Exosomes in Cancer Liquid Biopsy: A Focus on Breast Cancer

Sina Halvaei,¹ Shiva Daryani,¹ Zahra Eslami-S,¹,2 Tannaz Samadi,¹,2 Narges Jafarbeik-Iravani,¹,2 Tayebeh Oghabi Bakhshayesh,¹ Keivan Majidzadeh-A,¹ and Rezvan Esmaeili¹

¹Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

The important challenge about cancer is diagnosis in primary stages and proper treatment. Although classical clinico-pathological features of the tumor have major prognostic value, the advances in diagnosis and treatment are indebted to discovery of molecular biomarkers and control of cancer in the pre-invasive state. Moreover, the efficiency of available therapeutic options is highly diminished, and chemotherapy is still the main treatment due to lack of enough specific targets. Accordingly, finding the new noninvasive biomarkers for cancer is still an important clinical challenge that is not achieved yet. There are current technologies to screen, diagnose, prognose, and treat cancer, but the limitations of these implements and procedures are undeniable. Liquid biopsy as a noninvasive method has a promising future in the field of cancer, and exosomes as one of the recent areas have drawn much attention. In this review, the potential capability of exosomes is summarized in cancer with the special focus on breast cancer as the second cause of cancer mortality in women all around the world. It discusses reasons to choose exosomes for liquid biopsy and the studies related to different potential biomarkers found in the exosomes. Moreover, exosome studies on milk as a specific biofluid are also discussed. At last, because choosing the method for exosome studies is very challenging, a summary of different techniques is provided.

Identification of specific biomarkers is required for early detection and cancer screening to conquer cancer. Due to the heterogeneous characteristics of most tumors and different genomic profiles, conventional biopsies cannot reflect the whole nature of primary or secondary tumors (metastasis area). Each tissue biopsy provides a small sample size and fails to reflect tumor heterogeneity, which is essential in the treatment procedure.¹,² Moreover, to detect the therapy response, repeated cancer cell sampling is needed to identify tumor genetic changes during cancer treatment, but after surgery, the tumor is not accessible to be monitored during treatment.³ Accordingly, new low-cost and noninvasive sampling is needed for early detection, screening, and investigating tumor dynamics as well as the risk of relapses.⁷ Isolation of genetic materials from bioliquids is a new and minimally invasive method to diagnose different types of cancer. In most cancers, some compartments of tumor cells (e.g., DNA, exosome, etc.) or even the whole cancer cells separate from the original tumor bulk and enter the bloodstream or any other biofluid.⁵ Relative to direct tumor biopsies, the easy-to-obtain nature of bioliquids makes them an attractive alternative source for clinical application. Releasing exosomes from heterogeneous cancer cells in biofluids could provide the potential information of tumors.⁵,⁶

Exosomes were first reported by Pan and Johnstone⁷ in 1983 at McGill University when culturing sheep reticulocytes. These lipid bilayered vesicles with endocytic origins are released into the extracellular region⁷ by a variety of mammalian cells, including cancer cells.⁷ Exosomes from different types of cells enclose different proteins that have important roles in their biogenesis and are used as markers for their recognition in experimental procedures. Some examples of these proteins are Rab GTPase family,¹⁰ tetraspanins (CD9, CD81,¹¹ and CD63¹²), annexins,¹³ and chaperones (heat shock protein [HSP] 70¹² and HSP90¹⁴). Exosomes are exciting in a vast range of biofluids, including serum,¹⁵ normal and malignant urine,¹⁶ plasma, breast milk, saliva,¹⁷ malignant pleural effusions,¹⁸ bronchial lavage fluid,¹⁹ ocular samples, tears,²⁰ nasal lavage fluid,²¹ semen,²² synovial fluid,²³ amniotic fluid, and pregnancy-associated serum.²⁴

The current review discusses advantages of liquid biopsy, especially milk as a specific breast biofluid for exosome-based studies. Then different exosome studies related to diagnosis, treatment, and response to therapy in breast cancer (BC)¹⁶ were investigated. Finally, recent studies on exosomal genetic materials in the field of cancer biomarkers were scrutinized, and the study concentrated on different methods related to laboratory works on cancer exosomes.

Encouraging Reasons to Use Exosomes for Liquid Biopsy
Traditional biopsies, such as fine needle aspiration, rely on accessing the tumor cells⁷, but exosome-based liquid biopsy relies on subcellular particles and their cargos. Compared with the other sources of liquid biopsies, exosomes have superiority in different aspects. First, compared with other subcellular particles such as apoptotic bodies and microvesicles, exosomes are more homogeneous in terms of

https://doi.org/10.1016/j.omtn.2017.11.014.
²These authors contributed equally to this work.
Correspondence: Rezvan Esmaeili, Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, South Gandhi, Vanak Square, Tehran 1517964311, Iran.
E-mail: esmaeili.rezvan@gmail.com
Breast Milk- and Breast Fluid-Derived Exosomes

The majority of biomarker-based studies on BC focus on blood-derived exosomes. Most of the cells in the human body, including breast tissue, release their exosomes into the blood. Therefore, the concentration of breast-specific exosomes (BSEs) seems to decrease in blood samples. However, breast fluids, especially milk, might be full of BSEs. Thus, breast milk may be a more reliable source for exosome studies and finding specific biomarkers. Hypothetically, BSEs may have breast tissue-specific markers that let them bind specifically to the BC cells and could be used in nanoengineering and targeted therapy. In addition, collecting human milk in large scales for commercial purposes is more practical and less invasive than that of human serum. The yield of milk-derived exosomes (335 mg/L) is enough for commercial purposes. One study showed that drug-loaded bovine milk exosomes were used to inhibit human BC cells (MDA-MB-231 and T47D) proliferation. It concluded that bovine milk-derived exosomes increased the stability and cellular uptake of the drug. The regulatory effect of human milk on the immune system is already demonstrated; researchers presented the anti-cancer impact of milk exosomes by NF-KB pathway in H1299 cells. Furthermore, in 2016, Yassin et al. proposed that camel milk exosomes can be utilized as potentially safe nanocarriers. Interestingly, human milk exosomes contain high levels of transforming growth factor-β2 (TGF-β2) and could promote epithelial-to-mesenchymal transition (EMT) in MCF7 and MCF10A breast cells. Hence, secretion of TGF-β2 in breast milk might increase the risk of BC. In the opposite case, bovine milk exosomes decreased BC cell viability in vitro. The stability of bovine milk exosomes under the digestive system acidic condition makes it ideal for oral application. Loading bovine milk exosomes with paclitaxel (PTX) raised therapeutic efficacy and reduced systemic toxicity compared with free PTX in an animal model for lung cancer. A recent study assessed the capacity of milk-derived exosomes to optimize curcumin delivery to cancer cells. The mentioned study proved that milk exosomes encapsulated with curcumin had higher solubility in hydrophilic solutions, which elevated the curcumin delivery to cancer cells. Exosomal curcumin was stable under digestive system conditions, as well as endocytosis by human intestinal cells in vitro. In conclusion, milk exosomes might be cost-effective drug carriers and suitable for oral application. Further investigation on human breast milk exosomes may discover new roles for them in drug delivery.

Exosomes’ Role in BC Diagnosis, Treatment, and Resistance to Therapy

Diagnosis

Similar to other cancers, BC tumor-related exosomes exert multiple functions in tumor growth, metastasis, and chemoresistance. Exosomes and their components (DNA, RNA, and proteins) may influence immune escape, tissue invasion, metastasis, and angiogenesis. Existence of circulating exosomal miRNAs might be a diagnostic biomarker for breast malignancies. Triple-negative BC (TNBC) cells produce exosomes containing certain proteins and miRNAs (Figure 1), which result in malignant transformation. In comparison with malignant cells,
normal cells release exosomes that pack neutral miRNAs. Several investigations showed correlation between exosomal miRNA (miR-195, miR-21, miR-484/191) and tumorigenesis and pathological stages. Hannafon et al. indicated that levels of miR-21 and miR-1246 were higher in plasma exosomes of patients with BC compared with those of the control samples. Moreover, interestingly, the result of the study by Palma et al. showed that exosomes released by BC cells can be classified depending on their miRNAs content. Analyzing small RNA content of the serum exosomes of five patients with BC by RNA sequencing (RNA-seq) technique showed that BC diagnosis was associated with changes in the levels of specific subtypes of miRNAs. In 2016, Fiskaa et al. assessed the whole small RNA content of nine BC cell lines and indicated exosomal small RNA signatures to identify BC cell lines from each other and also from those of other non-BC cell lines. Based on the abundant studies focused on the role of exosomes in BC, Park et al. designed a diagnostic kit. This useful equipment measures the amount of 10 miRNAs in breast tumor-derived exosomes. The aggregation of some miRNAs indicates BC samples, and a decreased amount of them directs to normal samples. To sum up, the miRNA content of bioliquid exosomes can be potentially applied in early diagnosis and staging of patients with BC.

As well as miRNAs, some proteins are differentially expressed in certain stages and types of BC, which are found in the extracted exosomes. For example, CD24, likely as a late-stage BC biomarker, exists in seral exosomes. In 2005, Ryan et al. showed that survivin and its splice variants were differentially expressed in BC tissues and had different roles in the apoptosis of BC cells. Accordingly, Khan et al. considered that BC cells released survivin packed in the exosomes. Then, they found survivin-2B as an anti-apoptotic marker in the serums of patients with BC. Therefore, expression analysis of survivin-2B may serve as a diagnostic and prognostic marker in early BC stages.

Treatment

Recent research presented exosomes as novel therapeutic targets. Intrinsic and engineered exosomes can be applied as therapeutic
agents to lay off the progression of the disease. It was indicated that engineered exosomes loaded with specific elements such as miRNAs can be utilized as a potential therapeutic option. O’Brien et al.63 in 2015, found that miR-134-loaded exosomes can decrease the migration and invasion of BC cells. Additionally, it enhances the sensitivity of BC cells to anti-HSP90 agents, 17-AAG and PU-H7163 (Figure 2A). miR-503 inhibits the proliferation of BC cells and their invasive capacities by CCND2 and CCND3 knockout. By miRNA profiling, Bovy et al.64 identified that miR-503 was specifically upregulated in exosomes released from endothelial cells after treatment with PTX and epirubicin (EPB). Based on their study, endothelial exosomes loaded with miR-503 might obstruct the proliferation of tumor cells, and in that way contribute to the direct effect of taxanes and anthracyclines therapy64 (Figure 2B). An in vivo study on RAG2-/- mice showed that exosomes were potent to deliver let-7a to epidermal growth factor receptor (EGFR)-expressing BC cells. This study suggested that exosomes can be used to target EGFR-expressing BC cells by carrying off nucleic acid drugs65 (Figure 2C).

For the first time in 2015, Jenjaroenpun et al.66 characterized the whole RNA content of exosomes secreted by two human metastatic BC cell lines. They suggested that exosomal RNA analysis might distinguish low metastatic BC cell line (MDA-MB-436) from highly metastatic BC cell line (MDA-MB-231).66 By the RNA-seq technique, miRNA expression profiles of metastatic BC, as well as normal mammary cell lines, are identified. Based on the multiple algorithms, miR-105 is selected for in vivo and in vitro analyses. It indicated that exosomes mediate the transfer of miR-105, which efficiently breaks the cell-cell tight junctions and induces metastasis. In addition, overexpressed miR-105 in non-metastatic BC cell line (MCFDCIS)-derived exosomes induced metastasis and vascular permeability in null mice.67 In conclusion, exosomes can be used in drug delivery and targeted therapy of BC cells, or target the inhibition of the cancer signaling pathways.

Resistance to Therapy

The role of exosomes in the resistance of BC to treatment was assessed in some studies. Urothelial carcinoma-associated 1 (UCA1) protein exerts a regulative effect on chemoresistance of different cancer cells (e.g., gastric, bladder, and colorectal cancer).68-70 In 2016, Xu et al.71 compared the UCA1 mRNA amount in exosomes released from tamoxifen-sensitive (MCF7) and -resistant (LCC2) BC cells. Significantly higher levels of UCA1 were detected in both LCC2 cells and their exosomes. Interestingly, LCC2-released exosomes had higher UCA1 expression than those of the LCC2 parent cells. They concluded the role of exosomal transfer of UCA1 in the induction of tamoxifen resistance in MCF-7 cells71 (Figure 3A). Boelens et al.72 demonstrated that upregulation of RAB27B protein resulted in over-release of exosomes in stromal cells. These exosomes induce the STAT1 protein in adjacent BC cells and activate NOTCH3 pathways. All of these processes lead to chemoresistance and radiation resistance in BC cells72 (Figure 3B). In this regard, using RNA-seq data, scientists assessed BC patient-derived xenograft models to predict the chemotherpay response.73 In summary, BC cells’ exosomes and stromal cells’ exosomes, which are affected by cancer niche, transfer intercellular messages in order to maintain cancer cell’s niche.

Exosomal Genetic Materials in Other Cancers

Researchers studied other cancer exosomes in different biofluids. Some of the reputable studies focusing on non-BC cells are summarized in Table 1. The study on serum samples illustrated the advantages of these vesicles as potential biomarker sources in different cancers. As an example, the study by Taylor et al.74 showed that the signature on circulating exosomal miRNAs accurately reflected the tumor profiles. Therefore, exosomal mRNA profiling can be performed as an alternative diagnostic procedure.74 Moreover, a study on glioblastoma multiforme in patients’ serum samples indicated that exosomal miR-320, miR-574-3p, and RNU6-1 could serve as diagnostic biomarkers for early detection and monitoring of the disease.15 Another study on seral exosomes of patients with melanoma showed an association between circulating miR-125b downregulation and disease progression.75 The selected miR-1246, miR-3976, miR-4644, and miR-4306 were significantly upregulated in 83% of pancreatic adenocarcinoma seral exosomes, compared with those of the
Primary Sample	Type of Cancer	Genes	Detection Method	References
Urine	prostate cancer	ERG, PCA3	qRT-PCR	101
Bronchial lavage samples	lung cancer	hsa-miR-19b-1, hsa-miR-1285, hsa-miR-1289, hsa-miR-1303, hsa-miR-217, hsa-miR-29a-5p, hsa-miR-548-3p, hsa-miR-650, U6 snRNA	qRT-PCR	102
	glioblastoma multiforme	RNU6-1, miR-320, miR-574-3p	qRT-PCR	15
	advanced melanoma	miR-125b	qRT-PCR	75
	pancreatic cancer	miR-1246, miR-4644, miR-3976, miR-4306	qRT-PCR	76
	adenocarcinoma of the esophagus	miR-223-5p, miR-223-3p, miR-483-5p, miR-409-3p, miR-196b-5p, miR-192-5p, miR-146a-5p, miR-126-5p	qRT-PCR	77
Serum	prostate cancer	miR-200c, miR-605, miR-135a, miR-433, miR-106a	Scano-miR bioassay and qRT-PCR	38
	meningioma	miR-106a-5p, miR-219-5p, miR-375, miR-409-3p, miR-197, miR-224	qRT-PCR	103
	colorectal adenomas	miR-21, miR-28a, miR-92a, miR-135b	qRT-PCR	104
Serum and tumor cells	ovarian cancer	miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, miR-214	microarray	74
Patients and healthy sera: cell lines (NPC and NP69)	nasopharyngeal carcinoma	miR-24-3p	qRT-PCR	105

(Continued on next page)
control group.76 Similar studies on esophageal cancer, meningioma, and prostate cancer revealed evidence in favor of using exosomes in cancer diagnosis or investigation of cell-to-cell communication.38,77

In addition to the serum studies, research on urine exosomes showed practical significant results to predict cancer status. A novel triple-RNA signature in prostate cancer can discriminate score 7 from other scores in the first biopsy and reduce unnecessary sampling.78

As well as the studies on different biofluids, there are some evaluations on the exosomes derived from cell lines. For instance, the comparison of normal and prostate cancer cell lines showed the presence of a specific miRNA pattern in the cancer exosomes.79 The results of another study suggested that metastatic gastric cancer cell line released let-7 family miRNAs via exosomes into the extracellular environment to maintain their oncogenesis.80

The specific exosomal proteins in a colorectal cancer cell line may provide the understanding of colon cancer biology and potential screening of biological markers for cancer.81 In 2016, researchers reported 570 proteins as an exosomal protein profile consisting of several cancer-related signaling proteins, tumor antigens, and secreted regulators. The functional value of tumor exosomes in the promotion of angiogenesis and cell migration was also demonstrated.82

Exosome Isolation Protocols

Similar to every newfound area, exosomes need to be validated in different aspects, especially clinical significance. The prerequisite for this level is to develop standard methods to isolate, characterize, and extract biological materials. Based on what was discussed heretofore, these techniques are explained (Table 2).

There are different exosome isolation protocols based on the types of starting samples and preferred downstream experiments with their own advantages and disadvantages. The starting sample could be cell cultured medium or one of the biological fluids, and isolated exosomes are assessed in terms of function or content, including proteins, DNAs, mRNAs, and non-coding RNAs such as miRNAs. Although differential centrifugation technique is the gold standard method to purify exosomes,83,84 different sample viscosities and requirement of special equipment make this method low-efficient and restricted, respectively.85 In high-viscosity fluids, the rate and duration of centrifugation should be increased, or the fluids should be diluted to decrease the viscosity, because samples with high viscosity have lower sedimentation efficiency.85 Because plasma is more viscous than serum, the modified ultracentrifugation protocol could be used to purify exosomes by replacing the single filtration with the first step of centrifugation in plasma.86 Overall, plasma has higher viscosity than serum, serum has higher viscosity than cultured media, and PBS has the least viscosity.

Although this method improves the recovery rate, the contamination with media proteins and a large amount of starting sample was not practical for proteomics analysis and clinical use. To omit large particles and debris from samples, addition of filtration step to ultracentrifugation can improve exosomal extraction, especially in studies that plan to analyze RNAs.87 Sucrose gradient centrifugation for more extraction purity and yield was introduced based on different flotation densities of exosomes in 1997.88 Cantin et al.,89 in 2008, modified this method using the iodixanol (OptiPrep) gradient to separate exosomes from viruses that overlapped in density and size range.

The discovery of specific exosome protein markers in different biological status, from normal to ill, especially in cancer, led to the development of immunoaffinity-based techniques, which can isolate exosomes from small sample volumes.88 Coated magnetic or latex beads are of the specific antigens used to purify the so-called exosomes. This method operates faster with more efficiency, which is important in clinical settings.90–92

Microfluidic devices were fabricated in order to cover the defects of the current exosome isolation methods; approaches such as

Table 1. Continued

Primary Sample	Type of Cancer	Genes	Detection Method	References
Cell line AZ-P7a	metastatic gastric cancer	let-7 miRNAs family	qRT-PCR	80
PC-3	prostate cancer	364 miRNAs profile	microarray and qRT-PCR	79
LIM1215	colorectal cancer	GPA33, CDH17, CEA, EPCAM, PCNA, EGFR, MUC13, MINK1, KRT18, CLDN1, CLDN3, and CLDN7, CEP55, EFN1 and EFN2	immunoaffinity capture	81
immunological separation, sieving, and trapping the exosomes are some examples of the functions of such devices. Simplicity, specificity, efficiency, and high purity of such few-step isolation techniques, which can work with slight volume of starting samples and reagents, make them intriguing for research and clinical settings. Moreover, commercial kit is another option that rapidly and simply isolates exosomes from small volumes of different starting samples by chemical reagents, which makes them ideal for pathological purposes. Commercial reagents are recommended if the starting sample volume is limited; this technique is suitable to isolate exosomes from less than 500 μL starting volume.94 Some purification reagents are efficient for future downstream analyses except for protein analysis, unless successive ultracentrifugation and filtration steps are operated to eliminate the non-specific proteins.95 Therefore, the best exosomes isolation method should be employed based on the size and type of the starting sample volume and planned downstream analysis.

The main objective of the studies on the exosomes isolation methods is to take a step forward in their clinical application. There are some challenges on the clinical application methods of exosomes as biomarker sources. First, based on the type of cancer, the proper biofluid should be selected. The selected biofluid must be accessible through a noninvasive or minimally invasive procedure, and the intended biomarkers detectable in medically safe quantity of the biofluid. For example, Cheng et al.36 showed that exosomes from different fractions of blood sample represented different miRNA profiles. Hence, a detectable biomarker in a certain biofluid may not be identified in another one. Second, a standard procedure should be developed to isolate exosomes accurately and specifically. In other words, an ideal procedure should accurately isolate exosomes from the other extracellular vesicles and particles, and the BSEs from other exosomes specifically. For instance, the study by Caradec et al.96 investigated the possible contamination of serum exosomes with albumin protein. Third, the process of exosome isolation in the clinic had to be repetitive, rapid, easy to handle, cheap, and applicable for different types of tissue-specific exosomes. Fourth, a perfect exosome isolation method should have a low error rate and higher recovery yield.97 To date, no approved exosome isolation procedure is introduced for the clinical setting. Some companies recommended a preclinical exosome isolation kit (like Exoquick-CG; SBI), which is necessary to be validated through clinical trials, and the upcoming results should be compared and compatible with those of the pathology reports.

Exosome Characterization

Several methods are available to distinguish extracted exosomes from other vesicles (Table 3). Liquid chromatography, mass spectrometry, immuno-blot analysis, flow cytometry, western immuno-blotting, and dot blot assay are common to verifying exosome markers. Characterizing based on shape and size of particles is done by electron microscopy, atomic force microscopy (AFM),98,99 nanoparticle tracking analysis (NTA), dynamic light scattering (DLS) analysis, qNANO GOLD,100 and ELISA approaches. Recently, lateral flow immunoassay (LFIA) was developed to detect exosomes, targeting tetraspanins CD9, CD63, and CD81 on their membranes. Some studies run
western blot on exosome samples to indicate the lack of microvesicle molecular markers (CD29, CD40, and p-selectin) and endoplasmic reticulum molecular markers (calnexin), and confirmed that they specifically isolated exosomes.35

Conclusions
Nowadays, exosomes draw attention as a potential source to discover new biomarkers for different diseases including cancer. A perfect cancer biomarker can show the existence of tumor mass and its molecular features in the early stages. Exosomes have special properties, which make them an ideal tool for minimally invasive liquid biopsy. These subcellular particles are detectable in almost every biofluid; therefore, in accordance with the type of cancer, researchers can select a special biofluid to detect patients’ exosomes. Proper isolation protocol should be applied based on the downstream analysis, type, and volume of starting sample. Exosomes contain proteins, RNAs, and DNA, which might indicate the biological and pathological features of the tumor mass in real-time status. Up to now, many candidate exosomal biomarkers are suggested for BC, but none of them are approved yet. The role of exosomes to inhibit proliferation and elevation of response to chemotherapy in BC cells is proved. In addition to the repressive effects of exosomes on BC cells, engineered exosomes specifically target BC cells, conclusively reduce the side effects of chemotherapy on normal cells, and increase the chemotherapy response and half-life of drug in circulation. On the other hand, BC cells exosomes induce oncogenic features in normal mammary cells and resistance to chemotherapy and radiotherapy in chemosensitive BC cells. These exosomes activate signaling pathways, which lead to migration and metastasis in noninvasive BC cells, but related mechanisms are not validated yet. There is still a long way for scientists to discover reliable procedures to diagnose, treat, and monitor BC through cancer-specific exosome-based liquid biopsy. To eliminate the effect of normal cell exosomes, isolation and characterization methods should be developed, and based on the liquid of origin, a consensus should be achieved. Experts in biology and bioengineering should cooperate to advance exosome-based technologies.

REFERENCES
1. Esposti, A., Crisciello, C., Locatelli, M., Milano, M., and Curigiano, G. (2016). Liquid biopsies for solid tumors: understanding tumor heterogeneity and real-time monitoring of early resistance to targeted therapies. Pharmacol. Ther. 157, 120–124.
2. Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892.
3. Feller, S.M., and Lewitzky, M. (2016). Hunting for the ultimate liquid cancer biopsy—let the TEP dance begin. Cell Commun. Signal. 14, 24.
4. Izzotti, A., Carozzo, S., Pulliero, A., Zhabayeva, D., Ravetti, J.L., and Bersimbaev, R. (2016). Extracellular microRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Ann. J. Cancer Res. 6, 1461–1493.
5. Perakis, S., and Speicher, M.R. (2017). Emerging concepts in liquid biopsies. BMC Med. 15, 75.
6. Alix-Panabières, C., and Pantel, K. (2013). Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118.
7. Pan, B.-T., and Johnstone, R.M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 31, 967–978.
8. Simpson, R.J., Jensen, S.S., and Lim, J.W. (2008). Proteomic profiling of exosomes: current perspectives. Proteomics 8, 4083–4099.
9. Suetsugu, A., Honma, K., Saij, S., Moriwas, H., Ochiya, T., and Hoffman, R.M. (2013). Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv. Drug Deliv. Rev. 65, 383–390.
10. Savina, A., Fader, C.M., Damiani, M.T., and Colombo, M.I. (2005). Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143.
11. Demory Becker, M., Higginbotham, J.N., Franklin, J.L., Ham, A.I., Halvey, P.J., Imasuen, I.E., Whitwell, C., Li, M., Liebler, D.C., and Coffey, R.J. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteomics 12, 343–355.
12. Khazariha, P., Chioureas, D., Rutschauer, D., Baltatzis, G., Lennartsson, L., Fonseca, P., Azimi, A., Hultenby, K., Zubarev, R., Ullén, A., et al. (2015). Molecular profiling

AUTHOR CONTRIBUTIONS
Conceptualization and Validation, K.M.-A. and R.E.; Writing – Original Draft, S.H., S.D., Z.E.-S., N.J.-I., and T.O.B.; Writing – Review & Editing, R.E. and S.H.; Visualization, S.H., Z.E.-S., S.D., and T.O.B.; Supervision, R.E.; Project Administration, S.H.; Funding Acquisition, R.E.

CONFLICTS OF INTEREST
The authors declare no competing financial interests.

ACKNOWLEDGMENTS
This review was supported under Iran National Science Foundation Projects funding scheme (project number 95849123). We thank Iran National Science Foundation for their financial support.

Table 3. Different Exosomes Characterization Methods

Exosome Features	Exosome Quantification Tool											
	EM	WB	Chro.	MS	NTA	DLS	Dot Blot	ELISA	qNano	AFM	FACS	LFIA
Shape		X								X		
Size	X		X		X							
Distribution		X							X	X		
Morphology (structure)		X	X									

AFM, atomic force microscopy; Chro., chromatography; DLS, dynamic light scattering; EM, electronic microscope; FACS, fluorescence-activated cell sorting; LFIA, lateral flow immunoassay; MS, mass spectrophotometry; NTA, nanoparticle tracking analysis; WB, western blot.
of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget 6, 21740–21754.

13. Welton, J.L., Khanna, S., Giles, P.J., Brennan, P., Brewis, I.A., Staffurth, J., Mason, M.D., and Clayton, A. (2010). Proteomic analysis of bladder cancer exosomes. Mol. Cell. Proteomics 9, 1324–1338.

14. Buschow, S.I., van Balkom, B.W., Aalberts, M., Heck, A.J., Wauben, M., and Stoorvogel, W. (2010). MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol. Cell Biol. 88, 851–856.

15. Manterola, L., Guruceaga, E., Gállego Pérez-Larraya, I., González-Huarrison, M., Jauregui, P., Tejada, S., Diez-Valle, R., Segura, V., Samprón, N., Barrena, C., et al. (2014). A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncol. 16, 520–527.

16. Byrzunova, O.E., Zaripov, M.M., Skvortsova, T.E., Lekchina, E.A., Grigor‘eva, A.E., Zaporozhchenko, I.A., Morozuk, E.S., Ryabchikova, E.I., Yurchenko, Y.B., Vostinkij, V.E., and Laktitenov, P.P. (2016). Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS ONE 11, e0157566.

17. Lässer, C., Alkhani, V.S., Ekström, K., Edlín, M., Paredes, P.T., Bossios, A., Sjöstrand, M., Gabrielson, S., Lotvall, J., and Valadi, H. (2011). Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med. 9, 9.

18. Gamberi, H., Plattfaut, C., Freund, A., Quecke, T., Theophil, F., and Gieseler, F. (2016). Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH timiaparin. J. Cell Biol. Int. 40, 1050–1061.

19. Gregson, A.L., Hoji, A., Injean, P., Poynter, S.T., Briones, C., Palchevskiy, V., Weigt, L., Manterola, L., Guruceaga, E., Gállego Pérez-Larraya, J., González-Huarrison, M., Kawano, S., Nakamura, S., and Nakashima, M. (2016). The SQUU-B cell line secretes into urine and amniotic fluid. Kidney Int. 85, 1050–1061.

20. Perkumas, K.M., Hoffman, E.A., McKay, B.S., Allingham, R.R., and Stamer, W.D. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288, 10849–10859.

21. Gross, J.C., Chaudhary, V., Bartscherer, K., and Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045.

22. Chavez-Muñoz, C., Morse, J., Kilani, R., and Ghahary, A. (2008). Primary human keratinocytes externalize stratifin protein via exosomes. J. Cell. Biochem. 104, 2165–2173.

23. Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., and Xu, W. (2015). Exosomes in cancer: small particle, big player. J. Hematol. Oncol. 8, 83.

24. Koga, K., Matsumoto, K., Akiyoshi, T., Kubo, M., Yamanaka, N., Tasaki, A., Nakashima, H., Nakamura, M., Kuroki, S., Tanaka, M., and Kato, M. (2005). Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 25 (6A), 3703–3707.

25. Thakur, B.K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazer, H., Xiang, J., et al. (2014). Double-stranded RNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769.

26. Cheng, L., Sharples, R.A., Scicluna, B.J., and Hill, A.F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles 3, 23743.

27. Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Keller, S., Rupp, C., Stoeck, A., Runz, S., Fogel, M., Lugert, S., Hager, H.D., Abdel-Baky, M.S., Gutwein, P., and Altevogt, P. (2007). CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72, 1095–1102.

28. Wu, M., and Burstein, D.E. (2004). Fine needle aspiration. Cancer Invest. 22, 1920.

29. Neil, S.E., Shelke, G.V., Sihlbom, C., Hansson, S.F., Gho, Y.S., Samprón, N., Barrena, C., et al. (2016). Bovine milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine (Lond.) 12, 40.

30. Mathivanan, S., Ji, H., and Simpson, R.J. (2010). Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920.

31. Lum, Y., Zhang, L., Vitoria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M., and Wranz, J.L. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151, 1542–1556.

32. Lobb, R.J., Becker, M., Wen, S.W., Wong, C.S., Wiegmans, A.P., Leinmgeruber, A., and Müller, A. (2015). Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031.

33. Kawakubo-Yasukochi, T., Morioka, M., Hayashi, Y., Nishinakagawa, T., Hazeckaw, M., Kawano, S., Nakamura, S., and Nakashima, M. (2016). The SQUU-B cell line spreads its metastatic properties to nonmetastatic clone SQUU-A from the same patient through exosomes. J. Oral Biosci. 58, 33–38.

34. Kosaka, N., Iuchi, H., Hagiwara, K., Yoshioha, Y., Takeshita, F., and Ochiya, T. (2013). Neutral sphingomyelinase 2 (nSMPase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288, 10849–10859.
exported from malignant cells in customized particles. Nucleic Acids Res. 40, 9125–9138.

52. Heneghan, H.M., Miller, N., Kelly, R., Newell, J., and Kerin, M.J. (2010). Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15, 673–682.

53. Asaga, S., Kuo, C., Nguyen, T., Terpenning, M., Giuliano, A.E., and Hoon, D.S. (2011). Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem. 57, 84–91.

54. Hu, Z., Dong, J., Wang, L.E., Ma, H., Liu, J., Zhao, Y., Tang, J., Chen, X., Dai, J., Wei, Q., et al. (2012). Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 33, 828–834.

55. Dhahbi, J.M., Spindler, S.R., Atamna, H., Beffels, D., and Martin, D.I. (2014). Deep sequencing of serum small RNAs identifies patterns of 5′ RNA half and YRNA fragment expression associated with breast cancer. Biomark. Cancer 6, 37–47.

56. Fiskaa, T., Knutsen, E., Nikolaisen, M.A., Jørgensen, T.E., Johansen, S.D., Perander, M., and Seteroms, O.M. (2016). Distinct small RNA signatures in extracellular vesicles derived from breast cancer cells. PLoS ONE 11, e0161824.

57. Park, K.-h., Yong, Y.-r., Kang, H.-j., Kim, G.-h., Park, D.-h., and Lee, M.-y. (December 2013). Composition and kit for diagnosing breast cancer including poly-nucleotide within vesicle, and method of diagnosing breast cancer using the same. U.S. Patent, 20170145519.

58. van’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.I., Witteveen, A.T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.

59. Rupp, A.K., Rupp, C., Keller, S., Brase, J.C., Ehehalt, R., Fogel, M., Moldenhauer, G., Marmé, F., Sültmann, H., and Altevogt, P. (2011). Loss of EpCAM expression associated with breast cancer. Biomark. Cancer 3, e0161824.

60. Kurochkin, I.V. (2013). Characterization of RNA in exosomes secreted by human lymphocytes. Protoc. Cell Biol. 3, 185–191.

61. Bovar, N., Blomme, B., Frères, P., Dedemen, S., Nivelles, O., Lion, M., Carnet, O., Ryan, B., O., Rupp, A.K., Rupp, C., Keller, S., Brase, J.C., Ehehalt, R., Fogel, M., Moldenhauer, G., Marmé, F., Sültmann, H., and Altevogt, P. (2011). Loss of EpCAM expression associated with breast cancer. Biomark. Cancer 3, e0161824.
89. Cantin, R., Diou, J., Bélanger, D., Tremblay, A.M., and Gilbert, C. (2008). Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J. Immunol. Methods 338, 21–30.

90. Tauro, B.J., Greening, D.W., Mathias, R.A., Ji, H., Mathivanan, S., Scott, A.M., and Simpson, R.J. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304.

91. Greening, D.W., Xu, R., Tauro, B.J., and Simpson, R.J. (2015). A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol. 1295, 179–209.

92. Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M.D., Hobot, J.A., Newman, G.R., and Jasani, B. (2001). Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174.

93. Liga, A., Vliegenthart, A.D., Oosthuyzen, W., Dear, J.W., and Kersaudy-Kerhoas, M. (2015). Exosome isolation: a microfluidic road-map. Lab Chip 15, 2388–2394.

94. Schageman, J., Zeringer, E., Li, M., Barta, T., Lea, K., Gu, J., Magdaleno, S., Setterquist, R., and Vlassov, A.V. (2013). The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Res. Int. 2013, 253957.

95. Yamada, T., Inoshima, Y., Matsuda, T., and Ishiguro, N. (2012). Comparison of methods for isolating exosomes from bovine milk. J. Vet. Med. Sci. 74, 1523–1525.

96. Caradec, J., Kharmate, G., Hosseini-Beheshti, E., Adomat, H., Gleave, M., and Guns, E. (2014). Reproducibility and efficiency of serum-derived exosome extraction methods. Clin. Biochem. 47, 1286–1292.

97. Tang, Y.T., Huang, Y.Y., Zheng, L., Qin, S.H., Xu, X.P., An, T.X., Xu, Y., Wu, Y.S., Hu, X.M., Ping, B.H., and Wang, Q. (2017). Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. 40, 834–844.

98. Palanisamy, V., Sharma, S., Deshpande, A., Zhou, H., Gimzewski, J., and Wong, D.T. (2010). Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE 5, e8577.

99. Sharma, S., Rasool, H.I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D.T., and Gimzewski, J.K. (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4, 1921–1926.

100. Garza-Liculine, E., Deo, D., Yu, S., Uz-Zaman, A., and Dunbar, W.B. (2010). Portable nanoparticle quantization using a resizable nanopore instrument—the IZON qNanoSM. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5736–5739.

101. Donovan, M.J., Noerholm, M., Bentink, S., Belzer, S., Skog, J., O’Neill, V., Cochrane, J.S., and Brown, G.A. (2015). A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 18, 370–375.

102. Schmidt, B., Rehbein, G., and Fleschhacker, M. (2016). Liquid profiling in lung cancer – quantification of extracellular miRNAs in bronchial lavage. Adv. Exp. Med. Biol. 924, 33–37.

103. Zhi, F., Shao, N., Li, B., Xue, L., Deng, D., Xu, Y., Lan, Q., Peng, Y., and Yang, Y. (2016). A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma. Sci. Rep. 6, 32067.

104. Uratani, R., Toiyama, Y., Kitajima, T., Kawamura, M., Hiro, J., Kobayashi, M., Tanaka, K., Inoue, Y., Mohri, Y., Mori, T., et al. (2016). Diagnostic potential of cell-free and exosomal microRNAs in the identification of patients with high-risk colorectal adenomas. PLoS ONE 11, e0160722.

105. Ye, S.B., Zhang, H., Cai, T.T., Liu, Y.N., Ni, J.J., He, J., Peng, J.Y., Chen, Q.Y., Mo, H.Y., Jun-Cui, et al. (2016). Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J. Pathol 240, 329–340.