Search for new resonances decaying via WZ to leptons in proton-proton collisions at $\sqrt{s} = 8$ TeV

CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; et al

Abstract: A search is performed in proton–proton collisions at $\sqrt{s}=8$ TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb$^{-1}$. No significant excess is observed above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of a W$^\prime$ boson as predicted by an extended gauge model, and on the W$^\prime$WZ coupling. The expected and observed mass limits for a W$^\prime$ boson, as predicted by this model, are 1.55 and 1.47 TeV, respectively. Stringent limits are also set in the context of low-scale technicolor models under a range of assumptions for the model parameters.

DOI: https://doi.org/10.1016/j.physletb.2014.11.026
Search for new resonances decaying via WZ to leptons in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A search is performed in proton-proton collisions at $\sqrt{s} = 8$ TeV for exotic particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb$^{-1}$. No significant excess is observed above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of a W' boson as predicted by an extended gauge model, and on the $W'WZ$ coupling. The expected and observed mass limits for a W' boson, as predicted by this model, are 1.55 and 1.47 TeV, respectively. Stringent limits are also set in the context of low-scale technicolor models under a range of assumptions for the model parameters.

Published in Physics Letters B as doi:10.1016/j.physletb.2014.11.026.

© 2014 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

*See Appendix for the list of collaboration members
1 Introduction

Many extensions of the standard model (SM) predict heavy charged gauge bosons, generically called W', that decay into a WZ boson pair \[1\text{–}6\]. These extensions include models with extended gauge sectors, designed to achieve gauge coupling unification, and theories with extra spatial dimensions. There are also models in which the W' couplings to SM fermions are suppressed, giving rise to a fermiophobic W' with an enhanced coupling to W and Z bosons \[7, 8\]. Further, searches for W' bosons that decay into WZ pairs are complementary to searches in other decay channels \[9\text{–}19\], many of which assume that the $W' \to WZ$ decay mode is suppressed. New WZ resonances are also predicted in technicolor models of dynamical electroweak symmetry breaking \[20\text{–}22\].

This Letter presents a search for exotic particles decaying to a WZ pair with $W \to \ell \nu$ and $Z \to \ell \ell$, where ℓ is either an electron (e) or a muon (μ), ν denotes a neutrino, and the W and Z bosons are allowed to decay to differently flavored leptons. The data were collected with the CMS experiment in proton-proton collisions at a center-of-mass energy $\sqrt{s} = 8$ TeV at the CERN LHC and correspond to an integrated luminosity of 19.5 fb\(^{-1}\). Previous searches in this channel have been performed at the Tevatron \[23\] and at the LHC \[24\text{–}26\]. The results have typically been interpreted within the context of benchmark models such as an extended gauge model (EGM) \[2\] and low-scale technicolor (LSTC) models \[21, 22\]. The search conducted by CMS at $\sqrt{s} = 7$ TeV \[25\] excluded EGM W' bosons with masses below 1143 GeV and set stringent LSTC limits under a range of assumptions regarding model parameters. Complementary searches have also been conducted using the hadronic decays of the W and Z bosons \[27\text{–}32\].

The search at $\sqrt{s} = 8$ TeV presented in this paper focuses on the fully leptonic channel, which is characterized by a pair of same-flavor, opposite-charge, isolated leptons with high transverse momentum (p_T) and an invariant mass consistent with that of the Z boson. A third, high-p_T, isolated, charged lepton is also present, along with missing transverse momentum associated with the neutrino. Background arises from other sources of three charged leptons, both genuine and misidentified. The primary background is the irreducible SM WZ production. Non-resonant events with no genuine Z boson in the final state, such as top quark pair (tt), multijet, W+jet, W+γ+jet, and WW+jet production, are also considered. Only the first of these is expected to make a significant contribution. Also included are events with a genuine Z boson decaying leptonically and a third misidentified or nonisolated lepton, such as Z+jet (including Z+heavy quarks) and Z+γ processes. The final background category includes events with a genuine Z boson decaying leptonically and a third genuine isolated lepton, dominated by ZZ $\to 4\ell$ decays in which one of the four leptons is undetected. Although irreducible, this contribution is not expected to be significant because of the small ZZ production cross section and dilepton decay branching fraction.

The search presented here follows the method applied in the previous analysis \[25\], whereby a counting experiment is used to compare the number of observed events to the number of expected signal and background events. However, the new analysis benefits from the increase in center-of-mass energy to 8 TeV and also from improvements in lepton identification, particularly at high p_T. An increase in sensitivity is achieved at high W' masses by using optimized isolation criteria that successfully take into account collimated leptons from highly boosted Z bosons. The larger center-of-mass energy alone increases the signal production cross section by roughly 45–70\% for W' masses between 1000 – 1500 GeV, while the improved lepton isolation criteria contribute a 50\% increase in signal efficiency over the same range. Additional improvements related to the optimization of selection criteria are also incorporated. Finally, as in the previous analysis \[25\], the results are interpreted within the context of W' bosons in extended
2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

The ECAL energy resolution for electrons with transverse energy $E_T \approx 45\text{ GeV}$ from $Z \rightarrow \text{ee}$ decays is better than 2% in the central region of the ECAL barrel ($|\eta| < 0.8$), and is between 2% and 5% elsewhere. For low-bremsstrahlung electrons, where 94% or more of their energy is contained within a 3×3 array of crystals, the energy resolution improves to 1.5% for $|\eta| < 0.8$ [33].

Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a p_T resolution between 1 and 5%, for p_T values up to 1 TeV [34].

The particle-flow method [35, 36] consists in reconstructing and identifying each single particle with an optimized combination of all subdetector information. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The energy of muons is obtained from the corresponding track momentum.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found elsewhere [37].

3 Event simulation

The PYTHIA 6.426 event generator [38] and the CTEQ6L1 [39] parton distribution functions (PDFs) were used for producing the EGM W' and LSTC signal samples. For the detailed simulation of the W' samples, PYTHIA was used for parton showering and hadronization with the Z2* tune [40] for the underlying event simulation. Cross sections are scaled to next-to-next-to-leading order (NNLO) values calculated with FEWZ 2.0 [41], and range from 27.96 fb to 0.33 fb for W' masses between 1000 and 1500 GeV. Characteristic signal widths are between 100 and 168 GeV for the same mass range and are dominated by the detector resolution, since the natural widths vary from 33 to 54 GeV.

For the LSTC study we assume that the technihadrons ρ_{TC} and π_{TC} decay to WZ. Since these two states are expected to be nearly mass-degenerate [22], they would appear as a single feature in the WZ invariant mass spectrum, and we hereafter refer to them collectively as ρ_{TC}. Since we do not expect a difference in the kinematics between the W' and LSTC signals, we use the W' samples as the default for the analysis, with the cross sections for LSTC as given by PYTHIA. We consider the same relationship between the masses of the ρ_{TC} and π_{TC} technihadrons as

gauge models and vector particles in LSTC models.
used in Refs. [25] and [42], $M_{\pi TC} = \frac{3}{4} M_{\rho TC} - 25$ GeV, and also investigate the dependence of the results on the relative values of the ρTC and πTC masses. The relationship between the masses significantly affects the ρTC branching fractions [42]. If $M_{\rho TC} < 2 M_{\pi TC}$, the decay $\rho TC \rightarrow W \pi TC$ dominates, such that the branching fraction $B(\rho TC \rightarrow WZ) < 10\%$. However, if the $\rho TC \rightarrow W \pi TC$ decay is kinematically inaccessible, $B(\rho TC \rightarrow WZ)$ approaches 100%. Following Ref. [42] we also assume that the LSTC parameter $\sin \chi$ is equal to $1/3$. Changes in this parameter affect the branching fractions for decay into WZ and WπTC.

The MadGraph 5.1 [43] and Powheg 1.1 [44–47] generators are interfaced to Pythia for parton showering, hadronization, and simulation of the underlying event. The SM WZ process, which is the dominant irreducible background, was generated with MadGraph. The ZZ process, which contributes when one of the leptons is either outside the detector acceptance or misreconstructed, was generated using Powheg. The instrumental backgrounds were produced using MadGraph and include Z+jets, t$t, Z\gamma$, WW+jets, and W+jets. The background contribution from QCD multijet events and from Wγ events was also studied in the simulation and found to be negligible. Next-to-leading order (NLO) cross sections are used with the exception of the W+jets process, where the NNLO cross section is used. The W signal and SM processes used to estimate background were modeled using a full Geant4 [48] simulation of the CMS detector.

For all the simulated samples, the additional proton-proton interactions in each beam crossing (pileup) were modeled by superimposing minimum bias interactions (obtained using Pythia with the Z2* tune) onto simulated events, with the multiplicity distribution matching the one observed in data.

4 Object reconstruction and event selection

The WZ $\rightarrow 3\ell \nu$ decay is characterized by a pair of same-flavor, opposite-charge, high-p_T isolated leptons with an invariant mass consistent with a Z boson, a third, high-p_T isolated lepton, and a significant amount of missing transverse momentum associated with the escaping neutrino. The analysis, therefore, relies on the reconstruction of three types of objects: electrons, muons, and E_T^{miss}. The magnitude of the negative vector sum of transverse momenta of all reconstructed candidates is used to calculate E_T^{miss}. The events are reconstructed using a particle-flow approach [35, 36] and the details of the selection are provided below.

Candidate events are required to have at least three reconstructed leptons (e, μ) within the chosen detector acceptance of $|\eta| < 2.5$ (2.4) for electrons (muons). The events are selected online using a double-electron or double-muon trigger for final states with the Z boson decaying into electrons or muons, respectively.

The double-electron trigger requires two clusters in the ECAL with $E_T > 33$ GeV. The lateral spread in η of the energy deposits comprising the cluster is required to be compatible with that of an electron. The trigger also requires that the sum of the energy detected in the HCAL in a cone of $\Delta R < 0.14$, where $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, centered on the cluster, be no more than 15% (10%) of the cluster energy in the barrel (endcap) region of the ECAL. Finally, the clusters are matched in η and ϕ to a track that includes hits in the pixel detector.

The double-muon trigger requires a global muon with $p_T > 22$ GeV and a tracker muon with $p_T > 8$ GeV. The global muon is reconstructed using an outside-in approach whereby each muon candidate in the muon system is matched to a track reconstructed in the tracker and a global fit combining tracker and muon hits is performed [34]. The tracker muon is recon-
constructed using an *inside-out* approach in which all tracks that are considered as possible muon candidates are extrapolated out to the muon system. If at least one muon segment matches the extrapolated track, it qualifies as a tracker muon. The trigger requirements described above have been changed from those in Ref. [25] wherein two global muons were required to pass the online selection. The new requirements improve sensitivity for collimated muons from highly boosted Z bosons.

Simulated events are weighted according to trigger efficiencies measured, in both observed and simulated data, using the “tag-and-probe” technique [49] with a large $Z \rightarrow \ell \ell$ sample. In the electron channel, we apply a parametrization based on the turn-on curve measured with observed electrons and find trigger efficiencies to be above 99%. Muon trigger efficiencies above the turn-on are typically measured to be above 90% in observed events. Scale factors are also applied to the simulated samples to account for differences between the observed and simulated trigger efficiencies. These are approximately unity for both the electron and muon channels.

Candidates for leptons from the W and Z boson decays are also required to pass a series of identification and isolation criteria designed to reduce background from jets that are misidentified as leptons. Electron candidates are reconstructed from a collection of electromagnetic clusters with matched tracks. The electron momentum is obtained from a fit to the electron track using a Gaussian-sum filter algorithm [50] along its trajectory taking into account the possible emission of bremsstrahlung photons in the silicon tracker. We require $p_T > 35$ (20) GeV for the electrons from the Z (W) boson decay. We also require $|\eta| < 2.5$ and exclude the barrel and endcap transition region (1.444 < $|\eta|$ < 1.566) as electron reconstruction in this region is not optimal. In comparison with the requirements imposed on electrons from the W boson decays, a looser set of identification requirements, primarily based on the spatial matching between the track and the electromagnetic cluster, is imposed for the electrons from the Z boson decays. Electron candidates are also required to be isolated with particle-flow-based relative isolation, I_{rel}, less than 0.15, where I_{rel} is defined as the sum of the transverse momenta of all neutral and charged reconstructed particle-flow candidates inside a cone of $\Delta R < 0.3$ around the electron in η-ϕ space divided by the p_T of the electron. The I_{rel} computation includes an event-by-event correction applied to account for the effect of pileup [51]. Finally, if an electromagnetic cluster associated with a photon from internal bremsstrahlung in W and Z boson decays happens to be closely aligned with a muon track, it may be misreconstructed as an electron. In order to remove such instances of misreconstruction, electrons are rejected if they are within a cone of $\Delta R < 0.01$ around a muon. Observed-to-simulated scale factors for these identification and isolation requirements, measured using tag-and-probe and parametrized as a function of electron p_T and $|\eta|$, are applied as corrections to the simulated samples.

Global muon candidates are reconstructed using information from both the silicon tracker and the muon system. Candidates are required to have at least one muon chamber hit that is included in the global muon track fit and at least two matched segments in the muon system. We require muons with $|\eta| < 2.4$ and leading (sub-leading) muon $p_T > 25$ (10) GeV for the muons from the Z decay and $p_T > 20$ GeV for the muons from the W decay. We also require $\delta p_T / p_T < 0.3$ for the track used for the momentum determination, where δp_T is the uncertainty on the measured transverse momentum, and we eliminate cosmic ray background by requiring that the transverse impact parameter of the muon with respect to the primary vertex position be less than 2 mm. Particle-flow-based relative isolation, with pileup corrections applied [52], is defined using a cone of size $\Delta R < 0.4$ around the primary muon and is required to be less than 0.12. The above identification criteria are modified for muons coming from the Z boson decay: one of the muons is allowed to be a tracker muon only and the requirement on the
number of muon chamber hits is removed. Additionally, the isolation variable for each muon is modified to remove the contribution of the other muon. These modifications improve the signal efficiency and hence the overall sensitivity for high-mass W' bosons. Simulated samples are corrected using observed-to-simulated scale factors that are parametrized as a function of muon $|\eta|$.

Opposite-sign, same-flavor lepton pairs with invariant mass between 71 and 111 GeV, consistent with the Z boson mass, are used to reconstruct Z boson candidates. In the case of more than one Z boson candidate, where the two candidates share a lepton, the candidate with the mass closest to the nominal Z boson mass $[7]$ is selected. Events with two distinct Z boson candidates, where the candidates do not share a lepton, are rejected in order to suppress the ZZ background. The charge misidentification rate for the leptons considered in the analysis is very small and thus neglected.

A candidate for the charged lepton from the decay of a W boson, in the following referred to as a W lepton, is then selected out of the remaining leptons. When several candidates are found, the one with the highest p_T is selected. Neutrinos from the leptonic W boson decays escape from the detector without registering a signal and result in significant E_T^{miss} in the event. In order to increase the purity of the selection of W boson decays, the E_T^{miss} in the event is required to be larger than 30 GeV. This requirement discriminates against both high-p_T jets misidentified as leptons and photon conversions, where the source of the misidentified jet or photon can come from Z+jets or Zγ events, respectively.

In order to suppress events where final-state radiation produces additional leptons (via photon conversion) that are identified as the W lepton, we apply two additional requirements on the event after the W lepton selection. First, events with the trilepton invariant mass $m_{3\ell} < 120$ GeV are rejected to remove events where $m_{3\ell}$ is close to the Z boson mass. Second, events where the ΔR between either lepton from the Z boson decay and the W lepton is less than 0.3 are rejected. This removes cases where the W lepton candidate comes from a converted photon and is unlikely to occur in the boosted topology of a massive W' boson decay.

After the W and Z candidate selection, the two bosons are combined into a WZ candidate. The invariant mass of this candidate cannot be determined uniquely since the longitudinal momentum of the neutrino is unknown. We follow the procedure used in the previous CMS analysis $[25]$ and assume the W boson to have its nominal mass, thereby constraining the value of the neutrino longitudinal momentum to one of the two solutions of a quadratic equation. Detector resolution effects can result in a reconstructed transverse mass larger than the invariant W boson mass, M_W, leading to complex solutions for the neutrino longitudinal momentum. In these cases, a real solution is recovered by setting M_W equal to the measured transverse mass. This results in two identical solutions for the neutrino longitudinal momentum. In simulated events with two distinct, real solutions, the smaller-magnitude solution was found to be correct in approximately 70% of the cases, and this solution was therefore chosen for all such events.

Figure 1 (left) shows the WZ invariant mass distributions, after the WZ-candidate selection, for signal, background, and observed events. At this point, the irreducible WZ process dominates the background contribution, making up $\sim 85\%$ of the total number of expected background events.

In order to further suppress SM background events, we apply two additional selection requirements. The first is a requirement on L_T, the scalar sum of the charged leptons’ transverse momenta, shown in Fig. 1 (right). The second is a requirement on the mass of the WZ system. The thresholds for these selection criteria are varied simultaneously at 100 GeV mass spacing for the WZ invariant mass and optimized for the best expected limit on the W’ production. These
optimal values are then plotted as a function of the WZ mass and an analytic function is fit to the resulting distribution. For the mass-window requirement, two regimes of linear behavior are observed: for masses less than 1200 GeV, a narrow mass window is optimal in order to reject as much background as possible. Above 1200 GeV, the background ceases to contribute significantly and it is better to have a large mass window. The L_T requirement exhibits a linear relationship: as the mass increases, it is optimal to require a larger L_T, until around 1000 GeV, at which point having L_T greater than 500 GeV is sufficient. These mass windows and L_T requirements are summarized in Table 1.

Figure 1: The WZ invariant mass (left) and L_T (right) distributions for the background, signal, and observed events after the WZ candidate selection. The last bin includes overflow events. The $(\text{obs} - \text{bkg})/\sigma$ in the lower panel is defined as the difference between the number of observed events and the number of expected background events divided by the total statistical uncertainty.

5 Systematic uncertainties

Systematic uncertainties affecting the analysis can be grouped into four categories. In the first group we include uncertainties that are determined from simulation. These include uncertainties in the lepton and E_T^{miss} energy scales and resolution, as well as uncertainties in the PDFs. Following the recommendations of the PDF4LHC group [53, 54], PDF and α_s variations of the MSTW2008 [55], CT10 [56], and NNPDF2.0 [57] PDF sets are taken into account and their impact on the WZ cross section estimated. Signal PDF uncertainties are taken into account only to derive uncertainty bands around the signal cross sections, as shown in Fig. 2, and do not impact the central limit. An uncertainty associated with the simulation of pileup is also taken into account.

The second group includes the systematic uncertainties affecting the observed-to-simulated scale factors for the efficiencies of the trigger, reconstruction, and identification requirements. These efficiencies are derived from tag-and-probe studies, and the uncertainty in the ratio of the efficiencies is typically taken as the systematic uncertainty. For the $Z \to \mu\mu$ channel, we assign a 2% uncertainty related to the trigger scale factors, another 2% to account for the difference between the observed and simulated reconstruction efficiencies, and an additional 1% uncertainty related to the electron identification and isolation scale factors. For the $Z \to ee$
Table 1: Minimum L_T requirements and search windows for each EGM W' mass point along with the number of expected background events (N_{bkg}), observed events (N_{obs}), expected W' signal events (N_{sig}), and the product of the signal efficiency and acceptance ($\varepsilon_{\text{sig}} \times \text{Acc.}$). The indicated uncertainties are statistical only.

W' Mass (GeV)	L_T (GeV)	M_{WZ} Window (GeV)	N_{bkg}	N_{obs}	N_{sig}	$\varepsilon_{\text{sig}} \times \text{Acc.}$ (%)
170	110	163–177	9.0 ± 0.3	8	18 ± 1	1.33 ± 0.09
180	115	172–188	38 ± 2	49	140 ± 7	1.97 ± 0.09
190	120	181–199	62 ± 1	76	371 ± 14	2.6 ± 0.1
200	125	190–210	81 ± 4	86	610 ± 20	3.2 ± 0.1
210	130	199–221	86 ± 3	101	786 ± 23	3.9 ± 0.1
220	135	208–232	91 ± 3	84	896 ± 24	4.5 ± 0.1
230	140	217–243	92 ± 4	80	977 ± 25	5.2 ± 0.1
240	145	226–254	91 ± 4	84	1011 ± 24	5.8 ± 0.1
250	150	235–265	82 ± 1	85	1021 ± 23	6.4 ± 0.1
275	162	258–292	73 ± 3	85	970 ± 20	8.0 ± 0.2
300	175	280–320	60 ± 1	74	858 ± 16	9.6 ± 0.2
325	188	302–348	56 ± 3	53	792 ± 13	11.8 ± 0.2
350	200	325–375	48 ± 3	37	699 ± 10	13.9 ± 0.2
400	225	370–430	32 ± 1	40	542 ± 7	18.1 ± 0.2
450	250	415–485	23.1 ± 0.8	26	399 ± 5	21.5 ± 0.2
500	275	460–540	16.6 ± 0.5	13	297 ± 3	24.8 ± 0.3
550	300	505–595	13.2 ± 0.6	14	220 ± 2	27.6 ± 0.3
600	325	550–650	10.0 ± 0.5	10	167 ± 2	30.4 ± 0.3
700	375	640–760	4.7 ± 0.2	4	96.9 ± 0.8	34.3 ± 0.3
800	425	730–870	2.8 ± 0.2	5	56.5 ± 0.5	36.5 ± 0.3
900	475	820–980	2.1 ± 0.2	4	35.0 ± 0.3	38.6 ± 0.3
1000	500	910–1090	1.4 ± 0.1	0	23.7 ± 0.2	43.3 ± 0.3
1100	500	1000–1200	0.8 ± 0.1	0	15.9 ± 0.1	46.8 ± 0.3
1200	500	1080–1320	0.58 ± 0.08	1	10.77 ± 0.07	49.1 ± 0.3
1300	500	1108–1492	0.56 ± 0.08	1	8.20 ± 0.04	56.1 ± 0.3
1400	500	1135–1665	0.60 ± 0.08	1	5.64 ± 0.03	57.3 ± 0.3
1500	500	1162–1838	0.57 ± 0.08	1	3.76 ± 0.02	57.5 ± 0.3
1600	500	1190–2010	0.56 ± 0.08	1	2.56 ± 0.01	57.7 ± 0.3
1700	500	1218–2182	0.50 ± 0.08	1	1.782 ± 0.009	57.6 ± 0.3
1800	500	1245–2355	0.44 ± 0.07	1	1.255 ± 0.007	58.0 ± 0.3
1900	500	1272–2528	0.39 ± 0.07	0	0.844 ± 0.005	55.0 ± 0.3
2000	500	1300–2700	0.36 ± 0.07	0	0.595 ± 0.003	54.7 ± 0.3
channel, we assign a 5% uncertainty related to the trigger and another 2% uncertainty due to the differences in the observed and simulated efficiencies of muon reconstruction. An additional 3% uncertainty is assigned to the muon identification and isolation scale factors to cover potential differences related to the boosted topology of the signal.

The third category comprises uncertainties in the background yield. These are dominated by the theoretical uncertainties associated with the WZ background. We consider contributions coming from uncertainties related to the choice of PDF (described above), renormalization and factorization scales, and the SM WZ production modeling in MADGRAPH. Scale uncertainties were determined by studying the variation of the cross section in the same phase space of the analysis by varying the renormalization and factorization scales by a factor of two upwards and downwards with respect to their nominal values. The largest observed variation is taken as a systematic uncertainty. This procedure results in uncertainties of 5% for WZ masses up to 500 GeV and up to 15% from 600 GeV to 2 TeV. As the MADGRAPH sample used for simulating the WZ background contains explicit production of additional jets at matrix-element level, it provides a reasonable description of the process. The prediction is thus only rescaled with a global factor to the total NLO cross section computed with MCFM 6.6 [58]. To estimate uncertainties related to remaining modeling differences between the spectra predicted by MADGRAPH and true NLO predictions, we studied the ratio of the WZ cross section in the phase space defined by the analysis selection criteria (for each mass point) to the inclusive WZ cross section. We compared this ratio between MADGRAPH and MCFM and found differences of the order of 5% for WZ masses up to 1 TeV, and of the order of 30% between 1 and 2 TeV. These differences are taken as additional systematic uncertainties in the SM WZ background. For other background processes, the cross sections are varied by amounts estimated for the phase space relevant for this analysis as follows: ZZ and Z+jets by 30%, $t\bar{t}$ by 15%, and $Z\gamma$ by 50%.

Finally, an additional uncertainty of 2.6% due to the measurement of the integrated luminosity is included [59]. Table 2 presents a summary of the above systematic uncertainties.

6 Results

As shown in Fig. 1, the data are compatible with the expected SM background and no significant excess is observed. Exclusion limits on the production cross section $\sigma(pp \rightarrow W'/\rho_{TC} \rightarrow WZ) \times B(WZ \rightarrow 3\ell\nu)$ are determined using a counting experiment and comparing the number of observed events to the number of expected signal and background events. The limits are calculated at 95% confidence level (CL) by employing the ROOStats [60] implementation of Bayesian statistics [7] and assuming a flat prior for the signal production cross section. Systematic uncertainties, other than signal PDF uncertainties, are represented by nuisance parameters. The results for the number of observed and expected background and signal events at different W' masses, along with the efficiency times acceptance, are given in Table 1.

The expected (observed) lower limit on the mass of the W' boson is 1.55 (1.47) TeV in the EGM. For LSTC, with the chosen parameters $M_{\pi_{TC}} = \frac{1}{2}M_{\rho_{TC}} - 25$ GeV, the expected and observed ρ_{TC} mass limits are 1.09 and 1.14 TeV, respectively. For each of the above cases the lower bound on the exclusion limit is 0.17 TeV. Figure 2 shows these limits as a function of the mass of the EGM W' boson and the ρ_{TC} particle along with the combined statistical and systematic uncertainties. Figure 3 shows the LSTC cross section limits in a two-dimensional plane as a function of the ρ_{TC} and π_{TC} masses.

The W' production cross section and the branching fraction $B(W' \rightarrow WZ)$ are affected by the strength of the coupling between the W' boson and WZ, which we refer to as $g_{W'WZ}$. The EGM
Table 2: Summary of systematic uncertainties. Values are given for the impact on signal and background event yields. When the value of the uncertainty differs between the different decay modes of the W and Z bosons and/or between different W' masses considered, a range is quoted in order to provide an idea of the magnitude of the uncertainty, i.e. its impact.

Systematic Uncertainty	Signal Impact	Background Impact
E_{T}^{miss} Resolution & Scale	1–3%	1–23%
Muon p_T Resolution	1–3%	0.5–5%
Muon p_T Scale	1–2%	1–22%
Electron Energy Scale & Resolution	0.5–2%	1.5–12%
Pileup	0.1–0.8%	0.5–5%
Electron Trigger Efficiency	2%	2%
Electron Reconstruction Efficiency	2%	2%
Electron ID & Isolation Efficiencies	1%	1%
Muon Trigger Efficiency	5%	5%
Muon Reconstruction Efficiency	2%	2%
Muon ID & Isolation Efficiencies	3%	3%
$Z + \text{jets}$	—	30%
$t\bar{t}$	—	15%
$Z\gamma$	—	50%
ZZ	—	30%
WZ PDF	—	5–10%
WZ Scale	—	5–15%
WZ MADGRAPH Modeling	—	5–30%
Luminosity	2.6%	2.6%

assumes that $g_{WWZ} = g_{WWZ} \times M_W M_Z / M_{W'}^2$, where g_{WWZ} is the SM WWZ coupling and M_W, M_Z, and $M_{W'}$ are the masses of the W, Z, and W' particles, respectively. If the coupling between the W' boson and WZ happens to be stronger than that predicted by the EGM, the observed and expected limits will be more stringent. This is illustrated in Fig. 4, where an upper limit at 95% CL on the W'WZ coupling is given as a function of the mass of the W' resonance.

7 Summary

A search has been performed in proton-proton collisions at $\sqrt{s} = 8$ TeV for new particles decaying via WZ to fully leptonic final states with electrons, muons, and neutrinos. The data set corresponds to an integrated luminosity of 19.5 fb$^{-1}$. No significant excess is found in the mass distribution of the WZ candidates compared to the background expectation from standard model processes. The results are interpreted in the context of different theoretical models and stringent lower bounds are set at 95% confidence level on the masses of hypothetical particles decaying via WZ to the fully leptonic final state. Assuming an extended gauge model, an expected (observed) exclusion limit of 1.55 (1.47) TeV on the mass of the W' boson is set. Low-scale technicolor ρ hadrons with masses below 1.14 TeV are also excluded assuming $M_{\text{TC}} = 3 M_{\rho_{\text{TC}}} - 25$ GeV. These exclusion limits represent a large improvement over previously published results obtained in proton-proton collisions with $\sqrt{s} = 7$ TeV.
Figure 2: Limits at 95% CL on $\sigma \times B(W' \rightarrow 3\ell \nu)$ as a function of the mass of the EGM W' (blue) and ρ_{TC} (red), along with the 1 σ and 2 σ combined statistical and systematic uncertainties indicated by the green (dark) and yellow (light) band, respectively. The theoretical cross sections include a mass-dependent NNLO K-factor. The thickness of the theory lines represents the PDF uncertainty associated with the signal cross sections. The predicted cross sections for ρ_{TC} assume that $M_{\pi_{TC}} = \frac{3}{4} M_{\rho_{TC}} - 25$ GeV and that the LSTC parameter $\sin \chi = 1/3$.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-
Figure 3: Two-dimensional exclusion limit at 95% CL for the LSTC model as a function of the ρ_{TC} and π_{TC} masses.

References

[1] J. C. Pati and A. Salam, “Lepton number as the fourth ‘color’”, Phys. Rev. D 10 (1974) 275, doi:10.1103/PhysRevD.10.275 [Erratum: doi:10.1103/PhysRevD.11.703.2].

[2] G. Altarelli, B. Mele, and M. Ruiz-Altaba, “Searching for new heavy vector bosons in $p\bar{p}$ colliders”, Z. Phys. C 45 (1989) 109, doi:10.1007/BF01556677. Erratum-ibid. C 47 (1990) 676.

[3] A. Birkedal, K. Matchev, and M. Perelstein, “Collider phenomenology of the Higgsless models”, Phys. Rev. Lett. 94 (2005) 191803, doi:10.1103/PhysRevLett.94.191803, arXiv:hep-ph/0412278.

[4] M. Perelstein, “Little Higgs models and their phenomenology”, Prog. Part. Nucl. Phys. 58 (2007) 247, doi:10.1016/j.ppnp.2006.04.001, arXiv:hep-ph/0512128.

[5] K. Agashe et al., “LHC Signals for warped electroweak charged gauge bosons”, Phys. Rev. D 80 (2009) 075007, doi:10.1103/PhysRevD.80.075007, arXiv:0810.1497.

[6] C. Grojean, E. Salvioni, and R. Torre, “A weakly constrained W' at the early LHC”, JHEP 07 (2011) 002, doi:10.1007/JHEP07(2011)002, arXiv:1103.2761v3.
Figure 4: The 95% CL upper limit on the strength of W'WZ coupling normalized to the EGM prediction as a function of the W' mass. The 1σ and 2σ combined statistical and systematic uncertainties are indicated by the green (dark) and yellow (light) band, respectively. PDF uncertainties on the theoretical cross section are not included.

[7] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, Phys. Rev. D 86 (2012) 010001, doi:10.1103/PhysRevD.86.010001

[8] H.-J. He et al., “CERN LHC signatures of new gauge bosons in the minimal Higgsless model”, Phys. Rev. D 78 (2008) 031701, doi:10.1103/PhysRevD.78.031701, arXiv:0708.2588v2

[9] CMS Collaboration, “Search for new physics in final states with a lepton and missing transverse energy in pp collisions at the LHC”, Phys. Rev. D 87 (2013) 072005, doi:10.1103/PhysRevD.87.072005, arXiv:1302.2812

[10] CMS Collaboration, “Search for leptonic decays of W' bosons in pp collisions at √s = 7 TeV”, JHEP 08 (2012) 023, doi:10.1007/JHEP08(2012)023, arXiv:1204.4764

[11] ATLAS Collaboration, “ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at √s = 7 TeV”, Eur. Phys. J. C 72 (2012) 2241, doi:10.1140/epjc/s10052-012-2241-5, arXiv:1209.4446

[12] CMS Collaboration, “Search for narrow resonances using the dijet mass spectrum in pp collisions at √s = 8 TeV”, Phys. Rev. D 87 (2013) 114015, doi:10.1103/PhysRevD.87.114015, arXiv:1302.4794

[13] ATLAS Collaboration, “ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at √s = 7 TeV”, JHEP 01 (2013) 029, doi:10.1007/JHEP01(2013)029, arXiv:1210.1718

[14] CMS Collaboration, “Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at √s = 7 TeV”, Phys. Lett. B 718 (2013) 1229, doi:10.1016/j.physletb.2012.12.008, arXiv:1208.0956
[15] ATLAS Collaboration, “Search for tb resonances in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”, *Phys. Rev. Lett.* **109** (2012) 081801, doi:10.1103/PhysRevLett.109.081801, arXiv:1205.1016

[16] CMS Collaboration, “Search for W’ to tb decays in the lepton + jets final state in pp collisions at $\sqrt{s} = 8$ TeV”, *JHEP* **05** (2014) 108, doi:10.1007/JHEP05(2014)108, arXiv:1402.2176

[17] ATLAS Collaboration, “Search for new particles in events with one lepton and missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”, *JHEP* **09** (2014) 037, doi:10.1007/JHEP09(2014)037, arXiv:1407.7494

[18] ATLAS Collaboration, “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the ATLAS detector”, (2014). arXiv:1407.1376 Submitted to Phys. Rev. D.

[19] ATLAS Collaboration, “Search for $W' \rightarrow tb \rightarrow qqbb$ Decays in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector”, (2014). arXiv:1408.0886 Submitted to Eur. Phys. J. C.

[20] L. Susskind, “Dynamics of spontaneous symmetry breaking in the Weinberg–Salam Theory”, *Phys. Rev. D* **20** (1979) 2619, doi:10.1103/PhysRevD.20.2619

[21] K. Lane, “Technihadron production and decay in low-scale technicolor”, *Phys. Rev. D* **60** (1999) 075007, doi:10.1103/PhysRevD.60.075007, arXiv:hep-ph/9903369

[22] E. Eichten and K. Lane, “Low-scale technicolor at the Tevatron and LHC”, *Phys. Lett. B* **669** (2008) 235, doi:10.1016/j.physletb.2008.09.047, arXiv:0706.2339

[23] D0 Collaboration, “Search for a resonance decaying into WZ boson pairs in pp collisions”, *Phys. Rev. Lett.* **104** (2010) 061801, doi:10.1103/PhysRevLett.104.061801, arXiv:0912.0715v3

[24] ATLAS Collaboration, “Search for resonant WZ production in the $WZ \rightarrow \ell\nu\ell'\ell'$ channel in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector”, *Phys. Rev. D* **85** (2012) 112012, doi:10.1103/PhysRevD.85.112012, arXiv:1204.1648

[25] CMS Collaboration, “Search for a W' or Techni-ρ Decaying into WZ in pp Collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **109** (2012) 141801, doi:10.1103/PhysRevLett.109.141801, arXiv:1206.0433

[26] ATLAS Collaboration, “Search for WZ resonances in the fully leptonic channel using pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”, *Phys. Lett. B* **737** (2014) 223, doi:10.1016/j.physletb.2014.08.039, arXiv:1406.4456

[27] CDF Collaboration, “Search for WW and WZ Resonances Decaying to Electron, Missing E_T, and Two Jets in pp Collisions at $\sqrt{s} = 1.96$ TeV.”, *Phys. Rev. Lett.* **104** (2010) 241801, doi:10.1103/PhysRevLett.104.241801, arXiv:1004.4946

[28] CMS Collaboration, “Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV”, *Phys. Lett. B* **723** (2013) 280, doi:10.1016/j.physletb.2013.05.040, arXiv:1212.1910

[29] CMS Collaboration, “Search for exotic resonances decaying into WZ/ZZ in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **02** (2013) 036, doi:10.1007/JHEP02(2013)036, arXiv:1211.5779
[30] ATLAS Collaboration, “Search for resonant diboson production in the $WW/WZ \rightarrow \ell\nu jj$ decay channels with the ATLAS detector at $\sqrt{s} = 7$ TeV”, Phys. Rev. D 87 (2013) 112006, doi:10.1103/PhysRevD.87.112006, arXiv:1305.0125

[31] CMS Collaboration, “Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at $\sqrt{s} = 8$ TeV”, JHEP 08 (2014) 173, doi:10.1007/JHEP08(2014)173, arXiv:1405.1994.

[32] CMS Collaboration, “Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at $\sqrt{s} = 8$ TeV”, JHEP 08 (2014) 174, doi:10.1007/JHEP08(2014)174, arXiv:1405.3447.

[33] CMS Collaboration, “Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $\sqrt{s} = 7$ TeV”, JINST 8 (2013) P09009, doi:10.1088/1748-0221/8/09/P09009, arXiv:1306.2016.

[34] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

[35] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[36] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[37] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[38] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[39] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.

[40] CMS Collaboration, “Measurement of the underlying event activity at the LHC with $\sqrt{s} = 7$ TeV and comparison with $\sqrt{s} = 0.9$ TeV”, JHEP 09 (2011) 109, doi:10.1007/JHEP09(2011)109, arXiv:1107.0330.

[41] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order”, Comput. Phys. Commun. 182 (2011) 2388, doi:10.1016/j.cpc.2011.06.008.

[42] New Physics Working Group Collaboration, “New Physics at the LHC: A Les Houches Report. Physics at TeV Colliders 2009”, (2010). arXiv:1005.1229

[43] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, (2014). arXiv:1405.0301

[44] P. Nason, “A New method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
[45] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, JHEP 11 (2007) 070, \textit{doi:10.1088/1126-6708/2007/11/070}, \texttt{arXiv:0709.2092}.

[46] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, \textit{doi:10.1007/JHEP06(2010)043}, \texttt{arXiv:1002.2581}.

[47] T. Melia, P. Nason, R. Röntsch, and G. Zanderighi, “W+W−, WZ and ZZ production in the POWHEG BOX”, JHEP 11 (2011) 078, \textit{doi:10.1007/JHEP11(2011)078}, \texttt{arXiv:1107.5051}.

[48] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, \textit{doi:10.1016/S0168-9002(03)01368-8}.

[49] CMS Collaboration, “Measurement of the Inclusive W and Z Production Cross Sections in pp Collisions at √s = 7 TeV”, JHEP 10 (2011) 132, \textit{doi:10.1007/JHEP10(2011)132}, \texttt{arXiv:1107.4789}.

[50] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov, “Reconstruction of electrons with the Gaussian sum filter in the CMS tracker at LHC”, J. Phys. G 31 (2005) N9, \textit{doi:10.1088/0954-3899/31/9/N01}, \texttt{arXiv:physics/0306087}.

[51] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, \textit{doi:10.1016/j.physletb.2007.09.077}, \texttt{arXiv:0707.1378}.

[52] CMS Collaboration, “Search for neutral Higgs bosons decaying to tau pairs in pp collisions at √s = 7 TeV”, Phys. Lett. B 713 (2012) 68, \textit{doi:10.1016/j.physletb.2012.05.028}, \texttt{arXiv:1202.4083}.

[53] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). \texttt{arXiv:1101.0536}.

[54] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). \texttt{arXiv:1101.0538}.

[55] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189, \textit{doi:10.1140/epjc/s10052-009-1072-5}, \texttt{arXiv:0901.0002}.

[56] P. M. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, Phys. Rev. D 78 (2008) 013004, \textit{doi:10.1103/PhysRevD.78.013004}, \texttt{arXiv:0802.0007}.

[57] NNPDF Collaboration, “Impact of heavy quark masses on parton distributions and LHC Phenomenology”, Nucl. Phys. B 849 (2011) 296, \textit{doi:10.1016/j.nuclphysb.2011.03.021}, \texttt{arXiv:1101.1300}.

[58] J. M. Campbell and R. K. Ellis, “MCFM for the Tevatron and the LHC”, Nucl. Phys. Proc. Suppl. 205 (2010) 10, \textit{doi:10.1016/j.nuclphysbps.2010.08.011}, \texttt{arXiv:1007.3492}.

[59] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013.
[60] L. Moneta et al., “The RooStats Project”, in 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010). SISSA, 2010. arXiv:1009.1003 PoS(ACAT2010)057.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krämer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schönböck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universität Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Ceadr, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, P. Jez, M. Komm, V. Lemaître, J. Liao, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebreghs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, R. Plestina8, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.9

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran10, S. Elgammal11, M.A. Mahmoud12, A. Radi11,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padoken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, A. Kalogeroopoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, O. Novgorodova, F. Nowak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Rasperena, P.M. Ribeiro Cipriano, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt, T. Schoerner-Sadenius, M. Schröder, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, M. Centis Vignali, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Freisch, M. Gißels, F. Hartmann², T. Hauth², U. Husemann, I. Katkov⁵, A. Kornmayer², E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁷, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁸, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi¹⁹, J. Molnar, J. Palinkas, Z. Szillas

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhattacharjee, N. Dhingra, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Chaudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty², L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik²⁰, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly,
S. Ghosh, M. Guchait, A. Gurta, G. Kole, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshi, H. Behnami, S.M. Etesami, A. Fahim, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

M. Abbrescia, L. Barbore, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, P. Verwilligen, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codecì, M. Cuffiani, G.M. Dallavalle, F. Fabbrì, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Sirioli, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

G. Barbagli, V. Ciulli, C. Cavinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzì, V. Gorri, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy

F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

M.E. Dinarè, S. Fiorendi, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzoni, A. Martelli, B. Marzocchi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy

S. Buontempo, N. Cavallo, S. Di Guida, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

P. Azzi, M. Biasotto, D. Bisello, A. Branca, R. Carlin, P. Checchia, M. Dall’Osso, T. Dorigo, U. Dosselli, F. Fanzago, M. Galanti, F. Gasparini, U. Gasparini, A. Gozzelino, K. Kanishchev, S. Lacaprara, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, P. Zotto, A. Zucchetta, G. Zumerle
INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b,2

INFN Sezione di Pisa c, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,27, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,27, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,27, F. Ligabuea,c, T. Lomtadzea, L. Martinisa,b, A. Messineoa,b, C.S. Moona,28, F. Pallaa,2, A. Rizzia,b, A. Savoy-Navarroa,29, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,27, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c,2

INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michellia,b,2, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b,2, P. Traczyka

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b,2, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casasusoa,b,2, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa, M. Musicha, M.M. Obertinoa,c,2, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia, A. Solanoa,b, A. Staianoa, A. Tenchinia,b, G. Tonellia, A. Zanettia,2

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b,2, T. Umera,b, A. Zanettia

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Nuclear and Elementary Particles, Kwangju, Korea
J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, E. Kwon, J. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoai

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluja, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilo, N. Lychkovskaya, Y. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M.Perfilov, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uznian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, D. Treille, A. Tisrou, G.I. Veres, J.R. Vlimant, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kottlinski, U. Langenegger, D. Renker, T. Rohe
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Băni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lastermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli37, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov38, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler39, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci40, S. Cerici41, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut42, K. Ozdemir, S. Ozturk40, A. Polatoz, K. Sogut43, D. Sunar Cerici41, B. Tali41, H. Topakli40, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar44, K. Ocalan, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak45, M. Kaya46, O. Kaya46

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar47, E. Barlas, K. Cankocak, F.I. Vardarli, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold48, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev49, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas48, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko38, J. Pela, M. Pesaresi, K. Petridis,
D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, Santa Barbara, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev
The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Pirouë, X. Quan, H. Saka, D. Stickland2, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski
University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, D.C. Miner, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali54, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon55, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, R. Hall-Weston, M. Herndon,
A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at The University of Kansas, Lawrence, USA
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Ruhuna, Matara, Sri Lanka
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Sharif University of Technology, Tehran, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
31: Also at Institute for Nuclear Research, Moscow, Russia
32: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
48: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
50: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
51: Also at Argonne National Laboratory, Argonne, USA
52: Also at Erzincan University, Erzincan, Turkey
53: Also at Yildiz Technical University, Istanbul, Turkey
54: Also at Texas A&M University at Qatar, Doha, Qatar
55: Also at Kyungpook National University, Daegu, Korea