A novel in-situ gel approach for sustained release of eplerenone

Swarupa Arvapalli, B Kiranmayi, V Sushma, J Divya and Ch. Krishnaveni

DOI: https://doi.org/10.22271/tpi.2020.v9.i3j.4524

Abstract
The present study was an attempt to formulate and evaluate floating in-situ gel of Eplerenone by using various polymers like Xanthan gum, Guar gum and Karaya gum which undergoes pH dependent sol-gel transition at gastric pH, there by prolonging the retention of the system in stomach. Sodium alginate a natural polymer was employed as a gelling agent where gelation is triggered by the source of calcium ions in the form of calcium carbonate. Drug and polymers was subjected for compatibility study using FTIR studies, which revealed that there was no interaction between drug and polymers. The evaluation was carried out for in vitro parameters such as gelling nature, Total floating time, drug content, viscosity, & in vitro dissolution studies. Among all the formulations, F6 formulation containing guar gum was chosen as optimized formulation which shows maximum drug release by the end of 12hrs and has excellent floating characteristics and gastric retention. From kinetic studies the optimized formulation shows zero order release with super case II transport mechanism.

Keywords: In-situ gel, pH dependent sol-gel transition, Gastro-retentive drug delivery systems, floating in-situ gelling, sustained drug release

Introduction
Eplerenone was chosen as the model candidate for development of oral insitu gel, since they possess near ideal characteristics that these drugs must have formulating sustained drug delivery system. The primary requirement of a successful sustained release product focuses on increasing patient compliance which the in-situ gels offer. It provides a number of advantages over conventional dosage forms. Sustained and prolonged release of the drug, good stability and biocompatibility characteristics make the in-situ gel dosage forms very reliable. Use of biodegradable and water soluble polymers for the in-situ gel formulations can make them more acceptable and excellent drug delivery system.

In-situ drug delivery provides a greater potential for the development of liquid orals for their sustained drug release. This floating in-situ gel approach is suitable for drugs having narrow absorption window in stomach or drugs showing local effect in stomach. Eplerenone due to its shorter half life of 4-5 hrs has to be sustained in the body so to prolong its release in the body it has been developed as in-situ gel by using various polymers.

Materials and Methods
Materials
All materials (AR Grade) used were obtained from different sources. Eplerenone was obtained as a gift sample from Hetero Labs Ltd, Hyderabad, sodium alginate was purchased from Color cone Asia Ltd., Verna, Goa, xanthan gum, calcium carbonate, sodium citrate, guar gum, karaya gum was purchased from MJ Biopharmaceuticals, Mumbai.

Preformulation Studies

Solubility studies
Solubility of Eplerenone was carried out in different solvents like 0.1N HCL, Methanol, Ethanol, 7.4pH buffer and 6.8pH buffers. Saturated solutions were prepared by adding excess drug to the vehicles and shaking on the shaker for 24hrs at 25°C under constant vibration. Filtered samples (1ml) were diluted appropriately with suitable buffer and solubility of Eplerenone was determined spectrophotometrically at 267nm.
a) Drug-excipient compatibility study
Physical mixtures of drug and excipients were prepared by grinding specific ratios of drug and excipients in a mortar. Sample of 3-4 grams was loaded in a glass vial, covered with rubber stopper, sealed with aluminum cap and labeled properly. Samples were observed and colour was recorded for initial evaluation and loaded into stability chambered at 40°C temperature and 75% relative humidity for 30 days to study the Compatibility study. Samples were removed after 15 days and 30 days and observed for any change in the color [24].

b) FTIR spectroscopy
The physical compatibility between the pure drug and polymers used in the research was tested by Infra-Red (IR) spectroscopy. FTIR absorption spectra for pure drug and physical mixture were recorded in the range of 400–4000cm⁻¹ by KBr disc method using FTIR spectrophotometer.

Determination of Absorption maxima by UV spectrophotometer
10mg of Eplerenone was dissolved in 10ml of buffers so as to get a stock solution of 1000 µg/ml concentration. From this 1ml solution was withdrawn and diluted to 10ml to get a concentration of 100µg/ml (SS-H). From this stock solution pipette out 1 ml of the solution and makeup the volume to 10ml using buffer to get the concentration of 10µg/ml concentration, this solution was scanned under UV spectroscopy using 200-400nm.

Preparation of calibration curve of Eplerenone [25-27]
10 mg of Eplerenone was dissolved in 10 ml of 0.1N HCL by slight shaking (1000 µg/ml). 1 ml of this solution was taken and made up to 10 ml with 0.1N HCl, which gives 100 µg/ml concentration (stock solution). From the stock solution, concentrations of 4.8,12, 16, 20and 24µg/ml in 0.1N HCl were prepared. The absorbance of diluted solutions was measured at 267nm and a standard plot was drawn using the data obtained. The correlation coefficient was calculated.

Method of preparation of in-situ gel
Floating in-situ gel formulations of Eplerenone were prepared using compositions. Take 100ml beaker, in that beaker take sodium alginate and add with polymer, then mix with 60ml distilled water, now heat the mixture at 60°C till solution occurs using a heating magnetic stirrer. Take another 100ml beaker, in this add sodium citrate along with calcium carbonate, then mix with 30ml distilled water, heat the mixture at 60°C till solution occurs. Now take another beaker, add 5ml methanol with drug, then three mixtures are mixed at 60°C. After cooling this solution below 40°C, keep the above mixture in mechanical stirring for 30 minutes, well to get the final preparation which was stored in amber colour bottles until further use [28-31].

| Table 1: Formulation of Eplerenone oral in-situ gels |

Ingredients (g)	F1	F2	F3	F4	F5	F6	F7	F8	F9
Eplerenone	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sodium alginate	1	1	1	1	1	1	1	1	1
Calcium carbonate	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sodium citrate	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Xanthan gum	0.25	0.5	0.75	--	--	--	--	--	--
Guar gum	--	--	--	0.25	0.5	0.75	--	--	--
Karaya gum	--	--	--	--	--	--	0.25	0.5	0.75
Water (ml)	100	100	100	100	100	100	100	100	100

Evaluation parameters of oral in-situ gels [32-42]

Visual Appearance and Clarity
Visual appearance and Clarity was done under fluorescent light against a white and black back ground for presence of any particulate matter.

pH Measurement
The pH of the prepared in-situ gelling system after addition of all the ingredients was measured using pH meter.

Determination of drug content
Accurately 5mL of formulation from different batches was measured and transferred to 100mL volumetric flask. To this 50-70mL of 0.1 N HCL was added and sonicated for 30 min. Volume was adjusted to 100mL. Complete dispersion of contents was ensured visually and the dispersion was filtered using Whatman Filter Paper. From this solution, 1 mL of sample was withdrawn and diluted to 10mL with 0.1 N HCL. Contents of Eplerenone was measured at maximum absorbance at 267 nm using UV-Visible Spectrophotometer. [T60 PG INSTRUMENTS]

In-vitro floating study
The in-vitro floating study was carried out by introducing 5 mL of formulation into a beaker containing 100 ml of 0.1N HCl, (pH 1.2) at 37°C without much disturbance. The time the formulation constantly floated on surface of the dissolution medium (duration of floating) were recorded.

In-vitro gelation study
To evaluate the formulations for their in-vitro gelling capacity, accurately measured 5 mL of formulation was added to 100 mL of 0.1N hydrochloric acid (HCl, pH 1.2) at 37°C in a beaker with mild agitation that avoids breaking of formed gel. The in-vitro gelling capacity was graded in three categories on the basis of stiffness of the formulation.

+ (+) Gels after few minutes, dispersed rapidly
++ (+) Gelation immediate remains for few hours
+++ Gelation immediate remains for an extended period.

Measurement of viscosity of in-situ gelling system
Viscosity of the dispersion was determined using a Brookfield digital viscometer (NDJ-5S Viscometer). The samples (5 mL) were sheared at a rate of 10 rpm/min using spindle number 2 at room temperature. Viscosity measurement for each sample was done in triplicate, with each measurement taking approximately 30 seconds.

In-Vitro Release Studies
The drug release study was carried out using USP type II paddle type apparatus at 37 ± 0.5°C and at 50 rpm using 900

http://www.thepharmajournal.com
ml of 0.1 N HCl (pH 1.2). In situ gel equivalent to 25 mg of Eplerenone was used for the test. Sample solution (5ml) was withdrawn at pre-determined time intervals, filtered through a 0.45μm membrane filter, diluted and suitably analysed by UV spectrophotometric LABINDIA 8000 at 267 nm. Fresh dissolution medium was replaced immediately after withdrawal of the test sample to maintain sink condition. The dissolution studies were carried out for a period of 12 h [43-50].

Release Kinetics [51-52].
In the present study, data of the in vitro release were fitted to different equations and kinetic models to explain the release kinetics of Eplerenone from the in-situ gels. The kinetic models used were Zero order equation, First order, Higuchi release and Korsmeyer-Peppas models. Different release kinetic equations (zero-order, first-order, Higuchi’s equation and Korsmeyer-peppas equation) were applied to interpret the release rate of the drug from matrix systems for the optimized formulation. The best fit with higher correlation (r²) was calculated.

Results & Discussion

Solubility studies of Eplerenone
Solubility of Eplerenone was determined in water, 0.1 N HCL, & 6.8 phosphate buffer and values obtained were noted in the table 2 given below. From solubility studies in various solvents eplerenone showed more solubility in 6.8pH buffer and methanol among the organic solvents.

Solvents	Solubility (µg/ml)
0.1 N HCL	0.356
6.8 pH buffer	0.759
7.4 pH buffer	0.742
Methanol	1.968
Ethanol	0.968

Compatibility study of Eplerenone
Compatibility between the drug and polymers was studied by FT-IR method. Pure Eplerenone and optimized formulation were subjected for FT-IR spectroscopic analysis, to ascertain any interaction between the drug and polymers used. The position of characteristic peaks of pure Eplerenone was compared with those peaks obtained for optimized formulation. These characteristic bands for Eplerenone were identifiable and there was no major shift or disappearance in the peak positions. This indicated that the drug was intact and has not reacted with the excipients used in the formulation and hence they are compatible. Hence, it can be concluded that the drug is in free-state and can release easily from the polymeric network in the free form.
7.3 Determination of absorption maximum (λmax) of Eplerenone
Determination of Eplerenone λ-max was done for accurate quantitative assessment of drug dissolution rate.

Fig 3: Absorption maximum (λ_{max}) of Eplerenone 267nm.

7.4 Standard calibration curve of Eplerenone
Eplerenone beer’s range concentration was found to be in the range of 5-30 µg/ml using 0.1 N HCL buffer as buffer solution. The regression value was closer to 1 indicating the method obeyed Beer-lamberts’ law as it was linear.

Table 2: Calibration curve of eplerenone in 0.1N HCl

Concentration (µg/ml)	Absorbance
0	0
5	0.118
10	0.241
15	0.362
20	0.479
25	0.602
30	0.712

Fig 4: Calibration curve of Eplerenone in 0.1N HCl

In-Vitro Gelation study
Gelling studies were carried out using 0.1N HCl and the obtained data were represented in Table 4. All formulations showed immediate Gelation upon contact with acidic medium and the formed gel preserved their integrity. Gelation occurs when the insoluble calcium carbonate solubilises when it comes in contact with acidic medium releasing carbon dioxide and calcium ions. The calcium ions interact with the anionic polymer (sodium alginate) in the formulation causing instantaneous Gelation and provide a gel barrier that restricts drug release. Formulations containing calcium carbonate alone produce stiffer floating in-situ gels. This is due to the internal inotropic Gelation effect of calcium on sodium alginate.

Table 4: In-vitro graded gel response data

Formulation Code	Graded Gel Response
F1	++
F2	++
F3	+++
F4	++
F5	++
F6	++
F7	+
F8	++
F9	+++

Viscosity studies
The formulation should have an optimum viscosity that will allow ease of administration and swallowing as a liquid and produces satisfactory gel strength for use as a delivery vehicle. The formulations showed a viscosity order of Karaya gum <Xanthan gum <Guar gum. In addition to the influence of the type of viscosity enhancing polymer added, it was observed that increasing the concentration of the viscosity enhancing polymer in the formulation simultaneously increased the viscosity for all polymer types studied.

Table 5: Viscosity data

Formulation Code	Viscosity(cps)
F1	298
F2	316
F3	335
F4	349
F5	361
F6	392
F7	215
F8	268
F9	301
In vitro floating study
The formulated floating *in-situ* gelling system of Eplerenone employed CaCO₃ as a gas-generating agent. The *in vitro* floating test revealed the ability of all formulae to maintain buoyant for more than 12 h.

Table 6: In vitro floating Studies

Formulation code	Total floating Time (hr)
F1	-12
F2	-12
F3	-12
F4	-12
F5	-12
F6	-12
F7	-12
F8	-12
F9	-12

In-vitro drug release study
The *in-vitro* release study of Eplerenone from all formulations in 0.1N HCl was conducted for a period of 12 hours. From the *in vitro* drug release studies of Eplerenone oral *in-situ* gels using different polymer ratios.

Among all 9 trails F1-F3 trails were formulated using Xanthan gum in three different ratios the drug release time was increased with increase in the polymer concentration. F1 formulation 97.42% of drug release at the end of 7 hours, while F2 formulation shows 98.21% of drug release at the end of 9 hours, whereas F3 formulation shows 97.02% of drug release at the end of 11 hours. Among all the three formulations can’t sustained the drug release for 12 hours. So further formulations were prepared using Guar gum.

Then F4-F6 trails were formulated using Guar gum in three different ratios, the drug release time was increased with increase in the polymer concentration. F4 formulation shows 97.5% of drug release at the end of 9 hours, while F5 formulation shows 98.52% of drug release at the end of 11 hours, whereas F6 formulation shows 97.08% of drug release at the end of 12 hours.

Then F7-F9 trails were formulated using Karaya gum in different ratios. F7 formulation shows 97.52% of drug release at the end of 6 hours, while F8 formulation shows 98.41% of drug release at the end of 8 hours, whereas F9 formulation shows 99.63% of drug release at the end of 10 hours.

Among the all 9 formulations, based upon the *in-vitro* studies F6 formulation containing higher concentration of Guar gum maintained sustained drug release.

Table 7: In vitro drug release of Eplerenone floating in-situ gel

Time	F1	F2	F3	F4	F5	F6	F7	F8	F9
0	0	0	0	0	0	0	0	0	0
1	36.86	30.56	22.15	30.86	22.15	18.26	42.52	36.49	30.53
2	45.28	39.48	29.63	39.86	32.05	26.12	56.19	45.53	43.62
3	52.69	46.19	35.49	46.18	41.86	32.86	68.23	52.63	58.42
4	64.19	51.05	42.18	52.36	53.19	40.84	79.82	59.86	62.09
5	79.32	57.05	49.76	61.08	59.63	47.88	86.05	64.52	68.48
6	86.19	67.49	56.05	69.78	65.05	59.63	97.52	72.46	75.21
7	97.42	76.28	62.49	76.19	72.15	64.08	86.29	79.02	
8	89.26	72.46	82.63	79.52	76.49	98.41	83.24		
9	98.21	79.08	97.5	85.63	83.19		90.62		
10	86.49		90.86	89.36			99.63		
11		97.05	98.52	94.63					
12									97.08

Fig 5: In vitro dissolution profile of F1-F9
Drug release kinetic studies

The in-vitro dissolution data for best formulation F6 were fitted in different kinetic models i.e., zero order, first order, Higuchi and Korsmeyer-Peppas equation. Optimized formulation F6 shows R^2 value 0.985. As its value nearer to the ‘1’ it is conformed as it follows the Zero order release. The mechanism of drug release is further confirmed by the Korsmeyer and Peppas plot, if $n = 0.45$ it is called Case I or Fickian diffusion, $0.45 < n < 0.89$ is for anomalous behaviour or non-Fickian transport, $n = 0.89$ for case II transport and $n > 0.89$ for Super case II transport.

The ‘n’ value is 1.204 for the optimised formulation (F6) i.e., n value indicates super case II transport mechanism.

Table 8: Drug release kinetics data of Formulation F6
R² values
Formulation
F6

Fig 6: In vitro dissolution profile of F1-F3

Fig 7: In vitro dissolution profile of F4-F6

Fig 8: In vitro dissolution profile of F7-F9

Fig 9: Zero order release graph for formulation F6

Fig 10: First order release graph for formulation F6

Fig 11: Higuchi release graph for formulation F6

Fig 12: Peppas release graph for formulation F6
Conclusion
From the above experimental results, it can be concluded that the release of eplerenone can be sustained by formulating it as in-situ gel. The results of study demonstrate that guar gum was suitable to develop sustained release oral in-situ gels.

References
1. Rao GU, Murari P. Buoyant sustained release drug delivery systems current potentials advancements and role of polymers: a review. International Journal of Clinical Practice, 2012; 2(1):1-7.
2. Rabadia N, Tiwari A, Patel G, Virani V. The floating drug delivery system and its impact on calcium channel blocker: A review article. International journal of pharmaceutical research and development. 2011; 3(12):107-131.
3. Jain NK. Progress in controlled and novel drug delivery systems Delhi, CBS Publishers, 2003, 76-97.
4. Babu VBM, Khar RK. In vitro and In vivo studies of sustained release floating dosage forms containing salbutamol sulphate. Pharmazie, 1990; 45:268-270.
5. Kinaki HN. A Thesis on Floating Drug Delivery System. The North Gujarat University, Patan. 2000-2001, 11-12.
6. Cohen S, Lobel E, Tregvoda A, Peled Y. A novel in-situ forming ophthalmic drug delivery system from alginites undergoing gelation in the eye. Journal of Controlled Release. 1997; 44:201-208.
7. Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggeredin-situ gelling system. Journal of Controlled Release. 2001; 73:205-211.
8. Miyazaki S, Kawasaki N, Endo K, Attwood D. Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits. Journal of Pharmacy and Pharmacology. 2001; 53:1185-1191.
9. Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. In-situ gelling xyloglucan formulations for sustained release ocular delivery of Pilocarpine hydrochloride. International Journal of Pharmaceutics. 2001; 229:2.
10. Shah SH, Patel JK, Patel NV. Stomach specific floating drug delivery system: a review. International Journal of PharmTech Research. 2009; 1(3):623-633.
11. Bhardwaj L, Sharma PK, Malviya R. A Short Review on Gastro Retentive Formulations for Stomach Specific Drug Delivery: Special Emphasis on Floating In-situ Gel Systems. African Journal of Basic & Applied Sciences. 2011; 3(6):300-312.
12. Tripathi P, Ubaidulla U, Khar RK, Vishwivibhuti. Floating drug delivery system. International Journal of Research and Development in Pharmacy and Life Sciences. 2012; 1(1):1-10.
13. Brahmankar DM, Jaiswal SB. Bio pharmaceutics and pharmacokinetics a treatise. Vallabh Prakashan, 2008, 337.
14. Patel GM, Patel HR, Patel M. Floating drug delivery system: An innovative approach to prolong gastric retention. Pharmainfo.net. 2007; 5(6).
15. Nayak AK, Maji R, Das B. Gastro retentive drug delivery systems: A review. Asian Journal of Pharmaceutical and Clinical Research. 2010; 3:2-10.
16. https://www.drugbank.ca/drugs/DB00700
17. Hardenia SS, Jain A, Patel R, Kaushal A. Floating drug delivery systems: A review. Asian Journal of Pharmacy and Life Science. 2011; 1:284-293.
18. Harridan RM. Drug delivery device for prevention contact of undissolved drug with the stomach lining. US Patent, 1977. 40055178.
19. Dhiman S, Singh TG, Sood S. Gastro retentive: a controlled release drug delivery system. Asian Journal of Pharmaceutical and Clinical Research. 2011; 4:5-13.
20. Ahmed Khames. Formulation and Characterization of Eplerenone Nano emulsion Liquid solids. An oral Delivery System with higher Release Rate and Improved Bioavailability. Pharmaceutics, 2019; 11(1):40.
21. Shaniya P, Hepselah NJR, Khasim MD, Ashok Kumar A. Dissolution Method Development and Validation of Eplerenone Tablets by UV Spectrophotometry. IAJPS. 2016; 3(4):351-357.
22. Naina Somkar. UV-Spectrophotometric Determination of Eplerenone in bulk and tablets. Paripex Indian Journal of Research. 2(3):2250-1991.
23. Wade Ainley, Weller Paul J. Handbook of pharmaceutical Excipients. 2nd edition London. The Pharmaceutical Press, 1994, 280-282.
24. Mishra J, Dash AK. Recent advances in gastro retentive drug delivery system: A review. Mintage Journal of Pharmaceutical and Medical Sciences. 2013; 2:25-27.
25. Mishra A, Gupta P. Gastro retentive drug delivery system: A review. International Journal of Drug Development and Research. 2012; 4:28-39.
26. Swetha S, Allena RT, Gowda DV. A comprehensive review on gastroretentive drug delivery systems. International Journal of Pharmaceutical and Biomedical Research. 2012; 3:1285-1293.
27. Yeole PG, Shagufta Khan, Patel VF. Floating Drug Delivery System: Nedds and Development. Indian J Pharm. Sci. 2005; 67(3):265-272.
28. Patel A, Shah D, Modasiya M, Ravikiran A, Kamaraj P. Quantification of Eplerenone Polymorphs by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Chem Sci Trans. 2013; 2(S1):S262-S266.
29. Wu C, Qi H, Chen W, Huang C, Su C, Li W et al. Preparation and evaluation of a Cefpodoxil Proxetil gellan gum based in situ gels. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2012; 5:179-190.
30. Harish NM, Prabhu P, Charyulu RN, Gulgur MA, Subrahmanyam EV. Formulation and Evaluation of in situ gelling ophthalmic system for pueraria. Yakugaku Zasshi. 2007; 127:183-91.
31. Xu H, Shi M, Liu Y, Jiang J, Ma T. A novel in situ gel formulation of Ranitidine for oral sustained delivery. Biomol ther. 2014; 22(2):161-165. doi: 10.4062/biomolther. 2013.109
32. Khan AD, Meenakshi B. Floating drug delivery system: an overview. Int J PharmTech Res. 2010; 2:2497-505.
33. Miyazaki S, Endo K, Kawasaki N, Kubo W, Watanale H, Attwood D. Oral sustained deliveryof paracetamol from insitu gelling xyloglucan formulations. Drug Dev Ind Pharm. 2003; 29:113-9.
34. Modi SA, Gaikwad PD, Bankar VH, Pawar SP. Sustained release drug delivery system: a review. Int J Pharm Res Dev. 2011; 2:147-60.
35. Moin Afarsim, Shiva Kumar HG. Formulation of sustainedrelease Diltiazem matrixtablet using hydrophilic gum blends. Top J Pharm Res. 2010; 9:283-91.
36. Nayak Amritkumar, Maji Ruma, Das Biswarup. Gastro
37. Madan M, Bajaj A, Lewis S, Udapa N, Baig JA. In-situ forming polymeric drug delivery. Indian J Pharm Sci 2009; 71:242-51.
38. Moin A, Reddy MM, Reddy DJ, Shiva Kumar HG. Formulation of sustained release matrix tablet using chitosan/ghatti. Gum. Poly electrode complex Sch. Res Lib. 2011; 3:119-28.
39. Thomas LM. Formulation and evaluation of floating oral in-situ gel of metronidazole. Int J Pharm Sci. 2009; 71:242-51.
40. Hasan MJ, Kamal BA. Formulation and evaluation of ranitidine hydrochloride are floating In situ gel. Int J Pharm Sci. 2014; 6(2):401-5.
41. Miyazaki S, Endo K, Kawasaki N, Kubo W. Oral sustained delivery of Paracetamol from in situ gelling xyloglucan formulations. Drug Dev Ind Pharm. 2003; 29(2):113-9.
42. Shrinath Shah et al. Mucoadhesive In-Situ Gel For Trans mucosal Delivery of Celecoxib International Journal of Pharmacy and Pharmaceutical Sciences. ISSN-0975-1491. 2014; 6:10.
43. Chandel A, Chauhan K, Parashar B, Kumar H, Arora S. Floating drug delivery systems: A better approach. International Current Pharmaceutical Journal. 2012; 1(5):110-18.
44. Shah SH, Patel JK, Patel NV. Stomach specific floating drug delivery system: A review. International Journal of Pharmaceutical Technology and Research. 2009; 1(3):623-33.
45. Gopalakrishnan S, Chenthilnathan A. Floating drug delivery system: A review. Journal of Pharmaceutical Science and Technology. 2011; 3(2):548-54.
46. Vedha H, Chaudhari J. The recent developments on gastric floating drug delivery system: An overview. Journal of Pharmaceutical Technology and Research. 2010; 2(1):524-34.
47. Arunachalam A, Kishan GK. Floating drug delivery system: A review. International Journal of Research in Pharmaceutical Sciences. 2011; 2(1):76-83.
48. Wilson CG, Washington N. The stomach: its role in oral drug delivery. In: Rubinstein MH, ed. Physiological Pharmaceutical: Biological Barriers to Drug Absorption. Chichester, UK: Ellis Horwood, 1989, 47Y70.
49. Desai S, Bolton S. A floating controlled release drug delivery system: in vitro-in vivo evaluation. Pharm Res. 1993; 10:1321Y1325.
50. Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release. 2000; 63:235Y259.
51. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963; 52(12):1145-9.
52. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983; 15(1):25-35.
53. Timmermans J, Andre JM. Factors controlling the buoyancy and gastric retention capabilities of floating matrix capsules: new data for reconsidering the controversy. J Pharm Sci. 1994; 83:18Y24.
54. Mojaverian P, Ferguson RK, Vlasses PH et al. Estimation of gastric residence time of the Heidelberg capsules in humans: effect of varying food composition. Gastroenterology. 1985; 89:392Y397.
55. Bechgaard H, Ladefoged K. Distribution of pellets in gastrointestinal tract. The influence on transit time exerted by the density or diameter of pellets. J Pharm Pharmacol. 1978; 30:690Y692.
56. Garg S, Sharma S. Gastroretentive drug delivery systems. Business Briefing: PharmTech Web Site. 5th edition. 2003. Available at: http://www.touchbriefings.com/cdps/cditem.cfm?NID=17&CID=5. Accessed: October 6, 2005.