ENHANCED SECURE KEY EXCHANGE SCHEMES BASED ON THE JOHNSON-NOISE SCHEME

Laszlo Bela Kish
Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA

Abstract
We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme. While these practical improvements offer progressively enhanced security and/or speed for the non-ideal conditions, the fundamental physical laws providing the security remain the same.

Keywords: information theoretic security; unconditional security; practically perfect security; secure key distribution via wire; secure smart power grid.

1. Introduction
In this section we briefly define our basic terms of secure key exchange utilizing the laws of physics and introduce the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) secure key exchange protocol.

1.1 Conditional, Unconditional, Perfectly and Imperfectly secure key exchange
In private-key based secure communication, the two parties Alice (A) and Bob (B) possess an identical secure key, which is not known to the public, and they utilizing this key in a cipher software to encrypt/decrypt the messages they send/receive [1]. Thus, to able to communicate, Alice and Bob must first generate and share a secure key, which is typically a random bit sequence. The first important problem of secure communication is how to generate and share this key in a secure way between Alice and Bob. Note, even if Alice and Bob may already have shared a former secret key to communicate securely and they maybe able to share a new key via that secure communication, that is not a security-growing method because, if the old key is cracked by an eavesdropper (Eve), the new key will also become compromised implying that such a simple method cannot be used to share the new key. Of course, Alice and Bob may exchange a secure key by personally meeting or using a mail courier service however that is not satisfactory for high speed. Today's internet-based secure communication uses software tools to generate and share secure keys where the reason why Eve (who is monitoring the channel) cannot extract the key due to her limited computational performance. However, the whole information about the secure key is there in the communication during the key exchange [1]. Thus, these methods offer only conditional security because, with sufficient computing power (for example by having a hypothetical quantum computer or its noise-based-logic version), the key would instantaneously be cracked by Eve. Due to the unexpected progression of computing technologies, this type of security is not only conditional but also it is not a future-proof-security [2]: Eve can potentially crack the recorded key exchange and communication in the near future even if presently such task looks hopeless.
Due to these facts, scientists have been exploring various physical phenomena for secure key exchange where the laws of physics could offer the security. The goal is to have a key exchange where either the exchange cannot be measured/recorded, or when the useful information measured/recorded by Eve is zero; a situation called perfect information theoretic security; or this information is practically miniscule, a situation that is called imperfect perfect information theoretic security. If the extracted information by Eve is zero or small and, *its amount does not depend on Eve's accessible resources when if she is approaching the limits imposed by the laws of physics,* the security is called *unconditional* [2,3]. Thus the security classification can be *perfect unconditional* or *imperfect unconditional*. In practical cases "unconditional" and "information theoretic" security are interchangeable terms [2]. Perfect unconditional security can be reached only at the conceptual level in any physical system while the imperfect unconditional security is the one that any practical physical system can reach due to the limitations posed by non-ideal elements and situations [2,3].

1.2 The Kirchhoff-Law-Johnson-(like)-Noise (KLJN) secure key exchange scheme

The KLJN scheme is a statistical/physical competitor to quantum communicators and its security is based on Kirchhoff’s Loop Law and the Fluctuation-Dissipation Theorem. More generally, it is founded on the Second Law of Thermodynamics, which indicates that the security of the ideal scheme is as strong as the impossibility to build a perpetual motion machine of the second kind.

Until 2005, it was a commonly accepted that only quantum key distribution (QKD) is able to perform information theoretic (unconditional) secure key exchange and that can theoretically provide perfect security while practically it is always imperfect. However, in 2005, the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) secure key exchange [2-16] scheme was introduced [4] and later it was built and its security demonstrated [7]. These ideas have inspired new concepts also in computing, particularly noise-based logic and computing [17-24], where not the security of data but complexity of data processing has been the issue.

The core KLJN system, without the defense circuitry against invasive and non-ideality attacks, is show in Fig. 1.

![KLJN System Diagram](image-url)

Fig. 1. Outline of the core KLJN system. Parasitic elements leading to non-ideal features and defense circuit block (current/voltage monitoring/comparison) against invasive attack are not the topics of this paper thus they are not shown/discussed here. The resistors RA and RB are selected from the...
We first briefly survey the foundations of the ideal KLJN system [2,4,9]. Fig. 1 shows a model of the idealized KLJN scheme designed for secure key exchange [4]. At each KLJN-clock period, which is the duration of a single bit exchange, Alice and Bob connect their randomly chosen resistor, R_A and R_B, respectively, to the line. The resistors R_A and R_B are randomly selected of the set of $\{R_L, R_H\}$, $R_L \neq R_H$, where the elements represent the low, L (0), and high, H (1), bits, respectively. Alice and Bob randomly choose one of the resistors and connect it to the wire line. The situations LH and HL represent secure bit exchange [4], because Eve cannot distinguish between them through measurements, while LL and HH are insecure. The Gaussian voltage noise generators—delivering white noise with publicly agreed bandwidth—represent an enhanced thermal (Johnson) noise at a publicly agreed effective temperature T_{eff} (typically $T_{\text{eff}} \geq 10^9 K$ [7]) where their noises are statistically independent from each other or the noise during the former clock period. According to the Fluctuation-Dissipation Theorem, the power density spectra $S_{u,l}(f)$ and $S_{u,h}(f)$ of the voltages $U_{L_A}(t)$ and $U_{L_B}(t)$ supplied by the voltage generators in R_L and R_H are given by

$$S_{u,l}(f) = 4kT_{\text{eff}}R_L$$

and

$$S_{u,h}(f) = 4kT_{\text{eff}}R_H,$$

respectively.

In the case of secure bit exchange (i.e., the LH or HL situation), the power density spectrum $S(f)$ and the mean-square amplitude $\langle U_{\text{ch}}^2 \rangle$ of the channel voltage $U_{\text{ch}}(t)$ and the same measures of the channel current $I_{\text{ch}}(t)$ are given as

$$\langle U_{\text{ch}}^2 \rangle = \Delta f S_{u,ch}(f) = 4kT_{\text{eff}} \frac{R_L R_H}{R_L + R_H} \Delta f,$$

and

$$\langle I_{\text{ch}}^2 \rangle = \Delta f S_{i,ch}(t) = \frac{4kT_{\text{eff}}}{R_L + R_H} \Delta f,$$

respectively, where Δf is the noise-bandwidth; and further details are given elsewhere [4,9]. It should be observed that during the LH and HL cases, due to the linear superposition, the spectrum given by Eq. (2) represents the sum of the spectra at two particular situations, i.e., when only the noise generator of R_L is running one gets

$$S_{L,u,ch}(f) = 4kT_{\text{eff}}R_L \left(\frac{R_H}{R_L + R_H} \right)^2,$$

and when the noise generator of R_H is running one has

$$S_{H,u,ch}(f) = 4kT_{\text{eff}}R_H \left(\frac{R_L}{R_L + R_H} \right)^2.$$

The ultimate security of the system against passive attacks is provided by the fact that the
power $P_{H \rightarrow L}$, by which the Johnson noise generator of resistor R_H is heating resistor R_L, is equal to the power $P_{L \rightarrow H}$ by which the Johnson noise generator of resistor R_L is heating resistor R_H \cite{4,9}. Thus the net power flow between Alice and Bob is zero, which is required by the Second Law of Thermodynamics. A proof of this can easily be derived from Eqs. (4,5) for the noise-bandwidth of Δf :

$$P_{L \rightarrow H} = \frac{S_{L,\Delta f}(f)\Delta f}{R_H} = 4kT_{eff} \frac{R_L R_H}{(R_L + R_H)^2},$$

(6a)

and

$$P_{H \rightarrow L} = \frac{S_{H,\Delta f}(f)\Delta f}{R_L} = 4kT_{eff} \frac{R_L R_H}{(R_L + R_H)^2}.$$

(6b)

Violating the equality $P_{H \rightarrow L} = P_{L \rightarrow H}$ (cf. Eq. (6)) is in accordance with the Second Law of Thermodynamics; violating this equality would mean not only going against basic laws of physics (the inability to build a perpetual motion machine) but also allow Eve to use the voltage-current cross-correlation $\langle U_{ch}(t)I_{ch}(t) \rangle$ to extract the bit \cite{4}. However the only quantity that could provide directional information is zero, $\langle U_{ch}(t)I_{ch}(t) \rangle = 0$, and hence Eve has no information to determine the bit location during the LH and HL situations. The above security proof against passive (listening) attacks holds only for Gaussian noise, which has the well-known property that its power density spectrum or autocorrelation function already provides the maximum achievable information about the noise, and no higher order distribution functions or other tools (such as higher-order statistics) are able to serve with additional information.

Finally, the error probability of the bit exchange between Alice and Bob is determined by the following issue. In the case of the LL bit status of Alice and Bob, which is not secure situation, the channel voltage and current satisfy:

$$\langle U_{ch}^2 \rangle = \Delta f S_{u,ch}(f) = 4kT_{eff} \frac{R_L}{2} \Delta f \quad \text{and} \quad \langle I_{ch}^2 \rangle = \Delta f S_{i,ch}(t) = \frac{2kT_{eff}}{R_L} \Delta f,$$

(7)

while, in the case of the other non-secure situation, the HH bit status, the channel voltage and current satisfy:

$$\langle U_{ch}^2 \rangle = \Delta f S_{u,ch}(f) = 4kT_{eff} \frac{R_H}{2} \Delta f \quad \text{and} \quad \langle I_{ch}^2 \rangle = \Delta f S_{i,ch}(t) = \frac{2kT_{eff}}{R_H} \Delta f.$$

(8)

During key exchange in this classical way, Alice and Bob must compare the predictions of Eqs. (2,3,7,8) with the actually measured mean-square channel voltage and current to decide if the situation is secure (LH or HL) while utilizing the fact that these mean-square values are different in each these three situations (LL, LH/HL and HH). If the situation is secure, Alice and Bob will know that the other party has the inverse of his/her bit, which means, a secure key exchange takes place. To make an error-free key exchange, Alice and Bob must use a sufficiently large statistics, which means long-enough clock period. However, the length of
the clock period determines also the speed of the key exchange and Eve's statistics when utilizing non-ideal features to extract information. Thus new protocols that can reduce the necessary clock period for satisfactory statistics enhance not only speed but also security. The new ("intelligent") KLJN protocol described in Sec. 2 offers this kind of improvement.

1.3 On invasive attacks and non-idealities

It should be observed [2,3,4,6,9,10,11,12] that deviations from the shown circuitry—including invasive attacks by Eve, parasitic elements, delay effects, inaccuracies, non-Gaussianity of the noise, etc.—will cause a potential information leak toward Eve. The circuit symbol “line” in the circuitry represents an ideal wire with uniform instantaneous voltage and current along it. Fortunately the KLJN system is very simple, implying that the number of such attacks is strongly limited. The defense method against attacks utilizing these aspects is straightforward and it is generally based on the comparison of instantaneous voltage and current data at the two ends but authenticated communication between Alice and Bob.

These attacks are not subject of the present paper and we refer to our relevant papers where they have been correctly analyzed [2,3,4,6,9,10,11,12] and misconceptions in other papers rectified. In surveys [2,3], existing invasive attacks by other authors and us have been surveyed.

It is important to emphasize that, if the security of a certain bit is compromised, that is known also by Alice and Bob therefore they can decide to discard the bit to have a clean secure key. The price is the speed of key exchange however the unconditional security can be maintained. A consequence: Alice and Bob can always protect themselves against eavesdropping but they are still vulnerable against jamming the KLJN key exchange by Eve (the same situation exists with QKD at its best).

2. The "intelligent" KLJN (iKLJN) key exchange protocol

The important conclusion of all attack types against practical KLJN systems is that Eve’s bit-guessing success rate is strongly limited by poor statistics [4,6,9,10,11,12] and signal-to-noise ratio due to the limited clock period, which is the time window to make that statistics [11,12] and typically extract a DC signal (such as differences between the mean-square voltages at the two ends of the line) that forms the information in a large noise. Thus, if we could further limit Eve’s time window her success rate would further decrease. As we have already pointed out above, the minimum duration of the clock period in the original KLJN scheme is set by Alice and Bob because of their need to successfully classify the measured mean-square channel voltage and/or current levels and by comparing them with the predictions of Eqs. (2,3,7,8), identify that which one of the LL, LH/HL, HH situations do they correspond [4].

The Intelligent KLJN (iKLJN) system allows using shorter clock period thus it further weakens Eve's statistics. It has the same hardware as the original KLJN system but the protocol is more calculation-intensive. Alice and Bob utilize the fact that they exactly know not only their own resistor value but also the stochastic time function of their own noise,
which they generate before feeding it into the loop. In the iKLJN method, Alice and Bob, by utilizing the superposition theorem on the channel noise, subtract their own contribution to generate a reduced-channel-noise that does not contain their own noise component. Because they don't know the resistance value at the other end, they must run two alternative computational-schemes simultaneously to calculate reduced-channel-noises to account for the possible resistance situations of (totally four time functions, two voltage and two current noises corresponding to the two possible resistance situations at the other end), see below. Then they analyze that at which one of these situations the reduced-channel-noise does not contain their noise contribution. The reduced-channel-noise that does not contain their noise component has been calculated with the correct assumption about the actual resistance value used by the other party. Thus the nature of the decision Alice and Bob makes has changed: instead of evaluating mean-square noise amplitudes, they must assess the independence of two noise processes. Note, obviously they continue to assess the channel noise situation also in the classical way by evaluating the mean-square of the channel noise amplitudes, which has partially independent information, thus combining the new and old information sources in the guessing process significantly shortens the clock period needed for a given error probability.

At the same time, Eve can only use her old way, the parasitic elements to extract any information. Because Eve's available observation time window (the clock period set by Alice and Bob) becomes shorter, the information that she can extract is also significantly reduced. She may not even be sure during the shortened clock period if a secure bit exchange took place, or not, her related error rate will increase. Thus, in the non-ideal situation, when information-leak exists, the reduced observation time window progressively worsens Eve's probability of successfully guessing not only the key bits but also guessing which clock periods had secure bit exchange.

![Diagram of current and voltages in KLJN system]

Fig. 2. Snapshot of the current and voltages in the KLJN system: at the given time moment the polarities of Alice's and Bob's voltages and the resulting current is shown.

2.1 Analysis of the "intelligent" KLJN (iKLJN) key exchange protocol

To analyze the system with this new approach and to illustrate its working, first, let us assume that Bob's resistance is R_B and Alice's one is:

$$R_A = \alpha R_B$$

(9)
where $\alpha \neq 1$. We analyze Bob's protocol and its results to demonstrate the process. Alice is acting in a similar way, which results in the same type of features.

According to Kirchhoff’s Loop Law, the channel noise current $I_c(t)$ and noise voltage $U_c(t)$ at a given instant of time are given as:

\[
I_c = \frac{U_B - U_A}{R_B(1 + \alpha)} \\
U_c = \frac{U_A + \alpha U_B}{1 + \alpha}
\]

where, for convenience, we skipped the time variable from the equations.

Bob's calculation of the reduced-channel-noise currents and voltages takes place in the following way.

In one of the computational-schemes, Bob supposes that the resistance value of Alice is the same as his one, that is, $R_A = R_B$, which is the incorrect assumption. Then the "incorrect" reduced-channel-current and reduced-channel-voltage amplitudes, $I_{c,1}^*$ and $U_{c,1}^*$, are:

\[
I_{c,1}^* = I_c - \frac{U_B}{2R_B} = \frac{U_B - U_A}{2R_B} - \frac{U_B}{2R_B} = \frac{1}{2R_B} 2U_A - U_B (1 - \alpha) \\
U_{c,1}^* = U_c - \frac{\alpha U_B}{2} = \frac{U_A + \alpha U_B}{2} - \frac{U_B}{2} = \frac{2U_A - U_B (1 - \alpha)}{2(1 + \alpha)}
\]

In the other computational-scheme, Bob supposes that the resistance value of Alice is different than his one, that is, $R_A = \alpha R_B$, which is the correct assumption. Then the "correct" reduced-channel-current and reduced-channel-voltage amplitudes, $I_{c,2}^*$ and $U_{c,2}^*$, are:

\[
I_{c,2}^* = I_c - \frac{U_B}{R_B(1 + \alpha)} = \frac{U_B - U_A}{R_B(1 + \alpha)} - \frac{U_B}{R_B(1 + \alpha)} = \frac{-U_A}{R_B(1 + \alpha)} \\
U_{c,2}^* = U_c - \frac{\alpha U_B}{1 + \alpha} = \frac{U_A + \alpha U_B}{1 + \alpha} - \frac{\alpha U_B}{1 + \alpha} = \frac{U_A}{\alpha + 1}
\]

It is obvious from our approach and the results in Eqs (12-15) that, in the case of the incorrect assumption, the reduced-channel-noises contain both the noise contribution of Alice ($U_A(t)$) and that of Bob ($U_B(t)$) while, in the case of the incorrect assumption, they contain the noise of Alice ($U_A(t)$) only. Thus, Bob, by using proper statistical tool to compare the reduced-channel-noises with his own noise ($U_B(t)$) and checking for the independence, he can identify the "correct" assumption and, by this, learn the actual resistor value of Alice. One of the
simplest ways to do this is checking the cross-correlations between his noise and the reduced-channel-noises:

With the incorrect assumption:

\[
\langle U_b I_{c,1}^* \rangle = \frac{U_b^2 (1 - \alpha)}{2(1 + \alpha) R_B} \neq 0
\] \hspace{1cm} (16)

\[
\langle U_b U_{c,1}^* \rangle = \frac{\langle U_b^2 \rangle (\alpha - 1)}{2(1 + \alpha)} \neq 0
\] \hspace{1cm} (17)

With the correct assumption:

\[
\langle U_b I_{c,2}^* \rangle = \frac{-\langle U_b U_b \rangle}{R_B (1 + \alpha)} = 0
\] \hspace{1cm} (18)

\[
\langle U_b U_{c,2}^* \rangle = \frac{\langle U_b U_b \rangle}{1 + \alpha} = 0
\] \hspace{1cm} (19)

While evaluating and comparing the above cross-correlations is an independent source of information for Bob about Alice's resistance; in the field of statistics there are more powerful ways of estimations, which are planned to be explored.

Naturally, Alice is proceeding in the same way as Bob. Then combining even the above simple crosscorrelation analysis with the original assessments based on the voltage and current noises will significantly enhance the information of Alice and Bob, and thus they can use shorter clock-period to reach the same error probability as earlier. And, because Eve does not have access to the "intelligent" way of information extraction, her successful guessing probability of the resistor situation in the non-ideal KLJN system will drop significantly, while in the ideal system her information is still zero. Moreover, due to the reduction of clock duration, also Eve's error probability will increase about guessing if a secure bit exchange took place or not, which further enhances her uncertainty.

Finally, an important question: What is the price of this "intelligent" enhancement of the original KLJN protocol? A higher computational capacity is needed for Alice and Bob to carry out this task, which implies higher electrical power requirements, too. Thus, when computational performance is limited or low power requirements are essential, the classical KLJN (and its keyed version, see below) is the way to go with a corresponding slower speed.

3. An educational problem about the KLJN system

This section is not essential for the rest of the paper thus Readers who are not interested in the deeper understanding of the foundations of the KLJN system can jump to the next section. The natural question arises about the iKLJN theory. Do we need statistical evaluation or perhaps we could already determine the correct assumption by just using the reduced voltage and current values? Similar questions arose in 2005 before Johnson (-like) noise was introduced into the KLJN system and a random DC voltage generator pair version of it was explored. The answer was that Johnson noise and statistical analysis were needed. That study was unpublished and, we will now show that the similar situation in the iKLJN system leads
to the same conclusion; statistics cannot be avoided.

If we use Ohm's law between the correctly deduced reduced-channel-voltage and reduced-channel-current components, we get

\[
\frac{U_{c,1}^*}{I_{c,1}^*} = -\frac{1}{R_B}
\]

(20)

which is the expected result where the negative sign is due to the direction of current component into Bob's resistor from Alice's voltage generator, see Fig 2.

Our naive expectation can be that, if we do the same derivation with the incorrectly deduced current and voltage components then the result will be different and then Bob can instantaneously find out that Hypothesis-2 is the valid assumption for Alice's resistor.

Unfortunately, even the incorrect assumption yields the same result:

\[
\frac{U_{c,2}^*}{I_{c,2}^*} = \frac{1}{R_B}
\]

(21)

This surprising result is due to the degeneracy of the system of equations describing the channel voltage and current, which also prohibits for Bob to deduce Alice's resistor even though he knows his resistor and voltage (a situation that led the author in 2005 to test thermal noise in this system). No "simultaneous" way to find out Alice's resistance, that is \(\alpha \), exists due to this degeneracy. In conclusion, only statistical methods can provide the necessary information for Bob.

4. The "multiple" KLJN (MKLJN) key exchange protocol

In the "multiple" KLJN (MKLJN) system, Alice and Bob have publicly known identical sets of different resistors \(\{ R_1 < R_2 < \ldots < R_n \} \). For each clock period, they randomly choose a resistor from this set and connect it (with a corresponding independent noise generator) to the line. There is a publicly known truth table about the bit-interpretation of the different combinations of the chosen \([R_i, R_j] \) resistor pair, whenever \(R_i \neq R_j \), so that the bit interpretation of \([R_i, R_j] \) is the inverse of the bit interpretation of \([R_j, R_i] \). It is designed so that, when the estimation of one of the resistors is missed at one of the sides and the neighboring resistor value is estimated instead, the bit-interpretation reverses in order to make Eve's guessing statistics worse.

In this new situation, for Eve to succeed, it is not enough to find out which end has the higher resistor. Eve must exactly identify the actual resistor values at both sides (while Alice and Bob only at the other side) to know that which \([R_i, R_j] \) situation is the relevant in the truth table and, in accordance with the original KLJN principle, even then Eve is unable to decide if \([R_i, R_j] \) or \([R_j, R_i] \) is the case. The result of modification is again an enhanced security in the non-ideal case.

5. The "keyed" KLJN (KKLJN) key exchange protocol
This enhancement is inspired by Horace Yuen's "keyed" quantum key exchange (called KCQ) [25] to enhance the security of his new quantum key exchange protocol. This works after a secure key is already generated/shared by Alice and Bob in the KLJN protocol. Then, by using secure communication with the shared key, they share a time-dependent truth table for the bit-interpretation of the \([R_L, R_H]\) versus \([R_H, R_L]\) resistor situation at the \(i\)-th secure bit exchange step during generating the next key (note, the \([R_L, R_H]\) and \([R_H, R_L]\) situations must always mean opposite bit values).

It is obvious that KKLJN is a security growing technique because, even if Eve succeeds with correctly guessing the former key, the security of the new key is still information theoretical (unconditional) and it only "falls back" to the security level of the original KLJN key exchange. If Eve has no information about the former key, the information of Eve about the key is progressively less.

6. The "keyed multiple" KLJN (KMKLJN) key exchange protocol

Naturally, the KKLJN protocol can be enriched by using multiple resistor sets, \(n > 2\), with the same fashion as the MKLJN system is doing but, instead of a publicly known truth table the bit-interpretation of the \([R_L, R_H]\) versus \([R_H, R_L]\) resistor situations is randomly changed for sharing the new key and the relevant truth table is shared by secure communication utilizing the former key. The KMKLJN protocol synergically combines the security enhancement of the KMLJN and KKLJN protocols.

7. Three more protocols: iMKLJN, iKKLJN and iKMKLJN

The "mutiple", "keyed" and "keyed multiple" protocols can be combined with the "intelligent" method of accessing the resistors at the other end by Alice and Bob to reduce the clock duration and Eve's information, and to increase the speed. This enrichment should always be made whenever calculation power is enough. The resulting new protocols are iMKLJN, iKKLJN and iKMKLJN.

References

[1] Liang Y, Poor HV, Shamai S (2008) Information theoretic security. Foundations Trends Commun. Inform. Theory 5:355-580. DOI: 10.1561/0100000036.
[2] Mingesz, R, Kish, LB, Gingl Z, Granqvist CG, Wen H, Peper F, Eubanks T, Schmera G (2013) Unconditional security by the laws of classical physics. Metrology & Measurement Systems, in press.
[3] Mingesz, R, Kish, LB, Gingl Z, Granqvist CG, Wen H, Peper F, Eubanks T, Schmera G (2013) Information theoretic security by the laws of classical physics. In: Balas VE et al. (Eds.), Soft Computing Applications, AISC 195, pp. 11–25 (Springer).
[4] Kish LB (2006) Totally secure classical communication utilizing Johnson(-like) noise and Kirchhoff’s law. Phys. Lett. A 352:178-182.
[5] Cho A (2005) Simple noise may stymie spies without quantum weirdness. Science 309:2148;
Kish LB (2006) Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett. 6:L57-L63. http://arxiv.org/abs/physics/0512177.

Mingesz R, Gingl Z, Kish LB (2008) Johnson(-like)-noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line, Phys. Lett. A 372:978-984.

Palmer DJ (2007) Noise encryption keeps spooks out of the loop. New Scientist, issue 2605 p.32; http://www.newscientist.com/article/mg19426055.300-noise-keeps-spooks-out-of-the-loop.html.

Kish LB, Horvath T (2009) Notes on recent approaches concerning the Kirchhoff-law-Johnson-noise-based secure key exchange. Phys. Lett. A 373:901-904.

Kish LB, Scheuer J (2010) Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett. A 374:2140-2142.

Kish LB (2006) Response to Scheuer-Yariv: “A classical key-distribution system based on Johnson (like) noise – How secure?”. Phys. Lett. A 359:741-744.

Kish LB (2006) Response to Feng Hao’s paper “Kish’s key exchange scheme is insecure”. Fluct. Noise Lett. 6:C37-C41.

Horvath T, Kish LB, Scheuer J (2011) Effective privacy amplification for secure classical communications. Europhys. Lett. 94:28002. http://arxiv.org/abs/1101.4264.

Kish LB, Saidi O (2008) Unconditionally secure computers, algorithms and hardware. Fluct. Noise Lett. 8:L95-L98.

Kish LB, Mingesz R (2006) Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett. 6:C9-C21.

Kish LB, Peper F (2012) Information networks secured by the laws of physics. IEICE Trans. Commun. E95-B:1501-1507.

Kish LB (2009) Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states. Phys. Lett. A 373:911-918.

Kish LB, Khatri S, Sethuraman S (2009) Noise-based logic hyperspace with the superposition of 2^N states in a single wire. Phys. Lett. A 373:1928-1934.

Bezrukov SM, Kish LB (2009) Deterministic multivalued logic scheme for information processing and routing in the brain. Phys. Lett. A 373:2338-2342.

Gingl Z, Khatri S, Kish LB (2010) Towards brain-inspired computing. Fluct. Noise Lett. 9:403-412.

Kish LB, Khatri S, Horvath T (2011) Computation using noise-based logic: Efficient string verification over a slow communication channel. Eur. J. Phys. B 79:85-90, http://arxiv.org/abs/1005.1560.

Peper F, Kish LB (2011) Instantaneous, non-squeezed, noise-based logic. Fluct. Noise Lett. 10:231-237. http://www.worldscinet.com/fnl/10/1002/open-access/S0219477511000521.pdf.

Wen H, Kish LB, Klappenecker A, Peper F (2012) New noise-based logic representations to avoid some problems with time complexity. Fluct. Noise Lett. (June 2012, in press); http://arxiv.org/abs/1111.3859.

Mullins J (2010) Breaking the noise barrier. New Scientist, issue 2780 (29 September 2010); http://www.newscientist.com/article/mg20827801.500-breaking-the-noise-barrier.html?full=true.

Yuen HP (2009) Key generation: Foundation and a new quantum approach, IEEE J. Selected Topics in Quantum Electronics 15, 1630.