Supporting Information

for

Broadening the scope of uranyl photoreactivity: The oxidation of a uranyl complex anion in solid-state materials

Jordan A. Herder, Aaron D. Nicholas, Christopher L. Cahill

Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA.

Table of Contents

Figure S1: Experimental PXRD pattern of Cs$_2$UO$_2$Cl$_4$. ... 3
Figure S2: Experimental PXRD pattern of ethyl-viologen diiodide. ... 4
Figure S3: Experimental PXRD pattern of propyl-viologen diiodide. ... 5
Figure S4: Experimental PXRD pattern of 1. ... 5
Figure S5: Experimental PXRD pattern of 2. ... 7
Figure S6: Experimental PXRD pattern of 3. ... 8
Figure S7: DFT ground state models for 1-3. ... 9
Table S1: Crystallographically determined bond lengths for 1. ... 10
Table S2: Crystallographically determined bond lengths for 2. .. 11
Table S3: Crystallographically determined bond lengths for 3. .. 12
Figure S8: Tauc plots of 1-3. ... 13
Figure S9: Luminescence study of 1-3 emission recovery. .. 14
Figure S10: Plot of second order rate constant of 1-3 versus viologen reduction potential. 15
Figure S11: Luminescence study of CsUO$_2$Cl$_4$ quenching and recovery. ... 16
Figure S12: Kinetics of photoinduced emission quenching of Cs$_2$UO$_2$Cl$_4$. 17
Figure S13: Raman spectra of 1. ... 18
Figure S14: Raman spectra of 2. ... 19
Figure S15: Raman spectra of 3. ... 20
Table S4: Rehm-Weller analysis of 1-3. .. 21
Table S5: Calculated changes in energy of 1-3 ... 22
Table S6: Bonding parameters of DFT ground state models for [UO$_2$Cl$_4$]$^2-$ 23
Table S7: Select bonding parameters (Å) of DFT ground state models for 1. 24
Table S8: Select bonding parameters (Å) of DFT ground state models for 2. 25
Table S9: TD-DFT calculated excited singlet states of 1 ... 26
Table S10: TD-DFT calculated electronic transitions for the *singlet* states of 1. .. 27

Figure S16: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* states of 1 above 10% contribution. ... 28

Figure S17: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* states of 1 below 10% contribution. ... 29

Table S11: TD-DFT calculated electronic transitions for the degenerate *triplet* states of 1.…… 30

Figure S18: Isodensity representations of TD-DFT calculated electronic transitions for the *triplet* states of 1. .. 31

Table S12: TD-DFT calculated excited states of 2. .. 32

Table S13: TD-DFT calculated electronic transitions of 2. .. 33

Figure S19: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* states of 2.. 34

Table S14: TD-DFT calculated electronic transitions for the degenerate *triplet* states of 2…… 35

Figure S20: Isodensity representations of TD-DFT calculated electronic transitions for the *triplet* states of 2. .. 36

Table S15: TD-DFT calculated excited states of 3. .. 37

Table S16: TD-DFT calculated electronic transitions for the *singlet* states of 3. 38

Figure S21: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* states of 3.. 39

Table S17: TD-DFT calculated electronic transitions for the *triplet* states of 3. 41

Figure S22: Isodensity representations of TD-DFT calculated electronic transitions for the *triplet* states of 3. .. 42

Figure S23: Luminescence spectra of 1-3 in the absence of UV-light. .. 43

Figure S24: Kinetics of photoinduced emission quenching of 1-3... 44
Figure S1: Experimental PXRD pattern of Cs$_2$UO$_2$Cl$_4$ (blue) with overlayed peak positions calculated from ICSD entry #56859 crystallographic information file (red).
Figure S2: Experimental PXRD pattern of ethyl-viologen diiodide (blue) with overlayed peak positions calculated from CSD entry BEQKAJ01 crystallographic information file (red).
Figure S3: Experimental PXRD pattern of propyl-viologen diiodide (blue) with overlayed peak positions calculated from CSD entry ZIFTAM crystallographic information file (red).
Figure S4: Experimental PXRD pattern of 1 (blue) with overlayed peak positions calculated from crystallographic information file (red). Cesium chloride (green) is a coproduct of the synthesis and accounts for peaks not assigned to 1.
Figure S5: Experimental PXRD pattern of 2 (blue) with overlayed peak positions calculated from crystallographic information file (red). Cesium iodide (green) is a coproduct of the synthesis and accounts for peaks not assigned to 2.
Figure S6: Experimental PXRD pattern of 3 (blue) with overlayed peak positions calculated from crystallographic information file (red). Cesium iodide (green) is a coproduct of the
Figure S7: DFT ground state models for 1-3.

Model for 1

Model for 2

Model for 3
Table S1: Crystallographically determined bond lengths for 1.

Atom 1	Atom 2	Bond Length (Å)	Atom 1	Atom 2	Bond Length (Å)
C1	H1	0.95	C6	H6A	0.98
C1	C2	1.375(3)	C6	H6B	0.98
C2	H2	0.95	C6	H6C	0.98
C2	C3	1.397(4)	N1	C1	1.344(3)
C3	C4	1.394(3)	N1	C5	1.345(3)
C3	C3	1.490(3)	N1	C6	1.479(4)
C4	H4	0.95	U1	Cl1	2.6753
C4	C5	1.374(3)	U1	Cl2	2.6598
C5	H5	0.95	U1	O1	1.773
Table S2: Crystallographically determined bond lengths for 2.

Atom 1	Atom 2	Bond Length (Å)	Atom 1	Atom 2	Bond Length (Å)
C1	H1	0.95	C6	H6AB	0.99
C1	N1	1.344(3)	C6	C7	1.519(3)
C1	C2	1.375(4)	C7	H7A	0.98
C2	H2	0.95	C7	H7B	0.98
C2	C3	1.396(4)	C7	H7C	0.98
C3	C3	1.487(4)	N1	C5	1.352(3)
C4	H4	0.95	N1	C6	1.488(4)
C4	C3	1.401(3)	U1	Cl1	2.6666
C5	H5	0.95	U1	O1	1.767
C5	C4	1.375(4)	U1	Cl2	2.6837
C6	H6A	0.99			
Table S3: Crystallographically determined bond lengths for 3.

Atom 1	Atom 2	Bond Length (Å)	Atom 1	Atom 2	Bond Length (Å)
C1	C2	1.39(1)	C7	H7B	0.99
C1	C5	1.39(1)	C7	C8	1.53(1)
C2	H2	0.95	C8	H8A	0.98
C2	C3	1.39(1)	C8	H8B	0.98
C3	H3	0.95	C8	H8C	0.98
C3	N1	1.390(9)	N1	C4	1.390(9)
C4	H4	0.95	N1	C6	1.47(1)
C4	C5	1.39(1)	U1	Cl1	2.69(1)
C5	H5	0.95	U1	Cl2	2.68(1)
C6	H6A	0.99	U1	Cl3	2.694(3)
C6	H6B	0.99	U1	Cl4	2.621(3)
C6	C7	1.55(2)	U1	O1	1.72(1)
C7	H7A	0.99	U1	O2	1.78(1)
Figure S8: Tauc plots of 1-3 (red, green, and purple, respectively) used to describe the ground state singlet energy, used in the thermodynamic analysis (via the Rehm-Weller equation).
Figure S9: Luminescence spectra of the excitation and emission of samples of 1-3 at times 0 h (red) and 3 h (purple) of irradiation. This was followed by 20 h of darkness, whereby some of the quenching of emission was reversed (black). Average recovered emission intensity (difference in intensity after 3 hours of irradiation and after 20 hours of darkness) as a percentage of max intensity for 1-3 are 14.8%, 6.9%, and 20.7%, respectively.
Figure S10: Plot of second order rate constant of 1-3 versus viologen reduction potential.

\[y = -0.14x - 0.02 \]

\[R^2 = 1.00 \]
Figure S11: a) One of three luminescence studies of Cs$_2$UO$_2$Cl$_4$ composed of spectra taken at various times of irradiation with UV-light over the course of a 3-hour experiment. b) Luminescence spectra acquired of Cs$_2$UO$_2$Cl$_4$ at times 0 h (red) and 3 h (purple) of irradiation. This was followed by 20 h of darkness, whereby most of the quenching of emission was reversed (black). The average normalized max intensity of the recovered sample was calculated to be 107% of the intensity of emission at t=0. A value of >100% is attributed to spectra collection undergone before the t=0 scan to calibrate the instrument to the signal of the sample. The recovery occurs quickly enough in Cs$_2$UO$_2$Cl$_4$ that this phenomenon becomes evident in our emission recovery measurements.
Figure S12: Kinetics of photoinduced emission quenching of Cs$_2$UO$_2$Cl$_4$ plotted to a first order reaction rate law.
Figure S13: Raman spectra of 1 before (top) and after 2 hours of irradiation (bottom).
Figure S14: Raman spectra of 2 before (top) and after 2 hours of irradiation (bottom). Intensity of the bottom spectra is doubled to better display the spectral features.
Figure S15: Raman spectra of 3 before (top) and after 2 hours of irradiation (bottom).
Table S4: Rehm-Weller parameters of 1-3 and change in Gibbs free energy associated with the transfer of an electron from the [UO$_2$Cl$_4$]$^{2-}$ anion to the respective viologen cation.

Reaction Pair	E_{ox}	E_{red}	Absorption Edge (E_s)	e_0^2/ε_α	ΔG
[UO$_2$Cl$_4$]$^{2-}$/MV$^{2+}$	-1.358 V	-0.446 V	2.445 eV	0.15 V	-3.507 eV
[UO$_2$Cl$_4$]$^{2-}$/EV$^{2+}$	-1.358 V	-0.449 V	2.178 eV	0.15 V	-3.237 eV
[UO$_2$Cl$_4$]$^{2-}$/PV$^{2+}$	-1.358 V	-0.635 V	2.092 eV	0.15 V	-2.965 eV
Table S5: Calculated changes in energy (\(\Delta E / \text{kJ/mol}\)) of \([\text{UO}_2\text{Cl}_4]^{n-}\) and viologen units found in 1-3. Singlet ground state energies of \([\text{UO}_2\text{Cl}_4]^{2-}\) and RV\(^{2+}\) used as reference values.

Species	Spin	\(\Delta E\)
\([\text{UO}_2\text{Cl}_4]^{2-}\)	Singlet	0 kJ/mol
\([\text{UO}_2\text{Cl}_4]^{-}\)	Doublet	+180 kJ/mol
\([\text{UO}_2\text{Cl}_4]^{2-}\)	Triplet	+221 kJ/mol
\([\text{UO}_2\text{Cl}_4]^{3-}\)	Doublet	+502 kJ/mol
\(\text{MV}^{2+}\)	Singlet	0 kJ/mol
\(\text{MV}^{+}\)	Triplet	-869 kJ/mol
\(\text{MV}^{3+}\)	Triplet	+1645 kJ/mol
\(\text{EV}^{2+}\)	Singlet	0 kJ/mol
\(\text{EV}^{+}\)	Triplet	-852 kJ/mol
\(\text{EV}^{3+}\)	Triplet	+1608 kJ/mol
\(\text{PV}^{2+}\)	Singlet	0 kJ/mol
\(\text{PV}^{+}\)	Triplet	-856 kJ/mol
\(\text{PV}^{3+}\)	Triplet	+1523 kJ/mol
Table S6: Bonding parameters of DFT ground state models for [UO$_2$Cl$_4$]$^{2-}$.

Charge Spin	2- Singlet	2- Triplet	1- Doublet	3- Triplet
U-O	1.7738 Å	1.8221 Å	1.7664 Å	1.8198 Å
U-Cl	2.7464 Å	2.7622 Å	2.6763 Å	3.0208 Å
Table S7: Select bonding parameters (Å) of DFT ground state models for 1.

Atom1	Atom2	Calc Length	Exp Length	Calc Length	Exp Length
U	Cl	2.7439	2.6748	C	1.4339
U	Cl	2.7531	2.6587	C	1.3779
U	Cl	2.7439	2.675	C	1.3752
U	Cl	2.7531	2.6602	C	1.4456
U	O	1.7927	1.7735	C	1.4402
U	O	1.7926	1.7721	C	1.4394
N	C	1.3761	1.3429	C	1.3768
N	C	1.3787	1.3456	C	1.3747
N	C	1.4791	1.4786	C	1.4404
N	C	1.387	1.3438	C	1.4392
N	C	1.3844	1.3448	C	1.3762
N	C	1.4782	1.4786	C	1.3789
N	C	1.3878	1.3429	C	1.446
N	C	1.3852	1.3448	C	1.4352
N	C	1.4772	1.4792	C	1.4338
N	C	1.3748	1.3444	C	1.3777
N	C	1.379	1.345	C	1.3709
N	C	1.4802	1.4792	C	1.4471
N	C	1.389	1.3444	C	1.4468
N	C	1.3887	1.345	C	1.3724
N	C	1.4725	1.4785	C	1.3715
N	C	1.3895	1.3442	C	1.4304
N	C	1.3874	1.345	C	1.446
N	C	1.4741	1.4779	C	1.4473
N	C	1.3895	1.3433	C	1.3724
N	C	1.3875	1.3459	C	1.3709
N	C	1.4741	1.4779	C	1.447
N	C	1.389	1.3442	C	1.4465
N	C	1.3887	1.345	C	1.3717
N	C	1.4733	1.4779	C	1.3709
C	C	1.3784	1.3758	C	1.431
C	C	1.4349	1.3965	C	1.4469
C	C	1.3717	1.3747	C	1.4468
Table S8: Select bonding parameters (Å) of DFT ground state models for 2.

Atom 1	Atom 2	Lengt h	Lengt h	Atom 1	Atom 2	Lengt h	Lengt h	Atom 1	Atom 2	Lengt h	Lengt h
U	Cl	2.7157	2.669	C	C	1.3798	1.3784	C	C	1.4014	1.3997
U	Cl	2.7155	2.686	C	C	1.5252	1.5218	C	C	1.3837	1.3784
U	Cl	2.7155	2.669	C	C	1.3779	1.3767	C	C	1.5228	1.5224
U	Cl	2.7138	2.6843	C	C	1.4846	1.4925	C	C	1.3779	1.3769
U	O	1.7752	1.7697	C	C	1.401	1.4004	C	C	1.4019	1.4007
U	O	1.7753	1.7697	C	C	1.4025	1.3997	C	C	1.403	1.4008
N	C	1.3521	1.3426	C	C	1.3808	1.3787	C	C	1.38	1.3776
N	C	1.3456	1.3521	C	C	1.5216	1.5218	C	C	1.5219	1.5216
N	C	1.5038	1.4928	C	C	1.3804	1.3763	C	C	1.3798	1.378
N	C	1.3514	1.3431	C	C	1.4024	1.4007	C	C	1.4838	1.4912
N	C	1.3512	1.3523	C	C	1.4014	1.3997	N	C	1.3502	1.3523
N	C	1.5024	1.4916	C	C	1.3842	1.3784	N	C	1.5031	1.4924
N	C	1.3541	1.3426	C	C	1.5228	1.521	N	C	1.3526	1.3426
N	C	1.3477	1.3523	C	C	1.3818	1.3767	N	C	1.3449	1.3523
N	C	1.5036	1.4928	C	C	1.486	1.4918	N	C	1.5042	1.4924
N	C	1.3479	1.3426	C	C	1.4013	1.4007	C	C	1.3805	1.3763
N	C	1.3491	1.3523	C	C	1.4001	1.3997	C	C	1.402	1.4004
N	C	1.5148	1.4924	C	C	1.3822	1.3787	C	C	1.4002	1.3997
N	C	1.3477	1.3426	C	C	1.5251	1.521	C	C	1.4026	1.4004
N	C	1.3475	1.3521	C	C	1.3818	1.3769	C	C	1.3997	1.3997
N	C	1.5152	1.4924	C	C	1.4008	1.4004	C	C	1.3794	1.3784
N	C	1.3531	1.3426	C	C	1.4014	1.4003	C	C	1.5261	1.5216
N	C	1.3487	1.3521	C	C	1.3828	1.3784	C	C	1.3804	1.3772
N	C	1.5043	1.4924	C	C	1.5251	1.5224	N	C	1.352	1.3426
C	C	1.4864	1.492	C	C	1.4024	1.4004				
Table S9: TD-DFT calculated excited *singlet* states of 1 between 330 nm and 370 nm.

State no.	Wavelength	f-oscillation
State 82	330.18 nm	0.0000
State 81	330.90 nm	0.0000
State 80	331.85 nm	0.0001
State 79	331.86 nm	0.0000
State 78	332.17 nm	0.0000
State 77	332.81 nm	0.0000
State 76	333.34 nm	0.0000
State 75	334.18 nm	0.0026
State 74	334.19 nm	0.0003
State 73	336.01 nm	0.0000
State 72	336.19 nm	0.0000
State 71	344.91 nm	0.0000
State 70	346.27 nm	0.0000
State 69	347.35 nm	0.0000
State 68	350.08 nm	0.0000
State 67	352.07 nm	0.0000
State 66	352.09 nm	0.0008
State 65	352.17 nm	0.0000
State 64	353.44 nm	0.0000
State 63	355.09 nm	0.0000
State 62	356.97 nm	0.0000
State 61	358.50 nm	0.0187
State 60	358.61 nm	0.0000
State 59	359.32 nm	0.0000
State 58	359.44 nm	0.0050
State 57	359.79 nm	0.0000
State 56	360.74 nm	0.0237
State 55	361.40 nm	0.0000
State 54	365.79 nm	0.0002
State 53	366.16 nm	0.0002
State 52	368.42 nm	0.0001
State 51	369.01 nm	0.0004
State 50	371.75 nm	0.0067
State 49	372.12 nm	0.0000
State 48	374.19 nm	0.0000
State 47	376.67 nm	0.0001
Table S10: TD-DFT calculated electronic transitions for the *singlet* state of 1 at 358.50 nm

Donor	Acceptor	Coefficient	Percent Contribution
253 (HOMO-2)	261 (LUMO+5)	0.46400	46%
253 (HOMO-2)	263 (LUMO+7)	-0.30754	20%
245 (HOMO-10)	257 (LUMO+1)	-0.26576	15%
254 (HOMO-1)	263 (LUMO+7)	-0.20705	9%
253 (HOMO-2)	262 (LUMO+6)	0.13137	4%
255 (HOMO)	262 (LUMO+6)	0.10841	3%
255 (HOMO)	263 (LUMO+7)	0.12537	3%
Figure S16: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* state of 1 at 358.50 nm with a percent contribution >10%.
Figure S17: Isodensity representations of TD-DFT calculated electronic transitions for the singlet state of 1 at 358.50 nm with a percent contribution <10%.
Table S11: TD-DFT calculated electronic transitions for the degenerate triplet states of 1 at 438 nm.

Energy	Donor	Acceptor	Coefficient	Percent Contribution
437.87 nm	249 (HOMO-6)	258 (LUMO+2)	0.67808	100%
437.52 nm	249 (HOMO-6)	259 (LUMO+3)	0.67819	100%
Figure S18: Isodensity representations of TD-DFT calculated electronic transitions for the degenerate *triplet* states of 1 at 437.87 (Top) and 437.52 nm (Bottom).
Table S12: TD-DFT calculated excited states of 2 between 330 nm and 370 nm.

State no.	Wavelength	f-oscillation
State 60	333.49 nm	0.0000
State 59	334.18 nm	0.0223
State 58	335.22 nm	0.0000
State 57	335.89 nm	0.0084
State 56	337.15 nm	0.0000
State 55	337.39 nm	0.0005
State 54	339.01 nm	0.0000
State 53	339.20 nm	0.0000
State 52	341.41 nm	0.0228
State 51	343.64 nm	0.0011
State 50	344.08 nm	0.0000
State 49	345.85 nm	0.0003
State 48	347.19 nm	0.0000
State 47	348.74 nm	0.0000
State 46	348.88 nm	0.0001
State 45	355.51 nm	0.0013
State 44	355.66 nm	0.0000
State 43	356.67 nm	0.0002
State 42	356.82 nm	0.0000
State 41	357.66 nm	0.0062
State 40	357.85 nm	0.0037
State 39	360.20 nm	0.0047
State 38	362.01 nm	0.0000
State 37	362.73 nm	0.0007
State 36	363.20 nm	0.0000
State 35	364.10 nm	0.0057
State 34	364.16 nm	0.0000
State 33	364.17 nm	0.0032
State 32	364.72 nm	0.0000
State 31	367.57 nm	0.0007
State 30	367.69 nm	0.0000
State 29	369.73 nm	0.0000
Table S13: TD-DFT calculated electronic transitions for the singlet state of 2 at 341.41 nm.

Donor	Acceptor	Coefficient	Percent Contribution
286 (HOMO-1)	293 (LUMO+5)	0.59734	76%
286 (HOMO-1)	295 (LUMO+7)	-0.21157	10%
287 (HOMO)	295 (LUMO+7)	0.19477	8%
287 (HOMO)	294 (LUMO+6)	0.14023	4%
286 (HOMO-1)	294 (LUMO+6)	-0.10899	3%
Figure S19: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* state of 2 at 341.41 nm.
Table S14: TD-DFT calculated electronic transitions for the degenerate *triplet* states of 2 at 434 nm.

Energy	Donor	Acceptor	Coefficient	Percent Contribution
434.41 nm	287 (HOMO) → 288 (LUMO)	0.68004	94%	
	287 (HOMO) → 291 (LUMO+3)	-0.11993	3%	
	283 (HOMO-4) → 289 (LUMO+1)	0.12803	3%	
434.30 nm	287 (HOMO) → 291 (LUMO+1)	0.68672	97%	
	283 (HOMO-4) → 288 (LUMO)	0.12779	3%	
Figure S20: Isodensity representations of TD-DFT calculated electronic transitions for the degenerate *triplet* states of 2 at 434.41 (Top) and 434.30 nm (Bottom).
Table S15: TD-DFT calculated excited states of 3 between 320 nm and 345 nm.

State no.	Wavelength	f-oscillation
State 83	320.08 nm	0.0018
State 82	320.25 nm	0.0047
State 81	320.71 nm	0.0044
State 80	321.82 nm	0.0059
State 79	322.18 nm	0.0057
State 78	322.36 nm	0.0046
State 77	322.77 nm	0.2048
State 76	322.86 nm	0.0081
State 75	323.21 nm	0.0645
State 74	323.65 nm	0.0004
State 73	323.78 nm	0.0818
State 72	324.05 nm	0.1101
State 71	324.19 nm	0.0130
State 70	324.29 nm	0.0051
State 69	325.04 nm	0.0464
State 68	325.13 nm	0.4359
State 67	326.35 nm	0.0023
State 66	326.38 nm	0.0008
State 65	326.45 nm	0.0324
State 64	327.78 nm	0.0000
State 63	328.05 nm	0.0112
State 62	328.1 nm	0.0429
State 61	328.18 nm	0.0078
State 60	329.56 nm	0.0567
State 59	331.07 nm	0.0672
State 58	333.19 nm	0.0448
State 57	333.71 nm	0.0016
State 56	334.39 nm	0.0449
State 55	340.52 nm	0.0114
State 54	340.95 nm	0.0000
State 53	341.03 nm	0.0005
State 52	342.47 nm	0.0005
State 51	344.14 nm	0.0219
Table S16: TD-DFT calculated electronic transitions for the *singlet* state of 3 at 325.13 nm.

Donor (HOMO-n)	Acceptor (LUMO)	Coefficient	Percent Contribution
304 (HOMO-15)	320 (LUMO)	0.38175	34%
305 (HOMO-14)	320 (LUMO)	0.32682	25%
299 (HOMO-20)	320 (LUMO)	-0.31502	23%
306 (HOMO-13)	320 (LUMO)	-0.16638	7%
306 (HOMO-13)	322 (LUMO+2)	-0.14403	5%
316 (HOMO-3)	327 (LUMO+7)	0.11240	3%
315 (HOMO-2)	325 (LUMO+5)	0.10889	3%
Figure S21: Isodensity representations of TD-DFT calculated electronic transitions for the *singlet* state of 3 at 325.13 nm.
Table S17: TD-DFT calculated electronic transitions for the triplet states of 3 at 440 nm.

Energy	Donor	Acceptor	Coefficient	Percent Contribution
439.76 nm	311 (HOMO-8)→ 320 (LUMO)	0.10699	81%	
	312 (HOMO-7)→ 320 (LUMO)	0.61575	17%	
	304 (HOMO-15)→ 320 (LUMO)	0.27868	2%	
Figure S22: Isodensity representations of TD-DFT calculated electronic transitions for the *triplet* states of 3 at 440 nm.
Figure S23: Kinetic spectra showing lack of quenching of samples 1-3 in the absence of UV-light irradiation. Spectra taken before (red) and after (purple) three hour periods.
Figure S24: Kinetics of photoinduced emission quenching of 1-3 plotted to a first order reaction rate law.