EIGENVALUES OF SINGULAR MEASURES AND CONNES
NONCOMMUTATIVE INTEGRATION

GRIGORI ROZENBLUM

1. INTRODUCTION

In the recent paper [32] the authors have considered the Birman-Schwinger (Cwikel) type operators in a domain $\Omega \subseteq \mathbb{R}^N$, having the form $T_P = \mathfrak{A}^* P \mathfrak{A}$. Here \mathfrak{A} is a pseudodifferential operator in Ω of order $-l = -N/2$ and $P = V\mu$ is a finite signed measure containing a singular part. We found out there that for such operators, properly defined using quadratic forms, for a special class of measures, an estimate for eigenvalues $\lambda_{\pm}^k = \lambda_{\pm}^k(T_P)$ holds with order $\lambda_{\pm}^k = O(k^{-1})$ with coefficient involving an Orlicz norm of the weight function V. For a subclass of such measures, namely, for the ones whose singular part is a finite sum of measures absolutely continuous with respect to the surface measures on compact Lipschitz surfaces of arbitrary dimension, an asymptotic formula for eigenvalues was proved, with all surfaces, independently of their dimension, making the same order contributions. In the present paper we discuss some generalizations of these results and their consequences for introducing Connes’ integration with respect to singular measures.

Our considerations are based upon the variational (via quadratic forms) approach to the spectral analysis of differential operators in a singular setting, in the form developed in 60-s and 70-s by M.Sh. Birman and M.Z. Solomyak. This approach enables one to obtain, for rather general spectral problems, eigenvalue estimates, sharp both in order and in the class of coefficients involved, this sharpness confirmed by exact asymptotic eigenvalue formulas. In the initial setting, this approach was applied to measures P absolutely continuous with respect to Lebesgue measure. Passing to singular measures, it was found that, for the equation $-\lambda \Delta(X) = Pu(X)$, $X \in \Omega \subseteq \mathbb{R}^N$, if the singular part of P is concentrated on a smooth compact surface inside Ω (or on the boundary of Ω, provided the latter is smooth enough), it makes contribution of the order, different from the one produced by the absolutely continuous part, see, e.g., [1] or [18]. It happens always, with the only exception of the case $N = 2$, where the above orders are the same. For a class of singular self-similar measures P, K.Naimark and M.Solomyak established in [28] two-sided estimates for eigenvalues. And it turned out there that the order of two-sided eigenvalue estimates depends generally on the parameters used in the construction of the measure, in particular, on the Hausdorff dimension of its support. However, in the single case, again of the dimension
being equal to 2, this dependence disappears, and the eigenvalues have one and the same order for all measures in the class under consideration, independently, in particular of their dimensional characteristics. In a very recent study in [16], a new approach to the spectral problem $-\lambda \Delta u(X) = Pu(X)$, $X \in \Omega \subseteq \mathbb{R}^2$ have been developed, establishing, again, for a wide class of singular measures upper eigenvalue estimates of one and the same order, independently on the Hausdorff dimension of the support of the measure. It became rather intriguing to understand which mechanism lies under this exceptional feature of spectral problems in dimension 2.

In [32] (main ideas and some results were announced in [31]) the above spectral problem was generalized to an arbitrary dimension N, so the eigenvalue properties were studied of operator $\mathcal{A}^* P \mathcal{A}$, where \mathcal{A} is an order $-l = -N/2$ pseudodifferential operator in a domain $\Omega \subseteq \mathbb{R}^N$ and P is a signed measure of the form $V\mu$, with Ahlfors regularity conditions imposed upon the measure μ and with weight V belonging to a certain Orlicz class with respect to μ. Such a measure is equivalent to the Hausdorff measure of some dimension d, $0 < d \leq N$ on the support of μ. This operator is a natural generalization of the Birman-Schwinger operators which since long ago have been playing an important part in spectral and scattering theory. An eigenvalue estimate for this operator is found, of order depending neither on the dimension N nor on the Hausdorff dimension of the measure μ. For μ being the Hausdorff measure on a Lipschitz surface of any positive dimension and codimension, the asymptotics of eigenvalues has been found, supporting the sharpness of upper estimates.

In the present paper we extend results of [32] to some wider class of measures and operators. These results lead to deriving the noncommutative measurability in the sense of A.Connes of the generalized Birman-Schwinger operators and in this way we define the noncommutative integral with respect to such measures, involving an analogy of the Wodzicki residue. In particular, we present a noncommutative version of the Hausdorff measure for a class of ‘rectifiable’, in the sense of geometric measure theory, sets.

The present paper has its roots in results and constructions of the paper [32], written jointly with Eugene Shargorodsky. The author expresses deep gratitude to Eugene for benevolent attention and stimulating discussions.

2. The Birman-Schwinger operator with singular measures and Connes’ integral

In the huge and expanding field of the noncommutative geometry initiated by A. Connes, [7], an important topic deals with the notion of the noncommutative integral. Following the general idea, in order to define integral on some algebra \mathcal{A} of objects (say, functions), we associate, by means of some linear mapping ϕ, with an object $a \in \mathcal{A}$, a compact operator $T = \phi(a)$ belonging to the Dixmier-Matsaev ideal $\mathcal{M}_{1,\infty}$ (consisting of operators T with singular numbers estimate
\[\sum_{k \leq n} s_k(T) = O(\log n). \] This ideal is larger than the trace class ideal \(\mathcal{S}^1 \) and even larger than the ideal \(\mathcal{M}_{1,\infty} \) of operators with singular numbers satisfying the estimate \(s_k(T) = O(k^{-1}) \). On the ideal \(\mathcal{M}_{1,\infty} \), it is possible to define \(\text{singular traces} \), continuous functionals \(\tau \) which are linear, positive, unitarily invariant, satisfy the trace property \(\tau(T_1 T_2) = \tau(T_2 T_1) \) (provided the products here belong to \(\mathcal{M}_{1,\infty} \)), and, finally, vanishing on the trace class ideal, see [24]. There are quite a lot of singular traces, the most important ones are obtained in the following way. For \(\text{nonnegative operators} \ T \in \mathcal{M}_{1,\infty} \), one considers the functional

\[\tau_0(T) = \lim_{n \to \infty} (\log(n + 2))^{-1} \sum_{k \leq n} s_k(T), \tag{2.1} \]

for those \(T \) for which this limit exists. This functional turns out to be linear on the cone of positive operators. After further extension by linearity, it is defined on a closed subspace in \(\mathcal{M}_{1,\infty} \) and continuous. Among Hahn-Banach continuous extensions \(\tau \) of \(\tau_0 \) to the whole of \(\mathcal{M}_{1,\infty} \) there exist ones that satisfy the conditions in the definition of the singular trace. One can adopt \(\tau(\phi(a)) \) as the integral of the object \(a \), and it is now universally called Connes’ integral. Having fixed such generalized trace for nonnegative operators, one can extend it by linearity to arbitrary operators in this class, since any compact operator is a linear combination of four nonnegative ones (there are certain limitations for this procedure, see, e.g., [24].)

One of the earliest realizations of this scheme in [7] consists of recovering the integral of a function \(V \) on a \(N \)-dimensional Riemannian manifold \(\mathcal{M} \) by means of the singular trace of some operator \(T_V \) related with \(V \). Initially it was proposed to consider operator \(T_V = V(-\Delta + 1)^{-N/2} \), where \(\Delta \) is the Laplace-Beltrami operator on \(\mathcal{M} \), for a smooth function \(V \). It was established in [7] that

\[\tau(T_V) = \omega_N \int V d\mu_M, \quad \omega_N = \frac{\omega_{N-1}}{N(2\pi)^N} \tag{2.2} \]

where \(\mu_M \) is the Riemannian measure on \(\mathcal{M} \) and \(\omega_{N-1} \) is the measure of the unit sphere in \(\mathbb{R}^N \). In particular, it follows that this operator \(T_V \) is \(\text{measurable} \) in the sense that \(\tau(T_V) \) has the same value for all positive normalized singular traces \(\tau \). Such measurability results follow, in particular, from the fact that the limit in (2.1) exists. Moreover, by generalizations of Weyl’s law, for \(T = T_V \), even the limit

\[\lim_{k \to \infty} k s_k(T), \tag{2.3} \]

exists. Of course, the existence of the limit in (2.3) implies such existence for the limit in (2.1), but the converse is not, generally, correct. The result on measurability was established also for a noncompact \(\mathcal{M} \), namely, for \(\mathcal{M} = \mathbb{R}^N \), under the condition that \(V \) has compact support.

In the latest decennium, quite an activity developed, concerning extending these results to less regular functions \(V \), see, e.g., [17], [22], [23], [24], [25]. Say, if \(V \) belongs to \(L_2 \) and, in the case of \(\mathcal{M} = \mathbb{R}^N \), has a compact support, operator
T_V belongs to $\mathcal{S}_{1,\infty}$, is measurable, and the usual expression (2.2) is valid for the singular trace. However (and this was noticed, e.g., in [22]), if V is outside $L_2(\mathcal{M})$, operator T_V may turn out to be not bounded, to say nothing of being compact. Therefore, a proposal was made in [22] to consider a different, 'symmetrized,' operator associated with $V,$ namely, $T_V = (-\Delta + 1)^{-N/4}V(-\Delta + 1)^{-N/4}.$ Being properly defined, this operator is bounded and even compact for $V \in L_p, \; p > 1$, with compact support, self-adjoint for real-valued V, and the trace formula (2.2) holds. Much more hard is the case $p = 1$: here the right-hand side in (2.2) is still finite but the question about the existence and the value of the trace on the left-hand side turns out to be rather complicated. Simple examples show that for a general $V \in L_1$, operator T_V may fail to be bounded, moreover this effect may be caused both by local singularities of V and by an insufficiently fast decay of V at infinity (for a noncompact \mathcal{M}). Very recently the conditions, rather sharp, were elaborated granting the compactness of T_V as well as its membership in $\mathfrak{M}_{1,\infty}$ and the validity of the integration formula. These conditions require V to be just a little bit better than simply lying in L_1, namely, to belong to a certain Marcinkiewicz space, see [39], where T_V was called the Cwikel operator.

Independently of these results, and even considerably earlier, spectral properties of operators of the form T_V have been the object of intensive studies by specialists in mathematical physics. The case of the highest interest was the one of $\mathcal{M} = \mathbb{R}^N$; here this topic is closely related with the eigenvalue analysis of the Schrödinger operator. We define, for a compact self-adjoint operator T, $n_\pm(\lambda, T)$ to denote the number of eigenvalues of $\pm T$ in (λ, ∞). Operators like T_V are called Birman-Schwinger operators, and by the Birman-Schwinger principle,

$$n_+(\lambda, (-\Delta + E)^{-\eta/2}V(-\Delta + E)^{-1/2}) = N_-(((-\Delta + E) - \lambda^{-1}V), \lambda > 0, \quad (2.4)$$

where the expression on the right is the number of negative eigenvalues of the Schrödinger operator. In dimension $N > 2$, equality (2.4) is valid for $E = 0$ as well, and sharp results on the eigenvalue estimates and asymptotics have been obtained quite long ago. However, in dimension $N = 2$ some deep modifications are needed in the expression on the left-hand side for the proper version of (2.4) to hold. Anyway, for $V \in L_p(\mathbb{R}^2), \; p > 1$ with compact support, estimates and asymptotics of eigenvalues of T_V were known as long ago as in 1972, see [5] and references therein. Sharper results, for $p = 1$, were obtained by M.Z.Solomyak [38] in 1994, where the condition on V, besides the compactness of support, involved the membership of V to certain Orlicz class, i.e., again, a little bit better than $V \in L_1$. In the same paper, the case of any even dimension N was handled in a similar way. Problems without compact support condition were studied in [3] and further on, see the latest developments in [36].

These two lines of study converged recently in the paper [39], where the method of piecewise polynomial approximations, in the version elaborated by M.Z. Solomyak, was adapted to prove the measurability of the operator T_V on \mathbb{R}^N and on the torus \mathbb{T}^N with V in the Marcinkiewicz class.
Having in mind an extension of the notion of Connes’ integral, we take a somewhat different point of view. We are looking for defining integration of measures, including singular ones, in the context of the noncommutative geometry. The starting point will be a re-statement of the above results for a measure P containing, possibly, a singular component. For a, possibly, unbounded, domain $\Omega \subset \mathbb{R}^N$, we consider an operator \mathfrak{A} in $L_2(\Omega)$. It is a pseudodifferential operator of order $-l = -N/2$, acting as $\mathfrak{A} : C_0^\infty(\Omega) \to C_0^\infty(\Omega)$ (we call such operators compactly supported). In the leading example, the principal symbol of \mathfrak{A} equals $a_{-l}(X, \Xi) = |\Xi|^{-l}$ for X in a proper bounded subdomain $\Omega' \subset \overline{\Omega} \subset \Omega$. As examples of such \mathfrak{A} may serve $\theta(X) \mathfrak{L} \theta(X)$, where $\theta(X)$ is a smooth function in $C_0^\infty(\Omega)$, which equals 1 on Ω', and \mathfrak{L} may be the inverse of the proper power of the Laplacian on Ω with some elliptic (e.g., Dirichlet) boundary conditions or the operator $(-\Delta + 1)^{-N/4}$ in \mathbb{R}^N. For the, probably, most interesting, case $\Omega = \mathbb{R}^N$, we consider $\mathfrak{A} = (1 - \Delta)^{-N/4}$.

Let P be a signed Radon measure on Ω. With such measure and operator we associate the Birman-Schwinger (or Cwikel) operator in the following way. If P is absolutely continuous with respect to the Lebesgue measure, with density $V(X)$, $P = V(X) dX$, we set

$$T_P \equiv T_V \equiv \mathfrak{A}^* P \mathfrak{A} \equiv \mathfrak{A}^* V \mathfrak{A}. \quad (2.5)$$

If the function V is bounded, T_V is automatically a bounded operator. Some more trouble arises if V is an unbounded function. An approach to defining this operator was (for $\mathfrak{A} = (-\Delta + 1)^{-N/4}$) proposed in [22], based upon tracing between which Sobolev spaces separate factors in (2.5) act. We use a different approach, equivalent to this one for absolutely continuous measures, however allowing extension to measures in more general classes. Namely, we associate with (2.5) the quadratic form in $L^2(\Omega)$,

$$t_{P, \mathfrak{A}}[u] = \int_\Omega |(\mathfrak{A}u)(X)|^2 P(dX) = \int_\Omega |(\mathfrak{A}u)(X)|^2 V(X) dX. \quad (2.6)$$

If this quadratic form is well-defined and bounded in $L_2(\Omega)$, it defines there an operator, which we will accept as T_P. In particular, if $V \in L_\infty$, this operator, obviously, coincides with $\mathfrak{A}^* V \mathfrak{A}$ understood as a product of three bounded operators. Moreover, if we set $V = |V| \text{sign } V = U^2 \text{sign } V$, it follows from (2.6) that

$$t_{P, \mathfrak{A}}[u] = \int_\Omega (\mathfrak{A}u)(X)(\mathfrak{A}u)(X)V(X) dX = \langle (U \mathfrak{A})^*(\text{sign } V)(U \mathfrak{A})u, u \rangle_{L_2(\Omega)}, \quad (2.7)$$

therefore

$$T_P = (U \mathfrak{A})^*(\text{sign } V)(U \mathfrak{A}). \quad (2.8)$$

This representation has been also used in [22] and [25] for V in Marcinkiewicz and Orlicz classes.
We are interested in expanding the definition (2.5) to the case when measure P contains a singular part, $P = P_{ac} + P_{sing}$. Namely, we set, with this new meaning,

$$t_{P,\mathfrak{A}}[u] = \int_{\Omega} |(\mathfrak{A}u)(X)|^2 P(dX).$$

This quadratic form, is defined initially on continuous functions in $L_2(\Omega)$. If it proves to be bounded in $L_2(\Omega)$ – and we will find sufficient conditions for this boundedness (see Section 4) – it can be extended to the whole $L_2(\Omega)$ by continuity and we accept the corresponding bounded self-adjoint operator as $T_V \equiv \mathfrak{A}^* P\mathfrak{A}$. Generalizing the case of an absolutely continuous measure, this operator admits a factorization similar to (2.8).

For an unbounded domain Ω, especially, for $\Omega = \mathbb{R}^N$, we always suppose here that measure P has compact support. It is well known, even for an absolutely continuous measure, that for the whole \mathbb{R}^N the behavior of P at infinity requires rather special considerations since infinity can make to the eigenvalue counting function a stronger contribution than the local terms, see [3]. Even on the plane, $N = 2$, sharp conditions for the Birman-Schwinger operator to satisfy the Weyl formula, are still unknown up to now, the best results being obtained in [36].

Let now \mathcal{M} be a compact N-dimensional Riemannian manifold, with Riemannian measure $\mu_\mathcal{M}$; we denote by $\Delta_\mathcal{M}$ the corresponding Laplace-Beltrami operator, self-adjoint in $L_2(\mathcal{M}, \mu_\mathcal{M})$. For a finite signed Borel measure P on \mathcal{M}, we define the operator $T_P = T_{P,\mathcal{M}}$ in $L_2(\mathcal{M}, \mu_\mathcal{M})$ by means of the quadratic form

$$t_{P,\mathcal{M}}[u] = \int_\mathcal{M} |((-\Delta_\mathcal{M} + 1)^{-N/4} u)(X)|^2 P(dX), \quad u \in L_2.$$

Again, if measure P is absolutely continuous with respect to the Riemannian measure $\mu_\mathcal{M}$, $P = V \mu_\mathcal{M}$, the operator $T_{P,\mathcal{M}}$ coincides with the properly defined operator $((-\Delta_\mathcal{M} + 1)^{-N/4} V(-\Delta_\mathcal{M} + 1)^{-N/4}$, and the integrability results in [22] and [25] apply. If \mathcal{U} is a local co-ordinate neighborhood in Ω, containing the support of the measure P, with the diffeomorphism $\mathcal{F} : \mathcal{U} \rightarrow \mathcal{W} \subset \mathbb{R}^N$ then the operator $T_{P,\mathcal{M}}$, by usual localization, transforms to an operator of the type $\mathfrak{A}^* (\mathcal{F}^* P)\mathfrak{A}$, where $\mathcal{F}^* P$ is the measure in \mathcal{W}, the pull-back of P under the mapping \mathcal{F}, and \mathfrak{A} is the order $-N/2$ pseudodifferential operator in \mathcal{W}, actually $(-\Delta_\mathcal{M} + 1)^{-N/4}$ expressed in local co-ordinates in \mathcal{W}. So, as soon as such localization is justified (this is done in a rather traditional straightforward way) we are left with the task of spectral analysis of the operator $T = T_{P,\mathcal{M}}$ in a domain in \mathbb{R}^N. In fact, without additional work, we can consider in this way more general operators on manifolds, the ones having the form $\mathfrak{A}^* P\mathfrak{A}$ where \mathfrak{A} is an order $-l = -N/2$ pseudodifferential operator on \mathcal{M}, with the result having a similar form.

Our aim is two-fold. First, to extend the class of measures and operators for which $T_{V,\mathfrak{A}}$ belongs to the class $\mathfrak{M}_{1,\infty}$, so that $\tau(T_{P,\mathfrak{A}})$ is finite (but, probably, depends on the choice of the singular trace τ). This property follows from the eigenvalue estimates for $T_{V,\mathfrak{A}}$. Such estimates have been obtained in [32] but we...
need a somewhat more general class of measures, however the reasoning is rather similar. Secondly, we are going to find a subclass of singular measures for which operator $T_{P, A}$ is measurable, i.e., this trace does not depend on the above choice. In our case, this measurability follows first by establishing the Weyl asymptotic formula for eigenvalues of $T_{P, A}$ for a measure concentrated on a Lipschitz surface Σ,

$$
\lim_{\lambda \to 0} \lambda n_\pm(\lambda, T_{P, A}) = \int_{\Sigma} \rho_\lambda(X)V_\pm(X)d\mu_\Sigma,
$$

(2.11)

where density $\rho_\lambda(X)$ is determined by operator A. We find an explicit expression for this density; in the leading case $A = A_0 = (1 - \Delta)^{-N/2}$, $H = Z(d, \delta)$ is a constant depending on the dimension d and codimension δ of the surface Σ. It follows from (2.11) that operator $T_{P, A}$ is measurable with the expression for the singular trace

$$
\tau(T_{P, A}) = \int_{\Sigma} \rho_\lambda(X)V(X)d\mu_\Sigma.
$$

(2.12)

We prove a further extension of the Weyl formula (for the case of $A = A_0$ only, since it is too cumbersome for the general case) for a wider class of measures of the form $P = VH^d$ (the latter symbol denotes the Hausdorff measure of dimension d) supported on a rectifiable set X, in the sense of geometric measure theory,

$$
\lim_{\lambda \to 0} n_\pm(\lambda, T_{P, A_0}) = Z(d, \delta) \int_X V_\pm(X)H^d(dX).
$$

(2.13)

This formula again, implies Connes’ measurability of operator T_{P, A_0} in this setting and the trace formula,

$$
\tau(T_{P, A_0}) = Z(d, \delta) \int_X V(X)H^d(dX).
$$

(2.14)

Singular trace formulas (2.12), (2.14) can be understood as generalizations of the Wodzicki residue to a rather singular setting.

The proofs of the above asymptotic and trace formulas are presented in the paper further on. It turns out that, in the most general setting, due to the linearity property of the singular trace, the proof of the trace formula (2.14) is considerably more elementary than the one of eigenvalue asymptotics (2.13), although the former follows also immediately from the latter one. For Readers interested in trace formulas only, we present independent, rather short, proofs as well.

In cases when we are unable to prove asymptotic formulas for eigenvalues, we can, nevertheless, show that our upper eigenvalue estimates are sharp, by means of proving lower eigenvalue estimates of the same order. The author believes strongly that Connes’ measurability holds in these cases as well, in particular for measures having fractional Hausdorff dimension, but there are no visible approaches to this problem at the moment.

Finally, in this section, we note that a quite different approach to the Connes integral of singular measures has been developed some time ago by M. Lapidus,
J. Fleckinger and their co-operators, see [20], [21] and references therein. For a measure on a set X in the Euclidean space, possessing some regular fractal structure, operators were considered, using the Laplacian on this fractal set X itself. The required power of this fractal Laplacian depends on the fractal dimension of the support of the measure, while our construction uses one and the same operator \mathfrak{A} for all admissible measures. It might be interesting to find a connection between these two approaches.

The setting by D. Edmunds and H. Triebel, see [10], [42], [43], where an operator is associated with a singular measure, is closer to ours. However, the eigenvalue estimates obtained by these authors are usually not sharp in order and/or in the class of the weight functions (this is stressed, e.g., in Discussion 27.3, Remark 27.5, or Remark 27.10 in [43]). Such circumstance prevents one from deriving eigenvalue asymptotics for operators under consideration – this task being the main topic of our paper. Note however, that the crucial fact in our setting, namely, that for the case of the order of the operator being equal to the half of the dimension of the space, the eigenvalues decay order does not depend on this dimension, and on the dimensional characteristics of the measure either, has been predicted - and in some cases discovered - by the authors of these books, see, e.g., Proposition 28.10 in [43].

3. Boundedness

First, we consider operators \mathfrak{A} having compact support, $\mathfrak{A} : C_0^\infty(\Omega) \to C_0^\infty(\Omega), \ \Omega \subset \mathbb{R}^N$. We set more concrete conditions for the measure \mathcal{P} to define a bounded quadratic form (2.6) and further a bounded operator $T_{V, \mathfrak{A}}$. Since \mathfrak{A} is a pseudodifferential operator of order $-l$, it is sufficient to find conditions for the boundedness of the quadratic form $s[v] = \int_\Omega |v(X)|^2 P(dX)$ in $H^l_0(\Omega)$. Smooth functions are dense in $H^l_0(\Omega)$, therefore it suffices to justify the inequality

$$\left| \int_\Omega |v(X)|^2 P(dX) \right| \leq C(V, \mu) \|v\|^2_{H^l(\Omega)}, \ v \in C_0^\infty(\Omega)$$

and then extend to the whole of $H^l_0(\Omega)$ by continuity. Here $\|v\|_{H^l(\Omega)}$ is the usual norm in the Sobolev space;

$$\|v\|^2_{H^l(\Omega)} = \int_\Omega |v|^2 dX + \|v\|^2_{(\text{hom}), H^l(\Omega)},$$

where the homogeneous seminorm is defined as $\|v\|^2_{(\text{hom}), H^l(\Omega)} = \int_{\Omega} |\nabla^l v|^2 dX$ for an integer $l = N/2$ and

$$\|v\|^2_{(\text{hom}), H^l(\Omega)} = \int_{\Omega \times \Omega} \frac{|\nabla^{l-1/2} v(X) - \nabla^{l-1/2} v(Y)|^2}{|X - Y|^{N+1}} dX dY$$

for a half-integer l.

Basic results in this direction have been established in works by V. Maz’ya. A sufficient condition, being also a necessary one for a positive measure P, is given.
by Theorem 11.3 in [27] in terms of capacity (for \(l = 1 \), sharp conditions were established even for a signed measure \(P \), however, for larger \(l \), such conditions seem to be still unknown presently.) We are interested in conditions expressed in more elementary terms, and therefore we use Theorem 11.8 and Corollary 11.8/2 in [27].

Measures \(P \) considered here have the form \(P = V \mu \), where \(\mu \) is some fixed singular measure, and \(V \) is a \(\mu \)-measurable real function which we call 'density'; our results consist of describing classes of densities for a given \(\mu \) for which the required estimates for the operator norm, resp., eigenvalues, hold. So, let \(\mu \) be a finite Borel measure on \(\Omega \). We denote by \(M = \mathcal{M}(\mu) \) its support, the smallest closed set of full measure; we always suppose that \(M \) is compact. We do not usually distinguish between measure \(\mu \) considered on \(M \) and its natural extension by zero to the whole of \(\Omega \) : \(\mu(E) := \mu(E \cap M) \).

Conditions imposed on density \(V \) are expressed in terms of Orlicz spaces. These spaces have been long ago found to be the proper instrument in the treatment of the critical case \(2l = N \). For a detailed exposition of these spaces, see, e.g., [19] or [30]. We use a special choice of Orlicz functions. The Orlicz space \(L^{\Psi, \mu} \), \(\Psi(t) = (1+t) \log(1+t) - t \), consists of \(\mu \)-measurable functions \(V \) on \(M \), satisfying \(\int_{M} \Psi(|V(X)|)d\mu(X) < \infty \). For a subset \(E \subset \mathbb{R}^N \), the norm in \(L^{\Psi, \mu} \) is defined by

\[
\|V\|_{L^{\Psi, \mu}(E)} = \inf\{\varsigma : \int_{E} \Psi(|V|/\varsigma)d\mu \leq 1, \mu(E) > 0\}. \tag{3.3}
\]

Function \(\Phi(t) = e^t - 1 - t \) is Orlicz dual to \(\Psi \). Thus, the Orlicz space \(L^{\Phi, \mu} \) consists of functions \(g \) satisfying \(\int_{M} \Phi(|g|/\varsigma)d\mu < \infty \) for some \(\varsigma > 0 \) with norm defined similarly to (3.3)

\[
\|g\|_{L^{\Phi, \mu}(E)} = \inf\{\varsigma : \int_{E} \Phi(|g|/\varsigma)d\mu \leq 1\}. \tag{3.4}
\]

Measure \(\mu \) may be omitted in this notation, as long as this does not cause a misunderstanding.

So, functions in \(L^{\Psi} \) are a tiny little bit better than just lying in \(L_1(\mu) \), while functions in \(L^{\Phi} \) may be unbounded, but only very weakly.

By known embedding properties of Sobolev spaces, as soon as measure \(\mu \) possesses at least one point mass, the corresponding quadratic form \(s[v] \) is not bounded in \(H^l \), in other words, functions in \(H^l, l = N/2 \), are not necessarily continuous or even essentially bounded. However, their possible unboundedness is very weak: they belong to \(L^{\Psi} \).

The boundedness of the quadratic form \(s[v] \) in \(H_0^l(\Omega) \) (or \(H^l(\Omega) \)) follows from two facts. One of them is the general Hölder type inequality (see, e.g., [19]) for Orlicz spaces, having, in our case, the form

\[
\int |v|^2 |V|d\mu \leq C \|v^2\|_{L^{\Phi}} \|V\|_{L^{\Psi}}; \tag{3.5}
\]
(the constant C here is an absolute one; it would equal 1 if we have used some other, equivalent, norms in the Orlicz spaces.)

Another ingredient is Corollary 11.8/2 in [27]. In our case, for $p = 2$, $l = N/2$, it sounds:

Lemma 3.1. The estimate

$$
||v^2||_{L^{2,\mu}} \leq A||v||_{H^1(\Omega)}^2
$$

holds for all $v \in H^1(\Omega)$ if and only if for some $\beta > 0$ measure μ satisfies the inequality

$$
\mu(B(r, X)) \leq C(\mu)r^\beta, \quad r < 1, \quad B(r, X) := \{ Y : |Y - X| \leq r \},
$$

for all $X \in M$, with constant $A = A(\mu)$ depending only on β and $C(\mu)$ in (3.7).

Now we can formulate the required boundedness condition which follows immediately combining (3.6) and (3.5).

Proposition 3.2. Let measure P have the form $P = V\mu$, where V is a real μ-measurable function on the support of μ. Suppose that μ satisfies condition (3.7) and $V \in L^\Psi$. Then the inequality

$$
\left| \int |v|^2 V d\mu \right| \leq CA(\mu)||v||_{H^1(\Omega)}^2||V||_{L^\Psi}
$$

is satisfied for all $v \in H^1(\Omega)$ with constant not depending on V.

We return to operator $T_{P,\mathfrak{A}}$ to obtain the boundedness condition.

Theorem 3.3. Let measure μ satisfy (3.7). Then for any $V \in L^\Psi$, $P = V\mu$, operator $T_{P,\mathfrak{A}}$ is bounded in $L^2(\Omega)$ and

$$
||T_{P,\mathfrak{A}}|| \leq C(\mathfrak{A})A(\mu)||V||_{L^\Psi}.
$$

The constant $C(\mathfrak{A})$ in (3.9) depends on operator \mathfrak{A}, and dimension N, but not on the density V.

We can now present a description of the action of the operator $T_{P,\mathfrak{A}}$, similar to the one given, for an absolutely continuous measure P, in [25]. If inequality (3.1) is satisfied for all $v \in H^l_0$, it follows, by the usual polarization, that

$$
\left| \int \omega(X)\bar{v}(X)P(dX) \right| \leq C||v||_{H^l}||w||_{H^l}, \quad v, w \in H^l_0.
$$

The latter inequality means that for a fixed v, the integral on the left is a continuous functional of the function w in H^l_0, therefore $\bar{v}(X)P \in H^{-l}(\Omega)$ for $v = \mathfrak{A}u$, $u \in L^2(\Omega)$. Consequently, the result of application of the order $-l$ operator \mathfrak{A}^* to $\bar{v}(X)P$ belongs to L^2, and so the operator defined by the quadratic form $t_{P,\mathfrak{A}}$ in L^2 factorized as a composition of bounded operators,

$$
T_{P,\mathfrak{A}} : L^2(\Omega) \xrightarrow{\mathfrak{A}} H^l_0(\Omega) \xrightarrow{P} H^{-l}(\Omega) \xrightarrow{\mathfrak{A}^*} L^2(\Omega).
$$

(3.10)
This representation is a natural generalization of the one used, e.g., in [25], [39], however it is less convenient than (3.9) when establishing norm and eigenvalue estimates.

4. Eigenvalue estimates

In order to obtain eigenvalue estimates for operator $T_{P,A}$, we need to impose additional assumptions on the measure μ.

Definition 4.1. A Radon measure μ on \mathbb{R}^N with compact support M is called Ahlfors-s-regular, $s > 0$, if for some $C > 0$ and any $X \in \mathcal{X}$,

$$C r^s \leq \mu(B(X, r)) \leq C^{-1} r^s, \quad r \leq \text{diam } M \quad (4.1)$$

for all $X \in M$.

Such measure is equivalent to the s-dimensional Hausdorff measure H^s (see, e.g., [8], Lemma 1.2) on the support of μ. Note that s-regular measures satisfy condition (3.7) with $\beta = s$.

In the Orlicz space $L^{\Psi,\mu}$, for a Borel set E, we introduce the norm,

$$\|V\|_{(av,\Psi;\mu)}^{(av,\Psi)} = \sup \left\{ \int_{E \cap M} V d\mu : \int \Phi(|g|) d\mu \leq \mu(E \cap M) \right\}, \quad (4.2)$$

if $\mu(E \cap M) > 0$, and $\|V\|_{(av,\Psi)}^{(av,\Psi)} = 0$ otherwise. Such averaged norms have been first introduced by M.Z. Solomyak in [38] and were being used since then in the study of the eigenvalue distribution in the critical case. The norm (4.2) is equivalent to the standard norm in $L^{\Psi,\mu}$ but the coefficient in the equivalence depends on the the measure μ (in fact, on $\mu(E)$). Our basic result on the eigenvalue estimates is the following:

Theorem 4.2. Let measure μ with compact support satisfy condition (4.1) with some $\alpha > 0$ and let $V \in L^{\Psi}$. Let A be an order $-l = -N/2$ pseudodifferential operator with compact support. Then for the operator $T_{V,\mu}$ the following eigenvalue estimate holds

$$n_{\pm}(\lambda, T_{V,\mu}) \leq C(\mu) C(A) \lambda^{-1} \|V\|_{(av,\Psi;\mu)}^{(av,\Psi;\mu)}, \quad (4.3)$$

The proof is presented in detail in [32]. We note here only that it follows the pattern of the two-dimensional reasoning in [16]. In its turn, this variational proof is based upon ideas used for obtaining a similar estimate in [38], where an absolutely continuous measure μ was considered. All of them have, as their starting point, the original proof of the CLR estimate, in the form published in [5].

It is convenient to eliminate further on the dependence of results on the domain Ω. This is done by means of the following estimate.

Proposition 4.3. Let A_1, A_2 be two order $-l = -N/2$ pseudodifferential operator in a bounded domain $\Omega \in \mathbb{R}^N$ with compact support such that $A_1 f = A_2 f$
for \(f \) supported in \(\Omega' \) in and \(\mu \) be a finite Borel measure with support inside \(\Omega' \), then

\[
n_\pm(\lambda, T_{P,\mathfrak{A}_1}) - n_\pm(\lambda, T_{P,\mathfrak{A}_2}) = o(\lambda^{-1}), \lambda \to 0.
\]

(4.4)

Proof. Consider a cut-off function \(\chi \) which equals 1 in a sufficiently small neighborhood of \(\mathfrak{M} \) and equals zero outside another small neighborhood, so that operators \(\chi \mathfrak{A}_1 \chi \) and \(\chi \mathfrak{A}_1 \chi \) coincide. The quadratic form of \(T_{P,\mathfrak{A}_j} \) is represented as

\[
t_{P,\mathfrak{A}_j}[u] = \int |\mathfrak{A}_j u|^2 P(dX) = \int |\chi^2 \mathfrak{A}_j u|^2 P(dX) = \int |\chi \mathfrak{A}_j \chi u|^2 P(dX) + 2 \Re \left(-\chi [\mathfrak{A}_j, \chi] u (\chi^2 \mathfrak{A}_j u) \right) P(dX) + |\chi [\mathfrak{A}_j, \chi] u|^2 P(dX).
\]

(4.5)

In (4.5), the first term is the same for \(\mathfrak{A}_1, \mathfrak{A}_2 \), while the remaining terms contain commutators of \(\chi \) with \(\mathfrak{A}_j \), which are pseudodifferential operators of order \(-l-1\). Quadratic forms with such operators in \(L^2 \), or, what is equivalent, quadratic forms \(\int |v|^2 P(dX) \) in \(H^s \), \(s > N/2 \), have singular values decaying faster that \(k^{-1} \), e.g., by Theorem 3.1 in [4]. Thus, operator \(T_{P,\mathfrak{A}_1}, T_{P,\mathfrak{A}_2} \) differ by an operator with fast decaying singular values, and (4.4) follows from the Ky Fan inequalities. \(\square \)

This property shows that the behavior of eigenvalues of our operators for a singular measure is determined by the operator \(\mathfrak{A} \) restricted to arbitrarily small neighborhood of the support of the measure. Additionally, it enables localization of operators, when considering measures on manifolds. The same reasoning grants this kind of localization for the case when \(\Omega = \mathbb{R}^N \) and \(\mathfrak{A} = \mathfrak{A}_0 = (1 - \Delta)^{-l/2} \).

In Theorem 4.2 and its consequences, it is important that measure \(\mu \) has compact support. It is known since long ago that even for \(\mu \) being the Lebesgue measure on \(\mathbb{R}^N \), behavior of \(V \) at infinity requires additional considerations (see, especially [3] and [16]) and the contribution of infinity to the eigenvalue estimates may be stronger than the local one in (4.3).

The eigenvalue estimate (4.3) extends immediately by means of the Ky Fan inequality to finite sums of measures \(P = \sum P_j \), \(P_j = V_j \mu_j \), where measures \(\mu_j \) may have different dimensions, e.g., satisfy (4.1) with different values of \(s \), including \(s = N \), the latter case corresponds to an absolutely continuous measure. However, the control over the constants in the estimates becomes rather cumbersome since the triangle inequality fails for the ideal \(\mathcal{S}_{1,\infty} \).

It follows from Theorem 4.2 that operator \(T_{P,\mathfrak{A}} \) belongs to the ideal \(\mathcal{M}_{1,\infty} \) and therefore singular Dixmier traces exist for \(T_{P,\mathfrak{A}} \). We may not, however, declare at the moment that the operator \(T_{P,\mathfrak{A}} \) is measurable, without additional conditions imposed.

Results on eigenvalue estimates are easily carried over, by means of the same localization, to spectral problems considered on closed manifolds.
Corollary 4.4. Let \mathcal{M} be an N-dimensional Riemannian manifold and μ be a Borel measure, Ahlfors s-regular for some $s > 0$. Let V be a μ-measurable real function belonging to $L^\psi, \mu(\mathcal{M})$ and \mathfrak{A} be a pseudodifferential order $-N/2$ operator on \mathcal{M}. Consider the operator $T = T_{P\mathfrak{A}}$, $P = V \mu$. Then for the eigenvalues of this operator estimate (4.3) is valid, with constant not depending on the density V.

In the quite standard proof, we consider a finite covering by neighborhoods \mathcal{U}_j with co-ordinate mappings to domains in the Euclidean space. The measure P thus splits into the sum $P = \sum P_j$, where P_j is supported inside \mathcal{U}_j. Operator $\mathfrak{A}^* P \mathfrak{A}$ thus splits into the sum $\sum \mathfrak{A}^* P_j \mathfrak{A}$, and the required eigenvalue estimate follows from estimates for these summands by means of Ky Fan’s inequality. In its turn, eigenvalue estimate for $\mathfrak{A}^* P_j \mathfrak{A}$ follows from the Euclidean result by usual localization.

5. Examples, Applications

5.1. One-dimensional examples. The results about estimates are nontrivial even in dimension 1. As an illustration, we consider the weighted Steklov (Dirichlet-to Neumann) and transmission spectral problems with weight being singular measure. Such problems, with weight being a function in the Orlicz class, were considered in [37].

Let $\Omega \subset \mathbb{R}^2$ be a bounded simply connected domain with smooth boundary. Let μ be a measure on the boundary $\Sigma = \partial \Omega$ and V be a μ-measurable real function on Σ, $P = V \mu$. We consider the eigenvalue problem
\begin{equation}
\Delta u(X) = 0, \quad X \in \Omega; \quad u(X)P = \lambda \partial_\nu(X)u(X), \quad X \in \Sigma,
\end{equation}
where $\nu(X)$ is the external normal at $X \in \Sigma$. This problem admits the following exact formulation. We denote by \mathcal{DN} the Dirichlet-to Neumann operator on Σ, namely
\begin{equation}
(\mathcal{DN}h)(x) = \partial_\nu(X)u(X), \quad \text{where } \Delta u = 0, \ u|_{\Sigma} = h.
\end{equation}
It is known that \mathcal{DN} is an order 1 positive elliptic pseudodifferential operator on Σ, with principal symbol $|\xi|^1$, $(x, \xi) \in T^*\Sigma$. Then the problem (5.1) can be expressed as
\begin{equation}
\lambda \mathcal{DN}h = Ph,
\end{equation}
or, in our variational setting, the eigenvalue problem for the operator $T_{P\mathfrak{A}}$ defined by the quadratic form
\begin{equation}
t_{P\mathfrak{A}}[h] = \int_{\Sigma} |(P\mathfrak{A}h)(x)|P(dx), \quad \mathfrak{A} = (\mathcal{DN})^{-\frac{1}{2}}.
\end{equation}
Suppose that measure μ is s--Ahlfors regular of dimension $s \in (0, 1]$ (the case of $s = 1$ corresponds to the measure being absolutely continuous with respect to the Lebesgue measure on Σ.) Then Theorem 4.2 gives us the eigenvalue estimate.
Corollary 5.1. Let V be a real function in $L^{Ψ,μ}$. Then for the eigenvalues of the problem (5.1),

$$n_±(λ) ≤ Cλ^{-1}∥V_±∥^{Ψ,μ}_Σ.$$ \hspace{1cm} (5.5)

A similar result is valid for the transmission problem. Let, again, $Ω ⊂ R^2$ be a bounded, simply connected domain with smooth boundary and $Σ$ be a simple smooth curve inside $Ω$. For a function $u ∈ H^2(Ω \setminus Σ)$, we denote by $[u_ν(X)]$ the jump of the normal derivative of u at the point $X ∈ Σ$. As above, $μ$ is a measure on $Σ$, $P = V_μ$. We consider the spectral transmission problem

$$u(X)P = λ[u_ν(X)], X ∈ Σ, Δu = 0, u|_{Ω} = 0, u|_{Σ} = h.$$ \hspace{1cm} (5.6)

This kind of transmission problems is considered, e.g., in [1], [2], motivated, in particular, by some physics applications. Similar to the reasoning above, problem (5.6) can be transformed to the eigenvalue problem for the operator $T_{P,Σ}$, defined in $L^2(Σ)$ by the quadratic form (5.4), where $A = T^{-1/2}$ and T is the ‘transmission operator’ $h ↦ [u_ν(X)], X ∈ Σ, Δu = 0$ in $Ω \setminus Σ, u|_{Ω} = 0, u|_{Σ} = h.$

Again, A is an order $-\frac{1}{2}$ pseudodifferential operator on $Σ$, and the spectral problem fits in our general setting.

Corollary 5.2. Suppose that measure $μ$ is Ahlfors regular of dimension $s ∈ (0,1)$ and let V be a real function in $L^{Ψ,μ}$. Then for the eigenvalues of the problem (5.6),

$$n_±(λ, T_{P,Σ}) ≤ Cλ^{-1}∥V_±∥^{Ψ,μ}_Σ.$$ \hspace{1cm} (5.7)

In the case $s = 1$ for the weighted Steklov problem, this kind of estimates was obtained in [37]. There, for $V ≥ 0$, a lower estimate for $n_+(λ, T_{P,Σ})$ was established as well, of the same order in $λ$ but in terms of the L^1 norm of the function V. A general lower estimate for eigenvalues is discussed in Section 9.

5.2. Fractal sets. We recall the general construction of fractal sets, introduced by J.Hutchinson, [14]. Let $S = \{S_1, ..., S_m\}$ be a finite collection of contractive similitudes (i.e., compositions of a parallel shift, a linear isometry and a contracting homothety) on R^N, $h_1, ..., h_m$ are their coefficients of contraction. It is supposed that the open set condition is satisfied: there exists an open set $V ⊂ R^N$ such that $∪S_i(V) ⊂ V$ and $S_i(V) \cap S_i(V') = ∅, i ≠ i'$. By the results of Sect. 3.1 (3), 3.2 in [14], there exists as unique compact set $K = K(S)$ satisfying $K = ∪_{j≤m}S_jK$. This set is, in fact, the closure of the set of all fixed points of finite compositions of the mappings S_j. The Hausdorff dimension d of the set $K(S)$ is determined by the equation $∑ h_j^d = 1$. Let $μ$ be the d-dimensional Hausdorff measure $μ_S$ on $K(S)$. As explained in [12], Corollary 2.11.(1), p.6696, this measure is Ahlfors regular of dimension d. Therefore, our result, Theorem 4.2, gives the upper eigenvalues estimate:
Corollary 5.3. Let \(\mu = \mu(\mathcal{S}) \) be a fractal measure as above, with bounded set \(\Omega \subset \mathbb{R}^N \). Suppose that the density \(V \) belongs to the Orlicz space \(L^{\Psi, \mu} \); \(P = V\mu \) and \(\mathfrak{A} \) be an order \(-l = -N/2\) pseudodifferential operator in \(\Omega \) with compact support. Then the operator \(T_{P, \mathfrak{A}} \) belongs to \(\mathcal{G}_{1, \infty} \) and for its eigenvalues the following estimate holds
\[
\lambda(n, T_{P, \mathfrak{A}}) \leq C \lambda^{-1} \| V \|^{(av, \Psi, \mu)}_k. \tag{5.8}
\]

5.3. Lipschitz surfaces. Let the set \(\Sigma \subset \mathbb{R}^N \) be a compact Lipschitz surface of dimension \(d > 0 \) and codimension \(\delta = N - d \). Recall that this means that locally \(\Sigma \) can be in proper co-ordinates \(X = (x_1, \ldots, x_d; y_1, \ldots y_d) \) represented as \(y = \phi(x) \), \(x \in G \subset \mathbb{R}^d \) with a Lipschitz \(d \)-component vector-function \(\phi \). Denote by \(\mu_\Sigma \) the measure on \(\Sigma \) generated by the embedding \(\Sigma \to \mathbb{R}^N \) - it coincides with the \(d \)-dimensional Hausdorff measure \(\mathcal{H}^d \). By the Rademacher theorem the gradient of \(\phi \) exists almost everywhere with respect to \(\mu_\Sigma \). So, locally, \(\mu_\Sigma \) has the form
\[
d\mu_\Sigma = \sigma(x)dx, \quad \sigma(x) = \det(1 + (\nabla\phi)^* \nabla\phi)^{1/2}.
\]

The embedding of \(\Sigma \) in \(\mathbb{R}^N \) generates a singular measure on \(\mathbb{R}^N \), supported on \(\Sigma \) which will be also denoted \(\mu_\Sigma \), as long as this does not cause confusion. Such measures satisfy condition (4.1) with \(s = d \). Therefore, for measure \(V\mu_\Sigma \) the eigenvalue estimates obtained in Sect. 4 hold. For further reference, we formulate two important cases.

Theorem 5.4. Let \(\Sigma \) be a \(d \)-dimensional compact Lipschitz surface in \(\mathbb{R}^N \) and \(V \in L^{\Psi, \mu}(\Sigma) \). If \(\mathfrak{A} \) is an order \(-l = -N/2\) pseudodifferential operator in \(\mathbb{R}^N \) with compact support or \(\mathfrak{A} = (1 - \Delta)\)\(^{-N/4} \), then for the eigenvalues of the operator \(T_{V, \mu_\Sigma, \mathfrak{A}} \) the eigenvalue estimate is valid:
\[
n_\pm(\lambda, T_{V, \mu_\Sigma, \mathfrak{A}}) \leq C(\mu)C(\mathfrak{A})\lambda^{-1} \| V \|^{(av, \Psi, \mu)}_k. \tag{5.9}
\]

Localization of the first case of Theorem 5.4 provides us with an eigenvalue estimate for operator on compact manifolds.

Corollary 5.5. Let \(\mathcal{M} \) be a smooth closed Riemannian manifold of dimension \(N \) and \(\Sigma \) be a \(d \)-dimensional compact Lipschitz surface in \(\mathcal{M} \). Then for \(V \in L^{\Psi, \mu}(\Sigma) \) and \(\mathfrak{A} = (1 - \Delta_\mathcal{M})\)\(^{-N/4} \), the estimate (5.9) holds.

More about operators on manifolds can be found in Section ??.

5.4. Logarithmic potential. Here we demonstrate the relation of our construction with the logarithmic potential operator. A logarithmic potential of a measure \(P \) in \(\mathbb{R}^N \) is defined as
\[
L[P](X) = \int \log |X - Y| P(dY). \tag{5.10}
\]

This object is being extensively used in Potential Theory, Analysis, and Partial Differential Equations, as well as numerous applications. We take a somewhat different point of view on this potential. Let the compactly supported finite Borel
measure μ be s-Ahlfors regular, $s > 0$, and with $P = V \mu$ and $V \in L^{p,\mu}$, $V \geq 0$, we associate the logarithmic potential as an operator in the space $L_{2,p}(\mathbb{R}^N)$:

$$\mathcal{L}_P : L_{2,p} \to L_{2,p}^2; \quad \mathcal{L}_P : f(X) \mapsto \int \log |X - Y| f(Y) P(dY), f \in L_{2,p}.$$

(5.11)

Theorem 5.6. Operator \mathcal{L}_P is a bounded self-adjoint operator in $L_{2,p}$; it is compact and for the distribution function $n(\lambda, \mathcal{L}_P)$ of its singular numbers $s_k(\mathcal{L}_P)$ the estimate holds

$$\limsup_{\lambda \to 0} \lambda n(\lambda, \mathcal{L}_P) \leq C(\mu)\|V\|^{av,\Psi,\mu}$$

(5.12)

Proof. We apply the transformation used already once in Sect. 3 (and to be used again in the study of eigenvalue asymptotics.) Consider operator $T_{V,\mu,\mathfrak{A}}$ under the conditions of Theorem 5.6, with a special choice of the operator \mathfrak{A}: namely $\mathfrak{A} = (1 - \Delta)^{-N/4}$. Similar to Section 3, operator $T_{V,\mu,\mathfrak{A}}$ admits representation

$$T_{V,\mu,\mathfrak{A}} = \mathfrak{R}^* \mathfrak{R},$$

(5.13)

with \mathfrak{R} acting from $L^2(\mathbb{R}^N)$ to $L^2(\mathcal{M}, \mu)$, $\mathcal{M} = \text{supp} \mu, as \mathfrak{R} = UT_M \mathfrak{A}$, where Γ_M is the restriction from \mathbb{R}^N to \mathcal{M}, a bounded operator from $H^l(\mathbb{R}^N)$ to $L_{2,\mu}$, $U = V^{1/2}$ and the composition is bounded. Moreover, under our conditions, by Theorem 4.2,

$$n(\lambda, \mathfrak{R}^* \mathfrak{R}) \leq \lambda^{-1} C(\mu)\|V\|^{av,\Psi,\mu}(\mathcal{M}).$$

(5.14)

Operator $\mathfrak{R}^* = \mathfrak{A}^* \Gamma_M U : L^2(\mathcal{M}, \mu) \to L^2(\mathbb{R}^N)$ should be understood as composition of $\Gamma_M U$ acting, after the multiplication by U, as the extension by zero outside \mathcal{M} to the space of distribution $H^{-l}(\mathbb{R}^N)$, and the pseudodifferential order $-l$ operator \mathfrak{A}^* which maps $H^{-l}(\Omega)$ to $L^2(\mathbb{R}^N)$.

Now, recall that nonzero eigenvalues of non-negative operators $\mathfrak{R}^* \mathfrak{R}$ in $L^2(\mathbb{R}^N)$ and $\mathfrak{R}^* \mathfrak{R}$ in $L^2(\mathcal{M}, \mu)$ coincide. The operator $\mathfrak{R}^* \mathfrak{R}$ acts as

$$\mathfrak{R}^* \mathfrak{R} = UT_M \mathfrak{A}^* \Gamma_M U = UT_M (\mathfrak{A}^* \mathfrak{A}^*) \Gamma_M U.$$

(5.15)

Here operator \mathfrak{A}^* is an order $-2l = -N$ pseudodifferential operator which we consider as acting from $H^{-l}(\mathbb{R}^N)$ to $H^l(\mathbb{R}^N)$. It has principal symbol $|\Xi|^{-N}$, and therefore, it is the integral operator with logarithmic principal singularity of the kernel $R(X,Y,X-Y)$:

$$R(X,Y,X-Y) = C_N \log |X - Y| + R'(X,Y)$$

(5.16)

with $R'(X,Y) = o(1), X \to Y$. The coefficient C_N equals $\frac{2\sqrt{\pi}}{\Gamma(N/2+1)}$ (see, e.g. [35], (VII.7.15)). Therefore, the operator $\mathfrak{R}^* \mathfrak{R}$ acts, up to weaker terms, as

$$(\mathfrak{R}^* \mathfrak{R} \psi)(X) = C_N U(X) \int_{\mathcal{M}} \log |X - Y| U(Y) \psi(Y) d\mu(Y).$$

(5.17)

in $L^2(\mathcal{M}, \mu)$. Finally, the eigenvalue problem $\mathfrak{R}^* \mathfrak{R} \psi = \lambda \psi$ in $L^2(\mathfrak{M}, \mu)$, by setting $\psi(X) = U(X) f(X)$, transforms to the eigenvalue problem (5.11) for operator of logarithmic potential. Eigenvalue estimate (5.12) follows therefore from (5.14). □
In the next section we benefit of the above way of reasoning acting in the opposite direction.

6. Eigenvalue asymptotics and measurability

The measurability of the Birman-Schwinger type operator $T_{V,\mu}$ can be derived, in particular, from the eigenvalue asymptotics for this operator. Note that results stating such asymptotics are much stronger than just a measurability. Nevertheless, in all approaches to proving measurability of this type of operators, the eigenvalue asymptotics itself, or at least some weaker version of it, like the Wodzicki residue, serve as the starting point. It seems that for a long time, specialists in Noncommutative Geometry, when dealing with Connes’ measurability, were unwary of the publications by M.Sh. Birman and M.Z. Solomyak in late 70-s on the eigenvalue asymptotics for negative order pseudodifferential operators as well as of further extensions of these results. It turns out that these results and their consequences, in particular, for potential type integral operators, enable one to establish integrability in a considerably more general setting.

6.1. Measures on Lipschitz surfaces. Formulas for the eigenvalue asymptotics for a measure on a Lipschitz surface were obtained in [32]. We discuss them here briefly and then present certain generalizations.

Let $\Sigma \subset \mathbb{R}^N$ be a compact Lipschitz surface of dimension $d : 0 < d < N$, $d = N - d$, defined locally, in proper co-ordinates $X = (x, y)$, $x \in \mathbb{R}^d$, $y \in \mathbb{R}^d$ by the equation $y = \phi(x)$, with a Lipschitz vector-function ϕ. Measure μ generated by the embedding of Σ into \mathbb{R}^N coincides with the d-dimensional Hausdorff measure H^d. By the Rademacher theorem, for μ-almost every $X \in \Sigma$, there exists a tangent space $T_X \Sigma$ to Σ at the point X and, correspondingly, the normal space $N_X \Sigma$ which are identified naturally with the cotangent and the conormal spaces. By $S_X \Sigma$ we denote the sphere $|\xi| = 1$ in $T_X \Sigma$.

Theorem 6.1. Let the real function V on Σ belong to $L^{0,\mu}(\Sigma)$. Let \mathfrak{A} be a compactly supported in $\Omega \subset \mathbb{R}^N$ order $-l = -N/2$ pseudodifferential operator with principal symbol $a_{-l}(X, \Xi)$. Define the auxiliary symbol $r_{-d}(X, \xi)$ where $X \in \Sigma$ is a point where the tangent plane exists and $\xi \in T_X \Sigma$,

$$r_{-d}(X, \xi) = (2\pi)^{-b} \int_{N_X \Sigma} |a_{-l}(X, \xi, \eta)|^2 d\eta. \quad (6.1)$$

and the density

$$\rho_{\mathfrak{A}}(X) = \int_{S_X \Sigma} r_{-d}(X, \xi)d\xi \quad (6.2)$$

Then for the eigenvalues of operator $T_{V,\mu,\mathfrak{A}} = \mathfrak{A}^* P \mathfrak{A}$, $P = V\mu$, the asymptotic formulas are valid

$$n_{\pm}(\lambda, T_{V,\mu,\mathfrak{A}}) \sim \lambda^{-1} A^\pm(V, \mu, \mathfrak{A}), \lambda \to 0, \quad (6.3)$$
where
\[A^\pm(V, \mu, \mathfrak{A}) = \frac{1}{d(2\pi)^{d-1}} \int_{\Sigma} \int_{S_X} V_{\pm}(X) r_{-d}(X, \xi) d\xi d\mu = \] (6.4)

\[\frac{1}{d(2\pi)^{d-1}} \int_{\Sigma} V_{\pm}(X) \rho_\mathfrak{A}(X) d\mu(X), \]

with density \(\rho_\mathfrak{A}(X) \) defined in (6.2).

The expression
\[A(V, \mu, \mathfrak{A}) = A^+(V, \mu, \mathfrak{A}) - A^-(V, \mu, \mathfrak{A}) = \frac{1}{d(2\pi)^{d-1}} \int_{\Sigma} V(X) \rho_\mathfrak{A}(X) d\mu(X) \] (6.5)
can be formally understood as an analogy of the Wodzicki residue of the symbol \(V(X) r_{-d}(X, \xi) \) on \(\Sigma \), of course, without any smoothness conditions inherent to Wodzicki theory (the latter 'symbol' is even not expected to be a symbol of a pseudodifferential operator). We call it \(\Sigma \)-Wodzicki residue of \((V, \mathfrak{A}, \mu)\).

In the particular case of \(\mathfrak{A} = \mathfrak{A}_0 = (1 - \Delta)^{-N/4} \), in \(\mathbb{R}^N \), we have \(a_{-i}(X, \Xi) = |\Xi|^{-N/2} \) and

\[r_{-d}(X, \xi) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} (|\xi|^2 + |\eta|^2)^{-N/2} d\eta = \] (6.6)

\[|\xi|^{-d}(2\pi)^{-\frac{d}{2}} \omega_{d-1} \int_0^\infty \zeta^{d-1}(1 + \zeta^2)^{-N/2} = \]

\[\omega_{d-1} \frac{1}{2(2\pi)^{\frac{d}{2}}(d+1)} B\left(\frac{d}{2}, \frac{d}{2}\right) |\xi|^{-d}, \]

where \(\omega_{d-1} \) is the volume of the unit sphere in \(\mathbb{R}^d \), \(B \) is the Beta-function. So, here we have

\[n_{\pm}(\lambda, T_{V, \mathfrak{A}_0}) \sim \lambda^{-1} Z(d, \vartheta) \int_{\Sigma} V_{\pm}(X) d\mu(X), \] (6.7)

\[Z(d, \vartheta) = \frac{\omega_{d-1} \omega_{d-1}}{2d(2\pi)^{\frac{d}{2}}(d+1)} B\left(\frac{d}{2}, \frac{d}{2}\right) \] (6.8)

We explain briefly the way how Theorem 6.1 is being proved, directing interested Readers to [32] for details.

First, we can replace \(V \) by a weight \(V_\varepsilon \), defined and smooth in a neighborhood of \(V \), such that the eigenvalue distribution functions for operators \(T_{V, \mu, \mathfrak{A}} \) and \(T_{V_\varepsilon, \mu, \mathfrak{A}} \) differ asymptotically by less than \(\varepsilon \lambda^{-1} \). Here estimates in Section 4 are used. By the basic asymptotic perturbation lemma by M.Sh. Birman and M.Z. Solomyak, (see, e.g., Lemma 1.5 in [4] or Lemma 6.1 in [RT1]), such approximation enables one to prove asymptotic formulas for nice densities \(V_\varepsilon \) only, by passing then to limit as \(V_\varepsilon \) approaches \(V \) in the averaged Orlicz norm. On the next step, we separate the positive and negative eigenvalues of our operator. Namely, by some more approximation and localization, we find that, in the leading term,
the asymptotics of positive eigenvalues of the operator is determined only by the positive part of the density V_ε, while the asymptotics of the negative eigenvalues is determined only by the negative part of V_ε. Thus, the problem is reduced to the case of a sign-definite V_ε, which we may suppose being the restriction to Σ of a smooth function.

Next, the problem is reduced to the study of eigenvalues of an integral operator on Σ with kernel having an order zero and/or logarithmic singularity at the diagonal. This is done in the following way. Similarly to (2.8), operator $T_{V_\varepsilon, \mu, \xi}$ factorizes as

$$T_{V_\varepsilon, \mu, \xi} = (\Gamma_\Sigma U^* A) (\Gamma_\Sigma U^* A)$$

where $U = V_\varepsilon^{\frac{1}{2}}$, Γ_Σ is the operator of restriction from Ω to Σ, so the operator $\mathfrak{R} = \Gamma_\Sigma U^* A$ is bounded as acting from $L^2(\Omega)$ to $L^2(\Sigma, \mu)$ and the product $\mathfrak{R}^* \mathfrak{R} = (\Gamma_\Sigma U^* A)^* (\Gamma_\Sigma U^* A)$ acts in $L^2(\Omega)$. We know, however, that the nonzero eigenvalues of the operator $\mathfrak{R}^* \mathfrak{R}$ coincide with nonzero eigenvalues of $\mathfrak{R} \mathfrak{R}^*$, counting multiplicity. Operator $\mathfrak{R} \mathfrak{R}^*$ acts in $L^2(\Sigma, \mu)$ as

$$\mathfrak{R} \mathfrak{R}^* = \Gamma_\Sigma U^* A^* U \Gamma_\Sigma^*.$$ \hfill (6.10)

Operator $U^* A^* U$ is an order $-N$ pseudodifferential operator in Ω with principal symbol $\mathcal{R}_{-N}(X, \Xi) = V_\varepsilon(X)|a_{-l}(X, \Xi)|^2$, or, what is equivalent, a self-adjoint integral operator with kernel $R(X, Y, X - Y)$, smooth for $X \neq Y$. This kernel, being the Fourier transform of the symbol of $U^* A^* U$ in Ξ variable, has the leading singularity in $X - Y$ containing possible terms of two types, namely, $R_0(X, Y, X - Y)$, order zero homogeneous in $X - Y$, and $R_{\text{log}}(X, Y) \log |X - Y|$ with smooth function R_{log} - see, e.g., [40], Ch. 2, especially, Proposition 2.6 (one of these terms may be absent. In particular, if the principal symbol of A equals $|\Xi|^{-N/2}$, this means that A is $(1 - \Delta)^{-N/4}$, framed, possibly, by cut-off functions - and this is the most interesting case, only the logarithmic term is present.) After framing by $\Gamma_\Sigma U$ and $U \Gamma_\Sigma^*$, as in (6.10), we arrive at the representation of $\mathfrak{R} \mathfrak{R}^*$ as the integral operator \mathfrak{R} in $L^2(\Sigma, \mu)$ with kernel $R(X, Y, X - Y) = R_0(X, Y, X - Y) + R_{\text{log}}(X, Y) \log |X - Y|$. Exactly this kind of operators on Lipschitz surfaces was considered in the papers [33], for surfaces of codimension 1, and [34], for an arbitrary codimension. The result on eigenvalue asymptotics, obtained for such integral operators in these papers, corresponds exactly the formulas in Theorem 6.1 above.

For an interested Reader we explain now, not going into technical details (which are presented in [33], [34]), how the formulas for eigenvalue asymptotics for integral operators on Lipschitz surfaces are being proved. The starting point is establishing these formulas for a smooth surface. This is achieved by an adaptation of the results by M.Sh.Birman and M.Z.Solomyak in [6] on the eigenvalue asymptotics for negative order pseudodifferential operators. Next, the given Lipschitz surface $\Sigma : y = \phi(x)$ is approximated, locally, by smooth ones, Σ_ε, so that in their local representation $y = \phi_\varepsilon(x)$, functions ϕ_ε converge to ϕ in L^∞ and
their gradients $\nabla \phi_\epsilon$ converge to $\nabla \phi$ in all L^p, $p < \infty$ (one should not expect convergence of gradients in L^∞, of course). The changes of variables $x \mapsto (x, \phi(x))$, resp., $x \mapsto (x, \phi_\epsilon(x))$, transform operators with kernel $R(X, Y, X - Y)$ on the surfaces Σ and Σ_ϵ to operators \mathcal{A}, resp., \mathcal{A}_ϵ, on some domain in \mathbb{R}^d, while the eigenvalue asymptotics for \mathcal{A}_ϵ, is known. Now it is possible to consider the difference of these operators. After estimating the eigenvalues of $\mathcal{A} - \mathcal{A}_\epsilon$ (and this is a fairly technical part of the reasoning), we obtain that the eigenvalue asymptotic coefficients of $\mathcal{A} - \mathcal{A}_\epsilon$ converge to zero. This property enables one to use again the asymptotic perturbation lemma, mentioned some lines above, to justify the eigenvalue asymptotic formula for \mathcal{A}.

6.2. Connes’ integral over a Lipschitz surface. As soon as Theorem 6.1 is proved, it follows immediately that the operator $T_{V, \mu, \mathfrak{A}}$ is Connes’ measurable.

Theorem 6.2. Let Σ be a compact d-dimensional Lipschitz surface in \mathbb{R}^N, with the induced measure $\mu = \mathcal{H}^d$, and \mathfrak{A} be a compactly supported order $-N/4$ pseudodifferential operator in \mathbb{R}^N or $\mathfrak{A} = (1 - \Delta)^{-N/4}$. Then for any $V \in L^q, \mu$, the operator $T_{V, \mu, \mathfrak{A}}$ is Connes’ measurable and $\tau(T_{V, \mu, \mathfrak{A}})$ equals the Σ-Wodzicki residue of $(V, \Sigma, \mu, \mathfrak{A})$, for any normalized positive singular trace τ on $\mathcal{M}_{1,\infty}$,

$$\tau(T_{V, \mu, \mathfrak{A}}) = d^{-1}(2\pi)^{-d} \int_{\Sigma} V(X) \rho_{\mathfrak{A}}(X) \mu(dX).$$

(6.11)

Proof. In fact, since the weak Schatten ideal $\mathcal{S}_{1,\infty}$ is embedded in $\mathcal{M}_{1,\infty}$ then, for a sign-definite part of the density V^+ or V^-, the asymptotic relations

$$(\log(2 + n))^{-1} \sum_{k \leq n} \lambda_k(T_{V, \mu, \mathfrak{A}}) \to A^\pm(V, \mu, \mathfrak{A}), \ n \to \infty$$

(6.12)

are valid, being the direct consequence of (6.3). Therefore

$$\tau(T_{V, \mu, \mathfrak{A}}) = A^\pm(V, \mu, \mathfrak{A})$$

(6.13)

for any normalized positive singular trace τ on $\mathcal{M}_{1,\infty}$ for any V^+, resp., V^- in the Orlicz space L^q, μ. For V with variable sign, we can use our Theorem 6.1 in its whole strength. Having the asymptotics (6.3), both for positive and negative eigenvalues of $T_{V, \mu, \mathfrak{A}}$, we find that

$$\tau(T_{V, \mu, \mathfrak{A}}) = \tau(T_{V, \mu, \mathfrak{A}}) - \tau(T_{V, \mu, \mathfrak{A}}) = \lim(\log(2 + n))^{-1} \sum_{|\lambda_k| < n} \lambda_k^\pm = A(V, \mu, \mathfrak{A})$$

(6.14)

$$= A^+(V, \mu, \mathfrak{A}) - A^-(V, \mu, \mathfrak{A}) = \frac{1}{d(2\pi)^{d-1}} \int_{\Sigma} \int_{S_X\Sigma} V(X) r_{-\xi}(X, \xi) d\xi d\mu,$$

for any normalized singular trace on $\mathcal{M}_{1,\infty}$. This, according to definition, means that the operator $T_{V, \mu, \mathfrak{A}}$ is Connes’ measurable. In particular, if we select $\mathfrak{A} = (1 - \Delta)^{-N/4}$, Connes’ integral of the operator $T_{V, \mu, \mathfrak{A}}$ coincides, up to a constant
factor in (6.8) depending on the dimensions \(d \) and \(d \) only, with the surface integral of \(V \) against the measure \(\mu \) on the Lipschitz manifold \(\Sigma \), see Section 6.1.

6.3. Finite unions of Lipschitz surfaces in \(\mathbb{R}^N \). Measurability. Now we discuss Connes integrals over sets of more complicated structure. Here, the general result as in Theorem 6.2, although possible, is not that visual due to the dependence of the local formula in the integrand on a particular representation of Lipschitz surfaces involved. Therefore, from now on, we restrict ourselves to the analysis of the special case of operator \(A = (1 - \Delta)^{-N/4} \) in \(\mathbb{R}^N \) having principal symbol \(a_{-l}(X, \Xi) = |\Xi|^{-l} \). We will omit \(A \) in notation further on.

The aim is to arrive at the formula \(\tau(T_P) = C \int P \) for widest possible set of measures.

Let \(X \subset \mathbb{R}^N \) be a compact set, \(X = \bigcup_{j \leq n} \Sigma_j \) where each \(\Sigma_j \) is a compact Lipschitz surface of dimension \(d \), \(0 < d < N \). With \(\Sigma_j \) we associate the measure \(\mu_j \) supported on \(\Sigma_j \) generated by the embedding \(\Sigma_j \subset \mathbb{R}^N \). We normalize these measures, setting \(\tilde{\mu}_j = Z(d, d) \mu_j \), the coefficient \(Z(d, d) \) given in (6.8). Let further \(V_j \) be real-valued functions on \(\Sigma_j \), belonging to the corresponding Orlicz spaces, \(V_j \in L^{\Psi, \mu_j} \), \(P_j = V_j \mu_j \). In our normalization, we associate measure \(\tilde{P} = \sum_j V_j \tilde{\mu}_j \) with the given measure \(P = \sum_j V_j \mu_j \). This relation will be denoted by \(\mathfrak{R} : P \mapsto \tilde{P} \). This operator \(\mathfrak{R} \) is extended by linearity to sums of measures supported on surfaces of different dimension.

With each of surfaces we associate operator \(T_{P_j} \). In accordance with (6.14),

\[
\tau(T_{P_j}) = \int_{\Sigma_j} V_j(X) \tilde{\mu}_j(dX) = \int \tilde{P}_j(dX) = \int \mathfrak{R}(P)(dX). \tag{6.15}
\]

Thus, with our normalization, we have a convenient expression for the Connes integral over the union of surfaces.

Theorem 6.3. Let measure \(P \) be defined as \(P = \sum V_j \mu_j \) with \(\mu_j \) being the \(d \)-dimensional Hausdorff measure on a compact Lipschitz surface \(\Sigma_j \), \(V_j \in L^{\Psi, \mu} \). Under the above conditions, the operator \(T_P \) satisfies

\[
T_P = \sum T_{P_j}, \tag{6.16}
\]

operator \(T_P \) is Connes’ measurable, and for any normalized singular trace \(\tau \),

\[
\tau(T_P) = \sum_j A(P_j) = \int \mathfrak{R}(P)(dX). \tag{6.17}
\]

Proof. Relation (6.16) follows from the corresponding formula for the quadratic forms of the operators involved. The linearity property of singular traces implies (6.17), and, since the expression on the right does not depend on \(\tau \), measurability of the operator follows.
6.4. Finite unions of Lipschitz surfaces in \mathbb{R}^N of the same dimension.
Eigenvalue asymptotics. The statement in Theorem 6.3 is weaker than the one concerning the eigenvalue asymptotics, namely, that

$$n_\pm(\lambda, T) \sim \sum n_\pm(\lambda, T_{P_j}) \sim \lambda^{-1}Z(d, \sigma_0) \sum \int V_{j, \pm}(X) dm_j(X)$$

(6.18)

holds. This is understandable, since, unlike the singular trace, the coefficients in the eigenvalue asymptotics do not, generally, depend linearly on the operators. Moreover, simple examples show that (6.18) may be wrong, unless we impose some additional conditions. So, it was established in [32], Theorem 7.1, that (6.18) is correct provided we suppose that a rather restrictive additional condition is satisfied, namely, that surfaces Σ_j are disjoint.

However, properly formulated, (6.18) is still correct. In order to formulate it, we introduce, for given Lipschitz surfaces Σ_j, $j = 1, \ldots, n$ in \mathbb{R}^N and real densities $V_j \in L^\Psi_{\mu_j}(\Sigma_j)$, the signed measure

$$P = \sum P_j = \sum V_j \mu_j$$

(measures μ_j, P_j and densities V_j are extended, as usual, to \mathbb{R}^N by zero,

$$P_j(E) := P_j(E \cap \Sigma_j) = \int_{E \cap \Sigma_j} V_j(X) d\mu_j(X),$$

(6.20)

for a Borel set $E \subset \mathbb{R}^N$.) A visual picture of P is the following. Let μ be the d-dimensional Hausdorff measure on $X = \bigcup \Sigma_j$. For each point $X \in X$, we define V as $\sum V_j(X)$, over such j for which $X \in \Sigma_j$. The standardly defined positive and negative parts of measure P equal $P_\pm = V_\pm(X) \mu$.

Theorem 6.4. In the above notations

$$\lim_{\lambda \to 0} \lambda n_\pm(\lambda, T_P) = Z(d, N - d) \int_X P_\pm(dX) = \int_X \mathcal{M}(P_\pm)(dX).$$

(6.21)

Of course, Theorem 6.4 is a considerably stronger assertion than the measurability theorem 6.3. Therefore it is not surprising that its proof is somewhat more technical. Readers interested only in Connes’ integrability may skip the proof to follow.

In proving Theorem 6.4, we will use an important localization property established in [32], see Lemma 3.1 there. Namely, if a measure P is supported on two separated sets, i.e., $P = P^1 + P^2$, P^ι is supported in X^ι, $\iota = 1, 2$, and the distance between the sets X^1, X^2 is positive, then

$$n_\pm(\lambda, T_{P^1 + P^2}) - n_\pm(\lambda, T_{P^1}) - n_\pm(\lambda, T_{P^2}) = o(\lambda^{-1}),$$

(6.22)

as $\lambda \to 0$. This can be understood as that in the case of separated measures, up to a lower order error, the eigenvalues of $T_{P^1 + P^2}$ behave asymptotically as the eigenvalues of the direct sum of operators T_{P^ι}.
Proof. In the proof we act by induction on the quantity n of surfaces involved. For one surface the statement is contained in Theorem 6.1.

We suppose that (6.21) holds for $n - 1$ surfaces Σ_j, $j = 1, \ldots, n - 1$, and we add one more surface, Σ_n with density $V_n(X) \in L^{\Phi, \mu_n}$, $P_n = V_n \mu_n$. $P = \sum_{j \leq n} P_j$.

It is important to note that the set $X_n = \cup_{j \leq n} \Sigma_j$ is Ahlfors d-regular. If surface Σ_n is disjoint with $X_{n-1} = \cup_{j < n} \Sigma_j$, these sets are separated (due to compactness) and our statement follows from [32], Lemma 3.1, immediately. Now let Σ_n have a nonempty intersection Σ_n' with X_{n-1}. Denote by P'_n the restriction of the measure $P_n = V_n \mu_n$ to Σ_n' and by \tilde{P}_n the remaining part of P_n, i.e., the restriction of P_n to the set $\Sigma_n \setminus X_{n-1}$. Now we re-arrange our measures in the following way. We denote by \hat{P} the measure $\sum_{j < n} P_j + P'_n$, so

$$P = \sum_{j \leq n} P_j = \hat{P} + \tilde{P}_n. \quad (6.23)$$

Consider an ε-neighborhood G_ε of the set X_{n-1}. As $\varepsilon \to 0$, Hausdorff measure H^d of the set $\gamma_\varepsilon = (\Sigma_n \setminus X_{n-1}) \cap G_\varepsilon$ tends to zero, therefore the averaged norm $\|V_n\|_{\gamma_\varepsilon}$ tends to zero as well. We denote by $P_{n,\varepsilon}$ the restriction of P_n to the set γ_ε and by $P'_{n,\varepsilon}$ the restriction of P_n to $Z_\varepsilon = \Sigma_n \setminus G_\varepsilon$. In this way, operator T_P splits into the sum

$$T_P = T_{\hat{P}} + T_{P'_{n,\varepsilon}} + T_{P_{n,\varepsilon}}. \quad (6.24)$$

In this splitting, the first operator is constructed by means of the measure supported on the union of $n - 1$ Lipschitz surfaces, so the inductive assumption applies and the eigenvalue asymptotic formula of the type (6.21) is valid. In the second operator, only one Lipschitz surface Σ_n is involved, so by the base of induction, the asymptotic eigenvalue formula is holds as well. Note now that the measures in these two terms are supported in sets whose distance is at least ε. Therefore (6.22) applies, and therefore

$$\lim_{\lambda \to 0} \lambda n_\pm(\lambda, T_P + T_{P'_{n,\varepsilon}}) = \lim_{\lambda \to 0} \lambda n_\pm(\lambda, T_{\hat{P}}) + \lim_{\lambda \to 0} \lambda n_\pm(\lambda, T_{P_{n,\varepsilon}}) = \quad (6.25)$$

$$Z(d, \mathfrak{d}) \left[\int_{X_{n-1}} P_\pm(dX) + \int_{Z_\varepsilon} V_n(X, \pm) d\mu_n(X) \right]$$

The third term in (6.24) is the operator associated with measure $P_{n,\varepsilon}$, i.e., supported in the part of Σ_n lying in the ε-neighborhood of X_{n-1} but outside X_{n-1}. By Theorem 6.1, for the eigenvalues of this operator, the estimate holds,

$$n_\pm(\lambda, T_{P_{n,\varepsilon}}) \leq C \lambda^{-1} \|V\|_{\gamma_\varepsilon} \Phi. \quad (6.26)$$

Now, by choosing ε small enough, we can make the coefficient in (6.26) arbitrarily small. Thus, again we can apply asymptotic perturbation Lemma 1.5 in [4], which enables to pass to limit as $\varepsilon \to 0$ on the left-hand side in (6.25), obtaining the left-hand side in (6.21). The same passage to limit on the right-hand side in (6.25) produces the required quantity on the right-hand side in (6.21). \square
6.5. **Finite unions of Lipschitz surfaces of different dimensions.** Let, for each \(d = 1, \ldots, N \), a finite collection of compact Lipschitz surfaces be given, \(\Sigma^d_j \), \(1 \leq d \leq N \), \(j \leq j_d \). For \(d = N \), a bounded open set in \(\mathbb{R}^N \) acts as \(\Sigma^N_1 \). Let real densities \(V^d_j(X) \) be given on surfaces \(\Sigma^d_j \),

\[
V^d_j \in L^{\Psi, \mu^d_j}(\Sigma^d_j),
\]

(6.27)

where \(\mu^d_j = \mu_{\Sigma^d_j} \) is the \(d \)-dimensional Hausdorff measure on \(\Sigma^d_j \). We consider measures \(P^d_j = V^d_j \mu^d_j \). For \(d = N \) such measure is absolutely continuous with respect to the Lebesgue measure in \(\mathbb{R}^N \); for \(d < N \) measures \(P^d_j \) are singular.

We denote \(P = \sum_{j,d} P^d_j \) and introduce the corresponding operator \(T_{P, A_0} \). By considering quadratic forms, we immediately see that, under our conditions, this operator is bounded and equals the sum of operators \(T_{P^d_j} \); since each of the latter operators is compact, the same is correct for \(T_{P, A_0} \).

In [32] we demonstrated some examples of measures with both absolutely continuous and singular components present. Generally, for \(\mathfrak{A} = \mathfrak{A}_0 \), the spectral problem for operator \(T \) with such measures is equivalent to the eigenvalue problem for (pseudo) differential operator, containing the spectral parameter both in the equation and in transmission conditions on surfaces \(\Sigma^d_j \) of dimensions \(d < N \).

First of all, by the Ky Fan theorem, automatically we obtain eigenvalue estimates for \(T_P \),

\[
n_{\pm}(\lambda, T_P) \leq C \sum_{d,j} \| V^d_j \|_{\Psi, \mu^d_j} \lambda^{-1}.
\]

(6.28)

The constant in (6.28) depends on the quantity of surfaces present and is of no interest for us at the moment.

The results obtained in Sections 6.3, together with the linearity of the singular trace, lead immediately to the integrability statement.

Theorem 6.5. Let \(V^d_j \) satisfy the condition (6.27). Then operator \(T_P \) is Connes measurable and

\[
\tau(T_P) = \sum_{d,j} Z(d, N - d) \int_{\Sigma^d_j} P(dX) = \int \mathcal{N}(P)(dX).
\]

(6.29)

The proof of the result on eigenvalue asymptotics takes a little bit more work. We show that contributions of components of measure \(P \) supported on surfaces of different dimension add up in the asymptotic formula.

Theorem 6.6. In conditions of Theorem 6.5, we denote by \(\mathfrak{X}_d \) the set \(\cup_j \Sigma^d_j \), and introduce measure \(P^d = \sum_j P^d_j \), as in Theorem 6.4. Then

\[
n_{\pm}(\lambda, T_P) \sim \lambda^{-1} \sum_d Z(d, N - d) \int_{\mathfrak{X}_d} P^d = \lambda^{-1} \int \mathcal{N}(P_{\pm})(dX).
\]

(6.30)
Proof. We suppose, for simplicity, that all X_d are nonempty. The reasoning then is similar to the one in Theorem 6.4. We show that by cutting away arbitrarily small pieces Y_d of X_d, in the sense of H^d measure, we can make the remaining parts of $Z_d = X_d \backslash Y_d$ separated. As soon as this is done, similarly to (6.25), for operator \mathbf{T}_r, the leading contributions to the eigenvalue asymptotics corresponding to the restrictions of measures P_d to Z_d add up, while the contribution by these measures restricted to Y_d are small, and, again, the asymptotic perturbation lemma applies.

It remains to construct the sets Y_d. Consider $G_1(\delta_1)$, the δ_1-neighborhood of X_1 in \mathbb{R}^N. The Lebesgue measure of $G_1(\delta_1)$ tends to zero like δ_1^{N-1} as $\delta_1 \to 0$. Therefore for sufficiently small δ_1, the portion of X_2 in $G_1(\delta_1)$ has H^2 measure smaller than a prescribed ε. So we set $Y_1 = Z_1$ and $Y_2 = X_2 \backslash G_1$. Then we take a δ_2-neighborhood $G_2(\delta_2)$ of Y_2 (the latter, recall, has Hausdorff dimension 2). We take δ_2 such small that $G_2(\delta_2) \cap X_3$ have corresponding H^3-measure less than ε and set $Y_3 = X_3 \backslash G_2$. We continue this procedures in all dimensions removing a piece of small measure on each step so that the remaining sets Y_d are separated. Finally, the smallness of the Hausdorff measures of the sets Z_d implies smallness of averaged Orlicz norms of densities V_d over these sets. \qed

7. Connes measurability and rectifiable sets

In this section we extend the measurability and asymptotics results to measures supported on rectifiable sets. Such sets form an important topic in Geometric Measure Theory.

7.1. Densities of measures. We recall here some key definitions and facts, [26], [11], [29], [9] being our main reference sources. A compact set $X \subset \mathbb{R}^N$ is d-rectifiable if there exist a finite or countable collection of subsets $A_j \subset \mathbb{R}^d$ and Lipschitz mappings $\phi_j : A_j \to \mathbb{R}^N$ so that $H^d(X \cup \bigcup_j \phi_j(A_j)) = 0$. In other words, X should be, up to a set of zero Hausdorff measure, the union of not more than countably many Lipschitz surfaces.

An extensive literature deals with criteria for a set to be rectifiable. Sufficient conditions for rectifiability are usually expressed in terms of s-densities. Let μ be a finite Radon measure on \mathbb{R}^N, $X = \text{supp } \mu$. For a point $X \in X$, the upper and lower densities of order $s \in (0, N]$ at X are defined as

$$\Theta^s(\mu, X) = \limsup_{r \to 0} r^{-s} \mu(B(X, r)); \quad \Theta^s_X(\mu, X) = \liminf_{r \to 0} r^{-s} \mu(B(X, r)) \quad (7.1)$$

(the infinite and zero values are allowed.) If these densities coincide, their common value, $\Theta^s(\mu, X)$, is called the density of order s at X. In case of μ being the s-dimensional Hausdorff measure, we replace μ by X in these notations.

Remark. Of course, if measure μ is s-Ahlfors regular then $0 < C \leq \Theta^s_X(\mu, X) \leq \Theta^{**}(\mu, X) \leq C^{-1}$ for all $X \in X$, where C is the constant in (4.1).
We are interested in compact sets further on. The case when densities coincide is dealt with by Marstrand’s theorem.

Theorem 7.1 (Theorem 14.10 in [26]). Suppose that for a certain s, there exists a Radon measure μ on \mathbb{R}^N such that for X, μ-almost everywhere, the upper and lower density at X coincide and, moreover, their common value is finite and nonzero. Then s is an integer, $s = d \in \mathbb{N}$.

7.2. Rectifiability conditions.

These conditions can be found, e.g., in Sections 14-17 in [26] and Ch.3 in [11]. We present here just a few, using density terms, see [29].

Theorem 7.2 (Density condition). The Borel set \mathcal{X} is rectifiable if and only if the density $\Theta^d(\mathcal{X}, X)$ exists, is positive and finite for H^d-almost all $X \in \mathcal{X}$,

$$0 < \Theta^d(\mathcal{X}, X) < \infty, \quad (7.2)$$

The condition in Theorem 7.2 can be, at least formally, relaxed to the following, see [29] Corollary 5.5:

Theorem 7.3. There exists a constant $c = c(d, N)$ such that a Borel set $\mathcal{X} \subset \mathbb{R}^N$ is d-rectifiable if and only if the upper and lower densities satisfy

$$0 < \Theta^d(\mathcal{X}, X) < c(d, N)\Theta^d_*(\mathcal{X}, X) < \infty \quad (7.3)$$

for H^d-almost all $X \in \mathcal{X}$.

Finally, the most recent result on rectifiability is obtained in [41]:

Theorem 7.4. The set $\mathcal{X} \subset \mathbb{R}^N$, satisfying $\Theta^d(\mathcal{X}, X) > 0$, H^d almost everywhere on \mathcal{X}, is d-rectifiable if and only if

$$\int_0^1 r^{-2d-1} |H^d(\mathcal{X} \cap B(X, r)) - 2^{-d}H^d(\mathcal{X} \cap B(X, 2r))|^2 dr < \infty, \quad (7.4)$$

for H^d-almost all $X \in \mathcal{X}$.

7.3. Connes integration and eigenvalue asymptotics on rectifiable sets.

Here we obtain main results of the paper.

Theorem 7.5. Let $\mathcal{X} \subset \mathbb{R}^N$ be a rectifiable set of dimension d, so one of conditions (7.2), (7.3), (7.4) is satisfied. Suppose that the Hausdorff measure H^d on \mathcal{X} is Ahlfors regular of dimension d. Associate with each Σ_j the measure $\mu_j = \mu_{\Sigma_j}$ supported on Σ_j, generated by the embedding $\Sigma_j \subset \mathbb{R}^N$. Let V be a real-valued function on \mathcal{X} belonging to the Orlicz space $L^\Psi, \mu(\mathcal{X})$ with respect to the Hausdorff measure $\mu = H^d$, $P = V \mu$. Then operator $T = T_{V, H^d}$ is measurable and the Connes integration formula

$$\tau(T) = Z(d, d) \int_{\mathcal{X}} V d\mu = \int_{\mathcal{X}} \mathcal{N}(P)(dX) \quad (7.5)$$

is valid.
Proof. Let Σ_j be some numeration of the surfaces entering in the definition of a rectifiable set. By the conditions of Theorem,

$$
\lim_{n \to 0} \mu(\mathcal{X} \setminus \bigcup_{j<n} \Sigma_j) = 0.
$$

(7.6)

We define densities $V_j \in L^{\Psi,\mu_j}$ in the following way. For $j = 1$, we set V_1 as the restriction of V to Σ_1. Then, inductively, for $n > 1$ we take $\mathcal{X}_{n-1} = \bigcup_{j<n} \Sigma_j$. Having $V_j, j < n$ defined, we set V_n as the restriction of V to the set $\Sigma_n \setminus \mathcal{X}_{n-1}$. Constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,

$$
\sum_j V_j = V, \quad \text{pointwise and in } L^{\Psi,\mu,\Sigma_j}
$$

constructed in this way, for any point $X \in \mathcal{X}$, no more than one of functions V_j is nonzero. Moreover,
(1) Operator T_P is Connes’ measurable and for any normalized singular trace τ,
\[
\tau(T_P) = \sum_d Z(d, N - d) \int_{\mathcal{X}_d} P_d(dX) = \sum_d \int_{\mathcal{X}_d} P_d(dX) = \int_X \mathcal{M}(P)(dX). \quad (7.10)
\]

(2) For operator T_P the eigenvalue asymptotic formula holds
\[
n_{\pm}(\lambda, T_P) \sim \lambda^{-1} \sum_d Z(d, N - d) \int_{\mathcal{X}_d} P_{\pm,d}(dX) \sim \lambda^{-1} \int_X \mathcal{M}(P_{\pm})(dX). \quad (7.11)
\]

Proof. The statement (i) follows from (ii). Alternatively, it is obtained from (7.7) due to the linearity of the singular trace. Statement (ii) is established similar to (7.9). For a given small ϵ, by definition, we can find finite collections Σ^d_j of Lipschitz surfaces of dimension d such that the Hausdorff measure of corresponding dimension of the set $\mathcal{X}_d \setminus \cup_j \Sigma^d_j$ is less than ϵ, together with the averaged Orlicz norm of V_d restricted the latter set. To the operator corresponding to the union of finitely many surfaces Σ^d_j, Theorem 6.6 applies, giving the eigenvalue asymptotic formula. The remainder by the smallness of the Orlicz norms, satisfies an eigenvalue estimate with small constant. This produces the required result in the usual way. \square

8. Spectral problems on Riemannian manifolds

Consider a closed smooth Riemannian manifold \mathcal{M} of dimension N. Denote by Λ the Laplace-Beltrami operator on \mathcal{M}. A compact subset $\Sigma \subset \mathcal{M}$ is called Lipschitz surface of dimension d if its image under co-ordinates mappings are d-dimensional Lipschitz surfaces in domains in the Euclidean space. The results presented in previous sections carry over to this setting by a simple localizations, using Proposition 4. We present here some calculations needed for this case.

Let $g = \{g_{\alpha\beta}(X)\}$ be the metric tensor of \mathcal{M} in some local co-ordinate system, g will denote the inverse matrix, $g = g^{-1} = \{g^{\alpha\beta}\}$. The Laplace-Beltrami operator Λ is the second order elliptic operator with principal symbol $d(X, \Xi) = -\sum_{\alpha, \beta} g^{\alpha\beta}(X) \Xi_\alpha \Xi_\beta$, thus the principal symbol of operator $\mathfrak{a} = (1 - \Lambda)^{-1/2}$ equals $\mathfrak{a}_{\pm}(X, \Xi) = (\sum_{\alpha, \beta} g^{\alpha\beta}(X) \Xi_\alpha \Xi_\beta)^{-N/4}$.

Let further the surface Σ, in the some local co-ordinates $X = (x, y) \in \mathbb{R}^d \times \mathbb{R}^3$, $\partial = N - d$, be defined by $y = \phi(x)$, where ϕ is a Lipschitz d-component vector-function. The above embedding $F : x \mapsto (x, \phi(x))$ of Σ into \mathcal{M} generates a (nonsmooth) Riemannian metric h on Σ, namely, $h(\zeta, \zeta') := g(DF(\zeta), DF(\zeta'))$ for tangent vectors ζ, ζ' to Σ. Here $DF = (1, \nabla \phi)$ is the differential of the embedding F, defined at the points of Σ where DF exists, i.e., almost everywhere with respect to the Lebesgue measure on Σ in local co-ordinates. Further calculations are being made just in such points. Having the Riemannian metric on Σ, the Riemannian measure $\mu = \mu_\Sigma$ is defined, in co-ordinates x, as $\mu_\Sigma = H(x)^{1/2}dx$, where $H(x) = \det(h)^{1/2}$, or, more explicitly, $H(x) = \det (1 + g(\nabla \phi, \nabla \phi))^{1/2}$.
As it was done in the Euclidean case, we consider a density $V(X), X \in \Sigma$ and operator $T_{P,\mathfrak{A}} = \mathfrak{A}^* P \mathfrak{A}$ in $L_2(M), P = V \mu_{\Sigma}$, with respect to the Riemannian measure on \mathcal{M}. Using eigenvalue estimates obtained in Section 4, we, as before, reduce the problem of finding asymptotics of eigenvalues of $T_{P,\mathfrak{A}}$ to the case of the density V being a nonnegative smooth function on $\mathcal{M}, V = U^2$. Thus the operator $T_{P,\mathfrak{A}}$ factorizes, similar to (6.9), as

$$T_{P,\mathfrak{A}} = (\Gamma_\Sigma U \mathfrak{A})^* (\Gamma_\Sigma U \mathfrak{A}) = \mathcal{R}^* \mathcal{R},$$

(8.1)

where Γ_Σ is the operator of restriction from the Sobolev space $H^l(M)$ to $L^2(\Sigma)$. As before, we note that the nonzero eigenvalues of $\mathcal{R}^* \mathcal{R}$ coincide with the ones of $\mathcal{R} \mathcal{R}^*$, the latter being an integral operator on Σ, the restriction to Σ of the pseudodifferential operator $U \mathfrak{A}^* U$. The principal symbol of this operator equals $V(X)(\sum_{\alpha, \beta} g^{\alpha\beta}(X) \Xi^\alpha \Xi^\beta)$ $= V(X)(\sum_{\alpha, \beta} g^{\alpha\beta}(X) \Xi^\alpha \Xi^\beta) - N/2$. By the results of [34], it suffices to consider the case of a smooth surface Σ. Now, the restriction of pseudodifferential operator $U \mathfrak{A}^* U$ to surface Σ is performed according to the rules explained in Section 6.1, following [34]. Namely we calculate the symbol $r_{-d}(X, \xi), X \in \Sigma, \xi \in T^*_X \Sigma$ by the rule in (6.1), which produces a symbol on Σ, $r_{-d}(X, \xi) = R(X, \xi)^{-d/2}$, where $R(X, \xi)$ is, for each fixed X, a quadratic form in ξ variables. Thus, $\mathcal{R}^* \mathcal{R}$ is an integral operator on Σ with the leading singularity of the kernel being equal to the Fourier transform of symbol r_{-d} in ξ variable. So, this kernel $\mathcal{R}(X, Y)$ has logarithmic singularity,

$$\mathcal{R}(X, Y) = R(X) \log(Q_X(X - Y)) + O(|X - Y|),$$

(8.2)

with certain quadratic form Q_X. Finally we arrive at the same asymptotic formula for eigenvalues as in the 'flat' case. This gives us the required versions of the results of Section 6 for operators on Riemanninan surfaces.

Theorem 8.1. Let Σ be a d-dimensional compact Lipschitz surface in an N-dimensional Riemannian manifold \mathcal{M}, μ_{Σ} be a measure on Σ generated by the embedding of Σ into \mathcal{M}. For a real function $V \in L^q(\mu_{\Sigma}), P = V \mu_{\Sigma}$ consider the operator $T_{P,\mathfrak{A}} = \mathfrak{A}^* P \mathfrak{A}$, where $\mathfrak{A} = (1 - \Delta)^{-N/4}$. Then operator $T_{P,\mathfrak{A}}$ is Connes measurable, and its eigenvalue asymptotics is given by formulas (6.3).

Results on the spectral properties of measures on rectifiable sets, see Sections 7.3, 7.4 are carried over to the setting of Riemanninan surfaces in the same way.

9. **LOWER ESTIMATES**

In the results presented above, certain asymmetry is present. While the upper eigenvalue estimates for operators of the form $T_{P,\mathfrak{A}}$ are established for measures supported on Ahlfors regular sets of any dimension $0 < d \leq N$, the eigenvalue asymptotics is proved only for rectifiable sets, thus, only for sets that have integer Hausdorff dimension, and even for not all of them. Therefore, the natural question arises about order sharpness of our upper estimates. This section is devoted to
establishing this sharpness. It turns out that lower estimates for eigenvalues can be justified in even more general setting than the upper ones.

Theorem 9.1. Let \mathfrak{A} be an order $-1 = -N/4$ pseudodifferential operator in $\Omega \subset \mathbb{R}^N$, elliptic in a domain $\Omega' \subset \Omega$, and μ be a finite Borel measure with compact support inside Ω'. Suppose that μ does not contain atoms and the density $V \geq 0$ satisfies $\int V(X)\mu(dX) < \infty$. Then for $P = V\mu$,

$$\liminf \lambda_{n+}(\lambda, T_{P,\mathfrak{A}}) \geq C(\mathfrak{A})P(\Omega) = C(\mathfrak{A}) \int Vd\mu. \quad (9.1)$$

In inequality (9.1), the expression on the left-hand side is set to be equal to $+\infty$ if operator $T_{P,\mathfrak{A}}$ is unbounded.

Proof. By ellipticity, it is sufficient to consider the case $\mathfrak{A} = (1 - \Delta)^{-N/4}$, with cut-offs to Ω.

With measure P we associate the quadratic form $q_P[v] = t \int |v(X)|^2 P(dX)$, $t > 0$, and consider the Schrödinger-type quadratic form $h_t[v] = a[v] - q_P[v]$, $a[v] = \|v\|^2_{H^l(\Omega')}$. By the Birman-Schwinger principle, if this form, for certain $t > 0$, is lower semibounded, and thus defines a self-adjoint operator \mathbf{H}_t, the number of negative eigenvalues of this operator is no greater than the number of eigenvalues of $T_{P,\mathfrak{A}}$ in (t^{-1}, ∞), $N_-(\mathbf{H}_t) \leq n_+(t^{-1}, T_{P,\mathfrak{A}})$. We need to consider only such (not that large) values of t since if the quadratic form h_t is not lower semibounded, the quantity $n_+(t^{-1}, T_{P,\mathfrak{A}})$ is infinite and (9.1) is satisfied automatically.

Let first N be an even number, so l is integer. Then the form a is equivalent to $\int_{\Omega'}|\nabla v|^2 dX + \|v\|^2$, and this form is local. So, we are in the conditions of the paper [13], see Theorem 4.1 and Example 4.13 there, which gives estimates from below for the number of negative eigenvalues of the form h_t, exactly as in (9.1).

For an odd N, i.e., for a non-integer l a direct application of Theorem 4.1 in [13] is impossible since this theorem requires the form $a[v]$ to be local. Therefore, we use the trick of dimension lift, compare with [37], see proof of Theorem 1.2 there. Consider the space \mathbb{R}^N being embedded in to \mathbb{R}^{N+1} as an N-dimensional linear subspace. For $l = N/2$, there exists a bounded restriction operator $\operatorname{Tr} : H^{l+\frac{1}{2}}(\mathbb{R}^N) \to H^l(\mathbb{R}^N)$, so that $\|\operatorname{Tr} v\|_{H^l(\mathbb{R}^N)} \leq c_0\|v\|_{H^{l+\frac{1}{2}}(\mathbb{R}^{N+1})}$. With measure P on \mathbb{R}^N, we associate measure $P^* = P \otimes \delta_{X_{N+1}}$ on \mathbb{R}^{N+1}, the quadratic form $a^*[v] = \|v\|^2_{H^{l+\frac{1}{2}}(\mathbb{R}^{N+1})}$ is now local, and thus we can apply Theorem 4.1 in [13] to the form $h_t^* = a^*[v] - t \int |v|^2 P^*(dX)$, obtaining

$$n_t := N_-(h_t^*) \geq ctP^*(\mathbb{R}^{N+1}) = ctP(\mathbb{R}^N). \quad (9.2)$$

By the min-max principle, this means that there exists a subspace $\mathcal{L} \subset H^{l+\frac{1}{2}}(\mathbb{R}^{N+1})$ such that

$$h_t^*[v] < 0, \quad v \in \mathcal{L} \setminus \{0\}, \quad (9.3)$$
and \(\dim \mathcal{L} = n_t \), or

\[a^*[v] < t \int_{\mathbb{R}^n} |v|^2 P(dx). \]

Due to denseness of continuous function in \(H^{1+\frac{1}{2}} \), we can suppose that \(\mathcal{L} \) consists of continuous functions. Consider the subspace \(\text{Tr} (\mathcal{L}) \subset H^1(\mathbb{R}^N \cup C(\mathbb{R}^N)) \). It has the same dimension as \(\mathcal{L} \). In fact, if some nonzero function \(v \in \mathcal{L} \) is annulled by \(\text{Tr} \), \(\text{Tr} v = 0 \), this would mean that \(v \) is zero on \(\mathbb{R}^N \) and therefore \(\int_{\mathbb{R}^N} |v|^2 (dx) = 0 \), which contradicts (9.4). Thus, the mapping \(\text{Tr} \) is injective on \(\mathcal{L} \). We denote by \(\mathcal{E} \) its right inverse mapping \(\mathcal{E}: \text{Tr} (\mathcal{L}) \rightarrow \mathcal{L} \). Therefore

\[a[v] - c_0 t \int_{\mathbb{R}^N} |v|^2 (\mathbb{R}^N) P(dx) \leq c_0 \left[a^*[v] - t \int_{\mathbb{R}^N} |Sv|^2 (\mathbb{R}^N) P(dx) \right] < 0, \]

for \(v \in \text{Tr} (\mathcal{L}) \), \(v \neq -0 \).

By the variational principle, (9.5) means that the number of negative eigenvalues of operator \(\mathbf{H}_{c_0 t} \) is no less than \(n_t \) in (9.2), which proves our Theorem for this case as well. \(\square \)

Acknowledgments. G.R.: The paper received support from the RFBR grant 20-01-00451 and The Euler International Mathematical Institute.

References

[1] M.S. Agranovich. Potential type operators and transmission problems for strongly elliptic second order systems in Lipschitz domains. Funct. Anal. and Appl. 43 (2009) 165–183.
[2] M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich. Generalized Method of Eigenoscillations in Diffraction Theory. WILEY-VCH Verlag Berlin GmbH, Berlin, 1999.
[3] M.Sh. Birman; A. Laptev; M. Z. Solomyak. The negative discrete spectrum of the operator \((-\Delta)^l - \alpha V \) in \(\mathbb{R}^d \) for \(d \) even and \(2l \geq d \). Ark. Mat. 35 (1997), 87–126.
[4] M.Sh. Birman, M. Z. Solomyak. Spectral asymptotics of nonsmooth elliptic operators. I, Trans. Moscow math. Soc. 27 (1972); English: 27, (1975) 1–52.
[5] M.Sh. Birman, M.Z. Solomyak. Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. (Russian) Tenth Mathematical School (Russian), Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974. pp. 5–189. English translation in: American Mathematical Society Translations, Ser. 2 114 (1980).
[6] M.Sh. Birman, M.Z.Solomyak Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols. (Russian) Vestnik Leningrad. Univ. 13, no. 3 (1977), 13–21. English translation in: Vestn. Leningr. Univ., Math. 10 (1982), 237–247.
[7] A. Connes. Noncommutative Geometry. Academic Press, San Diego, CA, 1994.
[8] G. David, S. Semmes. Fractured Fractals and Broken Dreams. Clarendon Press, Oxford, 1997.
[9] C. De Lellis, Rectifiable Sets, Densities and Tangent Measures. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zurich, 2008.
[10] D.E. Edmunds, H. Triebel, Function spaces, entropy numbers, differential operators. Cambridge Univ. Press 1996.
[11] H. Federer Geometric Measure Theory. Springer Verlag, NY, 1969.
[12] J. Fraser. *Assouad type dimensions and homogeneity of fractals*. Transactions of AMS, **366**, 12 (2014) 6687–6733.

[13] A. Grigor’yan, Y. Netrusov, S.-T. Yau, *Eigenvalues of elliptic operators and geometric applications*, Surveys in Differential Geometry, **9**, 147–217, Int. Press, Somerville, MA, 2004.

[14] J. E. Hutchinson, *Fractals and self–similarity*, Indiana Univ. Math. J. 30 (1981), 713–747.

[15] A. Jonsson, H. Wallin. *Function Spaces on Subsets of \mathbb{R}^n*. Harwood Academic Publishers, London 1984.

[16] M. Karuhanga, E. Shargorodsky *On negative eigenvalues of two-dimensional Schrödinger operators with singular potentials*. J. Math. Phys. **61** 5 2020, 051509(1–26).

[17] N. Kalton, S. Lord, D. Potapov, F. Sukochev. *Traces of compact operators and the noncommutative residue*. Advances in Mathematics 235 (2013) 1–55.

[18] A. Kozhevnikov. *The asymptotic behavior of the eigenvalues of an elliptic boundary value problem with λ in the equation and in the boundary condition*. (Russian) Uspehi Mat. Nauk **31** 4 (1976) 265–266.

[19] M.A. Krasnosel’ski, Ya. B. Ruticki. Convex functions and Orlicz spaces, Nauka, Moscow, 1961. English edition: Noordhoff, Groningen, 1961.

[20] M. Lapidus. *Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals Harmonic Analysis and Nonlinear Differential Equations*. Contemporary Mathematics AMS. **208**, (1997) 211–252.

[21] M. Lapidus. In Search of the Riemann Zeros. Strings, Fractal Membranes and Noncommutative Spacetimes. AMS, 2008

[22] S. Lord, D. Potapov, F. Sukochev. *Measures from Dixmier traces and zeta functions*. J. Funct. Anal. **259** (2010), 8, 1915–1949.

[23] S. Lord, F. Sukochev *Measure Theory in Noncommutative Spaces* Symmetry, Integrability and Geometry: Methods and Applications, (2010) 6, Paper 072, 36 pp

[24] S. Lord, F. Sukochev, D. Zanin. Singular Traces. Theory and Applications. De Gruyter Studies in Mathematics, 46. De Gruyter, Berlin, 2013.

[25] S. Lord, F. Sukochev, D. Zanin. *A last theorem of Kalton and finiteness of Connes’ integral*. J. Funct. Anal. **279** (2020) 108664(1–64).

[26] P. Mattila. Geometry of sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Univ. Press. 1995.

[27] V. Maz’ya. *Sobolev Spaces With Applications to Elliptic Partial Differential Equations*. Springer. Berlin, Heidelberg 2011

[28] K. Naimark, M. Solomyak *The eigenvalue behaviour for the boundary value problems related to self–similar measures on \mathbb{R}^d*. Math. Res. Lett. 2 (1995), no. 3, 279–298.

[29] D. Preiss, *Geometry of measures in \mathbb{R}^n: Distribution, rectifiability, and densities*, Ann. of Math. 125 (1987), 537–643

[30] M.M. Rao, Z.D. Ren, *Theory of Orlicz spaces*. Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991.

[31] G. Rozenblum, E. Shargorodsky, *Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case*, to appear in Functional Analysis and its Applications.

[32] G. Rozenblum, E. Shargorodsky, *Eigenvalue estimates and asymptotics for weighted pseudodifferential operators with singular measures in the critical case* ArXiv:2011.14877, to appear

[33] G. Rozenblum, G. Tashchiyan, *Eigenvalue asymptotics for potential type operators on Lipschitz surfaces*. Russian J. Math. Phys. **13** 3 (2006) 326–339

[34] G. Rozenblum, G. Tashchiyan, *Eigenvalue asymptotics for potential type operators on Lipschitz surfaces of codimension greater than 1*. Opuscula Math. **38** 5 (2018) 733–758.

[35] L. Schwartz. *Theorie des Distributions*. Hermann, Paris, 1966.
[36] E. Shargorodsky. *On negative eigenvalues of two-dimensional Schrödinger operators*. Proc. Lond. Math. Soc. (3) **108** (2014), 2, 441–483.

[37] E. Shargorodsky. *An estimate for the Morse index of a Stokes wave*. Arch. Rat. Mech. Anal. **209** 1 (2013) 41–59.

[38] M.Z. Solomyak. *Piecewise-polynomial approximation of functions from $H^1((0,1)^d)$, $2l = d$, and applications to the spectral theory of the Schrödinger operator*, Israel. J. Math. **86** (1994) 253–275.

[39] F. Sukochev, D. Zanin. *Cwikel-Solomyak estimates on tori and Euclidean spaces*. arXiv:2008.04494

[40] M. Taylor. *Partial Differential Equations II. Qualitative Studies of Linear Equations*. Springer. 2011.

[41] X. Tolsa, T. Toro. *Rectifiability via a square function and Preiss’ theorem*, Internat. Math. Res. Not. 2015, no. 13, 4638–4662.

[42] H. Triebel. *The Structure of Functions*. Birkhauser, Basel. 2001

[43] H. Triebel. *Fractals and Spectra: Related to Fourier Analysis and Function Spaces*. Springer. Basel. 2010.

Chalmers Univ. of Technology; The Euler International Mathematical Institute, and St. Petersburg State University

Email address: grigori@chalmers.se