A physicist’s approach to number partitioning

Stephan Mertens

Institut für Theoretische Physik, Otto–von–Guericke–Universität, 39106 Magdeburg, Germany

Abstract

The statistical physics approach to the number partitioning problem, a classical NP-hard problem, is both simple and rewarding. Very basic notions and methods from statistical mechanics are enough to obtain analytical results for the phase boundary that separates the “easy-to-solve” from the “hard-to-solve” phase of the NPP as well as for the probability distributions of the optimal and sub-optimal solutions. In addition, it can be shown that solving a number partitioning problem of size N to some extent corresponds to locating the minimum in an unsorted list of $O(2^N)$ numbers. Considering this correspondence it is not surprising that known heuristics for the partitioning problem are not significantly better than simple random search.

Key words: Number partitioning; Phase transition; NP-complete; Heuristic algorithms; Statistical Mechanics; Random Cost Problem

1 Introduction

Recent years have witnessed an increasing interaction among the disciplines of discrete mathematics, computer science, and statistical physics. These fields are linked by the fact that models from statistical physics can be formalized as combinatorial optimization problems and vice versa [28,30]. The connection between optimization and statistical physics has lead to practical algorithms like simulated annealing [19] and to new theoretical results, some of which can be found in this special issue.

In most cases where a statistical physics analysis of an optimization or decision problem yields significant new results, this analysis is rather complicated, technically as well as conceptionally. This complexity may easily deter computer

\footnote{http://itp.nat.uni-magdeburg.de/~mertens
e-mail: stephan.mertens@physik.uni-magdeburg.de}
science people from learning the tricks and tools, even if they value the results. To promote interdisciplinarity beyond the mutual appreciation of results, it may help to consider a physicists approach to an optimization problem, which on the one hand requires only very basic notions and methods from statistical mechanics, but on the other hand yields non trivial results. In fact there exists a problem with this nice property: the *number partitioning problem*. It is defined as follows: Given a list a_1, a_2, \ldots, a_N of positive numbers, find a partition, i.e. a subset $A \subset \{1, \ldots, N\}$ such that the partition difference

$$E(A) = \left| \sum_{i \in A} a_i - \sum_{i \notin A} a_i \right|,$$

is minimized. In the constrained partition problem, the cardinality difference between A and its complement,

$$M = |A| - (N - |A|) = 2|A| - N,$$

is fixed. A special case is the *balanced partitioning problem* with the constraint $|M| \leq 1$.

Partitioning is of both theoretical and practical importance. It is one of Garey and Johnson’s six basic NP-complete problems that lie at the heart of the theory of NP-completeness [10]. Among the many practical applications one finds multiprocessor scheduling and the minimization of VLSI circuit size and delay [4,33].

In this paper we present a statistical mechanics approach to the NPP. We start, however, with a brief discussion of some known facts about the NPP. We will learn that there is a *phase transition* in the computational complexity of the NPP, and that there are no really good heuristics for this problem. Both facts will be discussed within the framework of statistical mechanics in the following sections. Section 3 starts with an introduction into the very basic notions and methods of statistical mechanics. We formulate the NPP as a spin-glass, i.e. as a model to describe magnetic alloys, and calculate its free energy and entropy. The entropy in turn yields a simple analytic expression for the phase boundary that separates the “easy-to-solve” from the “hard-to-solve” phase in the NPP. In addition, we get an expression for the average optimum partition difference. The statistical mechanics analysis reveals another phase transition in the constrained NPP: if M exceeds a critical value, the NPP becomes overconstrained and its solution trivial. In section 4 we map the balanced and the unconstrained NPP to another physical model, the random energy model. This signifies that solving the NPP with N random numbers a_j corresponds to locating the minimum in an unsorted list of $O(2^N)$ random numbers. This correspondence provides us with an explanation of the bad performance of heuristic algorithms for the NPP and in addition allows us to derive analytical expressions for the probability distribution of the optimal and
sub-optimal costs.

2 Some facts about number partitioning

The computational complexity of the number partitioning problem depends on the type of input numbers \{a_1, a_2, \ldots, a_N\}. Consider the case that the \(a_j\)'s are positive integers bound by a constant \(A\). Then the cost \(E\) can take on at most \(NA\) different values, i.e. the size of the search space is \(O(NA)\) instead of \(O(2^N)\) and it is very easy to devise an algorithm that explores this reduced search space in time polynomial in \(NA\). Unfortunately, such an algorithm does not prove \(P = NP\) since a concise encoding of an instance requires \(O(N \log A)\) bits, and \(A\) is not bounded by any polynomial of \(\log A\). This feature of the NPP is called “pseudo polynomiality”. The NP-hardness of the NPP requires input numbers of arbitrary size or, after division by the maximal input number, of unlimited precision.

To study typical properties of the NPP, the input numbers are usually taken to be independently and identically distributed (i.i.d.) random numbers, drawn from “well behaved” distributions. Under this probabilistic assumption, the minimal partition difference \(E_1\) is a stochastic variable. For real valued input numbers (infinite precision, see above), Karmarkar, Karp, Lueker and Odlyzko [18] have proven that the median value of \(E_1\) is \(O(\sqrt{N} \cdot 2^{-N})\) for the unconstrained and \(O(N \cdot 2^{-N})\) for the balanced NPP. Lueker [23] showed recently, that the same results hold for the average value of \(E_1\). Numerical simulations [7] indicate, that the relative width of the distribution of \(E_1\), defined as

\[
 r := \sqrt{\frac{\langle E_1^2 \rangle - \langle E_1 \rangle^2}{\langle E_1 \rangle}},
\]

where \(\langle \cdot \rangle\) denotes the average over the \(a_j\)'s, tends to 1 in the limit \(N \to \infty\), for both the unconstrained and the balanced partitioning problem. This means, that the typical fluctuations of \(E_1\) are of the same size than the value itself. In section 4 we will calculate the complete probability distribution of \(E_1\) and rederive all these results.

Another surprising feature of the NPP is the poor performance of heuristic algorithms [16,32]. In section 4 we show that the bad efficiency of heuristics approaches can be understood by the observation that number partitioning is essentially equivalent to locating the minimum in an unsorted list of \(O(2^N)\) random numbers [27]. Here we will describe some of the heuristics.

The key ingredient to the most powerful partition heuristics is the differencing operation [17]: select two elements \(a_i\) and \(a_j\) and replace them by the element
Replacing a_i and a_j by $|a_i - a_j|$ is equivalent to making the decision that they will go into opposite subsets. Applying differencing operations $N - 1$ times produces in effect a partition of the set $\{a_1, \ldots, a_N\}$. The value of its partition difference is equal to the single element left in the list. Various partitions can be obtained by choosing different methods for selecting the pairs of elements to operate on. In the paired differencing method (PDM), the elements are ordered. The first $\lceil N/2 \rceil$ operations are performed on the largest two elements, the third and the fourth largest, etc. After these operations, the left-over $\lfloor N/2 \rfloor$ elements are ordered and the procedure is iterated until there is only one element left. Another example is the Karmarkar-Karp (KK) or largest differencing method [17]. Again the elements are ordered. The largest two elements are picked for differencing. The resulting set is ordered and the algorithm is iterated until there is only one element left. The time complexity of PDM and KK is $O(N \log N)$, the space-complexity is $O(N)$.

The Karmarkar-Karp differencing is the best known heuristics for the partitioning problem, but it finds an approximate solution only, far away from the true optimum. KK yields unconstrained partitions with expected difference $O(N - a \log N)$, which has to be compared to $O(\sqrt{N} \cdot 2^{-N})$ for the true optimum. Korf [21] showed, how the KK differencing can be extended to a complete anytime algorithm, i.e. an algorithm that finds better and better solutions the longer it is allowed to run, until it finally finds and proves the optimum solution: At each iteration, the KK heuristic commits to placing the two largest numbers in different subsets, by replacing them with their difference. The only other option is to place them in the same subset, replacing them by their sum. This results in a binary tree, where each node replaces the two largest remaining numbers, $a_1 \geq a_2$: the left branch replaces them by their difference, while the right branch replaces them by their sum:

$$a_1, a_2, a_3, \ldots \mapsto \begin{cases} |a_1 - a_2|, a_3, \ldots & \text{left branch} \\ a_1 + a_2, a_3, \ldots & \text{right branch} \end{cases} \quad (4)$$

Iterating both operations $N - 1$ times generates a tree with 2^{N-1} terminal nodes. The terminal nodes are single element lists, whose elements are the valid partition differences. Korf’s complete Karmarkar-Karp differencing algorithm (CKK) searches this tree depth-first and from left to right. The algorithm first returns the KK-heuristic solution, then continues to find better solutions as time allows. See Fig. (1) for the example of a tree generated by the CKK.

There are two ways to prune the tree: At any node, where the difference between the largest element in the list and the sum of all other elements is larger than the current minimum partition difference, the node's offspring can be ignored. For integer valued a_j, a partition with $E \leq 1$ is called perfect. If one reaches a terminal node with a perfect partition, the entire search can be
Fig. 1. Tree generated by the CKK algorithm on the list 8, 7, 6, 5, 4. Left branch: Replace the two largest numbers by their difference. Right branch: Replace the two largest numbers by their sum. The dashed parts of the tree are pruned by the algorithm. Thanks to the pruning rules, only 9 of 31 nodes have to be explored.

terminated since no improvement is possible. The dashed nodes in Fig. (1) are pruned by these rules.

A variant of Korf’s complete differencing method to solve the balanced NPP is called the complete balanced largest differencing method, BLDM [26]. It works very similar to the Korf-algorithm but generates only balanced partitions. To measure the performance of this algorithm as an exact solver, we count the number of nodes generated until the optimum solution has been found and proven. The result for 25-bit integers is shown in Fig. (2). Each data point represents the average of 100 random problem instances. The horizontal axes shows the number of integers to be partitioned, the vertical axes shows the number of nodes generated (left) and the fraction of instances that have a perfect partition (right). Note that we counted all nodes of the tree, not just the terminal nodes. We observe three distinct regimes: for $N < 30$, the number of nodes grows exponentially with N, for $N > 30$ it decreases with increasing N, reaching a minimum for $N \approx 130$ and starting to grow like N for larger values of N.

The region of exponential growth is characterized by the lack of perfect partitions. In this regime, the algorithm has to search the whole tree in order to find and prove the optimum partition. For $N > 30$ it finds a perfect partition and stops the search prematurely. The number of perfect partitions seems to increase with increasing N, making it easier to find one of them. This would explain the decrease of search costs. For $N \gg 30$, the KK partition already is
Fig. 2. Number of nodes generated by the complete BLDM algorithm to optimally partition random 25-bit integers. The complete BLDM algorithm is a variant of Korf’s complete differencing method, modified to solve the balanced NPP [26].

perfect: The construction of this first partition always requires \(N \) nodes \((N-1)\) internal nodes and one leaf).

Numerical simulations show that this a general scenario in the NPP. For \(i.i.d. \) random \(b \)-bit numbers \(a_j \), the solution time grows exponentially with \(N \) for \(N \lesssim b \) and polynomially for \(N \gg b \) [12,20,21]. Problems with \(N \sim b \) require the longest solution time. The transition from the “hard” to the computational “easy” phase has some features of a phase transition in physical systems. Phase transitions of this kind have been observed in numerous NP-complete problems [3,11,31], and can often be analyzed quantitatively in the framework of statistical mechanics. Compared to other problems, this analysis is surprisingly simple for the number partitioning problem [25]. This is what we will do in the next section.
3 Phase transitions

The observed transition from a computationally “hard” to an “easy” regime in the NPP can well be analysed within the framework of statistical mechanics. We start with a very brief and superficial sketch of statistical mechanics and how it can be used to study combinatorial optimization, introducing the basic quantities free energy and entropy and rewriting the NPP as a physical model system, a spin glass. Then we calculate the free energy and the entropy of the unconstrained NPP, learning some tools from the physicists toolbox like the δ-function and the Laplace method to evaluate integrals. The entropy allows us to define a precise expression for the control parameter that fixes whether the NPP is “hard” or “easy”. After that we try the same calculation for the constrained NPP, which is a bit more cumbersome. It turns out that a complete solution of the general constrained NPP requires some numerics, but the balanced NPP can be solved analytically. Again we find the control parameter and its critical value. The numerical solution of the general constrained NPP reveals the existence of another phase transition from a computational hard to computational easy phase. The control parameter for this phase transition is \(M \), the imposed cardinality difference. This phase transition is discussed in the last section.

3.1 Statistical mechanics, optimization and spin glasses

The aim of statistical mechanics is to predict the properties of systems composed of very large numbers of particles in terms of the mechanical properties of the individual particles and of the forces between them. How large is “very large”? A few gram of matter consists of about \(10^{23} \) atoms. The state of a system is specified by the position, velocity, magnetization, . . . of each of these atoms. The equations that describe the evolution of this microstate in time are known in principle, but it is completely hopeless to solve them for \(10^{23} \) particles. From everyday experience we know however, that the temperature and the pressure of a gas in a vessel do not change in time, although the microstate, i.e. the positions and velocities of all the gas atoms, keeps changing all the time. Hence the macroscopic properties of a system are not sensitive to its particular microscopic state. This physical variant of the law of large numbers constitutes the starting point of statistical mechanics: Instead of determining the exact value of a macroscopic quantity in a single system, its average value is computed, taken over a suitable ensemble of similarly prepared systems. The ensemble average value is usually much easier to compute than the exact value. Note that this works because of the large number \(N \) of particles. The results of statistical mechanics are valid only in the \(N \rightarrow \infty \), the so called thermodynamic limit. The use of a capital letter \(N \) shall remind
Consider a system with possible microstates \(s \in \mathcal{S} \). For a gas, \(s \) contains the positions and velocities of all atoms. If the system is kept at a temperature \(T \), according to statistical mechanics macroscopic quantities (like the pressure) can be calculated as averages over the canonical ensemble, in which each microstate has a probability

\[
p(s) = \frac{1}{Z} e^{-H(s)/T}.
\]

(5)

\(H(s) \) is termed the Hamiltonian of the system. It is a real valued function that yields the energy of the microstate \(s \). The normalization factor

\[
Z = \sum_{s \in \mathcal{S}} e^{-H(s)/T}.
\]

(6)

is called the partition function, not to be mixed up with the partition in the NPP. The thermal average of a quantity \(A \) is given by

\[
\langle A \rangle_T = \frac{1}{Z} \sum_{s \in \mathcal{S}} A(s) e^{-H(s)/T}.
\]

(7)

The thermal average no longer depends on a particular microstate, but only on macroscopic parameters like the temperature \(T \), reflecting precisely the experimental observations.

The central quantity that is calculated in statistical mechanics, is the free energy \(F \),

\[
F(T) = -T \ln Z.
\]

(8)

Once \(F \) is known as a function of the temperature \(T \) and other relevant parameters like volume or magnetic field, most properties of the system can easily be calculated. At least this is what they tell you in textbooks on statistical physics. The thermal average of the energy for example is given by

\[
\langle H \rangle_T = \frac{1}{Z} \sum_{s \in \mathcal{S}} H(s) e^{-H(s)/T} = T^2 \frac{\partial}{\partial T} F(T).
\]

(9)

What has all this to do with combinatorial optimization? Well, we can formally define a free energy for any optimization problem: \(\mathcal{S} \) is the set of all feasible solutions, and \(H(s) \) is the cost function that has to be minimized. This free energy comprises some useful information about the optimization problem. Let \(E_1 < E_2 < E_3 < \ldots \) be the sorted list of possible values of the cost function and \(n(E_k) \) be the number of feasible solutions that yield \(E = E_k \). Then the free energy is
\[
F(T) = -T \ln Z \\
= -T \ln \sum_{k=1} n(E_k) e^{-E_k/T} \\
= -T \ln \left[n(E_1)e^{-E_1/T}(1 + \frac{n(E_2)}{n(E_1)}e^{-\frac{E_2-E_1}{T}} + \ldots) \right] \\
= E_1 - T \ln n(E_1) - \ln(1 + \frac{n(E_2)}{n(E_1)}e^{-\frac{E_2-E_1}{T}} + \ldots)
\]

From that we get the value of the optimum solution

\[
\lim_{T \to 0} F(T) = E_1
\]

as well as the logarithm of the number of optimum solutions

\[
\lim_{T \to 0} -\frac{\partial}{\partial T} F(T) = \lim_{T \to 0} S(T) = \ln n(E_1).
\]

In physics jargon, \(S(T)\) is the \textit{entropy}, \(E_1\) the \textit{ground state energy}. By adding additional terms to the cost function and recalculating the free energy, more informations can be obtained, for instance on the structure of the optimum solution. If you do not like all the physics jargon you might consider the free energy as a kind of \textit{generating function} that encodes properties of your combinatorial optimization problem.

A class of models that have been intensely investigated in physics are \textit{spin glasses} [28]. In its simplest form, the microstate of a spin glass is a set of \(N\) binary variables, \(s_j = \pm 1, j = 1, \ldots, N\), called Ising spins. With spin glass models, physicists try to capture the properties of magnetic alloys. An Ising spin is the magnetic moment of an atom that can only be oriented along a given axis in space, either “up” \((s_j = +1)\) or “down” \((s_j = -1)\). In an alloy these moments interact, giving rise to a total energy

\[
H(\{s_j\}) = -\sum_{i,j=1}^{N} J_{ij}s_is_j.
\]

The \(J_{ij}\) are numbers that describe the interaction strength between spins \(s_i\) and \(s_j\). The calculation of the interactions \(J_{ij}\) (as well as the justification for the whole model) is a subject of quantum mechanics and will not be discussed here.

Minimizing the spin glass hamiltonian for given interactions \(J_{ij}\) is a combinatorial optimization problem. If all the \(J_{ij}\) are positive (physics jargon: ferromagnetic), this problem is trivial: \(H\) is minimized when all spins point in the same direction, i.e. are all +1 or all −1. If some (or all) of the \(J_{ij}\) are negative (physics jargon: anti-ferromagnetic), this problem is much harder. In fact it can be proven that it is NP-hard [1].
A partition \mathcal{A} in the number partitioning problem can be encoded by Ising spins: $s_j = +1$ if $j \in \mathcal{A}$, $s_j = -1$ otherwise. The cost function then reads

$$E = |\sum_{j=1}^{N} a_j s_j|,$$

and the minimum partition is equivalent to the ground state of the Hamiltonian

$$H = E^2 = \sum_{i,j=1}^{N} s_i a_i a_j s_j.$$

This is an infinite range Ising spin glass with antiferromagnetic couplings $J_{ij} = -a_i a_j < 0$. The statistical mechanics of this model has been investigated in physics at least three times [8, 7, 25]. It turns out that due to the multiplicative character of the couplings, the calculation of the free energy is comparatively simple, and yields quantitative results on the phase transition in computational complexity [25].

Of course we are not interested in a particular instance but in the typical properties of number partitioning. Hence we will average our results over a suitable ensemble of instances, not to be mixed up with the thermodynamic ensemble of microstates resp. feasible solutions. Throughout this paper we will assume that the input numbers a_j are independent, identically distributed (i.i.d.) random numbers. In our statistical mechanics framework, random input numbers correspond to random spin interactions J_{ij}. In fact this is part of the definition of spin glass models – the term “glass” refers to the irregularity of the interactions in alloys as opposed to regular interactions in crystals. In spin glass theory, it is the free energy that has to be averaged over the random couplings to yield the correct typical properties of the system. In general, the computation of the average free energy is not simple and requires a sophisticated approach called the replica method. The free energy of the number partitioning problem is so simple though, that we get its average for free.

3.2 Statistical mechanics of the unconstrained NPP

We start with the statistical mechanics of the unconstrained NPP. This analysis has been published elsewhere [25], but the presentation here is more comprehensive. The partition function of the unconstrained NPP reads

$$Z = \sum_{\{s_j\}} e^{-\frac{1}{T} |\sum_{j} a_j s_j|}.$$
Without the absolute value in the exponent, this sum can easily be calculated:

\[
\sum_{\{s_j\}} e^{-\frac{1}{T} \sum_j a_j s_j} = \prod_{\{s_j\}}^{N} e^{-\frac{1}{T} a_j s_j} = \sum_{s_1 = \pm 1} e^{-\frac{1}{T} a_1 s_1} \cdot \sum_{s_2 = \pm 1} e^{-\frac{1}{T} a_2 s_2} \cdot \ldots \cdot \sum_{s_N = \pm 1} e^{-\frac{1}{T} a_N s_N} = 2 \cosh \frac{a_1}{T} \cdot 2 \cosh \frac{a_2}{T} \cdot \ldots \cdot 2 \cosh \frac{a_N}{T} = 2^N \prod_{j=1}^{N} \cosh \frac{a_j}{T} \tag{14}
\]

The question is, how can we get rid of the absolute value in the exponent? A standard trick in statistical mechanics to remove nasty nonlinearities like this is the creative use of the \(\delta\)-function. Introduced by P.A.M. Dirac on an intuitive base in connection with quantum mechanics, it is now embedded in an exact mathematical framework [22]. Here we stick to the more intuitive picture and define the \(\delta\)-function via its Fourier integral,

\[
\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\hat{x} e^{ix\hat{x}}. \tag{15}
\]

\(\delta(x)\) is 0 for \(x \neq 0\) and \(\infty\) for \(x = 0\), and the peak at \(x = 0\) is perfectly calibrated to give

\[
\int_{-\infty}^{\infty} dx f(x) \delta(x - c) = f(c) \tag{16}
\]

for any reasonably well behaved function \(f\). The \(\delta\)-function helps us to separate the absolute value from the summation variables \(s_j\):

\[
Z = \sum_{\{s_j\}} \int_{-\infty}^{\infty} dx e^{-|x|} \delta(x - \frac{1}{T} \sum_j a_j s_j) = \int_{-\infty}^{\infty} dx e^{-|x|} \frac{1}{2\pi} \int_{-\infty}^{\infty} d\hat{x} e^{ix\hat{x}} \sum_{\{s_j\}} e^{-i\hat{x} \sum_j a_j s_j}
\]

Now we can carry out the summation over the \(\{s_j\}\) like in eq. (14):

\[
Z = 2^N \int_{-\infty}^{\infty} d\hat{x} \prod_{j=1}^{N} \cos\left(\frac{a_j}{T} \hat{x}\right) \int_{-\infty}^{\infty} dx e^{-|x| + i\hat{x} x}. \tag{17}
\]

Note that \(\cosh(ix) = \cos(x)\). Doing the \(x\)-integral,

\[
\int_{-\infty}^{\infty} dx e^{-|x| + i\hat{x} x} = \frac{2}{1 + \hat{x}^2}, \tag{18}
\]

11
and substituting \(y = \arctan \hat{x} \) finally leads us to

\[
Z = 2^N \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dy e^{NG(y)}
\]

with

\[
G(y) = \frac{1}{N} \sum_{j=1}^{N} \ln \cos \left(\frac{a_j}{T} \tan(y) \right).
\]

For large values of \(N \), the statistical independence of the \(a_j \) allows us to apply the law of large numbers, i.e. to replace the sum by the average over \(a \):

\[
G(y) \approx \langle \ln \cos \left(\frac{a}{T} \tan(y) \right) \rangle.
\]

This replacement is the main reason why spin glasses with couplings that factorize, \(J_{ij} = -a_i a_j \), are comparatively easy to solve [29]. It relieves us from averaging \(\ln Z \), which can be very difficult in other spin glass models.

The integral in eq. (17) can be evaluated asymptotically for large \(N \) using the Laplace method: The general idea is, that the integral is dominated by the contributions from the maxima of \(G(y) \). If \(G(y) \) has a maximum at \(y = y_0 \),

\[
\int e^{NG(y)} dy \approx e^{NG(y_0)} \int e^{-\frac{N}{2} G''(y_0)(y-y_0)^2} dy = e^{NG(y_0)} \sqrt{\frac{2\pi}{NG''(y_0)}}
\]

for large \(N \). A general discussion of the Laplace method for the asymptotic expansion of integrals can be found in various text-books [2,24].

To find the maxima of \(G(y) \), we will assume that \(a \) can only take on values that are integer multiples of a fixed number \(\Delta a \). For integer distributions \(\Delta a = 1 \), and for floatingpoint distributions \(\Delta a \) is the smallest number that can be represented with the available number of bits. This is a reasonable assumption since we know, that the properties of the NPP depend on the resolution in \(a \). With this assumption, the solutions of

\[
G'(y) = \left\langle \frac{a}{T} \tan \left(\frac{a}{T} \tan y \right) \right\rangle \cdot (1 + \tan^2 y) = 0
\]

are given by

\[
y_k = \arctan \left(\pi T \frac{k}{\Delta a} \right) \quad k = 0, \pm 1, \pm 2, \ldots
\]

Note that \(\tan \left(\frac{\pi}{2} \tan y_k \right) = 0 \) for all values \(a = n \cdot \Delta a \). Of course we have to consider the contributions of all saddle points when evaluating the integral in
Eq. (17):

\[Z \approx 2^N \sum_k \int_{-\infty}^{\infty} \frac{dy}{\pi} e^{-\frac{2}{N} G''(y_k)y^2} = 2^N \frac{\sqrt{2}}{\sqrt{\pi N}} \sum_k \frac{1}{\sqrt{G''(y_k)}}. \]

(25)

With

\[G''(y_k) = \frac{\langle a^2 \rangle}{T^2} \left[1 + \left(\frac{\pi T}{\Delta a} \right)^2 k^2 \right]^2 \]

(26)

and the useful identity

\[\sum_{k=0, \pm 1, \ldots} \frac{1}{1 + (xk)^2} = \frac{\pi}{x} \cdot \coth \frac{\pi}{x} \]

(27)

we finally get

\[Z = 2^N \cdot \frac{\Delta a}{\sqrt{\frac{2}{N} \langle a^2 \rangle}} \cdot \coth \frac{\Delta a}{T}. \]

(28)

The partition function \(Z \) immediately yields the free energy

\[F(T) = -TN \ln 2 + \frac{T}{2} \ln \pi N \langle a^2 \rangle - T \ln \coth \frac{\Delta a}{T} \]

(29)

and the thermal average of the energy

\[\langle E \rangle_T = \frac{T}{\sinh \frac{\Delta a}{T} \cosh \frac{\Delta a}{T}}. \]

(30)

Let \(\Delta a > 0 \) be fixed. Then \(\lim_{T \to 0} \langle E \rangle_T = 0 \), i.e. the ground states are perfect partitions. How many perfect partitions can we expect? The answer is given by the entropy \(S \), which according to eq. (28) and eq. (8) can be written as

\[S = N(\kappa_c - \kappa) \ln 2 + \tilde{S} \left(\frac{\Delta a}{2T} \right), \]

(31)

with

\[\kappa_c = 1 - \frac{\ln \left(\frac{\pi}{6} N \right)}{N 2 \ln 2} \]

(32)

\[\kappa = \frac{\ln \frac{3}{\Delta a^2} \langle a^2 \rangle}{N 2 \ln 2}, \]

(33)

and the thermal contribution to the entropy is

\[\tilde{S} \left(\frac{\Delta a}{T} \right) = \ln \coth \frac{\Delta a}{T} + \frac{\Delta a}{T} \coth^2 \frac{\Delta a}{T} - 1. \]

(34)
For finite Δa, \tilde{S} vanishes at zero temperature and increases monotonically with T. In this case, the zero temperature entropy is given by $N(\kappa_c - \kappa) \ln 2$. If $\kappa < \kappa_c$, we have an extensive entropy resp. an exponential number of perfect partitions. $N \cdot \kappa$ is a measure for the number of bits needed to encode the a_j's. Let the a_j be i.i.d. b-bit integer numbers. Then $\Delta a = 1$ and

$$
\kappa = \frac{b}{N} + \frac{1}{2N} \ln 2 \left(1 - \frac{3}{2} 2^{-b} + \frac{1}{2} 2^{-2b}\right) = \frac{b}{N} + \frac{1}{N} \cdot O(2^{-b}). \tag{35}
$$

In this case the condition $\kappa < \kappa_c$ translates into

$$
b < N - \frac{1}{2} \ln_2 \left(\frac{\pi}{6} N\right). \tag{36}
$$

This inequality must be fullfilled in order to have perfect partitions. The first term on the right hand side can be explained within a simple approximation [12]: Let the N numbers a_i each be represented by b bits. Now consider the partition difference E bitwise. About half of all partitions will set the most significant bit of E to zero. Among those partitions, about one half will set the second most significant bit to zero, too. Repeating this procedure we can set at most N bits to zero until running out of available partitions. To get a perfect partition with all b bits being zero, N must be larger than b. This consideration ignores the carry bits, which lead to the logarithmic corrections in eq. (36).

What happens if $N < b$ resp. $\kappa > \kappa_c$? According to the approximative consideration above we expect the optimum partition difference to be exponentially small, $O(2^{-N})$, but larger than zero. It looks as if the zero temperature entropy is negative in this case. This is definitely wrong because the zero temperature entropy is by definition the logarithm of the number of ground states, which in any case is at least $\ln 2$. It turns out that we have to be more careful with the limit $T \to 0$ to get the correct zero temperature entropy. In terms of Δa the condition $\kappa > \kappa_c$ means

$$
2^{-N} > \Delta a \sqrt{\frac{2}{\pi N \langle a^2 \rangle}} \tag{37}
$$

i.e. essentially $\Delta a = O(2^{-N})$. In this regime the contributions of \tilde{S} are $O(N)$ for any finite T,

$$
\tilde{S}(\frac{\Delta a}{T}) = \ln(\frac{T}{\Delta a}) + 1 + O(\frac{\Delta a^2}{T^2}), \tag{38}
$$

hence cannot be neglected. Technically we deal with this contribution by introducing an effective “zero” temperature T_0 below which the system can not be “cooled”. T_0 guarantees that the contribution of \tilde{S} remains $O(N)$. Its value
Fig. 3. Average solution of the number partitioning problem with input numbers \(a_j\) being i.i.d. uniform on \([0, 1]\) compared to the analytical result Eq. (40) (straight line). Each data point is the average over \(10^4\) random samples.

can be calculated from the lower bound of \(S\):

\[
\ln 2 = N(\kappa_c - \kappa) \ln 2 + \tilde{S}(\frac{\Delta a}{T_0}) \approx N(\kappa_c - \kappa) \ln 2 + \ln(\frac{T_0}{\Delta a}).
\]

From that we get

\[
T_0 = 2\Delta a 2^{N(\kappa - \kappa_c)} = \sqrt{2\pi N \langle a^2 \rangle} 2^{-N}.
\] (39)

In this regime the average ground state energy \(\langle E_1 \rangle\) is no longer 0 but

\[
\langle E_1 \rangle = T_0 = \sqrt{2\pi N \langle a^2 \rangle} 2^{-N}
\] (40)

This equation completes the previously known result that the average value of \(E_1\) is \(O(\sqrt{N} 2^{-N})\) for real valued input numbers [18,23] by specifying the prefactor to be \(\sqrt{2\pi \langle a^2 \rangle}\).

To check Eq. (40) we consider the continuous variant of number partitioning, where the \(a_i\) are real numbers, uniformly distributed in the interval \([0, 1]\). In
Fig. 4. Phase diagram of the random number partitioning problem. $N\kappa$ is essentially the number of significant bits to encode the input numbers, see Eq. (33). The squares denote the phase boundary found numerically. The solid line is given by κ_c from Eq. (32). For $\kappa < \kappa_c$, the zero temperature entropy is extensive and a search algorithm typically finds quickly one of the $O(2^N)$ perfect partitions. For $\kappa > \kappa_c$, no perfect partitions exist, and the optimization problem has a hard to find, unique solution.

In Fig. (3), Eq. (41) is compared to numerical data. The agreement is convincing.

To check whether $\kappa(N)$ is a control parameter with a phase transition at $\kappa_c(N)$, we did numerical simulations. For fixed N and κ we calculated the fraction of instances that have at least one perfect partition. In accordance with Gent and Walsh [12] we find that this fraction is 1 for small κ and 0 for larger κ. The transition from 1 to 0 is sharp. Fig. (4) shows the numerically found transition points for $10 \leq N \leq 28$ compared to $\kappa_c(N)$ from Eq. (32). Again the agreement is convincing. Note that $\kappa_c(N \to \infty) = 1$. The asymptotic
estimate 0.96 given by Gent and Walsh is probably due to the influence of the $O(N \log N)$ term in eq. (32) which cannot be neglected for system sizes accessible for simulations ($N \leq 30$).

Before we turn to the constrained NPP, let us summarize what we have found so far: The statistical mechanics analysis of the NPP reveals two different phases, distinguished by the value of a parameter κ, eq. (33), which corresponds to the number of significant bits in the encoding of the input numbers a_j divided by N. For $\kappa < \kappa_c$, we have an exponential number of perfect partition, hence an exponential number of solutions to the NPP. For $\kappa > \kappa_c$, we only have 2 solutions with a partition difference given by eq. (40).

3.3 Statistical mechanics of the constrained NPP

The partition function of the constrained NPP is

\[
Z = \sum_{\{s_j\}}' e^{-|\sum_j a_j s_j|/T},
\]

where the primed sum denotes summation over all spin configurations with $\sum_j s_j = mN$. By now we know how to separate the absolute value on the exponent from the summation variables, but here additionally we have to get rid of the the constraint $\sum_j s_j = mN$ to do the summation. The discrete version of the Dirac δ function, the Kronecker δ symbol

\[
\delta_{n,m} = \int_{-\pi}^{\pi} \frac{d\hat{m}}{2\pi} e^{i\hat{m}(n-m)} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases},
\]

for integer m, n can be used to achieve this:

\[
Z = \sum_{\{s_j\}} \delta_{\sum_j s_j, mN} e^{-\frac{1}{T} \sum_j |a_j s_j|} = \int_{-\pi}^{\pi} \frac{d\hat{m}}{2\pi} e^{-i\hat{m}mN} \sum_{\{s_j\}} e^{i\hat{m} \sum_j s_j - |\sum_j a_j s_j|/T}.
\]

The remaining sum can now be done exactly like in the preceding section. The result is

\[
Z = 2^N \int_{-\pi/2}^{\pi/2} \frac{dy}{\pi} \int_{-\pi}^{\pi} \frac{d\hat{m}}{2\pi} e^{NG(y,\hat{m})}
\]

with
\[G(y, \hat{m}) = i\hat{m}m + \frac{1}{N} \sum_{j=1}^{N} \ln \cos \left(\frac{a_j}{T} \tan y + \hat{m} \right) \]

\[\approx i\hat{m}m + \left\langle \ln \cos \left(\frac{a}{T} \tan(y) + \hat{m} \right) \right\rangle. \quad (45) \]

Compared to the unconstrained case we are left with a twofold integral and a complex valued integrand. The generalization of the Laplace method to complex integrands is the **saddle point method** [2,24]: Let the real part of \(G(y, \hat{m}) \) have a maximum at \((y_0, \hat{m}_0)\). Then

\[
\int e^{NG(y,\hat{m})} dy d\hat{m} \approx e^{NG(y_0,\hat{m}_0)} \int dy d\hat{m} e^{-\frac{1}{2}N(y,\hat{m})G(y,\hat{m})^T G(y,\hat{m})} = e^{NG(y_0,\hat{m}_0)} \frac{2\pi}{N\sqrt{\det G}} \quad (46)
\]

for large \(N \). \(G \) is the \(2 \times 2 \) Hesse matrix

\[
G = \begin{pmatrix}
\frac{\partial^2 G(y,\hat{m})}{\partial y^2} & \frac{\partial^2 G(y,\hat{m})}{\partial y \partial \hat{m}} \\
\frac{\partial^2 G(y,\hat{m})}{\partial \hat{m} \partial y} & \frac{\partial^2 G(y,\hat{m})}{\partial \hat{m}^2}
\end{pmatrix}, \quad (47)
\]

where the derivatives are taken at the saddle point \((y_0, \hat{m}_0)\). In our case the saddle point equations are

\[0 = \frac{\partial G(y, \hat{m})}{\partial y} = \left\langle \frac{a}{T} \tan\left(\frac{a}{T} \tan y + \hat{m} \right) \right\rangle (1 + \tan^2 y) \quad (48) \]

\[0 = \frac{\partial G(y, \hat{m})}{\partial \hat{m}} = \left\langle \tan\left(\frac{a}{T} \tan y + \hat{m} \right) \right\rangle + im. \quad (49) \]

Like in the unconstrained case, we will assume that \(a \) can only take on values that are integer multiples of a fixed number \(\Delta a \). With this assumption and the ansatz

\[\tan y_k = k\pi \frac{T}{\Delta a} + iTx \quad k = 0, \pm 1, \pm 2, \ldots \quad (50) \]

\[\hat{m} = -i\hat{m} \quad (51) \]

the saddle point equations simplify to

\[\left\langle a \tanh(ax + \hat{m}) \right\rangle = 0 \quad (52) \]

\[\left\langle \tanh(ax + \hat{m}) \right\rangle = m. \quad (53) \]
For given value of m, the saddle point equations yield a solution (x, \tilde{m}), which in turn gives rise to an infinite number of saddle points (eq. (50)). The contribution from all these saddle points have to be summed up to give Z, the groundstate energy E_1 and the entropy S. Unfortunately, for $m > 0$ we can solve the saddle point equations only numerically. Therefore we will for the time being concentrate on the balanced NPP, $m = 0$. In this case, the solution is trivial, $x = \tilde{m} = 0$, the determinant of the Hesse matrix is

$$\det G = \frac{\langle a^2 \rangle - \langle a \rangle^2}{T^2} \left(1 + \frac{\pi^2 T^2}{\Delta a^2 k^2} \right)^2 k = 0, \pm 1, \pm 2, \ldots .$$

(54)

With the help of eq. (27) it is straightforward to sum up the contributions from all saddle points. The result is:

$$Z = 2^N \cdot \frac{\Delta a}{N \pi \sqrt{\langle a^2 \rangle - \langle a \rangle^2}} \coth \frac{\Delta a}{T}$$

(55)

The partition function for the balanced NPP is very similar to the one of the unconstrained NPP, eq. (28). Only the denominator changes from $\sqrt{\frac{\pi}{2} N \langle a^2 \rangle}$ in the unconstrained to $\pi N \sqrt{\langle a^2 \rangle - \langle a \rangle^2}$ in the balanced case. The discussion of entropy and groundstate energy is very similar, too. The entropy can be written as

$$S = N (\kappa_c - \kappa) \ln 2 + \tilde{S}(\Delta a/T)$$

(56)

where \tilde{S} is the same as for the unconstrained NPP (eq. (34)) and the order parameter κ and its critical value κ_c are

$$\kappa_c = 1 - \frac{1}{N} \ln_2 \left(\frac{\pi}{\sqrt{12}} N \right)$$

(57)

$$\kappa = \frac{1}{N} \ln_2 \left(\frac{\sqrt{12}}{\Delta a} \sqrt{\langle a^2 \rangle - \langle a \rangle^2} \right).$$

(58)

The condition for the existence of perfect partitions, $\kappa < \kappa_c$, translates into

$$b < N - \ln_2 \left(\frac{\pi}{\sqrt{12}} N \right).$$

(59)

for input numbers a_j being i.i.d. b-bit integers (cf. eq. (36)). From fig. (2) one can tell, that for $b = 25$ N must be larger than 30 for perfect partitions to exist. Eq. (59) yields $N > 29.75$.

For $\kappa > \kappa_c$, the optimum partition difference E_1 reads

$$\langle E_1 \rangle = \pi \sqrt{\langle a^2 \rangle - \langle a \rangle^2} \cdot N \cdot 2^{-N}$$

(60)
Fig. 5. Average minimum residue of the balanced number partitioning problem with real numbers $0 \leq a_i < 1$ compared to the analytical result Eq. (60) (straight line). Each data point is the average over 10^4 random samples.

for the balanced NPP. Again this result fits very well with the numerics, see fig. (5).

3.4 Overconstrained NPP

For $m > 0$ we solve the saddle-point equations (52) and (53) numerically. Fig. (6) displays the solution for input numbers a that are i.i.d. uniform over $[0, 1]$.

The solution diverges if m approaches a critical value $m_c = 0.41 \ldots$. For larger values of m, the saddle-point equations have no solution. This is no surprise: $\tanh()$ is a monotonic function with $-1 \leq \tanh() \leq 1$. Eq. (52) requires that $\tanh(ax + \tilde{m})$ changes sign within the integration range. Therefore the right hand side of eq. (53) has to be smaller than 1. For input numbers distributed
Fig. 6. Solution of the saddle point equations (52) and (53) for input numbers a that are i.i.d. uniform over $[0,1]$.

uniformly over $[0,1]$ the saddle-point equations are

\[\int_0^1 da \, a \tanh(ay + \bar{m}) = 0 \]
\[\int_0^1 da \, \tanh(ay + \bar{m}) = m \]

and it is easy to show that $|m|$ has to be smaller than $m_c = \sqrt{2} - 1 = 0.41\ldots$ for a solution to exist.

In statistical mechanics, a diverging solution often indicates that the properties of the system change drastically – a phase transition. What kind of phase transition is related to a critical value of the “magnetization” m? If m is close to 1, the NPP is overconstrained, i.e. we cannot expect to find a perfect partition. Instead, the optimum partition is the one that collects the $\frac{1}{2}(1-m)\cdot N$ largest numbers a_j in the smaller subset. Let a' be the $\frac{1}{2}(1+m)$ percentile of a,

\[\frac{1}{2}(1 + m) = \int_0^{a'} \rho(a) da. \]

The partition difference E_s of this sorted partition then reads

\[E_s/N = \int_0^{a'} a\rho(a) da - \int_{a'}^\infty a\rho(a) da. \]

As long as $E_s > 0$ holds, the sorted partition is optimal. E_s is positive if m is greater than a critical value m_c that depends on the distribution ρ. For the uniform distribution on $[0,1]$, $a' = \frac{1}{2}(1+m)$ and

\[E_s/N = \frac{1}{4}(1 + m)^2 - \frac{1}{2}. \]
which is positive provided

\[m > m_c = \sqrt{2} - 1. \] \hspace{1cm} (66)

A more complicated derivation of Eqs. (65) and (66) using the statistical mechanics approach can be found in [7].

Note that the computational complexity of the overconstrained NPP \((m > m_c)\) equals that of sorting \(N\) numbers, i.e. \(O(N \ln N)\), so we have another phase transition from a computationally hard to a computationally easy regime in the NPP.

4 The random cost problem

The preceeding section has shown that the statistical mechanics of the NPP can be analysed rather easily. This is a remarkable exception. In general, spin glass models are much harder to deal with, and physicists have considered various simplifications. One of these simplified models was Derrida’s random energy model, REM [5,6]. A cost function or Hamiltonian like Eq.(10) maps the random numbers \(J_{ij}\) onto \(2^N\) random numbers \(E_k\), distributed according to a probability density \(p(E)\). Derrida’s idea was to forget about the configurations \(\{s_j\}\) and to consider directly the energies \(E_k\) as independent random numbers, drawn from the probability density \(p(E)\). The essential simplification, which leads to the analytic tractability of the model, is the assumption of statistical independence.

The usefulness of the REM in spin glass theory has been discussed elsewhere [14]. Here we will concentrate on its counter part in combinatorial optimization, the random cost problem: Given are \(M\) random numbers \(E_k\), independently drawn from a density \(p(E)\). Find the minimum of these numbers. Since every number has to be considered at least once, the computational complexity of the random cost problem is \(O(M)\). The statistical independence of the numbers prevents an efficient heuristic: Any heuristic algorithm that considers only \(K \ll M\) numbers is no better than simple sequential search through an arbitrary \(K\)-element subset of the list.

The motivation to study random cost problems stems from the fact that every combinatorial optimization problem with random inputs can be approximated by a random cost problem. If the original optimization problem has \(M\) feasible solutions and the costs of these solutions are distributed with density \(p(E)\), in the corresponding random cost problem we shall simply assume, that the \(M\) costs are drawn independently from \(p(E)\). For the NPP the approximation by a random cost problem gives apparently correct results at least for the statistics of the low cost configurations [27].
4.1 Distribution of costs

To find a random cost problem that corresponds to the NPP, we first have to calculate the probability density of the costs. For the constrained NPP, \(p(E) \) reads

\[
p(E) = \left(\frac{N}{N_+} \right)^{N_+} \sum_{\{s_j\}}' \left\langle \delta(E - | \sum_j a_j s_j |) \right\rangle.
\]

(67)

where the primed sum runs over all configurations with \(N_+ = N \frac{1}{2} (1 + m) \) spins \(s_j = +1 \). Since the numbers \(a_j \) are drawn independently from an identical distribution, the average in Eq. (67) depends only on \(N_+ \), but not on the particular spin configuration. Ignoring the absolute value in the cost function for a moment, we may write

\[
\left\langle \delta(E - \sum_j a_j s_j) \right\rangle = \int dy \ g_{N-N_+}(y) \ g_{N_+}(E + y),
\]

(68)

where \(g_K \) is the probability density of the sum \(\sum_{j=1}^K a_j \). The central limit theorem tells us that for large \(K \)

\[
g_K(y) = \frac{1}{\sqrt{2\pi}\sigma^2K} \exp \left(-\frac{(y - K \langle a \rangle)^2}{2\sigma^2K} \right),
\]

(69)

where \(\sigma^2 = \langle a^2 \rangle - \langle a \rangle^2 \) is the variance of \(a \). Hence

\[
\left\langle \delta(E - \sum_j a_j s_j) \right\rangle = \frac{1}{\sqrt{2\pi}\sigma^2N} \exp \left(-\frac{(E - [2N_+ - N] \langle a \rangle)^2}{2\sigma^2N} \right).
\]

(70)

With \(2N_+ - N = mN \) and taking the absolute value of the cost function into account we finally get

\[
p_m(E) = \frac{\Theta(E)}{\sqrt{2\pi}\sigma^2N} \left(e^{-\frac{(E-m\langle a \rangle)^2}{2\sigma^2N}} + e^{-\frac{(E+m\langle a \rangle)^2}{2\sigma^2N}} \right)
\]

(71)

as the probability density for the costs in the random, constrained NPP. \(\Theta(x) \) is the step function, \(\Theta(x) = 1 \) for \(x \geq 0 \), \(\Theta(x) = 0 \) for \(x < 0 \).

To get the density of the costs for the unconstrained NPP, we have to sum over all values \(N_+ \),

\[
p(E) = 2^{-N} \sum_{N_+ = 0}^N \binom{N}{N_+} p_{m=2N_+/N-1}(E).
\]

For large \(N \), the sum is dominated by terms with \(N_+ = N \frac{1+m}{2} \), \(m = \mathcal{O}(1) \),
and we may apply the asymptotic expansion

\[
\left(\frac{N}{N^{1+\frac{m}{2}}} \right) \approx \frac{2^N}{\sqrt{\frac{1}{2}(1-m^2)}} e^{-N s(m)}
\]

(72)

with

\[
s(m) = \frac{1+m}{2} \ln(1+m) + \frac{1-m}{2} \ln(1-m),
\]

(73)

and we may replace the sum over \(N_+ \) by an integral over \(m \),

\[
p(E) = \frac{\sqrt{N}}{\sqrt{2\pi}} \int_{-1}^{1} dm e^{-Ns(m)} p_m(E).
\]

\(s(m) \) has a maximum at \(m = 0 \). Applying the Laplace method to evaluate the \(m \)-integral for large \(N \) we finally get

\[
p(E) = \frac{2\Theta(E)}{\sqrt{2\pi} \langle a^2 \rangle N} e^{-\frac{E^2}{2\langle a^2 \rangle N}}
\]

(74)

as the probability density in the random unconstrained NPP.

4.2 Statistics of the optimum

We may now specify the random cost problem that corresponds to the NPP: Given are \(M \) random numbers \(E_i \), independently drawn from the density \(p(E) \), eq. (71) resp. eq. (74). Find the minimum of these numbers. To connect to the NPP, \(M \) is chosen to be

\[
M = \frac{1}{2} \left(\frac{N}{N(1+m)/2} \right) \approx \frac{2^{N-1}}{\sqrt{\frac{\pi}{2} N(1-m^2)}} e^{-N s(m)}
\]

(75)

for the constrained NPP and \(M = 2^{N-1} \) for the unconstrained NPP. Our claim is that the NPP is very well approximated by this random cost problem.

Let \(E_k \) denote the \(k \)-th lowest cost of an instance of our random cost problem. The probability density \(\rho_1 \) of the minimum \(E_1 \) can easily be calculated:

\[
\rho_1(E_1) = M \cdot P(E_1) \cdot \left(1 - \int_{0}^{E_1} P(E')dE' \right)^{M-1}
\]

(76)

\(E_1 \) must be small to get a finite right-hand side in the large \(M \) limit. Hence we may write
\[
\rho_1(E_1) \approx M \cdot P(0) \cdot \left(1 - E_1 P(0) \right)^{M-1} \\
\approx M \cdot P(0) \cdot e^{-MP(0)E_1}.
\]

This means that the probability density of the scaled minimal cost,

\[
\varepsilon_1 = M \cdot P(0) \cdot E_1
\]

for large \(M \) converges to a simple exponential distribution,

\[
\rho_1(\varepsilon) = e^{-\varepsilon} \cdot \Theta(\varepsilon).
\]

Note that a rigorous derivation from eq. (76) to eq. (78) can be found in textbooks on extreme order statistics [9]. Along similar lines one can show that the density \(\rho_k \) of the \(k \)-th lowest scaled cost is

\[
\rho_k(\varepsilon) = \frac{\varepsilon^{k-1}}{(k-1)!} \cdot e^{-\varepsilon} \cdot \Theta(\varepsilon) \quad k = 2, 3, \ldots
\]

Let us compare eqs. (78) and (79) with known analytical and numerical results for the NPP. From the moments of the exponential distribution Eq. (78), \(\langle \varepsilon^n \rangle = n! \), we get

\[
r = \frac{\sqrt{\langle E_1^2 \rangle - \langle E_1 \rangle^2}}{\langle E_1 \rangle} = 1
\]

for the relative width of the distribution, in perfect agreement with the numerical findings for the NPP [7]. The average minimal cost is \(\langle E_1 \rangle = 1/(M \cdot P(0)) \), which gives

\[
\langle E_1 \rangle = \pi \cdot \sigma \cdot N \cdot 2^{-N} \cdot e^{N\left(\frac{(\langle a^2 \rangle)^2}{2\sigma^2} + s(m)\right)} \]

for the constrained and

\[
\langle E_1 \rangle = \sqrt{2\pi \langle a^2 \rangle} \cdot \sqrt{N} \cdot 2^{-N}
\]

for the unconstrained case. Again this is in very good agreement with numerical simulations for the NPP [7] and in perfect agreement with our analytical results from the preceeding section, eqs. (40) and (60). For the constrained case with \(m > 0 \), the minimal cost increases with increasing \(m \). This is reasonable, but nevertheless eq. (81) must be wrong for \(|m| > 0 \). For input numbers \(a \) drawn uniformly from \([0, 1]\) eq. (81) predicts that \(\langle E_1 \rangle \) is exponentially small as long as \(|m| < 0.583 \ldots \), but we know from the preceeding section that for \(m > m_c = \sqrt{2} - 1 = 0.414 \ldots \) the NPP is overconstrained, hence has \(\langle E_1 \rangle = \mathcal{O}(N) \).
Fig. 7. Distribution of the scaled optimum for the balanced number partitioning problem. The solid line is given by Eq. (78), the symbols are averages over 10^4 random samples.

To check that the random cost approximation does not only give the correct first and second moment of the optimum of the balanced NPP, we calculated the distribution of E_1 and higher energies numerically. Figs. (7) and (8) display the results for the balanced NPP. Equivalent plots for the unconstrained NPP look similar. The agreement between the numerical data and Eqs. (78) and (79) is convincing.

How can the random cost problem be so similar to the NPP? The answer is, that there is in fact a certain degree of statistical independence among the costs in the NPP. In the appendix we show that the joint probability $p(E, E')$ factorizes, i.e. $p(E, E') = p(E)p(E')$ for the unconstrained and the balanced NPP, but not for the constrained NPP with $|m| > 0$. This is a necessary, but not sufficient condition for independence, but the approach can probably extended to a complete proof of independence. Here we adopt a physicists attitude and consider the random cost problem to be a very good approximation to the NPP.
Fig. 8. Distribution of scaled k-th lowest energy for the balanced number partitioning problem. The solid lines are given by Eq. (79), the symbols are averages over 10^5 random samples of size $N = 24$.

4.3 Poor performance of heuristic algorithms

The correspondence between the NPP and the random cost problem not only provides analytic results on the NPP but also has some consequences for the dynamics of algorithms: Any heuristic that exploits a fraction of the domain, generating and evaluating a series of feasible configurations, cannot be significantly better than random search. The best solution found by random search is distributed according to Eq. ((76)), i.e. the average heuristic solution should approach the true optimum no faster than $O(1/M)$, M being the number of configurations generated. Note that the best known heuristic, Korf’s CKK [21,26] converges slower, namely, like $O(1/M^\alpha)$ with $\alpha < 1$ to the true optimum. Other heuristics, like simulated annealing, are even worse [16].

The random cost analogy means that there is hardly any correlation between a partition and its cost. Partitions that are similar to each other may have very different costs and vice versa. One might argue that this picture depends on the encoding of a partition, especially on the precise definition of “similarity”.

27
Fig. 9. Distribution of optima in the search tree spanned by the CKK algorithm. The number of right branches, the *discrepancy*, is a measure of distance to the heuristic Karmarkar-Karp solution. The NPP solved was unconstrained, with input numbers drawn uniformly from $[0, 1]$. The number of instances is 10^4 for $N \leq 20$ and 10^3 otherwise.

Throughout this paper we used the obvious encoding of a partition as a set of binary variables and one can show that indeed partitions with similar costs are completely dissimilar in terms of a vanishing overlap, $\frac{1}{N} \sum_j s_j s_j' = 0$ (see appendix).

Maybe there is a better problem representation for the NPP, an encoding that centers the good solution around a known position in search space. In fact it has been found that the choice of encoding is more important than the choice of search technique in determining search efficacy [32]. None of the proposed encodings and search techniques is more efficient than Korf’s CKK, however.

An ansatz to concentrate good solutions in a small part in search space was proposed by Korf [21]. In the tree spanned by the CKK, a left branch follows the Karmarkar-Karp differencing heuristic, a right branch does the opposite. Instead of searching the tree depth first like in the CKK one might as well search the paths of the tree in increasing order of the number of right branches,
or discrepancies, from the heuristic recommendations. The hope behind this *limited discrepancy search* [15] is of course that good solutions are “close” to the Karmarkar-Karp heuristic solution.

To check whether the discrepancy is a good measure to search the optimum, we calculated the discrepancy of the optimum partition numerically. Figs. (9) and (10) show that for large \(N \), the discrepancy of the optimum is a Gaussian distributed random variable with mean \(\propto N \) and variance \(\propto \sqrt{N} \). Hence a search guided by small discrepancies is not significantly better than simple random search and our random cost analogy persists in discrepancy space. Note however that there are *some* correlations between the optimum and its discrepancy. For true random discrepancies we would get an average of \(\frac{1}{2}N \), but from fig. (10) we get a smaller value of about \(\frac{3}{10}N \). This is no surprise: the partition with the highest discrepancy \(N - 1 \) has maximum cost, and partitions with high discrepancy are never optimal. Hence the relevant range of discrepancies is not \(N \) but a fraction \(xN \), \(x < 1 \). The best a heuristic search can do is to avoid the very large discrepancies. Note that our independent cost assumption does not hold for costs \(O(N) \) (see appendix).

5 Summary and conclusions

The main contribution of this paper is the application of methods and ideas from statistical mechanics to the number partitioning problem. The typical computational complexity of the NPP undergoes a sudden change if the system size and/or the number of bits in the input numbers is varied across a critical value. The standard statistical mechanics approach yields a quantitative, analytic theory of this phase transition. Furthermore, it reveals a second
phasetransition in the constrained NPP, controled by the imposed cardinality difference m.

The idea of a random energy model, born in spin glass theory, can be reformulated as random cost problem in combinatorial optimization. Numerical as well as analytical results support our claim, that the balanced and the unconstrained NPP are extremely well approximated by a random cost problem, at least if one excludes the very high costs. On the one hand this correspondence is responsible for the bad performance of heuristic search algorithms but on the other hand allows to derive new analytic results like the probability density of optimal and suboptimal costs.

What contributions does this work make beyond the specific problem of number partitioning? First, it provides an example of the applicability of statistical mechanics to combinatorial optimization that is exceptionally simple. It may well serve as a pedagogical introduction into this interdisciplinary field. Second the idea of the random cost problem may have applications beyond number partitioning. The dynamics of heuristic algorithms for other combinatorial optimization problems can be checked for a signature of a corresponding random cost problem, possibly with a differing $p(E)$.

A Evidence for the independent cost assumption

Let $p(E, E')$ denote the joint probability density of having costs E and E' in the same instance of an NPP,

$$p(E, E') = \left(\frac{N}{N_+} \right)^{-2} \sum' \sum' \left\langle \delta(E - | \sum_j a_j s_j |) \cdot \delta(E' - | \sum_j a_j s'_j |) \right\rangle.$$ \hspace{1cm} (A.1)

If the costs were independent, this probability density should factorize, $p(E, E') = p(E) \cdot p(E')$. This is what we are going to check in this section. Our line of reasoning is similar to the proof of theorem 4.9 in [4].

Consider the quantity

$$\tilde{p}_{N_+}(E, E') := \left\langle \delta(E - \sum_j a_j s_j) \cdot \delta(E' - \sum_j a_j s'_j) \right\rangle.$$ \hspace{1cm} (A.2)

All indices j are treated equally in the average over the a_j, hence \tilde{p} can depend on $\{s_j\}$ and $\{s'_j\}$ only through the number N_{++} of spins $s_j = s'_j = +1$. Hence
we can write

\[
 p(E, E') = \Theta(E)\Theta(E') \left(\frac{N}{N_+} \right)^{-1} \sum_{N_{++}=0}^{N_+} \binom{N_+}{N_{++}} \binom{N - N_+}{N_+ - N_{++}} \cdot \left(\tilde{p}_{N_{++}}(E, E') + \tilde{p}_{N_{++}}(-E, E') + \tilde{p}_{N_{++}}(E, -E') + \tilde{p}_{N_{++}}(-E, -E') \right) \tag{A.3}
\]

The four \(\tilde{p} \) terms and the \(\Theta \)-functions take into account the absolute value of the cost-function which we have omitted in the definition of \(\tilde{p} \). There are \(\binom{N}{N_+} \) possible ways to choose the +1 spins in \(\{s_j\} \). This factor cancels one of the normalization factors in eq. (A.1). Among the \(N_+ \) +1 spins in \(\{s_j\} \) we can choose \(N_{++} \) spins that are +1 in \(\{s'_j\} \), too. The remaining \(N_+ - N_{++} +1 \) spins in \(\{s'_j\} \) can be chosen among the \(N - N_+ \) spins that are \(-1 \) in \(\{s_j\} \). This yields the two binomial factors in eq. (A.3). Let

\[
 \mathcal{A} = \{j : s_j = +1\} \quad \mathcal{A}^c = \{j : s_j = -1\}
\]

\[
 \mathcal{A}' = \{j : s'_j = +1\} \quad \mathcal{A}'^c = \{j : s'_j = -1\}
\]

be the partitions corresponding to both spin sequences. With

\[
 V_1 := \sum_{j \in \mathcal{A} \setminus \mathcal{A}'} a_j - \sum_{j \in \mathcal{A}' \setminus \mathcal{A}} a_j \tag{A.4}
\]

\[
 V_2 := \sum_{j \in \mathcal{A} \setminus \mathcal{A}'} a_j - \sum_{j \in \mathcal{A}' \setminus \mathcal{A}} a_j \tag{A.5}
\]

we can write

\[
 \sum_{j=1}^{N} a_js_j = V_1 + V_2 \quad \sum_{j=1}^{N} a_js'_j = V_1 - V_2. \tag{A.6}
\]

Now the nice thing about \(V_1 \) and \(V_2 \) is that they depend on two disjoint subsets of the numbers \(a_j \), hence are statistically independent. Let \(\rho_1 \) and \(\rho_2 \) denote the probability density of \(V_1 \) resp. \(V_2 \). We may write

\[
 \tilde{p}_{N_{++}} = \frac{1}{2} \cdot \rho_1 \left(\frac{1}{2}[E + E'] \right) \cdot \rho_2 \left(\frac{1}{2}[E - E'] \right). \tag{A.7}
\]

\(V_1 \) and \(V_2 \) are composed of sums of independent random numbers. The first sum in \(V_1 \) runs over all elements that have \(s_j = s'_j = +1 \), the second over those with \(s_j = s'_j = -1 \). Counting the number of elements in these sets,
\[| \mathcal{A} \cap \mathcal{A}' | = N_{++} \]
\[| \mathcal{A} \cap \mathcal{\overline{A}} | = N_+ - N_{++} =: N_{+-} \]
\[| \mathcal{\overline{A}} \cap \mathcal{A}' | = N_+ - N_{++} =: N_{-+} \]
\[| \mathcal{\overline{A}} \cap \mathcal{\overline{A}} | = N - 2N_+ + N_{++} =: N_{--} , \]
we can write
\[
\rho_1(V_1) = \int dz \, g_{N_{++}}(z + V_1) \, g_{N_{--}}(z) \tag{A.8}
\]
\[
\rho_2(V_2) = \int dz \, g_{N_{+-}}(z + V_2) \, g_{N_{-+}}(z), \tag{A.9}
\]
where \(g_k \) is the probability density of the sum of \(k \) numbers \(a_j \). As argued above, \(\tilde{p}_{N_{++}}(E, E') \) depends on the spin sequences only through \(N_{++} \),
\[
\tilde{p}_{N_{++}}(E, E') = \frac{1}{2} \int dz \, g_{N_{++}} \left(z + \frac{1}{2}[E + E'] \right) \, g_{N_{--}}(z) \]
\[
\cdot \int dz \, g_{N_{+-}} \left(z + \frac{1}{2}[E - E'] \right) \, g_{N_{-+}}(z) \tag{A.10}
\]
Now we consider the large \(N \) limit. We are interested in the case \(m = \mathcal{O}(1) \), hence \(N_{++} = \mathcal{O}(N) \) and the sum over \(N_{++} \) in eq. (A.3) is dominated by contributions with \(N_{++} = \mathcal{O}(N) \). It is convenient to express \(N_{++}, N_{--}, N_{-+} \) and \(N_{+-} \) in terms of the overlap parameter
\[
q := \frac{1}{N} \sum_{j=1}^{N} s_j s_j' , \tag{A.11}
\]
which is \(\mathcal{O}(1) \) in this scaling regime:
\[
N_{++} = \frac{N}{2} (1 + m) - \frac{N}{4} (1 - q) \]
\[
N_{--} = \frac{N}{2} (1 + m) - \frac{N}{4} (1 - q) \]
\[
N_{-+} = N_{+-} = \frac{N}{4} (1 - q). \]
Approximating all distributions \(g \) in eq. (A.10) by their asymptotic expansions, eq. (69), we get
\[
\tilde{p}_{N_{++}}(E, E') = \frac{1}{2\pi \sigma^2 N \sqrt{1 - q^2}} \exp \left(-\frac{(E - \langle a \rangle mN)^2}{2\sigma^2 N(1 - q^2)} - \frac{(E' - \langle a \rangle mN)^2}{2\sigma^2 N(1 - q^2)} \right) \]
\[
\cdot \exp \left(-q \frac{(E + E') \langle a \rangle mN - EE' - \langle a \rangle^2 m^2 N^2}{\sigma^2 N(1 - q^2)} \right) \tag{A.12}
\]
Note that $\tilde{p}_{N_+}(E, E')$ factorizes only for $q = 0$.

In the scaling regime $m = O(1)$, $q = O(1)$ and N large, we can replace the binomials in eq. (A.3) by their asymptotic expansions according to eq. (72) and the sum over N_{++} by an integral over q. This integral in turn can be calculated asymptotically using the Laplace method. As a matter of fact the product of the binomials,

$$\binom{N_+}{N_{++}} \cdot \binom{N - N_+}{N - N_{++}} = \left(\frac{N}{2}(1 - m)\right) \cdot \left(\frac{N}{4}(1 - q)\right)$$

(A.13)

has a maximum at $q = m^2$, hence we expect the factorization only for $m = 0$, the balanced NPP. In fact, in this case we get

$$\left(\frac{N}{N/2}\right)^{N/2} \sum_{N_{++}=0}^{N/2} \left(\frac{N/2}{N/2 - N_{++}}\right)^2 \cdots = \frac{\sqrt{N}}{\sqrt{2\pi}} \int \frac{dq}{1 - q^2} e^{-Ns(q)} \cdots$$

(A.14)

with $s(q)$ from eq. (73), which has a maximum at $q = 0$. This proves that $p(E, E')$ factorizes asymptotically for the balanced NPP. Note however, that even for $m = 0$ the saddlepoint is not at $q = 0$ if $E, E' = O(N)$. Costs this large are not independent.

For the unconstrained NPP the calculation of $p(E, E')$ is a bit more cumbersome, but similar. Here we have two additional integrals over $m = \frac{1}{N} \sum_j s_j$ and $m' = \frac{1}{N} \sum_j s_j'$, but in the limit $N \to \infty$ the major contributions come from the saddle point at $m = m' = 0$. Hence we observe the asymptotic factorization for the unconstrained NPP, too.

References

[1] F. Barahona. On the computational complexity of Ising spin glass models. *J. Phys. A*, 15:3241, 1982.

[2] N.G. De Bruijn. *Asymptotic Methods in Analysis*. John Wiley & Sons, New York, 1961.

[3] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems are. In J. Mylopoulos and R. Rediter, editors, *Proc. of IJCAI-91*, pages 331–337, San Mateo, CA, 1991. Morgan Kaufmann.

[4] E.G. Coffman and George S. Lueker. *Probabilistic Analysis of Packing and Partitioning Algorithms*. John Wiley & Sons, New York, 1991.

[5] Bernard Derrida. Random-energy model: Limit of a family of disordered models. *Phys. Rev. Lett.*, 45:79–82, 1980.
[6] Bernard Derrida. Random-energy model: An exactly solvable model of disordered systems. *Phys. Rev. E*, 24(5):2613–2626, 1981.

[7] F.F. Ferreira and J.F. Fontanari. Probabilistic analysis of the number partitioning problem. *J. Phys. A*, 31:3417–3428, 1998.

[8] Yaotian Fu. The use and abuse of statistical mechanics in computational complexity. In Daniel L. Stein, editor, *Lectures in the Sciences of Complexity*, volume 1, pages 815–826, Reading, Massachusetts, 1989. Addison-Wesley Publishing Company.

[9] János Galambos. *The Asymptotic Theory of Extreme Order Statistics*. Robert E. Krieger Publishing Co., Malabar, Florida, 1987.

[10] Michael R. Garey and David S. Johnson. *Computers and Intractability. A Guide to the Theory of NP-Completeness*. W.H. Freeman, New York, 1997.

[11] Ian P. Gent and Toby Walsh. Phase transitions from real computational problems. In *Proceedings of the 8th International Symposium on Artificial Intelligence*, pages 356–364, Monterrey, 1995. ITESM.

[12] Ian P. Gent and Toby Walsh. Phase transitions and annealed theories: Number partitioning as a case study. In W. Wahlster, editor, *Proc. of ECAI-96*, pages 170–174, New York, 1996. John Wiley & Sons.

[13] Ian P. Gent and Toby Walsh. Analysis of heuristics for number partitioning. *Computational Intelligence*, 14(3):430–451, 1998.

[14] D.J. Gross and M. Mézard. The simplest spin glass. *Nucl. Phys. B*, 240:431–452, 1984.

[15] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In *Proceedings IJCAI-95*, pages 607–613, Montreal, Quebec, 1995.

[16] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevron. Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. *Operations Research*, 39(2):378–406, May-June 1991.

[17] Narendra Karmarkar and Richard M. Karp. The differencing method of set partitioning. Technical Report UCB/CSD 81/113, Computer Science Division, University of California, Berkeley, 1982.

[18] Narendra Karmarkar, Richard M. Karp, George S. Lueker, and Andrew M. Odlyzko. Probabilistic analysis of optimum partitioning. *J. Appl. Prob.*, 23:626–645, 1986.

[19] S. Kirkpatrick, Jr. C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. *Science*, 220(4598):671–680, May 1983.

[20] Richard E. Korf. From approximate to optimal solutions: A case study of number partitioning. In Chris S. Mellish, editor, *Proc. of IJCAI-95*, pages 266–272, San Mateo, CA, 1995. Morgan Kaufmann.
[21] Richard E. Korf. A complete anytime algorithm for number partitioning. *Artificial Intelligence*, 106:181–203, 1998.

[22] M.J. Lighthill. *Introduction to Fourier Analysis and Generalised Functions*. Cambridge University Press, 1959.

[23] George S. Lueker. Exponentially small bounds on the expected optimum of the partition and subset sum problems. *Random Structures and Algorithms*, 12:51–62, 1998.

[24] Jon Mathews and R.L. Walker. *Mathematical Methods of Physics*. Addison-Wesley Publishing Company, Inc., Redwood City, California, 1970.

[25] Stephan Mertens. Phase transition in the number partitioning problem. *Phys. Rev. Lett.*, 81(20):4281–4284, November 1998.

[26] Stephan Mertens. A complete anytime algorithm for balanced number partitioning. preprint xxx.lanl.gov/abs/cs.DS/9903011, 1999.

[27] Stephan Mertens. Random costs in combinatorial optimization. *Phys. Rev. Lett.*, 84(7):1347–1350, February 2000.

[28] M. Mézard, G. Parisi, and M.A. Virasoro. *Spin glass theory and beyond*. World Scientific, Singapore, 1987.

[29] J.P. Provost and G. Vallee. Ergodicity of the coupling constants and the symmetric n-replicas trick for a class of mean-field spin-glass models. *Phys. Rev. Lett.*, 50(8):598–600, February 1983.

[30] Heiko Rieger. Frustrated systems: Ground state properties via combinatorial optimization. In J. Kertesz and I. Kondor, editors, *Advances in Computer Simulation*, volume 501 of *Lecture Notes in Physics*, Berlin Heidelberg New York, 1998. Springer-Verlag.

[31] R.Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining computational complexity from characteristic ‘phase transitions’. *Nature*, 400:133–137, July 1999.

[32] W. Ruml, J.T. Ngo, J. Marks, and S.M. Shieber. Easily searched encodings for number partitioning. *Journal of Optimization Theory and Applications*, 89(2):251–291, May 1996.

[33] Li-Hui Tsai. Asymptotic analysis of an algorithm for balanced parallel processor scheduling. *SIAM J. Comput.*, 21(1):59–64, 1992.