Insights and challenges of applying the GW method to transition metal oxides

Georgy Samsonidze¹, Cheol-Hwan Park² and Boris Kozinsky¹

¹Research and Technology Center, Robert Bosch LLC, Cambridge, MA 02142, USA
²Department of Physics, Seoul National University, Seoul 151-747, Korea

E-mail: georgy.samsonidze@gmail.com

Received 15 July 2014, revised 1 October 2014
Accepted for publication 7 October 2014
Published 29 October 2014

Abstract

The ab initio GW method is considered as the most accurate approach for calculating the band gaps of semiconductors and insulators. Yet its application to transition metal oxides (TMOs) has been hindered by the failure of traditional approximations developed for conventional semiconductors. In this work, we examine the effects of these approximations on the values of band gaps for ZnO, Cu₂O, and TiO₂. In particular, we explore the origin of the differences between the two widely used plasmon-pole models. Based on the comparison of our results with the experimental data and previously published calculations, we discuss which approximations are suitable for TMOs and why.

Keywords: GW, PPM, TMO, ZnO

Online supplementary data available from stacks.iop.org/JPhysD/47/475501/mmedia

1. Introduction

Many-body perturbation theory within the GW approximation has been successfully used to describe the electronic spectra of sp-bonded semiconductors and insulators from first principles [1–10]. However, application of the GW methodology to materials with localized d-electrons, such as transition metal oxides (TMOs), has revealed some controversial results. One of the heavily debated topics is the GW band gap of ZnO for which values ranging from 2.1 to 3.9 eV have been reported [11–27]. This wide variation can be attributed to the use of different self-consistent schemes [12–14, 16, 28, 29], plasmon-pole models (PPMs) [21, 23, 26], and starting points [15, 17, 20], as well as to a false convergence behavior as discussed in [17] and to the basis set convergence issues as discussed in [18, 27]. At the same time, it is difficult to pinpoint the contributions of each approximation (self-consistent scheme, PPM, and starting point) to the total difference, since the different results reported in the literature were obtained with different codes and with different sets of numerical parameters.

The motivation behind the present study was to systematically isolate the contributions of these approximations. For that purpose we performed multiple GW calculations for three TMOs (wurtzite ZnO, cuprite Cu₂O, and rutile TiO₂) using many possible combinations of these approximations. Analyzing the results of these calculations allowed us to collect valuable information about the validity and applicability of these approximations. We were able to show that the theoretically justified choice of approximations gives the best agreement with experiment for all the materials studied. We further discuss the origin of the differences between the two widely used PPMs, and we demonstrate how one of them can be modified to give better accuracy as compared to the results of higher level calculations.

The paper is organized as follows. Section 2 gives the theoretical background, followed by the computational details in section 3. Section 4 presents the results and a discussion thereof. The main findings of this work are summarized in section 5.

2. Theoretical background

Within the GW approximation, the electron self-energy operator Σ is given by [1, 7, 9, 10, 30, 31]:

\[Σ(\mathbf{r}, \mathbf{r}'; \omega) = \frac{i}{2\pi} \int d\omega' e^{i\omega'q} G(\mathbf{r}, \mathbf{r}'; \omega + \omega') W(\mathbf{r}, \mathbf{r}'; \omega') \]

(1)
where \(\mathbf{r} \) is the spatial coordinate, \(\omega \) is the energy, \(\eta \) is a positive infinitesimal, \(G \) is the Green’s function, and \(W \) is the screened Coulomb potential. The expression for \(G \) is:

\[
G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{nk} \psi_{nk}(\mathbf{r})^\dagger \psi_{nk}^*(\mathbf{r}') \frac{1}{\omega - \mathcal{E}_{nk} - i\eta_{nk}}
\]

(2)

where \(n \) is the band index, \(\mathbf{k} \) is the Bloch wave vector, \(\psi_{nk}(\mathbf{r}) \) is the quasiparticle orbital, \(\mathcal{E}_{nk} \) is the quasiparticle energy, and \(\eta_{nk} \) is a positive (negative) infinitesimal for occupied (unoccupied) states. The expression for \(W \) is:

\[
W(\mathbf{r}, \mathbf{r}'; \omega) = \int d\mathbf{r}'' \epsilon^{-1}(\mathbf{r}, \mathbf{r}'; \omega) v(\mathbf{r}'' - \mathbf{r}')
\]

(3)

where \(\epsilon \) is the microscopic dielectric function, \(v(\mathbf{r}) = e^2 / |\mathbf{r}| \) is the bare Coulomb potential, and \(e \) is an elementary charge. The expression for \(\epsilon \) is:

\[
\epsilon(\mathbf{r}, \mathbf{r}'; \omega) = \delta(\mathbf{r} - \mathbf{r}') - \int d\mathbf{r}'' \rho(\mathbf{r}'' - \mathbf{r}') V(\mathbf{r}'', \mathbf{r}; \omega)
\]

(4)

where \(\delta \) is the Dirac delta function and \(P \) is the polarizability. The latter is evaluated within the random phase approximation (RPA):

\[
P(\mathbf{r}, \mathbf{r}'; \omega) = -i \frac{\omega}{2\pi} \int d\omega' G(\mathbf{r}, \mathbf{r}'; \omega + \omega') G(\mathbf{r}', \mathbf{r}; \omega')
\]

(5)

Calculations are performed in reciprocal space, for instance \(\epsilon(\mathbf{r}, \mathbf{r}'; \omega) \) is Fourier transformed to \(\epsilon_{\mathbf{G}G'; \mathbf{q}}(\mathbf{q}; \omega) \), where \(\mathbf{G} \) is the reciprocal lattice vector and \(\mathbf{q} \) is the Bloch wave vector.

In practice, the \(GW \) method is applied perturbatively on top of Kohn–Sham density functional theory (DFT) [32] calculations. It is often assumed that the Kohn–Sham orbitals \(\psi_{nk}^{KS}(\mathbf{r}) \) are good approximation for the quasiparticle orbitals \(\psi_{nk}^{QP}(\mathbf{r}) \). \(\Sigma \) is then diagonal in the basis of \(\psi_{nk}^{KS} \) and the quasiparticle energies are expressed by [7]:

\[
E_{nk}^{OP} = E_{nk}^{KS} + \left| \psi_{nk}^{KS}(\mathbf{r}) \right|^2 \frac{1}{\mathcal{E}_{nk}^{KS} - \mathcal{E}_{nk}^{QP}} - V_{xc}[\rho_{tot}(\mathbf{r})](\mathbf{r})
\]

(6)

where \(E_{nk}^{KS} \) are the Kohn–Sham energies, \(V_{xc} \) is the exchange-correlation potential, and \(\rho_{tot} \) is the self-consistent charge density.

The Kohn–Sham ansatz is often used in conjunction with \textit{ab initio} pseudopotentials [33] assuming separation of electrons into core and valence states. This implies that the \(\Sigma \) and \(V_{xc} \) terms of equation (6) only include contributions from the valence states, while contributions from the core states are treated at the DFT level in the \(E_{nk}^{KS} \) term of equation (6), and the core-valence interaction is neglected [2, 7]. The latter is of particular concern when core and valence orbitals overlap, such as would occur in Zn if 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\) states were treated as core states and 3d\(^{10}\)4s\(^2\) states as valence states. The core-valence interaction can be included at the DFT level using the non-linear core correction (NLCC) [34] which introduces the partial core charge density \(\rho_{core} \) in the evaluation of the exchange-correlation potential, \(V_{xc}[\rho_{core} + \rho_{val}] \). The \(GW \) method on the other hand requires the entire shell of semicore states (such as 3s\(^2\)3p\(^6\)3d\(^{10}\) states in Zn) to be explicitly treated as valence states in order to eliminate errors due to neglecting the core-valence interaction [35–39]. All calculations in this work are performed treating the entire third shells of Zn, Cu, and Ti as valence states.

The core-valence partitioning brings up another issue, namely that the charge density used for the evaluation of the \(V_{xc} \) term in equation (6) must be consistent with the orbitals used in the construction of the \(\Sigma \) operator in the said equation [31, 40–42]. In particular, it was shown that if the NLCC is used in the DFT calculation, \(\rho_{core} \) must be set to zero when evaluating the \(V_{xc} \) term of equation (6) [41]. To study the effect of imbalance between the \(\Sigma \) and \(V_{xc} \) terms in equation (6), we use \(\rho_{core} \) derived from the deep core states (such as 2s\(^2\)2p\(^6\) states in Zn).

Even though there is negligible overlap between the deep core and semicore orbitals (such as the second and third shells of Zn), the integrated partial core charge \(q_{core} = \int d\mathbf{r} \rho_{core}(\mathbf{r}) \) is not small (\(q_{core} = 7.67e \) in Zn). In what follows we examine how keeping \(\rho_{core} \) in the \(V_{xc} \) term of equation (6) affects the results of \(GW \) calculations as compared to the case of zeroing out \(\rho_{core} \) in the \(V_{xc} \) term.

Several different approaches have been developed for constructing \(\Sigma \) and calculating its matrix elements entering equation (6):

- **Non-self-consistent** \(G_0W_0 \) scheme [7] when \(G \) and \(P \) are obtained by plugging \(\psi_{nk}^{KS} \) and \(E_{nk}^{KS} \) into equations (2) and (5).
- **Eigenvalue self-consistent** \(GW \) scheme [13] when \(G \) and \(P \) are constructed from \(\psi_{nk}^{KS} \) and \(E_{nk}^{OP} \), the latter being determined iteratively starting from \(E_{nk}^{KS} \).
- **Eigenvalue self-consistent** \(GW \) scheme [13] when \(G \) is calculated using \(\psi_{nk}^{KS} \) and \(E_{nk}^{OP} \) while \(P \) is calculated using \(\psi_{nk}^{KS} \) and \(E_{nk}^{KS} \).
- **Eigenvector self-consistent** \(GW \) schemes [28, 29, 43] when \(\psi_{nk}^{OP} \) are constructed iteratively using off-diagonal matrix elements of \(\Sigma \) in the basis of \(\psi_{nk}^{KS} \).

It was shown that the self-consistent \(GW \) scheme without the vertex correction in \(\Sigma \) (beyond the \(GW \) approximation) overestimates the experimental band gaps [44]. Better agreement with experiment is obtained using the \textit{G} \(W \) scheme because the effects of self-consistency in \(W \) and of vertex correction in \(\Sigma \) largely cancel out [45–47]. It should be noted that the self-consistency in \(G \) without the vertex correction in \(\Sigma \) violates the Ward–Takahashi identity representing the local electron number conservation law [48]. For the purpose of this work, we employ non-self-consistent \(G_0W_0 \) and eigenvalue self-consistent \(GW \) schemes.

The energy integral in equation (1) can be evaluated by direct numerical integration [30], employing the Hilbert transform [49], the contour deformation technique [50], or using a plasmon-pole model (PPM) to approximate the \(\omega \) dependence of \(e^{-\omega} \). The first three methods are thereafter referred as non-PPM. Two popular choices for PPM are the Hybertsen–Louie (HL) PPM [7, 51] and the Godby–Needs (GN) PPM [52]. The HL PPM takes as input the static inverse dielectric function \(e^{-\omega} \) at \(\omega = 0 \) and the charge density \(\rho_{ppm} \) which is used to compute the effective bare plasma frequencies.

\[\text{J. Phys.: Condens. Matter 26 (2014) 475501} \]
\[\text{G Samsonidze et al} \]
The GN PPM takes as input ϵ^{-1} at two frequencies, $\omega = 0$ and $\omega = i\Omega$, where Ω is a parameter. The HL PPM recently came under criticism for poorly reproducing the ω dependence of the RPA ϵ^{-1} as compared to the GN PPM [21, 23, 26].

As we show in this paper, the poor performance of the HL PPM stems from the improper choice of ρ_{ppm}. One sensible choice for ρ_{ppm} is the charge density of the valence electrons (oxygen 2p6 states), $\rho_{ppm} = \rho_{val}$, owing to the fact that the dielectric screening is dominated by the valence electrons [53]. This choice for ρ_{ppm} was implicitly assumed in the original derivation of the HL PPM [7]. Another common choice for ρ_{ppm} is the self-consistent charge density, $\rho_{ppm} = \rho_{scf}$, which includes the core electrons treated as valence in the construction of the pseudopotentials (oxygen 2s2 states and the transition metal third shell). Our calculations demonstrate that the HL PPM approaches the GN PPM and the RPA results when ρ_{ppm} is set to ρ_{scf}. At the same time, the poor performance of the HL PPM discussed in the literature [21, 23, 26] is attributed to setting ρ_{ppm} equal to ρ_{scf}.

3. Computational details

To examine the effects of different approximations discussed in section 2 on the quasiparticle band gaps and band edges of TMOs, we perform a series of calculations for wurtzite ZnO, cuprite Cu$_2$O, and rutile TiO$_2$ using Quantum ESPRESSO [59] and BerkeleyGW [30] codes for the DFT and GW parts, respectively. Calculations are carried out for the spin-unpolarized case with the local density approximation (LDA) in the PW form [60] and the generalized gradient approximation (GGA) in the PBE form [61] for the exchange-correlation functional. Norm-conserving pseudopotentials are generated in a separable non-local form [62] using the RRKJ scheme [63] and including scalar relativistic corrections and non-linear core corrections (NLCC) [34]. The pseudopotential parameters are summarized in Table 1. Convergence studies with respect to the size of the Monkhorst–Pack grid [54], kinetic energy cutoffs, and the number of unoccupied Kohn–Sham bands used in the calculation of ϵ and Σ are reported elsewhere [17, 18, 21, 64, 65]. The parameters used in our calculations are summarized in Table 2. The Monkhorst–Pack grids for ρ_{scf}, ρ_{val}, and Σ are Γ-centered and the ones for ϵ are shifted by half a grid spacing in all directions. A small wave vector along the (111) direction in crystal coordinates is used to calculate ϵ at the Γ point. The convergence of Σ with respect to the size of the Monkhorst–Pack grid is accelerated by averaging Σ and W inside the Voronoi cells of the $(k+G)$-points near the Γ-point [30]. The convergence of Σ with respect to the number of unoccupied Kohn–Sham bands is accelerated by using the static remainder correction [64]. To ensure convergence of the stress tensor, structural relaxations are performed using 3 times higher kinetic energy cutoffs than those listed in Table 2. The experimental and theoretical structural parameters (thereafter referred to as ES and TS, respectively) are listed in Table 3.

Special consideration is required when constructing ρ_{val} used in the HL PPM. Given the two formula units per primitive cell and the electronic valence configurations listed in Table 1, ZnO, Cu$_2$O, and TiO$_2$ have 26, 44, and 24 valence bands, respectively. The top of the valence manifold is derived from the oxygen 2p6 states: bands 21–26 in ZnO, bands 39–44 in Cu$_2$O, and bands 13–24 in TiO$_2$. The lower valence bands are derived from the oxygen 2s2 states and the transition metal third shell: bands 1–20 from O 2s2 & Zn3s23p63d10 in ZnO, bands 1–38 from O 2s2 & Cu 3s23p63d10 in Cu$_2$O, and bands 1–12 from O 2s2 & Ti 3s23p6 in TiO$_2$. In TiO$_2$ the oxygen 2p states are separated from the transition metal 3d states by an energy gap, while in ZnO and Cu$_2$O they overlap. These overlapping states should be decoupled in order to unambiguously construct ρ_{val} from the oxygen 2p6 states. For that purpose we employ the DFT + U method with the following parameters: $U = 8.0$ eV and $J = 0.9$ eV for ZnO [17]; $U = 7.5$ eV and $J = 0.98$ eV

Table 1. Pseudopotential parameters for Zn$^{2+}$, Cu$^{2+}$, Ti$^{4+}$, and O. Shown are the electronic core and valence configurations, the integrated partial core charge $q_{core} = \int dr \rho_{core}(r)$, the partial core radius r_{core} determined by the condition $\rho_{core}(r_{core}) = 2 \rho_{val}(r_{core})$, and the matching radii for different angular momentum channels $r_{p,q,d}$. Core charge is in units of elementary charge, all radii are in Bohr.

Element	Core Valence	q_{core}	r_{core}	r_s	r_p	r_d	
Zn$^{2+}$	1s22s22p6	3s23p33d10	7.67	0.31	1.00	1.00	0.85
Cu$^{2+}$	1s22s22p6	3s23p33d10	7.53	0.33	1.05	1.05	0.90
Ti$^{4+}$	1s22s22p6	3s23p33d3	6.27	0.32	1.20	1.25	1.35
O	1s22s22p4	3s23p33d3	1.37	0.34	1.10	1.10	

Table 2. Parameters of DFT and GW calculations for wurtzite ZnO, cuprite Cu$_2$O, and rutile TiO$_2$. For a Monkhorst–Pack grid [54] for summing over the Brillouin zone to obtain ρ_{val}, ρ_{scf}, ϵ, and Σ. $E_{\psi,v}$, $E_{\psi,v}^{\Sigma}$, $E_{\psi,v}^{\Sigma}$, and $E_{\psi,v}^{\Sigma}$ are kinetic energy cutoffs for the plane wave expansion of ψ_{KS}, ψ_{KS}, ψ_{KS}, and ψ_{KS}, respectively. N_{KS} is the number of Kohn–Sham bands (both occupied and unoccupied) with the energies up to about E_{KS} above the average ($G = 0$ component) electrostatic (ionic plus Hartree) potential.

Material	ρ_{val}	ρ_{scf}								
Wurtzite ZnO	9 × 9 × 5	7 × 7 × 7	6 × 6 × 9	7 × 7 × 7	6 × 6 × 9	7 × 7 × 7	6 × 6 × 9	7 × 7 × 7	6 × 6 × 9	7 × 7 × 7
Cuprite Cu$_2$O	5 × 5 × 3	4 × 4 × 4	3 × 3 × 5	4 × 4 × 4	3 × 3 × 5	4 × 4 × 4	3 × 3 × 5	4 × 4 × 4	3 × 3 × 5	4 × 4 × 4
Rutile TiO$_2$	$\epsilon_{\psi,v}^{\Sigma}$	400	350	250	400	350	250	400	350	250
$E_{\psi,v}$ (Ry)	80	80	80	80	80	80	80	80	80	80
N_{KS}	1500	2400	1900	1500	2400	1900	1500	2400	1900	1500
E_{KS} (Ry)	40	40	40	40	40	40	40	40	40	40

Table 3. Structural parameters of wurtzite ZnO, cuprite Cu$_2$O, and rutile TiO$_2$ measured by x-ray diffraction [55–57] and calculated using DFT with LDA and GGA exchange-correlation functionals.

Material	a (Å)	c (Å)	a (Å)	c (Å)	a (Å)	c (Å)
Wurtzite ZnO	3.25	5.20	0.382	4.27	4.59	2.96
Cuprite Cu$_2$O	3.19	5.16	0.378	4.18	4.56	2.92
Rutile TiO$_2$	2.38	5.30	0.379	4.31	4.65	2.97

*From [55–57].
for Cu$_2$O [66]. Note that the DFT + U method is only used for constructing ρ_{val}, while GW calculations are carried out starting from DFT orbitals. To quantify the effect of U, we perform two sets of GW calculations, one using DFT ρ_{val} and another using DFT + U ρ_{val}. It is found that the inclusion of U in ρ_{val} only changes the GW band gaps by 10 meV and the GW band edges by 40 meV. The much larger effect of using ρ_{scf} in the HL PPM will be discussed in section 4.

Let us now describe the implementation of the eigenvalue self-consistent GW_0 scheme. Iterations on $E_{\text{QP}}^{0\text{scf}}$ entering equation (2) are performed by explicitly calculating the matrix elements of Σ and the values of $E_{\text{QP}}^{0\text{scf}}$ for several valence and conduction bands near the band edges (16 valence and 14 conduction for ZnO, 26 valence and 10 conduction for Cu$_2$O, 12 valence and 16 conduction for TiO$_2$) and by applying the k-dependent scissors operators to the lower valence and higher conduction bands. The k-dependent scissors shifts are obtained from the lowest valence and highest conduction bands for which the matrix elements of Σ and the values of $E_{\text{QP}}^{0\text{scf}}$ are explicitly calculated. It is found that performing four iterations is sufficient to converge $E_{\text{QP}}^{0\text{scf}}$ to within 10 meV.

4. Results and discussion

GW calculations for wurtzite ZnO, cuprite Cu$_2$O, and rutile TiO$_2$ are performed using LDA and GGA starting points, experimental and theoretical structural parameters (ES and TS), non-self-consistent G_0W_0 and eigenvalue self-consistent GW_0 schemes, HL PPM with ρ_{ppm} set to DFT + U ρ_{val} and DFT ρ_{scf}, and matrix elements of V_{xc} without and with NLCC ($\rho_{\text{core}} = 0$ and $\neq 0$). In the latter case, values of integrated partial core charge $q_{\text{core}} = \int d\mathbf{r} \rho_{\text{core}}(\mathbf{r})$ are listed in table 1. Figure 1 shows the real parts of $\varepsilon_{0\omega}^{-1}(\mathbf{q}; \omega)$ for the three TMOs in case of the LDA starting point and experimental structural parameters (ES) calculated within the RPA and constructed using the HL PPM with $\rho_{\text{ppm}} = \rho_{\text{val}}$ and ρ_{scf}. Figure 2 shows the quasiparticle band structures calculated using the LDA starting point, experimental structural parameters (ES), the eigenvalue self-consistent G_0W_0 scheme, the HL PPM with $\rho_{\text{ppm}} = \rho_{\text{val}}$, and matrix elements of V_{xc} without NLCC ($\rho_{\text{core}} = 0$). Figure 3 shows the quasiparticle band gaps plotted as a function of the starting point (obtained from the LDA or GGA calculations) and of the structural parameters (either experimental or theoretical, labeled as ES and TS, respectively). Different symbols indicate the values calculated using different flavors of the GW method. In this context, flavor refers to the choice of self-consistent scheme, ρ_{ppm}, and ρ_{core}. The experimental band gaps taken from [67–69] are shown for comparison. Tables 4–6 give the experimental and calculated band gaps plotted in figure 3 as well as the Kohn–Sham values not shown in figure 3. Kohn–Sham and quasiparticle band energies $E_{\text{KS}}^{0\text{scf}}$ and $E_{\text{QP}}^{0\text{scf}}$ and matrix elements of V_{xc} and Σ at the valence band maximum (VBM) and conduction band minimum (CBM) are provided in supplemental material (stacks.iop.org/JPhysCM/26/475501/mmedia).

3 See supplemental material (stacks.iop.org/JPhysCM/26/475501/mmedia) for $E_{\text{KS}}^{0\text{scf}}$ and $E_{\text{QP}}^{0\text{scf}}$ and matrix elements of V_{xc} and Σ at the VBM and CBM of ZnO, Cu$_2$O, and TiO$_2$.

Figure 1. Real parts of inverse dielectric functions $\varepsilon_{0\omega}^{-1}(\mathbf{q}; \omega)$ at $\mathbf{q} = \mathbf{G} = \mathbf{G}' = 0$ of (a) wurtzite ZnO, (b) cuprite Cu$_2$O, and (c) rutile TiO$_2$ in case of the LDA starting point and experimental structural parameters (ES) calculated within the RPA (solid black) and constructed using the HL PPM with $\rho_{\text{ppm}} = \rho_{\text{val}}$ (short-dashed red) and $\rho_{\text{ppm}} = \rho_{\text{scf}}$ (long-dashed blue). The HL PPM mode frequencies $\omega_{\text{scf}}(\mathbf{q})$ are shown by the vertical dashed lines at (a) 21.0 eV and 43.8 eV, (b) 15.6 eV and 42.1 eV, and (c) 24.6 eV and 34.7 eV.

Comparing figure 1(a) with figure 2(a) of [21], figure 5(a) of [23], and figure 4(d) of [26], we find that in the case of ZnO, the HL PPM becomes similar to the GN PPM when ρ_{ppm} is set to ρ_{val}. One can see from figure 1 that for all three oxides,
Figure 2. Quasiparticle band structures of (a) wurtzite ZnO, (b) cuprite Cu$_2$O, and (c) rutile TiO$_2$ calculated using the LDA starting point, experimental structural parameters (ES), the eigenvalue self-consistent GW_0 scheme, the HL PPM with $\rho_{ppm} = \rho_{val}$ and matrix elements of V_{xc} without NLCC ($\rho_{core} = 0$). The zero reference for the energy scale is the average ($G = 0$ component) electrostatic (ionic plus Hartree) potential. The k-point labeling is from [58]. The band gaps are shaded in yellow.

Several conclusions can be drawn from statistical analysis of the data presented in figure 3 and tables 4–6.

- Comparing the values in $(G_0W_0, \rho_{val}, 0)$ row at (LDA, ES) and (GGA, ES) columns for ZnO, we find that the band gap varies by $3.21 - 2.82 = 0.39$ eV depending on the starting point (obtained from the LDA or GGA calculations). Averaging this quantity over different $\rho_{core} = 0$ rows for ZnO gives the mean variation in the band gap with different starting points as equal to 0.44 eV. Repeating this procedure for Cu$_2$O and TiO$_2$ yields the values of 0.06 eV.

- The HL PPM with $\rho_{ppm} = \rho_{val}$ gives a better fit to the RPA results than the HL PPM with $\rho_{ppm} = \rho_{act}$. We note that the HL PPM suffers from the ambiguity of constructing the proper ρ_{ppm}. This problem is absent in the GN PPM, suggesting that the HL PPM is more difficult to use for studying TMOs than the GN PPM.
and 0.04 eV, respectively. The large variation in the case of ZnO indicates that neither LDA nor GGA provides a good starting point for GW calculations. At the same time, small variations for Cu$_2$O and TiO$_2$ imply that LDA and GGA give similar (but not necessarily good) starting points for GW calculations. Other starting points were tried in GW calculations for ZnO including DFT + U [17], the screened hybrid functional [15], and the exact exchange optimized effective potential [20]. Note that the latter starting point can present some challenges in the subsequent GW calculations [70]. Overall, the problem of the starting point in GW calculations for ZnO may require further research to give the full picture.

- Comparison of the values in $\rho_{\text{core}} = 0$ rows at (LDA, ES) and (LDA, TS) columns, as well as at (GGA, ES) and (GGA, TS) columns, shows that the variation of the band gap with the structural parameters is 0.12 eV for ZnO, 0.10 eV for Cu$_2$O, and 0.09 eV for TiO$_2$. This suggests that the band gaps are fairly insensitive to the structural parameters.

- Comparing the values in (G_0W_0, ρ_{val}, 0) and (G_0W_0, ρ_{val}, 0) rows, as well as in (G_0W_0, ρ_{act}, 0) and (G_0W_0, ρ_{act}, 0) rows, we find that the eigenvalue self-consistency in G increases the band gap by 0.37 eV for ZnO, 0.16 eV for Cu$_2$O, and 0.24 eV for TiO$_2$. This is consistent with previous studies [13].

- Comparison of the values in (G_0W_0, ρ_{val}, 0) and (G_0W_0, ρ_{act}, 0) rows, as well as in (G_0W_0, ρ_{val}, 0) and (G_0W_0, ρ_{act}, 0) rows, shows that the inclusion of core electrons in ρ_{ppm} increases the band gap of ZnO and Cu$_2$O by 0.51 and 0.15 eV, respectively, and decreases the band gap of TiO$_2$ by 0.22 eV. This is because for ZnO and Cu$_2$O, the VBM is lowered by a larger amount than the CBM, while the opposite scenario takes

\[
\begin{array}{cccccc}
\text{Experiment} & \text{LDA} & \text{GGA} \\
\hline
\rho_{\text{ppm}} & \rho_{\text{core}} & \text{ES} & \text{TS} & \text{ES} & \text{TS} \\
\hline
\text{DFT} & 0.74 & 0.80 & 0.85 & 0.78 \\
G_0W_0 & \rho_{\text{val}} = 0 & 3.21 & 3.32 & 2.82 & 2.70 \\
& \neq 0 & 2.50 & 2.59 & 2.33 & 2.23 \\
& \rho_{\text{act}} = 0 & 3.82 & 3.94 & 3.38 & 3.26 \\
& \neq 0 & 3.01 & 3.09 & 2.82 & 2.72 \\
GW_0 & \rho_{\text{val}} = 0 & 3.68 & 3.81 & 3.24 & 3.12 \\
& \neq 0 & 2.81 & 2.90 & 2.63 & 2.54 \\
& \rho_{\text{act}} = 0 & 4.13 & 4.25 & 3.66 & 3.54 \\
& \neq 0 & 3.23 & 3.31 & 3.04 & 2.94 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Wurtzite ZnO} & \text{LDA} & \text{GGA} \\
\hline
\rho_{\text{ppm}} & \rho_{\text{core}} & \text{ES} & \text{TS} & \text{ES} & \text{TS} \\
\hline
\text{DFT} & 0.74 & 0.80 & 0.85 & 0.78 \\
G_0W_0 & \rho_{\text{val}} = 0 & 3.21 & 3.32 & 2.82 & 2.70 \\
& \neq 0 & 2.50 & 2.59 & 2.33 & 2.23 \\
& \rho_{\text{act}} = 0 & 3.82 & 3.94 & 3.38 & 3.26 \\
& \neq 0 & 3.01 & 3.09 & 2.82 & 2.72 \\
GW_0 & \rho_{\text{val}} = 0 & 3.68 & 3.81 & 3.24 & 3.12 \\
& \neq 0 & 2.81 & 2.90 & 2.63 & 2.54 \\
& \rho_{\text{act}} = 0 & 4.13 & 4.25 & 3.66 & 3.54 \\
& \neq 0 & 3.23 & 3.31 & 3.04 & 2.94 \\
\end{array}
\]

* From [67].

* From [68].

* Note: All values are in eV.
Table 6. Band gaps of rutile TiO$_2$ measured using photoemission spectroscopy (PES) \[^{[69]}\] and calculated using DFT and GW. DFT and GW band gaps are obtained using different exchange-correlation functionals (LDA and GGA), experimental and theoretical structural parameters (ES and TS), non-self-consistent G_0W_0 and eigenvalue self-consistent GW_0 schemes, HL PPM with $\rho_{ppm} = \rho_{val}$ and ρ_{act}, and matrix elements of V_{xc} without and with NLCC ($\rho_{core} = 0$ and $\neq 0$). The DFT and GW band gaps are direct at the Γ point (in regular font) and indirect between the Γ point at the VBM and the R point at the CBM (in cursive font).

Rutile TiO$_2$	LDA	GGA				
	ρ_{ppm}	ρ_{val}	ρ_{act}	ρ_{ppm}	ρ_{val}	ρ_{act}
PES\(^{[4]}\)	3.60	3.44	3.37	3.48	3.37	3.34
DFT	1.82	1.85	1.90	1.85	1.85	1.85
G_0W_0	$\neq 0$	3.44	3.53	3.42	3.34	
ρ_{val}	$\neq 0$	3.69	3.78	3.65	3.57	
ρ_{act}	$\neq 0$	3.28	3.35	3.23	3.14	
GW_0	$\neq 0$	3.57	3.63	3.48	3.41	
ρ_{val}	$\neq 0$	3.72	3.82	3.70	3.61	
ρ_{act}	$\neq 0$	4.03	4.12	3.98	3.90	
	$\neq 0$	3.48	3.56	3.43	3.35	
ρ_{ppm}	$\neq 0$	3.79	3.86	3.70	3.63	
ρ_{val}	$\neq 0$	3.60	3.67	3.59	3.54	
ρ_{act}	$\neq 0$	3.62	3.69	3.62	3.57	
GW_0	$\neq 0$	3.72	3.82	3.70	3.61	
ρ_{val}	$\neq 0$	4.13	4.19	3.98	3.90	
ρ_{act}	$\neq 0$	3.53	3.56	3.43	3.35	
ρ_{ppm}	$\neq 0$	3.67	3.72	3.63	3.57	
ρ_{val}	$\neq 0$	3.59	3.67	3.57	3.52	
ρ_{act}	$\neq 0$	3.53	3.56	3.43	3.35	

\(^{a}\) From \[^{[69]}\].

Note: All values are in eV.

place for TiO$_2$, as follows from supplemental material (stacks.iop.org/JPCM/26/475501/mmedia)\(^5\).

- Comparing the values in $\rho_{core} = 0$ and $\rho_{core} \neq 0$ rows, we find that the inclusion of NLCC in the matrix elements of V_{xc} decreases the band gap of ZnO and Cu$_2$O by 0.70 and 0.69 eV, respectively, and increases the band gap of TiO$_2$ by 0.27 eV. This is due to the fact that for ZnO and Cu$_2$O, the VBM is raised by a larger amount than the CBM, while the opposite holds for TiO$_2$, as one can see from supplemental material (stacks.iop.org/JPCM/26/475501/mmedia)\(^5\).

Overall, the largest variation of the band gap comes from the inclusion of NLCC in the matrix elements of V_{xc}. This inclusion introduces significant errors in the calculated band gaps.

Fair agreement is found when comparing our results to those of previous GW calculations for each oxide and specific flavor. In line with the criticism of the HL PPM \[^{[21, 23, 26]}\], previous HL PPM calculations are compared to our $\rho_{ppm} = \rho_{act}$ results, while previous GN PPM and non-PPM calculations to our $\rho_{ppm} = \rho_{val}$ results.

- For ZnO, we focus on (LDA, ES) column in figure 3(a) or table 4. The most accurate non-PPM G_0W_0 calculations gave the following values for the band gap: 2.83 eV with the full potential linearized augmented plane wave (FLAPW) method \[^{[18]}\] and 2.87 eV with the projector augmented wave (PAW) method \[^{[27]}\]. We find that the HL PPM gives a somewhat larger value of 3.21 eV and a substantially larger value of 3.82 eV when ρ_{ppm} is set to ρ_{val} and ρ_{act}, respectively. Previous HL PPM G_0W_0 calculations showed values in this range, 3.4 eV \[^{[17]}\], 3.57 eV \[^{[21]}\], and 3.56 eV \[^{[23]}\], with one exception where the value of 2.80 eV was reported \[^{[26]}\]. Other studies reported much lower values, such as non-PPM G_0W_0 band gaps of 2.17–2.43 eV \[^{[23, 26]}\] and the GN PPM G_0W_0 band gaps of 2.27–2.56 eV \[^{[21–23, 26]}\]. We do not compare to the results of \[^{[12–14, 16, 25]}\] which may be affected by the basis set convergence issues as discussed in \[^{[27]}\].

- For Cu$_2$O, let us look at (LDA, ES) column in figure 3(b) or table 5. The (G_0W_0, ρ_{val}, 0) band gap of 1.56 eV compares with non-PPM G_0W_0 value of 1.34 eV \[^{[71]}\]. The (GW_0, ρ_{val}, 0) band gap of 1.77 eV is close to non-PPM eigenvalue self-consistent GW band gap of 1.80 eV \[^{[71]}\].

- For TiO$_2$, we start with (LDA, ES) column in figure 3(c) or table 6. The (G_0W_0, ρ_{val}, 0) band gap of 3.44 eV is close to non-PPM G_0W_0 value of 3.34 eV \[^{[38]}\]. We now move on to (GGA, TS) column. The (G_0W_0, ρ_{act}, 0) band gap of 3.34 eV is comparable to the GN PPM G_0W_0 value of 3.59 eV \[^{[72]}\]. The (G_0W_0, ρ_{act}, 0) band gap of 3.14 eV is close to the HL PPM G_0W_0 value of 3.13 eV \[^{[65]}\].

We now compare the calculated band gaps with the experimental data. The absolute difference of the experimental band gap and the value in (G_0W_0, ρ_{val}, 0) row at (LDA, ES) column for ZnO is equal to 0.23 eV. Averaging this quantity over the four columns in figure 3(a) or table 4 gives the value of 0.43 eV. Further averaging over the three TMOs gives the mean deviation from experiment of 0.40 eV. This procedure is repeated for each flavor represented by different row in figure 3 and tables 4–6. Among the eight flavors, the smallest deviation of 0.18 eV is found for (GW_0, ρ_{val}, 0) flavor, followed by the 0.30 eV deviation for (GW_0, ρ_{act}, 0) flavor, the 0.31 eV deviation for (G_0W_0, ρ_{act}, 0) flavor, and the 0.40 eV deviation for (G_0W_0, ρ_{val}, 0) flavor. Corresponding deviations for $\rho_{core} \neq 0$ rows fall within the 0.49–0.78 eV range. We conclude that the best overall agreement with experiment is obtained for (GW_0, ρ_{val}, 0) flavor. On the other hand, we note from figure 3 that (GW_0, ρ_{val}, 0) values irregularly underestimate and overestimate the experimental band gaps, while (G_0W_0, ρ_{val}, 0) values always underestimate the experiment, suggesting that the latter flavor may be preferable to the former. Yet this conclusion may be deceiving given that the HL PPM with ρ_{act} overestimates the non-PPM band gap of ZnO by 0.34–0.38 eV (see the comparison with the previous calculations above) and that the experimental band gaps are renormalized by electron-phonon interaction not included in our calculations. Overall, it may be premature to conclude which flavor is preferable for TMOs until the effect of the vertex correction on GW band gaps of these materials is thoroughly studied.

5. Summary

In summary, we quantify the effects of different approximations used in the GW method on the band gaps and band edges for three TMOs: wurtzite ZnO, cuprite Cu$_2$O, and rutile TiO$_2$. It is found that the GW band gap of ZnO is sensitive to the starting point obtained from the LDA or GGA calculations,
suggesting that the Kohn–Sham orbitals differ from the quasiparticle orbitals. It is shown that the HL PPM becomes similar to the GN PPM and gives better agreement with the RPA when ρ_{ppm} is set to ρ_{val}, that is, only the valence electrons are used to determine the effective bare plasma frequencies for the HL PPM. It is demonstrated that the theoretically justified choice of approximations, namely eigenvalue self-consistent G_0W_0 scheme, ρ_{val} in the HL PPM, and the proper treatment of the V_{xc} term, give the best overall agreement between the calculated and measured band gaps.

Acknowledgments

We are grateful to Dr B D Malone for implementing the $\rho_{\text{ppm}} = \rho_{\text{val}}$ option in the Quantum ESPRESSO interface to BerkeleyGW. We thank Mr F H Jornada for implementing the Delaunay tessellation for band structure interpolation in BerkeleyGW. We acknowledge helpful comments on an early version of the paper by Professor P Zhang, Professor G-M Rignanese, and Mr D Vigil. GS and BK acknowledge support from DOE (Grant No. DE-EE0004840) and NSF (Grant No. 1048796), CHP from Korean NRF funded by MSIP (Grant No. NRF-2013R1A1A1076141). This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725.

References

[1] Hedin L 1965 Phys. Rev. 139 A796
[2] Hedin L and Lundqvist S 1970 Solid State Phys. 23 1
[3] Strinati G, Mattauch H J and Hanke W 1980 Phys. Rev. Lett. 45 290
[4] Strinati G, Mattauch H J and Hanke W 1982 Phys. Rev. B 25 2867
[5] Hybertsen M S and Louie S G 1985 Phys. Rev. Lett. 55 1418
[6] Godby R W, Schlüter M and Sham L J 1986 Phys. Rev. Lett. 56 2515
[7] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[8] Godby R W, Schlüter M and Sham L J 1988 Phys. Rev. B 37 10159
[9] Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237
[10] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[11] Usada M, Hamada N, Kotani T and van Schilfgaarde M 2002 Phys. Rev. B 66 125101
[12] Kotani T, van Schilfgaarde M and Faleev S V 2007 Phys. Rev. B 76 151109
[13] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[14] Fuhs F, Furthmüller J, Behstedt F, Shishkin M and Kresse G 2007 Phys. Rev. B 76 115109
[15] Schleife A et al 2008 J. Korean Phys. Soc. 53 2811
[16] Behstedt F, Fuhs F and Kresse G 2009 Phys. Status Solidi B 246 1877
[17] Shih B C, Xue Y, Zhang P, Cohen M L and Louie S G 2010 Phys. Rev. Lett. 105 146401
[18] Friedrich C, Müller M C and Blügel S 2011 Phys. Rev. B 83 081101
[19] Dixit H, Sanitza R, Lamoend D and Partoens B 2011 Comput. Phys. Commun. 182 2029
[20] Yan Q, Rinke P, Winkelkemper M, Queish A, Bimberg D, Scheffler M and de Walle C G V 2011 Semicond. Sci. Technol. 26 014037
[21] Stankovski M, Antonius G, Waroquiers D, Miglio A, Dixit H, Sankaran K, Giantomass M, Gonze X, Côté M and Rignanese G M 2011 Phys. Rev. B 84 241201
[22] Berger J A, Reining L and Sotille F 2012 Phys. Rev. B 85 085126
[23] Miglio A, Waroquiers D, Antonius G, Giantomass M, Stankovski M, Côté M, Gonze X and Rignanese G M 2012 Eur. Phys. J. B 85 322
[24] Lany S 2013 Phys. Rev. B 87 085112
[25] Hüser F, Olsen T and Thygesen K S 2013 Phys. Rev. B 87 235132
[26] Larson P, Dvorka M and Wu Z 2013 Phys. Rev. B 88 125205
[27] Kliméš J, Kaltak M and Kresse G 2014 Phys. Rev. B 90 075125
[28] van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402
[29] Bruneval F, Vast N and Reining L 2006 Phys. Rev. B 74 045102
[30] Deslippe J, Samsonidze G, Strubbe D A, Jain M, Cohen M L and Louie S G 2012 Comput. Phys. Commun. 183 1269
[31] Li X Z, Gómez-Abal R, Jiang H, Ambrosch-Draxl C and Scheffler M 2012 New J. Phys. 14 023006
[32] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[33] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[34] Louie S G, Froyen S and Cohen M L 1982 Phys. Rev. B 26 1738
[35] Rohlfing M, Krüger P and Pollmann J 1995 Phys. Rev. Lett. 75 3489
[36] Rohlfing M, Krüger P and Pollmann J 1997 Phys. Rev. B 56 R7065
[37] Marini A, Onida G and Del Sole R 2001 Phys. Rev. Lett. 88 016403
[38] Kang W and Hybertsen M S 2010 Phys. Rev. B 82 085203
[39] Umari P and Fabris S 2012 J. Chem. Phys. 136 174310
[40] Arnaud B and Alouani M 2000 Phys. Rev. B 62 14464
[41] Fleszar A and Hanke W 2005 Phys. Rev. B 71 045207
[42] Gómez-Abal R, Li X, Scheffler M and Ambrosch-Draxl C 2008 Phys. Rev. Lett. 101 106404
[43] Faleev S V, van Schilfgaarde M and Kotani T 2004 Phys. Rev. Lett. 93 126406
[44] Schöne W D and Eguíluz A G 1998 Phys. Rev. Lett. 81 1662
[45] Shirley E L 1996 Phys. Rev. B 54 7758
[46] von Barth U and Holm B 1996 Phys. Rev. B 54 8411
[47] Holm B and von Barth U 1998 Phys. Rev. B 57 2108
[48] Takada Y 2001 Phys. Rev. Lett. 87 226402
[49] Shishkin M and Kresse G 2006 Phys. Rev. B 74 035101
[50] Lebegue S, Arnaud B, Alouani M and Bloechl P E 2003 Phys. Rev. B 67 155208
[51] Zhang S B, Tománek D, Cohen M L, Louie S G and Hybertsen M S 1989 Phys. Rev. B 40 3162
[52] Godby R W and Needs R J 1989 Phys. Rev. Lett. 62 1169
[53] Kaur A, Ylvisaker E R, Lu D, Pham T A, Galli G and Pickett W E 2013 Phys. Rev. B 87 155144
[54] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[55] Kirfel A and Eichhorn K 1990 Acta Crystallogr. A 46 271
[56] Abrahams S C and Bernstein J L 1971 J. Chem. Phys. 55 3206
[57] Setyawan W and Curtarolo S 2010 Comput. Mater. Sci. 49 299
[58] Giannozzi P et al 2009 J. Phys.: Condens. Matter 21 395502
[59] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[60] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[61] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425
[62] Rappe A M, Rabe K M, Kaxiras E and Joannopoulos J D 1990 Phys. Rev. B 41 1227
[63] Deslippe J, Samsonidze G, Jain M, Cohen M L and Louie S G 2013 Phys. Rev. B 87 165124
[65] Malashevich A, Jain M and Louie S G 2014 Phys. Rev. B 89 075205
[66] Heinemann M, Eifert B and Heiliger C 2013 Phys. Rev. B 87 115111
[67] Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340
[68] Baumeister P W 1961 Phys. Rev. 121 359
[69] Rangan S, Katalinic S, Thorpe R, Bartynski R A, Rochford J and Galoppini E 2010 J. Phys. Chem. C 114 1139
[70] Fleszar A 2001 Phys. Rev. B 64 245204
[71] Bruneval F, Vast N, Reining L, Izquierdo M, Sirotti F and Barrett N 2006 Phys. Rev. Lett. 97 267601
[72] Chiodo L, García-Lastra J. M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207