A SHARP LOWER BOUND ON THE POLYGONAL ISOPERIMETRIC DEFICIT

E. INDREI †

ABSTRACT. A sharp quantitative polygonal isoperimetric inequality is obtained.

1. INTRODUCTION

The polygonal isoperimetric inequality states that if \(n \geq 3 \) and \(P \) is an \(n \)-gon with area \(|P| \) and perimeter \(L(P) \), then the deficit is nonnegative,

\[
\delta(P) := L^2(P) - 4n \tan \frac{\pi}{n} |P| \geq 0,
\]

and uniquely minimized when \(P \) is convex and regular. A full stability result for this classical inequality has recently been obtained in [IN14] via a novel approach involving a functional minimization problem on a compact manifold and the spectral theory for circulant matrices. The heart of the matter is a quantitative polygonal isoperimetric inequality for convex polygons which states that

\[
\sigma_s^2(P) + \sigma_r^2(P) \lesssim \delta(P),
\]

where \(\sigma_s^2(P) \) is the variance of the side lengths of \(P \) and \(\sigma_r^2(P) \) is the variance of its radii (i.e. the distances between the vertices and their barycenter).

The starting point of the proof is the following inequality [FRS85, pg. 35] which holds for any \(n \)-gon:

\[
8n^2 \sin^2 \frac{\pi}{n} \sigma_r^2(P) \leq nS(P) - 4n \tan \frac{\pi}{n} |P|,
\]

where \(S(P) \) is the sum of the squares of the side lengths of \(P \). Since \(n^2 \sigma_s^2(P) = nS(P) - L^2(P) \), it follows that (1.2) is equivalent to

\[
8n^2 \sin^2 \frac{\pi}{n} \sigma_r^2(P) \leq \delta(P) + n^2 \sigma_s^2(P).
\]

In order to establish (1.1), it is shown in [IN14] that

\[
\sigma_s^2(P) \lesssim \delta(P)
\]

whenever \(P \) is a convex \(n \)-gon; thereafter, a general stability result is deduced via a version of the Erdős-Nagy theorem which states that a polygon may be convexified in a finite number of “flips” while keeping the perimeter invariant. The method of

† PIRE Postdoctoral fellow.
proof of \((1.2)\) given in \[FRS85\] is based on a polygonal Fourier decomposition, whereas
the technique in \[IN14\] is based on a third order Taylor expansion of the deficit (in
a suitable sense) and as mentioned above involves circulant matrix theory and an
optimization problem on a compact manifold. It is natural to wonder whether one can
directly deduce \((1.1)\) via the method in \[IN14\] without relying on \[FRS85\]. A positive
answer is given in this paper. In fact, a new inequality is established which combined
with \((1.4)\) improves \((1.1)\).

Let \(\sigma^2_a(P)\) denote the variance of the central angles of \(P\) (i.e. the angles generated
by the vertices and barycenter of the vertices of \(P\), see \[2\]). Then the following is true.

Theorem 1.1. Let \(n \geq 3\) and \(P\) be a convex \(n\)-gon. There exists \(c_n > 0\) such that
\[
c_n \delta(P) \geq \sigma^2_a(P) + |P|\sigma^2_a(P),
\]
and the exponent on the deficit is sharp.

This result directly combines with \((1.4)\) and yields:

Corollary 1.2. Let \(n \geq 3\) and \(P\) be a convex \(n\)-gon. There exists \(c_n > 0\) such that
\[
c_n \delta(P) \geq \sigma^2_a(P) + \sigma^2_r(P) + |P|\sigma^2_a(P).
\]

Remark 1.3. The theorem holds for a more general class of polygons. The only re-
quirement in the proof is that the central angles of \(P\) sum to \(2\pi\).

Remark 1.4. An inequality of the form
\[\sigma^2_a(P) \leq c_n \delta(P)\]
cannot hold in general. One can see this by a simple scaling consideration: let \(P\) be a
convex polygon and \(P_\alpha\) be the convex polygon obtained by dilating the radii of \(P\) by
\(\alpha > 0\). Then \(\delta(P_\alpha) = \alpha^2 \delta(P)\), but \(\sigma^2_a(P_\alpha) = \sigma^2_a(P)\).

Quantitative polygonal isoperimetric inequalities turn out to be useful tools in geo-
metric problems. For instance \((1.1)\) was recently utilized in \[CM14\] to improve a result
of Hales which showed up in his proof of the honeycomb conjecture \[Hal01\]. More-
over, \[IN14\] has also been employed in \[CN14\] to prove a quantitative version of a
Faber-Krahn inequality for the Cheeger constant of \(n\)-gons obtained in \[BFar\]. Related
stability results for the isotropic, anisotropic, and relative isoperimetric inequalities
have been obtained in \[FMP08, FMP10, FI13\], respectively.

Acknowledgements

The author is pleased to acknowledge support from NSF Grants OISE-0967140 (PIRE),
DMS-0405343, and DMS-0635983 administered by the Center for Nonlinear Analysis
at Carnegie Mellon University. Moreover, the excellent research environment provided
by the Hausdorff Research Institute for Mathematics and the Rheinische Friedrich-
Wilhelms-Universität Bonn is kindly acknowledged.
2. Preliminaries

Let \(n \geq 3 \) and \(P \subset \mathbb{R}^2 \) be an \(n \)-gon with vertices \(\{A_1, A_2, \ldots, A_n\} \subset \mathbb{R}^2 \) and center of mass \(O \) which is taken to be the origin. For \(i \in \{1, 2, \ldots, n\} \), the \(i \)-th side length of \(P \) is \(l_i := A_iA_{i+1} \), where \(A_i = A_j \) if and only if \(i = j \) (mod \(n \)); \(\{r_i := OA_i\}_{i=1}^n \) is the set of radii. Furthermore, \(x_i \) denotes the angle between \(\overrightarrow{OA_i} \) and \(\overrightarrow{OA_{i+1}} \).

The circulant matrix method introduced in [IN14] is based on the idea that a large class of polygons can be viewed as points in \(\mathbb{R}^{2n} \) satisfying some constraints. More precisely, consider

\[
M := \left\{ (x; r) \in \mathbb{R}^{2n} : x_i, r_i \geq 0, \ (2.1), \ (2.2), \ (2.3) \ right\} ,
\]

where

\[
(2.1) \quad \sum_{i=1}^{n} x_i = 2\pi,
\]

\[
(2.2) \quad \sum_{i=1}^{n} r_i = n.
\]

\[
(2.3) \quad \begin{cases}
\sum_{i=1}^{n} r_i \cos \left(\sum_{k=1}^{i-1} x_k \right) = 0, \\
\sum_{i=1}^{n} r_i \sin \left(\sum_{k=1}^{i-1} x_k \right) = 0.
\end{cases}
\]

Note that \(M \) is a compact \(2n - 4 \) dimensional manifold and each point \((x; r) \in \mathcal{M} \) represents a polygon centered at the origin with central angles \(x \) and radii \(r \); therefore, it is appropriate to name such objects \textit{polygonal manifolds}. Indeed, a point \(O \) is the barycenter if and only if

\[
\sum_{i=1}^{n} \overrightarrow{OA_i} = 0,
\]

which is equivalent to saying that the projections of \(\sum_{i=1}^{n} \overrightarrow{OA_i} \) onto \(\overrightarrow{OA_1} \) and \(\overrightarrow{OA_1} \perp \) vanish; in other words, \((x; r) \) satisfies \((2.3) \). Furthermore, \((2.1) \) is satisfied by all convex polygons (also many nonconvex ones) and \((2.2) \) is a convenient technical assumption which derives from scaling considerations. Note that the convex regular \(n \)-gon corresponds to the point \((x_\ast; r_\ast) = \left(\frac{2\pi}{n}, \ldots, \frac{2\pi}{n}; 1, \ldots, 1 \right) \). With this in mind, the variance of the interior angles and radii of \(P \) are represented, respectively, by the quantities

\[
\sigma_a^2(P) = \sigma_a^2(x; r) := \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2 ,
\]
\[\sigma^2(P) = \sigma^2_P(x; r) := \frac{1}{n} \sum_{i=1}^{n} r_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} r_i \right)^2. \]

Moreover, in \((x; r)\) coordinates, the deficit is given by the formula

\[\delta(P) = \delta(x; r) := \left(\sum_{i=1}^{n} \left(r_{i+1}^2 + r_i^2 - 2r_{i+1}r_i \cos x_i \right)^{1/2} \right)^2 - 2n \tan \frac{\pi}{n} \sum_{i=1}^{n} r_i r_{i+1} \sin x_i. \]

3. Proof of Theorem 1.1

By a simple reduction argument, it suffices to prove the inequality on \(M\): let \(P\) be a convex \(n\)-gon and note that it is represented by \((x; r) \in \mathbb{R}^{2n}\), where \(x \in \mathbb{R}^n\) denotes its interior angles and \(r \in \mathbb{R}^n\) its radii. Convexity implies (2.1), and (2.3) follows from the definition of barycenter. If \(\sum_{i=1}^{n} r_i = s \neq n\), consider (by a slight abuse of notation) the polygon \(P_s = (x; s r)\) obtained by scaling the radii of \(P\). Evidently \(\sigma^2(P_s) = \sigma^2_s(P), |P_s| = (n/s)^2 |P|, \sigma^2_P(P) = (n/s)^2 \sigma^2_s(P), \delta(P_s) = (n/s)^2 \delta(P)\). Hence if the inequality stated in the theorem holds for \(P_s \in M\), then it also holds for \(P\). Now let

\[\phi(x; r) := n^2(|P| \sigma^2_a + \sigma^2_r) \]

\[= \frac{1}{2} \left(\sum_{i=1}^{n} r_i r_{i+1} \sin x_i \right) \left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2 \right) + n \sum_{i=1}^{n} r_i^2 - \left(\sum_{i=1}^{n} r_i \right)^2, \]

and note that it suffices to show

(3.1) \[\phi(x; r) \leq c \delta(x; r) \]

for all \((x; r) \in M\). The polygonal isoperimetric inequality implies \(\delta(x; r) \geq 0\) for every \((x; r) \in M\) with \(\delta(x; r) = 0\) if and only if \((x; r) = z_* := (x_*; r_*)\). Since \(M\) is compact and \(\delta\) is continuous it follows that

\[\inf_{M \setminus B_\delta(z_*)} \delta > 0, \]

and so (3.1) follows easily on \(M \setminus B_\delta(z_*)\). Thus it suffices to prove (3.1) for some neighborhood \(B_\delta\) of the point \(z_*\). Direct calculations imply (recall that the notation is periodic mod \(n\))

(3.2) \[D\phi(z_*) := (D_x \phi(z_*), D_r \phi(z_*)) = 0, \]

\[D_{x_k} \phi(z_*) = \begin{cases} n(n - 1) \sin \frac{2\pi}{n}, & k = l, \\ -n \sin \frac{2\pi}{n}, & k \neq l, \end{cases} \]
\[D_{r_k r_l} \phi(z_*) = \begin{cases} 2(n-1), & k = l, \\ -2, & k \neq l, \end{cases} \]

and \(D_{r_k x_l} \phi(z_*) = 0 \). Thus by letting \(\Phi := D^2 \phi(z_*) \) it follows that

\[\Phi = \left(\begin{array}{cc} n \sin \frac{2\pi}{n} C & 0_{n \times n} \\ 0_{n \times n} & 2C \end{array} \right), \]

where \(0_{n \times n} \) is the \(n \times n \) zero matrix and

\[C = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & -1 & \cdots \\ \vdots & -1 & n-1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}_{n \times n}. \]

Moreover, \(D\delta(z_*) \) is given by

\[
\begin{aligned}
D_{x_k} \delta(z_*) &= 2n \tan \frac{\pi}{n}, \\
D_{r_k} \delta(z_*) &= 0;
\end{aligned}
\]

hence, \((2.1)\) implies

\[
\left\langle D\delta(z_*), (x-x_*; r-r_*) \right\rangle = \left\langle D_x \delta(z_*), x-x_* \right\rangle + \left\langle D_r \delta(z_*), r-r_* \right\rangle
= 2n \tan \frac{\pi}{n} \sum_{i=1}^{n} (x_i - (x_*)_i) = 0.
\]

(3.3)

Since \(\phi(z_*) = \delta(z_*) = 0 \), by utilizing \((3.2)\) and \((3.3)\) and performing a third order Taylor expansion it follows that for \(z \) close enough to \(z_* \),

\[
\left| \phi(z) - \frac{1}{2} \langle D^2 \phi(z_*)(z-z_*), (z-z_*) \rangle \right| \leq C |z-z_*|^3,
\]

(3.4)

and

\[
\left| \delta(z) - \frac{1}{2} \langle D^2 \delta(z_*)(z-z_*), (z-z_*) \rangle \right| \leq C |z-z_*|^3,
\]

(3.5)

where \(C > 0 \). In particular, there exists \(\eta = \eta(n) \) such that

\[
\phi(z) \leq \frac{1}{2} \| \Phi \|_2 |z-z_*|^2 + C |z-z_*|^3
\]

(3.6)
for all \(z \in B_n(z_*) \). By the results of [14], see (iv) in §3, it follows that
\[
\inf_{w \in S_H} \langle D^2 \delta(z_*) w, w \rangle =: \sigma > 0 \tag{1}
\]
where \(H \) is the tangent space of \(M \) at \(z_* \) and \(S_H \) is the unit sphere in \(H \) with center \(z_* \). Moreover, by continuity there exists a neighborhood \(U \subset \mathbb{R}^{2n} \) of \(S_H \) such that
\[
\langle D^2 \delta(z_*) w, w \rangle \geq \frac{\sigma}{2},
\]
for all \(w \in U \). Note that \(\frac{z - z_*}{|z - z_*|} \in U \) for \(z \in M \) sufficiently close to \(z_* \). Hence, there exists \(\mu = \mu(\eta, \sigma) \in (0, \eta] \) such that
\[
\langle D^2 \delta(z_*) (z - z_*), (z - z_*) \rangle \geq \frac{\sigma}{2} |z - z_*|^2
\]
for \(z \in B_\mu(z_*) \). In particular, for \(\tilde{\mu} := \min\{\mu, \frac{\sigma}{8C}\} \) and \(z \in B_{\tilde{\mu}}(z_*) \),
\[
\delta(z) \geq \frac{1}{4} \langle D^2 \delta(z_*) (z - z_*), (z - z_*) \rangle;
\]
thus, recalling (3.6),
\[
\phi(z) \leq \left(\frac{1}{\sigma} \|\Phi\|_2 + \frac{2C}{\sigma} |z - z_*| \right) \langle D^2 \delta(z_*) (z - z_*), (z - z_*) \rangle \leq c_n \delta(z),
\]
where \(c_n := \frac{4}{\sigma} \|\Phi\|_2 + \frac{8C}{\sigma} \tilde{\mu} \). To achieve the second part of the theorem, it suffices to prove the existence of \(c > 0 \) such that
\[
\langle \Phi(x; r), (x; r) \rangle \geq c |(x; r)|^2,
\]
for
\[
(x; r) \in \mathcal{Z} := \left\{ (x; r) : \sum_{i=1}^n x_i = 0, \sum_{i=1}^n r_i = 0 \right\}.
\]
Indeed, if (3.7) holds, let \(\omega : [0, \infty] \to [0, \infty] \) be any modulus of continuity (i.e. \(\omega(0^+) = 0 \)) such that
\[
\phi(z) \leq c_n \omega(\delta(z)).
\]
Then for \(z \in M \) close to \(z_* \), (3.5) implies
\[
\delta(z) \leq c_0 |z - z_*|^2,
\]
for some \(c_0 > 0 \). Moreover, \(z - z_* \in \mathcal{Z} \) since \(z \in M \), and by combining (3.4) with (3.7) it follows that
\[
\delta(z) \leq c_0 |z - z_*|^2 \leq c_1 \langle \Phi(z - z_*), (z - z_*) \rangle \leq c_2 \phi(z) \leq \tilde{c} \omega(\delta(z)),
\]
In fact, something stronger is proved: namely that \(\inf_{w \in S_H} \langle D^2 f(z_*) w, w \rangle =: \sigma > 0 \) where \(f \) is an explicit function for which \(D^2 f \leq D^2 \delta \). This is achieved via the spectral theory for circulant matrices and an analysis involving the tangent space of \(M \) at \(z_* \) and the identification of a suitable coordinate system in which calculations can be performed efficiently. The barycentric condition (2.3) built into the definition of \(M \) comes up in this analysis.
for some $\tilde{c} > 0$ provided z is close to z^*; however, since $\delta(z) \to 0$ as $z \to z^*$ and $\delta(z) > 0$ for $z \neq z^*$, (3.8) leads to a contradiction if

$$\liminf_{t \to 0^+} \frac{\omega(t)}{t} = 0.$$

Thus the lim inf is strictly greater than zero and this implies ω is at most linear at zero. To verify (3.7), note first that C is a real, symmetric, circulant matrix generated by the vector $(n - 1, -1, \ldots, -1)$. A calculation shows that the eigenvalues of C, say λ_k, are given by

(3.9) \quad \lambda_0 = 0 \quad \text{and} \quad \lambda_k = n \quad \text{for} \quad k = 1, \ldots, n - 1.

Moreover, let $v_0 := (1, \ldots, 1)$, and for $l \in \{1, \ldots, \lfloor \frac{n}{2} \rfloor \}$ define

$$v_{2l-1} := \left(1, \cos \frac{2\pi l}{n}, \cos \frac{4\pi l}{n}, \ldots, \cos \frac{2\pi l(n-1)}{n}\right),$$

$$v_{2l} := \left(0, \sin \frac{2\pi l}{n}, \sin \frac{4\pi l}{n}, \ldots, \sin \frac{2\pi l(n-1)}{n}\right).$$

One can readily check that v_k is an eigenvector of C corresponding to the eigenvalue $\lambda_{\lfloor \frac{k}{2} \rfloor}$, and that the set $\{v_0, v_1, \ldots, v_{n-1}\}$ forms a real orthogonal basis of \mathbb{R}^n (see e.g. Proposition 2.1 in [IN14]). For $k = 1, 2, \ldots, n$, define $b_k := (v_{k-1}; 0, \ldots, 0) \in \mathbb{R}^{2n}$ and $b_k := (0, \ldots, 0; v_{k-n-1}) \in \mathbb{R}^{2n}$ for $k = n + 1, \ldots, 2n$. Since the set $\{b_k\}_{k=1}^{2n}$ forms a real orthogonal basis of \mathbb{R}^{2n}, given $(x; r) \in \mathbb{R}^{2n}$ there exist unique coefficients $\alpha_k \in \mathbb{R}$ such that

$$(x; r) = \sum_{k=1}^{2n} \alpha_k b_k.$$

Thus, by utilizing (3.9) it follows that

$$\langle \Phi(x; r), (x; r) \rangle = \sum_{k,k'=1}^{2n} \alpha_k \alpha_{k'} \langle \Phi b_k, b_{k'} \rangle$$

$$= n \sin \frac{2\pi}{n} \sum_{k=1}^{n} \alpha_k^2 \lambda_{\lfloor \frac{k}{2} \rfloor} |b_k|^2 + 2 \sum_{k=n+1}^{2n} \alpha_k^2 \lambda_{\lfloor \frac{k-n-1}{2} \rfloor} |b_k|^2$$

$$= n^2 \sin \frac{2\pi}{n} \sum_{k=2}^{n} \alpha_k^2 |b_k|^2 + 2n \sum_{k=n+2}^{2n} \alpha_k^2 |b_k|^2.$$

Furthermore, if $(x; r) \in Z$,

$$\alpha_1 = \frac{\langle (x; r), b_1 \rangle}{|b_1|^2} = \sum_{i=1}^{n} x_i = 0,$$

\[\alpha_{n+1} = \frac{\langle (x; r), b_{n+1} \rangle}{|b_1|^2} = \sum_{i=1}^{n} r_i = 0; \]

hence,

\[
\langle \Phi (x; r), (x; r) \rangle = n^2 \sin \frac{2\pi}{n} \sum_{k=1}^{n} \alpha_k^2 |b_k|^2 + 2n \sum_{k=n+1}^{2n} \alpha_k^2 |b_k|^2 \geq 2n \sum_{k=1}^{2n} \alpha_k^2 |b_k|^2;
\]

and this concludes the proof.

References

[BFar] M. Bucur and I. Fragala. A Faber-Krahn inequality for the Cheeger constant of N-gons. J. Geom. Anal., to appear.

[CM14] M. Caroccia and F. Maggi. A sharp quantitative version of Hales’ isoperimetric honeycomb theorem. arXiv:1410.6128 (2014).

[CN14] M. Caroccia and R. Neumayer. A note on the stability of the Cheeger constant of N-gons. arXiv:1412.0720 (2014).

[FI13] A. Figalli and E. Indrei. A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal., 23(2):938–969, 2013.

[FMP08] N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math. (2), 168(3):941–980, 2008.

[FMP10] A. Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math., 182(1):167–211, 2010.

[FRS85] J. Chris Fisher, D. Ruoff, and J. Shilleto. Perpendicular polygons. Amer. Math. Monthly, 92(1):23–37, 1985.

[Hal01] T. C. Hales. The honeycomb conjecture. Discrete Comput. Geom., 25(1):1–22, 2001.

[IN14] E. Indrei and L. Nurbekyan. On the stability of the polygonal isoperimetric inequality. arXiv:1402.4460 (2014).

Emanuel Indrei

Center for Nonlinear Analysis
Carnegie Mellon University
Pittsburgh, PA 15213, USA
email: egi@cmu.edu