Machining process parameters optimization of Aluminium Alloy AA6262 T6 for CNC Turning by Grey Relational Analysis

Rahul Sharma1*, Kamal Sharma2, Bhupendra Kumar Saraswat3
1,2,3 Mechanical engineering department, GLA University, Mathura-281406 India

*E-mail: rahulsharma15394@gmail.com

Abstract: This research paper is based on the optimization for machining parameter of turning process of CNC M/C tool on aluminium alloy with the help of grey relation analysis. The parameters is found out the experiments perform on aluminium alloy AA6262T6. Machining operation is performed under dry cutting condition by uncoated carbide insert tool. In this research work operation parameters like feed, speed and depth of cut is optimized with output of material removal rate and surface roughness. In the present work, grey relation grade is used as a tool for optimization technique. The result is obtained by grey relation grade find out through grey relation analysis. The experiment outcomes are clear that the response in turning process can be increase efficiency from this fresh approach. To validate the test result, the confirmation test is performed. Prediction of GRA shows the noteworthy increment of 16.629 (14.55 %) in Material Removal Rate (MRR) and a noteworthy reduction of 0.148 (8.9%) in Surface Roughness.

Keywords: CNC turning, Surface Roughness, Gray Relation analysis (GRA), Taguchi, Optimization.

1. Introduction

Due to increase in demand it is required to find pot the materials which have high specific strength and stiffness and light-weighting, better fuel efficiency, and better payload. To reach the industrial objective it is need to optimise the machining process parameters like speed, feed and depth of cut[1]. In this paper review the optimization method i.e grey relation analysis in taguchi method used for optimize the machining process parameters of turning process on aluminium alloy AA6262 T6 on CNC turning machine tool. [2, 3]. In many industrial as well as daily application like nut-bolts, screws, coupling, marine fittings, pins, Oil pipe line fitting, and Valves we used Aluminium alloy AA6262 T6. So for the faster production it is required to optimize of machining parameter[4]. In the experiment consider three parameters speed, feed and depth of cut because it is an important factor for the optimization process with three levels.

An experiment had execute for maximum material removal rate (MRR) and minimum surface roughness because for any machining process it’s play important role[5]. The outcome of the experiment clears that the approach which is applied to the experiment has increased efficiency. For any product it is important to achieve high surface roughness for better finish.[6]. There is an goal of the industry to achieve the material removal rate in minimum time [7, 8]. For reduce the per product cost it is required to to reduce the production cost and the production time and the increase productivity. The experiment has been performed by orthogonal L27 array with grey relation analysis (GRA) with multiple responses [9, 10].

Saravananukumar et al. [11] has find out the optimisation of machining process parameter by grey relation analysis in taguchi method and find out that the feed has controlling factor as compared to speed and depth of cut. P. Jayaraman [12] has also applied the optimisation method for the machining process parameter by the grey relational analysis and find out that the feed is the most dominant factor for the optimisation follow by depth of cut and speed.[13, 14].
Babu [15] has applied the method for finding the reaction of machining process parameter on the surface roughness for the turning of hybrid metal matrix composite (Al-SiC-B4C) and find out that feed is the most important factor which affect the surface roughness as compared by cutting speed. Rajasekaran et al [16] use the taguchi method to find out the optimise machining process parameter for the good surface roughness of the turning cycle of CFRP composite with a ceramic tool and find out that the heat is the dominant factor from all the cutting process parameters as compared by speed and depth of cut. Abhang [17] applied the taguchi method for finding the effect of the three cutting parameters feed rate depth of cut and the lubricant temperature on the surface roughness for the turning of EN31 steel and find out that the depth of cut and the lubricant temperature is the main parameter that influence the surface roughness.

2. Experiment Set-up

2.1 Machining Process

It has a method to obtain the desired product with the raw material on the and finished product. Each experiment performs on prescript value for the operation and fixed levels of an experiment. Machining process involved the many parameters like speed, feed and depth of cut to achieve the finished product. This process parameter is depend on the many factors like a product shape size and the geometry,[18]. In which grey relational analysis is used as a optimisation method. [19, 20].

2.2 Machine Tool

Our experiment has been performed on the machine tool which has CNC turning Centre make Speed Turn, Model ST – 400 G X750 (Siemens 808D) has mentioned in Fig. 1 and machine detail shown in Table 2. The parameters which has been considered in the our experiment is feed speed and depth of cut. Our experiment is accomplish on the three level and the three parameters shown in Table 1[11, 21, 22].

2.3 Tool Holder

Tool holder is the important machine component of our machine tool it is used for precisely and accurately hold the tool in their place. The specification of the tool holder wont to study the effectiveness of Grey relational analysis is SDSCR 12 12 11 F3 while the specification of the tool holder wont to study and compare the effectiveness of varied optimization techniques is SDJCR 2525 [23]. Stellite-carbide and carbide tools can withstand still higher speeds. The heat resistant tools could also be used for high feeds than other tool material.
2.4 Experimental Plan
Standard array L27 is used for optimization calculation. It is used for array have three levels and three parameters. The following levels and parameters have been selected after performing many experiments. With variable change data also varies. Machining variables and levels are shows in Table.1.

Parameters (Variables)	Stage 1	Stage 2	Stage 3
Feed	0.05	0.08	0.11
Speed	700	900	1100
Depth of cut	0.8	1.2	1.6

\[
MRR = fxvxd
\]
\[
v = (\pi Dx s)/60
\]

Where
- \(MRR\) = Material removal rate (mm\(^3\)/sec)
- \(d\) = Depth of cut (mm)
- \(D\) = Original diameter (mm)
- \(s\) = Speed (RPM)
- \(f\) = Feed (mm/rev)
- \(v\) = Velocity (mm/sec)
- SR = Surface roughness (μm)[24]

2.5 Surface Roughness Tester
In this experiment the tester which is used for surface roughness is Mitutoyo SJ-210 4mN. With the help of this we calculate the surface roughness of work piece. Positioning the SR tester in the measurement target and then visually inspected the surface of the target and find out the value of surface roughness[11]. For find out the minimum surface roughness this process is repeated many times. And get experimental values. [23, 25].

2.6 Work piece Material
The Material which is used in this work for the experiment performed is Aluminium alloy AA6262 T6 due to their mechanical and chemical properties like good corrosion resistance and heat treatable alloy with high strength. It also has a good surface finish and machinability. Aluminium alloy AA6262 T6 is used for Oil line fitting, and Valves, screw, marine fitting, nuts, coupling, Hinge pin.

![Figure 2](image_url) (a) Workpiece post Machining. (b) Drawing of the Work piece[24]
3. Grey Relation Analysis (GRA)

GRA relation analysis is applied for the optimization in which multi variable is converted into a single variable. In this calculation we consider the material removal rate maximised and surface roughness has minimised.[26]. The giving steps are follows to find out the GRG [13, 14].

Step 1: Grey Relation Generation

First offal we calculate the normalized value of the experiment.

Exp. No.	Speed	Feed	DOC	SR	MRR
1	700	0.05	0.8	0.516	29.746
2	700	0.05	1.2	0.491	44.619
3	700	0.05	1.6	0.409	59.493
4	700	0.08	0.8	0.58	47.594
5	700	0.08	1.2	0.515	71.391
6	700	0.08	1.6	0.666	95.188
7	700	0.11	0.8	0.741	65.442
8	700	0.11	1.2	0.731	98.163
9	700	0.11	1.6	1.515	130.884
10	900	0.05	0.8	2.68	38.245
11	900	0.05	1.2	1.017	57.368
12	900	0.05	1.6	1.515	130.884
13	900	0.08	0.8	1.433	61.192
14	900	0.08	1.2	0.72	91.788
15	900	0.08	1.6	1.711	122.385
16	900	0.11	0.8	0.71	84.139
17	900	0.11	1.2	0.524	126.209
18	900	0.11	1.6	0.482	168.279
19	1100	0.05	0.8	3.95	46.744
20	1100	0.05	1.2	1.711	70.116
21	1100	0.05	1.6	0.554	93.488
22	1100	0.08	0.8	8.38	74.791
23	1100	0.08	1.2	2.691	112.186
24	1100	0.08	1.6	1.077	149.581
25	1100	0.11	0.8	2.726	102.837
26	1100	0.11	1.2	3.555	154.256
27	1100	0.11	1.6	1.663	114.255

We calculate the normalised value for material removal rate Maximised and surface roughness is minimised.

\[
(x_i^*(k)) = \frac{x_i^k(k) - \min(x_i^0(k))}{\max(x_i^0(k)) - \min(x_i^0(k))} \tag{3}
\]

We calculate the normalised value for material removal rate Maximised and surface roughness is minimised.

\[
(x_i^*(k)) = \frac{\max(x_i^0(k)) - x_i^k(k)}{\max(x_i^0(k)) - \min(x_i^0(k))} \tag{4}
\]
Step 2 For each experiment deviation sequence is calculated show in table 5.

Step 3 GR Coefficient is calculating as surface Roughness and MRR.

\[
\zeta_i (k) = \frac{\Delta_{\min} + \mu \Delta_{\max}}{\Delta_{0i}(k) + \mu \Delta_{\max}}
\]

(5)

\[
\Delta_{0i}(Y)\text{ has deviation sequence} \ \ \ \ \ \Delta_{0i}(Y) = |x^*_0(Y) - x^*_i(Y)|
\]

(6)

Table 4. With reference sequence 1 calculated grey relational normalization and deviation sequence Δ_{0i}.

Exp. No.	Normalization Data	Deviation sequence (Δ_{0i})		
	MRR	SR	MRR	SR
1	0.0000	0.98658	1.0000	0.01342
2	0.08454	0.98971	0.91546	0.01029
3	0.16908	1.00000	0.83092	0.00000
4	0.10145	0.97855	0.89855	0.02145
5	0.23671	0.98670	0.76329	0.01330
6	0.37198	0.96776	0.62802	0.03224
7	0.20290	0.95835	0.79710	0.04165
8	0.38889	0.95960	0.61111	0.04040
9	0.57488	0.86125	0.42512	0.13875
10	0.04831	0.71509	0.95169	0.28491
11	0.15700	0.92372	0.84300	0.07628
12	0.26570	0.98419	0.73430	0.01581
13	0.17874	0.87153	0.82126	0.12847
14	0.35266	0.96098	0.64734	0.03902
15	0.52657	0.83666	0.47343	0.16334
16	0.30918	0.96224	0.69082	0.03776
17	0.54831	0.98557	0.45169	0.01443
18	0.78744	0.99084	0.21256	0.00916
19	0.09662	0.55576	0.90338	0.44424
20	0.22947	0.90440	0.77053	0.09560
21	0.36232	0.98181	0.63768	0.01819
22	0.25604	0.00000	0.74396	1.00000
23	0.46860	0.71371	0.53140	0.28629
24	0.68116	0.91620	0.31884	0.08380
25	0.41546	0.70932	0.58454	0.29068
26	0.70773	0.60532	0.29227	0.39468
27	1.00000	0.84268	0.00000	0.15732
Table 5. For every experimental value gray Relation coefficient and Overall GRG calculated.

Exp. No.	Grey relation Coefficient	Gray relational grade	Rank for GRG values	
	MRR	SR		
1	0.33333	0.97385	0.65359	17
2	0.35324	0.97984	0.66654	13
3	0.37568	1	0.68784	7
4	0.35751	0.95886	0.65819	15
5	0.39579	0.97409	0.68494	10
6	0.44325	0.93942	0.69134	6
7	0.38547	0.9231	0.65429	16
8	0.45	0.92525	0.68762	8
9	0.54047	0.78278	0.66162	14
10	0.34443	0.63702	0.49072	25
11	0.3723	0.86764	0.61997	19
12	0.40509	0.96935	0.68722	9
13	0.37843	0.79559	0.58701	22
14	0.43579	0.92762	0.6817	11
15	0.51365	0.75376	0.6337	18
16	0.41988	0.92978	0.67483	12
17	0.52538	0.97195	0.74867	3
18	0.70169	0.98201	0.84185	2
19	0.35628	0.52953	0.44291	26
20	0.39354	0.83949	0.61652	20
21	0.43949	0.9649	0.70219	5
22	0.40194	0.33333	0.36764	27
23	0.48478	0.6359	0.56034	23
24	0.61062	0.85645	0.73354	4
25	0.46102	0.63237	0.5467	24
26	0.6311	0.55886	0.59498	21
27	1	0.76066	0.88033	1

The min value of $\Delta_{0i}(Y) = \Delta_{min}$, and max of $\Delta_{0i}(Y) = \Delta_{max}$ [21].

$$\Delta_{0i}(Y) = \Delta_{min} = Min[|x_{0i}(y) - x_{i}^{*}(y)|]$$ \hspace{1cm} (7)

$$\Delta_{0i}(Y) = \Delta_{max} = Max[|x_{0i}(y) - x_{i}^{*}(y)|]$$ \hspace{1cm} (8)

$(\mu)=0.5$, that is identification coefficient it is $0 \leq \mu \leq 1$

$\Delta_{max} = 1$ (MRR)

$\Delta_{min} = 0$ (Surface Roughness)

Grey relational coefficient for experimental values shown in Table 6.
Step 4 Calculate for Overall GRG., Table 6 show GRG for experimental values[27]. Experiment No. 27 shown the maximize values of GRG.

Step 5 Mean of GRG calculated.
The average sum of Grey Relational coefficient is mean of GRG.

\[\gamma(x^*_0, x^*_1) = \gamma_l = \frac{1}{n} \sum_{k=1}^{n} \xi_l(k) \]

(9)

In this, Number of process parameters = \(n \)

Step 6 Grey Relational Ranking
The highest values of GRG give a rank 1. Grey relational grades calculate by equation 9. From table 6 it is clear that experiment number 27 has a greatest value of grey relation grade. The greatest value in the S/N curve is examined as optimum parameters. From calculation optimumised parameters has s1f3d3[13, 28].

![Main Effects Plot for Means](image)

Figure 3 Main effect plot for Mean of Grey relation grade.

Table 6 Response of Mean for GRG
Level

1-
2-
3-
Delta
Rank
4. Results and Discussions

It shows significant levels of parameters. Difference of highest and lowest values of GRG is the Significance of parameters. greater significance has a greater difference. By table 7 DOC put the maximum impact on the machining operation and this is followed by feed and speed respectively. Greatest difference means greater significant. Fig.3 shows the mean of GRG. Fig.3 shown that-
- Optimum process parameters are $s_1 f_3 d_1$, i.e. speed 700 in RPM, Feed 0.11 in mm/rev and DOC 1.6 in mm.
- Optimized Surface Roughness is 1.515μm.
- Optimized MRR is 130.884 mm3/sec.
- By increase in speed, GRG decreases up to level 3.
- By Increase of feed, GRG increases up to level 3.
- By Increase of depth of cut, GRG increases up to level 3.

Table 7. Result of confirmation experiment for GRG.
Experiments

Earliest Prediction
Experimental

5. Conclusions

Grey relation analysis is applied for the optimisation value. From this research work author find optimum value of experimental process parameter, which is feed, speed, and depth of cut with the help of GRG. In this research work we consider the minimum surface roughness and maximum MRR. GRG is the foremost process for calculate the optimum value with minimum time.

Following the experiment results are concluding.
- This lead to maximum MRR and minimum surface Roughness as the DOC increases.
- Speed of level 1, feed of level 3 and DOC of level 3 generate maximum MRR and optimum level of Surface finish.
- Feed has the dominant factor and it has 1st Rank for the optimization.
- Depth of cut (DOC) had the 2nd Rank.
- Speed had a 3rd Rank.

References
1. Tzeng, C.-J., et al., Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of Materials Processing Technology, 2009. 209(6): p. 2753-2759.
2. Lumley, R.N., Introduction: Aluminium, the Strategic Material, in Fundamentals of Aluminium Metallurgy, R.N. Lumley, Editor. 2018, Woodhead Publishing. p. xvii-xxx.
3. Rathod, P., S. Aravindan, and P. Venkateswara Rao, Performance Evaluation of Novel Micro-textured Tools in Improving the Machinability of Aluminum Alloy (Al 6063). Procedia Technology, 2016. 23: p. 296-303.
4. Sivaiah, P. and D. Chakradhar, Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement, 2019. 134: p. 142-152.
5. Saikumar, V., V. Vakucherla, and S. Potta, Multi-Objective Optimization in CNC Milling Process of Al-Cu-Zn Alloy Matrix Composite by Using Taguchi-Grey Relational Analysis Technique. International Journal of Advanced Materials Manufacturing and Characterization, 2015. 5.
6. Sivaiah, P. and D. Chakradhar, Multi performance characteristics optimization in cryogenic turning of 17-4 PH stainless steel using Taguchi coupled grey relational analysis. Advances in Materials and Processing Technologies, 2018. 4(3): p. 431-447.
7. Mausam, K., et al., Investigation of Process Parameter of EDM using Genetic Algorithm (GA) Approach for Carbon Fiber based Two Phase Epoxy composites. Materials Today: Proceedings, 2016. 3(10, Part B): p. 4102-4108.
8. Sivaiah, P. and D. Chakradhar, *The Effectiveness of a Novel Cryogenic Cooling Approach on Turning Performance Characteristics During Machining of 17-4 PH Stainless Steel Material*. Silicon, 2019. 11(1): p. 25-38.
9. Eapen, J., S. Murugappan, and S. Arul, *A Study on Chip Morphology of Aluminum Alloy 6063 during Turning under Pre Cooled Cryogenic and Dry Environments*. Materials Today: Proceedings, 2017. 4(8): p. 7686-7693.
10. Sirichaivetkul, R., et al., *In-situ study of microstructural evolution during thermal treatment of 6063 aluminum alloy*. Materials Letters, 2019. 250: p. 42-45.
11. Saravanakumar, A., et al., *Optimization of CNC Turning Parameters on Aluminum Alloy 6063 using Taguchi Robust Design*. Materials Today: Proceedings, 2018. 5(2, Part 2): p. 8290-8298.
12. Jayaraman, P. and L.M. Kumar, *Multi-Response Optimization in Turning of AA6061 T6 Using Desirability Function Analysis*. Applied Mechanics and Materials, 2015. 812: p. 124-129.
13. Jayaraman, P. and L.M. kumar, *Multi-response Optimization of Machining Parameters of Turning AA6063 T6 Aluminium Alloy using Grey Relational Analysis in Taguchi Method*. Procedia Engineering, 2014. 97: p. 197-204.
14. Hussain, M.Z., S. Khan, and P. Sarmah, *Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis*. Journal of King Saud University - Engineering Sciences, 2019.
15. Babu, T.S.M., M.S.A. Sugin, and N. Muthukrishnan, *Investigation on the Characteristics of Surface Quality on Machining of Hybrid Metal Matrix Composite (Al-SiC-B4C)*. Procedia Engineering, 2012. 38: p. 2617-2624.
16. Rajasekaran, T., V.N. Gaitonde, and J.P. Davim, *Fuzzy Modeling and Analysis on the Turning Parameters for Machining Force and Specific Cutting Pressure in CFRP Composites*. Materials Science Forum, 2013. 766: p. 77-97.
17. Abhang, L.B. and M. Hameedullah, *Optimization of Machining Parameters in Steel Turning Operation by Taguchi Method*. Procedia Engineering, 2012. 38: p. 40-48.
18. Yusup, N., A.M. Zain, and S.Z.M. Hashim, *Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011)*. Expert Systems with Applications, 2012. 39(10): p. 9909-9927.
19. Silva, G.B., et al., *Designing a Novel Feeding System for CNC Turning Machines*. Procedia Manufacturing, 2018. 17: p. 1144-1153.
20. Otto, A. and G. Radons, *Application of spindle speed variation for chatter suppression in turning*. CIRP Journal of Manufacturing Science and Technology, 2013. 6(2): p. 102-109.
21. Murugappan, S., S. Arul, and S.K. Narayanan, *An Experimental Study on Turning of AL6063 under Cryogenic Pre Cooled Condition*. Procedia CIRP, 2015. 35: p. 61-66.
22. Sivaiah, P. and D. Chakradhar, *Performance improvement of cryogenic turning process during machining of 17-4 PH stainless steel using multi objective optimization techniques*. Measurement, 2019. 136: p. 326-336.
23. Sivaiah, P. and U. Bodicherla, *Effect of Surface Texture Tools and Minimum Quantity Lubrication (MQL) on tool Wear and Surface Roughness in CNC Turning of AISI 52100 Steel*. Journal of The Institution of Engineers (India): Series C, 2020. 101(1): p. 85-95.
24. Sharma, R., et al. *Investigation of Optimum Process Parameter on CNC Turning for Aluminium Alloy AA6262 Using Grey Relational Analysis*. 2021. Singapore: Springer Singapore.
25. Sivaiah, P. and D. Chakradhar, *Analysis and Modeling of Cryogenic Turning Operation Using Response Surface Methodology*. Silicon, 2018. 10(6): p. 2751-2768.
26. Uzun, G., *Analysis of grey relational method of the effects on machinability performance on austempered vermicular graphite cast irons*. Measurement, 2019. 142: p. 122-130.
27. Mauzam, K., et al., *Multi-objective optimization design of die-sinking electric discharge machine (EDM) machining parameter for CNF-reinforced carbon fibre nanocomposite using grey relational analysis*. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019. 41(8): p. 348.
28. Ajith Arul Daniel, S., et al., *Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi -grey relational analysis*. Defence Technology, 2019.