DATA REPORT

Distal arthrogryposis with variable clinical expression caused by TNNI2 mutation

Vida Čulić1, Noriko Miyake2, Sunčana Janković1, Davor Petrović1, Marko Šimunović1, Tomislav Dapić3, Masaaki Shiina4, Kazuhiro Ogata4 and Naomichi Matsumoto2

Distal arthrogryposis (DA) is a clinically and genetically heterogeneous disorder characterized by congenital limb contractures with no primary neurological or muscular effects. DA is an autosomal dominant disorder with reduced penetrance and variable expression. DA is classified into 10 types, 1, 2A, 2B, 3–5, 7–10,1 and molecular diagnosis can help with the correct diagnosis of DA. DA2B (OMIM 601680) is one of the most common types.2 In DA2B, mutations have been found in genes encoding troponin I, fast skeletal type (TNNI2),3 troponin T3, fast skeletal type (TNNT3),4 myosin heavy chain 3, skeletal muscle, embryonic (MYH3)5 and tropomyosin 2 (TPM2).5 In this study, we describe the detailed clinical features and molecular diagnosis of a female DA patient.

The female patient was 3 years old and born after 40 weeks of gestation to non-consanguinean Croatian parents (Figure 1a). Apgar scores were 8/7 at 1/5 min and her birth weight was 3450 g (50th percentile) and she was 48 cm long (25th percentile). At birth, short neck, low posterior hairline, nevus flammeus on the forehead and asymmetric epicanthus were seen. Bilateral joint contractures were also observed at the wrists, elbows, hips and knees, together with right-sided torticollis. In addition, hand and foot deformities (talipes equinovarus) and skin-furrowed fingers were reported (Table 1). Serum amino acid and organic acid levels, peripheral blood lymphocyte karyotypes and electroencephalogram were all normal. During the first few months, the patient showed motor delay, bilateral hypertonia and vertical talus (Figure 1b, c). Her motor movements were slow, and closed fists and bilateral un abducted thumbs were observed (Figure 1d, e). Her head was tilted to the left and rotated to the right. The patient also presented with hypertonic upper limbs and a palmar grasp. In addition, she was unstable when standing on tiptoes. Physiological reflexes were present. Physical therapy was started immediately for neurodevelopmental delay and right-sided torticollis. Poor muscle tone, hypertonus of the upper limbs, and palmar grasp were consistently observed. Conservative orthopedic correction using the Dobbs method (high gypsum boots, replaced every 7 days) was started. At 4 months, the talus was surgically repositioned and the navicular bone was fixed with Kirschner wire. The patient wore orthoses for her ankles and feet during the day, but only at night on the hands and wrists. Physical therapy is currently ongoing.

Whole-exome sequencing (WES) was performed as previously described6 and 93.7% of RefSeq coding regions were covered by 20 or more reads. WES identified a novel TNNI2 mutation (c.485G>A, p.Arg162Lys) in the patient and her father. The father has no typical DA but hip dysplasia. This may explain the clinical features of DA2B in this family, but with variable clinical expression.

Human Genome Variation (2016) 3, 16035; doi:10.1038/hgv.2016.35; published online 13 October 2016

1Pediatric Clinic, Clinical Hospital Center Split, Split, Croatia; 2Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 3Orthopedic Clinic, Clinical Hospital Center Zagreb, Zagreb, Croatia and 4Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.

Correspondence: N Matsumoto (naomat@yokohama-cu.ac.jp)

Received 26 June 2016; revised 2 September 2016; accepted 6 September 2016
Novel TNNI2 mutation causing distal arthrogryposis

V Ćulić et al.
methylenic group of the arginine is a component of the hydrophobic core and this can be replaced by the methylenic group of the mutated lysine residue (p.Arg162Lys). Therefore, this mutation does not affect the protein structure, but could impair the molecular interactions between TnI and actin filaments.

In conclusion, we describe a novel TNNI2 mutation in two family members: a young girl with DA2B and her father with hip dysplasia (but not typical DA). This mutation may explain the variable clinical expression of DA2B in this family.

Table 1. Clinical features of the patient and her father

Physical features	Proband	Father
Face		
Triangular face	+	+
Naeveus flammeus on forehead	+	+
Long philtrum	+	+
Small prominent chin	+	−
Small mandible	+	+
Micrognathia	+	−
Attached ear lobules	−	+
Downslanting palpebral fissures	−	+
Prominent nasolabial folds	+	+
Broad nasal bridge	−	−
Broad nasal root	+	+
Small mouth	+	+
High-arched palate	+	−
Skeletal		
Short stature	+	+
Mild neck webbing	+	+
Hands		
Overriding fingers	+	+
Thumb adduction	+	+
Contractures of the proximal interphalangeal (PIP) joints	+	+
Contractures of the metacarpophalangeal joints	+	+
Hypoplastic or absent interphalangeal creases	+	+
Feet		
Talipes equinovarus	+	+
Calcaneovalgus deformities	+	+
Vertical talus	+	+
Metatarsus varus	−	−
Clubfoot	+	+

HGV DATABASE

The relevant data from this Data Report are hosted at the Human Genome Variation Database at http://dx.doi.org/10.6084/m9.882.

ACKNOWLEDGEMENTS

We thank the patient and her family for their participation in this study. This work was supported by grants from Research on Measures for Intractable Diseases; Comprehensive Research on Disability Health and Welfare; the Strategic Research Program for Brain Science, Practical Research Project for Rare/Intractable Diseases, the Initiative on Rare and Undiagnosed Diseases in Pediatrics and for Adults from the Japan Agency for Medical Research and Development; a grant-in-aid for Scientific Research on Innovative Areas (Transcription Cycle) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; grants-in-aid for Scientific B and C from the Japan Society for the Promotion of Science; the fund for Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program in the Project for Developing Innovation Systems from the Japan Science and Technology Agency; and the Takeda Science Foundation.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

1. Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am 2009; 91: 40–46.
2. Wang B, Zheng Z, Wang Z, Zhang X, Yang H, Cai H et al. A novel missense mutation of TNNI2 in a Chinese family cause distal arthrogryposis type 1. Am J Med Genet A 2016; 170: 135–141.
3. Sung SS, Brassington AM, Grammatik X, Rutherford A, Whitby FG, Krakowiak PA et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 2003; 72: 681–690.
4. Beck AE, McMillin MJ, Gildersleeve HT, Kezile PR, Shively KM, Carey JC et al. Spectrum of mutations that cause distal arthrogryposis type 2B. Am J Hum Genet 2003; 73: 212–214.
5. Jackson M, Zhao X, Han W, Oli C, Li X, Wang G et al. A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet 2006; 120: 238–242.
6. Carli D, Fairplay T, Ferrari P, Sartini S, Lando M, Garagnani L et al. Genetic basis of congenital upper limb anomalies: analysis of 487 cases of a specialized clinic. Birth Defects Res A Clin Mol Teratol 2013; 97: 798–805.
7. Shrimpton AE, Hoo JJ. A TNNI2 mutation in a family with distal arthrogryposis type 2B. Eur J Med Genet 2006; 49: 201–206.
8. Kimber E, Tajsharghi H, Kroksmark AK, Oldfors A, Tulinus M. Distal arthrogryposis: clinical and genetic findings. Acta Paediatr 2012; 101: 877–887.
9. Parry DA, Squire JM. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 1973; 75: 33–55.
12 Rarick HM, Tu XH, Solaro RJ, Martin AF. The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils. J Biol Chem 1997; 272: 26887–26892.

13 Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 2005; 352: 178–201.

14 Takeda S, Yamashita A, Maeda K, Maeda Y. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 2003; 424: 35–41.