REVIEW

Saudi medicinal plants for the treatment of scorpion sting envenomation

Abdulrahman Al-Asmari*a,*, Rajamohamed Abbas Manthiri a, Nasreddien Abdo a, Fawzi Abdullah Al-Duaiji b, Haseeb Ahmad Khan c

a Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
b Department of Pharmacy, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
c Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Received 21 April 2016; revised 5 October 2016; accepted 9 October 2016
Available online 20 October 2016

KEYWORDS
Medicinal plants;
Scorpion;
Anti-venom;
Traditional medicine

Abstract Scorpion sting envenoming poses major public health problems. The treatment modalities include antivenoms, chemical antidotes and phytotherapy, with varying degrees of effectiveness and side effects. In this investigation, we reviewed the use of Saudi medicinal plants for the treatment of scorpion sting patients. The relevant literature was collected using the online search engines including Science Direct, Google and PubMed with the help of specific keywords. We also used the printed and online resources at our institutional library to gather the relevant information on the use of medicinal plants for the treatment of scorpion sting patients. A descriptive statistics was used for data compilation and presentation. The results of this survey showed the use of at least 92 medicinal plants with beneficial effects for treating victims of stings of different scorpion species. These commonly used herbs spanned to 37 families whilst different parts of these plants were employed therapeutically for alleviation of envenomation symptoms. The application of leaves (41%) was preferred followed by roots (19%), whole plant (14%) and seeds (9%). The use of latex (4%), stem (3%), flowers (3%) and bark (3%) was also reported. In some cases, tannin (2%), rhizome (1%) and shoot (1%) were also used. In conclusion, herbal medicines are effectively used for the treatment of patients with scorpion envenomation. This type of medication is free from side effects as observed with chemical antidotes or antivenom therapy. It is important to identify the active ingredients of herbal drugs for improving their therapeutic potential in traditional medicine.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Scorpions are widely distributed throughout the world and pose serious health hazard due to their poisonous venoms (Uawonggul et al., 2006; Al Asmari et al., 2012, 2015, 2016). The scorpion venom is a heterogeneous mixture of various neurotoxins, cardiotoxins, nephrotoxins and haemolytic that exert acute toxicological effects in humans (Bawaskar and Bawaskar, 2012). The degree of envenomation is associated with several factors including scorpion species, venom lethality, dose of venom injected at the time of sting and the victim’s physiological response to venom (Karnad, 2009). The common symptoms in scorpion sting victims are severe pain and inflammatory reactions whereas mortality may happen in rare cases (Uawonggul et al., 2006). The synergistic impact of cardiac, respiratory, autonomic and metabolic abnormalities in scorpion sting patients may lead to multisystem failure and death (Murthy et al., 1991; Yugandhar et al., 1999; Bawaskar and Bawaskar, 2007).

The current therapeutic regimens for alleviation of scorpion venom-induced symptoms include prazosin, angiotensin-converting enzyme inhibitors, insulin and antivenoms (Murthy et al., 1991; Bagchi and Deshpande, 1998; Yugandhar et al., 1999; Bawaskar and Bawaskar, 2007; Krishnan et al., 2007; Deshpande et al., 2008). Sodium channel blockers (Fatani et al., 2000) and β1-adrenergic agonist dobutamine (Gupta et al., 2010) have also served as antidotes to neutralize the toxic effects of scorpion venom. The use of herbal sources in traditional medicine is not a new concept but was in practice for more than 5000 years (Sher and Hussain, 2009). It is important to note that more than 25% of drugs are of plant origin and more than 100 active compounds and synthetically produced drug analogues come from natural precursors (Shinwari, 2010).

Two thirds of the Arabian peninsula are occupied by the Kingdom of Saudi Arabia, covering a wide range of natural sites with great biodiversity and synergistic framework of associated ecosystems (Ahmad and Ghazanfar, 1991; Ghazanfar, 2007). Although there are many reports on barcoding of medicinal and wild plants of Saudi Arabia (Arif et al., 2010a,b; Bafeel et al., 2011, 2012a,b) a comprehensive survey of the use of medicinal plants for the treatment of scorpion sting victims is lacking. In the present study, efforts have been made to document important medicinal plants used for the treatment of scorpion sting patients as an alternative medicine.

2. Methods

This research survey was conducted using the electronic search engines pertaining to scientific research data including PubMed and Science Direct. We also approached the libraries of biological and chemical abstracts. The key words used for the literature search of this study were “Saudi Arabian medicinal plants, ethnobotanical evidences in scorpion sting and natural products”. Selection of plants was focused on their therapeutic potentials as anti-venom in folklore remedies. Specific searches were also made to enlist already reported anti-venom constituents with possible mechanism to support the anti-venom characteristics of medicinal plants of Saudi Arabia. The outcome of the results were rechecked and compared with literature of current drugs that are employed in combating signs and symptoms of envenoming by scorpions.

3. Results

The findings of this survey identified 92 medicinal plants distributed at various places in Saudi Arabia, and have been enlisted in alphabetical order of family, scientific name and the plant portion used for the treatment of scorpion sting victims (Table 1). These species are distributed in 37 families among which Leguminosae and Apocynaceae have maximum representation with 11 and 10 plants. The families Amaranthaceae and Compositae represented 8 and 6 plants respectively whereas the families Euphorbiaceae, Poaceae and Solanaceae had 5 plants each. Three plants each were belonged to families Apiaceae and Convolvulaceae, whereas 2 plants each belonged to families Boraginaceae, Cucurbitaceae, Cyperaceae, Moraceae, Nyctaginaceae, Plantaginaceae, Portulacaceae and Rutaceae. The remaining families including Acanthaceae, Aizoaceae, Annonaceae, Araceae, Aristolochiaceae, Bursaraceae, Capparidaceae, Ceratophyllaceae, Commelinaceae, Lauraceae, Lythraceae, Malvaceae, Myrtaceae, Oxalidaceae, Papaveraceae, Plumbaginaceae, Rhamnaceae, Salvadoraceae, Verbenaceae and Zygophyllaceae represented only single medicinal plant per family, with anti-venom potential (Table 1). All the plants mentioned in this study are distributed at various places throughout the Kingdom of Saudi Arabia (Flora of Saudi Arabia, 2014). The data showed that several parts of the medicinal plants were used for their anti-venom potentials. Of these, the use of leaves predominated (41%) followed by roots (19%), whole plant (14%) and seeds (9%) as shown in Fig. 1. Plant latex was used in 4% cases whereas stem, flower and bark were applied in 3% of the scorpion envenoming victims. Fewer cases were treated with tannin (2%), rhizome (1%) or shoot (1%) (Fig. 1).

4. Discussion

The ethnobotanical resources of Saudi Arabia can be broadly classified into fibre yielding plants, oil-producing plants,
Family	Botanical name	Parts used	Reference
Acanthaceae	Blepharis maderaspatensis (L.) Heyne ex Roth	Leaf juice is taken orally	Alagesaboopathi (2011)
Aizoaceae	Trianthema portulacastrum L.	Leaf	Sharma et al. (2004), Ayyanar and Ignacimuthu (2005)
Amaranthaceae	Achyranthes aspera L.	Bark, shoot, leaf, roots and seeds are useful	Swamy et al. (2003), Ayyanar and Ignacimuthu (2005), Flatie et al. (2009), Riuze-Teran et al. (2008), Reddy et al. (2010)
	Aerva lanata (Linn) Juss. ex. Schult.	Plant extract	Ali-Shtayeh et al. (1998)
	Alternanthera pungens Kunth	Whole plant	Ayyanar and Ignacimuthu (2005)
	Alternanthera sessilis (L.) R.Br. ex DC.	Leaf	Bolyard (1981), Hernandez et al. (1999)
	Amaranthus graecizans L.	Leaf	Ghazanfar (1994)
	Amaranthus spinosus L.	Leaf, stem, root are taken orally	Lalfakzuil et al. (2007), Ignacimuthu et al. (2008), Chotchoungchatchai et al. (2012)
	Amaranthus viridis L.	Leaf used as emollient in scorpion sting	Samal et al. (2010)
Annonaceae	Annona squamosa L.	Leaf, root paste for external application. Root bark decoction orally.	Hammiche and Maiza (2006), Ghatapanadi et al. (2011)
Apiaceae	Carum carvi L.	Root	Larousse (1975)
	Conium maculatum L.	Flower, leaf	Duke and Wain (1981)
	Trachyspermum ammi (L.) Sprague	Stem	Rao et al. (2000), Shardong and Cervi (2000)
Apocynaceae	Adenium obesum (Forssk.) Roem. & Schult.	Leaf, latex	Rodriguez-Lopez et al. (2007)
	Calotropis procera (Aiton) Dryand.	Latex, leaf, whole plant, root	Abbiiw (1990), Ghazanfar (1994), Meena and Yadav (2011)
	Carissa spinarum L.	Root flower	Kunwar et al. (2009)
	Catharanthus roseus (L.) G. Don.	Leaf	Kerharo and Bouquet (1950)
	Ceropogia bulbosa Roxb.	Stem, tannin	Samy et al. (2008)
	Glossonema boveanum (Decne.)	Stem, leaf	Ayyanar and Ignacimuthu (2005)
	Gymnema sylvestre (Retz.) Schult	Leaf	Girish et al. (2004), Riuze-Teran et al. (2008)
	Nerium oleander L.	Leaf	Chotchoungchatchai et al. et al. (2012)
	Pergularia daemia (Forssk.) Chiov. Pergularia tomentosa L.	Leaf	Raganathan and Abay (2009)
	Arisamemflorun	Leaf	Duke and Wain (1981)
	Aristolochia bracteolata Lam.	Rhizome	Bibi et al. (2011)
	Heliotropium aegyptiacum Lehmi	Paste of leaf for local application	Thirumal et al. (2012)
	Heliotropium striogoss Wull.	Root	Abroug et al. (1999)
	Glossonema boveanum (Decne.)	Whole plant	Abbiw (1990)
	Gymnema sylvestre (Retz.) Schult	Leaf	Ross (2003)
	Conmnihora molmol (Engl.) Engl. ex Tschirch	Bark	Kori et al. (2009)
Capperdicae	Cleome gynandra	Leaf, seed, root juice	Van Wyk (2008)
	Ceratophyllum demersum L.	Whole plant	Mahishi et al. (2005)
	Commelina benghalensis L.	Whole plant	Gangwar et al. (2010)
	Centaurea iberica Trevir.	Leaf	Meena and Rao (2010)
	Cnicus benedictus L.	Leaf, whole plant	Larousse (1975)
	Eclipta prostrata (L.) L.	Latex	Ayyanar and Ignacimuthu (2005), Jalalai et al. (2006)
	Lactuca serriola L.	Leaf, whole plant	Zakaria and Mohammed (1994), Duke and Wain (1981)
Compositae	Sonchus oleraceus (L.) L.	Whole plant	Suryanarayana (2014)
	Eclipta prostrata (L.) L.	Leaf	Abbiiw (1990)
	Ipomoea aquatica Forssk.	Leaf	Singh and Pandey (1998)
	Ipomoea eriocarpa R. Br.	Leaf	Ayyanar and Ignacimuthu (2005)
	Citrullus colocynthis (L.) Schrad.	Flower, root, stem, whole plant	Kapoor (2000), Navarro Garcia et al. (2003), Khalid et al. (2012)
	Coccinia grandis (L.) Voigt	Root	Kerharo and Bouquet (1950), Singh and Pandey (1998)
Family	Botanical name	Parts used	Reference
--------	----------------	------------	-----------
Cyperaceae	*Cyperus longus* L.	Tannin	Hebbar et al. (2002)
Euphorbiaceae	*Acalypha indica* L.	Leaf	Sudhakar and Madhava Chetty (1998)
	Croton lobatus L.	Leaf	Abrough et al. (1999)
	Euphorbia cuneata Vahl		
	Euphorbia granulata Forssk.	Whole plant, latex	Thirumal et al. (2012); http://www.vanilla.com/html/globe-enhancing-tahiti.html
	Ricinus communis L.	Seeds, leaf	Zakaria and Mohammed (1994), Singh and Pandey (1998)
Lauraceae	*Cassia australis* L.	Root	Riuz-Teran et al. (2008)
	Abrus precatorius L.	Root	Riuz-Teran et al. (2008)
	Acacia oerfota (Forssk.) Schweinf.		
	Astragalus mareoticus Delile	Leaf	Khalid et al. (2012)
	Clitoria ternatea L.	Leaf, root, stem	Al-Kindi (1966)
	Desmodium gangeticum (L.) DC.	Root	Medicinal plants of Nepal (1976)
	Dicrastachys cinerea (L.) Wight & Arn.	Root, leaf	Ross (2003)
	Glycyrrhiza glabra L.	Root	Medicinal plants of Nepal (1976)
	Indigofera tinctoria L.	Whole plant	Jayaweera (1981), Ayyanar and Ignacimuthu (2005)
	Prosopis cineraria (L.) Druce		
	Tamarindus indica L.	Stem, leaf, whole plant	Ghazanfar (1994)
	Lawsonia inermis L.		
Malvaceae	*Malva parviflora* L.	Leaf	Kapoor (2000), Nacoulma-Ouadraogo et al. (1997–1998), Singh and Pandey (1998)
Moraceae	*Ficus carica* L.	Latex, leaf	Seaford (1988)
	Ficus ceylonica (Vahl) C.C. Berg	Leaf	Yesilada and Coll (1995), Siromoney et al. (1973)
	Myrtus communis L.	Leaf	Ghaizanfar (1994)
Myrtaceae			
	Myrtus communis L.	Root, leaf	Sharma et al. (2004)
Nyctaginaceae	*Boerhavia diffusa* L.	Root	Mukherjea et al. (2008)
	Mirabilis jalapa L.		
Oxalidaceae	*Oxalis corniculata* L.	Leaf	Honda and Coll (1996), Chotboungsakhatthi et al. (2012), Riuz-Teran et al. (2008)
Papaveraceae	*Argemone mexicana* L.	Root, leaf	Jayaweera (1981)
Plantaginaceae	*Plantago major* L.	Whole plant	Singh and Pandey (1998)
	Scoparia dulcis L.	Leaf	Meena and Yadav (2010)
Plumbaginaceae	*Plumbago zeylanica* L.	Whole plant, root	Girish et al. (2004)
Poaceae	*Cymbopogon schoenanthus* (L.) Spreng.	Leaf	Ayyanar and Ignacimuthu (2005)
	Echinochloa colonia (L.) Link		
	Heteropogon contortus (L.) P. Beauv. ex Roem & Schult.	Whole plant	Kallawaya (1984)
	Imperata cylindrica (L.) Raeusch.	Root	Dash et al. (2008)
	Setaria verticillata (L.) P. Beauv.		
	Portulaca oleracea L.	Whole plant	Lasry (1937); http://himalayanhealth-care.com/pages/Ayuravedi cherbuses.htm
	Portula quadricula L.	Tannin, stem	Dalziel (1937)
Rhamnaceae	*Ziziphus nummularia* (Burm.f.) Wight & Am.	Leaf	Ayyanar and Ignacimuthu (2005)
timber plants, edible plants and medicinal plants. *Juniperus*, *Prosopis*, *Tamarix*, *Ziziphus*, etc. were a good source of timber for construction. The use of *Salvadora persica* roots as toothbrush, Myrrh from *Commiphora*, *Henna* from *Lawsonia inermis*, etc. is common even in these days. Reeds such as *Phragmites*, *Typha*, *Scirpus* are still being used more making baskets, mats, etc., although to keep the tradition alive. Pillows have been made from the inflorescence of *Typha*, *Sacharum*, *Aerva javanica* and mats from the fibres of *Sansevieria*, *Dracaena*, etc. As many as 319 species have been identified in the past decades which have been widely used in Saudi folk medicine (*Flora of Saudi Arabia, 2014*). Various essential oils were extracted from species belonging to the Lamiaceae family. Species such as *Anastatica hierochuntica*, *Matricaria aurea*, *L. inermis*, *Mentha* spp., *Calligonum comosum*, *Teucrium polium*, *Withania somnifera*, *Anagyris foetida*, *Senna alexandrina*, etc. are good sources of medicines for treating various ailments (*Flora of Saudi Arabia, 2014*).

The findings of this study showed that there are numerous plants of medicinal importance that have shown anti-venom properties against scorpion stings (Table 1). History of the use of natural products started from very beginning of the human civilization. From the ancient time plant products were the most successful remedies because of better compatibility with the human body and enhanced acceptability in human societies. Most frequent manifestations of scorpion envenomation are pulmonary oedema (*Goncalves et al., 2012*), myocardial damage (*Maheshwari and Tanwar, 2012*), intracerebral haemorrhage (*Dube et al., 2011*), brachial plexopathy (*Rubin and Vavra, 2011*) and renal failure (*Naqvi et al., 1998*), induced by the prolific release of neurotransmitters (*Ismail, 1995; Natu et al., 2010*). Prazosin is a common supportive therapy for scorpion envenomation (*Natu et al., 2010*). Other investigators have reported the benefits of scorpion antivenom treatment for the management of scorpion sting victims (*Deshpande, 2010*). However, clinical trials provided questionable and controversial data about the effectiveness of scorpion antivenom serotherapy (*Tuuri and Reynolds, 2011*), especially in severe envenoming cases (*Abroug et al., 1999; Belghith et al., 1999*), such as children who are severely affected (*Bahloul et al., 2010*).

The efficacy of plants against scorpion sting may be associated with the presence of various phytochemicals, whilst symptomatic relief may be due to anti-inflammatory, anti-pruritic and analgesic effects of medicinal plants (*Dupre, 2013*). The mechanism may involve quick antagonism or metabolism of catecholamines released as a result of interaction of venom with receptors. The intensity of envenoming effects can also be reduced by non-specific stimulation of the immune system that would result in neutralization or phagocytosis of the venom peptides. Phospholipase enzymes play significant role in the cascade which leads to pain and inflammatory responses, whilst, inhibition of these enzymes may relieve scorpion envenoming (*Abbasi et al., 2010*). The folklore medicinal

Family	Botanical name	Parts used	Reference
Rutaceae	*Haplophyllum tuberculatum* Juss.	Leaf	Zakaria and Mohammed, 1994
	Ruta chalepensis L.	Whole plant	Ghazanfar (1994), Zakaria and Mohammed (1994), Duke and Wain (1981)
Salvadoraceae	*Salvadora persica* L.	Leaf, flower	Ghazanfar (1994)
Solanaceae	*Datura stramonium* L.	Leaf, stem, root	Abbiw (1990); http://www.ncl.ac.uk/medplant
	Hyoscyamus albus L.	Leaf	Zakaria and Mohammed (1994)
	Nicotiana tabacum L.	Leaf	Medicinal plants of Nepal (1976), Kerharo and bouquet (1950), Singh and Pandey (1998)
Solanaceae	*Solanum anguivi* Lam.	Stem	Ur-Rehman (2006)
	Withania somnifera (L.) Dunal	Leaf, root	Ghazanfar (1994)
Verbenaceae	*Phyla odiflora* L.	Leaf	Nasim et al. (2013)
Zygophyllaceae	*Balanites aegyptiaca* (L.) Delile	Leaf, stem	Ruiz-Teran et al. (2008)

Figure 1 Use of different plant parts for the treatment of scorpion sting victims.

Table 1 (continued)
plants contain various types of flavonoids, steroids, terpenoids, alkaloids, tannins and coumarins that may account for their antivenom potentials (Khalil et al., 1981; Picman, 1986; Ammar et al., 1993; Bin Asad et al., 2011; Mansour et al., 2011). The antivenom activity of a plant cannot be attributed to a single active ingredient however the overall activity results from the synergistic effect of various constituents on various target structures such as enzymes and receptors (Uawonggul et al., 2006; Mansour et al., 2007, 2011). Fatani et al. (2006) showed that extracts of *Gingko biloba* associated with aprotinin, a protease inhibitor, protected rats against cardiovascular damage induced by the venom of *Leiurus quinquestriatus*. Mansour et al. (2011) showed that extracts of *Ambrosia maritima* protect against the adverse effects of *L. quinquestriatus* scorpion venom on muscular and intestinal tissue in rats. Treatment with red grape seed against *L. quinquestriatus* *quinquestriatus* venom significantly reduced mortality and improved mean arterial blood pressure, signs of conduction defects, myocardial ischaemia, and infarction in rats (El-Alfy et al., 2008).

In conclusion, the data mentioned in this study clearly showed that herbal medications possess potential antivenom properties that can be utilised for the treatment of scorpion sting victims. The information reported above could be helpful for scientists, drug designers, medicinal plant boards and other scientific bodies related to herbal research in scorpion sting treatment. Further studies are required to identify the phytochemicals responsible for anti-scorpion venom activity of these medicinal plants. Moreover, well-designed pharmacological and clinical trials will help in confirmation of the efficacy of the reported herbs. There is also a need to create more public awareness about growing the medicinal plants in the residential vicinity so that they can be used for providing first aids to alleviate the symptoms of scorpion envenomation.

References

Abbasi, A.M., Khan, M.A., Ahmad, M., Zafar, M., Jahan, S., Sultana, S., 2010. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J. Ethnopharmacol. 128, 322–335.

Abbiw, D.K., 1990. Useful Plants of Ghana: West African uses of Wild and Cultivated Plants. Intermediate Technology Publications, London, p. 337.

Abroug, F., ElAltrous, S., Nouria, S., Haguia, H., Touzi, N., Bouchoucha, S., 1999. Serotherapy in scorpion envenomation: a randomized controlled trial. Lancet 354, 906–909.

Ahmad, H.A., Ghazanfar, S.A., 1991. Conservation of medicinal plants on the Arabian Peninsula. Two case studies. Med. Plant Conserv. 3, 15–16.

Alagesaboopathi, C., 2011. Ethnobotanical Studies on useful Plants of Kanjamalai Hills of Salem district of Tamil Nadu, Southern India. Arch. Appl. Sci. Res. 3, 532–539.

Ali-Shtayeh, M.S., Yaghmour, R.M.R., Faidi, Y.R., 1998. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 60, 265–271.

Ammar, N.M., Al Okbi, S.Y., Badawy, H., 1993. The hypoglycemic effect of different extracts of *Ambrosia maritima*. Compositae. J. Islamic Acad. Sci. 6, 298–301.

Arif, I.A., Bakir, M.A., Khan, H.A., Al Farhan, A.H., Al Homaidan, A.A., Bahkali, A.H., Al Sadoon, M., Shobarak, M., 2010a. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment. Genet. Mol. Res. 9, 2191–2198.

Arif, I.A., Bakir, M.A., Khan, H.A., Al Farhan, A.H., Al Homaidan, A.A., Bahkali, A.H., Al Sadoon, M., Shobarak, M., 2010b. A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11, 2079–2096.

Al Asmari, A., Khan, H.A., Manthiri, R.A., 2012. Rapid profiling of crude scorpion venom using liquid chromatography and its relevance to species identification. Acta Chromatogr. 24, 501–509.

Al Asmari, A., Khan, H.A., Manthiri, R.A., 2015. Effect of *Androctonus bicolor* scorpion venom on the activities of serum enzymes in rats. Int. J. Clin. Exp. Med. 8, 11734–11737.

Al Asmari, A., Khan, H.A., Manthiri, R.A., 2016. Effect of *Androctonus bicolor* scorpion venom on serum electrolytes in rats: a twenty four hour time course study. Hum. Exp. Toxicol. 35, 293–296.

Al-Kindi, 1966. 9ème siècle. Aqрабاذحين. Traduction in English. Martin Levey, University of Wisconsin Press, p. 410.

Ayyanar, M., Ignacimuthu, S., 2005. Traditional knowledge of Kani tribals in Kouthalai of Tirunelveli hills, Tamil Nadu, India. J. Ethnopharmacol. 102, 246–255.

Bafeel, S.O., Arif, I.A., Bakir, M.A., Khan, H.A., Al Farhan, A.H., Al Homaidan, A.A., Ahammad, A., Thomas, J., 2011. Comparative evaluation of PCR success with universal primers of maturase K (matK) and ribulose-1,5-bisphosphate carboxylase oxygenase large subunit (rbcL) for barcoding of some arid plants. Plant Omics 4, 185–198.

Bafeel, S.O., Arif, I.A., Bakir, M.A., Al, H., Al Farhan, A.H., Al Homaidan, A.A., Ahammad, A., Thomas, J., Bakir, M.A., 2012b. Ribulose-1,5-bisphosphate carboxylase (rbcL) gene sequence and random amplification of polymorphic DNA (RAPD) profile of regionally endangered tree species *Coptosperma gravoles* subsp. arabicum (S. Moore) Degref. Plant Omics 5, 285–290.

Bagchi, S., Deshpande, S.B., 1998. Indian red scorpion (*Buthus martini*) venom-induced augmentation of cardiac reflexes is mediated through the mechanisms involving kinins in urethane anesthetized rats. Toxicon 36, 309–320.

Bahloul, M., Chabchoub, I., Chiari, A., Chitra, K., Kallel, H., et al., 2010. Scorpion envenomation among children: clinical manifestations and outcome (analysis of 685 cases). Am. J. Trop. Med. Hyg. 83, 1084–1092.

Bawaskar, H.S., Bawaskar, P.H., 2007. Utility of scorpion antivenin in the management of severe *Mesobuthus tamulus* (Indian red scorpion) envenoming at rural setting. JAPI 55, 14–21.

Bawaskar, H.S., Bawaskar, P.H., 2012. Scorpion sting: update. JAPI 60, 46–55.

Belghith, M., Boussarsar, M., Haguia, H., Besbes, L., ElAtrous, S., et al., 1999. Efficacy of serotherapy in scorpion sting: a matched-pair study. J. Toxicol. Clin. Toxicol. 37, 51–57.

Bibi, Y., Nisa, S., Chaudhary, F.M., Zia, M., 2011. Antibacterial activity of some selected medicinal plants of Pakistan. BMC Compl. Alternat. Med. 11, 52.

Bin Asad, M.H.H., Murtaza, G., Siraj, S., Khan, S.A., Azhar, S., Hussain, M.S., Ismail, T., Hussain, M.S., 2011. Enlisting the scientifically unnoticed medicinal plants of Pakistan as a source of novel therapeutic agents showing anti-venom activity. African J. Pharm. Pharmacol. 5, 2292–2305.

Bolyard, J.L., 1981. Medicinal Plants and Home Remedies of Appalachia. Thomas, Springfield, I.L.

Chotchoungehtatchai, S., Saralamp, P., Jenjitkittik, T., et al., 2012. Medicinal plants used with Thai traditional medicine in modern health care services: a case study in Kabchoeng Hospital, Sarin Province, Thailand. J. Ethnopharmacol. 141, 193–205.

Dalziel, J.M., 1937. The Useful Plants of West Tropical Africa. Crown Agents, London, p. 612.
Dash, P.K., Sahoo, S., Bat, S., 2008. Ethnobotanical studies on Orchids of Niyamgiri Hill Ranges, Orissa, India. Ethnobot. Leaflets 12, 70–78.

David Samuel, P., 2004. Medicinal plant biodiversity and traditional knowledge system of Maruthua Malai and Associated Hills of Souther Western Ghats (thesis). Mahatma Gandhi Univ, p. 252.

Department of Medicinal Plants, 1976. Catalogue of Nepalese Vascular Plants. Bull. Dept. Med. Plant, Kathmandu, Nepal, p. 7.

Deshpande, S.B., Pandey, R., Tiwari, A.K., 2008. Pathophysiological approach to the management of scorpion envenomation. Indian J. Physiol. Pharmacol. 52, 311–314.

Deshpande, S.B., 2010. Antiscorpion venom scores over other strategies in the treatment of scorpion envenomation. J. Postgrad. Med. 56, 253–254.

Dube, S., Sharma, V.K., Dubey, T.N., Gouda, N.B., Shrivastava, V., 2011. Fatal intracerebral haemorrhage following scorpion sting. J. Indian Med. Assoc. 109, 194–195.

Duke, J.A., Wain, K.J., 1981. Medicinal Plants of the World. 3 volumes, p. 1654.

Dupre, G., 2013. New synthesis on plants used to treat scorpion stings. J. PharmTech Res. 3 (1), 175–225.

El-Alfy, A.T., Ahmed, A.A., Fatani, A.J., Kader, F., 2008. Amelioration of the cardiovascular manifestations of the yellow scorpion Leiurus quinquestriatus envenomation in rats by red grape seeds proanthocyanidins. Toxicon 51, 321–333.

Fatani, A.J., Harvey, A.L., Furman, B.L., Rowan, E.G., 2000. The effects of lignocaine on actions of the venom from the yellow scorpion Leiurus quinquestriatus in vivo and in vitro. Toxicon 38, 1787–1801.

Fatani, A.J., Al Zuhair, H.A., Yaquob, H.I., et al, 2006. Protective effects of the antioxidant Ginkgo biloba extract and the protease inhibitor aprotinin against Leiurus quinquestriatus venom-induced tissue damage in rats. J. Venom. Anim. Toxins. Incl. Trop. Dis. 12, 255–275.

Flatie, T., Gedif, T., Asres, K., Gebre-Mariam, T., 2009. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. J. Ethnobiol. Ethnomed. 5, 1–11.

Flora of Saudi Arabia, 2014. <http://www.plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Flora/Checklist/Checklist.htm>.

Gangwar, K.K., Deepa, L.I., Gangwar, R.S., 2010. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. J. Ethnobiol. Ethnomed. 5, 1–11.

Ghazanfar, S.A., 1984. Gue´ risseurs itine´ rants des Andes. ORSTOM, Paris, p. 333.

Girish, K.S., Mohanakumari, H.P., Nagaraju, S., et al, 2004. Hyaluronidase and protease activities from Indian snake venoms: neutralization by Mimosa pudica root extract. Fitoterapia 75, 378–380.

Gonn gradual, E., Maia, B.T., Junior, H.H., 2012. Scorpion sting-induced unilateral pulmonary edema. Rev. Soc. Bras. Med. Trop. 45. http://dx.doi.org/10.1590/S0037-86822012000000032.

Gupta, B.D., Parakh, M., Purohit, A., 2010. Management of scorpion sting: prazosin or dobutamine. J. Trop. Pediatr. 56, 115–118.

Hammi, V., Maiza, K., 2006. Traditional medicine in Central Sahara: pharmacopoeia of tassili N’ajer. J. Ethnopharmac. 105, 358–367.

Hebbar, S.S., Hedge, G.R., Shripayi, V.P.G., 2002. Ethnomedical knowledge of plants used by Kunabi Tribe of Karnataka in India. Fitoterapia 73, 281–287.

Hernandez, M.M., Heraso, C., Villareal, M.L., et al, 1999. Biological activities of crude plant extracts from Vitis mrollis L. (Verbe-naceae). J. Ethnopharm. 67, 37–44.

Honda, G., Coll, 1996. Traditional medicine in Turkey. VI. Folk medicine in West Anatolia: Ayvon, Kütahya, Denizli, Mugla, Aydın provinces. J. Ethnopharm. 53, 75–87.

Ignacimuthu, S., Ayyaran, M., Sankarashivaraman, K., 2008. Ethnobotanical study of medicinal plants used by Palijar tribals in Theni district of Tamil Nadu, India. Fitoterapia 79, 562–568.

Ismail, M., 1995. The scorpion envenomening syndrome. Toxicon 33, 825–858.

Jalalia, A., Vatanpour, H., Bagheri khalilli, M., et al, 2006. The antitoxicity effects of Parkinsonia aculeate against scorpion venom (Bothus saxatilis): in vivo and in vitro studies. J. Med. Plant. 5, 59–69.

Jayaweera, D.M.A., 1981. Medicinal Plants Used in Ceylon. National Science Council, Sri-Lanka, Colombo.

Kallaway, G.L., 1984. Guerisseurs itinéraires des Andes. ORSTOM, Paris, 608.

Kapoor, C.D., 2000. Handbook of Ayurvedic Medicinal Plants. CRC Press, Boca Raton, FL, p. 416.

Karnad, D.R., 2009. Management of scorpion envenomation: need for a standard treatment protocol using drugs and antivenom. J. Assoc. Phys. India 57, 299–300.

Kerharo, J., Bouquet, A., 1950. Plantes me´ dicinales et toxiques de la Vascular Plants. Bull. Dept. Med. Plant, Kathmandu, Nepal, p. 7.

Lasry, A., 1937. Histoire de la pharmacie indige` ne de l Algeria et de ses pays voisins. Larousse, 1975. Encyclope´ die des plantes me´ dicinales. De Vecci, Paris, p. 333.

Lalit, A., Vatanpour, H., Bagheri khalili, M., et al, 2006. The antitoxicity effects of Parkinsonia aculeate against scorpion venom (Bothus saxatilis): in vivo and in vitro studies. J. Med. Plant. 5, 59–69.

Larousse, 1975. Encyclopédie des plantes médicinales. De Vecchi, Paris, p. 333.

Lasry, A., 1937. Histoire de la pharmacie indigène de l’Algérie et de son folklore. Vigot, Paris, p. 83.

Maheshwari, M., Tanwar, C.P., 2012. Scorpion bite induced myocardial damage and pulmonary edema. Heart Views 13, 16–18.

Mahishi, P., Srinivasa, B.H., Shivanna, M.B., 2005. Medicinal plant diversity in Kumaun Himalaya of Uttarakhand, India. Nat. Sci. 8, 66–78.

Mansour, N.M., Tawfik, M.N., Yaseen, A.E., Rahmy, T.R., 2011. Fatal intracerebral haemorrhage following scorpion sting. J. Assoc. Phys. India 55, 22–26.

Mansour, N.M., Tawfik, M.N., Yaseen, A.E., Rahmy, T.R., 2011. Protective role of ambrosia maritime Plant extract against alterations induced by leirus quinquestrictatus Scorpion venom on skeletal muscles and Intestinal tissues of rats. Egypt. J. Nat. Toxicol. 6, 81–103.

Nahar, S., Ghorai, J., Maji, K.N., et al, 2004. Antioxidant and Antiscorpion venom activities of crude plant extracts from Parkinsonia aculeata against scorpion venom (Bothus saxatilis): in vivo and in vitro studies. J. Med. Plant. 5, 59–69.

Nahar, S., Ghorai, J., Maji, K.N., et al, 2004. Antioxidant and Antiscorpion venom activities of crude plant extracts from Parkinsonia aculeata against scorpion venom (Bothus saxatilis): in vivo and in vitro studies. J. Med. Plant. 5, 59–69.

Nahar, S., Ghorai, J., Maji, K.N., et al, 2004. Antioxidant and Antiscorpion venom activities of crude plant extracts from Parkinsonia aculeata against scorpion venom (Bothus saxatilis): in vivo and in vitro studies. J. Med. Plant. 5, 59–69.
Meena, A.K., Rao, M.M., 2010. Folk herbal medicines used by the Meena community in Rajasthan. Asian J. Trad. Med. 5, 19–31.
Meena, K.L., Yadav, B.L., 2010. Some ethnomedical plants of Southern Rajasthan. Indian J. Trad. Know. 9, 169–172.
Meena, K.L., Yadav, B.L., 2011. Some ethnomedical plants used by the Garasia tribe of district Sirohi, Rajasthan. Indian J. Trad. Know. 10, 354–357.
Mukherjea, P.K., Kumar, V., Kumar, N.S., Heinrich, M., 2008. The Ayurvedic medicine Clitoria ternatea – from traditional use to scientific assessment. J. Ethnopharm. 120, 291–301.
Murthy, K.R., Shenoy, R., Vaidyanathan, P., Kelkar, K., Sharma, N., Birevar, N., et al, 1991. Insulin reverses haemodynamic changes and pulmonary edema in children stung by the Indian red scorpion Mesobuthus tamulas concanensis, Pocock. Ann. Trop. Med. Para- sitol. 85, 651–657.
Nacoulaou-Ouadaugo, O., Millogo-Rasolodimby, J., Guinko, S., 2009. Ethnomedical survey of folk medicinal practices of the Garasia tribe in Indian Central Himalaya. Indian J. Trad. Know. 8, 313–317.
Naqvi, R., Naqvi, A., Akhtar, F., Rizvi, A., 1998. Acute renal failure developing after a scorpion sting. Br. J. Urol. 82, 295–298.
Nasim, M.J., Bin Asad, M.H.H., Sajjad, A., et al, 2013. Combating of scorpion bite with Pakistani medicinal plants having ethno-botanical evidences as antidote. Acta Polon. Pharmaceut. Drug Res. 70 (3), 387–394.
Natu, V.S., Kamerkar, S.B., Geeta, K., Vidya, K., Natu, V., et al, 2010. Efficacy of anti-scorpion venom serum over prazosin in the management of severe scorpion envenomation. J. Postgrad. Med. 56, 275–280.
Navarro García, V.M., Gonzalez, A., Fuentes, M., et al, 2003. Antifungal activities of nine traditional Mexican medicinal plants. J. Ethnopharm. 87, 85–88.
Piccan, A.K., 1986. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 14 (3), 255–281.
Ragunathan, M., Abay, S.M., 2009. Ethnomedical survey of folk drugs used in Bahirdar Zuria district, Northwestern Ethiopia. Indian J. Trad. Know. 8, 281–284.
Rao, R., Suseela, M.R., 2000. s.d. Vetiveria zizanioides (Linn.) nash. A multipurpose eco-friendly grass of India. In: Proc. 2nd Int. Conf. On Vetiver. Bangkok, 444–448.
Reddy, K.N., Trimmeruthu, G., Sudhakar-Redy, C., 2010. Plants used by the ethnic people of Krishna district, Andhra Pradesh. Indian J. Trad. Know. 9, 313–317.
Rius-Teran, F., Medrano-Martinez, A., Navarro-Ocana, A., 2008. Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. African J. Biotechnol. 7, 1886–1893.
Rodriguez-Lopez, V., Figueiraa-Suarez, M.Z., Rodriguez, T., Aranda, E., 2007. Insecticidal activity of Vitex mollis, Fitoterapia 78, 37–39.
Ross, I.A., 2003. Medicinal plants of the world: V1. Chemical constituents, traditional and modern medicinal uses. Human Press, 491.
Rubin, D.I., Vavra, M., 2011. Brachial plexopathy as a rare presenting manifestation of scorpion envenomation. Muscle Nerve 44, 131–135.
Samal, P.K., Dhyani, P.P., Dollo, M., 2010. Indigenous medicinal practices of Bhota tribal community in Indian Central Himalaya. Indian J. Trad. Know. 9, 140–144.
Samy, R.P., Pushpara, P.N., Gopalakrishnakone, P., 2008. A compilation of bioactive compounds from Ayurveda. Bioinformation 3, 100–110.
Savonnet, G., 1973. Quelques notes sur l utilisation de la flore arborée et arbustive en pays Lobi au sud du Gaoua. Notes Documents Voltaïques 2, 29–35.
Seaforth, C.E., 1988. Natural Products in Carribbean Folk Medicine. University of the West Indies, Trinidad.
Sharodg, R.M.F., Cervi, A.C., 2000. Estudos etnobotânicos das plantas de uso medicinal e místico na comunidade de São Benedito, Bairro São Francisco, Campo Grande, MS, Brasil. Acta Biol. Par. Curitiba 29, 187–217.
Sharma, P.K., Chauhan, N.S., Lal, B., 2004. Observations on the traditional phytotherapy among the inhabitants of Parvati valley in western Himalaya, India. J. Ethnopharm. 92, 167–176.
Sher, H., Hussain, F., 2009. Ethnobotanical evaluation of some plant resources in northern part of Pakistan. Afr. J. Biotechnol. 8, 4066–4076.
Shinwari, Z.K., 2010. Medicinal plants research in Pakistan. J. Med. Plants Res. 4, 161–176.
Singh, A., Singh, P.K., 2008. An ethnobotanical study of medicinal plants in Chaudauli District of Uttar Pradesh, Ind. J. Ethnopharm. 121, 324–329.
Singh, V., Pandey, R.P., 1998. Ethnobotany of Rajasthan. Scientific Publishers, Rajasthan, India, Jodhpur, p. 367.
Sironomy, G., Giles, D., Livingstone, C., 1973. Herbals medicines of the Narikoravas. Folklore 14, 363–366.
Soudahmini, E., Senthil, G.M., Panayappan, L., Divakar, M.C., 2005. Herbal remedies of Madugga tribes of Siruvani forest, South India. Nat. Prod. Rad. 4, 492–499.
Sudhakar, A., Madhava Chetty, K., 1998. Medicinal importance of some angiospermic weeds used by the rural people of Chittoor district of Andhra Pradesh, Ind. Fitoterapia 69, 390–400.
Suryanarayana, M.C., 2014. Sources of Bee Forage in Indian. In: Traditional sciences and Technologies in India Honey industry. < http://archive.today/TtUs8 >.
Swamy, P.S., Kumar, M., Sundarapandian, S.M., 2003. Spiritualité et écologie des bois sacrés au Tamil Nadu, India. Unasylva 54, 53–55.
Thirumal, M., Vadalavan, R., Kishore, G., Brahmani, V.S., 2012. Aristolochia bracteolata: an overview on pharmacognostical, phytochemical and pharmaceutical properties. Crit. Rev. Pharm. Sci. 1. 70–82.
Tuuri, R.E., Reynolds, S., 2011. Scorpion envenomation and antivenom therapy. Pediatr. Emerg. Care 27, 667–672.
Uawonggu, N., Chaveera, A., Thammasirirak, S., Arkaravichien, T., Chuachan, C., Daduang, S., 2006. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis. J. Ethnopharmacol. 103, 201–207.
Ur-Rehman, E., 2006. Indigenous knowledge on medicinal plants, village Barali kass and its allied areas, District Kotli Azad Jammu and Kashmir, Pakistan. Ethnobot. Leaflets 10, 254–264.
van Wyk, B.E., 2008. A review of Khoi-San and cape Dutch medical botanicals. J. Ethnopharm. 119, 331–341.
Yesilada, E., Coll, 1995. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Montains. J. Ethnopharmac. 46, 133–152.
Yugandhar, B., Murthy, K.R., Sattar, S.A., 1999. Insulin administration in severe scorpion envenoming. J. Venom. Anim. Toxins 5, 200–219.
Zakaria, M., Mohammed, M.A., 1994. Traditional Malay Medicinal Plants. Fajar Bakti, Kuala Lumpur.