Overview of the BioBank Japan Project: Study design and profile

Akiko Nagai a, Makoto Hirata b, Yoichiro Kamatani c, Kaori Muto a, Koichi Matsuda d, e, Yutaka Kiyohara f, Toshiharu Ninomiya g, Akiko Tamakoshi h, Zentaro Yamagata i, Taisei Mushiroda j, Yoshinori Murakami k, Koichiro Yuji l, Yoichi Furukawa m, Hitoshi Zembutsu n, Toshihiro Tanaka o, p, q, Yozo Ohnishio r, Yusuke Nakamura s, BioBank Japan Cooperative Hospital Group u, Michiaki Kubo t, *.

a Department of Public Policy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
b Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
c Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
d Laboratory of Molecul...
Conclusions: The BBJ Project has constructed the infrastructure for genomic research for various common diseases. This clinical information, coupled with genomic data, will provide important clues for the implementation of personalized medicine.

© 2017 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

With the rapid advancement of human genetic research, researchers have found many genetic variations that contribute to disease susceptibility and drug responses. Based on these achievements, personalized medicine is expected to provide optimal medical treatment by taking into account individual genetic makeup.

To better achieve this goal, the Japanese Ministry of Education, Culture, Sports, Science and Technology launched the BioBank Japan (BBJ) Project in 2003. This project is being conducted in three 5-year periods. In the first period (April 2003 to March 2008), the project constructed a large, patient-based biobank, referred to as the BBJ, as the basic infrastructure for genetic research for common diseases; this was accomplished through the collection of clinical information and biological samples related to 47 target diseases and with the cooperation of 12 Japanese medical institutes. In the second period (April 2008 to March 2013), the project conducted various genomic investigations and identified genetic variations related to disease susceptibility and drug responses using a genome-wide association study approach. In the third period (April 2013 to March 2018), the project will expand the BBJ by enrolling new participants with 38 target diseases, starting sequence-based genomic analyses, and constructing a tissue bank.

Ultimately, the BBJ aims to (1) discover the genes that contribute to various diseases and those related to the efficacy or adverse reactions of drugs, (2) to provide useful information regarding molecular targets for the evidence-based development of new drugs and/or diagnostic tools, (3) to examine interactions between genetic and treatment factors related to the progression of diseases, and (4) to provide important medical information that can be applied to the implementation of personalized medicine. This project is jointly managed by The Institute of Medicine of The University of Tokyo and the RIKEN Center for Integrative Medical Sciences.

This paper provides an overview of the BBJ Project as well as a profile of the BBJ participants who were registered in the first 5-year period of the project.

Methods

Study participants

The BBJ is a multi-institutional hospital-based registry that was initially designed to focus on the use of human genetic research. Therefore, this project registered not only patients with newly developed diseases (incident cases) but also patients who were diagnosed and treated before starting the project (prevalent cases). Project participants were recruited between June 2003 and March 2008 from 66 hospitals, which consisted of 12 cooperating medical institutions located throughout Japan (Fig. 1). Attending physicians identified patients with any of 47 target diseases. Before enrollment, patients received a detailed explanation regarding the project from expert, independent medical coordinators who were specifically trained for this project. Biological samples and clinical information were collected and anonymized on-site at the cooperating hospitals. All study participants had been diagnosed with one or more of 47 target diseases, which are listed in Table 2. These target diseases were selected by clinical importance based on morbidity or mortality in Japan through discussion with cooperating medical institutions. Diagnoses of these diseases were based on the physicians’ diagnoses at cooperating hospitals. We excluded patients who had received a bone marrow transplant and those who were not of East Asian descent.

Table 1
Clinical Information collected during the annual BioBank Japan survey.

Categories	Classifications
Common items	Basic clinical Information
	Current drug use
	History of adverse drug events
Laboratory examination items	Malignant tumors
	Cerebral diseases
	Respiratory diseases
	Cardiovascular diseases
	Liver diseases
	Urologic diseases
	Metabolic diseases
	Endocrine diseases
	Connective tissue diseases
	Allergic diseases
	Dermatological diseases
	Gynecological diseases
	Pediatric diseases
	Ophthalmologic diseases
	Dental diseases

Fig. 1. Geographical distribution of cooperating hospitals.
Biobanking of biological samples and clinical information

The study flow related to the collection of biological samples and clinical information is shown in Fig. 2. For biological samples, we collected DNA and serum samples from participants at the cooperating hospitals and stored them at the BBJ DNA bank and serum bank, respectively. Details of the blood sampling and storage processes are described in the Blood Sampling and Storage section.

Clinical information was initially stored in the local server at the cooperating hospitals and was subsequently sent to the BBJ at the end of every year after anonymization.

Samples stored in the BBJ were provided to research institutions and companies beginning in 2005 after receiving approval from the Sample Providing Committee of this project. Detailed information about the distribution of the samples is available at the project website (https://biobankjp.org/index.html; Japanese only).

Baseline survey

We collected baseline clinical information through interviews and reviews of medical records using a standardized questionnaire (Table 1); full details of the questionnaire are available at the project website (https://biobankjp.org/sample/pdf/list7.1.4.pdf; Japanese only). The common items addressed during each interview included smoking and alcohol habits, weight, height, systolic and diastolic blood pressure, past history and family history of various diseases, frequency of food intake and physical exercise, and reproductive history (for female participants). The common

Table 2	Number of cases of 47 diseases and disease durations at the time of entry in the BioBank Japan Project.		
Disease group	Disease name	Number of cases (with serum)	Median disease duration at entry (interquartile range, years)
Malignant tumors	Lung cancer	3779 (3777)	0.7 (0.2–2.9)
	Esophageal cancer	1291 (1290)	0.4 (0.2–2.8)
	Gastric cancer	6322 (6316)	1.0 (0.2–4.0)
	Colorectal cancer	6759 (6754)	1.0 (0.2–3.4)
	Liver cancer	1924 (1922)	1.2 (0.3–3.3)
	Pancreas cancer	392 (392)	0.4 (0.1–1.5)
	Gallbladder/Cholangiocarcinoma	392 (393)	0.5 (0.2–2.1)
	Prostate cancer	5066 (5065)	1.0 (0.3–2.8)
	Breast cancer	6336 (6336)	0.8 (0.2–3.6)
	Cervical cancer	1218 (1218)	1.8 (0.4–5.3)
	Uterine cancer	1026 (1026)	1.5 (0.4–4.4)
	Ovarian cancer	888 (888)	1.8 (0.5–4.9)
	Hematopoietic tumor	1307 (1303)	2.4 (0.9–5.1)
Cerebral diseases	Cerebral infarction	16,534 (16,522)	2.2 (0.4–5.6)
	Cerebral aneurysm	2710 (2709)	N/A
	Epilepsy	2303 (2275)	5.6 (1.7–13.4)
Respiratory diseases	Bronchial asthma	8700 (8642)	9.0 (3.0–20.0)
	Pulmonary tuberculosis	863 (862)	N/A
	Chronic obstructive pulmonary disease	2774 (2771)	3.0 (1.0–8.0)
	Intestinal lung disease/Pulmonary fibrosis	808 (804)	3.0 (1.0–7.0)
Cardiovascular diseases	Myocardial infarction	13,272 (13,270)	3.8 (0.7–8.7)
	Unstable angina	4330 (4324)	2.6 (0.5–6.4)
	Stable angina	14,807 (14,800)	3.6 (1.0–7.9)
	Arrhythmia	15,912 (15,905)	3.7 (1.1–8.3)
	Heart failure	7610 (7601)	1.9 (0.4–5.4)
	Peripheral arterial diseases	2683 (2679)	N/A
Liver diseases	Chronic hepatitis B	1346 (1345)	N/A
	Chronic hepatitis C	5819 (5817)	N/A
	Liver cirrhosis	2519 (2509)	N/A
Urologic diseases	Nephrotic syndrome	1056 (1007)	N/A
	Urolithiasis	6307 (6306)	N/A
Metabolic diseases	Osteoporosis	6743 (6739)	N/A
	Diabetes mellitus	39,697 (39,686)	6.0 (2.0–12.0)
	Dyslipidemia	43,812 (43,787)	3.0 (1.0–7.0)
Endocrine diseases	Graves’ disease	2323 (2322)	N/A
	Connective tissue diseases	4139 (4139)	7.7 (2.6–15.3)
	Hay fever	5658 (5645)	N/A
Allergic diseases	Drug eruption	585 (586)	N/A
	Atopic dermatitis	2938 (2896)	16.0 (5.0–25.0)
	Keloid	809 (808)	N/A
Gynecologic diseases	Uterine fibroid	5904 (5902)	N/A
	Endometriosis	1843 (1843)	N/A
Pediatric diseases	Febrile seizure	333 (275)	N/A
Ophthalmologic diseases	Glaucoma	4755 (4753)	3.6 (1.1–8.2)
	Cataract	20,002 (19,988)	1.5 (0.2–5.4)
Dental diseases	Periodontitis	3898 (3896)	0.1 (0.0–1.7)
	Other Amotrophic lateral sclerosis	782 (771)	4.0 (2.1–6.9)

Abbreviation: N/A, not available.

* The duration of disease was calculated based on the time of disease onset to the time of entry into the registry.

b Because we surveyed calendar year of diagnosis for these diseases, the periods from diagnosis were not measured in units of days and months.
items collected from medical record reviews included information about birth year, sex, drug use within one month before study entry, history of adverse drug events, and routine laboratory examination data (including complete blood count, urinalysis, and biochemical tests such as measurements of liver enzymes, kidney function, lipids, and blood sugar).

Disease-specific laboratory tests and imaging data were collected for 15 disease groups. For example, we collected information related to surgical history, chemotherapy, hormonal therapy, radiotherapy, and tumor markers for 13 types of cancers. Echocardiogram and coronary angiography information were collected for cardiovascular diseases. Detailed clinical information for each case, such as disease onset, symptoms, subtypes, severity, and complications, was collected separately for disease-specific items. Because the BBJ included both incident and prevalent cases, the duration of disease at registration was calculated based on the date of onset or diagnosis of disease and the date of enrollment. All surveys were performed by medical coordinators at cooperating hospitals.

In this analysis, body mass index (kg/m²) was calculated on the basis of the self-reported height and body weight. Hypertension was defined as a systolic blood pressure ≥140 mmHg, a diastolic blood pressure ≥90 mmHg, or a prescription of antihypertensive drugs.

Data cleansing

To improve the quality of the baseline survey data, we reviewed all data items and performed data cleansing for 4627 out of 17,850 items that were available for >50% of participants or that were determined to be clinically important variables (e.g., TNM classification for cancer). We checked the distribution of all numeric data and excluded outliers for each variable. For categorical data, we checked the concordance of related variables and excluded discordant data in order to achieve consistency among the values.

Blood sampling and storage

A 14 mL sample of whole blood was obtained from each participant at baseline using two 7 mL EDTA-containing tubes. One 7 mL sample of whole blood was sent to one of three commercial laboratories (SRL, BML, and MBC, Japan) for DNA extraction. After DNA was extracted according to the standard procedures in each laboratory, DNA concentration was adjusted to 100 ng/μL and dispensed into three 1 mL tubes with 2D barcodes at the bottom. All DNA tubes were stored at 4–10 °C and delivered to the BBJ. After checking the concordance of the 2D barcodes on the DNA tubes with participant anonymized numbers, all DNA samples were stored in the DNA bank at 4 °C (Fig. 3). For children or participants with whom there were difficulties in drawing blood, we collected buccal swabs, nail trimmings, or hair trimmings to extract DNA. Another 7 mL sample of whole blood was centrifuged according to standard procedures at each cooperating hospital, and the resultant serum was dispensed into three 1 mL tubes and labeled with 2D barcodes. All serum samples were initially stored at −80 °C at cooperating hospitals. After several samples were stored, these samples were then delivered to the BBJ. After checking the concordance of the 2D barcodes on the serum tubes with participant anonymized numbers, all serum samples were stored in the

Fig. 2. The flow of the collection of the sample.

Fig. 3. Picture of DNA bank (automated DNA storage system).
serum bank at –150 °C (Fig. 4). Participants were requested to provide serum samples once a year starting the year following enrollment until March 2013.

Follow-up surveys

After the baseline survey, we continuously collected clinical information from participants through reviews of medical records once a year until March 2013. If a participant developed a new disease from among the 47 target diseases, medical coordinators registered this new disease and collected relevant clinical information from medical records.

In addition, we collected survival data for participants with any of 32 of the 47 target diseases based on the participants’ registered disease in the 2010 medical record survey. Medical coordinators initially checked the date of last visit and identified participants who had not visited the hospital in more than one year or who had died during the follow-up period. Hospitals requested a copy of the resident card for these participants from local government offices. Medical coordinators then recorded whether the participants were alive, had moved, were unidentified, or had died. For participants who had moved, new addresses were recorded for the next survival survey. For deceased participants, medical coordinators recorded the date of death. We obtained vital statistics from the Statistics and Information Department of the Ministry of Health, Labour and Welfare in Japan and identified the cause of death according to ICD-10 code by matching birth date, date of death, sex, and local government code.

Ethical review

The study protocol for the BBJ Project was approved by the research ethics committees at the Institute of Medical Science, the University of Tokyo, the RIKEN Yokohama Institute, and the 12 cooperating hospitals. All participants gave written consent to participate in the study.
Results

A flow diagram describing the process for the baseline survey and survival survey is shown in Fig. 5. There were 200,000 patients who were enrolled in the study. Since the clinical information of participants who withdrew informed consent or who were mistakenly enrolled was already removed from the clinical database, baseline data for 199,982 participants were available in this analysis.

Of the 200,000 participants, 161,823 participants were registered with any of 32 diseases during the 2010 medical record survey. Among them, we excluded 20,211 participants who were enrolled at hospitals that withdrew from the BioBank Project, those who refused to complete the follow-up survey, those who withdrew informed consent, or those who were mistakenly enrolled. Finally, survival data for 141,612 participants were available for analysis. The follow-up rate was 97.0%, and the mean follow-up period was 7.7 years. The details of the results of the follow-up survey are described in another report.

The total number of cases was 291,274 at baseline (Table 2). The largest number of cases was related to dyslipidemia followed by diabetes mellitus. Information on disease onset or diagnosis was collected for 31 diseases. When we evaluated disease duration at registration, the median disease duration was short for most cancer cases, but was long for cases of atopic dermatitis, bronchial asthma, and rheumatoid arthritis, indicating that the proportion of prevalent cases was high for these diseases. Among the participants, 53.1% were male (Table 3). The average age was 62.7 years for male patients and 61.5 years for female patients. Among participants aged 20 years or older, 27.5% of male and 23.7% of female patients were overweight or obese. The proportion of current smokers was 27.3% for male patients and 10.3% for female patients; the proportion of current drinkers was 54.9% for male patients and 23.6% for female patients. About 51% of male patients and 43% of female patients were defined as having hypertension. Full details regarding baseline characteristics are described in another report.

Discussion

The BBJ Project enrolled approximately 200,000 participants during the first 5-year period of the study. DNA and serum samples stored in the BBJ have enabled investigation of novel genetic factors and new biomarkers related to common diseases. The collected clinical information and follow-up survey data have provided knowledge about the general clinical features of many common diseases in Japan, including both therapeutic conditions and the course of the diseases. Further analyses of the genomic data, clinical information, and follow-up surveys will provide important information regarding the interaction of genetic and clinical factors, and ideally, will eventually contribute to optimized medical treatment that takes into account the individual genetic makeup of the patient.

In recent years, many large-scale biobanks have been established in Europe and the United States, including the UK Biobank, the Auria Biobank, the Estonian Biobank, the Kaiser Biobank, the Million Veteran Program, and the Precision Medicine Initiative Cohort. The UK Biobank has already collected samples from 500,000 participants in the United Kingdom. The Precision Medicine Initiative Cohort plans to collect samples from 1 million participants in the United States. In Japan, the Tohoku Medical Megabank is collecting biological specimens from 150,000 residents. However, most of these biobanks are population-based. Large, patient-based biobanks, such as the BioVU and Mayo Clinic Biobank, are limited to our knowledge. The BBJ is the first patient-based biobank in the world. This is an advantage in analyzing risk factors of disease prognosis because the BBJ enables examination of data with the longest follow-up period available.

Patient-based biobanks allow for the identification of susceptibility genes for common diseases because large numbers of cases are registered. In contrast, population-based biobanks allow for estimation of environmental exposures and gene–environment interactions, but long-term follow-up is needed because a large number of disease onset cases is needed to achieve sufficient statistical power. Therefore, patient-based biobanks and population-based biobanks should work in cooperation with the goal of implementing personalized, precision medicine in the future.

Conflicts of interest

The authors declare they have no conflict of interest with respect to this research study and paper.

Acknowledgements

We express our gratitude to all the participants in the BioBank Japan Project. We thank all the medical coordinators of the cooperating hospitals for collecting samples and clinical information, as
well as Yasushi Yamashita and staff members of the BioBank Japan Project for administrative support. We also thank Dr. Kumao Toyoshima for his overall supervision of the BioBank Japan Project. This study was supported by funding from the Tailor-Made Medical Treatment with the BBJ Project from Japan Agency for Medical Research and development, AMED (since April 2015), and the Ministry of Education, Culture, Sports, Science and Technology (from April 2003 to March 2015).

Appendix A

Author list for the BioBank Japan Cooperative Hospital Group.

Members of medical institutions cooperating on the BioBank Japan Project who coauthored this paper include Masaki Shiono, Kazuo Misumi, Reiji Kaieda and Hiromasa Harada (Tokushukai Hospitals); Shiro Minami, Mitsuru Emi and Naoya Emoto (Nippon Medical School); Hiroyuki Daida, Katsumi Miyauchi and Akira Murakami (Juntendo University); Satoshi Asai, Mitsuhiko Moriyama and Yasuo Takahashi (Nihon University); Tomoaki Fujioka and Wataru Obara (Iwate Medical University); Seijiro Mori and Hideki Ito (Tokyo Metropolitan Institute of Gerontology); Satoshi Nagayama and Yoshio Miki (The Cancer Institute Hospital of JFCR); Akihide Masumoto and Akira Yamada (Aso Iizuka Hospital); Yasuko Nishizawa and Ken Kodama (Osaka Medical Center for Cancer and Cardiovascular Diseases); Hiromu Kutsumi and Yoshihisa Sugimoto (Shiga University of Medical Science); Yukihiro Koresu and Hideo Kusuoka (National Hospital Organization, Osaka National Hospital); and Hideki Yanai (Fukujuji Hospital).

References

1. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.
2. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–D1006.
3. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–795.
4. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154:277–287.
5. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363:301–304.
6. BioBank Japan. Tailor-made Medical Treatment Program. https://biobankjp.org/work/public.html. Accessed 1 July 2016.
7. Nakamura Y. The BioBank Japan Project. Clin Adv Hematol Oncol. 2007;5:696–697.
8. BioBank Japan. A Brochure about the Distribution of Samples for Researchers [in Japanese]. Tailor-made Medical Treatment Program. https://biobankjp.org/sample/pdf/panf_v2.0.pdf. Updated 7 March 2015. Accessed 1 July 2016.
9. Hirata M, Nagai A, Kamatani Y, et al. Overview of BioBank Japan follow-up data in 32 diseases. J Epidemiol. 2017;27:S22–S28.
10. Hirata M, Kamatani Y, Nagai A, et al. Cross-sectional analysis of BioBank Japan clinical data: a large cohort of 200,000 patients with 47 common diseases. J Epidemiol. 2017;27:S9–S21.
11. Gaskell G, Gottweis H. Biobanks need publicity. Nature. 2011;471:159–160.
12. Scott CT, Caulfield T, Borgelt E, et al. Personal medicine — the new banking crisis. Nat Biotechnol. 2012;30:141–147.
13. Collins R. What makes UK biobank special? Lancet. 2012;379:1173–1174.
14. AURIA BIOPANKKI. What Is Auria Biobank? https://www.auriabiopankki.fi/auria-biobank/taas-es. Accessed 5 July 2016.
15. Leitsalu L, Haller T, Esko T, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44:1137–1147.
16. Gaziano JM, Concate J, Brophy M, et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016;70:214–223.
17. National Institutes of Health. About the Precision Medicine Initiative Cohort Program. https://www.nih.gov/precision-medicine-initiative-cohort-program. Accessed 5 July 2016.
18. Kuriyama S, Yaegashi N, Nagami F, et al. The Tohoku Medical Megabank Project: design and mission. J Epidemiol. 2016;26:493–511.
19. Roden DM, Pulley JM, Basford MA, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharm Ther. 2008;84:362–369.
20. Olson JE, Ryu E, Johnson KJ, et al. The Mayo Clinic Biobank: a building block for individualized medicine. Mayo Clin Proc. 2013;88:952–962.
21. Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of prospective cohort studies. Nat Rev Genet. 2006;7:812–820.