Preparation and Properties of Spherical Natural Rubber/Silica Composite Powders via Spray Drying

Siah Ying Tang¹,², Prachaya Sopanon¹, Wiwut Tanthapanichakoon¹,³ and Apinan Soottitantawat¹*¹
¹ Center of Excellence in Particle and Materials Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand
² Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Malaysia
³ Academy of Science, Royal Society of Thailand, Thailand

Abstract

In this work, composite powders of natural rubber/silica (NR-SiO₂) were prepared via sol-gel and spray drying method. The morphology and physical properties of resultant rubber composite powders were characterized by scanning electron microscopy with energy dispersive X-ray spectrometry, laser light scattering particle sizer and thermogravimetric analyzer. The results showed that spray-dried NR-SiO₂ particles were spherical in shape with diameter of less than 10 μm, with silica on the outer layer. The particle size was found to increase gradually with the increase in NR/Si mass ratio. Marginal growth in particle size was observed with increasing feed flow rate. Increasing inlet air temperature improved the latex particle encapsulation by silica layer while maintaining the final particle size. The mechanical properties of NR-SiO₂ powders-filled polylactic acid (PLA) composite increase gradually with the addition of dried particles of higher rubber content. However, the composite exhibited relatively lower or reduced tensile strength and elongation at break compared to the host PLA polymer. This could be attributed to poor filler dispersion associated with weak filler/matrix interaction effect occurring during melt-compounding process.

Keywords: natural rubber, silica, composite powder, spray drying, sol-gel

1. Introduction

Natural rubber (NR) is an important natural plant polymer that is widely applied in various industrial sectors such as automobile, tires, aerospace, sports and consumer products. In recent years, there is growing research interest towards the preparation of ultrafine NR powders (NRP) with better physical and mechanical properties. NRP represents an attractive alternative to conventional rubber sheets in some applications, especially as additives or impact modifier. The use of fine NRP offers greater convenience in use and transportation compared to rubber sheets that require additional processing.

Numerous efforts have been made on the synthesis of dried rubber-based particles ranging from micrometer to nanometer scale. For instance, Thill A. et al. demonstrated that it is possible to prepare nanoporous composite powder based on polybromostyrene and silica nanoparticles using ultrasonic spray system (Thill A. et al., 2005). Sae-Oui et al. reported the preparation of rubber powders via spray drying of pre-vulcanized NR followed by subsequent use as plastic additive in high-density polyethylene (HDPE) (Sae-Oui P. et al., 2010). Several powdered rubbers were successfully synthesized through gamma radiation crosslinking and spray drying of rubber lattices (Li D. et al., 2007; Peng J. et al., 2002; Wang Q. et al., 2011). It has been reported that the formation of nano-powdered rubbers is closely linked to the use of rubber latex with suitable crosslinking degree (Li D. et al., 2007).

Instead of irradiation technology, Paiva et al. described a methodology to produce composite spherical rubber powder by the modification of styrene-butadiene latex with methyl methacrylate and colloidal silica followed by spray drying (Paiva L.B.d. et al., 2014). Dried particulate rubber with particle sizes of 1 μm to 10 μm were obtained. On the other hand, the preparation of spray dried styrene-butadiene latex powder containing carbon nano-
Properties of NR-SiO\textsubscript{2} spray-dryer feed rate and inlet air temperature on the during spray drying. The effect of NR to silica mass ratio, formed via sol-gel reaction of siloxane on NR particles. In this study, the dried silica-coated rubber particles were ceramic materials widely used in rubber reinforcement. and rubber latex. Silica is chosen because it is a kind of spray drying a dispersion mixture containing silica sol of study, the spray dried composite powders were melt-extruded and incorporated as filler into thermoplastic polyactic acid (PLA) in order to evaluate their thermal and mechanical properties. The findings of present study offer a simple method to fabricate NR-based powders with tailorable mechanical properties that may have useful application as impact modifier in chemical and plastic industries.

2. Materials and methods

2.1 Materials

Pre-vulcanized natural rubber latex with a total solid content of 60 wt% was obtained from Thai Rubber Latex Co. Ltd. Sodium silicate was procured from Fluka Chemicals, Germany. The host polymer in this study was polylactic acid (PLA) 2002D supplied by Nature Works, USA. All other chemicals were of analytical grade.

2.2 Preparation of NR-SiO\textsubscript{2} composite powders

The preparation of rubber composite powder was performed in 3 steps: (1) preparation of silica sol; (2) mixing of NR latex with silica sol; (3) spray drying process. First, silica sols were prepared by dispersing sodium silicate in a diluted aqueous solution of hydrochloric acid (HCl) at 50 °C for 5 min. The sodium silicate solution underwent hydrolysis and polycondensation reactions to form silica sols. Next, the as-prepared silica sols of 20 wt% silica content were added to a diluted NR latex suspension and followed by sonication to constitute colloidal mixtures with varying NR/Si mass ratios ranging from 0.25:1 to 10:1. Finally, dry NR-SiO\textsubscript{2} powders were obtained by subjecting the mixture of silica sols and diluted NR to spray drying (mini-spray dryer, Buchi 190 model, Switzerland) at inlet air temperature of 160 °C and feed flow rate of 9 mL/min. The effect of feed rate and air inlet temperature on the final properties of resultant composite particles was also investigated.

2.3 Preparation of NR-SiO\textsubscript{2} particles filled PLA thermoplastic

The NR-SiO\textsubscript{2} filled PLA specimens were prepared according to the following procedure. A fixed 5.0 wt% of spray dried NR-SiO\textsubscript{2} powder was first blended and melt-compounded with PLA thermoplastic powder to obtain powdery mixture using a co-rotating twin screw extruder (LabTech LTE 20–40, LabTech Engineering Co., Ltd., Thailand) with temperature profile of 145–195 °C. The extrudates were then compression-molded at pressure of 50 bar and temperature of 165 °C for mechanical properties investigation.

2.4 Characterizations

The as-synthesized rubber composite powders were characterized in terms of particle size distribution, morphology, thermal stability and elemental composition. Particle size distribution was measured with laser diffraction analyzer (Mastersizer 2000, Malvern, UK). Prior to the size measurement, the NR-SiO\textsubscript{2} powder was dispersed in distilled water under sonication to obtain a homogeneous suspension without particle agglomeration. The morphological observation and elemental analysis of spray dried NR-SiO\textsubscript{2} particles were performed using scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX, JSM-6400, JEOL Ltd., Tokyo, Japan). The weight loss measurement of silica (control) and spray dried NR-SiO\textsubscript{2} particles was carried out in nitrogen gas with a thermogravimetric analyzer (TGA/DSC1, Mettler Toledo, Thailand).

The mechanical properties of the NR-SiO\textsubscript{2} particles filled PLA specimens were investigated using an electromechanical tensile tester (INSTRON 4206 universal testing machine, USA) in accordance with ASTM D256 and ASTM D638 Type I.
3 Results and discussions

3.1 Characterization of NR-SiO$_2$ composite powders

3.1.1 Particle size distribution of NR-SiO$_2$ powders

Fig. 1 shows the particle size distributions and mean particle diameters of rubber composite powders prepared at different NR/Si mass ratios. As shown in Fig. 1(a), there was no obvious change in the size distribution observed at the 3 lowest NR/Si ratios. The composite particles obtained at mass ratios of 0.25:1, 0.5:1, and 1:1 had very similar narrow size distributions with mean diameters centered at ~0.6 μm (Fig. 1(b)). The size distribution curves became significantly broader and shifted to the bigger particle size region with further increase of NR/Si mass ratio from 2:1 (Fig. 1(a)). This observation could be attributed to the formation of a layer of silica around the NR latex particles. When the NR/Si mass ratio is smaller or equal to unity, the silica interacts well with rubber particles through cohesive forces to form a network in the suspensions, leading to crust formation after spray drying. However, when the value of this ratio reach 2:1 or silica amount is insufficiently lower than NR content, the particles tend to form this network in an aggregated form, causing latex-latex interparticle coalescence and agglomeration during drying process. It is worth mentioning that further increasing NR/Si mass ratio to 10:1 contributed to a more severe particle agglomeration, resulting in larger mean particle diameter as shown in Fig. 1(b).

3.1.2 Morphology of NR-SiO$_2$ powders

It is well known that particle shape has a strong influence on the flow characteristics of powders (Ogata K., 2019; Talako T. et al., 2009). The morphology of spray dried rubber composite particles was characterized by SEM and the micrographs of the samples are presented in Fig. 2. As shown in Fig. 2(a–f), all spray dried NR-SiO$_2$ particles were almost spherical in shape. However, large agglomerates were observed at higher NR/Si mass ratios. This observation substantiated our earlier findings on particle size measurement. The higher the NR/Si mass ratio, the more frequent the particles were aggregated in some regions. When a sufficiently high amount of silica was present, most of the rubber composite materials appeared as individual spherical particles (Fig. 2(a–b)). When silica content was significantly reduced, the drying process results in the formation of agglomerated clusters, as evidenced in Fig. 2(f). It is clear that the composite particles aggregate greatly when there is insufficient silica to coat or encapsulate the rubber particle surface.

![Fig. 1](image1.png)
Fig. 1 (a) Particle size distribution and (b) mean particle diameter of NR-SiO$_2$ powders prepared at different NR/Si mass ratios. Reproduced by permission from Prachaya S. (2011).

![Fig. 2](image2.png)
Fig. 2 SEM micrographs of NR-SiO$_2$ powders prepared at different NR/Si mass ratios: (a) 0.25:1, (b) 0.5:1, (c) 1:1, (d) 2:1, (e) 6:1, and (f) 10:1, respectively. Magnification 5 kx. Reproduced by permission from Prachaya S. (2011).
3.1.3 Elemental composition of NR-SiO\textsubscript{2} powders

The results of elemental sample analysis by EDX are presented in Table 1. The relative amount of silicon was decreased as the NR/Si mass ratio was increased. The results indicated that the amount of silica in the form of SiO\textsubscript{2} available for rubber particle encapsulation became insufficient at higher mass ratios. For NR/Si mass ratio of 0.25:1 and 0.5:1, the elemental ratio of C/Si was lower than 1 and most of the NR particles are sufficiently encapsulated within the silica shell. As expected, the elemental ratio of C/Si increased as the mass ratio rose from 0.25:1 to 6:1. In this case, the amount of silica required for coating rubber particles decreases significantly, leading to more particle aggregation as a result of insufficient surface coverage. It was considered that a plateau of silica encapsulation extent was reached at NR/Si mass ratio of 8:1, as evidenced by the essentially constant elemental ratio of C/Si.

3.1.4 Thermal stability of NR-SiO\textsubscript{2} powders

The TGA curves of spray dried NR-SiO\textsubscript{2} powders are shown in Fig. 3. All spray dried samples prepared at different NR/Si mass ratios showed a similar thermal degradation trend. There was an apparent thermal decomposition step for NR macromolecular chains. The onset temperature of decomposition with pronounced weight loss was observed in the range of 220 °C to 240 °C. When more silica was incorporated into the rubber composite matrix, the main decomposition profile gradually shifted to a higher temperature. This indicated that the spray dried composite powder gradually possessed a more complex thermo-oxidative decomposition associated with noticeable improvement of thermal ageing resistance. Similar observations were reported in the literature (Paiva L. B. d. et al., 2014; Peng Z. et al., 2007; Sen D. et al., 2006). The thermal stability of as-prepared composite powders was greatly governed by the effective silica coating of rubber particles.

3.1.5 Effect of feed rate

The effect of feed flow rate to the spray dryer on the NR-SiO\textsubscript{2} powder properties was determined. Fig. 4 and Table 2 show the effect on the particle size distribution and mean particle diameter of NR-SiO\textsubscript{2} powders prepared at fixed NR/Si mass ratio of 2:1 and constant inlet air temperature of 160 °C. The results showed that increasing the feed flow rate produced a mild gradual increase in powder particle size. By increasing the feed rate, more latex composite dispersion was introduced and atomized during spraying, thus resulting in larger liquid droplets and inducing more collisions and subsequent fusion of small particles into larger ones, as shown in Fig. 5. The thin uneven silica coating and uncoated NR surface can, respectively, be distinguished by looking at the distribution of Si.

NR/Si mass ratio	% Element	C/Si ratio			
0.25:1	13.14	28.11	44.77	13.98	0.47
0.5:1	17.29	24.00	45.38	13.33	0.72
1:1	29.47	18.07	42.39	10.07	1.63
2:1	56.10	9.28	29.03	5.59	6.04
4:1	65.27	5.38	25.49	3.40	12.13
6:1	71.33	5.14	20.39	2.78	13.88
8:1	75.58	3.53	18.64	1.99	21.41
10:1	76.36	3.59	17.45	2.29	21.27

Reproduced by permission from Prachaya S. (2011).

Table 2

NR/Si mass ratio	Feed rate (mL/min)
2:1	6.93 7.65 8.15 8.28

Reproduced by permission from Prachaya S. (2011).
(see the tiny bright spots in Fig. 6(b), (e), (h) and (k)) and C elements (see the tiny bright spots in Fig. 6(e), (f), (i) and (l)). The composite particles prepared at a lower feed rate showed higher coverage of latex particles with silica, possibly due to the increasing rate of heat transfer (Reineccius G.A., 2001).

3.1.6 Effect of inlet air temperature

Fig. 7 and Table 3 show the effect of different inlet air temperature on particle size distribution and mean particle diameter of composite particles prepared at fixed NR/Si mass ratio of 2:1 and constant feed rate of 9 mL/min. It can be seen that increasing the inlet air temperature resulted in negligible changes in the particle size. As shown in Fig. 8, though the powder showed fractured particle surface with cracks or fissures, an increase in inlet air temperature produced more nearly smooth and hard particles. This is mainly due to fact that the increase in drying air temperature provided greater driving force for moisture evaporation, causing rapid drying and formation of rigid outer layer over rubber particles (Fig. 9(g)) (Alamilla-Beltrán L. et al., 2005; Finney J. et al., 2002). A relatively high drying temperature can accelerate both the hydrolysis and condensation processes of silanol groups, leading to higher conversion of silica sols into gelled particles (Wang S. et al., 2015). As a consequence, higher air inlet temperature favored the formation of more smooth and uniform layer of silica particles, as evidenced by the presence of high density of Si elements shown in Fig. 9(h).
and (k). On the basis of obtained data, the optimum spray conditions for preparation of spherical rubber powders containing fixed NR/Si mass ratio of 2:1 were determined as inlet air temperature of 160 °C and feed flow rate of 9 mL/min and therefore used in the subsequent study reported above.

Fig. 7 Particle size distribution of NR-SiO₂ powders prepared at different inlet air temperatures. Reproduced by permission from Prachaya S. (2011).

Table 3 Mean particle diameter (μm) of NR-SiO₂ powders at different inlet air temperatures.

NR/Si mass ratio	Inlet air temperature (°C)			
	120	140	160	180
2:1	7.53	7.66	7.65	7.68

Fig. 8 SEM micrographs of NR-SiO₂ powders prepared at different inlet air temperatures: (a) 120 °C, (b) 140 °C, (c) 160 °C, and (d) 180 °C, respectively. Magnification 6 kx. Reproduced by permission from Prachaya S. (2011).

Fig. 9 SEM micrographs and EDS elemental X-ray maps showing silicon and carbon distribution within NR-SiO₂ powders prepared at different inlet air temperatures: (a–c) 120 °C, (d–f) 140 °C, (g–i) 160 °C and (j–l) 180 °C respectively. Reproduced by permission from Prachaya S. (2011).
3.2 Characterization of NR-SiO₂/PLA composite

3.2.1 Morphology of NR-SiO₂/PLA composite

SEM images of NR-SiO₂/PLA composite containing 5.0 wt% spray dried rubber powders as filler and prepared via melt compounding process are illustrated in Fig. 10. Based on Fig. 10(b–d), the NR-SiO₂ -loaded PLA composite showed a wrinkled and crumpled layer structure, possibly due to the strong filler-filler or particle-particle interactions resulting from fairly high mass ratio of NR to silica. When the amount of latex was more than that of silica layer, the rubber particles were not sufficiently covered by silica layer and thus agglomerated rapidly, leading to poor adhesion to and poor dispersion in polymer matrix. Individual NR-SiO₂ particles could be observed in the composite containing rubber powder of higher NR/Si mass ratio, as evidenced in Fig. 10(d). In comparison, neat PLA exhibited little or no wrinkled appearance with a relatively homogeneous smooth surface. This morphological observation suggested that a better dispersion of rubber fillers in the polymer matrix was essential to yield an uniform NR-SiO₂/PLA composites.

3.2.2 Thermal and mechanical properties of NR-SiO₂/PLA composite

The DSC curves of NR-SiO₂/PLA composite and PLA polymer are presented in Fig. 11. The results showed that there is no significant variation of glass transition temperature ($T_g ~ 62$ °C) and melting temperature ($T_m ~ 160$ °C) of all investigated composite specimens and neat PLA. The small variation (< 1 °C) could be primarily due to the restriction in the polymer chain mobility caused by the interaction between the powder filler and PLA matrix (De Falco A. et al., 2007; Paiva L.B.d. et al., 2014). Table 4 summarizes the tensile strength, elongation at break and impact strength as a function of NR/Si mass ratio and spray drying conditions. Based on Table 4, one can observe that all the investigated mechanical properties exhibited a similar trend in which the addition of dried NR-SiO₂ powders led to an increase in the tensile strength and elongation at break as well as the impact strength values. However, all NR-SiO₂ powder-filled PLA specimens showed lower or reduced tensile strength and elongation at break than neat PLA, which reflected the poor dispersion and high agglomeration of filler particles within PLA matrix. This could be mainly ascribed to the presence of wrinkled surface as evidenced in Fig. 10 and thus uneven residual stress distribution in the composite material. The wrinkled or crumpled morphology resulting from structural defects was caused by poor filler dispersion accompanied by weak filler/matrix interaction effect occurring during melt-compounding process. Similar observations on the effect of wrinkles on tensile properties and fracture stress were reported by Min et al. and Papa-georgio et al. (Min K. et al., 2011; Papageorgiou D.G. et al., 2017). Furthermore, it was reported that good dispersion control and the interaction between polymer-particle filler play a vital role in transferring properties from filler...
4. Conclusions

In this study, we demonstrated a simple preparation of spherical NR-SiO₂ particles with diameter of less than 10 μm using sol-gel and spray drying. Our findings showed that the rubber particle size increased gradually with the increment of NR/Si mass ratio. Increasing feed flow rate induced the fusion of small particles with marginal increase in particle size. It was found that a low feed rate and high air inlet temperature led to more uniform encapsulation of rubber particles within the silica layer, as evidenced by high elemental C/Si ratio and SEM-EDX images. The incorporation of spray-dried powder of increasing rubber content gradually increased the mechanical strength of NR-SiO₂/PLA composite. However, both the tensile strength and elongation at break of the composites were relatively lower, compared to its neat polymer. It was deduced that poor particle dispersion associated with poor filler-matrix interaction decreased the composite’s mechanical strength; therefore, the melt-compounding process needs to be improved.

Acknowledgements

This scientific work was financially supported by the Centennial Fund of Chulalongkorn University.

References

Alamilla-Beltrán L., Chanona-Pérez J.J., Jiménez-Aparicio A.R., Gutiérrez-López G.F., Description of morphological changes of particles along spray drying, Journal of Food Engineering, 67 (2005) 179–184. https://doi.org/10.1016/j.jfoodeng.2004.05.063

Blattmann C.O., Pratsinis S.E., Nanoparticle filler content and shape in polymer nanocomposites, KONA Powder and Particle Journal, 36 (2019) 3–32. https://doi.org/10.14356/kona.2019015

De Falco A., Goyanes S., Rubiolo G.H., Mondragon I., Marzocca A., Carbon nanotubes as reinforcement of styrene–butadiene rubber, Applied Surface Science, 254 (2007) 262–265. https://doi.org/10.1016/j.apsusc.2007.07.049

Finney J., Buffo R., Reinencius G.A., Effects of type of atomization and processing temperatures on the physical properties and stability of spray-dried flavors, Journal of Food Science, 67 (2002) 1108–1114. https://doi.org/10.1111/j.1365-2621.2002.tb09461.x

Lee D.-J., Jangam S., Mujumdar A.S., Some recent advances in drying technologies to produce particulate solids, KONA Powder and Particle Journal, 30 (2013) 69–83. https://doi.org/10.14356/kona.2013010

Li D., Xia H., Peng J., Zhai M., Wei G., Li J., Qiao J., Radiation preparation of nano-powdered styrene-butadiene rubber (SBR) and its toughening effect for polystyrene and high-impact polystyrene, Radiation Physics and Chemistry, 76 (2007) 1732–1735. https://doi.org/10.1016/j.radphyschem.2007.02.085

Min K., Aluru N.R., Mechanical properties of graphene under shear deformation, Applied Physics Letters, 98 (2011) 013113. https://doi.org/10.1063/1.3534787

Nor N.A.M., Othman N., Effect of filler loading on curing characteristic and tensile properties of palygorskite natural rubber nanocomposites, Procedia Chemistry, 19 (2016) 351–358. https://doi.org/10.1016/j.proche.2016.03.023

Ogata K., A review: Recent progress on evaluation of flowability and floodability of powder, KONA Powder and Particle Journal, 36 (2019) 33–49. https://doi.org/10.14356/kona.2019002

Okamoto H., Todo H., Iida K., Danjo K., Dry powders for pulmonary delivery of peptides and proteins, KONA Powder and Particle Journal, 20 (2002) 71–83. https://doi.org/10.14356/kona.2002010

Paiva L.B.d., Oliveira A.M.d., Gavioli R.R., Preparation and
properties of rubber powder from modified-SBR latex by spray drying process, Powder Technology, 264 (2014) 507–513. https://doi.org/10.1016/j.powtec.2014.05.060

Papageorgiou D.G., Kinloch I.A., Young R.J., Mechanical properties of graphene and graphene-based nanocomposites, Progress in Materials Science, 90 (2017) 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

Peng J., Zhang X., Qiao J., Wei G., Radiation preparation of ultrafine carboxylated styrene–butadiene rubber powders and application for nylon 6 as an impact modifier, Journal of Applied Polymer Science, 86 (2002) 3040–3046. https://doi.org/10.1002/app.11323

Peng Z., Kong L.X., Li S.-D., Chen Y., Huang M.F., Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization, Composites Science and Technology, 67 (2007) 3130–3139. https://doi.org/10.1016/j.compscitech.2007.04.016

Prachaya S., Preparation of natural rubber/silica composite powder by spray drying, Master thesis, Department of Chemical Engineering, Chulalongkorn University, 2011.

Reineccius G.A. Multiple-core encapsulation—The Spray Drying of Food Ingredients, Microencapsulation of Food Ingredients, Leatherhead Publishing Surrey, 2001, pp. 151–185.

Sae-Oui P., Sirisinha C., Sa-nguanthammarong P., Thaptong P., Properties and recyclability of thermoplastic elastomer prepared from natural rubber powder (NRP) and high density polyethylene (HDPE), Polymer Testing, 29 (2010) 346–351. https://doi.org/10.1016/j.polymertesting.2009.12.010

Sen D., Spalla O., Belloni L., Charpentier T., Thill A., Temperature effects on the composition and microstructure of spray-dried nanocomposite powders, Langmuir, 22 (2006) 3798–3806. https://doi.org/10.1021/la052775x

Song K., Micro- and Nano-Fillers Used in the Rubber Industry, Progress in Rubber Nanocomposites, Woodhead Publishing, 2017, pp. 41–80.

Talako T., Ilyuschenko A., Letsko A., SHS powders for thermal spray coating, KONA Powder and Particle Journal, 27 (2009) 55–72. https://doi.org/10.14356/kona.2009008

Tanno K., Current status of the mechanofusion process for producing composite particles, KONA Powder and Particle Journal, 8 (1990) 74–82. https://doi.org/10.14356/kona.1990014

Thill A., Spalla O., Influence of templating latex on spray dried nanocomposite powders studied by small angle scattering, Journal of Colloid and Interface Science, 291 (2005) 477–488. https://doi.org/10.1016/j.jcis.2005.05.070

Tong H.H.Y., Chow A.H.L., Control of physical forms of drug particles for pulmonary delivery by spray drying and supercritical fluid processing, KONA Powder and Particle Journal, 24 (2006) 27–40. https://doi.org/10.14356/kona.2006007

Wang Q., Song Q., Qiao J., Zhang X., Zhang L., Song Z., Good dispersion of hydrophilic nanoscale calcium carbonate particles in nitrile butadiene rubber matrix, Polymer, 52 (2011) 3496–3502. https://doi.org/10.1016/j.polymer.2011.05.037

Wang S., Wang D.K., Smart S., Diniz da Costa J.C., Ternary phase-separation investigation of sol-gel derived silica from ethyl silicate 40, Scientific Reports, 5 (2015) 14560. DOI: https://doi.org/10.1038/srep14560

Zhou X., Zhu Y., Gong Q., Liang J., Preparation and properties of the powder SBR composites filled with CNTs by spray drying process, Materials Letters, 60 (2006) 3769–3775. https://doi.org/10.1016/j.matlet.2006.03.147
Authors’ Short Biographies

Patrick Tang Siah Ying

Dr. Patrick Tang Siah Ying is a Senior Lecturer at School of Engineering, Monash University Malaysia. He received his BEng degree in Chemical Engineering from University of Malaya, Malaysia in 2008. He obtained his PhD degree in Chemical Engineering from The University of Nottingham in 2012. Between 2012–2014, he was as an Assistant Professor at University of Tunku Abdul Rahman (UTAR). In 2019, he did collaboration research in Center of Excellence in Particle and Materials Processing Technology supported by Centennial Fund of Chulalongkorn University. His current research focuses on micro/nano-encapsulation, cellulosic nanocomposite and cavitation technology.

Prachaya Sopanon

Prachaya Sopanon graduated from Center of Excellence in Particle and Materials Processing Technology under supervision of Assistant Prof. Apinan Soottitantawat. He received his BEng and MEng degree in Chemical Engineering from Chulalongkorn University in 2010 and 2012, respectively. He is now working as process engineer in Chevron Thailand Exploration and Production, Ltd.

Wiwut Tanthapanichakoon

Professor Wiwut Tanthapanichakoon is a Technology Adviser at SCG Chemicals Co. Ltd. in Thailand, Fellow of Academy of Science, Royal Society of Thailand, and Emeritus Professor of Tokyo Institute of Technology in Japan and also Chulalongkorn University in Thailand. He was the founding Executive Director of the National Nanotechnology Center at the National Science and Technology Development Agency in Thailand. He holds a BEng degree in Chemical Engineering from Kyoto University in Japan, and a PhD degree in Chemical Engineering from The University of Texas at Austin. His current research focuses on particle technology, process analysis and simulation, and reaction engineering.

Apinan Soottitantawat

Assistant Prof. Apinan Soottitantawat is Head of Center of Excellent in Particle and Materials Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University. He received his BEng degree in Chemical Engineering from Chulalongkorn University, Thailand in 1998. He obtained his DEng degree in Molecular and Biochemical Engineering from Tottori University, Japan in 2005. He was researcher at National Institute of Advanced Industrial Science and Technology (AIST), Japan and National Science and Technology Development Agency (NSTDA), Thailand. His current research focuses on particle technology, encapsulation technology and chemical process scale-up.