ARTICLE

The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. Therefore, posttranslational methylation of flagellin facilitates adhesion of Salmonella Typhimurium to hydrophobic host cell surfaces, and contributes to efficient gut colonization and host infection.

https://doi.org/10.1038/s41467-020-15738-3

OPEN

Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion

Julia A. Horstmann1,2,13, Michele Lunelli3,13, Hélène Cazzola4, Johannes Heidemann5, Caroline Kühne6, Pascal Steffen7, Sandra Szefs1, Claire Rossi4, Ravi K. Lokareddy8, Chu Wang3, Laurine Lemaire4, Kelly T. Hughes9, Charlotte Uetrecht5,10, Hartmut Schlüter7, Guntram A. Grassl11, Theresia E. B. Stradal2, Yannick Rossez4, Michael Kolbe3,12,14✉ & Marc Erhardt1,6,14✉

1 Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. 2 Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. 3 Department for Structural Infection Biology, Center for Structural Systems Biology (CSSB) & Helmholtz Centre for Infection Research, Notkestraße 85, 22607 Hamburg, Germany. 4 Université de Technologie de Compiègne, Alliance Sorbonne Université, UMR7025 CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Coutoulenc, CS 60319, 60203 Compiègne, France. 5 Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany. 6 Humboldt-Universität zu Berlin, Institute for Biology – Bacterial Physiology, Philippstr. 13, 10115 Berlin, Germany. 7 Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. 8 Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA. 9 University of Utah, Department of Biology, Salt Lake City, UT 84112, USA. 10 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany. 11 Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. 12 MIN-Faculty University Hamburg, Rothenbaumchaussee 19, 20148 Hamburg, Germany. 13 These authors contributed equally: Julia A. Horstmann, Michele Lunelli. 14 These authors jointly supervised this work: Michael Kolbe, Marc Erhardt.

✉email: michael.kolbe@helmholtz-hzi.de; marc.erhardt@hu-berlin.de
The Gram-negative enteropathogen *Salmonella enterica* serovar Typhimurium (*Salmonella* Typhimurium) uses a variety of strategies to successfully enter and replicate within a host. In this respect, bacterial motility enables the directed movement of the bacteria towards nutrients or the target site of infection. A rotary nanomachine, the flagellum, mediates motility of many bacteria, including *Salmonella* Typhimurium. Flagella also play a central role in other infection processes, involving biofilm formation, immune system modulation, and adhesion.

The eukaryotic plasma membrane plays an important role in the interaction of flagellated bacteria with host cells during the early stages of infection. The flagella of *Salmonella* Typhimurium, *Escherichia coli* and *Pseudomonas aeruginosa* can function as adhesion molecules, mediating the contact to various lipidic plasma membrane components, including cholesterol, phospholipids, sulpholipids and the gangliosides GM1 and aGM1.

Structurally, the flagellum consists of three main parts: the basal body embedded within the inner and outer membranes of the bacterium, a flexible linking structure—the hook, and the long external filament, which functions as the propeller of the motility device. The filament is formed by more than 20,000 subunits of a single protein, flagellin. Many *S. enterica* serovars express one of two distinct flagellins, FliC or FljB, in a process called flagellar phase variation. FliC-expressing bacteria display a distinct motility behavior on host cell surfaces and a competitive advantage in colonization of the intestinal epithelia compared to FljB-expressing bacteria. However, while the structure of FliC has been determined previously, the structure of FljB remained unknown.

The many thousand surface-exposed flagellin molecules are a prime target of the host’s immune system. Accordingly, many flagellated bacteria have evolved mechanisms to prevent flagellin recognition, for example by posttranslational modifications of flagellin. Flagellin glycosylation is relatively common among *Enterobacteriaceae*, *Campylobacter, Aeromonas*, and *Pseudomonas* species and plays a critical role in adhesion, biofilm formation or mimicry of host cell surface glycans.

Salmonella Typhimurium does not posttranslationally glycosylate its flagellins. However, ε-N-methylation at lysine residues of flagellin via the methylase FliB has been reported. Although flagellin methylation was first reported in 1959, the physiological role of the methylation remained elusive. Previous studies suggested that the absence of FliB had no significant effect on swimming and swarming motility. However, the conservation of flagella methylation in *Salmonella* and other *Enterobacteriaceae* suggests that methylated flagella are important for some other aspect of the life style of the bacteria. In the present study, we therefore investigated the hypothesis that flagella methylation contributes to some aspect of virulence of *Salmonella* Typhimurium.

We find that methylation of flagella facilitates adhesion of *Salmonella* Typhimurium to hydrophobic host cell surfaces. Thus, the posttranslational methylation of flagellin plays an important role for invasion of host cells, and accordingly, productive colonization of the host’s epithelium.

Results

Methylated lysines residues in flagellin and structure of FljB. Previous studies suggested that the flagellins of *Salmonella* Typhimurium are posttranslationally methylated, however, the identity of the methylated lysine residues remained largely unknown. We performed mass spectrometry analyses with high sequence coverage of both flagellins FliC and FljB isolated from *Salmonella* Typhimurium genetically locked in expression of FliC (fliC^{ON}) or FljB (fljB^{ON}), respectively, and isogenic mutants of the methylase FlkB (∆flkB) (Supplementary Fig. 1). In order to map the identified ε-N-methyl-lysine residues to the structure of both flagellins, we determined the crystal structure of FljB (Fig. 1, Supplementary Note 1). The tertiary structure of FljB resembles, similar to FliC, a boomerang-shaped one arm formed by the D1 domain and the other formed by D2 and D3. However, the variable D3 domain of FljB is rotated about 90° around the axis defined by the D2–D3 arm compared with FliC, resulting in the widening angle of about 20° between the two boomerang arms, consistent with the recently reported structure of flagellar filaments composed of FliJ by cryo-electron microscopy. (Fig. 1b, c, Fig. 2a). Interestingly, the methylated lysine residues are primarily located in the surface-exposed D2 and D3 domains of both flagellins (Fig. 1d, Fig. 2a, Supplementary Note 2). Notably, except for two lysines in FliC and three in FljB, the detected lysine residues were methylated only in the presence of the methylase FlkB and most of the lysines conserved between both flagellins were methylated (Fig. 1d, Supplementary Note 2). We next aligned the amino acid sequences of FljB and FliC up- and downstream of the identified ε-N-methyl-lysine residues (6 residues, Supplementary Fig. 2). Although no clear consensus sequences could be determined, we found prevalence of small (Ala, Gly, Thr, Val, Ser) and negatively charged (Asp) residues around the methylated lysines. Interestingly, a scan of the local amino acid sequences that surround methylated lysines using ScanProsite matched the profile of the bacterial Ig-like domain 1 (Big-I) for 10 modifications in both FljB and FliC, although with low confidence level (Supplementary Table 2). We note that the Big-I domain is present in adhesion proteins of the intimin/invasin family, which are crucial in bacterial pathogenicity mediating host-cell invasion or adherence, suggesting a similar role for bacterial flagellins. Due to the absence of a clear amino acid consensus sequence, we next investigated the secondary structure elements around the methylation sites. We could not, however, identify a specific, conserved secondary structure element (Supplementary Fig. 3). We note that the low number of modified lysines in helices can be explained with the scarcity of this secondary structure element in the D2 and D3 domains.

Flagella methylation contributes to host cell invasion. We next investigated if methylation of FliC and FljB affects flagellar assembly and motility in *Salmonella* Typhimurium. The levels of non-methylated flagellin secreted from a ΔflkB mutant strain were comparable to secretion of methylated FliC or FljB (Fig. 3a). Immunostaining of flagella from the WT and a ΔflkB mutant strain revealed no significant differences in flagella assembly and flagella numbers per cell body (WT = 2.2 ± 1.8; ΔflkB = 2.2 ± 1.5) (Fig. 3b). In agreement with earlier reports, swimming motility of ΔflkB mutant strains in semi-solid agar plates was also not affected (Fig. 3c).

The absence of a motility phenotype in non-methylated flagellin mutants suggested that flagelin methylation might play a role in *Salmonella* virulence. We thus co-injected streptomycin-pre-treated mice with the wildtype (WT) and an isogenic ΔflkB mutant (Fig. 2b). Organ burden analysis 2 days post-infection revealed that the ΔflkB strain was significantly outcompeted by the WT in the gastroenteritis mouse model, especially in the cecal tissue (Fig. 2b, competitive indices >1), suggesting that methylated flagella appear to enhance efficient colonization of the intestinal epithelium.

We next tested if methylated flagella contribute to efficient adhesion and invasion of epithelial cells in vitro (Fig. 4a). We first infected murine MODE-K epithelial cells with the WT and *Salmonella* Typhimurium strains deficient in the methylase FliB.
and determined the number of intracellular bacteria. Invasion was reduced about 50% for the ΔflIB mutant strain independently of the flagellin type (Fig. 4b, top). We also observed a similar invasion defect for the ΔflIB mutant when we forced contact of the bacteria with the epithelial cells using centrifugation (Fig. 4b, bottom), suggesting that the invasion defect of the ΔflIB mutant did not depend on active bacterial motility. We next confirmed that the observed invasion phenotype was due to the lack of flIB by complementing expression of flIB from an inducible Ptet promoter at its native chromosomal locus. Addition of anhydrotetracycline (AnTc) induced flIB expression comparable to levels of the WT and restored invasion of MODE-K epithelial cells (Supplementary Fig. 4). We further tested if the observed invasion defect was dependent on the assembly of the methylated flagellar filament. A hook deletion mutant (ΔflgE) does not express flagellin, whereas a mutant of the hook–filament junction proteins (ΔflgKL) expresses and secretes flagellin, but does not assemble the flagellar filament. The methylase FliB is expressed in both ΔflgE and ΔflgKL mutant backgrounds27. We observed in neither the ΔflgE nor the ΔflgKL mutant a difference in MODE-K epithelial cell invasion in the presence or absence of FliB, suggesting that methylated flagellin must assemble into a functional flagellar filament in order to facilitate epithelial cell invasion (Supplementary Fig. 5).
Methylated flagella facilitate bacterial adhesion. Our results presented above demonstrate that the presence of an assembled, methylated flagellar filament, but not the ability to move per se, contributes to the observed defect of *Salmonella* to invade epithelial cells. We note that our invasion assays report the number of bacteria that were successful in entering the eukaryotic cells. The assay thus reports two separate virulence mechanisms, i.e. successful invasion of epithelial cells is dependent on the *Salmonella* pathogenicity island-1 (*spi-1*) encoded injectisome and requires prior adhesion of the bacteria to the surface of eukaryotic cells, which is mediated through adhesion factors including pili, fimbriae and flagella.

Accordingly, we hypothesized that methylated flagella primarily facilitate bacterial adhesion to epithelial cells. We therefore investigated adhesion of *Salmonella* Typhimurium to MODE-K epithelial cells. In order to dissect flagella methylation-dependent adhesion from flagella methylation-dependent invasion of the epithelial cells, we employed *Salmonella* mutants deleted for *spi-1*, which renders the bacteria unable to invade epithelial cells in an injectisome-dependent manner. We found that adhesion of Δspi-1 *Salmonella* mutants to MODE-K epithelial cells was reduced up to 50% for strains deficient in flagellin methylation (Fig. 4c).

We next generated chromosomal substitution mutants of surface-exposed lysine residues in the D2 and D3 domains of FliC or FljB. As shown in Supplementary Fig. 6, the substitution of nine surface-exposed lysines with arginine in FliC (FliC-K9R) or FljB (FljBΔD3) did not affect motility, but affected bacterial colonization of the murine intestine. a

Methylated flagella promote adhesion to hydrophobic surfaces. Our results described above demonstrate that methylated flagella promote bacterial adhesion to epithelial cells, e.g. through interaction with hydrophobic patches, surface-exposed proteinaceous receptors or glycostructures. However, we did not observe a significant flagella methylation-dependent effect on adhesion of *Salmonella* to various extracellular matrix proteins, nor to the oligosaccharide mannose, which has previously been shown to mediate adhesion of *Salmonella* and *E. coli* to eukaryotic cells.
We next established an in vitro assay to investigate the possibility that the increased hydrophobicity of methylated flagella promotes bacterial adhesion to the hydrophobic plasma membrane (Fig. 5c). This assay is based on the binding of *Salmonella* to giant unilamellar vesicles (GUV) consisting of phosphatidylcholine (PC), the most abundant phospholipid in animal tissues. Notably, we observed a reduction in bacterial adhesion to GUVs consisting of PC for *Salmonella* Typhimurium strains deficient in flagellin methylation, but not for the non-flagellated ΔflgK mutants. In support, a mutant replacing several surface-exposed lysine residues with arginine in the D3 domain of FliC (FliC-K5R) displayed reduced adhesion to GUVs due to exposed lysines in flgK, which supports previous observations that actively rotating flagella are important for the initial interaction with surfaces before biofilm formation40 (Fig. 5c).

In order to validate the contribution of flagella methylation on adhesion of *Salmonella* to phospholipids, we tested adhesion of the WT and ΔfljB mutants to phosphatidylglycerol vesicles. Phosphatidylglycerol (PG) is a minor lipid in higher eukaryotes41 and a negatively charged molecule as opposed to zwitterionic PC. We speculated that ΔfljB mutants might display increased binding to GUVs consisting of PG due to exposed lysines in flagellin. As shown in Fig. 5d, we indeed observed significantly increased adhesion of ΔfljB mutants with non-methylated flagella compared to the respective WT strains.

Discussion

Flagella-dependent motility is crucial for *Salmonella* pathogenesis by enabling directed movement towards host epithelial cells. However, flagella not only play a role in bacterial motility, but also in colonization, adhesion, and biofilm formation40,42,43.

Concerning the role of flagella as an adhesion molecule, it is important to note that the flagellar filament is made of several thousand copies of a single protein, flagellin, which can mediate various interactions with surfaces. Here, we describe a novel mechanism of flagella-dependent adhesion to surface-exposed hydrophobic molecules. This adhesion phenotype is facilitated by methylation of surface-exposed hydrophobic molecules present on the surface of epithelial cells. Consistently, the surface hydrophobicity (So) of purified FliC and FljB flagella was significantly reduced in the absence of lysine methylation (Fig. 5a, b).

We therefore reasoned that the addition of hydrophobic methyl groups to surface-exposed lysine residues (Fig. 2, Supplementary Fig. 9) might affect the hydrophobicity of the flagellar filament and through this mechanism promote bacterial adhesion to hydrophobic molecules present on the surface of epithelial cells. Consistently, the surface hydrophobicity (So) of purified FliC and FljB flagella was significantly reduced in the absence of lysine methylation (Fig. 5a, b).

Fig. 3 Effect of flagella methylation on swimming motility and flagellar assembly. a Secreted flagellins from culture supernatants of *Salmonella* Typhimurium strains locked in expression of either fliC (fliC^{ON}) or FljB (fljB^{ON}). Secreted proteins were precipitated by addition of 10% TCA and fractionated according to their molecular weight by SDS-PAGE. Immunoblotting was performed using α-FliC/FljB antibodies (1:5,000). A representative immunoblot is shown. The experiment has been repeated three times with similar results. b Left: Histograms of the number of flagella per cell of the WT (fliC^{ON}) and an isogenic *fljB* mutant (fliC^{ON} ΔfljB). n = 79 bacteria for fliC^{ON}; n = 89 bacteria for fliC^{ON} ΔfljB. Average flagella numbers were calculated by Gaussian non-linear regression analysis. Right: Representative flagella immunostaining images. Flagellar filaments were immunostained using α-FliC primary (1:1000) and α-rabbit conjugated AlexaFluor 488 secondary antibodies (1:1000; green). DNA was stained with DAPI (blue). Scale bar = 5 μm. c Motility phenotypes of the WT and *fljB* mutants were analyzed in soft-agar plates containing 0.3% agar and quantified after 4 h incubation at 37 °C. Bottom: representative motility plate. Top: The diameters of the motility swarm were measured and normalized to the control strain. The bar graphs represent the mean of n = 10 biologically independent samples for the WT, ΔflJ, fliC^{ON}, fliB^{ON} ΔfljB, and ΔfliCΔfljB and n = 20 biologically independent samples for fliC^{ON} and fliC^{ON} ΔfljB. Replicates are shown as individual data points. Source data are provided as a Source Data file.
lysine residues of flagellin by the methylase FlkB. Flagellin methylation was first described in Salmonella in 195924–26; however, the physiological relevance remained elusive. We demonstrate that FlkB-mediated flagellin methylation is crucial for Salmonella pathogenesis in the mouse model and contributes significantly to adhesion and thus invasion of epithelial cells in vitro, but does neither affect swimming motility nor flagella assembly (Fig. 3). Analysis of the surface hydrophobicity of purified flagella revealed that methylation of the filament subunits increases the hydrophobicity of the outer surface of the flagellar filament, while the lumen of the flagellar filament seems not to be affected (Fig. 5a, b, Supplementary Fig. 9). We note that the preferential methylation of surface-exposed lysine residues suggests that the methylation of lysines depends on some structural feature of flagellin and might occur only after flagellin has at least partially been folded. Further, we found that a single flagellin molecule can contain up to 16 (FliC) or 18 (FljB) surface-exposed methylation sites. Since a flagellar filament is made up of up to 20,000 flagellin copies, the methylation of flagellin subunits might substantially increase the overall hydrophobicity of the flagellum. Consistently, we found that adhesion to the surface of epithelial host cells and phosphatidylcholine vesicles was enhanced by methylated flagella. In support, flagella have been recently implicated to mediate adhesion to abiotic surfaces through hydrophobic interactions44,45. We thus speculate that bacteria use flagella to explore the host cell surface as suggested previously46 and actively rotating flagella might be able to penetrate the lipid bilayer and interact with the fatty acids buried inside the plasma membrane. Increasing the surface hydrophobicity of the flagellar filament through methylation might improve those hydrophobic interactions for productive adhesion to eukaryotic host cells.

Flagellin Methylation Islands (FMI) and thus modification of flagellins by methylation are common in Enterobacteriaceae19. In addition to Salmonella, many bacterial species including Yersinia, Enterobacter, Francobacterium, and Pantoea contain chromosomal FMI loci, which encode orthologues of FlkB. Interestingly, a mutant of a FlkB homolog in Aeromonas also reduced the adherence to HEP2-cells47. In summary, FlkB-dependent methylation of flagella might represent a general mechanism facilitating adhesion to hydrophobic host cell surfaces in a broad range of bacterial species.

Methods

Ethics statement. All animal experiments were performed according to guidelines of the German Law for Animal Protection and with permission of the local ethics committee and the local authority LAVES (Niedersächsisches Landesamt für...
Fig. 5 Flagella methylation mediates adhesion to hydrophobic surfaces.

(a) Methylation increases hydrophobicity of the flagellar filament outer surface. Surface hydrophobicity distribution of the outer (top) and inner (bottom) surface of the FliC flagellar filament [70] according to the Eisenberg scale [71] (from green to white indicates increasing hydrophobicity) with methylation sites highlighted in magenta and non-methylated lysines in black.

(b) Measured surface hydrophobicity (So) of methylated and non-methylated (ΔfliB) flagellins using PRODAN on purified flagellar filaments. n = 6 independent experiments. Replicates are shown as individual data points and statistical significance was determined by a two-tailed Student’s t test (** p < 0.01; *** p < 0.001).

(c) Adhesion of Salmonella Typhimurium to giant unilamellar vesicles (GUV) consisting of phosphatidylcholine (PC) from egg chicken is facilitated by the presence of methylated flagella. Top: schematic illustration of the adhesion of Salmonella to PC-GUVs, which is facilitated by methylated flagella. Bottom: Quantified adhesion of Salmonella mutants to PC-GUVs. WT, ΔfliB, fliBONΔfliB, fliCΔfliB; n = 36; fliBON; n = 35; fliCΔfliB, ΔfliK; n = 18; ΔfliK ΔfliB: n = 16; ΔmotAB: n = 6 biologically independent samples. Replicates are shown as individual data points and statistical significance was determined by a two-tailed Student’s t test (* p < 0.05; ** p < 0.01; *** p < 0.001; ns = not significant). WT vs. ΔfliB: p = 0.0437; fliCΔfliB vs. fliCΔfliB; p = 0.0029, fliBON vs. fliBONΔfliB; p = 0.0009, ΔmotAB vs. ΔmotAB ΔfliB: p = 0.025).

(d) Adhesion of Salmonella Typhimurium to GUVs consisting of phosphatidylglycerol (PG) is decreased by the presence of methylated flagella. Top: schematic illustration of the adhesion of Salmonella mutants to PG-GUVs. Bottom: Quantified adhesion of Salmonella mutants to PG-GUVs. The bar graphs represent the mean of the reported data. WT: n = 30; ΔfliB: n = 24; fliCΔfliB, fliCΔfliB, fliBON and fliBONΔfliB: n = 36 biologically independent samples. Replicates are shown as individual data points and statistical significance were determined by a two-tailed Student’s t test (** p < 0.01; *** p < 0.001). WT vs. ΔfliB: p = 0.0010, fliCΔfliB vs. fliCΔfliB; p < 0.0001, fliBON vs. fliBONΔfliB; p < 0.0001). The bar graphs represent the mean of the reported data. Source data are provided as a Source Data file.
Sequencing. Standard protocols were performed for expression of His-tagged protein. The plasmid contained a A190V mutation as determined by encoding for the protein residues 55-462 was amplified from Salmonella Typhimurium strain SL1344. Bacteria were grown in lysogeny broth (LB) at 37 °C and growth was measured by optical density at 600 nm. For transductional crosses the generalized transducing phage P22 HT105/1 int-201 was used18. Gene deletions or replacements were made using XED recombinase homologous recombination19. All bacterial strains are available upon request.

Cloning and purification of FljB for structural analysis. The truncated gene fljB encoding for the protein residues 55–462 was amplified from Salmonella Typhimurium SL1344 by standard PCR method and cloned into the expression vector pET28a (+) using the restriction sites Nhel and XhoI to generate a N-terminal His-tagged protein. The plasmid contained a A190V mutation as determined by sequencing. Standard protocols were performed for expression of His-tagged FljB55-462 in BL21 (DE3). The protein was purified from the soluble fraction using HisTrap HP and Superdex 75 columns (GE Healthcare) and eluted in the buffer containing 50 mM HEPES (pH 7.4), 150 mM NaCl.

Crystalization and data collection. FljB55-462 was concentrated to 12–15 mg ml−1 and cryo-crystals were grown at 18 °C by hanging drop vapour diffusion against 1 M Tris (pH 8.5), 20% (v/v) PEG4000, 24% (v/v) isopropanol. Diffraction data were collected using crystals flash-frozen in crystallization buffer. Measurements were carried out at the beamline BL14.1 at the Helmholtz-Zentrum Berlin synchrotron Bessy II50,51, using a wavelength of 0.918 Å and at 100 K, which allowed us to obtain a data set to 2.5 Å resolution. Crystals belonged to space group C2, with one FljB in the asymmetric unit (solvent content 51.6%). Indexing, integration, scaling and merging were done using the program XDS25.

Crystal structure determination. The structure was phased by molecular replacement with Phaser version 2.52.23, using the structure of the F41 fragment of FlIC flagellin as search model (PDB 1I0118). Cycles of manual building and refinement using Coot26 and CNS version 1.1327, led to the final structure, which includes residues 55–459 of FljB with the mutation A190V and the residue S54 present in the crystallized construct. 299 water molecules were also placed. Structural comparison between FljB and FlIC was performed using the server PDBeFold v259.28. Molecular structure figures were generated using UCSF Chimera 1.13.17 (developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311) and PyMol 2.2.3 (Schrodinger, LLC, 2018). The amino acid alignment shown in Fig. 1d was generated using the server ESPript (http://espript.sbf.jrc.fr)16.

Filament purification for mass spectrometry analysis. Flagellar hook–basal-bodies with attached filaments of strains locked in either fljBI− or fljBII− and additionally harboring a ΔfljB mutation were purified as described15, with minor modifications. Briefly, 200 mL logarithmically grown cultures were micro-pelleted and re-suspended in ice-cold sucrose solution (0.5 M sucrose, 0.1 M Tris-HCl, pH 8). 3 mL were fractionated on NativePAGE (Invitrogen) and proteins were stained using Coomassie blue. Target bands were collected by ultracentrifugation at 100,000 × g for 20 min. The supernatant was adjusted with 5 M NaOH to pH 11 and cold 50 mM AmBiCa in 10% ACN containing 12.5 ng µL−1 trypsin was added and digested overnight. Peptides were extracted by transferring the supernatant to a fresh collection tube and adding 50 mM AmBiCa in 10% ACN to the gel pieces and transferring the (free second supernatant) tube. Peptides were dried in vacuo and stored at −20 °C. Before measuring the peptides were reconstituted in 10 µL 0.1% formic acid (FA) and 1 µL was injected for measurement. All chemicals were purchased from Sigma-Aldrich. Trypsin was purchased from Promega.

Mass spectrometry analysis. Peptides were measured on a tandem mass spectrometer (Fusion, Thermo Fisher Scientific) coupled to a nano UPLC system (Ultimate 3000 RSLCnano, Thermo Fisher Scientific) with a nano-spray source. Peptides were trapped on a C18 reversed-phase trap column (2 cm x 75 µm ID; Acclaim PepMap trap column packed with 3 µm beads, Thermo Fisher Scientific) and separated on a 25 cm C18 reversed-phase analytical column (25 cm x 75 µm, 3 µm ACQUITY UPLC BEH C18, Waters). Flow rate was kept constant at 45 °C. Peptides were separated using a 2-step gradient starting with 3% buffer B (0.1% FA in ACN) and 97% buffer A (0.1% FA in H2O) with a steady increase to 28% buffer B over 20 min and a second increase to 35% over 5 min with a subsequent ramping to 90% buffer B for 10 min followed by a 20 min equilibration to 3% buffer B at a constant flow rate of 300 nL min−1. Eluting peptides were injected directly into the mass spectrometer. Data were acquired in positive ion mode using data dependent acquisition (DDA) with a precursor ion scan resolution of 1.2×104 at 200 m/z -1 in a range of 300–1500 m/z -1 with an MS/MS gain control (AGC) target of 2×105 and a dynamic exclusion time of 50 ms. Peptides were selected for fragmentation using the TopSpeed method with a threshold of 5000 intensity and a dynamic exclusion time of 30 s. Peptides were fragmented using higher-energy collision dissociation (HCD) in the C-Trap and fragment spectra were detected in the ion trap. Fragment spectra were recorded using the “Rapid” setting with a maximum injection time of 35 ms and an AGC target of 1×106 with the first mass set at 110 m/z -2.

Mass spectrometry data analysis. Data were analyzed using the ProteomeDiscoverer 2.0 (Thermo Fisher Scientific) software. Spectra were identified using the Sequest HT search engine with precursor mass tolerance set to 10 ppm and the fragment mass tolerance set to 0.5 Da. Carbamidomethylation on cysteine was set as fixed modification and oxidation on methionine, acetylation on protein N-terminus as as well as mono-, di- and tri-methylation on lysine were set as variable modifications. Trypsin was set as enzyme and three missed cleavages were allowed with a minimum peptide length of six amino acids. Spectra were searched against a Salmonella Typhimurium FASTA database obtained from UniProt in June 2016 containing 1421 entries and a contaminant database containing 298 entries. Sequence coverage maps were generated using PatterLab for proteins 4.06.

Protein secretion assay. Bacterial strains were grown over night in LB medium at 37 °C, diluted 1:100 into fresh medium and grown to mid-logarithmic phase. 1.5 mL cultures of the sample culture supernatant were collected and precipitated by addition of 10% TCA and centrifuged at 4 °C at 4 h. The protein pellet was washed twice with cold and air dried. Samples were resuspended to 200 OD units and fractionated under denaturing conditions using SDS-PAGE and immunoblotting was performed using primary α-FliC (Difco, catalog number 228241 Salmonella H Antiserum I, 1:5,000 in TBS-T) or α-FljB (Difco, catalog number 224741 Salmonella H Antiserum Single Factor 2, 1:5,000 in TBS-T) antibodies and detection was performed using secondary a-rabbit antibodies conjugated to horseradish peroxidase (Bio-Rad Immuno-Star Goat Anti-Rabbit (GAR)-HRP Conjugate, catalog number 170-5046, 1:20,000 in TBS-T).

Motility assay and immunostaining of flagellar filaments. Swimming motility was analyzed in semi-solid agar plates containing 0.3% (w/v) agar. Single colonies were inoculated into the agar, and the plates were incubated at 37 °C for 4 h. Images were acquired by scanning the plates and the diameter of the swimming halos were determined using NIH ImageJ 1.48v and normalized to the WT control of the same plate. For immunostaining of flagellar filaments, logarithmically grown cells locked in expression of either FljCII− or FljBII− were fixed by addition of 2% formaldehyde and 0.2% glutaraldehyde for 10 min and immobilized on a poly-L-lysine coated coverslip. Flagellar filaments were immunostained using polyclonal α-Flic (Difco, catalog number 228241 Salmonella H Antiserum I, 1:1,000 in 2% BSA/ PBS) or α-FljB (Difco, catalog number 224741 Salmonella H Antiserum Single Factor 2, 1:1,000 in 2% BSA/PBS) and secondary a-rabbit Alexa-Fluor488 (Invitrogen, catalog number A-11094, 1:1,000 in PBS). DNA was stained using DAPI (Sigma-Aldrich). Images were collected and processed as described before16,17.

Mouse infection studies. Seven-week-old C57BL/6 mice (Janvier) were pretreated with 100 mg mL−1 streptomycin. Mice were co-infected intragastrically with 107 colony forming units (CFU) each of two Salmonella Typhimurium strains that contained a different antibiotic resistance cassette. Small intestine, cecum and colon were isolated 2 days post-infection and plated on respective antibiotics resistance selecting medium. The CFU were counted and reported as CFU per gram tissue. Comparative indices (CI) were calculated by normalizing the percentage of each strain to the inoculum and the challenge strain.
Invasion and adhesion assays. The murine epithelial cell lines MODE-KS and C11, the murine epithelial-like cell line Renca (CRL-2947), the human epithelial cell line HT29-MTX-E12 (E12)95, the mouse fibroblast cell lines NIH-3T3 (CRL-1658) and CT26 (CRL-2638) were used for invasion assays. The immunolabeling and characterization of the muGoB (C11) cells will be described elsewhere (Truschel et al., in preparation). Briefly, murine intestinal organoids were plated and infected with different lentivirus encoding the CI-SCREEN gene library96. After transduction, the clonal cell line muGoB (C11) was established, which has integrated the following recombinant genes of the CI-SCREEN library: Id1, Id2, Id3, Myc, Fos, E7, Core, Rex (Zip4). The muGoB (C11) cell line was cultivated on fibronectin/collagen-coated (InSCREENeX GmbH, Germany) well plates in a humidified atmosphere with 5% CO2 at 37°C in a defined muGoB medium (InSCREENeX GmbH, Germany). 2.5×10^5 cells per mL were seeded in 24-well plates. For invasion of MODE-K epithelial cells, 5×10^5 cells per mL were seeded in 24-well plates and incubated overnight in a humidified atmosphere with 5% CO2 at 37°C. Salmonella strains were grown to mid-log phase, diluted in binding buffer (DMEM, 1% non-essential amino acids, 10% heat-inactivated FCS, 0.4% BSA, 20 mM HEPES pH 7.5) and added at a MOI of 10. The contact of the bacteria with the epithelial cells was forced by centrifugation for 5 min at 500 × g and the infection was performed for 1 h in a humidified atmosphere with 5% CO2 at 37°C. After washing twice with 1× PBS, external bacteria were killed by addition of 100 µg mL^{-1} gentamycin for 1 h and cells were lysed using 1% Triton X-100. Serial dilutions of the lysate were plated to calculate the CFU per mL. All values were normalized to the control strain and invasion rates were calculated relative to the inoculum. For analysis of Salmonella Typhimurium adhesion to MODE-K epithelial cells, a modified assay was performed using Salmonella strains lacking spi-1 to prevent injection-independent invasion. Bacteria were added to MODE-K epithelial cells at a MOI of 10 and incubated for 1 h. Afterwars, the MODE-K epithelial cells were washed extensively to remove unbound bacteria and Salmonella CFU per mL were determined as described above without addition of gentamycin to kill external bacteria.

RNA isolation and quantitative real-time PCR. Strains were grown under agitating conditions in LB medium and RNA isolation and quantitative real-time PCR was performed using the RNeasy Mini kit (Qiagen). For removal of genomic DNA, RNA was washed extensively to remove unbound bacteria and total RNA isolation was performed after growing cultures (OD600 0.6) harboring the constitutive inducible strain Ptet-Inducible strain Ptet-

Hydrophobicity determination. Protein surface hydrophobicity was measured according to a modification of the method of Kato and Nakai97 using PRODAN98. A stock solution of 1 mM PRODAN (prepared in DMSO) was used, 8 µL added to each exosome sample containing 1 mL of diluted flagellated bacteria in 20 mM HEPES (pH 7.4), 150 mM NaCl. After homogenization by pipetting, the samples were incubated 10 min in the dark and the relative fluorescence intensity was measured. All fluorescence measurements were made with a Cary Eclipse (Varian now Agilent) spectrophotometer. Excitation and emission wavelengths were 365 nm and 400 nm, respectively. For standardization, BSA was used. Surface hydrophobicity (So) values were determined using at least duplicate analyses. Five measures per sample repeated three times were performed and the mean was used.

Statistical analysis. Data were analyzed using GraphPad Prism 5.0.1 and a Student’s t-test was used as appropriate. The p values <0.05 were considered significant.

References
1. Adler, J. & Templeton, B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 146, 175–184 (1987).
2. Duan, Q., Zhou, M., Zhu, L. & Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 53, 1–8 (2013).
3. Chaban, B., Hughes, H. V. & Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell Dev. Biol. 46, 91–103 (2015).
4. Fousek, Y., Wolfsön, E. B., Holmes, A., Gally, D. L. & Holden, N. J. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog. 11, e1004483 (2015).
5. Rossi, C., Cazzola, H., Holden, N. J. & Rossez, Y. in Basic Microbiol 36, 379 (2002).
6. Tawk, C. et al. Stress-induced host membrane remodeling protects from infection by motile bacterial pathogens. EMBO J 37, E98529 (2018).
7. Lillehoj, E. P., Kim, B. T. & Kim, K. C. Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L751–L756 (2002).
8. Girón, J. A., Torres, A. G., Freer, E. & Kaper, J. B. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 46, 361–379 (2002).
9. Roy, K. et al. Enterotoxigenic Escherichia coli ETPα mediates adhesion between flagella and host cells. Nature 457, 594–598 (2009).
10. Crawford, R. W., Reeve, K. E. & Gunn, J. S. Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J. Bacteriol. 192, 2981–2990 (2010).

11. Roszes, Y. et al. Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants. Environ. Microbiol. 16, 2181–2195 (2014).

12. Samsom, N. et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51 (1998).

13. Adamo, R., Sokol, S., Soong, G., Gomez, M. I. & Prince, A. Role of flagella in pathogenesis of Pseudomonas aeruginosa. Mol. Microbiol. 37, 424–432 (2000).

14. Horstmann, J. A. et al. Flagellin phase-dependent swimming on epithelial cell surfaces. Langmuir 31, 6137–6144 (2015).

15. Brazzaud, I. et al. Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PA01 to hydrophobic or superhydrophobic surfaces. Colloids Surf. B: Biointerfaces 131, 59–66 (2015).

16. Lederberg, J. & Iino, T. Phase variation in Salmonella. J. Bacteriol. 89, 627–634 (1964).

17. De Maayer, P. & Cowan, D. A. Flashy flagella. Nature 370, 295–297 (1994).

18. Samatey, F. A. et al. Structure of the bacterial cytoskeleton protein flagellin. Nature 398, 525–528 (1999).

19. Feldman, M. et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa. Mol. Microbiol. 37, 424–432 (2000).

20. Logan, S. M. Flagellar glycosylation and swarming motility in Shewanella. Curr. Opin. Microbiol. 9, 350–355 (2006).

21. Adamo, R., Sokol, S., Soong, G., Gomez, M. I. & Prince, A. Role of flagella in pathogenesis of Pseudomonas aeruginosa. Mol. Microbiol. 37, 424–432 (2000).

22. Samatey, F. A. et al. Structure of the bacterial cytoskeleton protein flagellin. Nature 398, 525–528 (1999).

23. Kanto, S., Okino, H., Aizawa, S. & Yamaguchi, S. Amino acids responsible for adhesion and motility of pathogenic Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265, 623–625 (1977).

24. Duguid, J. P. & Campbell, I. Antigens of the type-I fimbriae of salmonellae and other enterobacteria. J. Med. Microbiol. 2, 535–553 (1969).

25. Paton, A. W. & Kado, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).

26. Sanderson, K. E. & Roth, J. R. Linkage map of Salmonella typhimurium, edition VII. Microbiol. Rev. 52, 485–532 (1988).

27. Kato, A. & Nakai, S. Hydrophobicity determined by a small region in Salmonella enterica flagellin. J. Bacteriol. 188, 2233–2243 (2006).

28. Hacker, J. et al. Characterization of novel factors involved in swimming and swarming motility in Salmonella enterica Serovar Typhimurium. PLoS ONE 10, e013531 (2015).

29. Manto, S., Okino, H., Aizawa, S. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991).

30. Yamaguchi, T. et al. Structural and Functional Comparison of Salmonella Flagellum Components Composed of FliB and FliC. Biomolecules 10, 246 (2020).

31. de Castro, E. et al. ScanProsite: detection of PROSITE signature matches and Prosite-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006).

32. Kelly, G. et al. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat. Struct. Biol. 6, 313–318 (1999).

33. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 (1999).

34. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin receptor complex. Nature 405, 1073–1077 (2000).

35. Barthel, M. et al. Pretreatment of mice with streptococci provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2589–2588 (2003).

36. Navabi, N., McGuckin, M. A. & Lindén, S. K. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS ONE 8, e68761 (2013).

37. Hansmeier, N. et al. Functional expression of the entire adhesome of Salmonella enterica serotype Typhimurium. Sci. Rep. 7, 10326 (2017).

38. Kato, A. & Nakai, S. Hydrophobicity determined by a small region in Salmonella enterica flagellin. J. Bacteriol. 188, 2233–2243 (2006).

39. Pfaff, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

40. Kanto, S., Okino, H., Aizawa, S. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. Nature 265, 623–625 (1977).

41. Duguid, J. P. & Campbell, I. Antigens of the type-I fimbriae of salmonellae and other enterobacteria. J. Med. Microbiol. 2, 535–553 (1969).

42. Paton, A. W. & Kado, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293 (1998).
Acknowledgements

The authors thank Heidi Landmesser, Nadine Körrner, Henri Galez and Pauline Adjadj for expert technical assistance, Juana de Diego and members of the Erhardt and Kolbe labs for useful discussions and for critical comments on the manuscript and Keiichi Namba for providing the atomic model of the FliC flagellar filament. We thank HZB for the allocation of synchrotron radiation beamtime and Uwe Müller for the support at the beamline BL14.1, Petra Dersch for kindly providing plasmid pFU228, Michael Hensel for providing P. fluorescens mutant strains and Tobias May (InsCReENeX GmbH) for help in tissue culture and providing the epithelial-like cell line Cl11. I.A.H. acknowledges support by the President’s Initiative and Networking Funds of the Helmholtz Association of German Research Centers (HGF) under contract number VH-GS-202. This work was supported in part by the Helmholtz Association Young Investigator grant VH-NG-932 and the People Programme (Marie Curie Actions) of the Europeans Union’s Seventh Framework Programme grant 334030 (to M.E.). The Helmholtz Institute for RNA-based Infection Research (HIRI) supported this work with a seed grant through funds from the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (Grant allocation nos. 0703/68674/5/2017 and 0703/89374/3/2017) (to M.E. and T.S.), M.K., M.L. and C.W. were funded by the European Research Council under the European Community’s Seventh Framework Programme under grant number 311374 and through the President’s Initiative and Networking Funds of the Helmholtz Association of German Research Centers (HGF). The HGF further supported T.S. by HGF impulse fund W2/W3-066. C.U. and I.H. acknowledge funding via Leibniz grant SAW-2014-HPI-4. The Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, is supported by the Freie und Hansestadt Hamburg and the Bundesministerium für Gesundheit (BMG), H.C. and L.L. acknowledge support by the French Ministry of Higher Education, Research and Innovation. Y.R., C.R., H.C. and L.L. acknowledge funding from the European Regional Development Fund ERDF and the Region of Picardy (CPER 2007–2020). We acknowledge support by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

J.A.H., M.L., Y.R., M.K., and M.E. conceived the project, designed the study, wrote and revised the paper; J.A.H., M.I., H.C., L.L., M.K., J.H. and C.K. performed the experiments; J.A.H., M.L, H.C., J.H., C.K., C.U., G.A.G, Y.R., M.K., and M.E. analyzed the data; P.S., S.S., C.R., R.K.L., C.W., and K.T.H. contributed to experiments and performed strain construction; C.U., H.S., G.A.G., T.E.B.S., Y.R., M.K. and M.E. contributed funding and resources.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15738-3.

Correspondence and requests for materials should be addressed to M.K. or M.E.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless otherwise stated. You may not use this material for any purpose other than that permitted by the Creative Commons license. Any other reuse of the images or other third party material is prohibited. For any part of this article that does not include a Creative Commons license, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020