Clinical Study

Oral Hyaluronic Acid Supplementation for the Treatment of Dry Eye Disease: A Pilot Study

Yeseul Kim,1 Chan Hee Moon2, Bo-Yeon Kim,3 and Sun Young Jang∗1

1Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
2Eunpyeong Hopeful Eye Clinic, Seoul, Republic of Korea
3Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea

Correspondence should be addressed to Sun Young Jang; ysyat01@naver.com

Received 23 May 2019; Accepted 19 August 2019; Published 25 September 2019

Academic Editor: Miguel Rechichi

Copyright © 2019 Yeseul Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To evaluate the clinical efficacy of oral hyaluronic acid (HA) in patients with dry eye disease (DED). Study Design. Prospective randomized controlled trial. Methods. This trial enrolled 54 subjects and they were randomized into the study or control group. The inclusion criteria were as follows: (1) >18 years of age; (2) distance best-corrected visual acuity ≥ 20/40 Snellen equivalent in each eye; (3) IOP ≤ 21 mmHg in both eyes; (4) ocular surface disease index (OSDI) score of ≥ 18 and <65; (5) <10 seconds of tear break up time (TBUT); (6) >5 corneal spots of corneal fluorescein staining (CFS); and (7) ≤ 10 mm/5 min of the Schirmer test. All subjects were treated with a topical HA, and the study group was supplemented with oral HA. OSDI, TBUT, CFS, and the Schirmer test were evaluated for ocular surface parameters. Results. 24 patients were assigned in the study group. Significant improvement of OSDI, TBUT, and CFS was observed at 1 month and 3 months after oral HA administration in the study group. At baseline and follow-up at 1 and 3 months, OSDI scores were 61.8 ± 16.2, 47.3 ± 11.6, and 42.3 ± 9.1, respectively (P < 0.001). TBUT was improved after treatment for 1 month and 3 months (4.2 ± 1.1; P = 0.005 and 4.7 ± 1.1; P < 0.012). There were also statistically significant improvements in the CFS (1.8 ± 1.0, 0.9 ± 0.7; P < 0.001) at baseline compared with those at 1 month. Conclusions. A combined supplement of both oral and topical HA more efficiently improves corneal epithelial wound healing and related symptoms than topical HA alone, in DED.

1. Introduction

Dry eye disease (DED) is a common chronic ocular surface disease which is characterized by a loss of tear film homeostasis. It has multifactorial causes including tear film instability, hyperosmolarity, inflammation, and neurosensory abnormalities and results in ocular discomfort and visual impairment [1].

The treatment of DED is generally initiated with an instillation of lubricant eye drops or viscosity-enhancing agents [2]. Other major treatment options include anti-inflammatory therapy, tear conservation approach, and the treatment of lid abnormality. Dietary modification such as essential fatty acid, [3, 4] lactoferrin [5], and antioxidant supplement [6] is a minor treatment option; however, there is growing evidence that diet and nutritional supplementation play a role in DED.

Hyaluronic acid (HA) is a macromolecular mucopolysaccharide that is widely distributed throughout connective, epithelial, and neural tissues [7]. HA has been used in tear supplements to enhance lubrication as a topical agent, and it has been proven to promote corneal epithelial wound healing [8, 9]. However, HA can also be supplemented in oral route. Recently, HA has been taken orally to reduce joint pain in osteoarthritic knees and increase hydration for dry skin. Studies have proven that oral HA has anti-inflammatory [10] and skin moisturizing properties [11]. However, to the best of our knowledge, there is no trial of oral HA supplementation for the treatment of DED. In this study, we assumed that anti-inflammatory and moisturizing
effects of oral HA also might work in DED. We investigated
the effect of oral HA supplementation for the treatment of
DED.

2. Materials and Methods

2.1. Subjects. This study was a single-center, nonblinded
prospective randomized controlled trial. This study was
approved by the Institutional Review Board of Soon-
chunhyang University Bucheon Hospital and conformed to
the tenets of the Declaration of Helsinki. Informed consent
was obtained from all patients and normal control subjects.

A total of 54 consecutive subjects were enrolled from the
outpatient department from March 2016 to July 2016. The
eyes of the subjects were randomized into the study or
control group. The inclusion criteria for this study were as
follows: (1) ≥18 years of age; (2) distance best-corrected
visual acuity ≥20/40 Snellen equivalent in each eye; (3)
IOP ≤21 mmHg in both eyes; (4) ocular surface disease
index (OSDI) score of ≥18 and <65; (5) <10 seconds of tear
break up time (TBUT); [12] (6) >5 corneal spots of corneal
fluorescein staining (CFS); [13] (7) ≤10 mm/5 min of the
Schirmer test. Patients with any other ocular diseases except
DED or ocular injury were excluded from the study. Patients
having ocular surgery or on topical lubricants during the
previous 6 months were also excluded.

2.2. Topical Lubricant and Oral HA Supplementation. A
topical lubricant of 0.15% HA ophthalmic suspension (New
Hyaluni ophthalmic solution 0.15%, Taejoon, Ltd., Seoul,
Korea) was allowed to both study and control group in each
eye 5-6 times daily.

Oral HA 240 mg (Innerb, Suheung, Ltd., Seoul, Korea)
was assigned to both study and control group in each eye
once daily. Sodium hyaluronate was used.

2.3. Ocular Surface Parameters. Symptom assessment was
performed using OSDI (Allergan, Irvine, Inc., Irvine, CA)
[15], which evaluates symptoms of ocular discomfort, effects
on visual function, and the impact of environmental triggers.

TBUT was measured using a fluorescein strip (fluores-
scence paper, Haag-Streit AG, Köniz, Switzerland). The
fluorescein strip was moistened with one drop of saline and
inserted into the lateral inferior fornix. The patient was asked
to blink several times. Then the tear film was observed under
the cobalt blue illumination of the slit lamp. The time be-
tween the last blink and the first dry spot on the cornea was
taken to be the TBUT. The average TBUT of 3 repeated
measurements was recorded for each eye.

Following the TBUT measurement, CFS was evaluated.
Corneal staining was examined at the slit lamp using cobalt
blue illumination and a Wratten 12 yellow barrier filter. The
degree of corneal staining was assessed with the 5-point
Oxford scale [16].

The Schirmer test was performed, without topical an-
esthesia, as a measure of basal tear production. A Schirmer
strip (Colorbar, Inc., Eagle Vision, Memphis, TN) was
folded from the edge and placed in the lateral third of the
lower lid. The patients were instructed to close their eyes.
The strip wetting was recorded after 5 minutes in millime-
ters, and a reading of less than 10 mm was considered
abnormal.

2.4. Outcome Measures. OSDI, TBUT, CFS, and the
Schirmer test (without anesthesia) were performed at
baseline; then OSDI, TBUT, and CFS were undergone at 1
and 3 months after intervention. Primary outcomes were a
mean change of OSDI, TBUT, and CFS between baseline and
1 month after treatment. Secondary outcomes were the
mean change from 1 month to 3 months after treatment.
Both eyes were evaluated, but only one eye with the worst
score at the initial enrollment was included in the analyses.

2.5. Statistical Analysis. A Mann–Whitney U test was
conducted to compare the measurements between the study
and control group. The Wilcoxon signed-rank test was
performed to compare changes in ocular surface parameters
at baseline and 1 and 3 months after treatment.

SPSS 15.0 statistical software for Windows (SPSS Inc.,
Chicago, IL) was used for all statistical analyses. A two-sided
test with a value of $P < 0.05$ was considered to be statistically
significant.

3. Results

Twenty-four patients (6 males and 18 females) and thirty
patients (8 males and 22 females) were assigned in the study
and control groups, respectively. The mean patient age was
48.6 ± 13.0 in the study group and 53.29 ± 10.8 in the control
group ($P = 0.073$). The average of the Schirmer test, TBUT,
CFS, and OSDI score at baseline are shown in Table 1. The
parameters were not different significantly between the
study and control group.

3.1. Primary Outcome. One month after treatment, OSDI
was significantly improved in both study group (1 month;
47.3 ± 11.6, $P < 0.001$) and control group (1 month;
53.1 ± 11.4, $P < 0.007$), (Figure 1). However, TBUT was
significantly improved in the study group (1 month; 4.2 ± 1.1,
$P = 0.005$) but not in the control group (1 month; 4.4 ± 1.4,
$P = 0.501$), (Figure 2). CFS was also significantly improved
in the study group (1 month; 0.8 ± 0.7, $P < 0.001$) but not in
the control group (1 month; 1.3 ± 0.6, $P = 0.160$) (Figure 3).
The between-group difference in CFS at 1 month was sig-
nificant ($P < 0.001$), but the differences in TBUT and OSDI
were not significant ($P = 0.831$ and $P = 0.135$, respectively).

3.2. Secondary Outcome. Three months after treatment,
OSDI was significantly improved when compared to one
month after treatment in the study group (3 months;
42.3 ± 9.1, $P < 0.001$) but not in the control group (3 months;
TBUT was also significantly improved in the study group (3 months: 4.7 ± 1.1, \(P < 0.012 \)) but not in the control group (3 months: 4.9 ± 1.9, \(P = 0.486 \)) (Figure 2). However, CFS was also significantly improved in both study group (3 months: 0.3 ± 0.4, \(P < 0.001 \)) and control group (3 months: 0.8 ± 0.5, \(P < 0.001 \)) (Figure 3). The between-group differences in CFS and OSDI at 3 months were significant (\(P < 0.001 \) and \(P = 0.046 \), respectively) but the difference in TBUT was not significant (\(P = 0.166 \)).

4. Discussion

In this study, we investigated the effect of oral HA supplementation for the treatment of DED. Combined oral and topical HA treated group showed significant improvement of CFS at 1 and 3 months. Otherwise, topical HA alone treated group showed significant improvement of CFS only at 3 months. The difference of CFS at 3 months between two groups was significant (\(P < 0.001 \), via the Mann–Whitney \(U \) test). In addition, OSDI was also significantly improved continually at 1 and 3 months after treatment in oral and
topical HA supplemented group. However, topical HA alone treated group showed significant OSDI improvement at 1 month but not at 3 months. The difference of OSDI at 3 months between groups was also significant (P = 0.046, via the Mann–Whitney U test). These results suggest that the combined supplement of both oral and topical HA more efficiently improves corneal epithelial wound healing and related symptoms than topical HA alone, in DED.

HA is a high molecular weight polysaccharide composed of repeating polymeric disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine. Orally administered HA is degraded by intestinal bacteria and absorbed through the intestinal tract. Though there are no digestive enzymes to degrade HA, hyaluronidase-producing bacteria including Staphylococcus aureus and Clostridium perfringens reside in the human intestine as a normal flora [17–19]. Balogh et al. [20] investigated the absorption of oral HA using radioactively labeled material in animal models and presented that approximately 90% of ingested HA was absorbed into and used by the body. In that study, they also showed that orally administered high molecular weight HA was also transferred into tissues without depolymerization through lymphatic uptake. Osami et al. [21] evaluated the effect of oral consumption of HA for dry skin using a skin surface analyser and reported that moisture content at a lower part of the eye significantly improved from 3 weeks to 6 weeks of ingestion compared to the placebo control group. This result implies that ingested HA was distributed at the ocular area.

Oral administration of high molecular weight HA modulates Th-1-associated inflammation [10]. The presence of CD4+ T cells at the ocular surface in DED and the improvement of surface inflammation with topical cyclosporine, which is a T-cell activity lowering agent, proposed a role for adaptive immunity in DED [22]. There is a growing body of evidence supporting the pathogenicity of CD4+ T cells in DED [23, 24]. Asari et al. [10] orally administered high molecular weight HA to MRL-lpr/lpr mice, a Th-1-type autoimmune disease model. In that study, cytokine array analysis showed the enhancement of interleukin-10 production and anti-inflammatory cytokine. DNA array analysis showed the upregulation of suppressor of cytokine signaling 3 (SOCS3) expression and the downregulation of pleiotrophin expression. These results suggest that the oral administration of high molecular HA may modulate Th-1-type autoimmune disease and inflammation.

HA promotes corneal epithelial wound healing. HA as well as its degradation products are capable of activating specific intracellular responses including epithelial cell proliferation, cell apoptosis, and neovascularization [25]. It is widely accepted that one of the key mediators for leading HA-associated cell activation is CD44. HA is a ligand for CD44 which is a multifunctional cell surface adhesion receptor. CD44 is ubiquitously expressed throughout the body [26] and also found on human corneas [27]. Studies have shown that CD44 upregulation associated with a proliferation of epithelial cells and migration [28, 29].

The present findings, however, should be interpreted taking into account the limitations of the study, particularly the small sample size and pilot characteristics of the trial. To ensure the results, further investigation with a larger sample size including double-blind placebo controlled group and experiments to clarify the underlying mechanisms are needed.

In conclusion, the concomitant supplement of both oral and topical HA more efficiently improves corneal epithelial wound healing and provides symptomatic relief than the topical administration of HA alone in DED.

Data Availability
Data supporting this research article are available from the corresponding author upon request.

Disclosure
The sponsor or the funding organisation had no role in the design or conduct of this research.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This study was supported by a grant from the National Research Foundation of Korea (NRF-2017R1A1A05001051) and the Soonchunhyang University Research Fund.

References

[1] J. P. Craig, K. K. Nichols, E. K. Akpek et al., “TFOS DEWS II definition and classification report,” The Ocular Surface, vol. 15, no. 3, pp. 276–283, 2017.

[2] L. Jones, L. E. Downie, D. Korb et al., “TFOS DEWS II management and therapy report,” The Ocular Surface, vol. 15, no. 3, pp. 575–628, 2017.

[3] A. T. Epitropoulos, E. D. Donnenfeld, Z. A. Shah et al., “Effect of oral re-esterified omega-3 nutritional supplementation on dry eyes,” Cornea, vol. 35, no. 9, pp. 1185–1191, 2016.

[4] L. A. Deinema, A. J. Vingrys, C. Y. Wong, D. C. Jackson, H. R. Chinnery, and L. E. Downie, “A randomized, double-masked, placebo-controlled clinical trial of two forms of omega-3 supplements for treating dry eye disease,” Ophthalmology, vol. 124, no. 1, pp. 43–52, 2017.

[5] J. Devendra and S. Singh, “Effect of oral lactoferrin on cataract surgery induced dry eye: a randomised controlled trial,” Journal of Clinical and Diagnostic Research, vol. 9, pp. NC06–NC09, 2015.

[6] K. Blades, S. Patel, and K. E. Aidoo, “Oral antioxidant therapy for marginal dry eye,” European Journal of Clinical Nutrition, vol. 55, no. 7, pp. 589–597, 2001.

[7] T. C. Laurent and J. R. Fraser, “Hyaluronan,” The FASEB Journal, vol. 6, no. 7, pp. 2397–2404, 1992.

[8] W.-T. Ho, T.-H. Chiang, S.-W. Chang, Y.-H. Chen, F.-R. Hu, and L.-J. Wang, “Enhanced corneal wound healing with hyaluronic acid and high-potassium artificial tears,” Clinical and Experimental Optometry, vol. 96, no. 6, pp. 536–541, 2013.

[9] G. Camillieri, C. Bucolo, S. Rossi, and F. Drago, “Hyaluronan-induced stimulation of corneal wound healing is a pure pharmacological effect,” Journal of Ocular Pharmacology and Therapeutics, vol. 20, no. 6, pp. 548–553, 2004.
[10] A. Asari, T. Kanemitsu, and H. Kurihara, “Oral administration of high molecular weight hyaluronan (900 kDa) controls immune system via Toll-like receptor 4 in the intestinal epithelium,” *Journal of Biological Chemistry*, vol. 285, no. 32, pp. 24751–24758, 2010.

[11] R. M. Greco, J. A. Iocono, and H. P. Ehrlich, “Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix,” *Journal of Cellular Physiolology*, vol. 177, no. 3, pp. 465–473, 1998.

[12] M. A. Lemp and J. R. Hamill Jr., “Factors affecting tear film breakup in normal eyes,” *Archives of Ophthalmology*, vol. 89, no. 2, pp. 103–105, 1973.

[13] J. P. Whitcher, C. H. Shiboski, S. C. Shiboski et al., “A simplified quantitative method for assessing keratoconjunctivitis sicca from the sjögren’s syndrome international registry,” *American Journal of Ophthalmology*, vol. 149, no. 3, pp. 405–415, 2010.

[14] R. Stern, A. Asari, and K. Sugahara, “Hyaluronan fragments: an information-rich system,” *European Journal of Cell Biology*, vol. 85, no. 8, pp. 699–715, 2006.

[15] R. M. Schiffman, M. D. Christianson, G. Jacobsen, J. D. Hirsch, and B. L. Reis, “Reliability and validity of the ocular surface disease index,” *Archives of Ophthalmology*, vol. 118, no. 5, pp. 615–621, 2000.

[16] A. J. Bron, V. E. Evans, and J. A. Smith, “Grading of corneal and conjunctival staining in the context of other dry eye tests,” *Cornea*, vol. 22, no. 7, pp. 640–650, 2003.

[17] R. C. Jones, J. Deck, R. D. Edmondson, and M. E. Hart, “Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry,” *Journal of Bacteriology*, vol. 190, no. 15, pp. 5265–5278, 2008.

[18] T. Shimizu, K. Ohtani, H. Hirakawa et al., “Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater,” *Proceedings of the National Academy of Sciences*, vol. 99, no. 2, pp. 996–1001, 2002.

[19] M. Kimura, T. Maeshima, T. Kubota, H. Kurihara, Y. Masuda, and Y. Nomura, “Absorption of orally administered hyaluronan,” *Journal of Medicinal Food*, vol. 19, no. 12, pp. 1172–1179, 2016.

[20] L. Balogh, A. Polyak, D. Mathe et al., “Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs,” *Journal of Agricultural and Food Chemistry*, vol. 56, no. 22, pp. 10582–10593, 2008.

[21] K. Osami, O. Wataru, S. Wakako, Y. Kazuya, and T. Takeo, “Clinical effects of hyaluronic acid diet for dry skin--objective evaluation with microscopic skin surface analyzer,” *Journal of New Remedies & Clinics*, vol. 50, pp. 548–560, 2001.

[22] K. S. Kunert, A. S. Tisdale, M. E. Stern, J. A. Smith, and I. K. Gipson, “Analysis of topical cyclosporine treatment of patients with dry eye syndrome: effect on conjunctival lymphocytes,” *Archives of Ophthalmology*, vol. 118, no. 11, pp. 1489–1496, 2000.

[23] S. K. Chauhan, J. El Annan, T. Ecoffier et al., “Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression,” *The Journal of Immunology*, vol. 182, no. 3, pp. 1247–1252, 2009.

[24] J. Y. Niederkorn, M. E. Stern, S. C. Pfugfelder et al., “Desiccating stress induces T cell-mediated Sjogren’s syndrome-like lacrimal keratoconjunctivitis,” *The Journal of Immunology*, vol. 176, no. 7, pp. 3950–3957, 2006.

[25] J. Zhong, Y. Deng, B. Tian et al., “Hyaluronate acid-dependent protection and enhanced corneal wound healing against oxidative damage in corneal epithelial cells,” *Journal of Ophthalmology*, vol. 2016, Article ID 6538051, 10 pages, 2016.
