Data in brief 25 (2019) 103968

Data Article

Data on macrobenthic prey from an essential western gray whale feeding habitat, Sakhalin Island, Russia, 2001–2015

Arny L. Blanchard a,*, Natalia Demchenko b, Lise A.M. Aerts c, Sergei Yazvenko d, Victor Ivin e, Ilya Shcherbakov b, f, H. Rodger Melton g,1

a Blanchard Ecological, North Pole, AK, USA
b National Scientific Center of Marine Biology FEB RAS, Russia
c LAMA Ecological, Dallas, TX, USA
d LCL Limited, Sydney, British Columbia, CA, USA
e L.S. Berg State Research Institute on Lake and River Fisheries, Saint Petersburg, Russia
f Far Eastern Federal University, Vladivostok, Russia
g ExxonMobil, Houston, TX, USA

A R T I C L E I N F O

Article history:
Received 8 March 2019
Received in revised form 12 April 2019
Accepted 23 April 2019
Available online 24 May 2019

A B S T R A C T

Data in this article presents data (means and standard deviations) for prey biomass from essential feeding habitats for the endangered western gray whale. Prey include Actinopterygii (primarily the sand lance Ammodytes hexapterus), Amphipoda, Bivalvia, Cumacea, Isopoda, and Polychaeta. Total prey biomass (sum of the six prey groups) is also presented. Statistical analyses document spatial and temporal trends in prey biomass concentrations. Multivariate analyses using canonical correspondence analysis characterize relationships of potential drivers of community changes.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: Blanchardecological@gmail.com (A.L. Blanchard).
1 Deceased.

https://doi.org/10.1016/j.dib.2019.103968
2352-3409/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Macrobenthic community biomass was determined from the northeastern Sakhalin Island gray whale feeding area, Sea of Okhotsk, Russia [1]. Bottom samples were collected from 2001 to 2015 to determine prey biomass characteristics and distributions. Biomass data presented here include 6 prey (Actinopterygii (primarily sand lance Ammodytes hexapterus), Amphipoda, Bivalvia, Cumacea, Isopoda, and Polychaeta), and total prey (sum of the six prey categories). Average biomass, sample size, and standard deviations are presented for the nearshore (2001–2015) and offshore (2001–2015) study areas (Fig. 1; Tables 1 and 2). Biomass values are also presented for feeding points (opportunistically sampled locations where whales were observed feeding) to determine if feeding areas had different biomass characteristics than other stations (Table 3). ANCOVA and Tukey multiple comparisons document long-term differences for benthic prey among years for the nearshore and offshore surveys (Tables 4–6). Canonical correspondence analyses were conducted to investigate relationships between environmental predictors and community biomass structure using all macrofaunal groups (Fig. 2; Table 7) (see: Table 8).

2. Experimental design, materials, and methods

2.1. Sampling

Bottom sampling was conducted in the summers of 2001–2015 to measure biomass concentrations and environmental characteristics in the GW feeding area adjacent to northeastern Sakhalin Island (the Sakhalin feeding area; Fig. 1). Sampling was conducted aboard the R/V Okean (2001), R/V Nevelskoy
Fig. 1. Sakhalin Island survey grids. Benthic sampling locations were either randomly selected within the grid or repeated from previous years. One location was selected for sampling in each grid and three replicate van Veen grabs were collected at each sampling location.
Benthic biological and sediment samples were collected using a van Veen grab with a surface area of 0.2 m². Research vessel drafts limited operations of van Veen grabs to water depths ≤ 9 m though some slightly shallower samples (7–8 m) were occasionally collected. Onboard, samples were sieved over a 1.0-mm-mesh screen and the organisms preserved in 4% formalin. In the taxonomic laboratory, biological material was sorted from the sediment residues and animals were identified, counted, and weighed. Animals were grouped into classes or higher taxonomic categories. Sediment grain-size analyses were used to determine standard grain-size categories.

Initial investigation of the nearshore feeding area was conducted in 2001 by divers to explore prey habitat (5–30 m water depth) and provide a basis for designing the nearshore Piltun survey grid. The current nearshore sampling grid consists of 72 cells along the northeastern coast of Sakhalin Island encompassing the nearshore (< 20 m) GW feeding habitat and extending to deeper waters to capture environmental gradients. The total area of the nearshore survey area is approximately 1100 km². Sampling was initiated in the offshore feeding area in 2002 and the offshore survey currently includes 48 cells with a total area of approximately 2000 km². Data records for diver sampling in 2001 consists of single biomass estimates for sampling location. Benthos and sediment sample collections from 2002 to 2015 comprised three replicates collected at randomly selected sampling points or by repeated sampling of locations selected in previous years. Samples from 2002 to 2015 were collected in water

Year	N	Average Amphipoda	SD	Average Bivalvia	SD	Average Cumacea	SD	Average Isopoda	SD
2001	60	36.6	62.3	106.9	141.4	20.8	30.6	25.7	39.7
2002	88	32.2	58.7	27.6	56.1	12.5	29.8	13.8	20.5
2003	55	56.3	62.5	45.1	92.9	2.2	6.7	21.3	30.7
2004	45	46.8	50.5	21.9	28.7	0.8	2.4	10.2	13.4
2005	48	30.5	34.3	24.8	29.5	1.0	1.9	5.4	6.6
2006	60	28.2	33.5	15.2	38.1	2.7	8.2	11.1	11.1
2007	78	33.4	39.7	53.3	92.4	4.2	14.1	12.8	22.0
2008	67	37.2	32.4	35.5	47.2	1.8	4.9	3.9	3.1
2009	74	18.6	26.1	23.3	35.1	0.4	0.8	3.8	5.9
2010	79	29.4	37.7	25.1	35.7	5.1	42.7	7.0	9.1
2011	60	20.6	45.8	92.4	139.0	0.1	0.7	6.8	14.0
2012	73	38.4	44.9	56.2	70.9	0.3	0.7	10.2	13.9
2013_1	42	40.2	35.2	111.2	128.8	2.2	3.4	12.7	13.2
2013_2	70	16.8	21.6	58.2	83.3	0.5	1.1	8.0	10.2
2014	72	18.0	24.1	45.1	81.7	0.3	0.5	6.7	12.4
2015	63	19.8	28.5	55.3	94.3	0.4	0.6	4.4	5.5

Year	N	Average Actinopterygii	SD	Average Polychaeta	SD	T6	SD
2001	60	4.3	10.8	24.2	37.6	218.4	180.6
2002	88	6.2	10.1	8.6	8.5	100.8	98.9
2003	55	4.5	12.5	12.6	26.8	142.3	106.9
2004	45	49.4	88.2	6.5	7.2	135.5	113.6
2005	48	56.5	102.1	9.2	15.0	127.3	119.5
2006	60	13.7	32.0	3.2	6.6	74.0	60.3
2007	78	9.1	24.2	4.6	4.9	117.5	104.7
2008	67	3.6	6.8	5.2	6.2	86.4	55.1
2009	74	8.1	18.8	2.4	2.7	56.6	47.6
2010	79	12.7	30.2	4.1	5.9	83.3	65.3
2011	60	12.9	26.2	10.7	14.4	143.5	148.3
2012	73	3.6	14.3	6.6	7.2	115.1	87.6
2013_1	42	4.7	6.6	7.3	5.1	178.2	114.4
2013_2	70	6.1	10.4	10.7	16.2	100.1	84.3
2014	72	4.2	10.4	8.8	22.9	82.4	97.2
2015	63	23.0	37.0	7.7	15.0	110.7	101.2
Table 2
Sample size, averages, and standard deviations (SD) for the offshore study area for Amphipoda, Bivalvia, Cumacea, Isopoda, Actinopterygii, Polychaeta, and the total prey (T6: sum of 6 prey) biomass, 2001–2015.

Year	N	Average Amphipoda	SD	Average Bivalvia	SD	Average Cumacea	SD	Average Isopoda	SD
2002	36	268.5	313.4	50.0	79.9	24.7	30.9	0.0	0.0
2003	36	233.2	261.7	110.6	116.0	110.6	93.5	0.0	0.0
2004	32	246.7	213.3	76.8	57.0	19.7	29.7	0.0	0.0
2005	48	200.3	191.9	146.7	44.3	10.8	49.8	0.0	0.0
2006	48	184.9	235.6	112.2	141.4	12.2	24.8	0.0	0.0
2007	48	173.6	190.2	11.3	12.7	11.3	6.5	0.0	0.0
2008	48	140.0	191.8	141.3	83.1	33.1	42.5	0.0	0.0
2009	48	169.0	194.2	72.9	236.5	49.8	60.4	0.0	0.0
2010	48	132.3	170.0	115.4	236.1	281.9	150.3	4.1	
2012	48	143.2	276.8	65.6	219.4	94.8	264.7	14.0	
2013	48	119.7	143.0	129.1	179.7	129.1	237.5	11.6	
2014	48	173.5	194.1	329.1	193.8	63.9	389.0	2.4	
2015	48	132.3	194.1	103.2	193.8	63.9	389.0	2.4	

Table 3
Average biomass (g m\(^{-2}\)) of six prey groups and total prey biomass from feeding points in the nearshore and offshore surveys 2002–2015.

Region	Year	Amp	Biv	Cu	Iso	Act	Poly	T6
Nearshore	2002	72.9	13.9	1.2	16.1	4.0	3.0	111.1
	2003	83.5	19.3	2.5	30.1	41.1	4.0	180.5
	2004	44.3	17.7	0.8	14.9	39.6	2.4	119.7
	2005	63.8	30.9	3.2	8.5	51.3	7.8	165.5
	2006	41.2	17.0	0.8	9.7	43.1	3.9	76.8
	2007	53.5	47.9	0.9	8.2	16.5	4.8	131.7
	2008	51.8	28.5	1.6	10.6	0.4	3.3	96.1
	2009	32.8	20.5	1.6	18.3	34.6	4.4	112.3
	2010	72.4	47.7	5.0	14.2	48.8	9.1	197.2
	2011	112.9	11.1	1.7	23.9	0.0	6.9	156.4
	2012	67.1	32.1	2.5	13.0	4.0	9.8	124.9
	2013	32.4	51.8	0.5	10	8.3	3.9	106.8
	2014	264.9	35.8	16.0	0.0	0.1	8.0	324.7
	2015	379.5	48.9	9.4	0.0	3.6	441.4	
Offshore	2002	192.4	57.4	35.7	0.0	23.4	309.0	
	2003	65.7	25.7	15.8	7.1	1.3	5.0	120.6
	2006	201.0	37.8	96.8	0.0	25.4	361.0	
	2007	449.2	61.7	15.8	0.1	37.1	563.9	
	2008	174.1	32.3	18.7	0.0	0.0	15.1	240.2
	2009	274.8	26.3	3.9	0.0	8.4	313.3	
	2010	296.4	28.8	22.9	0.4	18.7	367.1	
	2012	472.7	44.7	1.7	0.0	15.7	534.8	
	2015	695.2	162.3	0.0	0.1	72.4	930.1	

Act = average Actinopterygii biomass, Amp = Amphipoda, Biv = Bivalvia, Cu = Cumacea, Iso = Isopoda, Poly = Polychaeta, and T6 = total biomass of 6-prey group. Feeding points were not sampled in every year within each study area.
depths ranging from 7 to 35 m nearshore and from 30 to 63 m offshore. Both survey grids in the Sakhalin Island coastal study area are adjacent to or overlap with areas of heightened anthropogenic activities including commercial fishing and oil and gas platforms (Fig. 1). During the course of the investigation, locations where gray whales were observed feeding were opportunistically sampled and three replicates collected at each point. These feeding points were identified by gray whale observers from shore and on vessels associated with oil and gas exploration and production activities. The feeding points provide further information characterizing specific locations where whales feed. Feeding areas were sampled differently in 2015 using a targeted sampling approach with six replicates collected along two transects at 9 m and 13 m for a total of twelve replicates at each location. Feeding areas from 2015 were not statistically-evaluated for differences here but were considered separately (Blanchard et al., unpublished data).

Environmental variables included water depth, year of sampling, percent sand (sand: particles between 0.1 mm and 1.0 mm; other categories were colinear with sand), and the Aleutian Low Pressure Index (ALPI). The Aleutian Low [2] influences winter wind patterns and sea-level pressure throughout the Bering Sea and variations in its strength and position can directly influence water circulation [3,4]. The ALPI is available at https://open.canada.ca/data/.

2.2. Statistical analyses

Analysis of covariance was performed for surveys using mixed modeling to test for differences among years. ANCOVA’s were performed separately for the nearshore (incorporating data from 2001 to 2015) and offshore surveys (using data from 2002 to 2015). The mixed-modeling package nlme [5] was used with the statistical program R [6] for analysis of as it allows incorporation of models for temporally-correlated errors. Autoregressive and moving average correlation models were used in nlme to correct

Comparison	Amphipoda	Bivalvia	Cumacea	Isopoda	Actinoptygii	Polychaeta	T6
Model	D + Y	Y	D + Y	D + Y	Y	D + Y	D + Y
TS Corr.	AR(3)	AR(3)	AR(2)	AR(3)	ARMA	ARMA	ARMA
2001–2002	0.9973	<0.0001	<0.0001	0.6426	1.0000	<0.0001	0.0647
2001–2003	0.8068	<0.0001	<0.0001	0.3322	1.0000	<0.0001	0.2530
2001–2004	0.0006	<0.0001	<0.0001	0.0186	0.0796	<0.0001	0.4522
2001–2005	1.0000	<0.0001	<0.0001	<0.0001	0.0782	<0.0001	0.0331
2001–2006	0.9977	<0.0001	<0.0001	0.0659	1.0000	<0.0001	<0.0001
2001–2007	0.9977	0.0001	<0.0001	0.0079	1.0000	<0.0001	0.0031
2001–2008	0.3991	<0.0001	<0.0001	<0.0001	0.9954	<0.0001	0.0001
2001–2009	0.2778	<0.0001	<0.0001	<0.0001	1.0000	<0.0001	<0.0001
2001–2010	0.9999	<0.0001	<0.0001	<0.0001	0.9991	<0.0001	<0.0001
2001–2011	0.5761	0.1673	<0.0001	<0.0001	0.9779	0.0002	0.0535
2001–2012	1.0000	0.0049	<0.0001	0.0057	0.8716	<0.0001	<0.0001
2001–2013	0.0556	0.1513	<0.0001	<0.0001	1.0000	0.0076	0.0005
2001–2014	0.0325	0.0001	<0.0001	<0.0001	1.0000	<0.0001	<0.0001
2001–2015	0.4273	0.0096	<0.0001	<0.0001	0.5685	<0.0001	<0.0001
2002–2003	<0.0001	1.0000	0.0098	1.0000	0.9888	0.9711	1.0000
2002–2004	<0.0001	1.0000	<0.0001	0.7780	0.0200	0.8720	0.9999
2002–2005	0.3116	1.0000	<0.0001	0.0004	0.0247	0.7152	1.0000
2002–2006	0.0422	0.0207	<0.0001	0.9830	0.9909	<0.0001	0.0007
2002–2007	0.0454	0.9595	<0.0001	0.6299	0.9739	0.7169	0.9991
2002–2008	<0.0001	0.9994	0.0005	<0.0001	0.6249	0.5288	0.7979
2002–2009	0.6574	0.9838	<0.0001	<0.0001	1.0000	<0.0001	<0.0001
2002–2010	1.0000	1.0000	<0.0001	0.0102	1.0000	0.0023	0.0002
2002–2011	0.9597	0.0311	<0.0001	<0.0001	0.9935	0.9558	1.0000
2002–2012	0.8507	0.3228	<0.0001	0.5538	0.1436	0.8937	0.3501
2002–2013	0.1300	0.0053	<0.0001	0.0005	1.0000	0.0677	0.9652
2002–2014	0.0748	0.9616	<0.0001	<0.0001	0.9962	1.0000	0.0003
Comparison	Amphipoda	Bivalvia	Cumacea	Isopoda	Actinopterygii	Polychaeta	T6
---------------------	-----------	----------	---------	---------	----------------	------------	------
2002–2007	0.9581	0.9990	0.2593	0.9548	1.0000	1.0000	0.9295
2003–2008	1.0000	0.9988	0.3596	1.0000	0.9884		
2004–2005	<0.0001	0.9998	0.2761	<0.0001	0.9959		
2005–2006	0.0001	0.1689	0.8772	1.0000	<0.0001		
2006–2007	0.8120	0.8806	0.0900	0.0001	1.0000	0.9875	0.0612
2007–2008	0.9221	0.0304	0.3138	<0.0001	1.0000	0.9893	
2008–2009	0.9999	0.9998	0.0630	0.0175			
2009–2010	1.0000	0.9978	0.9671	0.7314			
2010–2011	<0.0001	0.0135	0.2820	0.0001	1.0000	0.9895	
2011–2012	0.1641	0.9945	1.0000	<0.0001	1.0000	0.9688	
2012–2013	<0.0001	0.0022	0.9999	0.1257	0.5926		
2013–2014	<0.0001	0.8189	1.0000	0.0003	0.8028		
2014–2015	0.0023	0.6855	0.0227	0.8597	0.8892	0.0706	
2015–2016	0.0292	0.9996	0.0325	<0.0001	0.0011	0.0166	
2016–2017	0.9123	0.9998	0.4193	<0.0001	1.0000	0.9875	
2017–2018	0.4911	0.9707	0.3038	<0.0001	1.0000	0.9875	
2018–2019	<0.0001	0.9584	0.8539	0.0132	0.0120		
2019–2020	0.6591	1.0000	0.7306	0.2469	0.8635	0.0040	
2020–2021	0.057	0.0263	0.5496	0.8139	0.0423	1.0000	
2021–2022	0.9999	0.2697	0.6527	0.0001	1.0000	0.7532	
2022–2023	<0.0001	0.9948	0.1000	0.1203	<0.0001	0.9992	
2023–2024	0.9237	0.9480	1.0000	0.0002	0.5981	0.0060	
2024–2025	0.0053	0.9960	0.9857	0.7011	0.8434		
2025–2026	<0.0001	0.0002	0.8433	0.0204	0.0027	0.4071	
2026–2027	0.6534	0.1493	0.0015	0.9981	1.0000	0.0512	
2027–2028	0.1794	0.0585	0.4998	0.7059	0.6281	1.0000	
2028–2029	0.0002	<0.0001	0.0505	0.4307	<0.0001	0.0201	
2029–2030	0.9743	<0.0001	0.9623	0.9323	0.0003	0.9163	
2030–2031	<0.0001	<0.0001	0.2199	0.9033	<0.0001	0.2573	
2031–2032	<0.0001	<0.0001	0.2913	0.0067	<0.0001	1.0000	
2032–2033	<0.0001	<0.0001	0.0002	0.0039	<0.0001	0.5281	
2033–2034	0.6318	1.0000	0.7784	0.9999	1.0000	0.9991	
2034–2035	<0.0001	0.1165	0.1209	0.9891	0.0021	<0.0001	
2035–2036	0.1780	0.8465	0.0755	0.5618	0.7200	0.0134	

(continued on next page)
Table 4 (continued)

Comparison	Amphipoda	Bivalvia	Cumacea	Isopoda	Actinoptygii	Polychaeta	T6
2008–2015	<0.0001	0.2083	0.9238	1.0000	<0.0001	0.4112	1.000
2009–2010	0.1235	0.9593	1.0000	0.7615	0.9987	0.6194	0.0448
2009–2011	1.0000	<0.0001	1.0000	1.0000	0.9712		
2009–2012	0.0029	0.0031	1.0000	0.0474	0.1958	<0.0001	<0.001
2009–2013	0.9999	<0.0001	1.0000	0.9882	1.0000		
2009–2014	0.9993	0.1336	1.0000	1.0000	0.9993		
2009–2015	1.0000	<0.0001	1.0000	1.0000	0.3014		
2010–2011	0.5277	0.0014	1.0000	0.9682	1.0000	<0.0001	0.0004
2010–2012	0.9827	0.1310	1.0000	0.9716	<0.0001	0.0042	0.4302
2010–2013	0.0250	0.0013	1.0000	1.0000	1.0000	<0.0001	0.0075
2010–2014	0.0130	0.8512	1.0000	0.9704	0.7615	0.0009	1.000
2010–2015	0.7893	0.0011	0.0163	0.7084	0.9735	0.0003	0.2270
2011–2012	0.0091	0.9957	1.0000	0.1419	<0.0005	0.0250	0.5077
2011–2013	0.9954	1.0000	1.0000	0.9999		0.9886	0.9977
2011–2014	0.9866	0.7164	0.9999	1.0000	0.4674	0.9796	0.0500
2011–2015	1.0000	1.0000	0.0076	1.0000	1.0000	0.7658	0.8097
2012–2013	<0.0001	0.9728	1.0000	0.5050	<0.0001	<0.0001	<0.0001
2012–2014	<0.0001	0.9986	1.0000	0.1228	0.8572	0.7638	0.6908
2012–2015	0.0361	0.9997	0.0079	0.0093	<0.0001	0.8612	1.000
2013–2014	1.0000	0.2713	1.0000	0.9999	0.8392	0.0376	0.0279
2013–2015	0.9448	1.0000	0.0441	0.9927	0.8415	0.0035	1.000
2014–2015	0.8285	0.5484	0.0473	1.0000	0.0029	1.0000	0.1759

Significant multiple comparisons (α = 0.05; p ≤ 0.05) are highlighted in bold. Comparison = the years compared and T6 = Total 6-prey group biomass. TS corr. = time series correlation model, AR(2) = autoregressive model with 2 lags, AR(3) = autoregressive model with 3 lags, MA(2) = moving average with 2 lags, and ARMA = autoregressive and moving average model, both with 2 lags.

Table 5

Tukey multiple comparisons among years for faunal groups for the offshore surveys, 2002–2015.

Comparison	Amphipoda	Bivalvia	Cumacea	Polychaeta	T6
TS Corr.	D + Y	Y	D + Y	D + Y	D + Y
ARMA(3,3)	0.0001	0.0002	0.0002	0.2527	0.9992
ARMA(2,2)	0.0001	0.0001	0.3851	0.0243	0.9916
ARMA(2,2)	0.0002	<0.0001	0.1863	0.0446	0.9977
ARMA(2,2)	0.0003	<0.0001	0.3389	0.1211	0.7826
ARMA(2,2)	1.0000	0.8730	1.0000	0.9737	1.000
ARMA(2,2)	1.0000	1.0000	1.0000	0.9815	1.000
ARMA(2,2)	1.0000	0.5117	0.2357	0.9895	0.7972
ARMA(2,2)	0.0003	0.0008	0.9999	0.0314	0.0005
ARMA(2,2)	0.9482	0.0001	<0.0001	0.0005	0.0003
ARMA(2,2)	0.1498	1.0000	1.0000	0.0125	0.7993
ARMA(2,2)	0.9968	0.1000	0.5488	0.5052	0.9997
ARMA(2,2)	<0.0001	0.0001	0.2664	0.0283	0.2803
ARMA(2,2)	<0.0001	0.0005	1.0000	0.9999	1.000
ARMA(2,2)	0.0005	0.0003	0.3338	0.1000	0.9158
ARMA(2,2)	<0.0001	0.0001	<0.0001	0.1201	0.0015
Table 5 (continued)

Year 1	Year 2	Amphipoda	Bivalvia	Cumacea	Polychaeta	T6
2004–2009	0.2530	0.7377	1.0000	0.5613	0.9196	
2004–2010	0.9997	0.9056	0.5002	0.9997	1.0000	
2004–2012	<0.0001	1.0000	0.2401	0.9874	0.3746	
2004–2013	<0.0001	0.6861	1.0000	0.6652	1.0000	
2004–2014	0.0010	1.0000	0.9998	0.7816	1.0000	
2004–2007	0.0002	<0.0001	0.9592	0.4042	0.0001	
2004–2008	0.9197	<0.0001	<0.0001	<0.0001	0.0204	0.0001
2005–2009	0.0748	1.0000	0.9940	0.2594	0.8002	
2005–2010	0.9972	1.0000	0.8307	0.9951	0.9999	
2005–2012	<0.0001	0.9692	0.5280	0.9903	0.1811	
2005–2013	<0.0001	0.0767	1.0000	0.6329	1.0000	
2005–2014	<0.0001	0.4933	1.0000	0.7603	1.0000	
2005–2015	0.0002	0.0021	1.0000	0.4540	1.0000	
2006–2007	<0.0001	0.3203	0.3780	0.2298	0.0349	
2006–2008	0.9125	0.1501	0.0421	0.0135	0.0828	
2006–2009	0.0600	0.6124	0.4948	0.2288	1.0000	
2006–2010	0.9984	0.3892	<0.0001	0.9938	0.9980	
2006–2012	<0.0001	<0.0001	<0.0001	0.9920	0.9982	
2006–2013	<0.0001	<0.0001	0.0659	0.6449	0.9798	
2006–2014	0.0001	<0.0001	0.0188	0.7782	0.9939	
2006–2015	0.0002	<0.0001	0.0543	0.4768	0.6488	
2007–2008	0.0554	1.0000	<0.0001	0.9807	1.0000	
2007–2009	0.9985	0.0003	1.0000	1.0000	0.1458	
2007–2010	0.9925	0.0001	0.0548	0.9920	0.0052	
2007–2012	0.0495	<0.0001	0.0138	0.0188	0.8439	
2007–2013	0.4141	<0.0001	<0.0001	0.9948	0.0005	0.0019
2007–2014	0.9859	<0.0001	0.9426	0.0012	0.0041	
2007–2015	0.9914	<0.0001	0.9889	0.0002	0.0001	
2008–2009	0.6368	<0.0001	<0.0001	0.9990	0.0280	
2008–2010	1.0000	<0.0001	<0.0001	0.3915	0.0015	
2008–2012	<0.0001	<0.0001	<0.0001	0.0001	0.7550	
2008–2013	<0.0001	<0.0001	<0.0001	<0.0001	0.0010	
2008–2014	0.0109	<0.0001	<0.0001	<0.0001	0.0024	
2008–2015	0.0198	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
2009–2010	0.2747	1.0000	0.0178	0.8717	0.9811	
2009–2012	0.0001	0.5881	0.0151	0.0031	0.9984	
2009–2013	0.0176	0.0003	0.9992	0.0001	0.9648	
2009–2014	0.5311	0.1166	0.9819	0.0003	0.9891	
2009–2015	0.6324	0.0001	0.9980	<0.0001	0.5882	
2010–2012	<0.0001	0.7537	1.0000	0.2194	0.3635	
2010–2013	<0.0001	<0.0001	0.5934	0.0329	1.0000	
2010–2014	0.0003	0.2393	0.8696	0.0794	1.0000	
2010–2015	0.0014	0.0004	0.7858	0.0234	0.9969	
2012–2013	0.9987	0.2182	0.1115	0.9981	0.1617	
2012–2014	0.5788	0.9991	0.5554	0.9999	0.4733	

Significant multiple comparisons (α = 0.05; p < 0.05) are highlighted in bold. Comparison = the years compared and T6 = Total 6-prey group biomass. Model = the regression model, D = water depth, Y = year, TS corr. = time series correlation model, AR(2) = autoregressive model with 2 lags, ARMA(2,2) = autoregressive and moving average model, both with 2 lags, and ARMA(3,3) = autoregressive and moving average model, both with 3 lags.
Table 6
Analysis of variance of nine prey groups from feeding points in the nearshore and offshore study areas, 2002–2015.

Taxon	Est.	P-Value	Comparison	Taxon	Est.	P-Value	Comparison
Amphipoda	0.91	<0.0001	FP>GS	Amphipoda	0.84	<0.0001	FP>GS
Bivalvia	0.13	0.1891		Bivalvia	−0.20	0.6907	
Cumacea	0.14	0.9340		Cumacea	−0.46	<0.0001	GS>FP
Isopoda	0.67	<0.0001	FP>GS	Isopoda	−0.02	0.8683	
Actinopterygi	−0.02	0.8683		Actinopterygi	0.08	0.2404	
Polychaeta	0.02	0.7072		Polychaeta	0.44	<0.0001	FP>GS
Total Prey	0.56	<0.0001	FP>GS	Total Prey	0.56	<0.0001	FP>GS

Est. = the difference between feeding point biomass – grid station biomass for transformed biomass data used in the mixed models, and P-values from mixed models. A positive estimate value indicates that average biomass was higher at feeding points. The “Comparison” columns denote whether biomass was higher in feeding points (FP) or grid stations (GS). Years included in the ANOVA were 2002–2012 for the nearshore and 2002–2015 for the offshore.

Fig. 2. Canonical correspondence analysis (CCA) of the nearshore (a) and offshore (b) study areas, 2002–2015. The survey from 2001 was not included due to missing data. Plots on the left present the ordination by stations and the plots on the right side present species ordinations. The correlations of predictor variables are presented as biplots where the length and direction of an arrow represents the direction and strength of association with the axes. The positioning of an arrow in the direction of the spread of stations and location of a group label indicates joint associations. The faunal groups in the analysis are Am = Amphipoda, Ant = Anthozoa, As = Ascidiacea, B = Bivalvia, C = Cumacea, E = Echinoidea, G = Gastropoda, Ho = Holothuroidea, Hy = Hydrozoa, I = Isopoda, N = Nemertea, Pi = Pisces, and Po = Polychaeta. ALPI = the Aleutian Low Pressure Index.
Correcting for temporal correlations among errors increases the precision of statistical tests by correcting variances. Here, we limited our consideration to models of at most 3 lags, or up to 3 years distant. We also presumed that any spatial correlation structures would be approximated by and incorporated in the correlation models. Models considered for adjusting errors were autoregressive (AR), moving average (MA), and combined models (ARMA).

Model selection included determination of the variables appropriate for inclusion as well as the best correlation model. The available models included depth, year, and Depth and Year. Depth was a continuous variable and Year a fixed factor. Station was included as a random factor in mixed models. Akaike’s Information Criterion (AIC) was used to determine the best model of the three for each faunal group analyzed. The choice for which correlation model to use was guided by likelihood ratio tests that compare the variance reductions among correlation models. Tukey multiple comparisons were performed using the lmerTest package in R [7].

2.3. Multivariate analyses

Multivariate analyses were applied to characterize changes in benthic community biomass concentrations related to environmental predictors. Canonical correspondence analysis (CCA) was used to test the hypothesis that environmental and temporal covariates were predictors of biomass concentrations.

Table 7
Correlations among environmental variables canonical correspondence analysis axes, cumulative proportion of variance accounted for, and permutational analysis of variance for variables and axes (p-values) for the Piltun and Offshore study areas, 2002–2015. Correlations ≥ |0.30| are in bold.

	Piltun							
	CCA1	CCA2	CCA3	CCA4	P-Values			
Sand	−0.18	−0.08	−0.01	−0.09	0.001			
Year	−0.07	−0.47	−0.01	0.01	0.001			
Depth	0.67	−0.01	0.01	0.00	0.001			
ALPI	−0.01	0.09	0.14	0.00	0.079			
P-Values	0.001	0.001	0.341	0.944				
Cum Prop. Var.	9%	11%	12%	12%				

	Offshore							
	CCA1	CCA2	CCA3	CCA4	P-Values			
Sand	0.22	−0.12	0.17	−0.02	0.001			
Year	0.30	−0.15	<0.001	−0.12	0.002			
Depth	−0.49	−0.09	−0.07	−0.02	0.001			
ALPI	−0.02	0.11	<0.001	−0.01	0.337			
P-Values	0.001	0.040	0.483	0.990				
Cum Prop. Var.	6%	7%	8%	8%				

Table 8
Analysis of covariance for the nearshore and offshore study areas adjacent to Sakhalin Island, 2001–2015.

	Nearshore								Offshore						
Group	Factor	F	P-value	Factor	F	P-value									
Actinopterygii	Depth	0.1	0.7782	Depth	7.8	0.0053									
	Year	8.7	<0.001	Year	7.3	<0.001									
Amphipoda	Depth	151.2	<0.001	Depth	15.3	<0.001									
	Year	19.8	<0.001	Year	10.4	<0.001									
Bivalvia	Depth	1.5	0.2219	Depth	0.0	0.9674									
	Year	17.0	<0.001	Year	15.5	<0.001									
Cumacea	Depth	15.3	<0.001	Depth	63.3	<0.001									
	Year	39.2	<0.001	Year	11.1	<0.001									
Isopoda	Depth	84.3	<0.001	Depth	12.2	<0.001									
	Year	10.2	<0.001	Year	3.2	<0.001									
Polychaeta	Depth	10.0	<0.001	Depth	63.2	<0.001									
	Year	18.5	<0.001	Year	6.0	<0.001									
Total Prey	Depth	87.1	<0.001	Depth	3.8	0.0515									
	Year	13.4	<0.001	Year	5.9	<0.001									

Mixed models were adjusted for time-series errors. F-statistics (F) and p-values are presented.
community structure. The community data set was benthic biomass of all categories identified with rare animals excluded. Biomass data were ln(X+1)-transformed prior to analyses to reduce influences of extreme values on the ordination. The covariates were water depth, year, the ALPI (a measure of macro-scale climate variability), and percent sand. CCA was conducted using the vegan package [8].

Acknowledgments

We are grateful for the assistance of the captains and crews of the R/V Academic OparinR/V Okean, R/V Lavrentyev, R/V Igor Maksimov, and R/V Nevelskoye and scientists at the National Scientific Center of Marine Biology (NSCMB, previously the AV Zhirmunsky Institute of Marine Biology) of the Far Eastern Branch of the Russian Academy of Sciences. Exxon Neftegas Limited. (ENL) and Sakhalin Energy Investment Company, Ltd. (SEIC) provided financial support for sampling and laboratory analyses through the joint western gray whale research and monitoring program, Sakhalin Island, Russia, 2001—2015. Funding for this publication was provided by ENL. Many people contributed to the successful implementation of the benthic surveys throughout the years, and we would like to thank the benthic field sampling teams and laboratory personnel of NSCMB, the science lead on the vessel Yuri Yakovlev (NSCMB), and the logistic support of Vladimir Efremov, Ervin Kalinin (ENL) and Igor Zhmaev (LGL ECO). We dedicate this paper to V. I. Fadeev (NSCMB), who was the lead benthic investigator during most (13) years and H. R. Melton who was instrumental in establishing and continuation of the western gray whale research program. The conclusions of the paper are those of the authors and do not necessarily represent the views of Exxon Neftegaslink Limited. (ENL) and Sakhalin Energy Investment Company, Ltd. (SEIC) provided financial support for sampling and laboratory analyses through the joint western gray whale research and monitoring program, Sakhalin Island, Russia, 2001—2015. Funding for this publication was provided by ENL.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103968.

References

[1] A.L. Blanchard, N.L. Demchenko, L.A.M. Aerts, S.B. Yazvenko, V.V. Ivin, I. Shcherbakov, H.R. Melton, Prey biomass dynamics in gray whale feeding areas adjacent to northeastern Sakhalin (the Sea of Okhotsk), Russia, 2001—2015, Mar. Environ. Res. 145 (2019) 123–136. https://doi.org/10.1016/j.marenvres.2019.02.008.
[2] A.M. Surry, J.R. King, A New Method for Calculating ALPI: the Aleutian Low Pressure Index (No. 3135), Canadian Technical Report of Fisheries and Aquatic Sciences, 2015.
[3] J.E. Overland, J.M. Adams, N.A. Bond, Decadal variability of the aleutian Low and its relation to high-latitude circulation, J. Clim. 12 (1999) 1542–1548.
[4] M. Wang, N.A. Bond, J.E. Overland, Comparison of atmospheric forcing in four sub-arctic seas, Deep Sea Res. Part II Top. Stud. Oceanogr. 54 (2007) 2543–2559.
[5] D. Bates, M. Machler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw. 67 (2015) 1–48.
[6] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2017.
[7] A. Kuznetsova, P.B. Brockhoff, R.H.B. Christensen, lmerTest: Tests in Linear Mixed Effects Models, 2016.
[8] J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, H. Wagner, Vegan: Community Ecology Package, 2017.