Sandford, C., Rasappan, R., & Aggarwal, V. K. (2015). Synthesis of enantioenriched alkylfluorides by the fluorination of boronate complexes. *Journal of the American Chemical Society, 137*(32), 10100-10103. https://doi.org/10.1021/jacs.5b05848
Organofluorine compounds are of increasing importance in pharmaceuticals, agrochemicals, and functional materials due to the element’s unique properties. In medicinal chemistry, the incorporation of fluorine into an organic compound can result in improved metabolic stability and bioavailability and enhance the binding efficacy when compared to the non-fluorinated analogue. Consequently, ~20–25% of all pharmaceuticals on the market contain fluorine, and the development of novel procedures to introduce fluorine are highly sought after. Late-stage fluorination techniques are of particular importance because they can be used to introduce 18F into molecules for positron emission tomography (PET).

The high demand for fluorination techniques has resulted in significant recent progress, particularly in the fluorination of aromatic compounds. However, general techniques for aliphatic fluorination remain challenging when the desired site for fluorination is distal to functional groups. Specifically, while enantioselective fluorination of alkenes, alkynes, heteroatoms, or carbonyl functional groups has been achieved successfully, enantioselective fluorination of remote positions is largely unexplored. The most direct current method to create such entities is the conversion of chiral secondary alcohols into alkyl fluorides by deoxyfluorination (Scheme 1a), but the process often suffers from competing elimination. This process has been improved by Ritter with the introduction of PhenoFluor, a thermally more stable reagent. Alternatively, Gandelman has reported an enantioselective nickel-catalyzed Suzuki cross-coupling reaction, but the enantioselectivity was found to be highly substrate dependent (Scheme 1b). In this paper, we demonstrate that enantioenriched boronic esters can be converted into alkyl fluorides in short reaction times and with high levels of enantiospecificity (Scheme 1d).

Recently, Li reported the silver-catalyzed fluorination of primary, secondary, and tertiary alkylboronates with Selectfluor as the electrophilic fluorinating agent (Scheme 1c). The reaction was found to proceed through a radical mechanism. We reasoned that if a protocol could be found which proceeded via a polar (two-electron) pathway rather than a radical pathway, then enantioenriched alkyl fluorides would be obtained. We previously reported that the addition of an aryllithium to a secondary boronic ester afforded a boronate complex, which reacted with a range of electrophiles with high selectivity (Figure 1), the reactions proceeding by a polar pathway. This enabled the conversion of the C–O bond into C–I, C–Br, C–Cl, C–N, C–O, and C–C (bromination exemplified in Figure 1). However, the conversion of the C–B bond into C–F was more challenging, but has now been realized and is reported herein.

Initially, chiral secondary boronic ester 4a was treated with phenyllithium to afford the intermediate boronate complex 5a (Table 1), but no reaction with Selectfluor I (7) was observed in THF. However, when THF was used for ate complex formation and then exchanged for acetonitrile for the reaction with...
Table 1. Investigation into the Fluorination of Boronate Complex 5a

entry	ArLi	Selectfluor	additive	yield (%)	es (%)
1	1	Selectfluor I	none	78	37
2	2	Selectfluor I	none	61	47
3	3	Selectfluor I	none	61	59
4	1	Selectfluor I	styrene	81	89
5	1	Selectfluor I	4-MeO styrene	>99	74
6	1	Selectfluor I	4-CF3 styrene	78	87
7	1	Selectfluor I	4-tert-butyl catechol	67	24
8	1	Selectfluor I	1-octene	>99	78
9	1	Selectfluor I	toluene	72	46
10	1	Selectfluor I	n-octane	>99	33
11	1	Selectfluor I	styrene	89	89
12	1	Selectfluor II	styrene	72	94
13	1	Selectfluor II	styrene	83	100
14	1	Selectfluor II	none	72	80

“Reactions were carried out with 0.10 mmol of 4a and 1.3 equiv of ArLi. Conditions: 1.0 mL of THF for ate complex formation, 2.0 mL of MeCN (total) for fluorination, PMP = para-methoxy phenyl. Yield of isolated product. aYield determined by HPLC analysis. b0.2 equiv of 4-tert-butyl catechol used. c0.5 equiv of styrene used. d0.25 mmol of 4a and 0.95 equiv of PhLi. Conditions: Ate complex formation at 0 °C (30 min) in 2.5 mL of THF, fluorination at −10 °C (2 h) in 5.0 mL of MeCN (total), with 1.3 equiv of Selectfluor and 3 Å molecular sieves (powder, 100 mg). Yield based on 0.95 equiv of PhLi.

Selectfluor (acetonitrile used to solubilize Selectfluor), the corresponding secondary alkylfluoride 6a was formed in 78% yield and 37% es (entry 1). Reasoning that a single-electron transfer (SET) process was dominating because of the high oxidation potential of Selectfluor I, we attempted to tune the reactivity by altering the nature of the aryl group on boron. We have previously reported that replacing PhLi (1) with 3,5-(CF3)2C6H3Li (2) significantly increased the enantiospecificity of the related reaction with disopropyl azodicarboxylate (DIAD, Figure 1), presumably by reducing the reduction potential of the boronate complex and favoring the polar (two-electron) pathway. However, the boronate complex derived from 2 was found to afford only a small improvement to 47% es in the fluorination reaction (entry 2).

Somewhat surprisingly, using an aryl organolithium formed from 4-bromostyrene increased the enantiospecificity to 59% (entry 3). To ascertain whether the alkene substituent was altering the reaction, 1.3 equiv of styrene was added to the reaction mixture, with phenyllithium being used for ate complex formation. Pleasingly, product 6a was afforded in 81% yield and 89% es (entry 4). Notably, ate complex 5a is fluorinated within only 30 min at 0 °C.

Different additives were tested in the model reaction, but no improvements in enantiospecificity were observed when compared to styrene (entries 5–10). Specifically, using either electron-deficient or -rich styrenes had no significant effect on the level of enantiospecificity; small amounts of 4-tert-butyl catechol, which are added to commercial styrenes to inhibit polymerization, were ruled out as the contributing factor.17 When the alkene additive was replaced with toluene or an alkane such as n-octane, the enantiospecificity was found to be reduced, signifying the importance of the alkene functionality. It was also found that the number of equivalents of styrene could be reduced to 0.5 before the level of enantiospecificity was found to decrease (entry 11).

To further increase the enantiospecificity, we turned to tuning the fluorinating agent to favor the desired polar pathway. It was reported by Banks that the electrophilicity (and, consequently, the oxidation potential) could be reduced by decreasing the electron-withdrawing power of the alkyl group attached to nitrogen (CH2R3).18 Pleasingly, using commercially available Selectfluor II (8) increased the enantiospecificity to 94% (entry 12).19 When the scale of the reaction was increased to 0.25 mmol it was found that reducing the equivalents of PhLi to 0.95 was necessary to maintain high enantiospecificity. Upon final optimization,20 it was determined that adding molecular sieves and reducing the temperature to −10 °C gave alkylfluoride 6a in

Scheme 2. Scope of the Fluorination Reaction

“Reactions were carried out with 0.25 mmol of boronic ester and 0.95 equiv of PhLi. Conditions: 2.5 mL of THF for ate complex formation, 5.0 mL of MeCN (total) for fluorination, 3 Å molecular sieves (powder, 100 mg), unless stated otherwise. Yields recorded are those of isolated material based on 0.95 equiv of PhLi; es determined by HPLC or GC analysis; dr determined by 19F NMR analysis. aYield after 16 h reaction. bSelectfluor I (7, 1.3 equiv), no styrene or molecular sieves, MeCN, rt, 1 h. cFluorination in 4:1 MeCN/THF mixture (5.0 mL total). DOI: 10.1021/jacs.5b05848

J. Am. Chem. Soc. 2015, 137, 10100–10103
Based on these results, we propose that styrene acts as a radical scavenger. However, because the yield of this transformation is not diminished by the presence of styrene, it seems probable that styrene is trapping a radical propagating species (Figure 2). We propose that boronate 5 reacts with Selectfluor predominantly through a polar S$_2$I$_2$ non-pathway giving the alkylfluoride in high enantiospecificity. A slower SET reaction also competes. However, once the nuclophilic radical 10 is formed it combines rapidly with the fluorine atom within the solvent cage leading to racemic alkylfluoride 6. Alternatively, alkyl radical 10 can escape the solvent cage (11) and then rapidly abstract a fluorine atom from Selectfluor, forming the racemic product and amine radical cation 12. This radical cation then undergoes rapid SET with a new boronate 5 to regenerate radical 11 and complete a propagation cycle. It is possible that this cycle is inhibited by the addition of styrene, which traps radical 11 to afford 13, thus preventing propagation. In the case of the free-radical clock substrate 4n, if 10 escapes the solvent cage it can undergo ring opening to afford 9n, unless it is trapped by styrene or Selectfluor. However, Wong has shown that cyclopropyl radicals often remain intact rather than undergoing ring opening owing to their high rate of reaction with Selectfluor. The low levels of enantiospecificity for this substrate presumably result from a slower rate of S$_2$I$_2$ non, with the radical combination following SET contributing significantly. Because the effect of added styrene is small, it suggests that radical propagation is not the primary cause of the low levels of enantiospecificity in this case.

To probe the presence of amine radical cation 12, we considered its application to the fluorination of sp3 C–H bonds. Lectka has demonstrated that intermediate 12 is capable of abstracting a H atom from adamantane, with the corresponding radical reacting with Selectfluor to form 1-fluoroadamantane and regenerate 12. When adamantane was added to our system (Scheme 3), we observed the formation of 1-fluoro adamantane 14 in 4.4% yield after 3 h at rt. The formation of 14 was reduced to 1.0% upon the addition of 1.3 equiv of styrene, demonstrating its ability to inhibit the radical propagation cycle.

```
Table 2. Radical Clock Experiment

| entry | temp/°C (time) | additive | yield (%) | ratio 6n/9n | es (%) |
|-------|----------------|----------|-----------|-------------|--------|
| 1     | 25 (1 h)       | none     | 62        | 95:5        | 52     |
| 2     | 25 (1 h)       | styrene  | 69        | >99:1       | 56     |
| 3     | −30 (16 h)     | none     | 52        | 97:3        | 56     |
| 4     | −30 (16 h)     | styrene  | 74        | >99:1       | 64     |

Reactions were carried out with 0.25 mmol of 4n and 0.95 equiv of PhLi. Conditions: 2.5 mL of THF for ate complex formation, 5.0 mL of MeCN (total) for fluorination, 3 Å molecular sieves (powder, 100 mg). Yield of isolated product based on 0.95 equiv of PhLi.

```

83% yield with complete enantiospecificity (100% es, 91% ee, entry 13). Under these optimized conditions, but without styrene, the enantiospecificity was only 80% (entry 14).

With optimized conditions established for the model reaction, the scope of the transformation was investigated (Scheme 2). Upon changing the methyl substituent at the stereogenic center for ethyl, the es of the reaction was found to drop to 81%. Pleasingly, 99% es was achieved by simply decreasing the temperature to −30 °C, albeit with a slightly reduced yield. The two methods (A and B) were thus used to exemplify the high enantiomeric purity of functional groups including azides, protected alcohols, and tert-butyl esters. Additionally, the reaction can be used to afford a benzylc acidfluoride with high enantioenrichment (6j). Given that the S$_2$I$_2$ non pathway is highly dependent on sterics, chiral tertiary boronic esters give rise to racemic products. However, compound 6l could be obtained in 67% yield within 1 h at rt using Selectfluor I (7), and hence this transformation provides a rapid late-stage method to obtain such functionality. Furthermore, the fluorination of complex boronic ester structures with additional stereogenic centers, including a derivative of cholesterol, was achieved, the products being formed as essentially single diastereoisomers (6k and 6m).

The mechanism, and in particular the role of styrene, was briefly explored. Styrene was not consumed at a detectable level during the course of the reaction, and no reaction between styrene and Selectfluor was observed under the reaction conditions in the absence of the boronate complex. Because styrene is a known radical scavenger and because Selectfluor is known to react by either S$_2$I$_2$ or SET, we probed the possibility of radical intermediates being responsible for the erosion in es (Table 2). It was expected that if SET competed with the polar pathway then cyclopropyl substrate 4n would give ring-opened homoallylic acidfluoride 9n together with the fluorinated cyclopropane 6n in high enantiospecificity. In practice, in the absence of styrene, very little ring-opened product 9n was observed, but in the presence of styrene, formation of 9n was completely suppressed. However, the levels of enantiospecificity for this substrate were lower than those for all the other boronic esters tested (in agreement with previous reactions with DIAD$^{[15]}$), thus implicating the existence of a second racemization pathway (see below).

Figure 2. Proposed pathways for the reaction of boronate complex 5 with Selectfluor (8, F=–NR$_3$).

Figure 3. Radical Fluorination of sp3 C–H Bonds

Reactions were carried out with 0.25 mmol of boronic ester and 0.95 equiv of PhLi. Conditions: 2.5 mL of THF for ate complex formation, 5.0 mL of MeCN (total) for fluorination. Yields determined by crude $^{[15]}$F NMR analysis. Ar = C$_6$H$_5$OMe or C$_8$H$_5$FOMe (∼1:1 mixture).
We thank EPSRC (EP/I038071/1) and Bristol University for financial support, Dr. E. Myers and Dr. D. Leonori for valuable discussions, and Dr. H. Sparks for X-ray analysis of 6m.

REFERENCES

(1) (a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(2) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Rev. 2008, 37, 320.
(3) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. I.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(4) (a) Ametamy, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501. (b) Brooks, A. F.; Topczewski, J. J.; Ichinash, N.; Sanford, M. S.; Scott, P. J. H. Chem. Sci. 2014, 5, 4545. (c) Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2015, 54, 3216.
(5) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
(6) (a) Chambers, R. D.; Parsons, M.; Sandford, G.; Bowden, R. Chem. Commun. 2000, 959. (b) Liu, W.; Huang, X.; Cheng, M. J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. Science 2012, 337, 1322. (c) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401. (d) Rueda-Becerril, M.; Chatelava Szepesi, C.; Leung, J. C. T.; Okinobu, T.; Kenmochi, P.; Paquin, J.-F.; Sammis, G. M. J. Am. Chem. Soc. 2012, 134, 4026.
(7) (c) Cochrane, N. A.; Nguyen, H.; Gagné, M. R. J. Am. Chem. Soc. 2013, 135, 628. (f) Halerpin, S. D.; Fan, H.; Chang, S.; Martin, R. E.; Britton, R. Angew. Chem., Int. Ed. 2014, 53, 4690. (g) Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.; Ryzhkov, L. R.; Siegr, M. A.; Leckta, T. J. Am. Chem. Soc. 2014, 136, 9780. (h) Bloom, S.; Knippel, J. L.; Leckta, T. Chem. Soc. Sci. 2015, S, 1175. (i) Ventré, S.; Petronijević, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
(8) For complete optimization studies, see Supporting Information.
(9) (a) Madsen, P.; Groves, J. T. Angew. Chem., Int. Ed. 2014, 53, 4181. (b) Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. J. Am. Chem. Soc. 2014, 136, 6842. (c) Talbot, E. P. A.; Fernandes, T. D. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
(10) (a) Katcher, M. H.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 17402. (b) Katcher, M. H.; Sha, A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 15902. (c) Wu, J.; Wang, Y.-M.; Držlević, A.; Raunír, V.; Phipps, R. J.; Toste, F. D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13729.
(11) (a) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268. (b) Raunír, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
(12) (a) Meier, J.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5225.
(13) (a) Spectroscopy, see: (c) Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. J. Am. Chem. Soc. 2015, ASAP.
(14) (a) Jiang, X.; Sakhivel, S.; Kulbitski, K.; Nisnevich, G.; Gandelmann, M. J. Am. Chem. Soc. 2014, 136, 9548. (b) Jiang, X.; Gandelmann, M. J. Am. Chem. Soc. 2015, 137, 2542.
(15) (a) Li, Z.; Wang, Z.; Zha, L.; Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136, 16439. See also: (b) Cazacu, C.; Mety, E.; Andriolletti, B.; Lemaire, M. Tetrahedron Lett. 2009, 50, 3936.
(16) (a) Larouche-Gauthier, R.; Ellford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2011, 133, 16794. (b) Mohiti, M.; Rampalakos, C.; Feeney, K.; Leonori, D.; Aggarwal, V. K. Chem. Sci. 2014, 5, 602. (c) Feeney, K.; Berionni, G.; Mayr, H.; Aggarwal, V. K. Org. Lett. 2015, 17, 2614.
(17) Styrene was distilled using a Hickman distillation head prior to use to remove 4-tert-butylcyclohexene.
(18) (a) Banks, R. E.; Mohulán-Khaffaf, S. N.; Lal, G. S.; Sharif, I.; Syvert, R. G. J. Chem. Soc., Chem. Commun. 1992, 595. (b) Banks, R. E.; Besheesh, M. K.; Mohulán-Khaffaf, S. N.; Sharif, I. J. Chem. Soc., Perkin Trans 1 1996, 2069.
(19) Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem., Int. Ed. 2005, 44, 192.
(20) For complete optimization studies, see Supporting Information.
(21) (a) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584. (b) Rasappan, R.; Aggarwal, V. K. Nat. Chem. 2014, 6, 810.
(22) Stereochemistry of compound 6m confirmed by X-ray crystallography; see Supporting Information.
(23) (a) Moad, G.; Rizzardo, E.; Solomon, D. H. Macromolecules 1982, 15, 909. (b) Li, K.; Alexakis, A. Angew. Chem., Int. Ed. 2006, 45, 7600.
(24) (a) Griller, D.; Ingold, K. U. Angew. Chem., Rev. 1980, 13, 317. (b) Bovey, V. W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5687.
(25) Other radical traps (TEMPO, p-quinoine, BHT) were also tested but found to inhibit reactivity completely owing to their ability to oxidize the boronate complex or react with Selectfluor.
(26) It is also possible that amine radical cation 12 is trapped by styrene, thereby preventing the radical propagation cycle.
(27) (a) Vincent, S. P.; Burkart, M. D.; Tsai, C.-Y.; Zhang, Z.; Wong, C.-H. J. Org. Chem. 1999, 64, 5264. (b) Panea, S.; Devillers, I.; Togni, A.; Rothlisberger, U. Angew. Chem., Int. Ed. 2002, 41, 979.