Topological insights in polynuclear Ni/Na coordination clusters derived from a schiff base ligand

Griffiths, Kieran, Escuer, Albert and Kostakis, Georgios E (2016) Topological insights in polynuclear Ni/Na coordination clusters derived from a schiff base ligand. Structural Chemistry. ISSN 1040-0400

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/62373/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Topological insights in polynuclear Ni/Na Coordination Clusters derived from a Schiff base ligand

Kieran Griffiths, Albert Escuer and George E. Kostakis

Abstract

This article presents the syntheses, crystal structures, topological features and magnetic properties of two NiII/NaI coordination clusters (CCs) formulated [NiII3Na(L1)\textsubscript{3}(HL1)(MeOH)\textsubscript{2}] (1) and [NiII6Na(L1)\textsubscript{5}(CO\textsubscript{3})(MeO)(MeOH)\textsubscript{3}(H\textsubscript{2}O)\textsubscript{3}]\cdot4(MeOH) 2(H\textsubscript{2}O) [2 4(MeOH) 2(H\textsubscript{2}O)] where H\textsubscript{2}L1 is the semi rigid Schiff base ligand (E)-2-(2-hydroxy-3-methoxybenzylideneamino)-phenol). Compound 1 possesses a rare NiII3NaI cubane (3M4-1) topology and compound 2 is the first example in polynuclear Ni/Na chemistry that exhibits a 2,3,4M7-1 topology.

Keywords

Coordination cluster, Nickel, Sodium, Topology, Schiff base, ferromagnetism, Carbonate ion

This work is dedicated to Prof Vladimir Ya. Shevchenko on the occasion of his 75th birthday
1. Introduction and Review

One of the most complex categories of coordination compounds are polynuclear Coordination Clusters (CCs) that incorporate multiple metal ions into a single molecular entity and are linked by bridging ligands.[1] These entities are of great interest for their aesthetically beautiful structures,[2–4] unexpected transformations[5–7] and potential applications in magnetism,[8–10] luminescence,[11–15] catalysis,[16–18] etc. Paramagnetic transition metal CCs are of intense interest and have attracted a vast amount of attention since the discovery that some CCs behave as single molecule magnets (SMMs).[19–21] The NiII (d8) ion has second order orbital angular momentum, and zero-field splitting (ZFS) which can result in significant single-ion anisotropy and potentially in molecules exhibiting interesting magnetic properties.[22, 23] The interest in polynuclear Ni(II) coordination chemistry was first captured when the first Ni(II) based SMM, a Ni$_{12}$ complex, was reported in 2001 by Cadiou et al.[24] Ever since, there have been a number of homometallic polynuclear NiII CCs with high nuclearities including, Ni$_5$,[7, 25] Ni$_6$,[26] Ni$_7$,[27, 28] Ni$_8$,[29–32] Ni$_9$,[33, 34] Ni$_{11}$,[35] Ni$_{12}$,[7] Ni$_{13}$,[36] Ni$_{14}$,[37] Ni$_{20}$,[38] Ni$_{21}$,[39] Ni$_{24}$,[40] and Ni$_{26}$[41] many of these display interesting magnetic properties including ferromagnetic, ferrimagnetic coupling, diamagnetism and SMM behaviour.

Clusters of this size incorporate simple modified ligands with a wide variety of coordination modes for bridging; such as diethanolamine,[42] Schiff base,[43] carbide,[44, 45] and carboxylate.[46] The introduction of bridging groups can increase the nuclearity of a CC. Carbonate anions offer a diverse range of bridging modes within cluster type molecules, A number of high nuclearity CCs have been based on carbonate moieties[47, 48]. While Ni(II) CCs with bridging carbonate ligands are known, structural factors and magnetic exchange within these clusters greatly vary due to the large number of co-ordination modes of the CO$_3^{2-}$ anion.[39, 49, 50]. Some interesting examples include; a Ni$_6$ containing a carbonato bridge[51] and an Ni$_{12}$ where four Ni$_4$O$_4$ units are templated around a central CO$_3^{2-}$ anion core.[52] On the other hand, the first reported mixed NiII/NaII CC was reported in 1976 by Jonas for potential small molecule activation.[53] Since then a number of NiII/NaII CCs have been reported, targeting for high nuclearity clusters and interesting magnetic properties; Ni$_4$Na$_2$,[54] Ni$_4$Na$_5$,[55] Ni$_4$Na$_3$,[56] Ni$_4$Na$_6$[57, 58] and others.[59–62] However since 2007 NiII/Na$^+$ CCs with nuclearity over 10 have been reported far more frequently. The highest reported of these is a Ni$_{18}$Na$_6$ cluster[63] and the second Ni$_{16}$Na$_4$[64], both synthesised by calix[4]arene type ligands and the third is a Ni$_{16}$Na$_2$ cluster. In addition two Ni$_{12}$Na$_2$ clusters were reported by Christou et al.[37, 65] In all cases, similar anti-ferromagnetic behaviour was observed.
The diprotic Schiff base ligand (E)-2-(2-hydroxy-3-methoxybenzylideneamino)-phenol (H$_2$L1, Scheme 1) initially reported in 1971 to capturing UO$_2$,[66] can be synthesized in almost quantitative yields[67] and has two pockets that can coordinate to metal centres. Previously this ligand has been involved in the synthesis of homometallic[68–71] and heterometallic CCs.[72–75]. We recently employed this ligand in 3d/4f chemistry to synthesise a family of homogeneous efficient catalysts towards a domino reaction.[76] Interestingly, when H$_2$L1 was employed in Ni(II) chemistry, a tetranuclear Ni$_4$ CC exhibiting ferromagnetic interactions at low temperatures was isolated. [71] With the interest of introducing carbonate anions into a system, there are three key methods; direct addition of carbonate or bicarbonate[14], atmospheric fixation of carbon dioxide[77] and in situ decomposition of ligands[78].

Having all these in mind, in this article we study the influence of the presence of Na cations and CO$_3^{2-}$ anions on the nuclearity of the given chemical system Ni(II)/H$_2$L1 and we report two compounds formulated [Ni$_{III}^I$Na(L1)$_3$(HL1)(MeOH)$_2$] (1) and [Ni$_{III}^I$Na$_4$(L1)$_5$(CO$_3$(MeO)(MeOH)$_3$(H$_2$O)$_3$]-4(MeOH) 2(H$_2$O) [2 4(MeOH) 2(H$_2$O)]. Topological aspects and magnetic properties of these compounds are further discussed.

2. Experimental

Materials. Chemicals (reagent grade) were purchased from Sigma Aldrich and Alfa Aesar. All experiments were performed under aerobic conditions using materials and solvents as received. Instrumentation. IR spectra of the samples were recorded over the range of 4000-650 cm$^{-1}$ on a Perkin Elmer Spectrum One FT-IR spectrometer fitted with a UATR polarization accessory.

X-Ray Diffraction

Crystallography. Data for 1 and 2-4(MeOH) were collected at the National Crystallography Service, University of Southampton[79] using a Rigaku Saturn 724+ area detector mounted at the window of an FR-E+ rotating anode generator with a Mo anode ($\lambda=0.71075\AA$) under a flow of nitrogen gas at 150(2)K for 1 and 100(2) K for 2-4(MeOH). Both structures were determined using Olex2,[80] solved using either Superflip[81] or SHELXT[82, 83] and refined with SHELXL-2014.[84] All non-H atoms were refined with anisotropic thermal parameters,
and H-atoms were introduced at calculated positions and allowed to ride on their carrier atoms. For 1, attempts to model the lattice solvents (2MeOH) were unsuccessful despite multiple data collections. Therefore, the solvent mask function of Olex2[80] was employed to remove the contribution of the electron density associated with those molecules from the intensity data. Geometric/crystallographic calculations for all structures were performed using PLATON,[85] Olex2,[80] and WINGX[82] packages; graphics were prepared with Crystal Maker.[86] CCDC 1476870-1476871

Table 1. Crystallographic data for compounds 1 and 2

	1	2
Empirical formula	C₉₉H₅₇Na₄NaNi₃O₁₅	C₃₁₁H₃₅₃N₂₀Na₄Ni₂₄O₁₁₇
Formula weight	1261.20	7744.11
Temperature/K	150	100(2)
Crystal system	monoclinic	triclinic
Space group	P₂₁/n	P-1
a/Å	13.5258(10)	12.4060(8)
b/Å	23.2626(16)	26.2551(18)
c/Å	18.9222(13)	27.7103(19)
α/°	90	113.152(2)
β/°	94.6777(8)	91.231(2)
γ/°	90	92.181(2)
Volume/Å³	5934.0(7)	8286.4(10)
Z	4	1
ρcalc/g/cm³	1.412	1.552
µ/mm⁻¹	1.018	1.426
F(000)	2616.0	4011.0
Crystal size/mm³	0.19 × 0.08 × 0.05	0.22 × 0.03 × 0.01
Radiation	MoKα (λ = 0.71075)	MoKα (λ = 0.71075)
2Θ range for data collection/°	5.208 to 52.746	4.654 to 50.062
Index ranges	-17 ≤ h ≤ 17, -30 ≤ k ≤ 30, -24 ≤ l ≤ 24	-14 ≤ h ≤ 14, -28 ≤ k ≤ 31, -32 ≤ l ≤ 32
Reflections collected	64331	86087
Independent reflections	12109 [Rint = 0.0481, Rsigma = 0.0262]	28939 [Rint = 0.1207, Rsigma = 0.1309]
Data/restraints/parameters	12109/25/749	28939/1/2138
Goodness-of-fit on F²	1.063	0.972
Final R indexes [I=>2σ (I)]	R₁ = 0.0596, wR₂ = 0.1391	R₁ = 0.0734, wR₂ = 0.1878
Final R indexes [all data]	R₁ = 0.0641, wR₂ = 0.1415	R₁ = 0.1249, wR₂ = 0.2167
Largest diff. peak/hole / e Å⁻³	1.77/-0.72	1.82/-2.38

Magnetic studies. Magnetic susceptibility measurements were carried out on polycrystalline samples with a MPMS5 Quantum Design susceptometer working in the range 30-300 K under external
magnetic field of 0.3 T and under a field of 0.03 T in the 30 – 2 K range to avoid saturation effects. Diamagnetic corrections were estimated from Pascal Tables. The quality of the fitting is parametrized as the factor \(R = (\chi_M T_{exp} - \chi_M T_{calc})^2 / (\chi_M T_{exp})^2 \).

Synthesis of H\(_2\)L1

\(\alpha \)-Vanillin (0.025mol, 3.35g) and 2-amino-phenol (0.025mol, 2.73g) were dissolved in MeOH (5mL). The suspension was refluxed for 1h, during which time a bright orange solid precipitated. After cooling to room temperature the solid was filtered off and washed with cold MeOH and Et\(_2\)O. The solid was dried in vacuo. Yield 99%. \(^1\)H NMR (500 MHz, DMSO-\(d^6\)) \(\delta \) 9.75 – 9.71 (m, 1H), 8.95 (s, 1H), 7.36 (dd, \(J = 8.0, 1.6 \) Hz, 1H), 7.21 – 6.99 (m, 3H), 6.96 (dd, \(J = 8.1, 1.4 \) Hz, 1H), 6.91 – 6.81 (m, 2H), 3.80 (s, 3H); \(^{13}\)C NMR (126 MHz, DMSO-\(d^6\)) \(\delta \) 161.01, 151.77, 151.45, 148.63, 134.95, 128.46, 124.26, 120.05, 119.96, 119.70, 118.37, 116.97, 115.71, 56.34, 40.62, 40.53, 40.45, 40.36, 40.28, 40.19, 40.11, 40.03, 39.95, 39.86, 39.69, 39.53.

Synthesis of \(\text{[Ni(ClO}_4\text{)]}_2\cdot 6\text{H}_2\text{O} \)

Ni(\(\text{ClO}_4\))\(_2\)·6\text{H}_2\text{O} (0.1mmol, 37mg), \(\text{H}_2\)L1 (0.1mmol, 24mg) and Na\(_2\)CO\(_3\) (0.1mmol, 10mg) were suspended in MeOH (20mL) and stirred for 1hour. The solution was filtered and the filtrate left for slow evaporation. After 14 days, small brown crystals of I were collected and washed with Et\(_2\)O. (Yield = 45% calculated based on Ni(II)). IR (\(v, \text{cm}^{-1} \)) = 3402, 3291, 1780, 1609, 1552, 1454, 1388, 1291, 1224, 1182, 1073, 1033, 964, 820, 733, 635. CHN \([\text{Ni}_3\text{Na(C}_4\text{H}_{11}\text{NO}_3)_3(C_7\text{H}_5\text{N}_2\text{O}_3)(\text{CH}_3\text{OH})_2] \); observed C-56.63%; H-4.47%, N-4.43% (expected); C-56.76%; H-4.35%; N-4.56%

Synthesis of \(\text{[24(MeOH)2(H}_2\text{O)} \]

A similar synthetic procedure to I was followed, however after filtration the solution was placed in a vial which in turn was placed in a larger vial that contained a saturated aqueous solution of Na\(_2\)CO\(_3\). A few drops of conc HCl was added to the saturated to solution and the vial was immediately sealed. After 5 days, large brown block-like crystals of compound \(\text{[24(MeOH)2(H}_2\text{O)} \] were collected. (Yield = 60% calculated based on Ni(II)). IR (\(v, \text{cm}^{-1} \)) = 3288, 1604, 1552, 1451, 1388, 1294, 1229, 1182, 1075, 1037, 966, 818, 736, 637. CHN \([\text{Ni}_6\text{Na(C}_4\text{H}_{11}\text{NO}_3)_3(\text{CO}_3)(\text{CH}_3\text{O})(\text{CH}_3\text{OH})_3(\text{H}_2\text{O})_3] \) (observed); C-49.51%; H-4.11%; N-3.79%; (expected) C-49.52%; H-4.21%; N-3.85%

3. Results and Discussion

Two Ni\(^{III}\)/Na\(^{II}\) CCs were synthesised. The aim to use of Na\(_2\)CO\(_3\) as the base to introduce carbonate bridges to the system results in the presence of one Na\(^+\) in both CCs, while both compounds have different structures to the previously reported homometallic Ni\(^{III}\) CC with H\(_2\)L1.\(^{69}\) In I, the use of Na\(_2\)CO\(_3\) did not result in the introduction of carbonate bridging groups, however in 2 where the
reaction solution was exposed to a high CO\textsubscript{2} atmosphere during slow evaporation, a single CO\textsubscript{3}2- anion is observed. 1 and 2 are new additions to a large family of previously reported NiII/NaI CCs.

Figure 1. (upper) The crystal structure of compound 1, (lower left) the main Ni\textsubscript{3}Na core, (lower right) the 3M4-1 topology. Colour code Ni (green), Na (light yellow), O (red), N (blue), C (yellow)

1 crystallises in the monoclinic space group P2\textsubscript{1}/n and contains one molecule in the asymmetric unit cell. Compound 1 contains, three NiII ions, one NaI ion, three doubly deprotonated (L1) ligands, one mono deprotonated (HL1) ligand, three co-ordinated CH\textsubscript{3}OH solvent. Each NiII ion coordinate to six heteroatoms and displays a distorted octahedral geometry. There are three observed coordination modes for the doubly deprotonated ligands (L1) (Scheme 2), in each a NiII ion occupies the ONO pocket between the phenoxido and imido atoms. The singly protonated (HL1) ligand co-ordination mode (Scheme 2),[69, 71–74, 87–91] a NiII ion is observed occupying the OO pocket between the methoxido and phenoxide ligand atoms. Interestingly, L1 demonstrates a
twisted-out of plane geometry between the two aromatic rings with a torsion angle of -100.679° along the C=C-N=C bond, whilst the L1 Ligand aromatic rings are close to being in-plane with torsion angles between -166.840-174.23°. In addition to this both NiII and the NaI are observed bridging from the phenoxido atoms. The NaI ion displays a distorted octahedral geometry with, average Na-O bond distances ranging from 2.272-2.648A. Then three NiII ions all display distorted octahedral geometry with average Ni-O bind distances ranging from 1.981-2.343A. Four \(\mu_3 \)-Ophenoxo donors are placed in the corners of the cube linking the four cations. Ni-O-Ni bridges form three faces of the cube with bond angles of 97.0(1)°/97.7(1)°, 97.18(9)°/99.87(9)° and 93.38(9)°/102.7(1)°.

According to a nomenclature, developed by some of us,[92] the decorated core of this compound is assigned **3M4-1** (Figure 1). An extended literature survey reveals only three previously reported complexes with Ni3Na core topologies, each of which are synthesised from similar Schiff base ligands and coordination pockets to \(\text{H}_2\text{L1} \).[93, 94] The most recently reported of these Zhang et al[93] shares the same **3M4-1** topology as 1, making 1 the second example of a NiII3/NaI cubane.

Scheme 2. The coordination modes of the organic ligand \(\text{H}_2\text{L1} \) seen in 1 (upper) and 2 (middle and lower).
Table 2. Selected bond distances and angles for compound 1.

		Bond Length (Å)		Bond Angle (°)		
Ni1	O2	1.972(2)	Ni3	N2	1.979(3)	
Ni1	O3	1.989(3)	Na1	O2	2.646(3)	
Ni1	O9	2.095(2)	Na1	O6	2.272(3)	
Ni1	O11	2.188(3)	Na1	O10	2.334(4)	
Ni1	O48	2.144(3)	Na1	O11	2.333(3)	
Ni1	N1	2.011(3)	Na1	O15	2.329(3)	
Ni2	Na1	3.2461(18)	Na1	O25	2.295(5)	
Ni2	O8	1.994(2)	Ni1	O11	Na1	108.68(11)
Ni2	O9	2.089(2)	Ni2	O11	Ni1	97.02(11)
Ni2	O6	2.275(2)	Ni2	O11	Na1	96.31(10)
Ni2	O11	2.015(2)	Ni1	O2	Ni3	102.69(12)
Ni2	N4	2.131(3)	Ni1	O2	Na1	104.49(11)
Ni2	N3	1.979(3)	Ni3	O2	Na1	93.47(10)
Ni3	Na1	3.4000(17)	Ni1	O9	Ni3	93.38(9)
Ni3	O1	2.340(2)	Ni2	O9	Ni1	97.68(10)
Ni3	O2	1.980(3)	Ni2	O9	Ni3	99.87(9)
Ni3	O9	2.146(2)	Ni3	O6	Ni2	97.18(9)
Ni3	O5	1.982(3)	Ni3	O6	Na1	103.91(10)
Ni3	O6	2.041(2)	Na1	O6	Ni2	91.09(9)

Compound 2 crystallises in the triclinic P-1 space group and contains two molecules in the asymmetric unit. The molecule of 2 contains six NiII ions, one NaI ion, five doubly deprotonated L1 ligands, one bridging (μ5-CO3), one deprotonated MeOH solvent molecule with three CH3OH and three H2O molecules which fulfil the co-ordination geometry of the metal ions.
All six NiII ions have a distorted octahedral geometry. The \textbf{L1} demonstrates four different bridging modes (Scheme 2) with NiII ions observed occupying the (ONO) and (OO) pocket as well as bridging from the phenoxido, methoxido and imine groups. The NaII ion is seven coordinated and the coordination geometry can best be described as a capped trigonal prism determined by SHAPE software. The NaI ion coordinates to the (OO) pocket between the methoxide and phenoxido atoms.
of three ligands with the seventh position fulfilled by a H$_2$O molecule. The CO$_3^{2-}$ entity bridges Ni2, Ni4, Ni5 and Ni6 through a (µ$_5$-CO$_3$) ion. Na-O bond distances range from 2.282-2.625Å. The Ni – O and Ni – N distances vary between 1.983(6) and 2.321(4)Å, while the Ni – O – Ni angles mediated by the O$_{phenoxo}$ donors vary from 88.88(17) and 101.8(2)°, those mediated by the µ$_3$-OMe bridge, that links Ni1, Ni2 and Ni3, exhibit bond angles ranging between 95.74(19)-100.2(2)° and Ni5-O22-Ni6, mediated by one O$_{carbonate}$ atom reach 130.4(2)°.

Adopting our topological approach, the core of compound 2 can be enumerated as 2,3,4M$_7$-1.[92] The 2,3,4M$_7$-1 core topology can be viewed as two lozenges fused with a shared apex vertices (Figure 2 lower), this can be otherwise described as a “butterfly” motif, where the shared vertices are the body and the protruding lozenges the “wings”. The first reported compound of this topology was a mixed valence MnII/MnIII complex in 1991.[95]. This was subsequently followed by a number of homometallic CCs, including MnIII,[96] and PbII,[97]. The first heterometallic complex of this topology was reported in 2012 with the core topology of Zn$_5$Na$_2$[98] with the ((2,3-dihydroxypropylamino)methyl)phenol ligand (Scheme 3 H$_3$L5). The metal ion positions of this core topology differ to the reported compound 2. The Na$^+$ ions occupy the two apex vertices of the two fused lozenges with all other positions occupied by the 3d ZnII ions. In both examples the fused vertex is occupied by a 3d ion (NiII/ZnII). Metal ion geometries widely differ in both complexes, with Na$^+$ ions possessing severely distorted octahedral geometry and ZnII ions tetrahedral. Both of these complexes are formed from Schiff base ligands incorporating the 2-hydroxy-benzaldehyde moiety, which provides a similar co-ordination environment, with further bridging attributed to the third hydroxyl group in H$_3$L5. To the best of our knowledge 2 is the first example of an NiII/Na$^+$ CC exhibiting the 2,3,4M$_7$-1 topology. Moreover, ignoring the existence of the Na ion, then the motif of
the hexanuclear Ni₆ unit can be enumerated as 1,2,2,3,3M₆-1 (Figure S3), which has been reported only once before in Zinc chemistry.[99]

Ni1	N1	1.987(6)	Ni7	O30	1.961(5)	Ni3	O5	Ni1	101.84(19)
Ni1	O3	1.990(5)	Ni7	O27	1.976(5)	Ni2	O6	Ni1	96.90(19)
Ni1	O5	1.998(4)	Ni7	N6	1.985(6)	Ni2	O16	Ni3	100.20(18)
Ni1	O6	2.059(5)	Ni7	O28	2.046(5)	Ni4	O51	Ni2	101.50(19)
Ni1	O16	2.076(4)	Ni7	O41	2.099(5)	Ni4	O51	Ni3	95.74(19)
Ni1	O4	2.321(4)	Ni7	O29	2.297(5)	Ni2	O51	Ni3	95.13(17)
Ni2	O16	2.017(5)	Ni8	O41	2.016(5)	Ni5	O11	Na1	88.28(18)
Ni2	O6	2.053(5)	Ni8	O43	2.059(5)	Ni5	O12	Ni4	89.88(17)
Ni2	O17	2.069(5)	Ni8	O28	2.059(5)	Ni4	O20	Ni2	99.50(18)
Ni2	O18	2.071(5)	Ni8	O44	2.071(5)	Ni5	O22	Ni6	130.4(2)
Ni2	O51	2.086(4)	Ni8	O34	2.092(5)	Ni5	O22	Na1	91.49(18)
Ni2	O20	2.133(4)	Ni8	O45	2.135(4)	Ni6	O22	Na1	95.31(18)
Ni3	O5	1.954(4)	Ni9	O30	1.941(5)	Ni6	O14	Na1	103.8(2)
Ni3	O8	2.040(5)	Ni9	N7	1.997(6)	Ni4	O52	Ni5	90.12(19)
Ni3	N2	2.040(6)	Ni9	O54	2.031(5)	Ni4	O52	Na1	116.1(2)
Ni3	O16	2.062(5)	Ni9	O41	2.061(5)	Ni5	O52	Na1	81.76(16)
Ni3	O2	2.075(6)	Ni9	O42	2.088(5)	Ni7	O28	Ni8	97.7(2)
Ni3	O51	2.153(5)	Ni9	O34	2.178(5)	Ni9	O30	Ni7	103.6(2)
Ni4	N3	1.993(6)	Ni10	O33	1.993(5)	Ni10	O34	Ni8	101.92(19)
Ni4	O52	2.017(5)	Ni10	N8	2.001(5)	Ni10	O33	Na2	116.2(2)
Ni4	O51	2.040(5)	Ni10	O34	2.020(4)	Ni11	O33	Na2	83.77(17)
Ni4	O20	2.053(4)	Ni10	O45	2.049(4)	Ni10	O34	Ni9	93.77(18)
Ni4	O8	2.153(5)	Ni10	O54	2.143(5)	Ni8	O34	Ni9	94.16(17)
Ni4	O12	2.213(5)	Ni10	O37	2.234(5)	Ni11	O36	Na2	85.61(18)
Ni5	N4	1.987(5)	Ni11	N9	1.982(5)	Ni11	O37	Ni10	89.16(17)
Ni5	O11	1.989(4)	Ni11	O36	1.997(5)	Ni8	O41	Ni9	100.21(19)
Ni5	O22	2.011(4)	Ni11	O46	2.020(4)	Ni12	O39	Na2	103.0(2)
Ni5	O12	2.031(4)	Ni11	O37	2.057(4)	Ni8	O41	Ni7	97.32(19)
Ni5	O25	2.145(6)	Ni11	O50	2.122(5)	Ni9	O41	Ni7	94.99(19)
Ni5	O52	2.218(5)	Ni11	O33	2.212(5)	Ni11	O46	Na2	92.85(19)
Ni6	O14	1.957(5)	Ni12	O39	1.967(5)	Ni12	O46	Na2	95.00(18)
Ni6	N5	1.983(6)	Ni12	N10	1.972(6)	Ni9	O54	Ni10	94.49(19)
Ni6	O15	2.043(5)	Ni12	O40	2.034(5)	Ni10	O45	Ni8	99.49(18)
Ni6	O22	2.067(4)	Ni12	O46	2.057(5)	Ni11	O46	Ni12	129.5(2)
Ni6	O23	2.086(5)	Ni12	O49	2.096(5)	Ni12	O47	Na2	2.244(5)
Ni6	O21	2.229(5)	Ni12	O47	2.244(5)	Na1	O14	Na2	2.278(6)
Ni6	O7	2.342(5)	Na2	O39	2.278(6)	Na1	O7	Na2	2.306(7)
Ni6	O24	2.353(7)	Na2	O32	2.318(6)	Na1	O22	Na2	2.444(6)
Ni6	O22	2.442(5)	Na2	O46	2.444(6)	Na1	O11	Na2	2.629(5)
Ni6	O13	2.615(5)	Na2	O38	2.659(5)	Na1	O13	Na2	2.659(5)
Ni6	O52	2.651(5)	Na2	O36	2.718(6)				
4. Magnetic Studies

The $\chi_M T$ value at room temperature for compound 1 is $3.97 \text{ cm}^3\text{Kmol}^{-1}$, increase on cooling to a maximum value of $4.50 \text{ cm}^3\text{Kmol}^{-1}$ at 13 K, prior to decrease at low temperature, indicating a dominant weak ferromagnetic interaction. Fit of the experimental data was performed with PHI[100] program and applying the Hamiltonian:

$$H = -2J_1(S_1 \cdot S_2 + S_1 \cdot S_3) - 2J_2(S_2 \cdot S_3)$$

including a D parameter. Considering the D parameter an excellent fit of the experimental data was obtained for the parameters $J_1 = 3.6 \text{ cm}^{-1}$, $J_2 = -2.3 \text{ cm}^{-1}$, $D = 1.2 \text{ cm}^{-1}$, $g = 2.26$ and $R = 4.2 \cdot 10^{-5}$ but this was not the case when the isotropic Hamiltonian were applied. The shape of the $\chi_M T$ plot corresponds to a weak ferromagnetic coupling with a strong decrease at low temperature due to combination of the AF component and the ZFS of the same order of magnitude than J.

The $\chi_M T$ value at room temperature for 2 is $7.1 \text{ cm}^3\text{Kmol}^{-1}$ at room temperature and on cooling increases slight up to a rounded maximum of $7.34 \text{ cm}^3\text{Kmol}^{-1}$ at 45 K. Below this temperature the $\chi_M T$ value decreases down to $5.94 \text{ cm}^3\text{Kmol}^{-1}$ at 2 K. From the structural data, compound 2 consists of a Ni$_4$ butterfly subunit linked by means of different kind of bridges to two additional NiII cations and thus, the corresponding Hamiltonian to analyse the experimental data must be:

$$H = -J_1(S_1 \cdot S_2 + S_1 \cdot S_3 + S_2 \cdot S_4 + S_3 \cdot S_4) - J_2(S_2 \cdot S_3 + S_3 \cdot S_4 + S_2 \cdot S_4) - J_3(S_1 \cdot S_3 + S_2 \cdot S_4) - J_5(S_5 \cdot S_6)$$

This expression is clearly overparametrized and different solutions can be obtained assuming all constants or simplifying the Hamiltonian (in all cases R factor in the 10^{-5}-10^{-6} range). This feature is a consequence of the topology of that complex: the butterfly subunit can give any local spin between $S = 0$ and $S = 4$ as function of the J_1 and J_2 values and in addition the two additional NiII cations forms triangular subunits in which there are competitive interactions and thus, only a qualitative analysis can be made.

It is well established that the FM/AF border for Ni-O-Ni bridges is placed around 96º for hydroxo bridges and values slightly larger for alkoxo or phenoxo ones. The most of the Ni-O-Ni bond angles in compound 2 lies around this border and thus, only weak ferro or antiferromagnetic interactions can be expected. In contrast, the very large Ni$_5$O$_2$2-Ni$_6$ bond angle mediated by one of the O-donors of the carbonate ligand must give a clear AF interaction. In good agreement, all obtained fits gave a large dispersion of values for J_1-J_4 but in all cases J_5 gave a value around -7 cm^{-1} (scheme 4). In light of this data we must assume that two $S = 1$ local spins are cancelled whereas the remainder four spins are related by weak interactions.
Scheme 4. A schematic representation of the exchange couplings seen in compound 2.

The presence of competitive interactions is reinforced by magnetization experiments. The unsaturated value under a field of 5 T is 6.25 N\(\mu\) and can be reasonably fitted as an isolated S = 3 spin with D = 0.89 cm\(^{-1}\) and g = 2.14.

Figure 3. (left) \(\chi M T\) vs. \(T\) plots for the complexes 2 (circles) and 1 (diamonds). Solid lines show the fit of the experimental data for 1 and one of the fits obtained for 2. (right) The magnetization plot for compound 2.

5. Conclusions

Our synthetic strategy to introduce Na\(^+\) and carbonate, as co-ligand, along with H\(_2\)L1 in Ni chemistry, resulted in two new Ni/Na compounds possessing a rare (for 1) and an unseen (for 2) topology. Magnetic studies reveal the presence of weak ferromagnetic interactions at low temperature for both compounds. Assumptions for the structural relationship of 1 and 2 can be attempted, but more synthetic studies are required to support its. Our future studies will be focused in two different directions: a) to extend the systematic synthetic study by varying metal ligand ratios and co-ligands aiming to achieve higher nuclearity CCs and b) to further develop our topological approach[101] by incorporating all centers as nodes.
6. Acknowledgments

We thank the EPSRC UK National Crystallography Service at the University of Southampton for the collection of the crystallographic data for compounds 1 and 2. G. E. K. acknowledges the University of Sussex for offering a PhD position to K. G. A. E. thanks for the support from the Comisión Interministerial de Ciencia y Tecnología (CICYT) under project CTQ2015-63614-P.

7. References

1. Cronin L, Fielden J (2007) Coordination Clusters. In: Coord. Clust. Encycl. Supramol. Chem. Taylor Fr. London, 2007,. Taylor & Francis, pp 1–10
2. Papatriantafyllopoulou C, Moushi EE, Christou G, Tasiopoulos AJ (2016) Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions. Chem Soc Rev 45:1597–1628. doi: 10.1039/c5cs00590f
3. Liu D-P, Lin X-P, Zhang H, et al (2016) Magnetic Properties of a Single-Molecule Lanthanide-Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angew Chem Int Ed Engl 55:4532–4536. doi: 10.1002/anie.201601199
4. Peng J-B, Kong X-J, Zhang Q-C, et al (2014) Beauty, symmetry, and magnetocaloric effect—four-shell keplerates with 104 lanthanide atoms. J Am Chem Soc 136:17938–17941. doi: 10.1021/ja5107749
5. Schmidt S, Prodius D, Mereacre V, et al (2013) Unprecedented chemical transformation: crystallographic evidence for 1,1,2,2-tetrahydroxyethane captured within an Fe(6)Dy(3) single molecule magnet. Chem Commun 49:1696–1698. doi: 10.1039/c2cc38006d
6. Kitos AA, Efthymiou CG, Manos MJ, et al (2016) Interesting copper(ii)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine. Dalton Trans 45:1063–1077. doi: 10.1039/c5dt03912f
7. Perlepe PS, Cunha-Silva L, Gagnon KJ, et al (2016) “Ligands-with-Benefits”: Naphthalene-Substituted Schiff Bases Yielding New Ni(II) Metal Clusters with Ferromagnetic and Emissive Properties and Undergoing Exciting Transformations. Inorg Chem 55:1270–1277. doi: 10.1021/acs.inorgchem.5b02492
8. Feltham HLC, Brooker S (2014) Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord Chem Rev 276:1–33. doi: 10.1016/j.ccr.2014.05.011
9. Abtab SMT, Maity M, Bhattacharya K, et al (2012) Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged Ni(II)2Ln(III)2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II)-dysprosium(III)
analogue. Inorg Chem 51:10211–10221. doi: 10.1021/ic301138r

10. Liu K, Shi W, Cheng P (2015) Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord Chem Rev 289-290:74–122. doi: 10.1016/j.ccr.2014.10.004

11. Yang XP, Jones RA, Lynch V, et al (2005) Synthesis and near infrared luminescence of a tetrametallic Zn2Yb2 architecture from a trinuclear Zn3L2 Schiff base complex. Dalton Trans 849–851. doi: 10.1039/b416695g

12. Jankolovits J, Andolina CM, Kampf JW, et al (2011) Assembly of near-infrared luminescent lanthanide host(host-guest) complexes with a metallacrown sandwich motif. Angew Chem Int Ed 50:9660–9664. doi: 10.1002/anie.201103851

13. Samanta SK, Abtab SMT, Sardar PS, et al (2014) Role of triplet states of two different ligands in the sensitized emission of LnIII (EuIII, TbIII) in d-f hybrid tetranuclear heterometal (ZnII2LnII2, CdII2LnIII2) complexes. Eur J Inorg Chem 3101–3113. doi: 10.1002/ejic.201402274

14. Jankolovits J, Kampf JW, Pecoraro VL (2014) Solvent dependent assembly of lanthanide metallacrowns using building blocks with incompatible symmetry preferences. Inorg Chem 53:7534–7546. doi: 10.1021/ic500832u

15. Zhang L, Zhao L, Zhang P, et al (2015) Nanoscale {Ln(III)24Zn(II)6} Triangular Metalloring with Magnetic Refrigerant, Slow Magnetic Relaxation, and Fluorescent Properties. Inorg Chem 54:11535–11541. doi: 10.1021/acs.inorgchem.5b02215

16. Nesterov DS, Chygorin EN, Kokozay VN, et al (2012) Heterometallic Co(III)4Fe(III)2 Schiff base complex: structure, electron paramagnetic resonance, and alkane oxidation catalytic activity. Inorg Chem 51:9110–9122. doi: 10.1021/ic301460q

17. Okamura M, Kondo M, Kuga R, et al (2016) A pentanuclear iron catalyst designed for water oxidation. Nature 530:465–468. doi: 10.1038/nature16529

18. Powers TM, Betley TA (2013) Testing the polynuclear hypothesis: multielectron reduction of small molecules by triiiron reaction sites. J Am Chem Soc 135:12289–12296. doi: 10.1021/ja405057n

19. Manoli M, Alexandrou S, Pham L, et al (2016) Magnetic “Molecular Oligomers” Based on Decametallic Supertetrahedra: A Giant Mn49 Cuboctahedron and its Mn25 Na4 Fragment. Angew Chem Int Ed 55:679–684. doi: 10.1002/anie.201509461

20. Biswas R, Ida Y, Baker ML, et al (2013) A new family of trinuclear nickel(II) complexes as single-molecule magnets. Chem Eur J 19:3943–3953. doi: 10.1002/chem.201202795

21. Tong J, Demeshko S, John M, et al (2016) Redox-Induced Single-Molecule Magnetism in Mixed-Valent [2 × 2] Co4 Grid Complexes. Inorg Chem 55:4362–4372. doi:
22. Cornia A, Gatteschi D, Sessoli R (2001) New experimental techniques for magnetic anisotropy in molecular materials. Coord Chem Rev 219:573–604.
23. Wix P, Kostakis GE, Blatov VA, et al (2013) A Database of Topological Representations of Polynuclear Nickel Compounds. Eur J Inorg Chem 520–526. doi: 10.1002/ejic.201201348
24. Cadiou C, Murrie M, Paulsen C, et al (2001) Studies of a nickel-based single molecule magnet: resonant quantum tunnelling in an S = 12 molecule. Chem Commun 2666–2667. doi: 10.1039/b108894g
25. Bilyachenko AN, Yalymov AI, Korlyukov AA, et al (2016) Unusual penta- and hexanuclear Ni(ii)-based silsesquioxane polynuclear complexes. Dalton Trans 45:7320–7327. doi: 10.1039/c6dt00113k
26. Paït M, Bauzá A, Frontera A, et al (2015) A New Family of Ni4 and Ni6 Aggregates from the Self-Assembly of [Ni2] Building Units: Role of Carboxylate and Carbonate Bridges. Inorg Chem 54:4709–4723. doi: 10.1021/acs.inorgchem.5b00039
27. Keene TD, Hursthouse MB, Price DJ (2004) Ferromagnetic coupling in a heptanuclear nickel cluster with a vertex-shared dicubane structure. New J Chem 28:558–561. doi: 10.1039/b315323a
28. Petit S, Neugebauer P, Pilet G, et al (2012) Condensation of a nickel tetranuclear cubane into a heptanuclear single-molecule magnet. Inorg Chem 51:6645–6654. doi: 10.1021/ic3001637
29. Bell A, Aromi G, Teat SJ, et al (2005) Synthesis and characterisation of a {Ni-8} single molecule magnet and another octanuclear nickel cage. Chem Commun 2808–2810. doi: 10.1039/b500581g
30. Xiong K, Jiang F, Gai Y, et al (2012) A Series of Octanuclear-Nickel(II) Complexes Supported by Thiacalix 4 arenes. Inorg Chem 51:3283–3288. doi: 10.1021/ic202737h
31. Schmitz S, van Leusen J, Ellern A, et al (2016) Thioether-terminated nickel(ii) coordination clusters with {Ni 6 } horseshoe- and {Ni 8 } rollercoaster-shaped cores. Inorg Chem Front 3:523–531. doi: 10.1039/C5QI00278H
32. Scheurer A, Gieb K, Alam MS, et al (2012) Synthesis, magnetic properties, and STM spectroscopy of an unprecedented octanuclear chloro-bridged nickel(II) double cubane. Dalton Trans 41:3553–3561. doi: 10.1039/c2dt12007k
33. Hua S-A, Liu IP-C, Hasanov H, et al (2010) Probing the electronic communication of linear heptanickel and nonanickel string complexes by utilizing two redox-active Ni-2(napy)(4) (3+) moieties. Dalton Trans 39:3890–3896. doi: 10.1039/b923125k
34. Xu J-Y, Song H-B, Xu G-F, et al (2012) A new enneanuclear nickel(II) cluster with a rectangular face-centered trigonal prism structure and cluster glass behavior. Chem Commun
35. Ismayilov RH, Wang W-Z, Lee G-H, et al (2011) Two Linear Undecanickel Mixed-Valence Complexes: Increasing the Size and the Scope of the Electronic Properties of Nickel Metal Strings. Angew Chem Int Ed 50:2045–2048. doi: 10.1002/anie.201006695

36. Brunet G, Habib F, Cook C, et al (2012) A novel high-spin tridecanuclear Ni-II cluster with an azido-bridged core exhibiting disk-like topology. Chem Commun 48:1287–1289. doi: 10.1039/c2cc16221k

37. Stamatatos TC, Escuer A, Abboud KA, et al (2008) Unusual Structural Types in Nickel Cluster Chemistry from the Use of Pyridyl Oximes: Ni5, Ni12Na2, and Ni14 Clusters. Inorg Chem 47:11825–11838. doi: 10.1021/ic051194s

38. Gui L-C, Wang X-J, Ni Q-L, et al (2012) Nanospheric M-20(OH)(12)(maleate)(12)(Me2NH)(12) (4+) Clusters (M = Co, Ni) with O-h Symmetry. J Am Chem Soc 134:852–854. doi: 10.1021/ja2100966

39. Fondo M, Ocampo N, Garca-deibe AM, et al (2006) Self-Assembly of a Tetranuclear Ni Cluster with an S = 4 Ground State: The First 3d Metal Cluster Bearing a μ4-η2:η2-O,O Carbonate Ligand. 45:255–262. doi: 10.1021/ic051194s

40. Dearden AL, Parsons S, Winpenny REP (2001) Synthesis, structure, and preliminary magnetic studies of a Ni-24 wheel. Angew Chem Int Ed 40:151–154. doi: 10.1002/1521-3773(20010105)40:1<151::aid-anie151>3.3.co;2-j

41. Athanasopoulou AA, Pilkington M, Raptopoulou CP, et al (2014) Structural aesthetics in molecular nanoscience: a unique Ni26 cluster with a “rabbit-face” topology and a discrete Ni18 “molecular chain”. Chem Commun 50:14942–14945. doi: 10.1039/c4cc07192a

42. Nakajima T, Seto K, Horikawa F, et al (2012) Wheel-Shaped Icosanuclear Homo- and Heterometallic Complexes of Ni II, Co II, and Cu II ions supported by unsymmetrical aminoalcohol ligands. Inorg Chem 51:12503–12510. doi: 10.1021/ic3019106

43. Andruh M (2015) The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans 44:16633–16653. doi: 10.1039/C5DT02661J

44. Bernardi A, Femoni C, Iapalucci MC, et al (2008) Synthesis, molecular structure and properties of the [H6-nNi30C4(CO)34(CdCl)2]n- (n=3-6) bimetallic carbide carbonyl cluster: a model for the growth of noncompact interstitial metal carbides. Chem Eur J 14:1924–1934. doi: 10.1002/chem.200701519

45. Femoni C, Iapalucci MC, Longoni G, Svensson PH (2000) A high-nuclearity Ni–Sb carbonyl cluster displaying unprecedented metal stereochemistries: synthesis and X-ray structure of [NEt4]6[Ni31Sb4(CO)40]-2 Me2CONo Title. Chem Commun 655–656.

46. Blake AJ, Grant CM, Parsons S, et al (1994) The synthesis, structure and magnetic properties
of a cyclic dodecanuclear nickel complex. Chem Commun 2363–2364.

47. Chesman ASR, Turner DR, Moubaraki B, et al (2009) Lanthaballs: Chiral, Structurally Layered Polycarbonate Tridecanuclear Lanthanoid Clusters. Chem Eur J 15:5203–5207. doi: 10.1002/chem.200900400

48. Chesman ASR, Turner DR, Moubaraki B, et al (2012) Tetradecanuclear polycarbonatolanthanoid clusters: Diverse coordination modes of carbonate providing access to novel core geometries. Dalton Trans 41:10903–10909. doi: 10.1039/c2dt31101a

49. Escuer A, Vicente R, Kumar SB, et al (1996) A Novel Pentadentate Coordination Mode for the Carbonato Bridge: Synthesis, Crystal Structure, and Magnetic Behavior of (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)], a New Trinuclear Nickel(II) Carbonato-Bridged Complex with Strong Antiferromagnetic Coupling. Inorg Chem 35:3094–3098.

50. Sakamoto S, Yamauchi S, Hagiwara H, et al (2012) Carbonate-bridged tetranuclear NiII2GdIII2 complex generated by atmospheric CO2 fixation. Inorg Chem Commun 26:20–23. doi: 10.1016/j.inoche.2012.08.022

51. Georgopoulou AN, Raptopoulou CP, Psycharis V, et al (2009) Ferromagnetic Cu II4 , Co II4 , and Ni II6 Azido Complexes Derived from Metal-Assisted Methanolysis of Di-2 , 6- (2-pyridylcarbonyl) pyridine. Inorg Chem 48:3167–3176.

52. Wikstrom JP, Filatov AS, Mikhalyova E a., et al (2010) Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(ơ-hydroxo) dinickel complex and its reactivity toward carbon dioxide. Dalton Trans 39:2504–2514. doi: 10.1039/b916832j

53. Jonas K, Brauer DJ, Krüger C, et al (1976) “Side-On” Dinitrogen-Transition Metal Complexes. The. J Am Chem Soc 98:74–81.

54. Gole B, Mondal KC, Mukherjee PS (2014) Tuning nuclearity of clusters by positional change of functional group: Synthesis of polynuclear clusters, crystal structures and magnetic properties. Inorg Chim Acta 415:151–164. doi: 10.1016/j.ica.2014.02.017

55. Uehara K, Hikichi S, Inagaki A, Akita M (2005) Xenophilic complexes bearing aTpR ligand, [TpRM-M'Ln] [TpR = TpiPr2, Tp# (TpMe2,4-Br); M = Ni, Co, Fe, Mn; M'Ln = Co(CO)4, Co(CO)3(PPh3), RuCp(CO)2]: The two metal centers are held together not by covalent interaction but by electrostatic attraction. Chem Eur J 11:2788–2809. doi: 10.1002/chem.200401016

56. Monakhov KY, Lopez X, Speldrich M, et al (2014) Magnetochemical complexity of hexa- and heptanuclear wheel complexes of late-3d ions supported by N,O-donor pyridyl-methanolate ligands. Chem Eur J 20:3769–3781. doi: 10.1002/chem.201304177

57. Kermagoret A, Braunstein P (2008) Synthesis of nickel complexes with bidentate N,O-type ligands and application in the catalytic oligomerization of ethylene. Dalton Trans 32:1564–
73. doi: 10.1039/b716111e

58. Botana L, Ruiz J, Mota AJ, et al (2014) Anion controlled structural and magnetic diversity in unusual mixed-bridged polynuclear Ni(II) complexes with a versatile bis(2-methoxy phenol)diamine hexadentate ligand. An experimental and theoretical magneto-structural study. Dalton Trans 43:13509–24. doi: 10.1039/c4dt01253d

59. Brechin EK, Gilby LM, Gould RO, et al (1998) Heterobimetallic nickel–sodium and cobalt–sodium complexes of pyridonate ligands. J Chem Soc Dalt Trans 2657–2664. doi: 10.1039/a803442g

60. Cadiou C, Coxall RA, Graham A, et al (2002) Octanuclear cobalt and nickel cages featuring formate ligands. Chem Commun 1106–1107. doi: 10.1039/b202062a

61. Aromi G, Bell AR, Helliwell M, et al (2003) A systematic exploration of nickel-pyrazolinato chemistry with alkali metals: New cages from serendipitous assembly. Chem Eur J 9:3024–3032. doi: 10.1002/chem.200304939

62. Brechin EK, Graham A, Harris SG, et al (1997) Overcrowding leads to prism reform: new polyhedra for polymetallic cages. J Chem Soc, Dalt Trans, 3405–3406. doi: 10.1039/A704822J

63. Wang S, Bi Y, Liao W (2015) Constructing calixarene-supported high nuclearity Co_{27}, Co_{28} and Ni_{18}Na_{6} clusters with triazoles as co-bridges. CrystEngComm 17:2896–2902. doi: 10.1039/C5CE00314H

64. Su K, Jiang F, Qian J, et al (2014) Generalized Synthesis of Calixarene-Based High-Nuclearity M4n Nanocages (M = Ni or Co; n = 2–6). Cryst Growth Des 14:3116–3123.

65. Stamatatos TC, Abboud KA, Perlepes SP, Christou G (2007) The highest nuclearity metal oxime clusters: Ni14 and Ni12Na2 complexes from the use of 2-pyridinealdoximate and azide ligands. Dalton Trans 3861–3863. doi: 10.1039/b708189h

66. Chojnacki J, Oleksyn B, Zukowska E (1971) Prototype ligand with Uranium. Roczn Chem 45:487.

67. Kannappan R, Tooke DM, Spek AL, Reedijk J (2006) Separation of actinides and lanthanides: Synthesis and molecular structure of a new di-μ-phenoxo-bridged dinuclear bis(dioxouranium(VI)) complex. Inorg Chim Acta 359:334–338. doi: 10.1016/j.ica.2005.08.020

68. Constable EC, Housecroft CE, Zampese JA, Zhang G (2012) Multinuclear zinc(II) complexes with \{Zn6(μ-O)6(μ3-O)2\}- and \{Zn5(μ-O)3(μ3-O)3\}-cluster cores. Polyhedron 44:150–155. doi: 10.1016/j.poly.2012.06.033

69. Dey D, Kaur G, Ranjani A, et al (2014) A Trinuclear Zinc-Schiff Base Complex: Biocatalytic Activity and Cytotoxicity. Eur J Inorg Chem 3350–3358. doi:
10.1002/ejic.201402158

70. Hasanzadeh M, Salehi M, Kubicki M, et al (2014) Synthesis, crystal structures, spectroscopic studies and antibacterial properties of a series of mononuclear cobalt(III) Schiff base complexes. Trans Met Chem 39:623–632. doi: 10.1007/s11243-014-9841-x

71. Saha S, Pal S, Gómez-García CJ, et al (2014) A ferromagnetic tetranuclear nickel(II) Schiff-base complex with an asymmetric Ni4O4 cubane core. Polyhedron 74:1–5. doi: 10.1016/j.poly.2014.02.036

72. Ke H, Zhu W, Zhang S, et al (2015) A New Family of Heterometallic Tetranuclear [MnIII2LnIII2] (Ln = Eu, Gd, Tb, Dy) Isostructural Clusters: Syntheses, Crystal Structures and Magnetic Properties. Polyhedron 87:109–116. doi: 10.1016/j.poly.2014.10.030

73. Ke H, Zhang S, Zhu W, et al (2015) Synthesis, structures and magnetic properties of four dodecanuclear Ni 8 RE 4 (RE = Gd, Dy, Y) clusters trapping four μ 5 -bridged carbonate anions. J Coord Chem 68:808–822. doi: 10.1080/00958972.2015.1004326

74. Kuang W-W, Shao C-Y, Yang P-P (2015) Syntheses, crystal structures, and magnetic properties of a series of Fe 2 Ln complexes. J Coord Chem 68:1412–1422. doi: 10.1080/00958972.2015.1013947

75. Griffiths K, Novitchi G, Kostakis GE (2016) Synthesis, Characterization, Magnetic Properties, and Topological Aspects of Isoskeletal Heterometallic Hexanuclear Co II 4 Ln III 2 Coordination Clusters Possessing 2,3,4M6-1 Topology. Eur J Inorg Chem DOI: 10.1002/ejic.201600078. doi: 10.1002/ejic.201600078

76. Griffiths K, Gallop CWD, Abdul-Sada A, et al (2015) Heteronuclear 3 d/Dy(III) Coordination Clusters as Catalysts in a Domino Reaction. Chem Eur J 21:6358–6361. doi: 10.1002/chem.201500505

77. Ruiz J, Lorusso G, Evangelisti M, et al (2014) Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties. Inorg Chem 53:3586–3594. doi: 10.1021/ic403097s

78. Keypour H, Rezaievala M, Ramezani-Aktij A, et al (2016) New macrocyclic schiff base complexes incorporating a homopiperazine unit: Synthesis of some Co(II), Ni(II),Cu(II) and Zn(II) complexes and crystal structure and theoretical studies. J Mol Struct 1115:180–186. doi: 10.1016/j.molstruc.2016.02.071

79. Coles SJ, Gale PA (2012) Changing and challenging times for service crystallography. Chem Sci 3:683–689. doi: 10.1039/c2sc00955b

80. Dolomanov O V, Blake AJ, Champness NR, Schröder M (2003) OLEX: New software for visualization and analysis of extended crystal structures. J Appl Crystallogr 36:1283–1284.

81. Palatinus L, Chapuis G (2007) SUPERFLIP - A computer program for the solution of crystal
structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790. doi: 10.1107/S0021889807029238
82. Farrugia LJ (1999) suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838. doi: 10.1107/S0021889899006020
83. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. doi: 10.1107/S2053273314026370
84. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122. doi: 10.1107/s0108767307043930
85. Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13. doi: 10.1107/S0021889802022112
86. Macrae CF, Edgington PR, McCabe P, et al (2006) Mercury: Visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457. doi: 10.1107/S002188980600731X
87. Nemec I, Machata M, Herchel R, et al (2012) A new family of Fe2Ln complexes built from mononuclear anionic Schiff base subunits. Dalton Trans 41:14603–14610. doi: 10.1039/c2dt31809a
88. Mondal KC, Kostakis GE, Lan Y, et al (2011) Defect-dicubane Ni2Ln2 (Ln = Dy, Tb) single molecule magnets. Inorg Chem 50:11604–11611. doi: 10.1021/ic2015397
89. Mondal KC, Sundt A, Lan Y, et al (2012) Coexistence of distinct single-ion and exchange-based mechanisms for blocking of magnetization in a Co(II)2Dy(III)2 single-molecule magnet. Angew Chem Int Ed 51:7550–7554. doi: 10.1002/anie.201201478
90. Mondal KC, Kostakis GE, Lan Y, Powell AK (2013) Magnetic properties of five planar defect dicubanes of [LnIII4(μ3-OH)2(L)4(HL)2]-2THF (Ln=Gd, Tb, Dy, Ho and Er). Polyhedron 66:268–273. doi: 10.1016/j.poly.2013.05.016
91. Ke H, Zhao L, Guo Y, Tang J (2012) Syntheses, structures, and magnetic analyses of a family of heterometallic hexanuclear [Ni4M2] (M = Gd, Dy, Y) compounds: observation of slow magnetic relaxation in the Dy(III) derivative. Inorg Chem 51:2699–2705. doi: 10.1021/ic202699k
92. Kostakis GE, Blatov VA, Proserpio DM (2012) A method for topological analysis of high nuclearity coordination clusters and its application to Mn coordination compounds. Dalton Trans 41:4634–4640. doi: 10.1039/c2dt12263d
93. Zhang K, Kurmoo M, Wei LQ, Zeng MH (2013) Iterative Mass Spectrometry and X-Ray Crystallography to Study Ion-Trapping and Rearrangements by a Flexible Cluster. Sci Rep 3:Article number: 3516. doi: Artn 3516vrDoi 10.1038/Srep03516
94. Dubey M, Koner RR, Ray M (2009) Sodium and potassium ion directed self-assembled multinuclear assembly of divalent nickel or copper and L-leucine derived ligand. Inorg Chem
95. Bhula R, Weatherburn DC (1991) Oxidative Cleavage of Triethylenetetramine (trien) to Yield Diethylenetriamine (dien): Structure of the MnII/MnIII Heptanuclear Complex [Mn7(trien)2(dien)2O4(OAc)8](PF6)4 2H2O. Angew Chem Int Ed 30:688–689.

96. Wang S, Tsai H-L, Streib WE, et al (1992) High Nuclearity Molecular Species Exhibiting Spin Frustration: Fusion of Two MnI1&O2 Butterfly Complexes to yield an Intermediate Spin Ground State Mn"I7O4 Complex. J Chem Soc Chem Commun 677–679.

97. Krautscheid H, Vielsack F (1999) Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10] 4_, [Pb7I22] 8_, [Pb10I28] 8_, 1 \[Pb3I10] 4_ and 2 \[Pb7I18] 4_. Dalton Trans 2731–2735. doi: 10.1007/3-540-44628-1_13

98. Ding C, Zeng F, Ni J, et al (2012) Polynuclear complexes of ligands containing in situ formed oxazinane and oxazolidine rings with appended alkoxy and phenol groups. Cryst Growth Des 12:2089–2096. doi: 10.1021/cg300096n

99. Tarushi A, Kastanias F, Psycharis V, et al (2012) A [24-MC -6] zinc metallacoronate with a nonsteroidal antiinflammatory drug as the constructing ligand. Inorg Chem 51:7460–7462. doi: 10.1021/ic3010757

100. Chilton NF, Anderson RP, Turner LD, et al (2013) PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J Comput Chem 34:1164–1175. doi: 10.1002/jcc.23234

101. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst Growth Des 14:3576–3586. doi: 10.1021/cg500498k