ON A RECENTLY PROPOSED RELATION BETWEEN oHS AND ITO SYSTEMS

Atalay Karasu

Department of Physics, Faculty of Arts and Sciences
Middle East Technical University, 06531 Ankara-Turkey

Abstract

The bi-Hamiltonian structure of original Hirota-Satsuma system proposed by Roy based on a modification of the bi-Hamiltonian structure of Ito system is incorrect.
In a recent paper[1] a bi-Hamiltonian structure for the original Hirota-Satsuma(oHS) system where a is arbitrary is proposed and a relation between oHS and Ito systems is introduced and a recursion operator is found for the oHS system. In this note we point out that the oHS system does not in fact admit a bi-Hamiltonian structure and the relation between the oHS and Ito systems claimed by the author of [1] is actually incorrect.

It is well known that the original Hirota-Satsuma system (oHS)[2]
\begin{align*}
 u_t &= a(u_{xxx} + 6uu_x) + 2bvv_x, \\
 v_t &= -v_{xxx} - 3uv_x
\end{align*}
(1)
for all values of a and b, possesses three conserved quantities.

\begin{align*}
 I_1 &= u, \quad I_2 = u^2 + \frac{2}{3}bv^2, \quad I_3 = (1 + a)(u^3 - \frac{1}{2}(u_x)^2) + b(uv^2 - (v_x)^2). \quad (2)
\end{align*}

Later Hirota-Satsuma [3] showed that oHS system has infinitely many conserved quantities for the choice of $a = \frac{1}{2}$ and conjectured that it is completely integrable. Dodd and Fordy [4] showed that the oHS system admits a Lax representation only for this particular value of $a = \frac{1}{2}$. Also Aiyer [5] proved that the oHS system possesses a recursion operator of degree four only for $a = \frac{1}{2}$. The same result has been recently reported by the author and Gürses [6] - [8] in the context of the integrable coupled KdV systems admitting recursion operators. Wilson [9] pointed out that the oHS system with $a = \frac{1}{2}$ belongs to the general construction of evolutionary equations possessing Lax-pair due to Drinfeld and Sokolov [10]-[11]. On the other hand the Ito system [12]
\begin{align*}
 u_t &= u_{xxx} + 6uu_x + 2vv_x,
\end{align*}
1
\[v_t = 2(uv)_x. \] (3)

admits a bi-Hamiltonian structure

\[B_{II} \delta \mathcal{H}_n = B_I \delta \mathcal{H}_{n+1} \] (4)

where

\[
B_{II} = \begin{pmatrix}
D^3 + 4uD + 2u_x & 2vD \\
2v_x + 2vD & 0
\end{pmatrix},
B_I = \begin{pmatrix}
D & 0 \\
0 & D
\end{pmatrix}.
\] (5)

with the Hamiltonian functionals

\[
\mathcal{H}_1[u,v] = \int \frac{1}{2}(u^2 + v^2)dx,
\]
\[
\mathcal{H}_2[u,v] = \int \frac{1}{2}(u^3 - \frac{1}{2}u_x^2 + uv^2)dx.
\] (6)

The recursion operator arising from a Hamiltonian pair

\[
R = B_{II}(B_I)^{-1} = \begin{pmatrix}
D^2 + 4u + 2u_x D^{-1} & 2v \\
2v + 2v_x D^{-1} & 0
\end{pmatrix}.
\] (7)

is a hereditary operator [7] which gives rise to infinitely many conserved quantities. The multi-Hamiltonian structure of this system was studied by Antonowicz and Fordy [13] and by Olver and Rosenau [14].

At this stage we have the following observations:

observation 1:

The author of [1] points out that there is a printing error in the conserved density \(I_3 \) (instead of 1 + \(a \) there is \(a \)) obtained in [2]. But this claim is incorrect. One can check this either using \(\frac{d}{dt} \int I_3 dx = 0 \) or finding its gradient \(\gamma_3 \) satisfies \(\gamma_3'[K] + (K')^\dagger[\gamma_3] = 0 \) and \(\gamma_3' = (\gamma_3')^\dagger[13] \). Here \(K \) is the right hand side of the oHS system.
observation 2:

The author of [1] claims that the oHS system can be written as

\[
\begin{pmatrix}
 u \\
 v
\end{pmatrix}_t = AB_1 \left(\begin{pmatrix}
 \frac{\delta H_1}{\delta u} \\
 \frac{\delta H_1}{\delta v}
\end{pmatrix}
\right)
\]

(8)

with

\[
A = \begin{pmatrix}
 a(D^2 + 4u + 2u_x D^{-1}) & 2v + v_x D^{-1} \\
 2v + v_x D^{-1} & -(D^2 + 4u + 2u_x D^{-1})
\end{pmatrix}
\]

(9)

and \(B_1\) given in (5). Here \(H_1\) is the Hamiltonian functional of the Ito system. First we have noticed that \(H_1\) is also a Hamiltonian functional of the oHS system \((b = 3/2)\). Second, the operator \(AB_1\) does not satisfy the Jacobi identity [16]. Therefore it is not a Hamiltonian operator for the oHS system although it is a skew-symmetric operator. Furthermore the author of [1] proposes a bi-Hamiltonian structure for the oHS system which is based on the bi-Hamiltonian form of Ito system (4) as

\[
AB_{II} \delta H_n = AB_I \delta H_{n+1}, \quad n = 0, 1, 2, ...
\]

(10)

First of all, the Hamiltonian functional \(H_2\) of the Ito system is not a Hamiltonian functional of the oHS system. Moreover neither \(AB_I\) nor \(AB_{II}\) are Hamiltonian operators. As a result the expression (10) does not constitute a bi-Hamiltonian form for the oHS system.

observation 3

The author of [1] claims that an infinite hierarchy of the oHS system is generated by the recursion operator

\[
\mathcal{R} = (AB_{II})(AB_I)^{-1} = ARA^{-1}
\]

(11)
where \mathcal{R} is the recursion operator for Ito system. It is easy to see that the given recursion operator \mathcal{R} has at most degree two. Therefore it does not generate the hierarchy of the oHS system. It has been recently reported that neither oHS nor HS with $a = \frac{1}{2}$ possess a recursion operator of degree two [6]-[8].

As a conclusion, contrary to the claims made in ref. [1], the oHS system is not a bi-Hamiltonian system. This system is integrable and admits a bi-Hamiltonian structure only when $a = \frac{1}{2}$ [7]-[8]. The hierarchy of this system was studied by Levi [19].

The author would like to thank M. Gürses for bringing this recent work on Hirota-Satsuma system to my attention and for many valuable discussions. This work is partially supported by the Scientific and Technical Research Council of Turkey (TUBITAK).

References

[1] P.K. Roy , Phys.Lett. A,249, (1998) 55.
[2] R. Hirota and J. Satsuma, Phys.Lett. A,85, (1981) 407.
[3] J. Satsuma and R. Hirota ,J. Phys.Soc.Japan 51, (1982) 3390.
[4] R. Dodd and A.P. Fordy, Phys.Lett. A,89, (1982) 168.
[5] R.N. Aiyer, Phys.Lett.A,93,(1983) 368.
[6] M. Gürses and A. Karasu, Phys.Lett. A,214, (1996) 21.
[7] M. Gürses and A. Karasu, J.Math.Phys.,39, (1998) 2103.
[8] M. Gürses and A. Karasu Phys.Lett. A, 251, (1999) 247.

[9] G. Wilson, Phys.Lett. A, 89, (1982) 332.

[10] V.G. Drinfeld and V.V Sokolov, Proc. S.L. Sobolev Seminar, Novosibirsk, Vol. 2 (1981) pp. 5-9 (in Russian).

[11] V.G. Drinfeld and V.V Sokolov, J.Sov.Math. 30, (1985) 1975.

[12] M. Ito, Phys.Lett.A, 91, (1982) 353.

[13] M. Antonowicz and A.P. Fordy, Physica D 28, (1987) 345.

[14] P.J. Olver and P. Rosenau, Phys.Rev.E 53, (1996) 1900.

[15] B. Fuchssteiner and A.S. Fokas, Physica D, 4, (1981) 47.

[16] P.J. Olver. Applications of Lie Groups to Differential Equations, 2nd Ed., Graduate Texts in Mathematics, Vol. 107 (Springer, New York, 1993).

[17] B. Fuchssteiner, Prog.Theor.Phys., 68, (1982) 1082.

[18] W. Oevel, Phys.Lett.A, 94, (1983) 404.

[19] D. Levi, Phys.Lett.A, 95, (1983) 7.