Can the Olive Genome Be a Miracle for Human DNA?

Muhammet ŞENKAL
istanbulmedeniyet university

Ibrahim Akalin (ibrahimakalin@yahoo.com)
Maltepe University Faculty of Medicine https://orcid.org/0000-0002-7487-4603

Keywords: Olive, genome, CALM1, CALM3, BRAF, SDHA, BRMS1L

DOI: https://doi.org/10.21203/rs.3.rs-557479/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Can the Olive Genome Be a Miracle for Human DNA?

Authors

Akalın İ.¹, Şenkal M.²

Corresponding Author

Akalın İ.²

¹Istanbul Medeniyet University, Department of Medical Genetics, Istanbul

²Istanbul Medeniyet University, Faculty of Medicine, 4rd year student, Istanbul

Abstract

In this project, it is aimed to compare the olive genome, one of the fruits of the Mediterranean region, to the human genome. We started plant-human genomic studies with olive on the hypothesis that whether we could consume the benefits of carbohydrates, proteins, fats, as well as genomic bioavailability. Many studies from past to present have shown positive effects of olives on cardiovascular diseases and some cancer pathways. In terms of both scientific and religious resources, olive is an important plant in many areas. In our project, we compared the olive genome with the human genome in Pubmed database. We detected pathological or non-pathological variations of the matching regions in the human genome. We investigated whether these variations were found in the olive genome as wild type and whether there were regions suitable for cutting in terms of restriction enzymes. In the data obtained, the presence of cardiovascular and cancer-related genes of the matching regions suggests a possible bioavailability. In the ongoing projects, it is aimed to compare the genomes of plants other than olive with the human genome.

Keywords Olive, genome, CALM1, CALM3, BRAF, SDHA, BRMS1L

Introduction

Olive, which is one of the fruits of the Mediterranean region, has managed to become an indispensable part of the tables from past to present. Both the mention of its name in religious books and its examination in terms of cardiovascular diseases in many scientific articles emphasize the importance of olive many times. It is reported that olive and olive oil consumption is associated with a decrease in the incidence and mortality of cardiovascular
diseases such as heart failure, atrial fibrillation and atherosclerosis. [1] Olive oil diet has antioxidant properties [2], anti-inflammatory [3] and anti-carcinogenic properties [4]. Based on the verse of the Qur'an, figs and olives mentioned in Surah Tin, it is aimed to examine the possible effects of olives sworn on in the Qur'an from a genetic perspective. Is there any genomic bioavailability of plants besides carbohydrate, fat, protein? We know that our microbiota has restriction enzymes that can cut the genome of the digested food from many different regions. So, could the genome of a food be cut into our enteric flora and presented to us? Starting from here, we compared the human genome with the olive genome in our project. We detected pathological or non-pathological variations of the matching regions in the human genome. We investigated whether these variations were found in the olive genome.

METRIALS AND METHODS

- The olive genome sequence in the Pubmed genome database was mapped to the human genome on the NucleotidBlast site.
- Variations of the matching regions were searched in databases such as Pubmed, PolyPhen-2, Exac.browser to find deletion sites and SNPs causing pathogenicity.
- In addition, the restriction enzymes found in the olive genome matching regions were determined using the NEB site.

RESULTS

- When the olive genome is examined from Pubmed Genome, it is known to have 23 chromosomes. [8]
- In the comparison of olive and human genomes, we detected 73-100 percent matches in 67 genes. (Table 2, 3)
- Matching genes are found in cancer (BRAF, BRMS1L, SDHA) and calmodulin (CALM1, CALM3) related genes.
CALM1 GENE FINDINGS

- The CALM1 gene encodes a member of the EF-hand calcium binding protein family. [9]
- 84% (125/149) matches were found between the olive genome and 149 bp in the third exon of the CALM1 gene (Figure 1).

![Figure 1 Matching region between olive genome and CALM1 gene. 125/149 bp (84%) matches between the olive genome and the CALM1 gene are shown.](image)

- There are 19 SNPs in the pubmed database in our region that matches the CALM1 gene. (Figure 2)

![Figure 2 SNPs reported in the Pubmed database in the region matching the CALM1 gene. The Marker 1 region indicated with red indicates the region that matches the CALM1 gene. This region is between nucleotides 90,401,255 - 90,401,403 (149bc) in human genome 14 Chromosome, GRCh38p.12. Direction of arrows in the green line The olive genome shows the direction of the 5'-3' Zeytin DNA sequence. The red regions indicated by the Rs numbers refer to the SNPs reported in the Pubmed database. The data obtained were investigated on 2018-03-27.](image)

- In this range, rs26707276 SNP (chr14: 90401385 (GRCh38,p12) A / G / T) is clinically important and pathogenic / potentially pathogenic. [5] [6] [10]
- SNP pathology was also found in the MutationTarget database. (Table 1)
Table 1 shows the pathogenetic SNP in the MutationTarget database of rs26707276 SNP, which is located at the matching region between the olive genome and the CALM1 gene. [11th]

SNP	ORGANISM_BUILD	CHR	COORDINATE	REF ALLELE	ALT ALLELE	AMINO ACID CHANGE	GENE NAME	REGION	NO OF SEQ AT POSITION	SIFT PREDICTION
rs267607276	Homo_sapiens/GRCh37.74	14	90867729	A	T	N54I	CALM1	CDS	387	DELETERIOUS
rs267607276	Homo_sapiens/GRCh37.74	14	90867729	A	T	N55I	CALM1	CDS	394	DELETERIOUS
rs267607276	Homo_sapiens/GRCh37.74	14	90867729	A	T	N18I	CALM1	CDS	379	DELETERIOUS

- The non-pathological wild type form of the region found in rs267607276 SNP is found in the olive genome. (Figure 3)
There are many candidate regions for restriction enzymes in the 149 bp region we found a match. (figure 4)

Linear Sequence: unnamed sequence

- NEB single cutter restriction enzymes
- Main non-overlapping, min. 100 aa ORFs
GC=45%, AT=55%

Figure 4. Restriction enzymes in the NEB database of the region matching the CALM1 gene.
• There is a possibility that the matching region by the restriction enzymes may be appropriately removed (Figure 5)

BRAF GENE FINDINGS

• BRAF plays a role in regulating the MAP kinase / ERK signaling pathway, which affects cell division, differentiation and secretion.

• 31/32 (97%) matches were found between olive genome and 32 bp of BRAF gene. (Figure 6)

Figure 5. Restriction enzyme cleavage sites located in the proximal positions of the pathological rs267607276 SNP (circled in red) in the region matching the CALM1 gene.

Figure 6. Matching region between olive genome and BRAF gene. 31/32 bp (97%) matches between olive genome and BRAF gene are shown.

• There are 9 SNPs and 9 deletions in the pubmed database in our region that matches the BRAF gene. (figure 7)
Figure 7. SNPs reported in the Pubmed database in the region matching the BRAF gene. The Marker 1 region indicated by the red indicates the region that matches the BRAF gene. This region is among the nucleotides 140,924,771 – 140,924,802 (32b) in the Human genome 7. Chromosome, GRCh38p.12. Direction of arrows in the green line shows the direction of the 5’-3’ Zeytin DNA sequence. The red regions indicated by the Rs numbers indicate the SNPs reported in the Pubmed database, and the blue lines of longer lines indicate the deletion sites reported. The data obtained were investigated on 2018-03-27.

- Wild type form of all SNP and deletions except rs267607276 SNP is found in olive genome.
- In Figure 7, there are many candidate regions for restriction enzymes in the 32b region where we found a match with the BRAF gene. (Figure 8.)

Linear Sequence: unnamed sequence

Figure 8. Restriction enzymes in the NEB database of the region matching the BRAF gene.

SDHA GENE FINDINGS

- 84% (77/92) matches were found between the olive genome and 92 bp in the 5th exon of the SDHA gene (Figure 9)
There are 33 SNPs and 4 deletions in the pubmed database in our region matching SDHA gene. (Figure 10)

Most SNPs present are Missense Variants, leading to pathologies such as Hereditary cancer-predisposing syndrome, Mitochondrial complex II deficiency, Paragangliomas 5 and one of their wild types are found in the olive genome. [12][13] (Uncertain-Significance related SNPs are rs1560987595, rs1560987595, rs749824479, rs569384870, rs1553997722, rs759827541, rs1060503711, rs1060503712, rs763578369, rs1553997748, rs1553997754, rs587782076, rs1553997783)
There are many candidate regions for restriction enzymes in the 92bc region where we found a match.

(Figure 11)

Linear Sequence: unnamed sequence

(Figure 11. Restriction enzymes in the NEB database of the region matching the SDHA gene candidate regions.)

BRMS1L GENE FINDINGS

- 92% (36/39) matches were found between the olive genome and 39 bp in the 5'UTR region of the BRMS1L gene. (Figure 12)

(Figure 12. Matching region between olive genome and BRMS1L gene. A 36/39 bp (92%) match between the olive genome and the BRMS1L gene is shown.)

- In our region that matches the BRMS1L gene, there are 17 SNPs and 6 deletions in the pubmed database. (Figure 13)
Figure 13. SNPs reported in the Pubmed database at the region matching the BRMS1L gene. The Marker 1 region indicated in blue indicates the region that matches the BRMS1L gene. This region is among the nucleotides 35,825,600 - 35,825,634 (35bc) in Human genome 14 Chromosome, GRCh38p12. The direction of the arrows in the purple line shows the direction of the 3’ → 5’ DNA sequence. The red regions indicated by the Rs numbers indicate the SNPs reported in the Pubmed database and the purple lines with longer lines indicate the deletion areas reported. The data obtained were investigated on 2018-03-27.

- The wild type of most of the SNP-containing regions is found in the olive genome.
- There are many candidate regions for restriction enzymes in the 39 bp region where we found a match.

(Figure 14)

CALM3 GENE FINDINGS

- 79% (293/369) matches were found between the olive genome and 369 bp in 3rd, 4th, 5th and 6th exons of the CALM 3 gene. (Figure 15)
There are 62 SNPs and 1 deletion in the pubmed database in our region that matches CALM3 gene. (Figures 16, 17, 18, 19)
Figure 17. SNPs reported in the Pubmed database at the region matching the 4th exon of the CALM3 gene. This region is between nucleotides 12,410 - 12,515 in the Human genome 7. Chromosome, GRCh37.p13.

Figure 18. SNPs reported in Pubmed database in the region matching the 5th exon of the CALM3 gene.

Figure 19. SNPs reported in the Pubmed database in the region matching the 6th exon of the CALM3 gene. This region is between the nucleotides 13,052 - 13,080 in the Human genome 7. Chromosome, GRCh37.p13.

- Three of the matching SNLs were pathologically demonstrated on Pubmed. (rs1060502608 [14], rs1064796271 [15], rs1555814427 [7])
- The wild type form of most of the regions with SNP is found in the olive genome.
- There are many candidate regions for restriction enzymes in the 369 bp region where we found a match.

(Figure 20)
CONCLUSION AND DISCUSSION

As a result of our comparison between olive genome and human genome, we found matches in 67 genes. (Genes summary table). We focus our attention on cancer (BRAF, BRMS1L, SDHA) and cardiovascular system (CALM1, CALM3…) related genes We carried out a summary study on Pubmed about the functions of these genes and then compiled the reported mutation analyzes of these genes on the site ‘Exac.browser’ and searched for the presence of matching regions in the matching genes in olive. As can be expected, hundreds of mutations have been reported for each gene, but some of them have also led to very serious pathologies (Pathogenic Variants table). Human deletions or snps in the matching regions on the CALM3, SDHA, BRAF, BRMS1L and CALM1 gene are reported to cause pathological conditions. The wild type of these regions is found in the olive genome and there are many restriction enzymes capable of cutting these matching regions from the appropriate regions. We have seen that many restriction enzymes available today allow us to cut off our matching gene region from appropriate sites. Based on this, we concluded that the use of non-pathological sequencing from the genome of the olives that we consume can benefit individuals with mutations. Considering all this, we
have come to the conclusion that GMO products may perhaps deprive living beings of this natural therapy by causing the genome that is treating us to be pathological, leading to even worse outcomes. In particular, can the olive genome be used for the repair of mutagenized genes as a guide DNA chain used in the cell repair mechanism? From another point of view, can genetic bioavailability also have an impact on explaining the idiopathic concept underlying many diseases that are still unclear? According to this hypothesis, can specific diets having common regions and genes involved in pathogenesis be included in our future treatment plans? With these matches, can we approach the relationship between diet and disease from a different perspective?

REFERENCES

[1] Nocella C, Cammisotto V, Fianchini L, D'Amico A, Novo M, Castellani V, et al. Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. Endocr Metab Immune Disord Drug Targets. 2018;18:4-13.
[2] De Bruno A, Romeo R, Fedele FL, Sicari A, Piscopo A, Poiana M. Antioxidant activity shown by olive pomace extracts. J Environ Sci Health B. 2018;53:526-33.
[3] Wongwarawipat T, Papageorgiou N, Bertsias D, Siasos G, Tousoulis D. Olive Oil-related Anti-inflammatory Effects on Atherosclerosis: Potential Clinical Implications. Endocr Metab Immune Disord Drug Targets. 2018;18:51-62.
[4] Boss A, Bishop KS, Marlow G, Barnett MP, Ferguson LR. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients. 2016;8.
[5] Nyegaard M, Overgaard MT, Sondergaard MT, Vranas M, Behr ER, Hildebrandt LL, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91:703-12.
[6] Napolitano C, Priori SG, Bloise R. Catecholaminergic Polymorphic Ventricular Tachycardia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews®. Seattle (WA)1993.
[7] Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19:1105-17.
[8] Date of access: 2018.03.27 https://www.ncbi.nlm.nih.gov/genome/?term=Olea+europaeaälisci
[9] Date of access: 2018.03.27 https://www.ncbi.nlm.nih.gov/gene/801
[10] Date of access: 2018.03.27 https://www.ncbi.nlm.nih.gov/clinvar/variation/39757/
[11] Date of access: 2018.12.22 https://sift.bii.a-star.edu.sg/sift-bin/SIFT_dbSNP_submit.pl
[12] Date of access: 2018.12.22 https://www.ncbi.nlm.nih.gov/snp/rs777873914#clinical_significance
[13] Date of access: 2018.12.22 https://www.ncbi.nlm.nih.gov/clinvar/variation/486403/#supporting-observations
[14] Date of access: 2018.12.22 https://www.ncbi.nlm.nih.gov/clinvar/RCV000475293.1/
[15] Date of access: 2018.12.22 https://www.ncbi.nlm.nih.gov/clinvar/RCV000484148.1/
Table 2. Matching regions between olive genome and human genome. The number of chromosomes of the olive genome and which gene overlaps in the human genome are shown in the table. The pairings examined on the genes show matches ranging from 29 to 1259 bp with a similarity of 72% to 100%.

Matching Genes	Matching (BP-RATE)	Matching Localization (Bp / Chromosome)	Number of SNPs and Deletions	SEQUENCE ID
CALM1	125/149 (84%)	90,401,255 - 90,401,403 (149bp)	19 SNPs	NM_006888.4
		(GRCh38.p12)		
CALM3	293/369 (79%)	12,171 - 12,269	62 SNPs /1 del.	NM_001329922.1
		12,410 - 12,515		
		12,773 - 12,908		
		13,052 - 13,080		
		(GRCh37.p13)		
		19. Chromosome		
BRAF	31/32(97%)	140,924,771 – 140,924,802 (32bp)	9 SNPs / 9 del.	NM_004333.5
		(GRCh38.p12)		
		7. Chromosome		
SDHA	77/92(84%)	225,880-222,971 (92bp)	33 SNPs / 4 del.	NM_001330758.1
		(GRCh38.p12)		
		7. Chromosome		
BRMS1L	36/39(92%)	35,825,600 - 35,825,634 (35bp)	17 SNPs / 6 del.	XM_017021706.1
		(GRCh38.p12)		
		14. Chromosome		

Table 3.

OLIVE GENOM	MATCHING GEN	MATCHING (BP-RATE)	SEQUENCE ID
1. CHROMOSOME	CALM3	293/369(79%)	NM_001329922.1
	TUBB8P12	270/371(73%)	NM_001358689.1
	HSP90AB1	67/80(84%)	NM_001271972.1
	DDX27	31/31(100%)	NM_017895.7
	STAM2	33/35(94%)	XR_001738586.1
	MEF2C-AS1	29/29(100%)	NR_136222.1
2. CHROMOSOME	UBC	887/1140(78%)	NM_021009.6
	HSPA1L	964/1323(73%)	NM_005527.3
	HSPA6	901/1259(72%)	NM_002155.4
	ACTA1	299/374(80%)	NM_001100.3
	ACTB	310/397(78%)	NM_0011101.4
	POTEM	288/372(77%)	NM_001145442.1
Gene	Count/Total (%)	Transcript ID	
--------	----------------	----------------	
POTEF	201/246(82%)	NM_001099771.2	
POTEI	199/245(81%)	XM_017004732.2	
POTEE	193/236(82%)	XM_017004161.2	
POTEJ	198/245(81%)	NM_001277083.1	
LINC02250	30/30(100%)	XR_931996.2	
SIPA1L3	29/29(100%)	NM_015073.2	

3. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
UBC	300/368(82%)	NM_021009.6
PPP1CC	251/340(74%)	XM_011538505.3
FUS	36/39(92%)	XM_005255233.5

4. CHROMOSOME

(NO MATCHED TRANSCRIPT FOUND)

5. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
NISCH	28/28(100%)	NM_007184.3

6. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
LINC02250	100%	XR_931996.2
LOC105376278	97%	XR_001746939.2
NTN5	100%	XM_017026274.1

7. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
ACTA1	294/361(81%)	NM_0011100.3
ACTB	296/370(80%)	NM_0011101.4
POTEF	291/372(78%)	
POTEM	284/364(78%)	NM_001145442.1
POTEI	286/368(78%)	NM_001277406.1
POTEJ	284/368(77%)	NM_001277083.1
TUBB8P12	299/398(75%)	NM_001358689.1
H3.Y	78/94(83%)	NM_001355258.1
LCN10	36/37(97%)	NM_001001712.2

8. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
ATP5F1B	163/209(78%)	NM_001686.3
BRMS1L	36/39(92%)	XM_017021706.1
ANKRD26	38/42(90%)	XM_017015929.1

9. CHROMOSOME

(NO MATCHED TRANSCRIPT FOUND)

10. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
UBC	727/921(79%)	NM_021009.6
ACTG1	292/375(78%)	NM_001199954.1
LOC1001303331	288/378(76%)	NR_027247.2
SCO1	39/41(95%)	NM_004589.3
LINC02250	29/29(100%)	XR_931996.2

11. CHROMOSOME

Gene	Count/Total (%)	Transcript ID
MAGOH2P	60/69(87%)	NR_049723.1

12. CHROMOSOME

Gene	Count/Total (%)	Transcript ID			
PSMCS	95/120(79%)	XR_934508.2			
CALM1	86%	NM_006888.4			
MLLT3	100%	NM_004529.3			
Gene	Chromosome	Location	Exon	Name	Description
------------	------------	----------	------	------------	-------------
LOC101927188	13	SDHA	77/92(84%)	NM_001330758.1	
BHMG1	13	NR_126040.1			
FDFT1	13	NM_001287750.1			
LOC220729	13	SDHAP2	82%	NR_003265.3	
SDHAP1	13	NR_003264.2			
DIEXF	13	TMEM9B	100%	NM_020644.2	
CYTIP	13	NM_004288.4			
SDHA	14	ACTB	324/403(80%)	NM_001101.4	
ACTA1	14	ACTA1	308/380(81%)	NM_001100.3	
POTEM	14	POTEM	286/364(79%)	NM_001145442.1	
POTEF	14	POTEF	313/405(77%)	NM_001099771.2	
POTEI	14	POTEI	78%	NM_001277406.1	
POTEJ	14	POTEJ	77%	NM_001277083.1	
H3.Y	14	H3.Y	79%	NM_001355258.1	
LINC02250	14	LINC02250	100%	XR_931996.2	
WDR26	14	WDR26	97%	NM_025160.6	
ASH1L	14	ASH1L	100%	NM_018489.2	
LOC403312	14	LOC403312	100%	NM_001301851.1	
UBC	15	UBC	723/906(80%)	NM_021009.6	
HIST1H3G	15	HIST1H3G	307/385(80%)	NM_003534.2	
TUBA1C	15	TUBA1C	282/369(76%)	NM_032704.4	
TUBA1B	15	TUBA1B	282/369(76%)	NM_006082.2	
UBB	15	UBB	189/234(81%)	NM_018955.3	
PPP1CC	15	PPP1CC	250/340(74%)	NM_002710.3	
SIPA1L3	15	SIPA1L3	38/41(93%)	NM_015073.2	
PLEKHG1	15	PLEKHG1	35/37(95%)	NM_001029884.2	
UBFB	16	UBFB	189/234(81%)	NM_018955.3	
PPP1CC	16	PPP1CC	250/340(74%)	NM_002710.3	
SIPA1L3	16	SIPA1L3	38/41(93%)	NM_015073.2	
PLEKHG1	16	PLEKHG1	35/37(95%)	NM_001029884.2	
IGHMBP2	17	IGHMBP2	29/29(100%)	XM_017017671.2	
BRAF	17	BRAF	31/32(97%)	NM_004333.5	
IGHMBP2	17	IGHMBP2	29/29(100%)	NM_002180.2	

13. CHROMOSOME

14. CHROMOSOME

15. CHROMOSOME

16. CHROMOSOME

17. CHROMOSOME
| CHROMOSOME | Gene | Exons | Percent | Transcript | | |
|---|---|---|---|---|---|---|
| 18. | HIST1H3F | 84% | NM_021018.2 |
| | H3F3A | 81% | NM_002107.4 |
| | H3F3AP4 | 81% | NR_002315.1 |
| 19. | FDFT1 | 29/29(100%) | NM_001287750.1 |
| | SUPT20HL2| 28/28(100%) | NM_001136233.2 |
| 20. | EEF1A1 | 361/450(80%) | NM_001402.5 |
| | TNFRSF10D| 28/28(100%) | NM_003840.4 |
| 21. | STK4 | 37/38(97%) | NM_006282.4 |
| | HOXB6 | 37/38(97%) | NM_018952.4 |
| 22. | PSMC1 | 74/85(87%) | NM_002802.2 |
| | CALN1 | 29/29(100%) | NM_031468.3 |
| 23. | CGN | 28/28(100%) | NM_020770.2 |
| EX CHROMOSOME | | | | (NO MATCHED TRANSCRIPT FOUND) |
| Pathogenic Variants | Position | Alleles | Clinical Significance | Gene : Consequence | Publication (PMID) | Olive match |
|---------------------|----------|---------|-----------------------|--------------------|--------------------|-------------|
| CALM1 | | | | | | |
| rs267607276 | chr14:90401385 | NM_001363670.1:c.164A>G, NM_001363670.1:c.164A>T | Pathogenic | Asn55Ser / Asn55Ile | 23040497 | A |
| SDHA | | | | | | |
| rs1560987595 | chr5:225886 (GRCh38) | NM_004168.4:c.460G>A, NM_004168.4:c.460T>C | No Data | Glu154Lys | No Data | G |
| | rs749824479 | NM_004168.4:c.464A>G | Uncertain significance | Asn155Ser | No Data | A |
| | rs569384870 | NM_004168.4:c.466T>C | Uncertain significance | Tyr156His | No Data | T |
| | rs1553997722 | NM_004168.4:c.471C>T | Uncertain significance | Synonymous | No Data | G (-) |
| | rs759827541 | NM_004168.4:c.476C>A | Uncertain significance | Pro159Gln | No Data | C |
| | rs1060503711 | NM_004168.4:c.480T>C / T>G | Uncertain significance | Phe160=/ Phe160Leu | No Data | C (-) |
| | rs1060503712 | NM_004168.4:c.496G>A | Uncertain significance | Gly166Arg | No Data | G |
| | rs763578369 | NM_004168.4:c.499A>C | Uncertain significance | Lys167Gln | No Data | A |
| | rs1553997748 | NM_004168.4:c.503T>C | Uncertain significance | Ile168Thr | No Data | T |
| | rs1553997754 | NM_004168.4:c.505T>C | Uncertain significance | Tyr121His | No Data | T |
| | rs587782076 | NM_004168.4:c.512G>A | Uncertain significance | Arg123His | No Data | G |
| | rs1553997783 | NM_004168.4:c.530G>C | Uncertain significance | Ser129Thr | No Data | G |
| CALM3 | | | | | | |
| rs1060502608 | chr19:46608584 (GRCh38.p12) | NM_005184.4:c.281A>C | Pathogenic (Clinvar accession) | Asp94Ala | No Data | A |
| | rs1064796271 | NM_005184.4:c.396T>A | Pathogenic (RCV000484148.1) | Asp132Glu | No Data | T |