INDEX OF Γ-EQUIVARIANT TOEPLITZ OPERATORS

RYSZARD NEST AND FLORIN RADULESCU

Abstract. Let Γ be a discrete subgroup of PSL(2, ℝ) of infinite covolume with infinite conjugacy classes. Let \(H_t \) be the Hilbert space consisting of analytic functions in \(L^2(\mathbb{D}, (\text{Im } z)^{t-2}d\bar{z}dz) \) and let, for \(t > 1 \), \(\pi_t \) denote the corresponding projective unitary representation of PSL(2, ℝ) on this Hilbert space. We denote by \(A_t \) the \(II_\infty \) factor given by the commutant of \(\pi_t(\Gamma) \) in \(B(\mathcal{H}_t) \). Let \(F \) denote a fundamental domain for \(\Gamma \) in \(\mathbb{D} \) and assume that \(t > 5 \). \(\partial M = \partial \mathbb{D} \cap F \) is given the topology of disjoint union of its connected components.

Suppose that \(f \) is a continuous \(\Gamma \)-invariant function on \(\mathbb{D} \) whose restriction to \(F \) extends to a continuous function on \(F \) and such that \(f|_{\partial M} \) is an invertible element of \(C_0(\partial M)^{-} \). Let \(T^f = \mathcal{P}_t \mathcal{M}_f \mathcal{P}_t \) denote the Toeplitz operator with symbol \(f \). Then \(T^f \) is Fredholm, in the Breuer sense, with respect to the \(II_\infty \) factor \(A_t \) and, moreover, its Breuer index is equal to the total winding number of \(f \) on \(\partial M \).

c\hline
| Contents |
|----------|---|
| 1. Introduction | 1 |
| 2. Some results on Toeplitz operators | 5 |
| 3. Γ-invariant Toeplitz operators | 8 |
| 4. Γ-Fredholm operators | 14 |
| References | 16 |

1. Introduction

In this paper we study equivariant Toeplitz operators acting on the Hilbert space \(\mathcal{H}_t \) consisting of all square summable analytic functions in
\[L^2(\mathbb{D}, (\text{Im } z)^{t-2}d\bar{z}dz). \]

Let us first recall that the classical theory of Toeplitz operators in the unit disc yields an extension of C*-algebras
\[0 \to \mathcal{K} \to \mathcal{T} \to C(\partial \mathbb{D}) \to 0, \]
where \mathcal{K} denotes the algebra of compact operators on \mathcal{H}_2 and \mathcal{T} the Toeplitz C*-algebra generated by compressions T_f to \mathcal{H}_2 of multiplication operators (by f’s from $C(\overline{\mathbb{D}})$). In particular, for $f|_{\partial \mathbb{D}}$ invertible, T_f is Fredholm and the boundary map for the K-theory six term exact sequence of this extension is equivalent, via index theorem for Toeplitz operators, to the equality:

$$\text{Index } (T_f) = \text{winding number of } f|_{\partial \mathbb{D}}.$$

As it turns out, all of these facts admit suitable generalisation to the equivariant case.

Let Γ be a fuchsian subgroup of $PSL(2, \mathbb{R})$, which has infinite conjugacy classes and is of infinite covolume. Recall that the action of $PSL(2, \mathbb{R})$ on \mathbb{D} by fractional linear transformations lifts to projective unitary representations of $PSL(2, \mathbb{R})$ on these Hilbert spaces (cf. ([21], [19])) and the commutant of $\pi_t(\Gamma)$ is a II_∞ factor. We will denote by A_t the commutant $\pi_t(\Gamma)' \cap B(\mathcal{H}_t)$ and by τ the normal positive non-zero trace on A_t. If σ_t denotes the 2-group cocycle corresponding to the projective unitary representation π_t, then A_t is isomorphic ([20]) to $L(\Gamma, \sigma_t) \otimes B(K)$, where K is an infinite dimensional separable Hilbert space and $L(\Gamma, \sigma_t)$ is the twisted group von Neumann algebra of Γ.

Let F denote a fundamental domain for the action of Γ on \mathbb{D}. We will denote by M the quotient space \mathbb{D}/Γ and by ∂M its boundary:

$$\partial M = (\partial \mathbb{D} \cap \overline{F})/\Gamma$$

equipped with the topology of the disjoint union of its connected components, i. e. of a countable union of disjoint circles. In particular $\overline{M} = \overline{F}/\Gamma = M \cup \partial M$ inherits a structure of locally compact space. $C_0(\partial M)^-$ denotes the unitisation of the C*-algebra of continuous, vanishing at infinity functions on ∂M.

For any continuous Γ-invariant function f on \mathbb{D} which extends to a continuous function on \overline{M} we denote by T_f the Toeplitz operator on \mathcal{H}_t with symbol f, i. e. the compression to \mathcal{H}_t of the operator of multiplication by f on $L^2(\mathbb{D}, (\text{Im } z)^{t-2}d\text{Im } z)$. Because of the Γ invariance of the symbol such a T_f belongs to $A_t = \{\pi_t(\Gamma)' \cap B(\mathcal{H}_t)\}$ ([24]).

Suppose that $t > 5$ and that $f|_{\partial M}$ is an invertible element of $C_0(\partial M)^-$. We prove below that T_f is Fredholm (in the sense of Breuer ([1]), in A_t. Moreover the Breuer index is (in analogy with the classical case) equal to the winding number of $f|_{\partial M} : \partial M \to \mathbb{C} \setminus \{0\}$. This can be seen as an analogue of Atiyah’s index formula for coverings ([2]).

The organisation of the paper is as follows.
In Section 2 we gather some more or less known results about nuclearity properties of Toeplitz operators on H_t and prove the main technical result:

Let $t > 5$ and $f, g \in L^\infty(\mathbb{D})$ are given. Suppose that $g \in C^\infty(\mathbb{D})$ and that

$$\inf \{|z - \xi| | z \in \text{supp } f \text{ and } \xi \in \text{supp } g\} > \epsilon$$

for some positive number ϵ. Then both $T_f T_g$ and $T_g T_f$ are of trace class and $\text{Tr}([T_f, T_g]) = 0$.

(cf. Theorem 2).

In Section 3 we study the $L^1(\tau)$-properties of commutators of Toeplitz operators with Γ-invariant symbol and prove the following result.

Suppose that $t > 5$ and f and g are Γ-invariant functions on \mathbb{D} which are smooth on the closure of a fundamental domain for Γ. Then both $[T_f, T_g]$ and $T_fg - T_f T_g$ are in $\mathcal{M} \cap L^1(\tau)$ and

$$\tau([T_f, T_g]) = \frac{1}{2\pi i} \int_F df \; dg$$

(cf. Theorem 3 and the remarks following).

Let \mathcal{T}_Γ be the C^*-subalgebra of \mathcal{A}_t generated by Toeplitz operators T_f with f Γ-invariant and smooth on a fundamental domain for Γ, \mathcal{K}_Γ be the C^*-ideal generated by the $\mathcal{L}^1(\tau)$-elements in \mathcal{T}_Γ and $M = \mathbb{D}/\Gamma$.

In Section 4 we construct the extension

$$0 \to \mathcal{K}_\Gamma \to \mathcal{T}_\Gamma \to C(\partial M) \to 0.$$

$$T_f \to f|_{\partial M}$$

Let $\partial : K_1(\partial M) \to K_0(\mathcal{K}_\Gamma)$ denote the boundary map in K-theory associated to this extension. We prove that, for $T_f \in \mathcal{T}_\Gamma$ with f invertible on the boundary of M, the following equality holds:

$$\langle \tau , \partial[T_f] \rangle = \text{winding number of } f \text{ on } \partial M$$

(cf. Theorem 4).

Remark 1. For notational simplicity we work throughout the paper with the case when the number of boundary components of a fundamental domain of Γ is finite. The only difference (except for typographical complications) in the general case consists of replacing the above extension of $C(\partial M)$ by \mathcal{K}_Γ by the extension:

$$0 \to \mathcal{K}_\Gamma \to \mathcal{T}_0^\Gamma \to C_0(\partial M) \to 0$$

where \mathcal{T}_0^Γ stands for the (in general nonunital) C^*-algebra generated by T_f with f continuous on \overline{F} and in with non-zero values on finitely many components of $\partial \mathbb{D} \cap \overline{F}$.
The method of the proof are based on the equivariant Berezin’s quantization theory for such groups ([20], [17]). Let F be, as above, a fundamental domain for the action of Γ in \mathbb{D}. Then for every Γ-equivariant, bounded function g on \mathbb{D}, having compact support in the interior of F, the Toeplitz operator $T_g \in \mathcal{A}_t$ is in $\mathcal{L}^1(\mathcal{A}_t)$ and has trace equal to a universal constant times the integral $\int_F g(z) \langle \text{Im } \rangle^{-2} d\overline{z}dz$

Moreover we will show that the commutator of two Toeplitz operators, having symbols that are smooth and continuous on the closure of F, belongs to trace ideal of the II_∞ factor. In particular if the symbol is invertible in the neighborhood of the intersection of the boundary of \mathbb{D} with the closure of F, the operator is Fredholm in \mathcal{A}_t in Breuer’s sense ([6]).

To identify the Breuer index of such a Toeplitz operator we use the Carey-Pincus theory ([8]). Let us first recall the pertinent facts. Given an operator $A \in \mathcal{A}_t$ such that $\tau[A^*, A] < \infty$, the bilinear map

$$\mathbb{C}[z, \bar{z}] \ni P, Q \rightarrow \tau[P(A^*, A), Q(A^*, A)]$$

defines a cyclic one-cocycle on the algebra of polynomials (in two real variables), of the form

$$(P, Q) \rightarrow \int_Z \{P, Q\} d\mu(\overline{z}, z),$$

where Z is the of spectrum of the class of A in $\mathcal{A}_t/\mathcal{K}_\Gamma$. $d\mu$, called the principal function of A, is a finite measure on the complex plane having the property that, for any connected component Z' of $\mathbb{C} \setminus Z$,

$$d\mu|_{Z'} = -c\pi d\overline{z}dz$$

with a constant c equal to the value of τ on the index class of $\partial[A - \lambda] \in K_0(\mathcal{K}_\Gamma)$ for any $\lambda \in Z'$. Hence one has to determine the principal function, given by the τ-values on commutators of polynomials in T_f and its adjoint (like in the classical case in [6], [15]).

To deal with the computation of those we apply the spatial theory of von Neumann algebras ([9]). One of its basic constructions gives an operator-valued weight $E : \mathcal{B}(\mathcal{H}_t) \rightarrow \mathcal{A}_t$ such that, for a trace-class operator A_0 in the domain of E, $\tau \circ E(A_0) = Tr(A_0)$. This allows one to replace the computation of values of τ on Γ-invariant operators by computation of value of the classical trace on certain trace-class operators on \mathcal{H}_t. In fact we prove in Section 3 that commutators of Γ-equivariant Toeplitz operators are of the form $E(A_0)$ for A_0 given by a suitable (trace class) commutator of polynomials in Toeplitz operators and hence the computation reduce to the classical case.

But in this case the principal function for a pair of Toeplitz operators that commute modulo the trace ideal in $B(\mathcal{H}_t)$ is well understood - it
is basically given by the fact that the index of T_z is equal to one \([1]\) and gives explicit formulas that lead to the results stated above.

2. Some results on Toeplitz operators

Let \mathbb{D} denote the unit circle in the complex plane and set

$$d\mu_t(z) = (1 - |z|^2)^t \frac{d\bar{z}dz}{(1 - |z|^2)^2}$$

We set

(2) \quad $H_t = \{ f \in L^2(\mathbb{D}, d\mu_t) \mid f \text{ holomorphic on } \mathbb{D} \}$

As is well known, H_t is a closed subspace of $L^2(\mathbb{D}, d\mu_t)$ and the orthogonal projection $P_t : L^2(\mathbb{D}, d\mu_t) \to H_t$ is called the Toeplitz projection. Given a function $f \in L^\infty(\mathbb{D}, d\mu_t)$ we denote by M_f the operator of multiplication by f on $L^2(\mathbb{D}, d\mu_t)$ and set

- the Toeplitz operator associated to f: \(T_f = P_t M_f P_t \)
- the Henkel operator associated to f: \(H_f = (1 - P_t) M_{\bar{f}} P_t \)

Note, for future computations, that T_f is an integral operator on $L^2(\mathbb{D}, d\mu_t)$ with integral kernel

(3) \quad $K_f(z, \xi) = \frac{t - 1}{2\pi i} \frac{f(\xi)}{(1 - z\bar{\xi})^t}$

and

(4) \quad $H_f^* H_g = T_f g - T_f T_g$.

We will denote by δ the absolute value of the cosine of hyperbolic distance on \mathbb{D}, i.e.

(5) \quad $\delta(a, b) = \frac{(1 - ||a||^2)(1 - ||b||^2)}{|1 - ab|^2}$.

As is well known,

(6) \quad $||T_f|| = ||f||_\infty$

and

(7) \quad $||f||_{S_2}^2 = ||H_f||_2^2 + ||H_{\bar{f}}||_2^2 = \left(\frac{t - 1}{2\pi i}\right)^2 \int_{\mathbb{D} \times \mathbb{D}} |f(a) - f(b)|^2 \delta^t(a, b) d\mu_0(a, b)$.

In particular, since both H_z and $H_{\bar{z}}$ are of finite rank, the function $f(a, b) = (a - b)$ is square integrable with respect to the measure...
δt(a, b)dμ0(a, b) and hence all functions which are Lipschitz with exponent one on \mathbb{D} have finite S_2-norm.

We let $\text{PSL}(2, \mathbb{R})$ act on \mathbb{D} by fractional linear transformations and denote by π_t the induced projective unitary representation on $L^2(\mathbb{D}, d\mu_t)$ (and \mathcal{H}_t). Both $d\mu_0$ and $\delta_t(a, b)$ are $\text{PSL}(2, \mathbb{R})$-invariant, which gives a useful formula

$$\int_{\mathbb{D}} \delta_t(a, b)d\mu_0(a) = \int_{\mathbb{D}} \delta_t(a, 0)d\mu_0(a) = \frac{4\pi}{t - 1}.$$

(8)

The following result is probably well known to specialists, however, since we do not have a ready reference, so we will include the proof below.

Theorem 1. Let f and g belong to $C^\infty(\overline{\mathbb{D}})$. Then $T_fT_g - T_{fg}$ is a trace class operator and, moreover,

$$\text{Tr}([T_f, T_g]) = \left(\frac{t - 1}{2\pi i}\right)^2 \int_{\mathbb{D} \times \mathbb{D}} (f(a)g(b) - f(b)g(a))\delta_t(a, b)d\mu_0(a, b)$$

$$= \frac{1}{2\pi i} \int_{\mathbb{D}} df dg = \frac{1}{2\pi i} \int_{\partial\mathbb{D}} f dg.$$

Proof. By the smoothness assumption, both f and g belong to the S_2 class and hence $T_fT_g - T_{fg}$ is a trace class operator. For the computation of the trace we can just as well assume that both f and g are real valued. To begin with, for a real-valued function f, (7) gives

$$\text{Tr}(T_f^2 - T_{f^2}) = \frac{1}{2} \left(\frac{t - 1}{2\pi i}\right)^2 \int_{\mathbb{D} \times \mathbb{D}} (f(a) - f(b))^2\delta_t(a, b)d\mu_0$$

and hence, by an application of the polarisation identity,

$$\text{Tr}(T_{f^2} - T_fT_g) = \left(\frac{t - 1}{2\pi i}\right)^2 \int_{\mathbb{D} \times \mathbb{D}} f(a)(g(a) - g(b))\delta_t(a, b)d\mu_0$$

which implies immediately the first equality.

To get the second equality recall that, for a pair of (non-commutative) polynomials $P(\bar{z}, z)$ and $Q(\bar{z}, z)$, the Carey-Pincus formula holds:

$$\text{Tr}([P(T_{\bar{z}}, T_z), Q(T_{\bar{z}}, T_z)]) = \frac{1}{2\pi i} \int_{\mathbb{D}} dPdQ = \frac{1}{2\pi i} \int_{\partial\mathbb{D}} PdQ,$$

see [7]. Since $P(T_{\bar{z}}, T_z) = T_P$ mod $\mathcal{L}^1(Tr)$, this implies the second equality for f and g polynomial. Approximating arbitrary pair of smooth functions uniformly with their first derivatives on $\overline{\mathbb{D}}$ completes the proof of the second equality.

The following is the main technical result of this section
Theorem 2. Let $t > 5$ and $f, g \in L^\infty(\mathbb{D})$ be given. Suppose moreover, that $g \in C^\infty(\mathbb{D})$ and that

$$\inf \{ ||z - \xi|| \mid z \in \text{supp } f \text{ and } \xi \in \text{supp } g \} > \epsilon$$

for some positive number ϵ. Then both $T_f T_g$ and $T_g T_f$ are of trace class and $\text{Tr}([T_f, T_g]) = 0$.

Proof. We use ∂ to denote the unbounded operator $H_t \ni h \to \partial z h \in H_t$, defined on the subspace of holomorphic functions h such that their first derivative is smooth up to the boundary of the disc and in H_t, and by ∂^{-1} the unique extension to a bounded operator on H_t of

$$z^n \to \frac{1}{n+1} z^{n+1}. \quad (9)$$

It is easy to see that ∂^{-1} is Hilbert-Schmidt, in fact, since $||z^n||_2 \sim O(1)$ as $n \to \infty$, the characteristic values of ∂^{-1} are of the order $O(n^{-1})$. Moreover $\text{Id} - \partial \partial^{-1}$ is of finite rank. Since we can write

$$T_f T_g|_{\mathcal{C}[\mathbb{D}]} = T_f T_g \partial \partial^{-1} + T_f T_g (1 - \partial \partial^{-1})$$

to prove that $T_f T_g$ is trace class it is sufficient to show that the densely defined operator $T_f T_g \partial$ has a (unique) extension to a Hilbert-Schmidt operator on H_t. Suppose first that h and ∂h both belong to H_t and are smooth up to the boundary of \mathbb{D}. Given an $a \notin \text{supp}(g)$, we have

$$(T_g \partial h)(a) = \frac{-1}{2\pi i} \int_{\mathbb{D}} d\mu_t(b) \frac{g(b)}{(1 - ab)^t} \partial_b h(b)\frac{\partial_b}{(1 - ab)^t}$$

$$= \frac{-1}{2\pi i} \int_{\mathbb{D}} g(b) \frac{1 - |b|^2}{(1 - ab)^t} \partial_b h(b)$$

$$= \frac{-1}{2\pi i} \int_{\mathbb{D}} \partial_b \left(\frac{g(b) (1 - |b|^2)^{t-2}}{(1 - ab)^t} \right) h(b) db,$$

where we used Stokes theorem and the fact that the integrand is smooth and vanishes at the boundary of \mathbb{D}. But this implies that the densely defined operator $T_f T_g \partial$ is in fact given by an integral operator with kernel

$$K(z, \xi) = \text{const} \int_{\mathbb{D} \times \mathbb{D}} d\lambda(a, b) \frac{(1 - |a|^2)^{t-2}(1 - |b|^2)^{t-3} F(a, b)}{(1 - \bar{a} z)^t(1 - \bar{\xi} b)^t} \frac{F(a, b)}{(1 - ba)^t}$$

where $d\lambda$ is the Lebesque measure on $\mathbb{D} \times \mathbb{D}$ and F is an L^∞-function which vanishes on a neighbourhood of the diagonal in $\mathbb{D} \times \mathbb{D}$ given by $\{(a, b) \mid |a - b| > \epsilon\}$. In particular,

$$\sup_{a, b} \left| \frac{F(a, b)}{(1 - ba)^t} \right| < \infty$$
and, by Cauchy-Schwartz inequality,
\[|K(z, \xi)|^2 \leq \text{const} (\text{Vol}(D, d\lambda))^2 \int_{D \times D} d\lambda(a, b) \frac{(1 - |a|^2)^{-2}(1 - |b|^2)^{-3}}{(1 - \bar{a}z)(1 - \bar{\xi}b)} |^2. \]

To estimate the \(L^2 \)-norm of \(K(z, \xi) \) we can first integrate over \(z \) and \(\xi \) which gives, in view of (8), the estimate
\[\|K\|^2 \leq \text{const} \int_{D \times D} (1 - |a|^2)^{-4}(1 - |b|^2)^{-6} d\lambda(a, b) \]
which is finite for \(t > 5 \).

To finish the proof \(T_g T_f = (T_f T_g)^* \) and hence is also trace class by applying the above argument to \(T_f T_g \). As a direct consequence we get \(Tr[T_f, T_g] = 0 \).

3. \(\Gamma \)-invariant Toeplitz operators

Let \(\Gamma \) be a countable, icc and discrete subgroup of \(\text{PSL}(2, \mathbb{R}) \).

The von Neumann algebra \((\pi_t(\Gamma)'') \) is a \(II_1 \) factor with unique normal normalized trace \(\tau' \) given by
\[\tau'(\pi_t(\gamma)) = 0 \]
for \(\gamma \neq e \). Its commutant \(\mathcal{A}_t = (\pi_t(\Gamma))' \) is a factor of type II. We will assume from now on that \(\Gamma \) has infinite covolume in \(D \), i. e. \(M = \mathbb{D}/\Gamma \)
is an open Riemannian surface which can (and will) be thought of as an open subset of an ambient closed Riemannian surface \(N \). We assume moreover that \(M \) has finitely many boundary components (the boundary in \(N \)), hence \(\partial M = \cup_i C_i \), a finite union of disjoint smooth simple closed contractible curves in \(N \). In this case \(\mathcal{M} \) is a \(II_\infty \) factor with a unique (up to the normalisation) positive normal trace \(\tau \). By general theory (see \cite{14}, \cite{4}, \cite{12}) there exists a unique, normal, semifinite operator-valued weight
\[E : \mathcal{B}(\mathcal{H}_t) \to \mathcal{M} \]
such that, for \(A \in \mathcal{L}^1(\text{Tr}) \) in the domain of \(E \),
\[\tau \circ E(A) = \text{Tr}(A). \]

\(E \) is uniquely determined by the equality of normal linear functionals
\[m \to \tau(E(A)m) = \text{Tr}(Am) \]
for \(A \in \mathcal{L}^1(\text{Tr}) \) and \(m \in \mathcal{A}_t \). Below we list some of the properties of \(E \) used later.
A vector \(\xi \in \mathcal{H}_t \) is called \(\Gamma \)-bounded if the densely defined map
\[
L^2(\Gamma) \ni \{c_\gamma\}_{\gamma \in \Gamma} \mapsto \sum_{\gamma \in \Gamma} c_\gamma \pi_t(\gamma^{-1})\xi \in \mathcal{H}_t
\]
is bounded. Let \(p_\xi \) denote the orthogonal projection onto the one dimensional subspace spanned by vector \(\xi \). Then it is easy to see that
\[
R_\xi R^*_\xi = \sum_{\gamma \in \Gamma} \pi_t(\gamma) P_\xi \pi_t(\gamma^{-1})
\]
i. e. \(\xi \) is \(\Gamma \)-bounded precisely in the case when the sum \(\sum_{\gamma \in \Gamma} \pi_t(\gamma)p_\xi \pi_t(\gamma^{-1}) \) converges in the strong operator topology to a bounded operator on \(\mathcal{H}_t \), in fact equal to \(E(p_\xi) \) and in this case \(\tau(E(p_\xi)) = Tr(p_\xi) = 1 \).

Let us introduce the following.

Definition 1. A bounded operator \(A \) is called \(\Gamma \)-bounded if the sums
\[
\sum_{\gamma \in \Gamma} \pi_t(\gamma)A\pi_t(\gamma^{-1})
\]
converge in the strong operator topology.

Let \(A \) be a positive trace class operator of the form
\[
Ax = \sum_i \lambda_ip_{\xi_i}
\]
where \(\{\xi_i\} \) is an orthonormal system in \(\mathcal{H}_t \). \(A \) is in the domain of \(E \) if it is \(\Gamma \)-bounded and in this case
\[
E(A) = \sum_{\gamma \in \Gamma} \pi_t(\gamma)A\pi_t(\gamma^{-1}) \quad \text{and} \quad \tau(E(A)) = TrA.
\]

Proposition 1. Let \(f_0 \) be an \(L^\infty \) function \(\mathbb{D} \) satisfying the conditions:
- the euclidean distance from the essential support of \(f_0 \) to \(\partial \mathbb{D} \) is strictly positive;
- the sum \(\sum_{\gamma \in \Gamma} f_0 \circ \gamma \) is locally finite.

If, moreover, \(t > 2 \), the associated \(\Gamma \)-invariant \(L^\infty \)-function \(f = \sum_{\gamma \in \Gamma} f_0 \circ \gamma \) on \(\mathbb{D} \) satisfies
\[
T_f \in \mathcal{A}_t \cap \mathcal{L}^1(\tau)
\]

Proof. Since \(f \) is \(\Gamma \)-invariant and in \(L^\infty(\mathbb{D}) \), \(T_f \in \mathcal{A}_t \). for the rest of the claim it is sufficient to look at \(f_0 \) positive. But then \(T_{f_0} \) is a positive operator with smooth kernel, hence, by Lidskii theorem, it is of trace class. By the second assumption it is \(\Gamma \)-bounded and hence, according to the remarks above, it is in the domain of \(E \) and
\[
E(T_{f_0}) = T_{\sum_{\gamma} f_0 \circ \gamma} = T_f.
\]
In particular
\[\tau(T_f) = \tau(E(T_{f_0})) = Tr(T_{f_0}) < \infty \]
as claimed.

Let us introduce some notation connected with fundamental domains for the action of \(\Gamma \) on \(\mathbb{D} \). Suppose we choose points \(P_i \) on \(\partial M \), one on each connected component \(C_i \). We’ll call this a cut of \(M \). To each such cut we can associate a fundamental domain \(F \) such that the chosen points are in bijective correspondence with end-points of the intervals \(F \cap \partial \mathbb{D} \).

From now on \(F \) will (unless explicitly stated to the contrary) denote a generic fundamental domain for \(\Gamma \) on \(\mathbb{D} \).

Our goal is to compute the \(\tau \)-trace of commutators of the form \([T_f, T_g]\), where \(f \) and \(g \) are sufficiently general \(\Gamma \)-invariant functions on \(\mathbb{D} \). To see what is the problem, suppose first that \(f_0, g_0 \in C^\infty(F) \) satisfy \(\text{supp} f_0 \subset F^{\text{int}} \) and \(\text{supp} g_0 \subset F^{\text{int}} \). Let \(f = \sum_{\gamma \in \Gamma} f_0 \circ \gamma \) and \(g = \sum_{\gamma \in \Gamma} g_0 \circ \gamma \) be the corresponding \(\Gamma \)-invariant function on \(\mathbb{D} \). Looking at kernels, we obtain that \((20), (17)\)
\[\tau(T_{f_0}^2 - T_{g_0}^2) = \frac{1}{2} \left(t - \frac{1}{2} \right)^2 \int_{D \times F} (f(a) - f(b))^2 \delta'(a, b)d\mu_0 \]

and hence, by an application of the polarisation identity,
\[\tau(T_{f_0} - T_{g_0}) = \left(\frac{t - 1}{2\pi i} \right)^2 \int_{D \times F} f(a)(g(a) - g(b))\delta'(a, b)d\mu_0. \]

Note that the right hand side is bounded by
\[\frac{1}{2} \left(\frac{t - 1}{2\pi i} \right)^2 \int_{D \times F} |a - b|^2 \delta'(a, b)d\mu_0, \]
which is convergent by \([1]\).

Hence
\[\tau([T_f, T_g]) = \left(\frac{t - 1}{2\pi i} \right)^2 \int_{D \times F} (f(a)g(b) - f(b)g(a))\delta'(a, b)d\mu_0, \]

Consequently, since the formula in Theorem 1 extends by continuity for functions \(f, g \) that are smooth and \(\Gamma \)-invariant (by replacing \(D \times D \) by \(\mathbb{D} \times F \)), it follows that, for such \(f \) and \(g \),
\[\left(\frac{t - 1}{2\pi i} \right)^2 \int_{D \times F} (f(a)g(b) - f(b)g(a))\delta'(a, b)d\mu_0 = \frac{1}{2\pi i} \int_{\mathbb{D}} d(f_0)d\mu_0 = \frac{1}{2\pi i} \int_{F} df dg. \]

But it is not obvious from the outset neither that \(\tau([T_f, T_g]) \) is in the domain of \(\tau \) nor that its trace is approximated by the trace of commutators of Toeplitz operators associated to functions of the form
\[f = \sum_{\gamma \in \Gamma} f_0 \circ \gamma \quad \text{and} \quad g = \sum_{\gamma \in \Gamma} g_0 \circ \gamma \quad \text{with} \quad f_0 \quad \text{and} \quad g_0 \quad \text{supported away from the boundary!} \]

Theorem 3. Let \(f \) and \(g \) be two smooth functions on \(\overline{M} \) (i.e. continuous with all their derivatives up to the boundary of \(M \)). We will use the same notation to denote their representatives as \(\Gamma \)-invariant functions on \(D \). Suppose that \(t > 5 \). Then \([T_f, T_g] \) is in \(\mathcal{M} \cap L^1(\tau) \) and
\[
\tau([T_f, T_g]) = \frac{1}{2\pi i} \int_{F} df dg.
\]

Proof.
Let us begin with the following observations.

1. Suppose that \(h_0, \ldots h_n \) is a finite family of functions on \(D \) satisfying the conditions of the proposition and we set \(A = T_{h_0} \ldots T_{h_n} \). Since
\[
|A*|^2 \leq \left(\prod_{i \neq 0} ||h_i||_{\infty} \right) T_{|h_0|^2},
\]
the averages \(\sum_{\gamma} \pi_t(\gamma)|A*|^2\pi_t(\gamma^{-1}) \) converge in the strong operator topology to \(E(|A*|^2) \). Moreover, for any normal linear functional \(\psi \) on \(\mathcal{B}(\mathcal{H}_t) \),
\[
\sum_{\gamma} \psi(\pi_t(\gamma)|A*|^2\pi_t(\gamma^{-1})) = \psi(E(|A*|^2)).
\]

To see the equality it is sufficient to consider positive \(\psi \), but then all that is involved is an exchange of the order of summation for a double series consisting of positive terms.

2. There exists a smooth partition of unity of \(D \) of the form \(\sum \phi_i \) where \(\phi_i \) are smooth, positive functions such that, for each \(i \), the family of functions \(\{ \phi_i \circ \gamma \}_{\gamma \in \Gamma} \) is locally finite. To see this it is sufficient to notice that, for any disc \(D_\epsilon = \{ z \in D ||z| \leq \epsilon \} \) with \(\epsilon < 1 \), the number of \(\gamma \in \Gamma \) such that \(\gamma(D_\epsilon) \cap D_\epsilon \neq \emptyset \) is finite. This follows from the fact that \(\Gamma \) is discrete as a subgroup of \(\text{PSL}(2, \mathbb{R}) \).

This implies that the set of normal linear functionals \(m \rightarrow Tr(BmA*) \) with \(A \) and \(B \) as above is total in \(\mathcal{B}(\mathcal{H}_t)_* \).

The proof of the theorem will be done in two steps.

First part.
Suppose that we are given a fundamental domain \(F \) for \(\Gamma \) such that
\[
f = \sum_{\gamma} f_0 \circ \gamma, \quad g = \sum_{\gamma} g_0 \circ \gamma
\]
where \(f_0 \) and \(g_0 \) are both smooth on \(\mathbb{D} \) and their supports have positive Euclidean distance to the complement of \(F \) in \(\mathbb{D} \).

We will compute

\[
Tr(A^*[T_f, T_g]A)
\]

where \(A = T_{h_0} \ldots T_{h_n} \). The operator under trace has a smooth kernel and the integral of its restriction to the diagonal has (up to a constant) the form

\[
\int_{D} d\mu_t(d) \int_{D} d\mu_t(c) \int_{D} d\mu_t(b) \int_{D} d\mu_t(a) \frac{A(a, d)(f(b)g(c) - g(b)f(c))}{(1 - \bar{a}b)^t(1 - bc)^t(1 - \bar{c}d)^t(1 - da)^t}
\]

where \(A(a, d) \) is a smooth kernel with support of strictly positive euclidean distance from \(\partial \mathbb{D} \times \mathbb{D} \cup \mathbb{D} \times \partial \mathbb{D} \). Hence the function

\[
F(a, b, c, d) = (1 - |b|^2)^{t/2}(1 - |c|^2)^{t/2} \frac{A(a, d)(f(b)g(c) - g(b)f(c))}{(1 - \bar{a}b)^t(1 - bc)^t(1 - \bar{c}d)^t(1 - da)^t}
\]

is uniformly bounded on \(\mathbb{D}^4 \) (the only singularity in the denominator appears for \(b = c \) and it is controlled by the fact that \(|\delta| \leq 1 \)) and our integral can be written as the integral of \(L^\infty \)-function \(F(a, b, c, d) \) with respect to the finite measure

\[
d\omega = d\mu_t \otimes d\mu_{t/2} \otimes d\mu_{t/2} \otimes d\mu_t.
\]

Hence

\[
\int Fd\omega = \sum_{\gamma \in \Gamma} \int_{D \times \gamma(F) \times D \times D} Fd\omega,
\]

i. e.

\[
Tr(A^*[T_f, T_g]A) = \sum_{\gamma} Tr(A^*[T_{f_0}^\gamma T_g - T_{g_0}^\gamma T_f]A).
\]

Since \(T_{f_0}^\gamma T_g - T_{g_0}^\gamma T_f \) is of trace class, we can exchange the summation over \(\gamma \in \Gamma \) with the trace and get the identity

\[
Tr(A^*[T_f, T_g]A) = Tr \left(\sum_{\gamma} \pi_t(\gamma)AA^*\pi_t(\gamma)^{-1}(T_{f_0}^\gamma T_g - T_{g_0}^\gamma T_f) \right).
\]

But this shows that

\[
\tau(E(|A^*|^2)[T_f, T_g]) = \tau(E(|A^*|^2)E(T_{f_0} T_g - T_{g_0} T_f)).
\]

Since for any \(m \in \mathcal{A}_t \)

\[
\tau(E(AA^*)m) = Tr((AA^*)m)
\]

and the set of such linear functionals is separating for \(\mathcal{B}(\mathcal{H}_t) \), we get

\[
E(T_{f_0} T_g - T_{g_0} T_f) = E(T_f T_{g_0} - T_{g_0} T_f) = [T_f, T_g].
\]

But, since

\[
T_f T_{g_0} - T_{g} T_{f_0} = [T_{f_0}, T_{g_0}] + T_{f-f_0} T_{g_0} - T_{g-g_0} T_{f_0}
\]
is of trace class, \([T_f, T_g]\) is in \(\mathcal{M} \cap \mathcal{L}^1(\tau)\) and

\[
\tau([T_f, T_g]) = \frac{1}{2} \text{Tr}([T_{f_0}, T_g] - [T_{g_0}, T_f])
\]

By the theorem 3

\[
\tau([T_f, T_g]) = \frac{1}{2\pi i} \int_{\Sigma} df_0 dg = \frac{1}{2\pi i} \int_{F} df dg.
\]

Second part.

By the proposition 1 we can assume that both \(f\) and \(g\) are, as functions on \(\overline{M}\), supported on a neighbourhood of the boundary of \(\overline{M}\) diffeomorphic to \((\cup_i C_i) \times] - \epsilon, 0]\). Now, using partition of unity, we can split both \(f\) and \(g\) into finite sums

\[
f = \sum_k f_k, \quad g = \sum_s g_s
\]

so that for any pair of indices \((k, s)\) there are open intervals \(I_{k,s}^i\) of non-zero length on each of the boundary components \(C_i\) such that both \(f_k\) and \(g_s\) vanish on \((\cup_i I_{k,s}^i \times] - \epsilon, 0]\) - possibly with a smaller, but still positive value of \(\epsilon\). But then, choosing a cut of \(M\) given by a choice of points \(P_i\) in the interior of \(I_{k,s}^i\) will provide us with a fundamental domain \(F_{k,s}\) such that the conditions of the first part of this proof hold for \((f_s, g_k, F_{k,s})\) and hence \([T_{f_k}, T_{g_s}] \in \mathcal{L}^1(\tau)\) and

\[
\tau([T_{f_k}, T_{g_s}]) = \frac{1}{2\pi i} \int_{F_{k,s}} df dg
\]

To complete the proof note that the expression \(df dg\) for \(\Gamma\)-invariant functions is \(\Gamma\)-invariant, hence the integral \(\int_{F} df dg\) is independent on the choice of the fundamental domain and the result follows.

Corollary 1. Suppose that \(f\) and \(g\) are smooth functions on \(\overline{M}\). Then

\[
\tau([T_f, T_g]) = \int_{\partial M} f dg.
\]

Proof. This follows immediately from the fact that under the natural diffeomorphism \(F \setminus \partial F\) the integral \(\int_{F} df dg\) becomes identified with \(\int_{M} df dg\) and the Stokes theorem.

Remarks

1. Virtually the same proof shows that, for \(f\) and \(g\) smooth on \(\overline{M}\), the operator \(T_f T_g - T_{fg}\) is in \(\mathcal{M} \cap \mathcal{L}^1(\tau)\) and

\[
\tau(T_f T_g - T_{fg}) = \left(\frac{t - 1}{2\pi i}\right)^2 \int_{\Sigma \times F} f(a)(g(b) - g(a))\delta^1(a, b)d\mu_0(a, b).
\]
2. All of the results above can be easily extended to the case when \(f \) and \(g \) are in \(L^\infty(M) \) and Lipschitz with exponent one in a tubular neighbourhood of \(\partial M \) in \(\overline{M} \).

4. \(\Gamma \)-Fredholm operators

Let \(\mathcal{T}_\Gamma \) denote the \(C^* \)-subalgebra of \(\mathcal{A}_t \) generated by Toeplitz operators \(T_f \) with Toeplitz symbol \(f \in \mathcal{C}(\overline{M}) \) and denote by \(\mathcal{K}_\Gamma \) the \(C^* \)-ideal generated by elements in \(\mathcal{L}^1(\Gamma) \cap \mathcal{T}_\Gamma \). An element \(A \) of \(\mathcal{A}_t \) is called \(\Gamma \)-Fredholm if it has an inverse, say \(R \), modulo \(\mathcal{K}_\Gamma \) and, in this case, the commutator \([A, R] \) has well-defined trace

\[\Gamma \text{-index of } A = \tau([A, R]) \]

which depends only on the class of \(A \) in \(K_1(\mathcal{T}_\Gamma/\mathcal{K}_\Gamma) \).

Remark 2. The number “\(\Gamma \)-index of \(A \)” is also known as *Brauer index* of \(A \).

According to the proposition 1, there exists a surjective continuous map

\[q : C(\partial M) \to \mathcal{T}_\Gamma/\mathcal{K}_\Gamma \]

sending function \(f|_{\partial M} \) to \(T_f \) mod \(\mathcal{K}_\Gamma \) - this map is well defined since \(||T_f|| = ||f||_\infty \).

Theorem 4. Let \(\Gamma \) be a countable, discrete, icc subgroup of \(PSL(2,\mathbb{R}) \) such that \(\mathbb{D}/\Gamma \) has infinite covolume and \(M = \mathbb{D}/\Gamma \) is an open Riemannian surface with finitely many boundary components. Assume that \(t > 5 \) and that the trace \(\tau \) on \(\mathcal{A}_t \) is normalized by its value on a Toeplitz operators \(T_f \) with symbols \(f \in \mathcal{C}_c^\infty(M) \) by

\[\tau(T_f) = \frac{t-1}{2\pi i} \int_F f(z)d\mu_0(z). \]

The following holds.

1. For any function \(f \in C(\overline{M}) \) such that \(f|_{\partial M} \) is invertible, the operator \(T_f \) is \(\Gamma \)-Fredholm and its \(\Gamma \)-index is equal to the sum of the winding numbers of restriction of \(f \) to the boundary of \(M \).
2. The map \(q : C(\partial M) \to \mathcal{T}_\Gamma/\mathcal{K}_\Gamma \) is injective and yields a nontrivial extension

\[0 \to \mathcal{K}_\Gamma \to \mathcal{T}_\Gamma \to C(\partial M) \to 0. \]

Proof.

Step 1.

Suppose that \(f \in C^\infty(\overline{M}) \) be invertible on the boundary of \(M \). Then, for any function \(g \) smooth in the closure of \(M \), and such that
supp(1 - fg) ⊂ M the theorem 3 gives 1 - T_f T_g ∈ K_Γ and hence T_f is Γ-Fredholm.

Let now P and Q be two non-commutative polynomials in (¯z, z). Then, again by the theorem 3 and its corollary,

$$\tau([P(T_f^*, T_f), Q(T_f^*, T_f)]) = \tau([T_{P(T_f^*, T_f)}, T_{Q(T_f^*, T_f)}) = \frac{1}{2\pi i} \int_{\partial M} P(\bar{f}, f) dQ(\bar{f}, f).$$

On the other hand, by Carey-Pincus formula for traces of commutators (see [7]),

$$\tau([P(T_f^*, T_f), Q(T_f^*, T_f)]) = \int_{|z| < ||T_f||} \{P, Q\} d\nu$$

where d\nu is a finite measure supported on the convex hull of the essential spectrum of T_f mod(K_Γ) and, since T_f is Γ-Fredholm, there exists an open ball B_\epsilon around the origin such that d\nu|_{B_\epsilon} = c d\lambda, where $2\pi i c = \Gamma$-index of T_f.

If we set d\nu = d\nu|_{B_\epsilon} + d\nu_1, the two formulas above give

$$\frac{1}{2\pi i} \int_{\partial M} P(\bar{f}, f) dQ(\bar{f}, f) = \frac{1}{2\pi i} \Gamma\text{-index of } T_f \int_{|z| = \epsilon} dPdQ + \int_{\epsilon \leq |z| \leq ||T_f||} \{P, Q\} d\nu_1.$$

Applying Stokes theorem, we get the equality

$$\frac{1}{2\pi i} \int_{\partial M} P(\bar{f}, f) dQ(\bar{f}, f) = \frac{1}{2\pi i} (\Gamma\text{-index of } T_f) \int_{|z| = \epsilon} PdQ + \int_{\epsilon \leq |z| \leq ||T_f||} \{P, Q\} d\nu_1.$$

If we now set P(\bar{z}, z) = z and approximate $\frac{1}{z}$ uniformly on the annulus $\epsilon \leq |z| \leq ||T_f||$ by polynomials Q, since both sides are continuous in the uniform topology on $C(\epsilon \leq |z| \leq ||T_f||)$ we get, in the limit,

$$\frac{1}{2\pi i} \int_{\partial M} f^{-1} df = \frac{1}{2\pi i} (\Gamma\text{-index of } T_f) \int_{|z| = \epsilon} z^{-1} dz = (\Gamma\text{-index of } T_f).$$

Step 2.

We will now prove injectivity of q. To this end it is enough to show that, for any open interval I ⊂ ∂M, we can find a function in C(M) which is zero when restricted to ∂M \ I but for which the corresponding toeplitz operator T_f is not in K_Γ. But given such an interval, we can easily find a smooth function f such that f|_{\partial M} is supported within I and such that the winding number of 1 + f on ∂M is nonzero. But then, by step 1 above, the Γ-index of 1 + T_f is nonzero and hence T_f is not an element of K_Γ, which proves the second part of the theorem.

Now, let f be continuous and with invertible restriction to the boundary of M. By part two of the theorem, this implies that the image of T_f in T_Γ/K_Γ is f|_{\partial M} and hence invertible, i.e. T_f is Γ-Fredholm, and the formula for its Γ-index follows from the fact that it is a functional
on $K_1(\mathcal{T}_\Gamma/K_\Gamma)$ and hence homotopy invariant of the class of $f|_{\partial M}$ in $K_1(C(\partial M))$.

The normalisation statement follows immediately from the proposition 1.

References

[1] Arazy, J., Fisher, S., Peetre, J., Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), no. 6, 989–1053.
[2] Atiyah, M. F. Elliptic operators, discrete groups and von Neumann algebras. Colloque "Analyse et Topologie" en l’Honneur de Henri Cartan (Orsay, 1974), pp. 43–72. Asterisque, No. 32-33, Soc. Math. France, Paris, 1976.
[3] M.F. Atiyah, W. Schmidt, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math., 42, (1977), 1-62.
[4] F. A. Berezin, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.
[5] P. Bressler, R. Nest and B. Tsygan, Riemann-Roch theorems via deformation quantization, I.Math. Res. Letters 20, (1997), page 1033.
[6] Breuer, M. Fredholm theories in von Neumann algebras. II, Math. Ann. 180 1969 313–325.
[7] Carey, R. W.; Pincus, J. Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), no. 3-4, 153–218.
[8] Carey, R. W.; Pincus, J., An invariant for certain operator algebras, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1952–1956.
[9] A. Connes, Non-commutative Differential Geometry, Publ. Math., Inst. Hautes Etud. Sci., 62, (1986), 94-144.
[10] Connes, A., On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), no. 2, 153–164.
[11] A. Connes, M. Flato, D. Sternheimer, Closed star products and Cyclic Cohomology, Letters in Math. Physics, 24, (1992), 1-12.
[12] M. Enock, R. Nest, Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal. 137 (1996), no. 2, 466–543.
[13] F. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer Verlag, New York, Berlin, Heidelberg, 1989.
[14] U. Haagerup, Operator-valued weights in von Neumann algebras. I., J. Funct. Anal. 32 (1979), no. 2, 175–206.
[15] W. J. Helton, R. Howe, Traces of commutators of integral operators. Acta Math. 135 (1975), no. 3-4, 271–305.
[16] F. J. Murray, J. von Neumann, On ring of Operators,IV, Annals of Mathematics, 44, (1943), 716-808.
[17] R. Nest, T. Natsume, Topological approach to quantum surfaces, Comm. Math. Phys. 202 (1999), no. 1, 65–87.
[18] R. Nest, B. Tsygan, Algebraic index theorem for families, Adv. Math. 113 (1995), no. 2, 151–205.
[19] Puknkszy, L., On the Plancherel theorem of the 2×2 real unimodular group, Bull. Amer. Math. Soc. 69 1963 504–512.
[20] F. Rădulescu, The Γ-equivariant form of the Berezin quantization of the upper half plane, Mem. Amer. Math. Soc. 133 (1998), no. 630,
[21] P. Sally, Analytic continuation of the irreducible unitary representations of the universal covering group of $\text{SL}(2, \mathbb{R})$, Memoirs of the American Mathematical Society, No. 69 American Mathematical Society, Providence, R. I. 196

[22] D. Voiculescu, Circular and semicircular systems and free product factors. In Operator Algebras, Unitary Representations, Enveloping algebras and Invariant Theory. *Prog. Math. Boston, Birkhauser*, 92, (1990), 45-60.

Copenhagen

E-mail address: rnest@math.ku.dk

University of Iowa, Math. Dept., Iowa City, Iowa 52242, USA