Cohomology of coherent sheaves on a proper scheme

GEORGE R. KEMPF
THE JOHNS HOPKINS UNIVERSITY

Let $f : X \to S$ be a proper morphism where $S = \text{Spec } A$ where A is a noetherian ring. Let \mathcal{F} be a coherent sheaf on X. Then a theorem of Grothendieck says that the cohomology groups $H^i(X, \mathcal{F})$ are A-modules of finite type. We set out to give an algorithm to compute these A-modules when A is sufficiently algorithmic. We found general result about a $\Gamma(X, -)$-acylic resolution of \mathcal{F}.

We will first define a coherent sheaf \mathcal{G} on X to be primitive if $\text{support } (\mathcal{G}) = \bar{x}$ where x is a point of X and the natural mapping $\mathcal{G} \to i_x^*(\tilde{\mathcal{G}}_x)$ is injective where $i_x : \text{Spec } \mathcal{O}_{X,x} \to X$ is the natural morphism. The associated points of \mathcal{G} is denoted by $\text{Ass}(\mathcal{G})$, which is a finite set.

The theorem we prove is the following.

Theorem 1. There exists an inclusion $\mathcal{G} \hookrightarrow \bigoplus_{x \in \text{Ass}(\mathcal{G})} \mathcal{H}_x$ where a) each \mathcal{H}_x is a primitive coherent sheaf with support \bar{x}, b) each \mathcal{H}_x is $\Gamma(X, -)$-acylic and its group of sections $\Gamma(X, \mathcal{H}_x)$ is an A-module of finite type, and c) α is an isomorphism on an open dense subset of the support of \mathcal{G}.

This theorem gives a method to compute the cohomology of \mathcal{F}. One applies the theorem inductively to construct a $\Gamma(X, -)$-acylic coherent resolution $0 \to \mathcal{F} \to \mathcal{F}^*$ and simply computes $H^i(X, \mathcal{F})$ as the i-homology group of the complex $\Gamma(X, \mathcal{F}^*)$.

Thus Theorem 1 implies

Corollary (Grothendieck). The cohomology groups $H^i(X, \mathcal{F})$ are A-modules of finite type.

§1. A lemma.

We will use

Lemma 2. If \mathcal{F} is a coherent sheaf on X, there exists an embedding $\mathcal{F} \hookrightarrow \bigoplus_{x \in \text{Ass}(\mathcal{F})} \mathcal{G}_x$ where \mathcal{G}_x is a primitive coherent sheaf with support \bar{x} and β is an isomorphism in an open dense subset of support (\mathcal{F}).

Proof. We have an injection $\mathcal{F} \hookrightarrow \bigoplus_{x \in \text{Ass}(\mathcal{F})} i_x^*(\widetilde{\mathcal{F}}_x)$ because the kernel would have no associated points. Similarly, we have the inclusion $\mathcal{F} \hookrightarrow \lim_{n} F_x/m_x^n F$ where m_x is the maximal ideal of $\mathcal{O}_{x,x}$. As F is coherent it follows that $\mathcal{F} \hookrightarrow \bigoplus_{x \in \text{Ass}(\mathcal{F})} i_x^*(\mathcal{F}_x/\widetilde{m}_x^n \mathcal{F}_x)$ where the n_x are sufficiently big. This is our embedding if \mathcal{G}_x is the image of \mathcal{F} in $i_x^*(\mathcal{F}_x/\widetilde{m}_x^{n_x})$. QED

By the lemma to prove the theorem we may assume that \mathcal{G} is primitive with support \bar{x} for some x in X.

1
§2. The proof.

To prove the theorem we will use basically Grothendieck’s idea of using Chow coverings. Let \(Z \) be a closed subscheme of \(X \) such that the support \((Z) = \bar{x}\) and \(G \) admits the structure of a \(\mathcal{O}_{Z} \)-module. We will modify Chow lemma to the non-reduce case.

Let \(Z = \bigcup U_i \) be a finite affine covering of \(Z \) by dense open subsets. Let \(\bar{U}_i \supset U_i \) be a projective imbedding for each \(i \). Take \(W \) to be the schematic closure of \(\cap U_i \) embedded in \(X \times_S \prod \bar{U}_i \). Then by the usual reasoning the projection \(W \to \prod \bar{U}_i \) is set-theoretically injective proper morphism. Thus \(W \) is a projective scheme over \(S \).

Let \(M \) be a very ample sheaf on \(\prod \bar{U}_i = K \). Then \(N = \pi_Z^* M \) is very ample on \(W \) and relatively ample for the projective morphism \(\pi_Z^*: W \to Z \), which is an isomorphism between open dense subsets.

Now let \(L_x \) be the maximal primitive quotient of \(\pi_Z^* G \) with support \(W \). By projective theory the \(K_x \equiv L_x \otimes M^\otimes n \) is \(\Gamma(W, -) \)-acylic and \(\pi_{Z*} \)-acylic for \(n \gg 0 \). Thus \(\pi_{Z*}(K_x) = H_x \) is a \(\Gamma(X, -) \)-acylic coherent primitive sheaf, by the degenerate Leray spectral sequence. It has support \(\bar{x} \) and its sections are isomorphic to \(\Gamma(W, K_x) \), which is an \(A \)-module of finite type.

To get the inclusion \(F \to H_x \) just multiply the natural map \(F \to \pi_{Z*} L_x \) by a section of \(M^\otimes n \) which is general. This proves the theorem.

References

1. A. Grothendieck, Éléments de Géométrie Algébrique III Publications Mathematiques No. 111.

2. G. Kempf, Some elementary proofs of basis theorems in the cohomology of quasi-coherent sheaves, Rocky Mountain Journal of Math., vol. 10, 1980, pp. 637-645.

AMS (MOS) subject classification number 14F05.