AGN ENVIRONMENTS IN THE SLOAN DIGITAL SKY SURVEY. I. DEPENDENCE ON TYPE, REDSHIFT, AND LUMINOSITY

Natalie E. Strand
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; nstrand@illinois.edu

AND

Robert J. Brunner and Adam D. Myers
Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Received 2007 December 14; accepted 2008 July 24

ABSTRACT

We explore how the local environment is related to the redshift, type, and luminosity of active galactic nuclei (AGNs). Recent simulations and observations are converging on the view that the extreme luminosity of quasars is fueled in major mergers of gas-rich galaxies. In such a picture, quasars are expected to be located in regions with a higher density of galaxies on small scales where mergers are more likely to take place. However, in this picture, the activity observed in low-luminosity AGNs is due to secular processes that are less dependent on the local galaxy density. To test this hypothesis, we compare the local photometric galaxy density on kiloparsec scales around spectroscopic type I and type II quasars to the local density around lower luminosity spectroscopic type I and type II AGNs. To minimize projection effects and evolution in the photometric galaxy sample we use to characterize AGN environments, we place our random control sample at the same redshift as our AGNs and impose a narrow redshift window around both the AGNs and control targets. We find that higher luminosity AGNs have more overdense environments compared to lower luminosity AGNs on all scales out to our 2 h^{-1}_{70} Mpc limit. In addition, in the range $0.3 < z < 0.6$, type II quasars have similarly overdense environments to those of bright type I quasars on all scales out to our $2 h^{-1}_{70}$ Mpc limit, while the environment of dimmer type I quasars appears to be less overdense than the environment of type II quasars. We see increased overdensity for type II AGNs compared to type I AGNs on scales out to our limit of $2 h^{-1}_{70}$ Mpc in overlapping redshift ranges. We also detect marginal evidence for evolution in the number of galaxies within $2 h^{-1}_{70}$ Mpc of a quasar with redshift.

Subject headings: cosmology; observations — large-scale structure of universe — quasars: general — surveys

Online material: color figures

1. INTRODUCTION

The local environments of quasars provide valuable insight into the formation history and evolution of AGNs (e.g., Ellingson et al. 1991). Quasar environments were first studied by Bahcall et al. (1969), who used a sample of five quasars to show that quasars are associated with galaxy clusters. Yee & Green (1984) found that quasars reside in regions with higher galaxy density, and more recent work has confirmed that quasars are found in regions of galaxy groups or clusters of poor to moderate richness (Bahcall & Chokshi 1991; Fisher et al. 1996; McLure & Dunlop 2001; Wold et al. 2001; Coldwell et al. 2002; Barr et al. 2003). Although studies of several X-ray- and radio-selected samples have found evidence for a relationship between environment and AGN activity (e.g., Wurtz et al. 1997; Best 2004; Söchting et al. 2004), the Sloan Digital Sky Survey (SDSS) is the first survey to allow meaningful studies of quasar environments, because it samples large numbers of both quasars and galaxies at $z \lesssim 0.4$. Using SDSS data, Serber et al. (2006) concluded that the density of photometric galaxies around quasars increases with decreasing angular scale but is independent of redshift for $z \lesssim 0.4$. They also provided evidence for a higher density of galaxies around more luminous quasars at scales less than $100 h^{-1}$ kpc, while at larger angular scales the density appears to be largely independent of luminosity (see also Porciani & Norberg 2006; da Angela et al. 2008; Myers et al. 2007).

The results of Serber et al. (2006) agree with other studies showing enhanced clustering of quasars on small scales. Djorgovski (1991) first linked the excess of quasar clustering on small scales to galaxy interactions. Studies of small-scale clustering of quasars (e.g., binary and triplet quasars) also support the hypothesis that there is excess quasar clustering on scales of $\lesssim 100 h^{-1}$ kpc (Kochanek et al. 1999; Mortlock et al. 1999; Hennawi et al. 2006; Djorgovski et al. 2007; Myers et al. 2007).

An excess of quasar pairs on small scales naturally follows from a merger origin for quasar activity, whether these pairs simply trace biased groups where mergers are likely to occur (Hopkins et al. 2008) or are being excited in merging galaxies (Djorgovski 1991; Myers et al. 2008). Hopkins et al. (2006) have developed a unified, merger-driven framework that naturally predicts that quasar environments should be highly biased (Hopkins et al. 2008). These simulations show that major mergers between gas-rich galaxies are the likely mechanisms to trigger bright quasar activity, and that this activity is a phase in the evolution of massive spheroidal galaxies (Hopkins et al. 2005, 2008). In contrast, secular mechanisms may fuel the activity in most low-luminosity AGNs, implying that the small-scale environments of these objects should have a smaller bias (Hopkins & Hernquist 2006; Hopkins et al. 2008). Therefore, we would expect that objects driven by major mergers will have biased environments on small scales, whereas objects fueled by secular means will reside in less rich environments. Such a simplification hides many subtleties, however, as secular mechanisms such as harassment can probably only occur in slightly overdense environments. Further, for objects whose observed characteristics differ purely because of viewing angle or internal structure (Antonucci 1993; Elvis 2000), there should...
be no particular difference in local environment. This, of course, would only be the case if that structure is not correlated with fueling, as could occur, for instance, if more luminous quasars had strong winds. It is therefore important to understand the relationship between the physical properties of AGNs and their local environment, which will in turn provide insight into what aspects of AGN properties are explained by formation history, fueling, or simply by structure and orientation.

In this paper, we address this challenge by studying the nature of AGN environments. We improve on the most recent SDSS study by Serber et al. (2006) in several ways. We use larger samples of background photometric galaxies, as well as larger, more recent samples of spectroscopic AGNs. Our spectroscopic data are divided into four target samples: type I and type II quasars (e.g., AGNs with the highest intrinsic luminosity) and lower luminosity type I and type II AGNs. The spectra of type I AGNs and quasars are characterized by broad emission lines (FWHM > 1000 km s$^{-1}$; see, e.g., Hao et al. 2005a; Schneider et al. 2007), while the spectra of type II AGNs and quasars exhibit narrow emission lines (e.g., Hao et al. 2005a; Zakamska et al. 2003). We compare the overdensity of type I quasars to the overdensity of type II quasars as well as to lower luminosity type I and type II AGNs. In addition, we include cuts in photometric redshift space around spectroscopic targets and the random positions to which they are compared to minimize interloping foreground or background objects, as well as marginalize over any redshift evolution of the photometric galaxy sample. By using photometric redshift cuts, we obtain more realistic overdensity estimates and errors, and we are able to extend the study of AGN environments in the SDSS to $z \leq 0.6$.

The data samples used in this paper are discussed in § 2, and the technique for calculating overdensities is described in § 3. We give a detailed discussion of the relationship of type, redshift, and luminosity with the local environment of AGNs in § 4. Throughout the paper, we assume a concordance cosmology $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$, $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$ (with $h = 0.7$) in order to compare to results from previous studies.

2. DATA

We study the environments of spectroscopic AGN targets by counting photometric galaxies within a $2.0 \ h_70^{-1}$ Mpc projected comoving distance of the target center (i.e., we consider a conical slice around the target rather than a spherical volume). The samples of type I quasars, type II quasars, lower luminosity AGNs, and photometric galaxies selected from the SDSS are described below. We apply masks to the spectroscopic samples to eliminate objects within $2.0 \ h_70^{-1}$ Mpc of the survey edge or an area masked out by SDSS or with seeing $> 1.5''$ or r-band reddening $A_r \geq 0.2$. Figure 1 shows the redshift distribution of the spectroscopic and photometric samples used in our analysis.

2.1. Spectroscopic Targets

Our sample of spectroscopic type I quasar targets is drawn from the SDSS Fifth Data Release (DR5; Adelman-McCarthy et al. 2007) Quasar Catalog (Schneider et al. 2007), which includes K-corrected absolute i-band magnitudes for each object. Our quasar sample has $-27.5 \leq M_i \leq -22.0$, and our masking reduces the sample to 6034 quasar targets with $0.11 \leq z \leq 0.6$. In addition to absolute magnitude information, the catalog provides a flag to distinguish between resolved and point source objects. The measured luminosity of resolved sources will likely be contaminated by starlight from the host galaxy, so we have excluded the 1800 quasars with extended morphology. The final type I quasar sample contains 4234 objects.

2.2. Photometric Galaxies

The photometric galaxies are drawn from the SDSS DR5 database by selecting all primary objects photometrically classified as galaxies with r-band extinction-corrected magnitude in the range $14.0 \leq r \leq 21.0$. All of these objects have been assigned

\[1\] Note that Serber et al. (2006) used an r-band limit on their photometric galaxies rather than i-band as stated in their paper (W. Serber & R. Scranton 2007, private communication).
photometric redshifts via a template-fitting technique as described in Csabai et al. (2003). Our final photometric galaxy sample of over 28 million (28,856,324) objects consists of only those objects that pass the flag requirements for a clean galaxy sample. While we do not make explicit redshift cuts on the photometric galaxy sample, our technique (as described in § 3.1) effectively limits the sample to $0.06 \leq z \leq 0.65$.

3. TECHNIQUE

We count the number of photometric galaxies within a comoving radius of $2.0 \ h_{70}^{-1} \text{Mpc}$ of each spectroscopic target (e.g., spectroscopic quasar, AGN, or spectroscopic galaxy), excluding any galaxies that are within $25 \ h_{70}^{-1} \text{kpc}$ of the target. At $z < 0.4$, $25 \ h_{70}^{-1} \text{kpc}$ corresponds to an angular size of $3.3''$, which is approximately twice the average seeing in DR5 (Adelman-McCarthy et al. 2007). At angular scales smaller than this, deblending complicates the reliable detection and measurement of faint galaxies.

We generate a large number of random positions in the DR5 footprint area for each redshift increment of 0.001 in our redshift range of 0.11 $\leq z \leq 0.6$. We mask the positions in the same manner as we masked the spectroscopic targets, leaving at least 1000 random positions that are more than $2.0 \ h_{70}^{-1} \text{kpc}$ away from the survey edge or a masked area for each redshift value. We note that this approach helps counteract any bias due to evolution in the photometric galaxy sample (see also § 3.1). We count the number of photometric galaxies within a designated comoving distance around random positions and calculate the mean cumulative number of counts for that redshift increment as

$$R_i = \frac{\sum R_z}{N_z},$$

where N_z is the number of random positions R_z at a given redshift increment z. We calculate the error corresponding to the mean random counts as

$$e_R^2 = \frac{N_z}{N_z - 1} \left(\frac{\bar{R}_i^2 - \bar{R}_i^2}{\bar{R}_i} \right) = \sigma_R^2,$$

which is the variance on the mean random counts at a given redshift increment z.

The cumulative bin counts C_i around spectroscopic targets are matched with the mean cumulative random bin counts R_i (and error e_R) at the redshift increment closest to the target’s redshift. We calculate a mean overdensity at a particular scale, redshift, or absolute magnitude bin as

$$\delta_{bin} = \frac{(1/N) \sum_{i}^{N} C_i}{(1/N) \sum_{i}^{N} R_i} - 1 = \frac{C_{bin}}{R_{bin}} - 1 = \frac{C_{bin}}{R_{bin}} - 1,$$

where C_i is the counts around each target in the bin, R_i is the mean counts around random positions at the corresponding redshift, and there are N total targets in the bin. The error on the overdensity is determined via error propagation:

$$e_{\delta_{bin}}^2 = \frac{e_{C_{bin}}^2}{R_{bin}^2} + \frac{e_{R_{bin}}^2}{C_{bin}^2} e_{\delta_{bin}}^2,$$

where $e_{C_{bin}} = C_{bin}^{1/2}$ and $e_{C_{bin}} = \sum_i N_i e_i^2$.

We will refer to the quantity of C_{bin}/R_{bin} as the “mean density”; this quantity is used to compare our results to those of Serber et al. (2006). In order to compare the environments of various spectroscopic populations, we use the “mean overdensity”, $(C_{bin}/R_{bin}) - 1$, which is associated with the underlying dark matter distribution and can be more directly related to correlation analyses of clustering (e.g., Padmanabhan et al. 2008).

3.1. δz Cut

One of the difficulties in using photometric galaxy samples for overdensity measurements is the issue of projection effects, where foreground or background objects contaminate a measurement. We use photometric redshifts assigned to the photometric galaxies to minimize this complication. We apply a photometric redshift cut on the galaxies so that only those galaxies that satisfy $|z_{\text{target}} - z_{\text{photometric}}| \leq \delta z$ are counted in each bin. Crucially, the same δz cut is applied to both the spectroscopic targets and the random positions to which they are compared, which, as noted above, are also placed at the same redshift as the spectroscopic targets. We therefore minimize contamination by most galaxies outside of the δz interval. In addition, by calculating our spectroscopic-photometric and random-photometric counts in the same $z \pm \delta z$ bin, we marginalize redshift evolution in the photometric galaxy sample outside of that $z \pm \delta z$ bin. We assume for the purposes of this work that there is no redshift evolution in the photometric galaxy sample over this small δz interval. We have not accounted for the changes in photometric redshift accuracy as a function of magnitude and redshift, which we assume are negligible for this analysis.

We verify that the projection effect issue is mitigated by the δz cut without introducing systematics by calculating overdensities for random positions with the same redshift distribution as the type I quasar sample. We find that the overdensities of photometric galaxies around random positions is consistent with zero on all scales with and without the photometric redshift cut. We use the value $\delta z = 0.05$, which is large enough to encompass the effective rms error of the photometric redshifts ($\Delta z_{\text{rms}} = 0.04$ for $r < 18$; Budavari et al. 2003), for all further analysis. We have tested other values of δz and find that they give consistent results, albeit with larger uncertainties for narrower cuts, which is consistent with the expectations of Poissonian sampling.

To compare our results directly to those of Serber et al. (2006) who did not apply any such redshift cut, we calculate the mean density of photometric galaxies around type I quasars with $-24.2 \leq M_i \leq -22.0$ and $0.08 \leq z \leq 0.4$. At a scale of $250 \ h_{70}^{-1} \text{kpc}$, the density of photometric galaxies around quasars is 1.41 ± 0.033, and around L_e galaxies it is 1.15 ± 0.005 without the δz cut. However, applying the δz decreases the random background noise, so we measure an environment density of 2.11 ± 0.096 around quasars and 1.74 ± 0.020 around L_e galaxies at the same scale. In order to confirm that we have not added systematics by using the δz cut, we compare the relative densities of quasar environments to L_e galaxy environments. The relative density of photometric galaxies around quasars to that around L_e galaxies is 1.22 ± 0.029 without the δz cut. The relative density does not appreciably change when the δz cut is used; we find the relative density to be 1.22 ± 0.057. The true physical effect of the δz cut is shown in the comparison of mean overdensities. At the same scale of $250 \ h_{70}^{-1} \text{kpc}$, the relative overdensity around quasars compared to that around L_e galaxies is 2.67 ± 0.236 without the δz cut, but is 1.51 ± 0.137 with the δz cut. Because we have removed projection effects, the relative overdensities are lower when the δz cut is used; however, the errors on the mean densities with the δz cut have increased. We believe these larger errors are more physically relevant; with no δz cut, objects not actually correlated with the target will reduce Poissonian error estimates. We use the
1.9 times more overdense than Type II AGNs. Moving out to the 1.3 times more overdense than Type I AGNs. At the same scale, with $0<z<1$ slightly for clarity. [See the electronic edition of the Journal for a color version of this figure.]

The differences between the target samples’ environment overdensities could be an effect of AGN type; however, the intertwined effects of AGN luminosity and redshift will certainly play into these differences. In the next section, we explore how AGN type, redshift, and luminosity influence the measured differences in AGN environments.

4. DISCUSSION

AGN luminosity and type should be key factors dictating variations in environment overdensity according to the hypothesis that information about the fueling mechanisms of different AGNs will be evidenced in the AGN environments (e.g., Hopkins et al. 2008). In addition, the differences in overdensity between the target types seen in Figure 2 could be due to redshift effects, since it is obvious from Figure 1 that the redshift distributions of the samples are not the same. Therefore, in this section we investigate how the measurement of local environment varies with redshift, luminosity, and AGN type. We first isolate each of these variables to study its impact on measured overdensities while the other two variables are held constant. Because the variables are not independent, we consider them together in § 4.4.

4.1. Redshift

We first investigate only the effects of redshift. Figure 3 shows the mean cumulative overdensity as a function of redshift for the spectroscopic target samples, which provides marginal evidence for redshift evolution in the environment overdensity of Type I quasars. The dashed lines show the linear weighted least-squares fit to the Type I quasar environment overdensity data with redshift at different maximum radii; the fitting parameters for these lines is given in Table 1. The rightmost column of the table gives the χ^2 probability for each fit using the relevant degrees of freedom. The best linear fit for the smallest scale of $R \leq 0.1 \ h^{-1}_{70}$ Mpc has a slope of -1.171, which suggests decreasing overdensity with increasing redshift, and for $R \leq 0.25 \ h^{-1}_{70}$ Mpc, the overdensity increases with redshift; the best linear fit has a slope of 1.276. While these fits indicate a slight redshift dependence, we also try a zero-slope linear fit (which necessarily has one less degree of freedom than the best-fit line) and find that the zero-slope fit, i.e., no redshift dependence, is also a good fit to the data and in some cases is slightly more likely. Higher precision and higher redshift measurements will be necessary to place strong constraints on the functional form of environment overdensity evolution with redshift. If the environment overdensity is indeed independent of redshift, this implies that the significant differences in environment seen in Figure 2 are caused primarily by luminosity and type effects, rather than the influence of redshift evolution.

In Figure 2, we present the mean cumulative overdensity of photometric galaxies as a function of scale for each spectroscopic target sample. There are clear differences: Quasars are in the most overdense environments at all scales, and Type II objects are in more overdense environments than Type I objects for both higher luminosity AGNs (i.e., quasars) and lower luminosity AGNs. Within a scale of $\approx 150 \ h^{-1}_{70}$ kpc, Type II quasars have an environment 1.4 times more overdense than that of Type I quasars, albeit with large errors, while the Type II AGNs have an environment 1.3 times more overdense than Type I AGNs. At the same scale, the Type I quasars have environments more overdense than Type I AGNs by a factor of 1.8, and Type II quasars have environments 1.9 times more overdense than Type II AGNs. Moving out to the scale of $\approx 1 \ h^{-1}_{70}$ Mpc, the Type II quasars again have an environment 1.4 times more overdense than the environment of Type I quasars, and the Type I quasars are in environments 1.4 times more overdense than Type I AGNs.

The differences between the target samples’ environment overdensities could be an effect of AGN type; however, the intertwined effects of AGN luminosity and redshift will certainly play into these differences. In the next section, we explore how AGN type, redshift, and luminosity influence the measured differences in AGN environments.

4.2. Type

In Figure 5 we identify three redshift ranges where there is overlap between our AGN samples and explore whether differences in type are reflected in the relative overdensity. The top panel shows...
the overdensity as a function of scale for both types of higher luminosity AGNs (i.e., quasars) in the range $0.3 \leq z \leq 0.6$, and for both types of lower luminosity AGNs in two redshift ranges, $0.11 \leq z \leq 0.15$ and $0.15 < z \leq 0.33$. The dividing redshift value of $z = 0.15$ is chosen to roughly equalize the number of lower luminosity AGNs in each redshift range. The lower three panels show the ratio of type II environment overdensity to type I environment overdensity in the three redshift ranges. Again, we are able to compare objects in different redshift ranges because we have imposed δz cuts on the photometric galaxies around both the spectroscopic targets and the random positions to which they are compared (see § 3) in order to account for any redshift evolution in the photometric galaxy sample and to minimize projection effects.

Type II quasars have higher overdensity environments than type I quasars with little scale dependence: at $R \approx 1.0 \ h_{70}^{-1} $ Mpc, the overdensity of type II quasar environments is a factor of 1.4 greater than the overdensity of type I quasar environments, and at the smaller scale of $R \approx 250 \ h_{70}^{-1} $ kpc, the type II quasar environments have 1.2 times the overdensity of type I quasar environments. However, the large errors prevent us from drawing strong conclusions.

Fig. 3.—Mean cumulative overdensity vs. redshift for spectroscopic targets. Symbols correspond to those used in Fig. 2. The dashed lines are linear-weighted least-squares fits for the type I quasar sample; the parameters for these lines are given in Table 1. [See the electronic edition of the Journal for a color version of this figure.]

TABLE 1

R_{max} (Mpc)	Slope	Intercept	χ^2	$P(\chi^2, \nu)$
$2.0\ h_{70}^{-1}$	0.119, 0.0	$-0.880,-0.833$	6.84, 8.10	0.3363, 0.3241
$1.0\ h_{70}^{-1}$	0.140, 0.0	$-0.730,-0.677$	5.58, 6.04	0.4719, 0.5352
$0.5\ h_{70}^{-1}$	0.691, 0.0	$-0.638,-0.388$	1.62, 4.17	0.9514, 0.7603
$0.25\ h_{70}^{-1}$	1.276, 0.0	$-0.249,0.200$	0.421, 1.91	0.9987, 0.9646
$0.1\ h_{70}^{-1}$	$-1.171,0.0$	2.066, 1.635	0.628, 0.716	0.9959, 0.9982
Type II environment overdensity is again consistently about a factor of 1.3 higher on all scales than the type I environment overdensity for lower luminosity AGNs in the redshift range $0.15 < z \leq 0.33$. In the lower redshift range of $0.11 \leq z \leq 0.15$, however, the type II and type I environment overdensities have a ratio consistent with unity until scales $R < 200 \, h_{70}^{-1}$ kpc, where the ratio increases to 1.3. This agrees with the work of Koulouridis et al. (2006), who found that type II Seyfert galaxies were more likely to have a close neighbor than type I Seyferts, using small samples of Seyfert 1 and 2 galaxies at very low redshifts.

Because we see increased overdensity for type II AGNs compared to type I AGNs on small scales in overlapping redshift ranges, we can conclude that in Figure 2 the differences seen in environment overdensity between the AGN types are not primarily due to redshift evolution. However, we have not ruled out the effects of AGN luminosity. The type I and type II AGN samples are selected from magnitude-limited spectroscopic galaxy samples, which will be dominated by intrinsically more luminous sources at higher redshift. The type I AGN sample could be more affected by this magnitude limit, as the broad emission lines contribute more significantly to the overall flux in a given band and therefore the two AGN populations could have different average intrinsic luminosities.

4.3. Luminosity

Unlike type I quasars, which are targeted largely based on their strong nuclear luminosity (Schneider et al. 2007), the lower luminosity AGNs we use were selected from objects classified as galaxies by the SDSS selection algorithms (Hao et al. 2005a). The broadband flux of these sources will be dominated by host galaxy starlight and/or flux from star formation, etc., which has little or no association with the nuclear luminosity. Therefore, we focus on the type I quasar sample for our luminosity analysis, as it spans the entire redshift range we study, and with this long redshift baseline we are best able to disentangle redshift and luminosity effects on environment overdensity.

In order to verify that the observed evidence for evolution of environment overdensity is not due to the $i < 19.1$ ($z \leq 3.0$) limit imposed on type I quasar selection in the SDSS (Schneider et al. 2007), we perform several tests in which we vary the apparent magnitude limit of the data. We consider two quasar samples limited to $i < 18.9$ and to the $i < 19.1$ SDSS limit (see Fig. 1, inset). The two magnitude-limited samples were each then separated into two luminosity bins. We compared environment overdensity measurements of bright or dim quasars in each of the magnitude-limited samples and found no appreciable difference. In addition, no difference was observed when different absolute magnitude values were used to define the bright and dim samples. In order to ensure that there is no difference between environments of quasars with $i > 19.1$, which were selected by the high-redshift targeting algorithm, and the rest of the apparent magnitude-selected sample, we performed similar tests comparing the environment overdensity of the entire quasar sample to that of the subset of quasars with $i < 18.9$ or $i > 19.1$. In all cases, there was no appreciable change in the observed overdensity.

We compare the environment overdensities of type I quasars in two luminosity bins to the other target samples without redshift cuts in Figure 6. The threshold value $M_i = -23.2$ is chosen to give roughly equal numbers of type I quasars in each luminosity bin: there are 2190 (2044) quasars with $-27.5 < M_i < -23.2$ ($-23.2 < M_i < -22.0$). The average magnitude of the brighter (fainter) bin is $M_i = -23.83$ ($M_i = -22.70$).

Type II quasars and the brighter type I quasars are located in similarly overdense environments consistently at all scales, while the dimmer type I quasars are located in environments slightly less overdense than the type II quasars. At a scale $R \approx 500 \, h_{70}^{-1}$ kpc, the cumulative overdensity of type II quasar environment is...
1.06 times that of the brighter type I quasars, but 1.3 times as the quasars have absolute magnitude of type II quasar environment overdensity to bright (color densities to type I AGN overdensity).

At scales quasars. Bright quasars have absolute magnitude $M < 25.2$ and dim quasars have absolute magnitude $-23.2 < M < -22.0$. Second from top: Ratio of type II quasar environment overdensity to bright (filled symbols) and dim (open symbols) type I quasar environment overdensities. Second from bottom: Ratio of bright (filled symbols) and dim (open symbols) type I quasar environment overdensities to type I AGN overdensity. Bottom: Ratio of bright (filled symbols) and dim (open symbols) type I quasar environment overdensities to type II AGNs. No redshift limits have been imposed. [See the electronic edition of the Journal for a color version of this figure.]

Evidence that dimmer quasars and lower luminosity AGNs are located in environments with similar overdensity might suggest that dimmer quasars could be a transition population between low-luminosity AGNs (likely fueled in dry mergers, close encounters, or secular processes) and high-luminosity AGNs (likely fueled in major mergers). Rather than disparate populations of merger-fueled and secularly fueled AGNs, there may be a continuum of galaxy interactions from major mergers to close encounters or harassment that cause AGN luminosity differences. Alternatively, a mix of mergers and secular processes could drive the AGN population near the quasar-Seyfert divide ($M_i \approx -22.5$; Hao et al. 2005b). We have compared the AGN samples without redshift cuts, but we note that in § 4.1 we demonstrated that evolution of quasar environments with redshift is negligible.

The significant difference in the environments of bright type I quasars and the environments of both type I and type II AGNs could imply that these populations have different fueling mechanisms. This result is consistent with results presented by Li et al. (2006, 2008), who find that there is only a weak link between nearby neighbors of narrow-line AGNs and their nuclear activity.

4.4. Luminosity, Redshift, and Type

Finally, we combine our analysis of type, redshift, and luminosity effects on environment overdensity in Figures 7, 8, and 9. Our Δz cuts on the photometric galaxies around the spectroscopic targets as well as around the random positions to which they are compared (as described in § 3.1) allow us to make meaningful comparisons of objects in different redshift ranges. In Figure 7, type II quasars are compared to type I quasars in the redshift range $0.5 \leq z < 0.6$. The Δz cuts of the type I quasars into bright ($\Delta z = 23.87$) and dim ($\Delta z = 22.75$) samples of roughly equal numbers at $M_i = -23,25$.

Comparing the lower panel of Figure 7 to the top ratio panel of Figure 5 shows the dramatic part luminosity plays compared to evolution alone. The environment of type II quasars is similar to the signature of brighter type I quasars for all scales we measure. The similarity of environments at small scales suggests that the differences observed between brighter type I quasars and type II quasars are due to a nonenvironmentally driven mechanism such as orientation or internal structure effects. This in turn implies that type II quasars are not a different cosmological population from these brighter type I quasars.

However, the type II quasar environments are consistently more overdense, albeit with large errors, than those of dimmer type I quasars on scales $R < 500 h_7^{-1}$ Mpc that we measure. The different characteristics of the environments of the dimmer type I quasar population from the type II quasar population are most likely due to intrinsic luminosity differences rather than redshift differences. We see consistent overdensity ratios on all scales and do not see small-scale effects; therefore, we conclude that the difference in environment overdensity between the brighter and dimmer quasars is primarily due to mass effects. More luminous AGNs are expected to have higher mass black holes (e.g., Magorrian et al. 1998; Marconi & Hunt 2003), which are in turn correlated with more massive dark matter halos (e.g., Ferrarese & Merritt 2000; Gehard et al. 2000; Tremaine et al. 2002). Selection effects in the magnitude-limited photometric galaxy sample could also play into the difference in overdensity between the brighter and dimmer type I quasars. The redshift distribution of type I quasars in the brighter ($M_i \leq -23.25$) bin is slightly different from that of the dimmer
The type I quasars in this redshift range have been divided at $M_r = -23.25$ so that the luminosity bins contain approximately equal numbers of type I quasars. Symbols in both panels have been offset slightly for clarity. [See the electronic edition of the Journal for a color version of this figure.]

$M_r > -23.25$ bin even over the redshift range of $0.3 \leq z \leq 0.6$ (the brighter quasars have a mean redshift of 0.51, and the dimmer quasars have a mean redshift of 0.45). The galaxies seen in the environments of brighter (higher redshift) quasars will tend themselves to be brighter, and consequently more massive, and therefore cluster more strongly than the dimmer environment galaxies (Maddox et al. 1990; Zehavi et al. 2002). This, however, should not be a major effect.

Figure 8 compares the environments of type I quasars in two luminosity bins to the environments of type I and II AGNs in the redshift range $0.15 < z < 0.33$. We use $M_r = -22.65$ as the threshold value for brighter and dimmer quasars in this lower redshift range to equalize the number in each luminosity bin. The 244 brighter (239 dimmer) type I quasars have a mean magnitude of $M_r = -22.33$ ($M_r = -23.30$, about 2.4 times fainter than the brighter sample). We note that these type I quasar samples are about a factor of 7 times smaller than the type I quasar samples in the higher redshift range; thus, the measurements (and resulting interpretation) will be less precise.

The top panel of Figure 8 shows that for scales $R \geq 300 \ h_{70}^{-1}$ kpc, the environments of dimmer type I quasars are more overdense than those of brighter type I quasars. It appears that the situation has been reversed from Figure 7, where the environments of dimmer quasars were less overdense than the environments of brighter quasars. However, the range of luminosity at this lower redshift range of $0.15 < z < 0.33$ is much smaller than that for the higher range of $0.3 \leq z \leq 0.6$. The overall absolute magnitude distribution of these type I quasars is skewed toward the faint end; thus, the dividing value $M_r = -22.65$ is very close to the quasar-Seyfert divide of $M_r \approx -22.5$ as defined by Hao et al. (2005b). Significant variation in overdensities was seen when different magnitude cuts were imposed, with the dimmer quasars consistently having higher overdensities by varying margins. The dramatic sensitivity of results on the bright/dim dividing value emphasize that for low luminosities and redshifts, broadband absolute magnitudes are a poor proxy for AGN luminosity. The measured flux is more likely to be affected by galaxy starlight, star formation, etc., at this faint end. Therefore, any attempt to use broadband magnitudes to correlate nuclear luminosity with environment will be skewed.

With these caveats in mind, we compare the type I quasars to lower luminosity type I and type II AGNs in the lower two panels...
of the figure. Dimmer type I quasar environments have overdensities greater than the type I AGNs, but the environments of brighter type I quasars and the type I AGNs have about the same amplitude on all scales. The lower ratio panel shows the ratio of bright and dim type I quasars to type II AGNs. The brighter quasars have environments with slightly lower overdensity than type II AGNs; the environments of dimmer type I quasars are only slightly more overdense than the environments of type II AGNs but are consistent within the error bars.

In Figure 9 we focus on type I quasars alone to investigate the evolution of the environment overdensity of brighter and dimmer objects. We have chosen two luminosity intervals of one magnitude in width and compare the environment overdensities of brighter to dimmer objects in three redshift intervals: ΔM corresponds to the dimmer luminosity interval of $-23.0 < M < -22.0$ and contains 1556 type I quasars, and the brighter luminosity interval ΔM is $-24.0 < M < -23.0$, containing 2036 type I quasars. Table 2 gives the number of quasars as well as the mean magnitude in each redshift and magnitude bin.

In the two lower redshift bins $0.15 < z < 0.3$ and $0.3 < z < 0.45$, there is little difference in the environment overdensity of brighter and dimmer quasars with little-to-no scale dependence. However, in the highest redshift interval of $0.45 < z \leq 0.6$, brighter quasars are shown to be located in slightly more overdense environments than the dimmer quasars. At a scale of $R \approx 1.0 \ h_{70}^{-1}$ Mpc, the brighter quasars are located in environments with overdensity 1.5 times that of the dimmer quasars. The brighter quasars have environment overdensities 1.4 times the overdensity of dimmer quasar environments at a scale of $R \approx 250 \ h_{70}^{-1}$ kpc, and then the ratio begins to drop toward unity at the innermost scales. However, the large errors are nearly consistent with unity on all scales we measure.

It appears, therefore, that there is again slight evidence for some redshift evolution of type I quasar environments, but it is mainly manifested at the highest redshift range. This emphasizes the need for additional studies of the environments around higher redshift type I quasars. We caution that the increased overdensity at higher redshift may be influenced by the fact that there are nearly 3 times the number of brighter quasars as dimmer quasars in the interval $0.45 < z \leq 0.6$ (see Table 2). In the range $0.3 < z \leq 0.45$, the number of bright quasars is closer to the number of dim quasars, while in the range $0.15 < z \leq 0.3$, the dim quasars outnumber the bright quasars by more than a factor of 2. The change in overdensity ratio will also be affected by the change in mean luminosity of the dimmer quasar sample with increasing redshift. While the bright quasar luminosity changes only by 0.07 mag, the mean dim quasar luminosity changes by 0.17 mag. Therefore, we cannot draw strong conclusions but instead reiterate the need for higher precision and higher redshift measurements of quasar environments.

5. CONCLUSIONS

Our work sheds new light on the nature of AGN environments and their relationship to the type, luminosity, and redshift of the AGN itself. We have used larger samples of AGN targets and imposed a photometric redshift cut on the nearby photometric galaxies in order to minimize projection effects and to account for redshift evolution of the photometric galaxy sample. By using photometric redshift cuts, we obtain more realistic overdensity estimates and errors for the local environments of AGNs of various luminosities and types.

There are two main pictures through which observed differences in AGNs can be interpreted. In the merger models presented by Hopkins et al. (2006) differing fueling mechanisms trigger AGN activity at different luminosities. Unified models such as those presented by Antonucci (1993) or Elvis (2000) ascribe observed differences in AGNs to viewing angle or structure. These pictures are not mutually exclusive; in fact, we show that the interdependency between the variables of type, luminosity and redshift play into the subtleties of distinguishing the pictures based on environment overdensity measurements.

From our analysis, we can draw the following conclusions:

1. Type II quasars are shown to have environments similar to brighter type I quasars in the same redshift range on all scales that we study, which suggests the observational differences in type I and type II quasars are driven by orientation and/or structure and not by cosmological evolution.

2. Lower luminosity type II AGNs have environments consistently more overdense than lower luminosity type I AGNs by a factor of 1.3 at all scales in the redshift range $0.15 < z \leq 0.3$, but there is scale dependence in the environment overdensity ratio of type II to type I AGNs for redshifts $0.11 < z \leq 0.15$.

3. There is marginal evidence for redshift evolution of type I quasar environments on all scales, especially for $0.45 < z < 0.6$, not noted in previous studies. However, this evolution is not the primary explanation for the environment overdensity differences seen between type I quasars and type II quasars, and between type I AGNs and type II AGNs. In order to place strong constraints on the functional form of this redshift evolution, it is necessary to acquire higher precision measurements and higher redshift measurements.

In our current work, we have explored the effects of redshift, type, and luminosity on the measurement of AGN environments in order to better understand the evolutionary nature of AGNs and their general relationship with galaxies. There are several ways in which our existing work can be improved. First, when we measured the redshift effects of the AGN environments, we were confronted by the selection effects that result from our use of a magnitude-limited photometric galaxy sample. The standard way to overcome this effect is to employ volume-limited samples of galaxies, which can be done by using photometric redshifts to derive absolute magnitudes (e.g., Ross et al. 2007). This approach provides a more accurate technique to compare AGN environments across different redshift ranges. Second, as we have discussed in § 4.4, broadband absolute magnitudes are not the best way to measure the nuclear luminosity of AGNs. Accretion luminosity, which can be more easily compared to the predictions of quasar formation models, can be better quantified by using emission-line luminosities, such as $O \ [\text{II}]$. Third, our current analysis simply studies the local environment of AGNs by measuring the overdensity of all galaxies near the AGNs. This approach, while useful, ignores a great deal of information. The physical characteristics of the galaxies in the environment provide additional valuable insight into the relationship between AGNs and galaxies (see, e.g., Barr et al. 2003; Coldwell & Lambas 2003, 2006). Finally, by exploring the relationship between AGN environments and

Redshift Range	$-24.0 < M < -23.0$	$-23.0 < M < -22.0$
$0.15 < z < 0.3$	$85, -23.39$	$211, -22.46$
$0.3 < z < 0.45$	$502, -23.39$	$788, -22.57$
$0.45 < z < 0.6$	$1445, -23.46$	$552, -22.63$
intrinsic physical properties of the AGN, such as black hole mass and multiwavelength emission, we can further refine our understanding of AGN fueling mechanisms.

We are grateful to Lei Hao for providing us with catalogs of AGNs from DR5. We thank Will Serber, Ryan Scranton, and Nikhil Padmanabhan for helpful conversations. We also thank the referee for comments that have greatly improved the manuscript.

We acknowledge support from Microsoft Research, the University of Illinois, and NASA through grants NNG06GH156 and NB 2006-02049. The authors made extensive use of the storage and computing facilities at the National Center for Supercomputing Applications and thank the technical staff for their assistance in enabling this work.

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Korean Scientist Group, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Antonucci, R. 1993, ARA&A, 31, 473
Bahcall, N. A., & Chokshi, A. 1991, ApJ, 380, L9
Bahcall, J. N., Schmidt, M., & Gunn, J. E. 1969, ApJ, 157, L77
Barr, J. M., et al. 2003, MNRAS, 346, 229
Best, P. N. 2004, MNRAS, 351, 70
Budavari, T., et al. 2003, ApJ, 595, 59
Coldwell, G. V., & Lambas, D. G. 2003, MNRAS, 344, 156
———. 2006, MNRAS, 371, 786
Coldwell, G. V., et al. 2002, MNRAS, 336, 207
Csabai, I., et al. 2003, AJ, 125, 580
da Angela, J., et al. 2008, MNRAS, 383, 565
Djorgovski, S. 1991, in ASP Conf. Ser. 21, The Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 349
Djorgovski, S., et al. 2007, ApJ, 662, L1
Ellingson, E., et al. 1991, ApJ, 371, 49
Elvis, M. 2000, ApJ, 545, 63
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Fisher, K. B., et al. 1996, ApJ, 468, 469
Gehhardt, K., et al. 2000, ApJ, 539, L13
Hao, L., et al. 2005a, AJ, 129, 1783
———. 2005b, AJ, 129, 1795
Hennawi, J., et al. 2006, AJ, 131, 1
Hopkins, P., & Hernquist, L. 2006, ApJS, 166, 1
Hopkins, P., et al. 2005, ApJ, 630, 705
———. 2006, ApJS, 163, 1

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Korean Scientist Group, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Portsmouth, Princeton University, the United States Naval Observary, and the University of Washington.

REFERENCES

Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Antonucci, R. 1993, ARA&A, 31, 473
Bahcall, N. A., & Chokshi, A. 1991, ApJ, 380, L9
Bahcall, J. N., Schmidt, M., & Gunn, J. E. 1969, ApJ, 157, L77
Barr, J. M., et al. 2003, MNRAS, 346, 229
Best, P. N. 2004, MNRAS, 351, 70
Budavari, T., et al. 2003, ApJ, 595, 59
Coldwell, G. V., & Lambas, D. G. 2003, MNRAS, 344, 156
———. 2006, MNRAS, 371, 786
Coldwell, G. V., et al. 2002, MNRAS, 336, 207
Csabai, I., et al. 2003, AJ, 125, 580
da Angela, J., et al. 2008, MNRAS, 383, 565
Djorgovski, S. 1991, in ASP Conf. Ser. 21, The Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 349
Djorgovski, S., et al. 2007, ApJ, 662, L1
Ellingson, E., et al. 1991, ApJ, 371, 49
Elvis, M. 2000, ApJ, 545, 63
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Fisher, K. B., et al. 1996, ApJ, 468, 469
Gehhardt, K., et al. 2000, ApJ, 539, L13
Hao, L., et al. 2005a, AJ, 129, 1783
———. 2005b, AJ, 129, 1795
Hennawi, J., et al. 2006, AJ, 131, 1
Hopkins, P., & Hernquist, L. 2006, ApJS, 166, 1
Hopkins, P., et al. 2005, ApJ, 630, 705
———. 2006, ApJS, 163, 1