Evaluation of Heavy- and Medium-Duty On-Road Vehicle Emissions in California’s South Coast Air Basin

Molly J. Haugen,†‡§ Gary A. Bishop,*,†‡ Arvind Thiruvengadam,§ and Daniel K. Carder§

†Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States of America
‡Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
§Mechanical and Aerospace Department, West Virginia University, Morgantown, West Virginia 26505, United States of America

ABSTRACT: Emission measurements were collected from heavy-duty (HDVs) and medium-duty vehicles (MDVs) at the Peralta weigh station long-term measurement site near Anaheim, CA, in 2017. Two Fuel Efficiency Automobile Test units sampled elevated and ground-level exhaust vehicles totaling 2,315 measurements. HDVs (1,844 measurements) exhibited historical reductions in fuel specific oxides of nitrogen (NOx) from the 2008 measurements (55%) with increased use of exhaust gas recirculation and selective catalytic reduction systems. However, as these technologies have aged, the in-use benefits have declined. Infrared % opacity measurements of tailpipe soot decreased 14% since 2012 with increased diesel particulate filter (DPF) use, DPF longevity, and fleet turnover. Sixty-three percent of the HDV fleet in 2017 was chassis model year 2011+ compared to only 12% in 2012. The observed MDV fleet (471 measurements) was 1.4 years older than the HDV fleet with average NOx 14% higher. A significant reduction in MDV NOx occurred ~2 model years prior to similar HDV reductions (2014 versus 2016 chassis model year). MDV chassis model years 2014+ were able to meet their corresponding NOx laboratory certification standards in-use, whereas HDVs remain slightly above this threshold. Similar MDV NOx emission trends were also observed in data previously collected in Chicago, IL.

INTRODUCTION

Diesel-powered heavy-duty (HDVs) and medium-duty vehicles (MDVs) historically comprise only a small percentage of the overall, on-road fleet (~3%) each but contribute an increasing percentage of particulate matter (PM) and oxides of nitrogen (NOx) emissions.1−8 In compliance with current regulations that require the reduction of tailpipe PM and NOx, engine-control strategies and after-treatment systems such as diesel particulate filters (DPFs), exhaust gas recirculation (EGR), and selective catalytic reduction systems (SCRs) have been utilized in both HDVs and MDVs for emissions control. DPFs work by way of interception and reduce tailpipe particle emissions by a high percentage, reducing human exposure to PM.9−11 DPFs have proven to be a beneficial addition to diesel engines, as PM can worsen respiratory and lung diseases and cause premature death, and the black carbon (BC) component of PM is a known climate-forcing agent. Therefore, HDVs and MDVs have installed DPFs to meet the current PM standard.12 NOx contributes to ozone formation, acid rain, and secondary PM formation once emitted into the atmosphere.13,14 Because of this, EGR and SCRs have been introduced into diesel engines to help reduce tailpipe NOx in two distinctive ways. Chassis model year 2008−2010 diesel vehicles rely solely on EGR to meet their corresponding NOx standards by cooling and injecting part of the exhaust stream back into the cylinders, which reduces cylinder temperature and decreases oxygen concentrations, lowering engine-out NOx. With the newest and most stringent NOx regulations, many chassis model year 2011 and newer diesel vehicles utilize SCRs to reduce NOx into nitrogen (N2) and water. These systems have tailpipe reduction efficiencies up to 95% when working at optimum conditions. This requires enough thermal energy to thermalize the reducing agent, urea; the SCRs’ catalyst is required to be above a certain temperature, typically 200−250 °C depending on the catalyst, in order to overcome the activation barrier of nitrogen oxide (NO) to N2.6−8,12

Along with these new certification standards that translate to improvements in tailpipe emissions, California has required faster in-use emissions reductions as a key component of their Diesel Risk Reduction Plan accelerating fleet turnover.13−16 This has resulted in a California fleet that is younger than those found in other states. The average age for medium- and heavy-duty vehicles in the United States in 2015 was ~14 years old, whereas those observed in California are significantly newer (~6 years old).17,18 The impact of the new California
Table 1. FEAT Data Summary for 2017

FEAT number of measurements	high 1408	low 907	HDV 1844	MDV 471
mean gCO/kg of fuel	5.5 ± 0.5	9.1 ± 1.7	5.9 ± 0.9	11.0 ± 2.4
mean gHC/kg of fuel	2.1 ± 0.5	1.8 ± 0.4	2.2 ± 0.4	1.0 ± 0.3
mean gNOy/kg of fuel	7.8 ± 0.3	7.6 ± 0.5	7.4 ± 0.4	8.8 ± 0.5
mean gNH3/kg of fuel	0.08 ± 0.02	0.06 ± 0.05	0.09 ± 0.02	0.002 ± 0.013
mean gNOx/kg of fuel	1.1 ± 0.02	1.0 ± 0.03	1.1 ± 0.04	1.1 ± 0.1
mean IR % opacity	13.0 ± 0.5	12.5 ± 0.9	12.4 ± 0.6	14.5 ± 0.9
mean model year	2010.7	2010.7	2011.0	2009.6
mean speed (kmph)	22.5 ± 0.2	24.2 ± 1.3	22.5 ± 0.9	25.4 ± 1.3
mean acceleration (kmph/s)	1.2 ± 0.3	0.4 ± 0.2	1.0 ± 0.3	0.4 ± 0.3
diesel vehicle percentage	99%	95%	99%	92%

“Grams of NO. 6 Grams of NO2.”

regulations on HDV tailpipe NOx emissions has been monitored by multiple groups both on-road and in-lab. These groups have shown that the introduction of lower NOx standards has resulted in reduced on-road emissions due to the use of various after-treatment systems and engine-control strategies, although some researchers have shown that initial reduction levels are not persistent.24

MDV emissions have received far less research attention. MDVs’ emissions have previously been combined into overall fleet studies or studies that are composed of only a few MDVs or single-engine dynamometer measurements.3,25–27 This lack of information forced the California Air Resources Board (CARB) to use HDV emission factors to estimate MDV deterioration rates in their emission factor model. CARB has estimated that 23% of the truck fleet in California is made up of MDVs and that MDVs operating in California have lower mileage accrual rates and are newer, on average, than the HDV fleet.30

We report here in-use emission measurements collected on both HDV and MDV fleets at the Peralta weigh station, a long-term measurement site on State Route 91 in California’s South Coast Air Basin. The HDV measurements extend a data record that began in 1997, and for the first time we have also captured a significant number of emission measurements from the MDV fleet that passed through this site.

EXPERIMENTAL SECTION

The Fuel Efficiency Automobile Test (FEAT) technology has been used by the University of Denver to study HDVs, as previously described in the literature.31–33 Carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (HC), and infrared (IR) percent opacity are measured via nondispersive IR absorption, and nitrogen oxide (NO), nitrogen dioxide (NO2), and ammonia (NH3) are measured with two dispersive UV spectrometers. Collinear beams of IR and UV light are passed from the source, on one side of the roadway, to a detector on the other side of the roadway. UV absorbance bands at wavelengths of 195–226 nm are used to quantify NO and NH3, and 429–446 nm are used for NO2. IR % opacity is measured by correlating reductions in the IR reference channel (3.9 µm) by soot particles against exhaust CO2. These reductions are proportional to reductions in fuel-based soot mass and number emissions provided the soot size distribution and optical properties remain constant during the sampling period. Previous data suggests that an IR % opacity of 0.5% is ~0.5–2 g of soot/kg of fuel. Ratios of CO, HC, NO, NOx, and NH3 to CO2 are directly measured, and the requirements for valid measurements have been detailed in a previous publication.34 Conversion from these ratios to fuel specific data in g/kg of fuel is performed via carbon mass balance using a carbon mass fraction of 0.86 for diesel and gasoline and 0.75 for natural gas.35 The FEAT measured ratios were calibrated in the field with three separate certified gas cylinders containing known amounts of (1) CO (6%), CO2 (6%), propane (HC, 0.6%), NO (0.3%), and N2 balance; (2) NO2 (0.05%), CO2 (15%), and air balance; and (3) NH3 (0.1%), propane (0.6%), and N2 balance.

With the introduction of DPFs, the traditional use of elevated exhaust pipes for HDVs has changed and a growing number of HDVs are now manufactured with ground-level exhaust. MDVs are also mainly composed of low exhaust. Therefore, new to this campaign, two FEAT instruments were utilized to study and analyze the entire Peralta fleet. One instrument was placed on the ground to capture low-exhaust vehicles, (MDVs and some HDVs, low FEAT); another was placed on a scaffold, putting this FEAT at 4.3 m high, and collected data from elevated exhaust pipes (HDVs, high FEAT). A picture showing the equipment setup is shown in the Supporting Information (Figure S1). Low FEAT’s half second of data was triggered by vehicle wheels that block the IR reference beam, whereas high FEAT’s 1 s of data collection was prompted from a block of a separate IR body sensor on the roadway for each vehicle that passed through. Each vehicle-triggered measurement was attempted on both instruments, but exhaust was generally only measured by the detector that corresponds to the vehicles’ exhaust pipe location. Low FEAT employed a shorter sampling time in order for the measurement to finish between the tractor and trailer wheels, and high FEAT’s sampling time remained at 1 s as in previous studies. FRONT license plate images were captured for both systems to obtain nonpersonal vehicle information, such as make and model year, which was then linked to the vehicle’s emission measurement in the final database. The speed and acceleration were also independently measured by each system. Lastly, thermographs of elevated exhaust pipes were obtained to gather qualitative information on engine temperature for the high FEAT measurements.

The Peralta weigh station is located on State Route 91 (exit number 39, see Figures S1 and S2) in Southern California. The Peralta measurement site utilized the same combined uphill exit lane of the weigh station after the scales as the five previous campaigns in 1997, 2008, 2009, 2010, and 2012.30–38 Table S2 includes an emissions measurement summary for all of the previous campaigns. In 2017, 4 days of data (March 20–
were collected, three of which (March 21–23) included low FEAT measurements.

RESULTS AND DISCUSSION

The research conducted at the Peralta weigh station resulted in 1,368 HDVs measured with high FEAT over 4 days and 476 HDVs measured with low FEAT over the course of 3 days, which accounted for ~30% of the HDVs measured during the last 3 days. Table 1 shows fuel specific averages for CO, HC, NO, NO2, NOx, and NH3 in g/kg of fuel, as well as average IR % opacity, model year, speed (km/h), and acceleration (km/h/s). The uncertainties are standard errors of the mean calculated using the daily means (see Table S1). The percentage of diesel vehicles that comprises each category is also displayed. There were also a small number of HDV measurements (22) powered by natural gas that account for the remaining HDV measurements.

The IR % opacity measurement validity rate is prone to decreases due to increased noise from road debris and physical interferences from vehicle parts, and for these measurements only 60% of the low FEAT measurements had valid opacity readings while the high FEAT had an 88% validity rate. This can bias the IR % opacity readings high as the validity criteria is more stringent on the lower values with a fixed percent error criterion and is likely why the low FEAT IR % opacity was 2.25 times the average opacity of the high FEAT for the HDVs.

Newer HDVs have a higher percentage of vehicles with low exhaust, measured with low FEAT, and have a corresponding 12% lower NOx average than the high FEAT HDV mean. The Supporting Information (Figure S3) shows all other gases measured separated by high and low FEAT, but for subsequent analyses high and low HDV FEAT data will be combined. The HDV fleet observed at Peralta was ~6.25 years old, which emphasizes the turnover occurring in the California HDV fleet. However, contrary to the earlier CARB modeling assumptions, the MDV fleet observed is 1.4 model years older than the HDV fleet.

Historical Trends. The Peralta fleet has incorporated the new lower emissions technology, where regulated species, such as NOx and PM, were positively impacted. The research conducted at the Peralta weigh station resulted in 1,368 HDVs measured with high FEAT over 4 days and 476 HDVs measured with low FEAT over the course of 3 days, which accounted for ~30% of the HDVs measured during the last 3 days. Table 1 shows fuel specific averages for CO, HC, NO, NO2, NOx, and NH3 in g/kg of fuel, as well as average IR % opacity, model year, speed (km/h), and acceleration (km/h/s). The uncertainties are standard errors of the mean calculated using the daily means (see Table S1). The percentage of diesel vehicles that comprises each category is also displayed. There were also a small number of HDV measurements (22) powered by natural gas that account for the remaining HDV measurements.

![Figure 1. IR % opacity (gray bars, right axis) and gNO as NO2 equivalents (black bars, left axis), gNO2 (open red bars, left axis), and gNOx/kg of fuel (total bar height, left axis) by measurement year. Uncertainties are standard errors of the mean calculated using the daily means. Fleet average model year is shown above the corresponding measurement year.](image)

that measured for a fully equipped DPF fleet at the Port of Los Angeles in 2012, required by the San Pedro Clean Air Action Plan, indicating that the Peralta fleet is now fully DPF equipped.37

Fuel specific NOx emissions by measurement years are also shown in Figure 1 for all HDVs, giving a historical look at implemented diesel technologies. The fleet average gNO is plotted as NOx equivalents (black bars, left axis), gNO2 (open red bars, left axis), and gNOx/kg of fuel (total bar height, left axis). Uncertainties are standard errors of the mean calculated using the daily means. Fleet average model year is shown above the corresponding measurement year. There has been a 61% reduction in fuel specific NO from 1997 to 2017 (NOx was measured starting in the 2008 field work). Changes in engine management, such as enriching the air-to-fuel ratio and cooling the mixture via EGR, allows for lower engine-out NOx and is likely the source responsible for much of the NOx decreases seen from 2008 to 2010. The additional reductions in NOx measured in 2012 correspond to the initial introduction of SCRs to HDVs. Further adoption of SCRs and fleet turnover is responsible for the additional 37% reduction observed in total NOx from 2012 to 2017.41

The reductions observed in the 2017 fleet’s opacity and NOx were a result of new technologies and combustion management changes that have helped vehicles achieve the model year certification standards. Because on-road emissions are one important metric to evaluate how well specific certification standards translate to in-use vehicles, Figure 2a shows 2012 (black) and 2017 (blue) IR % opacity (hatched and striped bars, right axis) and fuel specific NOx (solid and open bars, left axis) emissions for in-use vehicles grouped by model year into four categories that are consistent with the certification standards: pre-2004 chassis model year HDVs without manufactured after-treatment technologies, 2004–2007 HDVs with combustion management such as EGR and subject to more recent PM retrofit activities, 2008–2010 with EGR and first-generation DPFs, and 2011 and newer chassis model years that are equipped with DPFs and an increased use of SCR systems. Uncertainties are standard errors of the mean calculated using the daily means. As more HDVs are equipped with after-treatment systems and as these systems improve, mean IR % opacity and NOx show continual declines.
A 2017 observed IR % opacity has decreased from the 2012 measurements for the earliest chassis model year grouped vehicles (pre-2004 and 2004–2007) that were not manufactured with any particle emission control technologies, suggesting retrofit DPFs in 2017 measured vehicles in compliance with the California Truck and Bus rule and agreeing with previously observed retrofit activity at a different California weigh station. Both 2012 and 2017 data for chassis model year groups 2008–2010 and 2011 and newer model year HDVs have similar IR % opacity for both measurement years. Therefore, the different DPF generations (2008–2010 versus 2011+) at Peralta in 2017 are performing similarly.

As previously mentioned, SCRs were phased into chassis model years 2011 and newer vehicles. Fuel specific NOx emissions show similar decreases for both measurement years as older HDVs are replaced with model year vehicles with newer technology. The 2011 and newer model year vehicles measured in 2017 have an 80% reduction from the pre-2004 vehicles measured in 2017 (32.2 to 6.4 gNOx/kg of fuel), an encouraging result for California’s desire to reduce NOx emissions with newer, lower-emitting HDVs operating within the state. Known durability issues with EGR could be a possible explanation for the 36% increase in NOx observed for chassis model years 2004–2007 (18.6–25.3 gNOx/kg of fuel) and 25% increase for model years 2008–2010 (13.0–16.3 gNOx/kg of fuel) between the 2012 and 2017 measurements. The only NOx management these vehicles are subject to is EGR, and therefore as these vehicles age and accumulate wear, their ability to limit engine-out NOx has decreased. In 2017, chassis model years 2011 and newer also show increased NOx emissions by 49% compared to 2012, although both of these average emissions are significantly decreased from previous model year vehicles without SCR systems (4.3 and 6.4 gNOx/kg of fuel, respectively). Comparing 2011+ fleets are problematic because these vehicles are not all certified to the same NOx emission level and the observed differences may simply be the result of differences in the two fleets’ certification level, which cannot be obtained through any vehicle registration information. However, these observed increases in NOx emissions with age may be a contributing factor in the noted slowdown in NOx emission levels observed in top-down NOx inventories.

Figure 2b shows the 2012 (black solid bars) and 2017 (blue open bars) fleet percentages for the corresponding model year categories documenting the changes that have occurred since 2012. Forty-one percent of the fleet in 2012 was pre-2004 model years, whereas only 10% of the 2017 fleet was older than model year 2004. This supports the idea that California is making progress in replacing the older HDV fleet with newer, lower-emitting vehicles.

California Site Comparison. Figure 3 compares the fuel specific NOx by chassis model year measured at Peralta (red squares) to data collected using a different measurement technique at the Cottonwood weigh station (blue circles) in northern California off I-5, 17 miles south of Redding, CA. At both locations the emission trends are similar and both have a noticeable decrease in fuel specific NOx emissions starting in model year 2008 when EGR is used to reduce engine-out NOx. The start of SCR installations in model year 2011 and the phase-in of these systems present another step reduction observed at both locations. Importantly, the newest model years, 2014 and newer, have nearly identical fuel specific NOx emissions at both locations. This newest model year subsection is largely composed of HDVs equipped with SCRs and certified to the lowest NOx emission standards and shows consistently low NOx measurements. From model year 2007 to 2017, there were 88% and 89% reductions in NOx at Cottonwood and Peralta, respectively.

There are noticeably higher fuel specific NOx emissions observed at the Cottonwood site for the 2004–2013 model year vehicles. The exact reason for this is unknown; however, instrument calibration issues can be ruled out, as pre-2004 and post-2013 vehicles have similar emissions within the measurement uncertainties at the two sites. The model years that deviate between the sites largely depend on EGR and engine-
management strategies for the control of NO\textsubscript{x} emissions. The NO\textsubscript{x} differences observed for model years 2011–2013 could also be the result of a higher percentage of HDVs at Peralta that have SCRs and are certified to lower NO\textsubscript{x} emission levels. Figure 2a shows that these intermediate model years (2008–2010) at Peralta experienced increased NO\textsubscript{x} emissions since the 2012 measurements, suggesting deterioration of the NO\textsubscript{x} controls.

It is known that diesel engine EGR coolers can suffer from particulate fouling that can compromise their effectiveness in reducing NO\textsubscript{x} emissions.42 In addition, mileage accumulation rates are likely to vary for trucks at different weigh stations due to the activity in which they are involved in and could be a contributing factor to the different NO\textsubscript{x} emission levels observed. CARB has reported that out-of-state registered HDVs have a mileage accumulation \(\sim 30\%\)–40% higher than in-state registered HDVs depending on where the vehicle originated.30 Peralta is mainly composed of in-state plated vehicles (81%), whereas Cottonwood only has 57% of its fleet registered within California. The fleet at Peralta, based on CARB’s analysis, would likely have lower mileage accumulation per year than at Cottonwood due to the respective fleet’s activity. To help test the speculation that NO\textsubscript{x} differences are linked to mileage accumulation and thus wear on the EGR systems, Figure S4 shows the fuel specific NO\textsubscript{x} emissions from Cottonwood in 2013 compared to the 2012 and 2017 Peralta data. This figure shows that the 2013 Cottonwood NO\textsubscript{x} measurements fall between the two Peralta data sets for most model years. This would be expected as the vehicles at Peralta have undergone a longer period of lower mileage accumulation with a predominantly in-state HDV fleet.

This mileage-accumulation effect appears to be demonstrated in early SCR systems as well. Figure 2a shows NO\textsubscript{x} emission increases at Peralta for the 2011 and newer chassis model year vehicles between the 2012 and 2017 measurements, although this comparison is limited by the number of 2011 and newer chassis model year vehicles sampled during the 2012 campaign (only 15% of the total measurements). However, there is a corresponding increase in NO\textsubscript{x} for these model years observed for the Cottonwood fleet, which has a substantial number of vehicles model year 2011 and newer (646 measurements). Figure 4 plots fuel specific NO\textsubscript{x} emissions against chassis model year 2008 and newer at the Cottonwood weigh station for measurement years 2013 (left, gray bars), 2015 (middle, blue bars), and 2017 (right, red bars). The open portion represents gNO\textsubscript{x}/kg of fuel, the filled portion represents the amount of NO expressed as NO\textsubscript{2}, and the height of each bar represents total gNO\textsubscript{x}/kg of fuel for the given model year. Uncertainties are standard error of the mean calculated using the daily means of total NO\textsubscript{x}.

The observed variability patterns in NO\textsubscript{x} emissions from newer model year repeat vehicles can help validate the degradation in EGR and SCR systems. Figure S8 shows the 145 HDVs that were measured multiple times at Peralta. The truck number in Figure S8 is calculated using the average gNO\textsubscript{x}/kg of fuel for each vehicle, and thus higher truck numbers correspond with increased average NO\textsubscript{x} for the particular vehicle. When assessing large databases of emissions in general, mean emissions and variability decrease on moving from the oldest model years to the newest model years. However, due to the lack of engine controls in the oldest model years (2007 and older), there is actually less variability in these high NO\textsubscript{x} emissions. In this data set, chassis model years 2008–2010 and 2011–2013 have, on average, more variable NO\textsubscript{x} emissions, underscoring that these control technologies have the potential to dramatically lower NO\textsubscript{x} emissions, but the reductions observed for some vehicles are inconsistent. The 2014 and newer vehicles comprise the majority of the low NO\textsubscript{x} measurements for trucks measured more than once, emphasizing the level of control that can be achieved for HDV NO\textsubscript{x} controls found in the newest vehicles.

Medium- versus Heavy-Duty Emissions. MDVs are subject to the same regulations imposed on HDVs in California, but there are no recent emissions-measurement studies that include the newest model years.30,39 The MDV data set presented here contains the largest number of on-road emission measurements reported to date, allowing a detailed look at this fleet’s emission trends. Figure 5 depicts 2017 fuel specific gNO as gNO\textsubscript{2} equivalents (open bars), gNO\textsubscript{x} (solid and striped bars), and total gNO\textsubscript{x} (total bar height) for diesel vehicles. Uncertainties are standard errors of the mean calculated using the daily means by model year for MDVs (blue) and HDVs (black). The 2010 homologous NO\textsubscript{x} certification standard present for 2011 and newer chassis model years, assuming that 0.15 kg of fuel is consumed per brake-horsepower hour, is also shown in a dark blue line.

From 2007 to 2017 model year vehicles, NO\textsubscript{x} declined by 90% for MDVs (2.6 to 0.26 gNO\textsubscript{x}/kg of fuel) and 89% for HDVs (29.4 to 3.4 gNO\textsubscript{x}/kg of fuel) as newer model years incorporated SCRs into their fleets. Both MDVs and HDVs show a significant drop in NO\textsubscript{x} from model year 2010 to model year 2011 with the initial introduction of SCRs, and both have similar total NO\textsubscript{x} concentrations through model year 2013. These model years are likely above the certification standard due to a combination of actions: manufacturers using credits.
that allowed the production of engines with higher NOx emission levels (see Figure S9) and a federal lawsuit that delayed additional HDVs equipped with SCRs. Beginning with the 2014 models, MDVs show further reductions in fuel specific NOx emissions that are not mirrored by the HDVs (MDVs are 68% lower than HDVs for model years 2014–2017). HDVs remained at ~7 gNOx/kg of fuel on average until chassis model year 2016, when a 54% reduction was achieved from 2013 vehicles. The two most abundant engine manufacturers for HDVs in 2017 at the Peralta site show a self-consistency in on-road NOx emissions for the 2011–2015 chassis models (the emission difference between manufacturers likely reflects differences in the fraction of noncredit engines) followed with reductions in chassis model year 2016 (see Figure S9), whereas most MDVs show reductions starting earlier in 2014.

To assess the fleet’s possible future NOx reductions, the newest observed model years’ NOx averages (chassis model year 2016 and 2017) were calculated to be 1.6 ± 1.2 and 3.2 ± 0.4 gNOx/kg of fuel for MDVs and HDVs, respectively. The large uncertainty for MDVs is completely dictated by one vehicle with 31.0 gNOx/kg of fuel (chassis model year 2017). Converted to regulation units, assuming 0.15 kg of fuel is burned per bhp-h, MDVs observed NOx average of 0.23 ± 0.17 g/bhp-h is indistinguishable from the certification standard for the newest model years of 0.2 g/bhp-h, and 0.46 ± 0.06 g/bhp-h for HDVs is 2.3 times this same threshold. These trends show that the MDVs are currently more efficient at NOx reduction for the newest model years and are able to meet their corresponding certification standards in-use for earlier chassis model years compared to the HDVs.

Medium-Duty Comparison. To understand the improvements solely in the MDV diesel fleets, the Peralta MDVs were compared to vehicles measured at an on-road measurement site in the northwest suburbs of Chicago, IL. In Chicago, only low FEAT was used with the site measurements previously reported in the literature. The low FEAT was situated at the same location for all measurement years on the ramp from Algonquin Road to eastbound I-290 in 1997, 1998, 1999, 2000, 2002, 2004, 2006, 2014, and 2016. The Chicago fleet measurements at this site include a number of MDVs. The state of Illinois categorizes their license plates with suffixes of D, F, or H (GVW of 14 001–26 000 lb) as the last letter of the plate, allowing MDVs to be extracted from these data sets (see Table S3). Figure 6 shows the fleet-average fuel specific NOx, NO2, and NOx for Chicago’s measured diesel-powered MDV fleet in 2014 (green open bars) and 2016 (blue hatched bars), as well as the Peralta 2017 diesel MDV fleet (solid gray bars). Uncertainties are the standard error of the mean calculated using the daily means.

Chicago’s fleet-mean model year measured in September of each year went from 2006.1 in 2014 to 2009.2 in 2016, and the spring 2017 Peralta MDV fleet had a model year average of 2009.6. As the fleets incorporate newer vehicles with SCRs, represented by a newer model year average, NOx emissions decrease. Therefore, MDVs from both Illinois and California are continually reducing NOx emissions from their medium-duty fleets, and the observed HDV trend, shown in Figure 1, is emulated with MDVs. However, analysis of previous Illinois data sets shows that the observed decreases in fleet-averaged fuel specific NOx emissions for the diesel MDV fleet, shown in Figure 6, have only occurred since the 2014 measurements (see Figure S10), unlike the slow but steady decreases observed in the HDV Peralta fleets (see Figure 1). The NOx reductions correspond to a decrease in fleet age; 25% of the 2014 Chicago fleet, 40% of the 2016 Chicago fleet, and 50% of the 2017 Peralta were model year 2011 and newer. Although the fleet model year composition changes, the fuel specific NOx emissions by individual model year for all three fleets show similar trends (see Figure S11), including the lower NOx emissions observed for the MDVs in the 2014 and newer model year vehicles. The similarity between the Chicago fleets and the Peralta fleet helps demonstrate that the observed NOx reductions at Peralta are generalizable to other MDV fleets across the United States.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.8b03994.

Calculation of mean gNO/kg of fuel; emission summary for previous measurement years; Chicago historical mean fuel specific emissions for diesel and gasoline medium-duty vehicles; photograph at the Peralta weigh station of the setup used to detect exhaust emissions from heavy-duty diesel trucks; satellite photo of the Peralta weigh station; 2017 Peralta HDV fuel specific
emissions; fuel specific gNOx/kg of fuel by chassis model; HDVs measured more than once at the Peralta weigh station in 2017; medium-duty fuel specific NO by measurement year; and medium-duty fuel specific NOx by chassis model year (PDF)

AUTHOR INFORMATION

Corresponding Author

*Phone: (303) 871-2584; e-mail: gbishop@du.edu.

ORCID

Molly J. Haugen: 0000-0003-2394-7603
Gary A. Bishop: 0000-0003-0136-997X

Notes

The authors declare the following competing financial interest(s): G. A. Bishop acknowledges receipt of patent royalty payments from Envirotest, an operating subsidiary of Opus Inspection, which licenses vehicle emissions testing technology developed at the University of Denver.

ACKNOWLEDGMENTS

The authors thank West Virginia University for funding, the California Highway Patrol, Sergeant Matt Boothe of the California Highway Patrol, and the University of Denver. We acknowledge the late Donald Stedman for his irreplaceable guidance and his vital contribution to on-road emission measurements.

REFERENCES

(1) McDonald, B. C.; Dallmann, T. R.; Martin, E. W.; Harley, R. A. Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. *Journal of Geophysical Research, [Atmospheres]* 2012, 117 (D21), 1–11.

(2) McDonald, B.; Goldstein, A. H.; Harley, R. A. Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol. *Environ. Sci. Technol.* 2015, 49, 5178–5188.

(3) U.S. Environmental Protection Agency. Population and activity of on-road vehicles in MOVES2014; 2016; pp 27–28.

(4) Oak Ridge Transportation Energy Data Book; https://cta.ornl.gov/data/maprs.html (accessed June 2018).

(5) Adler, J. Ceramic diesel particulate filters. *Int. J. Appl. Ceram. Technol.* 2005, 2 (6), 429–439.

(6) Koebel, M.; Elsener, M.; Kleemann, M. Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. *Catal. Today* 2000, 59, 335–345.

(7) Gekas, I.; Vreesssen, A.; Johansen, K. NOx reduction potential of V-SCR catalyst in SCR/DOC/DPF configuration targeting Euro VI limits from high engine NOx levels. SAE International: 2009.

(8) Manufacturers of Emission Controls Association. *Emission Control Technologies for Diesel-Powered Vehicles*; 2007; p 28.

(9) Bahadur, R.; Feng, Y.; Russell, L. M.; Ramanathan, V. Impact of California’s air pollution laws on black carbon and their implications for direct radiative forcing. *Atmos. Environ.* 2011, 45, 1162–1167.

(10) Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. *Environ. Sci. Technol.* 2015, 49, 186–195.

(11) Gentner, D. R.; Jathar, S. H.; Gordon, T. D.; Bahreini, R.; Day, D. A.; El Haddad, I.; Hayes, P. L.; Pieber, S. M.; Platt, S. M.; de Gouw, J.; Goldstein, A. H.; Harley, R. A.; Jimenez, J. L.; Prévôt, A. S. H.; Robinson, A. L. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. *Environ. Sci. Technol.* 2017, 51 (3), 1074–1093.

(12) Sminiotis, P. G.; Peña, D. A.; Uphae, B. S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2. *Angew. Chem., Int. Ed. 2001*, 40 (13), 2479–2482.

(13) Port of Long Beach. *Port of Los Angeles San Pedro Bay Ports Clean Air Action Plan: About the Clean Air Action Plan*; http://www.cleanairactionplan.org (accessed December 2016).

(14) California Code of Regulations. In-use on-road diesel-fueled heavy-duty drayage trucks. In Title 13, 2008.

(15) California Code of Regulations. Regulation to reduce emissions of diesel particulate matter, oxides of nitrogen and other criteria pollutants, from in-use heavy-duty diesel-fueled vehicles. In Title 13; 2008.

(16) California Air Resources Board. *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles*; Sacramento, CA, 2000.

(17) Reuters, T. Average age of U.S. light and heavy trucks in operation in 2015; https://www.statista.com/statistics/185216/age-of-us-light-trucks/ (accessed June 2018).

(18) Haugen, M. J.; Bishop, G. A. Repeat Fuel specific emission measurements on two California heavy-duty truck fleets. *Environ. Sci. Technol.* 2017, 51, 4100–4107.

(19) Haugen, M. J.; Bishop, G. A. Long-term fuel-specific NOx, and particle emission trends for in-use heavy-duty vehicles in California. *Environ. Sci. Technol.* 2018, 52, 6070–6076.

(20) Preble, C. V.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.; Kirchstetter, T. W. Effects of particle filters and selective catalytic reduction on heavy-duty diesel drayage truck emissions at the Port of Oakland. *Environ. Sci. Technol.* 2015, 49 (14), 8864–8871.

(21) Quiros, D. C.; Thiruvengadam, A.; Pradhan, S.; Besch, M.; Thiruvengadam, P.; Demirgök, B.; Carder, D.; Oshingua, A.; Huai, T.; Hu, S. Real-world emissions from modern heavy-duty diesel, natural gas, and hybrid diesel trucks operating along major California freight corridors. *Emiss. Control Technol. Sci. Technol.* 2016, 2, 156–172.

(22) Thiruvengadam, A.; Besch, M. C.; Carder, D. K.; Oshingua, A.; Gautam, M. Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine. *Environ. Sci. Technol.* 2012, 46 (3), 1907–1913.

(23) Thiruvengadam, A.; Besch, M. C.; Thiruvengadam, P.; Pradhan, S.; Carder, D.; Kappanna, H.; Gautam, M.; Oshingua, A.; Hogo, H.; Miyasato, M. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles. *Environ. Sci. Technol.* 2015, 49, 5236–5244.

(24) Preble, C. V.; Cados, T. E.; Harley, R. A.; Kirchstetter, T. W. In-use performance and durability of particle filters on heavy-duty diesel trucks. *Environ. Sci. Technol.* 2018, 52 (20), 11913–11921.

(25) McGaughey, G. R.; Desai, N. R.; Allen, D. T.; Seila, R. L.; Lonnenman, W. A.; Fraser, M. P.; Harley, R. A.; Pollack, A. K.; Ivy, J. M.; Price, J. H. Analysis of motor vehicle emissions in a Houston tunnel during the Texas Air Quality Study 2000. *Atmos. Environ.* 2004, 38 (20), 3363–3372.

(26) Dallmann, T. R.; Kirchstetter, T. W.; DeMartini, S. J.; Harley, R. A. Quantifying On-Road Emissions from Gasoline-Powered Motor Vehicles: Accounting for the Presence of Medium- and Heavy-Duty Diesel Trucks. *Environ. Sci. Technol.* 2013, 47 (23), 13873–13881.

(27) Bishop, G. A.; Stedman, D. H. Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets. *Environ. Sci. Technol.* 2015, 49 (18), 11234–11240.

(28) Livingston, C.; Rieger, P.; Winer, A. Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin. *Atmos. Environ.* 2009, 43, 3326–3333.

(29) Ban-Weiss, G. A.; McLaughlin, J. P.; Harley, R. A.; Lunden, M. M.; Kirchstetter, T. W.; Kean, A. J.; Strawa, A. W.; Stevenson, E. D.; Kendall, G. R. Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. *Atmos. Environ.* 2008, 42, 220–232.

(30) California Air Resources Board. *Appendix G—Emissions inventory methodology and results*; 2008.
(31) Bishop, G. A.; Stedman, D. H. Measuring the emissions of passing cars. Acc. Chem. Res. 1996, 29, 489–495.
(32) Popp, P. J.; Bishop, G. A.; Stedman, D. H. Development of a high-speed ultraviolet spectrometer for remote sensing of mobile source nitric oxide emissions. J. Air Waste Manage. Assoc. 1999, 49, 1463–1468.
(33) Burgard, D. A.; Dalton, T. R.; Bishop, G. A.; Starkey, J. R.; Stedman, D. H. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions. Rev. Sci. Instrum. 2006, 77, 014101.
(34) Bishop, G. A.; Haugen, M. J. On-road remote sensing of automobile emissions in the Chicago Area: Fall 2016; 2017 http://www.feat.biochem.du.edu/assets/databases/Illinois/Arflights/Chicago_Year_9_CRC2016.pdf.
(35) Bishop, G. A. FEAT Math II; http://www.feat.biochem.du.edu/assets/reports/FEAT_Math_II.pdf (accessed December 2014).
(36) Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R. Emission changes resulting from the San Pedro Bay, California Ports Truck Retirement Program. Environ. Sci. Technol. 2012, 46, 551–558.
(37) Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H. Heavy-duty truck emissions in the South Coast Air Basin of California. Environ. Sci. Technol. 2013, 47 (16), 9523–9529.
(38) Bishop, G. A.; Holubowitch, N. E.; Stedman, D. H. Remote measurements of on-road emissions from heavy-duty diesel vehicles in California; Year 1, 2008; 2009.
(39) Yanowitz, J.; McCormick, R. L.; Graboski, M. S. In-use emissions from heavy-duty diesel vehicles. Environ. Sci. Technol. 2000, 34, 729–740.
(40) California Air Resources Board Truck and Bus Regulation. https://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm (accessed June 2018).
(41) Johnson, T. V. Review of diesel emissions and control. Int. J. Engine Res. 2009, 10 (5), 275–285.
(42) Abd-Elhady, M. S.; Malayeri, M. R.; Müller-Steinhagen, H. Fouling problems in exhaust gas recirculation coolers in the automotive industry. Heat Transfer Eng. 2011, 32, 248–257.
(43) Jiang, Z.; McDonald, B. C.; Worden, H.; Worden, J. R.; Miyazaki, K.; Qu, Z.; Henze, D. K.; Jones, D. B. A.; Arellano, A. F.; Fischer, E. V.; Zhu, L.; Boersma, K. F. Unexpected slowdown of US pollutant emission reduction in the past decade. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 5099–5104.
(44) Bishop, G. A.; Hottor-Raguindin, R.; Stedman, D. H.; McClintock, P.; Theobald, E.; Johnson, J. D.; Lee, D.-W.; Zietsman, J.; Misra, C. On-road heavy-duty vehicle emissions monitoring system. Environ. Sci. Technol. 2015, 49 (3), 1639–1645.
(45) United States Securities and Exchange Commission versus Navistar International Corp; Chicago, IL, 2015.
(46) Burgard, D. A.; Bishop, G. A.; Stedman, D. H.; Gessner, V. H.; Daeschlein, C. Remote sensing of in-use heavy-duty diesel trucks. Environ. Sci. Technol. 2006, 40, 6938–6942.
(47) Bishop, G. A.; Haugen, M. J. The story of ever diminishing tailpipe emissions as observed in the Chicago, Illinois area. Environ. Sci. Technol. 2018, 52, 7587–7583.
(48) Bishop, G. A.; Stedman, D. H. A decade of on-road emissions measurements. Environ. Sci. Technol. 2008, 42 (5), 1651–1656.
Supporting Information For:

Evaluation of Heavy and Medium-Duty On-Road Vehicle Emissions in California’s South Coast Air Basin

Molly J. Haugen†‡, Gary A. Bishop†*, Arvind Thiruvengadam§, and Daniel K. Carder§

†Department of Chemistry and Biochemistry MSC 9020, University of Denver, Denver CO 80208, United States of America
‡Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
§Mechanical and Aerospace Department, West Virginia University, Morgantown, West Virginia 26505, United States of America

*Corresponding author email: gbishop@du.edu; phone: (303) 871-2584

Summary of Supporting Information:

10 pages (excluding cover):

Tables

Table S1. Example calculation of mean gNO/kg of fuel and the associated uncertainties for all HDV in 2017 at the Peralta weigh station.

Table S2. Emission Summary for previous measurement years.

Table S3. Chicago Historical Mean Fuel Specific Emissions for Diesel and Gasoline Medium-duty Vehicles

Figures

Figure S1. Photograph at the Peralta Weigh Station of the setup used to detect exhaust emissions from heavy and medium-duty trucks in 2017.

Figure S2. A satellite photo of the Peralta weigh station located on the Riverside Freeway (State Route 91). The scales are located on the inside lane next to the building in the top center and the outside lane is for unloaded trucks. The measurement location is circled at the upper right with approximate locations of the scaffolding, support vehicle and camera.

Figure S3. 2017 Peralta HDV CO, HC, NO, NO₂, NOₓ, and NH₃ fuel specific emissions (g/kg of fuel) and IR %Opacity for the high (black, solid) and low (blue, open) FEAT. Uncertainties are standard errors of the mean calculated using the daily means.
Figure S4. Fuel specific gNOx/kg of fuel by chassis model year at Cottonwood in 2013 (blue circles), Peralta in 2012 (black squares) and Peralta in 2017 (orange squares). Uncertainties are standard errors of the mean calculated using the daily means.

Figure S5. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer A at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.

Figure S6. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer B at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.

Figure S7. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer C at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.

Figure S8. HDVs measured more than once at the Peralta weigh station in 2017. Truck number is calculated using the average gNOx/kg of fuel for individual vehicles. The HDVs are segregated by model year: 2007 and older (black), 2008-2010 (blue), 2011-2013 (red) and 2014 and newer (purple).

Figure S9. HDV gNOx/kg of fuel versus chassis model year for the 2017 Peralta measurements by engine manufacturer (VIN decoded). Uncertainties are standard errors of the mean calculated using the daily measurements.

Figure S10. Medium-duty fuel specific NO by measurement year in Chicago, IL. Uncertainties are standard error of the mean calculated using the daily means.

Figure S11. Medium-duty fuel specific NOx by chassis model year for Chicago 2014 (green squares) and 2016 (blue triangles) data and 2017 Peralta data (black circles). Uncertainties are standard error of the mean calculated using the daily means.
How we estimate standard errors of the mean for our reported uncertainties:

Vehicle emissions from US vehicle fleets are not normally distributed, thus the assigning of uncertainties on fleet emission means involves a process that many readers may not be familiar with. Standard statistical methods that were developed for normally distributed populations, when used on a skewed distribution, result in uncertainties that are unrealistically too small due to the large number of samples. The Central Limit Theorem in general indicates that the means of multiple samples, randomly collected, from a larger parent population will be normally distributed, irrespective of the parent populations underlying distribution. Since we almost always collect multiple days of emission measurements from each site, we use these daily measurements as our randomly collected multiple samples from the larger population and report uncertainties based on their distribution. We calculate means, standard deviations and finally standard errors of the mean for this group of daily measurements. We report the fleet weighted means for all of the emission measurements and then calculate a standard error of this weighted mean by applying the same error percentage obtained from the ratio of the standard error of the mean for the daily measurements divided by the daily measurement mean.

An example of this process is provided below for the 2017 Peralta HDV gNO/kg of fuel measurements. While this example is for a fleet mean, we also use this technique when we report uncertainties for other statistics such as individual model years, specific fuel or technology types, and VSP. For example, each model year will have its daily means averaged and then its standard error of the mean for the daily average computed and that percent uncertainty (Daily STD Error MY/Daily MY average) will be applied to that entire model year’s mean emissions.

Table S1. Example calculation of mean gNO/kg of fuel and the associated uncertainties for all HDV in 2017 at the Peralta weigh station.

Date	Daily Average gNO/kg of fuel	Number of Measurements
3/20/2017	7.92	357
3/21/2017	7.15	507
3/22/2017	6.53	454
3/23/2017	8.15	526
Average for Daily Mean	7.43	
Standard Error for Daily Mean	0.38	
Weighted Fleet Mean	7.43	
Standard Error Calculated for the Fleet Mean	0.38	
Value as reported in Table 1	7.4 ± 0.4	
Table S2. Peralta weigh station Emission Summary for Previous Measurement Years.

Study Year	1997	2008	2009	2010	2012
Mean CO/CO₂ (g/kg of fuel)	0.008 (16.1)	0.005 (10.0)	0.005 (10.6)	0.005 (10.0)	0.004 (7.3)
Median gCO/kg	9.3	6.7	6.6	6.6	4.0
Mean HC/CO₂ (g/kg of fuel)	0.0008 (5.0)	0.0004 (2.7)	0.0007 (4.8)	0.0007 (4.2)	0.0001 (0.6)
Median gHC/kg	3.7	2.1	2.9	2.9	1.3
Mean NO/CO₂ (g/kg of fuel)	0.009 (19.2)	0.008 (16.4)	0.007 (15.4)	0.006 (14.7)	0.006 (11.8)
Median gNO/kg	18.0	15.2	14.3	13.5	11.5
Mean SO₂/CO₂ (g/kg of fuel)	NA	0.00006 (0.26)	0.00004 (0.16)	-0.00004 (-0.22)	-0.00008 (-0.36)
Median gSO₂/kg	NA	0.22	0.11	-0.2	-0.28
Mean NH₃/CO₂ (g/kg of fuel)	NA	0.00003 (0.03)	0.00002 (0.003)	0.000007 (0.008)	0.00002 (0.02)
Median gNH₃/kg	NA	0.02	0.016	0.006	0
Mean NO₂/CO₂ (g/kg of fuel)	NA	0.0006 (2.1)	0.0006 (1.9)	0.0005 (1.9)	0.0005 (1.8)
Median gNO₂/kg	NA	1.6	1.4	1.4	1.4
Mean / Median gNOₓ/kg	NA	27.3 / 25.2	25.4 / 23.6	24.5 / 22.3	19.9 / 19.1
Mean/Median IR %Opacity	2.5 / 1.9	0.73 / 0.6	0.73 / 0.6	0.68 / 0.6	0.69 / 0.5
Mean Model Year	NA	2000.4	2001.3	2002.0	2004.0
Mean Speed (mph)	NA	13.4	13.5	13.4	13.9
Mean Acceleration (mph/s)	NA	1.1	0.9	0.8	1.1
Mean VSP(kw/tonne)	NA	6.3	5.8	4.9	6.6
Slope (degrees)	1.8°	1.8°	1.8°	1.8°	1.6°
Table S3. Chicago Historical Mean Fuel Specific Emissions for Diesel and Gasoline Medium-duty Vehicles

Measurement Year	gCO/kg\(^a\)	gHC/kg\(^b\)	gNO/kg\(^c\)	Vehicles	Fuel
1997	33.9 ± 4.6	6.2 ± 1.5	18.7 ± 0.9	72	D
1998	48.5 ± 16.6	16.3 ± 6.1	15.6 ± 0.4	90	D
1999	20.2 ± 3.8	4.4 ± 1.9	18.5 ± 1.4	114	D
2000	14.6 ± 1.3	1.9 ± 1.6	16.6 ± 0.6	122	D
2002	16.3 ± 2.1	1.9 ± 0.6	17.7 ± 1.3	93	D
2004	13.5 ± 3.3	3.3 ± 2.1	18.7 ± 0.7	114	D
2006	10.7 ± 0.6	0.3 ± 1.3	15.9 ± 0.6	108	D
2014	-0.4 ± 0.5	5.0 ± 1.1	16.0 ± 1.5	81	D
2016	6.8 ± 2.2	1.2 ± 1.7	13.0 ± 1.3	142	D
1997	109.4 ± 16.4	7.8 ± 3.1	13.5 ± 1.3	30	G
1998	153.7 ± 59.5	14.1 ± 7.3	11.4 ± 3.1	25	G
1999	108.0 ± 44.8	8.6 ± 7.4	15.3 ± 1.8	38	G
2000	96.2 ± 36.6	10.3 ± 10.0	10.3 ± 10.0	20	G
2002	18.1 ± 10.8	-1.5 ± 0.7	2.7 ± 1.1	20	G
2004	48.3 ± 12.4	1.4 ± 1.7	6.8 ± 3.0	26	G
2006	50.1 ± 25.2	6.0 ± 2.2	3.0 ± 1.8	17	G
2014	80.8 ± 41.7	23.9 ± 13.4	9.6 ± 3.6	19	G
2016	7.7 ± 10.3	-0.5 ± 0.4	2.8 ± 1.7	41	G

\(^a\) Calculated using a carbon mass fraction of 0.86 for both fuels and uncertainties are calculated using the daily means.

\(^b\) HC grams of propane expressed using an NDIR to FID correction factor of 2 and means are offset normalized as described in Bishop and Haugen, Environ. Sci. Tech., 25:7587-7593, 2018.

\(^c\) grams of NO
Figure S1. Photograph at the Peralta Weigh Station of the setup used to detect exhaust emissions from heavy and medium-duty trucks in 2017.

Figure S2. A satellite photo of the Peralta weigh station located on the Riverside Freeway (State Route 91). The scales are located on the inside lane next to the building in the top center and the outside lane is for unloaded trucks. The measurement location is circled at the upper right with approximate locations of the scaffolding, support vehicle and camera.
Figure S3. 2017 Peralta HDV CO, HC, NO, NO₂, NOₓ, and NH₃ fuel specific emissions (g/kg of fuel) and IR %Opacity for the high (black, solid) and low (blue, open) FEAT. Uncertainties are standard errors of the mean calculated using the daily means.

Figure S4. Fuel specific gNOₓ/kg of fuel by chassis model year at Cottonwood in 2013 (blue circles), Peralta in 2012 (black squares) and Peralta in 2017 (orange squares). Uncertainties are standard errors of the mean calculated using the daily means.
Figure S5. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer A at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.
Figure S6. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer B at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.
Figure S7. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by Manufacturer C at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. Uncertainties are calculated from the standard error of the mean using the daily means.
Figure S8. HDVs measured more than once at Peralta weigh station in 2017. Truck number is calculated using the average gNO\textsubscript{x}/kg of fuel for individual vehicles. The HDVs are segregated by model year: 2007 and older (black), 2008-2010 (blue), 2011-2013 (red) and 2014 and newer (purple).

Figure S9. HDV gNO\textsubscript{x}/kg of fuel versus chassis model year for the 2017 Peralta measurements by engine manufacturer (VIN decoded). Uncertainties are standard errors of the mean calculated using the daily measurements.
Figure S10. Medium-duty mean fuel specific NO by measurement year in Chicago, IL. Uncertainties are standard error of the mean calculated using the daily means.

Figure S11. Medium-duty fuel specific NO\textsubscript{x} by chassis model year for Chicago 2014 (green squares) and 2016 (blue triangles) data and 2017 Peralta data (black circles). Uncertainties are standard error of the mean calculated using the daily means.