Interaction between RAAS inhibitors and ACE2 in the context of COVID-19

Jean-Jacques Mourad and Bernard I. Levy

In the Comment article by Zheng and colleagues (COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0360-5 (2020))

Correspondence

1. Zheng, Y. Y. et al. Nature Rev. Cardiol. https://doi.org/10.1038/s41569-020-0360-5 (2020).
2. Patel, Y. B., Zhong, J. C., Grant, M. B. & Oudit, G. Y. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ. Res. 118, 1513–1526 (2016).
3. Te Riet, L., van Esch, J. H., Roks, A. J., van den Meiracker, A. H. & Danser, A. H. Hypertension: renin–angiotensin–aldosterone system alterations. Circ. Res. 116, 960–975 (2015).
4. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell https://doi.org/10.1016/j.cell.2020.02.052 (2020).
5. Keidar, S. et al. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ. Res. 97, 946–953 (2005).
6. Zhong, J. C. et al. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regul. Pept. 166, 90–97 (2011).
7. Ferrario, C. M. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605–2610 (2005).
8. Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).
9. Ding, W. et al. Alikiren inhibits angiotensin II/angiotensin 1–7 (Ang II/Ang1–7) signal pathway in rats with diabetic nephropathy [Chinese]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 34, 891–895 (2018).

Competing interests
J.-J.M. has received fees for consultancy from Mylan, Pfizer and Servier. B.I.L. has received grants and personal fees from Bayer, Roche and Servier.

Reply to: ‘Interaction between RAAS inhibitors and ACE2 in the context of COVID-19’

Ying-Ying Zheng, Yi-Tong Ma, Jin-Ying Zhang and Xiang Xie

We thank Mourad and Levy for their constructive Correspondence (Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0368-x (2020)) on our Comment article (COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0360-5 (2020)). We agree with their comments and acknowledge that different renin–angiotensin–aldosterone system (RAAS) inhibitors have different effects on angiotensin-converting enzyme 2 (ACE2) levels. Ferrario and colleagues reported that administration of either ACE inhibitors or angiotensin-receptor blockers (ARBs) increased the levels of ACE2 mRNA in Lewis rats compared with rats receiving placebo. In particular, cardiac levels of ACE2 mRNA increased by 4.7-fold or 2.8-fold in rats given either lisinopril (an ACE inhibitor) or losartan (an ARB), respectively. Furthermore, the researchers found that losartan treatment, but not lisinopril treatment, increased ACE2 activity compared with placebo. However, the researchers did not shed light on the mechanisms that might account for these differences. Nevertheless, Li and colleagues found that treatment with captopril (an ACE inhibitor) can significantly increase ACE2 protein expression in rats with acute lung injury. Furthermore, Wösten-van Asperen and colleagues reported that, in a rat model of acute respiratory distress syndrome, ACE activity and angiotensin II expression are increased, whereas ACE2 activity and angiotensin-(1–7) levels are reduced.

The protective effects of the ACE2–angiotensin-(1–7)–Mas receptor axis are primarily mediated by reductions in angiotensin II level. Both ACE inhibitors and ARBs can reduce angiotensin II levels. The former inhibit the substrate of angiotensin II generation, and the latter directly inhibit the conversion of angiotensin I to angiotensin II. Therefore, RAAS inhibitors, including ACE
inhibitors and ARBs, can activate the ACE2–angiotensin-(1–7)–Mas receptor axis. However, as mentioned in our Comment article6, whether patients with coronavirus disease 2019 (COVID-19) and hypertension who are taking an ACE inhibitor or ARB should switch to another antihypertensive drug remains controversial. In one study, the use of ACE inhibitors or ARBs did not increase mortality in 112 patients with COVID-19 and cardiovascular disease7. Further evidence is required to clarify the effects of ACE inhibitors and ARBs in patients with COVID-19. On 12 March 2020, the European Society of Hypertension published a statement on the topic of hypertension, RAAS blockers and COVID-19, concluding that the available data do not support the differential use of RAAS blockers (ACE inhibitors or ARBs) in patients with COVID-19 (REF8). However, the authors cautioned that the statement reflected the current evidence at the time of release and might need updating according to new evidence.

Indeed, ACE2 might be equivalent to a natural ARB or ACE inhibitor6. Decreasing the levels of ACE2 will transfer the balance towards the angiotensin-(1–7)–Mas receptor axis, which has anti-inflammatory and antioxidant effects that are cardiopulmonary protective.

In their Correspondence article, Mourad and Levy also suggest that aliskiren treatment could be an interesting option in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, given that aliskiren can reduce the expression of ACE2. Although ACE2 has been identified as the functional receptor for SARS-CoV-2, the role of ACE2 in the progression of COVID-19 after SARS-CoV-2 infection is still controversial, so the benefits of aliskiren use in patients with COVID-19 needs further investigation.

Ying-Ying Zhang1,2, Yi-Tong Ma1,2 and Xiang Xie3,2
1Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
2Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.
3Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
e-mail: myt_xj@sina.com; jyzheng@zzu.edu.cn;
xiangxie999@sina.com
https://doi.org/10.1038/s41569-020-0569-9

1. Mourad, J.-J. & Levy, B. I. Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0368-x (2020).

2. Zheng, Y. Y., Ma, Y. T., Zhang, J. Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0360-5 (2020).

3. Ferrario, C. M. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605–2610 (2000).

4. Li, Y. et al. Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock 43, 395–404 (2015).

5. Wösten-van Asperen, R. M. et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J. Pathol. 225, 618–627 (2011).

6. Rodrigues Prestes, T. R., Rocha, N. P., Miranda, A. S., Texeira, A. L. & Simoes-e-Silva, A. C. The anti-inflammatory potential of ACE2/angiotensin-(1–7)/Mas receptor axis: evidence from basic and clinical research. Curr. Drug Targets 18, 1301–1315 (2017).

7. Mirabiota Colailela, K. M., Boeve, D. M. & Danser, A. H. J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 186, 107680 (2019).

8. Peng, Y. D. et al. Clinical features and outcome of 112 cases of novel coronavirus pneumonia in cardiovascular patients [Chinese]. Chin. J. Cardio. https://doi.org/10.3760/cma.j.cn112148-20200220-00105 (2020).

9. European Society of Hypertension. ESH Statement on COVID-19. https://www.eshonline.org/spotlights/esh-statement-on-covid-19/ (2020).

10. Zhong, J. C. Angiotensin-converting enzyme 2: “Fuse” and “Fire extinguisher” for COVID-19 inflammation storm [Chinese]. Zhong Hua Gao Xue Ya Za Zhi http://www.zhgxyzz.cn/Files/hjcsgh/MagazinePDF/20200224001.pdf (2020).

Competing interests
The authors declare no competing interests.