Розробка конструкції промислової сушильної установки безперервної дії для сушіння вичавок ядра волоссяного горіху, арахису та фісташок

Сабадаш С. М., Савченко-Перерва М. Ю., Радчук О. В., Рожкова Л. Г., Казаков Д. Д., Загорулько А. М.

Разработка конструкции промышленной сушильной установки непрерывного действия для сушки выжимок ядра грецкого ореха, арахиса и фисташек

Сабадаш С. М., Савченко-Перерва М. Ю., Радчук О. В., Рожкова Л. Г., Казаков Д. Д. Загорулько А. Н.

Design development of a continuous industrial drying plant for drying pomace of walnuts, peanuts and pistachios

Sabadash S., Savchenko-Pererva M., Radchuk O., Rozhkova L., Kazakov D., Zahorulko A.

Об’єктом дослідження є процес сушіння вичавок ядра волоссяного горіху, арахису та фісташок у сушарці із псевдозрідженим шаром інертного носія. Одним з найбільш проблемних місць є питання утилізації вторинних сировинних ресурсів, які являють значний потенціал для харчової промисловості. Вирішення проблеми, яка є нагальною, – це консервування вичавок ядра волоссяного горіху, арахису та фісташок для подальшого їх використання в харчовій промисловості. При цьому переваги сушених напівфабрикатів:
- можливість транспортування на великі відстані;
- тривалий термін зберігання сушеної продукції;
- використання в технології виробництва продуктів харчування;
- використання як білкової добавки.

Тому робота присвячена розробці нових і модернізації існуючих способів сушіння. Одним із таких способів є сушіння у псевдозрідженому шарі інертного носія, який для сушіння даного продукту до цього не використовувався через складність перебігу процесу.

В ході дослідження використовувався метод мікроскопічного визначення дисперсного складу продукту, який дозволяє вимірювати частки розміром 0,3 –100 мкм. Досліджувані порошки різної дисперсності досліджували за допомогою USB Digital Microscope. Здійснено математичну обробку отриманих результатів з використанням сучасних комп’ютерних програм. Отримані дані були оброблені в середовищі Mathcad та представлені у вигляді
інтегральних та диференціальних функцій розподілу частинок для кожного проаналізованого зразка. Це пов'язано з тим, що аналіз визначення дисперсного складу є обов'язковим методом контролю в усіх технологічних процесах. Завдяки цьому забезпечується можливість отримання заданого розміру продукту. У процесі дослідження розроблено конструкцію промислової сушильної установки безперервної дії для сушіння вичавок ядра волоського горіху, арахісу та фісташок. Запропонований у роботі спосіб сушіння має низку переваг над іншими способами, основними з яких є зниження енергозатрат і підвищення якості готової продукції.

Ключові слова: дисперсний склад, мікроскопічний метод, сушіння продуктів, інтегральна та диференціальна функція розподілу.

Об'єктом його сусідства являється процес сушки вичавок ядра грецького ореха, арахісу і фісташок в сушилках з псевдоожиженним слоем инертного носителя. Одним із самих проблемних місць є питання утилізації вторинних сировинних ресурсів, які являють значний потенціал для пищової промисленості. Решення проблеми, яка являється насущною, – це консервування вичавок ядра грецького ореха, арахісу і фісташок для дальнейшого їх використання в пищовій промисленості. При цьому використовування сушених полуфабрикатів:

– можливість транспортування на більші відстані;
– ділительний строк зберігання сушеної продукції;
– використання в технології виробництва продуктів харчування;
– використання в качесві більшої добавки.

Поэтому работа посвящена разработке новых и модернизации существующих способов сушки. Одним из таких способов является сушка в псевдоожиженном слое инертного носителя, который для сушки данного продукта до этого не использовался из-за сложности течения процесса.

В ходе исследования использовался метод микроскопического определения дисперсного состава продукта. Микроскопичний метод позволяет измерять частицы размером 0,3 – 100 лім. Исследуемые порошки различной дисперсности исследовали с помощью USB Digital Microscope. Осуществлена математическая обработка полученных результатов с использованием современных компьютерных программ. Полученные данные были обработаны в среде Mathcad и представлены в виде интегральных и дифференциальных функций распределения частич для каждого проанализированного образца. Это связано с тем, что анализ определения дисперсного состава является обязательным методом контроля во всех технологических процессах. Благодаря этому обеспечивается возможность получения заданного размера продукта. В процессе исследования разработана конструкция промышленной сушильной установки непрерывного действия для сушки вичавок ядра грецького ореха, арахісу і фісташок. Предложенный в работе способ сушки имеет ряд преимуществ перед другими способами, основными из которых являются снижение энергозатрат и повышение качества готовой продукции.
Ключове слова: дисперсний состав, мікроскопічний метод, сушка продуктів, інтегральна і диференційальна функція розподілення.

1. Вступ

Одним із важливих питань харчової промисловості є збільшення ресурсів харчового білка, удосконалення техніки і технології переробки традиційних і нетрадиційних сировинних ресурсів у різних галузях харчової промисловості та розширення асортименту повноцінних продуктів харчування [1]. Одним із способів вирішення проблеми збільшення ресурсів білка є використання вторинних сировинних ресурсів [2]. Використання в Україні вторинної сировини від підприємств харчової промисловості набуває все більшої актуальності. Великі обсяги промислової переробки різноманітної сировини рослинного походження на харчові цілі становлять значний потенціал для агропромислового комплексу [3]. Це стосується й оліє-жирового виробництва. При виробництві олії із ядра волоського горіху, арахісу та фісташок утворюється велика кількість вичавок, що являють собою цінну сировину, що містить білки, жири, клітковину, золу та вітаміни [4]. Сухі порошки із зазначених продуктів характеризуються високим вмістом технологічно-незмінного білка (48...60 %), невисоким вмістом жиру (8...20 %) і вологи (2...9 %). Додавання сухих порошків із вичавок у вафельні вироби сприяє підвищенню їх якості, зокрема, біологічної цінності: забезпечує наявність незамінних амінокислот, полісахаридів, ненасичених жирних кислот, харчових волокон і інших цінних компонентів. Також введення сухих порошків із вичавок позитивно впливає на органолептичні показники начинок (змінює колір, надає готовим виробам приємний смак і аромат горіхів) [5, 6]. Порошкоподібні матеріали застосовуються в багатьох галузях промисловості. Багато властивостей порошків в значній мірі залежать від дисперсності. Аналіз дисперсеного складу є обов'язковим методом контролю в усіх технологічних процесах, пов'язаних з виготовленням і переробкою порошкоподібних матеріалів [7–9]. Існує декілька методів визначення дисперсеного складу [10, 11]: ситовий аналіз, седиментаційній аналіз, гідродинамічні методи, мікроскопічний аналіз. У цьому випадку мікроскопічний метод відрізняється тим, що дозволяє визначити не тільки геометричні розміри досліджуваних об'єктів, а й побачити особливості їх форми, структури і будови поверхні. Мікроскопічний метод дозволяє вимірювати частки розміром 0,3–100 мкм. Для визначення розміру часток менше 1 мкм застосовують електронні мікроскопи з більш високою роздільною здатністю, ніж оптичні.

Таким чином, об'єктом дослідження є процес сушіння вичавок ядра волоського горіху, арахісу та фісташок у сушиарці із псевдозрідженим шаром інертного носія. Meta роботи полягає у визначенні дисперсеного складу порошків із вичавок ядра волоського горіху, арахісу і фісташок для подальшого використання їх в харчовій промисловості.
2. Методика проведення дослідження

Під час дослідження використовувався мікроскопічний метод визначення дисперсного складу порошків, який відрізняється тим, що дозволяє визначити не тільки геометричні розміри досліджуваних об’єктів, а й побачити особливості їх форми, структури і будови поверхні.

На основі результатів лабораторних досліджень була спроектована дослідно-промислова установка для сушіння виковок ядра волоського горіху, арахісу та фісташок. Сушіння відбувалося таким чином: підсушування розпилювального матеріалу у прямотечії з газоподібним теплоносієм і кінцеве підсушування на поверхні інертних матеріалів, які перебувають у стані псевдозрідження [12–14].

Проведені теоретичні та експериментальні дослідження дозволили одержати емпіричні співвідношения [15, 16], необхідні для інженерного розрахунку конструктивних особливостей сушарки із псевдозрідженим шаром інертного носія для сушіння.

На рис. 1 зображена конструкція сушильної камери.

Рис. 1. Циліндрична камера сушарки у псевдозрідженому шарі інертного носія: 1 – сушильна камера; 2 – уловлювач продукту; 3 – отвори; 4 – вихідний патрубок; 5 – вхідний патрубок; 6 – газорозподільна решітка; 7 – вхід теплоносія; 8 – люк; 9 – болти; 10 – гайки; 11 – шайба; 12 – прокладка

Особливостями установки для сушіння є такі:
– у верхній частині камери розміщений пристрій для уловлення продукту, який запобігає винесенню разом із частинками інертного носія;
– використання фторопластової кришки дає змогу інтенсифікувати процес сушіння в наслідок збільшення поверхні тепломасообміну;
– використання вентилятора і калорифера дозволяє отримати сухе гаряче повітря необхідної температури, запобігаючи потемнінню продукту.
Вихідні дані для розробки і створення сушильної установки наведено в табл. 1.

Сировина	Вичавки ядра волоського горіху, арахісу та мигдалю
Продуктивність сушиарки за вологим матеріалом, кг/с	0,45
Завантаження сировини і розвантаження продукту	Автоматичне
Контроль за режимом сушіння	Автоматичний
Керування калорифером	Автоматичне, електронне
Кількість обслуговуючого персоналу, чол.	3–5

3. Результати дослідження та обговорення
За допомогою подальшої комп'ютерної обробки даних побудували інтегральні функції розподілу частинок порошків [17, 18] (рис. 2).

Рис. 2. Інтегральна функція розподілу для сушеного порошку із вичавок ядра:
а – арахісу; б – волоського горіху; в – фісташок

Розпочинаємо побудову з найдрібніших частинок, відкладаючи їх процентний вміст (Q_0) на ординаті. Потім для частинок наступної фракції відклали ординату, рівну сумі процентного вмісту часток попередньої фракції і
фракції з великим радіусом і так далі. Працювали доти, поки остання ордината (відповідна максимальному діаметру) не склала 100%.
Далі за допомогою наступних операцій в середовищі програми Mathcad побудуємо диференціальні функції розподілу [19, 20] (рис. 3).

Рис. 3. Диференціальна функція розподілу на фоні експериментальної дискретної гістограми, яка вказує на кількість частинок різних розмірів (сушеного порошку із вичавок ядра:
a – арахісу; б – волоського горіху; в – фісташок)

Для апроксимації використовувались функції виду:
– для порошків із вичавок ядра волоського горіху:

\[a_0 \cdot x^{a_1} \cdot e^{a_2 x^2} , \]

– для порошків із вичавок ядра арахісу:

\[a_0 \cdot x \cdot e^{(a_1 x + a_2 x^2)} ; \]

– для порошків із вичавок ядра фісташок:

\[a_1 \cdot x \cdot e^{a_0 a_2 x^2} . \]

Як бачимо, вони повністю і в точній мірі описують експериментальні дані і
припадають на експериментальний максимум, що дає можливість визначити найбільш ймовірний розмір часток для даного зразку (рис. 4).

Рис. 4. Інтегральні функції розподілу розмірів частинок для трьох моделних продуктів різної дисперсності: 1 – крива для сушених вичавок із фісташок; 2 – крива для сушених вичавок із арахісу; 3 – крива для сушених вичавок із волоского горіху.

Побудуємо диференціальні функції розподілу (рис. 5).

Рис. 5. Диференціальні функції розподілу розмірів частинок для трьох моделних продуктів різної дисперсності: 1 – крива для сушених вичавок із волоского горіху; 2 – крива для сушених вичавок із арахісу; 3 – крива для сушених вичавок із фісташок.
Інтегральна та диференціальна функції розподілу розмірів частинок дослідного продукту для трьох модельних продуктів різної дисперсності досить точно описані експериментальними даними на рис. 5. Видно, що після сушіння крива 1 розподілу має виражений максимум і меншу ширину, оскільки частинки за розмірами більш однорідні, у той час як зразки вичавок із ядер арахісу і фісташок (відповідно криві 2, 3) характеризуються зміщенням максимуму. Очевидно, це пов’язано з тим, що крупніші частинки зволоження внаслідок часткового набухання збільшуються в розмірах за умови, що й відображає певна асиметрія самих кривих. Отже, під час сушіння слід ураховувати цей факт, який позначатиметься на масообміні, оскільки частинки за високої дисперсності легше віддають вологу.

4. Висновки

У процесі дослідження розроблено конструкцію промислової сушильної установки безперервної дії для сушіння вичавок ядра волосого горіху, арахісу та фісташок, на яку отримано деклараційні патенти України. Запропонований у роботі спосіб сушіння має низку переваг над іншими способами, основними з яких є зниження енерговитрат і підвищення якості готової продукції.

Література
1. Kudra, T. (2004). Energy Aspects in Drying. Drying Technology, 22 (5), 917–932. doi: http://doi.org/10.1081/drt-120038572
2. Bezbakh, I. V., Bakhmutyan, N. V. (2006). Issledovanie protsessa sushki plodov i yagod vo vzveshnom sloe. Nauk. prats ONAKhT, 2 (28), 60–64.
3. Zagorulko, A., Zahorulko, A., Kasabova, K., Chervonyi, V., Omelchenko, O., Sabadash, S. et. al. (2018). Universal multifunctional device for heat and mass exchange processes during organic raw material processing. Eastern-European Journal of Enterprise Technologies, 6 (1 (96)), 47–54. doi: http://doi.org/10.15587/1729-4061.2018.148443
4. Oboznaia, M. V., Shilman, L. Z., Percevoi, N. F., Percevoi, F. V. (2014). Perspektivy razrabotki symogo produkta miagkogo s kombinirovannym recepturnym sostavom. Tekhnologiiia i produkty zdorovogo pitaniia. Saratov: FGBOU VPO «Saratovskii GAU», 265–267.
5. Pohozhykh, M. I., Potapov, V. O., Tsurkan, M. M. (2008). Tekhnolohiiaushinnia kharchovoi syrovyny. Kharkiv: KhDUKhT, 229.
6. Danilov, I., Leonchik, B. (1986). Ekonomiya energii pri teplovoy sushke. Moscow: Energogotomizdat, 136.
7. Izli, N., Izli, G., Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37 (4), 604–612. doi: http://doi.org/10.1590/1678-457x.28316
8. Yurchenko, V. O., Ponomarov, K. S., Ponomarova, S. D. (2017). Doslidzhennia dyspersnoho sklady pylu kondyterskykh pidpryiemstv. Ekologichna bezpeka, 2, 32–38.
9. Kouzov, P. A. (1987). Osnovy analiza dispersnogo sostava promyshlennykh pylei i izmelchenynykh materialov. Leningrad: Khimiia, 264.
10. Brown, J. S., Gordon, T., Price, O., Asgharian, B. (2013). Thoracic and respirable particle definitions for human health risk assessment. *Particle and Fibre Toxicology, 10* (1), 12. doi: http://doi.org/10.1186/1743-8977-10-12

11. Rebinder, P. A. (1966). *Fiziko-khimicheskaia mekhanika dispersnykh struktur.* Moscow: Nauka, 63.

12. Sabadash, S., Kazakov, D., Yakuba, A. (2015). Development of the post-alcohol stillage drying process on inert bodies and output of criterion dependence. *Eastern-European Journal of Enterprise Technologies, 1* (6 (73)), 65–70. doi: http://doi.org/10.15587/1729-4061.2015.38056

13. Yi, X.-K., Wu, W.-F., Zhang, Y.-Q., Li, J.-X., Luo, H.-P. (2012). Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes. *Mathematical Problems in Engineering, 2012,* 1–18. doi: http://doi.org/10.1155/2012/386214

14. Ahmad-Qasem, M. H., Santacatalina, J. V., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., García-Pérez, J. V. (2014). Influence of Drying on the Retention of Olive Leaf Polyphenols Infused into Dried Apple. *Food and Bioprocess Technology, 8* (1), 120–133. doi: http://doi.org/10.1007/s11947-014-1387-6

15. Burdo, O. G., Burdo, A. C., Sirotuyk, I. V., Pour, D. S. (2017). Technologies of Selective Energy Supply at Evaporation of Food Solutes. *Problemele energeticii regionale, 1* (33), 100–109. Available at: http://journal.ie.asm.md/assets/files/12_01_33_2017.pdf

16. Yehorov, V., Golubkov, P., Putnikov, D., Honhalo, V., Habuiev, K. (2019). System for analyzing the qualitative characteristics of grain mixes in real time mode. *Food Science and Technology, 12* (4). doi: http://doi.org/10.15673/fst.v12i4.1222

17. Peltola, J. (2009). *Dynamics in a Circulating Fluidized Bed: Experimental and Numerical Study.* Tampere, 95.

18. Kirianov, D. V., Kirianoa, E. N. (2006). *Vychislitelnaia fizika.* Moscow: Polibuk Multimedia, 352.

19. Maksfild, B. (2010). *Mathcad v inzhenernykh raschetakh.* Moscow: KORONA-Vek: MK-Press, 304.

The object of research is the drying process of the pomace of a walnut kernel, peanuts and pistachios in a fluidized bed dryer with an inert support. One of the most problematic places is the issue of recycling of secondary raw materials, which represent significant potential for the food industry. The solution to the problem that is urgent is the preservation of pomace of the walnut kernel, peanuts and pistachios for their further use in the food industry. At the same time, the advantages of dried semi-finished products:

- ability to transport over long distances;
- long shelf life of dried products;
- use in food technology;
- use as a protein supplement.

Therefore, the work is devoted to the development of new and modernization of existing drying methods. One of such methods is drying in a fluidized bed of an inert support; this product has not been used before for drying because of the complexity of the process.
During the study, the method of microscopic determination of the dispersed composition of the product is used, which allows measuring particles with a size of 0.3 -100 microns. Test powders of different fineness are investigated using USB Digital Microscope. The mathematical processing of the results using modern computer programs is carried out. The data obtained are processed in the Mathcad environment and presented as integral and differential particle distribution functions for each analyzed sample. This is due to the fact that the analysis of the determination of the dispersed composition is a mandatory control method in all technological processes. Thanks to this, it is possible to obtain a given product size. In the course of the study, a design of a continuous industrial drying unit for drying pomace of walnut kernels, peanuts and pistachios was developed. The drying method proposed in this work has several advantages over other methods, the main of which are the reduction of energy consumption and improving the quality of the finished product.

Keywords: dispersed composition, microscopic method, product drying, integral and differential distribution function.