Case Report: Thalamomesencephalic stroke in a patient with HIV [version 2; peer review: 1 approved with reservations]

Previously titled: 'Case Report: Thalamomesencephalic stroke due to vasculitis in a patient with HIV'

Jerry George¹, Sibi Joseph¹, Mongezi Tau², Lourdes de Fatima Ibanez Valdes¹, Thozama Dubula², Humberto Foyaca-Sibat³

¹Neurology Department, Nelson Mandela Academic Hospital, Mthatha, Eastern Cape, 5100, South Africa
²Internal Medicine Department, Walter Sisulu University, Mthatha, Eastern Cape, 5100, South Africa
³Neurology Department, Walter Sisulu University/Nelson Mandela Academic Hospital, Mthatha, Eastern Cape, 5100, South Africa

First published: 16 Oct 2020, 9:1250
https://doi.org/10.12688/f1000research.26722.1
Second version: 01 Dec 2020, 9:1250
https://doi.org/10.12688/f1000research.26722.2
Latest published: 30 Mar 2021, 9:1250
https://doi.org/10.12688/f1000research.26722.3

Abstract
We present a 41-year-old HIV-positive female patient complaining of complete right palpebral ptosis, diplopia, and inability to balance herself. On examination, the right eye was able to move laterally and downwards. The motor exam showed left hemiparesis (4/5) on upper and lower limbs, bilateral Babinski sign with left hemiataxia without the sensory disorder.
CT scan and magnetic resonance imaging angiography demonstrated an ischemic infarct on the right paramedian branch of the posterior cerebral artery territory.
This patient did not present clinical manifestations of the thalamic lesion. To our knowledge, this is the first reported case of a young patient presenting a unilateral thalamomesencephalic ischemic stroke secondary to HIV vasculitis with bilateral Babinski signs and without thalamic signs in the medical literature.

Keywords
Thalamomesencephalic stroke, HIV, Vasculitis
Introduction

In 2018, Sato et al. reported a 62-year-old man presenting with a rare eye movement. This patient had a vertical one-and-a-half syndrome caused by unilateral thalamomesencephalic stroke (TMS)\(^{29}\). Other eye movements' abnormalities, such as bilateral vertical gaze palsy, were previously reported due to a unilateral stroke of the rostral midbrain by other authors\(^{9-20}\).

The anatomical circulation of the brain is complex and diverse, and the circle of Willis variations can include absence or fusion of components, incomplete process, fenestrations, fetal branches, and asymmetrical and duplication. From previous studies on autopsy and structural imaging scans, normal anatomical variations were detected in 48–58\% of the general population, and even during fetal development\(^{28}\).

An investigation done on human cadaveric brains have been demonstrated four major thalamic arterial territories, with notable blood variations. These areas receive blood supply by the polar, paramedian/thalamoperforating arteries, thalamogeniculate, and posterior choroidal arteries\(^{8-11}\). The perforating arteries supply the medial walls of the third ventricle, hypothalamus, and subthalamic-mesencephalic junctions. These areas include the oculomotor nucleus, red nucleus, subthalamic nucleus, substantia nigra, pretectum, trochlear nucleus, reticular formation of the midbrain, posterior part of the internal capsule, the rhomboid fossa, and also the rear part of the thalami\(^{11-28}\). Because the artery of Percheron occlusion can affect the thalamus and midbrain at the same time, here we have to mention that artery of Percheron is an uncommon vascular variant of the paramedian branches of the posterior cerebral artery, arising from one P1 segment, bifurcates, and bilateral supply to the bilateral paramedian thalami and the rostral midbrain\(^{11,17}\) but not unilaterally. Therefore, occlusion of Percheron arteriole causes an atypical pattern of bilateral infarct of the median thalami with or without mesencephalic damage.

From 2010 and 2017, several authors\(^{21-26}\) also reported a case series of ischemic stroke on the thalami and different clinical manifestations. Other clinical presentations of TMS include see-saw nystagmus that shows intorsion and elevation of one eye, with synchronous extorsion and depression on the contralateral one, convergence-retraction nystagmus and contraversive ocular tilt reaction probable due to ischemic involvement of the interstitial nucleus of Cajal\(^{21}\), anisocoria. Another author found vertical ocular motor disturbances in the vertical plane and eye movement synkinesis, hypersomnia, and coma as a clinical manifestation of TMS\(^{28}\). Others reported headaches, blurred vision, and diplopia as a particular variant of cerebral lacunae TMS\(^{30}\). In 2012, Benjamin et al. established that HIV infection can cause TMS by opportunistic infections, secondary to a cardioembolic phenomenon, coagulopathy, and vascular diseases such as stenosis, acquired aneurysm, vasculitis, and direct/indirect effect of HIV infection and antiretroviral therapy\(^{30}\). In our region, ischemic stroke due to infectious vasculitis is quite common. In 2017, the first case presenting bi-thalamic infarctions leading to acute vascular dementia associated with HIV infection was reported\(^{31}\).

Case presentation

A 41-year-old female presented with a 5-day history of inability to open the right eye associated with decreased vision of the right eye, which subsequently developed binocular diplopia. The patient also reported a failure to balance herself and could not walk independently. There was no history of trauma, excessive use of NSAIDs, contraceptives, use of vitamin supplements, or complaint of headaches. The patient did not smoke, drink alcohol, or use other recreation or illicit drugs. The patient has a background history of hypertension since her last pregnancy in 2016 and has been on treatment with hydrochlorothiazide (12.5 mg daily) and enalapril (5 mg daily). HIV-reactive with the latest CD4 (01/2020) count of 715 and viral load are lower than the detectable limit on treatment with a combination of tenofovir/emtricitabine/efavirenz TDF/FTC/EFV (300/200/600 mg daily).

On the nervous system examination, the patient was alert and well oriented with no meningeal signs. A cranial nerve exam revealed right cranial nerve 3rd palsy, right complete ptosis, right mydriatic pupil nonresponsive to light, and paralysis of the medial, superior, and inferior rectus plus inferior oblique (Figure 1).

![Figure 1. Right, complete palpebral ptosis due to oculomotor nerve palsy.](image-url)
The motor exam showed left hemiparesis (4/5) on upper and lower limbs, bilateral Babinski sign with left hemiataxia despite muscle weakness on the affected side, and no sensory disorder or extrapyramidal signs. The rest of the examination was within normal limits and there were no rashes noted.

The investigations done were as follows: Blood tests (on the day of admission) See Table 1

Computed tomography (CT) angiogram and MRI (done two days after admission) showed diffuse vasculitis with parenchymal changes seen in the right thalamus and midbrain and ischemic infarct in the area supplied by the right paramedian branch of the posterior cerebral artery due to vasculitis (Figure 2–Figure 4).

The cardiology team requested a cardiac review. A cardiac ultrasound (done the day after admission) showed an ejection fraction of 75%. No valvulopathy or effusion was present. The patient was admitted and started on the following treatment: Vitamin B12 supplementation (1000 µg IM daily for five days in the first week, then weekly for five weeks, aspirin (150 mg daily), enoxaparin (40 mg s/c daily), simvastatin (20 mg daily), pyridoxine (50 mg daily), thiamine (100 mg daily). The patient continued the chronic medication (hydrochlorothiazide 12.5 mg, enalapril 5mg and TDF/FTC/EFV 300/200/600 mg daily). Physiotherapy and occupational therapy are actively working with the patient.[TJ4] The patient received rehabilitation in our ward for two weeks. The right-sided hemiataxia did improve, but the power on the right side was still 4/5. She was referred to her base hospital to continue rehabilitation and a follow-up date with us in 1 month.

Discussion
Here we report a case of a 41-year-old woman with right-sided TMS. Unilateral TMS is uncommon, but one study showed that it comprises about 0.6% to 1% of midbrain ischemic strokes and often accompanied by other posterior circulation infarcts32.

Baran et al. conducted an observational study in 2018, which showed a male predominance. The study also showed that from an etiological point of view, the most common cause was extensive atherosclerosis, followed by cardio-embolism, apart from small vessel disease33.

The main risk factors associated with extensive atherosclerosis are hypertension, diabetes, hyperlipidemia, smoking, and previous history of stroke. The main risk factors for cardio-embolism in these patients is atrial fibrillation3. Patients who are suffering from peripheral vascular disease and coronary artery disease are at risk34.

HIV is a risk factor for stroke35 and is associated with advanced disease36. There have been numerous mechanisms proposed to explain this. A systematic review done by Addallah et al.37 reported that this could be due to HIV-associated opportunistic infections, HIV-induced coagulopathy, and chronic inflammatory processes that can accelerate atherosclerosis. Another systematic review by Bogorodskaya et al.38 also reported that some antiretrovirals (lopinavir, indinavir, and abacavir) were also associated with an increased risk of stroke.

Lesions of the midbrain can present as distinct syndromes. However, because of the structures’ close organization, there can be considerable overlap of these syndromes. The neurological manifestation will depend on which area of the midbrain is affected and whether one half or both halves are involved and whether adjacent structures (thalamus, pons, cerebellum) are also involved. The symptoms may include but are not limited to, low equilibrium, weakness of one or both sides of the body, diplopia, and slurred speech39. The most common examination findings include ataxia, limb weakness, dysarthria, sensory disturbance, oculomotor findings (3rd nerve palsy, internuclear ophthalmoplegia), and dysarthria40. The exact pattern will depend on the area involved and whether surrounding structures are also involved (thalamus, pons, medulla, etc.). There have been midbrain syndromes, which include, among others, Weber syndrome, Claude’s syndrome, Nothnagel syndrome, and Benedikt’s syndrome. Benedikt’s syndrome presents with a contralateral rubral tremor, which she does not have.

Weber syndrome is a result of a lesion involving the ventromedial area of the midbrain. They present with ipsilateral 3rd nerve palsy with contralateral hemiplegia. Our patient has Claude’s syndrome, which presents ipsilateral 3rd nerve palsy with contralateral cerebellar ataxia due to the dorsal tegmentum lesion, which involves the 3rd nerve nucleus/fibers and also involving either the red nucleus, superior cerebellar peduncle, or brachium conjunctivum7. Benedikt’s syndrome is due to a lesion involving the tegmentum. It presents with ipsilateral 3rd nerve palsy and contralateral ataxia, but there is also the involvement of the fibers of the corticospinal tract and will result in contralateral hemiparesis even31. When assessing these kinds of patients, it is essential to ascertain a good history and physical examination and check the National Institute for Health Stroke Score32. Imaging to confirm the diagnosis is mandatory. CT or MRI angiogram is usually requested to identify the stenosed vessels or identify other possible vascular problems. Blood workup for stroke is compulsory, which includes but is not limited to full blood count, renal function tests, international normalized ratio, lipid profile, HIV ELISA, and if young to include thrombophilia screen, Antinuclear antibodies, and glycosylated hemoglobin. ECG to rule out possible atrial fibrillation and transthoracic or even transesophageal echocardiography to identify cardiac causes.

The management approach depends on the etiology of the stroke. If the infarct is ischemic, the reviewed literature recommends thrombolysis if posterior circulation strokes meet the established criteria.41. Mechanical thrombectomy benefits are not yet well established, but it can be done42. Then after the acute period, it is crucial to managing the risk factors and causes. Then treat the risk factors such as arterial hypertension, diabetes mellitus, hyperlipidemia, and secondary prophylaxis. If there is a cardiac cause, then it should be treated. A multidisciplinary approach is vital for patients presenting with stroke.
Variable	Patient value	Normal range
White cell count	7.10 x 10⁹/L	3.9-12.6 x 10⁹/L
Hb	10.4 g/dL	12-15 g/dl
Platelets	356 x 10⁹/L	186-454/L
Sodium	140 mmol/L	136-145 mmol/L
Potassium	4.4 mmol/L	3.5-5.1 mmol/L
Chloride	102 mmol/L	98-105 mmol/L
Urea	7.1 mmol/L	2.1-7.1 mmol/L
Creatinine	68 µmol/L	48-90 µmol/L
Calcium	2.23 mmol/L,	2.15-2.5 mmol/L
Magnesium	0.83 mmol/L,	0.63-1.05 mmol/L
Phosphate	1.48 mmol/L	0.78-1.42 mmol/L
C-reactive protein	1 mg/L	<10 mg/L
Erythrocyte sedimentation rate	16 mm/h	0-10 mm/hr
Total protein	74 g/L	60-78 g/L
Total Bilirubin	<3 µmol/L	5-21 µmol/L
Alkaline phosphatase	92 U/L	42-98 U/L
Aspartate transaminase	23 U/L	13-35 U/L
Alanine transaminase	18 U/L	7-35 U/L
Total cholesterol	4.78 mmol/L	<4.5 mmol/L
HbA1C	5.1%	<7%
International normalized ratio	1.01	1
D-dimer	0.8 mg/L	0.00-0.25 mg/L
Rheumatoid factor	7 IU/ml	<20 IU/L
Vitamin B12	136 pmol/L	145-569 pmol/L
Thyroid stimulating hormone	0.78 mIU/L	0.27-4.2 Miu/l
Anticardiolipin antibody	negative	
Protein S	40 IU/dl	55-123 IU/dl
Protein C	100 IU/dl	70-130 IU/dl
Angiotensin converting enzyme	30 IU/L	8-53 IU/L
Anticardiolopin antibody	negative	
Anti-streptolysin O titre	88 IU/ml	<200 IU/L
Toxoplasmosis gondi IgG antibody	Positive	
Cytomegalovirus IgG antibody	Positive	
Rubella IgG antibody	Positive	
Rubella IgM antibody	Negative	
Cytomegalovirus IgM antibody	Negative	
C3	1.5 g/L (0.9-1.8 g/L)	
C4	0.4 g/L (0.1-0.4 g/L)	
Antinuclear antibody	Negative	
Anti-double strand DNA antibody	Negative	
Anti-RNP antibody	Negative	
Figure 2. Magnetic resonance imaging of the brain. The axial view shows the right hyperdense lesion at the paramedian thalami caused by ischemic infarct secondary to HIV vasculitis.

Figure 3. Magnetic resonance imaging of the brain. The axial view shows a hyperdense lesion on the right midbrain caused by ischemic stroke due to HIV vasculitis.

Figure 4. Contrasted CT image. showing ‘beading’ of the paramedian blood vessels supplying the midbrain. (Suggestive of vasculitis).

TMS. The stroke team should include dieticians, physiotherapy, speech therapy, occupational therapy, and social workers apart from the medical specialists.

Risk factors for developing stroke in our patient were hypertension, HIV, and hyperlipidemia. We had done an extensive workup to rule out other possible contributors to a stroke. The patient also had contralateral hemiparesis and hemiataxia with bilateral Babinski and hyperreflexia on both lower limbs. Her blood workup showed that she was virally suppressed and had hyperlipidemia. The MRI and CT angiograms showed evidence of an infarct involving the ventromedial midbrain and thalamus, and in the absence of other lesions. Cardiovascular investigations ruled out a cardiac source of the infarct. In this patient, hypertension, HIV infection, and hyperlipidemia predisposed her to the stroke. The patient is markedly younger than one would typically expect for a TMS (median age around 64 years)\(^3\). Of note in our patient is the presence of a bilateral Babinski sign, which never happens in a patient with Claude’s syndrome.

Generally, the strokes involving posterior circulation have a higher mortality rate than those involving anterior circulation unless it involves the smaller blood vessels\(^4\), as happened in our case. The present case is unique, among other reasons, owing to the bilateral Babinski sign and the absence of thalamic manifestations without other lesions affecting different segments of the brainstem and the spinal cord. The patient’s age (41 years) also makes this case uncommon. The patient’s leading risk factor is HIV vasculitis, which has not been implicated for TMS from the literature reviewed. We did not find signs of middle longitudinal fascicle (MLF) typical syndrome. MLF syndrome, secondary to ischemic stroke affecting only the mesencephalon, is a rare occurrence\(^5\). We would highlight that we could not find the cause of the bilateral Babinski signs in this case. This patient did not present thalamic characters despite the ischemic lesion in the right thalamus despite the midbrain’s role over the thalamus. The modulation of
thalamocortical tracts must be considered. Still, we recommend an extensive investigation based on a series of cases to support this postulate.

To our knowledge, this is the first patient presenting with unilateral TMS secondary to HIV vasculitis with bilateral Babinski signs, and without thalamic manifestations to be reported in the medical literature. In young patients presenting with unilateral TMS, HIV vasculitis is one of the etiological diagnoses to be considered. However, these ischemic lesions on the midbrain did not cause abnormal behavior or thalamic manifestations in our patient, which is a novel finding.

Data availability
All data underlying the results are available as part of the article, and no additional source data are required.

Consent
Written informed consent for publication of their clinical details and clinical images was obtained from the patient.

Author contributions
All authors contributed equally to the elaboration of this manuscript. MT and SJ collected data and planning this report, JG and LIV wrote the first draft and reviewed bibliographically. TB and HFS wrote the final manuscript. All authors reviewed the final manuscript, made corrections, and agreed for publications.

Acknowledgment
We wish to thank Dr. M Anwary from the Department of Radiology. Nelson Mandela Academic Central Hospital Mthatha, South Africa, for the investigations done.

References

1. Sato K, Takahashi Y, Matsumoto N, et al.: Rare variant vertical one-and-a-half syndrome without ipsilateral upward gaze palsy in a patient with thalamomesencephalic stroke. Neurol Clin Neurosci. 2018; 6(5): 133-135. PubMed Abstract | Publisher Full Text | Free Full Text
2. Pierrot-Deseilligny Ch, Chain F, Gray F, et al.: Perinuclear's syndrome: electrooculographic and anatomical analyses of six vascular cases with deductions about vertical gaze organization in the premotor structures. Brain. 1982; 105(Pt 4): 667-96. PubMed Abstract | Publisher Full Text
3. Bogousslavsky J, Miklosy J, Regli F, et al.: Vertical gaze palsy and selective unilateral infarction of the rostral interstitial nucleus of the medial longitudinal fasciculus (rMLF). J Neurol Neurosurg Psychiatry. 1999; 63(1): 67-71. PubMed Abstract | Publisher Full Text | Free Full Text
4. van Raam AE, Mali WPMT, van Laar PJ, et al.: The fetal variant of the circle of Willis and its influence on the cerebral collateral circulation. Cerebrovasc Dis. 2006; 22(4): 217-224. PubMed Abstract | Publisher Full Text | Free Full Text
5. Igbal S: A comprehensive study of the anatomical variations of the circle of Willis in adult human brains. J Clin Diag Res. 2013; 7(11): 2423-2427. PubMed Abstract | Publisher Full Text | Free Full Text
6. Gunnar SA, Farooqui MS, Wabale RN: Study of Posterior Cerebral Artery in Human Cadaveric Brain. Anat Res Int. 2015; 2015: 681903. PubMed Abstract | Free Full Text
7. Zampakis P, Panagiotopoulos V, Petasis T, et al.: Common and uncommon intracranial arterial anatomic variations in multi-detector computed tomography angiography (MDCTA). What radiologists should be aware of. Insights Imaging. 2015; 6(1): 33-42. PubMed Abstract | Publisher Full Text | Free Full Text
8. Anghelescu A: Uncommon Association of Two Anatomical Variants of Cerebral Circulation: A Fetal-Type Posterior Cerebral Artery and Inferior Artery of Percheron, Complicated with Median Thalamomesencephalic Syndrome-Case Presentation and Literature Review. Case Rep Neurol Med. 2018; 2018: 4567206. PubMed Abstract | Publisher Full Text | Free Full Text
9. Nouh A, Remke J, Ruland S: Ischemic posterior circulation stroke: a review of anatomy, clinical presentations, diagnosis, and current management. Front Neurol. 2014; 5: 30. PubMed Abstract | Publisher Full Text | Free Full Text
10. Percheron G: The anatomy of the arterial supply of the human thalamus and its use to interpret the thalamic vascular pathology. Z Neurol. 1973; 205(1): 1-13. PubMed Abstract | Publisher Full Text
11. Percheron G: [Arteries of the human thalamus. II. Arteries and paramedian thalamic territory of the communicating basilar artery]. Rev Neurol (Paris). 1976; 132(5): 309-324. PubMed Abstract
12. Grochowski C, Maciejewski R: Diversity among posterior thalamoperforating branches originated from P1 segment: systematic review. Folia Morphol (Warsz). 2017; 76(3): 335-339. PubMed Abstract | Publisher Full Text
13. Djulejic V, Marinkovic S, Milei V, et al.: Common features of the cerebral perforating arteries and their clinical significance. Acta Neurochir (Wien). 2015; 157(6): 743-54; discussion 754. PubMed Abstract | Publisher Full Text
14. Griesenauer CJ, Loukas M, Tubbs RS: The artery of Percheron: an anatomic study with potential neurosurgical and neuroendovascular importance. Br J Neurosurg. 2014; 28(1): 81-85. PubMed Abstract | Publisher Full Text | Free Full Text
15. Kocaeli H, Yilmazlar S, Kuytu T, et al.: The artery of Percheron revisited: a cadaveric anatomical study. Acta Neurochir (Wien). 2013; 155(3): 533-539. PubMed Abstract | Publisher Full Text
16. Park SQ, Bae HG, Yoon SM, et al.: Morphological characteristics of the thalamoperforating arteries. J Korean Neurosurg Soc. 2010; 47(1): 36-41. PubMed Abstract | Publisher Full Text | Free Full Text
17. Kaya AH, Dagcinar A, Ulu MO, et al.: The perforating branches of the P1 segment of the posterior cerebral artery. J Clin Neurol. 2010; 17(1): 80-84. PubMed Abstract | Publisher Full Text | Free Full Text
18. Uz A: Variations in the origin of the thalamoperforating arteries. J Clin Neurosci. 2007; 14(2): 134-137. PubMed Abstract | Publisher Full Text
19. Marinkovic S, Milisavljevic M, Kovacevic M: Interpeduncular perforating branches of the posterior cerebral artery. Microsurgical anatomy of their extracerebral and intracerebral segments. Surg Neurol. 1986; 26(4): 349-359. PubMed Abstract
20. Pedrozzi A, Dujovny M, Ausems MG, et al.: Microvascular anatomy of the interpeduncular fossa. J Neurol Surg. 1986; 40(3): 484-493. PubMed Abstract | Publisher Full Text
21. Caballero PEJ: Bilateral paramedian thalamic arterial infarcts: report of 10 cases. J Stroke Cerebrovasc Dis. 2010; 19(4): 283-289. PubMed Abstract | Publisher Full Text
22. Lazzaro NA, Wright B, Castillo M, et al.: Anatomy of the Percheron Infarction: Imaging Patterns and Clinical Spectrum. AJNR Am J Neuroradiol. 2010; 31(7): 1283-1289. PubMed Abstract | Publisher Full Text
23. Song YM: Topographic patterns of thalamic infarcts in association with stroke syndromes and aetologies. J Neurol Neurosurg Psychiatry. 2011; 82(10): 1083-1086. PubMed Abstract | Publisher Full Text
et al.

National Institutes of Health Stroke Scale (NIHSS).

Stroke in HIV.

A medley of midbrain maladies: a brief review

See-saw nystagmus, convergence-retraction

Vertebrobasilar Insufficiency.

Acute Onset Vascular Dementia with Bi-

Pure midbrain infarction, clinical, radiologic, and

lesion site in ischemic brainstem infarcts: a retrospective observational study.

magnetic resonance angiography.

infarcts: a prospective study using magnetic resonance imaging and

Cerebrovasc Dis. 2014; 23(5): 1083–1088. PubMed Abstract | Publisher Full Text

Förster A, Nölte I, Wenz H, et al.: Anatomical variations in the posterior part of the circle of Willis and vascular pathology in bilateral thalamic infarction. J Neuroimaging. 2014; 24(4): 325–330. PubMed Abstract | Publisher Full Text

Xu Z, Sun L, Duan Y, et al.: Assessment of Percheron infarction in images and clinical findings. J Neurol. 2017; 383: 87–92. PubMed Abstract | Publisher Full Text

Man BL, Fu YP: See-saw nystagmus, convergence-retraction nystagmus, and contraversive ocular tilt reaction from a paramedian thalamomesencephalic infarct. BMJ Case Rep. 2014; bcr2014206851. PubMed Abstract | Publisher Full Text | Free Full Text

Versino M, Simonetti F, Egito MG, et al.: Lateral gaze synkinesis on downward saccade attempts with paramedian thalamic and midbrain infarct. J Neurosurg Psychiatry. 1999; 67(5): 696–697. PubMed Abstract | Publisher Full Text | Free Full Text

Hameyer P, Cornu P, Lacomblez L, et al.: A special form of cerebral lacunae: expanding lacunae. J Neurosurg Psychiatry. 1996; 61(2): 200–202. PubMed Abstract | Publisher Full Text | Free Full Text

Benjamin LA, Brier A, Emrseley HCA, et al.: HIV infection and stroke: Current perspectives and future directions. Lancet Neuro. 2012; 14(10): 876–90. PubMed Abstract | Publisher Full Text | Free Full Text

Kouassi L, Doumbia-Ouattara M: Acute Onset Vascular Dementia with Bilateral Thalamic Infarct in an HIV-Positive Subject. Am J Case Rep. 2017; 18: 1145–1147. PubMed Abstract | Publisher Full Text | Free Full Text

Bogousslavsky J, Regli F, Maeder P, et al.: The etiology of posterior circulation infarcts: a prospective study using magnetic resonance imaging and magnetic resonance angiography. Neurology. 1993; 48(8): 1526–1533. PubMed Abstract | Publisher Full Text | Free Full Text

deBaran G, Guitekin TO, Baran G, et al.: Association between etiology and lesion site in ischemic brainstem infarcts: a retrospective observational study. Neurupsych Dis Treat. 2018; 14: 757–766. PubMed Abstract | Publisher Full Text | Free Full Text

Neto ACL, Bittar R, Gattas GS, et al.: Pathophysiology and Diagnosis of Vertebrobasilar Insufficiency: A Review of the Literature. Int Arch Otorhinolaryngol. 2017; 21(3): 302–307. PubMed Abstract | Publisher Full Text | Free Full Text

Benjamin L, Khoo S: HIV infection and stroke. Handb Clin Neurol. 2018; 152: 187–200. PubMed Abstract | Publisher Full Text

Chow F, Bacchetti P, Kim A, et al.: Effect of CD4+ cell count and viral suppression on the risk of ischemic stroke in HIV infection. AIDS. 2014; 28(17): 2573–7. PubMed Abstract | Publisher Full Text | Free Full Text

Abdallah A, Chang JL, O’Carroll CB, et al.: Stroke in HIV-infected individuals in sub-Saharan Africa (SSA): A systematic review. J Stroke Cerebrovasc Dis. 2018; 27(7): 1828–1836. PubMed Abstract | Publisher Full Text | Free Full Text

Bogorodskaya M, Chow FC, Triant VA: Stroke in HIV. Can J Cardiol. 2019; 35(3): 280–287. PubMed Abstract | Publisher Full Text | Free Full Text

Pirau L, Lui F, Mohr JP, Caplan LR: Vertebrobasilar Insufficiency. Vertebrobasilar disease. In: Stroke: Pathophysiology, Diagnosis, and Management. Philadelphia: Elsevier Saunders; 2011; 446–484.

Kim JS, Kim J: Pure midbrain infarction, clinical, radiologic, and pathophysiologic findings. Neurology. 2005; 64(7): 1227–1232. PubMed Abstract | Publisher Full Text

Ruchalski K, Hathout GM: A medley of midbrain maladies: a brief review of midbrain anatomy and syndromology for radiologists. Radiol Res Pract. 2012; 2012: 258524. PubMed Abstract | Publisher Full Text | Free Full Text

Khimkwah L, Diong J: National Institutes of Health Stroke Scale (NIHSS). J Physiother. 2014; 60(1): 61. PubMed Abstract | Publisher Full Text

Filho JQ, Samuels OB: Approach to reperfusion therapy for acute ischemic stroke. 2020. Reference Source

Powars WJ, Rabinstein AA, Ackerson T, et al.: Guidelines for the Early Management of patients with acute ischemic stroke: 2019 Update to 2018: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2019; 50(12): e344–e419. PubMed Abstract | Publisher Full Text

Yeo SS, Jang SH, Kwon JW, et al.: Three-Dimensional Identification of the Medial Longitudinal Fasciculus in the Human Brain: A Diffusion Tensor Imaging Study. J Clin Med. 2020; 9(5): 1340. PubMed Abstract | Publisher Full Text | Free Full Text

Kocher PS, Kumar Y, Sharma P, et al.: Isolated medial longitudinal fasciculus syndrome: Review of imaging, anatomy, pathophysiology, and differential diagnosis. Neuroradiol J. 2018; 31(1): 95–99. PubMed Abstract | Publisher Full Text | Free Full Text

Huerta-OCampo I, Haoioglu-Bay H, Dautan D, et al.: Distribution of Midbrain Cholinergic Axons in the Thalamus. eNeuro. 2020; 7(1): F1000Research 2020, 9:1250 Last updated: 02 JUL 2021

Page 8 of 12
Jefferson V. Proano
Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico

As the authors stated in their reply, the cause of the stroke in this case was not definitively established. However they assert in the footnotes of the images that the cause was HIV: "The axial view shows a hyperdense lesion on the right midbrain caused by ischemic stroke due to HIV vasculitis."

Secondly, no citation or reference is provided for the following statement: "In our region, ischemic stroke due to infectious vasculitis is quite common." If there is no literature supporting this affirmation the writing should be changed to a formulation similar to "in our clinical experience".

Finally, the only vascular imaging shown is a contrast enhanced CT of the brain, but angiographic imaging is mentioned ("The MRI and CT angiograms showed evidence of an infarct involving the ventromedial midbrain and thalamus, and in the absence of other lesions."). If such imaging is available, a representative image demonstrating vasculitis should be part of the case report.

If these modifications were carried out I would be in favor of indexing.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neurology and Infection disease of the nervous system

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The authors assume that the etiology of the strokes in the case they present, is due to vasculitis due to HIV, but it is completely necessary to exclude other causes of vasculitis, such as systemic lupus erythematosus, in addition to the fact that the patient has other risk factors for strokes. Furthermore, it is difficult to suppose that this patient having the HIV virus copy number parameter at levels of undetectable, however, develops vasculitis due to this cause.

Is the background of the case’s history and progression described in sufficient detail?
Partly

Are enough details provided of any physical examination and diagnostic tests, treatment given and outcomes?
Partly

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment?
Partly

Is the case presented with sufficient detail to be useful for other practitioners?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Neurology and Infection disease of the nervous system

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
We confirmed the diagnosis of vasculitis by MRI images, as you can see in the radiologist’s report.

In this region, the commonest cause of vasculitis is an infectious disease caused by 1.- HIV/AIDS, 2.- TB, 3.- Neurocysticercosis, or 4.- Neurosyphilis.

Fortunately, we did not see SLE causing vasculitis at this shores. Because we could not rule out SLE, then we did not say HIV-vasculitis, then we titled this manuscript as....vasculitis in HIV patient.

Thanks for your kind attention and professional comments.

Regards,

Prof H Foyaca. MD Ph.D

Competing Interests: No competing interests were disclosed.

Author Response 08 Jan 2021

H Humberto Foyaca-Sibat, Walter Sisulu University/Nelson Mandela Academic Hospital, Mthatha, South Africa

Dear Reviewer,

As you can see we made all the changes that you suggested. We are completely agreed and very happy with your suggestions.

Thanks a lot for your kind attention and professional support.

Regards,

Dr. Foyaca

Competing Interests: We declare that there is not competing interest in this publication
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com