Efficient computation of longest single-arm-gapped palindromes in a string

Shintaro Narisada1, Diptarama Hendrian1, Kazuyuki Narisawa1, Shunsuke Inenaga2, and Ayumi Shinohara1

1Graduate School of Information Sciences, Tohoku University, Sendai, Japan
2Department of Informatics, Kyushu University, Fukuoka, Japan

Abstract

In this paper, we introduce new types of approximate palindromes called single-arm-gapped palindromes (shortly SAGPs). A SAGP contains a gap in either its left or right arm, which is in the form of either wgu^Rw^R or $wucu^Rgw^R$, where w and u are non-empty strings, w^R and u^R are respectively the reversed strings of w and u, g is a string called a gap, and c is either a single character or the empty string. Here we call wu and u^Rw^R the arm of the SAGP, and $|w|$ the length of the arm. We classify SAGPs into two groups: those which have ucu^R as a maximal palindrome (type-1), and the others (type-2). We propose several algorithms to compute type-1 SAGPs with longest arms occurring in a given string, based on suffix arrays. Then, we propose a linear-time algorithm to compute all type-1 SAGPs with longest arms, based on suffix trees. Also, we show how to compute type-2 SAGPs with longest arms in linear time. We also perform some preliminary experiments to show practical performances of the proposed methods.

1 Introduction

A palindrome is a string that reads the same forward and backward. Discovering palindromic structures in strings is a classical and important task in combinatorics on words and string algorithmics (e.g., see [6, 12, 18, 1]). A natural extension to palindromes is to allow for a gap between the left and right arms of palindromes. Namely, a string x is called a gapped palindrome if $x = wgw^R$ for some strings w, g with $|w| \geq 1$ and $|g| \geq 0$. For instance, string $abca|acbba$ is a palindromic and string $abca|baa|acbba$ is a gapped palindrome with baa as a gap. Finding gapped palindromes has applications in bioinformatics, such as finding secondary structures of RNA sequences called hairpins [13]. If we further allow for another gap inside either arm, then such a palindrome can be written as $wg_2ug_1w^Rw^R$ or $wug_1u^Rg_2w^R$ for some strings w, g_1, g_2, u with $|u| \geq 1$, $|g_1| \geq 0$, $|g_2| \geq 0$, and $|w| \geq 1$. These types of palindromes characterize hairpins with bulges in RNA sequences, known to occur frequently in the secondary structures of RNA sequences [21]. Notice that the special case where $|g_1| \leq 1$ and $|g_2| = 0$ corresponds to usual palindromes, and the special case where $|g_1| \geq 2$ and $|g_2| = 0$ corresponds to gapped palindromes.

In this paper, we consider a new class of generalized palindromes where $|g_1| \leq 1$ and $|g_2| \geq 1$, i.e., palindromes with gaps only inside one of its arms. We call such palindromes as single-arm-gapped palindromes (SAGPs). For instance, string $abb|ca|cb|bc|bba$ is an SAGP of this kind, taking $w = abb$, $g_1 = \varepsilon$ (the empty string), $g_2 = ca$, and $u = cb$.

©2019. This manuscript version is made available under the CC BY-NC-ND 4.0 license.
We are interested in occurrences of SAGPs as substrings of a given string T. For simplicity, we will concentrate on SAGPs with $|g_1| = 0$ containing a gap in their left arms. However, slight modification of all the results proposed in this paper can easily be applied to all the other cases. For any occurrence of an SAGP $wguw^R$ beginning at position b in T, the position $b + |wgu| - 1$ is called the pivot of the occurrence of this SAGP. This paper proposes various algorithms to solve the problem of computing longest SAGPs for every pivot in a given string T of length n. We classify longest SAGPs into two groups: those which have wu^R as a maximal palindrome (type-1), and the others (type-2). Firstly, we show a naïve $O(n^2)$-time algorithm for computing type-1 longest SAGPs. Secondly, we present a simple but practical $O(n^2)$-time algorithm for computing type-1 longest SAGPs based on simple scans over the suffix array [19]. We also show that the running time of this algorithm can be improved by using a dynamic predecessor/successor data structure. If we employ the van Emde Boas tree [22], we achieve $O((n + occ_1) \log n)$-time solution, where occ_1 is the number of type-1 longest SAGPs to output. Finally, we present an $O(n + occ_1)$-time solution based on the suffix tree data structure [23]. For type-2 longest SAGPs, we show an $O(n + occ_2)$-time algorithm, where occ_2 is the number of type-2 longest SAGPs to output. Combining the last two results, we obtain an optimal $O(n + occ)$-time algorithm for computing all longest SAGPs, where occ is the number of outputs.

We performed preliminary experiments to compare practical performances of our algorithms for finding type-1 longest SAGPs. We compare the running time of the naïve algorithm, the $O(n^2)$-time suffix array based algorithm, and the improved suffix array based algorithm with several kinds of predecessor/successor data structures in the experiments.

Related work

For a fixed gap length d, one can find all gapped palindromes wgu^R with $|g| = d$ in the input string T of length n in $O(n)$ time [13]. Kolpakov and Kucherov [17] showed an $O(n + L)$-time algorithm to compute long-armed palindromes in T, which are gapped palindromes wgu^R such that $|u| \geq |g|$. Here, L denotes the number of outputs. They also showed how to compute, in $O(n + L)$ time, length-constrained palindromes which are gapped palindromes wgu^R such that the gap length $|g|$ is in a predefined range. Fujishige et al. [10] proposed online algorithms to compute long-armed palindromes and length-constrained palindromes from a given string T. A gapped palindrome wgu^R is an α-gapped palindrome, if $|wg| \leq \alpha|w|$ for $\alpha \geq 1$. Gawrychowski et al. [11] showed that the maximum number of α-gapped palindromes occurring in a string of length n is at most $28\alpha n + 7n$. Very recently, I and Köppl [14] showed an improved bound $7(\pi^2/6 + 1/2)\alpha n - 5n - 1$ for the maximum number of α-gapped palindromes. Since long-armed palindromes are 2-gapped palindromes for $\alpha = 2$, $L = O(n)$ and thus Kolpakov and Kucherov’s algorithm runs in $O(n)$ time. Gawrychowski et al. [11] also proposed an $O(\alpha n)$-time algorithm to compute all α-gapped palindromes in a given string for any predefined $\alpha \geq 1$. We emphasize that none of the above algorithms can directly be applied to computing SAGPs.

Crochemore et al. [5] proposed a linear-time algorithm to compute longest previous reverse factor array $LPrF$ of a string T, where $LPrF[i]$ stores the longest factor w started at i such that w^R occurs at $T[1..i - 1]$ which can be considered as a gapped palindrome. Later Dumitran et al. [8, 7] studied similar arrays that bound the length of gaps.

A preliminary version of this work appeared in [20].

2 Preliminaries

Let $\Sigma = \{1, \ldots, \sigma\}$ be an integer alphabet of size σ. An element of Σ^* is called a string. For any string w, $|w|$ denotes the length of w. The empty string is denoted by ε. Let $\Sigma^* = \Sigma^* \setminus \{\varepsilon\}$. For any $1 \leq i \leq |w|$, $w[i]$ denotes the i-th symbol of w. For a string $w = xyz$, strings x, y, and z are called a prefix, substring,
and suffix of w, respectively. The substring of w that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e., w[i..j] = w[i] · · · w[j]. For j > i, let w[i..j] = ε for convenience. For two strings X and Y, let lcp(X, Y) denote the length of the longest common prefix of X and Y.

For any string x, let xR denote the reversed string of x, i.e. xR = x[|x|] · · · x[1]. A string p is called a palindrome if p = pR. Let T be any string of length n. Let p = T[b..e] be a palindromic substring of T. The position i = ⌊b + e − 1 2 ⌋ is called the center of this palindromic substring p. The palindromic substring p is said to be the maximal palindrome centered at i iff there are no longer palindromes than p centered at i, namely, T[b − 1] = T[e + 1], b = 1, or e = n.

A string x is called a single-arm-gapped palindrome (SAGP) if x is in the form of either wguRwR or wucuRgwR, with some non-empty strings w, g, u ∈ Σ+ and c ∈ Σ ∪ {ε}. For simplicity and ease of explanations, in what follows we will identify only SAGPs whose left arms contain gaps and c = ε, namely, those of form wguRwR. But our algorithms to follow can easily be modified to compute other forms of SAGPs occurring in a string as well.

Let b be the beginning position of an occurrence of a SAGP wguRwR in T, namely T[b..b + 2|wu| + |g| − 1] = wguRwR. The position i = b + |wu| − 1 is called the pivot of this occurrence of the SAGP. This position i is also the center of the palindrome uuR. An SAGP wguRwR for pivot i in string T is represented by a quadruple (i, |w|, |g|, |u|) of integers. In what follows, we will identify the quadruple (i, |w|, |g|, |u|) with the corresponding SAGP wguRwR for pivot i.

For any SAGP x = wguRwR, let armlen(x) denote the length of the arm of x, namely, armlen(x) = |wu|. A substring SAGP y = wguRwR for pivot i in a string T is said to be a longest SAGP for pivot i, if for any SAGP y′ for pivot i in T, armlen(y′) ≥ armlen(y).

Notice that there can be different choices of u and w for the longest SAGPs at the same pivot. For instance, consider string ccabcababace. Then, (7, 1, 3, 2) = c|abc|ab|ba|c and (7, 2, 3, 1) = ca|bca|b|b|ac are both longest SAGPs (with arm length |wu| = 3) for the same pivot 7, where the underlines represent the gaps. Of all longest SAGPs for each pivot i, we regard those that have longest palindromes uuR centered at i as canonical longest SAGPs for pivot i. In the above example, (7, 1, 3, 2) = c|abc|ab|ba|c is a canonical longest SAGP for pivot 7, while (7, 2, 3, 1) = ca|bca|b|b|ac is not. Let SAGP(T) be the set of canonical longest SAGPs for all pivots in T. In this paper, we present several algorithms to compute SAGP(T).

A position i in string T is said to be of type-1 if there exists a SAGP wguRwR such that uuR is the maximal palindrome centered at position i, and is said to be of type-2 otherwise. For instance, consider string T = baababaabcbaababac of length 20. Position 13 of T is of type-1, since there are canonical longest SAGPs (13, 4, 4, 2) = aba|baac|ba|ab|aba and (13, 4, 1, 2) = aba|c|ba|ab|aba for pivot 13, where ba|ab is the maximal palindrome centered at position 13. On the other hand, Position 6 of T is of type-2; the maximal palindrome centered at position 6 is aba|aba but there are no SAGPs in the form of wga|aba|aba|awR for pivot 6. The canonical longest SAGPs for pivot 6 is (6, 1, 1, 3) = a|aba|aba|a.

For an input string T of length n over an integer alphabet of size σ = nO(1), we perform standard preprocessing which replaces all characters in T with integers from range [1, n]. Namely, we radix sort the original characters in T, and replace each original character by its rank in the sorted order. Since the original integer alphabet is of size nO(1), the radix sort can be implemented with O(1) number of bucket sorts, taking O(n) total time. Thus, whenever we speak of a string T over an integer alphabet of size nO(1), one can regard T as a string over an integer alphabet of size n.

Tools: Suppose a string T ends with a unique character that does not appear elsewhere in T. The suffix tree [23] of a string T, denoted by STree(T), is a path-compressed trie which represents all suffixes of T. Then, STree(T) can be defined as an edge-labeled rooted tree such that (1) Every internal node is branching; (2) The out-going edges of every internal node begin with mutually distinct characters; (3) Each edge is labeled by a non-empty substring of T; (4) For each suffix s of T, there is a unique leaf
such that the path from the root to the leaf spells out s. It follows from the above definition of $S\text{Tree}(T)$ that if $n = |T|$ then the number of nodes and edges in $S\text{Tree}(T)$ is $O(n)$. By representing every edge label X by a pair (i, j) of integers such that $X = T[i..j]$, $S\text{Tree}(T)$ can be represented with $O(n)$ space. For a given string T of length n over an integer alphabet of size $\sigma = n^{O(1)}$, $S\text{Tree}(T)$ can be constructed in $O(n)$ time [9]. For each node v in $S\text{Tree}(T)$, let $str(v)$ denote the string spelled out from the root to v. According to Property (4), we sometimes identify each position i in string T with the leaf which represents the corresponding suffix $T[i..n]$.

Suppose the unique character at the end of string T is the lexicographically smallest in Σ. The suffix array [19] of string T of length n, denoted SA_T, is an array of size n such that $SA_T[i] = j$ iff $T[j..n]$ is the ith lexicographically smallest suffix of T for $1 \leq i \leq n$. The reversed suffix array of T, denoted SA_T^{-1}, is an array of size n such that $SA_T^{-1}[SA_T[i]] = i$ for $1 \leq i \leq n$. The longest common prefix array of T, denoted LCP_T, is an array of size n such that $LCP_T[1] = -1$ and $LCP_T[i] = \text{lcp}(T[SA_T[i-1]..n], T[SA_T[i]..n])$ for $2 \leq i \leq n$. The arrays SA_T, SA_T^{-1}, and LCP_T for a given string T of length n over an integer alphabet of size $\sigma = n^{O(1)}$ can be constructed in $O(n)$ time [15, 16].

For a rooted tree T, the lowest common ancestor $LCA_T(u, v)$ of two nodes u and v in T is the deepest node in T which has u and v as its descendants. It is known that after a linear-time preprocessing on the input tree, querying $LCA_T(u, v)$ for any two nodes u, v can be answered in constant time [2].

Consider a rooted tree T where each node is either marked or unmarked. For any node v in T, let $NMA_T(v)$ denote the deepest marked ancestor of v. There exists a linear-space algorithm which marks any unmarked node and returns $NMA_T(v)$ for any node v in T amortized $O(1)$ time [21].

Let A be an integer array of size n. A range minimum query $\text{RMQ}_A(i, j)$ of a given pair (i, j) of indices $(1 \leq i \leq j \leq n)$ asks an index k in range $[i, j]$ which stores the minimum value in $A[i..j]$. After $O(n)$-time preprocessing on A, $\text{RMQ}_A(i, j)$ can be answered in $O(1)$ time for any given pair (i, j) of indices [2].

Let S be a set of m integers from universe $[1, n]$, where n fits in a single machine word. A predecessor (resp. successor) query for a given integer x to S asks the largest (resp. smallest) value in S that is smaller (resp. larger) than x. Let $u(m, n)$, $q(m, n)$ and $s(m, n)$ denote the time for updates (insertion/deletion) of elements, the time for predecessor/successor queries, and the space of a dynamic predecessor/successor data structure. Using a standard balanced binary search tree, we have $u(m, n) = q(m, n) = O(\log m)$ time and $s(n, m) = O(m)$ space. The Y-fast trie [25] achieves $u(m, n) = q(m, n) = O(\log \log m)$ expected time and $s(n, m) = O(m)$ space, while the van Emde Boas tree [22] does $u(m, n) = q(m, n) = O(\log \log m)$ worst-case time and $s(n, m) = O(n)$ space.

3 Algorithms for computing canonical longest SAGPs

In this section, we present several algorithms to compute the set $S\text{AGP}(T)$ of canonical longest SAGPs for all pivots in a given string T.

Let $\text{Pos}_1(T)$ and $\text{Pos}_2(T)$ be the sets of type-1 and type-2 positions in T, respectively. Let $S\text{AGP}(T, i)$ be the subset of $S\text{AGP}(T)$ whose elements are canonical longest SAGPs for pivot i. Let $S\text{AGP}_1(T) = \bigcup_{i \in \text{Pos}_1(T)} S\text{AGP}(T, i)$ and $S\text{AGP}_2(T) = \bigcup_{i \in \text{Pos}_2(T)} S\text{AGP}(T, i)$. Clearly $S\text{AGP}_1(T) \cup S\text{AGP}_2(T) = S\text{AGP}(T)$ and $S\text{AGP}_1(T) \cap S\text{AGP}_2(T) = \emptyset$. The following lemma gives an useful property to characterize the type-1 positions of T.

Lemma 1. Let i be any type-1 position of a string T of length n. Then, a SAGP wgu^iw^R is a canonical longest SAGP for pivot i if w^R is the maximal palindrome centered at i and w^R is the longest non-empty prefix of $T[i+|\text{w}^R|+1..n]$ such that w occurs at least once in $T[1..|\text{w}|-1]$.

Proof. (⇒) Assume on the contrary that w^R is not the maximal palindrome centered at i, and let xw^ix^R be the maximal palindrome centered at position i with $|\text{x}| \geq 1$. If $\text{w}^R = \text{x}^R$, then since position
Figure 1: Illustration for a necessary condition for a canonical longest SAGP (proof of (⇒) for Lemma 1): $wguu^Rw^R$ is a canonical longest SAGP for pivot i. For the same pivot i, there cannot exist a SAGP $w''g''xuu^Rx^Rw''R$ where xuu^Rx^R is the maximal palindrome centered at i and w'' is a prefix of w, since it contradicts that $wguu^Rw^R$ is a canonical longest SAGP for i.

Figure 2: Illustration for a sufficient condition for a canonical longest SAGP (proof of (⇐) for Lemma 1): uu^R is the maximal palindrome centered at i and w^R is the longest prefix of $T[i + |u^Rw^R| + 1..n]$ such that w occurs at least once in $T[1..i − |u| − 1]$, and thus $c \neq b$. Then, there cannot exist a longer SAGP $w'g'u'u^Rw^R$ for the same pivot i, since $a \neq b$.

(i) is of type-1, there must be a SAGP $w'g'xuu^Rx^Rw'^R$ with $|w'| \geq 1$ for pivot i, but this contradicts that $wguu^Rw^R$ is a longest SAGP for pivot i. Hence x^R is a proper prefix of w^R. See Figure 1. Let $x^Rw'^R = w^R$. Since w'^R is a non-empty suffix of w^R, w'' is a non-empty prefix of w. This implies that there exists a SAGP $w''g''xuu^Rx^Rw'^R$ for pivot i. However, this contradicts that $wguu^Rw^R$ is a canonical longest SAGP for pivot i. Consequently, uu^R is the maximal palindrome centered at i, and now it immediately follows that w^R is the longest non-empty prefix of $T[i + |u^R| + 1..n]$ such that w occurs at least once in $T[1..i − |u| − 1]$.

(⇐) First, we show that $wguu^Rw^R$ is a longest SAGP for pivot i. See Figure 2. Let u' be any proper suffix of u, and assume on the contrary that there exists a SAGP $w'g'u'u^Rw'^R$ for pivot i such that $|w'u'| > |wu|$. Since $|u'| < |u|$, the occurrence of w^R at position $i + |u^R|$ is completely contained in the occurrence of w'^R at position $i + |u'^R|$. This implies that any occurrence of w' to the left of $u'u^R$ completely contains an occurrence of w, reflected from the occurrence of w^R in w'^R. However, the character a that immediately precedes the occurrence of w in w' must be distinct from the character b that immediately follows w^R, namely $a \neq b$. This contradicts that $w'g'u'u^Rw'^R$ is a SAGP for pivot i. Hence, $wguu^Rw^R$ is a longest SAGP for pivot i. Since uu^R is the maximal palindrome centered at i, we cannot extend u to its left nor u^R to its right for the same center i. Thus, $wguu^Rw^R$ is a canonical longest SAGP for pivot i.

We define two arrays Pals and LMost as follows:

$\text{Pals}[i] = \{ r \mid T[i + r] \text{ is a maximal palindrome in } T \text{ for pivot } i \}$.

$\text{LMost}[c] = \min\{i \mid T[i] = c\}$ for $c \in \Sigma$.

5
Lemma 2. Given a string T of length n over an integer alphabet of size $n^{O(1)}$, we can determine whether each position i of T is of type-1 or type-2 in a total of $O(n)$ time and space.

Proof. Let uu^R be the maximal palindrome centered at i. Observe that, by Lemma 1, i is a type-1 position iff the character $a = T[i + |u|^R + 1]$ which immediately follows u^R occurs in $T[1..i - |u| - 1]$. Let Σ_T be the set of distinct characters occurring in T. Using the above observation and the array LMost, we can determine in $O(1)$ time whether a given position i of T is of type-1 or type-2 by $\text{LMost}[T[i + \text{Pals}[i] + 1]] < i - \text{Pals}[i]$. We can sort the characters in Σ_T in $O(n)$ by constructing SA_T in $O(n)$ time and space.

By Lemma 1 and Lemma 2, we can consider an algorithm to compute $\text{SAGP}(T)$ by computing $\text{SAGP}_1(T)$ and $\text{SAGP}_2(T)$ separately, as shown in Algorithm 1. In this algorithm, we also construct an auxiliary array NextPos defined by $\text{NextPos}[i] = \min\{j \mid i < j, T[i] = T[j]\}$ for each $1 \leq i \leq n$, which will be used in Section 3.2.

Lemma 3. Algorithm 1 correctly computes $\text{SAGP}(T)$.

Proof. In line 1, we firstly compute an array Pals. $\text{Pals}[i]$ stores radius r of maximal palindrome centered at i. We can compute Pals in $O(n)$ time and space applying Manacher’s algorithm [18]. We show how to compute Pals in Algorithm 2. In the first for-loop, we construct auxiliary arrays LMost and NextPos. The correctness of the computation of these arrays is obvious. We use NextPos when computing SAGP_2. In line 6 since we correctly determine which each position of T is of type-1 or type-2 by Lemma 2, we must compute $\text{Pos}_1(T)$ and $\text{Pos}_2(T)$ in the second for-loop. Therefore, by referring each element of $\text{Pos}_1(T)$ and $\text{Pos}_2(T)$ respectively, we can compute $\text{SAGP}_1(T)$ and $\text{SAGP}_2(T)$, namely $\text{SAGP}(T)$.

In the following subsections, we present algorithms to compute $\text{SAGP}_1(T)$ and $\text{SAGP}_2(T)$ respectively, assuming that the arrays Pals, LMost and NextPos have already been computed.
Algorithm 2: computing Pals /* proposed by Manacher [18] */

Input: string T of length n
Output: Pals /*Pals[i]: maximal even palindrome for pivot i*/

1. $\text{Pals}[0] = 0$
2. $i = 2$; $c = 1$; $r = 0$
3. while $c < n$ do
 4. $j = 2 * c - j + 1$
 5. while $T[i] = T[j]$ do
 6. $i = i + 1$; $j = j - 1$; $r = r + 1$
 7. Pals[c] = r
 8. $d = 1$
 9. while $d < r$ do
 10. $r_l = \text{Pals}[c - d]$
 11. if $r_l = r - d$ then break
 12. $\text{Pals}[c + d] = \min\{r - d, r_l\}$
 13. $d = d + 1$
 14. if $d > r$ then $i = i + 1$; $r = 0$
 15. else $r = r_l$
 16. $c = c + d$

3.1 Computing $\text{SAGP}_1(T)$ for type-1 positions

In what follows, we present several algorithms corresponding to the line 9 in Algorithm 1. Lemma 1 allows us greedy strategies to compute the longest prefix w^R of $T[i + \text{Pals}[i] + 1..n]$ such that w occurs in $T[1..i - \text{Pals}[i] - 1]$.

3.1.1 Naïve quadratic-time algorithm with RMQs

Let $T' = T^R\#$. We construct the suffix array $\text{SA}_{T'}$, the reversed suffix array $\text{SA}_{T'}^{-1}$, and the LCP array $\text{LCP}_{T'}$ for T'.

For each Pals[i] in T, for each gap size $G = 1, \ldots, i - \text{Pals}[i] - 1$, we compute $W = \text{lcp}(T[1..i - \text{Pals}[i] - G]^{R}, T[i + \text{Pals}[i] + 1..n])$ in $O(1)$ time by an RMQ on the LCP array $\text{LCP}_{T'}$. Then, the gap sizes G with largest values of W give all longest SAGPs for pivot i. Since we test $O(n)$ gap sizes for every pivot i, it takes a total of $O(n^2)$ time to compute $\text{SAGP}_1(T)$. The working space of this method is $O(n)$.

3.1.2 Simple quadratic-time algorithm based on suffix array

Given a string T, we construct $\text{SA}_{T'}$, $\text{SA}_{T'}^{-1}$, and $\text{LCP}_{T'}$ for string $T' = T^R\#$ as in the previous subsection. Further, for each position $n + 2 \leq j \leq 2n + 1$ in the reversed part T^R of $T' = T^R\#$, let $\text{op}(j)$ denote its “original” position in the string T, namely, let $\text{op}(j) = 2n - j + 2$. Let e be any entry of $\text{SA}_{T'}$ such that $\text{SA}_{T'}[e] \geq n + 2$. We associate each such entry of $\text{SA}_{T'}$ with $\text{op}(\text{SA}_{T'}[e])$.

Let $\text{SA}_{T'}[k] = i + \text{Pals}[i] + 1$, namely, the k-th entry of $\text{SA}_{T'}$ corresponds to the suffix $T[i + \text{Pals}[i] + 1..n]$ of T. Now, the task is to find the longest prefix w^R of $T[i + \text{Pals}[i] + 1..n]$ such that w occurs completely inside $T[1..i - \text{Pals}[i] - 1]$. Let $b = i - \text{Pals}[i] + 1$, namely, b is the beginning position of the maximal palindrome uw^R centered at i. We can find w for any maximal SAGP $wguuw^R$ for pivot i by traversing $\text{SA}_{T'}$ from the k-th entry forward and backward, until we encounter the nearest entries $p < k$ and $q > k$.
on SA_T such that $op(SA_T[p]) < b - 1$ and $op(SA_T[q]) < b - 1$, if they exist. The size W of w is equal to

$$\max\{\min\{\text{LCP}_T[p+1], \ldots, \text{LCP}_T[k]\}, \min\{\text{LCP}_T[k+1], \ldots, \text{LCP}_T[q]\}\}. \tag{1}$$

Assume w.l.o.g. that p gives a larger lcp value with k, i.e. $W = \min\{\text{LCP}_T[p+1], \ldots, \text{LCP}_T[k]\}$. Let s be the largest entry of SA_T such that $s < p$ and $\text{LCP}_T[s+1] < W$. Then, any entry t of SA_T such that $s < t \leq p$ and $op(SA_T[t]) < b - 1$ corresponds to an occurrence of a longest SAGP for pivot i, with gap size $b - op(SA_T[t]) - 1$. We output longest SAGP $(i, W; b - op(SA_T[t]) - 1, |u|)$ for each such t. The case where q gives a larger lcp value with k, or p and q give the same lcp values with k can be treated similarly.

We find p and s by simply traversing SA_T from k. Since the distance from k to s is $O(n)$, the above algorithm takes $O(n^2)$ time. The working space is $O(n)$.

3.1.3 Algorithm based on suffix array and predecessor/successor queries

Let $occ_1 = |SAGP_1(T)|$. For any position r in T, we say that the entry j of SA_T is active w.r.t. r iff $op(SA_T[j]) < r - 1$. Let $\text{Active}(r)$ denote the set of active entries of SA_T for position r, namely, $\text{Active}(r) = \{j \mid op(SA_T[j]) < r - 1\}$.

Let $t_1 = p$, and let t_2, \ldots, t_h be the decreasing sequence of entries of SA_T which correspond to the occurrences of longest SAGPs for pivot i. Notice that for all $1 \leq \ell \leq h$ we have $op(SA_T[t_\ell]) < b - 1$ and hence $t_\ell \in \text{Active}(b)$, where $b = i - |u| + 1$. Then, finding t_1 reduces to a predecessor query for k in $\text{Active}(b)$. Also, finding t_h for $2 \leq \ell \leq h$ reduces to a predecessor query for $t_{\ell-1}$ in $\text{Active}(b)$.

To effectively use the above observation, we compute an array U of size n from $Pals$ such that $U[b]$ stores a list of all maximal palindromes in T which begin at position b if they exist, and $U[b]$ is nil otherwise. U can be computed in $O(n)$ time e.g., by bucket sort. After computing U, we process $b = 1, \ldots, n$ in increasing order. Assume that when we process a certain value of b, we have maintained a dynamic predecessor/successor query data structure for $\text{Active}(b)$. The key is that the same set $\text{Active}(b)$ can be used to compute the longest SAGPs for every element in $U[b]$, and hence we can use the same predecessor/successor data structure for all of them. After processing all elements in $U[b]$, we insert all elements of $\text{Active}(b+1) \setminus \text{Active}(b)$ to the predecessor/successor data structure. Each element to insert can be easily found in constant time.

Since we perform $O(n + occ_1)$ predecessor/successor queries and $O(n)$ insertion operations in total, we obtain the following theorem.

Theorem 1. Given a string T of size n over an integer alphabet of size $\sigma = n^{O(1)}$, we can compute $\text{SAGP}_1(T)$ in $O(n(u(n, n) + q(n, n)) + occ_1 \cdot q(n, n))$ time with $O(n + s(n, n))$ space by using the suffix array and a predecessor/successor data structure, where $occ_1 = |SAGP_1(T)|$.

Since every element of $\text{Active}(b)$ for any b is in range $[1, 2n + 2]$, we can employ the van Emde Boas tree $[22]$ as the dynamic predecessor/successor data structure using $O(n)$ total space. Thus we obtain the following theorem.

Theorem 2. Given a string T of size n over an integer alphabet of size $\sigma = n^{O(1)}$, we can compute $\text{SAGP}_1(T)$ in $O((n + occ_1) \log \log n)$ time and $O(n)$ space by using the suffix array and the van Emde Boas tree, where $occ_1 = |SAGP_1(T)|$.

Example 1. Let $T = \text{acacabaabca}$ and $T' = \text{acacabaabca}\#\text{acbaabaca}\#$, where $T' = TSTR\#$. First, we compute $Pals$ and the array U. Assume we are now processing position $b = 6$ in T, then $U[6] = \{(6, 9)\}$, where $(6, 9)$ represents the maximal palindrome $T[6..9] = \text{baab}$. Thus we consider pivot $i = b + \lceil(9 - 6 + 1)/2\rceil - 1 = 7$.

8
First, we construct the suffix array $SA_{T'}$, the reversed suffix array $SA_{T'}^{-1}$, and the LCP array $LCP_{T'}$ for T'. Figure 3 shows these arrays. Let k be the integer such that $SA_{T'}[k] = i + \lceil (9 - 6 + 1)/2 \rceil + 1 = 7 + 3 = 10$, namely $k = 19$. This can be obtained from $SA^{-1}[10] = 19$ (see Figure 3). To compute the longest w, we traverse $SA_{T'}[19]$ forward and backward, until we encounter the nearest entries $p < k$ and $q > k$ on $SA_{T'}$, such that $op(SA_{T'}[p]) < 5$ and $op(SA_{T'}[q]) < 5$. Note that these are equivalent to predecessor/successor queries for 19, respectively. Then, we can find $p = 10$ and $q = 20$. Then, the size W of w is computed by

$$W = \max\{\min\{LCP_{T'}[11], \ldots, LCP_{T'}[19]\}, \min\{LCP_{T'}[20], \ldots, LCP_{T'}[20]\}\},$$

and we obtain $W = 2$. In this case, $q = 20$ gives a larger lcp value with $k = 19$. Thus, we output a canonical longest SAGP $(7, 2, 3, 2) = aca[aca][ba][ab]ca$. We further traverse $SA_{T'}$ from the 20th entry backward as long as successive entries s fulfill $LCP_{T'}[s + 1] \geq W$. Then, we find $s = 22$, thus we output a canonical longest SAGP $(7, 2, 1, 2) = ac|\bar{a}|ba|\bar{a}b|ca$. We further traverse $SA_{T'}$ from the 17th entry backward, finally we reach the 24th entry of $SA_{T'}$, which is the last entry of the suffix array. Therefore, we finish the process for position $b = 6$.

3.1.4 Optimal-time algorithm based on suffix tree

In this subsection, we show that the problem can be solved in optimal time and space, using the following three suffix trees regarding the input string T. Let $T'_1 = STree(TST^R\#)$ for string $TST^R\#$ of length $2n + 2$, and $T'_2 = STree(T^R\#)$ of length $n + 1$. These suffix trees T'_1 and T'_2 are static, and thus can be constructed offline, in $O(n)$ time for an integer alphabet. We also maintain a growing suffix tree $T'_2' = STree(T^R[k..n]\#)$ for decreasing $k = n, \ldots, 1$.

Lemma 4. Given $T'_2 = STree(T^R\#)$, we can maintain $T'_2' = STree(T^R[k..n]\#)$ for decreasing $k = n, \ldots, 1$ incrementally, in $O(n)$ total time for an integer alphabet of size $n^{O(1)}$.

Proof. We build an LCA data structure on $T'_2 = STree(T^R\#)$. We also construct a level ancestor data structure R on T'_2 in linear preprocessing time and space, so that later, given a node u and a positive integer ℓ, the ℓth ancestor of u in T'_2 can be answered in $O(1)$ time. Additionally, we use $SA_{T'^R\#}$ and $SA_{T'^{-1}R\#}$ in our algorithm, and throughout this proof we abbreviate $SA_{T'^R\#}$ as SA and $SA_{T'^{-1}R\#}$ as SA^{-1} for simplicity. Let PLV and NLV be arrays of size $n + 1$ each, such that for every $1 \leq j \leq n + 1$,

$$PLV[j] = \max\{j' | 1 \leq j' < j, SA[j'] > SA[j]\} \cup \{-\infty\},$$

$$NLV[j] = \min\{j' | j < j' \leq n + 1, SA[j'] > SA[j]\} \cup \{\infty\}.$$

Intuitively, $PLV[j]$ and $NLV[j]$ indicate the entries of SA that correspond to the lexicographically closest suffixes to the left and to the right of the suffix $T^R[SA[j..n]\#]$ which occur positions larger than j, respectively. If such entries do not exist, then let $PLV[j] = -\infty$ and $NLV[j] = \infty$. See also Figure 4 for concrete examples of PLV and NLV arrays.
Consider string $T = \text{ccabaabc}$. Here, we illustrate incremental construction of the growing suffix tree T'_2 for its reversed string $T^R[#] = \text{cbaabacc}#$. Assume we have constructed $T'_2 = \text{STree}(T^R[5..8]#) = \text{STree}(\text{bacc}#)$, and we are inserting a new leaf for the next suffix $T^R[4..8]# = \text{abacc}$ starting at position 4 in $T^R#$. $\text{SA}^{-1}[4] = 3$, hence we focus on the suffixes of $T^R#$ starting at positions $\text{SA}[\text{PLV}[3]] = \text{SA}[1] = 9$ and $\text{SA}[\text{NLV}[3]] = \text{SA}[4] = 6$. Since $\text{lcp}(T^R[9..8]#, T^R[4..8]#) = \text{lcp}(#, \text{abacc}#) = 0 < \text{lcp}(T^R[4..8]#, T^R[6..8]#) = \text{lcp}(\text{abacc}#, \text{acc}#) = 1$, we split the corresponding edge and insert the new leaf $\text{SA}[3] = 4$ as the left neighbor of the leaf 6.

Suppose we have constructed $T'_2 = \text{STree}(T^R[k + 1..n]#)$ up to position $k + 1$, and we wish to update it with the new character $T^R[k]$ at position k. We maintain an NMA data structure on the full suffix tree T_2 such that a node in T_2 is marked iff it exists in the growing suffix tree T'_2. Namely, in each step of our algorithm, the induced tree with the marked nodes of T_2 coincides with T'_2.

Now, what is required here is to insert a new leaf corresponding to the suffix $T^R[k..n]#$ to the growing suffix tree. If we use a variant of Weiner’s algorithm [23], we can do this in $O(\log \sigma)$ (amortized) time, but this becomes $O(\log n)$ for integer alphabets of size $\sigma = n^{O(1)}$, and thus it is not enough for our goal. To achieve $O(1)$ update time per character, we utilize the power of the full suffix tree $T_2 = \text{STree}(T^R#)$ and four arrays SA, SA^{-1}, PLV, and NLV.

In what follows, we focus on the case where $\text{PLV}[\text{SA}^{-1}[k]] \neq -\infty$ and $\text{NLV}[\text{SA}^{-1}[k]] \neq -\infty$. The case where $\text{PLV}[\text{SA}^{-1}[k]] = \infty$ or $\text{NLV}[\text{SA}^{-1}[k]] = \infty$ is simpler and can be treated similarly. A key observation is that there is a one-to-one correspondence between every leaf of $\text{STree}(T^R[k + 1..n]#)$ and an entry of SA which stores a position in $T^R#$ which is larger than k. Hence, $\text{SA}[\text{PLV}[\text{SA}^{-1}[k]]]$ and $\text{SA}[\text{NLV}[\text{SA}^{-1}[k]]]$ will be, respectively, the left and right neighboring leaves of the new leaf k in the updated suffix tree $\text{STree}(T^R[k..n]#)$.

Given the new position k, we compute the following values L and R:

$$L = \text{lcp}(T^R#)[\text{SA}[\text{PLV}[\text{SA}^{-1}[k]..n + 1]], (T^R#)[k..n + 1]),$$

$$R = \text{lcp}(T^R#)[k..n + 1], (T^R#)[\text{SA}[\text{NLV}[\text{SA}^{-1}[k]..n + 1]]].$$

Let v_L and v_R be the LCA nodes in the full suffix tree T_2 that correspond to the LCP values L and R, respectively (i.e., the string depths of v_L and v_R are respectively L and R). Both v_L and v_R can be found in $O(1)$ time by LCA queries on the full suffix tree T_2. Depending on the values of L and R, we have the following cases.
• If \(L \geq R \), then leaf \(\text{SA}[\text{PLV}[\text{SA}^{-1}[k]]] \) will be the left neighbor of the new leaf \(k \) in the updated suffix tree. We then find the parent \(\text{parent}(v_L) \) of \(v_L \) in the growing tree \(T'_2 \), by an NMA query from \(v_L \) on the full suffix tree \(T_2 \). Then, in the growing tree, we split the corresponding out-going edge of \(\text{parent}(v_L) \) with the string depth of \(v_L \) if necessary, and insert a new leaf \(k \). In case where the parent of this leaf \(k \) was newly created after splitting the edge, then we mark the corresponding node in the full suffix tree \(T_2 \).

What remains is how to efficiently locate this corresponding out-going edge of \(\text{parent}(v_L) \) to be split. For this sake, we associate each edge \(f \) of \(T'_2 \) with the first edge of the path in \(T_2 \) that corresponds to \(f \). We also precompute the depths of all nodes in the full suffix tree \(T_2 \) by a standard linear-time tree traversal. Let \(u \) be the (marked) child of \(\text{parent}(v_L) \) in the growing tree \(T'_2 \) such that the edge from \(\text{parent}(v_L) \) to \(u \) is split and \(v_L \) is newly inserted in between. Let \(x \) be the label of the edge from \(\text{parent}(v_L) \) to \(u \) in \(T'_2 \), and let \(e \) be the first edge of the corresponding path of \(T_2 \) that spells out \(x \). Since we know the depth of \(\text{parent}(v_L) \) in the full suffix tree \(T_2 \), we can find \(e \) in \(O(1) \) time by a level ancestor query from leaf \(\text{SA}[\text{PLV}[\text{SA}^{-1}[k]]] \) on the full suffix tree \(T_2 \). Thus we can locate the edge from \(\text{parent}(v_L) \) to \(u \) using \(e \), in constant time. Let \(x = yz \) be the partition of \(x \) such that the path from \(\text{parent}(v_L) \) to \(v_L \) spells out \(y \) and the path from \(v_L \) to \(u \) spells out \(z \). Let \(e' \) be the out-going edge of \(v_L \) in \(T_2 \), that is the first edge in this path spelling out \(z \). After the update to the growing suffix tree, the new edge from \(\text{parent}(v_L) \) to \(v_L \) is associated to \(e \), and the new edge from \(v_L \) to \(u \) is associated to \(e' \). The edge \(e' \) can also be found by a level ancestor query from \(\text{SA}[\text{PLV}[\text{SA}^{-1}[k]]] \) on \(T_2 \). See Figure 5 for illustration.

• If \(L < R \), then leaf \(\text{SA}[\text{NLV}[\text{SA}^{-1}[k]]] \) will be the right neighbor of leaf \(k \) in the updated suffix tree. This case can be treated in a similar manner as the afore-mentioned case.

We then associate the new leaf \(k \) with the \(\text{SA}^{-1}[k] \)-th entry of \(\text{SA} \) so that later, given \(k \), we can access to this leaf on \(\text{SA} \) in \(O(1) \) time. See also Figure 4 for a concrete example on how we insert a new leaf to the growing suffix tree.

Let us analyze the efficiency of our algorithm. Given \(\text{SA} \), PLV and NLV can be constructed in \(O(n) \) time [1]. Then, given a position \(k \) in string \(T^R\# \), we can access the leaves \(\text{SA}[\text{PLV}[\text{SA}^{-1}[k]]] \) and \(\text{SA}[\text{NLV}[\text{SA}^{-1}[k]]] \) of the full suffix tree \(T_2 = \text{STree}(T^R\#) \) in \(O(1) \) time using \(\text{SA} \), \(\text{SA}^{-1} \), PLV, and NLV arrays. The values of \(L \) and \(R \) can be computed in \(O(1) \) time by two LCA queries on the full suffix tree \(T_2 \). In each of the afore-mentioned cases, we perform at most two level ancestor queries on \(T_2 \), using \(O(1) \) time each. Thus it takes \(O(1) \) time to insert a new leaf. Thus, it takes \(O(1) \) time to insert a new leaf to the growing suffix tree \(T'_2 \). This completes the proof.

We now obtain the main result for this subsection:

Theorem 3. Given a string \(T \) of length \(n \) over an integer alphabet of size \(\sigma = n^{O(1)} \), we can compute \(\text{SAGP}_1(T) \) in optimal \(O(n + \text{occ}_1) \) time and \(O(n) \) space by using suffix trees, where \(\text{occ}_1 = |\text{SAGP}_1(T)| \).

Proof. We first compute the array \(U \). Consider an arbitrary fixed \(b \), and let \(uu^R \) be a maximal palindrome stored in \(U[b] \) whose center is \(i = b + |u| - 1 \). Assume that we have a growing suffix tree \(T'_2 \) for string \(T^R[n - b + 1..n]\# \) which corresponds to the prefix \(T[1..b] \) of \(T \) of size \(b \). We use a similar strategy as the suffix array based algorithms. For each position \(2n - b + 2 \leq j \leq 2n + 1 \) in string \(T' = T^S T^R\# \), \(1 \leq \text{op}(j) \leq b - 2 \). We maintain the NMA data structure over the suffix tree \(T_1 \) for string \(T' \) so that all the ancestors of the leaves whose corresponding suffixes start at positions \(2n - b + 2 \leq j \leq 2n + 1 \) are marked, and any other nodes in \(T_1 \) remain unmarked at this step.

As in the suffix-array based algorithms, the task is to find the longest prefix \(w^R \) of \(T[i + |u^R| + 1..n] \) such that \(w \) occurs completely inside \(T[1..b - 2] = T[1..i - |u| - 1] \). In so doing, we perform an NMA
To its corresponding node in the static suffix tree show interesting parts of STree.

What remains is how to efficiently link the new internal node introduced in the growing suffix tree a similar technique based on LCA queries on TSA, marked nodes, and white ones are unmarked nodes. We find O(6b) working space. Then, for any leaf \ell in the subtree, (i, |str(v)|, b − op(\ell), |u|) is a canonical longest SAGP for pivot i (see also Figure [3]).

After processing all the maximal palindromes in U|b|, we mark all unmarked ancestors of the leaf \textbf{2n} − \textbf{b} of \textbf{T}_1 in a bottom-up manner, until we encounter the lowest ancestor that is already marked. This operation is a preprocessing for the maximal palindromes in U|b + 1|, as we will be interested in the positions between 1 and op(\textbf{2n} − \textbf{b}) = \textbf{b} − \textbf{1} in T. In this preprocessing, each unmarked node is marked at most once, and each marked node will remain marked. In addition, we update the growing suffix tree \textbf{T}_2 by inserting the new leaf for T^R|n − b..n|\#.

We analyze the time complexity of this algorithm. Since all maximal palindromes in U|b| begin at position \textbf{b} in T, we can use the same set of marked nodes on \textbf{T}_1 for all of those in U|b|. Thus, the total cost to update the NMA data structure for all \textbf{b}s is linear in the number of unmarked nodes that later become marked, which is O(n) overall. The cost for traversing the subtree of \textbf{T}_2 to find the occurrences of w can be charged to the number of canonical longest SAGPs to output for each pivot, thus it takes O(occ_1) time for all pivots. Updating the growing suffix tree \textbf{T}_2 takes overall O(n) time by Lemma 4. What remains is how to efficiently link the new internal node introduced in the growing suffix tree \textbf{T}_2, to its corresponding node in the static suffix tree \textbf{T}_1 for string T'. This can be done in O(1) time using a similar technique based on LCA queries on \textbf{T}_1, as in the proof of Lemma 4. Summing up all the above costs, we obtain O(n + occ_1) optimal running time and O(n) working space.

Example 2. Let \textbf{T} = acacabaabca and \textbf{T}' = acacabaabca$acabaacaca$, where \textbf{T}' = TT^R#. First, we compute \textbf{Pals} and the array \textbf{U}. Assume we are now processing position \textbf{b} = 6 in \textbf{T}, then \textbf{U}[6] = \{(6, 9)\}, where (6, 9) represents the maximal palindrome T'|6..9| = baab. Thus we consider pivot i = b + [(9 − 6 + 1)/2] − 1 = 7.

First, we construct the suffix tree \textbf{T}_1 = STree(TT^R#). Suppose that we have constructed \textbf{T}_2 = STree(T^R|8..11|#) and marked all ancestors of every leaf v such that 19 < v ≤ 24 in \textbf{T}_1. In Figure 6 we show interesting parts of \textbf{T}_1 and \textbf{T}_2.
Figure 6: Showing interesting parts of $T_1 = \text{STree}(T')$ and $T_2' = \text{STree}(T^R[8..11]#)$, where $T = \text{acacabaabc}a$, $T^R = \text{acbaabacaca}$ and $T' = \text{acacabaabc}a\text{Sacbaabacaca}#$. In T_1, we represent the marked internal nodes by black circles, the unmarked internal nodes by white circles, and the leaves by squares in which the numbers denote the beginning positions of the corresponding suffixes in the string. The dotted line represents the link between the node for string c in T_1 and that in T_2'.

Figure 7: Illustration for Lemma 5.

To compute the longest w, we perform an NMA query from the leaf $i + |u^R| + 1 = 10$ of T_1. As can be seen in Figure 6, we obtain the nearest marked node $v = \text{NMA}_{T_1}(10)$. Thus, we know that $w^R = \text{ca}$. Next, we switch from the node v of T_1 to its corresponding node v' of T_2' using a link between them. Then, we traverse the subtree rooted at v' and obtain all occurrences of w^R, namely $w^R = T^R[10..11] = T^R[8..9] = \text{ca}$ at positions 10 and 8 in the reversed string $T^R#$. Since $\text{op}(10) = 2$ and $\text{op}(8) = 4$, we obtain the canonical longest SAGPs $(7, 2, 3, 2) = \text{ac} | \text{aca} | \text{ba} | \text{ab} | \text{ca}$, and $(7, 2, 1, 2) = \text{ac} | \text{g} | \text{ba} | \text{ab} | \text{ca}$ for pivot 7.

3.2 Computing $\text{SAGP}_2(T)$ for type-2 positions

In this subsection, we present an algorithm to compute $\text{SAGP}_2(T)$ in a given string T, corresponding to the line 10 in Algorithm 1.

Lemma 5. Every (not necessarily longest) SAGP for type-2 pivot i must end at one of the positions between $i + 2$ and $i + \text{Pals}[i]$.

Proof. See Figure 7. By definition, it is clear that any SAGP for pivot i must end at position $i + 2$ or after that. Now, assume on the contrary that there exists a SAGP $u'g'u'u^Rw^R$ for pivot i such that $i + |u'Rw^R| > i + |u^R|$ (it ends after position $i + |u^R|$), where uu^R is the maximal palindrome centered at position i. Recall that since i is a type-2 position, we have $|u'| < |u|$. Let w^R be the suffix of w^R of size $|u'Rw^R| - |u^R|$. Then, there exists a SAGP $wguu^Rw^R$ for pivot i where $|g| = |g'|$ and u^R is the maximal
which contradicts that i is a type-2 position. Hence, any SAGP for pivot i must end at position $i + |u_R|$ or before that.

Lemma 6. For any type-2 position i in string T, if $wguuRwR$ is a canonical longest SAGP for pivot i, then $|w| = 1$.

Proof. Let $x_1 = w_1g_1u_1u_R^Rw_R^R$ be a canonical longest SAGP for pivot i, and on the contrary, suppose that $|w_1| \geq 2$. See also Fig.8 Then we can rewrite $w_1 = w_2w_1'$ for two non-empty strings w_2 and w_1'. Let uu^R be the maximal palindrome centered at i. Since the position i is type-2, $u_R^Ru_1^R$ is a prefix of u^R by Lemma 5 so that w_1u_1 is a suffix of u. Moreover, let $u_2 = u_1'u_1$ and g_2 be a string satisfying $g_2w_1' = u_1'g_1$. Then $x_2 = w_2g_2u_2u_R^Rw_R^R = w_2g_2w_1'u_1u_R^Rw_R^R = w_2g_2w_1'u_1u_R^Rw_R^R = w_2g_2w_1'u_1u_R^Rw_R^R = w_1g_1u_1u_R^Rw_R^R = x_1$, that shows x_2 is also a SAGP for pivot i. Because $\text{armlen}(x_2) = |w_2u_2| = |w_1u_1| = \text{armlen}(x_1)$, x_2 is also a longest SAGP for pivot i. Because $u_2 = w_1'u_1$ and $w_1' \neq \varepsilon$, we have $|u_2| < |u_1|$, which contradicts that x_1 is a canonical longest SAGP for pivot i.

For every type-2 position i in T, let $t = T[i..i + \text{Pals}[i]]$. By Lemma 6 any canonical longest SAGP is of the form $cguu^Rc$ for $c \in \Sigma$. For each $2 \leq k \leq \text{Pals}[i]$, let $c_k = u_R^R[k]$, and let $u_R^R[k]$ be the proper prefix of u_R^R of length $k - 1$. Now, observe that the largest value of k for which $\text{LMost}[c_k] \leq i - |u_k| - 1$ corresponds to a canonical longest SAGP for pivot i, namely, $c_kg_ku_ku_R^Rc_k$ is a canonical longest SAGP for pivot i, where $g_k = T|\text{LMost}[c_k]| + 1..i - |u_k|$. In order to efficiently find the largest value of such, we consider a function $\text{findR}(t, i)$ defined by

$$\text{findR}(t, i) = \min\{r \mid t \leq r < i, T[l] = T[r] \text{ for } 1 \leq l < r \} \cup \{+\infty\}.$$

Lemma 7. For any type-2 position i in T, quadruple $(i, 1, r - \text{LMost}[T[r]], i - r)$ represents a canonical longest SAGP for pivot i, where $r = \text{findR}(i - \text{Pals}[i] + 1, i) \neq \infty$. Moreover, its gap is the longest among all the canonical longest SAGPs for pivots i.

Proof. See Figure 9. Let t be the beginning position of u in T, namely, $t = i - |u| + 1$. Let $r = \text{findR}(t, i) < \infty$, and let $c = T[r]$. Then by definition of $\text{findR}(t, i)$, there exists $1 \leq l < r$ satisfying $T[l] = c$. Therefore, $x = (i, 1, r - l, i - r)$ is a SAGP for pivot i. Moreover, x is canonical longest SAGP because r is minimized, so that $|u_1| = i - r$ is maximized while $|w|$ is always 1. Recall that $\text{LMost}[c]$ is the leftmost position l satisfying $T[l] = c$. Hence, the gap size of the canonical longest SAGP $(i, 1, r - \text{LMost}[T[r]], i - r)$ is the longest.

By Lemma 7 we can compute a canonical longest SAGP for any type-2 pivot i in $O(1)$ time, assuming that the function $\text{findR}(t, i)$ returns a value in $O(1)$ time. We define an array FindR of size n by

$$\text{FindR}[t] = \min\{r \mid t \leq r, T[l] = T[r] \text{ for } 1 \leq l < r \} \cup \{+\infty\},$$

(2)
Algorithm 3: constructing the array \textit{FindR}

\textbf{Input:} string T of length n
\textbf{Output:} array \textit{FindR} of size n

1. $\textit{minpos} = +\infty$;
2. for $i = n$ downto 1 do
3. \hspace{1em} if $\textit{LMost}[T[i]] \leq i$ then $\textit{minpos} = i$;
4. \hspace{1em} $\textit{FindR}[i] = \textit{minpos}$;

for $1 \leq t \leq n$. If the array \textit{FindR} has already been computed, then $\textit{findR}(t, i)$ can be obtained in $O(1)$ time by $\textit{findR}(t, i) = \textit{FindR}[t]$ if $\textit{FindR}[t] < i$, and $+\infty$ otherwise.

Algorithm 3 shows a pseudo-code to compute \textit{FindR}. Table 1 shows an example.

\textbf{Lemma 8.} Algorithm 3 correctly computes the array \textit{FindR} in $O(n)$ time and space.

\textbf{Proof.} The correctness of the computation of \textit{LMost} is obvious. For each i, we maintaining invariant $\textit{minpos} = \min \{ r \mid i \leq t, T[l] = T[r] \text{ for some } 1 \leq l < r \}$. \textit{minpos} can be maintained by updating it if i is not the leftmost occurrence position of $T[i]$. Since the definition of $\textit{FindR}[i]$ is the same as \textit{minpos} for each i, $\textit{FindR}[i]$ can be computed by assigning \textit{minpos} to $\textit{FindR}[i]$. \hfill \square

By Lemma 8, we can compute $\text{SAGP}_2(T)$ for type-2 positions as follows.

\textbf{Theorem 4.} Given a string T of length n over an integer alphabet of size $n^{O(1)}$, we can compute $\text{SAGP}_2(T)$ in $O(n + \text{occ}_2)$ time and $O(n)$ space, where $\text{occ}_2 = |\text{SAGP}_2(T)|$.

\textbf{Proof.} For a given T, we first compute the array \textit{FindR} by Algorithm 3. The correctness of the computation of $\textit{NextPos}$ is obvious. By Lemma 7, we can get a canonical longest SAGP $x_1 = (i, 1, |g_1|, \text{Pals}[i] - r)$ if $\text{Pals}[i] - r \geq 1$, in $O(1)$ time by referring to \textit{LMost} and \textit{FindR}. Note that x_1 is the one whose gap $|g_1|$ is the longest. Let $b_1 = i - \text{Pals}[i] + r - |g_1|$ be the beginning position of x_1 in T. Then the next shorter canonical longest SAGP for the same pivot i begins at position $b_2 = \text{NextPos}[b_1]$. By repeating this process $b_{j+1} = \text{NextPos}[b_j]$ while the gap size $|g_j| = i - \text{Pals}[i] + r - b_j$ is positive, we obtain all the canonical longest SAGPs for pivot i. Overall, we can compute all canonical longest SAGPs for all pivots in T in $O(n + \text{occ}_2)$ time. The space requirement is clearly $O(n)$. \hfill \square

We now have the main theorem from Theorem 3, Lemma 2, Lemma 3 and Theorem 4 as follows.

\textbf{Theorem 5.} Given a string T of length n over an integer alphabet of size $n^{O(1)}$, Algorithm 3 can compute $\text{SAGP}(T)$ in optimal $O(n + \text{occ})$ time and $O(n)$ space, where $\text{occ} = |\text{SAGP}(T)|$.

\section*{Figure 9: Illustration for Lemma 7}
Table 1: Arrays LMost, NextPos, and FindR for a string $T = \text{dbbaacbcbad}$. For the sake of understanding, we also provide the values of min_{out} and min_{in} in the i-th loop of Algorithm. These values are computed from right to left.

LMost	1	2	3	4	5	6	7	8	9	10	11
a	4										
b	2										
c	6										
d	1										

Table 2: Running times (in milli-sec.) on randomly generated strings of length 10000, 50000, and 100000 with $|\Sigma| = 10$.

n	Naïve	Traverse	RB tree	vEB tree	Y-fast trie
10000	247.2	3.8	6.3	85.7	11.7
50000	7661.0	18.6	37.2	128.9	62.6
100000	32933.2	38.7	80.3	191.9	133.7

4 Experiments

In this section, we show some experimental results which compare performance of our algorithms for computing $\text{SAGP}_1(T)$. We implemented the naïve quadratic-time algorithm (Naïve), the simple quadratic-time algorithm which traverses suffix arrays (Traverse), and three versions of the algorithm based on suffix array and predecessor/successor data structure, each employing red-black trees (RB tree), Y-fast tries (Y-fast trie), and van Emde Boas trees (vEB tree), as the predecessor/successor data structure.

We implemented all these algorithms with Visual C++ 12.0 (2013), and performed all experiments on a PC (Intel® Xeon CPU W3565 3.2GHz, 12GB of memory) running on Windows 7 Professional. In each problem, we generated a string randomly and got the average time for ten times attempts.

We tested all programs on strings of lengths 10000, 50000, and 100000, all from an alphabet of size $|\Sigma| = 10$. Table 2 shows the results. From Table 2, we can confirm that Traverse is the fastest, while Naïve is by far the slowest. We further tested the algorithms on larger strings with $|\Sigma| = 10$. In this comparison, we excluded Naïve as it is too slow. The results are shown in Figure 10. As one can see, Traverse was the fastest for all lengths. We also conducted the same experiments varying alphabet sizes as 2, 4, and 20, and obtained similar results as the case of alphabet size 10.

To verify why Traverse runs fastest, we measured the average numbers of suffix array entries which are traversed, per pivot and output (i.e., canonical longest SAGP). Figure 11 shows the result. We can observe that although in theory $O(n)$ entries can be traversed per pivot and output for a string of length n, in both cases the actual number is far less than n and grows very slowly as n increases. This seems to be the main reason why Traverse is faster than RB tree, vEB tree, and Y-fast trie which use sophisticated but also complicated predecessor/successor data structures.

1We modified a van Emde Boas tree implementation from https://code.google.com/archive/p/libveb/ so it works with Visual C++.
5 Conclusions and future work

We proposed several algorithms to compute longest single-arm-gapped palindromes (SAGPs) for all pivots in a given string T of length n. For the type-1 longest SAGPs, we presented an $O((n + \text{occ}_1) \log \log n)$-time algorithm which is based on a suffix array and a dynamic predecessor/successor data structure, where occ_1 is the number of type-1 longest SAGPs to output. We also presented an $O(n + \text{occ}_1)$-time algorithm based on the suffix tree. For the type-2 longest SAGPs, we proposed an $O(n + \text{occ}_2)$-time algorithm, where occ_2 is the number of type-2 longest SAGPs to output. Combining the last two results, we obtained an optimal $O(n + \text{occ})$-time algorithm for computing all longest SAGPs, where $\text{occ} = \text{occ}_1 + \text{occ}_2$ is the total number of outputs. We performed experiments to compare practical performances of our algorithms for finding type-1 longest SAGPs; the naïve algorithm, the $O(n^2)$-time suffix array based algorithm, and the improved suffix array based algorithm with several kinds of predecessor/successor data structures.

Our future work includes the following: Is there a linear $O(n + \text{occ}_1)$-time algorithm for finding type-1 longest SAGPs using a suffix array (plus some auxiliary arrays), rather than a suffix tree? Our current best suffix-array-based algorithm uses $O((n + \text{occ}_1) \log \log n)$ time. Another question is how many longest SAGPs can be contained in a string. Finding non-trivial upper bound and/or lower bound for occ remains open.

Acknowledgments

The research of Shintaro Narisada, Kazuyuki Narisawa, and Ayumi Shinohara was supported by JSPS KAKENHI Grant Numbers JP15H05706, JP24106010, and ImPACT Program Tough Robotics Challenge of Japan Science and Technology Agency. The research of Diptarama Hendrian is supported by Tohoku University Division for Interdisciplinary Advance Research and Education. The research of Shunsuke Inenaga was supported by JSPS KAKENHI Grant Numbers JP26280003 and JP17H01697.

The authors thank anonymous referees for their useful suggestions for improving the quality of the paper and for pointing out some errors in the previous version.
References

[1] Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in a string. *Theor. Comput. Sci.*, 141(1-2):163–173, 1995.

[2] Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In *LATIN*, pages 88–94, 2000.

[3] Michael A. Bender and Martin Farach-Colton. The Level Ancestor Problem simplified. *Theor. Comput. Sci.*, 321(1):5–12, 2004.

[4] Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter, and Tomasz Walen. Computing the longest previous factor. *Eur. J. Comb.*, 34(1):15–26, 2013.

[5] Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter, and Tomasz Walen. Efficient algorithms for two extensions of LPF table: The power of suffix arrays. In *SOFSEM 2010: Theory and Practice of Computer Science*, volume 5901 LNCS, pages 296–307, 2010.

[6] Xavier Droubay and Giuseppe Pirillo. Palindromes and Sturmian words. *Theor. Comput. Sci.*, 223(1-2):73–85, 1999.

[7] Marius Dumitran, Paweł Gawrychowski, and Florin Manea. Longest gapped repeats and palindromes. *Discrete Mathematics & Theoretical Computer Science*, 19(4), 2017.

[8] Marius Dumitran and Florin Manea. Longest gapped repeats and palindromes. In *Mathematical Foundations of Computer Science 2015*, volume 9234, pages 205–217, 2015.

[9] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree construction. *J. ACM*, 47(6):987–1011, 2000.

[10] Yuta Fujishige, Michitaro Nakamura, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Finding gapped palindromes online. In *IWOCA 2016*, pages 191–202, 2016.

[11] Paweł Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea. Tighter bounds and optimal algorithms for all maximal α-gapped repeats and palindromes — Finding all maximal α-gapped repeats and palindromes in optimal worst case time on integer alphabets. *Theory Comput. Syst.*, 62(1):162–191, 2018.

[12] Amy Glen, Jacques Justin, Steve Widmer, and Luca Q. Zamboni. Palindromic richness. *Eur. J. Comb.*, 30(2):510–531, 2009.

[13] Dan Gusfield. *Algorithms on Strings, Trees, and Sequences*. Cambridge University Press, 1997.

[14] Tomohiro I and Dominik Köppl. Improved upper bounds on all maximal α-gapped repeats and palindromes. *Theoretical Computer Science*, 753:1–15, 2019.

[15] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction. *J. ACM*, 53(6):918–936, 2006.

[16] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In *CPM 2001*, pages 181–192, 2001.
[17] Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. *Theor. Comput. Sci.*, 410(51):5365–5373, 2009.

[18] Glenn K. Manacher. A new linear-time on-line algorithm for finding the smallest initial palindrome of a string. *J. ACM*, 22(3):346–351, 1975.

[19] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches. *SIAM J. Comput.*, 22(5):935–948, 1993.

[20] Shintaro Narisada, Diptarama, Kazuyuki Narisawa, Shunsuke Inenaga, and Ayumi Shinohara. Computing longest single-arm-gapped palindromes in a string. In *SOFSEM*, pages 375–386, 2017.

[21] Ya-Zhou Shi, Feng-Hua Wang, Yuan-Yan Wu, and Zhi-Jie Tan. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect. *The Journal of Chemical Physics*, 141(10):105102, 2014.

[22] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In *FOCS*, pages 75–84, 1975.

[23] Peter Weiner. Linear pattern matching algorithms. In *14th Annual Symposium on Switching and Automata Theory*, pages 1–11, 1973.

[24] Jeffery Westbrook. Fast incremental planarity testing. In *ICALP*, pages 342–353, 1992.

[25] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). *Information Processing Letters*, 17:81–84, 1983.