Absence of Landau’s Diamagnetism in Two Dimensions

S. Fujita\(^{1}\) and H. C. Ho\(^{2}\)

\(^1\) Department of Physics, University at Buffalo, SUNY
Buffalo, New York 14260, USA
\(^2\) Physics Division, National Center for Theoretical Sciences
Hsinchu 30013, Taiwan

PACS. 71.70.Di – Landau levels.
PACS. 73.20.-r – Electron states at surfaces and interfaces.
PACS. 71.10.Ca – Electron gas.

Abstract. – The statistical weight \(W\) as a function of energy \(E\) for quasielectrons with mass \(m^*\) subject to a fixed magnetic field \(B\) is

\[
W/\text{A} = \left(\frac{m^*}{\pi \hbar^2}\right) E + \left(\frac{eB}{\pi^2 \hbar}\right) \sum_{\nu=1}^{\infty} (-1)^{\nu-1} \cdot \sin \left(\frac{2\pi \nu E}{\hbar \omega_c}\right),
\]

where \(A\) is the sample area, and \(\omega_c \equiv eB/m^*\) the cyclotron frequency. Significantly, there is no Landau’s term proportional to \(B^2\) in 2D. This leads to the conclusion that the 2D electron system is always paramagnetic, but shows a magnetic oscillation.

Landau [1], Sondheimer and Wilson [2,3] discussed the de Haas-van Alphen (dHvA) oscillation [4] of a three-dimensional (3D) system of quasifree electrons. Nakamura [5] calculated the statistical weight \(W\) associated with the Landau states, and treated the dHvA oscillation. We extend Nakamura’s theory to a 2D system.

Let us consider a dilute system of electrons, each with effective mass \(m^*\), moving in a plane. Applying a magnetic field \(B\) perpendicular to the plane, each electron will be in a Landau state of energy

\[
E = (N_L + 1/2) \hbar \omega_c, \quad N_L = 0, 1, \cdots,
\]

where \(\omega_c = eB/m^*\) is the cyclotron frequency. The degeneracy of the Landau level (LL) is

\[
\frac{eBA}{2\pi \hbar}, \quad A = \text{sample area}.
\]

We introduce kinetic momenta

\[
\Pi_x = p_x + eA_x, \quad \Pi_y = p_y + eA_y,
\]

in terms of which the Hamiltonian \(\mathcal{H}\) for the electron is

\[
\mathcal{H} = \frac{1}{2m^*}(\Pi_x^2 + \Pi_y^2) = \frac{1}{2m^*} \Pi^2.
\]
After simple calculations, we obtain
\[dx \, d\Pi_x \, dy \, d\Pi_y = dx \, dp_x \, dy \, dp_y. \]

We can then represent quantum states by quasi phase-space elements \(dx \, d\Pi_x \, dy \, d\Pi_y \). The Hamiltonian \(\mathcal{H} \) in eq. (3) does not depend on the position \((x, y)\). Assuming large normalization lengths \((L_1, L_2)\), we can represent the Landau states by concentric shells of the phase space having statistical weight \(2\pi \Pi \Delta \Pi \cdot L_1 L_2 (2\pi \hbar)^{-2} = eBA/2\pi \hbar \), with \(A = L_1 L_2 \) and \(\hbar \omega_c = \Delta (\Pi^2/2m^*) = \Pi \Delta \Pi/m^* \). Hence, the LL degeneracy is given by eq. (2). Figure 1 represents a typical Landau state in the \(\Pi_x-\Pi_y \) space.

As the field \(B \) is raised the separation \(\hbar \omega_c \) increases, and the quantum states are collected (or bunched) together. As a result of bunching, the density of states \(N(\varepsilon) \) should change periodically since the Landau levels are spaced equally.

The electrons obey the Fermi-Dirac statistics. Considering a system of quasifree electrons, we define the Helmholtz free energy \(\mathcal{F} \) by
\[\mathcal{F} = N\mu - 2k_B T \sum_i \ln \left[1 + e^{(\mu-E_i)/k_B T} \right], \]
where \(\mu \) is the chemical potential, and the factor 2 arises from spin degeneracy. The chemical potential \(\mu \) is determined from the condition
\[\frac{\partial \mathcal{F}}{\partial \mu} = 0. \]

The magnetization \(\mathcal{M} \) for the system can be found from
\[\mathcal{M} = -\frac{1}{A} \frac{\partial \mathcal{F}}{\partial B}. \]
Equation (5) is equivalent to the usual condition that the number of electrons N can be obtained in terms of the Fermi distribution function F:

$$N = 2 \sum_i F(E_i), \quad F(E) \equiv \left[e^{\beta(E-\mu)} + 1 \right]^{-1}. \quad (7)$$

The LL E_i is characterized by the Landau oscillator quantum number $(N_L)_i$.

Let us introduce the density of states $dW/dE \equiv N(E)$ such that $N(E)dE =$ number of states having energy between E and $E + dE$. We write eq. (4) in the form

$$F = N\mu - 2k_B T \cdot \int_0^\infty dE dW \ln \left[1 + e^{(\mu - E)/k_B T} \right] = N\mu - 2 \int_0^\infty dEW(E)F(E). \quad (8)$$

The statistical weight W is the total number of states having energies less than the Landau energy $(N_L + 1/2) \hbar \omega_c$ in eq. (4). This W from fig. 1 is

$$W = \frac{L_1L_2}{(2\pi \hbar)^2} 2\pi \Delta \Pi \cdot 2 \sum_{N_L=0}^\infty \Theta [E - (N_L + 1/2) \hbar \omega_c], \quad (9)$$

where $\Theta(x)$ is the Heaviside step function

$$\Theta(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}. \quad (10)$$

We introduce a dimensionless variable $\varepsilon \equiv 2\pi E/\hbar \omega_c$, and rewrite eq. (9) as

$$W(E) = C\hbar \omega_c \cdot 2 \sum_{N_L=0}^\infty \Theta[\varepsilon - (2N_L + 1)\pi], \quad (10)$$

with $C = 2\pi m^* A(2\pi \hbar)^{-2}$. We assume a high Fermi-degeneracy such that $\mu \simeq \varepsilon_F \gg \hbar \omega_c$. The sum in eq. (10) can be computed using Poisson’s summation formula [6]

$$\sum_{n=-\infty}^\infty f(2\pi n) = \frac{1}{2\pi} \sum_{m=-\infty}^\infty \int_{-\infty}^\infty d\tau f(\tau)e^{-im\tau}, \quad (11)$$

where $\sum_{n=-\infty}^\infty f(2\pi n + t), \ 0 \leq t < 2\pi$ is by assumption uniformly convergent. We write the sum in eq. (10) as

$$2 \sum_{n=0}^\infty \Theta[\varepsilon - (2n + 1)\pi] = \Theta(\varepsilon - \pi) + \phi(\varepsilon; 0), \quad (12)$$

$$\phi(\varepsilon; x) = \sum_{n=-\infty}^\infty \Theta(\varepsilon - \pi - 2\pi|n + x|).$$

Note that $\phi(\varepsilon; x)$ is periodic in x. After the Fourier expansion, we set $x = 0$ to obtain eq. (12). By taking the real part (Re) of eq. (12) and using eq. (11), we obtain

$$\text{Re} \{ \text{Eq. (12)} \} = \frac{1}{\pi} \int_0^\infty d\tau \Theta(\varepsilon - \tau) + \frac{2}{\pi} \sum_{\nu=1}^\infty (-1)^\nu \int_0^\infty d\tau \Theta(\varepsilon - \tau) \cos \nu \tau, \quad (13)$$
where we assumed $\varepsilon \equiv 2\pi E/\hbar \omega_c \gg 1$, and neglected π against ε. The integral in the first term in eq. (13) yields ε. The integral in the second term can be evaluated by integration by parts, and using $d\Theta/dy = \delta(y)$. We obtain

$$\int_0^\infty d\tau \Theta(\varepsilon - \tau) \cos \nu \tau = \frac{1}{\nu} \sin \nu \varepsilon.$$

Hence,

$$\text{Re}\{ \text{Eq. (12)} \} = \frac{1}{\pi} \varepsilon + \frac{2}{\pi} \sum_{\nu=1}^\infty (-1)^\nu \frac{\varepsilon}{\nu} \sin \nu \varepsilon. \quad (14)$$

Using eqs. (10) and (14), we obtain

$$W(E) = W_0 + W_{osc}, \quad (15)$$

$$W_0 = C \hbar \omega_c \frac{\varepsilon}{\pi} = \frac{A m^* E}{\pi \hbar^2}, \quad (16)$$

$$W_{osc} = C \hbar \omega_c \frac{2}{\pi} \sum_{\nu=1}^\infty (-1)^\nu \frac{\varepsilon}{\nu} \sin \left(\frac{2\pi \nu E}{\hbar \omega_c} \right). \quad (17)$$

The oscillatory term W_{osc} contains an infinite sum with respect to ν, but only the first term, $\nu = 1$, is important in practice as we see later. This term W_{osc} can generate magnetic oscillations. There is no term proportional to B^2 generating the Landau diamagnetism. This is unexpected. We briefly discuss the difference between 2D and 3D systems.

In 3D, the LL E is given by

$$E = \left(N_L + \frac{1}{2} \right) \hbar \omega_c + \frac{p_z^2}{2m^*}. \quad (18)$$

The energy E is continuous in the bulk limit. The statistical weight W' is the total number of states having energies less than E. The allowed values of p_z are distributed over the range in which $|p_z|$ does not exceed $\sqrt{2m^*\hbar^2/\varepsilon - (2N_L + 1)} \frac{\pi}{2}$. We obtain

$$W'(E) = C' \left(\frac{\hbar \omega_c}{\pi} \right)^{3/2} \left(\frac{2}{\sqrt{2\pi}} \right) \sum_{N_L=0}^\infty \sqrt{\varepsilon - (2N_L + 1) \frac{\pi}{2}}, \quad (19)$$

where $C' \equiv V (2\pi m^*)^{3/2}/(2\pi \hbar)^3$, $\varepsilon \equiv 2\pi E/\hbar \omega_c$, and $V \equiv L_1 L_2 L_3$ is the sample volume. We proceed similarly, and obtain

$$W'(E) = W'_0 + W'_L + W'_{osc}, \quad (19)$$

$$W'_0 = C' \frac{4}{3\sqrt{\pi}} \frac{E^{3/2}}{\varepsilon^{3/2}}, \quad (20)$$

$$W'_L = -C' \frac{1}{24 \sqrt{\pi}} \frac{E^{1/2}}{(\hbar \omega_c)^2}, \quad (21)$$

$$W'_{osc} = C' \frac{1}{\sqrt{2}} \left(\frac{\hbar \omega_c}{\pi} \right)^{3/2} \sum_{\nu=1}^\infty \frac{(-1)^\nu}{\nu^{3/2}} \sin \left(\frac{2\pi \nu E}{\hbar \omega_c} - \frac{\pi}{4} \right). \quad (22)$$
In detail, we write the sum in eq. (18) as

\[2 \sum_{n=0}^{\infty} \sqrt{\varepsilon - (2n + 1)\pi} = (\varepsilon - \pi)^{1/2} + \psi(\varepsilon; 0), \]

\[\psi(\varepsilon; x) \equiv \sum_{n=-\infty}^{\infty} (\varepsilon - \pi - 2\pi |n + x|)^{1/2}. \]

Since \(\psi(\varepsilon; x) \) is periodic in \(x \), we can use it for the Fourier expansion of eq. (23), and then set \(x = 0 \). By taking the real part (Re) of eq. (23) and using eq. (11), we obtain

\[\text{Re} \{ \text{Eq. (23)} \} = \frac{1}{\pi} \int_{0}^{\varepsilon} d\tau (\varepsilon - \tau)^{1/2} + \frac{2}{\pi} \sum_{\nu=1}^{\infty} (-1)^{\nu} \int_{0}^{\varepsilon} d\tau (\varepsilon - \tau)^{1/2} \cos \nu \tau, \]

where we neglected \(\pi \) against \(\varepsilon \). The integral in the first term in eq. (24) yields \((2/3)\varepsilon^{3/2}\), leading to \(W_0' \) in eq. (20). The integral in the second term can be written after integrating by part, and changing the variable \((\nu\varepsilon - \nu\tau = t)\) as

\[\frac{1}{2\nu^{3/2}} \left[\sin \nu \varepsilon \int_{0}^{\nu \varepsilon} dt \frac{\cos t}{\sqrt{t}} - \cos \nu \varepsilon \int_{0}^{\nu \varepsilon} dt \frac{\sin t}{\sqrt{t}} \right]. \]

We now use asymptotic expansions for \(\nu \varepsilon = x \gg 1 \):

\[\int_{0}^{x} dt \frac{\sin t}{\sqrt{t}} \sim \sqrt{\frac{\pi}{2}} \frac{\cos x}{\sqrt{x}} - \ldots \]

\[\int_{0}^{x} dt \frac{\cos t}{\sqrt{t}} \sim \sqrt{\frac{\pi}{2}} \frac{\sin x}{\sqrt{x}} - \ldots. \]

The second terms in the expansion lead to \(W_L' \) in eq. (21), where we used the identity

\[\sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1}}{\nu^2} = \frac{\pi^2}{12}. \]

The first terms lead to the oscillatory term \(W_{osc}' \) in eq. (22).

The term \(W_0' \), which is independent of \(B \), gives the weight equal to that for a free-electron system with no field. The term \(W_L' \) proportional to \(B^2 \) is negative (diamagnetic), and can generate a Landau diamagnetic moment.

The energy \(E \) of the 3D system is continuous, and hence the system is manageable or soft. In contrast, the energy \(E \) of the 2D system is discrete, and hence the system is less manageable. This explains the absence of Landau diamagnetism for the 2D system.

The statistical weight \(W_{osc} \) in eq. (17) has a sine term. Hence, the density of states, \(N = dW/dE \), has an oscillatory part of the form

\[\sin \left(\frac{2\pi E}{\hbar \omega_c} \right), \quad E \equiv \frac{\Pi^2}{2m^*}. \]

If the density of states oscillates violently in the drop of the Fermi distribution function:

\[F(E) \equiv [e^{\beta(E-\mu)} + 1]^{-1}, \]

the delta-function replacement formula

\[-\frac{dF}{dE} = \delta(E - \mu), \]
cannot be used. The width of $-dF/dE$ is of the order $k_B T$. The critical temperature T_c below which oscillations can be observed is $k_B T_c \sim \hbar \omega_c$. For $T < T_c$, we may proceed as follows. Let us consider the integral

$$I = \int_0^\infty dE \frac{F(E) \sin (2\pi E/\hbar \omega_c)}{e^{\beta (E-\mu)} + 1}.$$

We introduce a new variable $\zeta \equiv \beta (E-\mu)$, and extend the lower limit to $-\infty$ (low-temperature limit) so that

$$\int_0^\infty dE \cdots \frac{1}{e^{\beta (E-\mu)} + 1} = \frac{1}{\beta} \int_{-\infty}^\infty d\zeta \cdots \frac{1}{e^{\beta \zeta} + 1}.$$

With the help of the standard integral

$$\int_{-\infty}^\infty d\zeta \frac{e^{ia\zeta}}{e^{\zeta} + 1} = \frac{\pi}{a \sinh a},$$

we obtain

$$I = -\frac{\pi k_B T \cos (2\pi \varepsilon_F/\hbar \omega_c)}{\sinh (2\pi^2 k_B T m^*/\hbar e B)}.$$

(25)

For very low fields the oscillation number in the range $k_B T$ becomes great, and hence the sinusoidal contribution must cancel out. This effect is represented by the factor

$$[\sinh (2\pi^2 k_B T m^*/\hbar e B)]^{-1}.$$

We calculate the free energy indicated in eq. (8) using the statistical weight W in eq. (15), and obtain

$$F = N\mu - 2A \frac{m^*}{\pi \hbar^2} \varepsilon_F + 2A \frac{e B}{\pi \hbar} k_B T \sum_{\nu=1}^{\infty} \frac{(-1)^\nu}{\nu} \frac{\cos (2\pi \nu \varepsilon_F/\hbar \omega_c)}{\sinh (2\pi^2 \nu k_B T m^*/\hbar e B)}.$$

(26)

where we used the integration formula (25), and took the low-temperature limit except for the oscillatory terms. The magnetization M can be obtained using eq. (26).

So far, we have not considered the Pauli spin magnetization [7]

$$M_{\text{Pauli}} = 2\mu_B^2 B N_0 / A = 2n\mu_B^2 B / \varepsilon_F,$$

with μ_B (Bohr magneton) $= e\hbar/2m$ and n (electron number density) $= m^* \varepsilon_F / \pi \hbar^2$. Using eqs. (6), (7) and (26), we obtain the total magnetization $M_{\text{tot}} = M_{\text{Pauli}} + M_{\text{osc}}$:

$$M_{\text{tot}} = 2n\mu_B \frac{\mu_B^2 B}{\varepsilon_F} \left[1 + \frac{k_B T \mu_B}{m^* \sinh (2\pi^2 \mu_B T m^*/\hbar e B)} \right].$$

(27)

The B-dependence of F is contained in the last term in eq. (26). The linear B-dependence of the multiplication factor is much stronger than the B-dependence of the alternating series. Therefore, the contribution from the B-derivative of the series is neglected. The variation of the statistical weight W is periodic in B^{-1}, but it is far from sinusoidal. Only the first oscillatory term, $\nu = 1$, is important and kept in eq. (27) since $\sinh (2\pi^2 \mu_B T m^*/\hbar e B) \gg 1$.

The width of dF/dE is finite for a finite T. In this E-range, many oscillations can occur if the field B is made low. We assumed this condition to obtain eq. (27). The magnetic susceptibility χ is defined by the ratio $\chi = M/B$.

In conclusion, the 2D system is intrinsically paramagnetic since the Landau’s diamagnetic term is absent, but the system exhibits a dHvA oscillation.
REFERENCES

[1] Landau L. D., Z. Physik, 64 (1930) 629.
[2] Sondheimer E. H. and A. H. Wilson, Proc. Roy. Soc. London, Ser. A, 210 (1951) 173.
[3] Wilson A. H., The Theory of Metals (Cambridge University Press, London) 1954, p. 676.
[4] de Haas W. J. and P. M. van Alphen, Leiden Comm., (1930) 208d; (1930) 212a; (1932) 220d.
[5] Nakamura T., Magnetism (Makishoten, Tokyo) 1965, p. 75–82.
[6] Courant R. and D. Hibert, Methods of Mathematical Physics, Vol. 1 (Interscience-Wiley, New York) 1953, p. 76–77.
[7] Pauli W., Z. Physik, 41 (1927) 81.