Supplementary Materials

Rapid and Non-Destructive Detection of Compression Damage of Yellow Peach Using Electronic Nose and Chemometrics

Xiangzheng Yang 1, Jiahui Chen 2, Lianwen Jia 1, Wangqing Yu 1, Da Wang 1, Wenwen Wei 1, Shaojia Li 2, Shiyi Tian 3 and Di Wu 2,*

1 Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, China; yangxiangzheng318@163.com (X.Y.); lianwejia@163.com (L.J.); jnbxzx@163.com (W.Y.); wangda19910@163.com (D.W.); flying200807@163.com (W.W.)
2 College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; 21816131@zju.edu.cn (J.C.); shaojiali@zju.edu.cn (S.L.)
3 School of Food Science and Biotechnology, Zhejiang GongShang University, Hangzhou 310018, Zhejiang, China; tianshiyi@zjgsu.edu.cn
* Corresponding author: di_wu@zju.edu.cn; Tel: +86 571 88982226. Fax: +86 571 88982224

![E-nose spectra (4 h-0 mm).](image-url)
(b) E-nose spectra (8 h-0 mm).

(c) E-nose spectra (24 h-0 mm).
(d) E-nose spectra (4 h-5 mm).

(e) E-nose spectra (8 h-5 mm).
(f) E-nose spectra (24 h-5 mm).

(g) E-nose spectra (4 h-15 mm).
(h) E-nose spectra (8 h-15 mm).

(i) E-nose spectra (24 h-15 mm).
Figure S1. Electronic nose (e-nose) and gas chromatography-mass spectrophotometry (GC–MS) spectral examples of yellow peach from three groups at 4, 8, and 24 h after the fruit was compressed. 0 mm: fruits without compression damage (Group 0), 5 mm: fruits compressed by 5 mm (Group I), 15 mm: fruits compressed by 15 mm (Group II).