Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)

Takashi Nakatsuka1, Eri Yamada1, Misa Saito1, Takashi Hikage2, Yuka Ushiku1 and Masahiro Nishihara1*

Abstract

Background: Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians.

Results: Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility.

Conclusions: This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species.

Keywords: AFLP, Functional marker, Genetic linkage map, iPBS, Japanese gentian, marker, RAPD, REMAP, SSR

Background

Gentianaceae (order Gentianales), comprises 87 genera and more than 1,500 species that are distributed worldwide. The genus Gentiana is the largest genus in the Gentianaceae and includes over 400 species [1]. Among them, two major floricultural species, Gentiana triflora and Gentiana scabra, the so-called Japanese gentians, have been cultivated in Japan since the 1960s. In addition to Japanese gentians, the important floricultural plant Eustoma (Eustoma grandiflorum), otherwise known as lisianthus, and a pharmaceutical plant, Swertia (Swertia japonica), also belong to the family Gentianaceae. Japanese gentians are among the most popular floricultural plants in Japan, and have unique vivid blue flowers [2]. The main Japanese gentian is G. triflora, which usually blooms from July to September in Japan. G. scabra blooms later, from September to November, and has some valuable traits, such as an open corolla and resistance to gentian brown leaf spot caused by Mycochaetophora gentianae [3,4]. The chromosome numbers of G. triflora and G. scabra are 2n=26, whereas those of European pharmaceutical gentians, including Gentiana lutea and Gentiana punctata, are 2n=40. It is difficult to produce interspecific hybrids among members of the genus...
Gentiana because of the different basal chromosome numbers. The nuclear DNA content in *G. triflora* is 9.11 to 9.30 pg/2C, and that in *G. scabra* is 11.35 to 11.75 pg/2C [5]. Thus, these two Japanese gentians have similar genome sizes (approximately 5×10^9 bp/1C), which are larger than those of some other plants, e.g. *Arabidopsis thaliana* (1.5$\times 10^9$ bp /1C) [6], *Medicago truncatula* (3.8$\times 10^8$ bp /1C) [7], rice (4.9$\times 10^8$ bp /1C) [8], and tomato (9.0$\times 10^8$ bp /1C) [9].

There has been extensive molecular and physiological research on flower colors, flowering times, and cold tolerance of winter buds of Japanese gentians [10-14]. Based on these molecular studies, several genetic markers have been developed. For example, we developed genetic markers that discriminate among blue, pink, and white flower color [15,16]. To protect breeders’ rights, markers based on fragment length polymorphisms (sequence characterized amplified region (SCAR) and SSR markers) were developed to identify Japanese gentian cultivars [17,18]. The haplotypes of *W14/15* alleles, which encode an esterase involved in cold tolerance of winter buds, provided data that clarified phylogenetic relationships in the genus *Gentiana*, and allowed analysis of the pedigree and breeding history of cultivars derived from those *Gentiana* spp. [14].

Genetic linkage maps are useful for studies on genomic structure and evolution, and for identification of monogenic traits or Mendelian components of quantitative trait loci (QTLs). Therefore, they are very useful for breeding programs and are the basis for future positional gene cloning [19,20]. They are also very useful for marker-assisted breeding and introgression of beneficial traits into floricultural plants. Genetic linkage maps have been constructed for several floricultural plants, including rose (*Rosa hybrida*) [21,22], carnation (*Dianthus caryophyllus*) [23,24], Asiatic hybrid lily (*Lilium sp.*) [25], and periwinkle (*Catharanthus roseus*) [26]. However, no genetic linkage maps have been developed for the genus *Gentiana* or for any member of the family Gentianaceae, including economically important species.

The majority of floricultural plants are allogamous, but most linkage maps for crop plants have been obtained from segregating populations derived from crosses between inbred lines. Therefore, genetic linkage maps for allogamous and vegetatively reproducing species have been constructed using a double pseudo testcross strategy [25,27]. Conversely, the genetic linkage map for ryegrass (*Lolium perenne*) was constructed using a backcross population involving a double haploid (DH) tester [28,29]. Japanese gentians are also highly heterozygous plants that suffer from inbreeding depression. To obtain pure lines, the androgenic double haploid DH line, Aki6PS, was produced recently in *G. triflora* using anther culture [30].

Here, we report the construction of a genetic linkage map for Japanese gentian, *G. scabra*, using a BC$_1$ population backcrossed with *G. triflora* DH line Aki6PS and 308 genetic markers. This is the first reported genetic linkage map for Japanese gentians and the first for any species belonging to the family Gentianaceae. Our results are important for understanding the genetic basis of traits and to apply molecular markers linked to mapped loci for marker-assisted selection in gentian breeding programs.

Results

Simple sequence repeat markers

The enriched SSR libraries from the DH line Aki6PS (*G. triflora*) yielded 19,416 clones using Roche 454 pyrosequencing. Of these, 8,932 clones (46.0%) contained SSR motifs. Only 599 clones (6.7%) were suitable for designing primer sets for SSR markers; the rest comprised reads that were too short (<200 bp) to design primers from the proximal sequences of the SSR motif. Therefore, in addition to next generation sequencing, 2,539 clones from the enriched SSR libraries were subjected to Sanger DNA sequencing analysis. As a result, 1,048 clones (41.3%) had SSR motifs within the sequence reads, and 630 clones (60.1%) could be used to design primer sets for SSR markers. These results indicated that the conventional strategy using Sanger sequencing was more efficient than next generation sequencing for developing SSR markers, without considering cost, labor, and time.

We screened 1,229 SSR markers using both parents and one F$_1$ individual. Most SSR markers showed no or unstable amplification, or produced amplified fragments with unexpected lengths. Eighty SSR markers detected significant polymorphisms as co-dominant markers. In addition, 21 SSR markers were dominant markers, amplifying PCR fragments from SP6A1 and F$_1$ but not from Aki6PS (Table 1). Ultimately, 101 SSR markers were available to construct the genetic linkage map. Sequence data for the markers have been deposited in GenBank/EMBL/DDBJ nucleotide sequence databases under the accession numbers (AB755678 - AB755777).

Retrotransposon microsatellite amplified polymorphism markers

To increase the number of available genetic markers for Japanese gentian, we developed some retrotransposon microsatellite amplified polymorphism (REMAP markers) using a retrotransposon. A retrotransposable element *GsTRIM1* (terminal repeat retrotransposon in miniature) has been reported in *G. scabra* [31]. Therefore, to isolate novel LTRs of retrotransposons from Japanese gentians, we used iPBS technology as described by Kalendar et al. [32] (Figure 1A). Genomic DNA was

Nakatsuka et al. BMC Genomics 2012, 13:672
http://www.biomedcentral.com/1471-2164/13/672
Markers	Repeat motif	Forward (5’→3’)	Reverse (5’→3’)	Product size (bp)	Amplification	Accession no.
AC1	(AC)₁₁, (AC)₃, (TA)₄	TATCACAGAAGATGTTCAGATTT	CCGAAAAACAGTAAAGGGGTACTAGA	160	G. scabra	AB755678
AC2	(AT)₁₂, (AC)₁₁	AGTGCGGCTGTGTTGGTTTATCTC	TACTCCAGAAGCTGCGGTCTCTAGG	250	G. triflora / G. scabra	AB755679
AC62	(AC)₆₋₆, (CA)₆₋₆, (CA)₇	TAGTTTCTTTTGGTGTTGGAAGGTG	GAGAGGCGGTGTACATATGTGAAGT	129	G. triflora / G. scabra	AB755680
CA10	(CA)₁₂, (TA)₃	CTGGAAACACCAACACACACAT	ATCCATGCTCTCTCCGTAGCTC	187	G. triflora / G. scabra	AB755681
CA28	(CA)₁₀	GCAAAATCTTTTTATCTTCTTCTG	CAGCAGCTGCAAGCTACTATCCTTCTG	134	G. triflora / G. scabra	AB755682
CA36	(CA)₃₋₆, (CA)₈	GTGGGGAAAAACAAATAGCTTTTGGG	AGCTGATTACCTTCTGTTTCAAGAT	131	G. triflora / G. scabra	AB755683
CA43	(GA)₁₀, (CA)₁₀	ATTTCTCTAAGCAATAGCTCTTCTG	CGTGAACCAAAAGGGATCAAAAGGATAC	200	G. triflora / G. scabra	AB755684
CD3	(CA)₁₀, (GA)₁₀	GGTAAACCTTTAGGTAGT	ATGAAAGCTCTCCTCCTGAC	156	G. scabra	AB755685
CD12	(AGT)₁₂, (AGT)₁₂	TACAGCTCCAAGCTAATGAGA	GAACCGCAGCAAAAGCGCTATAC	183	G. triflora / G. scabra	AB755686
CD26	(AG)₃₋₃, (TA)₉₋₃, (CA)₁₀	TCTCCAAGAAGCTTACGAAGCAAT	TGGTGATCTTACAGCCTTCGTCG	207	G. triflora / G. scabra	AB755687
CD35	(GCG)₁₀, (CA)₁₀	TAGGGACGTACCCGACTCAAGAAA	GAGAGAAGTAGGGGGAAGGAGCCGC	225	G. scabra	AB755688
CD41	(ACA)₁₀	TCCACGTCAGCTCAAGTTGAA	GAAACGACAGAATGGGACACTT	240	G. triflora / G. scabra	AB755689
CD43	(AT)₁₀, (CA)₁₀	TGTGCATCACTTTACCTGGTCGGAT	CCAAGAATCAACGGCTTGGGAAC	244	G. triflora / G. scabra	AB755690
CD44	(AT)₁₀	TACTTGGGCGGAGCTTCTTGAAGAT	ACACCAAAGAAAGGACAGTCGTTGA	244	G. triflora / G. scabra	AB755691
HC5	(CA)₁₀	GCTTTAGCAGTTGTTGACCTTGGTTT	GGGAAGTGAGTAATGTTCAGGTGTC	115	G. scabra	AB755692
HC6	(CA)₁₂₋₆, (TA)₉₋₃	TCCTAATCATCGGCGAGTAGGTC	AGTTTTCTTGACAACTTTGGGCAAG	115	G. scabra	AB755693
HC7	(CA)₁₀	AGCGTGAAACCTGAGTGAATTCTTG	AACTCCCATGGAACCGACACTT	119	G. scabra	AB755694
HC18	(AC)₁₀₋₃, (AC)₁₂	CAAAGGACAGGCAAAATATAGGGG	GCTCGACATGTTGCTATCTCTGTA	156	G. scabra	AB755695
HC20	(CA)₁₀, (TG)₁₀	TCTCGGGTTGAATAGAACTCACCC	TCTGAGACCTGACCTTGGGCAAG	158	G. scabra	AB755696
HC23	(GA)₁₀	TAGAAGTGTGTCGAAATTTGGGCGAT	AAAAGCAGATAAAGGAAGAGGGGG	244	G. scabra	AB755697
HC26	(CA)₁₀	AGCTTGGACTGTTGCTGGAGGGTTC	GCAAAAATTTTAATCGTGAAAGCGGCA	176	G. triflora / G. scabra	AB755698
HC29	(CA)₁₀₋₃, (AC)₁₀₋₃, (TA)₉₋₃	CACAGCGCTAACAAGCAGACACTGTA	TCTTCTGTTCTTGACATCAAAAGG	194	G. triflora / G. scabra	AB755699
HC41	(CA)₁₀, (ACA)₁₀	CGTTCTTGGACTTATTTTTTGCCG	CATTTCAGATTTCTCCTGCCACCCCTC	219	G. scabra	AB755700
HC48	(TA)₁₀₋₃, (GA)₁₀	GTGGATGCTCTGCGAATTGGGGACTG	AAGGTGCTTGGGGTGAAATACCT	227	G. scabra	AB755701
HC49	(CA)₁₀	CTTTTCCCACTGATAGAATCTCCG	GCTATGCGTCTGTATTTCCTCTTTC	229	G. scabra	AB755702
HC71	(CA)₁₀₋₃, (CT)₁₁₋₃	TGAAGGCACAATGCGGTGTTGAA	GTGGAACCTTTGTCTCTCCCTCCT	253	G. scabra	AB755703
HC72	(CA)₁₀	AGGAATCTTGTGAGGGGGTGTGTTT	CCGGTAATCCTCGGAGCAATAAT	256	G. scabra	AB755704
HC90	(CT)₁₀₋₃, (AC)₁₀₋₃, (TA)₈₋₃	GTTGTGTTTGAGTCAATGGTTGGG	TATTCATGGTGCTTGGCCAGCTGATGG	285	G. triflora / G. scabra	AB755705
HC91	(CA)₁₀₋₇, (CA)₁₀₋₇, (CA)₁₀₋₇, (CT)₁₀₋₇, (CT)₁₀₋₇	GCATTCAATTCTGGCAGCTTGGGAAGGA	GGGGAGGGCTTTGGGTAATCACCTCA	286	G. triflora / G. scabra	AB755706
HC100	(TA)₁₀₋₃, (CA)₁₀₋₃, (GA)₁₀	GCCGGTTTCTTGGTCTCAAGAGGAT	GGGCTTGGCGGAGGAGTAACTAAA	294	G. scabra	AB755707
Primer	Sequence	Length	Species	Accession		
----------	-------------------------------	--------	--------------------------	-----------		
HC103	ATTTCTCTCAGCTCATGAAAACCA	299	G. triloba / G. scabra	AB755708		
HG13	CAGTTCCACTGAAAATCCCGGAT	102	G. scabra	AB755709		
HG16	CCATCAAAATACCCCATACACAGAAG	259	G. scabra	AB755710		
HG26	GCCATTCCTGAAACCCCTGTAACC	149	G. scabra	AB755711		
HG42	GCATCATATCCAGGTTCTCCT	236	G. scabra	AB755712		
RC13	ACGGATACGAGGTGTATTTTAA	185	G. scabra	AB755713		
RC25	TCAATTCCAGTTAATGAGACTGTTTCTC	142	G. scabra	AB755714		
ReSN7	TATAAGGACTGTCGTGCGGACGG	173	G. scabra	AB755715		
ReSN22	ATCAAGGCTTGTCTGCTTCCC	146	G. scabra	AB755716		
ReSN84	AGCTGTAAGTTGAAAAACCGCTTGA	110	G. scabra	AB755717		
SA3	GCTCTTTCTACCCGATTTTGGTA	182	G. scabra	AB755718		
SA4	AGCCACTTGTCCACAGTTCGTTACCT	254	G. scabra	AB755718		
SA12	ACAATAATATGGAGGCTTGAGG	224	G. scabra	AB755719		
SH9	GCAAGAAGTTAAAAACGTAAGCGTG	200	G. scabra	AB755720		
SH14	TCTCTACCGAGGAGGTGGTGTAGT	247	G. scabra	AB755721		
SN7	AAGAAACTGGGATGTTCACGC	197	G. scabra	AB755722		
SN24	GTTCCTTTGGTATTTGGAGTGT	157	G. scabra	AB755723		
SN27	CATGGTGAGTTGGTTGAGGGAAG	167	G. scabra	AB755724		
SN28	TAGCTGCCTGGTTGGGAGGTA	166	G. scabra	AB755725		
SN39	GAAACACATGGTTCCTCCTACT	152	G. scabra	AB755726		
SN40	GTTCTGTTAGGCTGGGTTG	152	G. scabra	AB755727		
SN48	AATTTAAAGGCCGCTTACC	224	G. scabra	AB755728		
SN55	GCTTTGGTTATACCCGGACAC	161	G. scabra	AB755729		
SN73	TCCGATTGGATGGTGATG	167	G. scabra	AB755730		
SN87	TGGATCAAGTTCATGTTGCA	175	G. scabra	AB755731		
SN124	AGATGCAAGCTGGTGTTGATATT	154	G. scabra	AB755732		
SN143	TCCCTTCAATGGTGGATG	151	G. scabra	AB755733		
SN157	ACGGAAGTTACCGGATG	171	G. scabra	AB755734		
Primer	Repeat	Sequence	Length (bp)	Species	GenBank ID	
--------	---------	----------	-------------	---------	------------	
SN175	(CA)₈	CACCAACACAAAGTTAGGTCTCCAAGGCTTGATGAG	162	G. triflora / G. scabra	AB755735	
SN181	(CA)₆	TTAGAGGTGCCTTCTCCATCTCAACAGGCTTCCCTGGA	204	G. triflora / G. scabra	AB755736	
SN182	(AG)₁₃	AATAGAGGCCTTCTTCTTCATCAACAGGCTTCCCTGGA	151	G. triflora / G. scabra	AB755737	
SN186	(CA)₆	TGGCATTTTGTGAAGTTTGAGCAGAAGAGATGATGAG	204	G. triflora / G. scabra	AB755738	
SN224	(AC)₈	TATGGAGATCTTCTTTGCTCTGACTAAGGCTTCCCTGGA	151	G. triflora / G. scabra	AB755739	
SN238	(AC)₁₂	AAAAGACCAACATTTCCACGTGACAGGCTTCCCTGGA	154	G. triflora / G. scabra	AB755740	
SN260	(CA)₆(TA)₅	CACCATCACTGCAAGTTGCTCAGAAGAGATGATGAG	241	G. triflora / G. scabra	AB755741	
SN282	(AC)₆	TGGCATTTTGTGAAGTTTGAGCAGAAGAGATGATGAG	205	G. triflora / G. scabra	AB755742	
SN285	(AC)₁₂	CCATCTCTTGCTTTGATCGTGAGGCTTCCCTGGA	157	G. triflora / G. scabra	AB755743	
SN327	(AC)₁₁	CACCATACATGCAAGTTGCTCAGAAGAGATGATGAG	232	G. triflora / G. scabra	AB755744	
SN328	(CA)₁₂	TTAATTTCTCTTTCTTTTGCTCAGAAGAGATGATGAG	169	G. triflora / G. scabra	AB755745	
SN336	(AC)₁₃(AT)₉	AAAAGGAAAAGTAGTGGTTGAGCAGAAGAGATGATGAG	193	G. triflora / G. scabra	AB755746	
SN343	(CA)₁₂	TGGCTGAAACAGGTAGATGACAGGCTTCCCTGGA	189	G. triflora / G. scabra	AB755747	
SN345	(AC)₇	ACTAGACCCCTCACCAATGCTGAGGCTTCCCTGGA	181	G. triflora / G. scabra	AB755748	
SN355	(AC)₈	GACTCCATATTGCACTGGACAAAGGCTTCCCTGGA	214	G. triflora / G. scabra	AB755749	
SN381	(AC)₆	GCAAAAGAAGAAGGCTTCCCTGGA	172	G. triflora / G. scabra	AB755750	
SN388	(CA)₁₁	CTGCCAAATAGCAGAAAAGCTGAGGCTTCCCTGGA	167	G. triflora / G. scabra	AB755751	
SN463	(AC)₈	GGAAGAGCTGAGGCTTCCCTGGA	164	G. triflora / G. scabra	AB755752	
SN527	(TC)₄(AC)₆	AGCTCCCTACAGACACTACACAGGCTTCCCTGGA	185	G. triflora / G. scabra	AB755753	
SN563	(AT)₇	CATGCTCTGTGAGAGGCTTCCCTGGA	158	G. triflora / G. scabra	AB755754	
SN578	(CA)₈	TCCCCCTCTGGATCACATATCTCTGACTGGAGGCTTCCCTGGA	214	G. triflora / G. scabra	AB755755	
SN583	(CA)₁₀	TTTCTGTGACAGGCTTCCCTGGA	151	G. triflora / G. scabra	AB755756	
SP1	(CA)₁₃	ATGATGATTGCTCAGGCTTCCCTGGA	216	G. triflora / G. scabra	AB755757	
SP8	(AC)₁₂	CTCTGCAACCAAACATACCCCATCAGGCTTCCCTGGA	327	G. triflora / G. scabra	AB755758	
SP15	(GA)₁₇	GGATCTGACAGGCTTCCCTGGA	248	G. triflora / G. scabra	AB755759	
SP17	(AC)₁₇	AAAACTCAGGAAAGGCCCAATACTGAGGCTTCCCTGGA	181	G. triflora / G. scabra	AB755760	
SP21	(AC)₁₃	GGGACCAACACCGGACACTCTGAGGCTTCCCTGGA	307	G. triflora / G. scabra	AB755761	
amplified using eight iPBS primers (shown in Table 2), and then subjected to sequencing analysis. Three putative LTR sequences, 758 bp (88% identity), 735 bp (86%) and 318 bp (91%), were found in the comparative sequence analyses among 64 independent clones. Although eight primers could be designed from the three putative LTR sequences, a few amplified fragments were obtained using each LTR primer during inter-retrotransposon amplified polymorphism (IRAP) analysis (data not shown). Therefore, each LTR primer was explored in combination with ISSR primers to create REMAP markers (Figure 1B). ISSR primer sets provided from the University of British Columbia (set #9) were pre-screened using Aki6PS genomic DNA. Seventeen primers amplified more than eight stable fragments (data not shown). Seven primer sets combining LTR and ISSR, as shown in Table 3, produced reproducible amplified fragments. These primer combinations provided stable and reproducible results at an annealing temperature of 60°C. REMAP markers were more efficient and reproducible than IRAP and ISSR markers in Japanese gentians.

Amplified fragment length polymorphism markers

Our preliminary experiments showed that conventional amplified fragment length polymorphism (AFLP) amplification using combinations of selective primers with three selective nucleotides resulted in too many faint and overlapping fragments in gentian (data not shown).

Table 1 List of primers used for SSR analysis (Continued)

Primer	LTR/ISSR	Identity (%)	Sequence	GenBank Accession	Species	GenBank Accession
SP28	(G), (GA)	334	CCGCGTGTAAGTGCCATACCTATAA GTTACTTCCTTCAACCAGGGTATCTG	AB755762	G. triflora / G. scabra	
SP29	(A)	212	TGTAGTGGACGCAAGCAAATCTGC	AB755763	G. triflora / G. scabra	
SP37	(A), (G)	250	CAGAAGGCTGGGGTCTAGAATAA	AB755764	G. triflora / scabra	
SP43	(A)	107	ACTTGGGGGAGCGAAACCAATACAA		G. scabra	
SP44	(A), (T)	281	CCAATAAAACCGGCAACCCCATAG	AB755765	G. scabra	
SP47	(C)	280	GAAGGTGAATTACCTGGCAGGCTC	AB755766	G. scabra	
SP48	(A)	271	CGGATTCAGCGCTAGAACT	AB755767	G. triflora / G. scabra	
SP49	(A), (T)	337	TCCGTGTGACCTGTAAGGTTG	AB755768	G. triflora / G. scabra	
SP52	(A)	291	CTGATATCAAGGTGTTAGCTCTTCA	AB755769	G. scabra	
SP53	(A)	322	GCCGTATCACAACAAAGAAACA	AB755770	G. scabra	
SP57	(A), (G)	231	CTGATATCAGCTGTTAGCTCTTCA	AB755771	G. scabra	
SP58	(A)	129	GATGCTAGATGGGGTCTAGAAGAAAGA	AB755772	G. scabra	
SP61	(A), (T)	226	ACCCTCAACTTACCCAGCCTTAG	AB755773	G. scabra	
SP63	(A)	264	AGGAAACATCTGACTGCTGCTG	AB755774	G. triflora / G. scabra	
Tdssr3	(A)	271	TCAAAGGCTTGAACCTAAGGGAAGAAATC	AB755775	G. triflora / G. scabra	
Tssr3	(CAA)	154	CATGCTGTAAGGCTTGAAGAAATG	AB755776	G. triflora / G. scabra	

Figure 1 Schemes of iPBS and REMAP. A) iPBS is an efficient method which isolates long terminal repeat (LTR) sequences of retrotransposons [32]. Most fragments that are amplified between two retrotransposons by iPBS primers annealed at primer binding sites (PBS) contain putative LTR sequences. B) Retrotransposon and microsatellite amplified polymorphism (REMAP) amplified DNA fragments located between LTRs proximal to simple sequence repeats (SSRs).
To solve this problem, we added a fourth selective nucleotide to the Mse I primer, as described by Remington et al. [33] (Table 4). AFLP and RAPD markers are dominantly inherited; therefore, we identified only *G. scabra* SP6A1-specific fragments among many amplified fragments because Aki6PS-specific fragments were not segregated in the BC1 population backcrossed with *G. triflora*. Fourteen primer sets, which produced more than 10 SP6A1-specific fragments per primer combination, were selected to generate the genetic linkage map (Table 4).

Long random amplification polymorphic DNA markers

We first screened for reproducible and stable random amplification polymorphic DNA (RAPD) markers using 47 primers, as described by Debener and Mattiesch [21] and by Yamagishi et al. [34]. Among them, twelve 15-mer primers (Table 5) amplified bands reproducibly, and were selected for genetic analysis of Japanese gentians. An average of 10 fragments (<3 kb in length) with two to seven SP6A1-specific fragments were amplified per primer.

Functional markers

In Japanese gentians, there has been extensive physiological and molecular research on flower pigmentation, flowering time, and cold tolerance of winter buds, and the nucleotide sequences of some important genes have already been deposited in public databases. In addition, our previous study reported significant insertions/deletions (in/dels) in introns and untranslated regions, representing molecular polymorphisms that could be used to discriminate among cultivars and species of Japanese gentians [17]. Therefore, we first identified the intron and proximal sequences of chalcone synthase (CHS) and the flowering locus T1 (*FT1*) and *FT2* genes from both *G. triflora* Aki6PS and *G. scabra* SP6A1. Comparative sequencing analysis identified significant in/del polymorphisms with the intron regions of *CHS* and *FT1*, and marker primer sets were designed in the proximity of the in/dels of each gene (Table 6). For chalcone isomerase (*CHI*), flavanone 3-hydroxylase (*FHT*), flavonoid 3',5'-hydroxylase (*F3'S'H*), anthocyanidin synthase (*ANS*), *MYB3*, basic helix loop helix 1 (*GtbHLH1*), terminal flowering 1 (*TFL1*) and *W14/15* genes, we used the primer sets reported in previous studies [11,12,14,16,17]. No in/dels were detected in the genomic sequences of *FT2* and *TFL1 genes*, but some SNPs were detected using restriction enzymes. Therefore, *FT2* and *TFL1* markers were distinguished between Aki6PS and SP6A1 as cleaved amplified polymorphic sequence (CAPS) markers, when their amplified fragments were digested by *Pst* I and *Sau3A* I, respectively.

Segregation of stem pigmentation trait

The *G. triflora* breeding line Aki6PS has a green stem color, while stems of the *G. scabra* breeding line SP6A1 and F1 are red because of the accumulation of anthocyanins. Among BC1 progeny, 44 and 49 individuals showed green- and red-stem color phenotypes, respectively. Segregation of stem color fitted a 1:1 ratio based on a chi-square test at P = 0.05, suggesting monogenetic inheritance of this trait.

Genetic map construction

We used a population of 93 BC1 from *G. scabra* SP6A1 backcrossed with *G. triflora* Aki6PS DH line (Figure 2). In total, 308 markers, comprising 101 SSR markers, 103 AFLP markers, 54 RAPD markers, 38 REMAP markers and 11 functional markers, and one phenotypic marker were grouped with a LOD score of 9.0. As a result, 19 linkage groups containing at least two markers could be assembled with 273 markers (Figure 3). Thirty-five markers were unmapped and ungrouped in this linkage map, and more RAPD (27.8%) and REMAP (21.0%) markers were excluded from the linkage groups, compared with SSR (3.9%), AFLP (5.8%) and functional markers (9.0%). Of the 10 functional markers, *FT1* was closely linked to *FT2*, an ortholog of *FT1*. Stem color locus as a phenotypic trait was closely linked to the M03E1-104 AFLP marker in LG9. In total, 19 linkage groups were identified, covering 613.7 cM with an average distance of 30 cM.

Primer	Sequence (5'→3')	Annealing
iPBS2076	GCTCGGATGCCCA	54°C
iPBS2077	CTACGAGTGCCCA	54°C
iPBS2079	AGGTGGGGCGCCA	60°C
iPBS2080	CAGACGGCGCCA	63°C
iPBS2083	CTTCAGCGGCCA	52°C
iPBS2085	ATGCCGATACCA	52°C
iPBS2374	CCCAGCAACCCA	52°C
iPBS2378	GTTCCCTCATCCA	51°C

Table 2 List of primers used for iPBS amplification

Primer	Sequence (5'→3')	Annealing
REMAP1	GTGCGCCTCTCAGCTCTCCATT	(AC)₅T
REMAP2	GTGCGCCTCTCAGCTCTCCATT	(CAC)₃G
REMAP3	GTGCGCCTCTCAGCTCTCCATT	(ACG)₃G
REMAP4	GTGCGCCTCTCAGCTCTCCATT	(ACG)₃C
REMAP5	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AG)₃C
REMAP6	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AC)₃G
REMAP7	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AC)₃T

Table 3 List of primers used for REMAP analysis

Primer	Sequence (5'→3')	LTR	ISSR
REMAP1	GTGCGCCTCTCAGCTCTCCATT	(AC)₅T	
REMAP2	GTGCGCCTCTCAGCTCTCCATT	(CAC)₃G	
REMAP3	GTGCGCCTCTCAGCTCTCCATT	(ACG)₃G	
REMAP4	GTGCGCCTCTCAGCTCTCCATT	(ACG)₃C	
REMAP5	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AG)₃C	
REMAP6	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AC)₃G	
REMAP7	TACCCCTTGCCGAAAGTTACCGTCTGGTG	(AC)₃T	
2.2 cM between each pair of markers. The size of the linkage groups ranged from 1.1 to 93.6 cM. Twenty-seven, 16, and 38 markers showed distorted segregation at the 5%, 1%, and 0.1% levels, respectively, based on the chi-square test. Five linkage groups (LG3, LG4, LG11, LG14, and LG17) were assembled from markers with distorted segregation at the 0.1% level in the genetic map of Japanese gentian.

Discussion
We used 454 FLX Titanium pyrosequencing of an SSR-enriched library to develop SSR markers from Japanese gentians. Recently, next generation sequencing has been used successfully to develop several genetic markers, including SSRs [35-37]. In our study, out of approximately 20,000 sequences from the enriched SSR library, only 3.0% could be used to design primers suitable for SSR markers. In contrast, 24.8% of the sequences derived from conventional Sanger DNA sequencing were suitable for designing primers for SSR markers. This is because the reads obtained from pyrosequencing in this study are shorter and less accurate than those obtained from Sanger sequencing. Similarly, in the honey bee (*Apis mellifera*) and zebrafish (*Danio rerio*), only 1.2% to 5.4% sequences obtained by 454 FLX Titanium pyrosequencing could be used to design primers for SSR markers [37]. In spite of its flaws, next generation sequencing is cheaper and less labor-intensive than conventional Sanger DNA sequencing. As next generation sequencing technology develops further, for example, the long-read protocols based on the GS FLX+ system, this technology will become more efficient for development of SSR markers.

Retrotransposons can be used as molecular markers because their integration creates new junctions between genomic DNA and their conserved ends [38]. IRAP and REMAP are simple methods that do not require restriction enzyme digestion or ligation to generate marker bands [38,39]. However, the limiting factor for developing genetic markers based on LTR retrotransposons for new plant species is the availability or otherwise of retrotransposon sequences. In Japanese gentian, three dispersed transposable elements, *GsTRIM1*, Tgt1 (gypsy-Ty3 retrotransposon), and *GtMITE1*, have been identified [31,40]; however, there are low copy numbers of Tgt1 and *GtMITE1* in the gentian genome [40]. We used iPBS amplification [32], which is based on the universal

Table 4 List of primers used for AFLP analysis

Marker	Sequence of selective primers (5’→3’)	Mse I	Eco RI
Pre-selective	GATGAGTCCTGATGAAAC	GACTGCGTACCAATTCA	
M01E1	GATGAGTCCTGAGTAACACA	NED-GACTGCGTACCAATTCAAC	
M01E8	GATGAGTCCTGAGTAACACA	JOE-GACTGCGTACCAATTCAAG	
M02E1	GATGAGTCCTGAGTAACACT	NED-GACTGCGTACCAATTCAAC	
M02E3	GATGAGTCCTGAGTAACACT	FAM-GACTGCGTACCAATTCAAC	
M03E1	GATGAGTCCTGAGTAACACC	NED-GACTGCGTACCAATTCAAC	
M03E2	GATGAGTCCTGAGTAACACC	JOE-GACTGCGTACCAATTCAAG	
M05E8	GATGAGTCCTGAGTAACATA	JOE-GACTGCGTACCAATTCAAG	
M06E1	GATGAGTCCTGAGTAACATG	NED-GACTGCGTACCAATTCAAC	
M07E2	GATGAGTCCTGAGTAACATG	JOE-GACTGCGTACCAATTCAAG	
M08E1	GATGAGTCCTGAGTAACATG	FAM-GACTGCGTACCAATTCAAC	
M08E3	GATGAGTCCTGAGTAACATG	FAM-GACTGCGTACCAATTCAAC	
M13E3	GATGAGTCCTGAGTAACCCA	FAM-GACTGCGTACCAATTCAAC	
M23E3	GATGAGTCCTGAGTAACCCA	FAM-GACTGCGTACCAATTCAAC	
M24E3	GATGAGTCCTGAGTAACCCA	FAM-GACTGCGTACCAATTCAAC	

Table 5 List of primers used for long RAPD analysis

Primer	Sequence (5’→3’)	
P474	AGGGCCATTGACCAGG	
P615	GGCCTGGACTGAGA	
P616	GTATGACCGTGAGC	
P618	TCAGTTATTGCCC	
P620	GCTTATTCACTGGC	
P622	GCCAGATACAGGAC	
P630	CCTGAGCTCAGGAG	
P642	GGACACATGTAAGCC	
P646	CACCGCTACGCTAG	
P651	CCTCCGCGGACTGGA	
P652	CTTCTGCTGAACCCG	
P654	TGATAGCCGCCACCCG	
presence of primer binding sites (PBS) of LTR retrotransposons, to identify new LTR sequences from Japanese gentian. Three putative LTR sequences were predicted from overlapping regions among independent sequences obtained by iPBS amplification. These sequences did not correspond to the terminal direct repeat (TDR) of GsTRIM1 and LTR of Tgt1. We designed primers from these newly identified LTR sequences (Table 3). However, no or few fragments were amplified by the putative LTR primers from any Japanese gentian lines, probably because the LTR retrotransposons were too far apart for efficient amplification. Therefore, these LTR primers were not suitable as IRAP markers. Conversely, REMAP primers yielded more reproducible and stable fragments in Japanese gentians than IRAP and ISSR, and were used to generate the genetic linkage map.

RAPD and AFLP technologies are conventional molecular markers. Their advantages are that they do not require sequence information and have a relatively low start-up cost [41-43]. However, certain procedures must be modified to use RAPD and AFLP markers for Japanese gentians, probably because the large genome size and heterogeneity. RAPDs using 10-mer primers and AFLP using three selective nucleotides resulted in too many faint and overlapping fragments (data not shown), whereas long-RAPDs using 15-mer primers amplified reproducible and stable fragments at higher annealing temperatures. The use of 15-mer primers also led to more effective amplification of polymorphic fragments than 10-mer primers in grape [43], rose [21], and Asiatic hybrid lily [34]. The AFLP markers produced reproducible fragments using Mse I-selective primers with four

Table 6 List of primers used for functional markers

Anthocyanin biosynthesis	**Forward**	**Reverse**
CHS Chalcone synthase	TGTGCAAGGAGTTTGAATTTGGAC	ATGTGAGAGGCTTCCAGGG
CHI Chalcone isomerase	GAGTCAGGAAAGTTGATTTTATTCGAC	ATGACAGAAAGTGGCATG
FHT Flavanone 3-hydroxylase	TTGCACTTGAAGTAGAATTTTTACA	TTGACAGAAAGTGGCATG
F35'HI Flavanoid 3'5'-hydroxylase	TCTGAACTGTTGGAATTTTACA	TATGGTAAGTGGGATGTCTGAT
ANS Anthocyanidin synthase	ATGTCAGCCTTATTTGCTCATAA	GAGCACTGAAAGACATTTGTGAG
MYB3 Transcription factor	CAAATTGCAACAAATTCTACACTTCCCA	AAAGTCTCAAGTGGAGCTG
bHLH1 Transcription factor	AAGGTGATCTGTTGGAATTTTACA	GGGCGTCTAGTGGTGGT

Flowering time	**Sequence (5'→3')**	
FT1 Flowering locus T	CTCAGGGAATACCTGACGTGTTT	ATCCCTCTAAAGTGTGTTATAAG
FT2 Flowering locus T	TCTGGACTCTCTTGTCTTCTTGATGA	ACCATCTTCTACGACGGTGAG
TFL1 Terminal flowering 1	AAGATATGATTGTTCTGACTTCTGAT	TAATACGACTATAGTGGGAT
W14/15 Esterase	CTTAGCTTACATTGGTCCC	TCTACAAAAGTGGAGCG

Figure 2 Production of BC1 progeny for genetic linkage analysis. G. scabra breeding line SP6A1 is an unfixed breeding line, because most Japanese gentians exhibit inbreeding depression. Aki6PS is a double haploid line (DH) generated from G. triflora cv. ‘Ashiro-no-Aki’ using anther culture. Crossing the DH line Aki6PS back into one F1 individual yielded 93 BC1 progeny.
Figure 3 (See legend on next page.)
selective nucleotides in interspecific Japanese gentians. In conifer, which has a very large genome (2×10^{10} bp), the use of selective primers with a fourth selective nucleotide also improved amplification of reproducible fragments [33]. Therefore, markers developed by modified RAPD and AFLP were used to generate the gentian genetic linkage map (see below).

A genetic linkage map with 273 markers was constructed using an interspecific BC1 population. Nineteen linkage groups were obtained for the BC1 population at an LOD value of 9.0, and encompassed 613.7 cM (Figure 3). Analysis of published saturated maps for tomato (n = 12, 1,283 cM) [44], melon (n = 12, 1,150 cM) [45], and lettuce (n = 9, 1,505 cM) [46] using the JoinMap program showed that an average map distance of 100 to 150 cM can be expected per chromosome regardless of its physical length. We estimate the map length of Japanese gentians (n =13) to be 1,300 to 1,950 cM. The present genetic linkage map probably covers less than half of the genome; therefore, more genetic markers are required to saturate the linkage map of Japanese gentians.

In the BC1 progeny of Japanese gentians, 30.0% of markers showed segregation distortion. These skewed segregations were also reported in other ornamental plants species, such as the diploid rose [21] and Asiatic hybrid lily [25]. The causes of segregation distortion are not well understood. Segregation distortion has been reported in Rhododendron [47], Asiatic lily [25] and carnation [23,24], and it was assumed to represent hybrid sterility genes and gametophytic selection genes in interspecific crossing. The BC1 population used in this study was derived from interspecific crossing between G. triflora and G. scabra, and the reciprocal cross showed hybrid weakness. Therefore, hybrid sterility and gametophytic selection genes might be responsible for the segregation distortion in Japanese gentian populations.

Functional markers are those derived from polymorphic sites within genes responsible for phenotype traits [48]. Ten functional markers for genes involved in important traits, such as flower pigmentation (CHS, CHI, E3S5SH, ANS, MYB3 and bHLH1), flowering time (FT1, FT2 and TFL1) and cold tolerance of winter buds (W14/15), were mapped to the 19 linkage groups of Japanese gentian (Figure 3). Our previous research revealed that white-flowered gentians resulted from the functional deficiency of ANS, a structural enzyme, or MYB3, an anthocyanin biosynthetic transcription factor. Genetic analysis showed that the ANS locus was not linked to the MYB3 locus [11,49]. Consistent with these observations, ANS and MYB3 were assembled into different linkage groups: LG11 and LG4, respectively (Figure 3). Interestingly, two orthologs of the flowering hormone florigen, FT1 and FT2, were closely linked (LG4). These findings will be useful for determining the molecular functions of these genes and to study the genetic regulation of flowering time in gentian, although further research is necessary. The mapping of functional markers corresponding to important agricultural traits will be accelerated by further molecular and physiological studies on Japanese gentians. Our genetic linkage map will be useful for mapping QTLs associated with various traits, and for improving Japanese gentian breeding programs. The map is also applicable to other members of the Gentianaceae family, including several other economically important species.

Conclusions

This study presents the first genetic linkage map for Japanese gentian. The map was constructed using four different types of molecular markers. It was produced from genotypes of 93 BC1 progeny derived from a DH line and included 274 markers (97 SSR, 97 AFLP, 39 RAPD, 18 REMAP, 10 functional markers, and 1 phenotypic trait). The map revealed 19 linkage groups that covered 613.7 cM, with an average inter-marker distance of 2.2 cM. This map is a starting point for mapping single or quantitative trait loci affecting agronomically important phenotypes, and will be useful for research on gentian genetics and breeding.

Methods

Plant Materials

In total, 93 BC1 progeny were derived from the interspecific backcross Aki6PS×SP6A1 (Figure 2). Aki6PS is a double haploid (DH) line derived from Gentiana triflora cv. ‘Ashiro-no-Aki’ using anther culture [30]. SP6A1 is a breeding line derived from the G. scabra. F\textsubscript{1} was
produced by crossing a female Aki6PS with a male SP6A1. BC₁ progeny were produced by crossing a female
Aki6PS with pollen of a single F₁ individual, because the
reciprocal hybrid (F₁×Aki6PS) showed hybrid weakness
and it was difficult to obtain sufficient progeny.

Genomic DNA was isolated from young leaves (500 mg)
of each individual using Nucleon PhytoPure (GE
Healthcare, Little Chalfont, UK) and stored at −20°C
until use.

Simple sequence repeat markers
SSR markers were developed as described by Sato-
Ushiku et al. [18]. Genomic DNA was isolated from
either G. triflora Aki6PS or G. scabra SP6A1, and then
digested by either Alu I, Hae III, Mse I, or Rsa I. The
digested genomic DNA was hybridized with biotin-
labeled (CA)₁₅ or (GA)₁₅ probes. SSR-enriched libraries
were mixed and subjected to sequencing analysis using
454 GS FLX Titanium pyrosequencing (Roche, Basel,
Switzerland). The SSR-enriched library was also subcloned
into the pGEM-T Easy vector (Promega, Madison, WI,
USA), and subjected to sequencing analysis using BigDye
terminator version 1.1 cycle sequencing kit and an ABI
PRISM 3130xl Genetic Analyzer (Applied Biosystems by
Life Technologies, Foster City, CA, USA). SSR markers
were predicted and developed using Read2Marker soft-
ware with the default parameters [50].

PCR amplification was performed in a 20-µL reaction
mixture containing 10 ng genomic DNA, 0.5 µM each
primer (Table 1), 0.2 mM dNTPs, 1× Ex buffer, and
0.25 units Ex Taq polymerase (Takara Bio, Otsu, Japan).
The PCR conditions were as follows: 94°C for 2 min; 30
cycles at 95°C for 20 s, 60°C for 40 s, and 72°C for
1 min; and a final extension at 72°C for 5 min. The sequences and annealing temperatures of
ipBS primers are shown in Table 2. The reaction mix-
tures were purified using a Microspin S-400 HR column
(GE Healthcare), and then subcloned into the pCR4-TOPO
TA cloning vector (Invitrogen in Life technologies, CA).
Sixty-four independent clones were subjected to sequenc-
ing analysis, as above. Putative LTRs were found by com-
parative analysis among sequences obtained by the ipBS
approach using stand-alone BLAST [52].

The REMAP markers were created by combining LTR
primers with ISSR primers, as shown in Table 3. Each
20-µL reaction mixture comprised 20 ng genomic DNA,
1× Ex buffer, 0.2 mM dNTPs, 0.2 µM each primer, and
1 unit Ex Taq polymerase. The PCR program was as fol-
lows: 94°C for 4 min; 30 cycles of 94°C for 40 s, 60°C
for 40 s, and 72°C for 2 min; followed by final extension
at 72°C for 5 min. The amplified fragments were separated
on 1.0 or 1.6% (v/v) agarose gels in TAE buffer, and
then photographed and analyzed with an ImageQuant
LAS-4000 system after staining with ethidium bromide.

Amplified fragment length polymorphism markers
AFLP analysis was performed as described by Vos et al.
[41] with some modifications. One microgram of geno-
mic DNA from each individual was digested with two
restriction enzyme, 25 units of Mae I and 50 units of
EcoR I, in a reaction volume of 25 µl with restriction
e enzyme buffer (10 mM Tris–HCl, pH 7.5, 10 mM mag-
nesium acetate, 50 mM potassium acetate, 5 mM dithio-
reitol, 0.005%(v/v) bovine serum albumin, pH 7.5) at
37°C for 3 h. The restriction enzyme solution was added
to 10 µl adapter ligation solution (1×restriction enzyme
buffer, 1 mM ATP, 2.5 µM EcoRI I adapter, 2.5 µM Mse I
c adapter, 50 units T4 DNA ligase), and then incubated at
37°C overnight. To stop the reaction, 500 µl T₁₀E₀.₁ buf-
ner (10 mM Tris–HCl, 100 mM EDTA, pH 8.0) was
added to the ligation solution.

Pre-amplification was conducted in a 25-µl reaction
volume containing 2.5 µl diluted adaptor-ligated DNA,
0.4 µl EcoRI I+A primer, 1.6 µl MseI+C primer, 200 µM
dNTPs, 1× Ex Taq buffer, and 1.25 units Ex Taq DNA
polymerase (Takara-bio). The PCR program was as fol-
lows: 94°C for 2 min; 20 cycles of 94°C for 30 s, 56°C
for 1 min and 72°C for 1 min; followed by final extension
at 72°C for 10 min. The PCR products were diluted
100-fold in T₁₀E₀.₁ buffer. Four labeled-EcoR I selective
primers with three selective nucleotides (NED-AAC,
JOE-AAG, FAM-ACA and JOE-AGG) and 10 Mse I

Retrotransposon microsatellite amplified polymorphism
markers
The sequences of LTRs of retrotransposons were isolated
from gentian genome using the iPBS approach [32]. PCR
was performed in a 25-µl reaction mixture containing
1 µg genomic DNA, 1×Ex buffer, 1 µM each primer,
0.2 mM dNTPs, and 1 unit Ex Taq DNA polymerase.
The PCR program was as follows: 1 cycle at 95°C for
3 min; 30 cycles of 95°C for 15 s, 50–70°C for 1 min,
and 72°C for 1 min; and a final extension step of 72°C
for 5 min. The sequences and annealing temperatures of
iPBS primers are shown in Table 2. The reaction mix-
tures were purified using a Microspin S-400 HR column
(GE Healthcare), and then subcloned into the pCR4-TOPO
TA cloning vector (Invitrogen in Life technologies, CA).

The REMAP markers were created by combining LTR
primers with ISSR primers, as shown in Table 3. Each
20-µl reaction mixture comprised 20 ng genomic DNA,
1× Ex buffer, 0.2 mM dNTPs, 0.2 µM each primer, and
1 unit Ex Taq polymerase. The PCR program was as fol-
lows: 94°C for 4 min; 30 cycles of 94°C for 40 s, 60°C
for 40 s, and 72°C for 2 min; followed by final extension
at 72°C for 5 min. The amplified fragments were separated
on 1.0 or 1.6% (v/v) agarose gels in TAE buffer, and
then photographed and analyzed with an ImageQuant
LAS-4000 system after staining with ethidium bromide.

Amplified fragment length polymorphism markers
AFLP analysis was performed as described by Vos et al.
[41] with some modifications. One microgram of geno-
mic DNA from each individual was digested with two
restriction enzyme, 25 units of Mae I and 50 units of
EcoR I, in a reaction volume of 25 µl with restriction
enzyme buffer (10 mM Tris–HCl, pH 7.5, 10 mM mag-
nesium acetate, 50 mM potassium acetate, 5 mM dithio-
reitol, 0.005%(v/v) bovine serum albumin, pH 7.5) at
37°C for 3 h. The restriction enzyme solution was added
to 10 µl adapter ligation solution (1×restriction enzyme
buffer, 1 mM ATP, 2.5 µM EcoRI I adapter, 2.5 µM Mse I
c adapter, 50 units T4 DNA ligase), and then incubated at
37°C overnight. To stop the reaction, 500 µl T₁₀E₀.₁ buf-
ner (10 mM Tris–HCl, 100 mM EDTA, pH 8.0) was
added to the ligation solution.

Pre-amplification was conducted in a 25-µl reaction
volume containing 2.5 µl diluted adaptor-ligated DNA,
0.4 µl EcoRI I+A primer, 1.6 µl MseI+C primer, 200 µM
dNTPs, 1× Ex Taq buffer, and 1.25 units Ex Taq DNA
polymerase (Takara-bio). The PCR program was as fol-
lows: 94°C for 2 min; 20 cycles of 94°C for 30 s, 56°C
for 1 min and 72°C for 1 min; followed by final extension
at 72°C for 10 min. The PCR products were diluted
100-fold in T₁₀E₀.₁ buffer. Four labeled-EcoR I selective
primers with three selective nucleotides (NED-AAC,
JOE-AAG, FAM-ACA and JOE-AGG) and 10 Mse I
selective primers with four selective nucleotides (CACA, CACT, CACC, CATC, CATG, CCTA, CTAC and CTAG) were used for selective amplification. We screened 14 primer combinations because they provided the highest number of heterozygous bands (Table 4). For the selective PCR reaction, the 10-μl reaction mixture consisted of 5 μl pre-selective PCR product, 1× Ex Taq buffer, 200 μM dNTPs, 0.5 μM labeled-EcoR I-ANN primer, 0.5 μM Mse I-ANNN primer, and 0.5 units Ex Taq DNA polymerase. The touchdown PCR profile was as follows: 1 cycle at 94°C for 30 s, 68°C for 30 s, and 72°C for 1 min; 17 cycles with the annealing temperature reduced by 0.7°C/cycle; 23 cycles with an annealing temperature of 56°C; and a final extension at 72°C for 10 min. PCR products were separated and detected using an ABI 3130 genetic analyzer. The sizes of the amplified products were calculated based on internal standard DNA (GeneScan-500ROX size standard, Applied Biosystems) using GeneMapper software (Applied Biosystems).

Long random amplified polymorphic DNA markers

The long RAPD markers were developed as described by Debener and Mattiesch [21] and Yamagishi et al. [34]. After pre-screening, twelve 15-mer primers (Table 5) were selected to generate the genetic linkage map. The 20-μl reaction mixture comprised 20 ng genomic DNA, 1×Ex buffer, 0.2 mM dNTPs, 0.4 μM 15-mer primer, and 1 unit Ex Taq polymerase. The PCR program consisted of 94°C for 90 s; 40 cycles of 95°C for 30 s, 53°C for 1 min 30 s, and 72°C for 2 min; followed by final extension at 72°C for 5 min. The amplified fragments were separated on 1% (v/v) agarose gels in TAE buffer, and then photographed and analyzed as described in the REMAP markers section.

Functional markers

Our previous research revealed that the intron lengths of several flavonoid biosynthetic genes, including CHS, CHI, FHT, F3\'5'H, ANS, and the transcriptional factors GtMYB3 and GtbHLH1 exhibited significant polymorphisms among Japanese gentian cultivars [10,16,17]. Primers for GtFT1, GtFT2, and GtTFLI, which are regulator genes of flowering time [12], were also designed from the difference in the genomic sequences between Aki6PS and SP6A1. The W14/15 esterase is related to cold tolerance of gentian winter buds, and the W14/15 alleles of Aki6PS and SP6A1 are known as 15a/15a and 14b1/14b1, respectively [14]. The primer sets for the functional markers are shown in Table 6. The genomic sequences of GtFT2 and GtTFLI have no large insertions or deletions between Aki6PS and SP6A1. Therefore, CAPS markers were used for GtFT2 and GtTFLI by digesting the amplified fragments with Hae III and Sau3A I, respectively.

PCR amplification was performed in a 20-μl reaction mixture containing 20 ng genomic DNA, 0.5 μM each primer (as shown in Table 6), 0.2 mM dNTPs, 1× Ex buffer, and 0.25 units Ex Taq polymerase. The PCR conditions were as follows: 94°C for 2 min; 30 cycles at 95°C for 20 s, 60°C for 40 s, and 72°C for 1 min; and a final extension at 72°C for 5 min. The amplified fragments were separated on the HEGS running system or 2% agarose gels in TBE buffer, and then photographed and analyzed as described above.

Evaluation of stem pigmentation

Stem colors were investigated three times in the mapping population. Green and red stem colors were scored as *G. triflora* (A) and *G. triflora × G. scabra* hybrid (H) genotypes, respectively.

Linkage analysis

We used 308 markers, including 101 SSRs, 38 REMAPs, 103 AFLPs, 54 long RAPDs, 11 functional markers, and one phenotypic trait to construct a genetic linkage map using JoinMap ver. 4.1 (Kyazma, Wageningen, Netherlands). The Kosambi function was used to convert recombinant units into genetic distances. The mapping analysis was conducted by using a minimum LOD score of 9.0. Distorted markers analyzed by the chi-square test were used in the construction of the linkage maps.

Abbreviations

AFLP: Amplified fragment length polymorphism; ANS: Anthocyanidin synthase; bHLH: Basic helix-loop-helix; CAPS: Cleaved amplified polymorphic sequence; Chs: Chalcone synthase; Chi: Chalcone isomerase; Dh: Doubled haploid; F3\'5\'H: Flavonoid 3\'5\' hydroxylase; Fht: Flavanone 3-hydroxylase; FT: Flowering locus T; ISSR: Inter-simple sequence repeat; LTR: Long terminal repeat; MITE: Miniature inverted-repeat in transposable element; Pbs: Primer binding site; QTL: Quantitative trait loci; RAPD: Random amplification polymorphic DNA; REMAP: Retrotransposon microsatellite amplified polymorphism; SCAR: Sequence characterized amplified region; SSR: Simple sequence repeat; TDR: Terminal direct repeat; TF1: Terminal flowering 1; TRIM: Terminal repeat retrotransposon in miniature.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TN participated in the design of the experiments, and developed and genotyped the SSR, AFLP and functional markers, performed statistical analysis, data interpretation and wrote the paper. EY developed and genotyped the RAPD and REMAP markers. TH participated in the design of the experiments and produced populations for genetic analysis. MS developed and genotyped the SSR and AFLP markers. YU developed the SSR markers. MN participated in the design of the experiments and wrote the paper. All the authors read and approved the manuscript.

Acknowledgements

The authors are especially grateful to Drs. Toshiya Yamamoto and Miyuki Kunihisa, National Institute of Fruit Tree Science (NIFTS), and Drs. Masafumi Yagi and Takashi Onozaki, National Institute of Floricultural Science (NIFS), for helpful discussions and technical advice. We thank Dr. Masumi Yamagishi, Hokkaido University, for providing long RAPD primers and technical advice. We thank Drs. Tomohiro Inamura and Hideo Takaashi, Iwate Biotechnology Research Center, for providing sequence information for flowering time genes and for helpful discussions. The authors thank
Dr. Hisako Doi and Yoshitomo Takahata, Iwate University, for providing the double haploid gentian line Akki6PS. We thank Dr. Hiroyuki Fukuda, National Institute of Vegetable and Tea Science (NIVTS), for technical advice on developing SSR markers. The authors thank Mses. Chiharu Yoshida and Yoshiko Abe, members of our laboratory, for technical support. This study was supported by a Research Project for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries from the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF), and by the Japan Science and Technology Agency (JST).

Author details
Iwate Biotechnology Research Center, Nartia 22-174-4, Kitakami, Iwate 024-0003, Japan. *Hachimantai City Floricultural Research and Development Center, Kamasuda 70, Hachimantai, Iwate 028-7533, Japan.

Received: 30 July 2012 Accepted: 20 November 2012 Published: 28 November 2012

References
1. Kohlein: Gentianas. London: Christopher Helm; 1991.
2. Nishihara M, Nakatsuka T, Mizutani-Fukuchi M, Tanaka Y, Yamamura S: Gentians: From gene cloning to molecular breeding, in Florigenic and Ornamental Biotechnology. Edited by: UK Global Science Books; 2008:57–67.
3. Nekoduka S, Tanaka K, Harada Y, Sano T: Phylogenetic affinity of Mycochaetophora gentianeae, the causal fungus of brown leaf spot on gentian (Gentiana triflora), to Pseudocercosporella-like hyphomycetes in Helotiales. Mycologica 2010, 51:123–133.
4. Nishihara M, Nakatsuka T, Tanaka K, Sano T: Pathogenicity of Mycochaetophora gentianeae, causal fungus of gentian brown leaf spot, as affected by host species, inoculum density, temperature, leaf wetness duration, and leaf position. J Gen Plant Pathol 2010, 76:370–376.
5. Mishiba K, Yamane K, Nakatsuka T, Nakano Y, Yamamura S, Abe J, Kawamura H, Takahata Y, Nishihara M: Genetic relationships in the genus Gentiana based on chloroplast DNA sequence data and nuclear DNA content. Breed Sci 2009, 59:119–127.
6. Arabidopsis-genome-initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408:769–815.
7. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Arabidopsis-genome-initiative: Orthologs of the flower-specific gene FBP1 provide insight into the evolution of rhizobial symbioses. Plant & cell physiology 2012, 53:204–219.
8. International Rice Genome-sequencing Project: The map-based sequence of the rice genome. Nature 2005, 436:793–800.
9. The tomato-genome-consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485:55–84.
10. Nakatsuka T, Nishihara M, Mishiba K, Yamamura S: Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in flowering plant Arabidopsis thaliana. Theor Appl Genet 2010, 121:373–383.
11. Nakatsuka T, Haruta K, Harada Y, Sano T: Pathogenicity of Mycochaetophora gentianeae, causal fungus of gentian brown leaf spot, as affected by host species, inoculum density, temperature, leaf wetness duration, and leaf position. J Gen Plant Pathol 2010, 76:370–376.
12. Grattapaglia D, Sederoff R: Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAD marker development. Genetics 1996, 137:1111–1113.
13. Debenber T, Mattiesch L: Construction of a genetic linkage map for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breeding 2012, 30:495–509.
14. Nishihara M, Nakatsuka T, Nakano Y, Yamamura S, Mishiba K, Yamamura S: Development of DNA markers that discriminate between white- and blue-flowers in Japanese gentian plants. Euphytica 2012, 184:335–344.
15. Shimada N, Nakatsuka T, Nakano Y, Katsuzaki Y, Abe Y, Hikage T, Nishihara M: Identification of gentian cultivars using SSR markers based on intron-length polymorphisms of flavonoid biosynthetic genes. Sci Hort 2009, 119:292–296.
16. Sato-Ushiku Y, Shimada N, Sato M, Yamada E, Hikage T, Nakatsuka T, Nishihara M: Development of simple sequence repeat markers for identification of Japanese gentian cultivars. J Japan Soc Hort Sci 2011, 80:475–485.
17. Ribaut JM, Hoisington D: Marker-assisted selection: new tools and strategies. Trends Plant Sci 1998, 3:236–239.
18. Nakatsuka T, Nishihara M, Mishiba K, Yamamura S: Discrimination of gentian cultivars using SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Japan Soc Hort Sci 2006, 75:166–172.
19. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
20. Nakatsuka T, Saito-Muto M, Sato-Ushiku Y, Shimada N, Sato M: Gentian cultivars using SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Japan Soc Hort Sci 2006, 75:166–172.
21. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
22. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
23. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
24. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
25. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
26. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
27. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
28. Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K: Construction of a genetic linkage map for perennial ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 2006, 110:765–777.
39. Kalender R, Grob T, Regina M, Suoniemi A, Schulman A: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 1999, 98:704–711.

40. Nishihara M, Hikage T, Yamada E, Nakatsuka T: A single-base substitution suppresses flower color mutation caused by a novel miniature inverted-repeat transposable element in gentian. Mol Genet Genomics 2011, 286:371–382.

41. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23:4407–4414.

42. Vuylsteke M, Peleman JD, van Eijk MJ: AFLP technology for DNA fingerprinting. Nat Protoc 2007, 2:1387–1398.

43. Ye GN, Hemmat M, Lodhi MA, Weeden NF, Reisch BI: Long primers for RAPD mapping and fingerprinting of grape and pear. Biotechniques 1995, 20:368–371.

44. Haanstra JP, Lauge R, Meijer-Dekens F, Bonnema G, de Wit PJ, Lindhout P: An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations. Theor Appl Genet 1999, 99:254–271.

45. Diaz A, Fergany M, Formisano G, Ziarlolo P, Blanca J, Fei Z, Staub JE, Zalapa JE, Cuevas HE, Dace G, et al: A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L). BMC plant biology 2011, 11:11.

46. Truco MJ, Antonise R, Lavelle D, Ochoa Q, Kozik A, Witsenboer H, Fort SB, Jeuken MJ, Kesseli RV, Lindhout P, et al: A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 2007, 115:735–746.

47. Dunemann F, Kahnow R, Stange I: Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 1999, 98:1146–1155.

48. Andersen JR, Lubberstedt T: Functional markers in plants. Trends Plant Sci 2003, 8:554–560.

49. Nakatsuka T, Nishihara M, Mishiba K, Yamamura S: Two different mutations are involved in the formation of white-flowered gentian plants. Plant Science 2005, 169:949–958.

50. Fukuoka H, Nunome N, Minamiyama Y, Kono I, Namiki N, Kojima A: read2Marker: a data processing tool for microsatellite marker development from a large data set. Biotechniques 2005, 39:472–476.

51. Kawasaki S, Murakami Y: Genome analysis of Lotus japonicus. J Plant Res 2000, 113:497–506.

52. Altshul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.

doi:10.1186/1471-2164-13-672
Cite this article as: Nakatsuka et al.: Construction of the first genetic linkage map of Japanese gentian (Gentianaceae), BMC Genomics 2012, 13:672.