Calculation of the 12C + 12C sub-barrier fusion cross section in an imaginary-time-dependent mean field theory

A. Bonasera,1,2 and J. B. Natowitz

1Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
2Laboratori Nazionali del Sud-INFN, v. Santa Sofia 64, 95123 Catania, Italy

INTRODUCTION&MOTIVATION

Letter 688| Nature | VOL557 | 31MAY2018

An increase in the 12C + 12C fusion rate from resonances at astrophysical energies

A. Tumino1,2, C. Spitaleri2,3, M. La Cognata2, S. Cherubini2,3, G. L. Guardo2,4, M. Gulino1,2, S. Hayakawa2,5, J. Indelicato2, L. Lamia2,3, H. Petracca4, G. Pizzone3, S. M. r. Puglia2, G. G. rapisarda2, S. romano2,3, M. L. Sergi2, r. Spartá3, and L. Trache4

Status on 12C + 12C fusion at deep subbarrier energies: impact of resonances on astrophysical S^* factors

C. Beck1,a, A. M. Mukhamedzhanov2,b, X. Tang3,4,c

Eur. Phys. J. A (2020) 56:87

$$S^*(E_{\text{c.m.}}) = E_{\text{c.m.}} \sigma(E_{\text{c.m.}}) \exp(87.12 E_{\text{c.m.}}^{-1/2} + 0.46 E_{\text{c.m.}})$$

$$= S(E_{\text{c.m.}}) \exp(0.46 E_{\text{c.m.}})$$ \hspace{1cm} (1)
Feynman path integration in phase space

Aldo Bonasera, Vladimir N. Kondratyev

Laboratorio Nazionale del Sud, INFN, v. S. Sofia 44, 95125 Catania, Italy

Solve the Vlasov equation in imaginary time. Define collective variables R&P

\[
\begin{align*}
\{ R_A \} &= \int dr dp \{ r_p \} f(r, p; t) \\
\{ P_A \} &= \int dr dp \{ p_r \} f(r, p; t)
\end{align*}
\]

\[
\begin{align*}
\frac{dR_A}{dt} &= \frac{P_A}{m} \\
\frac{dP_A}{dt} &= F_A
\end{align*}
\]

in imaginary time \(t \to it \)

\[
\begin{align*}
\frac{dR^i_A}{dt} &= \frac{P^i_A}{m} \\
\frac{dP^i_A}{dt} &= -F_A
\end{align*}
\]

\(E_{\text{c.m.}} = 3.5 \text{ MeV} \)

NEWTONIAN DYNAMICS OF TIME-DEPENDENT MEAN FIELD THEORY

A. BONASERA, G.F. BERTSCH and E.N. EL-SAYED

Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

Phys.Lett.B141(1984)9; 168B(1986)35.

Nuclear Physics A439 (1985) 353–370
The probability of fusion for the l th-partial wave is given by $T_l = 1/(1 + \exp\{2A\})$, $A = \int_1^2 P \, dR$.

To take into account resonances modify the Bass potential as:

$$V_B \rightarrow V_B [1 + g(x, \gamma, \sigma)],$$

Analytical formula

$$S_0 = S_G e^{4\sqrt{2\mu Z_1 Z_2 e^2 R_N}/\hbar}. $$

$$S_G = \pi \hbar^2/(2\mu)$$

S. Kimura and A. Bonasera, Phys. Rev. C 76, 031602(R) (2007).
Last but not least, S and S^*—what if we use the action A instead?

\[A = \frac{1}{2} \ln \left[\frac{\pi \hbar^2}{2E_{cm} \sigma(E_{cm})} - 1 \right] \mid_{l=0} \]

Gamow limit

\[A_G = e^2 \pi Z_T Z_P \sqrt{\frac{\mu}{2E_{CM}}} \].

S. Kimura and A. Bonasera, Phys. Rev. C 76, 031602(R) (2007).
Conclusions

The Neck model and the Vlasov approach in imaginary time give $S^* > 16 \text{MeVb}$ for $E_{cm} > 0.5 \text{MeV}$ (agrees with analytical formula as well)

Adding resonances is in some agreement with the THM

$l=0$ channel is dominant up to $E_{cm} = 3 \text{MeV}$

if the properties of the resonances (spin, width etc..) are confirmed then:

THANKS