IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells

Interferon-induced transmembrane protein 3 (IFITM3) has previously been identified as an endosomal protein that blocks viral infection1–3. Here we studied clinical cohorts of patients with B cell leukaemia and lymphoma, and identified IFITM3 as a strong predictor of poor outcome. In normal resting B cells, IFITM3 was minimally expressed and mainly localized in endosomes. However, engagement of the B cell receptor (BCR) induced both expression of IFITM3 and phosphorylation of this protein at Tyr20, which resulted in the accumulation of IFITM3 at the cell surface. In B cell leukaemia, oncogenic kinases phosphorylate IFITM3 at Tyr20, which causes constitutive localization of this protein at the plasma membrane. In a mouse model, Ifitm3−/− naive B cells developed in normal numbers; however, the formation of germinal centres and the production of antigen-specific antibodies were compromised. Oncogenes that induce the development of leukaemia and lymphoma did not transform Ifitm3−/− B cells. Conversely, the phosphomimetic IFITM3(Y20E) mutant induced oncogenic PI3K signalling and initiated the transformation of premalignant B cells. Mechanistic experiments revealed that IFITM3 functions as a PIP3 scaffold and central amplifier of PI3K signalling. The amplification of PI3K signals depends on IFITM3 using two lysine residues (Lys83 and Lys104) in its conserved intracellular loop as a scaffold for the accumulation of PIP3. In Ifitm3−/− B cells, lipid rafts were depleted of PIP3, which resulted in the defective expression of over 60 lipid-raft-associated surface receptors, and impaired BCR signalling and cellular adhesion. We conclude that the phosphorylation of IFITM3 that occurs after B cells encounter antigen induces a dynamic switch from antiviral effector functions in endosomes to a PI3K amplification loop at the cell surface. IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.
Effect of phosphorylation of IFITM3 at Y20

Combinations of surface and intracellular staining revealed the cytoplasmic localization of the N terminus of IFITM3, with a short extracellular portion of the C terminus (Extended Data Fig. 3d). Previous studies have shown that phosphorylation of IFITM3 at Y20 prevents both endocytosis and degradation. Phosphomimetic IFITM3(Y20E) was constitutively localized at the cell surface. Similarly, phosphorylation by BCR–ABL1 induced the accumulation of IFITM3 at the cell membrane, in a process that was sensitive to inhibition of BCR–ABL1 or SRC kinases (Extended Data Fig. 3e). Therefore, the phosphorylation of Y20 induces a dynamic switch from antiviral functions in endosomes to BCR or oncogene signalling at the cell surface (Extended Data Fig. 3e, f). To test whether phosphorylation of IFITM3 at Y20 and constitutive membrane localization are sufficient to enable oncogenic signalling, we overexpressed wild-type and IFITM3(Y20E) in premalignant B cells carrying a BCR-ABL1 knock-in allele, which did not readily give rise to leukaemia. Expression of IFITM3(Y20E) increased the ability of pre-B cells to form colonies by 129-fold \((P = 2.1 \times 10^{-8})\) (Fig. 2g), induced oncogenic signalling and initiated fatal leukaemia in congenic transplant recipient mice (Fig. 2h–j). To elucidate how membrane-bound IFITM3(Y20E) promotes malignant transformation, we performed phosphoproteomic analyses of IFITM3(Y20E) signalling in patient-derived B-ALL cells. Consistent with processive signal amplification, engagement of IFITM3 induced phosphorylation of CD19 on multiple residues—including Y531, which mediates PI3K activation. In addition, Y20 of IFITM3 engaged multiple components of the BCR and integrin receptor signalling pathways (Fig. 3a, Extended Data Fig. 4a), which converge with CD19 at the level of PI3K activation. A comprehensive analysis of phosphotyrosines showed a significant enrichment of phosphorylation in the PI3K, BCR and integrin receptor pathways, which we confirmed for SRC, CD19 and PI3K signalling by western blot (Fig. 3a–c). IFITM3(Y20E) required crosslinking by a full antibody, as the engagement of Y20 of monomeric IFITM3 using F(ab) fragments did not elicit PI3K activation (Extended Data Fig. 4b). Because PI3K signalling in mouse B-ALL cells increased IFitm3 mRNA levels by 10-fold and protein levels by more than 50-fold, these observations suggest a feed-forward loop of signal amplification between IFITM3 and PI3K signalling (Extended Data Fig. 1b–e). Comparable to effects on BCR signalling and CD19 surface expression in B cells, genetic deletion of IFITM3 in human Jurkat T cells compromised T cell receptor signalling and CD3 surface expression (Extended Data Fig. 4c), which suggests that IFITM3 may have a similar role in T cells.

IFITM3 enables CD19–PI3K signalling

By enriching for cell-surface proteins using N-linked glycosylation-site biotin labelling, we identified 65 surface receptors—most of which were associated with lipid rafts—that were downregulated in IFITM3−/− B-ALL cells, including CD19, BCR-associated and adhesion receptors. Only five surface proteins were upregulated—including the IFITM family member IFITM2, which suggests a possible compensation mechanism (Extended Data Fig. 4d). We performed validation by flow cytometry for 17 surface receptors for IFITM3 loss-of-function (IFITM3−/−) and gain-of-function (IFITM3(Y20E)) (Extended Data Fig. 4e–g). Continuous
Fig. 1 | *Ifitm3* is essential for B cell activation and affinity maturation in germinal centres. a, CD19 surface expression (top), cell cycle progression (middle) (percentages in S phase) and cell viability (bottom) (percentages of annexin V−7-AAD− cells) were measured. b, Number of viable *Ifitm3*+/− and *Ifitm3*−/− pre-B cells were counted at the times indicated. c, Levels of AKT phosphorylated at S473 (AKT-pS473), AKT, MYC, p53, p21 and BCL2 were assessed in CD21+/−CD23+ or CD21+/−CD23− marginal-zone B cells (MZB), peritoneal-cavity B cells for MAC1+IgM+ B1 cells and CD5+IgM+ B1a cells. e, Splenic B cells from *Ifitm3*+/+ and *Ifitm3*−/− mice were adoptively transferred to μMT recipient mice (n = 10) followed by immunization with 0.5 mg of NP–KLH or vehicle. Splens were collected on day 12 after immunization and subjected to immunofluorescence staining of tissue sections with B220, CD3 and peanut agglutinin (PNA). Scale bar, 500 μm. f, h, Splenocytes collected from μMT mice (n = 10) were analysed by flow cytometry 12 days after immunization for CD95, GL7 and NP to identify NP-specific germinal-centre B cells. Relative fractions (f), absolute numbers (g) and representative flow cytometry plots (h) are shown. i, Levels of serum immunoglobulin isotypes in μMT recipient mice transplanted with *Ifitm3*+/+ or *Ifitm3*−/− B cells are shown before and after immunization (n = 10; day 12). Serum levels of IgM, IgG1 and IgG2b were determined by enzyme-linked immunosorbent assay (ELISA). For gel source data for a, c, d, e, see Supplementary Fig. 1. b, f, g, i, mean ± s.d. indicated; significance determined by two-tailed t-test.

Forced expression of CD19 (for more than one week) in *Ifitm3*−/− B cells partially restored defective survival and proliferation, which required the PI3K-activation motif YS31 of CD19 (ref. 23) (Extended Data Fig. 5a–e). However, inducible translocation of CD19 to the cell membrane did not restore any defects in *Ifitm3*−/− B cells, which suggests that IFITM3 is still required to integrate CD19 into signalling complexes for SRC kinase and PI3K signalling (Extended Data Fig. 5f–h). To study complexes that interact with IFITM3, we performed enzyme-catalysed proximity labelling studies on the basis of N-terminal fusions of the BirA biotin ligase with IFITM3(Y20E) carrying an extracellular haemagglutinin (HA) tag in B-ALL and IgM+ MCL cells. After engagement with IFITM3 (anti-HA) or BCR (anti-IgM), IFITM3-interacting proteins were biotinylated on the basis of their proximity to the cytoplasmic BirA moiety, collected using streptavidin-coated beads and identified by mass spectrometry. Consistent with phosphoproteomic analyses (Fig. 3a), and across different cell types (B-ALL and MCL) and stimulations (anti-HA and anti-IgM), IFITM3-interacting proteins included BCR, integrin receptor and PI3K signalling elements (Fig. 3d, e, Extended Data Fig. 6a–d). We transduced MCL cells with Flag–IFITM3 for validation by co-immunoprecipitation and western blotting (Fig. 3f, g). Using proximity ligation assays, we confirmed the inducible formation of a complex between IFITM3 and the BCR signalling chain CD79B upon engagement of the BCR. Interactions between BCR and IFITM3 were induced within minutes and dissociated after 30 min
Cas9+gRNA+) was monitored by flow cytometry upon treatment with NT single-guide RNAs. Enrichment or depletion of targeted cells, Jeko1 MCL cells expressing doxycycline (Dox)-inducible Cas9 were transduced with 494 IgM BCRs are excluded from lipid rafts and recruited upon encounters to enable processive signal amplification (Fig. 3j). In resting B cells, functions as a scaffold for CD19 and LYN in proximity to BCR molecules the accumulation of IFITM3 at the plasma membrane, where IFITM3 activation of SRC-mediated phosphorylation of Y20 of IFITM3 induces mal compartments (Extended Data Fig. 6e). Therefore, BCR-mediated transformation.

Fig. 2 | Essential role of IFITM3 in oncogenic signalling and B cell transformation.

a, CD19 surface expression (top), cell cycle progression (middle) (percentages in S phase) and cell viability (bottom) (percentages of annexin V+7-AAD+ cells) were measured. b, c, *Ifitm3+/-* and *Ifitm3–/-* B-ALL cells transformed with human BCR-ABL1 or NRASG12D were assayed for levels of AKT-pS473, AKT, MYC, p53, p21 and BCL2 (n = 3) and plated in semi-solid methylcellulose (c). Scale bars, 7 mm (c, top row), 2.5 mm (c, bottom row). d, Kaplan–Meier analyses of NOD-SCID-gamma (NSG) recipient mice injected with the indicated numbers of *Ifitm3+/-* and *Ifitm3–/-* BCR-ABL1 (left) or NRASG12D (right) B-ALL cells (n = 5). e, Frequencies of leukaemia-initiating cells (LIC) estimated with extreme limiting dilution analysis (ELDA) (90% confidence interval; likelihood ratio test). f, Jeko1 MCL cells expressing doxycycline (Dox)-inducible Cas9 were transduced with *Ifitm3* targeting or non-targeting (NT) single-guide RNAs. Enrichment or depletion of targeted cells (*Cas9 gRNA*) was monitored by flow cytometry upon treatment with doxycycline (mean ± s.d.), and IFITM3 levels were measured by western blot. g, Premalignant LSL–BcrBCR-ABL1 × Mb1-cre pre-B cells expressing IFITM3, IFITM3(Y20E) or empty vector (EV) were plated for colony-forming assays (7 days). Representative images shown at 1× (top) and 10× (bottom) magnification. h, Survival analyses (P = 0.0001, log-rank test) of congenic recipient mice transplanted with LSL–BcrBCR-ABL1 × Mb1-cre B cells transduced with empty vector, IFITM3 or IFITM3(Y20E) (n = 7). i, The engraftment and expansion of luciferase-labelled leukaemia cells were monitored by luciferase bioimaging at the times indicated. j, Effects of IFITM3 or IFITM3(Y20E) on oncogenic signalling in LSL–BcrBCR-ABL1 × Mb1-cre B cell precursors measured by western blot and compared to empty vector. Phosphorylation of CD19 at Y531, SRC at Y416, AKT at S473 were examined. Gel source data for a–c, f, g, j are shown in Supplementary Fig. 1. In c, g, two-tailed t-test.

IFITM3–PIP3 binding is needed to form lipid rafts

Reduced expression of integrins and adhesion receptors was associated with decreased homotypic adhesion of *Ifitm3+/-* pre-B cells, whereas membrane-bound IFITM3(Y20E) triggered the formation of large clusters (Extended Data Fig. 7). Because IKZF1 negatively regulates adhesion33,35, we examined whether this regulation is mediated by transcriptional repression of *Ifitm3*36. Overexpression of a dominant-negative IKZF1-mutant (termed iK6) markedly increased colony formation, adhesion to stroma and surface expression of adhesion receptors in the presence— but not in the absence—of IFITM3. Although
IFITM3 interacts with plasma membrane lipids, we probed 15 distinct proteins that contained a cluster of four or more basic residues located at the membrane–solution interface can laterally sequester PIP3, which is required for the structural basis of IFITM3 binding to PIP3.

Fig. 3 | IFITM3 links components of the BCR and integrin receptor pathways to PI3K signalling.

a, Levels of proteins phosphorylated at the indicated residues in PDX2 B-ALL cells transduced with HA-tagged IFITM3(Y20E) or empty vector (EV) control were identified by mass spectrometry upon IFITM3 crosslinking with anti-HA antibodies. b, Feature set enrichment analysis (FSEA) for phosphorylated proteins in the BCR (red), integrin (blue) and PI3K (grey) pathways, ranked by log-transformed fold change (Kolmogorov–Smirnov). c, Levels of SRC-pY416, LYN, CD19-pY531, CD19, AKT-pS473 and AKT assessed in ICN12 cells expressing IFITM3–HA, IFITM3(Y20E)–HA or HA-tagged empty vector upon IFITM3 crosslinking. d, e, Interactomes of BirA–IFITM3(Y20E) or EV IFITM3(Y20E) with Biacore analysis. Levels of proteins phosphorylated at the indicated residues were assessed in anti-HA WCL, IP: Flag (anti-IgM) or EV IFITM3 Y20E.

Dominant-negative inhibition of IKZF1 relieved transcriptional repression of adhesion receptors, the normal expression and function of these receptors at the cell surface still required IFITM3 and its ability to link integrins and adhesion receptors to the PI3K pathway. Loss of IFITM3, and reduced activity of the SRC kinase LYN and CD19–PI3K signalling, could broadly affect lipid rafts and short-circuit BCR signalling. Consistent with this scenario, the lipid-raft components cholesterol and ganglioside GM1 were markedly reduced in Ifitm3−/− MCL cells. However, membrane stiffening in response to BCR engagement was significantly reduced in IFITM3−/− MCL cells (Extended Data Fig. 8a). Consistent with defects in PI3K signalling, the ratios of PI3P to the PI3K substrate PI2P were reduced substantially in mouse Ifitm3−/− B cells and patient-derived IFITM3−/− B-ALL cells. By contrast, overexpression of IFITM3 and IFITM3(Y20E) increased PI3P:PI2P ratios by about 3-fold and 5.5-fold, respectively (Fig. 4b, c). To elucidate how IFITM3 interacts with plasma membrane lipids, we probed 15 distinct lipid classes for binding to IFITM3 in vitro. IFITM3 bound selectively to PI3P, but not to any of the other 14 lipids (Fig. 4d). Because IFITM3 function is required to retain normal PI3P levels, we tested whether exogenous delivery of PI3P could rescue ifitm3 deficiency in mice. Insertion of exogenous PI3P into the cell membrane partially restored AKT and MYC activation and colony formation, but not CD19 and SRC phosphorylation or surface expression of lipid-raft-associated receptors (Extended Data Fig. 8b–d). Therefore, IFITM3 promotes PI3K signalling not only by increasing the amount of PI3P but also by integrating PI3P into signalling complexes in lipid rafts.

Structural basis of IFITM3 binding to PI3P
Prolines that contain a cluster of four or more basic residues located at the membrane–solution interface can laterally sequester PIP3, which is required for the structural basis of IFITM3 binding to PIP3.

Proteins that contain a cluster of four or more basic residues located at the membrane–solution interface can laterally sequester PIP3, which is required for the structural basis of IFITM3 binding to PIP3.
IFITM3–biotin to biotin

58–70

Glutathione-S-glutathione

R87 and K88, basic residue patches. Lipid-binding assays were performed for biotin–IFITM3 N terminus (amino acids 1–57), the first intramembrane α-helix (IM-α) (amino acids 58–70), conserved intracellular loop (CIL) (amino acids 71–105) and transmembrane α-helix (TM-α) (amino acids 89–105).

Recombinant GST tag was used as baseline.

Binding assays to study interactions of PIP3 with IFITM3 or IFITM3(Y20E) (e). In vitro lipid-binding assays for glutathione-S-transferase-tagged IFITM3 (GST–IFITM3) and 15 lipid classes. Recombinant GST tag was used as baseline. e. Lipid-binding assays were performed for biotin–IFITM3 N terminus (amino acids 1–57), the first intramembrane α-helix (IM-α) (amino acids 58–70), conserved intracellular loop (CIL) (amino acids 71–105) and transmembrane α-helix (TM-α) (amino acids 89–105).

Interaction energies of PIP3 with basic residues K83 or R85 within 3.5 Å. h. Interaction energies of PIP3 with basic residues K83 or R85 averaged over molecular dynamics simulation trajectories (median levels indicated by red dotted line) (Methods). I, Binding affinity for PIP3 as shown as a heat map of contact frequencies between PIP3 and each residue. Levels of AKT-pS473, AKT, S6K phosphorylated at T389 (S6K-pT389), S6K phosphorylated at T421 and S424 (S6K-pT421/S424), CD9-pY531, CD19, SRC-pY416, LYN, PAK1 and PAK3 phosphorylated at S599 and S604 (PAK1/3-pS604/605), PAK2 phosphorylated at S192 and S197 (PAK2-pS192/197), PAK1, FAK phosphorylated at Y397 (FAK-pY397), FAK phosphorylated at Y576 and Y577 (FAK-pY576/577), FAK, CXC4 phosphorylated at S339 (CXC4-pS339), CXC4 and integrin-β1 in PDX2 cells expressing empty vector, IFITM3–HA, IFITM3(Y20E)–HA, and the R85A, K83A, R85A/R87A/K88A and K83A/K104A mutants of IFITM3, upon IFITM3 crosslinking with anti-HA antibodies. n = 3. For gel source data, see Supplementary Fig. 1.

Interaction with one single basic residue (R85) (−213 kJ mol⁻¹), which was energetically weaker than the two charge interactions with PIP3 at K83 and K104 (−704 kJ mol⁻¹) (P = 0.0008). Two-residue contacts were rare for PIP2 and more common for PIP3 (P = 0.011) (Extended Data Fig. 9). To experimentally test the predicted function of the basic residues of the conserved intracellular loop, we performed PIP3 binding assays for biotinylated fragments of the IFITM3 conserved intracellular loop that carry mutations of basic residues. The R85A and R85A/R87A/K88A binding was detected only for the conserved intracellular loop (Fig. 4e), which contains five basic residues that are in close proximity in sequence and that spatially cluster into two distinct basic patches. To address why IFITM3 preferentially binds to PIP3 over PIP2, we performed multi-scale molecular dynamics simulations of IFITM3 in multi-component lipid bilayers that mimic the plasma membrane. All-atom molecular dynamics simulations revealed that the representative binding pose of PIP2 from its most populated conformation cluster showed a charge interaction with one single basic residue (R85) (−213 kJ mol⁻¹), which was energetically weaker than the two charge interactions with PIP3 at K83 and K104 (−704 kJ mol⁻¹) (P = 0.0008). Two-residue contacts were rare for PIP2 and more common for PIP3 (P = 0.011) (Extended Data Fig. 9). To experimentally test the predicted function of the basic residues of the conserved intracellular loop, we performed PIP3 binding assays for biotinylated fragments of the IFITM3 conserved intracellular loop that carry mutations of these residues. The R85A and R85A/R87A/K88A
mutants largely retained the ability to bind PIP3, which was abrogated for the K83A/K104A mutant (Fig. 4f). To understand the structural basis of this difference, we modelled the interaction of PIP3 with each of the mutants of the basic residues (K83A/K104A, R85A/R87A/K88A and R85A/R87A) using all-atom molecular dynamics simulations. PIP3 shows an interaction energy that is three times stronger with K83 and K104 than with R85, R87 and K88 (Fig. 4g–i). PIP3 makes dual-pronged salt-bridge interactions with K83 and K104, whereas it interacts only with R85 and not with R87 and K88 in the other basic patch. The R87 and K88 residues form intra-protein salt bridges with D92 and D86, respectively, and are not available for interaction with PIP3.

IFITM3 amplifies PI3K, integrin and BCR signalling

To experimentally validate this model, we globally identified changes in signal transduction that depend on K83 and R85 residues in human B-ALL and MCL B cells. The most prominent differences were enrichments for phosphorylation sites associated with PI3K, BCR and adhesion receptor signalling (Extended Data Fig. 10a, b). Although most phosphorylation events induced by membrane-bound IFITM3(Y20E) were lost upon mutation of K83, this was not the case for substitution of the R85 residue (Extended Data Fig. 10c, d). Proximity ligation assays revealed IFITM3-dependent recruitment of multiple proteins in the PI3K, BCR andintegrin signalling pathways. However, almost all of these interactions were lost upon mutation of K83 (Extended Data Fig. 10e–h). Biochemical studies revealed that crosslinking of IFITM3(Y20E) resulted in massive activation of PI3K and integrin receptor pathways, whereas CD19 and SRC were constitutively phosphorylated in the presence of IFITM3(Y20E) (Fig. 4j–l). The R85A mutation had only minor effects, whereas the substitution of K83 almost entirely abolished IFITM3-dependent signal transduction. In contrast to the triple-mutant IFITM3(R85A/R87A/K88A), the IFITM3(K83A/K104A) double mutant lost all activity in PI3K, BCR and adhesion receptor pathways (Fig. 4j–l).

In summary, we have revealed a function for IFITM3 as a PIP3 scaffold in the amplification of PI3K signalling. In *Ifitm3*−/− B cells, lipid rafts were depleted of PIP3, which resulted in marked defects in lipid-raft-associated BCR and integrin receptor signalling. IFITM3-dependent amplification of PI3K signalling, acting—in part—downstream of the BCR and adhesion receptors, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-2884-6.

1. Bailey, C. C., Zhong, G., Huang, J. C. & Farzan, M. IFITM-family proteins: the cell’s first line of antiviral defense. *Annu. Rev. Virol.* **1**, 261–283 (2014).

2. Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. *Nat. Rev. Immunol.* **13**, 46–57 (2013).

3. Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. *Cell* **139**, 1243–1254 (2009).

4. Zhang, Y. et al. Interferon-induced transmembrane protein 3 genetic variant rs2252-C associated with disease severity in coronavirus disease 2019. *J. Infect. Dis.* **222**, 34–37 (2020).

5. Zhao, X. et al. Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses. *J. Virol.* **92**, e01534-17 (2018).

6. Jia, R. et al. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. *J. Virol.* **86**, 13697–13707 (2012).

7. Chesarino, N. M., McMichael, T. M., Hack, J. C. & Yount, S. J. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. *J. Biol. Chem.* **289**, 19886–19892 (2014).

8. Everitt, A. R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. *Nature* **484**, 519–523 (2012).

9. Makvandi-Nejad, S. et al. Lack of truncated IFITM3 transcripts in cells homozygous for the rs12252-C variant that is associated with severe influenza infection. *J. Infect. Dis.* **217**, 257–262 (2018).

10. Kohn, A. Early interactions of viruses with cellular membranes. *Adv. Virus Res.* **24**, 223–276 (1979).

11. Liu, S. Y., Sanchez, D. J. & Cheng, G. New developments in the induction and antiviral effectors of type I interferon. *Curr. Opin. Immunol.* **23**, 57–64 (2011).

12. Li, D. et al. KL4-mediated negative regulation of IFITM expression plays a critical role in colon cancer pathogenesis. *Clin. Cancer Res.* **17**, 3558–3568 (2011).

13. Zhang, D., Wang, H., He, H., Niu, H. & Li, Y. Interferon induced transmembrane protein 3 regulates the growth and invasion of human lung adenocarcinoma. *Thorac. Cancer* **9**, 337–343 (2017).

14. Spence, J. S. et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. *Nat. Chem. Biol.* **15**, 259–268 (2019).

15. Harvey, R. C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. *Blood* **116**, 4843–4848 (2010).

16. Wittkowski, M. T. et al. Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. *J. Exp. Med.* **214**, 733–741 (2017).

17. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive phosphorylation. *Immunity* **18**, 47–57 (2000).

18. Oktenbahu, K. et al. Impaired B and T cell antigen receptor signaling in p105 F3 kinase mutant mice. *Science* **297**, 1031–1034 (2002).

19. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. *Immunology* **3**, 59–90 (1993).

20. Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. *Nature* **542**, 479–483 (2017).

21. Wang, T. et al. The physiologic role of CD19 cytoplasmic tyrosines. *Immunity* **17**, 501–514 (2002).

22. Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. *Nature* **560**, 387–391 (2018).

23. Klaesener, K., Maty, F. C., Hobeika, E., Yang, J. & Reth, M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. *eLife* **3**, e02009 (2014).

24. Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. *Nat. Immunol.* **15**, 283–293 (2014).

25. Joshi, I. et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. *Nat. Immunol.* **15**, 294–304 (2014).

26. McClainlarn, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. *Nature* **436**, 605–611 (2005).
Methods

No statistical methods were used to predetermine sample size. The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.

Analysis of patient gene expression and outcome data

Gene expression microarray data from three large cohorts of patients with pre-B ALL were downloaded from GSE53147 (the Eastern Cooperative Oncology Group (ECOG) Clinical Trial E2993), GSE18779 (the Children’s Oncology Group (COG) Clinical Trial P9906), St. Jude Research Hospital paediatric ALL26 (http://www.sjdresearch.org/site/data/ALL3/). In ECOG E2993, pretreatment bone marrow or peripheral blood samples were obtained at diagnosis before any treatment from 83 patients with Ph+ B-ALL enrolled in the Medical Research Council (MRC) UKALLXXII/Eastern Cooperative Oncology Group (ECOG) E2993 phase III trial. In data set from St. Jude childhood, 15 cases of Ph- B-ALL were selected from the original 327 diagnostic bone marrow aspirates. Minimal residual disease (MRD) data were available for patients with paediatric high-risk B-ALL (COG P9906). IFTM3 expression levels were measured in patients with either a MRD positive (MRD+) status or a MRD negative (MRD-) status. In COG P9906 clinical outcome, expression profiles were obtained in pretreatment leukemic samples from 207 uniformly treated children with high-risk ALL26, a risk category largely defined by pretreatment clinical characteristics. Patients had MRD tested by flow cytometry with two combinations (CD20/CD10/CD45 or CD9/CD19/CD34/CD45), and were defined as MRD positive or MRD negative at the end of induction therapy (day 29) using a threshold of 0.01% as previously described32. Then, RNA was purified from 207 pretreatment diagnostic samples with more than 80% blasts (131 bone marrow, 76 peripheral blood) and subjected to microarrays. Log-rank test was used to assess statistical significance.

Primary human samples and cell lines

Patient samples (Supplementary Table 7) were sourced ethically from patients who gave informed consent, and were in compliance with the internal review boards of the Beckman Research Institute of City of Hope. We have complied with all relevant ethical regulations. Patient samples were harvested from biopsy of bone marrow from patients with ALL at the time of diagnosis or relapse. All samples were tested negative for mycoplasma by detection kit (MYCOAlert PLUS, LONZA).

Mouse primary and leukaemia cells

Bone marrow cells from 6–10-week-old mice were collected by flushing cavities of the femur and tibia with chilled PBS, followed by filtering through 40-μm strainer to yield a single-cell suspension. Spleen or thymus cells were directly extracted by forcing tissues through a 40-μm strainer into chilled PBS. Filtered cells were further incubated with lysis buffer (RBC Lysis Buffer, BioLegend) to lyse erythrocytes. After washing with PBS, cells were subjected to further experiments. For IL-7-dependent pre-B cell culture, bone marrow cells were collected and cultured in Iscove’s modified Dulbecco’s medium (IMDM) (GIBCO) with GlutaMAX containing 20% FBS, 100 IU ml−1 penicillin, 100 μg ml−1 streptomycin and 10 ng ml−1 recombinant mouse IL-7 (Peprotech). For the BCR-ABL1 leukaemia model, pre-B cells were retrovirally transformed with BCR-ABL1 and then IL-7 was removed to select the transduced cells. NrasG12D ALL cells were selected with puromycin (GIBCO) and were maintained with IL-7-supplemented IMDM.

Retroviral and lentiviral transduction

Retroviral supernatant was generated by cotransfection of HEK 293FT cells with retroviral constructs together with pHIT60 (gag-pol) and pHIT123 (for mouse) or pHIT456 (for human ecotropic envelope) using Lipofectamine 2000 (Invitrogen). Lentiviral supernatant for CRISPR-mediated gene editing was produced by cotransfection of HEK 293FT cells with lentiviral constructs together with pCDNL/BH and EM140. Transfected HEK 293FT cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO) with GlutaMAX containing 10% fetal bovine serum, 100 IU ml−1 penicillin, 100 μg ml−1 streptomycin, 25 mmol l−1 HEPES, 1 mmol l−1 sodium pyruvate and 0.1 mmol l−1 non-essential amino acids for 16 h. After sodium butyrate (10 mM) induction for 8 h, the virus supernatant was replaced with fresh medium the next day. For retroviral transduction, 3–5 × 106 cells were transduced per well by the presence of lentiviral supernatant and maintained at 37 °C at 5% CO2. For lentiviral transduction, 3–5 × 106 cells were transduced per well by centrifugation at 600g for 30 min in the appropriate culture medium and maintained at 37 °C at 5% CO2 for 48 h. For lentiviral transduction, 3–5 × 106 cells per well were centrifuged at 600g for 30 min in the presence of lentiviral supernatant and maintained at 37 °C at 5% CO2. The lentiviral supernatant was replaced with fresh medium the next day.

Western blotting

PBS-washed cells were lysed in CellLytic buffer (Sigma-Aldrich) supplemented with 1% protease inhibitor cocktail (Roche Diagnostics), 1% phosphatase inhibitor cocktail (EMD Millipore) and 1 mM PMSF on ice. A total of 10 μg of cell lysates was separated on mini-precast gels (Bio-Rad) and transferred onto nitrocellulose membranes (Bio-Rad). Membranes were probed with the appropriate primary antibodies.
Membranes were then incubated with alkaline-phosphatase conjugated secondary antibodies (Invitrogen) and chemiluminescent substrate (Invitrogen) and were further detected by film exposure. UVP Biospectrum S10 Imaging System (Thermo Fisher Scientific) or by using the ChemiDoc MP Imaging System (BioRad). Antibodies used in this study are provided in Supplementary Table 10, and were used at 1:750 to 1:1,000 dilution in blocking buffer.

Flow cytometry
PBS-washed cells were blocked with Fc blocker for 10 min on ice and then stained with the appropriate antibodies listed in Supplementary Table 10, or with isotype control, for 25 min on ice. Cells were then washed and resuspended in chilled PBS containing 0.75 μg ml⁻¹ of DAPI to exclude dead cells. Acquisition was performed by LSRFortessa flow cytometer (BD Biosciences) with BD FACSDIVA software. The fluorescence-based cell sorting was performed by FACSAria II (BD Biosciences) with BD FACSDIVA software. FACS data were analysed with FlowJo software (FlowJo). For apoptosis analyses, annexin V and 7-AAD (BD Biosciences) were used. For cell cycle analysis, the BrdU flow cytometry kit (BD Biosciences) was used according to manufacturer’s instructions. For intracellular staining of cytoplasmic proteins, cells were first stained for cell surface antigens and subsequently fixed in fixation and permeabilization solution (BD Biosciences) containing 4% paraformaldehyde and the detergent saponin. Cells were then washed and resuspended in Perm/Wash Buffer (BD Biosciences) and stained with the appropriate antibodies. For statistical quantification, data were plotted with GraphPad Prism 7 or SigmaPlot. FACS antibodies, listed in Supplementary Table 10, were pre-diluted 1:5–1:10. Two μl of diluted antibody was added to 1–2 million cells per 50 μl in PBS for final dilution of 1:50 for human cells or 1:200 for mouse cells.

Pharmacological inhibitors and reagents
Imatinib was purchased from LC Laboratories. Stock solutions were prepared in sterile water at 10 mmol l⁻¹ and administered at 10 μmol l⁻¹. Dasatinib was purchased from SelleckChem. Stock solutions were prepared in sterile DMSO at 25 μmol l⁻¹ and administered at 25 nmol l⁻¹. Dasatinib was added to cells at 25 nmol l⁻¹. Dasatinib was added to 10 μmol l⁻¹ of DAPI to exclude dead cells. Acquisition was performed by LSRFortessa flow cytometer (BD Biosciences) with BD FACSDIVA software. The fluorescence-based cell sorting was performed by FACSAria II (BD Biosciences) with BD FACSDIVA software. FACS data were analysed with FlowJo software (FlowJo). For apoptosis analyses, annexin V and 7-AAD (BD Biosciences) were used. For cell cycle analysis, the BrdU flow cytometry kit (BD Biosciences) was used according to manufacturer’s instructions. For intracellular staining of cytoplasmic proteins, cells were first stained for cell surface antigens and subsequently fixed in fixation and permeabilization solution (BD Biosciences) containing 4% paraformaldehyde and the detergent saponin. Cells were then washed and resuspended in Perm/Wash Buffer (BD Biosciences) and stained with the appropriate antibodies. For statistical quantification, data were plotted with GraphPad Prism 7 or SigmaPlot. FACS antibodies, listed in Supplementary Table 10, were pre-diluted 1:5–1:10. Two μl of diluted antibody was added to 1–2 million cells per 50 μl in PBS for final dilution of 1:50 for human cells or 1:200 for mouse cells.

Analysis of chromatin immunoprecipitation with sequencing data
IKZF1 chromatin immunoprecipitation with sequencing (ChIP-seq) was performed as previously described20 with a patient-derived human B-ALL xenograft cell line (LAX2), which expresses wild-type full-length IKZF1 and no detectable level of the dominant-negative IKZF1 isoform. ChIP-seq tracks (GSE86897) for the IKZF1 antibody in LAX2 on Ifitm3 gene promoter regions are shown in the bottom of Extended Data Fig. 1m. The axis represents the normalized number of reads per million reads for peak summit for each track. ChIP-seq tracks (GSE68697) for the enrichment of RNAPII and H3K4me3 at the reads per million reads for peak summit for each track. ChIP-seq tracks (GSE58825) for the IKZF1 antibody in full-length IKZF1 and no detectable level of the dominant-negative human B-ALL xenograft cell line (LAX2), which expresses wild-type IKZF1 were transduced with MSCV CD19-ERT2-Puro. Puromycin-resistant cells were treated with 4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich) or vehicle control to induce reconstitution of CD19.

Inducible reconstitution of CD19
For inducible CD19 reconstitution, mouse CD19 was fused to the ligand-binding domain of a mutant oestrogen receptor (ER) at the C terminus of CD19. BCR-ABL1-transformed mouse B-lineage ALL cells were retrovirally transduced with MSCV CD19-ER²-Puro. Puromycin-resistant cells were treated with 4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich) or vehicle control to induce reconstitution of CD19.

Cell viability assay
One hundred thousand BCR-ABL1-transformed mouse B-lineage ALL cells were seeded in a volume of 100 μl in medium in 1 well of a 96-well plate (BD Biosciences). Imatinib (LC Laboratories) was added at the indicated concentration in a total volume of 150 μl. After culturing for 3 days, 15 μl of resazurin (R&D) was added into each well and incubated for 4 h at 37 °C. Medium without cells was used as blank. The fluorescence was read at 535 nm and the reference wavelength was 590 nm. Relative viability was calculated using baseline values of vehicle-treated cells as a reference.

Colony-forming assay
The methylcellulose colony-forming assays were performed with 10,000 cells. Cells were resuspended in mouse MethoCult medium (without cytokines for BCR-ABL1-transformed cells; with IL-7 for NRASG12D-expressing cells) and cultured on 3-cm-diameter dishes, with an extra water supply dish to prevent evaporation. Colonies were imaged and counted after seven days using GelCount (Oxford Optonix), Olympus IX71 microscope and Q-Capture pro 7.

In vitro IFITM3–HA crosslinking
Eight million patient-derived B-ALL cells per sample were resuspended into complete medium and treated with either 2.5 μg ml⁻¹ polyclonal anti-HA (Abcam) or isotype control for the indicated times. F(ab) fragments for the anti-HA antibody were generated by using the F(ab) preparation kit following the manufacturer’s instructions (Thermo Fisher Scientific). F(ab) fragmentation was confirmed by Criterion TGX Stain-Free Precast Gels (Bio-Rad).

Measurement of intracellular calcium mobilization
In Extended Data Fig. 2f, 1 million fresh splenocytes were incubated with the 4 μM Rhod-2-AM Ca²⁺-binding dye (Thermo Fisher Scientific) for 15 min at room temperature in dark. Cells were then resuspended in PBS and maintained at 37 °C, and Ca²⁺ response was induced by adding 10 μg ml⁻¹ of polyclonal anti-IgM (Southern Biotech) at 50 s after acquisition of background fluorescence. Intracellular Ca²⁺ mobilization in response to crosslinked IgM was measured up to 300 s by flow cytometry. In Extended Data Fig. 4c, 1 × 10⁶ viable Jurkat cells were incubated with the 4 μM Fluor-4-AM Ca²⁺-binding dye (Thermo Fisher Scientific) for 15 min at room temperature in dark. Cells were then resuspended in PBS and maintained at 37 °C, and Ca²⁺ response was induced by adding 10 μg ml⁻¹ of monoclonal (OKT3) purified NA/LE anti-human CD3 (BioLegend) at 50 s after acquisition of background fluorescence. Intracellular Ca²⁺ mobilization in response to crosslinked IFITM3 was measured up to 300 s by flow cytometry. The same procedure was performed for Extended Data Fig. 6f, 1 × 10⁶ viable Jeko1 cells were incubated with the 4 μM Fluor-4-AM (Thermo Fisher Scientific), Ca²⁺ response was induced by adding 10 μg ml⁻¹ of polyclonal F(ab’), anti-human μ chain (Jackson ImmunoResearch).

Homotypic aggregation assay
Ifitm3−/− B-ALL cells expressing C-terminal HA-tagged wild-type IFITM3, IFITM3 mutant vector (Y20E) or an empty vector were incubated with 2.5 μg ml⁻¹ of monoclonal (1D3) purified LEAF anti-mouse CD19 (Biolegend) or 2.5 μg ml⁻¹ polyclonal anti-HA (Abcam) or isotype controls
In vivo oncogenic priming assay with Mbi-cre:LSL-Bcr-/-BCR-ABL1 B cell precursors

To generate a model for pre-leukemic B cell precursors expressing BCR-ABL1, BCR-ABL1 knock-in mice were crossed with Mbi–Cre strain (Mbi-cre -/-+LSL-Bcr-/-BCR-ABL1) for excision of a stop cassette in early pre-B cells. Bone marrow cells collected from Mbi-cre -/-+LSL-Bcr-/-BCR-ABL1 mice, cultured in the presence of 10 ng ml-1 recombinant mouse IL-7 (Proprotech). IL-7 dependent pre-leukemic B cells were labelled with retroviral firefly luciferase and selected by blastidinlcid for 7 days. After selection, cells were further transduced with MSCV-IKT3-MHA-ires-puro, MSCV-IKT3-MHA-iRES-puro or empty vector and selected by puromycin for 3 days. Viable cells (1 \times 107) were injected via the tail vein into sublethally irradiated (200 cGy) NSG recipient mice. In vivo expansion and leukemia burden were monitored by luciferase bioluminescence (IVIS 100 bioluminescence and optical imaging system; Xenogen) at the indicated time points. In brief, D-luciferin (Promega) dissolved in PBS was injected intraperitoneally at a dose of 2.5 mg per mouse 15 min before measuring luminescence. All mice were anaesthetized by 5% isoflurane and continued during detection of light emission with 2% isoflurane introduced through a nose cone. A mouse was euthanized when they showed signs of leukemia burden such as a hunched back, weight loss and inability to move. Kaplan–Meier survival analysis was performed using GraphPad Prism 2 (GraphPad Software) to compare overall survival. Mantel–Cox log-rank test was used as statistical analysis using GraphPad Prism 7 (Supplementary Table 4).

Cell adhesion assay

Ifitm3-/- or Ifitm3-/- BCR-ABL1 B-ALL cells were transduced with MSCV-IK-6-IRES-GFP or MSCV-IRES-GFP as negative control. GFP+ cells (1 \times 105) sorted by FACS were cultured on a 6-well plate with IMDM GlutaMAX containing 20% FBS, 50 μM 2-mercaptoethanol, 100 IU ml-1 penicillin and 100 μg ml-1 streptomycin. For calculation of the ratio of adherent cells to nonadherent cells, nonadherent cells were counted and calulated with the trypan blue exclusion method using the Countess FL Automated Cell Counter (Life Technologies). After washing the plate with PBS twice, adherent cells were detached with trypsinization and GFP+ B-ALL cells and were counted with the trypan blue exclusion method using the Countess II FL Automated Cell Counter (Life Technologies) and ratios were calculated.

Adoptive transfer of purified B cells into μMT mice

For the adoptive transfer of B cells, splenocytes from 7- to 10-week-old Ifitm3-/- or Ifitm3-/- mice were negatively selected by MojoSort Mouse Pan B Cell Isolation Kit II (Miltenyi Biotec) using immunomagnetic beads against CD3, CD4, CD8a, CD11c, CD49b, Ly6G/Ly6C (GR1) and TER119. Ten million flow-sorted splenic B cells were intravenously injected into μMT mice (B6.129S2-Ighm-/-Ivec/J) that lack the Cμ exon and mature B cell development as a result of defective surface IgM expression. Reconstitution of donor B cells was determined by flow cytometry 20 days after injection. Recipient μMT mice were immunized with the hapten NP coupled to a carrier protein (KLH) on day 0 and day 7, and spleens were collected on day 12.

Immunization and immunohistology

Ifitm3-/- and Ifitm3-/- littermate mice were immunized with 0.5 mg NP–KLH (Biosearch Technologies) in alum (Sigma-Aldrich) intraperitoneally. Seven days later, mice were immunized a second time for five days. Spleens were isolated at day 12 after immunization. The spleen was embedded in optimum cutting temperature compound and 5-μm-thick cryosections were used for staining. Sections were fixed with acetone for 10 min, and nonspecific antigens were blocked in DPBS containing 2% FBS for 15 min. Sections were stained with 1:200 dilution polyclonal (RA3-682) anti-CD45R (B220, BD Biosciences), monoclonal anti-mouse CD3 (17A2, Biologendr) antibodies and biotinylated peanut agglutinin (B-1075, Vector Laboratories) for 45 min. Sections were washed and further stained with Alexa Fluor 647 streptavidin (Biologendr) antibody for 45 min. All antibodies were diluted 1:100 to their original concentration in blocking buffer. After washing with blocking buffer, sections were mounted in ProLong Diamond Antifade Mountant (ThermoFisher Scientific). Images were acquired on a ZEISS LSM 880 confocal microscope and analysed on ZEN 2.3 (Zeiss) software.

ELISA measurements

For determination of the concentrations of immunoglobulin isotypes in sera, ELISAs were carried out according to the manufacturer’s protocol (Ig Isotyping Mouse Instant ELISA Kit for IgG1, IgG2b and IgM) (Supplementary Table 1). NP-specific antibodies were measured by ELISA using 10 μg/ml of NP (24–BSA (Biosearch Technologies) as the coating reagent. NP-specific IgM and IgG1 was detected using goat anti-mouse IgM and IgG1 Fc-specific antibodies conjugated to horse-radish peroxidase and developed with tetramethylbenzidine (Sigma). Optical densities were determined by using an ELISA reader at 450 nm (SpectraMax M3, Molecular Devices).

RNA sequencing analysis

Total mRNA from Ifitm3-/- and Ifitm3-/- BCR-ABL1 B-ALL cells was extracted using RNeasy Kit (Qiagen) according to the manufacturer’s instructions. Sequencing was performed on an Illumina Hiseq 2500 (Illumina) instrument using the TruSeq SR Cluster Kit v.4 c-Bot HS (Illumina) with v.4 chemistry. Quality control of RNA-sequencing reads was performed using FastQC. For analysis, raw sequence reads were mapped to the mouse genome (mm10) using STAR v.2.5.3 a. The frequency of genes was counted using featureCounts v.1.5.1 b. The raw counts were then normalized using the trimmed mean of M values method and compared using Bioconductor package edgeR c. Reads per kilobase per million (RPKM) mapped reads were also calculated from the raw counts. For differential expression analysis, transcripts were quantified using Salmon v.1.1.0 against gencode GRCh38 v. M24 transcript annotations; normalization and statistical analysis were done in R using DESeq2 v.1.28.1. Differentially expressed genes were identified if RPKM \textgeq 1 in at least one sample, fold change \geq 2 and P \textleq 0.05 (Extended Data Fig. 3b). RPKM data were later used in the gene set enrichment analysis (GSEA). GSEA was performed using the DOSE package in R d; genes were ranked by log2-transformed fold change; and gene sets were obtained from MSigDB or from internal data, as indicated.

CRISPR-mediated gene deletion

All lentiviral constructs expressing Cas9 nuclease and guide RNA were purchased from Translom Technologies. For gene deletion, cells were transduced with pTOL-hCMV-Tet3G-Hgyromycin. Hgyromycin-resistant cells were subsequently transduced with pCLIP-Tre3g-hCMV-Cas9-2A-zsGreen. Expression of Cas9–2A–zsGreen was induced at 1 μg ml-1 of doxycycline for 16 h, and zsGreen- cells were sorted by flow cytometry. Cells were washed out to remove doxycycline to turn off Cas9 expression (TetOff) and then subsequently transduced with pCLIP-gRNA-hCMV-RFP-gRNA. Sorted RFP- cells were subjected to further experiments. Gene deletion was initiated by treatment with 1 μg ml-1 of doxycycline (TetOn). Non-targeting guide RNA was used as control.

Gene deletion by non-viral genome targeting

Chemically synthesized CRISPR RNAs (160 μM) and trans-activating CRISPR RNAs (160 μM) were mixed 1:1 by volume and annealed by incubation at 37 °C for 30 min. Recombiantly produced Cas9 (40 μM) was then mixed 1:1 by volume with gRNA to produce RNA ribonucleoprotein (RNP) complexes. RNPs were freshly complexed before electroporation. Electroporation was performed by using pulse code EH-115 on a Lonza...
4D 96-well electroporation system. Predesigned Alt-R CRISPR-Cas9 guide RNAs were purchased from IDT. Non-targeting control guide RNAs were purchased from IDT.

Co-immunoprecipitation

Co-immunoprecipitation was performed with the Pierce Crosslink Magnetic IP/Co-IP kit according to manufacturer’s instructions (Thermo Fisher Scientific). In brief, patient-derived Ph⁺ ALL cells (PDX2) were transduced with MSCV Flag-ires-Puro or MSCV Flag-Ifitm3-IRES-Puro and selected in puromycin for 3 days. Viable cells (5 × 10⁶) were collected and washed by PBS before lysis using IP lysis/Wash buffer (Thermo Fisher Scientific). Then, 5 µg of anti-Flag antibody M2 (F1804, Sigma-Aldrich) per sample was coupled to protein A/G magnetic beads and covalently crosslinked with 20 µM disuccinimidyl suberate. The antibody crosslinked beads were incubated with cell lysate, washed to remove non-bound material and eluted in a low-pH elution buffer that dissociates bound antigen from the antibody crosslinked beads. The enriched antigen in low pH was immediately neutralized and subjected to western blotting. Jeko1 cells electroporated with either non-targeting RNP or ifitm3-targeting RNP complex were stimulated with 10 µg/ml 1 F(ab’), fragment goat anti-human μ chain (Jackson Immunoresearch) for the indicated time points at 37 °C and 5% CO₂. Cells were immediately washed with chilled PBS and subjected to co-immunoprecipitation with anti-CD19 antibody (no. 90176, CST).

PLA

For PLA of pre-BCR or BCR–Ifitm3, cells were incubated with 10 µg ml⁻¹ F(ab’), fragment goat anti-human μ chain (Jackson Immunoresearch) for 5 min at 37 °C and 5% CO₂. Cells were immediately washed with chilled PBS and subsequently fixed in fixation buffer (Biologic) containing 4% paraformaldehyde for 25 min on ice and then washed with chilled PBS. For cellular membrane staining, cells were labelled with 5 µg ml⁻¹ WGA conjugated to Alexa Fluor 488 (Thermo Fisher Scientific) for 5 min at room temperature. Cells were then permeabilized in Perm/Wash Buffer (BD Biosciences) and then blocked in Duolink Blocking buffer for 30 min at room temperature. Cells were incubated with 1:150 diluted primary antibodies listed in Supplementary Table 10 overnight at 4 °C. For late endosome staining, cells were incubated with anti-human LAMP1 conjugated to Alexa Fluor 488 (R&D Systems) with the primary antibodies. Cells were washed and settled on Cell-Tak (Corning)-coated Shandon Single Cytoslide by cytospin at 400 g for 5 min. PLA reactions were carried out according to the manufacturer’s protocol (Duolink, Sigma). In brief, primary antibodies were coupled with Duolink in situ PLA PLUS or MINUS probes (Sigma-Aldrich), and then probes were visualized with Duolink Detection Reagent Red (Sigma-Aldrich). Cells were mounted with Duolink in situ mounting medium with DAPI (Sigma-Aldrich). Microscopy images were acquired using an Olympus IX3-S5 and analysed by CellSens imaging software (Olympus) and ImageJ. For quantification of PLA signals, one dot was defined as pixel size of 5 × 5 by BlobFinder software. Statistical significance was calculated using unpaired Student’s t-test with Excel and plotted with GraphPad Prism 7.

Phosphoproteomic analysis

Patient-derived B-ALL (PDX2) cells transduced with HA-tagged ifitm3(Y20E) or IFITM3(K83A/K104A) mutant constructs with N-terminal Turbo-ID BirA (engineered biotin ligase) and selected by puromycin for three days. Turbo-ID BirA-expressing construct tagged with Flag was used as negative control. To induce biotinylation of proteins proximal to IFITM3, cells were treated with 50 µmol l⁻¹ biotin and with anti-HA antibody for simultaneous induction of IFITM3 crosslinking for 10 min. Cells were washed three times with chilled PBS and lysed in IP/WASH buffer (Thermo Fisher Scientific) with 1× HALT protease inhibitor (Thermo Fisher Scientific). The lysates were incubated by streptavidin C1 MyOne Dynabeads (Invitrogen) for 16 h at 4 °C. Unbound proteins were washed 3 times by 2% SDS–PBS, 3 times by PBS and 3 times with pure water. The eluted proteins were gel-purified, followed by in-gel digestion and subjected to mass spectrometry. For liquid chromatography (LC)–MS/MS analysis, peptides were analysed using a Dionex UltiMate 3000 Rapid Separation LC system and a Orbitrap mass spectrometer (ThermoFisher Scientific). Six-µl peptide samples were loaded onto the trap column, which was 150 µm × 3 cm and in-house-packed with 3-µm C18 beads. The analytical column was a 75 µm × 10.5-cm PicoChip column packed with 3-µm C18 beads (New Objectives). The flow rate was kept at 300 nl/min. Solvent A was 0.1% formic acid (FA) in water and solvent B was 0.1% FA in ACN. The peptide was separated on a 120-min analytical gradient from 5% ACN and 0.1% FA to 40% ACN and 0.1% FA. The mass spectrometer was operated in data-dependent mode. The source voltage was 2.40 kV and the capillary temperature was 275 °C. MSI scans were acquired from 400–2,000 m/z at 60,000 resolving power and automatic gain control (AGC) set to 1 × 10⁶. The 15 most abundant precursor ions in each MSI scan were selected for fragmentation. Precursors were selected with an isolation width of 1 Da and fragmented by collision-induced dissociation at 35% normalized collision energy in the ion trap; previously selected ions were dynamically excluded from reselection for 60 s. The MS2 AGC was set to 3 × 10⁵. For data analysis, proteins were identified from the mass spectrometry raw files using Mascot search engine (Matrix science). MS/MS spectra were searched against the SwissProt human database. All searches included carbamidomethyl cysteine as a static modification and oxidized Met, deamidated Asn and Gln, and acetylated N-terminus as variable modifications. Three missed tryptic cleavages were allowed. The MSI precursor mass tolerance was set to ±0.1 Da. MASCOT search engine was also used with the same settings. The results were filtered using a 1% false discovery rate (FDR) cut-off and only proteins with a confidence greater than 95% with at least two unique MS/MS spectra and a minimum of 30 matched peptides were identified. For quantification, all searches were performed using a fixed modification and oxidized Met, deamidated Asn and Gln, and acetylated N-terminus as variable modifications. The results were filtered using a 1% FDR cut-off and the integrated peak area of the corresponding peptide assignments was calculated. The accuracy of the quantitative data was ensured by manual review in Skyline or in the ion chromatogram files.
10 ppm and the MS2 tolerance was set to 0.6 Da. A 1% false discovery rate cut-off was applied at the peptide level. Only proteins with a minimum of two peptides above the cut-off were considered for further study. For comparison to empty vector control, background peptide abundances for missing values were imputed from a Gaussian distribution centred around the minimum observed abundance using the MinProb method from MSnbase package in R.

Cell-surface proteome analyses
Cell-surface proteins were labelled with biotin using the N-linked glycosylation-site biotin labelling method. In brief, 40 million Ifitm3+/− or Ifitm3−− B-ALL cells were washed twice and resuspended in 1 ml of ice-cold PBS, and treated with 1.6 mM sodium metaperiodate (VWR) at 4 °C for 20 min to oxidize the vicinal diols of sugar residues linked to surface proteins. The cells were then washed twice in PBS to remove excess sodium metaperiodate. Cells were resuspended in 1 ml of ice-cold PBS and treated with 1 mM biocytin hydrazide (Biotium) and 10 mM aniline (Sigma-Aldrich) at 4 °C for 90 min with gentle mixing to biotinylate free aldehydes exposed on the sugar residues. After labelling, cells were washed 3 times with ice-cold PBS to remove excess biotin, frozen in liquid nitrogen and stored at −80 °C until further processing for mass spectrometry. All experiments were performed in biological triplicates with replicates collected from consecutive passages. Frozen cell pellets were thawed on ice in 1 ml of RIPA buffer (Millipore) with the addition of 1× HALT protease inhibitors (Pierce). After incubation on ice for 10 min, cells were disrupted by sonication and the lysates were clarified by centrifugation at 17,000 rcf at 4 °C for 10 min. Clarified lysate was mixed with 500 μl of neutravidin agarose resin (Thermo Fisher Scientific) and incubated at 4 °C for 2 h with end-over-end mixing. Neutravidin beads with captured biotinylated surface proteins were washed extensively by gravity flow to remove unbound proteins using 50 ml of 1× RIPA + 1 mM EDTA, followed by 50 ml of PBS + 1 M NaCl and finally 50 ml of 0.1 M ABC + 2 M urea buffer. Washed beads were resuspended in digestion buffer (50 mM Tris pH 8.5, 10 mM TCEP, 20 mM 2-iodoacetamide and 1.6 M Urea) with 10 μg of 10x trypsin protease (Pierce, 90057) to perform simultaneous disulfide reduction, alkylation and on-bead peptide digestion at room temperature overnight (16–20 h). After digestion, the pH was adjusted to about 2 with neat trifluoroacetic acid (Sigma-Aldrich) and the peptide mixture was desalted using a SOLA-HRP column (Thermo Fisher Scientific) on a vacuum manifold. Desalted peptides were eluted with 50% acetonitrile (Sigma-Aldrich) and 50% water with 0.1% TFA and dried down completely in a speedvac. Dried peptides were resuspended in LC–MS grade water (Fisher) with 2% ACN and 0.1% FA. Peptide concentration was measured using 280 nm absorbance on a Nanodrop, and the peptide concentration was adjusted to 0.2 μg μl−1 for mass spectrometry runs.

LC–MS and data analysis for cell-surface proteome
For each replicate, 1 μg of peptide was injected onto a Dionex Ultimate 3000 NanoRSCLC instrument with a 15-μm Acclaim PEPMAP C18 (Thermo Fisher Scientific, 164534) reverse-phase column. The samples were separated on a 3.5-h nonlinear gradient using a mixture of buffer A (0.1% FA) and B (80% ACN/0.1% FA), from 2.4% ACN to 32% ACN. Eluted peptides were analysed with a Thermo Q-Exactive Plus mass spectrometer. The mass spectrometry survey scan was performed over a mass range of 350–1500 m/z with a resolution of 70,000, with a maximum injection time of 100 ms. We performed a data-dependent MS2 acquisition at a resolution of 17,500, AGC of 5 × 106, and injection time of 150 ms. The 15 most intense precursor ions were fragmented in the higher-energy collision dissociation at a normalized collision energy of 27. Dynamic exclusion was set to 20 s to avoid over-sampling of highly abundant species. The raw spectral data files are available at the ProteomeXchange PRIDE repository (accession number PXD014691). Raw spectral data were analysed using MaxQuant v.1.5.1.20 to identify and quantify peptide abundance and searched against the human Swiss-Prot annotated human proteome from Uniprot (downloaded with 20,303 entries). The ‘match-between-runs’ option was selected to increase peptide identifications and the ‘fast LFQ’ option was selected to calculate label-free quantification values of identified proteins. All other settings were left at the default MaxQuant values. The MaxQuant output data were analysed using Perseus (version 3.4.0). Proteins annotated as ‘reverse’, ‘only identified by site’ and ‘potential contaminant’ were filtered out, as were proteins that were quantified in less than two out of three biological replicates in at least one experimental group. Missing values were imputed on the basis of the normal distribution of the dataset as implemented by Perseus. Volcano plots were generated using output from a two-sample t-test comparing the log-transformed label-free quantification protein abundance values from different cell lines with a false-discovery rate set to 0.01. Validation was performed by flow cytometry (Supplementary Table 1).

Cholesterol and lipid raft measurement
For the depletion of cholesterol, cells were preincubated with 5 mM methy-β-cyclodextrin for 30 min at 37 °C before filipin staining. For ganglioside GMI staining, cells were labelled with cholera toxin B using Vybrant lipid raft labelling kit (Molecular Probes), according to the manufacturer’s protocol. In brief, cells were labelled with cholera toxin unit B conjugated with Alexa Fluor 594 on ice for 15 min, washed twice with PBS. Cholera-toxin-B-labelled lipid rafts were crosslinked with anti-cholera-toxin-B antibody on ice for 15 min, washed twice with PBS and analysed by flow cytometry.

In vivo transplantation of leukaemia cells
Mouse pre-B ALL cells transformed by BCR–ABL1 or NRAS(G12D) were injected into sublethally irradiated (200 cGy) NOD-scid IL2rgnull (NSG) mice via the tail vein. Eight- to ten-week-old female NSG mice were randomly allocated before injection. A mouse was euthanized when they showed signs of leukaemia burden, such as a hunch back, weight loss and inability to move, and then the bone marrow and/or spleen were collected to test leukaemia infiltration by flow cytometry. Kaplan–Meier survival analysis was performed using GraphPad Prism 7 (GraphPad Software) to compare overall survival. The Mantel–Cox log-rank test was used as statistical analysis using GraphPad Prism 7 (Supplementary Table 3). The minimal number of mice in each group was calculated by using the ‘power’ function in Hmisc package of R. No blinding was used. All mouse experiments were subject to institutional approval by the Beckman Research Institute of the City of Hope Animal Care and Use Committee.

PIP3 quantification
For Fig. 4, 60 million viable cells were resuspended in chilled 0.5 M trichloroacetic acid (TCA) in a total volume of 1 ml and incubated on ice for 5 min. Cells were centrifuged at 3,000 rpm for 7 min at 4 °C and resuspended in 5% TCA and 1 mM EDTA in a total volume of 1 ml. After vortexing for 30 s, cells were washed again with 5% TCA and 1 mM EDTA. To extract neutral lipids, cells were resuspended in 1 ml of MeOH:CHCl3 (2:1) and vortexed for 10 min at room temperature and centrifuged at 3,000 rpm for 5 min. After 1 more extraction of neutral lipids, the acidic lipids were extracted by adding 750 μl MeOH:CHCl3:12 M HCl (80:40:1) with vigorous vortexing for 25 min at room temperature. After centrifugation at 3,000 rpm for 5 min, supernatant was transferred to a 2-ml centrifuge tube and mixed with 250 μl of CHCl3 and 450 μl of 0.1 M HCl, vortexed for 30 s, and centrifuged at 3,000 rpm for 5 min to separate organic and aqueous phases. Five hundred μl of the lower organic phases was collected into a clean 1.5-ml vial and dried in a vacuum dryer for 1 h. Dried lipid was stored at −20 °C. On the day of assay, lipid samples were reconstituted with 200 μl of PBS containing 0.25% protein stabilizer; 20 μl was used for PL(4,5)P2 measurement and
the rest (180 μl) was used for PI(3,4,5)P₃ measurement using an ELISA kit (Echelon Biosciences) according to the manufacturer's instructions.

Exogenous delivery of PIP3

Phosphatidylinositol 3,4,5-triphosphate diC₁₆ (Echelon Biosciences) was freshly reconstituted with PBS at 2 mM. Unlabeled shuttle PIP carrier 2 (histone H1) was freshly reconstituted with water at 2 mM. PIP₂ in a volume of 75 μl was mixed with 25 μl of PIP carrier and incubated at room temperature for 10 min. One hundred μl of PIP₂ carrier complex was added into either p3™ or p3™ B-ALL cells in a total volume of 5 ml and incubated for 24 h. PIP₂-loaded p3™ or p3™ B-ALL cells were subjected to colony-forming assay, as shown in Extended Data Fig. 8.

Lipid-binding assay

To assess the direct binding of IFITM3 to lipids, a lipid-binding assay was performed using Membrane Lipid Strips (Echelon Biosciences) according to the manufacturer's instructions. In brief, membranes were blocked in 5% fatty acid-free BSA (Sigma-Aldrich) in TBST (50 mM Tris-HCl, 150 mM NaCl, and 0.1% Tween 20) for 1 h at room temperature in the dark followed by overnight incubation with 0.5 μg/ml of recombinant proteins in blocking buffer at 4 °C with gentle agitation. After washing membranes 3 times for 30 min in TBST, membranes were incubated for 1 h with anti-GST tag polyclonal Ab (Thermo Fisher Scientific) or anti-biotin monoclonal antibody (Cell Signaling Technology) antibodies, listed in Supplementary Table 1. Membranes were incubated with alkaline phosphatase-conjugated secondary antibodies (Invitrogen) and chemiluminescent substrate (Invitrogen) and were further detected by UVP BioSpectrum 810 Imaging System (Thermo Fisher Scientific). Recombinant GST-tagged protein was purchased from Sigma-Aldrich. Recombinant human GST–IFITM3 protein was purchased from Abnova. Recombinant human IFITM3 fragments listed in Supplementary Table 5 were synthesized at LifeTein.

Preferential PIP3 accumulation and binding to IFITM3 using multi-scale molecular dynamics simulations

The IFITM3 protein structure from residues S8 to L28 was modelled by coarse-grained molecular dynamics simulation method in GROMACS, in explicit cell membrane mimic bilayer. There is no structure available for IFITM3 or for any close homologue. We calculated the hydrophobicity for each position using the hydrophobic index of amino acids and averaged hydrophobicity over a sliding window of seven amino acids. Previous structural studies on IFITM3 structure have shown there is only one transmembrane domain that is inserted into the membrane. On the basis of this evidence, we used the topology shown in Supplementary Fig. 9 as the starting structure. TMI was generated as an α-helix structure, and the CRAC motifs and linker region were built as fully extended chain. The linker region was relaxed using 5,000 steps of coarse-grained simulation using GROMACS program with Martini forcefield to remove stress in the system. We then added the TM2 region as an helix and inserted TM2 into a cell-membrane-mimicking bilayer. The composition and ratio of lipids for the mixed bilayer is POPC:DOPC:POPE:CHOL:Sph:GM1 = 0:2:0.2:0.05:0.05:25:15:0.1 for the outer leaflet of the bilayer, and 0.05:0.05:0.2:0.2:0.08:0.08:0.25:0.03:0.03:0.03 of POPC: DOPC: POPE: POPS: DOPS: CHOL: PI: PI3P: PI3P: PI3P for the inner leaflet. We generated three possible starting setup for the mixed lipid bilayer with water in the upper and lower regions with CHARMM-GUI. The charges in the system were neutralized with 0.15 M NaCl. We used nine replicates of the protein IFITM3 structure in the simulation box (Supplementary Fig. 9a). The initial configuration was minimized using steepest decent method for 5,000 steps, and then equilibrated in NPT ensemble for 5 ns at 303 K temperature and 1 bar pressure. The temperature was controlled by Berendsen thermostat with coupling constant of 1 ps, and the pressure was controlled by Berendsen barostat in semi-isotropic type with a coupling constant of 5 ps and a compressibility of 3 × 10⁻⁴ bar⁻¹. The reaction field coulomb was applied to describe electrostatic, with cut-off at 1.1 nm. The cut-off for van der Waals interactions was also 1.1 nm. We used the Leap-frog integrator, and a 20-fs time step for integration. All systems were solvated in coarse-grained water model adopted in the Martini forcefield water, neutralized with 0.15 M NaCl. Ten μs of production simulation was performed for each of the three starting conformations of the lipid bilayer. The final 1 μs of the trajectory from each of the 3 setups was used to analyse the folded structure of the CRAC1–basic patch–CRAC2 region of the IFITM3 model. We clustered the conformations of IFITM3 by the root mean square deviation cut-off of 0.3 nm in the backbone coarse-grained particles in the coarse-grained simulations. We analysed the binding patterns of PIP2 and PIP3 in this most populated conformational cluster. We observed that both PIP2 and PIP3 compete for the ‘basic patch’ of residues shown in the amino acid sequence in Extended Data Fig. 9. We extracted three snapshots from this conformational cluster that represent the most diverse patterns in PIP2 and PIP3 binding.

Details of the all-atom molecular dynamics simulations for phospholipid binding

To better understand the detailed binding conformation of PIP2 and PIP3 to IFITM3 and to calculate their binding energies to IFITM3, we converted the three snapshots extracted from the coarse-grained simulations to an all-atom system using Martini tools. The three chosen snapshots were cut into 9 × 9 nm² box centred at the IFITM3 unit from the coarse-grained simulations to preserve the local optimized lipid environment. The lipid and protein were converted to an all-atom model, and were resolvated into a 9 × 9 × 9 nm³ simulation box, neutralized by 0.15 M NaCl. Extended Data Figure 9 shows the detailed interaction between PIP2 or PIP3 with IFITM3 protein in an all-atom resolution base on these snapshots. The all-atom simulations were performed using GROMACS package and CHARMM36 forcefield, with the TIP3 water model. The nonbond interactions were calculated with a cut-off of 12 Å, and the particle-mesh Ewald method was applied to solve long-range van der Waals interactions. Each system was gradually heated to 310 K with random initial velocities sampled from a Boltzmann distribution. The heating process lasted for 1 ns, with temperature controlled by a Nosé–Hoover thermostat, followed by 30-ns equilibration in NPT ensemble with harmonic position restraints on protein heavy atoms. The pressure was maintained at 1 bar in semi-isotropic environment, controlled by the Parrinello–Rahman method. The restraint force was gradually reduced from 5 kcal/mol to 0 kcal/mol with a -1 kcal/mol step per 5-ns window. The final frame of equilibration was taken for a production run. The production run was performed twice for 50 ns each, with 2 different random initial velocities assigned to the equilibrated structure. An integration time step of 2 fs was used. The interaction energy between PIP3 with IFITM3 protein was calculated as the sum of electrostatic Coulombic energy and van der Waals potential energy averaged over the two 50-ns trajectories, totalling 100 ns.

Interaction of PIP3 with the two basic residue patches

The PIP3-binding and AKT-signalling activation assays showed that mutation of the K83/K104 patch to K83A/K104A had higher effect than mutating the R85/R87/K88 patch to R85A/R87A/K88A. To further validate the interaction strength difference between PIP3 and the two basic patches, we converted all PIP1 and PIP2 in the simulation box to PIP3. We further performed simulations on the IFITM3(K83A/K104A) and on IFITM3(R85A/R87A/K88A) in the PIP3-only simulation box. Starting from this structure, we performed equilibration of the system and all-atom molecular dynamics production simulations (each 200-ns long), using the protocol for all-atom molecular dynamics simulations described in ‘Details of the all-atom molecular dynamics simulations for phospholipid binding’. We aggregated the final 100 ns of simulation trajectories from each of the 5 runs, which we added to 500 ns of...
molecular dynamics simulation trajectories for analysis. We calculated the interaction energy as the sum of electrostatic Coulombic and van der Waals potential energies between PIP3 and residues forming the basic patch only (K83/K104 or R85/R87/K88). The interaction energies were averaged over the 500 ns of aggregated molecular dynamics simulation trajectories for each system. We repeated these interaction energy calculations for the wild-type IFITM3 and for the mutant K83A/K104A and R85A/R87A/K88A constructs.

Contact-frequency heat-map calculations from molecular dynamics simulations
The important information that can be extracted from molecular dynamics simulations is the temporal frequency of PIP3 contacts with the two basic residue patches. The persistence of these interactions has an important role in the accumulation of PIP3 by IFITM3. We calculated the percentage of molecular dynamics snapshots that show contacts between each of the residues in the basic patch. This is termed the contact frequency. We also calculated the percentage of molecular dynamics snapshots that show simultaneous contacts made by PIP3 with two or more residues in the two basic residue patches. We generated a heat map using the frequencies calculated for the wild-type IFITM3 and in the alanine mutants.

Quantitative real-time PCR
Bone marrow from a healthy donor was stained and sorted as previously described. Total RNA from cells was extracted using the RNA isolation kit from Macherey–Nagel. Complementary DNA was generated with the qScript cDNA SuperMix (Quanta Biosciences). Quantitative real-time PCR was performed with FAST SYBR Green Master Mix (Applied Biosystems) and the Vii7 real-time PCR system (Applied Biosystems) according to standard PCR conditions. COX68 was used as a reference gene.

Acoustic scattering measurements
Single-cell size-normalized acoustic scattering (SNACS) was measured using a previously established microfluidic method, which has been shown to be specifically sensitive to cell-surface stiffness. Full measurement details can be found in a previous publication. In brief, cells were flowed through a standing acoustic wave generated inside a vibrating suspended microchannel resonator (SMR). The SMR is a cantilever-based mass measurement tool, which can also detect acoustic scattering from cells when the cells transit through the acoustic wave. The cantilever vibration frequency was monitored, and its shift was used to quantify the acoustic scattering from the cells as well as the buoyant mass of the cells. Before taking a set of measurements, the SMR was cleaned with 0.25% trypsin–EDTA for 30 min, followed by 3% bleach for 30 min and then a 5-min rinse with deionized H2O, to remove persistent biological debris. After cleaning, the SMR was passivated with 1 mg/ml PLL-g-PEG in H2O for 10 min at room temperature, followed by a 5-min rinse with normal cell culture medium. During the measurement, all the samples were loaded into the SMR through a 15 × 20-μm-sized channel inside of the cantilever and an approximately 200-ns transit time through the cantilever. All the regulators, valves and data acquisition were controlled by custom software coded in LabVIEW 2017 (National Instruments) as detailed in a previous publication. A parallel volume measurement using Coulter Counter (Beckman Coulter) was carried out to quantify average cell volume, which was used together with the single-cell buoyant mass measurements to calculate SNACS for each cell, as previously reported. All measurements were carried out in normal cell culture medium at room temperature within 10 min of taking cells out of the cell culture incubator. After a measurement of the untreated Jeko1 cells, a new patch of same cells was obtained from the incubator, treated with 10 μg ml−1 F(ab′)2, fragment goat anti-human μ chain (Jackson Immunoresearch) and the cells were immediately (within about 1 min) loaded into the SMR for measurement. Antibody-treated Jeko1 cells were measured for about 7 min to ensure that the anti-human μ chain stimulated changes were not reversed during the experiment. The SMR was briefly washed with PBS between each experiment. Wild-type Jeko1 cells were also measured after fixation to obtain a positive control for cell stiffness. For fixation, the cells were washed twice with PBS, mixed with 8% PFA for 30 min, washed twice with PBS and stored at 4 °C before the acoustic scattering measurements.

Quantification and statistical analysis
Data are shown as mean ± s.d. unless stated. Statistical analysis was performed by GraphPad Prism 7 (GraphPad Software) using unpaired two-tailed t test, or as indicated in figure legends. Significance was considered at P < 0.05. For in vivo transplantation experiments, the minimal number of mice in each group was calculated through use of the ‘power’ function in the Hmisc package of R. Kaplan–Meier survival analysis was used to estimate overall survival with GraphPad Prism 7. Mantel–Cox log-rank test was used to compare the difference between two groups. No mice were excluded. For patient overall survival analysis, patients in each dataset were divided into two groups on the basis of whether their expression was above or below the median level of IFITM3 and Kaplan–Meier survival analysis was used to estimate overall survival. The datasets used include patient-outcome data for B-ALL (Children’s Oncology Group (COG) P9906, n = 207; Eastern Cooperative Oncology Group (ECOG) E2993, n = 83; and St Jude, n = 15), mantle cell lymphoma (Lymphoma/Leukemia Molecular Profiling Project (LLMP), n = 92) and acute myeloid leukaemia (The Cancer Genome Atlas (TCGA), n = 200). A log-rank test was used to compare survival differences between patient groups. The R package ‘survival’ (version 2.35-8) was used for the survival analysis and Cox proportional hazards regression model in the R package for the multivariate analysis (https://www.r-project.org/). The investigators were not blinded to allocation during experiments and outcome assessment. Experiments were repeated to ensure reproducibility of the observations.

Data availability
Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Patient-outcome data for B-ALL were obtained from the National Cancer Institute TARGET DATA Matrix of the COG Clinical Trial P9906 (GSE18777) (ref. 28) and E2993 (GSE5314) (ref. 29) and St Jude Children’s Research Hospital (https://www.stjuderesearch.org/site/data/ALL3/) (ref. 30). Patient-outcome data for mantle cell lymphoma were obtained from https://llmpp.nih.gov/MCL/ (ref. 31). Patient-outcome data for AML were obtained from TCGA Acute Myeloid Leukaemia Project (http://www.cbioportal.org/study/summary/?id=aml_tgca_pub/cclinical) (ref. 32). Proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the following accession numbers: cell-surface proteome, PXD014691; phosphoproteome, PXD020696; and IFITM3 interactomes, PXD020697. Levels of IFITM3 mRNA across human normal and malignant B-lymphoid samples were obtained from http://Amazonia.transcriptome.eu/. All other data are available from the corresponding author upon reasonable request. Genome binding and occupancy profiling from wild-type and IKDN stromal adherent pre-B cells were obtained from GSE86897. Immunohistochemistry images for IFITM3 levels in normal or malignant B cells were obtained from
The Human Protein Atlas https://www.proteinatlas.org/. ChIP-seq data of the genome wide mapping of IKZF1 binding in patient-derived B-ALL xenograft cells were obtained from GSE58825. ChIP-seq data of the genetic analysis of IKZF1 target genes and tumour suppressor function in Ph+ pre-B ALL cells were obtained from GSE90656. RNA-sequencing data for Ifitm3 and Ifitm3 in B-ALL, BCR-ABL or NRAS(B-ALL) cells are available at GSE155305. RNA-sequencing data for Pten in Ph+ pre-B cells carrying 4-OHT-inducible Cre-ER2 or Er2 are available at GSE155618. Supplementary Table 12 summarizes the accession numbers and publicly deposited data from this study. All other data needed to evaluate the conclusions in the paper are available within the Article and its Supplementary Information. Source data are provided with this paper.

27. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2, 1004–1023 (2012).

28. Harvey, R. C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874–4884 (2010).

29. Ross, M. E. et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–2959 (2003).

30. Kang, J. H. et al. Classification for Ph+ pre-B acute lymphoblastic leukemia improves risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115, 1394–1405 (2010).

31. Borowitz, M. J. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children’s Oncology Group study. Blood 111, 5477–5485 (2008).

32. Poddar, S., Hyde, J. L., Gorman, M. J., Farzan, M. & Diamond, M. S. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J. Virol. 89, 8780–8794 (2015).

33. Foley, S. B. et al. Expression of BCR/ABL p210 from a knockin allele enhances bone marrow engraftment without inducing neoplasia. Cell Rep. 5, 51–60 (2016).

34. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 150–154 (2010).

35. Claus, A. et al. Gene expression classification for Ph+ pre-B ALL. J. Exp. Med. 214, 793–814 (2017).

36. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

37. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 2092–2099 (2014).

38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 150–154 (2010).

39. De, S. et al. Genome-wide mapping of IKZF1 binding in patient-derived B-ALL xenograft cells from GSE58825. ChIP-seq data of the genetic analysis of IKZF1 target genes and tumor suppressor function in Ph+ pre-B ALL cells were obtained from GSE90656. RNA-sequencing data for Ifitm3 and Ifitm3 in B-ALL, BCR-ABL or NRAS(B-ALL) cells are available at GSE155305. RNA-sequencing data for Pten in Ph+ pre-B cells carrying 4-OHT-inducible Cre-ER2 or Er2 are available at GSE155618. Supplementary Table 12 summarizes the accession numbers and publicly deposited data from this study. All other data needed to evaluate the conclusions in the paper are available within the Article and its Supplementary Information. Source data are provided with this paper.

40. Acknowledgements We thank M. A. Lemmon for critical discussion and advice, and current and former members of the Muschen laboratory for their support and helpful discussions. Research in the Muschen laboratory is funded by the NIH/NCI through R53CA197628, RO1CA157644, RO1CA215338 and RO1CA233412, the Dr. Ralph and Marian Falk Medical Research Trust Transformational Awards Program through MCG-184479, the Leukemia and Lymphoma Society through MCL-7000-18 and Blood Cancer Discoveries Grant BDCG-2022-D2, as well as the Howard Hughes Medical Institute HMMI-SS105847 (to M.M.). This work was partly supported by NIH-grants R53CA200422, R21CA251275, AI118585, AI160555, AI140718, AI40705, DE023926 and DE028523 (to J.U.J.), RO1AI040042 and RO1AI127513 (to M.S.D.), RO1GM17923 and RO1GM079261 (to N.V.), NCI R35 CA319558 (to D.M.W.), Wellcome Trust 110275/Z/15/Z (to P.T.M.) and the Paul G. Allen Frontiers Group and the Cancer Systems Biology Consortium funding (USA-CAT17773) from the National Cancer Institute (to S.R.M.). Relevant data in the A.T. laboratory was supported by the Cancer Moonshot grant U01 CA235263. T.S. is a fellow of the Lymphoma Research Foundation.V.K. is supported by a Career Development Fellow grant (5499-20) from the Leukemia and Lymphoma Society, and by a Young Investigator Award from Alex’s Lemonade Stand Foundation. Proteomics services were performed by the Northwestern Proteomics Core Facility, generously supported by NCI CCSG P30 CA056053 awarded to the Robert H Lurie Comprehensive Cancer Center, instrumentation award (S10OD025194) from NIH Office of Director, and the National Resource for Translational and Developmental Proteomics supported by P41 GM105695. M.M. is a Howard Hughes Medical Institute (HMMI) Faculty Scholar. J.C. is a Leukemia and Lymphoma Society (LLS) Scholar.

41. Author contributions J.L. performed experiments and contributed to all aspects of the study, in particular, western blotting, flow cytometry analysis, viable cell counts, growth competition assays, immunization assays, ELISA, colony-forming assays, CRISPR-mediated gene deletion, cell sorting, in vivo transcriptional experiments, bio-imaging, bio-ID, immunoprecipitation assays, lipid strip assays, lipid raft analysis, calcium flux measurements and data analysis. M.R. and H.G. performed all bioinformatic and biostatistical analyses and power calculations for experimental design. N.M. and N.V. performed molecular dynamics simulations and structural analysis of IFITM3-Pi3P interactions. D.A. performed western blotting, flow cytometry analysis, viable cell counts, cell adhesion assays, CRISPR-mediated gene deletion and immunization assays. G.D., J.W., K.N.C., L.N.C., K.K. and V.K. performed flow cytometry analysis, viable cell counts, calcium flux measurements and data analysis. J.L. performed experiments and contributed to all aspects of the study; Author contributions.

42. Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-2801-9. Correspondence and requests for materials should be addressed to M.M. Peer review information Nature thanks Marcus Clark, Paul Kellam, Michael Reth and the other anonymous, reviewer(s) for their contribution to the peer review of this work. Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | *Ifitm3* expression is induced by oncogenic PI3K signalling and repressed by IKZF1. a, Changes of *Ifitm3* mRNA levels were monitored in mouse splenic B cells upon BCR engagement (mean ± s.e.; n = 2). b, *Pten*fl/fl pre-B ALL cells carrying 4-OHT-inducible Cre-ERT2 or ERT2 were treated with 4-OHT and studied by RNA sequencing for *Ifitm3* transcript expression (b) and western blot for protein levels of PTEN, AKT-pS473, AKT and *IFITM3* (c; n = 3). d, STAT5 phosphorylated at Y694 (STAT5-pY694), STAT5 and *IFITM3* levels in patient-derived B-ALL cells (PDX2) measured by western blotting upon imatinib treatment (n = 3). e, Scenario of the PI3K pathway as a positive regulator of IFITM3, which in turn amplifies BCR and oncogenic signalling. f, *IFITM3* mRNA levels across human normal and malignant haematopoietic and B-lymphoid samples (source data and statistics are given in Supplementary Table 2). Two-tailed t-test. g, *IFITM3* mRNA levels in pre-B cells from healthy donors and samples from patients with B-ALL were compared for two clinical cohorts (ECOG E2993 and St Jude). In ECOG E2993, bone marrow samples were obtained at diagnosis before treatment from 83 adults with B-ALL with a confirmed purity of >90% leukaemic blasts. For the St Jude datasets, 15 samples from children with B-ALL before treatment were compared to flow-sorted pre-B cells from bone marrow aspirates of healthy donors. Two-tailed Wilcoxon. h, Minimal residual disease (MRD) was determined in the COG P9906 cohort. *IFITM3* mRNA levels were compared in patients who were positive (n = 67) and negative (n = 124) for MRD. Two-tailed Wilcoxon. i–l, Patients with leukaemia and lymphoma from five clinical cohorts were segregated into two groups based on higher (*IFITM3*high) or lower (*IFITM3*low) than median *IFITM3* mRNA levels. Overall survival was compared by two-tailed log-rank test. m, ChIP-seq enrichment of RNAPII and H3K4me3 at the *Ifitm3* locus in pre-B cells (top) from *Ikzf1* exon5fl/fl mice upon Cre-mediated deletion of *Ikzf1* (GSE86897). Binding of IKZF1 to the promoter region of *IFITM3* was also analysed in ChIP-seq data from patient-derived B-ALL cells (bottom, LAX2, GSE58825). n, Human B-ALL cells (BV173) carrying *IKZF1* deletions were reconstituted with doxycycline-inducible *IKZF1* or EV. Levels of *IFITM3* were assessed by western blotting upon doxycycline-induction (n = 3). o, Multivariate analysis of established risk factors in children with B-ALL (COG P9906, n = 207) including mutation or deletion of *IKZF1*. Patients (n = 207) were separated into *IKZF* +/+ or *IKZF*-deleted groups, then further segregated based on higher or lower than median expression levels of *IFITM3*. The comparison of these four groups established *IFITM3* mRNA levels as an independent risk factor regardless of *IKZF1* deletion status (two-sided log-rank test; P = 0.0045). c, d, n, For gel source data, see Supplementary Fig. 1.
Extended Data Fig. 2 | Ifitm3 is essential for the development of B1 and germinal centre B cells. a, Hardy fractions of B cell subsets isolated from bone marrow of Ifitm3+/+ and Ifitm3−/− littermates analysed by flow cytometry (n = 3).

b, Surface expression of IgM, CD20, CD19, IgD, CD2 and CD21 measured by flow cytometry in enriched bone marrow (GR1−, Nk1.1− and B220+) and splenic B cells (CD3− and B220+) from Ifitm3+/+ or Ifitm3−/− mice (n = 7; mean ± s.d.). Mean fluorescence intensities (MFI) values for individual measurement compared by two-tailed t-test. c, Ca2+ mobilization from cytoplasmic stores in response to BCR (IgM) engagement was measured in Ifitm3+/+ and Ifitm3−/− splenic B cells. Ca2+ release was induced by addition of 10 μg ml−1 anti-mouse IgM 60 s after acquisition of background fluorescence. Ca2+ release was measured over 300 s with cell-permeant Rhod-2 dye; MFI compared between replicates (left; n = 3).

Surface expression of CD19 following deletion of IFITM3 in Jeko1 MCL cells, MFIs for CD19 indicated (right; n = 3). e, Jeko1 MCL cells were electroporated with non-targeting RNP (Cas9-gRNA ribonucleoproteins, gNT) or IFITM3-targeting RNP complex (gIFITM3). Following electroporation, MCL cells were treated with vehicle (DMSO) or 25 nmol l−1 of dasatinib for 3 h. Cells were stimulated with 10 μg ml−1 of anti-human IgM F(ab′)2 for the indicated time points and subjected to co-immunoprecipitation with an anti-CD19 antibody. Immunoblots were performed to measure levels of CD19 tyrosine phosphorylation and binding of LYN to CD19. Levels of IFITM3, SRC-pY416 and LYN were assessed in whole-cell lysates (10% input) with β-actin as loading control. (n = 3; gel source data in Supplementary Fig. 1).

f–h, Relative fractions (left) and absolute cell counts (right) of total B1 (f) and B1a (g) cells in the peritoneal cavity and marginal-zone B cells (h) in spleen of Ifitm3−/− and Ifitm3+/+ littermates (n = 5) are shown (means ± s.d.; two-tailed t-test).
Extended Data Fig. 3 | \textit{Ifitm3}-deficient B-ALL cells exhibit an anergic phenotype and compensatory upregulation of \textit{Ifitm1} and PI3K signalling molecules. \textbf{a}, Numbers of viable \textit{Ifitm3}+/- and \textit{Ifitm3}−/− B-ALL cells were counted by Trypan blue dye exclusion (n = 3; mean ± s.d.; two-tailed \textit{t}-test). \textbf{b}, RNA sequencing was performed for \textit{Ifitm3}+/- and \textit{Ifitm3}−/− BCR-ABL1 and NRAS G12D B-ALL cells. Relative rlog-normalized gene expression values for all strongly differentially expressed genes (\(P < 1 \times 10^{-5}\) and log2-transformed fold change >1; Wald test with Benjamini–Hochberg correction) in both BCR-ABL1 and NRAS G12D conditions plotted as a heat map with row scaling. B-cell-signalling-related genes are labelled in red, anergy-related genes are labelled in blue and PI3K-signalling-related genes are labelled in grey. \textbf{c}, Gene set enrichment analysis for genes ranked by ratio of \textit{Ifitm3}−/− to \textit{Ifitm3}+/- as log2-transformed fold change; red lines indicate running enrichment score (right axis), grey bars indicate fold change (left axis). Statistical significance was determined by two-tailed Kolmogorov–Smirnov test. \textbf{d}, Patient-derived B-ALL cells (PDX2) were transduced with N-terminally Flag-tagged or C-terminally HA-tagged IFITM3 constructs. Combinations of intracellular and surface staining were performed to examine IFITM3 topology at the cell membrane. \textbf{e}, Patient-derived B-ALL cells (PDX2) were transduced with C-terminal HA-tagged IFITM3 or the IFITM3(Y20E) phosphomimetic. Combinations of intracellular and surface staining, with or without SRC-kinase inhibition by dasatinib, were performed to examine IFITM3 topology at the cell membrane and its regulation by SRC kinases. \textbf{d}, \textbf{e}, Representative plots from three independent experiments. \textbf{f}, A scenario of the topology of IFITM3 regulated by SRC (LYN) or oncogenic tyrosine kinases (BCR–ABL1) at the plasma membrane is shown. Phosphorylation of Y20 hinders the recognition of Y20EM23 endocytosis motif by the AP-2 complex, thereby antagonizing endocytosis and endosomal trafficking of IFITM3.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | IFITM3 amplifies PI3K signalling downstream of BCR and integrin receptors.

a, Volcano plot of differentially phosphorylated proteins in patient-derived B-ALL (PDX2) cells transduced with IFITM3(Y20E) compared to empty vector (EV) control (n = 3; Wald test with Benjamini–Hochberg correction).
b, F(ab) fragments of the anti-HA antibody or isotype control were purified and their identity confirmed by western blot (left). Eight million patient-derived B-ALL (PDX2) cells carrying IFITM3–HA, IFITM3(Y20E)–HA or EV control were resuspended in complete medium and treated with either 2.5 μg ml⁻¹ of full antibodies, F(ab) fragments of anti-HA or isotype control for the indicated times. Levels of AKT-pS473, AKT and HA-tagged IFITM3 were assessed by western blots using β-actin as loading control (right). Data from three independent experiments. For gel source data, see Supplementary Fig. 1.
c, Ca²⁺ mobilization in response to TCR engagement using CD3ɛ-specific antibodies was measured upon CRISPR–Cas9-mediated deletion of IFITM3 in T-ALL cells (Jurkat) (left). Ca²⁺ release from cytoplasmic stores was induced by adding 10 μg ml⁻¹ of monoclonal (OKT3) anti-human CD3ɛ at 50 s after acquisition of background fluorescence. Surface expression of CD3 was measured following deletion of IFITM3 in Jurkat cells (right). MFI values for individual measurement were compared by two-tailed t-test. d, Surface proteins on Ifitm3⁺/+ and Ifitm3⁻/⁻ B-ALL cells were labelled with biotin and enriched with streptavidin affinity pull-down followed by on-bead trypsin digestion, mass spectrometry and quantified with label-free quantification. Differentially expressed cell surface proteins on Ifitm3⁺/+ and Ifitm3⁻/⁻ B-ALL cells are shown with the mean difference of label-free quantification plotted against the P value (Welch’s t-test). All experiments were performed in biological triplicates.
e–g, Validation of differential expression of surface receptors between Ifitm3⁺/+, Ifitm3⁻/⁻ and Ifitm3Y20E-overexpressing B-ALL cells. Flow cytometry analyses show surface expression of BCR signalling components (e), integrins and adhesion receptors (f) and other surface receptors (g) in Ifitm3⁺/+, Ifitm3⁻/⁻ and B-ALL cells expressing IFITM3(Y20E) (n = 3).
Extended Data Fig. 5 | Inducible membrane translocation of CD19 does not rescue defective SRC and PI3K signalling in Ifitm3-deficient B cells.

a, Surface expression of CD19 was assessed by flow cytometry following forced expression of CD19 for >1 week in Ifitm3+/- and Ifitm3-/- B-ALL cells.

b, Western blot analyses of AKT-pS473, AKT, MYC and BCL2 upon forced expression of CD19 for >1 week in mouse Ifitm3+/- and Ifitm3-/- B-ALL cells.

c, d, Colony-forming ability (c) and cell cycle progression (d) of Ifitm3+/- and Ifitm3-/- B-ALL cells upon forced expression of CD19 for >1 week was examined.

c, Colony numbers for individual measurement were compared by two-tailed t-test.

d, Numbers indicate percentage of cells in S phase.

e, Numbers of viable Ifitm3+/- and Ifitm3-/- B-ALL cells following forced expression of CD19 were counted using the Trypan blue dye exclusion method (left). Ifitm3-/- B-ALL cells were transduced with GFP-tagged constructs for expression of CD19 with an intact (Y531) or mutant (Y531F) PI3K-activation motif in its cytoplasmic tail. Relative changes of GFP+ cells (transduced with CD19 or CD19(Y531F)) were plotted over time (means ± s.d.).

f–h, Data from three independent experiments.

f, Mouse Cd19-/- B-ALL clones were generated by electroporation of mouse B-ALL cells with CD19-targeting RNP (Cas9-gRNA ribonucleoproteins, gCd19 ALL) and single-cell clones with biallelic deletion are selected. Cd19-/- B-ALL cells were transduced with CD19-ERT2, a fusion of the ER-ligand binding domain to the C terminus of CD19, or ERT2 as empty vector control. Reconstitution of Cd19-/- B-ALL cells with CD19-ERT2 resulted in stable expression of the fusion proteins that were retained in complex with cytoplasmic heatshock proteins. Addition of 4-OHT released CD19-ERT2 from its cytoplasmic heatshock chaperone and enable cell surface expression within 30 min of 4-OHT addition.

g, To test the effect of inducible CD19 membrane translocation in Ifitm3-/- B-ALL cells, Ifitm3+/- and Ifitm3-/- B-ALL cells were transduced with CD19-ERT2 or ERT2 empty vector control.

h, Ifitm3-/- B-ALL cells were transduced with CD19-ERT2 or ERT2 empty vector control. Cells were treated for 0, 1 and 3 h with 4-OHT for surface-translocation of CD19. Cell lysates from these populations were analysed by western blot for CD19-pY531, CD19-pY531, Src-pY116, Lyn, β-actin, Akt, Myc, Bcl2 and β-Actin. While CD19-ERT2 reconstitutes CD19 protein levels in Ifitm3-/- B-ALL cells and restores rapid translocation to the cell surface, this change alone was not sufficient to induce proper phosphorylation of CD19, SRC kinases and PI3K signalling via AKT.

f–h, Data from three independent experiments.

h, For gel source data, see Supplementary Fig. 1.
Extended Data Fig. 6 | IFITM3 links components of the BCR and integrin receptor pathways to PI3K signalling.

a, Schematic of HA-tagged-IFITM3(Y20E)–BirA fusion proteins used for TurboID interactome analyses. BirA (biotin ligase) was fused to N-terminal IFITM3 carrying the phosphomimetic Y20E mutation for membrane localization.

b–**d**, HA–IFITM3(Y20E)–BirA or HA–BirA controls were expressed in PDX2 B-ALL (**b**) or Jeko1 MCL cells (**c**, **d**). Cells were incubated with exogenous biotin for 10 min upon IFITM3 (anti-HA) or BCR (anti-IgM) engagement. IFITM3(Y20E) interactome analyses identified interacting proteins by mass spectrometry, plotted based on significance and log2-transformed fold enrichment over EV control. Essential interactors as BCR component (red), integrin (blue) and PI3K signalling (grey) are highlighted. Data from three independent biological replicates.

e, PLAs were performed with Jeko1 MCL cells upon engagement of BCR. Jeko1 MCL cells were stimulated by BCR engagement for 0, 3 and 30 min, then fixed, permeabilized and assessed for the proximity of CD79B to IFITM3. Representative microscopic images with PLA signal (red dot) and nuclei stained with DAPI as blue are shown. LAMP1 was used as a marker for endosomes to distinguish plasma-membrane-bound from endosomal localization of CD79B:IFITM3 complexes. Scale bars, 5 mm. Data from three independent replicates.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Ifitm3 functions as a central effector of B cell adhesion. a, Homotypic aggregation was studied in Ifitm3−/− B-ALL cells that were reconstituted with C-terminal HA-tagged IFITM3, IFITM3(Y20E) or empty vector (EV) and incubated with anti-CD19, anti-HA antibodies or isotype control for 24 h. Data from three independent experiments. b, Ifitm3+/+ or Ifitm3−/− B-ALL cells were transduced with GFP-tagged Ik6 or GFP alone. Ik6 levels in flow-sorted GFP+ cells assessed by western blot analysis using β-actin as loading control (right). Ten thousand Ifitm3+/+ or Ifitm3−/− B-ALL cells carrying Ik6 or EV were plated for colony forming assays. Colonies were imaged and counted after 7 days. Representative images are shown with colony numbers. Data from three independent experiments and assessed by two-tailed t-test (means ± s.d.). For gel source data, see Supplementary Fig. 1. c, One hundred thousand Ifitm3+/+ or Ifitm3−/− B-ALL cells carrying Ik6 or EV were cultured on OP9 stroma cells. Ratios of adherent cells to nonadherent cells were calculated. Data from three independent biological experiments (right) were analysed and assessed by two-tailed t-test (means ± s.d.). d, Representative images of adherent B-ALL cells on OP9 stroma are shown. Round and light-refracting cells are adherent B-ALL cells attached to stroma cells. Dark and round cells are adherent B-ALL cells incorporated into stromal layer. Data from three independent biological replicates. e, Surface expression levels of integrins on adherent B-ALL cells were measured by flow cytometry. MFI values are indicated for individual measurements. Data from three independent biological replicates.
Extended Data Fig. 8 | IFITM3 functions as a PIP3 scaffold and mediated cell-membrane stiffening upon BCR engagement.

a. SNACS was measured using a previously established microfluidic method as a metric for cell surface stiffness. Jeko1 mantle cell lymphoma cells were flown through a standing acoustic wave generated inside a vibrating suspended microchannel resonator. The cantilever vibration frequency was monitored, and its shift was used to quantify the acoustic scattering from the cells as well as the buoyant mass of the cells. The data displayed was obtained using a 350-μm-long cantilever with 15 × 20-μm-sized channel inside of the cantilever and an approximately 200-ms transit time through the cantilever. All the regulators, valves and data acquisition were controlled by custom software coded in LabVIEW 2017 (National Instruments). A parallel volume measurement using Coulter Counter was carried out to quantify average cell volume, which was used together with the single-cell buoyant mass measurements to calculate SNACS for each cell. The data were analyzed using custom software coded in LabVIEW 2017 (National Instruments). A parallel volume measurement using Coulter Counter was carried out to quantify average cell volume, which was used together with the single-cell buoyant mass measurements to calculate SNACS for each cell. Fixation with paraformaldehyde (PFA) was used as a positive control. Representative plots from three independent experiments are shown (median levels in red dotted line). Statistical significance was determined by two-tailed t-test. Numbers indicated cells studied for SNACS measurement.

b. Ifitm3^{+/+} and Ifitm3^{−/−} B-ALL cells were incubated with 30 μM of the PIP3 carrier histone H1 or PIP3–histone H1 complex for 30 min. Levels of CD19-pY⁵³¹, CD19, SRC-pY⁴¹⁶, Lyn, AKT-pS⁴⁷³, AKT and MYC were measured by western blot using β-actin as loading control. Data from three independent replicates. For gel source data, see Supplementary Fig. 1.

c. Colony-formation assays were performed for Ifitm3^{+/+} and Ifitm3^{−/−} B-ALL cells that were treated with 30 μM of PIP3–histone H1 or the shuttle protein histone H1 (H1) alone. Photomicrographs and colony numbers per 10,000 plated cells are shown. Data are presented as means ± standard derivation (s.d.) from three independent experiments. Statistical significance was determined by two-tailed t-test.

d. Flow cytometry analyses of surface expression of CD19, CD44, CD25 and CD44 on Ifitm3^{+/+} and Ifitm3^{−/−} B-ALL cells treated with 30 μM of PIP3–histone H1 or the shuttle protein histone H1 (H1) alone for 72 h. Data from three independent replicates.
Extended Data Fig. 9 | Modelling of binding of IFITM3 to PIP2 and PIP3.

a–**c**, The hierarchical scheme of molecular dynamics simulations to delineate the structural and dynamical basis of PIP2 and PIP3 binding to IFITM3 (yellow).

a, Coarse grained simulations of IFITM3 in composite cell membrane. The side views of the lipid bilayer are shown. The lipid raft markers are shown in colour with GM1 (pink), cholesterol (green) and sphingomyelin (blue). The grey surface represents all the other lipids.

b, The simulation cell extracted from the coarse grained simulation as the starting structure for all-atom molecular dynamics simulations. The IFITM3 protein is shown in yellow and the PIP2 and PIP3 are shown in green and red stick representations.

c, Close up view of one of the predicted binding poses of PIP2 and PIP3 in the most populated conformation of IFITM3. The dashed lines shown are the PIP2 or PIP3 contacts with the basic residues in IFITM3 (top). The amino acid sequence of IFITM3 in the stretch of residues between TM1 and TM2 from 57 to 128 modelled in this work is shown. The CIL region is boxed and basic amino acids are highlighted with blue. The average interaction energy of PIP2 or PIP3 with the two basic batches measured in all-atom molecular dynamics simulations is indicated (Supplementary Table 6).

d, **e**, The average interaction energy of PIP2 (green) or PIP3 (red) with IFITM3 (residues 57–128) was measured in all-atom molecular dynamics simulations. The one-residue contact indicates the conformation of PIP2 or PIP3 binding with only one basic residue in the basic amino patch KSRDRK of IFITM3. The two-residue contact refers to the binding conformation of PIP2 or PIP3 that show contacts with two basic residues. Representative plots from at least four independent experiments are shown (mean ± s.d.). In **d**, P values were determined by two-tailed t-test. Populations showing one- or two-residue contacts of PIP2 (green) or PIP3 (red) to IFITM3 were quantitated from all-atom molecular dynamics simulations. The population density was assessed by the normalization of number of events with the total number of frames. Representative plots from three independent experiments are shown (mean ± s.d.). In **e**, statistical significance was determined by two-tailed t-test.
Extended Data Fig. 10 | IFITM3-mediated PI3K signalling downstream of BCR and integrin receptors depends on K83–K104 but not on R85, R87 and K88 residues. a–c. Levels of differentially phosphorylated proteins in patient-derived B-ALL (PDX2) cells transduced with IFITM3(Y20E), IFITM3(Y20E/K83A), IFITM3(Y20E/R85A) or empty vector (EV) control were identified by mass spectrometry (n = 3). Relative abundance values are plotted for all sites ranked by fold change as indicated; phosphosites of interest are highlighted. b. FSEA ranked by log2-transformed fold change are shown for phosphosites in PI3K signalling (grey), BCR signalling (red) and integrin and adhesion receptor elements (blue). Statistical significance was determined by two-tailed Kolmogorov–Smirnov test. d. Cumulative distribution frequencies for log2-transformed fold changes in phosphosite abundance between IFITM3-transduced and EV conditions were calculated for all sites and globally increased in IFITM3(Y20E) over EV. The analysis was repeated for the K83A (red) and R85A (green) mutants of IFITM3. The light grey line indicates background variance observed between EV replicates. Shifts that were caused by the K83A and R85A mutants are indicated by arrows. Overall changes in distribution (shifts) between IFITM3(Y20E) and IFITM3(Y20E/K83A) and IFITM3(Y20E/R85A) mutants were measured by two-tailed Kolmogorov–Smirnov test. e. Schematic of BirA (engineered biotin ligase) was fused at N-terminal ends of HA-tagged IFITM3(Y20E) or its K83A mutant and expressed in PDX2 B-ALL or Jeko1 MCL cells. e–g. Interactomes of IFITM3(Y20E) and its K83A mutant were compared in PDX2 B-ALL cells upon IFITM3 engagement (anti-HA) (e) or in Jeko1 MCL cells upon IFITM3 (anti-HA) (f) or BCR (anti-IgM) (g) engagement. Phosphosites of interest, including BCR signalling, PI3K signalling and integrins and adhesion receptor elements are highlighted.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a	Confirmed
✓ | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
✓ | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
✓ | The statistical test(s) used AND whether they are one- or two-sided
✓ | Only common tests should be described solely by name; describe more complex techniques in the Methods section.
✓ | A description of all covariates tested
✓ | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
✓ | A full description of the statistical parameters including central tendency (e.g. mean), dispersion or variability (e.g. standard deviation) and associated estimates of uncertainty (e.g. confidence intervals)
✓ | For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values wherever suitable.
✓ | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
✓ | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
✓ | Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

For Proximity ligation assay, images were acquired by CellSens imaging software (Olympus) with Zeiss Axio Observer 7 microscope. For FACS, BD FACSDIVA™ SOFTWARE was used. For Western blot, images were collected by film exposure, UVP BioSpectrum 810 Imaging System or ChemiDoc MP Imaging System (BioRad). For colony forming assay, images were acquired GelCount analyzer and packages Q-Capture pro 7 connected with Olympus IXP1 microscope. To determine the number of viable cells, the trypan blue exclusion method was applied, using the Countess II FL Automated Cell Counter. For in vivo bioimaging, IVS 100 bioimunoscience/optical imaging system was used. The IFITM3 protein structure was modeled by coarse-grained [CG] molecular dynamics simulation method in GROMACS [http://www.gromacs.org] with Martini force field. The three snapshots extracted from the CG simulations were converted to an all-atom system using Martin tools. The all-atom simulations were performed using GROMACS package and CHARMM force field, with TIP3 water model. To set up the mixed lipid bilayer with water in the upper and inner regions, CHARMM-GUI was used. For immunohistochemistry of immunized or non-immunized spleen sections, images were acquired on a ZEISS LSC 880 confocal microscope and analyzed on ZEN 2.3 (Zeiss) software.

For cell membrane stiffness, the Single-cell size-normalized acoustic scattering (SNACS) was measured by custom software coded in LabVIEW 2017 (National Instruments). A parallel volume was measured with Coulter Counter (Beckman Coulter) to quantify average cell volume.

Data analysis

For analysis of Proximity ligation assay, ImageJ, BlobFinder, Excel and GraphPad Prism 7 were used. For FACS analysis, Flowjo, SigmaPlot and GraphPad Prism 7 was used. For colony forming assay, number of colonies were counted by GelCount analyzer and analyzed by SigmaPlot. For in vivo leukemia burden analysis, GraphPad Prism 7 was used. For gene expression analysis, Excel, SigmaPlot and GraphPad Prism 7 was used. For log-rank test to compare survival differences between patient groups, R package “survival” Version 2.35-8 and Cox proportional hazards regression model in R package for the multivariate analysis [https://www.r-project.org/] were used. Integrative Genomics Viewer (IGV) was used to visualize ChIP-seq tracks.

For RNA-seq analysis raw sequence reads were mapped to the mouse genome (mm10) using STAR v2.5.39, and the frequency of genes was counted using featureCounts v1.5.110. The raw counts were then normalized using the trimmed mean of M values (TMM) method and compared using Bioconductor package “edgeR”. Reads per kilo base per million (RPKM) mapped reads were also calculated from the...
raw counts. For differential expression analysis, transcripts were quantified using Salmon v1.1.0 against genocode GI:00438 VM24 transcript annotations; normalisation and statistical analysis was done in R using DESeq2 v1.28.1. Differentially expressed genes were identified if RPKM ≥ 1 in at least one sample, fold change ≥ 2, and P ≤ 0.05. RPKM data were later used in the Gene set enrichment analysis. GSEA analysis was performed using the DOSE package in R.2. Genes were ranked by log2 fold-change, gene sets were obtained from MSigDB or from internal data as indicated.

For Bio-ID data analysis, proteins were identified from the MS raw files using Mascot search engine (Matrix science). MS/MS spectra were searched against the SwissProt human database. All searches included carbamidomethyl cysteine as a fixed modification and oxidized Met, deamidated Asn and Gin, acetylated N-term as variable modifications. Three missed tryptic cleavages were allowed. The MS1 precursor mass tolerance was set to 10 ppm and the MS2 tolerance was set to 0.6 Da. A 1% false discovery rate cutoff was applied at the peptide level. Only proteins with a minimum of two peptides above the cutoff were considered for further study. For comparison to empty vector control, background peptide abundances for missing values were imputed from a Gaussian distribution centered around the minimum observed abundance using the MinProb method from Mstimbase package in R.

For proteomics, raw spectral data was analyzed using MaxQuant v1.5.1.2 to identify and quantify peptide abundance and searched against the human SwissProt annotated human proteome from Uniprot (downloaded with 20,303 entries). The “match-between-runs” option was selected to increase peptide identifications while theн “fast LFQ” option was selected to calculate label-free quantification values [LFQ] of identified proteins. All other settings were left to the default MaxQuant values. The MaxQuant output data was analyzed using Perseus and the R program (version 3.4.3). Proteins annotated as reverse, “only identified by site”, and “potential contaminant” were filtered out as well as proteins that were quantified in less than 2 out of 3 biological replicates in at least one experimental group. Missing values were imputed based on the normal distribution of the dataset as implemented by Perseus. Volcano plots were generated using output from a two-sample t-test comparing the log2 transformed LFQ protein abundance values from different cell lines with a false discovery rate (FDR) set to 0.01.

For phospho-proteomics analysis, 15mg total protein for each sample was digested with trypsin, and 500ug total protein for each sample was digested with LysC/trypsin for iMAT analysis. Samples were purified over C18 columns and dried in a lyophilizer. Dried samples were resuspended and enriched with Fe-MAC beads, purified over C18 STAGE tips (RappiB replicates). Replicate injections of each sample were run non-sequentially on the instrument. Peptides were eluted using 150-minute [IMAC] linear gradient of acetonitrile in 0.125% formic acid delivered at 280 nl/min. Tandem mass spectra were collected in a data-dependent manner with a Thermo Orbitrap Fusion Lumos™ Tribrid™ mass spectrometer using a top-20 MS/MS method, a dynamic repeat count of one, and a repeat duration of 30 sec. Real time recalibration of mass error was performed using lock mass [Olsen] with a single charged polylysine ion m/z = 371.101237. MS/MS spectra were evaluated using SEQUEST and the Core platform from Harvard University (Eng, Huttlin, Villen). Files were searched against the SwissProt Homo sapiens FASTA database. A mass accuracy of ±0.5 ppm was used for precursor ions and 0.02 Da for product ions. Enzyme specificity was limited to trypsin, with at least one tryptic [N- or R-containing] terminus required per peptide and up to four mis-cleavages allowed. Cysteine carbamidomethylation was specified as a static modification, oxidation of methionine and phosphorylation on serine, threonine, and tyrosine residues were allowed as variable modifications. Reverse decay databases were included for all searches to estimate false discovery rates, and filtered using a 1% FDR in the Linear Discriminant module of Core. Peptides were also manually filtered using a +/- 5ppm mass error range and presence of a phosphorylated residue. All quantitative results were generated using Skyline (Maclean) to extract the integrated peak area of the corresponding peptide assignments. Accuracy of quantitative data was ensured by manual review in Skyline or in the ion chromatogram files.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Patient-outcome data for B-ALL were obtained from the National Cancer Institute TARGET DATA Matrix of the Children’s Oncology Group [COG] Clinical Trial P9906 [GSE11877; Harvey et al., 2010; Kang et al., 2010]. Eastern Cooperative Oncology Group [ECOG] Clinical Trial E2993 [GSE5314; Junc et al., 2007] and St. Jude Children’s Research Hospital [https://www.stjuderesearch.org/site/data/ALL3; Ross et al., 2003]. Patient-outcome data for mantle cell lymphoma were obtained from https://fimp.nih.gov/MCL/32. Patient-outcome data for AML were obtained from TCGA Acute Myeloid Leukemia Project (http://www.cbioportal.org/study?summary?id=aml_tga_publicclinicalCancer Genome Atlas Research Network, 2013). Proteomics data was deposited to the ProteomeXchange Consortium via the PRIDE partner repository with following accession numbers: cell surface proteome PXD014691, phosphoproteome PXD020696 and FTITM3 interactomes PXD002697. IFITM3 mRNA levels across human normal and malignant B-lymphoid samples were obtained from http://Amazonia transcriptome.eu/. All other data are available from the corresponding author upon reasonable request. Genome binding/occupancy profiling from WT and IKDN stromal adherent pre-B cells were obtained from GSE85897. Immunohistochemistry images for FTITM3 levels in normal or malignant B cells were obtained from The Human Protein Atlas https://www.proteinatlas.nl/. ChIP-seq data of the genomic wide mapping of IKZF1 binding (ChIP-Seq) in human patient-derived B-ALL xenograft cells were obtained from GSE85825. ChIP-seq data of the genetic inactivation of IKZF1 target genes (ChIP-Peak) and tumor suppressor function in BCR-ABL1 pre-B ALL were obtained from GSE90566. RNA sequencing [RNA-Seq] data with IFITM3+/A and IFITM3-/- BCR-ABL1 or NRAS12D B-ALL cells are available at GSE155305. RNA sequencing [RNA-Seq] data with Plen/f/fi pre-B cells carrying 4-D1H inducible Cre-ER72 or ERT2 are available at GSE155618. All other data needed to evaluate the conclusions in the paper are available within the main text or supplementary materials.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [] Behavioural & social sciences [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	For in vitro experiments, phenotypic analyses including Western blot and FACS were performed in at least three independent experiments, using biological replicates. No statistical methods were used to predetermine sample size for in vitro experiments. Sample sizes were selected empirically from previous experimental experience, and/or from sizes generally employed in the field. For in vivo transplantation experiments, the minimal number of mice in each group was calculated through use of the ‘power’ function in the R/Hmisc package. The precise number of sample used in indicated in manuscript. The precise number of sample used in indicated in manuscript.
Data exclusions	No data were excluded from the analyses. For all FACS analysis, only single cells were included in further analysis. Duplets determined by FSC-H/FCS-A as well as SSC-H/SSA-A were excluded. This was done to avoid false positive events due to doublets (Kudernatsch RF et al. Cytometry A 2013, PMID 2328028).
Replication	The experimental findings were reliably reproduced using biological replicates and multiple cells indicated in manuscript.
Randomization	Samples and animals were randomly divided into experimental groups.
Blinding	Mice were randomly allocated to groups by investigators who did not participate in any subsequent analysis. The performers of the mouse experiments (injections, drug treatments) were blinded to the randomization process.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	n/a	Involved in the study
[x] Antibodies		
[x] Eukaryotic cell lines		
[] Palaeontology		
[] Animals and other organisms		
[] Human research participants		
[x] Clinical data		

Methods	Involved in the study
	[x] ChIP-seq
	[] Flow cytometry
	[x] MRI-based neuroimaging

Antibodies

Antibodies used

- Antibodies for Western blot
 - Polyclonal anti-STAT1-pY01 Cell Signaling Technology Cat# 9172 [1:1000]
 - Polyclonal anti-STAT1 Cell Signaling Technology Cat# 5605 [1:1000]
 - Polyclonal anti-STAT5-pY894 Cell Signaling Technology Cat# 9351 [1:1000]
 - Polyclonal anti-STAT5 Cell Signaling Technology Cat# 9363 [1:1000]
 - Polyclonal anti-IFITM3 Cell Signaling Technology Cat# 9037 [1:1000]
 - Polyclonal anti-AKT-pKB73 Cell Signaling Technology Cat# 9271 [1:750]
 - Polyclonal anti-AKT Cell Signaling Technology Cat# 9272 [1:1000]
 - Polyclonal anti-ERK-pT202/Y204 Cell Signaling Technology Cat# 4370 [1:1000]
 - Polyclonal anti-ERK Cell Signaling Technology Cat# 9102 [1:1000]
 - Polyclonal [DBBG] anti-IFITM3 Cell Signaling Technology Cat# 59212 [1:1000]
 - Polyclonal [DB4C12] anti-c-Myc Cell Signaling Technology Cat# 5605 [1:1000]
 - Polyclonal anti-c-Abi-pY412 Cell Signaling Technology Cat# 2865 [1:1000]
 - Polyclonal anti-c-Abi Santa Cruz Biotechnology Cat# sc-131 [1:1000]
 - Polyclonal anti-Src-pY416 Cell Signaling Technology Cat# 6943 [1:1000]
 - Polyclonal anti-Lyn Cell Signaling Technology Cat# 2796 [1:1000]
Polyclonal anti-Syk-pY352 Cell Signaling Technology Cat# 2717 [1:1000]
Polyclonal anti-Syk Cell Signaling Technology Cat# 2712 [1:1000]
Polyclonal [C2] anti-Bcl-2 Santa Cruz Biotechnology Cat# sc-7382 [1:1000]
Polyclonal p-21 (C-19) Santa Cruz Biotechnology Cat# sc-397 [1:1000]
Polyclonal anti-CD19-pY531 Cell Signaling Technology Cat# 5751 [1:1000]
Monoclonal [D4V4B] anti-CD19 Cell Signaling Technology Cat# 90176 [1:1000]
Monoclonal [1C12] anti-p53 Cell Signaling Technology Cat# 2524 [1:1000]
Monoclonal p-19/A Freud ABCAM Cat# ab10090 [1:1000]
Monoclonal [4G10] anti-Phosphotyrosine EMD Millipore Cat# 05-321 [1:1000]
Monoclonal anti-HA tag ABCAM Cat# ab9110 [1:1000]
Monoclonal [D69Y] anti-KF1 Cell Signaling Technology Cat# 14859 [1:1000]
Polyclonal anti-p-PI3KCD p110G ABCAM Cat# ab109006 [1:1000]
Monoclonal [M2] anti-FLAG Sigma-Aldrich Cat# F1804 [1:1000]
Polyclonal anti-eIF4E Santa Cruz Biotechnology Cat# sc-13963 [1:1000]
Polyclonal anti-LYN-pY937 Cell Signaling Technology Cat# 70926 [1:1000]
Monoclonal [10BD2] anti-p70 S6K-pT389 Cell Signaling Technology Cat# 9234 [1:1000]
Polyclonal anti-p70 S6K-pT421/S424 Cell Signaling Technology Cat# 9204 [1:1000]
Monoclonal [G9D7] anti-p70 S6 Kinase Cell Signaling Technology Cat# 2708 [1:1000]
Monoclonal [D3D3A] anti-RICTOR Cell Signaling Technology Cat# 3806 [1:1000]
Monoclonal [S3A2] anti-RICTOR Cell Signaling Technology Cat# 2114 [1:1000]
Polyclonal anti-CXCR4-pS339 Cell Signaling Technology Cat# 59028 [1:1000]
Polyclonal anti-CXCR4 Novus Biologicals Cat# 74396 [1:1000]
Polyclonal anti-C-FAK-pY397 Cell Signaling Technology Cat# 3283 [1:1000]
Polyclonal anti-C-FAK-pY575/p77 Cell Signaling Technology Cat# 3281 [1:1000]
Monoclonal [D2R2I] anti-C-FAK Cell Signaling Technology Cat# 13009 [1:1000]
Polyclonal anti-PAK1-pS199/204 Cell Signaling Technology Cat# 2605 [1:1000]
Polyclonal anti-PAK1 Cell Signaling Technology Cat# 2602 [1:1000]
Polyclonal anti-TGB1-pY783 ABCAM Cat# ab22337 [1:1000]
Polyclonal anti-TGB1-pY788/789 Thermo Fisher Scientific Cat# 44-B72G [1:1000]
Polyclonal anti-TGB1 Cell Signaling Technology Cat# 4706 [1:1000]
Monoclonal [CA] anti-β-actin Santa Cruz Biotechnology Cat# sc-47778 [1:5000]

Antibodies for FACS
Monoclonal [Hb19] anti-human CD19 Biologic Cat# 302254 [1:50]
Monoclonal [M2] anti-FLAG Columbia Biosciences Cat# M2 [1:200]
Polyclonal anti-HA tag Columbia Biosciences Cat# 05-1718 [1:200]
Monoclonal [OKT4] anti-human CD4 Biologic Cat# 317418 [1:50]
Monoclonal [UCHT1] anti-human CD3 Biologic Cat# 555335 [1:50]
Monoclonal [G20-127] anti-human IgM BD Biosciences Cat# 561285 [1:50]
Monoclonal [S6S] anti-mouse CD19 Biologic Cat# 115508 [1:200]
Monoclonal [RA3-6B2] anti-B220 [CD45R] Biologic Cat# 103224 [1:200]
Monoclonal [HM79-12] anti-CD79b Biologic Cat# 132804 [1:200]
Monoclonal [RB6-8C5] anti-mouse Gr-1 [Ly-6GC] Biologic Cat# 108422 [1:200]
Monoclonal [PK136] anti-mouse NK-1.1 Biologic Cat# 108730 [1:200]
Monoclonal [2B8] anti-CD117 [c-kit] Biologic Cat# 105908 [1:200]
Monoclonal [D7] anti-Sca-1 [Ly-6A/E] Biologic Cat# 108102 [1:200]
Monoclonal [S11] anti-mouse CD43 Biologic Cat# 143208 [1:200]
Monoclonal [6C3] anti-mouse B220 [B-220] Biologic Cat# 108308 [1:200]
Monoclonal [M1/69] anti-mouse CD24 Biologic Cat# 101822 [1:200]
Monoclonal [56-60-2] anti-mouse IgM BD Biosciences Cat# 553408 [1:200]
Monoclonal [11-26C.2a] anti-mouse IgD Biologic Cat# 405716 [1:200]
Monoclonal [B3B4] anti-mouse CD23 BD Biosciences Cat# 561773 [1:200]
Monoclonal [7E9] anti-mouse CD21/CD85 Biologic Cat# 123412 [1:200]
Monoclonal [M1/70] anti-mouse Mac-1 [CD11b] Biologic Cat# 101206 [1:200]
Monoclonal [53-7.3] anti-mouse CD5 Biologic Cat# 100512 [1:200]
Monoclonal [1A2] anti-mouse CD3 Biologic Cat# 100204 [1:200]
Monoclonal [RM4-5] anti-mouse CD4 Biologics Cat# 553051 [1:200]
Monoclonal [io2] anti-mouse CD95 BD Biosciences Cat# 562499 [1:200]
Monoclonal [GL7] anti-mouse GL7 Affymetrix eBioscence Cat# 13-5902-82 [1:200]
Monoclonal [L25F12] anti-mouse CXCR4 Biologic Cat# 146508 [1:200]
Monoclonal [GL-1] anti-mouse CD8 Biologic Cat# 105016 [1:200]
Monoclonal [A7R34] anti-mouse CD127 (IL-7R) eBioscence Cat# 135012 [1:200]
Monoclonal [DX-7] anti-mouse Thy1 (CD90) BD Biosciences Cat# 551401 [1:200]
Monoclonal [RM2-5] anti-mouse CD2 Biologic Cat# 100108 [1:200]
Monoclonal [HM48-1] anti-mouse CD48 Biogenec Cat# 103415 [1:200]
Monoclonal [IM7] anti-mouse CD44 Biogenec Cat# 103012 [1:200]
Monoclonal [MEC13.3] anti-mouse Pecam1 Biogenec Cat# 102508 [1:200]
Monoclonal [TY/23] anti-mouse CD73 (5NT2) BD Biosciences Cat# 550741 [1:200]
Monoclonal [37.51] anti-mouse CD28 BD Biosciences Cat# 553297 [1:200]
Monoclonal [4G2] anti-mouse CD319 Biogenec Cat# 152004 [1:200]
Monoclonal [OX-97] anti-mouse CD22 Biogenec Cat# 126112 [1:200]
Polyclonal anti-GLUT3 Alomone labs Cat# AGT-023 [1:200]
Monoclonal [93] anti-mouse CD16/32 Biogenec Cat# 101314 [1:200]
Monoclonal [2010] anti-CP2A Novus Biologicals Cat#59722APC [1:200]
Monoclonal [SA15-21] anti-mouse TLR4 (CD284) Biogenec Cat# 145404 [1:200]
Polyclonal anti-KV1.3 (KCNA3) Alomone labs Cat# APC-101 [1:200]
Polyclonal anti-insulin R/CD220 R&D Systems Cat# FAB154AA [1:200]
Monoclonal [P84] anti-mouse CD172a (SIRPa) Biogenec Cat# 144014 [1:200]
Polyclonal anti-ABC1 Invitrogen Cat# PA5-72939 [1:200]
Monoclonal [EPRI13130] anti-TEM4/173 ABCAM Cat# ab208874 [1:200]
Polyclonal anti-ORP8 (OSBP8) Biortby Cat# orb946769 [1:200]
Polyclonal anti-OSBP5 Biortby Cat# orb189989 [1:200]
Polyclonal anti-squalene epoxidase Biortby Cat# orb7410 [1:200]
Monoclonal [22H9] anti-mouse TSLPR (TSLP-R) Biogenec Cat# 151806 [1:200]
Monoclonal [MAb-CC1] anti-mouse Cecam1 [CD66a] Biogenec Cat# 134524 [1:200]
Monoclonal [AA4.1] anti-mouse CD93 Biogenec Cat# 136504 [1:200]
Monoclonal [LZ56F12] anti-mouse CD184 [CXCR4] Biogenec Cat# 146508 [1:200]
Monoclonal [A7R34] anti-mouse CD127 [IL-7Rα] Biogenec Cat# 135012 [1:200]
Monoclonal [PC61] anti-CD25 Biogenec Cat# 102008 [1:200]
Monoclonal [K0.6] anti-mouse CD272a, b and d BD Biosciences Cat# 550866 [1:200]
Monoclonal [mCD44.7] anti-mouse CD84 Biortby Cat# 122806 [1:200]
Brilliant Violet 421™ Streptavidin Biogenec Cat# 405225 [1:200]
Monoclonal [5H10-27], [IFR5S] anti-mouse CD49e [Integrin α5] Biogenec Cat# 103805 [1:200]
Monoclonal [Goh3] anti-mouse CD49f [Integrin α6] Biogenec Cat# 313612 [1:200]
Monoclonal [MEC-14] anti-mouse CD62L [L-selectin] Biogenec Cat# 104408 [1:200]
Monoclonal [MHB1-1] anti-mouse CD29 [Integrin B1] Biogenec Cat# 102216 [1:200]
Monoclonal [37.51] anti-mouse CD28 BD Biosciences Cat# 553297 [1:200]
Monoclonal [SA275A11] anti-mouse CD200 Biogenec Cat# 150410 [1:200]
Anti-Ct-B [Choleratoxin subunit B] antibody Thermo Fisher Scientific Cat# V34405 [1:200]

Antibodies for PLA
Polyclonal anti-human IgM OriGene Cat# AP10433PU-N [1:150]
Polyclonal anti-human LAMP1 R & D Systems Cat# IC7985G [1:150]
Polyclonal [088BG] anti-HF1TM3 Cell Signaling Technology Cat# 59212 [1:150]
Monoclonal [CB3-1] anti-CD79B Thermo Fisher Scientific Cat# 14-0793-82 [1:150]

Antibodies for immunofluorescence, immunization
Biotinylated Peanut Agglutinin (PNA) Vector Laboratories Cat# B-1075 [1:200]
Alexa Fluor® 647 Streptavidin Biogenec Cat# 405237 [1:200]
Polyclonal [RA3-6B2] anti-B220 BD Biosciences Cat# 553089 [1:200]
Monoclonal [17A2] anti-mouse CD3 Biogenec Cat# 100214 [1:200]

Antibody for lipid strip
Polyclonal anti-GST tag Thermo Fisher Scientific Cat# CAB4169 [1:1000]
Monoclonal [DS47] anti-Biotin Cell Signaling Technology Cat# 5597 [1:1000]

Antibodies for cell stimulation.
(For the measurement of intracellular calcium mobilization, 10 μg ml⁻¹ of antibodies were added to 1 x 10⁶ viable cells. For the in vitro crosslinking, 2.5 μg ml⁻¹ of antibodies were added to 1 x 10⁶ viable cells.)
Polyclonal anti-HA tag ABCAM Cat# ab9110
Monoclonal [103] purified NA/LE anti-mouse CD19 BD Biosciences Cat# 553782
Polyclonal anti-mouse IgM Southern Biotech Cat# 1020-01
Polyclonal anti-human FITC3 Bioss Cat# bs-12265R
Polyclonal Fab’2 anti-human μ chain Jackson Immunoresearch Cat# 109-006-129
Monoclonal [OKT3] purified LE/AF anti-human CD3 BD Biosciences Cat# 317304

Validation
All antibodies are commercially available and validated by the manufactures for the applications and species used in this study.
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
- BV-173 P3+ ALL carrying BCR-ABL1, MAP3K14 and IKZF1 lesions from DSMZ.
- JKH1 Mantle cell lymphoma carrying IGH-CCND1, IT, MAP2K1 and TP53 lesions from ATCC.
- Jurkat T-ALL carrying PTEN, LCK and CD4 lesions from ATCC.

Authentication
- Patient-derived cells or cell lines used in this study (see Supplementary tables 7 and 8) and HEK293FT cells were validated by STR DNA profiling analysis.

Mycoplasma contamination
- The cell line tested negative for mycoplasma contamination by PCR analysis.

Commonly misidentified lines
- No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines

Laboratory animals
- All mouse models used in the study are listed in Supplementary Table S9. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) were purchased from Jackson Laboratory. mthm1Maru from Dr. Michael S. Diamond were backcrossed to C57BL/6J background for more than 8 generations. B6.Cg-C2B-Inj1cre/Reth/Jeho (B6-Cre) were purchased from Jackson Laboratory. C129S4-Prkdm1Wjl/SzJ (Ren8/fl) were purchased from Jackson Laboratory. To generate a model for pre-leukemic B cell precursors expressing BCR-ABL1, LSL-Bcr+/BCR-ABL1 mice were crossed with B61-Cre strain (B61-Cre x LSL-Bcr+/BCR-ABL1) for excision of a stop cassette in early B-cells. For in vivo oncogenic priming assay with B61-Cre x LSL-Bcr+/BCR-ABL1 B-cell precursors, 8- to 10-week-old female NSG mice were randomly allocated before injection. For animals bred in house, littersmates of the same sex were randomized to experimental groups. For in vivo leukemia initiation assay 8- to 10-week-old female NSG mice were randomly allocated before injection. All mouse experiments were subject to institutional approval by the Beckman Research Institute of City of Hope Animal Care and Use Committee.

Temperatures of 18-23°C with 40-60% humidity were maintained with 14-hour light/10-hour dark cycle. Following score was considered as end-point. 1. Failure to eat food / drink water for 24 hours. 2. Failure to make normal postural adjustments / display normal behavior. 3. Tumor Burden (1.5 cm x 1.5 cm, tumor ulceration is NOT expected), if an animal either loses 25% of the initial body weight (or reaches 16g of body weight, regardless of the initial weight) or if we observe a weight loss of 15% on two sequential weight measurements, we euthanized the mouse immediately.

Wild animals
- This study did not involve wild animals.

Field-collected samples
- This study did not involve samples collected from the field.

Ethics oversight
- All mouse breeding experiments subject to institutional approval by the Beckman Research Institute Animal Care and Use Committee. Patient samples (Table S9) were obtained in compliance with the internal review board of the Beckman Research Institute of City of Hope.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics
- GSE expression profiles of diagnostic samples from gene expression microarray data from three large cohorts of patients with pre-B ALL were studied from GSE5314 [the Eastern Cooperative Oncology Group (ECOG) Clinical Trial E2993, Juric et al., 2007], GSE11877 [the Children’s Oncology Group (COG) Clinical Trial P9905, Harvey et al., 2010; Kang et al., 2010], St. Jude Research Hospital pediatric ALL (Ross et al., 2003, http://www.stjuderesearch.org/site/data/ALL3/). Patients had MRD tested by flow cytometry with two combinations (CD20/CD10/CD45 or CD9/CD19/CD34/CD45), and were defined as MRD positive or MRD negative at the end of induction therapy (day 29) using a threshold of 0.01% as previously described (Borowitz, M. J. et al., 2008). Then, RNA was purified from 207 posttreatment diagnostic samples with more than 80% blasts (111 bone marrow, 76 peripheral blood) and subjected to microarrays. Log-rank test was used to assess statistical significance. Patient-outcome data with mantle cell lymphoma were studied [https://ilmp.nih.gov/MCL/]. Patient-outcome data for AML were studied from TCGA Acute Myeloid Leukemia Project [http://www.cbioportal.org/study/?id=aml_tgca_pub#clinical; Cancer Genome Atlas Research Network, 2013].
Recruitment

We are not aware of any potential self-selection bias or other biases present.

Ethics oversight

Human leukemia samples were sourced ethically and their use was in compliance with the internal review boards of the Beckman Research Institute of City of Hope.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition

☑ Confirm that both raw and final processed data have been deposited in a public database such as GEO.

☐ Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

May remain private before publication.

Genome wide mapping of IKZF1 binding (ChIP-Seq) in human patient-derived B-ALL xenograft cells [Schijven H. et al., 2017, GS58825]; Genome binding/occupancy profiling of activation Cre in krox140loxP/loxP stromal adherent pre-B cells [Hu Y. et al., 2016, GS186897]

Files in database submission

Genome wide mapping of IKZF1 binding (ChIP-Seq) in human patient-derived B-ALL xenograft cells [Schijven H. et al., 2017, GS58825]; Genome binding/occupancy profiling of activation Cre in krox140loxP/loxP stromal adherent pre-B cells [Hu Y. et al., 2016, GS186897]

Genome browser session

Pre-ENCODE

Genome wide mapping of IKZF1 binding (ChIP-Seq) in human patient-derived B-ALL xenograft cells [Schijven H. et al., 2017, GS58825]; Genome binding/occupancy profiling of activation Cre in krox140loxP/loxP stromal adherent pre-B cells [Hu Y. et al., 2016, GS186897]

Methodology

Replicates

Genome wide mapping of IKZF1 binding (ChIP-Seq) in human patient-derived B-ALL xenograft cells [Schijven H. et al., 2017, GS58825]; Genome binding/occupancy profiling of activation Cre in krox140loxP/loxP stromal adherent pre-B cells [Hu Y. et al., 2016, GS186897]

Sequencing depth

N/A

Antibodies

antibodies for RNAPII, H3K4me3 and IKZF1

Peak calling parameters

The ChIP-seq peaks were called by the MACS peak caller by comparing read density in the ChIP experiment relative to the input chromatin control reads, and are shown as bars under each wiggle track.

Data quality

N/A

Software

Integrative Genomics Viewer (IGV) was used to visualize ChIP-seq tracks downloaded from ENCODE.

Flow Cytometry

Plots

Confirm that:

☑ The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

☑ The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).

☑ All plots are contour plots with outliers or pseudocolor plots.

☑ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

PBS washed cells were blocked with Fc blocker for 10 min on ice and then stained with the appropriate antibodies or isotype control for 25 min on ice. Cells were then washed and resuspended in chilled PBS containing 0.75 μg/ml of DAPI to exclude dead cells.

Instrument

Acquisition was performed by LSRII Fortessa flow cytometer (BD Biosciences). The fluorescence based cell sorting was performed by FACSARia II (BD Biosciences).

Software

FACS data were analyzed with Flowjo software (Flowjo, LLC).

Cell population abundance

At least 20,000 cells per sample were recorded. Purity was determined by comparison with negative control.
Gating strategy

Single cells determined by FSC-H /FCS-A as well as SSC-H/SSA-A. Then, DAPI negative lymphocytes were discriminated by FCS/SSC. The boundaries between “positive” and “negative” were defined by comparison with isotype control.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.