A degree sum condition on the order, the connectivity and the independence number for Hamiltonicity

Shuya Chiba1* Michitaka Furuya2† Kenta Ozeki3‡ Masao Tsugaki4 Tomoki Yamashita5§

1Applied Mathematics, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
Email address: schiba@kumamoto-u.ac.jp

2College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
Email address: michitaka.furuya@gmail.com

3Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
Email address: ozeki-kenta-xr@ynu.ac.jp

4Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Email address: tsugaki@hotmail.com

5Department of Mathematics, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
Email address: yamashita@math.kindai.ac.jp

Abstract

In [Graphs Combin. 24 (2008) 469–483.], the third author and the fifth author conjectured that if G is a k-connected graph such that $\sigma_{k+1}(G) \geq |V(G)| + \kappa(G) + (k - 2)(\alpha(G) - 1)$, then G contains a Hamiltonian cycle, where $\sigma_{k+1}(G)$, $\kappa(G)$ and $\alpha(G)$ are the minimum degree sum of $k + 1$ independent vertices, the connectivity and the independence number of G, respectively. In

*Supported by JSPS KAKENHI Grant Number 17K05347.
†Supported by JSPS KAKENHI Grant Number 26800086.
‡This work was supported by JST ERATO Kawarabayashi Large Graph Project, Grant Number JPMJER1201, Japan.
§Supported by JSPS KAKENHI Grant Number 16K05262.
this paper, we settle this conjecture. This is an improvement of the result obtained by Li: If \(G \) is a \(k \)-connected graph such that \(\sigma_{k+1}(G) \geq |V(G)| + (k - 1)(\alpha(G) - 1) \), then \(G \) is Hamiltonian. The degree sum condition is best possible.

1 Introduction

1.1 Degree sum condition for graphs with high connectivity to be Hamiltonian

In this paper, we consider only finite undirected graphs without loops or multiple edges. For standard graph-theoretic terminology not explained, we refer the reader to [5].

A Hamiltonian cycle of a graph is a cycle containing all the vertices of the graph. A graph having a Hamiltonian cycle is called a Hamiltonian graph. The Hamiltonian problem has long been fundamental in graph theory. Since it is NP-complete, no easily verifiable necessary and sufficient condition seems to exist. Then instead of that, many researchers have investigated sufficient conditions for a graph to be Hamiltonian. In this paper, we deal with a degree sum type condition, which is one of the main stream of this study.

We introduce four invariants, including degree sum, which play important roles for the existence of a Hamiltonian cycle. Let \(G \) be a graph. The number of vertices of \(G \) is called its order, denoted by \(n(G) \). A set \(X \) of vertices in \(G \) is called an independent set in \(G \) if no two vertices of \(X \) are adjacent in \(G \). The independence number of \(G \) is defined by the maximum cardinality of an independent set in \(G \), denoted by \(\alpha(G) \).

For two distinct vertices \(x, y \in V(G) \), the local connectivity \(\kappa_G(x, y) \) is defined to be the maximum number of internally-disjoint paths connecting \(x \) and \(y \) in \(G \). A graph \(G \) is \(k \)-connected if \(\kappa_G(x, y) \geq k \) for any two distinct vertices \(x, y \in V(G) \). The connectivity \(\kappa(G) \) of \(G \) is the maximum value of \(k \) for which \(G \) is \(k \)-connected.

We denote by \(N_G(x) \) and \(d_G(x) \) the neighbor and the degree of a vertex \(x \) in \(G \), respectively. If \(\alpha(G) \geq k \), let

\[
\sigma_k(G) = \min \left\{ \sum_{x \in X} d_G(x) : X \text{ is an independent set in } G \text{ with } |X| = k \right\};
\]

otherwise let \(\sigma_k(G) = +\infty \). If the graph \(G \) is clear from the context, we simply write \(n, \alpha, \kappa \) and \(\sigma_k \) instead of \(n(G), \alpha(G), \kappa(G) \) and \(\sigma_k(G) \), respectively.

One of the main streams of the study of the Hamiltonian problem is, as mentioned above, to consider degree sum type sufficient conditions for graphs to have a Hamiltonian cycle. We list some of them below. (Each of the conditions is best possible in some sense.)
Theorem 1. Let G be a graph of order at least three. If G satisfies one of the following, then G is Hamiltonian.

(i) (Dirac [7]) The minimum degree of G is at least $\frac{n}{2}$.

(ii) (Ore [12]) $\sigma_2 \geq n$.

(iii) (Chvátal and Erdős [6]) $\alpha \leq \kappa$.

(iv) (Bondy [4]) G is k-connected and $\sigma_{k+1} > \frac{(k+1)(n-1)}{2}$.

(v) (Bauer, Broersma, Veldman and Li [2]) G is 2-connected and $\sigma_3 \geq n + \kappa$.

To be exact, Theorem 1 (iii) is not a degree sum type condition, but it is closely related. Bondy [3] showed that Theorem 1 (iii) implies (ii). The current research of this area is based on Theorem 1 (iii). Let us explain how to expand the research from Theorem 1 (iii): Let G be a k-connected graph, and suppose that one wants to consider whether G is Hamiltonian. If $\alpha \leq k$, then it follows from Theorem 1 (iii) that G is Hamiltonian. Hence we may assume that $\alpha \geq k + 1$, that is, G has an independent set of order $k + 1$. Thus, it is natural to consider a σ_{k+1} condition for a k-connected graph. Bondy [4] gave a σ_{k+1} condition of Theorem 1 (iv).

In this paper, we give a much weaker σ_{k+1} condition than that of Theorem 1 (iv).

Theorem 2. Let k be an integer with $k \geq 1$ and let G be a k-connected graph. If

$$\sigma_{k+1} \geq n + \kappa + (k-2)(\alpha-1),$$

then G is Hamiltonian.

Theorem 2 was conjectured by Ozeki and Yamashita [15], and has been proven for small integers k: The case $k = 2$ of Theorem 2 coincides Theorem 1 (v). The cases $k = 1$ and $k = 3$ were shown by Fraisse and Jung [8], and by Ozeki and Yamashita [15], respectively.

1.2 Best possibility of Theorem 2

In this section, we show that the σ_{k+1} condition in Theorem 2 is best possible in some senses.

We first discuss the lower bound of the σ_{k+1} condition. For an integer $l \geq 2$ and l vertex-disjoint graphs H_1, \ldots, H_l, we define the graph $H_1 + \cdots + H_l$ from the union of H_1, \ldots, H_l by joining every vertex of H_i to every vertex of H_{i+1} for $1 \leq i \leq l-1$. Fix an integer $k \geq 1$. Let κ, m and n be integers with $k \leq \kappa < m$ and $2m + 1 \leq n \leq 3m - \kappa$. Let $G_1 = K_{n-2m} + K_\kappa + K_m + K_{m-\kappa}$, where K_i
denotes a complete graph of order \(l \) and \(\overline{K}_l \) denotes the complement of \(K_l \). Then
\[
\alpha(G_1) = m + 1, \quad \kappa(G_1) = \kappa \quad \text{and} \quad \sigma_{k+1}(G_1) = n(G_1) + \kappa(G_1) + (k - 2)(\alpha(G_1) - 1) - 1.
\]
(Note that it follows from condition “\(n \leq 3m - \kappa \)” that \(n - 2m - 1 + \kappa < m \).) Since deleting all the vertices in \(\overline{K}_\kappa \) and those in \(\overline{K}_{m-\kappa} \) breaks \(G_1 \) into \(m + 1 \) components, we see that \(G_1 \) has no Hamiltonian cycle. Therefore, the \(\sigma_{k+1} \) condition in Theorem 2 is best possible.

We next discuss the relation between the coefficient of \(\kappa \) and that of \(\alpha - 1 \). By Theorem 1 (iii), we may assume that \(\alpha \geq \kappa + 1 \). This implies that
\[
\alpha(G_1) = \frac{n + 1}{2} \geq \frac{n + m + \kappa + (k - 2)(\alpha - 1)}{2}.
\]
for arbitrarily \(\varepsilon > 0 \). Then one may expect that the \(\sigma_{k+1} \) condition in Theorem 2 can be replaced with “\(n + (1 + \varepsilon)\kappa + (k - 2 - \varepsilon)(\alpha - 1) \)” for some \(\varepsilon > 0 \). However, the graph \(G_1 \) as defined above shows that it is not true: For any \(\varepsilon > 0 \), there exist two integers \(m \) and \(\kappa \) such that \(\varepsilon(m - \kappa) \geq 1 \). If we construct the above graph \(G_1 \) from such integers \(m \) and \(\kappa \), then we have
\[
\sigma_{k+1}(G_1) = n + \kappa + (k - 2)m - 1
= n + (1 + \varepsilon)\kappa + (k - 2 - \varepsilon)m - 1 + \varepsilon(m - \kappa)
\geq n(G_1) + (1 + \varepsilon)\kappa(G_1) + (k - 2 - \varepsilon)(\alpha(G_1) - 1),
\]
but \(G_1 \) is not Hamiltonian. This means that the coefficient 1 of \(\kappa \) and the coefficient \(k - 2 \) of \(\alpha - 1 \) are, in a sense, best possible.

1.3 Comparing Theorem 2 to other results

In this section, we compare Theorem 2 to Theorem 1 (iv) and Ota’s result (Theorem 3).

We first show that the \(\sigma_{k+1} \) condition of Theorem 2 is weaker than that of Theorem 1 (iv). Let \(G \) be a \(k \)-connected graph satisfying the \(\sigma_{k+1} \) condition of Theorem 1 (iv). Assume that \(\alpha \geq (n + 1)/2 \). Let \(X \) be an independent set of order at least \((n + 1)/2 \). Then \(|V(G) \setminus X| \leq (n - 1)/2 \) and \(|V(G) \setminus X| \geq k \) since \(V(G) \setminus X \) is a cut set. Hence \((n + 1)/2 \geq k + 1 \), and we can take a subset \(Y \) of \(X \) with \(|Y| = k + 1 \). Then \(N_G(Y) \subseteq V(G) \setminus X \) for \(y \in Y \), and hence \(\sum_{y \in Y} d_G(y) \leq (k + 1)|V(G) \setminus X| \leq (k + 1)(n - 1)/2 \). This contradicts the \(\sigma_{k+1} \) condition of Theorem 1 (iv). Therefore \(n/2 \geq \alpha \). Moreover, by Theorem 1 (iii), we
may assume that $\alpha \geq \kappa + 1$. Therefore, the following inequality holds:

$$
\sigma_{k+1} > \frac{(k+1)(n-1)}{2} \\
= n - 1 + \frac{(k-1)(n-1)}{2} \\
\geq n - 1 + \frac{(k-1)(2\alpha - 1)}{2} \\
\geq n - 1 + (k-1)(\alpha - 1) \\
\geq n + \kappa + (k-2)(\alpha - 1) - 1.
$$

Thus, the σ_{k+1} condition of Theorem 1 (iv) implies that of Theorem 2.

We next compare Theorem 2 to the following Ota’s result.

Theorem 3 (Ota [13]). Let G be a 2-connected graph. If $\sigma_{l+1} \geq n + l(l - 1)$ for all integers l with $l \geq \kappa$, then G is Hamiltonian.

We first mention about the reason to compare Theorem 2 to Theorem 3. Li [10] proved the following theorem, which was conjectured by Li, Tian, and Xu [11]. (Harkat-Benhamadine, Li and Tian [9], and Li, Tian, and Xu [11] have already proven the case $k = 3$ and the case $k = 4$, respectively.)

Theorem 4 (Li [10]). Let k be an integer with $k \geq 1$ and let G be a k-connected graph. If $\sigma_{k+1} \geq n + (k-1)(\alpha - 1)$, then G is Hamiltonian.

In fact, Li showed Theorem 4 just as a corollary of Theorem 3. Note that Theorem 2 is, assuming Theorem 1 (iii), an improvement of Theorem 4. Therefore we should show that Theorem 2 cannot be implied by Theorem 3. (Ozeki, in his Doctoral Thesis [14], compared the relation between several theorems, including Theorem 1 (i), (ii), (iii) and (v), the case $k = 3$ of Theorems 2 and 4, and Theorem 3.)

Let κ, r, k, m be integers such that $4 \leq r$, $3 \leq k \leq \kappa - 2$ and $m = (k+1)(r-2)+4$. Let $G_2 = K_1 + \overline{K}_\kappa + K_{\kappa+m-r} + (\overline{K}_m + K_r)$. Then $n(G_2) = 2k + 2m + 1$, $\kappa(G_2) = \kappa$ and $\alpha(G_2) = \kappa + m$. Since

$$
\kappa + k(\kappa + m) - (k+1)(\kappa + m - r + 1) = (k+1)(r-1) - m \\
= (k+1)(r-1) - (k+1)(r-2) - 4 \\
= k - 3 \\
\geq 0,
$$

it follows that

$$
\sigma_{k+1}(G_2) = \min \{ \kappa + k(\kappa + m), (k+1)(\kappa + m - r + 1) \} \\
= \kappa + k(\kappa + m) - (k-3) \\
= (2k + 2m + 1) + \kappa + (k-2)(\kappa + m - 1) \\
= n(G_2) + \kappa(G_2) + (k-2)(\alpha(G_2) - 1).
$$
Hence the assumption of Theorem 2 holds. On the other hand, for \(l = \alpha(G_2) - 1 = \kappa + m - 1 \), we have

\[
\begin{align*}
n(G_2) + l(l - 1) - \sigma_{l+1}(G_2) &= (2\kappa + 2m + 1) + (\kappa + m - 1)(\kappa + m - 2) \\
& \quad - \{\kappa(\kappa + m - r + 1) + m(\kappa + m)\} \\
& = \kappa(r - 2) - m + 3 \\
& = \kappa(r - 2) - (k + 1)(r - 2) - 4 + 3 \\
& = (\kappa - k - 1)(r - 2) - 1 \\
& \geq (r - 2) - 1 \\
& > 0.
\end{align*}
\]

Hence the assumption of Theorem 3 does not hold. These yield that for the graph \(G_2 \), we can apply Theorem 2 but cannot apply Theorem 3.

2 Notation and lemmas

Let \(G \) be a graph and \(H \) be a subgraph of \(G \), and let \(x \in V(G) \) and \(X \subseteq V(G) \). We denote by \(N_G(X) \) the set of vertices in \(V(G) \backslash X \) which are adjacent to some vertex in \(X \). We define \(N_H(x) = N_G(x) \cap V(H) \) and \(d_H(x) = |N_H(x)| \). Furthermore, we define \(N_H(X) = N_G(X) \cap V(H) \). If there is no fear of confusion, we often identify \(H \) with its vertex set \(V(H) \). For example, we often write \(G - H \) instead of \(G - V(H) \). For a subgraph \(H \), a path \(P \) is called an \(H \)-path if both end vertices of \(P \) are contained in \(H \) and all internal vertices are not contained in \(H \). Note that each edge of \(H \) is an \(H \)-path.

Let \(C \) be a cycle (or a path) with a fixed orientation in a graph \(G \). For \(x, y \in V(C) \), we denote by \(C[x, y] \) the path from \(x \) to \(y \) along the orientation of \(C \). The reverse sequence of \(C[x, y] \) is denoted by \(\overrightarrow{C[y, x]} \). We denote \(C[x, y] \setminus \{x, y\} \), \(C[x, y] \setminus \{x\} \) and \(C[x, y] \setminus \{y\} \) by \(C(x, y) \), \(C(x, y) \) and \(C(x, y) \), respectively. For \(x \in V(C) \), we denote the successor and the predecessor of \(x \) on \(C \) by \(x^+ \) and \(x^- \), respectively. For \(X \subseteq V(C) \), we define \(X^+ = \{x^+ : x \in X\} \) and \(X^- = \{x^- : x \in X\} \). Throughout this paper, we consider that every cycle has a fixed orientation.

In this paper, we extend the concept of insertible, introduced by Ainouche [1], which has been used for the proofs of the results on cycles.

Let \(G \) be a graph, and \(H \) be a subgraph of \(G \). Let \(X(H) = \{u \in V(G - H) : uv_1, uv_2 \in E(G) \text{ for some } v_1, v_2 \in E(H)\} \), let \(I(x; H) = \{v_1, v_2 \in E(H) : xv_1, xv_2 \in E(G)\} \) for \(x \in V(G - H) \), and let \(Y(H) = \{u \in V(G - H) : d_H(u) \geq \alpha(G)\} \).

Lemma 1. Let \(D \) be a cycle of a graph \(G \). Let \(k \) be a positive integer and let \(Q_1, Q_2, \ldots, Q_k \) be paths of \(G - D \) with fixed orientations such that \(V(Q_i) \cap V(Q_j) = \emptyset \) for \(1 \leq i < j \leq k \). If the following (I) and (II) hold, then \(G[V(D \cup Q_1 \cup Q_2 \cup \cdots \cup Q_k)] \) is Hamiltonian.
Proof. We can easily see that V in a graph G contains all vertices of X such that I_C^E can obtain a cycle D_i such that D_i. We may assume I_C^E contains a cycle D^* such that $V(D) \cup X(D) \cap V(Q_i) \subseteq V(D^*)$. In fact, we can insert all vertices of $X(D) \cap V(Q_i)$ into D by choosing the following $u_i, v_i \in V(Q_i)$ and $w_{i,1}^+ \in E(D)$ inductively. Take the first vertex u_i in $X(D) \cap V(Q_i)$ along the orientation of Q_1, and let v_i be the last vertex in $X(D) \cap V(Q_i)$ on Q_1 such that $I'(u_i; D) \cap I(v_i; D) \neq \emptyset$. Then we can insert all vertices of $Q_i[u_i,v_i]$ into D. To be exact, taking $w_{i,1}^+ \in I'(u_i; D) \cap I(v_i; D)$, $D^+_i := w_{i,1}[u_i,v_i]D[w_{i,1}^+, w_i]$ is such a cycle. By the choice of u_i and v_i, $w_{i,1}^+ \notin I(x; D)$ for all $x \in V(Q_i - Q)[u_i,v_i]$, and $X(D) \cap V(Q_i - Q)[u_i,v_i]$ is contained in some component of $Q_i - Q[u_i,v_i]$. Moreover, note that $E(D) \setminus \{w_{i,1}^+\} \subseteq E(D^+_i)$. Hence by repeating this argument, we can obtain a cycle D^+_i of $G[V(D \cup Q_i)]$ such that $V(D) \cup (X(D) \cap V(Q_i)) \subseteq V(D^+_i)$ and $E(D) \setminus \bigcup_{x \in V(Q_i)} I(x; D) \subseteq E(D^+_i)$. Then by (II), $I(x; D) \subseteq E(D^+_i)$ for all $x \in V(Q_2 \cup \cdots \cup Q_k)$. Therefore $G[V(D \cup Q_1 \cup Q_2 \cup \cdots \cup Q_k)]$ contains a cycle D^* such that $V(D) \cup (X(D) \cap V(Q_1 \cup Q_2 \cup \cdots \cup Q_k)) \subseteq V(D^*)$.

We choose a cycle C of $G[V(D \cup Q_1 \cup Q_2 \cup \cdots \cup Q_k)]$ containing all vertices in $V(D) \cup (X(D) \cap V(Q_1 \cup Q_2 \cup \cdots \cup Q_k))$ so that $|C|$ is as large as possible. Now, we change the “base” cycle from D to C, and use the symbol $(\cdot)^+$ for the orientation of C. Suppose that $V(Q_i - C) \neq \emptyset$ for some i with $i \in \{1, 2, \ldots, k\}$. We may assume that $i = 1$. Let w be the last vertex in $V(Q_1 - C)$ along Q_1. Since C contains all vertices in $(X(D) \cap V(Q_1))$, it follows from (I) that $w \in Y(Q_1(w, b_1) \cup D)$, that is, $|N_G(w) \cap V(Q_1(w, b_1) \cup D)| \geq \alpha(G)$. By the choice of w, we obtain $V(Q_1(w, b_1) \cup D) \subseteq V(C)$. Therefore $|N_C(w)^+ \cap \{w\}| \geq |N_G(w) \cap V(Q_1(w, b_1) \cup D)| + 1 \geq \alpha(G) + 1$. This implies that $N_C(w)^+ \cap \{w\}$ is not an independent set in G. Hence $wz^+ \in E(G)$ for some $z \in N_C(w)$. Then $C'' = wC[z^+, z]w$ is a cycle of $G[V(D \cup Q_1 \cup Q_2 \cup Q_k)]$ such that $V(C) \cup \{w\} \cup C''$, which contradicts the choice of C. Thus $V(Q_1 \cup Q_2 \cup Q_k)$ are contained in C, and hence C is a Hamiltonian cycle of $G[V(D \cup Q_1 \cup Q_2 \cup Q_k)]$.

In the rest of this section, we fixed the following notation. Let C be a longest cycle in a graph G, and H_0 be a component of $G - C$. For $u \in N_C(H_0)$, let $u' \in N_C(H_0)$ be a vertex such that $C(u, u') \cap N_C(H_0) = \emptyset$, that is, u' is the successor of u in $N_C(H_0)$ along the orientation of C.

For $u \in N_C(H_0)$, a vertex $v \in C(u, u')$ is insertible if $v \in X(C[w', u]) \cup Y(C(v, u])$. A vertex in $C(u, u')$ is said to be non-insertible if it is not insertible.

Lemma 2. There exists a non-insertible vertex in $C(u, u')$ for $u \in N_C(H_0)$.

7
Proof. Let \(u \in N_C(H_0) \), and suppose that every vertex in \(C(u, u') \) is insertible. Let \(P \) be a \(C \)-path joining \(u \) and \(u' \) with \(V(P) \cap V(H_0) \neq \emptyset \). Let \(D = C[u', u]P[u, u'] \) and \(Q = C(u, u') \). Let \(v \in V(Q) \). Since \(v \) is insertible, it follows that \(v \in X(C[u', u]) \cup Y(C(v, u)) \). Since \(C[u', u] \) is a subpath of \(D \), we have \(v \in X(D) \cup Y(Q(v, u') \cup D) \). Hence, by Lemma 1, \(G[V(D \cup Q)] \) is Hamiltonian, which contradicts the maximality of \(C \).

Figure 1: Lemma 3

Lemma 3. Let \(u_1, u_2 \in N_C(H_0) \) with \(u_1 \neq u_2 \), and let \(x_i \) be the first non-insertible vertex along \(C(u_i, u'_i) \) for \(i \in \{1, 2\} \). Then the following hold (see Figure 7).

(i) There exists no \(C \)-path joining \(v_1 \in C(u_1, x_1) \) and \(v_2 \in C(u_2, x_2) \). In particular, \(x_1x_2 \not\in E(G) \).

(ii) If there exists a \(C \)-path joining \(v_1 \in C(u_1, x_1) \) and \(w \in C(v_1, u_2) \), then there exists no \(C \)-path joining \(v_2 \in C(u_2, x_2) \) and \(w^+ \).

(iii) If there exist a \(C \)-path joining \(v_1 \in C(u_1, x_1) \) and \(w_1 \in C(v_1, u_2) \) and a \(C \)-path joining \(v_2 \in C(u_2, x_2) \) and \(w_2 \in C[w_1, u_2] \), then there exists no \(C \)-path joining \(w_1^- \) and \(w_2^+ \).
Proof. Let P_0 be a C-path which connects u_1 and u_2, and $V(P_0) \cap V(H_0) \neq \emptyset$. We first show (i) and (ii). Suppose that the following (a) or (b) holds for some \((1)\) or \((2)\):

- For each \(i \in \{1, 2\}\), there exists a C-path joining $v_i \in C(u_i, x_i)$ and $w_i \in C(v_i, u_{3-i})$, then there exists no C-path joining w_1^- and w_2^-.

Let $l \in \{1, 2\}$ and $v_l \in C(v_l, u_{3-l})$. We choose such vertices v_1 and v_2 so that $|C[u_1, v_1]| + |C[u_2, v_2]|$ is as small as possible. Without loss of generality, we may assume that $l = 1$ if (b) holds. Since $N_C(H_0) \cap \{v_1, v_2\} = \emptyset$, $(V(P_1) \cup V(P_2) \cup V(P_3)) \cap V(P_0) = \emptyset$. Therefore, we can define a cycle

$$D = \begin{cases} P_1[v_1, v_2]C[v_2, u_1]P_0[u_1, u_2]C[u_2, v_1] & \text{if (a) holds}, \\ P_2[v_1, w]C[w, u_2]P_0[u_2, u_1]C[u_1, v_2]P_3[v_2, w^-]C[w^-, v_1] & \text{otherwise}. \end{cases}$$

For $i \in \{1, 2\}$, let $Q_i = C(u_i, v_i)$. By Lemma 2, we can obtain the following statements (1), and by the choice of v_1 and v_2, we can obtain the following statements (2)–(5):

1. $N_G(x) \cap P_0(u_1, u_2) = \emptyset$ for $x \in V(Q_1 \cup Q_2)$.
2. $N_G(x) \cap (P_1(v_1, v_2) \cup P_2(v_1, w) \cup P_3(v_2, w^-)) = \emptyset$ for $x \in V(Q_1 \cup Q_2)$.
3. $xy \notin E(G)$ for $x \in V(Q_1)$ and $y \in V(Q_2)$.
4. $I(x; C) \cap I(y; C) = \emptyset$ for $x \in V(Q_1)$ and $y \in V(Q_2)$.
5. If (b) holds, then $w^-w \notin I(x; C)$ for $x \in V(Q_1 \cup Q_2)$.

Let $a \in V(Q_i)$ for some $i \in \{1, 2\}$. Note that each vertex of Q_i is insertible, that is, $a \in X(C[u_i', u_i]) \cup Y(C(a, u_i))$. We show that $a \in X(D) \cup Y(Q_i(a, v_i) \cup D)$. If $a \in X(C[u_i', u_i])$, then the statements (3) and (5) yield that $a \in X(D)$. Suppose that $a \in Y(C(a, u_i))$. By (3), $N_G(a) \cap C(a, u_i) \subseteq N_G(a) \cap Q_i(a, v_i) \cup D$. This implies that $a \in Y(Q_i(a, v_i) \cup D)$. By (1), (2) and (4), $I(x; D) \cap I(y; D) = \emptyset$ for $x \in V(Q_1)$ and $y \in V(Q_2)$. Thus, by Lemma 3, $G[V(D \cup Q_1 \cup Q_2)]$ is Hamiltonian, which contradicts the maximality of C.

By using similar argument as above, we can also show (iii) and (iv). We only prove (iii). Suppose that for some $v_1 \in C(u_1, x_1)$ and $v_2 \in C(u_2, x_2)$, there exist disjoint C-paths $P_1[v_1, w_1], P_2[v_2, w_2]$ and $P_3[w_1^-, w_2^+]$ with $w_1 \in C(v_1, u_2)$ and $w_2 \in C(v_2, u_1)$. We choose such v_1 and v_2 so that $|C[u_1, v_1]| + |C[u_2, v_2]|$ is as small as possible. Let $Q_i = C(u_i, v_i)$ for $i \in \{1, 2\}$. Then by Lemma 3, $xy \notin E(G)$ for $x \in V(Q_1)$ and $y \in V(Q_2)$. By the choice of v_1 and v_2 and Lemma 3, $w_1w_1^-, w_2w_2^+ \notin I(x; C[v_1, u_1]) \cup I(y; C[v_2, u_2])$ for $x \in V(Q_1)$ and $y \in V(Q_2)$. By
Lemma 3 (i) and (ii), $I(x; C[v_1, u_2] ∪ C[v_2, u_1]) \cap I(y; C[v_1, u_2] ∪ C[v_2, u_1]) = \emptyset$ for $x \in V(Q_1)$ and $y \in V(Q_2)$. Hence by applying Lemma 1 as

$$D = P_1[v_1, w_1|C[w_1, w_2]|P_2[w_2, v_2]C[v_2, u_1]P_0[u_1, u_2]|C[w_2, w_1^+]P_3[w_1^+, w_1^-]C[w_1^-, v_1],$$

Q_1 and Q_2, we see that there exists a longer cycle than C, a contradiction. □

3 Proof of Theorem 2

Proof of Theorem 2. The cases $k = 1$, $k = 2$ and $k = 3$ were shown by Fraisse and Jung 8, by Bauer et al. 2 and by Ozeki and Yamashita 15, respectively. Therefore, we may assume that $k \geq 4$. Let G be a graph satisfying the assumption of Theorem 2. By Theorem 1 (iii), we may assume $\alpha(G) \geq \kappa(G) + 1$. Let C be a longest cycle in G. If C is a Hamiltonian cycle of G, then there is nothing to prove. Hence we may assume that $G - V(C) \neq \emptyset$. Let $H = G - V(C)$ and $x_0 \in V(H)$. Choose a longest cycle C and x_0 so that

$$d_C(x_0)$$

is as large as possible.

Let H_0 be the component of H such that $x_0 \in V(H_0)$. Let

$$N_C(H_0) = \{u_1, u_2, \ldots, u_m\}.$$

Note that $m \geq \kappa(G) \geq k$. Let

$$M_0 = \{0, 1, \ldots, m\} \text{ and } M_1 = \{1, 2, \ldots, m\}.$$

Let u'_i be the vertex in $N_C(H_0)$ such that $C(u_i, u'_i) \cap N_C(H_0) = \emptyset$. By Lemma 2 there exists a non-insertible vertex in $C(u_i, u'_i)$. Let $x_i \in C(u_i, u'_i)$ be the first non-insertible vertex along the orientation of C for each $i \in M_1$, and let

$$X = \{x_1, x_2, \ldots, x_m\}.$$

Note that $d_C(x_0) \leq |U| = |X|$. Let

$$D_i = C(u_i, x_i) \text{ for each } i \in M_1 \text{, and } D = \bigcup_{i \in M_1} D_i.$$

We check the degree of x_i in C and H. Since x_i is non-insertible, we can see that

$$d_C(x_i) \leq |D_i| + \alpha(G) - 1 \text{ for } i \in M_1. \quad (1)$$

By the definition of x_i, we clearly have $N_{H_0}(x_i) = \emptyset$ for $i \in M_1$. Moreover, by Lemma 3 (i), $N_H(x_i) \cap N_H(x_j) = \emptyset$ for $i, j \in M_1$ with $i \neq j$. Thus we obtain

$$\sum_{i \in M_0} d_H(x_i) \leq |H| - 1, \quad (2)$$

10
and
\[\sum_{i \in M_1} d_H(x_i) \leq |H| - |H_0|. \tag{3} \]

We check the degree sum in \(C \) of two vertices in \(X \). Let \(i \) and \(j \) be distinct two integers in \(M_1 \). In this paragraph, we let \(C_i = C[x_i, u_j] \) and \(C_j = C[x_j, u_i] \). By Lemma \[\text{(i)}, \] we have \(N_{C_i}(x_i) \cap N_{C_j}(x_j) = \emptyset \) and \(N_{C_j}(x_j) \cap N_{C_i}(x_i) = \emptyset \). By Lemma \[\text{(i)}, \] \(N_{C_i}(x_i) \cup N_{C_j}(x_j) \subseteq C_i \setminus D \), \(N_{C_j}(x_j) \cup N_{C_i}(x_i) \subseteq C_j \setminus D \) and \(N_{D_i}(x_j) = N_{D_j}(x_i) = \emptyset \). Thus, we obtain
\[d_{C_i}(x_i) + d_{C_j}(x_j) \leq |C| - \sum_{h \in M_1 \setminus \{i, j\}} |D_h| \quad \text{for} \ i, j \in M_1 \text{ with } i \neq j. \tag{4} \]

By Lemma \[\text{(i)}, \] and since \(N_{H_0}(x_i) = \emptyset \) for \(i \in M_1 \), we obtain the following.

Claim 1. \(X \cup \{x_0\} \) is an independent set, and hence \(|X| \leq \alpha(G) - 1 \).

Claim 2. \(|X| \geq \kappa(G) + 1 \).

Proof. Let \(s \) and \(t \) be distinct two integers in \(M_1 \). By the inequality \[(1), \] we have
\[d_{C}(x_s) + d_{C}(x_t) \leq |C| - \sum_{i \in M_1 \setminus \{s, t\}} |D_i|. \]

Let \(I \) be a subset of \(M_0 \) such that \(|I| = k + 1 \) and \(\{0, s, t\} \subseteq I \). By Claim \[(1), \] \(\{x_i : i \in I\} \) is an independent set. By the inequality \[(1), \] we deduce
\[\sum_{i \in I \setminus \{0, s, t\}} d_{C}(x_i) \leq \sum_{i \in I \setminus \{0, s, t\}} |D_i| + (k - 2)(\alpha(G) - 1). \]

By the inequality \[(2), \] and the definition of \(I \), we obtain
\[\sum_{i \in I} d_{H}(x_i) \leq |H| - 1. \]
Thus, it follows from these three inequalities that
\[\sum_{i \in I} d_{G}(x_i) \leq n + (k - 2)(\alpha(G) - 1) - 1 + d_{C}(x_0). \]

Since \(\sigma_{k+1}(G) \geq n + \kappa(G) + (k - 2)(\alpha(G) - 1) \), we have \(|X| \geq d_{C}(x_0) \geq \kappa(G) + 1 \). \[\square \]

Let \(S \) be a cut set with \(|S| = \kappa(G) \), and let \(V_1, V_2, \ldots, V_p \) be the components of \(G \setminus S \). By Claim \[(2), \] we may assume that
there exists an integer \(l \) such that \(C[u_l, u_l'] \subseteq V_1 \).

By Lemma \[(3), \] \((i), \) we obtain
\[d_{C}(x_l) \leq |C \cap (V_1 \cup S)| - |(\bigcup_{i \in M_1 \setminus \{l\}} D_i \cup X) \cap (V_1 \cup S)|. \tag{5} \]
By replacing the labels x_2 and x_3 if necessary, we may assume that x_1, x_2 and x_3 appear in this order along the orientation of C. In this paragraph, the indices are taken modulo 3. From now we let

$$C_i = C[x_i, u_{i+1}]$$

and

$$W_i := \{ w \in V(C_i) : w^+ \in N_{C_i}(x_i) \text{ and } w^- \in N_{C_i}(x_{i+1}) \}$$

for each $i \in \{1, 2, 3\}$, and let $W := W_1 \cup W_2 \cup W_3$ (see Figure 2). Note that $W \cap (U \cup \{x_1, x_2, x_3\}) = \emptyset$, by the definition of C_i and W_i and by Lemma 3 (i).

![Figure 2: The definition of W.](image)

Claim 3. $D \cup X \cup W \cup H \subseteq V_1 \cup S$. In particular, $x_0 \in V_1 \cup S$.

Proof. We first show that $D \cup X \cup W \subseteq V_1 \cup S$. Suppose not. Without loss of generality, we may assume that there exists an integer h in $M_1 \setminus \{l\}$ such that $(D_h \cup \{x_h\} \cup (W \cap C(x_h, u'_h))) \cap V_2 \neq \emptyset$, say $v \in (D_h \cup \{x_h\} \cup (W \cap C(x_h, u'_h))) \cap V_2$. Since $v \in V_2$, it follows from Lemma 3 (i) and (ii) that

$$d_C(v) \leq |C \cap (V_2 \cup S)| - |(\bigcup_{i \in M_1 \setminus \{h\}} D_i \cup X) \cap (V_2 \cup S)|.$$

Let I be a subset of $M_0 \setminus \{h\}$ such that $|I| = k$ and $\{0, I\} \subseteq I$. By Claim [□] and Lemma 3 (i) and (ii), $\{x_i : i \in I\} \cup \{v\}$ is an independent set of order $k + 1$. By the
above inequality and the inequality (5), we obtain
\[
d_C(x_i) + d_C(v) \\
\leq |C \cap (V_1 \cup V_2 \cup S)| + |C \cap S| - |(\bigcup_{i \in M_1 \setminus \{l, h\}} D_i \cup X) \cap (V_1 \cup V_2 \cup S)| \\
= |C| + |C \cap S| - |C \cap (\bigcup_{1 \leq j \leq p} V_j)| - |(\bigcup_{i \in M_1 \setminus \{l, h\}} D_i \cup X) \cap (\bigcup_{1 \leq j \leq p} V_j)| \\
\leq |C| + |C \cap S| - |(\bigcup_{i \in M_1 \setminus \{l, h\}} D_i \cup X) \cap (\bigcup_{1 \leq j \leq p} V_j)| \\
- |(\bigcup_{i \in M_1 \setminus \{l, h\}} D_i \cup X) \cap (V_1 \cup V_2 \cup S)| \\
\leq |C| + \kappa(G) - \sum_{i \in M_1 \setminus \{l, h\}} |D_i| \cap (\bigcup_{1 \leq j \leq p} V_j \cup S)| - |X \cap (\bigcup_{1 \leq j \leq p} V_j)| \\
\leq |C| + \kappa(G) - \sum_{i \in I \setminus \{0, l\}} |D_i| - |X| \\
\leq |C| + \kappa(G) - \sum_{i \in I \setminus \{0, l\}} |D_i| - d_C(x_0).
\]

On the other hand, the inequality (11) yields that
\[
\sum_{i \in I \setminus \{0, l\}} d_C(x_i) \leq \sum_{i \in I \setminus \{0, l\}} |D_i| + (k - 2)(\alpha(G) - 1).
\]

By the above two inequalities, we deduce
\[
\sum_{i \in I} d_C(x_i) + d_C(v) \leq |C| + \kappa(G) + (k - 2)(\alpha(G) - 1).
\]

Recall that \(\{x_i : i \in I\} \cup \{v\} \) is an independent set, in particular, \(x_0 \not\in \bigcup_{i \in I} N_H(x_i) \cup N_H(v) \). Since \(N_H(x_i) \cap N_H(x_j) = \emptyset \) for \(i, j \in I \) with \(i \neq j \) and \(\bigcup_{i \in I} N_H(x_i) \cap N_H(v) = \emptyset \) by Lemma 3 (i) and (ii), it follows that \(\sum_{i \in I} d_H(x_i) + d_H(v) \leq |H| - 1 \). Combining this inequality with the above inequality, we get \(\sum_{i \in I} d_G(x_i) + d_G(v) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1 \), a contradiction.

We next show that \(H - H_0 \subseteq V_1 \cup S \). Suppose not. Without loss of generality, we may assume that there exists a vertex \(y \in (H - H_0) \cap V_2 \). Let \(H_y \) be a component of \(H \) with \(y \in V(H_y) \). Note that \(H_y \neq H_0 \). Suppose that \(N_C(H_y) \cap (D_h \cup \{x_h\}) \neq \emptyset \) for some \(h \in M_1 \setminus \{l\} \). Then Lemma 3 (i) yields that
\[
d_C(y) \leq |C \cap (V_2 \cup S)| - |(\bigcup_{i \in M_1 \setminus \{l, h\}} D_i \cup X) \cap (V_2 \cup S)|.
\]

Hence, by the same argument as above, we can obtain a contradiction. Thus we may assume that \(N_C(H_y) \cap (D_i \cup \{x_i\}) = \emptyset \) for all \(i \in M_1 \setminus \{l\} \). Then, since \(y \in V_2 \) and
$D_i \cup \{x_i\} \subseteq V_1$, we have

$$d_C(y) \leq |C \cap (V_2 \cup S)| - |(\bigcup_{i \in M_1} D_i \cup X) \cap (V_2 \cup S)|.$$

Let I be a subset of M_0 such that $|I| = k$ and $\{0, l\} \subseteq I$. Since $x_l \in V_1$, $y \in V_2$, $H_y \neq H_0$ and $N_C(H_y) \cap (D_i \cup \{x_i\}) = \emptyset$ for all $i \in M_1 \setminus \{l\}$, it follows from Claim 1 that $\{x_i : i \in I\} \cup \{y\}$ is an independent set of order $k + 1$. By the above inequality and the inequality (5), we obtain

$$d_C(x_l) + d_C(y) \leq |C| + |C \cap X| - |(\bigcup_{i \in M_1 \setminus \{l\}} D_i \cup X) \cap (V_2 \cup S)| \leq |C| + |C \cap S| - \sum_{i \in I \setminus \{0, l\}} |D_i| - d_C(x_0).$$

Therefore, by the above inequality and the inequality (1), we obtain

$$\sum_{i \in I} d_C(x_i) + d_C(y) \leq |C| + |C \cap S| + (k - 2)(\alpha(G) - 1).$$

Since $H_0 \neq H_y$ and $N_C(H_y) \cap (D_i \cup \{x_i\}) = \emptyset$ for all $i \in M_1 \setminus \{l\}$, it follows that $(\bigcup_{i \in I \setminus \{l\}} N_H(x_i)) \cap V(H_y) = \emptyset$. Since $x_l \in V_1$ and $y \in V_2$, we have $N_H(x_l) \cap N_H(y) \subseteq H \cap S$. Therefore, we obtain

$$\sum_{i \in I} d_H(x_i) + d_H(y) \leq |H| + |H \cap S| - 2.$$

Combining the above two inequalities, $\sum_{i \in I} d_G(x_i) + d_G(y) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 2$, a contradiction.

We finally show that $H_0 \subseteq V_1 \cup S$. Suppose not. Without loss of generality, we may assume that there exists a vertex $y_0 \in H_0 \cap V_2$. Then

$$d_C(y_0) \leq |U \cap (V_2 \cup S)| + |H_0| - 1.$$

Since $u_l \in V_1$, we have $H_0 \cap S \neq \emptyset$. Note that by the above argument, $X \subseteq V_1 \cup S$. Therefore, by Claim 2 $|X \cap V_1| = |X| - |X \cap S| \geq \kappa(G) + 1 - (|S| - |H_0 \cap S|) \geq \kappa(G) + 1 - (\kappa(G) - 1) = 2$. Let $x_s \in X \cap V_1$ with $x_s \neq x_l$. Let I be a subset of M_1 such that $|I| = k$ and $\{l, s\} \subseteq I$. Then $\{x_i : i \in I\} \cup \{y_0\}$ is an independent set of order $k + 1$. By Lemma 3(i), we have $N_C(x_s) \cap (U \setminus \{u_l\}) = \emptyset$ and $N_C(x_s) \cap (U \setminus \{u_s\}) = \emptyset$. Since $x_1, x_s \in V_1$, it follows that $(N_C(x_1) \cup N_C(x_s)) \cap (U \cup V_2) = \emptyset$. Therefore, we can improve the inequality (4) as follows:

$$d_C(x_l) + d_C(x_s) \leq |C| - \sum_{i \in I \setminus \{l, s\}} |D_i| - |U \cap V_2|.$$
By the inequality (1) and the inequality (3),
\[
\sum_{i \in \Gamma \setminus \{t,s\}} d_C(x_i) \leq \sum_{i \in \Gamma \setminus \{t,s\}} |D_i| + (k - 2)(\alpha(G) - 1) \quad \text{and} \quad \sum_{i \in I} d_H(x_i) \leq |H| - |H_0|.
\]
Hence, by the above four inequalities, we deduce \(d_G(y_0) + \sum_{i \in I} d_G(x_i) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1\), a contradiction.

By Claim 3, there exists an integer \(r\) such that \(C(x_r, u'_r) \cap \bigcup_{i=2}^p V_i \neq \emptyset\), say
\[v_2 \in C(x_r, u'_r) \cap \bigcup_{i=2}^p V_i.
\]
Choose \(r\) and \(v_2\) so that \(v_2 \neq u'_r\) if possible. Without loss of generality, we may assume that \(v_2 \in V_2\). Note that
\[d_G(v_2) \leq |V_2 \cup S| - 1. \quad (6)
\]

Claim 4. \(d_G(w) \leq d_G(x_0) \leq |X| \leq \alpha(G) - 1\) for each \(w \in W\).

Proof. Let \(w \in W\). Without loss of generality, we may assume that \(w \in W_1\). Then by applying Lemma 1 as \(Q_1 = D_1\), \(Q_2 = D_2\) and
\[D = x_1C[w^+, u_2]P[u_2, u_1]\overline{C}[u_1, x_2]\overline{C}[w^-, x_1],
\]
where \(P[u_2, u_1]\) is a \(C\)-path passing through some vertex of \(H_0\), we can obtain a cycle \(C'\) such that \(V(C) \setminus \{w\} \subseteq V(C')\) and \(V(C') \cap V(H_0) \neq \emptyset\) (note that (I) and (II) of Lemma 1 hold, by Lemma 3 (i) and (ii) and the definition of insertible and \(D_i\)). Note that by the maximality of \(|C|\), \(|C'| = |C|\). Note also that \(d_{C'}(w) \geq d_C(w)\). By the choice of \(C\) and \(x_0\), we have \(d_{C'}(w) \leq d_C(x_0)\), and hence by Claim 1 and the fact that \(d_C(x_0) \leq |X|\), we obtain \(d_C(w) \leq d_C(x_0) \leq |X| \leq \alpha(G) - 1\).

By Lemma 3 and Claim 3, we have
\[\sum_{i \in M_0} d_H(x_i) + \sum_{w \in W} d_H(w) \leq |H| - |\{x_0\}| = |H \cap (V_1 \cup S)| - 1. \quad (7)
\]
Moreover, by Lemma 3 and Claim 1 the following claim holds.

Claim 5. \(X \cup W \cup \{x_0\}\) is an independent set.

We now check the degree sum of the vertices \(x_1, x_2\) and \(x_3\) in \(C\). In this paragraph, the indices are taken modulo 3. By Lemma 3 (ii), \((N_{C_i}(x_i^-) \cup N_{C_i}(x_{i+1}^+)) \cap N_{C_i}(x_{i+2}) = \emptyset\) for \(i \in \{1, 2, 3\}\). Clearly, \(N_{C_i}(x_i^-) \cap N_{C_i}(x_{i+1}^+) = W_i\) and \(N_{C_i}(x_i^-) \cup \)
Figure 3: The definition of L.

$$N_C(x_{i+1})^+ \cup N_C(x_{i+2}) \subseteq C_i \cup \{u_{i+1}^+\}.$$ By Lemma 3(i), $(N_C(x_i)^- \cup N_C(x_{i+2})) \cap D_j = \emptyset$ for $i \in \{1, 2, 3\}$ and $j \in M_1$. For $i \in \{1, 2, 3\}$, let

$$L_i = \{x_j \in X \setminus \{x_{i+1}\} : N_C(x_{i+1})^+ \cap D_j \neq \emptyset\}$$

and let $L = \bigcup_{i \in \{1, 2, 3\}} L_i$ (see Figure 3).

Note that $L \cap \{x_1, x_2, x_3\} = \emptyset$ and $W \cap L = \emptyset$ by Lemma 3(i). Therefore the following inequality holds:

$$d_{C_i}(x_1) + d_{C_i}(x_2) + d_{C_i}(x_3) \leq \left|C_i\right| + \left|W_i\right| + 1 - \sum_{j \in M_1} \left|C_i \cap D_j\right| + \left|L_i\right|$$

for $i \in \{1, 2, 3\}$. By Lemma 3(i), we have $N_C(x_i) \cap D_j = \emptyset$ for $i, j \in M_1$ with $i \neq j$, and hence

$$d_{D_i}(x_1) + d_{D_i}(x_2) + d_{D_i}(x_3) \leq \left|D_i\right|$$

for $i \in \{1, 2, 3\}$. Let I be a subset of M_0 such that $|I| = 3 - 2$ and $I \cap \{1, 2, 3\} = \emptyset$. Let $L_I = L \cap \{x_i : i \in I\}$. Note that $|L \cap \{x_i\}| - |D_i| \leq 0$ for each $i \in M_1 \setminus \{1, 2, 3\}$. Thus, we deduce

$$d_{C_i}(x_1) + d_{C_i}(x_2) + d_{C_i}(x_3) \leq \sum_{i=1}^{3} \left(\left|C_i\right| + \left|W_i\right| + \left|L_i\right| + 1 - \sum_{j \in M_1} \left|C_i \cap D_j\right| + \left|D_i\right|\right)$$

$$= \left|C\right| + \left|W\right| + \left|L\right| - \sum_{i \in M_1 \setminus \{1, 2, 3\}} \left|D_i\right| + 3$$

$$\leq \left|C\right| + \left|W\right| + \left|L\right| - \sum_{i \in I \setminus \{0\}} \left|D_i\right| + 3 \quad (8)$$

$$\leq \left|C\right| + \left|W\right| + 3. \quad (9)$$

Claim 6. $|W| + |L| \geq \kappa(G) - 2 \geq 1$.

Proof. Let I be a subset of M_0 such that $|I| = k - 2$ and $I \cap \{1, 2, 3\} = \emptyset$. Suppose that $|W| + |L_I| \leq \kappa(G) - 3$. By Claim 5, $\{x_i : i \in I\} \cup \{x_1, x_2, x_3\}$ is an independent
set of order \(k + 1 \). By the inequality (8), we obtain

\[
d_C(x_1) + d_C(x_2) + d_C(x_3) \leq |C| + \kappa(G) - \sum_{i \in I \setminus \{0\}} |D_i|.
\]

Therefore, this inequality, the inequalities (1) and (2) and Claim 4 yield that

\[
\sum_{i=1}^{3} d_G(x_i) + \sum_{i \in I} d_G(x_i) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1,
\]
a contradiction. Therefore, this inequality, the inequalities (1) and (2) and Claim 4 yield that

\[
\sum_{i=1}^{3} d_G(x_i) + \sum_{i \in I} d_G(x_i) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1,
\]
a contradiction. Therefore, \(|W| + |L| \geq |W| + |L_i| \geq \kappa(G) - 2\).

Claim 7. \(d_C(x_0) = |U| = |X| = \alpha(G) - 1 \). In particular, \(N_C(x_0) = U \).

Proof. Suppose that \(d_C(x_0) \leq \alpha(G) - 2 \). In this proof, we assume \(x_i = x_1 \) (recall that \(l \) is an integer such that \(C[u_i, u'_i] \subseteq V_1 \), see the paragraph below the proof of Claim 2). We divide the proof into two cases.

Case 1. \(|W| \geq k - 3\).

Subclaim 7.1. \(|W| \leq \kappa(G) + k - 5\).

Proof. Suppose that \(|W| \geq \kappa(G) + k - 4\). By Claim 3 we obtain

\[
|W \cup \{x_0, x_1, x_2, x_3\} \cap V_1| = |W \cup \{x_0, x_1, x_2, x_3\}| - |(W \cup \{x_0, x_1, x_2, x_3\}) \cap S| \\
\geq (\kappa(G) + k - 4 + 4) - \kappa(G) = k.
\]

Let \(W' \) be a subset of \((W \cup \{x_0, x_1, x_2, x_3\}) \cap V_1\) such that \(|W'| = k\) and \(x_1 \in W' \).

Since \(W' \subseteq V_1 \) and \(v_2 \in V_2 \), it follows from Claim 5 that \(W' \cup \{v_2\} \) is an independent set of order \(k + 1 \). By the inequality (5) and Claims 3 and 4 we obtain

\[
d_C(x_1) \leq |C \cap (V_1 \cup S)| - \sum_{i \in M_1 \setminus \{1\}} |(D_i \cap (V_1 \cup S)| - |X \cap (V_1 \cup S)| \\
\leq |C \cap (V_1 \cup S)| - \sum_{i \in \{2,3\}} |D_i| - |X| \\
\leq |C \cap (V_1 \cup S)| - \sum_{i \in \{2,3\}} |D_i| - d_C(w_0),
\]

where \(w_0 \in W' \setminus \{x_1, x_2, x_3\} \) (note that \(|W'| = k \geq 4\)). By the inequality (1) and Claim 4

\[
\sum_{x \in W' \setminus \{x_2, x_3\}} d_C(x) + \sum_{w \in W' \setminus \{w_0, x_1, x_2, x_3\}} d_C(w) \leq \sum_{i \in \{2,3\}} |D_i| + (k - 2)(\alpha(G) - 1).
\]

By the above two inequalities, we obtain

\[
\sum_{w \in W'} d_C(w) \leq |C \cap (V_1 \cup S)| + (k - 2)(\alpha(G) - 1).
\]
Therefore, since \(\sum_{w \in W} d_H(w) \leq |H \cap (V_1 \cup S)| - 1 \) by the inequality (7), it follows that
\[
\sum_{w \in W'} d_G(w) \leq |V_1 \cup S| + (k - 2)(\alpha(G) - 1) - 1.
\]
Summing this inequality and the inequality (9) yields that \(\sum_{w \in W'} d_G(w) + d_G(v_3) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 2 \), a contradiction.

By the assumption of Case 1, we can take a subset \(W^* \) of \(W \cup \{x_0\} \) such that \(|W^*| = k - 2 \). By Claim 5, \(W^* \cup \{x_1, x_2, x_3\} \) is independent. Moreover, by Claim 4 and the assumption that \(d_C(x_0) \leq \alpha(G) - 2 \), we have
\[
\sum_{w \in W^*} d_C(w) \leq (k - 2)(\alpha(G) - 2).
\]
By Subclaim [7], summing this inequality and the inequality (9) yields that
\[
\sum_{i=1}^{3} d_C(x_i) + \sum_{w \in W^*} d_C(w)
\leq |C| + |W| + 3 + (k - 2)(\alpha(G) - 2)
\leq |C| + (\kappa(G) + k - 5) + 3 - (k - 2) + (k - 2)(\alpha(G) - 1)
= |C| + \kappa(G) - (\alpha(G) - 1).
\]
Therefore, since \(\sum_{i=1}^{3} d_H(x_i) + \sum_{w \in W'} d_H(w) \leq |H| - 1 \) by the inequality (7), we obtain \(\sum_{i=1}^{3} d_G(x_i) + \sum_{w \in W'} d_G(w) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1 \), a contradiction.

Case 2. \(|W| \leq k - 4 \).

By Claim 4 we can take a subset \(L^* \) of \(L \) such that \(|L^*| = k - 3 - |W| \). Let \(I = \{i : x_i \in L^*\} \). By Claim 5, \(W \cup L^* \cup \{x_0, x_1, x_2, x_3\} \) is an independent set of order \(k + 1 \). By the inequality (8), we have
\[
d_C(x_1) + d_C(x_2) + d_C(x_3) \leq |C| + |W| + |L^*| - \sum_{i \in I} |D_i| + 3
= |C| + k - 3 - \sum_{i \in I} |D_i| + 3
\leq |C| + \kappa(G) - \sum_{i \in I} |D_i|.
\]

On the other hand, it follows from Claim 4 the assumption \(d_C(x_0) \leq \alpha - 2 \) and the inequality (11) that
\[
\sum_{w \in W \cup \{x_0\}} d_C(w) + \sum_{x \in L^*} d_C(x) \leq (|W| + 1)(\alpha(G) - 2) + \sum_{i \in I} |D_i| + |L^*|(|\alpha(G) - 1|)
= (k - 2)(\alpha(G) - 1) - |W| - 1 + \sum_{i \in I} |D_i|
\leq (k - 2)(\alpha(G) - 1) + \sum_{i \in I} |D_i| - 1.
\]
Thus, we deduce
\[
\sum_{i=1}^{3} d_C(x_i) + \sum_{w \in W \cup \{x_0\}} d_C(w) + \sum_{x \in L^*} d_C(x) \leq |C| + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1.
\]
By the inequality (7), we obtain
\[
\sum_{i=1}^{3} d_H(x_i) + \sum_{w \in W \cup \{x_0\}} d_H(w) + \sum_{x \in L^*} d_H(x) \leq |H| - 1.
\]
Summing the above two inequalities yields that \(\sum_{i=1}^{3} d_C(x_i) + \sum_{w \in W \cup \{x_0\}} d_C(w) + \sum_{x \in L^*} d_C(x) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 2\), a contradiction.

By Cases 1 and 2, we have \(d_C(x_0) \geq \alpha(G) - 1\). Since \(|U| = |X|\), it follows from Claim 4 that \(d_C(x_0) = |U| = |X| = \alpha(G) - 1\). In particular, \(N_C(x_0) = U\) because \(N_C(x_0) \subseteq N_C(H_0) = U\). This completes the proof of Claim 7.

\[\text{Claim 8. } W \subseteq X.\]

\[\text{Proof.} \text{ If } W \setminus X \neq \emptyset, \text{ then by Claim 5 we have } d_C(x_0) \leq |X| \leq \alpha(G) - 2, \text{ which contradicts Claim 7.} \]

\[\text{Claim 9. If there exist distinct two integers } s \text{ and } t \text{ in } M_1 \text{ such that } u_s \in N_C(x_t), \text{ then } N_C(x_s) \cap C[u_t, u_s] \subseteq U.\]

\[\text{Proof.} \text{ Suppose that there exists a vertex } z \in N_C(x_s) \cap C[u_t, u_s] \text{ such that } z \notin U. \text{ We show that } X \cup \{x_0, z^+\} \text{ is an independent set of order } |X| + 2. \text{ By Claim 5 we only show that } z^+ \notin X \text{ and } z^+ \notin N_C(x_i) \text{ for each } x_i \in X \cup \{x_0\}. \text{ Since } z \notin U, \text{ it follows from Lemma 3(i) that } z^+ \notin X. \text{ Suppose that } x_h \in N_C(x_h) \text{ for some } x_h \in X \cup \{x_0\}. \text{ Since } x_s \text{ is a non-insertible vertex, it follows that } x_h \neq x_s. \text{ Let } z_h \text{ be the vertex in } C(u_s, x_s) \text{ such that } z \in N_G(z_s) \text{ and } z \notin N_G(v) \text{ for all } v \in C(u_s, z_s). \text{ By Lemma 3(ii), we obtain } x_h \notin C[u'_s, z]. \text{ Therefore, } x_h \in C(z, u_s) \cup \{x_0\}. \text{ If } x_h \in C(z, u_s), \text{ then we let } z_h \text{ be the vertex in } C(u_h, x_h) \text{ such that } z^+ \in N_G(z_h) \text{ and } z^+ \notin N_G(v) \text{ for all } v \in C(u_h, z_h). \text{ We define the cycle } C^* \text{ as follows (see Figure 4):}
\]

\[
C^* = \left\{ \begin{array}{ll}
z_sC[z, x_t]C[u_s, z_h]C[z^+, u_h]x_0C[u_t, z_s] & \text{if } x_h \in C(z, u_s), \\
z_sC[z, x_t]C[u_s, z^+]x_hC[u_t, z_s] & \text{if } x_h = x_0.
\end{array} \right.
\]

Then, by similar argument in the proof of Lemma 3 we can obtain a longer cycle than \(C\) by inserting all vertices of \(V(C \setminus C^*)\) into \(C^*\). This contradicts that \(C\) is longest. Hence \(z^+ \notin N_C(x_h) \text{ for each } x_h \in X \cup \{x_0\}. \text{ Thus, by Claim 7, } X \cup \{x_0, z^+\} \text{ is an independent set of order } |X| + 2 = \alpha(G) + 1, \text{ a contradiction.} \]

\[\square\]
We divide the rest of the proof into two cases.

Case 1. \(v_2 \notin U \).

Let \(Y = N_G(v_2) \cap X \), and let \(\gamma = |X| - \kappa(G) - 1 \). Note that \(|X| = \kappa(G) + \gamma + 1 \geq k + \gamma + 1 \) and \(x_l \notin Y \) since \(x_l \in V_1 \).

Claim 10. \(|Y| \geq \gamma + 3 \).

Proof. Suppose that \(|Y| \leq \gamma + 2 \). By the assumption of Case 1, we have \(x_0v_2 \notin E(G) \). Since \(|M_0| = |X| + 1 \geq k + \gamma + 2 \) and \(|Y| \leq \gamma + 2 \), there exists a subset \(I \) of \(M_0 \setminus \{i : x_i \in Y\} \) such that \(|I| = k \) and \(\{0, l\} \subseteq I \). Then \(\{x_i : i \in I\} \cup \{v_2\} \) is an independent set of order \(k + 1 \). By the inequality (5) and Claims 3 and 7, we obtain

\[
\sum_{i \in I} d_C(x_i) \leq |C \cap (V_1 \cup S)| - \sum_{i \notin \{0, l\}} |D_i| - |X|
\]

\[
= |C \cap (V_1 \cup S)| - \sum_{i \notin \{0, l\}} |D_i| - d_C(x_0).
\]

Therefore it follows from the inequality (11) that

\[
\sum_{i \in I} d_C(x_i) \leq |C \cap (V_1 \cup S)| + (k - 2)(\alpha(G) - 1).
\]

By the inequality (12), \(\sum_{i \in I} d_H(x_i) \leq |H \cap (V_1 \cup S)| - 1 \). Summing these two inequalities and the inequality (4) yields that

\[
\sum_{i \in I} d_G(x_i) + d_G(v_2) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 2,
\]

a contradiction. \(\square \)
Recall that r is an integer such that $v_2 \in C(x_r, u'_r) \cap V_2$ (see the paragraph below the proof of Claim 3). In the rest of Case 1, we assume that $l = 1$. If $u'_r \neq u_1$, then let $r = 2$ and $u_3 = u'_2$; otherwise, let $r = 3$ and let u_2 be the vertex with $u'_2 = u_3$.

By Claim 8, we have $W \subseteq X$. Hence we obtain $Y \cup W \cup L \subseteq X \setminus \{x_1\}$. Recall that $W \cap L = \emptyset$. Therefore, by Claims 8 and 10, we obtain

$$|Y \cap (W \cup L)| = |Y| + |W| + |L| - |Y \cup (W \cup L)|$$

$$\geq \gamma + 3 + \kappa(G) - 2 - |X \setminus \{x_1\}|$$

$$= \gamma + 3 + \kappa(G) - 2 - ((\kappa(G) + \gamma + 1) - 1) = 1.$$

Hence there exists a vertex $x_h \in Y \cap (W \cup L)$, that is, $v_2 \in N_C(x_h) \setminus U$. Since $C(x_2, x_3) \cap X = \emptyset$ and $C(x_3, x_1) \cap X = \emptyset$ if $r = 3$, either $u_h \in N_C(x_1)$ and $u_h \in C(x_3, u_1)$ or $u_h \in N_C(x_2)$ and $u_h \in C(x_1, u_2)$ holds (especially, if $r = 3$ then $u_h \in N_C(x_2)$ and $u_h \in C(x_1, u_2)$ holds) (see Figure 5).

If $r = 2$ and $u_h \in N_C(x_1)$, then $v_2 \in C[u_1, u_h]$ (see Figure 5 (i)). If $r = 2$ and $u_h \in N_C(x_2)$, then $v_2 \in C[u_2, u_h]$ (see Figure 5 (ii)). If $r = 3$, then $u_h \in N_C(x_2)$ and $v_2 \in C[u_2, u_h]$ (see Figure 5 (iii)). In each case, we obtain a contradiction to Claim 9.

Case 2. $v_2 \in U$.

We rename $x_i \in X$ for $i \geq 1$ as follows (see Figure 6): Rename an arbitrary vertex of X as x_1. For $i \geq 1$, we rename $x_{i+1} \in X$ so that $u_{i+1} \in N_C(x_i) \cap (U \setminus \{u_i\})$ and $|C[u_{i+1}, x_i]|$ is as small as possible. (For $x_i \in X$, let x'_i and x''_i be the successors of x_i and x'_i in X along the orientation of C, respectively. Then by applying Claim 8 as $x_1 = x_i$, $x_2 = x'_i$ and $x_3 = x''_i$, it follows that $W \cup L \neq \emptyset$. By the definition of x'_i, x''_i and Claim 8, we have $W_1 = W_2 = \emptyset$ (note that $W \cap \{x_1, x_2, x_3\} = \emptyset$). By the definitions of x'_i, x''_i, L_1 and L_2, we also have $L_1 = L_2 = \emptyset$. Thus $W_3 \cup L_3 \neq \emptyset$. By Lemma 8 (i) and since $W \cup L \subseteq X$, this implies that $N_C(x_i) \cap (U \setminus \{u_i\}) \neq \emptyset$. Let
Let \(h \) be the minimum integer such that \(x_{h+1} \in C(x_h, x_1) \). Note that this choice implies \(h \geq 2 \). We rename \(h \) vertices in \(X \) as \(\{x_1, x_2, \ldots, x_h\} \) as above, and \(m - h \) vertices in \(X \setminus \{x_1, x_2, \ldots, x_h\} \) as \(\{x_{h+1}, x_{h+2}, \ldots, x_m\} \) arbitrarily. Let \(A_1 = A_{h+1} = C[x_1, x_h] \) and \(A_i = C[x_i, x_{i-1}] \) for \(2 \leq i \leq h \).

Let

\[
U_1 = \{u_i \in U : x_i \in X \cap V_1\}.
\]

If possible, choose \(x_1 \) so that \(A_2 \cap U_1 = \emptyset \).

![Diagram](image)

Figure 6: The choice of \(\{x_1, \ldots, x_h\} \).

We divide the proof of Case 2 according to whether \(h \leq k \) or \(h \geq k + 1 \).

Case 2.1. \(h \leq k \).

By the choice of \(\{x_1, \ldots, x_h\} \), we have

\[
N_{A_{i+1}}(x_i) \cap U \subseteq \{u_i\} \quad \text{for} \quad 1 \leq i \leq h. \tag{10}
\]

By Claim \[\text{[9]} \] and \[\text{[10]} \], we obtain

\[
N_{C \setminus A_i}(x_i) \subseteq (U \setminus (A_i \cup A_{i+1})) \cup D_i \cup \{u_i\} \quad \text{for} \quad 2 \leq i \leq h. \tag{11}
\]

By Lemma \[\text{[3]} (i) \] and \((ii) \), \(N_{A_i}(x_i) - N_{A_i}(x_1) = \emptyset \) for \(2 \leq i \leq h \). By Lemma \[\text{[3]} (i) \], we have \(N_{A_i}(x_i) - N_{A_i}(x_1) \subseteq A_i \setminus D \) for \(3 \leq i \leq h \). Thus, it follows from \[\text{[11]} \] that for \(3 \leq i \leq h \)

\[
d_C(x_i) \leq (|U| - |(A_i \cup A_{i+1}) \cap U| + |D_i| + 1) + (|A_i| - |A_i \cap D| - d_{A_i}(x_1)).
\]
By Lemma 3 (i) and (10), we have $N_{A_2}(x_2) \cup N_{A_2}(x_1) \subseteq (A_2 \setminus (U \cup D)) \cup D_1 \cup \{u_1\}$. Thus, by (11), we have

$$d_C(x_2) \leq (|U| - |A_2 \cup A_3| \cap U| + |D_2| + 1) + (|A_2| - |A_2 \cap (U \cup D)| + |D_1| + 1 - d_{A_2}(x_1)).$$

Since $|A_1 \cap X| = |A_1 \cap U|$, it follows from Lemma 3 (i) that

$$d_{A_1}(x_1) \leq |A_1| - |A_1 \cap D| - |A_1 \cap X| = |A_1| - |A_1 \cap D| - |A_1 \cap U|.$$

By Claim 7, $d_C(x_0) = |U| = \alpha(G) - 1$. Thus, since $h \leq k$, we obtain

$$\sum_{0 \leq i \leq h} d_C(x_i) \leq \sum_{1 \leq i \leq h} |A_i| + h|U| - 2 \sum_{1 \leq i \leq h} |A_i \cap U| + h + \sum_{1 \leq i \leq h} |D_i| - \sum_{1 \leq i \leq h} |A_i \cap D| \leq |C| + (h - 2)|U| + h + \sum_{1 \leq i \leq h} |D_i| - |D| \leq |C| + k + (h - 2)(\alpha(G) - 1) + \sum_{1 \leq i \leq h} |D_i| - |D|.$$

Let I be a subset of M_0 such that $|I| = k + 1$ and $\{0, 1, \ldots, h\} \subseteq I$. By Claim 5, $\{x_i : i \in I\}$ is an independent set of order $k + 1$. By the above inequality and the inequality (1), we have

$$\sum_{i \in I} d_C(x_i) \leq |C| + k + (k - 2)(\alpha(G) - 1)$$

By the inequality (2), $\sum_{i \in I} d_H(x_i) \leq |H| - 1$. Hence $\sum_{i \in I} d_G(x_i) \leq |G| + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1$, a contradiction.

Case 2.2. $h \geq k + 1$.

By Claims 9 and 7 the assumption of Case 2 and the choice of r and v_2, we have $\bigcup_{i=1}^p V_i \subseteq U = N_C(x_0)$. Since $x_0 \in V_1 \cup S$ by Claim 8, this implies that $x_0 \in S$.

Claim 11. $|X \cap V_i| \leq k - 1$.

Proof. Suppose that $|X \cap V_i| \geq k$. Let I be a subset of M_1 such that $|I| = k$ and $I \subseteq \{i : x_i \in X \cap V_i\}$. Then $\{x_i : i \in I\} \cup \{v_2\}$ is an independent set of order $k + 1$. Let s and t be integers in I. Since $x_s, x_t \in V_1, D \subseteq V_1 \cup S$ and $\bigcup_{i=1}^p V_i \subseteq U$, the similar argument as that of the inequality (11) implies that

$$d_C(x_s) + d_C(x_t) \leq |C \cap (V_1 \cup S)| - \sum_{i \notin \{s, t\}} |D_i|.$$

By the inequalities (11) and (7), we have

$$\sum_{i \notin \{s, t\}} d_C(x_i) \leq \sum_{i \notin \{s, t\}} |D_i| + (k - 2)(\alpha(G) - 1)$$

and

$$\sum_{i \in \{s, t\}} d_H(x_i) \leq |H \cap (V_1 \cup S)| - 1,$$

respectively. On the other hand, we obtain $d_G(v_2) \leq |V_2 \cup S| - 1$. By these four inequalities, $\sum_{i \in I} d_G(x_i) + d_G(v_2) \leq n + \kappa(G) + (k - 2)(\alpha(G) - 1) - 2$, a contradiction. Therefore $|X \cap V_i| \leq k - 1$. \qed
Recall $U_1 = \{u_i \in U : x_i \in X \cap V_1\}$. By Claim 11 we have $|U_1| \leq k - 1$. By the assumption of Case 2.2 and the choice of x_1, we obtain $A_2 \cap U_1 = \emptyset$, and hence we can take a subset I of $\{2, 3, \ldots, h\}$ such that $|I| = k$ and $\{i : A_{i+1} \cap U_1 \neq \emptyset\} \subseteq I$. Let

$$X_I = \{x_i : i \in I\}.$$

By Claim 5, $X_I \cup \{x_0\}$ is an independent set of order $k + 1$. Let

$$B_1 = B_{h+1} = C(u_1, u_h) \quad \text{and} \quad B_i = C(u_i, u_{i-1}) \quad \text{for} \ 2 \leq i \leq h.$$

Then, since $|C(u_i, u'_i)| \geq 2$ for $i \in M_1 \setminus I$, the following inequality holds:

$$|C| \geq \sum_{i \in I} |B_i \cup \{u_i\}| + 2 \left(|U| - \sum_{i \in I} |(B_i \cup \{u_i\}) \cap U|\right)$$

$$= \sum_{i \in I} |B_i| + 2 \left(|U| - \sum_{i \in I} |B_i \cap U|\right) - k.$$

If $x_i \in X_I \cap S$, then it follows from Lemma 3 (i) and Claim 9 that

$$d_C(x_i) \leq \left(|U| - |B_i \cup U| - |B_{i+1} \cap U_1|\right) + \left(|B_i| - |\{x_i\}| - |(B_i \cap U)^{+}|\right)$$

$$= |U| + |B_i| - 2|B_i \cap U| - |B_{i+1} \cap U_1| - 1.$$

If $x_i \in X_I \cap V_1$, then, by Lemma 3 (i) and Claim 9

$$d_C(x_i) \leq \left(|U| - |B_i \cup U| - |B_{i+1} \cap U_1| - |(U \cap V_2) \setminus B_i| + |B_{i+1} \cap U_1 \cap V_2|\right)$$

$$+ \left(|B_i| - |\{x_i\}| - |(B_i \cap U)^{+}| - |U \cap V_2 \cap B_i|\right)$$

$$= |U| + |B_i| - 2|B_i \cap U| - |B_{i+1} \cap U_1| - 1 - \left(|U \cap V_2| - |B_{i+1} \cap U_1 \cap V_2|\right).$$

Since $U \cap V_2 \neq \emptyset$, we obtain $|U \cap V_2| - |B_{i+1} \cap U_1 \cap V_2| \geq 1$ for all $i \in I$ except for at most one, and hence

$$\sum_{i \in I : x_i \in X_I \cap V_1} \left(|U \cap V_2| - |B_{i+1} \cap U_1 \cap V_2|\right) \geq |X_I \cap V_1| - 1.$$

By the choice of I, we have

$$|U_1| = \sum_{i \in I} |A_{i+1} \cap U_1| = \sum_{i \in I} |B_{i+1} \cap U_1| + |\{u_i : x_i \in X_I \cap V_1\}|.$$

On the other hand, since $x_0 \in S$, it follows from Claim 3 that

$$|U_1| = |X \cap V_1| = |X \setminus S| \geq |X| - (\kappa(G) - 1).$$

Moreover, by Claim 7

$$d_C(x_0) = |U| = |X| = \alpha(G) - 1.$$

24
Thus, we deduce
\[
\sum_{i \in I \cup \{0\}} d_C(x_i) \leq (k + 1)|U| + \sum_{i \in I} |B_i| - 2 \sum_{i \in I} |B_i \cap U|
\]
\[
- \sum_{i \in I} |B_{i+1} \cap U_1| - k - (|X_f \cap V_1| - 1)
\]
\[
= \left(\sum_{i \in I} |B_i| + 2\left(|U| - \sum_{i \in I} |B_i \cap U|\right) - k \right) + (k - 1)|U|
\]
\[
- \left(\sum_{i \in I} |B_{i+1} \cap U_1| + \{|u_i : x_i \in X_f \cap V_1\}| \right) + 1
\]
\[
\leq |C| + (k - 1)|U| + \kappa(G) - |X|
\]
\[
= |C| + \kappa(G) + (k - 2)(\alpha(G) - 1).
\]

By the inequality (2), \(\sum_{i \in I \cup \{0\}} d_H(x_i) \leq |H| - 1 \). Hence \(\sum_{i \in I \cup \{0\}} d_G(x_i) \leq |G| + \kappa(G) + (k - 2)(\alpha(G) - 1) - 1 \), a contradiction. \(\Box \)

References

[1] A. Ainouche, An improvement of Fraisse’s sufficient condition for hamiltonian graphs, J. Graph Theory 16 (1992), 529–543.

[2] D. Bauer, H.J. Broersma, H.J. Veldman and R. Li, A generalization of a result of Häggkvist and Nicoghossian, J. Combin. Theory Ser. B 47 (1989), 237–243.

[3] J.A. Bondy, A remark on two sufficient conditions for Hamilton cycles, Discrete Math. 22 (1978), 191–193.

[4] J.A. Bondy, Longest paths and cycles in graphs with high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).

[5] J.A. Bondy, “Basic Graph Theory: Paths and Circuits” in: HANDBOOK OF COMBINATORICS, Vol. I, eds. R. Graham, M. Grötschel and L. Lovász (Elsevier, Amsterdam), 1995, pp. 5–110.

[6] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972), 111–113.

[7] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69–81.

[8] P. Fraisse and H. A. Jung, “Longest cycles and independent sets in k-connected graphs,” Recent Studies in Graph Theory, V.R. Kulli,(Editor), Vischwa Internat. Publ. Gulbarga, India, 1989, pp. 114–139.
[9] A. Harkat-Benhamadine, H. Li and F. Tian, Cyclability of 3-connected graphs, J. Graph Theory 34 (2000), 191–203.

[10] H. Li, Generalizations of Dirac’s theorem in Hamiltonian graph theory – A survey, Discrete Math. 313 (2013), 2034–2053.

[11] H. Li, F. Tian, Z. Xu, Hamiltonicity of 4-connected graphs, Acta Math. Sin. (Engl. Ser.) 26 (2010), 699–710.

[12] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.

[13] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Math. 145 (1995), 201–210.

[14] K. Ozeki, Hamilton Cycles, Paths and Spanning Trees in a Graph, Doctor thesis, Keio University (2009).

[15] K. Ozeki and T. Yamashita, A degree sum condition concerning the connectivity and the independence number of a graph, Graphs Combin. 24 (2008), 469–483.