ARPES studies of cuprate Fermiology: superconductivity, pseudogap and quasiparticle dynamics

I M Vishik1,2, W S Lee1,2, R-H He1,2, M Hashimoto1,2,3, Z Hussain3, T P Devereaux1 and Z-X Shen1,2,4

1 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
2 Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
3 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: zxshen@stanford.edu

\textit{New Journal of Physics} 12 (2010) 105008 (18pp)

Received 31 May 2010
Published 29 October 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/10/105008

\textbf{Abstract.} We present our angle-resolved photoemission spectroscopy (ARPES) studies of the cuprate high-temperature superconductors; these studies elucidate the relation between superconductivity and the pseudogap and highlight low-energy quasiparticle dynamics in the superconducting state. Our experiments suggest that the pseudogap and the superconducting gap represent distinct states that coexist below T_c. Studies of Bi-2212 demonstrate that the near-nodal and near-antinodal regions behave differently as a function of temperature and doping, implying that different orders dominate in different momentum-space regions. However, the ubiquity of sharp quasiparticles all around the Fermi surface in Bi-2212 indicates that superconductivity extends into the momentum-space region dominated by the pseudogap, revealing subtlety in this dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals particle–hole asymmetry and anomalous spectral broadening, which may constrain the explanation for the pseudogap. Noting that electron–boson coupling is an important aspect of cuprate physics, we end the paper with a discussion of the multiple ‘kinks’ in the nodal dispersion. Understanding these will be useful in establishing which excitations are important for superconductivity.

4 Author to whom any correspondence should be addressed.
1. Introduction

Two general approaches are commonly adopted to understand unconventional superconductivity, such as that in the high-temperature superconducting cuprates. One approach is to study the state that exists at temperatures higher than the superconducting transition temperature, T_c, in order to posit how it may become unstable to superconductivity. The other approach is to search for bosonic excitations which might bind electrons into Cooper pairs. Both approaches rely on examining the quasiparticle properties or Fermiology of the charge carriers. Angle-resolved photoemission spectroscopy (ARPES) is an ideal tool for studying cuprate Fermiology, because it directly measures the occupied part of the single-particle spectral function in momentum space [1]. ARPES has been instrumental in revealing key properties of the cuprates, including a d-wave superconducting gap [2, 3], the pseudogap state above T_c [4, 5], and ubiquitous electron–boson coupling [6–10].

The pseudogap and the nodal and antinodal kinks are among the most obvious spectral features in ARPES, directly connected to the two approaches taken to the superconductivity problem, but their origins are a matter of ongoing debate. Whereas the normal state ($T > T_c$) of most low-T_c superconductors can be characterized by the Fermi liquid theory, the ‘normal’ state of underdoped cuprates—the pseudogap regime, appearing in ARPES as a partial gapping of the Fermi surface above T_c—remains controversial, as different experiments favor conflicting explanations. As an example, we show the incongruous temperature dependences of the gap measured by scanning tunneling spectroscopy (STS) and Andreev reflection in figure 1. In STS, the gap is defined by the peak-to-peak separation in the tunneling conductance below T_c or by a depletion of density of states (DOS) near zero bias in the normal state. The STS data in figure 1(a) suggest that the gap is largely unchanged across T_c and that it persists to temperatures much higher than T_c. Such a temperature dependence is often explained by a ‘precursor-pairing’ or ‘one-gap’ scenario where the pseudogap state is attributed to disordered superconductivity: the onset of the pseudogap (T^*) marks the onset of Cooper-pair formation, whereas T_c marks the onset of phase coherence [11–13]. This scenario is also supported by Nernst effect measurements [14]. In contrast, Andreev reflection experiments, reproduced in figure 1(b), indicate a gap with a Bardeen–Cooper–Schrieffer (BCS)-like temperature dependence that vanishes near T_c [15]. Support for this picture in which the pseudogap state is distinct from superconductivity also comes from Raman scattering [16]. The incompatible temperature dependences shown in figure 1 serve as a motivation for our experiments on the relation between superconductivity and the pseudogap, and we will show that with the momentum resolution of ARPES, the discrepancy can be resolved. Meanwhile, the question...
Figure 1. (a) STS measurements of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi-2212, $T_c = 83$ K) from [20]. (b) Andreev reflection measurements of Bi$_2$Sr$_2$Ca$_{1-x}$Y$_x$Cu$_2$O$_{8+\delta}$ (Bi-2223, $T_c = 113$ K) from [15]. The two experiments imply different temperature dependences of the gap.

arises whether the bosons giving rise to the ubiquitous kinks in ARPES spectra are related to pairing. However, before this can be addressed, the identity of these bosons (do they have magnetic origin, lattice origin or something else?) needs to be ascertained. Complicating this issue are recent observations of many-body interactions at multiple energies, potentially with different origins [17]–[19]. This review is divided into three sections: first, we establish the low-temperature gap and quasiparticle phenomenology in momentum space, and in the second section we review two temperature dependence studies that demonstrate the distinction between pseudogap and superconductivity phenomena; finally, we discuss low-energy renormalization effects of nodal quasiparticles.

2. Pseudogap effects below T_c

Temperatures below T_c mark the realm of superconductivity, but in sufficiently underdoped cuprates, two distinct gaps can be distinguished below T_c, both in raw data and in the momentum dependence of the gap. Figure 2 shows the symmetrized energy distribution curve (EDC; intensity as a function of energy at fixed momentum) near the antinodal k_F for underdoped Bi$_2$Sr$_2$Ca$_{1-x}$Y$_x$Cu$_2$O$_{8+\delta}$ (Bi-2212) with $T_c = 50$ K (UD50, $p = 8.4\%$), measured at 10 K. A sharp peak at lower binding energy is associated with superconductivity, and the broader feature at higher binding energy can be attributed to the pseudogap. We emphasize that the superconducting feature is strongly influenced by the pseudogap, which pushes it to higher binding energy and decreases its intensity. It should be noted that the peak–dip–hump EDC lineshape seen near ($\pi, 0$) in multilayer cuprates is often associated with electron–boson
Figure 2. Symmetrized EDC near the antinode for underdoped Bi-2212 with a T_c of 50 K. Two features are seen in the spectrum: a low-energy peak associated with superconductivity and a broader feature at higher energy associated with the pseudogap. For such a deeply underdoped system, the intensity and energy position of the superconducting feature are strongly influenced by the underlying pseudogap.

coupling [9, 21], so it is not obvious a priori why we should characterize the broad hump in figure 2 with the pseudogap. In principle, multiple components—superconductivity, pseudogap, mode-coupling and maybe others—contribute to the antinodal lineshape. The characterization done in figure 2 is reasonable because of the increasing influence of the pseudogap in the underdoped regime, the doping dependence of the broadly peaked feature at higher energy [22], and the proximity of this larger energy scale to the pseudogap energy scale above T_c. This picture will become clear upon studying more experiments, such as the momentum dependence of the superconducting gap.

While a d-wave superconducting gap is a hallmark of cuprate high-temperature superconductivity, recent experiments have shown that the gap functions of underdoped systems deviate from a simple d-wave form, $\Delta(k) = |\cos(k_x) - \cos(k_y)|/2$, near the antinode [23]–[27]. This is exemplified in figure 3, which shows the low-temperature gap function of two lanthanum-based cuprates: La$_{2-x}$Ba$_x$CuO$_4$ (LBCO) $x = 0.083$ and La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) $x = 0.11$, adapted from [26]. The gap is extracted from the leading-edge midpoint, a model-independent measure. Close to the node (the momentum position where the superconducting gap is zero), the gap follows a simple d-wave form, but in the antinodal region (momenta near the Brillouin zone axis), the gap increases more rapidly, deviating strongly from the near-nodal momentum dependence. This deviation is more pronounced for the more underdoped sample. Thus, the Fermi surface can be divided into two general regions with distinct momentum dependences of the gap, although we note that the crossover may not be abrupt.

The same phenomenon is observed in underdoped Bi-2212. Figure 4 shows the gap functions at 10 K for four dopings, partially adapted from [23] and [24]. At each momentum, gaps were extracted by fitting symmetrized EDCs to a minimum model [28]. The sample with the largest hole concentration in figure 4 (UD92) follows a simple d-wave form all around the
Figure 3. Leading edge gap function for LBCO $x = 0.11$ ($T_c = 23$ K) and LSCO $x = 0.11$ ($T_c = 26$ K) measured at 19 ± 2 K and 21 ± 2 K, respectively, plotted as a function of the simple d-wave form; the figure is adopted from [26]. As in other underdoped cuprates, the gap function has a simple d-wave form near the node, and deviates from this behavior at the antinode. This deviation increases as the hole concentration is reduced.

Figure 4. Gap function for underdoped Bi-2212, measured at 10 K [23, 24]. Underdoped samples with $T_c < 92$ K show a deviation from a simple d-wave form (dashed line) near the antinode.

Fermi surface at low temperature. As with lanthanum-based cuprates, more underdoped systems show increasing deviation from this form in the antinodal region, with the most underdoped sample (UD50) showing a deviation of more than 20 meV. It is well established that the pseudogap energy scale increases with underdoping [22, 29, 30], so it is natural to associate the
Figure 5. (a–d) EDCs at k_F ($T = 10$ K) for four dopings. The top curve is near the node and the bottom curve is near the antinode. The insets sketch where the cuts intersect the Fermi surface. The sharp peaks in all EDCs demonstrate that quasiparticles are observed by ARPES all around the Fermi surface in underdoped Bi-2212 in this doping regime. (e–h) Gaps fitted from the EDCs in (a–d). The three most underdoped data show a deviation from a simple d-wave form near the antinode while still having sharp quasiparticle peaks at the same momenta.

increasing deviation from a simple d-wave gap form with the increasing influence of pseudogap physics in the superconducting state of underdoped cuprates. Notably, the near-nodal region lacks this strong doping dependence in this doping regime.

Some have argued that a deviation from a simple d-wave form is an artifact from the loss of sharp quasiparticles in the antinodal region [31]. However, in Bi-2212, quasiparticles are ubiquitous all around the Fermi surface, well into the underdoped regime (e.g. UD50), so the criterion for extracting the gap is identical for the near-nodal and near-antinodal regions. In figures 5(a)–(d), we plot the EDCs at k_F for different momenta between the node and the antinode for four different underdoped Bi-2212 samples. Quasiparticle peaks—sharp peaks at
low binding energy—are visible all around the Fermi surface, and most notably in the antinodal region, for all the dopings in the figure. Figures 5(e)–(h) show the corresponding gap functions. For the three most underdoped samples, the gap near the antinode deviates from a simple d-wave form, yet quasiparticle peaks still persist in the momentum region of this deviation. As doping decreases, the peak near the antinode becomes weaker relative to the features at higher binding energy, as previously reported by Feng et al [32], suggesting that superconductivity becomes weaker as the antinodal pseudogap becomes stronger, hinting at competition between two distinct states. Although antinodal quasiparticle peaks have not been observed for all cuprates, LSCO ($p = 0.15$) provides another example of a system where a deviation from a simple d-wave form is accompanied by quasiparticle-like peaks all around the Fermi surface [25].

STS measures the local DOS averaged over all momenta, so tunneling spectra can be interpreted as a momentum-space average of ARPES data, neglecting possible matrix element effects. The DOS at low bias voltage corresponds to the near-nodal region, as the antinodal region is completely gapped at low energy, and the peaks in the spectra (see figure 1(a)) are influenced to a greater extent by antinodal states. Notably, two features are seen in STS spectra as well. Recent experiments have shown a hump in the DOS at low bias voltage (< 50 meV), in addition to the higher energy peaks from which the gap is extracted (see, for example, figure 1 of [33] or figure 2(a) of [34]). These two features correspond well with the two ‘features’ seen in momentum space by ARPES: a simple d-wave gap near the node and a larger gap near the antinode.

STS has increasingly exploited the phenomenon of quasiparticle interference (QPI) to learn about the momentum-space properties of cuprates [35]–[38]. Quasiparticles scattering from impurities in a superconductor interfere with one another, producing a standing wave pattern in the local DOSs $\rho(r, \omega)$, which can be studied via Fourier transform, $\rho(q, \omega)$. The dispersion of the peaks in $\rho(q, \omega)$ as a function of bias voltage ω is analyzed in terms of the octet model and yields information about the Fermi surface and momentum dependence of the superconducting gap [36]–[38]. Recent FT-STS studies reported that at low bias voltage, the dispersion of $\rho(q, \omega)$ behaves as expected for a d-wave superconductor, but upon reaching the bias voltage associated with the antiferromagnetic (AF) zone boundary (line connecting ($\pi, 0$) and ($0, \pi$)), many of the peaks in $\rho(q, \omega)$ disappear, leaving behind a localized state that breaks translational and rotational symmetry, which has been associated with pseudogap physics [36].

From the extinction of QPI at the AF zone boundary, it has been suggested that superconducting quasiparticles themselves become extinct at the AF zone boundary, even in overdoped materials that are far away from the parent AF Mott-insulator state on the phase diagram. Figures 5(a)–(d) clearly refute the claim of extinction, as sharp peaks are seen all the way to the antinode, and figures 6(b) and (c) show that these peaks are always quasiparticle-like (scattering rate is smaller than binding energy) and their fitted scattering rate evolves smoothly around the Fermi surface, without diverging near the AF zone boundary.

On the one hand, the local DOS measured by STS appears to be very consistent with the momentum dependence of the gap in Bi-2212; on the other hand, the Fourier transform yields inconsistencies regarding the momentum dependence of the quasiparticles. As discussed in [39], this inconsistency can be resolved by considering the distinct nature of the probes: ARPES studies the single-particle spectral function, while Fourier-transform STS studies the QPI pattern, which represents a two-particle process. Thus, quasiparticles can exist all around the Fermi surface but not contribute to the interference pattern in certain regions. It should be noted that the work of Kohsaka et al [36] captured some key features of underdoped
cuprates: the pseudogap state is present even below T_c and it resides in the antinodal region of momentum space, with superconductivity dominating closer to the node. However, the ubiquity of quasiparticles in Bi-2212 (figure 5) suggests that the two orders have a complex interplay in momentum space. In the next section, we will discuss two temperature dependence studies that further distinguish the pseudogap from superconductivity and offer clues to the origin of the pseudogap state.

3. Temperature dependence

Early ARPES studies on underdoped Bi-2212 found a d-wave gap below T_c and a partially gapped state above T_c, where the Fermi surface was restored only in a limited Fermi arc near the node [5]. Recently, Lee et al [23] have shown that details of this temperature evolution yield crucial information about the relation between the pseudogap and superconductivity. Figures 7(a) and (b) show the temperature dependence of EDCs in the near-nodal and antinodal regions, respectively. When a superconducting gap opens on the Fermi surface, the band dispersion splits into the upper and lower Bogoliubov branches. At low temperature, only the latter is measured by ARPES because of the sharp Fermi–Dirac cutoff, but at elevated temperatures, a portion of the unoccupied spectrum close to the Fermi level is thermally populated and can be studied by ARPES as well. In the near-nodal region, the upper Bogoliubov branch at k_F appears as a peak above E_F. As the temperature is raised towards T_c, the position of this peak moves closer to E_F, and it disappears altogether close to T_c. At the antinode, however, the position of the peak below E_F is largely independent of temperature, but there is a profound change in lineshape across T_c: a sharp peak is present below T_c (82 K), but only a broadly peaked feature is seen above T_c (102 K).
The temperature dependence in the raw EDCs is quantified by fitting to a minimal model, as described in [23]. Figure 7(c) shows the momentum dependence of the gap in Bi-2212 UD92 at three different temperatures. At 10 K, the gap function follows a simple d-wave form, and at 102 K a gap function characteristic of the pseudogap above T_c is measured: an ungapped arc near the node and a gap at the antinode whose energy is comparable to the antinodal gap below T_c. At intervening temperatures, the gap evolves more rapidly in the near-nodal region, giving rise to a deviation from a simple d-wave form at 82 K. Figure 7(d) details the temperature dependence in the near-nodal and near-antinodal regions and points out an interesting dichotomy: in the near-nodal region, the gap has a strong temperature dependence and closes at a temperature near T_c, whereas the gap in the antinodal region is unchanged across T_c. Because of this differing temperature dependence, it is unlikely that the near-nodal region and the antinodal region can be associated with a single order parameter. Thus, we posit that the former is dominated by superconductivity and the latter by pseudogap physics. However, the presence of quasiparticles all around the Fermi surface suggests a subtle interaction between these two states in momentum space.

With these observations, we can re-examine the discrepancy between tunneling and Andreev reflection experiments introduced in figure 1. Andreev reflection reported a temperature-dependent gap closing near T_c, similar to the gap measured by ARPES in the near-nodal region, whereas STS reported a temperature-independent gap, similar to the ARPES gap.
in the antinodal region. From the momentum resolution of ARPES, we can reconcile these experiments by recognizing that STS and Andreev reflection are likely sensitive to different portions of the Fermi surface in the cuprates. Moreover, because Andreev reflection couples directly to the superconducting condensate, the temperature dependence reported in [15] may be the generic temperature dependence of the superconducting gap, and consistent temperature-dependent ARPES experiments support the idea that superconducting order dominates in the near-nodal region.

In optimally or under-doped Bi-2201, the quasiparticle peak at the antinode can be weak or absent [40], making it an ideal system to study the underlying pseudogap near the antinode directly [41]. Moreover, it lacks complications from bilayer splitting [42] or certain many-body effects [43], which may obfuscate the antinodal spectra of multilayer cuprates. Figures 8(a)–(f) show EDCs along an antinodal cut in optimally doped Pb$_{0.55}$Bi$_{1.5}$Sr$_{2}$La$_{0.4}$CuO$_{6+\delta}$ (Pb-Bi-2201, $T_c = 34$ K and $T^* = 125 \pm 10$ K). Remarkably, the EDCs at 160 K are much sharper than those at 10 K, opposite to conventional thermal broadening. This suggests that something must intervene at intermediate temperatures to produce such broad features at low temperature. The momentum dependence of the EDC maxima define the band dispersion near $(\pi, 0)$. At the highest temperature (160 K), the band is parabolic and has well-defined Fermi crossings, which define k_F. At the three lowest temperatures, the spectra are gapped at all momenta in the cut, and the position where the band comes closest to E_F (the back-bending position) differs markedly from k_F established at higher temperature. A summary of the EDC maxima at different temperatures is plotted in figure 8(g), showing the temperature evolution of the ARPES-derived band structure. At low temperature, the band bottom is at higher binding energy than it is at high temperature, suggesting that a gap opens between 160 and 80 K, but the mismatch between the high-temperature k_F and the low-temperature back-bending position is not consistent with the opening of a superconducting gap. This mismatch is evidence that the low-temperature antinodal state breaks the particle–hole symmetry.

The temperature evolution of the antinodal spectra can constrain the explanation for this phenomenology. The temperature dependence of the EDCs at k_F and $(\pi, 0)$ is shown in figure 9. As the temperature is increased, the EDC maxima at both momenta move to lower binding energy, and at about 125 K, the EDC maximum at k_F reaches E_F, marking the closure of the antinodal gap and confirming T^*. At this temperature, the EDC maximum at $(\pi, 0)$ also reaches its terminal position, the band bottom. This temperature-dependent opening of the gap, measured at both k_F and the band bottom, presents a different picture from some previous spectroscopy measurements that reported a temperature-independent antinodal gap [11, 28, 44], and our result suggests a different paradigm for understanding the pseudogap.

What could explain such unusual low-temperature spectra, which are anomalously broad and exhibit a mismatch between k_F and the back-bending momentum? We have already shown that the latter feature cannot be captured by superconductivity alone (figure 8(h)). On the other hand, when a gap opens as a consequence of band folding from a density-wave order, the back-bending position can differ from k_F, as shown in figures 10(a) and (b) for two different ordering wavevectors. However, a long-range density-wave order will not reproduce the low-temperature spectral broadening. This aspect can be captured by considering a fluctuating order, as shown in figure 10(c). Such a local density-wave picture is supported by STS experiments, which have reported a symmetry-breaking state at pseudogap energies [36].

Our ARPES studies on the superconducting gap and pseudogap in the cuprates reveal an interesting and subtle phenomenology, which is summarized in figure 11. We argue that
Figure 8. (a–f) EDCs in the antinodal region of optimally doped Pb-Bi2201 ($T_c = 34$ K and $T^* = 125$ K), along the cut marked by the green arrow in the inset of (a), divided by the Fermi–Dirac function convolved with instrument resolution. At the highest temperature (160 K; panel a), a simple parabolic band is recovered, and its Fermi crossing points are used to define k_F, which is highlighted in red in (a–f). Circles mark the positions of EDC maxima, which are used to define the band position. At the lowest temperature (f), the momentum position where the band position is closest to E_F (the back-bending position, highlighted in blue) is far removed from k_F. Additionally, the low-temperature spectra are anomalously broad. (g) Summary of the band positions from the EDCs in (a–f). Both the band bottom and the back-bending positions (marked by vertical arrows) show a temperature evolution. (h) Simulated band position in the presence of superconducting gaps of magnitudes 15, 30 and 60 meV (blue curves, from top to bottom). The red curve denotes the ungapped, parabolic band. Vertical dashed lines mark k_F and arrows mark back-bending momenta, which are coincident with k_F in the presence of only a superconducting order.
superconductivity and the pseudogap constitute distinct orders based on their coexistence below T_c and the different temperature dependence of the gap at different momenta. Bi-2201 provides an example of a system where the anomalous behavior of the pseudogap is consistent with a density-wave order.
Figure 11. Summary of temperature and doping dependence ARPES studies. In the overdoped regime and above T^*, the behavior is conventional, with a simple d-wave form of the superconducting gap in the former and a simple metallic Fermi surface in the latter. In the underdoped regime, the low-temperature gap function deviates from a simple d-wave form, showing the strong influence of the underlying pseudogap on the energy positions of the near-antinodal quasiparticle peaks. In Bi-2201, the pseudogap state was found to be compatible with a density-wave order. Experiments on slightly underdoped Bi-2212 have found that the antinodal gap shows minimal temperature dependence across T_c, but in the near-nodal region the gap collapses near T_c, leading to the mysterious pseudogap state where the near-nodal region is metallic and the near-antinodal region is gapped.
4. Low-energy nodal excitations

In this section, we turn to the subject of electron–boson coupling, focusing along the nodal direction (from (0, 0) to (π, π)), where the kink can be studied without complications from gapped spectra and strong bilayer splitting. The most famous of these features is the ubiquitous dispersion kink seen at 50–80 meV in all cuprates, characterized by a sudden change in velocity and accompanying change in linewidth [6]–[10]. Despite the ubiquity of the kink, its explanation remains controversial, with the leading theories being of magnetic [45, 46] or phonon origin [47, 48]. There have been proposals that the bosons associated with this kink may be connected to superconductivity, either by mediating pairing or by enhancing \(T_c \) [49, 50], but others have questioned whether cuprate superconductivity needs a pairing glue [51]. Our experiments do not directly address the issue of whether the nodal kinks arise from the same phenomena that bind Cooper pairs, but they propose an origin for the ubiquitous 50–80 meV kink and demonstrate the ubiquity and doping dependence of another kink at lower energy. By recognizing and understanding the multitude of many-body phenomena in the cuprates, we can make progress in solving the superconductivity puzzle.

In this section, we will focus on the kinks in Bi-2212, the most prominent of which appears at 70 meV. For a \(d \)-wave superconductor with a maximum gap \(\Delta_0 \), coupling to a mode of energy \(\Omega \) is expected to produce a nodal dispersion kink at an energy \(\Omega + \Delta_0 \) [52]. Near-optimal doping, \(\Delta_0 \sim 35–40 \) meV, so in the superconducting state, the nodal kink is often attributed to a bosonic mode with an energy near 40 meV, such as the \(B_{1g} \) bond buckling phonon [53] or the magnetic resonance mode [54], gap-shifted by \(\Delta_0 \).

Above \(T_c \), the gap is closed on part of the Fermi surface, so a downshifting of the kink energy is expected. Figure 12(a) shows the nodal band dispersion above and well below \(T_c \) in optimally doped Bi-2212, which is found by standard momentum distribution curve (MDC) analysis [55], and Re\(\Sigma \) is approximated by subtracting an assumed linear bare band from the measured band dispersion. Re\(\Sigma \) at both 15 and 104 K, shown in figure 12(b), has a pronounced peak near 70 meV, consistent with previous findings that the apparent kink energy does not change across \(T_c \) [6, 54]. This lack of gap-shifting across \(T_c \) complicated the explanation of this kink, but we have shown that this issue can be clarified via a temperature dependence study where additional features become apparent at elevated temperatures [56]. A closer look at Re\(\Sigma \) at 104 K reveals a shoulder—a subkink—near 40 meV, suggesting that an additional energy scale comes into play at elevated temperature. This peculiar temperature dependence cannot be attributed to a thermal effect, as overdoped Bi-2201 with \(T_c < 5 \) K shows no such change between similar temperatures. Thus, the appearance of the subkink is more readily attributed to the loss of superconductivity between 15 and 104 K. In the absence of superconductivity, the energies of the modes can be identified. The mode at 70 meV agrees with the energy of the oxygen half-breathing mode observed by neutron scattering [57], and the mode at 40 meV agrees in energy with the \(B_{1g} \) buckling phonon [53]. Studying an intermediate temperature can verify this assignment, as the near-nodal gap in optimally doped Bi-2212 has a pronounced temperature dependence [23]. As shown in figure 12(d), Re\(\Sigma \) at 88 K has two pronounced features at approximately 60 and 90 meV, consistent with partial gap shifting of the phonons associated with the normal-state kink. The temperature dependence of the relative strength of these modes can be captured by a Holstein model, as discussed in [56].

In addition to the multiple-mode coupling near 70 meV, renormalization effects at much lower energy scales have also been observed following the advent of high-resolution laser-based...
Figure 12. (a) Optimally doped Bi-2212: nodal cut at 10 K (SC) and 104 K (non-SC). The dashed line denotes the assumed linear bare band. The dominant kink is near 70 meV (arrow) for both temperatures. (b) ReΣ at 15 and 104 K, approximated by subtracting the linear bare band in (a) from dispersion. At 15 K, there is one dominant feature near 70 meV, and at 104 K, there is an additional shoulder or subkink near 40 meV. (c) ReΣ extracted in the same way for OD Bi-2201 ($T_c < 5$ K), which is non-SC at both 10 and 103 K. The position of the features is the same at both temperatures, suggesting that the temperature dependence in (b) is connected to the SC transition. (d) OP Bi-2212: ReΣ at three temperatures, demonstrating the shifting of the subkink across the SC transition.

ARPES [58]. A low-energy kink (<10 meV) has been reported in the nodal dispersion of optimally doped Bi-2212 [19, 59, 60]. Other papers have reported a decrease in the MDC linewidth at similar energy[17]. Notably, this energy scale is smaller than the superconducting gap, suggesting somewhat different physics than the 70 meV kink. Recently, we have studied the doping-dependent systematics of the low-energy kink [19], and the nodal dispersions for three dopings (UD55, UD63 and UD92) are shown in figure 13(a). The velocity at the Fermi level (v_F, linear fit 0–7 meV) is smaller than that between 30 and 40 meV (v_{mid}), indicating the presence of a kink at some intervening energy. Notably, instrumental energy resolution and thermal broadening would push the near-E_F velocity to higher values [59], so this apparent slowing of charge carriers close to E_F is not captured by trivial effects. Moreover, a low-energy feature is observed both in the MDC dispersion and width—which are related to ReΣ and ImΣ, respectively—and the presence of the kink at at least three different dopings (figure 13(a)) strongly suggests that it is a ubiquitous aspect of the nodal physics in Bi-2212. It is then important to modify an earlier result—the universal nodal Fermi velocity—which was reported before ARPES resolution was sufficient to resolve the low-energy kink [61]. In figure 13(b), we plot v_F and v_{mid} as a function of doping. The latter is largely independent of doping, but the former decreases substantially with underdoping, tracking the superconducting dome and showing an increasing localization of nodal quasiparticles as hole concentration is decreased. Taken together with measurements of the near-nodal gap [24], this phenomenology has immediate implications for the interpretation of thermodynamic data, but the origin of this low-energy kink—and whether its doping dependence arises from the same physics that leads to the diminishing of superconductivity with underdoping—is yet to be explained.
Along the node, low-energy excitations aside from superconductivity can be studied, and renormalization effects at multiple energies are revealed. Although a single kink is seen near 70 meV, a closer analysis reveals temperature-dependent subkinks. In addition, zooming in close to \(E_F \) with high-resolution laser ARPES reveals a new low-energy kink, whose doping dependence leads to a doping-dependent \(v_F \). Understanding the origin of the multiple kinks, their doping and temperature dependences and their relation to superconductivity remains a challenge to the field.

5. Conclusions

We have presented a review of the low-energy excitations in the cuprates, which provides evidence for the distinct nature of the pseudogap and superconductivity, and we have emphasized the importance of multiple bosonic modes in the nodal spectrum. Evidence for a ‘two-gap’ scenario includes increasing deviation of the superconducting gap function from a simple \(d \)-wave form in the underdoped regime and different temperature dependences of the gap in different regions of momentum space. We showed Bi-2201 data that presented a striking case where the phenomenology of the pseudogap state is consistent with a fluctuating density-wave order, although it remains to be seen whether this density-wave picture is robust for other cuprates. Although there is evidence that the ‘normal’ state of the cuprates is distinct from superconductivity, we are still left with the task of uncovering the identity of that state and understanding if and how it promotes high-temperature superconductivity. Likewise, we have a
great deal of experimental phenomenology about the 70 meV kink and the low-energy kink—pointing to a multiple-phonon explanation for the former and deriving a doping-dependent v_F from the latter—but the link between these kinks and high-temperature superconductivity, if any, remains an unsolved puzzle.

Acknowledgments

The Stanford Synchrotron Radiation Lightsource is operated by the DOE Office of Basic Energy Science. This work was supported by the DOE Office of Basic Energy Science, Division of Materials Science, through contract numbers DE-FG03-01ER45929-A001 and DE-AC02-76SF00515.

References

[1] Damascelli A, Hussain Z and Shen Z-X 2003 Rev. Mod. Phys. 75 473
[2] Shen Z-X et al 1993 Phys. Rev. Lett. 70 1555
[3] Ding H, Norman M R, Campuzano J C, Randeria M, Bellman A F, Yokoya T, Takahashi T, Mochiku T and Kadowaki K 1996 Phys. Rev. B 54 R9678
[4] Loeser A G, Shen Z-X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325
[5] Norman M R et al 1998 Nature 392 157
[6] Lanzara A et al 2001 Nature 412 510
[7] Bogdanov P et al 2000 Phys. Rev. Lett. 85 2581
[8] Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z-X 2007 Handbook of High-Temperature Superconductivity ed J R Schrieffer and J S Brooks (New York: Springer) pp 87–144
[9] Cuk T, Lu D H, Zhou X J, Shen Z-X, Devereaux T P and Nagaosa N 2005 Phys. Status Solidi b 242(1) 11–29
[10] Johnston S, Lee W S, Chen Y, Nowadnick E A, Moritz B, Shen Z-X and Devereaux T P 2010 Adv. Condens. Matter Phys. 2010 968304
[11] Kugler M, Fischer Ø, Renner C, Ono S and Ando Y 2001 Phys. Rev. Lett. 86 4911
[12] Emery V J and Kivelson S A 1995 Nature 473 434
[13] Franz M and Millis A J 1998 Phys. Rev. B 58 14572–80
[14] Wang Y, Li L and Ong N P 2006 Phys. Rev. B 73 024510
[15] Svistunov V M, Tarenkov V Y, Dyachenko A I and Hatta E 2000 JETP Lett. 71 289
[16] Devereaux T P and Hackl R 2007 Rev. Mod. Phys. 79 175
[17] Zhang W et al 2008 Phys. Rev. Lett. 100 107002
[18] Meevasana W et al 2007 Phys. Rev. B 75 174506
[19] Vishik I M et al 2010 Phys. Rev. Lett. 104 207002
[20] Renner C, Revaz B, Genoud J-Y, Kadowaki K and Fischer Ø 1998 Phys. Rev. Lett. 80 149
[21] Eschrig M and Norman M R 2003 Phys. Rev. B 67 144503
[22] Campuzano J C et al 1999 Phys. Rev. Lett. 83 3709
[23] Lee W S, Vishik I M, Tanaka K, Lu D H, Sasagawa T, Nagaosa N, Devereaux T P, Hussain Z and Shen Z-X 2007 Nature 450 81
[24] Tanaka K et al 2006 Science 314 1910
[25] Yoshida T et al 2009 Phys. Rev. Lett. 103 037004
[26] He R-H et al 2009 Nat. Phys. 5 119
[27] Kondo T, Khasanov R, Takeuchi T, Schmalian J and Kaminski A 2009 Nature 457 296
[28] Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[29] Ando Y, Komiyama S, Segawa K, Ono S and Kurita Y 2004 Phys. Rev. Lett. 93 267001

New Journal of Physics 12 (2010) 105008 (http://www.njp.org/)
