Effect of Temperature on the Life Cycle of Euspilotus azureus (Coleoptera: Histeridae), a Predator of Forensic Importance

Authors: Caneparo, Maria Fernanda C., Fischer, Marta L., and Almeida, Lucia M.

Source: Florida Entomologist, 100(4) : 795-801

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.100.0404
Effect of temperature on the life cycle of *Euspilotus azureus* (Coleoptera: Histeridae), a predator of forensic importance

Maria Fernanda C. Caneparo*, Marta L. Fischer*, and Lucia M. Almeida

Abstract

Euspilotus azureus (Sahlberg, 1823) (Coleoptera: Histeridae) is one of the most frequently sampled species of Histeridae on carcasses in South America. Determining its physiological responses to different temperatures is essential for providing development rate equations to estimate the period of insect activity and postmortem interval of the body. Thus, to evaluate the influence of temperature on their life cycle and to understand their developmental threshold, experiments were conducted under laboratory conditions at 6 different temperatures (10, 15, 20, 25, 30, and 35 °C). All *E. azureus* life stages were responsive to thermal variations. Eggs of *E. azureus* did not hatch at extreme temperatures (10 and 35 °C) and the development time from egg to adult was longer at low temperatures (15 and 20 °C). Their biological responses, such as mean number of eggs produced, the number of eggs per egg mass, and development time at different temperatures, indicate that 20 to 25 °C is optimal for growth. The results suggest that *E. azureus* shows tolerance and adaptability in its ontogenetic stages over a wide temperature range, which is common in generalist species. Also, this study provides the development rate equation for the species, which is applicable to studies of forensic entomology.

Key Words: development time; histerid; medico-legal entomology; phenotypic plasticity.

The use of carrion insects for postmortem interval (PMI) estimation is a common application of forensic entomology (Wells & LaMotte 2010). The maximum PMI (PMI_{max}) can be calculated mainly by the successional pattern of insects on the carcass, and the minimum (PMI_{min}) by the developmental rate of immatures collected, usually through accumulated degree-day models (Catts 1990; Tabor et al. 2004; Wells & LaMotte 2010). However, both approaches need previously known biological data available in the literature. Among the insect groups, Dipteran species are more often used for time of death estimation through the PMI_{min} approach than coleopterans, and the potential use of beetle development time is largely neglected (Midgley et al. 2009; Midgley & Viloria 2009, 2010; Lecheta et al. 2015). Dipteran species are more often used for time of death estimation through the PMI_{min} approach than coleopterans, and the potential use of beetle development time is largely neglected (Midgley et al. 2009; Midgley & Villet 2009; Bajerlein et al. 2011). Thus, not all entomological resources available on a death scene are being used to their fullest potential, which could jeopardize and mislead the PMI estimation.

Coleopterans are commonly collected on carcasses in Brazil, and several studies highlight Histeridae as one of the most-recorded families in forensic research (Monteiro-Filho & Penereiro 1987; Carvalho et al. 2000; Carvalho & Linhares 2001; Mise et al. 2007, 2010; Corrêa et al. 2014). Histerid larvae and adults are voracious predators that are sampled on carcasses throughout the decay process, feeding on the immature stages of Diptera (Nuorteva 1970). *Euspilotus azureus* (Sahlberg, 1823) (Coleoptera: Histeridae) stands out as the most-collected histerid in faunistic surveys associated with carcasses in Brazil (Souza and Linhares 1997; Mise et al. 2007, 2010). It is well known that *E. azureus* has a wide geographical distribution, occurring in different environments with huge variations in temperature (Mazur 2011; Aballay et al. 2012; Degallier et al. 2012). However, its behavior on carcasses, and other biological aspects (life cycle, fertility, egg viability, mortal-

1*Universidade Federal do Paraná, Department of Zoology, Curitiba, Paraná, 81531-980, Brazil; E-mail: mafercaneparo@gmail.com (M. F. C. C.);

lalmeida51@gmail.com (L. M. A.)

2Pontifícia Universidade Católica do Paraná, Centro de Ciências Biológicas e da Saúde, Curitiba, Paraná, 81210, Brazil; E-mail: marta.fischer@outlook.com (M. L. F.)

*Corresponding author; E-mail: mafercaneparo@gmail.com
ity, thresholds) at different temperatures, are poorly known. Besides enriching our knowledge about the life history of *E. azureus*, this information can be important for estimating the PMI by using the developmental rate of the immature stages. The objectives of this study were to determine the influence of temperature on the life cycle parameters of *E. azureus*, and to obtain the developmental rate equations for use in PMI calculation.

Materials and Methods

The study was carried out at the Department of Zoology, Universidade Federal do Paraná, from July 2011 to May 2013. Specimens of *E. azureus* were collected from fragments of chicken or pork. The collected beetles were raised on larvae of *E. azureus* were collected from fragments of chicken or pork. The collection site was the Sede Central do Museu de Zoologia, Campus do respecto, Curitiba, Paraná, Brazil (Fig. 1), kept at 25 °C, with a 12:12 h L:D photoperiod. Because of their different consumption capacities, males of *E. azureus* were fed daily with 1 second instar *S. chlorogaster* larva, and females were provided with 3 larvae.

To study the developmental parameters of *E. azureus*, a virgin male and female from the breeding stock were paired in a new experimental arena (as mentioned above). At this time, the male was separated from the female after mating and kept in a different container until death. The female was kept in the same copulation arena to which another 200 g of sifted commercial topsoil was added to provide a substrate for oviposition, and moistened filter paper to avoid dehydration. The same methodology was used for each temperature tested (10, 15, 20, 25, 30, and 35 °C) and the reproductive variables of 30 couples per temperature were tested. The eggs from each mated female were placed in 100 ml plastic pots with moistened filter paper and sifted topsoil and maintained at the respective temperatures. The numbers of eggs and egg masses per pair, the duration of each instar, and mortality rates were recorded. At 15 °C, 122 individuals were monitored from egg to adult; 138 at 20 °C; 282 at 25 °C; and 150 at 30 °C.

All data collected in the aforementioned experiments were analyzed using the R statistical software (R Development Core Team 2015 - R 3.2.3 for Windows) program. To evaluate if there were differences in the duration of the *E. azureus* ontogenetic stages, fertility, and survival rate between temperatures, an adjusted generalized linear model (GLM) with family distribution Gaussian (inverse) was considered. An adjusted GLM with family Gamma (identity) and a Tukey test (*P* ≤ 0.05) for a posteriori comparison were made to evaluate the sex ratio. Both GLM and correlation tests were used to evaluate if there were variations in the developmental rate of *E. azureus* at different temperatures.

The analysis was performed for each immature stage (egg, 1st, 2nd instar larva, and pupa) using development time as the response variable and temperature as the predictor variable, as described by Lecheta et al. (2015). The libraries used on GLM tests were MASS (Venables & Ripley 2002) and effects (Fox 2003), and the library used on the a posteriori test was multcomp (Hothorn et al. 2008).

![Fig. 1. Experimental arena (250 ml pot) containing 200 g of sifted commercial topsoil, where *Euplotus azureus* were paired under controlled conditions (15, 20, 25, and 30 °C; photoperiod 12:12 h L:D; RH 65 ± 10%).](https://bioone.org/journals/Florida-Entomologist on 13 Sep 2020 Terms of Use: https://bioone.org/terms-of-use)
The fertility parameters of *E. azureus* at different temperatures (viability of the eggs, number of eggs deposited, number of eggs per egg mass, and eggs laid per female) are presented in Table 4. The egg viability was about 90% at all temperatures, except at 30 °C, where the rate dropped to 70%. Mean oviposition was significantly higher at 25 and 30 °C than at the lower 2 temperatures. The mean number of eggs per egg mass was highest (5.8 ± 1.4) at 25 °C, differing statistically from all the other temperatures. The number of eggs per female was low at 15 °C when compared to 25 and 30 °C. Values of each fertility parameter suggest that the optimum temperature for *E. azureus* is about 25 °C (Table 4).

The development rate (1/D) line and the adjusted time of growth curves for each immature stage, and for total development from egg to adult of *E. azureus*, are shown in Figure 2. Development rate and temperature were positively correlated for all stages: egg (*R*² = 0.8992, *P* = 0.0342), L1 (*R*² = 0.8782, *P* = 0.04147), L2 (*R*² = 0.8992, *P* = 0.03419), pupa (*R*² = 0.8970, *P* = 0.03493) and egg to adult (*R*² = 0.8992, *P* = 0.0342) (Table 5). The minimum threshold temperature (*t*₀), thermal constant (K in degree-d), and developmental rate equations for each immature stage of the species were calculated and presented in Table 5. The equations had a good fit, indicating good data suitability to the linear model, and the temperature explained 87 to 89% of the development rate variation, depending on the ontogenetic stage (Table 5). The parameters *t*₀ and *K* were 9.31 °C and 37.75 d °C for egg hatch; 4.2 °C and 17.68 d °C for the L1; 5.96 °C and 25.74 d °C for the L2; 3.78 °C and 37.58 °C for the total development (egg to adult emergence) (Table 5). Overall, the minimum development threshold was similar for all developmental stages (mean 5.8 °C), except the L1 (9.31 °C).

Discussion

Temperature had a broad influence on the biology of *E. azureus*, including life-stage duration, number of eggs per egg mass, survival, and development time. Understanding these biological parameters can help determine the species dynamics and the interaction of *E. azureus* with the carcass or conspecifics, and bring more accuracy to PMI estimation. Despite the fact that development does not continue under high and low constants temperatures, these are not necessarily lethal temperatures under variable conditions, such as the field. In the field there are refuge sites and various microenvironmental abiotic and biotic factors that may vary significantly, affecting the occurrence and persistence of a species. However, despite the considerations cited above, the species phenotypic plasticity or thresholds can be reliably tested, achieving results similar to those in the natural environment, when comparing different temperatures using this methodology (Jaro-sik et al. 2004). Based on the results of the current study and reported previously (Bajerlein et al. 2011; Vanlaerhoven & Anderson 1999), histerid eggs seem to be susceptible to thermal variation. *Margarinotus striola succicola* (Thomson) and *Saprinus semistriatus* (Scrida) (Coleoptera: Histeridae) oviposit eggs on the ground near the carcass (Bajerlein et al. 2011) where the soil temperature is cooler due to the lack of larval mass (Vanlaerhoven & Anderson 1999). A similar behavior was observed in the present study where the female *E. azureus* oviposited on the bottom of the arena, after digging the soil above it, corroborating the observation on *Phelister panamensis* LeConte (Coleoptera: Histeridae) (Summerlin et al. 1991). It suggests that the eggs of *E. azureus* are sensitive to thermal variation; and that other factors such as moisture and the presence of natural enemies could influence the oviposition site temperature as well.

The finding that egg viability is lower at 30 °C can possibly be explained by the increased occurrence of pathogenic fungi in the breeding site at the higher temperature. Fungal contamination is one of the major problems affecting the breeding of insects (Sikorowski & Lawrence 1994) and was considered as a determinant factor for Curculionidae species (Jordão et al. 1997). Insects exposed to stress, such as lack of food or exposure to high temperatures, may be more susceptible to the action of pathogens, which is indicated by a change in their life cycle and the development of their ontogenetic stages (Sikorowski & Lawrence 1994; Rampelotti et al. 2007). Another possibility is that eggs dehydrate severely at high temperatures. Browning (1953) observed *Gyrollulus commodus* Walker (Orthoptera: Gryllidae) egg weight at different temperatures and noticed there was significant water loss from the eggs at higher temperatures, affecting egg viability. Although insect eggs have the chorion as an external protective structure that prevents dehydration severely at high temperatures, Browning (1953) observed *Gyrollulus commodus* Walker (Orthoptera: Gryllidae) egg weight at different temperatures and noticed there was significant water loss from the eggs at higher temperatures, affecting egg viability. Although insect eggs have the chorion as an external protective structure that prevents dehydration severely at high temperatures, Browning (1953) observed *Gyrollulus commodus* Walker (Orthoptera: Gryllidae) egg weight at different temperatures and noticed there was significant water loss from the eggs at higher temperatures, affecting egg viability. Although insect eggs have the chorion as an external protective structure that prevents dehydration severely at high temperatures.
Table 3. Sex ratio (proportion male or female ± SD) of *Euspiolus azureus* adults under laboratory conditions maintained at 4 temperatures, and with photoperiod of 12:12 h L:D and RH of 65 ± 10%.

Sex	15 °C	20 °C	25 °C	30 °C
Male	0.43 ± 0.14 aA	0.57 ± 0.19 abA	0.57 ± 0.11 bA	0.47 ± 0.11 abA
Female	0.57 ± 0.13 ab	0.43 ± 0.19 bB	0.43 ± 0.14 bB	0.53 ± 0.11 abA

Means within a row followed by the same small letters are not significantly different. Means that differed between sexes are followed by different capital letters (P < 0.05).

Table 4. Biological parameters of *Euspiolus azureus* under laboratory conditions maintained at 4 temperatures, and with photoperiod of 12:12 h L:D and RH of 65 ± 10%.

Parameters	15 °C	20 °C	25 °C	30 °C
Egg viability	0.9 ± 0.3 a	0.9 ± 0.3 a	0.9 ± 0.2 a	0.7 ± 0.1 b
Oviposition	4.3 ± 1.1 a	6.1 ± 2.1 a	10.7 ± 2.7 b	9 ± 2.21 b
Eggs per egg mass	3.4 ± 0.8 a	4.3 ± 1.3 b	5.8 ± 1.4 c	3.9 ± 1.2 ab
Eggs per female	15.1 ± 5.6 a	23.2 ± 7 ab	28 ± 8.5 b	27.3 ± 8.3 b

Means within a row followed by the same letter are not significantly different (P < 0.05).
However, in assessing fitness, it is necessary to consider several responses of the insect, such as fertility, the rate of development, survival, and longevity. Not always do all responses converge on a single temperature. Sometimes only the majority of results display good performance at a common temperature, as for each parameter there is an optimum. Based on the longevity, survival rates, egg viability, number of eggs laid per female and per egg mass, the optimal temperature for *E. azureus* seemed to be 20–25 °C. Knowing
the thermal limits and developmental patterns of the species may help improve estimating PMI_{in}, in different contexts or environments.

Although the temperature is an important abiotic factor, it is not the only one that influences the use of insects in a forensic perspective. The different environments where the carcasses occur (Hanski 1986) show different moisture content, vegetation composition, soil, amount of light, and altitude, determining the rate of decomposition factors and consequently, attraction to insects (Matuszewski et al. 2010). For example, Gerard & Ruf (1997) observed that temperature influenced the biology of *Anthernocerus australis* Hope (Coleoptera: Dermestidae), but other abiotic factors such as relative humidity and photoperiod affect the life cycle to a similar extent. Thus, complementary research controlling different abiotic factors is necessary, given that the conditions affecting the rate of decomposition of the carcass and the occurrence and abundance of the insect fauna remain the same (Hanski 1986). Such information will be important for applicability of *E. azureus* in forensic cases in regions with diverse biomes.

In summary, this study documented the effects of temperature on development time of *E. azureus*. Although temperature limits development under extreme conditions (10 or 35 °C), the species shows tolerance and adaptability over a wide temperature range, which is common among generalist species. Life cycle aspects of this study provide information for future forensic research and case reports. The important outcome of this study was the development rate equations which may find applicability in PMI estimation, where immatures of *E. azureus* are sampled. The combination of these data with the temperature of the death scene and the time of arrival of the species in the carcass (which are available in the literature) may help determine more precise PMI estimation.

Acknowledgments

We would like to thank Camila C. F. da Costa and Mauricio O. Moura for the statistical analysis, Melissa C. Lecheta for the Diptera breeding method; Camila F. C. Guedes, Al Leyva and James Smith for revising the English. This is contribution number 1916 of the Department of Zoology, UFPFR. Gratitude is also expressed to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Masters fellowship to the corresponding author and to LMA [309764/2013-0].

References Cited

Aballay FH, Arriagada G, Flores GE, Centeno ND. 2012. An illustrated key to and diagnoses of the species of Histeridae (Coleoptera) associated with decaying carcasses in Argentina. ZooKeys 261: 61–84.

Ali MF, Mashaly AM, Mohammed AA, Mohammed AEM. 2011. Effect of temperature and humidity on the biology of *Attagenus fasciatus* (Thunberg) (Coleoptera: Dermestidae). Journal of Stored Products Research 47: 25–31.

Amendt J, Richards CS, Campobasso CP, Zehner R, Hall M. 2011. Forensic entomology: applications and limitations. Forensic Science, Medicine and Pathology 7: 379–392.

Bajeraldin D, Matuszewski S, Konwerski S. 2011. Insect succession on carrion: seasonality, habitat preference and residency of histerid beetles (Coleoptera: Histeridae) visiting pig carrion exposed in various forests (Western Poland). Polish Journal of Ecology 59: 787–797.

Browning TO. 1953. The influence of temperature and moisture in the uptake and loss of water in the eggs of *Gryllus commodus* Walker (Orthoptera: Gryllidae). Journal of Experimental Biology 30: 104–115.

Carvalho LML, Thysen PJ, Linhares AX, Paixões FAB. 2000. A checklist of arthropods associated with pig carrion and human corpses in southeastern Brazil. Memórias do Instituto Oswaldo Cruz 95: 135–138.

Carvalho LML, Linhares AX. 2001. Seasonality of insect succession and pig carcass decomposition in a natural forest area in southeastern Brazil. Journal of Forensic Science 46: 604–608.

Castro CF, Almeida LM, Penteado RC. 2011. The impact of temperature on biological aspects and life table of *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae). Florida Entomologist 94: 923–932.

Caterino MS, Tishechkin AK. 2006. DNA identification and morphological description of the first confirmed larvae of *Hetaerinae* (Coleoptera: Histeridae). Systematic Entomology 31: 405–418.

Catts EP. 1990. Analyzing entomological data, pp. 124–137 In Catts EP, Haskell NH [Eds], Entomology & Death: A Procedural Guide. Joyce’s Print Shop, Clemson, South Carolina, USA.

Corrêa RC, Almeida LM, Moura MO. 2014. Coleoptera associated with buried carrion: potential forensic importance and seasonal composition. Journal of Medical Entomology 51: 1057–1066.

Costa C, Ide S. 2006. Crescimento e Muda. Insetos Imaturas: Metamorfose e Identificação Costa A, Ide S, Simonka CE [Eds], Holos Editora, Ribeirão Preto, São Paulo, Brazil.

Degallier N, Arriagada G, Kanaa P, Moura DP, Tishechkin AK, Caterino MS, Warner WB. 2012. Coleoptera Histeridae of Guyane. VII Compléments au catalogue avec des données sur la faune du Surinam et une contribution à la connaissance des Saprininae. Coléoptères de Guyane, ACOREP-France: 33–52.

Ewer DW, Ewer RF. 1941. The biology and behavior of *Ptilinus tectus* Boie. (Coleoptera, Ptinidae), a pest of stored products. III. The effect of temperature and humidity on oviposition, feeding and duration of life cycle. The Journal of Experimental Biology 18: 290–305.

Fox J. 2003. Effect displays in R for generalised linear models. Journal of Statistical Software 8: 1–27. http://www.jstatsoft.org/v08/i15/

Gerard PJ, Ruf LD. 1997. Development and biology of the immature stages of *Anthernocerus australis* Hope (Coleoptera: Dermestidae). Journal of Stored Products Research 33: 341–357.

Goff ML. 1991. Comparison of insect species associated with decomposing remains recovered inside of dwellings and outdoors on the island of Oahu. Journal of Forensic Science 36: 748–753.

Gotthard K. 2001. Growth strategies of ectothermic animals in temperate environments, pp. 287–303 In Atkinson D, Thorndyke M [Eds], Environment and Animal Development: Genes, Life Histories, and Plasticity. BIOS Scientific Publishers, Oxford, United Kingdom.

Grassberger M, Reiter C. 2001. Effect of temperature on *Lucilia sericata* (Diptera: Calliphoridae) development with special reference to the isomagelen- and isomorphogen-diagram. Forensic Science International 120: 32–36.

Grassberger M, Friedrich E, Reiter C. 2003. The blowfly *Chrysomya albiceps* (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. International Journal of Legal Medicine 117: 75–81.

Hanski I. 1986. Nutritional ecology of dung and carrion feeding insects, pp. 837–884 In Slansky F, Rodriguez GJ [Eds], Nutritional Ecology of Insects, Mites and Spiders. John Wiley, New York, USA.

Higley LG, Haskell NH. 2010. Insect development and forensic entomology, pp 389–405 In Byrd JH, Castner JL [Eds], Forensic Entomology: The Utility of Arthropods in Legal Investigations. CRC Press, Boca Ratón, Florida, USA.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

Table 5. Minimum threshold temperature (t, in °C), thermal constant (K in degree-d), regression formulae of developmental rate (1/D) with the temperature of the death scene (T) and correlation (R²) of each developmental stage of *Euspilotus azureus* reared at 4 temperatures, and with photoperiod of 12:12 h L:D and RH 65 ± 10%.

Stage	t	K	Development regression equation	R²
Egg	9.31	37.75	1/D = 0.2477882 + (0.02660511 x T)	0.8992
1st instar larva	4.20	17.68	1/D = 0.023776590 + (0.005654038 x T)	0.8782
2nd instar larva	5.96	25.74	1/D = 0.02315918 + (0.003848116 x T)	0.8992
Pupa	3.78	26.20	1/D = 0.001064126 + (0.003815587 x T)	0.8970
Egg to Adult	9.31	37.58	1/D = 0.2477882 + (0.02660511 x T)	0.8992
Caneparo et al.: Effect of temperature on Euspirotus azureus life cycle

Jordão AL, Viana AM, Villela EF. 1997. Criação de imaturos de Cosmopolites sor-didus (Germar) em dietas natural e artificial. Revista Ceres 44: 592–595.

Jarosik V, Kratochvíl L, Honěk A, Dixon AF. 2004. A general rule for the dependence of developmental rate on temperature in ectothermic animals. Proceedings of the Royal Society of London B: Biological Sciences 271: 219–221.

Keena MA. 2006. Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) adult survival, reproduction, and egg hatch. Environmental Entomology 35: 912–921.

Kilian A, Mądra A. 2015. Comments on the biology of Sciodrepoides watsoni watsoni (Spence, 1813) with descriptions of larvae and pupa (Coleoptera: Leiodidae: Cholevinae). Zootaxa 3955: 45–64.

Kontodimas DC, Eliopoulos PA, Stathis GJ, Economou LP. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Plano-coccus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environmental Entomology 33: 2–10.

Kovarik PW, Passoa S. 1993. Chaetotaxy of larval Histeridae (Coleoptera: Hydrophilidae) based on a description of Onthophagus nodatus LeConte. Annals of the Entomological Society of America 86: 560–576.

Lamana ML, Miller JC. 1998. Field observations on Harmania axyridis Pallas (Coleoptera: Coccinellidae) in Oregon. Biological Control 6: 232–237.

Lawrence JF. 1991. Order Coleoptera, pp. 514-515 In Stehr FW [Ed]. Immature insects. Volume 2. Kendall/Hunt Publishing Company, Dubuque, Iowa, USA.

Lechta MC, Thyssen PI, Moura MO. 2015. The effect of temperature on development of Sarcosomis chloragaster, a blowfly of forensic importance. Forensic Science, Medicine and Pathology 11: 538–543.

Matuszewski S, Bajerlein D, Konwerski S, Szpila K. 2010. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: Composition and residency patterns of carrion fauna. Forensic Science International 195: 42–51.

Mazur S. 2011. A concise catalogue of the Histeridae (Insecta: Coleoptera). Warsaw University of Science – SGGW Press, Warsaw, Poland.

Midgley JM, Richards CS, Villet MH. 2009. The utility of Coleoptera in forensic investigations. In Current Concepts in Forensic Entomology. Springer Verlag, Dordrecht, The Netherlands.

Midgley JM, Villet MH. 2009. Development of Thanatophilus michus (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. International Journal of Legal Medicine 123: 103–108.

Mise KM, Linhares AX. 1997. Diptera and Coleoptera of potential forensic importance in southeastern Brazil: relative abundance and seasonality. Medical and Veterinary Entomology 11: 8–12.

Summerlin JW, Meola SM, Fincher GT, Roth J. 1991. Laboratory observations on the life cycle and habits of two species of Histeridae (Coleoptera): Hister coenosus and H. incertus. Annals of the Entomological Society of America 74: 316–319.

Summerlin JW, Byrd JH, Castner JL [Eds], Forensic Entomology: The Utility of Arthropods in Legal Investigations. CRC Press, Boca Raton, Florida, USA.