First Global Record of Podisus nigrispinus (Hemiptera: Pentatomidae) as Predator of Gonipterus platensis (Coleoptera: Curculionidae) Larvae and Adults

Authors: Lucas Inoue Nascimento, Everton Pires Soliman, Edival Ângelo Valverde Zauza, Jose Luiz Stape, and Carlos Frederico Wilcken
Source: Florida Entomologist, 100(3) : 675-677
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.100.0331
First global record of *Podisus nigrispinus* (Hemiptera: Pentatomidae) as predator of *Gonipterus platensis* (Coleoptera: Curculionidae) larvae and adults

Lucas Inoue Nascimento¹, Everton Pires Soliman¹*, Edival Ângelo Valverde Zauza¹, Jose Luiz Stape¹, and Carlos Frederico Wilcken²

The genus *Gonipterus* (Coleoptera: Curculionidae) is originally from Australia (Mally 1924; Maponera et al. 2012) and has a wide geographic distribution, having been reported in Africa, Europe, North America, Asia, and South America (Lanfranco & Dungey 2001; EPPO 2005). *Gonipterus* was detected for the first time in Brazil in 1928, but in field manuals, the first scientific report was given in 1982 from the state of Santa Catarina with the species *Gonipterus platensis* Morelli and *Gonipterus gibberus* Boisduval (Fenilli 1982), which later spread to the state of São Paulo (Rosado-Neto 1993).

The introduction of *G. platensis*, the main eucalyptus leaf-eating beetle in the world, causes economic losses in various regions. The larvae feed on young leaves and defoliate the top parts of the plant canopy (Mansilla-Vázquez 1992), and the adults feed on the edges of mature leaves (Mally 1924), impairing the growth of the plant. The larval stage has 4 instars, each lasting approximately 1 wk (Santolomazza-Carbone 2002). The females lay up to 800 eggs (Arzone & Meotto 1978). Since the discovery of this pest in Brazil, this scientific report is the first to document the action of a predatory species, *Podisus nigrispinus* Dallas (Hemiptera: Pentatomidae), preying on larvae and adults of *G. platensis*.

Predators in the order Hemiptera and the family Pentatomidae, such as *Supputius cincticeps* Stål (Souza et al. 2012), *Brontocoris tabidus* (Signoret) (Zanuncio et al. 2000), and *P. nigrispinus* (Torres et al. 2008) are reported as biological control agents of forest pests. *Podisus nigrispinus* also preys on various agricultural pests in Brazil, being a significant natural enemy and widespread in the whole country (Zanuncio et al. 2008; Torres et al. 2006). This paper evaluates the potential of *P. nigrispinus* to be used in an integrated pest management program following the first worldwide observation of *P. nigrispinus* nymphs preying on *G. platensis* larvae in a commercial plantation near Itararé, São Paulo, Brazil. *Gonipterus* species are currently being controlled in Brazil, and in other countries where they occur, with the egg parasitoid *Anaphes nitens* (Girault) (Hymenoptera: Mymaridae) (Wilcken et al. 2008; Reis et al. 2012) and the entomopathogenic fungus *Beauveria bassiana* (Bals.-Criv.) Vuill. (Cordycipitaceae) (Berti-Filho et al. 1992). Additionally, the larva parasitoid *Entendon magnificus* (Girault & Dodd) (Hymenoptera: Eulophidae) has been studied in Chile (Gumovsky et al. 2015). The introductions of new parasitoid species highlight the limitation of the current biological control efforts with *A. nitens*.

In this study, we evaluated the predation efficiency of *P. nigrispinus* on *G. platensis* in the Forest Protection Laboratory of Suzano Pulp and Paper Company. Larvae and adults of *G. platensis* were collected 3 d before the experiment from an infested field site and were kept on *Eucalyptus urophylla* S. T. Blake × *Eucalyptus grandis* W. Hill ex Maiden (Myrtaceae) leaves at a constant temperature of 24 ± 2°C. Nymphs and adults of the predator *P. nigrispinus* were reared at the Forest Protection Laboratory and fed *Tenebrio molitor* L. (Coleoptera: Tenebrionidae) larvae.

The experiment was conducted at a temperature of 24 ± 2°C, relative humidity of 60 ± 10%, and a photoperiod of 12:12 h L:D. The experimental setup was completely randomized with 4 replications of the following treatments: 20 adults of *G. platensis* (T1, control), 20 larvae of *G. platensis* (T2, control), 2 adults (1 male and 1 female) of *P. nigrispinus* with 20 adults of *G. platensis* (T3), 2 adults (1 male and 1 female) of *P. nigrispinus* with 20 larvae of *G. platensis* (T4), 2 nymphs of *P. nigrispinus* with 20 larvae of *G. platensis* (T5), and 2 nymphs of *P. nigrispinus* with 20 adults of *G. platensis* (T6). The insects were kept in plastic pots (250 mL) covered with a voile cloth lid, upon which a damp

¹Suzano Papel e Celulose, Itapetininga, 18207-780, Brazil; E-mail: lucas_csinoue@hotmail.com (L. I. N.), everton.soliman@suzano.com.br (E. P. S.), edivalzauza@suzano.com.br (E. Â. V. Z.), stape@suzano.com.br (J. L. S.)
²São Paulo State University, Botucatu, 18603-970, Brazil; E-mail: cwilcken@fca.unesp.br (C. F. W.)
*Corresponding author; E-mail: everton.soliman@suzano.com.br (E. P. S.)
cotton ball was placed as a water source for the predator. Leaves of *E. urophylla* × *E. grandis* served as a food source for *Gonipterus* and were replaced daily throughout the assay. In the treatments with prey larvae (T2, T4, and T5) 11, 6, and 3 larvae in the 2nd, 3rd, and 4th instar were offered, respectively. Adults of *P. nigrispinus* were newly emerged and the nymphs were in the 4th instar. The numbers of dead prey insects were recorded 1, 2, 3, 4, and 5 d after pest–predator contact. Mean numbers of insects preayed per d were compared by analysis of variance and means separated with Tukey test (*P > 0.05*). Four replicates with 20 prey insects per replicate were conducted.

Treatment	Prey	Predator	Day 1	Day 2	Day 3	Day 4	Day 5	Statistics
T1	Adults	none	0.0 ± 0.0aA	0.3 ± 0.0aA	0.0 ± 0.0aA	0.0 ± 0.0aA	0.0 ± 0.0aA	1.0 ± 0.15aA
T2	Larvae	none	0.0 ± 0.0aA	0.5 ± 0.5aA	0.0 ± 0.0aA	2.8 ± 0.3bcB	1.5 ± 0.6abAB	9.6 ± 27.8aB
T3	Adults	Adults	0.0 ± 0.0aA	0.3 ± 0.3aA	0.3 ± 0.3aA	0.5 ± 0.3abA	0.0 ± 0.0aA	1.1 ± 26.1aB
T4	Larvae	Adults	2.5 ± 0.3cA	3.5 ± 0.6bA	4.8 ± 1.5cA	6.5 ± 0.6cA	2.5 ± 1.0aA	3.0 ± 23.0aA
T5	Larvae	Nymphs	1.3 ± 0.3bA	3.8 ± 0.5bA	4.0 ± 2.0bcA	4.5 ± 1.5cA	2.5 ± 1.0aA	1.5 ± 31.7aB
T6	Adults	Nymphs	0.0 ± 0.0aA	0.3 ± 0.3aA	0.8 ± 0.5abA	1.0 ± 0.6abA	1.0 ± 0.4aA	1.3 ± 36.1aB

Statistics

Statistics	F value	C.V.*
	77.7	15.6
	10.2	24.4
	38.1	24.5
	38.8	

Original values are presented; data were transformed by \((x + 0.5)^{0.5}\) for statistical analysis. Means ± SD followed by the same lowercase letter in a column and uppercase letter in a row did not differ significantly according to the Tukey test (*P > 0.05*). Four replicates with 20 prey insects per replicate were conducted.

C.V. = Coefficient of variation.

This predatory species is native to Brazil and a promising biological control agent for use in the integrated pest management of *G. platensis*.

Key Words: *Eucalyptus*; biological control; integrated management; Brazil

Sumário

Nativo da Austrália *Gonipterus platensis* Marelli (Coleoptera: Curculionidae) é o principal besouro desfolhador do eucalipto no mundo, causando danos em diferentes regiões em que foi introduzido, locais onde seu manejo integrado é predominantemente biologicamente com o parasitoide de ovos *Anaphes nitens* (Girault) (Hymenoptera: Mymaridae). No presente trabalho apresentamos a primeira evidência de campo e estimativa da eficiência laboratorial do predador *Podisus nigrispinus* Dallas (Hemiptera: Pentatomidae) preando larvas de *G. platensis*. Este predador é nativo do Brasil e promissor para ser usado no controle biológico da praga dentro do manejo integrado de *G. platensis*.

Palavras Chave: *Eucalyptus*; controle biológico; manejo integrado; Brasil

References Cited

Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.

Arzone A, Meotto F. 1978. Reperti biologici su *Gonipterus scutellatus* Gyll. (Col. Curculionidae) infestante gli eucalipti della Riviera Ligure. Redia 61: 205–222.

Berti-Filho E, Alves SB, Cerigoni JA, Stape JL. 1992. Ocorrência de *Gonipterus platensis* Marelli (Coleoptera: Curculionidae) em eucaliptos no município de Suzano, estado de São Paulo, Brasil. Anais da Sociedade Entomológica do Brasil 11: 293–294.

Costello SL, Pratt PD, Rayachhetry MB, Center TD. 2002. Morphology and life history characteristics of *Podisus maculiventris* (Heteroptera: Pentatomidae). Florida Entomologist 85: 344–350.

EPPO. 2005. Data sheets on quarantine pest: *Gonipterus gibberus* and *Gonipterus scutellatus*. Bulletin of the European and Mediterranean Plant Protection Organization (EPPO) 35: 368–370.

Fenilli R. 1982. Primeiro registro de *Gonipterus platensis* Marelli, 1926 e *Gonipterus gibberus* (Boisd.) em adultos do *Gonipterus scutellatus* (Gyllenhal) (Coleoptera, Curculionidae). Revista de Agricultura, Piracicaba 67: 293–294.

Ferreira DF. 2008. SISVAR: um programa para análises e ensino de estatística. Revista Symposium 6: 36–41.

Gumovsky A, Little D, Rothmann S, Jaques L, Mayorga SI. 2015. Re-description and first host and biology records of *Eutedon magnificus* (Girault & Dodd) (Hymenoptera, Eulophidae), a natural enemy of *Gonipterus weevils* (Coleoptera, Curculionidae). Zootaxa 3957: 577–584.
Lanfranco D, Dungey HS. 2001. Insect damage in Eucalyptus: review of plantations in Chile. Australian Journal of Ecology 26: 477–481.

Mally CW. 1924. The eucalyptus snout beetle (Gonipterus scutellatus Gyll.). Journal of the Department of Agriculture for South Africa 9: 415–442.

Mansilla-Vázquez JP. 1992. Presencia sobre Eucalyptus globulus Labill de Gonipterus scutellatus Gyll. (Col. Curculionidae) em Galicia. Boletín de Sanidad Vegetal y Plagas 18: 547–554.

Mapondera TS, Burgess T, Matsuki M, Oberprieler RG. 2012. Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Australian Journal of Entomology 51: 175–188.

Medal J, Santa Cruz A. 2014. New record of predation on adult Diaprepes abbreviatus (Coleoptera: Curculionidae) by Euthyrhynchus floridanus and Podisus maculiventris (Heteroptera: Pentatomidae). Florida Entomologist 97: 830–834.

Reis AR, Ferreira L, Tomé M, Araújo C, Branco M. 2012. Efficiency of biological control of Gonipterus platensis (Coleoptera: Curculionidae) by Anaphes nitens (Hymenoptera: Mymaridae) in cold areas of the Iberian Peninsula: implications for defoliation and wood production in Eucalyptus globulus. Forest Ecology and Management 270: 216–222.

Rosado-Neto GH. 1993. Gonipterinae dos eucaliptos: primeiro registro de Gonipterus scutellatus para o Estado de São Paulo, Brasil, e algumas considerações sobre G. gibberus (Coleoptera: Curculionidae). Revista Brasileira de Entomologia 37: 465–467.

Santolomazza-Carbone S. 2002. Ecologia del gorgojo del eucalipto Gonipterus scutellatus Gyllenhal y de su parasitoide Anaphes nitens Girault. PhD thesis, Universidade de Vigo, Vigo, Spain.

Souza Gk, Pikart TG, Pikart FC, Serrão JE, Wilcken CF, Zanuncio JC. 2012. First record of a native heteropteran preying on the introduced eucalyptus pest, Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), in Brazil. Florida Entomologist 95: 517–520.

Torres JB, Zanuncio JC, Moura MA. 2006. The predatory stinkbug Podisus nigrispinus: biology, ecology and augmentative releases for lepidopteran larval control in Eucalyptus forests in Brazil. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1: article 15.

Wilcken CF, Oliveira NC, Sartório RC, Loureiro EB, Bezerra Junior N, Rosado-Neto GH. 2008. Ocorrência de Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) em plantações de eucalipto no Estado do Espírito Santo. Arquivos do Instituto Biológico 75: 113–115.

Zanuncio JC, Zanuncio TV, Guedes RNC, Ramalho FS. 2000. Effect of feeding on three Eucalyptus species in the development of Brontocoris tabidus (Heteroptera: Pentatomidae) fed with Tenebrio molitor (Col.: Tenebrionidae). Biocontrol Science and Technology 10: 443–450.

Zanuncio JC, Silva CAD, Lima ER, Pereira FF, Ramalho FS, Serrão JE. 2008. Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Brazilian Archives of Biology and Technology 51: 121–125.