Asomatognosia: Structured Interview and Assessment of Visuomotor Imagery

Gianluca Saetta1,2,3†, Olivia Zindel-Geisseler1†, Franziska Stauffacher4, Carlo Serra5, Gilles Vannuscorps6 and Peter Brugger3,4,*

1 Neuropsychology Unit, University Hospital Zurich, Zurich, Switzerland, 2 Department of Psychology, University of Zurich, Zurich, Switzerland, 3 Psychiatric University Clinic Zurich, Zurich, Switzerland, 4 Neuropsychology Unit, Rehabilitation Centre Valens, Valens, Switzerland, 5 Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland, 6 Institute of Psychological Sciences and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Asomatognosia designates the experience that one’s body has faded from awareness. It is typically a somaesthetic experience but may target the visual modality (“asomatoscopy”). Frequently associated symptoms are the loss of ownership or agency over a limb. Here, we elaborate on the rigorous nosographic classification of asomatognosia and introduce a structured interview to capture both its core symptoms and associated signs of bodily estrangement. We additionally report the case of a pure left-sided hemiasomatognosia occurring after surgical removal of a meningioma in the right atrium. Despite the wide lesions of the right angular gyrus and of the temporo-parietal junction, the patient did not present visuospatial deficits or bodily awareness disorders other than hemiasomatognosia. The patient and 10 matched controls’ motor imagery was formally assessed with a limb laterality task in which they had to decide whether hands and feet presented under different angles of rotation depicted a left or a right limb. Bayesian statistics showed that patient’s reaction times were significantly impaired exclusively for the left foot and especially for mental rotations requiring somatomotor rather than visual limb representations. This was in accordance with a more enduring left-sided hemiasomatognosia for the lower limbs confined to the somesthetic modality. Our findings shed new light on motor imagery in asomatognosia and encourage the future use of the structured interview introduced here. In addition, the limb laterality task may capture phenomenological elements of a case by chronometric means. This allows a more standardized reporting of phenomenological detail and improves communication across different clinical facilities.

Keywords: asomatognosia, bodily self-consciousness, neuropsychological assessment, visuomotor imagery, right parietal lobe

INTRODUCTION

Asomatognosia is defined as the impression that one’s own body has ceased to exist (Critchley, 1953). Most often, only one half of the body (usually the left) is affected (“hemiasomatognosia”); hence, “the characteristic feature is a subjective sensation as if there existed nothing to the left of the midline of the body” (Critchley, 1953, p. 237). This sensation is most typically a bodily feeling,
i.e., the loss is somesthetic (“pure asomatognosia”), but it may, either in addition or in isolation, involve the visual modality. Thus, a patient of Carp’s felt the right half of her body absent but could convince herself that this somesthetic impression was, in fact, illusory by looking at the missing side and seeing it (somesthetic, but no visual asomatognosia; Carp, 1952). Conversely, a patient with a right thalamic tumor felt his sensation of an absent left hemibody confirmed by looking at the void body space and not seeing his left side (somesthetic and visual asomatognosia; Stockert, 1934). Cases in which the own body or parts of it have faded from vision but can still be felt are also described but should explicitly be referred to as visual asomatognosia or asomatognoscopy (Magri and Mocchetti, 1967; Arzy et al., 2006).

Historically, the notion of asomatognosia as a “feeling of ‘nothingness’” (Critchley, 1953, p. 237) has long remained undisputed. Apart from its scholarly treatment in Critchley’s seminal volume on the parietal lobes, the phenomenon was discussed at length in the French and German literature and defined in accordance with the English language definition as “sentiment d’absence d’une partie du corps” (Hécane and de Ajuriaguerra, 1952, p. 170) or as the (illusory) experience of amputation (“sentiment d’amputation,” Cambier et al., 1984); “Amputationserlebnis” (Menninger-Lerchenthal, 1935, p. 97–100). Mikorey (1952, passim) borrowed a term from zoology to emphasize possible evolutionary–biological roots of asomatognosia (“psychologische Autotomie,” psychological autotomy). Conceptually, in the tradition of European neurology, asomatognosia was, thus, uniformly viewed as a disorder of body schema, more specifically as a transient disruption of such a postural model of the body as proposed by Head and Holmes (1911) and previously described as “aschematia” by Bonnier (1905). In their historical review of the phenomenon, Vallar and Papagno (2003) (see also Blanke et al., 2008; Dieguez and Annoni, 2013) made it clear that pure asomatognosia is often seen in the company of related disorders of a central representation of the body or, frequently, its left side. Already Critchley (1953, p. 225) had listed such accompanying symptoms, especially different forms of unilateral neglect, anosognosia, anosodiaphoria, confabulatory denial of hemiparesis (somatoparaphrenia) and forms of sensations of “deadness” of parts of the body.

In their recent, authoritative definition paper on asomatognosia, Jenkinson et al. (2018) appreciated the felt absence as the defining feature of the phenomenon but also note the frequent association of asomatognosia with symptoms of nonrecognition or misrecognition of own body parts. This association may have confused some authors in the past as they mixed up associated symptoms and asomatognosia as originally defined. Feinberg (1997), for instance, introduced the “syndrome of asomatognosia” as “denial of ownership of the arm” (p. 130), thereby mistaking asomatognosia for somatoparaphrenia. Such blurring of related yet distinct clinical manifestations of cerebral damage can induce confusion, especially when claims to neuroanatomical correlates are made. Thus, the purported distinction between neural contributions to asomatognosia on the one hand and somatoparaphrenia on the other (Feinberg et al., 2010) turns out to be noninformative and even misleading once asomatognosia is newly defined as “unawareness of ownership of one’s arm” (p. 276). In fact, as pointed out by peer review, such violations of the original definitions may be passed on to the follow-up literature. As a consequence, somatoparaphrenia and asomatognosia have frequently been conflated after Feinberg’s (1997) influential contribution (see, e.g., Coltheart, 2007; de Vignemont, 2017).

It is against this background that we here propose a structured interview for the assessment of asomatognosia and the description of associated symptoms (Appendix). We also describe a patient with pure hemiasomatognosia after extirpation of an intraventricular meningioma in the right atrium. We provide a detailed description of the characteristics of the experience. We also report the results of a visuomotor imagery task (mental rotation of hands and feet) administered to the patient. We discuss the observed reaction time (RT) pattern with reference to the clinical symptomatology.

METHODS

Case Report

Patient ASG (acronymic initials for A-Somato-Gnosis) is a 53-year-old, right-handed woman with a master’s degree in business management. She is divorced and has two adult children. After an uneventful neurological and psychiatric history, somatic complaints such as headaches, vertigo, and gait disturbances as well as cognitive symptoms, such as forgetfulness and inability to concentrate, led to the discovery of an intraventricular meningioma in the right atrium (Figure 1). Its dimension and considerable lateral extension made surgical removal by an interhemispheric route appear unfavorable, and the meningioma was microsurgically removed via a transangular gyrus trajectory after right-sided temporo-parietal craniotomy.

Two or three days after surgery, ASG noticed a sensory deficit, i.e., “a slight numbness” in the left hand and foot, which alternated with the feeling of spasticity in these body parts. These sensations were waxing and waning, occurred approximately three times a day and typically lasted for some minutes. A neurological examination showed a slight spastic increase in tone in the left upper extremity, a left-sided hemihypesthesia, a left-sided inferior quadrantanopia, and a benign positional vertigo. Postural sense was normal in all extremities. No neuropsychological assessment was undertaken at that time.

Four to 5 months after surgery, the patient suddenly noticed a “most peculiar feeling in the awareness of (her) body.” She experienced it for the first time when walking her dog. The left half of her body was seemingly nonexistent, “not just feeling numb or unresponsive to touch, but no longer present at all.” This feeling of absence concerned both lower and upper limbs and the left part of the head. It could be present for the leg alone but never exclusively for the arm or the head. It was typically experienced when walking, could last for a few minutes up to an hour, and was accompanied by vertigo and gait difficulties (no fall ever occurred). No sign of visual neglect seemed present, as ASG kept seeing the left side of her body, which puzzled her: “How can it be that I see something, whose absence I so convincingly

Frontiers in Psychology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 544544
feel?” ASG never experienced any such episode while standing in front of a mirror. She has never seen other people's bodies as incomplete. The paroxysmal feeling of an absent left half-body evoked some horror when first experienced, but the patient soon got used to it, and the phenomenon lost its emotional impact. With a kind of amusement, she noticed that she was still able to lead her dog with the leash held by her left, “absent” hand. These episodes occurred several times a day (slightly more frequently in the evening compared with the morning hours) for at least 4 months. They then got spontaneously less frequent and receded by the feeling, over several weeks, of only the lower left body parts being felt as transiently absent. ASG spontaneously reported these experiences to her neurosurgeon; before, she had never talked to anybody else about them.

A neurological examination 5 months after surgery, i.e., when ASG was experiencing these episodes on a daily basis, produced results not different from the initial exploration briefly after the operation. A routine neuropsychological examination revealed a general slowing in cognitive processing speed, which manifested itself in speed-sensitive attentional and executive tasks. Moreover, a mild-to-moderate deficit in verbal and nonverbal episodic memory was evident. The only signs of parietal dysfunction were slight problems in calculation and a mild left-sided inattention in isolated tasks on spatial exploration. Performances in tasks on language, visual perception, and construction, praxis, mental rotation, and executive functions were flawless. The used neuropsychological tests and the scores obtained by the patient are reported in Table 1.

Assessment of Visuomotor Imagery

Approximately 2 months after the neuropsychological exam, we assessed ASG’s capacity of visuomotor imagery for body parts in a computerized mental rotation task with hands and feet as visual stimuli (Parsons, 1987). These were depicted under four angles of rotation (0°, 90°, 180°, 270°; see Figure 2). Hands and feet were shown together within the same task once in volar, once in dorsal view. All stimuli (128 in total) were presented centrally on a laptop screen and spanned a visual angle of approximately 7° to 10° horizontally. ASG and controls were required to press a left-sided (right-sided) response key with her left (right) index finger on seeing a left-sided (right-sided) limb. Stimuli were displayed until a response was given. Accuracy and speed were equally stressed. Ten practice trials, which were not analyzed, preceded the task. Feedback about response accuracy was provided exclusively during these practice trials. During the training phase, feedback on the correctness of the response appeared at the center of the screen. Stimulus presentation and response collection was programmed with the software E-prime 3.0 (Psychology Software tools).

Ten age-matched controls (six men, four women, mean age: 48.5, SD = 14.87) were tested with an identical procedure. ASG’s performance accuracy was high (mean accuracy = 92.2%) and comparable to that of the controls (group mean accuracy = 90.47%, SD = 11.25%). Only RTs of correct decisions were analyzed. We compared ASG’s RTs to those of the control group with the Bayesian inferential methods for use in single-case studies described in Crawford and Garthwaite (2007). This method proved robust for comparing one patient to a small control group. Data preprocessing and statistical analysis were performed in R studio v. 1.1.442. The Crawford–Garthwaite Bayesian test was performed with the function “Crawford.test” included in the R psycho v0.4.91 package (Makowski, 2018). The confidence interval bound was set at 95%. Significant threshold was set at 0.1 and the number
TABLE 1 | Neuropsychological performance of U.B. (with impaired performance highlighted in bold).

Neuropsychological function	Neuropsychological test	Score (z-score)
Attentional functions		
Alertness	TAP¹, alertness	360 (−1.7)
− Median tonic alertness (ms)		287 (−1.2)
Selective attention	TAP¹, go/nogo	575 (−0.3)
− Median (ms)		1 (−0.3)
− Error		1 (−1.7)
Divided attention	TAP¹, divided attention	800 (−2.4)
− Median auditory (ms)		1234 (−2.5)
− Median visual (ms)		12 (−2.5)
− Error		2 (−0.7)
− Omission error		12 (−2.5)
Learning and memory		
Memory span	WMS-R⁴	
− Verbal		7 (−0.5)
− Visual		6 (−1.5)
Verbal-episodic memory	HVLT-R⁵	
− Learning (words/max.)		15/36 (−3.2)
− Late-delay free recall		6 (−2.3)
− Recall (%)		85 (−0.8)
− Recognition		7 (−2.7)
Nonverbal-episodic memory	BVMT-R⁶	
− Learning (points/max.)		17/36 (−1.2)
− Late-delay free recall		6 (−1.4)
− Recall (%)		60 (−3.0)
− Recognition		5 (−1.1)
Executive functions		
Interference control	D-KEFS²	
− Speed		95 (−2.3)
− Speed relative (scaled value)		−1 (−0.8)
− Error		1 (0.2)
Cognitive flexibility		
Visuo-verbal	D-KEFS²	
Speed (s)		105 (−1.7)
Speed relative (scaled value)		2 (0.7)
− Error		1 (0.2)
Psychomotor	TMT-B³	
Speed (s)		126 (−3.2)
Speed relative to TMT-A		1.47 (1.51)
− Error		0
Visuo-spatial functions		
Screening after visual perception and cognition	Screening of visual functions (Schnider⁹)	
− Accuracy (points/max.)		25/36 (−2.5)
− Speed (s)		460 (−2.5)
Questionnaires		
Depression	ADS¹¹	
Fatigue	WEIMuS¹²	
− Physical		23 (−2.8)
− Cognitive		27 (−3.2)
− Total		50 (−3)

¹ Test of Attentional Performance (Zimmermann and Finn, 2007).
² Delis – Kaplan Executive Function System (Delis et al., 2001).
³ Trail-Making-Test, Tombough (2004).
⁴ Wechsler Memory Scale – Revised (Härtig et al., 2000).
⁵ Hopkins Verbal Learning Test – Revised (Brandt and Benedict, 2001).
⁶ Brief Visuospatial Memory Test – Revised (Brandt and Benedict, 1997).
⁷ Regensburger verbal fluency test (Aschenbrenner et al., 2000).
⁸ HAMASC 5-point-test (Haid et al., 2002).
⁹ Screening of visual functions (Schnider, 2004).
¹⁰ Rey Complex Figure Test (Meyers and Meyers, 1995).
¹¹ General Depression Scale (Hautzinger and Bailer, 1992).
¹² Würzburger Fatigue Inventory (Flachenecker et al., 2008).

of performed iterations was 10,000. Data, stimuli, E-prime program, and R scripts used for data analysis and visualization, and data can be viewed, reused, and downloaded under this link: osf.io/qmkd3/.

The study was approved by the Ethical Committee of the University of Zurich. After being informed about the purposes of the study, participants provided their written informed consent. The study was performed according to the Helsinki Declaration (1964). Data, E-prime program, stimuli, and R Scripts used for data analysis and visualization can be viewed, reused, and downloaded under this link: osf.io/qmkd3/.

RESULTS

While being tested, ASG did not experience hemiasomatognosia. Nevertheless, analysis of her RTs to hands and feet under the different angles of rotation revealed that ASG was slower than control participants identifying specifically left feet displayed in volar view for the "comfortable" 90° postures (Crawford – Garthwaite Bayesian test, controls mean RT = 1797,
FIGURE 2 | Overview of the hand (top) and foot stimuli (bottom) presented during the limb laterality task.

SD = 532, ASG's mean RT = 5350, \(z = 6.68 \), percentile = 100.00, \(p < 0.001 \). ASG's RTs were higher than 99.99% [95% CI (99.99, 100.00)] of the controls' RTs. RTs to left feet displayed in volar view were also significantly slower in ASG for the “awkward” 270° postures (Crawford – Garthwaite Bayesian test, control sample mean RT = 2440, SD = 996, ASG's mean RT = 6670, \(z = 4.25 \), percentile = 100.00, \(p < 0.01 \). ASG's RTs were higher than 99.83% [95% CI (99.24, 100.00)] of the controls' RTs; see Figure 3).

Furthermore, there was a significant “inversion effect” (longer RTs to stimuli under 180° than under 0°) for feet (Figure 4); crucially, for the difficult 180° stimuli, her RTs to left feet shown in dorsal views were significantly longer than those of control subjects (Crawford – Garthwaite Bayesian test, control sample mean RT = 2092, SD = 932, ASG's mean RT = 5710, \(z = 3.88 \), percentile = 99.99, \(p < 0.01 \). ASG's RTs were higher than 99.76% [95% CI (98.84, 100.00)] of the controls' RTs). None of the comparisons for right limb stimuli were significant (\(p > 0.05 \)).

DISCUSSION

The structured interview introduced here (see Appendix) was used for the assessment of hemiasomatognosia in patient ASG. She initially reported her paroxysmal experiences of left-sided hemiasomatognosia to the neurosurgeon. They were associated with vertigo but never led to a fall (Bonnier, 1905). The feeling of nonexistence did not encompass a change in the feelings of ownership or of agency over the affected limbs. It was confined to the somesthetic domain as ASG could still see her left body half (in contrast to cases with both somesthetic and visual asomatognosia (Stockert, 1934) or pure visual asomatognosia or asomatognoscopy (Arzy et al., 2006). She also saw other people's bodies normally; that is, she did not project own symptoms onto others (Schilder, 1919). Importantly, ASG was not deluded regarding her deficit in awareness of left-sided limbs. In contrast to somatoparaphrenia, asomatognosia does not involve any delusional elaboration of the misperceived bodily state (see Vallar and Ronchi, 2009).

ASG was administered a limb laterality judgment task thought to rely on the integrity of the participant's body schema. Body schema is the implicit and continuously updated representation of the position occupied by the limbs in the space and the biomechanical constraints arising from the sensory inputs, mainly proprioceptive, and that access the motor system directly for the performance of routine motor acts (Head and Holmes, 1911). According to Parsons' comparative method (Parsons, 1987), this task requires the activation of two processes. First, the selection of the representation of either the right or left limb and then the mental rotation maneuver of this representation to match the position of the depicted hand. Two outcome measures are typically considered for this task. The first is the accuracy, which hints of the integrity of the performer's body schema. Here, we observed that ASG's accuracy did not statistically differ from that of the controls, suggesting an intact body schema. The second outcome is the RTs. RT analysis may offer important insights into the disruption of...
one or the other process. For instance, previous studies show that experimentally induced pain or expectation of pain to a hand leads to an increase in the RT that is specific for the non-painful limb. The interpretation of this effect is that an attention bias toward the painful limb, i.e., a marked difficulty in allocating the attentional resources away from it induces
body parts. Rather, this difference seems to corroborate ASG’s assumption that there was an unspecific slowing for left-sided arm pictures with either compatible or incompatible efferent processes might underly her impaired performance in the task.

It remains a challenge for future clinical studies to test patients with hemiasomatognosia repeatedly: once while feeling their body absent and once with a recovered, normal bodily awareness. Paradigms to experimentally induce asomatognosia in healthy volunteers may also prove revealing in clinical populations (Newport and Gilpin, 2011; Stone et al., 2018).

DATA AVAILABILITY STATEMENT

The data, stimuli, E-prime program, and R scripts used for data analysis and visualization, and data can be viewed, reused, and downloaded under this link: osf.io/qmkd3/.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of the University Hospital Zurich. The patients/participants provided their written informed consent to participate in this study. Written, informed consent was obtained from the individuals for the publication of any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

PB, GS, and OZ-G conceived the project and wrote the manuscript. GS programmed the computerized task, collected data, and performed data analysis. OZ-G and FS performed the neuropsychological assessment. CS performed surgery, and localized and described the lesion. GV significantly enriched the discussion of the findings. All the authors reviewed and approved the final version of the manuscript.

FUNDING

This work was supported by the Swiss National Science Foundation projects Sinergia #160837 “MeganePro” and Doc.Mobility #181383.
REFERENCES

Arzy, S., Overney, L. S., Landis, T., and Blanke, O. (2006). Neural mechanisms of embodiment: somatognosia due to premotor cortex damage. Arch. Neurol. 63, 1022 – 1025. doi: 10.1001/archneur.63.7.1022

Aschenbrenner, A., Tucha, O., and Lange, K. (2000). Regensburger Wortflüssigkeits-Test. Handanweisung. Göttingen: Hogrefe Verlag.

Benedict, R. (1997). A schématie. Rev. Neurol. 153, 605 – 609.

Brandt, J., and Benedict, R. (2001). Hopkins Verbal Learning Test – Revised. Administration Manual. Lutz, FL: Psychological Assessment Resources.

Brugger, P. (2002). Reflexive mirrors: perspective-taking in autoscopic phenomena. Cogn. Neuropsychiatry 7, 179 – 194. doi: 10.1080/1354680024400076

Cambier, J., Elghozi, D., Graveleau, P., and Lubetzki, C. (1984). Hématosomatognosie droite et sentiment d'amputation par lesion gauche sous-corticale. Role de la disconnexion calcarie. Rev. Neurol. 140, 256 – 262.

Carp, E. (1952). Troubles de l'image du corps. Acta Neurol. Psychiatr. Belgica 52, 461 – 475.

Coltheart, M. (2007). Cognitive neuropsychiatry and delusional belief. J. Exp. Psychol. 60, 1041 – 1062. doi: 10.1016/j.jexpapsyc.2007.02.001

Crawford, J. R., and Garthwaite, P. H. (2007). Comparison of a single case to a control or normative sample in neuropsychology: development of a Bayesian approach. Cogn. Neuropsychol. 24, 343 – 372. doi: 10.1080/02643290701290146

Crichtley, M. (1953). The Parietal Lobes. Oxford: Williams and Wilkins.

de Vignemont, F. (2017). Agency and Bodily Ownership. The Subject's Matter: The Body and Self-consciousness. Cambridge: The MIT Press.

Delis, D., Kaplan, E., and Kramer, J. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio: The Psychological Corporation.

Dieguez, S., and Annoni, J.-M. (2013). “Somatognosia: disorders of the bodily self.” In The Behavioral and Cognitive Neurology of Stroke, ed. O. Godefroy (Cambridge: Cambridge University Press), 170 – 192. doi: 10.1017/cho9781139058988.015

Feinberg, T. E., Venneri, A., Simone, A. M., Fan, Y., and Northoff, G. (2010). The limb trick and the role of sensory suggestibility in illusion experience. J. Neurol. Neurosurg. Psychiatry 81, 278 – 281. doi: 10.1136/jnnp.2009.188946

Flachenecker, P., König, H., Meissner, H., and Müller, G. (2008). Fatigue bei multipler Sklerose: Validierung des Würrzburger Erschöpfungs-Inventar bei Multipler Sklerose (WEIMuS). Nervenheilkunde 134, 1 – 13. doi: 10.1007/bf01761477

Fischer, T. (1997). Some interesting perturbations of the self in neurology. Semin. Neurol. 17, 129 – 135. doi: 10.1055/s-2008-104922

Feintberg, T. E., Venneri, A., Simone, A. M., Fan, Y., and Northoff, G. (2010). The neuroanatomy of somatognosia and somatoparaphrenia. J. Neurol. Neurosurg. Psychiatry 81, 278 – 281. doi: 10.1136/jnnp.2009.188946

Flachenecker, P., König, H., Meissner, H., and Müller, G. (2008). Fatigue bei multipler Sklerose: Validierung des Würrzburger Erschöpfungs-Inventar bei Multipler Sklerose (WEIMuS). Nervenheilkunde 134, 1–13. doi: 10.1007/bf01761477

Schnider, A. (2004). Verhaltensneurologie. Die Neurologische Seite der Psychiatrie. Stuttgart: Thieme. doi: 10.1055/b-001-3174

Sierra, M., Lopera, F., Lambert, M. V., Phillips, M. L., and David, A. S. (2002). Separating depersonalisation and derealisation: the relevance of the “lesion method.” J. Neurol. Neurosurg. Psychiatry 72, 530 – 532.

So, E. L., and Schalae, B. S. (2004). Ictal somatognosia as a cause of epileptic falls: Simultaneous video, EMG, and invasive EEG. Neurology 63, 2153 – 2154. doi: 10.1212/01.wnl.0000145628.38030.3e

Stockert, F. V. (1934). Lokalisation und klinische Differenzierung des Symptomes der Nichtwahrnehmung einer Körperhälfte. Deutsche Zeitschrift für Nervenheilkunde 134, 1 – 13. doi: 10.1007/bf01761477

Stone, K. D., Bullock, F., Keizer, A., and Dijkerman, H. C. (2018). The disappearing limb trick and the role of sensory suggestibility in illusion experience. Neuroupsychologia 117, 418 – 427. doi: 10.1016/j.neuropsychologia.2018.07.012

Tombaugh, T. N. (2004). Trail making test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214. doi: 10.1016/j.pnsy.2008.07.012

Vallar, G., and Papagno, C. (2003). Pierre Bonnier’s cases of bodily “schématie”. Classic Cases Neuropsychol. 2, 147 – 169.

Vallar, G., and Ronchi, R. (2009). Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp. Brain Res. 192, 533 – 551. doi: 10.1007/s00221-008-1562-y

Wernicke, C. (1906). Grundriss der Psychiatrie in Klinischen Vorlesungen. Basel: Karger Publishers.

Wernicke, C. (1908). Der “HAMASCH 5 Punkt Test” – erste normierungsergebnisse. Zeitschrift für Neuropsychologie 116, 213 – 215. doi: 10.1016/j.cub.2011.08.044

Papagno, C., and Vallar, G. (2003). Pierre Bonnier’s cases of bodily “schématie”. Classic Cases Neuropsychol. 2, 147 – 169.

Vallar, G., and Papagno, C. (2003). Pierre Bonnier’s cases of bodily "asmatognosie". Classic Cases Neuropsychol. 2, 147 – 169.

Vallar, G., and Ronchi, R. (2009). Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp. Brain Res. 192, 533 – 551. doi: 10.1007/s00221-008-1562-y

Wernicke, C. (1906). Grundriss der Psychiatrie in Klinischen Vorlesungen. New York, NY: Thieme.

Zimmermann, P., and Fimm, B. (2007). TAP Testbattery zur Aufmerksamkeitsprüfungs. Herzogenrath: Peysteg.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Saetta, Zündel-Geisseler, Stauffacher, Serra, Vannucce and Brugger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
APPENDIX

Structured Interview

Questions should be adapted to the individual case as a patient’s initial description may be relatively precise (e.g., “it was as if I had lost any awareness of my left arm”) or exceedingly vague (e.g., “I had some very peculiar experience concerning my body”). Adaptation is also required with respect to the clinical picture within the patient’s asomatognosia reported (e.g., whether there is an associated hemiparesis/hemiplegia, hemianopia, etc.). Once it has become clear to the examiner that the patient describes an episode of asomatognosia, phenomenal detail should be inquired, if possible, by inviting free report while minimizing suggestive cues. The time course of the disturbances (and, if applicable, of single episodes) should be inquired, as (hemi)asomatognosia is commonly a long-term phenomenon (Sierra et al., 2002), and experiences in the second range may suggest an epileptic origin (So and Schäuble, 2004).

Questions unrelated to the core phenomenon of “bodily nonexistence” may uncover related perturbations of somatognosis and inform about the relative involvement of the somatosensory and visual modalities, respectively. The issue of perspective transformation is crucial in cases of asomatognosia associated with transitivism (Wernicke, 1906; Schilder, 1919), i.e., the projection of own symptoms onto other persons. Will a patient who lacks awareness of her left side see other persons’ left or right side absent? The answer depends not only on lesion location but is revealing about the relationships between body, self, and phenomenal space (Brugger, 2002).

We recommend videotaping the entire interview after having obtained the patient’s written informed consent. A sketchy portrait of the patient’s own body, which depicts affected body regions may also be helpful, preferably on a back and a front view sketch of a human body. Needless to say, the interview should be complemented by a comprehensive neuropsychological evaluation. In cases of unilateral asomatognosia, testing different forms of hemispatial neglect is especially important.

Structured Interview Template

Ask any patient, who reports an absence or disappearance of the body or a feeling of amputation the following questions (to be adapted to the individual case):

(a) Where on the body
 - Which part(s) of the body appeared absent/amputated? Was the sensation of absence stronger/qualitatively different for some of these parts? Were the same body parts always affected? Can you provide a sketch of your body (front and back view) and mark the affected parts? Please use different colors/shadings for phenomenally different impressions. (If patient is reluctant to draw a self-portrait, provide two simple sketches of a human body, once in back view and once in front view).

(b) Triggering and modulating factors; modalities involved
 - On first occurrence, was there anything that may have triggered the experience?
 - Can the feeling of an absent body (part) be induced/modified by any factors?
 - Specifically, is the feeling of absence modulated by
 - Moving the affected body part(s)?
 - Having the affected body part(s) moved by somebody else?
 - Touching the affected body part(s) with one of your unaffected limbs (if possible)?
 - Having your affected body part(s) touched by somebody else?
 - Having your eyes open/shut?
 - Looking at the affected body part(s)?
 - Any other factor?

 When you look at the body part you feel to be absent, do you still see it?
 Have you ever experienced the absence of your body (parts) . . .
 - When in front of a mirror? (if yes, describe what happened to your mirror image, if anything)
 - When looking at other people’s bodies? (if yes, describe any change you might have visually perceived)

 Can you deliberately induce/abolish the experience?

(c) Frequency and time course
 - When was the first time you experienced an absence of your body? How many times have you had this experience since then?
 - What is its daily (weekly/monthly) frequency? Is there a circadian pattern? How long does an episode usually last (provide minimal and maximal duration)? Do you still experience these episodes these days? Has their frequency been changing over the weeks (months/years)? Has anything else been changing?

(d) Associated symptoms
 - Was the feeling of nonexistence of your body (parts) accompanied by any other sensation or feeling? (regularly? occasionally?)
 - Has your consciousness been altered while experiencing the feeling of absence of your body (parts)? (expanded, dream-like, dizzy?)
Have you ever felt the subjectively absent body parts
- To belong to somebody else?
- To move/behave in ways that seemed not under your control?
- To be dead or rotting away?
- To be detached from the body and possibly present elsewhere?