Stripe Antiferromagnetic Spin Fluctuations in SrCo$_2$As$_2$

W. Jayasekara,1,2 Y. Lee,1,2 Abhishek Pandey,1,2 G. S. Tucker,1,2 A. Sapkota,1,2
J. Lamsal,1,2 S. Calder,3 D. L. Abernathy,3 J. L. Niedziela,3 B. N. Harmon,1,2
A. Kreyssig,1,2 D. Vaknin,1,2 D. C. Johnston,1,2 A. I. Goldman,1,2 and R. J. McQueeney1,2

1Ames Laboratory, Ames, Iowa, 50011, USA
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA
3Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA

(Dated: May 7, 2014)

Inelastic neutron scattering measurements of paramagnetic SrCo$_2$As$_2$ at $T = 5$ K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wavevector of $Q_{\text{AFM}} = (1/2, 1/2, 1)$ and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe$_2$As$_2$ compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q_{AFM}. SrCo$_2$As$_2$ has a more complex Fermi surface and band structure calculations indicate a potential instability towards either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

The AFe$_2$As$_2$ compounds ($A = \text{Ca, Sr, Ba}$) are itinerant antiferromagnets (AFMs) where spin-density wave ordering is driven by Fermi surface nesting between electron and hole pockets [4]. The in-plane nesting vector $Q_{\text{AFM}} = (1/2, 1/2)$ describes a stripe AFM structure consisting of ferromagnetic (FM) chains of spins extending along the [1, 1] direction with AFM alignment along [1, 1] [see Fig. 1(f)]. In Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, electron-doping by the substitution of Co for Fe destabilizes the stripe AFM ordering by shrinking (enlarging) the hole (electron) pockets and detuning the nesting condition. Ultimately, the suppression of stripe AFM ordering upon Co substitutions of a few percent allows a superconducting ground state to appear in the presence of substantial spin fluctuations at Q_{AFM}. Further Co substitutions ($x > 12\%$) lead to a complete suppression of both stripe spin fluctuations [2, 3] and superconductivity [4, 5].

The ACo$_2$As$_2$ compounds with a full replacement of Fe by Co have garnered little attention. Initial experiments on BaCo$_2$As$_2$ [4] and SrCo$_2$As$_2$ [5] describe these materials as metals with enhanced paramagnetic susceptibility and no magnetic ordering or superconductivity down to 2 K. Band structure calculations find a large density-of-states at the Fermi energy that is proposed to drive a ferromagnetic instability and enhanced paramagnetism [6, 7]. Recent angle-resolved photoemission spectroscopy (ARPES) data on BaCo$_2$As$_2$ [8, 10] and SrCo$_2$As$_2$ [8] reveal a complex multi-band Fermi surface and, unlike the iron arsenides, no clear nesting features exist that might suggest an instability towards AFM ordering.

In this Letter, we report the remarkable discovery that SrCo$_2$As$_2$ is near an instability to stripe AFM order, not ferromagnetism, i.e. it adopts the same magnetic state as found in the tetragonal phase of iron arsenide-based parent and superconducting compounds. Inelastic neutron scattering (INS) was used to measure steeply dispersing and quasi-two-dimensional (2-D) paramagnetic excitations near $Q_{\text{AFM}} = (1/2, 1/2, 1)$ that share many similarities to AFe$_2$As$_2$, despite their dissimilar Fermi surface topologies. One notable difference is the opposite anisotropy of the longitudinal and transverse spin correlation lengths, indicating that the nearest-neighbor magnetic exchange is FM in SrCo$_2$As$_2$, rather than AFM in AFe$_2$As$_2$. Spin-polarized band-structure calculations find a tendency for both FM and stripe AFM order, which also emphasizes the important role that competing FM interactions play in the cobalt arsenides. This result raises important questions about the origins of stripe spin-density waves and the potential for unconventional superconductivity within the cobalt arsenides.

The INS measurements were carried out on the ARCS and HB3 spectrometers at the Spallation Neutron Source and High Flux Isotope Reactor, respectively, at Oak Ridge National Laboratory. The measurements were performed on three single crystals of SrCo$_2$As$_2$ with a total mass of approximately 2.6 g that were co-aligned to within less than 3 degrees full-width-at-half-maximum (FWHM). Bulk electronic transport, magnetization, heat capacity, 75As NMR, and neutron diffraction measurements show no evidence for structural or magnetic phase transitions (to G-type or A-type AFM order) from room temperature down to 1.3 K, with no evidence for short-range or long-range chemical inhomogeneity [8]. In the present neutron diffraction study, no detectable stripe AFM order was found in our samples down to $T = 5$ K. The samples were mounted in the (H, H, L) scattering plane and we define $Q = (H, K, L) = \frac{\pi}{a} Hi + \frac{\pi}{a} K j + \frac{\pi}{c} L k$ in reciprocal lattice units (rlu) as referenced to the tetragonal $I4/mmm$ unit cell with lattice constants $a = 3.94$ Å and $c = 11.8$ Å. The ARCS measurements were performed with an incident neutron energy of 75 meV and the incident beam oriented along the crystallographic L-direction. HB3 data were collected with a fixed final energy of 14.7 meV, horizontal collimation of 48°-60$^\circ$-...
Figure 1: Panels (a) – (e) show INS data on SrCo$_2$As$_2$ measured on ARCS with $E_i = 75$ meV and $T = 5$ K. Panel (a) shows data in the $H - K$ plane summed over $15 - 25$ meV highlighting anisotropic spin fluctuations centered at $Q_{AFM} = (1/2, 1/2)$ with $< L > = 1.6$. Panel (b) plots the same data as in panel (a), but symmetry-equivalent quadrants have been averaged together. Panels (c) and (d) show the energy dependence of the scattering in the LO direction [averaged over a range of $0.4 - 0.6$ rlu in the LO direction], respectively. In panels (c) and (d), the white horizontal bar indicates the susceptibility centered at Q_{FWHM} of single Gaussian fits to the constant energy scans, similar to those shown in Fig. 2. (e) The imaginary part of the magnetic intensity in the longitudinal (LO) AFM direction shows magnetic scattering intensity centered at an imaginary part of the dynamical magnetic susceptibility $\chi''(Q,E)$ is plotted in Fig. 1(e) as the imaginary part of the dynamical magnetic susceptibility $\chi''(Q,E) = \frac{2\pi}{\gamma r_0^2} \frac{I - I_{Bkg}}{f^2(Q)} [1 - \exp(-E/kT)]$. (1)

where $I - I_{Bkg}$ is the background subtracted raw data, $(\gamma r_0)^2 = 290.6$ mBarns Sr$^{-1}$, and $f(Q)$ is the magnetic form factor of a Co$^{2+}$ ion. The imaginary susceptibility is shown to be consistent with a relaxational spectrum, $\chi''(Q_{AFM},E) \sim ET/(E^2 + \Gamma^2)$, typical for nearly antiferromagnetic metals and yields a characteristic damping energy of $\Gamma = 32(8)$ meV. Weak residual phonon signals...
Figure 2: (a) Longitudinal and (b) transverse cuts through $Q_{\text{AFM}} = (1/2, 1/2, < L >)$ as measured on the ARCS spectrometer and averaged over an energy range from 10 to 15 meV ($< L > = 1.2$) and 30 to 40 meV ($< L > = 3.3$). The longitudinal cuts in (a) were averaged over a range of ±0.1 rlu in the TR-direction. The transverse cuts in (b) were averaged over a range of 0.4 – 0.6 rlu in the LO-direction. Red lines are for the magnetic signal and to single Gaussian line shape and dashed lines are the fitted background. The FWHM are represented as horizontal white bars in ARCS data, as shown in Fig. 2. Several different energy cuts were fit to single Gaussian line shapes with a FWHM of the estimated resolution FWHM.

The anisotropy between the spin fluctuations in the Co layer is clearly demonstrated by LO and TR cuts through the ARCS data, as shown in Fig. 2. Several different energy cuts were fit to single Gaussian lineshapes with a FWHM of κ_{LO} and κ_{TR} rlu for the LO and TR cuts, respectively. The FWHM are represented as horizontal white bars in Figs. 1(c) and (d). At low energies, the inverse FWHM of the constant energy cuts is related to the spin-spin correlation length $[\xi_i \approx a/(2\pi \kappa_i)]$ and we find that $\kappa_{\text{LO}} = 0.21(2)$ rlu and $\kappa_{\text{TR}} = 0.11(1)$ rlu. The anisotropy of the spin fluctuations in SrCo$_2$As$_2$ is itinerant in nature, the low energy spin dynamics can be interpreted and parameterized using a Heisenberg model with nearest-neighbor (J_1) and next-nearest-neighbor (J_2) exchange interactions, as shown in Fig. 1(f). A similar approach has been used extensively to describe the spin dynamics in the iron arsenides [12–14]. Within the Heisenberg model, the anisotropy of correlation lengths in the paramagnetic phase (η) is related to the ratio of J_1 and J_2 [13].

$$\eta = \frac{\xi_{\text{LO}}^2 - \xi_{\text{TR}}^2}{\xi_{\text{LO}}^2 + \xi_{\text{TR}}^2} = \frac{\kappa_{\text{TR}}^2 - \kappa_{\text{LO}}^2}{\kappa_{\text{TR}}^2 + \kappa_{\text{LO}}^2} = \frac{J_1}{2J_2}. \quad (2)$$

From this relation, we obtain $\eta = -0.56(18)$ which implies that $|J_1| \approx |J_2|$. Since $J_2 > 0$ (AFM exchange) for stripe AFM correlations, the negative value of η indicates that $J_1 < 0$ (FM exchange). A ferromagnetic J_1 results in a shorter correlation length along the LO direction, as it destabilizes the AFM nearest-neighbor correlations [see Fig. 1(f)]. This anisotropy can be compared to that of the parent and electron-doped AF_2As_2 materials where $\eta = 0.5$ [11], i.e. the anisotropy is opposite and J_1 is AFM for the iron-based compounds. It is interesting to note that the spin fluctuation anisotropy is predicted to become negative ($\eta < 0$) in hole-doped AF_2As_2 [16], which has subsequently been observed in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ [17]. Here, we show that $\eta < 0$ also in SrCo$_2$As$_2$ which, based on ARPES measurements, may be described as a heavily electron-doped iron-compound [8,10].

HB3 data were used to establish the L-dependence and the T-dependence of the spin fluctuations. Figures 3(a) and (b) show χ'' at $E = 7.5$ meV along the LO ($H, H, 1$)-direction and the L-direction at (1/2, 1/2, L). The data are reported in absolute units of μ_B^2 eV$^{-1}$ f.u.$^{-1}$ after subtraction of a fitted background function and calibration to the integrated intensity of transverse acoustic phonons in the (2, 2, 0) zone. We find that the absolute level of magnetic intensity at low energies is ≈ 3 times smaller than that found in the normal state of paramagnetic BaFe$_{1.85}$Co$_{0.15}$As$_2$ [18]. We note that the relative variation of sample absorption due to Co-absorption was corrected for in Fig. 3(b) [19]. However, an overall absorption correction was not attempted, so phonon calibrations of the absolute intensity are subject to potential errors of 30%. Figure 3(b) indicates that L-dependent modulations are weak at $T = 5$ K but are peaked at $L = \text{odd}$, which suggests a weak AFM interaction between the Co layers. Thus, the AFM wavevector $Q_{\text{AFM}} = (1/2, 1/2, 1)$ is identical to that of AF_2As_2. Longitudinal and L scans performed at $T = 5$, 100, and 200 K in Figs. 3(a) and (b) show that the spin correlations are severely suppressed at 100 K and not detectable at 200 K.

We now turn to a discussion of the possible origin of stripe spin fluctuations in SrCo$_2$As$_2$. The stripe AFM ordering in the iron arsenides is driven by Fermi surface nesting of electron and hole pockets. However, ARPES measurements on BaCo$_2$As$_2$ [9,10] and SrCo$_2$As$_2$ [8]
show a more complex Fermi surface and it is not obvious if a strong nesting condition exists that would support an itinerant spin-density wave description. To better understand the possibility for Fermi surface-driven magnetism in SrCo$_2$As$_2$, we performed DFT calculations in both LDA [24] and generalized gradient (GGA) approximations [21] employing a full-potential linear augmented plane wave (FPLAPW) code [22].

To obtain a self-consistent charge density, we used R_{MT}-R_{max} = 9.0 with muffin-tin radii (R_{MT}) of 2.3, 2.1, 2.1 a.u. for Sr, Co and As, respectively. 828 k-points were selected in the irreducible Brillouin zone and the calculations were iterated to reach the total energy convergence criterion of 0.01 mRy/primitive cell. Starting from experimental lattice parameters [a = 3.9471(4) Å and c = 11.801(1) Å and $z_{As} = 0.3588$] [3], we optimized the c/a ratio and unit-cell volume to obtain the parameters that gave minimum total energy. Arsenic-atom positions were relaxed until the forces on As atoms were smaller than 0.1 mRy/a.u., which gave $z_{As} = 0.3514$ (LDA), and 0.35618 (GGA). For the $\chi(q)$ calculations, the whole reciprocal unit cell was divided into $160 \times 160 \times 160$ parallelepipeds that resulted in 34061 k-points.

The LDA calculations are used to reveal wavevectors where the generalized static susceptibility $\chi(q)$ is a maximum, signaling a tendency towards magnetic ordering at that q. Similar calculations in the iron arsenides have a maximum in the susceptibility at the nesting vector for stripe AFM order [23] [25]. Figure 4 shows LDA calculations of $\chi(q)$ for SrCo$_2$As$_2$ which indicate that both FM or A-type order [q = (0, 0, L)] and stripe AFM order [q = (1/2, 1/2, L)] with $L = 0$ or 1 are preferable. The use of experimental versus relaxed lattice parameters and As z-position strongly affects $\chi(q)$, suggesting that strong magnetoelastic interactions may be present and orbital matrix elements must be included in order to establish the true magnetic ground state from DFT. The near degeneracy of different magnetic states in SrCo$_2$As$_2$ is also demonstrated by GGA calculations of the total energy for non-magnetic, ferromagnetic, A-type AFM (FM Co layers with AFM coupling between layers), and stripe AFM ground states, as shown in the inset of Fig. 4(d).

For large c/a ratios, the system tends towards a non-magnetic ground state whereas, for the experimentally observed c/a ratio, ferromagnetic/A-type order is slightly preferred over stripe AFM order.

To better understand a possible connection between stripe AFM in observed iron and cobalt arsenides, we now discuss studies of the evolution of the spin fluctuations, electronic band structure, and superconductivity on the Fe-rich end of the phase diagram of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ into the overdoped region. Neutron scattering data indicate a complete absence of low-energy stripe spin fluctuations for $x = 0.14$ [2, 3]. The disappearance of stripe spin fluctuations can be reconciled with ARPES data showing a Lifshitz transition where the electron and hole pockets that characterize BaFe$_2$As$_2$ evolve into two mismatched electron pockets at about $x = 0.20$ [24]. This change in the band structure and the absence of spin fluctuations in the overdoped region also coincides with the disappearance of superconductivity. Evidently, the stripe spin fluctuations reappear in SrCo$_2$As$_2$ with an energy scale similar to the iron arsenides. Taken together, the stripe AFM spin correlations are completely suppressed, and then restabilized, with increasing Co composition.

The reason for this behavior is likely the continuous transformation of the Fermi surface due to change in the chemical potential, although it is also possible that chemical disorder is a contributor to the suppression of stripe magnetism at intermediate compositions. A recent investigation reporting the reestablishment of AF order with heavy electron doping of LaFeAsO$_{1-x}$F$_x$ shares many similarities to our current study [27].

Ultimately, it is worth considering whether cobalt arsenide based compounds that are tuned by chemical substitution or applied pressure will harbor unconventional superconductivity. Certainly, the similarity of the spin fluctuations to the iron arsenides makes such an expectation possible. However, the reciprocal space anisotropy of the spin fluctuations indicates that strong FM nearest-neighbor interactions are present in the cobalt arsenides. The prospect of incipient FM in the AC$_2$As$_2$ system is supported by magnetization [28] [30] and neutron scattering studies [31] in the collapsed tetragonal phase of CaCo$_2$As$_2$ (with $c/a = 2.6$) that describe A-type AFM
order below $T_N = 53$ to 76 K (depending on sample preparation). Our DFT calculations of the generalized static susceptibility also highlight the relative importance of competing FM interactions in the cobalt arsenides. While unconventional superconductivity may be lurking in the cobalt arsenides, the prevalence of FM nearest-neighbor interactions and, potentially, competing FM spin fluctuations, may introduce pair-breaking that suppresses s-wave superconductivity and/or lead to a p-wave triplet superconducting state.

The authors would like to thank P. C. Canfield, R. M. Fernandes, A. Kaminski, and A. S. Sefat for useful discussions. The work at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. Work at Oak Ridge National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division.

[1] D. C. Johnston, Adv. Phys. 59, 803 (2010).
[2] K. Matan, R. Morinaga, K. Iida, and T. J. Sato, Phys. Rev. B 79, 054526 (2009).
[3] T. J. Sato, K. Matan, S. Ibuka, R. Morinaga, Songxue Chi, J. W. Lynn, A. D. Christianson, and M. D. Lumsden, Phys. Rev. B 83, 059901 (2011).
[4] Athena S. Sefat, Rongying Jin, Michael A. McGuire, Brian C. Sales, David J. Singh, and David Mandrus, Phys. Rev. Lett. 101, 117004 (2008).
[5] A. Leithe-Jasper, W. Schnelle, C. Geibel, and H. Rosner, Phys. Rev. Lett. 101, 207004 (2008).
[6] N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 78, 214515 (2008).
[7] A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Phys. Rev. B 79, 024512 (2009).
[8] Abhishek Pandey, D. G. Quirinale, W. Jayasekara, A. Sapkota, M. G. Kim, R. S. Dhaka, Y. Lee, T. W. Heitmann, P. W. Stephens, V. Ogloblachev, A. Kreyssig, R. J. McQueeney, A. I. Goldman, Adam Kaminski, B. N. Harmon, Y. Furukawa, and D. C. Johnston, Phys. Rev. B 88, 014526 (2013).
[9] N. Xu, P. Richard, A. van Roekeghem, P. Zhang, H. Miao, W. L. Zhang, T. Qian, M. Ferrero, A. S. Sefat, S. Biermann, and H. Ding, Phys. Rev. X 3, 011006 (2013).
[10] R. S. Dhaka, Y. Lee, V. K. Anand, D. C. Johnston, B. N. Harmon, and Adam Kaminski, Phys. Rev. B 87, 214516 (2013).
[11] G. S. Tucker, R. M. Fernandes, H. F. Li, V. Thampy, N. Ni, D. L. Abernathy, S. L. Bud’ko, P. C. Canfield, D. Vaknin, J. Schmalian, and R. J. McQueeney, Phys. Rev. B 86, 024505 (2012).
[12] Jun Zhao, D. T. Adroja, Dao-Xin Yao, R. Bewley, Shiliang Li, X. F. Wang, G. Wu, X. H. Chen, Jiangping Hu, and Pengcheng Dai, Nat. Phys. 5, 555 (2009).
[13] R. A. Ewings, T. G. Perring, J. Gillett, S. D. Das, S. E. Sebastian, A. E. Taylor, T. Guidi, and A. T. Boothroyd, Phys. Rev. B 83, 214519 (2011).
[14] L. W. Harriger, H. Q. Luo, M. S. Liu, C. Frost, J. P. Hu, M. R. Norman, and Pengcheng Dai, Phys. Rev. B 84, 054544 (2011).
[15] S. O. Diallo, D. K. Pratt, R. M. Fernandes, W. Tian, J. L. Zarestky, M. Lumsden, T. G. Perring, C. L. Broholm, N. Ni, S. L. Bud’ko, P. C. Canfield, H. F. Li, D. Vaknin, A. Kreyssig, A. I. Goldman, and R. J. McQueeney, Phys. Rev. B 81, 214407 (2010).
[16] J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, Ph Bourges, Y. Sidis, Yuan Li, J. H. Kim, D. Haug, A. Ivanov, K. Hradil, A. Schneiderwind, P. Link, E. Faulhaber, I. Glavatskyy, C. T. Lin, B. Keimer, and V. Hinkov, Phys. Rev. B 82, 134503 (2010).
[17] Chenglin Zhang, Meng Wang, Huiqian Luo, Miaoyin Wang, Mengshu Liu, Jun Zhao, D. L. Abernathy, T. A. Maier, Karol Marty, M. D. Lumsden, Songxue Chi, Sung Chang, Jose A. Rodriguez-Rivera, J. W. Lynn, Tao Xiang, Jiangping Hu, and Pengcheng Dai, Sci. Rep. 1, 115 (2011).
[18] D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A. Schneiderwind, K. Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov, Nat. Phys. 6, 178 (2009).
[19] The sample absorption was estimated by measurement of the attenuation of the incoherent elastic scattering signal at the identical sample positions corresponding to each inelastic scan. This absorption function was then divided into the inelastic data scans to make the correction.
[20] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[21] J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[22] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculation Crystal Properties (K. Schwarz, TU Wien, Austria, 2001) ISBN 3-9501031-1-2.
[23] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
[24] A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud’ko, P. C. Canfield, and R. J. McQueeney, Phys. Rev. B 78, 100506 (2008).
[25] A. N. Yaresko, G. Q. Liu, V. N. Antonov, and O. K. Andersen, Phys. Rev. B 79, 144421 (2009).
[26] C. Liu, A. D. Palczewski, R. S. Dhaka, T. Kondo, R. M. Fernandes, E. D. Mun, H. Hodovanets, A. N. Thaler, J. Schmalian, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Phys. Rev. B 84, 020509 (2011).
[27] N. Fujiwara, S. Tsutsumi, S. Inumura, S. Matsushita, H. Hosono, Y. Yamakawa, and H. Kontani, Phys. Rev. Lett. 111, 097002 (2013).
[28] B. Cheng, B. F. Hu, R. H. Yuan, T. Dong, A. F. Fang, Z. G. Chen, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. B 85, 144426 (2012).
[29] J. J. Ying, Y. J. Yan, A. F. Wang, Z. J. Xiang, P. Cheng, G. J. Ye, and X. H. Chen, Phys. Rev. B 85, 214414 (2012).
[30] V. K. Anand, et al. (unpublished).
[31] J. H. Soh, et al. (unpublished).