Dalitz Plot Analysis of $D_s^+ \rightarrow \pi^+\pi^-\pi^+$

B. Aubert, M. Bona, Y. Karyotakis, J. P. Lees, V. Poireau, E. Prencipe, X. Prudent, and V. Tisserand
Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France

J. Garra Tico and E. Grauges
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

L. Lopezab, A. Palanoab, and M. Pappagalloab
INFN Sezione di Baria; Dipartimento di Fisica, Università di Barib, I-70126 Bari, Italy

G. Eigen, B. Stugu, and L. Sun
University of Bergen, Institute of Physics, N-5007 Bergen, Norway

G. S. Abrams, M. Battaglia, D. N. Brown, R. G. Jacobsen, L. T. Kerth, Yu. G. Kolomensky, G. Lynch, I. L. Osipenkov, M. T. Ronan, K. Tackmann, and T. Tanabe
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

C. M. Hawkes, N. Soni, and A. T. Watson
University of Birmingham, Birmingham, B15 2TT, United Kingdom

H. Koch and T. Schroeder
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

D. J. Asgeirsson, B. G. Fulsom, C. Hearty, T. S. Mattison, and J. A. McKenna
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

M. Barrett and A. Khan
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. D. Bukin, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, and K. Yu. Todyshev
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, and D. P. Stoker
University of California at Irvine, Irvine, California 92697, USA

S. Abachi and C. Buchanan
University of California at Los Angeles, Los Angeles, California 90024, USA

H. Atmacan, J. W. Gary, F. Liu, O. Long, G. M. Vitug, Z. Yasin, and L. Zhang
University of California at Riverside, Riverside, California 92521, USA

V. Sharma
University of California at San Diego, La Jolla, California 92093, USA

C. Campagnari, T. M. Hong, D. Kovalskyi, M. A. Mazur, and J. D. Richman
University of California at Santa Barbara, Santa Barbara, California 93106, USA

T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, A. J. Martinez, T. Schalk, B. A. Schumm, A. Seiden, M. G. Wilson, and L. O. Winstrom
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

C. H. Cheng, D. A. Doll, B. Echenard, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, and F. C. Porter
Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France

D. J. Lange and D. M. Wright
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

I. Bingham, J. P. Burke, C. A. Chavez, J. R. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, D. J. Payne, and C. Touramanis
University of Liverpool, Liverpool L69 7ZE, United Kingdom

A. J. Bevan, C. K. Clarke, F. Di Lodovico, R. Sacco, and M. Sigamani
Queen Mary, University of London, London, E1 4NS, United Kingdom

G. Cowan, S. Paramesvaran, and A. C. Wren
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

D. N. Brown and C. L. Davis
University of Louisville, Louisville, Kentucky 40292, USA

A. G. Denig, M. Fritsch, and W. Gradl
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany

K. E. Alwyn, D. Bailey, R. J. Barlow, G. Jackson, G. D. Lafferty, T. J. West, and J. I. Yi
University of Manchester, Manchester M13 9PL, United Kingdom

J. Anderson, C. Chen, A. Jawahery, D. A. Roberts, G. Simi, and J. M. Tuggle
University of Maryland, College Park, Maryland 20742, USA

C. Dallapiccola, X. Li, E. Salvati, and S. Saremi
University of Massachusetts, Amherst, Massachusetts 01003, USA

R. Cowan, D. Dujmic, P. H. Fisher, S. W. Henderson, G. Sciolla, M. Spitznagel, F. Taylor, R. K. Yamamoto, and M. Zhao
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

P. M. Patel and S. H. Robertson
McGill University, Montréal, Québec, Canada H3A 2T8

A. Lazzaroa,b, V. Lombardoa, and F. Palomboa,b
INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanob, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, R. Godanga, R. Kroeger, D. J. Summers, and H. W. Zhao
University of Mississippi, University, Mississippi 38677, USA

M. Simard and P. Taras
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

H. Nicholson
Mount Holyoke College, South Hadley, Massachusetts 01075, USA

G. De Nardoa,b, L. Listaa, D. Monorchioa,b, G. Onoratoa,b, and C. Sciaccaa,b
INFN Sezione di Napolia; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIb, I-80126 Napoli, Italy

G. Raven and H. L. Snoek
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, and W. F. Wang
A Dalitz plot analysis of approximately 13,000 $D_s^+ \rightarrow \pi^+ \pi^- \pi^+$ decays has been performed. The analysis uses a 384 fb$^{-1}$ data sample recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring running at center of mass energies near 10.6 GeV. Amplitudes and phases of the intermediate resonances which contribute to this final state are measured. A high precision measurement of the ratio of branching fractions is performed: $B(D_s^+ \rightarrow \pi^+ \pi^- \pi^+)/B(D_s^+ \rightarrow K^+K^-\pi^+) = 0.199\pm0.004\pm0.009$. Using a model-independent partial wave analysis, the amplitude and phase of the S-wave have been measured.

PACS numbers: 13.20.Fc, 11.80.Et

I. INTRODUCTION

Dalitz plot analysis is an excellent way to study the dynamics of three-body charm decays. These decays are expected to proceed predominantly through intermediate quasi-two-body modes $[1]$ and experimentally this is the
observed pattern. Dalitz plot analyses can provide new information on the resonances that contribute to the observed three-body final states. In addition, since the intermediate quasi-two-body modes are dominated by light quark meson resonances, new information on light meson spectroscopy can be obtained.

Some puzzles still remain in light meson spectroscopy. There are new claims for the existence of broad states close to threshold such as $\kappa(800)$ and $f_0(600)$ [2]. The new evidence has reopened discussion of the composition of the ground state $J^{PC} = 0^{++}$ nonet, and of the possibility that states such as the $a_0(980)$ or $f_0(980)$ may be 4-quark states, due to their proximity to the $K\bar{K}$ threshold [3]. This hypothesis can be tested only through accurate measurements of the branching fractions and the couplings to different final states. It is therefore important to have precise information on the structure of the $\pi\pi$ S-wave. In addition, comparison between the production of these states in decays of differently flavored charm decays can give information on the structure of the scalar amplitude coupled to $\pi\pi$. This context, partial wave analyses are able to isolate the scalar contribution with almost no background.

This paper focuses on the study of the three-body D_s^+ meson decays to $\pi^+\pi^-\pi^+$ and performs, for the first time, a Model-Independent Partial Wave Analysis (MIPWA) [5]. Previous Dalitz plot analyses of this decay mode were based on much smaller data samples [6, 7] and did not have sufficient statistics to perform the detailed analysis reported here.

This paper is organized as follows. Section II briefly describes the Babar detector, while Section III gives details on event reconstruction. Section IV is devoted to the evaluation of the selection efficiency. Section V deals with the Dalitz plot analysis of $D_s^+ \to \pi^+\pi^-\pi^+$ and results are given in Section VI. The measurement of the D_s^+ branching fraction is described in Section VII.

II. THE BABAR DETECTOR AND DATASET

The analysis is based on data collected with the Babar detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC. The data sample used in this analysis corresponds to an integrated luminosity of 347.5 fb$^{-1}$ recorded at the $Y(4S)$ resonance (on-peak) and 36.5 fb$^{-1}$ collected 40 MeV below the resonance (off-peak). The Babar detector is described in detail elsewhere [8]. The following is a brief summary of the components important to this analysis. Charged particles are detected and their momenta measured by a combination of a cylindrical drift chamber (DCH) and a silicon vertex tracker (SVT), both operating within a 1.5 T solenoidal magnetic field. A ring-imaging Čerenkov detector (DIRC) is used for charged-particle identification. Photon energies are measured with a CsI electromagnetic calorimeter (EMC). Information from the DIRC and energy-loss measurements in the DCH and SVT are used to identify charged kaon and pion candidates. Monte Carlo (MC) events used in this analysis, $e^+e^- \to \tau\tau$, are generated using the JETSET program [9], and the generated particles are propagated through a model of the Babar detector with the GEANT4 simulation package [10]. Radiative corrections for signal and background processes are simulated using PHOTOS [11].

III. EVENT SELECTION AND D_s^+ RECONSTRUCTION

Events corresponding to the three-body decay:

$$D_s^+ \to \pi^+\pi^-\pi^+$$ \hspace{1cm} (1)

are reconstructed from the sample of events having at least three reconstructed charged tracks with a net charge of ±1 and having a minimum transverse momentum of 0.1 GeV/c. Tracks from D_s^+ decays are identified as pions or kaons by the Čerenkov angle θ_c measured with the DIRC. The typical separation between pions and kaons varies from 8σ at 2 GeV/c to 2.5σ at 4 GeV/c, where σ is the average resolution on θ_c. Lower momentum kaons are identified with a combination of θ_c (for momenta down to 0.7 GeV/c) and measurements of ionization energy loss dE/dx in the DCH and SVT. The particle identification efficiency is $\approx 95\%$, while the misidentification rate for kaons is $\approx 5\%$. Photons are identified as EMC clusters that do not have a spatial match with a charged track, and that have a minimum energy of 100 MeV. To reject background, the lateral energy is required to be less than 0.8. The three tracks are fitted to a common vertex, and the χ^2 fit probability (labeled P_1) must be greater than 0.1 %. A separate kinematic fit which makes use of the D_s^+ mass constraint, to be used in the Dalitz plot analysis, is also performed. To help discriminate signal from background, an additional fit which uses the constraint that the three tracks originate from the e^+e^- beam spot is performed. We label the χ^2 probability of this fit as P_2, and it is expected to be large for background and small for D_s^+ signal events, since in general the latter will have a measurable flight distance.

The combinatorial background is reduced by requiring the D_s^+ to originate from the decay

$$D_s^+(2112)^+ \to D_s^+\gamma$$ \hspace{1cm} (2)

using the mass difference $\Delta m = m(\pi^+\pi^-\pi^+) - m(\pi^+\pi^-\pi^+).$ We cannot reliably extract the $D_s^+(2112)^+$ characteristics using the 3γ decay mode due to the large background below the signal peak. Therefore we use the decay

$$D_s^+ \to K^+K^0\pi^+,$$ \hspace{1cm} (3)

which has a much larger signal to background ratio. Fitting the mass difference $\Delta m = m(K^+K^0\pi^+\gamma) -$
$m(K^+K^-\pi^+)$ for this decay mode with a polynomial describing the background and a single Gaussian for the signal, we obtain a width $\sigma = 5.51 \pm 0.04$ MeV/c2. Since the experimental resolution in Δm is similar for the two D_s^+ decay modes, we require the value of Δm for the $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ mode to be within $\pm 2\sigma$ of the Review of Particle Physics [12] value of the $(D_s^*(2112)^+ - D_s^+)$ mass difference. At this stage the three-pion invariant mass signal region, defined between $(-2\sigma, 2\sigma)$, where σ is estimated by a Gaussian fit to the D_s^+ lineshapes, has a purity (signal/(signal+background)) of 4.3%.

Each D_s^+ candidate is characterized by three variables: the center of mass momentum p^*, the difference in probability $P_1 - P_2$, and the signed decay distance d_{xy} between the D_s^+ decay vertex and the beam spot projected in the plane normal to the beam collision axis. The distributions for these variables for background are inferred from the $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ invariant mass sidebands defined between $(-9\sigma,-5\sigma)$ and $(5\sigma,9\sigma)$. Since these variables are (to a good approximation) independent of the decay mode, the distributions for the three-pion invariant mass signal, are inferred from the $D_s^+ \rightarrow K^+K^-\pi^+$ decay. These normalized distributions are then combined in a likelihood ratio test. The cut on the likelihood ratio has been chosen in order to obtain the largest statistics with background small enough to perform a Dalitz plot analysis.

Many possible background sources are examined. A small background contribution due to the decay $D_s^+ \rightarrow \pi^+D^0$ where $D^0 \rightarrow \pi^+\pi^-$ is addressed by removing events with $|m(\pi^+\pi^-) - m_{D^0}| < 20.7$ MeV/c2 and $m(\pi^+\pi^-) - m(\pi^+\pi^-) < 0.1475$ GeV/c2. Particle misidentification, in which a kaon (K_{mis}) is wrongly identified as a pion, is tested by assigning the kaon mass to each pion in turn. In this way we observe a clean signal in the mass difference $m(\pi^+K_{\text{mis}}\pi^-) - m(\pi^+\pi^-)$ due to the decay $D_s^+ \rightarrow \pi^+D^0$ where $D^0 \rightarrow K_{\text{mis}}\pi^+$. Removing events with $|m(K_{\text{mis}}\pi^-) - m_{D^0}| < 21.7$ MeV/c2 and $m(\pi^+K_{\text{mis}}\pi^-) - m(K_{\text{mis}}\pi^+) < 0.1475$ GeV/c2 diminishes this background. Finally, events having more than one candidate are removed from the sample (1.2% of the events).

The resulting $\pi^+\pi^-\pi^+$ mass distribution is shown in Fig. [1](a). This distribution has been fitted with a single Gaussian for the signal and a linear background function. The fit gives a D_s^+ mass of (1968.1 ± 0.1) MeV/c2 and width $\sigma = 7.77 \pm 0.09$ MeV/c2 (statistical error only). The signal region contains 13179 events with a purity of 80%. The resulting Dalitz plot, symmetrized along the two axes, is shown in Fig. [1](b). For this distribution, and in the following Dalitz plot analysis, we use the track momenta obtained from the D_s^+ mass-constrained fit. We observe a clear $f_0(980)$ signal, evidenced by the two narrow crossing bands. We also observe a broad accumulation of events in the 1.9 GeV/c2 region.

IV. EFFICIENCY

The efficiency for this D_s^+ decay mode is determined from a sample of Monte Carlo events in which the D_s^+ decay is generated according to phase space (i.e. such that the Dalitz plot is uniformly populated). These events are passed through a full detector simulation and subjected to the same reconstruction and event selection procedure applied to the data. The distribution of the selected events in the Dalitz plot is then used to determine the total reconstruction and selection efficiency. The MC sample $e^+e^- \rightarrow D_s^{*+}X$, where $D_s^{*+} \rightarrow \gamma D_s^+$, used to compute

![Fig. 1](image-url)
this efficiency consists of 27.4×10^6 generated events for $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ and 4.2×10^6 for $D_s^+ \rightarrow K^+K^-\pi^+$. The Dalitz plot is divided into small cells and the efficiency distribution is fitted with a second-order polynomial in two dimensions. The efficiency is found to be almost uniform as a function of the $\pi^+\pi^-$ invariant mass with an average value of $\approx 1.6\%$. This low efficiency is mainly due to the likelihood ratio selection: it is 18.0% without this cut.

The experimental resolution as a function of the $\pi^+\pi^-$ mass has been computed as the difference between MC generated and reconstructed mass. It increases from 1.0 to 2.5 MeV/c2 from the $\pi^+\pi^-$ threshold to 1.0 GeV/c2.

V. DALITZ PLOT ANALYSIS

An unbinned maximum likelihood fit is performed on the distribution of events in the Dalitz plot to determine the relative amplitudes and phases of intermediate resonant and nonresonant states. The likelihood function is:

$$L = \prod_{\text{events}} \left[x(m) \cdot \eta(m_1^2, m_2^2) \sum_{i,j} c_i c_j^* A_i A_j^* \right] + (1 - x(m)) \sum_i |k_i|^2 B_i^2$$

where:

- m_1^2 and m_2^2 are the squared $\pi^+\pi^-$ effective masses;
- $x(m)$ is the mass-dependent fraction of signal, defined as $x(m) = \frac{G(m)}{G(m) + P(m)}$. Here $G(m)$ and $P(m)$ represent the Gaussian and the linear function used to fit the $\pi^+\pi^-\pi^+$ mass spectrum.
- $\eta(m_1^2, m_2^2)$ is the efficiency, parametrized with a two-dimensional second order polynomial.
- A_i, B_i describe signal and background amplitude contributions respectively.
- k_i are real factors describing the structure of background. They are computed by fitting the sideband regions.
- $I_{A_i A_j} = \int A_i A_j^* \eta(m_1^2, m_2^2) dm_1^2 dm_2^2$ and I_{B_2} are the normalization integrals for signal and background respectively. The products of efficiency and amplitudes are normalized using a numerical integration over the Dalitz plot.
- c_i are complex coefficients allowed to vary during the fit procedure.

The efficiency-corrected fraction due to the resonant or nonresonant contribution i is defined as follows:

$$f_i = \frac{|c_i|^2 \int |A_i|^2 dm_1^2 dm_2^2}{\sum_{j,k} c_j c_k^* \int A_j A_k^* dm_1^2 dm_2^2}.$$

The f_i values do not necessarily add to 1 because of interference effects. The uncertainty on each f_i is evaluated by propagating the full covariance matrix obtained from the fit.

The phase of each amplitude (i.e. the phase of the corresponding c_i) is measured with respect to the $f_2(1270)\pi^+$ amplitude. Each P-wave and D-wave amplitude A_i is represented by the product of a complex Breit-Wigner ($BW(m)$) and a real angular term:

$$A = BW(m) \times T(\Omega).$$

where m is the $\pi^+\pi^-$ mass. The Breit-Wigner function includes the Blatt-Weisskopf form factors. The angular terms $T(\Omega)$ are described in Ref. [12].

For the $\pi^+\pi^-$ S-wave amplitude, we use a different approach because:

- Scalar resonances have large uncertainties. In addition, the existence of some states needs confirmation.
- Modelling the S-wave as a superposition of Breit-Wigners is unphysical since it leads to a violation of unitarity when broad resonances overlap.

To overcome these problems, we use a Model-Independent Partial Wave Analysis introduced by the Fermilab E791 Collaboration [5]: instead of including the S-wave amplitude as a superposition of relativistic Breit-Wigner functions, we divide the $\pi^+\pi^-$ mass spectrum into 29 slices and we parametrize the S-wave by an interpolation between the 30 endpoints in the complex plane:

$$A_{S-\text{wave}}(m_{\pi\pi}) = \text{Interp}(c_k(m_{\pi\pi})e^{i\phi_k(m_{\pi\pi}))})_{k=1,...,30}.$$

The amplitude and phase of each endpoint are free parameters. The width of each slice is tuned to get approximately the same number of $\pi^+\pi^-$ combinations ($\approx 13179 \times 2/29$). Interpolation is implemented by a Relaxed Cubic Spline [14]. The phase is not constrained in a specific range in order to allow the spline to be a continuous function.

The background shape is obtained by fitting the D_s^+ sidebands. In this fit, resonances are assumed to be incoherent, i.e. are represented by Breit-Wigner intensity terms only. A good representation of the background includes contributions from $K^0_S, \rho^0(770)$ and three ad-hoc scalar resonances with free parameters.

Resonances are included in sequence, keeping only those having a fractional significance greater than two standard deviations.

VI. RESULTS

The fit results (fractions and phases) are summarized in Table II. The resulting S-wave $\pi^+\pi^-$ amplitude and phase is shown in Fig. 2(a),(b) and is given numerically in...
The Dalitz plot projections together with the fit results are shown in Fig. 3. Here we label with $m^2(\pi^+\pi^-)_{\text{low}}$ and $m^2(\pi^+\pi^-)_{\text{high}}$ the lower and higher values of the two $\pi^+\pi^-$ mass combinations.

The fit projections are obtained by generating a large number of phase space MC events \[15\], weighting by the fit likelihood function, and normalizing the weighted sum to the observed number of events. There is good agreement between data and fit projections. Further tests of the fit quality are performed using unnormalized Y^0_L moment projections onto the $\pi^+\pi^-$ axis as functions of the helicity angle θ, which is defined as the angle between the π^- and the D^+_s in the $\pi^+\pi^-$ rest frame (or π^+ for D^+_s) (two combinations per event). The $\pi^+\pi^-$ mass distribution is then weighted by the spherical harmonic $Y^0_L(\cos \theta)$ ($L = 1 - 6$). The resulting distributions of the $\langle Y^0_L \rangle$ are shown in Fig. 4. A straightforward interpretation of these distributions is difficult, due to reflections originating from the symmetrization. However, the squares of the spin amplitudes appear in even moments, while interference terms appear in odd moments.

The fit produces a good representation of the data.
FIG. 3: Dalitz plot projections (points with error bars) and fit results (solid histogram). (a) $m^2(\pi^+\pi^-)_{\text{low}}$, (b) $m^2(\pi^+\pi^-)_{\text{high}}$, (c) total $m^2(\pi^+\pi^-)$, (d) $m^2(\pi^+\pi^+).$ The hatched histograms show the background distribution.

for all projections. The fit χ^2 is computed by dividing the Dalitz plot into 30×30 cells with 422 cells having entries. We obtain $\chi^2/NDF = 437/(422 - 64) = 1.2$. The χ^2 is also calculated using an adaptive binning with an average number of events per cell $\simeq 35$ ($\chi^2/NDF = 365/(391 - 64) = 1.1$), obtaining a χ^2 probability of 7.2%.

Attempts to include other resonant contributions, such as $\omega(782)$ or $f_2'(1525)$, do not improve the fit quality. MC simulations have been performed in order to validate the method and test for possible multiple solutions.

The results from the Dalitz plot analysis can be summarized as follows:

- The decay is dominated by the $D_s^+ \rightarrow (\pi^+\pi^-)_{\text{S-wave}}\pi^+$ contribution.
- The S-wave shows, in both amplitude and phase, the expected behavior for the $f_0(980)$ resonance.
- The S-wave shows further activity, in both amplitude and phase, in the regions of the $f_0(1370)$ and $f_0(1500)$ resonances.
- The S-wave is small in the $f_0(600)$ region, indicating that this resonance has a small coupling to $s\bar{s}$.
- There is an important contribution from $D_s^+ \rightarrow f_2(1270)\pi^+$ whose size is in agreement with that reported by FOCUS, but a factor two smaller than that reported by E791. This is the largest contribution in charm decays from a spin-2 resonance.
- We observe a similar trend for the S-wave amplitude and phase between the three experiments. Our results agree better (within uncertainties) with the results from FOCUS than those from E791.

Our results may be compared with different measurements of the $\pi\pi$ amplitude and phase from many other sources. For a recent review, see [16].

Systematic uncertainties on the fitted fractions are evaluated in different ways:

- The background parametrization is performed using the information from the lower/higher sideband only or both sidebands.
- The Blatt-Weisskopf barrier factors have a single parameter r which we take to be 1.5 (GeV/c)$^{-1}$ and which has been varied between 0 and 3 (GeV/c)$^{-1}$.
- Results from fits which give equivalent Dalitz plot
descriptions and similar sums of fractions (but worse likelihood) are considered.

- The likelihood cut is relaxed but the mass cut on the $\pi^+\pi^-\pi^+$ is narrowed in order to obtain a similar purity.

- The purity of the signal, the resonance parameters and the efficiency coefficients are varied within their statistical errors.

- The $\rho(770)$ and $\rho(1450)$ parametrization is modified according to the Gounaris-Sakurai model [17].

- The number of steps used to describe the S-wave has been varied by ± 2.

VII. BRANCHING FRACTION

Since the two D_s^+ decay channels (1) and (3) have similar topologies, the ratio of branching fractions is expected to have a reduced systematic uncertainty. We therefore select events from the two D_s^+ decay modes using similar selection criteria for the D_s^+ selection and for the likelihood test. For this measurement, a looser likelihood cut is used.

The ratio of branching fractions is evaluated as:

$$BR = \frac{\sum_{x,y} N_i(x,y)}{\sum_{x,y} N_0(x,y)},$$

where $N_i(x,y)$ represents the number of events measured for channel i, and $\epsilon_i(x,y)$ is the corresponding efficiency in a given Dalitz plot cell (x,y). For this calculation each Dalitz plot was divided into 50×50 cells.

To obtain the yields and measure the relative branching fractions, the $\pi^+\pi^-$ and $K^+K^-\pi^+$ mass distributions are fit assuming a double Gaussian signal and linear background where all the parameters are floated. Systematic uncertainties, summarized in Table III, take into account uncertainties from MC statistics and from the selection criteria used.

The resulting ratio is:

$$\frac{B(D_s^+ \to \pi^+\pi^-\pi^+)}{B(D_s^+ \to K^+K^-\pi^+)} = 0.199 \pm 0.004 \pm 0.009$$

consistent, within one standard deviation, with the PDG [12] value: $0.265 \pm 0.041 \pm 0.031$. It is also consistent with a recent measurement from CLEO [18]: $0.202 \pm 0.011 \pm 0.009$.

The study of the $D_s^+ \to K^+K^-\pi^+$ decay can give new information on the $K\bar{K} S$-wave. This information together with the results reported in this analysis will enable new measurements of the $f_0(980)$ couplings to $\pi\pi/K\bar{K}$.
VIII. CONCLUSIONS

A Dalitz plot analysis of approximately 13,000 $D_s^+ \to \pi^+\pi^-\pi^+$ has been performed. The fit measures fractions and phases for quasi-two-body decay modes. The amplitude and phase of the $\pi^+\pi^-\Sigma$-wave is extracted in a model-independent way for the first time. We also measure with high precision the $\mathcal{B}(D_s^+ \to \pi^+\pi^-\pi^+)/\mathcal{B}(D_s^+ \to K^+K^-\pi^+)$ ratio.

Interval Mass (GeV/c²)	Amplitude	Phase (radians)
1	0.28	2.7 ± 1.5
2	0.448	2.2 ± 1.2
3	0.55	3.2 ± 0.8
4	0.647	3.3 ± 0.7
5	0.736	5.0 ± 0.7
6	0.803	5.1 ± 0.7
7	0.873	6.7 ± 0.7
8	0.921	10.7 ± 1.0
9	0.951	16.3 ± 1.6
10	0.968	22.9 ± 2.3
11	0.981	27.2 ± 2.7
12	0.993	20.4 ± 2.0
13	1.024	11.8 ± 1.2
14	1.078	8.8 ± 0.9
15	1.135	7.4 ± 0.7
16	1.193	6.3 ± 0.5
17	1.235	7.0 ± 0.5
18	1.267	6.9 ± 0.5
19	1.297	6.1 ± 0.6
20	1.323	6.7 ± 0.6
21	1.35	7.0 ± 0.8
22	1.376	7.5 ± 0.8
23	1.402	9.2 ± 1.0
24	1.427	9.1 ± 1.0
25	1.455	9.1 ± 1.0
26	1.492	7.0 ± 0.9
27	1.557	2.3 ± 0.5
28	1.64	2.8 ± 1.1
29	1.735	3.1 ± 1.1

IX. ACKNOWLEDGEMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

[1] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 103 (1987).
[2] E. M. Aitala et al. [E791 Collaboration], Phys. Rev. Lett. 89, 121801 (2002); E. M. Aitala et al. [E791 Collaboration], Phys. Rev. Lett. 86, 770 (2001).
[3] See for example F. E. Close and N. A. Tornqvist, J. Phys. G 28, R294 (2002).
[4] All references in this paper to an explicit decay mode imply the use of the charge conjugate decay also.
[5] E. M. Aitala et al. [E791 Collaboration], Phys. Rev. D 73, 032004 (2006).
[6] E. M. Aitala et al. [E791 Collaboration], Phys. Rev. Lett. 86, 765 (2001).
[7] J. M. Link et al. [FOCUS Collaboration], Phys. Lett. B 585, 200 (2004).
[8] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
[9] T. Sjostrand, S. Mrenna and P. Skands, JHEP 05, 026 (2006).
[10] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).
[11] P. Golonka et al., Comput. Phys. Commun. 174, 818.
[12] W. M. Yao et al., Review of Particle Physics, J. Phys. G 33, 1 (2006) and 2007 partial update for 2008.
[13] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952.
[14] K. S. Kölblig and H. Lipps, Cubic Splines and Their Integrals, CERN Program Library, E211.
[15] F. James, N-Body Monte-Carlo Event Generator, CERN Program Library, W515.
[16] E. Klempt and A. Zaitsev, Physics Reports 454 (2007).
[17] G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
[18] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. Lett. 100, 161804 (2008).