THE h-VECTOR OF A LADDER DETERMINANTAL RING COGENERATED BY 2×2 MINORS IS LOG-CONCAVE

MARTIN RUBEY

Abstract. We show that the h-vector of a ladder determinantal ring cogenerated by $M = [u_1 \mid v_1]$ is log-concave. Thus we prove an instance of a conjecture of Stanley, resp. Conca and Herzog.

In honour of Miriam Rubey, at the occasion of her second birthday

1. Introduction

Definition 1.1. A sequence of real numbers a_1, a_2, \ldots, a_n is logarithmically concave, for short log-concave, if $a_{i-1}a_{i+1} \leq a_i^2$ for $i \in \{2, 3, \ldots, n-1\}$.

Numerous sequences arising in combinatorics and algebra have, or seem to have this property. In the paper [13] written in 1989, Richard Stanley collected various results on this topic. (For an update see [3].) There he also stated the following conjecture:

Conjecture 1.2. Let $R = R_0 \oplus R_1 \oplus \ldots$ be a graded (Noetherian) Cohen-Macaulay (or perhaps Gorenstein) domain over a field $K = R_0$, which is generated by R_1 and has Krull dimension d. Let $H(R, m) = \dim_K R_m$ be the Hilbert function of R and write

$$\sum_{m \geq 0} H(R, m)x^m = (1 - x)^{-d} \sum_{i=0}^{s} h_ix^i.$$

Then the sequence h_0, h_1, \ldots, h_s is log-concave.

The sequence h_0, h_1, \ldots, h_s is called the h-vector of the ring. Originally the question was to decide whether a given sequence can arise as the h-vector of some ring. In this sense the validity of the conjecture would imply that log-concavity was a necessary condition on the h-vector.

It is now known however [12, 3] that Stanley’s conjecture is not true in general. Several natural weakenings have been considered, but are still open. For example, Aldo Conca and Jürgen Herzog conjectured that the h-vector would be log-concave for the special case where R is a ladder determinantal ring. (Note that ladder determinantal rings are Cohen-Macaulay, as was shown in [8 Corollary 4.10], but not necessarily Gorenstein.) We will prove the conjecture of Conca and Herzog in the simplest case, i.e., where R is a ladder determinantal ring cogenerated by 2×2 minors, see Corollary 4.6.

In the case of ladder determinantal rings the h-vector has a nice combinatorial interpretation. This follows from work of Abhyankar and Kulkarni [1, 2, 10, 11], Bruns, Conca, Herzog, and Trung [4, 5, 6, 8]. In the following paragraphs, which are taken almost verbatim from [9], we will explain these matters.
2. Ladders, ladder determinantal rings and non-intersecting lattice paths

First we have to introduce the notion of a ladder:

Definition 2.1. Let $X = (x_{i,j})_{0 \leq i \leq b, 0 \leq j \leq a}$ be a $(b+1) \times (a+1)$ matrix of indeterminates. Let $Y = (y_{i,j})_{0 \leq i \leq b, 0 \leq j \leq a}$ be another matrix of the same dimensions, with the property that $y_{i,j} \in \{0, x_{i,j}\}$, and if $y_{i,j} = x_{i,j}$ and $y_{i',j'} = x_{i',j'}$, where $i \leq i'$ and $j \leq j'$, then $y_{r,s} = x_{r,s}$ for all r and s with $i \leq r \leq i'$ and $j \leq s \leq j'$. Such a matrix Y is called a ladder.

A ladder region L is a subset of \mathbb{Z}^2 with the property that if (i,j) and $(i',j') \in L$, $i \leq i'$ and $j \geq j'$ then $(r,s) \in L$ for all $r \in \{i,i+1, \ldots, i'\}$ and $s \in \{j',j'+1, \ldots, j\}$. Clearly, a ladder region can be described by two weakly increasing functions L and \overline{L}, such that L is exactly the set of points $\{(i,j) ; L(i) \leq j \leq \overline{L}(i)\}$.

We associate with Y a ladder region $L \subset \mathbb{Z}^2$ via $(j,b-i) \in L$ if and only if $y_{i,j} = x_{i,j}$.

In Figure 1a an example of a ladder with $a = 8$ and $b = 9$ is shown, the corresponding ladder region is shown in Figure 1b.

Now we can define the ring we are dealing with:

Definition 2.2. Given a $(b+1) \times (a+1)$ matrix Y which is a ladder, fix a “bivector” $M = [u_1, u_2, \ldots, u_n \mid v_1, v_2, \ldots, v_n]$ of integers with $1 \leq u_1 < u_2 < \cdots < u_n \leq b+1$ and $1 \leq v_1 < v_2 < \cdots < v_n \leq a+1$. By convention we set $u_{n+1} = b+2$ and $v_{n+1} = a+2$.

Let $K[Y]$ denote the ring of all polynomials over some field K in the $y_{i,j}$’s, where $0 \leq i \leq b$ and $0 \leq j \leq a$. Furthermore, let $I_M(Y)$ be the ideal in $K[Y]$ that is generated by those $t \times t$ minors of Y that contain only nonzero entries, whose rows form a subset of the last u_t-1 rows or whose columns form a subset of the last v_t-1 columns, $t \in \{1,2,\ldots,n+1\}$. Thus, for $t = n+1$ the rows and columns of minors are unrestricted.

The ideal $I_M(Y)$ is called a ladder determinantal ideal generated by the minors defined by M. We call $R_M(Y) = K[Y]/I_M(Y)$ the ladder determinantal ring cogenerated by the minors defined by M, or, in abuse of language, the ladder determinantal ring cogenerated by M.

Note that we could restrict ourselves to the case $u_1 = v_1 = 1$, because all the elements of Y that are in one of the last u_1-1 rows or in one of the last v_1-1 columns are in the ideal.

Next, we introduce the combinatorial objects that will accompany us throughout the rest of this paper:

Definition 2.3. A two-rowed array of length k is a pair of strictly increasing sequences of integers, both of length k. A two-rowed array $T = (v_1, v_2 \ldots v_k)$ is bounded by $A = (A_1, A_2)$ and $E = (E_1, E_2)$, if $A_1 \leq a_1 < a_2 < \cdots < a_k \leq E_1 - 1$ and $A_2 + 1 \leq b_1 < b_2 < \cdots < b_k \leq E_2$.

Given any subset L of \mathbb{Z}^2, we say that the two-rowed array T is in L, if $(a_i, b_i) \in L$ for $i \in \{1,2,\ldots,k\}$. By $T^L_k(A \rightarrow E)$ we will denote the set of two-rowed arrays of length k, bounded by A and E which are in L. The total length of a family of two-rowed arrays is just the sum of the lengths of its members.
Let $T_1 = (a_1, a_2, \ldots, a_k)$ and $T_2 = (b_1, b_2, \ldots, b_l)$ be two-rowed arrays bounded by $A^{(1)} = (A_1^{(1)}, A_2^{(1)})$ and $E^{(1)} = (E_1^{(1)}, E_2^{(1)})$ and $A^{(2)} = (A_1^{(2)}, A_2^{(2)})$ and $E^{(2)} = (E_1^{(2)}, E_2^{(2)})$ respectively. Set $a_{k+1} = E_1^{(1)}$ and $b_0 = A_2^{(1)}$. We say that T_1 and T_2 intersect if there are indices I and J such that

$$(\times) \quad \begin{align*}
 x_I &\leq a_I \\
 b_{J-1} &\leq y_J
\end{align*}$$

where $1 \leq I \leq k+1$ and $1 \leq J \leq l$. A family of two-rowed arrays is non-intersecting if no two arrays in it intersect.

Note that a two-rowed array in $T_k^b(A \rightarrow E)$ can be visualized by a lattice path with east and north steps, that starts in A and terminates in E and has exactly k north-east turns which are all in L: Each pair (a_i, b_i) of a two-rowed array (a_1, \ldots, a_k) then corresponds to a north-east turn of the lattice path. It is easy to see that Condition (\times) holds if and only if the lattice paths corresponding to T_1 and T_2 intersect.

For an example see Figure 1c, where the three two-rowed arrays

$$T^{(1)} = \begin{pmatrix} 2 & 3 \\ 6 & 7 \end{pmatrix}, \quad T^{(2)} = \begin{pmatrix} 3 & 5 \\ 4 & 6 \end{pmatrix}, \quad \text{and} \quad T^{(3)} = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 3 & 4 \end{pmatrix}$$

bounded by $A^{(1)} = (0, 3)$, $A^{(2)} = (0, 2)$, $A^{(3)} = (0, 0)$ and $E^{(1)} = (5, 9)$, $E^{(2)} = (7, 9)$, $E^{(3)} = (8, 9)$ are shown as lattice paths. The points of the ladder-region L are drawn as small dots, the circles indicate the start- and endpoints and the big dots indicate the north-east turns.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ladder_region.png}
\caption{A ladder with $a = 8$ and $b = 9$, the corresponding ladder region, and a triple of non-intersecting lattice paths in this ladder.}
\end{figure}

3. A COMBINATORIAL INTERPRETATION OF THE h-VECTOR OF A LADDER DETERMINANTAL RING

We are now ready to state the theorem which reveals the combinatorial nature of the h-vector of $R_M(Y) = K[Y]/I_M(Y)$, the ladder determinantal ring cogenerated by M.

Theorem 3.1. Let $Y = (y_{i,j})_{0 \leq i < b, \ 0 \leq j < a}$ be a ladder and let $M = [u_1, u_2, \ldots , u_n \mid v_1, v_2, \ldots , v_n]$ be a bivector of integers with $1 \leq u_1 < u_2 < \cdots < u_n \leq a + 1$ and $1 \leq v_1 < v_2 < \cdots < v_n \leq b + 1$. For $i \in \{1, 2, \ldots , n\}$ let

$$A^{(i)} = (0, u_{n+1-i} - 1)$$

$$E^{(i)} = (a - v_{n+1-i} + 1, b).$$

Let $L^{(1)} = L$ be the ladder region associated with Y and for $i \in \{1, 2, \ldots , n - 1\}$ let

$$L^{(i)} = \{(x, y) \in L^{(i+1)} : x \leq E^{(i)}, y \geq A^{(i)} \text{ and } (x+1, y-1) \in L^{(i+1)}\}.$$

Finally, for $i \in \{1, 2, \ldots , n\}$ let

$$B^{(i)} = \{(x, y) \in L^{(i)} : (x+1, y-1) \notin L^{(i)}\}.$$

and let d be the cardinality of $\bigcup_{i=1}^{n} B^{(i)}$.

Then, under the assumption that all of the points $A^{(i)}$ and $E^{(i)}$, $i \in \{1, 2, \ldots , n\}$, lie inside the ladder region L, the Hilbert series of the ladder determinantal ring $R_M(Y) = K[Y] / I_M(Y)$ equals

$$\sum_{\ell \geq 0} \dim_K R_M(Y)_\ell z^\ell = \sum_{\ell \geq 0} \left| T^L_\ell(A \mapsto E) \right| \frac{z^\ell}{(1-z)^d}.$$

Here, $R_M(Y)_\ell$ denotes the homogeneous component of degree ℓ in $R_M(Y)$ and $\left| T^L_\ell(A \mapsto E) \right|$ is the number of non-intersecting families of two-rowed arrays with total length ℓ, such that the ith two-rowed array is bounded by $A^{(i)}$ and $E^{(i)}$ and is in $L^{(i)} \setminus B^{(i)}$ for $i \in \{1, 2, \ldots , n\}$.

The sets $B^{(i)}$, $i \in \{1, 2, \ldots , n\}$ can be visualized as being the lower-right boundary of $L^{(i)}$. Viewed as a path, there are exactly $E^{(i)}_1 - A^{(i)}_1 + E^{(i)}_2 - A^{(i)}_2 + 1$ lattice points on $B^{(i)}$, but not all of them are necessarily in L. However, if L is an upper ladder, that is, $(a,0) \in L$, then this must be the case and we have

$$d = \sum_{i=1}^{n} \left(E^{(i)}_1 - A^{(i)}_1 + E^{(i)}_2 - A^{(i)}_2 + 1 \right)$$

$$= \sum_{i=1}^{n} (a - v_{n+1-i} + 1 + b - u_{n+1-i} + 1 + 1)$$

$$= n(a + b + 3) - \sum_{i=1}^{n} (u_i + v_i),$$

as in [9].

In Figure 2a, an example for a ladder region L with $a = 8$ and $b = 9$ is given. The small dots represent elements of L, the circles on the left and on the top of L represent the points $A^{(i)}$ and $E^{(i)}$, $i \in \{1, 2, 3\}$ that are specified by the minor $M = [1, 3, 4 \mid 1, 2, 4]$. The dotted lines indicate the lower boundary of $L^{(i)}$. Note that the point $(4,9)$ is not an element of L. Therefore, in this example we have

$$d = n(a + b + 3) - \sum_{i=1}^{n} (u_i + v_i) - 1 = 44.$$
a. a ladder region with $a = 8$ and $b = 9$

b. a 10 dimensional face of $\Delta_{[1,3,4][1,2,4]}(Y)$

Figure 2.

Figure 3. Constructing a family of non-intersecting lattice paths, such that the i^{th} path stays above $L^{(i)}$, $i \in \{1,2,3\}$

Figure 4. The corresponding family of non-intersecting lattice paths, where the i^{th} path has north-east turns only in $L^{(i)}$ for $i \in \{1,2,3\}$
Proof: We will use results of Jürgen Herzog and Ngô Viêt Trung. In Section 4 of [8], ladder determinantal rings are introduced and investigated.

We equip the indeterminates \(x_{i,j}, i \in \{0,1,\ldots,b\} \) and \(j \in \{0,1,\ldots,a\} \) with the following partial order:

\[
x_{i,j} \leq x_{i',j'} \text{ if } i \geq i' \text{ and } j \leq j'.
\]

A \(t \)-antichain in this partial order is a family of elements \(x_{r_1,s_1}, x_{r_2,s_2}, \ldots, x_{r_t,s_t} \) such that \(r_1 < r_2 < \cdots < r_t \) and \(s_1 < s_2 < \cdots < s_t \). Thus, a \(t \)-antichain corresponds to a sequence \((s_1, b - r_1), (s_2, b - r_2), \ldots, (s_t, b - r_t) \) of \(t \) points in the ladder region associated with \(Y \), where each point lies strictly south-east of the previous ones.

Let \(D_t \) be the union of the last \(u_t - 1 \) rows and the last \(r_t - 1 \) columns of \(Y \). Let \(\Delta_M(Y) \) be the simplicial complex whose \(k \)-dimensional faces are subsets of elements of \(Y \) of cardinality \(k + 1 \) which do not contain a \(t \)-antichain in \(D_t \) for \(t \in \{1,2,\ldots,n + 1\} \). Let \(f_k \) be the number of \(k \)-dimensional faces of \(\Delta_M(Y) \) for \(k \geq 0 \). Then, Corollary 4.3 of [8] states, that

\[
\dim_K R_M(Y)_k = \sum_{k \geq 0} \binom{\ell - 1}{k} f_k.
\]

In the following, we will find an expression for the numbers \(f_k \) involving certain families of non-intersecting lattice paths.

In Figure 2b, a 10-dimensional face of \(\Delta_{[1,3,4][1,2,4]}(Y) \) is shown, the elements of the face are indicated by bold dots. We will describe a modification of Viennot’s ‘light and shadow procedure’ (with the sun in the top-left corner) that produces a family of \(\ell \)-non-intersecting lattice paths such that the \(i \)-th path runs from \(A^{(i)} = (0, u_{n+1-i}) \) to \(E^{(i)} = (a - v_{n+1-i}, b) \) and has north-east turns only in \(L^{(i)} \), for \(i \in \{1,2,\ldots,n\} \).

Imagine a sun in the top-left corner of the ladder region and a wall along the lower-right border \(B^{(1)} \) of \(L^{(1)} \). Then each lattice point \((r,s) \) that is either in \(B^{(1)} \) or corresponds to an element \(x_{s,b-r} \) of the face casts a ‘shadow’ \(\{ (x,y) : x \geq r, y \leq s \} \).

The first path starts at \(A^{(1)} \), goes along the north-east border of this shadow and terminates in \(E^{(1)} \). In the left-most diagram of Figure 3 this is accomplished for the face shown in Figure 2b.

In the next step, we remove the wall on \(B^{(1)} \) and all the elements of the face which correspond to lattice points lying on the first path. Then the procedure is iterated. See Figure 3 for an example. Let \(P \) be the resulting family of non-intersecting lattice paths.

Now, for each \(i \in \{1,2,\ldots,n\} \), we remove all elements of the face except those which correspond to north-east turns of the \(i \)-th path and do not lie on \(B^{(i)} \). In the example, \((5,8)\) is a north-east turn of the second path but lies on \(B^{(2)} \), therefore the corresponding element \(x_{1,5} \) of the face is removed. On the other hand, \((4,5)\) lies on \(B^{(3)} \), but is a nort-east turn of the third path, so the corresponding element \(x_{4,4} \) of the face is kept.

This set of north-east turns defines another family of non-intersecting lattice paths \(P' \) that has the property that the \(i \)-th path has north-east turns only in \(L^{(i)} \) for \(i \in \{1,2,\ldots,n\} \).

We now want to count the number of faces of \(\Delta_M(Y) \) that reduce under ‘light and shadow’ to a given family of lattice paths \(P' \) with this property. Clearly, \(P' \) can be translated into a family \(P \) of non-intersecting lattice paths such that the \(i \)-th
path does not go below \(B^{(i)} \) for \(i \in \{1, 2, \ldots, n\} \). Note that the number of lattice points on such a family \(P \) of paths is always equal to \(d \), independently of the given face. Thus, if \(m \) is the number of north-east turns of \(P' \), there are

\[
\binom{d - m}{k + 1 - m}
\]

families of non-intersecting lattice paths \(P \) that reduce to \(P' \).

Hence, \(f_k = \binom{d - m}{k + 1 - m} \left| T^L_k(A \mapsto E) \right| \) and we obtain

\[
\sum_{\ell \geq 0} \dim_K R_M(Y)_\ell z^\ell = \sum_{\ell \geq 0} \left(\sum_{k \geq 0} \binom{\ell - 1}{k} f_k \right) z^\ell
\]

\[
= \sum_{m \geq 0} \left| T^L_m(A \mapsto E) \right| \sum_{\ell \geq 0} \sum_{k \geq 0} \binom{\ell - 1}{k} \binom{d - m}{k + 1 - m} \left| T^L_m(A \mapsto E) \right| z^\ell
\]

and if we sum the inner sum by means of the Vandermonde summation (see for example [7], Section 5.1, (5.27)),

\[
\sum_{\ell \geq 0} \dim_K R_M(Y)_\ell z^\ell = \sum_{m \geq 0} \left| T^L_m(A \mapsto E) \right| \sum_{\ell \geq 0} z^\ell \binom{d + \ell - m - 1}{d - 1}
\]

\[
= \frac{\sum_{m \geq 0} \left| T^L_m(A \mapsto E) \right| z^m}{(1 - z)^d}.
\]

\[
\square
\]

4. Log-concavity of the \(h \)-vector in the case \(M = [u_1 \mid v_1] \)

In this paper we will settle Stanley’s conjecture when \(R \) is a ladder determinantal ring cogenerated by \(M \), where \(M \) is just a pair of integers, i.e., \(n = 1 \). We want to stress, however, that data strongly suggest that Conca and Herzog’s conjecture is also true for arbitrary \(n \).

By the preceding theorem, in the case we are going to tackle, the sum \(\sum_{i=0}^n h_i x^i \) that appears in the conjecture is the generating function \(\sum_{k \geq 0} \left| T^L_k(A \mapsto E) \right| z^k \) of two-rowed arrays bounded by \(A \) and \(E \) which are in the ladder region \(L \).

As the bounds \(A \) and \(E \) will not be of any significance throughout the rest of this paper, we will abbreviate \(T^L_k(A \mapsto E) \) to \(T^L_k \). We will show that the \(h \)-vector is log-concave by constructing an injection from \(T^L_{k+1} \times T^L_{k-1} \) into \(T^L_k \times T^L_k \). This injection will involve some cut and paste operations that we now define:

Definition 4.1. Let \(A \) and \(X \) be two strictly increasing sequences of integers, such that the length of \(X \) is the length of \(A \) minus two, i.e., \(A = (a_1, a_2, \ldots, a_{k+1}) \) and \(X = (x_1, x_2, \ldots, x_{k-1}) \) for some \(k \geq 1 \). A cutting point of \(A \) and \(X \) is an index \(l \in \{1, 2, \ldots, k\} \) such that

\[
(*) \quad a_l < x_l,
\]

and

\[
x_{l-1} < a_{l+1},
\]

where we require the inequalities to be satisfied only if all variables are defined. Hence, 1 is a cutting point if \(a_1 < x_1 \), and \(k \) is a cutting point if \(x_{k-1} < a_{k+1} \).
The image of A and X obtained by cutting at l is
\[
\begin{array}{cccccc}
a_1 & a_2 & \ldots & a_{l-1} & a_l & x_l & x_{l+1} & \ldots & x_{k-1} \\
x_1 & x_2 & \ldots & x_{l-1} & a_{l+1} & a_{l+2} & \ldots & \ldots & a_{k+1}
\end{array}
\]

Note that both the resulting sequences have length k.

Lemma 4.2. Let $A = (a_1, a_2, \ldots, a_{k+1})$ and $X = (x_1, x_2, \ldots, x_{k-1})$ be strictly increasing sequences of integers, such that the length of X is the length of A minus two. Then there exists at least one cutting point of A and X.

Proof. If $a_l \geq x_l$ for $l \in \{1, 2, \ldots, k-1\}$ then $a_{k+1} > a_{k-1} \geq x_{k-1}$ and k is a cutting point. Otherwise, let l be minimal such that $a_l < x_l$. If $l = 1$ then 1 is a cutting point. Otherwise, because of the minimality of l, we have $a_{l+1} > a_{l-1} \geq x_{l-1}$, thus l is a cutting point. \qed

Definition 4.3. Let $T = (T_1, T_2) \in T_{k+1} \times T_{k-1}$ be a pair of two-rowed arrays. Then a top cutting point of T is a cutting point of the top rows of T_1 and T_2 and a bottom cutting point of T is a cutting point of the bottom rows of T_1 and T_2.

A pair (l, m), where $l, m \in \{1, 2, \ldots, k\}$, such that l is a top cutting point and m is a bottom cutting point of T_1 and T_2 is a cutting point of T. Cutting the top rows of T at l and the bottom rows at m we obtain the image of T. Note that both of the two-rowed arrays in the image have length k. More pictorially, if $l < m$,
\[
\begin{array}{cccccc}
a_1 & \ldots & a_l & x_l & \ldots & x_{m-1} & x_{m} & \ldots & x_{k-1} \\
b_1 & \ldots & b_{l+1} & b_m & \ldots & b_{m-1} & b_{m} & \ldots & b_{k+1}
\end{array}
\]

and similarly if $l \geq m$.

For $T = (T_1, T_2) \in T_{k+1}^L \times T_{k-1}^L$, the pair (l, m) is an allowed cutting point of T, if both of the two-rowed arrays in the obtained image are in L.

In Lemma 5.1 we will prove that every pair of two-rowed arrays in $T_{k+1}^L \times T_{k-1}^L$ has at least one allowed cutting point. This motivates the following definition:

Definition 4.4. Let $T = (T_1, T_2) \in T_{k+1}^L \times T_{k-1}^L$ a pair of two-rowed arrays as before. Consider all allowed cutting points (l, m) of T. Select those with $|l - m|$ minimal. Among those, let (l, m) be the pair which comes first in the lexicographic order. Then we call (l, m) the optimal cutting point of T.

Now we are ready to state our main theorem, which implies that Stanley’s conjecture is true, when R is a ladder determinantal ring cogenerated by a pair of integers M:

Theorem 4.5. Let L be a ladder region. Let $T \in T_{k+1}^L \times T_{k-1}^L$. Define $I(T)$ to be the pair of two-rowed arrays obtained by cutting T at its optimal cutting point. Then I is well-defined and an injection from $T_{k+1}^L \times T_{k-1}^L$ into $T^L \times T^L$.

Corollary 4.6. The h-vector of the ladder determinantal ring cogenerated by $M = [u_1 | v_1]$ is log-concave.

Proof of the corollary. By Theorem 3.3, the h-vector of this ring is equal to the generating function $\sum_{k \geq 0} |T_k^L(A \rightarrow E)| z^k$ of two-rowed arrays bounded by $A = (0, u_1 - 1)$ and $E = (a - v_1 + 1, b)$ which are in the ladder region L. By the
preceding theorem, there is an injection from $\mathcal{T}^L_{k+1}(A \mapsto E) \times \mathcal{T}^L_{k-1}(A \mapsto E)$ into $\mathcal{T}^L_{k}(A \mapsto E) \times \mathcal{T}^L_{k}(A \mapsto E)$, thus

$$|\mathcal{T}^L_{k+1}(A \mapsto E)| \cdot |\mathcal{T}^L_{k-1}(A \mapsto E)| \leq |\mathcal{T}^L_{k}(A \mapsto E)|^2.$$

\[\Box \]

We will split the proof of Theorem 4.5 in two parts. In Section 5, we show that the mapping I is well-defined, that is, for any pair of two-rowed arrays $T \in \mathcal{T}^L_{k+1} \times \mathcal{T}^L_{k-1}$ there is an allowed cutting point. Finally, in Section 5, we show that I is indeed an injection.

5. The mapping I is well-defined

Lemma 5.1. Let L be a ladder region. Then for every pair of two-rowed arrays in $\mathcal{T}^L_{k+1} \times \mathcal{T}^L_{k-1}$ there is an allowed cutting point (l, m).

For the proof of this lemma, we have to introduce some more notation: Let $(T_1, T_2) \in \mathcal{T}^L_{k+1} \times \mathcal{T}^L_{k-1}$ with $T_1 = \left(a_1, a_2, \ldots, a_{k+1} \right)$ and $T_2 = \left(b_1, b_2, \ldots, b_{k+1} \right)$. We say that Inequality \lceiltop\rceil holds for an interval $[c, d]$ if

$$(\text{top}) \quad L(a_j) \geq y_{j-1},$$

for $j \in [c, d]$. Inequality \lceiltop\rceil holds for an interval $[c, d]$ if

$$(\text{top}) \quad L(a_j) \leq y_{j-1},$$

for $j \in [c, d]$. Similarly, Inequality \lceilbottom\rceil holds for an interval $[c, d]$ if

$$(\text{bottom}) \quad L(x_{j-1}) \geq b_{j},$$

for $j \in [c, d]$. Inequality \lceilbottom\rceil holds for an interval $[c, d]$ if

$$(\text{bottom}) \quad L(x_{j-1}) \leq b_{j},$$

for $j \in [c, d]$, where L and \overline{L} are as in Definition 2.1. We say that any of these inequalities holds for a cutting point (l, m) if it holds for the interval $[l+1, m]$ if $l < m$ and for the interval $[m+1, l]$ if $m < l$. Clearly, a cutting point (l, m) is allowed if and only if all of these inequalities hold for it.

Most of the work is done by the following lemma:

Lemma 5.2. Let $T = (T_1, T_2) \in \mathcal{T}^L_{k+1} \times \mathcal{T}^L_{k-1}$, $T_1 = \left(a_1, a_2, \ldots, a_{k+1} \right)$ and $T_2 = \left(b_1, b_2, \ldots, b_{k+1} \right)$. Let \mathcal{L} and \overline{L} be top cutting points, such that there is no top cutting point in the closed interval $[\mathcal{L}+1, \overline{L}-1]$. Similarly, let \mathcal{m} and \overline{m} be bottom cutting points, such that there is no bottom cutting point in the closed interval $[\mathcal{m}+1, \overline{m}-1]$. Then for both of the intervals $[\mathcal{L}+1, \overline{L}]$ and $[\mathcal{m}+1, \overline{m}]$,

- either (top) or (bottom) hold,
- either (top) or (bottom) hold,
- either (top) or (bottom) hold,
- either (bottom) or (bottom) hold.

Let $l_{\text{min}}, l_{\text{max}}, m_{\text{min}}$ and m_{max} be the minimal and maximal top and bottom cutting points. Then we have

- (top) and (bottom) hold for $[2, \max(l_{\text{min}}, m_{\text{min}})]$ and
- (top) and (bottom) hold for $[\min(l_{\text{max}}, m_{\text{max}}), k]$.

Proof. Suppose that \(\text{top} \) does not hold for the interval \([l+1, \bar{l}]\). We claim that in that case there is an index \(j \in [l+1, \bar{l} - 1] \) such that \(a_j < x_j \); For, by hypothesis there is an index \(i \in [l+1, \bar{l}] \) such that \(\mathcal{L}(a_i) < y_{i-1} \). We have \(\mathcal{L}(a_i) < y_{i-1} \leq L(x_{i-1}) \) and because \(L \) is a weakly increasing function, \(a_i < x_{i-1} \). It follows that \(a_{i-1} < a_i < x_{i-1} < x_i \). Thus, if \(i = \bar{l} \) we choose \(j = i - 1 \), otherwise \(j = i \).

The same statement is true if \(\text{bottom} \) does not hold for the interval \([l+1, \bar{l}]\): In this case there must be an index \(i \in [l+1, \bar{l}] \) such that \(\mathcal{L}(x_{i-1}) > b_i \). We conclude that \(L(a_i) \leq b_i \leq L(x_{i-1}) \) and thus \(a_i < x_{i-1} \).

Next, we will use induction to prove that
\[
(**) \\
\quad a_l < x_l \\
\quad \text{and} \quad a_{l+1} \leq x_{l+1}
\]
for \(l \in [l+1, \bar{l} - 1] \). We will first do an induction on \(l \) to establish the claim for \(l \in [j, \bar{l} - 1] \).

We start the induction at \(l = j \): Above we already found that \(a_j < x_j \). Therefore we must have \(a_{j+1} \leq x_{j-1} \), because otherwise \(j \) would satisfy \(\text{top} \) and hence were a top cutting point.

Now suppose that \(\text{top} \) holds for a particular \(l < \bar{l} - 1 \). Then \(a_{l+1} \leq x_{l-1} < x_{l+1} \), and, because there is no top cutting point at \(l+1 \), we have \(a_{l+2} \leq x_{l} \).

Similarly, to establish \(\text{bottom} \) for \(l \in [l+1, j] \) we do a reverse induction on \(l \). Suppose that \(\text{bottom} \) holds for a particular \(l > \bar{l} + 1 \). Then \(a_{l-1} < a_{l+1} \leq x_{l-1} \), and, because there is no top cutting point at \(l-1 \), we have \(a_l \leq x_{l-2} \).

Thus we obtain
\[
\mathcal{L}(x_{l-1}) \geq \mathcal{L}(x_{l-2}) \geq \mathcal{L}(a_l) \geq b_l, \quad \text{and} \\
\mathcal{L}(x_{l-1}) \geq \mathcal{L}(a_{l+1}) \geq b_{l+1} \geq b_l,
\]
which means that \(\text{bottom} \) holds for the interval \([l+1, \bar{l}]\).

Furthermore,
\[
\mathcal{L}(a_{l+1}) \leq \mathcal{L}(a_{l+2}) \leq \mathcal{L}(x_{l}) \leq y_{l}, \quad \text{and} \\
\mathcal{L}(a_l) \leq \mathcal{L}(x_{l-2}) \leq y_{l-2} \leq y_{l-1},
\]
which means that \(\text{top} \) holds for the interval \([l+1, \bar{l}]\).

Next we show that \(\text{top} \) and \(\text{bottom} \) hold for the interval \([2, l_{\min}]\): Assume that either of these inequalities does not hold for the interval \([2, l_{\min}]\) and that \([2, l_{\min}]\) does not contain a top cutting point except \(l_{\min} \). Then the above reverse induction implies that \(a_1 \leq a_3 < x_1 \), which means that \(1 \) is a top cutting point. Thus, \(l_{\min} = 1 \) and the interval \([2, l_{\min}]\) is empty.

The other assertions are shown in a completely analogous fashion. \(\square \)

We are now ready to establish Lemma 5.1.

Proof of Lemma 5.1 Let \(T = (T_1, T_2) \in \mathcal{K}_{k+1}^L \times \mathcal{K}_{k-1}^L \). By Lemma 1.2 there is at least one cutting point \((l, m)\) of \(T \). Let \(l_{\min}, l_{\max}, m_{\min} \) and \(m_{\max} \) be the minimal and maximal top and bottom cutting points of \(T \) as before.

If there is an index \(j \) which is a top and a bottom cutting point of \(T \), then trivially \(-(j, j) \) is an allowed cutting point. Otherwise, we have to show that there is a cutting point \((l, m)\) for which \(\text{top}, \text{top}, \text{bottom}, \text{bottom} \) hold. Suppose that this is not the case.
For the inductive proof which follows, we have to introduce a convenient indexing scheme for the sequence of top and bottom cutting points. Let

\[m_{i,0} = \max \{ m : m < l_{\min} \text{ and } m \text{ is a bottom cutting point} \}, \]

\[m_{i,0} = \max \{ m : m < l_{i-1,1} \text{ and } m \text{ is a bottom cutting point} \} \] for \(i > 1, \)

and \(l_{i,0} = \max \{ l : l < m_{i,1} \text{ and } l \text{ is a top cutting point} \} \] for \(i \geq 1, \)

where \(m_{i,j+1} \) is the bottom cutting point directly after \(m_{i,j} \), and \(l_{i,j+1} \) is the top cutting point directly after \(l_{i,j} \). Furthermore, we set \(l_{0,1} = l_{\min}. \)

More pictorially, we have the following sequence of top and bottom cutting points for \(i \geq 1: \)

\[\cdots < m_{i,0} < l_{i-1,1} < l_{i-1,2} < \cdots < l_{i,0} < m_{i,1} < m_{i,2} < \cdots < m_{i+1,0} < \cdots \]

If \(m_{\min} > l_{\min} \), then \(m_{i,1} \) does not exist, of course. Note that there are no bottom cutting points between \(l_{i,1} \) and \(l_{i+1,0} \), and there are no top cutting points between \(m_{i,1} \) and \(m_{i+1,0}. \)

Suppose first that \(m_{\min} < l_{\min}. \) By induction on \(i, \) we will show that \(\text{(top)} \) and \(\text{(bottom)} \) hold for the cutting points \((l_{i-1,1}, m_{i,0}) \), where \(i \geq 1. \) By Lemma 5.2 we know that \(\text{(top)} \) and \(\text{(bottom)} \) are satisfied for the cutting point \((l_{\min}, m_{i,0}) \), because \([m_{i,0} + 1, l_{\min}] \subseteq [2, l_{\min}]. \) It remains to perform the induction step, which we will divide into five simple steps.

Step 1. \(\text{(top)} \) and \(\text{(bottom)} \) hold for the interval \([m_{i,0} + 1, l_{i-1,1}]. \) This is just a restatement of the induction hypothesis, i.e., that \(\text{(top)} \) and \(\text{(bottom)} \) hold for the cutting point \((l_{i-1,1}, m_{i,0}). \)

Step 2. Either \(\text{(bottom)} \) or \(\text{(top)} \) does not hold for the interval \([m_{i,0} + 1, m_{i,1}]. \) Because of Step 1, not both of \(\text{(bottom)} \) and \(\text{(top)} \) can hold for \((l_{i-1,1}, m_{i,0}) \), lest this was an allowed cutting point. Thus either \(\text{(bottom)} \) or \(\text{(top)} \) does not hold for \([m_{i,0} + 1, l_{i-1,0} + 1]. \) This interval is contained in \([m_{i,0} + 1, m_{i,1}], \) thus the inequalities \(\text{(bottom)} \) and \(\text{(top)} \) cannot hold on this interval either.

Step 3. \(\text{(top)} \) and \(\text{(bottom)} \) hold for \([l_{i,0} + 1, m_{i,1}]. \) Suppose that \(\text{(bottom)} \) does not hold for \([m_{i,0} + 1, m_{i,1}]. \) Then, by Lemma 5.2 we obtain that \(\text{(top)} \) and \(\text{(bottom)} \) hold for \([m_{i,0} + 1, m_{i,1}], \) because this interval contains no bottom cutting points except \(m_{i,1}. \) The same is true, if \(\text{(top)} \) does not hold for \([m_{i,0} + 1, m_{i,1}]. \) Because \([l_{i,0} + 1, m_{i,1}]. \) is a subset of this interval, \(\text{(top)} \) and \(\text{(bottom)} \) hold for the cutting point \((l_{i,0}, m_{i,1}), \) or, equivalently, for the interval \([l_{i,0} + 1, m_{i,1}]. \)

Step 4. Either \(\text{(bottom)} \) or \(\text{(top)} \) does not hold for \([l_{i,0} + 1, l_{i,1}]. \) Because of Step 3, not both of \(\text{(bottom)} \) and \(\text{(top)} \) can hold for the cutting point \((l_{i,0}, m_{i,1}), \) nor for the greater interval \([l_{i,0} + 1, l_{i,1}]. \)

Step 5. \(\text{(top)} \) and \(\text{(bottom)} \) hold for \([m_{i+1,0} + 1, l_{i,1}]. \) The interval \([l_{i,0} + 1, l_{i,1}] \) does not contain a top cutting point except \(l_{i,1} \), thus by Lemma 5.2 and Step 4 we see that \(\text{(top)} \) and \(\text{(bottom)} \) hold. Finally, because \([m_{i+1,0} + 1, l_{i,1}] \subseteq [l_{i,0} + 1, l_{i,1}] \), \(\text{(top)} \) and \(\text{(bottom)} \) hold for the cutting point \((l_{i,1}, m_{i+1,0}). \)

If \(l_{\max} > m_{\max} \), then we encounter a contradiction: Let \(r \) be such that \(m_{r,0} = m_{\max}. \) We have just shown that \(\text{(top)} \) and \(\text{(bottom)} \) hold for the cutting point \((l_{r-1,1}, m_{r,0}). \) Furthermore, by Lemma 5.2, \(\text{(bottom)} \) and \(\text{(top)} \) hold for \([m_{r,0}, k] \)
and thus also for \((l_{r-1}, m_r, 0)\). Hence, this would be an allowed cutting point, contradicting our hypothesis.

If \(l_{max} \leq m_{max}\), let \(r\) be such that \(l_{r, 0} = l_{max}\). By the induction (Step 3) we find that \(top_{l, m, T}\) and \(bottom_{l, m, T}\) hold for the cutting point \((l_{r, 0}, m_{r, 1})\). Again, because of Lemma 5.2, we know that \(top_{l, m, T}\) and \(bottom_{l, m, T}\) holds for \([l_{r, 0}, k]\) and thus also for \((l_{r, 0}, m_{r, 1})\). Hence, we had an allowed cutting point in this case also.

The case that \(m_1 > t_1\) is completely analogous. \(\square\)

6. THE MAPPING I IS AN INJECTION

Lemma 6.1. The mapping \(I\) defined above is an injection.

Proof. Suppose that \(I(T) = I(T')\) for \(T = (T_1, T_2)\) and \(T' = (T'_1, T'_2)\), such that \(T\) and \(T'\) are elements of \(L_{k+1} \times L_{k-1}\). Let \((l, m)\) be the optimal cutting point of \(T\), and let \((l', m')\) be the optimal cutting point of \(T'\).

Observe that we can assume \(\min(l, m, l', m') = 1\), because the elements of \(T\) and \(T'\) with index less than or equal to this minimum retain their position in \(I(T)\). Likewise, we can assume that \(\max(l, m, l', m') = k\).

Furthermore, we can assume that \(l \leq l'\), otherwise we exchange the meaning of \(T\) and \(T'\). Thus, we have to consider the following twelve situations:

1. \(1 = l \leq l' \leq m \leq m' = k\)
2. \(1 = l \leq l' \leq m' \leq m = k\)
3. \(1 = l \leq m \leq l' \leq m' = k\)
4. \(1 = l \leq m \leq m' \leq l' = k\)
5. \(1 = l \leq m' \leq l' \leq m = k\)
6. \(1 = l \leq m' \leq m \leq l' = k\)
7. \(1 = m \leq l \leq l' \leq m' = k\)
8. \(1 = m \leq l \leq m' \leq l' = k\)
9. \(1 = m \leq m' \leq l \leq l' = k\)
10. \(1 = m' \leq l \leq l' \leq m = k\)
11. \(1 = m' \leq l \leq m \leq l' = k\)
12. \(1 = m' \leq m \leq l \leq l' = k\)

We shall divide these twelve cases into two portions according to whether \(l \leq m\) or not.

A: \(1 \leq m\). In the Cases (1)–(6), (10) and (11) we have \(l \leq m\), thus the pair of two-rowed arrays \(T = (T_1, T_2) \in L_{k+1} \times L_{k-1}\) looks like

\[
\begin{array}{c|cccc}
| a_1 | a_2 | \ldots | a_{l+1} | a_{k+1} \\
\hline
| b_1 | \ldots | b_m | b_{m+1} | \ldots | b_{k+1} \\
\end{array}
\]

\[
\begin{array}{ccc|c|cc}
| x_1 | \ldots | x_{l-1} | x_l | \ldots | x_{k-1} \\
\hline
| y_1 | \ldots | y_{m-1} | y_m | \ldots | y_{k-1} \\
\end{array}
\]

Cutting at \((l, m)\) we obtain \(I(T) \in L_k \times L_k\):

\[
\begin{array}{c|c|ccc}
| a_1 | a_2 | \ldots | a_{l+1} | a_{k+1} \\
\hline
| b_1 | \ldots | b_m | y_m | \ldots | y_{k-1} \\
\end{array}
\]

\[
\begin{array}{c|c|ccc|c|ccc}
| x_1 | \ldots | x_{l-1} | x_l | \ldots | x_{k-1} \\
\hline
| y_1 | \ldots | y_{m-1} | b_{m+1} | \ldots | b_{k+1} \\
\end{array}
\]

If \(l = 1\), then the top row of the second array in \(I(T)\) is \((a_2, a_3, \ldots, a_{k+1})\), if \(m = k\), then the bottom row of the first array in \(I(T)\) is \((b_1, b_2, \ldots, b_k)\).
Case (1), $1 \leq l' \leq m \leq m' = k$. Given that $I(T) = I(T')$, the pair T' can be expressed in terms of the entries of T as follows:

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
a_1 & x_1 & \ldots & x_{\nu-1} & \vdots & a_{\nu+1} & \ldots & a_{k+1} \\
\hline
b_1 & \ldots & \ldots & \ldots & \ldots & b_m & \ldots & y_{k-1} & b_{k+1} \\
\hline
a_2 & \ldots & a_\nu & \vdots & x_\nu & \ldots & x_{k-1} \\
\hline
y_1 & \ldots & \ldots & \ldots & \ldots & y_{m-1} & \ldots & b_{m+1} & \vdots \\
\hline
\end{array}
$$

The vertical dots indicate the cut (l', m') which would result in $I(T')$. We show that the cutting point $(l, m) = (1, m)$, indicated above by the vertical lines, is in fact an allowed cutting point for T': Cutting at $(1, m)$ yields

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
a_1 & a_2 & \ldots & a_\nu & \vdots & x_\nu & \ldots & x_{m-1} & \ldots & x_{k-1} \\
\hline
b_1 & \ldots \ldots & a_{\nu+1} & \ldots & a_m & \ldots & a_{k+1} \\
\hline
x_1 & \ldots & x_{\nu-1} & \vdots & a_{\nu+1} & \ldots & b_m & \ldots & b_k & \vdots \\
\hline
y_1 & \ldots \ldots & y_{m-1} & \ldots & y_m & \ldots & y_{k-1} & y_{k+1} \\
\hline
\end{array}
$$

Note, that this is the same pair of two-rowed arrays we obtain by cutting T at (l', m'). We have to check that the pair of two-rowed arrays \tilde{T} is in the ladder region.

Clearly,

$$(a_2, b_2), (a_3, b_3), \ldots, (a_\nu, b_\nu)$$

and

$$(x_1, y_1), (a_2, b_2), \ldots, (x_{\nu-1}, y_{\nu-1})$$

are in the ladder region, because these pairs appear also in T. Furthermore, the pairs

$$(x_\nu, b_{\nu+1}), (x_{\nu+1}, b_{\nu+2}), \ldots (x_{m-1}, b_m)$$

and

$$(a_{\nu+1}, y_\nu), (a_{\nu+2}, y_{\nu+1}), \ldots (a_m, y_{m-1})$$

appear in $I(T)$ and are therefore in the ladder region, too. All the other pairs, i.e.,

$$(a_1, y_1), (x_m, b_{m+1}), (x_{m+1}, b_{m+2}), \ldots (x_{k-1}, b_k), (a_{m+1}, y_{m+1}), (a_{m+2}, y_{m+1}), \ldots (a_k, y_{k-1})$$

are unaffected by the cut and appear in T'. Thus we have that (l, m) and (l', m') are allowed cuts for T and T'. We required that (l, m) is optimal for T and that (l', m') is optimal for T', therefore we must have $l = l'$ and $m = m'$.

In all the other cases the reasoning is very similar. Thus we only print the pairs of two-rowed arrays T' and \tilde{T} and leave it to the reader to check that \tilde{T} is in the ladder region.
Case (2), \(1 \leq l' \leq m' \leq m = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | x_1 & \cdots & x_{l' - 1} & \vdash & a_{l' + 1} & \cdots & & \hline
b_1 & \cdots & b_{m'} & \vdash & y_{m'} & \cdots & y_{k-1} & \vdash & b_{k+1} \\
\hline
a_2 & x_{l'} & \cdots & x_{k-1} \\
y_1 & \cdots & y_{m'-1} & \vdash & b_{m'+1} & \cdots & b_k \\
\hline
\end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | a_2 & \cdots & a_{l'} & \vdash & x_{l'} & \cdots & x_{m'-1} & \cdots & x_{k-1} \\
b_1 & \cdots & b_{m'} & \vdash & y_{m'} & \cdots & y_{k-1} \\
y_1 & \cdots & y_{m-1} & \vdash & b_{m'+1} & \cdots & b_k \\
\hline
\end{array}
\]

Case (3), \(1 \leq m \leq l' \leq m' = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | x_1 & \cdots & x_{l'-1} & \vdash & a_{l'+1} & \cdots & a_{k+1} \\
b_1 & \cdots & b_m & \vdash & y_m & \cdots & y_{k-1} & \vdash & b_{k+1} \\
\hline
a_2 & \vdash & x_{l'} & \cdots & x_{k-1} \\
y_1 & \vdash & y_{m-1} & \vdash & b_{m'+1} & \cdots & b_k \\
\hline
\end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | a_2 & \cdots & a_{l'} & \vdash & x_{l'} & \cdots & x_{k-1} \\
b_1 & \vdash & b_m & \vdash & b_{m'+1} & \cdots & b_k \\
\hline
x_{l'-1} & \vdash & a_{l'+1} & \cdots & a_{k+1} \\
y_1 & \vdash & y_{m-1} & \vdash & y_m & \cdots & y_{k-1} & \vdash & b_{k+1} \\
\hline
\end{array}
\]

Case (4), \(1 \leq m \leq m' \leq l' = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | x_1 & \cdots & x_{k-1} & \vdash & a_{k+1} \\
b_1 & \cdots & b_m & \vdash & y_m & \cdots & y_{m'-1} & \vdash & b_{m'+1} & \cdots & b_{k+1} \\
\hline
a_2 & \vdash & \cdots & a_{k+1} \\
y_1 & \vdash & \cdots & b_{m'+1} & \vdash & \cdots & y_{k-1} \\
\hline
\end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{c|c c c c c c c c c c c c c c c c}
\hline
a_1 | a_2 & \cdots & a_{l'} & \vdash & x_{l'} & \cdots & x_{k-1} \\
b_1 & \vdash & b_m & \vdash & b_{m'+1} & \cdots & b_k \\
\hline
x_{k-1} & \vdash & a_{k+1} \\
y_1 & \vdash & y_{m-1} & \vdash & y_m & \cdots & y_{m'-1} & \vdash & b_{m'+1} & \cdots & b_{k+1} \\
\hline
\end{array}
\]
Case (5), $1 \leq m' \leq l' \leq m = k$. The pair T' can be expressed in terms of the entries of T as follows:

$$
\begin{align*}
(T') & \quad \begin{array}{c|ccc|ccc}
a_1 & x_1 & \cdots & x_{l'-1} & a_{l'+1} & \cdots & a_{k+1} \\
b_1 & & & b_{m'} & & & \\
\end{array} \\
& \quad \begin{array}{c|ccc|ccc}
a_2 & \cdots & a_{l'} & x_{l'} & x_{k-1} \\
y_1 & \cdots & y_{m'-1} & b_{m'+1} & \cdots & b_k \\
\end{array}
\end{align*}
$$

Cutting at (l, m) yields

$$
\begin{align*}
(T') & \quad \begin{array}{c|ccc|ccc}
a_1 & a_2 & \cdots & a_{l'} & x_{l'} & x_{k-1} \\
b_1 & & & b_{m'} & y_{m'} & y_{k-1} \\
\end{array} \\
& \quad \begin{array}{c|ccc|ccc}
a_2 & \cdots & y_{m'-1} & b_{m'+1} & \cdots & b_k \\
y_1 & \cdots & y_{m'-1} & b_{m'+1} & \cdots & b_k \\
\end{array}
\end{align*}
$$

Case (6), $1 \leq m' \leq m \leq l' = k$. The pair T' can be expressed in terms of the entries of T as follows:

$$
\begin{align*}
(T') & \quad \begin{array}{c|ccc|c}
a_1 & x_1 & \cdots & x_{k-1} & a_{k+1} \\
b_1 & b_{m'} & y_{m'} & \cdots & y_{m-1} \\
\end{array} \\
& \quad \begin{array}{c|c}
a_2 & a_k \\
y_1 & \cdots & y_{m'-1} \\
\end{array}
\end{align*}
$$

Cutting at (l, m) yields

$$
\begin{align*}
(T') & \quad \begin{array}{c|ccc|c}
a_1 & a_2 & \cdots & x_{k-1} & a_{k+1} \\
b_1 & b_{m'} & y_{m'} & \cdots & y_{m-1} \\
\end{array} \\
& \quad \begin{array}{c|c}
a_2 & a_k \\
y_1 & \cdots & y_{m'-1} \\
\end{array}
\end{align*}
$$

Case (10), $1 \leq m' \leq l' \leq m = k$. The pair T' can be expressed in terms of the entries of T as follows:

$$
\begin{align*}
(T') & \quad \begin{array}{c|cccc|c}
a_1 & \cdots & a_l & x_l & \cdots & x_{l'-1} & a_{l'+1} & \cdots & a_{k+1} \\
b_1 & y_1 & \cdots & y_{l-1} & a_{l+1} & a_{l'} & x_{l'} & \cdots & x_{k-1} \\
\end{array} \\
& \quad \begin{array}{c|c}
b_2 & b_k \\
\end{array}
\end{align*}
$$

Cutting at (l, m) yields

$$
\begin{align*}
(T') & \quad \begin{array}{c|cccc|c}
a_1 & \cdots & a_l & a_{l+1} & \cdots & a_{l'} & x_{l'} & \cdots & x_{k-1} \\
b_1 & y_1 & \cdots & y_{l-1} & x_l & \cdots & x_{l'-1} & a_{l'+1} & \cdots & a_{k+1} \\
\end{array} \\
& \quad \begin{array}{c|c}
b_2 & b_k \\
\end{array}
\end{align*}
$$
Case (11), $1 = m' \leq l \leq m \leq l' = k$. The pair T' can be expressed in terms of the entries of T as follows:

$$(T')$$

\[
\begin{array}{cccccc}
 a_1 & \ldots & a_l & x_l & \ldots & x_{k-1} & b_{k+1} \\
 b_1 \mid y_1 & \ldots & y_{m-1} & b_{m+1} & \ldots & b_{k+1} \\
 x_1 \ldots x_{l-1} & \mid a_{l+1} & \ldots & x_{k-1} & \mid a_{k+1} \\
 b_2 & \ldots & b_m & y_m & \ldots & y_{k-1} \\
\end{array}
\]

Cutting at (l, m) yields

$$(\tilde{T})$$

\[
\begin{array}{cccccc}
 a_1 & \ldots & a_l & a_l & \ldots & a_k \\
 b_1 \mid y_1 & \ldots & y_{m-1} & y_m & \ldots & y_{k-1} \\
 x_1 \ldots x_{l-1} & x_l & \ldots & x_{k-1} & \mid a_{k+1} \\
 b_2 & \ldots & b_m & b_{m+1} & \ldots & b_{k+1} \\
\end{array}
\]

B: $m \leq l$. In the Cases (7)–(9) and (12) we have $m \leq l$, thus the pair of two-rowed arrays $T = (T_1, T_2) \in T_{k+1}^L \times T_{k-1}^L$ looks like

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & a_l \mid a_{l+1} \ldots a_{k+1} \\
 b_1 \mid y_1 & \ldots & y_{m-1} & y_m \ldots y_{k-1} \\
 x_1 \ldots x_{l-1} & x_l & \ldots & x_{k-1} \\
 y_1 \ldots y_{m-1} & y_m & \ldots & y_{k-1} \\
\end{array}
\]

Cutting at (l, m) we obtain $I(T) \in T_{k+1}^L \times T_{k-1}^L$:

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & a_l \mid x_l \ldots x_{k-1} \\
 b_1 \mid y_1 & \ldots & b_m & y_m \ldots y_{k-1} \\
 x_1 \ldots x_{l-1} & a_{l+1} \ldots a_{k+1} \\
 y_1 \ldots y_{m-1} & b_{m+1} & \ldots & b_{k+1} \\
\end{array}
\]

Case (7), $1 = m \leq l \leq l' \leq m' = k$. The pair T' can be expressed in terms of the entries of T as follows:

$$(T')$$

\[
\begin{array}{cccccc}
 a_1 & \ldots & a_l & x_l & \ldots & x_{v'-1} & a_{v'+1} \ldots a_{k+1} \\
 b_1 \mid y_1 & \ldots & y_{m-1} & y_m \ldots y_{k-1} & b_{k+1} \\
 x_1 \ldots x_{l-1} & a_{l+1} & \ldots & a_{v'} & x_{v'} \ldots x_{k-1} & \mid b_k \mid b_k \\
 b_2 & \ldots & b_m & b_{m+1} & \ldots & b_{k+1} \\
\end{array}
\]

Cutting at (l, m) yields

$$(\tilde{T})$$

\[
\begin{array}{cccccc}
 a_1 & \ldots & a_l & a_l \mid a_{l+1} \ldots a_{v'} \mid x_{v'} \ldots x_{k-1} & b_{k+1} \\
 b_1 \mid b_2 & \ldots & b_m & y_m \ldots y_{k-1} & b_{k+1} \\
 x_1 \ldots x_{l-1} & x_{l} & \ldots & x_{v'-1} & a_{v'+1} \ldots a_{k+1} \mid y_1 \mid y_1 \\
 y_1 \ldots y_{m-1} & y_{m+1} & \ldots & y_{k-1} & b_{k+1} \\
\end{array}
\]

Case (8), \(1 = m \leq l \leq m' \leq l' = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid x_l \ldots x_{k-1} & \mid a_{k+1} \\
 b_1 & \mid y_1 & \ldots & y_{m'-1} & \mid b_{m'+1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid a_{l+1} & \ldots & a_k & \mid b_{k+1} \\
 b_2 & \ldots & b_{m'} & \mid y_{m'} & \ldots & y_{k-1} \\
 \end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid a_{l+1} & \ldots & a_k & \mid b_{k+1} \\
 b_1 & \mid b_2 & \ldots & b_{m'} & \mid y_{m'} & \ldots & y_{k-1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid x_l & \ldots & x_{k-1} & \mid a_{k+1} \\
 y_1 & \ldots & y_{m'-1} & \mid b_{m'+1} & \ldots & b_{k+1} \\
 \end{array}
\]

Case (9), \(1 = m \leq m' \leq l \leq l' = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid x_l \ldots x_{k-1} & \mid a_{k+1} \\
 b_1 & \mid y_1 & \ldots & y_{m'-1} & \mid b_{m'+1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid a_{l+1} & \ldots & a_k & \mid b_{k+1} \\
 b_2 & \ldots & b_{m'} & \mid y_{m'} & \ldots & y_{k-1} \\
 \end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid a_{l+1} & \ldots & a_k & \mid y_{k-1} \\
 b_1 & \mid b_2 & \ldots & b_{m'} & \mid y_{m'} & \ldots & y_{k-1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid x_l & \ldots & x_{k-1} & \mid a_{k+1} \\
 y_1 & \ldots & y_{m'-1} & \mid b_{m'+1} & \ldots & b_{k+1} \\
 \end{array}
\]

Case (12), \(1 = m' \leq m \leq l \leq l' = k\). The pair \(T'\) can be expressed in terms of the entries of \(T\) as follows:

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid x_l \ldots x_{k-1} & \mid a_{k+1} \\
 b_1 & \mid y_1 & \ldots & y_{m-1} & \mid b_{m+1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid a_{l+1} & \ldots & a_k & \mid b_{k+1} \\
 b_2 & \ldots & b_m & \mid y_m & \ldots & y_{k-1} \\
 \end{array}
\]

Cutting at \((l, m)\) yields

\[
\begin{array}{cccc}
 a_1 & \ldots & a_l & \mid a_{l+1} & \ldots & a_k & \mid y_{k-1} \\
 b_1 & \mid b_2 & \ldots & b_m & \mid y_m & \ldots & y_{k-1} \\
 \end{array}
\]

\[
\begin{array}{cccc}
 x_1 & \ldots & x_{l-1} & \mid x_l & \ldots & x_{k-1} & \mid a_{k+1} \\
 b_2 & \ldots & b_m & \mid b_{m+1} & \ldots & b_{k+1} \\
 \end{array}
\]

References

[1] Shreeram Abhyankar, *Enumerative combinatorics of Young tableaux*, Marcel Dekker, New York, 1988.

[2] Shreeram Abhyankar and Devadatta M. Kulkarni, *On Hilbertian ideals*, Linear Algebra and its Applications 116 (1989), 53–79.

[3] Francesco Brenti, *Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update*, Contemporary Mathematics 178 (1994), 71–89.

[4] W. Bruns and Jürgen Herzog, *On the computation of a-invariants*, Manuscripta mathematica 77 (1992), 201–213.
[5] A. Conca, *Ladder determinantal rings*, Journal of Pure and Applied Algebra **98** (1995), 119–134.

[6] A. Conca and Jürgen Herzog, *On the Hilbert function of determinantal rings and their canonical module*, Proceedings of the American Mathematical Society **122** (1994), 677–681.

[7] R. L. Graham, Donald E. Knuth, and Oren Patashnik, *Concrete mathematics*, Addison-Wesley, Reading, Massachusetts, 1989.

[8] Jürgen Herzog and Ngô Viêt Trung, *Gröbner bases and multiplicity of determinantal and Pfaffian ideals*, Advances in Mathematics **96** (1992), no. 1, 1–37.

[9] Christian Krattenthaler and Martin Rubey, *A determinantal formula for the Hilbert series of one-sided ladder determinantal rings*, preprint (2001).

[10] Devadatta M. Kulkarni, *Hilbert polynomial of a certain ladder determinantal ideal*, Journal of Algebraic Combinatorics **2** (1993), 57–71.

[11] ———, *Counting of paths and coefficients of Hilbert polynomial of a determinantal ideal*, Discrete Mathematics **154** (1996), 141–151.

[12] G. Niesi and L. Robbiano, *Disproving Hibi’s conjecture with CoCoA or projective curves with bad Hilbert functions*, Computational Algebraic Geometry (Boston) (F. Eyssette and A. Galligo, eds.), Progress in Mathematics, no. 109, Birkhäuser, 1993, pp. 195–201.

[13] Richard P. Stanley, *Log-concave and unimodal sequences in algebra, combinatorics, and geometry*, Annals of the New York Academy of Sciences **576** (1989), 509–535.