Investigation of suspended nanoliquid flow of Eyring–Powell fluid with gyrotactic microorganisms and density number

Fazal Haq¹, Muhammad Ijaz Khan², Sohail A Khan³ and T Hayat³

Abstract
The aim of the current investigation is to discuss the behavior of mixed convection magnetohydrodynamic flow of Eyring–Powell nanoliquid subjected to gyrotactic microorganisms over a stretchable cylinder. Energy communication is developed through the first law of thermodynamics and deliberated in the manifestation of viscous dissipation. Furthermore, Brownian motion and thermophoresis effects are also considered. Nonlinear system of partial differential equations is altered into ordinary one due to employing transformations. The given systems are then solved through ND-solve technique. Impact of influential variables on velocity, motile microorganism’s temperature, and concentration is deliberated graphically. Skin friction coefficient, mass transfer rate, density number, and Nusselt number are numerically computed versus different influential variables. Velocity and temperature have opposite impact for curvature parameter. For higher estimation of fluid parameter, temperature and velocity fields boost up.

Keywords
Eyring–Powell nanofluid, gyrotactic microorganisms, stretching cylinder, MHD, mixed convection, Brownian motion, thermophoresis effects, density number

Received 31 January 2020; accepted 9 April 2020
Handling Editor: James Baldwin

Introduction
Study of rheological characteristics of non-Newtonian liquids is very monotonous than compared to viscous liquids. A single constitutive equation is not appropriate to scrutinize the non-Newtonian liquids because of their complex and diverse behaviors. Recently, numerous investigators and scientists have focused their consideration on non-Newtonian liquids. It is because of their vast applications in engineering, biology, and industries like fiber sheets, wire drawing, glass formation, paper production, and crystal growth. Common examples of non-Newtonian liquids are shampoo, ketchup, yogurt, mud, greases, pasta, certain oils, paints, and so on. Initially, in 1944, Eyring and Powell proposed a Eyring–Powell model which is based on kinetic theory of fluids. Influence of radiation on magnetohydrodynamic (MHD) flow of Eyring–Powell liquid flow due to a stretchable surface is highlighted by Hayat et al.¹ Hosseinzadeh et al.² worked on hybrid nanoparticles in a hexagonal triplex latent heat with fine effects. Impact of heat flux on an Eyring–Powell liquid flow due to shrinking surface is examined by Ara et al.³ Entropy optimization in reactive flow of Eyring–Powell liquid with variable thermal conductivity by a stretchable surface is discussed by Salawu et al.⁴

¹Department of Mathematics, Karakoram International University, Gilgit, Pakistan
²Department of Mathematics, Riphah International University, Faisalabad, Pakistan
³Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
⁴Department of Mathematics, Karakoram International University, Gilgit, Pakistan

Corresponding author:
Muhammad Ijaz Khan, Department of Mathematics, Riphah International University, Faisalabad Campus, 380000 Faisalabad, Pakistan.
Email: ijazfmg_khan@yahoo.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Some fruitful researches about nanomaterials in flow of non-Newtonian and Newtonian fluids are highlighted in some of the studies.5-16 Colloidal suspension of nano-sized particles (oxides, metals, carbides, or carbon nanotubes) and conventionally working materials (water, oil, and ethylene glycol) are known as nanomaterial. Nanomaterials have innovative behaviors that make them more significant in various applications in thermal transmission like medicinal procedures, domestic refrigerators, hybrid-powered engines, fuel cells, heat exchangers, and automobile thermal management. Choi and Eastman17 are the first who theoretically proved that heat conduction phenomenon of conventionally working materials can be increased by inserting nano-sized particles. Khan et al.18 discussed the behavior of thermophoresis and Brownian diffusion in Prandtl–Eyring nanoliquids with entropy optimization and cubic autocatalysis chemical reaction. Some investigations made by numerous researchers are presented in some of the studies.2,19-26

Bioconvection is a phenomenon in which microorganisms are inserted in nanoliquids for nanoparticles movement. It is presumed that nanoparticles have no impact on the spinning direction and motion of microorganisms. Initially, Kuznetsov27 studied fluid layers of finite depth with suspended gyrotactic microorganisms. Impact of magnetic field, stratification phenomenon, and gyrotactic microorganisms on Maxwell nanoliquid flow is highlighted by Khan et al.28 Khan et al.29 explored the behavior of Darcy-Forchheimer mixed convective over a curved sheet with activation energy and entropy generation. Heat and mass transport over a convective stretched sheet with gyrotactic microorganisms and stratification phenomena is examined by Alsaeedi et al.30 Khan et al.31 investigated the effect of gyrotactic microorganisms and activation energy on natural bioconvectional flow of Sisko nanofluids.

In this article, we investigated the behavior of mixed convective MHD flow of Eyring–Powell nanoliquid subjected to gyrotactic microorganisms over a stretchable cylinder. Energy attribution is developed through the first law of thermodynamics. Brownian diffusion and thermophoretic effects are also accounted. The gyrotactic microorganisms concept is used to control the random motion of fluid nanoparticles. Heat, motile microorganisms, and mass transfer rates are examined subjected to stratification effects. Partial differential system is altered to ordinary system by suitable transformations and then tackle through numerical built in ND-solve method.32-39 Features of influential variables on velocity, motile microorganisms, temperature, and concentration are examined through graphs. Surface drag force, gradient of temperature, Sherwood, and density numbers are numerically computed and discussed.

Mathematical modeling

Consider incompressible, two-dimensional, and steady MHD mixed convective flow of Eyring–Powell nanomaterials by a stretchable surface of cylinder. Microorganisms are exploited to control the motion of fluid nanoparticles. Furthermore, dissipation is taken into consideration in modeling of heat equation. Heat, mass, and motile microorganisms transfer rates are discussed in the presence of stratification effects. Let $u_w (= w_0z/l)$ be the stretching velocity along z-direction. A constant magnetic field of strength (B_0) is exerted at an inclination of α to the cylinder. The flow diagram is highlighted in Figure 1.

The governing layer expressions in view of aforementioned assumptions are

$$\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0$$ \hspace{1cm} (1)

$$\rho \left\{ \frac{u \partial v}{\partial r} + \frac{w}{r} + \frac{\partial u}{\partial z} \right\} = -\frac{1}{r} \frac{\partial P}{\partial \theta} + \frac{\mu v}{r} - \frac{\mu v}{r^2} + \frac{\mu v}{r^2}$$

$$+ \left(\frac{\partial^2 v}{\partial r^2} - \frac{1}{r} \frac{\partial v}{\partial r} \right) - \left(\frac{1}{\beta e^2 \partial r^2} + \frac{1}{\partial r^2} \right)$$

$$\times \left(\frac{\partial^2 v}{\partial r^2} - \frac{1}{r} \frac{\partial v}{\partial r} + \frac{v}{r^2} \right) - \left(\frac{1}{\beta e^2 \partial r^2} + \frac{1}{\partial r^2} \right)$$

$$\times \left(\frac{\partial^2 w}{\partial r^2} - \frac{1}{r} \frac{\partial w}{\partial r} + \frac{w}{r^2} \right) - \left(\frac{1}{\beta e^2 \partial r^2} + \frac{1}{\partial r^2} \right)$$

$$\times \left(\frac{\partial w}{\partial r} - \frac{w}{r} \right) - \frac{2}{\beta e^2 r} \left(\frac{\partial v}{\partial r} - \frac{v}{r} \right)$$

$$+ 2 \frac{\beta e^2}{\beta e^2 r} \left(\frac{\partial v}{\partial r} - \frac{v}{r} \right) - \frac{2}{\beta e^2 r} \left(\frac{\partial v}{\partial r} - \frac{v}{r} \right)^3$$

$$- \frac{2}{\beta e^2 r} \left(\frac{\partial v}{\partial r} - \frac{v}{r} \right)^2$$ \hspace{1cm} (2)

![Figure 1. Flow diagram.](image)
\[
\rho_f \left[\frac{\partial w}{\partial r} + \frac{w}{r} \frac{\partial v}{\partial z} \right] = \rho_{f*} g \beta_T (T - T_\infty) - g \beta_r (\rho_p - \rho_{f*}) (C - C_{\infty}) - \frac{g}{\beta_m} (\rho_m - \rho_{f*}) (n - n_{\infty}) - \sigma w B_0^2 \sin^2 \theta
\]

\[
+ \frac{1}{\beta c} \frac{\partial^2 w}{\partial r^2} + \left(\frac{\mu}{r} + \frac{1}{\beta c} \right) \frac{\partial v}{\partial r} - \frac{1}{\beta c^3} \left(\frac{\partial^2 w}{\partial r^2} \right)^2 + \frac{\partial^2 w}{\partial r^2} \frac{\partial^2 v}{\partial r^2} - \frac{2}{r} \frac{\partial v}{\partial r} \frac{\partial^2 w}{\partial r^2}
\]

(3)

\[
\frac{\partial T}{\partial r} + \frac{w}{r} \frac{\partial T}{\partial z} = \frac{k_f}{(\rho c)_f} \left[\frac{1}{r} \frac{\partial T}{\partial r} \right] + \frac{\partial^2 T}{\partial r^2} + \frac{1}{T_{\infty}} \left(\frac{\partial^2 T}{\partial r^2} \right)^2
\]

\[
+ \tau \left[D_B \left(\frac{\partial C}{\partial r} \frac{\partial T}{\partial r} + D_T \frac{\partial^2 T}{\partial r^2} \right)^2 \right]
\]

\[
+ \mu \left(\frac{\partial^2 w}{\partial r^2} \right) + \frac{1}{\beta c} \frac{\partial^2 w}{\partial r^2} - \frac{1}{\beta c^3} \frac{\partial^2 v}{\partial r^2}
\]

(4)

\[
\frac{\partial C}{\partial r} + \frac{w}{r} \frac{\partial C}{\partial z} = D_B \left(\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} \right) + D_T \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right)
\]

(5)

\[
\frac{\partial n}{\partial r} + \frac{1}{r} \frac{\partial n}{\partial z} + \frac{b W c}{C_w - C_0} \left(\frac{\partial}{\partial r} \left(\frac{n C}{r} \right) + \frac{\partial C}{\partial r} \right) = D_n \left(\frac{1}{r} \frac{\partial n}{\partial r} + \frac{\partial^2 n}{\partial r^2} \right)
\]

(6)

with

\[
u = \nu_0 \frac{w_0}{\nu}, \quad u = 0, \quad T = T_w = T_0 + \frac{a n z}{T}, \quad C = C_w = C_0 + \frac{n n}{n_0 + \frac{c z}{T}} \quad \text{at } r = R,
\]

\[
w \to 0, \quad T = T_\infty = T_0 + \frac{a n z}{T}, \quad C = C_\infty = C_0 + \frac{b z}{T}, \quad n = n_\infty = n_0 + \frac{c z}{T} \quad \text{as } r \to \infty
\]

(7)

where \(u, w\) show the velocity components in \(r\)- and \(z\)-direction, respectively; \(\mu\) is the dynamic viscosity; \(\rho_f\) is the density of nanoparticles; \(\rho_{f*}\) is the ambient density of nanofluid; \(\rho_m\) is the density of microorganisms; \(\beta\) and \(c\) are the Eyring–Powell fluid parameters; \(g\) is the gravitational acceleration; \(\beta_r\) is the concentration expansion coefficient; \(\beta_T\) is the thermal expansion coefficient; \(\rho_p\) is the density of nanoparticles; \(T\) is the temperature; \(T_\infty\) is the ambient temperature; \(T_0\) is the reference temperature; \(T_w\) is the surface temperature; \(C\) is the concentration; \(C_{\infty}\) is the ambient concentration; \(C_0\) is the reference concentration; \(C_w\) is the surface concentration; \(n\) is the concentration of microorganisms; \(n_{\infty}\) is the ambient concentration of microorganisms; \(n_0\) is the reference concentration of microorganisms; \(n_\infty\) is the surface concentration of microorganisms; \(b\) is the chemotaxis constant; \(\gamma\) is the average volume of microorganisms; \(D_B\) is the coefficient of Brownian diffusion; \(D_T\) is the thermophoresis; \(W_c\) is the maximum speed of microorganisms cells; \(\sigma\) is the electrical conductivity; \(R\) is the radius of the cylinder; \(a_1, b_1, c_1, a_2, b_2, \) and \(c_2\) are the dimensionless constants; and \(P\) is the pressure vector.

Considering

\[
\begin{align*}
\eta &= \sqrt{\frac{w_0}{\nu_T}} \left(\frac{R}{r} \right) f(\eta), \quad \eta = \sqrt{\frac{w_0}{\nu_T}} \left(\frac{r^2 - R^2}{2R} \right),
\end{align*}
\]

\[
T = T_0 + a_n z + a_n z 0(\eta), \quad w = w_0 f(\eta),
\]

\[
C = C_0 + b_n z + b_n z 0(\eta) \phi(\eta), \quad n = n_0 + c_n z + c_n z 0(\eta) \chi(\eta)
\]

(8)

One can get

\[
\begin{align*}
&\frac{1}{(1 + 2\gamma^2)(1 + 2\beta^2) f'' + 2\gamma^2(1 + 2\beta^2) f'''} - H_a^2 \sin^2\theta f'' - 2\beta \gamma^2(1 + 2\gamma^2)^2 f'' - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2 - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2
\end{align*}
\]

\[
\begin{align*}
&+ G_0 \theta - G_0 \phi - R_0 \zeta = 0
\end{align*}
\]

(9)

\[
\begin{align*}
&\frac{1}{(1 + 2\gamma^2)(1 + 2\beta^2) f'' + 2\gamma^2(1 + 2\beta^2) f'''} - H_a^2 \sin^2\theta f'' - 2\beta \gamma^2(1 + 2\gamma^2)^2 f'' - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2 - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2
\end{align*}
\]

\[
\begin{align*}
&+ G_0 \theta - G_0 \phi - R_0 \zeta = 0
\end{align*}
\]

(10)

\[
\begin{align*}
&\frac{1}{(1 + 2\gamma^2)(1 + 2\beta^2) f'' + 2\gamma^2(1 + 2\beta^2) f'''} - H_a^2 \sin^2\theta f'' - 2\beta \gamma^2(1 + 2\gamma^2)^2 f'' - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2 - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2
\end{align*}
\]

\[
\begin{align*}
&+ G_0 \theta - G_0 \phi - R_0 \zeta = 0
\end{align*}
\]

(11)

\[
\begin{align*}
&\frac{1}{(1 + 2\gamma^2)(1 + 2\beta^2) f'' + 2\gamma^2(1 + 2\beta^2) f'''} - H_a^2 \sin^2\theta f'' - 2\beta \gamma^2(1 + 2\gamma^2)^2 f'' - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2 - 2\beta \gamma^2(1 + 2\gamma^2) (f'')^2
\end{align*}
\]

\[
\begin{align*}
&+ G_0 \theta - G_0 \phi - R_0 \zeta = 0
\end{align*}
\]

(12)

with

\[
\begin{align*}
\phi(\eta) &= 1, \quad \phi(\eta) = 0, \quad \theta(\eta) = 1 - S_1, \quad \phi(\eta) = 1 - S_2, \\
\chi(\eta) &= 1 - S_1 \quad \text{at } \eta = 0, \quad \phi(\eta) = 0, \\
\delta(\eta) &= 0, \quad \phi(\eta) = 0, \quad \chi(\eta) \to 0 \quad \text{as } \eta \to \infty
\end{align*}
\]

(13)
where $\gamma^* = 1/R(\sqrt{\nu f/\nu_0})$ is the curvature parameter; $\lambda = w_0^2 \zeta^2 / 2c^2 \Omega^2 \beta^3$ and $\beta^* = 1/\mu \beta c$ are the Eyring–Powell fluid material parameters; $Ha = (\sigma \beta_0^2 l / \nu_0 \nu_f)$ is the magnetic parameter; $Pr = (\nu_f (\rho c_p) / \kappa_f)$ is the Prandtl number; $\alpha = g \beta T(\rho_f w_0^2 (T_w - T_0))$ is the thermal Grashof number; $G_c = g \beta_c (\rho_f w_0^2 (\rho_p - \rho_\infty)) (C_w - C_0)$ is the concentration Grashof number; $Rb = (\beta_\lambda (\rho_f w_0^2) (n_w - n_0) (\rho_m - \rho_f))$ is the bioconvection Rayleigh number; $Nt = \tau \Delta T (T_w - T_0) / \nu_0 T_\infty$ is the thermophoresis parameter; $Nb = \tau \Delta B (C_w - C_0) / \nu_0$ is the Brownian motion parameter; $Ec = w_0^2 / \nu_p (T_w - T_0)$ is the Eckert number; $Pe = (b W / D_n)$ is the bioconvection Peclet number; $S_1 = \alpha_2 / \alpha_1$ is the thermal stratification parameter; $S_2 = b_2 / b_1$ is the mass stratification parameter; $S_3 = \alpha_2 / \alpha_1$ is the motile density stratification parameter; $Lb = \nu_f / D_n$ is the bioconvection Lewis number; $Sc = \nu_f / D_n$ is the Schmidt number; and $\Omega = n_\infty / (n_w - n_0)$ is the concentration difference of microorganisms.

Results and discussions

In this article, we have employed Newton built-in shooting method to progress numerical results for the obtained nonlinear differential system. Furthermore, the salient effect of pertinent parameters on velocity, temperature, and concentration of microorganisms is examined through graphs. In this section, skin friction coefficient (Cf_z), gradient of temperature (Nu_z), Sherwood number (Sh_z), and density number (Nn_z) are numerically computed through various interesting parameters.

Physical quantities

Coefficient of skin friction (Cf_z), Nusselt number (Nu_z), Sherwood number (Sh_z), and density number (Nn_z) are expressed as

$$
Cf_z = \left(\frac{\tau_x}{\rho c^2 \nu} \right)_{r=R}, \quad Nu_z = \frac{z q_w}{k (T_w - T_0)}, \quad Sh_z = \frac{2 q_m}{D_B (C_w - C_0)}, \quad Nn_z = \frac{2 q_s}{D_n (n_w - n_0)}
$$

(14)

where τ_x is the shear stress, q_w is the heat flux, q_m is the mass flux, and q_s is the density flux expressed as

$$
\tau_x = \mu \frac{\partial v}{\partial r} + \frac{1}{\beta c} \left(\frac{\partial w}{\partial r} \right) - \frac{1}{6 \beta c^3} \left(\frac{\partial w}{\partial r} \right)^3, \quad q_w = -\left(k \frac{\partial T}{\partial r} \right)_{r=R}, \quad q_m = -\left(D_B \frac{\partial C}{\partial r} \right)_{r=R}, \quad q_s = -\left(D_n \frac{\partial n}{\partial r} \right)_{r=R}
$$

(15)

Finally, we can write

$$
Cf_z = \left(Re_z \right)^{-0.5} \left(1 + \beta^* \right) \frac{f'(0)}{f''(0) \Omega(0)^3}, \quad Nu_z Re_t^{-0.5} = \theta'(0), \quad Sh_z Re_t^{-0.5} = -\phi'(0), \quad Nn_z Re_t^{-0.5} = -\xi'(0)
$$

(16)

where $Re_z = (z^2 \nu_0 / \nu_f)$ shows the local Reynolds number.

Velocity

Characteristics of pertinent parameters like curvature parameter (γ^*), Eyring–Powell fluid material parameters (β^*), magnetic or Hartmann number (Ha), thermal Grashof number (G_c), solutal Grashof number (G_s), and bioconvection Rayleigh number (Rb) on velocity ($f'(\eta)$) are delineated in Figures 2–7, respectively. Characteristic of γ^* on $f'(\eta)$ is portrayed in Figure 2. For larger γ^*, the radius of the cylinder decreases and consequently fluid contact area with cylinder decreases and as a result velocity decreases. Figure 3 shows the characteristic of fluid parameter (β^*) on $f'(\eta)$. For rising values of β^*, viscosity of fluids decreased and as a result $f'(\eta)$ boosts up. Behavior of Ha on velocity is sketched in Figure 4. For higher values of Ha, Lorentz force increases which creates more disturbance to the fluid motion and consequently $f'(\eta)$ decreases. Behavior of G_c on $f'(\eta)$ is displayed in Figure 5. Clearly, $f'(\eta)$ is a decreasing function of G_c. Figure 6 discusses the effect of G_s on velocity ($f'(\eta)$). As expected, velocity increases when an enhancement occurs in the concentration of Grashof number. Impact of bioconvection Rayleigh number (Rb) on $f'(\eta)$ is portrayed in Figure 7. One can find that $f'(\eta)$ decreased with rising values of bioconvection Rayleigh number (Rb).

Figure 2. $f'(\eta)$ through γ^*.
The impact of S_1 on $\theta(\eta)$. For higher values of S_1, the $\theta(\eta)$ decreases. Figures 10 and 11, respectively, examine the effect of Nb and Nt on temperature ($\theta(\eta)$). Here, we observed temperature enhancing through Brownian diffusion variable (Nb) and thermophoresis parameter (Nt).
Figure 12 shows the behavior of curvature parameter on $\theta(\eta)$. Clearly note that $\theta(\eta)$ decreases with increasing γ^*. Behavior of β^* on $\theta(\eta)$ is portrayed in Figure 13. Here, it is noted that $\theta(\eta)$ increases when an increment occurs in β^*. Characteristic of Ec on $\theta(\eta)$ is highlighted in Figure 14. Here, increasing values of Ec leads to an increment in $\theta(\eta)$.

Concentration

Figure 15 is plotted to study the behaviors of Sc on concentration ($\phi(\eta)$). For higher Sc, mass diffusivity decreases and thus $\phi(\eta)$ is diminished. Figure 16 is sketched to examine the impact of S_2 on concentration ($\phi(\eta)$). One can observe that concentration declines with S_2. Figure 17 depicts the effect of Brownian...
movement variable \((Nb) \) on concentration. This figure manifests that with the increasing value of \(Nb \), the concentration decreases. Figure 18 shows the effect of \(Nt \) on concentration \((\varphi(\eta)) \). Clearly, \(\varphi(\eta) \) increases with higher estimation of \(Nt \).

Motile density

Salient behaviors of \(Pe, Lb, S_3 \), and \(\Omega \) on \(\chi(\eta) \) are discussed in Figures 19–22, respectively. Impact of \(Pe \) on \(\chi(\eta) \) is depicted in Figure 19. As expected, motile density decreased when an increment occurs in the bioconvection Peclet number. Behavior of \(Lb \) on \(\chi(\eta) \) is displayed in Figure 20. It is observed that motile density decreases against bioconvection Lewis number. Figure 21 shows the behavior of \(S_3 \) on \(\chi(\eta) \). Here, one can find that motile density decreases for larger \(S_3 \). Characteristic of \(\Omega \) on \(\chi(\eta) \) is sketched in Figure 22. It is scrutinized that an increase in \(\Omega \) increases the
concentration of microorganisms in the ambient liquid and as a result \(\chi(\eta) \) decreases.

Engineering quantities

In this article, the influence of influential parameters on \(Cf, Sh_z, Nu_z, \) and \(Nn_z \) is examined. The behavior of \(Cf_z \) versus involved parameters is displayed in Table 1. Here, skin friction coefficient increases with curvature variable \(\beta^* \), fluid parameter \(\gamma^* \), Hartmann number \(Ha \), thermal Grashof number \(G_t \), and bioconvection Rayleigh number \(Rb \), while decreases for higher concentration of solutal Grashof number \(G_c \).

From Table 2, one can find that \(Nu_z \) diminishes with

![Figure 21. \(\chi(\eta) \) through \(S_3 \).](image1)

![Figure 22. \(\chi(\eta) \) through \(\Omega \).](image2)

Table 1. Numerical results of skin friction coefficient.

\(\gamma^* \)	\(\beta^* \)	\(Ha \)	\(G_t \)	\(G_c \)	\(Rb \)	\(-Cf_z \)
0.1	0.2	0.8	0.5	0.5	1.0	0.957054
0.5						1.28163
1.0						1.66342
0.2						0.957054
0.6						1.19265
1.0						1.42633
0.2						0.957054
0.5						1.03085
0.8						1.10197
0.4						0.957054
0.8						0.796156
1.2						0.63926
0.4						0.957054
0.8						1.04636
1.2						1.13686
0.1						0.957054
0.5						1.10842
1.0						1.30079

Table 2. Numerical values of Nusselt number.

\(\gamma^* \)	\(Pr \)	\(Ec \)	\(Nb \)	\(Nt \)	\(S_1 \)	\(-Nu_z \)
0.1	0.816768					
0.5	0.940968					
1.0	1.10267					
1.0	0.816768					
1.0	0.8668					
1.5	0.993042					
0.8	0.816768					
0.8	0.721198					
1.2	0.628704					
0.4	0.816768					
0.5	0.787432					
0.7	0.758133					
0.2	0.816768					
0.5	0.762758					
0.7	0.729464					
0.1	0.816768					
0.3	0.703044					
0.5	0.6499					

Table 3. Numerical values of Sherwood number.

\(\gamma^* \)	\(Nb \)	\(Nt \)	\(S_2 \)	\(Sc \)	\(-Sh_z \)
0.1	0.503581				
0.5	0.58214				
0.9	0.647421				
0.3	0.503581				
0.5	0.59675				
0.7	0.648399				
0.2	0.503581				
0.5	0.274481				
0.7	0.128945				
0.2	0.503581				
0.5	0.503581				
0.7	0.679454				
0.7	0.503581				
1.0	0.672272				
1.3	0.829945				
Table 4. Numerical values of density number.

γ^*	Pe	Lb	S_3	Ω	$-\text{Nn}_2$
0.1	0	0.686044			
0.5	0.926125	1.52178			
1.0	0		0.686044	1.52178	
0.5	0		0.686044	1.52178	
1.0	0		0.686044	1.52178	

Conclusion

From this study, the following conclusions can be drawn:

- The temperature field, mass concentration, and motile density decrease with increasing curvature variable, while reverse effect is observed in the case of velocity;
- Velocity has opposite behavior for γ^* and Ha;
- For larger β^*, velocity ($f'(\eta)$) decreases;
- $f'(\eta)$ decreases with increasing values of G_1, G_c, and Rb;
- Nt and Nb have similar effects on temperature;
- The temperature field has opposite effect for curvature parameter and fluid material parameter;
- Concentration decreases through Sc and S_2;
- For larger Nt, the $\phi(\eta)$ increases, whereas opposite effect is observed for Nb;
- Motile density decreases through Lb, Pe, and Ω;
- Cf_z increases with higher estimation of γ^* and Ha;
- Nn_z boosts up with γ^*, Nt, and Nb;
- Sh_z has opposite effect for Nt and Nb;
- For higher estimation of Pe and Lb, the Nn_z increases.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Muhammad Ijaz Khan (https://orcid.org/0000-0002-9041-3292)

References

1. Hayat T, Awais M and Asghar S. Radiative effects in a three-dimensional flow of MHD Eyring–Powell fluid. J Egyptian Math Soc 2013; 21: 379–384.
2. Hosseinzadeh K, Mogharrebi AR, Asadi A, et al. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. J Mol Liq 2020; 300: 112347.
3. Upadhya SM, Raju CSK, Shehzad SA, et al. Flow of Eyring–Powell dusty fluid in a deformer of aluminum and ferrous oxide nanoparticles with Cattaneo-Christov heat flux. Powder Tech 2018; 340: 68–76.
4. Ara A, Khan NA, Khan H, et al. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain Shams Eng J 2014; 5: 1337–1342.
5. Salawu SO, Kareem RA and Shonola SA. Radiative thermal criticality and entropy generation of hydromagnetic reactive Powell–Eyring fluid in saturated porous media with variable conductivity. Energy Report 2019; 5: 480–488.
6. Muhammad T, Waqas H, Khan SA, et al. Significance of nonlinear thermal radiation in 3D Eyring–Powell nano-fluid flow with Arrhenius activation energy. J Therm Anal Calorim. Epub ahead of print 4 March 2020. DOI: 10.1007/s10973-020-09459-4.
7. Hajizadeh MR, Selimefendigil F, Muhammad T, et al. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq 2020; 306: 112892.
8. Hayat T, Khan MI, Waqas M, et al. On Cattaneo-Christov heat flux in the flow of variable thermal conductivity Eyring–Powell fluid. Results Phys 2017; 7: 446–450.
9. Hayat T, Sajjad R, Muhammad T, et al. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial. Results Phys 2017; 7: 535–543.
10. Hosseinzadeh K, Gholinia M, Jafari B, et al. Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transf Asia Res 2019; 48: 744–759.
11. Hosseinzadeh K, Amiri AJ, Ardaiahie SS, et al. Effect of variable Lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method. Case Stud Ther Eng 2017; 10: 595–610.
12. Khan MI, Khan SA, Hayat T, et al. Entropy generation in radiative flow of Ree–Eyring fluid due to two rotating disks. *Int J Numer Meth Heat Fluid Flow* 2019; 29: 2057–2079.

13. Hayat T, Khan SA, Khan MI, et al. Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks. *Comput Math Prog Biomed* 2019; 177: 57–68.

14. Shojaei A, Amiriz AJ, Ardahai SS, et al. Hydrothermal analysis of non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. *Case Stud Ther Eng* 2019; 13: 100384.

15. Riaz A, Ud-Din Khan S, Zeeshan A, et al. Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. *J Therm Anal Calorim*. Epub ahead of print 7 March 2020. DOI: 10.1007/s10973-020-09454-9.

16. Hayat T, Khan MI, Farooq M, et al. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. *Int J Heat Mass Trans* 2016; 99: 702–710.

17. Choi SUS and Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (FED-vol. 231/MD-vol. 66). New York: ASME, 1995.

18. Khan MI, Khan SA, Hayat T, et al. Nanomaterial based flow of Prandtl–Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation. *Comput Math Prog Biomed* 2019; 180: 105017.

19. Derakhshan R, Shojaei A, Hosseinzadeh K, et al. Hydrothermal analysis of magneto hydrodynamic nanofluid flow between two parallel by AG. *Case Stud Ther Eng* 2019; 14: 100439.

20. Shafee A, Muhammad T, Alsakran R, et al. Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces. *Physica A* 2020; 550: 123962.

21. Asma M, Othman WAM and Muhammad T. Numerical study for Darcy–Forchheimer flow of nanofluid due to a rotating disk with binary chemical reaction and Arrhenius activation energy. *Mathematics* 2019; 7: 921.

22. Gholinia M, Gholinia S, Hosseinzadeh K, et al. Investigation on ethylene glycol Nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. *Results Phys* 2018; 9: 1525–1533.

23. Hayat T, Khan MI, Khan TA, et al. Entropy generation in Darcy-Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. *J Mol Liq* 2018; 265: 629–638.

24. Hayat T, Ahmad S, Khan MI, et al. Modeling and analyzing flow of third grade nanofluid due to rotating stretchable disk with chemical reaction and heat source. *Physica B* 2018; 537: 116–126.

25. Khan MI, Kumar A, Hayat T, et al. Entropy generation in flow of Carreau nanofluid. *J Mol Liq* 2019; 278: 677–687.

26. Muhammad R, Khan MI, Khan NB, et al. Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation. *Comput Math Prog Biomed* 2020; 189: 105294.

27. Kuznetsov V. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. *Nanoscale Resear Lett* 2011; 6: 100.

28. Khan MI, Waqas M, Hayat T, et al. Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. *Int J Mech Sci* 2017; 132: 426–434.

29. Muhammad R, Khan MI, Jameel M, et al. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. *Comput Math Prog Biomed* 2020; 188: 105298.

30. Alsaeedi A, Khan MI, Farooq M, et al. Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms. *Adv Powder Tech* 2017; 28: 288–298.

31. Khan MI, Haq F, Hayat T, et al. Natural bio-convective flow of Sisko nanofluid subject to gyrotactic microorganisms and activation energy. *Physica Scripta* 2019; 94: 125203.

32. Nadeem S, Abbas N, Elmasry Y, et al. Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. *Comput Math Prog Biomed* 2020; 186: 105194.

33. Hayat T, Khan MI, Alsaeedi A, et al. Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk. *Int Commu Heat Mass Transf* 2017; 89: 190–197.

34. Naz R, Tariq S and Alsulami H. Inquiry of entropy generation in stratified Walters’ B nanofluid with swimming gyrotactic microorganisms. *Alex Eng J* 2020; 59: 247–261.

35. Khan MI, Hayat T, Khan MI, et al. Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation. *J Phys Chem Solid* 2019; 125: 153–164.

36. Hayat T, Tamaro M, Khan MI, et al. Numerical simulation for nonlinear radiative flow by convective cylinder. *Results Phys* 2016; 6: 1031–1035.

37. Hayat T, Salman S, Khan MI, et al. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid. *Results Phys* 2018; 8: 34–40.

38. Khan M, Hussain A, Malik MY, et al. Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. *Appl Numer Math* 2019; 144: 100–117.

39. Khan MI, Waqas M, Hayat T, et al. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. *J Colloid Interface Sci* 2017; 498: 85–90.