Study on Total Phenolic, Flavonoid and Antioxidant Capacity of Fish Singgang Extracts

Nur Atikah Anwar¹, Anis Nafisah Jamain¹, Norhaslinda Ridzwan¹, Mimie Noratiqah Jumli¹, Norhayati Abd Hadi¹, Mohd Adzim Khalili Rohin¹, Roslan Arshad², Che Abdullah Abu Bakar² and Ahmad Zubaidi A. Latif³

¹School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia.
²School of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia.
³Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu Darul Iman, Malaysia.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors AZAL, CAAB and MAKR designed the study concept and design; authors RA and NAH design the methodology; authors NAA, ANJ, NR, RA and MNJ carried out the experimental, data acquisition and data interpretation; authors NAA, ANJ and NR drafting the manuscript; Authors AZAL, CAAB and MAKR revised critically on the manuscript written. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i1631291
Editor(s):
(1) Dr. Mohamed Fawzy Ramadan Hassanien, Zagazig University, Egypt.
Reviewers:
(1) Carolina M. Veronezi, União das Faculdades dos Grandes Lagos – UNILAGO, Brazil.
(2) Jurgita Sulinskiene, Lithuanian University of Health Sciences, Lithuania.
Complete Peer review History: http://www.sdiarticle4.com/review-history/65055

Received 12 January 2021
Accepted 18 March 2021
Published 23 March 2021

ABSTRACT

Aim: To evaluate the ash and moisture contents, total phenolic content, total flavonoid content, and antioxidant potential of Terengganu singgang extracts.

Study Design: Experimental study.

Place and Duration of Study: Central Laboratory, Tissue Culture Laboratory, Universiti Sultan Zainal Abidin, Terengganu between April 2019 and July 2019.

Methodology: Samples comprised three types of singgang dishes, which were prepared, cooked, and then extracted with distilled water and ethanol (EtOH) in different strengths, 50%, 70%, and 95%. The extracts were then analyzed for their phenolic, flavonoid content, and antioxidant capacity using spectrophotometric methods.

*Corresponding author: E-mail: mohdadzim@unisza.edu.my;
1. INTRODUCTION

In Terengganu, singgang is a traditional fish dish, which is considered good for health [1]. It is commonly cooked by boiling the chub mackerel or Indian mackerel with selected herbs and spices, such as turmeric, galangal, garlic, sour plum, and chilies. These spices are well-known flavor enhancers for food. In general, turmeric is known to have antioxidant, antibacterial, and anticancer activity [2], galangal has the antioxidant, anticancer, and antidiabetic potential [3]. Also, garlic has antioxidant, anticarcinogenic, hypolipidemic effects while improving our body's immune function [4].

It is believed that the mixture of fish and herbs or spices would make the singgang dish one of the most nutritious meals with high antioxidants and high unsaturated fatty acids that are highly susceptible to lipid oxidation [5]. Generally, fish quality depends on various aspects, such as climatic season, fish weight, age, feeding patterns, maturity, environmental factors, topography, and physiological composition [6–8]. On the other hand, the cooking methods used may also impact the nutritional value of fish [8].

The phenolic content and antioxidant potential of several raw fish, cooked fish dishes, spices, and herbs had been well quantified [8–11]. Thus, the health benefits of each ingredient used in the preparation of singgang are considered well established. This study aimed to investigate the total phenolic content, total flavonoid content, and antioxidant potential fish singgang dishes. Analysis of the whole singgang might help promote the health of Terengganu people while preserving a traditional cuisine.

2. MATERIALS AND METHODS

2.1 Sample Preparation of Singgang Dishes

In this study, dishes of singgang were prepared at the Therapeutic Diet and Laboratory of Universiti Sultan Zainal Abidin (UniSZA), Gong Badak (Terengganu), representing three types of samples namely, the chub mackerel singgang (ST), Indian mackerel singgang (SK), and the control singgang (SC). The SC sample was prepared without fish, i.e., comprising herbs and spices only. The herb and spices of each sample comprised 15 g grounded turmeric, 15 g grounded galangal, 25 g fresh chilies, 6 g garlic, and 10 g sour plum, and simmered in 600 mL distilled water for 5 min. Then, 5 g salt and 3 g sugar were added and followed by 500 g chub mackerel and 500 g Indian mackerel to ST and SK, respectively. Upon seasoning for 2 min, each singgang dish was boiled for 20 min, after which 400 g of the edible portion (fish and gravy) of singgang dishes was blended using a kitchen blender (HR2027/75, Koninklijke Phillips, N. V.) for 2 min to generate a homogenous mixture for each sample (ST, SK, and SC). The homogenous mixture was stored at -20°C until the nutrient extraction.

The extraction was largely based on the method of Mohd Adzim Khalili et al. [12], in which 30 g of each blended singgang dish sample (ST, SK, SC) was soaked in four different solvents, i.e., 100% ethanol (EtOH), 70% EtOH, 50% EtOH, and distilled water at room temperature for 24 h at an extracting ratio of sample to solvent 1:10 (w/v). Altogether, 12 samples (three types of singgang x four solvents) were prepared. The supernatants of each sample were then filtered.

100%. These singgang samples were chub mackerel (ST), Indian mackerel (SK), and a control sample with no fish (SC). Extracts were analyzed for their moisture and ash content. Also, the total phenolic content (TPC) was assayed using Folin-Ciocalteu reagent, while total flavonoid content (TFC) using AlCl₃ colorimetric assay, and antioxidant activity using 1,1-Diphenyl-2-picrylhydrazyl (DPPH). The total antioxidant capacity (T-AOC) was also evaluated.

Results: Experimental assays showed that the SC sample extracted in 100% EtOH produced the highest yield (3.7%). SK samples were lower than SC and ST in moisture content and ash content with 94.21%, 96.37% and 93.03% moisture content and 0.85%, 0.71%, and 0.96% ash content. Meanwhile, the extract of ST in 100% EtOH yielded the highest TPC (315.0 mg GAE/100g) and T-AOC (8.8 U/mL) but the lowest in DPPH scavenging activity (12.2%). On the other hand, the extract of SK in 70% EtOH gave the highest TFC with 6485.3 mg QE/100g. The correlation of TFC and TPC with DPPH and T-AOC assays was positively significant.

Conclusion: In conclusion, the ST extract yielded the best antioxidant capacity.

Keywords: Antioxidant; DPPH; flavonoid; phenolic; singgang dish.
with nylon filter papers (pore size 0.45 μm) and evaporated using a rotary evaporator (BUCHI, R-215, Labortechnik AG) connected to a vacuum pump for 60 min at a reduced pressure (2300 - 5830 Pa) at 40°C to yield the crude extract. The crude extract of each sample was dried in a drying oven at 40°C for 60 min and then frozen at -20°C before chemical analysis.

The extraction yield (Y) was calculated using the formula below [13].

$$Y (\%) = \frac{W2}{W1} \times 100\%$$

Where $W1$ = the original weight of the sample (after the blending), and $W2$ = weight of the dried extract.

2.2 Physicochemical Analyses (Moisture and Ash Content)

Each crude extract's moisture content was measured using a moisture analyzer (MA 35, Sartorius, UK), in which 5 g of each sample was dried in the analyzer at 125°C for 10 min to automatically generate the moisture content. The sample was analyzed in triplicate. Meanwhile, the ash content was analyzed using the method of Association of Official Analytical Chemists (AOAC) 900.02 [14], in which 5 g crude extract of each sample was dried at 550°C for 12 h. The ash content was expressed as a percentage of the fresh sample weight (after blending) and calculated using the following formula [14]:

$$\text{Percentage of ash (}) = \frac{W2}{W1} \times 100$$

Where, $W1$ = sample weight (g), and $W2$ = weight of ash (g).

2.3 Total Phenolic Content (TPC) Assay

On the other hand, the gallic acid equivalence method was used to assay the total phenolic content (TPC) [15] of each sample. Briefly, 1 mg crude extract of each sample was diluted into 1 mL methanol (MeOH) to produce a stock solution of 1 mg/mL, and 100 μL of this stock solution was mixed thoroughly with 400 μL distilled water and 500 μL Folin-Ciocalteu indicator, and allowed to react for 5 min. Then, 1 mL of 7.5% sodium carbonate was added to the reacting mixture and allowed to settle in the dark for 2 h. The absorbance was recorded in triplicate for each sample at 765 nm via a UV-visible spectrophotometer (Genesys 20, Thermo Fisher Scientific, country). A calibration curve of gallic acid was plotted to determine the activity potential of samples, which was expressed as mg of gallic acid equivalence (GAE) per 100 g sample (mg GAE/100 g sample). The TPC value of the sample was calculated using the following formula [15]:

$$\text{TPC} = \frac{cV}{M} \times 100$$

Where, c = concentration of the gallic acid from the calibration curve (mg/mL), V = volume of solvent used to dissolve the extract (mL), and M = weight of the extract used (g).

2.4 Total Flavonoid Content (TFC) Assay

Also, the total flavonoid content (TFC) of crude extract was determined for each sample using the aluminum chloride (AlCl₃) colorimetric method. Briefly, 1 mg crude extract was diluted with 1 mL MeOH to produce a stock solution of 1 mg/mL, and 100 μL of this stock solution mixed thoroughly with 500 μL distilled water and 100 μL of 5% sodium nitrate and allowed to stand for 6 min. Then, 150 μL of 10% AlCl₃ solution and 200 μL of 1M sodium hydroxide were added to the reacting mixture and reacted for 5 min. The absorbance was measured in triplicate at 510 nm using the same spectrophotometer. The activity potential of samples was expressed as the quercetin equivalence (mg QE/100 g), and the TFC of each sample was calculated using the following formula [15]:

$$\text{TFC} = \frac{cV}{M} \times 100$$

Where, c = concentration of the quercetin from the calibration curve (mg/mL), V = volume of solvent used to dissolve the extract (mL), and M = weight of the extract used (g).

2.5 Antioxidant Capacity (DPPH and T-AOC Assay)

The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay [16], in which 10 mg crude extract of each sample was dissolved in 1.0 mL MeOH and reacted with 1.0 mL x 1 M DPPH. The absorbance was measured in triplicate at 517 nm using a UV-visible spectrophotometer (UV-16-1, Shimadzu, Japan). A standard curve was developed using the quercetin, which served as a positive control and prepared in the same
concentration as the crude extract. The DPPH scavenging effect was calculated using the formula below.

DPPH scavenging effect (%) = 100 - [[(A0 - A1)/A0] x 100]

Where, A0 = the absorbance of the positive control, and A1 = the absorbance of the sample.

Meanwhile, the total antioxidant activity (T-AOC) was evaluated with an antioxidant kit (E-BC-K136, Elabscience, USA), in which, the reacting mixture, consisting of 1 mL buffer (reagent 1), 2 mL chromogenic agent (reagent 2), and 0.5 mL ferric salt solution (reagent 3), was incubated at 37°C for 30 min. Then, 0.2 mL stop solution (reagent 5) was added into the reacting mixture, thoroughly mixed, and left to stand for 10 min. The absorbance of samples and the negative control (without the samples) were then measured at 520 nm. The T-AOC activity, U/mL, using the following formula:

$$\text{T-AOC activity} = \frac{\text{Abs sample} - \text{Abs control}}{0.01 \times \frac{\text{Total volume of reaction system (mL)}}{\text{The volume of sample (mL)}}} \times 30$$

Where, Abs = absorbance, and df = the dilution factor of the sample.

2.6 Statistical Analysis

Both descriptive and inferential statistical analyses were used to analyze the data. The software Statistical Package for Social Sciences (SPSS, version 20.0, IBM, Armonk, USA) was used to perform two-tailed tests at the significance level of 0.05.

3. RESULTS AND DISCUSSION

3.1 Extraction Yield, Moisture and Ash Content

Table 1 shows the yield of SK, ST, and SC samples extracted in various solvents. For SK, 70% EtOH gave the highest extraction yield, i.e., 3.54%, and followed by 50% EtOH, 100% EtOH, and distilled water with 2.84%, 2.56%, and 2.26% yield, respectively. For ST, 70% EtOH gave the highest extraction yield, i.e., 3.45%, and followed by 50% EtOH, distilled water, and 100% EtOH with 3.32%, 2.63%, and 2.49% yield, respectively. Meanwhile, the highest extraction yield for SC was shown by 100% EtOH and followed by 70% EtOH, 50% EtOH, and distilled water with 3.74%, 3.51%, 3.06%, and 2.10% yield, respectively, and they significantly differed from each other (p < 0.05). Overall, the SC sample extracted in 100% EtOH gave the highest yield among all samples (3.74%).

Also, extractions in distilled water gave a significantly lower yield than that of 100%, 70%, and 50% EtOH for each sample. In contrast, extraction in 70% EtOH gave a significantly higher (p < 0.05) yield for ST and SK samples than 100% EtOH. While, 50% EtOH similarly gives higher yield in SK, ST and SC samples compared to distilled water. In general, the yield of extractions in organic solvents such

Samples	Solvents	Extraction yield (%)	F statistics (df)	p value
ST	100% EtOH	2.63 ± 0.01	11.81 (3,8)	<0.001*
	70% EtOH	3.45 ± 0.01		
	50% EtOH	3.32 ± 0.01		
	distilled water	2.49 ± 0.01		
SK	100% EtOH	2.56 ± 0.01	99.59 (3,8)	<0.001*
	70% EtOH	3.54 ± 0.01		
	50% EtOH	2.84 ± 0.01		
	distilled water	2.26 ± 0.01		
SC	100% EtOH	3.74 ± 0.01	46.97 (3,8)	<0.001*
	70% EtOH	3.51 ± 0.01		
	50% EtOH	3.06 ± 0.01		
	distilled water	2.10 ± 0.01		

Data are expressed as mean ± standard deviation. Values shown are means of 3 independent experiments.

*Post hoc analysis: the extraction yield is statistically different from each other
3.3 Total Phenolic and Total Flavonoid Contents

Table 3 shows the TPC for the extraction of SK, ST, and SC samples in various solvents. For SK, distilled water gave the highest TPC, i.e., 82.77 mg GAE/100 g, and followed by 100% EtOH, 50% EtOH, and 70% EtOH with 74.61, 51.21, and 27.09 mg GAE/100 g, respectively. For ST, 100% EtOH gave the highest TPC, i.e., 315.04 mg GAE/100 g, and followed by 70% EtOH, distilled water, and 50% EtOH with 88.79, 52.62, and 23.55 mg GAE/100 g, respectively. Meanwhile, the highest TPC for SC was shown by 70% EtOH and followed by distilled water, 50% EtOH, and 100% EtOH with 114.33, 51.91, 51.21, and 20.00 mg GAE/100 g, respectively. Strangely, SC and SK extracted in 50% EtOH had the same TPC, i.e., 51.21 mg GAE/100 g. In general, extraction in 100% EtOH gave the highest TPC for ST, while extraction in distilled water gave the highest TPC for SK, and extraction in 70% EtOH yielded the highest TPC for SC. Overall, the SC sample extracted in 100% EtOH had the lowest TPC (20.0 mg GAE/100 g) among all extractions. However, only SC and ST showed a significant difference in TPC for the same type of extraction.

Table 3 shows the TFC for the extraction of SK, ST, and SC samples in various solvents. For SK, 70% EtOH gave the highest TFC, i.e., 6485.28 mg QE/100 g, and followed by 100% EtOH, distilled water, and 50% EtOH with 5374.17, 3515.83, and 2115.83 mg QE/100 g, respectively. For ST, 70% EtOH gave the highest TFC, i.e., 3326.94 mg QE/100 g, followed by 100% EtOH, distilled water, and 50% EtOH with 2935.28, 2815.83, and 2418.61 mg QE/100 g, respectively. On the other hand, the highest TFC for SC was shown by 100% EtOH and followed by 50% EtOH, distilled water, and 70% EtOH with 5585.28, 4429.72, 4321.39, and 1757.50 mg QE/100 g, respectively. Overall, extractions in 100% and 70% EtOH yielded higher TFC than that of 50% EtOH and distilled water. However, only SC samples (in all solvents) gives significantly different ($p < 0.05$) from other samples in TFC contents.

The TPC (315.04 mg GAE/100 mg) value in this study was moderately high when compared to other food items, such as cooked asam pedas paste, tom yam paste and masak merah paste with 314.70, 257.38, and 302.23 mg GAE/100 mg, respectively [10]. Similarly, the TFC (6485.28 mg QE/100 g) in this study was high when compared to other food items, such as Kua-khling paste, turmeric powder, and shallot with 81.62, 2.17, and 11.18 mg QE/100 mg, respectively [20]. The moderately high TPC and TFC values in this study were apparently due to the use of herbs and spices in cooking the singgang dishes. The phenolic compounds and flavonoids in the herbs and spices might have contributed to the antioxidant function [21], probably due to their redox properties as reducing agents and singlet oxygen scavengers, thereby enabling antioxidant reactions [22].
3.4 Antioxidant Capacity (DPPH and T-AOC Assay)

Results observed in Table 4 shows the DPPH scavenging effect of SK, ST and SC samples in various solvents. For SK, distilled water gave the highest DPPH value of 99.07%, and followed by 50% EtOH, 100% EtOH, and 70% EtOH with 37.54%, 24.86% and 22.29%. For ST, distilled water gave the highest DPPH value with 62.04%, followed by 70% EtOH, 50% EtOH, and 100% EtOH with 37.54%, 24.86% and 22.29%. On the other hand, the highest DPPH value for SC was shown by 70% EtOH and followed by 50% EtOH, 100% EtOH and 100% EtOH with 26.50%, 18.09%, and 12.18%. Overall, the DPPH scavenging effect differed significantly (p < 0.05) between samples and solvents.

Meanwhile, the highest T-AOC activity, (8.87 U/mL) was shown in the SK sample extracted in 100% EtOH, while the lowest in the SC sample extracted in 70% EtOH, i.e., 0.44 U/mL (Table 4). The mean T-AOC value differed significantly (p < 0.05) among various solvents within each sample. In general, T-AOC values increased when the concentration of solvent decreased from 50 to 0% EtOH (distilled water), after which the T-AOC values fluctuated among samples and solvents.

Table 5 showed that both TPC and TFC provides positive and negative correlation with R values ranging from -1.00 to +1.00 with antioxidant capacities, DPPH and T-AOC assays for each sample tested. Upon heating (cooking), both fish curry paste and Thai red curry paste samples showed substantial increases in TPC and antioxidant capacities (DPPH and Ferric Reducing Antioxidant Power) [10,11]. The same scenario was likely to be true also for the singgang dish. However, the rise in TPC after heating might due to the increased extractability of polyphenol compounds as the heat would disrupt the cell wall of the herbs and spices, releasing some polyphenol compounds [10]. The antioxidant potential of food samples also depends on the synergies between antioxidant compounds and other plant components [23]. Spices and herbal ingredients used in the cooking, such as turmeric, garlic, chilies, sour plum, and galangal could prevent thermal oxidative degradation of antioxidants [24]. Thus, the antioxidant activity of singgang extracts could at least be partially linked to the high phenolic and flavonoid compounds.

3.5 Correlation between TPC, TFC, DPPH and T-AOC Assay

The antioxidant potential of turmeric could be mediated through direct scavenging of oxygen radicals and stimulating antioxidant responses by nuclear factor erythroid 2-related factor 2 (Nrf2) activation [25]. Meanwhile, garlic could protect cells against oxidative stress by inducing the expression of several antioxidant enzymes, such

Sample	Solvents	TPC (mg GAE/100 g)	p-value	TFC (mg QE/100 g)	p-value
SC	100% EtOH	20.00 ± 7.67	0.011*	5585.28 ± 1772.21	0.025*
	70% EtOH	114.33 ± 22.35		1757.50 ± 245.94	
	50% EtOH	51.21 ± 36.33		4429.72 ± 1216.45	
	distilled water	51.91 ± 9.03		4321.39 ± 1027.89	
ST	100% EtOH	315.04 ± 37.48	< 0.001*	2935.28 ± 2076.76	0.847
	70% EtOH	88.79 ± 50.18		3326.94 ± 958.53	
	50% EtOH	23.55 ± 5.35		2418.61 ± 719.87	
	distilled water	52.62 ± 17.33		2815.83 ± 731.20	
SK	100% EtOH	74.61 ± 30.56	0.608	5374.17 ± 864.94	0.608
	70% EtOH	27.09 ± 21.73		6485.28 ± 2051.36	
	50% EtOH	51.21 ± 46.68		2115.83 ± 639.23	
	distilled water	82.77 ± 49.65		3515.83 ± 1736.88	

Data are expressed as mean (standard deviation); *p < 0.05 (one-way ANOVA test); **p<0.05 using Turkey or Dunnet T3 post hoc test.

The antioxidant potential of turmeric could be mediated through direct scavenging of oxygen radicals and stimulating antioxidant responses by nuclear factor erythroid 2-related factor 2 (Nrf2) activation [25]. Meanwhile, garlic could protect cells against oxidative stress by inducing the expression of several antioxidant enzymes, such
Table 4. DPPH scavenging (%) and T-AOC activity of ST, SK and SC

Samples	Solvents	DPPH (%)	p-value	T-AOC activity (U/mL)	p-value
SC	100% EtOH	40.17 ± 2.80 a		1.39 ± 0.27 a	0.002*
	70% EtOH	60.54 ± 7.54 b	0.008*	0.44 ± 0.09 b	
	50% EtOH	49.07 ± 8.21 a,b,c		4.24 ± 0.27 c	
	distilled water	36.18 ± 5.91 a,c,d		3.93 ± 0.18 c,d	
ST	100% EtOH	12.18 ± 1.67 a,b	< 0.001*	3.23 ± 0.27 a	0.022*
	70% EtOH	18.09 ± 2.78 a,b		5.07 ± 0.90 b	
	50% EtOH	26.50 ± 4.06 a,b,c		4.88 ± 0.63 b,c	
	distilled water	62.04 ± 0.86 d		2.09 ± 0.45 d	
SK	100% EtOH	24.86 ± 0.12 a,b	< 0.001*	8.87 ± 1.07 a	0.009*
	70% EtOH	22.29 ± 0.33 a,b		4.75 ± 0.99 b	
	50% EtOH	37.54 ± 3.55 a,b,c		4.37 ± 0.99 b,c	
	distilled water	99.07 ± 24.48 d		2.60 ± 0.27 d	

Data are expressed as mean ± standard deviation; *p < 0.05 (one-way ANOVA test); a,b,c,d p<0.05 using Tukey or Dunnet T3 post hoc test

Table 5. The correlation between TPC, TFC, DPPH and T-AOC assays

Samples	TPC	TFC	DPPH	T-AOC
TPC	SC	*	*	*
	ST	*	*	*
	SK	*	*	*
TC	SC	-0.50	*	*
	ST	0.16	*	*
	SK	-0.30	*	*
DPPH	SC	0.75	-0.52	*
	ST	-0.53	-0.07	*
	SK	0.19	-0.44	*
T-AOC	SC	-0.40	-0.29	-0.42 *
	ST	-0.21	0.29	-0.61 *
	SK	-0.10	0.49	-0.64 *

Pearson’s correlation test; *high positive correlation (p<0.05)

Table 6. Adjusted mean and 95% CI of the main effects of factors on DPPH value

Factors	Adjusted mean (95% CI)	F-stat (df)	p-value
Sample			
SC	46.49 (19.08, 73.90)	0.73 (2)	0.523
SK	29.70 (2.29, 57.12)		
ST	45.94 (18.53, 73.35)		

Type of extracts	Adjusted mean (95% CI)	F-stat (df)	p-value
100% EtOH	25.74 (-5.92, 57.39)	1.81 (3)	0.245
70% EtOH	33.64 (1.98, 66.29)		
50% EtOH	37.70 (6.05, 69.36)		
distilled water	12.94 (34.10, 97.42)		

Multifactorial ANOVA test was applied; post-hoc test using bonferroni’s test was applied

as HO-1 and GCLM subunit through Nrf2-antioxidant response element (ARE) pathway [26]. The metalloenzyme and superoxide dismutase enzyme in chilies could also impart defense against oxidative stress by converting superoxide radical anion into hydrogen peroxide [27]. Besides, the antioxidant ability of sour plum could help against oxidative damage through lipid peroxidation, a chain reaction that caused multiple breakdowns of molecules, such as malondialdehyde [28]. Additionally, the alcoholic extract of galangal improved the antioxidant status [29]. Therefore, it was strongly believed that spices and herbs such as turmeric, galangal, garlic, sour plum, and chilies also had contributed to the antioxidant potential of each singgang dish.
4. CONCLUSION

Overall, the sample SC extracted in 100% EtOH gave the highest yield (3.74%) and followed by samples SK (3.51%) extracted in 70% EtOH and SC (3.51%) extracted in 70% EtOH. Meanwhile, the ST sample had the lowest moisture content (93.03%), probably due to thermal destruction of proteins during the cooking process while the ST sample had the highest ash content (0.96%). On the other hand, the ST sample extracted in 100% EtOH yielded the highest TPC (315.04 mg GAE/100 g), while extraction of SK in 70% EtOH generated the highest TFC (6485.28 mg QE/100 g). However, the DPPH scavenging effect was the highest for all samples extracted in distilled water, while the T-AOC activity was the highest in the SK sample extracted in 100% EtOH (8.87 U/mL). The correlations between TPC and TFC and DPPH and T-AOC assays were ranging from negative to positive correlation. Further study on analyzing the phytochemicals contributing to the antioxidant activities in the singgang dish would be essential.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

This study was supported by grant number UniSZA/RMIC/2018/04 from the Centre for Research, Excellence and Incubation Management (CREIM) at Universiti Sultan Zainal Abidin. A special thank you for the help provided by Dean of Faculty Medicine; Prof Dr. Nordin Simbak and Deputy Dean of Research and Innovation; Prof Madya Dr. Aniza Abd Aziz for guiding us throughout the study. Special thanks also to all collaborative researchers whom participated in this study and had given full cooperation in providing the necessary input and equipment. The acknowledge also goes to all staffs from Teaching Laboratory 1, Faculty of Medicine and Faculty of Health Sciences, UniSZA.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Majid MDFAA. Ikan singgang berkerasiat sebagai makanan berfungsi untuk penjagaan kesihatan; 2019. Available:https://www.academia.edu/6050784/ikan_singgang_berkerasiat_sebagai_makanan_berfungsi_untuk_penjagaan_kesihatan
2. Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebas YH. Role of curcumin in disease prevention and treatment. Advance Biomedical Research. 2018;7:38.
3. Chouni A, Paul S. A review on phytochemical and pharmacological potential of *Alpinia galanga*. Pharmacognosy Journal. 2018;10(1):9-15.
4. Adaki S, Adaki R, Shah K, Karagir A. Garlic: Review of literature. Indian Journal Cancer. 2014;51:577-81.
5. Secci G, Parisi G. From farm to fork; lipid oxidation in fish products: A review. Italian Journal of Animal Science. 2016;15(1):124-136.
6. Pal J, Shukla BN, Maurya AK, Verma HO, Pandey G, Amitha. A review on role of fish in human nutrition with special emphasis to essential fatty acid. International Journal of Fisheries and Aquatic Studies. 2016;6(2):427-30.
7. Nader KK, Hedayat H, Masoud R, Ramin K, Maryam M. Effect of different cooking methods on minerals, vitamins, and nutritional quality indices of rainbow trout (*Oncorhynchus mykiss*). International Journal of Food Properties. 2016;19(11):2471-80.
8. Gokoglu N, Yerlikaya P, Cengiz E. Effect of cooking methods on the proximate composition and mineral contents of rainbow trout (*Oncorhynchus mykiss*). Food Chemistry. 2004;84(1):19-22.
9. Tiwo TC, Womeni HM, Tchouboungnang F, Chandra MV, Ndomou S, Nganou E, et al. Effect of smoking on the oxidation parameters and the total phenolic compounds of two freshwater fishes: *Clarias Gariepinus* and *Cyprinus Carpio*. Journal of Food Processing and Technology. 2018;9:9.
10. Hanis Mastura Y, Hasnah H, Yap YT. Total phenolic content and antioxidant capacities of instant mix spices cooking pastes. International Food Research Journal. 2017;24(1):68-74.
of heat treatment on antioxidant capacity and colour of Thai red curry paste. Kasetsart Journal (Natural Science). 2011;45:136-46.

12. Mohd Adzim Khalili R, Norhaslinda R, Mimie NJ, Norhayati AH, Syed Ahmad Tajudin TJ, Ahmad Zubaidi AL. Cytotoxicity study and morphological changes of different extraction for Bismillah leaf (Vernonia amygdalina) in human glioabloma multiforme cell line (U-87). Biomedical Research. 2017;28(2):1-7.

13. Jiang C, Li X, Jiao Y, Jiang D, Zhang L, Fan B, et al. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate Polymers. 2014;110:10-7.

14. Silva KL, Jadhav DY, Rathnayaka RMUSK, Sahoo AK. Investigation of nutrient content, phytochemical content, antioxidant activity and antibacterial activity of inedible portion of pomegranate (Punica granatum L.). European Journal of Medicinal Plants. 2014;4(5):3091-46.

15. Alyaqoubi S, Abdullah A, Samudi M, Abdullah N, Addai ZR, Al-Ghazali M. Effect of different factors on goat milk antioxidant activity. Int J Chem Tech. Res. 2014;6:3091-196.

16. Rohin MAK, Hadi N, Naim R, Baig AA, Mahmud K. Study on antioxidant capacity and anticancer activity of Bismillah leaf (Vernonia amygdalina). World Journal of Pharmaceutical Research. 2014;3(6):29-29.

17. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadjii S, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis. 2014;22(3):296-302.

18. Ridzwan N, Jumli MN, Baig AA, Rohin MAK. Quantitative and optimization of anthocyanin extracted from pomegranate (Punica granatum) extract by high performance liquid chromatography (HPLC). Pharmacognoxy Journal. 2018;10(1):73-82.

19. Asha KK, Anandan R, Mathew S, Lakshmanan PT. Biochemical profile of oyster Crassostrea madrasensis and its nutritional attributes. The Egyptian Journal of Aquatic Research. 2014;40(1):35-41.

20. Settharaksa S, Jongjareonnak A, Hmadlu P, Chansuwan W, Siripongvutikorn S. Flavoboid, phenolic contents and antioxidants properties of Thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. International Food Research Journal. 2012;19(4):1581-1587.

21. Dzoyem JP, Eloff JN. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J Ethnopharmacol. 2015;160:194–201.

22. Deepak MK, Surendra SK, Mahabaleshwar VH, Hanhong B. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences. 2015;11(8):982-91.

23. Marecek V, Mikyska A, Hampel D, Cejka P, Neuwirthova J, Malachova A, et al. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science. 2017;73:40-5.

24. Tomaino A, Cimino F, Zimbalti V, Venuti V, Sulfaro V, De Pasquale A, et al. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry. 2005;89(4):549-54.

25. Rabil SA, Muhammad BH, Muhammad TS, Muhammad SA, Marwa W, Mohammad AS, et al. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review. Evidence-Based Complementary and Alternative Medicine. 2020;1-14.

26. Liu J, Guo W, Yang ML, Liu LX, Huang SX, Tao L, et al. Investigation of the dynamic changes in the chemical constituents of Chinese “laba” garlic during traditional processing. Research Advance. 2018;8:41872–4188.

27. Bhattacharya A, Chattopadhyay A, Mazumdar D, Chakravarty A, Pal S. Antioxidant constituents and enzyme activities in chilli peppers. International Journal of Vegetable Science. 2010;16(3):201–211.

28. Christina JREL, Sumaryati S, Eti Y, Endang P. Benefits of asam gelugor (Garcinia atroviridis) tea as a source of antioxidant compounds on malondialdehyde levels in adults with obesity. American Scientific Research Journal for Engineering, Technology and Sciences. 2017;34(1):198-204.
29. Hanish Singh JC, Alagarsamy V, Sathesh Kumar S, Narsimha Reddy Y. Neurotransmitter metabolic enzymes and antioxidant status on Alzheimer's disease induced mice treated with *Alpinia galanga* (L.) willd. *Phytotherapy Research*. 2011;25(7);1061–1067.