Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free BMP4 culture

Stephen J Bruce1,2, Brooke B Gardiner1,3,4, Les J Burke1,4, M Milena Gongora1,3, Sean M Grimmond1,3,4 and Andrew C Perkins*1,2,3,4

Address: 1Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia, 2Wesley Research Institute, Queensland, Australia, 3ARC Special Research Centre in Functional and Applied Genomics, Australia and 4Australian Stem Cell Centre, Melbourne, Australia

Email: Stephen J Bruce - s.bruce@imb.uq.edu.au; Brooke B Gardiner - b.gardiner@imb.uq.edu.au; Les J Burke - l.burke@imb.uq.edu.au; M Milena Gongora - m.gongora@imb.uq.edu.au; Sean M Grimmond - s.grimmond@imb.uq.edu.au; Andrew C Perkins* - a.perkins@imb.uq.edu.au

* Corresponding author

Abstract

Background: Expression profiling of embryonic stem (ES) cell differentiation in the presence of serum has been performed previously. It remains unclear if transcriptional activation is dependent on complex growth factor mixtures in serum or whether this process is intrinsic to ES cells once the stem cell program has been inactivated. The aims of this study were to determine the transcriptional programs associated with the stem cell state and to characterize mesoderm differentiation between serum and serum-free culture.

Results: ES cells were differentiated as embryoid bodies in 10% FBS or serum-free media containing BMP4 (2 ng/ml), and expression profiled using 47 K Illumina(R) Sentrix arrays. Statistical methods were employed to define gene sets characteristic of stem cell, epiblast and primitive streak programs. Although the initial differentiation profile was similar between the two culture conditions, cardiac gene expression was inhibited in serum whereas blood gene expression was enhanced. Also, expression of many members of the Kruppel-like factor (KLF) family of transcription factors changed dramatically during the first few days of differentiation. KLF2 and KLF4 co-localized with OCT4 in a sub-nuclear compartment of ES cells, dynamic changes in KLF-DNA binding activities occurred upon differentiation, and strong bio-informatic evidence for direct regulation of many stem cell genes by KLFs was found.

Conclusion: Down regulation of stem cell genes and activation of epiblast/primitive streak genes is similar in serum and defined media, but subsequent mesoderm differentiation is strongly influenced by the composition of the media. In addition, KLF family members are likely to be important regulators of many stem cell genes.

Background

Embryonic stem (ES) cells isolated from the inner cell mass of the early mammalian blastocyst-stage embryo retain pluripotency when cultured on mouse embryonic fibroblasts (MEFs) in the presence of leukemia inhibitory factor (LIF) [1]. In the absence of LIF and MEF attachment, ES cells spontaneously differentiate into multi-cellular aggregates termed embryoid bodies (EBs). Although the
spatial complexity of organogenesis is not established during EB maturation, the dynamics of gene expression closely mimic those which characterize early stages of mouse development [2-5]. Thus, ES cell differentiation is an excellent model system for the discovery of genes involved in developmental processes.

Many studies have attempted to identify genes that define the stem cell state by mining for genes co-expressed in ES cells and various other stem cell populations such as hematopoietic and neural stem cells [6,7], or ES cells and trophoblast stem cells [8]. Some of these studies have been criticized because they were unable to define a similar cohort of stem cell genes [9]. Also, this approach is likely to find co-expression of ‘housekeeping’ genes that are irrelevant to the stem cell state. More recently, dynamic expression profiling during ES cell differentiation has been undertaken using various EB culture techniques [10,11] and the addition of exogenous growth factors [7]. Most of these studies followed differentiation for a short time period (up to 6–8 days) due to inherent limitations of liquid or adherent cultures cell differentiation systems.

Various platforms have been used to determine gene expression profiles, including differential display, SAGE [12] and slide micro-arrays, such as those provided by Affymetrix, Agilent and Compugen. In this study we employed Illumina® Sentrix Mouse-6 oligo bead arrays [13], which have ~47 K probes that are largely based on the MEEBO set of transcripts, plus ESTs discovered as part of the FANTOM2 transcriptome project [14], some alternatively employed exons, and a small subset of non-coding transcripts. This is a new, rich and sensitive platform for expression profiling [15].

ES cells were differentiated in methylcellulose cultures, which allowed consistent EB development over 16 days in either serum [2,16] or defined serum-free media containing BMP4 (2 ng/ml) termed serum-free B4L hereafter [17]. The directed differentiation of embryonic stem cells into desirable cell types will depend upon the addition of specific growth factors to defined media and reproducible physical conditions of culture. To establish a baseline for such studies, we undertook a comparison of murine ES cell differentiation using an embryoid body (EB) methylcellulose culture system containing either 10% FBS [2] or a chemically defined BSA-based media containing 2 ng/ml of BMP4, termed serum-free B4L [17]. Triplicate experiments were performed in which ES cells were harvested after feeder depletion, and set up in parallel EB cultures in serum versus serum-free B4L. RNA was collected at regular intervals up to 16 days, quantitative RT-PCR was performed on a panel of genes representing defined stages of development to establish the robustness of the culture system (Figure 1), and expression profiling was performed using Illumina® Sentrix Mouse-6 bead arrays (see Methods and [13]).

Changes in gene expression were extremely reproducible across ES differentiation experiments with overall correlation of global gene expression for biological replicates in the order of 0.95–0.96. Approximately 30% of the probes were differentially expressed at one or more stages of EB differentiation as determined by one-way Welch ANOVA with multiple testing corrections using the Benjamini and Hochberg False Discovery Rate algorithm (7,967 probes with a p-value of < 0.01 by Welch t-test) (Figure 2A).

To mine for genes with similar patterns of expression across the time course, hierarchical clustering was performed on the 7,967 probes and represented graphically. A large percentage of these (~30%) displayed highest expression in undifferentiated ES cells and subsequent reduced expression over time (labeled stem in Figure 2B). A second major cluster showed marked induction after ~day 4–6 of differentiation (labeled mesoderm in Figure 2B).

Putative stem cell genes sets

Previous studies have identified genes important to the stem cell state by comparing expression profiling data from different stem cell populations such as ES cells, hae-
Figure 1
Dynamic gene expression during EB differentiation in serum and serum-free media containing BMP4 [2 ng/ml]. Expression of stem cell, primitive streak and late mesoderm genes were analysed by quantitative RT-PCR in undifferentiated ES cells (0, grey bar) and in EBs collected for up to 16 days in serum (white bars) or defined media (black bars) from the same starting ES cell populations. Bars represent the means of three (serum) or two (serum-freeB4L) biological replicates. The Y-axis represents a log scale normalized relative to the housekeeping gene HPRT. Error bars indicate standard deviation.
Figure 2
Gene expression profiles during 16 days of EB differentiation in serum and serum-free media containing BMP4 [2 ng/ml]. (A) GeneSpring representation of the subset of genes from the 48 K Illumina array that showed significant differences in gene expression at 2 or more time points. Each line represents the mean normalised expression of an individual Illumina probe. Colours represent relative expression (red 4× increased; green 0.25× reduced) compared to a gene mean of 1 (black) with expression in undifferentiated ES cells (day 0) as the decision point for colour coding. The expression profiles of T (brachyury), Hba (α-globin), and Igf2 are indicated for reference. (B) Clustering (tree) of the genes that showed significant (p < 0.01) changes in gene expression upon differentiation by One-way Welch ANOVA. Expression levels are heat map colour coded (inset) with high expression at Day 0 coloured red and low expression coloured green.
matopoietic stem cells (HSCs) and neural stem cells [6,18]. We used two alternative approaches to identify specific stem cell specific gene expression. Firstly, genes with dynamic expression patterns which correlated closely with Oct4, Sox2 or Nanog expression profiles (Pearson correlation > 0.9) were determined as previously described [6,7]. Second, genes rapidly down regulated ≥3 fold by day 3 of differentiation, a time point where ES cell clonogenicity decreases dramatically, were determined. Not surprisingly there was very little overlap between these gene lists, primarily because Oct4 and Nanog expression persists during EB differentiation longer than many other stem cell genes (Figure 1). Full lists of genes ranked according to similarity of expression (Pearson correlation >0.9) with expression patterns for Oct4, Nanog or Sox2 are provided in Additional files 1, 2, 3, respectively.

Only fifty-nine genes were down regulated ≥3 fold by day 3 of EB differentiation (Table 1). Many of these have been identified as stem cell markers by other groups using alternative strategies [6,7,19]. Information was compiled on their known expression patterns and/or gene knockout phenotypes via literature searches as referenced in Table 1. Insufficient space exists to discuss every gene and most have been previously identified as ES cell enriched transcripts. Osteopontin is secreted by osteoblasts in the bone marrow niche where it is thought to play an important role in the maintenance of HSC quiescence and maintenance of ‘stemness’ [20]. It has also been discovered by other groups as a strong marker of ES cells and is regulated directly by the key stem cell transcription factors, Oct4 and Sox2 [21]. Thus, osteopontin is likely to be a useful marker of ES cell pluripotency and may play autocrine or paracrine roles in maintenance of stemness. The second most rapidly down regulated gene was estrogen related receptor β, Esrrb, which had previously been identified as a stem cell specific gene and shown to be critical for maintenance of the stem cell state [19]. F-box 15 (Fbxo15), a member of the large F-box family of genes [22] was also rapidly down regulated. Fbxo15 is known to be highly expressed in ES cells, is regulated by Oct4 and Sox2, but is dispensable for ES cell self-renewal [23]. Recently, the stem cell specificity of this locus was used to screen for cDNAs capable of transforming mouse fibroblasts into ES cell populations [24]. Other notable rapidly down regulated genes included the nodal inhibitors Lefty-1 and Lefty-2, and Zfp42/Rex-1, which are also well established as stem cell markers [19].

Oct4, Nanog and Sox2 are not included in Table 1, even though each is required for the maintenance of ES cell pluripotency [25-27] due to their persistent expression during the first 3 days of EB differentiation (Figure 1 and 5A, and Additional file 1). Indeed, Oct4 expression is known to persist beyond the inner cell mass stage of development in vivo, with transcripts detected in the epiblast and later in the primitive streak, before it becomes further restricted to primordial germ cells [10,28]. 779 genes with a similar pattern of expression to Oct4 (Pearson correlation of > 0.9) were identified (Additional file 1). As expected this list also includes many well known stem cell genes such as Sal-like 1, nodal, chromobox homolog 7 (Cbx7), Dmnt3b and Sprouty homolog 4 [19]. We also mined for stem cell genes by looking for similarity (Pearson correlation of > 0.9) with Nanog and Sox2 gene expression profiles. These provided overlapping but not identical sets of putative stem cell specific genes (Additional files 2, 3). Full data for the 16 days of differentiation can be interrogated and mined for specific differentiation outcomes via Signet (Login_Bruce) (see Methods).

Tightly co-ordinated waves of gene expression suggest sequential activation of epiblast, primitive streak and mesoderm differentiation programs

Many alternative differentiation programs occur simultaneously during ES cell differentiation. Therefore, it is difficult to find gene syn-expression patterns that identify specific programs using standard clustering methods. An alternative approach is to search for expression patterns that closely resemble genes of known function. For example, the T box gene, brachyury, is a well characterized specific marker of the primitive streak [29]. Brachyury expression is transient in vivo, a feature recapitulated during ES cell differentiation [2]. Using qRT-PCR, brachyury was induced ~1000 fold from D0 to day 4 and then rapidly silenced to baseline levels by D6 (Figure 1). The dynamics of brachyury expression were similar between serum and serum-free B4L media (Figure 1 and 3A), but serum-free media was unable to support brachyury induction in the absence of BMP-4 (data not shown). Thus, BMP4 (or related factors in serum such as activin) is essential for mesoderm generation. Thirty genes were identified with a similar expression pattern to brachyury (Pearson correlation >0.9) (Table 2) including many genes with established expression or critical functions during primitive streak formation, such as Mix1 [30], Lim1 [31], Sp5 [32] and eomesodermin [33]. Transient expression of many of these ‘streak-specific’ genes was validated by qRT-PCR (Figure 3B and data not shown). In all cases there was a close correlation between the qRT-PCR results and the profiling data (Figure 3A).

Interestingly, four novel transcripts were identified in this list (Table 2). One of these, 8430415E04Rik, was detected by two independent probes, strongly supporting its ‘streak-specific’ expression; by qRT-PCR there was ~50 fold induction from day 2 to day 3 of differentiation and a decrease to near baseline levels by day 6 (Figure 3B). The gene contains 24 exons, and the full length cDNA encodes
Table 1: Genes rapidly down regulated (>3 fold in 3 days) upon ES cell differentiation

Gene Name	Genbank ID	Fold ↓ D0 → D3	Raw D0	Function	Refs
Secreted phosphoprotein 1	NM_009263	26.8	3588	Reg. by Oct4 and Sox2	[21, 96]
Estrogen related receptor, beta	NM_011934	24.0	4238	ES cell renewal, placenta	[97]
F-box 15	NM_015798	21.8	4487	Stem cell specific locus	[23]
RIKEN cDNA 2200001155	NM_183278	18.3	2780	Vascular defect	[49]
Kruppell-like factor 2	NM_008452	17.0	2639	Nodal signalling inhibitor	[87]
Left-right determination, factor B	NM_010094	14.4	2537	ES cells, repressor	[98]
Transcription factor CP2-like 1	NM_023755	13.8	2237	ES cells, repressor	[98]
Zinc finger protein 42	NM_009556	13.4	2108	Nanog-Sox2 induced	[99, 100]
L-threonine dehydrogenase	NM_021480	10.9	1764	L-threonine degradation	[101]
DNA (cytosine-5-)methyltransferase 3-like	NM_011948	10.8	5226	Maternal imprinting	[102]
Transcription elongation factor A, 3	NM_011542	8.6	3874	Cell cycle regulation	[105]
Myosin light chain, skeletal muscle	NM_016754	8.6	1560	Cardiac muscle	[104]
S100 calcium binding protein A6	NM_011313	8.2	9086	Cell cycle regulation	[105]
Testis expressed gene 19	NM_028602	8.1	1963	Spermatogonia	[106]
Epithelial membrane protein I	NM_010128	7.9	1030	Neuronal differentiation	[107]
DNA segment, Chr 11, ERATO Doi 636	NM_029794	7.9	1278	Expressed in Morula	[108]
Similar to solute carrier family 7, member 3	NM_001004153	7.3	1036		
Left-right determination, factor 2	NM_177099	7.2	1903	Inhibitor of Nodal	[109]
Junction adhesion molecule 2	NM_023844	6.5	713	KO normal	[110]
Lyssosomal-associated protein, transmembrane 5	NM_010686	6.5	1539	haematopoiesis	[111]
Discoidin domain receptor 1	NM_007584	6.4	5451	Collagen response receptor	[112]
Aminoacidate-semialdehyde synthase	NM_013930	6.2	1094	Mitochondria	[113]
RIKEN cDNA 2410039E07	NM_217483	6.2	737		
RIKEN cDNA 241004A20	NM_025890	5.7	644		
Gastrulation brain homeobox 2	NM_010262	5.6	1204	Midbrain/hindbrain organiser	[114]
cDNA sequence BC051088	NM_177742	5.6	497		
Cordon-bleu	NM_172496	5.1	619		
Similar to EF 1A	NM_181357	5.0	538		
Regulatory factor X, 2	NM_009056	4.9	796	ICM expression	[103]
Tissue inhibitor of metalloproteinase 1	NM_011593	4.6	1732	Metalloproteinase inhibitor matrix	[115]
Kruppell-like factor 4	NM_010637	4.5	597	Epidermal, gut defect	[116]
Insulin-like growth factor binding protein 7	NM_008048	4.4	813		
latent transforming growth factor BP4	NM_175641	4.4	481		
Dnaj (Hsp40) homolog, subfamily C, 6	NM_198412	4.3	490		
Kruppell-like factor 5	NM_009769	4.3	1797	Cardiovascular remodelling	[117]
Nuclear receptor subfamily 5, group A, 2	NM_030676	4.2	494		[118]
RIKEN cDNA D230005D02	NM_172813	4.2	433		
Nuclear protein 1	NM_019738	4.1	388		[119]
for a protein of 868 amino acids (Figure 3D) which is highly conserved in vertebrates (Additional file 4). It has little homology to other proteins apart from three predicted HEAT domains or armadillo domains (grey shading in Figure 3D). Drosophila armadillo interacts with β-catenin via its HEAT/armadillo repeat [34], which suggests the protein encoded by 8430415E04Rik may also be involved in protein-protein interactions.

The list of primitive streak genes in table 2 is smaller than that previously published [10] due to the very stringent criteria used to determine brachyury-like patterns of expression. Thus, to find further genes characteristic of epiblast, early and late primitive streak programs, probes were identified which were transiently up and down regulated at least two fold with peak expression at day 2, 3 or 4 of EB differentiation. Gene lists were combined (102 Illumina probes) and clustered into epiblast, early, mid and late streak groups plus a unique group in which expression was very transient at day 3 of differentiation (designated ‘brief’ at the bottom of Figure 3C). Also, lists were generated by searching for similarity of dynamic expression profiles to known genes which are accepted specific markers of specific stages of mouse development. For example, Fgf5 is specifically expressed in the epiblast [35], and Wnt5a is expressed in the late primitive streak [36]. The Fgf5-like (epiblast) list includes the methyltransferase, Dnmt3b, which was massively up-regulated in the first 2 days of EB differentiation (Additional file 5) and is known to be essential for mesoderm differentiation [37]. This list also includes Pim2, Zic2, Wnt8a, the SP1 (and possibly SP5) cofactor Crsp2, and Irf1. The Wnt5a-like (late primitive streak) list contains 76 genes including many homeobox genes (Hoxb2, Hoxd1, Hoxb6 and Hox8/Msx2), Cdx2, Hand1, Tbx3, Bmp4 and the VEGF receptor Flt1 (Additional file 6). Many are expressed at E10 of mouse development in the remnants of the primitive streak [36], suggesting the Wnt5a-like list includes many genes known to pattern the embryo following formation of the germ layers. There is a significant overlap between

Table 1: Genes rapidly down regulated (>3 fold in 3 days) upon ES cell differentiation (Continued)
Gene

Intercellular adhesion molecule Icam1, CD54, Icam-1
Interleukin-1 receptor-associated kinase 3
Keratin complex 1, acidic, gene 17
Stathmin-like 2
Suppressor of cytokine signaling 3
Lipase, member H
RIKEN cDNA 4933405K07
Erythrocyte protein band 4.1-like 4a
Heat shock protein 1 (Hspb1)
Developmental pluripotency-associated 3
Lysyl oxidase
RIKEN cDNA 170061G19
RIKEN cDNA 130014J05
Pleckstrin homology domain containing, A4
Aurora kinase C (Aurkc)
Fibroblast growth factor binding protein 1
Caveolin, caveolae protein 1
Figure 3

Mining for genes expressed in patterns consistent with primitive streak, and epiblast differentiation programs.

(A) GeneSpring representation of epiblast and streak gene expression profiles during EB differentiation in 10% serum or serum-freeB4L culture. The up-regulation of genes between days 2–4 were similar under both conditions. (B) qRT-PCR analysis of Mixl, Lim1, Cdx4 and Riken clone 8430415E04Rik. The Y-axis represents expression relative to the housekeeping gene HPRT. Error bars indicate ± SD from three biological replicates. (C) 102 genes transiently up regulated during the first 4 days of ES cell differentiation were clustered using a tree algorithm and Pearson correlation of > 0.9. The 'Brief' group represents gene with very transient expression at day 3. (D) Coding region for 8430415E04Rik. The shaded areas represent the three Heat domains.
Table 2: Brachyury-like (Primitive Streak) gene list (Pearson correlation >0.9 with brachyury)

Description	Symbol	Corr	Synonyms	Genbank ID	Expression/Function
Brachyury (T)	T	1.00	cou;Low;Lr.;T1	NM_009309.1	[33, 136] Primitive streak
Eomesodermin *	Eomes	0.98	Tbr2	NM_010136.1	[33] Primitive streak
Fibroblast growth factor 8	Fgf8	0.97	Aigf;Fgf-8	NM_010205.1	[137] primitive streak expression
Mix1	Mix1	0.97	Mm1;Mml	NM_013729.2	[30] KO primitive streak abnormal
Lysophospholipase isoform 1	A530050D06Rik	0.97		XM_203596	
Lim homebox protein 1 *	Lhx1	0.96	Lim1; Lhx1	NM_008498	[31] Primitive streak expression
Mesoderm posterior 1	Mesp1	0.95		NM_008588.1	[18] nascent mesodermal cells
Sp5	Sp5	0.94		NM_022435.2	[32] Primitive streak expression
B430415E04Rik *	8430415E04Rik	0.94	unknown	NM_028980.1	
Axin2	Axin2	0.94	Axil;Axil;Conductin	NM_015732.3	[139] Wnt signalling inhibitor
Ninein	Nin	0.93	mKIAA1565	NM_008697	[140] Centrosome anchoring
E330090J07Rik	E330090J07Rik	0.93	mKIAA1147	NM_175528	
Proteosome subunit family 3	Ssc3a3	0.93	Znt3	NM_011773	[142] KO no phenotype
DHHC-type Zn-finger containing protein 20	Ccil20	0.92		NM_016960	[143] T and B cell regulation
Protease 28 subunit, beta 8 *	Psme2b	0.92	PA28b-p;Psme2-like	NM_01191.1	[144] MHC Class I regulation
D130029J02Rik	D130029J02Rik	0.92		XM_150103	
F-box and leucine-rich repeat protein 14	Fbxl14	0.92	Fbxl14	NM_133940	
WD repeat & FYVE domain containing 1	Wdfyl	0.92	(--)	NM_027057	[145] Endosome and Golgi regulation
ADP-ribosylation factor-like 6 inc. protein 2	Arip6p	0.92	Aip-2;AV334690	NM_019717.1	
Protease 28 subunit, alpha	Psme1	0.92	PA28a	NM_01189.1	[146] Protease activator MHC Class I
TAF10	Taf10	0.92	30 KDa;Ta2;TAF10TAF130	NM_020024.3	[147] KO ICM phenotype
Helicase with zinc finger domain	Helz	0.91		NM_198298	[148] Primitive streak expression
Transmembrane 4 superfamily member 10	Tm4sf10	0.91	BCMP1	NM_175771.2	
I190004M23Rik	I190004M23Rik	0.90		NM_011797.1	[149] KO no phenotype
Carbonic anhydrase 14	Car14	0.90		NM_010787.1	[150] Testis development
Male enhanced antigen 1	Mea1	0.90	Mea-1	NM_007866.1	[151] primitive streak expression
Delta-like 3, transcript variant 1	Dl13	0.90	pup;pudgy	NM_021447.1	[152] Myogenic regulator
Ring finger protein 30	Rnf30	0.90	MURF;MURF-3	NM_021447.1	

* More than one independent illumina probe for these genes were identified

the genes we identified as being epiblast-, early and late streak-specific and those recently identified using a similar EB differentiation system and Affymetrix arrays [10], and by other groups [2,38]. In addition, there are addition novel RIKEN cDNAs in these lists, which are likely to encode for interesting proteins worthy of further study (Additional files 5, 6).

Following the primitive streak wave of gene expression there was a dramatic activation of many genes (Figure 2A). Many of the highly induced genes, such as globin genes, heme synthesis enzymes and haematopoietic transcription factors, are known to be expressed in the blood. qRT-PCR for globin genes confirmed > 10,000 fold induction between days 3 and 8 with a steady decline thereafter (Figure 1). Other mesoderm and endoderm programs are also activated at this stage, so it is difficult to mine for these different outcomes.

Enhanced cardiac gene expression and reduced erythropoiesis in serum-freeB4L EB culture

Overall there were very strong similarities between ES cell differentiation in serum and serum-free cultures supplemented with 2 ng/ml BMP4. For example, all 29 of the primitive streak gene set, as defined from serum-containing cultures, were also expressed transiently and to a similar level in serum-freeB4L media (Figure 3A). Genes differentially expressed at each EB time point (Day 1–16) were pooled and subjected to QT clustering to find sets differentially expressed between serum and serum-freeB4L EB culture. Using a minimal cut-off of five genes per group, nine gene sets were identified; seven showed higher expression in serum and two showed higher expression in serum-freeB4L (Table 3 and Figure 4).

The genes in set 9 were expressed more highly in serum-freeB4L media from day 6, and genes in set 8 showed up-
regulation at day 12 and 16 in the absence of serum (Figure 4). Both sets are comprised almost exclusively of cardiac-specific genes such as myosin heavy chain 7 (Myh7), myosin light chain 7 (Myl7), the cardiac isoform of α-actin (Actc1), troponin (Tnnc2), tropomyosin (Tpm2), the nicotinic cholinergic receptor (Chrng), and cardiac muscle fast twitch 1 specific ATPase (Atp2a1) (Table 3). Further interrogation of the array data revealed a cohort of cardiac transcription factors, including ISL1, MEF2C, Bop/Smyd1 and Hand2 [39], which were transiently up regulated 1.4 to 3.5 fold in serum-freeB4L media compared to serum at day 6 (Signet Login_Bruce). Importantly, this elevated cardiac gene expression program correlated with increased numbers of spontaneously beating EBs in serum-freeB4L media (data not shown). Enhanced expression (~100 fold) of Actc1, Myl4 and Myl7 in serum-freeB4L media compared with serum-containing media was confirmed by qRT-PCR (Figure 1). Taken together, this data strongly suggests cardiac muscle cell differentiation is either inhibited in serum or enhanced by the addition of BMP4 to serum-free culture.

The genes in set 2 were expressed in both serum and serum-freeB4L conditions immediately following primitive streak formation, but expressed to higher levels and slightly earlier in serum (Table 3 and Figure 4). Many of these genes are globins (both embryonic and definitive) suggesting erythropoiesis is activated more robustly in the presence of serum (See Discussion). Alas2, a gene encoding the erythroid specific isoform of the first and rate limiting enzyme in the heme biosynthesis pathway, and the erythroid specific transcription factor, p45-NF-E2 are also in set 2 [40]. qRT-PCR for α- and β1-globin confirmed more rapid expression in serum versus SFB4L media (Figure 1), suggesting factors in addition to BMP4 enhance activation of the blood program from a similar primitive streak platform.

The genes in set 3 were expressed at a similar time in serum but expressed at very low levels or not at all in serum-freeB4L media. Again, this set is highly enriched for erythroid specific genes such as alpha hemoglobin stabilising protein (Ahsp) [41], Glycophorin A, erythroid Kruppel-like factor (EKLF/Klf1) [42] and mitochondrial solute carrier protein (mitoferrin) [43] (Figure 4 and Table 3). Genes in sets 1 and 5 are activated more robustly at late time points in serum cultures. Most of these are specifically expressed in macrophages. Together, these results suggest delayed and less robust primitive haematopoiesis occurs in SFB4L culture compared with serum, an observation confirmed by less robust erythroid cell generation and ‘redness’ of the EBs from day 6–10 of differentiation (data not shown).

Rapid changes in Kruppel-like factor gene expression upon ES cell differentiation

Three Kruppel-like factor genes, Klf2, Klf4 and Klf5, were rapidly down regulated during the first few days of EB development (bold type in Table 1). All are members of the KLF family of transcription factors which are characterized by a similar C-terminal domain of three C2H2 zinc fingers which confers binding to CACC box elements in promoters and more distant regulatory elements [44,45]. Klf2 and Klf4 have N-terminal transcriptional action domains and act primarily as transcriptional activators, whereas Klf5 is best known as a transcriptional repressor [46]. Until recently, Klf2 and Klf4 were considered to have restricted expression patterns [47,48] with gene knockout animals showing late developmental defects in vasculogenesis and skin differentiation, respectively [49,50]. Recently however, Klf4 expression was noted in ES cells [19,51], and forced expression was shown to enhance Oct4 expression and promote self-renewal [51].

qRT-PCR confirmed the rapid down regulation of Klf2, Klf4 and Klf5 in both serum and serum-freeB4L differentiation conditions, although Klf5 expression was down regulated more slowly (Figure 5A and 5B, and Table 4). Klf2, Klf4 and Klf5 were all re-induced from day 3–5 of differentiation as mesoderm and endoderm developmental pathways are activated (Figure 5A and 5B). Sixteen of the 17 known KLFs were examined in detail throughout the entire differentiation time course (Table 4). Klf9 was also steadily down regulated (>10 fold) between ES cells and day 5 EBs in serum and serum-freeB4L media (Figure 5B). Klf3, a well characterized transcriptional repressor [52] via its ability to recruit the co-repressor, CtBP [53], displayed an interesting biphasic expression pattern with initial rapid down regulation then re-induction from days 5–6 (Figure 5B). In contrast, Klf16 displayed little change in expression levels over the 16 days of EB maturation (Figure 5B).

Klf2 and Klf4 co-localize with OCT4 in the nuclei of ES cells (Figure 6A). Interestingly, all three proteins were found to preferentially reside in a nuclear sub-compartment (possibly nucleoli for transcription factories), suggesting possible co-involvement in a protein complex or network. Also, endogenous KLF2 was detected by specific CACC box DNA-binding activity in undifferentiated ES cells, which was lost upon EB differentiation (Figure 6B). In contrast, endogenous ES cell KLF4 DNA binding activity was not detected using the p18INK4c promoter CACC box sequence, although recombinant KLF4 was shown to bind to this probe (data not shown). SP1 and SP3 are ubiquitously expressed CACC-box binding proteins, which are dominant in ES cell nuclear extracts (Figure 6B). We hypothesize KLF2, KLF3, KLF4, KLF5 and KLF6 compete with SP1 family members for DNA binding to key cis
Table 3: Genes differentially expressed during ES cell differentiation in serum versus serum-free defined media (BMP4 2 ng/ml)

Set 1 – Chemokine ligands (Day 8)	Symbol	Synonyms	Genbank ID	BMP4	Serum
Hydroxyprostaglandin dehydrogenase 15	Hpgd		NM_008278.1	2.22	4.4
Src-like adaptor	Slia	Slap	NM_009192	1.29	0.90
Pleckstrin	Plek		NM_019549.1	1.31	4.9
Triggering receptor expressed on myeloid cells-like 1	Trem1I		XM_128641.3	1.67	12.6
Glycoprotein S (platelet)	Gp5	GPV	NM_008148.3	1.52	8.9
2810484G07Rik				2.07	13.5
Chemokine (C-X-C motif) ligand 7	Cxci7	b-TG1; CTAP3; LDGФ; MDGF; NAP-2	NM_023785.1	1.07	4.8
Angiotensin receptor 1	Agtr1	AT1;AT1a;AT2R1	NM_177232.2	1.58	5.8
Arachidonate 12-lipoxygenase	Alox12	Alox12p; P-12LO	NM_007440.2	1.29	9.2
Chemokine (C-C motif) ligand 4	Ccl4	Acc-2; MIP-1B	NM_013652	1.81	19.5
Chemokine (C-X-C motif) ligand 4	Cxci4	PH4;Scyb4	NM_019932.1	3.85	29.0
ATPase, Ca2+ transporting, ubiquitous	Atp2a3	Serca3	NM_016745.2	1.30	6.1
Chemokine (C-C motif) ligand 3	Ccl3	Mipa;Scya3	NM_011337.1	1.75	11.8

Set 2 – Globins (Day 6)	Symbol	Synonyms	Genbank ID	BMP4	Serum
β-major globin	Hbb-b1		AK002258	2.15	21.7
ζ-globin	Hba-x		NM_010405.2	4.30	128.3
ε-γ globin	Hbb-γ	E-γ	NM_008212.1	1.80	38.1
Nuclear factor erythroid-2 (p45)	Nfe2	p45NFE2	NM_008685.2	1.32	10.4
α-globin	Hba-a1	Hba1	NM_008218.1	3.21	89.7
Band-3/anion exchanger 1	Slc4a1	Aa1;CD233;Band 3	NM_011403.1	1.19	26.2
Rik2510042H12			AK011092	1.01	4.1
Aminolevulinic acid synthase 2	Alas2	Alas-2	NM_009653.1	1.14	13.2
β h1-globin	Hbb-bh1	betaH1	NM_008219.2	3.65	61.2

Set 3 – Blood (Day 8)	Symbol	Synonyms	Genbank ID	BMP4	Serum
Alpha hemoglobin stabilising protein	Ahsp	AHSP;EDRF	NM_133245.1	1.7	3.4
Myeloperoxidase	Mpo		NM_010824	1.1	3.6
Glycophorin A	Gypa	CD233a;GPA	NM_010369.2	2.1	5.2
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 4	Cited4	Mrg2	NM_019563	1.3	2.5
Mitoferrin	Mscp	Slc25a37	NM_030054.2	1.5	2.4
Kruppel-like factor 1	Klf1	Eklf	NM_018135	1.8	3.6

Set 4 – Various (Day 16)	Symbol	Synonyms	Genbank ID	BMP4	Serum
FXYD domain-containing ion transport regulator 2	Fxyd2	Asp1g1	NM_007503	1.38	6.7
Thioether S-methyltransferase	Tmnt		NM_009349	0.97	6.0
Mus musculus FXYD domain-containing ion transport regulator 2, transcript variant a	Fxyd2	Asp1g1	NM_052824.1	1.16	5.7
Fibrinogen, alpha	Fga	Fib	NM_01096.1	2.06	11.8
Kininogen-1	Knq		NM_023125.2	6.25	37.3
Serum amyloid A 3	Saa3	Saa-3	NM_011315	1.04	4.5
Deleted in azoospermia-like	Dazl	Dazla;Tpx-2;Tpx2	NM_010021.3	0.91	3.8
Fibrinogen, alpha	Fga	Fib	NM_010196.1	2.57	14.3
Chitinase 3-like 1	Chi3l1	brp-39;Brp39;Gp39	NM_007695.1	1.75	7.3
Kininogen II			NM_201375.1	1.73	7.9

Set 5 – Macrophage (Day 16)	Symbol	Synonyms	Genbank ID	BMP4	Serum
Neutrophil cytosolic factor 2	Ncf2	Ncf-2; p67phox	NM_018077	2.05	3.56
Complement component 1q beta	C1qb		NM_009777.1	1.13	4.63
Matrix metalloproteinase 12	Mmp12	Mmel	NM_008605.1	3.17	8.53
Complement component 3	C3	ASP;Plp	NM_009778.1	2.17	10.46
CD68 antigen	Cd68	gp110;Scard1	NM_009853	1.84	5.58
Table 3: Genes differentially expressed during ES cell differentiation in serum versus serum-free defined media (BMP4 2 ng/ml)

Symbol	Synonyms	Genebank ID	BMP4	Serum
Mpeg1		XM_129176	3.08	6.74
Tyrobp	DAP12;KARAP;Ly83	NM_011662.2	2.80	4.81
Myosin IF		NM_053214.1	1.64	3.33
Hmep1		NM_153505.2	1.41	4.22
Gsta3	Gst2-3	NM_010356.2	1.73	8.67
Gpnmb	Dchl1pdp	NM_053110	1.55	6.63
Pscd4		NM_028195	1.54	3.83
Bcl2a1b	A1-b	NM_007534	2.49	6.35
C1ag	C1qc	NM_007574.1	1.26	5.27
Fcgr3	CD16	NM_010188.2	2.10	5.84
Lyzs	Lys;Lzm;Lzp	NM_017372.2	5.80	21.72
Cc19	CCF18;MRP-2;	NM_011338	2.26	3.85
Bcl2a1d	A1-d	NM_007536	2.51	4.49
Emr1	F4/80; Ly71;TM7LN3	NM_010130.1	1.54	3.44

Set 6 – Day 16

Symbol	Synonyms	Genebank ID	BMP4	Serum
Igf1	C730016P09Rik;Igf-1;Igf-I	NM_010512.2	1.6	4.8
Prrs33		NM_178738.1	4.7	5.9
Ptpns1	CD172a; SHP-1;SHPS-1;	XM_149178.1	2.2	3.7
Apoa2	Alp-2;Apoa-2;ApoA-II;Hdl-1	NM_013474.1	9.8	57.4
Spon2	M-spondin;Mindin	NM_133903.2	2.0	12.0

Set 7 – Stem and late Day 16

Symbol	Synonyms	Genebank ID	BMP4	Serum
Fbxo15		NM_020572.1	0.94	4.1
Aurkc	AIE1;AIK3;Stk13	NM_183278.1	0.94	6.4
LOC236546	AF067061	NM_199060.1	0.85	3.8
LOC195150		NM_111306.1	0.80	9.3
LOC386244		XM_359136.1	0.88	5.2
LOC245109		XM_142517.3	0.89	3.7
Drr1	TU3A	AK044219	0.57	9.3

Set 8 – Cardiac Day 16

Symbol	Synonyms	Genebank ID	BMP4	Serum
Atp2a1	SERCA1	NM_007504.2	6.9	1.1
Chrng	Achr-3;Acrg	NM_009404.2	4.5	1.0
Acta1	Acta-2;Actcs;Actsk-1	NM_009666.1	25.3	1.2
Tpm2	Tpm-2;Trop-2	NM_009416.2	11.6	1.3
Chrrn1	Achr-1;Acra	NM_007389.2	4.1	1.0
Myh8		XM_354617	6.7	1.1
Chrrn1	Achr-1;Acra	NM_007389.2	5.4	1.1

Set 9 – Cardiac 2 Day 6

Symbol	Synonyms	Genebank ID	BMP4	Serum
Actc1	Actc-1	NM_009608.1	31.2	3.6
Sst	Smst;SOM;SRIF;SS	NM_009215.1	10.8	2.2
Myl7	MLC2a;MYL2a;RLC-A	NM_022879.1	14.3	4.7
Myh7	Myh-b;Myhcb	NM_080728.1	8.2	2.4
Actc1		NM_009608.1	26.3	3.5
QT clustering revealed sets of genes differentially expressed between serum and serum-free B4L EB culture. QT clustering revealed nine sets of genes with similar dynamic expression profiles (Pearson Correlation coefficient of > 0.9). In sets 1–7, expression is higher in serum (black sets). In sets 8–9, expression is greater in serum-free B4L EB culture (red sets). Some sets have been named based on the similarity of overall gene function during differentiation pathways (see Table 3).
elements in various stem cell genes to regulate expression in positive and negative fashions (see Discussion).

Enrichment of KLF-binding cis elements in the proximal promoters of stem cell specific genes

To investigate whether Kruppel-like factors might directly regulate stem cell gene expression, and therefore play a role in the maintenance or loss of ‘stemness’, the presence of KLF transcription factor binding sites (TFBS) within the proximal promoters of all genes in Table 1 was determined. Although a position weighted matrix (PWM) for KLF4 binding site specificity has been published [54], this site does not resemble the CACC box sequences known to bind other KLFs. Since KLF4 has identical DNA-binding residues in each of its three C-terminal C2H2 zinc fingers to other members of the Kruppel-like factor family [45], it should bind to similar sequences. Based on the crystal structure of the zinc fingers of Zif268 and Sp1 bound to DNA [55,56], and testing of specific binding of CACC box variants to recombinant KLF1, KLF3 and KLF17 [45,52,57,58], a generic KLF TFBS has been proposed. Although a SELEX experiment for KLF1 binding has not been published, experiments from our group suggest a C at position 1, an A or C at position 3, an A at position 5, and an A, T or C at position 9 of the 9 bp consensus provides enhanced affinity for KLF1 binding. Taken together, these studies have enabled the development of a PWM (called here KLF-A) that should predict KLF4, KLF2 and other KLF TFBSs (see Methods and Additional file 7).

Clover [59] was used to determine if defined TFBSs were statistically over-represented in the stem cell lists. We searched for PWMs for KLF-A, KLF4 [54], octamer, extended octamer, nanog, and Oct-Sox binary sites as well as negative control sites (gata-1 and E-box) in sequences 2 kb upstream of the TSSs of stem cell genes (Table 1) versus 2 kb of sequences upstream of the entire murine transcriptome (See Additional file 7 for details of PWMs). There was significant over-representation of KLF-A TFBS within the first 2 kb of promoter sequences from the stem list gene list (p value of < 0.01) (Figure 7A), as well as over-representation of octamer sites and extended Oct4-binding sites as defined from ChIP-PEI data [60]. No statistically significant over-representation of KLF4 [54], NANOG, GATA1 or E-box TFBSs were identified. All genes in the rapidly down regulated gene list have at least one KLF-A type CACC site, or octamer or Oct4 [60] TFBS. A full list of the promoters with highlighted sites is available on request. Together, this data strongly suggests direct transcriptional regulation of many stem cell genes by KLFs.

The Zfp42/Rex1 gene promoter is presented as an example of output from the Clover program (Figure 7B). It contains five KLF-A, one octamer and three OCT4 TFBS. The two CACC box elements within the first 250 base pairs of the TSS represent classical extended KLF-binding sites [42,61]. These regions are the same as previously reported [62] although their functional importance has not been determined. Interestingly, two of the three KLF-A TFBS were evolutionarily conserved between the mouse and rat gene promoters (Figure 7C). Also, two further conserved CACC sites at -1.4 and -1.5 kb were identified within 500 bp of extended evolutionary conservation (>70% identity) (Figure 7C). This might act as a KLF dependent enhancer. Most of the stem cell genes in list 1 have conserved CACC box elements in their promoters [63-66]. In some cases these have been reported to bind the ubiquitous Sp1, but our Clover analysis suggests they are also likely to bind KLFs (see Discussion).

Discussion

Expression profiling of murine ES cell differentiation was undertaken over a 16-day time course. We compared gene expression in methylcellulose cultures containing serum versus chemically defined media containing LIF (1 U/ml) and low concentrations of BMP4 (2 ng/ml) [67]. The Illumina® Sentrix Mouse 6 bead array provided a sensitive and detailed platform for analysis of dynamic gene expression. Using various data mining approaches, lists of stem cell-enriched genes and genes that are induced during the in vitro equivalent of epiblast and primitive streak stages of differentiation were generated. In combination with other ES cell profiling studies [7], our detailed expression data provides a useful resource for future reverse genetic approaches (i.e. siRNA knockdown) to study the function of these genes during ES cell differentiation and in vivo development. We also found a number of previously uncharacterized cDNAs (RIKEN clones) which could play important roles during development.

Importantly, the loss of pluripotency, measured by Oct4 gene expression, was comparable between serum and serum-free [64] EB culture, following a predicted decrease over the first 6 days. Surprisingly, Oct4 gene expression gradually increased following day 6, an observation independent of the cell lines used (data not shown). It remains undetermined if expansion of Oct4 positive ES cells persists as undifferentiated populations within our EB culture system. Previous studies have identified the development of Oct4 positive primordial germ cells (PGC) following 12 days of ES cell differentiation [68-70], suggesting the Oct4 profile may alternatively represent the expansion of non-ES cell populations. Although the expansion of some undifferentiated ES cells is possible, the array profile does not suggest global persistence or up-regulation of ES gene expression late in the EB program. Also, markers of mesoderm induction such as brachyury and Mix1, do not show persistent up-regulation following peak expression at day 4, suggesting EBs are unlikely to harbour cells which are
Table 4: Kruppel-like factor gene expression during ES cell differentiation

Symbol	Synonyms	Genbank ID	Illumina® Probe ID	Absolute Expression Level
			Day 0 3 6 10% Serum	
			Serum-free 10% Serum	

Symbol	Synonyms	Genbank ID	Illumina® Probe ID
Klf1	Eklf	NM_010635	scl33570.4.1_25-S
			110 105 125 114
Klf2	Lklf	NM_008452	scl16598.3.26-S
			2275 269 157 272
Klf3	Bklf;Tef-2	AK046659	rji[B430304G02] 3393-S
			112 92 80 102
			99
Klf4	Glklf; Zie	NM_010637	scl016599.2_295-S
			894 406 733 374
			881
Klf5	Bteb2;KLF	NM_009769	scl016600.2_135-S
			149 85 86 104
			102
Klf6	BCD1;CPBP;Klf6;Zf9	NM_011803	scl45215.1.1_294-S
			79 91 83 112
			105
Klf7	9830124P08Rik	AK086122	rji[D930067C011] 2481-S
			319 243 207
			270 277
Klf8	Klf8	NM_173780	scl09369.2_69-S
			334 281 202
			345 231
Klf9*	BTEB-1;Klf9	NM_010638	scl53274.2_128-S
			2035 910 205
			1120 394
Klf10	Tieg1;Egra;Tieg	NM_013632	scl47275.9_20-S
			84 83 70
			96 92
Klf11	Tieg3; Tieg2b;FKLF	NM_178357	scl70186.5_47-S
			71 65 64 93
			81
Klf12	AP-2rep;B130052C06Rik	NM_010636	scl000297.1.3-S
			75 70 70 104
			93
Klf13	Bteb3;FKLF;RFLAT-1	NM_021366	scl31250.6.21-S
			291 284 245
			332 308
Klf14	1110025j03Rik;Epfn;Klf14	NM_031183	scl008395.1_307-S
			109 141 103
			168 140
Klf15	1810013109Rik;CKLF;KLF	NM_023184	scl29751.3_94-S
			118 125 101
			156 120
Klf16*	BTEB4;DRRF	NM_078477	scl37728.2_209-S
			355 181 177
			249 167

a. Enriched in undifferentiated ES cells
b. Biphasic expression pattern (See Figure 5)

delayed or arrested from entering the differentiation program.

We found significant differences in cardiac gene expression during EB differentiation in serum and serum-free culture. Our current understanding of cardiac development provides possible insights into this observation. Briefly, in vivo studies have revealed BMPs secreted from the anterior lateral plate, and ill-defined signals from anterior primitive endoderm, are key inducers of cardiac development. By mimicking the environment that establishes cardiogenesis in vivo, assays capable of directing cardiac myocyte production from ES cells have been established. BMPs can efficiently enhance the cardiac program when added to EB culture, whereas BMP inhibition drastically suppresses this outcome. In our hands cultures supplemented with BMP4 (2 ng/ml) sup-

Bmp2 knockout animals develop cardiac abnormalities.

Conversely, Wnts secreted by the neural tube are strong suppressors of cardiogenesis. Together, these opposing signals act to establish the borders of the heart field. By mimicking the environment that establishes cardiogenesis in vivo, assays capable of directing cardiac myocyte production from ES cells have been established. BMPs can efficiently enhance the cardiac program when added to EB culture, whereas BMP inhibition drastically suppresses this outcome. In our hands cultures supplemented with BMP4 (2 ng/ml) sup-

Middlesex University, London, United Kingdom.

BMC Genomics 2007, 8:365 http://www.biomedcentral.com/1471-2164/8/365
ported cardiomyocyte maturation (as determined by expression of cardiac specific genes) with greatest expression detected at Day 8–10. This correlated with increased numbers of spontaneously beating EBs, and the timing of initial spontaneous contractions during murine embryogenesis [78]. The cardiac program was significantly reduced in culture containing 10% serum, an observation supported by a number of other studies [79,80]. This suggests the constituents of serum are inhibitory to cardiomyocyte development. Although a detailed assessment of cardiomyocyte differentiation was not the focus of this analysis, the array output, qRT-PCR profiles and morphological observations described supports the usefulness of this assay in future investigations. In addition, the defined constituents of serum-free [84]:365 http://www.biomedcentral.com/1471-2164/8/365, media provides an excellent opportunity to identify additional recombinant factors required to further expand cardiac progenitor cell production from EBs.

In contrast, the hematopoietic program was more pronounced within EBs grown in 10% serum than BMP4 alone (Figure 1 and 4). In particular, EKLF (Klf1) expression was significantly reduced in serum-free media supplemented with BMP4 (2 ng/ml) compared with serum (Figure 5A and Table 4). EKLF is essential for regulation of a large cohort of erythroid specific genes [81,82], many of which were identified in sets 2 and 3 (Figure 4). Thus, it is likely that reduced EKLF expression in SFB4L media directly results in inhibition of a cascade of erythroid gene expression. Previous work showed the addition of BMP (at 5 ng/ml) to serum-free ES cell culture induces EKLF expression and restores hematopoietic cell differentiation [83]. Although a weak hematopoietic program was observed in SFB4L culture, the concentration of BMP4 used was less than that used by Adelman et al. Thus, we suggest a robust cardiac (anterior-ventral mesoderm) gene expression program is induced by low concentrations of BMP4 (or other BMPs), whereas a robust blood gene expression program (posterior-ventral mesoderm) requires >2 ng/ml of BMP4 or additional growth factors. Recently, mesoderm derived progenitor cell populations for hematopoietic and cardiac lineages were studied during EB development using ES cells in which GFP is targeted to the brachyury locus [80]. Within day 3.25 EBs, GFP+Flk1+ cells were shown to represent hematopoietic precursors, whereas GFP−Flk1− cells were significantly enriched for cardiac progenitor populations. It would be interesting to determine if the ratio of Flk1+/Flk1− within the brachyury positive population is altered between our two culture conditions.

A number of the Kruppel-like factor family of transcription factors were dynamically expressed in the first few days of ES cell differentiation. It was initially surprising to find highly enriched Klf2 and Klf4 expression in ES cells, since both are considered markers of terminally differentiated cell types such as skin [50], gut [84], vascular smooth muscle [49,85] and lymphocytes [86]. However, recent evidence suggests KLFs may regulate stem cell function, since Klf4 is enriched in ES cells [19] and forced over-expression within these cells can maintain pluripotency in the absence of LIF [51]. Furthermore, Klf4 can bind the Lefty1 gene core promoter co-operatively with Oct4 and Sox2 [65]. Although Lefty 1 and 2 are best characterized as repressors of nodal, acting to regulate left-right patterning [87], our results and those of others, suggest a possible redundant role for lefty proteins during the maintenance of ES cell pluripotency [65]. Similarly to the Oct4 expression profile, many of the KLF family members also increased in expression late in the differentiation program. As mentioned, the KLFs are expressed in diverse tissues during development. It is therefore expected that the profiles obtained reflect the generation and early specification of mesoderm and endoderm cells following primitive streak gene activation at day 4.

Based on the likely identical binding specificity of the KLF family, established transcriptional activation and repression roles of certain family members [44], and bioinformatic evidence of a high prevalence of KLF TFBSs in many stem cell genes, we propose KLF competition for occupancy of these CACC box elements might determine self-renewal versus differentiation of ES cells. According to this model, high levels of Klf2 and Klf4 expression in undifferentiated ES cells would lead to occupancy of CACC box elements in promoters of stem cell genes such as Pou5f1/Oct4, Nanog, Esrrb, Zfp42/Rex1, Lefty1 and Lefty2. Furthermore, the Klf2 and Klf4 genes themselves have CACC box elements in their proximal promoters (Figure 7A), suggesting a positive feedback loop within ES cells is likely. Interestingly, gene knockdown and lentiviral shRNA gene knockdown of Klf2 or Klf4, does not lead to an obvious stem cell defect [19,49,50,85], suggesting these two KLFs may have functionally redundant roles during the maintenance of pluripotency. Future analysis of KLF2/KLF4 double knockout ES lines or the knockdown of both proteins using RNAi technologies will be necessary to validate this hypothesis. Upon ES cell differentiation, down regulation of Klf2 and Klf4 was very rapid, whereas down regulation of Oct4 and Nanog was delayed for one to two days. We suggest loss of KLF2 and KLF4 binding to Pouf1/Oct4, Nanog, Esrrb and perhaps other stem cell promoters, could be directly responsible for their down regulation. Moreover, Klf5 was down regulated more slowly, and Klf3 was up-regulated in the first two days of differentiation, suggesting these KLFs may function primarily as transcriptional repressors at the Pouf1/Oct4, nanog, Zfp42 and Esrrb gene promoters. Once this differentiation driving transcription network is activated we suggest KLF3, KLF5 and KLF9 can accelerate loss of the stem cell state by directly repressing expression of the Klf2 and Klf4 genes them-
Kruppel like factors (Klfs) are dynamically expressed during the first few days of ES cell differentiation.

(A) GeneSpring plot of normalized gene expression for all KLFs detected during ES cell differentiation in serum or serum-free B4L culture. Most of the genes are listed on the y-axis in order from their highest relative expression in ES cells. There is dramatic up-regulation of Klf1 (Eklf) only in serum following day 6 of differentiation. Plots representing Nanog (red), Sox2 (red) and Pou5f1/Oct4 (green) are shown for comparison. Pou5f1 and Nanog gene expression persists at high levels for 2–3 days after Klf2, Klf4 and Klf5 are down regulated. (B) Validation of changes in gene expression of six members of the KLF family by quantitative real time RT-PCR. Scheme as described for Figure 2B.
Figure 6
Kruppel like factor expression and DNA binding activity during ES cell differentiation. (A) Co-expression of Oct4 with KLF2 or KLF4 in ES cells. Indirect immuno-fluorescence shows co-localization of KLF2 and KLF4 with Oct4 in sub-nuclear compartments (possibly nucleoli). Individual confocal images for OCT4, KLF2, KLF4, and DAPI are shown with the corresponding composite image. Scale bar 40 μm. (B) Electro-mobility gel shift assay showing changes in DNA binding activities at a conserved CACC box site in the p18-INK4c gene promoter. Nuclear extracts were generated from ES cells or EBs differentiated for four days in serum. Super-shifts were performed with specific antisera for SP1, SP3, KLF2, KLF3, and KLF4 (See Methods). There is strong binding of endogenous Sp1 to the CACC element in ES cells and EB cells. KLF2 DNA-binding activity is present in ES cells as determined by a specific inhibition of binding of the indicated DNA complex with a KLF2 antibody. This activity is lost upon differentiation into EBs. The identity of the CACC box binding activity in EBs denoted CAC-X, and the binding activity in ES cells denoted CAC-Y, was not definitively identified using this panel of antibodies.
Figure 7

KLF and octamer binding sites are highly enriched in stem cell gene promoters. (A) A Clover analysis was used to identify over-represented transcription factor binding sites within the promoter sequences of all stem cell genes identified in Table 1. Representative gene promoters are shown, indicating KLF-A binding sites (pink), octamer sites (ATGCWAAT) (green) and extended Oct4 binding sites (Oct4-Loh) (cyan) [60]. (B) Clover output for 2 kb of promoter sequence of murine Zfp42/Rex1. The positions and sequences corresponding to PWMs for KLF-A, octamer and Oct4 occupancy sites are indicated in the table and colour coded in the sequence. The positions are relative to the transcriptional start site. (C) ECR Browser output of conserved sequence identity between mouse and rat in the promoter and part of the first intron of the Zfp42 gene. The blue arrows indicate the direction of transcription. Yellow indicates the extent of the first (non-coding) exon, pink indicates regions of sequence conservation in the first intron and red indicates regions of sequence conservation in the 5' upstream region. rVISTA was used to find all of the KLF-A and octamer sites in the murine gene (Murine only) and conserved sites between mouse and rat (Conserved mouse, rat).
selves. Therefore, a combination of cross regulation of transcriptional outputs, and competition for occupancy of key stem cell promoters by KLF proteins with differing biochemical properties but identical DNA-binding capacities, may determine self-renewal versus differentiation outcomes. Again validation of this model requires functional analysis. It is important to note we have not proven occupancy of stem cell gene promoters by the KLFs in vivo. Chromatin immuno-precipitation (ChIP) experiments in ES cells and differentiated populations are essential to validate this model, however ChIP grade antibodies are not currently available.

This scenario is not necessarily limited to ES cell differentiation. A similar program may take place in many adult stem and progenitor cells populations. Certainly competition between Klf4 and Klf5 has been suggested to regulate cell growth [88], and Klf1 and Klf3 compete for binding and have opposing effects in blood cells [89]. Furthermore, an imbalance between occupancy of key stem cell or proliferation gene promoters by KLFs, with differing activating and repressing functions, could be responsible for the development or progression of many common forms of cancer. For example, loss of hetero-zygosity for Klf4 and Klf5 has been found in colon, stomach, breast, prostate and liver cancers [90,91].

In addition to the proposed complex transcriptional interplay between KLFs and stem cell gene promoters, direct protein-protein interactions and protein networks involving KLFs are possible. We showed sub-nuclear localization of KLF2 and KLF4 with OCT4 in ES cells (Figure 6A), and KLF4 can co-operate with OCT4 and SOX2 to drive expression of the Lefty1 core promoter [65]. Also, very recent biochemical purification of NANOG-interacting proteins discovered KLF4 as part of a NANOG-OCT4 network in ES biochemistry [63]. This is also consistent with the ability of KLF4 to co-operate with OCT4, SOX2 and c-MYC to drive de-differentiation of fibroblasts into ES-like cells [24].

Conclusion
Defining the genetic regulation of ES cell self renewal and differentiation will be instrumental for the development of future cell based therapies. Using 47 K Illumina® Sentrix bead arrays, the differential expression of genes during 16 days of ES cell differentiation was determined. Hierarchical gene clustering and correlation statistical analyses lead to the identification of a small cohort of genes which define the stem cell state. Historically, ES cell differentiation is achieved in culture media containing 10–15% FBS. A direct comparison between ES cell differentiation in serum and a serum-free media was undertaken. Surprisingly, global gene expression profiles were comparable between culture conditions, with the exception of mesoderm derived cardiac and haematopoietic transcripts. These results support the use of defined serum-free approaches for the directed differentiation of ES cell commitment. Expression of many KLF family members were enriched in ES cells and rapidly down regulated upon differentiation. KLF2 and KLF4 were co-localisation with OCT4 in ES cell nuclei and KLF transcription factor binding sites were over-represented within the promoters of the putative ES cell gene list (p < 0.01). Taken together, this data strongly suggests KLF family members regulate the maintenance of ES cell pluripotency.

Methods
ES cell culture, embryoid body formation and immunohistochemistry
W9.5 ES cell differentiation was performed as described (Bruce et al., Differentiation, in press). For immuno-fluorescence, feeder depleted W9.5 ES cells were seeded onto sterile gelatin-coated glass cover slips in ES cell media, fixed in 4% PFA for 10 min then washed in PBS. Cover slips were boiled in 10 mM citric acid (pH 6.4) for 10 min, washed in PBS and permeabilized in 0.18% triton X-100 in PBS for 10 mins. For OCT4/KLF4 detection, the cover slips were blocked in 1% BSA then incubated with rabbit polyclonal antibody raised against OCT4 (Abcam #ab19857) and goat Anti-mouse KLF4 (R&D Systems #AF3158) overnight at 4°C, then incubated in goat anti-rabbit Alexa-488 (1:400) (Molecular Probes #A11008) and donkey anti-goat Alexa-647 (1:400) for 1 hour. For co-detection of OCT4/KLF2, the Zenon Rabbit IgG labeling kit was used (Molecular Probes #Z-25308). 1 μg of KLF2 rabbit polyclonal antibody (Santa Cruz SC-28675) was labeled with Alexa647 Fab fragment following the manufacturer’s instructions. Cover slips already stained for OCT4 (Alexa488) were incubated with labeled KLF2 for 1 hr then washed and post-fixed in 4% PFA to ensure strong signal detection. DAPI 1:5000 (Molecular Probes #D3571) was used to detect nuclear localization. Cover slips were mounted on Superfrost® Plus slides (Menzel-Glaser) with VectaShield mounting media (Vector Laboratories H-1000). Confocal microscopy was performed on LSM 510 META Carl Zeiss microscope system.

RNA extraction, cDNA synthesis and real-time RT-PCR data analysis
Total RNA was made using TRIzol (Invitrogen), and cDNA was synthesized from 2 μg of DNase1-treated total RNA using Superscript III (Invitrogen) and oligo-DT12-15 (Promega) according to the manufacturer’s instructions. Quantitative RT-PCR (qRT-PCR) was carried out using the Applied Biosystems SYBR-green dye system and 7500 Real Time Cycler in 96-well plates. Cycling variables were as follows: 50°C for 2 minutes, 95°C for 10 minutes, then 40 cycles of 15-second denaturation at 95°C and 1-minute at appropriate annealing temperatures, optimized...
for each set of primers based on dissociation curves (Additional file 8). Expression levels were normalized to HPRT as determined from the ratio of delta CT values. Mean of relative expression ± SD was determined from three biological replicates. Sequencing of gel-purified amplicons was performed to ensure correct product amplification.

Micro-array hybridization and analysis
Expression profiling was performed using Sentrix Mouse-6 Expression BeadChip arrays from Illumina®. RNA was assessed for integrity using the Agilent Bioanalyzer 2100 and RNA integrity (RIN) scores above 9.5 were present in all samples. Amplification was performed with 500 ng of total RNA using the Illumina TotalPrep RNA Amplification kit (Ambion) with a 12 hour in vitro transcription reaction period. The quantity and quality of biotin-UTP incorporated cRNA was also assessed on the Agilent Bioanalyzer 2100. Amplified cRNA (1500 ng per array) was hybridized to Mouse-6.v1 BeadChip arrays according to the manufacturer guidelines and detected with Fluorolink Streptavidin-Cy3 (Amersham Biosciences). Arrays were scanned using the Illumina BeadStation Scanner. The raw intensity values obtained for the scanned array images were compiled using the proprietary BeadStudio v1.5.1.3 software and imported into GeneSpring GX v7.3.1 (Agilent) in which the mean relative expression ± SD was determined from double stranded oligonucleotide probes corresponding to an extended CACC site in the p18INK4c promoter (sense strand 5'-gttgggcggggcc-3') (Tallack, et al., submitted). Super-shifts were performed with specific antibodies raised against SP1 (Santa Cruz SC-059x), SP3 (Santa Cruz SC-644x), KLF2 (Santa Cruz SC-28675), KLF3 [52] and KLF4 (Santa Cruz SC-12538x).

Electro-mobility gel shift assays (EMSA)
Nuclear extracts were made from undifferentiated ES cells and embryoid bodies grown for four days in 10% serum. Electromobility gel shift assays (EMSA) were performed as previously described [61] using double stranded oligonucleotide probes corresponding to an extended CACC site in the p18INK4c promoter (sense strand 5'-gttgggcggggcc-3') (Tallack, et al., submitted). Super-shifts were performed with specific antibodies raised against SP1 (Santa Cruz SC-059x), SP3 (Santa Cruz SC-644x), KLF2 (Santa Cruz SC-28675), KLF3 [52] and KLF4 (Santa Cruz SC-12538x).

Bioinformatic searches for CACC sites and other over represented elements in promoters of stem cell genes
The data-mining tool Biomart (accessed via Ensembl release 36 of the mouse genome), was used to collate 2 kb of sequences upstream of the transcriptional start sites (TSSs) of all genes listed in Table 1. The Clover program, run via the MotifViz web interface [59], was used to search for over-representation of position weighted matrices (PWMs) for octamer [93], Oct4 [60], Oct Sox [60], KLF4 [54], E-box, GATA-1 [94] and CACC (KLF-A) elements in these promoter sets. The PWMs are listed in Additional file 7. The ECR Browser [95] was used to determine phylogenetic conservation of cis-elements between mouse, rat and human genomes.

Abbreviations
BSA, bovine serum albumin; EB, embryoid body; EMSA, electromobility gel shift assay; ES, embryonic stem; FBS, fetal bovine serum; KL, Kruppel-like factor; LIF, leukemia inhibitory factor; MEF, mouse embryonic fibroblasts; PFA, paraformaldehyde; PWM, position weighted matrix; TFBs, transcription factor binding sites.

Competing interests
The author(s) declares that there are no competing interests.
Authors' contributions
SB established the EB differentiation assay, collected and purified RNA samples, designed and carried out the quantitative RT-PCR studies and drafted the manuscript. BG carried out the micro array protocol. LB Carried out experimentation of mesoderm specific gene expression. MG performed the array statistical analysis and annotation. SG participated in the design of the study and performed the statistical analysis. AP conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Additional material

Additional file 1
Oct4 gene list. The data provided lists all genes expressed during 16 days of embryoid body differentiation with similarity to Oct4 (Pearson correlation >0.9).
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S1.doc]

Additional file 2
Nanog gene list. The data provided lists all genes expressed during 16 days of embryoid body differentiation with similarity to Nanog (Pearson correlation >0.9).
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S2.doc]

Additional file 3
Sox2 gene list. The data provided lists all genes expressed during 16 days of embryoid body differentiation with similarity to Sox2 (Pearson correlation >0.9).
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S3.doc]

Additional file 4
Sequence alignment of RIKEN clone 8430415E04RIK. The data provides an alignment of RIKEN clone 8430415E04RIK using human, mouse, chick and zebrafish sequences.
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S4.doc]

Additional file 5
FGF5 gene list. The data provided lists all genes expressed during 16 days of embryoid body differentiation with similarity to FGF5 (Pearson correlation >0.9).
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S5.doc]

Additional file 6
Wnt5a gene list. The data provided lists all genes expressed during 16 days of embryoid body differentiation with similarity to Wnt5 (Pearson correlation >0.9).
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S6.doc]

Additional file 7
Position Weighted Matrices. Provides published data on position weighted matrices for Oct, Sox, KLF-A, KLF4, Nanog, E-box, Gata-1 and their variants.
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S7.doc]

Additional file 8
Oligonucleotide sequences used for qRT-PCR analysis. Lists the oligonucleotide sequences and cycling conditions used for the qRT-PCR analysis.
Click here for file
[http://www.biomedcentral.com/content supplementary/1471-2164-8-365-S8.doc]

Acknowledgements
We acknowledge funding from Australian Stem Cell Centre (P021), Wesley Research Institute (2006_04), and scholarship support from Kidney Health Australia.

References
1. Evans MJ, Kaufman MH: Establishment in culture of pluripotent cells from mouse embryos. Nature 1981, 292(5819):154-156.
2. Keller G, Kennedy M, Papayannopoulou T, Miles MV: Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993, 13(1):473-486.
3. Vittet D, Prandini MH, Berthier R, Schweitzer A, Martin-Sisteron H, Uzan G, Dejana E: Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 1996, 88(9):3424-3431.
4. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI: Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995, 168(2):342-357.
5. Rohwedel J, Maltev V, Bober E, Arnold HH, Hescheler J, Wobus AM: Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 1994, 164(1):87-101.
6. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA: "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 2002, 298(5593):597-600.
7. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR: A stem cell molecular signature. Science 2002, 298(5593):601-604.
8. Tanaka TS, Kurath T, Kimber VL, Jaradat SA, Stagg CA, Usuda M, Yokota T, Niwa H, Rossant J, Ko MS: Gene expression profiling of embryoid-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res 2002, 12(12):1921-1928.
9. Vogel G: Stem cells. "Stemness" genes still elusive. Science 2003, 302(5644):371.
10. Hirst CE, Ng ES, Azzola L, Voss AK, Thomas T, Stanley EG, Elefanty AG: Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene. Dev Biol 2006, 293(1):90-103.
11. Bouhon IA, Kato H, Chandran S, Allen ND: Neural differentiation of mouse embryonic stem cells in chemically defined medium. BioEssays 2005, 27(10):943-953.

12. Richards M, Tan SP, Tan JH, Chen WK, Bongso A: The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004, 22(1):51-64.

13. Kühn K, Baker SC, Chudin E, Lieu PH, Oester S, Bennett H, Riguett P, Barker D, McDaniel TK, Chee MS: A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 2004, 14(11):2347-2356.

14. Okazaki Y, Furuno M, Yamanaka S: The examination of the transcription factors regulated by Oct-3/4 in mouse ES cells. Development 2003, 130(8):1743-1757.

15. Verdugo RA, Medrano JF: Comparison of gene coverage of mouse oligonucleotide microarray platforms. BMC Genomics 2006, 7:258.

16. Perkins AC: Enrichment of blood from embryonic stem cells in vitro. Reprod Fertil Dev 1998, 10(7-8):563-572.

17. Wiles MV, Johansson BH: Embryonic stem cell development in a defined environment. Exp Cell Res 1999, 247(1):241-248.

18. Bhattacharya B, Misra D, Brandenberger R, Meijer J, Luo Y, Yang AX, Jothy BH, Ginis I, Thies RS, Amit M, Lyons PA, Condie BG, Itskovitz-Eldor J, Rao MS, Puri RK: Gene expression in human embryonic stem cells identifies unique molecular signature. Blood 2004, 103(8):2956-2964.

19. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer B, Jaffe DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN: A novel, highly enriched array platform for quantitative gene expression. Nucleic Acids Res 2002, 30(15):3597-3609.

20. Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP: Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 2000, 223(1):77-90.

21. Treichel D, Becker MP, Gruss P: The novel transcription factor gene Sp5 exhibits a dynamic and highly restricted expression pattern during mouse embryogenesis. Mech Dev 2001, 101(1-2):175-179.

22. Ciruna BG, Rossant J: Expression of the T-box gene Eomes during embryonic mesoderm development. Mech Dev 1999, 81(1-2):199-203.

23. Peifer M, Berg S, Reynolds AB: A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 1994, 76(5):789-791.

24. Heisterkamp O, Goldfarb M: Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 1991, 112(3):397-406.

25. Goffette F, Hall M, Morris-Kay GM: Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn 1997, 210(4):431-445.

26. Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99(3):247-257.

27. Ten Dijke P, Francki IR, Faiella R, Bieker JJ: The novel transcription factor gene Sox2 is expressed in the developing lung and in the developing forebrain. Mech Dev 1999, 81(1-2):113-124.

28. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

29. Black BL: Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007, 18(1):67-76.

30. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

31. Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP: Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 2000, 223(1):77-90.

32. Treichel D, Becker MP, Gruss P: The novel transcription factor gene Sp5 exhibits a dynamic and highly restricted expression pattern during mouse embryogenesis. Mech Dev 2001, 101(1-2):175-179.

33. Ciruna BG, Rossant J: Expression of the T-box gene Eomes during embryonic mesoderm development. Mech Dev 1999, 81(1-2):199-203.

34. Peifer M, Berg S, Reynolds AB: A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 1994, 76(5):789-791.

35. Heisterkamp O, Goldfarb M: Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 1991, 112(3):397-406.

36. Goffette F, Hall M, Morris-Kay GM: Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn 1997, 210(4):431-445.

37. Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99(3):247-257.

38. Ten Dijke P, Francki IR, Faiella R, Bieker JJ: The novel transcription factor gene Sox2 is expressed in the developing lung and in the developing forebrain. Mech Dev 1999, 81(1-2):113-124.

39. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

40. Black BL: Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007, 18(1):67-76.

41. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

42. Black BL: Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007, 18(1):67-76.

43. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

44. Black BL: Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007, 18(1):67-76.

45. Andrews NC, Kotkow KJ, Ney PA, Erdjument-Bromage H, Tempst P, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol 2006, 291(4):H1653-8.

46. Black BL: Transcriptional pathways in second heart field development. Semin Cell Dev Biol 2007, 18(1):67-76.
embryonic stem cells. Oct3/4 and Sox2 to activate the Lefty1 core promoter in
K, Miyazaki J, Matoba R, Ko MS, Niwa H:
16(3):
84. Shie JL, Chen ZY, O'Brien MJ, Pestell RG, Lee ME, Tseng CC:
1998,
2919-2928.
139. Klf4 is a transcription factor
contributes to the expression of the retinoic acid-regulated
sites in murine Nanog gene promoter.
1997,
2005(2):
1356-1360.
70. Hubner K, Fuhrmann G, Lehmann CF, Kehler J, Reinbold R, De La
Fuerente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR: Derivation of
K, Miyazaki J, Matoba R, Ko MS, Niwa H:
The BMP/BMPR/Smad
Induction of avian cardiac myogenesis by anterior endoderm. Development 1995,
121(12):4203-4214.
71. Schultheiss TM, Burch JB, Lassar AB: A role for bone morpho-
genetic proteins in the induction of cardiac myogenesis. Genes Dev 1997, 11(4):
451-462.
72. Schultheiss TM, Burch JB, Lassar AB: Induction of avian cardiac
myogenesis by anterior endoderm. Development 1995,
121(12):4203-4214.
Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
73. Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
74. Zhang H, Bradley A: Mice deficient for BMP2 are nonvi-
and have defects in amnion/chorion and cardiac development. Development 1996,
122(10):
2977-2986.
75. Tzahor E, Lassar AB: Wnt signals from the neural tube block
ectopic cardiogenesis. Genes Dev 2001, 15(3):
255-260.
76. Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K: Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone mor-
rogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997, 11(4):
451-462.
77. Schultheiss TM, Burch JB, Lassar AB: Induction of avian cardiac
myogenesis by anterior endoderm. Development 1995,
121(12):4203-4214.
Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
73. Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
74. Zhang H, Bradley A: Mice deficient for BMP2 are nonvi-
and have defects in amnion/chorion and cardiac development. Development 1996,
122(10):
2977-2986.
75. Tzahor E, Lassar AB: Wnt signals from the neural tube block
ectopic cardiogenesis. Genes Dev 2001, 15(3):
255-260.
76. Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K: Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone mor-
rogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997, 11(4):
451-462.
77. Schultheiss TM, Burch JB, Lassar AB: Induction of avian cardiac
myogenesis by anterior endoderm. Development 1995,
121(12):4203-4214.
Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
73. Sugi Y, Lough J: Anterior endoderm is a specific effector of
termal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 1994,
200(2):
155-162.
74. Zhang H, Bradley A: Mice deficient for BMP2 are nonvi-
and have defects in amnion/chorion and cardiac development. Development 1996,
122(10):
2977-2986.
75. Tzahor E, Lassar AB: Wnt signals from the neural tube block
ectopic cardiogenesis. Genes Dev 2001, 15(3):
255-260.
76. Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K: Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone mor-
rogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997, 11(4):
451-462.
77. Schultheiss TM, Burch JB, Lassar AB: Induction of avian cardiac
myogenesis by anterior endoderm. Development 1995,
121(12):4203-4214.
BMC Genomics 2007, 8:365

http://www.biomedcentral.com/1471-2164/8/365

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
• available free of charge to the entire biomedical community
• peer reviewed and published immediately upon acceptance
• cited in PubMed and archived on PubMed Central
• yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Page 26 of 26
(page number not for citation purposes)
Author/s:
Bruce, SJ; Gardiner, BB; Burke, LJ; Gongora, M; Grimmond, SM; Perkins, AC

Title:
Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free(BMP4) culture

Date:
2007-10-10

Citation:
Bruce, S. J., Gardiner, B. B., Burke, L. J., Gongora, M., Grimmond, S. M. & Perkins, A. C. (2007). Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free(BMP4) culture. BMC GENOMICS, 8 (1), https://doi.org/10.1186/1471-2164-8-365.

Persistent Link:
http://hdl.handle.net/11343/258246

File Description:
Published version

License:
CC BY