Increased expression profile of NCSTN, Notch and PI3K/AKT3 in hidradenitis suppurativa

S. Hessam,1,2,† T. Gambichler,1,† M. Skrygan,1 L. Scholl,1 M. Sand,1,3 T. Meyer,1 E. Stockfleth,1 F.G. Bechara1,*

1Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
2Department of Dermatology and Phlebology, Katharinen-Hospital Unna, Unna, Germany
3Department of Plastic and Reconstructive Surgery, St. Josef-Hospital, Essen-Kupferdreh, Germany
*Correspondence: F.G. Bechara. E-mail: f.bechara@klinikum-bochum.de

Abstract

Background In a small number of kindreds with familial hidradenitis suppurativa (HS) different mutations of NCSTN (nicastrin) have been identified. Blocking of NCSTN leads to impairment of the Notch and PI3K/AKT signalling pathway, which is assumed to play a pathogenic role in HS. However, very limited data are available concerning expression levels of these pathway components in HS skin.

Objectives To analyse the mRNA and protein expression of NCSTN, Notch1–3, PIK3R3 and AKT3 in HS.

Methods Skin samples from healthy controls, lesional and perilesional skin of HS patients with and without a positive family history were analysed by quantitative real-time RT-PCR and immunohistochemistry. Univariate statistical analyses were conducted regarding association between expression levels and patient’s characteristics.

Results Expression levels of all investigated genes showed significantly higher levels in lesional HS skin compared with healthy controls. Univariate analysis showed no association between a positive family history and mRNA expression levels. Perilesional HS skin of patients with mild disease severity (Hurley I) showed significant higher mRNA expression levels of the investigated pathway components compared to moderate (Hurley II) and severe disease (Hurley III).

Conclusion We found no evidence for diminished expression levels of the Notch signalling. In contrast, the NCSTN, Notch and PI3K/AKT signalling components are overexpressed in HS. Future research is needed to investigate a possible pathogenetic role or to reveal a coactivation of these overexpressed components during inflammatory response in HS.

Introduction

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease that results in recurrent painful nodules, abscesses, sinus tracts and scarring.1 Hyperplasia of the hair follicle epithelium, follicular hyperkeratosis and interfollicular epidermal hyperplasia are considered to be the early events in HS accompanied by a dysregulated immune-mediated inflammatory response.2,3

Approximately 30–40% of patients with HS report a positive family history with a proposed autosomal dominant inheritance pattern.4 Thus, genetic predisposition is frequently discussed as an important risk factor.5 Predominantly loss-of-function mutations have been reported in genes of the γ-secretase complex, namely NCSTN, PSEN1, PSENEN and PSTPIP1.6–8 To date, the highest number of reported mutations was found in the NCSTN gene encoding nicastrin, which is important for the regulation of the γ-secretase activity.9,10

γ-secretase is a transmembrane multiprotein complex, which functions as a protease mediating the cleavage of various membrane proteins, such as Notch.11 After cleavage, the Notch intracellular domain (NICD) is released from the plasma membrane and translocate into the nucleus, where it forms transcriptional-activator complexes to activate transcription of target genes.12

Notch signalling is involved in immune cell development, normal epidermal cell differentiation and proliferation and
Materials and methods

In this prospective study, punch biopsies from 60 HS patients were taken intraoperatively from a representative inflammatory HS lesion. For an intra-individual control group, additional skin samples were taken from adjacent (1 cm from the lesional skin border) healthy-appearing skin. Thirty-eight (63.3%) were female and 22 (36.7%) were male with a mean age of 37.9 ± 11.4 years. Eleven (18.3%) patients were in Hurley stage I, 32 (53.3%) in Hurley stage II and 17 (28.3%) in Hurley stage III. A positive family history (first- or second-degree relatives with HS symptoms) was reported by 19 (35.8%) patients. Six patients could not provide information about family history. In total, 39 (65%) HS patients were current smokers. The mean body mass index (BMI) was 28.9 ± 6.1 kg/m². None of the patients had received systemic antibiotics, immunosuppressive or biological medications 4 weeks before inclusion. Nineteen healthy subjects [11 (57.9%) females and 8 (42.1%) males] with a mean age of 49.9 ± 9.3 years represented the control group.

Skin samples were immediately placed in RNAlater solution (Qiagen, Hilden, Germany) and stored at −80°C. This study was approved by the Ethical Review Board of the Ruhr-University Bochum, Germany (registration no.: 5076-14), which was conducted according to the Declaration of Helsinki. All study subjects signed informed consent.

RNA isolation and real-time polymerase chain reaction

Total RNA was extracted from skin samples by means of the RNeasy Lipid Tissue Kit (Qiagen, Chatsworth, CA, USA). The mRNA expression levels were quantified by real-time real-time polymerase chain reaction (RT-PCR) in accordance with MIQE Guidelines using the PowerSYBR Green PCR Master Mix (Cobas 480 Analyzer; Roche, Mannheim, Germany). Three widely used reference genes, namely GAPDH, β-2-microglobulin, and RPL-38 were tested. The latter gene exhibited the most stable expression levels, and this gene was used as the housekeeping gene. Target mRNA expression results were normalized to corresponding RPL38 mRNA transcript levels (2−△△CT method).

The primer pairs for NCSTN, Notch1, Notch2, Notch3, PIK3R3, AKT3 and RPL-38 were designed using Primer Express software (PE Applied Biosystems, Foster City, CA, USA) and were shown in Table 1.

Immunohistochemistry and scoring

Immunostaining for nicastrin, Notch1, Notch2, Notch3, PIK3R3 and AKT3 was performed in skin samples of the lesional HS group (n = 37), of corresponding healthy-appearing perilesional HS group (n = 37) and of the healthy control group (n = 20). Skin biopsy specimens were cut into 7 μm sections, and immunohistochemical staining was performed by using the following commercially available antibodies: rabbit polyclonal anti-NCSTN antibody (HPA054846, Atlas Antibodies, Stockholm, Sweden), rabbit polyclonal anti-Notch1 antibody-ChIP Grade (ab27526; Abcam, Cambridge, UK), rabbit polyclonal anti-Notch2 antibody (HPA048743, Atlas Antibodies), rabbit polyclonal anti-Notch3 antibody (ab23426; Abcam), rabbit polyclonal anti-PIK3R3 (HPA071988; Atlas Antibodies) and rabbit polyclonal AKT3 antibody (ab152157, Abcam) at a 1:500 dilution. After deparaffinization, heat-induced antigen retrieval was performed using Target Retrieval Solution Low pH (Code K8005, Dako, Glostrup, Denmark) for anti-NCSTN, anti-Notch1–3 and anti- PIK3Kinase or Target Retrieval Solution High pH (Code K8004; Dako) for anti-AKT3. Before staining the sections were pretreated with Dual Endogenous Enzyme Block (Code S2003; Dako) for 30 min. The primary antibodies were incubated 1 h at room temperature or overnight at 4°C. After a washing step, the staining was continued with Dako REAL™ Detection System, Alkaline Phosphatase/RED, Rabbit/Mouse, Code K5005 according to manufacturer’s procedure, including the haematoxylin counterstaining. No staining was shown when omitting the primary antibodies (negative controls).

In each section, four fields were chosen at random and the entire epidermis was evaluated at 40× magnification with a light microscope by two investigators. In accordance to the H-score system, intensity of immunostaining was scored (0, negative; 1, weak staining; 2, intermediate staining; 3, strong staining) and multiplied by the percentage (0–100) of keratinocytes, which
Table 1 Median (interquartile range; IQR) quantitative real-time RT-PCR data of NCSTN, Notch1, Notch2, Notch3, PIK3R3 and AKT3 in skin samples from healthy controls (HC), healthy-appearing perilesional skin (PeriLS) and lesional skin (LS) of hidradenitis suppurativa patients.

	HC (n = 19)	PeriLS (n = 60)	LS (n = 60)	P-values
NCSTN	2.63 (1.97–4.26)	6.14 (4.61–7.64)	11.92 (6.57–15.67)	HC vs. PeriLS: P < 0.0001
				HC vs. LS: P < 0.0001
				PeriLS vs. LS: P < 0.0001
Notch1	0.74 (0.53–1.1)	1.99 (0.91–2.57)	3.49 (1.54–5.42)	HC vs. PeriLS: P = 0.0017
				HC vs. LS: P = 0.0006
				PeriLS vs. LS: P < 0.0001
Notch2	2.52 (1.66–3.53)	5.79 (4.89–6.91)	5.26 (3.33–7.01)	HC vs. PeriLS: P = 0.0001
				HC vs. LS: P = 0.0001
				PeriLS vs. LS: P = 0.0001
Notch3	4.67 (3.04–6.48)	9.41 (6.02–14.36)	10.84 (5.44–19.36)	HC vs. PeriLS: P = 0.0001
				HC vs. LS: P = 0.00003
				PeriLS vs. LS: P = 0.0039
PIK3R3	1.48 (0.86–2.04)	1.75 (1.1–2.68)	3.69 (1.99–7.16)	HC vs. PeriLS: P = 0.0022
				HC vs. LS: P = 0.0001
				PeriLS vs. LS: P < 0.0001
AKT3	0.94 (0.51–1.39)	2.3 (1.29–3.14)	5.02 (1.91–9.82)	HC vs. PeriLS: P < 0.0001
				HC vs. LS: P < 0.0001
				PeriLS vs. LS: P < 0.0001

IQR, interquartile range. †Mann– Whitney U-test; ‡Wilcoxon-test; §Unpaired two-sided t-test. Additionally, the primer sequences used in this study are described.

indicated staining intensity: 0 (cells with negative staining) + 1 (cells with weak staining) + 2 (cells with intermediate staining) + 3 (cells with strong staining).

The average scores of the two investigators were used for statistical analysis.

Statistical analysis
MedCalc software version 19.1.7 (MedCalc, Ostende, Belgium) was used for statistical analysis. To analyse distribution of data, the Shapiro–Wilk test was used. Differences between two means were tested by the paired and unpaired two-sided t-test. For non-normally distributed variables the Wilcoxon-test (dependent samples) and the Mann–Whitney U-test (independent samples) were used. Correlations were calculated using Spearman’s rank correlation coefficient. Differences among groups (n > 2) were analysed using the Kruskal–Wallis ANOVA, including the Conover post hoc test for pairwise comparisons. P < 0.05 was considered significant.

Results
The mRNA expression levels of NCSTN, Notch1–3, PIK3R3 and AKT3 were significantly higher in lesional HS skin compared with the healthy control group (Fig. 1 and Table 1).

Furthermore, mRNA expression levels of NCSTN, Notch1, Notch3, PIK3R3 and AKT3 were significantly increased in lesional HS skin compared with perilesional HS skin.

mRNA expression levels of NCSTN, Notch1–3 and AKT3 were significantly higher in perilesional HS skin compared with healthy controls.

Next, we examined whether the disease severity, as assessed by the Hurley classification system, was associated with the expression levels of the investigated variables. Interestingly, there was a significant difference between the three Hurley stages in perilesional skin (Fig. 2). mRNA expression levels of all investigated variables were significantly higher in skin samples of Hurley stage I patients compared with Hurley stage II and III patients. There was no difference between the Hurley II and Hurley III group. Regarding lesional HS skin, there was no statistically significant difference in the mRNA expression of the investigated variables between the three Hurley stages.

Regarding smoking status and family history, univariate analysis revealed no significant association with the expression levels of the investigated variables (Table 2). Correlation analysis revealed a significant but weak positive correlation between Notch2 and Notch3 and BMI in perilesional HS skin (Table 2). 23
Figure 1 Median (interquartile range) relative mRNA expression of (a) NCSTN, (b) Notch1–3, (c) PIK3R3 and (d) AKT3 in skin samples from healthy controls (HC), healthy-appearing perilesional skin (PeriLS) and lesional skin (LS) of hidradenitis suppurativa patients measured by quantitative real-time RT-PCR. *P < 0.05, **P < 0.001, ***P < 0.0001.

Figure 2 Multiple-comparison box-and-whisker plots showing median (interquartile range) relative mRNA expression levels between the three Hurley groups in healthy-appearing perilesional skin (PeriLS) and lesional skin (LS) of hidradenitis suppurativa (HS) patients. (a) In perilesional HS skin median expression levels of NCSTN ($P = 0.017008$), Notch1 ($P = 0.024321$), Notch2 ($P = 0.040038$), Notch3 ($P = 0.004163$), PIK3R3 ($P = 0.006706$) and AKT3 ($P = 0.006515$) were significantly higher in skin of patients with Hurley stage 1 compared to Hurley stage 2 and Hurley stage 3 (Kruskal–Wallis test). However, not for Hurley stage 2 compared with Hurley stage 3 group. (b) In contrast, in lesional HS skin median expression level of the investigated variables showed no significant difference between the three Hurley groups.
Table 2 Univariate association between patient characteristics (smoking status and positive family history) and median (interquartile range: IQR) quantitative real-time RT-PCR data of NCSTN, Notch1, Notch2, Notch3, PIK3R3 and AKT3 in perilesional and lesional skin of hidradenitis suppurativa patients

Smoking status	Yes (n = 21)	P-values	Yes (n = 39)	P-values	BMI (n = 60)
	No (n = 34)				
Perilesional					
NCSTN	6.52 (5.75–9)	0.0518	6.21 (4.51–8.48)	0.5653	0.16 (0.2214
Notch1	2.02 (1.2–4)	0.9259	2.11 (1.12–2.57)	0.4638	0.193 (0.1406
Notch2	6.04 (5.56–7.04)	0.1409	5.79 (5.04–7.08)	0.6832	0.271 (0.036
Notch3	10.08 (6.02–13.26)	0.5611	8.75 (6.89–11.42)	0.5263	0.318 (0.0132
PIK3R3	1.92 (1.12–2.79)	0.5302	1.64 (1.08–3.28)	0.6832	–0.089 (0.4981
AKT3	2.09 (1.46–3.06)	0.6364	2.32 (1.9–3.1)	0.61	–0.017 (0.8979
Lesional					
NCSTN	10.58 (6.05–15.56)	0.5404	11.92 (8.48–15.18)	0.6901	–0.087 (0.5075
Notch1	4.04 (0.53–5.94)	0.7862	3.85 (1.39–5.87)	0.5162	0.124 (0.3442
Notch2	5.11 (3.28–6.57)	0.2358	6.06 (3.74–7.03)	0.3489	–0.142 (0.2801
Notch3	9.28 (2.52–16.38)	0.2546	10.84 (6.7–18.3)	0.9926	0.014 (0.9162
PIK3R3	3.19 (2.7–14)	0.5875	3.69 (2.03–7.38)	0.4305	–0.013 (0.9187
AKT3	3.93 (1.69–9.03)	0.3366	6.56 (2.32–10.88)	0.2618	0.028 (0.8292

P-values from Mann–Whitney U-test. Six patients could not provide information about family history. Correlation analysis (Spearman’s rho) between mRNA expression of NCSTN, Notch1, Notch2, Notch3, PIK3R3 and AKT3 with body mass index (BMI) in perilesional and lesional skin of hidradenitis suppurativa patients.

Results of immunohistochemical analysis for nicastrin, Notch1, Notch2, Notch3, PIK3R3 and AKT3 are shown in Table 3. Consistent with the mRNA expression data, staining intensity increased significantly from healthy controls to lesional HS skin. Immunoreactivity was found mainly in cytoplasm of keratinocytes (Fig. 3). For all investigated components, immunopositive cells were observed in the full thickness of the epidermis.

Table 3 Protein expression of nicastrin, Notch1, Notch2, Notch3, PIK3R3 and AKT3 as assessed by immunohistochemistry and quantified by the median (interquartile range; IQR) H-score in skin samples from healthy controls (HC), healthy-appearing perilesional skin (PeriLS) and lesional skin (LS) of hidradenitis suppurativa patients

	HC (n = 20)	PeriLS (n = 37)	LS (n = 37)	P-values
Nicastrin	7.5 (2.5–15)	62.2 (36.48–83.73)	87.5 (45.39–142.29)	HC vs. PeriLS: P = 0.0001†
		162.9 (143.63–183.55)		HC vs. LS: P = 0.0001†
Notch1	38.65 (23–54)	102.2 (91.5–131.23)	162.9 (143.63–183.55)	PeriLS vs. LS: P = 0.0029†
Notch2	47.8 (28.5–60)	108.8 (88.75–170.63)	172.9 (138–194.75)	HC vs. PeriLS: P = 0.0011†
		172.9 (138–194.75)		HC vs. LS: P < 0.0011†
Notch3	71.3 (65–85.65)	105 (100–120)	140.6 (118.75–153.18)	PeriLS vs. LS: P = 0.0001†
PIK3R3	100 (75–186.65)	115 (74.6–162.9)	195 (141.23–243.58)	HC vs. PeriLS: P = 0.0489†
AKT3	160 (137.5–192.5)	165 (134.2–208.3)	248.5 (235.8–261.03)	HC vs. PeriLS: P < 0.0011†
		195 (141.23–243.58)		HC vs. LS: P < 0.0011†

IQR, interquartile range.
†Mann–Whitney U-test. †Wilcoxon-test. †Unpaired two-sided t-test. †Paired two-sided t-test.
Discussion

Apart from results derived from cell cultures and mouse models, there is scarce data available concerning expression of NCSTN (nicastrin) and Notch in HS skin. Xiao et al.\(^\text{14}\) found in lesional skin of one affected family member with a non-sense mutation of NCSTN reduced mRNA and protein expression of nicastrin and Notch1–3.\(^\text{14}\) A recent analysis of gene expression data of Notch 1–4 obtained from publicly available genomic data from HS and other inflammatory skin diseases showed no significant differential expression in lesional HS skin compared with healthy controls.\(^\text{19}\)

In contrast, we found a significantly increased mRNA and protein expression of NCSTN, Notch1–3, PIK3R3 and AKT3 in lesional HS skin compared to healthy controls in a large sample size. Neither a positive family history nor smoking status influenced the mRNA expression levels of the investigated genes. A positive correlation was found between BMI and Notch2 and Notch3 mRNA expression in perilesional HS skin. Though, the correlation coefficient indicated only a weak relationship.\(^\text{23}\)

There was also an increase in the mRNA expression levels of NCSTN, Notch1, Notch3, PIK3R3 and AKT3 from perilesional to lesional HS skin revealing a possible stepwise increase. In contrast to our data, mRNA microarray analysis of lesional vs. clinically healthy skin of 13 HS patients (patient characteristics were not described) revealed no different expression of NCSTN.\(^\text{24}\) However, further analysis of these publicly available microarray data described significantly increased expression of genes in lesional HS skin, which reside on chromosomal cytoband 1q21–1q25 and are linked to γ-secretase-Notch signalling pathway.\(^\text{25}\)

Notch signalling promotes keratinocyte proliferation and lead to the activation of the innate immunity by regulating immune cell development and function.\(^\text{13,26–28}\) In HS, assumed aspects of pathogenesis include a dysregulated inflammatory response leading to a profound skin inflammation and keratinocyte hyperproliferation with a strong tendency to sinus tract formation and hypertrophic scars.\(^\text{30–32}\) In turn, this inflammatory microenvironment can induce epidermal hyperproliferation.\(^\text{3,33}\) So, it can be suggested that Notch signalling may be a major contributor to this inflammatory vicious circle in HS. In accordance, previous studies revealed that Notch1–3 and the Notch pathway components (e.g. the NICD) are expressed in the interfollicular epidermis and within the hair follicle. Within these skin compartments, the Notch pathway is primarily active in cells undergoing or initiating terminal differentiation.\(^\text{12}\)

![Figure 3](image_url) Immunohistochemistry staining for (a, b) NCSTN, (c, d) Notch1, (e, f) Notch2, (g, h) Notch3, (i, j) PIK3R3 and (k, l) AKT3 in skin samples from healthy controls (a, c, e, g, i, k) and lesional skin (b, d, f, h, j, l) of hidradenitis suppurativa patients (original magnification 400×). Representative examples are shown.

© 2020 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
Against the background of the available data, the herein reported results allow the following assumptions. The observed dysregulated expression of the pathway components is either primarily responsible for the dysregulated inflammatory response in HS. Or they are secondarily co-activated very early during the skin inflammation and the inflammatory-mediated epidermal hyperproliferation.34

Due to the published IHC and RT-PCR data by Xiao et al.,14 which demonstrated altered expression of nicastrin and Notch, the possibility that different pathways are involved in European vs. East Asian cohorts should be acknowledged.

In respect to inflammation, it was shown that activation of the Notch signalling pathway can enhance the expression of the proinflammatory cytokine IL-17 and is critical for the differentiation of Th17 cells.26,27 In a psoriatic mouse model reduction of Notch1 mRNA expression by injections of the γ-secretase inhibitor, DAPT resulted in downregulation of IL-17, Th17 cell-specific transcription factor RORγt and IL-17A expression with diminished skin inflammation.27 The authors postulated that DAPT could be a potential therapeutic candidate.

Our results show significantly increased expression levels of PI3K3R3 and AKT3, two downstream signalling pathway components of NCSTN and Notch in lesional HS skin.14 In mice models activation of the PI3K/AKT pathway induced progenitor cell proliferation in hair follicles and interfollicular epidermis leading to epidermal and follicular hyperplasia.35

Regarding DNA damage responses and genome stability, there is evidence that AKT has regulatory effects on the DNA damage checkpoint ATR/CHK1 pathway.36 A recent study, which characterized hair follicle stem cells (HFSCs) isolated from HS patients, showed spontaneous activation of the ATR/CHK1 signalling in HS-ORSCs due to perturbation of cell cycle pathways with spontaneous replication stress leading to an increased number of proliferating ORSCs in HS patients. These data may indicate that replication stress in HFSCs is involved in the inflammatory pathogenesis of HS.37

In addition, the PI3K/AKT pathway and AKT3 can promote conversion of fibroblasts to functional keratinocyte-like cells by inducing fibroblast activation and differentiation.15 In turn, increasing research revealed the interaction between fibroblasts and keratinocytes and their contribution to fistula formation and scarring during chronic inflammation.38 Thus, these findings allow to suggest an association between an overactive PI3K/AKT signalling and dysregulated fibroblasts and the observed fistula formation and hypertrophic scarring in HS skin.

Interestingly, in perilesional and lesional skin of HS patients diagnosed as Hurley stage I mRNA expression levels of NCSTN, Notch1–3, PI3K3R3 and AKT3 were higher compared with Hurley stage II and III patients. In perilesional skin the differences in the expression levels were significant. This may be explained by the fact that in our study skin biopsies from Hurley stage I patients were derived solely from cases, in which small excision or deroofing had been performed to reveal acute inflammation and pain. A difference in histomorphology and composition of inflammatory cells in early HS lesions vs. chronic lesions could already be shown in HS.39 Thus, it is very likely, that the skin samples in the Hurley I group predominantly represent aspects of an acute inflammation compared to Hurley II and Hurley III skin samples. The latter representing a more chronic inflammation, in which secondary events are more likely to be present. This supports the hypothesis that the investigated pathway components are involved in the very early stage of the inflammatory response.

The herein presented results challenge the assumed importance of loss-of-function mutations in genes of the γ-secretase complex. However, it should be noted that there is evidence for a non-canonical, γ-secretase independent Notch signalling.40 This could explain the immunohistochemical staining pattern found in this study with predominant cytoplasmic staining.

In summary, we demonstrated a significant overexpression of NCSTN and members of the Notch and PI3K/AKT pathway in perilesional and lesional HS skin. Our findings point towards an important function during the inflammatory HS pathogenesis. Future functional studies are warranted to investigate a possible pathogenetic role or to reveal a coactivation of these overexpressed components during the inflammatory response in HS.

Acknowledgements

This study was supported by a FoRUM research grant of the Ruhr-University Bochum (FoRUM AZ: F885–2016). We thank Ines Rüdel for her excellent technical assistance. Open access funding enabled and organized by Projekt DEAL.

References

1 Kirschke J, Hessam S, Bechara FG. [Hidradenitis suppurativa/ acne inversa: an update]. Hautarzt 2015; 66: 413–422.
2 von Laufft M, Stadie V, Wohlrab J, Marsch WC. Hidradenitis suppurativa/acne inversa: bilocated epithelial hyperplasia with very different sequelae. Br J Dermatol 2011; 164: 367–371.
3 Hessam S, Sand M, Gambichler T, Skrygan M, Rüddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. Br J Dermatol 2018; 178: 761–767.
4 von der Werth JM, Williams HC. The natural history of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2000; 14: 389–392.
5 Zouboulis CC, Desai N, Entestam L et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol 2015; 29: 619–644.
6 Liu M, Davis JW, Idler KB, Mostafa NM, Okun MM, Waring JF. Genetic analysis of NCSTN for potential association with hidradenitis suppurativa in familial and nonfamilial patients. Br J Dermatol 2016; 175: 414–416.
7 Melnik BC, Plewig G. Impaired Notch signalling: the unifying mechanism explaining the pathogenesis of hidradenitis suppurativa (acne inversa). Br J Dermatol 2013; 168: 876–878.
8 Ingram JR, Wood M, John B, Butler R, Anstey AV. Absence of pathogenic γ-secretase mutations in a South Wales cohort of familial and sporadic hidradenitis suppurativa (acne inversa). Br J Dermatol 2013; 168: 874–876.
9 Pink AE, Simpson MA, Desai N, Trembath RC, Barker JNW. γ-Secretase mutations in hidradenitis suppurativa: new insights into disease pathogenesis. J Invest Dermatol 2013; 133: 601–607.
10 Li X, Jiang L, Huang Y, Ren Z, Liang X, Wang P. A gene dysfunction module reveals the underlying pathogenesis of hidradenitis suppurativa: an update. Australas J Dermatol 2020; 61: e10–e14.
11 Wang B, Yang W, Wen W et al. Gamma-secretase gene mutations in familial acne inversa. Science 2010; 330: 1065.
12 Watt FM, Estrach S, Ambler CA. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 2008; 20: 171–179.
13 Zhang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 2016; 7: 159–174.
14 Xiao X, He Y, Li C, Zhang X, Xu H, Wang B. Nicastrin mutations in familial acne inversa impact keratinocyte proliferation and differentiation through Notch and PI3K-AKT signaling pathways. Br J Dermatol 2016; 174: 322–332.
15 Zhang F, Zhang D, Cheng K et al. Spontaneous evolution of human skin fibroblasts into wound-healing keratinocyte-like cells. Theranostics 2019; 9: 5200–5213.
16 Yang J, Wang L, Huang Y et al. Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36α and Sprr2 expression. Front Med 2020; 14: 305–317.
17 Liu Y, Gao M, Lv Y et al. Confirmation by exome sequencing of the pathogenic role of NCSTN mutations in acne inversa (hidradenitis suppurativa). J Invest Dermatol 2011; 131: 1570–1572.
18 Frew JW, Vekic DA, Woods J, Cairns GD. A systematic review and critical evaluation of reported pathogenic sequence variants in hidradenitis suppurativa. Br J Dermatol 2017; 177: 987–998.
19 Frew JW, Navrazhina K. No evidence that impaired Notch signalling differentiates hidradenitis suppurativa from other inflammatory skin diseases. Br J Dermatol 2020; 182: 1042–1043.
20 Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55: 611–622.
21 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego CA 2001; 25: 402–408.
22 McClelland RA, Finlay P, Walker KJ et al. Automated quantification of immunocytochemically localized estrogen receptors in human breast cancer. Cancer Res 1990; 50: 3545–3550.
23 Dancey CP, Reidy J, (eds). Correlational analysis. In Statistics Without Maths for Psychology, 4th edn. Pearson/Prentice Hall, Harlow, New York 2007: 176.
24 Blok JL, Li K, Brodmerkel C, Jonkman MF, Horváth B. Gene expression profiling of skin and blood in hidradenitis suppurativa. Br J Dermatol 2016; 174: 1392–1394.
25 Gauntner TD. Hormonal, stem cell and Notch signalling as possible mechanisms of disease in hidradenitis suppurativa: a systems-level transcriptomic analysis. Br J Dermatol 2019; 180: 203–204.
26 Singla DK, Wang J, Singla R. Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Can J Physiol Pharmacol 2017; 95: 288–294.
27 Ma L, Xue H, Qi R, Wang Y, Yuan L. Effect of γ-secretase inhibitor on Th17 cell differentiation and function of mouse psoriasis-like skin inflammation. J Transl Med 2018; 16:59. https://doi.org/10.1186/s12967-018-1442-6.
28 Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 2013; 13: 427–437.
29 Scholl I, Hessam S, Bergmann U, Bechara FG. Surgical treatment of sinuses tracts and fistulas in perianal hidradenitis suppurativa. J Cutan Med Surg 2018; 22: 239–241.
30 Hotz C, Boniottos M, Guguin A et al. Intrinsic defect in keratinocyte function leads to inflammation in hidradenitis suppurativa. J Invest Dermatol 2016; 136: 1768–1780.
31 Lima AL, Karl I, Giner T et al. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. Br J Dermatol 2016; 174: 514–521.
32 Hessam S, Sand M, Georgas D, Anders A, Bechara FG. Microbial profile and antimicrobial susceptibility of bacteria found in inflammatory hidradenitis suppurativa lesions. Skin Pharmacol Physiol 2016; 29: 161–167.
33 von Laffert M, Helmold P, Wohlrab J, Fiedler E, Stadie V, Marsch WC. Hidradenitis suppurativa (acne inversa): early inflammatory events at terminal follicles and at interfollicular epidermis. Exp Dermatol 2010; 19: 533–537.
34 Frew JW. We need to talk about Notch: Notch dysregulation as an epiphenomenon in inflammatory skin disease. Br J Dermatol 2019; 180: 431–432.
35 Murayama K, Kimura T, Tarutani M et al. Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors. Oncogene 2007; 26: 4882–4888.
36 Xu N, Lao Y, Zhang Y, Gillespie DA. Akt: a double-edged sword in cell proliferation and genome stability. J Oncol 2012; 2012: 1–13.
37 Orvain C, Lin Y-L, Jean-Louis F et al. Hair follicle stem cell replication stress drives IFI16/STING-dependent inflammation in hidradenitis suppurativa. J Clin Invest 2020; 130: 3777–3790.
38 Frew JW, Navrazhina K, Marohn M, Lu PC, Krueger JG. Contribution of fibroblasts to tunnel formation and inflammation in hidradenitis suppurativa/ acne inversa. Exp Dermatol 2019; 28: 886–891.
39 van der Zee HH, de Ruiter L, Boer J et al. Alterations in leucocyte subsets and histomorphology in normal-appearing perilesional skin and early and chronic hidradenitis suppurativa lesions. Br J Dermatol 2012; 166: 98–106.
40 Andersen P, Uosaki H, Shenef LT, Kwon C. Non-canonical Notch signalling: emerging role and mechanism. Trends Cell Biol 2012; 22: 257–265.