Whole-Genome Sequencing of Suppressor DNA Mixtures Identifies Pathways That Compensate for Chromosome Segregation Defects in Schizosaccharomyces pombe

Xingya Xu, Li Wang, and Mitsuhiro Yanagida
G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
ORCID ID: 0000-0002-3728-2633 (X.X.)

ABSTRACT
Suppressor screening is a powerful method to identify genes that, when mutated, rescue the temperature sensitivity of the original mutation. Previously, however, identification of suppressor mutations has been technically difficult. Due to the small genome size of Schizosaccharomyces pombe, we developed a spontaneous suppressor screening technique, followed by a cost-effective sequencing method. Genomic DNAs of 10 revertants that survived at the restrictive temperature of the original temperature sensitive (ts) mutant were mixed together as one sample before constructing a library for sequencing. Responsible suppressor mutations were identified bioinformatically based on allele frequency. Then, we isolated a large number of spontaneous extragenic suppressors for three ts mutants that exhibited defects in chromosome segregation at their restrictive temperature. Screening provided new insight into mechanisms of chromosome segregation: loss of Ufd2 E4 multi-ubiquitination activity suppresses defects of an AAA ATPase, Cdc48. Loss of Wpl1, a releaser of cohesin, compensates for the Eso1 mutation, which may destabilize sister chromatic cohesion. The segregation defect of a ts histone H2B mutant is rescued if it fails to be deubiquitinated by the SAGA complex, because H2B is stabilized by monoubiquitination.

KEYWORDS
Schizosaccharomyces pombe
temperature sensitive mutant Suppressors
next-generation sequencing chromosome segregation

Temperature-sensitive (ts) mutants are very useful to identify genes involved in specific biological processes, and to discover the functions of essential genes in model organisms such as Schizosaccharomyces pombe and Saccharomyces cerevisiae. Much of our understanding of cell division and chromosome segregation is derived from analysis of ts mutants in yeasts. In S. pombe, genes involved in chromosome segregation were isolated by screening for ts mutants that exhibited chromosome segregation defects or high rates of minichromosome loss at the restrictive temperature (Hirano et al. 1986; Samejima et al. 1993; Takahashi et al. 1994; Hayashi et al. 2004; Xu et al. 2015). Genes that are required for entry into and/or maintenance of quiescence were identified from a ts mutant collection after nitrogen starvation (Sajiki et al. 2009).

Isolation of extragenic suppressors is a powerful tool for identifying genes with protein products that function in the same process as a gene of interest, or that physically interact with the protein product of that gene (van Leeuwen et al. 2017). For example, a phosphatase deletion mutant, Δppe1, is cold-sensitive (cs) and staurosporine-hypersensitive (Shimanuki et al. 1993; Matsuoka et al. 1995). A protein kinase, Ssp1, that closely interacts with Ppe1 was isolated as a suppressor of cs or staurosporine sensitivity of Δppe1 (Matsusaka et al. 1995). Cold-sensitive dominant mutants, scn1 and scn2, of S. pombe, which have the same substitution in the anticodons of two tRNA-Ala (UGC) genes, were isolated by their ability to suppress the temperature-sensitivity of an anaphase-promoting complex/cyclosome (APC/C) mutant, cut9-665 (Samejima and Yanagida 1994). Mutations in Ppe1 phosphatase and its bound partner, Ekc1, were isolated as a result of their ability to suppress the temperature-sensitivity of a kinetochore mutant, mis12-537 (Goshima et al. 2003).

Since the S. pombe genome is very small (~12.5 Mb), and next-generation sequencing is a high-throughput technique, we established a
spontaneous suppressor screening method followed by sequencing of a mixture of revertants from the same ts mutant. By comparing with the classical genetic methods used to identify suppressor mutations in above studies, this approach does not need the revertants to be cold sensitive (cs) and does not need cloning the responsible suppressors by genetic complementation; therefore, it saves a lot of time and labor, at the same time it enables identification of multiple suppressor mutations simultaneously and quickly (2–3 months including genomic DNA preparation, library construction, next-generation sequencing, and suppressor mutation identification). Our approach allowed us to isolate and analyze extragenic suppressors for three S. pombe ts mutants defective in chromosome segregation at the restrictive temperature easily.

MATERIALS AND METHODS

Strains, plasmids, and media

Fission yeast strains used in this study (Table 1) are derivatives of the wild-type heterothallic strains 972h− and 975h+. Temperature-sensitive mutants, cdc48-353 (Ikai and Yanagida 2006), eso1-171 (Tanaka et al. 2000), and htb1-72 (Maruyama et al. 2006) were selected for suppressor screening. Their ts mutations were reintegrated into the S. pombe haploid wild-type strain, 972 h− using site-directed, PCR-based mutagenesis. Briefly, complementary pairs of synthesized DNA oligos with ts mutations were used as PCR primers, followed by two rounds of PCR. Mutated genes (ORFs) were cloned and were ligated into pBluescript in upstream of a hygromycin-resistant antibiotic marker (hphMX4). Then, ∼500 bp long sequences after the corresponding ORFs were cloned and were sequenced with paired-end (2·150 bp) libraries for Illumina sequencing were generated using standard protocols. This genomic DNA mixture was used for library construction. Each 10 DNA mixtures were barcoded for one-lane pooled sequencing. DNA libraries for Illumina sequencing were generated using standard protocols (Illumina) and were sequenced with paired-end (2 × 150 bp) runs using Illumina HiSeq1000 sequencers.

Alignment, mutation calling, and mutation filtering

Sequence reads were mapped against the S. pombe reference genome (downloaded from Pombase: https://www.pombase.org) using the Novoalign mapping tool (V3.00.02; http://www.novocraft.com) with default settings. Resulting SAM files were converted to BAM, and were then sorted and indexed with Samtools (V0.1.18; Li et al. 2009). Mutations were called by SNVer (V0.5.3; Wei et al. 2011). Since each mixture contains genomic DNA of 10 revertants, 10 (or fewer) suppressor mutations, in addition to the original ts mutation, should be identified, with suppressor allele frequencies at ∼10% and original ts mutation at 100%. Mutations identified by SNVer with allele frequency ≥2% were selected, and then genes with more than two independent mutations in them or more than two independent mutations in genes involved in same complex were manually selected as suppressor candidates for further analysis. Suppressor mutations were confirmed independently by Sanger sequencing.

Immunoblotting

Ten milliliters of S. pombe cell culture (containing 1 × 108 cells) was mixed with 1/4 vol (2.5 ml) of ice-cold 100% trichloroacetic acid (TCA). The resulting mixture was centrifuged, and pellets were washed

Table 1 Fission yeast strains used in this study
Strain

Wild type
cdc48-G338D
eso1-G799D
htb1-G52D
Δufd2
Δubp8
Δgcn5
cdc48-G338D Δufd2
htb1-G52D Δubp8
htb1-G52D Δgcn5

DNA sequencing sample preparation, library preparation, and Illumina paired-end sequencing

Revertant cells from 20-ml YPD liquid cultures (30°C; overnight) were collected and their genomic DNA was extracted using Maxwell 16 System DNA Purification Kits. Then, DNA concentration was measured using an Ultraspec 3100 pro. Since all revertants of the same ts mutant contain the same original ts mutation, and differ by only one suppressor mutation, we mixed equal amounts of genomic DNA of 10 revertants from the same ts mutant so as to create one genomic DNA mixture. This genomic DNA mixture was used for library construction. Each 10 DNA mixtures were barcoded for one-lane pooled sequencing. DNA libraries for Illumina sequencing were generated using standard protocols (Illumina) and were sequenced with paired-end (2 × 150 bp) runs using Illumina HiSeq1000 sequencers.

Suppressor screening strategy

Several different restrictive temperatures were tested for each ts mutant, according to the intensity of temperature-sensitivity (spot test results). Appropriate restrictive temperatures were then selected for each ts mutant to ensure revertant frequencies between 1 × 10−8 and 1 × 10−6. Ts mutants were cultured in YPD liquid medium at the permissive temperature (26°C) overnight. To increase suppressor mutation complexity, multiple (eight for cdc48-G338D, twelve for eso1-G799D and nine for htb1-G52D) independent 50-ml conical tubes with 10 ml medium in each were used, and only ∼10% (or less) cells in each tube were plated onto YPD plates at a concentration of 1 × 105–1 × 107 cells per plate, followed by culturing at the selected restrictive temperature for 4 d. All colonies with reasonable size (revertants that contained the original ts mutations and suppressor mutations) were picked up for further analysis.
phenylmethylsulfonyl fluoride (PMSF) and boiled at 70°C.

After centrifugation at 14,000 rpm for 10 min, the supernatant was used for 12% Bis-Tris gels (MES buffer) and immunoblotted.

Data availability
Illumina sequence reads have been deposited in the NCBI Sequence Read Archive under BioProject ID PRJNA415340. Strains are available upon request.

RESULTS

Spontaneous suppressor identification strategy
To identify suppressors of ts mutants comprehensively, easily, and cost-effectively, we developed a spontaneous suppressor screening technique, followed by next-generation sequencing of suppressor genomic DNA mixtures (Figure 1A). The technique involved the following steps:

1. Background homogenization. The ts mutants we selected were originally generated by N-methyl-N’-nitrosoguanidine (NTG) mutagenesis. Accordingly, they also have other mutations in addition to the mutation responsible for the ts phenotypes. To exclude possible effects of these silent mutations on suppressor identification, we reintegrated all responsible ts mutations into the 972h− wild-type strain at their endogenous loci under their native promoters using site-directed mutagenesis.

2. Revertant isolation. Newly constructed ts mutants with wild-type background were cultured in YPD liquid medium at 26°C (permissive temperature) overnight. Then, cells with spontaneous mutations that occurred in some of them during replication were grown on YPD plates at a concentration of 1 × 10^6–1 × 10^7 cells per plate. For each ts mutant, several restrictive temperatures were tested. Then, we selected the temperature with a revertant frequency between 1 × 10^-6 and 1 × 10^-8 for screening. This is because we found that, if the revertant frequency is <1 × 10^-8, suppressors tend to be intragenic (such as when we performed suppressor screen for cut1-L739S, a Cut1 separase ts mutant, at restrictive temperature 36°C, revertant frequency was ∼1 × 10^-8, all suppressors are intragenic and surrounding the original L739S mutation. When we performed suppressor screen at restrictive temperature 33°C, revertant frequency was ∼1 × 10^-6, we got multiple instructive extragenic suppressors. (Xu et al., personal communication). If the revertant frequency is >1 × 10^-6, we suppose that suppression might be weak and the genetic interactions might be far; therefore, it might be difficult to understand the mechanism behind the genetic interactions. After incubation at the selected restrictive temperature for 4 d, colonies (revertants containing the original ts mutation and suppressor mutations) were selected for sequencing library construction.

3. Mixture sequencing. Since all revertants of the same ts mutant contain the original ts mutation, and differ by only one suppressor mutation, in addition to the original ts mutation should have mutations, in addition to the mutation responsible for the ts phenotypes. To exclude possible effects of these silent mutations on suppressor identification, we reintegrated all responsible ts mutations into the reference genome using Novoalign (http://www.novocraft.com), and mutant alleles were identified with SNVer (Wei et al. 2011). Except for silent mutations existing in the original 972h− wild-type strain (common mutations), ideally ≤10 suppressor mutations, in addition to the original ts mutation should have been identified in each mixture. The allele frequency of the original ts mutation (and silent mutations existing in the original wild-type strain) was 100%. Since the DNA mixture used for sequencing was a pool of genomic DNA from 10 revertants, the frequency of each suppressor allele was ∼10% (Figure 1B). Candidate suppressors were selected based on the criteria above.

Table 2 Summary of the conditions used for screens and the results obtained

Gene	ts Mutant	Mutation Site	Temperature Used (°C)	Cells Plated	Revertants Obtained	Revertants Sequenced	Distinct Suppressors Obtained
cdc48	cdc48-353	G338D	37	3.8 × 10^8	358	30	19
eso1	eso1-H17	G799D	37	6 × 10^8	756	40	14
htb1	htb1-72	G52D	36	4.5 × 10^7	56	52	16
5. Suppressor filtration. Genes with \(\geq 2 \) independent mutations, or more than two independent mutations in genes involved in same complex, were manually selected as probable suppressors for further analysis.

Suppressor screen summary

By using the suppressor screen method described above, we identified suppressors for three *S. pombe* mutants (*cdc48-G338D*, *eso1-G799D*, and *htb1-G52D*) defective in chromosome segregation at the restrictive temperature (Table 1, Table 2, and Supplemental Material, Table S1 in File S1). Restrictive temperatures 37, 37, and 36\(^\circ\)C were selected for *cdc48-G338D*, *eso1-G799D*, and *htb1-G52D* respectively for suppressor screen, revertant frequencies at these conditions were all \(\leq 10^{-6} \).

In total, we sequenced 122 revertants (30 from *cdc48-G338D*, 40 from *eso1-G799D*, and 52 from *htb1-G52D*) with an average coverage for each genome \(\geq 30\)-fold/bp, and obtained 49 distinct suppressors (19 for *cdc48-G338D*, 14 for *eso1-G799D*, and 16 for *htb1-G52D*).

Cdc48 suppressors

Cdc48/VCP/p97 is an AAA ATPase involved in a variety of cellular processes, including cell cycle progression (Moir et al. 1982), proteasome-mediated degradation (Hershko and Ciechanover 1998), and chromosome segregation (Yuasa et al. 2004; Ikai and Yanagida 2006). The *cdc48-G338D* ts mutant was isolated through screening for mutants that were suppressed by elevated protease Cut1/separase gene dosage (Yuasa et al. 2004).

Mutations in *cdc48* itself (intragenic suppressors) and mutations in *ufd2* were isolated as *cdc48-G338D* suppressors in this study (Figure 2, A and B and Table S2 in File S1). The distribution pattern of intragenic *cdc48-G338D* suppressors isolated in the current study is similar to those isolated by Marinova et al. (2015). The majority of them are located in its ATPase domains (D1 and D2). (C) Domains in Ufd2 and distribution of the three nonsense mutations in Ufd2, all of which may cause loss of the C-terminal E4 activity of Ufd2. (D) Spot test results using wild-type, the single ts mutant *cdc48-G338D*, the double mutant *cdc48-G338D Δufd2*, and the single mutant Δufd2. Δufd2 completely suppressed the ts phenotype of *cdc48-G338D* at 36\(^\circ\)C, which confirmed the suppressor screening results. (E) The aberrant mitotic phenotype of *cdc48-G338D* was suppressed by Δufd2 too. Mutant cells were cultured at 36\(^\circ\)C for 2 hr, stained with DAPI (4',6-diamidino-2-phenylindole, a fluorescent probe for DNA), and were observed under a fluorescence microscope.

Figure 2 Loss of an E4 multi-ubiquitination enzyme, Ufd2, suppresses *cdc48*. (A) Extragenic suppressors of *cdc48-G338D* were located in *ufd2*. Ufd2 is an E4 multi-ubiquitination enzyme associated with Cdc48. (B) Distribution of *cdc48-G338D* intragenic suppressors identified in this study and comparison with those identified by Marinova et al. (2015); the majority of them are located in its ATPase domains (D1 and D2). (C) Domains in Ufd2 and distribution of the three nonsense mutations in Ufd2, all of which may cause loss of the C-terminal E4 activity of Ufd2. (D) Spot test results using wild-type, the single ts mutant *cdc48-G338D*, the double mutant *cdc48-G338D Δufd2*, and the single mutant Δufd2. Δufd2 completely suppressed the ts phenotype of *cdc48-G338D* at 36\(^\circ\)C.
chain-elongation enzyme associated with Cdc48 to ligate additional ubiquitin moieties to preformed ubiquitin conjugates, so as to promote degradation (Koegl et al. 1999). Ufd2 binds to the second AAA domain (D2) of Cdc48, thereby enabling formation of a Cdc48 complex that contains Ufd2 (Richly et al. 2005; Rumpf and Jentsch 2006). The association of Ufd2 with Cdc48 might be disrupted in the intragenic suppression of Ufd2 with Cdc48 might be disrupted in the intragenic suppressor mutations in Cdc48 D2 domain. All suppressors in the Cdc48 D2 domain. All suppressors in the Cdc48 D2 domain.

Ufd2 binds to the second AAA domain (D2) of Cdc48, thereby enabling formation of a Cdc48 complex that contains Ufd2 (Richly et al. 2005; Rumpf and Jentsch 2006). The association of Ufd2 with Cdc48 might be disrupted in the intragenic suppressor mutations in Cdc48 D2 domain. All suppressors in the Cdc48 D2 domain. All suppressors in the Cdc48 D2 domain.

Eso1 suppressors

Eso1 acetylates the Psm3/SMC3 subunit of cohesin at the two conserved lysines, K105 and K106 (corresponding to K112 and K113 in budding yeast), located in the cohesin head domain (Rolef Ben-Shahar et al. 2008; Unal et al. 2008; Rowland et al. 2009; Feytout et al. 2011). This acetylation is essential for sister chromatid segregation (Skibbens et al. 1999). We isolated spontaneous suppressors of eso1-G799D originally isolated by Tanaka et al. (2000). eso1-G799D suppressors were found only in wp11 (Figure 3A and Table S3 in File S1). It is well-known that Δeso1 is inviable, but the double mutant Δeso1 Δwp11 is viable (Feytout et al. 2011). Hence, our results are consistent with previous findings. As Wpl1 is thought to be the cohesin releaser (Gandhi et al. 2006; Kueng et al. 2006), sister chromatid cohesion is more stable in the double mutant. Suppressors identified in Wpl1 were mainly mapped to its Wapl domain (Figure 3B), indicating that rescue of eso1-G799D by wp11 mutations is caused by the loss of the Wapl domain function of Wpl1. Localization of Wpl1 missense mutations in the structure of Wpl1 were mainly mapped to its Wapl domain (Figure 3B), indicating that rescue of eso1-G799D by wp11 mutations is caused by the loss of the Wapl domain function of Wpl1. Localization of Wpl1 missense mutations in the structure of Wpl1 human homolog, Wapl (Ouyang et al. 2013), is shown in Figure 3C.

H2B suppressors

htb1-G52D is a histone H2B mutant. It exhibits a gene-silencing defect in heterochromatic regions and lagging chromosomes in anaphase (Maruyama et al. 2006). htb1-G52D suppressors were located in Spt-Ada-Gen5-Acetyl transferase (SAGA) complex genes (Figure 4A and Table S4 in File S1). The SAGA complex is a multiprotein complex that can be divided into five distinct functional modules: a recruitment module (Tra1), an acetylation module (Gen5, Ada2, and Ngg1/Ada3), a TBP interaction unit (Spt3 and Spt8), a DUB module (Ubp8, Sus1, Sgf11, and Sgf73), and an architecture unit (Spt7, Spt20, Hs1/Ada1, Taf5, Taf6, Taf9, and Taf12) (Koutelou et al. 2010). Among the protein products of the five genes identified, Ubp8, Sgf11, and Sus1 are in the deubiquitination (DUB) module. Gen5 is in the histone acetylation module (Tra1), an acetylation module (Gen5, Ada2, and Ngg1/Ada3), a TBP interaction unit (Spt3 and Spt8), a DUB module (Ubp8, Sus1, Sgf11, and Sgf73), and an architecture unit (Spt7, Spt20, Hs1/Ada1, Taf5, Taf6, Taf9, and Taf12) (Koutelou et al. 2010). Among the protein products of the five genes identified, Ubp8, Sgf11, and Sus1 are in the deubiquitination (DUB) module. Gen5 is in the histone acetylation...
While the c-terminus. Almost all its N-terminus and a “key role in this activation (Han and Wolberger 2015). Sgf11 activates Ubp8, and its ZnF domain plays a strong role in this activation (Han et al. 2014).

Ubp8 possesses a ubiquitin-binding domain (ZnF-UBP Domain) at its N-terminus and a “Ubiquitin-specific protease domain” at its C-terminus. Almost all htb1-G52D single-amino acid-substitution suppressors in Ubp8 were located in these two conserved domains (Figure 4D). The Ubp8 ZnF-UBP domain binds Sgf11 N-terminal helix by Sus1 (Köhler et al. 2010). Mutations in this domain (Y86Stop and Y96C) may cause a weakened association of Ubp8 with the SAGA complex. While the “Ubiquitin-specific protease domain” is another domain of Ubp8, it is the catalytic domain performing the deubiquitination, therefore mutations in this domain may cause Ubp8 to lose its deubiquitination activity.

Recent structural information indicates that the DUB module binds to the acidic patch of the H2A/H2B heterodimer via the Sgf11 ZnF domain (Zinc finger domain) (Morgan et al. 2016). The ZnF domain of Sgf11 is a small CCHC-type zinc-finger domain at the very C-terminal end. Two Sgf11 point mutations (Q64Stop and C77Y) are mapped to its ZnF domain (Figure 4E), which may decrease the deubiquitination activity of the DUB module by decreasing its association with the H2A/H2B heterodimer.

To support that SAGA complex deubiquitinated H2B, we examined the H2B mono-ubiquitination level in SAGA-complex mutants, using a polyclonal antibody against histone H2B (anti-H2B) (Figure 4F). The H2B mono-ubiquitination levels (upper band) decreased in the original ts mutant htb1-G52D, but were recovered in htb1-G52D Δubp8, and htb1-G52D Δgcn5 double mutants. The H2B mono-ubiquitination levels were further enhanced in Δubp8 and Δgcn5 single mutants.

Taken together, suppression of htb1-G52D by SAGA-complex mutations is caused by loss of the deubiquitination activity of the complex. In addition, since many mutations in other modules (Gcn5 in the histone acetylation module and Hfi1/Ada1 in the architecture module) were identified, these modules may also be required for the deubiquitination activity of the SAGA complex, mediated by its DUB module.

DISCUSSION

Genetic interactions have been mapped extensively, not only in budding yeast (Costanzo et al. 2010, 2016; van Leeuwen et al. 2016), but also in fission yeast (Roguev et al. 2007, 2008). In this study, we started with established ts mutants and intended to systematically identify suppressors for the targeted ts mutants. Therefore, we established a method employing genomic DNA mixtures followed by next-generation sequencing to efficiently identify suppressors of ts mutants at low cost, regardless of whether the revertants are cold sensitive. This method is applicable to budding yeast too, since a ts collection of 787 ts strains is available, with all alleles integrated into their native genomic loci in the S288C common reference strain (Li et al. 2011).

Genetic suppression provides a way to identify genes that when mutated can compensate for defects of an original mutation. Extragenic suppressor genes are functionally related to the original gene. They encode either members of the same pathway/complex or proteins
regulating the activity, stability, or degradation of the original protein (van Leeuwen et al. 2016). A variety of suppressors in the same gene enable us to determine which function of the encoded protein is defective (based on the function of the domain in which suppressors are enriched). This is very helpful in predicting mechanisms underlying the genetic suppression.

Suppression mechanisms illustrated here for the three ts mutants are distinct. Ufd2 attaches additional ubiquitin molecules to Cdc48-bound, mono- (or oligo-) ubiquitinated substrates, targeting them for degradation (Koegl et al. 1999) (Figure 5A). Protein degradation might be facilitated in cdc48-G338D mutant, as levels of Cut1 and Cut2 (two potential Cdc48 substrates) are diminished in the cdc48-G338D mutant (Iki and Yanagida 2006). Loss of Ufd2, which may slow degradation of Cdc48 substrates, such as Cut1 and Cut2, therefore compromises the growth defects of cdc48-G338D at the restrictive temperature. Eso1 is required for establishment of sister chromatid cohesion, while Wpl1 is a cohesin-releasing factor. The sister chromatid cohesion defect in eso1-G799D may be overcome by loss of a cohesin-releasing factor, Wpl1. Sister chromatid cohesion is regulated by the opposing effects of Eso1 and Wpl1, and sister chromatid cohesion is balanced when Eso1 and Wpl1 are both defective (Figure 5B). H2B is a substrate of the SAGA complex deubiquitination module and H2B is stabilized by mono-ubiquitination (Maruyama et al. 2006); therefore, suppression of htb1-G52D by SAGA complex mutations was due to stabilization of H2B (Figure 5C).

The cost-effective suppressor screen method described here has enabled us to access >3400 spontaneous revertants of ~50 ts mutants isolated in this laboratory. The resulting ~900 independent suppression mutations, which met the standards described above, have been identified and will be described elsewhere.

ACKNOWLEDGMENTS

We thank Kenichi Sajiki, Norihiko Nakazawa, and Takeshi Hayashi for technical support, Dr. Steven Aird for editorial support, and we are greatly indebted to the Okinawa Institute of Science and Technology Graduate University for generous support.

Author contributions: XX. and M.Y. designed the experiments, XX. and L.W. performed experiments, XX. analyzed next-generation sequencing data, and XX. and M.Y. wrote the article.

LITERATURE CITED

Baek, G. H., I. Kim, and H. Rao, 2011 The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proc. Natl. Acad. Sci. USA 108: 13558–13563.
Costanzo, M., A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear et al., 2010 The genetic landscape of a cell. Science 327: 425–431.
Costanzo, M., B. VanderSluis, E. N. Koch, A. Baryshnikova, C. Pons et al., 2016 A global genetic interaction network maps a wiring diagram of cellular function. Science 353: aaf1420.
Daniel, J. A., M. S. Torok, Z. W. Sun, D. Schielz, C. D. Allis et al., 2004 Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279: 1867–1871.
Feytout, A., S. Vaur, S. Genier, S. Vazquez, and J. P. Javerzat, 2011 Psm3 acetylation on conserved lysine residues is dispensable for viability in fission yeast but contributes to Eso1-mediated sister chromatid cohesion by antagonizing Wpl1. Mol. Cell. Biol. 31: 1771–1786.
Gandhi, R., P. J. Gillespie, and T. Hirano, 2006 Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16: 2406–2417.
Goshima, G., O. Iwasaki, C. Obuse, and M. Yanagida, 2003 The role of Pp禄/PP禄 phosphatase for equal chromosome segregation in fission yeast kinetochore. EMBO J. 22: 2752–2763.
Han, Y., J. Luo, J. Ranish, and S. Hahn, 2014 Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J. 33: 2534–2546.
Hayashi, T., Y. Fujita, O. Iwasaki, Y. Adachi, K. Takahashi et al., 2004 Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118: 715–729.
Henry, K. W., A. Wyce, W. S. Lo, L. J. Duggan, N. C. Emre et al., 2003 Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17: 2648–2663.
Hershko, A., and A. Ciechanover, 1998 The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.
Hirano, T., S. Funahashi, T. Uemura, and M. Yanagida, 1986 Isolation and characterization of Schizosaccharomyces pombe cutmutants that block nuclear division but not cytokinesis. EMBO J. 5: 2973–2979.
Iki, N., and M. Yanagida, 2006 Cdc48 is required for the stability of Cut1/sepase in mitotic anaphase. J. Struct. Biol. 156: 50–61.
Koegl, M., T. Hoppe, S. Schlenker, H. D. Ulrich, T. U. Mayer et al., 1999 A novel ubiquitination factor, E4, is involved in multitubulin chain assembly. Cell 96: 635–644.
Köhler, A., P. Pascual-García, A. Llopis, M. Zapater, F. Posas et al., 2006 The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitylation through its interaction with Ubp8 and Sgf11. Mol. Biol. Cell 17: 4228–4236.
Köhler, A., M. Schneider, G. G. Cabal, U. Nehrass, and E. Hurt, 2008 Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat. Cell Biol. 10: 707–715.
Köhler, A., E. Zimmermann, M. Schneider, E. Hurt, and N. Zheng, 2010 Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitase module. Cell 141: 606–617.
Koutoula, E., C. L. Hirsch, and S. Y. Dent, 2010 Multiple faces of the SAGA complex. Curr. Opin. Cell Biol. 22: 374–382.
Kueng, S., B. Hegemann, B. H. Peters, J. J. Lipp, A. Schleiffer et al., 2006 Wapl controls the dynamic association of cohesin with chromatin. Cell 127: 955–967.
Lee, K. K., L. Florens, S. K. Swanson, M. P. Washburn, and J. L. Workman, 2005 The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell. Biol. 25: 1173–1182.
Li, H., B. Handsaker, A. Wyssoker, T. Fennell, J. Ruan et al., 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.
Li, Z., F. J. Vizeacoumar, S. Bahr, J. Li, J. Warringer et al., 2011 Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29: 361–367.
Marinova, I. N., J. Engelbrecht, A. Ewald, L. L. Langholm, C. Holmberg et al., 2015 Single site suppressors of a fission yeast temperature-sensitive mutant in cdc48 identified by whole genome sequencing. PLoS One 10: e0117779.
Maruyama, T., T. Nakamura, T. Hayashi, and M. Yanagida, 2006 Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. EMBO J. 25: 2420–2431.
Matsusaka, T., D. Hirata, M. Yanagida, and T. Toda, 1995 A novel protein kinase gene ssp1+ is required for alteration of growth polarity and actin localization in fission yeast. EMBO J. 14: 3325–3338.
Moir, D. S., E. Stewart, B. C. Osmond, and D. Botstein, 1982 Cold-sensitive cell-cycle-mutant cycles of yeast: isolation, properties, and pseudoreversion studies. Genetics 100: 547–563.
Morgan, M. T., M. Haj-Yahya, A. E. Ringel, P. Bandi, A. Brik et al., 2016 Structural basis for histone H2B deubiquitylation by the SAGA DUB module. Science 351: 725–728.
Ouyang, Z., G. Zheng, J. Song, D. M. Borek, Z. Otwinowski et al., 2013 Structure of the human cohesin inhibitor Wapl. Proc. Natl. Acad. Sci. USA 110: 11355–11360.
Richly, H., M. Rape, S. Braun, S. Rumpf, C. Hoeger et al., 2005 A series of ubiquitin binding factors connects CDC48/97 to substrate mult ubiquitylation and proteasomal targeting. Cell 120: 73–84.
Roguev, A., M. Wiren, J. S. Weissman, and N. J. Krogan, 2007 High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat. Methods 4: 861–866.

Roguev, A., S. Bandyopadhyay, M. Zofall, K. Zhang, T. Fischer et al., 2008 Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322: 405–410.

Rolef Ben-Shahar, T., S. Heeger, C. Lehane, P. East, H. Flynn et al., 2008 Ecd1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321: 563–566.

Rowland, B. D., M. B. Roig, T. Nishino, A. Kurze, P. Uluocak et al., 2009 Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33: 763–774.

Rumpf, S., and S. Jentsch, 2006 Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol. Cell 21: 261–269.

Sajiki, K., M. Hatanaka, T. Nakamura, K. Takeda, M. Shimanuki et al., 2009 Genetic control of cellular quiescence in S. pombe. J. Cell Sci. 122: 1418–1429.

Samara, N. L., A. E. Ringel, and C. Wolberger, 2012 A role for intersubunit interactions in maintaining SAGA deubiquitinating module structure and activity. Structure 20: 1414–1424.

Samejima, I., and M. Yanagida, 1994 Bypassing anaphase by fission yeast cut9 mutation: requirement of cut9+ to initiate anaphase. J. Cell Biol. 127: 1655–1670.

Samejima, I., T. Matsumoto, Y. Nakaseko, D. Beach, and M. Yanagida, 1993 Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis. J. Cell Sci. 105: 135–143.

Shimanuki, M., N. Kinoshita, H. Ohkura, T. Yoshida, T. Toda et al., 1993 Isolation and characterization of the fission yeast protein phosphatase gene ppe1+ involved in cell shape control and mitosis. Mol. Biol. Cell 4: 303–313.

Skibbens, R. V., L. B. Corson, D. Koshsland, and P. Hieter, 1999 Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13: 307–319.

Tanaka, K., T. Yonekawa, Y. Kawasaki, M. Kai, K. Furuya et al., 2000 Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol. Biol. Cell 5: 1145–1158.

Unal, E., J. M. Heidinger-Pauli, W. Kim, V. Guacci, I. Onn et al., 2008 A molecular determinant for the establishment of sister chromatid cohesion. Science 321: 566–569.

van Leeuwen, J., C. Pons, J. C. Mellor, T. N. Yamaguchi, H. Friesen et al., 2016 Exploring genetic suppression interactions on a global scale. Science 354: aag0839.

van Leeuwen, J., C. Pons, C. Boone, and B. J. Andrews, 2017 Mechanisms of suppression: the wiring of genetic resilience. BioEssays 39: 1700042.

Wei, Z., W. Wang, P. Hu, G. J. Lyon, and H. Hakonarson, 2011 SNVera: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids Res. 39: e132.

Xu, X., N. Nakazawa, and M. Yanagida, 2015 Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast. PLoS One 10: e0119347.

Yan, M., and C. Wolberger, 2015 Uncovering the role of Sgf73 in maintaining SAGA deubiquitinating module structure and activity. J. Mol. Biol. 427: 1765–1778.

Yuasa, T., T. Hayashi, N. Ikai, T. Katayama, K. Aoki et al., 2004 An interactive gene network for securin-separase, condensin, cohesin, Dis1/Mtc1 and histones constructed by mass transformation. Genes Cells 9: 1069–1082.

Communicating editor: S. Jaspersen