Neutrophils phagocytosing fungal hyphae in urinary sediment
Neutrófilos fagocitando hifas no sedimento urinário

ABSTRACT

The Phagocytosis of fungal structures by neutrophils is a well-documented function of these immune cells. However, neutrophil phagocytosis of hyphal structures in the urine sediment is not usually observed during routine sample evaluation. This is a case of hyphal phagocytosis by neutrophils in the urine of a kidney allograft recipient patient.

Keywords: Phagocytosis; Hyphae; Urinalysis; Neutrophils.

CASE

An 8-year-old girl with malformation of the urogenital sinus and kidney dysplasia developed chronic kidney disease. Due to the loss of kidney function, a kidney transplantation became necessary and was subsequently performed. The patient was diagnosed with Biedl-Bardet syndrome, a condition that is characterized by polydactyly, obesity, retarded growth development, as well as genital and renal abnormalities. During consultation, vulvovaginitis was observed and the patient presented with mictional disorder resulting in abnormally frequent urination. Routine urinalysis by dipstick revealed the following: specific gravity 1.009, pH 6.0; hemoglobin traces, leukocyte esterase 2+, and nitrite positive; all remaining tests were negative. Urine sediment analysis presented the following results: epithelial cells 7-8/high power field (HPF), leukocytes 19-29/HPF, and erythrocytes 1-2/HPF. In addition, renal tubular epithelial cells and decaying cells (BK polyomavirus infected cells) were detected. Interestingly, fungal hyphae were spotted with firmly attached polymorphonuclear leukocytes, apparently attempting to perform phagocytosis, which, to the best of our knowledge, was never reported during routine urinalysis previously (Figures 1 and 2). Despite the positive nitrite test, uroculture was negative for bacteria, whereas a culture test in specific medium for Candida species turned out positive for *Candida albicans*. Subsequently, the patient was topically treated with Nystatin, which alleviated the symptoms.

Candida albicans stimulates recruitment of neutrophils and can be phagocytosed by these cells. *C. albicans* is the major agent of fungal infections in humans, with immunocompromised hosts particularly sensitive to this microorganism. *C. albicans* can modify their structures from budding cells to filamentous hyphae, a characteristic that can contribute to the effectiveness of the infection control. The immune system acts against Candida infection performing phagocytosis of fungal structures with the

Correspondence to:
José Antonio Tesser Poloni.
E-mail: josetp@unisinos.br
DOI: https://doi.org/10.1590/2175-8239-JBN-2019-0245
Phagocytosis of hyphae in urine

Fungi are able to modify their structures depending on the necessity and conditions of the site of infection. Hyphae more commonly invade and penetrate tissues, while yeasts act on the spread of the microorganism. Yeasts use the blood vessels for dissemination.

Neutrophils are one of the main immune cells that act in the control of pathogenic agents in an infection site. The mechanism of destruction of the engulfed particles is done by antimicrobial proteins and reactive oxygen species. The phagocytic process starts when phagocytosis receptors recognize specific molecular patterns. Ligand-receptor binding stimulates the cells to engulf the recognized microbe.

To eliminate yeasts, neutrophils sequestrate these fungal structures in phagosomes. Reactive oxygen species (ROS) and elastase are released within the phagosomes improving the process of yeast destruction. Hyphae on the other hand, are more challenging for neutrophils because they are large and cannot be internalized. In this case, azurophilic granules deliver their content into the nucleus, triggering chromatin decondensation and release of neutrophil extracellular traps (NETs). NETs have a contribution in the process of immobilization and destruction of extracellular pathogens but with the disadvantage of causing tissue injury. Investigation of NET formation in clinical specimens is the next step in the comprehension of neutrophil response against fungal agents within the urinary system.

In this urine sample, leukocytes (neutrophils, as trilobular nuclei were clearly seen in the stained sample) were observed covering virtually the whole fungal structure. The phagocytic cells stretched and deformed considerable involving the fungal structure (hyphae) in the attempt to engulf it. It is reasonable to assume that the neutrophils within the specimen were not merely attached to the fungal cells, but were in a phagocytic process.

We conclude that this finding in a urinary sediment sample is an in vivo indication of phagocytosis of *C. albicans* by neutrophils within the urinary tract, a previously unreported finding. It indicated the action of the immune system against this kind of pathogenic agent. This observation highlights the wide spectrum of structures in urine sediment analysis and helps microscopy technicians to properly recognize this kind of urinary finding.

Author’s contribution

José Antonio Tesser Poloni, Clotilde Druck Garcia, Liane Nanci Rotta and Constantin F. Urban contributed substantially to the conception or design of the study; collection, analysis, or interpretation of data; writing or critical review of the manuscript; and final approval of the version to be published.

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.
REFERENCES

1. Poloni JAT, Perazella MA, Neild GH. Macrophages at work: phagocytosis of urinary fungi. Clin Kidney J. 2013 Apr;6(2):233-4.
2. Netea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008 Jan;6(1):67-78.
3. Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. 2010 Sep;8(3):225-35.
4. McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun. 2010 Apr;78(4):1650-58.
5. Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-coregulated genes to Candida albicans virulence. Cell Microbiol. 2005 Nov;7(11):1546-54.
6. Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NA, et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 2012;8(3):e1002578.
7. Wheeler ML, Underhill DM. Time to cast a larger net. Nat Immunol. 2014 Oct;15(11):1000-1.
8. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014 Nov;15(11):1017-25.
9. Brinkmann V, Zychlinsky AJ. Neutrophil extracellular traps: is immunity the second function of chromatin?. Cell Biol. 2012 Sep;198(5):773-83.
10. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006 Apr;8(4):668-76.