Multimotion Visual Odometry (MVO):
Simultaneous Estimation of Camera and Third-Party Motions

Kevin M. Judd1 and Jonathan D. Gammell1 and Paul Newman1

Abstract—Estimating motion from images is a well-studied problem in computer vision and robotics. Previous work has developed techniques to estimate the motion of a moving camera in a largely static environment (e.g., visual odometry) and to segment or track motions in a dynamic scene using known camera motions (e.g., multiple object tracking).

It is more challenging to estimate the unknown motion of the camera and the dynamic scene simultaneously. Most previous work requires a priori object models (e.g., tracking-by-detection), motion constraints (e.g., planar motion), or fails to estimate the full $SE(3)$ motions of the scene (e.g., scene flow). While these approaches work well in specific application domains, they are not generalizable to unconstrained motions.

This paper extends the traditional visual odometry (VO) pipeline to estimate the full $SE(3)$ motion of both a stereo/RGB-D camera and the dynamic scene. This multimotion visual odometry (MVO) pipeline requires no a priori knowledge of the environment or the dynamic objects. Its performance is evaluated on a real-world dynamic dataset with ground truth for all motions from a motion capture system.

I. INTRODUCTION

Visual navigation is an important area of research in robotics. Visual odometry (VO) estimates the motion of a camera (i.e., its egomotion) relative to observed static objects within a scene [1]. These static objects must be accurately segmented from any dynamic noise, and this segmentation itself is an area of research focus [2]. Less research in visual navigation has focused on also analyzing the dynamic regions of the scene that these approaches reject.

This motion estimation problem requires both estimation, i.e., calculating the motion of a set of points, and segmentation, i.e., clustering points according to their movement between observations. The interdependence of these tasks creates a chicken-and-egg problem that is addressed in VO systems by using heuristics (e.g., number of features) to select the egomotion and ignore the other motions in the scene. These heuristics are not readily extensible to multimotion estimation problems and analyzing multiple independently moving bodies remains a challenging problem for state-of-the-art vision systems. This paper extends traditional VO to multimotion visual odometry (MVO) and applies state-of-the-art techniques to estimate trajectories for every motion in a scene.

MVO applies multimodel fitting techniques (e.g., CORAL [3]) to the traditional VO pipeline to simultaneously estimate the trajectories of all motions within a scene. Sparse, 3D visual features are decomposed into independent rigid motions and the trajectories of all of these motions, including the egomotion of the camera, are estimated simultaneously over a set of K frames constitutes the trajectory of the motion.

This paper demonstrates MVO on a stereo camera, but the technique is applicable to a variety of other 3D sensors, including RGB-D cameras and lidar. To the best of our knowledge, this is the first approach capable of estimating the full $SE(3)$ trajectory of every rigid motion in a complex, dynamic scene from a stereo/RGB-D camera without relying on simplifying constraints or fragile initialization.

II. BACKGROUND

The constituent aspects of the multimotion estimation problem are often referred to as multiple object tracking (MOT) [4] and multibody structure from motion (MBSfM) [5]. As such, the majority of approaches focus primarily on one part of the problem and either do not fully estimate $SE(3)$ motions (Secs. II-B and II-C), depend on simplifying constraints and assumptions (Secs. II-D and II-E), or require fragile initialization steps (Sec. II-F).

A. Problem Definition

Discrete multimotion estimation is the problem of estimating all the motions, including the camera, in a scene from a set of point observations at each time step. It both estimates the motions as a series of discrete $SE(3)$ transforms and associates the observed tracklets with the estimated motions.

Dynamic environments consist of the static background, a moving observer, i.e., the camera, and one or more independent, third-party motions. The pose of a motion, ℓ, at each discrete time, k, is represented as a coordinate frame, \mathcal{F}_k, and related to a privileged initial pose through an $SE(3)$ transform, $T_{k,\ell}$ (Fig. 2a). A sequence of these transforms over a set of K frames constitutes the trajectory of the motion.
velocities that provide no clear segmentations (Fig. 3a). To transitions between frames.

graph where nodes represent detections and edges represent

and motion dynamics in their cost function. Zhang et al. from multiple static cameras by incorporating reconstruction tracking multiple objects and estimating their trajectories but struggle to handle detection errors or occlusions [10].

mate the motion of the detected objects given a motion model

images and then solve the association and motion estimation

MVO simultaneously segments and estimates full

SE(3) motions into lower-dimensional subspaces using

B. Flow Techniques

Optical flow [6], scene flow [7], and sparse scene flow [8] are approaches for finding the 2D or 3D velocity vector of pixels or feature points in a scene. These individual velocities are inherently translational and motions involving rotations (i.e., SE(3) transforms) can only be estimated from segmentations of three or more velocities. In the presence of small rotations, these segmentations can be achieved using flow discontinuities [9] or the vector distance between velocities [8].

Larger rotations result in smoothly varying tangential velocities that provide no clear segmentations (Fig. 3a). To correctly estimate these motions, flow techniques must solve an equivalent segmentation and estimation problem posed in the space of velocities. In contrast to these flow techniques, MVO simultaneously segments and estimates full SE(3) transforms of motions in the scene (Fig. 3b).

C. Tracking-by-Detection Methods

Appearance-based tracking techniques detect objects in images and then solve the association and motion estimation problems [4]. Kalman or particle filters are widely used to estimate the motion of the detected objects given a motion model but struggle to handle detection errors or occlusions [10].

Byeon et al. [11] propose an optimization framework for tracking multiple objects and estimating their trajectories from multiple static cameras by incorporating reconstruction and motion dynamics in their cost function. Zhang et al. [12] model tracking as a minimum-flow problem on a graph where nodes represent detections and edges represent transitions between frames.

This updated manuscript corrects the experimental results published in the proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
the affine camera model. The affine model approximates the nonlinear perspective projection with a linear parallel projection. This simplifies the camera model but introduces severe projection errors in scenes with a wide field of view or a large depth of field [16]. Tomasi and Kanade [17] use the affine model and matrix factorization to decompose tracked image points into a motion and a shape matrix. Costeira and Kanade [5] extend this technique to multiple bodies where points may belong to different objects. This approach is inherently fragile as noise propagates through the factorization in complex ways [18]. It also requires points to be tracked for the entirety of the estimation window, which is difficult in complex scenes.

This formulation was extended by using an optimization framework to allow feature point dropouts [19] and by merging motions to mitigate the effect of noise [18, 20]. While these techniques are able to estimate full SE(3) motions, they still depend upon an affine camera model, meaning they fail under any significant perspective effects. These factorization techniques have also been extended to the perspective camera model by estimating depth in a preprocessing stage [21] or by applying geometric constraints [22] but still remain very sensitive to noise. In comparison, MVO can robustly estimate full SE(3) trajectories using a perspective model while also handling the significant feature tracking failures characteristic of dynamic scenes.

E. Sampling Methods

Sampling methods estimate and fit models (e.g., motion trajectories) to a subset of the data before evaluating them across its entirety. RANSAC [23] is a popular framework to fit a model to data in the presence of noise. Points are sampled from the data to estimate a hypothesis model, which is then used to segment the data into inliers and outliers according to their fit. Hypotheses are repeatedly generated for some number of iterations and the model with the most inliers is selected as the segmentation and estimation.

Torr [24] extends the RANSAC framework to multiple models by finding the dominant model, removing those points that fit the model, and then recursively applying RANSAC to the remaining points. This recursive, sequential RANSAC framework is efficient at finding the dominant models in a scene, but the ability to sample consistent models decreases as models are removed and the signal-to-noise ratio of the remaining points decreases. Sabzevari and Scaramuzza [25] apply geometric and kinematic constraints to reduce the required number of points to estimate a motion model and then realign point assignments to the best set of motion hypotheses in a separate step. They use the same matrix formulation as [21], meaning points must be successfully tracked through the entirety of the window, and their applications are limited by the constraints.

Other techniques [26, 27] use sampling methods to generate a large number of initial model hypotheses, realizing many of them would be redundant or poorly fit the data. Models are merged if their inlier sets are largely overlapping, and the models with the largest nonoverlapping inlier sets after merging are taken as the constituent scene motions.

These sampling methods are efficient but the probability of sampling inliers all from a single model decreases rapidly with the signal-to-noise ratio. Finding a motion in complex dynamic scenes is challenging because all other motions are outliers that decrease the signal-to-noise ratio and make it harder to find correct models. As a result, many of these sampling-based initializations struggle to find correct models. Without prior knowledge of the number of models in the data, RANSAC tends to greedily overfit to noise and finds erroneous or incomplete models (Fig. 4). In contrast, MVO estimates all models simultaneously and requires no a priori knowledge of the number of models.

F. Energy Minimization Methods

Energy minimization approaches segment data into multiple labels simultaneously by reducing a cost function. In multimotion estimation, this cost is designed to encompass how well the estimated trajectories describe the data, e.g., reprojection or photoconsistency error, as well as encourage piecewise smoothness throughout the scene. Smoothness is enforced over a graph structure, usually either a dense Markov random field [28] or a sparse, feature-based graph [29].

Rother et al. [30] use a minimization framework to find a binary segmentation of the static background from a manually selected dynamic foreground object, but the approach can only segment a single object within a bounding box. PEARL [29] uses α-expansion and model refitting to iteratively estimate both models and point assignments in an expectation-maximization framework. The framework can be applied to motion segmentation by first sampling the data to estimate a large number of motion models (similarly to [26, 27]) and then refining the models and segmentation with PEARL. Roussos et al. [31] use PEARL as part of a dense expectation-maximization pipeline that estimates depth, motion, and segmentation from monocular images in an offline manner. Optical flow is used to initialize the depth maps and the approach is crucially dependent on this initialization.

Rünz and Agapito [32] use a similar optimization framework to segment dense RGB-D camera observations. Using this segmentation they create multiple 3D object
The multimotion engine segments tracklets by their observed motion. New motions online. This approach requires an initialization phase that seeds the structure and segmentation of the background of the scene.

These approaches are capable of estimating full SE(3) motions but are dependent upon comprehensive initialization, often using RANSAC, as they are designed around refining existing labels. In comparison, MVO iteratively proposes and refines labels, allowing it to find motions that may be difficult to initially segment with sampling methods alone.

G. Multimotion Visual Odometry (MVO)

To the best of our knowledge, this paper introduces the first online approach capable of directly estimating full SE(3) trajectories for every motion in a complex, dynamic scene from a stereo/RGB-D camera using only a rigid-body assumption. The approach uses multilabeling and estimation techniques to model the motions of tracklet features over multiple frames. The hypothesis trajectories are then applied to individual tracklets by CORAL [3], a convex optimization approach to the multilabeling problem. These hypotheses are iteratively improved through splitting and merging of the models, unlike other labeling approaches that initially sample them from the scene. The full SE(3) trajectory of each motion is finally estimated using traditional VO batch estimation techniques. This approach is evaluated on a dataset containing ground-truth trajectories for all motions in the scene.

III. METHODOLOGY

The stereo MVO pipeline (Fig. 5a) extends the traditional stereo VO pipeline to multimodal segmentation and estimation. The incoming RGB stereo images are first rectified and undistorted according to known camera extrinsics and intrinsics. Salient image points are detected and matched across left and right images in each stereo pair and across temporally-consecutive pairs of stereo frames. These stereo- and temporally-matched feature points are back-projected into the 3D space using the camera intrinsics, forming world- and image-space tracklet histories for each feature point. This set of tracklets, \(\mathcal{P} := \{ p \} \), becomes the input to the multimotion segmentation and estimation engine (Fig. 5b). These tracklets could alternatively be found by associating observations from other 3D sensors (e.g., RGB-D cameras) over time.

The multimotion engine segments tracklets by their observed motion, which is a combination of camera and object motions. In the absence of a priori information about the scene, each group of tracklets is used to estimate a camera egomotion by assuming those tracklets belong to a static object. These camera egomotion hypotheses can later be converted into estimates of the camera and object motions by identifying the static part of the scene (e.g., as in VO).

The segmentation and estimation are posed as a multilabeling problem where a label, \(\ell \), represents the egomotion hypothesis, \(\ell_{TC} \), calculated from a group of tracklets, \(\mathcal{P}_{TC} \subseteq \mathcal{P} \). These labels are assigned by minimizing a cost function over a graph of all observed tracklets (Sec. III-A). New labels are proposed for each disconnected component of a label’s subgraph through a multiframe RANSAC procedure (Sec. III-B). Motion labels are assigned to minimize the reprojection residual of the associated trajectory and maximize the label smoothness in the graph (Sec. III-C). An outlier label, \(\hat{\ell} \), is assigned to points whose motions are not well explained by any other label. Redundant and oversegmented labels are then merged (Sec. III-D).

The algorithm iterates this process until label convergence. The final labels are then sanitized and any remaining outliers are rejected (Sec. III-E) before a final, full-batch estimation of each label (Sec. III-F). Egocentric or geocentric trajectories are found by selecting a label to represent the motion of the camera (Sec. III-G).

A. Graph Construction

The rigid-body assumption is approximated through a geometric neighborhood graph, \(\mathcal{N} \). Each vertex of the graph represents an observed tracklet and is connected to its \(k \)-nearest-neighbors. The distance between two vertices is defined as the maximum distance in image space between those image tracklets over the entire batch,

\[
d(p^i, p^j) := \max_{k=1, \ldots, K} \left\| s(p^{i, C_k}) - s(p^{j, C_k}) \right\|_2,
\]

where \(s(\cdot) \) applies the nonlinear perspective camera projection. This allows for edges between features that are consistently close while not connecting features that are ever far apart or that never coexist in a frame. This connectivity forms the basis for label generation and assignment.

B. Label Proposal

The label set, \(\mathcal{L} \), must dynamically grow and adapt to correctly converge in a given scene. To accomplish this,
new labels are generated by splitting label support groups whenever their tracklets’ motions could more accurately be explained by multiple trajectories. A potential new label, ℓ', is generated for each fully-disjoint component of the subgraph defined by the label’s support, $N_{\ell'} \subseteq N_{\ell} \subseteq N$. This ensures a level of spatial smoothness while allowing new labels to be proposed from large label supports comprised of tracklets from spatially or temporally distinct motions in the scene.

The new label proposals are generated by computing both the dominant motion of the given points and the segmentation between inliers and outliers of that motion. This single-motion segmentation and estimation problem is solved by applying RANSAC in a frame-to-frame fashion, similar to standard VO systems.

Three tracklets are sampled from those visible in the current, k, and previous, $k-1$, frames to estimate the $SE(3)$ transform between the two frames $\ell' T_{C_k,C_{k-1}}$. The proposed transform is evaluated according to how many tracklet reprojection residuals,

$$e_k(p^j, \ell' T_C) := \| s(p^j T_{C_k}) - s((\ell' T_{C_k,C_{k-1}}) p^j T_{C_{k-1}}) \|,$$

are within a given threshold error, e_{th}. This process is repeated many times and the transform with the largest inlier set is appended to the proposed trajectory hypothesis, $\ell' T_C$.

Any tracklets found to be outliers of the newly estimated models are appended to the outlier label, \emptyset. New labels are generated from the outlier label last.

C. Label Assignment

Each tracklet, $p \in P$, is assigned a label, $\ell \in L$, to minimize the energy functional,

$$E(L) := \sum_{p \in P} \rho(p, \ell(p)) + \lambda \sum_{(p,q) \in N} \omega_{pq} V(p,q)$$

$$+ \sum_{\ell \in L} \gamma_{\ell} \psi_{\ell},$$

where $\rho(p, \ell)$ gives the label currently assigned to p. The energy functional combines the residual error, the label smoothness, and the label complexity term, using a user-selected proportionality parameter, λ.

a) Residual: The residual term penalizes labels that poorly describe the observed data. It is defined as the sum of the residual errors of applying the label trajectories to tracklets. The residual for each point-label pair is defined as

$$\rho(p^j, \ell) := \max_{k \in 1..K} e_k(p^j, \ell' T_C),$$

where e_k as defined in (1).

b) Smoothness: The smoothness term penalizes neighboring tracklets that do not share the same label by an edge cost, ω_{pq}. This encourages a piecewise-smooth solution. It is a weighted sum of all edges penalized according to

$$V(p,q) := \begin{cases} 1 & \ell(p) \neq \ell(q) \\ 0 & \text{otherwise} \end{cases}.$$

C. Label Assignment

E. Label Sanitization

This updated manuscript corrects the experimental results published in the proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
minimum number of support tracklets or that exists for fewer than a minimum number of frames is merged with \(\mathcal{O} \). Likewise, tracklets whose residual error is greater than a threshold, \(e_{th} \), are relabeled as outliers. This provides a consistent set of tracklets for the batch estimation of each motion.

F. Final Model Estimation

For each label, an egomotion hypothesis, \(\ell T_C \), is estimated to explain the motion of the tracklets, \(\mathcal{P}_\ell \), using bundle adjustment. This paper follows the single-motion approach described by Barfoot [33] to estimate the trajectory of each label in an egocentric frame.

The system state, \(\mathbf{x} \), of each label is defined to include both the estimated pose transforms, \(\ell T := (\ell T_{C_k \ell c_{1}})_{k=2\ldots K} \), and the landmark points, \(\{ \mathbf{p}_{C_{j}^{l}} \}_{j=1\ldots |\mathcal{P}_{\ell}|} \). The state \(\mathbf{x}_{jk} := \{ \ell T_{C_{j}^{l},1}, \mathbf{p}_{C_{j}^{l},1} \} \) is defined for each pair of transforms and points belonging to label \(\ell \).

Each observation, \(\mathbf{y}_{jk} \), of point \(\mathbf{p}^l \) at pose \(\ell T_{C_k \ell c_{1}} \) is modeled as

\[
\mathbf{y}_{jk} := \mathbf{g}(\mathbf{x}_{jk}) + \mathbf{n}_{jk} = \mathbf{s}(\mathbf{z}(\mathbf{x}_{jk})) + \mathbf{n}_{jk} = \mathbf{s}\left(\ell T_{C_k c_{1}} \mathbf{p}_{C_j c_{1}}^l \right) + \mathbf{n}_{jk}
\]

The measurement model, \(\mathbf{g}(\cdot) \), encompasses both the motion model, \(\mathbf{z}(\cdot) \), which applies \(SE(3) \) transforms to observed points, and the sensor model, \(\mathbf{s}(\cdot) \), derived from the perspective camera model. The model assumes additive Gaussian noise, \(\mathbf{n}_{jk} \), with zero mean and covariance \(\mathbf{R}_{jk} \). The least-squares cost function is defined as the difference between the measurement model and the observations,

\[
J := \frac{1}{2} \sum_{jk} \mathbf{e}_{y_{jk}}(\mathbf{x})^T \mathbf{R}_{jk}^{-1} \mathbf{e}_{y_{jk}}(\mathbf{x}),
\]

where,

\[
\mathbf{e}_{y_{jk}}(\mathbf{x}) := \mathbf{y}_{jk} - \mathbf{s}\left(\ell T_{C_k c_{1}} \mathbf{p}_{C_j c_{1}}^l \right)
\]

This cost is linearized about an operating point, \(\mathbf{x}_{op} \), and then minimized using Gauss-Newton. The operating point is perturbed according to the transform perturbations, \(\{ \mathbf{e}_k \in \mathbb{R}^6 \} \), and landmark perturbations, \(\{ \mathbf{e}_j \in \mathbb{R}^3 \} \), which together form the full state perturbation, \(\delta \mathbf{x} \). An indicator matrix \(\mathbf{P}_{jk} \) is defined such that \(\delta \mathbf{x}_{jk} = \mathbf{P}_{jk} \delta \mathbf{x} \). See [33] for more detail.

The error function is linearized using \(\mathbf{G}_{jk} \), the Jacobian of the measurement function, \(\mathbf{g}(\cdot) \),

\[
\mathbf{G}_{jk} := \mathbf{S}_{jk} \mathbf{Z}_{jk},
\]

\[
\mathbf{S}_{jk} = \frac{\partial \mathbf{g}}{\partial \mathbf{z}}_{\mathbf{z}(\mathbf{x}_{op_{jk}})}
\]

\[
\mathbf{Z}_{jk} = \left[(\ell T_{C_k c_{1}} \mathbf{p}_{C_j c_{1}}^l)^{\otimes} \ell T_{C_k c_{1}} \mathbf{D}_{jk} \right],
\]

\[
\mathbf{D} = \begin{bmatrix} 1 \\ 0^T \end{bmatrix}
\]

where the matrix operator \((\cdot)^{\otimes} \) is defined in [33]. The cost function can then be linearized using

\[
\mathbf{J} \approx \mathbf{J}(\mathbf{x}_{op}) - \frac{1}{2} \left(\mathbf{g}(\mathbf{x}_{op}) + \frac{1}{2} \delta \mathbf{x}_{jk}^T \mathbf{A} \delta \mathbf{x}_{jk} \right),
\]

\[
\mathbf{b} = \sum_{jk} \mathbf{P}_{jk}^T \mathbf{G}_{jk}^T \mathbf{R}_{jk}^{-1} \mathbf{e}_{y_{jk}}(\mathbf{x}_{op}),
\]

\[
\mathbf{A} = \sum_{jk} \mathbf{P}_{jk}^T \mathbf{G}_{jk}^T \mathbf{R}_{jk}^{-1} \mathbf{G}_{jk} \mathbf{P}_{jk}.
\]

The optimal perturbation, \(\delta \mathbf{x}^* \), for minimizing the cost function, \(J \), is the solution to \(\mathbf{A} \delta \mathbf{x}^* = \mathbf{b} \). Each element of the state is then updated according to

\[
\ell T_{op, C_k c_{1}} := \exp(\mathbf{e}_k^{\mathbf{x}^*}) \ell T_{op, C_k c_{1}}
\]

\[
\mathbf{p}_{op, C_k c_{1}} := \mathbf{p}_{op, c_{1}} + \mathbf{D} \mathbf{e}_j^c
\]

where the vector operator \((\cdot)^\mathbf{v} \) is defined in [33]. The cost function is then relinearized about the updated operating point and the process iterates until convergence.

G. Egocentric and Geocentric Trajectories

- **a) Egocentric:** Egocentric motions are expressed in the moving camera frame, \(\overline{\mathcal{X}}_{C} \). The egocentric motion of the camera is identity by definition and the egocentric motions of the scene are given by

\[
\forall \ell \in \mathcal{L}_{\text{ego}}, \ell T_{k_{\ell}, \ell} := \ell T_{C_k c_{1}}^{-1}.
\]

One of these motions is the egocentric motion of the static world caused by the camera motion.

- **b) Geocentric:** Geocentric motions are expressed in some earth-attached frame. The geocentric motion of the camera is given by the hypothesis motion estimated from the static background,

\[
T_{C_k \ell c_{1}} := \ell T_{C} \bigg|_{\ell = \ell_{\text{static}}},
\]

where the static label may be selected by heuristics as in VO (e.g., label support size).

The geocentric motions of the rest of the scene are given by

\[
\forall \ell \in \mathcal{L} \setminus \ell_{\text{static}}, T_{k_{\ell}, \ell} = \mathbf{F}_{\ell_{k_{\ell}}, \ell} T_{\ell_{k_{\ell}}, \ell c_{1}} \ell T_{C_k c_{1}}^{-1} T_{C_k c_{1}, \ell_{k_{\ell}}},
\]

where \(\mathbf{F}_{\ell_{k_{\ell}}, \ell} \) is the object deformation matrix and is assumed to be identity, (i.e., rigid body). The initial transform,

\[
T_{\ell_{k_{\ell}}, \ell} = \begin{bmatrix} \mathbf{C}_{\ell_{k_{\ell}}, \ell c_{1}} & \mathbf{r}_{\ell_{k_{\ell}}, \ell c_{1}} \\ 0^T & 1 \end{bmatrix}
\]

relates the camera to the center of motion of each object, \(\mathbf{r}_{\ell_{k_{\ell}}, \ell c_{1}} \). The object center is calculated from the centroid of all points, \(\mathcal{P}_\ell \), projected into the first observed frame,

\[
r_{\ell_{k_{\ell}}, \ell} = -\frac{1}{|\mathcal{P}_\ell|} \sum_{j=1}^{|\mathcal{P}_\ell|} \ell T_{C_{j}}^{-1} \mathbf{C}_{\ell_{k_{\ell}}, \ell c_{1}} \mathbf{p}_{C_{j}}^{\ell_{k_{\ell}}, \ell c_{1}},
\]

where \(t_j \) is the first frame where \(p_j^l \) is observed, and \(\mathbf{C}_{\ell_{k_{\ell}}, \ell c_{1}} \) is arbitrary and assumed to be identity. This averaging allows the centroid estimate to adjust as new points are observed due to rotation or occlusion.
IV. EXPERIMENTS AND RESULTS

The accuracy of the MVO algorithm is evaluated on real-world data collected using a Bumblebee XB3 stereo camera and a Vicon motion capture system. Unlike existing multimotion datasets designed for egomotion or segmentation (e.g., [34, 35]), this new dataset contains ground truth for the entire scene which consisted of a moving camera observing four moving blocks (Fig. 1).

The results (Figs. 6 and 7) were produced from a 500-frame image sequence. Estimation was performed as a 48-frame sliding window, with 5 neighbors for each point in the graph, 1000 RANSAC iterations per new label, $\epsilon_{th} = 4$, $\alpha = 100$, $\beta = 2$, $\psi_f = 1000$, $\lambda = 1$, and a minimum model size and length of 10 points and 3 frames, respectively. Feature detection and matching were performed using LIBVIS02 [36] and the Gauss-Newton minimization was performed with Ceres [37] using analytical derivatives (Sec. III-F).

The transforms between the Vicon frames and our estimated frames are arbitrary, so the first 25 frames of the estimates are used to calibrate this transform. All errors are reported for geocentric trajectory estimates. The camera egomotion (Fig. 7) exhibits a maximum total drift of 0.21 m, 3.24% of total path length, and a maximum rotational error of 1.96°, -1.00°, and -0.42° in roll-pitch-yaw, respectively. This error is reasonable compared to the level of drift in other model-free, camera-only VO systems [34].

The motion estimates of the bodies varied with their motion and their visibility. The two swinging blocks partially left the camera frustum near the beginning of the segment which caused estimation dropouts and higher translational errors. A portion of the geocentric error of each motion is due to the error in the camera motion estimate. The maximum translational and rotational errors for each block are 0.44 m, -9.09°, -5.28°, and 2.67° for the top-left block; 0.27 m, -6.19°, -6.05°, and -5.00° for the top-right block; 0.99 m, 2.33°, 6.58°, and 3.15° for the bottom-left block; and 0.39 m, -2.74°, 1.71°, and -8.10° for the bottom-right block (Fig. 6).

The gaps in the trajectories occur when the motion was not successfully segmented or the final estimation stage (Sec. III-F) fails to converge. This is often due to poor feature distribution, especially when objects reach the edge of the camera frustum. These discontinuities, coupled with the dynamic camera motion, caused errors in the trajectory estimate.

V. DISCUSSION

MVO consistently segments and estimates the motions of the camera and the four independent objects when they are fully visible. As is to be expected, the two blocks that
partially exited the camera frustum had segmentation failures and higher errors, largely due to incomplete feature tracklets. Feature distribution is an important factor in the performance of any sparse approach [38]. This problem is exacerbated for dynamic objects that take up a small portion of the scene. Additionally, the appearance of these objects is often more volatile making feature association even more difficult. The algorithm is dependent on the accuracy of the input tracklet set and cannot estimate motions for which there are insufficient features. Feature dropouts and lack of tracklets are therefore significant challenges for this type of pipeline, and the development of more robust feature detection and matching pipelines is an ongoing area of research.

The distribution of features also influences the estimate of the center of the motion. It is difficult to infer the structure of an object beyond the surfaces that are observed in the batch without a priori knowledge of the object’s shape. This means the centroid of the observed feature points for a label can often be a bad estimate of the the label’s true center of motion.

VI. CONCLUSION

This paper extends the classic VO pipeline to address the multimotion estimation problem. The multimotion visual odometry (MVO) pipeline segments and estimates all rigid motions in a scene. It does so by using feature-tracking, sparse graph segmentation, and multiframe batch motion estimation such that it avoids many of the limitations of other multimotion estimation approaches.

We evaluated MVO on a multimotion dataset with ground-truth trajectories for all motions in the scene. Its estimation accuracy is comparable to similarly defined egomotion-only VO systems while also exhibiting similar limitations. We would like to thank Paul Amayo for his insightful conversations on convex optimization and multilabeling, and for his implementation of CORAL.

ACKNOWLEDGMENT

REFERENCES

[1] H. P. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot rover,” Ph.D. dissertation, Stanford, CA, USA, 1980.
[2] L. Matthies and S. Shafer, “Error modeling in stereo navigation.” IEEE Journal on Robotics and Automation, vol. 3, no. 3, pp. 239–248, 1987.
[3] P. Amayo, P. Piniés, L. M. Paz, and P. Newman, “Geometric Multi-Model Fitting with a Convex Relaxation Algorithm,” in CVPR, 2018.
[4] A. Italiano, L. Leal-Taixé, L. D. Reid, S. Roth, and K. Schindler, “MOT16: A benchmark for multi-object tracking,” 2016, arXiv: 1603.00831 [cs.CV].
[5] J. P. Costeira and T. Kanade, “A multibody factorization method for independently moving objects,” IJCV, vol. 29, no. 3, pp. 159–179, 1998.
[6] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.
[7] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, “Three-dimensional scene flow,” in ICCV, vol. 2, 1999, pp. 722–729.
[8] P. Lenz, J. Ziegler, A. Geiger, and M. Roser, “Sparse scene flow segmentation for moving object detection in urban environments,” in IV, 2011, pp. 926–932.
[9] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in CVPR, 2015, pp. 3061–3070.
[10] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.
[11] M. Byeon, H. Yoo, K. Kim, S. Oh, and J. Y. Choi, “Unified optimization framework for localization and tracking of multiple targets with multiple cameras,” CVIU, vol. 166, pp. 51 – 65, 2018.
[12] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-object tracking using network flows,” in CVPR, 2008, pp. 1–8.
[13] Z. Kalal, K. Mikolajczyk, J. Matas et al., “Tracking-learning-detection,” PAMI, vol. 34, no. 7, p. 1409, 2012.
[14] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultaneous localization, mapping and moving object tracking,” IJRR, vol. 26, no. 9, pp. 889–916, 2007.
[15] A. Kundu, K. M. Krishna, and C. V. Jawahar, “Realtime multibody visual slam with a smoothly moving monocular camera,” in ICCV, 2011, pp. 2080–2087.
[16] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press, 2003.
[17] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization method,” IJCV, vol. 9, no. 2, pp. 137–154, 1992.
[18] K. Kanatani, “Motion segmentation by subspace separation and model selection,” in ICCV, vol. 2, 2001, pp. 586–591.
[19] R. Vidal and R. Hartley, “Motion segmentation with missing data using power factorization and gPCA,” in CVPR, 2004, pp. 310–316.
[20] Y. Yu, Z. Zhang, T. S. Huang, and J. Y. Lin, “Multibody grouping via orthogonal subspace decomposition,” in CVPR, vol. 2, 2001, pp. 252–257.
[21] T. Li, V. Kallem, D. Singaraju, and R. Vidal, “Projective factorization of multiple rigid-body motions,” in CVPR, 2007, pp. 1–6.
[22] R. Vidal and S. Sastry, “Optimal segmentation of dynamic scenes from two perspective views,” in CVPR, vol. 2, 2003, pp. 281–286.
[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[24] P. H. Torr, “Geometric motion segmentation and model selection,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 356, no. 1740, pp. 1321–1340, 1998.
[25] R. Sabbevarri and D. Scaramuzza, “Multi-body motion estimation from monocular vehicle-mounted cameras,” T-RO, vol. 32, no. 3, pp. 638–651, 2016.
[26] K. Schindler, U. James, and H. Wang, “Perspective n-view multibody structure-and-motion through model selection,” in ECCV, 2006, pp. 606–619.
[27] K. E. Ozden, K. Schindler, and L. V. Gool, “Multibody structure-from-motion in practice,” PAMI, vol. 32, no. 6, pp. 1134–1141, 2010.
[28] C. Nieuwenhuis, E. Tóppe, and D. Cremers, “A survey and comparison of discrete and continuous multi-label optimization approaches for the potts model,” IJCV, vol. 104, no. 3, pp. 223–240, 2013.
[29] H. Isack and Y. Boykov, “Energy-based geometric multi-model fitting,” IJCV, vol. 97, no. 2, pp. 123–147, 2012.
[30] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground extraction using iterated graph cuts,” in ACM Transactions on Graphics, vol. 23, no. 3, 2004, pp. 309–314.
[31] A. Roussos, C. Russell, R. Garg, and L. Agapito, “Dense multibody motion estimation and reconstruction from a handheld camera,” in ISMAR, 2012, pp. 31–40.
[32] M. Rüzin and L. Agapito, “Co-fusion: Real-time segmentation, tracking and fusion of multiple objects,” in ICRA, 2017, pp. 4471–4478.
[33] T. D. Barfoot, State Estimation for Robotics. Cambridge University Press, 2017.
[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in CVPR, 2012, pp. 3354–3361.
[35] R. Tron and R. Vidal, “A benchmark for the comparison of 3-d motion segmentation algorithms,” in CVPR, 2007, pp. 1–8.
[36] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-time,” in IV, 2011, pp. 963–968.
[37] S. Agarwal, K. Mierle, and Others, “Ceres Solver.”
[38] S. Farboud-Sheshdeh, T. D. Barfoot, and R. H. Kwong, “Towards estimating bias in stereo visual odometry,” in CRV, 2014, pp. 8–15.