M. M. (1996) Anti-Cancer Drugs 7, 339–343
7. Rovelli, A., Arrigo, C. N., Nesi, F., Balduzzi, A., Nicolini, B., Locasciulli, A., Vassallo, E., Miniero, R., and Uderzo, C. (1998) Bone Marrow Transplant. 21, 575–581
8. Calderon, P., Anzilotti, M., and Phelps, R. (1997) Int. J. Dermatol. 36, 881–887
9. Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A., and Kaplan, G. (1991) J. Pathol. 166, 151–158
10. Oliveira, R. B., Moraes, M. O., Oliveira, E. B., Sarno, E. N., Nery, J. A., and Sampaio, E. P. (1999) J. Leukocyte Biol. 65, 364–371
11. Sampaio, E. P., Kaplan, G., Miranda, A., Nery, J. A., Micali, C. P., Viana, S. M., and Sarno, E. N. (1993) J. Infect. Dis. 168, 408–414
12. Shannon, E. D., Ejigu, M., Haile-Mariam, H. S., Berhan, T. Y., and Tasesse, G. (1995) J. Rheumatol. 22, 964–969
13. Oliver, S. J., Cheng, T. P., Banquerigo, M. L., and Brahn, E. (1998) J. Rheumatol. 25, 946–949
14. Oliver, S. J., Freeman, S. L., Corral, L. G., Ocampo, C. J., and Kaplan, G. (1999) Clin. Exp. Immunol. 118, 315–321
15. Singhal, S., Mehta, J., Desikan, R., Ayers, D., Roberson, P., Eddlemon, P., Munshi, N., Anaisis, E., Wilcox, C., Bhattacharyya, S., Zeddis, J., and Barlogie, B. (1999) J. Clin. Exp. Med. 341, 1565–1571
16. Eisen, T., Bossoff, C., Mack, I., Aspar, N., Vaughan, M. M., Pyle, L., Johnstone, S. R., Ahern, S., Smith, E. T., and Gore, M. E. (2000) Br. J. Cancer 82, 812–817
17. Calabrese, L., and Fleischer, A. B. (2000) Am. J. Med. 108, 487–495
18. Marriott, J. B., Muller, G., and Dalgleish, A. G. (1999) Immunol. Today 20, 538–540
19. Schuler, U., and Ehninger, G. (1995) Drug Saf. 12, 364–369
20. Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A., and Kaplan, G. (1991) J. Exp. Med. 172, 699–703
21. Tavares, J. L., Wangoo, A., Dilworth, P., Marshall, B., Kotecha, S., and Shaw, R. J. (1997) Respir. Med. 91, 31–39
22. Muller, D. R., Wysocka, M., Greenlee, B. M., Ma, X., Wahl, L., and Flockhart, D. A.
NF-κB Activity Is Inhibited by Thalidomide

22387

Trinchieri, G., and Karp, C. L. (1997) J. Immunol. 159, 5157–5161
25. Corral, L. G., Haselett, P. A., Muller, G. W., Chen, R., Wong, L. M., Ocampo, C. J., Patterson, R. T., Stirling, D. I., and Kaplan, G. (1999) J. Immunol. 163, 380–386
26. D’Amato, R. J., Loughnan, M. S., Flynn, E., and Folkman, J. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 4082–4085
27. Keaveny, B. M., Browne, F., and D’Amato, R. J. (1997) Exp. Eye Res. 64, 971–978
28. Yoshida, S., Oso, M., Shono, T., Izumi, H., Ishihashi, T., Suzuki, H., and Kuwano, M. (1997) Mol. Cell. Biol. 17, 4015–4023
29. Joussen, A. M., Germann, T., and Kirchhof, B. (1999) Graefe’s Arch. Clin. Exp. Ophthalmol. 237, 952–961
30. Mercurio, F., and Manning, A. M. (1999) Curr. Opin. Cell Biol. 11, 226–232
31. Sen, R., and Baltimore, D. (1986) Cell 46, 705–716
32. Baldwin, A. S., Jr. (1996) Annu. Rev. Immunol. 14, 649–683
33. Ghosh, S., May, M. J., and Kopp, E. B. (1998) Annu. Rev. Immunol. 16, 255–300
34. Karin, M., and Ben-Neriah, Y. (2000) Annu. Rev. Immunol. 18, 621–663
35. Barnes, P. J., and Karin, M. (1997) N. Engl. J. Med. 336, 1066–1071
36. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S., Jr. (1998) Science 281, 1680–1683
37. Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., and Baldwin, A. S., Jr. (1999) Mol. Cell. Biol. 19, 5785–5799
38. Mayo, M. W., and Baldwin, A. S. (2000) Biochim. Biophys. Acta 1470, M55–M62
39. Cheshire, J. L., and Baldwin, A. S., Jr. (1997) Mol. Cell. Biol. 17, 6746–6754
40. Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbossa, M., Mann, M., Manning, A., and Rao, A. (1997) Science 278, 860–866
41. Moreira, A. L., Friedlander, D. R., Shif, B., Kaplan, G., and Zagzag, D. (1999) J. Neuro-oncol. 43, 109–114
42. Moreira, A. L., Corral, L. G., Ye, W., Johnson, B., Stirling, D., Muller, G. W., Freedman, V. H., and Kaplan, G. (1997) AIDS Res. Hum. Retroviruses 13, 857–863
43. Edgell, C. J., McDonald, C. C., and Graham, J. B. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3734–3737
44. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter, R. M. (1992) Science 258, 1798–1801
45. May, M. J., and Ghosh, S. (1998) Immunol. Today 19, 80–88
46. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M. (1997) Nature 388, 548–554
47. Stylianou, E., and Saklatvala, J. (1998) Int. J. Biochem. Cell Biol. 30, 1075–1079
48. Rath, P. C., and Aggarwal, B. B. (1999) J. Clin. Immunol. 19, 355–364
49. Whiteside, T. S., and Israel, A. (1997) Semin. Cancer Biol. 8, 75–82
50. Verma, I. M., and Stevenson, J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11758–11760
51. Karin, M. (1999) J. Biol. Chem. 274, 27339–27342
52. Karin, M. (1999) Oncogene 18, 6867–6874
53. Pazin, M. J., Sheridan, P. L., Cannen, K., Cao, Z., Keck, J. G., Kadonaga, J. T., and Jones, K. A. (1996) Genes Dev. 10, 37–49

Downloaded from http://www.jbc.org/ by guest on July 25, 2018
Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity
Jayne A. Keifer, Denis C. Guttridge, Brian P. Ashburner and Albert S. Baldwin, Jr.

J. Biol. Chem. 2001, 276:22382-22387.
doi: 10.1074/jbc.M100938200 originally published online April 10, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M100938200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 53 references, 14 of which can be accessed free at http://www.jbc.org/content/276/25/22382.full.html#ref-list-1