Dressed Polyakov loop and flavor dependent phase transitions

Fukun Xu1, § Hong Mao1,2, ‡ Tamal K. Mukherjee1,‡ and Mei Huang1,∗

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
2 Department of Physics, Hangzhou Normal University, Hangzhou 310036, China and
3 Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing, China

(Dated: January 19, 2013)

The chiral condensate and dressed Polyakov loop at finite temperature and density have been investigated in the framework of $N_f = 2+1$ Nambu-Jona-Lasinio (NJL) model with two degenerate u, d quarks and one strange quark. In the case of explicit chiral symmetry breaking with physical quark masses, it is found that the phase transitions for light u, d quarks and s quark are sequentially happened, and the separation between the transition lines for different flavors becomes wider and wider with the increase of baryon density. For each flavor, the pseudo-critical temperatures for chiral condensate and dressed Polyakov loop differ in a narrow transition range in the lower baryon density region, and the two transitions coincide in the higher baryon density region.

PACS numbers: 12.38.Aw, 12.38.Mh, 11.30.Rd

I. INTRODUCTION

QCD vacuum is characterized by spontaneous chiral symmetry breaking and color confinement. The dynamical chiral symmetry breaking is due to a non-vanishing quark anti-quark condensate, $\langle \bar{q} q \rangle \simeq (250\text{MeV})^3$ in the vacuum, which induces the presence of the light Nambu-Goldstone particles, the pions and kaons in the hadron spectrum. The confinement represents that only colorless states are observed in the spectrum, which is commonly described by the linearly rising potential between two heavy quarks at large distances, $V_{QQ}(R) = \sigma_s R$, where $\sigma_s \simeq (425\text{MeV})^2$ is the string tension.

It is expected that chiral symmetry can be restored and color degrees of freedom can be freed at high temperature and/or density. The interplay between chiral and deconfinement phase transitions at finite temperature and density are of continuous interests for studying the QCD phase diagram [1, 2]. The chiral restoration is characterized by the restoration of chiral symmetry and the deconfinement phase transition is characterized by the breaking of center symmetry, which are only well defined in two extreme quark mass limits, respectively. In the chiral limit when the current quark mass is zero $m = 0$, the chiral condensate $\langle \bar{q} q \rangle$ is the order parameter for the chiral phase transition. When the current quark mass goes to infinity $m \to \infty$, QCD becomes pure gauge $SU(3)$ theory, which is center symmetric in the vacuum, and the usually used order parameter is the Polyakov loop expectation value $\langle P \rangle$ [1], which is related to the heavy quark free energy. At zero density and chiral limit, lattice QCD results show that the chiral and deconfinement phase transitions occur at the same critical temperature, e.g., see Ref. [15–19], and also review papers [20, 21]. This result is highly nontrivial because these two distinct phase transitions involve different mechanisms at different energy scales. It has been largely believed for a long time that chiral symmetry restoration always coincides with deconfinement phase transition in the whole (T, μ) plane.

However, for the case of finite physical quark mass, neither the chiral condensate nor the Polyakov loop is a good order parameter. For heavy quark, there is no dynamical chiral symmetry breaking (e.g., see [12]) thus no chiral restoration. On the other hand, the linear potential description for confinement property is not suitable for light quark system. In recent years, several lattice groups have made much effort on investigating the chiral and deconfinement phase transition temperatures with almost physical quark masses, e.g., RBC-Bielefeld group [22], which later merged with part of the MILC group [22] and formed the hotQCD group [23, 24], and Wuppertal-Budapest group [25, 26]. The result from the RBC-Bielefeld group in 2006 [23] found that the two pseudo-critical temperatures for $N_f = 2 + 1$ coincide at $T_c = 192(7)(4)$MeV. The Wuppertal-Budapest group found that for the case of $N_f = 2 + 1$, there are three pseudocritical temperatures, the transition temperature for chiral restoration of u, d quarks $T_c^{X(ud)} = 151(3)(3)$ MeV, the transition temperature for s quark number susceptibility $T_c^s = 175(2)(4)$MeV and the deconfinement transition temperature $T_c^\rho = 176(3)(4)$MeV from the Polyakov loop. Recently, it is shown in [27, 28], by using an improved HISQ action, hotQCD collaboration results are close to the Wuppertal-Budapest collaboration results.

The relation between the chiral and deconfinement phase transitions has also attracted more interest recently in studying the phase diagram at high baryon density region [10]. It is conjectured in Ref. [11] that in large N_c limit, a confined but chiral symmetric phase, which is called quarkyonic phase can exist in the high baryon density region. The quarkyonic phase or chiral density wave state is due to the quark-hole pairing near the Fermi sur-

*Electronic address: xufukun@mail.ihep.ac.cn
†Electronic address: hznu.mao@gmail.com
‡Electronic address: mukherjee@mail.ihep.ac.cn
§Electronic address: huangm@mail.ihep.ac.cn

face. Nevertheless, it attracts a lot of interests to study whether such a chiral symmetric but confined phase can survive in real QCD phase diagram, and how it competes with nuclear matter and the color superconducting phase \[13\].

In the framework of QCD effective models, there is still no dynamical model which can describe the chiral symmetry breaking and confinement simultaneously. The main difficulty of effective QCD model to include confinement mechanism lies in that it is difficult to calculate the Polyakov loop analytically. Currently, the popular models used to investigate the chiral and deconfinement phase transitions are the Polyakov Nambu-Jona-Lasinio model (PNJL) \[34, 41\] and Polyakov linear sigma model (PLSM) \[42, 43\]. However, the shortcoming of these models is that the temperature dependence of the Polyakov-loop potential is put in by hand from lattice result, which cannot be self-consistently extended to finite baryon density. Recently, efforts have been made in Ref. \[44, 45\] to derive a low-energy effective theory for confinement-deconfinement and chiral-symmetry breaking/restoration.

Recent investigation revealed that quark propagator, heat kernels can also act as an order parameter as they transform non trivially under the center transformation related to deconfinement transition \[46, 48\]. The exciting result is the behavior of spectral sum of the Dirac operator under center transformation \[47, 49, 51\]. A new order parameter, called dressed Polyakov loop has been defined which can be represented as a spectral sum of the Dirac operator \[51\]. It has been found the infrared part of the spectrum particularly plays a leading role in confinement \[44\]. This result is encouraging since it gives a hope to relate the chiral phase transition with the confinement-deconfinement phase transition. The order parameter for chiral phase transition is related to the spectral density of the Dirac operator through Banks-Casher relation \[4\]. Therefore, both the dressed Polyakov loop and the chiral condensate are related to the spectral sum of the Dirac operator. Behavior of the dressed Polyakov loop is mainly studied in the framework of Lattice gauge theory \[52, 54\]. Apart from that, studies based on Dyson-Schwinger equations \[55, 57\] and PNJL model \[58, 59\] have been carried out. In those studies the role of dressed Polyakov loop as an order parameter for chiral phase transition is related to deconfinement transition \[46–48\]. The excitations are the eight Gell-Mann matrices, and Det \(\phi, M\) means determinant in flavor space. The last term is the standard boundary condition dependent quark condensate \[51–53\], where 0 \(\leq \phi < 2\pi\) is the phase angle and \(\beta\) is the inverse temperature.

Dual quark condensate \(\Sigma_n\) is then defined by the Fourier transform (w.r.t the phase \(\phi\) of the general boundary condition dependent quark condensate \[51, 53\],

\[
\Sigma_n = -\int_0^{2\pi} \frac{d\phi}{2\pi} e^{-in\phi}(\bar{\psi}\psi)_\phi,
\]

where \(n\) is the winding number.

Particular case of \(n = 1\) is called the dressed Polyakov loop which transforms in the same way as the conventional thin Polyakov loop under the center symmetry and hence is an order parameter for the deconfinement transition \[51, 53\]. It reduces to the thin Polyakov loop and to the dual of the conventional chiral condensate in infinite and zero quark mass limits respectively, i.e., in the chiral limit \(m \to 0\) we get the dual of the conventional chiral condensate and in the \(m \to \infty\) limit we have thin Polyakov loop \[51, 53\].

The Lagrangian of three-flavor NJL model \[61\] is given as

\[
\mathcal{L} = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi + G_\sigma \sum_{a} \left\{ (\bar{\psi}\gamma_a^T \tau_a^T \psi)^2 + (\bar{\psi}i\gamma_5 \tau_a^T \psi)^2 \right\}
- K \left\{ \text{Det}_f[\bar{\psi}(1+\gamma_5)\psi] + \text{Det}_f[\bar{\psi}(1-\gamma_5)\psi] \right\}.
\]

Where \(\psi = (u,d,s)^T\) denotes the transpose of the quark field, and \(m = \text{Diag}(m_u, m_d, m_s)\) is the corresponding mass matrix in the flavor space. \(\tau_a\) with \(a = 1, \ldots, N_f^2 - 1\) are the eight Gell-Mann matrices, and \(\text{Det}_f\) means determinant in flavor space. The last term is the standard form of the ’t Hooft interaction, which is invariant under \(SU(3)_L \times SU(3)_R \times U(1)_B\) symmetry, but breaks down the \(U_A(1)\) symmetry.

The \(\phi\) dependent thermodynamic potential in the mean field level is given as following:

\[
\Omega_\phi = \sum_f \Omega_{\phi, M_f} + 2G_s \sum_f \langle \sigma \rangle_{\phi, f}^2 - 4K \langle \sigma \rangle_{\phi, u} \langle \sigma \rangle_{\phi, d} \langle \sigma \rangle_{\phi, s},
\]

with

\[
\Omega_{\phi, M_f} = -2N_c \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \left[E_{p,f} + \frac{1}{\beta} \ln(1 + e^{-\beta E_{p,f}^-}) \right] + \frac{1}{\beta} \ln(1 + e^{-\beta E_{p,f}}),
\]

This paper is organized as follows: We introduce the dressed Polyakov loop as an equivalent order parameter of confinement deconfinement phase transition and the NJL model in Sec. \[II\]. Then in Sec. \[III\] we show the results of three-flavor QCD phase diagram in \(T - \mu\) plane in the chiral limit and in the case of explicit chiral symmetry breaking, respectively. At the end, we give the conclusion and discussion.

\section{Dressed Polyakov Loop and the Three-Flavor NJL Model}

We firstly introduce the dressed Polyakov loop. To do this we have to consider a \(U(1)\) valued boundary condition for the fermionic fields in the temporal direction instead of the canonical choice of anti-periodic boundary condition,

\[
\psi(x, \beta) = e^{-i\phi} \psi(x, 0),
\]

where \(0 \leq \phi < 2\pi\) is the phase angle and \(\beta\) is the inverse temperature.

Dual quark condensate \(\Sigma_n\) is then defined by the Fourier transform (w.r.t the phase \(\phi\) of the general boundary condition dependent quark condensate \[51, 53\],

\[
\Sigma_n = -\int_0^{2\pi} \frac{d\phi}{2\pi} e^{-in\phi}(\bar{\psi}\psi)_\phi,
\]

where \(n\) is the winding number.

Particular case of \(n = 1\) is called the dressed Polyakov loop which transforms in the same way as the conventional thin Polyakov loop under the center symmetry and hence is an order parameter for the deconfinement transition \[51, 53\]. It reduces to the thin Polyakov loop and to the dual of the conventional chiral condensate in infinite and zero quark mass limits respectively, i.e., in the chiral limit \(m \to 0\) we get the dual of the conventional chiral condensate and in the \(m \to \infty\) limit we have thin Polyakov loop \[51, 53\].

The Lagrangian of three-flavor NJL model \[61\] is given as

\[
\mathcal{L} = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi + G_\sigma \sum_{a} \left\{ (\bar{\psi}\gamma_a^T \tau_a^T \psi)^2 + (\bar{\psi}i\gamma_5 \tau_a^T \psi)^2 \right\}
- K \left\{ \text{Det}_f[\bar{\psi}(1+\gamma_5)\psi] + \text{Det}_f[\bar{\psi}(1-\gamma_5)\psi] \right\}.
\]

Where \(\psi = (u,d,s)^T\) denotes the transpose of the quark field, and \(m = \text{Diag}(m_u, m_d, m_s)\) is the corresponding mass matrix in the flavor space. \(\tau_a\) with \(a = 1, \ldots, N_f^2 - 1\) are the eight Gell-Mann matrices, and \(\text{Det}_f\) means determinant in flavor space. The last term is the standard form of the ’t Hooft interaction, which is invariant under \(SU(3)_L \times SU(3)_R \times U(1)_B\) symmetry, but breaks down the \(U_A(1)\) symmetry.

The \(\phi\) dependent thermodynamic potential in the mean field level is given as following:

\[
\Omega_\phi = \sum_f \Omega_{\phi, M_f} + 2G_s \sum_f \langle \sigma \rangle_{\phi, f}^2
- 4K \langle \sigma \rangle_{\phi, u} \langle \sigma \rangle_{\phi, d} \langle \sigma \rangle_{\phi, s},
\]

with

\[
\Omega_{\phi, M_f} = -2N_c \int_{\Lambda} \frac{d^3p}{(2\pi)^3} \left[E_{p,f} + \frac{1}{\beta} \ln(1 + e^{-\beta E_{p,f}^-}) \right] + \frac{1}{\beta} \ln(1 + e^{-\beta E_{p,f}}),
\]
Where the sum is in the flavor space, $E_{p,f} = \sqrt{p^2 + M_{\phi,f}^2}$ and $E_{p,f}^\pm = E_{p,f} \pm [\mu + i(\phi - \pi)T]$, with the constituent quark mass

$$M_{\phi,i} = m_i - 4G_s \langle \sigma \rangle_{\phi,i} + 2K \langle \sigma \rangle_{\phi,j} \langle \sigma \rangle_{\phi,k},$$

where (i, j, k) is the quark flavor indices (u, d, s), and $\langle \sigma \rangle_{\phi,j} = \langle \bar{\psi} \gamma_j \psi \rangle_{\phi}$. We will only consider isospin symmetric quark matter and define a uniform chemical potential μ for u, d, and s.

It is known that the NJL model lacks of confinement and the gluon dynamics is encoded in a static coupling constant for four point contact interaction. However, assuming that we can read the information of confinement from the dual chiral condensate, it would be interesting to see the behavior of the dressed Polyakov loop in a scenario without any explicit mechanism for confinement.

The thermodynamic potential contains imaginary part. We take only the real part of the potential and the imaginary phase factor is not considered in this work. The mean field $\langle \sigma \rangle_{\phi}$ is obtained by minimizing the potential for each value of $\phi \in [0, 2\pi)$ for fixed T and μ.

The conventional chiral condensate is $\langle \sigma \rangle_\pi = \langle \bar{\psi} \gamma_\pi \psi \rangle$. For brevity from here onwards we will represent the conventional chiral condensate as $\langle \sigma \rangle$. The dressed Polyakov loop Σ_1 is obtained by integrating over the angle.

III. PHASE DIAGRAM FOR THREE FLAVORS

We investigate phase transitions for two cases, i.e., in the chiral limit and in the case of explicit chiral symmetry breaking with physical quark mass, and the corresponding parameters are taken from Ref. [62] and [63, 64]:

Parameter	Value (MeV)
m_u	0
m_d	140.7
m_s	183.5
$G_s \Lambda^2$	1.926
$K \Lambda^5$	12.36

TABLE I: Two sets of parameters in 3-flavor NJL model: the current quark mass m_q for up and down quark and m_s for strange quark, coupling constants G and K, with a spatial momentum cutoff $\Lambda = 602.3$ MeV.

A. Phase diagram in the chiral limit

We firstly consider the case of chiral limit, i.e. $m_u = m_d = m_s = 0$. In Fig. 1 we show the behavior of the conventional chiral condensate $-\langle \sigma \rangle_{u,d,s}$ and the corresponding dressed Polyakov loop Σ_1 for u, d, and s quarks at different chemical potentials as functions of temperature. For both order parameters, it is observed there are three temperature regions for $-\langle \sigma \rangle_{u,d,s}$ and Σ_1. For $-\langle \sigma \rangle$, at smaller temperatures it remains constant at a value corresponding to the value of the conventional chiral condensate in the vacuum, then it drops to zero at the critical temperature T_c, and eventually keeps zero above the critical temperature. The critical temperature decreases with the increase of the chemical potential. It is noticed that, in order to guide eyes, we have connected the two end-points of the order parameter at the jump.

On the other hand the behavior for the dressed Polyakov loop is just the opposite. It remains zero for small temperatures and then jumps at the critical temperature, and finally saturates to a high value which varies very slowly with temperatures. The almost zero value of Σ_1 for small temperatures is due to the fact that the $U(1)$ boundary condition dependent general quark condensate nearly does not vary with the angle ϕ for small temperatures (see Eq. 2).
It is seen that the phase transitions for chiral restoration and dressed Polyakov loop are of 1st order in the whole $T - \mu$ plane. For two-flavor case, it was found these two phase transitions are of second order. The N_f dependent result is in agreement with the results given by Pisarski and Wilczek in Ref. The first order phase transition in three-flavor case is due to the 't Hooft interaction in Eq. which contributes a cubic term in the thermodynamical potential in Eq. Fig. 2 shows the phase diagram of three-flavor in the chiral limit. We find almost exact matching for the transition temperatures calculated from these two quantities in the whole $T - \mu$ plane.

B. Phase diagram with physical quark mass

For the case of finite quark mass $m_u = m_d = 5.5\text{MeV}$ and $m_s = 140.7\text{MeV}$, we have chosen the model parameters of $G_A\Lambda^2 = 1.835$, $K\Lambda^3 = 12.36$ with $\Lambda = 602.3\text{MeV}$ as in Ref. to fit $m_u = 135.0\text{MeV}$, $f_\pi = 92.4\text{MeV}$, $m_K = 497.7\text{MeV}$ and $m_{\eta'} = 957.8\text{MeV}$.

In Fig. 3 and 4, we show the behavior of the conventional chiral condensate $-\langle \sigma \rangle$ and the dressed Polyakov loop Σ_1 at different chemical potentials as functions of temperature for u, d and s quarks, respectively.

![FIG. 3: The conventional chiral condensate $-\langle \sigma \rangle$ and the dressed Polyakov loop Σ_1 of u, d quarks as functions of temperature for different values of the chemical potentials. Here, $-\langle \sigma \rangle$ and Σ_1 both are measured in [GeV3].](image)

For both cases, it is observed that there are three temperature regions for $-\langle \sigma \rangle$ and Σ_1. For $-\langle \sigma \rangle$, at smaller temperatures it remains constant at a value corresponding to the value of the conventional chiral condensate in the vacuum, then it rapidly decreases in a small window of temperature and eventually almost saturates to a lower value. The decreasing occurs at different temperatures for different values of the chemical potentials. On the other hand the behavior for the dressed Polyakov loop is just the opposite. It remains almost zero for small temperatures and then rises rapidly, finally saturates to a high value which varies very slowly with temperatures. The almost zero value of Σ_1 for small temperatures is due to the fact that the $U(1)$ boundary condition dependent general quark condensate nearly does not vary with the angle ϕ for small temperatures (see Eq. 2).

![FIG. 4: The conventional chiral condensate $-\langle \sigma \rangle$ and the dressed Polyakov loop Σ_1 of s quark as functions of temperature for different values of the chemical potentials. Here, $-\langle \sigma \rangle$ and Σ_1 both are measured in [GeV3].](image)

The critical temperature for a real phase transition or the pseudo-critical temperature for a crossover is extracted from the susceptibility of the order parameter or the temperature derivative of the order parameter. For example, for chiral phase transition of strange quark, the (pseudo)critical temperature is extracted from the temperature derivative $\partial_t(-\langle \sigma_s \rangle)$. This quantity describes how fast the order parameter changes with temperature. Normally the critical temperature corresponds to the fastest change of the order parameter, and the temperature derivative of the order parameter shows a peak at the critical point. However, there are some subtleties to determine the pseudo-critical temperature for the chiral restoration of the strange quark. We show how we determine the pseudo-critical temperature of the crossover by using Fig. which is the temperature derivative of the chiral condensate of the strange quark corresponding to Fig. 4.

For $\mu = 0$, from Fig. one can observe that the temperature derivative of the strange quark condensate shows a peak at $T = 196\text{MeV}$, correspondingly, from Fig. one can see that the strange quark condensate changes fast at $T = 196\text{MeV}$, which is the critical temperature for chiral phase transition of the u, d quarks at zero chemical potential. However, the value of the strange quark condensate at $T_{c,\chi}^{u,d} = 196\text{MeV}$ is still around its vacuum value, one cannot locate the pseudo-critical temperature of the strange quark at $T_{c,\chi}^{u,d} = 196\text{MeV}$ even...
though there is a peak for the temperature derivative of the strange quark condensate. The reasonable explanation of the fast change of the strange quark condensate at $T_{c,s}^{u,d} = 196$ MeV is that the strange quark feels the chiral phase transition of u,d quarks due to the flavor mixing effect. For $\mu = 0$, from Fig. 5 one can also observe a bump region of the temperature derivative of the strange quark condensate around $T = 250$ MeV, however, there is no obvious peak shown up. Therefore, we cannot extract an explicit pseudo-critical temperature from the chiral phase transition of the strange quark. Correspondingly, we find that the strange quark condensate at $\mu = 0$ changes smoothly with temperature.

FIG. 5: The derivative of strange chiral condensate $\partial(\langle \sigma \rangle_s)/\partial T$ as functions of T for different values of μ.

The temperature derivative of the strange quark condensate at $\mu = 200$ MeV is similar to the case at $\mu = 0$. The only difference is that the peak moves to a lower temperature. The small jump at the large strange chiral condensate region is induced by the u,d quark chiral phase transition. It cannot be regarded as the phase transition for strange quark even though it corresponds to a peak of the strange chiral susceptibility, because the order parameter does not change so much comparing with its vacuum value. It should still be regarded as in the chiral symmetry breaking phase. At $\mu = 320$ MeV, it is seen from Fig. 5 that the left peak develops to a sharp peak at $T_{c,s}^{u,d}$, and an obvious peak shows up in the right bump region. Therefore, one can extract the pseudo-critical temperature for the chiral phase transition of the strange quark. For higher chemical potential, e.g., $\mu = 460$ MeV or $\mu = 490$ MeV, because u,d quarks are already in chiral symmetric phase, there is only one peak shows up for the temperature derivative of the strange quark condensate in Fig. 5 and the location of the peak gives the pseudo-critical temperature of the phase transition.

As we have discussed in detail above, one has to combine the information from the order parameter itself as well as the temperature derivative of the order parameter in order to determine the pseudo-critical temperature of the crossover. This method is also used to determine the dressed Polyakov loop of the strange quark. The critical and pseudo-critical temperatures extracted from the temperature derivative of the order parameters are shown in Fig. 6. It is found that the the chiral and deconfinement phase transitions are flavor dependent.

At low baryon chemical potential region when $\mu < 270$ MeV, for light flavors, i.e. for u,d quarks, we observe from Fig. 6 that the conventional chiral condensate and the dressed Polyakov loop change rapidly with the increase of temperature. From the temperature derivative of the order parameters of the chiral condensate and dressed Polyakov loop, we can obtain two separate pseudo-critical temperatures T_{c}^{s} and T_{c}^{D} for fixed μ, and we find T_{c}^{s} is always smaller than T_{c}^{D}.

However, in the chemical potential region when $\mu < 270$ MeV, for s quark, from Fig. 6 we can see that the conventional chiral condensate and dressed Polyakov loop change smoothly with the increase of temperature. From the temperature derivative of the order parameters, one cannot extract the values of the pseudo-critical temperatures as already discussed. Therefore, in Fig. 6 of the three-flavor phase diagram, we can read that in the region around $0 < \mu < 270$ MeV, the phase transitions for u,d are crossover, and different order parameters have different pseudo-critical temperatures. The s flavor experiences a rapid crossover, and no pseudo-critical temperatures can be extracted from the order parameters. From the lattice results in Ref. 31 at zero chemical potential, there is also no pseudo-critical temperature for the order parameter of strange quark’s chiral condensate.

FIG. 6: Three-flavor phase diagram in the $T-\mu$ plane for the case of $m_u = m_d = 5$ MeV and $m_s = 140.7$ MeV. The dash-dotted lines are the critical line for Σ_s, and the dashed lines are the critical line for conventional chiral phase transition in the region of crossover. The solid lines indicates the 1st order phase transitions, and the solid circle indicates the critical end points for chiral phase transitions of u,d quarks.

At higher baryon chemical potential region, it is ob-
served from Fig. 3 that the conventional chiral condensate and the dressed Polyakov loop change sharply with the increase of temperature. From the temperature derivative of the order parameters, we find that the phase transitions are of first order, and the critical temperatures for chiral and dressed Polyakov loop coincide with each other around CEP.

For s quark, from Fig. 4 we can see that when the chemical potential becomes higher and higher, the conventional chiral condensate and dressed Polyakov loop change more rapidly with the increase of temperature. The temperature derivative of the order parameters give separate values of the pseudo-critical temperatures in the region $270 < \mu < 450\text{MeV}$, and the two pseudo-critical temperatures merge in the region of $\mu > 450\text{MeV}$.

From Fig. 6 of the three-flavor phase diagram, we can read the critical end point for u,d flavors lies at $\left(T_{\text{CEP}}, \mu_{\text{CEP}}\right) = (68.4\text{MeV}, 317.8\text{MeV})$, which is different from the results in Ref. [60] for pure two-flavor NJL model. The difference comes from: 1) different model parameters have been used, 2) the coupling of s quark to u,d quark contributes one extra term in the thermodynamical potential comparing with the pure two-flavor case. The location of CEP in this work is in good agreement with that in Ref. [66].

In Fig. 7 and Fig. 8 we show the details of locating the CEP. In the first order phase region, there are two branches of number densities, i.e., for fixed chemical potential, the number density $n_q = -\frac{\partial \Omega}{\partial \mu}$ has a jump at the transition temperature. The two branches of number densities merge at the CEP. This feature is shown in Fig. 7. At the CEP, the phase transition is of second order and this is indicated by the divergent behavior of the number susceptibility. We show the number susceptibility $\chi_q = -\frac{\partial^2 \Omega}{\partial \mu^2}$ as functions of the temperature in Fig. 8. It is clearly seen that χ_q develops a sharp peak at CEP.

IV. CONCLUSION AND DISCUSSION

We investigate the chiral condensate and the dressed Polyakov loop or dual chiral condensate at finite temperature and density in the three-flavor Nambu–Jona-Lasinio model. It is found that in the chiral limit, the phase transitions are of 1st order and the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent, and there is a phase transition range for each flavor. The transition range of s quark is located at higher temperature and higher baryon density than that of u,d quarks. At low baryon density region, it is found that the transition range of u,d quarks are not separated
too much from that of the \(s \) quark, however, the separation of the transition ranges for \(u, d \) quarks and \(s \) quark become wider and wider with the increase of the chemical potential.

For light \(u, d \) quarks, the pseudo-critical temperature for chiral transition \(T_c^q \) is smaller than that of the dressed Polyakov loop \(T_c^D \) in the low baryon density region where the transition is a crossover, and these two phase transitions coincide in the 1st order phase transition region at high baryon density. For \(s \) quark, both transitions are of smooth crossover at low baryon density, and becomes rapid crossover at moderate baryon density region where the pseudo-critical temperatures for the chiral condensate and the dressed Polyakov loop are separated, then at enough high baryon density, these two transitions coincide with each other.

Our results are based on the NJL model, where the gluon dynamics is encoded in a static coupling constant for four point contact interaction, a quantitative comparison will not match with lattice results. However, we believe the scenario of the sequential phase transitions is physically correct.

Till now, there are six quark flavors observed in experiment. These six flavors cover a very wide energy scale, from several MeV to several hundred GeV. Only light quarks experience dynamically chiral symmetry breaking in the vacuum, and chiral phase transition in high temperature and density. However, there is no good order parameters to describe the deconfinement phase transition of light quarks. The conventional Polyakov loop is a good order parameter for confinement deconfinement phase transition in the limit of infinity heavy quark mass, and has the interpretation of the free energy of an infinity heavy quark. In analogy to that we can regard the dressed Polyakov loop as an order parameter for confinement deconfinement phase transition for a quark with mass \(m \), and interpret the dressed Polyakov loop as the free energy of a quark with any mass \(m \). Therefore, in principle, each flavor can have different critical temperatures for deconfinement phase transition. Lattice results already reflect such properties at zero chemical potential, e.g. the pseudo-critical temperatures for order parameters of \(u, d \) quarks, \(s \) quark and the Polyakov loop are different, and the the pseudo-critical temperature is higher for heavier quark mass.

It is natural to understand that the separation of the phase transition range for different flavors becomes wider and wider with the increase of the chemical potential. Lattice result at zero chemical potential gives that the pseudo-critical temperature for \(u, d \) quarks is around 155MeV, and for \(s \) quark is around 175MeV. The difference is around 20MeV. However, at zero temperature, the \(u, d \) quarks restores chiral symmetry at the chemical potential around their vacuum constituent masses, i.e. \(\mu_{u,d}^c \sim M_{u,d} \sim 330\text{MeV} \), and the \(s \) quark restores chiral symmetry at the chemical potential around \(\mu_s^c \sim M_s \sim 550\text{MeV} \). The difference is around 200MeV.

Based on above analysis, in Fig. 9 we show our conjectured 3 dimension (3D) QCD phase diagram for finite temperature \(T \), quark chemical potential \(\mu_q \) and isospin chemical potential \(\mu_I \).

In the plane of \((\mu, T)\), each flavor has its own transition range. The transition range is wider in the low baryon density, and becomes narrower and narrower with the increase of the chemical potential, and eventually merge at higher chemical potential. By using the lattice results at zero density, we identify the phase transition range around 155MeV for \(u, d \) quark, 175MeV for \(s \) quark, and 190MeV for heavy flavor. The upper solid line is for the Polyakov loop, which does not change so much with the increase of baryon density. This result agrees with that in any Polyakov loop NJL model and Polyakov loop linear sigma model. Due to the flavor dependent phase transitions, we naturally expect the color superconducting phase for two-flavor quark system and three-flavor quark system in different baryon density regions. Due to the finite mass of strange quark, the three-flavor color superconducting phase can be in the color flavor locking (CFL) phase, CFL-kaon condensate phase (CFL-K), or uSC/dSC phase.

When isospin asymmetry is considered, the phase diagram becomes much more complicated. At low baryon density region, there will be pion superfluidity and kaon superfluidity phases. In the color superconducting phase, because isospin asymmetry induces mismatch between the pairing quarks, there will appear unstable gapless excitations when charge neutrality condition is considered. It has been vastly discussed in many literatures about the true ground state of the charge neutral two-flavor and three-flavor cold quark matter, e.g. the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) sate or other crystalline structure, the gluon condensate state, the current generation state, and so on. The detailed analysis given in Ref. shows that in the gapless color superconducting phase, both the phase part and magnitude part of the order parameter will develop instabilities. The phase part develops into the chromomagnetic instability, which induces the plane-wave state; The magnitude part develops the Sarma instability and Higgs instability, the Sarma instability can be competed with charge neutrality condition. If the Higgs instability cannot be cured by the electric or color Coulomb interaction, it will induce the inhomogeneous state.

Acknowledgments: The work of M.H. is supported by CAS program "Outstanding young scientists abroad brought-in", and NSFC under the number of 10735040 and 10875134, and K.C.Wong Education Foundation, Hong Kong. The work of H.M. is supported by NSFC 10904029 and the Natural Science Foundation of Zhejiang Province under grant no Y7080056.
T. Hatsuda and T. Kunihiro, Phys. Rept. **247**, 221 (1994); R. Alkofer, H. Reinhardt and H. Weigel, Phys. Rept. **265**, 139 (1996);

[62] P. Rehberg, S. P. Klevansky and J. Hufner, Phys. Rev. C **53**, 410 (1996) [arXiv:hep-ph/9506436].

[63] M. Buballa, Phys. Rept. **407**, 205 (2005).

[64] H. Abuki, G. Baym, T. Hatsuda and N. Yamamoto, Phys. Rev. D **81**, 125010 (2010).

[65] R. D. Pisarski, F. Wilczek, Phys. Rev. D**29**, 338-341 (1984).

[66] P. Costa, M. C. Ruivo and C. A. de Sousa, Phys. Rev. D **77**, 096001 (2008).

[67] M.G. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys. B**537**, 443 (1999).

[68] T. Schafer, Phys. Rev. Lett. **85**, 5531 (2000); P.F. Bedaque and T. Schafer, Nucl. Phys. A **697**, 802 (2002); D.B. Kaplan and S. Reddy, Phys. Rev. D **65**, 054042 (2002).

[69] K. Iida, T. Matsuura, M. Tachibana and T. Hatsuda, Phys. Rev. Lett. **93**, 132001 (2004).

[70] L. y. He, M. Jin and P. f. Zhuang, Phys. Rev. D **71**, 116001 (2005) [arXiv:hep-ph/0503272].

[71] I. Shovkovy and M. Huang, Phys. Lett. B **564**, 205 (2003); M. Huang and I. Shovkovy, Nucl. Phys. A **729**, 835 (2003); M. Huang and I.A. Shovkovy, Phys. Rev. D **70**, 051501 (2004); M. Huang and I.A. Shovkovy, Phys. Rev. D **70**, 094030 (2004).

[72] M. Alford, C. Kouvaris and K. Rajagopal, Phys. Rev. Lett. **92**, 222001 (2004); M. Alford, C. Kouvaris and K. Rajagopal, Phys. Rev. D **71**, 054009 (2005).

[73] I. Giannakis and H. C. Ren, Phys. Lett. B **611**, 137 (2005); I. Giannakis and H. C. Ren, Nucl. Phys. B **723**, 255 (2005); I. Giannakis, D. f. Hou and H. C. Ren, Phys. Lett. B **631**, 16 (2005); R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. **76**, 263 (2004); R. Casalbuoni, M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri and R. Gatto, Phys. Rev. D **70**, 054004 (2004); R. Casalbuoni, R. Gatto, M. Mannarelli, G. Nardulli and M. Ruggieri, Phys. Lett. B **600**, 48 (2004).

[74] E. V. Gorbar, M. Hashimoto and V. A. Miransky, Phys. Lett. B **632**, 305 (2006); M. Hashimoto, Phys. Lett. B **642**, 93 (2006).

[75] D. K. Hong, [hep-ph/0506097]. Mei Huang, Int. J. Mod. Phys. A **21**, 910 (2006); Mei Huang, Phys. Rev. D **73**, 045007 (2006); A. Kryjevski, Phys. Rev. D **77**, 014018 (2008); T. Schafer, Phys. Rev. Lett. **96**, 012305 (2006); A. Gerhold and T. Schafer, Phys. Rev. D **73**, 125022 (2006).

[76] I. Giannakis, D. Hou, M. Huang and H. c. Ren, Phys. Rev. D **75**, 011501 (2007); I. Giannakis, D. Hou, M. Huang and H. c. Ren, Phys. Rev. D **75**, 014015 (2007).