A new species of Larsia Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae) from phytotelmata of Aechmea distichantha Lemaire, 1853 (Bromeliaceae) in Argentina

Augusto Siri*, Raúl E. Campos and Mariano Donato

ILPLA (Instituto de Limnología ‘Dr. Raúl A. Ringuelet’) CONICET-CCT-La Plata / UNLP. Bv. 120 y 62, La Plata (1900), Buenos Aires, Argentina

(Received 11 August 2011; accepted 21 April 2015; first published online 12 June 2015)

A new species of Larsia Fittkau, 1962, viz. Larsia angusticornis sp. n., is described and adults and immatures are figured. The study is based on larvae collected from phytotelmata of the bromeliad Aechmea distichantha Lemaire, 1853 in northeastern Argentina that were reared to the adult stage. The pupa bears thoracic horns unusual for the genus, which distinguish this new species from other Larsia species.

http://zoobank.org/urn:lsid:zoobank.org:pub:41DFD96D-98E2-4FFC-9CDE-C290BCA84D45

Keywords: Diptera; Chironomidae; Larsia; Aechmea; new species; immature stages; phytotelmata; Argentina

Introduction

According to the latest world catalogue of Chironomidae (Ashe and O’Connor 2009, 2012), the cosmopolitan genus Larsia Fittkau, 1962 includes seven species from the Neotropical Region: L. fittkau Sublette and Sasa, 1994 (Guatemala), L. gelhausi Oliveira and Silva, 2011 (Brazil), L. hamadae Oliveira and Silva, 2011 (Brazil), L. labarthae Serpa-Filho, 2005 (Brazil), L. pallescens Edwards, 1931 (Argentina), L. planensis Johannsen, 1946 (Guatemala and Mexico) and L. reissi Sublette and Sasa, 1994 (Guatemala). However, L. planensis should not be included since there are no published records for this species from the Neotropics. In addition, L. berneri Beck and Beck, 1966 and L. indistincta Beck and Beck, 1966 (= L. hamadae as possible junior synonym) have been identified from Brazil and L. decolorata Malloch, 1915 from Cuba and Panama (Bohdan Bilyj, personal communication, June 19, 2014).

The male adult of Larsia is characterized by the presence of a scutal tubercle, lyrate tibial spurs on all legs, absence of the R2 vein in the wing, and a conical or bilobed anal point (Murray and Fittkau 1989; Niitsuma 2001; Oliveira and Silva 2011). In the pupa, the characteristics of the thoracic horns are used to distinguish the species (Fittkau and Murray 1986; Niitsuma 2001). The larva is characterized by the following characters: relatively long antenna, at least three times longer than the mandible, the ring organ of the basal maxillary segment located in distal half, and the inner apical extension of the dorso-momentum directed medially (Epler 2001).

Immatures inhabit both lentic and lotic environments such as marshes, ponds, littoral zone of lakes, and slow moving sections of rivers and streams (Epler 2001). In addition,
larvae of *Larsia* were found associated with phytotelmata of two species of *Eryngium* L., 1753 (Campos 2010). Phytotelmata are cavities formed by terrestrial plants, which allow water to collect. These impounded sites are created by structures such as modified leaves, leaf axils, flowers, stem cavities, open fruits, or fallen leaves (Fish 1983). The trapped water can be regarded as an aquatic microcosm that provides a suitable habitat for the development of numerous Diptera, including different species of Chironomidae (Donato and Paggi 2005, 2008). Bromeliads (Bromeliaceae) are especially adapted to develop phytotelmata, from which more than 470 species of aquatic animals have been recorded (Sodrê, Rocha, and Messias 2010). *Aechmea distichantha* Lemaire, 1853 is a bromeliad with an erect rosette of arching strap-shaped leaves, distributed in the deciduous, mixed, and evergreen forests in southern Brazil, Bolivia, Paraguay, Uruguay, and northern Argentina (Montero, Feruglio, and Barberis 2010).

In this paper, we describe adult male and female, as well as both larva and pupa of a new species of *Larsia*, viz. *L. angusticornis* sp. n., breeding in the phytotelmata created by the leaf axils of the bromeliad *A. distichantha*.

Material and methods

The study is based on the material collected during 2009 and 2010 in the Santa Fe, Corrientes and Chaco Provinces of Argentina. Impounded fluids from *A. distichantha* plants were extracted using a pipette attached to a vacuum pump. Larvae were transported alive in separate vials and reared in the laboratory following the methods suggested by Epler (2001). The specimens were cleared and slide-mounted in Canada balsam. General terminology and abbreviations follows Sæther (1980), except for the abdominal chaetotaxy of the pupa, which follows Fittkau (1962), and the larval cephalic chaetotaxy, which follows Kowalyk (1985). Measurements are given as ranges followed by those of the holotype in square brackets. Types are deposited in the collection of the Museo de La Plata, Argentina (MLP).

Results

Larsia angusticornis sp. n.

Type locality

Argentina, Santa Fe Province, margin of Toba creek, 29°24'16.5"S, 60°05'2.1"W, 52 m above sea level (a.s.l.).

Type material

Holotype. ♂ (reared, with larval and pupal exuviae), ‘Argentina, Santa Fe Province, margin of Toba creek, 29°24’16.5′S, 60°05’2.1′W, 52 m a.s.l., 25.IX.2009, col. R.E. Campos’ (MLP). Paratypes. 1 ♂ (reared, with pupal exuviae), 1 ♀, 2 ♀ (reared, with larval and pupal exuviae), ‘Argentina, Santa Fe Province, margin of Toba creek, 29°24’16.5′S, 60°05’2.1′W, 52 m a.s.l., 25.IX.2009, col. R.E. Campos’ (MLP). 1 ♀ (reared, with pupal exuviae), 1 fourth instar larva, ‘Argentina, Chaco Province, Parque Nacional Chaco, 26°43’31.4′S, 59°30’16.7′W, 74 m a.s.l., 26.IX.2009, col. R.E. Campos’ (MLP). 1 ♂ (reared, with pupal exuviae), 1 ♀ (reared, with pupal exuviae), 2 fourth instar larvae, ‘Argentina, Corrientes Province, Riachuelo, 27°32’42.8′S, 58°40’22.7′W, 51 m a.s.l., 28. IX.2010, col. R.E. Campos’ (MLP). All types are provided with appropriate type labels.
Description of male adult (n = 3–4, except when stated otherwise) (Figures 1–4)

Size. Total length 3.05–3.22 [3.20] mm. Total length / wing length 1.98–2.06 [2.03].

Colouration. Head and thorax brownish; vittae contrasting dark brown. Legs and wings pale, r-m cross-vein not infuscated. Abdominal tergites II–V with brown basal band; tergites VI–VIII mostly brownish; gonocoxite brown; gonostylus dark brown.

Head. AR 1.50–1.63 [1.51]. Temporal uniserials 11–13 [12]; postorbital uniserials 3–5 [3]. Clypeus with 11–17 [14] setae. Palpomeres I–V length: 45–50 [50] μm, 75–80 [78] μm, 125–140 [130] μm, 155–167 [163] μm, 200–265 [200] μm, respectively.

Thorax. Scutal tubercle 8 high (n = 1); acrostichals 31–32 [31]; dorsocentrals 44–45 [32]; prealars 12–14 [14]; supraalar 1 [1]. Scutellum with anterior row of 5–9 [5] thin setae and posterior row of 9–13 [13] stronger setae.

Wing (Figure 1). 1.48–1.63 [1.58] mm long; 0.42–0.45 [0.42] mm wide. L/W 3.47–3.80 [3.80]. VR 0.87–0.93 [0.89]. Brachiolum with 2 [2] distal setae, plus 1 [1] basal seta. Squama fringed with 9–15 [9] setae.

Legs. Tibial spurs (Figure 2): of protibia 15–20 [15] μm long, 18 μm wide (n = 1), with 14 teeth (n = 1); of mesotibia 20–25 [20] μm long (n = 2), 13–15 [13] μm wide (n = 2), with 9 [9] teeth and 20–28 [20] μm long (n = 2), 17 [17] μm wide (n = 1), with 10 [10] teeth (n = 2); of metatibia 25 [25] μm long (n = 2), 15 [15] μm wide, with 9 teeth (n = 1), and 25 [25] μm long (n = 2), 15 [15] μm wide, with 10–12 [10] teeth (n = 2). Metatibial comb with 5–6 [5] poorly differentiated setae. Tarsal claws (Figure 3) apically pointed; pulvilli about 1/3 as long as claws. Lengths and proportions of legs as in Table 1.

Hypopygium (Figure 4). Tergite IX without setae; anal point conical. Phallapodeme 22–25 [25] μm long (n = 2). Transverse sternapodeme 65–73 [73] μm long, with oral projection 13–18 [13] μm long. Gonocoxite 188–205 [205] μm long. Gonostylus 135–163 [140] μm long; megaseta 10–13 [13] μm long. HR 1.20–1.46 [1.46].

Description of female adult (n = 4, except when stated otherwise) (Figures 5–7)

Size. Total length 2.00–2.98 mm (n = 2). Total length / wing length 1.48–1.71 (n = 2).

Colouration. As in male, except abdomen uniformly pale brown.

Head. AR 0.15–0.16; ratio of last two flagellomeres 1.64–1.80. Temporal setae uniserial 8–11; postorbitalis uniserial 6–8. Clypeus with 19–29 setae. Palpomere I–V lengths: 38–50 μm, 75–93 μm, 120–150 μm, 140–175 μm, 238 μm (n = 1), respectively.

Thorax. Antepronotum with 2–3 lateral setae; humeral 5 (n = 1); dorsocentrals 67 (n = 1); acrostichals 31–39 (n = 3); prealars 19–22 (n = 2); supraalar 1. Scutellum with anterior row of 13–16 thin setae and posterior row of 11–14 stronger setae.
Wing (Figure 5). 1.35–1.74 mm long; 0.53–0.61 mm wide. L/W 2.57–2.84. VR 0.86–0.94. Brachiolum with 2–3 distal setae, plus 1 basal seta. Squama fringed with 8–18 setae.

Legs. Tibial spurs (Figure 6): of protibia 20 μm long, 25 μm wide, with 12–16 teeth; of mesotibia 25–28 μm long, 13–18 μm wide, with 9 teeth and 28 μm long (n = 2),

Figures 1—7. *Larsia angusticornis* sp. n., adults. Male: (1) wing; (2) tibial spurs on fore leg (top), mid leg (middle; the outer spur in lateral view), and hind leg (bottom); (3) lateral view of tars claw and pulvilli; (4) hypopygium, dorsal. Female: (5) wing; (6) tibial spurs on fore leg (top), mid leg (middle), and hind leg (bottom); (7) genitalia. Scale bars = 20 μm for Figures 2, 3, 6; 100 μm for Figure 4; 200 μm for Figures 1, 5, 7.
15–20 μm wide (n = 2), with 11–15 teeth; of metatibia 27–33 μm long, 15 μm wide, with 7–9 teeth, and 25–28 μm long (n = 2), 15–18 μm wide, with 11–14 teeth. Metatibial comb with 4–5 poorly differentiated setae. Lengths and proportions of legs as in Table 2.

Genitalia (Figure 7). GpVIII lobe reduced, not projecting posteriorly. Seminal capsule clear, ovoid, 53–70 μm long (n = 3); spermathecal ducts with uniform width; notum 125–140 long μm (n = 2), notum length / seminal capsule length 2.34–2.41; tergite IX and segment X without setae. Cercus 25–40 μm long.

Description of pupa (n = 5–7, except when stated otherwise) (Figures 8–12)

Size. Total length 3.65–4.15 [3.73] mm.

Colouration. Cephalothorax yellowish, with clearer maculation (Figure 8). Abdomen pale brown to yellowish brown, faint pattern as in Figure 9. In some specimens, tergites II–VI with a pale brown apical band and VII–VIII with a pale brown basal band.

Cephalothorax. Thoracic horn long and tubular (Figures 8, 10). Length 310–380 [350] μm; width 40–58 [43] μm; L/W 6.20–8.90 [8.14]; respiratory atrium mostly tubular, with some indication of alveolar surface in distal half; plastron plate encompassing the entire apical width of horn, 28–38 [28] μm long (n = 4); corona adpressed to plastron plate; duct 20–30 [20] μm long, 13–18 [13] μm wide. Thoracic comb with 8–10 blunt teeth [9], basal lobe distinct. Thoracic setal arrangement as in Figure 8.

Abdomen. Tergites I and III–VIII with shagreen composed of 2–7 spinules, serially arranged in transverse arched rows. Sternite II with spinules 3–5 μm long, arranged in

Table 1.	Lengths (μm) and proportions of legs of *Larsia angusticornis* sp. n., male (n = 3 for p1 and p2; n = 5 for p3); value for the holotype in brackets.				
	fe	Ti	ta1	ta2	ta3
p1	720–780 [780]	870–940 [905]	610–690 [690]	340–390 [390]	240–255 [250]
p2	770–895 [895]	780–880 [870]	510–600 [570]	240–275 [275]	180–195 [193]
p3	720–770 [770]	940–1030 [950]	650–730 [730]	350–425 [425]	260–290 [290]
ta4	105–180 [180]	110–115 [105]	0.70–0.76 [0.76]	2.56–2.80 [2.56]	2.42–2.61 [2.44]
ta5	110–130 [130]	90–95 [90]	0.65–0.70 [0.66]	3.27–3.63 [3.39]	2.82–3.10 [3.10]
ta6	170–190 [190]	90–115 [110]	0.68–0.74 [0.70]	2.51–2.76 [2.51]	2.40–2.55 [2.49]

Aquatic Insects

Table 2. Lengths (μm) and proportions of legs of *Larsia angusticornis* sp. n., female (n = 4).
Figures 8–17. *Larsia angusticornis* sp. n., immatures. Pupa: (8) cephalothorax; (9) abdominal pattern, segment I lacking; (10) thoracic horn, photo and drawing; (11) sternite (right) and tergite (left) of abdominal segment IV; (12), abdominal segment VIII and anal lobe. Fourth instar larva: (13) ventral (top) and dorsal (bottom) cephalic setation; (14) antennal flagellum; (15) basal segment of maxillary palpus; 16, mandible; (17) ligula and paraligula. Scale bars = 20 μm for Figures 14, 15; 50 μm for Figures 13, 16, 17; 100 μm for Figures 10, 11; 200 μm for Figures 8, 12; 500 μm for Figure 9.
transverse rows. Chaetotaxy of abdominal segment IV as in Figure 11. Segment VII with 4 lateral setae; segment VIII with 5 lateral setae. LS₁ VII setae located 0.41—0.51 [0.40] from anterior margin and 0.28—0.39 [0.28] on VIII. Anal lobe 400—450 [430] μm long (Figure 12). Anterior macrosetae located 0.35—0.47 [0.37] from the anterior margin and posterior macrosetae 0.46—0.64 [0.49]. Inner margins without spinules. Male genital sac 275—310 [310] μm (n = 2) long; reaching 0.69—0.72 [0.72] (n = 2) of the length of anal lobe.

Description of fourth instar larva (n = 5—8, except when stated otherwise) (Figures 13—17)

Size. Total length 3.3—3.7 mm (n = 2). Head capsule 490—640 [530] μm long. CI 1.43—1.53 (n = 2).

Colouration. Head and antenna pale. Apex of mandible and ligula dark brown. Claws of posterior parapods brownish.

Cephalic chaetotaxy (Figure 13). Ventral: S9 and S10 in line with VP, diagonal to the longitudinal axis of head capsule. Dorsal: S5 anterior to DP; S7 and S8 close to each other.

Antenna. AR 3.71—5.40 [3.71]. Flagellum as in Figure 14. A₁ 215—250 [215] μm long, ring organ situated 0.60—0.64 [0.60] from base; blade and accessory blade subequal 50—60 [59] μm long. A₂ 38—52 [52] μm long, style 3—4 μm long, peg sensillum 5—8 μm long. Blade/A₂₄ 0.89—1.20 [1.02]; A₃ 4—6 [4] μm long; A₄ 2—4 [2] μm long.

Maxillary palp (Figure 15). Basal segment 38—50 [45] μm long, L/W 3.30—4.70 [4.50]; ring organ located 0.49—0.60 [0.50] from base. A₁/PMₙ 4.78—6.30 [4.78].

Mandible (Figure 16). 115—133 [118] μm long. A₁L/Md 1.82—2.01 [2.01]; A₁/Md 2.31—2.50 [2.31].

Hypopharyngeal complex. Ligula (Figure 17) 68—85 [75] μm long, 40—47 μm wide; toothed margin weakly concave; paraligula bifid, 30—38 [30] μm long. Hypopharyngeal pectin with 13—14 teeth.

Abdomen. Procercus 133—150 [133] μm long; L/W 3.30—4.80 [4.75]; with 7 apical macrosetae 350—450 [430] μm long. Anal tubules tapered, 180—215 μm long (n = 2). Claws on posterior parapods simple with large ones lamellate on outer margins.

Etymology
The species name refers to the Latin ‘angustus’ meaning narrow and ‘cornu’ meaning horn, referring to the long and narrow pupal thoracic horn. The name is an adjective in the nominative singular.

Discussion

Taxonomy

In the male adult of *Larsia*, the abdominal colour pattern is the character most widely used to distinguish the species within the genus. The male of *L. angusticornis* sp. n. shares with *L. gelhausi* a similar abdominal colour pattern, distinguishing them from the rest of the Neotropical *Larsia* species. Both species also share a pale cross-vein r-m and tergite IX without setae, but could be distinguished because in *L. gelhausi*, the gonocoxite and gonostylus are pale brown (dark brown in *L. angusticornis* sp. n.) and the AR is
1.03—1.11 (1.50—1.53 in L. angusticornis sp. n). No clear differences were found between females of L. angusticornis sp. n. and other Larsia species. Similar to L. fittkaui and L. labartheae, L. angusticornis sp. n. has a short and not extended posteriorly dorso-medial lobe of the gonapophysis VIII. The adults of L. pallescens need to be slide-mounted and re-examined to provide a more detailed description before a more detailed comparison can be made with the other Neotropic species.

All described pupae of Larsia have elongate thoracic horn, 3.5—4.0 times as long as broad, the horn sac is alveolar, and the corona is present. In contrast, the pupa of L. angusticornis sp. n. is characterized by the long, narrow thoracic horn, 6.20—8.90 times as long as broad, the tubular atrium with only some indication of an alveolar surface, and the corona in the distal half is not discernible. It is important to remark that a pupa of Larsia with similar thoracic horn has been observed in an undescribed species from Brazil from a non phytotelma habitat (Bohdan Bilyj, personal communication, 19 June 2014). However, this pupa has only three LS-setae on segment VII, and the larval antenna has darkened A₂, distinguishing it from L. angusticornis sp. n.

The arrangement of the larval cephalic setation is commonly used to distinguish the species of Larsia. In most species of the genus, S10 is lateral to posterolateral to S9, the VP is posterior, posterolateral or mediolateral to S9, closer to S9 than S10, arranged diagonally, transversely, or in triangle, distant anteriorly to SSm. In L. angusticornis sp. n., the cephalic setae S9, S10, and the VP are arranged in line, somewhat similar to L. decolorata and L. indistincta (Epler 2001). However, the larva of the new species is distinguished from L. decolorata and L. indistincta by the antennal length/mandible length ratio. In L. decolorata and L. indistincta, the antenna is at least three times longer than the mandible, while this ratio in L. angusticornis sp. n. is 2.31—2.50, appearing to be the smallest for the genus.

Bionomics and distribution

The immature stages of Larsia angusticornis sp. n. were found breeding in leaf axils of Aechmea distichantha growing in both forested and open areas. The larvae were collected together with Ostracoda and immature stages of some insect orders, such as Diptera (Culicidae, Ceratopogonidae, Corethrellidae, Ephydridae, and Psychodidae) and Coleoptera (Scyrtidae). Among the Culicidae, we collected Culex imitator Theobald, 1903, Toxorhynchites haemorrhoidalis separatus (Lynch Arribalzaga, 1891), and Wyeomyia muehlensi (Petrocchi, 1927). The larvae of L. angusticornis sp. n. are carnivorous and could prey on small individuals of the biota inhabiting A. distichantha phytotelma, but could also serve as prey for the predator mosquito T. haemorrhoidalis separatus.

At present, Larsia angusticornis sp. n. is known from the Chaco, Santa Fe, and Corrientes Provinces. Its distribution might also extend into the northwestern provinces of Argentina, as well as into southern Brazil, Bolivia, Paraguay, and Uruguay following the distribution of A. distichantha.

Acknowledgements

The authors wish to thank Bohdan Bilyj and Gustavo Spinelli for comments and suggestions to an earlier draft of the manuscript, and Mónica Caviglia for improving the English. The article is Scientific Contribution # 905 of the Institute of Limnology ‘Dr. R.A. Ringuelet’ (ILPLA, CONICET-CCT La Plata / UNLP). This paper was partially supported by CONICET [PIP#200901/381].
Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ashe, P., and O’Connor, J.P. (2009), A World Catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonomiae, Aphroteniinae, Tanypodinae Usambaromyiinae, Diamesinae, Prodamesinae and Telmatogetoninae, Dublin: Irish Biogeographical Society & National Museum of Ireland, pp. 445.

Ashe, P., and O’Connor, J.P. (2012), ‘Additions and Corrections to Part I of “A World Catalogue of Chironomidae (Diptera)”’, Fauna norvegica, 31, 125–136.

Beck, W.M., and Beck, E.C. (1966), ‘Chironomide (Diptera) of Florida: 1. Pentaneurini’, Bulletin of the Florida State Museum, Biological Sciences, 10, 305–379.

Campos, R.E. (2010), ‘Eryngium (Apiaceae) Phytotelmatas and Their Macro-Invertebrate Communities, Including a Review and Bibliography’, Hydrobiologia, 652, 311–328.

Donato, M., and Paggi, A.C. (2005), ‘A New Neotropical Species of the Genus Metriocnemus Van Der Wulp (Chironomidae: Orthocladiinae) from Eryngium L. (Apiaceae) Phytotelmatas’, Zootaxa, 1050, 1–14.

Donato, M., and Paggi, A.C. (2008), ‘Polypedilum Parthenogeneticum (Diptera: Chironomidae): A New Parthenogenetic Species from Eryngium L. (Apiaceae) Phytotelmatas’, Aquatic Insects, 30, 51–60.

Edwards, F.W. (1931), ‘Chironomidae’, in Diptera of Patagonia and South Chile, Part II, London: Fasc. 5, Trustees of the British Museum, pp. 233–331.

Epler, J.H. (2001), ‘Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida’. http://home.earthlink.net/~johnuepler/index.html

Fish, D. (1983), ‘Phytotelmatas: Flora and Fauna’, in Phytotelma: Terrestrial Plants as Hosts for Aquatic Insect Communities, eds. J.H. Frank and L.P. Lounibos, New Jersey, USA: Plexus, Medford, pp. 1–27.

Fittkau, E.J. (1962), ‘Die Tanypodinae (Diptera: Chironomidae) (Die Tribus Anatopyniini, Macro-pelopini und Pentaneurini)’, Abhandlungen zur Larvalsystematik der Insekten, 6, 1–453.

Fittkau, E.J., and Murray, D.A. (1986), ‘The Pupae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region’, in Chironomidae of the Holarctic region - Keys and diagnoses. Part 2. Pupae, ed. T. Wiederholm, Entomologica scandinavica, Supplement, 28, 31–117.

Johannsen, O.A. (1946), ‘Revision of the North American Species of the Genus Pentaneura (Tendipedide: Chironomidae, Diptera)’, Journal of the New York Entomological Society, 54, 267–289.

Kowal yk, H.E. (1985), ‘The Larval Cephalic Setae in the Tanypodinae (Diptera: Chironomidae) and Their Importance in Generic Determinations’, Canadian Entomologist, 117, 67–106.

Lemaire, A.C. (1853), Le Jardin Fleuriste; Journal General des Progres et des Interets Horticoles et Botaniques, 3: pl. 269.

Malloch, J.R. (1915), ‘Some Additional Records of Chironomidae for Illinois and Notes on Other Illinois Diptera’, Bulletin of the Illinois State Laboratory of Natural History, XI, 303–363.

Montero, G., Feruglio, C., and Barberis I.M. (2010), ‘The Phytotelma and Foliage Macrofauna Assemblages of a Bromeliad Species in Different Habitats and Seasons’, Insect Conservation and Diversity, 3, 92–102.

Murray, D.A., and Fittkau, E.J. (1989), ‘The Adult Males of Tanypodinae (Diptera: Chironomidae) of the Holarctic Region’, in Chironomidae of the Holarctic region - Keys and Diagnoses. Part 1. Adult Males, ed. T. Wiederholm, Entomologica scandinavica, Supplement, 19, 37–123.

Niitsuma, H. (2001), ‘A New Species of the Newly Recorded Genus Larsia (Insecta: Diptera: Chironomidae) from Japan’, Species Diversity, 6, 355–362.

Oliveira, C.S.N., and Silva F.L. (2011), ‘Two New Species of Larsia Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae) from Neotropical Region, with a Checklist of Larsia Species of the World’, Zootaxa, 2708, 27–41.

Serpa-Filho, A. (2005), ‘Sobre Uma Nova Espécie Neotrópica do Gênero Larsia Fittkau, 1962 (Diptera: Chironomidae: Tanypodinae)’, Entomologia y Vectores, 12, 293–302.

Sæther, O.A. (1980), ‘Glossary of chironomid morphology terminology (Diptera: Chironomidae)’, Entomologica scandinavica, Supplement, 14, 1–51.
Sodré, V.M., Rocha, O., and Messias, M.C. (2010), ‘Chironomid larvae inhabiting bromeliad phyto- telmata in a fragment of the Atlantic Rainforest in Rio de Janeiro State’, *Brazilian Journal of Biology*, 70, 587–592.

Sublette, J.E., and Sasa, M. (1994), ‘Chironomidae collected in onchocerciasis endemic areas of Guatemala. (Insecta, Diptera),’ *Spixiana*, Supplement, 20, 1–60.