Curvularia lunata as new causal pathogen of tomato early blight disease in Egypt

Heba-Alla S. AbdElfatah · Nashwa M. A. Sallam · Mohamed S. Mohamed · Hadeel M. M. Khalil Bagy

Received: 18 December 2020 / Accepted: 25 February 2021 / Published online: 9 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Tomato plants displaying early blight symptoms were collected from different localities in the provinces of Assiut and Sohag, Egypt. The causal pathogens were isolated on potato dextrose agar plates. Pathogenicity tests with 48 isolates were carried out under greenhouse conditions on tomato cultivar (CV 844). All tested isolates caused symptoms of early blight disease with different degrees. The highest disease severity on tomato plants was found after inoculation with isolate No. 6 followed by isolates No. 20 and No. 31. The most pathogenic isolates were identified by sequence analysis using ITS1 and ITS4 primers. The analysis of the amplified sequences from fungal isolates No. 6, 20 and 31 displayed 99–100% nucleotide identity with Alternaria solani, Curvularia lunata and A. alternata, respectively. To our knowledge, this is the first report of Curvularia lunata as one of the causal pathogens of early blight disease of tomato plants in Egypt.

Keywords Early blight · Alternaria solani · Curvularia lunata · A. alternata · Molecular identification (ITS)

Introduction
Tomato (Solanum lycopersicum L.) is an important horticultural crop and grown worldwide. It is the world’s second most consumed vegetable crop after potato [1]. In 2008, Egypt ranked fifth in the world in the production of tomato [2]. The cultivated tomato area in Egypt in 2018 was approximately 175 Thousand hectares, producing about 6.8 Mill. tons of tomatoes [3]. Early blight (EB) is a destructive fungal disease of tomato and potato plants [1, 4]. As the plants get older, the symptoms of EB disease first develop on the lower leaves. They appear as small, dark, necrotic lesions which typically have target-like concentric circles and are often surrounded by a yellowing zone. The pathogen releases enzymes that degrade the host cell wall, and toxins that destroy the host cells, thereby making nutrients accessible to the pathogen [5]. Under favorable conditions, the disease spreads over all parts of the plant (leaves, stems, branches and fruits), leading to detaching of leaves, drying of branches and premature fruit drop. The resulting fruit yield losses often amount to 50–86% [6–8].

For the development of an effective disease management strategy it is essential to understand the pathogen population. Therefore, efficient and conclusive identification of the inciting pathogens is important [4, 9]. The previously employed classical methods (mycelial growth rates, colony morphology, microscopic features) to identify fungal species are not as specific as the genotyping methods [10]. Many of the modern identification methods are based on molecular genetic relationships among fungal groups [11]. Molecular techniques are effective instruments for speedy detection of fungal species [12]. Characterization based on sequence analysis of genes of the internal transcribed spacer regions (ITS) of the rDNA is a useful tool to identify and characterize fungal isolates as presumed new species [13–15]. It has generally been found beneficial for research at species level and within species [15, 16].

The objective of the present study was to characterize the causal pathogens of tomato early blight disease in Upper Egypt (Provinces Assiut and Sohag). For this purpose, candidate strains were isolated from diseased plants and screened in pathogenicity tests. The most pathogenic isolates were then identified by PCR with ITS primers and sequencing of the PCR products.
Materials and methods

Isolation of pathogens

Naturally diseased early blight tomato plants were obtained from open fields in various localities in Assiut and Sohag. Diseased leaves were cut into small pieces, put in 0.5% sodium hypochlorite for 2 min and then rinsed 3 times in sterilized distilled water for 2 min. to eliminate residues of the disinfectant. The leaf parts were placed on potato dextrose agar (PDA) in 9 cm Petri plates, and the plates were incubated at 27 ± 1 °C for 4 days. After the incubation period, tips of outgrowing hyphae were singly picked from the lesions and transferred to PDA plates. The plates were incubated at 27 ± 1 °C for 15 days [4]. Isolates were held at 4 °C on a PDA medium until used.

Pathogenicity test

Pathogenicity tests were carried out under greenhouse conditions at the Department of Plant Pathology, Faculty of Agriculture, Assiut University. Thirty day-old tomato seedlings (cv 844) were replanted in sterilized pots (30 cm diameter) filled with autoclaved sandy clay soil (3 kg/pot; two seedlings/pot), and 3 g fertilizer NPK 12:4:6 were added to each pot. The pots were kept at 30 ± 5 °C with 68–80% relative humidity and watered whenever needed [4]. Altogether, 48 isolates from diseased tomato leaves were employed in the pathogenicity test. To sporulating cultures on PDA, obtained after incubation at 27 ± 1 °C as described above, distilled water was added at 10 ml per plate, and the cultures were gently rubbed with a sterile needle. The resulting spore suspensions were adjusted to 4 × 10^6 CFU/ml and sprayed on 30-day old tomato plants using an atomizer. Control plants were sprayed with water [17]. The plants were then covered for 48 h with polythene bags. Each treatment had three replicates, each with three pots. Thirty days after inoculation the disease severity was rated numerically using a 0–4 scale [7, 9], with 0 = leaves without any spot, 1 = spots occupying < 25%, 2 = 26–50%, 3 = 51–75%, and 4 = 76–100% of the leaf area. The formula was then modified as follows: Disease severity (%) = Σ (n × r)/NR × 100, where n = number of infected leaves on the plant, r = numerical rate of infected leaves, N = total number of leaves on the plant and R = maximum numeric rate.

In order to fulfill Koch’s postulates, the pathogens were re-isolated from tomato plants showing the typical symptoms of early blight and compared by microscopy to the material used for inoculation.

Molecular characterization of pathogenic isolates

The three fungal isolates causing the highest disease severity of early blight disease were identified using molecular methods (ITS-rDNA). The isolates were cultured for 7 days at 27 °C on Czapek’s yeast extract agar with 20% sucrose (CY20S) [18] and sent to Biology Research Unit, Assiut University for DNA extraction using the Patho gene-spin™ DNA/RNA extraction kit (Intron Biotechnology, Inc., South Korea). For polymerase chain reaction (PCR) and gene sequencing, extracted DNA was sent to SolGent Co., Ltd., Daejeon, South Korea. The PCR was conducted using two universal fungal primers ITS1 (forward) and ITS4 (reverse) which were integrated in the reaction mixture. Primers are composed according to the following, ITS1 (5′-TCC GTA GGT GAA CCT GCG G-3′) and ITS4 (5′-TCC GGT TAT TGA TAT GC-3′) [11]. Using a size nucleotide marker (100 base pairs), the purified PCR products were reconfirmed by electrophoreses on 1% agarose gel. The bands were eluted and sequenced with the incorporation of dideoxynucleotides (dd NTPs). Each sample was sequenced using ITS1 and ITS4 primers in the sense and antisense directions. DNA sequences of the three isolates were assembled using the DNA STAR computer package (version 5.05). Assembled sequences were aligned with those downloaded from GenBank using MAFFT [19]. Alignment gaps and parsimony uninformative characters were treated by BMGE [20]. Maximum-likelihood (ML) and Maximum parsimony (MP) phylogenetic analyses were performed using PhyML 3.0 [21]. The robustness of the most parsimonious trees was evaluated by 1000 bootstrap replications [22]. The best optimal model of nucleotide substitution for the ML analyses was determined using Smart Model Selection (SMS) version 1.8.1 [23]. The phylogenetic tree was visualized using Fig Tree version 1.4.3 [24].

Statistical analysis

Statistical variance (ANOVA) of data was performed using MSTAT-C program version 2.10 (1991). According to the procedures described by Gomez et al. [25] means were compared by Duncan’s multiple range tests and statistical significance was determined at 5% level.

Results

Pathogenicity test

With 48 fungal isolates, pathogenicity test were carried out under greenhouse conditions (Table 1). All tested isolates
were pathogenic and caused symptoms of early blight disease on tomato plants compared with control, although with different degrees. About 75% of isolates were either highly or very highly pathogenic, whereas the remaining isolates were only low or medium in pathogenicity (Table 2). The highly pathogenic isolates constituted the largest group. Isolates No. 6, 20 and 31 caused the highest disease severity (88–90%). The symptoms of early blight disease were large spots (dark necrotic lesions, often surrounded by a yellowing zone) which spread over most parts of the plant (Fig. 1). The spots coalesced and enlarged over time. Control plants didn’t show any symptoms of EB.

Identification of pathogenic isolates using ITS

Isolates No. 6, 20 and 31, that among the 48 isolates tested had shown the strongest pathogenicity on tomato plants, were selected for molecular identification using ITS-rDNA sequencing. The resulting sequences were compared using the BLAST program to those of the NCBI site. A 556 bp fragment from isolate No. 6 (synonym: strain AUMC 14485) showed 99% sequence similarity with four reference strains of *Alternaria solani*. Based on this, the isolate was identified as *A. solani* (Fig. 2). The ITS-rDNA sequence of *A. solani* strain AUMC 14485 was deposited in the GenBank under the accession number MT444991. Isolate No. 31 (synonym: strain AUMC 14486) was identified as *Alternaria alternata*, as sequencing of a 545 bp fragment from this isolate revealed 100% identity with three reference strains of *A. alternata*. Based on this, the isolate was identified as *A. solani* (Fig. 2). The ITS-rDNA sequence of *A. alternata* strain AUMC 14486 was deposited in the GenBank nucleotide sequence database under accession number MT777510. The sequencing data of a 562 bp fragment from isolate No. 20 (synonym: strain AUMC 14229) clustered together (100% identity) with three reference strains of *Curvularia lunata* (Fig. 2). The isolate was thus named as *C. lunata* AUMC.
14229 and registered in GenBank under the accession number MT444990 (Fig. 3).

Discussion

The objective of this study was to obtain information on the fungal pathogens causing early blight of tomato in Upper Egypt. Among the isolates studied, a large variability of the pathogenicity was observed. However, most isolates were grouped as highly or very highly pathogenic. In studies with different isolates of Alternaria, Ramezani et al. [26] also observed that all isolates obtained from tomato early blight lesions were pathogenic, with substantial variations in pathogenicity levels between the isolates. Our observations on the disease symptoms incited by inoculation with the pathogenic strains are in agreement with the literature, both regarding shape and color as well as their first appearance on the lower leaves and spreading with increasing growth of plants [27]. A. solani and A. alternata [1, 4] as well as a number of other species of Alternaria [5, 28] are well known as causal pathogens of early blight of tomato. Curvularia spicifera has been described as a pathogen causing leaf spot of tomato in India [29]. Curvularia lunata was reported to cause fruit rot of tomato [30], but little is known about C. lunata as causal pathogen of tomato EB. We are only aware of a single report from Pakistan [31] describing the isolation of C. lunata var. aeria from tomato leaves with EB.

According to the Index Fungorum [32] C. lunata var. aeria is synonym with C. lunata.

To summarize, fungal isolates from diseased tomato plants from Assiut and Sohag (Upper Egypt) were tested for ability to cause tomato EB. Using PCR with ITS primers and sequencing of the PCR products, the three most pathogenic

![Fig. 1 Symptoms of early blight disease on tomato leaves caused by Alternaria solani (A.S.), Curvularia lunata (C.L.) and Alternaria alternata (A.a.). Healthy plants (control) haven't any symptoms of the disease](image)

![Fig. 2 Maximum likelihood phylogenetic tree based ITS sequences and bootstrap support values > 60 (BS) are given at the nodes (BS). ITS sequences of rDNA of the isolated fungal strains (No. 6 and 31) in the present study were Alternaria solani (AUMC 14485) and Alternaria alternata (AUMC 14486) resp. which were aligned with closely related sequences accessed from the GenBank. The marker reflects the relative phylogenetic distance measurement](image)
of these isolates were identified as \textit{A. solani}, \textit{A. alternata} and \textit{C. solani}, respectively. While species of \textit{Alternaria} have been reported before as EB pathogens in Egypt \cite{4}, this is the first report for \textit{C. lunata} as causal pathogen EB of tomato in Egypt.

Acknowledgements The authors wish to thank Dr. Ameer E. Elfarash, Genetics Dept., Fac. Agric., Assiut Univ., Assiut, Egypt and Prof. Dr. Deng X J Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China for discussing the results of this study. This work was supported and funded by Assiut University.

Author contributions SNMA, and MSM suggested the idea of the work and contributed to data curation and their validation as well as writing original draft. AHAS and BHMK contributed to the formal analysis of the data SNMA. AHAS and BHMK contributed to the reviewing and editing the manuscript. All authors reviewed and approved the final version of the manuscript.

Declarations

Conflict of interest The authors declare that they do not have any actual or potential conflict of interest.

Ethical responsibility Our manuscript is original research and it is not submitted to full or in parts to other journal for publication.

Informed consent All authors have reviewed the manuscript and approved the final version of manuscript before submission.

References

1. Adhikari P, Oh Y, Panthee DR (2017) Current status of early blight resistance in tomato. An update. Int J Mol Sci 18:1–12. https://doi.org/10.3390/ijms18102019
2. Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186. ISBN: 0-8.500-42-1
3. Food and Agriculture Organization of United Nation (FAO). FAOSTAT, Crops (2018). http://fenix.fao.org/faostat/beta/en/#data/QC
4. Sallam NMA, Abo-Elyour KAM (2012) Blight disease of tomato plants under greenhouse and field conditions. Plant Prot Sci 48(2):75–80. https://doi.org/10.17221/14/2011-PPS
5. Rotem J (1994) The genus Alternaria: biology, epidemiology, and pathogenicity, 1st edn. APS St. Paul MN, pp 48–203. ISBN: 0890541523
6. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting Rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496. https://doi.org/10.1007/s00284-009-9464-1
7. Sallam NMA (2011) Control of tomato early blight disease by certain aqueous plant extracts. Plant Pathol J 10(4):187–191. https://doi.org/10.3923/ppj.2011.187.191
8. Yadav OP, Dabbas MR, Gaur LB (2014) Screening of tomato advanced lines, genotypes against \textit{Alternaria solani}. Plant Arch 14:553–555
9. Zheng HH, Zhao J, Wang TY, Wu XH (2015) Characterization of \textit{Alternaria} species associated with potato foliar diseases in China. Plant Pathol 64:425–433. https://doi.org/10.1111/ppa.12274
10. Shahid M, Singh A, Srivastava M, Srivastava DK (2014) Molecular characterization of \textit{Trichoderma viride} isolated from rhizospheric soils of Uttar Pradesh based on rDNA markers and analysis of their PCR-ISSR profiles. Mol Biomark Diagn 5:2. https://doi.org/10.4172/2155-9929.1000170
11. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
12. Chaerani R, Smulders M, Linden C, Vosman B, Stam P, Voorrips R (2007) QTL identification for early blight resistance (\textit{Alternaria solani}) in a Solanumlycopersicum × S. arcuuman cross. TAG Theor Appl Genet 114:439−450. https://doi.org/10.1007/s00122-006-0442-8
13. Druzhinina I, Kopchinskiy A, Komoń M (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828. https://doi.org/10.1016/j.ftgb.2005.06.007

14. Kubicek C, Komon-Zelazowska M, Druzhinina I (2008) Fungal genus Hypocrea/Trichoderma, from barcodes to biodiversity. J Zheij Univ Sci B 9:753–763. https://doi.org/10.1631/jzus.B086015

15. Sallam NMA, Eraky AMI, Sallam A (2019) Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Mol Biol Rep 46:4463–4470. https://doi.org/10.1007/s11033-019-04901-9

16. Shahid M, Srivastava M, Sharma A, Singh A, Pandey S, Kumar V, Pathak N, Rastogi S (2013) Molecular characterization of Trichoderma longibrachiatum 21PP isolated from rhizospheric soil based on universal ITS primers. Afr J Microbiol Res 7:4902–4906. https://doi.org/10.5897/AJMR2013.5761

17. Kumar V, Biswas SK, Chowdary VT, Kishan L, Naresh P (2017) Induced synthesis of defense enzymes during induced resistance against early blight of potato using plant extracts as inducer. J Sci Res Rep 16:1–11. ISSN: 2320-0227

18. Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer Science + Business media LLC, New York, p 519

19. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

20. Criscuolo A, Gribaldo S (2010) BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210. https://doi.org/10.1186/1471-2148-10-210

21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/sys010

22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

23. Lefort V, Longueville JE, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424. https://doi.org/10.1093/molbev/msx149

24. Rambaut A, Drummond A (2012) Fig Tree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree

25. Gomez KA, Gomez AA, Gomez KA (1984) Statistical procedures for agricultural research. Wiley. ISBN: 978-0-471-87092-0

26. Ramezani Y, Taheri P, Mamarabadi M (2019) Identification of Alternaria spp. associated with tomato early blight in Iran and investigating some of their virulence factors. J Plant Pathol 101:647–659. https://doi.org/10.1007/s42161-019-00259-w

27. Singh CP, Kumar R, Singh M, Rai A, Singh MC, Rai M (2011) Identification of resistant sources against early blight disease of tomato. Indian J Hortic 68(4):516–521

28. Kokaeva LY, Belosokhov AF, Dovya LY, Skolotneva ES, Elansky SN (2018) Distribution of Alternaria species on blighted potato and tomato leaves in Russia. J Plant Dis Prot 125:205–212. https://doi.org/10.1007/s41348-017-0135-3

29. Rao YH, Devi PS, Vemavarapu VV, Chowdary KR (2020) In vitro evaluation of antagonistic potential of native Trichoderma spp., botanicals and fungicides against Curvularia spicifera causing Curvularia Leaf Spot of Tomato in Manipur. Int J Curr Microbiol Appl Sci 9(10):1815–1823. https://doi.org/10.20546/ijcmas.2020.910.221

30. Fajola AO (1979) The post-harvest fruit rots of tomato (Lycopersicum esculentum) in Nigeria. Food/Nahrung 23(2):105–109. https://doi.org/10.1002/food.19790230202

31. Ifikhar S, Shahid AA, Nawaz K, Ali SW (2016) First report of Curvularia lunata var. aerea causing leaf blight on tomato in Pakistan. J Plant Pathol 98:171–185. https://doi.org/10.4454/JPP.V98I1.063

32. Index Fungorum. http://www.speciesfungorum.org/Names/SynSpecies.asp?RecordID=269889. Accessed 2 Febr 2021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.