1. INTRODUCTION

With the crossing of the termination shock (TS) by the Voyager 1 and 2 spacecraft (Burlaga et al. 2005; Decker et al. 2005; Stone et al. 2005), the postshock solar wind (SW) region, known as the inner heliosheath (Zank 1999), has become an area of increased interest (Heerikhuisen et al. 2006b). Despite its nonfunctioning plasma instrument, Voyager 1 has provided important data on the flow, energetic particle, and magnetic field orientation in the heliosheath, much of which is poorly understood. Now that Voyager 2 has crossed the TS at 84 AU, new data will further increase our understanding of the outer reaches of the heliosphere.

Although in situ measurements by the Voyager spacecraft are immensely valuable, they do not provide much information about the global structure of the heliosphere-interstellar medium interaction region. The Interstellar Boundary Explorer (IBEX; McComas et al. 2004, 2006) will try to infer global heliospheric structure by surveying the sky in energetic neutral atoms (ENAs) from Earth orbit. ENAs are created in the heliosheath after a neutral atom from the local interstellar medium (LISM) charge-exchanges with a plasma proton. The new neutral atom (generally hydrogen) is born from the proton distribution, and, as such, reflects the characteristic plasma conditions at the point of creation. ENAs propagate virtually ballistically (particularly ENA hydrogen), subject only to the Sun’s gravity and radiation pressure. IBEX will directly detect ENAs and create all-sky maps at a variety of energies between 10 eV and 6 keV at the rate of one complete map every 6 months.

The challenge to both data analysts and theorists is how to interpret the ENA flux measurements made by the IBEX-Lo (10 eV–2 keV) and IBEX-Hi (300 eV–6 keV) instruments. The ENA flux at a given energy will be a function of the properties of the heliosheath along a particular line of sight. As shown in Heerikhuisen et al. (2007) this includes plasma and neutral number densities, plasma flow speed and direction, plasma temperature, and distance to the heliopause (heliosheath thickness). However, that analysis was limited to energies close the thermal core of the heliosheath distribution, since we did not incorporate high-energy tails in the ENA parent population due to either pickup ions, or energetic protons accelerated by other mechanisms.

Recently, Prested et al. (2008) used a κ-distribution for the ENA parent population to obtain ENA maps. The advantage of using this distribution, as opposed to a Maxwellian, is that it has a power-law tail, and is therefore capable of producing ENAs at suprathermal energies. However, the focus in that paper was on the IBEX instrument’s response to ENA fluxes, and feedback of ENAs on the global solution was not considered.

In this paper we seek to extend the investigations of Heerikhuisen et al. (2007) to higher energies by adopting a κ-distribution for heliosheath protons, using an approach similar to Prested et al. (2008). The suggestion that the supersonic SW should be described by a κ-distribution rather than a Maxwellian has a long history (Gosling et al. 1981; Summers & Thorne 1991). More recently, with the measurement of PUIs by Ulysses (Gloeckler et al. 2005; Fisk & Gloeckler 2006), it became apparent that the PUI distribution merged cleanly into the solar wind distribution, yielding an extended energetic tail. This was carried further by Mewaldt et al. (2001), who constructed an extended supersonic SW proton spectrum showing that a high-energy tail emerged smoothly from the clearly identifiable low energy solar wind particles. The results of Mewaldt et al. (2001) showed that not only did a continuous power-law tail emerge from the thermal distribution, but this tail merged naturally into higher energies associated with (low-energy) anomalous cosmic rays (ACRs; Decker et al. 2005). The Voyager LECP data obtained in the heliosheath indicates that a power-law distribution at thermal energies is maintained, but of course we have no means to show that a tail emerges smoothly from the shocked SW plasma. Nonetheless, we do not expect an abrupt departure from the supersonic SW particle distribution characteristics in that its overall “smoothness” should be preserved.

We use a self-consistently coupled MHD-plasma/kinetic-neutral code to compute a steady state heliosphere with a κ-distribution in the SW, and investigate ENA fluxes at 1 AU, looking in particular for signatures which can be related to the heliospheric...
structure. We begin, however, by investigating the effects of assuming such a distribution on the supersonic and subsonic SW and, due to the nonlocal coupling mediated by charge-exchanging neutrals, the global heliosphere.

2. THE HELIOSPHERE WITH \(/C20 \) HELIOSHEATH

At around 100 AU the supersonic SW flow encounters the termination shock (TS), whereupon it becomes subsonic and heated. The hot subsonic SW fills the inner heliosheath and heliotail (these features are visible in the computed plasma distributions shown in Fig. 1). At the same time, the solar system is thought to travel supersonically through the partially ionized plasma of the LISM. As a result, a bow shock forms upstream of the heliosphere, and a tangential discontinuity, known as the heliopause (HP), separates the shocked solar and LISM plasmas. Interstellar neutral gas (primarily hydrogen) is weakly coupled to the plasma through charge exchange, but readily traverses the heliopause (with a filtration ratio of about 45%) and may be detected near Earth at a range of energies that correspond to the creation site of the neutral H, ranging from the LISM to the hot heliosheath, to the fast solar wind.

To determine the flux of neutral atoms at 1 AU, we use a steady state solution obtained from the 3D heliospheric model based on the 3D MHD code of Pogorelov et al. (2006) and a 3D version of the kinetic neutral hydrogen code of Heerikhuisen et al. (2006a). The first self-consistently coupled 3D application of this code appears in Pogorelov et al. (2008). A steady state is reached by iteratively running the coupled plasma and neutral codes until successive iterations converge. Although several plasma-only models of the heliosphere are still in use, it is now recognized that including neutral atoms in a global model is critical to obtaining the correct location and shape of the termination shock and heliopause, as well as determining the right temperature of the heliosheath, since interstellar neutrals contribute to significant cooling and heating of the inner and outer heliosheath, respectively (Pogorelov et al. 2007). We also note that interparticle collisions do not significantly alter the neutral distribution and that charge-exchange mean free paths are of the order of the size of the heliosphere, so that neutral atoms should ideally be modeled kinetically, with charge-exchange coupling the neutral and charged populations (Baranov & Malama 1993; Alexashov & Izmudin 2005; Heerikhuisen et al. 2006a).

Our model treats the ion population as a single fluid whose total pressure is the sum of the pressure contribution from electrons, thermal ions (SW or LISM), and PUIs. Because the pickup of interstellar neutral H yields a PUI population comoving with the bulk SW flow, a single fluid model captures exactly the energetics and dynamics of the combined SW/PUI plasma. The only assumption that is needed is for the value of the adiabatic index (\(\gamma = 2 \) corresponds to no scattering of the PUI distribution, \(\gamma = 5/3 \) corresponds to scattering of the PUIs onto a shell distribution)—see, for example, Khabibrakhanov et al. (1996) or § 4.1 of Zank (1999). The pickup of ions and the creation of new H atoms is included self-consistently through source integrals in the plasma momentum and energy equations (Holzer 1972; Pauls et al. 1995). The pickup of interstellar neutrals and the creation of PUIs in the

Fig. 1.—Global heliospheric solution with the boundary conditions described in Table 1. The three columns represent cuts of the heliosphere through the Sun along the ecliptic plane (left), meridional plane (middle), and the plane orthogonal to the LISM flow vector (right). The top row is a log plot of plasma temperature in K, while the bottom row is a log plot of neutral density in cm\(^{-3}\). Distances are in AU. Note how the streams of high-speed SW over the poles generate hotter subsonic SW in the heliosheath (Pauls & Zank 1996, 1997). This high-speed wind also symmetrizes the heliopause near the Sun, despite the presence of LISM magnetic field which generally acts to asymmetrize the heliosphere (Pogorelov et al. 2004; Opher et al. 2006), although noticeably less so when neutrals are taken into account (Pogorelov & Zank 2006; Pogorelov et al. 2007). The buildup of neutral hydrogen just outside the heliopause, known as the “hydrogen wall,” can be clearly seen in the lower plots.
supersonic SW removes energy and momentum from the SW, since the newborn ions are accelerated in the SW motional electric field to comove with the SW flow. The fast neutrals created in the supersonic SW propagate radially outward, typically experiencing charge exchange in the LISM. Pickup of neutrals in the SW therefore decelerates the flow, and since a population of PUIs with thermal velocities comparable to the bulk SW speed (~1 keV energies) is created, the total pressure/temperature in the one-fluid model begins to increase with increasing heliocentric radius. Of course, the thermal SW ions experience no heating other than due to enhanced dissipation associated with excitation of turbulence by the pickup process (Williams et al. 1995; Zank et al. 1996a). These effects are all captured by the self-consistent coupling of plasma, via a one-fluid plasma model, and neutral H, and the plasma pressure and velocity respond directly to the distribution of neutral H throughout the heliosphere. Finally, as neutral H drifts through the heliosphere from the upwind to downwind, neutral H is depleted, leading to less pickup toward the heliotail region. This results in a (relatively weak) upwind-downwind asymmetry in the SW plasma flow velocity (see Fig. 2, below) and the one-fluid (i.e., PUIs) pressure/temperature. It should be noted that these results are independent of the specific form of the plasma ion (thermal and PUI) distribution function, as long as it is assumed isotropic. Only in computing the specific source term for both the plasma and neutral equations does the detailed distribution become important, and then primarily for the neutral distribution (since newborn PUIs are always accelerated by the motional electric field to comove with the SW flow).

What we have just described is the heating/pressurization of a single fluid SW due to charge exchange with interstellar hydrogen. Our \(\kappa \)-distribution approach tries to improve on this by using a distribution with core and tail features to approximate the core SW, suprathermal ion, and PUI distributions, respectively. Of course in reality the solar wind is much better described by separate distributions. In fact, a drawback of our approach is that the value of \(\kappa \) we use fixes the ratio between the core and tail number densities so that one cannot change independently characteristics of the core without making self-similar change to the wings of the \(\kappa \)-distribution. In particular, this manifests itself in the radial temperature profile of the solar wind. Observations by Richardson et al. (1995) suggest that the core SW does not cool adiabatically, but instead appears to be heated. Newborn PUIs form an unstable ring-beam distribution which excites Alfvén waves that then scatter the PUIs onto a bisphe- rical distribution. The power in the excited waves can be computed geometrically as the difference in the energy between an energy conserving shell distribution for PUIs and a bisphe- rical distribution for PUIs (Williams & Zank 1994) or directly from quasi-linear theory (Lee & Ip 1987). To explain the heating observed by Richardson et al. (1995), Williams et al. (1995) suggested that the dissipation of the PUI excited waves could account for the heating, but it was only with the development of a transport model for magnetic field fluctuations and their turbulent dissipation (which leads to heating of the plasma) that the PUI-enhanced fluctuations could be properly accounted for (Zank et al. 1996a). Since the dissipation of magnetic fluctuation power is strengthened in the outer heliosphere by PUI excited fluctuations, this leads to a corresponding heating of the solar wind plasma in the outer heliosphere. Matthaeus et al. (1999) applied the turbulence transport model of Zank et al. (1996a) to show explicitly that PUI-enhanced turbulent dissipation of magnetic field fluctuations could account for the observed solar wind plasma heating, a result that was examined in considerably more detail by Smith et al. (2001; see also Chashei et al. 2003; Smith et al. 2006). The dissipation of magnetic energy affects only the solar wind core, heating it, but leaves the suprathermal and PUI population unchanged energetically. Within a single fluid description, both the core and tail components of the distribution broaden simultaneously, and we cannot alter the ratio of energi- zation between these components, as would be required if we were to account for turbulent dissipation of magnetic fluctuation energy into the solar wind plasma. Nonetheless, the total dynamics of the system, including charge exchange levels, is preserved but the detailed energy allotment between the core SW and PUIs is fixed by the choice of the \(\kappa \)-parameter.

Fig. 2. — Solar wind bulk speed (left), and the corresponding Mach number as computed from eq. (1). Here we have plotted profiles in both the LISM upwind (nose) and downwind (tail) directions for a model using Maxwellian (solid line) and \(\kappa \) (dashed line) distributions for the solar wind. In our calculation the TS has a Mach number of about 2.3 in the nose direction, and around 2 in the tail. Note also the asymmetry in the solar wind speed from nose to tail, due to the reduced charge-exchange rate in the tail. The SW speed at the inner boundary, located at \(r = 10 \) AU, is slightly higher than indicated in Table 1 due to the thermal acceleration of the SW close to 1 AU.
Figure 1 shows cuts of the heliosphere in three planes for the plasma temperature and neutral hydrogen density. These results were obtained using our 3D MHD-plasma/kinetic-neutral model, where we assumed a κ-distribution for protons in the heliosheath with $\kappa = 1.63$. The SW and LISM boundary conditions used in this calculation are summarized in Table 1. As described above, the pickup process for our single ion fluid approach results in solar wind properties expected from observational data---i.e., increased pressure and decreased speed at larger radial distances. To demonstrate this using our code, Figure 2 shows profiles of the bulk speed of the SW, and the fast magnetosonic Mach number given by

$$M = 2\nu_p \left(\frac{c_s^2 + B^2}{4\rho} + \frac{|B|c_s}{\sqrt{\pi\rho}} \right)^{-1},$$

where ρ, P, and $c_s^2 = \gamma P/\rho$ are the plasma density, pressure, and sound speed, respectively. The adiabatic index $\gamma = 5/3$. The slowdown in our simulation from 400 km s$^{-1}$ at 1 AU, down to 335 km s$^{-1}$ at the TS matches the 15% slowdown inferred from Voyager 2 observations (Richardson et al. 2008). Voyager 2 observed a TS compression ratio of about 2 (Richardson 2007), which corresponds to a Mach number of 1.7 if we assume a simple gas-dynamic shock. Our simulation yields a Mach number of 2.3, which is slightly higher, due, in part, to the absence of a shock precursor. The implications of using a κ-distribution in the heliosheath, and how this result relates to a traditional Maxwellian approach, is described in \S 2.1.

2.1. Implications of Using a κ-Distribution in the Heliosheath

Pickup ions (PUIs) originate in the SW due to charge exchange of LISM neutrals with SW protons. However, they do not thermalize with the background SW plasma (Isenberg 1986; Zank 1999) and are not therefore equilibrated with the SW. Thus, PUIs constitute a separate suprathermal population of the SW (Moebius et al. 1985; Gloeckler et al. 1993; Gloeckler 1996; Gloeckler & Geiss 1998). PUIs contribute to the power-law tails observed almost universally in the SW plasma distribution (Mewaldt et al. 2001; Fisk & Gloeckler 2006). A simple way to add a power-law tail, and thereby model the proton, energetic particle, and PUI populations as a single distribution, is to assume a generalized distribution function (see, e.g., Burgers 1969). Closure at the second moment is possible if the distribution is isotropic, since the heat flux and the off-diagonal components of the stress tensor are then identically zero. The only difference from conventional fluid dynamics is that the collisional integrals do not vanish as they would for a Maxwellian distribution. However, collisional frequencies are too low for the SW that we may neglect these collisional terms and treat the distribution function (2) as “frozen” into the plasma. Even though the SW is effectively collisionless, an MHD approach is still warranted since the plasma has fluid properties perpendicular to the magnetic field, while various wave phenomena help isotropize this (see, e.g., Kulcsrud 1984). For these reasons we solve the regular MHD equations to find the bulk plasma quantities, but in the inner heliosheath we simply interpret these as having come from equation (2). For simplicity we assume $\kappa = 1.63$ in all SW plasma, which is a value consistent with the data analysis of Decker et al. (2005). As we show in \S 4.2, observations

Parameter	Interstellar	Low Speed	High Speed		
U (km s$^{-1}$)	26.4	400	800		
T (K)	6527	10^5	2.6×10^5		
n_p (cm$^{-3}$)	0.05	7	2.6		
n_H (cm$^{-3}$)	0.15	0	0		
$	B	$ (μG)	1.5	37.5 (B_r)	37.5 (B_r)
ϕ_0 (deg)	90		
θ_0 (deg)	60		

Notes.—We use a spherical coordinate system, where ϕ is the angle in the ecliptic plane around from the meridional plane and θ is the angle above the ecliptic plane. The solar rotation axis is assumed orthogonal to the ecliptic plane. The SW is assumed to change from a slow wind to a high-speed wind at 35° above the ecliptic plane, as suggested by Ulysses observations (McComas et al. 2000) of the SW during solar minimum.

Fig. 3.—One-dimensional slice of the velocity distribution function in the plasma frame for $\kappa = 1.63$, based on eq. (2) (solid line), along with Maxwellian distribution (dashed line). Note that the core of the κ-distribution is narrower than the Maxwellian. The zeroth and second moments are the same for both distributions. To aid comparison, we have defined $n_{th} = \Theta_p/\kappa/(\kappa - 1/2)$ to the thermal speed parameter Θ_p of the κ-distribution, where $v_{th} = 2k_BT/m_p$ is the Maxwellian thermal speed.

Lorentzian, or “κ,” function (Bame et al. 1967; Summers & Thorne 1991; Collier 1995; Leubner 2004) given by

$$f_p(v) = \frac{n_p}{\pi^{3/2} \Theta_p^{3/2}} \frac{1}{\Gamma(\kappa + 1) \Gamma(\kappa - 1/2)} \left[1 + \frac{(v - u_p)^2}{\Theta_p^2} \right]^{-(\kappa + 1)},$$

where Θ_p is a typical speed related to the effective temperature of the distribution, and is evaluated using the pressure equation (3), below. This distribution has a Maxwellian core, a power-law tail which scales as $v^{-2\kappa - 2}$, and reduces to a Maxwellian in the limit of large κ. Although the core and tail features agree qualitatively with observations, a limitation of the κ formalism is that it does not allow us to adjust their relative abundances. The observed flat-topped PUI population is also absent in the κ approximation. In Figure 3, we plot a κ-distribution for $\kappa = 1.63$, along with a Maxwellian distribution.

The basic principle in our approach is to note that the MHD equations for the plasma do not change if we assume a κ-distribution for SW protons. This is facilitated by the fact that the basic fluid conservation laws do not assume any specific form of the distribution function (see, e.g., Burgers 1969). Closure at the second moment is possible if the distribution is isotropic, since the heat flux and the off-diagonal components of the stress tensor are then identically zero. The only difference from conventional fluid dynamics is that the collisional integrals do not vanish as they would for a Maxwellian distribution. However, collisional frequencies are so low for the SW that we may neglect these collisional terms and treat the distribution function (2) as “frozen” into the plasma.
by the upcoming IBEX mission can be used to estimate \(\kappa \) in the heliosheath.

The two distribution functions, \(\kappa \) and Maxwellian, used to model the plasma are linked through the choice of \(\Theta_p \), and we reconcile these using the isotropic plasma pressure, given by

\[
P = \frac{m_p}{3} \int_0^\infty v^2 f_p(v) 4\pi v^2 \, dv = \frac{m_p n_B}{2} \Theta_p \kappa / \kappa - 3/2.
\]

(3)

Note that the thermal core collapses as \(\kappa \rightarrow 3/2 \) and the pressure becomes undefined. This limiting case corresponds to a \(v^{-5} \) tail (Fisk & Gloeckler 2006). For the purposes of comparison, we define an effective temperature for the \(\kappa \)-distribution

\[
T_{\text{eff}} = \frac{P}{n_p k_B}.
\]

(4)

The temperature profiles depicted in Figures 1 and 5, below, refer to the effective temperature.

Charge exchange couples the neutral and plasma populations. However, the charge exchange loss terms are different when we use a \(\kappa \)-distribution for protons. In the Appendix we derive the charge exchange rate for a hydrogen atom traveling through a \(\kappa \)-distribution of protons, which is used in our kinetic code for H atoms in the heliosheath.

Other authors have included pickup ions into their heliospheric models in various different ways. The Bonn model (Fahr et al. 2000) include PUIs as a separate fluid with a source term due to interstellar neutrals charge-exchanging in the supersonic SW, and a sink due to PUIs being energized and becoming part of the anomalous cosmic-ray population, which is modeled as a separate fluid. The PUI distribution function of the Bonn model is assumed to be isotropic and flat-topped between 0 and \(v_{SW} \) in the frame of the SW. Although this type of distribution agrees reasonably well with observations of PUIs in the supersonic SW (Gloeckler & Geiss 1998), the validity of the same distribution downstream of the TS is more questionable. Such a distribution also does not have a tail that extends beyond the pickup energy, which is a requirement for obtaining ENAs at high energies. This model was modified in Fahr & Scherer (2004) to include a significant improvement in the form of the PUI distribution, based on the work of Fahr & Lay (2000) which includes analytic estimates of the effects of upstream turbulence. Although restricted by axial symmetry, this model includes time-dependent effects, and allows the authors to estimate various properties of ENAs.

Malama et al. (2006) recently introduced a more complicated PUI model based on earlier work by Chalov et al. (2003). In this model a host of different neutral atom and PUI populations are tracked kinetically. This model incorporates more physics than our relatively simple \(\kappa \)-distribution approach, but to manage the added complexity, it also requires a number of additional assumptions. These include the form of the velocity diffusion coefficient, that the magnetic moment is conserved by PUIs as they cross the TS, and an ad hoc assumption about the downstream energy partition between electrons, protons, and PUIs. The increased computational requirements also forces Malama et al. (2006) to consider only the case of axial symmetry, thereby neglecting the IMF and restricting the ISMF to being aligned with the flow. Although their assumptions are reasonable, it is difficult to determine the influence these have on their conclusions. One of the interesting results from their model is that the locations of the TS, HP, and BS change when the effects of PUIs are allowed to self-consistently react back on the plasma—a result which agrees quite well quantitatively with our findings in §3.

3. EFFECTS OF HELIOSHEATH \(\kappa \)-DISTRIBUTION ON THE GLOBAL SOLUTION

In §2.1 we showed that we may solve the regular MHD equations for the plasma in the heliosheath, and interpreted these results in terms of a \(\kappa \)-distribution for the ion population. It is less clear, however, what the effects of \(\kappa \)-distributed neutral atoms originating from the heliosheath will have on the global heliosphere–interstellar medium solution. Figure 4 shows the velocity distribution of heliosheath hydrogen at various locations along the LISM flow vector. It is clear from this figure that for a \(\kappa = 1.63 \) distribution, significantly more H atoms with energies above 1 keV result than for a Maxwellian ion population in the heliosheath. It is also important to note that ENAs in the heliotail (left) show a clear power-law tail (\(\sim v^{-2(\kappa+1)} \)), mirroring the plasma, when a \(\kappa \)-distribution is assumed for heliosheath protons. These tails persist even outside the heliosphere (middle and right) for energies above 1 keV.

To test the effect of keV ENAs on the global heliosphere, we ran our code with \(\kappa = 1.63 \) in the heliosheath, and allowed these ENAs to feed back self-consistently on the global solution. Since H atoms are modeled kinetically, this provides no extra difficulty for our model. The only difference, by comparison with the case of a Maxwellian proton distribution, is that we need to use a different formula for the relative motion between a given particle and the ambient plasma. This formula is derived in the Appendix.

Figure 5 compares plasma density and temperature along radial lines in the nose, polar and tail directions for the Maxwellian and equilibrated \(\kappa = 1.63 \) heliosheath cases. Secondary charge exchange of neutrals created in the hot heliosheath was identified by Zank et al. (1996b) as a critical medium for the anomalous

Fig. 4.—Velocity distributions of ENAs at three locations along the axis defined by the LISM flow vector with the Sun at the origin: — 400 AU in the heliotail (left), 180 AU upstream in the hydrogen wall (middle), 600 AU in the nearby LISM (right). The black line is for ENAs obtained from a Maxwellian distribution of heliosheath ions (the parent population of ENAs), while the gray line is commensurate to a \(\kappa = 1.63 \) distribution for heliosheath protons in the same steady state configuration. Note that for small \(\kappa \) we have less medium energy ENAs, but more at low and high energies, in agreement with the respective distributions shown in Fig. 3.
transport of energy from the shocked solar wind to the shocked and unshocked LISM. In particular, the upwind region abutting the HP experienced considerable heating as a result of secondary charge exchange of hot ($\sim 10^6$ K) neutrals with the cold LISM protons. The efficiency of this medium of anomalous heat transfer is increased with a κ-distribution in the inner heliosheath. This results simultaneously in a shrinking of the inner heliosheath and an expansion of the outer heliosheath. The inner heliosheath plasma temperature (defined in terms of pressure) remains unchanged, because the Maxwellian and κ-distributions have the same second moment (see §2.1). We find that in the nose direction the termination shock moves out by about 4 AU, while the heliopause moves inward by about 9 AU. The bow shock standoff distance increases by 25 AU, and the shock itself is weakened by the additional heating of the LISM plasma by fast neutrals from the SW. Table 2 summarizes these changes in heliospheric geometry. The observed modifications to the heliospheric discontinuity locations agree quite well with the changes observed by the multicomponent heliospheric model of Malama et al. (2006) which includes a kinetic representation of PUIs. These authors report a 5 AU increase in the TS distance and a 12 AU decrease in the distance to the HP, for an axially symmetric calculation without magnetic fields.

Another important distinction between the Maxwellian and κ-distribution based models is the filtration rate of hydrogen changes at the heliopause. We find that in the Maxwellian case the hydrogen density at the TS is about 63% of the interstellar value, while for the κ-distributed model the density drops slightly to 60%. As with the TS and HP locations, these results agree quite well with the Malama et al. (2006) model.

Table 2

Comparison of Global Heliospheric Densities and Distances

Heliospheric Quantity	Maxwellian	$\kappa = 1.63$
TS distance (AU)	83	87
HP distance (AU)	139	131
BS distance (AU)	400	440
n_H at TS (cm$^{-3}$)	0.095	0.09
n_H at H wall (cm$^{-3}$)	0.23	0.215

Note.—Comparison of global heliospheric densities and distances in the upstream LISM direction between the solution with a Maxwellian distribution for protons in the heliosheath, and when we take protons to obey a κ-distribution in the inner heliosheath with $\kappa = 1.63$ and allow feedback of the modified ENA distribution on the global solution.

Fig. 5.— Radial profiles of effective plasma temperature (left) and density (right) in the nose, polar (i.e., in the meridional plane), and tail directions. The solid line represents the values obtained by using a Maxwellian distribution function for the proton distribution and ENAs generated from it. The dashed line is obtained by assuming that the proton distribution in the supersonic and subsonic SW can be described as an isotropic κ-distribution with $\kappa = 1.63$. Although the MHD equations do not change in the latter case, the distribution function of ENAs born through charge exchange in the heliosheath becomes more κ-like (see Fig. 4) and their secondary charge exchange outside the heliosheath alters the global plasma configuration. The temperature plots also demonstrate the relationship between PUI pressure and SW speed, with the fast SW over the poles showing a much higher temperature/pressure than the slower ecliptic SW.

4. Implications for IBEX

The Interstellar Boundary Explorer mission will provide all-sky maps of ENAs coming from the inner heliosheath at 14 energy bands from 10 eV to 6 keV. However, these data are unusual in that all the ENAs detected at a particular pixel and energy bin will have come from a large volume of space with nonuniform plasma properties. As such it is not possible to invert an ENA map to determine the heliosheath’s shape, size, and plasma distribution. For this reason, we need to use forward modeling to help us understand the relationship between model heliosheaths and their corresponding synthetic ENA maps. In Heerikhuisen et al. (2007) we identified several possible signatures to infer heliosheath properties from IBEX data. Below we present ENA maps and spectra from our improved heliospheric model, and relate these to the properties of our model heliosheath.

4.1. Ionization Losses

ENAs propagating from the heliosheath to a detector at 1 AU may experience reionization due to charge exchange, electron impact ionization, or photoionization. These effects are of major importance close to the Sun, and in the simplest approximation scale according to

$$w = w_0 \exp\left(-\int \beta \, dt\right), \quad \beta(r) = \beta_E/r^2 \, [\text{AU}],$$

$$\beta_E \simeq 6 \times 10^{-7} \text{ s}^{-1},$$

where w is a pseudoparticle weight which is initially equal to w_0 at the point of charge exchange and decays with time as a function of position. Alternatively, we can view w/w_0 as the survival probability for a particular particle. We note here that β_E does not have to be uniform in all directions, so that ionization losses for particles coming in over the poles could be different from those traveling in the ecliptic plane, and it may also have temporal variations.
Generally ENAs will travel on effectively straight trajectories, since solar gravity is approximately balanced by radiation pressure. Bzowski & Tamopolski (2006) show that for solar minimum conditions the deflection angle will be less than 5°, even for the lowest energies we consider. In the simulations presented here, we assume zero deflection, since we are mainly interested in the gross features of the ENA maps. Trajectory “A” in Figure 6 shows the shortest straight-line path to 1 AU for an ENA, while path B represents the longest. If we assume straight-line propagation at constant speed \(-v_0\), then the survival probability (i.e., \(w/w_0\)) is given by

\[
P = \exp\left(-\frac{\beta E}{v_0} \int_{1}^{\infty} \frac{1}{x^2 + y_0^2} \, dx \right),
\]

where \(y_0 = 0\) for path A and \(y_0 = 1\) for path B. On integration we have

\[
P_A = \exp\left(-\frac{\beta E}{v_0}\right), \quad P_B = \exp\left(-\frac{\pi \beta E}{2v_0}\right),
\]

where \(v_0\) is the particle speed in AU s\(^{-1}\). Here path B is relevant to IBEX observations, but experiences more ionization losses. A simple \(\pi/2\) factor can be used to switch between 1 AU fluxes and IBEX fluxes, assuming no deflection due to gravity or radiation pressure occurs. Figure 6 shows survival probability profiles for both paths, and we note that profile “A” corresponds to Figure 4 of Gruntman et al. (2001). These loss formulae will be used in § 4.2 to undo the losses simulated in the code so that we can use the pristine ENA fluxes to construct energy spectra. Such a procedure would also be necessary for IBEX data, when we want to infer properties of the parent plasma.

4.2. ENA Spectra

We may extract information about the proton energy spectrum in the heliosheath by simply plotting the IBEX energy bin data for a particular pixel (i.e., direction). Our global model allows us to both prescribe a form for the distribution function in the heliosheath for ENAs (i.e., \(\kappa\)) and then attempt to deconvolve this from the data. The only difference is that IBEX spectral data will be line-of-sight integrated, rather than at a particular point in space. Nevertheless, we have the global data from our model, which we can use to compare an IBEX line-of-sight spectrum with plasma properties along that line of sight. This is particularly interesting in the nose direction, where the plasma distribution observed by the Voyager spacecraft can be compared with the spectral slope inferred from the IBEX data.

To obtain a more accurate representation of the ENA spectrum in the heliosheath, we need to undo the ionization losses experienced by particles as they travel to the detector. In § 4.1 we derived a simple expression to estimate the survival probability of a particle with a given energy along a particular line of sight. Figure 7 shows three energy spectra for ENAs originating from the nose, tail, and polar directions. For these spectra, we have divided the flux measured at 1 AU by the survival probability for each energy band to undo the ionization losses, as mentioned above. We find that for the three directions considered, the energy spectrum tends toward the value of \(-\kappa\) above about 1 keV. This result shows that the IBEX data, in spite of being line-of-sight integrated, should be able to help determine the spectral slope of the heliosheath protons in the 0.6–6 keV range.

Figure 7 also shows that the spectra in the three directions considered have very similar properties. This will not necessarily be true for the real heliosphere, where the postshock SW may develop different high-energy tails in different directions. The dotted line (labeled “nose2”) is for a spectrum in the nose direction obtained using 32 energy bins (compared to about 10 nonoverlapping IBEX bins). The agreement between this curve and the green markers shows that, for \(\kappa = 1.63\) at least, the number of IBEX bins is sufficient to reproduce the spectrum.

4.3. ENA All-Sky Maps

The method we use for computing all-sky ENA maps is described in Heerikhuisen et al. (2007), where we first obtain a steady state heliosphere and then trace ENAs born through charge exchange in the heliosheath down to 1 AU, where these are then binned according to energy and the direction of origin. Additional ionization losses along the particle’s trajectory act to “evaporate” its computational weight. The key difference from our previous results is that we now assume a \(\kappa\)-distribution for the heliosheath protons which form the parent population for ENAs. This modification allows us to obtain ENAs up to several keV, and is more consistent with SW data.

Figure 8 shows all-sky ENA maps obtained from our steady state solution with a \(\kappa\)-distribution for heliosheath protons. Top right shows the ENA map for 200 eV, which can be compared with our previous work (Heerikhuisen et al. 2007), where we did not self-consistently couple the plasma and kinetic neutral atoms, and where we assumed a Maxwellian proton distribution. We find that when we use a \(\kappa\)-distribution, the ENA flux at 200 eV is 2–3 times smaller than for the Maxwellian case, due to the shape of the proton distribution (see Fig. 3) and resulting ENA distribution (Fig. 4), as well as the thinner inner heliosheath.
resulting from the use of a κ-distribution (see § 3). As expected, this decrease of medium energy (100s of eV) ENAs is compensated by an increased ENA flux above 1 keV. Our results predict a count rate of about 3 atoms (cm2 sr s keV)$^{-1}$ at 6 keV.

Less obvious is the decline in low energy flux when compared to the Maxwellian results (Heerikhuisen et al. 2007), even though there are more ENAs being generated at the lowest energies (see Fig. 4). The principal reason for this is that the SW core temperature is significantly lower when we use κ, so that these ENAs lack the energy to propagate upstream, since the bulk speed exceeds the thermal speed of the core. This low SW core temperature is in fact qualitatively consistent with the latest Voyager 2 findings (Richardson 2007).

The heliosphere depicted in Figure 1, is commensurate to approximately “solar minimum” conditions, with a clearly defined high-speed wind emanating from the poles. The high-speed wind gives rise to hotter high-latitude heliosheath plasma, which in turn increases the energy of ENAs generated in the subsonic polar SW. The all-sky maps of Figure 8 show that at energies above about 1 keV, these streams of hot SW dominate the ENA flux, while at lower energies the central tail region is the major source of ENAs.

Comparing skymaps at different energies, we see from Figure 8 that the qualitative properties do not vary widely over the IBEX energy range. This contrasts sharply with the results for a Maxwellian heliosheath, where we generally see a higher flux coming from the tail than the nose at low energies, and the reverse at high energies (Heerikhuisen et al. 2007). This can be attributed to the steep decline in the Maxwellian distribution, compared to the much broader κ-distribution (see Fig. 3), which means that particles observed at a given energy have come from plasma with a narrower range of temperatures. In other words, the relatively cool plasma in the distant heliotail can still be a significant source of high-energy ENAs, if we assume it has a κ-distribution. Only at the highest energies, above about 2 keV, does the nose-tail asymmetry favor the nose direction.

5. CONCLUSIONS

We have used our 3D MHD-kinetic code to investigate the impact of assuming an alternative heliosheath proton distribution, a κ-distribution rather than the more usual Maxwellian, on both the SW-LISM interaction region, and the observed ENA flux at 1 AU. The motivation for this is that pickup ions, generated when an interstellar neutral atom charge-exchanges in the supersonic solar wind, form high-energy tails that are always observed in the solar wind plasma. The κ-distribution has core and tail features, and is often invoked in data analysis of the SW proton distribution function. The use of a κ-distribution introduces (possibly) more realistic estimates of the ENA flux at 1 AU, and thereby serves as an important tool in reconciling global heliospheric models with data from the upcoming IBEX mission. One drawback of this approach is that we cannot control the ratio between core and tail populations. While obviously not capturing the full details of the thermal and PUI plasma distributions in either the inner heliosheath or throughout the supersonic SW, a κ-distribution nonetheless well grounded in observations as a general representation of the SW distribution function.

We used $\kappa = 1.63$ in our calculations, based on the Voyager 1 LECP data of Decker et al. (2005). Although the LECP data are for much higher energies than IBEX will measure, we have shown that IBEX data can be used to infer the spectral slope of the
Our results predict a count rate of about 3 (cm2 sr s keV)$^{-1}$ above 1 keV, when compared with a Maxwellian distribution. The use of a κ-distribution for the ENA parent proton population results in a significant increase of the ENA flux at energies above 1 keV. The observed variations at 1 keV were considerably larger, but because they assumed a Maxwellian distribution for protons in the heliosheath, their fluxes were about an order of magnitude lower than ours at this energy. Effectively, they found that fluctuations in ENA flux due to the solar cycle are relatively small for energies close to the core of the distribution (a few hundred eV in the heliosheath), while at high energies the changes in ENA flux are larger. Since the κ-distribution declines much more slowly than the Maxwellian away from the core, we expect our ENA fluxes to vary by perhaps 50% over a solar cycle for energies relevant to IBEX. This, however, remains to be confirmed.

This work was supported by NASA grants NNG05GD45G, NNG06GD48G, and NNG06GD43G, and NSF award ATM-0296114. Calculations were performed on supercomputers Fujitsu Primepower HPC2500, in the framework of the collaborative agreement with the Solar-Terrestrial Environment Laboratory of Nagoya University, Columbia at NASA Ames Research Center (award SMD-06-0167), and IBM Data Star (award ATM-070011) in the San Diego Supercomputer Center.

APPENDIX

CHARGE-EXCHANGE FORMULATION WITH A κ-DISTRIBUTION

Our kinetic neutral atom method solves the time-dependent Boltzmann equation

$$\frac{\partial}{\partial t} f_H + v \cdot \nabla f_H + \frac{F_{m_p}}{m_p} \nabla v \cdot f_H = P - L,$$

(A1)

using a Monte Carlo approach. Here f_H is the distribution function of neutral hydrogen, F is the external force, and P and L are the production and loss terms. Below we derive the loss rate for a neutral particle traveling through a κ-distribution of protons.

The production and loss rates for the hydrogen population may be written as

$$P = f_p(x, v, t) \eta(x, v, t),$$

(A2)

$$L = f_H(x, v, t) \beta(x, v, t),$$

(A3)

where

$$\eta(x, v, t) = \int \sigma_{ex} f_H(x, v_H, t) |v - v_H| dv_H,$$

(A4)

$$\beta(x, v, t) = \int \sigma_{ex} f_p(x, v_p, t) |v - v_p| dv_p.$$

(A5)

Here we assume that the charge exchange cross section, approximated using the Fite et al. (1962) expression

$$\sigma_{ex}(v_{rel}) = [2.1 - 0.092 \ln (v_{rel})]^2 10^{-14} \text{ cm}^2,$$

(A6)

varies slowly and can be taken outside the integrals in equations (A4) and (A5).

In the kinetic code we require the neutral loss term β to compute charge exchange on a particle-by-particle basis. To derive this, we use the κ-distribution for the charged component, i.e.,

$$f_p(v_p) = \frac{n_p}{\pi^{3/2} \Theta_p^{3/2} \kappa^{3/2}} \frac{1}{\kappa} \Gamma(\kappa + 1) \left[1 + \frac{1}{\kappa} \frac{(v_p - u_p)^2}{\Theta_p^2} \right]^{-\kappa-1},$$

(A7)

where u_p is the bulk speed and Θ_p is related to the plasma pressure via equation (3).
On introduction of the new variables \(g = (v - v_p)/\sqrt{\kappa \Theta_p} \) and \(x = (u - v_p)/\sqrt{\kappa \Theta_p} \), equation (A5) becomes

\[
\beta = \frac{n_p \sigma_{ex} \Theta_p}{\pi \kappa} \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)} \int g \left[1 + (g - x)^2 \right]^{-(\kappa + 1)} \, d^3 g \\
= \frac{2n_p \sigma_{ex} \Theta_p}{\sqrt{\pi}} \frac{\sqrt{\kappa \Gamma(\kappa + 1)}}{\Gamma(\kappa - 1/2)} \int_0^\infty \int_1^1 d\mu \, g^2 \left(1 + g^2 - 2\mu gx + x^2 \right)^{-(\kappa + 1)},
\]

where \(\mu = \cos \theta; \theta \) is the angle between \(g \) and \(x \). After integrating over \(\mu \), the result is

\[
\beta = \frac{n_p \sigma_{ex} \Theta_p}{\sqrt{\pi \kappa \kappa}} \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)} \int_0^\infty g^2 \left\{ \left[1 + (g - x)^2 \right]^{1-\kappa} - \left[1 + (g + x)^2 \right]^{1-\kappa} \right\} \, dg.
\]

Introducing the new variable \(z = g - x \) in the first term and \(z = g + x \) in the second term and using the symmetry properties of the integrand, we obtain

\[
\beta = \frac{2n_p \sigma_{ex} \Theta_p}{\sqrt{\pi \kappa \kappa}} \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)} \left[\int_0^x z^2 (1 + z^2)^{-\kappa} \, dz + \int_0^x (1 + z^2)^{-\kappa} \, dz + 2x \int_x^\infty z (1 + z^2)^{-\kappa} \, dz \right].
\]

The integrals are

\[
x^2 \int_0^x (1 + z^2)^{-\kappa} \, dz = x^3 \, _2F_1\left(\frac{1}{2}, \frac{\kappa}{2}; \frac{3}{2}; -x^2 \right) = x^3 (1 + x^2)^{-\kappa} \, _2F_1\left(1, \frac{\kappa}{2}; \frac{3}{2}; \frac{x^2}{1 + x^2} \right),
\]

\[
2x \int_x^\infty z (1 + z^2)^{-\kappa} \, dz = \frac{x (1 + x^2)^{1-\kappa}}{(\kappa - 1)},
\]

\[
\int_0^x z^2 (1 + z^2)^{-\kappa} \, dz = \frac{x^3}{3} \, _2F_1\left(\frac{3}{2}, \frac{\kappa}{2}; \frac{5}{2}; -x^2 \right) = \frac{x^3 (1 + x^2)^{-\kappa}}{3} \, _2F_1\left(1, \frac{\kappa}{2}; \frac{5}{2}; \frac{x^2}{1 + x^2} \right),
\]

where \(_2F_1 \) is the hypergeometric function. The exact solution for \(\beta \) is therefore

\[
\beta = \frac{2n_p \sigma_{ex} \Theta_p}{\sqrt{\pi \kappa \kappa}} \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)} (1 + x^2)^{-\kappa} \left[x^2 _2F_1\left(1, \frac{\kappa}{2}; \frac{3}{2}; \frac{x^2}{1 + x^2} \right) + \frac{x^2}{3} _2F_1\left(1, \frac{\kappa}{2}; \frac{5}{2}; \frac{x^2}{1 + x^2} \right) + \frac{1 + x^2}{\kappa - 1} \right].
\]

However, it is more convenient to take the limits \(\sqrt{\kappa \kappa} \ll 1 \) and \(\sqrt{\kappa \kappa} \gg 1 \) in equations (A11) and (A13) before the integration. In the former limit we obtain

\[
x^2 \int_0^\infty (1 + z^2)^{-\kappa} \, dz \approx x^3,
\]

\[
\int_0^\infty z^2 (1 + z^2)^{-\kappa} \, dz \approx \frac{x^3}{3}
\]

and the expression inside the parentheses in equation (A10) becomes \(x/(\kappa - 1) + x^3/3 \). Finally, in this limit

\[
\beta = \frac{2n_p \sigma_{ex} \Theta_p}{\sqrt{\pi \kappa \kappa}} \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)} \left[\frac{1}{\kappa - 1} + \frac{(v_p - u_p)^2}{3\Theta_p^2} \right].
\]

For large \(\kappa, \Gamma(\kappa + a) \simeq \kappa^a \Gamma(\kappa) \) and

\[
\beta \simeq \frac{2n_p \sigma_{ex} \Theta_p}{\sqrt{\pi}} \left[1 + \frac{(v - u_p)^2}{3\Theta_p^2} \right],
\]

In the limit \(x \gg 1 \) we obtain

\[
x^2 \int_0^\infty (1 + z^2)^{-\kappa} \, dz = \frac{\sqrt{\pi} \Gamma(\kappa - 1/2)x^2}{2\Gamma(\kappa)},
\]

\[
\int_0^\infty z^2 (1 + z^2)^{-\kappa} \, dz = \frac{\sqrt{\pi} \Gamma(\kappa - 3/2)}{4\Gamma(\kappa)}.
\]

In this limit

\[
\beta \simeq n_p \sigma_{ex} |v - u_p|,
\]
and is independent of κ. A reasonable approximation to equation (A14) that has the correct asymptotic behavior is

$$\beta \simeq n_p \sigma_{ex} \sqrt{\frac{4T^2(\kappa + 1) \Theta_p^2}{\pi \kappa (\kappa - 1) T^2 (\kappa - 1/2)}} + (v - u_p)^2. \quad (A22)$$

For large κ this reduces to the Maxwellian limit obtained by Pauls et al. (1995),

$$\beta \simeq n_p \sigma_{ex} \sqrt{\frac{4}{\pi} \Theta_p^2} + (v - u_p)^2. \quad (A23)$$

REFERENCES

Alexashov, D., & Izmodenov, V. 2005, A&A, 439, 1171
Bame, S. J., Asbridge, J. R., Felthauer, H. E., Hones, E. W., & Strong, I. B. 1967, J. Geophys. Res., 72, 113
Baranov, V. B., & Malama, Yu. G. 1993, J. Geophys. Res., 98, 15157
Burgers, J. M. 1969, Flow Equations for Composite Gases (New York: Academic Press)
Burlaga, L. F., Ness, N. F., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., Stone, E. C., & McDonald, F. B. 2005, Science, 309, 2027
Bzowski, M., & Tarnopolski, S. 2006, in AIP Conf. Ser. 858, Physics of the Inner Heliosheath, ed. J. Heerikhuisen et al. (New York: AIP), 251
Chalov, S. V., Fahr, H. J., & Izmodenov, V. V. 2003, J. Geophys. Res., 108, 1266
Chashei, I. V., Fahr, H. J., & Lay, G. 2003, Ann. Geophys., 21, 1405
Collier, M. R. 1995, Geophys. Res. Lett., 22, 2673
Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., & Lanzerotti, L. J. 2005, Science, 309, 2020
Fahr, H. J., Kausch, T., & Scherer, H. 2000, A&A, 357, 268
Fahr, H. J., & Lay, G. 2000, A&A, 356, 327
Fahr, H. J., & Scherer, K. 2004, ASTRA Astrophys. Space Sci. Trans., 1, 3
Fisk, L. A., & Gloeckler, G. 2006, ApJ, 640, L79
Fite, W. L., Smith, A. C. H., & Stebbings, R. F. 1962, Proc. R. Soc. London Ser. A, 268, 527
Gloeckler, G. 1998, Space Sci. Rev., 78, 335
Gloeckler, G., Fisk, L. A., & Lanzerotti, L. J. 2005, in Solar Wind 11/SOHO 16: Connecting Sun and Heliosphere, ed. B. Fleck, T. H. Zurbuchen, & H. Lacoste (ESA SP-592; Noordwijk: ESA), 171
Gloeckler, G., & Geiss, J. 1998, Space Sci. Rev., 86, 127
Heerikhuisen, J., Florinski, V., & Zank, G. P. 2006a, J. Geophys. Res., 111, A06110
Heerikhuisen, J., Florinski, V., Zank, G. P., & Pogorelov, N. V. 2006b, AIP Conf. Ser. 858, Physics of the Inner Heliosheath (New York: AIP)
Holzer, T. E. 1972, J. Geophys. Res., 77, 5407
Isenberg, P. A. 1986, J. Geophys. Res., 91, 9965
Khabibrahmanov, I. K., Summers, D., Zank, G. P., & Pauls, H. L. 1996, ApJ, 469, 921
Kulsrud, R. M. 1984, in Basic Plasma Phys., Vol. 1, ed. A. A. Galeev & R. N. Sudan (Amsterdam: North-Holland Publishing), 115
Lee, M. A., & Ip, W.-H. 1987, J. Geophys. Res., 92, 11041
Leubner, M. P. 2004, Phys. Plasmas, 11, 1308
Leubner, M. P., Izmodenov, V. V., & Chalov, S. V. 2006, A&A, 445, 693
Matthaeus, W. H., Zank, G. P., Smith, C. W., & Oughton, S. 1999, Phys. Rev. Lett., 82, 3444
McComas, D., et al. 2006, in AIP Conf. Ser. 858, Physics of the Inner Heliosheath, ed. J. Heerikhuisen et al. (New York: AIP), 400
———. 2004, in AIP Conf. Ser. 719, Physics of the Outer Heliosphere, ed. V. Florinski, N. V. Pogorelov, & G. P. Zank (New York: AIP), 162
———. 2000, J. Geophys. Res., 105, 10419
Mewaldt, R. A., et al. 2001, in AIP Conf. Ser. 598, Solar and Galactic composition, ed. R. F. Wimmer-Schweingruber (New York: AIP), 165
Moebius, E., Hovestadt, D., Klecker, B., Scholer, M., & Gloeckler, G. 1985, Nature, 318, 426
Opher, M., Stone, E. C., & Liewer, P. C. 2006, ApJ, 640, L71
Pauls, H. L., & Zank, G. P. 1996, J. Geophys. Res., 101, 17081
———. 1997, J. Geophys. Res., 102, 19779
Pauls, H. L., Zank, G. P., & Williams, L. L. 1995, J. Geophys. Res., 100, 21595
Pogorelov, N. V., Heerikhuisen, J., & Zank, G. P. 2008, ApJ, 675, L41
Pogorelov, N. V., Stone, E. C., Florinski, V., & Zank, G. P. 2007, ApJ, 668, 611
Pogorelov, N. V., & Zank, G. P. 2006, in ASP Conf. Ser. 359, Numerical Modeling of Space Plasma Flows, ed. G. P. Zank & N. V. Pogorelov (San Francisco: ASP), 184
Prested, C., et al. 2008, J. Geophys. Res., in press
Richardson, J. D. 2007, AGU Abstr. Fall, SH11A-03
Richardson, J. D., Liu, Y., & Wang, C. 2008, Adv. Space Res., 41, 237
Richardson, J. D., Paularena, K. I., Lazarus, A. J., & Belcher, J. W. 1995, Geophys. Res. Lett., 22, 325
Smith, C. W., Isenberg, P. A., Matthaeus, W. H., & Richardson, J. D. 2006, ApJ, 638, 508
Smith, C. W., Matthaeus, W. H., Zank, G. P., Ness, N. F., Oughton, S., & Richardson, J. D. 2001, J. Geophys. Res., 106, 8253
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikka, B. C., Lal, N., & Webber, W. R. 2005, Science, 309, 2017
Summers, D., & Thorne, R. M. 1991, Phys. Fluids B, 3, 1835
Williams, L. L., & Zank, G. P. 1994, J. Geophys. Res., 99, 19229
Williams, L. L., Zank, G. P., & Matthaeus, W. H. 1995, J. Geophys. Res., 100, 17059
Zank, G. P. 1999, Space Sci. Rev., 89, 413
Zank, G. P., Matthaeus, W. H., & Smith, C. W. 1996a, J. Geophys. Res., 101, 17093
Zank, G. P., Williams, L. L., & Hall, D. T. 1996b, J. Geophys. Res., 101, 21639