Anticonvulsant activity of methanolic extract of *Withania coagulans* in mice

Zenat Fatima Khattak 1 · Bushra Ansari 1 · Muhammad Jamal 1 · Abdul Aleem Awan 1 · Muhammad Azhar Sherkheli 1 · Rizwan ul Haq 1

Received: 31 March 2021 / Accepted: 28 September 2021 / Published online: 7 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Mental and neurological diseases including depression, Parkinson’s disease, dementia, epilepsy, anxiety disorders and bipolar disorders account for a considerable amount of the world’s disease burden. Unfortunately, drugs used in the treatment of neurological diseases are expensive, symptomatic and they produce undesirable side effects. People from different cultures prefer to use medicinal plants for the treatment of various ailments ranging from plain to perplex disorders because they are most affordable, cost effective and easily accessible source of treatment in the primary healthcare system throughout the world. *Withania coagulans*, an erect grayish under-shrub belongs to family Solanaceae. It is common in Pakistan, East India, Iran and Afghanistan. The objective of this study was to analyze the anti-seizure activity of crude methanolic extract of *Withania coagulans* fruits (MeWc). For screening of this activity, maximal electroshock seizures model (MES) and chemically-induced seizures models were used. In maximal electroshock seizures test MeWc showed significant dose dependent percent protection against hind-limb tonic extension; significant and dose-dependent increase in latency to myoclonic jerks and tonic clonic convulsions and decrease in seizures duration were observed in PTZ-induced seizures. In strychnine-induced convulsions MeWc significantly increased latency to hind-limb tonic extension and percent protection from death in a dose-dependent manner. Thus, it was inferred from the experiments that extract of *Withania coagulans* showed anticonvulsant activity.

Keywords
Withania coagulans · Anticonvulsant · Maximal electroshock seizure · PTZ-induced seizure · Epilepsy

Introduction
The term epilepsy was discovered from the Greek word “Epilepsia” which means “to take hold of”, “seized” or “attacked”. Epileptic seizure generates due to abnormal hyperactivity in the brain (Fisher et al. 2005). It is the widespread, chronic, serious neurological disease affecting 65 million people worldwide (Thurman et al. 2011) and its symptoms include disturbance of movements and sensation (hearing, vision and taste), unconsciousness, anxiety, depression, disturbed mood or other cognitive dysfunctions. Idiopathic epilepsy is the most common type affecting about 60% epileptic people. Other type is symptomatic or secondary epilepsy with known causes. The causes of symptomatic epilepsy may be severe brain injury, stroke, brain tumor, certain genetic disorders, brain infections and birth defects (Megiddo et al. 2016).

It has been reported that epilepsy affects approximately thirty thousand people every year and in every 20 people, one man develops epilepsy in his life. The ratio of new epilepsy cases is 20-70 cases/lakh population every year globally (Shorvon 1990). As compared to elder population, incidence rate of epilepsy is more in children and adults in developed countries, while in developing nations, range of active epilepsy in Asia is 1.5–14 per 1000, in South America 17–57 per 1000 and in African countries this ratio is 5.2–43 per 1000 population (Mac et al. 2007).

There are various pathologies involved in the brain that leads to the development of epileptic disorder such as increased hyperexcitability due to abnormal synaptic connectivity, suppressed GABAergic receptor function, dysfunction of potassium channels and sodium channels, increased neurotransmission of glutamate or decrease level of GABA level etc. (Wojda et al. 2009). Moreover, variety of models have been used for the screening of antiepileptic
activity and for the investigating mechanistic pathway of the unknown compounds. These models include MES model (altering sodium influx and enhances glutamate level), PTZ induced seizures model (inhibiting GABA receptor), Kainic acid-induced seizure model, pilocarpine-induced seizure model (enhancing glutamate receptor activity), strychnine-induced seizure model (antagonism of glycine receptor) (Kupferberg 2001; Löscher 2017).

Conventionally, there are various classes of drugs available for the management of epilepsy such as Benzodiazepines, barbiturates, GABA analogs, succinimides, hydantoins, and carbamazepine (Goldenberg 2010). These AEDs are linked with various adverse effects, teratogenicity and dose-related chronic toxicity (Stefan et al. 2004). Drugs used in neurological diseases are expensive and they produce severe side effects which make the treatment difficult; so there is a demand for new drugs which are beneficial in neurological diseases and which are cost effective. One of the approaches is to search for naturally-occurring compounds (Vigil et al. 2005).

Withania coagulans belonging to family Solanaceae is mainly distributed in Pakistan, East India, Iran and Afghanistan (Maurya 2010). It is having globose-shaped smooth berries having diameter up to 6–8 mm and the seeds are somewhat ear-shaped having 2.5–3 mm diameter (Kirtikar and Basu 1918). Several phytochemicals like alkaloids, flavonoids, tannins have been extracted, characterized and isolated from aerial parts, roots and berries (Kapoor 2000). The antiepileptic activities of fruits of *Withania coagulans* has not been investigated adequately which influenced us to design this study which would help in exploring a novel agent from the plant source.

The objective of the study was to evaluate anticonvulsant activity and safety profile of MeWc in mice. Anticonvulsant activity was determined by using maximal electroshock test (MES) and chemical-induced seizure models like pentylene-tetrazole (PTZ) and strychnine (STN). The safety profile of MeWc was investigated by acute toxicity and neurotoxicity tests.

Material and methods

Animals grouping

Male Balb/c mice weighing 20-30 g were used in each model. Animals were obtained from animal house of Department of Pharmaceutical Sciences, Abbottabad University of Science & Technology, Abbottabad. Animals were kept under standard conditions; 25 ± 2 °C and 12/12 h light/dark cycle and were fed with easily accessible food pellets and water.

Chemicals and plant material

Pentlenetetrazole and strychnine were purchased from Sigma Aldrich. Methanol was obtained from Musaji & sons, Rawalpindi while sodium valproate and Phenytoin were received as gift samples from PolyFine Chem Pharma (Pvt) Ltd. Peshawar and Adamjee Pharmaceuticals (Pvt) Ltd. Karachi. All the drugs and extracts were dissolved in the normal saline. *Withania coagulans* fruits were purchased from local herb market in Karak, Khyber Pakhtoonkhwa, Pakistan. Taxonomical identification of plant was performed by Dr. Syed Mujtaba Shah, Botany Department, Hazara University, Mansehra. A voucher specimen number HUP/S02 for *Withania coagulans* was submitted in the herbarium of said Department. Preliminary phytochemical analysis of the MeWc was carried out for the presence of phytochemicals such as steroidal compounds, phenolic compounds, alkaloids, saponin, flavonoids and tannins using standard procedures (Trease and Evans 2009).

Acute neurotoxicity (TD50)

Acute neurotoxicity of MeWc was determined by method developed by Coughenour and colleagues in 1977 (Coughenour et al. 1977). It consisted of metal bars to which square platform was attached. The square platform was made of 0.6 cm wire mesh. One day prior to the experiment mice were pretrained on the apparatus. Those failing to climb the inverted screen were excluded. Testing was carried out 30 min after intraperitoneal administration of different doses of MeWc. Mice which were unable to climb inverted screen within sixty seconds were rated as failures.

Anticonvulsant activity of extract of *Withania coagulans*

Anticonvulsant screening of the extract was determined by maximal electroshock seizure test. Antiepileptic activity of the material was further validated by chemically induced antiepileptic models in mice. In each set of experiments, animals were randomly divided into five groups (n = 8) i.e. control group, reference standard group and 3 test groups. Experiments were blinded during the course of treatment and data collection.

Maximal electroshock seizure (MES) test

In MES test the electrical stimulus 72 mA for 0.2 s was applied to produce hind-limb tonic extension (HLTE) in control animals which served as group-I. The electrical stimulus was applied through transauricular electrodes (Kupferberg...
In group II phenytoin (20 mg/Kg) was intraperitoneally injected to mice and it served as reference standard group. (100-300 mg/Kg) MeWc were administered to group III-V and it served as test groups. All drugs and extract doses were injected intraperitoneally 30 min prior to the stimulus. Mice were considered protected if they were not displaying hind limb tonic extension.

Percent protection was calculated by using the following formula:

\[
\% \text{Protection} = 100 - \left(\frac{\text{Number of Mice exhibited HLTE}}{\text{Total Number of animals}} \right) \times 100
\]

Chemical induced seizure models

Pentylenetetrazole (PTZ) seizure test

In PTZ seizure test mice were divided randomly into five groups consisted of 8 mice each. Group-I received normal saline (10 ml/kg). Group-II was injected with 450 mg/Kg sodium valproate while group III-V were administered with (100 mg/Kg, 200 mg/Kg, 300 mg/Kg) MeWc. After 30 min of the drugs and plant extract treatment, PTZ (85 mg/Kg) was administered subcutaneously to all groups. Each animal was observed for a duration of 30 min for onset of myoclonic jerks and onset of tonic-clonic seizures. Total duration of seizures were also noted in 30 min observation. All doses were administered intraperitoneally except PTZ which was administered subcutaneously.

Strychnine (STN) seizure test

In STN seizure test 1.2 mg/Kg of STN was administered subcutaneously to group-I (Krall et al. 1978). Sodium valproate (550 mg/Kg) was injected to group II (positive control group). Three doses of MeWc (100 mg/Kg, 200 mg/Kg, 300 mg/Kg) were injected to groups III-V. After administration of doses, STN was administered subcutaneously to all groups. Each animal was observed for a duration of 30 min for onset of myoclonic jerks and onset of tonic-clonic seizures. Total duration of seizures were also noted in 30 min observation. All doses were administered intraperitoneally except PTZ which was administered subcutaneously.

Statistical analysis

All experimental data was analyzed statistically for significance by One-Way ANOVA using Origin 6 software. Values were expressed as mean ± SEM. P value of <0.05 was considered significant. Note that significant differences from control group were indicated as ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA test.

Results

Extraction and phytochemical analysis of the plant material

Dried fruits of Withania coagulans were ground to fine powder with the help of electric herb grinder and then extracted by maceration with methanol for 15 days. The process was carried out at room temperature with occasional shaking and left the mixture so that the plant material was maximally dissolved in organic solvent. After 15 days, it was filtered with white thin cloth. By repeating the same process thrice methanol soluble filtrate was obtained which was then concentrated with rotary evaporator at 40 °C and in this way crude methanolic extract of fruits was obtained. Results of the phytochemical analysis were depicted in Table 1. It has been reported in literature that 1 g of methanolic extract of Withania coagulans contains 55.9 mg of total phenolic contents (equivalent to gallic acid), 76.6 mg of total tannin contents (equivalent to tanic acid), 0.88 mg and 0.25 mg of total flavonoid and flavonol contents respectively (equivalent to rutin) (Prasad et al. 2010).

Acute neurotoxicity (TD50)

For assessment of acute neurotoxicity, inverted screen test was carried out after 30 min of administration of different doses to animals (600, 800, 1000, 1200 mg/Kg; n = 8; i.p.) of Withania coagulans extract. At 1000 mg/Kg dose all tested mice climbed the screen illustrating that MeWc didn’t show any neurotoxic effects on the said dose (Fig. 1).

Table 1 Phytochemical screening of methanolic extract of Withania coagulans fruit

S.No	Phytochemicals	Test/ reagents	Result
1	Carbohydrate	Fehling’s test	Present
2	Alkaloids	Dragendorff’s reagent	Present
3	Glycosides	Borntrager’s test	Present
4	Saponin	Forth test	Present
5	Phytosterol	Chloroform	Absent
6	Flavonoids	Liebermann Burchard test	Present
7	Steroidal compounds	Lead acetate	Present
8	Tannins	Sodium hydroxide	Present
9	Fixed oil	Ferric chloride test	Present
Anticonvulsant activity

MeWc enhanced the percent protection in MES and increased the duration of seizures in PTZ induced model

Results presented in Fig. 2A and B showed that MeWc prevented percent protection against hind limb tonic extensor jerks in comparison to PTZ-treated animals. Figure 2A depicted that MeWc at 100, 200 and 300 mg/Kg protected animals from HLTE to 50%, 62.5% and 75% respectively compared to the control group (n = 8), while 20 mg/Kg phenytoin used as standard drug showed 100% protection in MES model of seizures.

Similarly, MeWc extract has dose dependent effects on seizures duration. It has been observed that MeWc 100 mg/Kg reduced the duration of seizures to 43 ± 3.35 s from 67.29 ± 3.84 s (PTZ treated group), while in 200 and 300 mg/Kg tested groups the duration of tonic-clonic seizures was further reduced to 29.57 ± 1.75 s and 21.43 ± 1.68 s respectively as compared to the PTZ treated group (P < 0.001, Fig. 2B). Similarly, sodium valproate (450 mg/Kg) which was used as standard completely prevented the seizures in PTZ induced seizures (Fig. 2B).

MeWc increased the onset of myoclonic and tonic-clonic jerks in PTZ-induced seizures test.

MeWc delayed the onset of myoclonic and tonic-clonic jerks PTZ-induced seizure model in a dose dependent manner. It has been observed that PTZ (85 mg/Kg) caused the onset of myoclonic jerks in PTZ-treated group in 195.57 ± 7.32 s. MeWc in lowest tested dose (100 mg/Kg) significantly delayed the initiation of myoclonic jerks from 195.57 ± 7.32 s (control group) to 215.14 ± 5.16 s (Fig. 3A P < 0.05, F = 6.4). At 200 mg/Kg dose latency to myoclonic jerks was increased to 232.71 ± 9.37 s (p < 0.01, F = 12.8). Similarly, at 300 mg/Kg dose, latency to myoclonic jerks was further increased to 255.7 ± 9.60s (p < 0.001, F = 23.2). With increasing doses, an increase in latency was observed (Fig. 3A, n = 8 in each group). Furthermore, sodium valproate at a dose of 450 mg/Kg prevented the onset of myoclonic jerks in all the animals.

Moreover, our results shown that MeWc delayed significantly the initiation of tonic-clonic seizures in mice in

Fig. 1 Acute neurotoxicity of MeWc in mice. Graphical representation of climbing rate of mice on different doses of MeWc through intraperitoneal route (n = 8). Note that all mice receiving MeWc upto dose of 1000 mg/Kg successfully climbed in the inverted screen test
PTZ-induced seizure model. An increase in latency was observed with the incremental doses of plant extract in comparison to PTZ treated group (298 ± 7.93 s). MeWc at different doses (100, 200, 300 mg/Kg) significantly and dose-dependently raised the onset of tonic-clonic seizures in mice in PTZ-induced seizure model. It was noted that MeWc at 100 mg/Kg, latency to tonic-clonic seizures was increased to 354 ± 8.64 s (P < 0.001, F = 30.1). At 200 mg/Kg, the latency to tonic-clonic seizures was increased to 386 ± 5.773 s (P < 0.001, F = 102.9) and at 300 mg/Kg the latency was further increased to 430 ± 13.42 s as compared to the PTZ-treated group (Fig. 3B, n = 8, P < 0.001, F = 98.7).

MeWc increased the percent protection and latency to HLTE and death in strychnine induced seizures

Hind limb tonic extension is considered as the last stage of the seizure scores that leads to the generalized seizures and ultimately cause death of the animals. It has been observed that MeWc significantly enhanced the % protection from HLTE and also delayed the onset of HLTE and death. It has been noted that HLTE was produced in all the animals by administration of strychnine (1.2 mg/Kg). MeWc at different doses (100, 200 and 300 mg/Kg) produced dose dependent and significant (Fig. 4A, n = 8, P < 0.05) percent protection from HLTE. Protection against strychnine induced seizures was observed 100% in sodium valproate 550 mg/Kg (standard group).

Similarly, MeWc delayed the time of onset of both HLTE and death in a dose dependent manner (Fig. 4B, n = 8, P < 0.05). In case of strychnine-treated group, latency to HLTE and death was 286.57 ± 11.70s and 302.28 ± 14.95 s respectively (Fig. 4B, n = 8). MeWc at 100 mg/Kg delayed latencies to HLTE and death to 346.85 ± 12.88 s and 352.85 ± 12.46 s respectively as compared to the control group. Similarly, MeWc 200 mg/Kg delayed the latencies to HLTE and death to 376.42 ± 10.12 and 382.85 ± 9.62 s.
respectively. Further, MeWc 300 mg/Kg delayed the latency to hind limb tonic extensions and latency to death further to 395 ± 10.05 and 402.42 ± 10.06 respectively. Moreover, sodium valproate prevented all the animals from HLTE and death as compared to the strychnine-treated group.

Discussion

Epilepsy being the second most common neurological disorder which affects approximately 80% people in developing countries (Yemedje et al. 2011). Synthetic drugs that are currently available for treatment of these disorders exhibited undesirable side effects. Therefore, to overcome this situation, search for new drugs from medicinal plants has progressed in the past decade. In the present study, anticonvulsant activity of MeWc was investigated through pentylpentetrazole (PTZ) seizure model, strychnine-induced seizure model and maximal electroshock seizure (MES).

It has been known that MES model potentiates influx of sodium and also raise the level of glutamate at the synaptic terminals. Glutamate then binds to the NMDA receptor that ultimately induced symptoms that mimics epileptic seizures in animals. Phenytoin and sodium valproate works by inhibiting NMDA-mediated opening of sodium influx and prevented the spread of the seizures and showed their anticonvulsant effects. The extract, MeWc, was not able to completely prevent HLTE in all mice at any dose but it increased the percent protection against MES induced HLTE with the increasing dose. *Withania coagulans* contains several phytochemicals including withanolides like withanolide A, withanolide H, withaferin A, withacoagulin H, withanolide K, and withanolide J etc. (Ihsan-ul-Haq et al. 2013; Ali et al. 2015). Withanolide A isolated from *Withania somnifera* has shown ameliorating effects in temporal lobe epilepsy and impaired learning and memory mediated by altered function of AMPA and NMDA receptors (Soman et al. 2012; Soman et al. 2013; Zhu et al. 2020). These findings indicate that withanolide A may modify conductance through NMDA and AMPA receptors coupled cationic channels and offer neuroprotection against epilepsy. Withanolides being relatively non-polar compounds can enter in brain (Muhasaparur Ganesan et al. 2021). Similarly, in this study, protection may be due to presence of chemical constituents like wathanolide A in the extract that may prevent the spread of seizures by altering cationic conductance. Thus, it may be suggested that MeWc exerts its anticonvulsant effects through inhibiting sodium influx and prevented neuronal hyperexcitation further experimentation is needed to elaborate these effects of MeWc.

PTZ may exert its convulsant effects by potentiating calcium currents or by inhibiting GABA (inhibitory neurotransmitter) particularly at GABA$_A$ receptors (Huang et al. 2001). Anticonvulsant activity of an agent may be indicated when it completely stops or delays the onset of tonic-clonic convulsions induced by PTZ. As we evaluated in the current experiments that MeWc delayed the occurrence of high frequency seizures in mice and also decreased the duration of convulsions produced by the administration of GABA-A receptor antagonist (PTZ), it is inferred that MeWc may act through GABA receptor in the prevention of seizures.

Furthermore, strychnine antagonizes glycine receptors in the brain leads to the inhibition of hyperexcitation of the neurons that ultimately produces seizures (McGaraughty and Henry 1998). Our results demonstrated that administration of MeWc significantly increased the latency of seizures in strychnine-induced convulsions as compared to control group suggesting the possible involvement on glycineric neurotransmission.

Conclusion

Extract of *Withania coagulans* have shown promising results in increasing percent protection in MES and STN induced models of seizures, delayed the occurrence of myoclonic and tonic-clonic seizures in PTZ-induced seizures and also delayed onset to HLTE and death in strychnine-induced seizure model in mice. Thus it was concluded from these experiments that *Withania coagulans* had a promising antiseizure activity. Further studies could provide the deep insight into the mechanistic pathway(s) involved in the prevention of epileptic seizures by *Withania coagulans*.

Acknowledgements Authors are thankful to Dr. Syed Mujtaba Shah for identification of plant material and Dr. Mudassir Shah for critical comments on Manuscripts. This study has been financially supported National Research Program for University (NRPU # 3842) by Higher Education Commission of Pakistan.

Authors’ contribution ZFK, MAS and RUH designed the study. ZFK, BA and MJ performed experiments presented in this study. ZFK and AAA analyzed and interpreted the data and ZFK, MAS and RUH prepared manuscript.

Declarations

Research involving animals Study has been conducted on laboratory animals according to the approved ethical guidelines of the institution for care and use of laboratory animals with approval number AUST/Pharm/AEC/2016/008.

Consent of authors All authors are willing to submit this manuscript in Metabolic Brain Disease.

Provision of data Data will be provided upon a reasonable request.

Conflict of interest Authors declare that they have not any scientific or financial conflict of interest to any person or organization. RUH received research grant from Higher Education Commission of Pakistan HEC/NRPU# 3842 and declare no conflict no interest.
References

Ali A, Maher S, Khan SA, Chaudhary MI, Musharraf SG (2015) Sensitive quantification of six steroidal lactones in Withania coagulans extract by UHPLC electrospray tandem mass spectrometry. Steroids 104:176–181

Coughenour LJ, McLean, Parker R (1977) A new device for the rapid measurement of impaired motor function in mice. Pharmacol Biochem Behav 6(3):351–353

Fisher RS, Blume W, Elger C et al (2005) Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472

Goldenberg MM (2010) Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. Pharm Therap 35(7):392

Huang RQ, Bell-Horner CL, Dibas MI, Drewes JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type a (GABA(a)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298(3):986–995

Ihsan-ul-Haq, Youn UJ, Chai X, Park EJ, Kondratyuk TP, Simmons CJ, Borris RP, Mirza B, Pezzuto JM, Chang LC (2013) Biologically active withanolides from Withania coagulans. J Nat Prod 76(1):22–28

Kapoor L (2000) Handbook of Ayurvedic medicinal plants: herbal reference library, vol 2. CRC press, Boca Raton

Kiritkar KR, Basu BD (1918) Indian medicinal plants, Part II. Apurva Krishna Bose, The Indian Press, Allahabad, pp 906–908

Krall R, Penry JK, White BG et al (1978) Antiepileptic drug development:II. Anticonvulsant drug screening. Epilepsia 19(4):409–428. https://doi.org/10.1111/j.1528-1179.1978.tb04507.x

Kupferberg H (2001) Animal models used in the screening of antiepileptic drugs. Epilepsia 42(4):7–12

Löscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of Antiseizure drugs. Neurochem Res 42(7):1873–1888

Mac TL, Trans DS, Quet F et al (2007) Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review. Lancet Neurol 6(6):533–543. https://doi.org/10.1016/s1474-4422(07)70127-8

Maurya R (2010) Chemistry and pharmacology of Withania coagulans: an Ayurvedic remedy. J Pharm Pharmacol 62(2):153–160. https://doi.org/10.1211/jpp.62.02.0001

McGaraughty S, Henry JL (1998) The effects of strychnine, bicuculine, and ketamine onimmersion-inhibited dorsal horn convergent neurons in intact and spinalized rats. Brain Res 784(1):63–70. https://doi.org/10.1016/s0006-8993(97)01153-0

Megiddo I, Colson A, Chisholm B et al (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3):464–474. https://doi.org/10.1111/epi.13294

Muhasaparun Ganesan R, Settu DK, Murkunde Y, Duraipandian C (2021) Pharmacological and pharmacokinetic effect of a polychemical combination with Withania somnifera (L.) Dunal for the management of anxiety. J Ethnopharmacol 265:113337. https://doi.org/10.1016/j.jep.2020.113337

Prasad SK, Singh PN, Wahi AK, Hemalatha S (2010) Pharmacological standardization of Withania coagulans Dunal. Phcog J 2(11):386e–394e

Shorvon S (1990) Epidemiology, classification, natural history, and genetics of epilepsy. Lancet 336(8707):93–96. https://doi.org/10.1016/0140-6736(90)91603-8

Soman S, Korah PK, Jayanarayanan S, Mathew J, Paulose CS (2012) Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide a. Neurochem Res 37(9):1915–1927

Soman S, Anju TR, Jayanarayanan S, Antony S, Paulose CS (2013) Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: ameliorating effects of Withania somnifera and withanolide a. Epilepsy Behav 27(3):484–491

Stefan H, Wang Y, Pauli E, Schmidt B (2004) A new approach in antiepileptic drug evaluation. Eur J Neurol 11(7):467–473. https://doi.org/10.1111/j.1468-1331.2004.00812.x

Thurman DJ, Ettore B, Charles EB et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(s7):2–26. https://doi.org/10.1111/j.1528-1167.2011.03121.x

Trease GE, Evans WC (2009) Pharmacognosy, 16th edn. Brown Publication, Charlestown

Vigil AL, Palou E, Alzamora SM (2005) Naturally occurring compounds—plant sources. Antimicrobials in food 28:429

Wojda E, Wlaz A, Patsalos PN, Luszczki J (2009) Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6Hz psychomotor seizure model. Epilepsy Res 86(2-3):163–174. https://doi.org/10.1016/j.epilepsres.2009.06.003

Yemedje LP, Houinato D, Quet F, Druet-Cabanac M, Preux PM (2011) Understanding the differences in prevalence of epilepsy in tropical regions. J Epilepsy 52:1376–1381. https://doi.org/10.1016/j.jepl.2011.07.002

Zhu J, Park S, Jeong KH, Kim WJ (2020) Withanolide-a treatment exerts a neuroprotective effect via inhibiting neuroinflammation in the hippocampus after pilocarpine-induced status epilepticus. Epilepsy Res 165:106394

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.