Retinoid Signaling in Cancer and its Promise for Therapy

Krysta Mila Coyle¹, Mohammad Sultan¹, Margaret Lois Thomas¹, Ahmad Vaghar-Kashani¹,² and Paola Marcato*²

¹Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
²Department of Biology, Uppsala University, Uppsala, Sweden

Abstract

Deregulated signal transduction is a major facet of cancer development and progression. Herein, we review the current paradigm for retinoic acid signaling, its role in cancer and potential therapeutic applications and challenges. Retinoic acid is used with remarkable success in the treatment of one of the most high-risk leukemias, acute promyelocytic leukemia; however, extending its use in the treatment of other cancers has had limited success at best. Functional studies provide clues for the poor performance of retinoic acid as a general cancer therapeutic, connecting retinoic acid signaling to both cell growth arrest and proliferation with tumor suppression and cancer progression consequences. The dualistic role of the retinoic acid signaling pathway in cancer is revealed in its gene transcription targets, cross-talk with other transcription factors, mediation of apoptotic pathways, and influence in the immune system. If the greatest potential benefit of retinoid-based cancer therapeutics is to be achieved, the many physiological roles of retinoic acid need to be considered.

Keywords: Retinoid signaling; Retinoic acid; Therapeutic applications; Chemotherapeutic agent

Introduction

Retinoic acid (RA) has shown incredible promise as a chemotherapeutic agent in the treatment of acute promyelocytic leukemia (APL). Unfortunately, its use has seen limited success in other cancers, leading to investigations on the role of RA signaling in cancer cells. The promiscuous nature of retinoid-mediated signaling leads to numerous differential downstream effects during RA treatment; thus, we have reviewed literature pertaining to specific contexts of RA signaling and its dysregulation in various cancers. In particular, we note that the effects of RA signaling are largely cellular context-specific. The varied cellular responses to RA treatment may provide an explanation for the failure of RA to reach its full potential in treatment and prevention of solid tumors, including breast, lung, ovarian, prostate, and pancreatic cancers. Indeed, further exploration of the targets of RA transcriptional activity may see improved benefits in clinical studies of cancer treatments.

Physiological Retinoic Acid Signaling

RA, a metabolite of vitamin A, is a key physiological signal transduction molecule. RA and its related analogues (termed retinoids, Figure 1) play important roles in cell proliferation and differentiation. Retinoids are hydrophobic and lipophilic molecules with cyclic end groups and a conjugated side chain with a polar end group. These properties, coupled with their small size, allow retinoids to enter cells through the cell membrane. Retinoids are thus ideal candidates for medical therapies, as the uptake of RA (and its closely related synthetic analogues) does not require a cell surface receptor [1].

Vitamin A and its metabolism

Vitamin A, a retinyl ester, is primarily provided by dietary β-carotene, found in colored fruits and vegetables. Approximately 70% of the total retinoids in the body (mostly retinyl esters) are stored in specialized hepatic stellate cells [2]. Retinyl esters are metabolized in the intestine by retinyl ester hydrolases to retinol (Figure 2). Most natural retinoids are transported as retinol, bound to retinol-binding protein 4 (RBPs) [3]. As shown in Figure 2, retinol/RBP4 complexes can undergo receptor-mediated endocytosis via stimulated by retinoid acid gene 6 (STRA6) [4]; or, retinol can be taken up via diffusion [5,6].

Retinol binds cellular retinol-binding proteins (CRBPs). CRBP1 acts as a substrate for intracellular retinol dehydrogenases to oxidize retinol to retinaldehyde (retinal, Figure 2) [7]. After oxidation, the CRBP1-retinal complex is a substrate for RA synthesis by retinaldehyde dehydrogenases (RALDHs), which are also known as aldehyde dehydrogenase 1A1 (ALDH1A1), ALDH1A2, and ALDH1A3 [8]. Cellular RA-binding protein 2 (CRABP2) delivers RA to the nucleus (Figure 2) where it acts as a signal transduction molecule by regulating transcription of many genes [9]. Catabolism of RA occurs via the CYP enzymes [10-12].

Retinoic acid signal transduction and transcriptional activity

There are multiple physiological isomers of RA with distinct function and binding properties (Figure 1A). The predominant physiological isof orm, all-trans RA (atRA) activates nuclear hormone receptors (NHRs), retinoic-acid receptors (RARs, RARβ and RARγ) [13]. The RARs form heterodimers with retinoid-X receptors (RXRs, RRβ and RXRγ). RA can be activated by all-trans, 9-cis, and 13-cis RA, however; RXRs preferentially bind and are activated by 9-cis RA [13].

NHRs recognize hormone response elements (HREs) in DNA; these are namely direct repeat of variations on the hexameric DNA sequence, AGGTCA, separated by one to five spacer nucleotides (DR1-DR5). The heterodimer RAR/RXR binds to specific retinoic-acid response elements (RAREs) in gene promoter regions. The canonical RARE sequence is a direct repeat of the NHR hexameric sequence, RGKTC4, separated by 5 nucleotides. In addition to the canonical
DR5, RAR/RXRs have been found to bind to DR0, DR1, and DR2 sites, as well as a composite DR8 [14]. Over 3000 human genes have been found to be associated with RAREs, leading to a wide variety of possible biological functions [15].

Unliganded RAR/RXR heterodimers are typically found bound to DNA with corepressor nuclear corepressor (NCoR) and silencing mediator for retinoid and thyroid receptors (SMRT) [16-18]. NCoR and SMRT form complexes with histone deacetylases (HDACs) and activate HDAC3 [19-22]. The HDAC activity associated with these corepressors maintains condensed chromatin in the bound promoter, repressing transcription [21,23].

Coactivators bind to NRs to enhance transcriptional activity upon ligand binding. The RAR/RXR-associated coactivators include the p160 subfamily of steroid receptor coactivators (SRC)-1, SRC-2, and SRC-3 [24], as well as the CBP/p300 coactivator [25-27]. The SRC complex, which contains acetyltransferases and methyltransferases, as well as the histone acetyltransferase activity of SRC-1 and 3 function to open chromatin and allow transcription to occur [28-30].

In addition to ligand-binding-directed transcriptional mediation, a new paradigm for phosphorylation of RARs, much like other nuclear receptors, has arisen [31]. Evidence which supports this mechanism of action continues to accumulate [32,33]. Phosphorylation of RARα recruits RARα to target promoters and enhances recruitment of transcriptional machinery [34]. Additional phosphorylation steps may direct ubiquitin and proteasomal-mediated degradation of RARs [35,36].

Figure 1: Chemical structure of selected physiological and synthetic retinoids. RA exists as several isomers in vivo including all-trans, 13-cis and 9-cis RA (A). The physiological isomers as well as the synthetic retinoids (B) have a cyclic end group, a conjugated side chain, and a polar end group, with the exception of polyretinoids (acyclic retinoid) which maintains a closed circular shape but is not cyclic. The synthetic rexinoids (C) vary in their structure but exist primarily in 9-cis conformation. The 9-cis configuration (including physiological 9-cis RA) supports preferential binding to RXRs.

Figure 2: Pathway of retinoic acid metabolism and signaling effector function. Vitamin A (provided by β-carotene) is metabolized by retinyl ester hydrolases to retinol. Retinol/RBP4 complexes enter cells via STRA6-mediated endocytosis or via diffusion. Inside the cell, retinol is oxidized to retinal which is subsequently oxidized by RALDHs (also known as ALDH1A isoforms) to retinoic acid. CRABP2 binds retinoic acid and delivers it to RARs within the nucleus. RA-bound RARs and RXRs heterodimerize to activate transcription of genes containing RAREs.
RAR/RXR binding to regulatory elements was generally thought to activate transcription; however, a number of studies have identified genes which are downregulated in the presence of retinoic acid [37-40]. Several mechanisms may be possible for this transcriptional repression. Many nuclear receptors share coactivators and corepressors; sequestration or increased availability of these molecules mediated by RARs may affect the activity of other NRs [41,42]. The potential cancer-related consequences of RAR interactions with other transcription factors is discussed later.

Cancer-Associated Retinoic Acid Signaling

Retinoic acid induces tumor suppressors and proto-oncogenes

The wide range of genes which are associated with RAREs suggests that RA can have a large number of biological effects. Therefore, it is unsurprising that RA has a role in cancer which can be promotional or suppressive. RA induces expression of documented proto-oncogenes and tumor suppressors (e.g. mucin 4, MUC4; and retinoic acid receptor beta isoform 2, RARβ2).

RA has been implicated in the expression of several mucins including MUC2, MUC4, MUC5AC and MUC5B [43-45]; aberrant expression of these secreted mucins is also associated with tumorigenesis. A MUC2 knockout model is associated with increased intestinal adenocarcinomas [46], and MUC5B is aberrantly expressed in gastric and breast cancers [47,48]. MUC4, a transmembrane mucin, has also been associated with RA as well as cancer cell growth. RA in combination with transforming growth factor-beta (TGF-β) and interferon-gamma (IFN-γ) can induce the expression of MUC4 by transcription via its RARE [45,49,50], and it is aberrantly expressed in numerous cancers [51-54]. Inhibition of MUC4 reduces pancreatic cell growth in vitro as well as tumor growth in a murine model [55,56]. Additionally, MUC4 can induce epithelial-mesenchymal transition (EMT), which is required for metastasis [57]. MUC4 activates human epidermal growth factor receptor 2 (HER2/neu) and promotes signaling by inducing HER2/neu translocation to the cell surface [58-60]. HER2/neu overexpression is typically associated with more aggressive breast cancers via increased proliferation [61,62], angiogenesis by vascular endothelial growth factor (VEGF) induction [63,64], and invasiveness [65,66]. It has also been demonstrated that high levels of HER2/neu confer resistance to atRA in breast cancer cell lines [67]. The cross-talk between MUC4 and HER2/neu is thus an important consideration in using RA as an anticancer drug especially in ovarian, ovarian, and breast cancers.

RARβ2, one of multiple RARβ splice variants, is a well-documented tumor suppressor. RA signaling via RARβ promotes apoptosis in human breast cancer cells [68,69]. When RARβ2 is epigenetically silenced, RA is able to promote proliferation of breast cancer cells [70] (Figure 3A). In cancers, RARβ2 is often silenced via histone deacetylation or DNA methylation at its regulatory region (Figure 3A), giving credence to its hypothesized tumor suppressor function [71-74]. Alteration of epithicetic modifications at the RARβ2 locus may be suitable targets for retinoid-resistant cancer therapy [75]. In DLD-1 colon cells, a combination treatment of atRA and 5-aza-2’-deoxycytidine acted synergistically to reduce clonogenicity [76]. In contrast, RARβ2 has also been associated with poor prognosis in non-small cell lung cancer (NSCLC); and, silencing of RARβ2 reduced proliferation and increased apoptosis [77]. This suggests that in addition to its role as a tumor suppressor, RARβ2 may be a tumor promoter in certain scenarios; thus, its role in cancer requires further study.

Retinoic-acid receptor responder protein 1 (RARRES1, formerly TIG1) is another RA-inducible gene which is gaining notice as a tumor suppressor in many cancer types. Typical of tumor suppressors, RARRES1 is also often silenced in cancers by promoter hypermethylation [78-80]. In nasopharyngeal carcinoma HK1 cells, knockdown of RARRES1 increased proliferation [81]. It has been shown that RARRES1 expression correlated with cellular differentiation in colorectal adenocarcinoma tissues [82]. Additionally, RARRES1 expression is diminished in prostate cancer tissue and forced expression of RARRES1 in PC-3M cells decreased tumorigenicity in mice [83].

It is noteworthy that numerous studies report epigenetic modifications in key components of the RA signaling pathway as well as RA-inducible genes. This suggests that the role of RA in cancer is inseparably linked to epigenetics.

Retinoic acid signaling in tumor stroma

There is increasing evidence for a significant role of the tumor stroma in cancer progression and metastasis [84-86]. Activation of stromal fibroblasts occurs early in tumor development [87,88], and stromal cells cross-talk with the cancer cells of the tumor, resulting in increased tumorigenesis [89-91]. There is support for aberrant RA signaling via the tumor stroma as well as from cancerous cells. High levels of ALDH1A1 (also known as RALDH1), which generates RA from retinal (Figure 2), is often expressed in the stroma of breast cancer patient tumors and has been correlated with better survival in breast cancer [92]. With respect to expression of RA-inducible genes such as RARβ in the tumor stroma, the data is conflicting. Supporting its likely role as a tumor suppressor, RARβ expression is frequently lost in the tissue adjacent to tumors [93]. However, confounding this theory, in an ErbB2-induced mammary tumorigenesis model, stromally-expressed RARβ is required for mammary tumorigenesis [94]. Not only does this provide evidence of a potential role for RARβ in promoting cancer; but, it also illustrates that RA signaling in the stroma can be tumorigenic.

Interaction with other transcription factors and implications of cancer

In addition to genes with RAREs, RA can also directly regulate expression of genes without RAREs by interacting with other NRs. The interactions between RA and peroxisome proliferator-activated receptors (PPARs) and activator protein 1 (AP1) transcriptional activation have been implicated in cancer. As well, there is evidence to support cross-talk between the estrogen and RA signaling pathways.

Peroxisome proliferator-activated receptor

In the absence of abundant CRABP2 in the cytoplasm (Figure 2), RA can bind other chaperones such as fatty-acid binding protein 5 (FABP5) with decreased affinity [9,95,96]. Binding to FABP5 delivers RA to PPARβ/δ isoforms instead of to RARs (Figure 3B) [95,97,98]. PPARβ/δ heterodimerize with RXRs and bind to peroxisome proliferator response elements (PPREs, a DR1 of the HRE, AGGTCA), leading to the transcription of genes typically involved in cell growth, such as 3-phosphoinositide-dependent protein kinase 1 (PKD1) [99-102]. Therefore, predominant RA signaling via FABP5/PPAR induces cell proliferation (Figure 3B) as opposed to the more typical cell cycle arrest induced by CRABP2/RAR signaling [98]. This hypothesis has found clinical significance in triple-negative breast cancer, pancreatic cancer and glioblastoma [98,103-107], and it may also find significance in head-and-neck squamous cell carcinomas (HNSCCs) [108].

Activator protein 1

It is well documented that RARs antagonize the action of the AP1 transcription factor [109,110]. Transrepression of AP1 by RA is possibly
coordinated by the interaction of the RARα DNA-binding domain with the c-Jun portion of the AP1 heterodimer [111], which leads to a decrease in RNA polymerase II recruitment [112]. AP1-dependent transcription regulates the expression of oncopgenic proteins and those involved in proliferation, such as metalloproteases, VEGF and TGF-β. Thus, RAR-mediated antagonism of AP-1 has been implicated in the antiproliferative effects of RA in gastric cancer, breast cancer, ovarian cancer as well as cervical cancer cells [109,110,113-115].

Estrogen receptor

RARα expression is induced by estrogen [116,117]; as well, there is evidence for extensive cross-talk between RA/estradiol transcriptional activities. SMRT, an RAR/RXR corepressor, is recruited to estrogen receptor alpha (ERα) in the presence of estradiol and its expression is required for full transcriptional activity of ER responsive genes [118]. Recently, Hua et al. documented that RAR binding in MCF-7 breast cancer cells was extensively collocated with ERα binding, which most often results in competitive binding and antagonism between the two NHR signaling pathways [119]. Similarly, it has been shown that RA inhibited ER-mediated transcription of epidermal growth factor receptor (EGFR) by competing for the same binding site [120].

Figure 3: Potential mechanisms for retinoic-acid-mediated tumor suppression or progression. RA is involved in transcription of several tumor suppressor genes such as RARB and RARRES1; when the regulatory regions of these genes are epigenetically modified by DNA methylation or histone deacetylation, transcription is reduced and RA is unable to mediate these suppressive effects (A). In addition, the ratio of cellular CRABP2:FABP5 is indicated in promoting opposite cellular effects. In the presence of high CRABP2, RA activates RARs which canonically leads to apoptosis and differentiation; however, in the presence of high FABP5, RA activates PPAR isoforms which leads to PI3K-mediated cellular proliferation (B). A peripheral mechanism by which RA mediates tumor progression is via the induction of immunosuppressive Tregs (C). The presence of high numbers of Tregs leads to impaired anti-tumor immunity and immune escape; the secretion of TGF-β as well as IL-10 mediate further immunosuppressive effects.
Additional antagonism between the two signaling pathways has been demonstrated in the regulation of several microRNAs [121].

In contrast, Ross-Innes et al. found that RARα is a requirement for ER transcription and that RARα and ERα co-occupation of the same regulatory regions is cooperative and leads to enhanced gene transcription; however, atRA inhibited the ER-RAR interaction [122]. Clinically, RARAs has been associated with tamoxifen resistance in two independent breast cancer patient cohorts, which suggests that RARa may be required to maintain coactivators for ER-mediated transcription [123].

Regardless of the nature of their interactions (cooperative or competitive), it seems evident that cross-talk between ER- and RAR-induced signaling pathways needs to be examined when hormonal therapies are recommended. As well, both pathways should be considered when first-line ER antagonists (e.g. tamoxifen) fail or induce resistance.

Retinoic acid induction of apoptosis in cancer

Dysregulated apoptosis is a major hallmark of cancer, and the RA pathway contributes to apoptosis by various mechanisms. Furthermore, cancer cells vary greatly in their sensitivity to atRA-induced cytotoxicity, with RA regulation of apoptotic pathways contributing to this differential growth suppressive response. For example, nM quantities of RA induce cell death in MCF7 and T47D breast cancer cells, while in MDA-MB-231 breast cancer cells, even µM quantities are insufficient [124-126]. Although the interaction of atRA with apoptosis pathways is not the only explanation of RA sensitivity or resistance, it is a factor to be considered.

The most obvious role for RA in apoptotic regulation is via regulation of gene expression of apoptosis mediators and effectors. RA has been shown to downregulate several anti-apoptotic proteins including B-cell lymphoma 2 (BCL2) and survivin [127,128]. While AP1 transrepression is also implicated in downregulation of BCL2 signaling, the authors note that this did not fully account for the antiproliferative effect observed; this suggests that other RA responsive genes may be partially responsible for inducing apoptosis in breast cancer MCF-7 and ZR-75 cells [128]. Furthermore, RA upregulates the tumor suppressor p53, a major player in apoptosis; however, the mechanism for this induction is not fully understood. STRA6 has been implicated as well as canonical ligand-RAR transcriptional activation [129-131]. It is possible that epigenetic repression via methylation of the p53 promoter may confer resistance to RA-mediated growth inhibition. There may also be a role for RA mediating resistance to p53-dependent apoptosis, as has been demonstrated in SH-SYSY neuroblastoma cells [132].

RA also plays a role in the TNF-related apoptosis-inducing ligand (TRAIL) and Fas extrinsic apoptotic pathways. TRAIL-induced apoptosis is mediated by the binding of the TRAIL cytokine to its receptors TRAILR1 (or death receptor DR4) and TRAILR2 (DR5). It appears that cancerous cells are more sensitive to TRAIL-mediated apoptosis [133,134]. RARa-specific ligands and RA were shown to induce apoptosis via TRAIL in NB4 APL cells and SK-BR-3 breast cancer cells; this effect is mediated by RA induction of interferon regulator factor 1 (IRF-1) [135,136]. Similarly, RA upregulated expression of TRAILR1 on NSCLC and HNSCC cells and enhanced apoptosis [137].

Apoptosis via the Fas pathway occurs when Fas ligand (FasL) binds to and trimerizes its receptor Fas on cell membranes. Fas is often downregulated in cancers, or a decoy receptor can be expressed which binds to FasL and prevents FasL-Fas interactions [138-143]. A number of studies indicate that RA represses expression of FasL [144-148]. Interestingly, Toth et al. found in 2004 that atRA and 9-cis-RA were able to induce FasL expression, but only RARα-specific agonists were able to induce apoptosis in IP-12-7 T hybridrorna cells [149]. The authors suggest that ligand binding to RARα/RARβ sensitizes the Fas receptor cell-death pathway.

Furthermore, there are also instances where elements of the RA pathway affect apoptosis without involvement of RARs/RXRα and transcriptional regulation. For example, RA chaperone CRABP2 has been implicated in caspase 9 (CASP9) signaling in an RA-independent mechanism [150]. While RA induced the expression of CASP9, overexpression of CRABP2 in the absence of RA induced apoptotic protease-activating factor-1 (APAF1) expression and cleavage of CASP9 [150]. CASP9 can then further initiate apoptotic signaling by cleaving several other pro-caspases to their active forms.

The mechanisms by which RA contributes to the apoptotic pathways are varied, and the responses of different cell types depend on the status of the apoptotic machinery within the cell. Silencing (via epigenetics or mutation) of apoptotic pathway components affects the response to RA treatment and therefore are also determinants in the involvement of the RA pathway in cancer and the application of retinoids as cancer treatments.

Tumor immunity and retinoic acid

Vitamin A deficiency is associated with defects in immune function [151,152]; supplementation seems to restore function [153]. It stands to reason that dysregulation of RA signaling in cancers could also be associated with malfunctioning immunity.

For a cancer to develop and progress, it has to continually evade immunosurveillance and escape targeting and destruction by the host immune system. Cancers have several immune evasion mechanisms; for instance, tumor cells have decreased antigen presentation by down-regulation of antigen-processing machinery such as transporter associated with antigen processing 1 (TAP1) and TAP2, as well as low molecular mass protein 2 (LMP2) and LMP7 which are associated with the major histocompatibility complexes (MHCs) [154-156]. Other mechanisms include induction of immunosuppression via T-cell anergy, generation of regulatory T-cells, or secretion of immunosuppressive cytokines such as interleukin-10 (IL-10) and TGF-β [157]. As discussed below, RA plays a critical role in these immune processes with both anti-tumor and cancer-promoting consequences.

Antigen processing

A variety of evidence in different model systems suggests that RA up regulates MHC components and enhances antigen processing and presentation. In RA-mediated differentiation of human embryonic stem cells to embryoid bodies, Suarez-Alvarez et al. noted upregulation of MHC components and molecules associated with antigen processing such as TAP1, TAP2 and LMP7 [158]. RA treatment of human embryonal carcinoma and human cervical cancer cells induced MHC I expression [159,160]. Similarly, retinoid treatment of neuroblastoma cell lines increased MHC I expression and sensitized those cells as well as uveal melanoma cells to killing by CD8+ cytotoxic lymphocytes (CTLs) [161,162]. Modulation of antigen processing and presentation by RA may contribute to the anti-tumor effects seen in some cancers.
T-cell activation and anergy

T-cell activation requires antigen activation in combination with a co-stimulatory signal. If antigen is presented to a T cell but CD28 does not bind to B7.1/7.2 (CD80/86), the T-cell undergoes anergy. There is conflicting evidence on the modulation of CD80/CD86 expression by RA. Zhan et al. found that atRA downregulated CD80 and CD86 on dendritic cells in an experimental autoimmune encephalomyelitis model [163]; however, RA has been shown to induce CD80 on murine splenic mononuclear cells following tetanus immunization as well as CD80/CD86 expression on neuroblastoma cells [164] (and unpublished data, reviewed in [165]).

Tumor-specific T-cells

It has been shown that RA can improve specific CD8+ T-cell responses to vaccines [166]. Guo et al. have recently established that increased RA production within a tumor is necessary for CD8+ T-cell expansion and accumulation [167]. It is becoming increasingly apparent that RA plays an important role in CD8+ T-cell function; however, the precise effects on effector cells as compared to memory cells remain to be determined [168]. Further insight into the mechanisms by which RA can enhance CD8+ T-cell responses will be of benefit and may allow targeted immunomodulatory therapy via retinoid treatment.

Regulatory T-cells

The majority of T lymphocytes develop into CD8+ CTLs or CD4+ Th1/Th2 cells which are responsible for key adaptive immune functions. A smaller population of CD4+ cells also express CD25 and cytotoxic T-cell antigen-4 (CTLA-4) as well as forkhead box P3 (FoxP3); this subset, known as regulatory T (Treg) cells [169,170], play a critical role in the tumor immunosuppressive response. This response is essential for cancer progression.

The natural role of Tregs is to prevent auto-immune reactions when the immune system mounts a strong response to a pathogen. Tregs produce IL-10 which further inhibits T-cell proliferation [171,172]. Additionally, TGF-β plays a role in Treg development from CD4+ T cells [173,174]; and this can be promoted by RA via several mechanisms including epigenetic regulation of the Foxp3 promoter (Figure 3C) [175-177]. Additionally, RA induces TGF-β expression [178,179] and TGF-β can modulate the expression of RARβ [180], possibly generating a feedback loop. These findings suggest that induction of tolerance by increased RA signaling within some cancers (Figure 3C) may be an important target for anti-cancer immunotherapy [181].

Due to the various functions of the immune system mediated by RA, it is likely that the direction of the immune modulation (pro-inflammatory or immune escape) is dependent on the cellular context.

Retinoids in Cancer Prevention and Therapy

Acute promyelocytic leukemia

To date, the most successful use of RA in cancer therapy has been in the treatment of APL. APL represents approximately five to eight percent of all acute myeloid leukemia cases and is considered very severe. The vast majority (98%) of APL patients present with a chromosomal rearrangement and fusion of the promyelocytic leukemia (PML) and RARα genes [182,183]. This fusion delays apoptosis [184]; this is likely due to the inability of the PML-RARα fusion protein to appropriately induce physiological RA-mediated differentiation and apoptotic pathways as a result of enhanced recruitment of co-repressor complexes [185,186]. These complexes and their accompanying HDAC activity prevent induction of RA-responsive genes at physiological RA concentrations [185]. This causes an accumulation of granulocytic precursors, promyelocytes. Treatment of APL with supraphysiological concentrations of atRA induces terminal differentiation of these cells and significantly improves patient outcomes [187]. Most recently, atRA in combination with arsenic trioxide (As2O3), a second-line drug in the treatment of leukemias, has been used in treatment of APL by several groups with improved efficacy [188-190]. The atRA/As2O3 combination decreased time to achieve complete remission [188], and increased event-free and overall survival over treatment with atRA alone [190]. These studies suggest that atRA and As2O3 work synergistically to enhance apoptosis and differentiation [191]. The success of atRA in treating APL has led to earnest attempts to use retinoids in the treatment of other cancers. Unfortunately, as discussed below, the results on several of the most prevalent cancers and those with high mortality have been mixed at best.

Breast cancer

RA is highly effective in suppressing the growth of many cultured breast cancer cell lines, although some cell lines (e.g. MDA-MB-231) are highly resistant and proliferation may even be stimulated when cultured with atRA [124,126,192-201]. Regardless, the general anti-proliferative effects of atRA observed in vitro have resulted in a number of clinical studies investigating the use of retinoids in treating breast cancer.

Combination therapy of atRA with the chemotherapeutic agent paclitaxel has been tested in breast cancer patients with recurrent or metastatic disease. Unfortunately, the combination treatment gave modest results, with no improvement over paclitaxel alone in disease progression and survival; however, increased stable disease was observed and attributed to atRA’s known role in inducing cell cycle arrest and differentiation [202].

Fenretinide, a retinol analogue (Figure 1B), has also been investigated as a preventative agent as it is associated with fewer adverse events than the biological retinoid derivatives [203]. One clinical trial administered fenretinide orally over five years. At the five-year-end point, there was no significant difference in breast cancer recurrence in patients treated with fenretinide [204]. A fifteen-year follow-up of less than half of the original patients found a 30% decrease in recurrence of breast cancer among premenopausal women treated with fenretinide [205]. A number of criticisms have been directed at these studies, including the use of post-hoc analyses [206] as well as the exclusion of hormone receptor status from the data collected [207]. The conclusions of this study thus require further investigation before fenretinide is adopted as a chemopreventive agent. Thus far, the indications are not promising, as a clinical trial of fenretinide and tamoxifen in prevention of breast cancer among high-risk premenopausal women revealed no effect of combination therapy when compared to placebo treatment, despite both components individually reducing breast cancer risk [208]. We await the results of the long-term fenretinide treatment currently being investigated in young women at increased risk for breast cancer (NCT01479192) to reveal if retinoids may yet prove beneficial in the treatment of certain breast cancers or in breast cancer prevention as tamoxifen alone achieves limited success in increasing survival of patients with ER+ tumors [209,210].

Rexinoids are less toxic than their RAR-specific counterparts; however, the RXRs are responsible for eliciting pleiotropic cellular effects as they can heterodimerize with a number of NRHRs. As such, the many possible effects and pathways RXR could interfere with
limited the options for rexinoid modulation of cancer [186]. As the regulation of RXR signaling is elucidated, rexinoid treatment may become more refined, decreasing the chance of undesired pan-cellular effects. In an MMTV-neu transgenic mouse model of EIR breast cancer, treatment with the RXR-specific ligand rexinoid LG100268 (Figure 1C) in combination with the anti-estrogen acolbifene prevented tumor formation. When tumors were allowed to form, rexinoid/acolbifene therapy caused tumor regression. Acolbifene treatment alone did not induce regression [211]. This data supports the consideration of hormone antagonist therapy in combination with rexinoids in hormone-receptor-negative tumors.

Ovarian cancer

As in breast cancer, there is evidence to support abnormal retinoid signaling in ovarian cancers. Patients with ovarian tumors have decreased concentrations of retinol [212], as well as RBP [212,213]. Increased vitamin A and carotene intakes have been associated with a reduced risk of ovarian cancer, particularly among smokers [214]. As well, promising pre-clinical data such as the increased survival of tumor-bearing mice following intracavitary treatment of ovarian carcinoma xenografts with fenretinide has led to clinical trials with retinoids [215].

In the previously mentioned 5-year clinical trial using fenretinide to prevent secondary malignancies in women with breast cancer, significantly fewer women developed ovarian cancer during the 5-year treatment period [204]. The patients who developed ovarian cancer did so after treatment cessation [204,216,217]. This suggests that fenretinide may exhibit a preventative effect on ovarian tumors, but that this effect does not persist after treatment is discontinued. A more recent trial of post-chemotherapy IL-2 and 13-cis-RA (isotretinoin, Figure 1A) combination treatment in patients with advanced ovarian cancer improved progression-free and overall survival [218]; this is likely due to improved immunological parameters [218-220].

In contrast, other studies have given less promising results. A phase I-II biomarker trial on fenretinide in ovarian cancer revealed no biological effect; however, this may be due to the inability to accumulate therapeutically active concentrations of fenretinide [221]. Treatment of asymptomatic, post-chemotherapy patients with ovarian cancer with 13-cis-RA and calcitriol (the hormonally active form of vitamin D) revealed no effect on tumor progression as measured by cancer antigen-125 (CA-125) levels [222]. CA-125 (or MUC16) is a cancer antigen commonly used as a biomarker for ovarian cancer; increasing CA-125 levels following complete remission is strongly indicative of recurrent disease [223].

Pancreatic cancer

Pancreatic cancer is typically diagnosed at advanced stages and a majority of patients present with metastatic disease [224,225]. Treatments targeting novel signaling pathways may therefore be beneficial to patients who do not respond to conventional therapies. There is substantial evidence to suggest that the RA signaling pathway is important in pancreatic cancer. A number of murine pancreatic cancer models (chemically and genetically induced) displayed significantly reduced retinoid signaling [226]. Early clinical trials demonstrated low toxicity of 13-cis-RA in combination with IFN-α [227,228]; however, no objective response was observed [228]. Gemcitabine is a common therapeutic agent for many cancers, including pancreatic cancer. In a 2007-reported pilot phase II study, a combination of 13-cis-RA with gemcitabine was well tolerated, but did not improve response rate among patients with unresectable pancreatic cancer [229].

In light of recent findings regarding the FABP5:CRABP2 ratio as discussed above, Gupta et al. profiled fourteen patient-derived pancreatic cancer lines and propagated them as xenografts in athymic nude mice with atRA treatment. They demonstrate that a low FABP5:CRABP2 dictates response to atRA and suggest that atRA be reconsidered in treatment of pancreatic cancer for those patients with FABP5-negative tumors; or, in combination with re-expression of endogenous CRABP2 [103]. This finding may yet explain the inefficacy of 13-cis-RA in previous trials for pancreatic cancer, where patients were not screened for FABP5 and CRABP2 levels.

Alternatively, artificial retinoids may prove to be more effective in therapy for pancreatic cancer than the natural retinoic acid isofoms. In vitro data on acyclic retinoid (Figure 1B) in combination with gemcitabine suggests that this combination therapy induces apoptosis and inhibits cell proliferation in pancreatic cancer cell line Panc-1 [230]. Interestingly, acyclic retinoid has decreased recurrent and second primary tumors in clinical trials for hepatocellular carcinoma [231].

Lung cancer

Despite evidence in the late 1990s that supplementation of β-carotene with retinyl ester among workers at high risk showed adverse effects on the incidence of lung cancer among patients [232], and a similar study of β-carotene supplementation which revealed no effect on lung cancer incidence [233], retinoids continue to be studied in prevention and treatment of lung cancer. For example, a phase II clinical trial indicated that the addition of atRA to a cisplatin/paclitaxel chemotherapy regimen increased the response rate as well as overall survival time in patients with NSCLC [234].

A 2011 meta-analysis of evidence pertaining to the use of retinoids in lung cancer concluded that there is little support for the use of vitamin A and its natural derivatives in the treatment and prevention of lung cancer; however, bexarotene (Figure 1C) may hold promise for some patients [235]. One 2001 study observed better-than-expected survival among NSCLC patients treated with bexarotene in combination with cisplatin and vinorelbine [236]. A phase III trial of bexarotene in combination with cisplatin and vinorelbine in NSCLC revealed a benefit only to patients whom developed high-grade hypertriglyceridemia [237]. Similar results were observed in a phase III trial using bexarotene in combination with carboplatin and paclitaxel [238].

A recently completed clinical trial has investigated the addition of interferon alpha (IFNa) and 13-cis-RA to paclitaxel treatment of recurrent small cell lung cancer (NCT00062010). The premise of this phase II study was to reduce resistance to paclitaxel treatment by modulating expression of BCL2. The full results of this trial have not yet been published.

As discussed earlier, there is increasing evidence for RA signaling via the tumor stroma. Therapeutically, the targeting of this signaling environment may have some promise, as 20% of smokers at-risk for lung cancer treated with 13-cis-RA exhibited a restoration of normal RARβ expression in the bronchial epithelium [239]. The variance observed in expression of components of the RA signaling pathway in the tumor stroma may also contribute to variable responses of patients to retinoid therapy.
Prostate cancer

There is evidence for aberrant retinoid signaling in prostate cancers as well. Prostate carcinoma tissues contain significantly less RA than normal prostate or benign prostate hyperplasia tissues [240]. Retinoids have been tested in clinical trials for prostate cancer since the 1990s. Reports from clinical trials using atRA for hormone-refractory prostate cancer revealed no or minimal response among patients [241,242]; this may be related to enhanced clearance of atRA [241]. Similarly, fenretinide, which has been used successfully to inhibit xenograft growth of prostate MLL cells in rats [243] was overall ineffective in clinical trials. In a phase II fenretinide clinical trial, patients with rising prostate-specific antigen (PSA) showed no significant decrease in PSA over the course of treatment [244]. In patients with confirmed prostate cancer prior to radical prostatectomy, a 3-week course of fenretinide was used to evaluate prostate cancer biomarkers. No preventative effect on chemopreventative biomarkers was observed. It is possible that with the development of new formulations of fenretinide (as discussed below for neuroblastoma) increased efficacy may be observed.

Alternatively, the potential use of retinoids in combination therapies may be a more effective treatment option for prostate cancer. For example, 13-cis-RA in combination with IFNα and paclitaxel was well tolerated and decreased paclitaxel clearance in patients [245]. This treatment may function synergistically to inhibit BCL2 anti-apoptotic activity in prostate cancers.

Neuroblastoma

For neuroblastoma, the most common extracranial solid tumor of children, treatment efficacy with retinoids has also been mixed. Treatment with myeloid ablative chemotherapy, total-body irradiation and autologous bone marrow transplant followed by 13-cis-RA treatment in pediatric patients with high-risk neuroblastoma increased the 3-year event-free survival over treatment without 13-cis-RA [246]. A long-term follow-up of those patients revealed significantly improved overall survival when treated with 13-cis-RA [247]. In contrast, in 28 children with advanced neuroblastoma that was refractory to conventional therapy, 13-cis-RA treatment failed to ameliorate their condition [248]. Studies with fenretinide have generally been less promising. A phase II study of oral capsaicin fenretinide found limited efficacy among patients with refractory or recurrent neuroblastoma; this was likely due to low bioavailability of this particular formulation of fenretinide [249]. New clinical trials with improved formulations (NCT00295919, NCT00646230) are ongoing [250]. Additionally, atRA was investigated in combination with IFNα2a for treatment of pediatric neuroblastoma or Wilms' tumor and found to be ineffective [251].

Conclusions

Impaired RA signaling in cancer remains an interesting target in prevention, disease progression, and therapy. In particular, the highly effective combination of atRA with As₂O₃ in treating APL fuels continued attention to retinoid-based therapy. Unfortunately, the wide variability in RA signaling potential and downstream effects prevents the global applicability of RA to cancer prevention and anti-cancer therapy (Figure 3). Strikingly, data suggesting the benefits of β-carotene supplementation on chemically-induced carcinogenesis in vivo [252] was not supported by later data in spontaneous carcinogenesis [253], or in clinical trials [232,233]. This suggests that retinoids may only be able to exert preventative effects when oncogenic events have already been initiated.

Natural retinoids have been associated with high toxicities and low efficacies [252]; this led to the development of modified, artificial retinoids. Synthetic retinoid analogues such as fenretinide and the RXR-selective beaxorote have shown mild successes in cancer treatment; this may improve with better drug delivery systems. From a review of the literature, it is clear that the pleotropic effects of RA are cellular-context dependent and vary greatly. Potential factors for consideration include epigenetic modifications, accessory signaling factor expression, and cross-talk with other signaling pathways. Identifying the variables in the RA signaling pathway which determine retinoid response (e.g. cell cycle arrest or proliferation, Figures 3A and 3B) is necessary if retinoid-based therapies are to become more widely utilized in the treatment of cancer. The stratification of patients into clusters based on expression of RA-inducible genes as well as genes involved in other, intertwined signaling pathways will see increased efficacy in select patient groups. Ongoing research into the role of RA signaling in cancer cells, anti-tumor immune response, and the tumor microenvironment will allow increased personalization of therapeutic regimens as our improved understanding of this pathway may permit better predictions of response rates.

Acknowledgement

The authors are supported by operating funds from the Canadian Institutes of Health Research (MOP-130304) and the Dalhousie Medical Research Foundation Adopt-a-Researcher program.

References

1. Noy N (1992) The ionization behavior of retinoic acid in lipid bilayers and in membranes. Biochim Biophys Acta 1106: 159-164.
2. Blaner WS, O’Byrne SM, Wongsiroong N, Kluwe J, D’Ambrosio DM, et al. (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791: 467-473.
3. Kanai M, Raz A, Goodman DS (1986) Retinoid-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47: 2025-2044.
4. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, et al. (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315: 820-825.
5. Fex G, Johannesson G (1988) Retinol transfer across and between phospholipid bilayer membranes. Biochim Biophys Acta 944: 249-255.
6. Berry DC, Jacobs H, Marwartha G, Gely-Pernot A, O’Byrne SM, et al. (2013) The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 288: 24526-24539.
7. Posch KC, Boerman MH, Burns RD, Napoli JL (1991) Holocellular retinol binding protein as a substrate for microsomal retinyl synthesis. Biochemistry 30: 6224-6230.
8. Harrison EH, Blaner WS, Goodman DS, Ross AC (1987) Subcellular localization of retinoids, retinoid-binding proteins, and acyl-CoA:retinoyl transferase in rat liver. J Lipid Res 28: 973-981.
9. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoid acid-binding proteins I and II in regulating signaling by retinoid acid. J Biol Chem 274: 23695-23698.
10. Lording O, Babinchuk C, White J, Abu-Abed S, Mueller C, et al. (2000) The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 275: 1483-1497.
11. White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, et al. (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hPAR-1) identifies a novel family of cytochromes P450. J Biol Chem 272: 18536-18541.
12. Ray WU, Bain G, Yao M, Gottlieb DI (1997) CYP2P, a novel mammalian cytochrome P450, is induced by retinoid acid and defines a new family. J Biol Chem 272: 18702-18708.
13. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, et al. (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397-406.
14. Moulter E, Ye T, Choukrallah MA, Urban S, Oss J, et al. (2012) Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287: 26325-26341.

15. Lalevède S, Anno YN, Chatagnon A, Samaran E, Poch O, et al. (2011) Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem 286: 33322-33334.

16. Kurokawa R, Söderström M, Hörlin E, Halachmi S, Brown M, et al. (1995) Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377: 451-454.

17. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454-457.

18. Hörlin AJ, Näär AM, Heinzel T, Torchia J, Gloss B, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397-404.

19. Li J, Wang J, Wang J, Nawa Z, Liu JM, et al. (2000) Both co-repressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 19: 4342-4350.

20. Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21: 6091-6101.

21. Heinzel T, Lavinsky RM, Mullen TM, Süderström M, Laherty CD, et al. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43-48.

22. Ishizuka T, Lazar MA (2003) The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 23: 5122-5131.

23. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, et al. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373-382.

24. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121-141.

25. Yao TP, Kug, Zhou N, Scully R, Livingston DM (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci U S A 93: 10626-10631.

26. Dietze EC, Caldwell LE, Marcom K, Collins SJ, Yee L, et al. (2002) Retinoids and retinoic acids regulate growth arrest and apoptosis in human mammary epithelial cells and modulate expression of CBP/p300. Microsc Res Tech 59: 23-40.

27. Dietze EC, Troch MM, Bowie ML, Yee L, Bean GR, et al. (2003) CBP/p300 induction is required for retinoic acid sensitivity in human mammary cells. Biochem Biophys Res Commun 302: 841-848.

28. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, et al. (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511-526.

29. Perissi V, Aggarwal A, Glass C, Rose D, Rosenfeld M (2004) A Corepressor/Coactivator Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other Regulated Transcription Factors. Cell 116: 511-526.

30. Bour G, Lalevède S, Rochette-Egly C (2007) Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoid acid receptors. Trends Cell Biol 17: 302-309.

31. Miller WH Jr, Moy D, Li A, Gripp JF, Dmitrovsky E (1990) Retinoic acid induces down-regulation of several growth factors and proto-oncogenes in a human embryonal cancer cell line. Oncogene 5: 511-517.

32. Madsen B, Georg B, Vissing H, Fahrenkrug J (1998) Retinoic acid down-regulates the expression of the vasoactive intestinal polypeptide receptor type-1 in human breast carcinoma cell lines. Cancer Res 58: 4845-4850.

33. Salbert G, Fanjul A, Piedraflata FJ, Lu XP, Kim SJ, et al. (1993) Retinoic acid receptors and retinoic acid receptor-alpha down-regulate the transforming growth factor-beta 1 promoter by antagonizing AP-1 activity. Mol Endocrinol 7: 1347-1356.

34. Roberts C, Iwins SM, James CT, Scambler PJ (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232: 928-938.

35. Zhao HH, Herrera RE, Coronado-Heinoz E, Yang MC, Ludes-Meyers JH, et al. (2001) Forkhead Homologue in Rhabdomyosarcoma Functions as a Bi-functional Nuclear Receptor-interacting Protein with Both Coactivator and Corepressor Functions. J Biol Chem 276: 27907-27912.

36. Zhang X, Jeyakumar M, Petukhov S, Bagchi MK (1998) A Nuclear Receptor Corepressor Modulates Transcriptional Activity of Antagonist-Occupied Steroid Hormone Receptor. Mol Endocrinol 12: 513-524.

37. Koo JS, Yoon JH, Gray T, Norford D, Jetten AM, et al. (1999) Regulation of the mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes in mucin gene expression. Am J Respir Cell Mol Biol 20: 43-52.

38. Kim SW, Hong JS, Ryu SH, Chung WC, Yoon JH, et al. (2007) Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol Cell Biol 27: 6933-6947.

39. Choudhury A, Singh RK, Moniaux N, El-Metwally TH, Aurbert J, et al. (2000) Retinoic Acid-dependent Transforming Growth Factor-beta 2-mediated Induction of MUC4 Mucin Expression in Human Pancreatic Tumor Cells Follows Retinoid Acid Receptor-alpha Signaling Pathway. J Biol Chem 275: 33293-33306.

40. Velich G, Yang W, Heyer J, Fragade A, Nicholas C, et al. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726-1729.

41. Perrais M, Pigny P, Buisine MP, Porchet N, Aurbert J, et al. (2001) aberrant expression of human mucin gene MUC5B in gastric carcinoma and cancer cells. Identification and regulation of a distal promotor. J Biol Chem 276: 15386-15396.

42. Sólúra C, Mazał D, Berois N, Buisine MP, Ullíos L, et al. (2006) Immunohistochemical analysis of MUC5B apomucin expression in breast cancer and non-malignant breast tissues. J Histochem Cytochem 54: 289-299.

43. Andrianfahanana M, Agrawal A, Singh AP, Moniaux N, van Seuningen I, et al. (2005) Synergistic induction of the MUC4 mucin gene by interferon-gamma and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene 24: 6143-6154.

44. Bernaeki SH, Nelson AL, Abdulbah L, Sheehan JK, Harris A, et al. (1999) Mucin Gene Expression During Differentiation of Human Airway Epithelia. Am J Resp Cell Mol Biol 20: 595-604.

45. Chauhan SC, Singh AP, Ruiz F, Johansson SL, Jain M, et al. (2006) aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod Pathol 19: 1386-1394.

46. Workman HC, Miller JK, Ingalla EQ, Kaur RP, Yamamoto DI, et al. (2009) The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells. Breast Cancer Res 11: 1-12.

47. Park HU, Kim JW, Kim GE, Bae HI, Crawley SC, et al. (2003) aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl-Le(a) antigen in pancreatic intraepithelial neoplasia. Pancreas 26: 48-54.

48. Singh AP, Chauhan SC, Bafna S, Johansson SL, Smith LM, et al. (2006) aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate 66: 421-429.

49. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK (2004) Inhibition of
MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis. Cancer Res 64: 622-630.

56. Chaturvedi, Singh AP, Moniaux N, Senapati S, Chakraborty S, et al. (2007) MUC4 Mucin Potentiates Pancreatic Tumor Cell Proliferation, Survival, and Invasive Properties and Interferes with its Interaction to Extracellular Matrix Proteins. Mol Cancer Res 5: 309-320.

57. Ponnusamy MP, Lakshmanan I, Jain M, Das S, Chakraborty S, et al. (2010) MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene 29: 5741-5754.

58. Ponnusamy MP, Singh AP, Jain M, Chakraborty S, Moniaux N, et al. (2008) MUC4 activates HER2 signaling and enhances the motility of human ovarian cancer cells. Br J Cancer 99: 520-526.

59. Chaturvedi, Singh AP, Chakraborty S, Chauhan SC, Bafna S, et al. (2008) MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res 68: 2065-2070.

60. Ramsauer VP, Pino V, Farooq A, Carothers Carraway CA, Salas PJ, et al. (2006) Muc4-Enr2B2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for Enr2B2. Mol Biol Cell 17: 2931-2941.

61. Faltus T, Yuan J, Zimmer B, Krämer A, Loibl S, et al. (2004) Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6: 153-162.

62. Matsui Y, Inomata M, Tojigamori M, Sonoda K, Shiraishi N, et al. (2005) Suppression of tumor growth in human gastric cancer with HER2 overexpression by an anti-HER2 antibody in a murine model. Int J Oncol 27: 681-685.

63. Le XF, Mao W, Lu C, Thornton A, Heymach JV, et al. (2008) Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Cell Cycle 7: 3747-3758.

64. Wen XF, Yang G, Mao W, Thornton A, Liu J, et al. (2006) HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 25: 6986-6996.

65. Huang TH, Wu F, Loeb GB, Hsu R, Heidenbach A, et al. (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284: 18515-18524.

66. Merkerhofer, Ecsogwell P, Baldwin AS (2009) Her2 activates NF-kB and induces invasion through the canonical pathway involving IKKα. Oncogene 29: 1235-1248.

67. Tari M, Youssef EM, Chen XO, Kondo Y, Garcia-Manero G, et al. (2004) Hypermutation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 64: 2411-2417.

68. Zhang J, Liu L, Pfeffer GP (2004) Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoid acid receptor beta gene. Oncogene 23: 2241-2249.

69. Kwok WK, Pang JC, Lo KW, Ng HK (2009) Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genet Cyogenet 194: 58-64.

70. Wu CC, Shyu RY, Chou JM, Jao SW, Chao PC, et al. (2006) RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur J Cancer 42: 557-565.

71. Jing C, El-Ghany MA, Beesley C, Foster CS, Rudland PS, et al. (2002) Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J Natl Cancer Inst 94: 482-490.

72. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, et al. (2004) Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds. PLOS Biol 2: e7.

73. Huang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, et al. (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68: 918-926.

74. Mazzocca A, Fransvea E, Ditlif U, Lupo L, Antonaci S, et al. (2010) Down-regulation of connective tissue growth factor by inhibition of transforming growth factor β blocks the tumor–stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51: 523-534.

75. Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, et al. (2012) Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLOS One 7: e30219.

76. Dong J, G immunoglobulin domain family member 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J Natl Cancer Inst 94: 482-490.

77. Skobe M, Fusienc NE (1998) Tumorogenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci U S A 95: 1050-1055.

78. Dong J, Grunstein M, Tejada M, Peale F, Frantz G, et al. (2004) VEGF-null cells require PDGFRA signaling in a signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23: 2800-2810.

79. Fukumura D, Xavier R, Sugiuara T, Chen Y, Park EC, et al. (1998) Tumor induction of VEGF promoter activity in stromal cells, Cell 94: 715-725.

80. Reselkova E, Reis-Filho JS, Jain RK, Mehta R, Thorat MA, et al. (2010) Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat 123: 97-108.

81. Widenschwender M, Berger J, Daxenbichler G, Müller-Holzner E, Widschwendter M, et al. (1997) Loss of Retinoic Acid Receptor β Expression in Breast Cancer and Morphologically Normal Adjacent Tissue but not in the Normal Breast Tissue Distant from the Cancer. Cancer Res 57: 4158-4161.

82. Liu X, Mugoli M, Laferrère J, Saleh SM, Rodrigue-Gervais IG, et al. (2011) Stromal retinoid acid receptor β promotes mammary gland tumorigenesis. Proc Natl Acad Sci U S A 108: 774-779.

83. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, et al. (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22: 5114-5127.

84. Russman F, de Lera AR (2005) Ligand recognition by RAR and RXR receptors: binding and selectivity. J Med Chem 48: 6212-6219.
Citation: Coyle KM, Sultan M, Thomas ML, Vaghar-Kashani A, Marcato P (2013) Retinoic Signaling in Cancer and Its Promise for Therapy. J Carcinog Mutagen S7: 006. doi:10.4172/2157-2518.S7-006

97. Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 278: 41588-41592.

98. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129: 723-733.

99. Kliewer S, Umesenko K, Noonan D, Heyman R, Evans R (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature 358: 771-774.

100. Bardot O, Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192: 37-45.

101. Tugwood JD, Issmann I, Anderson RG, Bundell KR, McPheat WL, et al. (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11: 433-439.

102. Di-Poli N, Tan NS, Michalik L, Wahi W, Desvergne B (2002) Antilipoprotein role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 7: 720-733.

103. Gupta S, Pramanik D, Mukherjee R, Campbell NR, Elumalai S, et al. (2012) Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin Cancer Res 18: 280-289.

104. Liu RZ, Graham K, Glubrecht DD, Germain DR, Mackey JR, et al. (2011) Association of FABPS expression with poor survival in triple-negative breast cancer: implication for retinoid acid therapy. Am J Pathol 178: 997-1008.

105. Campos B, Centner FS, Bermejo JL, Ali R, Dorsch K, et al. (2011) Ablation of retinoic acid signaling reduces apoptosis and tumor burden in a premalignant model of squamous cell carcinoma. Cancer Res 71: 5939-5948.

106. Pavone ME, Reierstad S, Sun H, Milad M, Bulun SE, et al. (2010) Altered retinoid uptake and action contributes to cell survival in endometriosis. J Clin Endocrinol Metab 95: E300-309.

107. Uma RS, Naresh K, D’Cruz AK, Mulherkar R, Borges AM (2007) Metastasis of squamous cell carcinoma of the oral tongue is associated with down-regulation of epidermal fatty acid binding protein (E-FABP). Oral Oncol 43: 27-32.

108. Wu Q, Chen ZM, Su WJ (2002) Anticancer effect of retinoic acid via AP-1 activity repression is mediated by retinoic acid receptor alpha and beta in gastric cancer cells. Int J Biochem Cell Biol 34: 1102-1114.

109. Dedieu S, Lefebvre P (2006) Retinoids interfere with the AP1 signaling pathway in human breast cancer cells. Cell Signal 18: 899-898.

110. Schüle R, Rangarajan P, Yang N, Kliewer S, Ransone L, et al. (1991) Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci U S A 88: 6092-6096.

111. Benkoussa M, Brand C, Delmotte MH, Formstecher P, Lefebvre P (2002) Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol Cell Biol 22: 4522-4534.

112. Um SJ, Lee SY, Kim EJ, Han HS, Koh YM, et al. (2001) Antiproliferative mechanism of retinoid derivatives in ovarian cancer cells. Cancer Lett 174: 27-32.

113. Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192: 37-45.

114. Di-Poli N, Tan NS, Michalik L, Wahi W, Desvergne B (2002) Antilipoprotein role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 7: 720-733.

115. Cardinale G, Lefebvre P (2006) Retinoids interfere with the AP1 signalling pathway in human breast cancer cells. Cancer Lett 174: 27-32.

116. Wang S, El-Deiry WS, Al-B assi, A, Serizawa T, et al. (2003) Retinoic acid activates p33 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p33 transcriptional function. Oncogene 20: 2559-2669.

117. Ronca F, Yee KS, Yu VC (1999) Retinoic acid confers resistance to p53-dependent apoptosis in SH-SY5Y neuroblastoma cells by modulating nuclear import of p53. J Biol Chem 274: 18128-18134.

118. Raffo P, Emonet L, Cocoli L, Belmondo F, Moro MG, et al. (2000) Retinoid receptors: pathways of proliferation inhibition and apoptosis induction in breast cancer cell lines. Anticancer Res 20: 1535-1543.

119. Curtin JC, Dragnev KH, Sekula D, Christie AJ, Dimitrovsky E, et al. (2001) Retinoic acid activates p33 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p33 transcriptional function. Oncogene 20: 2559-2669.

120. Al-Ali R, Rossin AK, Belmondo F, Moro MG, et al. (2000) Retinoid receptors: pathways of proliferation inhibition and apoptosis induction in breast cancer cell lines. Anticancer Res 20: 1535-1543.

121. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, et al. (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396: 699-703.

122. Nagao M, Nara J, University N, Nakajima Y, Hisanaga M, et al. (1999) The
alteration of fas receptor and ligand system in hepatocellular carcinomas: How do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 30: 413-421.

140. Santourlidis G, Warskulat G, Floir G, Maas G, Pulte G, et al. (2001) Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor 78 sites in prostatic carcinoma. Mol Carcinogen 32: 36-43.

141. Fulda S, Kuffer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, et al. (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20: 5865-5877.

142. Macek HL, Yun Z, Macek HT, Giaccia AJ (2002) Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell 2: 139-149.

143. Jones CL, Wain EM, Chu CC, Tosi I, Foster R, et al. (2010) Downregulation of Fas gene expression in Sézary syndrome is associated with promoter hypermethylation. J Invest Dermatol 130: 1116-1125.

144. Yang Y, Mercep M, Ware CF, Ashwell JD (1995) Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J Exp Med 181: 1673-1682.

145. Bissonnette RP, Brunner T, Lazarchik SB, Yoo NJ, Boehm MF, et al. (1995) 9-cis retinoic acid inhibition of activation-induced apoptosis is mediated via regulation of fas ligand and requires retinoid acid receptor and retinoid X receptor activation. Mol Cell Biol 15: 5576-5585.

146. Lee MO, Kang HJ, Kim YM, Oum JH, Park J (2002) Repression of FasL expression by retinoic acid involves a novel mechanism of inhibition of transactivation function of the nuclear factors of activated T-cells. J Biol Chem 279: 11672-1170.

147. Tóth R, Szegedi É, Reichert U, Bernardon JM, Michel S, et al. (2001) Activation-induced apoptosis and cell surface expression of Fas (CD95) ligand are reciprocally regulated by retinoic acid receptor a and alpha and involve nur77 in T cells. Eur J Immunol 31: 1591-1602.

148. Kang HJ, Song MR, Lee SK, Shin EC, Choi YH, et al. (2000) Retinoic acid induction of major histocompatibility complex class I genes in NTera-2 embryonal carcinoma cells involves induction of NF-kappa B (p50-p65) and retinoic acid receptor beta-retinoid X receptor beta heterodimers. Mol Cell Biol 20: 6157-6169.

149. Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Pecorelli S, et al. (1998) Retinoic acid up-regulates the expression of major histocompatibility complex molecules and adhesion/costimulation molecules (specifically, intercellular adhesion molecule 1) in human cervical cancer. Am J Obstet Gynecol 179: 1020-1025.

150. Vertutani S, Geer A, Levitsky V, Kogner P, Kiessling R, et al. (2003) Retinoids Act as Multistep Modulators of the Major Histocompatibility Class I Presentation Pathway and Sensitize Neuroblastomas to Cytolytic Lymphocytes. Cancer Res 63: 8006-8013.

151. Vertutani S, Dubrovskia E, Levitsky V, Jager MJ, Kiessling R, et al. (2007) Retinoic acid elicits cytostatic, cytotoxic and immunomodulatory effects on uveal melanoma cells. Cancer Immunol Immunother 56: 193-204.

152. Raya AA, Yang JF, Wang Y, Ma L, et al. (2013) All-trans-retinoic acid ameliorates experimental allergic encephalomyelitis by affecting dendritic cell and monocyte development. Immunology 138: 333-345.

153. Ma Y, Chen Q, Ross A (2005) Retinoic Acid and Polyinosinic:Polycytidylic Acid Stimulate Robust Anti-Tetanus Antibody Production while Differentially Regulate Type I/Type 2 Cytokines and Lymphocyte Populations. J Immunol 174: 7961-7969.

154. Haque A, Banik NL, Ray SK (2007) Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoinmunotherapy in the management of human glioblastoma. Neurochem Res 32: 2203-2209.

155. Tan X, Sande JL, Fuhrman JS, Blattman JN, Greenberg PD (2011) Retinoic acid as a vaccine adjuvant enhances CD8+ T cell response and mucosal protection from viral challenge. J Virol 85: 8316-8327.

156. Guo Y, Pino-Lagos K, Ahonen CA, Bennett KA, Wang J, et al. (2012) A retinoic acid–rich tumor microenvironment provides clonal survival cues for tumor–specific CD8(+) T cells. Cancer Res 72: 5230-5239.

157. Allie SR, Zhang W, Tsai CY, Noelle RJ, Ushenrwood EJ (2013) Critical role for all-trans retinoic acid for optimal effector and effector memory CD8+ T cell differentiation. J Immunol 190: 2178-2187.

158. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Forkp3. Science 299: 1057-1061.

159. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330-336.

160. Malefyt RD, Haanen JL, Spits H, Roncarolo M, Veldes A, et al. (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174: 915-924.

161. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, et al. (2001) CD25+CD4+ regulatory T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166: 3008-3018.

162. Horwitz DA, Zheng SG, Wang J, Gray JD (2008) Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 38: 912-915.

163. Moc-Young TA, Larson JW, Belt BA, Tan MC, Hawkins WG, et al. (2009) Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J Immunother 32: 12-21.

164. Benson MJ, Pino-Lagos K, Rosembllatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204: 1765-1774.

165. Noiting J, Daniel C, Reuter S, Stuelten C, Li P, et al. (2009) Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J Exp Med 206: 2131-2139.

166. Dunham RM, Thapa M, Velazquez VM, Elrod EJ, Denning TL, et al. (2013) Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 190: 2009-2016.

167. Gluck AB, Flanders KC, Danielour D, Yuspa SH, Sporn MB (1989) Retinoic acid induces transforming growth factor-beta 2 in cultured keratinocytes and mouse epidermis. Cell Regul 1: 87-97.

Page 12 of 14
Citation: Coyle KM, Sultán ML, Vaghari-Kashani A, Marcato P (2013) Retinoid Signaling in Cancer and Its Promise for Therapy. J Carcinog Mutagen S7: 006. doi:10.4172/2157-2518.S7-006
Citation: Coyle KM, Sultan M, Thomas ML, Vaghari-Kashani A, Marcato P (2013) Retinoid Signaling in Cancer and Its Promise for Therapy. J Carcinog Mutagen S7: 006. doi:10.4172/2157-2518.S7-006

221. Colombo N, Formelli F, Cantu MG, Parma G, Gasco M, et al. (2006) A phase II-III preoperative biomarker trial of farnesitide in ascitic ovarian cancer. Cancer Epidemiol Biomarkers Prev 15: 1914-1919.

222. Rustin GJ, Quinnell TG, Johnson J, Clarke H, Nelstrop AE, et al. (1996) Trial of isotretinoin and calcitriol monitored by CA 125 in patients with ovarian cancer. Br J Cancer 74: 1479-1481.

223. Santillan A, Garg R, Zahurak ML, Gardner GJ, Giuntoli RL 2nd, et al. (2005) Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J Clin Oncol 23: 9338-9343.

224. Kelsen D, Portenoy R, Thaler H, Tao Y, Brennan M (1997) Pain as a predictor of outcome in patients with operable pancreatic carcinoma. Surgery 122: 53-59.

225. Vincent A, Herman J, Schullik J, Hruban R, Goggin M (2011) Pancreatic cancer. The Lancet 378: 607-620.

226. Cohl EF, Susanto JM, Kersch JG, Ong VN, Mawson A, et al. (2011) Retinoid signaling in pancreatic cancer, injury and regeneration. PLoS One 6: e20975.

227. Brembeck FH, Schoppmeyer K, Leupold U, Gomistu C, Keim V, et al. (1998) A phase II pilot trial of 13-cis retinoic acid and interferon-alpha in patients with advanced pancreatic carcinoma. Cancer 83: 2371-2372.

228. Moore DF Jr, Pazdur R, Sugarman S, Jones D 3rd, Lippman SM, et al. (1995) Pilot phase II trial of 13-cis retinoic acid and interferon-alpha combination therapy for advanced pancreatic adenocarcinoma. Am J Clin Oncol 18: 525-527.

229. Michael A, Hill M, Maraveyas A, Dalgleish A, Lofts F (2007) 13-cis-Retinoic acid in combination with gemcitabine in the treatment of locally advanced and metastatic pancreatic cancer--report of a pilot phase II study. Clin Oncol (R Coll Radiol) 19: 150-153.

230. Nakagawa T, Shimizu M, Shirakami Y, Tatebe H, Yasuda I, et al. (2009) Synergistic effects of acyclic retinoid and gemcitabine on growth inhibition in pancreatic cancer cells. Cancer Lett 273: 250-256.

231. Muto Y, Moriwaki H, Nihonmori M, Adachi S, Salto A, et al. (1996) Prevention of second primary tumors by an acyclic retinoid, polyenopinic acid, in patients with hepaticocellular carcinoma. Hepatoma Prevention Study Group. N Engl J Med 334: 1561-1567.

232. Omenn GS, Goodman GE, Thornquist MD, Balmer J, Cullen MR, et al. (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334: 1150-1155.

233. Hennekens CH, Buring JE, Manson JE, Stamfer M, Rosner B, et al. (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334: 1145-1149.

234. Arrieta O, La Rosa de CH, Arechaga-OCampo E, Villanueva-Rodriguez G, Ceron-Lizaraza T, et al. (2010) Randomized Phase II Trial of All-Trans-Retinoic Acid With Chemotherapy Based on Paclitaxel and Cisplatin As First-Line Treatment in Patients With Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 28: 3463-3471.

235. Fritz H, Kennedy D, Fergusson D, Fernandes R, Doucette S, et al. (2011) Vitamin A and Retinoid Derivatives for Lung Cancer: A Systematic Review and Meta Analysis. PLoS One 6: e21107.

236. Khuri FR, Rigas JR, Figlin RA, Gralla RJ, Shin DM, et al. (2001) Multi-institutional phase III trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J Clin Oncol 19: 2626-2637.

237. Ramlau R, Zaltoukal P, Jassem J, Schwarzenberger P, Orlov SV, et al. (2008) Randomized phase III trial comparing bexarotene (LY1059-49) with cisplatin/ vinorelbine with cisplatin/vinorelbine in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT I. J Clin Oncol 26: 1886-1892.

238. Blumenschein GR Jr, Kluhr FR, von Pawel J, Gatzemeier U, Miller WH Jr, et al. (2008) Phase III Trial Comparing Carboplatin, Paclitaxel, and Bexarotene With Carboplatin and Paclitaxel in Chemotherapy- Naive Patients With Advanced or Metastatic Non-Small-Cell Lung Cancer: SPIRIT II. J Clin Oncol 26: 1879-1885.

239. Xu X, Lee JS, Lee JJ, Morice RC, Liu X, et al. (1999) Nuclear Retinoid Acid Receptor Beta in Bronchial Epithelium of Smokers Before and During Chemoprevention. J Natl Cancer Inst 91: 1317-1321.

240. Pasquali D, Thaller C, Eichele G (1996) Abnormal level of retinoid acid in prostate cancer tissues. J Clin Endocrinol Metab 81: 2186-2191.

241. Trump DL, Smith DC, Stiff D, Adedoyin A, Day R, et al. (1997) A phase II trial of all-trans-retinoic acid in hormone refractory prostate cancer: a clinical trial with detailed pharmacokinetic analysis. Cancer Chemother Pharmacol 39: 349-356.

242. Culine S, Kramar A, Droz JP, Theodore C (1999) Phase II study of all-trans retinoic acid administered intermittently for hormone refractory prostate cancer. J Urol 161: 173-175.

243. Pianta KJ, Nguyen NM, Lehr JE (1993) Treatment of prostate cancer in the rat with the synthetic retinoid fenretinide. Cancer Res 53: 224-226.

244. Cheung E, Pinski J, Dorff T, Grossen S, Quinn DI, et al. (2009) Oral fenretinide in biochemically recurrent prostate cancer: a California cancer consortium phase II trial. Clin Genitourin Cancer 7: 43-50.

245. DiPaola RS, Raft MM, Vyas V, Toppmeyer D, Rubin E, et al. (1999) Phase I clinical and pharmacologic study of 13-cis-retinoic acid, interferon alfa, and paclitaxel in patients with prostate cancer and other advanced malignancies. J Clin Oncol 17: 2213-2218.

246. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, et al. (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341: 1165-1173.

247. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, et al. (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol 27: 1007-1013.

248. Finkenstein JZ, Krailo MD, Lenarsky C, Ladsich S, Blair GK, et al. (1992) 13-cis-retinoic acid (NSC 122758) in the treatment of children with metastatic neuroblastoma unresponsive to conventional chemotherapy: Report from the childrens cancer study group. Med Pediat Oncol 20: 307-311.

249. Villablanca JG, London WB, Naranjo A, McGrady P, Ames MM, et al. (2011) Phase II study of oral capsular 4-hydroxyretinamide (4-HPR/ferenretinide) in pediatric patients with refractory or recurrent neuroblastoma: a report from the Children’s Oncology Group. Clin Cancer Res 17: 6858-6866.

250. Maurer BJ, Kalous O, Yesair DW, Wu X, Janeba J, et al. (2007) Improved oral delivery of N-(4-hydroxyretinamide) with a novel LYM-X-SORB organized lipid complex. Clin Cancer Res 13: 3079-3086.

251. Adamson PC, Matthay KK, O'Brien M, Reaman GH, Sato JK, et al. (2007) A phase 2 trial of all-trans-retinoic acid in combination with interferon-alpha2a in children with recurrent neuroblastoma or Wilms tumor: A Pediatric Oncology Branch, NCI and Children’s Oncology Group Study. Pediatr Blood Cancer 49: 661-665.

252. Sporn MB, Dunlop NM, Newton DL, Smith JM (1977) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35: 1332-1338.

253. Wang XD, Liu C, Bronson RT, Smith DE, Kinsey NL, et al. (1999) Retinoid signaling and activator protein-1 expression in ferrets given beta-carotene supplements and exposed to tobacco smoke. J Natl Cancer Inst 91: 60-66.

This article was originally published in a special issue, Signal transduction-Cancer handled by Editor(s). Dr. Li-Mei Chen, University of Central Florida College of Medicine, United States

Citation: Coyle KM, Sultan M, Thomas ML, Vaghari-Kashani A, Marcato P (2013) Retinoid Signaling in Cancer and Its Promise for Therapy. J Carcinog Mutagen S7: 006. doi:10.4172/2157-2518.S7-006