Effect of Piperine on Cypermethrin-induced Oxidative Damage in Rats

Palanisamy Sankar, Avinash G Telang* and Ayyasamy Manimaran

Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar – 243122, Bareilly, Uttar Pradesh, India

Abstract

Cypermethrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control and as an ectoparasiticide in animals. The aim of the present study was to investigate the ability of piperine, a natural alkaloid compound, to attenuate subacute cypermethrin-induced changes in serum biochemical markers and lipid peroxidation, and alteration in antioxidant enzyme activity in the liver and kidney of rats. The rats were divided into five groups of six each; the first group served as control and second group was used as vehicle control. While, groups III, IV and V were orally treated with piperine (50 mg/kg body weight), cypermethrin (25 mg/kg body weight) and cypermethrin plus piperine, respectively for 28 days. Cypermethrin administration caused elevated levels of biochemical markers in serum and lipid peroxidation in liver and kidney. While the activities of non-enzymatic and enzymatic antioxidants levels were decreased except superoxide dismutase in liver and kidney. Administration of piperine along with cypermethrin significantly decreased the level of lipid peroxidation and significantly increased the reduced glutathione, catalase and glutathione peroxidase level both in liver and kidney. The results indicate that piperine ameliorate the cypermethrin-induced biochemical alterations and oxidative damage in rats.

Keywords: Cypermethrin; Piperine; Oxidative stress; Antioxidants; Rats

Abbreviations: CYP: Cypermethrin; ALT: Alanine Amino Transferase; AST: Aspartate Amino Transferase; BUN: Blood Urea Nitrogen; GSH: Reduced Glutathione; LPO: Lipid Peroxidation; SOD: Superoxide Dismutase; GPX: Glutathione Peroxidase

Introduction

Cypermethrin (CYP) is a synthetic pyrethroid with potent insecticidal property. It is being used worldwide in agriculture, home pest control, protection of food stuff and disease vector control [1,2,3]. CYP can be found in trace amounts or at higher concentrations in soil and air. CYP is more hydrophobic in nature and its target site is biological membrane [4]. In mammals, CYP can accumulate in body fat, skin, liver, kidneys, adrenal glands, ovaries, lung, blood, and heart [5,6]. Populations at highest risk of high dose exposure are producers, hygienic and pesticide workers, and small farm owners applying CYP for plant protection; exposure to low dose originates mainly from the household application of insecticides, contaminated food and water [7]. Several studies have shown that pyrethroid toxicity is linked to different mechanisms, including reactive oxygen species generation and oxidative stress [8,9]. The reactive oxygen species directly react with cellular biomolecules; damage lipids, proteins and DNA in cells ultimately leading to cell death. It is now being realized that one of the reasons for CYP toxicity is imbalance between amount of free radicals generated and antioxidant defenses in the body.

During the past few years, estimation of free radical generation and antioxidant defense has become an important aspect of investigation in mammals. Some studies have shown that antioxidant such as, Vitamin E, isoflavones and L-ascorbic acid prevent the oxidative damage due to CYP induced toxicity in rats [10,11,12]. Plant products are known to exert their protective effects by scavenging free radicals and modulating antioxidant defense system. Piperine, an alkaloid, found in long pepper (Piper longum Linn.) and black pepper (Piper nigrum Linn.). The compound has many pharmacologic activities such as antioxidant, bioenhancer, anti-inflammatory and hepatoprotective effects [13,14,15,16]. Vijayakumar et al., [17] found that simultaneous supplementation of black pepper or piperine along with high fat diet lowered thiobarbituric acid reactive substances and maintained superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione levels to near those of control rats. Earlier studies from various laboratories have proved the antioxidant and hepatoprotective activity of piperine against benzo(a)pyrene and aflatoxin-induced toxicity in mice and rats [18]. Therefore, the present study was undertaken to evaluate the antioxidant effect of piperine against CYP-induced oxidative stress in rats.

Materials and Methods

Animals

The study was conducted in adult male Wistar rats (6-8 weeks, 100-120 g) obtained from the Laboratory Animals Resources Section of the Institute. Rats were maintained under standard management conditions. The rats were given standard rat feed and water ad libitum throughout the experiment. All the animals were quarantined for a period of at least 7 days before beginning of the experiment. The rats were handled and the study was conducted in accordance with the Institute Animal Ethics Guidelines.

Chemicals

Cypermethrin (CYP; 96%) was a kind gift from Gharda Chemicals, Mumbai. Piperine was purchased from M/s Sigma Chemicals, USA. All other chemicals used were of analytical grade from E. Merck, Germany and India; Sigma Chemicals, USA and SRL Chemicals, India.

Dose selection

CYP was dissolved in ground nut oil and administered orally for...
Effect of piperine treatment on cypermethrin-induced alteration on rat serum biomarkers.

Table 1: Effect of piperine treatment on cypermethrin-induced alteration on rat serum biomarkers.

Treatment	Dose	AST (Units/mL)	ALT (Units/mL)	BUN (mg/dL)	Creatinine (mg/dL)
Control	1 ml/kg	64.14 ± 1.29	52.28 ± 1.44	16.21 ± 2.9	0.67 ± 0.02
Groundnut oil	1 ml/kg	96.23 ± 2.93	33.37 ± 2.25	15.74 ± 0.38	0.87 ± 0.02
Piperine	50 mg/kg	63.9 ± 1.65	30.07 ± 2.28	15.94 ± 0.86	0.62 ± 0.03
Cypermethrin	25 mg/kg	92.19 ± 3.14*	73.19 ± 3.12*	19.22 ± 0.89	0.62 ± 0.02*
Cypermethrin + Piperine	25 mg/kg + 50 mg/kg	76.38 ± 2.76*	42.78 ± 3.62	19.85 ± 1.16*	0.74 ± 0.05

Values are expressed as means±S.E. (n = 6). Superscript a significantly different from control group; Superscript b significantly different from cypermethrin treated group.

Results

Effects on serum biomarkers

CYP administration significantly increased the activities of ALT and AST in serum as compared to control (Table 1). Piperine treatment significantly restored the activity of ALT and AST. The levels of BUN and creatinine in serum were significantly elevated after CYP exposure (Table 1). Oral administration of piperine along with CYP caused significant reduction in CYP-induced changes in BUN and creatinine. There were no differences in any of parameters between the water and vehicle control group; therefore, all comparisons are made to the water control.

Effects on lipid peroxidation

CYP exposure produced significant adverse effects on the redox status of liver and kidney, as evidenced by a significant increase in MDA level (Figure 1) as compared to control. Oral supplementation of piperine along with CYP resulted in significant decrease in LPO level as compared to CYP treated rats.

Effects on antioxidative glutathione system

Effects on the GSH and GPx in liver and kidney are presented in Figure 2 (A and B). CYP treatment significantly decreased GSH and GPx activity in the liver and kidney tissues of rats. Simultaneous treatment with CYP and piperine caused significant increase in GSH and GPx activity in both the tissues as compared to rats treated with CYP alone.

Effects on the activities of SOD and catalase

The activities of SOD and catalase in liver and kidney of CYP exposed rats are shown in Figure 3 (A and B). CYP exposure resulted in significant elevation in SOD activity in liver and kidney as compared to control. However, the activities of catalase in both the tissues were significantly decreased. Daily oral administration of piperine along with CYP in rats significantly restored the SOD and catalase activities almost equal to control.

Discussion

The present study evaluated the effect of piperine on CYP-induced oxidative damage in rat liver and kidney. CYP exposure produces a large amount of reactive oxygen species and reactive nitrogen species that can impair cellular antioxidant defense systems and simultaneously damage the cellular components such as lipids,
proteins, and DNA. In the present study, we observed that CYP administration induced oxidative stress in rat liver and kidney as evidenced by many antioxidant markers and that this effect could be prevented by treatment with piperine. In the present study, CYP treatment induced a high degree of lipid peroxidation in the liver and kidney tissue of the rats due to the susceptibility of the both the tissues towards oxidative damage. Several studies have indicated that, there is increase in the intracellular levels of reactive oxygen species and oxidative stress in CYP-induced toxicity [8,28]. LPO has been shown to cause profound alterations in the structure and functions of the cell membrane, including decreased membrane fluidity and increased membrane permeability [31]. The increased AST and ALT activities as showed in the present study could be due to the oxidative damage by free radicals in liver tissue. AST is normally found in a various tissues including liver, heart, muscle, kidney, and brain. It is released into serum when any one of these tissues is damaged. ALT is, by contrast, normally found largely concentrated in liver and is released into the bloodstream as the result of liver injury. The increase in serum AST and ALT activities as observed in present study is in agreement with the findings of Yousef et al. [11].

Antioxidant enzymes are considered to be the first line of cellular defense against oxidative damage. GST and GPx two antioxidant enzymes, which counteract free radical generation. [27]. The decrease in the activities of GST and GPx due to the generation of reactive oxygen species leads to enhancement in lipid peroxidation. A significant reduction in GSH and GPx levels in liver and brain...
tissues [28] and depletion of GSH and GPx in erythrocytes after dermal exposure of CYP in rats have been reported [29]. SOD is an antioxidant metalloenzyme that reduce superoxide radicals to water and molecular oxygen. The increase in SOD activity in liver and kidney of CYP exposed rats may be due to the compensatory adaptive mechanism of the antioxidant system to combat the increased ROS generation by the CYP toxicity [8]. Catalase is a haemoprotein, which reduces hydrogen peroxide to molecular oxygen and water. Reduction of catalase activity in CYP treated rats may be due to the enhanced production of hydrogen peroxide. Furthermore, it has been suggested that LPO might be a contributing factor for decrease in the catalase activity during cypermethrin toxicity [10].

The results of present study show that piperine treatment attenuated CYP-induced alteration in serum markers enzyme, LPO levels, and concomitantly restored enzymatic and non-enzymatic antioxidants in the rat kidney and liver. Piperine has been shown to inhibit the lipid peroxidation [30,13]. The direct antioxidant activity of piperine against various free radicals, hydroxyl as well as superoxide, was explored under in vitro conditions by Mittal and Gupta [32]. The suppressive action of piperine on lipid peroxidation observed in in vivo experiments suggests that piperine may have direct effect on membranes which may decrease the susceptibility of the membranes to lipid peroxides. GSH is presumed to be an important endogenous defense against the peroxidative destruction of cellular membranes. Tissue GSH concentration reflects the potential for detoxification. The simultaneous treatment with piperine elevated the CYP-induced decrease in the levels of GSH. Earlier studies revealed that piperine supplementation prevents depletion of reduced glutathione and total thiols in the liver [33]. In the present study, levels of catalase and GPx in liver and kidney of cypermethrin plus piperine-treated rats were significantly elevated and the SOD levels were maintained equal to that of control group. There is extensive evidence that supplementation of piperine enhance or restore the enzymatic antioxidants in the rat kidney and liver. Piperine has been shown to inhibit lipid peroxidation and membrane bound enzymes in benzo(a)pyrene induced lung carcinogenesis. Biochemical & Pharmacotherapy 58: 264-267.

10. Asselah A, Yilmaz S, Karahan I, Tasdemir B (2005) The effect of Vitamin-E and selenium on cypermethrin induced oxidative stress in rats. Turkish Journal of Veterinary and Animal Science 29: 385-391.

11. Yousef MI, EI-Demerdash FM, Kamel KI, Al-Salhen KS (2003) Changes in some hematological and biochemical indices of rabbits induced by isolavones and cypermethrin. Toxicology 189: 223–234.

12. Rana SK, Verma PK, Pankaj NK, Kant V, Praveen S (2009) Protective role of L-acetic acid against cypermethrin-induced oxidative stress and lipid peroxidation in Wistar rats. Toxicology and Environmental Chemistry 1-7.

13. Selvendiran K, Saktishekaran D (2004) Chemopreventive effect of piperine on modulating lipid peroxidation and membrane bound enzymes in benzo(a)pyrene induced lung carcinogenesis. Biomedicine & Pharmacotherapy 58: 177–186.

14. Nirala SK, Bhaduria M, Mathur R, Mathur A (2008) Influence of alphatocopherol, propolis and piperine on the potential of tertion on beryllium induced toxic manifestations. J Appl Toxicol 28: 44-54.

15. Kumar S, Singhal V, Roshan R, Sharma A, Rambhoktar GW, et al. (2007) Piperine inhibits TNF-α induced adhesion of neutrophils to endothelial monolayer through suppression of NF-κB and iκB kinase activation. Eur J Pharmacol 575: 177–186.

16. Matsuoka H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, et al. (2008) Protective effects of amide constituents from the fruit of Piper chaba on D-galactosamine/TNF-α-induced cell death in mouse hepatocytes. Bioorganic & Medicinal Chemistry Letters 18: 2038-2042.

17. Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L) and piperine in rats with high fat diet induced oxidative stress. Redox Report 9: 105-110.

18. Selvendiran K, Vijeya Singh JP, Krishnan KB, Saktishekaran D (2003) Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Biotherapy 74: 109-115.

19. Cantalamessa F (1993) Acute toxicity of two pyrethroids; permethrin and cypermethrin in neonatal and adult rats. Arch Toxicology 67: 510-513.

20. Shafiq-ur-Rehman, Rehman S, Chandra O, Abdulla M (1994) Evaluation of malondialdehyde as an index of lead damage in rat brain homogenates. Biochemalas 8: 275-279.

21. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Elman’s reagent. Anal Biochem 25: 192-205.

22. Abbi H (1983) Catalase. In Bergmeyer, HU (ed.). Methods Enzymology. pp. 276-286, Academic Press, New York, USA.

23. Madesh M, Balasubramanian KA (1998) Microtitre plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 35: 184-188.

24. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.

25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193: 265-275.

26. Awad ME, Abdel-Rahman MS, Hassan SA (1998) Acrylamide toxicity in isolated rat hepatocytes. Toxicology In Vitro 12: 699-704.
27. Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113: 234–253.

28. Giray B, Gurbay A, Hincal F (2001) Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicology letters 3: 139-146.

29. Raina R, Verma PK, Pankaj NK, Prawez S (2009) Induction of oxidative stress and lipid peroxidation in rats chronically exposed to cypermethrin through dermal application. Journal of Veterinary Science 10: 257-259.

30. Rauscher FM, Sanders RA, Watkins JB (2000) Effects of piperine on antioxidant pathways in tissues from normal and streptozocin-induced diabetic rats. J Biochem Mol Toxicol 14: 329-334.

31. Selvendiran K, Sakthisekaran D (2004) Chemopreventive effect of piperine on modulating lipid peroxidation and membrane bound enzymes in benzo(a) pyrene induced lung carcinogenesis. Biomedicine & Pharmacotherapy 58: 264-267.

32. Mittal R, Gupta RL (2000) In vitro antioxidant activity of piperine. Methods Find Exp Clin Pharmacol 22: 271-274.

33. Koul IB, Kapil A (1993) Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Med 59: 413-417.

34. Dhuley JN, Raman PH, Mujumdar AM, Naik SR (1993) Inhibition of lipid peroxidation by piperine during experimental inflammation in rats. Indian J Exp Biol 31: 443-445.