INTRODUCTION

Memo1 is an evolutionary conserved protein in all kingdoms of life that has shown intracellular expression in cytoplasm and nucleus (Haenzi et al., 2014; Moor, Haenzi, et al., 2018; Schlatter et al., 2012). A conditional and inducible knockout mouse model with postnatal deletion of exon 2 of the *Memo1* gene has resulted in a syndrome of aging and premature death with traits such as elevated calcemia, elevated FGF23 and 1,25(OH)2-vitamin D3, bone disease, lung emphysema, atrophy of subcutaneous fat, insulin hypersensitivity, and renal insufficiency (Haenzi et al., 2014; Moor, Ramakrishnan, et al., 2018). This phenotype significantly overlaps with mouse models deficient in *Klotho* (Kuro-o et al., 1997) or *FGF23* (Shimada et al., 2004), two proteins which have tremendously reshaped our understanding of the regulation of calcium and phosphate metabolism by the kidney and bone and to a lesser extent also the intestine (Hu, Shizaki, Kuro-O, & Moe, 2013; Moor & Bonny, 2016).

In addition, evidence from cell culture experiments investigating co-localization and phosphorylation status of adaptor proteins suggested that mediator of cell motility 1...
(MEMO1) protein participates in and modulates a signaling cascade involving FGF23 and the FGFR (Haenzi et al., 2014).

Serum analyses of Klotho and Fgf23-deficient mice showed excessive 1,25(OH)2-vitamin D3 levels, a finding that has been variably found in Memo1-deficient mice depending on the genetic background (Haenzi et al., 2014; Moor, Ramakrishnan, et al., 2018). The promoters of Fgf23 and Klotho both contain vitamin D response elements (VDRE) (Forster et al., 2011; Orfanidou, Malizos, Varitimidis, & Tsezou, 2012). FGF23 secretion is increased by parathyroid hormone (PTH) (Lavi-Moshayoff, Wasserman, Meir, Silver, & Naveh-Many, 2010) and 17β-estradiol (Carrillo-Lopez et al., 2009). Regarding the regulation of Memo1, a transcriptional analysis of rat pineal glands has detected increased Memo1 transcripts upon synthetic estrogen treatment compared to controls (Deffenbacher & Shull, 2006), highlighting a potential endocrine regulation of the transcription of the Memo1 gene. Here, we, therefore, tested the hypothesis that Memo1 expression can be regulated by minerals or calcitropic stimuli.

2 | METHODS

2.1 | Cell culture

The mouse long bone osteocyte-Y4 cell line (MLO-Y4) was kindly provided by Lynda Bonewald (Kato, Windle, Koop, Mundy, & Bonewald, 1997). MLO-Y4 cells were maintained in culture in minimal essential medium alpha-modified, alpha-MEM (Gibco by Life Technologies), containing 2.5% heat-inactivated calf serum (Sigma), 2.5% heat-inactivated fetal bovine serum (Sigma), and 1% penicillin/streptomycin (Invitrogen by Life Technologies). Serum heat inactivation was carried out in water bath at 56°C for 30 min. Cells were cultured on rat-tail type I collagen (Invitrogen by Life Technologies). For vitamin D stimulation, cells were kept in serum-free medium supplemented with 10 nM 1,25(OH)2-vitamin D3 (Sigma) or ethanol vehicle for 24 hr.

2.2 | Animal experiments

C57BL/6N mice were obtained from Janvier. Mice were held in a conventional animal facility with up to six animals per cage and they were fed a standard laboratory chow (Kliba Nafnag TS3242; calcium 1%, phosphorus 0.65%, magnesium 0.23%, vitamin D 1,600 IU/kg, vitamin A 27,000 IU/kg, vitamin E 150 mg/kg, protein 18.8%, crude fat 5.6%, crude fiber 3.5%, lysine 1.1%; KLIBA) unless specified otherwise and were kept on 12/12 (experimental) or 14/10 (breeding) light–dark cycles. All animal experimental protocols were approved by the State Veterinary Service of the Canton de Vaud, Switzerland. For all mouse studies, sample sizes were considered based on previous results in our laboratory.

2.3 | Dietary interventions

For studies of mineral metabolism, specifically designed diets and hormones were used. Calcium diet challenge experiments were carried with five male C57BL/6N mice per condition in their home cage, all aged 12 weeks. Mice were randomly allocated to be fed modifications of KLIBA 2222 diet containing either 0.17% (low calcium diet), 0.82% (normal calcium diet) or 1.69% (high calcium diet) (KLIBA, 2222) over 7 days. All calcium diets contained phosphorus 0.8%, vitamin A 4,000 IU/kg, vitamin D 1,000 IU/kg, vitamin E 100 mg/kg, protein 18%, and crude fat 7%, lysine 14 g/kg (Kliba, 2222). For a phosphate diet challenge, three groups of five male C57BL/6N mice all aged 13–14 weeks were kept in metabolic cages and randomly allocated to be fed diets containing low (0.2%), intermediate (0.8%), or high (1.5%) phosphate content over 7 days. The phosphate diets were modifications of KLIBA 2222 diet (calcium 1.2%, vitamin A 4,000 IU/kg, vitamin D 1,000 IU/kg, vitamin E 100 mg/kg, protein 18%, crude fat 7%, and lysine 14 g/kg).

2.4 | Hormone injections

All hormone injections were performed in the home cage of the mice after random treatment allocation of individual ear-marked mice. For 1,25(OH)2-vitamin D3 treatment, male C57BL/6N mice aged 13–15 weeks were subcutaneously injected with 2 μg/kg body weight 1,25(OH)2-vitamin D3 (Sigma D1530) in ethanol 1% in NaCl 0.9%. The dose and application route was the same as previously used in our laboratory. Control mice were injected with 1% (v/v) ethanol in NaCl 0.9%. Mice were sacrificed 6 hr after injection.

For PTH treatment, male C57BL/6N mice aged 12–13 weeks were subcutaneously injected with 80 μg/kg body weight human PTH fragment 1–34 (hPTH1-34) (Sigma P3796) in NaCl 0.9% or NaCl 0.9% alone as vehicle and sacrificed 2 hr after injection. The dose and application route was determined from the literature (Kramer, Loots, Studer, Keller, & Kneissel, 2010).

For estradiol treatment, male C57BL/6N mice aged 16 weeks received one daily subcutaneous injection of 15 μg 17β-Estradiol (Sigma E8875) in ethanol 0.1% (v/v) in NaCl 0.9% for five consecutive days and were sacrificed 4 hr after the last injection. The dose per body weight and the drug application route was derived from the literature, as shown Van Abel et al. (2002) to induce Trpv5 expression. Control mice
were subcutaneously injected with 0.1% ethanol in NaCl 0.9% for 5 days.

2.5 Mouse dissection

For euthanasia, mice were intraperitoneally injected with 0.1 mg/gBW of ketamine (Ketanarkon 100 Vet., Streuli) and 0.02 mg/gBW of xylazine (Rompun, Bayer), followed by terminal exsanguination by orbital puncture under full anesthesia and/or by cervical dislocation. Organs were collected, kidneys were cut in half, and organs were snap frozen in liquid nitrogen immediately, followed by storage at −80°C until further use.

2.6 RNA extraction

RNA was extracted using TRI reagent (Applied Biosystems by Life Technologies) according to manufacturer's instructions. RNA pellets were dried and dissolved in RNase-free H₂O. RNA concentration was measured photometrically using NanoDrop (NanoDrop 2000, Thermo Fisher Scientific). RNA A₂₆₀/A₂₈₀ ratio was assessed and each RNA sample was visualized on a 1% agarose gel.

RNA was reverse transcribed to cDNA using the PrimeScript RT reaction kit (Takara Bio Inc). RNA input quantities per sample were 1–2 μg for bone, 500 ng for kidney or 1 μg of MLO-Y4 RNA. The resulting cDNA mix was diluted 2–12x depending on tissue type.

2.7 qPCR

For quantitative gene transcript expression analysis, 2 μL of cDNA was used for SYBR Green qPCR (Applied Biosystems by Life Technologies) on a 7500 Fast machine (Applied Biosystems). Samples were run in triplicate in 20 μL total volume for each gene, and actin or GAPDH was used for normalization. Melting curves were obtained for every run. Program settings were: 95°C during 20 s, 40 cycles (95°C 3 s, 60°C 30 s), and for melting curve stage: 95°C 15 s, 60°C 1 min, rising at 1% ramp speed to 95°C (15 s), and 60°C 15 s. Data were analyzed using the delta-delta CT method. Primers were ordered from Microsynth (Switzerland) and sequences are shown in Table 1. All amplified products were visualized on agarose gels.

2.8 Data analysis

Human Memo1 promoter sequences were analyzed in silico using the UCSC Genome Browser and Serial Cloner 2.6.1.

TABLE 1	Primers used for qPCR
Oligonucleotide	5'-sequence-3'
Memo1 forward	GCTGCCCATGCTTACAAACAA
Memo1 reverse	AGAGTGACATCGAGACAGG
Rankl forward	GTCTGTAGTGCTCCTCCAGGG
Rankl reverse	CATTTTGACATCCCATCAAT
Bglap forward	CCGCCCTAAGGACGATTATG
Bglap reverse	CTTGCAGCTACAGCTAGAG
Phex forward	GTGCATCTACCAACCAGATCG
Phex reverse	TCTGTTCCTCCAAAGAAAG
Scl3a4a3 forward	CCTACCCCTCTCTTGCAG
Scl3a4a3 reverse	AGAGCAACCTGAACCTAG
F3 forward	ACTCGGGCTATAGGGAAGAA
F3 reverse	GGTGGTCGTCTCGTCTCCATG
Cyp27b1 forward	ATGGTTGCTTCTGCTGAG
Cyp27b1 reverse	GACGGCATATCTGCTCCAG
Cyp24a1 forward	GAAGATGTGAGGAATATGGCTATT
Cyp24a1 reverse	CGGCATGTGGAAGGATAG
beta-actin forward	GTTCCACCTCAGCAAGATG
beta-actin reverse	AGTCCGGCTTAGAAGCAGT

Data from experiments with two independent groups were analyzed by t test or Mann–Whitney U test. For comparison of three groups, Kruskal–Wallis test was used with Bonferroni’s Multiple Comparison posttest. All statistical analyses were conducted using GraphPad PRISM 5.03. Two-sided p < .05 were considered significant.

3 RESULTS

Memo1-deficient mice resemble by some traits Klotho mutant and FGF23 KO mice (Haenzi et al., 2014), and the promoters of Klotho and FGF23 harbor regulatory sequences that can be bound by vitamin D receptors (Forster et al., 2011; Orfanidou et al., 2012). For these reasons, we determined the regulation of Memo1 gene expression by minerals and calciotropic hormones. We have previously shown that MLO-Y4 osteocyte-like cell line expressed Memo1 transcripts and protein (Moor, Ramakrishnan, et al., 2018).

3.1 Memo1 is diminished by 1,25(OH)₂ vitamin D₃ in vitro but not in vivo

An in silico promoter analysis of the human Memo1 gene revealed a conserved CpG island (Gardiner-Garden & Frommer, 1987) sequence in the 1,000 bases in 5’ direction of transcription start site of Memo1 that was considered as the putative promoter sequence (Figure S1). In a screen for published VDREs,
we identified two incidences of a negative VDRE with the sequence 5′-GCTTTCC-3′ (Towers, Staeva, & Freedman, 1999). Five VDRE sequences reported elsewhere (Calle, Maestro, & Garcia-Arencibia, 2008; McGaffin & Chrysogelos, 2005; Roff & Wilson, 2008) were undetectable on either sense or antisense strand. Therefore, we proceeded to experimentally investigate the effects of stimulation with 10 nM 1,25(OH)2-vitamin D3 on gene expression in MLO-Y4 cells (Figure 1). Known vitamin D-dependent transcripts were first assessed. Transcripts of Cyp24a1 encoding a vitamin D inactivating hydroxylase (Figure 1a) and of osteoclast regulator Rankl (Figure 1c) were increased upon 1,25(OH)2-vitamin D3 treatment, whereas transcripts of FGF23 regulator Phex and expression of bone-derived hormone osteocalcin/bone gamma-carboxyglutamate (Bglap) were diminished (Figure 1b, d). Memo1 transcripts were reduced by 20% upon 1,25(OH)2-vitamin D3 treatment (Figure 1e).

Next, we intraperitoneally injected 1,25(OH)2-vitamin D3 in mice. Six hours post-injection we harvested the kidney and tibia of these animals and investigated the mRNA levels of Memo1. Memo1 RNA levels remained unchanged in the kidney (Figure 2a) and tibia (Figure 2b) compared to control animals injected with vehicle only. As experimental controls, we chose Cyp24a1 and Fgf23. Renal transcripts of Cyp24a1, the gene encoding the vitamin D inactivating enzyme cytochrome P450 24a1, were upregulated by 1,25(OH)2-vitamin D3 compared to vehicle (Figure 2c). In addition, expression of Fgf23 in the tibia was increased by 1,25(OH)2-vitamin D3 (Figure 2d).

3.2 | Memo1 is not regulated by dietary calcium

Next, we determined the effect of varying dietary calcium content for 7 days on Memo1 gene expression. RNA was obtained from a previous experiment performed in our lab (366). In the kidney (Figure 3a) and in the tibia (Figure 3b) of these mice exposed to three different calcium-containing diets (0.17%, 0.82%, and 1.69%), no change in Memo1 gene expression was observed. A 2.5-fold increase in gene expression of Casr encoding the calcium-sensing receptor in the bone upon dietary calcium restriction serves as an experimental control for the dietary intervention and was reported for the samples we used in (O’Séaghdha et al., 2013).

3.3 | Memo1 is not regulated by dietary phosphate

We investigated the influence of different systemic phosphate loads on Memo1 expression. We showed that different
dietary phosphate contents (0.2%, 0.8%, 1.5%) did not significantly affect \(\text{Memo1}\) transcript levels in kidney (Figure 4a) or in the tibia (Figure 4b). As an experimental control gene we used renal transcripts of \(\text{Slc34a3}\) encoding sodium-dependent phosphate transporter type 2c (NaPi2c). Renal \(\text{Slc34a3}\) was increased, as expected, under low phosphate and decreased under high phosphate diets (Figure 4c).

3.4 | \(\text{Memo1}\) unchanged by PTH

To determine the effect of PTH on \(\text{Memo1}\), human PTH fragments 1–34 were subcutaneously injected to wild-type mice, and the animals were euthanized after 2 hr. \(\text{Memo1}\) gene expression in kidney (Figure 5a) or in tibia (Figure 5b) remained unchanged upon PTH treatment. Transcripts of \(\text{Cyp27b1}\), the gene coding for the renal vitamin D activating enzyme cytochrome P450 27b1 were increased upon PTH compared to NaCl 0.9%-treated controls (Figure 5c).

3.5 | \(\text{Memo1}\) unchanged by estradiol

As sex hormones exert effects on both renal calcium transport proteins (van Abel et al., 2002) and FGF23 in the bone (Carrillo-Lopez et al., 2009), we tested if \(\text{Memo1}\) is a target gene induced by estradiol. We subcutaneously injected \(17\beta\)-estradiol once daily over 5 days. This induced the expression of the control gene \(\text{F3}\) encoding coagulation factor III (Figure 6c), but gene expression of \(\text{Memo1}\) in the kidney (Figure 6a) and in the bone (Figure 6b) both remained unchanged compared to mice injected with vehicle.
To summarize, we found a small but significant decrease in *Memo1* expression upon 1,25(OH)₂-vitamin D₃ exposure in vitro, but we failed to detect any major regulation of *Memo1* transcript abundance upon mineral load or calcitropic hormone treatment in vivo.

4 | DISCUSSION

MEMO1 is expressed in the kidney where it plays an intrarenal role in the regulation of calcium transporters (Moor, Haenzi, et al., 2018). In the bone, MEMO1 is expressed in all cell types (Moor, Ramakrishnan, et al., 2018), but its precise bone-specific function remains elusive.

Here we tested the hypothesis whether *Memo1* is regulated by key players in mineral homeostasis such as calcitropic hormones or dietary calcium or phosphate. As a readout, we chose *Memo1* gene expression in an osteocyte-like cell line, and in bone and kidney tissues. For each intervention, an experimental control gene was assessed and revealed effects similar as shown before by others.

We observed that *Memo1* gene expression was diminished in the osteocyte-like cells upon 1,25(OH)₂-vitamin D₃ exposure.
treatment. However, in bone and tissues, we failed to detect any effect on *Memo1* by all interventions that we studied. This shows a major difference between *Memo1* and the most studied contributors to mineral homeostasis. As examples in the kidney, Type II sodium-dependent phosphate cotransporters are regulated by dietary phosphate supply (Bourgeois et al., 2013) and gene expression of *Trpv5* encoding a renal calcium transport protein is controlled by 1,25(OH)_{2}-vitamin D_{3} (Hoenderop et al., 2001). As examples in the bone, *Fgf23* expression is stimulated by 1,25(OH)_{2}-vitamin D_{3} (Liu et al., 2006) or PTH (Kawata et al., 2007), while dietary phosphate restriction or renal phosphate-wasting disorders reduce *Fgf23* expression (Ansermet et al., 2017; Schlingmann et al., 2016; Vervloet et al., 2011). Even intravenous calcium loading in rats increased *Fgf23* expression in bone and hormone concentrations in the serum (Shikida et al., 2018).

This study contains some limitations: The current interventions were confined to the analysis of gene expression, but we did not directly assess *Memo1* promoter activity using a reporter construct. Such an approach would more sensitively discriminate and would allow validating putative response elements in the *Memo1* promoter. In addition, our in silico analysis of the presumed promoter sequence did not allow base mismatches compared to known response elements. However, we argue that a physiologically relevant the regulation of *Memo1* gene expression, if present, should have been visible using the experimental approaches that were undertaken.

Further, we have assessed a single but physiologically reasonable time point, and only a narrow selection of tissues and cells. In addition to bone and kidney, the intestine would be another major turnover place for minerals. *Memo1* expression and potential regulation in healthy intestine have not been investigated so far. In colorectal cancer cells *Memo1* promoter activity is increased in response to the transcription factors Aryl hydrocarbon receptor/ Aryl hydrocarbon receptor nuclear-translocator complex, indicating some intestinal disease relevance (Bogoevska et al., 2017).

Another limitation is the fact that we investigated only mice of male sex as to simplify experimental planning, reduction of mice numbers used, and as to reproduce the hormone injection protocols in the cited references, including the estradiol injection protocol (van Abel et al., 2002). Future experiments should be conducted with both sexes independently to allow the detection of sex-specific effects.

Finally, as Memo is a redox enzyme with incompletely understood reaction partners and substrates (MacDonald et al., 2014), an assessment of posttranslational regulation such as by the oxidative modification of MEMO1 protein, subcellular localization, or changes in its putative enzymatic activity may be helpful to investigate a regulation of Memo1.

To conclude, besides a minor effect in bone cells stimulated with 1,25(OH)_{2}-vitamin D_{3}, we did not detect a major regulation of *Memo1* gene expression upon minerals and calcitropic stimuli in bone and kidney, two organs relevant for mineral homeostasis. Further studies inquiring the regulation of this and similar genes may contribute to the understanding of the regulation of mineral homeostasis in health and renal and bone diseases.

ACKNOWLEDGMENTS

OB and MBM’s work was supported by the Swiss National Science Foundation through the special program NCCR
Kidney.CH and by unrestricted grants from the Association pour l’Information et la Recherche sur les maladies rénales Génétiques (AIRG)-Suisse and from the Novartis Foundation. The authors are thankful to Candice Stoudmann and Finola Legrand for assisting with an experiment.

CONFLICT OF INTEREST
The authors declare that no conflict of interest exists.

AUTHOR CONTRIBUTIONS
OB conceived the project. MBM and OB participated in the experimental design. MBM performed the experiments. MBM and OB participated in the data analysis and interpretation. MBM wrote the manuscript. All authors critically read and commented on the manuscript and agreed to the manuscript submission.

DATA AVAILABILITY STATEMENT
Raw data are available from the authors on request.

ORCID
Matthias B. Moor https://orcid.org/0000-0002-7717-651X

REFERENCES
Ansermet, C., Moor, M. B., Centeno, G., Auberson, M., Hu, D. Z., Baron, R., … Firsov, D. (2017). Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. Journal of the American Society of Nephrology, 28, 1073–1078. https://doi.org/10.1681/ASN.2016070726

Bogojevska, V., Wolters-Eisfeld, G., Hofmann, B. T., el Gamal, A. T., Mercangolou, B., Gebauer, F., … Gungor, C. (2017). HRG/HER2/HER3 signaling promotes AhR-mediated Memo-1 expression and migration in colorectal cancer. Oncogene, 36, 2394–2404. https://doi.org/10.1038/onc.2016.390

Bourgeois, S., Captuno, P., Stange, G., Muhlemann, R., Murer, H., Biber, J., & Wagner, C. A. (2013). The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflügers Arch: European Journal of Physiology, 465, 1557–1572. https://doi.org/10.1007/s00424-013-1298-9

Calle, C., Maestro, B., & Garcia-Arencibia, M. (2008). Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Molecular Biology, 9, 65. https://doi.org/10.1186/1471-2199-9-65

Carrillo-Lopez, N., Roman-Garcia, P., Rodriguez-Rebollar, A., Fernandez-Martin, J. L., Naves-Diaz, M., & Cannata-Andia, J. B. (2009). Indirect regulation of PTH by estrogens may require FGF23. Journal of the American Society of Nephrology, 20, 2009–2017. https://doi.org/10.1681/ASN.2008121258

Deffenbacher, K. E., & Shull, J. D. (2006). Effects of diethylstilbestrol (DES) on the anterior pituitary gland of the ACI, Copenhagen and Brown Norway Rat. NCBI Gene Expression Omnibus. Series GSE4028, dataset accession GDS2913.

Forster, R. E., Jurutka, P. W., Hsieh, J. C., Haussler, C. A., Lowmiller, C. L., Kaneko, I., … Kerr Whitfield, G. (2011). Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochemical and Biophysical Research Communications, 414, 557–562. https://doi.org/10.1016/j.bbrc.2011.09.117

Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282. https://doi.org/10.1016/0022-2836(87)90689-9

Haenzi, B., Bonny, O., Masson, R., Lienhard, S., Dey, J. H., Kuro-O, M., & Hynes, N. E. (2014). Loss of Memo, a novel FGFR regulator, results in reduced lifespan. The FASEB Journal, 28, 327–336. https://doi.org/10.1096/fj.13-228320

Hoenderop, J. G., Muller, D., van der Kemp, A. W., Hartog, A., Suzuki, M., Ishibashi, K., … Bindels, R. J. (2001). Calcitriol controls the epithelial calcium channel in kidney. Journal of the American Society of Nephrology, 12, 1342–1349.

Hu, M. C., Shiiizaki, K., Kuro-O, M., & Moe, O. W. (2013). Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology, 75, 503–533. https://doi.org/10.1146/annurev-physiol-030212-183727

Kato, Y., Windle, J. J., Koop, B. A., Mundy, G. R., & Bonewald, L. F. (1997). Establishment of an osteocyte-like cell line, MLO-Y4. Journal of Bone and Mineral Research, 12, 2014–2023. https://doi.org/10.1359/jbmr.1997.12.12.12014

Kawata, T., Imanishi, Y., Kobayashi, K., Miki, T., Arnold, A., Inaba, M., & Nishizawa, Y. (2007). Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. Journal of the American Society of Nephrology, 18, 2683–2688. https://doi.org/10.1681/asn.2006070783

Kramer, I., Loots, G. G., Studer, A., Keller, H., & Kneissel, M. (2010). Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. Journal of Bone and Mineral Research, 25, 178–189. https://doi.org/10.1359/jbmr.090730

Kuro-O, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., … Nabeshima, Y. I. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390, 45–51. https://doi.org/10.1038/36285

Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J., & Naveh-Many, T. (2010). PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: A bone parathyroid feedback loop. American Journal of Physiology. Renal Physiology, 299, F882–F889. https://doi.org/10.1152/ajprenal.00360.2010

Liu, S., Tang, W., Zhou, J., Stubbs, J. R., Luo, Q., Pi, M., & Quarles, L. D. (2006). Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. Journal of the American Society of Nephrology, 17, 1305–1315. https://doi.org/10.1681/asn.2005111185

Macdonald, G., Nalvarte, I., Smirnova, T., Vecchi, M., Aceto, N., Dolemeyer, A., … Hynes, N. E. (2014). Memo is a copper-dependent redox protein with an essential role in migration and metastasis. Science Signalling, 7, ra56. https://doi.org/10.1126/scisignal.2004870

McGaffin, K. R., & Chrysogelos, S. A. (2005). Identification and characterization of a response element in the EGFR promoter that mediates transcriptional repression by 1,25-dihydroxyvitamin D3 in breast cancer cells. Journal of Molecular Endocrinology, 35, 117–133. https://doi.org/10.1677/jme.1.01813
Moor, M. B., & Bonny, O. (2016). Ways of calcium reabsorption in the kidney. American Journal of Physiology. Renal Physiology, 310, F1337–F1350. https://doi.org/10.1152/ajpregu.00273.2015

Moor, M. B., Haenzi, B., Legrand, F., Koesters, R., Hynes, N. E., & Bonny, O. (2018). Renal Memol differentially regulates the expression of vitamin D-dependent distal renal tubular calcium transporters. Frontiers in Physiology, 9, 874. https://doi.org/10.3389/fphys.2018.00874

Moor, M. B. R., Ramakrishnan, S. K., Legrand, F., Dolder, S., Siegrist, M., & Durussel, F., … Bonny, O. (2018). Redox-dependent bone alkaline phosphatase dysfunction drives part of the complex bone phenotype in mice deficient for Memol. JBMR plus, 2, 195-205. https://doi.org/10.1002/jbmp4.10034

Orfanidou, T., Malizos, K. N., Varitimidis, S., & Tsezou, A. (2012). 1,25-Dihydroxyvitamin D(3) and extracellular inorganic phosphate activate mitogen-activated protein kinase pathway through fibroblast growth factor 23 contributing to hypertrophy and mineralization in osteoarthritic chondrocytes. Exp Biol Med (Maywood), 237, 241–253. https://doi.org/10.1258/ebm.2011.011301

O'Seaghdha, C. M., Wu, H., Yang, Q., Kapur, K., Guessous, I., & Zuber, A. M., … Bochud, M. (2013). Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genetics, 9, e1003796. https://doi.org/10.1371/journal.pgen.1003796

Roff, A., & Wilson, R. T. (2008). A novel SNP in a vitamin D response element of the CYP24A1 promoter reduces protein binding, transactivation, and gene expression. Journal of Steroid Biochemistry and Molecular Biology, 112, 47–54. https://doi.org/10.1016/j.jsbmb.2008.08.009

Schlatter, I. D., Meira, M., Ueberschlag, V., Hoepfner, D., Movva, R., & Hynes, N. E. (2012). MHO1, an evolutionarily conserved gene, is synthetic lethal with PLC1; Mho1p has a role in invasive growth. PLoS ONE, 7, e32501. https://doi.org/10.1371/journal.pone.0032501

Schlingmann, K. P., Ruminska, J., Kaufmann, M., Dursun, I., Patti, M., Kranz, B., … Konrad, M. (2016). Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. Journal of the American Society of Nephrology, 27, 604–614. https://doi.org/10.1681/ASN.2014101025

Shikida, Y., Mizobuchi, M., Inoue, T., Hamada, T., Ogata, H., Koiwa, F., & Shibata, T. (2018). Effect of continuous intravenous calcium loading on fibroblast growth factor 23 in normal and uremic rats. Calcified Tissue International, 103(4), 455–464. https://doi.org/10.1007/s00223-018-0440-2

Shimada, T., Kakitani, M., Yamazaki, Y., Hasegawa, H., Takeuchi, Y., Fujita, T., … Yamashita, T. (2004). Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. Journal of Clinical Investigation, 113, 561–568. https://doi.org/10.1172/jci200419081

Towers, T. L., Staeva, T. P., & Freedman, L. P. (1999). A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: Vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun. Molecular and Cellular Biology, 19, 4191–4199. https://doi.org/10.1128/mcb.19.6.4191

van Abel, M., Hoenderop, J. G., Dardenne, O., Arnaud, R. S., van Os, C. H., van Leeuwen, H. J., & Bindels, R. J. (2002). 1,25-dihydroxyvitamin D(3)-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. Journal of the American Society of Nephrology, 13, 2102–2109.

Vervloet, M. G., van Ittersum, F. J., Buttler, R. M., Heijboer, A. C., Blankenstein, M. A., & ter Wee, P. M. (2011). Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clinical Journal of the American Society of Nephrology, 6, 383–389. https://doi.org/10.2215/CJN.04730510

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Moor MB, Bonny O. Memol gene expression in kidney and bone is unaffected by dietary mineral load and calciotropic hormones. Physiol Rep. 2020;8:e14410. https://doi.org/10.14814/phy2.14410