Our bodies are colonized by a complex ecosystem of bacteria, unicellular eukaryotes and their viruses that together play a major role in our health. Over the past few years tools derived from the prokaryotic immune system known as CRISPR-Cas have empowered researchers to modify and study organisms with unprecedented ease and efficiency. Here we discuss how various types of CRISPR-Cas systems can be used to modify the genome of gut microbiota and bacteriophages. CRISPR-Cas systems can also be delivered to bacterial population and programmed to specifically eliminate members of the microbiome. Finally, engineered CRISPR-Cas systems can be used to control gene expression and modulate the production of metabolites and proteins. Together these tools provide exciting opportunities to investigate the complex interplay between members of the microbiome and our bodies, and present new avenues for the development of drugs that target the microbiome.

This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.

1. Introduction

Healthy humans live in a symbiotic relationship with trillions of microorganisms that inhabit the exposed surfaces of our bodies and play an essential role in the maturation of the host-immune response, production of metabolites, brain–gut axis and more (see reviews [1–4]). This close relationship makes our microbiome an interesting target for therapies with the goal to induce desired responses, immunological, metabolic or even neurological in nature. These therapies can be classified into three main types: (i) additive therapies supplementing the host microbiota with individual strains or consortiums of bacterial species, (ii) subtractive therapies aiming to eliminate disease-causing members of the microbiome, and (iii) modulatory therapies aiming to modulate the composition or activity of the endogenous microbiome (see reviews [5,6]). While these therapeutic approaches are still in their infancy, engineered bacteria and viruses can be used to achieve desired outcomes [6]. In this review, we describe how tools derived from the prokaryotic immune system known as clustered regularly interspaced short palindromic repeats (CRISPRs)—and CRISPR-associated (Cas) proteins can be used to modify or eliminate members of the microbiome (figure 1).

CRISPR-Cas systems are the adaptive immune system of bacteria and archaea [7]. The strong interest in these systems comes from the discovery of a set of diverse RNA-guided nucleases able to destroy target nucleic acid sequences, some DNA and other RNA. The Cas nucleases are guided by CRISPR RNAs (crRNA), produced by transcription and processing of the CRISPR locus: a chromosomal site into which DNA fragments from invading nucleic acids are integrated in between repeats, providing a memory of past infections. Cas proteins associated to CRISPR arrays are very diverse and form the basis of the classification of CRISPR-Cas systems into two classes and six main types [8,9]. Class 1 systems (types I, III and IV) consists of a complex machinery, with several Cas proteins assisting the recognition of foreign nucleic acids and their cleavage. Class 2 systems (types II, V and VI) have a simpler protein architecture with a single effector protein arbitrating both recognition and cleavage. The latter class includes the type II CRISPR-Cas9 system, whose versatility has pushed the limits of genome editing [10]. Some features
unique to type II systems are the double-stranded (ds) DNA endonuclease Cas9 and the auxiliary trans-acting crRNA (tracrRNA) [11]. The crRNA and tracrRNA can be fused into a chimeric single guide RNA (sgRNA) further simplifying the use of this system as a tool. More recently, Cas nucleases from other subtypes have been successfully used in a variety of biotechnological applications. These include the Cas12 (Cpf1) DNA endonuclease from type V systems as well as the Cas13 nuclease from type VI systems, which targets RNA rather than DNA [12,13].

CRISPR-Cas systems are present in approximately 40% of bacteria. Endogenous CRISPR-Cas systems can in some cases be exploited, and engineered CRISPR-Cas systems can otherwise be introduced into target bacteria. These systems can be used to modify the genomes of microbiome-associated or probiotic bacteria, yeast and bacteriophages. They can also be used to kill specific strains based on their sequence without touching the rest of the microbiome (figure 1). Finally, CRISPR-Cas systems can be used to control gene expression without the need to modify the genome. Altogether CRISPR-Cas systems offer a powerful set of tools that will benefit the study of the microbiome and lead to the development of new strategies to modify it (figure 2).

2. CRISPR editing of bacteria

Shortly after its discovery and biochemical characterization, the CRISPR-Cas9 system was repurposed to edit eukaryotic and bacterial genomes [14]. It can now be considered as a tool of choice to engineer probiotic strains for additive therapies. Genome editing strategies rely on the use of a guide RNA designed to target a chromosomal sequence of interest where Cas9 will cut. Early bioinformatics studies revealed that bacterial genomes sometimes naturally carry CRISPR-Cas systems that contain guides targeting their own chromosome [15]. In most of these cases clues can be identified showing that the CRISPR-Cas system is inactivated by mutations in the cas genes or CRISPR array, or mutations altering the targeted sequences. A model was thus proposed where the CRISPR-Cas systems sometimes capture self-targeting spacers ‘by mistake’ and can only survive such events if the system is functionally inactivated. The idea that self-targeting of the bacterial chromosome by the CRISPR-Cas system is lethal was also corroborated by reports that bacteria die when endogenous or exogenous CRISPR-Cas systems are programmed to target the chromosome [16–19]. While the primary outcome of self-targeting is cell death, some cells are able to survive through the deletion of large DNA fragments encompassing the target position [18,20–23]. This strategy offers little to no control over the extent of DNA that will be deleted, but could still prove useful in removing undesired genetic elements such as pathogenicity islands or prophages from strains of interest. Lethal self-targeting can also be used to counter-select specific genotypes in complex populations [19,24].

The first evidence that CRISPR-Cas9 could be employed to achieve precise scar-less genome editing in bacteria came from...
a study in which the Cas9 protein from Streptococcus pyogenes was integrated in the chromosome of Streptococcus pneumoniae, an opportunistic pathogen commonly present in the respiratory tract, sinuses and nasal cavities of healthy carriers [25,26]. In this work, the CRISPR-Cas9 system was programmed to target an antibiotic resistance cassette present in another strain. When the DNA from the first strain was used to transfer the CRISPR-Cas9 system to the second strain through natural transformation, most bacteria died from the activity of the CRISPR-Cas9 system. Nonetheless, a substantial fraction of bacteria survived CRISPR-Cas9 killing through the modification of the targeted position by homologous recombination with the locus present in the donor DNA, which did not carry the antibiotic resistance cassette [26]. This work showed that Cas9 can be used to select for the introduction of mutations at desired positions without the need to leave a selection marker or a scar at the edited position.

While this strategy was easily employed in S. pneumoniae where natural transformation and recombination are efficient, its application to less recombinogenic bacteria such as E. coli requires the use of the phage lambda red recombination system to promote editing and repair of the Cas9-mediated breaks [26]. Many studies have now expanded on this work, making CRISPR-Cas9 editing tools more convenient to use [27–30]. CRISPR-Cas9 editing strategies typically rely on the expression of guide RNAs, Cas9 and the lambda red genes from one or several plasmids. Template DNA can be provided as short single stranded DNA, short or long double stranded DNA (typically PCR products), or cloned on a plasmid. In all cases Cas9 is guided to introduce a break at a position of interest, which leads to cell death unless the target DNA was modified, or unless it can be repaired by recombination with the template DNA. In a different strategy inspired by previous work with the I-SceI nuclease [31], a non-replicative vector can be integrated through homologous recombination into the locus of interest, followed by Cas9 cleavage of the vector backbone leading to recombination and recovery of the desired scar-less mutation [32,33]. In all the strategies above, steps of plasmid curing can also be necessary and are typically achieved by using the temperature sensitive pSC101 origin of replication [34]. When more than one plasmid is required this can be coupled with other strategies such as targeting the second plasmid with a guide RNA or the use of counter-selection markers such as sacB [27–29].

The fairly large number of components involved, and the necessity to clone a guide RNA as well as in some cases a template DNA, can make these strategies more cumbersome than established methods [35]. CRISPR-Cas9 strategies have nonetheless enabled pushing at the limits of what is possible, in particular where scar-less mutations are needed [27]. Of particular interest, a strategy has been devised to perform high-throughput modifications of many positions in parallel [36]. Pools of oligonucleotides designed to carry both a homologous repair cassette and a sgRNA can be cloned on a vector, yielding a library that can be used to perform multiplexed recombineering. Another clever strategy enabled the replacement of large fragments of the E. coli genome with synthetic DNA [37]. In this study, multiple guide RNAs were used simultaneously in the same E. coli cell to cleave two positions in the E. coli chromosome and two positions on a plasmid carrying a synthetic DNA fragment, triggering the replacement of the chromosomal DNA through homologous recombination.

A novel and powerful approach in the field of genome editing is the use of the catalytic dead variant of Cas9.
CRISPR-Cas9 genome editing tools are already being employed to investigate basic biological questions, as well as in applications such as metabolic engineering [42]. While these applications are not directly related to microbiome engineering, we should keep in mind that *E. coli* is a gut bacterium that can be used as a probiotic. Probiotic *E. coli* strains, like *Nissle 1917*, have been engineered to express antigens [43], antimicrobial compounds [44], enzymes to disperse biofilms, quorum sensing molecules that control pathogen virulence [45], metabolic functions of interest and more [6]. These current efforts to engineer probiotic *E. coli* strains will certainly benefit from this boon of new tools.

Beyond *E. coli*, the most commonly used probiotic bacteria are *Bifidobacteria* and *Lactobacilli*. Engineered Lactobacilli are being developed by various biotech companies as targeted therapies against a wide range of diseases including oral mucositis, inflammatory bowel disease, viral and bacterial infections [46]. The ability of *Bifidobacterium* to proliferate in solid tumours offers the possibility to engineer them to produce cancer-suppressing compounds [47]. While CRISPR tools for *Bifidobacteria* have yet to be developed, Oh and van Pijkeren developed a method to perform genome editing in *Lactobacillus reuteri* ATCC PTA 6475 [48], a bacteria shown to have interesting immunomodulatory and antimicrobial properties [49,50]. Modifications can be introduced by recombination of a single stranded DNA oligonucleotide mediated by the RecT protein, followed by selection with Cas9. CRISPR-Cas9 mediated genome editing was also recently demonstrated in *Lactobacillus plantarum*, where putting the recombination template on a plasmid rather than providing it as single stranded DNA led to the best results [51]. Barrangou and colleagues have recently highlighted how CRISPR tools could be used to enhance therapeutic effects of lactic acid bacteria [52]. For instance, researchers are exploring strategies to enhance bile salt hydrolase activity to improve strain survival in the gut, or to modify surface layer-associated proteins to change their immunomodulatory properties.

Other bacteria of interest include the *Clostridia*, a diverse class of bacteria that include strains of industrial interest but also many commensals of the gut microbiome, of which a few—and most notoriously *Clostridium difficile*—can be opportunistic pathogens. Several reports have demonstrated the use of CRISPR tools to modify species of biotechnological interest including *Clostridium acetobutylicum*, *Clostridium beijerinckii* and *Clostridium cellulolyticum* [53–55]. CRISPR-Cas9 tools have now also enabled the engineering of *C. difficile* [56,57]. Note that non-toxigenic *Clostridia*, including non-toxigenic *C. difficile*, form part of the normal human gut microbiome [58] and could potentially be engineered as interesting probiotics. *Clostridium butyricum* MIYAIRI 888 has notably been developed as a probiotic against *C. difficile* infections [59], and could likely be engineered using the CRISPR tools developed for other *Clostridium* species.

Finally, CRISPR-Cas9 tools have also been developed for *Staphylococcus aureus* [60–62], an opportunistic pathogen commonly found on the skin [63]. Similarly to Clostridia, *Staphylococci* can either be beneficial commensals or pathogens depending on the genetic makeup of specific strains. In addition to these microbiome-associated bacteria, CRISPR-Cas9 tools have been developed for other bacterial species including *Bacillus subtilis* [64]. In the future the catalogue of bacteria that can be engineered with CRISPR tools will likely continue to expand, enabling an increasing number of applications.

3. CRISPR editing of unicellular eukaryotes

While less studied than bacteria, commensal protozoans and fungi are highly prevalent in healthy populations [65,66], and some yeast can be used as probiotics in additive therapies. Most famously *Saccharomyces boulardii* was isolated by the French scientist Henri Boulard in 1923 with the purpose of controlling the symptoms of diarrhoea and is now commonly used as a probiotic. This yeast strain has been engineered with CRISPR-Cas9 to introduce various modifications, including the introduction of an exogenous metabolic pathway and the production of human lysozyme [67]. *Saccharomyces boulardii* has also been engineered with the help of CRISPR for the development of oral vaccines [68]. More generally, many CRISPR-Cas9 editing strategies have been developed in *Saccharomyces cerevisiae* [69,70] as well as microbiome-associated fungi, including the opportunistic pathogen *Candida albicans* [71,72]. Along the same line, CRISPR tools developed for protozoan parasites like *Plasmodium falciparum* [73,74] could likely be adapted to commensal protozoans like *Blastocystis*.

4. CRISPR editing of bacteriophages

Phages have been applied to cure bacterial infections, with many reported successes in various animal models of lung, skin or gut infection. Engineered phages present interesting subtractive therapeutic opportunities to treat infectious diseases and target the microbiome. In particular, phage adsorption elements like tail fibres and tail tips can be engineered to modify their host range [75]. Temperate phages can be engineered to remove potential virulence factors and turned into lytic phages to limit the risks associated with their use in phage therapy [76]. Phages can further be modified to disperse biofilm [77], encode antimicrobial proteins [78] or other functions of interest. Temperate phages that can be stably maintained in the bacterial cell as prophage or plasmid can be engineered during their lysogenic cycle using the tools described above. However, the modification of lytic phages is particularly challenging as they never reside as a stable genetic element in the cell and antibiotic selection markers cannot be used.

Strategies to edit lytic bacteriophages with CRISPR tools have now been developed. A guide RNA is designed to target the phage genome and a genetic modification of interest is typically cloned on a vector with homology arms to promote recombination with the phage DNA. Shortly after viral DNA entry, Cas nucleases cleave the target sequence
and the lesion is repaired through recombination with the provided template, resulting in the edited phage. Only edited phages can then form plaques on bacteria carrying the CRISPR-Cas9 system. This strategy was first demonstrated using the type I-E CRISPR-Cas system of *E. coli* to engineer phage T7 [79], followed shortly thereafter by a demonstration that the CRISPR-Cas9 system from *Streptococcus thermophilus* could be used to edit virulent phages of this bacterium [80]. These techniques have now been extended to the engineering of *Lactococcus lactis* phage p2 [81], of phage T4 in *E. coli* [82] and phage vB_BsuP-Goe1 in *Bacillus subtilis* [83]. In one example, the type III CRISPR-Cas10 system from *Staphylococcus epidermidis* has also been used to edit staphylococcal phages [84]. Note that lytic phages can also be cloned and engineered in yeast [75], where CRISPR-Cas9 tools are readily available.

Beyond the possible use of natural or engineered bacteriophages to cure infections caused by specific pathogens, the recent description of their role as key components of the microbiome will likely open the way to new phage-based therapies [85]. Not only can phages alter the structure of the microbiome by infecting specific species, but they can also alter the genotype and phenotype of the bacteria they infect through horizontal gene transfer and lysogeny. As such, phages likely contribute to the maintenance of the intestinal homeostasis either in health or in disease (dysbiosis) [86]. The use of temperate phages to influence the composition and phenotype of bacteria in the microbiome could thus be viewed as an interesting modulatory therapeutic strategy, but a better understanding of these complex ecological interactions will be needed for the development of such therapies.

5. CRISPR antimicrobials

Besides their use to directly kill target bacteria, phages can be used as DNA delivery vectors. Plasmids carrying a phage packaging signal, known as phagemids, can be used to deliver various effector DNA circuits to target bacterial populations. Phagemids can be packaged into phage particles in the presence of a helper phage that carries all the elements necessary for the production of functional capsids that are missing from the phagemid DNA [87]. In addition, the helper phage can be modified in order to block packaging of its DNA [88]. The M13 phagemid was used to deliver various toxins or restriction enzymes to *E. coli* [89–91]. The P3 phage has also been used to deliver a restriction enzyme, and successfully treat a *Pseudomonas* infection in mice [78].

CRISPR-Cas systems themselves can be delivered to populations of bacteria using this strategy with the purpose of specifically eliminating bacteria carrying target sequences in their genome. This strategy has already been demonstrated in *E. coli* [92] and in *S. aureus* [93]. In the first study, a plasmid carrying Cas9 and guide RNAs targeting antibiotic resistance genes were injected into bacterial populations using the M13 phagemid system. Efficient cell death was observed as expected when the target gene was present. In the second study, a phagemid based on *Staphylococcus* phage phiNM1 was constructed by cloning its packaging site on a plasmid carrying a CRISPR-Cas9 system. This phagemid was then tested against various antibiotic resistance genes and virulence factors. Both reports demonstrated the possibility of using CRISPR-Cas systems to eliminate a specific target bacterial genotype in a mixed population, both *in vitro* and *in vivo*, testing a wax worm infection model in the former case and a mouse skin colonization model in the second one. These studies also investigated the outcome of targeting a plasmid rather than the chromosome. Cas9 cleavage of a target plasmid leads to cell survival and plasmid loss. Note however that in cases where the plasmid carries a toxin–antitoxin addiction system, the cells will die as a consequence of plasmid loss.

In yet another study, it was proposed to use temperate phages rather than phagemids in order to introduce CRISPR-Cas systems in *E. coli* [94]. The CRISPR array was programmed to cure plasmids carrying antibiotic resistance genes, thereby sensitizing bacteria to antibiotics. In this work an additional trick was played: a lytic phage was engineered to carry sequences matching the guide RNAs encoded by the CRISPR array. This phage could then be used to kill bacteria that did not carry a functional CRISPR-Cas system and ensure the fixation of the CRISPR prophage in the population.

CRISPR-based antimicrobials offer the possibility to develop novel subtractive therapies, enabling the killing of bacteria based on their sequence without disturbing the rest of the microbiota. We now understand increasingly how different strains of a given bacterial species can have profoundly different effects on our health. The accessory genome that differentiates bacterial strains includes genomic islands, prophages and plasmids that impact the interaction of bacteria with each other and with their host. These elements frequently include virulence factors, toxins and antibiotic resistance genes [95,96]. CRISPR antimicrobials could become a powerful tool both to study the effect of specific strains by removing them from the microbiome, and to eliminate undesired strains as a therapeutical strategy. Note that many bacteria carry active CRISPR-Cas systems of their own that can also be harnessed to trigger self-targeting and cell death. The different approaches to CRISPR antimicrobials and the associated challenges have been reviewed in more detail elsewhere [97,98].

6. Controlling gene expression with CRISPR

Beyond the targeted elimination of strains and the genetic modification of commensals, CRISPR-Cas systems can also be engineered to modulate gene expression. These engineered CRISPR-Cas systems could be used to modulate the activity of bacteria used as probiotics in additive strategies, or could directly be delivered to the resident bacteria of the microbiome through transduction or conjugation (figure 2).

The Cas9 protein carries an HD nuclease domain and a RuvC nuclease domain, each cleaving the target DNA on a different strand [10]. Mutation of the catalytic residues abolishes DNA restriction while maintaining strong on-target binding. Binding of dCas9 to promoter sequences strongly inhibits the initiation of transcription, while binding inside transcribed regions can inhibit transcription elongation [99,100]. Note that dCas9 is only able to efficiently block the running RNA polymerase when it is guided by an RNA that binds to the non-template (coding) strand of DNA. The level of complementarity between the guide RNA and the target can be used to control the rate at which RNA polymerase ‘kicks out’ dCas9 from the target and completes transcription.
already demonstrated with Cas12 proteins of various origins can also be used to block gene expression in bacteria, as introducing any DNA damage. This can be used to block complex known as Cascade will bind target sequences with- permissible for DNA degradation. In its absence, the multiprotein gatherd by multiple guides targeting the same gene can maintain strong on-target repression. Using such an opti- tuning the concentration of dCas9 to avoid this toxicity while design rules, this work highlighted the importance of fine- to the guide RNA. The same study also revealed an unex- target effects at positions with as little as 9 nt of homology E. coli [111]. This study revealed that dCas9 can cause off- effects that destroy the genome of mammalian or yeast cells leads to DNA repair through homologous recombination or non-homologous end joining, while the main outcome of efficient Cas9 cleavage in bacterial genomes is cell death. This is likely owing to the absence or poor efficiency of non-homologous end joining (NHEJ) systems in most bacterial species. Among bacteria that naturally carry NHEJ systems, Cas9 breaks could be repaired by NHEJ in some species but not others [55,122,123]. Efforts to import NHEJ systems into bacteria that lack them have yielded limited success [20,123,124]. Different bacterial species also carry more or less efficient homologous recombination systems. Bacteria that can undergo natural transformation and efficient homologous recombination can easily be modified using CRISPR-Cas9 tools, while other bacteria like E. coli require the use of an exogenous recombina- system [26]. This heterogeneity in DNA repair capabilities between organisms means that specific tools and strategies need to be designed for different species. CRISPR tools that do not rely on DNA cleavage will likely be more easily portable. These include base editing and CRISPRi strategies.

One of the main obstacles for the broad adoption of these technologies to manipulate members of the microbiome is the difficulty of introducing exogenous DNA in many bacterial species. Some bacteria are more or less amenable to tech- niques such as electroporation, conjugation or transduction. Many bacteria also carry restriction systems that destroy
incoming DNA. Others might not be able to replicate plasmid DNA if the origin of replication is not carefully chosen. Finally, bacteria that cannot be easily grown in the laboratory are obviously hard to engineer. These obstacles are not specific to CRISPR technologies and researchers have found ways to engineer many bacterial species through the construction of dedicated vectors. CRISPR tools thus need to be redesigned to fit the requirements of individual target species. Finding more standardized approaches and more universal tools to deliver DNA to bacteria would go a long way to accelerate research and engineering of a diverse set of bacteria. In a recent study, Peters and colleagues used conjugation and transposition for DNA delivery and integration in the bacterial chromosome to facilitate the use of CRISPRi in many species [125]. Beyond the use of CRISPR tools in vitro, conjugation as well as phage delivery systems enable the delivery of DNA directly in vitro and could be used for the development of novel therapies. Both transduction and conjugation also open the possibility of targeting non-culturable bacteria directly in their natural environment. Phage particles can be used to deliver DNA efficiently into specific bacterial strains, however this specificity is such that dedicated phage capsids will likely have to be engineered for each therapeutic indication. The host range of bacteriophage capsids can be extended through the modification of the proteins that interact with the bacterial envelope such as the tail fibres [75]. In a recent study, Qimron and colleagues employed a directed evolution approach to extend the host range of bacteriophage particles for DNA transduction [126]. This type of approach will be critical to engineer delivery vectors for a wide range of target bacteria, but whether transduction or conjugation can efficiently reach the right bacteria in the complex spatial structure of the microbiome largely remains to be investigated.

The increasing knowledge of the profound impact that the microbiome has on human health is driving the development of novel therapeutic avenues to treat infectious disease, metabolic, immune disease and even neurological disorders. However, the outcome of current therapies that target the microbiome is often uncertain owing to our limited understanding of the complex ecological interactions that occur within microbial communities and with the host immune system. CRISPR tools provide exciting strategies not only to study the biology of microbes, but also to elucidate their role within complex communities and drive the development of novel therapies.

Data accessibility. This article has no additional data.

Competing interest. D.B. is a board member and shareholder of Eligo Bioscience, a company developing CRISPR-based therapies targeting the microbiome.

Funding. This work was supported by the European Research Council (ERC) under the Europe Union’s Horizon 2020 research and innovation program (grant agreement no. [677823]); the French Government’s Investissement d’Avenir program; Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ [ANR-10-LABX-62-IBED]; the Pasteur-Weizmann consortium and the Bill and Melinda Gates Foundation - BMGF Grand Challenge grant no. OPP1141338.

References

1. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018 Current understanding of the human microbiome. *Nat. Med.* **24**, 392–400. (doi:10.1038/nm.4517)
2. Baro PC, McMichael MA, Swanson KS, Williams DA. 2018 The gastrointestinal microbiome: a review. *J. Vet. Intern. Med.* **32**, 9–25. (doi:10.1111/jvim.14875)
3. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016 The central nervous system and the gut microbiome. *Cell* **167**, 915–932. (doi:10.1016/j.cell.2016.10.027)
4. Martens EC, Neumann M, Desai MS. 2018 Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. *Nat. Rev. Microbiol.* **16**, 457. (doi:10.1038/s41579-018-0036-x)
5. Bober JR, Beisel CL, Nair NU. 2018 Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications. *Annu. Rev. Biomed. Eng.* **20**, 277–300. (doi:10.1146/annurev-bioeng-062117-121019)
6. Minne M, Citorik RJ, Lu TK. 2016 Microbiome therapeutics—advances and challenges. *Adv. Drug Deliv. Rev.* **105**, 44–54. (doi:10.1016/j.addr.2016.04.032)
7. Marraffini LA. 2015 CRISPR-Cas immunity in prokaryotes. *Nature* **526**, 55–61. (doi:10.1038/nature15386)
8. Koonin EV, Makarova KS, Zhang F. 2017 Diversity, classification and evolution of CRISPR-Cas systems. *Curr. Opin. Microbiol.* **37**, 67–78. (doi:10.1016/j.mib.2017.05.008)
9. Makarova KS et al. 2015 An updated evolutionary classification of CRISPR–Cas systems. *Nat. Rev. Microbiol.* **13**, 722–736. (doi:10.1038/nrmicro3569)
10. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* **337**, 816–821. (doi:10.1126/science.1225829)
11. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011 CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. *Nature* **471**, 602–607. (doi:10.1038/nature09886)
12. Abudayyeh OO et al. 2016 C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. *Science* **353**, aaf573. (doi:10.1126/science.aaf573)
13. Zetsche B et al. 2015 Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* **163**, 759–771. (doi:10.1016/j.cell.2015.09.038)
14. Barrangou R, Doudna JA. 2016 Applications of CRISPR technologies in research and beyond. *Nat. Biotechnol.* **34**, 933–941. (doi:10.1038/nbt.3659)
15. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. 2010 Self-targeting by CRISPR: gene regulation or autoimmunity? *Trends Genet.* **26**, 335–340. (doi:10.1016/j.tig.2010.05.008)
16. Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012 CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. *Cell Host Microbe* **12**, 177–186. (doi:10.1016/j.chom.2012.06.003)
17. Edgar R, Qimron U. 2010 The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. *J. Bacteriol.* **192**, 6291–6294. (doi:10.1128/JB.00464-10)
18. Vercoe RB et al. 2013 Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. *PLoS Genet.* **9**, e1003454. (doi:10.1371/journal.pgen.1003454)
19. Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2013 Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. *MBio* **5**, e00928-13. (doi:10.1128/MBio.00928-13)
20. Cui L, Bikard D. 2016 Consequences of Cas9 cleavage in the chromosome of *Escherichia coli*. *Nucleic Acids Res.* **44**, 4243–4251. (doi:10.1093/nar/gkw223)
21. Selle K, Klanhammer TR, Barrangou R. 2015 CRISPR-based screening of genomic island excision events in bacteria. *Proc. Natl Acad. Sci. USA* **112**, 8076–8081. (doi:10.1073/pnas.1508625112)
106. Berlec A, Škotec K, Kočjan J, Olenic M, Štruclj B. 2018 Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9 gene regulation in lactic acid bacterium Lactococcus lactis. Sci. Rep. 8, 1009. (doi:10.1038/s41598-018-19402-1)

107. Mimee M, Tucker AC, Voigt CA, Lu TK. 2015 Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71. (doi:10.1016/j.cels.2015.06.001)

108. Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG. 2018 Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun. 9, Article number 2489. (doi:10.1038/s41467-018-04901-6)

109. Hu JH et al. 2018 Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63. (doi:10.1038/nature26155)

110. Peters JM et al. 2016 A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506. (doi:10.1016/j.cell.2016.05.003)

111. Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D. 2018 A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, Article number 2489. (doi:10.1038/s41467-018-04901-6)

112. Rousset F, Cui L, Siouve E, Depardieu F, Bikard D. 2018 Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. bioRxiv. 26, 308916.

113. Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing X-H. 2018 Pooled Cas9 interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat. Commun. 9, 2475. (doi:10.1038/s41467-018-04899-x)

114. Luo ML, Mullis AS, Leenay RT, Beisel CL. 2015 Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681. (doi:10.1093/nar/gku977)

115. Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M. 2015 Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43, 237–246. (doi:10.1093/nar/gku1257)

116. Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. 2017 Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 3, 17018. (doi:10.1038/celldisc.2017.18)

117. Kim SK, Kim H, Ahn W-C, Park K-H, Woo E-J, Lee D-H, Lee S-G. 2017 Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth. Biol. 6, 1273–1282. (doi:10.1021/acssynbio.6b00368)

118. Leenay RT et al. 2016 Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62, 137–147. (doi:10.1016/j.molcel.2016.02.031)

119. Abudayyeh OO et al. 2017 RNA targeting with CRISPR–Cas13. Nature 550, 280–284. (doi:10.1038/nature24049)

120. Cox DBT et al. 2017 RNA editing with CRISPR-Cas13. Science 358, 1019–1027. (doi:10.1126/science.aap0180)

121. Gilbert LA et al. 2013 CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451. (doi:10.1016/j.cell.2013.06.044)

122. Tong YJ, Charsant P, Zhang LX, Weber T, Lee SY. 2015 CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029. (doi:10.1021/acssynbio.5b00038)

123. Bernheim A, Calvo-Villamizar A, Basier C, Cui L, Rocha EFC, Touchon M, Bikard D. 2017 Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat. Commun. 8, 2094. (doi:10.1038/s41467-017-02350-1)

124. Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. 2016 A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci. Rep. 6, 37895. (doi:10.1038/srep37895)

125. Peters JM et al. 2019 Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nature Microbiol. 4, 244. (doi:10.1038/s41564-018-0327-z)

126. Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimmon U. 2017 Extending the host range of bacteriophage particles for DNA transduction. Mol. Cell 66, 721–728. (doi:10.1016/j.molcel.2017.04.025)