Table S1 Differentially intracellular metabolites in BW25113-ΔastE when compared to that those in BW25113 after exposing to 5 g/L butanol

Name	Log2f old	qvalue	Up/down	Mzmed	Rtmed
L-leucine	14.5	0.017584	UP	117.1	35.34208
11-deoxycorticosterone	-13.5	0.014418	DOWN	314.2	35.35
2-oxoglutarate	-12	0.010417	DOWN	130	38.552
γ-butyrobetaine	11.6	0.019996	UP	130.1	38.541
9-mercaptodethiobiotin	-9.7	0.029138	DOWN	245.1	32.4445
2,3-dihydroxybenzoate	-8	0.046539	DOWN	117	19.082
1-myristoyl-2-palmitoleoyl phosphatidate	7.9	0.057484	UP	308.2	33.844
Pyrazine-2-carboxylate	-7.7	0.045552	DOWN	87	19.08
6-deoxy-6-sulfo-D-fructose-1-phosphate	-7.4	0.031078	DOWN	163	8.713
2-oxo-4-methylthiobutanoate	-7.1	0.014468	DOWN	132	38.8645
S-sulfanylglutathione	-6.1	0.017348	DOWN	358.1	30.294
α-ribazole 5’-phosphate	-6.1	0.016339	DOWN	359.1	30.294
Glyoxylate	-5.9	0.041394	DOWN	119	18.31433
Malate	-5.9	0.053315	DOWN	118	19.0755
5-amino-1-(5-phospho-β-D-ribosyl)imidazole	-5.3	0.042877	DOWN	314.1	18.3
Sulfate	-5.3	0.009955	DOWN	116	38.552
5-amino-6-((D-ribitylamino)uracil)	-5	0.021238	DOWN	259.1	24.4715
6,7-dimethyl-8-(1-D-ribityl)lumazine	-4.9	0.019453	DOWN	307.1	19.824
N2-succinyl-L-ornithine	-4.6	0.00941	DOWN	214.1	29.373
Ethylene glycol	-4.5	0.04192	DOWN	101	19.162
3-keto-L-gulonate 6-phosphate	-4.4	0.016669	DOWN	149	43.749
(1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate	-4.3	0.008353	DOWN	258.1	24.46
Compound	Change	p-value	Fold Change	p-value	
--	--------	----------	-------------	----------	
Oxaloacetate	-3.4	0.050957	DOWN	131	29.539
Betaine aldehyde hydrate	-3.2	0.012421	DOWN	165.1	34.9585
6-carboxy-5,6,7,8-tetrahydropterin	3	0.008353	UP	229.1	22.217
L-phenylalanine	3	0.04148	UP	225.1	30.29642
Oxalosuccinate	-2.9	0.045327	DOWN	213	18.265
7,8-dihydromonapterin	2.9	0.039561	UP	256.1	30.295
N,N-dimethyl-p-phenylenediamine	-2.9	0.010324	DOWN	181.1	34.961
2'-deoxycytidine	2.8	0.008353	UP	228.1	22.222
4-(γ-glutamylamino)butanal	-2.6	0.013737	DOWN	201.1	31.50392
Propanoate	-2.5	0.029839	DOWN	113	19.8575
N-acetylmuramate	-2.2	0.051255	DOWN	316.1	18.26433
Thymidine	2.2	0.010074	UP	243.1	22.217
Succinate semialdehyde	-2.1	0.05022	DOWN	137	18.2685
4-(γ-L-glutamylamino)butanoate	-1.8	0.010305	DOWN	256.1	19.8605
L-Valine	1.8	0.03812	UP	132.1	38.547
Amino acids	BW25113	BW25113-ΔastE			
-------------	---------	---------------			
	Supernate (mg/100ml)	Intracellular (mg/100ml)	Supernate (mg/100ml)	Intracellular (mg/100ml)	
Ala	0.25 ± 0.03	0.37 ± 0.04	0.73 ± 0.10	0.21 ± 0.15	
Gly	0.13 ± 0.01	0.54 ± 0.14	0.21 ± 0.01	0.20 ± 0.09	
Val	0.33 ± 0.07	0.32 ± 0.09	0.01 ± 0.02	0.33 ± 0.07	
Met	0.15 ± 0.02	0.17 ± 0.06	0.48 ± 0.16	0.21 ± 0.05	
Ile	0.05 ± 0.06	0.19 ± 0.05	0.69 ± 0.10	0.12 ± 0.08	
Phe	0.50 ± 0.14	0.17 ± 0.06	0.28 ± 0.07	0.19 ± 0.13	
NH3	17.2 ± 0.08	0.40 ± 0.02	23.0 ± 0.16	0.36 ± 0.07	
His	0.00 ± 0.00	0.10 ± 0.07	0.00 ± 0.00	0.12 ± 0.12	
Asp	0.17 ± 0.03	0.10 ± 0.005	0.19 ± 0.03	0.03 ± 0.01	
Thr	0.23 ± 0.01	0.25 ± 0.05	0.00 ± 0.00	0.28 ± 0.16	
Ser	0.05 ± 0.01	0.22 ± 0.03	0.07 ± 0.02	0.13 ± 0.09	
Pro	0.00 ± 0.00	0.12 ± 0.07	0.00 ± 0.00	0.05 ± 0.03	
Glu	0.36 ± 0.03	0.79 ± 0.22	2.84 ± 0.34	0.30 ± 0.21	
Cys	0.04 ± 0.04	0.00 ± 0.00	0.27 ± 0.01	0.69 ± 0.10	
Leu	0.32 ± 0.11	0.18 ± 0.13	0.59 ± 0.02	0.34 ± 0.09	
Tyr	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.36 ± 0.02	
Lys	0.06 ± 0.01	0.00 ± 0.00	0.22 ± 0.03	0.04 ± 0.01	
Arg	0.05 ± 0.00	0.00 ± 0.00	0.41 ± 0.03	0.00 ± 0.00	
Strains/plasmids	Relevant characteristics	Reference			
------------------	--------------------------	---------------------			
Plasmids					
pKD46	Red recombinant plasmid, Temperature-sensitive, L-arabinose induction, Amp\(^r\)	Lab. collected			
pKD3	Harboring the gene of chloramphenicol resistance, Amp\(^r\), Cm\(^r\)	Lab. collected			
pCP20	Harboring the gene of FLP recombinase, Temperature-sensitive, Amp\(^r\), Cm\(^r\)	Lab. collected			
Strains					
E. coli BW25113	Host for homologous recombination	Lab. collected			
BW25443-Δast E	Knocking-out of *astE* gene in BW25113, Cm\(^r\)	This study			

Amp\(^r\), Cm\(^r\) are ampicillin, chloramphenicol resistance, respectively
Primers	Sequences (5’-3’)	Application
astE-cms	TTAGCTTATTTTTTTTCGAGCATTAATCCCCGCGGTAA	Knocking-out astE
	TGCTTTGAGCGATTGTGTAGG	
astE-cmas	ATGGATAATTTTCTTGCTCTGACCTAACCAGGTAA	
	ACTTAACGGCTGACATGGGAA	
astE-yans	CCAATTACTGAATCTCGGT	Identification of
astE-yanas	AGAAAGCAACTTAATACCCG	ΔastE

*astEcm represents the primers for plate pKD3; astEyan represents the identifying primers. Underline represents the homology sequences to the aim gene.
Gene name	Sense Primer	Sequence (5’to3’)		Anti-sense Primer	Sequence (5’to3’)
astE	astE-qF	ATATGGCAAGTGACACGCTGAAT	astE-qR	CCAACGCTACCAACGGAT TAGG	
prpB	prpB-qF	TTGGCACCATAACGCCTAATCAT	prpB-qR	GTCGGTCAGCACATCATC AAGG	
prpD	prpD-qF	AGGTGAATCGGTTCGCTTCCA	prpD-qR	GCTGCTTCAACTGGCCTCTG	
ybfA	ybfA-qF	ACAGAGAATATCCTGCAATGGCTTAT	ybfA-qR	TCGGCCTGATCCATCCACAC	
ymgA	ymgA-qF	CAGGCCTGGTCGCCAGATTACCT	mgA-qR	GCTGTCGCTGTTCTTCGATT	
ymgC	ymgC-qF	ATGACGCATGGGTATGTGTTATG	mgC-qR	AGAGAGCACGGATTCCTGTCG	
iraD	iraD-qF	TTAATTCCTCTCATTCGGCATACT	iraD-qR	GAGTGTGGCAGTACGCTTT	
psuK	psuK-qF	TGAAGAGGCACCTGGCATTGATT	psuK-qR	TGGCTTGAGAGTGTGGATTCTGAT	
gadC	gadC-qF	ACTGGGTGTTAGTTTCCGGTGTTG	gadC-qR	TGGTGGCTTCTGACCTGGGAT	
YbaL	YbaL-qF	CTGATATCCTTGCTTGTTGATTG	YbaL-qR	TTCCTGTGGTCGCGCATATG	
rpoA	rpoA-qF	ATTCGTCGTCGGGCAACCA	rpoA-qR	ACAGTCAATTCCAGATCGTCAACAG	
astE	astE-qF	ATATGGCAAGTGACACGCTGAAT	astE-qR	CCAACGCTACCAACGGATTAGG	
prpC	prpC-qF	ATCTCGACTGTTCTCTCTCCT	prpC-qR	CATATTGGCCGAGGACGGATCAGT	
prpE	prpE-qF	CTGGTCCTGGGAAAGTCGGTTA	prpE-qR	CGGATCCTGGTCTCCAGCTAGT	
ycgZ	ycgZ-qF	GCGGAGCAATCACAAGTGTAC	ycgZ-qR	GCGTGGTCCAGTCGGCAAGT	

Table S5 Quantitative PCR primers of selected genes
Gene	Primer Set	Forward Sequence	Reverse Sequence	
ariR	ariR-qF	TTAGAAGAAGAATCA	ariR-qR	TGTTGTTCAGGAGTG
		GCAGTGTTAGG		TATCAGA
	spy-qF	ATGCAGCAGACACCAC	spy-qR	CTCAGGTTTCAAGGT
		TACC		TCT
	psuG-qF	TTGTTGTTTCCAAGGAGT	psuG-qR	CGCCGCAATACATCGT
		TATCAGA		TGAAG
	csrB-qF	GGAGTCAGACACGAA	csrB-qR	GCGTCTGGTGCTCCTCTT
		GTGAACATC		T
	adiA-qF	CGCTGTCAAGGATTCTT	adiA-qR	TCAACCGCTTTCGTAATC
		TATATTCA		ACTTC
	gadC-qF	ACTGGTTGTTAGTTTCC	gadC-qR	TGGTGCGTTCTGACTGTG
		TGGTGTA		TTT
	YbaT-qF	TGGCGGTATTGTGGCG	YbaT-qR	CCAACGCTCAACAGGTCA
		ATGT		GTAAC
	yidE-qF	CCGCTGATTACTGTGG	yidE-qR	GCACCGCTGTTGGATGA
		CATTCT		AG
	cysB-qF	ATATCTTCAGCCACAGT	cysB-qR	CAGCCGCACTCAACGACAT
		ACAACCAA		CA
Fig. S1 The catabolism pathway of L-arginine in *E. coli*. *ast*A, Arginine N-succinyltransferase; *ast*B, N-succinylarginine dihydrolase; *ast*C, Succinylornithine transaminase; *ast*D, Succinylglutamate-semialdehyde dehydrogenase; *ast*E, Succinylglutamate desuccinylase.
Fig. S2 Cell growth against 8 g/L butanol stress: Application of a spotting assay
Fig. S3 Metabolomic cloud plot of strains in the presence and absence of butanol (Green, up/down-regulated metabolites; red, up/down-regulated metabolites; p<0.01; FC≥1).
Fig. S4 Overview of the differentially expressed genes between BW25113 and BW25113-ΔastE against 5 g/L butanol stress (Green, downregulated genes; red, upregulated genes; p<0.05; FC≥2).
Fig. S5 GO enrichment analysis of differentially expressed genes between BW25113 and BW25113-ΔastE after exposure to 5 g/L butanol stress.
Fig. S6 KEGG enrichment analysis of differentially expressed genes between BW25113 and BW25113-ΔastE after exposure to 5 g/L butanol.
Fig. S7 KEGG enrichment analysis of significantly downregulated genes
Fig. S8 Different metabolites: Clustering heat map. analysis related to the different metabolites of BW25113-ΔastE and BW25113 after exposure to 5 g/L butanol and metabolic pathways (red, upregulated; blue and green, downregulated)