Impact of Interlayer and Ferroelectric Materials on Charge Trapping during Endurance Fatigue of FeFET with TiN/Hf$_x$Zr$_{1-x}$O$_2$/interlayer/Si (MFIS) Gate Structure

Fengbin Tian, Shujing Zhao, Hao Xu, Jinjuan Xiang, Tingting Li, Wenjuan Xiong, Jiahui Duan, Junshuai Chai, Kai Han, Xiaolei Wang, Wenwu Wang, and Tianchun Ye

Abstract—We study the impact of different interlayers and ferroelectric materials on charge trapping during the endurance fatigue of Si FeFET with TiN/Hf$_x$Zr$_{1-x}$O$_2$/interlayer/Si (MFIS) gate stack. We have fabricated FeFET devices with different interlayers (SiO$_2$ or SiON) and Hf/Zr$_1$O$_2$ materials (x=0.75, 0.6, 0.5), and directly extracted the charge trapping during endurance fatigue. We find that: 1) The introduction of the N element in the interlayer suppresses charge trapping and defect generation, and improves the endurance characteristics. 2) As the spontaneous polarization (P_s) of the Hf$_x$Zr$_{1-x}$O$_2$ decreases from 25.9 μC/cm2 (Hf$_{0.8}$Zr$_{0.2}$O$_2$) to 20.3 μC/cm2 (Hf$_{0.7}$Zr$_{0.3}$O$_2$), the charge trapping behavior decreases, resulting in the slow degradation rate of memory window (MW) during program/erase cycling; in addition, when the P_s further decreases to 8.1 μC/cm2 (Hf$_{0.7}$Zr$_{0.3}$O$_2$), the initial MW nearly disappears (only ~0.02 V). Thus, the reduction of P_s could improve endurance characteristics. On the contract, it could also reduce the MW. Our work helps design the MFIS gate stack to improve endurance characteristics.

Index Terms—Si FeFET, ferroelectric, doped HfO$_2$, endurance trapping, interlayer, Hf:Zr ratio.

I. INTRODUCTION

Hafnium-based FeFET is pursued due to its excellent characteristics, such as > 10-year retention, low power consumption, fast reading and writing, complete compatibility with the CMOS process, and scaling ability [1-5]. However, the endurance characteristics are generally 10^4-10^5 [6-13], which is far from the application requirements of memory and computing in-memory application ($>10^{14}$) [14]. Therefore, the study of endurance characteristics has attracted widespread attention.

Significant charge trapping/de-trapping is widely accepted as the origin of endurance fatigue. Thus, effective suppression of charge trapping is rather important to improve endurance characteristics [15-19]. Fig. 1 shows the charge trapping mechanism of the MFIS (TiN/Hf$_x$Zr$_{1-x}$O$_2$/interlayer/Si) gate stack. Two parameters determine the charge trapping behavior, i.e., trap density (N_t) and tunneling barrier. Thus, the current method of improving endurance can be summarized as the following two kinds.

The first method is to reduce the N_t. The self-heating effect [7] and high-pressure hydrogen annealing [8] can reduce the N_t. In addition, the introduction of the N element in the SiO$_2$ interlayer can also effectively suppress trap generation [9, 20, 21]. However, these works claim the trap passivation by measuring the endurance characteristics, but not directly measuring the charge trapping behavior.

The second method is to reduce voltage drop on the interlayer (V_{il}), including i) increasing dielectric constant of interlayer [9, 10, 22, 23], ii) decreasing the area ratio of the ferroelectric and interlayer capacitors [24], iii) eliminating interlayer [5, 25], iv) using Ω-Gate or recessed channel [26, 27], and v) reducing the spontaneous polarization (P_s) of ferroelectric [28-30]. Fig. 1(b) shows the ferroelectric...
hysteresis loop and load line of the MFIS gate stack to explain the methods (i) and (ii). The intersection between the loadline and hysteresis loop is denoted as ‘A’. The intersection between the loadline and abscissa is denoted as ‘B’. Then the sum of voltage drop on the interlayer (V_{IL}) and surface potential (V_s) is given as the horizontal distance between ‘A’ and ‘B’. Thus, the loadline will become steeper for the methods (i) and (ii). Then the distance decreases, which means that the V_{IL} decreases at the same voltage drop across ferroelectric. Fig. 1(c) shows the ferroelectric hysteresis loop and load line of the MFIS gate stack for the method (v). By reducing the P_{ox}, the V_{IL} and consequent interlayer electric field (E_{IL}) decrease at the same applied gate voltage. For the method of (v), theoretical predictions have been given [29], while there is no experimental study yet.

In this work, we experimentally study the impact of different interlayers and ferroelectric materials on charge trapping during the endurance fatigue of Si FeFET with Hf$_{1-x}$Zr$_x$O$_2$ materials. For the different interlayer materials, we employ SiO$_2$ or SiON. For the impact of P_{ox} on endurance fatigue, we employ Hf$_x$Zr$_{1-x}$O$_2$ layers by changing the Hf:Zr ratio. We also directly measure the charge trapping behavior.

II. EXPERIMENTAL

A. Device fabrication and measurements

The devices were fabricated by using a gate-last process. The silicon substrate used P-type silicon with a resistivity of about 10-12 $\Omega\cdot$cm. The source/drain was implanted using 40 keV energy with 4×10^{15} cm$^{-2}$ dose of As ions. The gate structure was W/TiN/Hf$_{1-x}$Zr$_x$O$_2$/interlayer/Si. The fabricated FeFET devices are summarized as shown in Fig. 2. Fig. 2(a) schematically shows FeFET with different interlayer materials. There are two kinds of interlayers. One is the SiO$_2$ interlayer, grown by ozone oxidation, and its thickness is about 0.7 nm. The other interlayer is SiON, grown by nitrogen plasma treatment of SiO$_2$, and its thickness is about 1.0 nm. Then same Hf$_{0.5}$Zr$_{0.5}$O$_2$ ferroelectric was used for different interlayers. The 9 nm Hf$_{0.5}$Zr$_{0.5}$O$_2$ was grown by ALD at 300 °C using tetrakis-(ethylmethylamino)-hafnium (TEMA-Hf) as Hf precursor, tetrakis-(ethylmethylamino)-zirconium (TEMA-Zr) as Zr precursor, and H$_2$O as O source. Fig. 2(b) schematically shows FeFET with different ferroelectric materials. There are three kinds of Hf$_x$Zr$_{1-x}$O$_2$ with $x=0.75$, 0.6, and 0.5. The interlayers are all 0.7 nm SiO$_2$. The Hf$_x$Zr$_{1-x}$O$_2$ is 9 nm thick. The different Hf:Zr ratios were realized by changing the Hf and Zr precursor cycles. For all samples, the 10 nm TiN and 75 nm W were deposited by sputtering as the metal gate. Then the ferroelectric phase crystallization was achieved by 550 °C for 60 s in N$_2$ to form the orthorhombic phase. Then, the source/drain contacts were defined by lithography, and TiN/Al was used as contact metal. Finally, forming gas annealing at 450 °C in 5%-H$_2$/95%-N$_2$ was performed. In addition, the capacitor of TiN/Hf$_{1-x}$Zr$_x$O$_2$/TiN was also fabricated with the same condition as above.

Fig. 3 shows the details of the electrical measurement we used in this work. We used Agilent B1500A and Radiant Precision LC ferroelectric tester to measure the transfer curve I_s-V_s, gate capacitance vs. gate voltage (C_{g-V_s}), the hysteresis loop, and PUND (Positive Up Negative Down). For MFM capacitors, a triangle wave of 3 V amplitude at 1 kHz was used for hysteresis loop measurement, and a square wave of 3 V amplitude at 1 kHz was used for the endurance characteristics test. For FeFET, AC small-signal measurement at 100 kHz was used for the C_{g-V_s} curves test. A square pulse of ±4.5 V amplitude and 200 μs width was used for the endurance test. The PUND was measured using a triangular wave of 4.5 V amplitude at 200 μs pulse width. The threshold voltage was extracted by the linear extrapolation method. The interfacial density (D_h) was measured by the conductance method.

B. Direct extraction of trapped charges

The direct measurement of trapped charges has been given in our previous work [19]. The main theory of this measurement method is described as follows. Generally, electrons are trapped into the gate stack after program (PGM) pulse, and here the trapped charge amount is denoted as Q_{g},$_{PGM}$. Holes are trapped after erase (ERS) pulse, and the trapped charge amount is denoted as Q_{g},$_{ERS}$. We experimentally measure the difference between the Q_{g},$_{PGM}$ and Q_{g},$_{ERS}$, i.e., ΔQ_g=Q_{g},$_{PGM}$-Q_{g},$_{ERS}$, in this work, which represents the charge trapping behavior.

According to the charge neutrality condition, we can obtain ΔQ_g = -(Q$_{g}$,$_{m}$+Q$_{g}$,$_{Si}$) where the Q_{g},$_{m}$ is the charge change on the metal gate, and Q_{g},$_{Si}$ is the charge change on the substrate. For the Q_{g},$_{m}$, we can obtain it by integrating the external circuit gate current. For the substrate charges Q_{g},$_{Si}$, its equal to the difference of the C_{g-V_s} curve integral from 0 to the respective threshold voltage (V_{th}) after positive and negative pulses, and that is ΔQ_{g},$_{Si}$ = $\int_{0}^{V_{th}} C_{g}$,$_{PGM}(V_s) dV_s - \int_{0}^{V_{th}} C_{g}$,$_{ERS}(V_s) dV_s$

ΔQ_{g},$_{Si}$ = $\int_{0}^{V_{th}} C_{g}$,$_{ERS}(V_s) dV_s + \int_{0}^{V_{th}} C_{g}$,$_{PGM}(V_s) dV_s$

ΔQ_{g},$_{Si}$ = $\int_{0}^{V_{th}} C_{g}$,$_{ERS}(V_s) dV_s - \int_{0}^{V_{th}} C_{g}$,$_{PGM}(V_s) dV_s$

ΔQ_{g},$_{Si}$ = $\int_{0}^{V_{th}} C_{g}$,$_{ERS}(V_s) dV_s - \int_{0}^{V_{th}} C_{g}$,$_{PGM}(V_s) dV_s$
Fig. 4. The C_V-V_g curves of FeFET with SiO$_2$ and SiON.

Thus, the trapped charges ΔQ_t can be obtained when the ΔQ_{ew} and ΔQ_{sw} are obtained. The details of this method can be found in ref. [19].

III. RESULTS AND DISCUSSION

A. Different interlayers

Fig. 4 shows the C_V-V_g curves of FeFET with SiO$_2$ and SiON. During measurement, the source, drain, and bulk were connected as a terminal, while the gate was the other terminal. The equivalent oxide thickness (EOT) of SiON and SiO$_2$ samples are 19.5 Å and 18.2 Å, respectively. Then the dielectric constant of SiON can be obtained as follows [23]

$$\kappa_{\text{SiON}} = \kappa_{\text{SiO}_2} \times \frac{I_{\text{SiON}}}{I_{\text{SiO}_2}}$$

where κ_{SiON} and κ_{SiO_2} are the dielectric constants of SiON and SiO$_2$, respectively; I_{SiON} and I_{SiO_2} represent the physical thicknesses of SiON and SiO$_2$, respectively; δ_{EOT} is the EOT difference between these two interlayers. Finally, the κ_{SiON} is determined to be 4.7. This value is consistent with the reported results [31, 32].

Fig. 5(a) and (b) show the I_{tr}-V_g curves of SiO$_2$ and SiON samples after wake up, respectively. The memory window (MW) is nearly the same, i.e., 1.54 V and 1.56 V. Figs. 5(c)-(f) show the I_{tr}-V_g curves of SiO$_2$ and SiON samples during the endurance process. The subthreshold swing (SS) degrades during the endurance fatigue, indicating that the D_a is increasing.

The I_{tr}-V_g degradation is different between the SiO$_2$ and SiON samples. The initial $I_{\text{on}}@V_g=3.0+1.0$ V of the SiO$_2$ sample is 3.11 μA/μm, and it decreases to 31.3% and 11.7% after the first PGM and ERS operation, respectively. In contrast, the initial $I_{\text{on}}@V_g=3.0+1.0$ V of the SiON sample is 3.14 μA/μm, and it decreases to 96.9% and 43.9% after the first PGM and ERS operation, respectively. Thus, the I_{on} degradation is more severe for the SiO$_2$ sample. The physical origin of I_{on} degradation after PGM/ERS operation is Coulomb scattering from increased trapped charges at Hf$_{0.5}$Zr$_{0.5}$O$_2$/interlayer interface and interfacial charges at interlayer/Si interface, which will be discussed later.

The V_{th} can be extracted and the endurance characteristics of FeFET with different interlayers are shown in Fig. 6(a). The MW decreases with increasing the PGM/ERS cycle. The endurance of the SiON sample reaches 10^5 cycles, which is 10 times larger than that of the SiO$_2$ sample. In addition, the initial MW of the SiON sample is 1.56 V. The above result is similar to the reported result [12].

We quantitatively investigate the charge trapping behavior. Fig. 6(b) shows the measured trapped charges into the gate stack as a function of the cycle number. It can be seen that the trapped charges of the SiON sample are always lower than that of the SiO$_2$ sample. In addition, the trapped charges of the SiON sample increase slower than that of the SiO$_2$ sample as the PGM/ERS cycle increases. Moreover, when the PGM/ERS cycle increases from 10^0 to 10^4, the trapped charges of SiON sample increase slower than that of the SiO$_2$ sample (136.5 μC/cm2). This indicates that more traps have been generated for the SiO$_2$ sample. Considering that the charge trapping/de-trapping occurs from the Si substrate into Hf$_{0.5}$Zr$_{0.5}$O$_2$/interlayer interface, these results indicate that the introduction of N element into the SiO$_2$ interlayer can effectively suppress charge trapping and trap generation at Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$ interface. It should be noted that it is the first time that the charge trapping behavior is experimentally extracted for the SiON sample and that the charge trapping behavior is directly verified to be effectively suppressed compared with the SiO$_2$ sample.

We next investigate the D_a. Fig. 7 shows the averaged D_a across the bandgap after the erase operation as a function of the cycle number. It can be seen that the D_a of the SiO$_2$ sample increases rapidly, from 10^{13} eV$^{-1}$·cm2 to 10^{14} eV$^{-1}$·cm2 as the PGM/ERS cycle increases from 10^0 to 10^4. Whereas the D_a of
the SiON sample is much lower, and it is nearly unchanged until the 10^7 cycles. This proves that the introduction of the N element can effectively suppress the D_t generation in FeFET. Nitrogen incorporation is well known to strengthen the SiOx/Si interface by passivating dangling bonds and forming a stronger bond with Si [10]. Therefore, the introduction of the N element can effectively suppress trap generation both at the Hf$_{0.6}$Zr$_{0.4}$O$_2$/SiO$_2$ and SiO$_2$/Si interfaces.

We discuss the energy position of traps at the Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$ interface. The endurance fatigue of SiO$_2$ and SiON samples is due to the V_{gs} increase after PGM and decrease after ERS. Considering that the trapped charges increase during endurance fatigue, we can conclude that the generated traps are localized both near the conduction band and valence band.

B. Hf$_x$Zr$_{1-x}$O$_2$ with different Hf:Zr ratios

We investigate the impact of Hf$_x$Zr$_{1-x}$O$_2$ with different Hf:Zr ratios on the endurance characteristics. Firstly, we investigate the MFM capacitors. Fig. 8(a) shows initial polarization-voltage (P-V) curves of MFM capacitors. It can be seen that the Hf$_x$Zr$_{1-x}$O$_2$ ratio effectively tunes the P-V curve. Fig. 8(b) shows endurance characteristics of the MFM capacitors with different Hf:Zr ratios. All the samples reach an endurance of 10^5-107 cycles. The coercive voltage (V_c) and saturated spontaneous polarization (P_s) are summarized as shown in Fig. 8(c) and (d), respectively. It can be seen that for samples Hf$_{0.5}$Zr$_{0.5}$O$_2$, Hf$_{0.6}$Zr$_{0.4}$O$_2$, and Hf$_{0.7}$Zr$_{0.3}$O$_2$, the initial values of $2V_c$ are similar and about 1.5 V, while the $2P_s$ decreases from 51.8 μC/cm2 to 16.2 μC/cm2.

Secondly, we investigate the FeFET with different Hf:Zr ratios. Fig. 9 shows the initial I_{d}-V_{ds} curves, together with those after the 10^6 PGM/ERS cycle. The I_{d}-V_{ds} degradation is observed. The initial I_{d} at V_{gs}=20+1.0 V for all samples is ~3.0 μA/μm. After the first PGM and ERS operation, I_{d} decreases to 31.4% and 14.3% for Hf$_{0.5}$Zr$_{0.5}$O$_2$ sample, 46.3% and 28.8% for Hf$_{0.6}$Zr$_{0.4}$O$_2$ sample, 81.4% and 79.5% for Hf$_{0.7}$Zr$_{0.3}$O$_2$ sample. The physical origin of I_{d} degradation after PGM/ERS operation is Coulomb scattering from increased trapped charges and D_t. The subthreshold swing also degrades during the endurance fatigue, indicating that the D_t is increasing.

The V_{gs} can be extracted and the MW is shown in Fig. 10. The endurance of all samples is ~104 cycles. After 10^4 cycles, the gate stack breakdown occurs. Therefore, we use the MW degradation percent from 100 to 106 cycles to compare the endurance characteristics, as shown in Fig. 10(d). As the P_s decreases from 25.9 μC/cm2 of Hf$_{0.5}$Zr$_{0.5}$O$_2$ to 20.3 μC/cm2 of Hf$_{0.7}$Zr$_{0.3}$O$_2$, the endurance characteristics improve. In contrast, when the P_s further decreases from 20.3 μC/cm2 of Hf$_{0.6}$Zr$_{0.4}$O$_2$ to 8.1 μC/cm2 of Hf$_{0.7}$Zr$_{0.3}$O$_2$, the endurance characteristics degrade.

Then we quantitatively investigate the charge trapping behavior. Fig. 11(a) shows the measured trapped charges into the gate stack as a function of the cycle number. It can be seen that the trapped charges decrease in the sequence of Hf$_{0.5}$Zr$_{0.5}$O$_2$, Hf$_{0.6}$Zr$_{0.4}$O$_2$, and Hf$_{0.7}$Zr$_{0.3}$O$_2$, which is the same as the changing trend of P_s. Especially the charge trapping behavior nearly disappears for the Hf$_{0.7}$Zr$_{0.3}$O$_2$ sample. Therefore, decreasing the ferroelectric P_s can effectively suppress the charge trapping.

However, as shown in Fig. 11(b), as the charge trapping effect becomes weaken, the endurance characteristics initially improve and then degrade. Moreover, it is worthy to note that the initial MW of the Hf$_{0.7}$Zr$_{0.3}$O$_2$ sample is nearly zero, and MW is all negative after 10^6 PGM/ERS cycle, even though the $2E_C$ of Hf$_{0.7}$Zr$_{0.3}$O$_2$ sample is similar to others. We discuss the physical origin by analyzing the relationship among the
polarization, charge trapping, and the MW as follows.

Firstly, we discuss the endurance improvement from Hf$_{0.5}$Zr$_{0.5}$O$_2$ to Hf$_{0.9}$Zr$_{0.1}$O$_2$ samples. Fig. 12 shows the ferroelectric hysteresis loop and loadline of the MFIS gate stack for the three samples. All the curve numbers are labeled as 1, 2, and 3 for the Hf$_{0.5}$Zr$_{0.5}$O$_2$ sample (P_s=25.9 μC/cm2), the Hf$_{0.9}$Zr$_{0.1}$O$_2$ sample (P_s=20.3 μC/cm2), and the Hf$_{0.5}$Zr$_{0.5}$O$_2$ sample (P_s=8.1 μC/cm2), respectively. By reducing the P_s, the V_{IL} and consequent E_{IL} decrease at the same applied gate voltage (from $V_{IL,1}$ to $V_{IL,2}$). Thus, the endurance improves. In addition, the MW decreases from Hf$_{0.5}$Zr$_{0.5}$O$_2$ to Hf$_{0.9}$Zr$_{0.1}$O$_2$ sample as shown in Fig. 10. This is explained as follows. At $V_{th}=V_{sh}$, the substrate charge is defined as Q_{Sth}. For the case without charge trapping, the charges in the metal gate corresponding to V_{sh} are equal to Q_{Sth}, which is shown as the dash lined ‘TH0’ in Fig. 12(a). When charge trapping appears, at $V_{th}=V_{sh}$, the charges in the metal gate corresponding to V_{sh} are equal to $Q_{Sth}+Q_t$, which is shown as the dashed line ‘TH1’.

Then the MW can be determined to be the distance between the intersections of the hysteresis loop and the line ‘TH1’. When ferroelectric material changes from Hf$_{0.5}$Zr$_{0.5}$O$_2$ to Hf$_{0.9}$Zr$_{0.1}$O$_2$, the P_s reduces and the hysteresis loop changes from the line ‘HL1’ to the line ‘HL2’. The trapped charges slightly reduce and the line representing V_{th} changes from the line ‘TH1’ to the line ‘TH2’. Because the P_s reduction is larger than the trapped charge reduction, the line ‘HL2’ drops more than the line ‘TH2’ as shown in Fig. 12(b). Therefore, the MW decreases.

Secondly, we discuss the MW of ~0.02 V for Hf$_{0.75}$Zr$_{0.25}$O$_2$ sample (P_s=8.1 μC/cm2). Due to the small P_s, the intersections between the hysteresis loop line ‘HL3’ and line ‘TH3’ can be localized in the upper right section as shown in Fig. 12(c). Thus, the MW can be significantly reduced.

From the above discussion, it can be concluded that the reduction of P_s could improve endurance characteristics. On the contract, it can also reduce the MW. The above two points are determined by the competition between P_s, reduction and charge trapping induced by it. Therefore, the impact of P_s reduction on endurance fatigue needs careful consideration.

IV. Conclusion

We study the impact of different interlayers and ferroelectric materials on charge trapping during the endurance fatigue of Si FeFET with Hf$_x$Zr$_{1-x}$O$_{2y}$/interlayer gate stack and analyze the endurance degradation mechanism caused by the charge trapping. We directly extract the charge trapping behavior for SiO$_2$ and SiON interlayer for the first time. The introduction of the N element in the SiO$_2$ interlayer effectively suppresses the charge trapping and defect generation and improves the endurance characteristics. By reducing the saturated spontaneous polarization of ferroelectric, the charge trapping can be effectively suppressed, and the endurance characteristics can also be improved. However, it can also cause MW degradation. Our work helps design the MFIS gate stack.

REFERENCES

[1] T. S. Böck et al., "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in 2011 International Electron Devices Meeting, 2011, pp. 24.5.1-24.5.4. doi:10.1109/IEDM.2011.6131606.

[2] J. Müller et al., "Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 10.8.1-10.8.4. doi:10.1109/IEDM.2013.6724605.

[3] M. Trentsch et al., "A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 11.5.1-11.5.4.
