Regulation of Apoptosis During Porcine Circovirus Type 2 Infection

Yuhong Pan1,2,3, Pengfei Li1,2,3, Renyong Jia1,2,3*, Mingshu Wang1,2,3, Zhongqiong Yin3 and Anchun Cheng1,2,3

1 Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China, 2 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China, 3 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China

Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis by removing unnecessary or damaged cells. It contains three signaling pathways: the mitochondria-mediated pathway, the death receptor pathway and the endoplasmic reticulum pathway. The importance of apoptosis in host defenses is stressed by the observation that multiple viruses have evolved various strategies to inhibit apoptosis, thereby blunting the host immune responses and promoting viral propagation. Porcine Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed cell death. In this article, we review the latest research progress of the apoptosis mechanisms during infection with PCV2, including several proteins of PCV2 regulate apoptosis via interacting with host proteins and multiple signaling pathways involved in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and prevention of PCV2.

Keywords: apoptosis, PCV2, viral proteins, signaling pathway, mechanisms

INTRODUCTION

Porcine circovirus (PCV) from the genus Circovirus within the family Circoviridae is an icosahedral, small, non-enveloped DNA virus with a circular, single negative-stranded genome of approximately 1.76 kb (Tischer et al., 1982; Fauquet et al., 1995; Wei et al., 2016; Wang et al., 2018). To date, three species of PCV have been confirmed: Porcine circovirus type 1 (PCV1), PCV2 and Porcine circovirus type 3 (PCV3) (Alarcon et al., 2013; Segalés et al., 2013). PCV1 was first discovered in 1974 and widely acknowledged to be non-pathogenic (Tischer et al., 1982), while PCV2 was the causative agent of PCV AD/PCVD, which include reproductive failure, porcine dermatitis and nephropathy syndrome, proliferative and necrotizing pneumonia and PCV2 systemic disease (PCV2-SD) (Allan et al., 1998, 1999; Ellis et al., 1998; Meehan et al., 1998; Opriessnig et al., 2007). The main immunopathological features of PCV2-SD are peripheral blood lymphopenia and T- and B-lymphocyte depletion in lymphoid tissue (Nielsen et al., 2003; Resendes et al., 2004; Resendes and Segalés, 2015; Richmond et al., 2015). What's more, severely

Abbreviations: AIF, apoptosis-inducing factor; Apaf-1, apoptosis-protease activating factor-1; ASK1, apoptosis signal-regulating kinase 1; ATF6, activating transcription factor 6; [Ca\(^{2+}\)], the intracellular free Ca\(^{2+}\) concentration; Cap, capsid; Cyt c, cytochrome c; ER, endoplasmic reticulum; FHC, ferritin heavy chain; gC1qR, globular heads of complement component C1q; Hsp40, heat-shock protein 40; Hsp70, heat-shock protein 70; IP3R, inositol 1,4,5-trisphosphate receptor; IRE1, inositol requiring enzyme 1; JNK, c-Jun NH2-terminal kinase; MDM2, murine double minute 2 gene; MKRN1, makorin-1 RING zinc-finger protein; MOMP, mitochondrial outer membrane permeabilization; NAP1, nucleosome assembly protein-1; NPM1, nucleophosmin-1; ORFs, open reading frames; p38/MARK, p38 mitogen-activated protein kinase; Par-4, prostate apoptosis response-4 protein; PAMS, pulmonary alveolar macrophages; PCV2, Porcine Circovirus type 2; PCVAD/PCVD, porcine circovirus-associated diseases; PERK, PKR-like ER kinase; PMWS, post-weaning multi systemic wasting syndrome; pPirh2, porcine Pirh2; PTPC, permeability transition pore complex; Rep, replicase; RGS, regulator of G protein signaling; UPR, unfolded protein response; WNV, West Nile virus.
PCV2-infected pigs could damage immune system and trigger immunosuppression by replicating and inducing apoptosis in lymphocytes (Kuipel et al., 2005; Li et al., 2013; Bin et al., 2015), leading to poor immune response to vaccines and increased susceptibility to other infectious diseases. Hence, even though PCVAD is effectively controlled by commercial vaccines, vaccination does not eliminate infection (Fort et al., 2008; Opriessnig et al., 2008, 2010). PCV2 is also one of the most important viruses in all pig-raising areas and is increasingly considered as a serious threat to global pig industry (Segales et al., 2005; Xiang-Jin, 2013; Salgado et al., 2014; Zhai et al., 2014; Xiao et al., 2015; Mao et al., 2017; Liu et al., 2018). Phan et al. (2016) first isolated PCV3 from piglets with clinical disease of weight loss, swollen joints and anorexia. In addition, the dermatitis and nephropathy syndrome has been recently associated to PCV3 (however, this is still under discussion).

Porcine circovirus has 11 potential ORFs, so far to date, four of them have been characterized as functional proteins in replicating PCV2, including ORF1 to ORF4 (Hamel et al., 1998; Lv et al., 2014a; Hong et al., 2015), while only three ORFs have been recognized for PCV1 and PCV3: ORF1 to ORF3 (Saraiva et al., 2018). The ORF1 encodes two replicases (Rep and Rep'), the Rep proteins of PCV-1 and PCV-2 are similar in size and are responsible for the replication of the circoviral genome (Mankertz, 2012). The capsid protein encoded by ORF2 is the sole structural protein of PCV2 and contains a highly conserved basic amino acid sequence (Timmsk et al., 2008; Latini et al., 2011); therefore, it contains the major antigenic determinants of the virus (Nawagitgul et al., 2000). However, the three proteins of PCV3 are less similar to those of PCV1 and PCV2 (Palinski et al., 2016; Phan et al., 2016). The proteins encoded by ORF3 and ORF4 genes are not required for viral replication, but are closely related to the spread and virulence of the virus (Lv et al., 2015a). The protein encoded by ORF3 gene plays a vital role in the pathogenesis of the virus through its apoptotic activity in vitro and in vivo (Liu et al., 2005, 2006; Lin et al., 2011). The ORF4 protein is capable of blocking PCV2-induced apoptosis by bringing down caspases activities (Gao et al., 2014a; Lv et al., 2015b). Besides this, a novel ORF5 protein has recently been discovered in PCV2-infected cells and may be involve in activation of NF-kB pathway (Lv et al., 2015a).

Apoptosis, also called programmed cell death, is an indispensable defense mechanism for host resistance to pathogens invasion (Jorgensen et al., 2017). Apoptosis is strictly regulated and can be triggered by multiple stimuli such as normal development, pathogen infection and several factors leading to disruption of cellular functions (Tait and Green, 2010; Czabotar et al., 2014). Apoptotic cells exhibit characteristic morphological abnormalities including chromatin condensation, nuclear fragmentation, membrane blebbing, and apoptotic body formation (Kroemer et al., 2005; Galluzzi et al., 2007). Apoptosis classically occurs via the intrinsic pathway (also called the mitochondrial pathway), the extrinsic pathway (also called the death receptor pathway) and the ER pathway (Hong et al., 2015). In brief, the mitochondrial pathway is induced by a variety of intracellular signals, such as hypoxia, nutrient deprivation and oxidative stress, which cause MOMP (Kroemer et al., 2006). Subsequently, AIF, cyt c and Smac/DIABLO are released from the mitochondrial membrane to the cytoplasm (Kroemer et al., 2006; Galluzzi et al., 2012). Cyt c can recruit pro-caspase9 and apoptotic protease activating-factor-1 (apaf-1) to form an apoptosisosome, which subsequently activates downstream executioner caspases to trigger apoptosis (Li et al., 1997; Acehan et al., 2002). In addition, the mitochondrial pathway is mainly regulated by Bcl-2 (B-cell lymphoma 2) family proteins, which are classified into three types (Cory and Adams, 2002). One is an anti-apoptotic sub-family, which includes Bcl-xL (B-cell lymphoma-extra large) and Bcl-2. Another is pro-apoptotic BH3 only proteins, such as Bid (BH3 interacting-domain death agonist) and Bad (Bcl-2 associated death promoter), these proteins are antagonists to the anti-apoptotic sub-family proteins. The third sub-family includes Bak (Bcl-2 homologous antagonist killer) and Bax (Bcl-2 associated x protein). On the other hand, the death receptor pathway is activated by the binding of a specific ligand to the corresponding death receptor, resulting in activation of caspase8 and caspase3, which finally leads to cleavage of cellular DNA (Lamkanfi et al., 2007; Tummers and Green, 2017). What’s more, ER stress regulates the concentration of Ca^{2+} and initiates the IRE1, PERK, and ATF6 pathways, which are associated with the mitochondrial pathway of apoptosis (Shore et al., 2011; Verma and Datta, 2012).

Porcine Circovirus type 2 infection induces apoptosis both in vitro and in vivo (Chang et al., 2007a; Seelig et al., 2007; Galindocardiel et al., 2011; Resendes et al., 2011; Sinha et al., 2012), it has been reported that PCV2 can induce B lymphocyte deletion through apoptosis and macrophage apoptosis can be detected in the spleen of PCV2 infected mice (Shibahara et al., 2000), so apoptotic cell death may be one of the causes of lymphopenia after PCV2 infection (Resendes et al., 2004). Similarly, apoptosis is one of the causes of lymph node loss and hepatocyte decline in pigs with PMWS (Krakowka et al., 2004). Apoptosis has also been proposed as a natural part of the viral life cycle (Young et al., 2007), in the early stage of PCV2 infection, PCV2 may prevent apoptosis by expressing its anti-apoptotic gene to accomplish its propagation, while apoptosis may be a powerful strategy for the release and dissemination of progeny virions in the late stage (Liu et al., 2005). However, the molecular mechanism of PCV2-regulated apoptosis is still unclear. In this article, we focus on reviewing the roles of PCV2 in the process of apoptosis, which is useful for future research.

VIRAL PROTEINS AND THEIR APOPTOSIS REGULATION MECHANISMS

Cap and Its Mechanism of Apoptosis Regulation

The Interactions Between Cap and Cellular Proteins

The ORF2 36 gene encodes the major immunogenic capsid protein of 27.8 kDa. By investigating the replication and
TABLE 1 | Interactions of cellular proteins with the proteins of PCV2 (Lv et al., 2014).

PCV2 protein	Cellular interacting proteins	Functions	Reference
ORF1/Rep protein	Syncollin	Transport processes	Timmusk et al., 2006a
	c-myc	Transcriptional regulation	Timmusk et al., 2006a
	ZNF266	Alternative splicing	Finsterbusch et al., 2009a
	TDG	Transcriptional regulation, DNA repair	Finsterbusch et al., 2009a
	V5SQ	Angiogenesis	Finsterbusch et al., 2009a
ORF2/Cap protein	C1qB	Complement factor	Timmusk et al., 2006a
	P-selectin	Cell adhesion molecule	Timmusk et al., 2006a
	gC1qR	C1qB receptor, multifunctional	Finsterbusch et al., 2009a; Du et al., 2016; Kouokam Fotso et al., 2016
	MKRN1	E3 ubiquitin ligase	Finsterbusch et al., 2009a
	NAP1	Transport, chaperonin	Finsterbusch et al., 2009a
	Par-4	Apoptosis, transport, cell mobility	Finsterbusch et al., 2009a
	NPM1	Ribosome biogenesis	Finsterbusch et al., 2009a
	Hsp40	Chaperonin	Finsterbusch et al., 2009a
	Hsp70	Chaperonin	Liu et al., 2013b
ORF3 protein	DDE-like transposase	Transposase	Timmusk et al., 2006a
	poRGS16	Cell signaling, nuclear transport of ORF3	Levine and Oren, 2009; Hsu et al., 2010
	pPeh2	E3 ubiquitin ligase	Liu et al., 2007
ORF4 protein	FHC	Ferroxidase	Lv et al., 2015b, 2016
	SNRPN	Pre-Mrna splicing	Xiao et al., 2015
	COX8A	COX subunit	Xiao et al., 2015
	Lamin C	Intermediate filament protein	Xiao et al., 2015; Lin et al., 2018
	ANT3	Adenine nucleotide translocase	
ORF5 protein	GPMB	Transmembrane glycoprotein	Lv et al., 2015a
	CYP1A1	Cytochrome P450 enzyme	Lv et al., 2015a
	YWHA8	Adapter protein	Lv et al., 2015a
	ZNF511	Transcriptional regulator	Lv et al., 2015a
	SRSF3	RNA splicing factor	Lv et al., 2015a

Pathogenesis mechanisms of PCV2, the interactions between the PCV2 Cap protein with nine different cellular proteins were confirmed (Table 1), including complement factor C1qB, the receptor protein for the gC1qR, MKRN1, cell adhesion molecule P-selectin, prostate apoptosis response-4 (Par-4) protein, NAP1, NPM1, Hsp70 and Hsp40 (Timmusk et al., 2006a; Finsterbusch et al., 2009b; Liu et al., 2013b). However, only MKRN1 and Hsp70 have been confirmed to participate in PCV2-induced apoptosis.

Apoptosis Regulated by Cap and MKRN1

According to Gray et al. (2000) and Lee et al. (2013), MKRN1 is a transcriptional co-regulator and an E3 ubiquitin ligase that is highly evolutionarily conserved in vertebrates, it can also mediate apoptosis and p53-dependent cell cycle arrest. The interactions between different types of PCVs and their hosts have been analyzed by Finsterbusch's group, the research demonstrated that MKRN1 can interact with Cap proteins of both PCV1 and PCV2, resulting a decreased concentration of MKRN1 in the host (Finsterbusch et al., 2009a). The decreased MKRN1 can in turn reduce the level of p53 ubiquitination, resulting in an increase of p53 and thus promote cellular apoptosis. Under normal conditions, p53 and p21 both are suppressed by MKRN1 through ubiquitin-dependent degradation (Lee et al., 2009).

Previous studies have showed that p21 is capable of activating cell cycle arrest via suppressing apoptosis (Gartel and Tyner, 2002; Javelaud and Besancon, 2002; Abbas and Dutta, 2009; Jung et al., 2010). Therefore, ubiquitination and degradation of p21 mediated by MKRN1 may also contribute to trigger apoptosis. However, under stresses such as DNA damage, only p53 is suppressed by MKRN1; p21, which is not ubiquitinated by MKRN1 can also inhibit p53. Therefore, when the suppression of p53 by MKRN1 and p21 is reduced, the concentration of p53 will increase and thus promotes the apoptotic process (Lee et al., 2009).

Apoptosis Regulated by Cap and Hsp70

Hsp70 is a chaperone whose expression is induced by a variety of stimuli. A previous study confirmed that Hsp70 could inhibit the production of apoptosome and apoptosis in varying degrees by suppressing the activity of AIF (Garrido et al., 2006). In study of PMWS pathogenesis using proteomics strategies, Ramirez-Boo et al. (2011) reported that the down-regulation of Hsp70 was detected in inguinal lymph nodes of piglets after inoculation with PCV2. Another study regarding the interaction between PCV2 and target immune cells showed the expression of Hsp70 was up-regulated in PAMs during the initial stage of PCV2 infection (Liu et al., 2013a). A recent study showed that the
PCV2 ORF3 and Its Mechanisms of Apoptosis Regulation

Although the PCV2 non-structural protein ORF3 is not critical for viral replication Lin et al. (2013), found that the nuclear localization of ORF3 is correlated with triggering apoptotic response in porcine PBMC, it was also involved in PCV2-induced extrinsic apoptosis pathway through activation of the caspase8 and caspase5 (Krupp et al., 2005; Liu et al., 2005).

During a study of modulation of cellular functions by the PCV2 ORF3 protein, the ORF3 protein was found to directly interacted with pPirh2 (also called RCHY1). Pirh2 is an E3 ubiquitin ligase targeting p53 and leading p53 to degradation. The interaction between the pPirh2 and ORF3 protein could suppress pPirh2 stabilization and increase p53 cellular levels, thereby leading to apoptosis (Leng et al., 2003; Liu et al., 2007). Furthermore, present research suggests the amino acid residues of ORF3 protein are indispensable to compete with the interaction with pPirh2 over p53 (Timmusk et al., 2008; Karuppannan et al., 2010). p53 is a tumor suppressor as well as a transcription factor (Levine and Oren, 2009); it is also involved in regulation of diverse biological responses such as apoptosis, DNA damage, cell cycle arrest, oncogenic activities, erosion of telomeres, hypoxia and other physiological processes (Vousden and Prives, 2009; Collavin et al., 2010; Chang et al., 2013). It was reported that p53 was involved in apoptosis through transcription-dependent or -independent mechanisms during stress (Li et al., 2011; Xu et al., 2016).

In general, the p53 protein content in cells is maintained at a very low level in the absence of stress through binding to proteins such as MDM2 (denoted HDM2 in humans), COP1, pPirh2 and JNK, which facilitates the degradation of p53 by the ubiquitin/proteasome pathway (Table 2). In stress situations such as cell cycle arrest, apoptosis may be caused by a complex formed by p53 with pro-apoptotic and anti-apoptotic members of the Bcl-2 family (such as Bcl-2, Bcl-XL, Bak and Bax). Then, the complex triggers MOMP, liberating essential apoptotic factors (such as Cyt c, AIF, and Apaf-1) and ultimately causing a caspase cascade and apoptosis via the intrinsic pathway (Marchenko et al., 2007; Wolff et al., 2008; Green and Kroemer, 2009; Collavin et al., 2010).

Based on these works, induction of apoptosis during PCV2 infection is a complex process that may involve cross-talk between the intrinsic and the extrinsic apoptotic pathway. Certainly, the mechanistic role of PCV2 ORF3 protein in the regulation of apoptosis should be investigated in more detail in future studies.

To date, more than twenty proteins have been shown to be associated with pPirh2 (Jung et al., 2012). Additionally, p53 is a highly connected protein that could form physical complexes with a variety of cellular proteins (Collavin et al., 2010); currently, more than 320 reported interactions with human p53 are included in the APIID web interface¹, including kinases, phosphatases, acetyltransferases, de-acetylases, ubiquitin ligases, and other proteins. Accordingly, future investigation should consider whether there are other factors regulate PCV2-induced apoptosis by participating in the interactions of pPirh2 and ORF3.

ORF4 and Its Mechanisms of Apoptosis Regulation

Studies indicated that the ORF4 protein is not required for PCV2 replication in mice or in PK-15 cells, while present research showed it plays a vital role in inhibiting apoptosis after PCV2 infection (He et al., 2013). Subsequently, Gao et al. (2014a) constructed two mutants of PCV2 ORF4: M1-PCV2 and M2-PCV2. By comparing the ORF3 mRNA levels of the wild-type and ORF4-deficient viruses in PK-15 cell, it was found that the ORF3 transcription levels of both ORF4 mutants were enhanced, indicating that the ORF4 protein may play an important role in preventing PCV2-induced apoptosis via inhibiting ORF3 transcription. Significant increases in caspase-8 and caspase-3 activities in

¹http://bioinfow.dep.usal.es/apid/index.html
TABLE 2 | Selected interactions of cellular proteins with p53.

Protein	Cell lines	Reference
Kinases		
PLK1	COS-7, H1299	Ando et al., 2004
JNK1/2	A549	Oleinik et al., 2007
GSK3-beta	H1299	Watcharasit et al., 2003
HIPK2	H1299, HeLa	Li et al., 2007
CK1	MEFs	Alsheich-Bartok et al., 2008
SKG2, PAK3	HFKs	Baldwin and Munger, 2010
Ubiquitin ligases		
MDM2, MDMX	MEFs, H1299	Brignone et al., 2004; Wade et al., 2010; Mancini et al., 2014
COP1	U2OS	Dornan et al., 2004
Pin2	MEFs, Saos2	Leng et al., 2003
Synoviolin	HEK293T	Yamasaki et al., 2014
CHIP	MCF-7	Li et al., 2011a
TRIM24	U2OS, HEK293T, MCF-7	Alton et al., 2009
E4F1	U2OS	Le Cam et al., 2006
Acetyltransferases		
P300	HCT116, Saos2, H1299	Mantovani et al., 2007
PCAF		Liu et al., 1999
TIP60	U2OS	Legube et al., 2004
Phosphatases		
PP2A	MEFs	Reid et al., 2013
Wip1	COS-7	Takekawa et al., 2014
De-acetylases		
Sir1	HEK293T	Langley et al., 2014
HDAC1/2	PC12	Zhang and Chen, 2007
Deubiquitinases		
HAUSP	H1299	Li et al., 2002
USP10	HCT116, H1299	Yan et al., 2010
Methyltransferases		
Smyd2	H1299	Huang et al., 2006
SUMO ligases		
Ubc9	HEK293T	Lin et al., 2004
PIAS1	Si-9	Kahyo et al., 2001
TOPORS	HeLa	Weger et al., 2005
SUMO-1	U2OS, Saos2	Wade et al., 2010; Rodriguez et al., 2014
Others		
HMGA1	HEK293T, H1299	Pierantoni et al., 2014
Pin1, p21, Bax	HCT116	Mantovani et al., 2007
Bcl-2, Bcl-xL	H1299, HeLa	Mihara et al., 2003
Anexin A2, PSF	H1299	Sharathchandra et al., 2012
BRCA2	H1299	Rajagopalan et al., 2010
Hsp90	PBMCs	Fukumoto and Kiang, 2011
BRCA1	MEFs	Xu et al., 2001
TAF1	U937	Schultz et al., 2004
CSA, CSB	CS1AN, HeLa	Latini et al., 2011
PTTQ1	HCT116	Bernal et al., 2002
HBx	Hep3B	Sato et al., 2011
ARC	H9c2	Li et al., 2008
SPARC, Pax6	Astrocytes	Tripathi and Mishra, 2010
caspase3	WM115	Frank et al., 2011
ASPP	HEK293T, H1299	Mantovani et al., 2007
Smad2, Smad3	HEK293T	Cordenonsi et al., 2003
L2DTL/CDT2, PCNA, CUL4A/DDB1	MEFs, HEK293T	Banks et al., 2006
Daxx, Axin	H1299, HeLa	Li et al., 2007

Both ORF4 mutants compared to wild-type PCV2 further confirmed this (Gao et al., 2014a). Subsequently Lv et al. (2016), revealed a mechanism by which ORF4 exerts cytoprotective function by resisting apoptosis in the early stage of PCV2 infection. Lv et al. (2015b) demonstrated the physical interaction between PCV2 ORF4 protein and FHC for the first time, and found that the decreased concentration of FHC can effectively inhibit the accumulation of reactive oxygen species.
PERK/eIF2α Pathway

Mounting evidence indicates that a wide variety of viruses could disturb ER homeostasis and lead to ER stress (Li et al., 2015). To cope with this stress, cells evolve a series of adaptive mechanisms called the UPR (Hetz, 2012). ER stress activates three branches of the UPR: PERK (Shen et al., 2005), IRE1 (Chen and Brandizzi, 2013), and ATF6 (Yan et al., 2002). Zhou et al. (2016) demonstrated that PCV2 initiated UPR by activating the PERK/eIF2α pathway instead of IRE1 or ATF6 pathways, ultimately promoting viral replication in PK-15 cells (Figure 3). Since PERK/eIF2α further activates downstream factors ATF4 and CHOP, so PCV2 infection can selectively activate apoptosis via the PERK-eIF2α-ATF4-CHOP axis. The findings provide a basis for demonstrating that ER stress of apoptotic responses plays an important role in the pathogenesis of PCV2 infection.

PI3K/Akt and ASK1 Pathway

The phosphatidylinositol 3-kinase PI3K/Akt pathway plays a vital role in multiple physiological processes, such as inflammation suppression, carbohydrate metabolism, and cellular proliferation (Hsu et al., 2010). The PI3K/Akt pathway is also an indispensable target for a variety of viruses to inhibit apoptosis (Cooray, 2004; Shin et al., 2007; Soares et al., 2009). For example, PRRSV can trigger the PI3K/Akt pathway to augment viral replication and promote cell survival (Wang et al., 2014). Recently, Wei et al. (2012a) found that PCV2 can transiently activate the PI3K/Akt pathway, and the activated PI3K/Akt pathway could suppress premature apoptosis, thereby improving virus growth (Figure 3). However, in the early stage of PCV2 infection, inhibition of PI3K activation greatly enhanced apoptotic responses, mainly manifested by the cleavage of caspase3 and poly-ADP ribose polymerase as well as DNA fragmentation. The ASK1 plays a target role in the induction of apoptosis as an upstream enzyme that activates the p38/MARK and JNK pathways (Gan et al., 2016). During PCV2 infection, PI3K was activated first, followed by phosphorylation of Akt. Activated Akt inhibits the production of pro-apoptotic proteins such as JNK and p38/MAPK, thereby suppressing JNK- and p38-dependent apoptosis (Wei et al., 2013).

Interestingly, a previous study demonstrated that PCV2 infection regulates apoptosis by activating the p38/MAPK and JNK1/2 cellular stress pathways (Tibbles and Woodgett, 1999; Kyriakis and Avruch, 2001; Wada and Penninger, 2004; Wei et al., 2009). In the absence of stress, non-phosphorylated JNK bonds to p53, resulting in ubiquitination of p53 followed by proteasomal degradation (Fuchs et al., 1998a,b). In contrast, dissociation of p53 can be mediated by phosphorylated JNK, thus promoting p53 stabilization (Fuchs et al., 1998b). Additionally, p38/MAPK kinase plays a role not only in phosphorylation of p53 but also in transcription of p53-regulated Bax (Bulavin et al., 1999; Huang et al., 1999). Taken together, the activation and phosphorylation of p38/MARK and JNK after PCV2 infection might contribute to p53 stabilization, finally leading to apoptosis (Wei et al., 2009).

Fas/FasL Pathway

Chang et al. (2007a) evaluated and compared the effects of infection of both PCV2 and PRRSV, individually or together, on co-cultured splenic (SLs), peripheral blood (PBLs) lymphocytes and swine splenic macrophages (SMs) in vitro. The expression

![PCV2-induced apoptosis model](https://example.com/pcv2-apoptosis-model.png)

FIGURE 2 A hypothetical model describes the mechanisms involved in PCV2-related proteins induced apoptosis. On the one hand, Cap protein expressed by PCV2, which subsequently inhibits p53 and its downstream pro-apoptotic factors Cytc, caspase9, and caspase8 via MAPK pathway; it can also suppress Hsp70 and further inhibit the production of AIF and Apoptosome, depressing apoptosis. On the other hand, ORF3 and ORF4 proteins are largely involved in regulating apoptosis induced by PCV2: ORF3 protein interacts with pPirh2 to up-regulate the expression of p53 and its downstream factors to initiate apoptosis; whereas ORF4 protein inhibits apoptosis by suppressing activation of ORF3, it can also interact with FHC to reduce the content of FHC, inhibiting the production of ROS and ultimately suppression apoptosis.

in PCV2-infected cells, thereby inhibiting apoptosis. Recently, Lin et al. (2018) found that ORF4 is a mitochondrial targeting protein that ultimately induces apoptosis via the mitochondrial pathway by interacting with adenine nucleotide translocase 3 (ANT3).

In summary, it is very significant to study how the apoptotic processes are regulated by the proteins of PCV2 to promote its infection (Figure 2). In addition to the factors mentioned above, there are other reported mechanisms that could regulate PCV2-induced apoptosis, including different pathways (PERK/eIF2α, PI3K/Akt, and Fas/FasL), regulation of free Ca²⁺ concentration and NF-κB activation. In the following sections, we will briefly review these factors.

PCV2-INDUCED APOPTOSIS REGULATED BY DIFFERENT PATHWAYS

PERK/eIF2α Pathway

Fas/FasL Pathway

Chang et al. (2007a) evaluated and compared the effects of infection of both PCV2 and PRRSV, individually or together, on co-cultured splenic (SLs), peripheral blood (PBLs) lymphocytes and swine splenic macrophages (SMs) in vitro. The expression
FIGURE 3 | Summarizes multiple host cellular signaling pathways involved in regulating PCV2-induced apoptosis. First, PCV2 infection can activate PERK via PERK-eIF2α-ATF4-CHOP axis and then induce apoptosis, it can further activate JNK/p38 by activating the ASK1 pathway to ultimately promote apoptosis, whereas P13K/AKT plays an opposite role. Second, it can activate Cyt C and caspase-3 via the IP3R-1-Ca$^{2+}$-PITC and NFκB-p53 pathways to activate apoptosis. In addition, PCV2 infection may activate caspase-8 via the Fas/FasL axis of the death receptor pathway to promote apoptosis.

levels of Fas ligand (FasL) and Fas were significantly increased after PRRSV alone- and PCV2 and PRRSV dually inoculated groups, and the latter was more obvious, while increased Fas/FasL further mediated apoptosis. Fas is also termed as CD95 (APO-1) and is one of the death receptors, these receptors include TNF-R1, CD95 (APO-1/Fas), DR3 (APO-3/TRAMP/Wsl-1/LARD), DR4 (TRAIL-R1), and so on. Han et al. (2010) confirmed that Fas could trigger apoptosis by binding to its cognate ligand, FasL. Thus, PCV2 infection may be associated with Fas/FasL-mediated apoptosis (Figure 3). However, the hypothesis of the mechanism is still poorly understood and need to be further demonstrated.

NF-κB Pathway

The transcription factor NF-κB is commonly activated during viral infection and is a key molecule that regulates a variety of cellular signal transduction pathways (Bonizzi and Karin, 2004; Hayden and Ghosh, 2004). For example, Dengue virus, Reovirus, infectious bursal disease virus, Hepatitis B virus and Sindbis virus have been confirmed to trigger apoptosis via activating NF-κB (Lin et al., 1998; Connolly et al., 2000; Jan et al., 2000; Liu and Vakharia, 2006; Pan et al., 2011; Chen et al., 2013). In these processes, NF-κB serves as a pro-apoptotic factor which is able to activate the p53 signaling pathway (Fujioka et al., 2004).

The present study found that after PCV2 infected cells, NF-κB was activated simultaneously with viral replication, which was characterized by translocation of NF-κB from the cytoplasm to the nucleus, degradation and phosphorylation of IκBα protein and increased DNA binding activity. However, treatment of cells with CAPE, a selective inhibitor of NF-κB activation, reduced progeny production and virus protein expression followed by decreasing caspase activity, indicating the importance of NF-κB in inducing apoptosis (Wei et al., 2008). However, the exact details still to be further demonstrated. According to the above discussions, there are many factors and multiple pathways participate in regulating apoptosis induced by PCV2 (Figure 3).
PCV2-INDUCED APOPTOSIS REGULATED BY CALCIUM

Calcium ions (Ca\(^{2+}\)) are participated in multiple cellular physiological processes, such as cytoplasmic Ca\(^{2+}\) signaling, ATP production, hormone metabolism and apoptosis induction (Drago et al., 2011). The intracellular free Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) can activate apoptosis by regulating numerous calcium-sensitive enzymes and can also activate the mitochondrial apoptotic pathway via its accumulation in the mitochondria (Hajnoczky et al., 2003; Pathak et al., 2013). Lv et al. (2012) found that PCV2 could lead to apoptosis of lymphocytes, this apoptotic mechanism is affected by the increased [Ca\(^{2+}\)]\(_i\) and is associated with the calmodulin (Lee et al., 2009) protein. Possible mechanisms of [Ca\(^{2+}\)]\(_i\) induction include the suppression of Ca\(^{2+}\) efflux by regulation of the Ca\(^{2+}\)-ATPase transporter on cytomembranes, and/or the induction of Ca\(^{2+}\) influx by promoting Ca\(^{2+}\) release from the ER by increased expression of IP3R (Lv et al., 2012). IP3R can regulate the mobilization of Ca\(^{2+}\) (Berridge, 2005), Ca\(^{2+}\) released from the ER could activate the PTPC on mitochondria, causing Cyt c release and inducing apoptosis (Figure 3; Garrido et al., 2006).

CONCLUSION

Apoptosis is a very important host defense mechanism that contributes to remove infected, damaged and excess amounts of cells. The virus must evade host defense mechanisms to proliferate and spread. Infection with PCV2 has been demonstrated to trigger several signaling pathways such as PERK/eIF2\(\alpha\) and PI3K/Akt pathway (Wei et al., 2012a; Zhou et al., 2016), resulting in activation or suppression of apoptosis. On the other hand, to cope with the apoptotic responses caused by viral infections, many viral proteins interact with apoptotic signals molecules to regulate apoptosis. There may be a discrepancy between induction and inhibition of apoptosis after PCV2 infection, as the experimental situation can be different, and close relationships between apoptosis and other factors that regulate cell fate, such as Ca\(^{2+}\), can make it more complicated and difficult.

This review is the first glimpse of PCV2 infection-induced apoptosis based on a wide array of reported works concerning PCV2 infection. It summarized currently findings which are involved in PCV2 infection-induced apoptosis, containing a vast panel of distinct pro-apoptotic and anti-apoptotic mechanisms (Figure 4). In the future, more attention should
be taken on host-virus interaction. Further investigation that effect of different isoforms of PCV2, PCV1, and PCV3 on PCV-induced apoptosis should be done. Taking the above ideas into consideration will help us reach a deeper understanding of the molecular mechanisms of PCV2-induced apoptosis and open a new gate for further studies on the pathogenesis of PCV2.

AUTHOR CONTRIBUTIONS

PL and RJ contributed ideas for the review. YP wrote the manuscript and produced the figures. RJ, MW, ZY, and AC edited and revised the manuscript.

REFERENCES

Abbas, T., and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. *Nat. Rev. Cancer* 9, 400–414. doi: 10.1038/nrc2657

Acheam, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. *Mol. Cell* 9, 423–432. doi: 10.1016/S1097-2765(02)00442-2

Alarcon, P., Rushton, J., and Wieland, B. (2013). Cost of post-weaning multisystematic wasting syndrome and porcine circovirus type-2 subclinical infection in England - an economic disease model. *Prev. Vet. Med.* 110, 88–102. doi: 10.1016/j.prevetmed.2013.02.010

Allan, G. M., Mc Neilly, F., Meenan, B. M., Kennedy, S., Mackie, D. P., Ellis, J. A., et al. (1999). Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. *Vet. Microbiol.* 66, 115–123. doi: 10.1016/S0378-1135(99)00004-8

Allan, G. M., McNeilly, F., Kennedy, S., Daft, B., Clarke, E. G., Ellis, J. A., et al. (1998). Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. *J. Vet. Diagn. Invest.* 10, 3–10. doi: 10.1177/104063879810010012

Allton, K., Jain, A. K., Herz, H. M., Tsai, W. W., Jung, S. Y., Qin, J., et al. (2009). Trim24 targets endogenous p53 for degradation. *Proc. Natl. Acad. Sci. U.S.A.* 106, 11612–11616. doi: 10.1073/pnas.0813177106

Alsheich-Bartok, O., Haupt, S., Alkalay-Snir, I., Saito, S., Appella, E., and Haupt, Y. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. *Nature* 429, 17492–17507. doi: 10.1038/oncotarget.7362

Brignone, C., Bradley, K. E., Kisselev, A. F., and Grossman, S. R. (2004). A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. *Oncogene* 23, 4121–4129. doi: 10.1038/sj.onc.1207540

Collavin, L., Lunardi, A., and Del Sal, G. (2010). p53-family proteins and their regulators: hubs and spokes in tumor suppression. *Cell Death Differ.* 17, 901–911. doi: 10.1038/cdd.2010.35

Collin, J. J., Rodgers, S. E., Clarke, P., Ballard, D. W., Kerr, L. D., Tyler, K. L., et al. (2000). Reovirus-induced apoptosis requires activation of transcription factor NF-kappaB. *J. Virol.* 74, 2981–2989. doi: 10.1128/JVI.74.7.2981-2989.2000

Cooray, S. (2004). The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. *J. Gen. Virol.* 85, 1065–1076. doi: 10.1099/vir.0.19771-0

Cordenonsi, M., Dupont, S., Maretto, S., Inzinga, A., Imbriano, C., and Piccolo, S. (2003). Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. *Cell* 113, 301–314. doi: 10.1016/S0092-8674(03)00308-8

Cory, S., and Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. *Nat. Rev. Cancer* 2, 647–656. doi: 10.1038/nrc883

Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. *Nat. Rev. Mol. Cell Biol.* 15, 49–63. doi: 10.1038/nrm3722

Dornan, D., Wertz, I., Shimizu, H., Arnott, D., Frantz, G. D., Dowd, P., et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. *Nature* 429, 86–92. doi: 10.1038/nature02514

Drago, I., Pizzo, P., and Pozzan, T. (2011). After half a century mitochondrial biology coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. *EMBO J.* 18, 6845–6854. doi: 10.1039/emboj.2013.06.8645

FUNDING

This research was supported by the National Key Research and Development Program of China (2017YFD0500800), National Key R&D Program (2016YFD0500800), China Agricultural Research System (CARS-42-17), and Sichuan Province Research Programs (2017Y0014/2017HH0026).

ACKNOWLEDGMENTS

We apologize to the authors of articles reporting relevant research that were not cited in this manuscript due to limited space.
Ellis, J., Hassard, L., Clark, E., Harding, J., Allan, G., Willson, P., et al. (1998). Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can. Vet. J. 39, 44–51.

Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. (1995). Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Berlin: Springer.

Finsterbusch, T., Steinfeldt, T., Doberstein, K., Rodner, C., and Mankertz, A. (2009a). Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 386, 122–131. doi: 10.1016/j.virol.2008.12.039

Finsterbusch, T., Steinfeldt, T. K., Rodner, C., and Mankertz, A. (2009b). Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology 386, 122–131. doi: 10.1016/j.virol.2008.12.039

Fort, M., Sibila, M., Alperuz, A., Mateu, E., Roerink, F., and Segalés, J. (2008). Interaction of the replication proteins and the capsid protein of porcine circovirus type 2 (PCV2) vaccination of conventional pigs prevents viremia against PCV2 isolates of different genotypes and geographic origins. Vaccine 26, 1063–1071. doi: 10.1016/j.vaccine.2007.12.019

Frank, A. K., Pietsch, E. C., Dumont, P., Tao, J., and Murphy, M. E. (2011). Wild-type and mutant p53 proteins interact with mitochondrial caspase-3. Cancer Biol. Ther. 11, 740–745. doi: 10.1089/cbt.2011.41906

Gan, F., Hu, Z., Huang, Y., Xue, H., Huang, D., Qian, G., et al. (2016). Characterization of necrotizing lymphadenitis associated with porcine circovirus type 2 infection. J. Comp. Pathol. 144, 63–69. doi: 10.1016/j.jcpa.2010.06.003

Galindocardiel, I., Grauroma, L., Pérezmaíllo, M., and Segalés, J. (2011). Mechanisms of cytochrome c release from mitochondria. Virus Res. 163, 20469–20485. doi: 10.1016/j.virusres.2010.07.002

Gray, T. A., Hernandez, L., Carey, A. H., Schaldach, M. A., Smithwick, M. J., Rus, K., et al. (2000). The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66, 76–86. doi: 10.1006/geno.2000.6199

Green, D. R., and Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130. doi: 10.1038/nature07986

Hajnoczky, G., Davies, E., and Madesch, M. (2003). Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 304, 445–454. doi: 10.1016/S0006-291X(03)00616-4

Han, J., Goldstein, L. A., Hou, W., Gastman, B. R., and Rabinowich, H. (2010). Regulation of mitochondrial apoptotic events by p53-mediated disruption of complexes between Antia apoptotic Bcl-2 members and bim. J. Biol. Chem. 285, 22473–22483. doi: 10.1074/jbc.M109.081410

Hayden, M. S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes Dev. 18, 2135–2190. doi: 10.1101/gad.1228704

He, J., Cao, J., Zhou, N., Jin, Y., Wu, J., and Zhou, J. (2013). Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J. Virol. 87, 1420–1429. doi: 10.1128/JVI.01443-12

Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102. doi: 10.1038/nrm3270

Hong, J. S., Kim, N. H., Choi, C. Y., Lee, J. S., Na, D., Chun, T., et al. (2015). Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet. Res. 46, 1–14. doi: 10.1186/s13567-015-0172-5

Hsu, M. J., Wu, C. Y., Chiang, H. H., Lai, Y. L., and Hung, S. L. (2010). PI3K/Akt signaling mediated apoptosis blockade and viral gene expression in oral epithelial cells during herpes simplex virus infection. Virus Res. 153, 36–43. doi: 10.1016/j.viruses.2010.07.002

Huang, C., Ma, W. Y., Maxiner, A., Sun, Y., and Dong, Z. (1999). P38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J. Biol. Chem. 274, 12229–12235. doi: 10.1074/jbc.274.18.12229

Jang, J. T., Chen, B. H., Ma, S. H., Liu, C. L., Tsai, H. P., Hsu, W. C., et al. (2006). Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J. Virol. 78, 8680–8681. doi: 10.1128/JVI.78.11.8680-8691.2000

Javelaud, D., and Besancon, F. (2002). Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. J. Biol. Chem. 277, 37349–37359. doi: 10.1074/jbc.M104497200

Jorgensen, I., Rayamajhi, M., and Miao, E. A. (2017). Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164. doi: 10.1038/nri.2016.147

Jung, Y. S., Qian, Y., and Chen, X. (2010). Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 22, 1003–1012. doi: 10.1016/j.cellsig.2010.01.003

Kouokam Fotso, G. B., Bernard, C., Bigault, L., de Boisséson, C., Mankertz, A., Krakowka, S., Ellis, J., McNeilly, F., Meehan, B., Oglesbee, M., Alldinger, S., et al. (2009). The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66, 76–86. doi: 10.1006/geno.2000.6199

Krakowka, S., Ellis, J., McNeilly, F., Meehan, B., Oglesbee, M., Alldinger, S., et al. (2004). Functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2 ORF3 protein competes with p53 in binding to Pirh2 and mediates the deregulation of p53 homeostasis. Virology 398, 1–11. doi: 10.1016/j.virol.2009.11.028

Kruppel, M., Stevenson, G. W., Galbreath, E. J., North, A., HogenEsch, H., and Mittal, S. K. (2005). Porcine Circovirus type 2 (PCV2) causes apoptosis in experimentally inoculated BALB/c mice. BMC Vet. Res. 1:7. doi: 10.1186/1746-6148-1-7

Kurosawa, H., Sato, T., Ikeda, T., Tanaka, K., and Tani, K. (2005). Porcine circovirus type 2 (PCV2) causes apoptosis in experimentally inoculated BALB/c mice. Vet. Pathol. 41, 471–481. doi: 10.1354/vp.41-5-471

Kroemer, G., Galluzzi, L., and Brenner, C. (2006). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163. doi: 10.1152/physrev.00013.2006

Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., et al. (2005). Classification of cell death: recommendations of the...
Nomenclature Committee on Cell Death 2009. Cell Death Differ. 12(Suppl. 2), 1463–1467. doi: 10.1038/cdd.2008.150

Kyriakis, J. M., and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869. doi: 10.1152/physrev.2001.81.2.807

Lamkanﬁ, M., Festjens, N., Declerq, W., Vanden, B. T., and Vandenabeele, P. (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44–55. doi: 10.1038/sj.cdd.4402047

Langley, E., Pearson, M., Faretta, M., Bauer, U. M., Fyre, R. A., Minucci, S., et al. (2014). Human SIR2 deacetylases p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396. doi: 10.1039/emi021.20.10.2383

Latini, P., Frontini, M., Caputo, M., Gregan, J., Cipak, L., Filippi, S., et al. (2011). CSA and CBP proteins interact with p53 and regulate its Mdm2-dependent ubiquitination. Cell Cycle 10, 3719–3730. doi: 10.4161/cc.21.10.17905

Le Cam, L., Linas, L. K., Paul, C., Julien, E., Lacroix, M., Hatchi, E., et al. (2006). E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127, 775–788. doi: 10.1016/j.cell.2006.09.031

Lee, E. W., Lee, S. M., Camus, S., Ghim, J., Yang, M. R., Oh, W., et al. (2009). Differential regulation of p53 and p21 by MKN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J. 28, 2100–2113. doi: 10.1038/embojc.2009.164

Lee, M. S., Jeong, M. H., Lee, H. W., Han, H. J., Ko, A., Hewitt, S. M., et al. (2013). The expression of makorin ring finger protein 1 (MKN1), pAKT, pmTOR, and PTEN in cervical neoplasia. Gynecol. Oncol. 130:e42. doi: 10.1016/j.ygyno.2013.04.158

Legube, G., Linas, L. K., Tyteca, S., Caron, C., Scheffner, M., Chevillard-Briet, M., et al. (2004). Role of the histone acetyl transferase Tip60 in the p53 pathway. J. Biol. Chem. 279, 44825–44833. doi: 10.1074/jbc.M407487200

Leng, R. P., Lin, Y., Ma, W., Wu, H., Lemmers, B., Chung, S., et al. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791. doi: 10.1002/0099-6743(2003)00193-4

Levine, A. J., and Oren, M. (2009). The first 30 years of p53: growing ever more complex. J. Virol. 83, 479–489. doi: 10.1128/JVI.00738-09

Li, D., Marchenko, N. D., Schulz, R., Fischer, V., Velasco-Hernandez, T., Talos, F., et al. (2009). Mammalian mitogen-activated protein kinase (MAPK) signalling through the Crotonyl-GlcNAc pathway: a new link to cell cycle and cancer. EMBO J. 28, 564–574. doi: 10.1128/EMBOJ.00738-09

Lin, J. Y., Ohshima, T., and Shimotohno, K. (2004). Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett. 573, 15–18. doi: 10.1016/j.febslet.2004.07.059

Lin, K. I., DiDonato, J. A., Hoffmann, A., Hardwick, J. M., and Ratan, R. R. (1998). Suppression of steady-state, but not stimulus-induced NF-kappaB activity inhibits alpha/beta-induced apoptosis. J. Cell Biol. 141, 1479–1487. doi: 10.1083/jcb.141.7.1479

Lin, W., Chien, M., Wu, P., Lai, C., and Huang, C. (2013). The porcine circovirus type 2 nonstructural protein ORF3 induces apoptosis in porcine peripheral blood mononuclear cells. Open Virol. J. 7, 148–153. doi: 10.2174/18743579010710150148

Liu, C., Liu, Y., Chen, H., Feng, H., Chen, Y., Wang, Y., et al. (2018). Genetic and immunogenic analysis of porcine circovirus type 2 strains isolated in central China. Arch. Virol. 46, 1–10. doi: 10.1007/s00705-017-3685-6

Liu, J., Bai, J., Lu, Q., Zhang, L., Jiang, Z., Michal, J. I., et al. (2013a). Two-dimensional liquid chromatography–tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome proﬁles of pulmonary alveolar macrophages infected with porcine circovirus type 2. J. Proteome. 79, 72–86. doi: 10.1016/j.jprot.2012.11.024

Liu, J., Bai, J., Lu, Q., Zhang, L., Jiang, Z., Wang, X., Li, Y., et al. (2013b). Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 447, 52–62. doi: 10.1016/j.virol.2013.08.025

Liu, J., Chen, I., Du, Q., Chua, H., and Kwang, J. (2006). The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J. Virol. 80, 5065–5073. doi: 10.1128/JVI.00238-18

Liu, J., Chen, I., and Kwang, I. (2005). Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol. 79, 8262–8274

Liu, J., Zhu, Y., Chen, I., Lao, J., He, F., Lao, A., et al. (2007). The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J. Virol. 81, 9560–9567. doi: 10.1128/JVI.00681-07

Lv, Q., Guo, K., Wang, T., Zhang, C., and Zhang, Y. (2015b). Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Cell Death Differ. 22, 191–202. doi: 10.1038/cdd.2012.10

Lv, Q., Guo, K., Wang, T., Zhang, C., and Zhang, Y. (2015a). Correction: identification of putative ORF5 protein of porcine circovirus type 2 and functional analysis of GFP-fused ORF5 protein. PLoS One 10:e0127859. doi: 10.1371/journal.pone.0127859

Lv, Q., Guo, K., Wang, T., Zhang, C., and Zhang, Y. (2015b). Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. J. Biol. 40, 477–485.

Lv, Q., Guo, K., Zhang, G., and Zhang, Y. (2016). The ORF4 protein of porcine circovirus type 2 antagonizes apoptosis by stabilizing the concentration of ferritin heavy chain through physical interaction. J. Gen. Virol. 97, 1636–1646. doi: 10.1099/0000472

Lv, Q., Guo, K., and Zhang, Y. (2014a). Current understanding of genomic DNA of porcine circovirus type 2. Virus Genes 49, 1–10. doi: 10.1007/s11262-014-1099-2

Lv, Y., Dai, L., Han, H., and Zhang, S. (2012). PCV2 induces apoptosis and modulates calcium homeostasis in piglet lymphocytes in vitro. Ret. Vet. Sci. 93, 1525–1530. doi: 10.1016/j.rvsc.2012.04.003

Mancini, F., Di Conza, G., Pellegrino, M., Rinaldo, C., Prodosmo, A., Giglio, S., et al. (2014). MDM4 (MDMX) localizes at the mitochondria and facilitates cell death. Cell Cycle 13, 447, 52ñ62.

Mantovani, F., Tocco, F., Girardin, J., Smith, P., Gasco, M., Lu, X., et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912–920. doi: 10.1038/nsmb1306
Mao, Y., Li, J. J., Liu, Y., Dong, W., Pang, P., and Deng, Z. B. (2017). Imbalance of intestinal immune function in piglets infected by porcine circovirus type 2 during the fetal period. *Acta Vet. Haug.* 65, 135–146. doi: 10.1556/004.2017.014

Marchenko, N. D., Wolfl, S., Erster, S., Becker, K., and Moll, U. M. (2007). Monoubiquitylation promotes mitochondrial p53 translocation. *EMBO J.* 26, 923–934. doi: 10.1038/sj.emboj.7601560

Meehan, B. M., McNeilly, F., Todd, D., Kennedy, S., Jewhurst, V. A., Ellis, J. A., et al. (1998). Characterization of novel circovirus DNAs associated with wasting syndrome in pigs. *J. Gen. Virol.* 79(Pt 9), 2171–2179. doi: 10.1099/0022-1317-9-7-2171

Mihara, M., Erster, S., Zaika, A., Petenko, O., Chittenden, T., Pancoska, P., et al. (2003). p53 Has a direct apoptotic role at the mitochondria. *Mol. Cell* 11, 577–590. doi: 10.1016/S1097-2765(03)00050-9

Nawagitgul, P., Morozov, I., Bolin, S. R., Harms, P. A., Sorden, S. D., and Paul, P. S. (2000). Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. *J. Gen. Virol.* 81, 2281–2287. doi: 10.1099/0022-1317-8-9-2281

Nielsen, I., Vincent, I. E., Bostner, A., Ladekær-Mikkelsen, A. S., Allan, G., Summerfield, A., et al. (2003). Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). *Vet. Immunol. Immunopathol.* 92, 97–111. doi: 10.1016/S0165-2427(03)00031-X

Oleinik, N. V., Krupenko, N. I., and Krupenko, S. A. (2007). Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. *Onecogene* 26, 7223–7230. doi: 10.1038/sj.onc.1210526

Opriessnig, T., Meng, X. J., and Halbur, P. G. (2007). Porcine circovirus type 2–associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. *J. Vet. Diag. Invest.* 19, 591–615. doi: 10.1016/j.jvedi.2009.09.056

Pan, D., Pan, L. Z., Hill, R., Marcato, P., Shmulevitz, M., Vassilev, L. T., et al. (2011). PAN, D., Pan, L. Z., Hill, R., Marcato, P., Shmulevitz, M., Vassilev, L. T., et al. (2011). Cadmium induces thymocyte apoptosis through p53-dependent NF-kappaB activation. *J. Virol.* 85, 2491–2498. doi: 10.1128/jvi.05455-10

Pathak, N., Mitra, S., and Khandelwal, S. (2013). Cadmium induces thymocyte apoptosis and regulates NF-kappaB activation. *Acta Vet. Hung.* 61, 331–341. doi: 10.1007/s10510-012-0140-5

Richmond, O., Cecere, T. E., Erdogan, E., Meng, X. J., Piñeiro, P., Subramaniam, S., et al. (2015). PD-L1 expression is increased in monocyte derived dendritic cells in response to porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus infections. *Vet. Immunol. Immunopathol.* 168, 24–29. doi: 10.1016/j.vetimm.2015.09.013

Rogers, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (2014). SUMO-1 modification activates the transcriptional response of p53. *EMBO J.* 18, 6455–6461. doi: 10.1038/emboj.2012.645

Salgado, R. L., Vidigal, P. M., de Souza, L. F., Onofre, T. S., Gonçaga, N. F., Eller, M. R., et al. (2014). Identification of an emergent porcine circovirus-2 in vaccinated pigs from a Brazilian farm during a postweaning multisystemic wasting syndrome outbreak. *Genome Announc.* 2:e00163-14. doi: 10.1128/genomeA.00163-14

Saraiva, G. L., Vidigal, P. M. P., Fietto, J. L. R., Bressan, G. C., Silva, A. J., and de Almeida, M. R. (2018). Evolutionary analysis of Porcine circovirus 3 (PCV3) indicates an ancient origin for its current strains and a worldwide dispersion. *Virus Genes* 54, 376–384. doi: 10.1007/s11268-015-1454-4

Sato, M., Tanaka, Y., Yamada, T., and Yamamoto, N. (2011). Dissection of cell context-dependent interactions between HBx and p53 family members in regulation of apoptosis: a role for HBV-induced HCC. *Cell Cycle* 10, 3554–3565. doi: 10.4161/cc.10.20.17856

Schultz, L., Khera, S., Leive, D., Heath, J., and Chang, N. S. (2004). TIAF1 and p53 functionally interact in mediating apoptosis and silencing of TIAF1 abolishes nuclear translocation of serine 15-phosphorylated p53. *DNA Cell Biol.* 23, 67–74. doi: 10.1089/dna.2004.23.67

Seeliger, F. A., Brügmann, M. L., Krüger, L., Greiwer-Wilke, L., Verspohl, J., Segalés, J., et al. (2007). Porcine circovirus type 2-associated cerebellar vasculitis in postweaning multisystemic wasting syndrome (PMWS)-affected pigs. *Vet. Pathol.* 44, 621–634. doi: 10.1135/vp.44.5-621

Segalés, J., Allan, G. M., and Domingo, M. (2005). Porcine circovirus diseases. *Annu. Health Res. Rev.* 6, 119–142. doi: 10.1016/jahr.2005.10.007

Shore, G. C., Papa, F. R., and Oakes, S. A. (2011). Signaling cell death from p53 in postweaning multisystemic wasting syndrome (PMWS)-affected pigs. *Vet. Res.* 42, 621–634. doi: 10.1186/1297-9740-42-5-621

Shibahara, T., Sato, K., Ishikawa, Y., and Kadota, K. (2000). Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. *J. Vet. Med. Sci.* 62, 1125–1131. doi: 10.1292/jvms.62.1125

Shin, Y. K., Liu, Q., Tikoo, S. K., Babiuk, L. A., and Zhou, Y. (2007). Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. *J. Gen. Virol.* 88, 13–18. doi: 10.1099/vir.0.82419-0

Shore, G. C., Papa, F. R., and Oakes, S. A. (2011). Signaling cell death from the endoplasmic reticulum stress response. *Vaccine Immunol.* 25, 921–932. doi: 10.1101/MCB.25.921-932.2005

Shibahara, T., Sato, K., Ishikawa, Y., and Kadota, K. (2000). Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. *J. Vet. Med. Sci.* 62, 1125–1131. doi: 10.1292/jvms.62.1125

Sinha, A., Schalk, S., Lager, K. M., Wang, C., and Opriessnig, T. (2012). Singular PCV2a or PCV2b infection results in apoptosis of hepatocytes in clinically affected gnotobiotic pigs. *Vet. Res.* 44, 621–634. doi: 10.1186/vr.44.5-621

Soares, J. A., Leite, F. G., Andrade, L. G., Torres, A. A., De Sousa, L. P., Barcelos, L. S., et al. (2009). Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infections is required for both host survival and viral replication. *J. Virol.* 83, 6883–6899. doi: 10.1128/jvi.00245-09
Pan et al. Regulation Apoptosis by Porcine Circovirus Type 2

Wei, L., Zhu, S., Wang, J., Zhang, C., Quan, R., Yan, X., et al. (2013). Regulatory role of ASK1 in porcine circovirus type 2-induced apoptosis. Virology 447, 285–291. doi:10.1016/j.virol.2013.09.011

Wei, L., Zhu, Z., Wang, J., and Liu, J. (2009). JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection. J. Virol. 83, 6039–6047. doi:10.1128/jvi.00135-09

Wolff, S., Erster, S., Palacios, G., and Moll, U. M. (2008). p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res. 18, 733–744. doi:10.1038/cr.2008.62

Xiang-Jin, M. (2013). Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 1, 43–64. doi:10.1146/annurev-animal-031412-105372

Xiao, C. T., Halbur, P. G., and Opriessnig, T. (2015). Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J. Virol. 90, 1830–1841. doi:10.1128/jvi.000100

Xu, D., Du, Q., Han, C., Wang, Z., Zhang, X., Wang, T., et al. (2016). p53 signaling modulation of cell cycle arrest and viral replication in porcine circovirus type 2 infection cells. Vet. Res. 47:120. doi:10.1186/s13567-016-0403-4

Xu, X., Qiao, W., Linke, S. P., Cao, L., Li, W. M., Furth, P. A., et al. (2001). Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266–271. doi:10.1038/39010

Yamasaki, S., Yagiashita, N., Sasaki, T., Nakazawa, M., Kato, Y., Yamadera, T., et al. (2014). Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J. 23, 113–122. doi:10.1038/sj.emboj.7601490

Yan, W., Frank, C. L., Korth, M. J., Sopher, B. L., Novoa, I., Ron, D., et al. (2002). Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone PSIP1. Proc. Natl. Acad. Sci. U.S.A. 99, 15920–15925. doi:10.1073/pnas.252341799

Young, L. S., Dawson, C. W., and Eliopoulos, A. G. (2007). Viruses and apoptosis. Annu. Rev. Microbiol. 5, 105–111.

Yuan, J., Luo, K., Zhang, L., Cheville, J. C., and Lou, Z. (2010). USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384–396. doi:10.1016/j.cell.2009.12.032

Zhai, S. L., Chen, S. N., Xu, Z. H., Tang, M. H., Wang, F. G., Li, X. J., et al. (2014). Porcine circovirus type 2 in China: an update on and insights to its prevalence and interaction with the immune system. Virol. J. 11:88. doi:10.1186/1743-422X-11-88

Zhang, L., and Chen, X. (2007). DeltaNp73 modulates nerve growth factor-mediated neuronal differentiation through repression of TrkA. Mol. Cell. Biol. 27, 3868–3880. doi:10.1128/MCB.02112-06

Zhou, Y., Qi, B., Xu, F., Du, H., Li, X., et al. (2016). Porcine circovirus 2 depleys PERK pathway and GRP78 for its enhanced replication in PK-15 cells. Viruses 8:556. doi:10.3390/v8090556

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Pan, Li, Jia, Wang, Yin and Cheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.