Puccinia oxalidis Dietel & Ellis (1895): first report controlling oxalis latifolia kunth (Oxalidaceae) in systems of direct planting

J. C. Maciela,a, M. R. Costaa,b, E. A. Ferreiraa,b, I. T. Oliveiraa, B. T. B. Alencarab, J. C. Zanuncioab and J. B. Santosab

aUniversidade Federal dos Vales do Jequitinhonha e Mucuri – UFWJM, Departamento de Agronomia, Diamantina, MG, Brasil
bUniversidade Federal de Minas Gerais – UFMG, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil

A hypothesis studied is that \textit{P. oxalidis} can control \textit{O. latifolia}, reducing or avoiding the use of chemicals to manage this plant in less disturbed systems such as in no-tillage, with powdered pustules on the abaxial surface of infected leaves (Lee et al., 2019), which quickly become powdery (Verslyus, 1977), reducing growth and causing the wilting and death of this plant (Figure 2). The golden yellow color of rust urediospores of \textit{P. oxalidis} is due to the carotenoid pigments accumulated in the lipid droplets in its structure (Wang et al., 2019).

\textit{Puccinia} spp. develop better and sporulate on the target plant, without damage to the crops, due to the microclimate of the decomposing straw in no-tillage, controlling different weeds like \textit{Fallopia japonica} (Ueda et al., 2018). The straw can improve the environment for natural enemies (Trewavas, 2004), like this fungus, due to humidity and...
Figure 1. Clover (*Oxalis latifolia*) under no-tillage of the *Allium sativum* L. culture (A), rust caused by *Puccinia oxalidis* on the abaxial surface of the clover leaf (B), *P. oxalidis* pustules under a stereomicroscope (magnifying glass) (C), *P. oxalidis* urediniospore with circular shape (D).

Figure 2. Stages of infection by *Puccinia oxalidis* in clover (*Oxalis latifolia*). Clover leaf without rust infection (A), onset of rust infection (B), rust across the leaf abaxial surface (C), leaf severely infected with symptoms of wilt and necrosis (D).
mild temperatures while reducing the competition between *O. latifolia* and garlic plants. The biological control by the fungus *P. oxalidis* prevented the competition of *O. latifolia* with garlic plants in no-tillage, even though it was the main weed species at 60 days after the beginning of this culture.

The weed *O. latifolia* predominated in the plots with no-tillage, but the rust on its leaves, caused by the fungus *P. oxalidis* reduced the competition, making additional weeding during the garlic plant cycle unnecessary for the management of this weed.

The biological control of *O. latifolia* by *P. oxalidis* was efficient without affecting the garlic plants under no-tillage.

References

ARIANOUTSOU, M., BAZOS, I., DELIPETROU, P. and KOKKORIS, Y., 2010. The alien flora of Greece: taxonomy, life traits and habitat preferences. *Biological Invasions*, vol. 12, no. 10, pp. 3525-3549. http://dx.doi.org/10.1007/s10530-010-9749-0.

BURGER, W.C., 1991. *Flora Costaricensis*. Chicago: Field Museum of Natural History. Oxalidaceae, Fieldiana, Botany, vol. 28, pp. 2-16.

EVERARD, M., GUPTA, N., CHAPAGAIN, P.S., SHRESTHA, B.B., PRESTON, G. and TIWARI, P., 2018. Can control of invasive vegetation improve water and rural livelihood security in Nepal? *Ecosystem Services*, vol. 32, no. 10, pp. 125-133. http://dx.doi.org/10.1016/j.ecoser.2018.07.004.

FARR, D.F. and ROSSMAN, A.Y., 2018 [viewed 27 October 2020]. Fungal Databases [online]. Available from: https://int.ars-grin.gov/fungalDatabases/

GUERRA, F.A., DE ROSSI, R.L., BRÜCHER, E., VULETIC, E., PLAZAS, M.C., GUERRA, G.D. and DUCASSE, D.A., 2019. Occurrence of the complete cycle of *Puccinia sorghi* Schw. in Argentina and implications on the common corn rust epidemiology. *European Journal of Plant Pathology*, vol. 154, no. 2, pp. 171-177. http://dx.doi.org/10.1007/s10658-018-01645-3.

IRELAND, K.B., HUNTER, G.C., WOOD, A., DELAISSE, C. and MORIN, L., 2019. Evaluation of the rust fungus *Puccinia rapipes* for biological control of *Lycium feroxissimum* (African boxthorn) in Australia: life cycle, taxonomy and pathogenicity. *European Journal of Plant Pathology*, vol. 123, no. 11, pp. 811-823. http://dx.doi.org/10.1007/j.10658-019-03021-9.

KIRK, P.M., CANNON, P.F., MINTER, D.W. and STALPERS, J., 2008. *Dictionary of the fungi*. 10th ed. Wallingford: CABI. 771 p.

KÖPPEN, W., 1936. Das geographische system der klimate. In: W. KÖPPEN and R. GEIGER, eds. *Handbuch der Klimatologie*. Berlin: Gebrüder Bornträger, pp. 1-44.

LEE, S.H., LEE, C.K., CHO, S.E. and SHIN, H.D., 2019. First report of rust caused by *Puccinia oxalidis* on *Oxalis debilis* var. corymbosa in Korea. *Plant Disease*, vol. 103, no. 1, pp. 148-149. http://dx.doi.org/10.1094/PDIS-05-18-0777-PDN.

MAHJARAN, S., DEVKOTA, A., SHRESTHA, B.B., BANIYA, C.B., RANGASWAMY, M. and JHA, P.K., 2020. Prevalence of *Puccinia abrupta* var. partheniicola and its impact on *Parthenium hysterophorus* in Kathmandu Valley, Nepal. *Journal of Ecology and Environment*, vol. 44, no. 1, pp. 1-7. http://dx.doi.org/10.1080/s41610-020-00168-5.

MARIN-FELIX, Y., GROENEWALD, J.Z., CAI, L., CHEN, Q., MARINCOWITZ, S., BARNES, I., BENSCH, K., BRAUN, U., CAMPORISE, E., DAMM, U., DE BEER, Z.W., DISSANYAKE, A., EDWARDS, J., GIRALDO, A., HERNÁNDEZ-RESTREPO, M., HYDE, K.D., JAYAWARDENA, R.S., LOMBARD, I., LUANGSA-ARD, J., MCTAGGART, A.R., ROSSMAN, A.Y., SANDOVAL-DEÑIS, M., SHEN, M., SHIVAS, R.G., TAN, Y.P., VAN DER LINDE, E.J., WINGFIELD, M.J., WOOD, A.R., ZHANG, J.Q., ZHANG, Y. and CROUS, P.W., 2017. Genera of phytopathogenic fungi: *Gephy 1. Studies in Mycology*, vol. 86, pp. 99-216. http://dx.doi.org/10.1016/j.simyco.2017.04.002. PMid:28663602.

ROYO-ESNAL, A. and LÓPEZ-FERNÁNDEZ, M.L., 2010. Modelling leaf development in *Oxalis latifolia*. *Spanish Journal of Agricultural Research*, vol. 8, no. 2, pp. 419-424. http://dx.doi.org/10.5424/sjar/2010082-1214.

ŠAFRÁNKOVÁ, I., 2014. Occurrence of rust disease caused by *Puccinia oxalidis* on *Oxalis triangularis* in the Czech Republic. Short Communion. *Plant Protection Science*, vol. 50, no. 1, pp. 17-18. http://dx.doi.org/10.17221/19/2013-PPS.

SHRESTHA, B.B., SHRESTHA, U.B., SHARMA, K.P., THAPA-PARAJULI, R.B., DEVKOTA, A. and SIWAKOTI, M., 2019. Community perception and prioritization of invasive alien plants in Chitwan-Annapurna Landscape, Nepal. *Journal of Environmental Management*, vol. 229, no. 1, pp. 38-47. http://dx.doi.org/10.1016/j.jenvman.2018.06.034. PMid:30032998.

TALHINHAS, P., CARVALHO, R., FIGUEIRA, R. and RAMOS, A.P., 2019. An annotated checklist of rust fungi (Pucciniales) occurring in Portugal. *Sydowia*, vol. 71, pp. 65-84. http://dx.doi.org/10.12905/0380.sydowia71-2019-0065.

TREWAVAS, A., 2004. A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture. *Crop Protection (Guildford, Surrey)*, vol. 23, no. 9, pp. 757-781. http://dx.doi.org/10.1016/j.cropro.2004.01.009.

UEDA, H., KUROSE, D., KUGIMIYA, S., MITSUHARA, I., YOSHIDA, S., TABATA, J., SUZUKI, K. and KITAMOTO, H., 2018. Disease severity enhancement by an esterase from non-phytopathogenic yeast *Pseudozyma antarctica* and its potential as adjuvant for biocontrol agents. *Scientific Reports*, vol. 8, no. 1, pp. 16455. http://dx.doi.org/10.1038/s41598-018-3470-2. PMid:30405193.

VACACELA AJILA, H.E., FERREIRA, J.A.M., COLARES, F., OLIVEIRA, C.M., BERNARDO, A.M.G., VENZON, M. and PALLINI, A., 2018. *Ricoseius liochloeae* (Acari: Phytoseiidae) is not a predator of false spider mite on coffee crops: What does it eat? *Experimental & Applied Acarology*, vol. 74, no. 1, pp. 1-11. http://dx.doi.org/10.1007/s10493-018-0211-9. PMid:29383531.

VAN DER MERWE, M., ERICSON, L., WALKER, J., THRALL, P.H. and BURDON, J.J., 2007. Evolutionary relationships among species of *Puccinia* and *Uromyces* (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. *Mycological Research*, vol. 111, no. Pt 2, pp. 163-175. http://dx.doi.org/10.1016/j.mycres.2006.09.015. PMid:17324755.

VERSILYS, W.S., 1977. New plant disease record in New Zealand: *Puccinia oxalidis* on *Oxalis*. *New Zealand Journal of Agricultural Research*, vol. 20, no. 3, pp. 429-430. http://dx.doi.org/10.1080/00288233.1977.10427355.

WANG, E., DONG, C., PARK, R.F. and ROBERTS, T.H., 2019. Carotenoid complement of rust spores: variation among species and pathotype. *Phytochemistry*, vol. 161, no. 5, pp. 139-148. http://dx.doi.org/10.1016/j.phytochem.2019.02.007. PMid:30836233.