Solving Prandtl-Blasius boundary layer equation using Maple

Bo-Hua Sun
College of Civil Engineering & Institute of Mechanics and Technology
Xi’an University of Architecture and Technology,
Xi’an 710055, China
http://imt.xauat.edu.cn
email: sunbohua@xauat.edu.cn

A solution for the Prandtl-Blasius equation is essential to all kinds of boundary layer problems. This paper revisits this classic problem and presents a general Maple code as its numerical solution. The solutions were obtained from the Maple code, using the Runge-Kutta method. The study also considers convergence radius expanding and an approximate analytic solution is proposed by curve fitting. Similarly, the study resolves some boundary layer related problems and provide relevant Maple codes for these.

CONTENTS

I Blasius solution

I. Introduction

II. Maple code and numerical solution for Prandtl-Blasius equation

III. Expanding of convergence radius up to \(\eta = 251.67409 \)

IV. Data fitting of function \(f(\eta) \)

V. Conclusions

II Some boundary layer related problem and their solutions solved by Maple

VI. Plane stagnation- Point flow

VII. Axisymmetric stagnation- Point flow

VIII. Falkner-Skan boundary layer

IX. A flow at a rotating disk

X. Boundary layer behind a moving normal shock wave

XI. 3D stagnation point

XII. Proudman’s problem

XIII. A general Blasius equation

References

Part I

Blasius solution

I. INTRODUCTION

The boundary-layer theory can be traced back to Ludwig Prandtl (1904)[1]. In his famous study on the motion of liquids with very small friction, he presented the mathematical basis of flows for very large Reynolds numbers. In his 1904 study, he simplified the 2D Navier-Stokes equation into the following boundary layer equation

\[
\rho(uu_x + vu_y) = -p_x + \mu u_{yy},
\]

(1)

\[
p_y = 0,
\]

(2)

\[
u_x + v_y = 0.
\]

(3)

Prandtl obtained the plate drag \(drag = 1.1..b\sqrt{\mu \rho U^2} \)

FIG. 1. The concept of Prandtl’s boundary layer.

for water flows at both sides of the plate, as shown in Figure 1 above. Later, in 1908, his first doctorate student,
Paul Richard Heinrich Blasius [2] obtained a series solution for the boundary layer equation \(f''' + \frac{1}{2} f f'' = 0 \), and proposed an asymptotic solution, before modifying Prandtl’s drag formula to its final version, namely \(\text{drag} = 1.327b \sqrt{\mu b U^2} \), where \(b \) refers to the plate width, \(l \) to plate length, \(U \) to free-stream velocity, \(\nu \) to \(\mu \) dynamical viscosity and \(\rho \) to flow density. Blasius (1908) provides the power series solution as shown below

\[
f(\eta) = \sum_{k=0}^{\infty} \left(-\frac{1}{2} \right)^k \frac{C_k \alpha^{k+1}}{(3k + 2)!} \eta^{3k+2},
\]

where the coefficients \(C_k \) are calculated by a recurrence formula, \(C_0 = C_1 = 1, C_2 = 11, C_3 = 375, C_4 = 27987, C_5 = 3817137, C_6 = 865874115, C_7 = 298013289795... \), and

\[
C_k = \frac{1}{k!} \sum_{r=0}^{k-1} \frac{(3k-1)!}{(3r)!(3k-3r-1)!} C_{k-r-1} C_r, \quad (k \geq 2).
\]

This series is incomplete since the parameter \(\alpha = f''(0) \) should be numerically computed. The next section presents \(\alpha = 0.332057336270228 \). Blasius’s series converges in a region \(|\eta| \leq 5.690 \). Toepfer (1912) and Howarth (1938) applied the Runge-Kutta method obtain their numerical results. With computers, Smith (1956)[7], Rosenhead (1963)[11] and Evans (1968) [12] obtained accurate numerical results for the Blasius equation.

Subsequent to Blasius’s work [2], several scholars revisited the problem, for instance, Töpfer[1912][3], Hartree[1912][5], Goldstein (1930)[4], and Howarth (1937) [6]. Prandtl’s student Schlichting (1950) who set out Blasius solution’s application to almost all areas of fluid mechanics, most of them have been included into a well-known book, namely Boundary-Layer Theory [11, 23], as well as reviews [13, 14, 16–18] and textbooks [20, 25, 26].

The momentum to solve the Blasius equation has not stopped. Different approaches have been tried, and approximate analytic solutions have been used, such as Perturbation methods [8–10, 15] and the homotopy analysis method (HAM) [19, 21, 22, 24], computer driven numerical solution using Matlab [29], as well as the B-spline method [27]. In particular, Liao [21, 22] expanded the convergence radius by using his HAM method. Detailed reviews on various solutions of the Blasius equation can be found in Liao [21, 22].

After a century of investigations of the Prandtl-Blasius equation \(f''' + \frac{1}{2} f f'' = 0 \), it is concluded that no closed solution has been founded, while numerical and approximate analytic solutions have been obtained. However, if one study literature on the Prandtl-Blasius equation carefully, it would not be difficult to find out that there is no simpler computer program, comprising 2 line code, be reported. It would be natural thinking that since the closed solution cannot be obtained and numerical solutions must be sought, it would be of academic value if the simplest calculation program can be provided.

To find a numerical solution for the equation \(f''' + \frac{1}{2} f f'' = 0 \), this study used a simple Maple code comprising 2 lines. We studied flow vorticity and found that the interaction of free-stream velocity, viscosity and the vorticity, was the source of drag. We expanded the convergence radius by changing the shooting boundary condition slightly. Based on our numerical solutions, we proposes a good approximate analytic solution by using a curve fitting. Besides the Prandtl-Blasius equation, we used several Maple codes to compute a few related problems. For ease of teaching and research, all Maple codes are provided. Some boundary layer related problems are solved and their relevant Maple codes are provided in appendix.

II. MAPLE CODE AND NUMERICAL SOLUTION FOR PRANDTL-BLASIUS EQUATION

Blasius [2] proposed a similar solution for the case in which the free stream velocity was constant, where \(U(x) = \text{constant} \), corresponding to the boundary layer over a flat plate that is oriented parallel to the free flow. He introduced similar transformations, as shown below

\[
\eta = y \sqrt{\frac{U}{\nu x}} \quad (4)
\]

\[
u(x, y) = U f'(\eta) \quad (5)
\]

\[
v(x, y) = \frac{1}{2} \sqrt{\frac{\rho U}{x}} [\eta f''(\eta) - f(\eta)], \quad (6)
\]

and successfully transferred the Prandtl boundary equations in Eqs.1,2 and 3 into a single equation of \(f(\eta) \), as follows

\[
f''' + \frac{1}{2} f f'' = 0, \quad (7)
\]

\[
f(0) = 0, \quad f'(0) = 0, \quad f'(\eta \to \infty) = 1,
\]
where kinematical viscosity \(\nu = \frac{\mu}{\rho} \) and \(f' = \frac{df}{d\eta} \).

The solution of the Prandtl-Blasius equation Eq.7 has been studied intensively by a number of scholars [1–8, 10–15, 19, 21–24, 29]. To fully utilize the symbolic software, Maple, a simple Maple code is provided to solve the problem. The code is shown in Table I.

The boundary condition at \(\eta \to \infty \) cannot be materialized, the shooting method allows us to solve the problem by try and error. The shooting method can be convergent only at \(\eta \leq 12.43 \), while divergent beyond this point. The Blasius’s series solution convergence radius is about \(\eta = 6 \), hence our numerical solution has a larger convergence radius than the series one.

With this simple Maple code, one can easily obtain a solution for \(f(\eta) \) and its derivatives, as illustrated in Fig.2.

The numerical details are indicated in Table II below. An interesting outcome worth mentioning is that the convergence radius is expanded from \(|\eta| \leq 5.690 \) to \(|\eta| \leq 12.43 \) by try and error in shooting method.

Following simple manipulation, all relevant quantities can easily be obtained by using Maple. The velocity in x direction \(u = Uf'(\eta) \) profile as seen in Fig.3.

The velocity in y direction \(v = -\frac{1}{2} \sqrt{\frac{\nu U}{x}} [\eta f'(\eta) - f(\eta)] \) profile as shown in Fig.4.

The shear stress on the flat plate

\[
\tau = \mu \left. \left(\frac{\partial u}{\partial y} \right) \right|_{y=0} = \mu \sqrt{\frac{U^3}{\nu x}} f''(0) = 0.332048 \mu \sqrt{\frac{U^3}{\nu x}}. \tag{8}
\]

For a plate with a length \(L \) and width \(b \), the plate drag \(\text{drag} \) for the water flows at both sides of plate, as shown in Figure 1 is as follows

\[
\text{drag} = 2b \int_0^L \tau dx = 2f''(0)b\sqrt{\mu \rho U^3} \int_0^L dx \sqrt{\frac{x}{U}} = 1.32829345b\sqrt{\mu \rho LU^3}. \tag{9}
\]

Denoting the Reynolds number, \(Re_x = \frac{Ux}{\nu} \), the drag coefficient is defined as

\[
C_f = \frac{\text{drag}}{\frac{1}{2} \rho U^2 b L} = \frac{1.32829345}{\sqrt{Re_x}}. \tag{10}
\]

If we define the boundary layer thickness as \(\delta = \delta|_{u=0.99U} \), we can see that, \(\eta \approx 5 \), as indicated in Table II. Hence,

\[
\delta \approx 5\sqrt{\frac{\nu x}{U}}. \tag{11}
\]

If we consider the thickness definition to be, \(\delta = \delta|_{u=U} \), then \(\eta = 8.8 \) or \(\eta = 12.43 \), while the boundary layer thickness can be extended to \(\delta \approx 8.8\sqrt{\frac{\nu x}{U}} \) or \(\delta \approx 12.43\sqrt{\frac{\nu x}{U}} \).

The boundary layer flow generates vorticity \(\omega = \omega_k \), amounting to the following

\[
\omega = \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = -(\frac{1}{4Re_x} \eta + 1)f''(\eta) \sqrt{\frac{U^3}{\nu x}}. \tag{12}
\]

The vorticity for a given Reynolds number, is illustrated in Fig.5.
TABLE I. Maple code for problem: $f''' + \frac{1}{2} f'' = 0$, with $f(0) = 0$, $f'(0) = 0$, $f'(\infty) = 1$

Remarks	Maple code
Solution	solution := dsolve({$f''' + \frac{1}{2} f'' = 0$, $f(0) = 0$, $D(f)(0) = 0$, $D(f)(12.43) = 1$}, numeric)
Plots	odeplot(solution, [eta, f(eta)], eta = 0 .. 12.43)

TABLE II. Numerical results for problem: $f''' + \frac{1}{2} f'' = 0$, with $f(0) = 0$, $f'(0) = 0$, $f'(\infty) = 1$

η	$f(\eta)$	$f'(\eta)$	$f''(\eta)$
0	0.00166028097748329	0.0332054966058561	0.332057363270228
0.1	0.00664099782185387	0.0664077801596799	0.331983834255578
0.2	0.0149414623187717	0.099598888997647	0.331809346697686
0.3	0.0265598832055768	0.1327641559972073	0.331498430916160
0.4	0.0414928195150539	0.165885252325028	0.330910954899200
0.5	0.0597346375181186	0.198937252436665	0.330079127678012
0.6	0.0812709754437425	0.231890235983639	0.32922067860142
0.7	0.106108220767729	0.264709138163229	0.327389270302448
0.8	0.134213005526786	0.297353957812383	0.325432629177878
0.9	0.165571725783800	0.329780030672017	0.323071169166116
1	0.19954900689297	0.362738270302448	0.320557363270228
2	0.264709138163229	0.406444438882722	0.318303175538360
3	0.3174900689297	0.4500012241612154	0.316730175538360
4	0.364709138163229	0.494444438882722	0.315030175538360
5	0.406444438882722	0.5388888827222222	0.313330175538360
6	0.4500012241612154	0.5833333333333333	0.311630175538360
7	0.494444438882722	0.6277777777777777	0.309930175538360
8	0.5388888827222222	0.6722222222222222	0.308230175538360
8.8	0.6277777777777777	0.7622222222222222	0.305530175538360
9	0.6722222222222222	0.8122222222222222	0.302830175538360
10	0.7277777777777777	0.8599999999999999	0.300130175538360
11	0.7833333333333333	0.9066666666666667	0.297430175538360
12	0.8388888888888889	0.9533333333333333	0.294730175538360
12.43	0.8844444444444444	1.0000000000000000	0.292030175538360

FIG. 5. Vorticity, Blue line for $Re_x = 500$, red point for $Re_x = 2000$

Since validation of the boundary layer theory requires the Reynolds number $Re_x > 100$, the team $\frac{1}{Re_x} \eta + 1 \approx 1$ implies that the Reynolds number has little influence on the vorticity, hence the vorticity obeys the law of $-f''(\eta)$.

Since $\eta|_{y=0} = 0$ leads to $\omega(0) = -f''(0)\sqrt{\frac{U}{\nu x}} = -0.332057\sqrt{\frac{U}{\nu x}}$, the vorticity is mainly on the boundary and decays rapidly away from the boundary.

The local friction is as follows

$$\tau = \mu (\frac{\partial u}{\partial y})|_{y=0} = \mu \sqrt{\frac{U^3}{\nu x}} f''(0) = -\mu \omega(0), \quad (13)$$

which indicates the interaction between vorticity and viscosity, μ is the source of drag of the fluid acting on the plate.
III. EXPANDING OF CONVERGENCE RADIUS UP TO $\eta = 251.67409$

In order to expand the convergence radius further, we replace one of boundary condition’s, $f'(\infty) = 1$ with $f''(0)0.33205736270228$. The corresponding Maple code is provided in Table III.

The numerical results from this boundary are shown in Table IV.

The results comparisons are illustrated in Figures 6, 7,8,9 and 10.

If one compares the data in Table IV with that in Table II, one will be surprised to see that these correspond well with each other. The convergence radius is also extended to $|\eta| \leq 251.67409$. Beyond this point, the Maple code solution is divergent.

IV. DATA FITTING OF FUNCTION $f(\eta)$

For those who have not installed Maple, he polynomial fitting of function f and its primes are shown below. The fittings are valid for the entire convergence radius domain instead of the reported segmental fitting.

Using our numerical results from Table II, and fitting function in Maple, we can obtain three polynomial fittings as shown in Table V. It must be pointed out here that each fitting is done independently, and they are not connected.

Comparisons with the data in Table II are illustrated in Figures 11,12 and 13, respectively.

V. CONCLUSIONS

This study generated a simple Maple code, comprising 2 lines, and computed the Prandtl-Blasius equation
TABLE III. Maple code for problem: \(f''' + \frac{1}{2} f f'' = 0 \), with \(f(0) = 0, f'(0) = 0, f''(0) = 0.332057336270228 \)

Remarks	Maple code
Solution	\(\text{sol := dsolve} \{ f''' + \frac{1}{2} f f'' = 0, f(0) = 0, D(f)(0) = 0, (D@@2)(f)(0) = 0.332057336270228 \}, \text{numeric} \)
Plots	\(\text{odeplot(sol, [eta, f(eta)], eta = 0 .. 251.67409)} \)

TABLE IV. Numerical results for problem: \(f''' + \frac{1}{2} f f'' = 0 \), with \(f(0) = 0, f'(0) = 0, f''(0) = 0.332057336270228 \)

\(\eta \)	\(f(\eta) \)	\(f'(\eta) \)	\(f''(\eta) \)
0	0	0	0.332057336270228
0.1	0.00166027458322798	0.0332055040025001	0.332048148689987
0.2	0.00664099931612186	0.0664077922858582	0.331889350002633
0.3	0.0149414561579939	0.09958596154332	0.331469841408596
0.4	0.0265598831096885	0.132764160936823	0.33101095749993
0.5	0.041928112672231	0.165885253704228	0.327389267033434
0.6	0.0597343500066992	0.198937252124230	0.32543262917788
0.7	0.081276666214984	0.231890236407141	0.323007121193428
0.8	0.106108213788000	0.264709136865312	0.320791237283633
0.9	0.134213005526786	0.29735957812383	0.31809350002633
1	0.165571709136145	0.332055040025001	0.315228070834611
2	0.650024303919321	0.624709136865312	0.266754189835688
3	1.39680803662046	0.84604371447904	0.16136026584747
4	2.30574609856618	0.955518154129491	0.064224401929328
5	3.28327323651022	0.991541790191322	0.015906753545430
6	4.27962036694372	0.99897259309867	0.002020945704558
7	5.2792126844824	0.99996143625627	0.00001222370890494
8	6.9792115131617	0.99999535579582	0.0000011836098191137
8.8	7.0792114788480	0.9999996364112024	8.33454279337949e-7
9	7.2792114219011	0.99999975656889	4.0260213272470e-7
10	8.27921124822598	0.999999862326453	3.8147408316453e-9
11	9.279211130705	0.99999986241100	2.4140324562776e-9
12	10.279210944136	0.99999986411131	-6.6458971882765e-9
13	11.279210837132	0.999999864278211	-6.1201797554896e-9
...
20	18.279298795010	0.999999863330679	-1.5191673973897e-9
...
251.67409	249.953268174194	0.999999863204860	-7.2496527139340e-9

FIG. 11. \(f(\eta) \)

FIG. 12. \(f'(\eta) \)

\(f''' + \frac{1}{2} f f'' = 0 \) in detail. We have modified the boundary condition to extend the convergence radius. The modified results produce high-order accuracy and included a much larger convergence radius. We proposed a...
TABLE V. Data fitting of $f(\eta)$, the 1st prime of $f(\eta)$ and the 2nd prime of $f(\eta)$

$f(\eta)$	$f'(\eta)$	$f''(\eta)$
$0.169590122015878\eta^2 - 0.00975243043702233\eta^3$	$0.337538516034295\eta^2 - 0.024722593247711\eta^2$	$0.33205736270228 - 0.0264531212585649\eta$
$+ 0.0094920484878554\eta^4 - 0.00490827418566491\eta^5$	$+ 0.00107974242481788\eta^6 - 0.000128524622004544\eta^7$	$+ 0.0663932833156139\eta^2 - 0.0689310639889838\eta^3$
$+ 0.00128524622004544\eta^7$	$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.023453293176898\eta^4 - 0.0031209203006906\eta^5$
$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.023453293176898\eta^4 - 0.0031209203006906\eta^5$
$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.023453293176898\eta^4 - 0.0031209203006906\eta^5$
$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.00005918384158728277\eta^7 - 0.239635130719565 \times 10^{-5}\eta^8$	$+ 0.023453293176898\eta^4 - 0.0031209203006906\eta^5$

There are several problems that relate to the boundary layer theory, which can be solved easily by Maple. Below are eight problems that are presented but they are not limited to these, only.

VI. PLANE STAGNATION- POINT FLOW

The problem is shown on the pages 110, §5.1.3 of H. Schlichting and K. Gersten’s book, namely *Boundary Layer Theory*, 8th ed. 2000.

The problem has the following equation:

$$f''' + f f'' - (f')^2 + 1 = 0,$$

and the boundary condition is $f(0) = f'(0) = 0$, $f'(\infty) = 1$.

The Maple code of this problem is indicated in Table VI below:

The convergence radius is 85.2. We can obtain different data such as $f'''(0) = 1.23258753376717$, $f''(2.4) = 0.990549396814189$, and $f'''(2.4) = 0.0260202802441418$. The solutions for f, f', f'' are illustrated in Fig. 14.
TABLE VI. Maple code for problem: \(f''' + f''f' - (f')^2 + 1 = 0 \), with \(f(0) = 0, \ f'(0) = 0, \ f''(0) = 1 \)

Solution	Maple code
sol := dsolve({diff(f(eta), eta, eta, eta))+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))*(diff(f(eta), eta))+1 = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(85.2) = 1}, numeric);	

| Plots | odeplot(sol, [[eta, f(eta)], [eta, diff(f(eta), eta)], [eta, diff(f(eta), eta, eta)]], eta = 0 .. 10, legend = ["f", "f'", "f''"], style = line, thickness = 1) |

VII. AXISYMMETRIC STAGNATION-POINT FLOW

The above mentioned problem can be seen on the Page 118, §5.2.3 of H. Schlichting and K. Gersten’s book, namely Boundary Layer Theory, 8th ed. 2000.

This problem has the following equation:

\[f''' + 2f f'' - (f')^2 + 1 = 0, \quad (15) \]

and the boundary condition is \(f(0) = f'(0) = 0, \ f'(\infty) = 1 \).

The Maple code of this problem is shown in Table VII below:

The convergence radius is 85.2. We can obtain different data such as \(f''(0) = 1.37330015980273, \ f'(2.4) = 0.994185967994620, \) and \(f''(2.4) = -0.242645186097960 \). The solutions for \(f, f', f'' \) are illustrated in Fig. 21.

FIG. 16. Falkner-Skan boundary layer for \(\alpha = 1 \) and \(\beta = 1.2 \)

The Maple code of this problem is shown in Table VIII below:
We can obtain \(f''(0) = 1.32394637564342 \). The solutions are presented in Figure 16:

VIII. FALKNER-SKAN BOUNDARY LAYER

The problem [28] can be seen on the pages 169 of H. Schlichting and K. Gersten’s book, namely Boundary Layer Theory, 8th ed. 2000.

Falkner-Skan boundary layer has the equation

\[f''' + \alpha f f'' + \beta [1 - (f')^2] = 0, \quad (16) \]

and the boundary condition \(f(0) = f'(0) = 0, \ f'(\infty) = 1 \).

FIG. 15. Axisymmetric stagnation-Point flow

IX. A FLOW AT A ROTATING DISK

The problem can be seen on the pages 119, §5.2.4 of H. Schlichting and K. Gersten’s book, namely Boundary Layer Theory, 8th ed. 2000.

The flow at a rotating disk is governed by the following

\[2F + H' = 0, \]
\[F^2 + F'H - G^2 - F'' = 0, \]
\[2FG + HG' - G'' = 0, \]
\[P' + HH' - H'' = 0, \quad (17) \]

and the boundary condition is \(\zeta = 0 : F = 0, \ G = 1, \ H = 0, \ P = 0, \) and \(\zeta \to \infty, \ F = 0, \ G = 0 \).

The problem’s Maple code is shown in Table IX below:
We obtain \(f''(0) = 1.32394637564342 \). Full solutions are plotted in Figure 17:

X. BOUNDARY LAYER BEHIND A MOVING NORMAL SHOCK WAVE

The problem can be seen on the Page 372 of H. Schlichting and K. Gersten’s book, namely Boundary
TABLE VII. Maple code for problem: \(f''' + 2ff'' - (f')^2 + 1 = 0 \), with \(f(0) = 0, f'(0) = 0, f''(0) = 1 \)

Maple code
sol := dsolve({diff(f(eta), eta, eta, eta))+(f(eta))*(diff(f(eta), eta, eta)) +2(diff(f(eta), eta))*(diff(f(eta), eta, eta)) +1 = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(85.2) = 1}, numeric);
odeplot(sol, [[eta, f(eta)], [eta, diff(f(eta), eta)], [eta, diff(f(eta), eta, eta)]], eta = 0 .. 10, legend = ["f", "f'", "f''"], style = line, thickness = 1)

TABLE VIII. Maple code for problem: \(f''' + \alpha ff'' + \beta [1 - (f')^2] = 0 \), with \(f(0) = 0, f'(0) = 0, f''(0) = 1 \)

Maple code
sol := dsolve({diff(f(eta), eta, eta, eta) + alpha*f(eta)*(diff(f(eta), eta, eta)) + beta*(1-(diff(f(eta), eta))*(diff(f(eta), eta))) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(466) = 1}, abserr = 1, numeric)
deplot(sol, [[eta, f(eta)], [eta, diff(f(eta), eta)], [eta, diff(f(eta), eta, eta)]], eta = 0 .. 10, legend = ["f", "f'", "f''"], style = line, thickness = 1)

TABLE IX. Maple code for a flow at a rotating disk

Maple code
ode:= [2*F(zeta)+diff(H(zeta), zeta) = 0, F(zeta)*F(zeta)+(diff(F(zeta), zeta))*H(zeta)-G(zeta)*G(zeta)-(diff(F(zeta), zeta, zeta)) = 0, 2*F(zeta)*G(zeta)+H(zeta)*(diff(G(zeta), zeta))-(diff(G(zeta), zeta, zeta)) = 0, diff(P(zeta), zeta)+H(zeta)*(diff(H(zeta), zeta))-(diff(H(zeta), zeta)) = 0]
vars := [F(zeta), G(zeta), H(zeta), P(zeta)]
disk := dsolve('union'({op(ode)}, {F(0) = 0, F(alpha) = 0, G(0) = 1, G(alpha) = 0, H(0) = 0, P(0) = 0}), vars, numeric)
F := plots:-odeplot(disk, [zeta, F(zeta)], zeta = 0 .. 7.96, color = red, legend = F)
G := plots:-odeplot(disk, [zeta, G(zeta)], zeta = 0 .. 7.96, color = blue, legend = G)
H:= plots:-odeplot(disk, [zeta, -H(zeta)], zeta = 0 .. 7.96, color = orange, legend = -H)
P:= plots:-odeplot(disk, [zeta, -P(zeta)], zeta = 0 .. 7.96, color = black, legend = -P)
plots:-display([F, G, H, P])

The solution for \(f'''(0) \) is 0.935376479521647. The solutions are illustrated in Figure 18.

FIG. 17. A flow at a rotating disk

The flow at a rotating disk is governed by the following

\[
f'''' + 2(\eta - \frac{2}{\kappa + 1})f = 0, \\
\frac{1}{Pr}r'''' + 2(\eta - \frac{2}{\kappa + 1})r'' + 2(f'')^2 = 0, \\
\frac{1}{Pr}s'''' + 2(\eta - \frac{2}{\kappa + 1})s'' = 0,
\]

and the boundary condition is \(\eta = 0 \) : \(f = 0, f' = 0, r' = 0, s = 0, \) and \(\eta \rightarrow \infty, f' = 0, r = 0, s = 0. \)

The problem’s Maple code is listed in Table X below:

We can obtain \(f''''(0) = 0.935376479521647 \). The solutions are illustrated in Figure 18:

XI. 3D STAGNATION POINT

The problem can be seen on the Page 344, §12.2.4 of H. Schlichting and K. Gersten's book, namely *Boundary Layer Theory*, 8th ed. 2000.
TABLE X. Maple code for boundary layer behind a moving normal shock wave

Equation	Maple code
$\text{sys} := \begin{bmatrix} \text{diff}(f(\eta), \eta, \eta, \eta) + \left(2 \times (\eta - 2 \cdot f(\eta)/(\kappa + 1)) \right) \times \text{diff}(f(\eta), \eta, \eta) & = 0, \\ \\	
\text{diff}(r(\eta), \eta, \eta)/\text{Pr} + \left(2 \times (\eta - 2 \cdot f(\eta)/(\kappa + 1)) \right) \times \text{diff}(r(\eta), \eta) \\ \\	
\text{diff}(s(\eta), \eta, \eta)/\text{Pr} + \left(2 \times (\eta - 2 \cdot f(\eta)/(\kappa + 1)) \right) \times \text{diff}(s(\eta), \eta) & = 0 \end{bmatrix}$	$\text{vars} := [f(\eta), r(\eta), s(\eta)]$
Solution	$\text{sol} := \text{dsolve}('\text{union'}\{\text{op} (\text{sys}), \{f(0) = 0, r(\alpha) = 0, s(0) = 1, s(\alpha) = 0, (D(f))(0) = 0, (D(f))(\alpha) = 1, (D(r))(0) = 0\})\}, \text{vars}, \text{numeric})$
Plots	odeplot(sol, \{\eta, f(\eta)\}, \eta = 0 .. 5, color = red, legend = f)

FIG. 18. Boundary layer behind a moving normal shock wave for the case of $\kappa = 1.4\text{Pr} = 0.72$

FIG. 19. 3D stagnation point for the case of $f_w = 3, \theta(0) = 2, C = 1, \beta = 1\text{Pr} = 0.72$, the convergence radius is $\eta = 41$

The problem is governed by the following

$$
(Cf''' + f + \beta g)f'' - (f''^2 - \theta) = 0, \\
(Cg''') + (f + \beta g)g'' - \beta(g''^2 - \theta) = 0, \\
(C\theta') + \text{Pr}(f + \beta g)\theta' = 0,
$$

and the boundary condition is $\eta = 0 : f = f_w, f' = 0, g = 0, g' = 0, \theta = T_w/T_{\infty}$, and $\eta \rightarrow \infty, f' = 1, g' = 1, \theta = 1$.

The problem’s Maple code is shown in Table XI below:

We can obtain $f''(0) = 5.32966517826437$ and $g''(0) = 1.48539305016422$. The solutions are shown in Figure 19:

FIG. 18. Boundary layer behind a moving normal shock wave for the case of $\kappa = 1.4\text{Pr} = 0.72$

FIG. 19. 3D stagnation point for the case of $f_w = 3, \theta(0) = 2, C = 1, \beta = 1\text{Pr} = 0.72$, the convergence radius is $\eta = 41$

FIG. 20. $R = 1/2, C = 3, \alpha = 0.1$

XII. PROUDMAN’S PROBLEM

The flows take place in a two-dimensional channel with porous walls through which fluid is uniformly injected or extracted. This problem was studied by [9], whose equation is:

$$f''' + R(ff'' - f'^2) + C = 0, \\
(20)$$

and boundary condition $f(0) = 1 - \alpha, f'(0) = 0, f(1) = 1$.

The problem’s Maple code is illustrated in Table XII below:

We can obtain different data such as $f''(0) = 1.26149779149269$. The solutions for $f, f' f''$ are plotted in Fig. 20

XIII. A GENERAL BLASIUS EQUATION

The problem can be seen on the Page 168 of H. Schlichting and K. Gersten’s book, namely *Boundary Layer Theory*, 8th ed. 2000.

The problem is governed by the following

$$f''' + af f'' - b(f')^2 + c = 0, \\
(21)$$
TABLE XI. Maple code for 3D stagnation point

Equation	Maple code
sys := [diff(C*(diff(f(eta), eta, eta)), eta)+(f(eta)+beta*g(eta))*(diff(f(eta), eta, eta))-(diff(f(eta), eta))*(diff(f(eta), eta))+theta(eta) = 0, diff(C*(diff(g(eta), eta, eta)), eta)+(f(eta)+beta*g(eta))*(diff(g(eta), eta, eta))-beta*((diff(g(eta), eta))*(diff(g(eta), eta))-theta(eta)) = 0, diff(C*(diff(theta(eta), eta)), eta)+Pr*(f(eta)+beta*g(eta))*(diff(theta(eta), eta, eta)) = 0]	
Variables	vars := [f(eta), g(eta), theta(eta)]
Solution	sol := dsolve('union'({op(sys)}, {f(0) = 3, g(0) = 0, theta(0) = 2, theta(41) = 1, (D(f))(0) = 0, (D(f))(41) = 1, (D(g))(0) = 1, (D(g))(41) = 1}), vars, numeric)
Plots	odeplot(sol, [eta, f(eta)], eta = 0 .. 5, color = red, legend = f)

TABLE XII. Maple code for problem: \(f'''' + R(f f'' - (f')^2) - C = 0 \), with \(f(0) = 1 - \alpha, f'(0) = 0, f(1) = 1 \)

Solution	Maple code
sol := dsolve({diff(f(eta), eta,eta,eta)+a*diff(f(eta),eta,eta)*f(eta)-b*diff(f(eta), eta)*diff(f(eta), eta)+c = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(60) = 1}, numeric);	
Plots	odeplot(sol, [[eta, f(eta)], [eta, diff(f(eta), eta)], [eta, diff(f(eta), eta, eta)]], eta = 0 .. 10, legend = ["f", "f'", "f''"])

FIG. 21. \(a = 1/2, b = 1, c = 3 \)

and the boundary condition is \(f(0) = f'(0) = 0, f'(\infty) = 1 \).

The problem’s Maple code is given in Table XIII below:

We can obtain different data such as \(f''''(0) = 2.71955049778791 \). The solutions for \(f, f', f'' \) are shown in Fig. 21

Availability of data: There is no data available for this study.

Conflict of interests: The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

B.-H. Sun: Conceptualization, Methodology, Formulations, Formal analysis, Funding acquisition, Investigation, Writing- Original draft preparation, Writing- Reviewing and Editing and all relevant works.

[1] L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III. Intern. Math. Kongr. Heidelberg. 574 – 584. Teubner, Leipzig (1905).
[2] H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56: 1 – 37(1908).
[3] C. Töpfer, Bemerkungen zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys., 60:397-398(1912).
[4] S. Goldstein, Concerning some solutions of the boundary layer equations in hydrodynamics, Proc. Camb. Phil. Soc. 26(1):1-30(1930).
[5] D.R. Hartree, On an equation occurring in Falkner-Skan approximate treatment of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33(2):223-239(1937).
[6] L. Howarth, the solution of the laminar boundary layer equations, Proc. Roy. Soc. London A 164:547-579(1938).
[7] A.M.O. Smith, Rapid laminar boundary-layer calculations by piecewise application of similar solutions. J. Aeronaut. Sci. 23, 901-912(1956).
[8] K. Stewartson, On asymptotic expansions in the theory of boundary layers. Studies in Applied Mathematics 36.1-4: 173-191 (1957).
[9] I. Proudman, An example of steady laminar flow at large Reynolds number, Journal of Fluid Mechanics, 9(4):593-
TABLE XIII. Maple code for problem: $f''' + af'' - b(f')^2 + c = 0$, with $f(0) = 0$, $f'(0) = 0$, $f''(0) = 1$

Mode	Maple code
Solution	sol := dsolve({diff(f(eta), eta,eta,eta)+a*diff(f(eta),eta,eta)*f(eta)-b*diff(f(eta), eta)*diff(f(eta), eta)+c = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(60) = 1}, numeric);
Plots	odeplot(sol, [[eta, f(eta)], [eta, diff(f(eta), eta), eta]], [eta, diff(f(eta), eta), eta]], eta = 0 .. 10, legend = ["f", "f'", "f''"])

602 (1960).

[10] P.A. Libby and F. Herbert, Some perturbation solutions in laminar boundary-layer theory. Journal of Fluid Mechanics 17(3):433-449(1963).

[11] L. Rosenhead (ed.) *Laminar Boundary Layers*. Clarendon Press (1963).

[12] H. Evans, *Laminar Boundary Layers*. Addison-Wesley (1968).

[13] M. Van Dyke, Higher-order boundary-layer theory, Annual Review of Fluid Mechanics, 1:265-292(1969).

[14] K Nickel, Prandtl’s Boundary-layer theory from the viewpoint of a mathematician, 5:405-428(1973).

[15] M. Van Dyke, Perturbation methods in fluid mechanics. Parabolic Press (1975).

[16] I. Tani, History of boundary layer theory, Annual Review of Fluid Mechanics, 9:87-111(1977).

[17] J. C. Williams III, Incompressible boundary-layer separation, Annual Review of Fluid Mechanics, 9:113-144(1977).

[18] H. B. Keller, Numerical methods in boundary-layer theory, Annual Review of Fluid Mechanics, 10:417-433(1978).

[19] J.Y. Parlange, R.D. Braddock and G. Sander, "Analytical approximations to the solution of the Blasius equation". Acta Mech. 38 (1-2): 119-125(1981).

[20] F.M. White, *Viscous Fluid Flow*. McGraw-Hill(1991).

[21] S.J. Liao, An approximate solution technique not depending on small parameters Part 2: an application in fluid mechanics, Int. J. Non-Linear Mech. 32(5):815-822(1997)

[22] S.J. Liao, An explicit totally analytic approximate solution for Blasius viscous flow problems, Int. J. Nonlinear Mechanics, 34.:759-778(1999).

[23] H. Schlichting, K. Gersten. *Boundary Layer Theory*. Springer, Berlin, Heidelberg, New York (2000).

[24] M. A. Fathi and I.S. Muhammed, On the analytic solutions of the nonhomogeneous Blasius problem, J. of Computational and Applied Mathematics 182: 362-371(2005).

[25] Y.H. Guo, Lectures on Boundary Layer Theory, China University of Science and Technology Press (2008)(in Chinese).

[26] P.K. Kundu, I. M. Cohen and D. R. Dowling, *Fluid Mechanics*, Academic Press (2016).

[27] H. Aminikhah and S. Kazemi, Numerical Solution of the Blasius Viscous Flow Problem by Quartic B-Spline Method, International Journal of Engineering Mathematics, 2016, Article ID 9014354, 6 pages

[28] V.M. Falkner and S.W. Skan, Solutions of the boundary-layer equations, Phil. Mag. 12,865(1931).

[29] E.H. Bani-Hani and M.E. H. Assad, Boundary-layer theory of fluid flow past a flat-plate: numerical solution using MATLAB, Int. J. of Computer Applications, 180:18(2018).