Offensive k-alliances in graphs

Henning Fernau1, Juan A. Rodríguez2 and José M. Sigarreta3

1FB 4-Abteilung Informatik
Universität Trier,
54286 Trier, Germany.
e-mail:fernau@uni-trier.de

2Departament d’Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili,
Av. Països Catalans 26, 43007 Tarragona, Spain.
e-mail:juanalberto.rodriguez@urv.cat

3Departamento de Matemáticas
Universidad Carlos III de Madrid,
Avda. de la Universidad 30, 28911 Leganés (Madrid), Spain.
e-mail:josemaria.sigarreta@uc3m.es

Abstract

Let $G = (V,E)$ be a simple graph. For a nonempty set $X \subseteq V$, and a vertex $v \in V$, $\delta_X(v)$ denotes the number of neighbors v has in X. A nonempty set $S \subseteq V$ is an offensive r-alliance in G if $\delta_S(v) \geq \delta_S(v) + r$, $\forall v \in \partial(S)$, where $\partial(S)$ denotes the boundary of S. An offensive r-alliance S is called global if it forms a dominating set. The global offensive r-alliance number of G, denoted by $\gamma_o^r(G)$, is the minimum cardinality of a global offensive r-alliance in G. We show that the problem of finding optimal (global) offensive r-alliances is NP-complete and we obtain several tight bounds on $\gamma_o^r(G)$.

Keywords: Computational complexity, offensive alliances, alliances in graphs, domination.

AMS Subject Classification Numbers: 03D15; 05C69; 05A20
1 Introduction

The mathematical properties of alliances in graphs were first studied by P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi [13]. They proposed different types of alliances: namely, defensive alliances [11, 12, 13, 21], offensive alliances [4, 5, 7, 17, 18] and dual alliances or powerful alliances [1]. A generalization of these alliances called r-alliances was presented by K. H. Shafique and R. D. Dutton [19, 20].

In this paper, we study the mathematical properties of offensive r-alliances. We begin by stating the terminology used. Throughout this article, $G = (V, E)$ denotes a simple graph of order $|V| = n$. We denote two adjacent vertices u and v by $u \sim v$. For a nonempty set $X \subseteq V$, and a vertex $v \in V$, $N_X(v)$ denotes the set of neighbors v has in X: $N_X(v) := \{u \in X : u \sim v\}$, and the degree of v in X will be denoted by $\delta_X(v) = |N_X(v)|$. We denote the degree of a vertex $v \in V$ by $\delta(v)$ and the degree sequence of G by $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n$. The complement of the vertex-set S in V is denoted by \bar{S} and the boundary, $\partial(S)$, of S is defined by

$$\partial(S) := \bigcup_{v \in S} N_{\bar{S}}(v).$$

For $r \in \{2 - \delta_1, \ldots, \delta_1\}$, a nonempty set $S \subset V$ is an offensive r-alliance in G if for every $v \in \partial(S)$,

$$\delta_S(v) \geq \delta_S(v) + r. \quad (1)$$

or, equivalently,

$$\delta(v) \geq 2\delta_S(v) + r. \quad (2)$$

An offensive 1-alliance is an offensive alliance and an offensive 2-alliance is a strong offensive alliance as defined in [7, 17, 18].

The offensive r-alliance number of G, denoted by $a^o_r(G)$, is defined as the minimum cardinality of an offensive r-alliance in G. Notice that

$$a^o_{r+1}(G) \geq a^o_r(G). \quad (3)$$

The offensive 1-alliance number of G is known as the offensive alliance number of G and the offensive 2-alliance number is known as the strong offensive alliance number [7, 17, 18].

A set $S \subset V$ is a dominating set in $G = (V, E)$ if for every vertex $u \in \bar{S}$, $\delta_S(u) > 0$ (every vertex in \bar{S} is adjacent to at least one vertex in S). The
domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G.

An offensive r-alliance S is called global if it forms a dominating set, i.e., $\partial(S) = \overline{S}$. The global offensive r-alliance number of G, denoted by $\gamma^o_r(G)$, is the minimum cardinality of a global offensive r-alliance in G. Clearly,

$$\gamma^o_{r+1}(G) \geq \gamma^o_r(G) \geq \gamma(G) \quad \text{and} \quad \gamma^o_r(G) \geq a^o_r(G). \tag{4}$$

Notice that if every vertex of G has even degree and k is odd, $k = 2l - 1$, then every offensive $(2l - 1)^o$-alliance in G is an offensive $(2l)$-alliance. Hence, in such a case, $a^o_{2l-1}(G) = a^o_{2l}(G)$ and $\gamma^o_{2l-1}(G) = \gamma^o_{2l}(G)$. Analogously, if every vertex of G has odd degree and k is even, $k = 2l$, then every offensive $(2l)$-alliance in G is an offensive $(2l + 1)$-alliance. Hence, in such a case, $a^o_{2l}(G) = a^o_{2l+1}(G)$ and $\gamma^o_{2l}(G) = \gamma^o_{2l+1}(G)$.

2 On the complexity of finding optimal offensive r-alliances

For the class of complete graphs of order n, $G = K_n$, we have the exact value of $a^o_r(G)$. That is,

$$n - 1 = a^o_{n-1}(K_n) = a^o_{n-2}(K_n) \geq a^o_{n-3}(K_n) = a^o_{n-4}(K_n) = n - 2 \ldots \geq a^o_{5-n}(K_n) = a^o_{4-n}(K_n) = 2 \geq a^o_{3-n}(K_n) = 1.$$

Hence, for every $r \in \{3 - n, \ldots, n - 1\}$, $a^o_r(K_n) = \lceil \frac{n+r-1}{2} \rceil$. In this case, every offensive r-alliance is global and every vertex-set of cardinality $\lceil \frac{n+r-1}{2} \rceil$ is a (global) offensive r-alliance.

As we will see below, in general, the problem of finding optimal (global) offensive r-alliances is NP-complete. That is, we are interested in the computational complexity of the following optimization problems.

Offensive r-Alliance problem (r-OA):

Given: A graph $G = (V, E)$ and a positive integer $k \leq |V|$.

Question: Is there an offensive r-alliance in G of size k or less?

Global offensive r-Alliance problem (r-GOA):

Given: A graph $G = (V, E)$ and a positive integer $k \leq |V|$.

Question: Is there a global offensive r-alliance in G of size k or less?

2.1 Offensive alliances

Our reasoning will use and generalize the following observation:

Proposition 1. [7] On cubic graphs, every vertex cover is a strong offensive alliance and vice versa.

With some gadgetry, this was used in [9] to show NP-hardness of finding small offensive alliances. We will generalize those results in the following.

Theorem 2. $\forall r$: r-OA is NP-complete.

Proof. It is clear that r-OA is in NP.

Consider first the case that $r \geq 3$. For any connected r-regular graph $G = (V, E)$, it can be seen that $C \subseteq V$ is a minimum vertex cover iff C is a minimum r-offensive alliance. Clearly, any vertex cover is an r-OA. Let S be an r-OA. By definition, $S \neq \emptyset$. Discuss $x \in S$. Any neighbor of x must have r, i.e., all, neighbors in S, and we can continue the argument with those vertices taking the role of x, till the whole graph is exhausted (since it is connected by assumption). Hence, the complement of S forms an independent set, which means that S itself is a vertex cover. Since it is well-known that the vertex cover problem, restricted to r-regular graphs is NP-complete for any $r \geq 3$, see [8] for a recent account related to approximability results, the claim follows for $r \geq 3$.

Now, we show: if r-OA is NP-hard, then so is $(r-1)$-OA. By induction, the whole claim will follow.

Let $(G = (V, E), k)$ be an instance of r-OA, with $n = |V|$. We construct an instance of $(r-1)$-OA as follows: $G' = (V', E')$ with $V' = V \times \{1, 2, 3\} \cup \{c_1, \ldots, c_{n-r+2}\}$. In E', we find the following edges (and only those):
- $\{(u, 1), (v, 1)\} \in E'$ iff $\{(u, 2), (v, 2)\} \in E'$ iff $\{u, v\} \in E$;
- $\{(u, 1), (u, 3)\} \in E'$ and $\{(u, 2), (u, 3)\} \in E'$ for any $u \in V$;
- $\{(u, 3), c_j\} \in E'$ for any $u \in V$ and any $1 \leq j \leq n - r + 2$;

4
Clearly, $K \mid N$ of size at most k for G iff $S \times \{1, 2\}$ is a $(r - 1)$-OA of size at most $2k$ for G', and that there is no other possibility to form smaller $(r - 1)$-OAs in G' due to the attached clique.

2.2 Global offensive alliances

Cami et al. [2] showed NP-completeness for $r = 1$. We are going to modify their construction to show NP-completeness for any fixed r. Since we are dealing with the degree of vertices both in G and within the new graph G' as constructed below, we are going to attach G and G' to δ to avoid confusion in our notation.

Theorem 3. $\forall r: r$-GOA is NP-complete.

Proof. Membership in NP is clear.

The construction in [2] can be modified to work for any case $r \leq 1$. Let (G, k) be an instance of Dominating Set with minimum degree $|r| + 1$, with $G = (V, E)$. To any $v \in V$, attach $\delta_G(v) + r - 1 \geq 0$ copies of K_2 with one edge per K_2-copy, this way yielding a new graph $G' = (V', E')$ with G as a subgraph; call the new neighbors of vertices from V A-vertices and collect them into set A, and call $N(A) \setminus V$ B-vertices.

If $D \subseteq V$ is a dominating set in G, then $S = D \cup A$ is a r-GOA. Clearly, S is a dominating set in G'. Now, consider a B-vertex v. Obviously, $N(v) \subseteq A$, and therefore $|N_{G'}(v) \cap S| \geq |N_G(v) \cap \bar{S}| + r$. Any vertex $v \in V \setminus D$ has a neighbor $d \in D$. Hence, $|N_G(v) \cap \bar{S}| \leq \delta_G(v) - 1$, while $|N_{G'}(v) \cap \bar{S}| \geq \delta_G(v) + (r - 1) + 1 = \delta_G(v) + r$. Therefore, S is a valid r-GOA.

Conversely, let S be a r-GOA of G'. Since S is a dominating set, for each K_2-copy attached to G, either the corresponding A- or the corresponding B-vertex is in S. Consider some $v \in V \setminus S$. v must be dominated. If no neighbor of v in V is in S, then $|N_G(v) \cap S| \leq \delta_G(v) + r - 1$, while $|N_G \cap \bar{S}| \geq \delta_G(v)$, which leads to a contradiction. Hence, $S \cap V$ is a dominating set in G.

Combining the arguments, we obtain: $G = (V, E)$ has a dominating set of size at most k iff $G' = (V', E')$ has a r-GOA of size $k + \sum_v (\delta_G(v) + r - 1) = k + (r - 1)|V| + 2|E|$.

Now, we consider the case $r \geq 2$. Let (G, k) be an instance of Dominating Set with minimum degree 1, with $G = (V, E)$. To any $v \in V$, attach $\delta_G(v) + r - 1 \geq 1$ so-called A-vertices. All A-vertices together form an independent
set. Let \(A(v) = \{(v, 1), \ldots, (v, \delta_G(v) + r - 1)\} \) denote the set of \(A \)-vertices attached to \(v \in V \). We denote the \(B \)-vertices attached to the \(A \)-vertices in \(A(v) \) by \(B(v) \) and can describe them as \(B(v) = \left(\frac{A(v)}{r} \right) \), i.e., the \(r \)-element subsets of \(A(v) \). Each \(X \in B(v) \) has as neighbors exactly the \(A \)-vertices listed in \(X \). This describes the graph \(G' = (V', E') \) as obtained from \(G \).

If \(D \subseteq V \) is a dominating set in \(G \), then \(S = D \cup A \) is a \(r \)-GOA in \(G' \). Clearly, \(S \) is a dominating set in \(G' \). Now, consider a \(B \)-vertex \(v \). Obviously, \(N(v) \subseteq A(v) \), and therefore \(|N_G(v) \cap S| = r \geq |N_G(v) \cap \bar{S}| + r \). Any vertex \(v \in V \setminus D \) has a neighbor \(d \in D \). Hence, \(|N_G(v) \cap \bar{S}| \leq \delta_G(v) - 1 \), while \(|N_G(v) \cap S| \geq \delta_G(v) + (r - 1) + 1 = \delta_G(v) + r \). Therefore, \(S \) is a valid \(r \)-GOA.

Conversely, let \(S \) be a \(r \)-GOA of \(G' \) of size \(k + |A| \). Notice that this bound is met if \(S \cap V \) is a dominating set in \(G \) and all \(A \)-vertices go into \(S \). Consider an \(A(v) \)-vertex \(x \) and assume \(x \notin S \). Then, either there is a \(y \in S \cap N(x) \cap B(v) \), or \(v \in S \), since otherwise \(x \) would not be dominated.

Altogether, \(x \) has \(\left(\frac{\delta_G(v) + r - 1}{r} \right) + 1 \) many neighbors. Since \(S \) is an \(r \)-GOA, more than \(|A(v)| = \delta_G(v) + r - 1 \) vertices from the gadget attached to \(v \) would be in \(S \), this way violating the bound on the size of \(S \). Consider some \(v \in V \setminus S \). \(v \) must be dominated. If no neighbor of \(v \) in \(V \) is in \(S \), then \(|N_G(v) \cap S| \leq \delta_G(v) + r - 1 \), while \(|N_G(v) \cap \bar{S}| \geq \delta_G(v) \), which leads to a contradiction. Hence, \(S \cap V \) is a dominating set in \(G \).

Combining the arguments, we obtain: \(G = (V, E) \) has a dominating set of size at most \(k \) iff \(G' = (V', E') \) has a \(r \)-GOA of size \(k + \sum_v (\delta_G(v) + r - 1) = k + (r - 1)|V| + 2|E| \).

\[\square \]

3 Bounding the offensive \(r \)-alliance number

Theorem 4. For any graph \(G \) of order \(n \) and minimum degree \(\delta \), and for every \(r \in \{2 - \delta, \ldots, \delta\} \),

\[
\left\lceil \frac{\delta + r}{2} \right\rceil \leq a^o_r(G) \leq \gamma^o_r(G) \leq n - \left\lfloor \frac{\delta - r + 2}{2} \right\rfloor.
\]

Proof. Let \(v \) be a vertex of minimum degree in \(G \) and let \(Y \subset N_V(v) \) such that \(|Y| = \left\lceil \frac{\delta + r}{2} \right\rceil \). Let \(S = \{v\} \cup N_V(v) - Y \). Hence, \(S \) is a dominating set and

\[
\delta_S(v) = \left\lceil \frac{\delta + r}{2} \right\rceil \geq \left\lceil \frac{\delta + r}{2} \right\rceil = \delta - \left\lfloor \frac{\delta + r}{2} \right\rfloor + r = \delta_S(v) + r.
\]
Thus,
\[\delta_S(u) \geq \delta_S(v) \geq \delta_S(v) + r \geq \delta_S(u) + r, \quad \forall u \in S. \]

Therefore, \(\bar{S} \) is a global offensive \(r \)-alliance in \(G \) and, as a consequence, the upper bound follows.

On the other hand, let \(X \subset V \) be an offensive \(r \)-alliance in \(G \). For every \(v \in \partial(X) \) we have
\[
\delta(v) = \delta_X(v) + \delta_{\bar{X}}(v) \\
\delta(v) \leq \delta_X(v) + \frac{\delta(v) - r}{2} \\
\frac{\delta(v) + r}{2} \leq \delta_X(v) \leq |X| \\
\delta + r \leq |X|.
\]

Therefore, the lower bound follows.

The bounds are attained for every \(r \) in the case of the complete graph \(G = K_n \).

A set \(S \subset V \) is a \(k \)-dominating set if for every \(v \in \bar{S} \), \(\delta_S(v) \geq k \). The \(k \)-domination number of \(G \), \(\gamma_k(G) \), is the minimum cardinality of a \(k \)-dominating set in \(G \). The following result generalizes, to \(r \) alliances, some previous results obtained for \(r = 1 \) and \(r = 2 \) \([15, 18]\).

Theorem 5. For any simple graph \(G \) of order \(n \), minimum degree \(\delta \), and Laplacian spectral radius \(\mu_* \),
\[
\left\lfloor \frac{n}{\mu_*} \left[\frac{\delta + r}{2} \right] \right\rfloor \leq \gamma^o_r(G) \leq \left\lfloor \frac{\gamma_r(G) + n}{2} \right\rfloor.
\]

Proof. Let \(H \subset V \) be an \(r \)-dominating set of \(G \) of minimum cardinality. If \(|\bar{H}| = 1 \), then \(\gamma_r(G) = n - 1 \) and \(\gamma^o_r(G) \leq n - 1 \). If \(|\bar{H}| \neq 1 \), let \(\bar{H} = X \cup Y \) be a partition of \(\bar{H} \) such that the edge-cut between \(X \) and \(Y \) has the maximum cardinality. Suppose \(|X| \leq |Y| \). For every \(v \in Y \), \(\delta_H(v) \geq r \) and \(\delta_X(v) \geq \delta_Y(v) \). Therefore, the set \(W = H \cup X \) is a global offensive \(r \)-alliance in \(G \), i.e., for every \(v \in Y \), \(\delta_W(v) \geq \delta_Y(v) + r \). Then we have,
\[
2|X| + \gamma^o_r(G) \leq n
\]
\[\text{(5)}\]

\(^1\)i.e., the largest Laplacian eigenvalue of \(G \). The reader is referred to \([6, 14]\) for a detailed study and survey on the Laplacian matrix of a graph and its eigenvalues.
and
\[\gamma^o_r(G) \leq |X| + \gamma_r(G). \tag{6} \]

Thus, by (5) and (6), we obtain the upper bound.

It was shown in [10] that the Laplacian spectral radius of \(G, \mu_* \), satisfies
\[
\mu_* = 2n \max \left\{ \frac{\sum_{v_i \sim v_j} (w_i - w_j)^2}{\sum_{v_i \in V \sum_{v_j \in V} (w_i - w_j)^2} : w \neq \alpha j \text{ for } \alpha \in \mathbb{R}} \right\}, \tag{7}
\]
where \(V = \{v_1, v_2, ..., v_n\} \), \(j = (1, 1, ..., 1) \) and \(w \in \mathbb{R}^n \). Let \(S \subset V \). From (7), taking \(w \in \mathbb{R}^n \) defined as
\[
w_i = \begin{cases} 1 & \text{if } v_i \in S; \\ 0 & \text{otherwise} \end{cases}
\]
we obtain
\[
\mu_* \geq n \sum_{v \in S} \delta_S(v) \tag{8} \]
Moreover, if \(S \) is a global offensive \(r \)-alliance in \(G \),
\[
\delta_S(v) \geq \left\lceil \frac{\delta(v) + r}{2} \right\rceil, \quad \forall v \in \bar{S}. \tag{9}
\]
Thus, (8) and (9) lead to
\[
\mu_* \geq n \frac{\delta + r}{|S|} \tag{10} \]
Therefore, solving (10) for \(|S| \) we obtain the lower bound.

The above-mentioned bounds are attained, for instance, in the case of the complete graph of order \(n \).

Corollary 6. For any simple graph \(G \) of order \(n \), minimum degree \(\delta \), and for every \(r \in \{1, ..., \delta\} \),
\[
\gamma^o_r(G) \leq \left\lfloor \frac{n(2r + 1)}{2r + 2} \right\rfloor.
\]
Proof. The bound immediately follows from the following bound on $\gamma_r(G)$ [3]:
\[
\delta \geq r \Rightarrow \gamma_r(G) \leq \frac{rn}{r+1}.
\] (11)

Corollary 7. Let $L(G)$ be the line graph of a δ-regular graph G of order n. Then
\[
\gamma_o^L(L(G)) \geq \frac{n}{4} \left[\frac{2(\delta-1) + r}{2} \right].
\]

Proof. We denote by A the adjacency matrix of $L(G)$ and by $2(\delta-1) = \lambda_0 > \lambda_1 > \cdots > \lambda_b = -2$ its distinct eigenvalues. We denote by L the Laplacian matrix of $L(G)$ and by $\mu_0 = 0 < \mu_1 < \cdots < \mu_b$ its distinct Laplacian eigenvalues. Then, since $L = 2(\delta-1)I_n - A$, the eigenvalues of both matrices, A and L, are related by
\[
\mu_l = 2(\delta-1) - \lambda_l, \quad l = 0, \ldots, b.
\] (12)

Thus, the Laplacian spectral radius of $L(G)$ is $\mu_b = 2\delta$. Therefore, the result immediately follows. \qed

There are some immediate bounds on $\gamma_o^r(G)$ derived from the following remarks.

Remark 8. If S is an independent set in G, then \bar{S} is a global offensive r-alliance in G ($r \leq \delta$).

Remark 9. All global offensive r-alliance in G is a $\left\lceil \frac{\delta + r}{2} \right\rceil$-dominating set in G ($r \geq 2 - \delta$).

Therefore, the following bounds follow.
\[
\gamma_{\left\lceil \frac{\delta + r}{2} \right\rceil}(G) \leq \gamma_o^r(G) \leq n - \alpha(G),
\] (13)

where $\alpha(G)$ denotes the independence number of G.

The reader is referred to our previous works [15, 16, 17, 18] for a more detailed study on offensive 1-alliances and offensive 2-alliances.
References

[1] R. Brigham, R. Dutton and S. Hedetniemi, A sharp lower bound on the powerful alliance number of $C_m \times C_n$. Congr. Numer. 167 (2004) 57–63.

[2] A. Cami, H. Balakrishnan, N. Deo and R. Dutton, On the complexity of finding optimal global alliances. J. Combin. Math. Combin. Comput. 58 (2006).

[3] E. J. Cockayne, B. Gamble and B. Shepherd, An upper bound for the k-domination number of a graph. J. Graph Theory 9 (4) (1985) 533-534.

[4] M. Chellali and T. W. Haynes, Global alliances and independence in trees. Discussiones Mathematicae Graph Theory. In press.

[5] M. Chellali, Offensive alliances in trees. Submitted.

[6] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application. Academic Press. New York, 1980.

[7] O. Favaron, G. Fricke, W. Goddard, S. Hedetniemi, S. T. Hedetniemi, P. Kristiansen, R. C. Laskar and R. D. Skaggs, Offensive alliances in graphs. Discuss. Math. Graph Theory 24 (2) (2004) 263–275.

[8] U. Feige, Vertex cover is hardest to approximate on regular graphs, Technical Report MCS 03-15 of the Weizmann Institute, 2003.

[9] H. Fernau and D. Raible, Alliances in graphs: a complexity-theoretic study, Software Seminar SOFSEM 2007, Student Research Forum, Proceedings Vol. II, 61–70.

[10] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Math. J. 25 (100) (1975) 619–633.

[11] G. H. Fricke, L. M. Lawson, T. W. Haynes, S. M. Hedetniemi and S. T. Hedetniemi, A note on defensive alliances in Graphs. Bull. Inst. Combin. Appl. 38 (2003) 37–41.

[12] T. W. Haynes, S. T. Hedetniemi and M. A. Henning, Global defensive alliances in graphs. Electron. J. Combin. 10 (2003) 139–146.
[13] P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi, Alliances in graphs. *J. Combin. Math. Combin. Comput.* **48** (2004) 157–177.

[14] B. Mohar, The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. Ollermann, and A. Schwenk, editors, *Graph Theory, Combinatorics, and Applications*, pages 871–898. John Wiley and Sons, Inc., New York, 1991.

[15] J. A. Rodríguez and J. M. Sigarreta, Spectral study of alliances in graphs. *Discussiones Mathematicae Graph Theory* **27** (1) (2007) 143-157.

[16] J. A. Rodríguez and J. M. Sigarreta, Global alliances in planar graphs. *AKCE–International Journal of Graphs and Combinatorics*. In press.

[17] J. A. Rodríguez and J. M. Sigarreta, Offensive alliances in cubic graphs. *International Mathematical Forum* **1** (36) (2006) 1773–1782.

[18] J. A. Rodríguez-Velázquez and J. M. Sigarreta, Global offensive alliances in graphs. *Electronic Notes in Discrete Mathematics* **25** (2006) 157–164.

[19] K. H. Shafique and R. D. Dutton, Maximum alliance-free and minimum alliance-cover sets. *Congr. Numer.* **162** (2003) 139–146.

[20] K. H. Shafique and R. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets. *J. Combin. Math. Combin. Comput.* **56** (2006), 139–145.

[21] J. M. Sigarreta and J. A. Rodríguez, On defensive alliance and line graphs. *Applied Mathematics Letters* **19** (12) (2006) 1345–1350.