Assessing characteristics and land suitability of an intercropping between soybeans and juvenile oil palm over peatlands in Riau, Indonesia

Nurhayati, Marsid Jahari, Emisari Ritonga, Achmad S Alim and Rachmiwati Yusuf
Riau Assessment Institute for Agricultural Technology (Riau AIAT)

Abstract. Soybean is one of essential food crops targeted for self-sufficiency. Indonesia’s largest oil palm plantation is located in Riau Province. Juvenile plants cover around 17.60 percent of the area. Soybeans can be intercropped with juvenile oil palm plantations. This study aims to determine the suitability of peatland in Muara Kelantan Village, Sungai Mandau District, Siak Regency. We collected data and information from primary observations, measurements, and from published articles recording secondary data including rainfall, annual temperature, and map of the research area. Soil type was classified as Typic Haplosaprist. Land suitability was determined by matching collected data with criteria for each class, resulting the class of marginal (S3), with base saturation and soil acidity (nr) as limiting factors. Lime and fertilization were required to increase base saturation and soil pH. After the improvement, the potential suitability becomes sufficiently suitable (S2) for intercropping between soybean and juvenile oil palm, with the air humidity (tc) and peat thickness (rc) as limiting factors.

1. Introduction
The government has achieved food self-sufficiency since 2014 through special program (Upaya khusus (UPSUS)) for rice, corn and soybean. Riau, as one of the food centers, took part in this success. Soybean is considered as main food crop, apart from rice and maize. Soybeans are used by food and feed industries. Riau’s soybean production in 2015 amounted to 2,145 tons of dry beans or decreased by 187 tons (down 8.02 percent) compared to the previous year [1]. This declining production was due to a decrease in the harvested area by 514 hectares or 25.32 percent. The government policies, including the intensification, extensification, mechanization, rehabilitation and diversification efforts are needed to increase national soybean production.

Food crops can be cultivated in rice fields or uplands. Food crop cultivation is strongly influenced by climatic factors, humidity, soil surface shape, and soil type. The yield of a cultivation depends on the management of those factors and implemented technologies.

Juvenile plantation may be intercropped with food crops, to increase land productivity. Soybean is suitable for intercropping in any plantation by utilizing spaces between juvenile plants. Riau Province has potential land for soybean development, including peatlands. This province has the largest oil palm plantation in Indonesia (39.57%) covering 1,348,076 ha in 2013. As much as 17.10% of the area is juvenile plants [2]. About 20% of the juvenile oil palm plantations was cultivated on peatland. Optimizing spaces between juvenile palm trees by any cash crops will increase on-farm income while reducing the cost for cover crops. Moreover, it may control weeds from growing.

Peatlands have distinctive characteristics from the accumulation of dead plants. The characteristics include high levels of organic matter and moisture content, small bulk density and low bearing
capacity. Peatlands can experience subsidence (surface subsidence) due to the shrinkage of the peat volume caused by the decomposition and drainage process: high soil acidity and uptake capacity, low exchange rates, and very low micro-elements. Activities to increase soybean production to support food security can be conducted by improving the condition of peatlands by amelioration, balanced and integrated fertilization, use of superior varieties and improving water management. Various amelioration and fertilization technologies are available, but the adaptation to local land conditions is needed, giving the variation in potential land suitability.

In applying peatland technologies, one must consider the characteristics of peatlands for agricultural cultivation. This study aims to identify the characteristics of peatlands in Muara Kelantan as an initial step to increase the productivity of peatlands for soybean development while optimizing available spaces on juvenile oil palm plantations for intercropping.

2. Methodology

2.1. Test site
The research was conducted in 2017 on smallholder oil palm plantations planted for two years, representing 16 hectares area in Sungai Mandau Village, Muara Kelantan District, Siak Regency, Riau, Indonesia. Data and methods were collected from observation, measurement, as well as information from various studies. Secondary data was collected from literatures, comprising of rainfall, annual temperature and a map of the research location (Figure 1).

The study area has a flat topography with a 0-2% slope and an altitude of 0-2 m above sea level. Geographically, the research location is at coordinates 0° 50’ 54”- 0° 51’ 02” north latitude and 101° 40’ 12” - 0° 40’ 38” east longitude. The climate is tropical, with temperatures between 25° to 32 °C, high humidity, and rainfall. Based on the analysis of rainfall data obtained from BMKG Riau Province in the last five years, it is known that the wet months last from September to January, while the dry months last for three months, lasts from June to August. Based on the analysis of rainfall data in Sungai Mandau District, the results of annual rainfall intensity ranged from 2,148-2,741 mm / year or an annual average of 2,472.08 mm/year with a monthly average of 206 mm [3]. According to Oldeman and Frere [4], the research area belongs to the Agro-climate zone A, in which the rainfall is greater than 200 mm/year.

Figure 1. Sungai Mandau village map.
2.2. Datasets
Soil characteristics was observed and measured both from the field and the laboratory. A set of tools were used in soil surveys for analyzing soil samples in the laboratory, including a peat drill, Munsell Soil Color Chart, GPS, camera, peroxide solvent chemical (FeS$_2$). The land characteristics observed in the field included soil color, sulfidic depth, water table depth, peat maturity, peat thickness, soil pH, flood hazard, texture and structure of the mineral layers, and vegetation.

Soil samples were taken by using a peat drill for five points of diagonal arrangement to represent the location. Measurement of peat soil depth at each location was through drilling by using a peat drill from the top to the bottom layer of mineral soil. At each sample point, a soil sample was taken at a depth of 0-50 cm. The maturity level of peat was determined by the squeeze method, by looking at the yield of liquid and the remaining squeezed material on hand. The higher level of weathering of the peat, the more material escaping on the squeeze due to relatively finer structure. Raw peat is commonly dominated by coarse fiber. If less than a third of the peat is left on hand, then the peat is classified as sapric. Whereas, if more than two-thirds of the peat is left, it is classified as fibric. Peat is classified as hemic if around half of it is left. Meanwhile, the thickness of the peat was determined by measuring the depth from the top layer to the mineral soil.

Soil color was observed in the field by using the Munsell Soil Color Chart, expressed in 3 units, namely Hue, Value and Chroma. Soil drainage is related to the rate of infiltration and shows the depth and frequency of soil water saturation or stagnation. The groundwater depth is determined through drilling from the ground to the groundwater level. The mineral soil beneath the peat affects the fertility of the peatland.

The research also observed mineral content of soil such as sulfidic material, i.e. pyrite. Pyrite (FeS$_2$) was identified as mineral layer coming from marine deposits that are greenish-grey or dark grey.

Peatland samples at a 0-40 cm depth were put in a plastic bag and labeled. Soil samples were air-dried for a week and sieved at a 0.5 mm to obtain homogeneous yet clean samples and then proceed for chemical content analysis. Soil chemical analysis was carried out in the Soil Science Laboratory, Faculty of Agriculture, Riau University. The parameters of analyses included soil pH, % C-organic, % N total, potential P and K, CEC, and Base saturation.

2.3. Analysis
All data from survey, secondary sources and the result of laboratory analysis were then matched with criteria (Table 1) for soybeans to produce land suitability of the study area.

According to Ritung et al. as well as Hardjowigeno and Widiatmaka [5,6], the actual class of land suitability fall on the worst land characteristics. The actual land suitability has not considered any input to improve quality. The potential suitability classes are improved classes after applying appropriate technologies, amendment, or any inputs to the soil. Meanwhile, soil classification is determined based on the physical conditions of the area, morphology and the process of soil formation. The classification system used is the Soil Taxonomy system [7] to the subgroup level.
Table 1. Land suitability criteria for soybean crops.

Land characteristics	S1	S2	S3	N
Temperature (tc)				
Average temperature (°C)	23-25	20-23	18-20	< 18
	25-28	28-32	> 32	
Water availability (wa)				
Rainfall at growth period (mm/3 months)	350-1.100	250-350	180-250	< 180
	1,100-1,600	1,600-1,900	> 1,900	
Humidity (%)				
	24-80	20-24	< 20	-
	80-85	> 85	-	
Oxygen availability (oa)				
Drainage	Well-drained, medium	Moderately poorly drained	Poorly drained, moderately excessive drained	Very poorly drained, excessively drained
Root condition (rc)				
Texture	Fine – moderately fine	Fine – moderately fine	Moderately coarse	Coarse
Coarse material (%)	< 15	15-35	35-55	> 55
Soil depth (cm)	> 50	30-50	20-30	< 20
Peat: Depth (cm)	< 50	50-100	100-150	> 150
Maturity	Sapric	sapric, hemic	Hemic	Fibric
Nutrient retention (nr)				
Soil CEC (emol)	> 16	5-16	< 5	-
Base saturation (%)	> 35	20-35	< 20	-
pH H2O	5.5-7.5	5.0-5.5	< 5.0	-
	7.5-7.8	> 7.8	-	
C-organic (%)	> 1.2	0.8-1.2	< 0.8	-
Nutrient availability (na)				
N total (%)	Medium	Low	Very low	-
P2O5 (mg/100 g)	High	Medium	Low – very low	-
K2O (mg/100 g)	High	Medium	Low – very low	-
Toxicity (xc)				
Salinity (DS/m)	< 4	4-6	6-8	> 8
Sodicity (xm)				
Alkalinity/ESP (%)	< 15	15-20	20-25	> 25
Sulphidic hazards (xs)				
Sulphidic depth (cm)	> 100	75-100	40-75	< 40
Erosion hazard (eh)				
Slope (%)	< 3	3-8	8-15	> 15
Erosion hazard	Very light	Light - medium	Heavy – very heavy	-
Flood hazard (fh)				
- Height (cm)	-	-	25	> 25
- Length (days)	-	-	< 7	> 7
Land preparation (lp)				
Rock on the surface (%)	< 5	5-15	15-40	> 40
Rock outcrop (%)	< 5	5-15	15-25	> 25

Source: [1]

3. Results and discussion

Peatlands of the research site have organic horizon ranging from 60 - 90 cm with a hemic-sapric maturity level and a clay substrate. The field observation indicated the area is in non-flooded conditions with groundwater level ranging from 20-35 cm, well-drained and somewhat obstructed. The area is considered as shallow peat and is suitable for the development of food and seasonal crops. According to Suriadi Karta, Masganti et al., and Noor et al. [8–10], peat thickness affect the level of fertility. The thicker the peat, the more fertility decreases, hindering plants to reach the mineral layers.
below. Thus, peat thickness has a significant effect to land productivity. The peat thickness is primary factors for selecting land management for agricultural development. Characteristics of peatlands samples from the field are presented in Table 2.

Horizon	Depth	Maturity level	Soil colour	The depth of groundwater	Soil pH	The depth of sulphidic
Oe	0-25	Hemic	5R 2.5/1	Reddish black	23 cm	-
Oa	25-80	Sapric	5R 2.5/1	Reddish black	3.74	-
Ap	80-100	Clay	5 YR 4/3	Reddish brown	3.58	-
Oe	0-16	Hemic	7.5 R	Very dark red	20 cm	-
Oa1	16-35	Sapric	2.5/2	Reddish black	3.81	-
Oa2	35-90	Sapric	5R 2.5/1	Very dark red	4.22	-
Ap	90-100	Clay	10R 2.5/2	Brownish grey	4.29	-
Oe	0-14	Hemic	5R 3/2	Dark red	20 cm	-
Oa	14-60	Sapric	5R 2.5/1	Reddish black	3.91	-
Ap	60-100	Clay	2.5Y 6/2	Brownish grey	4.19	-
Oa	0-82	Sapric	5 R 3/1	Dark red grey	30 cm	-
Ap	82-100	Clay	7.5YR	Dark brown	4.39	-
Ap	0-64	Sapric	5 R 2.5/1	Reddish black	35 cm	-
Ap	64-100	Clay	2.5Y 5/2	Grey brown	4.38	-

It can be seen from the table that maturity level of the organic horizon is at hemic-sapric. Sapric is peat with an advanced level of weathering (ripe). Hemic is peat with a moderate level of weathering (half-ripe), some of the material has been weathered and partly in the form of fibers. Mature peat tends to be more refined and fertile. Conversely, the immature ones contain lots of fibers and less fertile. The maturity of peat determines peatland productivity and substantially affects the level of peatland fertility and nutrient availability. The maturity level of peat varies depending on materials, environmental conditions, and time [11]. Raw peat that has not been decomposed contains higher levels of organic acids, while mature peat generally contains more ash as a source of chats [12].

Peat on the surface (top layer) is relatively more mature due to faster decomposition rate. However, ripe peat is often found in deeper layers. This indicates that peat is formed several stages [13].

Based on observations from drilling data, the research area is in a non-flooded condition with a shallow groundwater level (15-35 cm). The indicator of the peatland depth is groundwater depth because it may inhibit rooting media.

Soil drainage is related to the rate at which water enters the soil (infiltration) and shows the length and frequency of soil water saturation or stagnation. The state of soil drainage will determine the types of plants to grow in that land. Soybean require good drainage, good soil aeration to provide sufficient oxygen in the soil. Thus, plant roots can develop properly and absorb nutrients optimally. Soybean does not suit waterlogged areas since it will affect the growth of plant roots.
The mineral soil beneath the peat soil affects the fertility level of peatland. The mineral soil of the research location does not have sulfidic material, pyrite (FeS2).

Details of soil classification are presented in Table 3.

Classification	Profile	Profile	Profile	Profile
Ordo	Histosol	Histosol	Histosol	Histosol
Sub Ordo	Saprist	Saprist	Saprist	Saprist
Great Grup	Haplosaprist	Haplosaprist	Haplosaprist	Haplosaprist
Sub Grup	Typic	Typic	Typic	Typic

Samples 1-5 are included in the Histosols order. This is indicated by the presence of a histic epipedon with a thickness of > 40 cm. This soil has undergone an advanced decomposition (sapric) indicated by remaining material at about 1/3 after squeezing and has sapric organic matter, so it is included in the Saprists suborder. The absence of other features made the class fell into Haplosaprists, likewise at the level of the soil subgroup classified into the Typic Haplosaprists.

The analysis of peat soil at a depth of 0-40 cm is presented in Table 4. The soil acidity (pH) at the study site was 3.97, considered as very acid. Soil pH determines the ability of plants to absorb nutrients. High acidity is not suitable for soybean growth since ideally, soybean requires a pH range of 5.5 – 7.5 to grow optimally. High acidity of peat soil is caused by the hydrolysis of organic acids, which is dominated by fulvic and humic acids [8,10,14]. The decomposed organic material has reactive groups, including carboxylic (-COOH) and phenolics (C6H4OH) which dominate the exchange complex and act as weak acids to dissociate and produce large amounts of H ions.

No	Parameter	Observed values	Units	Methods	Classes
1	pH H2O	3.97	-	Electrode	Very Acid
2	pH KCl	3.69	-	Electrode	Very High
3	C-Organic	26.19	(%)	Walkey n Black	Very High
4	N-Total	0.39	(%)	Kjedhal	Medium
5	C/N	67.15	-	-	Very High
6	P-Total	52.88	(mg/100g)	HCl 25%	High
7	K Total	35.09	(mg/100g)	HCl 25%	Medium
8	CEC	30.27	cmol/kg	NH4OAc pH 7	High
9	Ca	2,800	cmol/kg	NH4OAc pH 7	Low
10	K	0.2657	cmol/kg	NH4OAc pH 7	Low
11	Mg	0.5933	cmol/kg	NH4OAc pH 7	Low
12	Na	0.2957	cmol/kg	NH4OAc pH 7	Low
13	H_exch	4.95	me/100g	KCl 1 N	Very Low
14	A_exch	0.44	me/100g	KCl 1 N	
High soil acidity affects the availability of nutrients such as P, K, Ca, and microelements [15,16]. In general, nutrients are easily absorbed by plant roots at a neutral pH since most of the nutrients are easily dissolved in water at that condition. The C-organic content was very high (26.19%) indicating the imperfect level of peat maturity, and characterized by low soil nitrogen, at about 0.39%. The total P and K contents were high-medium, the cation exchange capacity (CEC) on peat soils was high, around 30.27 me / 100g measured on the absolute dry weight. Even though the peatlands had a high cation exchange capacity (CEC), base saturation (KB) was very low, at 13.06%. The high CEC was due to negative charge from carboxylate and phenolic groups. The high CEC causes soil response to acid-base reactions to reach equilibrium requiring more reactants (ameliorants).

Very low base saturation results in low nutrient availability, especially K, Ca, and Mg. The availability of Ca, K, Na, and Mg in peatland is generally low; according to Hakim et al., Andriesse, Marwanto et al. [15,17,18], most of the total N, P, K in peat is in organic form.

Indonesia’s peatlands are formed on nutrient-poor soils and/or get nutrients from rainwater (ombrogen). According to Noor et al. and Suryanto [10,19], a good base saturation to allow absorption is around 30%. In addition, the available phosphorus and potassium are low, so fertilization are needed to provide good crop yields.

It can be seen from Table 5 that the actual land suitability for soybean is marginally suitable (S3) with the limiting factor of base saturation and soil acidity (nr). Adding lime and fertilization may improve the suitability into sufficiently suitable (S2), with limiting factors of air humidity (tc) and peat thickness (rc).

4. Conclusion
The actual suitability of the study area for soybean cultivation is marginally suitable (S3) with the limiting factor of base saturation and soil acidity (nr). It requires the addition of lime and fertilization for increasing base saturation and soil pH to improve the suitability. Following the application of lime or fertilization, the potential suitability becomes sufficiently suitable (S2) for soybean with limiting factors air humidity (tc) and peat thickness (rc).

Acknowledgments
Thank you to the Indonesian Agency for Agricultural Research and Development for financial support. Special thanks to Saipul Hamdan for his assistances during field surveys and thanks to Rianto as Field Agricultural Officer of Sungai Mandau Sub-district.
Table 5. Land suitability for soybean.

Land use requirements/characteristics	Score	Input	Actual suitability	Input	Potential suitability
Temperature (tc)					
Average temperature (°C)		25-32	S1	-	S1
Water availability (wa)					
Rainfall at growth period (mm/3 months)		618	S1	-	S1
Humidity (%)		85	S2	-	S2
Oxygen availability (oa)					
Drainage		Moderately poorly drained	S2	Drainage channel construction (+)	
Root condition (rc)		nd	-		
Texture					
Coarse material (%)		nd	-		
Soil depth (cm)					
Peat:					
Depth (cm)		60-90	S2	-	S2
Maturity		Sapric	S1	-	S1
Nutrient retention (nr)		30.27	S1	-	S1
Soil CEC (cmol)					
Alkaline saturation (%)		13.06	S3	Liming and fertilizing (+++)	S1
pH H₂O		3.97	S3	Liming (++)	S1
C-organic (%)		26.19	S1	-	S1
Nutrient availability (na)					
N total (%)		Medium	S1	-	S1
P₂O₅ (mg/100 g)		High	S1	-	S1
K₂O (mg/100 g)		Medium	S2	Fertilizing	S1
Toxicity (xc)					
Salinity (dS/m)		Td	-		
Sodicity (xn)		nd	-		
Alkalinity/ESP (%)					
Sulphidic hazard (xs)					
Sulphidic depth (cm)		>100	S1	-	S1
Erosion hazard (eh)					
Slope (%)		< 3	S1	-	S1
Erosion hazard		Sr	S1	-	S1
Flood hazard (fh)					
- Height (cm)		-	S1	-	S1
- Length (days)		-	S1	-	S1
Land preparation (lp)					
Rock on the surface (%)		< 5	S1	-	S1
Rock outcrop (%)		< 5	S1	-	S1
Note:					
(+): moderate level of management					
(++): High level of management					
References

[1] BPS Statistics of Riau Province 2016 *Riau Province in Figures 2016* (Pekanbaru: BPS - Statistics of Riau Province)

[2] Soependi I Y, Arianto Y, Zuraina W K, Pudjianto E, Udin A, Kurniawati N, and Damarjati S N 2014 *Tree Crop Estate Statistics of Indonesia 2013-2015: Palm Oil* (Jakarta: Directorate General of Estate Crops)

[3] BPS - Statistics of Siak Regency 2012 *Siak in Figures 2012* (Siak Sri Indrapura: BPS - Statistics of Siak Regency)

[4] Oldeman L R and Frère M 1982 *Technical Report on a Study of the Agroclimatology of the Humid Tropics of Southeast Asia* (Rome: Food and Agriculture Organization)

[5] Ritung S, Nugroho K, Mulyani A, and Suryani E 2011 *Petunjuk Teknis Evaluasi Lahan Untuk Komoditas Pertanian Edisi Revisi* (Bogor: BBSDLP - Kementerian Pertanian)

[6] Hardjiowigeno S and Widiatmaka 2007 *Evaluasi Kesesuaian Lahan dan Perencanaan Tataguna Lahan* (Yogyakarta: Gadjah Mada University Press)

[7] Soil Survey Staff 2014 *Keys to Soil Taxonomy, 12th ed* (Washington, DC: USDA-Natural Resources Conservation Service)

[8] Suriadikarta D A 2012 Teknologi pengelolaan lahan rawa berkelanjutan: Studi kasus kawasan ex PLG Kalimantan Tengah *J. Sumberd. Lahan* 6 45–54

[9] Masganti, Wahyunto, Dariah A, Nurchayati and Yusuf R 2014 Karakteristik dan potensi pemanfaatan lahan gambut terdegradasi di Provinsi Riau *J. Sumberd. Lahan* 8 59–66

[10] Noor M, Masganti, and Agus M 2014 Pembentukan dan karakteristik gambut tropika Indonesia In: *Lahan Gambut Indonesia: Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan (Edisi Revisi)* ed F Agus et al (Bogor: IAARD Press) pp 7–32

[11] Najiyati S, Muslihat L and Suryadiputra I N N 2005 *Panduan Pengelolaan Lahan Gambut Untuk Pertanian Berkelanjutan* ed I Ar-Riza (Bogor: Wetlands International)

[12] Masganti 2003 *Kajian Upaya Meningkatkan Daya Penyediaan Fosfat dalam Gambut Oligotrofik* Disertasi (Yogyakarta: Universitas Gadjah Mada)

[13] Dariah A, Maftuah E, and Maswar 2014 Karakteristik lahan gambut In: *Panduan Pengelolaan Berkelanjutan Lahan Gambut Terdegradasi* ed N L Nurida and A Wihardjaka (Bogor: BBSDLP - Kementerian Pertanian) pp 16–29

[14] Radjagukguk B 2000 Perubahan sifat-sifat fisik dan kimia tanah gambut akibat reklamasi lahan gambut untuk pertanian *J. Ilmu Tanah Dan Lingkungan* 2 1–15

[15] Hakim N, Nyakpa M Y, Lubis A M, Nugroho S G, Dih a M A, Hong G B and Bailey H H 1986 *Dasar-dasar Ilmu Tanah* (Lampung: Universitas Lampung)

[16] Subiksa I and Wahyunto 2011 Genesis lahan gambut di Indonesia In: *Pengelolaan Lahan Gambut Berkelanjutan* ed N L Nurida *et al* (Bogor: Balai Penelitian Tanah - Kementerian Pertanian) pp 3–13

[17] Andriesse J P 1988 *Nature and Management of Tropical Peat Soils* (Rome: Food and Agriculture Organization)

[18] Marwanto S, Watanabe T, Iskandar W, Sabiham S and Funakawa S 2018 Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland *Soil Sci. Plant Nutr.* 64 386–95

[19] X Suryanto 1994 *Improvement of the P Nutrient Status of Tropical Ombrogenous Peat Soils from Pontianak, West Kalimantan, Indonesia* Dissertation (Ghent: Ghent University)