Maintenance of Species Differences in Closely Related Tetraploid Parasitic Euphrasia (Orobanchaceae) on an Isolated Island

Hannes Becher1,*, Max R. Brown1, Gavin Powell2, Chris Metherell3, Nick J. Riddiford4 and Alex D. Twyford1,2,*

1University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
2Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
3Botanical Society of Britain and Ireland, 4 High Firs Crescent, Harpenden, Hertfordshire AL5 1NA, UK
4Schoolton, Fair Isle, Shetland ZE2 9JU, UK

*Correspondence: Hannes Becher (hbecher@ed.ac.uk), Alex D. Twyford (alex.Twyford@ed.ac.uk)

https://doi.org/10.1016/j.xplc.2020.100105

ABSTRACT

Polyploidy is pervasive in angiosperm evolution and plays important roles in adaptation and speciation. However, polyploid groups are understudied due to complex sequence homology, challenging genome assembly, and taxonomic complexity. Here, we study adaptive divergence in taxonomically complex eyebright species (Euphrasia), where recent divergence, phenotypic plasticity, and hybridization blur species boundaries. We focus on three closely related tetraploid species with contrasting ecological preferences that are sympatric on Fair Isle, a small isolated island in the British Isles. Using a common garden experiment, we show a genetic component to the morphological differences present between these species. Using whole-genome sequencing and a novel k-mer approach we call “Tetmer”, we demonstrate that the species are of allopolyploid origin, with a sub-genome divergence of approximately 5%. Using ~2 million SNPs, we show sub-genome homology across species, with a very low sequence divergence characteristic of recent speciation. This genetic variation is broadly structured by species, with clear divergence of Fair Isle heathland Euphrasia micrantha, while grassland Euphrasia arctica and coastal Euphrasia foulaensis are more closely related. Overall, we show that tetraploid Euphrasia is a system of allopolyploids of postglacial species divergence, where adaptation to novel environments may be conferred by old variants rearranged into new genetic lineages.

Key words: incipient speciation, k-mer spectrum, allopolyploidy, tetraploid, divergence with gene flow, taxonomic complexity

Becher H., Brown M.R., Powell G., Metherell C., Riddiford N.J., and Twyford A.D. (2020). Maintenance of Species Differences in Closely Related Tetraploid Parasitic Euphrasia (Orobanchaceae) on an Isolated Island. Plant Comm. 1, 100105.

INTRODUCTION

Plant populations that grow in contrasting ecological conditions experience different selection pressures for adaptive traits that underlie survival and reproduction (Clausen et al., 1940, 1948; Clausen and Hiesey, 1958; Núñez-Farfán and Schlichting, 2001). This divergent ecological selection may cause adaptive divergence of populations and lead to the origin of novel ecotypes and species (McNeill and Antonovics, 1968; Böhle et al., 1996; Baldwin and Sanderson, 1998; Nevado et al., 2016; Favre et al., 2017). The trajectory of divergence in the early stages of speciation is complex, with recent studies showing that populations may diverge in the face of ongoing gene flow that was previously thought sufficient to homogenize population differences and oppose divergence (Danley et al., 2000; Papadopulos et al., 2011; Nadeau et al., 2013; Richards et al., 2016). Although such insights have been made in different plant species, they are mostly ecological and evolutionary model systems amenable to genomic analysis (Bernasconi et al., 2009; Twyford et al., 2015). There are numerous plant groups that are underrepresented in current...
speciation genomic studies, and these include species that are characterized by recent polyploidy and groups with complex taxonomy where species boundaries are poorly understood.

Polyploidy, or whole-genome duplication, is common in angiosperms, with all extant species having experienced at least one round of polyploidy (Wendel et al., 2016). Whole-genome duplication is frequently linked to adaptation and speciation in plants (Wood et al., 2009; Levin, 2019). It may facilitate adaptation on its own in autopolyploids (Parisod et al., 2010; Baduel et al., 2019) or in conjunction with hybridization, creating allopolyploids. In allopolyploids, reduced recombination between homoeologous genes often facilitates the partitioning of functions (leading to subfunctionalization) and subsequent evolutionary changes (Cheng et al., 2018).

Despite the advantages of polyploidy, studies investigating the mechanisms underlying genomic differentiation are still limited (Parisod et al., 2010; Parisod et al., 2018). When k-mer based GWAS are used (quantitative trait loci) to identify genomic region(s) associated with a certain phenotype ("k-mers-based GWAS", Voichek and Weigel, 2020), such approaches could be extended to further understand the nature of species differences and how hybridization, selfing, and phenotypic plasticity shape the evolution of polyploid taxa.

Although polyploidy is now widely appreciated as a key driver of plant diversification (Tank et al., 2015; Ren et al., 2018), there are considerable challenges in the study of polyploidy that limit our understanding of this key evolutionary process. Firstly, polyploidy is common in taxonomically complex groups and certain apomictic taxa, where species limits may be uncertain and where taxon identity is unknown (Popp et al., 2005; Guggisberg et al., 2006; Brysting et al., 2007). Secondly, comparative genomics of polyploids relies on correctly determining sequence homology, which is challenging in light of the additional gene copies from genome duplication (homoeologs). Thirdly, reference genome assembly, which is critical for many aspects of speciation genomics, such as genome scans for detecting outlier regions subject to selection (Ravinet et al., 2017; Campbell et al., 2018), is notoriously difficult in polyploids (although see Hollister et al., 2012). One way of circumventing the inference of sequence homology in a polyploid genome assembly is the use of methods based on DNA k-mers (DNA "words" of fixed length k). Such approaches have recently been used to infer ploidy and heterozygosity in polyploid samples (KAT, Mapleson et al., 2016; GenomeScope2 and Smudgeplots, Ranallo-Benavidez et al., 2020) and to identify genomic region(s) associated with a certain phenotype ("k-mers-based GWAS", Voichek and Weigel, 2020). Such approaches could be extended to further characterize polyploid genome structure based on a demographic model of population divergence, without the need for a reference genome (Lohse et al., 2011, 2016).

The arctic and boreal regions of northern Europe are renowned for their diversity of polyploid taxa (Stebbins, 1984; Abbott and Brochmann, 2003; Brochmann et al., 2004), with eyebrights (Euphrasia L.), a genus of ~263 species (A.D.T., unpublished data), as one of the most diverse. Euphrasia species are infamous for their complex morphological diversity, with many forms grading into others and being relatively indistinct. This taxonomic complexity in Euphrasia is a consequence of a diverse set of factors; the genus is characterized by recent rapid postglacial divergence (Gussarova et al., 2012; Wang et al., 2018), with species hybridizing extensively (Yeo, 1966; Stone, 2013). Moreover, Euphrasia are generalist facultative hemiparasites that are green and photosynthesize, but also attach to a host plant and steal nutrients and water. The growth of Euphrasia depends on the host species, with this phenotypic plasticity further contributing to taxonomic complexity (Brown et al., 2020). Although it is an incredibly complex genus, genomic studies of Euphrasia continue to reveal key insights into the nature of species differences and how hybridization, selfing, and phenotypic plasticity shape the evolution of polyploid taxa.

Given the scale of taxonomic complexity in Euphrasia, here we focus on co-occurring species on a single island. Fair Isle, a small island of 768 hectares, is the most remote inhabited island in the British Isles, situated halfway between Orkney (42 km away) and mainland Shetland (39 km away). Fair Isle Euphrasia provide an ideal study system due to their isolation from nearby gene flow and the closely intermixed habitats that support different species. The well-characterized island flora of 260 native species and 71 aliens (Quinteros Peñafiel et al., 2017) includes only tetraploid Euphrasia: eight Euphrasia species and eight putative hybrids (Riddiford et al., 2020). Here we focus on three tetraploid Euphrasia species that are widely distributed across the island but differ in their habitat preferences (see Figure 1). Euphrasia arctica is a grassland species that has vigorous growth and large flowers that are thought to be highly outcrossing. Euphrasia foulaensis is a coastal specialist with thickened leaves and compressed growth. It has small flowers, some of which do not open and are thought to be cleistogamous. Euphrasia micrantha is an upland heathland species that is slender. It often has pink-suffused leaves, stems, and flowers, and its very small flowers are highly selfing (Stone, 2013).

E. micrantha is variable in morphology throughout its range, with the Fair Isle form smaller, usually unbranched, with magenta flowers with a less distinct lower floral "lip." Despite the three species having different habitat preferences, the small scale of the island and fine-scale habitat differences mean species occur in sympatry (sensu Mallet et al., 2009) (Figure 1). To place these Fair Isle plants in a broader context, we also include diploid and tetraploid individuals from elsewhere in Great Britain.

In this study, we use field-based observations, a common garden experimental approach, and whole-genome sequencing to understand the nature of species differences in a group of taxonomically complex, sympatric, polyploid Euphrasia species. We address the following research questions: (1) is there a genetic component to the morphological differences between species with different habitat preferences? (2) what is the evolutionary history of polyploidization in Euphrasia? and (3) what is the landscape of genomic differentiation between sympatric species? To address question 2, we propose a novel k-mer-based analytical approach to infer sub-genome divergence in allopolyploids. Our results show how species differences are maintained over a fine spatial scale despite incomplete reproductive isolating barriers and reveal how genomic approaches can be used to characterize speciation histories of a non-model tetraploid group.
RESULTS

Phenotypic Differences between *Euphrasia* Species Are Heritable

To understand morphological differences among Fair Isle *Euphrasia* species, we compared trait variation in the wild (n = 180) and in a common garden experiment (n = 2116). We confirmed that in the wild *E. arctica* is tall (mean height 80.0 mm) and large flowered (mean corolla size 7.6 mm), *E. foulaensis* short (19.7 mm) and smaller flowered (5.9 mm), and *E. micrantha* intermediate in height (40.2 mm) and small-flowered (4.7 mm), with these trait values significantly different between all three species in mixed-effect models (p < 0.01; Figure 2A, Supplemental Tables 1 and 2, and Supplemental Text 1). Overall, however, many more traits showed significant differences at the population rather than the species level (Figure 2A, bottom right triangles). Based on multitrait phenotypes, individuals partly clustered by species in a principal component analysis (PCA, Figure 2B), while linear discriminant analysis (LDA) trained on 80% of the data classified all remaining individuals correctly. These results show that species and populations differ in their overall phenotype and in some key traits in natural populations.

To assess whether the phenotypic species differences have a genetic component, we analyzed morphological differentiation in a common garden setting by measuring individuals grown from seeds sourced from the same natural populations as above. Including host species as a random effect improved the fit of our models in terms of significantly lower Akaike Information Criterion values. Under these common garden conditions, there were fewer observable trait differences than in natural populations. The only trait showing significant differentiation between all species was capsule length, which was high in *E. arctica* (5.8 mm), intermediate in *E. foulaensis* (4.9 mm), and short in *E. micrantha* (3.7 mm) (p < 0.01). However, there were still some pairwise species differences, and many pairwise population differences (Figure 2A, top left triangles). Overall, the clustering of different species based on multitrait phenotypes in the common garden (Figure 2C) was much less obvious than in natural populations (Figure 2B). However, using LDA trained on 80% of the data (439 of 549 individuals without any missing data), it was possible to accurately classify 75% of the individuals in the test set (i.e., 82 of 110 individuals were assigned the species from which their seeds had been collected, Figure 2D). The success of LDA classification was high for *E. arctica* (78%) and *E. foulaensis* (75%), which misclassified individuals as the other species 22% of the time, while *E. micrantha* (62% classification success) was most commonly misclassified as *E. foulaensis* (25%). Overall, the presence of species-specific multitrait combinations in a common environment shows that there is a genetic component to the phenotypic species differences, but the lower classification success in a common garden indicates that many trait differences observed in the wild are due to plasticity.

Complex Patterns of Plastid Genome and rDNA Relatedness

We then generated whole-genome sequencing data for 18 *Euphrasia* individuals to investigate the genomics of species differences and polyploid history. Our samples included 12 Fair Isle tetraploids from our three focal species and two tetraploid individuals considered putative hybrids (labeled X1 and X2). The other samples were two tetraploids and four diploids from mainland Britain (see Supplemental Table 3 for details). *De novo* assembly of plastid genomes revealed complex patterns of
plastid haplotype sharing and relatedness. Across samples, plastid genomes were similar in size (144 739–145 009 bp) and in sequence (>99.8% pairwise sequence identity). Fair Isle *Euphrasia* fell into three broad plastid haplogroups, each with 100% bootstrap support in our phylogenetic analysis (Figure 3A). Haplogroup 1 was composed of a mix of Fair Isle *Euphrasia* and mainland British diploid and tetraploid species. Haplogroup 2 was predominantly found in Fair Isle samples, plus the putative hybrid species *Euphrasia rivularis* sampled from England. Haplogroup 3 was exclusively composed of Fair Isle individuals of *E. micrantha*. Within each of these haplogroups, there was variable genetic divergence, with some extremely closely related haplotypes differing by a few SNPs, and some more divergent haplotypes showing structural genetic changes. Furthermore, there was plastid haplotype sharing between co-occurring samples of *E. arctica* and *E. foulaensis* on a roadside in the south of Fair Isle, as well as their putative hybrid (sample X1). Overall, these results indicate that diverse plastid haplotypes are maintained within an island population of *Euphrasia*, with Fair Isle *E. micrantha* differing from intermixed *E. arctica* and *E. foulaensis*.

De novo assembly and comparative analyses of *Euphrasia* rDNA revealed deep divergence between UK diploids and tetraploids, confirming previous results from internal transcribed spacer (ITS) sequencing of a broader taxonomic sample (Wang et al., 2018).
Maintenance of Species Differences in Island Tetraploids

Figure 3. Evolutionary Relationships of British Euphrasia Plastid Genomes and rDNA Sequences.
(A) Phylogenetic analysis of plastid genomes performed using a maximum-likelihood approach implemented in IQ-TREE with the K3Pu+F+I substitution model. Haplogroups are indicated by numbered vertical lines.

(B) Phylogenetic analysis of nuclear rDNA sequences using a neighbor-joining approach implemented in Geneious. There were two rDNA haplotypes in sample F3. In both A and B, colored circles indicate species identity: orange, E. arctica; blue, E. foulaensis; gray, E. micrantha; black, putative hybrid individuals; and purple, diploid species. Scale bars indicate branch lengths. Numbers on branches indicate bootstrap support ≥ 70%.

Across the 5832-bp rDNA coding region, there was a mean pairwise diploid–tetraploid divergence of 2.1%, but the divergence in the ITS2 region was up to 10.8%. Within tetraploids, however, there was very limited sequence divergence, with >99.5% pairwise sequence identity between Fair Isle samples. rDNA haplotypes were shared between some individuals, such as E. foulaensis F2 and E. arctica A1, with one sample of E. micrantha maintaining a more divergent haplotype. These results support the recent divergence of species and populations, with extensive haplotype sharing particularly among E. arctica and E. foulaensis.

Polyplid Genome Diversity Inferred with k-mer Analysis Methods

To assess the genomic properties of tetraploid Euphrasia without the need for genome assembly, we employed k-mer-based methods. In addition to using KAT, GenomeScope, and Smudgeplots, which visualize polyploid genome variations, we developed mathematical models for the shape of k-mer spectra of auto- and allotetraploids. We implemented these models in a “shiny” app, “Tetmer” (available from GitHub: https://github.com/hannesbecher/shiny-k-mers). Tetmer takes as an input a k-mer spectrum of a single tetraploid (or diploid) individual. In “Autofit” mode, it estimates the population genetic parameters θ (population-scaled mutation rate) and T (divergence time between homoeologous sub-genomes); it also fits the haploid (non-repetitive) genome size and a bias parameter (Vurture et al., 2017) accounting for the width of peaks in the k-mer spectrum. Tetmer can also be used in “Manual” mode to manually adjust the fit or to explore the expected shape of a k-mer spectrum under a certain model and parameter set.

Our approach is detailed in Supplemental Text 2. In brief, the characteristics of genetic variation in an autotetraploid is similar to those of four haploid samples from one panmictic population. The genetic variation within an allotetraploid, however, is more similar to that of two pairs of haploid samples from two diverged populations (between which gene flow ceased a certain time ago). This causes different distributions of genetic diversity that are evident in k-mer spectra. In autotetraploids, most variant sites contain singleton alleles (1/3 or 1/1/2), causing a prominent 1× peak. In allotetraploids, however, variant sites have mainly doubleton alleles (2/2), reflecting sub-genome divergence, and causing a prominent 2× peak.

The k-mer spectra of all tetraploids analyzed showed prominent 2× peaks, clearly indicating allotetraploidy. Smudgeplots confirmed tetraploidy for all these samples (see “genome profiling” in Supplemental Text 3). We estimated the single-copy sequence in a haploid genome to be 185–225 Mb in our samples. This was generally about one-third higher than the “Genome Unique Length” reported by GenomeScope, which aims to exclude paralogous sequences. We then used Tetmer to estimate heterozygosity within and divergence between sub-genomes (Figure 4B and 4C). The heterozygosity estimates were noisy because they depend mainly on the 1× peak in the k-mer spectra (Figure 4A), which is often partly concealed by sequencing errors and contamination. We also estimated heterozygosity from SNPs called relative to a reference genome (discussed below) and by using GenomeScope on the diploids. Both approaches generated results similar to those from Tetmer. The average k-mer-based heterozygosity estimate over all samples was 0.2% and did not differ significantly between diploids and tetraploids (ANOVA, P_{(df=16)} = 0.07). Two samples, RO (Euphrasia rostkoviana) and A3 (E. arctica), had heterozygosity values considerably higher (1.1% and 0.52%, respectively), which was likely the result of recent outcrossing events in these mixed-mating species.

Finally, we used Tetmer to estimate the divergence between homoeologous sub-genomes of the tetraploids. Because the divergence estimate depends mainly on the relative size of the 2× and 4× peaks, it is more accurate than heterozygosity estimates based on the 1× peak. We found that all tetraploids showed a per-nucleotide sub-genome divergence of about 5%, one to two orders of magnitude higher than the heterozygositys observed (Figure 4C). This was similar to the heterozygosity class “aabb” report by GenomeScope, but Tetmer’s estimate takes into account possible ancestral polymorphisms and heterozygositetions within sub-genomes. The consistency of sub-genome divergence across samples raises the possibility of a common origin for these polyploids, involving the same or similar parental progenitors.
Extensive Scaffold Homology between Diploids and Tetraploids

To further our understanding of sub-genome divergence and polyploid history, we generated a draft genome assembly of a geographically isolated tetraploid sample of *E. arctica* from North Berwick, Scotland (individual A0). This hybrid assembly from 97 \(\times \) short-read Illumina and 16.7 \(\times \) long-read Pacific Biosciences (PacBio) data comprised 1,009,737 scaffolds, spanning 694 Mb in length. Although fragmented, the assembly was relatively complete, as indicated by the KAT completeness plot (Supplemental Figure 1) and the BUSCO completeness score of 81.7%. We then mapped genome resequencing data of all 18 diploids and tetraploid individuals to our reference assembly and classified scaffolds based on mapping depths. Only 0.1% of scaffolds (1024 scaffolds; 3 Mb) had 4\(\times \) mapping depth in the tetraploids, as would be expected if they were autotetraploids, providing further support for the allopolyploid nature of the tetraploids. By contrast, 10,644 scaffolds (132 Mb) had a diploid-level (2\(\times \)) mapping depth across all tetraploids, representing regions where diverged (homoeologous) sequences were assembled into separate scaffolds, which we called the “tetraploid” set. A subset of these tetraploid scaffolds had 2\(\times \) mapping depth across all samples, representing regions homologous across ploidy levels (the remainder of the tetraploid scaffolds were mostly missing from diploids). We called these 3,454 homologous scaffolds (46 Mb) the “conserved” set. The tetraploid and conserved sets formed the basis for subsequent population genomic analyses (Figure 5A). Overall, the consistency in mapping depth patterns between tetraploids suggests widespread sequence homology and possibly a common origin. Diploid–tetraploid homology supports the prediction that a (relative of a) British diploid was a progenitor of British tetraploids (Yeo, 1966), with a second sub-genome contributed by a divergent taxon.

Strong Genetic Structure Despite Low Divergence

We used genetic clustering approaches to understand whether species from contrasting habitats are genetically cohesive. STRUCTURE analyses revealed that Fair Isle *E. micrantha* was a distinct genetic cluster in our sample of natural *Euphrasia* populations. Assuming three genetic clusters (\(K = 3 \), Figure 4C), there were clusters corresponding to Fair Isle *E. micrantha*, other Fair Isle taxa, and diploids. The mainland tetraploids (A0 and M0) were found to be admixed between clusters. At higher \(K \) values (Supplemental Figure 2), genetic clustering corresponded to broad taxonomic groupings, although *E. arctica* and *E. foulaensis* on Fair Isle were not separated. In PCA, Fair Isle *E. micrantha* was separated from all other species on principal component (PC) 1, while other Fair Isle species were separated from diploids on PC2, with mainland tetraploids in-between these groupings. Overall, these analyses point to divergence between Fair Isle *E. micrantha* and all other taxa being the major axis of divergence among our samples, rather than diploid–tetraploid divergence as found in other genetic analyses of *Euphrasia* (French et al., 2008; Wang et al., 2018).

To better understand how variation is maintained within and between populations and species, we characterized genomic diversity and divergence based on 922,927 high-quality SNPs in the conserved and 2,166,914 SNPs in the tetraploid scaffolds. The per-species estimates of nucleotide diversity (\(H_\text{w} \)) were considerably higher than individual heterozygosities, ranging from 0.26%
to 0.32% on Fair Isle and from 0.31% to 0.43% when all non-hybrid individuals were considered. The total nucleotide diversity over all individuals (and species, H_t) was 0.53%. A one order of magnitude difference between heterozygosity and population nucleotide diversity was observed even on Fair Isle (top of Figure 6A), where the aggregation of populations characterized by geographic isolation by distance is unlikely to play a role. Instead, these differences are likely to be the result of high levels of selfing. The per-nucleotide net divergence between species (d^{net}_a) ranged from 0.07% ($E. arctica$–$E. foulaensis$) to 0.32% ($E. arctica$–$E. micrantha$) on Fair Isle, while this was lower (0.07%–0.24%) in the broader comparison (both comparisons excluded hybrid individuals). With the exception of comparisons including Fair Isle $E. micrantha$, these estimates of between-species divergence were lower than the diversity found within each species (Figure 6A and 6B).

Our finding of clear genetic clusters but low divergence suggests that species may be recent; however, these analyses do not indicate the amount of gene flow. We tested the extent of allele frequency differences, as measured by the fixation index (F_{ST}), and found considerable genetic structure between Fair Isle $E. arctica$ and $E. foulaensis$, on one hand, and $E. micrantha$ on the other. In comparisons to $E. micrantha$, genetic structure was high, with mean F_{ST} values of 0.44 ($E. arctica$–$E. micrantha$) and 0.43 ($E. foulaensis$–$E. micrantha$), while 11% of scaffolds had $F_{ST} > 0.8$ and 38% of scaffolds had $F_{ST} > 0.5$. Both F_{ST} distributions showed very similar shapes (Figure 6C). Genetic structure was lower in the comparison between $E. arctica$ and $E. foulaensis$, with a mean F_{ST} of 0.21, and only a minority of scaffolds with high values (0.11% > 0.8; 7.4% > 0.5). On a larger scale, including all non-hybrid individuals and treating the diploids as one group, the differentiation between species was lower and more similar across comparisons, with mean F_{ST} values ranging from 0.18 to 0.37, with the largest value for the comparison $E. foulaensis$–$E. micrantha$ (Figure 6C, bottom). This is in line with previous $Euphrasia$ studies that show genetic
variation to be structured by region more than by species (Kolseth and Lönn, 2005; French et al., 2008).

Genetic Relationships Cannot Be Explained by a Single Tree
To characterize genome-wide relationships of populations and species, we generated trees from thousands of genomic scaffolds and used these to produce a consensus tree indicative of the relationships of populations and species. The ASTRAL consensus tree had a high posterior probability (PP ≥ 0.97) for all nodes, except for the clade of mainland polyploids (PP = 0.82; Figure 7A). It did not generally show grouping by species; however, the diploids and Fair Isle *E. micrantha* were placed in distinct clades. The node ages, which are given in coalescent time, were comparatively young, with the oldest being 1.39 (in generations scaled by $2N_e$, corresponding to a coalescence probability of 75%). Such recent divergence gives many opportunities for incomplete lineage sorting. To better characterize the diverse genealogical histories present in the genome, we inspected the individual gene trees. Across 3454 scaffolds there was no clear congruence between individual trees and no general groupings by species, except some clustering of Fair Isle individuals of *E. micrantha* (M1–3; Figure 7B). This suggests that, while broadscale relationships reflect the divergence of Fair Isle *E. micrantha* from other tetraploids, and while diploids cluster separately, there is substantial gene tree incongruence and phylogenetic complexity.

To further categorize and quantify the different trees present in the genome, and to detect possible routes of gene flow, we conducted topology weighting with Twisst (Martin and van Belleghem, 2017). This approach compares individual trees to a set of reference topologies, and here we tested the three possible unrooted topologies of four groups (each tetraploid species, excluding hybrids, and all diploids as an outgroup). The most common topology placed *E. arctica* and *E. foulaensis* as closest relatives and *E. micrantha* on a separate branch, while both alternative topologies had lower weights (Figure 7C). However, few of the 3454 per-scaffold trees matched one of the three reference topologies (419, 15, and 10, respectively). The topology mean weights were similar when mainland tetraploids were included (47.2%, 25.4%, and 27.5%, with 105, 3, and 1 tree matching the reference topologies entirely). For both Fair Isle and the wider sampling, the topology with *E. arctica* and the diploids as closest relatives had a somewhat higher weight than the alternative (*E. micrantha* and *E. arctica* as closest relatives), suggesting possible gene flow between *E. arctica* and the diploids, or between *E. micrantha* and *E. foulaensis*. We tested this with Patterson’s D statistic using the diploids as an outgroup and found that D deviated significantly from zero ($D = 0.02$, $p = 0.005$) only when the mainland tetraploids were included. This suggests gene flow between (mainland) *E. arctica* and the diploids, with an admixture fraction measured as F_{O} of 2.5% (Green et al., 2010). This value should be interpreted.
as additional admixture on top of any background level between all pairs of species.

DISCUSSION

Adaptive divergence is a major driver of speciation but remains poorly studied in polyploid organisms. In the present study, we use whole-genome sequencing in combination with common garden experimental approaches to understand the nature of species differences in a complex tetraploid group. We focus on an isolated island system where we can characterize genome-wide diversity and divergence of three differentially adapted eyebright species in sympatry. In our focal species, we find that phenotypic differences are underpinned by genetic differences, providing support for the recognition of species differences in this taxonomically complex group. Building upon this finding, in the discussion that follows, we first consider the technical aspects of polyploid data analysis and the new insights we have gained into polyploid evolution, before discussing the landscape of genomic differentiation and adaptation in *Euphrasia*.

Polyploid Genome Dynamics

Polyploid-aware analyses are key to understanding the evolutionary histories of British eyebrights and many other postglacial groups such as octo- and dodecaploid *Cerastium* (Brysting et al., 2007), tetra-hexaploid species of *Silene* (Popp et al., 2005), the highly variable ploidy *Primula* section *Aleuritia* (Guggisberg et al., 2006), and *Dactylorhiza* orchids (Brandrud et al., 2019). While such analyses used to involve the cloning of homoeologous sequences and comparisons of tree topologies, the use of whole-genome data without assembly is becoming increasingly popular. Several k-mer-based methods are now used routinely in genome-sequencing projects of any complexity. For instance, KAT (Mapleson et al., 2016) and GenomeScope (Vurture et al., 2017) can be used to estimate the heterozygosity of diploids and to characterize polyploid k-mer spectra, while Smudgeplots (Ranallo-Benavidez et al., 2020) can be used to determine the ploidy of a sample. However, these programs do not explicitly model the mechanism underpinning genetic diversity in allopolyploid genomes. Tetmer partly fills this gap by explicitly assuming (and allowing researchers to estimate) divergence between allotetraploid sub-genomes, with this corresponding to divergence over time between isolated populations. Tetmer can also be used to analyze autotetraploid and diploid genomes and to visualize the expected k-mer spectrum given a set of parameters. Similar to other k-mer methods, it works best on short-read data of suitable coverage (haploid peak > 15×) generated from a single individual, ideally using contaminant-free samples and PCR-free sequencing libraries.

Using Tetmer on k-mer spectra of *Euphrasia* revealed considerable between-individual variation in heterozygosy within species, indicative of a mixed-mating system. This approach of analyzing divergence within an individual proves complementary to comparative genomics between diploids and tetraploids, which revealed a set of scaffolds shared between diploids and tetraploids. This points to a (relative of a) British diploid acting as a parental progenitor to the British tetraploids, with the origin of the other, highly divergent, sub-genome (~5% divergence) unknown.

The likely absence in Britain of the second diploid ancestor—the Wang et al. (2018) barcoding study failed to find the tetraploid rDNA haplotype in British diploids—and distinct genetic clustering of the diploids suggest that allopolyploidy in *Euphrasia* is not recent. This proves problematic for dating the polyploidy event(s), which would require extant but genetically isolated diploid relatives (Doyle and Egan, 2010). A further complication is that ongoing gene flow, evidenced by plastid sharing and the presence of natural diploid-tetraploid hybrids (Yeo, 1956), blurs the split between diploids and tetraploids. Polyploid species tend to go through a process of diploidization, involving the reduction in chromosome number,
Plant Communications

homoeologous rearrangements, and gene losses, leaving paleopolyploids with prepolyploidy genome sizes (Mandáková and Lysak, 2018). This process does not seem to progress at equal pace in different polyploids. For instance, *Brassica napus*, a recent allopolyploid formed 7500–12 500 years ago with extant diploid relatives, experienced extensive homoeologous rearrangements (Chalhoub et al., 2014). By contrast, teff (*Eragrostis tef*, VanBuren et al., 2020) formed 1.1 million years ago without known diploid ancestors, and *Capsella bursapastoris* formed about 100 000 years ago (Douglas et al., 2015; Kryvokhyzha et al., 2019) do not show large-scale genomic rearrangements. Thus, homoeologous exchange between sub-genomes and rearrangements has major effects on interspecies gene flow, divergence, and ultimately adaptation and speciation. These questions of sub-genome structure and genomic rearrangements will be addressed with an improved genome assembly, generated by the Darwin Tree of Life project (https://www.darwintreetoflife.org), and further population sequencing.

Landscape of Genomic Differentiation and Speciation History

Studies of speciation genomics may gain valuable insights by investigating taxa at different stages of the speciation trajectory, from the earliest stages of divergence to genetically differentiated species with strong reproductive barriers (Via, 2009; Twyford et al., 2014). We have shown that three species of eyebright adapted to contrasting environments are characterized by a gradient of genomic differentiation, with grassland *E. arctica* and coastal *E. folaensis* closely related, while the dry heathland specialist *E. micrantha* is genetically and morphologically more distinct. This parallels other genomic studies of adaptive divergence where species boundaries show different degrees of permeability, underpinned by different reproductive isolating barriers (Peccoud et al., 2009; Dasmahapatra et al., 2012; Nosil et al., 2012; Renault et al., 2012; Roda et al., 2013). Reproductive isolation between *E. arctica* and *E. folaensis* is incomplete and there is evidence of ongoing gene flow. However, the long tail in the pairwise F_{ST} distribution reveals many differentiated scaffolds, which may represent important regions of divergence involved in adaptation to harsh coastal environments (Lowry et al., 2008; Lyu et al., 2018; Dong et al., 2020) and the maintenance of species identities (Nosil et al., 2009; Ravinet et al., 2017). By contrast, *E. micrantha* shows genome-wide divergence from the other two taxa, despite a similar degree of geographic co-occurrence. The high selfing rate of *E. micrantha* (Stone, 2013) and intrinsic postzygotic barriers (genomic incompatibilities) are likely to underlie reproductive isolation. However, our genomic analyses suggest that the genetic distinctness of *E. micrantha* may be a feature of the Fair Isle population rather than the species as a whole. This could be a consequence of regional differentiation caused by strong drift and the local fixation of genomic incompatibilities, local hybridization, or polytopic origins as seen in other polyploids (Schwarzbach and Rieseberg, 2002; Soltis et al., 2004; Ainoche et al., 2012; Lowe and Abbott, 2015).

Our data provide insights into the enigmatic relationships of eyebrights, showing that their speciation history has been shaped by allopolyploidy with consistent sub-genome divergence, that overall species divergence is extremely shallow, and no single phylogenetic tree can represent their evolutionary history. Genome-scale data for adaptive radiations have revealed many groups characterized by reticulate evolution, and further characterization of this reticulation is a main focus of speciation biology (Rieseberg et al., 2003; Cui et al., 2013; Malinsky et al., 2018; Sun et al., 2018; Feng et al., 2019). Hybridization, followed by adaptive introgression, is advantageous as it substantially reduce the waiting times for new variants to evolve. Similar to many other rapid radiations, the relationships of tetraploid eyebrights are reticulate, and reproductive isolation between them is incomplete, comparable to tetraploid species of *Arabidopsis* (Jørgensen et al., 2011). In such settings, it is easy for adaptive variants to cross species boundaries (Morian and Rieseberg, 2004), generating novel phenotypic and genic combinations, which may lead to differential adaptation and reproductive isolation (Pardo-Diaz et al., 2012). Partial selfing may exacerbate this, as is seen in *Euphrasia* orchids (Squirrel et al., 2002). This diversification process, termed “combinatorial speciation” (Marques et al., 2019), is likely to underlie adaptation and the formation of taxonomic complexity in the young, and thus mutation-limited, group of tetraploid *Euphrasia*.

METHODS

Phenotypic Differentiation

Natural Populations

To establish the extent of phenotypic species differences, we measured morphological traits for *E. arctica*, *E. folaensis*, and *E. micrantha* in natural populations on Fair Isle. For each of two populations per species (Supplemental Table 1), we measured 30 individual plants in the field at a single census point. The set of seven traits that we measured is commonly used in *Euphrasia* identification (Metherell and Rumsey, 2018) and includes plant height, corolla length, number of nodes below the first flower, length ratio of the internode below the first flower and the leaf subtending the first flower, number of leaf teeth, capsule width, and capsule length. All length measurements were made in millimeters, to the nearest 0.1 mm, using digital calipers.

Common Garden Experiment

We obtained seeds from wild-collected and open-pollinated plants, and pooled seeds within a population (Supplemental Table 1). We then placed seeds in individual pots filled with a peat-free soil mix, which is a bark-based substrate of neutral pH (RGBE), in December. We set up 4320 pots, corresponding to three species of *Euphrasia* with two replicate populations, 12 different host species (see below), and 60 replicates for each combination. These pots were kept outside at the Royal Botanic Garden Edinburgh (RGBE). We recorded germination daily from the beginning of April and supplied *Euphrasia* with host plants (with seeds sourced from Fair Isle and commercial seed suppliers, see Supplemental Table 3) at intervals of about 2 weeks. At the time of first flowering, we measured the same traits as in natural populations. At the end of September (or at the time of death), for each plant, we recorded its final height, number of reproductive nodes (a measure of fitness), and length and width of one capsule. We also recorded which plants had died before the end of the experiment.

Morphological Trait Analysis and Data Visualization

Trait differences were assessed with linear mixed-effect models (R version 3.6.1 package lme4, https://github.com/lme4/lme4/). In the common garden study, host species was used as a random effect, and transplant time was included as a covariate if the model’s log likelihood improved significantly. When analyzing trait differences between species, genotype was included as a (nested) random effect. The significance of trait differences between populations or species was assessed with a general linear hypothesis test (function “glht”) as implemented in the R package R.
"multcomp" (version 1.4-10). The p values of trait differences were corrected for multiple tests at the level of each trait (rows in Figure 2A).

To visualize the individual clustering by phenotype, we carried out PCA with R’s built-in function “princomp.” To assess how well individuals could be classified into species, we ran LDAs, function “lda” of the R package “MASS,” version 7.3-51.4). For plotting, we ran “lda” without cross-validation and used the function “predict” to obtain two scores for each individual, which were plotted in two dimensions.

Genomic Sequencing and Analyses

Sample Processing and Sequencing

We collected individual Euphrasia plants in the field into desiccating silica gel. After grinding samples with a tissue mill using ceramic beads, we extracted DNA using the Qiagen DNeasy Plant Mini Kit following the manufacturer’s instructions. For the E. arctica reference sample, DNA extraction was performed by Amplicon Express using their in-house high-molecular-weight DNA extraction protocol.

We generated short-read Illumina sequence data and long-read PacBio data for a range of Euphrasia samples. Full details of the sequencing protocols and specifications are provided in Supplemental Table 4.

Plastid Genome and rDNA Analyses

Plastid genomes were assembled from paired Illumina reads of each Euphrasia sample using NOVOplasty. Assembled plastids were manually curated and edited to give a standard order of the large single copy, inverted repeat 1, small single copy, and inverted repeat 2 using Geneious v.11.1. Genome annotation of E. arctica A1 was performed using DOGMA (Wyman et al., 2004) with manual editing and curation, and annotation was carried over to other samples using the “annotate from database” option in Geneious. Plastid genomes were aligned using MAFFT. Phylogenetic analyses were performed using IQ-TREE (Nguyen et al., 2014), with the best evolutionary model inferred using model fitting and model assessment based on Bayesian information criterion, and the level of branch support inferred via 1000 rapid bootstrap replicates. To help infer the direction of evolutionary change, we included an unpublished plastid assembly of the divergent E. antarctica (A.D.T. and R. Ness, unpublished data) in the initial alignment and tree building. We used this sample to root the phylogeny, and subsequently removed the long branch for better tree visualization. The final alignment of British Euphrasia samples included 144 899 constant sites, 174 parsimony-informative sites, and 133 singleton sites.

rDNA was assembled from the same read data as described above, except that we set the expected assembly size to 9000–20 000 bp and used a 1380-bp seed sequence of the rDNA cluster that was obtained from a run of the RepeatExplorer pipeline (Novák et al., 2013). The assembler produced variable results, with some species having fully assembled circularized arrays, while some had multiple contigs. Initial comparisons of assembled arrays suggested that some taxa were not alignable outside the rDNA coding region (results not shown). We therefore trimmed assemblies to the 5.8-kb rDNA coding region (comprising 18S, ITS1, 5.8S, ITS2, 26S). Pairwise alignments were performed with MAFFT, and a neighbor-joining tree was constructed using Geneious.

k-mer Analyses

We modeled the shape of k-mer spectra based on the infinite alleles model. Diploids and autotetraploids were treated as samples of two or four genomes from a single population. Allotetraploids were treated as two samples from each of the two diverged populations. The corresponding formulae were derived using the block-wise site-frequency spectrum framework (Lohse et al., 2011, 2016). Supplemental Text 2 describes this in more detail.

All models are implemented in our app, Tetmer, which can be used to fit parameters to k-mer spectra. This app is available from GitHub (https://github.com/hannesbecher/shiny-k-mers).
SUPPLEMENTAL INFORMATION

Supplemental Information is available at Plant Communications Online.

REFERENCES

Abbott, R.J., and Brochmann, C. (2003). History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol. Ecol. 12:299–313.

Ainouche, M.L., Fortune, P.M., Salmon, A., Parisod, C., Grandbastien, M.-A., Fukunaga, K., Ricou, M., and Misset, M.-T. (2009). Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol. Invasions 11:1159–1173.

Ainouche, M., Chelaiha, H., Ferreira, J., Bellot, S., Ainouche, A., and Salmon, A. (2012). Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes. In Polyploidy and Genome Evolution, P.S. Solists and D.E. Solists, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 225–243.

Baduel, P., Quaderna, L., Hunter, B., Bomblies, K., and Colot, V. (2019). Relaxed purifying selection in autopolyploids drives speciation in Xiphophorus. Evolution (N. Y). 54:1725–1737.

Dong, Y., Hu, G., Yu, J., Thu, S.W., Grover, C.E., Zhu, S., and Wendel, J.F. (2020). Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species. Plant J. 101:1135–1151.

Douglas, G.M., Gos, G., Steige, K.A., Salcedo, A., Holm, K., Josephs, E.B., Arunkumar, R., Agren, J.A., Hazzouri, K.M., Wang, W., et al. (2015). Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl. Acad. Sci. U S A 112:2906–2911.

Euphrasia

Maintenance of Species Differences in Island Tetraploids

Bernasconi, G., Antonovics, J., Biere, A., et al. (2009). Silene as a model system in ecology and evolution. Heredity (Edinb) 103:5–14.

Böhle, U.R., Hilger, H.H., and Martin, W.F. (1996). Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc. Natl. Acad. Sci. U S A 93:11740–11745.

Brandrud, M.K., Baar, J., Lorenzo, M.T., Athanasiadis, A., Bateman, R.M., Chase, M.W., Hedrén, M., and Paun, O. (2019). Rhynologene relationships of diploids and the origins of allotetraploids in Dactylorhiza (Orchidaceae). Syst. Biol. 69:81–109.

Brochmann, C., Brysting, A.K., Alsos, I.G., Borgen, L., Grundt, H.H., Scheen, A.-C., and Elven, R. (2004). Polyploidy in arctic plants. Biol. J. Linn. Soc. 82:521–536.

Brown, M.R., Fracion, N., Wong, E.L.Y., Metherell, C., and Twyford, A.D. (2020). Life history evolution, species differences, and phenotypic plasticity in hemiparasitic eyebrights (Euphrasia). Am. J. Bot. 107:456–466.

Brysting, A.K., Oxelman, B., Huber, K.T., Moulton, V., and Brochmann, C. (2007). Untangling complex histories of genome mergings in high polyploids. Syst. Biol. 56:467–476.

Campbell, C.R., Poelstra, J.W., and Yoder, A.D. (2018). What is Speciation Genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124:561–583.

Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcam, H., Tong, C., Samans, B., et al. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953.

Cheng, F., Wu, J., Cai, X., Liang, J., Freeing, M., and Wang, X. (2018). Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4:258–268.

Clausen, J., and Hiesey, W.M. (1958). Experimental Studies on the Nature of Species, Volume IV: Genetic Structure of Ecological Races (Washington (DC): Carnegie Institution of Washington).

Clausen, J., Keck, D.D., and Hiesey, W.M. (1940). Experimental Studies on the Nature of Species, Volume I: Effect of Varied Environments on Western North American Plants (Washington (DC): Carnegie Institution of Washington).

Clausen, J., Keck, D.D., and Hiesey, W.M. (1948). Experimental Studies on the Nature of Species, Volume III: Environmental Responses of Climatic Races in Achillea (Washington (DC): Carnegie Institution of Washington).

Cui, R., Schumer, M., Kruesi, K., Walter, R., Andolfatto, P., and Rosenthal, G.G. (2013). Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution (N. Y). 67:2166–2179.

Danley, P.D., Markert, J.A., Arnegard, M.E., and Kocher, T.D. (2000). Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution (N. Y). 54:1725–1737.

Dasmahapatra, K.K., Walters, J.R., Briscoe, A.D., Davey, J.W., Whibley, A., Nadeau, N.J., Zimin, A.V., Hughes, D.S.T., Ferguson, L.C., Martin, S.H., et al. (2012). Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98.

Received: April 28, 2020
Revised: July 24, 2020
Accepted: August 27, 2020
Published: September 1, 2020
Maintenance of Species Differences in Island Tetraploids

Doyle, J.J., and Egan, A.N. (2010). Dating the origins of polyploidy events. New Phytol. 186:73–85.

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14:2611–2620.

Favre, A., Widmer, A., and Karrenberg, S. (2017). Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. New Phytol. 213:1487–1499.

Feng, S., Ru, D., Sun, Y., Mao, K., Milne, R., and Liu, J. (2019). Trans-lineage polymorphism and nonbifurcating diversification of the genus Picea. New Phytol. 222:576–587.

French, G.C., Hollingsworth, P.M., Silverside, A.J., and Ennos, R.A. (2008). Genetics, taxonomy and the conservation of British Euphrasia. Conserv. Genet. 9:1547–1562.

Green, R.E., Krause, J., Briggs, A.W., MacLennan, D., Green, R., Liu, Y., et al. (2010). A draft sequence of the Neandertal genome. Science 328:710–722.

Guggisberg, A., Mansion, G., Kelso, S., and Conti, E. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. New Phytol. 166:261–271.

Hollister, J.D., Arnold, B.J., Svedin, E., Xue, K.S., Dilkes, B.P., and Barton, N.H. (2016). Efficient strategies for calculating blockwise likelihoods under the coalescent. Genetics 202:775–786.

Jombart, T., and Ahmed, I. (2011). adegenet 1.3-1: new tools for the matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806.

Jombart, T., and Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071.

Jorgensen, M.H., Ehrich, D., Schmickl, R., Koch, M.A., and Brysting, A.K. (2011). Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol. Biol. 11:346.

Kolseth, A.-K., and Lystad, A.K. (2012). SNPs and repeat types as a common strategy among mangrove genomes. New Phytol. 192:443–452.

Lowe, A.J., and Abbott, R.J. (1996). Origins of the new allopolyploid species Senecio cambrensis (Asteraceae) and its relationship to the canary islands endemic Senecio teneriffae. Am. J. Bot. 83:1365–1372.

Lowe, A.J., and Abbott, R.J. (2015). Hybrid swarms: catalysts for multiple evolutionary events in Senecio in the British Isles. Plant Ecol. Divers. 8:449–463.

Lowe, A.J., and Abbott, R.J. (2017). Parental legacy, demography, and admixture influenced divergent selection and heterogeneous genomic divergence. Mol. Ecol. 16:375–402.

Lyu, H., He, Z., Wu, C.-I., and Shi, S. (2018). Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217:428–438.

Malinsky, M., Svärdal, H., Tyers, A.M., Miska, E.A., Gompert, Z., Farkas, T.E., Comeault, A.A., Feder, J.L., Turner, G.F., and Durbin, R. (2018). Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2:1940–1955.

Mallet, J., Meyer, A., Nosil, P., and Feder, J.L. (2009). Space, sympathy and speciation. J. Evol. Biol. 22:2332–2341.

MandaKova, T., and Lysak, M.A. (2012). Annual plants colonizing the Arctic? Phylogeography and genetic variation in the Euphrasia minima complex (Orobanchaceae). Taxon 61:146–160.

Mander, B., Atchison, G.W., Hughes, C.E., and Filatov, D.A. (2013). Genome-wide patterns of divergence and gene flow across a butterfly radiation. Mol. Ecol. 22:814–826.
Plant Communications

Núñez-Farfán, J., and Schlichting, C.D. (2001). Evolution in changing environments: the “synthetic” work of Clausen, Keck, and Hiesey. Q. Rev. Biol. 76:433–457.

Papadopoulos, A.S.T., Baker, W.J., Crayn, D., Butlin, R.K., Kynast, R.G., Hutton, I., and Savolainen, V. (2011). Speciation with gene flow on Lord Howe island. Proc. Natl. Acad. Sci. U S A 108:13188–13193.

Paradis, E., and Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528.

Pardo-Diaz, C., Salazar, C., Baxter, S.W., Merot, C., Figueiredo-Ready, W., Joron, M., McMillan, W.O., and Jiggins, C.D. (2012). Adaptive introgression across species boundaries in Heliconius butterflies; PLoS Genet. 8:e1002752.

Parisod, C., Holderegger, R., and Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186:5–17.

Pecoud, J., Ollivier, A., Plantegenest, M., and Simon, J.-C. (2009). A Parisod, C., Holderegger, R., and Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186:5–17.

Popp, M., Erixon, P., Eggens, F., and Oxelmann, B. (2005). Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear RNA polymerase introns, rDNA, and chloroplast DNA. Syst. Bot. 30:302–313.

Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155:945–959.

Quinteros Pañafiel, C.V., Riddle, N.J., and Twyford, A.D. (2017). A floristic survey of Fair Isle. New J. Bot. 7:101–111.

Raj, A., Stephens, M., and Pritchard, J.K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197:573–589.

Ranallo-Benavidez, T.R., Jaron, K.S., and Schatz, M.C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11:1432.

Ravinet, M., Faria, R., Butlin, R.K., Galindo, J., Bierne, N., Rafajlović, M., Noor, M.A.F., Mehlig, B., and Westram, A.M. (2017). Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30:1450–1477.

Ren, R., Wang, H., Guo, C., Zhang, N., Zeng, L., Chen, Y., Ma, H., and Qi, J. (2018). Widespread whole genome duplications contribute to genome complexity and species diversity in Angiosperms. Mol. Plant 11:414–428.

Renault, S., Maillet, N., Normandeau, E., Sauvage, C., Derome, N., Rogers, S.M., and Bernatchez, L. (2012). Genome-wide patterns of differentiation and species cohesion in two widespread Central American Begonia species. Heredity (Edinb) 112:382–390.

Richters, T.J., Walter, G.M., Mcguigan, K., and Ortiz-Barrientos, D. (2016). Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower. Evolution (N. Y.) 70:1993–2003.

Riddiford, N.J., Quinteros Pañafiel, C.V., Metherell, C., Ferguson-Smyth, C.C., and Twyford, A.D. (2020). A floristic survey of Fair Isle II: new and notable records and the status of Euphrasia. Br. Irish Bot. 2:144–153.

Rieseberg, L.H., Raymond, O., Rosenthal, D.M., Lai, Z., Livingstone, K., Nakazato, T., D. Schürch, A., and Lexer, C. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216.

Rodr, F., Ambrose, L., Walter, G.M., Liu, H.L., Schaul, A., Lowe, A., Pelser, P.B., Prentis, P., Rieseberg, L.H., and Ortiz-Barrientos, D. (2013). Genomic evidence for the parallel evolution of coastal forms in the Senecio lautos complex. Mol. Ecol. 22:2941–2952.

Schwarzbach, A.E., and Rieseberg, L.H. (2002). Likely multiple origins of a diploid hybrid sunflower species. Mol. Ecol. 11:1703–1715.

Soltis, D.E., Soltis, P.S., Pires, J.C., Kovarik, A., Tate, J.A., and Mavrodiev, E. (2004). Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisions. Biol. J. Linn. Soc. 82:485–501.

Soltis, D.E., Buggs, R.J.A., Barbazuk, W.B., Chamala, S., Chester, M., Gallagher, J.P., Schnable, P.S., and Soltis, P.S. (2012). The early stages of polyploidy: rapid and repeated evolution in Tragopogon. In Polyploidy and Genome Evolution, P.S. Soltis and D.E. Soltis, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 271–292.

Squirell, J., Hollingsworth, P.M., Bateman, R.M., Tebbitt, M.C., and Hollingsworth, M.L. (2002). Taxonomic complexity and breeding system transitions: conservation of the Epipactis leptochila complex (Orchidaceae). Mol. Ecol. 11:1957–1964.

Stace, C. (2019). New Flora of the British Isles, 4th edn (Middlewood Green, Suffolk: C & M Floristics). Stebbins, G.L. (1984). Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot. Rev. 94:1–13.

Stone, H. (2013). Evolution and conservation of tetraploid Euphrasia L. in Britain. http://hdl.handle.net/1842/7740.

Sun, Y., Abbott, R.J., Lu, Z., Mao, K., Zhang, L., Wang, X., Ru, D., and Liu, J. (2018). Reticulate evolution within a spruce (Picea) species complex revealed by population genomic analysis. Evolution (N. Y.) 72:2669–2681.

Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E., Hinchliff, C.E., Brown, J.W., Sessa, E.B., and Harmon, L.J. (2015). Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 204:454–467.

Twyford, A.D., Kidner, C.A., and Ennos, R.A. (2014). Genetic differentiation and species cohesion in two widespread Central American Begonia species. Heredity (Edinb) 112:382–390.

Twyford, A.D., Kidner, C.A., and Ennos, R.A. (2015). Maintenance of species boundaries in a Neotropical radiation of Begonia. Mol. Ecol. 24:4982–4993.

VanBuren, R., Man Wai, C., Wang, X., Pardo, J., Yocca, A.E., Wang, H., Chaluvadi, S.R., Han, G., Bryant, D., Edger, P.P., et al. (2020). Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 11:884.

Via, S. (2009). Natural selection in action during speciation. Proc. Natl. Acad. Sci. U S A 106:9939–9946.

Voichyk, Y., and Weigel, D. (2020). Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat. Genet. 52:534–540.

Vurture, G.W., Sedlacek, F.J., Nattestad, M., Underwood, C.J., Fang, H., Gurtowski, J., and Schatz, M.C. (2017). GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202–2204.

Wang, X., Guassarova, G., Ruhsam, M., de Vere, N., Metherell, C., Hollingsworth, P.M., and Twyford, A.D. (2018). DNA barcoding a taxonomically complex hemiparasitic genus reveals deep divergence between ploidy levels but lack of species-level resolution. AoB Plants 10:ply026.

Warren, R.L., Coombe, L., Mohamadi, H., Zhang, J., Jaquish, B., Isabel, N., Jones, S.J.M., Bousquet, J., Bohlmann, J., and Birol, I. (2019). mEdit: scalable genome sequence polishing. Bioinformatics 35:4430–4432.
Maintenance of Species Differences in Island Tetraploids

Wendel, J.F., Jackson, S.A., Meyers, B.C., and Wing, R.A. (2016). Evolution of plant genome architecture. Genome Biol. 17:37.

Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B., and Rieseberg, L.H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. 106:13875–13879.

Wyman, S.K., Jansen, R.K., and Boore, J.L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255.

Yeo, P. (1956). Hybridization between diploid and tetraploid species of Euphrasia. Watsonia 3:253–269.

Yeo, P. (1966). The breeding relationships of some European Euphrasieae. Watsonia 6:216–245.

Zhang, C., Rabiee, M., Sayyari, E., and Mirarab, S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19:153.
Supplemental Information

Maintenance of Species Differences in Closely Related Tetraploid Parasitic *Euphrasia* (Orobanchaceae) on an Isolated Island

Hannes Becher, Max R. Brown, Gavin Powell, Chris Metherell, Nick J. Riddiford, and Alex D. Twyford
Supplemental Items to Becher et al. 2020 “Maintenance of species differences in closely related tetraploid parasitic Euphrasia (Orobanchaceae) on an isolated island”

By Hannes Becher, Max R. Brown, Gavin Powell, Chris Metherell, Nick J. Riddiford, and Alex D. Twyford

Contents
Supplemental figure 1 ... II
Supplemental figure 2 .. III
Supplemental table 1 .. IV
Supplemental table 2 .. IV
Supplemental table 3 .. IV
Supplemental table 4 .. IV
Supplemental text 1 – Magnitude and significance of trait value differences V
Order of traits .. V
Trait differences in natural populations, species level .. V
Trait differences in natural populations, population level .. VII
Trait differences in the common garden, species level .. X
Trait differences in the common garden, population level ... XIII
Supplemental text 2 – Models for k-mer spectra .. XVIII
Usage example – autotetraploid .. XIX
Usage example – allotetraploid ... XX
Supplemental text 3 – Genome profiling .. XXII
Euphrasia anglica (AN, diploid) .. XXIII
Euphrasia vigursii (VI, diploid) ... XXIV
Euphrasia rivularis (RI, diploid) ... XXV
Euphrasia rostkoviana (RO, diploid) ... XXVI
Euphrasia arctica (A0, tetraploid) ... XXVII
Euphrasia arctica (A1, tetraploid) ... XXVIII
Euphrasia arctica (A2, tetraploid) ... XXIX
Euphrasia arctica (A3, tetraploid) ... XXX
Euphrasia foulaensis (F1, tetraploid) ... XXXI
Euphrasia foulaensis (F2, tetraploid) .. XXXII
Euphrasia foulaensis (F3, tetraploid) .. XXXIII
Euphrasia foulaensis (F4, tetraploid) .. XXXIV
Euphrasia micrantha (M0, tetraploid) ... XXXV
Euphrasia micrantha (M1, tetraploid) ... XXXVI
Euphrasia micrantha (M2, tetraploid) ... XXXVII
Euphrasia micrantha (M3, tetraploid) ... XXXVIII
Euphrasia sp. (X1, tetraploid) ... XXXIX
Euphrasia sp. (X2, tetraploid) ... XL

SUPPLEMENTAL FIGURE 1

A k-mer completeness plot for our assembly of E. arctica generated with KAT.
SUPPLEMENTAL FIGURE 2

Output of STRUCTURE runs with K values 2-5.
SUPPLEMENTAL TABLE 1

Locations and descriptions of populations sampled on Fair Isle.

Population code	latitude	longitude	Description
E. arctica G1	59.524622	-1.636012	Road side, near school
E. arctica G2	59.517135	-1.64082	Road side, near chapel
E. foulaensis C1	59.535645	-1.602904	Coastal turf, Buness peninsula
E. foulaensis C2	59.513855	-1.650254	Coastal turf, South light
E. micrantha H1	59.537202	-1.629517	Heath land, North of airstrip
E. micrantha H2	59.548057	-1.615796	Heath land, by bend in road to N light

SUPPLEMENTAL TABLE 2

Means and standard errors of trait measurements from natural populations (Fair Isle) and from the common garden.
Submitted separately.

SUPPLEMENTAL TABLE 3

Origins of host seed used in the common garden experiment.

Species	Source	Notes
Holcus lanatus	Emorsgate Seeds*	Seeds ordered in early 2019
Lolium perenne	Emorsgate Seeds*	Seeds ordered in early 2019
Trifolium repens	Emorsgate Seeds*	Seeds ordered in early 2019
Armeria maritima	Scotia Seeds**	Seeds ordered in early 2019
Juniperus vulgaris	Fair Isle, wild collected	cutsings taken in September 2018
Calluna vulgaris	Fair Isle, wild collected	cutsings taken in September 2018
Plantago maritima	Fair Isle, wild collected	seeds collected in August 2018
Plantago lanceolata	Fair Isle, wild collected	seeds collected in August 2018
Plantago coronopus	Fair Isle, wild collected	seeds collected in August 2018
Rumex crispus	Fair Isle, wild collected	seeds collected in August 2018
Luzula multiflora	Fair Isle, wild collected	seeds collected in August 2018
Rumex acetosa	Fair Isle, wild collected	seeds collected in August 2018

* EMORSGATE SEEDS, Limes Farm, Tilney All Saints, King’s Lynn, Norfolk, PE34 4RT
** Scotia Seeds, Mavisbank, Farnell, Brechin, Angus, DD9 6TR

SUPPLEMENTAL TABLE 4

Individuals sequenced, heterozygosity, and sub-genome divergence estimates.
Submitted separately.
SUPPLEMENTAL TEXT 1 — MAGNITUDE AND SIGNIFICANCE OF TRAIT VALUE DIFFERENCES

ORDER OF TRAITS
The order of traits in the following tables corresponds to Figure 1D. Traits marked with * were recorded from natural populations.
 1. Time transplant to flower in days
 2. Time of 1st flower in Julian days
 3. Height at 1st flower in mm
 4. *Final height in mm
 5. Number of reproductive nodes
 6. *Corolla length in mm
 7. *Number of nodes below the flower
 8. *Ration of the length of the leaf subtending the lowest flower and the internode beneath
 9. *Number of leaf teeth
 10. *Capsule width in mm
 11. *Capsule length in mm
 12. Germination rate
 13. Proportion flowering of those germinated
 14. Proportion early death out of those germinated

TRAIT DIFFERENCES IN NATURAL POPULATIONS, SPECIES LEVEL

4
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = log(height) ~ Category + (1 | Population), data = datcomp)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 1.39687 | 0.08663 | 16.125 | 0.00127 ** |
| arc - mic == 0 | 0.71272 | 0.08663 | 8.227 | 0.00779 ** |
| fou - mic == 0 | -0.68415 | 0.08663 | -7.897 | 0.00846 ** |

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1
(Adjusted p values reported -- single-step method)

6
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = corolla.size ~ Category + (1 | Population), data = datcomp)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 1.7196 | 0.1312 | 13.105 | 0.00193 ** |
| arc - mic == 0 | 2.9225 | 0.1483 | 19.706 | < 0.001 *** |
| fou - mic == 0 | 1.2029 | 0.1495 | 8.045 | 0.00807 ** |

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = nd.to.fl ~ Category + (1 | Population), data = datcomp[!rownames(datcomp) %in% c("17", "113"),])

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 1.5556 | 0.5485 | 2.836 | 0.1280 |
| arc - mic == 0 | 2.4028 | 0.5491 | 4.376 | 0.0442 * |
| fou - mic == 0 | 0.8472 | 0.5480 | 1.546 | 0.3897 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(lir) ~ Category + (1 | Population), data = datcomp)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.7981 | 0.2801 | -2.850 | 0.1260 |
| arc - mic == 0 | 0.7305 | 0.2803 | 2.606 | 0.1540 |
| fou - mic == 0 | 1.5286 | 0.2798 | 5.464 | 0.0244 * |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = leaf.teeth ~ Category + (1 | Population), data = datcomp)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 1.1742 | 0.5699 | 2.060 | 0.245 |
| arc - mic == 0 | 1.5244 | 0.5702 | 2.674 | 0.146 |
| fou - mic == 0 | 0.3502 | 0.5697 | 0.615 | 0.823 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = capsule.width ~ Category + (1 | Population), data = datcomp[!rownames(datcomp) %in% c("17", "113"),])

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.1279 | 0.3423 | -0.374 | 0.928 |
| arc - mic == 0 | 0.5693 | 0.3410 | 1.669 | 0.348 |
| fou - mic == 0 | 0.6972 | 0.3419 | 2.039 | 0.250 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses
Fit: `lmer(formula = capsule.width ~ Category + (1 | Population), data = datcomp[, rownames(datcomp) %in% c("17", "113")],)`

Linear Hypotheses:
\[
\begin{align*}
\text{arc - fou} &= 0 & -0.1279 & 0.3423 & -0.374 & 0.928 \\
\text{arc - mic} &= 0 & 0.5693 & 0.3410 & 1.669 & 0.348 \\
\text{fou - mic} &= 0 & 0.6972 & 0.3419 & 2.039 & 0.250
\end{align*}
\]

(Adjusted p values reported -- single-step method)

Trait differences in natural populations, population level

4

Simultaneous Tests for General Linear Hypotheses

Fit: `lm(formula = log(height) ~ Population, data = datcomp)`

Linear Hypotheses:
\[
\begin{align*}
\text{G1 - G2} &= 0 & -0.04677 & 0.07041 & -0.664 & 0.9856 \\
\text{G1 - C2} &= 0 & 1.41311 & 0.07041 & 20.070 & <0.001 *** \\
\text{G1 - C1} &= 0 & 1.33386 & 0.07041 & 18.944 & <0.001 *** \\
\text{G1 - H2} &= 0 & 0.78494 & 0.07041 & 11.148 & <0.001 *** \\
\text{G1 - H1} &= 0 & 0.59373 & 0.07041 & 8.432 & <0.001 *** \\
\text{G2 - C2} &= 0 & 1.45988 & 0.07041 & 20.734 & <0.001 *** \\
\text{G2 - C1} &= 0 & 1.38063 & 0.07041 & 19.608 & <0.001 *** \\
\text{G2 - H2} &= 0 & 0.83171 & 0.07041 & 11.812 & <0.001 *** \\
\text{G2 - H1} &= 0 & 0.64050 & 0.07041 & 9.097 & <0.001 *** \\
\text{C2 - C1} &= 0 & -0.07925 & 0.07041 & -1.126 & 0.8702 \\
\text{C2 - H2} &= 0 & -0.62817 & 0.07041 & -8.922 & <0.001 *** \\
\text{C2 - H1} &= 0 & -0.81938 & 0.07041 & -11.637 & <0.001 *** \\
\text{C1 - H2} &= 0 & -0.54892 & 0.07041 & -7.796 & <0.001 *** \\
\text{C1 - H1} &= 0 & -0.74013 & 0.07041 & -10.512 & <0.001 *** \\
\text{H2 - H1} &= 0 & -0.19121 & 0.07041 & -2.716 & 0.0772 .
\end{align*}
\]

Signif. codes: 0 ** 0.001 *** 0.01 ** 0.05 * 0.1 ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: `lm(formula = corolla.size ~ Population, data = datcomp)`

Linear Hypotheses:
\[
\begin{align*}
\text{G1 - G2} &= 0 & 0.08214 & 0.15825 & 0.519 & 0.995 \\
\text{G1 - C2} &= 0 & 1.61671 & 0.16293 & 9.923 & <0.001 *** \\
\text{G1 - C1} &= 0 & 1.89286 & 0.15825 & 11.961 & <0.001 *** \\
\text{G1 - H2} &= 0 & 3.06071 & 0.20430 & 14.981 & <0.001 *** \\
\text{G1 - H1} &= 0 & 2.89756 & 0.17600 & 16.464 & <0.001 *** \\
\text{G2 - C2} &= 0 & 1.53457 & 0.16293 & 9.419 & <0.001 *** \\
\text{G2 - C1} &= 0 & 1.81071 & 0.15825 & 11.442 & <0.001 *** \\
\text{G2 - H2} &= 0 & 2.97857 & 0.20430 & 14.579 & <0.001 *** \\
\text{G2 - H1} &= 0 & 2.81541 & 0.17600 & 15.997 & <0.001 ***
\end{align*}
\]
\[
\begin{align*}
C_2 - C_1 &= 0
\quad 0.27614 \quad 0.16293 \quad 1.695 \quad 0.533 \\
C_2 - H_2 &= 0
\quad 1.44400 \quad 0.20794 \quad 6.944 \quad <0.001 ** \\
C_2 - H_1 &= 0
\quad 1.28084 \quad 0.18021 \quad 7.107 \quad <0.001 *** \\
C_1 - H_2 &= 0
\quad 1.16786 \quad 0.20430 \quad 5.716 \quad <0.001 *** \\
C_1 - H_1 &= 0
\quad 1.00470 \quad 0.17600 \quad 5.709 \quad <0.001 *** \\
H_2 - H_1 &= 0
\quad -0.16316 \quad 0.21833 \quad -0.747 \quad 0.975 \\
\end{align*}
\]

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Arranged p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = leaf.teeth ~ Population, data = datcomp)

	Estimate Std. Error t value Pr(>	t)	
G1 - G2 == 0	0.85755	0.15126	5.669	<0.001 ***
G1 - C2 == 0	1.05385	0.14750	7.145	<0.001 ***
G1 - H2 == 0	2.15385	0.14993	14.366	<0.001 ***
G1 - H1 == 0	1.97527	0.14993	13.175	<0.001 ***
G2 - C2 == 0	0.19630	0.14603	1.344	0.760
G2 - C1 == 0	1.29630	0.14848	8.730	<0.001 ***
G2 - H2 == 0	1.07407	0.14983	7.169	<0.001 ***
G2 - H1 == 0	1.11772	0.14848	7.528	<0.001 ***
C2 - C1 == 0	1.10000	0.14465	7.604	<0.001 ***
C2 - H2 == 0	0.87778	0.14603	6.011	<0.001 ***
C2 - H1 == 0	0.92143	0.14465	6.370	<0.001 ***
C1 - H2 == 0	0.22222	0.14848	1.497	0.667
C1 - H1 == 0	0.17857	0.14713	1.214	0.830
H2 - H1 == 0	0.04365	0.14848	0.294	1.000

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = capsule.width ~ Population, data = datcomp[!rownames(datcomp) %in% c("17", "113"),])

	Estimate Std. Error t value Pr(>	t)	
G1 - G2 == 0	-0.706981	0.094030	-7.519	<0.001 ***
G1 - C2 == 0	-0.537500	0.095276	-5.642	<0.001 ***
G1 - H2 == 0	-0.421627	0.099709	-4.229	<0.001 ***
G1 - H1 == 0	0.003929	0.086725	0.045	1.000
G2 - C2 == 0	0.169481	0.100690	1.683	0.0771
G2 - C1 == 0	0.285353	0.104895	2.720	<0.001 ***
G2 - H2 == 0	0.710909	0.095608	11.913	<0.001 ***
G2 - H1 == 0	0.115873	0.10613	1.093	0.8828
C2 - C1 == 0	0.541429	0.093905	5.766	<0.001 ***
C2 - H2 == 0	0.969505	0.096833	10.012	<0.001 ***
C1 - H2 == 0	0.425556	0.098400	4.325	<0.001 ***
C1 - H1 == 0	0.853632	0.101199	8.435	<0.001 ***
H2 - H1 == 0	0.428077	0.088434	4.841	<0.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = capsule.width ~ Population, data = datcomp[!rownames(datcomp) %in% c("17", "113"),])

	Estimate Std. Error t value Pr(>	t)	
G1 - G2 == 0	-0.706981	0.094030	-7.519	<0.001 ***
G1 - C2 == 0	-0.537500	0.095276	-5.642	<0.001 ***
G1 - H2 == 0	-0.421627	0.099709	-4.229	<0.001 ***
G1 - H1 == 0	0.003929	0.086725	0.045	1.000
G2 - C2 == 0	0.169481	0.100690	1.683	0.0771
G2 - C1 == 0	0.285353	0.104895	2.720	<0.001 ***
G2 - H2 == 0	0.710909	0.095608	11.913	<0.001 ***
G2 - H1 == 0	0.115873	0.10613	1.093	0.8828
C2 - C1 == 0	0.541429	0.093905	5.766	<0.001 ***
C2 - H2 == 0	0.969505	0.096833	10.012	<0.001 ***
C1 - H2 == 0	0.425556	0.098400	4.325	<0.001 ***
C1 - H1 == 0	0.853632	0.101199	8.435	<0.001 ***
H2 - H1 == 0	0.428077	0.088434	4.841	<0.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = Fd ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host),
data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 1.578 | 5.537 | 0.285 | 0.957 |
| arc - mic == 0 | -4.969 | 5.684 | -0.874 | 0.690 |
| fou - mic == 0 | -6.547 | 5.716 | -1.145 | 0.555 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = Flower ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host),
data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.8433 | 3.5089 | -0.240 | 0.833 |
| arc - mic == 0 | -2.5972 | 3.6740 | -0.707 | 0.777 |
| fou - mic == 0 | -1.7539 | 3.7106 | -0.473 | 0.888 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = log(Plant.height) ~ Euphrasia.Taxon + Transplant +
(1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.1487 | 0.1744 | 0.853 | 0.701 |
| arc - mic == 0 | 0.2550 | 0.1782 | 1.431 | 0.150 |
| fou - mic == 0 | 0.1062 | 0.1790 | 0.593 | 0.833 |

(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(Height) ~ Euphrasia.Taxon + Transplant + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.25164 | 0.19112 | 1.317 | 0.478 |
| arc - mic == 0 | 0.34798 | 0.19790 | 1.758 | 0.321 |
| fou - mic == 0 | 0.09633 | 0.19926 | 0.483 | 0.884 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(1 + Reproductive.nodes) ~ Euphrasia.Taxon + Transplant + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.09066 | 0.15157 | -0.598 | 0.831 |
| arc - mic == 0 | 0.41922 | 0.16520 | 2.538 | 0.163 |
| fou - mic == 0 | 0.50987 | 0.16741 | 3.046 | 0.109 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Corolla.length ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.4772 | 0.3837 | 1.244 | 0.5100 |
| arc - mic == 0 | 1.7766 | 0.3879 | 4.580 | 0.0393 * |
| fou - mic == 0 | 1.2994 | 0.3888 | 3.342 | 0.0874 . |

Signif. codes: 0 '**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Nodes.to.flower ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.5544 | 0.6536 | -0.848 | 0.704 |
| arc - mic == 0 | 0.5287 | 0.6601 | 0.801 | 0.728 |
| fou - mic == 0 | 1.0831 | 0.6617 | 1.637 | 0.359 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(lir) ~ Euphrasia.Taxon + (1 | gerGT) + (1 |
Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.3040 | 0.3557 | -0.855 | 0.700 |
| arc - mic == 0 | 0.4369 | 0.3586 | 1.218 | 0.521 |
| fou - mic == 0 | 0.7410 | 0.3592 | 2.063 | 0.245 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(Number.of.leaf.teeth..exc..tip.) ~ Euphrasia.Taxon + Transplant + (1 | gerGT) + (1 | Host), data = FdAll)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.02808 | 0.23120 | -0.121 | 0.992 |
| arc - mic == 0 | 0.12424 | 0.23278 | 0.534 | 0.861 |
| fou - mic == 0 | 0.15232 | 0.23312 | 0.653 | 0.804 |

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Capsule.width ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.1145 | 0.1379 | 0.831 | 0.7127 |
| arc - mic == 0 | 0.7230 | 0.1474 | 4.904 | 0.0328 * |
| fou - mic == 0 | 0.6084 | 0.1479 | 4.113 | 0.0521 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Capsule.Height ~ Euphrasia.Taxon + (1 | gerGT) + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.7293 | 0.1311 | 5.562 | 0.00601 ** |
| arc - mic == 0 | 1.6583 | 0.1766 | 9.388 | < 0.001 *** |
| fou - mic == 0 | 0.9289 | 0.1789 | 5.193 | 0.00816 ** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: glmer(formula = cbind(X1, X2) ~ spec + (1 | GT), data = ger, family = binomial)

Linear Hypotheses:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
Simultaneous Tests for General Linear Hypotheses

Fit: glmer(formula = cbind(X1, X2) ~ spec + (1 | GT), data = flo, family = binomial)

Linear Hypotheses:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| arc - fou == 0 | 0.6520 | 0.6027 | 1.082 | 0.525 |
| arc - mic == 0 | 1.5402 | 0.6041 | 2.550 | 0.029 * |
| fou - mic == 0 | 0.8882 | 0.6039 | 1.471 | 0.305 |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: glmer(formula = cbind(X1, X2) ~ spec + (1 | GT), data = dead, family = binomial)

Linear Hypotheses:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| arc - fou == 0 | -0.1995 | 0.1915 | -1.042 | 0.54653 |
| arc - mic == 0 | 0.5765 | 0.2477 | 2.323 | 0.05156 . |
| fou - mic == 0 | 0.7751 | 0.2617 | 2.962 | 0.00811 ** |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Fd ~ gerGT + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| C2 - C1 == 0 | 9.0064 | 2.1083 | 4.272 | < 0.001 *** |
| C2 - G1 == 0 | 7.4620 | 1.9491 | 3.828 | 0.00178 ** |
| C2 - G2 == 0 | -1.5780 | 1.8971 | -0.832 | 0.45944 |
| C2 - H2 == 0 | 0.2626 | 3.2781 | 0.080 | 1.00000 |
| C2 - H1 == 0 | -3.9661 | 2.2516 | -1.761 | 0.47836 |
| C1 - G1 == 0 | -1.5444 | 1.9627 | -0.787 | 0.96801 |
| C1 - G2 == 0 | -10.5845 | 1.8913 | -5.596 | < 0.001 *** |
| C1 - H2 == 0 | -1.8406 | 3.1534 | 0.584 | 0.99161 |
| C1 - H1 == 0 | -12.7276 | 2.2273 | -5.624 | < 0.001 *** |
| G1 - G2 == 0 | -9.0401 | 1.7181 | -5.262 | < 0.001 *** |
| G1 - H2 == 0 | -7.1994 | 3.1658 | -2.274 | 0.19673 |
| G1 - H1 == 0 | -11.4282 | 2.0885 | -5.472 | < 0.001 *** |
| G2 - H2 == 0 | 1.8406 | 3.1534 | 0.584 | 0.99161 |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Flower ~ gerGT + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| C2 - C1 == 0 | 3.1182 | 1.8338 | 1.700 | 0.5189 |
| C2 - G1 == 0 | 5.6676 | 1.6953 | 3.343 | 0.0104 * |
| C2 - G2 == 0 | -0.8171 | 1.6499 | -0.495 | 0.9961 |
| C2 - H2 == 0 | -2.9667 | 2.8516 | -1.040 | 0.8994 |
| C2 - H1 == 0 | 1.9125 | 1.9583 | 0.977 | 0.9215 |
| C1 - G1 == 0 | 2.5494 | 1.7073 | 1.493 | 0.6573 |
| C1 - G2 == 0 | -3.9353 | 1.5240 | -2.392 | 0.1520 |
| C1 - H2 == 0 | -6.0849 | 2.8450 | -2.139 | 0.2574 |
| C1 - H1 == 0 | -1.2057 | 1.9372 | -0.622 | 0.9887 |
| G1 - G2 == 0 | -6.4847 | 1.4944 | -4.339 | <0.001 *** |
| G1 - H2 == 0 | -8.6343 | 2.7539 | -3.135 | 0.0206 * |
| G1 - H1 == 0 | -3.7551 | 1.8166 | -2.067 | 0.2943 |
| G2 - H2 == 0 | -2.1496 | 2.7434 | -0.784 | 0.4686 |
| G2 - H1 == 0 | 2.7296 | 1.7859 | 1.528 | 0.6342 |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
Fit: lmer(formula = log(Height) ~ gerGT + Transplant + (1 | Host),
data = FdAll, REML = T)

Linear Hypotheses:

Estimate Std. Error t value Pr(>	t)		
C2 - C1 == 0	0.03983	0.07882	0.505	0.9957
C2 - G1 == 0	-0.40317	0.07203	-5.597	<0.001 ***
C2 - G2 == 0	0.06212	0.06960	0.893	0.9452
C2 - H2 == 0	-0.07277	0.12512	-0.582	0.9917
C2 - H1 == 0	0.27149	0.08682	3.127	0.0209 *
C1 - G1 == 0	-0.44300	0.07390	-5.994	<0.001 ***
C1 - G2 == 0	-0.10195	0.07082	-1.439	0.6909
C1 - H2 == 0	-0.11259	0.12547	-0.897	0.9439
C1 - H1 == 0	0.23166	0.08753	2.647	0.0819 .
G1 - G2 == 0	0.34105	0.06360	5.362	<0.001 ***
G1 - H2 == 0	0.33040	0.12128	2.724	0.0670 .
G1 - H1 == 0	0.67466	0.08165	8.262	<0.001 ***
G2 - H2 == 0	0.001064	0.12071	-0.088	1.0000
G2 - H1 == 0	0.33361	0.07959	4.192	<0.001 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Affected p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(1 + Reproductive.nodes) ~ gerGT + Transplant + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

Estimate Std. Error t value Pr(>	t)		
C2 - C1 == 0	0.32497	0.09775	3.325	0.01101 *
C2 - G1 == 0	0.12148	0.09166	1.325	0.87606
C2 - G2 == 0	-0.02588	0.08804	-0.294	0.98203
C2 - H2 == 0	0.23925	0.15712	1.523	0.63599
C2 - H1 == 0	0.42135	0.11301	3.728	0.00269 **
C1 - G1 == 0	0.09560	0.07877	1.214	0.82148
C1 - G2 == 0	0.36073	0.15245	2.366	0.16024
C1 - H1 == 0	0.54283	0.10664	5.090	<0.001 ***
G1 - H2 == 0	0.26514	0.15178	1.747	0.48593
G2 - H1 == 0	0.44723	0.10442	4.283	<0.001 ***
H2 - H1 == 0	0.18210	0.16458	1.106	0.87198

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Affected p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Corolla.length ~ gerGT + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

Estimate Std. Error t value Pr(>	t)		
C2 - C1 == 0	0.882641	0.091907	9.604	<0.001 ***
C2 - G1 == 0	-0.061978	0.084967	-0.729	0.977
C2 - G2 == 0	-0.009968	0.082697	-0.121	1.000
C2 - H2 == 0	1.908218	0.142909	13.353	<0.001 ***
C2 - H1 == 0	1.584933	0.098152	16.148	<0.001 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Affected p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Nodes.to.flower ~ gerGT + (1 | Host), data = FdAll, REML = T)

| Hypothesis | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------------------------------|----------|------------|---------|----------|
| C2 - C1 == 0 | 0 | 0.1541 | 3.984 | <0.001 *** |
| C2 - G1 == 0 | 0.15587 | 0.1424 | 10.946 | <0.001 *** |
| C2 - G2 == 0 | 0.1655 | 0.1397 | 1.185 | 0.8373 |
| C2 - H2 == 0 | 1.1529 | 0.2369 | 4.866 | <0.001 *** |
| C1 - G1 == 0 | 0.9449 | 0.1406 | 6.719 | <0.001 *** |
| C1 - G2 == 0 | -0.4483 | 0.1379 | -3.251 | 0.0143 |
| C1 - H2 == 0 | 0.5391 | 0.2359 | 2.286 | 0.1923 |
| C1 - H1 == 0 | 0.9986 | 0.1625 | 6.144 | <0.001 *** |
| G1 - G2 == 0 | -1.3932 | 0.1247 | -11.169 | <0.001 *** |
| G1 - H2 == 0 | -0.4058 | 0.2284 | -1.776 | 0.4687 |
| G1 - H1 == 0 | 0.0537 | 0.1515 | 0.354 | 0.9992 |
| G2 - H2 == 0 | 0.9874 | 0.2268 | 4.355 | <0.001 *** |
| G2 - H1 == 0 | 1.4469 | 0.1490 | 9.710 | <0.001 *** |
| H2 - H1 == 0 | 0.4595 | 0.2425 | 1.895 | 0.3935 |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Arranged p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(lir) ~ gerGT + (1 | Host), data = FdAll, REML = T)

| Hypothesis | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------------------------------|----------|------------|---------|----------|
| C2 - C1 == 0 | 0.57830 | 0.07344 | 7.875 | < 0.001 *** |
| C2 - G1 == 0 | 0.85583 | 0.06789 | 12.606 | < 0.001 *** |
| C2 - G2 == 0 | 0.33111 | 0.06609 | 5.010 | < 0.001 *** |
| C2 - H2 == 0 | 1.22982 | 0.11416 | 10.773 | < 0.001 *** |
| C1 - G1 == 0 | 0.84126 | 0.07843 | 10.727 | < 0.001 *** |
| C1 - G2 == 0 | -0.24719 | 0.06588 | -3.752 | 0.00234 ** |
| C1 - H2 == 0 | 0.65151 | 0.11386 | 5.722 | < 0.001 *** |
| C1 - H1 == 0 | 0.26296 | 0.07758 | 3.389 | 0.00889 ** |
| G1 - G2 == 0 | -0.52472 | 0.05984 | -8.769 | < 0.001 *** |
| G1 - H2 == 0 | 0.37398 | 0.11023 | 3.393 | 0.00876 ** |
| G1 - H1 == 0 | -0.01457 | 0.07274 | -0.200 | 0.99995 |
| G2 - H2 == 0 | 0.89871 | 0.10978 | 8.186 | < 0.001 *** |
| G2 - H1 == 0 | 0.51015 | 0.07151 | 7.134 | < 0.001 *** |
| H2 - H1 == 0 | -0.38855 | 0.11594 | -3.351 | 0.01020 |

Signif. codes: 0 '*' 0.001 '' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Arranged p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = log(Number.of.leaf.teeth..exc..tip.) ~ gerGT + Transplant + (1 | Host), data = FdAll)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| C2 - C1 | 0.44314 | 0.04349 | 10.189 | < 0.001 *** |
| C2 - G1 | 0.21931 | 0.03894 | 5.632 | < 0.001 *** |
| C2 - H1 | 0.54739 | 0.06736 | 8.179 | < 0.001 *** |
| C1 - G1 | -0.16312 | 0.04041 | -4.036 | < 0.001 *** |
| C1 - H1 | 0.10424 | 0.04652 | 2.241 | 0.21074 |
| G1 - G2 | 0.30154 | 0.05714 | 5.277 | <0.001 *** |
| G1 - H2 | 0.26736 | 0.04324 | 6.183 | < 0.001 *** |
| G2 - H2 | 0.03239 | 0.05679 | 0.570 | 0.992 |
| C2 - H1 | 0.19283 | 0.06736 | 2.863 | 0.04608 * |
| C1 - G2 | -0.22384 | 0.03913 | -5.721 | < 0.001 *** |
| C1 - H2 | -0.25032 | 0.06720 | -3.725 | 0.00261 ** |
| C1 - H1 | 0.10424 | 0.04652 | 2.241 | 0.21074 |
| G1 - G2 | 0.06072 | 0.03532 | -1.719 | 0.050654 |
| G1 - H2 | 0.08720 | 0.06502 | -1.341 | 0.75245 |
| G1 - H1 | 0.06736 | 0.04324 | 1.635 | 0.559 |
| G2 - H2 | -0.02648 | 0.0685 -0.357 | 0.992 |
| G2 - H1 | 0.32808 | 0.06323 | -4.036 | < 0.001 *** |
| H2 - H1 | 0.35456 | 0.05679 | 6.183 | < 0.001 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Capsule.width ~ gerGT + (1 | Host), data = FdAll, REML = T)

Linear Hypotheses:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| C2 - C1 | -0.10501 | 0.06424 | -1.635 | 0.559 |
| C2 - G1 | -0.30154 | 0.05714 | -5.277 | <0.001 *** |
| C2 - H1 | 0.26736 | 0.04324 | 6.183 | < 0.001 *** |
| C1 - G1 | -0.03239 | 0.05679 | -0.570 | 0.992 |
| C1 - H1 | 0.45742 | 0.10756 | 4.253 | < 0.001 *** |
| C1 - G2 | 0.07262 | 0.05989 | 1.212 | 0.821 |
| C1 - H2 | 0.56243 | 0.10802 | 5.207 | <0.001 *** |
| C1 - H1 | 0.74095 | 0.08183 | 9.054 | <0.001 *** |
| G1 - G2 | 0.06424 | 0.05227 | 1.635 | 0.559 |
| G1 - H2 | 0.075896 | 0.10532 | 7.206 | < 0.001 *** |
| G1 - H1 | 0.93748 | 0.07939 | 11.809 | < 0.001 *** |
| G2 - H2 | 0.48981 | 0.10503 | 4.663 | < 0.001 *** |
| G2 - H1 | 0.66833 | 0.07942 | 8.415 | < 0.001 *** |
| H2 - H1 | 0.17852 | 0.11704 | 1.525 | 0.632 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported -- single-step method)

Simultaneous Tests for General Linear Hypotheses

Fit: lmer(formula = Capsule.Height ~ gerGT + (1 | Host), data = FdAll, REML = T)
SUPPLEMENTAL TEXT 2 – MODELS FOR K-MER SPECTRA

A k-mer spectrum shows the distribution of counts of each individual k-mer (a small sequence word of length k) in a given data set. If the data set is generated from shotgun sequencing data of one individual, then the k-mer spectrum will reflect the genetic diversity in that individual's genome. The number of “peaks” in such a k-mer spectrum corresponds to the individual’s ploidy level. A spectrum of a polyploid individual has four peaks, which we label 1x, 2x, 3x, and 4x. Schematics of k-mer spectra are shown in Figure 4A of the main text.

Tetraploids are generally classed into either of two model categories: autotetraploid or allotetraploid (but there are intermediates, see Stift et al. (2008)). Autotetraploids show tetrasomic inheritance, where recombination may happen between any pair of homologous chromosomes. Allotetraploids contain two diverged (homoeologous) pairs of genomes show. They show disomic inheritance where recombination may happen only within each homologous group, maintaining (and increasing over time) the genetic divergence between these groups. This causes different shapes of autotetraploid and allotetraploid k-mer spectra. For instance, allotetraploids should show a more pronounced 2x peak than autopolyploids, resulting from diverged alleles fixed in both homoeologous groups. The expectation for the shape of a k-mer spectrum can be obtained by combining the number of k-mers expected in each peak with a suitable distribution such as the negative binomial distribution as parameterised by Vurture et al. (2017). For autopolyploids, the (relative) number of k-mers expected in each peak can be obtained by using Ewen’s (1972) sampling formula for the frequency of certain allelic configurations and by accounting for how many k-mers each configuration contributes to each peak of the k-mer spectrum. For allopolyploids, the homoeologous genomes can be treated like a pair of diverged sub-populations. The expectation for allelic configurations can then be obtained by the method of Lohse et al. (2011, 2016). The terms for the relative contributions to k-mer peaks in autotetraploids are:

- \(\frac{4\theta}{3+\theta} \) for the 1x peak,
- \(\frac{6\theta}{6+5\theta+\theta^2} \) for the 2x peak,
- \(\frac{8\theta}{6+11\theta+6\theta^2+\theta^3} \) for the 3x peak, and
They all depend on θ, the population-scaled mutation rate per k-mer ($\theta = 4 N_e \mu$). From these formulae it can be shown that in an autotetraploid, the 2x peak can never contain more k-mers than the 1x peak: the inequality $\frac{4\theta}{3+\theta} < \frac{6\theta}{6+5\theta+\theta^2}$, which can be transformed into $6\theta + 17\theta^2 + 11\theta^3 + 2\theta^4 < 0$, cannot be true as long as the mutation rate is positive.

To compute the k-mer contributions in the allopolyploid model, an additional parameter T is needed, the divergence time between the two homoeologous sub-genomes (T is scaled in units of twice the effective population size N_e). The terms for the relative contributions in allopolyploids are:

$$\frac{4e^{-3T\theta}(-2e^{T(-2+\theta)}+e^{3T\theta}(2+\theta)^2(3+\theta)-2e^{2T\theta}(3+4\theta+\theta^2))}{(1+\theta)(2+\theta)^2(3+\theta)}$$

for the 1x peak, with

$$\frac{2e^{-2T(4+5\theta)}(6e^{T(4+5\theta)}(2+\theta)^2(3+\theta)+2e^{2T+3T\theta}(2+\theta)^2(3+\theta))}{(1+\theta)(2+\theta)^2(3+\theta)}$$

for the 2x peak, and

$$\frac{8e^{-7(3+4\theta)}(\theta-e^{-T+2T\theta}+e^{3T\theta}(1+\theta)(3+\theta))}{(1+\theta)(2+\theta)^2(3+\theta)}$$

for the 3x peak, and

$$\frac{2e^{-2T(1+\theta)(\theta+2e^{T(2+\theta)}(3+\theta))}}{(1+\theta)(2+\theta)^2(3+\theta)}$$

for the 4x peak.

Ignoring any shared polymorphisms at the time of split, the divergence between the sub-genomes (per k-mer) can be computed as θT. This is reasonable, in particular for higher values of T, where most divergence will be due to alleles arising after the split of the sub-populations. A Mathematica notebook containing the code to derive the terms above is supplied in the Zenodo data set published alongside this paper.

In mixed maters, like many plant species, the estimate for θ obtained from one individual may be much lower than the diversity found in the population, as for H_o and H_e. Because the sub-genome divergence time, T, is scaled by N_e, which itself depends on θ, the estimate may not be meaningful as an estimate of the actual time of the split between the sub-genome progenitors. However, the average divergence per k-mer, $T\theta$, is not affected by this. When $T\theta$ is divided by k, gives the average per-nucleotide sub-genome divergence.

Usage example — Autotetraploid

In this study, we applied Tetmer to data from tetraploid species of *Euphrasia*, and we found that the allotetraploid model fitted well (Suppl. Text 3). We then looked to identify suitable sequencing data sets of autotetraploids (high coverage, low contamination, one single genetic individual per sequencing library). We found that the autotetraploid model fitted well to data from tetraploid yeast sequence read archive SRR3265401, resulting in a (non-repetitive) genome size estimate of 11.1 Mbp and a population-scale mutation rate per k-mer of 0.1171, which corresponds to 0.4% per nucleotide.
We applied Tetmer to a public data set of *Capsella bursa-pastoris* (SRR5412136). As expected, the allotetraploid model fits well. The divergence between the sub-genomes is estimated to be 1.125 (per k-mer of length 27). This corresponds to 4.2% sub-genome divergence per nucleotide.

REFERENCES

Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. *Theor. Popul. Biol.* 3:87–112.

Lohse, K., Harrison, R. J., and Barton, N. H. (2011). A General Method for Calculating Likelihoods Under the Coalescent Process. *Genetics* 189:977–987.

Lohse, K., Chmelik, M., Martin, S. H., and Barton, N. H. (2016). Efficient Strategies for Calculating Blockwise Likelihoods Under the Coalescent. *Genetics* 202:775–786.

Stift, M., Berenos, C., Kuperus, P., and van Tienderen, P. H. (2008). Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. *Genetics* 179:2113–23.

Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J., and Schatz, M. C. (2017). GenomeScope: fast reference-free genome profiling from short reads.
Bioinformatics 33:2202–2204.
SUPPLEMENTAL TEXT 3 – GENOME PROFILING

Note: All analyses were run with k-mers of 27 nt length. For Smudgeplot and Genomescope2.0, the haploid k-mer coverage was supplied as an input parameter.

The background of Tetmer is explained in Supplementary Text 2.

Smudgeplot is a package maintained by Kamil Jaron (https://github.com/KamilSJaron/smudgeplot). It analyses pairs of k-mers that differ by one nucleotide (k-mer A and k-mer B). It then plots the summed coverage of k-mers A and B on the y-axis and the proportion of the coverage of k-mer B in the total coverage on the x-axis (as indicated by the axis labels).
EUPHRASIA ANGLICA (AN, DIPLOID)

GENOMESCAPE 2.0

Genomescope version 2.0
Input file = /mnt/1TBSSD/Eukmers/numsE030
Output directory = E030
p = 2
k = 27
Initial kmer cov estimate = 53

property	min	max
Homozygous (aa)	99.8858%	99.911%
Heterozygous (ab)	0.0889549%	0.114179%
Genome Haploid Length	355,898,845 bp	356,544,227 bp
Genome Repeat Length	172,096,499 bp	172,408,576 bp
Genome Unique Length	183,802,346 bp	184,135,651 bp
Model Fit	54.7642%	54.7642%
Read Error Rate	0.457507%	0.457507%

SMUDGEPLOT

TETMER

DIPLOID MODEL, AUTO FITTED
haploid k-mer cov: 52.8
per k-mer theta: 0.0273
hapl non-rep GS (Mb): 185.3
bias (peak width): 1.2

STARTING RANGES (MIN MAX)
ahaploid k-mer cov: 19 59
log10 per k-mer theta: -2.75 0.6
hapl non-rep GS (Mb): 20 2000
bias (peak width): 0.1 3
x range: 33 200
EUPHRASIA VIGURSII (VI, DIPLOID)

GENOMESCOPE 2.0

GenomeScope version 2.0
Input file = /mnt/1TBSSD/Eukmers/nums031
Output directory = E031
p = 2
k = 27
Initial kmercov estimate = 41

property	min	max
Homozygous (aa)	99.8731%	99.9071%
Heterozygous (ab)	0.0928852%	0.126899%
Genome Haploid Length	370,710,233 bp	371,882,186 bp
Genome Repeat Length	180,417,372 bp	180,987,738 bp
Genome Unique Length	190,292,861 bp	190,894,447 bp
Model Fit	56.9501%	96.4987%
Read Error Rate	0.519548%	0.519548%

SMUDGEPLOT

TETMER

DIPLOID MODEL, AUTO FITTED
haploid k-mer cov: 40.8
per k-mer theta: 0.0294
hapl non-rep GS (Mbp): 192.6
bias (peak width): 2.4

STARTING RANGES (MIN MAX)
haploid k-mer cov: 10 55
log10 per k-mer theta: -2.4 0.6
hapl non-rep GS (Mbp): 20 2000
bias (peak width): 0.1 3
x range: 29 158
EUPHRASIA RIVULARIS (RI, DIPLOID)

GENOMEscape2.0

GenomeScope Profile

- Genomescope version 2.0
- Input file = /mnt/1TBSSD/Eukmers/numsE032
- Output directory = E032
- p = 2
- k = 27
- Initial kmecov estimate = 33

Property	Min	Max
Homozygous (aa)	99.7973%	99.8408%
Heterozygous (ab)	0.159239%	0.202729%
Genome Haploid Length	390,392,793 bp	391,909,099 bp
Genome Repeat Length	199,832,645 bp	200,608,806 bp
Genome Unique Length	190,560,148 bp	191,300,294 bp
Model Fit	54.4646%	97.309%
Read Error Rate	0.66216%	0.66216%

SMUDGEPLoT

SMUDGEPLoT TETMER DIPLOID MODEL, AUTO FITTED

- haploid k-mer cov: 33.8
- per k-mer theta: 0.0542
- hapl non-rep GS (Mbp): 193.1
- bias (peak width): 2.1

TETMER

DIPLOID MODEL, AUTO FITTED

- haploid k-mer cov: 33.8
- per k-mer theta: 0.0542
- hapl non-rep GS (Mbp): 193.1
- bias (peak width): 2.1

STARTING RANGES (MIN MAX)

- haploid k-mer cov: 10 41
- log10 per k-mer theta: -2 0.6
- hapl non-rep GS (Mbp): 20 2000
- bias (peak width): 0.1 3
- x range: 29 117
Euphrasia Rostkoviana (RO, Diploid)

GenomeScope 2.0

GenomeScope profile

Input file = /mnt/1TBSSD/Eukmers/numsE040
output directory = E040
p = 2
k = 27
initial kmercov estimate = 66

property	min	max
Homozygous (aa)	99.1141%	99.1449%
Heterozygous (ab)	0.855141%	0.885937%
Genome Haploid Length	381,376,095 bp	382,371,949 bp
Genome Repeat Length	196,460,140 bp	196,973,139 bp
Genome Unique Length	184,915,956 bp	185,398,811 bp
Model Fit	55.4459%	94.5013%
Read Error Rate	0.559427%	0.559427%

SMUDGEplot

TETMER

Diploid model, auto fitted

- haploid k-mer cov: 65.7
- per k-mer theta: 0.2841
- hapl non-rep GS (Mbp): 189.5
- bias (peak width): 1.6

Starting ranges (min max)

- haploid k-mer cov: 10 85
- log10 per k-mer theta: -2 0.6
- hapl non-rep GS (Mbp): 20 2000
- bias (peak width): 0.1 3
 x range: 47 200
EUPHRASIA ARCTICA (AO, TETRAPLOID)

GenomeScope 2.0

![Graph of GenomeScope Profile](image)

- **Input file**: `/mnt/1TBSSD/Eukmers/numsE028`
- **Output directory**: `E028`
- **p**: 4
- **k**: 27
- **Initial kmercov estimate**: 40

Property	Min	Max
Homozygous (aaaa)	92.4957%	94.7871%
Heterozygous (not aaaa)	5.21291%	7.50425%
`aaab`	0%	1.04367%
`aabb`	5.21291%	5.57398%
`aabc`	0%	0.382878%
`abcd`	0%	0.503721%

Property estimates

- **Genome Haploid Length**: 339,487,037 bp
- **Genome Repeat Length**: 183,904,958 bp
- **Genome Unique Length**: 155,582,079 bp
- **Model Fit**: 60.4511%
- **Read Error Rate**: 0.480646%

Smudgeplot

![Smudgeplot](image)

Tetmer

- **Allotetraploid model, auto fitted**
 - Haploid k-mer cov: 40.6
 - Per k-mer theta: 0.0279
 - T: 49.99
 - Hapl non-rep GS (Mbp): 191.2
 - Bias (peak width): 1.2
 - Per k-mer diverg: 1.395

Starting ranges (min max)

- Haploid k-mer cov: 21 53
- Log10 per k-mer theta: -2.95 0.6
- T: 0.001 100
- Hapl non-rep GS (Mbp): 20 2000
- Bias (peak width): 0.1 3
 - x range: 19 200
EUPHRASIA ARCTICA (A1, TETRAPLOID)

GenomeScope 2.0

GenomeScope Profile

Input file = /mnt/1TBSSD/Eukmers/numsE027
output directory = E027
p = 4
k = 27
initial kmer cov estimate = 13

Property	Min	Max
Homozygous (aaaa)	91.5436%	95.0556%
Heterozygous (not aaaa)	4.94439%	8.45638%
aaaab	0%	0.790602%
aabb	4.94439%	5.88006%
aabc	0%	0.739464%
abcd	0%	1.04626%
Genome Hapl. Length	448,652,997 bp	451,798,677 bp
Genome Repeat Length	283,222,006 bp	285,207,786 bp
Genome Unique Length	165,430,991 bp	166,590,891 bp
Model Fit	51.1329%	92.7128%
Read Error Rate	0.414595%	0.414595%

SMUDGEPLOT

Proposed tetraploid

Tetmer

Allocotetraploid model, auto fitted

- haploid k-mer cov: 13.1
- per k-mer theta: 0.028
- T: 50.01
- hapl non-rep GS (Mbp): 224.3
- bias (peak width): 0.9
- per k-mer diverg: 1.399

Starting ranges (min max)

- haploid k-mer cov: 10 18
- log10 per k-mer theta: -4 0.6
- T: 0.001 100
- hapl non-rep GS (Mbp): 20 2000
- bias (peak width): 0.1 3
- x range: 11 98

XXVIII
EUPHRASIA ARCTICA (A2, TETRAPLOID)

GENOME SCAPE 2.0

GenomeScope version 2.0
Input file = /mnt/1TBSSD/Eukmers/numsE026
Output directory = E026
p = 4
k = 27

Initial kmercov estimate = 20

Property	Min	Max
Homozygous (aaaa)	92.7655%	94.8998%
Heterozygous (not aaaa)	5.10016%	7.23446%
aaab	0%	0.759079%
aabb	5.10016%	5.52219%
aabc	0%	0.392766%
abcd	0%	0.560428%
Genome Haploid Length	376,975,633 bp	378,745,047 bp
Genome Repeat Length	225,294,331 bp	226,351,798 bp
Genome Unique Length	151,681,302 bp	152,393,250 bp
Model Fit	55.8344%	94.6734%
Read Error Rate	0.362751%	0.362751%

SMUDGE PLOT

TETMER ALLOTETRAPLOID MODEL, AUTO FITTED

Haploid k-mer cov: 20
per k-mer theta: 0.0244
T: 52.45

Hapl non-rep GS (Mbp): 201.1
bias (peak width): 0.5
per k-mer diverg: 1.279

Starting Ranges (Min Max)
Haploid k-mer cov: 10 34
log10 per k-mer theta: -3.2 0.6
T: 5 100
Hapl non-rep GS (Mbp): 89 373
bias (peak width): 0.1 3
x range: 15 165
EUPHRASIA ARCTICA (A3, TETRAPLOID)

GENOMESCOPE 2.0

GenomeScope Profile

GenomeScope version 2.0
Input file = /mnt/1TBSSD/Eukmers/numsE036
output directory = E036
p = 4
k = 27
Initial kmer cov estimate = 17

property	min	max
Homozygous (aaaa)	92.8383%	95.1968%
Heterozygous (not aaaa)	4.80318%	7.16166%
aabb	4.80318%	5.13048%
aabc	0%	0.606882%
abcd	0%	0.839998%
Genome Haploid Length	376,114,344 bp	378,209,304 bp
Genome Repeat Length	227,949,510 bp	229,219,190 bp
Genome Unique Length	148,164,835 bp	148,990,114 bp
Model Fit	55.5124%	94.4969%
Read Error Rate	0.388542%	0.388542%

SMUDGEPLOT

TETMER

ALLOTETRAPLOID MODEL, AUTO FITTED

haploid k-mer cov: 17.4
per k-mer theta: 0.1507
T: 7.28
hapl non-rep GS (Mbp): 213.1
bias (peak width): 0.7
per k-mer diverg: 1.097

STARTING RANGES (MIN MAX)

haploid k-mer cov: 10 24
log10 per k-mer theta: -2 0.8
T: 0.001 100
hapl non-rep GS (Mbp): 20 400
bias (peak width): 0.01 0.96
x range: 12 103
EUPHRASIA FOULAENSIS (F1, TETRAPLOID)

GENOMESCOPE 2.0

GenomeScope Profile

```
XXXI
EUPHRASIA FOULAENSIS (F1, TETRAPLOID)
```

```
GenomeScope version 2.0
Input file = /mnt/1TBSSD/Eukmers/numsE025
output directory = E025
p = 4
k = 27
Initial kmercov estimate = 16
```

```
| property                      | min               | max               |
|-------------------------------|-------------------|-------------------|
| Homozygous (aaaa)             | 91.7601%          | 94.9911%          |
| Heterozygous (not aaaa)       | 5.00888%          | 8.23991%          |
| aabb                          | 5.00888%          | 5.48638%          |
| aabc                          | 0%                | 0.678665%         |
| abcd                          | 0%                | 0.986456%         |
| Genome Haploid Length         | 395,889,466 bp    | 400,764,058 bp    |
| Genome Repeat Length          | 243,095,268 bp    | 246,088,503 bp    |
| Genome Unique Length          | 152,794,198 bp    | 154,675,555 bp    |
| Model Fit                     | 53.76%            | 93.12%            |
| Read Error Rate               | 0.50%             | 0.50%             |

```
SMUDGEPLOT
```

```
TETMER
ALLOTETRAPLOID MODEL, AUTO FITTED
haploid k-mer cov: 16.3
per k-mer theta: 0.0244
T: 55.55
hapl non-rep GS (Mbp): 204.1
bias (peak width): 0.6
per k-mer diverg: 1.357

STARTING RANGES (MIN MAX)
haploid k-mer cov: 10 24
log10 per k-mer theta: -3.3 0.6
T: 0.001 100
hapl non-rep GS (Mbp): 61 317
bias (peak width): 0.1 3
x range: 15 110
```

XXXI
**EUPHRASIA FOULAENSIS (F2, TETRAPLOID)**

**GENOME Scape 2.0**

GenomeScope Profile

- **input file**: /mnt/1TBSSD/Eukmers/numsE024
- **output directory**: E024
- **p = 4**
- **k = 27**
- **initial kmercov estimate = 16**

| property                      | min          | max          |
|------------------------------|--------------|--------------|
| Homozygous (aaaa)            | 92.3039%     | 94.9094%     |
| Heterozygous (not aaaa)      | 5.09063%     | 7.79614%     |
| aaab                         | 0%           | 0.888598%    |
| aabb                         | 5.09063%     | 5.70509%     |
| aabc                         | 0%           | 0.428555%    |
| abcd                         | 0%           | 0.673604%    |
| Genome Haploid Length        | 384,406,674 bp | 387,961,625 bp |
| Genome Repeat Length         | 234,199,161 bp | 236,365,009 bp |
| Genome Unique Length         | 150,207,513 bp | 151,596,616 bp |
| Model Fit                    | 55.237%      | 95.2557%     |
| Read Error Rate              | 0.334242%    | 0.334242%    |

**SMUDGE PLOT**

**TETMER**

**ALLOTETRAPLOID MODEL, AUTO FITTED**

- **haploid k-mer cov**: 16.9
- **per k-mer theta**: 0.0133
- **T**: 100
- **hapl non-rep GS (Mbp)**: 199.4
- **bias (peak width)**: 0.7
- **per k-mer diverg**: 1.334

**STARTING RANGES (MIN MAX)**

- **haploid k-mer cov**: 11 21
- **log10 per k-mer theta**: -3.7 0.2
- **T**: 0.001 100
- **hapl non-rep GS (Mbp)**: 130 331
- **bias (peak width)**: 0.1 1.36
  x range: 12 92
**EUPHRASIA FOULAENSIS (F3, TETRAPLOID)**

**GENOMEScpe 2.0**

![Graph](image)

| property                      | min               | max               |
|-------------------------------|-------------------|-------------------|
| Homozygous (aaaa)             | 91.8757%          | 94.8902%          |
| Heterozygous (not aaaa)       | 5.10979%          | 8.12434%          |
| aabb                          | 5.10979%          | 5.59446%          |
| aabc                          | 0%                | 0.577994%         |
| abcd                          | 0%                | 0.942694%         |
| Genome Haploid Length         | 371,448,295 bp    | 375,608,987 bp    |
| Genome Repeat Length          | 220,027,222 bp    | 222,491,806 bp    |
| Genome Unique Length          | 151,421,073 bp    | 153,117,181 bp    |
| Model Fit                     | 54,47365          | 53,702%           |
| Read Error Rate               | 0.482457%         | 0.482457%         |

**SMUDGEPLOT**

![Graph](image)

**TETMER**

**ALLOTETRAPLOID MODEL, AUTO FITTED**

- haploid k-mer cov: 16.8
- per k-mer theta: 0.0262
- T: 50
- hapl non-rep GS (Mbp): 205.1
- bias (peak width): 0.6
- per k-mer diverg: 1.312

**STARTING RANGES (MIN MAX)**

- haploid k-mer cov: 10 34
- log10 per k-mer theta: -2 0.6
- T: 0.001 100
- hapl non-rep GS (Mbp): 20 2000
- bias (peak width): 0.1 3
  - x range: 17 107
**EUPHRASIA FOULAENSIS (F4, TETRAPLOID)**

**GENOMESCOPE 2.0**

---

**SMUDGEPLOT**

---

**TETMER**

---

**ALLOTETRAPLOID MODEL, AUTO FITTED**

haploid k-mer cov: 18.3
per k-mer theta: 0.0134
T: 100
hapl non-rep GS (Mbp): 203.8
bias (peak width): 0.7
per k-mer diverg: 1.343

STARTING RANGES (MIN MAX)

haploid k-mer cov: 17 31
log10 per k-mer theta: -2.65 0.6
T: 0.001 100
hapl non-rep GS (Mbp): 20 2000
bias (peak width): 0.1 3
x range: 17 113
**EUPHRASIA MICRANTHA (M0, TETRAPLOID)**

**GENOMESCOPE 2.0**

- Input file: `/mnt/1TBSSD/Eukmers/numsE033`
- Output directory: `E033`
- `p = 4`
- `k = 27`
- Initial kmercov estimate = 54

| Property                      | Min                | Max                |
|-------------------------------|--------------------|--------------------|
| Homozygous (aaaa)             | 92.7157%           | 94.7738%           |
| Heterozygous (not aaaa)       | 5.22624%           | 7.28431%           |
| aaab                          | 0%                 | 0.851321%          |
| aabb                          | 5.22624%           | 5.52321%           |
| abbc                          | 0%                 | 0.406022%          |
| abcd                          | 0%                 | 0.503732%          |
| Genome Haploid Length         | 322,049,625 bp     | 322,637,475 bp     |
| Genome Repeat Length          | 166,242,735 bp     | 166,546,184 bp     |
| Genome Unique Length          | 155,806,890 bp     | 156,091,291 bp     |
| Model Fit                     | 63.1428%           | 91.6415%           |
| Read Error Rate               | 0.524025%          | 0.524025%          |

**SMUDGEPLOT**

**TETMER**

**ALLOTETRAPLOID MODEL, AUTO FITTED**
- Haploid k-mer cov: 54.4
- per k-mer theta: 0.0205
- T: 70.13
- Hapl non-rep GS (Mbp): 185.1
- Bias (peak width): 1.7
- per k-mer diverg: 1.437

**STARTING RANGES (MIN MAX)**
- Haploid k-mer cov: 34 63
- log10 per k-mer theta: -3.85 -1.55
- T: 0.001 100
- Hapl non-rep GS (Mbp): 117 345
bias (peak width): 0.1 3
x range: 37 287

**EUPHRASIA MICRANTHA (M1, TETRAPLOID)**

**GENOME Scope2.0**

_input file = /mnt/1TBSSD/Eukmers/numsE023_
_output directory = E023_
_p = 4_
_k = 27_
_initial kmercov estimate = 15_

| property                          | min    | max    |
|----------------------------------|--------|--------|
| Homozygous (aaaa)                | 92.6876% | 95.1105% |
| Heterozygous (not aaaa)          | 4.88955% | 7.31239% |
| aaab                             | 0%     | 0.732638% |
| aabb                             | 4.88955% | 5.14633% |
| aabc                             | 0%     | 0.651672% |
| abcd                             | 0%     | 0.781753% |
| Genome Haploid Length            | 382,918,749 bp | 387,417,693 bp |
| Genome Repeat Length             | 223,967,285 bp | 226,598,695 bp |
| Genome Unique Length             | 158,951,464 bp | 160,818,998 bp |
| Model Fit                        | 56.8672% | 95.1142% |
| Read Error Rate                  | 0.383123% | 0.383123% |

**SMUDGE PLOT**

_proposed tetraploid_

**TETMER**

ALLOC TETRAPLOID MODEL, AUTO FITTED

haploid k-mer cov: 15.4
per k-mer theta: 0.0196
T: 64.79

hapl non-rep GS (Mbp): 201.7
bias (peak width): 0.4
per k-mer diverg: 1.272

STARTING RANGES (MIN MAX)

haploid k-mer cov: 10 18
log10 per k-mer theta: -4 0.6
T: 0.001 80
hapl non-rep GS (Mbp): 20 400
**EUPHRASIA MICRANTHA (M2, TETRAPLOID)**

**GENOME SCPE2.0**

- GenomeScope version 2.0
- Input file = /mnt/1TBSSD/Eukmers/numsE022
- Output directory = E022
- p = 4
- k = 27
- Initial kmercov estimate = 17

| Property                          | Min              | Max              |
|----------------------------------|------------------|------------------|
| Homozygous (aaaa)                | 91.796%          | 94.9132%         |
| Heterozygous (not aaaa)          | 5.08677%         | 8.20403%         |
| aaaab                            | 0%               | 1.05657%         |
| aabb                             | 5.08677%         | 5.64315%         |
| aabc                             | 0%               | 0.583533%        |
| abc                              | 0%               | 0.920646%        |
| Genome Haploid Length            | 374,837,102 bp   | 378,839,883 bp   |
| Genome Repeat Length             | 225,133,438 bp   | 227,537,576 bp   |
| Genome Unique Length             | 149,703,664 bp   | 151,302,307 bp   |
| Model Fit                        | 54.0751%         | 94.4484%         |
| Read Error Rate                  | 0.510853%        | 0.510853%        |

**SMUDGEPLOT**

- Proposed tetraploid

**TETMER**

- Allotetraploid model, auto fitted
  - Haploid k-mer cov: 16.9
    - Per k-mer theta: 0.0256
    - T: 50.03
  - Hapl non-rep GS (Mbp): 202.7
    - Bias (peak width): 0.5
    - Per k-mer diverg: 1.283

- Starting ranges (min max)
  - Haploid k-mer cov: 15 24
  - Log10 per k-mer theta: -3.75 0.6
**EUPHRASIA MICRANTHA (M3, TETRAPLOID)**

**GenomeScope2.0**

GenomeScope version 2.0
Input file = /mnt/1TBSSD/Eukmers/numsE035
Output directory = E035
p = 4
k = 27
Initial kmercov estimate = 19

| property          | min               | max               |
|-------------------|-------------------|-------------------|
| Homozygous (aaaa) | 92.8567%          | 94.9359%          |
| Heterozygous (not aaaa) | 5.06408%     | 7.14332%          |
| aabb              | 0%                | 0.72465%          |
| aabb              | 5.06408%          | 5.44175%          |
| abbd              | 0%                | 0.397073%         |
| Genome Haploid Length | 365,165,005 bp  | 367,325,903 bp    |
| Genome Repeat Length | 213,881,262 bp  | 215,146,924 bp    |
| Genome Unique Length | 151,283,743 bp  | 152,178,979 bp    |
| Model Fit         | 57.1831%          | 93.7891%          |
| Read Error Rate   | 0.318804%         | 0.318804%         |

**SMUDGEPLOT**

**TETMER**
ALLOTETRAPLOID MODEL, AUTO FITTED

haploid k-mer cov: 19.1
per k-mer theta: 0.0198
T: 65.13
hapl non-rep GS (Mbp): 198.8
bias (peak width): 0.5
per k-mer diverg: 1.288

STARTING RANGES (MIN MAX)

haploid k-mer cov: 15 21
log10 per k-mer theta: -3.85 0.6
T: 30 100
hapl non-rep GS (Mbp): 148 279
bias (peak width): 0.1 3
x range: 15 88

EUPHRASIA SP. (X1, TETRAPLOID)

GENOMESCOPE 2.0

SMUDGE PLOT

TETMER
ALLOTETRAPLOID MODEL, AUTO FITTED
haploid k-mer cov: 16.6
per k-mer theta: 0.0158
T: 81.86
hapl non-rep GS (Mbp): 196
bias (peak width): 0.5
per k-mer diverg: 1.297

STARTING RANGES (MIN MAX)
haploid k-mer cov: 15 19
log10 per k-mer theta: -4 -1.8
T: 0.001 100
hapl non-rep GS (Mbp): 20 235
bias (peak width): 0.1 0.46
x range: 11 107

**EUPHRASIA SP. (X2, TETRAPLOID)**

**GenomeScope2.0**

**SMUDGEPLOT**

**TETMER**
ALLOTETRAPLOID MODEL, AUTO FITTED

haploid k-mer cov: 19.1
per k-mer theta: 0.0259
T: 50.03
hapl non-rep GS (Mbp): 202.6
bias (peak width): 0.6
per k-mer diverg: 1.298

STARTING RANGES (MIN MAX)

haploid k-mer cov: 13 20
log10 per k-mer theta: -2 0.6
T: 0.001 100
hapl non-rep GS (Mbp): 20 2000
bias (peak width): 0.1 3
x range: 13 99