ATLAS on-Z Excess via gluino-Higgsino-singlino decay chains in the NMSSM

Keisuke Harigaya$^{(a,b,c)}$, Masahiro Ibe$^{(c,d)}$, and Teppei Kitahara$^{(c,f,g)}$

Abstract

Recently the ATLAS experiment has reported 3.0 σ excess in an on-Z signal region in searches for supersymmetric particles. We find that the next-to-minimal supersymmetric standard model can explain this excess by the production of gluinos which mainly decay via $\tilde{g} \rightarrow g\tilde{\chi}_2^0 \rightarrow gZ\tilde{\chi}_1^0$ where $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ are the Higgsino and the singlino-like neutralinos, respectively. We show that the observed dark matter density is explained by the thermal relic density of the singlino-like neutralino, simultaneously. We also discuss the searches for the Higgs sector of this scenario at the Large Hadron Collider.
Contents

1 Introduction 1
2 NMSSM 3
3 Explanation of the ATLAS on-Z excess 6
4 Dark matter property 11
5 Higgs sector searches at the LHC 11
6 Conclusion 12

1 Introduction

The supersymmetric (SUSY) models are attractive candidates for physics beyond the standard model (SM) because the hierarchy problem can be solved and dark matter is naturally introduced when the R-parity is conserved. Among various possibilities, the minimal SUSY standard model (MSSM) has been the prime candidate for the realistic supersymmetric model. A drawback of the MSSM is, however, that it contains a dimensionful parameter μ, the mass term of the Higgs multiplets. This reintroduces an additional fine-tuning problem, the so-called μ problem [1]. The size of μ is required to be of the order of other soft SUSY breaking parameters for successful electroweak symmetry breaking whereas they are essentially unrelated with each other.

The simplest solution of the μ problem is to introduce an additional gauge-singlet superfield \hat{S} [2] whose vacuum expectation value (VEV) is controlled by soft SUSY breaking parameters. By making an effective μ term generated by the VEV of \hat{S}, the size of μ is naturally interrelated to the size of the soft SUSY breaking parameters. The next-to-minimal SUSY standard model (NMSSM) is one of the simplest singlet extensions of the MSSM where a discrete \mathbb{Z}_3 symmetry is imposed [2–4].

Recently, the ATLAS experiment has reported excess events in the SUSY particle searches with dileptons, jets and missing transverse energy (E_T^{miss}) in data of 20.3 fb$^{-1}$ at $\sqrt{s} = 8$ TeV [5]. They have observed 29 (16 for ee and 13 for $\mu\mu$) same-flavour opposite-sign dilepton pairs whose invariant masses are in the Z boson mass window, $81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$ (“on-Z” signal region). The expected number of SM background events is 10 ± 6 pairs. The observed event number corresponds to excess of 3.0σ local significance (3.0σ for ee and 1.7σ for $\mu\mu$, separately). In this paper, we call this excess “ATLAS on-Z excess”. This excess seems to imply...
an existence of a gluino whose mass is lighter than 1.2 TeV or squarks lighter than 1.4 TeV [6]. The caveat is, though, that the CMS experiment has also analyzed the dileptons+jets+E_T^{miss} final state using $\sqrt{s} = 8$ TeV data in which the kinematical cut is different from the ATLAS one, and a significant excess has not been observed in the on-Z signal region [7].

After the report, many scenarios in the MSSM as well as in the NMSSM have been proposed to explain the ATLAS on-Z excess without conflicting with constraints from various SUSY searches including the CMS on-Z result [6, 8–20]. To have on-shell Z bosons in final states while escaping other SUSY search constraints, scenarios with a gravitino as the lightest SUSY particle (LSP) seems to be one of the simplest possibilities. The lightest neutralino decays into a pair of a Z boson and a gravitino, while the decay of colored SUSY particles into the gravitino with a large E_T^{miss} are suppressed. Unfortunately, however, the simplified general gauge mediation model with the gravitino LSP cannot explain the ATLAS on-Z excess [9, 10], where the produced Z bosons are rather hard due to the lightness of the gravitino and are caught in the mesh of the SUSY searches with multi jets + E_T^{miss}.

In Ref. [16], it has been shown that this problem can be evaded by introducing a non-MSSM massive particle, a goldstini $\tilde{G'}$, into which the lightest neutralino mainly decays. Due to the massiveness of the goldstini, the Z bosons are emitted softly, and hence, the constraints from 0 lepton + multi jets + E_T^{miss} searches become weaker. In this scenario, similar to the gravitino LSP scenario, the couplings between the goldstini and the MSSM particles are suppressed. Besides, the sfermion masses are assumed to be rather larger than the gaugino masses and the lightest neutralino is assumed to be the Higgsino-like. With this setup, the ATLAS on-Z excess is successfully explained by the gluino production via a decay chain, $\tilde{g} \to g\tilde{\chi}_0^2 \to gZ\tilde{G}'$, where $\tilde{\chi}_0^{1,2}$ are the Higgsino-like neutralinos.

The above goldstini nature is also realized in the NMSSM with a singlino-like neutralino LSP, where the singlino is the fermionic component of the additional singlet superfield \tilde{S}. Actually, some literature investigated this possibility with decay chains of $\tilde{g} \to q\tilde{\chi}_2^0 \to q\bar{q}Z\tilde{\chi}_1^0$ [9, 12], and $\tilde{g} \to q\tilde{\chi}_2^0 \to qZ\tilde{\chi}_1^0$ [17, 19], where in both cases $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ are the bino and singlino-like neutralinos, respectively.

In this paper, we discuss another possibility in the NMSSM and consider the gluino pair production whose decay chain is $\tilde{g} \to g\tilde{\chi}_{2,3}^0 \to gZ\tilde{\chi}_1^0$, where $\tilde{\chi}_{2,3}^0$ and $\tilde{\chi}_1^0$ are the Higgsino-like and the singlino-like neutralinos, respectively (see Figure 1). It should be noted that the two-body gluino decay modes $\tilde{g} \to g\tilde{\chi}_{2,3}^0$ at one-loop level are the dominant ones when the mass differences between the gluino and the Higgsinos are moderate and the squark masses are in the several TeV range [15, 21, 22]. Besides, as we will show, the radiative decay of the gluino reproduces the distribution of the jet multiplicity observed in the ATLAS results well.

We also investigate the properties of dark matter in the NMSSM, and find two distinct benchmark parameter sets. Eventually, we show that the ATLAS on-Z excess and the observed relic abundance of dark matter can be simultaneously explained in
the NMSSM, without conflicting with other experimental constraints, including the CMS on-Z result.

We organize the rest of this paper as follows. In Section 2, we briefly review the mass matrices of the Higgs-sector and neutralinos in the NMSSM. Next in Section 3, we give an explanation of the ATLAS on-Z excess using the NMSSM with the singlino-like neutralino LSP. In Section 4, the property of the dark matter around our benchmark points is discussed. In Section 5, we discuss the searches for the Higgs sector at the LHC. The final section is devoted to conclusion.

2 NMSSM

In this paper, we investigate a possible explanation of the ATLAS on-Z excess in the NMSSM. Motivated by the study about the goldstini [16], we consider the case of the singlino-like neutralino LSP.

In this section, we quickly review the mass spectrum of the NMSSM by paying particular attention to the dependence on parameters. The detail of the NMSSM is given in Ref. [23]. The superpotential and the scalar potential of the Higgs-sector in the NMSSM are given as

$$W = \lambda \hat{S} \hat{H}_2 \hat{H}_1 + \frac{\kappa}{3} \hat{S}^3,$$

$$V = (|\lambda S|^2 + m^2_1)|H_1|^2 + (|\lambda S|^2 + m^2_2)|H_2|^2 + \frac{g^2}{2}(|H_1|^2 + |H_2|^2)$$

$$+ \frac{g^2 + g'^2}{8}(|H_1|^2 - |H_2|^2)^2 + |\lambda H_2 H_1 + \kappa S|^2$$

$$+ m^2_s |S|^2 + |\lambda A_\lambda S H_2 H_1 + \frac{\kappa}{3} A_\kappa S^3 + \text{H.c.}|,$$

where fields with hats are superfields, and \hat{S}, $\hat{H}_{1,2}$ are the singlet and the down-type and up-type Higgs doublets, respectively. κ and λ are coupling constants in the super-
potential, and g and g' are gauge coupling constants of the $SU(2)_L$ and $U(1)_Y$ gauge interactions. Due to the discrete Z_3 symmetry under which \hat{S} as well as \hat{H}_1, \hat{H}_2 rotate with unit charges, the superpotential does not have dimensionful parameters. The dimensionful parameters in the scalar potential are the soft SUSY breaking parameters, i.e., $m^2_{1,2,s}$ and $A_{\lambda, \kappa}$.

For simplicity, we assume all parameters to be real in this paper. When the electroweak symmetry is broken, three neutral scalar bosons obtain VEVs and they are expanded around their VEVs as follows,

$$H_1^0 = v_1 + \frac{H_{1R} + i H_{1I}}{\sqrt{2}}, \quad H_2^0 = v_2 + \frac{H_{2R} + i H_{2I}}{\sqrt{2}}, \quad S = v_s + \frac{S_R + i S_I}{\sqrt{2}},$$

where $v^2 = v_1^2 + v_2^2 \simeq (174.1 \text{ GeV})^2$ and we use $\tan \beta \equiv v_2/v_1$ in the following. Then the effective μ term is generated,

$$\mu_{\text{eff}} = \lambda v_s.$$ \hfill (4)

Since the singlet VEV v_s is the same scale as the SUSY breaking dimensionful terms, the μ problem is solved.

In the NMSSM, the singlino is the one of the neutralino components. The neutralino mass matrix for the basis $\psi^0 = (\tilde{B}, \tilde{W}^0, \tilde{H}_1^0, \tilde{H}_2^0, \tilde{S})$ is given as

$$L = -\frac{1}{2} (\psi^0)^T M_\tilde{N} \psi^0 + \text{H.c.},$$

with

$$M_\tilde{N} = \begin{pmatrix}
M_1 & 0 & -\frac{g' v_1}{\sqrt{2}} & \frac{g' v_2}{\sqrt{2}} & 0 \\
0 & M_2 & \frac{g v_1}{\sqrt{2}} & -\frac{g v_2}{\sqrt{2}} & 0 \\
-\frac{g' v_1}{\sqrt{2}} & \frac{g v_1}{\sqrt{2}} & 0 & -\mu_{\text{eff}} & -\lambda v_2 \\
\frac{g' v_2}{\sqrt{2}} & -\frac{g v_2}{\sqrt{2}} & -\mu_{\text{eff}} & 0 & -\lambda v_1 \\
0 & 0 & -\lambda v_2 & -\lambda v_1 & 2\kappa v_s
\end{pmatrix}.$$ \hfill (6)

Typically, the mass of the singlino-like neutralino is given as $m_{\tilde{S}} \simeq |2\kappa v_s|$.

The Higgs mass matrices for the basis (H', h', S_R) and (A', S_I, G) (defined below) are given as

$$V = \frac{1}{2} \begin{pmatrix}
H' & h' & S_R
\end{pmatrix}
\begin{pmatrix}
\tilde{M}_{R11}^2 & \tilde{M}_{R12}^2 & \tilde{M}_{R13}^2 \\
\tilde{M}_{R12}^2 & \tilde{M}_{R22}^2 & \tilde{M}_{R23}^2 \\
\tilde{M}_{R13}^2 & \tilde{M}_{R23}^2 & \tilde{M}_{R33}^2
\end{pmatrix}
\begin{pmatrix}
H' \\
h' \\
S_R
\end{pmatrix}
+ \frac{1}{2} \begin{pmatrix}
A' & S_I & G
\end{pmatrix}
\begin{pmatrix}
\tilde{M}_{I11}^2 & \tilde{M}_{I12}^2 & 0 \\
\tilde{M}_{I12}^2 & \tilde{M}_{I22}^2 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
A' \\
S_I \\
G
\end{pmatrix}.$$ \hfill (7)
\[\tilde{M}_{R11}^2 = M_A^2 + M_Z^2 \sin^2 2\beta + \lambda^2 v^2 \cos^2 2\beta, \]
\[\tilde{M}_{R22}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta, \]
\[\tilde{M}_{R33}^2 = \frac{\lambda A \lambda v^2}{2v_s} \sin 2\beta + \kappa v_s (A_\kappa + 4\kappa v_s), \]
\[\tilde{M}_{R12}^2 = M_Z^2 \sin 2\beta \cos 2\beta - \lambda v^2 \sin 2\beta \cos 2\beta, \]
\[\tilde{M}_{R13}^2 = \lambda v (2\kappa v_s + A_\lambda) \cos 2\beta, \]
\[\tilde{M}_{R23}^2 = \lambda v (2\lambda v_s - (2\kappa v_s + A_\lambda) \sin 2\beta), \]
\[\tilde{M}_{I11}^2 = M_A^2 + \lambda^2 v^2; \]
\[\tilde{M}_{I22}^2 = \frac{\lambda A \lambda v^2}{2v_s} \sin 2\beta + 2\lambda \kappa v^2 \sin 2\beta - 3\kappa A_\kappa \sin 2\beta, \]
\[\tilde{M}_{I12}^2 = \lambda v (-2\kappa v_s + A_\lambda), \]
\[M_A^2 \equiv \frac{2\mu_{\text{eff}} (A_\lambda + \kappa v_s)}{\sin 2\beta} - \lambda^2 v^2. \]

Here, the convenient basis \((H', h', S_R)\) and \((A', S_I, G)\) are defined by

\[
\begin{pmatrix}
H_{1R} \\
H_{2R} \\
S_R
\end{pmatrix} \equiv
\begin{pmatrix}
\sin \beta & \cos \beta & 0 \\
-\cos \beta & \sin \beta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
H' \\
h' \\
S_R
\end{pmatrix},
\]

\[
\begin{pmatrix}
H_{1I} \\
H_{2I} \\
S_I
\end{pmatrix} \equiv
\begin{pmatrix}
\sin \beta & 0 & -\cos \beta \\
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
A' \\
S_I \\
G
\end{pmatrix}.
\]

One of the NMSSM specific \(A\) terms \(A_\lambda\) plays two important roles in determining the properties of the singlet particles and the Higgs mass spectrum. First, the mass scale of the heavy Higgs in Eq. (17) can be controlled by \(A_\lambda\). Second, a singlet-doublet mixing for the SM-like Higgs boson can also be controlled by \(A_\lambda\). Even if the mass of the singlet-like Higgs boson is heavy, the effect of the singlet-doublet mixing does not decouple. When the lightest CP even Higgs boson is the SM-like one and \(M_A\) is very large, the contribution of an off-diagonal mass term \(\tilde{M}_{R23}^2\) (Eq. (13)) to the mass of the SM-like Higgs boson is roughly estimated as follows:\(^{\#1}\)

\[\Delta m_{h_1}^2 \sim -\left(\frac{\tilde{M}_{R23}^2}{M_{R33}^2}\right)^2 \sim -O(v^2), \]

\(^{\#1}\)On the other hand, the contribution to the singlet component of the SM-like Higgs mass eigenstate is decoupled in proportion to \(\tilde{M}_{R23}^2/M_{R33}^2\).
which leads to a too light SM-like Higgs boson mass. This undesirable negative contribution via the singlet-doublet mixing can be avoided if \(\lambda \ll 1 \) or when the following condition is satisfied,

\[
A_\lambda = \frac{2\lambda v_s}{\sin 2\beta} - 2\kappa v_s \sim \frac{2m_\tilde{g}}{\sin 2\beta} - m_\tilde{g}.
\]

These conditions also suppress the off-diagonal mass term \(\tilde{M}_{R23} \).

\section{Explanation of the ATLAS on-\(Z \) excess}

In this section, we give an explanation of the ATLAS \(Z+\text{jets}+E_T^{\text{miss}} \) excess in the NMSSM. In order to explain the signals of the ATLAS on-\(Z \) excess by the gluino pair production, we consider the following mass spectrum,

\[
m_\tilde{g} \lesssim 1 \text{ TeV},
m_{\text{Higgsino,NLSP}} \gtrsim m_\tilde{g} - 300 \text{ GeV},
m_{\text{singlino,LSP}} \simeq m_{\text{Higgsino,NLSP}} - 100 \text{ GeV}.
\]

The reason to choose the above mass spectrum is described below.

In order to explain the ATLAS on-\(Z \) excess by the gluino production, the following items are required.

- The gluino mass is required to be lighter than about 1.2 TeV for a large enough production cross section to explain the number of the excess \cite{6}.
- In the dominant gluino decay chain, at least one \(Z \) boson emission like \(\tilde{g} \to X+\text{NLSP} \to X + Z + \text{LSP} \) is required, where \(X \) denotes SM colored particles.
- Since \(Z \) bosons dominantly decay hadronically, multi jets+\(E_T^{\text{miss}} \) searches put severe constraints. In order to ameliorate these constraints, the \(Z \) boson is required to be emitted rather softly. In addition, the decay of the NLSP into the Higgs boson + LSP is required to be suppressed so that the \(Z \) boson production is enhanced. This requirement also helps to evade the multi-jets constraints caused by the Higgs boson decay.
- In order to shift the jet multiplicity distribution to smaller values as is favored by the ATLAS result, the loop-induced gluino two-body decay is required to become dominant channel. This requirement is also advantageous to evade the multi-jets constraints.

To satisfy the above conditions, we consider the following mass spectrum in the NMSSM. First, in order to enhance the soft \(Z \) boson production, we assume a slight degeneracy between the NLSP and the LSP; \(m_\tilde{g} < m_{\text{NLSP}} - m_{\text{LSP}} < m_h \).

Next, in order for the gluino two-body decay to be a dominant channel, we assume that the gluino is lighter than the squarks, the bino, and the wino, while it is heavier.
than the Higgsinos and the singlino.#2 Besides, to suppress the decay of the gluino into $t\bar{t}(tb, b\bar{t}) + \text{Higgsino}$ kinematically, we assume a slight degeneracy between the gluino and the Higgsino: $m_{\tilde{g}} - m_{\text{Higgsino}} \lesssim 300$ GeV. Finally, to suppress the decay of the gluino into $b\bar{b} + \text{Higgsino}$, we take the squark masses to be of order of 10 TeV. Note that the loop-induced gluino two-body decay into the gluon + Higgsino is relatively enhanced by a factor $(\ln(m_{\tilde{t}}/m_{\tilde{t}}))^2$ [15,21,22].

With the above mass spectrum, the Z boson is produced by the decay of the NLSP Higgsino-like neutralino into the LSP singlino-like neutralino. In terms of the model parameters, the Higgsino mass is typically given by $|\lambda v_s|$ and the singlino mass is given by $|2\kappa v_s|$. Hence, $\lambda \sim 2\kappa$ to achieve the above mass spectrum.

Altogether, we consider the mass spectrum in Eq. (22), in which the typical decay chain of the gluino is $\tilde{g} \to g\tilde{\chi}_1^0 \to gZ\tilde{\chi}_1^0$, where $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ are the Higgsino and the singlino-like neutralinos, respectively. The diagram is drawn in Figure 1. Note that due to small couplings between the singlino and the colored sector, the direct decay of the gluino into the singlino-like neutralino is suppressed. This is the advantage of the singlino-like LSP compared with the bino LSP scenario where the gluino decay mode into the bino LSP with jets can be comparable to the mode into the Higgsino NLSP depending on $\tan\beta$.

Keeping above arguments in mind, we find two distinct valid parameter regions where the ATLAS on-Z excess can be explained. One is a region with a small λ and the other is the one with a large λ. As we will discuss in the next section, these two regions have different dark matter properties. It should be noted that the NMSSM in the small λ region is almost the same with the MSSM plus an additional gauge singlet fermion whose couplings to the MSSM sector are suppressed as in the simplified goldstini model [16]. In this region, the analyses of Ref. [16] would be applied. In Table 1, we show the two benchmark parameter sets in the two distinct parameter regions which exemplify the small λ and the large λ regions, respectively. In our analysis, we use the spectrum calculator \textit{NMSSMTools 4.7.0} [26,27] and also use the decay width calculator \textit{NMSDECAY} [28]. In the table, we also show the properties of the dark matter which are calculated using \textit{MicrOMEGAs4.1.8} [29,30] (see next section). Note that we take $M_1 = M_2 = 1.5$ TeV in both benchmark points, and the bino and winos are decoupled enough.

At the small λ benchmark point, the mass of the SM-like Higgs boson is given by the radiative correction from the stop loop diagrams, which requires a large $\tan\beta$. This large $\tan\beta$ leads to a large decay width of $\tilde{g} \to b\bar{b}(tb, b\bar{t}) + \text{Higgsino}$ via an enhancement of the bottom Yukawa. Even for a rather large $\tan\beta$, however, we have confirmed that the dominant decay channel of the gluino is $\tilde{g} \to g + \text{Higgsino}$ (see Table 1).

#2 This spectrum requires non-universal gaugino masses. We note that the doublet-triplet splitting of the Higgs is naturally achieved in grand unified theories with product gauge groups [24] (see Ref. [25] and references therein for related discussions), which in general predict non-universal gaugino masses.
At the large λ benchmark point, the mass of the SM-like Higgs boson is given by both the radiative correction and an additional F-term contribution which requires a small $\tan \beta$ (see Eq. (9)). Such a large λ also brings the undesirable negative contribution to the lightest CP-even Higgs mass in Eq. (20). To avoid this problem, we choose A_{λ} that suppresses this negative contribution according to Eq. (21).

Note that when one takes A_{λ} to be $O(1)$ TeV, this equation also suggests the small $\tan \beta$.

The large λ also leads to a certain singlino-Higgsino mixing, so that the decay branch $\tilde{g} \rightarrow g + \text{singlino-like neutralino}$ exists. Even with such contributions, we have again confirmed that the dominant decay channel is $\tilde{g} \rightarrow g + \text{Higgsino}$ (see Table 1).

To investigate the number of the SUSY events in the ATLAS on-Z search and to check the experimental constraints from the other SUSY searches at the ATLAS and CMS collaborations, we use CheckMATE 1.2.1 [12, 31] which incorporates DELPHES 3 [32] and FastJet [33] internally. Signal events are generated by MadGraph5 v2.2.3 [34] connected to Pythia 6.4 [35] where the MLM matching scheme is used with a matching scale at 150 GeV [36]. The parton distribution functions are CTEQ6L1 [37]. We use the gluino production cross sections at the next-to-leading-logarithmic accuracy given in Ref. [38] with NLL-fast [39–42].

As a result, we find that the SUSY events can explain the ATLAS on-Z excess within 1σ without conflicting with any LHC constraints at 95% CL, including the CMS on-Z result for both benchmark points. In addition, the lightest CP-even Higgs boson mass is 125 GeV and the relic abundance of the singlino-like neutralino is also consistent with the observed values within 2\sigma [45].

Before closing this section, let us comment on the distributions of the jet multiplicity, E_T^{miss} and H_T in the on-Z signal region. In Fig. 2, we show the distributions of the jet multiplicity, E_T^{miss} and H_T for the small λ and large λ benchmark points, respectively. Note that we combine the ee and $\mu\mu$ channels of the ATLAS results, although the efficiencies of the channels are different from each other. As shown in Ref. [5], the jet multiplicity of the observed data is typically 2–5 jets while the multiplicity larger than 6 is disfavored. For both benchmark points, the jet multiplicity of the NMSSM contributions is peaked at around 4–5, which originates from two gluon jets in two gluino decays, two quarks from a Z-boson decay in one of the gluino decay chain, and an occasionally radiated jet. The predicted distributions of the jet multiplicity fit the ATLAS data very well, which confirms the advantage of the dominance of the gluino two body decay [16]. It can be seen that the distributions of E_T^{miss} and H_T are also consistent with the data.

*#3The singlet component of the lightest CP-even Higgs boson is suppressed by a large singlet scalar mass. Then the Higgs couplings are almost equivalent to the ones in the SM even if we do not choose such a A_{λ}.

*#4In the NMSSMTools 4.7.0, the Higgs boson masses are calculated at a full one-loop plus a two-loop $O(\alpha_t \alpha_s + \alpha_b \alpha_s)$ level [43]. When the squark mass is taken to be 10 TeV, a theoretical uncertainty of the SM-like Higgs boson mass from such the corrections is about 5 GeV in the MSSM case. Once a resummation of large logs is included as higher-loop corrections, this uncertainty can be reduced to around 1 GeV and the central value is raised about 5 GeV (see e.g. Ref. [44]).
Table 1. Two benchmark parameter sets. In the line of $\text{Br}(\tilde{g} \to \text{others})$, parentheses represent the dominant decay channel. In both benchmark points, the lightest neutralino $\tilde{\chi}_1^0$, the second lightest CP-even Higgs h_2, and the lightest CP-odd Higgs a_1 are the mass eigenstates dominated by singlet contributions.

	small λ	large λ
λ	0.080	0.435
κ	0.033	0.185
$\tan \beta$	30	3
A_λ [GeV]	-146	1500
A_κ [GeV]	-50	-200
μ_{eff} [GeV]	620	600
$m_{\tilde{g}}$ [TeV]	10	10
A_q [TeV]	6	0
$m_{\tilde{q}}$ [GeV]	900	925
$m_{\tilde{\chi}^0_1}$ [GeV]	641	625
$m_{\tilde{\chi}^0_2}$ [GeV]	636	624
$m_{\tilde{\chi}^0_3}$ [GeV]	527	519
$m_{\tilde{\chi}^\pm_1}$ [GeV]	637	615
m_{h_1} [GeV]	125	125
m_{h_2} [GeV]	500	453
m_{h_3} [GeV]	1061	1831
m_{a_1} [GeV]	195	439
m_{a_2} [GeV]	1061	1829
m_{H^+} [GeV]	1056	1822
$\text{Br}(\tilde{g} \to g\tilde{\chi}^0_{2,3})$	0.79	0.70
$\text{Br}(\tilde{g} \to g\tilde{\chi}^0_1)$	0.008	0.12
$\text{Br}(\tilde{g} \to \text{others})$	0.20 ($bb\tilde{\chi}^0_{2,3}$)	0.18 ($tb\tilde{\chi}^\mp_1$)
$\text{Br}(\tilde{\chi}^0_{2,3} \to Z\tilde{\chi}^0_1)$	1.00	1.00
SUSY events in ATLAS on-Z	14	14
$\Omega_\chi h^2$	0.118	0.121
σ_{SI} [cm2]	4.0×10^{-47}	2.8×10^{-45}
Higgs coupling κ_V	0.997	0.9997
Higgs coupling κ_b	1.02	1.02
Figure 2. The distributions of the jet multiplicity (top), E_T^{miss} (middle) and H_T (bottom) in the ATLAS on-Z signal region. The ATLAS data points are shown by black points with combined errors. The black line shows the Standard Model contributions whose errors are shown by gray shade. The expected distributions for the two benchmark points are shown by the blue (small λ) and the red (large λ) lines. The dotted lines represent the error of the NMSSM contributions which is dominated by the uncertainty of the gluino production cross section of about 30%. We ignore the uncertainty of the estimation of the efficiency in CheckMATE 1.2.1.
4 Dark matter property

In this section, we discuss the properties of dark matter in the small and large λ regions as exemplified in the above two benchmark points (see Table 1). In the small λ region, the lightest neutralino is almost singlino-like. In most cases, such a singlino-like LSP results in overabundant dark matter in the universe because its annihilation cross section is too small. The overabundance is, however, avoided when the heavy Higgs masses are about twice of the mass of the singlino dark matter. Such a mass spectrum can be achieved by tuning the parameter A_λ [46]. With this tuning, the singlino-like neutralino annihilates resonantly via the s-channel heavy Higgs boson exchange, which significantly enhances the annihilation cross section. In this way, the observed dark matter density is explained by the singlino-like neutralino at the small λ benchmark point in spite of the weakness of couplings. It should be noted that due to a suppressed coupling between the singlino and the SM-like Higgs boson, the spin-independent dark matter-nucleon elastic scattering cross section is much lower than the reaches in currently proposed direct dark matter searches.

In the large λ region, on the other hand, there is a certain singlino-Higgsino mixing. The Higgsino components in the LSP can enhance the annihilation cross section, so that the tuning of the heavy Higgs mass is not required. In addition, sizable κ can also enhance the annihilation cross section. It is because that contributions of diagrams of s-channel a_s boson exchange into fermions [49] and t-channel $\tilde{\chi}^0_1$ exchange into $h_s + a_s$ [46] become efficient when κ is sizable, where both a_s and h_s are the singlet-like scalar bosons. In fact, at the large λ benchmark point, the contribution of a process $\tilde{\chi}^0_1\tilde{\chi}^0_1 \to t\bar{t}$ to the annihilation cross section is 79%, and $\tilde{\chi}^0_1\tilde{\chi}^0_1 \to h_2a_1$ is 15%, where a dominant decay channel of a_1 is $t\bar{t}$.

The singlino-Higgsino mixing also contributes to the spin-independent dark matter-nucleon elastic scattering cross section at the large λ benchmark point. We found that the typical scattering cross section around the benchmark point is a little smaller than a current experimental bound by LUX [50], and proposed future experiments for the direct dark matter search can probe around this benchmark point [51–54].

5 Higgs sector searches at the LHC

In this section, we discuss the searches for the Higgs sector at the LHC. First, we consider the heavy doublet-like Higgses h_3 and a_2. Successful parameter points in the small λ region always predict that the heavy doublet-like Higgses have masses around 1 TeV so that the singlino-like neutralino annihilates resonantly via the s-channel heavy Higgses exchanges. Interestingly, the 14 TeV LHC with a luminosity of 300 fb$^{-1}$ can probe such a charged Higgs directly by the channel of $pp \to tbH^+ \to t\bar{t}b\bar{t}$ due to a

#5The other possibility is a resonant annihilation via the SM Higgs or Z boson [46–48]. However, due to a large mass difference between the NLSP and singlino, the emitted Z boson becomes energetic.
tan β enhancement of the bottom Yukawa [55]. In the large λ region, although the production cross section of the heavy doublet-like Higgses is small, a high-luminosity LHC can probe them through the top Yukawa via the same channel [55].

Next, we consider the singlet-like scalars h_2 and a_1. The masses of the singlet-like scalars tend to be within the TeV range in our scenario. This is because typical masses of the singlet scalars are controlled by κ_v, which also determines the singlino mass and is taken as about 500 GeV in our scenario.

The singlet-like CP-even Higgs boson h_2 mainly decays into WW and ZZ due to an enhancement of the longitudinally polarized gauge bosons when the decay width into double Higgs, h_1h_1, is suppressed. In our benchmark points, we find that the gluon-gluon (vector boson) fusion cross sections of pp → h_2(jj) → WW(jj) are 8 fb (1 fb) at the small λ benchmark point, and 0.2–20 fb (0.2–4 fb) at the large λ benchmark point for √s = 14 TeV, where we vary A_λ in the range of 1500–1100 GeV in the large λ benchmark point. Within this range of A_λ, the reduction of the SM-like Higgs boson mass (see Eq. (20)) can be compensated by taking a large trilinear coupling between the up-type Higgs doublet and stops. For a smaller A_λ, h_2 contains more doublet components and hence the production cross section is larger. The current experimental upper bounds for the gluon-gluon (vector boson) fusion cross sections are 200 (100) fb for m_{h_2} = 500 GeV at √s = 8 TeV [58].

On the other hand, the singlet-like CP-odd Higgs boson a_1 mainly decays into t¯t. The cross section of pp → a_1 → t¯t is 1 fb at √s = 14 TeV at the large λ benchmark point. The current upper bound is 2 pb for m_{a_1} = 500 GeV at √s = 8 TeV [59]. Therefore, the direct search for such the singlet-like Higgses would be challenging. It is recently shown that the precision measurement of the double Higgs production can probe the singlet-like Higgs bosons through the interference effect between a resonance production of the singlet-like Higgs and SM processes [60–64]. This resonance signal, however, would become narrower than results in the literature due to the small singlet-doublet mixing in our benchmark points.

6 Conclusion

In this paper, we have studied a possible explanation of the ATLAS on-Z excess in the NMSSM by the gluino production via typical decay chains, ˜g → gχ^0_{2,3} → gZχ^0_1, with ˜χ^0_{2,3} and ˜χ^0_1 being the Higgsino and the singlino-like neutralinos, respectively. We found two distinct benchmark parameter sets. At the benchmark points, the observed dark matter density is also explained by the thermal relic abundance of the singlino-like neutralino. In addition, it is found that the expected distributions of

#6 In the small λ region, another promising channel for the heavy doublet-like Higgs searches is pp → h_3/a_2 → ττ [56,57].

#7 In the small λ benchmark point, a_1 → t¯t is forbidden by the kinematics, and mainly decays into bb. However, pp → a_1 → bb cannot be probed due to enormous background.
the jet multiplicity, E_T^{miss} and H_T for our benchmark points are consistent with the ATLAS data.

In the small λ region, we find that the 14 TeV LHC with a luminosity of 300 fb$^{-1}$ can probe the 1 TeV charged Higgs directly by the channel of $pp \rightarrow t\bar{b}H^+ \rightarrow t\bar{b}t\bar{b}$. On the other hand, in the large λ region, we find that proposed future experiments for the direct dark matter search can probe our scenario at around the benchmark point.

Acknowledgements

The authors would like to thank Satoshi Shirai for useful discussions. This work is supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) KAKENHI, Japan, No. 24740151 and No. 15H05889 (M.I.), and No. 25105011 (M.I. and T.K.); Grant-in-Aid No. 26287039 (M.I.) from the Japan Society for the Promotion of Science (JSPS) KAKENHI; and by the World Premier International Research Center Initiative (WPI), MEXT, Japan (M.I.). K.H. was supported in part by a JSPS Research Fellowship for Young Scientists.

References

[1] J. E. Kim and H. P. Nilles, Phys. Lett. B 138, 150 (1984).
[2] P. Fayet, Nucl. Phys. B 90, 104 (1975).
[3] H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. B 120, 346 (1983).
[4] J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B 222, 11 (1983).
[5] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75, no. 7, 318 (2015) [arXiv:1503.03290 [hep-ex]].
[6] G. Barenboim, J. Bernabeu, V. A. Mitsou, E. Romero, E. Torro and O. Vives, arXiv:1503.04184 [hep-ph].
[7] V. Khachatryan et al. [CMS Collaboration], JHEP 1504, 124 (2015) [arXiv:1502.06031 [hep-ex]].
[8] N. Vignaroli, Phys. Rev. D 91, no. 11, 115009 (2015) [arXiv:1504.01768 [hep-ph]].
[9] U. Ellwanger, Eur. Phys. J. C 75, no. 8, 367 (2015) [arXiv:1504.02244 [hep-ph]].
[10] B. Allanach, A. Raklev and A. Kvellestad, Phys. Rev. D 91, 095016 (2015) [arXiv:1504.02752 [hep-ph]].
[11] A. Kobakhidze, A. Saavedra, L. Wu and J. M. Yang, arXiv:1504.04390 [hep-ph].
[12] J. Cao, L. Shang, J. M. Yang and Y. Zhang, JHEP 1506, 152 (2015) [arXiv:1504.07869 [hep-ph]].
[13] B. A. Dobrescu, arXiv:1506.04435 [hep-ph].

[14] M. Cahill-Rowley, J. L. Hewett, A. Ismail and T. G. Rizzo, arXiv:1506.05799 [hep-ph].

[15] X. Lu, S. Shirai and T. Terada, arXiv:1506.07161 [hep-ph].

[16] S. P. Liew, A. Mariotti, K. Mawatari, K. Sakurai and M. Vereecken, arXiv:1506.08803 [hep-ph].

[17] J. Cao, L. Shang, J. M. Yang and Y. Zhang, arXiv:1507.08471 [hep-ph].

[18] J. H. Collins, J. A. Dror and M. Farina, arXiv:1508.02419 [hep-ph].

[19] R. Ding, Y. Fan, J. Li, T. Li and B. Zhu, arXiv:1508.07452 [hep-ph].

[20] C. W. Chiang, K. Harigaya, M. Ike and T. T. Yanagida, arXiv:1510.04047 [hep-ph].

[21] H. Baer, X. Tata and J. Woodside, Phys. Rev. D 42, 1568 (1990).

[22] P. Gambino, G. F. Giudice and P. Slavich, Nucl. Phys. B 726, 35 (2005) [hep-ph/0506214].

[23] U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496, 1 (2010) [arXiv:0910.1785 [hep-ph]].

[24] K. I. Izawa and T. Yanagida, Prog. Theor. Phys. 97, 913 (1997) [hep-ph/9703350].

[25] K. Harigaya, M. Ibe and M. Suzuki, JHEP 1509, 155 (2015) [arXiv:1505.05024 [hep-ph]].

[26] U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0502, 066 (2005) [hep-ph/0406215].

[27] U. Ellwanger and C. Hugonie, Comput. Phys. Commun. 175, 290 (2006) [hep-ph/0508022].

[28] D. Das, U. Ellwanger and A. M. Teixeira, Comput. Phys. Commun. 183, 774 (2012) [arXiv:1106.5633 [hep-ph]].

[29] Y. Giomataris, P. Rebourgard, J. P. Robert and G. Charpak, Nucl. Instrum. Meth. A 376, 29 (1996).

[30] G. Bellanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 192, 322 (2015) [arXiv:1407.6129 [hep-ph]].

[31] M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J. S. Kim, Comput. Phys. Commun. 187, 227 (2014) [arXiv:1312.2591 [hep-ph]].

[32] J. de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402, 057 (2014) [arXiv:1307.6346 [hep-ex]].

[33] M. Cacciari, hep-ph/0607071; M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72, 1896 (2012) [arXiv:1111.6097 [hep-ph]].
[34] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106, 128 (2011) [arXiv:1106.0522 [hep-ph]]; J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301 [hep-ph]].

[35] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [hep-ph/0603175].

[36] J. Alwall et al., Eur. Phys. J. C 53, 473 (2008) [arXiv:0706.2569 [hep-ph]].

[37] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2002) [hep-ph/0201195].

[38] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVgluglu

[39] W. Beenakker, C. Borschensky, M. Kramer, A. Kulesza, E. Laenen, S. Marzani and J. Rojo, arXiv:1510.00375 [hep-ph].

[40] W. Beenakker, R. Hopker, M. Spira and P. M. Zerwas, Nucl. Phys. B 492, 51 (1997) [hep-ph/9610490].

[41] A. Kulesza and L. Motyka, Phys. Rev. Lett. 102, 111802 (2009) [arXiv:0807.2405 [hep-ph]]; Phys. Rev. D 80, 095004 (2009) [arXiv:0905.4749 [hep-ph]].

[42] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen and I. Niessen, JHEP 0912, 041 (2009) [arXiv:0909.4418 [hep-ph]].

[43] G. Degrassi and P. Slavich, Nucl. Phys. B 825, 119 (2010) [arXiv:0907.4682 [hep-ph]].

[44] T. Kitahara, arXiv:1508.04810 [hep-ph].

[45] P. A. R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astro-ph.CO].

[46] G. Belanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, JCAP 0509, 001 (2005) [hep-ph/0505142].

[47] J. J. Cao, Z. X. Heng, J. M. Yang, Y. M. Zhang and J. Y. Zhu, JHEP 1203, 086 (2012) [arXiv:1202.5821 [hep-ph]].

[48] K. Ishikawa, T. Kitahara and M. Takimoto, Phys. Rev. Lett. 113, no. 13, 131801 (2014) [arXiv:1405.7371 [hep-ph]].

[49] J. Hasenkamp and M. W. Winkler, Nucl. Phys. B 877, 419 (2013) [arXiv:1308.2678 [hep-ph]].

[50] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 112, 091303 (2014) [arXiv:1310.8214 [astro-ph.CO]].

[51] D. S. Akerib et al. [LUX Collaboration], Nucl. Instrum. Meth. A 704, 111 (2013) [arXiv:1211.3788 [physics.ins-det]].

[52] E. Aprile [XENON1T Collaboration], Springer Proc. Phys. 148, 93 (2013) [arXiv:1206.6288 [astro-ph.IM]].

[53] K. Hiraide [XMASS Collaboration], arXiv:1506.08939 [physics.ins-det].
[54] E. Pantic[DarkSide collaboration], Talk given at UCLA 2014 by DarkSide collaboration, 2014.

[55] J. Hajer, Y. Y. Li, T. Liu and J. F. H. Shiu, arXiv:1504.07617 [hep-ph].

[56] A. Arbey, M. Battaglia and F. Mahmoudi, Phys. Rev. D 88, no. 1, 015007 (2013) [arXiv:1303.7450 [hep-ph]].

[57] T. Li, Phys. Lett. B 728, 77 (2014) [arXiv:1309.6713 [hep-ph]].

[58] G. Aad et al. [ATLAS Collaboration], arXiv:1509.00389 [hep-ex].

[59] G. Aad et al. [ATLAS Collaboration], arXiv:1505.07018 [hep-ex].

[60] M. J. Dolan, C. Englert and M. Spannowsky, Phys. Rev. D 87, no. 5, 055002 (2013) [arXiv:1210.8166 [hep-ph]].

[61] J. M. No and M. Ramsey-Musolf, Phys. Rev. D 89, no. 9, 095031 (2014) [arXiv:1310.6035 [hep-ph]].

[62] C. Y. Chen, S. Dawson and I. M. Lewis, Phys. Rev. D 91, no. 3, 035015 (2015) [arXiv:1410.5488 [hep-ph]].

[63] V. Martin Lozano, J. M. Moreno and C. B. Park, JHEP 1508, 004 (2015) [arXiv:1501.03799 [hep-ph]].

[64] S. Dawson and I. M. Lewis, arXiv:1508.05397 [hep-ph].