THE IMPACT OF PNEUMONIA ON THE COURSE AND OUTCOME IN PATIENTS WITH SEASONAL INFLUENZA

Marija Cvetanovska¹, Zvonko Milenovic¹, Krsto Grozdanovski¹, Ilir Demiri¹, Katerina Spasovska¹, Vlatko Cvetanovski²

¹ University Clinic for Infectious Diseases and Febrile Conditions, Clinical Centre, Republic of Macedonia
² General Hospital Re-Medika, Republic of Macedonia

Corresponding author: Marija Cvetanovska, Blvd. ACHOM 18-1/4, R. Macedonia, tel: +389 70 380 841; e-mail: mcvetanovska2001@yahoo.com

ABSTRACT

Introduction: Seasonal influenza, although often presented as a mild, self-limiting disease, is frequently accompanied by complications that lead to the development of a severe clinical presentation and a fatal outcome. The most common are respiratory complications, with secondary bacterial pneumonia being the leading cause.

Aim: The aim of this study is to determine the impact of pneumonia on the severity of the clinical presentation and outcome in patients with seasonal influenza.

Materials and Methods: This research is comparatively group-based and has been conducted at the University Clinic for Infectious Diseases and Febrile Conditions during a three-year period. The analysis consists of 122 adult patients with clinically and laboratory-confirmed influenza. Based on the severity of the clinical picture, the patients are divided into two groups, severe (n=87) and mild (n=35) forms of the disease. The study included demographic, general data, clinical symptoms, and signs as well as complications.

Results: Of 122 patients with seasonal influenza, complications were registered among 108(88.52%), with a significantly more frequent emergence among the group with severe influenza 93.1% vs 77.14% (p=0.012). Pneumonia was the most common 80.33% and had a significant effect on disease severity (p=0.002). Complications from the types of ABI 8(6.56%), ARDS 7(5.74%), sepsis 5(4.1%), DIC 4 (3.28%) and otitis 2(1.64%) were reported only in the group with severe influenza. Acute meningoencephalitis was registered among 5(4.1%), gastroenterocolitis among 3(2.46%), and hepatic damage among 14(11.47%) of patients.

Conclusion: Pneumonia as the most common complication among patients with seasonal influenza significantly impacts the clinical course and outcome of the illness.

Keywords: influenza, complications, pneumonia

INTRODUCTION

Seasonal influenza is an acute respiratory viral infection caused by influenza viruses A (H1N1), A (H3N2) and B. Although commonly presented as a mild to moderate self-limiting disease, it is often accompanied by numerous complications such as pneumonia, bacterial superinfections, to more severe and
invasive infections with multiorgan failure, which is also the most common reason for hospitalization, development of a severe clinical presentation and a fatal outcome [1, 2, 3, 4]. Respiratory complications are the most common in percentage, with secondary bacterial and primary viral pneumonia with mortality rates in the range of 6-29% [5, 6, 7]. Nearly one-third of patients with severe influenza have pneumonia [8, 9, 10, 11, 12]. Respiratory complications can progress to the development of ARDS (acute respiratory distress syndrome), a pathological condition with a mortality rate over 80% and a systemic inflammatory response with multiorgan failure leading to the development of sepsis.

Extrapulmonary complications involve a large number of tissue and systems. In this category are myocarditis, pericarditis or pancarditis with an 11% incident rate, toxic shock syndrome, as well as complications with the central nervous system, Guillain-Barre syndrome, Reyes syndrome, encephalitis- a condition which in certain cases reaches a mortality rate up to 30%, myositis and rhabdomyolysis, which frequently progress to the development of acute kidney failure [13,14,15].

MATERIALS AND METHODS

The study was prospective, clinical, compared within two groups and was conducted at the Clinic for Infectious Diseases and Febrile Conditions during a period of three years. It was designed to take into account ethical principles and was approved by the ethical committee of the Faculty of Medicine at Ss. Cyril and Methodius University of Skopje.

The study analyzed 122 adult patients (≥16 years of age) with clinically and laboratory-confirmed influenza, divided into two groups based on the severity of the clinical presentation- 87 with a severe and 35 with a mild form of influenza.

Group 1: patients with severe influenza: Defined as patients with a clinically and laboratory-confirmed influenza which meet the criteria for severe influenza: signs of respiratory weakness (dyspnea, tachypnea, hypoxia, cyanosis) such as arterial PaO2<70 mmHg (<9.0 KPa) and/or the need for mechanical ventilation and/or signs of ARDS (PaO2/FiO2 ≤ 200), intensive care stay, exacerbation of an existing chronic disease.

The results of the findings yielded that of the 122 patients with influenza, complications were present among 108 (88.52%). These are significantly more often associated with a severe form (p=0.012).

The group of patients with severe influenza were further divided into two groups: 75 survived and 12 deceased patients.

Group 2: patients with mild influenza: Defined as patients with clinically and laboratory-confirmed influenza without signs of respiratory weakness nor pre-existing chronic illness.

The study excluded patients in whom death occurred in the first 24 hours. During admission, the following were observed: demographic characteristics, clinical signs and symptoms, as well as complications.

The presence of influenza viruses was confirmed through a nasopharyngeal swab using a method of real time RT-PCR (real-time reverse polymerase chain reaction).

The results were statistically processed through the SPSS program for Windows 13.0, with comparable statistical methods.

The value of p<0.05 was taken as significant, and the value of p<0.01 as highly significant.
Table 1. Complications and type of complications among patients in terms of the severity of the clinical picture

Variables	Total (n = 122)	Influenza (n = 122)	Mild (n = 35)	Severe (n = 87)	p value
Complications [n (%)]					
no	14 (11.47)		8 (22.86)	6 (6.9)	* 0.012*
yes	108 (88.52)		27 (77.14)	81 (93.1)	
Pneumonia [n (%)]					
no	24 (19.67)		13 (37.14)	11 (12.64)	* 0.002**
yes	98 (80.33)		22 (62.86)	76 (87.36)	
Bilateral Pneumonia [n (%)]					
no	36 (29.51)		16 (45.71)	20 (22.99)	* 0.013*
yes	86 (70.49)		22 (62.86)	67 (77.01)	
Single Pneumonia [n (%)]					
no	110 (90.16)		32 (91.43)	78 (89.66)	1.0
yes	12 (9.84)		3 (8.57)	9 (10.34)	
Pleural Effusion [n (%)]					
no	112 (91.8)		35 (100)	77 (88.51)	0.06
yes	10 (8.2)		0	10 (11.49)	
ARDS [n (%)]					
no	115 (94.26)		35 (100)	80 (91.95)	0.19
yes	7 (5.74)		0	7 (8.05)	
ABI [n (%)]					
no	114 (93.44)		35 (100)	79 (90.8)	0.1
yes	8 (6.56)		0	8 (9.2)	
DIC [n (%)]					
no	118 (96.72)		35 (100)	83 (65.4)	0.58
yes	4 (3.28)		0	4 (4.6)	
Meningoencephalitis [n (%)]					
no	117 (95.9)		34 (97.14)	83 (95.4)	1.0
yes	5 (4.1)		1 (2.86)	4 (4.6)	
Sepsis [n (%)]					
no	117 (95.9)		35 (100)	82 (94.25)	0.32
yes	5 (4.1)		0	5 (5.75)	
Gastroenterocolitis [n (%)]					
no	119 (97.54)		33 (94.29)	86 (98.85)	0.2
yes	3 (2.46)		2 (5.71)	1 (1.15)	
Hepatic Lesions [n (%)]					
no	108 (88.52)		31 (88.57)	77 (88.51)	1.0
yes	14 (11.47)		4 (11.43)	10 (11.49)	
Otitis [n (%)]					
no	120 (98.36)		35 (100)	85 (97.7)	1.0
yes	2 (1.64)		0	2 (2.3)	

*p (Chi-square test) **p (Fisher exact test) *p < 0.05 **p < 0.01
Pneumonia was confirmed through an x-ray of the lungs, where patients with severe influenza were significantly more likely to have a finding of pulmonary consolidation (73.56% vs 22.86%, \(p=0.0001 \)) (Graph1).

Complications from the type of ARDS, ABI, DIC, sepsis and otitis were registered only among the group with severe influenza. The most frequent complication was ABI 8 (6.56%), followed by ARDS 7 (5.74%), sepsis 5 (4.1%), DIC 4 (3.28%) and otitis 2 (1.64%).

Meningoencephalitis was registered among 5 (4.1%) patients, gastroenterocolitis among 3 (2.46%) patients, and hepatic damage with a rise in aminotransferases among 14 (11.47%) patients.

In the group of 87 patients with a severe form of influenza, complications were confirmed among 81 (93.1%), and in this test group, the most frequent complication was pneumonia, which was registered among 76 (87.36%) patients. A fatal outcome was registered among 12 (15.79%) of patients, all with pneumonia. It is of statistical significance that patients with x-ray findings of diffuse bilateral pneumonia died more frequently (71.42% vs 10.98%, \(p=0.001 \)). The remaining complications, although more common in the group of deceased patients, did not show statistical significance (Tables 2 and 3).

Table 2. Complications and type of complications among patients in terms of the outcome

Variables	Total n=87	Severe Influenza n=75	Deceased n=12	p value
Complications [n (%)]				
no	6 (6.89)	6 (100)	0	0.59
yes	81 (93.1)	69 (85.19)	12 (14.81)	
Pneumonia [n (%)]				
no	11 (12.64)	11 (100)	0	0.35
yes	76 (87.36)	64 (84.21)	12 (15.79)	
Bilateral Pneumonia [n (%)]				
no	20 (22.99)	19 (95)	1 (5)	0.28
yes	67 (77.01)	56 (83.58)	11 (16.42)	
Single Pneumonia [n (%)]				1.0
no	78 (89.65)	67 (85.9)	11 (14.1)	
yes	9 (10.34)	8 (88.89)	1 (11.11)	
Pleural Effusion [n (%)]				0.34
no	77 (88.5)	65 (84.42)	12 (15.58)	
yes	10 (11.49)	10 (100)	0	
ARDS [n (%)]				
no	80 (91.95)	71 (88.75)	9 (11.25)	0.052
yes	7 (8.05)	4 (57.14)	3 (42.86)	
ABI [n (%)]				
no	79 (90.8)	70 (88.61)	9 (11.39)	0.07
yes	8 (9.19)	5 (62.5)	3 (37.5)	
DIC [n (%)]				
no	83 (95.4)	73 (87.95)	10 (12.05)	0.09
yes	4 (4.6)	2 (50)	2 (50)	
Meningoencephalitis [n (%)]				1.0
no	83 (95.4)	71 (85.54)	12 (14.46)	
yes	4 (4.6)	4 (100)	0	
Sepsis [n (%)]				0.53
no	82 (94.25)	71 (86.59)	11 (13.41)	
yes	5 (5.75)	4 (80)	1 (20)	
Gastroenterocolitis [n (%)]				1.0
no	86 (98.85)	74 (86.05)	12 (13.95)	
yes	1 (1.15)	1 (100)	0	
Hepatic Lesions [n (%)]				
no	77 (88.51)	66 (85.71)	11 (14.29)	1.0
yes	10 (11.49)	9 (90)	1 (10)	
Otitis [n (%)]				1.0
no	85 (97.7)	73 (85.88)	12 (14.12)	
yes	2 (2.3)	2 (100)	0	

\(^a/ p \) (Chi-square test) \(^b/ \) (Fisher exact test)
Table 3. RTG findings of the lungs among patients in terms of the outcome

Variables	Severe Influenza				p value
	Total	Living	Deceased		
	n = 87	n = 75	n = 12		
RTG findings of the lungs [n (%)]	no	9(10.34)	0	0.205	
	yes	78(89.65)	66(84.62)	12(15.38)	
Consolidation [n (%)]	no	23(26.44)	20(86.96)	3(13.04)	1.0
	yes	64(73.56)	55(85.94)	9(14.06)	
Diffuse Bilateral Consolidation [n (%)]	no	80(91.95)	73(89.02)	9(10.98)	0.001**
	yes	7(8.04)	2(28.57)	5(71.42)	
Interstitial [n (%)]	no	78(89.65)	66(84.62)	12(15.38)	0.35
	yes	9(10.34)	9(100)	0	

DISCUSSION

In our study, the results of the tested groups of patients showed a representation of various complication which affected organic systems. Pneumonia represented one of the most common complications among patients with seasonal influenza, as confirmed in our study. [16, 17]. According to the WHO reports, during pandemics and epidemics, the largest number of cases of mortality among seasonal influenza are as a result of secondary bacterial infection presented as pneumonia. Thus, in the last pandemic report in 2009, 29% of all patients developed a bacterial co-infection which increased the chance of a fatal outcome (18, 19). Most of these patients had positive bacterial culture in the sputum. The most common bacteria were Staphylococcus aureus and Streptococcus pneumoniae [20]. In our study, 98 (80.33%) patients had pneumonia. Of those, a total of 12 (12.24%) died, all of which were affected with severe influenza. In the group of severe influenza, pneumonia manifested itself significantly more frequently as bilateral (p = 0.013), with findings of lung consolidation (p < 0.0001), in comparison of the group with mild influenza where pneumonia manifested as unilateral with a finding of interstitial changes in the x-ray of the lungs (p = 0.012). The figures correlate with a large number of global studies where pneumonia was registered not only as the most frequent complication, but also as the most common cause for admission in intensive care, need for mechanical ventilation and a fatal outcome. It is important to identify pneumonia associated with high-risk patients in order to administer timely diagnosis and adequate clinical treatment [21, 22].

A very common complication in patients with influenza, especially during the pandemic of 2009, was acute respiratory distress syndrome, a life-threatening condition with a mortality rate of 40-80% and the need of extracorporeal membrane oxygenation, which was the most common cause of a fatal outcome. In our study, 7 (8.05%) patients with ARDS were registered in the group with severe influenza, of which 3 (42.86%) died [23, 24].

In terms of neurological complications in our study, they had a dominant presence in the group with severe influenza (4.6% vs 2.86%), however this did not show statistical significance, most likely due to the small group of patients. Retrospective studies in the United States found an 8.5% increase in neurological complications in patients with seasonal influenza [25]. Neurological complications mainly concern conditions such as meningoencephalitis, focal neurological deficit, encephalopathy, and other conditions which have an abnormal electrographic findings. Life-threatening require early diagnosis, timely antiviral therapy, and a appropriate strategy for active immunization in the population. In other studies, the percentage of prevalence of neurological complications ranged from 1.6% to 6.8%. The studies concern both adult and pediatric populations [26, 27]. In our study, the patients with neurological complications were presented most frequently with a clinical picture of encephalitis and meningoencephalitis.

In our study, 8 (6.56%) patients had acute kidney failure and all were of the group affected by severe influenza. They were treated in the in-
tensive care unit where three of them died. These patients had other accompanying complications, such as pneumonia and sepsis. According to the literature, the most common reason for the development of acute kidney failure among patients with influenza is acute rhabdomyolysis, which occurs as a result of aggression and inflammatory response which the virus manifests in the muscular fibers. This condition is most frequent among younger populations (28). Inflammatory mediators such as C-peptide, procalcitonin, serum amyloid A, CRP and others, which are elevated in the early phase of the bacterial infections, frequently present themselves as early complications among patients with influenza, especially those with enlarged body weight as a risk factor (29). According to the study of Vallejos A, acute kidney failure among patients with AH1N1 influenza most frequently manifests within the first week of the development of refractory oliguria, requiring immediate haemodialysis in 10 to 50% of patients as a result of the body’s systemic inflammatory response accompanied by the virus, hypotension and shock [30].

Sepsis and septic shock are also one of the most commonly reported causes of death among patients with severely-complicated influenza treated in the intensive care units. This complication is much more common in patients with co-morbid conditions such as chronic obstructive pulmonary disease, as well as in adult patients over 65 years of age. Patients who develop septic shock and require mechanical ventilation are at a much higher risk of death and polymicrobial infection. [31].

CONCLUSION

In our study group, pneumonia stood as the most common complication and as such had a significant impact on the severity of the disease. Bilateral consolidation in the x-ray findings was of significant value with respect to the lethal outcome in patients with seasonal influenza. Pneumonia was registered as a complication in all deceased patients, but the x-ray findings of diffuse bilateral pneumonia had a statistically significant effect on the outcome. Early recognition of complications will allow for the implementation of adequate medical procedures that will contribute to adequate treatment and reduction in mortality.

REFERENCES

1. Thompson WW, Moore MR, Weintraub E Cheng P-Y, Jin X, Bridges CB, MD, Bressee JS, Shay DK. Estimating Influenza-Associated Deaths in the United StatesAm J Public Health. 2009; 99(2): 225–230.
2. Fraaij PL, Houmes RJ, Geukers VM, Gesink-vander Veer BJ, Kneyber MC, Tibboel D. Acute respiratory distress syndrome’ (ARDS) as a serious complication of influenza. Ned Tijdschr Geneesk. 2010; 154: 1640.
3. Corrin B. Diffuse alveolar damage: the pathological basis of adult respiratory distress syndrome. In: Corrin B, editor. Pathology of the lungs. London: Churchill Livingstone: 2000. 121–143.
4. Mitchell ML, Melisse SB, Gordon RB, Rob F, Teri JF, Frederick GH, Rita H, Stephen EL, Thomas RM, Michael SN, et al. Clinical issues and research in respiratory failure from severe acute respiratory syndrome. Am J Respir Crit Care Med 2005; 171: 518–526.
5. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S et al. INER Working Group on Influenza. Pneumonia and Respiratory Failure from Swine-Origin Influenza A (H1N1) in Mexico. N Engl J Med. 2009; 361(7): 680–689.
6. Loubet P, Samih-Lenzi N, Galtier F, Vanhems P, Loulergue P, Duval X, Jouneau S, Postil D, Rogez S, Valette M, Merle C, Régis C, Costa Y, Lesieur Z, Tattevin P, Lina B, Carrat F, Launay O. Factors associated with poor outcomes among adults hospitalized for influenza in France: A three-year prospective multicenter study. J Clin Virol. 2016; 79: 68–73.
7. Mata-Marín LA, Mata-Marín JA, Vásquez-Mota VC, Arroyo-Anduiza CI, Gaytán-Martínez JE, Manjarrez-Téllez B, Ochoa-Carrera LA, San doval-Ramírez JL. Risk factors associated with mortality in patients infected with influenza A/H1N1 in Mexico. BMC Res Notes. 2015; 11; 8: 432. doi: 10.1186/s13104-015-1349-9.
8. Liu L, Zhang RF, Lu HZ et al. Sixty-two severe and critical patients with 2009 influenza A (H1N1) in Shanghai, China. Chin Med J (Engl). 2011 Jun; 124(11): 1662–6.
9. Woo HC, Yun SK, Doo SJ et al. Outcome of pandemic H1N1 pneumonia: clinical and radiological findings for severity assessment. Korean J Intern Med. 2011; 26: 160–167.
10. Campigotto A, Mubareka S. Influenza-associated bacterial pneumonia; managing and controlling infection on two fronts. Expert Rev Anti Infect Ther. 2015; 13(1): 55–68.
11. Cawcutt K, Kalil AC. Pneumonia with bacterial and viral coinfection. Curr Opin Crit Care. 2017; 23(5): 385–390.
12. Martin-Loeches I, van Someren Grève F, Schultz MJ. Bacterial pneumonia as an influenza complication. Curr Opin Infect Dis. 2017; 30(2): 201–207.
13. Reed C, Chaves SS, Perez A, D’Mello T, Daily Kirley P, Aragon D, Meek JI, Farley MM, Ryan P, Lynfield R, Morin CA, Hancock EB, Bennett NM, Zansky SM, Thomas A, Lindgren ML, Schaffner W, Finelli L. Complications among adults hospitalized with influenza: a comparison of seasonal influenza and the 2009 H1N1 pandemic. Clin Infect Dis. 2014; 59(2): 166-174.
14. Studahl M. Influenza virus and CNS manifestations. J Clin Virol. 2003; 28(3): 225–232.
15. Cunha BA, Corbett M, Mickall N. Influenza A presenting as viral encephalitis in an adult. Heart Lung. 2011; 41(3): 308–309.
16. Funaki T, Shoji K, Yotani N, Katsuta T, Miyazaki O, Nosaka S, Masaki H, Saitoh A. The value of radiographic findings for the progression of hospitalized 2009 influenza A/H1N1 virus infection. BMC Infect Dis. 2013;13:516. doi: 10.1186/1471-2334-13-516.
17. Kumar S, Havens PL, Chusid MJ, Willoughby RE Jr, Simpson P, Henrickson KJ. Clinical and epidemiologic characteristics of children hospitalized with 2009 pandemic H1N1 influenza A infection. Pediatr Infect Dis J. 2010;29(7):591–594.
18. Cui W, Zhao H, Lu X, Wen Y, Zhou Y, Deng B, Wang Y, Wang W, Kang J, Liu P. Factors associated with death in hospitalized pneumonia patients with 2009 H1N1 influenza in Shenyang, China. BMC Infect Dis. 2010; 10: 145. doi: 10.1186/1471-2334-10-145.
19. Chien YS, Su CP, Tsai HT, Huang AS, Lien CE, Hung MN, Chung JH, Kuo HS, Chang SC: Predictors and Outcomes of Respiratory Failure among Hospitalized Pneumonia Patients with 2009 H1N1 Influenza in Taiwan. J Infect.2010; 60(2): 168–174.
20. Palacios G, Hornig M, Cisterna D, Savji N, Bussetti AV, Kapoor V, Hui J, Tokarz R, Briese T, Baumeister E, Lipkin WI: Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS One. 2009; 4 (12): e 8540 doi: 10.1371/journal.pone.0008540.
21. Self WH, Wunderink RG, Williams DJ, et al. Staphylococcus aureus community-acquired pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis. 2016; 63(3): 300-309.
22. Teng F, Liu X, Guo SB, et al. Community-acquired bacterial co-infection predicts severity and mortality in influenza-associated pneumonia admitted patients. J Infect Chemother. 2019; 25(2): 129–136.
23. Witzack A, Prystupa A, Kurys-Denis E, Borys M, Czuczwar M, Niemcwicz M, Kocik J, Michalak A, Pietrzak A, Chodorowska G, Krupski W, Mosiewicz J, Tomasiewicz K. Acute respiratory distress syndrome (ARDS) complicating influenza A/H1N1v infection—a clinical approach. Ann Agric Environ Med. 2013;20(4):820-822.
24. Töpf er L, Menk M, Weber-Carstens S, Spies C, Wernecke KD, Uhrig A, Lojewski C, Jörres A, Deja M. Influenza A (H1N1) vs non-H1N1 ARDS: analysis of clinical course. J Crit Care. 2014; 29(3): 340–346.
25. Newland JG, Laurich VM, Rosenquist AW, et al. Neurologic complications in children hospitalized with influenza: characteristics, incidence, and risk factors. J Pediatr 2007; 150: 306–310.
26. Khandaker G, Zurynsky Y, Buttery J, Marshall H, Richmond PC, Dale RC, Royle J, Gold M, Snelling T, Whitehead B, Jones C, Heron L, McCaskill M, Macartney K, Elliott EJ, Booy R. Neurologic complications of influenza A(H1N1)pdm09:surveillance in 6 pediatric hospitals. Neurology. 2012; 79(14): 1474–1481.
27. Ekstrand JH, Herbener A, Rawlings J, et al. Heightened neurologic complications in children with pandemic H1N1 influenza. Ann Neurol. 2010; 68(5): 762–766.
28. Watanabe T. Renal complications of seasonal and pandemic influenza A virus infections. Eur J Pediatr. 2013 Jan; 172(1): 15–22.
29. Cruz-Lagunas A, Jiménez-Alvarez L, Ramírez G, Mendoza-Milla C, García-Sancho MC, Avila-Moreno F, Zamudio P, Urrea F, Ortiz-Quintero B, Campos-Toscuento VL, Morán J, Barrera AA, Martínez-Briseño D, Fernández-Plata R, Sierra-Vargas MP, Muñoz-Perea C, Illescas-Flores S, Baustista E, Suratt BT, Pérez-Padilla JR, Zuñiga J. Obesity and pro-inflammatory mediators are associated with acute kidney injury in patients with A/H1N1 influenza and acute respiratory distress syndrome. Exp Mol Pathol. 2014; 97(3): 453–457.
30. Vallejos A. The role of nephrology in the influenza A (H1N1) pandemic. Nefrologia. 2009; 29(6): 576–581.
31. Cillóniz C, Ewig S, Menéndez R, Ferrer M, Polverino E, Reyes S, Gabarrús A, Marcos MA, Cordoba J, Mensa J, Torres A. Bacterial co-infection with H1N1 influenza in patients admitted with community acquired pneumonia. J Infect. 2012; 65(3): 223–230.
Вовед: Сезонската инфлуенца относно лесно самолимитирано забољување, неретко е придружена со компликации што се причини за развој на тешка клиничка слика и смртен исход. Најчесто се респираторните компликации, а како водечка се издвојува секундарна бактериска пневмонија. Целта на оваа студија е да се одреди влијанието на пневмонијата на тежината на клиничката слика и исходот кај пациентите со сезонска инфлуенца.

Материјал и методи: Истражувањето е проспективно, групно, споредбено и е изведено на Универзитетската клиника за инфективни болести и фебрилни состојби во текот на тригодишен период. Анализирани се 122 возрасни пациенти со клинички и лабораториски потврдена инфлуенца. Врз основа на тежината на клиничката слика пациентите се поделени во две групи, тешка (n = 87) и лесна (n = 35) форма на болеста. При вклучување во студијата бележени се демографски, општи податоци, клинички симптоми и знаци како и компликации.

Резултати: Од 122 пациенти со сезонска инфлуенца, компликации биле регистрирани кај 108 (88,52%), со значително почесто јавување во групата со тешка инфлуенца 93,1% vs 77,14% (p = 0,012). Процентуално најзастапена е пневмонијата 98(80,33%) и таа значително влијаеше на тежината на болеста (p = 0,002). Компликации од типот на АБИ 8 (6,56%), АРДС 7 (5,74%), сепса 5 (4,1%), ДИК 4 (3,28%) и отитис 2 (1,64%) биле регистрирани само во групата со тешка инфлуенца. Кај 5 (4,1%) пациенти биле регистрирани акутен менингоенцефалитис, гастроентероколитис кај 3 (2,46%), а хепатално оштетување кај 14 (11,47%) пациенти.

Заклучок: Пневмонијата како најчеста компликација кај пациентите со сезо мска инфлуенца значајно влијае на клиничкиот тек и на исходот на болеста.

Ключни зборови: инфлуенца, компликации, пневмонија