Active learning for distributionally robust level-set estimation

Yu Inatsu1 Shogo Iwazaki3 Ichiro Takeuchi1,2,*

1 Department of Computer Science, Nagoya Institute of Technology
2 RIKEN Center for Advanced Intelligence Project
* E-mail: takeuchi.ichiro@nitech.ac.jp

ABSTRACT

Many cases exist in which a black-box function f with high evaluation cost depends on two types of variables x and w, where x is a controllable design variable and w are uncontrollable environmental variables that have random variation following a certain distribution P. In such cases, an important task is to find the range of design variables x such that the function $f(x, w)$ has the desired properties by incorporating the random variation of the environmental variables w. A natural measure of robustness is the probability that $f(x, w)$ exceeds a given threshold h, which is known as the probability threshold robustness (PTR) measure in the literature on robust optimization. However, this robustness measure cannot be correctly evaluated when the distribution P is unknown. In this study, we addressed this problem by considering the distributionally robust PTR (DRPTR) measure, which considers the worst-case PTR within given candidate distributions. Specifically, we studied the problem of efficiently identifying a reliable set H, which is defined as a region in which the DRPTR measure exceeds a certain desired probability α, which can be interpreted as a level set estimation (LSE) problem for DRPTR. We propose a theoretically grounded and computationally efficient active learning method for this problem. We show that the proposed method has theoretical guarantees on convergence and accuracy, and confirmed through numerical experiments that the proposed method outperforms existing methods.

1. Introduction

In the manufacturing industry, product performance often depends on two types of variables: design variables and environmental variables. The design variables are completely controllable, whereas environmental variables are random variables that change depending on the usage environment of the product. When considering such a problem, it is important to identify the design variables that allow the product performance to exceed the desired requirement threshold with a sufficiently high degree of confidence, taking into account the randomness of the environmental variables. In this setting, we must emphasize that there are two distinctly different phases of the product: the development phase and the use phase. In the development phase, we have full control over the design variables and environmental variables. In the use phase, on the other hand, the design variables are fixed, and the environmental variables change randomly and cannot be controlled.

Let $f(x, w)$ represent the performance of the product, and let $h \in \mathbb{R}$ be a desired performance threshold, where x is a design variable defined on \mathcal{X}, and w is an environmental variable defined on Ω. Then, we consider the following robustness measure:

$$\text{PTR}(x) = \int_{\Omega} \mathbb{I}[f(x, w) > h] p^\dagger(w) \, dw,$$

where $\mathbb{I}[\cdot]$ is the indicator function and $p^\dagger(w)$ is the probability density function of w. This measure is called the probability threshold robustness (PTR) measure in the field of robust optimization [2], and can be interpreted as a measure of how well the design variables behave under randomness in the environmental variables. In the manufacturing industry, it is desirable to identify the set of controllable variables $x \in \mathcal{X}$ for which PTR(x) is greater than a certain threshold. In other words, this problem is interpreted as a level-set estimation (LSE) problem of the PTR measure. There are two main reasons for considering LSE of the PTR measure. One is that by enumerating all the design variables that exceed the desired threshold with a high probability, it is possible to respond to the usage conditions of various users. The other is to consider some optimization problem (e.g., to find x with the minimum price) for design variables with PTR measures above a certain level. This is known as the chance-constrained programming problem [5], and has many applications such as finance, in addition to manufacturing industry. Unfortunately, however, the PTR measure cannot be correctly evaluated when $p^\dagger(w)$ is unknown. If $p^\dagger(w)$ is unknown and the estimated density is simply plugged in, then PTR(x) is no longer valid as a robustness measure because of the estimation error.

In this study, we considered a distributionally robust PTR (DRPTR) measure, which includes uncertainty about $p^\dagger(w)$ under the setting that $p^\dagger(w)$ is unknown. Let \mathcal{A} be a user-specified class of candidate distributions of w. Then, the DRPTR measure can be defined as

$$F(x) = \inf_{p(w) \in \mathcal{A}} \int_{\Omega} \mathbb{I}[f(x, w) > h] p(w) \, dw.$$
problem as an active learning problem for the LSE for \(F(x) \) instead of PTR\((x) \), and developed a theoretically grounded and numerically efficient algorithm for its calculation. The basic ideas of our proposed method are as follows. First, we consider the function \(f(x, w) \) to be a black-box function with a high evaluation cost, and we employ a Gaussian process (GP) model as a surrogate model. Next, we predict the target DRPTR measure using the GP model for the black-box function \(f(x, w) \). Finally, we perform LSE using credible intervals of the DRPTR measure calculated on the basis of this prediction.

1.1. Related work

Active learning using GP models \([29]\) for black-box functions have been actively studied in the context of Bayesian optimization (see, e.g., \([21, 22]\)). Several studies have been conducted on active learning for LSE \([3, 6, 18, 20]\). Furthermore, some researchers applied LSE to efficiently identify safety regions \([25, 27, 24, 28]\), and others used LSE to enumerate the local minima of black-box functions \([9]\).

Many studies have been conducted on active learning under input uncertainty (including random environmental variables). In \([11]\), the authors proposed an efficient method for performing LSE in the setting where the input is a random variable generated from a certain distribution. In other studies, the researchers formulated the randomness of the input with some robustness measures for performing active learning on it. For example, the authors of \([3]\) used the worst-case function value of the input shift as a robustness measure. Similarly, other research \([1, 20, 17, 7, 14]\) dealt with the stochastic robustness (SR) measure, which is a robustness measure defined by integrating the black-box function against the input distribution. In another study closely related to the present work, the authors of \([12]\) proposed an active learning method for LSE in the PTR measure on the basis of random inputs; in \([14]\), the authors considered an active learning method for both LSE and maximization problems in the PTR measure. However, these two are not distributionally robust settings. Distributionally robust optimization (DRO), which is not an active learning framework, was first introduced by \([20]\). DRO is an important topic in the context of robust optimization, and there have been countless related studies (see \([19]\) for comprehensive survey of DRO). Active learning methods for DRO with uncertainty environmental variables have recently been proposed by \([16, 17]\). The main differences to our problem setup are that they focus on a distributionally robust SR (DRSR) measure for the target function, which is the worst-case SR measure in candidate distributions of the unknown environmental variable, and consider the maximization problem for the DRSR measure. In particular, for the former, we cannot directly apply their proposed methods and theoretical techniques because the target function is different from ours. To the best of our knowledge, none of these studies have addressed the same research problem considered in the present work.

1.2. Contributions

The main contributions of this study are summarized as follows:

- We formulate the LSE problem for the DRPTR measure, i.e., the problem of finding the set of design variables for which the DRPTR measure exceeds a given threshold.
- We construct non-trivial credible intervals for the DRPTR measure and propose a new acquisition function (AF) based on an expected classification improvement. Using them, we propose an active learning method for the LSE of the DRPTR measure. Moreover, because the naive implementation of our proposed AF requires a large computational cost, we propose a computationally efficient technique for its calculation.
- We clarify the theoretical property of the proposed method. Under mild conditions, we show that the proposed method has desirable accuracy and convergence properties.
- We describe the empirical performance of the proposed method through the results of numerical experiments with benchmark functions and real data.

2. Preliminary

Let \(f : \mathcal{X} \times \Omega \rightarrow \mathbb{R} \) be an expensive-to-evaluate black-box function. We assume that \(\mathcal{X} \) and \(\Omega \) are finite sets. For each input \((x, w) \in \mathcal{X} \times \Omega \), the value of \(f(x, w) \) is observed as \(f(x, w) + \varepsilon \) with an independent noise \(\varepsilon \), where \(\varepsilon \) follows Gaussian distribution \(\mathcal{N}(0, \sigma^2) \). In our setting, a variable \(w \in \Omega \) stochastically fluctuates by the (unknown) discrete distribution \(P^t \) in the use phase, whereas we can specify \(w \) in the development phase. Moreover, let \(\mathcal{A} \) be a family of candidate distributions of \(P^t \). In this work, we consider \(\mathcal{A} = \{ \text{p.m.f. } p(w) \mid d(p(w), p^*(w)) < \epsilon \} \) where \(p^*(w) \) is a user-specified reference distribution, \(d(\cdot, \cdot) \) is a given distance metric between two distributions, and \(\epsilon > 0 \). Then, under the given threshold \(h \), we define the DRPTR \(F(x) \) for each \(x \in \mathcal{X} \) as

\[
F(x) = \inf_{p(w) \in \mathcal{A}} \sum_{w \in \Omega} \mathbb{1}[f(x, w) > h]p(w).
\]
The aim of this study was to efficiently identify a subset H of \mathcal{X} that satisfies $F(x) > \alpha$ for a given threshold $\alpha \in (0, 1)$:

$$H = \{ x \in \mathcal{X} \mid F(x) > \alpha \}.$$ \hfill (2.1)

Moreover, we define the lower set L as $L = \{ x \in \mathcal{X} \mid F(x) \leq \alpha \}$.

Gaussian process In this study, we used the Gaussian process (GP) to model the unknown black-box function f. First, we assume that the GP, $GP(0, k((x, w), (x', w'))) = \text{prior distribution of } f$, where $k((x, w), (x', w'))$ is a positive-definite kernel. Then, given the dataset $\{(x_i, w_i, y_i)\}_{i=1}^l$, the posterior distribution of f also follows the GP, and its posterior mean $\mu_t(x, w)$ and posterior variance $\sigma^2_t(x, w)$ are given by

$$\mu_t(x, w) = k_t^T(x, w)(K_t + \sigma^2 I_t)^{-1}y_t,$$

$$\sigma^2_t(x, w) = k((x, w), (x, w)) - k_t^T(x, w)(K_t + \sigma^2 I_t)^{-1}k_t(x, w),$$

where $k_t(x, w)$ is the t-dimensional vector whose jth element is $k((x, w), (x_j, w_j))$, $y_t = (y_1, \ldots, y_l)^T$, I_t is the $t \times t$ identity matrix, and K_t is the $t \times t$ matrix whose (j, k)th element is $k((x_j, w_j), (x_k, w_k))$.

3. Proposed method

In this section, we propose an active learning method for efficiently identifying $F(x)$, the function of $f(x, w)$, and $F(x, w)$ is drawn from GP. Thus, a reasonable method to identify $F(x)$ is to construct a credible interval of $F(x)$, and estimate H using the lower bound of the constructed credible interval. Unfortunately, although $f(x, w)$ follows GP, $F(x)$ does not follow GP. Hence, the credible interval of $F(x)$ cannot be directly calculated on the basis of normal distributions. In the next section, we propose a simple and theoretically valid credible interval of $F(x)$ using the credible interval of $f(x, w)$.

3.1. Credible interval and LSE

For any input $(x, w) \in \mathcal{X} \times \Omega$ and step t, we define a credible interval of $f(x, w)$ as $Q_t(x, w) = [l_t(x, w), u_t(x, w)]$, where $l_t(x, w) = \mu_t(x, w) - \beta_t^{1/2} \sigma_t(x, w)$, $u_t(x, w) = \mu_t(x, w) + \beta_t^{1/2} \sigma_t(x, w)$, and $\beta_t^{1/2} \geq 0$. Similarly, we define a credible interval of $\mathbb{I}(f(x, w) > h)$ on the basis of $Q_t(x, w)$. For the theoretical analysis described in Section 4, we introduce a user-specified accuracy parameter $\eta > 0$. Specifically, we define the credible interval of $\mathbb{I}(f(x, w) > h)$ at step t as

$$\tilde{Q}_t(x, w; \eta) = [\tilde{l}_t(x, w; \eta), \tilde{u}_t(x, w; \eta)]$$

$$= \begin{cases} [1, 1] & \text{if } l_t(x, w) > h - \eta, \\
[0, 1] & \text{if } l_t(x, w) \leq h - \eta \text{ and } u_t(x, w) > h, \\
[0, 0] & \text{if } l_t(x, w) \leq h - \eta \text{ and } u_t(x, w) \leq h.
\end{cases}$$

Note that when the accuracy parameter $\eta = 0$, this credible interval simply indicates that if the lower (resp. upper) bound of $f(x, w)$ is greater (resp. smaller) than h, we say that $\mathbb{I}(f(x, w) > h) = 1$ (resp. 0). Thus, a credible interval $Q_t^{(F)}(x; \eta) = [\tilde{l}_t^{(F)}(x; \eta), \tilde{u}_t^{(F)}(x; \eta)]$ of the target function $F(x)$ can be given by

$$\tilde{l}_t^{(F)}(x; \eta) = \inf_{p(w) \in A} \sum_{w \in \Omega} \tilde{l}_t(x, w; \eta)p(w), \quad \tilde{u}_t^{(F)}(x; \eta) = \inf_{p(w) \in A} \sum_{w \in \Omega} \tilde{u}_t(x, w; \eta)p(w).$$ \hfill (3.1)

Note that if we use the $L1$ (or $L2$)-norm as the distance function $d(\cdot, \cdot)$, equation (3.1) is equivalent to solving a linear (or second-order cone) programming problem. In both cases, because solvers exist that can compute the optimal solution quickly, it is easy to compute $Q_t^{(F)}(x; \eta)$ when using such distance functions. Then, we estimate H and L using $Q_t^{(F)}(x; \eta)$ as follows:

$$H_t = \{ x \in \mathcal{X} \mid l_t^{(F)}(x; \eta) > \alpha \}, \quad L_t = \{ x \in \mathcal{X} \mid u_t^{(F)}(x; \eta) \leq \alpha \}.$$

Also, we define the unclassified set as $U_t = \mathcal{X} \setminus (H_t \cup L_t)$.

3.2. Acquisition function

In this section, we propose two acquisition functions to select the next evaluation point. Our proposed acquisition functions are based on the maximum improvement in level-set estimation (MILE) strategy proposed in [38]. In MILE, the expected value of the increase in the number of classifications after adding the new point (x^*, w^*) is calculated, and the point with the largest expected value is selected. In this study, owing to the
computational cost of calculating the acquisition function, we consider a strategy based on the expected value where points in the unclassified set are classified as hold.

Let \((x^*, w^*)\) be a new point, and let \(y^* = f(x^*, w^*) +\epsilon\) be a new observation at point \((x^*, w^*)\). Furthermore, let \(I_t^{(F)}(x; \eta)\) be the lower bound of the credible interval of \(F(x)\), where \(\eta = 0\) when \((x^*, w^*, y^*)\) is newly added. Then, we consider the function \(a_t(x^*, w^*)\):

\[
a_t(x^*, w^*) = \sum_{x \in U_t} \mathbb{E}_{y^*}[I_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha]]. \tag{3.2}
\]

In this work, we do not directly use \((3.2)\) as the acquisition function because the value of \((3.2)\) is sometimes exactly zero for any point. A reasonable method to avoid this problem is to consider a different function \(b_t(x^*, w^*)\) only when the values of \((3.2)\) are all zero. For the theoretical treatment, we follow the strategy described in \([30]\), and consider the acquisition function of the form \(\max\{a_t(x^*, w^*), \gamma b_t(x^*, w^*)\}\) with a positive constant parameter \(\gamma\). Note that if we use a sufficiently small \(\gamma\), it becomes almost the same when considering \(b_t(x^*, w^*)\) only when the values of \((3.2)\) are all zero; otherwise, \(a_t(x^*, w^*)\). In Section 4, we present the theoretical guarantees of our proposed method for this acquisition function. In this section, we propose two types of \(b_t(x^*, w^*)\). The first is based on the RMILE acquisition function proposed by \([30]\). The basic idea of RMILE is to add an additional variance term \(\gamma \sigma_t(x^*, w^*)\) to the original MILE acquisition function. By using the same argument, we define the following modified acquisition function:

Definition 3.1 (Proposed acquisition function 1). Let \(a_t(x^*, w^*)\) be the function defined by \((3.2)\), and let \(\gamma\) be a positive parameter. Then, we propose the following acquisition function \(a_t^{(1)}(x^*, w^*)\):

\[
a_t^{(1)}(x^*, w^*) = \max\{a_t(x^*, w^*), \gamma \sigma_t(x^*, w^*)\}.
\]

Moreover, we select the next evaluation point \((x_{t+1}, w_{t+1})\) by maximizing \(a_t^{(1)}(x^*, w^*)\).

The other acquisition function we propose uses \(\gamma \text{RMILE}_t(x^*, w^*)\) instead of \(\gamma \sigma_t(x^*, w^*)\) as the function \(b_t(x^*, w^*)\), where \(\text{RMILE}_t(x^*, w^*)\) is the RMILE function proposed in \([30]\).

Definition 3.2 (Proposed acquisition function 2). Let \(a_t(x^*, w^*)\) be the function defined by \((3.2)\), and let \(\gamma\) be a positive parameter. Then, we propose the following acquisition function \(a_t^{(2)}(x^*, w^*)\):

\[
a_t^{(2)}((x^*, w^*)) = \max\{a_t(x^*, w^*), \gamma \text{RMILE}_t(x^*, w^*)\}.
\]

Moreover, we select the next evaluation point \((x_{t+1}, w_{t+1})\) by maximizing \(a_t^{(2)}(x^*, w^*)\).

The pseudocode of the proposed method is given in Algorithm 1.

3.3. Computational techniques

Our proposed acquisition functions are based on \((3.2)\), where \((3.2)\) includes the calculation of the expected value. This expectation cannot be expressed as a simple expression using the cumulative distribution function (CDF) of the standard normal distribution, as in the original MILE \([30]\). One way to solve this problem is to generate many samples from the posterior distribution of \(y^*\) and numerically calculate the expected value. However, because one optimization calculation is required to calculate \(\mathbb{I}_{|\Omega|}(x; 0|x^*, w^*, y^*) > \alpha]\), if the expected value is calculated using \(M\) samples, then \(M|U_t|\) optimization calculations are required to calculate \(a_t(x^*, w^*)\) for each \((x^*, w^*)\). Therefore, to calculate \(a_t(x^*, w^*)\) for all candidate points, \(M|U_t||\Omega|\) optimization calculations are required. To reduce this large computational cost, we provide useful lemmas for efficiently computing the acquisition function. The expected values in \((3.2)\) can be exactly calculated using the following lemma:
Lemma 3.1. Let \(l_t(x, w_j|x^*, w^*, y^*) \) be the lower confidence bound of \(f(x, w_j) \) after adding \((x^*, w^*, y^*)\) to \([(x_i, w_i, y_i)]_{i=1}^{t}\). Furthermore, let \(r_j \) be a number satisfying \(h = l_t(x, w_j|x^*, w^*, r_j) \), and let \(r^{(j)} \) be the \(j \)-th smallest number in the range \(r_1 \) to \(r_{|\Omega|} \). For each \(s \in \{1, \ldots, |\Omega| + 1\} \equiv [|\Omega| + 1], \) define \(R_s = \{r^{(s-1)}, r^{(s)}\} \), where \(r^{(0)} = -\infty \) and \(r^{(|\Omega|+1)} = \infty \). Moreover, let \(c_s \) be a real number satisfying \(c_s \in \mathbb{R} \). Then, \(\mathbb{E}_{y^*}[\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha)] \) can be calculated as follows:

\[
\mathbb{E}_{y^*}[\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha]] = \sum_{s=1}^{|\Omega|+1} \mathbb{P}(y^* \in R_s) \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha].
\]

(3.3)

Lemma 3.1 implies that \(|\Omega|+1\) optimization calculations are required to calculate \(\mathbb{E}_{y^*}[\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha]] \), but the following lemma shows that the number of optimization calculations can be reduced by checking a simple inequality:

Lemma 3.2. Let \(c_1, \ldots, c_{|\Omega|+1} \) be numbers defined as in Lemma 3.1. Suppose that \(c_s \) satisfies

\[
\sum_{w \in \Omega} \mathbb{I}[l_t(x, w|x^*, w^*, c_s) > h]p^*(w) \leq \alpha.
\]

Then, \(\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha] = 0 \).

Finally, noting that \(0 \leq \mathbb{P}(y^* \in R_s) \leq 1 \) and \(0 \leq \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha] \leq 1 \), we can approximate (3.3) with any approximation accuracy \(\zeta > 0 \):

Lemma 3.3. Let \(\zeta > 0 \), and define

\[
\hat{a}_t(x^*, w^*) = \sum_{s \in S_t} \mathbb{P}(y^* \in R_s) \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha],
\]

\(S_t = \{s \in [|\Omega| + 1] \mid \mathbb{P}(y^* \in R_s) \geq \zeta/(|\Omega| + 1)\}\).

Then, \(\hat{a}_t(x^*, w^*) \) satisfies the following inequality:

\[
|\mathbb{E}_{y^*}[\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha]] - \hat{a}_t(x^*, w^*)| \leq \zeta.
\]

Lemma 3.3 implies that the number of optimization calculations for (3.3) can be further reduced if the error \(\zeta \) is allowed. In addition, we must emphasize that \(\mathbb{P}(y^* \in R_s) \) is often very small for most \(s \) when we actually calculate (3.3). Therefore, from these properties, if we apply Lemma 3.3 using a sufficiently small \(\zeta \), we can reduce the computational cost of (3.3) significantly with almost no error. Detailed numerical comparisons are provided in Section 5.

4. Theoretical analysis

In this section, we provide three theorems regarding the accuracy and convergence properties of our methods. First, we define the misclassification loss \(c_\alpha(x) \) for each \(x \in \mathcal{X} \) as follows:

\[
c_\alpha(x) = \begin{cases}
\max \{0, F(x) - \alpha\} & \text{if } x \in \hat{L}, \\
\max \{0, \alpha - F(x)\} & \text{if } x \in \hat{H}.
\end{cases}
\]

Furthermore, for theoretical reasons, we assume that the black-box function \(f \) follows \(\mathcal{GP}(0, k((x, w), (x', w'))) \). In addition, for technical reasons, we assume that the prior variance \(k((x, w), (x, w)) \equiv \sigma_0^2(x, w) \) satisfies

\[
0 < \sigma_0^2 \equiv \min_{(x, w) \in \mathcal{X} \times \Omega} \sigma_0^2(x, w) \leq \max_{(x, w) \in \mathcal{X} \times \Omega} \sigma_0^2(x, w) \leq 1.
\]

Moreover, let \(\kappa_T \) be the maximum information gain at step \(T \). Note that \(\kappa_T \) is a measure often used to show theoretical guarantee for GP-based active learning methods (see, e.g., [23]), and can be expressed using mutual information \(I(y; f) \) between the observed vector \(y \) and \(f \) as \(\kappa_T = \max_{\Lambda \subset \mathcal{X} \times \Omega} I(y; f) \). Then, the following theorem regarding accuracy holds:

Theorem 4.1. Let \(b \in \mathbb{R}, \alpha \in (0, 1), t \geq 1, \) and \(\delta \in (0, 1) \), and define \(\beta_t = 2 \log(|\mathcal{X} \times \Omega| \pi^2 t^2/(3\delta)) \). Moreover, for a user-specified accuracy parameter \(\xi > 0 \), we define \(\eta > 0 \) as

\[
\eta = \min \left\{ \frac{\xi \sigma_{0, \min}}{2}, \frac{\xi^2 \delta \sigma_{0, \min}}{8|\mathcal{X} \times \Omega|} \right\}.
\]

Then, when Algorithm 1 terminates, with a probability of at least \(1 - \delta \), the misclassification loss is bounded by \(\xi \), that is, the following inequality holds:

\[
\mathbb{P} \left(\max_{x \in \mathcal{X}} c_\alpha(x) \leq \xi \right) \geq 1 - \delta.
\]
Theorem 4.1 does not state whether Algorithm 1 terminates. The following theorem guarantees the convergence property in Algorithm 1.

Theorem 4.2. Under the same setting as described in Theorem 4.1, let \(\gamma > 0 \) and \(C_1 = 2/\log(1 + \sigma^{-2}) \). In addition, let \(T \) be the smallest positive integer satisfying the following four inequalities:

\[
(1) \quad \frac{\sigma^2 \beta T^{1/2} C_1 \kappa_T}{T} < \frac{\eta}{2}, \quad (2) \quad \frac{\sigma^2 C_1 \kappa_T}{T} < \frac{\eta^2}{4}, \quad (3) \quad \frac{C_1 \beta T \kappa_T}{T} < \frac{\eta^2}{4}, \]

\[
(4) \quad \frac{1}{2} \log \beta_T - \frac{T \eta^2 \sigma^2}{8 C_1 \kappa_T} < \log(|X|^{-1} 2^{-|\Omega|} \eta \gamma (2\pi)^{1/2}/2).
\]

Then, Algorithm 1 terminates (i.e., \(U_T = \emptyset \)) after at most \(T \) trials when we use the acquisition function \(a_t^{(1)}(x^*, w^*) \).

Furthermore, the similar theorem holds if the acquisition function \(a_t^{(2)}((x^*, w^*)) \) is used. In this study, owing to the practical performance, we modified the original RMILE to

\[
\text{RMILE}_t(x^*, w^*) = \max \{ \text{MILE}_t(x^*, w^*), \tilde{\gamma} \sigma_t(x^*, w^*) \},
\]

\[
\text{MILE}_t(x^*, w^*) = \sum_{(x, w) \in U_t \times \Omega} \mathbb{E}_{w} [\mathbb{I}[l_t(x, w|x^*, w^*, y^*) > h]]
-
|\{(x, w) \in U_t \times \Omega \mid l_t(x, w) > h - \eta\}|.
\]

Then, the following theorem holds:

Theorem 4.3. Under the same setting described in Theorem 4.1, let \(\gamma > 0, \tilde{\gamma} > 0, \) and \(C_1 = 2/\log(1 + \sigma^{-2}) \). In addition, let \(T \) be the smallest positive integer satisfying the following five inequalities:

\[
(1) \quad \frac{\sigma^2 \beta T^{1/2} C_1 \kappa_T}{T} < \frac{\eta}{2}, \quad (2) \quad \frac{\sigma^2 C_1 \kappa_T}{T} < \frac{\eta^2}{4}, \quad (3) \quad \frac{C_1 \beta T \kappa_T}{T} < \frac{\eta^2}{4}, \]

\[
(4) \quad \frac{1}{2} \log \beta_T - \frac{T \eta^2 \sigma^2}{8 C_1 \kappa_T} < \log(|X|^{-1} 2^{-|\Omega|} \eta \gamma (2\pi)^{1/2}/2),
\]

\[
(5) \quad \frac{1}{2} \log \beta_T - \frac{T \eta^2 \sigma^2}{8 C_1 \kappa_T} < \log(|X| \times \Omega)^{-1} \eta \tilde{\gamma} (2\pi)^{1/2}/2).
\]

Then, Algorithm 1 terminates (i.e., \(U_T = \emptyset \)) after at most \(T \) trials when we use the acquisition function \(a_t^{(2)}(x^*, w^*) \).

The order of the maximum information gain \(\kappa_T \) is known to be sublinear under mild conditions [23]. Hence, because the order of \(\beta_T \) is \(O(\log T) \), there exist positive integers satisfying the inequalities in Theorems 4.2 and 4.3.

5. Numerical experiments

We confirmed the performance of the proposed method using both synthetic and real data. Because of space limitation, we provide a part of experimental results in the main text. All experimental results and detail parameter settings are given in the Appendix. The input space \(X \times \Omega \) was defined as a set of grid points that uniformly cut the region \([L_1, U_1] \times [L_2, U_2]\) into 50 \(\times \) 50. In all experiments, we used the following Gaussian kernel as the kernel function:

\[
k((x, w), (x', w')) = \sigma_x^2 \exp(-\{(x - x')^2 + (w - w')^2\}/L).
\]

Moreover, we used \(L1\)-norm as the distance functions between distributions. Furthermore, we considered the following two distributions as the reference distribution \(p^*(w) \):

Uniform: \(p^*(w) = 1/50. \)

Normal:

\[
p^*(w) = \frac{a(w)}{\sum_{w \in \Omega} a(w)}, \quad a(w) = \frac{1}{\sqrt{20\pi}} \exp(-w^2/20).
\]

Then, we compared the following acquisition functions:

Random: Select \((x_{t+1}, w_{t+1})\) by using random sampling.

US: Perform uncertainty sampling, i.e., \((x_{t+1}, w_{t+1}) = \text{argmax}_{(x, w) \in X \times \Omega} \sigma_x^2(x, w)\).
Straddle_f: Perform straddle strategy \[4\], i.e., \((x_{t+1}, w_{t+1}) = \arg\max_{(x, w) \in \mathcal{X} \times \Omega} v_t(x, w), \) where \(v_t(x, w) = \min\{u_t(x, w) - h; h - l_t(x, w)\}\).

Straddle_US: Select \(x_{t+1}\) and \(w_{t+1}\) by using the straddle of \(F(x)\) and \(\sigma_t(x_{t+1}, w)\), respectively, i.e., \(x_{t+1} = \arg\max_{x \in \mathcal{X}} v^F_t(x)\) and \(w_{t+1} = \arg\max_{w \in \Omega} \sigma^F_t(x_{t+1}, w), \) where \(v^F_t(x) = \min\{u^F_t(x; \eta) - \alpha, \alpha - l^F_t(x; \eta)\}\).

Straddle_random: Replace the selection method of \(w_{t+1}\) in straddle_US with random sampling.

MILE: Perform the original MILE strategy, i.e., \((x_{t+1}, w_{t+1})\) was selected by using (6) in [30].

Proposed1_0.1: Perform \(a_t^{(1)}(x^*, \ w^*)\) with \(\gamma = 0.1\).

Proposed1_0.01: Perform \(a_t^{(1)}(x^*, \ w^*)\) with \(\gamma = 0.01\).

Proposed2_0.1: Perform \(a_t^{(2)}(x^*, \ w^*)\) with \(\gamma = 0.1\).

Proposed2_0.01: Perform \(a_t^{(2)}(x^*, \ w^*)\) with \(\gamma = 0.01\).

Here, for simplicity, we set the accuracy parameter \(\eta\) to zero. Similarly, because of the computational cost of calculating acquisition functions, we replaced \(\mathbb{P}(y^* \in \mathcal{R}_s)\mathbb{I}[l^F_t(x; 0|x^*, w^*, c_s) > \alpha]\) in (3.3) with zero when \(\mathbb{P}(y^* \in \mathcal{R}_s)\) satisfies \(\mathbb{P}(y^* \in \mathcal{R}_s) < 0.005\). In other words, we used Lemma 3.3 with \(\zeta/|\Omega| + 1 = 0.005\) to approximate (3.3).

5.1. Synthetic data experiments

We confirmed the performance of the proposed method using synthetic functions. We considered the following four functions, which are commonly used benchmark functions (the last one adds -4000 to the original definition):

Booth: \(f(x, w) = (x + 2w - 7)^2 + (2x + w - 5)^2\).

Matyas: \(f(x, w) = 0.26(x^2 + w^2) - 0.48xw\).

McCormick: \(f(x, w) = \sin(x + w) + (x - w)^2 - 1.5x + 2.5w + 1\).

Styblinski-Tang: \(f(x, w) = (x^4 - 16x^2 + 5x)/2 + (w^4 - 16w^2 + 5w)/2 - 4000\).

Under this setup, we took one initial point at random and ran the algorithms until the number of iterations reached 300 (or 200), where the parameters used for each experiment are listed in Table 2 in the Appendix. We performed 50 Monte Carlo simulations and obtained the average F-score as follows:

\[
\text{F-score} = \frac{2\times \text{pre} \times \text{rec}}{\text{pre} + \text{rec}}, \quad \text{pre} = \frac{|H \cap H_t|}{|H_t|}, \quad \text{rec} = \frac{|H \cap H_t|}{|H|}.
\]

From Figures 1 and 2, it can be confirmed that our proposed methods outperform other existing methods. On the other hand, in the existing methods, Straddle_f and MILE exhibit high performance, because the MILE acquisition function increases the expected number of \((x, w)\) satisfying \(l_t(x, w) > h\). As a result, because \(l_t(x, w; \eta)\) and \(l^F_t(x; \eta)\) become large early, the number of elements in \(H_t\) also increases early. Similarly, because the Straddle_f acquisition function can efficiently search for \((x, w)\) satisfying \(l_t(x, w) > h\) or \(u_t(x, w) < h\), the number of elements in \(H_t\) also increases efficiently from the same argument as before. Furthermore, when comparing Proposed1 and Proposed2, one of the reasons why the latter exhibits better performance is the fact that RMILE exhibits better performance than uncertainty sampling. Other experiments, a comparison of the difference in \(\gamma\) is described in the Appendix.

5.2. Computation time experiments

In this section, we confirmed how much the computation time of (3.2) can be improved by using Lemma 3.1, 3.2, and 3.3. We evaluated the computation time of (3.2) when we performed the same experiment as in Subsection 5.1 using Proposed1_0.01 and Proposed2_0.01 for the Booth function. The experiments for Matyas, McCormick and Styblinski-Tang functions are described in the Appendix. Here, as for the parameter settings, we considered only the case of L1-Normal in Table 2. We compared the computation time of the following six experiments for calculating (3.2):

Naive: For each \((x^*, w^*)\), we generate \(M\) samples \(y^*_1, \ldots, y^*_M\) from the posterior distribution of \(f(x^*, w^*)\), and approximate (3.2) by

\[
\sum_{x \in U_t} \frac{1}{M} \sum_{m=1}^{M} \mathbb{I}[l^F_t(x; 0|x^*, w^*, y^*_m) > \alpha],
\]

where \(M = 1000\).
Figure 1: Average F-score over 50 simulations with four benchmark functions when the distance function and reference distribution are L_1-norm and Uniform, respectively.

Figure 2: Average F-score over 50 simulations with four benchmark functions when the distance function and reference distribution are L_1-norm and Normal, respectively.

Table 1: Computation time (second) for the Booth function setting

Method	L_1	L_2	L_3 (10^{-4})	L_3 (10^{-8})	L_3 (10^{-12})
Proposed1_0.01	138.95 ± 1334.87	7621.99 ± 1166.23	2370.02 ± 586.94	71.16 ± 25.33	80.53 ± 31.37
Proposed2_0.01	106306.10 ± 12331.01	5835.06 ± 1028.99	2608.30 ± 976.06	63.14 ± 10.29	72.35 ± 13.99

L1: Compute (3.2) using Lemma 3.1

L2: Compute (3.2) using Lemma 3.1 and 3.2

L3 (10^{-4}): Compute (3.2) using Lemma 3.1 3.2 and 3.3 with $\zeta = (|\Omega| + 1)10^{-4}$.

L3 (10^{-8}): Compute (3.2) using Lemma 3.1 3.2 and 3.3 with $\zeta = (|\Omega| + 1)10^{-8}$.

L3 (10^{-12}): Compute (3.2) using Lemma 3.1 3.2 and 3.3 with $\zeta = (|\Omega| + 1)10^{-12}$.

Under this setup, we took one initial point at random and ran the algorithms until the number of iterations reached 300. Furthermore, for each trial t, we evaluated the computation time to calculate (3.2) for all candidate points $(x^*, w^*) \in X \times \Omega$, and calculated the average computation time over 300 trials. From Table 1 it can be confirmed that the computation time is improved as the proposed computational techniques are used. Moreover, comparing L3 (10^{-4}), L3 (10^{-8}) and L3 (10^{-12}), it can be confirmed that the computation time becomes shorter when a large ζ is used. However, it can be seen that the computation time of L3 (10^{-12}) is still very small compared to the computation time of Naive, L1 and L2. Therefore, from $|\Omega| = 50$ and Lemma 3.3 it implies that by using proposed computational techniques, we can improve the computation time significantly even if the error from the true $a_t(x^*, w^*)$ is kept to a very small value such as $51 \times 10^{-12} = 5.1 \times 10^{-11}$.

5.3. Real data experiments

We compared our proposed method with other existing methods by using the infection control problem [15]. We considered a simulation-based decision-making problem for an epidemic, which aims to determine an acceptable infection rate x under an uncertain recovery rate w with as few simulations as possible. The motivation for this simulation was to evaluate the tradeoff between economic risk and a controllable infection rate. For example, if the infection rate x is minimized by shutting down all economic activities, the economic
risk will become extremely high. In contrast, if nothing is done, the infection rate will remain high, resulting in the spread of the disease, and economic risk will still be high. Therefore, we considered finding a target infection rate that can achieve an acceptable economic risk threshold \(h \) with a probability of at least \(\alpha \). In this experiment, to simulate epidemic behavior, we used the SIR model \[15\]. The model computes the evolution of the number of infected people by using an infection rate \(x \) and recovery rate \(w \). In our experiment, we considered the infection rate as the design variable \(x \) and the recovery rate as the environmental variable \(w \) following an unknown distribution. In addition, we regarded economic risk as a black-box function \(f(x, w) \).

Note that similar numerical experiments were performed in \[13\] under the setting where the distribution of \(w \), \(p^1(w) \), is known. Furthermore, we rescaled the ranges of \(x \) and \(w \) in the interval \([-1, 1]\). The input space \(\mathcal{X} \times \Omega \) is defined as a set of grid points that uniformly cut the region \([-1, 1] \times [-1, 1]\) into \(50 \times 50 \). We used the following economic risk function \(f(x, w) \): \[f(x, w) = n_{\text{infected}}(x, w) - 150x, \] where \(n_{\text{infected}}(x, w) \) is the maximum number of infected people in a given period of time, calculated using the SIR model. Note that this risk function was also used by \[13\], and in this experiment, we used the same function they used in their experiment. Under this setup, we took one initial point at random and ran the algorithms until the number of iterations reached 100. From 50 Monte Carlo simulations, we calculated average F-scores, where we used the following parameters for all problem settings:

\[
h = 135, \ \alpha = 0.9, \ \sigma^2 = 0.025, \ \sigma_f^2 = 250^2, \ \beta = 0.5, \ \beta_1^{1/2} = 4, \ \epsilon = 0.05.
\]

In this experiment, we used the following modified reference function as Normal:

\[
p^*(w) = \frac{a(w)}{\sum_{w' \in \Omega} a(w')}, \quad a(w) = \frac{1}{\sqrt{0.1\pi}} \exp(-w^2/0.1).
\]

From Figure 3, it can be confirmed that Proposed2 and MILE performed better than the others.

6. Conclusion

We proposed active learning methods for identifying the reliable set of distributionally robust probability threshold robustness (DRPTR) measure under uncertain environmental variables. We showed that our proposed methods satisfy theoretical guarantees about convergence and accuracy, and outperform existing methods in numerical experiments.

Acknowledgement

This work was partially supported by MEXT KAKENHI (20H00601, 16H06538), JST CREST (JPMJCR1502), and RIKEN Center for Advanced Intelligence Project.
References

[1] Justin J Beland and Prasanth B Nair. Bayesian optimization under uncertainty. In *NIPS BayesOpt 2017 workshop*, 2017.

[2] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization—a comprehensive survey. *Computer methods in applied mechanics and engineering*, 196(33-34):3190–3218, 2007.

[3] Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Adversarially robust optimization with Gaussian processes. In *Advances in neural information processing systems*, pages 5760–5770, 2018.

[4] Brent Bryan, Robert C Nichol, Christopher R Genovese, Jeff Schneider, Christopher J Miller, and Larry Wasserman. Active learning for identifying function threshold boundaries. In *Advances in neural information processing systems*, pages 163–170, 2006.

[5] Abraham Charnes and William W Cooper. Chance-constrained programming. *Management science*, 6(1):73–79, 1959.

[6] Lukas Fröhlich, Edgar Klenske, Julia Vinogradska, Christian Daniel, and Melanie Zeilinger. Noisy-input entropy search for efficient robust bayesian optimization. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 2262–2272. PMLR, 26–28 Aug 2020.

[7] Alexandra Gessner, Javier Gonzalez, and Maren Mahsereci. Active multi-information source Bayesian quadrature. In *Uncertainty in Artificial Intelligence*, pages 712–721. PMLR, 2020.

[8] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause. Active learning for level set estimation. In *Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence*, IJCAI ’13, pages 1344–1350. AAAI Press, 2013.

[9] Y Inatsu, D Sugita, K Toyoura, and I Takeuchi. Active learning for enumerating local minima based on Gaussian process derivatives. *Neural Computation*, 32(10):2032–2068, 2020.

[10] Yu Inatsu, Masayuki Karasuyama, Keiichi Inoue, Hideki Kandori, and Ichiro Takeuchi. Active learning of Bayesian linear models with high-dimensional binary features by parameter confidence-region estimation. *Neural Computation*, 32(10):1998–2031, 2020.

[11] Yu Inatsu, Masayuki Karasuyama, Keiichi Inoue, and Ichiro Takeuchi. Active learning for level set estimation under input uncertainty and its extensions. *Neural Computation*, 32(12):2486–2531, 2020.

[12] Shogo Iwazaki, Yu Inatsu, and Ichiro Takeuchi. Bayesian experimental design for finding reliable level set under input uncertainty. *IEEE Access*, 8:203982–203993, 2020.

[13] Shogo Iwazaki, Yu Inatsu, and Ichiro Takeuchi. Bayesian quadrature optimization for probability threshold robustness measure. *arXiv preprint arXiv:2006.11986*, 2020.

[14] Shogo Iwazaki, Yu Inatsu, and Ichiro Takeuchi. Mean-variance analysis in Bayesian optimization under uncertainty. In *The 24th International Conference on Artificial Intelligence and Statistics*, 2021. To appear.

[15] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of epidemics. *Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character*, 115(772):700–721, 1927.

[16] Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distributionally robust Bayesian optimization. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 2174–2184. PMLR, 26–28 Aug 2020.

[17] Thanh Nguyen, Sunil Gupta, Huong Ha, Santu Rana, and Svetha Venkatesh. Distributionally robust Bayesian quadrature optimization. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 1921–1931. PMLR, 26–28 Aug 2020.

[18] Rafael Oliveira, Lionel Ott, and Fabio Ramos. Bayesian optimisation under uncertain inputs. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1177–1184, 2019.

[19] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. *arXiv preprint arXiv:1908.05659*, 2019.
[20] Herbert Scarf. A min-max solution of an inventory problem. *Studies in the mathematical theory of inventory and production*, 10:201–209, 1958.

[21] Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences, 2009.

[22] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the loop: A review of Bayesian optimization. *Proceedings of the IEEE*, 104(1):148–175, 2016.

[23] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, ICML ’10, pages 1015–1022, USA, 2010. Omnipress.

[24] Yanan Sui, Joel Burdick, Yisong Yue, et al. Stagewise safe Bayesian optimization with Gaussian processes. In *International Conference on Machine Learning*, pages 4781–4789, 2018.

[25] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with Gaussian processes. In *International Conference on Machine Learning*, pages 997–1005, 2015.

[26] Saul Toscano-Palmerin and Peter I Frazier. Bayesian optimization with expensive integrands. *arXiv preprint arXiv:1803.08661*, 2018.

[27] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite Markov decision processes with Gaussian processes. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, pages 4312–4320, 2016.

[28] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of constrained MDPs using Gaussian processes. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

[29] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. *the MIT Press*, 2(3):4, 2006.

[30] Andrea Zanette, Junzi Zhang, and Mykel J Kochenderfer. Robust super-level set estimation using Gaussian processes. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 276–291. Springer, 2018.
Appendix

A. Proofs

A.1. Proof of Theorem 4.1

In this section, we prove Theorem 4.1. First, we show two lemmas.

Lemma A.1. Let \(\delta \in (0, 1) \), and define \(\beta_t = 2 \log(|X \times \Omega|/\pi t^2/(6\delta)) \). Then, with a probability of at least \(1 - \delta \), the following inequality holds:

\[
|f(x, w) - \mu_{t-1}(x, w)| \leq \beta_t^{1/2} \sigma_{t-1}(x, w), \quad \forall (x, w) \in X \times \Omega, \forall t \geq 1.
\]

Proof. By replacing \(D \) and \(\pi_t \) in Lemma 5.1 of [23] with \(X \times \Omega \) and \(\pi^2 t^2/6 \), respectively, we have Lemma A.1. \(\square \)

Lemma A.2. Let \(\delta \in (0, 1) \), \(\xi > 0 \) and \(\eta = \min \{ \xi_0, \delta \pi_t \} \). Then, with a probability of at least \(1 - \delta/2 \), the following holds for any \(x \in X \) and \(p(w) \in A \):

\[
\tilde{F}_{\eta, p}(x) \equiv \sum_{w \in \Omega} \mathbb{I}[h \geq f(x, w) > h - \eta]p(w) < \xi.
\]

Proof. From Chebyshev’s inequality, for any \(\nu > 0 \) and \((x, w) \in X \times \Omega \), the following inequality holds:

\[
\mathbb{P}(|g_{\eta}(x, w) - \mu^{(g_{\eta})}(x, w)| \geq \nu) \leq \frac{\mathbb{V}[g_{\eta}(x, w)]}{\nu^2},
\]

where \(g_{\eta}(x, w) = \mathbb{I}[h \geq f(x, w) > h - \eta] \) and \(\mu^{(g_{\eta})}(x, w) = \mathbb{E}[g_{\eta}(x, w)] \). Hence, by replacing \(\nu \) with \((\delta/(2|X \times \Omega|))^{1/2}\mathbb{V}[g_{\eta}(x, w)]^{1/2} \), with a probability of at least \(1 - \delta/2 \), the following holds for any \((x, w) \in X \times \Omega \):

\[
|g_{\eta}(x, w) - \mu^{(g_{\eta})}(x, w)| < \frac{\sqrt{\mathbb{V}[g_{\eta}(x, w)]}}{\delta/(2|X \times \Omega|)}.
\]

This implies that

\[
g_{\eta}(x, w) < \mu^{(g_{\eta})}(x, w) + \frac{\sqrt{\mathbb{V}[g_{\eta}(x, w)]}}{\delta/(2|X \times \Omega|)} \tag{A.1}
\]

Moreover, noting that \(g_{\eta}(x, w) \) follows Bernoulli distribution, we get

\[
\mathbb{V}[g_{\eta}(x, w)] = \mathbb{E}[g_{\eta}(x, w)](1 - \mathbb{E}[g_{\eta}(x, w)]) \leq \mathbb{E}[g_{\eta}(x, w)] = \mu^{(g_{\eta})}(x, w). \tag{A.2}
\]

In addition, \(\mu^{(g_{\eta})}(x, w) \) can be expressed as

\[
\mu^{(g_{\eta})}(x, w) = \Phi\left(\frac{h}{\sigma_0(x, w)} \right) - \Phi\left(\frac{h - \eta}{\sigma_0(x, w)} \right).
\]

Furthermore, by using Taylor’s expansion, for any \(a < b \) it holds that

\[
\Phi(b) = \Phi(a) + \phi(c)(b - a) \leq \Phi(a) + \phi(0)(b - a) \leq \Phi(a) + (b - a),
\]

where \(c \in (a, b) \). Thus, we obtain

\[
\mu^{(g_{\eta})}(x, w) \leq \frac{\eta}{\sigma_0(x, w)} \leq \frac{\eta}{\sigma_{0, min}}. \tag{A.3}
\]

Thus, by substituting (A.2) and (A.3) into (A.1), we have

\[
g_{\eta}(x, w) < \frac{\eta}{\sigma_{0, min}} + \sqrt{\frac{2\eta|X \times \Omega|}{\delta\sigma_{0, min}}}.
\]

Hence, from the definition of \(\eta \), we get

\[
g_{\eta}(x, w) < \frac{\xi}{2} + \sqrt{\frac{\xi^2}{4}} = \xi.
\]

Therefore, for any \(p(w) \in A \), the following holds:

\[
\tilde{F}_{\eta, p}(x) = \sum_{w \in \Omega} g_{\eta}(x, w)p(w) < \sum_{w \in \Omega} \xi p(w) = \xi.
\]
By using Lemma \ref{lem:MDH1} and \ref{lem:MDH2} we prove Theorem \ref{thm:MDHT}

Proof. Let $\delta \in (0, 1)$ and $\beta_t = 2 \log(\|x \times \Omega\|_2^2/(3\delta))$. Then, from Lemma \ref{lem:MDH1} with a probability of at least $1 - \delta/2$ the following holds:

$$I_t(x, w) \leq f(x, w) \leq u_t(x, w), \quad \forall (x, w) \in \mathcal{X} \times \Omega, \forall t \geq 1. \quad (A.4)$$

Thus, from the definition of $\tilde{Q}_t(x, w; \eta)$, it holds that

$$\mathbb{I}[f(x, w) > h] \leq \tilde{u}_t(x, w; \eta).$$

This implies that

$$F(x) = \inf_{p(w) \in A} \sum_{w \in \Omega} \mathbb{I}[f(x, w) > h]p(w) \leq \inf_{p(w) \in A} \sum_{w \in \Omega} \tilde{u}_t(x, w; \eta)p(w) = u_t^{(F)}(x; \eta).$$

Therefore, noting that the definition of L_t, we have

$$x \in L_t \Rightarrow F(x) \leq u_t^{(F)}(x; \eta) \leq \alpha. \quad (A.5)$$

On the other hand, for any $x \in \mathcal{X}$ and $p(w) \in A$, it holds that

$$\sum_{w \in \Omega} \mathbb{I}[f(x, w) > h]p(w) + \tilde{F}_{\eta, p}(x) = \sum_{w \in \Omega} \mathbb{I}[f(x, w) > h - \eta]p(w).$$

Moreover, from Lemma \ref{lem:MDH2} with a probability of at least $1 - \delta/2$, the following holds:

$$\sum_{w \in \Omega} \mathbb{I}[f(x, w) > h]p(w) + \xi > \sum_{w \in \Omega} \mathbb{I}[f(x, w) > h - \eta]p(w). \quad (A.6)$$

Thus, we get the following inequality:

$$\inf_{p(w) \in A} \left(\sum_{w \in \Omega} \mathbb{I}[f(x, w) > h]p(w) + \xi \right) = F(x) + \xi > \inf_{p(w) \in A} \sum_{w \in \Omega} \mathbb{I}[f(x, w) > h - \eta]p(w). \quad (A.7)$$

Furthermore, from the definition of $\tilde{Q}_t(x, w; \eta)$, the following inequality holds:

$$\mathbb{I}[f(x, w) > h - \eta] \geq \tilde{I}_t(x, w; \eta).$$

Therefore, we have

$$\inf_{p(w) \in A} \sum_{w \in \Omega} \mathbb{I}[f(x, w) > h - \eta]p(w) \geq \inf_{p(w) \in A} \sum_{w \in \Omega} \tilde{I}_t(x, w; \eta)p(w) = I_t^{(F)}(x; \eta). \quad (A.8)$$

Hence, by combining (A.7) and (A.8), we obtain

$$I_t^{(F)}(x; \eta) < F(x) + \xi.$$

Thus, from the definition of H_t, it holds that

$$x \in H_t \Rightarrow \alpha < F(x) + \xi \Rightarrow \alpha - \xi < F(x). \quad (A.9)$$

Hence, from (A.5), (A.9) and the definition of $e_\alpha(x)$, the following inequality holds:

$$\max_{x \in \mathcal{X}} e_\alpha(x) \leq \xi.$$

Finally, since both (A.4) and (A.6) hold with a probability of at least $1 - \delta$, the following holds for any $t \geq 1$:

$$\mathbb{P}\left(\max_{x \in \mathcal{X}} e_\alpha(x) \leq \xi \right) \geq 1 - \delta.$$

\square
A.2. Proof of Theorem 4.2 and 4.3

In this section, we prove Theorem 4.2 and 4.3. First, we show related lemmas.

Lemma A.3. Let \(\eta > 0 \) and \(\beta_t > 0 \). Suppose that the following holds for some \(T \geq 1 \):

\[
2\beta_t^{1/2}\sigma_{t-1}(x, w) < \eta, \quad \forall (x, w) \in \mathcal{X} \times \Omega. \tag{A.10}
\]

Then, Algorithm 1 terminates after at most \(T \) iterations.

Proof. From the definition of \(\tilde{Q}_t(x, w; \eta) \), if \(l_T(x, w) > h - \eta \), then \(\tilde{l}_T(x, w; \eta) = \tilde{u}_T(x, w; \eta) = 1 \). On the other hand, noting that \(u_T(x, w) - l_T(x, w) = 2\beta_t^{1/2}\sigma_{t-1}(x, w) \) and [A.10], if \(l_T(x, w) \leq h - \eta \), then \(u_T(x, w) \leq h \). This implies that \(\tilde{l}_T(x, w; \eta) = \tilde{u}_T(x, w; \eta) = 0 \). Thus, under [A.10], the following holds for any \((x, w) \in \mathcal{X} \times \Omega \):

\[
\tilde{l}_T(x, w; \eta) = \tilde{u}_T(x, w; \eta).
\]

Hence, from the definitions of \(\tilde{l}_t^F(x, w; \eta) \) and \(u_t^F(x, w; \eta) \), we have \(\tilde{l}_t^F(x, w; \eta) = u_t^F(x, w; \eta) \). Therefore, for any \(x \in \mathcal{X} \), \(x \) satisfies \(x \in H_T \) or \(x \in L_T \), i.e., \(U_T = \emptyset \).

Lemma A.4. Let \(\eta > 0 \) and \(\beta_t > 0 \). Suppose that the following inequalities hold for some \((x^*, w^*) \in \mathcal{X} \times \Omega \):

\[
\sigma^{-2}\sigma_{t-1}^2(x^*, w^*)\beta_t^{1/2} < \frac{\eta}{2}, \tag{A.11}
\]

\[
\sigma^{-2}\sigma_{t-1}^2(x^*, w^*) < \eta^2/4. \tag{A.12}
\]

Then, (3.2) can be bounded as

\[
a_{t-1}(x^*, w^*) \leq |\mathcal{X}|^{2|\Omega|} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2\eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right).
\]

Proof. First, we define the set \(B \) as

\[
B = \left\{ b = (b_1, \ldots, b_{|\Omega|}) \in \{0, 1\}^{2|\Omega|} \mid \inf_{p(w) \in A} \sum_{j=1}^{|\Omega|} p(w_j) b_j > \alpha \right\}.
\]

Moreover, for each \(b \in B \), let \(N(b) \) be a subset of \(\{1, \ldots, |\Omega|\} \) satisfying

\[
\forall s \in N(b), \quad b_s = 1.
\]

Then, the following holds for any \(x \in U_t \):

\[
\mathbb{E}_{y^*}[\mathbb{I}[l_t^F(x, 0|x^*, w^*, y^*) > \alpha]] = \mathbb{P}_{y^*}[\mathbb{I}[l_t(x, w_s|x^*, w^*, y^*) > h], \ldots, \mathbb{I}[l_t(x, w_{|\Omega|}|x^*, w^*, y^*) > h]] \in B
\]

\[
= \sum_{b \in B} \mathbb{P}_{y^*}[\mathbb{I}[l_t(x, w_s|x^*, w^*, y^*) > h] = b_1, \ldots, \mathbb{I}[l_t(x, w_{|\Omega|}|x^*, w^*, y^*) > h] = b_{|\Omega|}]
\]

\[
\leq \sum_{b \in B} \mathbb{P}_{y^*}[\forall s \in N(b), \mathbb{I}[l_t(x, w_s|x^*, w^*, y^*) > h] = b_s], \tag{A.13}
\]

where \(l_t(x, w_s|x^*, w^*, y^*) \) is the lower confidence bound of \(f(x, w_j) \) after adding \((x^*, w^*, y^*) \) to \(\{(x_i, w_i, y_i)\}_{i=1}^t \). Next, for any \(N(b) \), there exists \(s_b \in N(b) \) such that

\[
l_t(x, w_{s_b}) \leq h - \eta. \tag{A.14}
\]

In fact, if \(l_t(x, w_{s_b}) > h - \eta \) for any \(s \in N(b) \), then we get

\[
(\mathbb{I}[l_t(x, w_1) > h - \eta], \ldots, \mathbb{I}[l_t(x, w_{|\Omega|}) > h - \eta]) \in B,
\]

which contradicts \(x \in U_t \). Furthermore, from Lemma 2 of [20], \(\mathbb{P}_{y^*}[l_t(x, w_{s_b}|x^*, w^*, y^*) > h] \) can be calculated as

\[
\mathbb{P}_{y^*}[l_t(x, w_{s_b}|x^*, w^*, y^*) > h] = \Phi \left(\frac{\sqrt{\sigma_{t-1}^2(x^*, w^*)} + \sigma}{|l_{t-1}((x, w_{s_b}), (x^*, w^*))|} (u_{t-1}(x, w_{s_b}) - \beta_t^{1/2}\sigma_{t-1}(x, w_{s_b}|x^*, w^*) - h) \right), \tag{A.15}
\]
where $\sigma_{t-1}(x, w_b|x^*, w^*)$ is the posterior variance of $f(x, w_b)$ after adding (x^*, w^*, y^*) to $\{(x_i, w_i, y_i)\}_{i=1}^t$. Moreover, by using (A.14) we obtain

$$
\mu_{t-1}(x, w_b) - \beta_{t-1}^{1/2} \sigma_{t-1}(x, w_b|x^*, w^*) - h
= \mu_{t-1}(x, w_b) - \beta_{t-1}^{1/2} \sigma_{t-1}(x, w_b) + \beta_{t}^{1/2} \sigma_{t-1}(x, w_b) - \beta_{t}^{1/2} \sigma_{t-1}(x, w_b|x^*, w^*) - h
= h(x, w_b) + \beta_{t}^{1/2} \sigma_{t-1}(x, w_b) - \beta_{t}^{1/2} \sigma_{t-1}(x, w_b|x^*, w^*) - h
\leq -\eta + \beta_{t}^{1/2}(\sigma_{t-1}(x, w_b) - \sigma_{t-1}(x, w_b|x^*, w^*)).
$$

(A.16)

In addition, the following three inequalities hold:

$$
\sigma \leq \sqrt{\sigma_{t-1}^2(x^*, w^*) + \sigma^2},
$$

(A.17)

$$
|k_{t-1}((x, w_b), (x^*, w^*))| \leq \sigma_{t-1}(x, w_b) \sigma_{t-1}(x^*, w^*) \leq \sigma_0(x, w_b) \sigma_{t-1}(x^*, w^*) \leq \sigma_{t-1}(x^*, w^*),
$$

(A.18)

$$
\sigma_{t-1}(x, w_b) - \sigma_{t-1}(x, w_b|x^*, w^*) \leq \frac{\sigma_{t-1}(x, w_b) \sigma_{t-1}(x^*, w^*)}{\sigma_{t-1}^2(x^*, w^*)} \leq \frac{\sigma_0(x, w_b) \sigma_{t-1}(x^*, w^*)}{\sigma^2} \leq \frac{\sigma_{t-1}^2(x^*, w^*)}{\sigma^2},
$$

(A.19)

where the first, second and third inequalities in (A.18) can be derived from Hölder’s inequality, monotonicity of the posterior variance and the assumption $\max_{x \in \mathcal{X} \times \Omega} \sigma_0^2(x, w) \leq 1$, respectively. Similarly, the first inequality in (A.19) can be derived from the equation (39) of [30]. Therefore, by substituting (A.16)–(A.19) and (A.11) into (A.15), we obtain the following inequality:

$$
P_y[l_t(x, w_b|x^*, w^*, y^*) > h] \leq \Phi\left(\frac{\sigma}{\sigma_{t-1}(x^*, w^*)}(\eta/2)\right),
$$

(A.20)

Moreover, noting that the assumption (A.12) is equal to the condition $1 < \sigma \sigma_{t-1}^{-1}(x^*, w^*)(\eta/2)$, the right hand side in (A.20) can be bounded as

$$
\Phi\left(\frac{\sigma}{\sigma_{t-1}(x^*, w^*)}(\eta/2)\right) = \int_{-\infty}^{\sigma_{t-1}(x^*, w^*)(\eta/2)} \phi(z)dz
= \int_{-\infty}^{\infty} \phi(z)dz
= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz
= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2\eta^2}{8\sigma_{t-1}^2(x^*, w^*)}\right).
$$

(A.21)

Finally, from (A.13), (A.20) and (A.21), $E_{y^*}[\mathbb{I}[l_t^F(x; 0|x^*, w^*, y^*) > \alpha]]$ can be bounded as

$$
E_{y^*}[\mathbb{I}[l_t^F(x; 0|x^*, w^*, y^*) > \alpha]]
\leq \sum_{b \in B} P_{y^*}[\forall s \in N(b), \mathbb{I}[l_t(x, w_b|x^*, w^*, y^*) > h] = b_s]
\leq \sum_{b \in B} P_{y^*}[\mathbb{I}[l_t(x, w_b|x^*, w^*, y^*) > h] = b_{bs}]
= \sum_{b \in B} P_{y^*}[\mathbb{I}[l_t(x, w_b|x^*, w^*, y^*) > h]]
\leq \sum_{b \in B} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2\eta^2}{8\sigma_{t-1}^2(x^*, w^*)}\right)
= |B| \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2\eta^2}{8\sigma_{t-1}^2(x^*, w^*)}\right) \leq 2^{(B)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2\eta^2}{8\sigma_{t-1}^2(x^*, w^*)}\right).
$$
Therefore, from the definition of $a_{t-1}(x^*, w^*)$, we have

$$a_{t-1}(x^*, w^*) = \sum_{x \in U_t} E_{y_t}[\mathbb{1}_{[F]}(x; 0|x^*, w^*, y^*) > \alpha]$$

$$\leq \sum_{x \in U_t} 2^{2|\omega|} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x^*, w^*)} \right) = |U_t|^2 |\omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x^*, w^*)} \right) \leq |\omega|^2 |\omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x^*, w^*)} \right).$$

□

Lemma A.5. Let $\eta > 0$, $\beta_t > 0$ and $\gamma > 0$. Also let $(x_t, w_t) \in \mathcal{X} \times \Omega$ be a maximum point of $a_{t-1}^{(1)}(x^*, w^*)$. Assume that the following inequalities hold for some $T \geq 1$:

$$\sigma^{-2} \gamma T_{t-1}(x_t, w_t) \beta^{1/2}_t < \frac{\eta}{2}, \tag{A.22}$$
$$\sigma^{-2} \gamma T_{t-1}(x_t, w_T) < \frac{\eta^2}{4}, \tag{A.23}$$
$$\sigma^2 T_{t-1}(x_t, w_T) \beta_T < \frac{\eta^2}{4}, \tag{A.24}$$
$$\frac{1}{2} \log \beta_T - \frac{\eta^2 \sigma^2}{8\sigma^2 T_{t-1}(x_t, w_T)} < \log(|\mathcal{X}|^{-1}2^{-|\omega|} \eta^2 \gamma^{-1} \sqrt{2\pi}). \tag{A.25}$$

Then, Algorithm 1 terminates after at most T iterations.

Proof. From the definitions of $a_{t-1}^{(1)}(x^*, w^*)$ and (x_t, w_t), the following holds for any $(x, w) \in \mathcal{X} \times \Omega$:

$$\gamma \sigma T_{t-1}(x, w) \leq a_{t-1}^{(1)}(x, w) \leq a_{t-1}^{(1)}(x_T, w_T) = \max \{ a_{t-1}(x_T, w_T), \gamma \sigma T_{t-1}(x_T, w_T) \}. \tag{A.26}$$

In addition, from (A.22), (A.23) and Lemma A.4, $a_{t-1}(x_T, w_T)$ can be bounded as

$$a_{t-1}(x_T, w_T) \leq |\mathcal{X}|^2 |\omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x_t, w_T)} \right). \tag{A.27}$$

Thus, by substituting (A.27) into (A.26), we have

$$\gamma \sigma T_{t-1}(x, w) \leq \max \left\{ |\mathcal{X}|^2 |\omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x_T, w_T)} \right), \gamma \sigma T_{t-1}(x_T, w_T) \right\}.$$

This implies that

$$\beta^{1/2} \gamma T_{t-1}(x, w) \leq \max \left\{ \gamma^{-1} \beta^{1/2}_T |\mathcal{X}|^2 |\omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x_T, w_T)} \right), \gamma \beta^{1/2} T_{t-1}(x_T, w_T) \right\}. \tag{A.28}$$

On the other hand, (A.24) and (A.25) are equal to the following inequalities, respectively:

$$\beta^{1/2} T_{t-1}(x, w_T) < \frac{\eta}{2}, \tag{A.29}$$
$$\exp \left(-\frac{\eta^2 \sigma^2}{8\sigma^2 T_{t-1}(x, w_T)} \right) < \frac{1}{|\mathcal{X}|^{1/2} |\omega| \gamma^{-1} \sqrt{2\pi}}. \tag{A.30}$$

Hence, by combining (A.28), (A.29) and (A.30), we get $\beta^{1/2} T_{t-1}(x, w_T) < \eta/2$. Therefore, from Lemma A.3 we have Lemma A.5.

□

Lemma A.6. Let $\eta > 0$ and $\beta_T > 0$. Assume that (A.11) and (A.12) hold for some $(x^*, w^*) \in \mathcal{X} \times \Omega$. Then, $\text{MILE}_{t-1}(x^*, w^*)$ can be bounded as

$$\text{MILE}_{t-1}(x^*, w^*) \leq |\mathcal{X} \times \Omega| \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\sigma^2 \eta^2}{8\sigma^2 \gamma T_{t-1}(x^*, w^*)} \right).$$
Proof. From Lemma 2 of [30] and the definition of MILE_{t-1}(x, w^*), the following holds:

\begin{equation}
MILE_{t-1}(x^*, w^*)
\leq \sum_{(x, w) \in U_t \times \Omega} \Phi \left(\frac{\sqrt{\sigma_{t-1}^2(x^*, w^*) + \sigma^2}}{|k_{t-1}((x, w), (x^*, w^*))|} (\mu_{t-1}(x, w) - \beta_t^{1/2} \sigma_{t-1}(x, w|x^*, w^*) - h) \right) - \mathbb{I}[l_t(x, w) > h - \eta].
\end{equation}

(A.31)

Next, for each \((x, w) \in U_t \times \Omega\), we consider the two cases of \(l_t(x, w) > h - \eta\) and \(l_t(x, w) \leq h - \eta\). If \(l_t(x, w) > h - \eta\), then the following inequality holds:

\begin{equation}
\Phi \left(\frac{\sqrt{\sigma_{t-1}^2(x^*, w^*) + \sigma^2}}{|k_{t-1}((x, w), (x^*, w^*))|} (\mu_{t-1}(x, w) - \beta_t^{1/2} \sigma_{t-1}(x, w|x^*, w^*) - h) \right) - \mathbb{I}[l_t(x, w) > h - \eta]
\leq 0 \leq \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right).
\end{equation}

On the other hand, if \(l_t(x, w) \leq h - \eta\), then using (A.15)–(A.21) we have

\begin{equation}
\Phi \left(\frac{\sqrt{\sigma_{t-1}^2(x^*, w^*) + \sigma^2}}{|k_{t-1}((x, w), (x^*, w^*))|} (\mu_{t-1}(x, w) - \beta_t^{1/2} \sigma_{t-1}(x, w|x^*, w^*) - h) \right) - \mathbb{I}[l_t(x, w) > h - \eta]
\leq \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right).
\end{equation}

Therefore, in both cases, the following inequality holds:

\begin{equation}
\Phi \left(\frac{\sqrt{\sigma_{t-1}^2(x^*, w^*) + \sigma^2}}{|k_{t-1}((x, w), (x^*, w^*))|} (\mu_{t-1}(x, w) - \beta_t^{1/2} \sigma_{t-1}(x, w|x^*, w^*) - h) \right) - \mathbb{I}[l_t(x, w) > h - \eta]
\leq \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right).
\end{equation}

(A.32)

Thus, by substituting (A.32) into (A.31), we obtain

\begin{equation}
MILE_{t-1}(x^*, w^*) \leq \sum_{(x, w) \in U_t \times \Omega} \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right) = |U_t \times \Omega| \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right)
\leq |\mathcal{X} \times \Omega| \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{\sigma_t^2 \eta^2}{8\sigma_{t-1}^2(x^*, w^*)} \right).
\end{equation}

Lemma A.7. Let \(\eta > 0\), \(\beta_t > 0\), \(\gamma > 0\) and \(\tilde{\gamma} > 0\). Also let \((x_t, w_t) \in \mathcal{X} \times \Omega\) be a maximum point of \(a^{(t)}_{\ast}(x^*, w^*)\). Assume that the inequalities (A.22), (A.23) and (A.24) hold for some \(T \geq 1\). In addition, assume that the following inequalities hold:

\begin{align}
\frac{1}{2} \log \beta_T - \frac{\eta^2 \sigma^2}{8\sigma_{T-1}^2(x_T, w_T)} &< \log(|\mathcal{X}|^{-1.2-||\eta \gamma \tilde{\gamma}^2-1\sqrt{2\pi}|}), \\
\frac{1}{2} \log \beta_T - \frac{\eta^2 \sigma^2}{8\sigma_{T-1}^2(x_T, w_T)} &< \log(|\mathcal{X} \times \Omega|^{-1.2-1\gamma \tilde{\gamma}^2-1\sqrt{2\pi}}).
\end{align}

(A.33) (A.34)

Then, Algorithm I terminates after at most \(T\) iterations.
Proof. From the definition of $a_{2i-1}^{(2)}(x^*, w^*)$ and (x_i, w_i), the following holds for any $(x, w) \in \mathcal{X} \times \Omega$:

$$
\gamma \bar{\sigma}_{T-1}(x, w) \leq \gamma_{\text{RMILE}} T-1(x, w) \leq a_{2i-1}^{(2)}(x, w) \leq a_{2i-1}^{(2)}(x_T, w_T) = \max\{a_{T-1}(x_T, w_T), \gamma_{\text{RMILE}} T-1(x_T, w_T)\}. \tag{A.35}
$$

Furthermore, from (A.22), (A.23) and Lemma A.6 we have

$$
\gamma_{\text{RMILE}} T-1(x_T, w_T) = \max\{\gamma_{\text{MILE}} T-1(x_T, w_T), \gamma \bar{\sigma}_{T-1}(x_T, w_T)\}
\leq \max\left\{\gamma|\mathcal{X} \times \Omega| \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2 \eta^2}{8 \sigma^2_{T-1}(x_T, w_T)}\right), \gamma \bar{\sigma}_{T-1}(x_T, w_T)\right\}. \tag{A.36}
$$

Moreover, from (A.24) and (A.34), we get the following inequalities:

$$
|\mathcal{X} \times \Omega| \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2 \eta^2}{8 \sigma^2_{T-1}(x_T, w_T)}\right) < \beta_T^{-1/2} \eta / 2. \tag{A.37}
$$

Thus, by substituting (A.37) and (A.38) into (A.36), we obtain

$$
\gamma_{\text{RMILE}} T-1(x_T, w_T) \leq \gamma \bar{\sigma}_{T-1}(x, w) \leq \gamma \beta_T^{-1/2} \eta / 2. \tag{A.39}
$$

Similarly, from (A.22), (A.23), (A.33) and Lemma A.4, $a_{T-1}(x_T, w_T)$ can be bounded as

$$
a_{T-1}(x_T, w_T) \leq |\mathcal{X}|^{\Omega} |\mathcal{X}| \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\sigma^2 \eta^2}{8 \sigma^2_{T-1}(x_T, w_T)}\right) \leq \gamma \beta_T^{-1/2} \eta / 2. \tag{A.40}
$$

Hence, by combining (A.39) and (A.40) into (A.35), we get

$$
\gamma \bar{\sigma}_{T-1}(x, w) \leq \gamma \beta_T^{-1/2} \eta / 2. \tag{A.41}
$$

This implies that $2 \beta_T^{1/2} \sigma_{T-1}(x, w) < \eta$. Therefore, from Lemma A.3 we have Lemma A.7.

Lemma A.8. Let $(x_1, w_1), \ldots, (x_t, w_t)$ be selected points, and define $C_1 = 2 / \log(1 + \sigma^{-2})$. Then, there exists a natural number $t' \leq t$ such that

$$
\sigma^2_{T-1}(x_i, w_i) \leq \frac{C_1 \kappa_i}{t}. \tag{A.42}
$$

Proof. From Lemma 5.3 in [23], the mutual information $I(y_A; f)$ can be expressed as

$$
I(y_A; f) = \frac{1}{2} \sum_{i=1}^{t} \log(1 + \sigma^{-2} \sigma^2_{i-1}(x_i, w_i)). \tag{A.43}
$$

Similarly, from Lemma 5.4 in [23], $\sigma^2_{i-1}(x_i, w_i)$ can be bounded as

$$
\sigma^2_{i-1}(x_i, w_i) \leq \frac{\log(1 + \sigma^{-2} \sigma^2_{i-1}(x_i, w_i))}{\log(1 + \sigma^{-2})}. \tag{A.44}
$$

Hence, by using (A.41) and (A.42), we get

$$
\sum_{i=1}^{t} \sigma^2_{i-1}(x_i, w_i) \leq \frac{2}{\log(1 + \sigma^{-2})} I(y_A; f) \leq C_1 \kappa_i. \tag{A.45}
$$

Next, we define t' as $t' = \arg\min_{1 \leq i \leq t} \sigma^2_{i-1}(x_i, w_i)$. Then, it follows that

$$
t \sigma^2_{T-1}(x_{t'}, w_{t'}) \leq \sum_{i=1}^{t} \sigma^2_{i-1}(x_i, w_i). \tag{A.46}
$$

Therefore, by combining (A.43) and (A.44), we have the desired inequality.

Finally, using Lemma A.5 A.7 and A.8, we prove Theorem 4.2 and 4.3.
Proof. From Lemma [A.8] and monotonicity of \(\beta_t \), for any \(t \geq 1 \), there exists a natural number \(t' \leq t \) such that

\[
\sigma_t^{-2} \sigma_{t-1}^{-1}(x, \sigma_t^1 \beta_t^{1/2}) \leq \frac{\sigma_t^{-2} \beta_t^{1/2} C_1 t}{t} \leq \frac{\sigma_t^{-2} \beta_t^{1/2} C_1 t}{t},
\]

\[
\sigma_{t-1}^{-2} \sigma_t^{-1}(x, \sigma_t^1 \beta_t^{1/2}) \leq \frac{\sigma_t^{-2} C_1 t}{t},
\]

\[
\sigma_t^{-2} \sigma_{t-1}^{-1}(x, \sigma_t^1 \beta_t^{1/2}) \leq \frac{C_1 \beta_t^{1/2} C_1 t}{t},
\]

\[
\frac{1}{2} \log \beta_t - \frac{\eta^2 \sigma^2}{8 \sigma_t^2 (x, \sigma_t^1 \beta_t^{1/2})} \leq \frac{1}{2} \log \beta_t - \frac{T \eta^2 \sigma^2}{8 C_1 t} \leq \frac{1}{2} \log \beta_t - \frac{T \eta^2 \sigma^2}{8 C_1 t}.
\]

Hence, from (A.45), if the inequality conditions in Theorem 4.2 hold, then the inequality conditions in Lemma A.5 also hold for some \(\bar{T} \leq T \). Therefore, from Lemma A.5, Algorithm 1 terminates after at most \(\bar{T} \) iterations, i.e., Theorem 4.2 holds. By using the same argument, Theorem 4.3 can also be proved. \(\square \)

A.3. Proof of Lemma 3.1 and 3.2

First, we prove Lemma 3.1

Proof. From GP properties, the posterior mean \(\mu_t^{-1}(x, w|x^*, w^*, y^*) \) and the posterior variance \(\sigma_t^{-2}(x, w|x^*, w^*) \) of \(f(x, w) \) after adding \((x^*, w^*, y^*)\) can be written as follows (see, e.g., [29]):

\[
\mu_{t-1}(x, w|x^*, w^*, y^*) = \mu_{t-1}(x, w) - \frac{k_{t-1}((x, w), (x^*, w^*))}{\sigma_{t-1}^2(x, w^*) + \sigma^2}(y^* - \mu_{t-1}(x, w^*)),
\]

\[
\sigma_{t-1}^2(x, w|x^*, w^*) = \sigma_{t-1}^2(x, w) - \frac{k_{t-1}((x, w), (x^*, w^*))}{\sigma_{t-1}^2(x^*, w^*) + \sigma^2}.
\]

Thus, \(l_t(x, w|x^*, w^*, y^*) \) is a linear function with respect to \((w.r.t.) \ y^*\). Hence, the indicator function \(\mathbb{I}[l_t(x, w|x^*, w^*, y^*) > h] \) is a piecewise constant function w.r.t. \(y^* \), where the breakpoint is \(y^* = r_j \). Therefore, for any \(s \in \{1, \ldots, |\Omega| + 1\} \), the following holds:

\[
(\mathbb{I}[l_t(x, w|x^*, w^*, c) > h], \ldots, \mathbb{I}[l_t(x, w|x^*, w^*, c) > h])^T
\]

\[
= (\mathbb{I}[l_t(x, w|x^*, c') > h], \ldots, \mathbb{I}[l_t(x, w|x^*, c') > h])^T, \quad \forall c, c' \in R_s.
\]

This implies that

\[
l_t^{(F)}(x; 0|x^*, w^*, c) = l_t^{(F)}(x; 0|x^*, w^*, c'), \quad \forall c, c' \in R_s.
\]

Hence, using this we have

\[
\mathbb{E}_{y^*}[\mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha]]
\]

\[
= \int \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha] p(y^*) dy^*
\]

\[
= \sum_{s=1}^{[\Omega]+1} \int_{y^* \in R_s} \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, y^*) > \alpha] p(y^*) dy^*
\]

\[
= \sum_{s=1}^{[\Omega]+1} \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha] \int_{y^* \in R_s} p(y^*) dy^*
\]

\[
= \sum_{s=1}^{[\Omega]+1} \mathbb{P}(y^* \in R_s) \mathbb{I}[l_t^{(F)}(x; 0|x^*, w^*, c_s) > \alpha].
\]

Next, we prove Lemma 3.2

Proof. From the definition of \(l_t^{(F)}(x; 0|x^*, w^*, c_s) \), \(l_t^{(F)}(x; 0|x^*, w^*, c_s) \) can be expressed as

\[
l_t^{(F)}(x; 0|x^*, w^*, c_s) = \inf_{p(w) \in \mathcal{A}} \sum_{w^* \in \Omega} \mathbb{I}[l_t(x, w|x^*, w^*, c_s) > h] p(w).
\]

Moreover, since \(p^*(w) \in \mathcal{A} \), the following holds:

\[
\inf_{p(w) \in \mathcal{A}} \sum_{w^* \in \Omega} \mathbb{I}[l_t(x, w|x^*, w^*, c_s) > h] p(w) \leq \sum_{w^* \in \Omega} \mathbb{I}[l_t(x, w|x^*, w^*, c_s) > h] p^*(w).
\]
Method	L1-Uniform	L1-Normal	L2-Uniform	L2-Normal
Booth	$h = 100, \alpha = 0.62$, $\sigma_1 = 10^{-4}, \sigma_2 = 1000$, $L = 4, \beta_1 = 2, \epsilon = 0.65$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 100, \alpha = 0.5$, $\sigma_1 = 10002$, $L = 4, \beta_1 = 2, \epsilon = 0.65$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 100, \alpha = 0.5$, $\sigma_1 = 10002$, $L = 4, \beta_1 = 2, \epsilon = 0.65$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 100, \alpha = 0.65$, $\sigma_1 = 10^{-4}, \sigma_2 = 1000$, $L = 4, \beta_1 = 2, \epsilon = 0.65$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$
Matyas	$h = 5, \alpha = 0.53$, $\sigma_1 = 10^{-4}, \sigma_2 = 50^2$, $L = 4, \beta_1 = 2, \epsilon = 0.15$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 5, \alpha = 0.53$, $\sigma_1 = 10^{-4}, \sigma_2 = 50^2$, $L = 4, \beta_1 = 2, \epsilon = 0.15$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 5, \alpha = 0.53$, $\sigma_1 = 10^{-4}, \sigma_2 = 50^2$, $L = 4, \beta_1 = 2, \epsilon = 0.15$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = 5, \alpha = 0.53$, $\sigma_1 = 10^{-4}, \sigma_2 = 50^2$, $L = 4, \beta_1 = 2, \epsilon = 0.15$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$
McCormick	$h = 1, \alpha = 0.55$, $\sigma_1 = 10^{-4}, \sigma_2 = 20^2$, $L = 4, \beta_1 = 2, \epsilon = 0.25$, $L_1 = -1.5, U_1 = 4$, $L_2 = -3, U_2 = 4$	$h = 1, \alpha = 0.55$, $\sigma_1 = 10^{-4}, \sigma_2 = 20^2$, $L = 4, \beta_1 = 2, \epsilon = 0.25$, $L_1 = -1.5, U_1 = 4$, $L_2 = -3, U_2 = 4$	$h = 1, \alpha = 0.55$, $\sigma_1 = 10^{-4}, \sigma_2 = 20^2$, $L = 4, \beta_1 = 2, \epsilon = 0.25$, $L_1 = -1.5, U_1 = 4$, $L_2 = -3, U_2 = 4$	$h = 1, \alpha = 0.55$, $\sigma_1 = 10^{-4}, \sigma_2 = 20^2$, $L = 4, \beta_1 = 2, \epsilon = 0.25$, $L_1 = -1.5, U_1 = 4$, $L_2 = -3, U_2 = 4$
Styblinski-Tang	$h = -3990, \alpha = 0.61$, $\sigma_1 = 10^{-4}, \sigma_2 = 2000^2$, $L = 3, \beta_1 = 2, \epsilon = 0.2$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = -3990, \alpha = 0.61$, $\sigma_1 = 10^{-4}, \sigma_2 = 2000^2$, $L = 3, \beta_1 = 2, \epsilon = 0.2$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = -3990, \alpha = 0.61$, $\sigma_1 = 10^{-4}, \sigma_2 = 2000^2$, $L = 3, \beta_1 = 2, \epsilon = 0.2$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$	$h = -3990, \alpha = 0.61$, $\sigma_1 = 10^{-4}, \sigma_2 = 2000^2$, $L = 3, \beta_1 = 2, \epsilon = 0.2$, $L_1 = -10, U_1 = 10$, $L_2 = -10, U_2 = 10$

Figure 4: Average F-score over 50 simulations with four benchmark functions when the distance function and reference distribution are L2-norm and Uniform, respectively.

Therefore, we have

$$l_i^{(F)}(x; 0|\mathbf{x}^*, \mathbf{w}^*, c_s) \leq \sum_{s \in \Omega} \mathbb{I}[l_i(x, \mathbf{w}|\mathbf{x}^*, \mathbf{w}^*, c_s) > h]p^*(\mathbf{w}).$$

Hence, if the inequality assumption in Lemma 3.2 holds, then we get $l_i^{(F)}(x; 0|\mathbf{x}^*, \mathbf{w}^*, c_s) \leq \alpha$. This implies that $\mathbb{I}[l_i^{(F)}(x; 0|\mathbf{x}^*, \mathbf{w}^*, c_s) > \alpha] = 0$.

B. Additional experiments

B.1. Synthetic and real data experiments in the L2-norm setting

In this section, we performed the same experiment as in Subsection 5.1 and 5.3 under the setting that the distance function is L2-norm. Similarly, we used Uniform and Normal as the reference distribution. Here, the parameters used in the synthetic data experiments are listed in Table 2. On the other hand, the same parameters as in Subsection 5.3 were used in the real data experiments. Under this setup, we took one initial point at random, and ran the algorithms until the number of iterations reached 300 (resp. 100) in the synthetic data (resp. real data) experiments. We performed 50 Monte Carlo simulations and obtained the average F-score. From Figures 4 and 5, it can be confirmed that our proposed methods outperform other existing methods as well as the results of synthetic data experiments using L1-norm as the distance function. From Figure 6, it can also be confirmed that the same results as in Subsection 5.3 are obtained in real data experiments.

B.2. Computation time experiments in the other benchmark function setting

In this section, we performed the same experiment as in Subsection 5.2 for the Matyas, McCormick and Styblinski-Tang benchmark functions. We evaluated the computation time of (3.2) when we performed the same experiment as in Subsection 5.2 using Proposed1_0.01 and Proposed2_0.01. Here, as for the parameter
Figure 5: Average F-score over 50 simulations with four benchmark functions when the distance function and reference distribution are L_2-norm and Normal, respectively.

Figure 6: Average F-score over 50 simulations in the infection control problem when the distance function is L_2-norm.

settings, we considered only the case of L_1-Normal in Table 2. Under this setup, we took one initial point at random and ran the algorithms until the number of iterations reached to 300. Furthermore, for each trial t, we evaluated the computation time to calculate γ, for all candidate points $(x^*, w^*) \in X \times \Omega$, and calculated the average computation time over 300 trials. From Tables 3 and 4 it can be confirmed that the same results as in Subsection 5.2 are obtained in the three benchmark function settings.

B.3. Hyperparameter sensitivity in the proposed acquisition function

In this section, we evaluated how the performance is affected by the hyperparameter γ in the proposed acquisition function. We calculated the F-score for the cases with acquisition functions Proposed1$_\gamma$ and Proposed2$_\gamma$ when we performed the same experiment as in Subsection 5.1 for Booth, Matyas, McCormick and Styblinski-Tang functions. Here, Proposed1$_\gamma$ and Proposed2$_\gamma$ respectively represent the acquisition functions $a_t^{(1)}(x^*, w^*)$ and $a_t^{(2)}(x^*, w^*)$ with the parameter γ, and we considered γ as $0, 10^{-0.5}, 10^{-1}, 10^{-2}, 10^{-3}$ and 10^{-4}. In this experiment, as for the parameter settings, we considered only the case of L_1-Uniform in Table 2. Under this setup, we took one initial point at random and ran the algorithms until the number of iterations reached 300 (or 200). We performed 50 Monte Carlo simulations and calculated the average F-score.

From Figure 7 it can be confirmed that the acquisition function does not work for all benchmark functions when $\gamma = 0$. The reason is that $a_t(x^*, w^*)$ was zero for all $(x^*, w^*) \in X \times \Omega$ when the number of data was small. Furthermore, when $\gamma > 0$, it can be seen that the performance of Proposed1$_\gamma$ decreases as γ increases. One reason is that although $a_t^{(1)}(x^*, w^*)$ is closer to uncertainty sampling (US) as γ becomes large, US is not the acquisition function for efficiently estimating H_t. On the other hand, it can be confirmed that the performance of Proposed2$_\gamma$ is not necessarily better when γ is smaller. From the definition of Proposed2$_\gamma$, when γ is large, $a_t^{(2)}(x^*, w^*)$ behaves similarly to RMILE. RMILE is the acquisition function that works to efficiently identify
Table 3: Computation time (second) for the Matyas function setting

	Naive	L1	L2	L3 (10^-4)	L3 (10^-8)	L3 (10^-12)
Proposed1, 0.01	112403.30 ± 24568.33	6211.88 ± 1514.06	1297.19 ± 726.31	32.12 ± 7.36	33.25 ± 7.06	
Proposed2, 0.01	98478.43 ± 19995.68	5004.84 ± 1362.62	1831.17 ± 1109.59	42.86 ± 6.43	47.50 ± 4.98	38.24 ± 4.90

Table 4: Computation time (second) for the McCormick function setting

	Naive	L1	L2	L3 (10^-4)	L3 (10^-8)	L3 (10^-12)
Proposed1, 0.01	83608.24 ± 39651.78	1094.40 ± 523.81	39.66 ± 6.27	41.25 ± 6.20	42.74 ± 6.86	
Proposed2, 0.01	79782.95 ± 39221.70	4383.04 ± 2286.23	1525.80 ± 931.80	49.67 ± 10.33	56.79 ± 17.54	62.59 ± 23.83

That satisfies \(f(x, w) > h \). However, since \(F(x) \) is given as the function of \(1 \leq f(x, w) > h \), as a result, RMILE also works to efficiently estimate \(H_t \). This is one of the reasons why Proposed2, \(\gamma \) sometimes has good performance even at large \(\gamma \).
Table 5: Computation time (second) for the Styblinski-Tang function setting

	Naive	L1	L2	L3 (10^-4)	L3 (10^-3)	L3 (10^-2)
Proposed1_0.01	118443.19 ± 16290.13	6297.18 ± 1039.76	990.67 ± 698.84	44.88 ± 18.60	47.62 ± 20.67	48.35 ± 21.82
Proposed2_0.01	96731.93 ± 25845.16	5240.58 ± 1546.16	686.64 ± 796.10	26.77 ± 10.92	27.42 ± 11.87	28.25 ± 12.78

Figure 7: Difference in average F-score for different hyperparameters with four benchmark functions when the distance function and reference distribution are $L1$-norm and Uniform, respectively.