Regulating emerging technology in times of crisis: Digital contact tracing in Norway during the Covid-19 pandemic

Jonas Lund-Tønnesen
Department of Political Science, University of Oslo, Norway
ORCiD: 0000-0002-4544-7266
Jonas.lund-tonnesen@stv.uio.no

Address correspondence to: Moltke Moes vei 31, 0851 Oslo, Norway. Postboks 1097 Blindern 0317 Oslo.

Acknowledgements:
The author wishes to thank Tobias Bach and Tom Christensen as well as the anonymous reviewers for their helpful comments. Thanks also for comments on earlier drafts to participants at the ECPR RegGov ECN conference in December 2020, and the PBO research group seminar in December 2020 at the Department of Political Science, University of Oslo.

Conflict of interest statement:
The author declares that there is no conflict of interest.

Biographical statement:
Jonas Lund-Tønnesen is a Doctoral Research Fellow at the Department of Political Science, University of Oslo, Norway. His research interests include digital technology, governance, regulation and crisis management.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/lapo.12195

This article is protected by copyright. All rights reserved.
Regulating Emerging Technology in Times of Crisis: Digital Contact Tracing in Norway during the COVID-19 Pandemic

Jonas Lund-Tønnesen

Jonas Lund-Tønnesen
Department of Political Science
University of Oslo, Norway
Moltke Moes vei 31, 0851, Oslo, Norway.
P.O. Box 1097 Blindern 0317 Oslo

Email: Jonas.lund-tonnesen@stv.uio.no
Regulating Emerging Technology in Times of Crisis: Digital Contact Tracing in Norway during the COVID-19 Pandemic

Jonas Lund-Tønnesen

In times of crisis, emerging technology can pose major challenges for regulators. They must deal with great uncertainty and urgency related to both the crisis and the technology. To understand such situations, this article studies the revelatory case of privacy regulation of a contact-tracing application called Smittestopp, created in Norway during the COVID-19 crisis. Based on public and organizational documents and 48 interviews, the analysis shows that the Norwegian Data Protection Authority faced several options for regulatory intervention throughout the crisis, and adapted its approach based on intra-crisis experience, regulatees’ responses, and different levels of uncertainty and urgency. Building on these findings, the study formulates propositions regarding the regulation of emerging technology during a crisis and regulatory agencies’ use of rule-based, idea-based, and norm-based interventions. This study provides insight into how these three types of intervention relate to different aspects of a crisis situation. Furthermore, it stresses the importance of idea-based intervention as a key site of analysis in studying technology that emerges during a crisis.

Keywords

Crisis, COVID-19, contact tracing, idea-based regulation, regulating emerging technology

The author wishes to thank Tobias Bach and Tom Christensen as well as the anonymous reviewers for their helpful comments. Thanks also to participants at the ECPR RegGov ECN conference in December 2020, and the PBO research group seminar in December 2020 at the Department of Political Science, University of Oslo, for comments on earlier drafts.
1 Introduction

Research on crises has shown that technologies and innovations can emerge rapidly to overcome the crises in question (Meijer, Lips, and Chen 2019; Mbunge et al. 2021). Simultaneously, emerging technologies bring about uncertainty, both related to their technological specifics and their broader societal impacts. During the COVID-19 pandemic, a global mega-crisis with high uncertainty and complexity, digital contact tracing applications (apps) were quickly developed across the world to assist in infection tracking (Ferretti et al. 2020; Whitelaw et al. 2020). Differing views on how to manage and use such technology constitute a highly polarized debate (Abbot 2012; Mandel 2009). In times of crisis such as a pandemic, proponents argue for the potential of new technologies to protect human lives, while opponents emphasize uncertainties related to ethics, government surveillance, and long-term privacy implications (Budd et al. 2020; Morley et al. 2020; Boustead 2021).

This dilemma of technological potential and uncertainty represented a key challenge for the Norwegian Data Protection Authority (DPA) during the pandemic. This regulatory agency had to rapidly evaluate the potential of the contact-tracing app created by the Norwegian Institute for Public Health (NIPH), called Smittestopp (“Infection Stop” in Norwegian), while at the same time considering possible detrimental outcomes related to mass surveillance. The DPA thus had to regulate a new technology under conditions of great uncertainty and time pressure, which is a little-researched context in regulation studies.

Previous research on regulation in non-crisis situations has elaborated on how regulators define non-compliance and analyze moves by regulated entities ((e.g., Kagan and Scholz 1984; Ayres and Braithwaite 1992; Gunningham, Grabosky, and Sinclair 1998), as well as how regulated entities themselves respond to acts by regulators (e.g., Winter and May 2001; Fairman and Yapp 2005; Gunningham and Kagan 2005). These studies, however, are not explicit as to
what options regulators face during a crisis, or how emerging technology is regulated during a crisis. A crisis is a special situation in which regulators are expected to welcome initiatives that can assist in combating the crisis, and thus to apply their interventions differently than they would in more stable circumstances. A crisis also represents an opportunity for regulators to attempt to change the sets of underlying ideas and beliefs that constitute a regulatory field (Black 2002; Boin, t Hart, and McConnell 2009; Fligstein 2001). Using this as a point of departure, this article asks the following questions: which interventions do regulators use to regulate emerging technology in times of crisis? What are the conditions under which regulators adapt their choice of interventions for emerging technologies in crisis?

To answer these questions, this article documents and analyzes the Norwegian DPA’s choice of different interventions to regulate the Smittestopp app in 2020–2021. This app, and corresponding ones in other countries, are examples of technology created in a short time frame during a crisis, with uncertainty related to function, data collection, data storage, and long-term privacy implications.

At the outset of the crisis when uncertainty was high, the regulator (the Norwegian DPA) initially utilized what is labeled an idea-based intervention to not limit technological innovation of the regulated entities (the NIPH and its assisting app developers, Simula and Netcompany). Due to lack of response from the regulated entities, and due to time pressure, rule-based and norm-based interventions were embraced in phase two. Thereafter, with reduced uncertainty regarding the technology in question, the coronavirus itself, and the effects of lockdown, the DPA pursued a strictly rule-based approach with the ban of the contact-tracing app in phase three. This forced the regulated entities to create a modified second version, Smittestopp 2. In the final phase, the DPA controlled the new technology with rule-based interventions, but supported these interventions with norm-based elements.
Building on these findings, this study formulates propositions regarding the regulation of emerging technology in crisis and regulatory agencies’ use of rule-based, idea-based, and norm-based regulatory interventions. This study provides insight into how these three intervention types relate to different aspects of a crisis. Furthermore, it stresses the importance of idea-based interventions as a key site of analysis in studying technology that emerges during a crisis.

The remainder of the article is structured as follows: First, I define relevant concepts and review the relevant literature in order to provide initial analytical direction for the study. Second, I present the study’s methods and data, which rely on a total of forty-eight expert interviews and document analysis. Third, I thoroughly describe the COVID-19 crisis and the evolution of privacy regulation throughout the crisis. Finally, I summarize the empirical findings, form propositions, and discuss the study’s limitations and its implications for further research into the regulation of technologies that emerge during a crisis.

2 Theoretical approach

2.1 Crisis and uncertainty

An important premise of this study is the concept of crisis. I follow Boin et al. (2005, p. 5), who define a crisis as “a serious threat to the basic structures and the fundamental values and norms of a system which under time pressure and highly uncertain circumstances necessitates making vital decisions” (p. 5). This means that crises inherently involve dynamic and unpredictable circumstances, complicating decision-making and the building of governance (regulatory) capacity (Christensen, Lægreid, and Rykkja 2016). Crises include wars, famines, epidemics, large financial downturns, and cyber-attacks, and the effects of crises can be both immediate and long-term (Ansell, Boin, and Keller 2010). Crises can both facilitate and destroy technological innovations (Archibugi, Filippetti, and Frenz 2013; Schumpeter 1934; Sechser,
Narang, and Talmadge 2019; Talmadge 2019). For instance, Meijer, Lips, and Chen (2019) show that during a range of different crises, new technologies, applications, and digital networks have been used to create and share information and reduce transaction costs for collaboration. The work of regulators in such situations is characterized by uncertainty regarding social structures, uncertainty regarding technology, and limited time to act (Baekkeskov 2016; Rosenthal, Charles, and t' Hart 1989), but with the opportunity to facilitate the use of technology. Uncertain situations are characterized by unknown probabilities (Knight 1921), where past experiences and strategies can only be applied to a small extent (Ansell, Boin, and Keller 2010); in addition, perceived solutions may be ambiguous, meaning they are incongruent, incoherent, or open to interpretation (Hatch and Erhlich 1993). The onset of the COVID-19 pandemic had all of these features. Before elaborating on how technology in such circumstances is regulated, it is necessary to state what is meant by emerging technology and how it relates to uncertainty.

2.2 Emerging technology

The concept of “emerging technology” is broad and potentially ambiguous (Abbot 2012). Based on an extensive literature review, Rotolo, Hicks, and Martin (2015) highlighted five attributes that characterize emerging technology: 1) radical novelty, 2) relatively fast growth, 3) coherence, 4) prominent impact, and 5) uncertainty and ambiguity. In essence, emerging technology involves the application of knowledge in new ways, having a relatively high impact in a short amount of time (Rotolo, Hicks, and Martin 2015). One may observe all these characteristics in technologies emerging during crisis, and uncertainty is likely even higher compared with more stable times. Technologies from completely different sectors may share these characteristics (Perrow 1984), including technologies that have a physical impact, like nanotechnology, vaccines, and military technology, as well as non-physical technologies such
as smart applications, 5G, deep learning, social media, and blockchain. The latter are of particular relevance for the study at hand, as it deals with a digital mobile tracing application.

There is arguably a difference in technological uncertainty during times of crisis compared with more stable times. Due to time pressure, a crisis demands openness to solutions that can combat it, but the high level of uncertainty simultaneously provides an opportunity for regulators to impose ideas and preferences and to create interpretations of ambiguous situations (Black 2002; Boin, t Hart, and McConnell 2009). Technological uncertainty in more stable times is characterized by less demand for immediate solutions and a longer time allowance for regulators to consider alternatives on how to deal with the technology, given the greater degree of contextual certainty.

2.3 Analytical direction: Three regulatory interventions for crisis

Scholars of regulation emphasize that dealing with the introduction of new products and technologies is a primary objective of regulation (Black 2010; Mandel 2009). New technologies generate new difficulties, augmenting the presumed void between existing statutes and regulations and what is regulated. As a consequence, both regulators and regulated entities can be uncertain about how emerging technology fits with existing rules and legislation (Lewallen 2020). This is especially relevant in times of crisis (Ansell, Boin, and Keller 2010), where common regulatory approaches (e.g., Ayres and Braithwaite 1992; Gunningham, Grabosky, and Sinclair 1998; Coglianese, Nash, and Olmstead 2003; Baldwin and Black 2008) are generally not designed for situations of high uncertainty and urgency (Baekkeskov 2016). This means that situations like the COVID-19 pandemic may call for other regulatory approaches beyond the more common ones.

One way to view different forms of regulatory approaches and how they deal with emerging technology in uncertain circumstances is through the lens of what are here called rule-
based, idea-based, and norm-based regulatory interventions. This differentiation derives from neo-institutional theory, where Scott (2014) introduced a broad framework involving three pillars that describe how institutional elements impact social behavior. Inspired by Scott, the present study’s point of departure is that regulatory agencies take on different roles and act as “agents” that attempt to influence and guide the behavior of regulatees through various interventions (Fligstein 2001; Scott 2003, 2008). These interventions involve different ways for how rules, ideas and norms can formally and informally be sustained and imposed (Scott 2008).

2.3.1 Rule-based intervention

Rule-based intervention entails explicit investigation and control by regulatory agencies. It involves the usage of formal instruments such as rule-setting, monitoring, and sanctioning activities in managing technology (Scott 2014), derived from the core idea of “command and control” (Baldwin 1997). Regulatory agencies that make use of rule-based intervention are clear regarding what behavior of regulates and what attributes of technology they expect. In essence, they sustain “the rules of the game” through the underlying mechanism of coercion (DiMaggio and Powell 1983). Studies investigating what happens when regulators embrace formal control have been conducted in the areas of environmental regulation (Gray and Deily 1996), labor regulation (Almeida and Carneiro 2012) and food regulation (Fortin 2016).

The main argument for a rule-based approach is that the introduction of laws, regulations, or rules is an act of the state using the force of the law, which helps to reduce uncertainty in two ways (Lodge and Wegrich 2012): first, by clarifying expectations for all players of the game, and second, by enabling capacity for information gathering about regulatees’ behavior. Clear expectations can create higher levels of accountability, transparency, and consistency in obeying the law. Information gathering can enhance the basis for decision-making related to the monitoring of activities, sanctioning, or incentivizing. This
perspective employs the idea that without adequate information, enforcing these rules will not achieve or could possibly undermine their intended objectives.

There are several limitations to this approach, which are amplified in crisis situations. One is the rigidity of rules, which can curb innovation (Lodge and Wegrich 2012). In this study, this is a vital point, as regulators arguably should support emerging technology that can help combat a crisis. However, when time is limited, adequate information is difficult to obtain. Additionally, the cost of sustaining ubiquitous bureaucratic monitoring systems with potentially ambiguous rules is high. Sanctioning without sufficient information can also be risky, leading to unintended consequences. This adversarial approach of rule-based interventions is generally unwanted by regulators, and is often used as a last resort (Ayres and Braithwaite 1992).

2.3.2 Idea-based intervention

Regulation with the idea-based approach derives from what Black (2002) labels “regulatory conversations.” These conversations work at the constitutive level of social reality, where regulatory agencies attempt to establish shared understandings through taken-for-granted beliefs (Cornelissen et al. 2015; Phillips, Lawrence, and Hardy 2004). They frame what solutions and problems are conceivable (Gilad 2014; Goffman 1974), while also establishing definitions of situations (e.g., “market failure,” “compliance,” and “privacy violation” [Black 2002, p. 165]). Accordingly, regulatory agencies convey what they deem to be fundamental ideas and beliefs that underlie the interpretations of rules, norms, and target technology in the domain in which regulatees operate and technology emerges.

This type of approach has been used to understand international taxation and compliance (Picciotto 2015), the regulatory evolution of financial markets in Europe (Thiemann and Lepoutre 2017), and how the media industry is largely regulated by communication (Ali and Puppis 2018). Outside the area of regulation, Fligstein (2001) sought to understand how
different actors made strategic use of cognitive frames to modify the preferences of state actors in the European Union’s (EU) Single Market Programs in the 1980s.

The advantages of idea-based regulation become clear in situations in which constantly keeping track of every actor and new technology becomes overwhelming and costly. When information is scarce, situations uncertain, and rules ambiguous (Black 2002; Gilad 2014), an idea-based approach can create certainty and inceptively influence the behavior of regulatees and the properties of technology. This approach differs from ordinary “dialogue,” such as restorative justice dialogue (Braithwaite 2017), in that it has a clear focus on the dissemination of fundamental values, rather than warnings of future inspections or harsher sanctions. It also differs from persuasion or education in that it entails shaping and constructing a specific view of orthodox conduct for technological development (Black 2002; Picciotto 2007).

Limitations of the idea-based approach involve the fact that altering fundamental beliefs and ideas does not come easy (Barley and Tolbert 1997), especially in relatively stable situations. Beliefs and ideas may be contested, and regulatees can have enough resources to sustain their existing ideas of technology, making the framing and belief-changing work by regulators more difficult. Changes in beliefs may occur mainly through windows of opportunity (Fligstein 2001), meaning a crisis must be big enough that existing structures of ideas and beliefs are threatened.

2.3.3 Norm-based intervention

A third possible style of regulatory intervention occurs through normative appeal (Burby and Paterson 1993; Winter and May 2001; Tyler 2021). This norm-based approach focuses on moral duty and reasonableness (Bardach and Kagan 2017). Regulators attempt to influence regulatees’ behavior by emphasizing the rationale and appropriateness of specific laws and regulations, and by reinforcing norms (Gezelius and Hauck 2011). This intervention is based on social values
and focuses on shaming and praising regulatees. Shaming and praising come about when regulators convey information about expected conduct, establishing what constitutes “good” or “bad” behavior and thereby influencing regulatees’ reputations (Bach et al. 2021) and perceived legitimacy (Rorie et al. 2018). Studies of regulators working through appeals to moral duty, appropriateness, and reasonableness have reported increased compliance, for instance in the context of environmental regulation (Winter and May 2001) and tax regulation (Schwartz and Orleans 1967).

Advantages of the norm-based approach include its distinct focus on regulatees’ duties with respect to specific rules and laws, which creates social expectations. Praising and shaming provide clear signals to regulatees for how they should continue their work. By being less specific regarding what technological attributes are expected from the formative stage, this approach remains open to new technologies (Hagemann, Huddleston Skees, and Thierer 2018).

One challenge with this approach is the difficulty of evaluating which social values are more or less important during a crisis (Boin et al. 2005). For instance, one can expect that determining the tradeoff between ensuring people’s privacy versus saving human lives involves a complex calculation (Akinsanmi and Salami 2021). Additionally, emphasizing the reasonableness of rules and shaming or praising behavior can be difficult when some rules are only ambiguously applicable to emerging technology.

2.3.4 The interplay between the regulatory interventions in crisis

The essentials of each intervention are summed up in Table 1. The table describes the three regulatory interventions and their relation to the two key features of crisis situations discussed above: uncertainty and urgency (Boin et al. 2005). Both features are expected to play a role when regulators make decisions on interventions during a crisis. The indicators in Table
I provide direction for what I will look for in the empirical analysis to observe the different types of regulatory intervention.

All three intervention types involve influencing the behavior of regulatees, particularly with respect to emerging technology. They move along a spectrum from enforcing rules to shaping taken-for-granted ideas, and can potentially reinforce, complement, or interfere with each other (Scott 2014). For instance, sanctioning can lead to public shaming, and the content of idea-based regulatory conversations can at times appeal to moral duties. Both shaming and sanctioning can cause regulatees to change taken-for-granted ideas, more in line with idea-based regulation, thus complementing another intervention. However, rule-based interventions can also lead to an adversarial relationship between the regulator and regulatees, which can interfere with idea-based regulation (Black and Baldwin 2010).

Overall, regulation in crisis situations is complex. Uncertainty of crisis and technology, and how the levels of uncertainty change over time, provide a dynamic and unpredictable setting for regulatory agencies. The above discussion provides some initial direction as to how the regulatory interventions may relate to levels of uncertainty, time pressure, and regulators’ experience with regulatees’ responses. The empirical section of this study seeks to explore how these aspects may relate to one another.

3 Methods and data

This is a single case study of privacy regulation concerning a specific technology, Smittestopp, operating within the context of public health control during a crisis. This can be considered a revelatory case (Yin 2014), meaning that it is illustrative of technology regulation during a crisis, a hitherto relatively unexplored phenomenon. The case was selected with the goal of depicting key aspects of the regulation of emerging technology, and understanding how
and under what conditions regulation in such special situations occur. To do this, I provide rich empirical descriptions of how regulation evolved over time and consider perspectives from both regulators and regulatees. This provides the basis for the general propositions concerning the regulation of technology in times of crisis presented in the concluding section of the article.

Documents and interviews constitute the main sources of data for this study. The documents depict the formal communication between the regulator and the regulated entities and are publicly available, reflecting a context with high transparency regarding public sector decision-making. Moreover, the organizations provided additional information through evaluation reports and press releases about their reasoning concerning their regulatory decisions (DPA) and technological development (NIPH and Simula). To clarify, Simula is a public research organization in Norway that provide technical assistance to NIPH as it developed Smittestopp 1. For Smittestopp 2, NIPH received assistance from a private firm called Netcompany.

Government statements and reports provide information about the coronavirus crisis in general, the apps’ role in the overall management of the crisis, and relevant laws and regulations. One particularly rich source of information is the first official evaluation report by the Norwegian Corona Commission, which is 456 pages long (see Kvinnsland et al. 2021).

Additionally, the data comprises 48 interviews with actors in various organizations involved in the management of the COVID-19 pandemic in Norway. Sixteen semi-structured interviews were conducted by the author with central actors involved in the regulation process from DPA, NIPH and Simula. A main criterion for selecting informants was the actors’ direct involvement in the regulation process, either as a regulating party or a regulated party. A second criterion was that informants should have a range of roles in their respective organizations in order to provide different perspectives on the pandemic and the regulation process.
The informants from the DPA were specifically selected because they played a central role in regulating the Smittestopp app (i.e., through conversations with regulated entities, in the formal case processing, and in the sanctioning of the app). The informants were first identified through the formal documents, which are publicly available on the websites of DPA and NIPH. Furthermore, I used snowball sampling to find other actors who were involved or who could provide interesting insights into the regulation process but who were not explicitly mentioned in the publicly available documents. Within the DPA, interviewees included legal advisers, information officers, and directors. Interviewees from Simula were computer programmers and managers responsible for developing the app, while interviewees from NIPH included legal advisers and managers involved in or responsible for the development of Smittestopp 1 and 2. Overall, seven interviews were conducted at the DPA, four at Simula, and five at NIPH. The interviews lasted between 30 and 90 minutes, were recorded and transcribed. Due to the crisis itself, all interviews took place via Zoom between September 2020 and August 2021. This time-period provided an opportunity to follow the regulatory development with special proximity, and to see the changes that occurred in the transition from Smittestopp 1 to Smittestopp 2.

In the semi-structured interviews conducted by the author, the interviewees were asked to describe how they understood the crisis situation, relevant legislation, the role of technology and privacy in the pandemic, and how they experienced uncertainty and ambiguity throughout the crisis. They were also asked what lessons could be learned from the process of developing or regulating the first Smittestopp app to the second app. The interviews gave valuable insights into the regulatory conversations that took place before the formal communication and the written documents, but also the other regulation phases.

In addition, the independent official Corona Commission in Norway conducted thirty-two interviews as part of its evaluation of the Norwegian government’s overall management of
the COVID-19 pandemic. These interviews offer a very rare insight into the overall crisis management approach of the government, and the role technology played in dealing with the pandemic. The interviews were conducted with political and administrative leaders who were key decision-makers during the pandemic, and the transcripts are available to the public (in Norwegian) on the Corona Commission’s website (see Corona-Commission 2021). Examples of actors that were interviewed include the head of NIPH, the Minister of Health, the Prime Minister, and leaders in other prominent public health organizations. These interviews lasted between 60–120 minutes and provide an understanding of the overall management of the crisis, as well as considerations, goals, and evaluations related to digital contact tracing.

Lastly, I attended public digital conferences and meetings with the Norwegian DPA, NIPH, Simula, and other experts in the field (see NBT 2020; PrivacyRules 2020; Simula 2020a; Tekna 2020). This allowed me to observe how some of the actors and experts talked to each other about the crisis and about Smittestopp.

The data as a whole covers the government’s general crisis management approach as well as information exchanges between the DPA and NIPH/the assisting developers, which took place between March and December 2020. Appendix I provides an overview of the data sources in the study.

The documents and the transcriptions were initially analyzed with an open coding process looking for recurrent themes. Early on, it became clear that the different types of regulatory intervention could be organized into various phases. From there on, relevant evidence and statements were categorized into the different phases. By specifically looking for the indicators derived from the three types of regulation that gave initial direction to the analysis, I was able to observe the dynamics between the different types of intervention.
The different indicators were found partially in different types of data. The rule-based aspects were found predominantly in written documents, as they are formal interventions, but the interviews also provided a better understanding of these decisions. As expected, the idea-based aspects occurred during conversations between the different actors, as revealed by the interviews. The norm-based aspects appeared in written documents as explicitly mentioned values around shaming and praising behavior.

I analyzed my own interviews in conjunction with the documents from the DPA and NIPH by comparing and tracking the different perspectives on regulation, uncertainty, technology and privacy in the different phases. These perspectives were considered in relation to the regulatory interventions decided upon by the DPA. Furthermore, I analyzed the data from the Corona Commission (report and interviews) to gain an informed understanding of how central actors in the government and NIPH perceived uncertainty for the general crisis management and which measures were considered and prioritized in dealing with the pandemic. I then analyzed the role that the Smittestopp app played during the pandemic, as well as the role it could have potentially played, as perceived by the central actors in the government. This was essential for understanding what pressure the DPA experienced while making decisions, what evaluations they had to make, and whether their regulatory efforts were successful or not.

Overall, the data analysis enabled me to gain a comprehensive understanding of the different perspectives on regulation during the crisis from both the regulating agency, the DPA, and the regulated entities, with NIPH at the forefront, as well as what assessments were made under these circumstances.

4 Evolution of privacy regulation throughout the COVID-19 crisis

The outbreak of COVID-19 was first detected in December 2019 in China. It quickly developed into a highly complex mega-crisis involving the entire world, with governments facing difficult
trade-offs between health, economics, and human rights. In Norway, the first confirmed case of infection was registered on February 26, 2020. On March 12, the Norwegian government introduced intrusive control measures, and NIPH began development of Smittestopp 1. The government declared the situation under control on April 6 (Kvinnsland et al. 2021). Table 2 summarizes the course of events in Norway.

Before going into more detail on the different phases of the crisis, I will first provide some background information about the general mission of DPAs and about the development of Smittestopp 1 and 2 in Norway. DPAs were created in many European countries throughout the 1970s, 1980s, and 1990s along with the diffusion of data protection legislation, although several non-European countries now also have similar regulatory agencies (Bennett and Raab 2020). These agencies go under various names, and in some countries, such as the United States, there is no single authority on privacy or data protection.

The Norwegian DPA shares its formal mission with all EU DPAs, which is to regulate data privacy through the EU General Data Protection Regulation (GDPR). The GDPR was implemented in 2018 and aims to strengthen and harmonize privacy regulation in the processing of personal data across the EU. It intends to give citizens more control of their own personal digital information and strengthens financial sanctions for cases of non-compliance. DPAs often take on various roles in their task of regulating data privacy, playing at various times the role of consultant, policy adviser, educator or enforcer (Bennett and Raab 2020).

The Smittestopp app was developed in two versions, Smittestopp 1 and 2. NIPH had assistance from Simula in developing the first version, and from Netcompany in developing the second. Both apps’ primary function was assist human contact-tracing by tracking the movement patterns of citizens in order to limit the transmission of the COVID-19 (Simula 2020b). After citizens downloaded the app to their smartphones, the app would notify them
once they had been in close contact with someone who reported having been infected by the coronavirus.

Smittestopp 1 worked using both Bluetooth and GPS to track the virus and detect other users (NIPH 2020a). The information collected by the app was stored centrally at the NIPH for 30 days for research purposes (Simula 2020b). In Smittestopp 2, GPS tracking was removed, and data was decentralized, being stored only on users’ phones. Additionally, open-source code was used in the development of Smittestopp 2; Smittestopp 1 had been closed source.

The significance of open-source code is that the source code of the technology is publicly available for anyone to review and suggest improvements (Fitzgerald 2006). However, this does not mean that anyone can change the code itself. Closed source, on the other hand, means that the code cannot be accessed by anyone other than the developers themselves. In general, there are advantages and disadvantages to both modalities. However, one can imagine that if a technology is controversial, having open-source code could contribute to transparency, which might be needed to legitimize such an intrusive measure.

<<< TABLE 2 ABOUT HERE >>>

4.1 Phase 1: Development of the crisis and the emergence of new technology

NIPH was not the only actor in the world creating such apps. Computer developers across the world were experimenting with a variety of alternative technologies (Grekosus and Liu 2021). As these types of technologies were entirely new, at least in a Western context, neither the public, computer developers, nor regulators knew exactly how they would work. This meant that there was no blueprint for how regulators should respond to such technology and no
experience on which to base decisions. During the introduction of Smittestopp at the beginning of the crisis, the head of the DPA emphasized the agency’s initial communicative approach: “We had a dialogue with the Norwegian Institute of Public Health and the app developers about privacy impact assessments, about risk and vulnerability analysis, but we only gave verbal input.” At this early stage, the DPA also stressed to NIPH and Simula the importance of “privacy by design” (Interviewee 6), meaning that any privacy measures should be built into the technology from the start and integrated throughout the entire technological development process, rather than simply implemented post-development. This was seen as a proactive measure, necessary to ensure privacy and to allow citizens to gain control over information about themselves. In these conversations, NIPH replied that they wanted more understanding from the DPA regarding the urgency of the situation and the overall infection control assessments (Interviewee 29, 30). For instance, a central actor at NIPH said that “we were not able to convince the DPA that we would eventually introduce the necessary privacy measures, but we had them on our list” (Interviewee 12). These included data minimization, reducing data storage time, and assessments of technology change, meaning privacy by design. This indicates that the DPA attempted to impose its ideas upon NIPH/Simula, and that NIPH/Simula resisted by trying to defend their own choices.

The DPA emphasized the importance of transparency, showing all stakeholders that whatever technology was to be involved must be available for outside expert review (Interviewee 6, 9). In a press release on the DPA’s website in March (DPA 2020a), the head of the DPA stated two essential ideas they had communicated:

In order for citizens to download the app, there must be full transparency from the authorities. Openness builds trust, and only then will more people use the solution. But it is an intrusive measure that the state is now taking in this very special situation.
This type of legislation is only legal if it constitutes a necessary, suitable and proportionate measure in a democratic society.

These are general encouragements, reminding regulated entities and society at large about what fundamental values are at stake. Transparency is seen as a precondition for trust in political institutions and for a democratic society. Additionally, in the same press release, the DPA strongly emphasizes voluntary usage of the app, as well as information about how citizens can withdraw consent (DPA, 2020a).

4.2 Information in the early stages of the pandemic

In March and the start of April, information was scarce about both the app and the virus. The first written source for understanding Smittestopp was found in the specific regulation mandating its creation (RDI 2020). The text of the regulation text is relatively short and was issued by the Ministry of Health and Care Services (MH) on March 27. It states that the app’s purpose is to surveil citizens in order to monitor the spread of infection and to assess the effect of infection control measures (Kvinnsland et al. 2021). The regulation further declares which data are relevant in monitoring infection spread, and who has access to these data (RDI 2020). The text of the regulation has very little information about the actual technology, meaning it did not contribute significantly to enhancing the DPA’s knowledge.

Recollecting past events, a director at Simula stated in an interview that this regulation was specifically written for Smittestopp by the MH (Interviewee 3). In hindsight, this appears to give a false sense of unambiguous rules. According to informants in the DPA, as the MH had not significantly involved the DPA in this process, the regulation conflicted with existing privacy laws (Interviewee 5, 7). To further illustrate the ambiguity of rules at the start of the crisis, the director at Simula stated in an online debate with the DPA in June 2020 that “the DPA focuses on laws, we focus on realities” (NBT 2020). This suggests that the regulatees
found the privacy laws in general to be somewhat ambiguous—even rules that were tailored for themselves. This is also in accordance with the perceptions of all tracking apps, where the ethical and legal boundaries are generally unclear (Gasser et al. 2020).

Eight days after the institution of the regulation, the MH assembled an expert group to assess privacy and security issues related to personal information on the application, which had yet to be launched (Expert-Group 2020a). Due to lack of time, the expert group focused only on security and not privacy in its preliminary report, which was delivered just five days after the groups’ formation. Thus, the group’s findings did not help to reduce uncertainty for the DPA. The group claimed that privacy would be easier to analyze once larger parts of the system were finished (Expert-Group 2020a). This evaluation made the DPA more suspicious, as the agency could not know whether any privacy measures were included at this early stage. Without any assessments of potential privacy concerns, Smittestopp was launched to the public on April 16. At this point, neither the DPA nor the public had access to risk analyses, privacy assessments or the protocol documenting the developmental stages of the app.

4.3 Phase 2: No change in technology

Eventually, the DPA realized that it had not been successful in changing the behavior of the app developers or the trajectory of the technology, as far as it knew. According to the head of the DPA, the agency saw that its way of employing informal communication had not adequately achieved its goals (Interviewee, 6). This convinced it to change interventions. Too much time had passed without the DPA knowing what the app developers were up to (Interviewee, 6).

On April 27, the DPA announced that it would initiate formal inspections of Smittestopp (DPA 2020b). By this point, approximately 1.5 million (out of 5.4 million) Norwegians had downloaded the app (NRK 2020a). The DPA retrieved three types of documents from the developer: privacy impact assessments, risk and vulnerability analyses, and the processing
protocols. These documents were examined closely because they show precisely what considerations were taken regarding privacy by NIPH. The DPA found that there were clear shortcomings in the risk and vulnerability analyses, and the processing protocol was not explicit about what personal data was processed by the application and for what purposes (DPA 2020c).

After the start of the formal inspection, communication between DPA and NIPH became formal and written, and informal conversations ceased (Interviewee 9, 12). In a letter on May 8, the DPA told NIPH that it would instruct them more thoroughly, in different stages (DPA 2020d). With this letter, the DPA went through the relevant general laws and privacy laws in detail, specifying their basic principles and appropriate applications. By initiating the investigation, the DPA displayed its scepticism, and the decision received media attention (NRK 2020b). The DPA was active in media debates around privacy and provided justifications for the investigation, which can partly be interpreted as public shaming of the app. A central actor in Simula said in an interview that some personnel felt that this project was lost due to the negative media attention (Interviewee 3).

Eleven days later, on May 19, the DPA formally requested answers from NIPH with a deadline of June 1. The questions the agency demanded answers to concerned the specific purposes of the personal data collected in the app, current results, the justification for using GPS data and not just Bluetooth data, the justification for central storage of data rather than decentralized storage on citizens’ phones, and the usefulness of the application in its current state and at that point in the COVID-19 pandemic (DPA, 2020, pp. 8–10).

Meanwhile, the expert group completed its report on May 18. Its conclusions were that privacy was not properly ensured in the app, and that data minimization could be achieved. The group was clear in recommending the use of open-source code in order to allow citizens to know what type of information was collected and as a measure to ensure the protection of
private information (Expert-Group 2020b). This gave the Norwegian DPA some idea about what type of technology it was dealing with. Additionally, the expert group proposed changes to the original government regulation for the app, confirming the uncertainty that the DPA experienced and the that ambiguity NIPH/Simula experienced.

4.4 Phase 3: Answers and action

On June 1, the DPA received answers to some of its questions from NIPH. However, the DPA demanded more documentation on June 8, as the initial documents were not considered to be sufficient, something NIPH disagreed with (Interviewee 15). Four days later, on June 12, the DPA notified NIPH that it would temporarily ban Smittestopp. The agency stated that based on the knowledge it had gained from the documents and the expert group report, the privacy violations were too severe for the app to be allowed to continue operating (DPA 2020e). It also agreed to NIPH’s request for a meeting, but made clear that all input to the case needed to be provided in writing. This shows how the DPA wanted to keep any subsequent interaction between regulator and regulated entities at a formal level.

NIPH stopped its work with personal data on June 16, and at this point Smittestopp 1 was rated by Amnesty International as one of the most intrusive apps in the world (Amnesty 2020), intensifying the public shaming already started by the DPA. The DPA permanently banned the use of Smittestopp 1 on July 6. In its official ban letter to NIPH, the DPA further specified that any activity from then on would be closely monitored and controlled (DPA 2020f).

4.5 Phase 4: Smittestopp 2

After the ban, NIPH was still committed to aiding manual infection tracking in Norway through the use of technology. It began reworking the app in September 2020, with assistance from the private firm Netcompany (NIPH 2020b). This time, the development of the app was approached
completely differently. Many lessons were learned during development of the first app. Technology and privacy experts were included in development, and the DPA was continually updated and consulted throughout the process (Interviewee 6, 14). Nevertheless, the DPA reminded NIPH that it was closely monitoring the new app and that it had the authority to demand and obtain all relevant information for inspection (DPA 2020g).

Technically, the new app included only Bluetooth and not GPS and made use of decentralized data storage. It was also based on open source, ensuring the needed transparency (NIPH, 2020d). Furthermore, NIPH spent more time attending to the technicalities and privacy aspects that had been criticized previously (Interviewee 12, 15). Regarding context, uncertainty was lower at this time, and the government had more knowledge about the crisis (Kvinnsland et al. 2021). NIPH had also learned more about how to interpret the law from the DPA. In an interview, the head of the DPA stated that the DPA told NIPH what type of information it had to provide to citizens downloading the app (Interviewee 6).

In December 2020, the DPA said that the new app was more privacy friendly and praised NIPH for its “good assessments” (DPA 2020h). It added that it could not guarantee that it would not intervene once more, as this was complicated technology. On December 21, 2020, the app was launched. As of September 2021, it is still in use and the DPA has not intervened since, implying its approval.

5 Discussion and conclusion

The theoretical section of this article proposed three different types of regulatory intervention—rule-based, idea-based, and norm-based—for regulating emerging technology in times of crisis.
All three approaches display quite different perspectives on regulation, each with their strengths and weaknesses. It was suggested that different levels of uncertainty, time pressure, and regulator’s experience with regulatees’ responses would impact which type of regulatory intervention regulators would be likely to embrace. Given these analytical directions, the following discussion summarizes the empirical findings and seeks to understand the various regulatory interventions chosen by the DPA when regulating Smittestopp. Building on this discussion, implications for further research are considered.

As the analysis reveals, determining regulatory intervention in the COVID-19 crisis was not an easy task for the Norwegian DPA. The data shows that the DPA changed its approaches throughout the crisis, primarily based on knowledge of the activities of regulatees and the technology, and its own experience with regulation and regulatees’ response to this regulation. Table 3 provides an overview of the uncertainty, urgency, and the DPA’s interventions during the COVID-19 crisis.

In the beginning of the crisis, the DPA recurrently conveyed an openness to new solutions and stated that privacy laws were not necessarily a hindrance to technological development. The work by the DPA was primarily communicative and idea-based, taking the form of either direct dialogue with the regulated entities (NIPH and Simula) updates to its website and media. NIPH and Simula appeared to perceive the rules as ambiguous, creating an opportunity for the DPA to provide its interpretation of privacy rules. As shown in Table 3, the DPA was generic about what fundamental beliefs should underlie the technology—e.g., transparency—and specific when it came to the measures within the technology—e.g., privacy-by-design—both of which are examples of idea-based regulation. This initial communication focus is consistent with findings in a recent study of crisis management in Norway, where the
government at large focused on creating a fundamental common objective for combating the coronavirus crisis by shaping shared understandings of what the crisis was about and how society must deal with it (Christensen and Lægreid 2020).

Lack of information about the contact tracing app and lack of response from regulatees was what prompted a change in regulatory intervention, causing the shift to the second regulation phase. This happened about six weeks after the initial announcement of the app (see Table 3). During this phase, the DPA formally inspected NIPH and Simula in order to retrieve information with the goal of reducing uncertainty about the technology. Throughout this stage, the DPA also repeatedly stated the reasons for inspection and the rationale of relevant laws, whether on its website, in Norwegian media, or to NIPH directly; these repeated statements can be regarded at least in part as a form of public shaming. Hence, we see a dominant rule-based approach (inspection) with certain facets of a norm-based appeal (naming and shaming).

Based on the regulatees’ response to the regulation, the DPA again saw no other option but to alter its approach once more, moving to a third phase of regulation. At this stage however, while the parameters of the crisis were still uncertain, uncertainty about the technology had been reduced as the DPA now had clear knowledge about what technological and privacy measures the regulatees had and had not implemented. With increased certainty, the DPA expanded its formal efforts by banning Smittestopp 1 and ensuring that it maintained future control of app development. The regulation at this stage was thus solely rule-based. With the introduction of Smittestopp 2 in phase four, the DPA remained in control but also praised the work of NIPH.

Consequently, the preceding elaborations suggest that regulatory interventions on the part of DPA depended on the level of uncertainty with respect to the crisis (due to the virus itself and the effects of lockdowns) and the contact-tracing technology, and how these evolved
over time. To sum up, at the outset of the crisis, the DPA completely followed an idea-based approach. In phase two, rule- and norm-based interventions were embraced. Thereafter, the DPA pursued a strictly rule-based approach with the ban of the contact-tracing app. Finally, after the creation of Smittestopp 2, the DPA controlled the technology with a rule-based intervention but supported it with norm-based elements.

Some propositions may be formulated based on the analysis above regarding study of other types of (emerging) technologies in extreme situations and regarding the study of regulation in crisis situations more generally. One can expect to see idea-based interventions at the start of crises, because regulators are likely to keep an open mind for ways to combat a crisis. At this point, there is expected to be a mixture of perceived ambiguous application of rules, uncertainty regarding the nature of the crisis and the emerging technology, and the need facilitate technological development to combat the crisis. This in turn creates an opportunity for regulators to communicate their own ideas and interpretations of rules and technology and what values are important in crisis situations. Regulators can do this in order to attempt to reduce uncertainty, but also to impose their own ideas in order to impact the cognitive structures and beliefs of regulatees within the relevant regulatory field (Black 2002).

Subsequent regulation in crisis situations will depend on whether regulatees are responsive to the initial interventions by the regulator, and whether uncertainty is reduced. On the one hand, one can expect that if regulators are successful in their interventions, then they will want to avoid an adversarial relationship and will support the work of regulatees using norm-based measures such as praising. On the other hand, one can expect that if uncertainty is not reduced and regulatees are non-responsive, regulators will instead embrace rule-based measures such as investigations in order to confrontationally force a reduction of uncertainty regarding technology, likely in combination with norm-based shaming.
Even further into the crisis, there is a presumed increase of knowledge among the government, the public, and relevant actors about the extreme situation and its impact on society. Additionally, interactions with regulatees provide the regulator with knowledge about the technology and about regulatees’ behavior. Thus, on the one hand one can postulate that a rule-based intervention will intensify by shifting to the use of sanctions, control, and command (as opposed relying on investigations) in situations in which time pressure increases and regulatees have not responded to either initial or subsequent interventions. On the other hand, if norm-based interventions have in fact been previously successful in reducing technological uncertainty earlier in the crisis, it is also likely that regulators will continue to pursue norm-based interventions in order to avoid an adversarial approach. This may occur in conjunction with formal incentives associated with a rule-based intervention. Idea-based interventions are highly unlikely at this point simply because time pressure is too great for this approach to have a significant impact.

Overall, idea-based regulation emerges as an opportunity for regulators to structure beliefs and ideas regarding technology when knowledge is limited, uncertainty is high, and time is pressing, and when other measures may curb the necessary development of technology. Norm-based and rule-based intervention in various forms will likely appear as a crisis develops and uncertainty is reduced.

At a general level, this study contributes to deepening our understanding of the hitherto unexplored phenomenon of regulating emerging technology in crisis. Its findings demonstrate that we need to understand the exercise of different regulatory interventions based on levels of uncertainty and urgency. Moreover, the study suggests that idea-based regulation through regulatory conversations and communication is a key site of analysis when seeking to understand regulation in the context of crisis and emerging technology.
The suggested propositions can be tested on other digital tools developed during the COVID-19 pandemic. These tools involve big data, artificial intelligence, deep learning models, 5G technology, geospatial technology, robotics, smart applications, telemedicine, blockchain, and the Internet of Things (Mbunge et al. 2021). Such technologies present puzzles for regulators for both the present and the future. These technologies can also emerge in sectors such as finance, climate, or energy. Other types of technologies, like military technology, nanotechnology, or vaccines, are likewise often developed under conditions of great uncertainty in response to crisis. These technologies develop quickly, and often have unclear implications in both legal and moral terms (Mandel 2009), which requires an intricate understanding of how they are regulated.

This study has several limitations. First, the propositions presented here are specifically related to crisis situations, which means that in more ordinary or stable circumstances they may not have the same applicability. Nevertheless, idea-based regulation is available outside of crises, although its effects may be uncertain and its outcomes are likely to be contested (Gilad 2014).

Second, this study of how the dynamics of the three regulatory interventions can unfold must be considered in light of the political and administrative-legal domain in which they occurred. Norway is a country where the regulatory capacity of agencies is generally high. In this article’s empirical case, the regulator has the final word, meaning the regulator can weigh its options and ultimately choose to sanction a technology that could potentially be vital in combating the pandemic. Not all regulators have such capacities, and this study may thus be more relevant for countries and policy sectors with more powerful regulators.

Additionally, this study concerns a case of “regulation inside government” (Hood et al. 1999), where one government body regulates another. Under the GDPR framework in Europe,
and in the case of DPAs in Europe, it is reasonable to assume that this would be the case for private actors too. However, whether this is the case under different privacy laws and with different regulatory agencies is an empirical question that future research should seek to answer.

Moreover, the COVID-19 pandemic spans a relatively long period of time, which may suggest that the dynamics among regulatory interventions observed in this study could be different crises with shorter timescales. Relatedly, the COVID-19 pandemic is not the first crisis in which government and regulators have needed to balance privacy, individual freedom, and surveillance. For instance, there have been health crises in the past where the relevance of epidemiological, technological, or governmental surveillance has been emphasized. Two examples are the 1957–1958 global influenza pandemic (Flahault and Zylberman 2010) and the 2009 global swine flu pandemic (Baekkeskov 2016). In both cases, governments across the globe had to monitor and contain a virus in order to avoid (extremely) high infection rates and to eventually facilitate vaccination.

Future research may take inspiration from the study at hand and investigate regulation in previous health crises, or regulation of other types of technology, in order to observe changes over time and in a global perspective and make comparisons. Overall, the analytical directions and empirical findings of this study can guide researchers in their study of future events as well as of past crises, allowing us to gain a more informed understanding of regulatory dynamics in crisis situations.

JONAS LUND-TØNNESEN is a Doctoral Research Fellow in the Department of Political Science, University of Oslo, Norway. His research interests include digital technology, governance, regulation, and crisis management.
References

Abbot, Carolyn. 2012. "Bridging the Gap—Non‐state Actors and the Challenges of Regulating New Technology." *Journal of Law and Society* 39(3): 329–58. doi: 10.1111/j.1467-6478.2012.00588.x.

Akinsanmi, Titi, and Aishat Salami. 2021. "Evaluating the Trade-Off between Privacy, Public Health Safety, and Digital Security in a Pandemic." *Data & Policy* 3.

Ali, Christopher, and Manuel Puppis. 2018. "When the Watchdog Neither Barks Nor Bites: Communication as a Power Resource in Media Policy and Regulation." *Communication theory* 28(3): 270–91. doi: 10.1093/ct/qtx003.

Almeida, Rita, and Pedro Carneiro. 2012. "Enforcement of Labor Regulation and Informality." *American Economic Journal: Applied Economics* 4(3): 64–89. doi: 10.1257/app.4.3.64.

Amnesty International. 2020. "Bahrain, Kuwait og Norge har de verste korona-appene." Accessed March 28, 2021. https://amnesty.no/bahrain-kuwait-og-norge-har-de-verste-korona-appene.

Ansell, Chris, Arjen Boin, and Ann Keller. 2010. "Managing Transboundary Crises: Identifying the Building Blocks of an Effective Response System." *Journal of Contingencies and Crisis Management* 18(4): 195-207. doi: 10.1111/j.1468-5973.2010.00620.x.

Archibugi, Daniele, Andrea Filippetti, and Marion Frenz. 2013. "Economic Crisis and Innovation: Is Destruction Prevailing over Accumulation?" *Research Policy* 42(2): 303–14. doi: 10.1016/j.respol.2012.07.002.

Ayres, Ian, and John Braithwaite. 1992. *Responsive Regulation, Transcending the Deregulation Debate*. Oxford and New York: Oxford University Press.

Bach, Tobias, Marlene Jugl, Dustin Köhler, and Kai Wegrich. 2021. "Regulatory Agencies, Reputational Threats, and Communicative Responses." *Regulation & Governance*.

Baekkeskov, Erik. 2016. "Same Threat, Different Responses: Experts Steering Politicians and Stakeholders in 2009 H1N1 Vaccination Policy-Making." *Public Administration* 94(2): 299–315.

Baldwin, Robert. 1997. "Regulation: After Command and Control." In *The Human Face of Law*, edited by Keith Hawkins, 65-84. Oxford: Oxford University Press.

Baldwin, Robert, and Julia Black. 2008. "Really Responsive Regulation." *Modern Law Review* 71(1): 59–94. doi: 10.1111/j.1468-2230.2008.00681.x.

Bardach, Eugene, and Robert A. Kagan. 2017. *Going by the Book: The Problem of Regulatory Unreasonableness*. London and New York: Routledge.

Barley, Stephen R., and Pamela S. Tolbert. 1997. "Institutionalization and Structuration: Studying the Links between Action and Institution." *Organization Studies* 18(1): 93–117.

Bennett, Colin J, and Charles D Raab. 2020. "Revisiting the Governance of Privacy: Contemporary Policy Instruments in Global Perspective." *Regulation & Governance* 14 (3): 447–64.

Black, Julia. 2002. "Regulatory Conversations." *Journal of Law and Society* 29(1): 163–196. doi: 10.1111/1467-6478.00215.

Black, Julia. 2010. "The Role of Risk in Regulatory Processes." In *The Oxford Handbook of Regulation*, edited by Robert Baldwin, Martin Cave, and Martin Lodge. Oxford: Oxford University Press.

Black, Julia, and Robert Baldwin. 2010. "Really Responsive Risk-Based Regulation." *Law & Policy* 32(2): 181–213. doi: 10.1111/j.1467-9930.2010.00318.x.
Boin, Arjen, Paul 't Hart, and Allan McConnell. 2009. "Crisis Exploitation: Political and Policy Impacts of Framing Contests." *Journal of European Public Policy* 16(1): 81–106. doi: 10.1080/13501760802453221.

Boin, Arjen, Paul 't Hart, Eric Stern, and Bengt Sundelius. 2005. *The Politics of Crisis Management: Public Leadership Under Pressure*. Cambridge: Cambridge University Press.

Boustedt, Anne E. 2021. "Privacy Protections and Law Enforcement Use of Prescription Drug Monitoring Databases." *Law & Policy* 43(3): 229–261.

Braithwaite, J. 2017. "Types of Responsiveness." In *Regulatory Theory: Foundations and Applications*, edited by Peter Drahos. Canberra: ANU Press.

Budd, Jobie, Benjamin S. Miller, Erin M. Manning, Vasileios Lampos, Mengdie Zhuang, Michael Edelstein, and Geraint Rees. 2020. "Digital Technologies in the Public-Health Response to COVID-19." *Nature Medicine* 26(8):1183–92. doi: 10.1038/s41591-020-1011-4.

Burby, Raymond, J., and Robert G. Paterson. 1993. "Improving Compliance with State Environmental Regulations." *Journal of Policy Analysis and Management* 12(4): 753–772. doi: 10.2307/3325349.

Christensen, Tom, and Per Lægreid. 2020. "Balancing Governance Capacity and Legitimacy: How the Norwegian Government Handled the COVID-19 Crisis as a High Performer." *Public Administration Review* 80 (5): 774–9. doi: 10.1111/puar.13241.

Christensen, Tom, Per Lægreid, and Lise H. Rykkja. 2016. "Organizing for Crisis Management: Building Governance Capacity and Legitimacy." *Public Administration Review* 76(6): 887–97. doi: 10.1111/puar.12558.

Coglianese, Cary, J. Nash, and Todd Olmstead. 2003. "Performance-Based Regulation: Prospects and Limitations in Health, Safety and Environmental Protection." *Administrative Law Review* 55, 705–729.

Cornelissen, Joep P., Rodolphe Durand, Peer C. Fiss, John C. Lammers, and Eero Vaara. 2015. "Putting Communication Front and Center in Institutional Theory and Analysis." *The Academy of Management Review* 40(1): 10–27. doi: 10.5465/amr.2014.0381.

Corona Commission. 2021. "Referater fra intervjuer i forbindelse med NOU 2021:6." Accessed December 1, 2021. https://www.koronakommisjonen.no/dokumenter/.

DiMaggio, Paul J., and Walter W. Powell. 1983. "The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields." *American Sociological Review* 48(2): 147–60.

DPA. 2020a. "Ny sporings-app for å hindre koronasmitte." Accessed April 27, 2020. https://www.datatilsynet.no/aktuelt/aktuelle-nyheter-2020/ny-sporings-app-for-a-hindre-koronasmitte/.

DPA. 2020b. “Starter kontroll av FHIs Smittestopp-app." Accessed April 30, 2020. https://www.datatilsynet.no/aktuelt/aktuelle-nyheter-2020/starter-kontroll-av-smittestopp/.

DPA. 2020c. “Personvernpodden.” Accessed December 10, 2020. https://www.datatilsynet.no/regelverk-og-verktov/personvernpodden/.

DPA. 2020d. “Krav om redegjørelse – appen Smittestopp”. Accessed May 30, 2020. https://www.datatilsynet.no/contentassets/22b1296d0ab645609d3c040e9822e8d9/20-01170-8-krav-om-redegjorelse.pdf.

DPA. 2020e. “Varsel om vedtak om midlertidig forbud mot å behandle personopplysninger – appen Smittestopp”. Accessed June 15, 2020. https://www.datatilsynet.no/contentassets/1c72ac62cac145efa242942ca34e2cd0/20-
Gunningham, Neil, Peter N. Grabosky, and Darren Sinclair (eds.). 1998. Smart Regulation: Designing Environmental Policy. Oxford Socio-Legal Studies. Oxford: Clarendon Press.

Gunningham, Neil, and Robert A. Kagan. 2005. "Regulation and Business Behavior." Law & Policy 27(2): 213–8. doi: 10.1111/j.1467-9930.2005.00197.x.

Hagemann, Ryan, Jennifer Huddleston Skees, and Adam Thierer. 2018. "Soft Law for Hard Problems: The Governance of Emerging Technologies in an Uncertain Future." Colo. Tech. LJ 17:37.

Hatch, Mary Jo, and Sanford B. Ehrlrich. 1993. "Spontaneous Humour as an Indicator of Paradox and Ambiguity in Organizations." Organization Studies 14(4): 505–26. doi: 10.1177/017084069301400403.

Hood, Christopher, Oliver James, George Jones, Colin Scott, and Tony Travers. 1999. Regulation inside Government: Waste-Watchers, Quality Police, and Sleazebusters. Oxford: Oxford University Press.

Kagan, Robert A., and John T. Scholz. 1984. "The Criminology of the Corporation and Regulatory Enforcement Strategies." In Enforcing Regulation, edited by Keith Hawkins and John M. Thomas. Boston: Kluwer-Nijhoff.

Knight, F. H. 1921. Risk, Uncertainty and Profit (vol. 31). Boston and New York: Houghton Mifflin.

Kvinnsland, Stener, Astri Aas-Hansen, Geir Sverre Braut, Knut Eirik Dybdal, Tone Fløtten, Rune Jakobsen, Toril Johansson, Christine Korme, Nina Langeland, Egil Matsen, Per Arne Olsen, and Pål Terje Rørby. 2021. Myndighetenes Håndtering av Koronapandemien. Rapport fra Koronakommisjonen. Oslo: Prime Minister’s Office. NOU 2021: 6. https://www.regjeringen.no/contentassets/5d388acc92064389b2a4e1a449c5865e/no/pdfs/nou202120210006000dddpdfs.pdf.

Lewallen, Jonathan. 2020. "Emerging Technologies and Problem Definition Uncertainty: The Case of Cybersecurity." Regulation & Governance 15(4): 1035–52. doi: 10.1111/rego.12341.

Lodge, Martin, and Kai Wegrich. 2012. Managing Regulation: Regulatory Analysis, Politics and Policy. Basingstoke: Palgrave Macmillan.

Mandel, Gregory N. 2009. "Regulating Emerging Technologies." Law, Innovation and Technology 1(1): 75–92. doi: 10.1080/17579961.2009.11428365.

Mbunge, Elliot, Boluwaji Akinnuwesi, Stephen G. Fashoto, Andile S. Metfula, and Petros Mashwama. 2021. "A Critical Review of Emerging Technologies for Tackling COVID-19 Pandemic." Human Behavior and Emerging Technologies 3 (1): 25–39. doi: 10.1002/hbe2.237.

Meijer, A. J., Miriam Lips, and Kaiping Chen. 2019. "Open Governance of Cities: A New Paradigm for Understanding Urban Collaboration." Frontiers in Sustainable Cities 1(3). doi: 10.3389/frsc.2019.00003.

Morley, Jessica, Josh Cowls, Mariarosaria Taddeo, and Luciano Floridi. 2020. "Ethical Guidelines for COVID-19 Tracing Apps." Nature 582 (7810): 29–31. doi: 10.1038/d41586-020-01578-0.

NBT. 2020. "Digital Smittesporing." The Norwegian Board of Technology. Accessed June 12, 2020. https://teknologiradet.no/event/digital-smittesporing-og-personvern/.

NIPH. 2020a. "Smittestopp – ny app fra Folkehelseinstituttet." Norwegian Institute for Public Health. Accessed June 2, 2020. https://www.fhi.no/nyheter/2020/ny-app-fra-folkehelseinstituttet/.
NIPH. 2020b. "Oppdateringer om arbeidet med nye Smittestopp." Norwegian Institute for Public Health. Accessed June 2, 2020. https://www.fhi.no/om/smittestopp/digital_smittesporing/

NRK. 2020a. "Nesten 1,5 millioner nedlastninger." Accessed June 15, 2020. https://www.nrk.no/nyheter/nesten-15-millioner-nedlastinger-1.14997489.

NRK. 2020b. "Smittestopp-app får varsel om pålegg." Accessed August 16, 2020. https://www.nrk.no/norge/smittestopp-app-far-varslerom-palle-gg-1.15014601.

Perrow, Charles. 1984. Normal Accidents: Living with High-Risk Technologies. New York: Basic Books.

Phillips, Nelson, Thomas B. Lawrence, and Cynthia Hardy. 2004. "Discourse and Institutions." _The Academy of Management Review_ 29(4): 635–52. doi: 10.2307/20159075.

Picciotto, Sol. 2007. "Constructing Compliance: Game Playing, Tax Law, and the Regulatory State." _Law & Policy_ 29(1): 11–30. doi: 10.1111/j.1467-9930.2007.00243.x.

Picciotto, Sol. 2015. "Indeterminacy, Complexity, Technocracy and the Reform of International Corporate Taxation." _Social & Legal Studies_ 24(2):165–184. doi: 10.1177/0964663915572942.

PrivacyRules. 2020. “PrivacyRules Webinar on Tracing Apps.” Accessed November 20, 2020. https://www.privacyrules.com/privacy-global-expertise/privacyrules-webinar-tracing-apps-0006979.html.

RDI. 2020. "Forskrift om digital smittesporing og epidemikontroll i anledning utbrudd av COVID-19." Accessed November 20, 2020. https://lovdata.no/dokument/LTI/forskrift/2020-03-27-475.

Rorie, Melissa L., Sally S. Simpson, Mark A. Cohen, and Michael P. Vandenbergh. 2018. "Examining Procedural Justice and Legitimacy in Corporate Offending and Beyond-Compliance Behavior: The Efficacy of Direct and Indirect Regulatory Interactions." _Law & Policy_ 40(2): 172–195.

Rosenthal, Uriel, Michael T. Charles, and Paul t' Hart. 1989. Coping with Crises: The Management of Disasters, Riots and Terrorism. Springfield, IL: C.C. Thomas Publishers.

Rotolo, Daniele, Diana Hicks, and Ben R. Martin. 2015. "What Is an Emerging Technology?" _Research Policy_ 44(10): 1827–43. doi: 10.1016/j.respol.2015.06.006.

Schumpeter, Joseph A. 1934. _The Theory of Economic Development._ Cambridge: Harvard University Press.

Schwartz, Richard D., and Sonya Orleans. 1967. "On Legal Sanctions." _The University of Chicago Law Review_ 34(2): 274–300. doi: 10.2307/1598934.

Scott, W. Richard. 2003. "Institutional Carriers Reviewing Modes of Transporting Ideas over Time And Space and Considering their Consequences." _Industrial and Corporate Change_ 12 (4): 879–94. doi: 10.1093/iccc/12.4.879.

Scott, W. Richard. 2008. "Lords of the Dance: Professionals as Institutional Agents." _Organization Studies_ 29(2): 219–38. doi: 10.1177/0170840607088151.

Scott, W. Richard. 2014. _Institutions and Organizations: Ideas, Interests, and Identities_, 4th ed. Thousand Oaks, Calif: Sage.

Sechser, Todd S., Neil Narang, and Caitlin Talmadge. 2019. "Emerging Technologies and Strategic Stability in Peacetime, Crisis, and War." _Journal of Strategic Studies_ 42 (6): 727–735. doi: 10.1080/01402390.2019.1626725.

Simula. 2020a. “Smittestopp og erfaringer fra digital smittesporing.” Accessed November 26, 2020. https://www.simula.no/news/smittestopp-og-erfaringer-fra-digital-smittesporing.

Simula. 2020b. "Sammenligning av alternative løsninger for digital smittesporing." Accessed November 26, 2020.
Talmadge, Caitlin. 2019. "Emerging Technology and Intra-war Escalation Risks: Evidence from the Cold War, Implications for Today." *Journal of Strategic Studies* 42(6): 864–87. doi: 10.1080/01402390.2019.1631811.

Tekna. 2020. “Teknologi og rettsstatsprinsipper i krisetider”. Accessed November 10, 2020. https://www.tekna.no/fag-og-nettverk/IKT/ikt-bloggen/teknologi-i-krisetider/.

Thiemann, Matthias, and Jan Lepoutre. 2017. "Stitched on the Edge: Rule Evasion, Embedded Regulators, and the Evolution of Markets." *American Journal of Sociology* 122(6): 1775–1821. doi: 10.1086/691348.

Tyler, Tom R. 2021. *Why People Obey the Law*. Princeton, NJ: Princeton University Press.

Whitelaw, Sera, Mamas A. Mamas, Eric Topol, and Harriette G. C. Van Spall. 2020. "Applications of Digital Technology in COVID-19 Pandemic Planning and Response." *Lancet Digital Health* 2(8):e435-e440. doi: 10.1016/S2589-7500(20)30142-4.

Winter, Soren C., and Peter J. May. 2001. "Motivation for Compliance with Environmental Regulations." *Journal of Policy Analysis & Management* 20(4): 675–98. doi: 10.2307/3325778.

Yin, Robert K. 2014. *Case Study Research: Design and Methods*, 5th ed. Los Angeles: SAGE.

Laws cited

Personal Data Act, 2018. “Lov 15. juni 2018 nr. 38 om behandling av personopplysninger.”
Table 1. Overview of regulatory interventions in crisis situations

Regulatory intervention	Definition	Indicators	Relation to uncertainty	Relation to urgency
Rule-based intervention	Regulation using formal instruments in line with command and control.	Enforcement, control, sanctions, incentives.	Rigid rules may curb the innovation and technological development needed to combat a crisis. Needs clear rules to enforce.	May take too long to be applied when rules are ambiguous. Used as a last resort if uncertainty is too high over an extended time-period.
Idea-based intervention	Regulation through communication of fundamental beliefs and ideas.	Informal conversations and framing of fundamental beliefs and ideas (general and context specific).	Suitable in situations of high uncertainty.	The communication of ideas and beliefs can be conveyed quickly, even with ambiguous rules. Long-term impact may be unclear.
Norm-based intervention	Regulation that emphasizes moral duty and reasonableness.	Communication of duty, reasonableness, and shaming/praising.	Requires some knowledge about regulatees’ activities and technology. Needs somewhat clear rules to know which reactions are relevant.	Can work faster than rule-based intervention as formal case processing is not required.

Note: Own compilation, drawing on Lodge and Wegrich (2012), Black (2002), and Bardach and Kagan (2017).

Table 2. Overview of the 2020 events and regulatory action during the COVID-19 pandemic in Norway

Date	Action			
March 12	Extensive infection control measures in Norway and start of Smittestopp 1			
March 27	Regulations issued on digital infection detection			
April 4	Expert group announced			
April 6	Virus transmission considered under control by Norwegian government			
April 9	Expert group preliminary report			
April 16	Launch of Smittestopp 1			
April 27	Formal inspection by DPA			
May 8	First formal letter from DPA to NIPH			
May 18	Expert group delivers final report			
May 19	DPA formally demands answers from NIPH			
June 1	Initial answer from NIPH			
June 8	NIPH sends missing information			
June 12	Notification of coming ban			
June 16	Deactivation of Smittestopp 1 by NIPH			
July 6	Official ban of Smittestopp 1 by DPA			
September 28	Project start for Smittestopp 2			
October 15	DPA formally investigates Smittestopp 2			
December 21	Launch of Smittestopp 2			
Regulation phase	Empirical evidence	Regulatory intervention	Uncertainty	Urgency
------------------	--------------------	------------------------	-------------	---------
1st phase: March 12–April 26 2020	DPA converses with NIPH/Simula, emphasizing voluntariness, transparency, democracy, privacy-by-design, and open-source code.	Idea-based intervention.	High uncertainty (scarce information about the app and the virus).	High urgency (critical demand for information for the DPA on how to regulate such technology).
2nd phase: April 27–June 11 2020	DPA undertakes: 1) Inspection, auditing technology. 2) Public shaming through media, stating rationale for rules.	Rule-based (and partly norm-based) intervention.	High uncertainty (still scarce information about the app and the virus; DPA does not know what NIPH/Simula are up to).	High urgency (DPA realizing that regulated entities did not change their behavior).
3rd phase: June 12–October 5 2020	DPA bans technology and ensures future control.	Rule-based intervention.	Medium uncertainty (enough information for the DPA to ban the app, in its opinion).	Medium urgency (NIPH stops its work on personal data).
4th phase: October 6–December 21 2020	DPA investigates and controls new technology. Also praises NIPH for its work. DPA approves technology.	Rule-based and norm-based interventions.	Medium/low uncertainty (DPA knows what the technology does and is involved in the process. Government knows more about the virus).	Low urgency (DPA has control and adequate information about the app).

Appendix I. Overview of data sources

Time period	Data sources
Smittestopp 1 (March–July 2020)	**DPA and NIPH documents**: DPA (2020a; 2020b; 2020d; 2020e; 2020f), NIPH (2020a; 2020b). **Laws**: RDI (2020), Personal Data Act (2018). **Expert-Group reports**: Expert-Group (2020a, 2020b). **Conference/debate**: Tekna (2020), NBT (2020). **Podcast**: From May/July 2002, DPA (2020c). **Media**: NRK (2020a; 2020b).
Post-ban and Smittestopp 2 (July 2020–January 2021)	**DPA and NIPH documents**: DPA (2020g; 2020h), NIPH (2020b). **Commission evaluation**: Kvinsland et al. (2021). **Evaluation report**: Simula (2020b). **Interviews**: 16 interviews with DPA, NIPH, and Simula + 32 interviews with ministers and top administrative leaders (Corona Commission, 2021). **Conference/Debate**: PrivacyRules (2020), Simula (2020a). **Podcast**: From October/December, DPA (2020c).