CONCISE REVIEW

The emerging antioxidant paradigm of mesenchymal stem cell therapy

Rhian Stavely1,2 | Kulmira Nurgali1,3,4

1Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
3Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
4Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia

Correspondence
Kulmira Nurgali, MBBS, MSc, PhD, Western Centre for Health Research & Education, Sunshine Hospital, 176 Furlong Road, St Albans 3021, VIC, Australia.
Email: kulmira.nurgali@vu.edu.au

Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.

KEYWORDS
antioxidant, mesenchymal stem cell, mitochondria, multipotent stromal cell, oxidative stress, reactive oxygen species

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

STEM CELLS Transl Med. 2020;9:985–1006. wileyonlinelibrary.com/journal/sct3

985
INTRODUCTION

Mesenchymal stem cells (multipotent stromal cells; MSCs) have been used as tools to treat a broad range of diseases in animal models due to their unique characteristics such as host immune evasion, rapid expansion, and their enfluenza in adult bone marrow and adipose tissue. The positive outcomes of these studies have driven hundreds of clinical trials into their application for diabetes, inflammatory disorders, and various liver, kidney, lung, cardiovascular, musculoskeletal, neurological, and gastrointestinal diseases. While several trials have demonstrated the therapeutic potential of MSCs, the failure to incorporate MSCs into current treatment regimens can be, in part, attributed to the lack of understanding pertaining to their biological mechanisms of action.

Initially, MSCs were explored as tools of regenerative medicine to replace damaged tissue. However, administered MSCs were rarely observed to differentiate and effectively engraft into host tissues despite demonstrating favorable effects in many disease models. Furthermore, the secretome of MSCs was identified to be therapeutic in many disease models in vitro and in vivo. Together, this resulted in a paradigm shift in recognition of the trophic actions of MSCs. Despite extensive research investigating the anti-inflammatory and trophic constituents of the MSC-derivered secretome, the therapeutic mechanisms of MSCs remain incompletely resolved. MSCs demonstrate therapeutic attributes across xenogeneic barriers and, therefore, the therapeutic mechanisms of MSCs may be similar between species. There is strong evidence that the effects of MSCs are mediated via the secretion of protein/peptide ligands; however, it is equivocal whether these ligands are effective across xenogeneic barriers.

Recently, the role of MSCs in ameliorating oxidative and nitrosative injury has received considerable attention. The reduction-oxidation (redox) environment regulates many physiological and pathophysiological mechanisms in cellular biology. Antioxidant effects of MSCs have been observed in various disease models such as diabetic injuries to the kidney, retina, sensory neurons, brain, and bone formation; chemotherapy- or radiation-induced injury to the lungs, gonads, aorta, and brain; ischemic injury of the brain, heart, kidney, and liver; and traumatic injury to the spine and testis, cognitive disorders, gastrointestinal inflammation, septic injuries, and aging (Figure 1; Table 1). MSCs can directly reduce oxidative stress-related injury in vitro in glial cells, neurons, cardiomyocytes, renal cells, endothelial cells, immune cells, hepatocytes, islet cells, fibroblasts, skeletal muscle, and other cells (Table 2). Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism and, therefore, is key pathophysiological mechanism of many diseases. Oxidative stress and redox imbalance are mediated by molecular constituents that are present in all living cells and share similar functions. Thus, the ability of MSCs to regulate these processes may offer an explanation to the diversity of disease models treatable by MSCs and to the effects of MSCs conserved between species.

Oxidative stress refers to a deviation from the physiological redox state and an increase in pro-oxidants, or free radicals, that structurally change lipids, proteins, and DNA in a way that causes pathology or damage to a cell or tissue. The most widely studied free radicals are reactive oxygen species (ROS), which can also include reactive molecules that have a stable charge. The three major endogenous ROS include the superoxide anion (O$_2^-$), hydroxyl radical (•OH), and hydrogen peroxide (H$_2$O$_2$). O$_2^-$ is predominantly generated by nicotinamide adenine dinucleotide phosphate reduced (NADPH)-oxidase (NOX) family enzymes or, by the mitochondria, as a by-product of oxidative phosphorylation. The level of mitochondria-derived O$_2^-$ depends on metabolic substrates, cytosolic Ca$^{2+}$ levels, pH, and oxygen tension. O$_2^-$ generated from complexes of the electron transport chain (ETC) are highly reactive and can damage the mitochondrion. The detoxification of O$_2^-$ into H$_2$O$_2$ is mediated by superoxide dismutase (SOD). However, H$_2$O$_2$ can also be generated in various metabolic processes and by dual oxidases (DUOX). While H$_2$O$_2$ is more stable than O$_2^-$, its detoxification is crucial as it possesses a weak peroxide bond that makes it susceptible to reacting with metals, such as Fe$^{2+}$, to generate reactive •OH through the Fenton reaction. Both, H$_2$O$_2$ and O$_2^-$, are diffusible across cell membranes and can promote cell death and inflammatory signaling. Several studies have demonstrated that MSCs can reduce ROS and biomarkers of oxidative stress. In this review, evidence of direct and indirect antioxidant mechanisms of MSC therapies is explored.

Significance statement

The role of mesenchymal stem cells (MSCs) in ameliorating oxidative and nitrosative injury has received considerable attention in recent years. The reduction-oxidation (redox) environment regulates many physiological and pathophysiological mechanisms in cellular biology. Oxidative stress and redox imbalance are mediated by molecular constituents that are present in all living cells and share similar functions. The ability of MSCs to regulate these processes may offer an explanation to the diversity of disease models treatable by MSCs and to the effects of MSCs conserved between species. In this review, evidence of direct and indirect antioxidant mechanisms of MSC therapies is explored.

MSCs ARE RESISTANT AND RESPOND TO OXIDATIVE STRESS

The therapeutic properties of MSCs have been explored in many models of disease associated with high levels of ROS and biomarkers of oxidative injury. MSCs must survive these volatile environments to exert their therapeutic effects, which can present as a challenge for their engraftment after administration. Nonetheless, several studies
have demonstrated that MSCs are highly resistant to oxidative insult. The oxidative effects of ionizing radiation are limited on MSCs which have been attributed to their ability to directly scavenge free radicals.16 It has been demonstrated that MSCs are resistant to oxidative and nitrosative stimuli in vitro which is associated with constitutively expressed antioxidant enzymes SOD1, SOD2, catalase (CAT), and glutathione peroxidase (GPx), in addition to high levels of the antioxidant glutathione (GSH).17 Depletion of GSH results in a loss of tolerance to oxidative stress. MSCs also constitutively express heat-shock protein 70 (HSP70) and sirtuin (SIRT)3,18 which may also play a role in the resistance of MSCs to oxidative/nitrosative injury. SIRT1 is also required for MSC survival against H$_2$O$_2$ and its overexpression has a protective effect.19 Likewise, SIRT6 has been suggested to confer resistance to oxidative insult and basal ROS production in MSCs via downstream production of antioxidants including heme oxygenase-1 (HO-1).20 Overexpression of HO-1 ameliorates elevations in ROS and cellular senescence in SIRT6-null MSCs and, therefore, appears to be a critical component of the survival mechanism of MSCs in oxidative environment.20

In addition to wielding constitutive antioxidants, MSCs are also capable of significant adaptations in response to redox stress. MSCs exposed to lipopolysaccharide (LPS) produce oxidative and nitrosative free radicals.18 In parallel, several adaptive processes are observed including the upregulation and/or nuclear translocation of redox-sensitive factors (nuclear factor kappa-B [NFkB], thioredoxin [TRX1], apurinic/apyrimidinic endonuclease redox effector factor-1 [APE1/Ref-1], nuclear factor erythroid 2-related factor 2 [NRF2], forkhead box O3 [FOXO3], and HO-1), as well as mitochondrial remodeling and autophagy. Similarly, MSCs exposed to hypoxic conditions (1.5%-2% O$_2$) exhibit increased intracellular ROS and cells respond by upregulating the expression of hypoxia-inducible factor 1 alpha (HIF-1x), erythropoietin receptor, CAT,
Application	Model	MSCs used	Effects of MSC treatment	Antioxidant mechanisms	References
Aging	Aging-related erectile dysfunction (rat)	Rat AT-MSCs	Erectile response	Lipid peroxidation, SOD activity	62
Premature aging (Bmi−/−) (mouse)	Mouse amniotic membrane MSCs	AT-MSCs	Survival time, Apoptosis in thymus and kidney, Proliferation in thymus and kidney, Mature immune cells, Skeletal muscle growth, Osteoporosis, Bmi-1 in liver, kidney, thymus, muscle, spleen, lung, and bone marrow	H2O2, CAT, SOD in the heart, liver, spleen, lung, kidney, BM and thymus, ROS in all except heart, DNA damage in cells of BM, spleen, lung and thymus, MSCs secrete SOD (total) and CAT	33
Chemotherapy and radiation	Bleomycin-induced pulmonary fibrosis (rat)	Rat mesenchymal stem cells (H4320-1)	Fibrosis	Nrf2, αNQO1, HO-1, γGCS, Lipid peroxidation, SOD activity	63
	Bleomycin-induced pulmonary fibrosis (mouse)	Human BM-MSCs cell line U6E7T-2	Collagen	DNA oxidation, ER stress marker BIP, Effects negated by silencing STC-1 and enhanced by STC-1 over expression	127
	Cisplatin-induced acute kidney injury (rat)	Human UC-MSC exosomes	Blood urea nitrogen (MSC-CM and fibroblast exosomes had no effect), Creatinine (MSC-CM and fibroblast exosomes had no effect), Gross morphological damage, Apoptosis (TUNEL), PCNA, Bax, Bcl-2, pS6AMPK	DNA oxidation, GSH, Lipid peroxidation	27
	Cisplatin-induced cognitive impairment (mice)	Mouse BM-MSCs Intranasal delivery	Cognitive function	Maximal respiratory capacity and spare respiratory capacity of mitochondria, Morphologically atypical mitochondria	112
	Cisplatin-induced gonadotoxicity (rat)	Rat BM-MSCs	Testis weight and testosterone levels, TNF	Lipid peroxidation, SOD activity, GSH, INOS	64
	Cisplatin-induced renal injury (mouse)	Mouse BM-MSC-CM	Weight loss, Serum creatinine levels, c-caspase 3 expression, Gross morphological damage	HO-1−/− MSCs did not demonstrate therapeutic value	94
Lung radiation injury (mouse)	Mouse aorta-derived and BM-MSCs	Mouse BM-MSCs	Lung fibrosis	Aorta and BM-MSCs secrete SOD1, SOD1 expression in irradiated lung, SOD1 mimetic replicated effect of MSCs	59
	Paclitaxel-induced neuropathy (rat)	Rat BM-MSCs	Responses to thermal hyperalgesia and cold allodynia, Sciatic nerve: NGF, Pro-inflammatory cytokines, c-caspase 3	Lipid peroxidation, GSH, INOS	55
	Radiation-induced aortic injury (mouse)	Human BM-MSCs	Aorta thickness, Collagen, TGF, TNF, ICAM, Apoptosis, HO-1, CAT	Nitrotyrosine, Lipid peroxidation, CAT	82
	Radiation-induced neurological complication (mouse)	Human AT-MSCs	Cognitive function, Neuron loss, Caspase 3	Lipid peroxidation in hippocampus and brain lateral ventricle, INOS	41
Hyperglycemic injuries	Alloxan-induced diabetes (rat)	Rat BM-MSCs	Insulin, Glucose levels, Total cholesterol, Triglycerides, Vitamin E	GSH, GST, SOD, NO, Lipid peroxidation	88
	Db/db mouse model of type 2 diabetes	Mouse amniotic fluid MSCs	Improved kidney function, Weight gain, Pro-inflammatory cytokines, Apoptosis, Overexpression of Sirtuin3 in MSCs improved all effects	Lipid peroxidation, 8-Isoprostane, GSH, GSSG	85
	Diabetes-induced cognitive impairment (mouse)	Rat BM-MSC and exosomes	Cognitive function Hippocampus (CA1): No change in neuronal numbers, Exosomes colocalized with astrocytes and can be detected in microglia and neurons	Lipid peroxidation	26
	Diabetic retinopathy (mouse)	Mouse AT-MSCs Intravitreal injection	Retinal ganglion cell loss, NFG, bFGF and GDNF, TSP1	ROS and lipid peroxidation	28
	STZ-induced diabetic osteoarthritis (mouse)	Mouse AT-MSCs	Chondrocytes, TNF, INF-β	Lipid peroxidation	128
	STZ-induced diabetic nephropathy (rat)	Rat BM-MSCs	Urinary albumin excretion and ameliorated glomerulosclerosis	Lipid peroxidation, ROS, SOD activity, GLUT1	29
TABLE 1 (Continued)

Application	Model	MSCs used	Effects of MSC treatment	Antioxidant mechanisms	References
STZ-induced sensorial diabetic Neuropathy (mouse)	Mouse BM-MSCs	Improved pain-like behaviors	Lipid peroxidation	40	
STZ-nicotinamide (diabetes)-induced cardiac damage (rat)	Rat BM-MSCs	Normalization of gene expression associated with cardiac glucose and fatty acid uptake ([RGS-1, GLUT4, PPARα, PGC-1, CPT1a and SREBP-1c])	Total antioxidant content in serum	56	
Caecal ligation-puncture induced sepsis (rat)	Rat AT-MSCs	Apoptosis in serum-starved MSCs; TNFα, NFκB and Bax in lungs and kidney	Protein oxidation in kidney	92	
DSS-induced colitis (mouse)	Mouse BM-MSCs	Mucosal permeability: D-lactic acid and Diamine oxidase	Lipid peroxidation	65	
E. coli-induced Acute lung injury (mouse)	Mouse BM-MSCs	Edema	MPO activity	37	
Endotoxin-induced inflammation in plasma (mouse)	Mouse BM-MSCs	Cys but ND to lung fibroblast	GSH, ND to glutathione disulfide (GSSG) or cysteine (CySS)	51	
Freund’s adjuvant-induced arthritis (rat)	Rat BM-MSCs	Antinuclear antibodies (TNFα, IL-9 and IL-4)	Total antioxidant capacity	66	
HOCl-induced systemic sclerosis (mouse)	Mouse BM-MSCs	Serum: Systemic sclerosis biomarker (SCL-70) Skin and lung: Collagen, α SMA, TGFβ1	Advanced oxidation protein products	57	
IL-10 –/− model of colitis (mouse)	Human BM-MSCs	TNFα, IFNγ, IL-4 and p-NFκB	Total antioxidant capacity	34	
Immune complex-mediated dermal vasculitis (mouse)	Human AT-MSCs	Neutrophil accumulation	Effects dependent on SOD3 expression by MSCs	79	
LPS-induced lung injury (rat)	Rat BM-MSCs	Lung edema Bronchoalveolar lavage protein	MPO, Lipid peroxidation, FASL	107	
Sepsis-induced brain injury (rat)	Rat AT-MSCs	Apoptosis	Protein oxidation	25	
Severe acute pancreatitis (rat)	Human BM-MSCs	Serum amylase and lipase Pancreatic damage	MSCs migrated to tissue stimulated: Lipid peroxidation	67	
Severe acute pancreatitis (rat)	Rat BM-MSCs	Pancreatitis score	HO-1	30	
Kidney and bladder disease ischemia (rat)	Human amniotic fluid-derived MSCs	Bladder overactivity	DNA oxidation	129	
Metabolic renovascular disease in swine	Swine AT-MSC extracellular vesicles	Capillary density	Lipid peroxidation	31	
TABLE 1 (Continued)

Application	Model	MSCs used	Effects of MSC treatment	Antioxidant mechanisms	References
Unilateral ureteral obstruction (rat)	Human UC-MSC-CM	Renal tubular damage	ROS	Lipid peroxidation	24
		Fibrosis		GSH	
		Apoptosis			
		Cell proliferation			
Liver disease	Acetaminophen-induced acute liver failure (mouse)	Human UC-MSCs	• MSC pretreatment and post-treatment of induced liver injury	GSH	38
			• Survival and liver weight	SOD activity	
			• Biomarkers of liver failure	Lipid peroxidation only observed with pretreatment	
			• Apoptotic cells and necrotic tissue		
			• IL-6 only observed with pretreatment		
Liver disease	CCl4-induced liver fibrosis (mouse)	Human BM-MSCs	• Serum albumin	Lipid peroxidation	68
Liver disease	CCl4-induced liver injury (mouse)	Allogeneic BM-MSC	• Serum ALT and AST	SOD activity, CAT and GSH	
Liver disease	N-diethylthiolsalmine-induced hepatocarcinoma (rat)	Rat BM-MSCs	• Expression of TNFα, IL-6, type 1 collagen and αSMA	MPO	50
Liver disease	CC14-induced rat liver injury (mouse)	Human BM-MSCs (cells and exosomes)	• MSCs outperformed hematopoietic stem cells in all assays	Lipid peroxidation	
Placental insufficiency	Human BM-MSC	Serum ALT and AST	GSH		89
		Liver fibrosis	Lipid peroxidation		
Liver disease	Human BM-MSCs (cells and exosomes)	Human BM-MSCs (cells and exosomes)	• Fibrosis	Lipid peroxidation	130
			• Pro-inflammatory cytokines		
			• Wnt signaling		
Lung diseases	Cigarette smoke-induced chronic obstructive pulmonary disease (guinea pig)	Guinea pig AT-MSCs IV and intratracheal delivery	• No effect on emphysema score	Thiol after IV administration	131
	Mustard lung (human case study)	Human AT-MSCs	• Functional respiratory improvement	Lipid peroxidation after IV and intratracheal delivery	
	Ovaebumin and aluminum hydroxide-induced asthma (mouse)	Human BM-MSC	• Functional recovery	GSH in sputum	49
			• Mucin	Nitrotyrosine	132
			• Collagen		
Lung diseases	APP/PS1 transgenic model of Alzheimer's disease (mouse)	Rat AT-MSCs	Recognition in behavioral test	Hippocampal GSSG/GSH	32
	Chronic ethanol intake (rats)	Human AT-MSCs	• AT-MSCs activated by TNFα and IFNγ		86
			• ETOH intake	Hippocampal GSSG/GSH	
			• Relapse after ETOH deprivation		
	Collagenase induced-intracerebral hemorrhage (rat)	Rat BM-MSCs	Apoptosis	INOS	39
			Edema		
			Blood-brain barrier permeability	ODO-1	
			Pro-inflammatory cytokines	MPO	
	Pilocarpine induction of temporal lobe epilepsy (rat)	Rat BM-MSCs	• Caspase 3	GSH	90
			Glutamate [GABA] TNFα	Lipid peroxidation	
			IL-1β	Paraoxonase-1	
	Spontaneous stroke (rat)	Rat BM-MSCs	• Bel-2 expression	O2−	35
			Prevented hippocampal lesions	Lipid peroxidation	
			• Apoptosis		
	Tg2576 mice (Alzheimer’s disease)	Human UC-MSCs	Improved cognitive function	Lipid peroxidation	43
			Effects on hippocampus	eNOS [total NO]	
			• No change in β-amyloid levels		
			• Neurogenesis		
	YG8 transgenic model of Friedreich’s ataxia (mouse)	Mouse BM-MSCs	Improved performance on behavioral tests	SOD2 and SOD3 [CAT and Gpx1]	81
			• BDNF, NT3, and NT4 in dorsal root ganglia (DRG)		
			• GFAP, TuJ1, and MAP2 in DRG		
			• Bcl-2		
Oxygen tension injuries	Acute ischemic stroke (rat)	Swine AT-MSCs	Infarct area	NOX1 and NOX2	102
			Inflammatory cytokines	Protein oxidation	
			• c-caspase 3		
			• c-PARP		
			• γ-H2AX		
			• cytosolic cytochrome c		
Oxygen tension injuries	Acute myocardial infarction (swine)	Swine BM-MSCs Autologous	• Bax, c-caspase 3 and c-PARP	Oxidized protein	103
			Inflammation	NOX1 and NOX2	
			Infarct area	Protein oxidation	
			• Improved echocardiography parameters		
Exposure of MSCs to hypoxia during in vitro culture can enhance their anti-inflammatory, antioxidative, and cytoprotective properties. This suggests that the ability of MSCs to tolerate and respond to oxidative environment may be critical to their engraftment and therapeutic efficacy at sites of tissue injury.
TABLE 1 (Continued)

Application	Model	MSCs used	Effects of MSC treatment	Antioxidant mechanisms	References
Traumatic injuries	Spinal cord injury (canine)	Canine AT-MSCs	Motor function	Lipid peroxidation and protein oxidation	42
			[Hemorrhagic area]		
			[Microglia]		
			[TNFα, IL-6 and COX2]		
Testicular torsion	Testicular torsion (rat)	Rat AT-MSCs	Apoptosis	Lipid peroxidation	135
injuries					

Abbreviations: ALT, alanine aminotransferase; APAF-1, apoptotic protease activating factor 1; AST, aspartate aminotransferase; AT-MSC, adipose tissue-derived MSC; BAX, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast growth factor; BM-MSCs, bone marrow-derived MSC; CAT, catalase; c-caspase 3, cleaved-caspase 3; CM, conditioned medium; CO, carbon monoxide; COX2, cyclooxygenase-2; c-PARP, cleaved poly (ADP-ribose) polymerase; Cys, cysteine; DRG, dorsal root ganglion; DSS, dextran sulfate sodium; EGF, epidermal growth factor; ER stress, endoplasmic reticulum stress; GABA, gamma-aminobutyric acid; GDNF, glial cell-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; GLUT1, glucose transporter 1; GPx, glutathione peroxidase; GSH, glutathione; H2O2, hydrogen peroxide; HO-1, heme oxygenase-1; I/R, ischemia / reperfusion; ICAM, Intercellular adhesion molecule; IFN, interferon gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; IV, intravenous; LS, lipopolyaccharide; MAP2, microtubule associated protein-2; MPO, myeloperoxidase; NAD(P)H, nicotinamide adenine dinucleotide phosphate; ND, No difference; NFκB, Nuclear factor κB; NGF, Nerve growth factor; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; NOX, NAD(P)H oxidase; NQO1, NAD(P)H quinone dehydrogenase 1; NT3 and 4, neurotrophin 3 and 4; O2−, superoxide; ONOO−, peroxynitrite; p38MAPK, p38 mitogen-activated protein kinases; pAkt, phosphorylated protein kinase B; PCNA, proliferating cell nuclear antigen; pGSK3, phosphorylated glycogen synthase kinase 3 beta; pJnk, phosphorylated c-Jun N-terminal kinases; pERK1/2, phosphorylated extracellular signal-regulated kinases 1/2; p38 MAPK, p38 mitogen-activated protein kinases; pAkt, phosphorylated protein kinase B; PCNA, proliferating cell nuclear antigen; pGSK3, phosphorylated glycogen synthase kinase 3 beta; pJnk, phosphorylated c-Jun N-terminal kinases; pERK1/2, phosphorylated extracellular signal-regulated kinases 1/2; RAGE, Receptor for Advanced Glycation End Products; ROS, reactive oxygen species; SOD, superoxide dismutase; TCA cycle, tricarboxylic acid cycle; TGFβ, transforming growth factor beta; TNFα, tumor necrosis factor alpha; TSG6, TNFα-stimulated gene-6; TSP1, thrombospondin 1; Tuj1, neuron-specific class III beta-tubulin; UC-MSC, umbilical cord-derived MSC; αSMA, alpha-smooth muscle actin; γGCS, gamma-glutamylcysteine synthetase; γH2AX, gamma-H2A histone family member X; Δψm, mitochondrial membrane potential; CySS, cystine (disulfide form of cysteine); GSGS, glutathione disulfide.

3 EFFECT OF MSCs ON OXIDATIVE STRESS BIOMARKERS AND ROS

In disease models, oxidative stress is typically quantified via biomarkers of oxidation to DNA and proteins or lipid peroxidation. Administration of MSCs has been demonstrated to reduce levels of one or more of these markers in a variety of animal models associated with oxidative stress (Table 1). Injection of MSCs themselves may not be critical to their antioxidant effects as administration of their conditioned medium (CM) also reduced lipid peroxidation in a model of ureteral obstruction-induced kidney injury.24 Administration of MSC-derived exosomes was also effective to rescue protein oxidation and lipid peroxidation in animal models of septic and hyperglycemic brain injury and cognitive impairment.25,26 Likewise, DNA oxidation and lipid peroxidation caused by cisplatin-induced kidney damage are alleviated by exosomes from human umbilical cord-derived MSCs (UC-MSCs); these results were confirmed in vitro with renal proximal tubular cells.27 Treatments with MSCs were also demonstrated to reduce levels of ROS in animal models of diabetic retinopathy and nephropathy, severe acute pancreatitis, ureteral obstruction-induced kidney damage, Alzheimer’s disease, and metabolic renovascular disease.24,28-32 Specifically, MSC treatments have been shown to reduce levels of H2O2 in intestinal inflammation and several organs in a model of premature aging.32,34 MSCs also reduced levels of O2− in colitis and spontaneous stroke.34,35

Typically, the reduction of oxidative stress markers by MSC treatments is associated with functional recovery and positive outcomes in animal models. The exception to this is the diversity of responses at various stages of hepatocarcinoma whereby antioxidant effects of MSCs reduce tumor burden at the early stages of disease by protecting the integrity of DNA but increase tumor progression at the late stages of the disease possibly by reducing ROS-associated cell death.36 The timing of treatments may also affect MSCs ability to attenuate oxidative stress as pretreatment with MSCs is more effective to prevent oxidative stress in septic lung injury and acute liver failure.37,38

Several studies have also investigated the therapeutic properties of MSCs on nitrosative stress which is particularly of interest in neural diseases. MSCs reduced the volatile peroxynitrite (ONOO−) in a model of intracerebral hemorrhage and nitrite levels in diabetic sensory neuropathy.39,40 In a model of radiation-induced neurological complications, intranasal delivery of MSCs reduced inducible nitric oxide synthase (iNOS) expression and oxidative stress biomarkers, which are associated with improved cognitive performance and neuronal survival.41 In a model of spinal cord injury, adipose tissue-derived MSCs (AT-MSCs) also demonstrated antioxidant activity with a reduction in lipid peroxidation and protein oxidation; however, no significant effects were observed for nitrosylation.42 Furthermore, MSCs have been associated with increased nitric oxide (NO) in a model of Alzheimer’s disease which may have been driven by preventing the loss of neuronal nitric oxide synthase (nNOS).43 Alternatively, several studies observed a reduction in inflammation-induced iNOS and nNOS expression after MSC treatment.37,44-47 Overall, while the majority of studies support antioxidative effects of MSCs, their antinitrative effects are unclear and likely to be disease and tissue specific. Furthermore, NO can be produced by nonhuman MSCs which is thought to be critical to their immunomodulatory function which may also explain these inconsistent effects on nitrosative stress.42,48
Although studies in cells and animal models unequivocally demonstrate that MSC treatments reduce levels of oxidative stress, albeit limited data exist from human studies. Nonetheless, favorable outcomes in a case study utilizing MSCs to treat the lungs of a subject previously exposed to sulfur mustard gas were attributed to the antioxidant properties of MSCs as evidenced by reduced lipid peroxidation levels in the sputum.\(^4\)

The antioxidant effects of MSC treatments are likely to be a specific property of these cells as they are more efficacious than hematopoietic stem cells and fibroblast at reducing oxidative stress in carbon tetrachloride-induced-liver injury and sepsis, respectively.\(^50,51\) Likewise, fibroblast exosomes have no effect on kidney injury-induced by ischemia and chemotherapy.\(^27,52\)

The alleviation of oxidative stress in animal models is associated with decreased pro-inflammatory cytokines and markers of cellular death highlighting the close association between these processes. The precise mechanisms of in vivo MSC treatments are difficult to determine as cell death, inflammation, and oxidative stress occur concomitantly and perpetuate each other. However, a growing body of evidence suggests that MSCs have a direct role on suppressing oxidative stress and ROS production which may mediate their antiapoptotic and anti-inflammatory effects.

4 ANTI-OXIDATIVE MECHANISMS OF MSCS

The potential for MSCs to attenuate oxidative injury is unequivocally demonstrated by the reduction in ROS and biomarkers of oxidative stress in many disease models. Evidence from in vitro models suggests that MSCs directly protect cells from oxidative stimuli (Table 2). This is often associated with a reduction in ROS suggesting that MSCs avert the negative effects of oxidative stress by reducing the oxidative stimuli. The antioxidative effects of MSCs often occur in a paracrine manner in vitro and the administration of MSC-conditioned medium (CM) can also reduce oxidative stress in vivo suggesting a paracrine component to their mechanism.\(^24\) Nevertheless, others report that the antioxidant effects of MSCs can be cell contact dependent\(^53;\) albeit, these mechanisms could be disease and tissue dependent. Currently, MSCs have been proposed to reduce oxidative injury via scavenging free radicals, enhancing host antioxidant defenses, modulating the inflammatory response, augmenting cellular respiration and mitochondrial functions, or donating their mitochondria to protect damaged cells (Figure 1).\(^37,50,51,53,54\)

4.1 Antioxidant defense and scavenging

To maintain redox homeostasis and prevent excessive production of free radicals, cells rely on a complement of enzymatic antioxidants, including SODs, CAT, GPx, and small nonenzymatic antioxidants, such as GSH. After MSC treatments, the total antioxidant capacity of tissues are enhanced as observed in models of chemotherapy-induced neuropathy, hyperglycemia-induced cardiac damage, systemic sclerosis, hepatocarcinoma, and acute liver injury.\(^36,55-58\) MSCs are receptive to oxidative stimuli and exhibit all necessary machinery to efficiently process ROS.\(^18,59\) Furthermore, media conditioned by MSCs have potent antioxidant capacity indicating that MSCs actively secrete antioxidants.\(^60\) MSC-CM has more effective antioxidant properties than CM from lung fibroblasts.\(^61\) In several models of disease, MSC treatments upregulate the expression of antioxidant defense enzymes in vivo (Table 1). Therefore, the antioxidant effects of MSCs may be explained by their ability to directly scavenge free radicals and by enhancing antioxidant defenses in host tissues through upregulation of antioxidant enzymes.

Volatile O\(_2^-\) is produced during cellular respiration by the mitochondrial and NOX enzymes during tissue inflammation; O\(_2^-\) is eliminated by SOD which catalyzes its conversion to H\(_2\)O\(_2\). Antioxidant effects of MSC treatments have been associated with enhanced SOD activity or the expression of SODs in models of aging, age-related erectile dysfunction, chemotherapy-induced pulmonary fibrosis or gonadotoxicity colitis, pancreatitis, septic lung injury, arthritis, hepatic toxicity and hepatic ischemia reperfusion injury, Alzheimer’s disease, and ovarian autografts.\(^33,34,37,38,43,50,62-70\) MSCs secrete all isozymes of SOD including SOD1 and SOD2, which are archetypically not released extracellularly.\(^73,59,71,72\) Thus, it is difficult to interpret whether enhanced SOD activity and/or SOD expression is due to MSCs or host-tissue-derived SOD. In vitro studies, MSC-CM or MSCs in transwell cocultures promote SOD activity in tert-Butyl hydroperoxide or UV-exposed fibroblasts, H\(_2\)O\(_2\)-treated neural stem cells or retinal ganglion cells, and dexamethasone-induced muscle atrophy model.\(^60,73-76\) These studies suggest that MSCs enhance SOD activity in cells exposed to oxidative stimuli. Likewise, MSC-CM increases SOD1 expression in islet cells exposed to pro-inflammatory cytokines and SOD2 in tert-Butyl hydroperoxide-treated umbilical endothelial cells.\(^77,78\) In endothelial cells, increased SOD2 expression was regulated by signal transducer and activator of transcription (STAT3) signaling and knockdown of either SOD2 or STAT3 decreased the antiapoptotic effects of the MSC-CM.\(^77\) These findings suggest that MSC upregulation of SOD in host tissues may be critical to their antioxidant effects. Alternatively, MSCs stimulated with TNF-α and IFN-γ were found to secrete high levels of SOD3, which was a major contributor to the antioxidant properties of MSCs in the amelioration of NO-induced neuronal death in vitro.\(^71\) Likewise, SOD3 expression in MSCs was necessary to suppress neutrophil respiratory burst and the accumulation in immune complex-mediated dermal vasculitis.\(^79\) Similarly, silencing of SOD2 in MSCs inhibits the antioxidant properties and therapeutic efficacy of their exosomes in hepatic I/R injury in vivo and H\(_2\)O\(_2\)-treated human fetal hepatocytes which can be recovered by the addition of a SOD2 mimetic.\(^80\)

CAT and GPx are responsible for detoxifying H\(_2\)O\(_2\) by its conversion to oxygen and water. MSCs secrete CAT and upregulation of CAT expression is associated with the therapeutic properties of MSCS in models of Friedreich’s ataxia, radiation-induced aortic injury, septic...
the antioxidant effects of MSCs in several other models associate with upregulation of HO-1 such as radiation-induced aortic injury, septic lung injury, pancreatitis, and renal injuries caused by altered oxygen tensions and cisplatin.30,62,92-94 HO-1 was determined to partially contribute to the effects of MSCs in pancreatitis as its inhibition with zinc protoporphyrin negated some of the effects of MSC treatments, including upregulation of CAT and increased SOD activity, which may indicate that these processes are downstream of HO-1 activity.30 After MSC treatment of small bowel I/R injury, a larger number of HO-1 expressing cells were observed which did not appear to completely colocalize with engrafted MSCs suggesting that treatments may increase HO-1 expression in cells of the host.84 It has been demonstrated that overexpression of HO-1 in MSCs enhances their therapeutic activity in septic lung injury which was attributed to its pro-survival properties.95 Others have reported that MSCs still respond efficiently to oxidative insult with silenced HO-1 by upregulating GSH pathway enzymes.96 Nevertheless, the CM of MSCs derived from HO-1−/− mice are unable to attenuate cisplatin-induced renal injury and therefore HO-1 appears to have an important role in the antioxidant properties of the MSC secretome.94

Together, these studies demonstrate that antioxidants secreted by MSCs and their ability to upregulate host antioxidant defenses contribute to the suppression of oxidative stress. The exosomes derived from MSCs appear to be particularly rich in machinery to process ROS and can include, but not limited to, GPx, GSTs, SOD1-3, peroxiredoxin 1-6, CAT, cytoglobin, prostaglandin-endoperoxide synthase 1, peroxidioxidin, albumin, apolipoprotein E, glutathione-disulphide reductase, and thioredoxin reductase 1-2.31,80 Notwithstanding, recombinant application of factors secreted by MSCs, such as hepatocyte growth factor (HGF) and basic fibroblast growth factors (bFGF), has been demonstrated to upregulate Gpx1, CAT, and SOD activity via SIRT1 and FOXO1 during age-related loss of ovarian function.97 Mechanisms of antioxidant defense mediated by scavenging of ROS by MSCs and the host could occur independently or simultaneously and are likely to be disease-specific.

4.2 Antioxidant effects on inflammation

Immune function is regulated by free radicals and the redox system; leukocytes and pro-inflammatory mediators enhance the formation of free radicals and perturb the redox environment creating a positive feedback cycle.98 The immunomodulatory action of MSCs is a well-documented phenomenon; however, their role in the interactions between the immune system and oxidative stress is not fully understood. Oxidative and/or nitrosative free radicals unequivocally play a role in all grades of acute and chronic inflammation. At physiological levels, they act as cellular signals modifying function and initiating necessary cell death programs. However, excessive generation of free radicals and/or inadequate scavenging results in protein oxidation, lipid peroxidation, and DNA damage that can be detrimental both intrinsically to the cell and the surrounding microenvironment. The ROS and reactive nitrogen species involved can take many forms and...
Cell types	Model	MSCs used	Antioxidant and other effects of MSCs	References
Cardiomyocytes and endothelial cells	Glucose-deprived hypoxia-reoxygenated H9c2 cardiomyocytes (rat)	Rat BM-MSCs	▪ Apoptosis	121
		Direct coculture with GFP+ MSCs	▪ Bax	
			▪ Bcl-2	
			▪ Caspase 3	
			▪ Δψm	
			▪ MSCs transferred mitochondria to H9c2 via TNT structures	
			▪ Inhibition of TNT formation partially reversed these effects	
	H2O2-treated RL14 cardiomyocytes and human umbilical vein endothelial cells (HUVEC)	Human AT-MSCs	▪ MSCs engulf mitochondria from H2O2-treated cells	53
			▪ MSC coculture prevented cell death—no paracrine effect	
			▪ MSCs donate functional mitochondria to somatic cells exposed to H2O2	
			▪ MSCs degrade engulfed mitochondria via autophagosomes	
			▪ MSCs do not prevent somatic cell death when mitophagy is inhibited	
			▪ Mitochondria sensing by MSCs HO-1 in MSC	
			▪ HO-1 stimulated mitochondrial biogenesis in MSC which was necessary to prevent somatic cell death	
			▪ Doxorubicin caused increased mitochondrial O2•− production and MSCs protected cells via similar mechanism dependent on ROS generation and transfer of mitochondria from somatic cells	
	I/R of ventricular myocytes (mouse) in vitro	Mouse BM-MSC-CM	▪ Cell loss	54
			▪ Early afterdepolarization of myocytes	
			▪ Excessive depolarization of Δψm after reperfusion	
			▪ Exaggerated hyperpolarization of Δψm after acute reperfusion—effect prevented by PI3K, Akt, and I_{iATP} inhibition	
			▪ I_{iATP} opener mimicked effects:	
			▪ Δψm hyperpolarization	
			▪ Mitochondrial O2•−	
			▪ ROS scavenger mimicked effects: ▪ cell loss, ▪ early after depolarizations, ▪ Δψm hyperpolarization, ▪ O2•−	
	Oxygen glucose deprivation and reoxygenation of human umbilical vein endothelial cells (HUVEC)	Human BM-MSCs	▪ MSCs and HUVEC cells form tunneling nanotubes during oxygen glucose deprivation and reoxygenation	136
			▪ Exchange of mitochondria in HUVECs and MSCs confirmed by mtDNA and fluorescent dye	
			▪ Cell death	
			▪ Oxygen consumption rate and	
			▪ extracellular acidification rate	
			▪ No effect by mitochondria-depleted MSCs	
	Cytarabine-treated human umbilical cord vein endothelial cells (HUVEC)	Human BM-MSCs	▪ Tunneling nanotubes facilitate bidirectional mitochondria transfer between MSCs and endothelial cells	122
			▪ Unidirectional mitochondria donation to endothelial cells pretreated with cytarabine	
			▪ Apoptosis	
			▪ Capillary formation	
	tert-Butyl hydroperoxide-treated umbilical endothelial cells (human)	Human placental MSC-CM	▪ ROS	77
			▪ Apoptosis	
			▪ No effect on SOD1, CAT and GPx1 mRNA	
			▪ SOD2 mRNA and protein	
			▪ SOD2 expression correlated with IL-6-ST (gp130)-STAT3 signaling	
			▪ SOD2 and STAT3 siRNA in endothelial cells reduced protective effects of MSC-CM	

(Continues)
Cell types	Model	MSCs used	Antioxidant and other effects of MSCs	References
Fibroblasts	tert-Butyl hydroperoxide-treated human dermal fibroblasts	Human AT-MSC-CM	↑ Antioxidant capacity over normal culture media ↑ Morphological damage ↑ SOD activity in human dermal fibroblasts ↑ GPx activity in human dermal fibroblasts	60
UV-exposed fibroblasts (human)		Human UC-MSC-CM	↑ Cell viability ↑ SOD activity ↑ ROS activity ↑ SOD activity ↑ ROS activity ↑ Antioxidant capacity	73
Gial cells and neurons	Activated microglia and NO-induced neuronal death (rat)	Human BM-MSCs	↑ Neuronal loss from activated microglia ↑ Neuronal loss from NO ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity	71
	Amyloid-β oligomer-induced damage to hippocampal neurons (rat)	Rat BM-MSCs and Transwell coculture and exosomes	↑ ROS ↑ Neuronal loss from NO ↑ ROS activity ↑ BDNF activity ↑ CNTF activity ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	83
Glucose-deprived hypoxia-reoxygenated primary astrocytes (human)	Human dental pulp-derived and BM-MSCs and Transwell and CM astrocytes	↑ Viability of astrocytes ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	137	
Glucose-deprived scratch injured T98G glioblastoma cells (human)	Human AT-MSC-CM	↑ Viability ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	138	
H$_2$O$_2$-treated cortex-derived neural stem cells (rat)	Rat BM-MSC-CM	↑ Apoptosis ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	74	
H$_2$O$_2$-treated motor neurons (NSC-34) expressing human mutant SOD1 (ALS)	Mouse AT-MSC exosomes	↑ Cell viability of naïve cells and SOD1 mutant cells ↑ Viability ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	139	
H$_2$O$_2$-treated retinal ganglion cells (RGCs) (rat)	Rat BM-MSCs and Transwell	↑ Apoptosis ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	75	
H$_2$O$_2$-treated SH-SY5Y neuroblastoma cells (human)	Human AT-MSC CM	↑ Viability ↑ Antioxidant capacity ↑ ROS ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	140	
Sevoflurane-induced apoptosis in human neuroglioma H4 cells	Rat BM-MSCs	↑ Cell viability ↑ ROS ↑ c-caspase 3 and Bax ↑ ATP ↑ SOD activity ↑ FIR activity ↑ BDNF activity ↑ CNTF activity	141	
Cell types	Model	MSCs used	Antioxidant and other effects of MSCs	References
---------------------	---	------------------------------------	--	------------
Hepatocytes	Acetaminophen and H2O2-treated human hepatocytes (HepG2)	Rat BM-MSC-CM	• Exosome-rich fractioned conditioned medium	
			Cell viability	
			ROS	142
	H2O2-treated AML12 hepatocytes (murine)	Mouse BM-MSC extracellular vesicles	• ROS	
			Pro-inflammatory cytokines	143
	H2O2-treated human fetal hepatocytes (LO2 cells)	Human UC-MSC extracellular vesicles	• ROS	
			Mitochondrial O2⁻	
			Apoptosis	80
			• Exosomes contain PRDX1-6, SOD1-2, CAT, TXN GSTO and GSTP1	
			Silencing of SOD2 in MSCs inhibits therapeutic effect of exosomes	
Immune cells	Cytarabine or methotrexate-treated immortalized human T lymphocytes (Jurkat cells)	Human BM-MSCs	• Jurkat cells transfer mitochondria to MSCs after exposure to chemotherapeutics. Few mitochondria transferred from MSCs to Jurkat cells	
			MSC direct coculture	
			Apoptosis	120
			• Effects blocked by inhibition of mitochondrial transfer using cytochalasin D and anti-ICAM1	
	LPS-stimulated blood-derived monocytes (human)	Human AT-MSCs	• TNFα	
			NOx	
			COX2	110
			• MPO	
			ROS	114
	LPS-treated human monocyte-derived macrophages	Human BM-MSC CM and extracellular vesicles	• oxygen consumption rate	
			phagocytic phenotype	
			• This effect was partially reversed by Ab blocking extracellular vesicles (anti-CD44)	
			• Extracellular vesicles from MSCs transfer mitochondria to macrophages	
			• MSC-CM M2 phenotype (anti-inflammatory)	
			• Effects abolished by damaging mitochondria in MSCs	
	LPS-treated neutrophils (human)	Human UC-MSCs Transwell and extracellular vesicles	• Lipid peroxidation	
			ROS	80
			• No effect on cell numbers in vitro	
	Macrophages in vitro (human and mouse)	Human BM-MSCs	• ROS-associated with NRLP3 inflammasome activation	
			NRLP3 associated caspase 1 activation	
			NRLP3 associated IL-1β and IL-18 secretion	111
			• TNFα and IL-6 transcription	
			• Effects inhibited by STC-1 siRNA	
	PMA-activated neutrophils (mouse and human)	Human AT-MSCs	• Respiratory burst (ROS) dependent on SOD3 expression by MSCs	
			Apoptosis	79
			• MPO protein and activity	

(Continues)
Cell types	Model	MSCs used	Antioxidant and other effects of MSCs	References
Islet cells	Cytokine cocktail-exposed islet cells (rat)	Human BM-MSCs	IL-1, TNFα and IFNγ cocktail, Insulin secretion, SOD1, NQO1, HO-1, Ferritin H	78
Hypoxia (1% O₂) exposed porcine islet cells	Human UC-MSC CM and exosomes	Apoptosis, ROS, Mitochondrial O₂⁻, GSH, GPx activity, Inhibition of ERK pathway reversed effects, MSCs secreted high levels of IL-6, MSC exosomes and recombinant IL-6	144	
Hypoxia-exposed neonatal porcine islet cell clusters (porcine)	Human UC-MSC CM and exosomes	Apoptosis, Oxygen consumption rate, Effects reduced after clearance of exosomes in conditioned media	113	
Normoxia- and hypoxia-exposed WJ-MSC engineered islet-like cells (human)	Human WJ-MSCs	Normoxia (21% O₂) and hypoxia (2% O₂) WJ-MSCS formed monolayer while islet-like cells were free floating, Proliferation	145	
Primary islet cells (mouse)	Mouse BM-MSCs Transwell coculture			91
Keratinocytes	High glucose and LPS-treated primary keratinocytes (rat)	Rat BM-MSC-CM	Viability, Wound assay closure, ROS, Dependent on ERK signaling	146
Lung epithelial cells	H₂O₂-treated human alveolar basal epithelial adenocarcinoma cells (A549)	Human BM-MSCs	Cell viability, Transcription and protein expression of STC-1 in H₂O₂-treated MSCs, Cell viability with Anti-STC-1, Cell viability with recombinant STC-1, Similar results in H1299 and PC9, Cell viability with STC-1 siRNA MSCs, ROS with STC-1 siRNA MSCs, mRNA expression of uncoupling protein 2 in A549, mRNA expression of uncoupling protein 2 with anti-STC-1	100
Osteocytes	Mitochondrial DNA (mtDNA)-depleted 143B osteosarcoma cells (human)	Human WJ-MSCs	MSCs in direct co culture donated mitochondria, MSCs and mitochondria-depleted cells removed via auxotrophic restriction, Recovered cellular respiration (oxidative phosphorylation), Restoration of cellular proliferation and motility, Effects of mitochondria donation sustained for 45 passages	124
Renal cells	Cisplatin-treated renal proximal tubular cells (rat)	Human UC-MSC exosomes	ΔΨm, PCNA, Oxidized DNA, Lipid peroxidation, GSH, Bax, Bcl-2	27
Cell types	Model	MSCs used	Antioxidant and other effects of MSCs	References
------------	-------	-----------	--------------------------------------	------------
H₂O₂-treated renal tubular epithelial cells (rat) in vitro	Rat BM-MSCs	Apoptosis	93	
		Cell loss		
		Mitosis		
		Mitox		
		Bax expression		
		p-ERK1/2		
High glucose-treated glomerular mesangial cells (rat)	Rat BM-MSC-CM	ROS	29	
		GLUT1		
		Inhibition of HGF via antibody blocking inhibited antioxidant effect		
Hypoxia reoxygenation of rat kidney epithelial cells (NRK-52E)	Human WJ-MSC extracellular vesicles	ROS	52	
		Activated NRF2		
		ARE activity		
		HO-1		
Oxalate and calcium oxalate monohydrate-treated human proximal tubular epithelial (HK-2)	Human UC-MSC exosomes	Apoptosis	147	
Skeletal muscle cells	Dexamethasone-induced muscle atrophy in L6 rat skeletal muscle cells	Human UC-MSC-CM	Muscle related gene expression (myogenin, desmin)	76
		SOD activity		
		ROS generation		
		CAT, SOD1, GPx-1 in L6 cells		
Dexamethasone-induced muscle atrophy in L6 rat skeletal muscle cells	Human UC-MSC (isolated mitochondria) Centrifugal delivery of exogenous mitochondria	Cell proliferation	125	
		ATP content		
		Mitochondrial O₂⁻		
Trophoblasts	Hypoxia (1% O₂) trophoblast cells (mouse)	Mouse BM-MSCs Transwell	Mitofusin-2	148
		β-HCG and progesterone		
		ATP levels		
		Caspase 3 and 9		
		Bax, Bcl-2		
		Apoptosis		

Abbreviations: ARE, antioxidant response element; AT-MSC, adipose tissue-derived MSC; BAX, Bcl-2-associated X protein; BDNF, brain-derived neurotrophic factor; BM-MSCs, bone marrow-derived MSC; c-caspase 3, cleaved-caspase 3; CM, conditioned medium; CNTF, ciliary neurotrophic factor; COX2, cyclooxygenase-2; ERK, extracellular signal-regulated kinases; GLUT1, glucose transporter 1; GPx, glutathione peroxidase; GST, glutathione S-transferase; H₂O₂, hydrogen peroxide; HGF, hepatocyte growth factor; HO-1, heme oxygenase-1; I/R, ischemia/reperfusion; ICAM, intercellular adhesion molecule; IFNγ, interferon gamma; IL, interleukin; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; M2, type-2 macrophages; MPO, myeloperoxidase; NAC, N-acetylcysteine; NAD(P)H, nicotinamide adenine dinucleotide phosphate hydrogen; NO, Nitric oxide; NQO1, NAD(P)H quinone dehydrogenase 1; NRF2, nuclear factor erythroid 2-related factor 2; NLRP3, nod-like receptor protein-3; O₂⁻, superoxide; pERK1/2, phosphorylated extracellular signal-regulated kinases 1/2; PRDX1-6, peroxiredoxin; ROS, reactive oxygen species; SOD, superoxide dismutase; STAT3, signal transducer and activator of transcription 3; STC-1, stanniocalcin-1; TNFα, tumor necrosis factor alpha; TNT, tunneling nanotube; TXN, thioredoxin; UC-MSC, umbilical cord-derived MSC; β-HCG, β-human chorionic gonadotropin; Δψm, mitochondrial membrane potential.
be generated from a variety of sources. Large amounts of the highly reactive O_2^- anion are generated from NOX expressed by innate leukocytes.99 SOD catalyzes the conversion of O_2^- to H_2O_2 which phagocytes and neutrophils use to generate hypochlorous acid (HOCl) via myeloperoxidase (MPO).98 Collectively, this is referred to as respiratory burst, a crucial element of the bactericidal response and inflammatory signaling. Nonetheless, MPO activity and O_2^- are also associated with various inflammatory diseases. In inflammatory bouts, there is often a parallel increase in the expression of iNOS in leukocytes and, thus, subsequent generation of the free radical NO. Nonimmune cells such as epithelial cells are also capable of expressing iNOS and NOX to generate NO and O_2^-.

MSC treatments reduce inflammation and oxidative stress in colitis, pancreatitis, arthritis, sepsis, vasculitis, stroke, myocardial infarction, hyperoxic lung injury, and I/R injury of the kidneys and bowel (Table 1). These effects have included a reduction in inflammatory cytokines TNFα, IFNγ, interleukin (IL)-1β, IL-6, IL-9, and IL-4; decreased expression of ROS producing enzymes NOX, MPO, and iNOS; as well as a net reduction in the infiltration of immune cells such as neutrophils (Table 1). The anti-inflammatory effects of MSCs in pancreatitis were partially dependent on their expression of the antioxidant pathway enzyme HO-1.30 Previously, it was demonstrated in a model of sepsis that MSC treatments can reduce pro-inflammatory cytokines in the serum and normalize thiol/disulfide redox pairings responsible for free radical scavenging.51 Decreased levels of IL-1β and TNFα superseded restoration of redox homeostasis. This suggests that the aversion of oxidative injury was secondary to the immunomodulation of pro-inflammatory signaling, at least in acute septic inflammation. Conversely, MSCs can directly reduce oxidative injury in many cell types in vitro; thus, it is likely that MSCs may also reduce oxidative stress in tissues by mechanism other than suppressing the immune system.27,54,60,75,77,100 This is highlighted in in vivo and organotypic ex vivo models of myocardial I/R injury where MSC-derived exosomes ameliorated infarction injury without altering leukocyte recruitment.101 In in vivo experiments, protein oxidation was reduced by MSC-derived exosomes after 1 hour; neutrophils were yet to infiltrate into the tissue. After 24 hours, MSCs reduced peripheral blood leukocyte numbers and neutrophil infiltration into the myocardium; thus, the antioxidative activity of MSCs preceded signals recruiting leukocytes.101 This suggests that MSCs can attenuate oxidative stress-induced tissue injury first, which can limit the recruitment of immune cells and subsequent inflammation in this model. This may be mediated by their ability to suppress NOX1 and 2 on resident cells which are downregulated by MSC treatments in acute myocardial infarction, sepsis-induced brain injury, acute ischemic stroke, I/R injury to kidneys, and small bowel which were all associated with reduced inflammation.25,84,102-104

Neutrophils appear to be key mediators of oxidative stress in inflammation. These cells harbor an abundance of MPO, a major catalyst for hypochlorite and NO-derived oxidants.105,106 MSCs attenuate the infiltration of neutrophils and reduce MPO levels in several disease models.50,107,108 MSCs can also directly dampen the respiratory burst in neutrophils and suppress MPO activity required to produce free radical required for their pro-inflammatory function which was dependent on SOD3 and occurs in a paracrine manner.79,80,109 Likewise, MSCs can also directly decrease ROS and MPO in stimulated monocytes and macrophages which suppress their pro-inflammatory phenotype.110,111 These data suggest that MSCs not only suppress the immune system to prevent oxidative injury, but also that their mechanism of immunosuppression is reliant on their antioxidant properties.

4.3 Cellular bioenergetics

Free radicals are produced by several metabolic processes and the mitochondria during cellular respiration. Dysfunction in mitochondria can cause cellular injury which is mediated through the generation of O_2^- and proteins that initiate cellular apoptosis. Depolarization of the mitochondrial membrane potential ($\Delta\psi_m$) is a hallmark of mitochondrial dysfunction leading to cell death. Hyperglycemia can also cause oxidative stress via several mechanisms including the formation of free radical as by-products of glucose auto-oxidation that deplete antioxidant defense and advanced glycation end products that induce cellular stress. In models of hyperglycemia, MSC treatments can reduce the expression of glucose and fatty acid transports in kidney and cardiac tissue cells, which prevents glucose transport and ROS generation.29,56 Therefore, the antioxidant effects of MSC treatments in models of diabetes may be downstream of glycemic control. Conversely, regulation of mitochondrial function and oxidative phosphorylation by MSCs has been implicated in several disease models. MSC treatments improve chemotherapy-induced cognitive impairment, which associates with enhanced respiratory capacity of the mitochondria.112 The effects of MSCs on the mitochondria appear to occur in a paracrine manner as MSC-CM increases the oxygen consumption rate of hypoxia-exposed neonatal porcine islet cells and LPS-treated macrophages.113,114 Similarly, MSC-derived extracellular vesicles suppress mitochondrial O_2^- levels in H_2O_2-treated human fetal hepatocytes, which is associated with a reduction in apoptosis.90

The potential for MSCs to directly attenuate mitochondrial dysfunction has been demonstrated in an in vitro model of I/R injury in mouse ventricular myocytes.54 Within 5 minutes of reperfusion, cells exhibited an exaggerated $\Delta\psi_m$ hyperpolarization, which was reduced by conditioning the reperfusion solution with MSCs. The exaggerated hyperpolarization was followed by a continuous depolarization in controls after 15 minutes which was also attenuated by the paracrine secretion of MSCs. Decay of the $\Delta\psi_m$ was likely a result of the mitochondrial permeability transition pore opening. The exaggerated hyperpolarization of the $\Delta\psi_m$ was also averted by a mitochondrial ROS scavenger which simultaneously decreased mitochondrial O_2^- generation demonstrating the close relationship between these events. Similarly, MSC secretion decreased mitochondrial O_2^-, which led to the suggestion that MSCs may also attenuate $\Delta\psi_m$ dysfunction via scavenging of O_2^-. Depolarization of the $\Delta\psi_m$ in cisplatin-treated renal proximal tubular cells has also been reportedly attenuated using exosomes.
derived from UC-MSCs. In vitro, BM-MSCs were demonstrated to upregulate uncoupling protein 2 (UCP2) transcription in H2O2-treated alveolar basal epithelial adenocarcinoma cells which reduces the formation of mitochondria-derived O2− by lowering the proton-motive force across the mitochondrial membrane and provides another potential mechanism for the alleviation of mitochondrial dysfunction. This was regulated by the paracrine secretion of stanniocalcin-1 by MSCs, which enhanced UCP2, correlating with cell survival and decreased ROS generation. MSCs secreted stanniocalcin-1 may also attenuate inflammation as it decreases mitochondrial ROS and subsequent activation of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. BM-MSCs inhibited the activity of the NLRP3 inflammasome in primed macrophages which is responsible for recognizing damage-associated molecular patterns and initiating the inflammatory cascade through activation and secretion of IL-1. MSCs have also been demonstrated to secrete the redox-sensitive protein DJ-1, which has established roles in maintaining mitochondrial biogenesis and respiratory chain efficiency and could potentially mediate the neuroprotective effects of the MSC secretome as shown in Parkinson's disease models. Collectively, these studies demonstrate that MSCs can ameliorate mitochondrial dysfunction in a paracrine manner with diverse therapeutic outcomes.

4.4 Mitochondrial donation

Recently, a concept has emerged that MSCs may be able to alter oxidative phosphorylation and ROS generation in cells through donation of mitochondria themselves. Islam et al. observed mitochondrial transfer from human BM-MSCs to alveolar epithelium in a mouse model of LPS-induced lung injury. BM-MSC administration attenuated decreased intracellular ATP in the alveoli caused by lung injury; notably, ATP (visualized by a molecular probe) was predominantly restored at the site of mitochondrial transfer and immediately surrounding alveoli. MSCs with a mutation in connexin 43, a protein involved in the formation of gap junctions, were unable to transfer mitochondria despite being functionally competent and subsequently did not restore ATP, surfactant secretion, or reduce leukocyte infiltration. This phenomenon only occurred in LPS-exposed lungs indicating that mitochondrial transfer is dependent on stimulants from damaged tissues.

MSCs cultured in hyperoxic (21% O2; normoxic atmosphere) conditions produce high levels of mitochondrial O2−, depolarize Δψm, and induce mitophagy. Mitochondria are loaded into phagosomes and shuttled to the plasma membrane. These effects were reduced by culturing MSCs closer to a normoxic oxygen concentration (5% O2; hypoxic atmosphere). Macrophages have been observed to phagocytose these vesicles containing the partially depolarized mitochondria, which can fuse with endogenous mitochondria in macrophages. This protects silica-exposed macrophages by increasing their oxygen consumption rate and decreasing mitochondrial O2− production. These effects could not be elicited when MSCs were substituted by human fibroblasts. This suggests that mitochondrial transfer may be stimulated by oxidative stress in MSCs. Conversely, MSCs have also been demonstrated to engulf mitochondria from other somatic cells exposed to H2O2. MSCs degraded the engulfed mitochondria which stimulated HO-1 expression, mitochondrial biogenesis in MSCs, and the transfer of functional MSCs to damaged cells. Inhibition of mitophagy negated the cytoprotective effects of MSCs in other somatic cells, which suggests that MSC sensing of damaged mitochondria may mediate their therapeutic responses. Supporting this, the cell contact-dependent transfer of mitochondria from chemotherapy-treated T lymphocytes to MSCs was also determined to be critical to their ability to decrease mitochondrial O2− production and cell death in T lymphocytes. Nonetheless, in this study, mitochondrial transfer appeared to be predominately unidirectional and very few MSC-derived mitochondria were observed in T cells. This suggests that MSC sensing of mitochondria can promote therapeutic mechanisms other than mitochondrial donation.

Although extracellular vesicles can contain whole mitochondria, several studies suggest that the donation of mitochondria may be contact-dependent. MSCs have been found to transfer mitochondria via tunneling nanotubes (TNT) to glucose-deprived and hypoxia-reoxygenated cardiomyocytes which prevented Δψm depolarization and cell apoptosis. Albeit inhibition of TNT formation only partially reversed the effects of MSCs indicating other cytoprotective mechanisms were still active. Similarly, MSCs transfer mitochondria to chemotherapy-treated endothelial cells, which appears to occur in a unidirectional manner, unlike in T lymphocytes. Miro1 is important to TNT formation and its overexpression in MSCs can enhance mitochondrial transfer. The effects of MSC mitochondrial donation are sufficient to rescue cellular respiration, proliferation, and motility in mitochondria-depleted osteosarcoma cells. These effects can be maintained for 45 passages, which highlights the therapeutic potential of MSC-derived mitochondria. Exogenous application of mitochondria isolated from MSCs may also offer therapeutic benefit and are able to protect dexamethasone-treated muscle cells form oxidative stress in vitro. Albeit, delivery of MSC-derived mitochondria in vivo poses a challenge. While several studies have demonstrated contact-dependent transfer of mitochondria between MSCs and other cells, MSCs have also been reported to donate mitochondria to LPS-treated macrophages via secreted extracellular vesicles. Exposure of macrophages to MSC-derived exosomes promoted their indication to the type 2 phenotype, which exerted anti-inflammatory effects after adoptive transfer in septic lung injury. The effects of MSCs were dependent on enhancing mitochondrial function in macrophages and were inhibited by damaging mitochondria in MSCs and blocking extracellular vesicles. The therapeutic use of MSCs to deliver functional mitochondria to damaged tissue is an intriguing concept and warrants further study; however, another recent advancement reported by Panfoli et al. suggests that the exosomes of MSCs are capable of oxidative phosphorylation independent of the mitochondria. Subsets of MSC-derived exosomes isolated from the umbilical cord of term newborns were discovered to contain complexes of the ETC embedded in the membrane. These exosomes possessed an electrochemical membrane potential, consumed O2, and produced ATP.
The therapeutic application of these exosomes is yet to be investigated; nonetheless, this may present a viable tool to restore dysfunctional oxidative phosphorylation and ATP synthesis in damaged cells.

5 | CONCLUSION

The presented studies evidently demonstrate that MSCs exhibit antioxidant potential either directly via scavenging of ROS and donating mitochondria or indirectly by upregulation antioxidant defenses in other cells and altering cellular bioenergetics. These effects can occur in combination with the previously recognized trophic and vesicular components of the MSC secretome acting directly on regenerative pathways. Likewise, antioxidant and trophic pathways appear to mediate the cytoprotective effect of MSC treatments which are ROS dependent. MSCs have frequently been utilized in inflammatory diseases to modulate the immune response. In this context, immunosuppression can avert ROS generation which is generated by MPO and NOX enzymes as a part of the inflammatory response. However, MSCs have now been shown to exert immunosuppressive effects by dampening ROS production and enhancing mitochondrial function in macrophages and neutrophils. Therefore, the antioxidant properties confer a role in the trophic and anti-inflammatory mechanisms of MSC therapy. Considering that oxidative stress is implicated in almost every disease, these antioxidant properties, along with regenerative capacity of MSC secretome, may explain why MSC treatments are useful for such a spectrum of seemingly unlinked pathologies (Figure 1). Future studies should seek to clarify disease-specific nuances of the antioxidative mechanisms of MSCs and MSC-derived products. Likewise, improving the antioxidant effects of MSCs by enhancing the expression of antioxidant enzymes or promoting mitochondrial donation may be useful to optimize MSC-based therapies and improve outcomes.

CONFLICT OF INTEREST

The authors declared no potential conflicts of interest.

AUTHOR CONTRIBUTIONS

R.S.: conception and design, manuscript writing, final approval of manuscript. K.N.: conception and design, manuscript writing, financial support, final approval of manuscript.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Kulmira Nurgali https://orcid.org/0000-0002-2597-6929

REFERENCES

1. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829-848.
2. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6):507-520.
3. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076-1084.
4. van Poll D, Parekkadan B, Rinkes IB, et al. Mesenchymal stem cell therapy for protection and repair of injured vital organs. Cell Mol Bioeng. 2008;11(1):42-50.
5. Gao F, Chiu SM, Motan DAL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062–e2062.
6. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-183.
7. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19.
8. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-R462.
9. Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472-485.
10. Aon MA, Cortassa S, O’Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta. 2010;1797(6–7):865-877.
11. Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009;16(7):1040-1052.
12. De Deken X, Corvilain B, Dumont JE, et al. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal. 2014;20(17):2776-2793.
13. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82:969-974.
14. Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349-1356.
15. Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta (BBA)—Biomembr. 2006;1758(8):994-1003.
16. Chen M-F, Lin C-T, Chen W-C, et al. The sensitivity of human mesenchymal stem cells to ionizing radiation. Intern J Radiat Oncol Biol Phys. 2006;66(1):244-253.
17. Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885-1893.
18. Gorbunov NV, Garrison BR, McDaniel DP, et al. Adaptive redox response of mesenchymal stromal cells to stimulation with lipopolysaccharide inflamagen: mechanisms of remodeling of tissue barriers in sepsis. Oxid Med Cell Longev. 2013;2013:1-16.
19. Liu T, Ma X, Ouyang T, et al. SIRT1 reverses senescence via enhancing autophagy and attenuates oxidative stress-induced apoptosis through promoting p53 degradation. Int J Biol Macromol. 2018;117:225-234.
20. Pan H, Guan D, Liu X, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26(2):190-205.
21. Lan YW, Choo KB, Chen CM, et al. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther. 2015;6:97.
22. Qin HH, Filippi C, Sun S, Lehec S, Dhawan A, Hughes RD. Hypoxic preconditioning potentiates the trophic effects of mesenchymal stem cells on co-cultured human primary hepatocytes. Stem Cell Res Ther. 2015;6(1):237.
23. Kim Y, Jin HJ, Heo J, et al. Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia. 2018;32(12):2672-2684.
and stimulate the repair of tubular epithelial cells in an irreversible model of unilateral ureteral obstruction. *Nephrol Ther.* 2018;23(8):728-736.

25. Chang C-L, Chen H-H, Chen K-H, et al. Adipose-derived mesenchymal stem cell-derived exosomes markedly protected the brain against sepsis syndrome induced injury in rat. *Am J Transl Res.* 2019;11(7):3955-3971.

26. Nakano M, Nagaiishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. *Sci Rep.* 2016;6:24805.

27. Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. *Stem Cell Res Ther.* 2013;4(2):34.

28. Ezquer M, Urzua CA, Montecino S, Leaf K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. *Stem Cell Res Ther.* 2016;7:42-42.

29. Lv S, Cheng J, Sun A, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress. *Diabetes Res Clin Pract.* 2014;104(1):143-154.

30. Ma Z, Song G, Zhao D, et al. Bone marrow-derived mesenchymal stromal cells ameliorate severe acute pancreatitis in rats via hemeoxygenase-1-mediated anti-oxidant and anti-inflammatory effects. *Cytotherapy.* 2019;21(2):162-174.

31. Einin A, Zhu X-Y, Jonnada S, Lerman A, van Wijnen AJ, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in swine. *Cell Transplant.* 2018;27(7):1080-1095.

32. Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. *Neural Regen Res.* 2014;9(8):798-805.

33. Xie C, Jin J, Lv X, Tao J, Wang R, Miao D. Anti-aging effect of oxidised extracellular vesicles from adipose derived mesenchymal stem cells against oxidative stress in the bowels of Interleukin-10 knockout mice. *J Neuroinflammation.*

34. Jung K-J, Lee KW, Park CH, et al. Mesenchymal stem cells decrease oxidative stress in the brains of Interleukin-10 knockout mice. *Gut Liver.* 2020;14(1):100-107.

35. Calió ML, Marinho DS, Ko GM, et al. Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. *Free Radic Biol Med.* 2014;70:141-154.

36. Zong C, Zhang H, Yang X, et al. The distinct roles of mesenchymal stem cells in the initial and progressive stage of hepatocarcinoma. *Cell Death Dis.* 2018;9(3):345.

37. Shalaby SM, Amal S, Abd-Allah SH, et al. Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli-induced acute lung injury in mice. *Cytotherapy.* 2014;16(6):764-775.

38. Liu Z, Meng F, Li C, et al. Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. *Cytotherapy.* 2014;16(9):1207-1219.

39. Chen M, Li X, Zhang X, et al. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. *J Neuroinflammation.* 2015;12:61-61.

40. Evangelista AF, Vannier-Santos MA, de Assis Silva GS, et al. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. *J Neuroinflammation.* 2018;15(1):189.

41. Soria B, Martin-Montalvo A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy. *Front Cell Neurosci.* 2019;13:204.

42. Kim Y, Jo S-H, Kim WH, et al. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. *Stem Cell Res Ther.* 2015;6:229.

43. Cui Y, Ma S, Zhang C, et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. *Behav Brain Res.* 2017;320:291-301.

44. Stavely R, Robinson AM, Miller S, et al. Allogeneic Guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. *Stem Cell Res Ther.* 2015;6(1):1.

45. Stavely R, Robinson AM, Miller S, et al. Human adult stem cells derived from adipose tissue and bone marrow attenuate enteric neurophy in the Guinea-pig model of acute colitis. *Stem Cell Res Ther.* 2015;6(1):1.

46. Robinson AM, Miller S, Payne N, Boyd R, Sakkal S, Nurgali K. Neuroprotective potential of mesenchymal stem cell-based therapy in acute stages of TNBS-induced colitis in Guinea-pigs. *PloS One.* 2015;10(9):e0139023.

47. Song WJ, Li Q, Ryu MO, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. *Stem Cell Res Ther.* 2018;9(1):91.

48. Ren G, Su J, Zhang L, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. *Stem Cells.* 2009;27(8):1954-1962.

49. Nejad-Moghaddam A, Ajdari S, Tahmasbspour E, Goodarzi H, Panahi Y, Ghanei M. Adipose-derived mesenchymal stem cells for treatment of airway injuries in a patient after long-term exposure to sulfur mustard. *Cell J.* 2017;19(1):117-126.

50. Pulavendran S, Vignesh J, Rose C. Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. *Int Immunopharmacol.* 2010;10(4):513-519.

51. Iyer SS, Torres-Gonzalez E, Neujahr DC, et al. Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. *Stem Cells Intern.* 2010;2010:1-9.

52. Zhang G, Zou X, Huang Y, et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. *Kidney Blood Pressure Res.* 2016;41(2):119-128.

53. Mahrouf-Yorgov M, Auged L, Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. *Cell Death Differ.* 2017;24(7):1224-1238.

54. DeSantiago J, Bare DJ, Banach K. Ischemia/reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. *Stem Cells Dev.* 2013;22(18):2497-2507.

55. Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells therapy enhances the efficacy of pregabalain and prevents its motor impairment in paclitaxel-induced neuropathy in rats: role of Notch1 receptor and JAK/STAT signaling pathway. *Behav Brain Res.* 2019;360:303-311.

56. Hamza AA, Filkry EM, Abdallah W, Amin A. Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats. *Sci Rep.* 2018;8(1):9827.

57. Maria AT, Toupet K, Bony C, et al. Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in HOCI-induced systemic sclerosis. *Arthritis Rheumatol.* 2016;68(4):1013-1025.

58. Quintanilha LF, Takami T, Hirose Y, et al. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. *Hepatol Res.* 2014;44(10):E206-E217.
59. Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. *Antioxid Redox Signal*. 2017;26(11):563-582.

60. Kim W-S, Park B-S, Kim H-K, et al. Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. *J Dermatol Sci*. 2008;49(2):133-142.

61. Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thébaud B. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. *Stem Cells Dev*. 2012;21(15):2789-2797.

62. Yang J, Zhang Y, Zang G, et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. *Andrology*. 2018;6(3):498-509.

63. Ni S, Wang D, Qiu X, Pang L, Song Z, Guo K. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling. *Int J Clin Exp Pathol*. 2015;8(7):7752-7761.

64. Sherif IO, Sabry D, Abdel-Aziz A, Sarhan OM. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. *Stem Cell Res Ther*. 2018;9(1):196.

65. Sun T, Gao GZ, Li RF, et al. Bone marrow-derived mesenchymal stem cell transplantation ameliorates oxidative stress and restores intestinal mucosal permeability in chemically induced colitis in mice. *Am J Transl Res*. 2015;7(5):891-901.

66. Abd-Elhalem SS, Haggag NZ, El-Shinnawy NA. Bone marrow-derived mesenchymal stem cells suppress IL-9 in adjuvant-induced arthritis. *Autoimmunity*. 2018;51(1):25-34.

67. Jung KH, Yi T, Son MK, Song SU, Hong SS. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis (journal article). *Arch Pharm Res*. 2015;38(5):742-751.

68. Qiao H, Zhou Y, Qin X, Cheng J, He Y, Jiang Y. NADPH oxidase signaling pathwaymediates mesenchymal stem cell-induced inhibition of hepatic stellate cell activation. *Stem Cells Intern*. 2018;2018:1-13.

69. Ge Y, Zhang Q, Jiao Z, Li H, Bai G, Wang H. Adipose-derived stem cells reduce liver oxidative stress and autophagy induced by ischemia-reperfusion and hepatectomy injury in swine. *J Physiol*. 2018;214:62-69.

70. Shojaei E, Mehranjani MS, Sharifatreh SM. Adipose-derived mesenchymal stromal cell transplantation at the graft site improves the structure and function of autografted mice ovaries: a stereological and biochemical analysis. *Cytotherapy*. 2018;20(11):1324-1336.

71. Kemp K, Gray E, Mallam E, Scolding N, Wilkins A. Inflammatory cytokine induction regulated of superoxide dismutase 3 expression by human mesenchymal stem cells. *Stem Cell Rev Rep*. 2010;6(4):548-559.

72. Mitchell R, Mellows B, Sheard J, et al. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. *Stem Cell Res Ther*. 2019;10(1):116-116.

73. Liu Q, Luo Z, He S, et al. Conditioned serum-free medium from umbilical cord mesenchymal stem cells has anti-photoaging properties. *Biotechnol Lett*. 2013;35(10):1707-1714.

74. Niu Y, Xia X, Song P, et al. Bone mesenchymal stem cell-conditioned medium attenuates the effect of oxidative stress injury on NSCs by inhibiting the Notch1 signaling pathway. *Cell Biol Int*. 2019;43(11):1267-1275.

75. Cui Y, Xu N, Xu W, Xu G. Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In *Vitro Cell Develop Biol–Anim*. 2017;53(4):328-335.

76. Park C-M, Kim MJ, Kim S-M, Park JH, Kim ZH, Choi YS. Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ROS generation. In *Vitro Cell Develop Biol–Anim*. 2016;52(1):68-76.

77. Liu S-H, Huang J-P, Lee RK-K, et al. Paracrine factors from human placental multipotent mesenchymal stromal cells protect endothelium from oxidative injury via STAT3 and manganese superoxide dismutase activation. *Biol Reprod*. 2010;82(5):905-913.

78. Laporte C, Tubbs E, Cristante J, et al. Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. *Stem Cell Res Ther*. 2019;10(1):85.

79. Jiang D, Muschhammer J, Qi Y, et al. Suppression of neutrophil-mediated tissue damage—a novel skill of mesenchymal stem cells. *Stem Cells*. 2016;34(9):2393-2406.

80. Yao J, Zheng J, Cai J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. *FASEB J*. 2018;33(2):1695-1710.

81. Jones J, Estrada A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. *Mol Ther*. 2015;23(1):130-138.

82. Shen Y, Jiang X, Meng L, et al. Transplantation of bone marrow mesenchymal stem cells prevents radiation-induced artery injury by suppressing oxidative stress and inflammation. *Oxid Med Cell Longev*. 2018:2018:13.

83. de Godoy MA, Saraiva LM, de Carvalho LR, et al. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. *J Biol Chem*. 2018;293(6):1957-1975.

84. Chang C-L, Sung P-H, Sun C-K, et al. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. *J Pineal Res*. 2015;59(2):206-220.

85. Feng J, Lu C, Dai Q, Sheng J, Xu M, SIRT3 facilitates anionic fluid stem cells to repair diabetic nephropathy through protecting mitochondrial homeostasis by modulation of mitophagy. *Cell Physiol Biochem*. 2018;44(4):1508-1524.

86. Ezquer F, Quintanilla ME, Morales P, et al. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats. *Addict Biol*. 2019;24(1):17-27.

87. Hogan SE, Salazar MPR, Cheadle J, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. *Am J Physiol–Lung Cell Mol Physiol*. 2019;316(5):L723-L737.

88. El-Tantawy WH, Al Haleem ENA. Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats. *Mol Cell Biochem*. 2014;391(1-2):193-200.

89. Ayatollahi M, Hassani Z, Jamshidzadeh A, Gramizadeh B. Antioxidant effects of bone marrow mesenchymal stem cell against carbon tetrachloride-induced oxidative damage in rat livers. *Intern J Organ Transplant Med*. 2014;5(4):166-173.

90. Salem NA, El-Shamarka M, Khadrawy Y, et al. New prospects of mesenchymal stem cells for ameliorating temporal lobe epilepsy. *Int J Pharmaceutics*. 2018;26(4):963-972.

91. Yoshimatsu G, Sakata N, Tsuchiya H, et al. The co-transplantation of bone marrow-derived mesenchymal stem cells and cell-derived extracellular vesicles promotes restoration superoxide dismutase 3 expression. *Arch Pharm Res*. 2018;33(2):1695-1710.

92. Liu H, McTaggart SJ, Johnson DW, et al. Original article anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. *Cytotherapy*. 2012;14(2):162-172.
ANTIOXIDANT PARADIGM OF MSC THERAPY

94. Zarjou A, Kim J, Traylor AM, et al. Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1. Am J Physiol—Renal Physiol. 2011;300(1):F254–F262.

95. Chen X, Wu S, Tang L, et al. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J Cell Physiol. 2019;234(5):7301–7319.

96. Nowak WN, Taha H, Khamakova-Trojanowska N, et al. Murine bone marrow mesenchymal stromal cells respond efficiently to oxidative stress despite the low level of heme oxygenases 1 and 2. Antioxid Redox Signal. 2018;29(2):111–127.

97. Ding C, Zou Q, Wang F, et al. HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway. Cell Physiol Biochem. 2018;45(4):1316–1332.

98. Kim YW, West ZX, Byzova TV. Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berlin, Germany). 2013;91(3):323–328.

99. Robinson JM. Reactive oxygen species in phagocytic leukocytes. His- tochem Cell Biol. 2008;130(2):281–297.

100. Ohkouchi S, Block GJ, Katsha AM, et al. Mesenchymal stem cell–derived exosomes with biological substrates: gaining chemical insight into human mesenchymal stem cell therapeutic potential. Stem Cell Res. 2015;16:102–112.

101. Lin H-Y, Liou C-W, Chen S-D, et al. Mitochondrial transfer from multipotent mesenchymal stem cells (MMSC) to mitochondria induces apoptosis of pancreatic β-cells. Stem Cells Dev. 2016;25(7):1021–1032.

102. Robinson JM. Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol. 2008;130(2):281–297.

103. Ohkouchi S, Block GJ, Katsha AM, et al. Mesenchymal stem cell–derived exosomes with biological substrates: gaining chemical insight into human mesenchymal stem cell therapeutic potential. Stem Cell Res. 2015;16:102–112.

104. Ohkouchi S, Block GJ, Katsha AM, et al. Mesenchymal stem cell–derived exosomes with biological substrates: gaining chemical insight into human mesenchymal stem cell therapeutic potential. Stem Cell Res. 2015;16:102–112.
130. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):98.

131. Ghorbani A, Feizpour A, Hashemzahi M, et al. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of Guinea pigs model of chronic obstructive pulmonary disease. J Facult Pharm Tehran Univ Med Sci. 2014;22(1):26-26.

132. Malaquias M, Oyama L, Jericó P, et al. Effects of mesenchymal stromal cells play a role the oxidant/antioxidant balance in a murine model of asthma. Allergol Immunopathol. 2018;46(2):136-143.

133. Chang YS, Choi SJ, Ahn SY, et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PloS One. 2013;8(1):e52419.

134. Zhang G, Zou X, Miao S, et al. The anti-oxidative role of microvesicles derived from human Wharton-jelly mesenchymal stem cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PloS One. 2014;9(3):e92129-e92129.

135. Hsiao C-H, Ji AT-Q, Chang C-C, Cheng CJ, Lee LM, Ho JHC. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther. 2015;6(1):113.

136. Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10-18.

137. Song M, Jue S-S, Cho Y-A, Kim EC. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res. 2015;93(6):973-983.

138. Torrente D, Avila M, Cabezas R, et al. Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol. 2014;33(7):673-684.

139. Bonafe R, Scambi I, Peroni D, et al. Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp Cell Res. 2016;340(1):150-158.
Author/s:
Stavely, R; Nurgali, K

Title:
The emerging antioxidant paradigm of mesenchymal stem cell therapy

Date:
2020-06-04

Citation:
Stavely, R. & Nurgali, K. (2020). The emerging antioxidant paradigm of mesenchymal stem cell therapy. STEM CELLS TRANSLATIONAL MEDICINE, 9 (9), pp.985-1006. https://doi.org/10.1002/sctm.19-0446.

Persistent Link:
http://hdl.handle.net/11343/244721

File Description:
published version

License:
CC BY