Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics

Emma A. Mol, Zhiyong Lei, Marieke T. Roefs, Maarten H. Bakker, Marie-José Goumans, Pieter A. Doesvendans, Patricia Y. W. Dankers, Pieter Vader, and Joost P. G. Sluijter

Extracellular vesicles (EVs) are small vesicles secreted by cells and have gained increasing interest as both drug delivery vehicles or as cell-free therapeutics for regenerative medicine. To achieve optimal therapeutic effects, strategies are being developed to prolong EV exposure to target organs. One promising approach to achieve this is through EV-loaded injectable hydrogels. In this study, the use of a hydrogel based on ureido-pyrimidinone (UPy) units coupled to poly(ethylene glycol) chains (UPy-hydrogel) is examined as potential delivery platform for EVs. The UPy-hydrogel undergoes a solution-to-gel transition upon switching from a high to neutral pH, allowing immediate gelation upon administration into physiological systems. Here, sustained EV release from the UPy-hydrogel measured over a period of 4 d is shown. Importantly, EVs retain their functional capacity after release. Upon local administration of fluorescently labeled EVs incorporated in a UPy-hydrogel in vivo, EVs are still detected in the UPy-hydrogel after 3 d, whereas in the absence of a hydrogel, EVs are internalized by fat and skin tissue near the injection site. Together, these data demonstrate that UPy-hydrogels provide sustained EV release over time and enhance local EV retention in vivo, which could contribute to improved therapeutic efficacy upon local delivery and translation toward new applications.
(MSC), tissue-specific progenitor cells, or induced pluripotent stem cells (iPSC).10–14 Furthermore, EVs have been considered for application in different patient categories, including peripheral artery disease, cardiomyopathies, chronic kidney disease, and osteoporosis/cartilage degradation.15–21 Often, injection of cellular therapeutics demonstrated only modest beneficial outcomes in different patient groups, as a result of retention problems.22–25 One example is the randomized, controlled BOne marrOw transfer to enhance ST-elevation infarct regeneration (BOOST) trial, where an intracoronary infusion of a single dose of bone marrow cells (BMCS) was performed in patients with acute myocardial infarction.24 They found an improved cardiac function after six months, however, this beneficial effect was lost after 18 months. Further studies showed that only 5% of the BMCS were retained in the heart after intracoronary infusion, indicating potential retention problems with cellular therapeutics.26 Similarly, strategies to enhance EV delivery in chronically diseased patients and prolong exposure of EV therapeutics have yet to be optimized to achieve their full potential for true therapeutic efficacy.

Several EV administration routes have been investigated to date, of which intravenous injection is the most widely studied. Unfortunately, intravenously injected EVs are rapidly taken up by the liver and spleen, thereby hampering delivery to other tissues.27–29 On the other hand, local administration into the diseased organs could be a valuable approach to enhance tissue-specific EV delivery, thereby improving their efficiency and safety profile. However, when investigating cell retention after local injection into porcine hearts,30 we previously observed an immediate washout of almost all cells via the venous drainage system, resulting in a substantial cell loss. Furthermore, Beegle et al. investigated the retention of VEGF-overexpressing MSC after local intramuscular injection into the hindlimb using bioluminescent imaging.31 and found that the cell numbers after injection rapidly declined over time, and only less than 0.1% of the total number of injected MSC could be detected after a period of 28 d.

Given this immediate washout of cells, which may also be expected for EVs and will lead to decreased therapeutic exposure, the usage of patches, injectable microcarriers or hydrogels is intensively studied, aiming for increased retention of therapeutics.32–35 A recent example is the study from Nikravesh et al., showing controlled release of osteoblast-derived EVs using two alginate-based microgels.34 In addition, the EV release profile was tunable based on physical structuring of the alginate polymers. Incorporation of EVs in a hydrogel could allow for controlled EV release over longer periods, which could even further enhance therapeutic exposure, maximizing their efficacy.

Injectable hydrogels are among the most promising candidate systems to increase EV local retention. These systems are either based on natural (e.g., extracellular matrix-derived or collagen/fibrin-based) materials that closely mimic the host tissue, or synthetic materials (e.g., poly(ethylene glycol) (PEG) or poly(N-isopropylacrylamide)-based) that are easily tunable, have controllable biochemical properties, and might be less vulnerable to batch-to-batch variation.36,37 Moreover, various injectable hydrogels are available that differ in composition and mechanical and gelation properties induced by changes in physiological conditions such as temperature, ionic strength, and pH.37

One highly potential injectable material is the ureido-pyrimidinone (UPy) supramolecular hydrogelator (UPy-hydrogel).38 This gel consists of polymers comprising a poly(ethylene glycol) (PEG) backbone telechelically coupled to two UPy units that can form transient supramolecular networks by dimerization of the UPy moieties by four fold hydrogen-bonding and concomitant stacking into nano-fibrous structures. This nano-fiber formation is facilitated by additional urea groups introducing lateral hydrogen bonding in a hydrophilic pocket provided by additional alkyl spacers. The nano-fibrous structures form the transient network by entanglements and supramolecular crosslinking between the nanofibers.38 The UPy-hydrogel undergoes a solution-to-gel transition when the pH is switched from high to neutral, that is, from basic to neutral environment, with a threshold at $pH = 8.5$, dependent on the concentration of UPy-polymers. This unique property allows gelation upon injection into physiological systems. The molecular weight of the PEG polymer can also be tuned, resulting in UPy-hydrogels with different functional properties39 of which the characteristics have been reported extensively before.38–42

Over the past years, UPy-hydrogels have also been investigated as controlled release system for different applications, including for growth factor and miRNA delivery.40,41 Here, we investigated the use of UPy-hydrogel as a platform for EV delivery, aiming to prolong local delivery of EVs to targeted organs.

To investigate if EV delivery can be prolonged when EVs are incorporated into UPy-hydrogels, we used EVs released from cardiac-derived progenitor cells as they have well-known functionalities.23,43–45 EV preparations were characterized based on size distribution profile, measured by nanoparticle tracking analysis (NTA) before encapsulation as well as after release from UPy-hydrogel, and by expression of EV markers (Figure 1A+B). According to NTA, EVs displayed a classical size distribution profile peaking at 100 nm, as we have seen before.43 Moreover, encapsulation and release of EVs from UPy-hydrogels did not affect their size distribution profile. Western blot analysis showed an enrichment of typical EV markers such as Alix, CD81, and CD63 as compared to cell lysates. In contrast, calnexin, an endoplasmatic reticulum marker, was undetectable in EVs, confirming a lack of contamination with other membrane compartments.

To study the use of UPy-hydrogels for sustained EV delivery, EVs were loaded into UPy-hydrogels and transferred to an insert of a transwell system containing medium in the bottom compartment. In order to determine the kinetics of EV release from UPy-hydrogels, conditioned medium was sampled at several time points. Subsequently, a bead capture assay was performed to measure EV release in the conditioned medium. When using magnetic beads coated with antibodies directed against the EV markers CD9, CD81, or CD63 and their corresponding fluorescent detection antibodies, we were able to detect different EV marker proteins being released from cardiac progenitor cells (CPCs) (Figure S1, Supporting Information). To assess EV release from UPy-hydrogels, EVs were captured using CD63 antibody-coated magnetic beads and fluorescently labeled with antibodies directed against CD63 (Figure 1C).
The molecular weight of the PEG block within UPy-hydrogels can be varied which may result in different kinetics of release. Therefore, first, EV release patterns from UPy-hydrogels with a PEG block of 10 kg mol\(^{-1}\) (UPy10k) or 20 kg mol\(^{-1}\) (UPy20k) were compared, which revealed a delayed EV release from the UPy10k-hydrogels as compared to UPy20k-hydrogels (Figure S2, Supporting Information).\(^{[38]}\) Moreover, the release pattern of the UPy10k-hydrogels showed less variation. Therefore, we decided to continue with the UPy10k-hydrogels for future experiments. Next, EV signals in conditioned medium were assessed for UPy-hydrogels with and without EVs at different time points (Figure 1D). The percentage of EVs that was released from the gel after 4 d was estimated to be \(\approx 10\%\), as assessed using a standard curve of known EV concentrations. A gradual and sustained release of EVs from UPy-hydrogel was observed over a period of several days rather than an immediate burst of EVs, indicating its potential to prolong EV delivery. When measuring long-term release of EVs from UPy-hydrogels, we found that EVs are continuously released from the hydrogel for up to 2.5 weeks (Figure S3, Supporting Information). In contrast, Hernandez et al. investigated EV release from extracellular matrix-derived (ECM) hydrogels and found that the majority of released EVs were already detected 1 d after encapsulation, thus the release profile of EVs from our UPy-hydrogel seems favorable as compared to EV release from ECM hydrogels.\(^{[35]}\) EV release from ECM hydrogels varied from 25 to 45% after 3 d, depending on hydrogel tissue source. Furthermore, when incorporating miRNA or anti-miR molecules in UPy-hydrogels, Bakker et al. observed near complete release from UPy-hydrogels within 2 d.\(^{[42]}\) This release could be delayed by using cholesterol-conjugated molecules, suggesting an affinity of cholesterol to the UPy-hydrogel network. EVs are much larger in size and also contain high levels of cholesterol, which could possibly explain the more gradual release of EVs compared to miRNA or anti-miR molecules. Since our method of EV detection is based on the expression of CD63, we cannot exclude a bias for a specific EV population. However, since we were able to detect multiple EV markers using this method.

![Figure 1](image-url)
(Figure S1, Supporting Information), and as we are mainly interested in release of EVs from UPy-hydrogels and its application in vivo in general, we assume the release profile is similar for other EV populations of the same size and composition.

Importantly, to achieve EVs’ full therapeutic potential, they should remain biologically active after release from hydrogels. EVs have the ability to transfer their biological cargo, including proteins and RNA, between cells after EV uptake by the recipient cell. Therefore, to ensure that EVs maintain their integrity after release from UPy-hydrogels, we assessed EV uptake by human microvascular endothelial cells (HMEC-1). Moreover, since CPC-EVs that were used in this study have been shown to induce phosphorylation of ERK1/2, we used ERK1/2 activation in HMEC-1 as a second outcome parameter to determine EV functionality. PKH26-labeled EVs were loaded into UPy-hydrogels, placed in a transwell insert and cocultured with HMEC-1 in the bottom well (Figure 2A). After 4 d, PKH26-labeled EVs were visible in the HMEC-1 cocultured with EV-loaded UPy-hydrogels, whereas UPy-hydrogels without EVs did not show any positive PKH26-staining (Figure 2B). In addition, we evaluated if EVs maintained their functional ability to activate signaling pathways in targeted HMEC-1 after being released from UPy-hydrogel. Medium containing EVs released from UPy-hydrogels, collected after one week but also after two weeks, retained the ability to activate ERK signaling as evidenced by an increased pERK/ERK ratio in HMEC-1 upon exposure (Figure 2C). When compared to fresh EVs, EVs released after one week can activate ERK1/2 to the same extent as fresh EVs (Figure S4, Supporting Information). When released after two weeks, EVs still retain the ability to activate ERK signaling, although to a lower extent than fresh EVs, which should be further investigated in future studies. Together, these data indicate that EV function is preserved after release from UPy-hydrogels. We showed that after release from UPy-hydrogels EVs retain the ability to be taken up by recipient cells and activate internal signaling pathways, indicating a preserved biological function of EVs.

The abovementioned results confirmed a sustained EV release from UPy-hydrogels in vitro. To achieve increased therapeutic exposure in vivo however, improving local EV retention
would also be of great importance. Therefore, we evaluated the feasibility of UPy-hydrogel to improve local retention of EVs in an in vivo model. UPy-hydrogel loaded with fluorescently labeled EVs (UPy + EV) or fluorescently labeled EVs alone (EV) were injected subcutaneously in mice. Solid-like UPy-hydrogels could be detected in all mice 3 d after subcutaneous injection (Figure 3A and Figure S5, Supporting Information). UPy-hydrogels, skin, and fat tissue near the injection site were excised and fluorescent signals (800 nm) were visualized using a Pearl Imager (Li-cor). In the UPy + EV group, most of the fluorescent signal could be detected within the UPy-hydrogel, whereas in the EV group highest fluorescent signals were present in surrounding tissues including skin and subcutaneous fat tissue (Figure 3B). These data clearly show that EV retention in vivo can be improved by encapsulating EVs in UPy-hydrogels compared to EV treatment alone.

Our study may also potentially be extended to other biomedical applications, such as therapeutic drug delivery, where EVs are regularly being used as drug carriers. The injectable nature of UPy-hydrogels makes them an attractive candidate for local clinical applications. For example, Bastings et al. showed that growth factor-loaded UPy-hydrogels could be delivered into the infarcted myocardium by catheter-guided injections. Furthermore, the ability to visualize a gadolinium(III)-DOTA labeled UPy-hydrogel with contrast enhanced MRI could enhance injection accuracy when applying this to patients, emphasizing feasibility of UPy-hydrogels for translational purposes.

Near-infrared fluorescently labeled EVs were used in this study, which allows for studying their biodistribution in different tissues in vivo, but does not allow true quantification. A study by Royo et al. used radioactive labeling of EVs with Na[124I]I and detection with positron emission tomography (PET) to quantify EV biodistribution in vivo. The use of radioactive-labeled EVs to investigate in vivo biodistribution will make quantification possible, however, this method requires specific technologies to be available. EV release kinetics from UPy-hydrogel in vivo therefore remains to be investigated.

Interestingly, Gangadaran et al. observed an additional beneficial effect on blood perfusion and formation of new blood vessels in a hind-limb ischemia model when treated with mesenchymal stromal cell derived EVs (MSC-EV) in matrigel compared to MSC-EV alone. In addition, when combining endothelial progenitor-derived EVs with a shear-thinning hydrogel, Chen et al. showed increased therapeutic efficacy after myocardial infarction compared to EV treatment alone. These studies indicate the potential additional value of sustained EV release on tissue repair. Whether sustained EV...
release from UPy-hydrogels increases therapeutic efficacy in vivo compared to a single EV dose remains to be investigated.

In conclusion, this study shows that EVs are gradually released from UPy-hydrogels and remain associated with hydrogels upon injection in vivo. Furthermore, EVs keep their functionality after release in vitro. Therefore, EV delivery to specific sites may be prolonged using UPy-hydrogel, which could contribute to higher therapeutic effects upon local delivery and translation toward new applications.

Experimental Section

Cell Culture: CPC and HMEC-1 were cultured as described before. Cells were incubated at 37 °C (5% CO2 and 20% O2) and passaged at 80–90% confluency using 0.25% trypsin digestion. For EV isolation, CPCs were cultured for 3 d, after which medium was replaced with serum-free Medium 199 (Gibco, 31300-022). After 24 h, conditioned medium (CM) was collected.

EV Isolation Protocol: EVs were isolated using ultracentrifugation combined with size-exclusion chromatography (SEC). First, cell culture CM was centrifuged at 200,000 × g for 15 min, followed by 0.45 μm filtration to remove residual cell debris. Subsequently, CM was concentrated using a 100 kDa Amicon spin filter. EV particle number and concentration were determined using a nanoparticle tracking analysis system (Nanosight NS500, Malvern). The camera level was set at 15 and the detection threshold at 5.

EV Labeling: For in vitro experiments, EVs were labeled with PKH-26 using a red fluorescent cell linker kit (Sigma, PKH26CL) according to the manufacturer’s protocol. In short, EVs were diluted with Diluent C, followed by incubation with 5 × 10^6 m dye for 15 min at room temperature in the dark. Next, free dye was removed using a Sepharose CL-4B column and concentrated using an AKTAStart (GE Healthcare) system equipped with an UV 280 nm flow cell. After elution from the column, EV-containing fractions were pooled, 0.45 μm filtered, and concentrated using a 100 kDa Amicon spin filter. EV number and size distribution were determined using nanoparticle tracking analysis (Nanosight NS500, Malvern). The camera level was set at 15 and the detection threshold at 5.

Following incubation with antibodies for 42/44 pERK1/2 and total ERK1/2 were quantified from the immunoblots using ImageJ software (1.47 V). Statistical analysis was performed using GraphPad Prism 6 for the Student’s t-test. Data are presented as mean ± SD. Unpaired Student’s t-test was used for comparison of two groups. Significance levels were set as p < 0.05 or p < 0.01 as indicated.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors thank Maike Brans (UMC Utrecht), Hemse Al-Khamisi (UMC Utrecht), and Maaike Schotman (TU Eindhoven) for their excellent technical support.
Conflict of Interest

The authors declare no conflict of interest.

Keywords
controlled release, drug delivery, exosomes, extracellular vesicles, injectable hydrogels
[34] N. Nikravesh, O. G. Davies, I. Azoidis, R. J. A. Moakes, L. Marani, M. Turner, C. J. Kearney, N. M. Eisenstein, L. M. Grover, S. C. Cox, Adv. Healthcare Mater. 2019, 8, 1800847.

[35] M. J. Hernandez, R. Gaetani, V. M. Pieters, N. W. Ng, A. E. Chang, T. R. Martin, E. van Ingen, E. A. Mol, M. Dzieciatkowska, K. C. Hansen, J. P. G. Sluijter, K. L. Christman, Adv. Ther. 2018, 1, 1800032.

[36] M. T. Spang, K. L. Christman, Acta Biomater. 2018, 68, 1.

[37] B. Peña, M. Laughter, S. Jett, T. J. Rowland, M. R. G. Taylor, L. Mestroni, D. Park, Int. J. ChemTech Res. 2018, 18, 2233.

[38] P. Y. W. Dankers, T. M. Hermans, T. W. Baughman, Y. Kamikawa, R. E. Kielytka, M. M. C. Bastings, H. M. Janssen, N. A. J. M. Sommerdijk, A. Larsen, M. J. Van Luyt, A. W. Bosman, E. R. Popa, G. Fytas, E. W. Meijer, Adv. Mater. 2012, 24, 2703.

[39] M. M. C. Bastings, T. M. Hermans, A. J. H. Spiering, E. W. L. Kemps, L. Albertazzi, E. E. Kurisinkal, P. Y. W. Dankers, Macromol. Biosci. 2019, 19, 1800296.

[40] M. M. C. Bastings, S. Koudstaal, R. E. Kielytka, Y. Nakano, A. C. H. Pape, D. A. M. Feyen, F. J. van Slochteren, P. A. Doevendans, J. P. G. Sluijter, E. W. Meijer, S. A. J. Chamuleau, P. Y. W. Dankers, Adv. Healthcare Mater. 2014, 3, 70.

[41] M. H. Bakker, E. van Rooij, P. Y. W Dankers, Chem. - Asian J. 2018, 13, 3501.

[42] E. A. Mol, M. J. Goumans, P. A. Doevendans, J. P. G. Sluijter, P. Vader, Nanomed: Nanotechnol., Biol. Med. 2017, 13, 2061.

[43] K. R. Vrijen, J. P. G. Sluijter, M. W. L. Schuchardt, B. W. M. van Balkom, W. A. Noort, S. A. J. Chamuleau, P. A. F. M. Doevendans, J. Cell. Mol. Med. 2010, 14, 1064.

[44] K. R. Vrijen, J. A. Maring, S. A. J. Chamuleau, V. Verhage, E. A. Mol, J. C. Deddens, C. H. G. Metz, K. Lodder, E. C. M. van Eeuwijk, S. M. van Dommelen, P. A. F. M. Doevendans, A. M. Smits, M.-J. Goumans, J. P. G. Sluijter, Adv. Healthcare Mater. 2016, 5, 2555.

[45] L. A. Mulcahy, R. C. Pink, D. R. F. Carter, J. Extracell. Vesicles 2014, 3, 24641.

[46] M. Millard, I. Yakavetsa, M. Piffoux, A. Brun, F. Gazeau, J. M. Guigner, J. Jasiewski, H. P. Lassalle, C. Wilhelm, L. Bezdentnya, Drug Delivery 2018, 25, 1790.

[47] M. Qu, Q. Lin, L. Huang, Y. Fu, L. Wang, S. He, Y. Fu, S. Yang, Z. Zhang, L. Zhang, X. Sun, J. Controlled Release 2018, 287, 156.

[48] F. Royo, U. Cossio, A. Ruiz De Angulo, J. Llop, J. M. Falcon-Perez, Nanoscale 2019, 11, 1531.

[49] A. M. Smits, P. van Vliet, C. H. Metz, T. Korfage, J. P. Sluijter, P. A. Doevendans, M.-J. Goumans, Nat. Protoc. 2009, 4, 232.

[50] S. A. A. Kooijmans, L. A. L. Fliervoet, R. Van Der Meel, M. H. A. M. Fens, H. F. G. Heijnen, P. M. P. Van Bergen En Henegouwen, P. Vader, R. M. Schifferel, J. Controlled Release 2016, 224, 77.