Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells, and in interfering with processes essential to the viral life cycle (chiefly entry into the host cell). For individuals that successfully control infection, virus-elicted antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen-specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this Review, we compare the adaptive humoral immune responses to human immunodeficiency virus (HIV), influenza and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza, an acute infection with multiple exposures during a lifetime and annual vaccination; filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses, as well as important lessons to guide future development of vaccines and immunotherapeutics.

Enveloped viruses are found across diverse viral families and cause some of the deadliest diseases known to man. Despite a spectrum of differences in their biology and pathogenesis, all enveloped viruses share two commonalities: a lipid bilayer envelope co-opted from host cells following viral egress, and the presence of surface-exposed viral glycoproteins for host cell recognition and entry. These viral glycoproteins, or ‘spike’ proteins, are exposed to the adaptive immune response and are the main targets of host antibodies, often being the only exposed antigen. Naturally, viruses have developed mechanisms to avoid such responses through rapid evolution of antibody-targeting epitopes, steric shielding of epitopes by glycan post-translational modifications, immune decoys such as soluble antigens that share viral spike epitopes, and immunosuppression to evade host recognition following cellular entry. In response to the viral arms race, antibodies have in turn developed many creative solutions to overcome viral evasion, including unique structural adaptations that allow them to more readily penetrate the viral armour and exploit sites of vulnerability.

The nature of the enveloped viral surface has major consequences for viral entry and, consequently, how the adaptive immune system responds. For enveloped viruses, entry hinges on the mechanics of the viral glycoprotein. Vital to the function of glycoproteins is their ability to fuse viral and host membranes together. Generally, this is achieved through a complex mechanism, where initial binding to a specific cellular host receptor usually results in drastic changes in the structure of the viral spike that enables transition to the post-fusion conformation. Successful triggering of post-fusion glycoprotein forms provides the energy necessary to fuse the viral and cellular membranes, thereby forming pores that allow the viral genomes to gain entry into the cytoplasm. Once entry is achieved, viral replication takes place using a variety of strategies, both in the cytoplasm and/or nucleus, but concludes in assembly and budding of new viral progeny at the host cell surface. For enveloped viruses, a neutralizing antibody (nAb) disrupting the viral lifecycle almost always involves binding to the viral glycoprotein, which can then disrupt entry by blocking one or more of the processes described above. Additionally, antibodies can also block viral egress by binding to glycoproteins on the infected cell surface, preventing viruses from budding. Thus, neutralization is achieved by preventing progeny from infecting a new cell, in a mechanism that is distinct from neutralization achieved by blocking entry (Fig. 1). The pathogenesis of the three viruses that we describe here represent gradations of antigenic exposure to the adaptive immune system and also greatly influence the molecular nature of the antibodies formed in response to infection, which we will discuss at length later. Specific details regarding the lifecycle and pathogenesis of these viruses are summarized in Table 1. While nAbs represent the overwhelming majority of our understanding of the antibody-based immune response to enveloped viruses, especially with respect to their structure, some non-neutralizing antibodies have also been shown to provide protection in vivo; however, this Review will predominantly focus on nAbs.

Due to the potency, specificity and tolerability of antibodies, they have become popular as therapeutics for viral disease and are also the intended outcome of most vaccines. It is therefore vital to understand not only where antibodies bind to viruses, but the molecular nature...
of the interaction. Structural biology has led the way in describing how antibodies interact with viral glycoproteins. While X-ray crystallography has long been the primary technique for solving high resolution structures, single particle electron microscopy (EM) has recently become a powerful and increasingly used method for determining structures of viral antigen–antibody complexes, reaching resolutions comparable to X-ray crystallography. These data are critical for the structure-based design of the next generation of immunogens to elicit neutralizing and protective antibodies as well as for the selection and design of improved antibody therapeutics.

In this Review, we summarize recent advances in our understanding of neutralizing antibody responses to enveloped viruses, particularly from a structural perspective, with a focus on human immunodeficiency virus (HIV), influenza and filoviruses, for which there is a wealth of structural and immunological data. We first describe the overlapping and unique characteristics of each viral lifecycle, glycoprotein structure and pathogenesis. We highlight how structural biology has delineated the immunogenic landscape of these viruses and how antibodies have adapted to target these sites of vulnerability. We also discuss common and divergent themes among immune responses to these viruses and, importantly, how this information is being utilized to inform design of vaccines, therapeutics and diagnostics. Finally, we briefly comment on the role of antibodies in the recruitment of mediators of cellular immunity, the emerging role of Fc-variants, and how lessons learned can translate to other viruses and address future outbreaks.

nAbs and glycoprotein structures

A wide variety of immunoglobulins (Ig) are produced in humans, each with different roles in the immune response. The Ig gamma (IgG) form is by far the most extensively studied class of Ig, due to its extremely important role in immunotherapeutics as well as in viral immunity. Although there are very few structures of intact IgG that have been determined and subsequently published, hundreds of structures of antibody variable domains have been described in the literature at length, usually as fragment antigen binding (Fab) alone and in complex with cognate antigens. IgGs can be segregated into two identical Fab domains, which are responsible for binding and recognizing specific antigens, and a single fragment crystallizable (Fc) domain, which is responsible for communicating the presence of pathogens through binding to a limited set of cellular receptors, known as Fc gamma receptors (FcγRs).
The overwhelming majority of antibodies that provide sterilizing protection from infection target the viral spike. Therefore, the structure of the glycoprotein greatly influences how antibodies are selected, matured and specifically interfere with the mechanics of viral entry. Many enveloped glycoprotein structures have been solved, including those of the viruses discussed here, and have provided extensive insight into their mechanism of entry, as discussed in Fig. 3. Such details have led to enveloped virus membrane fusion proteins being classified into three groups based on their structure and mechanism of entry[1]. For the purposes of this Review, we will focus on the type-I fusion glycoproteins, which compose the glycoproteins of HIV, influenza and filoviruses. However, while these three viruses are well-characterized examples, they do not represent the complete list of viruses that have contributed to our understanding of the antibody-based immune response to viruses containing type-I glycoproteins.

Type-I glycoproteins are expressed as single polypeptides that, after proteolytic cleavage, give rise to the pre-fusion, metastable viral spikes that are present on the surface of viruses. Type-I glycoproteins are composed of heterodimers arranged in a homotrimeric arrangement. Each protomer is identical and includes an ectodomain, consisting of an N-terminal portion; the receptor-binding domain (RBD) that houses the receptor binding site (RBS); and a largely C-terminal portion containing the fusion machinery, a transmembrane anchor, and often some type of internal C-terminal tail. Within the fusion machinery, a hydrophobic linear sequence of amino acids, known as the ‘fusion peptide’ or ‘internal fusion loop’, is sequestered or partially buried, waiting to be released following receptor engagement. In each of the viruses discussed here, binding to specific host cell receptors is not sufficient to activate viral fusion. Rather, there are multiple steps required before glycoproteins become fusion competent. Once the fusion peptide is released, it is thought that it inserts itself into the host membrane and anchors the viral and host membranes together[2]. Helices within the fusion domain combine to form an elongated helix and thereby ‘zip’ into their post-fusion form, creating an extended coiled-coil intermediate. The extended intermediate eventually collapses into a 6-helical bundle, bringing the inserted N-terminal fusion-peptides and C-terminal transmembrane anchor regions together to create the glycoprotein’s post-fusion form. This structural rearrangement provides the necessary energy to bring the viral and host membranes close together, forming a pore sufficient for the genetic material to enter into the cytoplasm. Pre- and post-fusion structures representing influenza[3,4], HIV (refs. [5,6]) and filoviruses[15,16] have all been previously described, and were instrumental in detailing the processes described here.

Covering the surface of all glycoproteins are a variety of glycans, which are typically found to be more concentrated in the N-terminal
RBD domains. The extent of coverage, type of glycans and attachment, and role in the viral life cycle, varies between viruses and is not completely understood. However, the most commonly attributed purposes of glycans are immune shielding and prevention of proteolysis. For determination of some glycoprotein structures, glycans are trimmed back by glycosidases or occasionally deleted (VL and CL). The Fc region is responsible for linking antigens to effector cells and communicating their presence to the host through binding to FcγRs on effector cells, which exist in a variety of isotypes, and are expressed at varying levels and compositions depending on the particular effector cell and activation state.

Themes of antibody binding to enveloped glycoproteins
Antibodies can provide sterilizing protection against viral pathogens, and finding antibodies that are potent against diverse strains of related viruses is highly desirable. Once such antibodies are identified and isolated, structural elucidation of their epitopes can reveal regions on the viral surface that can be targeted by vaccines and immunotherapeutics. One driver of antibody epitope mapping has been the utilization of EM to rapidly survey large numbers of antibodies through docking crystal structures into lower resolution cryo-EM maps, and, recently, to map polyclonal antibody responses in sera. Structural studies have collectively revealed that antibodies utilize a plethora of strategies to recognize the wide range of surfaces and epitope locations on viral antigens, highlighting weak spots on the viral armour. In the following sub-sections, we outline some of these sites of vulnerability and point out common and divergent themes.

Receptor-binding sites and structural mimicry. All viruses utilize a host receptor in some capacity to gain entry into cells. Therefore, it is not surprising that the RBS is a major site of vulnerability for many viruses, since this region is an obligate component of the viral life cycle and is, therefore, relatively conserved, even under immune pressure (Fig. 4a–c). Viruses have evolved unique ways to escape this pressure. For example, HIV requires both a primary receptor (CD4), whose binding site is sterically difficult for antibodies to access, as well as a co-receptor (CCR5/CXCR4), whose binding site is sequestered and only formed and accessible after CD4 binds. Nevertheless, many broadly neutralizing antibodies (bNabs) have now been identified that target the CD4-binding site and, relatively well-conserved, although some mutational variability can be tolerated within this region, and RBS-adjacent regions can actually vary substantially. Efforts to engineer broader specificity into RBS-targeting antibodies has been met with difficulty, as RBDs occupy relatively small patches on the viral glycoprotein surface compared to the size of an antibody footprint and, therefore, there are many places where the virus can escape neutralization by changing sequence in regions surrounding the RBS. Thus, strain specificity is more typical, and true bNabs against the RBS are rare.

The Ebola viruses on the other hand require massive proteolytic remodelling for their RBS to become exposed within the late-endosomal compartment and, therefore, the RBS is hidden from the immune system on free virions. However, conservation of the RBS on all filoviruses, and the differential exposure of the RBS on Marburgviruses in particular, has shown that pan-filoviral antibodies are possible.

Just as viruses have evolved complementary grooves on their protein surfaces for receptor binding, antibodies have also evolved into molecular mimics that can imitate these receptors to some extent. In such cases, binding can be quaternary in nature, involving loops that contain specific sequences or motifs similar to the actual receptor. This mimicry may involve one or more complementarity determining region (CDR) loop. The structure of an antibody is thus well-suited for performing receptor mimicry, and there are examples for each of the viruses discussed here (Fig. 4a–c).

HIV relies on the interaction with its receptor, CD4, in a conserved binding pocket near the base of gp120 to achieve the structural changes required for interaction with its secondary receptor. Similar to IgG, CD4 is also composed of the Ig-fold; thus, antibodies are predisposed to recognize the CD4 epitope, although they consist of twin Ig domains rather than one for CD4. The VRC01 class of antibodies target the CD4 binding site (Fig. 4a) and are typically very broadly reactive and potent. Although these antibodies mimic some aspects of CD4 binding to receptor, they do not induce the large structural changes associated with receptor binding. Monoclonal (m)Ab b12 from long-term survivors, although less potent and broad, more closely emulates the CD4 receptor in that it does induce some structural changes, though not to the same extent as CD4 binding.

Each influenza HA monomer has a binding pocket that contacts sialic acid moieties on the cell surface as its receptor prior to entry, and relies on this interaction for endocytosis. While most of the known bNabs against influenza virus target the more conserved HA stalk, some antibodies that contact the HA head also have some breadth in their binding and neutralizing capacity. For example, the crystal structure of F045-092 (Fig. 4b), as well as other mAbs, reveals that such antibodies likely block entry by mimicking the way sialic acid binds by inserting a CDRH3 loop into the RBS on
the HA head38. On this and other antibodies, a dipeptide on CDRH3 contains an Asp residue that directly mimics the carboxyl on sialic acid38,53, and a hydrophobic residue that binds in the same hydrophobic pocket as the acetamido moiety of sialic acid33,38,42,54. Occasionally, CDR2 inserts into the binding site instead of CDRH352. While the strength of the monovalent interaction is often low, the added avidity of an IgG that can span HAs on the surface can substantially boost affinity and activity52. Similarly51, many other antibodies also contact the HA RBS, but have larger footprints38 that extend into less conserved regions adjacent to the RBS and are therefore more strain-specific and less broadly neutralizing33,51,53.

A remarkable example of structural mimicry was recently demonstrated for filoviruses. Antibody MR78 (Fig. 4c), which was isolated from a panel of Marburg virus human survivor mAbs with potent neutralizing activity that targets the RBS (ref. 24), was shown to bind directly to the Niemann Pick C1 (NPC1) binding site, blocking receptor binding48. The motif displayed by MR78 includes hydrophobic residues that closely mimic the loops inserted by NPC1 (ref. 49). Ebolaviruses have evolved a more structured glycan cap15,60–62, in contrast to the one found on Marburg viruses47, that occupies the RBS on the viral surface prior to cleavage by host proteases. The \textit{Ebola\textit{virus}} glycan cap, NPC1 and the MR78 CDR loops, all bind to GP in a similar fashion. This three-way type of mimicry demonstrates a unique way that the immune system has been able to take advantage of vulnerable sites on GP and mimic structures that \textit{Ebola\textit{virus}} has evolved to avoid antibody recognition63.

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{\textbf{Shared structural features of type I glycoproteins.} \textbf{a}, The glycoproteins of HIV (PDB 5V7J), influenza (PDB 3KU3) and filoviruses (PDB 5JQ3) are widely divergent in sequence, size and shape, but do share common structural features that are conserved in type I fusion mechanisms of enveloped virus entry. Here, we show representative structures of glycoproteins from each of these viruses that are gradient coloured from the N-terminus (light yellow, N) to the C-terminus (dark blue, C). This allows a comparison of where potential common sites of vulnerability exist on each of these structures in relation to divergent viruses, including the RBS, fusion loop and stem regions. Asterisks indicate sites of proteolytic cleavage. \textbf{b}, The sub-domain architecture of a type-I viral fusion protein is shown with this example of a GP1,2 subunit of Ebola virus GP (PDB 5JQ3). The N-terminal receptor-binding domain (RBD, light green) is positioned above the C-terminal fusion domain (FD) and houses the RBS (magenta). The FD contains a fusion peptide (FP, light purple), two heptad repeats (HR1, pink; HR2, purple), a hydrophobic membrane proximal external region (MPER, dark purple), and a transmembrane (TM, dark blue) anchor and C-terminal tail (CT, black). \textbf{c}, Type-I membrane fusion occurs in distinct stages. (1) N-terminal RBDs bind their cognate receptors, beginning the process of fusion. (2) Receptor-binding releases the FP, which pierces the host membrane and causes HR1 and HR2 to form an extended 3-helix bundle. (3) During intermediate stages, it is thought that groups of viral spikes cluster to induce membrane buckling, allowing viral and host membranes to come close to each other. (4) Finally, HR2 collapses on HR1, forming 6-helix bundles that draw the TM domains together with the FPs, causing mixing of host and viral membranes and formation of the fusion pore, which then permits the viral genome to exit into the host cytoplasm.}
\end{figure}
Fig. 4 | Examples of common and divergent sites of enveloped virus vulnerability targeted by neutralizing antibodies. **a**, CD4 binding site (CD4bs) antibodies, such as VRC01 (PDB 5FYJ), bind in between HIV envelope (Env) protomers using their HCs (top) and mimic the immunoglobulin fold of the actual receptor (bottom). **b**, CDRH3 of F045-92 (PDB 4O58), and others like it, reach into the sialic-acid-binding pocket (top) and closely mimic the natural ligand (bottom). **c**, The antibody MR78 (PDB 5UQY) uses an extended hydrophobic CDRH3 (top) to bind to the NPC1 RBS. **d**, The fusion peptide (FP) of Env sits near the base and is contacted largely by the HC of VRC34.01 (PDB 5I8H). **e**, The HA FP also sits near the base of the HA stalk and, similarly, is contacted largely by the HC of MEDI8852 (PDB 5JW3). **f**, For ADI-15878 (PDB 6DZL), contacts with the HC are made across HR1 and the FP is mostly in contact with the LC. **g**, The HIV antibody 10E8 (Env PDB 5V7J and 10E8 PDB 5T85 fit into cryo-EM electron density for EMDB 3312) has evolved to partially contact portions of the viral lipid membrane. **h**, HA stalk antibodies typically have the broadest neutralizing paratopes and CR9114 (PDB 4FQI) contacts large portions of the extended HA2 alpha-helix with its HC. **i**, bnAb ADI-16061 (GP PDB 5JQ3 and Fab PDB 5HJ3 fit into negative-stain electron density for EMDB 8698) binds far below the base of GP, contacting conserved hydrophobic residues within HR2 and the MPER. **j**, The long-term exposure of the immune system to HIV allows for extensive SHM and antibody evolution, producing antibodies like PGT145 (PDB 5V8L), with an extended CDRH3 that is made rigid by a beta-hairpin structure with hydrophobic residues and sulfated tyrosines. This allows the antibody to reach deep into the apex pocket of Env. **k**, Ebolaviruses have two glycoproteins, the viral GP trimer and the sGP dimer, which is expressed in large abundance during infection and is thought to be a type of immune decoy. The first 296 amino acids of GP and sGP are shared and the protective antibody 13C6 binds to both GP (left, PDB 5KEL) and sGP (right, PDB 5KEN) near a highly conserved residue (W275).
Fusion peptide. Recent work has revealed the fusion peptide at the N-terminus of the membrane-proximal envelope glycoprotein as a common site of vulnerability. This short, hydrophobic sequence is vital to the fusion process and must be liberated from its buried or partially sequestered location in the stalk or stem of glycoproteins to contact the host cell membrane. This makes it a difficult, but ideal, target for nAbs due to the necessary sequence conservation within a viral family. Structures of antibodies reactive with the fusion peptide have been shown for HIV (refs 46-48) (Fig. 4d), influenza 25,44,60,70 (Fig. 4c) and Ebolaviruses 62,71-73 viruses (Fig. 4f). In each case, antibodies that engage the fusion peptide do so either directly or partially 97, and are broadly reactive.

The glycoprotein stalk and membrane-proximal external region (MPER). The viral stalk or stem emerges from the transmembrane anchor of glycoproteins and contains the membrane fusion machinery. This domain is composed of the second of the two glycoproteins (HA2 for influenza virus, gp41 for HIV and GP2 for filoviruses) as well as the N- and C-terminal regions of the first membrane-distal glycoprotein (HA1 for influenza virus, gp120 for HIV and GP1 for filoviruses). This central functional role also makes it an important site of vulnerability that is often highly conserved in sequence. With the exception of HIV-1 Env, access to this region was once thought to be difficult or impossible due to its proximity to the hydrophobic viral membrane and spike density 69,70. However, many potently neutralizing antibodies that can access this region have now been discovered for HIV (Fig. 4g) and filoviruses 74-76 (Fig. 4i). The influenza stem is larger than in HIV and filoviruses, and is now appreciated as a more common site of vulnerability than once thought (Fig. 4i), prompting the pursuit of potential vaccine candidates that focus on this region 80,82-88.

The MPER connects the heptad repeat region 2 (HR2) to the transmembrane region and is involved in the fusion machinery. Remarkably, HR2- or MPER-directed mAbs for filoviruses contact epitopes nearly buried within the viral membrane (Fig. 4i) and, in HIV-1, such mAbs have additionally evolved to interact with lipids in the membrane 66,67,70 or access transiently exposed hydrophobic residues 92 (Fig. 4g). There is not a well-defined MPER in influenza HA and consequently no antibodies to this specific region, as for the other viruses discussed here; however, the portion of HA that sits proximal to the membrane is referred to as the stem and does have spatially analogous regions to the MPER (ref. 97).

Virus-specific sites of vulnerability. In addition to the inherently common structural features that underlie all type-I viral GPs, there are many unique features that can also serve as hotspots for eliciting potent antibodies. Determination of the structures of antibodies in complex with HIV Env in particular, has uncovered some of the most unique examples 80,92. The duration of an HIV infection allows for a long-term arms race to commence among the increasingly diverse viral population and the host immune system 11,93-96. This is aided, in part, by an extensive array of glycans on the surface of Env, which can help shield the underlying protein surface from immune surveillance. Strikingly though, this overabundance has given rise to antibodies that can bind directly and specifically to glycans that are highly conserved due to their high density, which protects them from secondary processing 20,25,26,97-108. For example, antibody 2G12 exclusively recognizes immature high mannose glycans on HIV gp120 (refs. 27,101,102). While some glycan components of influenza and filoviral epitopes have been identified, they do not appear to play a role in antibody responses to the same extent as HIV-directed mAbs.

HIV Env also houses many important epitopes that are buried within the central core of the viral spike, only exposed transiently through "conformational masking" 103 or after CD4 is bound 94. At the apex of the HIV viral spike are several variable loops, including V1/V2 and V3, that can widely vary in sequence, but change position after CD4 binding and participate in co-receptor binding 11,12,19. These hidden epitopes are still accessible by antibodies, often through non-classical methods of antibody binding. For example, broadly neutralizing antibodies PG9 and PGT145 (Fig. 4i) bind to the apex through very long CDRH3 loops (>30 residues) that can penetrate deep into recesses in the trimer apex. These Abs also bind asymetrically where only a single Ab binds at the apex compared to most other HIV antibodies where three Fabs can be accommodated per trimer 18,104. However, some more recently identified antibodies can bind to the Env apex with shorter CDRs and with a stoichiometry of up to two Fabs per trimer 105,106. A common theme among such antibodies is the quaternary nature of their epitopes, requiring an intact trimeric spike and at least two protomers for binding, which is a mode of antibody binding that was not fully appreciated until the first structures of trimeric Env were determined 11,12. To achieve such complicated binding modes, these antibodies have often undergone extensive somatic hypermutation (SHM) that involves stabilizing mutations in framework regions, CDR loops that support the structure of the long inserting loops, such as CDRH3, in the paratope, and extended secondary structure within the CDR loops themselves. Conversely, some of the most potently neutralizing antibodies to influenza have far less SHM 108,109 and typically much shorter CDRH3 loops, likely reflecting the much more acute nature of these infections and the possibility of first responder or 'SOS-like' antibodies in the human immune repertoire that evolved as a rapid defensive against infection 110,111.

On Ebolaviruses, a structure referred to as the glycan cap, which covers the RBS, has been attributed to eliciting several neutralizing antibodies, despite its cleavage and removal following entry 94. The glycan cap and portions of the core GP are also shared with a second GP product known as sGP, which is secreted abundantly during infection 112. Consequently, antibodies, such as 13C6, that react with the glycan cap are often cross-reactive to sGP 113-118 (Fig. 4k). Therefore, the mechanism behind how such antibodies neutralize Ebolavirus infection is not well understood; Marburgviruses do not produce sGP or have a defined glycan cap, and instead leave their RBS exposed on virions 94.

Antibody allostery. Antibodies have also been shown to provide allosteric influence on glycoproteins, where binding in one location essentially alters a distal site. For example, HIV bnAb PGT151 binding to two sites on the HIV trimer induces asymmetry within the pliable Env structure, such that the third binding site on Env becomes inaccessible 96. In a different but similar manner, antibodies have also been shown to exhibit cooperative binding, such as the binding of the Ebola virus (EOBV) antibodies FVM09 and m8C4, which do not offer effective neutralization or protection alone, but can potently neutralize EBOV in combination 118. In this case, it is hypothesized that the binding of one alters the epitope of another, such that the epitope becomes more accessible.

Structures illuminate sites-of-vulnerability. The structures described here indicate that there are essentially no surfaces on viral glycoproteins that cannot be targeted by the adaptive immune response (Fig. 5 and Supplementary Table 1). The diversity of antibody responses that occurs during infection demonstrates the extraordinary ability of the adaptive immune system to uniquely overcome viral obstacles. These studies provide valuable information that inform the development of next generation therapeutics and vaccines that can mirror these activities.

Vaccine, therapeutic and diagnostic development. Structural data that have been amassed for enveloped viral glycoproteins in the past few decades have informed a more fundamental understanding of the complex viral life cycle, but have also been
used to directly and significantly advance efforts to generate and improve vaccines, therapeutics and diagnostics for these viruses. These efforts have been recently reviewed\(^\text{129}\); therefore, we will briefly highlight the most significant advances in each of these areas.

Efforts to generate an effective HIV-1 vaccine have been slow and challenging. Traditional routes to vaccination do not produce the bnAbs that are necessary to protect against the hugely diverse range of viral strains that are circulating in different parts of the world\(^\text{120–123}\). Failure has largely been fuelled by the complex biology of HIV Env, which is highly glycosylated, metastable, undergoes large structural changes during entry at the cell surface and can withstand large numbers of amino acid substitutions within the so-called ‘hypervariable’ regions\(^\text{26}\). To develop bnAbs, the adaptive response must overcome these obstacles through repeated exposure to a more diverse population of viruses, such as in long-term survivors\(^\text{83,125–127}\). Being relatively rare, it took many years to identify and isolate such bnAbs in reasonable numbers, and less than a handful were available in the 1990s\(^\text{128–131}\). Understanding how these mAbs isolate such bnAbs in reasonable numbers, and less than a handful of subunit vaccine designs and have yielded two parallel efforts, exemplified the HIV and influenza fields. The first approach aims to present stable, idealized bnAb epitopes wherein sites of vulnerability on the viral glycoprotein are presented to the immune system in an idealized way. This typically is achieved in one of two ways: i) presentation of multiple epitopes on an intact, trimeric viral spike that is engineered for stability and limits exposure of known non-neutralizing epitopes\(^\text{137–141}\) and ii) presentation of individual epitopes that are grafted onto protein scaffolds to immune-focus the antibody response to a particular site of vulnerability. Both of these approaches have advantages and disadvantages\(^\text{142}\). The epitope-focused approach has shown success as a proof-of-concept study with respiratory syncytial virus\(^\text{142}\) and has since been expanded to show success in eliciting desired antibodies for HIV\(^\text{143–145}\), but has yet to show clinical success. However, epitope-focused vaccine designs have thus far not induced bnAbs\(^\text{146–148}\). Activity against the more complex and quaternary epitopes found on the intact, trimeric viral antigens can be lost or produce obstacles for antibodies elicited by monomeric designs. For HIV, more stabilized and engineered versions of a ‘native-like’ trimer indeed induced stronger neutralizing antibodies titers\(^\text{149–151}\), but the responses generally lack breadth, only inducing antibodies that target the autologous immunogen. For influenza, the most broadly potent antibodies to date have been consistently mapped to the HA stalk. Therefore, an epitope-focused approach has been much more successful, where only the HA stalk is presented to the immune system\(^\text{147,79,152–156}\) or is presented in a chimaeric form with different HA heads to focus the immune system on the conserved stem region\(^\text{152,153,156}\). In these

Fig. 5 | The immunogenic landscape of enveloped viruses, illuminated by structural biology. a–f. Overlaying low-pass filtered structures of selected mAbs bound to trimeric glycoproteins from a, b (HIV; blues and purples), c, d (influenza; reds and oranges) and e, f (filoviruses; yellows and greens) reveals the immunogenic landscape of these viral glycoproteins and the 90° approach angles that antibodies can utilize to probe the glycoprotein surface. Abs bound to a single protomer are shown for clarity. Stripping back these antibodies clarifies how these epitopes are focused into distinct regions of vulnerability, although nearly the entire surface is susceptible to mAb binding. Several of these sites of vulnerability are equivalent across these examples, including the apex, RBS, interface of RBS and fusion domains, FP, and viral stem, which includes HR1, HR2 and the MPER domains.
cases, neutralizing responses can be relatively high and contain a level of breadth. One possible explanation is that the HA stalk has a larger degree of sequence conservation across the viral landscape than HIV Env, and less glycosylation.

The second approach to vaccines is to design immunogens that can stimulate specific precursor B-cells that can evolve into bnAbs. Thus, these immunogens target the non-somatic germline genes that first recombine to form the B-cell receptor, and aim to emulate the early stages of infection to initiate an immune response that has the potential to mature to breadth and potency over time. This approach has arisen from analysing structures of known bnAbs and engineering immunogens to bind germline versions of these bnAbs. Thus, vaccination occurs in stages, by priming bnAb precursors and then ‘guiding’ these populations through subsequent vaccinations with immunogens that progressively drive somatic hypermutation toward bnAbs. The most advanced demonstration of these efforts has been shown by Schief and colleagues who used state-of-the-art animal models and analytics, such as next generation sequencing, to study immune responses in great detail. The germline-targeting approach has two major obstacles. First, not all individuals necessarily make a high frequency, or any at all, of the naïve B-cell populations to be targeted. Encouragingly though, some germline bnAb precursors have been found in naïve humans at low but sufficient frequency to initiate a response. Indeed, as more bnAbs are found against particular epitopes, the frequency of the particular germlines in the naïve population can be taken into account in germline-targeting approaches. Additionally, longitudinal studies of the sequences and structures of bnAb evolution can provide clues as to how to better design immunogens that shepherd bnAb responses. The second hurdle of this approach is that targeting human germline genes is difficult to test in animal models. Here, humanized and knock-in mice have provided a valuable tool for at least providing proof-of-concept for this approach.

The B-cell origins of broadly neutralizing mAbs tend to be restricted to particular germline sequences. For example, the CD4 binding site bnAbs of HIV, and the stem-directed bnAbs of influenza, are often constrained to particular germline genes, namely $V_{\gamma 1}-2/\gamma_{1}-46$ (refs. 2,167,175) and $V_{\gamma 1}-69$ (ref. 168), respectively. Interestingly, broadly potent $V_{\gamma 1}-69$-derived nAbs are also found against a variety of other viral epitopes, including those found on Ebolavirus7,79,114,116 and HIV-1 (refs. 2,167,168,169). This commonality does not have an obvious underlying reason other than the CDRH2 of $V_{\gamma 1}-69$ antibodies has a hydrophobic tip that the Fc receptor

clues as to how to approach vaccine and therapeutic design, and can be tuned to the particular virus.

Vaccine and therapeutic development for filoviruses has experienced a surge in research due to a recent and unprecedented outbreak in Western Africa from 2013–2016 (ref. 173). Outbreaks of filovirus infection are relatively rare and most often isolated to sub-Saharan Africa; therefore, there was little information on the antibody-based response to exposure. Prior to the 2013 outbreak, there was evidence to suggest that neutralizing immune responses to infection were rare and that immunotherapy may not be possible or that vaccination may be difficult. However, several studies that appeared during the last major outbreak showed that humanized mouse-derived mAbs, when used in combination, could provide protection. Two of these therapies, ZMab (ref. 180) and MB-003 (ref. 181), were recombined into the tri-mAb cocktail ZMapp (ref. 182), which demonstrated complete protection in non-human primates at late stages of infection. Conducting trials of ZMapp were met with some difficulties due to the waning outbreak, and demonstration of protective efficacy in humans could not be fully substantiated. One vaccine trial, however, did show great promise, and there is evidence for long-term sustained protection in survivors of natural infection. A new outbreak of Ebola virus in 2018 in the Democratic Republic of the Congo has seen the use of ZMapp as well as another tri-mAb cocktail from Regeneron (ref. 183) and the single antibody mAb114 (ref. 184), and all three of these treatments are being evaluated in clinical trials in an effort to produce a treatment for Ebola virus infection that will be approved by the United States Federal Drug Agency (FDA).

Many new anti-Ebola Abs have been recently described7,16,17,79,114,116, including 26 new structures of antibodies and GP complexes that delineated major sites of vulnerability, including the IFL, glycan cap, base, and HR2 region of GP (ref. 185). These studies demonstrate the polyclonal diversity of anti-filovirus antibodies. Additionally, several human-derived antibodies have been isolated that show broad cross-reactivity across Ebolaviruses or Marburgviruses, and are actively being evaluated for use as immunotherapies. As for HIV and influenza, these bnAbs will likely be more restricted to particular germlines or sets of germlines. By understanding the mechanism of broadly neutralizing antibodies, it is hoped that this information will lead to pan-filoviral therapies that could replace the single species-focused ZMapp, which would not be effective against the many other filoviral species that are pathogenic to humans.

Humanized mice offer an alternative platform to study antibody responses than human survivors of pandemic and epidemic viral infection. A recent study in which VelocImmune mice190 were vaccinated with either DNA-encoded or -soluble Ebola virus GP (Makona variant) demonstrated that fully human IgGs could be produced in mice, which bind to common sites of vulnerability on filoviruses that are targeted by the human immune system. Remarkably, these antibodies provide comparable protection to other therapies, including the ability to engage human Fcγ receptors, providing some level of protection through non-neutralizing means, similar to c13C6 from ZMapp (ref. 183). This study shows that, in principal, these mice can be vaccinated against any pathogen to produce antibodies that may offer protection in humans, but on a much faster timeline, making them an attractive option to learn how to combat other emerging infectious diseases.

Future perspectives

The plethora of structural information that has been generated in the past decade has opened many doors for understanding how the adaptive immune system recognizes and neutralizes enveloped and other viruses, resulting in exciting new vaccine and antibody therapeutic development opportunities. One trait that is shared amongst nearly all neutralizing antibodies examined thus far, and reviewed here, is the restricted range of angles (90°) of approach to viral spikes (with respect to the viral membrane). The majority of neutralizing antibodies approach at a steeper angle nearly perpendicular to the membrane (PG9, PGT145, CAP256, CH01-4, VRC38,
C05, 13C6), while others approach at a nearly parallel angle to the membrane (VR01, F16, CR8781, 10E8, KZ52, 4G7, ADI-16061). These allowable angles then likely reflect the window in which naïve B-cell receptors can successfully engage the viral membrane-bound antigen for the prolonged periods required for activation, with the viral membrane providing some constraint and limiting angles beyond 90°. Upward angles are unfavourable for soluble IgGs as the membrane provides a steric constraint for approaching glycoproteins to bind,14,15 although strain-specific neutralizing antibodies that approach glycoproteins at such an angle are not unheard of for filoviruses16,17,18,19. Additionally, the density of viral spikes on the surface of a virus can facilitate bivalent binding, which is possible for GP (ref. 19) and HA (refs. 18,19), but perhaps less so for HIV where the spike density can be quite low19,20,21. In this case, engineering bivalent binding within a single antigen may be an effective approach to overcoming lower monovalent binding affinity to broadly reactive epitopes22,23,24.

The examples described here demonstrate the near infinite capacity of the adaptive immune system to evolve in response to diverse antigenic insults that humans and animals encounter. The diverse epitopes targeted by acute Ebolavirus infection13 demonstrate how a polyclonal antibody response with low SHM can be very effective, while the incredible breadth and potency of monoclonal bnAbs isolated from chronically infected HIV patients reveal the extremes of SHM that antibodies can accommodate to overcome huge antigenic diversity19,20,21. Despite this adaptive potential, the immune system still has a difficult time keeping pace with antigenically variable viruses, such as influenza and HIV, that have high mutation rates12,13. Superficially, one would expect influenza to be an easier target for antibodies, particularly with yearly boosts through seasonal infection or vaccination. Yet, bnAbs are rare and typically do not persist, meaning the worldwide human population is under constant threat of a new influenza pandemic. On the other hand, Ebolaviruses may well be a relatively easy target for the adaptive immune system, but its spectacularly rapid pathogenesis normally results in mortality before effective antibodies can be made. We sometimes take for granted the wonderful arsenal of vaccines that have already been developed, largely by empirical methods, which result in lasting immunity with impres-sive potency. Of course, most of the viruses at which these vaccines are aimed have little variability. Ironically, we have a relatively limited understanding of the sequence and molecular basis of antibody responses to historical vaccines and a much greater understanding of the antibody responses to pathogens that continue to outpace current vaccines. Even then, the monoclonal antibodies that have been successfully isolated and structurally characterized are almost certainly under-representative of the true diversity of immune responses. Thus, the pursuit of new antibodies, and therefore new pathways to bnAbs, remains highly valuable. Understanding polyclonal responses to large antigenic surfaces during infection/vaccination25 also holds future promise for improving vaccines that increase and decrease on-and off-target responses, respectively.

As noted above, a structure-based vaccine design for HIV has already generated some encouraging results in animal models that demonstrate it is possible to drive the path of antibody evolution towards a neutralizing, but not broadly neutralizing, response by vaccination with candidate immunogens14,15,16,17,26,27. Here, vaccine design increasingly benefits from a deeper understanding of the basic biological processes that happen in B-cell germinal centers,28,29,30,31 as well as antigen display and uptake. There is also renewed interest in the role of the innate immune pathways in antibody-based protection, as well as the role of non-neutralizing antibodies11,20,23,24. Fc-mediated protection has been shown to play at least some part in providing protection from all viruses discussed here. Even neutralizing antibodies have often been found to rely on some level of Fc-mediated function to realize their full potency20,21,22,23. While there is a basic understanding of the antibody-based innate immune response20,21,22, there is still much to be learned about the subtleties of the molecular nature of effector cell activation. Future studies to address the role of Fc-mediated protection in individuals that effectively control HIV replication, as well as in those that survive filovirus infection, will enhance vaccine and therapeutic research. A more detailed molecular understanding of the immune activation complex, and what type of antibody–antigen interaction results in a potent innate immune response, could help to improve antibody therapeutic selection and engineering. Further, these types of studies may provide information that will guide antibody designs that can specifically recruit effector cell subsets and immune responses, such as natural killer cells and antibody-dependent cellular cytolysis, which have shown great promise in augmenting antibody neutralization23,24.

Based on the incredible advances described above, it is conceivable that, in the not so distant future, we will be able to rationally design vaccines that elicit antibodies with epitope specificity and broad antigen reactivity. An exciting new challenge will be the design of vaccines that also elicit antibodies that can potently and specifically recruit desired effector functions. Integrating lessons from different viruses, including those described here, will continue to provide insights to arm researchers in their quest to vanquish the most formidable of pathogens.

Received: 8 August 2018; Accepted: 29 January 2019; Published online: 18 March 2019

References

1. White, J. M. & Whittaker, G. R. Fusion of enveloped viruses in endosomes. Traffic 17, 593–614 (2016).
2. Harrison, S. C. Viral membrane fusion. Virology 479–480, 498–507 (2015).
3. Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 (1997).
4. Harris, L. J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).
5. Saphire, E. O. et al. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).
6. Scapin, G. et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 22, 953–958 (2015).
7. Stanfield, R. L. & Wilson, I. A. Antibody Structure. Microbiol. Spectr. 2, AID-0012-2013 (2014).
8. Wilson, I. A. & Stanfield, R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–864 (1994).
9. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).
10. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).
11. Julien, J. P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimmer. Science 342, 1477–1483 (2013).
12. Lyuunkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimmer. Science 342, 1484–1490 (2013).
13. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).
14. Weisshorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).
15. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).
16. Weisshorn, W., Carfi, A., Lee, K. H., Skehel, J. J. & Wiley, D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2, 605–616 (1998).
17. Cook, J. D. & Lee, J. E. The secret life of viral entry glycoproteins: moonlighting in immune evasion. Mol. Cell 59, 593–612 (2015).
18. Tate, M. D. et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Nature 454, 263–273 (2013).
19. Wu, N. C. & Wilson, I. A. A Perspective on the structural and functional constraints for immune evasion: insights from influenza virus. J. Mol. Biol. 429, 2694–2709 (2017).
20. Crispin, M., Ward, A. B. & Wilson, I. A. Structure and immune recognition of the HIV glycan shield. *Ann. Rev. Biophys.* **47**, 499–523 (2018).

21. Cao, L. et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. *Nat. Commun.* **8**, 14954 (2017).

22. Lee, J. H., de Val, N., Lyumkis, D. & Ward, A. B. Model building and refinement of a natively glycosylated HIV-1 Env protein by high-resolution cryoelectron microscopy. *Structure* **23**, 1943–1951 (2015).

23. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. *Science* **332**, 246–251 (2009).

24. Flyak, A. I. et al. Mechanism of human antibody-mediated neutralization of Marburg virus. *Cell* **160**, 893–905 (2015).

25. Julien, J. P. et al. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. *Proc. Natl Acad. Sci. USA* **110**, 4351–4356 (2013).

26. Kong, L. et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. *Nat. Struct. Mol. Biol.* **20**, 796–803 (2013).

27. Murin, C. D. et al. Structure of G212 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. *J. Virol.* **88**, 10177–10188 (2014).

28. Williams, K. L. et al. Superinfection drives HIV neutralizing antibody responses from several B cell lineages that contribute to a polyclonal repertoire. *Cell Rep.* **23**, 682–691 (2018).

29. Bianchi, M. et al. Electron-microscopy-based epitope mapping defines specificities of functional antibodies elicited during HIV-1 BC650 envelope trimimer immunization. *Immunity* **49**, 288–300 (2018).

30. Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope glycoprotein. *Cell* **160**, 874–891 (2015).

31. Garcia-Sastre, A. Influenza virus receptor specificity: disease and transmission. *An. J. Pathol.* **176**, 1584–1585 (2010).

32. Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. *Science* **312**, 404–410 (2006).

33. Wu, N. C. et al. A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. *Nat. Commun.* **9**, 1264 (2018).

34. Wu, N. C. et al. Diversity of functionally permissive sequences in the receptor-binding site of influenza hemagglutinin. *Nat. Struct. Mol. Biol.* **20**, 363–370 (2013).

35. Steven, J. & Ward, A. B. A shared structural solution for neutralizing ebolaviruses. *Nat. Struct. Mol. Biol.* **18**, 1424–1427 (2011).

36. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. *Science* **329**, 856–861 (2010).

37. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. *Science* **334**, 811–817 (2010).

38. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. *Nature* **445**, 732–737 (2007).

39. Bale, S. et al. Structural basis for differential neutralization of ebolaviruses. *Science* **344**, 447–470 (2012).

40. van Gils, M. J. et al. Structure and receptor specificity analysis of a broadly neutralizing antibody from an H5N1 influenza virus. *Sci. Rep.* **3**, 20514 (2013).

41. Murin, C. D., Bruhn, J. F., Bornholdt, Z. A., Kopps, J., Stanfield, R. & Ward, A. B. Structural basis of pan-ebolavirus neutralization by an antibody targeting the glycoprotein fusion loop. *Cell Rep.* **24**, 2723–2732 (2018).

42. van Gils, M. J. et al. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. *Nat. Microbiol.* **2**, 16199 (2016).

43. Kong, R. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. *Science* **352**, 828–833 (2016).

44. Wu, X. et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. *Nat. Med.* **24**, 857–868 (2018).

45. Kallewaard, N. L. et al. Structure and function analysis of an antibody recognizing all Influenza A subtypes. *Cell* **166**, 596–608 (2016).

46. Prabhu, N. et al. Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection. *J. Virol.* **83**, 2553–2562 (2009).

47. Zhao, X. et al. Immunization-elicted broadly protective antibody reveals Ebolavirus fusion loop as a site of vulnerability. *Cell* **169**, 891–904 (2017).

48. Furuyama, W. et al. Discovery of an antibody for pan-ebolavirus therapy. *Sci. Rep.* **6**, 20514 (2016).

49. Wec, A. Z. et al. Antibodies from a human survivor define sites of vulnerability for broad protection against Ebolaviruses. *Cell* **169**, 878–890 (2017).

50. Zhu, P. et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficienacy virus virions. *Proc. Natl Acad. Sci. USA* **100**, 15812–15817 (2003).

51. Zhou, P. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. *Nature* **441**, 847–852 (2006).

52. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a complex with the CD4 receptor and a neutralizing human antibody. *Science* **351**, 193–206 (2011).

53. Hui, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. *Nature* **491**, 406–412 (2016).

54. Cardoso, R. M. et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. *Immunity* **22**, 163–173 (2005).

55. Flyak, A. I. et al. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. *Nat. Microbiol.* **3**, 670–677 (2018).

56. Kramer, F. & Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. *Curr. Opin. Virol.* **3**, 521–530 (2013).

57. Dreyfus, C., Eikert, D. G. & Wilson, I. A. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. *J. Virol.* **87**, 7149–7154 (2013).

58. Khanna, M., Sharma, S., Kumar, B. & Raijput, R. Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. *Biomed. Res. Int.* **2014**, 546274 (2014).
83. Erbeling, E. J. et al. A universal Influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 218, 347–354 (2018).
84. Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015).
85. Krammer, F., Garcia-Sastre, A. & Palese, P. Is it possible to develop a "universal" influenza virus vaccine? Potential target antigens and critical aspects for a universal influenza vaccine. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028845 (2018).
86. Krammer, F., Pica, N., Hae, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).
87. Nachbagauer, R. et al. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 influenza in preclinical ferret studies. PLoS Vaccines 2, 26 (2017).
88. Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).
89. Irinia, A. et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. J. Virol. Pathog. 13, e1006122 (2017).
90. Irinia, A., Sarkar, A., Stanfield, R. L. & Wilson, I. A. Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10. Immunity 44, 21–31 (2016).
91. Friesen, R. H. et al. A common solution to group 2 influenza virus neutralization. Proc. Natl. Acad. Sci. USA 111, 445–450 (2014).
92. Burton, D. R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).
93. Burton, D. R. & Mascola, J. R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).
94. Burton, D. R., Poignard, P., Stanfield, R. L. & Wilson, I. A. Broadly neutralizing antibodies to present new proximal targets to counter highly antigenically diverse viruses. Science 337, 183–186 (2012).
95. Burton, D. R., Stanfield, R. L. & Wilson, I. A. Antibody vs. HIV in a clash for the future of vaccine design. Nat. Immunol. 7, 678–682 (2006).
96. Irimia, M., Klein, F. & Nussenzweig, M. C. Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N. Engl. J. Med. 375, 2019–2021 (2016).
97. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA 109, E3268–3277 (2012).
98. McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).
99. Julien, J. P. et al. Broadly neutralizing antibody 4E10 binds a conserved epitope on HIV-1 gp41. Immunity 30, 1486–1497 (2009).
100. Kelsoe, G. & Haynes, B. F. Host controls of HIV broadly neutralizing antibodies. Nat. Rev. Immunol. 7, 685–697 (2007).
101. Buchacher, A. et al. Generation of human monoclonal antibodies against native-like HIV-1 envelope glycoprotein complexes. Cell Rep. 9, 1547–1554 (2014).
102. Stanfield, R. L., De Castro, C., Marzaioli, A. M., Wilson, I. A. & Calarese, D. A. Antibody domain exchange is an immunological basis for antiviral combinatorial drug design. J. Virol. 87, 359–369 (1994).
103. Kelsoe, G. & Haynes, B. F. Host controls of HIV broadly neutralizing antibodies. Nat. Rev. Immunol. 7, 685–697 (2007).
104. Burton, D. R. et al. Neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840 (2011).
105. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 70, 1097–1103 (2011).
106. Calarrese, D. A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003).
107. Stanfield, R. L., De Castro, C., Marzaioli, A. M., Wilson, I. A. & Pantophlet, R. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 25, 412–419 (2015).
108. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).
109. Lee, J. H. et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic beta-hairpin structure. Immunity 46, 690–702 (2017).
110. Cale, E. M. et al. Virus-like particles identify an HIV V1V2 apex-binding neutralizing antibody that lacks a protruding loop. Immunity 46, 777–791 (2017).
111. Wang, H. et al. Asymmetric recognition of HIV-1 envelope trimers by V1V2 loop-targeting antibodies. eLife 6, e27389 (2017).
112. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl. Acad. Sci. USA 105, 5986–5991 (2008).
113. Lang, S. et al. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1–69 antibody orientation on the HA stem. Cell Rep. 20, 2935–2943 (2017).
114. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).
115. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).
116. Lerner, R. A. Rare antibodies from combinatorial libraries suggests an S. O. S. component of the human immunological repertoire. Mol. Biosyst. 7, 1004–1012 (2011).
141. Kulp, D. W. et al. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat. Commun. 8, 1655 (2017).
142. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).
143. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).
144. Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germine-targeting immunogen. Science 351, 1458–1463 (2016).
145. Jardine, J. G. et al. HIV VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015).
146. Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 28, 1116–1126 (2020).
147. McLellan, J. S. et al. Design and characterization of epitope-scaffold immunogens that present the motifavizumab epitope from respiratory syncytial virus. J. Mol. Biol. 409, 853–866 (2011).
148. Ofek, G. et al. Elucidation of structure-specific antibodies by epitope scaffolded immunogens. J. Mol. Biol. 418, A120–A121 (2014).
149. Doria-Rose, N. A. et al. Developmental pathway for potent V1V2-directed HIV-1 neutralization by antibody in human Ig knockin mice. Cell 161, 1505–1515 (2015).
150. Escolano, A. et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. Cell 166, 1445–1458 (2016).
151. Lee, E. C. et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32, 356–363 (2014).
152. Huang, C. et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl Acad. Sci. USA 101, 2706–2711 (2004).
153. Baize, S. et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 371, 1418–1429 (2014).
154. Oswald, W. B. et al. Neutralizing antibody failure to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 3, e7 (2007).
155. Qiu, X. et al. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMab. Sci. Rep. 8, 15251 (2018).
156. Pettitt, J. et al. Therapeutic intervention of Ebola virus infection in nonhuman primates with ZMapp. Nat. Med. 21, 53–59 (2015).
157. Pascual, K. et al. Development of clinical-stage human monoclonal antibodies that treat advanced Ebola virus disease in non-human primates. J. Infect. Dis. 218, 612–626 (2018).
158. Misasi, J. et al. Filoviruses require endosomal cysteine proteases for entry. J. Virol. 86, 990–1003 (2012).
159. van den Kerkhof, T. L. et al. Early development of broadly reactive HIV-1 neutralizing antibodies. J. Virol. 88, 3432–3442 (2014).
160. Krammer, F. et al. Influenza virus hemagglutinin stalk-based immunity in ferrets. J. Virol. 88, 2340–2343 (2014).
161. Mallajosyula, V. V. et al. Influenza hemagglutinin stem-fragment immunogens elicit antibodies and confer heterologous protection. Proc. Natl Acad. Sci. USA 111, E2514–E2523 (2014).
162. Wohlbold, T. J. et al. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33, 3314–3321 (2015).
163. Krammer, F. et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J. Virol. 88, 2340–2343 (2014).
164. Saphire, E. O. et al. Systematic analysis of monoclonal antibodies against human immunodeficiency virus type 1 gp120. J. Virol. 88, 3314–3321 (2015).
165. Simek, M. D. et al. Human immunodeficiency virus type 1 elite neutralizers identified by using a high-throughput neutralization assay together with an epitope-binding screen. J. Virol. 92, e00159–e00120 (2018).
166. Liu, J., Wright, E. R. & Winkler, H. 3D visualization of HIV virions by cryoelectron tomography. Nature 473, 711–716 (2013).
167. Kulp, D. W. et al. Structure-based design of native-like HIV-1 envelope trimers and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol. 37, 221–232 (2016).
168. Sanders, R. W. et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, 180–189 (2015).
169. Ha, Y. et al. Influenza viruses expressing chimeric hemagglutinins: globular headless and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).
170. Goo, L., Chohan, V., Nduati, R. & Overbaugh, J. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat. Med. 20, 655–658 (2014).
171. van den Kerkhof, T. L. et al. Early development of broadly reactive HIV-1 neutralizing activity in elite neutralizers. AIDS 28, 1237–1240 (2014).
172. Dekosky, B. J. et al. Proof of concept and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).
173. Korolev, P. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germine-targeting HIV vaccine immunogens. J. Virol. 86, 1446–1456 (2012).
174. Boni, N. et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env trimers. Cell Rep. 17, 2195–2209 (2016).
175. Doria-Rose, N. A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).
176. Rantalainen, K. et al. Co-evolution of HIV envelope and apex-targeting neutralizing antibody lineage provides benchmarks for vaccine design. Cell Rep. 23, 3249–3261 (2018).
177. Landais, E. et al. Broadly neutralizing antibody responses in a large longitudinal Sub-Saharan HIV primary infection cohort. PLoS Pathog. 12, e1005369 (2016).
178. Landais, E. et al. HIV Envelope glycoform heterogeneity and localized diversity govern the Initiation and maturation of a V2 apex broadly neutralizing antibody lineage. Immunity 47, 990–1003 (2017).
179. Simek, M. D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).
180. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent neutralizing antibodies. Nature 477, 466–470 (2011).
181. Teorey, D. M. & Croft, S. Germline center enhancement by extended antigen availability. Curr. Opin. Immunol. 47, 64–69 (2017).
202. Crotty, S. Raging evolution of a B cell response to a viral infection.
Nat. Rev. Immunol. **18**, 79 (2018).

203. Horwitz, J. A. et al. Non-neutralizing antibodies alter the course of HIV-1 infection in vivo. *Cell* **170**, 637–648 (2017).

204. Mayr, L., Su, B. & Moog, C. Role of non-neutralizing antibodies in vaccines and/or HIV infected individuals. *Curr. Opin. HIV AIDS* **12**, 209–215 (2017).

205. Forthal, D., Hope, T. J. & Alter, G. New paradigms for functional HIV-specific non-neutralizing antibodies. *Curr. Opin. HIV AIDS* **8**, 393–401 (2013).

206. Kajihara, M. et al. Inhibition of Marburg virus budding by non-neutralizing antibodies to the envelope glycoprotein. *J. Virol.* **86**, 13467–13474 (2012).

207. Bournaezos, S. et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. *Cell* **158**, 1243–1253 (2014).

208. Bournaezos, S. & Ravetch, J. V. Anti-retroviral antibody FcγR-mediated effector functions. *Immunol. Rev.* **275**, 285–295 (2017).

209. Bournaezos, S. & Ravetch, J. V. Fcγ receptor function and the design of vaccination strategies. *Immunity* **47**, 224–233 (2017).

210. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. *Immunity* **24**, 19–28 (2006).

211. Nimmerjahn, F. & Ravetch, J. V. Fc receptors as regulators of immunity. *Adv. Immunol.* **96**, 179–204 (2007).

212. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. *Nat. Rev. Immunol.* **8**, 34–47 (2008).

213. Pelegrin, M., Naranjo-Gomez, M. & Piechaczek, M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? *Trends Microbiol.* **23**, 653–665 (2015).

Acknowledgements
This work was supported by the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (grant no. NIAID UM1AI100663), the Viral Hemorrhagic Fever Immunotherapeutic Consortium (grant no. U19 AI1109762), NIH (grant no. R56 AI127371), the Bill & Melinda Gates Collaboration for AIDS Vaccine Discovery (grant no. OPP1084519) and the International AIDS Vaccine Initiative.

Author contributions
C. D. M. wrote the initial draft; C. D. M., I. A. W. and A. B. W. wrote, reviewed and edited the Review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41564-019-0392-y.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence should be addressed to A.B.W.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019