Insulin-like Growth Factor 1 Receptor Signaling Is Required for Optimal ATR-CHK1 Kinase Signaling in Ultraviolet B (UVB)-irradiated Human Keratinocytes*

Received for publication, November 1, 2016; revised version received, December 8, 2016; published, JBC Papers in Press, December 15, 2016; DOI 10.1074/jbc.M116.765883

Michael G. Kemp‡, Dan F. Spandau†, Richard Simman‡, and Jeffrey B. Travers§

From the ‡Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, the Departments of †Dermatology and §Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and the §Dayton Veterans Affairs Medical Center, Dayton, Ohio 45428

Edited by Patrick Sung

UVB wavelengths of light induce the formation of photoproducts in DNA that are potentially mutagenic if not properly removed by the nucleotide excision repair machinery. As an additional mechanism to minimize the risk of mutagenesis, UVB-irradiated cells also activate a checkpoint signaling cascade mediated by the ATM and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) kinases to transiently suppress DNA synthesis and cell cycle progression. Given that keratinocytes in geriatric skin display reduced activation of the insulin-like growth factor 1 receptor (IGF-1R) and alterations in DNA repair products in DNA that are potentially mutagenic if not properly removed by the nucleotide excision repair machinery.

The major risk factor for the development of non-melanoma skin cancer (NMSC) is the exposure to UV wavelengths of sunlight, which generate photoproducts in genomic DNA that give rise to mutations when DNA polymerases incorrectly copy the damaged bases. Nucleotide excision repair is the sole mechanism for removing these photoproducts from genomic DNA in human cells (1, 2), and mutations in excision repair genes give rise to the skin cancer-prone disease xeroderma pigmentosum and to the premature aging disease Cockayne syndrome (3, 4).

In addition to DNA repair, UV-irradiated cells possess DNA damage checkpoint signaling cascades that inhibit DNA synthesis on damaged templates to limit the likelihood of mutagenesis. This suppression of DNA synthesis occurs through a number of mechanisms, including by transiently preventing cells from entering the S phase of the cell cycle, inhibiting the initiation of DNA replication at new origins, and slowing the rate of ongoing replication fork progression (5–7). In addition to directly preventing the miscopying of damaged DNA bases, these checkpoint responses also allow additional time for DNA repair to take place prior to the resumption of DNA synthesis.

Critical components of this UV-induced DNA damage signaling response are the protein kinases ATM and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) (8–11). CHK1 is directly phosphorylated and activated by ATR (12), and, together, these proteins phosphorylate numerous additional proteins associated with DNA replication and cell cycle progression (13, 14). In UV-irradiated cells, the signal that triggers the activation the ATR-CHK1 pathway is thought to be regions of single-stranded DNA (ssDNA) produced by replicative helicase-polymerase uncoupling (15) and gaps generated during nucleotide excision repair (16–18). This ssDNA is thought to then become bound by replication protein A (RPA), which coordinates many aspects of ATR-CHK1 signaling (19–21), including the recruitment of the ATR kinase (22), its activation (8–11). CHK1 is directly phosphorylated and activated by ATR (12), and, together, these proteins phosphorylate numerous additional proteins associated with DNA replication and cell cycle progression (13, 14). In UV-irradiated cells, the signal that triggers the activation the ATR-CHK1 pathway is thought to be regions of single-stranded DNA (ssDNA) produced by replicative helicase-polymerase uncoupling (15) and gaps generated during nucleotide excision repair (16–18). This ssDNA is thought to then become bound by replication protein A (RPA), which coordinates many aspects of ATR-CHK1 signaling (19–21), including the recruitment of the ATR kinase (22), its activation.
IGF-1 Receptor Status Impacts ATR-CHK1 Signaling

been shown to promote tumorigenesis (28–31), including in the skin (32).

There are an abundance of genetic and environmental factors that may influence DNA repair, mutagenesis, and carcinogenesis associated with exposure to UV radiation (UVR). However, the observation that more than 80% of NMSCs are found in patients over the age of 60 (33, 34) has indicated that age and the physiology of aged skin may contribute to the propensity for skin carcinogenesis.

Consistent with this hypothesis, the age-dependent accumulation of senescent fibroblasts in the dermis of the skin may lead to a tumor-promoting environment that influences how keratinocytes in the epidermis respond to environmental carcinogens such as UVR. Indeed, previous studies have shown that the production of insulin-like growth factor 1 (IGF-1), which is primarily supplied to epidermal keratinocytes by dermal fibroblasts (35, 36), is decreased in both senescent fibroblasts in vitro and geriatric skin in vivo (37). The observation that epidermal keratinocytes in geriatric skin display reduced activation of the IGF-1/IGF-1R axis becomes disrupted as people age (37, 38).

IGF-1 Receptor Status Impacts ATR-CHK1 Signaling

IGF-1/IGF-1R axis influences both the UVB photoproduct removal by nucleotide excision repair (43, 44), fails to properly accumulate on UVB-damaged chromatin in cells exposed to an IGF-1R inhibitor. Together, these results suggest that defects in both nucleotide excision repair and ATR-CHK1 checkpoint signaling may contribute to aging-associated mutagenesis and carcinogenesis in human skin.

Results

IGF-1R Inhibition Partially Abrogates ATR-CHK1 Signaling and the Suppression of DNA Synthesis in UVB-irradiated, Telomerase-immortalized Human Keratinocytes in Vitro—Given the well described roles of the ATR and CHK1 kinases in suppressing DNA synthesis in UVB-irradiated cells (8, 9, 11) and the recognition that the activation status of the IGF-1R affects the fate of UVB-irradiated keratinocytes in vitro and in vivo (37, 39, 41, 42), we treated normal keratinocytes with an IGF-1R inhibitor for 1 h prior to exposure to UVB radiation and then monitored the kinetics of CHK1 phosphorylation. As shown in Fig. 1A (lanes 1–6), exposure of cells to 500 J/m² of UVB induced a robust and transient phosphorylation of CHK1 on the ATR target residue Ser-345 that peaked 0.5 h following irradiation. Although UVB-irradiated cells that were pretreated with the IGF-1R inhibitor AG538 were still capable of inducing CHK1 phosphorylation with similar general kinetics as control cells, the extent of phosphorylation was reduced by ~3- to 4-fold (Fig. 1A, lanes 7–12). Importantly, this defect in ATR kinase signaling was not specific to its target CHK1, however, as we also observed that phosphorylation of the ATR substrate KAP-1 was also partially abrogated by inhibition of the IGF-1R.

To examine these findings further with UVB doses that do not induce significant amounts of apoptosis in these cells (37), we repeated the experiment using a range of lower UVB exposures. As shown in Fig. 1B, regardless of the UV light dose, the level of CHK1 and KAP-1 phosphorylation was reduced by up to 3-fold on average when cells were treated with the IGF-1R inhibitor AG538. We conclude that the UVB-induced activation of ATR and CHK1 is disrupted when the IGF-1R is inhibited in human keratinocytes.

Through the targeting of proteins that promote S phase entry, replication origin activation, and replication fork progression and stability, the ATR-CHK1 pathway actively and transiently suppresses DNA synthesis in cells exposed to UVR and other DNA-damaging agents (8, 9, 11). Thus, to determine whether the abrogation of ATR-CHK1 signaling observed in cells treated with an IGF-1R inhibitor was associated with an altered rate of DNA synthesis, we measured DNA replication using a BrdU immuno-dot blot assay (47). As shown in Fig. 1C, DNA synthesis was inhibited in a UVB dose-dependent manner in both DMSO- and AG538-treated cells. However, in the presence of an IGF-1R inhibitor, DNA synthesis failed to be suppressed to the extent observed in control cells.

At low fluences of UV irradiation, the inhibition of DNA synthesis is only transient, and cells are able to recover and resume DNA replication. Consistent with this classical response, maximal inhibition of DNA replication occurred 1–2 h after UVB exposure, and the DNA synthesis rate ultimately returned to near normal levels by 6.5 h post-UVB irradiation (Fig. 1D). In cells treated with the IGF-1R inhibitor, however, DNA synthesis was only partially suppressed. Thus, consistent with the analysis of ATR-CHK1 signaling, DNA synthesis failure to be properly stopped following UVB exposure in cells with an inactive IGF-1R.

IGF-1R Status Impacts ATR-CHK1 Signaling and DNA Replication Inhibition in Primary Keratinocytes—To confirm the results presented in Fig. 1 with non-transformed cells, we obtained primary keratinocytes from human foreskins and then repeated our measurements of ATR-CHK1 signaling and DNA synthesis using two different inhibitors of the IGF-1R. As shown in Fig. 2A, treatment of primary keratinocytes with the IGF-1R competitive inhibitor AG538 or non-competitive inhibitor PPP reduced UVB-induced CHK1 phosphorylation by ~50% in comparison with DMSO-treated cells. Similarly, when we examined the UVB-induced inhibition of DNA synthesis with a BrdU immuno-dot blot assay, we observed that keratinocytes treated with the IGF-1R inhibitors failed to inhibit DNA synthesis to the extent found in control, DMSO-treated cells. Together, these results suggest that IGF-1R inhibition interferes with ATR-CHK1 kinase signaling and DNA replication suppression in both primary and telomerase-immortalized UVB-irradiated human keratinocytes.
IGF-1 Is Required for Optimal ATR-CHK1 Signaling—We next examined how the presence or absence of IGF-1 in the culture medium affected the response of keratinocytes to UVB. We therefore starved N-TERTs of IGF-1 for 18–24 h and then supplemented the culture medium with recombinant IGF-1 or PBS vehicle for 1 h prior to exposure to UVB. As shown in Fig. 3A, a more robust phosphorylation of CHK1 was observed in cells that had been exposed to IGF-1 than in cells starved of IGF-1.

We next examined how the presence or absence of IGF-1 affected the inhibition of DNA synthesis following UVB irradiation. We observed that the inhibition of DNA replication in UVB-irradiated keratinocytes was dependent on the concentration of IGF-1 in the culture medium (Fig. 3B). Experiments monitoring the kinetics of DNA synthesis following UVB irradiation showed that the inhibition of DNA synthesis at early time points following UVB exposure was significantly greater in cells exposed to IGF-1 than cells starved of IGF-1 (Fig. 3C).

Thus, these results demonstrate that both IGF-1 withdrawal and IGF-1R inhibition have qualitatively similar effects on ATR-CHK1 signaling and DNA synthesis following UVB exposure. The quantitative differences observed between these two experimental approaches likely arise from the effects of prolonged withdrawal of an essential keratinocyte growth factor on cell cycle distribution, which, among other effects, may impact the relative contribution of helicase-polymerase uncou-
IGF-1 Receptor Status Impacts ATR-CHK1 Signaling

A)

	DMSO	AG538	PPP
CHK1-P	1	2	3
CHK1	4	5	6

B)

	DMSO	AG538	PPP
BrdU	1	2	3
ssDNA	4	5	6

FIGURE 2. Optimal activation of ATR-CHK1 signaling and replication inhibition in UVB-irradiated primary normal human keratinocytes requires the IGF-1/IGF-1R system. **A**, primary human foreskin keratinocytes were treated for 1 h with DMSO or the IGF-1 receptor inhibitors AG538 or PPP before exposure to 60 J/m² of UVB radiation. Cells were harvested 0.5 h later and analyzed by immunoblotting. The graph shows the results (mean ± S.E.) from three independent experiments with three different foreskin keratinocyte samples. **B**, primary keratinocytes treated with DMSO, AG538, or PPP were exposed to 60 J/m² and then incubated with BrdU for 0.5 h. Genomic DNA was analyzed by immuno-diffusion blotting as in Fig. 1. Results show the mean ± S.E. from three independent experiments. The asterisks indicate that CHK1 phosphorylation or DNA synthesis in the AG538-treated cells is significantly different from the DMSO-treated cells (*, p < 0.05).

IGF-1R Inhibition Interferes with Proper RPA Loading onto UVB-damaged Chromatin—To characterize the mechanism by which the ATR-CHK1 pathway is disrupted by the inhibition of the IGF-1R, we next considered how the status of the IGF-1R affects the accumulation of RPA on UVB-damaged chromatin. RPA plays multiple roles in ATR-CHK1 signaling by directly interacting with several components of the signaling reaction, including the ATRIP subunit of the ATR kinase holoenzyme (19, 22), the ATR kinase-activating 9-1-1 clamp and TopBP1 module (23, 24), and Tipin, which, through binding to the adaptor protein Claspin, is thought to facilitate the recruitment of CHK1 to ATR (27).

As expected, we observed that RPA rapidly accumulated on the chromatin fraction of UVB-irradiated N-TERT cells and peaked ~1 h after UVB exposure (Fig. 5A, lanes 1–5). However, in cells treated with the IGF-1R inhibitor AG538, we noted two relevant observations. First, the level of chromatin-bound RPA was elevated nearly 2-fold even prior to UVB exposure. Second, the chromatin level of RPA then failed to undergo a significant increase following UVB exposure. These results indicate that an intact IGF-1R signaling network is required for RPA to properly function in promoting the ATR-CHK1 pathway following UVB irradiation.

Discussion

The efficient removal of UVB photoproducts from genomic DNA by the nucleotide excision repair machinery is critical to the fate of UVB-irradiated cells; incomplete repair is associated with a number of potential outcomes, including mutagenesis, senescence, and apoptosis. Although the nucleotide excision repair system is the sole mechanism for removing the photoproducts from DNA (1, 2), additional DNA damage response signaling proteins, including the ATR and CHK1 protein kinases, also influence cellular responses to UVR (5–9).

The classical functions of the ATR and CHK1 kinases include the induction of a transient suppression of DNA synthesis and the activation of cell cycle checkpoints (8–10). However, ATR has also been reported to facilitate UV photoproduct removal through direct (48–51) and indirect means (52, 53). ATR may also induce cellular senescence (54, 55) and promote or prevent apoptosis (47), depending on the specific stimulus. Given that the activation status of the IGF-1R also influences these outcomes in UVB-irradiated human keratinocytes (37–39, 41, 42) and is known to be deficient in geriatric skin (37), determining how IGF-1/IGF-1R signaling influences ATR-CHK1 pathway function in UVB-irradiated keratinocytes may uncover novel insights into the mechanism of aging-associated skin carcinogenesis.

Using IGF-1 ligand withdrawal and small-molecule inhibitors of the IGF-1R, we showed here that inactivation of the IGF-1R is associated with a partial disruption of ATR-CHK1 signaling and DNA synthesis inhibition in UVB-irradiated keratinocytes. The single-stranded DNA-binding protein RPA interacts with several components of the ATR-CHK1 signal transduction network, and thus its failure to accumulate on chromatin following UVB exposure provides a logical mechanistic explanation for the observed defects in DNA damage signaling. Moreover, RPA is also one of the six essential compo-
The components of the nucleotide excision repair system, in which it facilitates damage recognition and coordinates various enzymatic activities (43, 44). Thus, defective recruitment of RPA to UVB-damaged chromatin may also contribute to the previously reported inhibition of UVB photoproduct removal in keratinocytes with an inactive IGF-1R (39, 40).

The mechanism by which RPA is deregulated in cells with an inactive IGF-1R remains to be determined. However, we note that an insufficient supply of RPA has been recognized as a contributor to a variety of negative cellular phenotypes in response to replication-associated genotoxic stress (53–60). Thus, the generation of endogenous replicative
stress by aberrant IGF-1 signaling could, in principle, limit the amount of RPA available for various UV DNA damage responses, including nucleotide excision repair and ATR-CHK1 signaling.

Nonetheless, the results presented here demonstrate that IGF-1R status impacts a second DNA damage response (the suppression of DNA synthesis) following UVB exposure. A schematic summarizing these findings is provided in Fig. 6A. Together, nucleotide excision repair and ATR-CHK1-mediated inhibition of DNA replication likely cooperate to prevent mutagenesis and promote cell survival in cells with an active IGF-1R. Under conditions of more extensive DNA damage, ATR may also facilitate a protective senescence (54, 55) in cells with an intact IGF-1/IGF-1R system (42) that contributes to the prevention of carcinogenesis. However, when IGF-1 levels are deficient, the decreased rate of photoproduction removal by nucleotide excision repair coupled with an abrogation of ATR-CHK1 signaling and replication inhibition may increase the risk of mutagenesis, decrease the likelihood of senescence, and, ultimately, promote skin carcinogenesis (Fig. 6B).

The fact that IGF-1 expression is low in the skin of geriatric patients (37) has important implications for understanding the mechanisms and origins of non-melanoma skin cancers in geriatric patients. Defects in both DNA repair and DNA damage signaling because of low IGF-1 may therefore contribute to the risk of developing skin cancer. Interestingly, dermal rejuvenation approaches have been shown to increase IGF-1 levels in the skin and to reduce the number of proliferating, basal keratinocytes with unrepaired DNA photoproducts (61–63). Thus, understanding the molecular mechanisms of DNA repair and DNA damage signaling in the context of the IGF-1 pathway and aging may offer new approaches for preventing NMSCs in susceptible individuals.

Experimental Procedures

*Cell Culture—*Primary keratinocytes from human neonatal foreskins and telomerase-immortalized keratinocytes (N-TERTs) (45) were cultured in EpiLife medium supplemented with human keratinocyte growth supplement (Thermo Fisher Scientific) and penicillin/streptomycin (Gibco). Experiments with cells deprived of IGF-1 were grown for 18–24 h in the same medium but with IGF-1 omitted from the human keratinocyte growth supplement. Recombinant IGF-1 was added to the culture medium at the indicated final concentration 1 h prior to UVB exposure. The IGF-1R inhibitors I-OMe-Tryphostin AG538 (Sigma) and picropodophyllin (PPP, Selleck Chem) were dissolved in DMSO and added to medium at 10 μM or 5 μM, respectively, 1 h prior to UVB irradiation. Cells were exposed to the indicated fluences of UVB radiation as described previously (37) using a Philips F20T12 UV bulb at a dose rate of 5 J/m²/s.

*Human Skin Epidermis—*The epidermis of human skin from abdominoplasty procedures was separated from the underlying dermis by inducing suction blisters for 60–90 min with 20-ml syringes placed on the skin and attached via tubing to vacuum pumps. The IGF-1R inhibitor AG538 (20 μM in DMSO) or DMSO (vehicle) was then dispensed topically onto the skin, which, after a 30-min incubation, was subsequently exposed to the indicated fluences of UVB radiation. Following the various treatments, the epidermis was removed from the skin using forceps, washed twice with cold PBS, and then stored at −80 °C.
Epidermal lysates were prepared by sonication the epidermis in radioimmune precipitation buffer and then processed for immunoblotting as described below.

Cell Lysis and Analysis of Chromatin-associated Proteins—Media from treated/irradiated cells was discarded, and the cells were then washed once with cold PBS before scraping the cells from the plate in cold PBS. The cells were pelleted by gentle centrifugation and either frozen and stored at −80°C or directly lysed for 20 min on ice in radioimmune precipitation buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% Triton X-100, 1% sodium deoxycholate, and 0.1% SDS; Teknova) containing a protease inhibitor mixture (Sigma), 1 mM DTT, 0.1 mM PMSF, 1 mM NaF, 1 mM Na2VO3, and 10 mM glycerophosphate. Samples were briefly subjected to five to six pulses with an F60 Sonic Dismembrator (Fisher Scientific) before centrifugation in a microcentrifuge for 15 min at maximum speed. The soluble cell lysates were then transferred to new tubes. For the analysis of chromatin-associated proteins, cells were extracted three to four times with buffer A (10 mM HEPES-KOH (pH 7.6), 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, and 0.1% Triton X-100 containing 1 mM DTT and protease and phosphatase inhibitors) to fully separate soluble proteins from chromatin-associated proteins, as described previously (46). The Triton-resistant chromatin fraction was subsequently resuspended in buffer A, supplemented with 1× SDS-PAGE sample buffer (50 mM Tris-HCl (pH 6.8), 5% glycerol, 100 mM DTT, 1% SDS, and 0.005% bromphenol blue), and sonicated to shear the genomic DNA.

Immunoblotting—Equivalent amounts of soluble or insoluble cell lysates were separated by SDS-PAGE, transferred to nitrocellulose, and then probed by immunoblotting using standard procedures. Primary antibodies included antibodies against CHK1 (sc-8408) and actin (I-19) from Santa Cruz Biotechnology; RPA70 (A300-421A) and phospho-KAP-1 (Ser-824; A300-767A) from Bethyl Laboratories; and phospho-histone H3 (3638) from Cell Signaling Technology. All primary antibodies were used at a 1:1000 or 1:2000 dilution in 1×TBST and probed overnight with an anti-BrdU antibody (Sigma, B2531). Blots were reprobed with anti-ssDNA antibody (Millipore, MAB3034) to ensure equal loading of DNA. Chemiluminescent detection was performed as described above, and all signals were normalized to non-irradiated control samples. All experiments were repeated between two and ten times (as indicated), and representative results are presented. A Student’s t test was used to determine statistically significant differences between treatment groups.

Author Contributions—M. G. K. conceived the idea for this project and carried out the experiments with input from D. F. S. and J. B. T. R. S. provided abdominoplasty skin. M. G. K., D. F. S., R. S., and J. B. T. analyzed the results, and M. G. K. wrote the paper.

References
1. Schärer, O. D. (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609
2. Reardon, J. T., and Sancar, A. (2005) Nucleotide excision repair. Prog. Nucleic Acids Res. Mol. Biol. 79, 183–235
3. Cleaver, J. E., Lam, E. T., and Revet, I. (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768
4. Marteijn, J. A., Lans, H., Vermeulen, W., and Hoeijmakers, J. H. (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481
5. Ciccia, A., and Elledge, S. J. (2010) The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204
6. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85
7. Kaufmann, W. K. (2010) The human intra-S checkpoint response to UVC-induced DNA damage. Carcinogenesis 31, 751–765
8. Cimprich, K. A., and Cortez, D. (2008) ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627
9. Nam, E. A., and Cortez, D. (2011) ATR signalling: more than meeting at the fork. Biochem. J. 436, 527–536
10. Smits, V. A., and Gillespie, D. A. (2015) DNA damage control: regulation and functions of checkpoint kinase 1. FEBS J. 282, 3681–3692
11. Heffernan, T. P., Simpson, D. A., Frank, A. R., Heinloth, A. N., Paules, R. S., Cordeiro-Stone, M., and Kaufmann, W. K. (2002) An ATR- and Chk1-dependent S checkpoint inhibits replication initiation following UVC-induced DNA damage. Mol. Cell Biol. 22, 8552–8561
IGF-1 Receptor Status Impacts ATR-CHK1 Signaling

12. Zhao, H., and Piwnica-Worms, H. (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol. Cell. Biol. 21, 4129–4139

13. Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, S., Solimini, N., Larenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166

14. Mu, J. J., Wang, Y., Luo, H., Leng, M., Zhang, J., Yang, T., Besusso, D., Jung, S. Y., and Qin, J. (2007) A proteome analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J. Biol. Chem. 282, 17330–17334

15. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C., and Cimprich, K. A. (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052

16. Giannattasio, M., Follonier, C., Tourrière, H., Puddu, F., Lazzaro, F., Passer, F., Lopes, M., Plevani, P., and Muzi-Falconi, M. (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 40, 50–62

17. Sertic, S., Pizzi, S., Cloney, R., Lehmann, A. R., Marini, F., Plevani, P., and Muzi-Falconi, M. (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl. Acad. Sci. U.S.A. 108, 13647–13652

18. Lindsey-Boltz, L. A., Kemp, M. G., Reardon, J. T., DeRocco, V., Iyer, R. R., Modrich, P., and Sancar, A. (2014) Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system. J. Biol. Chem. 289, 5074–5082

19. Choi, J. H., Lindsey-Boltz, L. A., Kemp, M. C., Mason, A. C., Wold, M. S., and Sancar, A. (2010) Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proc. Natl. Acad. Sci. U.S.A. 107, 13660–13665

20. Maréchal, A., and Zou, L. (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 25, 9–23

21. Zou, Y., Liu, Y., Wu, X., and Shell, S. M. (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell Physiol. 21, 1472–1477

22. Zou, Y., Liu, Y., Wu, X., and Shell, S. M. (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell Physiol. 21, 1472–1477

23. Zou, Y., Liu, Y., Wu, X., and Shell, S. M. (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell Physiol. 21, 1472–1477

24. Overmeer, R. M., Moser, J., Volker, M., Kool, H., Tomkinson, A. E., van der Eb, A. J., and Krijgsveld, J. (2007) The basic cleft of RPA70N binds multiple checkpoint activators. J. Biol. Chem. 282, 267–273

25. Tavakkol, A., Elder, J. T., Griffiths, C. E., Cooper, K. D., Tavlak, H., Fisher, G. J., Keane, K. M., Foltin, S. K., and Voorhees, J. J. (1992) Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J. Invest. Dermatol. 99, 343–349

26. Lewis, D. A., Travers, J. B., Somani, A. K., and Spandau, D. F. (2010) The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene 29, 1475–1485

27. Lewis, D. A., Travers, J. B., and Spandau, D. F. (2009) A new paradigm for the role of aging in the development of skin cancer. J. Invest. Dermatol. 129, 787–791

28. Loesch, M. M., Collier, A. E., Southern, D. H., Ward, R. E., Tholpady, S. S., Lewis, D. A., Travers, J. B., and Spandau, D. F. (2016) Insulin-like growth factor-1 receptor regulates repair of ultraviolet B-induced DNA damage in human keratinocytes in vivo. Mol. Oncol. 10, 1245–1254

29. Fernandez, T. L., Van Lonkhuyzen, D. R., Dawson, R. A., Kimlin, M. G., and Upton, Z. (2015) Insulin-like growth factor-I and UVB photoprotection in human keratinocytes. Exp. Dermatol. 24, 235–238

30. Kuhn, C., Hurwitz, S. A., Kumar, M. G., Cotton, J., and Spandau, D. F. (1999) Activation of the insulin-like growth factor-1 receptor promotes the survival of human keratinocytes following ultraviolet B irradiation. Int. J. Cancer 80, 431–438

31. Lewis, D. A., Yi, Q., Travers, J. B., and Spandau, D. F. (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol. Cell Biol. 19, 1346–1353

32. Overmeer, R. M., Moser, I., Volkner, M., Kool, H., Tomkinson, A. E., van Zeeland, A. A., Mullenders, L. H., and Foucher, M. (2011) Replication protein A safeguards genome integrity by controlling NER incision events. J. Cell Biol. 192, 401–415

33. Mu, D., Park, C. H., Matsunaga, T., Hsu, D. S., Reardon, J. T., and Sancar, A. (1995) Reconstitution of human DNA repair excision nucleases in a highly defined system. J. Biol. Chem. 270, 2415–2418

34. Dickson, M. A., Hahn, W. C., Ino, Y., Ronfard, V., Wu, J. Y., Weinberg, R. A., Louis, D. N., Li, F. P., and Rheinwald, J. G. (2000) Human keratinocytes require a functional insulin-like growth factor-1 receptor and p53. Mol. Cell Biol. 19, 1346–1353

35. Overmeer, R. M., Moser, I., Volkner, M., Kool, H., Tomkinson, A. E., van Zeeland, A. A., Mullenders, L. H., and Foucher, M. (2011) Replication protein A safeguards genome integrity by controlling NER incision events. J. Cell Biol. 192, 401–415

36. Kemp, M. G., Gaddameedhi, S., Choi, J. H., Hu, J., and Sancar, A. (2014) DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J. Biol. Chem. 289, 26574–26583

37. Kemp, M. G., and Sancar, A. (2016) ATR kinase inhibition protects non-cycling cells from the lethal effects of DNA damage and transcription stress. J. Biol. Chem. 291, 9330–9342

38. Jarrett, S. G., Wolf Horrell, E. M., Christian, P. A., Vanover, J. C., Boullanger, M. C., Zou, Y., and D’Orazio, J. A. (2014) PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage. Mol. Cell 54, 999–1011
49. Jarrett, S. G., Wolf Horrell, E. M., and D’Orazio, J. A. (2016) AKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair. *Nucleic Acids Res.* **44**, 10711–10726

50. Lee, T. H., Park, J. M., Leem, S. H., and Kang, T. H. (2014) Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair. *Oncogene* **33**, 19–25

51. Shell, S. M., Li, Z., Shkriabai, N., Kvaratskhelia, M., Brosey, C., Serrano, M. A., Chazin, W. J., Musich, P. R., and Zou, Y. (2009) Checkpoint kinase ATR promotes nucleotide excision repair of UV-induced DNA damage via physical interaction with xeroderma pigmentosum group A. *J. Biol. Chem.* **284**, 24213–24222

52. Auclair, Y., Rouget, R., El Affar, B., and Drobetsky, E. A. (2008) ATR kinase is required for global genomic nucleotide excision repair exclusively during S phase in human cells. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 17896–17901

53. Bélanger, F., Angers, J. P., Fortier, É., Hammond-Martel, I., Costantino, S., Drobetsky, E., and Wurtele, H. (2013) Mutations in replicative stress response pathways are associated with S phase-specific defects in nucleotide excision repair. *J. Biol. Chem.* **291**, 522–537

54. Toledo, L. I., Murga, M., Gutierrez-Martinez, P., Soria, R., and Fernandez-Capetillo, O. (2008) ATR signaling can drive cells into senescence in the absence of DNA breaks. *Genes Dev.* **22**, 297–302

55. Kang, C., Xu, Q., Martin, T. D., Li, M. Z., Demaria, M., Aron, L., Lu, T., Yankner, B. A., Campisi, J., and Elledge, S. J. (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. *Science* **349**, aaa5612

56. Toledo, L. I., Altmeyer, M., Rask, M. B., Lukas, C., Larsen, D. H., Povlsen, L. K., Bekker-Jensen, S., Mailand, N., Bartek, J., and Lukas, J. (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. *Cell* **155**, 1088–1103

57. Guven, M., Brem, R., Macpherson, P., Peacock, M., and Karrai, P. (2015) Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells. *J. Invest. Dermatol.* **135**, 2834–2841

58. Köhler, C., Koalick, D., Fabricius, A., Parplys, A. C., Borgmann, K., Pospiech, H., and Grosse, F. (2016) Cdc45 is limiting for replication initiation in humans. *Cell Cycle* **15**, 974–985

59. Tsaalbi-Shtylik, A., Moser, J., Mullenders, L. H., Jansen, J. G., and de Wind, N. (2014) Persistently stalled replication forks inhibit nucleotide excision repair in *trans* by sequestering Replication protein A. *Nucleic Acids Res.* **42**, 4406–4413

60. Wolf, C., Rapp, A., Berndt, N., Staroske, W., Schuster, M., Dobrick-Matheuer, M., Kretschmer, S., König, N., Kurth, T., Wieczorek, D., Kast, K., Cardoso, M. C., Günther, C., and Lee-Kirsch, M. A. (2016) RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. *Nat. Commun.* **7**, 11752

61. Lewis, D. A., Travers, J. B., Machado, C., Somani, A. K., and Spandau, D. F. (2011) Reversing the aging stromal phenotype prevents carcinoma initiation. *Aging* **3**, 407–416

62. Spandau, D. F., Lewis, D. A., Somani, A. K., and Travers, J. B. (2012) Fractionated laser resurfacing corrects the inappropriate UVB response in geriatric skin. *J. Invest. Dermatol.* **132**, 1591–1596

63. Travers, J. B., Spandau, D. F., Lewis, D. A., Machado, C., Kingsley, M., Mousdicas, N., and Somani, A. K. (2013) Fibroblast senescence and squamous cell carcinoma: how wounding therapies could be protective. *Dermatol. Surg.* **39**, 967–973