An elementary proof of a power series identity for the weighted sum of all finite abelian p-groups

Pritam Majumder

Indian Institute of Technology Kanpur, India

Abstract

Using combinatorial techniques, we prove that the weighted sum of the inverse number of automorphisms of all finite abelian p-groups $\sum_{G} |G|^{-u} |\text{Aut}(G)|^{-1}$ is equal to $\prod_{j=u+1}^{\infty} \left(1 - \frac{1}{p^j} \right)^{-1}$, where u is a non-negative integer. This result was originally obtained by H. Cohen and H. W. Lenstra, Jr. In this paper we give a new elementary proof of their result.

1. Introduction

Let G_p denote the set of all finite abelian p-groups, for a prime number p. We will give an elementary combinatorial proof of the following theorem:

Theorem. For a prime p and a non-negative integer u, the following holds

$$\sum_{G \in G_p} \frac{1}{|G|^u \cdot |\text{Aut}(G)|} = \prod_{j=u+1}^{\infty} \left(1 - \frac{1}{p^j} \right)^{-1}.$$

The above result was obtained by Cohen and Lenstra in their famous paper [1]. Their approach is more complicated but has the advantage that it generalizes naturally to finite modules over the rings of integers of number fields. In the special case of $u = 0$, a nice combinatorial proof was given by Hall, which can be found in [2]. Our proof is a generalization of the proof of Hall.
2. Proof of the Theorem

For \(m \geq 0 \), let \(a_m \) be the number of partitions of \(m \) with each part at least \(u + 1 \) and for \(i, j \geq 0 \), let \(b_{i,j} \) be the number of partitions of \(i \) with greatest part exactly equal to \(j \).

Lemma 1. For all \(m \geq 0 \), the following holds

\[
a_m = \sum_{i+uj=m} b_{i,j}.
\]

Proof. We will give a bijection argument. Note that, the number of partitions of \(i \) with greatest part \(j \), where \(i+uj = m \), is equal to the number of partitions of \(i + uj = m \) with greatest part \(j \) occurring at least \(u + 1 \) times. Hence \(\sum_{i+uj=m} b_{i,j} \) is equal to the number of partitions of \(m \) with greatest part occurring at least \(u + 1 \) times. Now, a partition of \(m \) has greatest part occurring at least \(u + 1 \) times if and only if it’s conjugate partition has each part at least \(u + 1 \). This gives a bijection between the partitions of \(m \) with greatest part occurring at least \(u + 1 \) times and the partitions of \(m \) with each part at least \(u + 1 \). Therefore, \(\sum_{i+uj=m} b_{i,j} = a_m \). \(\square \)

Lemma 2. For each \(n \geq 0 \), let us define

\[
f_n(q) := \sum_{N=0}^{\infty} b_{N,n} q^N,
\]

which is a formal power series in \(q \). Then,

\[
\prod_{j=u+1}^{\infty} (1 - q^j)^{-1} = \sum_{n=0}^{\infty} f_n(q)q^{nu}.
\]

Proof. Note that,

\[
\prod_{j=u+1}^{\infty} (1 - q^j)^{-1} = \sum_{m=0}^{\infty} a_m q^m
\]

since, for each \(m \), the coefficient of \(q^m \) on LHS is equal to the number of partitions of \(m \) with each part at least \(u + 1 \). Then,
\[
\sum_{n=0}^{\infty} f_n(q)^{nu} = \sum_{n=0}^{\infty} \left(\sum_{N=0}^{\infty} b_{N,n}q^N \right) q^{nu} \\
= \sum_{n=0}^{\infty} \sum_{N=0}^{\infty} b_{N,n}q^{N+nu} \\
= \sum_{m=0}^{\infty} \left(\sum_{i+uj=m} b_{i,j} \right) q^m \\
= \sum_{m=0}^{\infty} a_m q^m \\
= \prod_{j=u+1}^{\infty} (1 - q^j)^{-1}.
\]

We also need the following lemma, which computes the cardinality of \(\text{Aut}(G)\), for a finite abelian \(p\)-group \(G\).

Lemma 3. Fix a prime \(p\). Suppose \(G\) is a finite abelian \(p\)-group and

\[
G = \prod_{i=1}^{k} (\mathbb{Z}/p^{e_i}\mathbb{Z})^{r_i}
\]

for some \(k \geq 0\), \(e_1 > e_2 > \cdots > e_k > 0\) and \(r_i \geq 0\). Then

\[
|\text{Aut}(G)| = \left(\prod_{i=1}^{k} \left(\prod_{s=1}^{r_i} (1 - p^{-s}) \right) \right) \left(\prod_{1 \leq i, j \leq k} p^{\min(e_i, e_j)r_ir_j} \right).
\]

Proof. See [3], Theorem 1.2.10.

Now let us return to the proof of the theorem. We follow a similar argument given in [2] or in the proof of Theorem 2.1.2 of [3]. First, note that, there is an associated partition corresponding to every finite abelian \(p\)-group and corresponding to every partition there is an associated finite abelian \(p\)-group; this comes from writing finite abelian \(p\)-groups uniquely as a product.
of cyclic groups. For example, if we write a finite abelian p-group G as,

$$G = \prod_{i=1}^{k} \mathbb{Z}/p^{e_i}\mathbb{Z}$$

where $e_1 \geq e_2 \geq \cdots \geq e_k > 0$, then the associated partition λ is given by $\lambda = (e_1, e_2, \ldots, e_k)$. And, corresponding to every partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ the associated p-group G_λ is given by $G_\lambda = \prod_{i=1}^{k} \mathbb{Z}/p^{\lambda_i}\mathbb{Z}$. Note that, if $|\lambda|$ denotes the size of the partition λ, then the order of the p-group G_λ is given by $|G_\lambda| = p^{k|\lambda|}$.

Let $\lambda := (\lambda_1, \ldots, \lambda_t)$ be a partition of size n and suppose $\lambda' := (\lambda'_1, \ldots, \lambda'_m)$ is it’s conjugate partition. Then, note that, in G_λ (as a product of cyclic groups), the factor $\mathbb{Z}/p^i\mathbb{Z}$ occurs exactly $\lambda'_i - \lambda'_{i+1}$ times (where $\lambda'_{m+1} := 0$). Then using Lemma 3 we can write

$$|\text{Aut}(G_\lambda)| = \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\lambda'_i-\lambda'_{i+1}} (1 - p^{-s}) \right) \right) \left(\prod_{1 \leq i, j \leq m} p^{\min(i,j)(\lambda'_i-\lambda'_{i+1})(\lambda'_j-\lambda'_{j+1})} \right)$$

$$= \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\lambda'_i-\lambda'_{i+1}} (1 - p^{-s}) \right) \right) p^{\sum_{1 \leq i, j \leq m} \min(i,j)(\lambda'_i-\lambda'_{i+1})(\lambda'_j-\lambda'_{j+1})}$$

$$= \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\lambda'_i-\lambda'_{i+1}} (1 - p^{-s}) \right) \right) p^{\sum_{i=1}^{m} (\lambda'_i)^2}.$$

Then, setting $q = p^{-1}$, we have

$$\sum_{G \in \mathcal{G}_p} \frac{1}{|G|^n \cdot |\text{Aut}(G)|} = \sum_{n=0}^{\infty} \sum_{G_\lambda \in \mathcal{G}_p \atop |\lambda| = n} \frac{q^{nu}}{|\text{Aut}(G_\lambda)|}$$

$$= \sum_{n=0}^{\infty} q^{nu} \sum_{G_\lambda \in \mathcal{G}_p \atop |\lambda| = n} \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\lambda'_i-\lambda'_{i+1}} (1 - p^{-s})^{-1} \right) \right) \left(\prod_{i=1}^{m} p^{-\lambda'_i} \right)$$

$$= \sum_{n=0}^{\infty} q^{nu} \sum_{G_\lambda \in \mathcal{G}_p \atop |\lambda| = n} \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\lambda'_i-\lambda'_{i+1}} (1 - q^{-s})^{-1} \right) \right) \left(\prod_{i=1}^{m} q^{\lambda'_i} \right).$$

4
Note that, λ' varies over all partitions as λ varies over all partitions. Therefore putting $\mu = \lambda'$, we get

$$\sum_{G \in \mathcal{G}_p} \frac{1}{|G| \cdot |\text{Aut}(G)|} = \sum_{n=0}^{\infty} q^n \sum_{G_{\mu} \in \mathcal{G}_p} \left(\prod_{i=1}^{m} \left(\prod_{s=1}^{\mu_i-\mu_{i-1}} (1 - q^s)^{-1} \right) \right) \left(\prod_{i=1}^{m} q^{\mu_i^2} \right)$$

$$= \sum_{n=0}^{\infty} q^n \sum_{G_{\mu} \in \mathcal{G}_p} \left(\prod_{i=1}^{m} \psi_{\mu_i, \mu_{i-1}-\mu_i}(q) \right) \left(\prod_{i=1}^{m} q^{\mu_i^2} \right),$$

where

$$\psi_{a,b}(q) := \frac{\prod_{i=1}^{a+b} (1 - q^i)}{\prod_{i=1}^{a} (1 - q^i) \prod_{i=1}^{b} (1 - q^i)}, \quad \psi_{a,\infty}(q) := \frac{1}{\prod_{i=1}^{a} (1 - q^i)}$$

and $\mu_0 := \infty$; note that, the coefficient of q^n in $\psi_{a,b}(q)$ is the number of partitions of n with height at most a and width at most b. Therefore, by Lemma 2, it is enough to show that, for each $n \geq 0$,

$$f_n(q) = \sum_{G_{\mu} \in \mathcal{G}_p} \left(\prod_{i=1}^{m} \psi_{\mu_i, \mu_{i-1}-\mu_i}(q) \right) \left(\prod_{i=1}^{m} q^{\mu_i^2} \right).$$

That is, we need to equate coefficients of q^N on both sides, for each $N \geq 0$. The argument is same as given in [2] or [3].

Note that, coefficient of q^N on LHS is equal to $b_{N,n}$ which is the number of partitions of N with greatest part n. Let ν be a partition of N with greatest part equal to n; then, to each such ν we will associate a partition μ of size n on the RHS. Consider the conjugate ν' of ν and let D be the standard Young diagram of ν'. Note that ν' has height equal to n. Now, define $\mu := (\mu_1, \ldots, \mu_m)$ as follows:

- Define μ_1 to be the largest integer such that $(\mu_1, \mu_1) \in D$.
- For $i \geq 2$, define μ_i to be the largest integer such that $(\mu_1 + \cdots + \mu_i, \mu_i) \in D$.

(Where $(i, j) \in D$ is defined as the block of D situated at the ith row from
top and \(j \)th column from left). Then \(|\mu| = n\). If \(M \) is the number of blocks outside the squares of size \(\mu_i \) then \(M = N - \mu_1^2 - \mu_2^2 - \cdots - \mu_m^2 \). Let \(M_i \) be the number of blocks at the right of the block of size \(\mu_i \), i.e.

\[
M_i := |\{(x, y) \in D : \mu_1 + \cdots + \mu_{i-1} < x < \mu_1 + \cdots + \mu_i, \mu_i < y\}|.
\]

Then the blocks corresponding to \(M_i \) gives a partition of \(M_i \) of height at most \(\mu_i \) and width at most \(\mu_{i-1} - \mu_i \) and hence this contributes to the coefficient of \(q^{M_i} \) in \(\psi_{\mu_i, \mu_{i-1} - \mu_i}(q) \) on RHS. Note that \(M = M_1 + \cdots + M_m \) which implies \(M_1 + \cdots + M_m + \mu_1^2 + \cdots + \mu_m^2 = N \) and hence \(\mu \) contributes to the coefficient of \(q^N \) on RHS.

Note that, the above construction can be reversed. Suppose \(\mu \) is a partition which corresponds to the coefficient of \(q^N \) on RHS such that \(\mu \) is specified by the numbers \(M_i \), where \(M_1 + \cdots + M_m + \mu_1^2 + \cdots + \mu_m^2 = N \), and partitions of \(M_i \) of height at most \(\mu_i \) and width at most \(\mu_{i-1} - \mu_i \). Then we can construct the Young diagram \(D \) and construct the corresponding partition \(\nu \) on LHS. Hence, we conclude that the coefficients of \(q^N \) on both sides are equal and this proves the theorem.

References

[1] H. Cohen and H. W. Lenstra, Jr., *Heuristics on class groups of number fields*, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin,1984, pp. 33-62. MR 756082 (85j:11144).

[2] P. Hall, *A partition formula connected with abelian groups*, Comm. Math. Helvetici **11** (1938), no. 1, 126-129.

[3] J. Lengler, *The Cohen-Lenstra Heuristic for Finite Abelian Groups*, PhD thesis, Universität des Saarlandes, 2009.

Author information

Pritam Majumder, Department of Mathematics and Statistics, IIT Kanpur, Kanpur-208016, U.P., India.

Email: pritamaj@gmail.com