ENEAR REDSHIFT-DISTANCE SURVEY: COSMOLOGICAL CONSTRAINTS

Stefano Borgani,1 MARIANGELA BERNARDI,2,3 Luiz N. da Costa,3,4 Gary Wegner,5 M. V. Alonso,6 C. N. A. Willmer,4,7 P. S. Pellegrini,4 and M. A. G. Maia4

Received 2000 April 20; accepted 2000 May 23; published 2000 June 23

ABSTRACT

We present an analysis of the ENEAR sample of peculiar velocities of field and cluster elliptical galaxies, obtained with $D_s$-$\sigma$ distances. We use the velocity correlation function $\psi_1(r)$ to analyze the statistics of the field object’s velocities, while the analysis of the cluster data is based on the estimate of their rms peculiar velocity $V_{\text{rms}}$. The results are compared with predictions from cosmological models using linear theory. The statistics of the model velocity field is parameterized by the amplitude $\eta_b = \sigma_b \Omega_m^{0.6}$ and by the shape parameter $\Gamma$ of the cold dark matter–like power spectrum. This analysis is performed in redshift space, so as to circumvent the need to address corrections due to inhomogeneous Malmquist bias and to the redshift cutoff adopted in the sample selection. From the velocity correlation statistics, we obtain $\eta_b = 0.51^{+0.24}_{-0.10}$ for $\Gamma = 0.25$ at the 2 $\sigma$ level for one interesting fitting parameter. This result agrees with that obtained from a similar analysis of the SFI $I$-band Tully-Fisher (TF) survey of field Sc galaxies. Even though less constraining, a consistent result is obtained by comparing the measured $V_{\text{rms}}$ of clusters with linear theory predictions. For $\Gamma = 0.25$, we find $\eta_b = 0.63^{+0.22}_{-0.10}$ at 1 $\sigma$. Again, this result agrees, within the uncertainties, with that obtained from the SCI cluster sample based on TF distances. Overall, our results point toward a statistical concordance of the cosmic flows traced by spiral and early-type galaxies, with galaxy distances estimated using TF and $D_s$-$\sigma$ distance indicators, respectively.

Subject headings: cosmology: observations — cosmology: theory — galaxies: distances and redshifts — large-scale structure of universe

1. INTRODUCTION

The analysis of the peculiar velocities of galaxies and clusters is one of the most promising ways to investigate the amplitude of cosmic density perturbations on $\sim 100$ $h^{-1}$ Mpc scales (e.g., Strauss & Willick 1995). The importance of cosmic flows for cosmology has motivated a two decade–long effort of building large and homogeneous redshift-distance samples of galaxies and clusters. Analyses of early-redshift-distance surveys of spiral galaxies (Aaronson et al. 1982) and of early-type galaxies (e.g., Lynden-Bell et al. 1988), even though leading to the development of several statistical methods of analyzing peculiar velocity data, left many issues unresolved, primarily because they were based on relatively small and shallow data sets. Recently, a second generation of redshift-distance surveys has become available involving high-quality data and significantly larger samples of both spiral (Mathewson, Ford, & Buchhorn 1992; Giovanelli et al. 1997a, hereafter G97; Haynes et al. 1999a, 1999b) and early-type galaxies (da Costa et al. 2000b). The existence of these new samples has raised the hope that some of the discrepancies found in earlier analyses may soon be settled. Indeed, the analyses of the different all-sky catalogs of peculiar velocity data currently available such as Mark III (Willick et al. 1997) and SFI (e.g., da Costa et al. 1996; Giovanelli et al. 1998) lead to a roughly consistent picture of the peculiar velocity field and the local mass distribution (Dekel et al. 1999). However, some quantitative disagreements still remain ranging from the amplitude of the bulk velocity (da Costa et al. 1996; Giovanelli et al. 1998; Dekel et al. 1999) to estimates of the parameter $\beta = \Omega_m^{0.6} b$ (e.g., Davis, Nusser, & Willick 1996; Zaroubi et al. 1997; da Costa et al. 1998; Willick & Strauss 1998; Freudling et al. 1999; Borgani et al. 2000), where $\Omega_m$ is the cosmological matter density parameter and $b$ is the linear galaxy biasing factor. It is important to emphasize that the two most important catalogs currently in use, Mark III and SFI, consist of combinations of distinct data sets covering different parts of the sky and therefore could be susceptible to subtle systematic effects. Both catalogs also rely predominantly on Tully-Fisher (TF) distances of spiral galaxies, and we should note that earlier statistical comparisons of the velocity fields derived from $D_s$-$\sigma$ and TF distances found significant differences between them (e.g., Görski et al. 1989; Tormen et al. 1993). There have also been claims of significant differences, larger than expected from the estimated errors, between cluster distances estimated using galaxies of different morphological types (e.g., Mould et al. 1991; Scodellio, Giovanelli, & Haynes 1998).

In this context, the recently completed all-sky redshift-distance survey of early-type galaxies (ENEAR; da Costa et al. 2000b), probing a volume comparable to that of the existing catalogs of peculiar velocity data, is a welcome addition. The ENEAR galaxies sample different regions of space and density regimes; the peculiar velocities are measured using an independent distance indicator; and the distances are based on separate types of observations, reduction techniques, and corrections. Finally, the ENEAR sample has well-defined selection criteria, the completeness of the observations is uniform across the sky, and the data, mostly new measurements by the same group, are in a homogeneous system.
The present Letter has the twofold aim of comparing global statistical quantities, which describe the velocity fields traced by the TF and $D_{\sigma}$-distance indicators, and of placing constraints on the nature of the fluctuation power spectrum. Our analysis is based on the velocity correlation statistics and the rms one-dimensional peculiar velocity of clusters. These statistics were used by Borgani et al. (2000, hereafter B00) and Borgani et al. (1997, hereafter B97) to analyze the SFI sample of field spiral galaxies and the SCI sample of cluster spiral galaxies (Giovanelli et al. 1997b), respectively. In this Letter, the same analysis is carried out for the ENEAR sample of field galaxies and groups and for ENEAR clusters (ENEARec; M. Bernardi et al. 2000, in preparation).

2. THE DATA

The ENEAR sample contains 1359 elliptical galaxies brighter than $m_B = 14.5$ with $D_{\sigma}$-measured distances and 569 cluster galaxies in 28 clusters (ENEARec). Galaxies have been objectively assigned to groups and clusters using the information available from complete redshift surveys sampling the same volume. Our analysis is performed in redshift space so as to avoid correcting for inhomogeneous Malmquist bias and the redshift cutoff adopted in the sample selection. Therefore, we use the inverse $D_{\sigma}$-template derived by M. Bernardi et al. (2000, in preparation) combining all the cluster data. We limit our analysis to objects within $cz = 6000$ km s$^{-1}$, so as to exclude those with very uncertain velocity measurements. This subsample consists of 355 field galaxies and 223 groups. In the cluster sample analysis, we only consider the 20 clusters with $cz \leq 6000$ km s$^{-1}$. Of these, we discard the clusters CEN 30 and CEN 45; these systems lie along the same line of sight and are close in redshift space, making the assignment of galaxies to individual systems difficult. They are also suspected of forming a bound system (Lucey & Carter 1988), and their observed large peculiar velocities may be due to nonlinear effects. We also pay special attention to two other groups, AS714 and AS753, both with large peculiar velocities ($\sim 900$ km s$^{-1}$). These systems lie in the region of the Great Attractor and may also be subject to nonlinear dynamical interactions. We discuss the impact of including or excluding these two systems in the analysis.

3. THE VELOCITY CORRELATION STATISTICS

Our analysis of the velocity correlation statistics follows closely that presented in B00. We refer to that paper for a more thorough discussion. We use the velocity correlation estimator originally introduced by Görski et al. (1989, hereafter G89):

$$
\Psi(r) = \frac{\sum_{i \neq j} u_i u_j \cos \theta_{ij}}{\sum_{i \neq j} \cos^2 \theta_{ij}},
$$

where $\theta_{ij}$ is the angle between the direction of the $i$th and the $j$th object and the sums are over all the pairs at separation $r$ in redshift space. In equation (1), $u_i$ is the radial peculiar velocity of the $i$th object, and we assign equal weight to all objects, so as to minimize the effect of cosmic variance (see the discussion in B00). The average of $\Psi(r)$ over an ensemble of cosmic flow realizations is $\Psi(r) = \langle \Psi(r) \rangle = -\ell(r) \Psi(r) + [1 - \ell(r)] \Psi(r)$, where $\Psi(r)$ and $\Psi(r)$ are the radial and transverse correlation functions of the three-dimensional peculiar velocity field, respectively (see G89). In linear theory, they are connected to the power spectrum of density fluctuations $P(k)$ according to

$$
\Psi(r) = \frac{f(\Omega_m)^2 H_0^2}{2 \pi^2} \int dk P(k) \left[ j_0(kr) - 2 j_2(kr) \right];
$$

$$
\Psi(r) = \frac{f(\Omega_m)^2 H_0^2}{2 \pi^2} \int dk P(k) \frac{j_1(kr)}{kr},
$$

where $j_i(x)$ is the $i$th order spherical Bessel function and $f(\Omega_m) = \Omega_m^{0.6}$. The quantity $\ell(r)$ is a moment of the selection function of the sample, which is fully specified by the spatial distribution of the objects in the sample (e.g., G89; B00). Therefore, the model $\Psi(r)$ can be computed taking into account the specific sampling through the $\ell(r)$ function. The velocity correlation function $\Psi(r)$ for the ENEAR sample is plotted in Figure 1 up to $r = 3500$ km s$^{-1}$, for all objects within $cz = 6000$ km s$^{-1}$. This separation range has been shown by B00 to be that where $\Psi(r)$ is more stable for the SFI sample, which has about the same size as ENEAR. We choose the bin size to be 500 km s$^{-1}$ in order to keep these errors relatively small within each separation bin. We verified that final constraints on the model parameter are left unchanged by halving the bin width. For the purpose of comparing ENEAR and SFI results, we show in Figure 1 only the statistical errors that are due to the internal noise of the data set, which have been estimated as follows. At the position of each galaxy, we add to the observed peculiar velocity a random component that is drawn from a Gaussian distribution having an rms dispersion equal to the observational error reported for that object. Velocity correlations are then computed for 1000 realizations of this perturbed data set, and errors on $\Psi(r)$ are estimated at each separation from the scatter among these realizations. Cosmic variance must not be included here since ENEAR and SFI probe cosmic flows within the same region of the universe.

Remarkably, the $\Psi(r)$ velocity correlation of the ENEAR sample falls just between the two SFI estimates, based on the two zero-point calibrations of the TF relation presented by B00. This result contrasts with the disagreement originally found by G89 between spiral (Aaronson et al. 1982) and elliptical galaxies (Lynden-Bell et al. 1988). We use the ENEAR velocity correlation function to place constraints on cosmological models by following the same procedure discussed in B00 and only briefly summarized here. We run $N$-body simulations for dif-
different cosmological models and extract from each of them a fairly large number (256) of independent mock ENEAR samples. In each mock sample, “galaxies” are placed in the same positions as in the real sample. The peculiar velocity of each mock galaxy is then perturbed with a Gaussian-distributed component associated with the observational error of its real counterpart. With this procedure, each set of mock samples includes both cosmic variance and statistical noise. Therefore, we estimate the elements of the covariance matrix \( C^l = N_{\text{mock}}^{-1} \sum_{i=1}^{N_{\text{mock}}} (\psi_i^l - \bar{\psi})(\psi_i^l - \bar{\psi}) \), where \( \psi_i^l \) is the value of the velocity correlation function at the \( i \)th separation bin for the \( i \)th mock sample and \( \bar{\psi} \) is its ensemble average. Based on this approach, B00 show that (1) linear theory provides a good description of the velocity correlation statistics of the \( N \)-body–simulated samples and that (2) the relative amount of covariance, i.e., the values of \( C^{ij}/\bar{\psi}^j/\bar{\psi}^i \), is independent of the underlying cosmology. Based on these results, we compute a grid of linear theory model predictions for \( \psi(r) \) as well as the elements of the corresponding covariance matrix expected for a sample the size of ENEAR. We assume the power spectrum expression \( P(k) = A k T^2(k) \), where the transfer function \( T(k) \) is assumed to have the cold dark matter–like form, with the \( k \)-dependence specified by the shape parameter \( \Gamma \). The amplitude of \( P(k) \) is expressed in terms of \( \sigma_8 \), the rms fluctuation amplitude within a sphere of \( 8 \ h^{-1} \) Mpc. Therefore, following equation (2), \( \psi_i(r) \) is entirely specified by the two parameters \( \Gamma \) and \( \sigma_8 \Omega_m^{0.6} \). In order to derive constraints on these parameters, we compute the weighted \( \chi^2 \) between the ENEAR correlation function \( \psi_{\text{ENEAR}} \) and that from model predictions \( \psi_i^{\text{mod}} \), taking into account the covariance terms. The probability for model rejection is estimated, from the value of \( \Delta \chi^2 = \chi^2 - \chi^2_{\text{min}} \), assuming a \( \chi^2 \) statistic, where \( \chi^2_{\text{min}} \) is the absolute minimum value.

In Figure 2, we plot the iso-\( \Delta \chi^2 \) contours corresponding to 1 \( \sigma \) and 2 \( \sigma \) confidence levels. The degeneracy of the constraint in the \( \eta_p-\Gamma \) plane is due to the fact that the coherence of the flow on a given scale depends not only on the overall amplitude of the power spectrum but also on its slope. This is because peculiar velocities are generated nonlocally, so that coherence of the flow on a given scale can be associated with fluctuations on either comparable (large \( \eta_p \) and \( \Gamma \)) or on much larger scales (small \( \eta_p \) and \( \Gamma \)). Fixing \( \Gamma = 0.25 \), consistent with galaxy clustering data (e.g., Dodelson & Gaztanaga 2000), we find that \( \eta_p = 0.51^{+0.24}_{-0.09} \) at the 2 \( \sigma \) level for one interesting fitting parameter. We verified from the analysis of the mock samples that redshift-space distortions have a negligible effect on the estimated \( \psi(r) \), with the resulting constraints on \( \eta_p \) being affected at most by about 5\%. As expected from the comparison shown in Figure 1, this result is in good agreement with that derived by B00 from the analysis of the SFI TF survey of spiral galaxies. Therefore, we confirm that, for reasonable values of the power spectrum shape, the velocity correlation statistics favor small power spectrum amplitudes. Although at variance with other analyses of velocity fields that are based on a maximum likelihood analysis of the velocity correlation statistics (e.g., Zaroubi et al. 1997, 2000; Freudling et al. 1999; see the discussion in B00), this result agrees with the independent constraints on the amplitude of the power spectrum, like those imposed by the number density of local galaxy clusters (e.g., Eke, Cole, & Frenk 1996; Girardi et al. 1998).

4. THE RMS VELOCITY OF CLUSTERS

The rms peculiar velocity of clusters has been used by several authors as further means to set constraints on cosmological pa-

![Figure 2](image_url)

**Figure 2.** The 1 \( \sigma \) and 2 \( \sigma \) contours in the \( \eta_p-\Gamma \) plane from the analysis of the velocity correlation function \( \psi_i(r) \) for ENEAR groups and galaxies. The 1 \( \sigma \) confidence limits from the analysis of the rms peculiar velocity of ENEAR clusters are also shown (dashed curves).
the smaller the value of $\Gamma$, the larger the probability for model rejection. After determining the highest value of $\Gamma$, relative confidence levels are computed by determining standard decrements with respect to this maximum value (i.e., $\Delta \Gamma = 0.68$ and 0.95 for 1 $\sigma$ and 2 $\sigma$ exclusion levels). The resulting 1 $\sigma$ constraints on the $\Gamma$-$\eta_0$ parameter space are shown in Figure 2 (dashed curves). Although this result is less constraining than that obtained from the velocity correlation analysis, it nicely overlaps with it, thus demonstrating that ENEAR clusters and field galaxies consistently trace the same large-scale flows. For $\Gamma = 0.25$, we find that $\eta_0 = 0.63^{+0.22}_{-0.19}$ at the 1 $\sigma$ confidence level. This result is also consistent with that previously obtained from similar analyses of the SCI velocity clusters (B97; Watkins 1997). The inclusion of the AS714 and AS753 clusters in our analysis would only increase the resulting $\eta_0$ by about 5%.

5. CONCLUSIONS

We presented statistical analyses of the peculiar velocity field within $cz = 6000$ km s$^{-1}$ traced by field objects and clusters in the ENEAR sample based on $D_{15}$-distance. We use the velocity correlation function $\xi(r)$ to characterize the velocity field traced by field elliptical galaxies and loose groups, and we find results that are consistent with those obtained from the SFI sample of spiral galaxies with TF distances. Contrary to past claims, we find no statistically significant differences between the peculiar velocity fields mapped by spiral galaxies and those mapped by elliptical galaxies. This result is in general agreement with and generalizes the findings of da Costa et al. (2000a) using the bulk-velocity statistics. Constraints on the power spectrum of density fluctuations were derived by resorting to linear theory. Assuming the shape of the power spectrum to be consistent with results from galaxy-galaxy clustering analyses, $\Gamma = 0.25$, we find that $\eta_0 = 0.51^{+1.24}_{-0.09}$ at 2 $\sigma$ level for one interesting fitting parameter. A consistent constraint is also obtained from the analysis of the rms velocity of ENEAR clusters; for the same value of the shape parameter $\Gamma$, it implies that $\eta_0 = 0.63^{+0.32}_{-0.16}$ at 1 $\sigma$, which is thus consistent with results from the SCI cluster TF velocities (B97; Watkins 1997). Our results confirm the conclusion of B00 that the amplitude of cosmic flows can be reconciled with independent constraints on the amplitude of density perturbations as that required by the number density of nearby rich clusters. They also show that consistent results are obtainable from independent distance indicators, once they are applied to homogeneously selected galaxy samples.

S. B. wishes to thank the ESO for their hospitality during the preparation of this work. The authors would also like to thank C. Rité and O. Chaves for their contribution over the years. The results of this Letter are based on observations at the Complejo Astronomico El Leoncito (CASLEO), the Cerro Tololo Inter-American Observatory (CTIO), the European Southern Observatory (ESO), the Fred Lawrence Whipple Observatory (FLWO), Observatório do Pico dos Dias, and the MDM Observatory at Kitt Peak.

REFERENCES

Aaronson, M., et al. 1982, ApJS, 50, 241
Bahcall, N. A., & Oh, S. P. 1996, ApJ, 462, L49
Borgani, S., da Costa, L. N., Freudling, W., Giovanelli, R., Haynes, M. P., Salzer, J., & Wegner, G. 1997, ApJ, L121 (B97)
Borgani, S., da Costa, L. N., Zehavi, I., Giovanelli, R., Haynes, M. P., Freudling, W., Wegner, G., & Salzer, J. J. 2000, AJ, 119, 102 (B00)
Colberg, J. M., White, S. D. M., MacFarland, T. J., Jenkins, A., Pearce, F. R., Frenk, C. S., Thomas, P. A., & Couchman, H. M. P. 2000, MNRAS, 313, 229
Croft, R. A. C., & Efstathiou G. 1994, MNRAS, 268, L23
da Costa, L. N., Bernardi, M., Alonso, M. V., Wegner, G., Willmer, C. N. A., Pellegrini, P. S., Maiia, M. A. G., & Zaroubi, S. 2000a, ApJL, in press (astro-ph/9912225)
da Costa, L. N., Bernardi, M., Alonso, M. V., Wegner, G., Willmer, C. N. A., Pellegrini, P. S., Rité, G., & Maiia, M. A. G. 2000b, AJ, in press (astro-ph/9912201)
da Costa, L. N., Freudling, W., Wegner, G., Giovanelli, R., Haynes, M. P., & Salzer, J. J. 1996, ApJ, 468, L5
da Costa, L. N., Nusser, A., Freudling, W., Giovanelli, R., Haynes, M. P., Salzer, J. J., & Wegner, G. 1998, MNRAS, 299, 425
Davis, M., Nusser, A., & Willick, J. 1996, ApJ, 473, 22
Dekel, A., Eldar, A., Kolatt, T., Yahil, A., Willick, J. A., Faber, S. M., Courteau, S., & Burstein, D. 1999, ApJ, 522, 1
Dodelson, S., & Gaztañaga, E. 2000, MNRAS, 312, 774
Eke, V. R., Cole, S., & Frenk, C. S. 1996, MNRAS, 282, 263
Freudling, W., et al. 1999, ApJ, 523, 1
Giovanelli, R., Haynes, M. P., Freudling, W., da Costa, L. N., Salzer, J. J., & Wegner, G. 1998, ApJ, 505, L91
Giovanelli, R., Haynes, M. P., Herter, T., Vogt, N. P., da Costa, L. N., Freudling, W., Wegner, G., & Salzer, J. J. 1997a, AJ, 113, 53 (G97)
Giovanelli, R., Haynes, M. P., Herter, T., Vogt, N. P., Wegner, G., Salzer, J. J., da Costa, L. N., & Freudling, W. 1997b, AJ, 113, 22
Girardi, M., Borgani, S., Giuricin, G., Mardossian, F., & Mezzetti, M. 1998, ApJ, 506, 45
Görski, K., Davis, M., Strauss, M. A., White, S. D. M., & Yahil, A. 1989, ApJ, 344, 1 (GB98)
Haynes, M. P., Giovanelli, R., Chamaaux, P., da Costa, L. N., Freudling, W., Salzer, J. J., & Wegner, G. 1999a, AJ, 117, 2030
Haynes, M. P., Giovanelli, R., Salzer, J. J., Wegner, G., & Salzer, W., da Costa, L. N., Herter, T., & Vogt, N. P. 1999b, AJ, 117, 1668
Lucey, J. R., & Carter, D. 1988, MNRAS, 235, 1177
Lynden-Bell, D., Faber, S. M., Burstein, D., Davies, R. L., Dressler, A., Terlevich, R. J., & Wegner, G. 1988, ApJ, 326, 19
Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, ApJS, 81, 413
Moscardini, L., Branchini, E., Tini BrunoZzi, P., Borgani, S., Plionis, M., & Coles, P. 1996, MNRAS, 282, 384
Mould, J. R., et al. 1991, ApJ, 383, 467
Scodeggio, M., Giovanelli, R., & Haynes, M. P. 1998, AJ, 116, 2728
Strauss, M. A., & Willick, J. A. 1995, Phys. Rep., 261, 271
Tormen, G., Moscardini, L., Lucchin, F., & Matarrese, S. 1993, ApJ, 411, 16
Watkins, R. 1997, MNRAS, 292, L59
Willick, J. A., Courteau, S., Faber, S. M., Burstein, D., Dekel, A., & Strauss, M. A. 1997, ApJS, 109, 333
Willick, J. A., & Strauss, M. A. 1998, ApJ, 507, 64
Zaroubi, S., et al. 2000, MNRAS, submitted