Bavrin’s Type Factorization of the Temljakov Operator for Holomorphic Functions in Circular Domains of \mathbb{C}^n

Renata Długoš1, 2 · Piotr Liczberski2 · Edyta Trybucka3

Received: 11 July 2017 / Accepted: 18 January 2018 / Published online: 20 March 2018
© The Author(s) 2018

Abstract The paper concerns investigations of holomorphic functions of several complex variables with a factorization of their Temljakov transform. Firstly, there were considered some inclusions between the families C_G, M_G, N_G, R_G, V_G of such holomorphic functions on complete n-circular domain G of \mathbb{C}^n in some papers of Bavrin, Fukui, Higuchi, Michiwaki. A motivation of our investigations is a condensation of the mentioned inclusions by some new families of Bavrin’s type. Hence we consider some families $K^k_G, k \geq 2$, of holomorphic functions $f : G \to \mathbb{C}, f(0) = 1$, defined also by a factorization of L_f onto factors from C_G and M_G. We present some interesting properties and extremal problems on K^k_G.

Keywords Holomorphic functions on n-circular domains in \mathbb{C}^n · Minkowski function · Estimates of homogeneous polynomials of Taylor series · Temljakov operator · Bavrin’s families of functions
Mathematics Subject Classification 32A30 · 30C45

1 Introduction

We say that a domain \(G \subset \mathbb{C}^n \), is complete \(n \)-circular if \(z^\lambda = (z_1^\lambda_1, \ldots, z_n^\lambda_n) \in G \) for each \(z = (z_1, \ldots, z_n) \in G \) and every \(\lambda = (\lambda_1, \ldots, \lambda_n) \in U^n \), where \(U \) is the unit disc \(\{ \zeta \in \mathbb{C} : |\zeta| < 1 \} \). From now by \(G \) will be denoted a bounded complete \(n \)-circular domain in \(\mathbb{C}^n \), \(n \geq 2 \).

By \(H_G \) let us denote the space of all holomorphic functions \(f : G \rightarrow \mathbb{C} \) and by \(H_G(1) \) the collection of all \(f \in H_G \), normalized by \(f(0) = 1 \).

Many authors (cf., eg., [1,2,5–7,11,18,19,23]) considered some Bavrin’s subfamilies \(X_G \) of the family \(H_G(1) \). In the definitions of these families the main role play the families \(C_G(\alpha) \), \(\alpha \in [0,1) \),

\[
C_G(\alpha) = \{ f \in H_G(1) : \text{Re}\ f(z) > \alpha, z \in G \}
\]

and the following invertible Temljakov [24] linear operator \(L : H_G \rightarrow H_G \)

\[
L f(z) = f(z) + Df(z)(z), z \in G,
\]

where \(Df(z) \) is the Fréchet derivative of \(f \) at the point \(z \). By a Bavrin’s family \(X_G \) we mean a collection of functions \(f \in H_G(1) \) whose the Temljakov transform \(L f \) has a functional factorization \(L f = p \cdot g \), where \(p \in C_G \equiv C_G(0) \) and \(g \) is from a fixed subfamily of \(H_G(1) \). Below, we recall the factorizations which define a few well known Bavrin’s families \(X_G \), like as

\[
\begin{align*}
V_G : L f &= p \cdot 1, p \in C_G, \\
M_G : L f &= p \cdot f, p \in C_G, \\
N_G : L f &= p \cdot L L f, p \in C_G, \\
R_G : L f &= p \cdot L \varphi, \varphi \in N_G, p \in C_G.
\end{align*}
\]

It is known that functions of these families were used to construct biholomorphic mappings in \(\mathbb{C}^n \) (cf., eg., [10,13,20]). Let us note that the above families have geometric interpretation, in particular the functions \(f \in M_G \) map biholomorphically some planar intersections \(S \) of \(G \) onto starlike domains in \(\mathbb{C} \) (see [1]). It is very important, because the starlikeness plays a central role in many different subjects of geometry and topology and in particular, in geometric function theory.

Let us recall also that Bavrin showed the inclusions \(N_G \subset R_G, V_G \subset R_G \) and pointed that the first of them can be complete to the following double inclusion \(N_G \subset M_G \subset R_G \). Thus, it is natural to ask whether is possible to do the same in the case of the second above inclusion. In the paper [12] the authors defined a family \(K_G^- \), which satisfies the inclusion \(V_G \subset K_G^- \subset R_G \). An adequate definition of \(K_G^- \) has the form: A function \(f \in H_G(1) \) belongs to \(K_G^- \) if its Temljakov transform \(L f \) has the factorization
\[\mathcal{L} f(z) = p(z) \cdot h(z) \cdot h(-z), \quad z \in \mathcal{G}, \quad h \in \mathcal{M}_{\mathcal{G}} \left(\frac{1}{2} \right), \quad p \in \mathcal{C}_{\mathcal{G}}, \]

where the family \(\mathcal{M}_{\mathcal{G}}(\alpha), \alpha \in [0, 1) \), is defined similarly as \(\mathcal{M}_{\mathcal{G}} \), but in this case \(p \in \mathcal{C}_{\mathcal{G}}(\alpha) \).

In the present paper we consider Bavrin’s type families \(\mathcal{K}_{\mathcal{G}}^k, k \geq 2(\mathcal{K}_{\mathcal{G}}^2 = \mathcal{K}_{\mathcal{G}}^1) \) separating also the families \(\mathcal{V}_{\mathcal{G}}, \mathcal{R}_{\mathcal{G}} \), i.e., satisfying the inclusions \(\mathcal{V}_{\mathcal{G}} \subsetneq \mathcal{K}_{\mathcal{G}}^k \subsetneq \mathcal{R}_{\mathcal{G}}, k \geq 2 \).

The formal definition of such family has the following form.

A function \(f \in \mathcal{H}_{\mathcal{G}}(1) \) belongs to \(\mathcal{K}_{\mathcal{G}}^k \) if there exist a function \(p \in \mathcal{C}_{\mathcal{G}} \) and a function \(h \in \mathcal{M}_{\mathcal{G}}(k-1) \) such that the Temljakov transform \(\mathcal{L} f \) of \(f \) has the factorization

\[\mathcal{L} f(z) = p(z) \cdot \prod_{l=0}^{k-1} h(\varepsilon^l z), \quad z \in \mathcal{G}, \quad (1.1) \]

where \(\varepsilon = \varepsilon_k = \exp \frac{2\pi i}{k} \) is a generator of the cyclic group of \(k \)th roots of unity.

Let us observe that \(\mathcal{K}_{\mathcal{G}}^k, k \geq 2 \) are nonempty families. Indeed, the function \(f = 1 \) belongs to \(\mathcal{K}_{\mathcal{G}}^k \), because it satisfies the factorization \((1.1)\) with \(p = 1 \in \mathcal{C}_{\mathcal{G}} \) and \(h = 1 \in \mathcal{M}_{\mathcal{G}}(k-1) \).

In the future, we will use a characterization of the family \(\mathcal{K}_{\mathcal{G}}^k \) by a notion of \((j, k)\)-symmetry, which is connected with a functional decomposition with respect to the above group.

Let us observe that bounded complete \(n \)-circular domains \(\mathcal{G} \) are \(k \)-symmetric sets for \(k = 2, 3, \ldots \), that is \(\varepsilon_\mathcal{G} = \mathcal{G} \). For \(j = 0, 1, \ldots, k-1 \) we define the collections \(\mathcal{F}_{j,k}(\mathcal{G}) \) of functions \((j, k)\)-symmetrical, i.e., all functions \(f: \mathcal{G} \to \mathbb{C} \) such that

\[f(\varepsilon z) = \varepsilon^j f(z), \quad z \in \mathcal{G}. \]

If \(n = 1 \) and \(\mathcal{G} = \mathcal{U} \), then we write \(\mathcal{F}_{j,k}(\mathcal{U}) \).

The mentioned functional decomposition appears in the following result from [14].

Theorem A For every function \(f: \mathcal{G} \to \mathbb{C} \) there exists exactly one sequence of functions \(f_{j,k} \in \mathcal{F}_{j,k}(\mathcal{G}), j = 0, 1, \ldots, k-1 \), such that

\[f = \sum_{j=0}^{k-1} f_{j,k}. \]

Moreover,

\[f_{j,k}(z) = \frac{1}{k} \sum_{l=0}^{k-1} \varepsilon^{-jl} f\left(\varepsilon^l z \right), \quad z \in \mathcal{G}. \]

The functions \(f_{j,k}, \) which are uniquely determined by the above decomposition, will be called \((j, k)\)-symmetrical components of the function \(f \). Some interesting applications of the above partition may also be found in [15, 16] and [17].
2 Results

Now we can present a characterization of \(f \in \mathcal{K}^k_G \), simpler than (1.1).

Theorem 1 A function \(f \in \mathcal{H}_G(1) \) belongs to the family \(\mathcal{K}^k_G \), \(k \geq 2 \) if and only if there exists a function \(g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G}) \) and a function \(p \in \mathcal{C}_G \) such that

\[
\mathcal{L} f = p \cdot g.
\]

(2.1)

Proof Let \(f \in \mathcal{K}^k_G \). Then there exists \(p \in \mathcal{C}_G \) and \(h \in \mathcal{M}_G(\frac{k-1}{k}) \) such that

\[
\mathcal{L} f(z) = p(z) \cdot g(z) \quad z \in \mathcal{G},
\]

where

\[
g(z) = \prod_{l=0}^{k-1} h(\epsilon^l z), \quad z \in \mathcal{G}.
\]

It is obvious that \(g \in \mathcal{F}_{0,k}(\mathcal{G}) \). We show that \(g \in \mathcal{M}_G \). To do it, using the differentiation product rule and the form of the operator \(\mathcal{L} \), we have at \(z \in \mathcal{G} \)

\[
\frac{\mathcal{L} g(z)}{g(z)} = 1 + \frac{Dg(z)(z)}{g(z)} = 1 + \sum_{l=0}^{k-1} \frac{Dh(\epsilon^l z)(\epsilon^l z)}{h(\epsilon^l z)} = 1 - k + \sum_{l=0}^{k-1} \frac{\mathcal{L} h(\epsilon^l z)}{h(\epsilon^l z)}.
\]

Hence and by the fact that \(h \in \mathcal{M}_G(\frac{k-1}{k}) \), we obtain that \(\text{Re} \frac{\mathcal{L} g(z)}{g(z)} > 1 - k + k \frac{k-1}{k} = 0 \).

Thus \(g \in \mathcal{M}_G \).

Now, let us suppose that \(f \) satisfies the equality (2.1), with a \(p \in \mathcal{C}_G \) and a \(g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G}) \). Let us put \(h(z) = (g(z))^\frac{1}{k} \), \(z \in \mathcal{G} \), with the power function taking the value 1 at the point 1. Since \(g(z) \neq 0 \) (see [1]), the function \(h \) is holomorphic. It remains to show that \(h \in \mathcal{M}_G(\frac{k-1}{k}) \) and the equality (1.1) is fulfilled. To this end we compute step by step

\[
\text{Re} \frac{\mathcal{L} h(z)}{h(z)} = \text{Re} \frac{\frac{1}{k} \log(g(z))}{(g(z))^\frac{1}{k}} = 1 + \frac{1}{k} \text{Re} \frac{(g(z))^\frac{1}{k} - 1 Dg(z)(z)}{g(z)} \geq \frac{k - 1}{k}.
\]

The formula (1.1) follows from the definition of the function \(h \). Indeed,

\[
g(z) = (h(z))^k = \prod_{l=0}^{k-1} h(\epsilon^l z), \quad z \in \mathcal{G},
\]

because \(h \in \mathcal{F}_{0,k}(\mathcal{G}) \).

The proof is complete. \(\square \)
Now we consider an extremal problem for \(f \in \mathcal{K}_G^k \). More precisely, we look for some estimates for \(\mathcal{G} \)-balances of \(m \)-homogeneous polynomials \(Q_{f,m} \) of its unique power series expansion

\[
f(z) = 1 + \sum_{m=1}^{\infty} Q_{f,m}(z), \quad z \in \mathcal{G}.
\]

(2.2)

In our considerations the Minkowski function

\[
\mu_G(z) = \inf \{ t > 0 : \frac{1}{t} z \in \mathcal{G}, \quad z \in \mathbb{C}^n, \}
\]

will be very useful. This function gives a possibility to redefine the domain \(\mathcal{G} \) and its boundary \(\partial \mathcal{G} \) as follows:

\[
\mathcal{G} = \{ z \in \mathbb{C}^n : \mu_G(z) < 1 \}, \quad \partial \mathcal{G} = \{ z \in \mathbb{C}^n : \mu_G(z) = 1 \}.
\]

The notion of \(\mathcal{G} \)-balance of \(m \)-homogeneous polynomial \(Q_m : \mathbb{C}^n \to \mathbb{C}, \ m \in \mathbb{N} \cup \{0\} \), was defined in [3] as the quantity

\[
\mu_G(Q_m) = \sup_{w \in \mathbb{C}^n \setminus \{0\}} \frac{|Q_m(w)|}{(\mu_G(w))^m} = \sup_{v \in \partial \mathcal{G}} |Q_m(v)| = \sup_{u \in \mathcal{G}} |Q_m(U)|.
\]

The \(\mathcal{G} \)-balance \(\mu_G(Q_m) \) generalizes the norm \(\| Q_m \| \) of the polynomial \(Q_m \) and if \(\mathcal{G} \) is convex, then \(\mu_G(Q_m) \) reduces to \(\| Q_m \| \), because

\[
|Q_m(w)| \leq \mu_G(Q_m)(\mu_G(w))^m, \quad w \in \mathbb{C}^n
\]

and for bounded convex complete \(n \)-circular domains \(\mathcal{G} \) also \(\mu_G(w) = \| w \| \) (see, e.g., [21]).

We present the announced estimates of \(\mathcal{G} \)-balances \(\mu_G(Q_{f,m}) \) of \(m \)-homogeneous polynomials \(Q_{f,m} \) from the Taylor series of \(f \in \mathcal{M}_G^k \) in the following theorem.

Theorem 2 If the expansion of the function \(f \in \mathcal{K}_G^k \), \(k \geq 2 \), into a series of \(m \)-homogenous polynomials \(Q_{f,m} \) has the form (2.2), then for the \(\mathcal{G} \)-balances \(\mu_G(Q_{f,m}) \) of polynomials \(Q_{f,m} \) the following sharp estimate hold:

\[
\mu_G(Q_{f,m}) \leq \begin{cases}
\frac{1}{m} \prod_{p=1}^{m-1} \left(1 + \frac{2}{pk} \right) & \text{for } m = k, 2k, 3k, \ldots \\
\frac{2}{m+1} \prod_{p=1}^{\lfloor q \rfloor} \left(1 + \frac{2}{pk} \right) & \text{for remaining } m \in \mathbb{N}
\end{cases}
\]

where \(\lfloor q \rfloor \) means the integral part of the number \(q \). We use a standard convention that the product \(\prod_{l=l_1}^{l_2} a_l \) is equal to 1 for \(l_2 < l_1 \).
Proof Let \(f \in \mathcal{K}_G^k \) be arbitrarily fixed. Then, by Theorem 1, the factorization (2.1) holds with a function \(p \in \mathcal{C}_G \) of the form
\[
p(z) = 1 + \sum_{\nu=1}^{\infty} Q_{p,\nu}(z), \quad z \in \mathcal{G}
\]
and a function \(g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G}) \) of the form
\[
g(z) = 1 + \sum_{\nu=1}^{\infty} Q_{g,\nu}(z), \quad z \in \mathcal{G}.
\] (2.3)

From the above, by the series expansion of \(Lf \)
\[
L f(z) = 1 + \sum_{m=1}^{\infty} Q_{L f,m}(z) = 1 + \sum_{m=1}^{\infty} (m + 1) Q_{f,m}(z), \quad z \in \mathcal{G}
\]
and by the equalities \(Q_{f,0} = Q_{p,0} = Q_{g,0} = 1 \), we obtain the recursive formula for \(m \in \mathbb{N} \)
\[
(m + 1) Q_{f,m}(z) = \sum_{l=0}^{\lfloor \frac{m}{k} \rfloor} Q_{g,kl}(z) Q_{p,m-kl}(z), \quad z \in \mathcal{G}.
\]
Hence
\[
(m + 1) \left| Q_{f,m}(z) \right| \leq \sum_{l=0}^{\lfloor \frac{m}{k} \rfloor} \left| Q_{g,kl}(z) \right| \left| Q_{p,m-kl}(z) \right| , \quad z \in \mathcal{G}.
\] (2.4)

Since
\[
\left| Q_{p,\nu}(z) \right| \leq 2, \quad \nu \in \mathbb{N}, \quad z \in \mathcal{G},
\] (2.5)
(see [1]) we need some bounds for \(\left| Q_{g,k\mu}(z) \right| \). We show that for \(g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G}) \) and \(\mu \in \mathbb{N} \) there hold the inequalities
\[
\left| Q_{g,k\mu}(z) \right| \leq \frac{2^{\mu-1}}{k\mu} \prod_{v=1}^{\mu} \left(1 + \frac{2}{kv} \right), \quad z \in \mathcal{G}.
\] (2.6)

For this purpose let us observe that for each \(z \in \mathcal{G} \), the function
\[
G(\zeta) = \zeta g(\zeta z), \quad \zeta \in \mathcal{U}
\]
begins to the family \(S^* \cap \mathcal{F}_{1,k}(\mathcal{U}) \) of \((1,k)\)-symmetric univalent starlike mappings (in the unit disc \(\mathcal{U} \)) and its Taylor series has the form
\[
G(\zeta) = \zeta + \sum_{\mu=1}^{\infty} b_{k\mu+1} \zeta^{k\mu+1} = 1 + \sum_{\mu=1}^{\infty} Q_{g,k\mu}(z) \zeta^{k\mu+1}, \quad \zeta \in \mathcal{U}.
\]
Thus, in view of the estimates [25] of the coefficients of functions from \(S^* \cap \mathcal{F}_{1,k}(U) \) we get the announced bounds (2.6).

In two next parts of the proof we use also the fact [4] that for every \(k, s \in \mathbb{N} \setminus \{1\} \) there holds the identity:

\[
1 + \frac{2}{k} + \sum_{l=2}^{s} \frac{2}{lk} \prod_{v=1}^{l-1} \left(1 + \frac{2}{vk} \right) = \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right). \tag{2.7}
\]

Now, we will estimate the quantities \(|Q_{f,m}(z)|, z \in \mathcal{G} \), using all the conditions (2.4)–(2.7).

First let us assume that \(m = ks \), where \(s \in \mathbb{N} \). Since \(Q_{p,m-kl}(z) = 1 \) for \(l = s \), we get from (2.4) that

\[
(m + 1) Q_{f,m}(z) \leq Q_{g,ks}(z) + 2 \sum_{l=0}^{s-1} Q_{g,kl}(z), z \in \mathcal{G}.
\]

Thus for \(z \in \mathcal{G} \), in view of (2.6) and (2.7),

\[
(m + 1) |Q_{f,m}(z)| \leq \frac{2}{sk} \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right) + 2 \left[1 + \frac{2}{k} + \sum_{l=2}^{s-1} \frac{2}{lk} \prod_{v=1}^{l-1} \left(1 + \frac{2}{vk} \right) \right]
\]

\[
= \frac{-2}{sk} \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right) + 2 \left[1 + \frac{2}{k} + \sum_{l=2}^{s} \frac{2}{lk} \prod_{v=1}^{l-1} \left(1 + \frac{2}{vk} \right) \right]
\]

\[
\leq \frac{-2}{sk} \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right) + 2 \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right)
\]

\[
= 2 \left(\frac{sk + 1}{sk} \right) \prod_{v=1}^{s \wedge v} \left(1 + \frac{2}{vk} \right).
\]

Hence, for \(m = k, 2k, 3k, \ldots \)

\[
|Q_{f,m}(z)| \leq \frac{2}{m} \prod_{v=1}^{m \wedge v} \left(1 + \frac{2}{vk} \right), z \in \mathcal{G}.
\]

Now let us consider the case \(m = ks + r \), where \(s \in \mathbb{N} \cup \{0\} \) and \(r \in \{1, 2, \ldots, k-1\} \). In this case we apply in (2.4) the inequality \(|Q_{p,m-kl}(z)| \leq 2, l = 0, \ldots, s = \left\lfloor \frac{m}{k} \right\rfloor \), which follows from estimates (2.5), because \(m - kl > 0 \). Thus, in view of (2.6) and (2.7) we get step by step
\[(m + 1)|Q_{f,m}(z)| \leq 2 \sum_{l=0}^{\left\lfloor \frac{m}{k} \right\rfloor} |Q_{g,kl}(z)| \leq 2 \left[1 + \frac{2}{k} + \sum_{l=2}^{\left\lfloor \frac{m}{k} \right\rfloor} \frac{2}{lk} \prod_{v=1}^{l-1} \left(1 + \frac{2}{vk} \right) \right] \]

\[
\leq 2 \prod_{v=1}^{\left\lfloor \frac{m}{k} \right\rfloor} \left(1 + \frac{2}{vk} \right) .
\]

Summing up the results of both cases we get

\[
|Q_{f,m}(z)| \leq \begin{cases}
\frac{2}{m} \prod_{v=1}^{m-1} \left(1 + \frac{2}{vk} \right) & \text{for } m = k, 2k, 3k, \ldots \\
\frac{2}{m+1} \prod_{v=1}^{\left\lfloor \frac{m}{k} \right\rfloor} \left(1 + \frac{2}{vk} \right) & \text{for remaining } m \in \mathbb{N}
\end{cases}, \quad z \in \mathcal{G}
\]

and consequently

\[
\sup_{z \in \mathcal{G}} |Q_{f,m}(z)| \leq \begin{cases}
\frac{2}{m} \prod_{v=1}^{m-1} \left(1 + \frac{2}{vk} \right) & \text{for } m = k, 2k, 3k, \ldots \\
\frac{2}{m+1} \prod_{v=1}^{\left\lfloor \frac{m}{k} \right\rfloor} \left(1 + \frac{2}{vk} \right) & \text{for remaining } m \in \mathbb{N}
\end{cases}.
\]

These inequalities and the definition of \(\mathcal{G} \)-balances \(\mu_{\mathcal{G}}(Q_{f,m}) \) of \(m \)-homogeneous polynomials imply the estimates from the statement of the theorem.

Now, we will show the sharpness of the above estimates.

For the linear functional \(I = (\mu_{\mathcal{G}}(J))^{-1} J \), with

\[
J(z) = \sum_{l=1}^{n} z_l, \quad z = (z_1, \ldots, z_n) \in \mathbb{C}^n,
\]

let us denote by \(\mathcal{Z} \) an analytic set \(\mathcal{G} \cap I^{-1}(0) \) and let \(I^m(z) = (Iz)^m, z \in \mathcal{G}, m \in \mathbb{N} \cup \{0\} \). The equalities in our estimates are achieved for the following function \(f \in k_G^{k}, k \geq 2 \),

\[
f(z) = \begin{cases}
\frac{\sum_{l=0}^{k-1} l^{-1}(z)}{(1-I^k(z))^2} - \frac{1}{I(z)} - \sum_{l=3}^{k-1} \frac{l-2}{l} l^{l-1}(z) H(\frac{z}{k}, \frac{l}{k}, \frac{l+k}{k}, I^k(z)) & \text{for } z \in \mathcal{G} \setminus \mathcal{Z}, \\
1 & \text{for } z \in \mathcal{Z}
\end{cases},
\]

where \(H(a, b, c, \xi) : \mathcal{U} \to \mathbb{C} \) is a hypergeometric function

\[
H(a, b, c, \xi) = \sum_{v=0}^{\infty} \frac{(a)_v (b)_v \xi^v}{(c)_v v!}, \quad \xi \in \mathcal{U},
\]

\((a)_v = a(a+1)(a+2)\ldots(a+v-1) \) and \((a)_0 = 1 \).
defined by Pochhammer symbols \((a)_v, (b)_v, (c)_v:\)

\[
(a)_v = \begin{cases}
 a(a + 1) \ldots (a + v - 1), & v \in \mathbb{N} \\
 1, & v = 0
\end{cases},
\]

and the branch of the power function \(x^{\frac{2}{k}}\) takes the value 1 at the point \(x = 1\). In the case \(k = 2, 3\) we use a standard convention that the sum

\[
\sum_{l=3}^{k-1} \frac{l - 2}{l} I^{l-1}(z) H \left(\frac{2}{k}, \frac{l}{k}, \frac{l + k}{k}, I^k(z) \right), \ z \in \mathcal{G}
\]

is equal to zero, if the superscript of the sum is smaller than the subscript.

In the paper [4], it was proven that the above function gives the equalities in the bounds from the statement of the theorem. It remains to show that \(f \in \mathcal{K}^k_{\mathcal{G}}\) for \(k \geq 2\). To do it, let us observe that as shown in [4]

\[
\mathcal{L} f(z) = \frac{1 + I(z)}{1 - I(z)} \frac{1}{\left(1 - I^k(z)\right)^{\frac{2}{k}}}, \ z \in \mathcal{G}.
\]

This implies, in view of Theorem 1, the relation \(f \in \mathcal{K}^k_{\mathcal{G}}\), because the functions

\[
p(z) = \frac{1 + I(z)}{1 - I(z)}, g(z) = \frac{1}{\left(1 - I^k(z)\right)^{\frac{2}{k}}}, \ z \in \mathcal{G}
\]

belong to \(\mathcal{C}_{\mathcal{G}}\) and to \(\mathcal{M}_{\mathcal{G}} \cap \mathcal{F}_{0,k}(\mathcal{G})\), respectively.

We use the estimates of \(\mathcal{G}\)-balances \(\mu_{\mathcal{G}}(Q_{f,m})\) of polynomials \(Q_{f,m}\) to solve the mentioned separation problem for the families \(\mathcal{V}_{\mathcal{G}}, \mathcal{K}^k_{\mathcal{G}}, \mathcal{R}_{\mathcal{G}}\). We prove the following theorem:

Theorem 3 For every \(k \geq 2\) there holds the double inclusion

\[
\mathcal{V}_{\mathcal{G}} \subset \mathcal{K}^k_{\mathcal{G}} \subset \mathcal{R}_{\mathcal{G}}.
\]

Proof We start with the inclusion \(\mathcal{V}_{\mathcal{G}} \subset \mathcal{K}^k_{\mathcal{G}}\). To do it, let us assume that \(f \in \mathcal{V}_{\mathcal{G}}\), then \(\mathcal{L} f \in \mathcal{C}_{\mathcal{G}}\). Putting \(p = \mathcal{L} f\) and \(h = 1\), we obtain the factorization (1.1) with \(p \in \mathcal{C}_{\mathcal{G}}\) and \(g = 1 \in \mathcal{M}_{\mathcal{G}} \cap \mathcal{F}_{0,k}(\mathcal{G})\). Hence \(f \in \mathcal{K}^k_{\mathcal{G}}\). It remains to show the relation \(\mathcal{V}_{\mathcal{G}} \neq \mathcal{K}^k_{\mathcal{G}}\). To do it, let us observe that for \(f \in \mathcal{V}_{\mathcal{G}}\) there hold the sharp estimates \(\mu_{\mathcal{G}}(Q_{f,m}) \leq \frac{1}{m+1}, m \in \mathbb{N}\) (cf., eg., [1]), while for \(f \in \mathcal{K}^k_{\mathcal{G}}\) the sharp estimates \(\mu_{\mathcal{G}}(Q_{f,m}) \leq B(m)\) (Theorem 2.), with the obvious bound \(B(m) > \frac{2}{m+1}, m \in \mathbb{N} \setminus \{1\}\). Hence, the extremal function \(f \in \mathcal{K}^k_{\mathcal{G}}\) does not belong to \(\mathcal{V}_{\mathcal{G}}\).

Now we prove that \(\mathcal{K}^k_{\mathcal{G}} \subset \mathcal{R}_{\mathcal{G}}\). To this end, let us suppose that \(f \in \mathcal{K}^k_{\mathcal{G}}\). Then there exist functions \(p \in \mathcal{C}_{\mathcal{G}}, g \in \mathcal{M}_{\mathcal{G}} \cap \mathcal{F}_{0,k}(\mathcal{G})\) such that \(\mathcal{L} f = p \cdot g\). Denoting \(\varphi = \mathcal{L}^{-1} g\), we have that \(\varphi \in \mathcal{N}_{\mathcal{G}}\) (by the Aleksander type theorem [1]) and \(\mathcal{L} f = p \mathcal{L} \varphi\). Thus
f \in \mathcal{R}_G$. It remains to show the relation $\mathcal{K}^k_G \neq \mathcal{R}_G$. For this purpose, let us observe that in the above estimates $\mu_G(Q_{f,m}) \leq B(m), m \in \mathbb{N}$, we have $B(m) \leq 1, m \in \mathbb{N}$ (see below), while for $f \in \mathcal{R}_G$ there hold the sharp estimates $\mu_G(Q_{f,m}) \leq m + 1$(see for instance [1]). Therefore, the extremal function $f \in \mathcal{R}_G$ does not belong to \mathcal{K}^k_G.

To complete the proof, we show that $B(m) \leq 1, m \in \mathbb{N}$. To do it, we consider two cases, according to the partition $m = ks + r, r \in \{0, 1, \ldots, k - 1\}$, from the proof of Theorem 2.

1. Let us suppose that $r = 0$. Then, if $s = \frac{m}{k} = 1$, we see that the superscript $s - 1$ of the first product in Theorem 2 is smaller than its subscript 1. Hence, we replace the referred product by 1 and consequently, we get $\mu_G(Q_{f,m}) \leq \frac{2}{m} \leq 1$, because $m = k \geq 2$. Next, if $s \geq 2$, then from Theorem 2, by the inequality $1 + \frac{2}{vk} \leq \frac{v + 1}{v}, v \in \mathbb{N}, k \in \mathbb{N} \setminus \{1\}$, we obtain

$$\mu_G(Q_{f,m}) \leq \frac{2}{m} \prod_{v=1}^{s-1} \frac{v + 1}{v} \leq \frac{2}{m} \frac{s}{k} = \frac{2}{k} \leq 1.$$

2. Let us suppose that $r \in \{1, \ldots, k - 1\}$. Then, if $s = \left\lfloor \frac{m}{k} \right\rfloor = 0$, we see that the superscript of the second product in Theorem 2 is smaller than its subscript. Hence we replace the referred product by 1 and consequently, we get $\mu_G(Q_{f,m}) \leq \frac{2}{m+1} \leq 1$, because $m \leq k - 1$. Next, if $s = \left\lfloor \frac{m}{k} \right\rfloor \geq 1$, then similarly as in step 1, we obtain

$$\mu_G(Q_{f,m}) \leq \frac{2}{m+1} \prod_{v=1}^{s} \frac{v + 1}{v} \leq \frac{2}{m+1} (s + 1) \leq \frac{2(s+1)}{ks+2} \leq \frac{2(s+1)}{2s+2} \leq 1.$$

\[\square \]

Now, we give a growth theorem for $f \in \mathcal{K}^k_G$ and its Temljakov transform $\mathcal{L} f$.

Theorem 4 For functions $f \in \mathcal{K}^k_G$ there follow the following sharp estimates

$$\frac{1 - r}{1 + r} \frac{1}{(1 + r^k)^2} \leq |\mathcal{L} f(z)| \leq \frac{1 + r}{1 - r} \frac{1}{(1 - r^k)^2}, r = \mu_G(z) \in [0, 1),$$

(2.9)

$$\frac{1}{r} \int_0^r \frac{1 - \varrho}{1 + \varrho} \frac{1}{(1 + \varrho^k)^2} d\varrho \leq |f(z)| \leq \frac{1}{r} \int_0^r \frac{1 + \varrho}{1 - \varrho} \frac{1}{(1 - \varrho^k)^2} d\varrho, \quad r = \mu_G(z) \in [0, 1).$$

(2.10)

Proof First, let us observe that the above estimates are true for $z = 0$ (in (2.10) the values at $r = 0$, of the left and right hand sides, mean the limit if $r \to 0^+$). Thus, in the sequel we will assume that $z \in \mathcal{G} \setminus \{0\}$. We start with the estimates (2.9). Since $f \in \mathcal{K}^k_G$, there exist a function $p \in \mathcal{C}_G$ and a function $g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(\mathcal{G})$ such that the factorization (2.1) holds. Therefore, we show for such functions g the following inequalities...
\[
\frac{1}{(1 + r^k)^\frac{1}{k}} \leq |g(z)| \leq \frac{1}{(1 - r^k)^\frac{1}{k}}, \quad r = \mu_G(z) \in (0, 1).
\]

To this aim, let us fix arbitrarily a point \(z \in G \) such that \(\mu_G(z) = r \in (0, 1) \) and let us consider the function

\[
G(\xi) = \xi g(\xi - \frac{z}{\mu_G(z)}), \quad \xi \in \mathcal{U}.
\]

Then \(G \) is \((1, k)\)-symmetric, holomorphic, normalized and satisfies the condition

\[
\text{Re} \frac{\xi G'(\xi)}{G(\xi)} = \text{Re} \frac{\mathcal{L} g(\xi - \frac{z}{\mu_G(z)})}{g(\xi - \frac{z}{\mu_G(z)})} > 0, \quad \xi \in \mathcal{U}.
\]

Hence \(G \in S^* \cap \mathcal{F}_{1,k}(\mathcal{U}) \) and by [9, Thm. 2.2.13]

\[
\frac{|\xi|}{(1 + |\xi|^k)^\frac{1}{k}} \leq |G(\xi)| \leq \frac{|\xi|}{(1 - |\xi|^k)^\frac{1}{k}}, \quad \xi \in \mathcal{U}.
\]

Putting \(\xi = \mu_G(z) \) in the above we obtain, by the definition of the function \(G \), the announced inequality.

On the other hand, there hold for \(p \in \mathcal{C}_G \) the following estimates [1]

\[
\frac{1 - r}{1 + r} \leq |p(z)| \leq \frac{1 + r}{1 - r}, \quad r = \mu_G(z) \in (0, 1),
\]

Using the estimates of \(|p(z)| \) and \(|g(z)| \) we get the estimates (2.9). The sharpness of the upper bounds (2.9) confirms the function given by (2.8). Indeed, for \(r \in (0, 1) \) and function \(f \in \mathcal{K}^k_G \) given by (2.8), we get

\[
\mathcal{L} f(z) = \frac{1 + r}{1 - r} \frac{1}{(1 - r^k)^\frac{1}{k}}
\]

at points \(z \in G \), \(\mu_G(z) = r \in (0, 1) \) such that \(I(z) = r \) (this condition is fulfilled by the points \(z = rz^* \), where \(z^* \in \partial G \) and \(I(z^*) = 1 \)).

The sharpness of the lower bounds (2.9) can be proven in a similar way.

Now, we prove the estimates (2.10). To obtain the upper bound (2.10), we use the proved above upper bound (2.9) and the fact that the Temljakov operator \(\mathcal{L} \) is invertible and

\[
\mathcal{L}^{-1} u(z) = \int_0^1 u(tz) dt, \quad u \in \mathcal{H}_G, \quad z \in G.
\]
Indeed, we have for \(f \in K^k_G \) and \(z \in G \), \(\mu_G(z) = r \in (0, 1) \),

\[
|f(z)| = |L^{-1}L f(z)| = \left| \int_0^1 L(tz) dt \right| \leq \int_0^1 \frac{1 + rt}{(1 - rt)(1 - (rt)^k)^k} dt
\]

\[
= \frac{1}{r} \int_0^r \frac{1 + \varrho}{(1 - \varrho)(1 - \varrho^k)^k} d\varrho.
\]

To prove the lower bound (2.10) let us consider the function

\[
F(\xi) = \xi f\left(\xi \frac{z}{\mu_G(z)}\right), \xi \in \mathcal{U},
\]

with arbitrarily fixed \(f \in K^k_G \) and \(z \in G \), \(\mu_G(z) = r \in (0, 1) \). Since

\[
F'(\xi) = L f\left(\xi \frac{z}{\mu_G(z)}\right), \xi \in \mathcal{U},
\]

we get, by Theorem 1, that there exist functions \(g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(G) \) and \(p \in \mathcal{C}_G \) such that the factorization (2.1) is true. Thus

\[
F'(\xi) = P(\xi) \cdot G(\xi), \xi \in \mathcal{U},
\]

where for \(\xi \in \mathcal{U} \)

\[
G(\xi) = \xi g\left(\xi \frac{z}{\mu_G(z)}\right), P(\xi) = p\left(\xi \frac{z}{\mu_G(z)}\right).
\]

Moreover, \(G \in \mathcal{S}^* \cap \mathcal{F}_{1,k}(\mathcal{U}) \) (see the proof of the estimates (2.9)) and \(P : \mathcal{U} \to \mathbb{C}, P(0) = 1 \), is a holomorphic function with a positive real part. Therefore, \(F \) belongs to a subclass \(\mathcal{K}^{(k)} \) (considered in [22] and for \(k = 2 \) in [8]) of the class of close-to-convex functions. Hence, \(F \) is univalent in the disc \(\mathcal{U} \).

On the other hand, by the lower bound (2.9), we have that

\[
|F'(\xi)| \geq \frac{1 - |\xi|}{1 + |\xi|} \frac{1}{(1 + |\xi|^k)^k},
\]

because \(r = \mu_G\left(\xi \frac{z}{\mu_G(z)}\right) = |\xi| \). Now we show that

\[
|F(\xi)| \geq \int_0^r \frac{1 - \varrho}{1 + \varrho} \frac{1}{(1 + \varrho^k)^k} d\varrho, |\xi| = r \in (0, 1).
\]
To this aim, it is sufficient to show that it holds for the nearest point $F(\zeta_0)$ from zero ($|\zeta_0| = r \in (0, 1)$), otherwise, we have $|F(\zeta)| \geq |F(\zeta_0)|$, $|\zeta| = r$. Since F is univalent in the disc U, the original image of the line segment $0, F(\zeta_0)$ is a piece of arc $F^{-1}(0, F(\zeta_0))$ in the disc rU. Thus

$$|F(\zeta_0)| = \int_{0, F(\zeta_0)} |dw| = \int_{F^{-1}(0, F(\zeta_0))} |F'(\zeta)| \, d\zeta \geq \int_0^r \frac{1 - \varrho}{1 + \varrho} \frac{1}{(1 + \varrho^k)^{\frac{3}{2}}} \, d\varrho, \quad r \in (0, 1).$$

Thus, by the definition of F, we get

$$\left| \zeta f \left(\zeta \frac{z}{\mu_G(z)} \right) \right| \geq \int_0^r \frac{1 - \varrho}{1 + \varrho} \frac{1}{(1 + \varrho^k)^{\frac{3}{2}}} \, d\varrho, \quad |\zeta| = r \in (0, 1).$$

Hence, putting $\zeta = \mu_G(z) = r \in (0, 1)$, we have the lower bound (2.10).

Finally, let us note that we obtain the equalities in the inequalities (2.10) for the function (2.8) in adequate points $z \in G$. \hfill \qed

We close the paper with a sufficient condition guaranteeing that a function $f \in \mathcal{H}_G(1)$ belongs to K^k_G. We formulate it in the term of G-balances of m-honogeous polynomials in developments of functions from $\mathcal{H}_G(1)$.

Theorem 5 Let $f \in \mathcal{H}_G(1)$ has the form (2.2). If there exists a function $g \in \mathcal{M}_G \cap \mathcal{F}_{0,k}(G)$ of the form (2.3) such that

$$\sum_{m=1}^{\infty} (m + 1) \mu_G(Q_{f,m}) + \sum_{m=1}^{\infty} \mu_G(Q_{g, mk}) \leq 1,$$

then $f \in K^k_G$.

Proof Since g, as a function from \mathcal{M}_G omits zero [1], we will prove that

$$\text{Re} \left(\frac{L f(z)}{g(z)} \right) > 0, \quad z \in G.$$
\[
|\mathcal{L} f(z) - g(z)| - |\mathcal{L} f(z) + g(z)|
= \left| \sum_{m=1}^{\infty} (m + 1) Q_{f,m}(z) - \sum_{m=1}^{\infty} Q_{g,mk}(z) \right| - 2 + \sum_{m=1}^{\infty} (m + 1) Q_{f,m}(z)
+ \sum_{m=1}^{\infty} Q_{g,mk}(z)
\leq 2 \left[\sum_{m=1}^{\infty} (m + 1) \left| Q_{g,mk}(z) \right| + \sum_{m=1}^{\infty} \left| Q_{g,mk}(z) \right| - 1 \right]
\leq 2 \left[\sum_{m=1}^{\infty} (m + 1) \mu_{G}(Q_{f,m}) + \sum_{m=1}^{\infty} \mu_{G}(Q_{g,mk}) - 1 \right] \leq 0.
\]

Thus
\[
\left| \frac{\mathcal{L} f(z)}{g(z)} - 1 \right| \leq \left| \frac{\mathcal{L} f(z)}{g(z)} + 1 \right|, \ z \in \mathcal{G}
\]
and hence
\[
\text{Re} \frac{\mathcal{L} f(z)}{g(z)} \geq 0, \ z \in \mathcal{G}.
\]

This gives the mentioned inequality by a maximum principle for pluriharmonic functions of several complex variables. Putting \(p(z) = \frac{\mathcal{L} f(z)}{g(z)} \), \(z \in \mathcal{G} \), we obtain that the transform \(\mathcal{L} f \) has the factorization (1) with \(g \in \mathcal{M}_{\mathcal{G}} \cap \mathcal{F}_{0,k}(\mathcal{G}) \) and \(p \in \mathcal{C}_{\mathcal{G}} \). Consequently, \(f \in K^{k}_{\mathcal{G}} \).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bavrin, I.I.: A class of regular bounded functions in the case of several complex variables and extreme problems in that class. Moskov Obl. Ped. Inst. Moskov (1976) (in Russian)
2. Długosz, R.: Embedding theorems for holomorphic functions of several complex variables. J. Appl. Anal. 19, 153–165 (2013)
3. Długosz, R., Leś, E.: Embedding theorems and extreme problems for holomorphic functions on circular domains of \(\mathbb{C}^{n} \). Complex Var. Elliptic Equ. 59, 883–899 (2014)
4. Długosz, R., Liczberski, P.: An application of hypergeometric functions to a construction in several complex variables. J. Anal. Math. (2017) accepted for publication
5. Dobrowolska, K., Liczberski, P.: On some differential inequalities for holomorphic functions of many variables. Demonstr. Math. 14, 383–398 (1981)
6. Dziubinski, I., Sitarski, R.: On classes of holomorphic functions of many variables starlike and convex on some hypersurfaces. Demonstr. Math. 13, 619–632 (1980)
7. Fukui, S.: On the estimates of coefficients of analytic functions. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10, 216–218 (1969)
8. Gao, C., Zhou, S.: On a class of analytic functions related to the starlike functions. Kyungpook Math. J. 45, 123–130 (2005)
9. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker Inc, New York (2003)
10. Hamada, H., Honda, T., Kohr, G.: Parabolic starlike mappings in several complex variables. Manuscr. Math. 123, 301–324 (2007)
11. Higuchi, T.: On coefficients of holomorphic functions of several complex variables. Sci. Rep. Tokyo Kyoiku Daigaku 8, 251–258 (1965)
12. Leś-Bomba, E., Liczberski, P.: On some family of holomorphic functions of several complex variables. Sci. Bull. Chelm Sect. Math. Comput. Sci. 2, 7–16 (2007)
13. Liczberski, P.: On the subordination of holomorphic mappings in \mathbb{C}^n. Demonstr. Math. 2, 293–301 (1986)
14. Liczberski, P., Połubiński, J.: On (j, k)-symmetrical functions. Math. Bohem. 120, 13–28 (1995)
15. Liczberski, P., Połubiński, J.: Functions (j, k)-symmetrical and functional equations with iterates of the unknown function. Publ. Math. Debr. 60, 291–305 (2002)
16. Liczberski, P., Połubiński, J.: Symmetrical series expansion of complex valued functions. N. Z. J. Math. 27, 245–253 (1998)
17. Liczberski, P., Połubiński, J.: A uniqueness theorem of Cartan–Gutzmer type for holomorphic mappings in \mathbb{C}^n. Ann. Pol. Math. 79, 121–127 (2002)
18. Marchlewksa, A.: On a generalization of close-to-convexity for complex holomorphic functions in \mathbb{C}^n. Demonstr. Math. 4, 847–856 (2005)
19. Michiwaki, Y.: Note on some coefficients in a starlike functions of two complex variables. Res. Rep. Nagaoka Tech. Coll. 1, 151–153 (1963)
20. Pfaltzgraff, J.A., Suffridge, T.J.: An extension theorem and linear invariant families generated by starlike maps. Ann. Univ. Mariae Curie Sklodowska Sect. A 53, 193–207 (1999)
21. Rudin, W.: Functional Analysis. McGraw-Hill Inc, New York (1991)
22. Seker, B.: On certain new subclass of close-to-convex functions. Appl. Math. Comput. 218, 1041–1045 (2011)
23. Stankiewicz, J.: Functions of two complex variables regular in halfspace. Folia Sci. Univ. Techn. Rzeszów. Math. 19, 107–116 (1996)
24. Temljakov, A.: Integral representation of functions of two complex variables. Izv. Ross. Akad. Nauk. Ser. Mat. 21, 89–92 (1957)
25. Waadeland, H.: Über k-fach symmetrische sternfö rmige schlichte Abbildungen des Einheitskreises. Math. Scand. 3, 150–154 (1955)