October 11, 2022

SMOOTH SIMPLICIAL SETS AND UNIVERSAL CHERN-WEIL HOMOMORPHISM

YASHA SAVELYEV

Abstract. First we introduce a basic geometric-categorical notion of a smooth simplicial set. Loosely, this is to Chen/diffeological spaces of Chen-Souriau as simplicial sets are to spaces. Given a Frechet Lie group G, and a chosen Grothendieck universe U of a certain type, we give a new (as just a topological space) construction of a classifying space of G: $|BG^U|$, so that BG^U has the structure of a smooth Kan complex. When G in addition has the homotopy type of CW complex, there is a homotopy equivalence $BG \simeq |BG^U|$, where BG is the usual Milnor classifying space. This leads to our main application that for G an infinite dimensional Lie group, having the homotopy type of CW complex, there is a universal Chern-Weil homomorphism:

$$\mathbb{R}^\mathfrak{g}^G \to H^*(BG, \mathbb{R}),$$

satisfying naturality, and generalizing the classical Chern-Weil homomorphism for finite dimensional Lie groups. As one basic example we give a full statement and proof of Reznikov’s conjecture, which in particular gives an elementary proof of a theorem of Kedra-McDuff, on the topology of $BHam(\mathbb{C}P^n)$. We also give a construction of the universal coupling class for all possibly non-compact symplectic manifolds.

Contents

1. Introduction 2
1.1. Acknowledgements 5
2. Preliminaries and notation 5
2.1. Topological simplices and smooth singular simplicial sets 5
2.2. The simplex category of a simplicial set 6
2.3. Geometric realization 6
3. Smooth simplicial sets 7
3.1. Smooth simplex category of a smooth simplicial set 10
3.2. Products 10
3.3. More on smooth maps 11
3.4. Smooth homotopy 11
4. Differential forms on smooth simplicial sets 11
4.1. Homology and cohomology of a simplicial set 12
4.2. Integration 13
4.3. Pull-back 14
4.4. Relation with ordinary homology and cohomology 14
5. Smooth simplicial G-bundles 15
5.1. Pullbacks of simplicial bundles 20
6. Connections on simplicial G-bundles 21
7. Chern-Weil homomorphism 21
7.1. The classical case 21
7.2. Chern-Weil homomorphism for smooth simplicial bundles 22
1. Introduction

We introduce the notion of a smooth simplicial set, which is most directly an analogue in simplicial sets of Chen spaces [2], with the latter perhaps a most basic notion of a “smooth space”. By putting further conditions on smooth simplicial sets we also get a simplicial set analogue of diffeological spaces of Souriau [22]. The language of smooth simplicial sets turn out to be a powerful tool to resolve the problem of the construction of the universal Chern-Weil homomorphism for infinite dimensional Lie groups, (Banach or Frechet). This has been open since Milnor’s construction of universal bundles [14], which in particular produces universal G-bundles for infinite dimensional Lie groups. For finite dimensional Lie groups the universal Chern-Weil homomorphism has been studied for instance by Bott [1], it’s uniqueness has been studied by Freed-Hopkins [6].

One problem of topology is the construction of a “smooth structure” on the classifying space BG of a Frechet Lie group G. There are specific requirements for what such a notion of a smooth structure should entail. At the very least we hope to be able to carry out Chern-Weil theory universally on BG. That is we want a “purely” differential geometric construction of the Chern-Weil homomorphism:

$$\mathbb{R}[\mathfrak{g}]^G \rightarrow H^*(BG, \mathbb{R}),$$

with $\mathbb{R}[\mathfrak{g}]^G$ denoting Ad_G invariant polynomials on the Lie algebra \mathfrak{g} of G. When G is a classical Lie group, BG can be written as a colimit of smooth manifolds and so in that case the existence of the universal Chern-Weil homomorphism is classical.

One candidate for a smooth structure on BG is some kind of diffeology. For example Magnot and Watts [12] construct a natural diffeology on the Milnor classifying space BG. Another approach to this is contained in Christensen-Wu [3], where the authors also state their plan to develop some kind of universal Chern-Weil theory in the future.

A further specific possible requirement for the above discussed “smooth structures”, is that the smooth singular simplicial set BG_\bullet, should have a geometric realization weakly homotopy equivalent to BG. See for instance [10] for one approach to this particular problem in the context of diffeologies. This kind of requirement is crucial for instance in the author’s [20], which may be understood as a kind of “quantum Chern-Weil theory” on $B\text{Ham}(M, \omega)$, for $\text{Ham}(M, \omega)$ the group of Hamiltonian symplectomorphisms of a symplectic manifold. In the language of smooth simplicial sets, the analogue of this latter requirement is always trivially satisfied. The specific content of this is Proposition 3.6.
The structure of a smooth simplicial set is initially more flexible than a space with diffeology, but with further conditions, like the Kan condition, can become forcing. Given a Frechet Lie group \(G\), we construct, for each choice of a particular kind of Grothendieck universe \(\mathcal{U}\), a smooth simplicial set \(BG^\mathcal{U}\) with a specific classifying property, analogous to the classifying property of \(BG\), but relative to \(\mathcal{U}\). We note that this is not the Milnor construction, indeed the homotopy type of \(BG^\mathcal{U}\) may be dependent on \(\mathcal{U}\). The simplicial set \(BG^\mathcal{U}\) is moreover a Kan complex, and so is a basic example of a smooth Kan complex. We then show that if \(G\) in addition has the homotopy type of CW complex then the geometric realization \(|BG^\mathcal{U}|\) is homotopy equivalent to \(BG\), in particular \(\mathcal{U}\) dependence disappears.

All the dreams of “smoothness” mentioned above then in some sense hold true for \(BG^\mathcal{U}\) via its smooth Kan complex structure. In particular, as one immediate application we get:

Theorem 1.1. Let \(G\) be a Frechet Lie group having the homotopy type of CW complex, then there is a universal Chern-Weil algebra homomorphism:

\[
cw : \mathbb{R}[\mathfrak{g}]^G \to H^*(BG, \mathbb{R}).
\]

This is natural, so that if \(P \to Y\) is a smooth \(G\)-bundle and

\[
cw^P : \mathbb{R}[\mathfrak{g}]^G \to H^*(Y, \mathbb{R})
\]

is the associated classical Chern-Weil homomorphism, then

\[
cw^P = (f_P)^* \circ cw,
\]

for \(f_P : Y \to BG\) the classifying map of \(P\).

Remark 1.2. The theorem above may have an extension to diffeological groups. We need enough structure on \(G\) for a suitable lie algebra, to define curvature and Chern-Weil theory. More specifically, we would need the structure of tangent bundle \(TG\) and suitable left invariant vector fields whose flows have unique existence for short time. We would also need an analogue of the main theorem Müller-Wockel \([16]\) for diffeological bundles, as this is what we use to transfer Chern-Weil theory from \(BG^\mathcal{U}\) to \(BG\).

Here is one concrete example. Let \(\mathcal{H} = Ham(M, \omega)\) denote the Frechet Lie group (with its \(C^\infty\) topology) of compactly supported Hamiltonian symplectomorphisms of some symplectic manifold. Let \(\mathfrak{h}\) denote its lie algebra. To remind the reader, when \(M\) is compact \(\mathfrak{h}\) is naturally isomorphic to the space of mean 0 smooth functions on \(M\), and otherwise it is the space of all smooth compactly supported functions. More details are in Section 11. In \([18]\) Reznikov defined \(Ad_{\mathcal{H}}\)-invariant polynomials \(\{r_k\}_{k \geq 1}\) on the Lie algebra \(\mathfrak{h}\). (Note that the case \(k = 1\) is only interesting when \(M\) is non-compact, in this setting.) By classical Chern-Weil theory we get cohomology classes \(c^r(P) \in H^{2k}(X, \mathbb{R})\) for any smooth \(\mathcal{H}\)-bundle \(P\) over \(X\). Using Theorem 1.1 we get:

Corollary 1.3. There are universal Reznikov cohomology classes \(c^r \in H^{2k}(B\mathcal{H}, \mathbb{R})\), satisfying naturality. That is, let \(Z \to Y\) be a smooth principal \(\mathcal{H}\)-bundle. Let \(c^r(Z) \in H^{2k}(Y)\) denote the Reznikov class. Then

\[
f^*_Z c^r = c^r(Z),
\]

where \(f_Z : Y \to B\mathcal{H}\) is the classifying map of the underlying topological \(\mathcal{H}\)-bundle.
This is an explicit form of a statement asserted by Reznikov [18, page 12, arxiv version] (although his M is compact) on the extension of his classes to the universal level on BH. This assertion is left without proof and he died shortly after, so that we may not know what he had in mind.

Remark 1.4. Reznikov ostensibly uses the above universality in the proof of [18, Theorem 1.5 (arxiv version)]. However, this theorem does not actually need universality provided we work over a smooth base, it is simply a statement of naturality of his classes, which actually follows by classical naturality of Chern-Weil classes in general (cf. Lemma 7.2 which discusses a more general claim of this sort). So that so long as we restrict to smooth base, which while not explicitly stated is apparently intended by Reznikov, his paper is complete, (all of the statements are provable by the methods of the paper).

Likewise, we obtain a purely differential geometric proof that the Guillemin-Sternberg-Lerman coupling class $c(P) \in H^2(P)$ [7], [13] of a Hamiltonian fibration (Definition 11.1) has a universal representative. Specifically, let M^H denote the M-fibration associated to the universal principal H-fibration $E \to BH$. (In other words the universal Hamiltonian M-bundle.)

Theorem 1.5. There is a cohomology class $c \in H^2(M^H)$ so that if $P \to X$ is a smooth Hamiltonian M-fibration and $f_P : X \to BH$ is its classifying map then $f^*_P c = c(P)$.

In the special case when M is closed the above existence can be obtained by homotopical techniques, Kedra-McDuff [9, Proposition 3.1].

We now describe one basic application. Let $Symp(\mathbb{C}P^k)$ denote the group of symplectomorphisms of $\mathbb{C}P^k$, that is diffeomorphisms $\phi : \mathbb{C}P^k \to \mathbb{C}P^k$ s.t. $\phi^*\omega_0 = \omega_0$ for ω_0 the Fubini-Study symplectic 2-form on $\mathbb{C}P^k$. The following theorem was obtained by Kedra-McDuff with some homotopy theory techniques. Using Corollary 1.3 we will give a purely differential geometric proof.

Theorem 1.6 (Kedra-McDuff [9]). The natural map
$$i : BPU(n) \to BSymp(\mathbb{C}P^{n-1})$$
induces an injection on rational homology for all $n \geq 2$.

The first result in this direction is due to Reznikov himself as he proves that:

(1.1) $$i_* : \pi_k(BPU(n)) \otimes \mathbb{R} \to \pi_k(BSymp(\mathbb{C}P^{n-1}, \omega)) \otimes \mathbb{R}$$
is injective. More history and background surrounding these theorems is in Sections 9 and 10.

One other basic example of Frechet Lie groups with a wealth of invariant polynomials on the lie algebra, are the loop groups LG, for G any Lie group, and LG the free loop space. I could not find any computations of the corresponding Chern-Weil theory. But possibly this is contained in physics literature, in some guise, as loop groups are prominent in conformal field theory, see for instance [17].

We end with one natural question.

Question 1.7. Our argument is formalized in ZFC + Grothendieck’s axiom of universes, where ZFC is Zermelo-Fraenkel set theory plus axiom of choice. Does theorem 1.1 have a proof in ZFC?
Probably the answer is yes, on the other hand as communicated to me by Dennis Sullivan there are known set theoretical (ZFC) issues with some questions on universal characteristic and secondary characteristic classes. So that the answer of no may be possible.

1.1. **Acknowledgements.** I am grateful to Daniel Freed, Yael Karshon, Dennis Sullivan, Egor Shelukhin, and Jean-Pierre Magnot, for comments and questions. I am also grateful to Dusa McDuff for explaining the proof of Corollary 1.6 in [9].

2. **Preliminaries and notation**

We denote by Δ the simplex category, i.e. the category with objects finite sets: $[n] = \{0, 1, \ldots, n\}$, with $\text{hom}_\Delta([n], [m])$ non-decreasing maps. A simplicial set X is a functor $X : \Delta \to \text{Set}^{op}$. We usually write $X(n)$ instead of $X([n])$, and this is called the set of n-simplices of X. Given a collection of sets $\{X(n)\}_{n \in \mathbb{N}}$, by a simplicial structure we will mean the extension of this data to a functor: $X : \Delta \to \text{Set}^{op}$.

Δ^simp_d will denote a particular simplicial set: the standard representable d-simplex, with $\Delta^\text{simp}_d(n) = \text{hom}_\Delta([n], [d])$.

The element of $\Delta^\text{simp}_d(0)$ corresponding to the map $i_k : [0] \to [d], i_k(0) = k$ will usually be denoted by just k.

A morphism or **map of simplicial sets or simplicial map** $f : X \to Y$ is a natural transformation f of the corresponding functors. The category of simplicial sets will be denoted by $s\text{-Set}$.

By a d-simplex Σ of a simplicial set X, we may mean, interchangeably, either the element in $X(d)$ or the map of simplicial sets: $\Sigma : \Delta^\text{simp}_d \to X$,

uniquely corresponding to Σ via the Yoneda lemma. If we write Σ^d for a simplex of X, it is implied that it is a d-simplex.

2.1. **Topological simplices and smooth singular simplicial sets.** Let Δ^d be the topological d-simplex, i.e.

$$\Delta^d := \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_1 + \ldots + x_d \leq 1, \text{ and } \forall i : x_i \geq 0\}.$$

The vertices of Δ^d will be assumed ordered in the standard way.

Definition 2.1. Let X be a smooth manifold with corners. We say that a map $\sigma : \Delta^n \to X$ is smooth if it smooth as a map of manifolds with corners. In particular $\sigma : \Delta^n \to \Delta^d$ is smooth iff it has an extension to a smooth map from a neighborhood in \mathbb{R}^n of Δ^n into a neighborhood of Δ^d in \mathbb{R}^d. We say that a smooth $\sigma : \Delta^n \to X$ is collared if there is a neighborhood $U \supset \partial \Delta^n$ in Δ^n, such that $\Sigma|_U = \Sigma \circ \text{ret}$ for $\text{ret} : U \to \partial \Delta^n$ some smooth retraction. Here smooth means that ret has an extension to a smooth map $V \subset \mathbb{R}^d \to \mathbb{R}^d$, with $V \supset \partial \Delta^n$ open in \mathbb{R}^d.

We denote by Δ^d_\bullet the smooth singular simplicial set of Δ^d, i.e. $\Delta^d_\bullet(k)$ is the set of smooth maps $\sigma : \Delta^k \to \Delta^d$.
We call an affine map $\Delta^k \to \Delta^d$ taking vertices to vertices in an order preserving way simplicial. And we denote by
\[\Delta^d_{\text{simp}} \subset \Delta^d \]
the sub-simplicial set consisting of simplicial maps. That is $\Delta^d_{\text{simp}}(k)$ is the set of simplicial maps $\Delta^k \to \Delta^d$.

Note that Δ^d_{simp} is naturally isomorphic to the standard representable d-simplex as previously defined, so that the abuse of notation is forgivable. Thus we may also understand Δ as the category with objects topological simplices Δ^d, $d \geq 0$ and morphisms simplicial maps.

Notation 2.2. A morphism $m \in \text{hom}_\Delta([n],[k])$ uniquely corresponds to a simplicial map $\Delta^d_{\text{simp}} \to \Delta^k_{\text{simp}}$, which uniquely corresponds to a simplicial map in the above sense $\Delta^d \to \Delta^k$. The correspondence is by taking the maps $\Delta^d_{\text{simp}} \to \Delta^k_{\text{simp}}$, $\Delta^d \to \Delta^k$, to be determined by the map of the vertices corresponding to m. We will not notationally distinguish these corresponding morphisms. So that m may simultaneously refer to all of the above morphisms.

2.2. The simplex category of a simplicial set.

Definition 2.3. For X a simplicial set, $\Delta(X)$ will denote a certain over category in $s-\text{Set}$ called the simplex category of X. This is the category whose set of objects $\text{obj } \Delta(X)$ is the set of simplices $\Sigma : \Delta^d_{\text{simp}} \to X$, $d \geq 0$ and morphisms $f : \Sigma_1 \to \Sigma_2$, commutative diagrams in $s-\text{Set}$:

\[
\begin{array}{ccc}
\Delta^d_{\text{simp}} & \xrightarrow{\overline{f}} & \Delta^d_{\text{simp}} \\
\downarrow_{\Sigma_1} & & \downarrow_{\Sigma_2} \\
X & & X
\end{array}
\]

(2.1)

with top arrow a simplicial map, which we denote by \overline{f}. An object $\Sigma : \Delta^d_{\text{simp}} \to X$ is likewise called a d-simplex, and such a Σ may be said to have degree d. As noted in the paragraph before the definition, the degree d may also be specified by a superscript.

Definition 2.4. We say that $\Sigma^n \in \Delta(X)$ is non-degenerate if there is no morphism $f : \Sigma^n \to \Sigma^m$ in $\Delta(X)$ s.t. $m < n$.

There is a forgetful functor
\[T : \Delta(X) \to \Delta, \]
$T(\Sigma^d) = \Delta^d_{\text{simp}}$, $T(f) = \overline{f}$. We denote by $\Delta_{\text{simp}}^{inj}(X) \subset \Delta(X)$ the sub-category with same objects, and morphisms f such that \overline{f} are monomorphisms, i.e. are face inclusions.

2.3. Geometric realization. Let Top be the category of topological spaces. Let X be a simplicial set, then define as usual the geometric realization of X by the colimit in Top:

\[|X| := \text{colim}_{\Delta(X)} T, \]

\[|X| := \text{colim}_{\Delta(X)} T, \]
for $T : \Delta(X) \to \Delta \subset Top$ as above, understanding Δ as a subcategory of Top as previously explained.

3. Smooth simplicial sets

If

$$\sigma : \Delta^d \to \Delta^n$$

is a smooth map we then have an induced map of simplicial sets

$$(3.1) \quad \sigma_* : \Delta_*^d \to \Delta_*^n,$$

defined by

$$\sigma_*(\rho) = \sigma \circ \rho.$$

We now give a pair of equivalent definitions of smooth simplicial sets. The first is more hands on, while the second is more concise and conceptual. The equivalence is the content of Proposition 3.12 ahead.

Definition 3.1 (First definition). A **smooth simplicial set** is a data consisting of:

1. A simplicial set X.
2. For each $\Sigma : \Delta^n_{simp} \to X$ an n-simplex, there is an assigned map of simplicial sets

 $$g(\Sigma) : \Delta_*^n \to X,$$

 which satisfies:

 $$(3.2) \quad g(\Sigma)|_{\Delta^n_{simp}} = \Sigma.$$

 We abbreviate $g(\Sigma)$ by Σ_*, when there is no need to disambiguate which structure g is meant.
3. The following property will be called **push-forward functoriality**:

 $$(\Sigma_* (\sigma))_* = \Sigma_* \circ \sigma_*$$

 where $\sigma : \Delta^k \to \Delta^d$ is a k-simplex of Δ_*^d, and where Σ as before is a d-simplex of X.

Thus, formally a smooth simplicial set is a 2-tuple (X, g), satisfying the axioms above. When there is no need to disambiguate we omit specifying g.

Definition 3.2. A **smooth map between smooth simplicial sets**

$$(X_1, g_1), (X_2, g_2)$$

is a simplicial map

$$f : X_1 \to X_2,$$

which satisfies the condition:

$$(3.3) \quad g_2(f(\Sigma)) = f \circ g_1(\Sigma),$$

or:

$$\forall n \in \mathbb{N} \forall \Sigma \in X_1(n) : (f(\Sigma))_* = f \circ \Sigma_*.$$

We may also write $f(\Sigma)_*$, instead of $(f(\Sigma))_*$ but the former notation is sometimes unclear.
A **diffeomorphism** between smooth simplicial sets is defined to be a smooth map, with a smooth inverse.

Now let Δ^{sm} denote the category whose objects are the topological simplices Δ^k, $k \geq 0$. And $\text{hom}_{\Delta^{sm}}(\Delta^k, \Delta^n)$ is the set of smooth maps $\Delta^k \to \Delta^n$. Then

Definition 3.3 (Second definition). A **smooth simplicial set** X is a functor $X : \Delta^{sm} \to \text{Set}^{op}$. A smooth map $f : X \to Y$ of smooth simplicial sets is defined to be a natural transformation from the functor X to Y.

In what follows we use the first definition, to avoid too much abstraction in this first paper. But the second definition would probably be more useful in the future.

Example 3.4 (The tautological smooth simplicial set). Δ^n_* has a tautological smooth simplicial set structure, where

$$g(\Sigma) = \Sigma_*,$$

for $\Sigma : \Delta^k \to \Delta^n$ a smooth map, hence a k- simplex of Δ^n_*, and where Σ_* is as in (3.1).

Lemma 3.5. Let X be a smooth simplicial set and $\Sigma : \Delta^n_\text{simp} \to X$ an n-simplex. Let $\Sigma_* : \Delta^n_* \to X$ be the induced simplicial map. Then Σ_* is smooth with respect to the tautological smooth simplicial set structure on Δ^n_* as above.

Proof. Let σ be a k-simplex of Δ^n_*, so $\sigma : \Delta^k \to \Delta^n$ is a smooth map, we need that $(\Sigma_*(\sigma))_* = \Sigma_* \circ \sigma_*$. Now $\sigma_* = \sigma_*$ by definition of the tautological smooth structure on Δ^n_*. So we have:

$$(\Sigma_*(\sigma))_* = \Sigma_*(\sigma) \circ \sigma_* \text{ by Axiom 3}$$

$$= \Sigma_*(\sigma) \circ \sigma_*.$$

\square

Proposition 3.6. The set of n-simplices of a smooth simplicial set X is naturally isomorphic to the set of smooth maps $\Delta^n_* \to X$. In fact, define X_* to be the simplicial set whose n-simplices are smooth maps $\Delta^n_* \to X$, and so that if $i : [m] \to [n]$ is a morphism in Δ then

$$X_*(i) : X(n) \to X(m)$$

is the “pull-back” map:

$$X_*(i)(\Sigma) = \Sigma \circ i_*,$$

for $i_* : \Delta_*^m \to \Delta_*^n$ the induced map. Then X_* is naturally isomorphic to X.

Proof. Given a simplex $\rho : \Delta^n_\text{simp} \to X$, we have a uniquely associated to it, by the lemma above, smooth map $\rho_* : \Delta^n_* \to X$. Conversely, suppose we are given a smooth map $m : \Delta^n_* \to X$. Then we get an n-simplex $\rho_m := m|_{\Delta^n_\text{simp}}$. Let $id^n : \Delta^n \to \Delta^n$ be the identity map. We have that

$$m = m \circ id^n_* = m \circ id^n_*$$

$$(m(id^n_*))_* \text{ as } m \text{ is smooth}$$

$$= (\rho_m(id^n_*))_* \text{ trivially by definition of } \rho_m$$

$$= (\rho_m)_* \circ id^n_* \text{ as } (\rho_m)_* \text{ is smooth by Lemma 3.5}$$

$$= (\rho_m)_*.$$
Thus, the map $\rho \mapsto \rho_*$, from the set of n-simplices of X to the set of smooth maps $\Delta^n \rightarrow X$, is bijective. The proof of the second part of the proposition is straightforward from the first part and is left to the reader as an exercise. \qed

Lemma 3.7. Given a smooth $m : \Delta^d \rightarrow \Delta^n$ there is a unique smooth map $f : \Delta^d \rightarrow \Delta^n$ such that $m = f_*$.

Proof. Define f by $m(id)$ for $id : \Delta^d \rightarrow \Delta^d$ the identity. Then

\[
 f_*(\sigma) = (m(id))_* \sigma = m \circ id_* \quad \text{(as m is smooth)}
\]

So f induces m. Now if g induces m then $g_* = m$ hence $g = g*(id) = m(id)$. \qed

Definition 3.8. A smooth simplicial set whose underlying simplicial set is a Kan complex will be called a smooth Kan complex.

Let $Sing^sm(Y)$ denote the simplicial set of smooth singular simplices in Y. That is $Sing^sm(Y)(k)$ is the set of smooth maps $\Sigma : \Delta^k \rightarrow Y$. And where the simplicial structure on $Sing^sm(Y)$ is the natural one (analogous to the simplicial structure on X_* in Proposition 3.6). $Sing^sm(Y)$ will often be abbreviated by Y_*. Analogously, $Sing^c(Y)$ will be the simplicial set of continuous simplices in X.

Example 3.9. Let Y be a smooth d-fold. And set $X = Y_* = Sing^sm(Y)$. Then X is naturally a smooth simplicial set, analogously to Example 3.4. This should be a Kan complex but a reference is not known to me. However, if we ask that $\Sigma : \Delta^k \rightarrow Y$ are in addition collared (as in Definition 2.1) then the Kan condition is simple to verify. More generally, we may clearly take Y to be a manifold with boundary or with corners, an orbifold or any diffeological/Chen space.

Example 3.10. One special example is worth attention. Let M be a smooth manifold. Then there is a natural smooth simplicial set LM_Δ whose d-simplices Σ are smooth maps $f_\Sigma : \Delta^d \times S^1 \rightarrow M$. The maps Σ_* are defined by

\[
 \Sigma_*(\sigma) = f_\Sigma \circ (\sigma \times id),
\]

for

\[
 \sigma \times id : \Delta^d \times S^1 \rightarrow \Delta^d \times S^1;
\]

the induced map. This LM_Δ is one simplicial model of the free loop space. Naturally the free loop space LM also has the structure of a Frechet manifold, in particular we have the smooth simplicial set LM_*, whose n-simplices are Frechet smooth maps $\Sigma : \Delta^n \rightarrow LM$. There is a natural simplicial map $LM_\Delta \rightarrow LM_*$, which is clearly smooth. (It is indeed a diffeomorphism.)

1This is often called the “smooth singular simplicial set of Y”. However, for us “smooth” is reserved for another purpose, so to avoid confusion we do not use such terminology.
3.1. **Smooth simplex category of a smooth simplicial set.** Given a smooth simplicial set \(X \), there is an extension of the previously defined simplex category \(\Delta(X) \).

Definition 3.11. For \(X \) a smooth simplicial set, \(\Delta^{sm}(X) \) will denote the category whose set of objects \(\text{obj} \Delta^{sm}(X) \) is the set of smooth maps
\[
\Sigma : \Delta^d \rightarrow X, \quad d \geq 0
\]
and morphisms \(f : \Sigma_1 \rightarrow \Sigma_2 \), commutative diagrams:
\[
\begin{array}{ccc}
\Delta^d & \xrightarrow{\tilde{f}} & \Delta^n \\
\downarrow\Sigma_1 & & \downarrow\Sigma_2 \\
X & & \
\end{array}
\]
with top arrow any smooth map (for the tautological smooth simplicial set structure on \(\Delta^d \)), which we denote by \(\tilde{f} \). By Lemma 3.7, \(\tilde{f} \) is induced by a unique smooth map \(\tilde{f} : \Delta^d \rightarrow \Delta^n \).

By Proposition 3.6 we have a natural faithful embedding \(\Delta(X) \rightarrow \Delta^{sm}(X) \) which is an isomorphism on object sets of these categories. We may then likewise call elements of \(\Delta^{sm}(X) \) as \(d \)-simplices.

Proposition 3.12. Definitions 3.1, 3.3 are equivalent. In other words there is a natural equivalence, in fact a natural isomorphism of the corresponding categories of smooth simplicial sets.

Proof. We only sketch the proof, as this result will not be used, and as the proof is elementary given all the ingredients we already have. Let \(s - \text{Set}^{sm}_1 \) denote the category of smooth simplicial sets as given by the Definition 3.1. And let \(s - \text{Set}^{sm}_2 \) denote the category of smooth simplicial sets as given by the Definition 3.3.

Given \(X \in s - \text{Set}^{sm}_1 \), we have the associated category \(\Delta^{sm}(X) \). This then gives a functor \(XF : \Delta^{sm} \rightarrow \text{Set}^{op} \) by setting \(XF(\Delta^k) = \Delta^{sm}(X)(k) \) and for \(\sigma : \Delta^k \rightarrow \Delta^d \) setting
\[
XF(\sigma) : \Delta^{sm}(X)(d) \rightarrow \Delta^{sm}(X)(k)
\]
to be the map \(XF(f)(\Sigma) = \Sigma \circ \sigma \). Then on objects \(I \) is defined by \(I(X) := XF \).

Conversely, given \(XF \in s - \text{Set}^{sm}_2 \), define \(X(k) := XF(\Delta^k) \). And for \(\Sigma \in X(k) \) define \(\Sigma_* : \Delta^d \rightarrow X \) to be the map:
\[
\Sigma_*(\sigma) = XF(\sigma)(\Sigma).
\]
Then on objects we define \(I^{-1} : s - \text{Set}_2 \rightarrow s - \text{Set}_1 \) by \(I^{-1}(XF) := X \). Then on objects \(I^{-1} \) is an inverse for \(I \). (We only omitted discussing morphisms in this sketch.) \(\square \)

3.2. **Products.** Given a pair of smooth simplicial sets \((X_1, g_1), (X_2, g_2) \), the product \(X_1 \times X_2 \) of the underlying simplicial sets, has the structure of a smooth simplicial set
\[
(X_1 \times X_2, g_1 \times g_2),
\]
constructed as follows. Denote by \(\pi_i : X_1 \times X_2 \rightarrow X_i \) the simplicial projection maps. Then for each \(\Sigma \in X_1 \times X_2(d) \),
\[
g_1 \times g_2(\Sigma) : \Delta^d \rightarrow X_1 \times X_2
is defined by:
\[g_1 \times g_2(\Sigma)(\sigma) := (g_1(\pi_1(\Sigma))(\sigma), g_2(\pi_2(\Sigma))(\sigma)). \]

3.3. More on smooth maps. As defined, a smooth map \(f : X \to Y \), induces a functor
\[\Delta^{sm} f : \Delta^{sm}(X) \to \Delta^{sm}(Y). \]
This is defined by \(\Delta^{sm} f(\Sigma) = f \circ \Sigma \), where \(\Sigma : \Delta^d \to X \) is in \(\Delta^{sm}(X) \). If \(m : \Sigma_1 \to \Sigma_2 \) is a morphism in \(\Delta^{sm}(X) \):
\[
\Delta^k \xrightarrow{\tilde{m}} \Delta^d \xrightarrow{\Sigma_1} \Delta^d \xrightarrow{\Sigma_2} X,
\]
then obviously the diagram below also commutes:
\[
\Delta^k \xrightarrow{\tilde{m}} \Delta^d \xrightarrow{h_1} \Delta^d \xrightarrow{h_2} Y,
\]
where \(h_i = \Delta^{sm} f(\Sigma_i), i = 1, 2 \). And so the latter diagram determines a morphism \(\Delta^{sm} f(m) : h_1 \to h_2 \) in \(\Delta^{sm}(Y) \). Clearly, this determines a functor \(\Delta^{sm} f \) as needed.

3.4. Smooth homotopy.

Definition 3.13. Let \(X, Y \) be smooth simplicial sets. Set \(I := \Delta^1 \) and let \(0_* , 1_* \subset I \) be the images of the pair of inclusions \(\Delta^0 \to I \) corresponding to the pair of endpoints. A pair of smooth maps \(f, g : X \to Y \) are called smoothly homotopic if there exists a smooth map \(H : X \times I \to Y \)
such that \(H|_{X \times 0_*} = f \) and \(H|_{X \times 1_*} = g \).

The following notion will be useful later on.

Definition 3.14. Let \(X \) be a smooth simplicial set. We define \(\pi^{sm}_k(X) \) to be the set of smooth homotopy equivalence classes of smooth maps \(f : S^k \to X \).

4. Differential forms on smooth simplicial sets

Definition 4.1. Let \(X \) be a smooth simplicial set. A simplicial differential k-form \(\omega \), or just differential form where there is no possibility of confusion, is for each d-simplex \(\Sigma \) of \(X \) a smooth differential k-form \(\omega_\Sigma \) on \(\Delta^d \), such that
\[
i^* \Omega_{\Sigma_2} = \Omega_{\Sigma_1},
\]
for every morphism \(i : \Sigma_1 \to \Sigma_2 \) in \(\Delta^{m_1}(X) \), (see Section 2). If in addition:
\[
\omega_{\beta(\Sigma)(\sigma)} = \sigma^* \omega_\Sigma,
\]
for every \(\sigma \in \Delta^d \), and every d-simplex \(\Sigma \), then we say that \(\omega \) is coherent.

Example 4.2. If \(X = Y \) for \(Y \) a smooth d-fold, and if \(\omega \) is a differential k-form on \(Y \), then \(\{ \omega_\Sigma = \Sigma^* \omega \}_\Sigma \) is a coherent differential k-form on \(X \) called the induced simplicial differential form.
Example 4.3. Let LM^Δ be the smooth Kan complex of Example 3.10. Then Chen’s iterated integrals [2] naturally give coherent differential forms on LM^Δ.

The above coherence condition is often unnecessary, hence is not part of the basic definition here. This is already one difference with differential forms on diffeological or Chen spaces, where coherence is ostensibly forced.

Let X be a smooth simplicial set. We denote by $\Omega^k(X)$ the \mathbb{R}-vector space of differential k-forms on X. Define

$$d : \Omega^k(X) \to \Omega^{k+1}(X)$$

by

$$d(\{\omega_\Sigma\}) := d\{\omega_\Sigma\} = \{d\omega_\Sigma\}.$$

Clearly we have $d^2 = 0$.

A k-form ω is said to be closed if $d\omega = 0$, and exact if for some $(k-1)$-form η, $\omega = d\eta$.

Definition 4.4. The wedge product on

$$\Omega^\bullet(X) = \bigoplus_{k \geq 0} \Omega^k(X)$$

is defined by

$$\omega \wedge \eta = \{\omega_\Sigma \wedge \eta_\Sigma\}_\Sigma.$$

Then $\Omega^\bullet(X)$ has the structure of a differential graded \mathbb{R}-algebra with respect to \wedge.

We then, as usual, define the De Rham cohomology of X:

$$H^k_{DR}(X) = \frac{\text{closed } k\text{-forms}}{\text{exact } k\text{-forms}},$$

which is a graded commutative \mathbb{R}-algebra.

The simplicial De Rham complex above is certainly not a new invention, versions of it have been used by Whitney and perhaps most famously by Sullivan [23].

4.1. Homology and cohomology of a simplicial set. We go over this mostly to establish notation. For a simplicial set X, we define an abelian group

$$C_k(X, \mathbb{Z}),$$

as the free abelian group generated by the set of k-simplices $X(k)$. Elements of $C_k(X, \mathbb{Z})$ are called k-chains. The boundary operator:

$$\partial : C_k(X, \mathbb{Z}) \to C_{k-1}(X, \mathbb{Z}),$$

is defined on a k-simplex σ as classically by

$$\partial \sigma = \sum_{i=0}^{n} (-1)^i d_i \sigma,$$

where d_i are the face maps, this is then extended by linearity to general chains. As classically, $\partial^2 = 0$. The homology of this complex is denoted by $H_k(X, \mathbb{Z})$, called integral homology. The integral cohomology is defined analogously to the classical topology setting, using dual chain groups $C^k(X, \mathbb{Z}) = \text{hom}(C_k(X, \mathbb{Z}), \mathbb{Z})$. The corresponding coboundary operator is denoted by d as usual:

$$d : C^k(X, \mathbb{Z}) \to C^{k+1}(X, \mathbb{Z}).$$
Homology and cohomology with other ring coefficients (or modules) are likewise defined analogously. Given a simplicial map \(f : X \to Y \) there are natural induced chain maps \(f^* : C^k(Y, Z) \to C^k(X, Z) \), and \(f_* : C_k(X, Z) \to C_k(X, Z) \).

We say that a pair of simplicial maps \(f, g : X \to Y \) are homotopic if there a simplicial map \(H : X \times \Delta^1_{simp} \to Y \) so that \(f = H \circ i_0 \), \(g = H \circ i_1 \) for \(i_0, i_1 : X \to X \times \Delta^1_{simp} \) corresponding to the pair of end point inclusions \(\Delta^0_{simp} \to \Delta^1_{simp} \). A simplicial homotopy equivalence is then defined analogously to the topological setting.

As is well known if \(f, g \) are homotopic then \(f^* \), \(g^* \) and \(f_* \), \(g_* \) are chain homotopic.

4.2. Integration. Let \(X \) be a smooth simplicial set. Given a chain \(\sigma = \sum_i a_i \Sigma_i \in C_k(X, Z) \) and a smooth differential form \(\omega \), we define:

\[
\int_{\sigma} \omega = \sum_i a_i \int_{\Delta^k} \omega_{\Sigma_i}
\]

where the integrals on the right are the classical integrals of a differential form. Thus, we obtain a homomorphism:

\[
\int : \Omega^k(X) \to C^k(X, \mathbb{R}),
\]

\(\int (\omega) \) is the \(k \)-cochain defined by:

\[
\int (\omega)(\sigma) := \int_{\sigma} \omega,
\]

where \(\sigma \) is a \(k \)-chain. We will abbreviate \(\int (\omega) = \int \omega \). The following is well known.

Lemma 4.5. For a smooth simplicial set \(X \), the homomorphism \(\int \) commutes with \(d \), and so induces a homomorphism:

\[
\int : H^k_{DR}(X) \to H^k(X, \mathbb{R}).
\]

In fact the De-Rham theorem (see for instance Sullivan [23]) tells us that \(\int \) is an isomorphism, but we will not need this.

Proof. We need that

\[
\int d\omega = d \int \omega.
\]

Let \(\Sigma : \Delta^k_{simp} \to X \) be a \(k \)-simplex. Then

\[
\int d\omega(\Sigma) = \int_{\Delta^k} d\omega_{\Sigma} \text{ by definition}
\]

\[
= \int_{\partial\Delta^k} \omega_{\Sigma} \text{ by Stokes theorem}
\]

\[
= d(\int \omega)(\Sigma) \text{ by the definition of } d \text{ on co-chains.}
\]
4.3. Pull-back. Given a smooth map $f : X_1 \to X_2$ of smooth simplicial sets, we define

$$f^* : \Omega^k(X_2) \to \Omega^k(X_1)$$

naturally by

$$f^*(\omega) = f^*\omega := \{ (f^*\omega)_\Sigma \} = \{ \omega_{f(\Sigma)} \}_\Sigma.$$

Clearly f^* commutes with d so that we have an induced differential graded \mathbb{R}-algebra homomorphism:

$$f^* : \Omega^*(X_2) \to \Omega^*(X_1).$$

And in particular an induced \mathbb{R}-algebra homomorphism:

$$f^* : H^*_{DR}(X_2) \to H^*_{DR}(X_1).$$

4.4. Relation with ordinary homology and cohomology. Let $s\text{–}\text{Set}$ denote the category of simplicial sets and Top the category of topological spaces. Let $| \cdot | : s\text{–}\text{Set} \to \text{Top}$ be the geometric realization functor as defined in Section 2.3. Let X be a (smooth) simplicial set. Then for any ring K we have natural chain maps

$$CR : C_d(X, K) \to C_d(|X|, K),$$

$$CR^\vee : C^d(|X|, K) \to C^d(X, K).$$

The chain map CR is defined as follows. A d-simplex $\Sigma : \Delta^d_{\text{simp}} \to X$, by construction of $|X|$ uniquely induces a continuous map $\Sigma_{\text{top}} : \Delta^d \to |X|$. So if Σ_{top} also denotes the corresponding generator of $C^d(|X|, K)$, then we just set $CR(\Sigma) = \Sigma_{\text{top}}$ in this notation. Then CR^\vee is just the dual chain map.

It is well known that CR and CR^\vee are quasi-isomorphisms, i.e. induce isomorphisms

$$R : H_d(X, K) \to H_d(|X|, K),$$

$$R^\vee : H^d(|X|, K) \to H^d(X, K).$$

This can be checked by hand, but a proof can be found in Hatcher [8] for the case of delta complexes.

Now let Y be a smooth manifold and $X = Y_\bullet = \text{Sing}^{sm}(Y)$. We have a natural homotopy equivalence $|Y_\bullet| \simeq Y$. This is just because the natural map $|Y_\bullet| \to Y$ is a weak homotopy equivalence, (by homotopy approximating continuous maps by smooth maps), and so is a homotopy equivalence, by Whitehead theorem. Let us denote by

$$N : Y \to |Y_\bullet|,$$

its homotopy inverse.

Then factor R and R^\vee as:

$$H_d(Y_\bullet, K) \xrightarrow{I} H_d(Y, K) \xrightarrow{N} H_d(|Y_\bullet|, K),$$

$$H^d(|Y_\bullet|, K) \xrightarrow{N^\vee} H^d(Y, K) \xrightarrow{I^\vee} H^d(Y_\bullet, K).$$

The map I is induced by the chain map CI sending the generator of $C_d(Y_\bullet, K)$ corresponding to a simplex $\Sigma \in Y_\bullet(d)$ to the generator of $C_d(Y)$, corresponding to the smooth map $\Sigma_{\text{top}} : \Delta^d \to Y$ (as $\Sigma \in Y_\bullet(d)$ by definition uniquely corresponds
to such a smooth map). Likewise, \(I^\gamma \) is induced by the cochain map \(C I^\gamma \) sending a cochain \(\alpha \) to the cochain \(C I^\gamma (\alpha) \) defined by

\[
CI^\gamma (\alpha)(\sigma) := \alpha (CI(\sigma)),
\]

where \(\sigma \in C_d(Y_\bullet, K) \).

Notation 4.6. Given a cohomology class \(\alpha \in H^d(X, K) \), we will denote by \(|\alpha| \in H^d(|X|, K) \) the class \((R^\gamma)^{-1}(\alpha) \). Also, given a smooth manifold \(Y \) and a cohomology class \(\alpha \in H^d(Y_\bullet, K) \), we will denote by \(|\alpha| \in H^d(Y, K) \) the class \(N^* \circ (R^\gamma)^{-1}(\alpha) = (I^\gamma)^{-1}(\alpha) \).

Given a map of simplicial sets \(f : X_1 \to X_2 \) we let \(|f| : |X_1| \to |X_2| \) denote the induced map of geometric realizations.

Lemma 4.7. Let \(f : X_1 \to X_2 \) be a simplicial map of simplicial sets. Let \(f^* : H^d(X_2, K) \to H^d(X_1, K) \) be the induced homomorphism then:

\[
|f^*(\alpha)| = |f|^*(|\alpha|).
\]

Proof. We have a clearly commutative diagram of chain maps (omitting the coefficient ring):

\[
\begin{array}{ccc}
C_d(X_1) & \xrightarrow{CR} & C_d(|X_1|) \\
\downarrow f_* & & \downarrow |f|_* \\
C_d(X_2) & \xrightarrow{CR} & C_d(|X_2|),
\end{array}
\]

from which the result immediately follows. \(\square \)

5. **Smooth simplicial \(G \)-bundles**

Part of our motivation is the construction of the universal Chern-Weil homomorphisms for Frechet Lie groups. A **Frechet Lie group** \(G \) is a Lie group whose underlying manifold is a possibly infinite dimensional smooth manifold locally modelled on a Frechet space, that is a locally convex, complete Hausdorff vector space. Later on it will also be important that \(G \) have the homotopy type of a CW complex. By Milnor [15], a prototypical example of such a Lie group is the group of diffeomorphisms \(\text{Diff}(M) \) of a smooth manifold. Another very interesting example for us is the group of Hamiltonian symplectomorphisms \(\text{Ham}(M, \omega) \) of a symplectic manifold. Particularly because its Lie algebra admits natural bi-invariant polynomials, so that it is possible to define interesting Chern-Weil theory for this group.

In what follows \(G \) is always assumed to be a Frechet Lie group. However, this is just to avoid trivial generality, as until we get to Chern-Weil theory in Section 7, \(G \) can very well be any diffeological group. We now introduce the basic building blocks for simplicial \(G \)-bundles.

Definition 5.1. A **smooth \(G \)-bundle** \(P \) over \(\Delta^n \) is a smooth \(G \)-bundle over \(\Delta^n \) with the latter naturally understood as a smooth manifold with corners, using the natural embedding \(\Delta^n \subset \mathbb{R}^n \).

Remark 5.2. For concreteness, this can be interpreted as follows. \(P \) is a topological principal \(G \)-bundle over \(\Delta^n \subset \mathbb{R}^n \), together with a choice of an open neighborhood \(V \) of \(\Delta^n \) in \(\mathbb{R}^n \) and a choice of a smooth \(G \)-bundle \(\tilde{P} \to V \) such that \(i^* \tilde{P} \simeq P \) for \(i : \Delta^n \to V \) the inclusion map, and for \(\simeq \) an implicitly specified isomorphism of
topological G-bundles. We may thus write \((P, \tilde{P}, V)\) for this structure and in principle all of the subsequent constructions can be made to refer to the above concrete model. So that the generalities of smooth G-bundles over manifolds with corners are not really needed in this paper.

To warn, at this point our terminology may partially clash with common terminology, in particular a simplicial G-bundle will not be a pre-sheaf on \(\Delta\) with values in the category of smooth G-bundles. Instead, it will be a functor (not a co-functor!) on \(\Delta^{sm}(X)\) with additional properties. The latter pre-sheafs will not appear in the paper so that this should not cause confusion.

In the definition of simplicial differential forms we omitted coherence. In the case of simplicial G-bundles, the analogous condition (full functoriality on \(\Delta^{sm}(X)\)) turns out to be necessary if we want universal simplicial G-bundles with expected behavior.

Notation 5.3. Given a Frechet Lie group \(G\), let \(\mathcal{G}\) denote the category of smooth G-bundles over manifolds with corners, with morphisms smooth G-bundle maps. (See however Remark 5.2 just above.)

Definition 5.4. Let \(G\) be a Frechet Lie group and \(X\) a smooth simplicial set. A smooth simplicial G-bundle \(P\) over \(X\) is the following data:

- A functor \(P : \Delta^{sm}(X) \to \mathcal{G}\), so that for \(\Sigma\) a d-simplex, \(P(\Sigma)\) is a smooth G-bundle over \(\Delta^d\).
- For each morphism \(f : \Delta^k \to \Delta^d\) in \(\Delta^{sm}(X)\), we have a commutative diagram:

\[
\begin{array}{ccc}
\Delta^k & \xrightarrow{f} & \Delta^d \\
\downarrow & & \downarrow \\
\Sigma^d & \xrightarrow{\Sigma^d} & X \\
\end{array}
\]

in \(\Delta^{sm}(X)\), we have a commutative diagram:

\[
P(\Sigma_k^1) \xrightarrow{P(f)} P(\Sigma^d_2)
\]

where the maps \(p_1, p_2\) are the respective bundle projections, and where \(\tilde{f}\) is the map induced by the map \(\tilde{f}_* : \Delta^k \to \Delta^d\) as in Lemma 3.7. In other words \(P(\tilde{f})\) is a bundle map over \(\tilde{f}\). We call this condition compatibility.

We will only deal with smooth simplicial G-bundles, and so will usually just say simplicial G-bundle, omitting the qualifier ‘smooth’.

Notation 5.5. We often use notation \(P_\Sigma\) for \(P(\Sigma)\). If we write a simplicial G-bundle \(P \to X\), this just means that \(P\) is a simplicial G-bundle over \(X\) in the sense above. So that \(P \to X\) is just notation not a morphism.

Example 5.6. If \(X\) is a smooth simplicial set and \(G\) is as above, we denote by \(X \times G\) the simplicial G-bundle

\[
\forall n \in \mathbb{N}, \forall \Sigma^n \in \Delta(X) : (X \times G)_{\Sigma^n} = \Delta^n \times G,
\]

with \(\Delta^n \times G \to \Delta^n\) the trivial projection. This is called the trivial simplicial G-bundle over \(X\).
Example 5.7. Let $Z \to Y$ be a smooth G-bundle over a smooth manifold Y. Then we have a simplicial G-bundle Z_\bullet over Y_\bullet defined by

$$Z_\bullet(\Sigma) = \Sigma^* Z.$$

And where for $f : \Sigma_1 \to \Sigma_2$ a morphism, the bundle map

$$N(f) : (Z_\bullet(\Sigma_1) = \Sigma_1^* N) \to (Z_\bullet(\Sigma_2) = \Sigma_2^* Z)$$

is just the natural map $f^* \Sigma_2^* Z \to \Sigma_1^* Z$ in the pull-back square, identifying $f^* \Sigma_2^* Z$ with $\Sigma_1^* Z$. We say that Z_\bullet is the simplicial G-bundle induced by Z.

Definition 5.8. Let $P_1 \to X_1, P_2 \to X_2$ be a pair of simplicial G-bundles. Let $h : X_1 \to X_2$ be a smooth map. A smooth simplicial G-bundle map over h from P_1 to P_2 is a natural transformation of functors:

$$\tilde{h} : P_1 \to P_2 \circ \Delta^{sm} h.$$

This is required to have the following additional property. For each d-simplex $\Sigma \in \Delta^{sm}(X_1)$ the natural transformation \tilde{h} specifies a morphism in G:

$$\tilde{h}_\Sigma : P_1(\Sigma) \to P_2(\Sigma),$$

and we ask that this is a bundle map over the identity so that the following diagram commutes:

$$\begin{array}{ccc}
P_1(\Sigma) & \xrightarrow{\tilde{h}_\Sigma} & P_2(\Sigma) \\
\downarrow{p_1} & & \downarrow{p_2} \\
\Delta^d & \xrightarrow{id} & \Delta^d.
\end{array}$$

We will usually just say simplicial G-bundle map instead of smooth simplicial G-bundle map, (as everything is always smooth) when h is not specified it is assumed to be the identity.

Definition 5.9. Let P_1, P_2 be simplicial G-bundles over X_1, X_2 respectively. A simplicial G-bundle isomorphism is a simplicial G-bundle map

$$\tilde{h} : P_1 \to P_2$$

s.t. there is a simplicial G-bundle map

$$\tilde{h}^{-1} : P_2 \to P_1$$

with

$$\tilde{h}^{-1} \circ \tilde{h} = id.$$

This is clearly the same as asking that \tilde{h} be a natural isomorphism of the corresponding functors. Usually, $X_1 = X_2$ and in this case, unless specified otherwise, it is assumed $h = id$. A simplicial G-bundle isomorphic to the trivial simplicial G-bundle is called trivializeable.

Definition 5.10. If $X = Y_\bullet$ for Y a smooth manifold, we say that a simplicial G-bundle P over X is inducible by a smooth G-bundle $N \to Y$ if there is a simplicial G-bundle isomorphism $N_\bullet \to P$.

The following will be one of the crucial ingredients later on.

Theorem 5.11. Let G be as above and let $P \to Y_\bullet$ be a simplicial G-bundle, for Y a smooth d-manifold. Then P is inducible by some smooth G-bundle $N \to Y$.

Proof. We need to introduce an auxiliary notion. Let \(Z \) be a smooth \(d \)-manifold with corners. And let \(\mathcal{D}(Z) \) denote the category whose objects are smooth embeddings \(\Sigma : \Delta^d \to Z \) (for the same fixed \(d \)) and so that a morphism \(f \in \text{hom}_{\mathcal{D}(Z)}(\Sigma_1, \Sigma_2) \) is a commutative diagrams:

\[
\begin{array}{ccc}
\Delta^d & \xrightarrow{\tilde{f}} & \Delta^d \\
\downarrow{\Sigma_1} & & \downarrow{\Sigma_2} \\
Z & &
\end{array}
\]

Note that the map \(\tilde{f} \) is unique, when such a diagram exists as \(\Sigma_i \) are embeddings. Thus \(\text{hom}_{\mathcal{D}(Z)}(\Sigma_1, \Sigma_2) \) is either empty or consists of a single element.

Going back to our \(Y \). Let \(\{O_i\}_{i \in I} \) be a locally finite open cover of \(Y \), closed under intersections, with each \(O_i \) diffeomorphic to an open ball. Such a cover is often called a good cover of a manifold, and the existence of such a cover is folklore theorem, but a proof can be found in [5, Prop A1]. Let \(\mathcal{O} \) denote the category with the set of objects \(\{O_i\} \) and with morphisms set inclusions. Set \(C_i = \mathcal{D}(O_i) \), then we naturally have \(C_i \subset \Delta^\text{sm}(Y) \). For each \(i \), we have the functor

\[
F_i = P|_{C_i} : C_i \to \mathcal{G}.
\]

By assumption that each \(O_i \) is diffeomorphic to an open ball, \(O_i \) has an exhaustion by embedded \(d \)-simplices. This means that there is a sequence of smooth embeddings \(\Sigma_j : \Delta^d \to O_i \) satisfying:

- \(\text{image}(\Sigma_{j+1}) \supset \text{image}(\Sigma_j) \) for each \(j \).
- \(\bigcup_j \text{image}(\Sigma_j) = O_i \).

In particular, for each \(i \), the colimit in \(\mathcal{G} \):

\[
P_i := \text{colim}_{C_i} F_i
\]

is naturally a topological \(G \)-bundle over \(O_i \).

We may give \(P_i \) the structure of a smooth \(G \)-bundle, with \(G \)-bundle charts defined as follows. Take the collection of maps

\[
\{\phi_{\Sigma,j}^i\}_{\Sigma \in C_i, j \in J^\Sigma},
\]

satisfying the following.

- Each \(\phi_{\Sigma,j}^i \) is the composition map

 \[
 V_{\Sigma,j}^i \times G \xrightarrow{\xi_{ij}} P_\Sigma \xrightarrow{c_\Sigma} P_i
 \]

 where \(V_{\Sigma,j}^i \subset (\Delta^d)^\circ \) is open, for \((\Delta^d)^\circ \) the topological interior of the subspace \(\Delta^d \subset \mathbb{R}^d \). And where \(c_\Sigma : (P_\Sigma = F_i(\Sigma)) \to P_i \) is the natural map in the colimit diagram of (5.2).

- The collection

 \[
 \{\xi_{i,j}\}_{j \in J^\Sigma}
 \]

 forms an atlas of smooth \(G \)-bundle charts for \(P_{\Sigma|_{(\Delta^d)^\circ}} \).

The collection \(\{\phi_{\Sigma,j}^i\} \) then forms a smooth \(G \)-bundle atlas for \(P_i \).

So we obtain a functor

\[
D : \mathcal{O} \to \mathcal{G},
\]

defined by

\[
D(O_i) = P_i,
\]
and defined naturally on morphisms. Specifically, a morphism $O_{i_1} \to O_{i_2}$ induces a functor $C_{i_1} \to C_{i_2}$ and hence a smooth G-bundle map $P_{i_1} \to P_{i_2}$, by the naturality of the colimit.

Let $t : O \to Top$ denote the tautological functor, so that $Y = \text{colim}_O t$, where for simplicity we write equality for natural isomorphisms here and further on in this proof. Now,

$$(5.3) \quad N := \text{colim}_O D,$$

is naturally a topological G-bundle over $\text{colim}_O t = Y$. Let $c_i : P_i \to N$ denote the natural maps in the colimit diagram of (5.3). The collection of charts $\{c_i \circ \phi^{i,j}_{\Sigma} \}_{i,j,\Sigma}$ forms a smooth atlas on N, giving it a structure of a smooth G-bundle.

We now prove that P is induced by N. Let Σ be a d-simplex of $X := Y _\bullet$, then $\{V_i := \Sigma^{-1}(O_i)\}_{i \in I}$ is a locally finite open cover of Δ^d closed under finite intersections. Let N_\bullet be the simplicial G-bundle induced by N. So

$$N_\bullet(\Sigma) := N_\Sigma := \Sigma^* N.$$

As Δ^d is a convex subset of \mathbb{R}^d, the open metric balls in Δ^d, for the induced metric, are convex as subsets of \mathbb{R}^d. Consequently, as each $V_i \subset \Delta^d$ is open, it has a basis of convex (as subsets of \mathbb{R}^d) metric balls, with respect to the induced metric. By Rudin [19] there is then a locally finite cover of V_i by elements of this basis. In fact, as Rudin shows any open cover of V_i has a locally finite refinement by elements of such a basis.

Let $\{W^j_i\}$ consist of elements of this cover and all intersections of its elements, (which must then be finite intersections). So $W^j_i \subset V_i$ are open convex subsets and $\{W^j_i\}$ is a locally finite open cover of V_i, closed under finite intersections.

As each $W^j_i \subset \Delta^d$ is open and convex it has an exhaustion by nested images of embedded simplices. That is

$$W^j_i = \bigcup_{k \in \mathbb{N}} \text{image} \sigma^{i,j}_k$$

for $\sigma^{i,j}_k : \Delta^d \to W^j_i$ smooth and embedded, with image $\sigma^{i,j}_k \subset \text{image} \sigma^{i,j}_{k+1}$ for each k.

Remark 5.12. Alternatively, we can use that each V_i is a manifold with corners, and then take a good cover $\{W^j_i\}$, however the above is more elementary.

Let C be the small category with objects $I \times J \times \mathbb{N}$, so that there is exactly one morphism from $a = (i, j, k)$ to $b = (i', j', k')$ whenever image $\sigma^{i,j}_k \subset \text{image} \sigma^{i',j'}_{k'}$, and no morphisms otherwise. Let

$$F : C \to D(\Delta^d)$$

be the functor $F(a) = \sigma^{i,j}_k$ for $a = (i, j, k)$, (the definition on morphisms is forced). For brevity, we then reset $\sigma_a := F(a)$.

If $O(Y)$ denotes the category of topological subspaces of Y with morphisms inclusions, then there is a forgetful functor

$$T : D(Y) \to O(Y)$$

which takes f to image(\tilde{f}). With all this in place, we obviously have a colimit in Top:

$$\Delta^d = \text{colim}_C T \circ F,$$
Now by construction, for each \(a \in C \) we may express:
\[
\Sigma \circ \sigma_a = \Sigma_a \circ \sigma_a,
\]
for some \(i \) and some \(\Sigma_a : \Delta^d \to U_i \subset Y \) a smooth embedded \(d \)-simplex. Then for all \(a \in C \) we have a chain of natural isomorphisms, whose composition will be denoted by \(\phi_a : P_{\Sigma \circ \sigma_a} \to N_{\Sigma \circ \sigma_a} \):
\[
P_{\Sigma \circ \sigma_a} = P_{\Sigma_a \circ \sigma_a} \to N_{\Sigma_a \circ \sigma_a} = N_{\Sigma \circ \sigma_a}.
\]
To better explain the second map, note that we have a composition of natural bundle maps:
\[
P_{\Sigma_a \circ \sigma_a} \to \Delta^d \to U_i \subset Y,
\]
with the first map the bundle map in the colimit diagram of (5.2), and the second map the bundle map in the colimit diagram of (5.3). The composition (5.6) gives a bundle map over \(\Sigma_a \circ \sigma_a \). And so, by the defining universal property of the pull-back, there is a uniquely induced universal map
\[
P_{\Sigma_a \circ \sigma_a} \to (\Sigma_a \circ \sigma_a)^* N = N_{\Sigma_a \circ \sigma_a},
\]
which is a \(G \)-bundle isomorphism.

Now we have a natural functor \(F_\Sigma : D(\Delta^d) \to \mathcal{G} \), given by \(F_\Sigma(\sigma) = P_{\Sigma \circ \sigma} \), and
\[
P_\Sigma = \text{colim}_C F_\Sigma \circ F.
\]
Similarly,
\[
N_\Sigma = \text{colim}_C F'_\Sigma \circ F
\]
where \(F'(\sigma) = N_{\Sigma \circ \sigma} \). And the maps \(\phi_a : P_{\Sigma \circ \sigma_a} \to N_{\Sigma \circ \sigma_a} \) induce a natural transformation of functors
\[
\phi : F_\Sigma \circ F \to F'_\Sigma \circ F.
\]
So that \(\phi \) induces a map of the colimits:
\[
h_\Sigma : P_\Sigma \to N_\Sigma,
\]
by naturality, and this is an isomorphism of these smooth \(G \)-bundles. It is then clear that \(\{h_\Sigma\}_\Sigma \) determines the bundle isomorphism \(h : P \to N_* \) we are looking for.

5.1. **Pullbacks of simplicial bundles.** Let \(P \to X \) be a simplicial \(G \)-bundle over a smooth simplicial set \(X \). And let \(f : Y \to X \) be smooth. We define the pull-back simplicial \(G \)-bundle \(f^* P \to Y \) by the functor \(f^* P := P \circ \Delta^{sm} f \).

Note that the analogue of the following lemma is not true in the category of set fibrations. The pull-back by the composition is not the composition of pullbacks (except up to a natural isomorphism).

Lemma 5.13. The pull-back is functorial. So that if \(f : X \to Y \) and \(g : Y \to Z \) are smooth maps of smooth simplicial sets, and \(P \to Z \) is a smooth simplicial \(G \)-bundle over \(Z \) then
\[
(g \circ f)^* P = f^* (g^* (P))
\]
an actual equality.

Proof. This is of course trivial, as functor composition is associative:
\[
(g \circ f)^* P = P \circ \Delta^{sm} (g \circ f) = P \circ (\Delta^{sm} g \circ \Delta^{sm} f) = (P \circ \Delta^{sm} g) \circ \Delta^{sm} f = f^* (g^* P).
\]
\[\square\]
6. Connections on simplicial G-bundles

Definition 6.1. Let G be a Frechet Lie group. A simplicial G-connection D on a simplicial G-bundle P over a smooth simplicial set X is for each d-simplex Σ of X, a smooth G-invariant Ehresmann G-connection D_Σ on P_Σ. This data is required to satisfy: if $f : \Sigma_1 \to \Sigma_2$ is a morphism in $\Delta(X)$ then

$$P(f)^*D_{\Sigma_2} = D_{\Sigma_1}.$$

We say that D is **coherent** if the same holds for all morphisms $f : \Sigma_1 \to \Sigma_2$ in $\Delta^{sm}(X)$. Will will often just say G-connection instead of simplicial G-connection, where there is no need to disambiguate.

As with differential forms the coherence condition is very restrictive, and is not part of the basic definition.

Lemma 6.2. G-connections on simplicial G-bundles exist and any pair of G-connections D_1, D_2 on a simplicial G-bundle P are **concordant**. The latter means that there is a G-connection on \tilde{D} on $P \times I$,

$$I := [0,1]_\star$$

which restricts to D_1, D_2 on $P \times I_0$, respectively on $P \times I_1$, for $I_0, I_1 \subset I$ denoting the images of the two end point inclusions $\Delta^0_\star \to I$.

Proof. Suppose that $\Sigma : \Delta^d_{simp} \to X$ is a degeneracy of a 0-simplex $\Sigma_0 : \Delta^0_{simp} \to X$, meaning that there is a morphism from Σ to Σ_0 in $\Delta(X)$. Then $P_\Sigma = \Delta^d \times P_{\Sigma_0}$ (as previously equality indicates natural isomorphism) and we fix the corresponding trivial connection D_Σ on P_Σ. We then proceed inductively.

Suppose we have constructed connections D_Σ for all degeneracies of n-simplices, $n \geq 0$. We now extend this to all degeneracies of $(n+1)$-simplices. If Σ is a non-degenerate $(n+1)$-simplex then D_Σ is already determined over the boundary of Δ^{n+1}, as by the hypothesis D_Σ is already defined on all n-simplices, so extend D_Σ over all of Δ^{n+1} arbitrarily. Thus, we have extended D_Σ to all $(n+1)$-simplices, as such a simplex is either non-degenerate or is a degeneracy of an n-simplex. If Σ' is an m-simplex that is a degeneracy of a $(n+1)$-simplex Σ'^{n+1}, then $P_{\Sigma'} = pr^*P_{\Sigma^{n+1}}$ for a certain determined simplicial projection $pr : \Delta^m \to \Delta^{n+1}$, and we define $D_\Sigma = \bar{pr}^*D_{\Sigma^{n+1}}$. For $\bar{pr} : P_{\Sigma'} \to P_{\Sigma^{n+1}}$ the natural map in the pull-back square. The second part of the lemma follows by an analogous argument, since we may just extend D_1, D_2 to a concordance connection \tilde{D}, using the above inductive procedure.

Example 6.3. Given a classical smooth G-connection D on a smooth principal G-bundle $Z \to Y$, we obviously get a simplicial G-connection on the induced simplicial G-bundle $N = Z_\star$. Concretely, this is defined by setting D_Σ on $N_\Sigma = \Sigma^*Z$ to be Σ^*D, for $\Sigma : \Sigma^*Z \to Z$ the natural map. This is called the **induced simplicial connection**, and it may be denoted by D_\star. Going in the other direction is always possible if the given simplicial G-connection in addition satisfies coherence, but we will not elaborate.

7. Chern-Weil homomorphism

7.1. The classical case. To establish notation we first discuss classical Chern-Weil homomorphism.
Let G be a Frechet Lie group, and let \mathfrak{g} denote its Lie algebra. Let P be a smooth G-bundle over a smooth manifold Y. Fix a G-connection D on P. Let $\text{Aut } P_y$ denote the group of smooth G-torsor automorphisms of the fiber P_y of P over $y \in Y$. Note that $\text{Aut } P_y \simeq G$ where \simeq means non-canonically isomorphic. Then associated to D we have the classical curvature 2-form R^D on Y, understood as a 2-form valued in the vector bundle $P \to Y$, whose fiber over $y \in Y$ is $\text{Aut } P_y$, the Lie algebra of $\text{Aut } P_y$.

Thus, \(\forall v, w \in T_y Y : R^D(v, w) \in P_y = \text{lie Aut } P_y \). Now, let ρ be a symmetric multilinear functional:

\[
\rho : \prod_{i=1}^{i=k} \mathfrak{g} \to \mathbb{R},
\]

satisfying

\[
\forall g \in G, \forall v \in \prod_{i=1}^{i=k} \mathfrak{g} : \rho(\text{Ad}_g(v)) = \rho(v).
\]

Here if $v = (\xi_1, \ldots, \xi_n)$, $\text{Ad}_g(v) = (\text{Ad}_g(\xi_1), \ldots, \text{Ad}_g(\xi_n))$ is the adjoint action by the element $g \in G$. As ρ is Ad invariant, it uniquely determines multilinear maps with the same name:

\[
\rho : \prod_{i=1}^{i=k} \text{lie Aut } P_y \to \mathbb{R},
\]

by fixing any Lie-group isomorphism $\text{Aut } P_y \to G$. We may now define a closed \mathbb{R}-valued $2k$-form $\omega^{\rho,D}$ on Y:

\[
\omega^{\rho,D}(v_1, \ldots, v_{2k}) = \frac{1}{2k!} \sum_{\eta \in P_{2k}} \text{sign } \eta \cdot \rho(R^D(\eta^{-1} v_1, \eta^{-1} v_2), \ldots, R^D(\eta^{-1} v_{2k-1}, \eta^{-1} v_{2k})),
\]

for P_{2k} the permutation group of a set with $2k$ elements, and where $v_1, \ldots, v_{2k} \in T_y Y$. Set

\[
\alpha^{\rho,D} := \int \omega^{\rho,D}.
\]

Then we define the classical Chern-Weil characteristic class:

\[
\iota^D(P) = \iota^{\rho,D}(P) := [\alpha^{\rho,D}] \in H^{2k}(X, \mathbb{R}).
\]

7.2. Chern-Weil homomorphism for smooth simplicial bundles. Now let P be a simplicial G-bundle over a smooth simplicial set X. Fix a simplicial G-connection D on P.

For each simplex Σ^d, we have the curvature 2-form R^D_{Σ} of the connection D_{Σ} on P_{Σ}, defined as in the section just above. For concreteness:

\[
\forall v, w \in T_z \Delta^d : R^D_{\Sigma}(v, w) \in \text{lie Aut } P_z,
\]

for P_z the fiber of P_{Σ} over $z \in \Delta^d$.

As above, let ρ be a Ad invariant symmetric multilinear functional:

\[
\rho : \prod_{i=1}^{i=k} \mathfrak{g} \to \mathbb{R}.
\]
As above \(\rho \) uniquely determines for each \(z \in \Delta^d \) a symmetric multilinear map with the same name:

\[
\rho : \prod_{i=1}^{i=k} \text{lie Aut } P_z \to \mathbb{R}.
\]

We may now define a closed, \(\mathbb{R} \)-valued, simplicial differential \(2k \)-form \(\omega^{\rho,D} \) on \(X \):

\[
\omega^{\rho,D}(v_1, \ldots, v_{2k}) = \frac{1}{2k!} \sum_{\eta \in P_{2k}} \text{sign } \eta \cdot \rho(R^{D}_{\Sigma}(v_{\eta(1)}, v_{\eta(2)}), \ldots, R^{D}_{\Sigma}(v_{\eta(2k-1)}, v_{\eta(2k)})),
\]

for \(P_{2k} \) as above the permutation group of a set with \(2k \) elements. Set

\[
\alpha^{\rho,D} := \int \omega^{\rho,D}.
\]

Lemma 7.1. For \(P \to X \) as above

\[
[\alpha^{\rho,D}] = [\alpha^{\rho,D'}] \in H^{2k}(X, \mathbb{R}),
\]

for any pair of simplicial \(G \)-connections \(D, D' \) on \(P \).

Proof. For \(D, D' \) as in the statement, fix a concordance simplicial \(G \)-connection \(\tilde{D} \), between \(D, D' \), on the \(G \)-bundle \(P \times I \to X \times I \), as in Lemma 6.2. Then \(\alpha^{\rho,\tilde{D}} \) is a cocycle in \(C^{2k}(X \times I, \mathbb{R}) \) restricting to \(\alpha^{\rho,D}, \alpha^{\rho,D'} \) on \(X \times I_0, X \times I_1 \).

Now the pair of inclusions

\[
i_j : X \to X \times I \quad j = 0, 1
\]

corresponding to the end points of \(I \) are homotopic and so \(\alpha^{\rho,D}, \alpha^{\rho,D'} \) are cohomologous cocycles, cf. Section 4.1. \(\square \)

Then we define the associated Chern-Weil characteristic class:

\[
c^\rho(P) = c^{\rho}_{2k}(P) := [\alpha^{\rho,D}] \in H^{2k}(X, \mathbb{R}),
\]

(we may omit the subscript \(2k \), as the degree \(2k \) is implicitly determined by \(\rho \).)

We have the expected naturality:

Lemma 7.2. Let \(P \) be a simplicial \(G \)-bundle over \(Y \), \(\rho \) as above and \(f : X \to Y \) a smooth simplicial map. Then

\[
f^*c^\rho(P) = c^\rho(f^*P).
\]

Proof. Let \(D \) be a simplicial \(G \)-connection on \(P \). Define the pull-back connection \(f^*D \) on \(f^*P \) by \(f^*D_{\Sigma} = D_{f(\Sigma)} \). Then \(f^*D \) is a simplicial \(G \)-connection on \(f^*P \) and clearly \(\omega^{\rho,f^*D} = f^*\omega^{\rho,D} \), so that passing to cohomology we obtain our result. \(\square \)

Proposition 7.3. Let \(G \hookrightarrow Z \to Y \) be an ordinary smooth principal \(G \)-bundle, and \(\rho \) as above. Let \(Z_* \) be the induced simplicial \(G \)-bundle over \(Y_* \) as in Example 5.7. Then the classes \(c^\rho(Z_*) \in H^{2k}(Y_*, \mathbb{R}) \) coincide with the classical Chern-Weil classes of \(Z \). More explicitly, if \(c^\rho(Z) \in H^{2k}(Y, \mathbb{R}) \) is the classical Chern-Weil characteristic class as in (7.2), then

\[
|c^\rho(Z_*)| = c^\rho(Z),
\]

where \(|c^\rho(Z_*)| \) is as in Notation 4.6.
Proof. Fix a smooth G-connection D on Z. This induces a simplicial G-connection D_\bullet on Z_\bullet, as in Example 6.3. Let $\omega^{\rho,D}$ denote the classical smooth Chern-Weil differential 2k-form on Y, as in (7.1). Let $\alpha^{\rho,D} = \int \omega^{\rho,D} \in H^{2k}(Y,\mathbb{R})$. By its construction ω^{ρ,D_\bullet} is the simplicial differential form induced by $\omega^{\rho,D}$, where induced is as in Example 4.2. Consequently,

$$(I^\vee)^{-1}([\alpha^{\rho,D_\bullet}]) = [\alpha^{\rho,D}] = c^\rho(Z),$$

where I^\vee as in (4.7). \hfill \Box

8. The universal simplicial G-bundle

Briefly, a Grothendieck universe is a set \mathcal{U} forming a model for set theory. That is if we interpret all terms of set theory as elements of \mathcal{U}, then all the set theoretic constructions keep us within \mathcal{U}. We will assume Grothendieck’s axiom of universes which says that for any set X there is a Grothendieck universe $\mathcal{U} \ni X$. Intuitively, such a universe \mathcal{U} is formed by from all possible set theoretic constructions starting with X. For example if $\mathcal{P}(X)$ denotes the power set of X, then $\mathcal{P}(X) \in \mathcal{U}$ and if $\{Y_i \in \mathcal{P}(X)\}_{i \in I}$ for $I \in \mathcal{U}$ is a collection then $\bigcup_i Y_i \in \mathcal{U}$. This may appear very natural, but we should note that this axiom is beyond ZFC. Although it is now a common axiom of modern set theory, especially in the context of category theory, c.f. [11]. In some contexts one works with universes implicitly. This is impossible here, as we need to establish certain universe independence.

Let G be a Frechet Lie group. Let \mathcal{U} be a Grothendieck universe satisfying:

$$\mathcal{U} \ni \{G\}, \quad \forall n \in \mathbb{N} : \mathcal{U} \ni \{\Delta^n\},$$

where Δ^n are the usual topological n-simplices. Such a \mathcal{U} will be called G-admissible. We construct smooth Kan complexes $BG^\mathcal{U}$ for each G-admissible \mathcal{U}. The homotopy type of $BG^\mathcal{U}$ will then be shown to be independent of \mathcal{U}, provided G has the homotopy type of CW complex. Moreover, in this case we will show that $BG^\mathcal{U} \simeq BG$, for BG the classical Milnor classifying space.

Definition 8.1. A \mathcal{U}-small set is an element of \mathcal{U}. For X a smooth simplicial set, a smooth simplicial G-bundle $P \to X$ will be called \mathcal{U}-small if for each simplex Σ of X the bundle P_Σ is \mathcal{U}-small.

8.1. The classifying spaces $BG^\mathcal{U}$. Let \mathcal{U} be G-admissible. We define a simplicial set $BG^\mathcal{U}$, whose set of k-simplices $BG^\mathcal{U}(k)$ is the set of \mathcal{U}-small smooth simplicial G-bundles over Δ^k_\bullet. The simplicial maps are just defined by pull-back so that given a map $i \in \text{hom}_\Delta([m],[n])$ the map

$$BG^\mathcal{U}(i) : BG^\mathcal{U}(n) \to BG^\mathcal{U}(m)$$

is just the natural pull-back:

$$BG^\mathcal{U}(i)(P) = i^*P,$$

for i_\bullet, the induced map $i_\bullet : \Delta^m_\bullet \to \Delta^n_\bullet \in BG^\mathcal{U}(n)$ a simplicial G-bundle over Δ^m_\bullet, and where the pull-back map i^*_\bullet is as in Section 5.1. Then Lemma 5.13 insures that $BG^\mathcal{U}$ is a functor, so that we get a simplicial set $BG^\mathcal{U}$.

We define a smooth simplicial set structure g on $BG^\mathcal{U}$ as follows. Given a d-simplex $P \in BG^\mathcal{U}(d)$ the induced map

$$(g(P) = P_\bullet) : \Delta^d \to BG^\mathcal{U},$$
is defined naturally by
\[P_*(\sigma) := \sigma^* P, \]
where \(P \) on the right is corresponding simplicial \(G \)-bundle \(P \to \Delta^d \). More explicitly, \(\sigma \in \Delta^d(k) \) is a smooth map \(\sigma : \Delta^k \to \Delta^d \), \(\sigma^*: \Delta^k \to \Delta^d \) denotes the induced map and the pull-back is as previously defined. We need to check the push-forward functoriality Axiom 3.

Let \(\sigma \in \Delta^d(k) \), then for all \(j \in \mathbb{N}, \rho \in \Delta^k(j) \):
\[(P_*(\sigma))_*(\rho) = (\sigma^* P)_*(\rho) = \rho^* (\sigma^* P) \text{ by definition of } g. \]

And
\[(P_*(\sigma)* \rho)_*(\rho) = (\sigma^* \rho)_* P = (\rho^* (\sigma^* P)) \text{ as } \sigma^* \text{ is smooth} = \rho^* (\sigma^* P). \]

And so
\[(P_*(\sigma))_* = P_*(\sigma^*). \]

so that \(BG^d \) is indeed a smooth simplicial set.

8.2. **The universal smooth simplicial \(G \)-bundle** \(EG^d \). In what follows \(V \) denotes \(BG^d \) for a general, \(G \)-admissible \(\mathcal{U} \). There is a natural functor
\[E : \Delta^{sm}(V) \to \mathcal{G}, \]
which we now describe.

A smooth map \(P : \Delta^d \to V \), uniquely corresponds to a simplex \(P^s \) of \(V \) via Lemma 3.5 which by construction of \(V \) corresponds to a simplicial \(G \)-bundle \(P^b \to \Delta^d \). In other words \(P^b := P(id^d) \) for \(id^d : \Delta^d \to \Delta^d \) the identity.

Notation 8.2. Although we disambiguate here, we sometimes conflate the notation \(P, P^s, P^b \) with just \(P \).

Recalling that \(P^b \) is a functor on \(\Delta^{sm}(\Delta^d) \) we then set:
\[E(P) = P^b(id^d). \]

Now, if we have a morphism \(m \in \Delta^{sm}(V) \):
\[\Delta^k \xrightarrow{\tilde{m}^*} \Delta^d \]
\[\xrightarrow{P_1} \xrightarrow{P_2} \]
\[\xrightarrow{\leftarrow V} \]
then we have:
\[P^b_1 = P_1(id^k) = (P_2 \circ \tilde{m}^*)(id^k) = P_2(\tilde{m}) \]
\[= (P_2^b)_*(\tilde{m}) = P^b_2 \circ \Delta^{sm}(\tilde{m}^*). \]
So that
\[P^k_1(id^k_\bullet) = P^k_1(\bar{m}_\bullet \circ id^k_\bullet) = P^k_2(\bar{m}_\bullet). \]
We have a tautological morphism \(e_m \in \Delta^{sm}(\Delta^d_\bullet) \) corresponding to the diagram:
\[
\begin{array}{ccc}
\Delta^k_\bullet & \xrightarrow{\bar{m}_\bullet} & \Delta^d_\bullet \\
\downarrow{id^k_\bullet} & & \downarrow{id^d_\bullet} \\
\Delta^d_\bullet & & \\
\end{array}
\]
So we get a smooth \(G \)-bundle map:
\[P^k_2(e_m) : P^k_2(\bar{m}_\bullet) \to P^k_2(id^k_\bullet), \]
which is over the smooth map \(\bar{m} : \Delta^k \to \Delta^d \) induced by \(\bar{m}_\bullet \). And we set \(E(m) = P^k_2(e_m) \).

We need to check that with these assignments \(E \) is a functor. Suppose we have a diagram:
\[
\begin{array}{ccc}
\Delta^l_\bullet & \xrightarrow{\bar{m}^0_\bullet} & \Delta^k_\bullet & \xrightarrow{\bar{m}^1_\bullet} & \Delta^d_\bullet \\
\downarrow{P^l_1} & & \downarrow{P^k_1} & & \downarrow{P^d_1} \\
\Delta^d_\bullet & & V, \\
\end{array}
\]
Then \(e_m = e_{m^1_\bullet} \circ e^0_{m^0_\bullet} \) where \(e^0_{m^0_\bullet} \) is the diagram:
\[
\begin{array}{ccc}
\Delta^l_\bullet & \xrightarrow{\bar{m}^0_\bullet} & \Delta^k_\bullet \\
\downarrow{\bar{m}^0_\bullet} & & \downarrow{\bar{m}^1_\bullet} \\
\Delta^d_\bullet & & \\
\end{array}
\]
and \(e_{m^1_\bullet} \) is the diagram:
\[
\begin{array}{ccc}
\Delta^k_\bullet & \xrightarrow{\bar{m}^1_\bullet} & \Delta^d_\bullet \\
\downarrow{\bar{m}^1_\bullet} & & \downarrow{id^d_\bullet} \\
\Delta^d_\bullet & & \\
\end{array}
\]
So
\[E(m) = P^k_2(m) = P^k_2(e_{m^1_\bullet}) \circ P^k_2(e^0_{m^0_\bullet}) = E(m^1_\bullet) \circ P^k_2(e^0_{m^0_\bullet}). \]
Now by the analogue of (8.1):
\[E(m_0) = P^k_2(e_{m^0_\bullet}) = (P^k_2 \circ \Delta^{sm} \bar{m}^1_\bullet)(e_{m^0_\bullet}) = P^k_2(e^0_{m_0}). \]
And so we get: \(E(m) = E(m^1_\bullet) \circ E(m_0) \). Thus, \(E \) is a functor.

By construction the functor \(E \) satisfies the compatibility condition, and hence determines a simplicial \(G \)-bundle. The universal simplicial \(G \)-bundle \(EG^{id} \) is then another name for \(E \) above, for some \(G, U \).

Proposition 8.3. \(V \) is a Kan complex.

Proof. Let
\[E : \Delta(V) \to \mathcal{G} \]
be the restriction of \(E \), as above, to \(\Delta(V) \subset \Delta^{sm}(V) \). Recall that \(\Delta^n_k \subset \Delta^{sm}_{nmp} \) denotes the sub-simplicial set corresponding to the “boundary” of \(\Delta^n \) with the \(k \)’th face removed, where by \(k \)’th face we mean the face opposite to the \(k \)’th vertex. Let
$h : \Lambda^n_k \to V$, $0 \leq k \leq n$, be a simplicial map, this is also called a horn. We need to construct an extension of h to Δ^n_{simp}. For simplicity we assume $n = 2$, as the general case is identical. Let

$$\Delta(h) : \Delta(\Lambda^n_k) \to \Delta(V)$$

be the induced functor. Set $P = E \circ \Delta(h)$. Clearly, to construct our extension we just need an appropriate extension of P over $\Delta(\Delta^n_{simp})$. (Appropriate, means that we need the compatibility condition of Definition 5.4 be satisfied.)

Lemma 8.4. There is a natural transformation of \mathcal{G} valued functors $tr : T \to P$, where T is the trivial functor $T : \Delta(\Lambda^n_k) \to \mathcal{G}$, $T(\sigma^d) = \Delta^d \times G$.

Proof. Set $L := \Lambda^n_k$, with $k = 1$, again without loss of generality. There are three natural inclusions

$$i_j : \Delta^0_{simp} \to L,$$

$j = 0, 1, 2$, with i_1 corresponding to the inclusion of the horn vertex. The corresponding 0-simplices will just be denoted by $0, 1, 2$. Fix a G-bundle map (in this case just smooth G-torsor map):

$$\phi_1 : \Delta^0 \times G \to P(i_1).$$

Let

$$\sigma_{1,2} : \Delta^1_{simp} \to L$$

be the edge between vertexes 1, 2, that is $\sigma_{1,2}(0) = 1$, $\sigma_{1,2}(1) = 2$. Then $P(\sigma_{1,2})$ is a smooth bundle over the contractible space Δ^1 and so we may find a G-bundle map

$$\phi_{1,2} : \Delta^1 \times G \to P(\sigma_{1,2}),$$

whose restriction to $\{0\} \times G$ is ϕ_1. Meaning:

$$\phi_{1,2} \circ (i_0 \times id) = \phi_1,$$

where

$$i_0 : \Delta^0 \to \Delta^1,$$

is the map $i_0(0) = 0$.

We may likewise construct a G-bundle map

$$\phi_{0,1} : \Delta^1 \times G \to P(\sigma_{0,1}),$$

(where $\sigma_{0,1}$ is defined analogously to $\sigma_{1,2}$), whose restriction to $\{1\} \times G$ is ϕ_1.

Then $\phi_{0,1}, \phi_{1,2}$ obviously glue to a natural transformation:

$$tr : T \to P.$$

To continue, we have the trivial extension of T,

$$\tilde{T} : \Delta(\Delta^2_{simp}) \to \mathcal{G},$$

defined by

$$\tilde{T}(\sigma^d) = \Delta^d \times G.$$

And so by the lemma above it is clear that P likewise has an extension \tilde{P} to $\Delta(\Delta^2_{simp})$, but we need this extension to be \mathcal{U}-small so that we must be explicit. Let
σ^2 denote the non-degenerate 2-simplex of Δ^2. It suffices to construct $\tilde{P}_{\sigma^2} := \tilde{P}(\sigma^2)$. Let

$$\sigma_{0,1}, \sigma_{1,2} : \Delta^1 \to \Delta^2$$

be the edge inclusions of the edges between the vertices $0, 1$, respectively $1, 2$. And let $e_{0,1}, e_{1,2}$ denote their images.

We then define a set theoretic (for the moment no topology) G-bundle

$$\tilde{P}_{\sigma^2} \to \Delta^2$$

by the following conditions:

$$\sigma_{0,1}^* \tilde{P}_{\sigma^2} = P(\sigma_{0,1}),$$

$$\sigma_{1,2}^* \tilde{P}_{\sigma^2} = P(\sigma_{1,2}),$$

$$P_{\sigma^2}|(\Delta^2)^o = (\Delta^2)^o \times G,$$

where $(\Delta^2)^o$ denotes the topological interior of $\Delta^2 \subset \mathbb{R}^2$, and where the projection map p is natural.

We now discuss the topology. Define the smooth G-bundle maps

$$\phi_{0,1}^{-1} : P(\sigma_{0,1}) \to \Delta^2 \times G,$$

$$\phi_{1,2}^{-1} : P(\sigma_{1,2}) \to \Delta^2 \times G,$$

over $\sigma_{0,1}, \sigma_{1,2}$, as in the proof of the lemma above. Let d_0 be any metric on $\Delta^2 \times G$ inducing the natural product topology. The topology on \tilde{P}_{σ^2} will be given by the d-metric topology, for d extending d_0 on $(\Delta^2)^o \times G \subset \tilde{P}_{\sigma^2}$, and defined as follows. For $y_1 \in \tilde{P}_{\sigma^2}$ with $p(y_1) \in e_{0,1}$, y_2 arbitrary, $d(y_1, y_2) = d_0(\phi_{0,1}^{-1}(y_1), y_2)$. Likewise, for $y_1 \in \tilde{P}_{\sigma^2}$ with $p(y_1) \in e_{1,2}$, y_2 arbitrary, $d(y_1, y_2) = d_0(\phi_{1,2}^{-1}(y_1), y_2)$. This defines \tilde{P}_{σ^2} as a topological G-bundle over Δ^2.

There is a natural topological G-bundle trivialization

$$\xi : \tilde{P}_{\sigma^2} \to \Delta^2 \times G$$

defined as follows. $\xi(y) = y$ when $p(y) \in (\Delta^2)^o$ and $\xi(y) = \phi_{0,1}^{-1}(y)$ when $p(y) \in e_{0,1}$, $\xi(y) = \phi_{1,2}^{-1}(y)$ when $p(y) \in e_{0,2}$. We then take the smooth structure on \tilde{P}_{σ^2} to be the smooth structure pulled back by ξ. By construction \tilde{P}_{σ^2} is \mathcal{U}-small, as all the constructions take place in \mathcal{U}. Moreover, by construction $\sigma_{0,1}^* \tilde{P}_{\sigma^2} = P_{\sigma_{0,1}}$ as a smooth G-bundle and $\sigma_{1,2}^* \tilde{P}_{\sigma^2} = P_{\sigma_{1,2}}$ as a smooth G-bundle, which readily follows by the fact that the maps $\phi_{0,1}, \phi_{1,2}$ are smooth G-bundle maps. Thus, we have constructed the needed extension. \hfill \Box

Theorem 8.5. Let X be a smooth simplicial set. \mathcal{U}-small simplicial G-bundles $P \to X$ are classified by smooth maps

$$f_P : X \to BG^d.$$

Specifically:

1. For every \mathcal{U}-small P there is a natural smooth map $f_P : X \to BG^d$ so that

$$f_P^* EG^d \simeq P$$

as simplicial G-bundles. We say in this case that f_P classifies P.

(2) If P_1, P_2 are isomorphic \mathcal{U}-small smooth simplicial G-bundles over X then any classifying maps f_{P_1}, f_{P_2} for P_1, respectively P_2 are smoothly homotopic, as in Definition 3.13.

(3) If $X = Y_*$ for Y a smooth manifold and $f, g : X \to BG^d$ are smoothly homotopic then $P_f = f^* EG^d, P_g = g^* EG^d$ are isomorphic simplicial G-bundles.

Proof. Set $V = BG^d, E = EG^d$. Let $P \to X$ be a \mathcal{U}-small simplicial G-bundle. Define $f_P : X \to V$ naturally by:

$$f_P(Σ) = Σ^*P,$$

where $Σ \in Δ^d(X)$, $Σ_* : Δ_*^d \to X$, the induced map, and the pull-back $Σ_*^*P$ our usual simplicial G-bundle pull-back. We check that the map f_P is simplicial.

Let $m : [k] \to [d]$ be a morphism in $Δ$. We need to check that the following diagram commutes:

$$
\begin{array}{ccc}
X(d) & \xrightarrow{X(m)} & X(k) \\
\downarrow{f_P} & & \downarrow{f_P} \\
V(d) & \xrightarrow{V(m)} & V(k).
\end{array}
$$

Let $Σ \in X(d)$, then by push-forward functoriality Axiom 3 $(X(m)(Σ))_* = Σ_* \circ m_*$ where $m_* : Δ_*^k \to Δ_*^d$ is the simplicial map induced by $m : Δ^k \to Δ^m$. And so

$$f_P(X(m)(Σ)) = m_*^*(Σ_*^*P) = V(m)(f_P(Σ)),$$

where the second equality uses Lemma 5.13. And so the diagram commutes.

We now check that f_P is smooth. Let $Σ \in X(d)$, then we have:

$$
(f_P(Σ)_*)(σ) = σ^*{(Σ_*^*P)}
= (Σ_* \circ σ_•)^*P \text{ Lemma 5.13}
= (Σ_*(σ))^*P \text{ as } Σ_* \text{ is smooth, Lemma 3.5}
= (f_P \circ Σ_*)(σ),
$$

and so f_P is smooth.

Lemma 8.6. $f_P^*E = P$.

Proof. Let $Σ : Δ_*^d \to X$ be smooth, and $σ \in Δ_*^d$. Then we have:

$$
\Delta^sm f_P(Σ)(σ) = (f_P \circ Σ)(σ) = f_P(Σ(σ)) = (Σ(σ)_•)^*P \text{ by definition of } f_P
= (Σ_* \circ σ_•)^*P \text{ as } Σ \text{ is smooth}
= σ^*{(Σ^*P)} \text{ Lemma 5.13}
= (Σ^*P)_*(σ).
$$

So $\Delta^sm f_P(Σ) = (Σ^*P)_*$. Then

$$f_P^*E(Σ) = (E \circ \Delta^sm f_P)(Σ) = E((Σ^*P)_*) \text{ by the above}
= (Σ^*P)(id^d_•) \text{ definition of } E
= P(Σ).$$

So $f_P^*E = P$ on objects.
Now let m be a morphism:
\[
\Delta^k \xrightarrow{\tilde{m} \cdot} \Delta^d \\
\downarrow \Sigma_1 \quad \quad \quad \downarrow \Sigma_2 \\
X
\]
in $\Delta^{sm}(X)$. We then have:
\[
f_*E(m) = E(\Delta^{sm}f_P(m)) \\
= (\Delta^{sm}f_P(\Sigma_2))b(e_m) \quad \text{by definition of } E \\
= \Sigma_2^*P(e_m) \quad \text{by (8.3)}
\]
where e_m is as in the definition of E. But $\Delta^{sm}\Sigma_2(e_m)$ is the diagram:
\[
\Delta^k \xrightarrow{\tilde{m} \cdot} \Delta^d \\
\downarrow \Sigma_2 \circ \tilde{m} \quad \quad \downarrow \Sigma_2 \circ \text{id}_d
\]
i.e. it is the diagram m. So $(P \circ \Delta^{sm}\Sigma_2)(e_m) = P(m)$. Thus, $f_*E = P$ on morphisms. \hfill \Box

So we have proved the first part of the theorem. We now prove the second part of the theorem. Suppose that P'_1, P'_2 are isomorphic U-small simplicial G-bundles over X. Let $f_{P'_1}, f_{P'_2}$ be some classifying maps for P'_1, P'_2. In particular, there is an isomorphism of U-small simplicial G-bundles
\[
\phi : (P_1 := f_{P'_1}E) \to (P_2 := f_{P'_2}E).
\]
We construct a U-small simplicial G-bundle \tilde{P} over $X \times I$ as follows, where $I = \Delta^1$ as before. Let σ be a k-simplex of X. Then ϕ specifies a G-bundle diffeomorphism $\phi_\sigma : P_1(\sigma) \to P_2(\sigma)$ over the identity map $\Delta^k \to \Delta^k$. Let M_σ be the mapping cylinder of ϕ_σ. So that
\[
(8.4) \quad M_\sigma = (P_1(\sigma) \times \Delta^1 \sqcup P_2(\sigma))/\sim,
\]
for \sim the equivalence relation generated by the condition
\[
(x, 1) \in P_1(\sigma) \times \Delta^1 \sim \phi(x) \in P_2(\sigma).
\]
Then M_σ is a smooth G-bundle over $\Delta^k \times \Delta^1$. Let pr_X, pr_I be the natural projections of $X \times I$, to X respectively I. Let Σ be a d-simplex of $X \times I$. Set $\sigma_1 = pr_X \Sigma$, and $\sigma_2 = pr_I(\Sigma)$. Let $\text{id}_d : \Delta^d \to \Delta^d$ be the identity, so
\[
(\text{id}_d, \sigma_2) : \Delta^d \to \Delta^d \times \Delta^1,
\]
is a smooth map, where σ_2 is the corresponding smooth map $\sigma_2 : \Delta^d \to \Delta^1 = [0, 1]$. We then define
\[
\tilde{P}_\Sigma := (\text{id}_d, \sigma_2)^*M_{\sigma_1},
\]
which is a smooth G-bundle over Δ^d.
Suppose that \(\rho : \sigma \to \sigma' \) is a morphism in \(\Delta^m(X) \), for \(\sigma \) a \(k \)-simplex and \(\sigma' \) a \(d \)-simplex. As \(\phi \) is a simplicial \(G \)-bundle map, we have a commutative diagram:

\[
\begin{array}{ccc}
P_1(\sigma) & \xrightarrow{P_1(\rho)} & P_1(\sigma') \\
\downarrow{\phi_\sigma} & & \downarrow{\phi_{\sigma'}} \\
P_2(\sigma) & \xrightarrow{P_2(\rho)} & P_2(\sigma')
\end{array}
\]

(8.5)

And so we get a naturally induced (by the pair of maps \(P_1(\rho), P_2(\rho) \)) bundle map:

\[
\begin{array}{ccc}
M_\sigma & \xrightarrow{g_\rho} & M_{\sigma'} \\
\downarrow & & \downarrow \\
\Delta^k \times \Delta^1 & \xrightarrow{\tilde{\rho} \times \text{id}} & \Delta^d \times \Delta^1.
\end{array}
\]

(8.6)

More explicitly, let \(q_\sigma : P_1(\sigma) \times \Delta^1 \sqcup P_2(\sigma) \to M_\sigma \) denote the quotient map. Then \(g_\rho : P_1(\sigma) \times \Delta^1 \sqcup P_2(\sigma) \to M_{\sigma'} \) is defined by:

\[g_\rho(x, t) = q_{\sigma'}((P_1(\rho)(x), t)) \in M_{\sigma'}, \]

for \((x, t) \in P_1(\sigma) \times \Delta^1 \), while \(g_\rho(y) = q_{\sigma'}(P_2(\rho)(y)) \) for \(y \in P_2(\sigma) \). By commutativity of (8.5) \(g_\rho \) induces the map \(g_\rho : M_\sigma \to M_{\sigma'} \), appearing in (8.6).

Now suppose we have a morphism \(m : \Sigma \to \Sigma' \) in \(\Delta^m(X \times I) \), where \(\Sigma \) is a \(k \)-simplex and \(\Sigma' \) is a \(d \)-simplex. Then we have a commutative diagram:

\[
\begin{array}{c}
\Delta^k \times \Delta^1 & \xrightarrow{\tilde{\rho} \times \text{id}} & \Delta^d \times \Delta^1 \\
\downarrow{h_1} & & \downarrow{h_2} \\
\Delta^k & \xrightarrow{\tilde{m}} & \Delta^d \\
\tilde{P}_\Sigma & & \tilde{P}_{\Sigma'}
\end{array}
\]

(8.7)

where \(h_1 = (id^k, pr_I(\Sigma)) \) and \(h_2 = (id^d, pr_I(\Sigma')) \). We then readily get an induced natural bundle map:

\[\tilde{P}(m) : \tilde{P}_\Sigma \to \tilde{P}_{\Sigma'}, \]

as left most and right most arrows in the above commutative diagram are the natural maps in pull-back squares, and so by universality of the pull-back such a map exists and is uniquely determined. Of course \(\tilde{P}(m) \) is the unique map making the whole diagram (8.7) commute.

With the above assignments, it is immediate that \(\tilde{P} \) is indeed a functor, by the uniqueness of the assignment \(\tilde{P}(m) \). And this determines our \(\mathcal{U} \)-small smooth
simplicial G-bundle $\tilde{P} \to X \times I$. By the first part of the theorem, we have an induced smooth classifying map $f_\tilde{P} : X \times I \to V$. By construction, it is a homotopy between $f_{P'_1}, f_{P'_2}$. So we have verified the second part of the theorem.

We now prove the third part of the theorem. Suppose that $f, g : X \to V$ are smoothly homotopic, and let $H : X \times I \to V$ be the corresponding smooth homotopy. By Lemma 5.11, the bundles P_f, P_g are induced by smooth G-bundles P'_f, P'_g over Y. Now $P_H = H^*E$ is a simplicial G-bundle over $X \times I = (Y \times [0, 1]) \times$, and hence by Lemma 5.11 P_H is also induced by a smooth G-bundle P'_H over $Y \times [0, 1]$. We may clearly in addition arrange that P'_H restricts to $P'_f \sqcup P'_g$ over $Y \times \partial [0, 1]$. It follows that P'_f, P'_g are smoothly concordant and hence isomorphic simplicial G-bundles, and so P_f, P_g are isomorphic simplicial G-bundles.

We now study the dependence on a Grothendieck universe U.

Theorem 8.7. Let G be a Frechet Lie group having the homotopy type of CW complex. Let U be a G-admissible universe, let $|BG^U|$ denote the geometric realization of BG^U and let BG^{top} denote the classical classifying space of G as defined by the Milnor construction [14]. Then there is a homotopy equivalence

$$e^U : |BG^U| \to BG^{top},$$

which is natural in the sense that if $U' \supset U$ then

$$[e^U \circ |i^U, U'|] = [e^U],$$

where $|i^U, U'| : |BG^U| \to |BG^{top}|$ is the map of geometric realizations, induced by the natural inclusion $i^U, U' : BG^U \to BG^{top}$ and where $[\cdot]$ denotes the homotopy class. In particular, for G as above the homotopy type of BG^U is independent of the choice of G-admissible U.

Proof. For U G-admissible let U' be a universe enlargement of U, that is U' is a universe with $U' \supset U$. Set $V := BG^U, V' := BG^{top}, E := EG^U, E' := EG^{top}$. There is a natural inclusion map $i = i^U, U' : V \to V'$, and $i^*E' = E$.

Lemma 8.8. Let G be any Frechet Lie group and V as above.

$$i_* : \pi_k^m(V) \to \pi_k^m(V')$$

is a set isomorphism for all $k \in \mathbb{N}$, where π_k^m are as in Definition 3.14.

Proof. We show that i_* is injective. Let $f, g : S^k_\bullet \to V$ be a pair of smooth maps. Let P_f, P_g denote the smooth bundles over S^k induced via Lemma 5.11 by f^*E, g^*E. Set $f' = i \circ f,$ $g' = i \circ g$ and suppose that $F : S^k_\bullet \times I \to V'$ is a smooth homotopy between f', g'. By Lemma 5.11 the simplicial bundle F^*E' is induced by a smooth bundle $P_F \to S^k \times I$. In particular P_f, P_g are classically isomorphic smooth U-small G-bundles. Taking the mapping cylinder for the corresponding G-bundle isomorphism gives us a smooth G-bundle $P' \to S^k \times I$ that is U-small by construction. Finally, P' induces a smooth simplicial G-bundle H over $S^k_\bullet \times I$.

2To be perfectly formal, this is not exactly right. For the same reason that fixing the standard construction of set theoretic pull-back, a bundle $P \to B$ is not set theoretically equal to the bundle $id : P \to B$, for $id : B \to B$ the identity, (but they are of course naturally isomorphic.) However, this slight ambiguity can be fixed following the same simple idea as in the proof of Proposition 8.3.

3This is indeed an equality, not just a natural isomorphism.
that by construction is U-small. The classifying map $f_H : S^k_\bullet \times I \to V$ then gives a smooth homotopy between f, g.

We now show surjectivity of i_*. Let $f : S^k_\bullet \to V'$ be smooth. By Lemma 5.11 the simplicial G-bundle $f^* E'$ is induced by a smooth G-bundle $P' \to S^k$. Any such bundle is obtained by the clutching construction, that is P' is isomorphic as a smooth G-bundle to the bundle:

$$C = D^k_- \times G \sqcup D^k_+ \times G / \sim,$$

where D^k_+, D^k_- are two copies of the standard closed k-ball in \mathbb{R}^k, and \sim is the following equivalence relation: for

$$(d, g) \in D^k_- \times G$$

$$(d, g) \sim \tilde{f}(d, g) \in D^k_+ \times G,$$

where

$$\tilde{f} : \partial D^k_- \times G \to \partial D^k_+ \times G, \quad \tilde{f}(d, x) = (d, f(d)^{-1} \cdot x),$$

for some smooth $f : S^{k-1} \to G$. Then C is U-small, since this gluing construction is carried out in U.

Let

$$C_\bullet \to S^k_\bullet$$

denote the induced U-small smooth simplicial G-bundle. Now C_\bullet and $f^* E'$ are induced by isomorphic U'-small smooth G-bundles, hence are isomorphic U'-small simplicial G-bundles. And so by Theorem 8.5, the classifying map $f_{C_\bullet} : V'$ is smoothly homotopic to f.

Since C_\bullet is U-small it is also classified by a smooth map $f' : S^k_\bullet \to V$. It is immediate that $[i \circ f'] = [f_{C_\bullet}]$, since $i^* E' = E$, and so $i_*([f']) = [f].$

\textbf{Corollary 8.9.} Let G be any Frechet Lie group, and V as above. Simplicial G-bundles over S^k_\bullet, up to (smooth) simplicial G-bundle isomorphism, are classified by smooth homotopy classes of maps $f : S^k_\bullet \to V$. That is the mapping c_V:

$$[f] \mapsto [P_f := f^* E]$$

is a set bijection from the set of smooth homotopy classes of maps $f : S^k_\bullet \to V$ to the set of isomorphism classes of simplicial G-bundles over S^k_\bullet.

\textbf{Proof.} c_V is well-defined by the third part of Theorem 8.5. It is injective by the second part Theorem 8.5. Let P be a simplicial G-bundle over S^k_\bullet, then P is U' small for some G-admissible universe $U' \supset U$. So by the first part of Theorem 8.5, P is classified by some smooth map:

$$f' : S^k_\bullet \to BG^{U'},$$

By the preceding lemma there is a smooth map $f_P : S^k_\bullet \to V$ so that $[i \circ f_P] = [f']$, where $i : V \to BG^{U'}$ is the inclusion. In particular by the second part of Theorem 8.5 $f_P E$ is isomorphic to P as a simplicial G-bundle. Thus, c_V is surjective.

We now show the second part of the theorem. Set as before $V := BG^{U'}, E := EG^{U'}$ and set

$$|E| := \text{colim}_{\Delta(V)} E$$
where \(E : \Delta(V) \to \mathcal{G} \) is as previously discussed, and where the colimit is understood to be in the category of topological \(G \)-bundles. Let \(|V| \) be the geometric realization as previously defined. Then we have a topological \(G \)-fibration

\[
|E| \to |V|,
\]

which is classified by some

\[
e = e^U : |V| \to BG^{\text{top}},
\]

uniquely determined up to homotopy. In particular,

\[
|E| \simeq e^*EG^{\text{top}},
\]

where \(EG^{\text{top}} \) is the universal \(G \)-bundle over \(BG^{\text{top}} \) and where \(\simeq \) in this argument will always mean \(G \)-bundle isomorphism. We will show that \(e \) induces an isomorphism of all homotopy groups. At this point we will use the assumption that \(G \) has the homotopy type of CW complex, so that \(BG^{\text{top}} \) has the homotopy type of CW complex, and so \(e \) must then be a homotopy equivalence by Whitehead theorem, which will finish the proof.

Let \(f : S^k \to BG^{\text{top}} \) be continuous. By M"uller-Wockel [16], main result, the bundle \(P_f := f^*EG^{\text{top}} \) is topologically isomorphic to a smooth \(G \)-bundle \(P' \to S^k \).

By the axiom of universes suppose that \(e \) is \(G \)-admissible. Then we have a topological \(G \)-fibration

\[
|E| \simeq e^*EG^{\text{top}},
\]

where \(EG^{\text{top}} \) is the universal \(G \)-bundle over \(BG^{\text{top}} \) and where \(\simeq \) in this argument will always mean \(G \)-bundle isomorphism. We will show that \(e \) induces an isomorphism of all homotopy groups. At this point we will use the assumption that \(G \) has the homotopy type of CW complex, so that \(BG^{\text{top}} \) has the homotopy type of CW complex, and so \(e \) must then be a homotopy equivalence by Whitehead theorem, which will finish the proof.

By Lemma 8.8 \(P'_* \simeq g^*E \) for some

\[
g : S^k \to V,
\]

where \(\simeq \) is an isomorphism of simplicial \(G \)-bundles. Define

\[
|P'_*| := \text{colim}_{\Delta(S^k)} P'_*,
\]

recalling that \(P'_* \) is a functor \(\Delta(S^k) \to \mathcal{G} \). Where as before the colimit is understood to be in the category of topological \(G \)-bundles.

Then \(|P'_*| \to |S^k_*| \) is a topological \(G \)-bundle classified by \(e \circ |g| \), for

\[
|g| : |S^k_*| \to |V|,
\]

the naturally induced topological map.

By construction, there is a topological \(G \)-bundle map \(|P'_*| \to P' \), over the natural map \(|S^k_*| \to S^k \) as \(P' \) is a co-cone for the corresponding colimit diagram in \(\mathcal{G} \). And so \(P' \) and hence \(P_f \), as a topological \(G \)-bundle is isomorphic to \(h^*|P'_*| \), where

\[
h : S^k \to |S^k_*|
\]

represents the generator of \(\pi_k(|S^k_*|) \). Thus, \(e \circ |g| \circ h \) represents the homotopy class \([f]\) and so \(e_* : \pi_k(V) \to \pi_k(BG^{\text{top}}) \) is surjective. Here, the notation \(\pi_k(Y) \) means the set of free homotopy classes of maps \(S^k \to Y \).

We prove injectivity. Let \(f : S^k \to |V| \) be continuous. Let \(P \to S^k \) be a smooth \(G \)-bundle topologically isomorphic to \(f^*|E| \). Again \(P \) exists by [16]. By Corollary 8.9, \(P_* \) is classified by a smooth map:

\[
g : S^k \to V.
\]

As before we then represent the class \([f]\), by \(|g| \circ h \) for \(h : S^k \to |S^k_*| \) as above. Now suppose that \(e \circ f \) is null-homotopic. Then by [16] \(P \) is smoothly isomorphic to the trivial \(G \)-bundle. Thus, by Corollary 8.9 \(g \) is smoothly null-homotopic, so that \(|g| \) is
null-homotopic and so \([f] = [g \circ h]\) is the trivial class. So \(e_* : \pi_k(V) \to \pi_k(BG^{top})\) is an isomorphism. It follows that \(e_*\) is an isomorphism of all homotopy groups.

Finally, we show naturality. Let \([i : U, U' \to V, V']\) denote the map induced by the inclusion \(i : U, U' \to V, V'\). Since \(E = (i^{U,U'})^* E'\), (an actual equality), we have that

\[|E| \simeq |i^{U,U'}|^* |E'|\]

and so

\[|E| \simeq |i^{U,U'}|^* \circ (e^{U'})^* EG^{top},\]

by (8.9), from which the conclusion immediately follows.

\[\square\]

9. The universal Chern-Weil homomorphism

Let \(G\) be a Frechet Lie group and \(g\) its lie algebra. Pick any simplicial \(G\)-connection \(D\) on \(EG^U \to BG^U\). Then given any \(Ad\) invariant symmetric multilinear functional:

\[\rho : \prod_{i=1}^{i=k} g \to \mathbb{R},\]

applying the theory of Section 7 we obtain the simplicial Chern-Weil differential 2k-form \(\omega^\rho,D\) on \(BG^U\). And we obtain an associated cohomology class \(c^\rho,U \in H^{2k}(BG^U, \mathbb{R})\). We thus first arrive at an abstract form of the universal Chern-Weil homomorphism.

Proposition 9.1. Let \(G\) be a Frechet Lie group and \(\mathcal{U}\) a \(G\)-admissible Grothendieck universe. There is an algebra homomorphism:

\[\mathbb{R}[g]^G \to H^\ast(BG^\mathcal{U}, \mathbb{R}),\]

sending \(\rho\) as above to \(c^\rho,\mathcal{U}\) and satisfying the following. Let \(G \to Z \to Y\) be a \(\mathcal{U}\)-small smooth principal \(G\)-bundle. Let \(c^\rho(Z_) \in H^{2k}(Y_, \mathbb{R})\) denote the Chern-Weil class corresponding to \(\rho\). Then

\[f^*_Z \circ c^\rho,\mathcal{U} = c^\rho(Z_),\]

where \(f_Z : Y \to BG^\mathcal{U}\) is the classifying map of \(Z_\).

Proof. This follows immediately by Lemma 7.2. \(\square\)

Suppose now that \(G\) has the homotopy type of CW complex. Let \(e^\mathcal{U}\) be as in Theorem 8.7. We define the associated cohomology class

\[c^\rho := e^\mathcal{U}(|c^\rho,\mathcal{U}|) \in H^{2k}(BG^{top}, \mathbb{R}),\]

where the \(G\)-admissible universe \(\mathcal{U}\) is chosen arbitrarily, where the pushforward means pull-back by the homotopy inverse, and where \(|c^\rho,\mathcal{U}| \in H^{2k}(|BG^\mathcal{U}|, \mathbb{R})\) is as in Notation 4.6.

Lemma 9.2. The cohomology class \(c^\rho\) is well-defined.
Proof. Given another choice of a G-admissible universe U', let $U'' \ni \{U, U'\}$ be a common universe enlargement. By Lemma 7.2 and Lemma 4.7

$$|i^{UU''}*(|c^{|U''}|)| = |c^{|U'}|.$$

Since $|i^{UU''}|$ is a homotopy equivalence we conclude that

$$|i^{UU''}*(|c^{|U'}|)| = |c^{|U''}|,$$

where $|i^{UU''}|_*$ denotes the pull-back by the homotopy inverse. Consequently, by the naturality part of Theorem 8.7 and the equation above, we have

$$e_*^{U'}(|c^{|U'}|) = e_*^{U''} \circ |i^{UU''}*(|c^{|U'}|)| = e_*^{U''}(|c^{|U''}|).$$

In the same way we have:

$$e_*^{U'}(|c^{|U'}|) = e_*^{U''}(|c^{|U''}|).$$

So

$$e_*^{U'}(|c^{|U'}|) = e_*^{U''}(|c^{|U''}|),$$

and so we are done.

\qed

We call $c^\rho \in H^{2k}(BG^{top}, \mathbb{R})$ the universal Chern-Weil characteristic class associated to ρ.

Let $\mathbb{R}[g]^G$ denote the algebra of polynomial functions on g. And let $\mathbb{R}[g]^G$ denote the subalgebra of fixed points by the adjoint G action. By classical algebra, degree k homogeneous elements of $\mathbb{R}[g]^G$ are in correspondence with symmetric G-invariant multilinear functionals $\Pi_{k=1}^G g \to \mathbb{R}$. Then to summarize we have the following theorem purely about the classical classifying space BG^{top}, reformulating Theorem 1.1 of the introduction:

Theorem 9.3. Let G be a Frechet Lie group having the homotopy type of CW complex. There is an algebra homomorphism:

$$\mathbb{R}[g]^G \to H^*(BG^{top}, \mathbb{R}),$$

sending ρ as above to c^ρ as above and satisfying the following. Let $G \to Z \to Y$ be a smooth principal G-bundle. Let $c^\rho(Z) \in H^{2k}(Y)$ denote the classical Chern-Weil class associated to ρ. Then

$$f_Z^*c^\rho = c^\rho(Z),$$

where $f_Z : Y \to BG^{top}$ is the classifying map of the underlying topological G-bundle.

Proof. Let $U_0 \ni Z$ be a G-admissible Grothendieck universe. By Proposition 9.1

$$c^\rho(Z_\bullet) = f_{Z_\bullet}^*(c^\rho(U_0)).$$

And by Proposition 7.3, $|c^\rho(Z_\bullet)| = c^\rho(Z)$. So we have

$$c^\rho(Z) = |c^\rho(Z_\bullet)|$$

$$= |f_{Z_\bullet}^*(c^\rho(U_0))|$$

$$= N^* \circ |f_{Z_\bullet}|^* (|c^\rho(U_0)|)$$

by Lemma 4.7

$$= N^* \circ |f_{Z_\bullet}|^* (c^\rho)^*$$

by definition of c^ρ.

Now $c^\rho(U_0) \circ N$ is homotopic to f_Z as by construction $c^\rho \circ |f_{Z_\bullet}| \circ N$ classifies the topological G-bundle Z. So that

$$c^\rho(Z) = f_Z^*c^\rho,$$
and we are done. □

In other words we have constructed the universal Chern-Weil homomorphism for Frechet Lie groups with homotopy type of CW complexes. Another, related approach to the universal Chern-Weil homomorphism is contained in the book of Dupont [4]. Dupont only states the theorem above for classical manifold Lie groups. Like us Dupont makes heavy use of simplicial techniques, for example the simplicial DeRham complex. However, the main thrust of his argument appears to be rather different, essentially arguing that all the necessary differential geometry can be indirectly carried out on the Milnor classifying bundle \(E_G \to B_G \), without endowing it with extra structure, beyond the tautological structures inherent in the Milnor construction. On the other hand we need the extra structure of a smooth simplicial set, and so work with the smooth Kan complexes \(B^G \) to do our differential geometry, and then transfer the cohomological data to \(B_G \) using technical ideas like [16]. So we have a more conceptually involved space, with a certain “smooth structure”, but our differential geometry is rendered trivial, and in Dupont’s case the space is the “ordinary” \(B_G \), but the differential geometry is more involved.

10. Universal Chern-Weil theory for the group of symplectomorphisms

Let \((M, \omega)\) be a possibly non-compact symplectic manifold of dimension \(2n\), so that \(\omega\) is a closed non-degenerate 2-form on \(M\). Let \(\mathcal{H} = \text{Ham}(M, \omega)\) denote the group of its compactly supported Hamiltonian symplectomorphisms, and \(h\) its Lie algebra. When \(M\) is simply connected this is just the group \(\text{Symp}(M, \omega)\) of diffeomorphisms \(\phi: M \to M\) s.t. \(\phi^*\omega = \omega\).

For example, take \(M = \mathbb{C}P^{n-1}\) with its Fubini-Study symplectic 2-form \(\omega_{st}\). Then the natural action of \(\text{PU}(n)\) on \(\mathbb{C}P^{n-1}\) is by Hamiltonian symplectomorphisms.

In [18] Reznikov constructs polynomials

\[
\{r_k\}_{k \geq 1} \subset \mathbb{R}[h]^g,
\]

each \(r_k\) homogeneous of degree \(k\). These polynomials come from the \(k\)-multilinear functionals: \(h^{\otimes k} \to \mathbb{R}\),

\[
(H_1, \ldots, H_k) \mapsto \int_M H_1 \cdots H_k \omega^n,
\]

upon identifying:

\[
h = \begin{cases}
C_0^\infty(M), & \text{if } M \text{ is compact} \\
C_c^\infty(M), & \text{if } M \text{ is non-compact}
\end{cases}
\]

where \(C_0^\infty(M)\) denotes the set of smooth functions \(H\) satisfying \(\int_M H \omega^n = 0\). And \(C_c^\infty(M)\) denotes the set of smooth, compactly supported functions. In the case \(k = 1\), the associated class vanishes whenever \(M\) is compact.

The group \(\mathcal{H}\) is a Frechet Lie group having the homotopy type of CW complex by Milnor [15]. In particular, Theorem 9.3 implies the Corollary 1.3 of the introduction, and in particular we get induced Reznikov cohomology classes

\[
c^r_k \in H^{2k}(B\mathcal{H}, \mathbb{R}).
\]
As mentioned, the group $PU(n)$ naturally acts on \mathbb{CP}^{n-1} by Hamiltonian symplectomorphisms. So we have an induced map

$$i : BPU(n) \to BHam(\mathbb{CP}^{n-1}, \omega_0).$$

Then as one application we prove Theorem 1.6 of the introduction, reformulated as follows:

Theorem 10.1. [Originally Kedra-McDuff [9]]

$$i^* : H^k(BHam(\mathbb{CP}^{n-1}, \omega_0), \mathbb{R}) \to H^k(BPU(n), \mathbb{R})$$

is surjective for all $n \geq 2$, $k \geq 0$ and so

$$i_* : H_k(BPU(n), \mathbb{R}) \to H_k(BHam(\mathbb{CP}^{n-1}, \omega_0), \mathbb{R}),$$

is injective for all $n \geq 2$, $k \geq 0$.

Proof. Let \mathfrak{g} denote the Lie algebra of $PU(n)$, and \mathfrak{h} the Lie algebra of $Ham(\mathbb{CP}^{n-1}, \omega_0)$. Let $j : \mathfrak{g} \to \mathfrak{h}$ denote the natural Lie algebra map induced by the homomorphism $PU(n) \to Ham(\mathbb{CP}^{n-1}, \omega_0)$. Reznikov [18] shows that $\{j^* r_k\}_{k > 1}$ are the Chern polynomials. In other words, the classes

$$c^j r_k \in H^{2k}(BPU(n), \mathbb{R}),$$

are the Chern classes $\{c_k\}_{k > 1}$, which generate real cohomology of $BPU(n)$, as is well known. But $c^j r_k = i^* c^r_k$, for c^r_k as in (10.1), and so the result immediately follows. \hfill \Box

In Kedra-McDuff [9] a proof of the above is given via homotopical techniques. Theirs is a difficult argument, but their technique, as they show, is also partially applicable to study certain generalized, homotopical analogues of the group \mathcal{H}. Our argument is elementary, but does not obviously have homotopical ramifications as in [9].

In Savelyev-Shelukhin [21] there are a number of results about induced maps in (twisted) K-theory. These further suggest that the map i above should be a monomorphism in the homotopy category. For a start we may ask:

Question 10.2. Is the map i above an injection on integral homology?

For this one may need more advanced techniques like [20].

10.1. Beyond \mathbb{CP}^n. Theorem 10.1 extends to completely general compact semisimple Lie groups G, with \mathbb{CP}^n replaced by co-adjoint orbits M of G. We just need to compute the pullbacks to \mathfrak{g} of the associated Reznikov polynomials in $\mathbb{R}[\mathfrak{h}]^G$. We can no longer expect injection in general. But the failure to be injective should be solely due to effects of classical representation theory, rather than transcendental effects of extending the structure group to $Ham(M, \omega)$, from a compact Lie group.

11. Universal coupling class for Hamiltonian fibrations

Although we use here some language of symplectic geometry no special expertise should be necessary. As the construction here is basically just a partial reformulation of our constructions in the case of $G = Ham(M, \omega)$, we will not give exhaustive details.

Let (M, ω) and \mathcal{H} be as in the previous section, and let $2n$ be the dimension of M.
Definition 11.1. A Hamiltonian M-fibration is a smooth fiber bundle $M \rightarrow P \rightarrow X$, with structure group \mathcal{H}.

Each \mathcal{H}-connection A on such P uniquely induces a coupling 2-form on P, as originally appearing in [7]. Specifically, this is a closed 2-form C_A on P whose restriction to fibers coincides with ω and which has the following property. Let $\omega_A \in \Omega^2(X)$ denote the 2-form: for $v, w \in T_xX$,

$$\omega_A(v, w) = n \int_{P_x} R_A(v, w) \omega^n_x.$$

Where R_A as before is the curvature 2-form of A, so that

$$R_A(v, w) \in \text{lie Ham}(M_x, \omega_x) = \begin{cases} C_0^\infty(P_x), & \text{if } M \text{ is compact} \\ C_c^\infty(P_x), & \text{if } M \text{ is non-compact}. \end{cases}$$

Note of course that $\omega_A = 0$ when M is compact. The characterizing property of C_A is then:

$$\int_M C_A^{n+1} = \omega_A,$$

where the left-hand side is integration along the fiber. 4

It can then be shown that the cohomology class $\iota(P)$ of C_A is uniquely determined by P up to \mathcal{H}-bundle isomorphism. This is called the coupling class of P, and it has important applications in symplectic geometry. See for instance [13] for more details and some applications.

By replacing the category \mathcal{G} with other fiber bundle categories we may define other kinds of simplicial fibrations over a smooth simplicial set. For example, we may replace \mathcal{G} by the category of smooth Hamiltonian M-fibrations, keeping the other axioms in the Definition 5.4 intact. This then gives us the notion of a Hamiltonian simplicial M-bundle over a smooth simplicial set.

Let U be a \mathcal{H}-admissible Grothendieck universe. Fix a (simplicial) \mathcal{H}-connection A on the universal \mathcal{H}-bundle $EH^U \rightarrow B\mathcal{H}^U$. Let $M^{\mathcal{U},\mathcal{H}}$ denote the Hamiltonian simplicial M-fibration, naturally associated to $EH^U \rightarrow B\mathcal{H}^U$. So that for each k-simplex $\Sigma \in B\mathcal{H}^U$ we have a Hamiltonian M-fibration $M_{\Sigma, \mathcal{H}} \rightarrow \Delta^k$, which is just the associated M-bundle to the principal \mathcal{H}-bundle $EH_{\Sigma, \mathcal{H}}^U$.

By the discussion above for each k-simplex $\Sigma \in B\mathcal{H}^U$ we have the associated coupling 2-form $C_{A, \Sigma}$ on $M_{\Sigma, \mathcal{H}}$. The collection of these 2-forms then readily induces a cohomology class $\tilde{\iota}^U$ on the geometric realization:

$$|M^{\mathcal{U},\mathcal{H}}| = \text{colim}_{\Sigma \in B\mathcal{H}^U} M_{\Sigma, \mathcal{H}}^{\mathcal{U},\mathcal{H}}.$$

Now by the proof of Theorem 8.7 we have an \mathcal{H}-structure, M-bundle map over the homotopy equivalence $\tilde{\iota}^U$:

$$g^U : |M^{\mathcal{U},\mathcal{H}}| \rightarrow M^{\mathcal{H}},$$

where $M^{\mathcal{H}}$ denotes the universal Hamiltonian M-fibration over $B\mathcal{H}$. And these g^U are natural, so that if $\mathcal{U} \supset \mathcal{U}'$ then

$$\begin{align*}
[|g^U'| \circ [\tilde{\iota}^{\mathcal{U}',\mathcal{H}}| &= [g^U],
\end{align*}$$

where $[\tilde{\iota}^{\mathcal{U},\mathcal{H}}| : |M^{\mathcal{U},\mathcal{H}}| \rightarrow |M^{\mathcal{U}',\mathcal{H}}|$ is the natural M-bundle map over $\tilde{\iota}^{\mathcal{U},\mathcal{H}}$ (as in Theorem 8.7), and where $[\cdot]$ denotes the homotopy class.

4C_A is not generally compactly supported but C_A^{n+1} is, which is a consequence of taking \mathcal{H} to be compactly supported Hamiltonian symplectomorphisms.
Each g^U is a homotopy equivalence, so we may set $c := g^U_* (c^U) \in H^2 (M^R)$.

Lemma 11.2. The class c is well-defined, (independent of the choice U).

The proof is analogous to the proof of Lemma 9.2. Given this definition of the universal coupling class c, the proof of Theorem 1.5 is analogous to the proof of Theorem 9.3.

References

[1] R. BOTT, *On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups*, Adv. Math., 11 (1973), pp. 289–303.
[2] K.-T. CHEN, *Iterated path integrals*, Bull. Am. Math. Soc., 83 (1977), pp. 831–879.
[3] J. D. CHRISTENSEN and E. WU, *Smooth classifying spaces*, Isr. J. Math., 241 (2021), pp. 911–954.
[4] J. L. DUPONT, *Curvature and characteristic classes*, vol. 640, Springer, Cham, 1978.
[5] D. FIORENZA, U. SCHREIBER, and J. STASHEFF, *Čech cocycles for differential characteristic classes: an ∞-Lie theoretic construction*, Adv. Theor. Math. Phys., 16 (2012), pp. 149–250.
[6] D. S. FREED and M. J. HOPKINS, *Chern-Weil forms and abstract homotopy theory*, Bull. Am. Math. Soc., New Ser., 50 (2013), pp. 431–468.
[7] V. GULLEMIN, E. LERMAN, and S. STERNBERG, *Symplectic fibrations and multiplicity diagrams*, Cambridge University Press, Cambridge, 1996.
[8] A. T. HATCHER, *Algebraic topology*, Cambridge: Cambridge University Press, 2002.
[9] J. KEDRA and D. MCDUFF, *Homotopy properties of Hamiltonian group actions*, Geom. Topol., 9 (2005), pp. 121–162.
[10] H. LEE TANAKA and Y.-G. OH, *Smooth constructions of homotopy-coherent actions*, To appear in Algebraic and Geometric Topology, arXiv:2003.06033.
[11] J. LURIE, *Higher topos theory*, Annals of Mathematics Studies 170. Princeton, NJ: Princeton University Press, 2009.
[12] J.-P. MAGNOT and J. WATTS, *The diffeology of Milnor’s classifying space*, Topology Appl., 232 (2017), pp. 189–213.
[13] D. MCDUFF and D. SALMON, *Introduction to symplectic topology*, Oxford Math. Monographs, The Clarendon Oxford University Press, New York, second ed., 1998.
[14] J. W. MILNOR, *Construction of universal bundles. II.*, Ann. Math. (2), 63 (1956), pp. 430–436.
[15] __________, *On spaces having the homotopy of a CW-complex*, Trans. Am. Math. Soc., 90 (1959), pp. 272–280.
[16] C. MÜLLER and C. WOCKEL, *Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group*, Adv. Geom., 9 (2009), pp. 605–626.
[17] A. PRESSLEY and G. SEGAL, *Loop groups*, Oxford Mathematical Monographs, (1986).
[18] A. G. REZNIKOV, *Characteristic classes in symplectic topology*, Selecta Math. (N.S.), 3 (1997), pp. 601–642. Appendix D by L. Katzarkov.
[19] M. E. RUDIN, *A new proof that metric spaces are paracompact*, Proc. Am. Math. Soc., 20 (1969), p. 603.
[20] Y. SAVELYEV, *Global Fukaya category I*, (in revision) IMRN, arXiv:1307.3991, http://yashamon.github.io/web2/papers/FukayaI.pdf.
[21] Y. SAVELYEV and E. SHELUKHIN, *K-theoretic invariants of Hamiltonian fibrations*, J. Symplectic Geom., 18 (2020), pp. 251–289.
[22] J. M. SOURIAU, *Groupes différentiels*, Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.
[23] D. SULLIVAN, *Infiniteesimal computations in topology*, Publ. Math., Inst. Hautes Étud. Sci, (1977).

University of Colima, CUICBAS, Bernal Díaz del Castillo 340, Col. Villas San Sebastián, 28045 Colima Colima, Mexico

Email address: yasha.savelyev@gmail.com