A recovery of two determinantal representations for derangement numbers

Feng Qi, Jing-Lin Wang and Bai-Ni Guo

Cogent Mathematics (2016), 3: 1232878
A recovery of two determinantal representations for derangement numbers

Feng Qi¹,²,³*, Jing-Lin Wang³ and Bai-Ni Guo¹

Abstract: In the paper, the authors recover, correct, and extend two representations for derangement numbers in terms of a tridiagonal determinant.

Subjects: Advanced Mathematics; Analysis - Mathematics; Calculus; Combinatorics; Discrete Mathematics; Mathematics & Statistics; Number Theory; Real Functions; Science; Special Functions

Keywords: derangement number; determinantal representation; tridiagonal determinant; generating function

2010 Mathematics subject classifications: 05A05; 05A15; 11B83; 11C20; 15A15

1. Introduction

In combinatorics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. The number of derangements of a set of size \(n \) is called the derangement number and sometimes denoted by \(!n \). The problem of counting derangements was first considered in 1708 and solved in 1713 by Pierre Raymond de Montmort, as did Nicholas Bernoulli at about the same time. Derangement numbers \(!n \) arise naturally in many different contexts. More generally, the number of derangements in various families of transitive permutation groups has been studied extensively in recent years. For more information on \(!n \), please refer to Aigner (2007), Andreescu and Feng (2004), Wilf (1994, 2006) and plenty of references therein.

Received: 07 April 2016
Accepted: 31 August 2016
Published: 23 September 2016

*Corresponding author: Feng Qi, Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region 028043, China; Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City 300387, China
E-mails: qifeng618@gmail.com, qifeng618@hotmail.com

Reviewing editor: Prasanna K. Sahoo, University of Louisville, USA

Additional information is available at the end of the article

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
The first ten derangement numbers \(D_n \) for \(0 \leq n \leq 9 \) are
\[
0, 1, 2, 9, 44, 265, 1854, 14833, 133496.
\] (1)

In Kittappa (1993, p. 216, Example 2), it was given that
\[
\begin{pmatrix}
2 & -1 & 0 & \ldots & 0 & 0 & 0 \\
3 & 3 & -1 & \ldots & 0 & 0 & 0 \\
0 & 4 & 4 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & n-1 & -1 & 0 \\
0 & 0 & 0 & \cdots & n & n & -1 \\
0 & 0 & 0 & \cdots & 0 & n+1 & n+1 \\
\end{pmatrix}, \quad n \in \mathbb{N}.
\] (2)

In Janjić (2012, p. 8, 5°) and Janjić (2011, p. 5, 5°), it was deduced that
\[
\begin{pmatrix}
1 & 1 & 0 & \ldots & 0 & 0 \\
-1 & 1 & 2 & 0 & \ldots & 0 \\
0 & -1 & 2 & 3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & r-1 & r \\
0 & 0 & 0 & \cdots & -1 & r \\
\end{pmatrix}, \quad r \in \mathbb{N}.
\] (3)

By the determinantal expression (3), we figure out that \(D_2 = 1, D_3 = 3, D_4 = 6 \), and \(D_5 = 24 \). It is clear that the latter two values \(6 \) and \(24 \) do not coincide with the numbers \(9 \) and \(44 \) in (1). Therefore, the expression (3) appeared in Janjić (2011, 2012) is slightly wrong.

It is known in Comtet (1974, p. 182, Theorem B) that derangement numbers \(D_n \) have an exponential generating function
\[
D(x) = \frac{e^{-x}}{1-x} = \sum_{n=0}^\infty \frac{D_n x^n}{n!}.
\] (4)

The aim of this paper is, by computing the \(n \)th derivative of the exponential generating function \(D(x) \), to recover, correct, and extend the above determinantal representations (2) and (3) for derangement numbers \(D_n \).

THEOREM 1 For \(n \in \{0\} \cup \mathbb{N} \), derangement numbers \(D_n \) can be represented by a tridiagonal \((n+1) \times (n+1) \) determinant
\[
\begin{pmatrix}
-1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & -3 & 3 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & n-3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & -n(n-2) & n-2 & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-1 \\
\end{pmatrix} = -|\mathbf{e}_1^{(n+1)\times(n+1)}|^2.
\] (5)
2. Lemma
In order to recover Theorem 1, we need the following lemma which was reformulated in Qi (2015, Section 2.2, p. 849), Qi and Chapman (2016, p. 94), and Wei and Qi (2015, Lemma 2.1) from Bourbaki (2004, p. 40, Exercise 5).

Lemma 1 Let $u(x)$ and $v(x) \neq 0$ be differentiable functions, let $U_{(n+1)\times 1}(x)$ be an $(n+1) \times 1$ matrix whose elements $u_{k,1}(x) = (e^x)^{k-2} = e^{x} \rightarrow 1$ for $1 \leq k \leq n+1$ and $V_{(n+1)\times n}(x)$ be an $(n+1) \times n$ matrix whose elements $v_{i,j}(x) = (1+x)^{i-j}$ for $1 \leq i \leq n+1$ and $1 \leq j \leq n$, and let $W_{(n+1)\times (n+1)}(x)$ denote the determinant of the $(n+1) \times (n+1)$ matrix

$$W_{(n+1)\times (n+1)}(x) = \left[\begin{array}{c|c} U_{(n+1)\times 1}(x) & V_{(n+1)\times n}(x) \end{array} \right].$$

Then the nth derivative of the ratio $\frac{u(x)}{v(x)}$ can be computed by

$$\frac{d^n}{dx^n} \left[\frac{u(x)}{v(x)} \right] = (-1)^n \frac{W_{(n+1)\times (n+1)}(x)}{v^{n+1}(x)}$$

(6)

3. Proof of Theorem 1
Now we are in a position to prove Theorem 1.

Applying $u(x) = e^x$ and $v(x) = 1 + x$ in Lemma 1 gives

$u_{k,1} = (e^x)^{(k-1)} = e^x \rightarrow 1$

as $x \rightarrow 0$ for $1 \leq k \leq n+1$ and

$$v_{i,j} = \binom{i-1}{j-1}(1+x)^{i-j} = \begin{cases} \binom{i-1}{j-1}(1+x), & i-j = 0 \\ \binom{i-1}{j-1}, & i-j = 1 \\ 0, & i-j \neq 0,1 \end{cases}$$

$= \begin{cases} 1+x, & i-j = 0 \\ i-1, & i-j = 1 \\ 0, & i-j \neq 0,1 \end{cases}$

as $x \rightarrow 0$ for $1 \leq i \leq n+1$ and $1 \leq j \leq n$. Consequently, employing (6) reveals
From (4), it follows that

\[\frac{d^n D(-x)}{dx^n} = \frac{(-1)^n}{(1 + x)^{n+1}} \]

is equal to the determinant

\[
\begin{vmatrix}
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
1 & 0 & 2 & 1 & \ldots & 0 & 0 \\
1 & 0 & 0 & 3 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & 0 & \ldots & 1 & 0 \\
1 & 0 & 0 & 0 & \ldots & n - 1 & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & n \\
\end{vmatrix}
\]

as \(x \to 0 \). From (4), it follows that

\[D(-x) = \frac{e^x}{1 + x} = \sum_{k=0}^{\infty} (-1)^n n! \frac{x^n}{n!}. \]

This implies that

\[
(-1)^n n! = \lim_{x \to 0} \frac{d^n D(-x)}{dx^n} = (-1)^n
\]

Subtracting the \(n \)th row from the \((n+1)\)th row, then the \((n-1)\)th row from the \(n \)th row, \ldots, then the 1st row from the 2nd row of the above determinant leads to

\[!n = \begin{vmatrix}
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & 1 & \ldots & 0 & 0 \\
0 & 0 & -2 & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & n - 2 & 1 \\
0 & 0 & 0 & 0 & \ldots & -(n-1) & n - 1 \\
\end{vmatrix}
\]

which can be readily rearranged as the formula (5). The proof of Theorem 1 is complete.

Remark 1 On 10 May 2016, Dr Wiwat Wanicharpichat at Naresuan University in Thailand told the first author that the matrix
is known as the “population projection matrix”. See (Kirkland & Neumann, 2013, p. 48, Equation (4.1)).

Remark 2 In the paper (Qi, 2016), an alternative proof of Theorem 1 was given.

Acknowledgements
The authors thank Dr Sophie Moufawad at IFP Energies nouvelles in France, Dr Yuri S. Semenov at Moscow State University of Railway Engineering in Russia, Dr Wiwat Wanicharpichat at Naresuan University in Thailand, and several other mathematicians for their observations and discussion on the determinant in (7) at the ResearchGate website http://www.researchgate.net/post/What_is_the_name_of_the_matrix_or_determinant_showed_by_the_picture. The authors appreciate several anonymous mathematicians for their valuable comments on the original version of this paper, especially for their recommending the papers (Janjić, 2011, 2012, Kittappa, 1993) and related results in them. The authors appreciate the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Funding
The authors received no direct funding for this research.

Author details
Feng Qi1,2,3
E-mails: qifeng618@gmail.com, qifeng618@hotmail.com
ORCID ID: http://orcid.org/0000-0001-6239-2968
Jing-Lin Wang1
E-mail: jing-lin.wang@hotmail.com
ORCID ID: http://orcid.org/0000-0001-6725-533X
Bai-Ni Guo1
E-mails: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
ORCID ID: http://orcid.org/0000-0001-6156-2590

1 Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China.
2 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region 028043, China.
3 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City 300387, China.

Citation information
Cite this article as: A recovery of two determinantal representations for derangement numbers, Feng Qi, Jing-Lin Wang & Bai-Ni Guo, Cogent Mathematics (2016), 3: 1232878.
