Full Title: Variation of IgG N-linked glycosylation profile in diabetic retinopathy

Running Head: IgG glycosylation and diabetic retinopathy

Word counts: 2424 words

Number of tables: 3

Number of figures: 3

Authors:

(PhD) Wu Zhiyuan\(^a\), wuxiaozhi@ccmu.edu.cn;
(PhD) Pan Huiying\(^a\), panhuiying526@163.com;
(PhD) Liu Di\(^a\), liudiepistat@163.com;
(MS) Zhou Di\(^b\), 18810675096@163.com;
(PhD) Li Haibin\(^a\), 15910681644@126.com;
(PhD) Tao Lixin\(^a\), 13426176692@163.com;
(PhD) Zhang Jie\(^a\), zhangjie@ccmu.edu.cn;
(PhD) Wang Xiaonan\(^a\), hnaywxn@163.com;
(PhD) Li Xia\(^b\), x.li2@latrobe.edu.au;
(PhD) Wang Youxin\(^a\), sdwangyouxin@163.com;
(PhD) Wang Wei\(^a,e\), wei.wang@ecu.edu.cn;
(PhD) Guo Xiuhua\(^a\), statguo@ccmu.edu.cn.

Authors’ affiliations:

\(^a\) Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
Department of Mathematics and Statistics, La Trobe University, Australia.

Department of Public Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.

Corresponding author:

Xiuhua Guo

Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, You’anmen Wai, Fengtai District, Beijing 100069, China

Phone: +86-10-83911508

Fax: +86-10-83911508

Email: statguo@ccmu.edu.cn

ORCID ID: 0000-0001-6657-6940
Abstract

Background: The relationship of IgG glycosylation with diabetes and diabetic nephropathy has been reported, while its role in diabetic retinopathy (DR) remained unclear. We aimed to investigate and validate the association of IgG glycosylation with DR.

Methods: We analyzed the IgG N-linked glycosylation profile and identified the specific panel in the discovery population using binary logistics model. Findings were validated in the replication population. The discriminative capacity of IgG glycosylation panel was explored by ROC analysis using cross validation and Brier score. Multiple sensitive analyses were performed on the whole population.

Results: 2 IgG glycans (GP15, GP20) and 2 derived traits (IGP32, IGP54) were identified and validated significantly associated with DR (P<0.05), and the adjusted OR were 0.676, 0.671, 1.770, 0.681 in combined population, respectively. The glycosylation panel achieved an average AUC of 0.67 and 0.60 in the discovery and replication population. The association was independent of blood pressure, glucose and lipids, thus improving the ROC and Brier score when the panel added. In addition, the results remained consistent when the controls were re-defined and 1:3 re-matched.

Conclusions: IgG glycosylation profile reflecting a pro-inflammatory status were associated with DR. The variation of IgG glycome deserves more attention in the aggravation of diabetes and the underlying mechanism warrants further research.

Keywords: Diabetic retinopathy; IgG; Glycosylation; Biomarker
Background

Type 2 diabetes, characterized by abnormal glycometabolism and impaired insulin function, has become a serious threat to global health. Type 2 diabetes accounts for the vast majority (around 90%) of diabetes worldwide and it is estimated that 171 million people have diabetes in 2000 and this number is projected to reach 366 million by 2030 [1]. People living with type 2 diabetes are at a higher risk of developing life-threatening complications, such as diabetic retinopathy (DR). About one third of individuals with diabetes have different degrees of DR, which is a common microvascular disease and the leading cause of blindness in the working-aged population [2,3]. In recent years, people with prediabetes, characterized by impaired glucose tolerance and/or impaired fasting glucose, are also increasingly, which signifies a potential risk of the future development of type 2 diabetes and DR [4]. However, the etiological mechanism of the aggravation of diabetes status remains unclear and the potential biological targets related with the onset of DR are urgently needed.

Glycometabolism is influenced by the interaction of genetic and environmental factors [5], among which glycosylation is one of the most common and posttranscriptional modifications. The glycans attached to proteins exert crucial biological effect including cellular recognition and molecular pathway regulation [6]. The variation of IgG glycans are mostly investigated and the covalently attached glycans are reported to be associated with the stability of IgG protein and its pro-inflammatory or anti-inflammatory effects [7]. Recently, the variation of IgG
glycans are emerging as potential biomarkers and biological pharmacological targets of various metabolic diseases, such as aging [8], dyslipidemia [9], immune disease [10] and type 2 diabetes [11-12]. In fact, type 2 diabetes is accompanied by glucose metabolic disorder and the impaired function of inflammation regulation. Moreover, the IgG glycosylation profiles have been linked with the risk factors of type 2 diabetes, such as obesity [13], blood pressure [14,15] and fasting blood glucose (FBG) [16]. Therefore, it is rational to infer that the specific IgG glycans or traits play an important role in the pathological process of DR. Lemmers et al. [11] and our team [12] have identified the differential IgG glycans between the diabetes population and health controls. However, the biological effect of the IgG glycosylation profile in the development of DR remains unclear.

In this study, we aim to investigate the association of the IgG glycosylation with the onset of DR, thus to identify the early glycome biomarkers related with DR.

Methods

Study design and population

In 2015, 54 subjects of new-onset DR and 108 matched controls (22 prediabetes and 86 diabetes), from the Beijing health management cohort, were enrolled in this study as the discovery population. Subsequently, 54 cases of DR and 108 matched controls (18 prediabetes and 90 diabetes) were recruited in 2016 as the replication population. The Beijing health management cohort is an ongoing population-based study of participants aged ≥18 years for metabolism-related diseases research, beginning from Jan 2008 [17]. All the participants in this cohort were asked to take in physical and
biochemical examinations, and the plasma samples were separated from the fasting blood for subsequent glycosylation experiment.

The following inclusion criteria were required: (1) signing informed consent prior to enrollment; (2) at least 18 years old; and (3) new onset of DR. The exclusion criteria were as follows: (1) history of type 1 diabetes; (2) history of mental illness, infectious disease, cardiovascular diseases, stroke, liver disease, renal failure, cancer or autoimmune diseases; (3) unable to collect the required data. This study was conducted following the Declaration of Helsinki and was approved by the Capital Medical University Ethics Committee.

IgG glycosylation experiment

The glycosylation experiment and analysis composed of four major processes: IgG protein isolation and purification from plasma, N-linked glycans release and fluorescence labeling, glycans quantitative detection, direct glycans and derived traits computation, as described previously [18, 19]. In brief, IgG protein was obtained from 2ml plasma using 96-well protein G monolithic plates using 1×phosphate buffer saline, 0.1 M formic acid and 1 M ammonium bicarbonate; the N-linked glycans were released from the purified IgG protein at 37°C using 1.5 units of PNGase F and 5×phosphate buffer saline for 18 hours; subsequently, the released glycans were fluorescently labelled using 2-AB at 65°C for 3 h and isolated with chromatography phase; the direct glycans were quantitatively detected using ultra-performance liquid chromatography platform (Waters, America) and the glycan traits were derived accordingly.
Finally, 24 direct glycan peaks (GP) were presented and quantitatively expressed with the percentage of the total integrated peak area. In addition, 54 glycan traits (IGP) were derived to reflect the relative abundance of the specific structure, such as galactosylation, sialylation, bisecting N-acetylglucosamine (GlcNAc), core fucosylation and mannose. The detailed information of each GP and IGP were shown in Appendix Table A1. The amounts of GP and IGP were normalized by log-transformation and the batch size was considered and corrected for the subsequent analysis.

Covariates

The demographic characteristics like age and sex were obtained at baseline by questionnaires. The body mass index (BMI) was defined as weight (in kilograms)/height2 (in meters squared), and was divided into < 25 and ≥ 25. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were presented as the mean of twice measures on the right arm using sphygmomanometer after resting at least 10 min. High blood pressure (HBP) was defined as SBP ≥ 140 or DBP ≥ 90 accordingly. The fasting blood glucose (FBG) was measured after overnight fasting and the postprandial blood glucose (PBG) was measured after 2 hours from the beginning of meals using the glucose oxidase-peroxidase method (Mind Bioengineering Co. Ltd., Shanghai, China). Triglyceride, total cholesterol (TC), high density lipoprotein cholesterol (HDL-cholesterol, HDLC), low density lipoprotein cholesterol (LDL-cholesterol, LDLC) were measured with the Olympus Automatic Biochemical Analyzer (Hitachi 747; Tokyo, Japan).
Outcomes

Prediabetes, diabetes and DR were defined by physicians and ophthalmologists according to the American Diabetes Association standards [20] and the International Clinical Diabetic Retinopathy Disease Severity Scale [21] as follows: (1) prediabetes: 7.0>FBG>6.1 mmol/L, or 11.1>PBG≥7.8 mmol/L (2) diabetes: FBG≥7.0 mmol/L, or PBG≥11.1mmol/L, or regular use of anti-diabetes drugs, or history of diabetes; (3) DR: diagnosed by ophthalmologists among diabetes patients. The related signs include microarteoma, vein bead, intraretinal microvascular abnormalities, neovascularization, vitreous or retinal hemorrhage according to the mydriatic fundus examination by slit lamp and fundus photography.

Statistical analysis

Continuous variables adhering to the normal distribution were represented as the mean ± standard deviation (SD) and the differences between groups were tested by the independent student t tests; otherwise, the interquartile range (P_{25} - P_{75}) was used and the differences between groups were explored by Mann-Whitney U tests. Categorical variables were presented as n (%), and the differences were tested by the chi-square tests. The box plots were used to show the distribution of IgG glycans and traits between groups.

The controls were 1:2 matched based on age, sex and BMI. Binary logistics model was used to identify the IgG glycans and traits associated with the onset of DR in both discovery and replication population. Moreover, the association was explored after confounding covariates (age, sex, BMI, blood pressure, glucose and lipids) adjusted.
Further, the discriminative capacity of the differential IgG glycans and traits were explored by ROC analysis using 5-fold cross validation and calibration assessment using Brier score. In addition, the sensitive analyses were performed in the following situations: the ordinal logistics model was used to identify the substantially changed glycans and traits when the controls were re-defined as prediabetes and diabetes; the controls were 1:3 matched and re-analyzed.

All reported P values were two-tailed, and $P<0.05$ was considered statistically significant. All the analyses presented above were performed using the R software (version 3.6.3).

Results

Demographic and clinical characteristics

In the discovery population, the mean age of this population was 61.0 (range from 37.0 to 93), involving 131 males (80.9%). In the replication population, the mean age of this population was 60 (range from 27 to 88), involving 135 males (83.3%). The demographic characteristics were similar between the discovery and replication populations. Also, there were no significant difference in HBP, TG, LDLC, HDLC between DR group and the controls, while TC declined in DR group. The detailed information was shown in Table 1.

Associations of IgG glycosylation and DR

In the discovery population, 6 glycans and 9 traits were primarily identified. Then, GP15, GP20, IGP32, IGP54 were validated in the replication population as the glycosylation panel associated with DR. The distribution of the panel was shown in
Figure 1 and the adjusted OR in the combined population were 0.676, 0.671, 1.770, 0.681, respectively, as shown in Table 2. The detailed distribution of all these glycans and traits were shown in Appendix Table A.2.

Further, discriminative capacity of the glycosylation panel was shown in Table 3 and the average AUC of 5 folds were 0.67 and 0.60 in the discovery and replication populations, respectively. In addition, the AUC and Brier score were slightly improved when the panel added to the simple model involving age, sex, BMI, HBP, FBG, DBG and blood lipids, as shown in Figure 2.

Sensitive analyses

The sensitive analyses were performed on the whole population due to the sample size. On one hand, the controls were separately defined as prediabetes and diabetes. And GP15, GP20, IGP54 were substantially decreased, while IGP32 increased. In the ordinal multivariable model, GP15 (OR: 0.64; 95%CI: 0.49-0.82), GP20 (OR: 0.60; 95%CI: 0.46-0.78), IGP32 (OR:1.94; 95%CI: 1.47 -2.61), IGP54 (OR:0.66; 95%CI: 0.51-0.85) still remained significantly associated with DR, as shown in Figure 3(A).

On the other hand, the control population was updated to 1:3 matching. Then, GP15 (OR: 0.74; 95%CI: 0.57-0.96), IGP32 (OR:1.58; 95%CI: 1.15-2.23), IGP54 (OR:0.74; 95%CI: 0.57-0.96) remained significantly associated with DR, while GP20 (OR: 0.81; 95%CI: 0.63-1.05) changed to indistinctive positive correlation in the multivariable model, as shown in Figure 3(B).

Discussion

In this study, we investigated the relationship of IgG glycosylation profile and DR in
two matched populations. The panel of GP15, GP20, IGP32, IGP54 was validated to be strongly associated during the pathological process from prediabetes or diabetes to DR, which could also improve the discriminative capacity of the simple model. Moreover, the association remained consistent in the re-defined and re-matched populations. We proposed that the specific variation of IgG glycosylation profile, independent from the common clinical factors, plays an important role in the pathological process of DR. Meanwhile, the panel of GP15, GP20, IGP32, IGP54 could be potential biomarkers and drug targets, which could contribute to the early prevention and treatment of DR. Both genetic and environmental factors affect the incidence and development of diabetes and its complications, and the glycosylation of IgG proteins is one of the most common post-translational modifications which is involved in almost all physiological processes of the body, such as signal pathways, cellular immunity, and the mutual recognition of proteins [22]. The variation of IgG glycosylation profiles, reflecting both the genetic and environmental characteristics [23], are reported to be associated with various diseases, especially the autoimmune diseases, and chronic metabolic and inflammatory diseases [24-26]. In fact, both the glycometabolism disorder and impaired immunologic function involve in the pathophysiological process of diabetes and DR. In this study, we found that GP15, GP20, IGP54 decreased and IGP32 increased, instead. The variation of IgG glycans and traits were in accordance with a decrease of digalactosylated biantennary glycan with bisecting GlcNAc and core fucose (GP15), digalactosylated monosialylated biantennary with
core and antennary fucose (GP20), digalactosylated biantennary glycan with core fucose structures in total neutral IgG glycans (IGP54) and an increase of disialylation of fucosylated digalactosylated structures with bisecting GlcNAc (IGP32). The results above were largely in consistent with previous studies of IgG glycosylation profiles in type 2 diabetes and its related factors. Previous studies have reported that complex glycan structures with bisecting GlcNAc were highly associated with some inflammatory diseases, reflecting a body status of pro-inflammation [11,27]. IgG proteins were sensitive to biological inflammatory stress and the variation of IgG glycans could reverse its anti-inflammatory function [28,29]. Therefore, the substantially increased proportion of the complex glycan structures such as disialylation of fucosylated digalactosylated structures with bisecting GlcNAc may be induced by the biological inflammation in the process of glucose aggravation and DR. In addition, the decreased proportion of galactosylation, accompanied by decreased percentage of sialylation as the sialic acids were attached to the galactose, was thought to strengthen the complement-dependent cytotoxicity (CDC) effect of IgG [30,31]. And the presence of bisecting GlcNAc and lack of core or antennary fucose were thought to strengthen the antibody-dependent cell-mediated cytotoxicity (ADCC) effect of IgG [29,32]. Both the CDC and ADCC effects of IgG were reported to switch its anti-inflammatory role to pro-inflammation. Consistently, Lemmers et al. [11] found an glycosylation pattern of decreased galactosylation, sialylation, fucosylation structures and increased bisecting GlcNac structures associated with type 2 diabetes based on a European population. On a further step, we
found that the similar IgG glycosylation pattern was associated with the aggravation
of diabetes from prediabetes or diabetes to DR in this study. The panel was related
with an overall decrease digalactosylated fucosylated structures with and without
GleNAc, with monosialytion or without sialic acid. Moreover, the structures of
bisecting GleNac and disialylation seemed to exert synergetic effect in DR.
The strength of our study was that we analyzed the variation of IgG glycosylation
profiles and identified the IgG glycans and traits associated with DR for the first time.
As far, FBG, PBG and insulin resistance index have been applied in the diagnosis and
intervention of diabetes and DR. It is of great importance of discover more metabolic
biomarkers and potential drug targets for the prevention and treatment of DR [33].
However, the results should be interpreted in the context of some limitations. First,
the sample size was relatively small and we could not claim a casual association due
to lack of prospective. Second, the discriminative capacity of IgG glycosylation panel
in differentiating DR was relatively poor, although it could improve the capacity of
the generally monitored clinical factors. The biological mechanism of IgG
glycosylation profiles in DR or other diabetic complications warrants further
investigation in animal or cell level. Third, our study was based on the Chinese
population, more collaborations are needed to validate the generalizability of results.

Conclusions

In general, IgG glycosylation profile, reflecting a pro-inflammatory status, was
validated to be associated with DR. The variation of IgG glycans and traits could be
novel biomarkers and potential drug targets for DR and other diabetic complications
which warrants further investigation.

List of abbreviations

DR: Diabetic retinopathy; BMI: Body mass index; FBG: Fasting blood glucose;
PBG: Postprandial blood glucose; SBP: Systolic blood pressure;
DBP: Diastolic blood pressure; HBP: High blood pressure; TC: Total cholesterol;
HDLC: High density lipoprotein cholesterol;
LDLC: Low density lipoprotein cholesterol; GP: Glycan peak;
ADCC: antibody-dependent cell-mediated cytotoxicity;

Declarations

Ethics approval and consent to participate
The study followed the guidelines of the Helsinki Declaration, and was approved by
the Ethics Committees of Capital Medical University.

Consent for publication
All participants have given the consent for publication.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the

Competing interests
The authors declare that they have no competing interests.
Funding

Our work was funded by the Program of Natural Science Fund of China (Serial Number: 81530087). The study funder was not involved in the design of the study; the collection, analysis, and interpretation of data; writing the report; and did not impose any restrictions regarding the publication.

Authors' contributions

Design: Xiuhua Guo; Wei Wang; Youxin Wang

Conduct/data collection: Jie Zhang, Lixin Tao, Xiaonan Wang

Analysis: Zhiyuan Wu, Haibin Li, Di Liu, Huiying Pan

Writing manuscript: Zhiyuan Wu. Di Zhou, Xia Li

All authors read and approved the final manuscript. The corresponding author attested that all listed authors meet authorship criteria and that no others meeting the criteria omitted.

Acknowledgements

Not applicable
References

1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.

2. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124-36.

3. Thomas RL, Halim S, Gurudas S, Sivaprasad S, Owens DR. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract. 2019;157:107840.

4. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. Bmj. 2016;355:i5953.

5. Morris AP, Voight BF, Teslovich TM, Ferreira T, Steinhorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981-90.

6. Varki A. Biological roles of glycans. Glycobiology. 2017;27(1):3-49.

7. Liu D, Li Q, Zhang X, Wang H, Cao W, Li D, et al. Systematic Review: Immunoglobulin G N-Glycans as Next-Generation Diagnostic Biomarkers for Common Chronic Diseases. Omics. 2019;23(12):607-14.

8. Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 2018;333:65-79.

9. Liu D, Chu X, Wang H, Dong J, Ge SQ, Zhao ZY, et al. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J Transl Med. 2018;16(1):235.

10. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 1985;316(6027):452-7.

11. Lemmers RFH, Vilaj M, Urda D, Agakov F, Šimurina M, Klaric L, et al. IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochim Biophys Acta Gen Subj. 2017;1861(12):2240-9.

12. Wu Z, Li H, Liu D, et al. IgG Glycosylation Profile and the Glycan Score Are Associated with Type 2 Diabetes in Independent Chinese Populations: A Case-Control Study. J Diabetes Res. 2020;2020:5041346.

13. Liu D, Li Q, Dong J, Li D, Xu X, Xing W, et al. The Association Between Normal BMI With Central Adiposity And Proinflammatory Potential Immunoglobulin G N-Glycosylation. Diabetes Metab Syndr Obes. 2019;12:2373-85.

14. Gao Q, Dolikun M, Tambuk J, Wang H, Zhao F, Yiliham N, et al. Immunoglobulin G N-Glycans as Potential Postgenomic Biomarkers for Hypertension in the Kazakh Population. Omics. 2017;21(7):380-9.

15. Liu JN, Dolikun M, Tambuk J, Trbojević-Akmačić I, Zhang J, Wang H, et al. The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations. J Hum Hypertens. 2018;32(8-9):555-63.

16. Ge S, Wang Y, Song M, Li X, Yu X, Wang H, et al. Type 2 Diabetes Mellitus: Integrative Analysis of Multiomics Data for Biomarker Discovery. Omics. 2018;22(7):514-23.

17. Liu J, Zhao Z, Mu Y, Zou X, Zou D, Zhang J, et al. Gender Differences in the Association
between Serum Uric Acid and Prediabetes: A Six-Year Longitudinal Cohort Study. Int J Environ Res Public Health. 2018;15(7).
18. Trbojević-Akmaćić I, Vilaj M, Lauc G. High-throughput analysis of immunoglobulin G glycosylation. Expert Rev Proteomics. 2016;13(5):523-34.
19. Pucić M, Knezević A, Vidic J, Adamczyk B, Novokmet M, Polasek O, et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics. 2011;10(10):M111.010090.
20. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13-s28.
21. Wilkinson CP, Ferris FL, 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677-82.
22. Klaric L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv. 2020;6(8):e0301.
23. Wahl A, van den Akker E, Klaric L, Štabljk J, Benedetti E, et al. Genome-Wide Association Study on Immunoglobulin G Glycosylation Patterns. Front Immunol. 2018;9:277.
24. Wang H, Li X, Wang X, Liu D, Zhang X, Cao W, et al. Next-Generation (Glycomic) Biomarkers for Cardiometabolic Health: A Community-Based Study of Immunoglobulin G N-Glycans in a Chinese Han Population. Omics. 2019;23(12):649-59.
25. Lauc G, Huffman JE, Pučić M, Zgaga L, Adamczyk B, Mužinić A, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9(1):e1003225.
26. Sun D, Hu F, Gao H, Song Z, Xie W, Wang P, et al. Distribution of abnormal IgG glycosylation patterns from rheumatoid arthritis and osteoarthritis patients by MALDI-TOF-MS(n). Analyst. 2019;144(6):2042-51.
27. Li X, Wang H, Russell A, Cao W, Wang X, Ge S, et al. Type 2 Diabetes Mellitus is Associated with the Immunoglobulin G N-Glycome through Putative Proinflammatory Mechanisms in an Australian Population. Omics. 2019;23(12):631-9.
28. Yagi H, Yanaka S, Kato K. Structure and Dynamics of Immunoglobulin G Glycoproteins. Adv Exp Med Biol. 2018;1104:219-35.
29. Kobata A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta. 2008;1780(3):472-8.
30. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670-3.
31. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest. 2015;125(11):4160-70.
32. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733-40.
33. Mimura Y, Katoh T, Saldova R, O'Flaherty R, Izumi T, Mimura-Kimura Y, et al. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell. 2018;9(1):47-62.
Table 1

The characteristics of participants in the discovery and replication populations.

	Discovery population	Validation population				
	Controls(n=108)	DR (n=54)	P value	Controls(n=108)	DR (n=54)	P value
Age†	60.41(12.22)	62.50(11.36)	0.295	59.26(11.85)	60.41(11.10)	0.554
Sex (male)‡	87(80.6)	44(81.5)	1	89(82.4)	46(85.2)	0.823
BMI (≥25)‡	70(64.8)	35(64.8)	1	80(74.1)	40(74.1)	1
FBG†	7.01[6.38,8.32]	8.00[6.52,10.05]	0.01	7.25[6.41,8.55]	8.00[6.46,9.68]	0.068
PBG†	11.00[9.40,13.17]	12.40[10.15,14.55]	0.08	10.80[9.70,13.31]	11.90[9.88,14.40]	0.134
HBP (yes)§	35(32.4)	18(33.3)	1	37(34.3)	11(20.4)	0.1
TG§	1.43[1.06,1.88]	1.36[0.88,1.86]	0.423	1.43[0.97,2.06]	1.29[0.90,1.70]	0.123
LDLC §	2.69[2.15,3.47]	2.71[1.98,3.26]	0.243	2.71[2.15,3.45]	2.25[1.94,3.10]	0.041
HDLC §	1.35[1.05,1.58]	1.22[0.95,1.41]	0.049	1.25[1.06,1.45]	1.16[1.03,1.33]	0.101
TC §	4.55[3.91,5.40]	4.19[3.36,4.97]	0.018	4.41[3.87,5.25]	3.99[3.22,4.83]	0.004

† mean (SD), student t test; ‡ numbers of each category (%) are given, chi-square test; § median (P25 - P75), Mann-Whitney U test.
Table 2

Associations of IgG glycosylation and DR by binary logistics model.

	Discovery Population	Validation Population	Combined Population			
	OR	P value	OR	P value	OR	P value
GP15						
univariate	0.604	0.007	0.678	0.033	0.633	0.000
multivariate†	0.617	0.016	0.597	0.015	0.676	0.006
GP20						
univariate	0.654	0.016	0.640	0.011	0.608	0.000
multivariate†	0.643	0.022	0.585	0.025	0.671	0.008
IGP32						
univariate	1.898	0.009	1.861	0.010	1.995	0.000
multivariate†	2.123	0.005	1.813	0.023	1.770	0.002
IGP54						
univariate	0.587	0.005	0.677	0.033	0.635	0.000
multivariate†	0.609	0.013	0.610	0.018	0.681	0.007

† Age, sex, BMI, HBP, FBG, PBG, TG, TC, HDLC, LDLC were adjusted in the multivariate model.
Table 3

The AUC of IgG glycosylation panel using 5-fold cross validation.

	1-fold	2-fold	3-fold	4-fold	5-fold
Discovery Population	0.637	0.713	0.658	0.596	0.722
Validation Population	0.576	0.626	0.536	0.634	0.610
Combined Population	0.609	0.721	0.655	0.658	0.693
Figures:

Figure 1: The distribution boxplot of IgG glycosylation panel in the discovery and replication populations.

Figure 2: The discriminative capacity of IgG glycosylation panel.

Legend:
A: The ROC and Brier score with IgG glycosylation panel in the discovery population;
B: The ROC and Brier score with IgG glycosylation panel in the replication population;
C: The ROC and Brier score with IgG glycosylation panel in the combined population.

Simple model: involving age, sex, BMI, HBP, FBG, PBG, TG, TC, HDLC, LDLC;
Complex model: IgG glycosylation panel added in the simple model.

Figure 3: Results of sensitive analyses.

Legend:
A: Association of the IgG glycosylation and DR by ordinal logistics model given the controls defined as prediabetes and diabetes;
B: Association of the IgG glycosylation and DR in 1:3 matched population.
1 **Supplementary materials:**

2 Table A.1: The detailed descriptions of the IgG glycans and traits.

3 Table A.2: Distribution of all IgG glycans and traits in the discovery and replication populations.