Remarks on zeta functions and K-theory over \mathbb{F}_1

Anton Deitmar

Abstract: We show that the notion of zeta functions over the field of one element \mathbb{F}_1, as given in special cases by Soulé, extends naturally to all \mathbb{F}_1-schemes as defined by the author in an earlier paper. We further give two constructions of K-theory for affine schemes or \mathbb{F}_1-rings, we show that these coincide in the group case, but not in general.

Contents

1 \mathbb{F}_1-schemes

2 Proof of Theorem 1

3 K-theory

3.1 The $+$-construction

3.2 The \mathbb{Q}-construction

Introduction

Soulé [10], inspired by Manin [12], gave a definition of zeta functions over the field of one element \mathbb{F}_1. We describe this definition as follows. Let X be a scheme of finite type over \mathbb{Z}. We define the following condition: Suppose there exists a polynomial $N(x)$ with integer coefficients such that for every prime p and every $n \in \mathbb{N}$, one has

$$\#X(\mathbb{F}_p^n) = N(p^n)$$

is a rational function in p and p^{-s}. The vanishing order at $p = 1$ is $N(1)$. One may thus define

$$\zeta_X(\mathbb{Z})(s) = \prod_p Z_X(p, p^{-s})^{-1}.$$

Soulé considered in [10] the following condition: Suppose there exists a polynomial $N(x)$ with integer coefficients such that for every prime p and every $n \in \mathbb{N}$, then

$$\zeta_X(\mathbb{F}_1)(s) = s^{a_0}(s-1)^{a_1} \cdots (s-n)^{a_n}.$$

In the paper [11] there is given a definition of a scheme over \mathbb{F}_1 as well as an ascent functor $\otimes \mathbb{Z}$ from \mathbb{F}_1-schemes to \mathbb{Z}-schemes. We say that a \mathbb{Z}-scheme is defined over \mathbb{F}_1, if it comes by ascent from a scheme over \mathbb{F}_1. The natural question arising is whether schemes defined over \mathbb{F}_1 satisfy Soulé’s condition.

Simple examples show that this is not the case. However, schemes defined over \mathbb{F}_1 satisfy a slightly weaker condition which serves the purpose of defining \mathbb{F}_1-zeta functions as well, and which we give in the following theorem.

Theorem 1 Let X be a \mathbb{Z}-scheme defined over \mathbb{F}_1. Then there exists a natural number ϵ and a polynomial $N(x)$ with integer coefficients such that for every prime power q one has

$$(q - 1, \epsilon) = 1 \Rightarrow \#X(\mathbb{F}_q) = N(q).$$

This condition determines the polynomial N uniquely (independent of the choice of ϵ). We call it the zeta-polynomial of X.

With this theorem, we can define the zeta function of an arbitrary \mathbb{F}_1-scheme X as

$$\zeta_X(\mathbb{F}_1)(s) = s^{a_0}(s-1)^{a_1} \cdots (s-n)^{a_n},$$

if $N_X(x) = a_0 + a_1 x + \cdots a_n x^n$ is its zeta-polynomial.

We also define its Euler characteristic as

$$\chi(X) = N_X(1) = a_1 + \cdots + a_n.$$
This definition is due to Soulé [10]. We repeat the justification, which is based on the Weil conjectures.

Suppose that \(X/\mathbb{F}_p = X_\mathbb{Z} \times_\mathbb{Z} \mathbb{F}_p \) is a smooth projective variety over the finite field \(\mathbb{F}_p \). Then the Weil conjectures, as proven by Deligne, say that

\[
Z_{X_\mathbb{Z}}(p, T) = \prod_{k=0}^{m} (1 - p^k T)^{-a_k},
\]

satisfying \(|a_{l,j}| = p^{l/2} \), where \(b_l \) is the \(l \)-th Betti-number.

On the other hand, suppose that \# \(X(\mathbb{F}_p^n) = N(p^n) \) holds for every \(n \in \mathbb{N} \), where \(N(x) = a_0 + a_1 x + \cdots + a_n x^n \) is the zeta-polynomial, then one gets

\[
Z_{X_\mathbb{Z}}(p, T) = \prod_{k=0}^{n} (1 - p^k T)^{-a_k}.
\]

Comparing these two expressions, one gets

\[
b_l = \begin{cases} a_{l/2} & \text{if } l \text{ is even,} \\ 0 & \text{if } l \text{ is odd.} \end{cases}
\]

So \(\sum_{l=0}^{n} a_k = \sum_{l=0}^{n} (-1)^l b_l \) is the Euler characteristic.

For explicit computations of zeta functions and Euler numbers over \(\mathbb{F}_1 \), see [6].

Next for K-theory. Based on the idea of Tits, that \(\text{GL}_n(\mathbb{F}_1) \) should be the permutation group \(\text{Per}(n) \), Soulé also suggested that

\[
K_i(\mathbb{F}_1) = \pi_i(B(\text{Per}(\infty))^+),
\]

which is known to coincide with the stable homotopy group of the spheres, \(\pi_i^s = \lim_{k \to \infty} \pi_{i+k}(S^k) \).

(The + refers to Quillen’s + construction.) More general, for a monoid \(A \), or an \(\mathbb{F}_1 \)-ring \(\mathbb{F}_A \), one has

\[
\text{GL}_n(A) = \text{GL}_n(\mathbb{F}_A) = A^n \rtimes \text{Per}(n).
\]

Setting \(\text{GL}(A) = \lim_{n \to \infty} \text{GL}_n(A) \), one lets

\[
K_i^+(A) = \pi_i(B\text{GL}(A))^+.
\]

On the other hand, one considers the category \(\mathcal{P} \) of all finitely generated projective modules over \(A \) and defines

\[
K_i^{Q}(A) = \pi_{i+1}(BQ\mathcal{P}),
\]

where \(Q \) means Quillen’s \(Q \)-construction. It turns out that \(\pi_1(BQ\mathcal{P}) \) coincides with the Grothendieck group \(K_0(\mathcal{P}) \) of \(\mathcal{P} \). If \(A \) is a group, these two definitions of K-theory agree, but not in general.

A calculation shows, that if \(A \) is an abelian group, then

\[
K_i(A) = \begin{cases} \mathbb{Z} \times A & i = 0, \\ \pi_i^s & i > 0. \end{cases}
\]

So, for general \(A \), since one has \(K^+(A) = K^+(A^\times) \), this identity completely computes \(K^+ \). Furthermore, for every \(A \) one has a canonical homomorphism \(K^+_i(A) \to K^{Q}_i(A) \).

I thank Jeff Lagarias for his remarks on an earlier version of this paper.

1 \(\mathbb{F}_1 \)-schemes

For basics on \(\mathbb{F}_1 \)-schemes we refer to [11].

In this paper, a ring will always be commutative with unit and a monoid will always be commutative. An ideal \(a \) of a monoid \(A \) is a subset with \(Aa \subset a \). A prime ideal is an ideal \(\mathfrak{p} \) such that \(S_\mathfrak{p} = A \setminus \mathfrak{p} \) is a submonoid of \(A \). For a prime ideal \(\mathfrak{p} \) let \(A_{\mathfrak{p}} = S_{\mathfrak{p}}^{-1} A \) be the localization at \(\mathfrak{p} \). The spectrum of a monoid \(A \) is the set of all prime ideals with the obvious Zariski-topology (see [11]).

Similar to the theory of rings, one defines a structure sheaf \(O_X \) on \(X = \text{spec}(A) \), and one defines a scheme over \(\mathbb{F}_1 \) to be a topological space together with a sheaf of monoids, locally isomorphic to spectra of monoids.

A \(\mathbb{F}_1 \)-scheme \(X \) is of finite type, if it has a finite covering by affine schemes \(U_i = \text{spec}(A_i) \) such that each \(A_i \) is finitely generated.

For a monoid \(A \) we let \(A \otimes \mathbb{Z} \) be the monoidal ring \(\mathbb{Z}[A] \). This defines a functor from monoids to rings which is left adjoint to the forgetful functor that sends a ring \(R \) to the multiplicative monoid \((R, \times) \). This construction is compatible with gluing, so one gets a functor \(X \mapsto X_{\mathbb{Z}} \) from \(\mathbb{F}_1 \)-schemes to \(\mathbb{Z} \)-schemes.

Lemma 2 \(X \) is of finite type if and only if \(X_{\mathbb{Z}} \) is a \(\mathbb{Z} \)-scheme of finite type.

Proof: If \(X \) is of finite type, it is covered by finitely many affines \(\text{spec}(A_i) \), where \(A_i \) is finitely generated, hence \(\mathbb{Z}[A_i] \) is finitely generated as a \(\mathbb{Z} \)-algebra and so it follows that \(X_{\mathbb{Z}} \) is of finite type.

Now suppose that \(X_{\mathbb{Z}} \) is of finite type. Consider a covering of \(X \) by open sets of the form \(U_i = \text{spec}(A_i) \), then one gets an open covering of \(X_{\mathbb{Z}} \) by sets of the form \(\text{spec}(\mathbb{Z}[A_i]) \), with the spectrum in the ring-sense. Since \(X_{\mathbb{Z}} \) is compact, we may assume this covering finite. As \(X_{\mathbb{Z}} \) is of finite type, each \(\mathbb{Z}[A_i] \) is a finitely generated \(\mathbb{Z} \)-algebra. Let \(S \) be a generating set of \(A_i \). Then it generates \(\mathbb{Z}[A_i] \),
2 Proof of Theorem

We will show uniqueness first.

Lemma 3 For every natural number \(e \) there are infinitely many prime powers \(q \) with \((q - 1, e) = 1\).

Proof: Write \(e = 2^k m \) where \(m \) is odd. Let \(n \in \mathbb{N} \). The number \(2^n \) is a unit modulo \(m \) and hence there are infinitely many \(n \) such that \(2^n \equiv 1 \) modulo \(m \). Replacing \(n \) by \(n + 1 \) we see that there are infinitely many \(n \) such that \(2^n \equiv 2 \) modulo \(m \) and hence \(2^n - 1 \equiv 1 \) modulo \(m \). As \(2^n - 1 \) is odd, it follows \((2^n - 1, e) = 1\) for every such \(n \).

Now for the uniqueness of \(N \). Suppose that the pairs \((e, N)\) and \((e', N')\) both satisfy the theorem. Then for every prime power \(q \) one has

\[(q - 1, ee') = 1 \Rightarrow N(q) = \# X(\mathbb{F}_q) = N'(q).\]

As there are infinitely many such prime powers \(q \), it follows that \(N(x) = N'(x) \), as claimed.

We start on the existence of \(N \). For a finite abelian group \(E \) define its exponent \(m = \exp(E) \) to be the smallest number \(m \) such that \(x^m = 1 \) for every \(x \in G \). The exponent is the least common multiple of the orders of elements of \(G \). A finitely generated abelian group \(G \) is of the form \(\mathbb{Z}^r \times E \) for a finite group \(E \). Then \(r \) is called the rank of \(G \) and the exponent of \(E \) is called the exponent of \(G \).

For a finitely generated monoid \(A \) we denote by \(\text{Quot}(A) \) its quotient group. This group comes about by inverting every element in \(A \). It has a natural morphism \(A \to \text{Quot}(A) \) and the universal property that every morphism from \(A \) to a group factors uniquely over \(A \to \text{Quot}(A) \). In the language of \(\mathbb{N} \), \(\text{Quot}(A) \) coincides with the stalk arg \(A \) at the generic point \(\eta \) of \(\text{spec}(A) \).

We define the rank and exponent to be the rank and exponent of \(\text{Quot}(A) \). Note that for a finitely generated monoid \(A \) the spectrum \(\text{spec}(A) \) is a finite set. Hence the underlying space of a scheme \(X \) over \(\mathbb{F}_1 \) of finite type is a finite set. We then define the exponent of \(X \) to be the least common multiple of the numbers \(\exp(\mathcal{O}_p) \), where \(p \) runs through the finite set \(X \).

Let \(X \) be a scheme over \(\mathbb{F}_1 \) of finite type. We may assume that \(X \) is connected. Let \(e \) be its exponent. Let \(q \) be a prime power and let \(D_q \) be the monoid \(\langle \mathbb{F}_q, \times \rangle \). Then \(\# X(\mathbb{F}_q) = \# X(D_q) \), where \(X(D) = \text{Hom}(D, X) \) as usual. For an integer \(k \geq 2 \) let \(C_{k-1} \) denote the cyclic group of \(k - 1 \) elements and let \(D_k \) be the monoid \(C_{k-1} \cup \{0\} \), where \(x \cdot 0 = 0 \). Note that if \(q \) is a prime power, then \(D_q \cong \langle \mathbb{F}_q, \times \rangle \), where \(\mathbb{F}_q \) is the field of \(q \) elements.

Fix a covering of \(X \) by affines \(U_i = \text{spec}A_i \). Since \(\text{spec}(D_k) \) consists of two points, the generic, which always maps to the generic point and the closed point, it follows that

\[X(\text{spec}(D_k)) = \bigcup U_i(\text{spec}(D_k)), \]

and thus the cardinality of the right hand side may be written as an alternating sum of terms of the form

\[\# U_{i_1} \cap \cdots \cap U_{i_k}(\text{spec}(D_k)). \]

Now \(U_{i_1} \cap \cdots \cap U_{i_k} \) is itself a union of affines and so this term again becomes an alternating sum of similar terms. This process stops as \(X \) is a finite set. Therefore, to prove the theorem, it suffices to assume that \(X \) is affine.

So we assume that \(X = \text{spec}(A) \) for a finitely generated monoid \(A \). In this case \(X(\text{spec}(D_k)) = \text{Hom}(A, D_k) \). For a given monoid morphism \(\varphi : A \to D_k \) we have that \(\varphi^{-1} \{0\} \) is a prime ideal in \(A \), call it \(p \). Then \(\varphi \) maps \(S_p = A - \{p\} \) to the group \(C_{k-1} \). So \(\text{Hom}(A, D_k) \) may be identified with the disjoint union of the sets \(\text{Hom}(S_p, C_{k-1}) \) where \(p \) ranges over \(\text{spec}(A) \). Now \(C_{k-1} \) is a group, so every homomorphism from \(S_p \) to \(C_{k-1} \) factorises over the quotient group \(\text{Quot}(S_p) \) and one gets \(\text{Hom}(S_p, C_{k-1}) = \text{Hom}(\text{Quot}(S_p), C_{k-1}) \). Note that \(\text{Quot}(S_p) \) is the group of units in the stalk \(\mathcal{O}_{\eta, p} \) of the structure sheaf, therefore does not depend on the choice of the affine neighbourhood. The group \(\text{Quot}(S_p) \) is a finitely generated abelian group. Let \(r \) be its rank and \(e \) its exponent. If \(e \) is coprime to \(k - 1 \), then there is no non-trivial homomorphism from the torsion part of \(\text{Quot}(S_p) \) to \(C_{k-1} \) and so in that case \(\# \text{Hom}(S_p, C_{k-1}) = (k - 1)^r \cdot \). This proves the existence of \(e \) and \(N \) and finishes the proof of Theorem.

Remark 1. We have indeed proven more than Theorem. For an \(\mathbb{F}_1 \)-scheme \(X \) of finite type we define \(X(\mathbb{F}_q) = \text{Hom}(\text{spec}(\mathbb{F}_q), X) \), where the Hom takes place in the category of \(\mathbb{F}_1 \)-schemes, and \(\mathbb{F}_q \) stands for the multiplicative monoid of the finite field. It follows that

\[X(\mathbb{F}_q) \cong X_{\mathbb{Z}}(\mathbb{F}_q). \]

Further, for \(k \in \mathbb{N} \) one sets \(\mathbb{F}_k = D_k \) then this notation is consistent and we have proven above,

\[(k - 1, e) = 1 \Rightarrow \# X(\mathbb{F}_k) = N(k),\]

where \(e \) now is a well defined number, the exponent of \(X \). Further it follows from the proof, that
the degree of N is at most equal to the rank of X, which is defined as the maximum of the ranks of the local monoids O_p, for $p \in X$.

Remark 2. As the proof of Theorem 1 shows, the zeta-polynomial N_X of X, does actually not depend on the structure sheaf O_X, but on the subsheaf of units O_X^\times, where for every open set U in X the set $O_X^\times(U)$ is defined to be the set of sections $s \in O_X(U)$ such that $s(p)$ lies in $O_X^\times_p$ for every $p \in U$. We therefore call O_X^\times the *zeta sheaf* of X.

3 K-theory

In this section we give two definitions of K-theory over \mathbb{F}_1 and we show that they do coincide for groups, but not in general. This approach follows Quillen [9].

3.1 The $+$-construction

Let A be a monoid. Recall from [1] that $\text{GL}_n(A)$ is the group of all $n \times n$ matrices with exactly one non-zero entry in each row and each column, and this entry being an element of the unit group A^\times. We also write A^\times as the stalk $A_\{\}$ at the closed point c of $\text{spec}(A)$. In other words, we have

$$\text{GL}_n(A) \cong A^n \rtimes \text{Per}(n),$$

where $\text{Per}(n)$ is the permutation group in n letters, acting on A^n by permuting the co-ordinates.

There is a natural embedding $\text{GL}_n(A) \hookrightarrow \text{GL}_{n+1}(A)$ by setting the last co-ordinate equal to 1. We define the group

$$\text{GL}(A) \equiv \lim_{\longrightarrow} \text{GL}_n(A).$$

Similar to the K-theory of rings [9] for $j \geq 0$ we define

$$K_j^+(A) \equiv \pi_j(\text{BGL}(A)^+),$$

where $\text{BGL}(A)$ is the classifying space of $\text{GL}(A)$, the $+$ signifies the $+$-construction, and π_j is the j-th homotopy group. For instance, $K_1^+(\mathbb{F}_1)$ is the j-th stable homotopy group of the spheres [8].

3.2 The Σ-construction

A category is called *balanced*, if every morphism which is epi and mono, already has an inverse, i.e., is an isomorphism.

Let C be a category. An object $I \in C$ is called *injective* if for every monomorphism $M \rightarrow N$ the induced map $\text{Mor}(N, I) \rightarrow \text{Mor}(M, I)$ is surjective. Conversely, an object $P \in C$ is called *projective* if for every epimorphism $M \rightarrow N$ the induced map $\text{Mor}(P, M) \rightarrow \text{Mor}(P, N)$ is surjective. We say that C has enough injectives if for every $A \in C$ there exists a monomorphism $A \hookrightarrow I$, where I is an injective object. Likewise, we say that C has enough projectives if for every $A \in C$ there is an epimorphism $P \twoheadrightarrow A$ with P projective.

A category C is pointed if it has an object 0 such that for every object X the sets $\text{Mor}(X, 0)$ and $\text{Mor}(0, X)$ have exactly one element each. The zero object is uniquely determined up to unique isomorphism. In every set $\text{Mor}(X, Y)$ there exists a unique morphism which factorises over the zero object, this is called the zero morphism. In a pointed category it makes sense to speak of kernels and cokernels. Kernels are always mono and cokernels are always epimorphisms. A sequence

$$0 \rightarrow X \xrightarrow{i} Y \xrightarrow{j} Z \rightarrow 0$$

is called *strong exact*, if i is the kernel of j and j is the cokernel of i. We say that the sequence *splits*, if it is isomorphic to the natural sequence

$$0 \rightarrow X \rightarrow X \oplus Z \rightarrow Z \rightarrow 0.$$

Assume that kernels and cokernels always exist. Then every kernel is the kernel of its cokernel and every cokernel is the cokernel of its kernel. For a morphism f let $\text{im}(f) = \ker(\text{coker}(f))$ and $\text{coim}(f) = \text{coker}(\ker(f))$. If C has enough projectives, then the canonical map $\text{im}(f) \rightarrow \text{coim}(f)$ has zero kernel and if C has enough injectives, then this map has zero cokernel.

Let C be a pointed category and \mathcal{E} a class of strong exact sequences. The class \mathcal{E} is called *closed under isomorphism*, or simply *closed* if every sequence isomorphic to one in \mathcal{E}, lies in \mathcal{E}. Every morphism occurring in a sequence in \mathcal{E} is called an \mathcal{E}-morphism.

A balanced pointed category C, together with a closed class \mathcal{E} of strong exact sequences is called a *quasi-exact category* if

- for any two objects X, Y the natural sequence
 $$0 \rightarrow X \rightarrow X \oplus Y \rightarrow Y \rightarrow 0$$
 belongs to \mathcal{E},

- the class of \mathcal{E}-kernels is closed under composition and base-change by \mathcal{E}-cokernels, likewise, the class of \mathcal{E}-cokernels is closed under composition and base change by \mathcal{E}-kernels.

Let (C, \mathcal{E}) be a quasi-exact category. We define the category QC to have the same objects as C, but a morphism $f : X \rightarrow Y$ is a morphism in QC if and only if f is in \mathcal{E}. The composition in QC is the same as in C.
morphism from X to Y in QC is an isomorphism class of diagrams of the form

$$
\begin{array}{ccc}
S & \rightarrow & Y \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
X & \rightarrow & Y,
\end{array}
$$

where the horizontal map is a E-kernel in C and the vertical map is a E-cokernel. The composition of two Q-morphisms

$$
\begin{array}{ccc}
S & \rightarrow & Y \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
X & \rightarrow & Y,
\end{array}
\quad
\begin{array}{ccc}
T & \rightarrow & Z \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Y & \rightarrow & Z,
\end{array}
$$

is given by the base change $S \times_Y T$ as follows,

$$
\begin{array}{ccc}
S \times_Y T & \rightarrow & T \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
S & \rightarrow & Y \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
X & \rightarrow & Y.
\end{array}
$$

Every E-kernel $i : X \rightarrow Y$ gives rise to a morphism i_1 in QC, and every E-cokernel $p : Z \rightarrow Z$ gives rise to a morphism $p' : X \rightarrow Z$ in QC. By definition, every morphism in QC factorizes as $i p'$ uniquely up to isomorphism.

Let (C, E) be a small quasi-exact category. Then the classifying space BQC is defined. Note that for every object X in QC there is a morphism from 0 to X, so that BQC is path-connected. We consider the fundamental group $\pi_1(BQC)$ as based at a zero 0 of C.

Theorem 4 The fundamental group $\pi_1(BQC)$ is canonically isomorphic to the Grothendieck group $K_0(C) = K_0(C, E)$.

Proof: This proof is taken from [2], where it is done for exact categories, we repeat it for the convenience of the reader. The Grothendieck group $K_0(C, E)$ is the abelian group with one generator $[X]$ for each object X of C and a relation $[X] = [Y][Z]$ for every strong exact sequence

$$
\begin{array}{ccc}
0 & \rightarrow & Y \\
\rightarrow & & \rightarrow \\
\rightarrow & & \rightarrow \\
X & \rightarrow & Z \\
\rightarrow & & \rightarrow \\
\rightarrow & & \rightarrow \\
0 & \rightarrow & 0
\end{array}
$$

in E. According to Proposition 1 of [2], it suffices to show that for a morphism-inverting functor $F : QC \rightarrow Sets$ the group $K_0(C)$ acts naturally on $F(0)$ and that the resulting functor from the category F of all such F to $K_0(C)$-sets is an equivalence of categories.

For $X \in C$ let i_X denote the zero kernel $0 \rightarrow X$, and let j_X be the zero cokernel $X \rightarrow 0$. Let F' be the full subcategory of F consisting of all F such that $F(X) = F(0)$ and $F(i_X) = \text{id}_{F(0)}$ for every X. Any $F \in F$ is isomorphic to an object of F', so it suffices to show that F' is equivalent to $K_0(C)$-sets. So let $F \in F'$, for a kernel $i : X \rightarrow Y$ we have $i i_X = i_Y$, so that $F(i) = \text{id}_{F(0)}$. Given a strong exact sequence

$$
\begin{array}{ccc}
0 & \rightarrow & X \\
\rightarrow & & \rightarrow \\
\rightarrow & & \rightarrow \\
Y & \rightarrow & Z \\
\rightarrow & & \rightarrow \\
\rightarrow & & \rightarrow \\
0 & \rightarrow & 0,
\end{array}
$$

we have $j' i_{Z'}^! = i_{j_X}^!$, hence $F(j') = F(j_X^!)$ in $\text{Aut}(F(0))$. Also,

$$
F(j_X^!) = F(j_X^!j_Z^!) = F(j_X^!)F(j_Z^!).
$$

So by the universal property of $K_0(C)$, there is a unique homomorphism from $K_0(C)$ to $\text{Aut}(F(0))$ such that $[X] \mapsto F(j_X^!)$. So we have a natural action of $K_0(C)$ on $F(0)$, hence a functor from F' to $K_0(C)$-sets given by $F \mapsto F(0)$.

The other way round let S be a $K_0(C)$-set, and let $F_S : QC \rightarrow Sets$ be the functor defined by $F_S(X) = S$, $F_S(i_{j(Y)})$ is multiplication by $[\ker j]$ on S. To see that this is indeed a functor, it suffices to show that $F_S(j' i_{Z'}) = F_S(j')$. It holds $j_i = i_{j_S} j_1$, where i_1 and j_1 are given by the cartesian diagram

$$
\begin{array}{ccc}
A & \rightarrow & X \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Z & \rightarrow & Y.
\end{array}
$$

It follows $F_S(j' i_{Z'}) = F_S(i_{j_S} j_1) = [\ker j_1]$. Using the cartesian diagram one sees that $\ker j_1$ is isomorphic to $\ker j$. It is easy to verify that the two functors given are inverse to each other up to isomorphism, whence the theorem.

□

This theorem motivates the following definition,

$$
K_i(C, E) \overset{\text{def}}{=} \pi_{i+1}(BQC).
$$

For a monoid A we let P be the category of finitely generated pointed projective A-modules, or rather a small category equivalent to it, and we set

$$
K^0_i(A) \overset{\text{def}}{=} K_i(P, E),
$$

where E is the class of sequences in P which are strong exact in the category of all modules. These categories are considered with the cartesian closed structure.
sequences all split, which establishes the axioms for a quasi-exact category.

The two K-theories we have defined, do not coincide. For instance for the monoid of one generator $A = \{1, a\}$ with $a^2 = a$ one has

$$K^+_{i}(A) = \mathbb{Z}, \quad K_{i}^{Q}(A) = \mathbb{Z} \times \mathbb{Z}.$$

The reason for this discrepancy is that $K^+_{i}(A)$ only depends on the group of units A^\times, but $K_{i}^{Q}(A)$ is sensible to the whole structure of A. So these two K-theories are unlikely to coincide except when A is a group, in which case they do, as the last theorem of this paper shows,

Theorem 5 If A is an abelian group, then $K^+_{i}(A) = K_{i}^{Q}(A)$ for every $i \geq 0$.

Proof: For a group each projective module is free, hence the proof of Grayson [3] of the corresponding fact for rings goes through. \[\square\]

So, if A is a group, this defines $K_i(A)$ unambiguously. In particular, computations of Priddy [8] show that $K_i(\mathbb{F}_1) = \pi_i^*$ is the i-th stable homotopy group of the spheres. Based on this, one can use the \mathbb{Q}-construction to show that if A is an abelian group, then

$$K_i(A) = \begin{cases} \mathbb{Z} \times A & i = 0, \\ \pi_i^* & i > 0. \end{cases}$$

For an arbitrary monoid A we conclude that $K^+_{i}(A) = K^+_{i}(A^\times) = K_{i}(A^\times)$, which we now can express in terms of the stable homotopy groups π_i^*.

Further, for every A one has a canonical homomorphism $K^+_{i}(A) \to K_{i}^{Q}(A)$ given by the map $K^{Q}(A^\times) \to K^{Q}(A)$. The latter comes about by the fact that every projective A^\times-module is free. Note that general functoriality under monoid homomorphism is granted for K^+, but not for K^{Q}. This contrasts the situation of rings, and has its reason in the fact that not every projective is a direct summand of a free module.

References

[1] Deitmar, A.: Schemes over \mathbb{F}_1. in: Number Fields and Function Fields - Two Parallel Worlds. Progress in Mathematics, Vol. 239 Geer, Gerard van der; Moonen, Ben J.J.; Schoof, Ren (Eds.) 2005.

[2] Deitmar, A.: Homological algebra over \mathbb{F}_1. and cohomology of \mathbb{F}_1-schemes. [arXiv:math.NT/0508642]

[3] Grayson, D.: Higher algebraic K-theory. II (after Daniel Quillen). Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pp. 217–240. Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976.

[4] Kato, K.: Toric singularities. Amer. J. Math. 116 (1994), no. 5, 1073-1099.

[5] Kurokawa, N.: Zeta functions over \mathbb{F}_1. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180-184 (2006).

[6] Kurokawa, N.: Zeta functions over \mathbb{F}_1. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180-184 (2006).

[7] Manin, Y.: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Columbia University Number Theory Seminar (New York, 1992). Astérisque No. 228, 4, 121-163 (1995).

[8] Priddy, S.: On $\Omega(\infty)S(\infty)$ and the infinite symmetric group. Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pp. 217–220. Amer. Math. Soc., Providence, R.I., 1971.

[9] Quillen, D.: Higher algebraic K-theory, I. Algebraic K-theory, I Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.

[10] Soulé, C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4, no. 1, 217–244, 312 (2004).

[11] Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes. 1957 Colloque d’algèbre supérieure, Bruxelles du 19 au 22 décembre 1956 pp. 261–289 Centre Belge de Recherches Aathématiques Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris.