A20 Controls Macrophage to Elicit Potent Cytotoxic CD4+ T Cell Response

Lifeng Wang, Bangxing Hong, Xiaoxia Jiang, Lindsey Jones, Si-Yi Chen, Xue F. Huang*
Norris Comprehensive Cancer Center, Department of Molecular Microbiology & Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America

Abstract
Emerging evidence indicates that CD4+ T cells possess cytotoxic potential for tumor eradication and perforin/granzyme-mediated cytotoxicity functions as one of the important mechanisms for CD4+ T cell-triggered cell killing. However, the critical issue is how the cytotoxic CD4+ T cells are developed. During the course of our work that aims at promoting immunostimulation of APCs by inhibition of negative regulators, we found that A20-silenced Mφ drastically induced granzyme B expression in CD4+ T cells. As a consequence, the granzyme-highly expressing CD4+ T cells exhibited a strong cytotoxic activity that restricted tumor development. We found that A20-silenced Mφ activated cytotoxic CD4+ T cells by MHC class-II restricted mechanism and the activation was largely dependent on enhanced production of IFN-γ.

Introduction
CD8+ T cells are the most cytotoxic T lymphocytes (CTLs) that directly destroy virus-infected or malignant cells. CD4+ T cells are recognized for their coordinated orchestration by production of various cytokines, such as T helper (Th)1 producing interferon (IFN)-γ to promote cellular immunity, Th2 producing interferon (IL)-4 to potentiate humoral immune response, and Th17 producing IL-17 to facilitate inflammation and autoimmune diseases. Recent studies further identified different subsets of CD4+ regulatory T cells which perform immune regulation on effector T cells by expressing transcription factor FoxP3 or by secreting anti-inflammatory cytokine IL-10 or transforming growth factor (TGF)-β. However, emerging evidence indicates that CD4+ T cells also develop cytotoxic activity to directly participate in cytolyis of tumor or infected cells. For instance, tumor-reactive CD4+ T cells were found to develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts [1,2]. The critical issue is how these cytotoxic CD4+ T cells are developed.

Macrophages (MΦs) are initially recognized as phagocytic cells responsible for pathogen elimination and housekeeping function in homeostasis and tissue repair. The classically known MΦs, which are activated by microbial products or interferon (IFN)-γ, produce large amounts of proinflammatory cytokines, express high levels of MHC class-II molecules, and function as a potent killer of pathogens and tumor cells [3]. Dependent on the anatomical location and the physiological or pathological context, MΦs can be alternatively activated by anti-inflammatory cytokines such as IL-4 or IL-13 [4]. The alternatively activated MΦs produce high amounts of IL-10, express scavenger receptors, and exhibit anti-inflammatory and tissue repair functions [5]. Recent studies suggest that MΦs represent a very plastic cell population that play an essential role in the regulation of the pro-inflammation vs anti-inflammation and in the coordination of the pro-tumorgenesis vs. anti-tumorgenesis [6]. Classically activated MΦs and alternatively activated MΦs represent two extremes in the spectrum of the phenotype and functionality of MΦs [5,7].

To promote the antitumor activity of MΦ, we used an A20 silencing strategy to enhance the classical activation of MΦ. This was based upon the published studies that A20, a zinc-finger ubiquitin-modifying enzyme, inhibits several upstream signaling pathways of NF-κB in a feedback manner by degradation or deactivation of signaling molecules via its dual functions of ubiquitination and deubiquitination [8,9,10]; A20-deficient MΦ displays prolonged NF-κB activity [8,10]; A20-silenced dendritic cells (DCs) express higher levels of costimulatory molecules and proinflammatory cytokines, and display a superior immunostimulatory ability [11]. We found that A20-silenced MΦ not only enhances expression of perforin and granzyme B in CD8+ T cells and Natural Killer (NK) cells, but also drastically upregulate these cytotoxic molecules in CD4+ T cells. As a consequence, the granzyme-highly expressing CD4+ T cells exhibited cytotoxic activity in vitro/vivo. We further defined that A20-silenced MΦ activated cytotoxic CD4+ T cell response by MHC class-II restricted mechanism, and the activation was largely dependent on enhanced IFN-γ production.

Results
A20 Controls MΦ Maturation and Immunostimulatory Activity
To investigate whether A20 controls maturation of MΦ bone marrow-derived MΦs (BMMΦs) were transduced with adenovirus
Ad-A20shRNA (Ad-shA20) or Ad-GFPshRNA (Ad-con). Down-regulation of A20 expression by Ad-shA20 was confirmed via quantitative RT-PCR [qRT-PCR] at the level of mRNA and via intracellular staining (ICS) at the level of protein [Fig.S1A&B]. Flow cytometric assay shows that Ad-shA20-transduced BMMφs expressed higher levels of CD80, CD86, CD40 and MHC class-II molecule I-A/I-E than Ad-con-BMMφs under the stimulation of LPS [Fig.1A]. ELISA results show that Ad-shA20-BMMφs, but not Ad-con-BMMφs, spontaneously produced large amounts of inflammatory cytokines such as IL-6, TNF-α, IFN-γ and IL-12p40, and produced larger amounts of these cytokines in response to LPS stimulation [Fig.1B]. Adenoviral vector which induces maturation of antigen-presenting cells per se [12] may contribute to the observed “spontaneous” cytokine production by A20-silenced BMMφs. A20-silenced BMMφs also produced higher level of nitric oxide than the control Mφs [Fig.1C]. Despite the reported anti-apoptotic role of A20 in TNF-treated cells [9], A20-silenced BMMφs showed a comparable viability to Ad-con-BMMφs in cell culture [Fig.S2]. Taken together, these results imply that A20 negatively regulates the maturation and cytokine production of BMMφs.

Next, we tested if A20-silenced BMMφs possess an enhanced immunostimulatory activity. The transduced BMMφs were pulsed with H2-Kb-restricted OT-I (SIINFEKL) or OT-II (ISQAVHAAHAEINEAGR) peptide and then co-cultured with CD8+ OT-I or CD4+ OT-II cells isolated from Ovalbumin (OVA)-specific TCR transgenic mice. Results showed that CD8+ OT-I cells cocultured with A20-silenced BMMφs expressed enhanced levels of CD25 and CD44 in comparison with those cocultured with the control BMMφs [Fig.S3, left]. Moreover, the cocultured OT-I cells with A20-silenced BMMφs produced higher levels of IFN-γ and TNF-α [Fig.S3, right]. In parallel, A20-silenced BMMφs also more potently activated CD4+ OT-II cells, as evidenced by enhanced expression of CD25 and CD69, and heightened production of IFN-γ by the OT-II cells cocultured with Ad-shA20-BMMφs [Fig.S4]. A20-silenced BMMφs also modestly enhanced proliferation of both CD8+ OT-I or CD4+ OT-II cells, as tested by [3H]-Thymidine Incorporation Assay (data not statistically significant and not shown). These results support that A20-silencing endowed BMMφs with an enhanced immunostimulatory activity.

A20 Controls Mφ to Elicit a Cytotoxic CD4+ T Cell Response

We examined the potential of A20-silenced BMMφs to activate cytotoxic cell responses by testing expression of cytotoxic molecules in the cocultured T cells by ICS. As shown in Fig.2A, A20-silenced BMMφs enhanced expression of granzyme B in co-cultured CD8+ OT-I T cells [upper], but also significantly enhanced granzyme B expression in co-cultured CD4+ OT-II cells [lower]. In the meantime, we also detected an enhanced expression of perforin in these co-cultured T cells with A20-silenced BMMφs [Fig.S5]. To rule out that the observed result is derived from the adenoviral transduction of Mφs, BMMφs were

![Figure 1](image-url)
nucleofected with recombinant plasmid pshuttle-shA20 or pshuttle-shGFP according to the manufacturer’s instruction (Amaza), which reached ~40% transfection efficiency, as monitored by Ad-GFP nucleofection in parallel (data not shown). The nucleofected BM Mφs were then co-cultured with freshly isolated OT-II T cells in the presence of the OT-II peptide. ICS assay showed that pshuttle-shA20-nucleofected BM Mφs display a more potent ability to elicit expression of granzyme B in the cocultured OT-II cells (Fig. S6). Furthermore, we also tested the potential of A20-silenced BM Mφ immunization to induce cytotoxic cell responses in mouse model. C57BL/6 mice were i.p. immunized with OT-I/OT-II peptides-pulsed, Ad-shA20 or Ad-con-transduced BM Mφs or PBS twice, 7–10 days after the 2nd immunization, spleens and lymph nodes (LNs) were harvested to analyze granzyme B expression in effector cells by ICS. In agreement with the in vitro study, ICS assay explored that A20-silenced BM Mφs significantly enhanced expression of granzyme B and perforin in CD4+ T cells as well as NK cells derived from inguinal lymph nodes (LNs) (Fig.2B & Fig. S5) or spleen (data not shown) of the immunized C57BL/6 mice. qPCR assay further confirmed an enhanced level of granzyme B expressed in CD4+ T cells derived from OT-II (not OT-I-pulsed), A20-silenced BM Mφ-immunized mice (Fig.2C). To exclude the possibility that the OT-I/OT-II-pulsed, A20-silenced BM Mφs have any different propensity of releasing the loaded antigen to endogenous APCs, we in vitro cultured OVA protein-pulsed, differently transduced BM Mφs for one or three days. ELISA analysis revealed that an identical amount of cell-free OVA protein is present in the culture media of differently transduced or Mock BM Mφs (data not shown).

To determine cytolytic activity of these effector cells, the splenocytes were isolated from the immunized mice and cultured overnight for the NK-mediated cytotoxicity assay or 5–6 days in the presence of OT-I or OT-II peptide for CD8+ or CD4+ T cell-mediated cytotoxicity assay. Due to the low expression of MHC class-II molecule on the targeted cell, a murine Burkitt lymphoma cell line B6SJ003, the splenocytes cultured with OT-II peptide were selected using anti-CD4 beads prior to the cytotoxicity assay. As shown in Fig.3, A20-silenced BM Mφ immunization enhanced the activity of NK cells, CD8+ T cells, and CD4+ T cells in killing their specific target cell compared with control BM Mφ or PBS immunization. The killing specificity of CD8+ T cells and NK cells was confirmed by failure of the cytotoxic cells to kill the irrelevant control, such as EL-4 cells. We also found that freshly isolated CD4+ T cells from A20-silenced BM Mφ-immunized mice displayed a relatively high non-specific cytolytic activity against the target cell EL-4, but the in vitro culture of these CD4+ T cells in the presence of OT-II peptide 5–6 days led these cells to largely lose their non-specific killing activity. Concanamycin A (CMA) acidifies intracellular vacuolar granules to degrade the content in the exocytotic granules [13]. Ethyleneglycoltetraacetic acid (EGTA) chelates extracellular free calcium to inhibit exocytosis of cytolytic granules and pore formation by perforin [14]. To confirm the CD4+ T cell-associated cytotoxicity is mediated by cytotoxic molecules, CMA and EGTA were included for blocking perforin/granzyme activity in some of those cocultures. Data showed that both CMA and EGTA drastically reduced the cytotoxic activity of CD4+ T cells (both specific and non-specific), as well as that of CD8+ T cells derived from A20-silenced BM Mφ-immunized mice. Moreover, we also directly demonstrated the role of granlyyme B in CD4+ T cell-mediated cytotoxicity in the A20-silenced BM Mφ-immunized mice. OT-II (not OT-I-pulsed, differently transduced BM Mφs were used to immunize C57BL/6 mice and splenocytes were harvested for CTL assay after the 2nd immunization. Result showed that CD4+ T cells derived from the A20-silenced BM Mφ-immunized mice killed OVA-expressing B6SJ003 with a higher efficiency, however, Z-AAD-CMK, a weak and specific granzyme B inhibitor, reduced the CD4+ T cells-mediated CTL activity when included into the coculture of OVA-B6SJ003 and CD4+ T cells derived A20-silenced BM Mφ-immunized mice in the CTL assay (Fig. S7). The results strengthen our contention that the expressed cytotoxic molecules contribute to CD4+ T cell-mediated cytotoxicity, as they do in CD8+ T cell-mediated killing.

A20 Controls Mac to Trigger Cytotoxic CD4+ T Cell-mediated Anti-tumor Immune Protection

C57BL/6 mice were immunized with OT-I/OT-II-pulsed, control BM Mφ or A20-silenced BM Mφs, or PBS. The immunized mice were challenged with EG-7 tumor cells two weeks after the 2nd immunization as described [13]. Fig.4A shows that A20-silenced BM Mφs fully protect the immunized mice from EG-7 challenge. We further tested the A20-silenced BM Mφ-activated immune protection by challenging the immunized mice with a more aggressive, OVA-expressed melanoma cell line, M05. Fig.4B shows that A20-silenced BM Mφs were still superior to control BM Mφs in protecting the immunized mice from the M05 challenge. Recent studies indicated that tumor-reactive CD4+ T cells have a potential to up-regulate expression of MHC class-II on melanoma B16 cells, and thereby reject the cells by an MHC-II restricted mechanism in a mouse model [1,2]. To demonstrate contribution of CD4+ T cells to A20-silenced BM Mφ-mediated immune protection, OT-II-pulsed, A20-silenced BM Mφs were used to immunize CD4+ T mice and the wildtype littermates followed by a challenge of melanoma M05 cells two weeks after the 2nd immunization. Fig.4C shows that, in contrast to wild-type mice, which were protected from tumor occurrence with 80% efficiency, CD4+/- mice only achieved 20% of protection after A20-silenced BM Mφ immunization. To directly confirm cytotoxic CD4+ T cell-mediated immune protection, naive C57BL/6 mice were inoculated with 6×10⁵ OVA-expressing B6SJ003 followed by adoptive transfer of 5×10⁵ in vitro primed CD4+ OT-II cells with OT-II-pulsed, A20-silenced BM Mφ or control BM Mφ. T cell adoptive transfer was repeated once at a one-week interval. Fig.4D shows that OT-II cells primed by A20-silenced BM Mφ are superior to those primed by control BM Mφ in inhibiting onset and growth of the engrafted OVA-expressed B6SJ003 tumor. However, treatment of A20-silenced BM Mφ/OT-II coculture with 100 nM of CMA for 1 hr prior to OT-II adoptive transfer ablates the superior ability of the OT-II cells in rejection of the engrafted tumor. Taken together, the results support that A20-silenced BM Mφs not only elicit CD8+ T cells and NK cell to combat tumor, also effectively trigger cytotoxic CD4+ T cell response for anti-tumor immune protection.

A20 Restricts Mφ to Trigger Cytotoxic CD4+ T Cell Response by Limiting IFN-γ Production

As described above, A20-silenced BM Mφs not only express enhanced proinflammatory cytokines, also prime the cocultured T cells to produce higher levels of proinflammatory cytokines. To determine whether the enhanced cytokine expression relates to the distinct activity of BM Mφ in triggering a cytotoxic CD4+ T cell response, the control, but not A20-silenced, BM Mφs were cocultured with CD8+ OT-I or CD4+ OT-II T cells in the presence of varying doses of IFN-γ, IL-12, or IL-6. As shown in Fig.5A, while the addition of IL-6 did not promote BM Mφ to trigger granzyme B expression in the cocultured CD4+ OT-II cells and the addition of IL-12 promoted BM Mφ to trigger granzyme B.
expression in the cocultured CD4+ T cells at a medium level, addition of IFN-γ drastically enhanced BMMφ to trigger granzyme B expression in the cocultured CD4+ T cells. Addition of IFN-γ also enhanced the ability of BMMφ to trigger perforin+CD8+ T cell response (data not shown), but the result is not so convincing likely due to the antibody’s limitation in recognizing perforin in cocultured T cells. Furthermore, addition of IFN-γ was found to endow BMMφ with a comparable ability to A20-silenced BMMφ in eliciting expression of granzyme B in CD8+ T cell but the overall granzyme B level in the cocultured CD4+ T cells was much lower than those in the cocultured CD4+ T cells (Fig 2B & Fig 2A). These results suggest that enhanced production of IFN-γ by A20-silenced BMMφ may contribute to priming of the cytotoxic T cells, especially to priming of cytotoxic CD4+ T cells.

To verify the effect of the cytokines, the coculture of A20-silenced BMMφ with T cells was added with anti-IFN-γ or anti-IL-12 to neutralize activity of these cytokines. Fig 6A showed that neutralization of IFN-γ, but not IL-12, dramatically reduced A20-silenced BMMφ to stimulate production of granzyme in the cocultured OT-I cells. Fig 6B showed that neutralization of either cytokine IL-12 or IFN-γ reduced A20-silenced BMMφ to produce granzyme-expressing OT-I cells to a certain extent. As individually neutralizing IL-12 or IFN-γ does not reduce expression of the cytotoxic molecule to the level in cocultured OT-I with con-BMMφ (data not shown) or OT-I culture alone (Fig 6B), a synergistic effect of these cytokines may be required for BMMφ to optimally stimulate a cytotoxic CD8+ T cell response, at least on the cellular level. The results suggest that A20-silenced BMMφ provoke cytotoxic CD8+/CD4+ T cells likely through different mechanisms. A20-silenced BMMφ have a superior ability to trigger a cytotoxic CD4+ T cell response largely by enhancing the production of both autocrine and paracrine IFN-γ.

To confirm the observed in vitro effect of IFN-γ in immunized mice, groups of C57BL/6 mice were immunized twice as the indicated in Fig 7. All the BMMφ were pulsed with OT-I/OT-II prior to immunization. Antibody (250 ug/mouse) was administered (i.p) one day before BMMφ immunization, or IFN-γ (1 ug/mouse), administered on the same day as the BMMφ immunization and two days later. ICS analysis of the inginal LNs showed that immunization of control BMMφ with the IFN-γ co-administration dramatically activated granzyme B expression in CD4+ T cells whereas, immunization of A20-silenced BMMφ with the anti-IFN-γ co-administration drastically reduced granzyme B expression in these CD4+ T cells (Fig 7A). In parallel, co-
administration of IFN-γ was found to enhance control BMMφ to stimulate CD8+ T cells, while co-injection of anti-IFN-γ attenuated A20-silenced BMMφ to stimulate CD8+ T cell response (Fig.7B). Injection of IFN-γ alone did not achieve significantly cytotoxic T cell responses (Fig.7A&B). A similar but not identical response pattern was obtained from analysis of splenic CD4+/CD8+ T cells (Fig.S8). These results highlight that IFN-γ is critical for Mφ to activate a cytotoxic CD4+ T cell response and that A20 controls Mφ to activate cytotoxic T cells by limiting IFN-γ production.

A20-silenced Mφ Elicits a Cytotoxic CD4+ T Cell Response by Activation of IFN-γ Signaling as Well as by an MHC-class-II-restricted Mechanism

IFN-γ exerts its effects on cells by interacting with a specific receptor composed of two subunits, IFNGR1 and IFNGR2, and thereby phosphorylating Jak/Stat1 signaling molecules [16]. To demonstrate A20-silenced BMMφ provoking potent cytotoxic T cell response through activation of IFN-γ signaling, A20-silenced BMMφs and control pulsed with OT-I/OT-II peptide were used to immunize IFNR1−/− mice and their wildtype littermates. ICS analysis of the inguinal LNs showed that A20-silenced BMMφs had an equivalent or higher efficacy than the control BMMφs to induce CD4+/CD8+ cytotoxic T cell responses in IFNGR1−/− mice, but had a significantly lower efficacy compared with what they did in wildtype mice (Fig. 8A). The result implies that IFN-γ receptor is required for A20-silenced BMMφs to elicit cytotoxic T cell responses, but other signaling pathways also contribute some to the function of A20-silenced BMMφs. Furthermore, A20-silenced or control BMMφs were used to immunize Stat1−/− mice in parallel with their wildtype littermates. As Stat1−/− mice are under the 129S background, OVA protein instead of the peptides was used to pulse the BMMφs for immunization. Again, ICS showed that A20-silenced BMMφs had an equivalent or higher efficacy than the control BMMφs to induce CD4+/CD8+ cytotoxic T cell responses in Stat1−/− mice, but the efficacy is significantly lower than what they did in wildtype mice (Fig. 8B), which supports that IFN-γ-triggered Stat1 signaling is required but not the only for A20-silenced BMMφs to elicit cytotoxic T cell responses. Indeed, Zimmermann et al reported that IFN-γ directly activates Stat2 signaling for the antiviral potency [17]. We also

Figure 3. A20-silenced Mφ immunization enhances NK cell-, CD8+ T cell- and CD4+ T cell-mediated cytotoxicity. Splenocytes pooled from 2–3 immunized mice were cultured overnight for NK-mediated cytotoxicity assay or 5–6 days in the presence of OT-I or OT-II peptide for T cells-mediated cytotoxicity assay. The splenocytes cultured with OT-II peptide were selected using anti-CD4 beads prior to cytotoxicity assay. Cytotoxic activities were analyzed by LDH release assay as described in Material and Methods. Experiments were repeated three times with similar results. *p<0.05, Ad-shA20-Mφ immunization vs. Ad-con-Mφ immunization for specific killing.
doi:10.1371/journal.pone.0048930.g003
analyzed splenocytes from the immunized IFN-γ−/− mice and Stat1−/− mice and obtained similar but not identical results (Fig. S9A&B).

Ultimately, we tested whether A20-silenced BMMφs use a MHC class-II-restricted mechanism to induce cytotoxic T cell response. BMMφs were prepared from MHCII−/− mice or wildtype littermates. The OT-I/OT-II-pulsed, adenoviral-transduced BMMφs were used to immunize wildtype C57BL/6 mice as described. ICS analysis of inguinal LNs shows that A20-silenced MHCII−/− Mφs, equivalent to the control MHCII−/− Mφs, displayed a significantly lower efficacy than their wild-type counterpart in the activation of cytotoxic CD4+ T cells. However, A20-silenced MHCII−/− Mφs barely lost their ability in activation of cytotoxic CD8+ T cells when compared with A20-silenced wild-type BMMφs (Fig. 8C). A similar but not identical result was obtained from ICS analysis of the immunized splenocytes (Fig. S9C). These results support that A20-silenced BMMφs activate a cytotoxic CD4+ T cell response in an MHC class-II restricted manner. A20 controls Mφs to activate cytotoxic T cell responses largely by limiting IFN-γ signaling.

Discussion

Cytotoxic CD4+ T cells were detected in both mouse and human over 20 years ago. The early evidence claimed that distinct from cytotoxic CD8+ T cells, CD4+ T cells use the FAS/FAS ligand system for the cytolytic activity [18,19]. Recent studies strongly supported that granule exocytosis of perforin/granzymes represents the main pathway of cytotoxicity in both CD4+ and CD8+ T cells [20,21,22,23,24,25]. In line with these studies, our study suggested that granzyme B as well as possible perforin can be induced in CD4+ T cells by A20-silenced Mφs and the resultant CD4+ T cells rejected engrafted tumors in a perforin/granzyme-dependent manner. Although freshly isolated CD4+ T cells from A20-silenced Mφs immunized mice display some nonspecific cytotoxicity, the isolated CD4+ T cells after in vitro re-stimulation use MHC class-II restricted mechanism to kill tumor cells. CD4+
T cell killing of infected or malignant cells in MHC-class II-restricted manner has been reported in several studies [23]. Quezada et al. and Xie et al. recently further claimed that tumor-reactive CD4$^+$ T cells secrete a copious amount of IFN-γ to upregulate expression of MHC-class-II molecules on tumor cells and make them the target of cytotoxic CD4$^+$ T cells after transfer into lymphopenic hosts [1,2]. Thus, our reported, A20-silenced MΦs induced, CD4$^+$ T cells exhibit common functional features to those in vivo or ex vivo differentiated cytotoxic CD4$^+$ T cells. It is worth mentioning here that throughout the whole study, we persistently detected a higher level of perforin in either stimulated or immunized T cells by A20-silenced MΦs and the expressing pattern of perforin in these T cells resembled the expression of...
Figure 7. IFN-γ impacts MΦ to trigger cytotoxic T cell responses in immunized mice. C57BL/6 mice (2–3 mice per group) were immunized twice with 1, PBS plus IgG; 2, PBS plus IFN-γ; 3, Ad-con-MΦ; 4, Ad-con-MΦ plus IFN-γ; 5, Ad-shA20-MΦ plus IgG; or 6, Ad-shA20-MΦ plus anti-IFN-γ. Two weeks after the 2nd immunization, inguinal lymph nodes were harvested to analyze expression of granzyme B in CD4 T cells (A) (p<0.05, shA20-MΦ+anti-IFN-γ immunization vs. shA20-MΦ+IgG immunization; p<0.01, con-MΦ+IFN-γ immunization vs. con-MΦ immunization) or CD8 T cells (B) (p<0.01, shA20-MΦ+anti-IFN-γ immunization vs. shA20-MΦ+IgG immunization; p<0.05, con-MΦ+IFN-γ immunization vs. con-MΦ immunization) by ICS assay. doi:10.1371/journal.pone.0048930.g007

Figure 8. A20-silenced MΦ elicits a cytotoxic CD4 T cell response via activation of IFN-γ signaling and by an MHC-class-II-restricted mechanism. A. Adenoviral-transduced BMMΦs were used to immunize IFNGR−/− mice or the wildtype littermates (2–3 mice/group) twice. The inguinal LNs were harvested for analyzing expression of granzyme B in CD4+ or CD8+ T cells by ICS. p<0.01 Ad-shA20-IFNGR KO mice vs. Ad-ShA20-WT mice. B. Adenoviral-transduced BMMΦs were used to immunize Stat1−/− mice or the wild-type littermates twice (2–3 mice/group). The LNs were harvested for analyzing expression of granzyme B in CD4+ (p<0.05, Ad-shA20-Stat1 KO mice vs. Ad-shA20-WT mice) or CD8+ T cells by ICS. C. BMMΦs were prepared from MHCII−/− mice or the wild-type littermates. The adenoviral-transduced BMMΦs were used to immunize wild-type mice (2–3 mice/group) twice. The LNs were harvested for analyzing expression of granzyme B in CD4+ (p<0.01, Ad-shA20-MHC-II KO MΦ immunization vs. Ad-shA20-WT MΦ immunization) or CD8+ T cells by ICS. Experiments were repeated with similar results. doi:10.1371/journal.pone.0048930.g008
granzyme B, but the results may not be convincing due to the antibodies’ limitation.

Cytotoxic CD4+ T cell differentiation occurs under different physiological or pathological conditions. Recent studies further investigated cytotoxic CD4+ T cells by adoptive cellular transfer (ACT) of antigen-specific CD4+ T cells or creation of antigen-specific TCR-transgenic mice. Brown et al. explored that virus-specific TCR transgenic CD4+ cells acquired perforin-mediated cytolytic activity after adoptive transfer into influenza-infected mice, and that the perforin-dependent cytolysis represents one of the important mechanisms to protect mice from lethal influenza infection [26]. Xie et al. and Quezada et al. reported that naive tumor-specific CD4+ T cells develop cytolytic activity and eradicated established melanoma after transfer into lymphopenic hosts [1,2]. Corthay et al. unveiled that primary antitumor immune response can be triggered by transgenic ID-specific CD4+ T cells in immune deficient SCID mice [27]. All these studies revealed a dominant type-I immune response environment associated with the cytotoxic CD4+ T cell differentiation. For example, EBV-specific CD4+ T cells represent one of the earliest defined cytolytic CD4+ T lymphocytes. Paludan et al. reported that EBV infection triggers CD4+ T cell to primarily differentiate into IFN-γ-producing Th1-type [28]. Xie et al and Quezada et al adoptedively transferred tumor antigen-specific CD4+ T cells into lymphopenic mice. Their studies also claimed that Th1 polarization is a default pathway in lymphopenic host [1,2]. Corthay et al. found that transgenic ID-specific CD4+ T cells infiltrate into tumors and produce Th1 cytokines in mice with an immune deficient background [27]. Recently, Muranski et al. discovered that Th17-polarized tumor-reactive CD4+ T cells are capable of rejecting established melanomas [29]. Their subsequent study informed that Th17 cells are metastable and able to gradually acquire a Th1-like phenotype secreting less IL-17A and more IFN-γ [30]. Our reported A20-silenced Mφs produce high levels of proinflammatory cytokines and preferentially prime IFN-γ/IFNα-producing T cells, which further supports type-I immune environment promotes cytotoxic CD4+ T cell development.

Our study further defined that IFN-γ is crucial for A20-silenced Mφs to induce cytotoxic CD4+ T cell differentiation. IFN-γ impact on cytotoxic CD4+ T cell responses has been implicated in many published studies. Mumberg et al. reported that anti-IFN-γ treatment abolishes the CD4+ T cell-mediated rejection of the tumor cells in SCID mice [31]. Corthay explored that CD4+ T cells mediate tumor rejection by producing IFN-γ to activate Mφ-associated antitumor activity [27]. Perez-diez et al. revealed that CD4+ T cells obtain the maximal antitumor effect by partnering with NK cells, an innate source of IFN-γ [32]. Furthermore, both Xie et al. and Quezada et al. defined that IFN-γ facilitates cytotoxic CD4+ T cells to reject melanoma by up-regulation of MHC class-II expression on tumor cells [1,2]. In our present study, IFN-γ is found to directly promote expression of cytotoxic molecules in CD4+ T cells, which is consistent with an early report that activation of IFN signaling was required for expression of perforin and granzyme in CD8+ T cells and NK cells in melanoma patients [33]. Thus, IFN-γ exhibits comprehensive functions associated with cytotoxic CD4+ T cell response, while our present result suggested a novel mechanism for IFN-γ functioning CD4+ T cell-mediated cytotoxicity. Our study further indicated that A20-silenced Mφ-induced cytotoxic CD4+ T cell differentiation is MHC class-II restricted, which coincides with published studies that tumor-reactive CD4+ T cells develop cytotoxic activity in an MHC class-II-dependent manner [34] and priming of tumor-reactive CD4+ T cells requires MHC class-II expression on recipient or host cells, not on tumor cells [1,2,27]. Most intriguingly, Corthay et al identified that tumor infiltrated macrophages are an important component to re-activate tumor-specific CD4+ T cells by presenting tumor-derived peptides on their MHC-II molecules [27]. Our study further suggested that the re-activation step also triggers CD4+ T to express and exocytose cytotoxic molecules for directly killing MHC-II-restricted tumor cells and MHC-II-non-restricted tumor cells in the close proximity.

Ex vivo generated, tumor-reactive, autologous CD4+ T cell clones have successfully been used to treat melanoma patients [35]. Our study may provide a platform for in vitro generating antigen-specific cytotoxic CD4+ T cells for adoptive tumor immunotherapy.

Methods

Mice

C57BL/6, H-2Kb/OT-I-TCR (OT-I) transgenic mice, H-2Kb/OT-II-TCR (OT-II) transgenic mice, CD4 knockout (CD4−/−) mice, IFNγR1 knockout (IFNγR−/−) mice, MHC class-II knockout mice (MHCII−/−), and Stat1 knockout (Stat1−/−) mice were purchased from Jackson Laboratories or Taconic Farms. All the mice were maintained in a mouse facility at USC according to institutional guidelines. This study was approved by the Institutional Animal Care and Use Committee of USC.

Peptides, Proteins and Cell Lines

H2-Kb− restricted OT-I and OT-II peptides were synthesized by Genemed Synthesis. OVA protein was purchased from Sigma-Aldrich. The B6SJL 129 Svliturkitt lymphoma cell line (H2-Kb+, MHC-II-expressed) was kindly provided by Herbert C. Morse III at the NIAMD/NIH [36]. OVA-expressing B6SJ1003 was generated by stable transfection of OVA gene. B16-OVA melanoma cell line M05 (H2-Kb−) was kindly provided by R. Dutton at the Trudeau Institute [37]. Lymphoma cell EG-7 (H2-Kb+) which engineerings expresses OVA was purchased from ATCC.

Mφ Immunization and Tumor Models

Mouse BM-Mφs were generated by culturing BM cells in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated BM-Mφs were incubated with Ad-shA20 or Ad-con at a multiplicity of infection (MOI) of 500, which allows ~60% of Mφs to be transduced as demonstrated by Ad-GFP transduction of Mφs in parallel (data not shown). The transduced Mφs were pulsed with H2-Kb− restricted OT-I or OT-II peptide, followed by ex vivo maturation with LPS (100 ng/ml). The Mφs (0.5–1×10⁶) were then i.p. injected into C57BL/6 mice twice at a one-week interval. For tumor challenge, two weeks after the 2nd immunization, the mice received s.c. injection of 5×10⁵ EG-7 or M05. Tumor onset and growth were monitored weekly.

In vitro T Cell Priming

T cells were purified from OT-I or OT-II transgenic mice using the MACS CD8+ or CD4+ T cell isolation kits (Miltenyi Biotec). 5×10⁴ purified T cells and 5×10⁷ adenoviral-transduced, OT-I or OT-II peptide-pulsed BM-Mφs were cocultured in RPMI 1640 medium supplemented with 10 U/ml of IL-2. In some experiments, anti-IFN-γ or anti-IL-12 was added into the co-cultures at the final concentration of 2.5 ug/ml, 10 ug/ml, or 20 ug/ml, or IFN-γ, IL-12 or IL-6 was added at the final concentration of 2.5 ug/ml or 10 ug/ml. After 3–6 days of coculture, T cells were harvested to analyze the indicated cytokines by ICS assay.
Adoptively Transfer Assay

The isolated OT-II cells were cocultured with adenoviral-transduced, OT-II peptide-pulsed BMMΦs for 3–5 days at MΦ: T cell ratio of 1:10. The cocultured OT-II cells (5 × 10^6) were harvested and transplanted into naive C57BL/6 mice by retroorbital injection followed by tumor challenge. The transplantation of OT-II T cells was repeated one week later.

Flow Cytometric Analysis

For ICS assay, lymphocytes were harvested from draining lymph nodes or spleens of immunized mice and cultured with 20 μg/ml of OT-I or OT-II peptide for 6–10 hours at 37°C in the presence of GolgiPlug (BD Biosciences/PharMingen). After surface staining with anti-CD8 or anti-CD4, cells were permeabilized and stained for intracellular cytokines, as previously described [38,39]. All the antibodies and matched isotype controls were purchased from BD PharMingen or eBioscience. Stained cells were analyzed on a FACSaria (Becton Dickinson) flow cytometer and FloJo software.

CTL and NK Assays

Different numbers of effecter cells (5 × 10^3, 2.5 × 10^3 or 1.25 × 10^3) were cocultured with a certain number (5000 cells) of Yac-1 (for NK assay), EG-7 (for CD8^+ T cell assay), or OVA-expressed B6SJ103 (for CD4^+ T cell assay) for 5 hrs. EL-4 tumor cell line was used as a non-specific control. Some of the cocultures were added with 3 nM CMA or 1 mM EGTA to inhibit activity of perforin and granzyme. The supernatants were harvested and analyzed by LDH release assay (Roche Diagnostics).

Statistical Analysis

We used the Student’s t-test. A 95% confidence limit was used to assess results for statistical significance, defined as P<0.05. Results are typically presented as means ± standard error.

Supporting Information

Figure S1 Ad-shA20 reduces expression of A20 mRNA in transduced BMMΦs. BMMΦs were transduced with Ad-shA20, Ad-con, or PBS. 24 hr later, the MΦs were stimulated with 100 ng/ml LPS or none for overnight. A, relative expression of A20 mRNA in the transduced BMMΦs was evaluated by qRT-PCR. * p<0.05, Ad-shA20- MΦ vs. Ad-con-MΦ.

B, A20 protein expression in the transduced BMMΦs was evaluated by ICS. The anti-A20 was purchased from Santa Cruz. Experiments were repeated twice with similar results.

(TIF)

Figure S2 Ad-shA20 barely enhances apoptosis of the transduced BMMΦs. BMMΦs were transduced with Ad-shA20 or Ad-con. 24 hr later, the MΦs were stimulated with PBS, anti-CD40 (10 μg/ml), or LPS (100 ng/ml) for overnight. The treated BMMΦs were analyzed with Annexin V-APC Apoptosis Detection Kit (BD Biosciences). Experiments were repeated with similar results.

(TIF)

Figure S3 A20-silenced MΦ promotes proinflammatory status of the cocultured OT-I T cells. The adenoviral-transduced MΦs were cocultured with freshly isolated OT-I T cells in the presence of OT-I peptide at the ratio of 1 to 10. 3–5 days later, the OT-I T cells were harvested and analyzed for expression of surface markers CD25, CD69, CD44, and CD62L by cell surface staining and for production of proinflammatory cytokines IFN-γ and TNF-α by ICS. Experiments were repeated with similar results.

(TIF)

Figure S4 A20-silenced MΦ promotes proinflammatory status of the cocultured OT-II T cells. The adenoviral-transduced MΦs were cocultured with freshly isolated OT-II T cells in the presence of OT-II peptide at the ratio of 1 to 10. 3–5 days later, the OT-II T cells were harvested and analyzed for expression of surface markers CD25 and CD69 by cell surface staining, and for production of inflammatory cytokines IFN-γ, TNF-α and IL-4, as well as transcription factor FoxP3 by ICS. Experiments were repeated with similar results.

(TIF)

Figure S5 A20-silenced MΦ enhances expression of perforin in CD4^+ T cells, CD8^+ T cells or NK cells. A, adenoviral-transduced MΦs were cocultured with freshly isolated OT-I (upper) or OT-II (lower) at a ratio of 1:10. 3–5 days later, the cocultured T cells were harvested for analyzing expression of perforin by ICS. The data is shown as a representative of 3 independent experiments. B, C57BL/6 mice (5–6 mice/group) were immunized (i.p.) twice with different adenoviral-transduced MΦs or PBS. Lymphocytes were isolated from the inguinal LNs to analyze expression of perforin in NK cells, CD8^+ or CD4^+ T cells by ICS. The data is shown as a representation of three independent experiments.

(TIF)

Figure S6 pshuttle-shA20-transfected MΦs prime cytotoxic OT-II T cell response in vitro. BMMΦs were neucotfected with pshuttle-shGFP or pshuttle-shA20. 24 hrs later, the transfected BMMΦs were cocultured with freshly isolated OT-II T cells in the presence of OT-II peptide for 3–5 days. OT-II T cells were harvested for analyzing expression of perforin in NK cells, CD8^+ or CD4^+ T cells by ICS. The data is shown as a representation of three independent experiments.

(TIF)

Figure S7 Z-AAD-CMK inhibited CTL activity mediated by A20-silenced MΦ-immunized CD4^+ T cells. OT-II (not OT-I)pulsed, differently transduced BMMΦs were used to immunize C57BL/6 mice and splenocytes were harvested and restimulated with OT-II peptide for 3–6 days. Various ratios of the splenocytes and target cells (OVA-expressing B6SJ103) were cocultured with or without 75 μM of Z-AAD-CMK for 6 hrs. Cytotoxic activities were analyzed by LDH release assay as described in Material and Methods. Experiments were repeated once. * p<0.05, Ad-shA20-MΦ immunization vs. Ad-shA20-MΦ immunization plus the Z-AAD-CMK treatment.

(TIF)

Figure S8 IFN-γ impacts MΦ to trigger cytotoxic T cell responses in immunized mice. C57BL/6 mice were immunized twice with 1, PBS plus IgG; 2, PBS plus IFN-γ; 3, Ad-con-MΦ; 4, Ad-con-MΦ plus IFN-γ; 5, Ad-shA20-MΦ plus IgG; or 6, Ad-shA20-MΦ plus anti-IFN-γ. Antibody (250 μg/mouse) was i.p administrated one day before MΦ immunization, and IFN-γ (1 μg/mouse) was given on the same day as the MΦ immunization and two days later. Two weeks after the 2nd immunization, splenocytes were harvested for intracellular granzyme staining of CD4 T cells (A) or CD8 T cells (B).

(TIF)

Figure S9 A20-silenced MΦ elicits a cytotoxic CD4^+ T cell response via activation of IFN-γ signaling and by an MHC-class-II-restricted mechanism. A, Adenoviral-transduced BMMΦs were used to immunize IFNγ^-/- mice or the wild-type littermates twice. Splenocytes were harvested for...
analyzing expression of granzyme B in CD4+ or CD8+ T cells by ICS. B. Adenoviral-transduced BMMs were used to immunize Stat1−/− mice or the wild-type littermates twice. Splenocytes were harvested for analyzing expression of granzyme B in CD4+ or CD8+ T cells by ICS. C. BMMs were prepared from MHCII−/− mice or wild-type littermates. The adenoviral-transduced BMMs were used to immunize wild-type mice twice. Splenocytes were harvested for analyzing expression of granzyme B in CD4+ or CD8+ T cells by ICS. Experiments were repeated with similar results.

References

1. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, et al. (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207: 637–650.
2. Xie Y, Akpinarli A, Maris C, Hikips EL, Lane M, et al. (2010) Naïve tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207: 651–667.
3. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23: 344–346.
4. Hagemann T, Lawrence T, McNees I, Charles KA, Kalbe H, et al. (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205: 1261–1268.
5. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 223–235.
6. Varin A, Gordon S (2009) Alternative activation of macrophages: Immune function and cellular biology. Immunobiology.
7. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27: 451–483.
8. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, et al. (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5: 1052–1060.
9. Lee EG, Boone DL, Chai S, Libby SL, Chien M, et al. (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289: 2350–2354.
10. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, et al. (2004) De-ubiquitination and ubiquitin ligase domains of A20 desensitize NF-kappaB signalling. Nature 430: 694–699.
11. Song XT, Evelt-Kahler K, Shen L, Rolliens L, Huang XF, et al. (2008) A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 14: 258–265.
12. Morelli AE, Larрегina AT, McDonald HR (1998) TCR-MHC class II interaction is required for exocytosis, and not the fas/fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4+ as well as CD8+ cytotoxic T lymphocytes in humans. Blood 93: 2352–2353.
13. Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, et al. (2005) Multiple effector functions mediated by human immunodeficiency virus-specific CD4+ T-cell clones. J Virol 79: 9771–9779.
14. Sun Q, Burton RL, Lucas KG (2002) Cytokine production and cytolytic mechanism of CD4+ cytotoxic T lymphocytes in ex vivo expanded therapeutic Epstein-Barr virus-specific T-cell cultures. Blood 99: 3302–3309.
15. Williams NS, Engeldinger VH (1996) Identification of a population of CD4+ CTL that utilizes a perforin- rather than a Fas ligand-dependent cytotoxic mechanism. J Immunol 156: 155–159.
16. Yasukawa M, Ohminami H, Ari J, Kasahara Y, Ishida Y, et al. (2000) Granule exocytosis, and not the fas/fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4+ as well as CD8+ cytotoxic T lymphocytes in humans. Blood 93: 2352–2353.
17. Brown DM, Díaz ÁM, Meents DL, Swain SL (2006) CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177: 2088–2098.
18. Corthay A, Skowre-Diek, Lundin KU, Resge E, Omholt H, et al. (2005) Primary antitumor immune response mediated by CD4+ T cells. Immunity 22: 371–383.
19. Paludan C, Birkham K, Nicolöro F, Tsang ML, Goodman K, et al. (2002) Epstein-Barr nucleic antigen I-specific CD4+ Th1 cells kill Burkitt’s lymphoma cells. J Immunol 169: 1593–1603.
20. Muranski P, Roni A, Antony PA, Cassard L, Irvine KR, et al. (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112: 362–373.
21. Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4+ T cells. Curr Opin Immunol 21: 200–209.
22. Mumberg D, Monach PA, Wandering S, Philip M, Tolosano AV, et al. (1999) CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci U S A 96: 8633–8638.
23. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, et al. (2007) CD4+ cells can be more efficient at tumor rejection than CD8+ cells. Blood 109: 3545–3554.
24. Guillot B, Portales P, Thanh AD, Merlet S, Derueve O, et al. (2005) The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-alpha treatment. Br J Dermatol 153: 690–696.
25. Beutner U, MacDonald HR (1998) TCR-MHC class II interaction is required for peripheral expansion of CD4 cells in a T-cell deficient host. Int Immunol 10: 305–310.
26. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, et al. (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 359: 2189–2199.
27. Kozalchuk AL, Qi CF, Torrent TA, Taddei-Heath L, Feigenbaum L, et al. (2000) Burkitt lymphoma in the mouse. J Exp Med 192: 1183–1190.
28. Doehranzi JN, Reome JB, Holkenbaugh JA, Dutton RW (2004) Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 172: 1380–1390.
29. Evelt-Kahler K, Song XT, Alrich M, Huang XF, Chen SY (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116: 90–100.
30. Song XT, Evelt-Kahler K, Rolliens L, Alrich MD, Gao F, et al. (2006) An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells. PLoS Med 3: 1111.