The effect of mycorrhizal species on the growth, essential oils, yield and morpho-physiological parameters of Lemon Balm (*Melissa officinalis* L.) under water-deficit conditions in Tabriz region

Neda Shamizi¹, Mehrdad Yarnia², Nasser Mohebalipour²*, Ali Faramarzi¹ & Jalil Ajalli¹

¹Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
²Department of Agronomy and Plant Breeding, Tabriz Branch, Islamic Azad University, Tabriz, Iran

*Email: n.mohebalipour@gmail.com

RESEARCH ARTICLE

ARTICLE HISTORY
Received: 04 July 2021
Accepted: 07 November 2021
Available online
Version 1.0 (Early Access): 12 March 2022

OPEN ACCESS

Abstract
Two years experiment were conducted in 2016-2017 as split-plot based on randomized completely block design with three replications to morpho-physiological responses of Lemon Balm (*Melissa officinalis* L.) plant to mycorrhizal fungi species treatments (control, *Rhizophagus intraradices*, *Funneliformis mosseae*, *Glomus hoi* and combined application of all three species) under different irrigation regimes (irrigation after 70, 100, 130 and 160 mm evaporation). In results, the highest oil yield was achieved in irrigation at 100 mm+ application of all three species of mycorrhizal fungi. Irrigation after 100 mm evaporation increased this trait by 33% compared to irrigation after 70 mm evaporation due to increase in essential oil percentage under dehydration conditions, however, increasing drought stress led to a significant decrease in essential oil yield. In terms of physiological parameters, dehydration led to an increase in proline content and antioxidant activates. In general and according to the results, modifying the destructive effects of water deficit stress and the use of mycorrhiza can increase the essential oil of lemon Balm. But aggravating water deficiency conditions can drastically reduce the essential oil yield. The founds could be helpful for herbal medicine researchers to achieve high-quality drugs.

Keywords
Essential oil, lemon balm, Medicinal plants, Mycorrhiza

Introduction
Lemon balm (*Melissa officinalis*) that belongs to the Lamiaceae family is an important aromatic medicinal plant for its therapeutic characteristics for example in digestive problems, including upset stomach, bloating, intestinal gas (flatulence), vomiting and colic; relieve of pain, including menstrual cramps, headache and toothache; and for mental disorders, including hysteria and melancholia (5, 11, 27). The therapeutic properties of this plant are derived from the antioxidant, antimicrobial, anti-inflammatory, anxiolytic and anti-depressant (10, 23, 33, 38). Fresh herbs contain phenolic compounds, l-ascorbic acid, carotenoids, flavonoids and terpenoids. Lemon balm leaves are rich in flavonoids (0.5 % dry weight) consist of quercitrin (a derivative of quercetin), ramno-citrin, luteolin and its derivatives (luteolin 7-o-β-d-glucuronopyranoside, luteolin 3'-o-β-d-glucuronopyranoside, apigenin 7-o-β-d-glucopyranoside and luteolin 7-o-β-d-gluco-pyranoside-3'-o-β-d-glucuronopyranoside).
major components among terpenoids are neral. Geranyl acetate, ursolic acid and tannins (31). 0.087 g/100 g of coffee acid and 21.15 g/100 g of rosmarinic acid were detected in the hydroethanolic extract of lemon balm leaves and phenolic compounds constituted 33.97% (30). Also the most important components of the essential oil of this plant are citral, citronellal, geraniol and linalool (2).

Reaching to high volume of essential oils of medicinal plants are always interested for researchers, however, biotic and abiotic stresses could influence the quality and quantity of essential oil. Controlled drought stress could induce more essential oil synthesis, however, suitable application of drought stress at proper time and stage of plant growth has great importance. Drought, like other stress, has detrimental effects on plant performance (25). Drought has various physiological effects on plants. Drought stress reduced leaf potential, stomatal conductance, nitrate recovery and cell elongation. Decreasing in chlorophyll content of plants exposed to water deficit stress is caused by degradation of pigments and chlorophyll (22). Drought is a multi-dimensional stress that affects plants at different levels in space and time. So the physiological response to Drought is very complex and unpredictable. In fact, the signs of drought are the discoloration of the leaves from green to gray. At the same time the stomata are closed and photosynthesis is drastically reduced (25).

Organic farming is dependent on natural soil microflora that enhances plant growth and yield by employing a variety of beneficial bacteria and fungi, including arbuscular fungi and plant growth promoting bacteria (25). According to available reports, 60 to 90 % of the total fertilizer used is lost and only 10 to 40 % is absorbed by the plant. Studies have shown that microorganisms can play an important role in the integrated management of fertilizers to maintain soil productivity and fertility. Plant growth promoting bacteria and mycorrhizal fungi can increase fertilizer use efficiency (3). Bio fertilizers maintain the soil environment through nitrogen fixation, phosphorus and potassium solubilization or mineralization, release of growth stimulants, production of antibiotics and decomposition of organic matter in the soil, rich in macro and micro elements (31). Previous studies have shown that mycorrhizal fungi affect plants in a variety of ways, including accelerated growth, nutritional status, water intake, disease resistance and resistance to stress. The response of plants to root colonization by mycorrhizal fungi is largely dependent on the plant type and strain of the fungus and environmental conditions such as soil nutrient levels, light intensity and temperature. Also root colonization of plants by several strains of fungi has more positive effect than single strain application (24).

The presence of arbuscular mycorrhizal fungi is important for ecosystem stability, plant establishment and biodiversity conservation. The role of mycorrhizal fungi in biodiversity and ecosystem function has been well illustrated, in particular by their role in plant diversity and productivity. The positive relationship between plant diversity and colonization of mycorrhizal fungi was confirmed (8). Symbiotic fungi increase the nutrient uptake of host plants and can increase plant growth, quality and resistance to environmental stress (6). Mycorrhizal fungi increase the uptake of nutrients, especially phosphorus, thereby enhancing the growth and yield of plants (37). Mycorrhizal fungi, like other fungi, do not spread their spores through the wind, but are transmitted from plant to plant by soil transfer (19). One of the important effects of mycorrhizal fungi is to increase crop yields, especially in low yield soils. Mycorrhizal fungi increase plant resistance to dehydration by increasing water uptake and a number of nutrients such as zinc and copper, improving leaf cell biogenesis, regulating stomata activity, root growth and development. Mycorrhizal fungi also increase plant resistance to dehydration by regulating plant hormonal activities (18). So, this study was conducted for determination of the effect of different levels of irrigation and different mycorrhizal species on growth and yield essential oil yield of lemon balm.

Materials and Methods

According to Domartin climate conditions, the region has a semi-arid climate. The average annual temperature is 10 °C, the average annual maximum temperature is 16 °C, and the average annual minimum temperature is 2.2 °C. The average annual rainfall in this area is 272.3 mm. The pH of the soils in this region is alkaline to medium.

Soil characteristics

Before any agricultural practices to determine the physical and chemical properties of the soil, soil samples were taken from depth of 0-30 cm then transferred to laboratory for analysis. The results of soil analysis showed that the field soil had sandy loam texture, salinity of 1.56 ds/m and acidity of 7.53 (Table 1). Accordingly the proper volume of fertilizers was used but phosphorus and potassium fertilizers were not used in this study.

Table 1. Results of field soil decomposition during two crop years

Clay (%)	Silt (%)	Sand (%)	Organic carbon (mg kg⁻¹)	The acidity of saturated mud (%)	EC (ds/m)	Depth (cm)
44	42	14	8.60	7.5	1.02	0-30

Field experiment

The experiment was conducted as split plot in a randomized complete block design with three replications. The experiment was conducted during two cropping seasons of 2016-2017 at the Agricultural Station of Islamic Azad University, Tabriz Branch (46°17'/ E, 38°5'/ N, 1360 m above sea level). Experimental treatments including drought stress as the main factor in three levels (A₁: Irrigation after 70 mm evaporation from Class A pan (control), A₂: Irrigation after 70 mm evaporation from Class A pan (control), A₃: Irrigation after 70 mm evaporation from Class A pan (control)).
Root mycorrhizal colonization was determined using the standard protocol (38) after clearing with 10% KOH solution, dehydration and pure essential oil was collected using syringe. Essential oil percentage was calculated using below equation:

\[
\text{Essential oil percentage} = \frac{\text{Essential oil weight (g)}}{\text{Sample weight (g)}} \times 100
\]

Also, essential oil yield was resulted from the following formula:

\[
\text{Essential oil yield} = \frac{\text{Yield of the essential oil extraction unit (for example, grain, flower and...)}}{\text{Essential oil percentage}}
\]

Statistical analysis

Statistical analysis of data was performed with SAS 9.1 software and means comparison were by Duncan's multiple range test at 5% level. The graphs were drawn with of Excel software.

Results and Discussion

In this study, the main effects of irrigation and application of mycorrhizal fungi on plant height, leaf area, flower dry weight and total dry yield were significant as well the interaction between the 2 treatments was significant in essential oil percentage and essential oil yield (Table 2).

Leaf area, plant height, flower dry weight and total dry matter yield

Drought stress caused a significant decrease in leaf area per plant, plant height, flower dry weight and total dry matter yield in all of these traits, with the greatest decrease being in irrigation after 160 mm evaporation. So that in these traits, irrigation after 160 mm evaporation from the pan reduced 36.5, 32.6, 39.3 and 30.3% respectively (Table 4). Other researchers have also reported a decrease in

Determinations of Root Mycorrhizal Colonization

Root mycorrhizal colonization was determined using the standard protocol (38) after clearing with 10% KOH solution, bleaching with 30% H2O2 solution, acidifying with 0.1 mM HCl solution, and staining with 0.05% trypan blue solution in lactoglycerol. The root mycorrhiza was observed under a binocular biomicroscope. Root mycorrhizal colonization degree was expressed as the percentage of mycorrhiza-colonized root lengths against total observed root lengths.
growth due to dehydration. In Dracocephalum it was shown that dehydration reduced plant height (13). A significant decrease in the height of *Agropyron elongatum* was under dehydration found (1). It was reported that drought impedes cell development and consequently plant growth and height (35). In *Coriandrum sativum* showed that dehydration caused a significant decrease in leaf area index (16). The researchers stated that dehydration reduced the leaf area by reducing the each leaf area and number of leaves. It was also found that dehydration significantly reduced the dry weight of *Dracocephalum moldavica* (4).

Mycorrhizal application significantly increased vegetative traits of lemon balm. In leaf area and total dry weight, all mycorrhizal species had similar additive effects, but in plant height and total dry yield, the highest increase was due to combination of mycorrhizal species. The combined application of mycorrhizal species increased these two traits by 33.4% and 33.5%, respectively (Table 3). The greater the diversity of mycorrhizal fungi found in soil, the higher the number of traits affected by irrigation levels.

Table 2. Composite analysis of variance of traits studied in lemon balm

Sources of Variations	df	Plant height	Leaf area index	Flower dry weight	Dry matter	Essential oil %	Essential oil yield	Rate of colonization
Year(Y)	1	24.752	0.03	0.005	49.408	0.001	0.331	114.27
Repeat year	4	17.615	0.119	18.267	70.094	0.004	4.208	15.497
Irrigation levels(A)	3	1389.125	9.765	1363.298	17829.149	0.058	212.780	1020.528
Ya	4	9.447	0.167	109.055	30.283	0.004	1.58	6.984
Original error	12	18.506	0.052	33.793	41.611	0.003	3.007	32.643
Mycorrhizae(B)	4	149.268	0.755	145.344	2042.610	0.007	30.553	670.381
YB	4	39.987	0.226	17.308	430.493	0.002	10.778	58.659
AB	12	41.448	0.15	31.123	158.926	0.010	15.929	102.892
YAB	12	22.048	0.159	39.71	88.432	0.002	3.644	17.249
Minor error	64	22.061	0.152	40.52	133.715	0.003	4.139	20.895
CV(%)		12.99	11.49	20.43	12.98	24.46	37.63	7.57

** and * represent significant at the 1 and 5 % probability level, respectively.

Table 3. Comparison of mean traits affected by irrigation levels

Mycorrhizal fungi	Proline	Ascorbate peroxidase	Glutathione Peroxidase	Catalase	Dry matter	Flower dry weight	Chl.b	Chl.a	Chl. Index	Leaf surface	plant height	The amount of Citral
G. hoi	6.392 b	0.4375 b	0.04117	0.04829	75.49 c	27.33 b	1.427 b	3.823 a	17.72 a	4.033 a	44.78 a	36.06 a
R. intraradices	7.583 ab	0.5167 b	0.05758	0.05592	88.73 b	31.40 a	1.638 a	3.275 a	14.42 b	3.525 a	36.14 bc	
F. mosseae	6.721 b	0.5083 b	0.05012	0.05717	93.07 b	31.90 a	1.717 a	3.250 a	15.56 a	3.388 a	37.84 ab	
G. hoi	8.017 ab	0.5042 b	0.05754	0.06200	87.24 b	31.04 a	1.696 a	3.200 a	15.47 a	3.350 a	34.92 cd	
all	8.683 a	0.6548 a	0.06329	0.07097	100.8 a	34.14 a	1.757 a	3.458 a	15.61 a	3.567 a	39.22 a	

Table 4. Comparison of mean traits affected by irrigation levels

Irrigation levels	Proline	Ascorbate peroxidase	Glutathione Peroxidase	Catalase	Dry matter	Flower dry weight	Chl.b	Chl.a	Chl. Index	Leaf surface	plant height	The amount of Citral
70	5.590 c	0.4533 c	0.04657	0.04707	113.9 a	37.92 a	2.099 a	3.823 a	17.72 a	4.033 a	44.78 a	36.06 a
100	6.293 c	0.4967 bc	0.05617	0.05317	103.4 b	35.25 a	1.862 b	3.750 a	17.08 a	3.637 b	37.24 b	34.22 a
130	8.127 b	0.5367 ab	0.04343	0.05800	79.32 c	28.48 b	1.461 c	2.917 b	13.21 b	3.170 c	34.31 c	29.09 b
160	9.907 a	0.6033 a	0.06960	0.07710	59.63 d	22.99 c	1.166 d	2.280 c	11.20 c	2.717 d	28.42 d	24.00 c
the better the absorption of water and nutrients through the mycorrhizas, the better (17). In this study, it was observed that only the combined application of fertilizers caused a significant increase in the dry yield of lemon balm plants. Khalil and El-Noeman (18) investigated the effect of different levels of phosphorus fertilizer and mycorrhizal fungi application on growth characteristics of the medicinal plant _Lepidium sativum_. The researchers observed that mycorrhizal fungi combined with phosphorus fertilizer caused a greater increase in plant height of _Lepidium sativum_. Increasing levels of phosphorus fertilizer resulted in a higher increase in plant height. It was showed that application of mycorrhizal fertilizer significantly increased leaf area of pepper mint, but different strains of mycorrhizal fertilizer had different effect on total fresh weight (9). _G. intraradices_ was the most effective strain in increasing this trait. In the present study, application of phosphorus fertilizer also caused a significant increase in the lemon balm leaf area, but the effect was dependent on mycorrhizal strain. The highest leaf area was obtained using phosphorus fertilizer and _G. intraradices_. A plant needs numerous growth factors such as fertilizer, water and nutrients for optimal growth. Studies have shown that mycorrhizal fertilizers increase the uptake of water and various nutrients such as nitrogen, phosphorus, iron, zinc and manganese in plants, as these microorganisms increase the root uptake of plants (13). In a study done on lemon balm, it was found that the combination of mycorrhizal strains had a greater effect on lemon dry weight than either alone (21).

Essential oil percentages

According to the results of the present study, the highest and lowest essential oil percentages were obtained with 0.36% and 0.16% in two irrigation treatments of irrigation after 100 mm evaporation from pan with application of all three species of mycorrhizal fungi and irrigation after 160 mm evaporation without application of mycorrhizal fungi respectively. These results indicate that the treatments under study caused significant changes in the percentage of essential oil of lemon balm. By application of _F. mosseae_, _G. hoi_ and all three mycorrhizal fungi, reducing irrigation water had not significant effect on essential oil percentage, but with no application of mycorrhizal fertilizer and application of _R. intraradices_ it was different. In the absence of mycorrhizal fertilizer application and _R. intraradices_, irrigation water reduction from irrigation after 70 and 160 mm evaporation decreased essential oil by 38.4% and 40.9% respectively. Therefore, the results of this study show that application of mycorrhizal fertilizers can reduce the negative effect of dehydration on essential oil percentage (Table 5). While in lemon balm showed that dehydration reduced the essential oil percentage (12). It was showed that in all plant organs, the percentage of essential oil decreased with increasing amount of available water and the lowest essential oil percentage was observed in treatments that were not drought tolerant (7). With the onset of dehydration, growth stops, cells differentiate and secondary metabolite reservoirs and the carbon plant is devoted to the production of effective pharmaceuticats (7). In this study, application of mycorrhizal fertilizer only in irrigation treatment after 100 mm evaporation had significant effect on essential oil percentage. In this irrigation treatment, application of all three species of mycorrhizal fungi resulted in an increase of 43.26% in lemon balm essential oil percentage. An increase in the percentage of essential oils of medicinal plants by using mycorrhizal fertilizer, it was also reported in _Ocimum basilicum_ (40). It was also showed that the effect of different strains of mycorrhizal fungi was different in terms of the percentage of essential oil of _Ocimum basilicum_ (40).

Essential oil yield

The highest essential oil yield was obtained after 100 mm evaporation from pan + application of all three species of mycorrhizal fungi. In this treatment, essential oil yield was

Mycorrhizal species	Essential oil yield	The rate of colonization	Essential oil percentage
without 70			
R. intraradices	7.050 cde	34.60 fg	0.2600 bcd
F. mosseae	9.983 ab	69.42 b	0.3050 ab
G. hoi	5.133 efgh	62.93 cd	0.1933 dfg
all	6.753	71.87 b	0.2467 bcdf
without 100			
R. intraradices	6.253 defg	63.93 c	0.2517 bcdf
F. mosseae	9.467 abc	62.93 cd	0.3117 ab
G. hoi	6.483 def	59.95 cde	0.2583 bcd
all	11.65 a	73.12 b	0.3633 a
without 130			
R. intraradices	3.733 ghij	32.37 g	0.2250 cdefg
F. mosseae	2.983 hij	57.08 def	0.1767 fg
G. hoi	0.4033 fghij	59.77 cde	0.1983 defg
all	3.533 hij	56.27 ef	0.2150 defg
without 160			
R. intraradices	2.317 ij	32.85 g	0.1800 efg
G. hoi	2.683 hij	54.83 ef	0.2133 defg
all	2.267 ij	56.15 ef	0.1817 efg
	2.400 ij	54.83 ef	0.1783 efg
11.65 g/m², while the lowest essential oil yield was 1.7 g/m² in irrigation treatment after 160 mm evaporation from pan + no application of mycorrhizal fertilizer. According to the results, moderate dehydration not only had not a negative effect on essential oil yield, but also significantly increased this trait. So that in application of *F. mosseae* and application of all three species of mycorrhizal fungi by reducing irrigation water from irrigation after 70 and 100 mm evaporation from pan, essential oil yield increased by 84.4 and 33.4% respectively, while in application of *R. intraradices*, essential oil yield decreased after 100 mm evaporation from pan (Table 5). Moderate drought stress can stimulate essential oil yield by stimulating the production of secondary compounds. The results of the present study also showed that severe drought stress significantly reduced the essential oil content of medicinal plants. In non-application of mycorrhizal fertilizer, application of *R. intraradices*, application of *F. mosseae*, application of *Glomus hoi* and application of all three species of mycorrhizal fungi, with reduction of irrigation water from irrigation after 70 and 160 mm evaporation from pan, the essential oil yield decreased by 75.6%, 76.9%, 47.7%, 66.3% and 72.5%, respectively. In the present study, in irrigation after 70 mm evaporation from pan, only application of *R. intraradices* significantly increased essential oil yield and increased this trait by 41.6%. In irrigation after 100 mm evaporation from pan, two treatments of *F. mosseae* and application of all three species of mycorrhizal fungi increased essential oil yield by 100 and 146% respectively. In irrigation treatments of irrigation after 130 mm evaporation from pan and irrigation after 160 mm evaporation from pan, application of mycorrhizal fertilizers had no significant effect on essential oil yield. The positive effect of mycorrhizal fungi on essential oil yield has been shown in various studies.

Root colonization percentage

Also, the percentage of colonization of lemon balm roots significantly affected the interaction of irrigation levels and mycorrhizal fungi application (Table 2). The highest percentage of colonization of lemon root with 78.6% was in irrigation after 70 mm evaporation from pan with application of all three species of mycorrhizal fungi. In this study, drought stress alone did not have a significant effect on root colonization percentage in the absence of mycorrhizal fertilizer treatment, while drought with mycorrhizal fungi caused a significant decrease in the colonization rate of lemon balm root. In treatments of application of *R. intraradices*, application of *F. mosseae*, application of *Glomus hoi* and application of all three species of mycorrhizal fungi, with reduction of irrigation water from irrigation after 70 mm evaporation from pan to irrigation after 160 mm evaporation from pan, root colonization percentage decreased by 23.8 12.8%, 21.8% and 30.2% (Table 5). It was reported that colonization of maize roots and *Citrus reticulata* roots by mycorrhizal fungi was reduced by dehydration (29, 32).

These results indicate that drought stress had negative impact on the percentage of root colonization. Considering the fact that in irrigation after 160 mm evaporation from the pan, there was no significant difference between the studied strains and control in root colonization percentage, it can be concluded that the strains under study had the potential to colonize the lemon balm rootstocks at low levels. In this study, in the irrigation after 160 mm evaporation from the pan, mycorrhizal application had the least incremental effect. In irrigation after 70 mm evaporation from pan, irrigation after 100 mm evaporation and irrigation after 130 mm evaporation with application of three types of mycorrhizal fertilizer, The percentage of root colonization was increased by 129, 135.3 and 93.6% respectively and these results showed that the effect of mycorrhizal fungi decreased with exacerbation of dehydration. It was obtained a significant increase in the percentage of pepper mint colonization by using mycorrhizal fertilizer (36). In this study, the application of *Escotelospora calospora* caused the highest increase in this trait at low levels of fertilizer.

Chlorophyll index traits

Combined analysis of variance showed that the main effects of irrigation and mycorrhizal application on chlorophyll index traits, chlorophyll a and b were significant, but interaction of studied factors had no effect on chlorophyll content index of lemon balm (Table 1). Severe drought stress caused the highest decrease in chlorophyll index and chlorophyll content. Irrigation after 160 mm evaporation decreased the chlorophyll index, chlorophyll a and b by 40.3%, 40.8% and 44.4%, respectively (Table 4). Similar results have been reported by other researchers. Investigation is on the effect of irrigation levels on chlorophyll content index of *Rosmarinus officinalis* leaves and reported that dehydration at 60% of field capacity reduced chlorophyll content of *Rosmarinus officinalis* by 23.5% decreases (14). Studies have shown that among the stressors of water scarcity, the greatest decrease in chlorophyll content of crop leaves is due to production of active forms of oxygen in thylakoids (20, 21). According to the results, mycorrhizal fertilizer treatments often caused a similar and significant increase in chlorophyll index and chlorophyll content. Mycorrhizal fertilizer application treatments increased chlorophyll index, chlorophyll a and b by 20.4%, 24.4% and 23.1% respectively (Table 3). The effect of different bacterial strains on *Ocimum basilicum* and observed a significant difference between bacterial strains in terms of chlorophyll index (15). This researchers found the highest increase in chlorophyll index using *Pseudomonades* sp. also observed the positive effect of *R. intraradices* on the chlorophyll content of *Ocimum gratissimum*. It was also showed that the use of mycorrhizal biofertilizer significantly increased the chlorophyll b content of their medicinal plant, *Coleus aromaticus* (41).

Enzymes Activity

Proline content, catalase activity, glutathione peroxidase and ascorbate peroxidase were affected by the main effects of irrigation levels and fertilizer application in the present study (Table 2). The results of this study showed that irrigation treatment after 160 mm evaporation from pan caused the highest increase in these traits and increased proline content, catalase activity, glutathione peroxidase and ascorbate peroxidase by 31.2, 42.6, 49% and 28.3% respectively (Table 4). Proline is an amino acid compound that plays a role in the osmotic regulation of cells. Cellular regu-
loration helps maintain the cell’s motility and makes cells more open for longer. Drought stress increases the amount of this compound (26). An increase in the proline content of medicinal plants has also been reported in studies by other researchers. In a study on the medicinal plant, Trigonella foenum-graceum it was found that dehydration caused a 98% increase in leaf proline content (34). In current study, the activity of other antioxidants also increased under the influence of dehydration. In this study, in most traits of proline content, catalase activity, glutathione peroxidase and ascorbate peroxidase, and all mycorrhizal species application increased significantly and increased these traits by 26.3, 42.7, 53.9 and 43.4% (Table 3). Reports are on the effect of mycorrhizal application on Silico marianum and observed that application of F. mosseae and R. intraradices significantly increased the content of catalase and glutathione peroxidase in this plant (28). The researchers attributed the decline to improved plant water uptake.

Conclusion

Medicinal plants are always the basis of modern and traditional medicine and are frequently use in herbal and chemical drugs. Lemon Balm (Melissa officinalis L.) medicinal plant by having many active compounds showed a wide range of remedy effects on multiple ailments and disorders and is popular in medicinal plants science and in various system of medicine like Ayurveda, Chines and Traditional Iranian Medicine (TIM). Biotic and abiotic stresses could influence on quality and quantity of essential oil. Controlled drought stress could induce more essential oil synthesis, however, suitable application of drought stress at proper time and stage of plant growth has great of importance. One of the most environmental stresses affected plants growth and yield is drought stress. Water deficit condition could decrease the medicinal plant essential oil yield or alter the presence of therapeutic chemical components of essential oils. Moreover, water deficit could induce plant secondary metabolites and increase the essential oil content. Thereby, determination of suitable application of drought stress has great of importance. According to the results, although irrigation treatment had a positive effect on essential oil yield after 100 mm evaporation from pan, but in total drought stress levels caused a decrease in general oil yield and lemon balm oil yield by increasing drought stress intensity. So that drought stress reduced up to 84% of the oil yield of lemon balm. However, the results showed that the application of mycorrhizal fungi, and particularly the combined application of the fungal species, could reduce the negative effect of drought stress on the studied traits. So that use of the all three species of mycorrhizal fungi under irrigation at 100 mm increased the oil yield by 33% compared to irrigation after 70 mm evaporation. The result of this paper has high importance for herbal medicine researchers and device makers to achieve high quality plants and drugs.

Acknowledgements

Thanks to Dr. Ebrahim Khalilvand Behrouzyar for his valuable comments.

Authors contributions

NSH designed and conducted the experiments; MY developed the study idea and design; NM participated in writing of the article, AF wrote the manuscript; JA analyzed the data.

Compliance with ethical standards

Conflict of interest: The authors declare no conflict of interest.

Ethical issues: None.

References

1. Dastmalchi K, Dorman HD, Oinonen PP, Darwin Y, Laakso I, Hiltnen R. Chemical composition and in vitro antioxidant activity of a lemon balm (Melissa officinalis L.) extract. ACS Food Sci Technol. 2008(41):3:391-400. doi:10.1016/j.jfnt.2007.03.007

2. Moradkhani H, Sargsyan E, Bibak H, Naseri B, Sadat-Hosseini M, Fayazi-Barjin A et al. Melissa officinalis L., a valuable medicine plant: A review. J Med Plant Res. 2010(4):25:2753-59.

3. Argyropoulos D, Alex R, Kohler R, Müller J. Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT. 2012;47(2):324-31. doi:10.1016/j.lwt.2012.01.026.

4. Zhang F, Wang P, Zou YN, Wu QS, Ku “ca K. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci. 2019; 65, 1316–30. https://doi.org/10.1080/03650340.2018.1563780

5. Bounihi A, Hajjaj G, Alnamer R, Cherrah Y, Zellou A. In vivo potential anti-inflammatory activity of Melissa officinalis L. essential oil. Adv Pharmacol Sci. 2013;1-7. https://doi.org/10.1155/2013/101759

6. Lin SH, Chou ML, Chen WC, LaiYS, Lu KH, Hao CW et al. medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. J Ethnopharmacol. 2015;(175):266-72. https://doi.org/10.1016/j.jep.2015.09.018

7. Safaeian L, Sajjadi SE, Javanmard SH, Montazeri H, Samani F. Protective effect of Melissa officinalis extract against H2O2-induced oxidative stress in human vascular endothelial cells. Res Pharm Sci. 2016;11(5):383. https://doi:10.4103/1735-5362.192488

8. Roudi M, Salamatmanesh MM. Study on the growth of (Achillea millefolium L.) medicinal plant by soil inoculation of mountainous area with selected mycorrhizal fungi. Iran J Plant Physiol. 2018;9(1):12601-9.

9. Ozarowski M, Mikolajczak PL, Piatecka A, Kachlicki P, Kujawski R, Bogacz A et al. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid Based Complement Altern Med. 2016;1-7. https://doi.org/10.1155/2016/9729818

10. Abdellatif F, Boudjella H, Zitouni A, Hassani A. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI J. 2014;13:772.

11. Mmaozu AS, Tu J, Qiu J, Liu Z. Breeding for drought tolerance in maize (Zeo may L.). Am J Plant Sci. 2016; (7): 1858-70. https://doi:10.4236/ajps.2016.714172

12. Lakzayi M, Sabbagh E, Rigi K, Keshthegar A. Effect of salicylic acid on activities of antioxidant enzymes, flowering and fruit yield
and the role on reduce of drought stress. Intl J Farm and Alli Sci.2014;(3):980-87.

13. Adesemoye AO, Kloepper JW. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol. 2009;85:1-12. https://doi.org/10.1007/s00253-009-2196-0

14. Lu F, Lee C, Wang C. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J, 2015;(3):1266. https://doi.org/10.7717/peerj.1266

15. Aram H, Jorennoosh MH. Application of arbuscular mycorrhizal fungi on zinc and iron concentration in wheat under cadmium Stress. JCHR. 2018;(8):239-43.

16. Higo M, Azuma M, Kamiyoshihara Y, Kanada A, tetewaki Y, Isobe K. Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms. 2020;(8):2-178; https://doi.org/10.3390/microorganisms8020178.

17. Yadav A, Aggarwal A. The associative effect of arbuscular mycorrhizae with Trichoderma viride and Pseudomonas fluorescens in promoting growth, nutrient uptake and yield of Arachi hypoagae L. NY Sci J. 2015;(8):1-108.

18. Kheyrodin H. Plant and Soil Relationship between Fungi. Int J Res Stud Biosci (IJRSB). 2014;(2):42-49.

19. Khalil SE, Ali El-Noemani A. Effect of bio-fertilizers on growth, yield, water relations, pH photosynthetic pigments and carbohydrates contents of Organum vulgare L. plants grown under water stress conditions. Am Eurasian J Sustain Agric. 2015;(9):60-73.

20. Gholizadeh A, Amin MSM, Anuar AR, Esfahani M, Saberioon MM. The study on the effect of different levels of zeolite and water stress on growth, development and essential oil content of Meddavian balm (Drosera concolor). Am J Appl Sci. 2010;(7):1-33. https://doi.org/10.3844/ajassp.2010.33.37

21. Abbasi M, Pouzesh H, Enayati A, Hedayati A. Investigation the effect of hydopriming and osmopriming treatments on seeds germination of Tall Wheatgrass (Agropyron elatum) under drought stress. Ann Biol Res. 2012;3(10):4874-79.

22. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;(58):221-27. https://doi.org/10.1093/jxb/eer1164

23. Jamali MM. Investigate the effect of drought stress and different amount of chemical fertilizers on some physiological characteristics of cotton (Gossypium hirsutum L.). Intl J Farm & Alli Sci. 2013;(2):2087-92.

24. Zeraatpishe A, Orayan S, Bagheri MH, Pilevarian AA, Malekird A, Baerei M, Abdollahi M. Effects of Melissa officinalis L. on oxidative status and DNA damage in subjects exposed to long-term low-dose ionizing radiation. Toxicol Ind Health. 2011;7(3):205-12. https://doi.org/10.1177/0748233710383889.

25. Alaei SH, Melikyan A, Kobrave SA, Mahna N. Effect of different soil moisture levels on morphological and physiological characteristics of Arabidopsis thaliana. Agricultural Communications. 2013;1(1):23-26.

26. Kara Arsalan E, Uyanıç R, Doğu S. Morphological identification of vesicular-arbuscular mycorrhiza on bulbous plants (Taurus Mountain in turkey). Arch Biol Sci Belgrade. 2015;(67):2-411-26. https://doi.org/10.2298/ABS140417007K

27. Arango MC, Ruscitti MF, Ronco MG, Beltrano F. Mycorrhizal fungi inoculation and phosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita L.). Rev Bras Plantas Med. 2012;14(4):692-99. https://doi.org/10.1590/S1516-05722012000400018

28. Habibzadeh Y. Effects of phosphorus levels on dry matter production and root traits of chickpea plants in presence or absence of Arbuscular mycorrhizal fungi. J Agric Sci Food Sci Technol. 2015;(1):1-16.

29. Kumar A, Mangla C, Aggarwal A, Srivastava V. Rhizospheric effect of endophytic mycorrhiza and Trichoderma viride on physiological parameters of Mentha spicatolinn. Asian J of Adv Basic Science. 2014;(2):1:99-104.

30. Andalibi B, Zebtab Salmasi S, Ghassemi-Golezani K, Saba J. Changes in essential oil yield and composition at different parts of dill (Anethum graveolens L.) under limited irrigation conditions. J Agric Sci. 2010;(21):11-22.

31. Zolfaghari M, Nazeri V, Sefidkon F, Rejali F. Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iran J Plant Physiol. 2013;3 (2):643-50.

32. Nasr AH, Zare M, Alizadeh O, Mehdizadeh Naderi N. Improving effects of mycorrhizal symbiosis on Sorghum bicolor under four levels of drought stress, Afr J Agric Res, 2013; (8):43:5347-53. https://doi.org/10.5897/AJAR12.2164

33. Sarkar J, Ray A, Chakraborty B, Chakraborty U. Anti-oxidative changes in Citrus reticulate L. induced by drought stress and its effect on root colonization by arbuscular mycorrhizal fungi. Eur J Biol Res. 2016;(6):1-13.

34. Silva FA, Silva FSB, Maia LC. Biotechnical application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Lidibia farrea (Mart. ex Tul.) L.P. Queiroz var. farrea]. J Med Plant Res. 2014;(8):20:814-19. https://doi.org/10.7717/JMPR2014.6.5358

35. Hassán FAS, Bazaid S, Ali EF. Effect of deficit irrigation on growth, yield and volatile oil content on Rosmarinus officinalis L. Plant J Med Plants Stud. 2013;(1):12-21.

36. Kiani SP, Maury P, Sarrafi A, Grieu P. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 2008;(175):565-73. https://doi.org/10.10.16/J.PLANTSCI.2008.06.002.

37. Heidari M, Mousavinik, SM, Golpayegani A. Plant growth promoting rhizobacteria (PPGR) effect on physiological parameters and mineral uptake in basil (Ocimum basilicum L.) under water stress. ARPN J Agric Biol Sci.2011;(6):5:6-11.

38. Thamizhiniyan P, Panneerselvam M, Lenin M. Studies on the growth and biochemical activity of colesus aromaticus benth as influenced by am fungi and Azospirillum. Recent Res Sci Technol. 2009;(1):6:259–63.

39. Man D, Bao Y, Han L. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. Hort Science, 2011;46:7:1027–32. https://doi.org/10.21273/HORTSCI.46.7.1027

40. Shafiqi A, Pazoki A. Effects of drought stress and stimulus growth bacteria on some physiological traits of medicinal plants of fennegreek (Trigonella foenum-graceum L.). Trends in Life Sci. 2014;(5):215-24.

41. Naeemi N, Ladammogaddam AR, Moradi P, Rezaei M, Adboosi V. Effect of vermicomposting and mycorrhizae fungi on yield and growth of millet thistle and antioxidant system activity. Iran J Plant Physiol. 2017;(7):2063-74.

https://plantsciencetodayonline.today