Extensions of maps to $M(\mathbb{Z}_m, 1)$

Jerzy Dydak and Michael Levin

Abstract
We show that a Moore space $M(\mathbb{Z}_m, 1)$ is an absolute extensor for finite dimensional metrizable spaces of cohomological dimension $\dim_{\mathbb{Z}_m} \leq 1$.

Keywords: Cohomological Dimension, Extension Theory

Math. Subj. Class.: 55M10 (54F45, 55N45)

1 Introduction

All spaces are assumed to be metrizable. A map means a continuous function and a compactum means a compact metrizable space. By cohomology we always mean the Čech cohomology. Let G be an abelian group. The cohomological dimension $\dim_G X$ of a space X with respect to the coefficient group G does not exceed n, $\dim_G X \leq n$ if $H^{n+1}(X, A; G) = 0$ for every closed $A \subset X$. Note that this condition implies that $H^{n+k}(X, A; G) = 0$ for all $k \geq 1$ [7], [2]. Thus, $\dim_G X =$ the smallest integer $n \geq 0$ satisfying $\dim_G X \leq n$ (provided it exists), and $\dim_G X = \infty$ if such an integer does not exist.

Cohomological dimension is characterized by the following basic property: $\dim_G X \leq n$ if and only for every closed $A \subset X$ and a map $f : A \longrightarrow K(G, n)$, f continuously extends over X where $K(G, n)$ is the Eilenberg-MacLane complex of type (G, n) (we assume that $K(G, 0) = G$ with discrete topology and $K(G, \infty)$ is a singleton). This extension characterization of Cohomological Dimension gives a rise to Extension Theory (more general than Cohomological Dimension Theory) and the notion of Extension Dimension. The extension dimension of a space X is said to be dominated by a CW-complex K, written $e\text{-dim} X \leq K$, if every map $f : A \longrightarrow K$ from a closed subset A of X continuously extends over X. Thus $\dim_G X \leq n$ is equivalent to $e\text{-dim} X \leq K(G, n)$ and $\dim X \leq n$ is equivalent to $e\text{-dim} X \leq S^n$. The property $e\text{-dim} X \leq K$ is also denoted by $X \tau K$ and it is also referred to as K being an absolute extensor of X.

The following theorem shows a close connection between extension and cohomological dimensions.
Theorem 1.1 (Dranishnikov Extension Theorem) Let K be a CW-complex and X a metrizable space. Denote by $H_*(K)$ the reduced integral homology of K. Then

(i) $\dim H_n(K)X \leq n$ for every $n \geq 0$ if $e\dim X \leq K$;
(ii) $e\dim X \leq K$ if K is simply connected, X is finite dimensional and $\dim H_n(K)X \leq n$ for every $n \geq 0$.

Theorem 1.1 was proved in [1] for the compact case and extended in [3] to the metrizable case.

Let G be an abelian group. We always assume that a Moore space $M(G,n)$ of type (G,n) is an $(n-1)$-connected CW-complex whose reduced integral homology is concentrated in dimension n and equals G. Theorem 1.1 implies that for a finite dimensional metrizable space X and $n > 1$, $\dim G X \leq n$ if and only if $e\dim X \leq M(G,n)$. The main open problem for $n = 1$ is:

Problem 1.2 Let G be an abelian group and let $M(G,1)$ be a Moore space whose fundamental group is abelian. Is $M(G,1)$ an absolute extensor for finite dimensional metrizable spaces of $\dim G \leq 1$?

This problem was affirmatively answered in [6] for $M(\mathbb{Z}_2,1) = \mathbb{R}P^2$. In this paper we extend the result of [6] to Moore spaces $M(\mathbb{Z}_m,1)$. In this particular case we choose a specific model and by $M(\mathbb{Z}_m,1)$ we mean the space obtained by attaching a disk to a circle by an m-fold covering map of the disk boundary. Our main result is:

Theorem 1.3 The Moore space $M(\mathbb{Z}_m,1)$ is an absolute extensor for finite dimensional metrizable spaces of cohomological dimension mod m at most 1.

The case of metrizable spaces of $\dim \leq 3$ in Theorem 1.3 was independently obtained by A. Nagórkó by generalizing the approach of [5] to 3-dimensional lens spaces.

2 Preliminaries

In this section we present a few general notations and facts that will be used later.

For a CW-complex L we denote by $L^{[k]}$ the k-skeleton of L.

Let A and B be compact spaces and $A' \subset A$ are $B' \subset B$ closed subsets. We denote by $\frac{A \times B}{A' \times B'}$ the quotient space of $A \times B$ by the partition consisting of the singletons of $(A \times B) \setminus (A' \times B')$ and the sets $\{a\} \times B'$, $a \in A'$. Clearly, the spaces $\frac{A' \times B}{A' \times B'}$ and $\frac{A \times B'}{A \times B''}$ can be considered as subspaces of the space $\frac{A \times B}{A' \times B'}$. In a similar way we define for closed subsets $A' \subset A'' \subset A$ and $B' \subset B'' \subset B$ the space

$$\frac{A \times B}{A'' \times B' \cup A' \times B''}$$

as the quotient space of $A \times B$ by the partition consisting of the sets $\{a\} \times B'$ for $a \in A'' \setminus A'$, the sets $\{a\} \times B''$ for $a \in A'$ and the singletons not contained in the sets listed before.
Proposition 2.1 Let $f, g : M(\mathbb{Z}_m, 1) \to M(\mathbb{Z}_m, 1)$ be maps inducing the zero-homomorphism of the fundamental group. Then $f \circ g$ is null-homotopic.

Proof. Note that the universal cover \tilde{M} of $M(\mathbb{Z}_m, 1)$ is homotopy equivalent to a bouquet of 2-spheres and the maps f and g lift to \tilde{M}. Thus the map $f \circ g$ factors through maps $\tilde{M} \to M(\mathbb{Z}_m, 1) \to M$ whose composition induces the zero-homomorphism of $H_2(M)$ since $H_2(M(\mathbb{Z}_m, 1)) = 0$. Hence the composition $\tilde{M} \to M(\mathbb{Z}_m, 1) \to M$ is a null-homotopic map resulting in $f \circ g$ being null-homotopic. ■

Proposition 2.2 Let T be a G-bundle over $M(\mathbb{Z}_m, 1)$ and M_0 a singleton in $M(\mathbb{Z}_m, 1)$. If the structure group G of the bundle is arcwise connected then T is trivial over $M(\mathbb{Z}_m, 1) \setminus M_0$.

Proof. Take a sufficiently fine triangulation of $M(\mathbb{Z}_m, 1)$ and observe that there is a retraction $r : M(\mathbb{Z}_m, 1) \setminus M_0 \to L$ to a 1-dimensional subcomplex L of $M(\mathbb{Z}_m, 1)$ such that r can decomposes into the composition of retractions that move the points of $M(\mathbb{Z}_m, 1)$ only inside small sets over which T is trivial. Then r induces a bundle map from T over $M(\mathbb{Z}_m, 1) \setminus M_0$ to T over L. Note that every G-bundle over a one-dimensional simplicial complex is trivial if G is arcwise connected. Thus T over L is trivial and hence T over $M(\mathbb{Z}_m, 1) \setminus M_0$ is trivial as well. ■

The following two propositions are simple exercises left to the reader.

Proposition 2.3 Let T be a ball bundle over a metrizable space L, T_0 the fiber of T over a point in L and U a neighborhood of T_0 in T. Then T/T_0 embeds into T so that $T \setminus (T/T_0) \subset U$ and the projection of T/T_0 to L coincides with the projection of T to L restricted to T/T_0.

Proposition 2.4 Let X be a metrizable space, $g : K \to L$ a map of a CW-complex K to a simplicial complex L (with the CW topology) such that for every simplex Δ of L we have that $g^{-1}(\Delta)$ is a subcomplex of K and $\text{e-dim}X \leq g^{-1}(\Delta)$. Then a map $f : F \to K$ from a closed subset F of X extends over X if $g \circ f : F \to L$ extends over X.

We will also need

Proposition 2.5 (ii) Let K, L and M be finite CW-complexes, L_0 a singleton in L, X a metrizable space and F closed subset of X such that L is connected, L admits a simplicial structure and $\text{e-dim}X \leq \Sigma K$.

(i) If a map $f : F \to \frac{L \times K}{L_0 \times K}$ followed by the projection of $\frac{L \times K}{L_0 \times K}$ to L extends over X then f extends over X as well.

(ii) If $f : F \to L \times K$ and $g : L \times K \to M$ are maps such that f followed by the projection of $L \times K$ to L extends over X and g is null-homotopic on $L_0 \times K$ then f followed by g extends over X as well.
For the reader’s convenience let us outline the proof of Proposition 2.4. Fix a triangulation of L for which L_0 is a vertex. Observe that the projection of $L \times K_{L_0 \times K}$ to L factors up to homotopy through the space $L^{[0]}_0 \times K$ where $L^{[0]}$ is the 0-skeleton of L with respect to the triangulation of L. Also observe that for every n-simplex Δ the space $\Delta \times K$ is homotopy equivalent to the wedge of n copies of ΣK and hence $\text{e-dim} X \leq \frac{\Delta \times K}{\Delta^{[0]}_0 \times K}$. Then, by Proposition 2.4, we have that f in (i) followed by the projection of $L \times K$ to $L^{[0]}_0 \times K$ extends over X. Hence f extends over X as well and (i) is proved. Note that in (ii) the map $g \times f$ factors up to homotopy through $L^{[0]}_0 \times K$ and hence (ii) follows from (i).

3 Lens spaces

By \mathbb{R}^n, \mathbb{B}^n, \mathbb{S}^n we denote the n-dimensional Euclidean space, the unit ball in \mathbb{R}^n, and the unit sphere in \mathbb{R}^{n+1} respectively. A topological n-sphere is denoted by S^n with S^0 being a singleton. We usually assume that that $\mathbb{R}^m \subset \mathbb{R}^k$ if $m \leq k$. Thus we will use the subscript \bot to write $\mathbb{R}^n = \mathbb{R}^m \oplus \mathbb{R}^n_\bot$ for $n = m + k$ in order to emphasize that \mathbb{R}^m and \mathbb{R}^n_\bot are not subspaces of each other.

Recall that for a CW-complex L we denote by $L^{[k]}$ the k-skeleton of L. For a covering space \tilde{L} of L we will consider \tilde{L} with the CW-structure induced by the CW-structure of L and hence we have that the k-skeleton $\tilde{L}^{[k]}$ of \tilde{L} is the preimage of $L^{[k]}$ under the covering map.

In the proof of Theorem 1.3 we will use the infinite dimensional lens space L_m as a model of $K(Z_m, 1)$. Let us remind the construction of L_m. Decompose \mathbb{R}^{2n} into the direct sum of n two-dimensional coordinate planes \mathbb{R}^2 and consider the orthogonal transformation θ of \mathbb{R}^{2n} induced by rotating counterclockwise each \mathbb{R}^2 in the decomposition of \mathbb{R}^{2n} by the angle $2\pi/n$. Thus $\mathbb{Z}_m = \{\theta, \theta^2, \ldots, \theta^n\}$ acts on \mathbb{R}^{2n} by orientation preserving orthogonal transformations and \mathbb{Z}_m acts freely on the unit sphere \mathbb{S}^{2n-1} of \mathbb{R}^{2n}. We will refer to θ as the generating transformation of \mathbb{Z}_m. Denote $L_m^{[2n-1]} = \mathbb{S}^{2n-1}/\mathbb{Z}_m$. Representing \mathbb{R}^{2n+2} as $\mathbb{R}^{2n+2} = \mathbb{R}^n \oplus \mathbb{R}^2_\bot$, we can regard \mathbb{S}^{2n-1} as a subset of \mathbb{S}^{2n+1} and $L_m^{[2n-1]}$ as a subset of $L_m^{[2n+1]}$. The infinite dimensional lens space L_m is defined as $L_m = \text{dirlim} L_m^{[2n-1]}$. Clearly \mathbb{Z}_m freely acts on $\mathbb{S}^\infty = \text{dirlim} \mathbb{S}^{2n-1}$ and $L_m = \mathbb{S}^\infty/\mathbb{Z}_m$. Thus we have that $L_m = K(\mathbb{Z}_m, 1)$ since \mathbb{S}^∞ is contractible.

The CW-structure of L_m is defined so that L_m has only one cell in each dimension, see 4. The CW-structure of L_m agrees with our previous notation since $L_m^{[2n-1]}$ is indeed the $(2n - 1)$-skeleton of L_m. Set $L_m = \mathbb{S}^\infty$ and $L_m^{[2n-1]} = \mathbb{S}^{2n-1}$. The preimage $\tilde{L}_m^{[2n]}$ of $L_m^{[2n]}$ under the projection of \mathbb{S}^{2n+1} to L_m can be described as follows. Represent \mathbb{R}^{2n+2} as $\mathbb{R}^{2n+2} = \mathbb{R}^{2n} \oplus \mathbb{R}^2_\bot$ of orthogonal coordinate subspaces invariant under the action of \mathbb{Z}_m on \mathbb{R}^{2n+2} and let \mathbb{S}^{2n-1} and \mathbb{S}_1^1 be the unit sphere and the unit circle in \mathbb{R}^{2n} and \mathbb{R}^2_\bot respectively. Take a point $a \in \mathbb{S}_1^1$ and consider the $(2n + 1)$-dimensional linear subspace of \mathbb{R}^{2n+2} containing \mathbb{R}^{2n} and the point a, and in this subspace consider the unit sphere \mathbb{S}_a^{2n}. Then \mathbb{S}^{2n-1} divides \mathbb{S}_a^{2n} into two hemispheres and denote by C_a the
hemisphere containing the point \(a \). It is clear that \(gC_a = C_{ga} \) for \(g \in \mathbb{Z}_m \). Fix any orbit \(A \) of \(\mathbb{Z}_m \) in \(S^1 \). The space \(\tilde{L}_m^{[2n]} \) is defined as the union of \(\tilde{L}_m^{[2n]} = S^{2n-1} \) with the \((2n)\)-dimensional hemispheres \(C_a, a \in A \) which are defined to be the \((2n)\)-cells of \(\tilde{L}_m^{[2n]} \). Clearly \(\tilde{L}_m^{[2n]} \) is invariant under the action of \(\mathbb{Z}_m \) on \(\mathbb{R}^{2n+2} \). Then \(L_m^{[2n]} \) is defined as the orbit space \(L_m^{[2n]} = \tilde{L}_m^{[2n]} / \mathbb{Z}_m \) and it is obvious that \(L_m^{[2n]} \) is obtained from \(L_m^{[2n-1]} \) by attaching one \((2n)\)-cell.

We will call the models of \(L_m^{[2n-1]} \) and \(L_m^{[2n]} \) described above the covering models. Note that \(\tilde{L}_m^{[k]} \) is the universal cover of \(L_m^{[k]} \) for \(k > 1 \) and \(\tilde{L}_m^{[1]} = S^1 \) is an \(m \)-fold cover of \(L_m^{[1]} = S^1 \). The 0-skeleton \(L_m^{[0]} \) of \(L_m \) is a singleton in \(L_m^{[1]} \). Note that \(L_m^{[2]} = M(\mathbb{Z}_m, 1) \).

The space \(L_m^{[2n]} \) can be also described in the following way. Consider the unit ball \(\mathbb{B}^{2n} \) in \(\mathbb{R}^{2n} \). Then \(L_m^{[2n]} \) is the quotient space of \(\mathbb{B}^{2n} \) under the action of \(\mathbb{Z}_m \) on \(\partial \mathbb{B}^{2n} = S^{2n-1} \). By this we mean the quotient space whose equivalence classes are the orbits of the points in \(S^{2n-1} \) and the singletons in \(\mathbb{B}^{2n} \setminus S^{2n-1} \). We will refer to such representation of \(L_m^{[2n]} \) as the ball model of \(L_m^{[2n]} \).

The space \(L_m^{[2n+1]} \) also admits a similar description. Represent \(\mathbb{R}^{2n+1} = \mathbb{R}^{2n} \oplus \mathbb{R} \), consider the unit sphere \(S^{2n-1} \) in \(\mathbb{R}^{2n} \) and the action of \(\mathbb{Z}_m \) on \(\mathbb{R}^{2n} \). Consider the unit ball \(\mathbb{B}^{2n+1} \) in \(\mathbb{R}^{2n+1} \) and define an equivalence relation on \(\mathbb{B}^{2n+1} \) with the equivalence classes to be: the orbits of the action of \(\mathbb{Z}_m \) on \(S^{2n-1} \), the singletons of \(\mathbb{B}^{2n+1} \setminus \partial \mathbb{B}^{2n+1} \) and the sets \(\{(x, t), (\theta x, -t)\} \) where \(\theta \) is the generating transformation of \(\mathbb{Z}_m \) and \((x, t) \in \mathbb{R}^{2n+1} = \mathbb{R}^{2n} \oplus \mathbb{R} \) such that \((x, t) \in \partial \mathbb{B}^{2n+1} \) and \(t < 0 \). Then \(L_m^{[2n+1]} \) is the quotient space of \(\mathbb{B}^{2n+1} \) under this equivalence relation. Similarly we refer to such representation of \(L_m^{[2n+1]} \) as the ball model of \(L_m^{[2n+1]} \).

4 Extensions of maps to Lens spaces

In this section we prove two auxiliary propositions. By a Moore space \(M(\mathbb{Z}_m, k) \) we mean a space obtained by attaching a \((k + 1)\)-ball to a \(k \)-sphere \(S^k \) by a map degree \(m \) from the ball boundary to \(S^k \) and we denote the \(k \)-sphere \(S^k \) in \(M(\mathbb{Z}_m, k) \) by \(\partial M(\mathbb{Z}_m, k) \).

Proposition 4.1 Let \(\psi : S^1 \times S^{2n-1} \longrightarrow L_m^{[2n]}, n \geq 1 \) be a map such that \(\psi \) restricted to \(S^1 \times S^0 \) generates the fundamental group of \(\tilde{L}_m^{[2n]} \) and \(\psi \) restricted to \(S^0 \times S^{2n-1} \) is null-homotopic. Then \(\psi \) considered as a map from \(S^1 \times \partial M(\mathbb{Z}_m, 2n - 1) \) extends over \(S^1 \times M(\mathbb{Z}_m, 2n - 1) \).

Proof. Replacing \(\psi \) by a homotopic map assume that \(\psi \) factors through \(\frac{S^1 \times S^{2n-1}}{S^0 \times S^{2n-1}} \). Represent \(S^1 \) as the quotient space of \(I = [0, 1] \) under the projection sending the end-points \(\partial I \) of \(I \) to \(S^0 \) and consider the induced projection from the \((2n)\)-sphere \(\frac{I \times S^{2n-1}}{\partial I \times S^{2n-1}} \) to \(\frac{S^1 \times S^{2n-1}}{S^0 \times S^{2n-1}} \).

Then this projection followed by the map induced by \(\psi \) from \(\frac{S^1 \times S^{2n-1}}{S^0 \times S^{2n-1}} \) to \(L_m^{[2n]} \) lifts to a map \(\psi_l : \frac{I \times S^{2n-1}}{\partial I \times S^{2n-1}} \longrightarrow \tilde{L}_m^{[2n]} \) to the universal cover \(\tilde{L}_m^{[2n]} \) of \(L_m^{[2n]} \). Denote by \(g \in \mathbb{Z}_m \) the element of the fundamental group \(\mathbb{Z}_m \) of \(\tilde{L}_m^{[2n]} \) represented by the map \(\psi \) restricted to
$S^1 \times S^0$ with $S^0 \times S^0$ and $\psi(S^0 \times S^0)$ being the base points in $S^1 \times S^0$ and $L_m^{[2n]}$ respectively and recall that g is a generator of \mathbb{Z}_m.

Represent $M(\mathbb{Z}_m, 2n - 1)$ as the quotient space of a $(2n)$-ball B under the projection from B to $M(\mathbb{Z}_m, 2n - 1)$ sending $\partial B = S^{2n-1}$ to $\partial M(\mathbb{Z}_m, 2n - 1) = S^{2n-1}$ by a map of degree m. Consider the induced projection from $\frac{I \times B}{\partial I \times \partial B}$ to $\frac{I \times M(\mathbb{Z}_m, 2n-1)}{\partial I \times M(\mathbb{Z}_m, 2n-1)}$ and denote by $\psi_B : \frac{I \times \partial B}{\partial I \times \partial B} \to \tilde{L}_m^{[2n]}$ this projection restricted to $\frac{I \times \partial B}{\partial I \times \partial B}$ and followed by the map ψ. Then the problem of extending ψ reduces to the problem of extending ψ_B to a map $\psi_B' : \frac{I \times \partial B}{\partial I \times \partial B} \to \tilde{L}_m^{[2n]}$ so that for every $x \in B/\partial B$ and $(0, x), (1, x) \in \partial I \times (B/\partial B) = \frac{\partial I \times B}{\partial I \times \partial B}$ we have that $\psi_B'(1, x) = g(\psi_B'(0, x))$ with the element g of the fundamental group of $L_m^{[2n]}$ being considered as acting on $\tilde{L}_m^{[2n]}$.

Note that $S^2_{\#} = \frac{I \times \partial B}{\partial I \times \partial B}$ is a $(2n)$-sphere and $\psi_{\#} = \psi_B|S^2_{\#} : S^2_{\#} \to \tilde{L}_m^{[2n]}$ factors through a map of degree m from $S^2_{\#}$ to $S^2_m = \frac{I \times \partial M(\mathbb{Z}_m, 2n-1)}{\partial I \times \partial M(\mathbb{Z}_m, 2n-1)}$. Also note that under the projection of $I \times B$ to $\frac{I \times \partial B}{\partial I \times \partial B}$ the $(2n)$-sphere $S^2_{\#} = \partial(I \times B)$ goes to the space $\frac{I \times B}{\partial I \times \partial B}$ which is the union of the spheres $S^2_0 = \{0\} \times (B/\partial B)$, $S^2_1 = \{1\} \times (B/\partial B)$ and $S^2_{\#}$ so that S^2_0 and S^2_1 are disjoint and each of them intersects $S^2_{\#}$ at only one point. And finally note that $\tilde{L}_m^{[2n]}$ is homotopy equivalent to a bouquet of $(2n)$-spheres. Then the problem of extending ψ_B to ψ_B' boils down to constructing a map $\psi_0 : S^2_0 \to \tilde{L}_m^{[2n]}$ so that $(\psi_0)_*(\alpha) - g_*((\psi_0)_*(\alpha)) + (\psi_{\#})_*((\psi_0)_*(\alpha)) = 0$ in the homology group $H_{2n}(\tilde{L}_m^{[2n]})$ with α and β being the generators of $H_{2n}(S^2_0)$ and $H_{2n}(S^2_{\#})$ determined by the orientations of S^2_0 and $S^2_{\#}$ induced by an orientation of $S^2_{\#}$.

Recall that $\gamma = (\psi_0)_*(\beta)$ is divisible by m since ψ_0 factors through a map of degree m of a $(2n)$-sphere and g comes from an orientation preserving orthogonal transformation of the $(2n+1)$-sphere $\tilde{L}_m^{[2n+1]}$. Consider the cellular homology of $\tilde{L}_m^{[2n]}$, fix an oriented $(2n)$-cell C of $\tilde{L}_m^{[2n]}$ and index the $(2n)$-cells C_1, C_2, \ldots, C_m of $\tilde{L}_m^{[2n]}$ so that $C_i = g^i(C), 1 \leq i \leq m$. Let $\gamma_1 C_1 + \gamma_2 C_2 + \cdots + \gamma_m C_m, \gamma_1 + \cdots + \gamma_m = 0, \gamma_i \in \mathbb{Z}$, be the cycle representing γ and $y_1 C_1 + \cdots + y_m C_m, y_1 + \cdots + y_m = 0, y_i \in \mathbb{Z}$, the cycle representing $y = (\psi_0)_*(\alpha)$. Then $g_* (y)$ is represented by the cycle $y_m C_1 + y_1 C_2 + \cdots + y_{m-1} C_m$ and we arrive at the system of linear equations over \mathbb{Z}:

\[
\begin{cases}
\gamma_1 + \cdots + \gamma_m = 0 \\
y_1 + \cdots + y_m = 0 \\
y_1 - y_m + \gamma_1 = 0 \\
y_2 - y_1 + \gamma_2 = 0 \\
\cdots \\
y_m - y_{m-1} + \gamma_m = 0.
\end{cases}
\]
Representing \(y_m = -y_1 - y_2 - \cdots - y_{m-1} \) get

\[
\begin{align*}
2y_1 + y_2 + \cdots + y_{m-1} + \gamma_1 &= 0 \\
y_2 - y_1 + \gamma_2 &= 0 \\
\vdots \\
y_{m-1} - y_{m-2} + \gamma_{m-1} &= 0.
\end{align*}
\]

Eliminating \(y_1, \ldots, y_{m-2} \) from the first equation get

\[
y_{m-1} = -\frac{1}{m} (\gamma_1 + 2\gamma_2 + 3\gamma_3 + \cdots + (m-1)\gamma_{m-1})
\]

and find \(y_{m-2}, y_{m-3}, \ldots, y_1 \) from the remaining equations. Recall that \(\gamma \) is divisible by \(m \) and hence \(\gamma_1, \ldots, \gamma_m \) are divisible by \(m \) as well. Thus we conclude that the system is solvable over \(\mathbb{Z} \). Set \(\psi_0 \) to be a map with \((\psi_0)_*(\alpha) = y \) and the proposition follows.

Proposition 4.2 Let \(\psi : \frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \longrightarrow \frac{L_m[2n+1]}{L_m[0] \times M(Z_m, 2n-1)} \), \(n \geq 1 \), be a map. Then \(\psi \) considered as a map from \(\frac{L_m[2] \times \partial M(Z_m, 2n-1)}{L_m[0] \times \partial M(Z_m, 2n-1)} \) extends over \(\frac{L_m[2] \times M(Z_m, 2n-1)}{L_m[0] \times M(Z_m, 2n-1)} \).

Proof. Note that \(L_m[1] \subset L_m[2] = \frac{L_m[2] \times S^0}{L_m[0] \times S^0} \subset \frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \), denote by \(g \in \mathbb{Z}_m \) the element of the fundamental group of \(L_m[2n+1] \) represented by \(\psi \) restricted to the circle \(L_m[1] \) and consider \(g \) as an orthogonal transformation acting on the universal cover \(S^{2n+1} / L_m[2n+1] \) of \(L_m[2n+1] \).

Let the projection \(p_I : [0, 1] \longrightarrow L_m[1] \) send the end points \(\partial I \) of \(I \) to \(L_m[0] \). This projection induces a projection of the \((2n)\)-sphere \(\frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \) to \(\frac{L_m[1] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \) and this projection followed by \(\psi \) lifts to a map \(\psi_I : \frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \longrightarrow \frac{L_m[2n+1]}{L_m[0] \times S^{2n-1}} = S^{2n+1} \). Then \(\psi_I \) factors up to homotopy relative to \(\frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} = \partial I \) through the space \(\frac{L_m[1] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} = I \). It implies that \(\psi \) factors up to homotopy through the space \(\frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \). Thus replacing \(\psi \) by a map from the last space we may assume that \(\psi : \frac{L_m[2] \times S^{2n-1}}{L_m[0] \times S^{2n-1}} \longrightarrow \frac{L_m[2n+1]}{L_m[0] \times M} \) and look for an extension of \(\psi \) over the space

\[
\frac{L_m[2] \times M}{L_m[0] \times M \cup L_m[1] \times \partial M}
\]

where we shorten \(M(Z_m, 2n-1) \) and \(\partial M(Z_m, 2n-1) \) to \(M \) and \(\partial M \) respectively.

Represent \(L_m[2] \) as the quotient space of a disk \(D \) under the projection \(p_D : D \longrightarrow L_m[2] \) which sends \(\partial D = S^1 \) to \(L_m[1] = S^1 \) by an \(m \)-fold map and denote \(D^0 = p^{-1}(L_m[0]) \).

Denote

\[
K = \frac{D \times M}{D^0 \times M \cup \partial D \times \partial M}
\]

\[
\partial D K = \frac{\partial D \times M}{D^0 \times M \cup \partial D \times \partial M} \subset K
\]
The projection from $\partial D K = \frac{D \times S^{2n-1}}{\partial D \times S^{2n-1}} = S^{2n+1}_2$ induced by p_D and followed by ψ lifts to a map $\psi_M : \partial M \to L^{[2n+1]}_m = S^{2n+1}$. Consider a rotation of ∂D by the angle $2\pi/m$ under which the map p_D restricted to ∂D is invariant. Then this rotation induces a rotation (homeomorphism) ω of the space $\partial D K$. Thus the problem of extending ψ reduces to the problem of extending ψ_M to a map $\psi'_M : K \to \tilde{L}^{[2n+1]}_m$ so that $\psi'_M(\omega(x)) = g(\psi_M(x))$ for $x \in \partial D K$.

Note that $\partial D K$ is the union of $(2n+1)$-spheres $S^{2n+1}_1, \ldots, S^{2n+1}_m$ intersecting each other at points of D^0 (we consider D as a natural subset of K). Also note that $\partial M K \cap \partial D K = \partial D$ and $\partial M K = S^{2n+1}_m$ is a $(2n+1)$-sphere intersecting the spheres $S^{2n+1}_i, 1 \leq i \leq m$, at points of ∂D. Clearly $\partial D K$ is invariant under ω and and the spheres S^{2n+1}_i can be indexed so that $S^{2n+1}_i = \omega^i(S^{2n+1}_m)$.

Consider a projection from a $(2n)$-ball B to M sending ∂B to ∂M by a map of degree m. This projection induces a projection $p : D \times B \to K$ from the $(2n+2)$-ball $D \times B$ to K under which the $(2n+1)$-sphere $\partial(D \times B)$ goes to $\partial M K \cup \partial D K$ so that the sphere S^{2n+1}_i is covered m-times and each of the spheres $S^{2n+1}_i, 1 \leq i \leq m$, is covered only once. Recall that $S^{2n+1}_i = \omega^i(S^{2n+1}_m), \psi_M(\omega(x)) = g(\psi_M(x))$ and g is an orientation preserving orthogonal transformation of $S^{2n+1}_i = \tilde{L}^{[2n+1]}_m$. Consider the spheres $S^{2n+1}_i, S^{2n+1}_1, \ldots, S^{2n+1}_m$ with the orientation induced by an orientation of the sphere $\partial(D \times B)$ and define a map $\psi_m : S^{2n+1}_m \to S^{2n+1}_i = \tilde{L}^{[2n+1]}_m$ so that deg $\psi_m = -\deg \psi_M|\tilde{S}^{2n+1}_m$ and ψ_m extends ψ_M restricted to S^{2n+1}_m. Now define $\psi_i = g^i \circ \psi_m \circ \omega^{-i} : S^{2n+1}_i \to \tilde{L}^{[2n+1]}_m$. Thus we have extended ψ_M over $\partial M K \cup \partial D K$ so that that the map p restricted to $\partial(D \times B)$ and followed by this extension is of degree 0 and hence extends to a map from $D \times B$ to $\tilde{L}^{[2n+1]}_m$. Clearly the last extension induces a map $\psi'_M : K \to \tilde{L}^{[2n+1]}_m$ with the required properties and the proposition follows. □

5 Pushing maps off the $(2n+1)$-skeleton of L_m

In this section we will prove

Proposition 5.1 Let X be a metrizable space with dim$_Z X \leq 2n - 1, n \geq 2$, and let $f : X \to L^{[2n+1]}_m$ be a map. Then there is a map $f' : X \to L^{[2n]}_m$ which coincides with f on $f^{-1}(L^{[2n-1]}_m)$.

The proof of Proposition 5.1 is based on a modification of $L^{[2n+1]}_m$. This modification is defined for $n \geq 1$ and will be referred to as the basic modification of $L^{[2n+1]}_m$. We describe this modification in such a way and using such notations that it can be used in Section 6 for constructing a similar modification of $L^{[2n+2]}_m$.

Consider the covering model of $L^{[2n+1]}_m$. Let $\mathbb{R}^{2n+2} = \mathbb{R}^{2n} \oplus \mathbb{R}^2$ and let S^{2n+1}, S^{2n-1} and S^3_1 be the unit spheres and the unit circle in $\mathbb{R}^{2n+2}, \mathbb{R}^{2n}$ and \mathbb{R}^2, respectively. Fix
a sufficiently small $\epsilon > 0$ and take a closed ϵ-neighborhood E_S^1 of S^1_\perp in S^{2n+1}, such that E_S^1 does not intersect S^{2n-1}. Clearly E_S^1 is invariant under the action of Z_m on S^{2n+1} and E_S^1 can be considered as a trivial $(2n)$-ball bundle over S^1_\perp, with respect to the group $SO(2n)$ of orientation preserving orthogonal transformations of a $(2n)$-ball. The bundle E_S^1 over S^1_\perp can be visualized as follows. Take a point $a \in S^1_\perp$ and consider the unit sphere $S^2_{a \perp}$ in the linear $(2n)$-dimensional subspace of \mathbb{R}^{2n+2} containing S^{2n-1} and a. Then the closed ϵ-neighborhood of a in $S^2_{a \perp}$ will be the $(2n)$-ball over a in the bundle E_S^1. The sphere S^{2n-1} divides S^{2n} into two hemispheres and for the hemisphere C_a containing the point a we consider the natural deformation retraction of $C_a \setminus \{a\}$ to S^{2n-1} along the shortest arcs in $S^2_{a \perp}$ connecting a with the points of S^{2n-1}. Then this retraction induces the corresponding deformation retraction $r_S^1 : S^{2n+1} \setminus S^1_\perp \longrightarrow S^{2n-1}$ which commutes with the transformations of Z_m. Note that from this description of the bundle it can be seen that the transformations in Z_m induce bundle maps of E^1_S. Let $p : S^{2n+1} \longrightarrow L^{[2n+1]}_m = S^{2n+1} / Z_m$ be the projection. Denote $S^1_\perp = p(S^1_\perp) = S^1_\perp / Z_m$ and $E^1 = p(E^1_S)$. Then E^1 is a trivial $(2n)$-ball bundle over S^1_\perp (since E^1_S is a bundle with respect to the orientation preserving orthogonal transformations) and r^1_S induces the deformation retraction $r^1 : L^{[2n+1]}_m \setminus S^1_\perp \longrightarrow L^{[2n-1]}_m$. Represent $E^1 = S^1 \times B$ where B is an $(2n)$-ball and denote $\partial E^1 = S^1 \times \partial B = S^1 \times S^{2n-1}$. By S^0 we denote a singleton in a sphere S^k. Note that, since r^1 is a deformation retraction, r^1 sends the circle $S^1 \times S^0 \subset \partial E^1$ to a circle in $L^{[2n-1]}_m$ homotopic to $S^1 \times S^0$ in $L^{[2n+1]}_m$. On the other hand $S^1 \times S^0$ homotopic to the circle S^1_\perp which represents a generator of the fundamental group of $L^{[2n]}_m$ and hence represents a generator of the fundamental group of $L^{[2n]}_m$ as well. Also note that $S^0 \times S^{2n-1} \subset \partial E^1$ is contractible in the ball $E^1 \cap L^{[2n]}_m$. Thus r^1 restricted to $S^1 \times S^0$ and $S^0 \times S^{2n-1}$ and followed by the inclusion of $L^{[2n-1]}_m$ into $L^{[2n]}_m$ represent a generator of the fundamental group of $L^{[2n]}_m$ and a null-homotopic map to $L^{[2n]}_m$ respectively.

By the basic surgery of $L^{[2n+1]}_m$ we mean replacing $E = E^1 = S^1 \times B$ with $E_M = S^1 \times M(\mathbb{Z}_m, 2n-1)$ such that $\partial E = S^1 \times \partial B$ is identified with $\partial E_M = S^1 \times \partial M(\mathbb{Z}_m, 2n-1)$ through an identification of $\partial M(\mathbb{Z}_m, 2n-1) = S^{2n-1}$ with $\partial B = S^{2n-1}$. The basic modification M of $L^{[2n+1]}_m$ is the space obtained from $L^{[2n+1]}_m$ by the basic surgery of $L^{[2n+1]}_m$. Clearly $L^{[2n-1]}_m$ remains untouched in M.

The basic surgery of $L^{[2n+1]}_m$ can be even easier described in the ball model of $L^{[2n+1]}_m$. In this model the set E^1 is represented by the closed ϵ-neighborhood of $\mathbb{R}_\perp \cap \mathbb{B}^{2n+1}$ in \mathbb{B}^{2n+1} and the retraction r^1 is represented by the natural retraction from $\mathbb{B}^{2n+1} \setminus \mathbb{R}$ to $S^{2n-1} = \mathbb{R}^{2n} \cap \partial \mathbb{B}^{2n+1}$ which sends $(x, t) \in \mathbb{B}^{2n+1}$ with $\|x\| > 0$ to the point $(x, \|x\|, 0)$ in S^{2n-1}. We described in detail the basic surgery of $L^{[2n-1]}_m$ in the covering model because, as we mentioned before, this description will be used in Section 6.

Proposition 5.2 The identity map of $L^{[2n-1]}_m$, $n \geq 1$, extends to a map $\alpha : M \longrightarrow L^{[2n]}_m$ from the basic modification M of $L^{[2n+1]}_m$ to $L^{[2n]}_m$ so that α restricted to $S^0 \times S^{2n-1} \subset S^1 \times S^{2n-1} = \partial E_M$ is null-homotopic where S^0 is a singleton in S^1.

9
Proof. Recall that \(\partial E = S^1 \times S^{2n-1} \) and \(r^1 \) restricted to \(S^1 \times S^0 \) and \(S^0 \times S^{2n-1} \) and followed by the inclusion of \(L_m^{[2n-1]} \) into \(L_m^{[2n]} \) represent a generator of the fundamental group of \(L_m^{[2n]} \) and a null-homotopic map to \(L_m^{[2n]} \) respectively. Then, By Proposition 5.1 the map \(r^1 \) restricted to \(\partial E = \partial E_M \) extends over \(E_M \) as a map to \(L_m^{[2n]} \) and this extension together with \(r^1 \) restricted to \(L_m^{[2n+1]} \setminus (E \setminus \partial E) \) provides the map required in the proposition. ■

Proof of Proposition 5.1 Consider the basic modification \(M \) of \(L_m^{[2n+1]} \). By Theorem 1 e-dim \(X \leq M(\mathbb{Z}_m, 2n - 1) \). Recall that \(\partial E = \partial E_M \subset E_M = S^1 \times M(\mathbb{Z}_m, 2n - 1) \). Then if \(f \) restricted to \(f^{-1}(\partial E) \) and followed by the projection of \(E_M = S^1 \times M(\mathbb{Z}_m, 2n - 1) \) to \(M(\mathbb{Z}_m, 2n - 1) \) extends over \(f^{-1}(E) \) as a map to \(M(\mathbb{Z}_m, 2n - 1) \) and hence \(f \) restricted to \(f^{-1}(\partial E) \) extends over \(f^{-1}(E) \) as a map to \(E_M \). The last extension together with \(f \) provides a map \(f_M : X \rightarrow M \) which coincides with \(f \) on \(f^{-1}(L_m^{[2n-1]}) \). By Proposition 6.2, take a map \(\alpha : M \rightarrow L_m^{[2n]} \) which extends the identity map of \(L_m^{[2n-1]} \). Then \(f' = \alpha \circ f_M : X \rightarrow L_m^{[2n]} \) is the map required in the proposition. ■

6 Pushing maps off the \((2n + 2)\)-skeleton of \(L_m \)

In this section we will prove

Proposition 6.1 Let \(X \) be a metrizable space with \(\text{dim}_{\mathbb{Z}_m} X \leq 2n, n \geq 1 \), and let \(f : X \rightarrow L_m^{[2n+2]} \) be a map. Then there is a map \(f' : X \rightarrow L_m^{[2n+1]} \) which coincides with \(f \) on \(f^{-1}(L_m^{[2n]}) \).

The proof of Proposition 6.1 is based on a modification of \(L_m^{[2n+2]} \). This modification is defined for \(n \geq 1 \) and will be referred to as the basic modification of \(L_m^{[2n+2]} \). Consider the ball model of \(L_m^{[2n+2]} \) with the projection \(p : \mathbb{B}^{2n+2} \rightarrow L_m^{[2n+2]} \) where \(\mathbb{B}^{2n+2} \) is the unit ball in \(\mathbb{R}^{2n+2} = \mathbb{R}^n \oplus \mathbb{R}^2 \). Denote by \(S^{2n+1}, S^1 \) and \(\mathbb{B}^2 \) the unit sphere, the unit circle and the unit ball in \(\mathbb{R}^{2n+2} \) and \(\mathbb{R}^2 \) respectively. Also denote \(L_m^{[2n+1]} = p(S^{2n+1}) \) and \((L_m^2)_{\perp} = p(\mathbb{B}^2) \), and let \(L_m^{[2n]} \subset L_m^{[2n+1]} \) be the \((2n)\)-skeleton of \(L_m^{[2n+1]} \) constructed as described in Section 2.

Consider the construction of the basic modification of \(L_m^{[2n+1]} \) as described in Section 5. Extend the neighborhood \(E^1_0 \) of \(S^1 \) in \(S^{2n+1} \) to a neighborhood \(E^3_0 \) of \(\mathbb{B}^2 \) in \(\mathbb{B}^{2n+2} \) and extend the \((2n)\)-ball \(SO(2n)\)-bundle structure of \(E^1_0 \) over \(S^1 \) to a \((2n)\)-ball \(SO(2n)\)-bundle structure of \(E^3_0 \) over \(\mathbb{B}^2 \) so that the transformations of \(\mathbb{Z}_m \) on \(\mathbb{R}^{2n+2} \) induce bundle maps of \(E^3_0 \). Then the neighborhood \(E^2 = p(E^3_0) \) of \((L_m^2)_{\perp} = p(\mathbb{B}^2) \) in \(L_m^{[2n+2]} \) will have the induced \((2n)\)-ball \(SO(2n)\)-bundle structure over \((L_m^2)_{\perp}\). The retraction \(r^1_S : S^{2n+1} \setminus S^1 \rightarrow S^{2n-1} \) can be extended to a retraction \(r^2_S : \mathbb{B}^{2n+2} \setminus \mathbb{B}^2 \rightarrow \mathbb{S}^{2n-1} \) which induces the retraction \(r^2 : L_m^{[2n+2]} \setminus (L_m^2)_{\perp} \rightarrow L_m^{[2n-1]} \).

Note that \((L_m^0)_{\perp} \cap (L_m^2)_{\perp}\) is a singleton lying in \((L_m^1)_{\perp} = p(S^1) = S^1\). Also note that the pair \(((L_m^2)_{\perp}, (L_m^1)_{\perp})\) is homeomorphic to the pair \((L_m^2, L_m^1)\). In order to simplify
Proposition 2.3 embed the space \(E \) in the notation, from now we will write \(L_m^0, L_m^1, L_m^2 \) instead of \((L_m^0)_\perp, (L_m^1)_\perp, (L_m^2)_\perp \) keeping in mind that any skeleton whose dimension does not depend on \(n \) should be interpreted as having the subscript \(\perp \).

Let \(E^0 = E^2 \cap L_m^{2n} \) be the fiber of the bundle \(E^2 \) over the point \(L_m^0 \). Denote by \(\partial E^0 \) the boundary of the ball \(E^0 \) and by \(\partial E^2 \) the induced \(S^{2n-1} \)-bundle formed by the boundaries of the fibers of \(E^2 \) which are \((2n)\)-balls. Consider the retraction \(r^2 \) as a map to \(L_m^{2n-1} \) followed by the inclusion into \(L_m^{2n} \). Note that \(r^2 \) extends \(r^1 \) and recall that \(r^1 \) is a deformation retraction on \(L_m^{2n} \setminus L_m^1 \). Then, by Proposition 2.5, \(r^2 \) can be homotoped into a map \(r^2 : L_m^{2n+2} \setminus L_m^2 \to L_m^{2n} \) which does not move the points of \(L_m^{2n} \setminus L_m^2 = L_m^{2n} \setminus L_m^1 \). Thus we can define the map \(r^2_0 : (L_m^{2n+2} \setminus (E^2 \setminus \partial E^2)) \cup E^0 \to L_m^{2n} \) which coincides with \(r^2 \) on \(L_m^{2n+2} \setminus (E^2 \setminus \partial E^2) \) and does not move the points of \(E^0 \). Take a neighborhood \(U \) of \(E^0 \) in \(E \) and extend \(r^2_0 \) to a map \(r^2_U : (L_m^{2n+2} \setminus (E^2 \setminus \partial E^2)) \cup U \to L_m^{2n} \). Consider separately the quotient space \(E = E^2/\partial E^0 \) and consider \(\partial E = \partial E^2/\partial E^0 \) as a subspace of \(E \). By Proposition 2.3, embed the space \(E \) into \(L_m^{2n+2} \) so that \(E \subset E^2 \), \(E \cap L_m^{2n} = L_m^0 = \) the singleton \(E^0 \) in \(E \) and \(E^2 \setminus E \subset U \). Thus we have that \(r^2_U \) is defined on \(L_m^{2n+2} \setminus (E \setminus \partial E) \), \(L_m^{2n} \subset L_m^{2n+2} \setminus (E \setminus \partial E) \) and hence \(r^2_U \) acts on \(L_m^{2n+2} \setminus (E \setminus \partial E) \) as a retraction to \(L_m^{2n} \).

The basic modification of \(L_m^{2n+2}, n \geq 1 \), is defined as follows. By Proposition 2.2 represent \(\partial E = \partial E^2/\partial E^0 \) as
\[
\partial E = \frac{L_m^2 \times S^{2n-1}}{L_m^0 \times S^{2n-1}}.
\]
Denote
\[
E_M = \frac{L_m^2 \times M(Z_m, 2n-1)}{L_m^0 \times M(Z_m, 2n-1)}, \quad \partial E_M = \frac{L_m^2 \times \partial M(Z_m, 2n-1)}{L_m^0 \times \partial M(Z_m, 2n-1)}
\]
and consider \(\partial E_M \) as a subset of \(E_M \). By the basic surgery of \(L_m^{2n+2} \) we mean replacing \(E \) with \(E_M \) such that \(\partial E_M \) is identified with \(\partial E \) through an identification of \(\partial M(Z_m, 2n-1) \) with \(S^{2n-1} \). By the basic modification \(M \) of \(L_m^{2n+2} \) we mean the space obtained from \(L_m^{2n+2} \) by the basic surgery of \(L_m^{2n+2} \). Clearly \(L_m^{2n} \) remains untouched in \(M \).

Proposition 6.2 The identity map of \(L_m^{2n}, n \geq 1 \), extends to a map from the basic modification \(M \) of \(L_m^{2n+2} \) to \(L_m^{2n+1} \).

Proof. By Proposition 4.2 the map \(r^2_U \) restricted to \(\partial E = \partial E_M \) extends over \(E_M \) and this extension together with \(r^2_U \) restricted to \(L_m^{2n+2} \setminus (E \setminus \partial E) \) provides the map required in the proposition. ■

Proof of Proposition 6.1. Consider the basic modification \(M \) of \(L_m^{2n+2} \). By Theorem 11 e-dim \(X \leq \Sigma M(Z_m, 2n-1) \). Recall that \(\partial E = \partial E_M \subset E_M = \frac{L_m^2 \times M(Z_m, 2n-1)}{L_m^0 \times M(Z_m, 2n-1)} \).

Then, by Proposition 2.5 \(f \) restricted to \(f^{-1}(\partial E) \) extends over \(f^{-1}(E) \) as a map to \(E_M \) and this extension together with \(f \) provides a map \(f_M : X \to M \) which coincides with
Proposition 7.3. Let \(f \) be a map \(f : M \to L_{m}^{[2n]} \). By Proposition 6.2, take a map \(\alpha : M \to L_{m}^{[2n+1]} \) which extends the identity map of \(L_{m}^{[2n]} \). Then \(f' = \alpha \circ f : X \to L^{[2n+1]} \) is the map required in the proposition. ■

7 Pushing maps off the 3-skeleton of \(L_{m} \)

The goal of this section is to prove Theorem 1.3. Clearly Propositions 5.1 and 6.1 imply

Theorem 7.1 Let \(X \) be a finite dimensional metrizable space with \(\dim_{\mathbb{Z}} X \leq 2 \) and let \(f : X \to L_{m}^{[n]}, n \geq 3, \) be a map. Then there is a map \(f' : X \to L_{m}^{[3]} \) which coincides with \(f \) on \(f^{-1}(L_{m}^{[2]}) \).

An easy corollary of Theorem 7.1 is

Corollary 7.2 Let \(X \) be a finite dimensional metrizable space with \(\dim_{\mathbb{Z}} X \leq 1 \) and \(f_{F} : F \to L_{m}^{[2]} \) a map from a closed subset \(F \) of \(X \). Then \(f_{F} \) extends to a map \(f : X \to L_{m}^{[3]} \).

Proof. Since \(L_{m} = K(\mathbb{Z}, 1) \) we have \(e\dim X \leq L_{m} \). Then \(f_{F} \) extends to a map \(f : X \to L_{m} \). Since \(X \) is finite dimensional we can assume that there is \(n \) such that \(f(X) \subset L_{m}^{[n]} \). Then, by Theorem 7.1 one can replace \(f \) by a map to \(L_{m}^{[3]} \) which coincides with \(f_{F} \) on \(F \) and the corollary follows. ■

Thus the only missing part of proving Theorem 1.3 is to push maps from \(L_{m}^{[3]} \) to \(L_{m}^{[2]} \). We will do this in two steps. The first one is

Proposition 7.3 Let \(X \) be a finite dimensional metrizable space with \(\dim_{\mathbb{Z}} X \leq 1 \) and let \(f : X \to L_{m}^{[3]} \) be a map. Then there is a map \(f' : X \to L_{m}^{[2]} \) which coincides with \(f \) on \(f^{-1}(L_{m}^{[1]}) \).

Proof. Consider the basic modification \(M \) of \(L_{m}^{[3]} \). Recall that \(M \) is obtained from \(L_{m}^{[3]} \) by the basic surgery which replaces \(E = S^{1} \times B \subset L_{m}^{[3]} \) with \(E_{M} = S^{1} \times M(\mathbb{Z}, 1) = S^{1} \times L_{m}^{[2]} \) by identifying \(\partial E = S^{1} \times \partial B = S^{1} \times S^{1} \) with \(\partial E_{M} = S^{1} \times L_{m}^{[1]} = S^{1} \times S^{1} \). Also recall that \(L_{m}^{[1]} \) remains untouched in \(M \) and does not meet \(E_{M} \).

Enlarge \(M \) to the space \(M^{+} \) by enlarging \(E_{M} = S^{1} \times L_{m}^{[2]} \) to \(E_{M}^{+} = S^{1} \times L_{m}^{[3]} \). Apply again Corollary 7.2 to the projection of \(S^{1} \times L_{m}^{[3]} \) to \(L_{m}^{[3]} \) to extend the map \(f \) restricted to \(f^{-1}(E) \) over \(f^{-1}(E) \) as a map to \(S^{1} \times L_{m}^{[3]} \) and this way to get a map \(f^{+} : X \to M^{+} \) which differs from \(f \) only on \(f^{-1}(E) \).

The space \(M^{++} \) is obtained from \(M^{+} \) by replacing \(E_{M}^{+} = S^{1} \times L_{m}^{[3]} \) with \(E_{M}^{++} = S^{1} \times M \) by identifying \(L_{m}^{[1]} \) in \(L_{m}^{[3]} \) with \(L_{m}^{[1]} \) in \(M \). Thus \(M^{++} \) differs from \(M^{+} \) on the set \(E_{M}^{++} = S^{1} \times S^{1} \times L_{m}^{[2]} \subset M^{++} \).

By Proposition 6.2 the identity map of \(L_{m}^{[1]} \) extends to a map \(\alpha : M \to L_{m}^{[2]} \) which is null-homotopic on \(S^{0} \times L_{m}^{[1]} \subset E_{M} \) where \(S^{0} \) is a singleton in \(S^{1} \). Then we get that the map
\[id \times \alpha : E_M^{++} = S^1 \times M \rightarrow S^1 \times L_m^3 \subset E_M^{++} \text{ induces } \beta : M^{++} \rightarrow M^+ \text{ so that } \beta(M^{++}) \subset M \subset M^+.\]

Consider the map \(\gamma = \alpha \circ \beta : M^{++} \rightarrow L_m^2 \) and note that \(\gamma \) restricted to \(S^0 \times S^0 \times L_m^2 \subset E_M^{++} \) is the composition of the maps \(S^0 \times S^0 \times L_m^2 \rightarrow S^0 \times L_m^2 \rightarrow L_m^2 \) each of them acting as \(\alpha \) restricted to \(S^0 \times L_m^2 \subset E_M \). Hence, by Proposition 2.4 \(\gamma \) restricted to \(S^0 \times S^0 \times L_m^2 \) is null-homotopic. Then, by Proposition 2.5 \(f^+ \) restricted to \((f^+)^{-1}(\partial E_M^{++}) \) and followed by \(\gamma \) for \(\partial E_M^{++} = S^1 \times S^1 \times L_m^1 \subset E_M^{++} \) extends over \((f^+)^{-1}(E_M^{++}) \) and this extension provides a map \(f' : X \rightarrow L_m^2 \) that coincides with \(f \) on \(f^{-1}(L_m^1) \). The proposition is proved. \[\blacksquare\]

Proposition 7.4 Let \(X \) be a finite dimensional metrizable space with \(\dim_{\mathbb{Z}} X \leq 1 \) and let \(f : X \rightarrow L_m^3 \) be a map. Then there is a map \(f' : X \rightarrow L_m^2 \) which coincides with \(f \) on \(f^{-1}(L_m^2) \).

Proof. Consider the ball model of \(L_m^3 \) and let \(p : \mathbb{B}^3 \rightarrow L_m^2 \). In the decomposition \(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}_z \) we will refer to \(\mathbb{R}^2 \) and \(\mathbb{R}_z \) as the \(xy \)-coordinate plane and the \(z \)-axis respectively. By a rotation of \(\mathbb{B}^3 \) we mean an orthogonal rotation around the \(z \)-axis. Clearly a rotation \(\phi \) of \(\mathbb{B}^3 \) induces a homeomorphism \(\phi_L \) of \(L_m^3 \) which will be called the induced rotation of \(L_m^3 \). Note that the rotations of \(\mathbb{B}^3 \) and \(L_m^2 \) commute with the projection \(p \). By this we mean that \(p \circ \phi = \phi_L \circ p \). Also note that \(L_m^2 \) is invariant under the induced rotations of \(L_m^3 \).

Take a disk \(B \) of radius 1/3 lying in the \(xz \)-coordinate plane and centered at the point \((1/2, 0, 0) \in \mathbb{R}^3 \). Denote by \(E = S^1 \times B \) the solid torus obtained by rotating \(B \) around the \(z \)-axis and denote by \(\partial E = S^1 \times \partial B = S^1 \times S^1 \subset E \) the boundary of \(E \). Clearly \(E \) can be considered as subsets of \(L_m^2 \).

Let \(\mathcal{I} = \mathbb{B}^3 \cap \mathbb{R}_z \) be the \([-1, 1]\)-interval of the \(z \)-axis and denote \(\partial \mathcal{I} = \{-1, 1\} \subset \mathbb{R}_z \) the end points of \(\mathcal{I} \). Consider an obvious retraction \(r_\mathcal{B} : \mathbb{B}^3 \setminus (E \setminus \partial E) \rightarrow \mathcal{I} \cup \partial \mathbb{B}^3 = \mathcal{I} \cup S^2 \) such that \(r_\mathcal{B} \) commutes with the rotations of \(\mathbb{B}^3 \) and consider the map \(\gamma : \mathcal{I} \cup \partial \mathbb{B}^3 \rightarrow L_m^2 \) such that \(\gamma \) coincides on \(S^2 \) with \(p \) and \(\gamma \) sends \(\mathcal{I} \) to the point \(p(\partial \mathcal{I}) \). Note that \(r_\mathcal{B} \) followed by \(\gamma \) induces the retraction \(r : L_m^3 \setminus (E \setminus \partial E) \rightarrow L_m^3 \) such that \(r \) commutes with the rotations of \(L_m^3 \).

Consider the surgery of \(L_m^3 \) which replaces \(E = S^1 \times B \) with \(E_M = S^1 \times L_m^2 \) by identifying the boundary \(\partial B = S^1 \) of \(B \) with the 1-skeleton \(L_m^1 = S^1 \times L_m^2 \). Denote by \(M \) the space obtained from \(L_m^3 \) by this surgery. Clearly the 2-skeleton \(L_m^2 \) of \(L_m^3 \) remains untouched in \(M \). Note that this surgery and this modification are different from the basic surgery and the basic modification of \(L_m^3 \) considered before.

Observe that any map from \(L_m^1 \) to \(L_m^2 \) extends over \(L_m^2 \). Fix a singleton \(S^0 \) in \(S^1 \) and extend \(r \) restricted to \(S^0 \times L_m^2 \) to a map \(r^0 : S^0 \times L_m^2 \rightarrow L_m^2 \). Then, since \(r \) commutes with the rotations of \(L_m^3 \), \(r^0 \) can be extended by the rotations of \(L_m^3 \) to a map \(r^1 : E_M = S^1 \times L_m^2 \rightarrow L_m^2 \) so that \(r^1 \) extends \(r \) restricted to \(\partial E \). Thus \(r^1 \) together with \(r \) provide a retraction \(\beta : M \rightarrow L_m^2 \) which extends the identity map of \(L_m^2 \).

Now denote \(F = f^{-1}(\partial E) \) and consider the restriction \(f|F : F \rightarrow \partial E = S^1 \times S^1 = S^1 \times L_m^1 \). Then, by Corollary 7.2 and Proposition 7.3 \(f|F \) followed by the projection
to $L^{[1]}_m$ extends over $f^{-1}(E)$ as a map to $L^{[2]}_m$ and this extension provides an extension $f_E : f^{-1}(E) \to E = S^1 \times L^{[2]}_m$ of $f|F$ over $f^{-1}(E)$. Thus we get a map $f_M : X \to M$ which coincides with f on $f^{-1}(L^{[2]}_m)$. Set $f' = \beta \circ f_M : X \to L^{[2]}_m$ and the proposition follows. ■

Proof of Theorem 1.3. Theorem 1.3 follows from Corollary 7.2 and Proposition 7.4. ■

References

[1] A.N. Dranishnikov *An extension of mappings into CW-complexes*, Mat. Sb. 182 (1991), 1300-1310; English transl., Math. USSR Sb. 74 (1993), 47-56.

[2] Dranishnikov, A. N. *Cohomological dimension theory of compact metric spaces*, Topology Atlas invited contribution, http://at.yorku.ca/topology.taic.html (see also arXiv:math/0501523).

[3] Dydak, Jerzy *Cohomological dimension and metrizable spaces. II*. Trans. Amer. Math. Soc. 348 (1996), no. 4, 1647–1661.

[4] Hatcher, Allen *Algebraic topology*. Cambridge University Press, Cambridge, 2002. xii+544 pp. ISBN: 0-521-79160-X; 0-521-79540-0

[5] Dydak, Jerzy; Levin, Michael *Extensions of maps to the projective plane*. Algebr. Geom. Topol., 5(2005), 1711-1718.

[6] Dydak, Jerzy; Levin, Michael *Maps to the projective plane*. Algebr. Geom. Topol. 9 (2009), no. 1, 549-568.

[7] Kuzminov, V. I. *Homological dimension theory*. Russian Math Surveys 23 (5) (1968), 1-45.

Jerzy Dydak
Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1300
dydak@math.utk.edu

Michael Levin
Department of Mathematics
Ben Gurion University of the Negev
P.O.B. 653
Be’er Sheva 84105, ISRAEL
