ON SUBGRAPHS OF RANDOM CAYLEY SUM GRAPHS

S. V. KONYAGIN, I. D. SHKREDOV

Abstract.

We prove that asymptotically almost surely, the random Cayley sum graph over a finite abelian group G has edge density close to the expected one on every induced subgraph of size at least $\log^c |G|$, for any fixed $c > 1$ and $|G|$ large enough.

1 Introduction

Let A be a subset of an additively written group G. We denote by $\text{Cay}(A, G)$ the Cayley sum graph induced by A on G, which is the directed graph on the vertex set G in which $(x, y) \in G \times G$ is an edge if and only if $x + y \in A$ ($x = y$ is allowed). Such graphs are classical combinatorial objects, see, e.g. [2]. B. Green [3] initiated to study the random Cayley sum graph, considering finite groups G and selecting A at random by choosing each $x \in G$ to lie in A independently and at random with probability $1/2$. General random graphs are considered in [1]. Results about random Cayley sum graphs can be found, for example, in [3], [4], [6], [7]. R. Mrazović [6] proved the following theorem.

Theorem 1 Let G be a finite group and $w : \mathbb{N} \to \mathbb{R}$ be a growing function that tends to infinity. Let $A \subset G$ be a random subset obtained by putting every element of G into A independently with probability $\frac{1}{2}$. Then with probability $1 - o(1)$, for all sets $X, Y \subset G$ with

$$|X| \geq w(|G|) \log |G| \quad \text{and} \quad |Y| \geq w(|G|) \log^2 |G|$$

one has

$$\sum_{x \in X} \sum_{y \in Y} A(x + y) = \frac{1}{2} |X||Y| + o(|X||Y|), \quad (|G| \to \infty), \quad (1)$$

where the rate of convergence implied by the o–notation depends only on w.

1This work is supported by the Russian Science Foundation under grant 14-50-00005.
In our paper for a set A we use the same letter to denote its characteristic function $A : G \to \{0, 1\}$.

In the same paper Mrazović showed that there is no C such that the assumption of Theorem 1 can be relaxed to $\min\{|X|, |Y|\} \geq C \log |G| \log \log |G|$.

Theorem 1 shows that with high probability, the edge density of the random Cayley sum graph on all induced subgraphs of size at least $\log^{2+\varepsilon} |G|$ is close to $1/2$.

Using some tools from Additive Combinatorics, we show that Theorem 1 can be improved.

Theorem 2 Let G be a finite abelian group of size N and $w : \mathbb{N} \to \mathbb{R}$ be a growing function that tends to infinity. Let $A \subset G$ be a random subset obtained by putting every element of G into A independently with probability $1/2$. Then with probability $1 - o(1)$, for all sets $X, Y \subset G$ such that

$$|X| \geq w(|G|) \log |G| (\log \log |G|)^2, \quad |Y| \geq w(|G|) \log |G| (\log \log |G|)^{10},$$

one has

$$\sum_{x \in X} \sum_{y \in Y} A(x + y) = \frac{1}{2} |X||Y| + o(|X||Y|) \quad (|G| \to \infty),$$

where the rate of convergence implied by the o–notation depends only on w.

Thus lower and upper bounds for size of sets X, Y differ by some powers of double logarithms.

Let us say a few words about the proof.

It was showed in [6] that if for some X, Y the sum of the left-hand side of (1) deviates significantly from $\frac{1}{2} |X||Y|$, then the common energy (see the definition in the next section) of X and Y must be close to the trivial upper bound $|X||Y| \min\{|X|, |Y|\}$. Mrazović used a random choice to avoid such a situation (see details in [6]) and using structural results from [9], [11] we add one more twist to his arguments, hence proving that large portions of X, Y must be very structured in this case. It follows that the number of such sets is much smaller than the number of all possible pairs of arbitrary sets X, Y. This allows us to relax the conditions on sizes of $|X|, |Y|$ and to obtain our bound $\log^c |G|$ with $c > 1$.

First we consider the case of elementary abelian 2–groups and prove Theorem 2 in this situation (with $c > 3/2$) using some arguments from [6]. For
such groups the proof is simpler and more transparent. For general case see sections 4, 5.

We thank Rudi Mrazović, Mikhail Gabdullin for fruitful discussions, and the reviewers for their useful remarks.

2 Definitions and preliminary results

Let \(G \) be an abelian group. The \textit{additive energy} \(E(A, B) \) between two sets \(A \) and \(B \) from \(G \) is (see [13])

\[
E(A, B) = |\{(a_1, a_2, b_1, b_2) \in A \times A \times B \times B : a_1 + b_1 = a_2 + b_2\}|.
\]

The \textit{sumset} of \(A \) and \(B \) is

\[A + B := \{a + b : a \in A, b \in B\}.\]

By \(A \bigcup B \) denote the union of two disjoint sets \(A, B \).

Recall a simple lemma, see, e.g., [10, Lemma 12].

\textbf{Lemma 3} For any finite sets \(X, Y, Z \subset G \) one has

\[
E(X \cup Y, Z)^{1/2} \leq E(X, Z)^{1/2} + E(Y, Z)^{1/2},
\]

and for disjoint union of \(X \) and \(Y \) the following holds

\[
E(X \cup Y, Z) \geq E(X, Z) + E(Y, Z).
\]

Now let us recall the notion of the (additive) \textit{dimension} of a set. A finite set \(\Lambda \subset G \) is called \textit{dissociated} if any equality of the form

\[
\sum_{\lambda \in \Lambda} \varepsilon_\lambda \lambda = 0
\]

for \(\varepsilon_\lambda \in \{-1, 0, 1\} \) implies \(\varepsilon_\lambda = 0 \) for all \(\lambda \in \Lambda \). The notion of dissociativity appears naturally in analysis, see [8]. The size of a largest dissociated subset
of \(A \) is called the (additive) \textit{dimension} of the set \(A \) and is denoted by \(\dim(A) \).

For a subset \(S = \{s_1, \ldots, s_l\} \subset G \) one can define

\[
\text{Span}(S) := \left\{ \sum_{j=1}^{l} \varepsilon_j s_j : \varepsilon_j \in \{0, -1, 1\} \right\}.
\]

It is easily seen that if \(S \) is a dissociated subset of \(A \) of size \(|S| = \dim(A) \), then \(A \subset \text{Span}(S) \).

Notice that if \(G \) is a finite group of exponent 2 (hence, a linear space over \(\mathbb{F}_2 \)), then \(\text{Span}(S) \) is the linear span of \(S \), and \(\dim S \) is its dimension.

We need the main result from [11], also see [9, Theorem 19].

Theorem 4 Let \(A, B \) be finite non-empty subsets of an abelian group, \(|A| \geq |B| \). If \(E(A, B) \geq \frac{|A||B|^2}{K} \), then there exist a non-empty set \(B_* \subset B \) such that

\[
\dim(B_*) \ll K \log |A|, \quad (2)
\]

and

\[
E(A, B_*) \geq 2^{-5}E(A, B). \quad (3)
\]

Theorem 4 shows that if \(E(A, B) \) is large, then \(B \) contains a large, well-structured subset \(B_* \).

Let us derive a simple consequence of the theorem above.

Corollary 5 Let \(A, B \) be finite subsets of an abelian group with \(|A| \geq |B| \geq 2 \). Suppose that \(E(A, B) = \frac{|A||B|^2}{K} \), and \(M \geq K \) be a parameter. Then there is a partition \(B = B' \sqcup B'' \) such that

\[
\dim(B') \ll M \log |A| \cdot \log(|B| M/K), \quad E(A, B') \gg E(A, B), \quad (4)
\]

and

\[
E(A, B'') \leq \frac{|A||B''|^2}{M}. \quad (5)
\]
Proof. Our arguments is a sort of an algorithm similar to that found in [5, 12]. We construct an increasing sequence of sets $\emptyset = B_1' \subset B_2' \subset \cdots \subset B_k'$ and a decreasing sequence of sets $B = B_1'' \supset B_2'' \supset \cdots \supset B_k''$ such that for any $j = 1, 2, \ldots, k$ the sets B_j' and B_j'' are disjoint and moreover $B = B_j' \cup B_j''$. If at some step j we have either $E(A, B_j'') < |A||B_j''|^2/M$ or $B_j'' = \emptyset$ (notice that due to the definition of K and the supposition $M \geq K$ this can happen only for $j > 1$) then we stop our algorithm putting $B_j'' = B_j''$, $B_j' = B_j'$, and $k = j$. In the opposite situation where $E(A, B_j'') \geq |A||B_j''|^2/M$ we apply Theorem 4 to the set B_j'', finding a non-empty subset G_j of B_j'' such that
\[
\dim(G_j) \ll M \log |A|, \tag{6}
\]
and
\[
E(A, G_j) \geq 2^{-5}E(A, B_j''). \tag{7}
\]
After that we put $B_{j+1}'' = B_j'' \setminus G_j$, $B_{j+1}' = B_j' \cup G_j$ and repeat the procedure. Clearly, $B_k' = \bigcup_{j=1}^k G_j$. In view of Lemma 3 and (7), we get
\[
E(A, B_j'') \geq E(A, G_j) + E(A, B_j''_{j+1}) \geq 2^{-5}E(A, B_j'') + E(A, B_j'')
\]
whence $E(A, B_{j+1}'') \leq \frac{31}{32}E(A, B_j'')$. It follows that our algorithm stops after at most $k \ll \log(|B|M/K)$ steps. Because $G_1 \subset B_j'$, $j \geq 2$, we have in view of (7) that for $j \geq 2$ one has
\[
E(A, B_j') \geq E(A, G_1) \geq 2^{-5}E(A, B_1'') = 2^{-5}E(A, B)
\]
and thus inequality $E(A, B') \gg E(A, B)$ holds. Finally, from estimate (6), we obtain
\[
\dim(B') \leq \sum_{j=1}^{k-1} \dim(G_j) \ll kM \log |A| \ll M \log |A| \cdot \log(|B|M/K).
\]
This completes the proof of the corollary. \qed

We finish this section with a result on the number of sets with small dimension.

Lemma 6 Let G be a finite abelian group, and write $N = |G|$. Let $n, d \in \mathbb{N}$ with $n \geq 2 \log N$. Then the number of sets $X \subset G$ with $0 < |X| \leq n$ and $\dim X \leq d$ is at most e^{2nd}.

5
Proof. Take \(X \subset X' = \text{Span}(\Lambda) \) where \(|\Lambda| = \dim X \leq d\). The number of sets \(\Lambda \) is at most \(N^d \). For a fixed \(\Lambda \), we have \(|X'| \leq 3^d\), and the number of sets \(X \subset X' \) (with fixed \(\Lambda \)) is at most \(|X'|^n \leq 3^{nd}\). Therefore, the total number of sets \(X \) is at most
\[
N^d 3^{nd} < e^{(\log N + 1.1n)d} \leq e^{2nd},
\]
as required. \(\square \)

3 A model case

The main result of this section is the following

Theorem 7 Let \(G \) be a finite group of exponent 2 and \(w : \mathbb{N} \to \mathbb{R} \) be a growing function that tends to infinity. Let \(A \subset G \) be a random subset obtained by putting every element of \(G \) into \(A \) independently with probability \(\frac{1}{2} \). Then with probability \(1 - o(1) \), for all sets \(X, Y \subset G \) such that
\[
|X|, |Y| \geq w(|G|)(\log \log |G|) \cdot \log^{3/2} |G|,
\]
one has
\[
\sum_{x \in X} \sum_{y \in Y} A(x + y) = \frac{1}{2} |X||Y| + o(|X||Y|) \quad (|G| \to \infty),
\]
where the rate of convergence implied by the \(o \)-notation depends only on \(w \).

We notice that the groups considered in Theorem 7 are abelian and they can be treated as vector spaces over the field \(\mathbb{F}_2 \).

For finite, non-empty subsets \(X, Y \), and \(A \) of \(G \), let
\[
\sigma_A(X, Y) := \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} A(x + y) - \frac{1}{2} = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right).
\]

The following technical result is the heart of [6] (see section 4 of that paper).
Proposition 8 Let G be a finite abelian group, and write $N = |G|$. If A is a random subset of G obtained by putting every element of G into A independently with probability $\frac{1}{2}$, then for any $r, K \geq 1$ and $\varepsilon \in (0, 1]$, the probability that there exist $X, Y \subset G$ satisfying

$$|Y| \geq |X| \geq 2000\varepsilon^{-4} \log N, |Y| \geq r, E(X, Y) \leq \frac{|X|^2|Y|}{K},$$

and

$$|\sigma_A(X, Y)| \geq \varepsilon$$

is at most

$$C \exp\left(\frac{2000 \log^2 N}{\varepsilon^4} - \frac{\varepsilon^2 r K}{40}\right)$$

with an absolute constant C.

Proposition 8 was not stated in [6] explicitly, and for completeness, we prove it in Appendix.

Let us show quickly how Proposition 8 implies Theorem 1 for abelian groups G. Choosing $K = 1$ and $r = C\varepsilon^{-6} \log^2 N$ with C large enough, we obtain that the probability of existence X, Y, $|Y| \geq |X| \geq 2000\varepsilon^{-4} \log |G|$, $|Y| \geq r$ such that $|\sigma_A(X, Y)| \geq \varepsilon$ is less than

$$C_1 \exp(-C_2 \varepsilon^{-4} \log^2 |G|) = o(1) \quad \text{as} \quad |G| \to +\infty,$$

where $C_1, C_2 > 0$ are some absolute constants.

The next corollary immediately follows from Proposition 8 (as applied with $K = M$ and $r = (\varepsilon/4)w(N)(\log \log N) \cdot \log^{3/2} N$).

Corollary 9 Let G be a finite abelian group, and write $N = |G|$. If A is a random subset of G obtained by putting every element of G into A independently with probability $\frac{1}{2}$, then for $M = (\log \log N)^{-1}(\log N)^{1/2}$, any $\varepsilon \in (0, 1]$ such that

$$\varepsilon^7 \geq \frac{2^{25}}{w(N)\log \log N \sqrt{\log N}},$$

and any growing function $w: \mathbb{N} \to \mathbb{R}$ tending to infinity, the probability that there exist $X, Y \subset G$ satisfying

$$|Y| \geq |X| \geq (\varepsilon/4)w(N)(\log \log N) \cdot \log^{3/2} N, E(X, Y) \leq \frac{|X|^2|Y|}{M},$$
and
\[|\sigma_A(X, Y)| \geq \varepsilon/2, \]
tends to 0 as \(N \to \infty \).

Proof of Theorem 7. Take a random set \(A \) and suppose that for some \(X, Y \) one has \(|\sigma_A(X, Y)| \geq \varepsilon \). Without loss of generality, suppose that \(|Y| \geq |X| \geq (\varepsilon/4)w(N)(\log \log N) \cdot \log^{3/2} N \). In view of Theorem 1, we can assume that \(|X|, |Y| \ll \log^{5/2} N \), say. Otherwise the probability of the event \(|\sigma_A(X, Y)| \geq \varepsilon \) is \(o(1) \).

Denote \(K = \frac{|X|^2|Y|}{E(X, Y)} \), \(M = (\log \log N)^{-1}(\log N)^{1/2} \).

If \(M \leq K \) then we can apply Corollary 9 and conclude that the probability of this event is \(o(1) \). Thus we can assume that \(M \geq K \). Applying Corollary 5 to the sets \(X, Y \), we find \(X', X'' \subset X \) such that \(X = X' \bigcup X'' \), \(\dim(X') \ll M(\log \log N)^2 \), \(E(X', Y) \gg E(X, Y) \) and \(E(X'', Y) \leq |Y||X''|^2/M \).

We can assume that with high probability the following holds:
\[|\sigma_A(X', Y)| \geq \varepsilon/2, \quad |X'| \geq (\varepsilon/2)|X|. \tag{9} \]

Indeed, if one of these two inequalities does not hold, then
\[
\left| \sum_{x \in X', y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \leq \varepsilon|X||Y|/2
\]
and we have
\[
\varepsilon|X||Y| \leq |\sigma_A(X, Y)||X||Y| = \left| \sum_{x \in X, y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \leq \left| \sum_{x \in X', y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| + \left| \sum_{x \in X'', y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \leq \varepsilon|X||Y|/2 + |X''||Y||\sigma_A(X'', Y)|. \tag{10}
\]
Whence
\[
\frac{\varepsilon|X||Y|}{2} \leq |X''||Y||\sigma_A(X'', Y)|.
\]
The last bound implies that $|X''| \geq \varepsilon |X|/2$ and $|\sigma_A(X'', Y)| \geq \varepsilon / 2$. Using Corollary 9 with the sets X'', Y, we see that the probability of the last inequality is $o(1)$. Thus, we will assume that (9) holds.

Split the set Y onto sets \hat{Y}_j (using lexicographical ordering, say) such that $|X'| / 2 \leq |\hat{Y}_j| \leq |X'|$. Then arguing as in (10), we see that for some \hat{Y}_j one has $\sigma_A(X', \hat{Y}_j) \geq \varepsilon / 2$. Indeed

$$2^{-1} \varepsilon \cdot |X'| \sum_j |\hat{Y}_j| = 2^{-1} \varepsilon \cdot |X'||Y| \leq |\sigma_A(X', Y)||X'||Y| \leq$$

$$\leq \sum_j \left| \sum_{x \in X', y \in \hat{Y}_j} \left(A(x + y) - \frac{1}{2} \right) \right| = |X'| \sum_j \sigma_A(X', \hat{Y}_j) |\hat{Y}_j|$$

and thus there is j with $\sigma_A(X', \hat{Y}_j) \geq \varepsilon / 2$. Put $\hat{Y} = \hat{Y}_j$. After that taking into account (9) and applying Corollary 5 to the sets X', \hat{Y}, we find Y', $Y'' \subset \hat{Y}$ such that $\hat{Y} = Y' \cup Y''$, $\dim(Y') \ll M(\log \log N)^2$, $E(X', Y') \gg E(X', \hat{Y})$ and $E(X', Y'') \leq |X'||Y''|^2 / M$ (if $E(X', \hat{Y})$:= $|X'||\hat{Y}|^2 / K < |X'||\hat{Y}|^2 / M$, then it is nothing to prove, just put $Y'' = \hat{Y}, Y' = \emptyset$, otherwise $M \geq K$).

Again, we can assume with probability $1 - o(1)$

$$|\sigma_A(X', Y')| \geq \varepsilon / 4, \quad |Y'| \geq (\varepsilon / 4)|\hat{Y}|.$$

For fixed ε and large N in view of the assumption $|X| \geq w(N)(\log \log N) \cdot \log^{3/2} N$, we have

$$\min\{\varepsilon |\hat{Y}|, |X'|\} \gg \varepsilon^{-4} \log N.$$

Up to this point we did not use a specific structure of the group G. Notice that in this group for any subset A the additive dimension $\dim(A)$ is just the ordinary dimension of its linear span. Consider the set $L := \text{Span}(Y' \cup X')$ of dimension

$$\dim(L) \leq \dim(X') + \dim(Y') := d \ll M(\log \log N)^2.$$

Recall now that G is a linear space over \mathbb{F}_2. Therefore, L is also an abelian group, and we can apply to L Proposition 8 implying that the probability of the inequality $\sigma_A(X', Y') \geq \varepsilon / 4$ is less than (also, see the calculations after the Proposition)

$$C' \exp \left(\frac{2^{19} d^2}{\varepsilon^4} - \frac{\varepsilon^2 \max\{|X'|, |Y'|\}^2}{160} \right),$$

9
where $C' > 0$ is some absolute constant. Because the number of sets L is roughly bounded by N^d, and the number of sets \hat{Y}_j is bounded by $O(|Y|/|X'|)$, we obtain that the total probability tends to zero, if

$$
\varepsilon^2 \max\{|X|, |Y|\} \gg \frac{d^2}{\varepsilon^4} + d \log N + \log |Y| \gg \frac{d^2}{\varepsilon^4} + d \log N .
$$

Since due to (9)

$$d \ll (\log \log N)(\log N)^{1/2}, \quad |X'| \geq (\varepsilon/2)w(N)(\log \log N) \cdot \log^{3/2} N ,
$$

we see that (11) holds for large N. This completes the proof.

4 On large deviations

We use the notations of section 3. Recall, that for finite, non-empty subsets X, Y, and A of G, we denote

$$
\sigma_A(X, Y) := \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} A(x + y) - \frac{1}{2} = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2}\right).
$$

In this section we fix $X \subset G$ and estimate the probabilities that the deviations $|\sigma_A(X, Y)|$ are large where $Y \subset G$ (see precise statements below). If $Y = \{y\}$ we will write for simplicity $\sigma_A(X, y)$ rather than $\sigma_A(X, \{y\})$.

Lemma 10 Let G be a finite abelian group. Fix $X \subset G$ with $|X| = n$. Let $\varepsilon \in (0, 1/2]$ and $y_1, \ldots, y_k \in G$ satisfy the condition

$$
|X + y_i) \cap \left(\bigcup_{j=1}^{i-1}(X + y_j)\right) \leq \varepsilon n \quad (i = 2, \ldots, k).
$$

If A is a random subset of G obtained by putting every element of G into A independently with probability $\frac{1}{2}$, then the probability of the event

$$
|\sigma_A(X, y_j)| \geq \varepsilon \quad (j = 1, \ldots, k)
$$

is at most

$$
\exp\left(-\frac{\varepsilon^2 kn}{2}\right).
$$
Proof. Denote by H_i ($i = 0, \ldots, k$) the event
\[|\sigma_A(X, y_j)| \geq \varepsilon \quad (j = 1, \ldots, i). \]
We will prove by induction on i that the probability P_i of the event H_i is at most
\[\exp \left(-\frac{\varepsilon^2 i n}{2} \right). \]
The claim is obvious for $i = 0$. Now we prove that it is true for each $i = 1, \ldots, k$ whenever it holds for $i - 1$.

Let
\[X'_i = \{ x \in X : \exists j \in \{1, \ldots, i - 1\} : x + y_i \in X + y_j \}, \quad X_i = X \setminus X'_i. \]
By (12) we have
\[|X'_i| \leq \varepsilon n. \]
Therefore,
\[\left| \sum_{x \in X'} A(x + y_i) - \frac{|X'_i|}{2} \right| \leq \frac{\varepsilon n}{2}. \]
Assuming that H_i holds, we see that
\[\left| \sum_{x \in X} A(x + y_i) - \frac{|X|}{2} \right| \geq \varepsilon n. \]
Hence,
\[\left| \sum_{x \in X_i} A(x + y_i) - \frac{|X_i|}{2} \right| \geq \left| \sum_{x \in X} A(x + y_i) - \frac{|X|}{2} \right| \]
\[- \left| \sum_{x \in X'_i} A(x + y_i) - \frac{|X'_i|}{2} \right| \geq \frac{\varepsilon n}{2}. \]
Thus, denoting by H'_i the event
\[\left| \sum_{x \in X_i} A(x + y_i) - \frac{|X_i|}{2} \right| \geq \frac{\varepsilon n}{2}, \]
we conclude that H'_i holds if H_i holds. Since for $x \in X_i$ the element $x + y_j$, $j < i$, the event H'_i is independent of the events H_1, \ldots, H_{i-1}. Therefore, if P'_i is the probability of the event H'_i, then
\[P_i \leq P_{i-1} P'_i. \quad (14) \]

By Proposition 3 from [6] (Hoeffding’s theorem) we get
\[P'_i \leq \exp \left(-\frac{1}{2} \left(\frac{\varepsilon n / 2}{\sqrt{|X_i|/2}} \right)^2 \right) \leq \exp \left(-\frac{\varepsilon^2 n}{2} \right). \]

Plugging in this estimate into (14) and using the induction hypothesis we complete the proof of the lemma.

\[\square \]

Corollary 11 Let G be a finite abelian group, and write $N = |G|$. Fix $X \subset G$ with $|X| = n$. Let $\varepsilon \in (0, 1/2]$ and $k \in \mathbb{N}$. Then the probability that there exist $y_1, \ldots, y_k \in G$ satisfying (12) and (13) is at most
\[\left(N \exp \left(-\frac{\varepsilon^2 n}{2} \right) \right)^k. \]

Corollary 12 Let G be a finite abelian group, and write $N = |G|$. Fix $X \subset G$ with $|X| = n$. Let $\varepsilon \in (0, 1/2]$ and $k \in \mathbb{N}$. If
\[n \geq \frac{4 \log N}{\varepsilon^2}, \]
then the probability that there exist $y_1, \ldots, y_k \in G$ satisfying (12) and (13) is at most
\[\exp \left(-\frac{\varepsilon^2 nk}{4} \right). \]

Now we will show that if $Y \subset G$ is a large set and $\sigma_A(X, Y)$ is also large then for an appropriate ε there are many elements y_1, \ldots, y_k satisfying (12) and (13). Observe that if we even do not assume that y_1, \ldots, y_k are distinct, this would follow from (12).
Lemma 13 Let G be a finite abelian group, $X, Y \subseteq G$ with $|X| = n$, and let $\varepsilon \in (0, 1/2]$. If

$$E(X, Y) = |X|^2|Y|/K,$$

then for some

$$k > \varepsilon^2|Y|K/n$$

there are $y_1, \ldots, y_k \in Y$ satisfying condition (12).

Proof. Let $\{y_1, \ldots, y_k\}$ be the maximal subset of Y satisfying (12). Denote

$$Z = \bigcup_{i=1}^{k}(X + y_i).$$

For any $z \in Z$ we denote by $f(z)$ the number of solutions of the equation

$$x + y = z, \quad x \in X, y \in Y.$$

By the choice of k, for any $y \in Y$ there are more than εn values $x \in X$ such that $x + y \in Z$. Hence,

$$\sum_{z \in Z} f(z) > \varepsilon n|Y|.$$

By the Cauchy–Schwarz inequality

$$\sum_{z \in Z} f(z)^2 \geq |Z|^{-1} \left(\sum_{z \in Z} f(z) \right)^2 > \frac{\varepsilon^2 n|Y|^2}{k}.$$

Since

$$E(X, Y) = \sum_{z \in G} f(z)^2,$$

we conclude that

$$n^2|Y|/K > \frac{\varepsilon^2 n|Y|^2}{k}$$

implying the required inequality for k.

\[\square\]

Lemma 14 Let G be a finite abelian group, $X, Y \subseteq G$, and let $\varepsilon \in (0, 1/2]$. Also, let $A \subseteq G$ be a set. If

$$|\sigma_A(X,Y)| \geq \varepsilon,$$
then there is a set $Y' \subset Y$ such that $|Y'| \geq \varepsilon |Y|$ and any $y \in Y'$ satisfies the condition
\[|\sigma_A(X, y)| \geq \varepsilon / 2. \]

Proof. Denote
\[Y' = \{ y \in Y : |\sigma_A(X, y)| \geq \varepsilon / 2 \}, \quad Y'' = Y \setminus Y'. \]
We have
\[
\left| \sum_{x \in X, y \in Y''} A(x + y) - \frac{|X||Y''|}{2} \right| \leq \sum_{y \in Y''} \left| \sum_{x \in X} A(x + y) - \frac{|X|}{2} \right| \leq \sum_{y \in Y''} \varepsilon |X| / 2 \leq \varepsilon |X||Y| / 2.
\]
Therefore,
\[
\left| \sum_{x \in X, y \in Y'} A(x + y) - \frac{|X||Y'|}{2} \right| \geq \sum_{x \in X, y \in Y} A(x + y) - \frac{|X||Y|}{2} \geq \varepsilon |X||Y| / 2.
\]
On the other hand,
\[
\left| \sum_{x \in X, y \in Y'} A(x + y) - \frac{|X||Y'|}{2} \right| \leq |X||Y'| / 2.
\]
Thus, $|Y'| \geq \varepsilon |Y|$ as required.

Combining Lemmas 14 and 13, we get the following corollary.

Corollary 15 Let G be a finite abelian group, $X, Y \subset G$ with $|X| = n$, and let $\varepsilon \in (0, 1/2]$. Also, let $A \subset G$ be a set. If
\[
E(X, Y) \leq |X|^2 |Y| / K, \quad |\sigma_A(X, Y)| \geq \varepsilon,
\]

then for some
\[k > \varepsilon^4 |Y| K / (4n) \]
there are \(y_1, \ldots, y_k \in Y \) satisfying conditions
\[|(X + y_i) \cap \left(\bigcup_{j=1}^{i-1} (X + y_j) \right) | \leq \varepsilon n / 2 \quad (i = 2, \ldots, k) \quad (15) \]
and the condition
\[|\sigma_A(X, y_j)| \geq \varepsilon / 2 \quad (j = 1, \ldots, k). \]

Proof. We take a subset \(Y' \subset Y \), in accordance with Lemma 14. Let
\[E(X, Y') = |X|^2 |Y'| / K'. \]
Since \(|Y'| \geq \varepsilon |Y| \), \(E(X, Y') \leq E(X, Y) \leq |X|^2 |Y| / K \), we have
\[K' \geq \varepsilon K. \]
Applying Lemma 13 (with \(\varepsilon / 2 \) instead of \(\varepsilon \)) to the set \(Y' \) we get desired \(y_1, \ldots, y_k \in Y' \) with
\[k > \varepsilon^2 |Y'| K' / (4n) \geq \varepsilon^4 |Y| K / (4n). \]

Corollaries 12 and 15 immediately imply the main result of this section.

Proposition 16 Let \(G \) be a finite abelian group, and write \(N = |G| \). Fix \(X \subset G \) with \(|X| = n, \varepsilon \in (0, 1/2], K \geq 1 \), and \(m \in \mathbb{N} \). Let \(A \) be a random subset of \(G \) obtained by putting every element of \(G \) into \(A \) independently with probability \(1 / 2 \). If
\[n \geq \frac{4 \log N}{\varepsilon^2}, \]
then the probability that there exist \(Y \subset G \) satisfying
\[|Y| \geq m, \quad |\sigma_A(X, Y)| \geq \varepsilon, \quad E(X, Y) \leq |X|^2 |Y| / K, \]
is at most
\[\exp \left(-\varepsilon^6 m K / 64 \right). \]
5 The proof of the main result

In this section we obtain our main Theorem 2. Let $N = |G|$. Without loss of generality we assume that

$$w(N) \leq \log \log(N + 3). \quad (16)$$

Denote

$$w_1(N) = \sqrt{w(N)}, \quad \varepsilon = w(N)^{-1/13} \quad (17)$$

and

$$\tilde{n}_0 = \left[w_1(N) \log N (\log \log N)^2 \right], \quad \tilde{n}_1 = 2\tilde{n}_0.$$

Assume that

$$|\tilde{X}| \geq w(N) \log N (\log \log N)^2, \quad |Y| \geq m := w(N) \log N (\log \log N)^{10},$$

$$|Y| \geq |\tilde{X}|, \quad |\sigma_A(\tilde{X}, Y)| \geq \varepsilon/2,$$

and $w(N)$ is large enough as well as N. We have to prove that the probability of existence of such sets \tilde{X}, Y is small. In view of Theorem 1, we can assume that $|\tilde{X}|, |Y| \ll \log^{5/2} N$, say, because otherwise the probability of the event $|\sigma_A(\tilde{X}, Y)| \geq \varepsilon/2$ is $o(1)$. Since $|\tilde{X}| \geq \tilde{n}_1$, we can split \tilde{X} into sets X_i with $
_0 \leq |X_i| \leq \tilde{n}_1$ in an arbitrary way. For some i we have $|\sigma_A(X_i, Y)| \geq |\sigma_A(\tilde{X}, Y)| \geq \varepsilon/2$. Take $X = X_i$. If these sets X, Y exist, then the following event H_0 happens:

there exist $X, Y \subset G$ such that

$$|X| \leq 2w_1(N) \log N (\log \log N)^2, \quad |Y| \geq m,$$

$$\sum_{x \in X} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \geq \tilde{\varepsilon}w_1(N) (\log N)(\log \log N)^2|Y|,$$

where $\tilde{\varepsilon} = \varepsilon/4$. Our aim is to prove that the probability P_0 of the event H_0 tends to 0 as $N \to \infty$. We will consider the family of events $\{H_j\}, j \geq 0$. We say that H_j happens if there exist $X, Y \subset G$ such that

$$|X| \leq 2w_1(N) \log N (\log \log N)^2, \quad (18)$$

$$|Y| \geq m = w(N) \log N (\log \log N)^{10}, \quad (19)$$

16
\[
E(X, Y) \leq |X|^2 |Y| 10^{-j},
\]

\[
\left| \sum_{x \in X} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \geq \left(1 - \frac{j}{\log \log N} \right) \tilde{\varepsilon} w_1(N)(\log N)(\log \log N)^2 |Y|,
\]

where \(j \geq 0 \). We denote by \(P_j \) the probability of the event \(H_j \). Let \(j_0 = \lfloor (\log \log N)^2/2 \rfloor \). We observe that, due to (16) and (18),

\[
10^{j_0} > |X|.
\]

Hence, \(P_{j_0} = 0 \) (because (20) does not hold for \(j = j_0 \) due to \(E(X, Y) \geq |X||Y| \)), and we will consider that \(j < j_0 \).

We will estimate \(P_j \) in terms of \(P_{j+1} \). Let \(X, Y \subset G \) satisfy (18)–(21).

Denote

\[
K = \frac{|X|^2 |Y|}{E(X, Y)}, \quad M = 10^{j+1}.
\]

If \(M \leq K \) then the event \(H_{j+1} \) holds. Thus we can assume that \(M \geq K \). Applying Corollary 5 to the sets \(X, Y \), we find \(X', X'' \subset X \) such that \(X = X' \cup X'' \), \(\dim(X') \ll M(\log \log N)^2 \ll 10^{j+1}(\log \log N)^2 \), \(E(X', Y) \gg E(X, Y) \) and \(E(X'', Y) \leq |Y||X''|^2/M \).

Firstly, consider the case where the inequality

\[
\left| \sum_{x \in X'} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \geq \tilde{\varepsilon} w_1(N)(\log N)(\log \log N)|Y|
\]

does not hold. Then

\[
\left| \sum_{x \in X''} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \geq \left| \sum_{x \in X'} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| - \left| \sum_{x \in X'} \sum_{y \in Y} \left(A(x + y) - \frac{1}{2} \right) \right| \geq \left(1 - \frac{j + 1}{\log \log N} \right) \tilde{\varepsilon} w_1(N)(\log N)(\log \log N)^2 |Y|,
\]
and (18)–(21) hold for $j + 1$ instead of j and X'' instead of X. Again, H_{j+1} holds.

Now consider the case where (22) holds. Then we have

$$|X'| \geq \bar{\varepsilon} w_1(N)(\log N)(\log \log N) := n_0.$$

Let

$$n_\nu = 2^\nu n_0, \quad \nu \leq \nu_0,$$

where ν_0 is defined by

$$n_{\nu_0} \leq 2w_1(N) \log N \log \log N < n_{\nu_0+1}.$$

Clearly, $\nu_0 \ll \log \log \log N + \log(1/\varepsilon)$. By Lemma 6, the number of such sets X' with $|X'| = n, n_{\nu} \leq n < n_{\nu+1}$, is at most

$$e^{Cn_{\nu} 10^{j}(\log \log N)^2} \leq e^{2C10^{j}w_1(N)\log \log N^4},$$ \hspace{1cm} (23)

where C is an absolute constant.

Next, for these sets X' inequality (22) implies that

$$|\sigma_A(X', Y)| \geq \varepsilon' = \bar{\varepsilon} w_1(N)(\log N)(\log \log N)/n_{\nu+1} \geq$$

$$\geq \bar{\varepsilon} w_1(N)(\log N)(\log \log N)/(2n_{\nu}).$$

We have

$$n_\nu(\varepsilon')^2/(4 \log N) \geq n_\nu \bar{\varepsilon}^2 w_1(N)^2(\log N)^2(\log \log N)/ (16n_{\nu}^2 \log N)$$

$$= \varepsilon^2 w_1(N)^2(\log N)(\log \log N)^2/(16n_{\nu}) \geq \varepsilon^2 w_1(N)/32 > 1,$$

where we have used (17), and we are in position to use Proposition 16. We have

$$E(X', Y) \leq E(X, Y) \leq |X|^2|Y|/10^j$$

$$\leq (2w_1(N) \log N(\log \log N)^2)|Y|/10^j = n_{\nu}^2|Y|/K' \leq |X'|^2|Y|/K',$$

where

$$K' = 10^j \left(n_{\nu}/(2w_1(N) \log N(\log \log N)^2) \right)^2$$

$$= 10^j n_{\nu}^2/ \left(4w_1(N)^2(\log N)^2(\log \log N)^4 \right).$$

18
Thus, for any such X' the probability $P_{j, \nu}(X')$ of the existence of a set Y satisfying this inequality is at most

$$\exp\left(-\frac{6(m \max\{K', 1\})}{64}\right) \leq \exp\left(-\frac{(\varepsilon')^6 m K'}{256}\right).$$

We have

$$(\varepsilon')^6 K' = 10^j \varepsilon^6 w_1(N)^4 (n_\nu)^{-4} (\log N)^4 (\log \log N)^2 / 256 \geq 10^j \varepsilon^6 (\log \log N)^{-6} / 2^{18}. \quad (24)$$

Next, the probability $P_{j, \nu}$ of the existence of a set X', $|X'| = n$, $n_\nu \leq |X'| < n_{\nu+1}$, that can be obtained by our construction, is bounded by (see (23), (24))

$$\exp \left(2C w_1(N) 10^j \log N (\log \log N)^4 - 10^j \varepsilon^6 (\log \log N)^{-6} m / 2^{26}\right).$$

Taking into account (17) and the definition of the parameter m, we get

$$P_{j, \nu} \leq \exp \left(-10^j w_1(N) \log N (\log \log N)^4\right).$$

Taking the sum over ν, we find

$$P_j \leq P_{j+1} + \sum_{\nu} P_{j, \nu} \leq P_{j+1} + \exp \left(-10^j w_1(N) \log N (\log \log N)^4 / 2\right).$$

Finally,

$$P_0 \leq \sum_{j=0}^{j_0-1} \exp \left(-10^j w_1(N) \log N (\log \log N)^4 / 2\right) \leq \exp \left(-w_1(N) \log N (\log \log N)^4 / 3\right).$$

\[\square \]

6 Appendix

In this section we prove Proposition 8.
By sections 3, 4 of [6] there are sets $S \subset X$, $T \subset Y$, $s = |S|$, $t = |T|$ such that
\[E(S, T) \leq 2st + \frac{2s^2t^2}{|X|^2|Y|^2} \cdot E(X, Y), \tag{25} \]
and
\[|\sigma_A(X, Y) - \sigma_A(S, T)| \leq 6 \sqrt{\frac{|Y|}{st}}. \tag{26} \]

Here s, t are parameters and we choose $s = \frac{2000 \log N}{\varepsilon^4} \leq |X|$ and $t = \frac{K |Y| \varepsilon^2}{10 \log N}$. The left-hand side of (26) is less than $\varepsilon/2$. On the other hand, by the large deviations low (see Proposition 3 and calculations after this proposition from [6]) and (25) the probability \mathbb{P} of $|\sigma_A(S, T)| \geq \varepsilon/2$ is bounded by
\[\mathbb{P} \ll \exp \left(- \frac{\varepsilon^2 s^2 t^2}{2E(S, T)} \right) \ll \exp \left(- \min \left\{ \frac{\varepsilon^2 st}{8}, \frac{\varepsilon^2 |X|^2|Y|^2}{8E(X, Y)} \right\} \right) \ll \exp \left(- \frac{\varepsilon^2 |Y|}{8} \right). \]

Thus, the final probability (8) does not exceed
\[N^{s+t} \exp \left(- \frac{\varepsilon^2 K |Y|}{8} \right) \ll \exp \left(\frac{2000 \log^2 N}{\varepsilon^4} + \frac{K |Y| \varepsilon^2}{10} - \frac{\varepsilon^2 K |Y|}{8} \right) \leq \exp \left(\frac{2000 \log^2 N}{\varepsilon^4} - \frac{\varepsilon^2 r K}{40} \right) \]
as required.

References

[1] B. Bollobás, Random graphs, Cambridge University Press, 73, 2001.

[2] R.L. Graham, M. Grötschel, L. Lovász, L., H.S. Wilf, Handbook of combinatorics, Mathematical Intelligencer, 19:2, 65, (1997).

[3] B. Green, Counting sets with small sumset, and the clique number of random Cayley graphs, Combinatorica, 25:3 (2005), 307–326.

[4] B. Green, R. Morris, Counting sets with small sumset and applications, Combinatorica, 35:1 (2015), 1–31.
[5] S.V. Konyagin, I.D. Shkredov, *New results on sums and products in* \(\mathbb{R} \), Proc. Stekl. Inst. Math., **294** (2016), 78–88.

[6] R. Mrazović, *Extractors in Paley graphs: A random model*, European Journal of Combinatorics, **54** (2016), 154–162.

[7] R. Mrazović, *A random model for the Paley graph*, arXiv:1603.00684 – 2016.

[8] W. Rudin, *Fourier analysis on groups*, Wiley 1990 (reprint of the 1962 original).

[9] T. Schoen, I.D. Shkredov, *Additive dimension and a theorem of Sanders*, J. Aust. Math. Soc., **100**:1 (2016), 124–144.

[10] I.D. Shkredov, *An application of the sum–product phenomenon to sets having no solutions of several linear equations*, Proc. Steklov Inst. Math., accepted; arXiv:1609.06489v1 [math.NT] 21 Sep 2016.

[11] I.D. Shkredov, S. Yekhanin, *Sets with large additive energy and symmetric sets*, Journal of Combinatorial Theory, Series A, **118** (2011) 1086–1093.

[12] Y.N. Shteinikov, *On the product sets of rational numbers*, Proc. Steklov Inst. Math., **296** (2017) 243–250.

[13] T. Tao, V. Vu, *Additive Combinatorics*, Cambridge University Press (2006).

S.V. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
konyagin@mi.ras.ru

I.D. Shkredov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
ilya.shkredov@gmail.com