Nitazoxanide/Azithromycin combination for COVID-19: A suggested new protocol for early management.

Mina T. Kelleni, MD, PhD

Pharmacology department, College of medicine, Minia University, Egypt.

Pharmacology department, College of pharmacy, Jouf University, KSA.

Mobile: +966560407874

E-mails: drrthabetpharm@yahoo.com, mina.kelleni@mu.edu.eg, mtkelleni@ju.edu.sa

Abstract

Azithromycin has been shown to have a clinical efficacy against severe acute respiratory syndrome coronavirus 2; ivermectin has also demonstrated a remarkable experimental efficacy with a potential to be used for Coronavirus disease 2019. Further, BCG vaccination is being considered for clinical trials aiming to test its potential for lowering COVID-19 morbidity and mortality. This concept paper illustrates some structural and functional relationships that may gather these drugs. Further, the author, basing on a combined pathophysiological and pharmacological approach, recommends the FDA-approved antidiarrhea drug; nitazoxanide, which has been previously suggested but unfortunately very much ignored, to be tested in combination with azithromycin for their potential activity against SARS CoV-2; recommending their administration as early during the clinical course of COVID-19 as possible. Finally, relying on the same represented concept, the author suggests more trials for interferons to be tested against SARS CoV-2, especially in severe and critical COVID-19 cases.

Keywords: SARS CoV-2, COVID-19, Nitazoxanide, Azithromycin, Interferons.
Ivermectin (Fig. 1) is a broad spectrum macrolide endectocide macrocyclic lactone produced by Streptomyces avermitilis that is widely used for treatment of pediculosis, scabies, onchocerciasis and lymphatic filariasis1-3. It’s also been shown to possess an invitro antiviral activity against influenza A, dengue and Venezuelan equine encephalitis viruses. Importantly, Ivermectin has been recently proved, in an invitro experiment, to produce approximately 5000-fold reduction in the RNA of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) causing Coronavirus disease 2019 (COVID-19) at 48 h of its single addition4. Interestingly, ivermectin therapy has been shown to reverse onchocerciasis-associated immunosuppression through sustained production of IFN-\(\gamma\) in amicrofilaridermic individuals5, to be also noted that it was previously shown that recombinant human IFN-\(\gamma\) had a particular effect on the incidence of herpes simplex, and cytomegalovirus infections opportunist infections in advanced HIV disease6. Similarly, another macrolide macrocyclic lactone antibiotic; azithromycin (Fig. 2) has been reported to have an invitro antiviral activity against Zika and Ebola viruses, it has also significantly decreased rhinovirus-16 viral load in bronchial epithelial cells inducing the expression of type I and III interferons in cells of donors suffering from chronic obstructive pulmonary disease, 24 h post infection7,8. Noteworthy, only azithromycin which is a synthetic derivative of erythromycin; the prototype of macrolides antibiotics first isolated from the soil bacterium Streptomyces erythraeus, but not erythromycin or telithromycin, has been shown to significantly increase rhinovirus 1B- and rhinovirus 16-induced interferons and interferon-stimulated gene mRNA expression as well as protein production leading to a significant reduction of rhinovirus replication and release in bronchial epithelial cells9. This differential peculiarity associated with azithromycin should be properly investigated as regards to its structure activity relationship. Further, it’s also been recently reported that when azithromycin was added to hydroxychloroquine, the efficiency of SARS CoV-2 elimination was significantly improved leading to a significant more rapid virologic cure as evident by a negative nasopharyngeal PCR, and healing in COVID-19 patients7. Surprisingly, a recent study has suggested an association of an increased overall mortality that was identified in patients treated with hydroxychloroquine without azithromycin as compared to the standard care alone10. The author wonders if the previously reported beneficial effects might be more appropriately attributed to azithromycin alone? Taken
together, ivermectin and azithromycin share a potential structural similarity and more importantly both drugs are potentiating the interferons’ immune response which is essential to combat viral infections. Noteworthy, BCG vaccination which is currently being considered for clinical trials to test its potential against COVID-19, was previously shown when given once a month for 3 consecutive months to produce a significant reduction on the prevalence of adult upper respiratory tract infections in the elderly, at least partially through its induced significant increase of IFN-γ level as compared to the placebo group. Taken together, the author agrees that ivermectin deserves its enrollment for clinical trials to explore its potential for COVID-19 treatment and suggests that BCG vaccination might not be the proper fast response we need. On the other hand, more research for other macrolides to assess their potential antiviral effect might be fertile, not only for this COVID-19 pandemic but also afterwards. Similarly, the author recommends more COVID-19 clinical trials for recombinant human IFN-γ, interferon alfa-1, recombinant interferon beta and while a preliminary version of this manuscript was being submitted on the 8th of April, 2020 elsewhere; other colleagues have also been pointing out, both clinically and theoretically, the significance of interferons as potential drug candidates for COVID-19. Further, it might also be beneficial to test the related possibility that SARS CoV-2 may produce interferon antagonist activities similar to the effect Middle East respiratory syndrome coronavirus (MERS-CoV) has previously exhibited.

Most importantly, the author basing on the same concept, would like to recommend the start of clinical trials for the widely available FDA-approved, for both adults and immunocompetent children, antidiarrhea drug; nitazoxanide, in combination with azithromycin, soonest. Nitazoxanide (Fig. 3), is an orally active nitrothiazolyl-salicylamide broad-spectrum antiparasitic and antiviral prodrug that is converted rapidly to the active metabolites tizoxanide and tizoxanide conjugates and unlike metronidazole, these metabolites appear to be safer and free of mutagenic effects. Similarly, nitazoxanide is also known to potentiate interferon alfa and interferon beta production and it has been previously shown to exhibit an in vitro activity against MERS-CoV and other coronaviruses. Moreover, when nitazoxanide was given as 600 mg twice daily for 5 days, it’s proved to reduce the duration of symptoms in patients with acute uncomplicated influenza with minor adverse effects and this dose regimen might be reasonably
considered to be used combined with azithromycin in a suggested new COVID-19 protocol aiming to test their integrated potential to decrease SARS CoV-2 morbidity and mortality. Noteworthy, the author would like to stress that on the 9th of March, 2020, nitazoxanide was previously suggested, among other drugs, by French colleagues to be evaluated for its potential against SARS CoV-2; unfortunately, their recommendation wasn’t popular and it has been practically very much ignored22. Similarly, the author has recently found another research, though also unpopular and similarly ignored, that has been published on the 15th of March, 2020 to recommend nitazoxanide to be used with hydroxychloroquine for COVID-19 patients pointing to some links with the interferon immune system23. To date, the 26th of April, 2020, only eight nitazoxanide clinical trials are undergoing worldwide with remarkable difficulties in recruitment of patients, who might have also doubted nitazoxanide potential, as only two of them are currently recruiting; one wishing to collect 50 participants with an estimated start date on the 12th of April, 2020 to compare nitazoxanide 600 mg, without any added drugs, against placebo for hospitalized patients with moderate COVID-19 condition and the author suggests that it’s for the best interests of patients not to compare any drug against placebo in COVID-19. This might also come for the best interest for the researchers as it might help better enrollment and compliance of patients in their clinical trials. Similarly, the second currently recruiting nitazoxanide trial is wishing to enroll 86 participants with an actual start date on the 6th of April, 2020 to compare nitazoxanide alone to nitazoxanide/hydroxychloroquine combination in patients with COVID-19 risk factors for poor outcome, and the author wishes to suggest that their combination might be better considered for early cases not for late ones. Interestingly 4 out of the 8 nitazoxanide clinical trials for COVID-19 are undergoing in Egypt and 2 of them were posted on the same day the first version of this manuscript has been published at Preprints. However, none of the eight trials used an arm for nitazoxanide/azithromycin and the author wishes this should be changed soon24. The author also recommends comparing the suggested nitazoxanide/azithromycin combination, against any other currently used protocol like hydroxychloroquine/azithromycin combination25 which is still used in many countries all over the world. Unfortunately, if we may just compare the very small number with difficulties in recruitment, of nitazoxanide clinical trials that have been adopted only by Egypt, Mexico and Brazil as well as a single
pharmaceutical company which dared to test it, to the 133 COVID-19 registered and undergoing studies for hydroxychloroquine all over the world26, we might eventually consider that this might not, after all, be scientifically justified especially after the recent report that showed no evidence for hydroxychloroquine to decrease the risk of mechanical ventilation in patients hospitalized with Covid-1910. The author recommends that regardless of the clinical outcomes of this suggested protocol, the reasons for this potentially misfortunate underestimation of nitazoxanide should be investigated, and to stress that all the all FDA approved drugs recommended by experts, should be properly explored for their potential against SARS CoV-2, and that for the safe drugs, including nitazoxanide, they deserve to be added to a standard protocol in an arm of an undergoing clinical trial even before a scientific justification appears to support their potential. The author also suggests that we should make this concept clear for any upcoming pandemics. Thus, and as discussed above, nitazoxanide/azithromycin combination for early management of COVID-19 is pharmacologically justified to be considered and popularized for clinical trials, soonest.

Finally, The author humbly suggests the approach represented in this manuscript might be considered a first of its kind as regards to its combined pathophysiological as well as pharmacological COVID-19 displayed concept, just to raise an Afro-Egyptian voice that nitazoxanide/azithromycin should be considered as a safe and available regimen that has a potential that should be tested immediately for early stages of COVID-19. Further, based on the same concept and supported by the recent release of clinical data disputing hydroxychloroquine efficacy, the author suggests that nitazoxanide/azithromycin combination might eventually appear be a safer, more effective regimen that might replace hydroxychloroquine/azithromycin combination as a standard care for early COVID-19, especially if the preliminary data regarding the inefficacy of hydroxychloroquine has been confirmed or as soon as nitazoxanide/azithromycin combination proved clinically effective as wished. There’re also multiple questions and suggestions presented in this manuscript which are waiting to be researched and answered.
If this concept presented in this manuscript proved right, many lives might be saved as wished, but if not, then the author wishes to finally declare that we, humans, will never lose hope, abandon courage, or stop researching and we can’t afford to do so.

Fig. 1 Ivermectin

Fig. 2 Azithromycin

Fig. 3 Nitazoxandie
Conflict of interest

None

Funding

None

References:

1. Coscione S, Esau T, Kekeubata E, et al. Impact of ivermectin administered for scabies treatment on the prevalence of head lice in Atoifi, Solomon Islands. *PLoS Negl Trop Dis* 2018;12(9):e0006825. doi: 10.1371/journal.pntd.0006825 [published Online First: 2018/09/27]

2. Kandeel M, Elgazar W, Kitade Y. The Binding Interactions of the Macrolide Endectocide Ivermectin with the Antibiotics Ampicillin, Chloramphenicol and Tetracycline HCL. *Indian J Pharm Sci* 2012;74(6):592-96. doi: 10.4103/0250-474X.110635

3. Smit MR, Ochomo EO, Aljayyousi G, et al. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial. *Lancet Infect Dis* 2018;18(6):615-26. doi: 10.1016/s1473-3099(18)30163-4 [published Online First: 2018/04/01]

4. Caly L, Druce JD, Catton MG, et al. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. *Antiviral Res* 2020;104787. doi: 10.1016/j.antiviral.2020.104787 [published Online First: 2020/04/07]

5. Soboslay PT, Luder CG, Hoffmann WH, et al. Ivermectin-facilitated immunity in onchocerciasis; activation of parasite-specific Th1-type responses with subclinical Onchocerca volvulus infection. *Clin Exp Immunol* 1994;96(2):238-44. doi: 10.1111/j.1365-2249.1994.tb06548.x [published Online First: 1994/05/01]

6. Riddell LA, Pinching AJ, Hill S, et al. A phase III study of recombinant human interferon gamma to prevent opportunistic infections in advanced HIV disease. *AIDS Res Hum Retroviruses* 2001;17(9):789-97. doi: 10.1089/088922201750251981 [published Online First: 2001/06/29]

7. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. *Int J Antimicrob Agents* 2020;105949. doi: 10.1016/j.ijantimicag.2020.105949 [published Online First: 2020/03/25]

8. Menzel M, Akbarshahi H, Bjerner L, et al. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. *Sci Rep* 2016;6:28698-98. doi: 10.1038/srep28698

9. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. *Eur Respir J* 2010;36(3):646-54. doi: 10.1183/09031936.00095809 [published Online First: 2010/02/13]

10. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. *medRxiv* 2020:2020.04.16.20065920. doi: 10.1101/2020.04.16.20065920
11. Wardhana, Datau EA, Sultana A, et al. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. *Acta Med Indones* 2011;43(3):185-90. [published Online First: 2011/10/08]

12. Sallard E, Lescreur F-X, Yazdanpanah Y, et al. Type 1 interferons as a potential treatment against COVID-19. *Antiviral Research* 2020:104791. doi: https://doi.org/10.1016/j.antiviral.2020.104791

13. Eni Williams. Interferon: Potential COVID-19 Treatment 2020, April 8 [Available from: https://www.medicinenet.com/interferon/article.htm#what_are_interferons_and_how_do_they_work.

14. Zhou Q, Wei X-S, Xiang X, et al. Interferon-a2b treatment for COVID-19. *medRxiv* 2020:2020.04.06.20042580. doi: 10.1101/2020.04.06.20042580

15. Rossignol J-F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. *Antiviral Research* 2014;110:94-103. doi: https://doi.org/10.1016/j.antiviral.2014.07.014

16. Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses - drug discovery and therapeutic options. *Nat Rev Drug Discov* 2016;15(5):327-47. doi: 10.1038/nrd.2015.37 [published Online First: 2016/02/12]

17. Wetzel DM, Phillips MA. Chemotherapy of Protozoal Infections: Amebiasis, Giardiasis, Trichomoniasis, Trypanosomiasis, Leishmaniasis, and Other Protozoal Infections. In: Brunton LL, Hilal-Dandan R, Knollmann BC, eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e. New York, NY: McGraw-Hill Education 2017.

18. Ramos-Soriano AG, Black J. Nitazoxanide Use as Part of an Empiric Multi-Drug Regimen in Treating Children with Suspected Helicobacter pylori Infection. *Case Rep Gastroenterol* 2015;9(1):36-42. doi: 10.1159/000375116 [published Online First: 2015/03/12]

19. Rosenthal PJ. Antiprotozoal Drugs. In: Katzung BG, ed. Basic & Clinical Pharmacology, 14e. New York, NY: McGraw-Hill Education 2017.

20. Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. *Journal of Infection and Public Health* 2016;9(3):227-30. doi: https://doi.org/10.1016/j.jiph.2016.04.001

21. Haffizulla J, Hartman A, Hoppers M, et al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. *Lancet Infect Dis* 2014;14(7):609-18. doi: 10.1016/s1473-3099(14)70717-0 [published Online First: 2014/05/24]

22. SRLF S, SFMU, GFRUP and SPILF,. [Recommendations from experts on the resuscitation care of patients during an SARS-CoV2 epidemic Version 1] 2020, March 9 [Available from: https://www.srlf.org/wp-content/uploads/2020/03/Recommandations-desexperts-COVID-19-10-Mars-2020.pdf.

23. Padmanabhan S. Potential dual therapeutic approach against SARS-CoV-2/COVID-19 with Nitazoxanide and Hydroxychloroquine2020.

24. ClinicalTrials.gov. 8 Studies found for: Nitazoxanide | COVID-19. 2020, April 24

25. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. *International journal of antimicrobial agents* 2020:105949-49. doi: 10.1016/j.ijantimicag.2020.105949

26. ClinicalTrials.gov. 133 Studies found for: Hydroxychloroquine | COVID-19. 2020, April 26