Molecules 2011, 16, 5113-5129; doi:10.3390/molecules16065113

ISSN 1420-3049
www.mdpi.com/journal/molecules

Article

Methoxymethyl (MOM) Group Nitrogen Protection of Pyrimidines Bearing C-6 Acyclic Side-Chains

Tatjana Gazivoda Kraljević 1,*, Martina Petrović 1, Svjetlana Krištafor 1, Damjan Makuc 2,3, Janez Plavec 2,3,4, Tobias L. Ross 5, Simon M. Ametamey 6 and Silvana Raić-Malić 1,*

1 Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000 Zagreb, Croatia
2 Slovenian NMR centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
3 EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
4 Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva cesta 5, SI-1000 Ljubljana, Slovenia
5 Radiopharmaceutical Chemistry, Institute of Nuclear Chemistry, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, 55128 Mainz, Germany
6 Center for Radiopharmaceutical Sciences, ETH Zurich (Swiss Federal Institute of Technology), Wolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland

* Author to whom correspondence should be addressed; E-Mails: tatjana.gazivoda@fkit.hr (T.G.K.); sraic@fkit.hr (S.R.-M.); Tel.: +385-1-4597-213; Fax: +385-1-4597-224.

Received: 26 May 2011; in revised form: 15 June 2011 / Accepted: 16 June 2011 / Published: 20 June 2011

Abstract: Novel N-methoxymethylated (MOM) pyrimidine (4–13) and pyrimidine-2,4-diones (15–17) nucleoside mimetics in which an isobutyl side-chain is attached at the C-6 position of the pyrimidine moiety were synthesized. Synthetic methods via O-persilylated or N-anionic uracil derivatives have been evaluated for the synthesis of N-1- and/or N-3-MOM pyrimidine derivatives with C-6 acyclic side-chains. A synthetic approach using an activated N-anionic pyrimidine derivative afforded the desired N,N-1,3-diMOM and N-1-MOM pyrimidines 4 and 5 in good yield. Introduction of fluorine into the side-chain was performed with DAST as the fluorinating reagent to give a N,N-1,3-diMOM pyrimidine 13 with a 1-fluoro-3-hydroxyisobutyl moiety at C-6. Conformational study of the monotritylated N-1-MOM pyrimidine 12 by the use of the NOE experiments revealed the predominant conformation of the compound to be one where the hydroxymethyl group in
the C-6 side-chain is close to the N-1-MOM moiety, while the OMTTr is in proximity to the CH3-5 group. Contrary to this no NOE enhancements between the N-1-MOM group and hydroxymethyl or fluoromethyl protons in 13 were observed, which suggested a nonrestricted rotation along the C-6 side-chain. Fluorinated N,N-1,3-diMOM pyrimidine 13 emerged as a model compound for development of tracer molecules for non-invasive imaging of gene expression using positron emission tomography (PET).

Keywords: N-methoxymethyl protecting group; C-6 isobutyl pyrimidine derivatives; N-1 and N-3 regioisomers; NOE experiments; positron emission tomography (PET)

1. Introduction

The pyrimidine moiety is a widespread heterocyclic unit which is found in several biologically active natural products, as well as synthetic pharmacophores with biological activities that show considerable therapeutic potential [1-5]. The structural diversity and biological importance of pyrimidines have made them attractive targets for synthesis over the years. For this reason numerous analogues and derivatives of pyrimidines have been synthesized and developed as pharmacologically active compounds or drugs [6,7].

Many N-substituted uracil derivatives have exhibited extremely diverse physiological activity [8]. It was shown that N-1 and/or N-3-alkylated pyrimidine derivatives had a wide range of antiviral activity [9-14]. A large number of thymidine analogues and acyclic guanosine derivatives showed antiviral activities against herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) [15]. The antiviral activity of these compounds is due to their selective and efficient \textit{in vivo} activation through monophosphorylation by the viral enzyme [16,17]. The monophosphates are converted to diphosphates, and then to the corresponding triphosphates by cellular enzymes. The triphosphates prevent viral replication by inhibition of the viral DNA polymerase [18]. The molecular basis of the therapy, which uses viral thymidine kinase (TK), is the difference in substrate specificity between the herpes viral TK and the human cellular isoenzyme. Therefore, HSV-1 TK in combination with nucleoside analogue as fraudulent substrates can be used as suicide enzymes in gene therapy of cancer [19-21]. Furthermore, these compounds labelled with positron-emitting radioisotopes can be used as \textit{in situ} reporter probes to allow non-invasive imaging of HSV-1 TK gene expression using positron emission tomography (PET) [22-25]. The pronounced biological activities exhibited by C-6 substituted pyrimidine derivatives provide a good rationale for further exploration of the chemistry and biological activities of these compounds [26-30]. Thus, we have synthesized nucleoside mimetics in which acyclic sugar moiety is attached at the C-6 position. Some C-6 fluoroalkylated pyrimidines exhibited pronounced cytostatic activities [31-33], while thymines with 6-(2,3-dihydroxypropyl) and 6-(1,3-dihydroxyisobutyl) side-chains have been developed as tracer molecules for monitoring of HSV-1 TK expression by means of PET [34-36]. Our investigations were prompted by the need to develop PET imaging agents which lack the disadvantages of already existing reporter probes of HSV-1 TK, such as 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) which shows cytotoxicity and unfavorable pharmaco-kinetics [37]. In our previous work we described the
compound 6-(1,3-dihydroxyisobutyl)thymine (DHBT) and discussed its advantages over existing compounds [35]. The molecular modeling and the X-ray structure of HSV-1 TK in complex with N-methylated DHBT gave new insights for the design and synthesis of further C-6 substituted pyrimidine derivatives with differentiated pharmacokinetics [37].

In the view of the facts mentioned above and in continuation of our previous work on development of tracer molecules for non-invasive imaging of gene expression using PET, we have now prepared new N-methoxymethylated (MOM) C-6 acyclic pyrimidine derivatives. Thus, herein we report syntheses of novel N-1- and/or N-3-MOM pyrimidines 4–13 and pyrimidin-2,4-diones 15–17 bearing C-6 isobutyl side-chains, as well as a bicyclic pyrimido[1,6-c][1,3]oxazepine derivative 14.

2. Results and Discussion

2.1. Chemistry

Synthesis of the pyrimidine scaffold 2 was achieved according to the previously reported procedure (Scheme 1) [38]. Treatment of 2,4-dimethoxy-5,6-dimethylpyrimidine with lithium diispropylamide (LDA) in THF at −55 °C afforded the corresponding lithiated precursor, which reacted in situ with 1,3-dibenzyloxy-2-propanone to give 6-(1,3-dibenzyloxy-2-hydroxyisobutyl)thymine (1) [35].

Scheme 1. Synthetic pathway from 5,6-dimethylpyrimidine to the C-6 substituted pyrimidine derivatives 1-6.

Reagents and conditions: (i) 1. POCl₃, reflux; 2. NaOCH₃, CH₃OH; (ii) (CH₃)₂S, N-chlorosuccinimide, Et₃N, toluene; (iii) LDA, THF, −55 °C; (iv) MOC, DMAP, CH₃CN; (v) Bu₃SnH, AIBN, toluene; (vi) method A: TMSCl, Nal, r.t., 20 h, Ar; method B: AcCl, H₂O, 20 h reflux, r.t. overnight; (vii) method A: TMSCl, CH₃CN, MOMCl, (iPr)₂EtN, 50 °C, 6 h; method B: HMDS, (NH₄)₂SO₄, MOMCl, r.t. overnight; method C: K₂CO₃, DMF, MOMCl, r.t. overnight.
The lithiation reaction has been method for introducing various functionalities into the pyrimidine moiety [39]. Reaction of 1 with methyl oxalyl chloride gave oxalate, which was submitted to Barton-McCombie deoxygenation using tributyltin hydride and 2,2'-azobis(isobutyronitrile). This is radical substitution in which ester group in oxalate is replaced by a hydride to give pyrimidine derivative containing 3-benzyloxy-2-(benzyloxymethyl)propyl side-chain (2).

Hydrolysis of the 2,4-dimethoxy group in 2 was accomplished with trimethylsilyl iodide generated in situ from trimethylsilyl chloride and sodium iodide to afford pyrimidin-2,4-dione 3 in 18% yield (Scheme 1). Demethoxylation of 2 with acetyl chloride (AcCl) and water gave the same product 3 in improved yield (68%). To avoid intramolecular cyclization and formation of a conformationally constrained carbon-bridged pyrrolido[1,2-c]pyrimidine, formed by N-1 linkage to the acyclic moiety at C-6 position [35,38], a strategy involving N-methoxymethylation of 3 was applied with methoxymethyl chloride (MOMCl) as alkylating reagent.

Table 1. Overview of used synthetic methods, reaction conditions and yields.

Entry	Reaction	Starting compd	Reagents and conditions	Product	Yield (%)
1	demethoxylation	2	TMSCl, NaI, CH3CN, r.t., 20 h	3	18.3
			AcCl, reflux, 20 h, H2O, r.t., overnight	4	22.4
		2	TMSCl, CH3CN, reflux, 2 h, (iPr)2EtN, MOMCl, 50 °C, 6 h	5	13.4
		3	HMDS, (NH4)2SO4, reflux, 1 h, MOMCl, r.t., overnight	4	2.9
		3	HMDS, (NH4)2SO4, reflux, 1 h, MOMCl, r.t., overnight	5	21.4
		3	K2CO3, DMF, MOMCl, r.t., overnight	6	15.4
3	debenzylation	4	BCl3, CH2Cl2, −70 °C, 1 h	7 and 9	33.4
4		5	BCl3, CH2Cl2, −70 °C, 4 h	8	18.6
		5	BCl3, CH2Cl2, −70 °C, 2 h	15	60
5	tritylation	7	MTrCl, DMAP, DMF, r.t., overnight	10	46.4
6		8	MTrCl, DMAP, DMF, r.t., overnight	11	37.5
7		8	MTrCl, DMAP, DMF, r.t., overnight	12	30.8
		15	MTrCl, DMAP, DMF, r.t., overnight	16	26.12

As the literature precedents attest [40-44] there are only a few reports on the MOM protection of nitrogen in a pyrimidine ring, and no report of N-MOM derivatives with C-6 isobutyl side-chains. Generally, N-methoxymethylation is accomplished by the substitution of MOMCl with activated O-persilylated or N-anionic uracil derivatives. In our method A chlorotrimethylsilane (TMSCl) was applied as a silylating agent and the reaction was conducted in CH3CN in the presence of
diisopropylethylamine [(iPr)2EtN]. This reaction was performed under strictly anhydrous conditions due to the fact O-trimethylsilyl pyrimidine ethers instantaneously hydrolyse to pyrimidin-2,4-dione 3. Thus, reaction of silylated 3 with MOMCl afforded N,N-1,3-diMOM, N-1-MOM and N-3-MOM pyrimidine derivatives 4-6 in 22.4%, 13.4% and 11%, respectively (Scheme 1, method A). Furthermore, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) in the presence of a catalytic amount of ammonium sulphate transformed uracil derivative 3 into the appropriate 2,4-bis(trimethylsilyloxy)pyrimidine, which was subsequently reacted with MOMCl to give N,N-1,3-diMOM and N-1-MOM compounds 4 and 5 in 2.9% and 21.4%, respectively (method B).

In our search for a more efficient synthesis of compounds 4 and 5 an alternate method was applied using activated N-anionic uracil. Potassium carbonate was used as deprotonating agent and the thus in situ obtained uracil salt reacted with MOMCl in DMF to give N,N-1,3-diMOM, N-1-MOM and N-3-MOM pyrimidine derivatives 4-6 in 28.5%, 12.1% and 15.4% yields, respectively. The yields of 4 and 5 synthesized by the various methods are summarized in Table 1.

Debenzylation of 4 was carried out using boron trichloride to afford N,N-1,3-diMOM (7) with 6-(1,3-dihydroxyisobutyl) side-chain as major product (33.4% yield). However, N-1 and N-3 deprotection of 4 also occurred during this reaction and N-1-MOM (8) and N-3-MOM (9) pyrimidine derivatives as a mixture of regioisomers in ratio 3:1 were isolated (Scheme 2).

Scheme 2. Syntheses of pyrimidine derivatives 7-14.

![Scheme 2](image)

Reagents and conditions: (i) BCl3, CH2Cl2, −70 °C; (ii) MTrCl, DMAP, pyridine, 50 °C; (iii) DAST, CH2Cl2, −50 °C; CH3OH, 5% HCl.
N,N-1,3-diMOM-pyrimidine 7 was subsequently treated with 4-methoxytrityl chloride (MTrCl) to afford both ditritylated (compound 10) and monotritylated (compounds 11 and 12) pyrimidine derivatives. Fluorination of ditritylated compound 10 with diethylaminosulfur trifluoride (DAST) as the fluorinating reagent and subsequent in situ deprotection of trytl group by using HCl (5%) gave N,N-1,3-diMOM pyrimidines with 1-fluoro-3-hydroxyisobutyl- (compound 13) and 1,3-dihydroxyisobutyl (compound 7) side-chains. The bicyclic compound 14, was also obtained as an intramolecular cyclization product of 13 [45]. Interestingly, unexpected N-deprotection during debenzylation of 4 and tritylation of 7 occurred while in the detritylation reaction using HCl (5%) the MOM group was unreactive. The tosylation reaction of 11 and 12 did not afford the pyrimidine derivative with a 6-(1-methoxytrityl-3-tosylisobutyl) side-chain that could be used as the precursor for radiochemical synthesis. Debenzylation of 5 accompanied by N-1 demethoxymethylation afforded both N-1-MOM pyrimidine derivative (8) and pyrimidin-2,4-dione (15) with a 6-(1,3-dihydroxyisobutyl) side-chain as the major product (Scheme 3). When the debenzylation of 5 was quenched after 2 h, instead of 4 h, only diol 8 was obtained in a moderate 32% yield. Reaction of 8 with MTrCl gave monotritylated N-1-MOM pyrimidine derivative 12. Similarly tritylation of 15 afforded both ditritylated (compound 16) and monotritylated (compound 17) pyrimidin-2,4-dione derivatives.

Scheme 3. Syntheses of pyrimidine derivatives 8, 12 and 15-17.

Reagents and conditions: (i) BCl₃, CH₂Cl₂, −70 °C; (ii) MTrCl, DMAP, pyridine, 50 °C.

2.2. NMR Studies

The chemical identities of compounds 2–17 were confirmed by ¹H-, ¹³C- and ¹⁹F-NMR measurements. Proton and fluorine NMR chemical shifts, as well as carbon NMR chemical shifts are reported in the Experimental section. N-1 and N-3 regioisomers were identified on the basis of heteronuclear ¹H–¹³C correlation signals in 2D HMBC spectra and homonuclear ¹H–¹H correlations in NOESY spectra. NOESY cross-peaks demonstrate dipole–dipole interactions of nearby protons that are spatially within ca. 5 Å. Correlation signals were observed between methylene protons of MOM group (δ 5.19 ppm) and H-1' (δ 2.75 ppm) as well as H-2' (δ 2.20 ppm) in 5, which suggested that MOM group is bound
to \(N\)-1 of pyrimidine ring. Similarly, the methylene protons of the \(N\)-1-MOM group (\(\delta\) 5.34 ppm) in 7 showed NOESY correlations with the H-1’ protons (\(\delta\) 2.70 ppm), whereas the \(N\)-3-MOM group showed only NOE enhancements amongst the methoxymethyl protons. NOE cross-peaks between the phenyl ring (OMTr) and the CH\(_3\)-5 group were observed in 12, whereas the H-3” hydroxymethyl protons (\(\delta\) 3.68 and 3.84 ppm) showed NOESY correlation signals with the \(N\)-1-MOM group (\(\delta\) 5.34 ppm). These NOE enhancements suggested that predominant conformation of 12 possessed the hydroxymethyl group closer to the \(N\)-1-MOM functionality, whereas the OMTr was in proximity to the CH\(_3\)-5 group (Figure 1). NOE enhancements were observed between the methylene protons of the \(N\)-1-MOM group (\(\delta\) 5.28 ppm) and H-1’ (\(\delta\) 2.72 ppm) as well as H-2’ (\(\delta\) 2.10 ppm) in 13. No NOE enhancements were observed between the \(N\)-1-MOM group and the hydroxymethyl or fluoromethyl protons, which suggests a nonrestricted rotation along the C-6 acyclic side-chain in 13. Conformational study of compounds 5, 6, 7, 10 and 16, which bear identical substituents attached to C2’, showed only trivial NOESY cross-peaks. Consequently, no particular conformational preferences could be established for these compounds.

Figure 1. Predominant conformation of 12 as suggested by NOESY correlation signals. Key NOE interactions are indicated by double-headed arrows.

3. Experimental

3.1. General

All solvents were dried/purified following recommended drying agents and/or distilled over 3 Å molecular sieves. For monitoring the progress of a reaction and for comparison purposes, thin layer chromatography (TLC) was performed on pre-coated *Merck* silica gel 60F-254 plates using an appropriate solvent system and the spots were detected under UV light (254 nm). For column chromatography silica gel (*Fluka*, 0.063-0.2 mm) was employed, glass column was slurry-packed under gravity and eluents were CH\(_2\)Cl\(_2\)/MeOH mixtures. Melting points (uncorrected) were determined with *Kofler* micro hot-stage (*Reichert*, Wien). \(^1\)H-, \(^13\)C- and \(^19\)F-NMR spectra were acquired on a *Bruker* 300 MHz and Varian Unity Inova 300 MHz NMR spectrometers. All data were recorded in DMSO-\(d_6\) at 298 K. Chemical shifts were referenced to the residual solvent signal of DMSO at \(\delta\) 2.50 ppm for \(^1\)H and \(\delta\) 39.50 ppm for \(^13\)C. \(^19\)F-NMR chemical shifts were referenced externally with respect to CCl\(_3\)F (\(\delta\) 0.0 ppm). Individual resonances were assigned on the basis of their chemical shifts, signal
intensities, multiplicity of resonances and H–H coupling constants. NOESY spectra were acquired with mixing time of 150 ms. Mass spectra were recorded on an Agilent 6410 instrument equipped with electrospray interface and triple quadrupole analyzer (LC/MS/MS). High performance liquid chromatography was performed on an Agilent 1100 series system with UV detection (photodiode array detector) using Zorbax C18 reverse-phase analytical column (2.1 × 30 mm, 3.5 µm). 6-[(3-Benzyl oxy-2-benzyloxymethyl-2-hydroxy)propyl]-5-methyl-2,4-dimethoxy pyrimidine (1) and 6-[(3-benzyloxy-2-benzyloxymethyl)propyl]-5-methyl-2,4-dimethoxy pyrimidine (2) were synthesized using analogous procedures as described previously [35,38].

3.2. Procedures for the Preparation of Compounds

3.2.1. 6-[(3-Benzyl oxy-2-benzyloxymethyl)propyl]-5-methylpyrimidin-2,4-dione (3)

Method A: A solution of dry 2 (106 mg, 0.251 mmol), TMSCl (0.11 mL, 0.879 mmol) and NaI (130 mg, 0.879 mmol) in anhydrous CH₃CN (5.5 mL) was stirred at r.t. for 20 h under Ar atmosphere. Solvent was evaporated in vacuo and residue was purified by column chromatography (CH₂Cl₂-MeOH = 20:1) to give pure oily (3) (18.1 mg, 18.3%).

Method B: Solution of 2 (488 mg, 1.15 mmol) in AcCl (17 mL) was refluxed for 20 h after that H₂O (5 mL) was added and stirring was continued at r.t. overnight. Solvent was evaporated under reduced pressure and residue was chromatographed using silica column (CH₂Cl₂-MeOH = 20:1) to afford oily product (3) (308.7 mg, 67.8%).

Analytical data: ¹H-NMR: 10.92 (1H, s, NH-3), 10.53 (1H, s, NH-1), 7.25–7.35 (10H, m, Ph), 4.44 (4H, s, H-4',4'″), 3.43 (4H, d, J = 5.16, H-3',3'″), 2.42 (2H, d, J = 7.11, H-1'), 2.27 (1H, m, H-2'), 1.71 (3H, s, CH₃-5). ¹³C-NMR: 164.74 (C-4), 150.82 (C-2), 149.18 (C-6), 138.43 (C-Phquat), 127.30–128.15 (CH-Ph), 105.16 (C-5), 72.07 (C-4',4'″), 69.34 (C-3',3'″), 37.95 (C-2'), 29.48 (C-1'), 9.61 (CH₃-5). Positive ESI-MS 395 (M+H). Anal. Calcd for C₂₃H₂₆N₂O₄: C 70.03, H 6.64. Found: C 69.96, H 6.67.

3.2.2. 6-[(3-Benzyl oxy-2-benzyloxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (4), 6-[(3-benzyloxy-2-benzyloxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (5) and 6-[(3-benzyloxy-2-benzyloxymethyl)propyl]-3-methoxymethyl-5-methylpyrimidin-2,4-dione (6)

Method A: To a solution of dry 3 (33.7 mg, 0.085 mmol) in anhydrous CH₃CN (2 mL) TMSCl (0.03 mL, 0.256 mmol) was added and reaction mixture was refluxed for 2 h. Then reaction mixture was cooled to r.t. and MOMCl (0.017 mL, 0.214 mmol) and (iPr)₂EtN (0.037 mL, 0.214 mmol) were added. Stirring at 50 °C was continued for 6 h. Solvent was evaporated to dryness and residue was purified by column chromatography (CH₂Cl₂-MeOH = 30:1) to give oily products 4 (9.2 mg, 22.4%), 5 (5 mg, 13.4%) and 6 (4.1 mg, 11%).

Method B: A solution of dry 3 (200 mg, 0.507 mmol) and (NH₄)₂SO₄ (13.4 mg, 0.1 mmol) in HMDS (3 mL, 14.4 mmol) was refluxed for 1 h under Ar atmosphere. Reaction mixture was cooled to r.t. and MOMCl (0.12 mL, 1.521 mmol) was added. Stirring was continued at r.t. overnight and
solvent was evaporated. The residue was purified by column chromatography (CH$_2$Cl$_2$-MeOH = 30:1) to afford 4 (7.1 mg, 2.9%) and 5 (47.5 mg, 21.4%).

Method C: To a solution of dry 3 (644.8 mg, 1.635 mmol) and K$_2$CO$_3$ (1.13 g, 8.177 mmol) in anhydrous DMF (6 mL) at −15 °C MOMCl (0.5 mL, 6.54 mmol) was added. Reaction mixture was stirred at r.t. overnight. Solvent was evaporated in vacuo and residue was purified by column chromatography (CH$_2$Cl$_2$-MeOH = 30:1) to yield 4 (224.8 mg, 28.5%), 5 (86.8 mg, 12.1%) and 6 (110.2 mg, 15.4%).

6-[(3-Benzyloxy-2-benzyloxymethyl)propyl]-1,3-dimethoxymethyl-5-methyl-pyrimidin-2,4-dione (4).

1H-NMR: 7.29–7.32 (10H, m, Ph), 5.25 (2H, s, CH$_2$-N1), 5.20 (2H, s, CH$_2$-N3), 4.46 (4H, s, H-4',4''), 3.38 (4H, m, H-3',3''), 3.26 (3H, s, OCH$_3$), 3.21 (3H, s, OCH$_3$), 2.78 (2H, d, $J = 6.72$ Hz, H-1'), 2.27 (1H, m, H-2'), 1.87 (3H, s, CH$_3$-5). 13C-NMR: 165.74 (C-4), 152.35 (C-2), 150.08 (C-6), 138.69 (C-Phquat), 127.89–128.71 (CH-Ph), 108.86 (C-5), 74.81 (CH$_2$-N1), 73.99 (CH$_2$-N3), 72.97 (C-4',4''), 70.10 (C-3',3''), 57.53 (OCH$_3$-N1), 56.38 (OCH$_3$-N3), 38.33 (C-2'), 12.05 (CH$_3$-5).

Positive ESI-MS 483 (M+H). Anal. Calcd for C$_{27}$H$_{34}$N$_2$O$_6$: C 67.20, H 7.10. Found: C 67.26, H 7.07.

6-[(3-Benzyloxy-2-benzyloxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (5).

1H-NMR: 11.34 (1H, s, NH-3), 7.2–7.4 (10H, m, Ph), 5.19 (2H, s, CH$_2$-N1), 4.46 (4H, s, H-4',4''), 3.45 (4H, m, H-3',3''), 3.19 (3H, s, OCH$_3$), 2.75 (2H, d, $J = 7.1$ Hz, H-1'), 2.20 (1H, m, H-2'), 1.80 (3H, s, CH$_3$-5). 13C-NMR: 164.07 (C-4), 152.04 (C-2), 150.31 (C-6), 138.86 (C-Phquat), 127.91–128.71 (CH-Ph), 109.52 (C-5), 73.73 (CH$_2$-N1), 72.67 (C-4',4''), 70.05 (C-3',3''), 57.22 (OCH$_3$), 39.47 (C-2'), 29.47 (C-1'), 11.41 (CH$_3$-5). Positive ESI-MS 439 (M+H). Anal. Calcd for C$_{25}$H$_{30}$N$_2$O$_5$: C 68.47, H 6.90. Found: C 68.54, H 6.88.

6-[(3-Benzyloxy-2-benzyloxymethyl)propyl]-3-methoxymethyl-5-methylpyrimidin-2,4-dione (6).

1H-NMR: 10.88 (1H, s, NH-1), 7.2–7.4 (10H, m, Ph), 5.13 (2H, s, CH$_2$-N3), 4.44 (4H, s, H-4',4''), 3.44 (4H, d, $J = 5.4$ Hz, H-3',3''), 3.24 (3H, s, OCH$_3$), 2.46 (2H, d, $J = 7.6$ Hz, H-1'), 2.29 (1H, m, H-2'), 1.77 (3H, s, CH$_3$-5). 13C-NMR: 163.69 (C-4), 151.38 (C-2), 149.35 (C-6), 138.72 (C-Phquat), 127.91–128.72 (CH-Ph), 109.17 (C-5), 72.54 (CH$_2$-N3), 69.84 (C-4',4''), 68.88 (C-3',3''), 56.20 (OCH$_3$), 38.58 (C-2'), 27.54 (C-1'), 10.79 (CH$_3$-5). Positive ESI-MS 439 (M+H). Anal. Calcd for C$_{25}$H$_{30}$N$_2$O$_5$: C 68.47, H 6.90. Found: C 68.41, H 6.93.

3.2.3. 6-[(3-Hydroxy-2-hydroxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (7), 6-[(3-hydroxy-2-hydroxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (8) and 6-[(3-hydroxy-2-hydroxymethyl)propyl]-3-methoxymethyl-5-methylpyrimidin-2,4-dione (9)

A solution of dry 4 (122.3 mg, 0.253 mmol) in anhydrous CH$_2$Cl$_2$ (6.4 mL) was cooled to −78 °C with exclusion of moisture and BCl$_3$ (1 mL, 1M in CH$_2$Cl$_2$) was added under Ar atmosphere. The reaction mixture was stirred at −70 °C for 1 h and quenched by the addition of CH$_2$Cl$_2$/MeOH solution (1:1, 10 mL) and evaporated to dryness. Purification by column chromatography (CH$_2$Cl$_2$-MeOH = 10:1) gave 7 as an oil (25.7 mg, 33.4%) and 8 and 9 as a mixture of N-1 and N-3 regioisomers in a 3:1 ratio (16.2 mg, 24.8%).
6-[(3-Hydroxy-2-hydroxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (7). 1H-NMR: 5.34 (2H, s, CH$_2$N1), 5.21 (2H, s, CH$_2$N3), 4.67 (2H, t, $J = 4.9$ Hz, OH), 3.40 (4H, m, H-3',3''), 3.27 (6H, s, 2 \times OCH$_3$), 2.70 (2H, d, $J = 7.1$ Hz, H-1'), 1.90 (3H, s, CH$_3$-5), 1.79 (1H, m, H-2'). 13C NMR: 164.14 (C-4), 152.45 (C-2), 151.03 (C-6), 108.59 (C-5), 74.65 (CH$_2$N1), 72.43 (CH$_2$N3), 61.24 (C-3',3''), 57.40 (OCH$_3$-N1), 56.40 (OCH$_3$-N3), 43.91 (C-2'), 27.03 (C-1'), 12.15 (CH$_3$-5). Positive ESI-MS 303 (M+H). Anal. Calcd for C$_{13}$H$_{22}$N$_2$O$_6$: C 51.65, H 7.33. Found: C 51.70, H 7.34.

6-[(3-Hydroxy-2-hydroxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (8). 1H-NMR: 11.28 (1H, s, NH-3), 5.27 (2H, s, CH$_2$N1), 4.62 (2H, t, $J = 4.89$ Hz, OH), 3.38 (4H, m, H-3',3''), 3.17 (3H, s, OCH$_3$), 2.67 (2H, d, $J = 6.9$ Hz, H-1'), 2.46 (1H, m, H-2'), 1.84 (3H, s, CH$_3$-5). 13C-NMR: 163.74 (C-4), 152.13 (C-2), 151.38 (C-6), 109.21 (C-5), 73.59 (CH$_2$N1), 61.24 (C-3',3''), 55.79 (OCH$_3$), 43.93 (C-2'), 26.93 (C-1'), 11.50 (CH$_3$-5).

6-[(3-Hydroxy-2-hydroxymethyl)propyl]-3-methoxymethyl-5-methylpyrimidin-2,4-dione (9). 1H-NMR: 10.78 (1H, s, NH-1), 5.15 (2H, s, CH$_2$N3), 4.51 (2H, t, $J = 5.06$ Hz, OH), 3.26 (3H, s, OCH$_3$), 2.37 (2H, d, $J = 6.9$ Hz, H-1'), 2.27 (1H, m, H-2'), 1.80 (3H, s, CH$_3$-5). 13C-NMR: 163.10 (C-4), 151.43 (C-2), 150.96 (C-6), 109.0 (C-5), 71.26 (CH$_2$N3), 61.13 (C-3',3''), 56.84 (OCH$_3$), 43.10 (C-2'), 26.41 (C-1'), 10.82 (CH$_3$-5).

3.2.4. 6-[2,3-Bis(4-methoxytriphenylmethoxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (10), 6-[3-hydoxy-2-(4-methoxytriphenylmethoxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (11) and 6-[3-hydroxy-2-(4-methoxytriphenylmethoxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (12)

A solution of 7 (23.7 mg, 0.078 mmol) and DMAP (0.2 mg, 0.0016 mmol) in DMF (0.5 mL) and Et$_3$N (0.04 mL) was cooled to 0 °C and after 10 minutes MTrCl (60.52 mg, 0.196 mmol) was added. Obtained mixture was additionally stirred at r.t. overnight and solvent was evaporated. Further purification by column chromatography (initial eluent CH$_2$Cl$_2$-CH$_3$OH = 50:1, then CH$_2$Cl$_2$-CH$_3$OH = 10:1) afforded gray crystals of 10 (32 mg, 46.4%, m.p. = 101–102 °C), yellow powder of 11 (16.9 mg, 37.5%, m.p. = 57–59 °C) and white powder of 12 (2.3 mg, 5.5%, m.p. = 94–96 °C).

6-[2,3-Bis(4-methoxytriphenylmethoxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (10). 1H-NMR: 7.2−7.4 (20H, m, Ph), 7.14 (4H, m, Ph), 6.8 (4H, m, Ph), 5.17 (2H, s, CH$_2$N1), 5.17 (2H, s, CH$_2$N3), 3.73 (6H, s, OCH$_3$), 3.20 (6H, s, OCH$_3$), 3.19 (2H, m, H-3''), 3.00 (2H, m, H-3''), 2.67 (2H, m, H-1'), 2.22 (1H, m, H-2'), 1.60 (3H, s, CH$_3$-5). 13C-NMR: 162.43 (C-4), 158.63 (C-Phquat-12'), 152.25 (C-2), 149.74 (C-6), 144.63 (C-Phquat-5',5''), 135.35 (C-Phquat-9'), 130.37 (CH-Ph-10',10''), 128.28−130.38 (CH-Ph-6'-7''), 127.31 (CH-Ph-8',8''), 113.57 (CH-Ph-11',11''), 108.75 (C-5), 86.49 (C-4',4''), 73.75 (CH$_2$N1), 72.32 (CH$_2$N3), 63.96 (C-3',3''), 57.32 (OCH$_3$-N1), 56.70 (OCH$_3$-N3), 55.79 (OCH$_3$-MTr), 38.65 (C-2'), 30.60 (C-1'), 12.22 (CH$_3$-5). Positive ESI-MS 847 (M+H). Anal. Calcd for C$_{53}$H$_{54}$N$_2$O$_6$: C 75.16, H 6.43. Found: C 75.04, H 6.46.
6-[3-Hydroxy-2-(4-methoxytriphenylmethoxy)methyl]propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (11). ¹H-NMR: 7.2−7.4 (10H, m, Ph), 7.18 (2H, m, Ph), 6.87 (2H, m, Ph), 5.24 (2H, s, CH₂-N1), 5.20 (1H, m, CH₂-N3), 5.18 (1H, m, CH₂-N3), 4.77 (1H, t, J = 4.5 Hz, OH), 3.74 (3H, s, OCH₃), 3.46 (2H, m, H-3''-OH), 3.24 (3H, s, OCH₃), 3.23 (3H, s, OCH₃), 2.92 (2H, m, H-3'-OMTr), 2.69 (2H, m, H-1'), 2.03 (1H, m, H-2'), 1.74 (3H, s, CH₃-5). ¹³C-NMR: 162.59 (C-4), 158.61 (C-Ph quat-12'), 152.36 (C-2), 150.46 (C-6), 144.87, 144.68 (C-Ph quat-5',5''), 135.49 (C-Ph quat-9'), 130.37 (CH-Ph-10',10''), 128.27−128.48 (CH-Ph-6'-7''), 127.30 (CH-Ph-8',8''), 113.59 (CH-Ph-11',11''), 108.65 (C-5), 86.50 (C-4',4''), 73.71 (CH₂-N1), 72.14 (CH₂-N3), 64.24, 61.60 (C-3',3''), 57.39 (OCH₃-N1), 56.56 (OCH₃-N3), 55.49 (OCH₃-MTr), 42.03 (C-2'), 27.98 (C-1'), 12.18 (CH₃-5). Positive ESI-MS 575 (M+H). Anal. Calcd for C₃₃H₃₈N₂O₇: C 68.97, H 6.67. Found: C 69.05, H 6.70.

6-[3-Hydroxy-2-(4-methoxytriphenylmethoxy)methyl]propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (12). ¹H-NMR: 11.22 (1H, s, NH-3), 7.2−7.4 (10H, m, Ph), 7.20 (2H, m, Ph), 6.87 (2H, m, Ph), 5.34 (2H, s, CH₂-N1), 3.84 (1H, m, H-3''-OH), 3.74 (3H, s, OCH₃), 3.68 (1H, m, H-3''-OH), 3.22 (3H, s, OCH₃), 3.03 (2H, m, H-3'-OMTr), 2.73 (2H, m, H-1'), 2.18 (1H, m, H-2'), 1.74 (3H, s, CH₃-5). ¹³C-NMR: 165.08 (C-4), 158.64 (C-Ph quat-12'), 150.83 (C-2), 149.20 (C-6), 144.92 (C-Ph quat-5',5''), 135.40 (C-Ph quat-9'), 130.36 (CH-Ph-10',10''), 128.30−128.36 (CH-Ph-6'-7''), 127.32 (CH-Ph-8',8''), 113.64 (CH-Ph-11',11''), 109.47 (C-5), 86.44 (C-4'), 73.77 (CH₂-N1), 68.68 (C-3',3''), 59.52 (OCH₃-MTr), 44.02 (C-2'), 28.85 (C-1'), 11.17 (CH₃-5). Positive ESI-MS 531 (M+H). Anal. Calcd for C₃₁H₃₄N₂O₆: C 70.17, H 6.46. Found: C 70.25, H 6.44.

3.2.5. 6-[3-(3-Fluoro-2-hydroxymethyl)propyl]-1,3-dimethoxymethyl-5-methylpyrimidin-2,4-dione (13). ¹H-NMR: 5.28 (2H, s, CH₂-N1), 5.22 (2H, s, CH₂-N3), 4.92 (1H, t, J = 4.9 Hz, OH), 4.45 (2H, ddd, J = 47.6, 4.9, 1.9 Hz, CH₂F-3''), 3.45 (2H, m, H-3''-OH), 3.28 (6H, s, OCH₃), 2.72 (2H, m, H-1'), 2.10 (1H, m, H-2'), 1.89 (3H, s, CH₃-5). ¹⁹F-NMR: 225.79 (td, J = 47.9, 24.8 Hz). ¹³C-NMR: 162.73 (C-4), 152.45 (C-2), 149.63 (C-6), 109.06 (C-5), 83.67 (d, J = 165.29, CH₂F-3''), 74.88 (CH₂-N1), 72.50 (CH₂-N3), 60.05 (d, J = 5.94 Hz, C-3'), 57.42 (OCH₃-N1), 56.47 (OCH₃-N3), 41.66 (d, J = 17.74 Hz, C-2'), 26.32 (d, J = 4.96 Hz, C-1'), 12.10 (CH₃-5). Positive ESI-MS 305 (M+H). Anal. Calcd for C₁₃H₂₁FN₂O₅: C 51.31, H 6.96. Found: C 51.27, H 6.98.

A solution of dry 10 (30 mg, 0.037 mmol) in anhydrous CH₂Cl₂ (8 mL) was cooled to −78 °C and stirred for 15 min under Ar atmosphere. DAST (0.05 mL) was added dropwise and reaction was kept at −78 °C for additional 15 min after which cooling bath was removed. After 5 h of stirring at r.t., saturated aqueous solution of NaHCO₃ (10 mL) was added and reaction was partitioned. Organic layer was separated, dried over MgSO₄ and evaporated to dryness. Raw product was then dissolved in CH₃OH (0.5 mL) and 5% HCl (0.7 mL) and refluxed for 15 min. Solvent was evaporated and residue was purified by column chromatography (CH₂Cl₂-CH₃OH = 30:1) to afford 13 (1.2 mg, 10.7%), 7 (3.6 mg, 32.2%) and 14 (3.1 mg, 31%).
4-Hydroxymethyl-8-methoxymethyl-6-methyl-4,5-dihydro-pyrimido[1,6-c][1,3]oxazepine-7,9-dione (14).
1H-NMR: 5.58 (1H, d, $J = 12.0$ Hz, H-4'), 5.38 (1H, d, $J = 12.0$ Hz, H-4'), 5.20 (2H, s, CH$_2$-N3), 3.87 (1H, dd, $J = 11.8$, 3.5 Hz, H-3''), 3.68 (1H, dd, $J = 11.8$, 7.4 Hz, H-3''), 3.31 (2H, m, H-3'-OH), 3.26 (3H, s, OCH$_3$), 3.06 (1H, d, $J = 15.1$ Hz, H-1'), 2.92 (1H, dd, $J = 15.1$, 9.1 Hz, H-1'), 1.93 (3H, s, CH$_3$-5), 1.91 (1H, m, H-2').
13C-NMR: 162.92 (C-4), 151.02 (C-2), 149.51 (C-6), 106.87 (C-5), 73.52 (CH$_2$-N1), 72.43 (CH$_2$-N3), 61.45 (CH$_2$-O), 57.38 (CH$_2$-OH), 56.32 (OCH$_3$), 33.77 (CH), 30.59 (C-1'), 11.33 (CH$_3$-5). Positive ESI-MS 271 (M+H). Anal. Calcd for C$_{12}$H$_{18}$N$_2$O$_5$: C 53.33, H 6.71. Found: C 53.29, H 6.68.

3.2.6. 6-[[3-Hydroxy-2-hydroxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (8) and 6-[[3-hydroxy-2-hydroxymethyl)propyl]-5-methylpyrimidin-2,4-dione (15)

Method A: A solution of compound 5 (43.7 mg, 0.1 mmol) in anhydrous CH$_2$Cl$_2$ (2.3 mL) was cooled to $-78 \, ^\circ$C with exclusion of moisture and BCl$_3$ (0.4 mL, 1M in CH$_2$Cl$_2$) was added under Ar atmosphere. The reaction mixture was stirred at $-70 \, ^\circ$C for 4 h after that was quenched by the addition of CH$_2$Cl$_2$-MeOH solution (1:1, 3 mL) and evaporated to dryness. After column chromatography (CH$_2$Cl$_2$-MeOH = 10:1) compound 8 as an oil (4.8 mg, 18.6%) and 15 as a white crystals (12.8 mg, 60%, m.p. = 117–119 °C) were isolated.

Method B: A solution of compound 5 (41.1 mg, 0.09 mmol) in anhydrous CH$_2$Cl$_2$ (2.2 mL) was cooled to $-78 \, ^\circ$C with exclusion of moisture and BCl$_3$ (0.38 mL, 1M in CH$_2$Cl$_2$) was added under Ar atmosphere. The reaction mixture was stirred at $-70 \, ^\circ$C for 2 h after that was quenched by the addition of CH$_2$Cl$_2$-MeOH solution (1:1, 3 mL) and evaporated to dryness. After column chromatography (CH$_2$Cl$_2$-MeOH = 10:1) compound 8 as an oil (7.7 mg, 31.7%) was isolated.

6-[[3-Hydroxy-2-hydroxymethyl)propyl]-5-methylpyrimidin-2,4-dione (15).
1H-NMR: 11.03 (1H, s, NH-3), 10.54 (1H, s, NH-1), 4.64 (2H, bs, OH), 3.53 (4H, m, H-3',3''), 2.75 (2H, d, $J = 7.2$ Hz, H-1'), 1.98 (1H, m, H-2'), 1.89 (3H, s, CH$_3$-5).
13C-NMR: 164.80 (C-4), 150.76 (C-2), 150.14 (C-6), 104.79 (C-5), 60.71 (C-3',3''), 42.55 (C-2'), 29.02 (C-1'), 9.62 (CH$_3$-5). Positive ESI-MS 215 (M+H). Anal. Calcd for C$_9$H$_{14}$N$_2$O$_4$: C 50.46, H 6.59. Found: C 50.51, H 6.61.

3.2.7. 6-[[3-Hydroxy-2-(4-methoxytriphenylmethoxymethyl)propyl]-1-methoxymethyl-5-methylpyrimidin-2,4-dione (12)

A solution of 8 (5.2 mg, 0.02 mmol) and DMAP (0.05 mg, 0.43 µmol) in DMF (0.5 mL) and Et$_3$N (0.01 mL) was cooled to 0 °C and after 10 minutes MTrCl (16.8 mg, 0.054 mmol) was added. The obtained mixture was additionally stirred at r.t. overnight and the solvent was evaporated. Further purification by column chromatography (initial eluent CH$_2$Cl$_2$-CH$_3$OH = 50:1, then CH$_2$Cl$_2$-CH$_3$OH = 10:1) afforded 12 as a white powder (3.3 mg, 30.8%, m.p. = 94–96 °C).
A solution of 15 (9.8 mg, 0.046 mmol) and DMAP (0.12 mg, 0.001 mmol) in DMF (0.5 mL) and Et$_3$N (0.02 mL) was cooled to 0 °C and after 10 min MTrCl (34.34 mg, 0.114 mmol) was added. The obtained mixture was additionally stirred at room temperature for 2 h and the solvent was then evaporated. Further purification by column chromatography (initial eluent CH$_2$Cl$_2$-CH$_3$OH = 50:1, then CH$_2$Cl$_2$-CH$_3$OH = 10:1) afforded a yellow powder of 16 (5.9 mg, 26.12%, m.p. = 136–138 °C) and white crystals of 17 (2.1 mg, 9.4%, m.p. = 104–106 °C).

6-[2,3-Bis(4-methoxytriphenylmethoxymethyl)propyl]-5-methylpyrimidin-2,4-dione (16)

1H-NMR: 10.84 (1H, s, NH-3), 10.48 (1H, s, NH-1), 7.2–7.4 (20H, m, Ph), 7.15 (4H, m, Ph), 6.83 (4H, m, Ph), 3.73 (6H, s, OCH$_3$), 3.12 (2H, m, H-3’), 2.99 (2H, m, H-3”), 2.52 (2H, m, H-1’), 2.31 (1H, m, H-2’), 1.50 (3H, s, CH$_3$-5). 13C-NMR: 165.07 (C-4), 158.57 (CH-Ph-12’), 151.24 (C-2), 149.47 (C-6), 144.86 (CH-Ph-5’,5”), 135.54 (CH-Ph-9’), 130.37 (CH-Ph-10’,10”), 128.21–130.32 (CH-Ph-6’-7”), 127.24 (CH-Ph-8’,8”), 113.52 (CH-Ph-11’,11”), 105.35 (C-5), 86.20 (C-4’,4”), 63.63 (C-3’,3”), 55.48 (OCH$_3$), 30.77 (C-1’), 30.06 (C-2’), 10.15 (CH$_3$-5). Positive ESI-MS 759 (M+H). Anal. Calcd for C$_{49}$H$_{46}$N$_2$O$_6$: C 77.55, H 6.11. Found: C 77.64, H 6.07.

1H-NMR: 10.85 (1H, s, NH-3), 10.43 (1H, s, NH-1), 7.22–7.34 (10H, m, Ph), 7.17 (2H, d, J = 8.97 Hz, Ph), 6.85 (2H, d, J = 8.85 Hz, Ph), 4.55 (1H, t, J = 4.67 Hz, OH), 3.72 (3H, s, OCH$_3$), 3.42 (2H, t, J = 4.85 Hz, H-3”), 3.36 (2H, m, H-3”), 2.97 (2H, m, H-1’), 2.32 (1H, m, H-2’), 1.59 (3H, s, CH$_3$-5). 13C-NMR: 13C-NMR: 164-98 (C-4), 158.51 (CH-Ph-12’), 150.78 (C-2), 149.52 (C-6), 144.85 (CH-Ph-5’,5”), 135.57 (CH-Ph-9’), 130.34 (CH-Ph-10’,10”), 128.22–130.36 (CH-Ph-6’-7”), 127.27 (CH-Ph-8’,8”), 113.48 (CH-Ph-11’,11”), 106.81 (C-5), 85.73 (C-4”), 64.09, 63.65 (C-3’,3”), 55.39 (OCH$_3$), 31.14 (C-2’), 27.07 (C-1’), 10.99 (CH$_3$-5). Positive ESI-MS 487 (M+H). Anal. Calcd for C$_{29}$H$_{30}$N$_2$O$_5$: C 71.59, H 6.21. Found: C 71.51, H 6.24.

4. Conclusions

In summary, we have adopted simple and efficient methods for the protection and deprotection of the carbonyl and nitrogen moieties in a pyrimidine ring, as well as hydroxyl groups in a C-6 isobutyl side-chain under mild conditions in moderate to excellent yields. The methoxymethyl (MOM) moiety as protecting group was introduced using different synthetic methods. Two methods performed by silylation of uracil and in situ reaction of O-persilylated uracil with MOMCl gave N-1- and/or N-3-MOM pyrimidine derivatives 4–6. A synthetic approach using activated an N-anionic pyrimidine derivative afforded desired N,N-1,3-diMOM and N-1-MOM pyrimidines 4 and 5 in good yield. N-1 and N-3 regioisomers were assigned on the basis of heteronuclear 1H–13C correlation signals in 2D HMBC spectra and homonuclear 1H–1H correlations in NOESY spectra. Thus, NOE interactions between the methylene protons of a MOM group and H-1’ as well as H-2’ in 5 revealed that the MOM group is bound to N-1 of the pyrimidine ring. The removal of benzyl protecting groups in 4 and 5 was
accomplished using boron trichloride to give 6-(1,3-dihydroxyisobutyl)-N-MOM pyrimidines 7 and 8 as a major products. Pyrimidine derivatives 7, 8 and 15 with free hydroxyl functionalities were subsequently converted to ditritylated (compounds 10 and 16) and monotritylated (compounds 11, 12 and 17) derivatives. It is interesting to note that debenzylation of 4 and 5 and tritylation of 7 was accompanied with removal of the N-MOM protecting group. For preparation of precursor for 18F radiolabelling that contains appropriate leaving groups, introduction of mesylate, instead of tosylate, as less bulky group is foreseen.

Acknowledgements

Support of this study by the Ministry of Science, Education and Sports of the Republic of Croatia (project #125-0982464-2925) is gratefully acknowledged.

References and Notes

1. Hurst, D.T. Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines; John Wiley and Sons: New York, NY, USA, 1980.
2. Choudhury, A.; Chen, H.; Nilsen, C.N.; Sorgi, K.L. Microwave-assisted synthesis of pyrazolo[3,4-d]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent-free conditions. Tetrahedron Lett. 2008, 49, 102-105.
3. Braendvang, M.; Gundersen, L.L. Efficient and regioselective N-1 alkylation of 4-chloropyrazolo[3,4-d]pyrimidine. Tetrahedron Lett. 2007, 48, 3057-3059.
4. Peng, Z.-H.; Journet, M.; Humphrey, G. A highly regioselective amination of 6-aryl-2,4-dichloropyrimidine. Org. Lett. 2006, 18, 395-398.
5. Girreser, U.; Heber, D.; Schütt, M. Synthesis of 6-substituted 7-aryl-5,6-dihydropyrido[2,3-d]pyrimidine(1H,3H)-2,4-diones using the Vilsmeier reaction. Tetrahedron 2004, 60, 11511-11517.
6. Mishra, R.; Tomar, I. Pyrimidine: the molecule of diverse biological and medicinal importance. Int. J. Pharm. Sci. Res. 2011, 2, 758-771.
7. Rani, U.; Oturak, H.; Sudha, S.; Sundaraganesan, N. Molecular structure, harmonic and anharmonic frequency calculations of 2,4-dichloropyrimidine and 4,6-dichloropyrimidine by HF and density functional methods. Spectrochim. Acta A 2011, 78, 1467-1475.
8. Boncel, S.; Gondela, A.; Walczak, K. Uracil as a target for nucleophilic and electrophilic reagents. Curr. Org. Synth. 2008, 5, 365-396.
9. Larsen, J.S.; Pedersen, E.B.; Nielsen, C. Synthesis of N-1-alkylated 6-benzyluracil-5-carboxylic esters as potential non-nucleoside reverse transcriptase inhibitors. Synthesis 2004, 11, 1874-1878.
10. Romero, D.L.; Olmsted, R.A.; Poel, T.J.; Morge, R.A.; Biles, C.; Keiser, B.J.; Kopta, L.A.; Friis, J.M.; Hosley, J.D. Targeting delavirdine/atevirdine resistant HIV-1: Identification of (alkylamino)piperidine-containing bis(heteroaryl)piperazines as broad spectrum HIV-1 reverse transcriptase inhibitors. J. Med. Chem. 1996, 39, 3769-3789.
11. Sudbeck, E.A.; Mao, C.; Vig, R.; Venkatachalam, T.K.; Tuel-Ahlgren, L.; Uckun, F.M. Structure-based design of novel dihydroalkoxybenzoylopyrimidine derivatives as potent nonnucleoside inhibitors of the human immunodeficiency virus reverse transcriptase. Antimicrob. Agents Chemother. 1998, 4, 3225-3233.
12. Loksha, Y.M.; Globisch, D.; Loddo, R.; Collu, G.; La Colla, P.; Pedersen, E.B. A novel synthetic route for the anti-HIV drug MC-1220 and its analogues. *ChemMedChem*** 2010, **5**, 1847-1849.

13. Medina-Franco, J.L.; Martínez-Mayorga, K.; Juárez-Gordiano, C.; Castillo, R. Pyridin-2(1H)-ones: A promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. *ChemMedChem*** 2007, **2**, 1141-1147.

14. Dolle, V.; Aubertin, A.M.; Ludwig, O.; Nguyen, C.H.; Bisagni, E.; Legraverend, M. Synthesis of new non-nucleoside inhibitors of HIV-1. *Bioorg. Med. Chem. Lett.* **1996**, **6**, 173-178.

15. Kulikowski, T. Structure-activity relationships and conformational features of antiviral pyrimidine and purine nucleoside analogues. *Pharm. World Sci.* **1994**, **16**, 127-138.

16. Cheng, Y.C.; Grill, S.P.; Dutschman, G.E.; Nakayama, K.; Bastow, K.F. Metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, a new anti-herpes virus compound, in herpes simplex virus-infected cells. *J. Biol. Chem.* **1983**, **258**, 12460-12464.

17. Germershausen, J.; Bostedor, R.; Field, A.K.; Perry, H.; Liou, R.; Bull, H.; Tolman, R.L.; Karkas, J.D. A comparison of the antiviral agents 2’-nor-2’-deoxyguanosine and acyclovir: Uptake and phosphorylation in tissue culture and kinetics of in vitro inhibition of viral and cellular DNA polymerases by their respective triphosphates. *Biochem. Biophys. Res. Commun.* **1983**, **121**, 360-367.

18. Martin, J.C.; McGee, D.P.C.; Jeffrey, G.A.; Hobbs, D.W.; Smee, D.F.; Matthews, T.R.; Verheyden, J.P. Synthesis and anti-herpes-virus activity of acyclic 2’-deoxyguanosine analogues related to 9’-[1,3-dihydroxy-2-propoxymethyl]guanine. *J. Med. Chem.* **1986**, **29**, 1384-1389.

19. Degrève, B.; Andrei, G.; Izquierdo, M.; Piette, J.; Morin, K.; Knaus, E.E.; Wiebe, L.I.; Basrah, I.; Walker, R.T.; De Celrcq, E.; Balzarini, J. Varicella-zoster virus thymidine kinase gene and antiviral pyrimidine nucleoside analogues in a combined gene/chemotherapy treatment for cancer. *Gene Ther.* **1997**, **4**, 1107-1114.

20. Grignet-Debrus, C.; Calberg-Bacq, C.-M. Potential of Varicella zoster virus thymidine kinase as a suicide gene in breast cancer cells. *Gene Ther.* **1997**, **4**, 560-569.

21. Culver, K.W.; Van Gilder, J.; Link, C.J.; Carlstrom, T.; Buroker, T.; Yuh, W.; Koch, K.; Schabold, K.; Doombas, S.; Wetjen, B. Gene therapy for the treatment of malignant brain tumors with in vivo tumor transduction with the herpes simplex thymidine kinase gene/ganciclovir system. *Hum. Gene Ther.* **1994**, **5**, 343-379.

22. Alauddin, M.M.; Conti, P.S. Synthesis and preliminary evaluation of 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): A new potential imaging agent for viral infection and gene therapy using PET. *Nucl. Med. Biol.* **1998**, **25**, 175-180.

23. de Vries, E.F.J.; van Waarde, A.; Harmsen, M.C.; Mulder, N.H.; Vaalburg, W.; Hospers, G.A.P. ([11]C)FMAU and ([18]F)FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections. *Nucl. Med. Biol.* **2000**, **27**, 113-119.

24. Hospers, G.A.K.; Calogero, A.; van Waarde, A.; Doze, P.; Vaalburg, W.; Mulder, N.H.; de Vries, E.F. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography. *Cancer Res.* **2000**, **60**, 1488-1491.

25. MacLaren, D.C.; Toyokuni, T.; Cherry, S.R.; Barrio, J.R.; Phelps, M.E.; Herschman, H.R.; Gambhir, S.S. PET imaging of transgene expression. *Biol. Psychiat.* **2000**, **48**, 337-348.
26. Baba, M.; De Clercq, E.; Tanaka, H.; Ubasawa, M.; Takashima, H.; Sekiya, K.; Nitta, I.; Umezu, K.; Walker, R.T.; Mori, S. Highly potent and selective inhibition of human immunodeficiency virus type 1 by a novel series of 6-substituted acyclouridine derivatives. Mol. Pharmacol. 1991, 39, 805-810.

27. Balzarini, J.; Karlsson, A.; De Clercq, E. Human immunodeficiency virus type 1 drug-resistance patterns with different 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine derivatives. Mol. Pharmacol. 1993, 44, 694-701.

28. Mai, A.; Artico, M.; Sbardella, G.; Quartarone, S.; Massa, S.; Loi, A.G.; De Montis, A.; Scintu, F.; Putzolu, M.; La Colla, P. Dihydro(alkylthio) (naphthylmethyl)oxopyrimidines: Novel non-nucleoside reverse transcriptase inhibitors of the S-DABO series. J. Med. Chem. 1997, 40, 1447-1454.

29. Kundu, N.G.; Das, P.; Balzarini, J.; De Clercq, E. Palladium-catalyzed synthesis of [E]-6-(2-acylviny)uracils and [E]-6-(2-acylvinyl)-1-[(2-hydroxyethoxy)methyl]uracils—their antiviral and cytotoxic activities. Bioorg. Med. Chem. 2017, 5, 2011-2018.

30. Gazivoda Kraljević, T.; Krištafor, S.; Šuman, L.; Kralj, M.; Ametamey, S.M.; Cetina, M.; Raić-Malić, S. Synthesis, X-ray crystal structure study and antitumoral evaluations of 5,6-disubstituted pyrimidine derivatives. Bioorg. Med. Chem. 2010, 18, 2704-2712.

31. Prekupec, S.; Makuc, D.; Plavec, J.; Šuman, L.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M.; Raić-Malić, S. Novel C-6 fluorinated acyclic side chain pyrimidine derivatives: Synthesis, H-1 and C-13 NMR conformational studies, and antiviral and cytostatic evaluations. J. Med. Chem. 2007, 50, 3037-3045.

32. Krištafor, S.; Gazivoda Kraljević, T.; Makuc, D.; Plavec, J.; Šuman, L.; Kralj, M.; Raić-Malić, S. Synthesis, structural studies and antitumoral evaluation of C-6 alkyl and alkenyl side chain pyrimidine derivatives. Molecules 2009, 14, 4866-4879.

33. Prekupec, S.; Makuc, D.; Plavec, J.; Kraljević, S.; Kralj, M.; Pavelić, K.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; Raić-Malić, S.; Mintas, M. Antiviral and cytostatic evaluation of the novel 6-acyclic chain substituted thymine derivatives. Antivir. Chem. Chemother. 2005, 16, 327-338.

34. Raić-Malić, S.; Johayem, A.; Ametamey, S.M.; Batinac, S.; De Clercq, E.; Folkers, G.; Scapozza, L. Synthesis, 18F-radiolabelling and biological evaluations of C-6 alkylated pyrimidine nucleoside analogues. Nucleos. Nucleot. Nucleic Acids 2004, 23, 1707-1721.

35. Johayem, A.; Raić-Malić, S.; Lazzati, K.; Schubiger, P.A.; Scapozza, L.; Ametamey, S.M. Synthesis and characterization of a C(6) nucleoside analogue for the in vivo imaging of the gene expression of Herpes Simplex Virus type 1 Thymidine Kinase (HSV1 TK). Chem. Biodiv. 2006, 3, 274-283.

36. Raić-Malić, S.; Gazivoda, T.; Krištafor, S.; Ametamey, S.M. New 6-substituted pyrimidine derivatives. WO 2011/036505, 31 May 2011.

37. Martic, M.; Pernot, L.; Westermaier, Y.; Perozzo, R.; Gazivoda Kraljevic, T.; Krištafor, S.; Raić-Malic, S.; Scapozza, L.; Ametamey, S. Synthesis, crystal structure and in vitro biological evaluation of C-6 pyrimidine derivatives: New lead structures for monitoring gene expression in vivo. Nucleos. Nucleot. Nucleic Acids 2011, In Press.
38. Krištafor, S.; Gazivoda Kraljević, T.; Ametamey, S.M.; Cetina, M.; Ratkaj, I.; Tandara Haček, R.; Kraljević Pavelić, S.; Raić-Malić, S. Syntheses and antitumor evaluation of C(6) isobutyl and isobutenyl substituted pyrimidines and dihydropyrrolo[1,2-c]pyrimidin-1,3-diones. *Chem. Biodiv.* **2011**, In Press (doi:10.1002/cbdv.201000202).

39. Hsu, L.Y.; Wise, D.S.; Kucera, L.S.; Drach, J.C.; Townsend, L.B. Synthesis of anti-restricted pyrimidine acyclic nucleosides. *J. Org. Chem.* **1992**, **57**, 3354-3358.

40. Muschalek, B.; Weidner, I.; Butenschön, H. Synthesis of tricarbonyl(N-methylisatin)chromium(0) and an unanticipated transformation of a N-MEM to a N-MOM group. *J. Organomet. Chem.* **2007**, **692**, 2415-2424.

41. Zhang, F.; Kulesza, A.; Rani, S.; Bernet, B.; Vasella, A. 6-(Diazomethyl)-1,3-bis(methoxymethyl)uracil, synthesis and transformation into annulated pyrimidinediones. *Helv. Chim. Acta* **2008**, **91**, 1201-1218.

42. Edstrom, E.D.; Feng, X.; Tumkevicius, S. Development of methylthiomethyl (MTM) protection for N1 of pyrrolo[2,3-d]pyrimidin-2,4-diones. *Tetrahedron Lett.* **1996**, **37**, 759-762.

43. Su, T.-L.; Huang, J.-T.; Burchenal, J.H.; Watanabe, K.A.; Fox, J.J. Synthesis and biological activities of 5-deaza analogues of aminopterin and folic acid. *J. Med. Chem.* **1986**, **29**, 709-715.

44. Heintzelman, G.R.; Fang, W.-K.; Keen, S.P.; Wallace, G.A.; Weinreb, S.M. Stereoselective total synthesis of the cyanobacterial hepatotoxin 7-Epicylindrospermopsin: revision of the stereochemistry of cylindrosporopsin. *J. Am. Chem. Soc.* **2001**, **123**, 8851-8853.

45. Batinac, S.; Mrvoš Sermek, D.; Cetina, M.; Pavelić, K.; Mintas, M.; Raić-Malić, S. Synthesis of the novel bicyclic oxepinopyrimidine and fluorinated pyrrolidinopyrimidines. *Heterocycles* **2004**, **63**, 2523-2536.

Sample Availability: Samples of the compounds 1–17 are available from the authors.