Prenatal Exposure to Nitrate from Drinking Water and Markers of Fetal Growth Restriction: A Population-Based Study of Nearly One Million Danish-Born Children

Vanessa R. Coffman, Anja Søndergaard Jensen, Betina B. Trabjerg, Carsten B. Pedersen, Birgitte Hansen, Torben Sigsgaard, Jørn Olsen, Inger Schaumburg, Jörg Schullehner, Marie Pedersen, and Leslie T. Stayner

Table of Contents

Table S1. Characteristics of the study population by low birthweight, 1991-2011.

Table S2. Difference in the mean birthweight (grams) for NO$_3^-$ concentrations in household drinking water restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S3. Difference in mean body length at birth (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S4. Difference in mean head circumference (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S5. Adjusted odds ratios (aOR) for the association between term low birthweight and household NO$_3^-$ concentration, restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S6. Difference in the mean birthweight (g) and body length at birth (mm) and odds of low birthweight for NO$_3^-$ concentrations in household drinking water to babies born during the full cohort (1991-2011) and restricted to the later, lower exposure years (1997-2011).
Table S7. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and odds ratios (OR) for low birthweight using categorical and continuous variables for NO$_3^-$ concentrations in household drinking water, restricting to those with a recorded value for maternal pre-pregnancy height and weight.

Table S8. Difference in the mean birthweight (g), birth length (mm), and head circumference (mm) using categorical and continuous variables for NO$_3^-$ concentrations in household drinking water, adding one additional potential confounder to the base model.

Table S9. Adjusted odds ratios for the association between term low birthweight and household NO$_3^-$ concentrations, adding one additional potential confounder to the base model.

Table S10. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and low birthweight for NO$_3^-$ concentrations in household drinking water in two different exposure categorical schemes (five and four categories).
SUPPLEMENTAL TABLES

Table S1. Characteristics of the study population by low birthweight, 1991-2011.

Characteristic	Normal weight (≥ 2,500 g)	Low birthweight (< 2,500 g)
Total population, n (%)	842,320 (100)	10,028 (100)
Pregnancy average NO₂ (mg/L), mean ± SD	4.7 ± 7.6	4.9 ± 7.7
Gestational age (weeks), mean ± SD	40 ± 1	38 ± 1
Maternal age (years), mean ± SD	30 ± 5	29 ± 5
Maternal income (DKK), mean ± SD	229,100 ± 114,200	211,700 ± 108,800
Paternal age (years), mean ± SD	32 ± 5	32 ± 6
Paternal income (DKK), mean ± SD	331,000 ± 211,200	299,000 ± 178,000
Maternal height (cm), mean ± SD	169 ± 16	166 ± 8
Maternal pre-pregnancy weight (kg), mean ± SD	70 ± 23	65 ± 15
Sex, n (%)		
Female	410,705 (49)	5,856 (58)
Male	431,615 (51)	4,172 (42)
Gravidity, n (%)		
1	368,281 (44)	5,691 (57)
2	328,443 (39)	2,777 (28)
≥ 3	145,596 (17)	1,560 (16)
Maternal smoking, n (%)		
No	657,508 (78)	5,047 (50)
Yes	184,812 (22)	4,981 (50)
Maternal education, n (%)		
Compulsory	194,700 (23)	3,828 (38)
Secondary	404,032 (48)	4,288 (43)
Post-secondary	243,588 (29)	1,912 (19)
Maternal employment status, n (%)		
Employed	688,628 (82)	7,419 (74)
Unemployed	52,969 (6)	969 (10)
Not seeking work	100,723 (12)	1,640 (16)
Paternal education, n (%)		
Compulsory	182,765 (22)	3,290 (33)
Secondary	438,140 (52)	4,959 (49)
Post-secondary	212,136 (25)	1,588 (16)
Missing	9,279 (1)	191 (2)
Paternal employment status, n (%)		
Employed	760,694 (90)	8,512 (85)
Unemployed	33,551 (4)	664 (7)
Not seeking work	45,325 (5)	816 (8)
Missing	2,750 (0)	36 (0)
Urbanicity of maternal address at birth, n (%)		
Rural areas	272,270 (32)	3,390 (34)
Provincial town	241,417 (29)	3,083 (31)
Provincial city	106,839 (13)	1,124 (11)
Suburb of capital	102,658 (12)	1,142 (11)
Capital	119,136 (14)	1,289 (13)
Region of maternal address at birth, n (%)		
North Jutland	88,919 (11)	1,114 (11)
Middle Jutland	208,230 (25)	2,245 (22)
Southern Jutland	175,993 (21)	2,238 (22)
Capital area	253,167 (30)	2,840 (28)
Zealand 116,011 (14) 1,591 (16)

Year of birth, n (%)

Year	Total	Cases
1991 - 1995	207,774	2,980
1996 - 2000	205,373	2,522
2001 - 2005	197,992	2,141
2006 - 2012	231,181	2,385

Season of birth, n (%)

Season	Total	Cases
January - March	203,904	2,573
April - June	211,581	2,382
July - September	227,136	2,639
October - December	199,699	2,434

Water supply, n (%)

Supply	Total	Cases
Public	838,345	9,971
Private	2,989	42
Unknown	986	15

Caesarean delivery, n (%)

Delivery	Total	Cases
No	494,210	4,294
Yes	97,663	2,187

Note: All X² tests for difference between strata were significant at \(p \leq 0.001 \) except for the water supply \(p = 0.36 \) and continuous nitrate \(p = 0.007 \).

- The study population: full-term singleton live births in Denmark with a birthweight measurement born January 1, 1991 to December 31, 2011 to Danish-born parents who have at least eight address-linked \(NO_3 \) measurements and with non-missing covariates in the base model
- As reported two years prior to birth and standardized to 2009 values
- Maternal height and weight were assessed two years prior to birth and available from 2003 onward only, which reduces the sample size to 3,038 cases and 294,715 non-cases of LBW
- For children born in the period before 1997 smoking was recorded at the first visit with the midwife with no specifications as to the timing. For children born from 1997 onward smoking is during pregnancy.
- As reported two years before birth
- Municipalities in Denmark where the largest town has < 10,000 inhabitants
- Municipalities having a town with between 10,000 and 100,000 inhabitants
- Municipalities having a town with > 100,000 inhabitants
- Available from 1997 onward only, which reduces the sample size to 6,481 cases and 591,873 non-cases of LBW
Table S2. Difference in the mean birthweight (grams) for NO$_3^-$ concentrations in household drinking water restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

NO$_3^-$ (mg/L)	Base model $n = 852,348$	Only public $n = 848,316$	Never above 50 mg/L $n = 845,699$						
	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value
Categorical									
≤ 1	186,182	Ref (0)	185,339	Ref (0)	185,661	Ref (0)			
$> 1 - \leq 2$	182,870	-3.6 (-6.8, -0.5)	0.02	182,322	-3.5 (-6.7, -0.3)	0.03	182,333	-3.5 (-6.7, -0.3)	0.03
$> 2 - \leq 5$	299,468	-7.4 (-10.8, -4.1)	<0.001	298,381	-7.4 (-10.7, -4.0)	<0.001	298,401	-7.4 (-10.7, -4.0)	<0.001
$> 5 - \leq 25$	150,019	-8.1 (-11.6, -4.6)	<0.001	148,999	-7.9 (-11.5, -4.4)	<0.001	149,130	-8.0 (-11.6, -4.5)	<0.001
> 25	33,809	-7.0 (-13.3, -0.7)	0.03	33,275	-7.0 (-13.4, -0.7)	0.03	30,174	-6.6 (-13.2, 0.03)	0.05
trend		<0.001			<0.001			<0.001	
Continuousa	852,348	-9.7 (-14.6, -4.8)	<0.001	848,316	-9.5 (-14.4, -4.5)	<0.001	845,699	-9.8 (-14.8, -4.8)	<0.001

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. a The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.
Table S3. Difference in mean body length at birth (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

NO₃⁻ (mg/L)	Categorical	Continuous^a
n = 848,106	n = 844,095	n = 841,494

	Base model	Only public	Never above 50 mg/L						
	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value
≤ 1	185,379	Ref (0)	0.24	184,539	Ref (0)	0.26	184,860	Ref (0)	0.26
> 1 – ≤ 2	182,001	-0.1 (-0.2, 0.1)	0.24	181,456	-0.1 (-0.2, 0.1)	0.26	181,467	-0.1 (-0.2, 0.1)	0.26
> 2 – ≤ 5	297,885	-0.2 (-0.3, -0.02)	0.03	296,803	-0.2 (-0.3, -0.01)	0.04	296,824	-0.2 (-0.3, -0.01)	0.03
> 5 – ≤ 25	149,114	-0.4 (-0.5, -0.2)	<0.001	148,102	-0.4 (-0.5, -0.2)	<0.001	148,234	-0.4 (-0.5, -0.2)	<0.001
> 25	33,727	-0.2 (-0.5, 0.1)	0.27	33,195	-0.2 (-0.5, 0.1)	0.22	30,109	-0.2 (-0.5, 0.1)	0.21
trend	<0.001	0.01	<0.001	<0.001	0.01	<0.001	<0.001	0.01	

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

^a The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO₃⁻ compared to 0 mg/L.
Table S4. Difference in mean head circumference (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

NO$_3^-$ (mg/L)	Base modela $n = 588,981$	Only public $n = 586,128$	Never above 50 mg/L $n = 584,807$						
	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value
Categorical									
≤ 1	140,486	Ref (0)	0.79	139,828	Ref (0)	0.81	140,085	Ref (0)	0.80
$> 1 - \leq 2$	126,561	0.02 (-0.1, 0.2)	0.79	126,186	0.02 (-0.1, 0.2)	0.81	126,198	0.02 (-0.1, 0.2)	0.80
$> 2 - \leq 5$	218,398	-0.2 (-0.4, -0.1)	0.001	217,601	-0.2 (-0.4, -0.1)	0.001	217,625	-0.2 (-0.4, -0.1)	0.001
$> 5 - \leq 25$	81,085	0.1 (-0.1, 0.2)	0.52	80,451	0.1 (-0.1, 0.2)	0.57	80,588	0.1 (-0.1, 0.2)	0.55
> 25	22,451	0.1 (-0.2, 0.3)	0.62	22,062	0.1 (-0.2, 0.4)	0.62	20,311	0.1 (-0.2, 0.4)	0.46
trend	0.52			0.47			0.55		
Continuousb	588,981	0.04 (-0.2, 0.3)	0.69	586,128	0.04 (-0.2, 0.3)	0.74	584,807	0.1 (-0.2, 0.3)	0.60

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a Data were available only for births ≥1997.

b The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.
Table S5. Adjusted odds ratios (aOR) for the association between term low birthweight and household NO$_3^-$ concentration, restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

NO$_3^-$ (mg/L)	Base model \(n = 852,348 \)	Only public \(n = 848,316 \)	Never above 50 mg/L \(n = 845,699 \)						
	\(n \)	aOR (95% CI)	\(p \)-value	\(n \)	aOR (95% CI)	\(p \)-value	\(n \)	aOR (95% CI)	\(p \)-value
Categorical									
≤ 1	186,182	Ref (1)	0.52	185,339	Ref (1)	0.47	185,661	Ref (1)	0.47
> 1 – ≤ 2	182,870	0.98 (0.92, 1.05)	0.52	182,322	0.98 (0.91, 1.04)	0.47	182,333	0.98 (0.91, 1.04)	0.47
> 2 – ≤ 5	299,468	1.01 (0.94, 1.08)	0.86	298,381	1.01 (0.94, 1.08)	0.84	298,401	1.01 (0.94, 1.07)	0.87
> 5 – ≤ 25	150,019	1.02 (0.95, 1.09)	0.55	148,999	1.02 (0.95, 1.09)	0.55	149,130	1.02 (0.96, 1.09)	0.51
> 25	33,809	0.99 (0.88, 1.12)	0.91	33,275	0.99 (0.87, 1.11)	0.81	30,174	0.98 (0.86, 1.12)	0.78
trend		0.51	0.51		0.51	0.52		0.51	0.50
Continuousa	852,348	1.02 (0.93, 1.11)	0.73	848,316	1.02 (0.93, 1.11)	0.75	845,699	1.02 (0.93, 1.12)	0.74

Notes: EU = European Union. CI = Confidence interval. Models were fitted using logistic regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and aOR (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.
Table S6. Difference in the mean birthweight (g) and body length at birth (mm) and odds of low birthweight for NO$_3^-$ concentrations in household drinking water to babies born during the full cohort (1991-2011) and restricted to the later, lower exposure years (1997-2011).

NO$_3^-$ (mg/L)	Birthweight (g) base model	Birthweight (g) restricted model				
	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value
Categorical						
≤ 1	186,182	Ref (0)		142,697	Ref (0)	
> 1 – ≤ 2	182,870	-3.6 (-6.8, -0.5)	0.02	128,846	-2.8 (-6.6, 0.9)	0.14
> 2 – ≤ 5	299,468	-7.4 (-10.8, -4.1)	<0.001	221,761	-9.3 (-13.3, -5.3)	<0.001
> 5 – ≤ 25	150,019	-8.1 (-11.6, -4.6)	<0.001	82,449	-7.5 (-11.9, -3.1)	0.001
> 25	33,809	-7.0 (-13.3, -0.7)	0.03	22,616	-6.5 (-14.4, 1.4)	0.11
trend						
Continuousa,b	852,348	-9.7 (-14.6, -4.8)	<0.001	598,369	-9.6 (-15.8, -3.4)	0.002

NO$_3^-$ (mg/L)	Body length (mm) base model	Body length (mm) restricted model				
	n	Δ (95% CI)	p-value	n	Δ (95% CI)	p-value
Categorical						
≤ 1	185,379	Ref (0)		142,156	Ref (0)	
> 1 – ≤ 2	182,001	-0.1 (-0.2, 0.1)	0.24	128,301	-0.2 (-0.4, -0.02)	0.03
> 2 – ≤ 5	297,885	-0.2 (-0.3, -0.02)	0.03	220,776	-0.4 (-0.6, -0.2)	<0.001
> 5 – ≤ 25	149,114	-0.4 (-0.5, -0.2)	<0.001	82,033	-0.4 (-0.6, -0.2)	<0.001
> 25	33,727	-0.2 (-0.5, 0.1)	0.27	22,583	-0.2 (-0.5, 0.2)	0.41
trend						
Continuousa,b	848,106	-0.3 (-0.5, -0.1)	0.01	595,849	-0.4 (-0.6, -0.1)	0.02

NO$_3^-$ (mg/L)	Low birthweight base model	Low birthweight restricted model				
	n	aOR (95% CI)	p-value	n	aOR (95% CI)	p-value
Categorical						
≤ 1	186,182	Ref (1)		142,697	Ref (1)	
> 1 – ≤ 2	182,870	0.98 (0.92, 1.05)	0.52	128,846	1.00 (0.93, 1.09)	0.94
> 2 – ≤ 5	299,468	1.01 (0.94, 1.08)	0.86	221,761	1.07 (0.98, 1.16)	0.12
> 5 – ≤ 25	150,019	1.02 (0.95, 1.09)	0.55	82,449	1.03 (0.94, 1.12)	0.55
> 25	33,809	0.99 (0.88, 1.12)	0.91	22,616	0.99 (0.84, 1.15)	0.85
trend						
Continuousa,b,c	852,348	1.02 (0.93, 1.11)	0.73	598,369	1.02 (0.90, 1.15)	0.77

Note: CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a. Total n is the same as the continuous model n

b. The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.

c. The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and aOR (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.
Table S7. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and odds ratios (OR) for low birthweight using categorical and continuous variables for NO$_3$ concentrations in household drinking water, restricting to those with a recorded value for maternal pre-pregnancy height and weight.

NO$_3$ (mg/L)	n	Birthweight (g) restricted base modela,b	Birthlength (mm) restricted base modelb,d	Headcircumference (mm) restricted base modelb,c,e	Low birthweight restricted base modela,b	Low birthweight restricted base modela,b + height and weight							
		Δ (95% CI)	p-value	aOR (95% CI)	p-value	aOR (95% CI)	p-value						
Categorical													
≤ 1	71,885	Ref (0)	0.57	Ref (0)	0.73	Ref (0)	0.04	Ref (0)	0.89	0.2	0.2	0.3	0.03
> 1 - 2	70,245	-1.5 (-6.7, 3.7)	0.05	-3.7 (-9.2, 1.8)	0.19	0.1 (-0.2, 0.3)	0.49	Ref (0)	0.11	0.03	0.03	0.3	0.03
> 2 - 5	114,043	-5.6 (-11.3, 0.03)	0.38	-2.3 (-9.0, 4.4)	0.50	-0.3 (-0.6, -0.03)	0.03	Ref (0)	0.11	0.03	0.03	0.3	0.03
> 5 - 25	31,091	-3.1 (-10.1, 3.8)	0.38	0.1 (-0.1, 0.4)	0.22	0.2 (-0.1, 0.4)	0.22	Ref (0)	0.11	0.03	0.03	0.3	0.03
> 25	10,489	1.7 (-9.9, 13.3)	0.77	0.2 (-0.2, 0.6)	0.31	0.2 (-0.2, 0.6)	0.31	Ref (0)	0.11	0.03	0.03	0.3	0.03
trend		0.25		0.81		0.81		Ref (0)	0.11	0.03	0.03	0.3	0.03
Continuousc	297,753	-3.4 (-12.7, 6.0)	0.48	-2.7 (-11.8, 6.4)	0.56	0.04	0.03	Ref (0)	0.11	0.03	0.03	0.3	0.03

Note: CI = Confidence interval. Models were fitted using logistic regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a n = 293,882

b Restricting the base model to those with pre-pregnancy height and weight measurements for comparable estimates between models

c The continuous NO$_3$ exposure variable was log transformed, ln(x+1) and aOR (95% CI) shown for exposures x = 25.0 mg/L NO$_3$ compared to 0 mg/L

d n = 296,425

e n = 293,882

f Data were available only for births ≥1997
Table S8. Difference in the mean birthweight (g), birth length (mm), and head circumference (mm) using categorical and continuous variables for NO$_3^-$ concentrations in household drinking water, adding one additional potential confounder to the base model.

	Categorical NO$_3^-$ estimation (mg/L)	Continuous at 25 mg/L NO$_3^-$							
	n	≤ 1	> 1 ≤ 2	> 2 ≤ 5	> 5 ≤ 25	> 25	p for trend	Δ (95% CI)	
Birthweight (g) base modela	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348
+ gestational age	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348
+ Cesarean section	598,354	598,354	598,354	598,354	598,354	598,354	598,354	598,354	598,354
+ season of birth	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348
+ paternal age	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348	852,348
+ paternal income	851,913	851,913	851,913	851,913	851,913	851,913	851,913	851,913	851,913
+ paternal education	842,878	842,878	842,878	842,878	842,878	842,878	842,878	842,878	842,878
+ paternal employment status	849,562	849,562	849,562	849,562	849,562	849,562	849,562	849,562	849,562

	Categorical NO$_3^-$ estimation (mg/L)	Continuous at 25 mg/L NO$_3^-$							
	n	≤ 1	> 1 ≤ 2	> 2 ≤ 5	> 5 ≤ 25	> 25	p for trend	Δ (95% CI)	
Body length (mm) base modelb	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106
+ gestational age	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106
+ Cesarean section	595,834	595,834	595,834	595,834	595,834	595,834	595,834	595,834	595,834
+ season of birth	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106
+ paternal age	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106	848,106
+ paternal income	847,673	847,673	847,673	847,673	847,673	847,673	847,673	847,673	847,673
+ paternal education	838,683	838,683	838,683	838,683	838,683	838,683	838,683	838,683	838,683
+ paternal employment status	845,336	845,336	845,336	845,336	845,336	845,336	845,336	845,336	845,336

	Categorical NO$_3^-$ estimation (mg/L)	Continuous at 25 mg/L NO$_3^-$							
	n	≤ 1	> 1 ≤ 2	> 2 ≤ 5	> 5 ≤ 25	> 25	p for trend	Δ (95% CI)	
Head circumference (mm) base modelc	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981
+ gestational age	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981
+ Cesarean section	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981
+ season of birth	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981
+ paternal age	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981	588,981
+ paternal income	588,628	588,628	588,628	588,628	588,628	588,628	588,628	588,628	588,628
+ paternal education	583,104	583,104	583,104	583,104	583,104	583,104	583,104	583,104	583,104
+ paternal employment status	586,987	586,987	586,987	586,987	586,987	586,987	586,987	586,987	586,987

Note: Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother. The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 5.0 mg/L NO$_3^-$ compared to 0 mg/L.

a Base model: Controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, paternal employment status, region, and urbanicity.
Table S9. Adjusted odds ratios for the association between term low birthweight and household NO$_3^-$ concentrations, adding one additional potential confounder to the base model.

	n	≤ 1	> 1 – ≤ 2	> 2 – ≤ 5	> 5 – ≤ 25	> 25	OR (95% CI)	p for trend	Continuous at 25 mg/L NO$_3^-$	Δ (95% CI)
Low birthweight base model a	852,348	Ref	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.51	1.02 (0.93, 1.11)		
+ gestational age	852,348	Ref	0.99 (0.92, 1.06)	1.02 (0.95, 1.09)	1.02 (0.95, 1.09)	0.99 (0.87, 1.12)	0.56	1.01 (0.92, 1.11)		
+ Cesarean section	598,354	Ref	1.00 (0.93, 1.09)	1.07 (0.99, 1.16)	1.02 (0.94, 1.12)	1.00 (0.85, 1.16)	0.41	1.02 (0.90, 1.15)		
+ season of birth	852,348	Ref	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.52	1.02 (0.93, 1.11)		
+ paternal age	852,348	Ref	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.51	1.02 (0.93, 1.11)		
+ paternal income	851,913	Ref	0.98 (0.92, 1.04)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.56	1.01 (0.93, 1.11)		
+ paternal education	842,878	Ref	0.99 (0.92, 1.05)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	1.00 (0.89, 1.13)	0.54	1.02 (0.93, 1.11)		
+ paternal employment status	849,562	Ref	0.98 (0.92, 1.04)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.57	1.01 (0.93, 1.11)		

Note: Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother. The continuous NO$_3^-$ exposure variable was log transformed, ln(x+1) and OR (95% CI) shown for exposures x = 25.0 mg/L NO$_3^-$ compared to 0 mg/L.

a: Base model: Controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.
Table S10. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and low birthweight for NO$_3^-$ concentrations in household drinking water in two different exposure categorical schemes (five and four categories).

NO$_3^-$ (mg/L)	Categorical	Birthweight base modela	Birthweight collapsed modela	NO$_3^-$ (mg/L)	Categorical	Birth length base modelb	Birth length collapsed modelb	NO$_3^-$ (mg/L)	Categorical	Head circumference base modelc,d	Head circumference collapsed modelc,d	NO$_3^-$ (mg/L)	Categorical	Low birthweight base modela	Low birthweight collapsed modela	
		n	∆ (95% CI)	p-value		n	∆ (95% CI)	p-value		n	∆ (95% CI)	p-value		n	∆ (95% CI)	p-value
		186,182	-3.6 (-6.8, -0.5)	0.02		186,182	-3.6 (-6.8, -0.5)	0.02		140,486	0.02 (-0.2, 0.1)	0.24		186,182	0.02 (-0.2, 0.1)	0.24
		186,182	-7.4 (-10.8, -4.1)	<0.001		186,182	-7.4 (-10.8, -4.1)	<0.001		140,486	-0.2 (-0.3, -0.02)	0.03		186,182	-0.2 (-0.3, -0.02)	0.03
		150,019	-8.1 (-11.6, -4.6)	<0.001		150,019	-8.1 (-11.6, -4.6)	<0.001		140,486	-0.4 (-0.5, -0.2)	<0.001		140,486	-0.4 (-0.5, -0.2)	<0.001
		33,809	-7.0 (-13.3, -0.7)	0.03		33,809	-7.0 (-13.3, -0.7)	0.03		81,085	0.1 (-0.1, 0.2)	0.52		299,468	0.1 (-0.1, 0.2)	0.52
trend			<0.001				<0.001			22,451	0.1 (-0.2, 0.3)	0.62		22,451	0.1 (-0.2, 0.3)	0.62

Note: CI = Confidence interval. Models were fitted using linear and logistic regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a. n = 852,548
b. n = 848,106
c. n = 588,981
d. Data were available only for births ≥1997