GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

Katja Schwarz, Yiyi Liao, Michael Niemeyer, Andreas Geiger

Presented by Vincent Li
Abstract

- A generative model for radiance fields for high-resolution 3D-aware image synthesis from unposed images.
 - Yield a full probabilistic generative model for drawing unconditional random samples
 - Learning from only 2D images without 3D supervision
 - Doesn't need to be retrained for new scene (different from NeRF)
- A patch-based discriminator that samples the image at multiple scales (key to learn high-resolution generative radiance fields efficiently)
- Systematically evaluate our approach on synthetic and real datasets
 - By running a multi-view stereo algorithm (COLMAP) on several outputs to verify 3D consistency
Method Overview

- The scene is represented as a continuous function g_θ that maps a location x and viewing direction d to a color value c and a volume density σ.
Generator

- camera matrix K, camera pose ξ, 2D sampling pattern ν and shape/appearance codes $z_s \in \mathbb{R}^m/z_a \in \mathbb{R}^n$ as input and predicts an image patch P
- K is chosen in a way such that the principle point is in the center of the image
Ray Sampling

Figure 3: **Ray Sampling.** Given camera pose ξ, we sample rays according to $\nu = (u, s)$ which determines the continuous 2D translation $u \in \mathbb{R}^2$ and scale $s \in \mathbb{R}^+$ of a $K \times K$ patch. This enables us to use a convolutional discriminator independent of the image resolution.
Conditional Radiance Field

- Where the network is :)
- In contrast to NeRF, CRF is also conditioned on shape code z_s and z_a in addition to position x and viewing direction d.
- σ is computed independently of the view point d and appearance code to disentangle shape and appearance.

Figure 4: Conditional Radiance Field. While the volume density σ depends solely on the 3D point x and the shape code z_s, the predicted color value c additionally depends on the viewing direction d and the appearance code z_a, modeling view-dependent appearance, e.g., specularities.
Discriminator

- A $K \times K$ patch is extracted from the real image using a $v \sim p_v$ (same as generator).
- Then sample the real patch P by querying I at the 2D image coordinates $P(u, s)$ using bilinear interpolation.
- Very similar to PatchGAN however continuous displacement u and scale s is allowed while PatchGAN uses $s = 1$.
- Noted that real image I is not downsampled, but queried using sparse locations to retain high-frequency details.
Training and Inference

\[
V(\theta, \phi) = \mathbb{E}_{z_s \sim p_s, z_a \sim p_a, \xi \sim p_\xi, \nu \sim p_\nu} \left[f(D_\phi(G_\theta(z_s, z_a, \xi, \nu))) \right] \\
+ \mathbb{E}_{I \sim p_D, \nu \sim p_\nu} \left[f(-D_\phi(\Gamma(I, \nu))) - \lambda \|\nabla D_\phi(\Gamma(I, \nu))\|^2 \right]
\]

- Non-saturating GAN with R1-regularization
Results

(a) Rotation

(b) Elevation
Results

- How do Generative Radiance Fields compare to voxel-based approaches?

	Chairs	Birds	Cars	Cats	Faces
2D GAN [35]	59	24	66	18	15
PLATONIC GAN [20]	199	179	169	318	321
HoloGAN [40]	59	78	134	27	25
Ours	34	47	30	26	25

Table 1: **FID** at image resolution 64^2 pixels.
Results

- Do 3D-aware generative methods scale to high-resolution outputs?

	Cars		Faces			
	128	256	512	128	256	512
HoloGAN [40]	211	230	–	39	61	–
w/o 3D Conv	180	189	251	31	33	51
Ours	41	71	84	35	49	49
upsampled	–	91	128	–	63	77
sampled	–	74	104	–	50	56

Table 2: FID at image resolution 128^2-512^2.
Results

- Should learned projections be avoided?

Figure 6: **Viewpoint Interpolations** on Faces and Cars at image resolution 256^2 pixels for HoloGAN [40] (HGAN), HoloGAN w/o 3D Conv (HGAN \times) and our approach (Ours).
Figure 7: **3D Reconstruction** from synthesized images at resolution 256^2. Each pair shows one of the generated images and the 3D reconstruction from COLMAP [61].

Method	MMD-CD
Ours	0.044
HGAN	0.109
HGAN	0.092

Table 3: **Reconstruction Accuracy** on Cars for 100 COLMAP reconstructions compared to their closest shapes in the ground truth in terms of MMD [1] measuring chamfer distance (CD).
Results

- Are Generative Radiance Fields able to disentangle shape from appearance?

Figure 8: Disentangling Shape / Appearance. Results from our model on Cars, Chairs and Faces.
Limitation

- Simple scenes with single objects