Farmacocinética enantiosseletiva da ciclofosfamida em pacientes com câncer de mama

BRUNO JOSE DUMÊT FERNANDES

Ribeirão Preto
2008
BRUNO JOSE DUMÊT FERNANDES

Farmacocinética enantiosseletiva da ciclofosfamida em pacientes com câncer de mama

Tese apresentada ao Programa de Pós-Graduação em Toxicologia da Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo para a obtenção do título de Doutor em Toxicologia

Orientação: Profa Dra Vera Lucia Lanchote

Ribeirão Preto
2008
FICHA CATALOGRÁFICA

Fernandes, Bruno Jose Dumêt.
Farmacocinética enantiosséletriva da ciclofosfamida em pacientes com câncer de mama. Ribeirão Preto, 2008.
91 p. : il. ; 30 cm
Tese de Doutorado Direto apresentada à Faculdade de Ciências Farmacêuticas de Ribeirão Preto/USP – Área de concentração: Toxicologia. Orientadora: Lanchote, Vera Lucia.

1. ciclofosfamida 2. enantiômeros 3. farmacocinética 4. câncer de mama 5. CYP
FOLHA DE APROVAÇÃO

Bruno Jose Dumêt Fernandes
Toxicologia

Tese apresentada ao Programa de Pós-Graduação em Toxicologia da Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo para a obtenção do título de Doutor em Toxicologia

Aprovado em:

BANCA EXAMINADORA

Prof. Dr.__
Instituição:_______________________ Assinatura_______________

Prof. Dr.__
Instituição:_______________________ Assinatura_______________

Prof. Dr.__
Instituição:_______________________ Assinatura_______________

Prof. Dr.__
Instituição:_______________________ Assinatura_______________

Prof. Dr.__
Instituição:_______________________ Assinatura_______________
Perguntaram ao Dalai Lama...

“O que mais te surpreende na humanidade?”

E ele respondeu:

“Os homens... Porque perdem a saúde para juntar dinheiro, depois perdem dinheiro para cuidar da saúde. E por pensarem ansiosamente no futuro, esquecem do presente de tal forma que acabam por não viver nem o presente nem o futuro. E vivem como se nunca fossem morrer... e morrem como se nunca tivessem vivido”.

Mensagem
Dedico esse trabalho a meus pais. O alicerce da minha vida! Por tudo que fizeram por mim, durante todo tempo! Pelo amor, pelo apoio e pelo carinho incondicional que me deram. Pelo ombro amigo e por serem onipresentes. Pelo esforço e pelas orientações! Com muito, muito amor, seu filho.

Dedicatória
Agradecimentos

A Deus pela luz, pela superação e por ser meu guia nos momentos difíceis e solitários que passei.

A meus irmãos, Juliana e Diogo, pelo carinho, pelo companheirismo e pelos momentos engraçados que me proporcionaram. Meu eterno amor e amizade por vocês dois!!

A toda minha família pelo carinho em todos os momentos que passamos juntos e pelo amor incondicional que existe entre nós.

A minha orientadora Profa Dra Vera Lucia Lanchote, por me acolher com tanta paciência e por confiar, acreditar e apoiar sempre o meu trabalho.

A Profa Dra e amiga Rosalina Partezani Rodrigues pelo apoio, carinho e atenção desde o início dessa minha caminhada.

Ao Prof Dr e amigo Ângelo do Carmo Silva Matthes pela amizade, companheirismo e pela imensa colaboração para a realização deste trabalho.

Aos amigos Ariadne, Camila, Nanci e Nanda pela sincera amizade, pela atenção nos momentos difíceis, pelo ombro amigo presente em todos os momentos! Serei eternamente grato! Amo vocês!

Aos amigos Ana Paula, Flávio, Gustavo e Marquinhos... Que falta vocês farão!! Que amizade mais que especial tenho por vocês! Meu eterno carinho e respeito!

Ao meu amigo, meu companheiro, meu brother... Natalino (Nati)! Muito obrigado por tudo: pela amizade, por abrir as portas de sua casa, pela proximidade com sua família que tantas vezes cuidou de mim! Obrigado por permitir confiar em você de olhos fechados!
Aos amigos Ana Leonor, Carol, Tereza, Estela, Valquíria, Soninha, Cidinha e Gilda pelo apoio e companheirismo e pelo convívio prazeroso em todo o tempo.

A Maria Paula Marques pela paciência e pela imensa colaboração em muitos momentos...

Às Funcionárias da seção da pós-graduação Ana e Rosana pela paciência e por tanta dedicação.

Às enfermeiras e auxiliares de enfermagem do departamento de Ginecologia e Obstetrícia pelo auxílio na atenção às pacientes.

Aos médicos residentes do ambulatório de mastologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto pela amizade e pelo imenso apoio com as pacientes.

A todos os Professores e Funcionários da Faculdade de Ciências Farmacêuticas de Ribeirão Preto por terem me acolhido tão bem.

A FAPESP pelo apoio financeiro durante a execução do trabalho.
SUMÁRIO

1. Introdução ... 15
2. Objetivos ... 28
 Objetivo geral ... 28
 Objetivos específicos ... 28
3. Casuística e Métodos.. 30
 3.1 Casuística e protocolo clínico .. 30
 3.2 Métodos ... 33
 3.2.1 Análise enantiosseletiva da ciclofosfamida em plasma 33
 3.2.1.1 Reagentes e soluções padrão ... 33
 3.2.1.2 Instrumentação .. 33
 3.2.1.3 Condições de detecção pelo espectrômetro de massas 34
 3.2.1.4 Preparação das amostras .. 34
 3.2.1.5 Determinação da ordem de eluição dos enantiômeros da CPA 35
 3.2.1.6 Efeito da matriz .. 36
 3.2.1.7 Validação do método .. 36
 3.2.2 Análise do midazolam em plasma ... 37
 3.2.3 Análise farmacocinética e estatística ... 37
 3.2.4 Extração do DNA genômico .. 39
4. Resultados .. 41
 4.1 Métodos ... 41
 4.1.1 Análise enantiosseletiva da ciclofosfamida em plasma 41
 4.1.2 Polimorfismos dos genes CYP2B6, CYP2C9 e CYP2C19 45
 4.1.3 Avaliação da atividade in vivo do CYP3A ... 48
 4.1.4 Farmacocinética dos enantiômeros da CPA em pacientes com câncer de
 mama .. 50
5. Discussão ... 53
6. Conclusão .. 61
7. Referências bibliográficas .. 63

Anexos
Apêndices
RESUMO

A ciclofosfamida (CPA) é um agente alquilante da classe das oxazafosforinas amplamente usada no tratamento de múltiplas formas de câncer e de doenças autoimunes em adultos e crianças. A CPA está disponível na clínica como racemato, no entanto, dados pré-clínicos demonstraram diferenças na eficácia e toxicidade dos seus enantiômeros, sendo o enantiômero (S)-(−)-CPA o de maior índice terapêutico. O presente estudo investigou a enantiosseletividade e a influência do CYP2B6, CYP2C9, CYP2C19 e CYP3A na disposição cinética da ciclofosfamida (CPA) em pacientes portadoras de câncer de mama. Foram incluídas na investigação 15 pacientes previamente submetidas ao procedimento de retirada do tumor e tratadas com CPA racêmica (900-1000 mg) e epirrubicina. A atividade in vivo do CYP3A foi avaliada empregando o midazolam como fármaco marcador. As amostras seriadas de sangue foram coletadas até 24 horas após a administração do primeiro ciclo da CPA. Os enantiômeros da CPA foram extraídos do plasma, usando mistura de acetato de etila:clorofórmio (75:25, v/v) e separados na coluna Chiralcel® OD-R com fase móvel constituída por acetonitrila:água (25:75, v/v), contendo 0,2% de ácido fórmico. Os enantiômeros da CPA foram analisados por LC-MS-MS, sendo que os íons protonados e seus respectivos íons-produtos foram monitorados nas transições 261>141 para a CPA e 189>104 para o padrão interno (antipirina). A recuperação foi maior que 95% para ambos os enantiômeros da CPA e o limite de quantificação foi de 2,5 ng/mL de plasma para cada enantiômero. Os coeficientes de variação e os erros relativos obtidos na avaliação da precisão e exatidão intra e inter-ensaios foram menores que 10%. Os parâmetros farmacocinéticos foram calculados empregando o programa WinNonlin e utilizando modelo monocompartmental e cinética de primeira ordem. Os parâmetros farmacocinéticos com razões enantioméricas diferentes da unidade foram avaliados com base no teste de Wilcoxon (P≤0,05). A disposição cinética da CPA é enantiosseletiva em pacientes com câncer de mama, com acúmulo plasmático do enantiômero (S)-(−)-CPA (AUC 195,00 vs 174,80 µg.h/mL) em função do clearance preferencial do enantiômero (R)-(−)-CPA (5,13 vs 5,99 L/h). Os clearances de ambos os enantiômeros da ciclofosfamida não diferem em função dos genótipos CYP2B6, CYP2C9 e CYP2C19 e da atividade in vivo do CYP3A avaliada pelo clearance do midazolam.

Palavras chave: ciclofosfamida, enantiômeros, farmacocinética, câncer de mama, CYP.
ABSTRACT

Cyclophosphamide (CPA) is an alkylating oxazaphosphorine agent widely used in the treatment of multiple forms of cancer and autoimmunes diseases in adults and children. CPA is used as a racemic mixture, although preclinical data have demonstrated differences in the efficacy and toxicity of its enantiomers, with the (S)-(−)-CPA exhibiting a higher therapeutic index. The present study investigated the enantioselectivity and influence of CYP2B6, CYP2C9, CYP2C19 and CYP3A on the kinetic disposition of cyclophosphamide (CPA) in patients with breast cancer. Fifteen patients previously submitted to removal of the tumor and treated with racemic CPA (900-1000 mg) and epirubicin were included in the study. The in vivo activity of CYP3A was evaluated using midazolam as a marker drug. Serial blood samples were collected up to 24 h after administration of the first cycle of CPA. The CPA enantiomers were extracted from plasma using a mixture of ethyl acetate:chloroform (75:25, v/v) and separated on a Chiralcel® OD-R column, with the mobile phase consisting of acetonitrile:water (25:75, v/v) and 0.2% formic acid. The CPA enantiomers were analyzed by LC-MS-MS, and the protonated ions and their respective ion products were monitored at transitions of 261>141 for CPA and of 189>104 for the internal standard (antipyrine). Recovery was higher than 95% for both CPA enantiomers and the quantification limit was 2.5 ng/mL plasma for each enantiomer. The coefficients of variation and relative errors obtained for the evaluation of the intra- and interassay precision and accuracy were less than 10%. The pharmacokinetic parameters were calculated with the WinNonlin program using a monocompartmental model and first-order kinetics. The pharmacokinetic parameters presenting enantiomer ratios different from one were evaluated using the Wilcoxon test (P≤0.05). The kinetic disposition of CPA was enantioselective in patients with breast cancer, with plasma accumulation of the (S)-(−)-CPA enantiomer (AUC 195.00 vs 174.80 µg.h/mL) due to the preferential clearance of the (R)-(+)−CPA enantiomer (5.13 vs 5.99 L/h). Clearances of both CPA enantiomers did not differ between the CYP2B6, CYP2C9 and CYP2C19 genotypes or as a function of in vivo activity of CYP3A evaluated by the midazolam clearance.

Key words: cyclophosphamide, enantiomers, pharmacokinetics, breast cancer, CYP.
LISTA DE SIGLAS E SÍMBOLOS

4-OH-CPA 4-hidrociclofosfamida
ADH Álcool desidrogenase
ALDH Áldeído desidrogenase
AUC Área sob a curva
Cl Clearance
Cmax Concentração máxima
CPA Ciclofosfamida
CPA-rac Ciclofosfamida racêmica
CYP450 Citocromo P450
EIS Interface por eletronebulização
GC-MS Cromatografia gasosa acoplada ao espectrômetro de massas
GC-NPD Cromatografia gasosa com detector nitrogênio-fósforo
GSH Glutationa
HPLC-UV Cromatografia líquida de alta eficiência com detector ultravioleta
IC 95% Intervalo de confiança 95%
I.V. Intravenosa
Kel Constante de velocidade de eliminação
LC-MS Cromatografia líquida acoplada ao espectrômetro de massas
LOQ Limite de quantificação
MS-MS Massa-massa
MDZ Midazolam
MRM Multiple Reaction Monitoring
PI Padrão interno
(R)-(+-)CPA Ciclofosfamida dextrógera
RFLP-PCR Restriction Fragment Lenght Polymorphism – Polimerase Chain Reaction
(S)-(+-)CPA Ciclofosfamida levógera
t½ Meia-vida de eliminação
Tmax Tempo para alcançar a concentração plasmática máxima
Vd Volume de distribuição
LISTA DE ILUSTRAÇÕES

Figura 1. Mecanismo pelo qual os agentes alquilantes interferem na replicação do DNA (modificado de Germanas & Pandya, 2002). ... 17

Figura 2. Metabolismo da CPA (1) nas vias de ativação [4-hidroxiciclofosfamida (2), aldofosfamida (3) e fosforamida mustarda (4)] e nas vias de inativação [descloroetilciclofosfamida (6), 4-cetociclofosfamida (8), carboxifosfamida (9) e alcofosfamida (10)]. A 4-OH-CPA também sofre desidratação reversível, formando a iminociclofosfamida (11) a qual sofre conjugação com a glutatona (GSH) intracelular para formar a 4-glutationilciclofosfamida (12). Os seus produtos secundários, cloroacetaldeído (7) e acroleína (5), também são mostrados. A acroleína é desativada por conjugação com a GSH, formando um tioéter (14) e pela ALDH1A1 e ALDH3A1, formando o ácido acrílico. ... 22

Figura 3. Tamanho amostral e poder do teste na investigação da enantiosseletividade na disposição cinética da CPA em pacientes com câncer de mama. ... 31

Figura 4. Preparação das amostras para análise dos enantiômeros da CPA em plasma. ... 35

Figura 5. Cromatogramas: (A) plasma branco, (B) amostra de plasma enriquecida com 10µg/mL de CPA racêmica, e (C) amostra de plasma obtida após 3h de infusão da CPA racêmica. Picos (1) padrão interno (PI); (2) (S)-(−)-CPA; (3) (R)-(−)-CPA.... 41

Figura 6. Espectros de massas do íon molecular protonado da CPA (A) e seu íon-produto (B). ... 42

Figura 7. Bandas de confiança para a reta ajustada entre o Cl do MDZ e o Cl do (R)-(−)-CPA. ... 49

Figura 8. Bandas de confiança para a reta ajustada entre o Cl do MDZ e o Cl do (S)-(−)-CPA. ... 49

Figura 9. Concentração plasmática dos enantiômeros (R)-(−)-CPA e (S)-(−)-CPA versus tempo (n=15). Dados apresentados como média ± EPM. 50
LISTA DE TABELAS

Tabela 1. Fatores de risco para o câncer de mama... 16

Tabela 2. Dados demográficos das pacientes submetidas ao estudo (mediana, média e IC 95%) (n = 15) ... 32

Tabela 3. Efeito da matriz para o (S)-(−)-CPA, (R)-(−)-CPA e PI em quatro diferentes lotes de plasma humano (resultados expressos como média) .. 43

Tabela 4. Limites de confiança para a análise enantiosseletiva da CPA por LC-MS/MS ... 44

Tabela 5. Testes de estabilidade (valores de P) dos enantiômeros da CPA em plasma ... 44

Tabela 6. Frequência dos polimorfismos dos genes CYP2B6, CYP2C9 e CYP2C19 nas pacientes investigadas (n=13) ... 45

Tabela 7. Clearances dos enantiômeros da CPA nas pacientes genotipadas como G/G ou G/T para o CYP2B6. Dados expressos como mediana, média e IC 95% 46

Tabela 8. Clearances dos enantiômeros da CPA nas pacientes genotipadas como *1/*1 ou *1/*2 e *1/*3 para o CYP2C9. Dados expressos como mediana, média e IC 95% ... 46

Tabela 9. Clearances dos enantiômeros da CPA nas pacientes genotipadas como *1/*1, *1/*2 e *1/*3, *1/*17 e *17/*17 para o CYP2C19. Dados expressos como mediana, média e IC 95% ... 47

Tabela 10. Avaliação da atividade in vivo da CPA utilizando o midazolam como fármaco marcador nas pacientes investigadas (n=15) ... 48

Tabela 11. Disposição cinética dos enantiômeros (S)-(−)-CPA e (R)-(−)-CPA após dose única IV da CPA racêmica a pacientes com câncer de mama (n=15). Dados apresentados como mediana, média e IC 95% ... 51
INTRODUÇÃO
1. INTRODUÇÃO

Segundo o Instituto Nacional do Câncer (INCA, 2007) o nome câncer é dado a um conjunto de mais de 100 doenças que têm em comum o crescimento desordenado (maligno) de células que invadem os tecidos e órgãos, podendo espalhar-se (metástase) para outras regiões do corpo. Dividindo-se rapidamente, estas células tendem a ser muito agressivas e incontroláveis, determinando a formação de tumores ou neoplasias malignas.

O carcinoma de mama é considerado de bom prognóstico, se diagnosticado e tratado precocemente. Porém, o diagnóstico realizado em fase avançada da doença pode ser o maior responsável pela manutenção das elevadas taxas de mortalidade, sugerindo que as pacientes não foram beneficiadas pelos procedimentos terapêuticos que poderiam, de fato, reverter o curso clínico da doença. Nos últimos anos, houve no Brasil, aparente redução no percentual de pacientes com câncer de mama com a doença em estádio avançado no momento do diagnóstico (THULER; MENDONÇA, 2005).

De acordo com o INCA (2007), no Brasil, o câncer de mama, mesmo com todas as campanhas, ainda representa um grave problema de saúde pública, ocupando a primeira posição em incidência e em óbito, por câncer, em mulheres. Em 2000, foram registradas 8.390 mortes decorrentes deste tipo de câncer e, em 2003, ocorreram 41.610 casos novos de câncer de mama com 9.335 mortes. Em 2005, o INCA registrou 49.470 casos novos e mais de 10.000 mortes femininas. De acordo com este Instituto, para 2006, o câncer de mama foi o segundo mais incidente, com 48.930 casos, e um risco estimado de 52 casos a cada 100 mil mulheres. Em 2008, são esperados 234.870 casos novos de câncer para o sexo feminino. Estima-se que o câncer de mama será o mais incidente, com 49.400 casos e um risco estimado de 51 casos a cada 100 mil mulheres (INCA, 2008).

Diversos fatores de risco parecem influenciar a incidência do câncer de mama. Entretanto, três deles possuem maior relevância na identificação de mulheres com alto risco de desenvolver essa patologia: avaliação da história familiar, testes genéticos e revisão da história clínica. Mulheres que apresentam mutações nos genes BRCA1 e BRCA2 possuem elevada predisposição para o câncer de mama. Essa mutação segue um padrão dominante autossomal de transmissão, o que significa que a irmã, a mãe, ou as filhas de uma mulher com mutação no gene BRCA
apresentam um risco de 50% de possuir essa mesma mutação (SASLOW et al., 2007). Fatores de menor relevância associados ao câncer de mama são listados na tabela 1.

Tabela 1. Fatores de risco para o câncer de mama

Fatores	Risco relativo	Grupo de alto risco
Idade >10		Idosas
Localização geográfica	5	Países desenvolvidos
Idade da menarca	3	Antes dos 11 anos
Idade da menopausa	2	Após 54 anos
Idade da 1ª gravidez	3	1ª gravidez após 40 anos
História familiar	≥2	Câncer em parentes de 1º grau
Doença na mama benigna	4 – 5	Hiperplasia atípica
Câncer em outra mama	>4	Prévio câncer de mama
Índice massa corpórea		
Pré-menopausa	0 – 7	Alto índice massa corpórea
Pós-menopausa	2	Alto índice massa corpórea
Exposição a radiação de ionização	3	Exposição anormal em crianças após 10 anos de idade
Uso de hormônios		
Contraceptivos orais	1 – 2	Uso contínuo
Reposição hormonal	1 – 66	Uso contínuo
Dietilestilbestrol	2	Uso durante a gravidez

Modificado de VERONESI et al., 2005.

Entre os tratamentos empregados para o câncer de mama estão a cirurgia, radioterapia, quimioterapia, hormonioterapia e imunoterapia. Dentre eles destaca-se a quimioterapia, que pode ser subdividida em quimioterapia neo-adjuvante, adjuvante (a mais relevante) e a paliativa. A ciclofosfamida [(R, S)-CPA] é um dos fármacos mais empregados no tratamento quimioterápico adjuvante do câncer mamário (TRENT et al., 2003), observando-se bons resultados em pacientes com receptor de estrogênio positivo (LEVINI et al., 2005; CONTI et al., 2007; YOUNIS et al., 2007).

A CPA é um agente alquilante da classe das oxazafosforinas amplamente usada no tratamento de múltiplas formas de câncer e de doenças autoimunes em adultos e crianças (WILLIAMS et al., 1999; WILLIAMS et al., 1999 b; HAUBITZ et al.,
Os agentes alquilantes representam uma classe de moléculas citotóxicas, que possuem, em comum, a habilidade de tornar-se compostos eletrofílicos fortes, que formam ligações covalentes com os grupos do DNA (GERMANAS; PANDYA, 2002). O mecanismo molecular de ação consiste na acilação com substituição nucleofílica (SN₁ ou SN₂) do DNA, preferencialmente a ⁷⁻guanina, ⁶⁻guanina e ³⁻citosina (EDER, 1999). Segundo Germanas e Pandya (2002), a molécula da CPA sofre um deslocamento intramolecular, envolvendo um dos grupos 2-cloroetila do nitrogênio, para formar o intermediário reativo aziridium. No próximo passo, um nucleófilo, como os resíduos de guanina, ataca um dos carbonos do anel triplo do aziridium, formando uma ligação covalente C-N e liberando o átomo de N do agente alquilante (Figura 1).

Figura 1. Mecanismo pelo qual os agentes alquilantes interferem na replicação do DNA (modificado de Germanas & Pandya, 2002).

Enquanto o uso da CPA no tratamento de pacientes com câncer de pulmão e ovário está declinando, ela continua sendo usada com frequência no tratamento do câncer mamário como componente crítico de tais regimes quimioterápicos: CMF (CPA, metotrexato e 5-fluorouracil), CEF (CPA, epirubicina e 5-fluorouracil), MVC (mitoxantrona, vinblastina e CPA) e TAC (docetaxel, doxorrubicina e CPA) (ZHANG et al., 2005). A CPA é amplamente usada no tratamento de pacientes com linfomas não Hodgkin e uma variedade de sarcomas teciduais e ósseos. Além de ser...
comumente usada no tratamento de linfomas malignos, leucemias, neuroblasto-toma e retinoblastoma, ela também está incluída em diversos protocolos para o tratamento de leucemias linfoblásticas agudas (BODDY; YULE, 2000). Segundo Germanas e Pandya (2002), a CPA é usada no tratamento do lupus eritematoso, vasculite sistêmica, artrite reumatóide, e outras doenças. Os autores também reportam que a CPA é usada na dermatologia, como por exemplo, em micoses fungóides, pioderma gangrenoso, doenças autoimunes com formação de bolhas, entre outras. Além das indicações clínicas anteriormente citadas, Haubitz et al. (2002) relatam que a CPA também é usada com sucesso na granulomatose de Wegener, poliangite microscópica e outras doenças autoimunes.

A CPA é um fármaco que não está isento de efeitos tóxicos, sendo a mielossupressão, particularmente a leucopenia, o principal efeito adverso da CPA. Isto é especialmente comum em pacientes que são tratados com altas doses, sendo que estes efeitos são interrompidos quando a terapia com CPA é cessada. Anorexia, náuseas, alopecia e vômitos são frequentemente vistos em pacientes submetidos à terapia com CPA. Infertilidade devido a um dano gonadal pode ocorrer em pacientes que recebem a CPA. Outros efeitos tóxicos bastante conhecidos são pneumonite intersticial e insuficiência da excreção líquida, além de possuir potencial carcinogênico e teratogênico (de JONGE et al., 2005). De acordo com Germanas e Pandya (2002), a cistite hemorrágica é um efeito colateral bastante conhecido e o principal sintoma de intoxicação por CPA. Esta patologia é caracterizada pela inflamação da parede da bexiga com subsequente hemorragia, o que talvez seja devido à presença do metabólito acroleína, o qual interage com as células uroepiteliais. Segundo os referidos autores, oligospermia ou azospermia podem acontecer no sexo masculino. Em mulheres, amenorreia associada à diminuição da secreção do estrogênio ocorre em uma proporção significante de pacientes.

A CPA está disponível na clínica como racemato. Entretanto, numerosos estudos sobre as diferenças terapêuticas entre os enantiômeros dos fármacos têm apontado para a necessidade da síntese e avaliação biológica dos enantiômeros individuais (BARBIERI et al., 2006). Dados pré-clínicos demonstraram diferenças na eficácia e toxicidade dos enantiômeros da CPA, com o S-enantiômero exibindo maior índice terapêutico (REID et al., 1989; CORLETT; CHRYSTYN, 1996). Assim como nos estudos acima citados, Paprocka et al. (1986) observaram maior efeito antitumoral e maior índice terapêutico para o S-enantiômero em tumores sólidos.
quando comparado ao R-enantiômero. Por sua vez, Kleinrok et al. (1986) estudaram as propriedades farmacológicas da CPA racêmica e seus enantiômeros e observaram que o (R)-(+-)CPA é mais tóxico que o (S)-(+-)CPA, enquanto que o (S)-(+-)CPA é mais tóxico quando comparado com o racemato. Embora os enantiômeros (R)-(+-)CPA e (S)-(+-)CPA possam diferir na resposta terapêutica e nos efeitos tóxicos, as conseqüências clínicas dessas diferenças ainda não estão adequadamente determinadas (WILLIAMS et al., 1999 b).

A CPA é administrada via oral ou via intravenosa, em uma ampla faixa de dosagem (de JONGE et al., 2005). Ela é facilmente absorvida via oral, amplamente distribuída pelo organismo e apresenta um baixo grau de ligação às proteínas plasmáticas, aproximadamente 20% (BODDY; YULE, 2000). A dose, o tempo e a via de administração são geralmente determinados pelo tipo de patologia. A dose da CPA usada nos tratamentos de doenças neoplásicas pode variar, dependendo do regime terapêutico a ser adotado. Esta faixa de dosagem varia de 2-6 mg/Kg (baixa dose) a >6000 mg/m² (alta dose) (de JONGE et al., 2005).

A CPA é eliminada principalmente por metabolismo hepático, embora as reações de ativação ou inativação também possam ocorrer em outros sítios, incluindo o eritrócito e os próprios tumores (BODDY; YULE, 2000). Este fármaco e seus metabólitos são recuperados quase que completamente na urina nas 24 horas após o início do tratamento. Menos que 20% da dose administrada é eliminada inalterada na urina e somente 4% pela bile (BODDY; YULE, 2000; de JONGE et al., 2005; ZHANG et al., 2005). Ademais a isto, de JONGE et al. (2005) relatam que uma pequena fração da dose da CPA é eliminada pelas fezes e pelo ar expirado, e que 30 – 60% do total da dose de CPA é eliminada pelos rins como CPA ou metabólitos. A meia-vida de eliminação da CPA é de 6 a 9 horas, e o clearance de, aproximadamente, 2,5 a 4,0 L/h/m² (BODDY; YULE, 2000), sendo que a meia-vida da (R)-(+-)CPA é de 6,82 (± 2,27) horas e da (S)-(+-)CPA de 7,13 (± 1,84) horas (CORLETT; CHRYSTYN, 1996). Entretanto, num estudo de revisão, de Jonge et al (2005), referem que a meia-vida de eliminação da CPA é de 5-9 horas e o clearance total de 4-5 L/h, do qual a maior parte é clearance não renal.

Em 1999, Hassan et al. mostraram que a farmacocinética da CPA é caracterizada pelo baixo clearance total (5,4 L/h), o qual a classifica como um fármaco de baixa razão de extração hepática. A CPA é um potente indutor das enzimas microsomais, além de induzir seu próprio metabolismo depois de repetidas
administrações, dentro de um período de diversos dias consecutivos. A auto-indução é detectável dentro de 24 horas após o início do tratamento e resulta em aproximadamente numa diminuição de 2 vezes no valor da meia-vida de eliminação da CPA (de JONGE et al., 2005). O volume de distribuição (Vd) da CPA é de 30-50 L, o qual se aproxima do líquido corpóreo total (de JONGE et al., 2005). Devido a CPA exibir um baixo grau de ligação às proteínas plasmáticas (de JONGE et al., 2005; JARMAN et al., 1979), seu baixo clearance renal pode ser o resultado da extensa reabsorção tubular renal.

O fígado é o principal sítio de ativação da CPA. Aproximadamente 90% da dose administrada é ativada pelo sistema microsomal enzimático citocromo P450 (CYP) para formar o metabólito ativo 4-hidroxiciclofosfamida (4-OH-CPA), o qual existe em equilíbrio com seu tautômero, a aldofosfamida. Várias isoenzimas do CYP estão envolvidas na bioativação da ciclofosfamida em humanos. O CYP2B6 contribui com aproximadamente 45% da formação da 4-OH-CPA, o CYP3A4 com aproximadamente 25% e o CYP2C9 com aproximadamente 12%. Outras enzimas, tais como, o CYP2C19, CYP2A6 e CYP2C8 contribuem em menor extensão (ZHANG et al., 2005).

A CPA também pode ser diretamente desintoxicada pela oxidação da cadeia lateral, levando a formação do metabólito inativo 2-descloroetilciclofosfamida (Figura 2). Esta reação resulta na formação de uma quantidade equimolar de cloroacetaldéído e é predominantemente mediada pelo CYP3A4, CYP3A7 e CYP3A5 e, em menor extensão pelo CYP2B6 (ZHANG et al., 2005). Baseados em dados urinários, foi demonstrado que essa via é responsável por menos que 5% da eliminação total da CPA (de JONGE et al., 2005). Segundo os referidos autores, alguns estudos in vivo e in vitro mostram que o cloroacetaldéído possui efeito citotóxico direto sobre a célula.

A 4-OH-CPA é altamente difundida para o interior da célula. Sua elevada instabilidade permite que seja espontaneamente decomposta em fosforamida mustarda por β-eliminação da acroleína, um aldeído altamente reativo que pode aumentar o dano celular induzido pela CPA, possivelmente por conjugação e depleção da glutatonia celular (Figura 2) (de JONGE et al., 2005). A fosforamida mustarda é um agente alquilante do DNA e, portanto, considerada o metabólito responsável pelo efeito alquilante da CPA. Entretanto, a fosforamida mustarda circulante pode não contribuir para a citotoxicidade, pois é altamente ionizada em pH fisiológico e assim, impedida de penetrar na célula. Portanto, somente a fração da
fosforamida mustarda formada no interior da célula pode ser considerada citotóxica. Visto que a 4-OH-CPA se difunde completamente para o interior da célula, seguida por liberação espontânea da fosforamida mustarda para o meio extracelular, ela pode funcionar como um transportador da fosforamida mustarda para o interior celular. A concentração sistêmica da 4-OH-CPA pode refletir, portanto, o estágio de ativação intracelular da CPA (de JONGE et al., 2005).

Ambas, a 4-OH-CPA e a aldofosfamida são irreversivelmente desativadas por uma reação oxidativa à 4-cetociclofosfamida e carboxifosfamida, respectivamente (Figura 2). Ambos compostos não possuem atividade alquilante e não estão envolvidos em toxicidade. A formação da carboxifosfamida a partir da aldofosfamida é a via metabólica de desintoxicação mais importante da CPA. As enzimas aldeído desidrogenases (ALDH), particularmente a ALDH1, estão envolvidas na formação da carboxifosfamida a partir da aldofosfamida. A reação de desintoxicação catalisada pela ALDH compete com a reação de ativação que converte a aldofosfamida em fosforamida mustarda. A inclusão de um inibidor da atividade da ALDH durante a exposição da droga pode, portanto, aumentar a sensibilidade das células à ação citotóxica da CPA. Além do mais, tumores resistentes aos efeitos citotóxicos da CPA, freqüentemente apresentam uma super expressão de ALDH1 ou ALDH3A1. A atividade da ALDH1 é diminuída como consequência da administração da CPA, resultando numa conversão reduzida da aldofosfamida em carboxifosfamida. Isso ocorre principalmente devido à desativação da ALDH1 pela acroleína (de JONGE et al., 2005). A desintoxicação da 4-OH-CPA, fosforamida mustarda e acroleína também podem ocorrer via conjugação intracelular com a glutatona, ocorrendo espontaneamente ou mediada pela enzima glutatona-S-transferase. Esse processo, em parte, depende da concentração intracelular da glutatona e da atividade da glutatona-S-transferase (de JONGE et al., 2005) (Figura 2).

Em 1998, Joqueviel et al. reportaram que 16% da dose de CPA é excretada sob a forma inalterada em urina nas primeiras 24 horas e 20,4% sob a forma de metabólitos. A carboxifosfamida é quantitativamente o principal metabólito encontrado na urina e juntamente com seus produtos de degradação representa, aproximadamente, 12% da dose de CPA. A descloroetilciclofosfamida é o principal metabólito da via de desativação da CPA e juntamente com seus produtos de degradação representa 3,4% da dose de CPA. Outros metabólitos como a alcofosfamida e a cetofosfamida representam, respectivamente, 2,3 e 0,4% da dose de CPA.
Figura 2. Metabolismo da CPA (1) nas vias de ativação [4-hidroxiciclofosfamida (2), aldofosfamida (3) e fosforamida mustarda (4)] e nas vias de inativação [descloroetilciclofosfamida (6), 4-cetociclofosfamida (8), carboxifosfamida (9) e alcofosfamida (10)]. A 4-OH-CPA também sofre desidratação reversível, formando a iminociclofosfamida (11) a qual sofre conjugação com a glutatonia (GSH) intracelular para formar a 4-glutationilciclofosfamida (12). Os seus produtos secundários, cloroacetaldeído (7) e acroleína (5), também são mostrados. A acroleína é desativada por conjugação com a GSH, formando um tioéter (14) e pela ALDH1A1 e ALDH3A1, formando o ácido acrílico.
Segundo Williams et al. (1999 b), existe uma grande variabilidade interindividual nos efeitos clínicos da CPA em função de diferenças inter-pacientes na velocidade e extensão da absorção, distribuição, metabolismo e eliminação. A bioativação da ciclofosfamida em humanos é dependente do CYP2B6, CYP3A4 e CYP2C9, sendo que o CYP3A4 também catalisa a reação de N-descloroetilação da CPA (WILLIAMS et al., 1999; BODDY; YULE, 2000). Visto que a atividade do CYP3A envolvido no metabolismo da CPA exibe um amplo grau de variabilidade interindividual, diferenças na atividade desta isoforma podem ser responsáveis pela variação na eficácia terapêutica e toxicidade observada entre pacientes submetidos à terapia com CPA (WILLIAMS et al., 1999; NELSON et al., 1996). Petros et al (2005) apontaram que polimorfismos no CYP3A4 e CYP3A5 estão associados com uma redução no clearance sistêmico da CPA e uma fraca resposta clínica, sugerindo, assim, um importante papel do CYP3A na ativação da CPA. De acordo com Petros et al. (2005), variantes alélicas do CYP3A são relativamente incomuns em brancos, mas encontram-se em aproximadamente 50% dos afro-americanas. Segundo os autores, essas variantes podem ser parcialmente responsáveis pela diminuição da eficácia da CPA em afro-americanas.

A identificação de substratos específicos ou de marcadores para uma isoforma do CYP é essencial na investigação de fatores genéticos, fisiológicos, patológicos ou ambientais que podem alterar a atividade da enzima (NELSON et al., 1996). O midazolam (MDZ) é um fármaco marcador da atividade in vivo do CYP3A. Considerando que o CYP3A é encontrado nos hepatócitos e nos enterócitos do intestino delgado, na administração p.0. o MDZ é hidroxilado pelo CYP3A hepático e intestinal (STREETMAN et al., 2000). O clearance total do midazolam reflete a atividade in vivo do CYP3A, com possibilidade de marcação in vivo da atividade somente do CYP3A hepático (administração intravascular) ou do CYP3A hepático e intestinal (administração p.0.).

A variação inter-individual na expressão e na atividade do CYP2B6 é extensa. Em 2006, Xie et al. investigaram os parâmetros farmacocinéticos da CPA e da 4-OH-CPA e o impacto genético das variantes alélicas CYP2B6 sob o metabolismo da CPA em 29 pacientes caucasianos, com doenças hematológicas. Segundo os autores, a 4-hidroxilação da CPA em pacientes com a variante alélica CYP2B6 G516T (n = 8) é duas vezes maior do que nos pacientes com os alelos selvagens CYP2B6. O polimorfismo CYP2B6 G516T é uma das mutações mais comuns
encontradas no gene CYP2B6, com frequências de 19,9% (n = 88) em japoneses (ARIYOSHI et al., 2001), 28,6% (n = 215) em alemães (LANG et al., 2001) e 16,4% (n = 67) em amostras microssoiais hepáticas humanas (XIE et al., 2003). Ambas as variantes alélicas CYP2B6*6 e CYP2B6*7 apresentam a mutação G516T.

O CYP2C9 não contribui de maneira significativa na 4-hidroxilação da CPA em microssoiais hepáticos humano. No entanto, as variantes alélicas CYP2C9*2 e CYP2C9*3 mostram, in vitro, atividade 4-hidroxilase 3 vezes menor quando comparada ao CYP2C9*1 (GRISKEVICIUS et al., 2003). Ainda segundo os referidos autores, o CYP2C19 contribui parcialmente na bioativação da CPA em microssoiais hepáticos humano. No entanto, não há dados suficientes para concluir que o genótipo CYP2C19 influencia no metabolismo da CPA.

Alterações nos processos de ativação e desintoxicação da CPA podem levar a implicações sobre seus efeitos tóxicos e terapêuticos. Como os pacientes com câncer são tratados frequentemente com múltiplos regimes de fármacos, conhecimentos sobre interações medicamentosas que possam comprometer a eficácia terapêutica são importantes (de JONGE et al., 2005). Os compostos conhecidos que inibem o metabolismo da CPA em humanos são o alopurinol, bussulfano, cloranfenicol, clorpromazina, ciprofloxacina, fluconazol e tiotepa (JONGE et al., 2005; BODDY; YULE, 2000). O metabolismo da CPA também pode ser induzido por dexametasona, ondansetrona, fenobarbital, prednisona/prednisolona e rifampicina (de JONGE et al., 2005). A fenitoína induz a N-descloroetilação do enantiômero (S)-(−)-CPA em maior extensão que a do enantiômero (R)-(+)−CPA (WILLIAMS et al., 1999; BODDY; YULE, 2000). De acordo com Haubitz et al. (2002), a prednisolona induz o metabolismo da CPA, todavia os estudos relativos a esta interação ainda são escassos e contraditórios.

A ondansetrona é um antiemético frequentemente associado aos regimes quimioterápicos a fim de reduzir a incidência de náuseas e vômitos. A ondansetrona é metabolizada pelo CYP1A2, CYP2D6 e CYP3A, no entanto, não há dados relativos a influência do antiemético no metabolismo de outros fármacos. O estudo de Gilbert et al. (1998) relataram redução de 17% nos valores de AUC e aumento do clearance da CPA (1875 mg/m²/dia durante 3 dias) nas pacientes tratadas com o antiemético (dose de ataque de 4,5 mg/m² seguida de infusão contínua de 0,6 mg/m²/h). Os referidos autores reportaram ausência de alterações na eficácia e toxicidade nas 54 pacientes investigadas tratadas com ondansetrona.
Embora exista uma grande quantidade de estudos sobre a farmacocinética clínica da CPA, poucos investigaram a questão da sua enantiosseletividade na disposição cinética (WILLIAMS et al., 1999; WILLIAMS et al., 1999 b; CORLETT; CHRYSTYN, 1996; REID; STOBAGOUGH; STERNSON, 1989; HOLM et al., 1990; JARMAN et al., 1979). A enantiosseletividade na disposição cinética de medicamentos apresenta-se como uma fonte de variabilidade na resposta a fármacos quirais e modifica orientações nas dimensões das indústrias farmacêuticas e agências de regulamentação. O fenômeno da enantiosseletividade é característico nos processos de interação fármaco-macromoléculas quirais como na absorção dependente de carreadores, na ligação às proteínas plasmáticas, nos processos de secreção biliar, renal e no metabolismo (JAMALY et al., 1989). Muitos dos compostos sintéticos que contêm um centro quiral estão disponíveis na clínica como racemato, que é uma mistura de 50-50 de dois enantiômeros (KROEMER et al., 1996). A questão da interação enantiômero-enantiômero e a inversão quirais unidirecional adicionam um novo capítulo na problemática da quiralidade, como consequência da demonstração de que efeitos terapêuticos e/ou tóxicos de um racemato não são necessariamente determinados pela soma dos enantiômeros individuais (JAMALY et al., 1989).

A enantiosseletividade na disposição cinética depende da via de administração. Em 1990, Holm et al. investigaram a enantiosseletividade na disposição cinética da CPA em coelhos seguindo administração intravenosa, intraperitoneal e oral. Os autores relatam ausência de enantiosseletividade na administração intravenosa, concentração plasmática detectável somente do enantiômero (R)-(+) CPA na administração oral e eliminação mais rápida do enantiômero (S)-(−)-CPA na administração intraperitoneal. Os mesmos autores ainda apontam metabolismo preferencial do enantiômero (S)-(−)-CPA em microssomos hepáticos de coelhos, com relato de razões (R)-(+) CPA / (S)-(−)-CPA, variando inicialmente de 1:1 até 4,5:1 após 60 minutos de incubação. Os resultados obtidos com os experimentos em coelhos permitem inferir estereosseletividade na eliminação pré-sistêmica da CPA resultando em maior biodisponibilidade do enantiômero (R)-(+) CPA nas administrações intraperitoneal e oral.

Particular atenção tem sido prestada à influência da quiralidade na 4-hidroxilação e nos produtos de desintoxicação da CPA. A seletividade da CPA para células neoplásicas é decorrente da estabilidade da 4-OH-CPA, a qual é
transportada para os sítios alvos, e ao nível relativamente baixo da aldeído desidrogenase em células neoplásicas comparado com células normais (GERMANAS; PANDYA, 2002). Se esta hipótese é verdadeira, então diferenças entre os enantiômeros quanto ao rendimento relativo dos seus metabólitos, podem resultar em diferenças na eficácia terapêutica (JARMAN et al., 1979). Contudo, os dados sobre a enantiosseletividade no metabolismo da CPA em humanos são insuficientes para sustentar a hipótese de que um dos dois enantiômeros seria superior ao seu antípoda ou ao racemato na quimioterapia do câncer (JARMAN et al., 1979). Para Williams et al. (1999 b), não há enantiosseletividade na farmacocinética da CPA administrada por infusão a pacientes com vários tipos de câncer, mas reportam enantiosseletividade no clearance de formação do metabólito descloroetilciclofosfamida. Apenas dois estudos (COX et al., 1976; JARMAN et al., 1979) investigaram a questão da enantiosseletividade no metabolismo dos enantiômeros da CPA administrada por infusão, com achados de concentrações ligeiramente maiores para o (S)-(−)-CPA na urina de pacientes com vários tipos de câncer. Considerando que tais estudos envolveram um pequeno número de pacientes, os resultados da enantiosseletividade no metabolismo da CPA em humanos ainda são inconclusivos.
OBJETIVOS
2. OBJETIVOS

Objetivo Geral:

Investigar a influência da enantiosseletividade na farmacocinética da CPA em pacientes com câncer de mama, genotipadas para o CYP2B6, CPY2C9, CYP2C19 e com atividade do CYP3A avaliada in vivo.

Objetivos Específicos:

- Desenvolver e validar o método de análise dos enantiômeros da ciclofosfamida em plasma.
- Avaliar a disposição cinética dos enantiômeros da ciclofosfamida em pacientes com câncer de mama.
- Avaliar a correlação entre o clearance da ciclofosfamida e o clearance do midazolam (marcador do CYP3A), em pacientes portadoras de câncer de mama.
- Avaliar a correlação entre os genótipos CYP2B6, CYP2C9 e CYP2C19 e os clearances dos enantiômeros da CPA, em pacientes portadoras do câncer de mama.
CASUÍSTICA E MÉTODOS
3. CASUÍSTICA e MÉTODOS

3.1. Casuística e protocolo clínico

O projeto de pesquisa foi aprovado pelo Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), em 23 de maio de 2005 sob o Processo HCFMRP número 2719/2005 (Anexo I). As pacientes portadoras de câncer de mama foram incluídas no estudo após a assinatura do Termo de Consentimento Livre e Esclarecido (Anexo II), garantindo-lhes o direito de participarem ou não da pesquisa. Foi garantida a liberdade da paciente se recusar a participar ou retirar seu consentimento, em qualquer fase da pesquisa, sem penalização alguma ou prejuízo ao seu cuidado e/ou tratamento. Caso houvesse intercorrências como o aparecimento de efeitos colaterais, seria garantido o afastamento da paciente do protocolo de pesquisa e o tratamento apropriado no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP). Com essas medidas garantiu-se, também, o sigilo dos dados obtidos, assegurando a privacidade dessas pacientes.

A estimativa do número de pacientes investigadas foi realizada com base na variabilidade pós-estudo na disposição cinética dos enantiômeros da CPA nas pacientes com câncer de mama (n=15). No presente estudo, a diferença das médias de AUC (área sob a curva concentração plasmática vs tempo) relativa aos enantiômeros (S)-(-)-CPA e (R)-(+)-CPA foi de 20,73 µg.h/mL e a diferença dos desvios padrão foi de 7,75 µg.h/mL. O tamanho amostral foi calculado empregando o programa PS Power and Sample Size Calculation, versão 2.1.30, Vanderbilt, EUA. Os dados mostraram que uma diferença de 12% entre os enantiômeros, com poder de 80% e erro tipo I de 5%, seria detectada com a inclusão de no mínimo 03 pacientes (Figura 3).
Foram incluídas na investigação 15 pacientes adultas portadoras de câncer de mama invasor e que aceitaram participar do estudo. A idade das pacientes variou de 25 a 57 anos (Tabela 2), todas apresentando função hepática e renal dentro dos limites da normalidade (Apêndice-A), e indicação de uso da CPA associada a epirrubicina. Todas as pacientes investigadas receberam uma dose de 8 mg de ondansetrona via IV, imediatamente antes do início da quimioterapia. As pacientes foram avaliadas através de exames clínicos, provas histológicas e citológicas e foram atendidas no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP).

Não foram incluídas na investigação as pacientes que não se inseriram nos critérios de inclusão anteriormente definidos, pacientes com história de doença pulmonar obstrutiva crónica grave, devido ao risco de apnéia pelo midazolam, pacientes gestantes, em fase de lactação, pacientes psiquiátricas e pacientes que fazem uso de outros fármacos indutores ou inibidores do metabolismo da CPA.

As pacientes foram tratadas com 4 a 6 doses de CPA racêmica injetável (Genuxal®, Asta Médica, São Paulo, SP), em doses individuais de 900 ou 1000 mg/m², durante 1 hora de infusão, administradas a intervalos de 21 dias. As pacientes foram internadas durante a administração da 1ª dose de ciclofosfamida, para a realização das coletas de sangue e urina, ocasiões em que as pacientes também receberam a dose i.v. de 1 mg de midazolam (Dormonid®, Roche, Jacarepaguá, RJ). As amostras seriadas de sangue (volumes de aproximadamente 5 mL) foram coletadas em seringas heparinizadas (Liquemine® 5000UI, Roche
Produtos Químicos e Farmacêuticos AS, São Paulo, SP) imediatamente antes da administração do fármaco e em 15, 30, 45 e 60 min e 1,25; 1,5; 2; 3; 5; 8; 12; 16 e 24 horas, seguindo o início da infusão. As amostras foram centrifugadas imediatamente após a coleta e congeladas a uma temperatura de -70º C até a análise.

Tabela 2 - Dados demográficos das pacientes submetidas ao estudo (mediana, média e IC 95%) (n = 15)

Pacientes	Idade (anos)	Peso (Kg)	Altura (m)	IMC (Kg/m²)
1	55	60,0	1,55	25,0
2	25	71,4	1,71	24,4
3	41	38,3	1,58	15,3
4	54	57,8	1,55	24,1
5	33	52,0	1,53	22,2
6	35	55,0	1,56	22,6
7	51	59,7	1,55	24,8
8	56	66,0	1,65	24,2
9	53	81,5	1,55	33,9
10	40	58,0	1,70	20,1
11	49	88,3	1,65	32,4
12	43	65,0	1,52	28,1
13	36	55,3	1,53	23,6
14	47	51,4	1,52	22,3
15	57	80	1,70	27,7

| Mediana | 47 | 59,7 | 1,55 | 24,2 |
| Média (IC 95%) | 45 (39,6-50,4) | 62,65 (55,4-69,9) | 1,59 (1,55-1,63) | 24,7 (22,2-27,2) |
3.2. Métodos

3.2.1. Análise enantiosseletiva da ciclofosfamida em plasma

3.2.1.1. Reagentes e soluções padrão

A ciclofosfamida monohidratada, ISOPAC® (pureza >99.5%) foi adquirida da Sigma (St Louis, MO, USA). A solução estoque (400 µg/mL) foi preparada em etanol e estocada à -20°C. As soluções padrão da CPA foram preparadas por diluição apropriada em etanol nas concentrações de 4–200 µg/mL. O padrão interno (PI), antipirina (Sigma, St Louis, MO, USA), foi preparado em etanol na concentração de 0,1 mg/mL.

As amostras de plasma humano branco foram cedidas pelo Hemocentro do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. As amostras de plasma branco (200 µL), fortificadas com 50 µL de cada solução padrão, foram empregadas na construção das curvas de calibração nas concentrações de 0,5; 2,5; 5; 10; 20; 25 µg de cada enantiômero/mL.

A acetonitrila, o acetato de etila e o clorofórmio foram obtidos da Merck (Darmstadt, Germany) como grau HPLC. O ácido fórmico (88%) foi obtido da J.T. Baker (Phillipsburg, NJ, USA). Toda a água utilizada foi destilada e purificada no sistema Milli-Q Plus (Millipore, Bedford, MA, USA).

3.2.1.2 Instrumentação

O sistema HPLC foi composto por bomba LC-10AD e forno para coluna CTO-10AS da Shimadzu (Kyoto, Japão). A resolução dos enantiômeros (R)-(+-)CPA e (S)-(--)CPA e do PI foi obtida na coluna quirála Chiralcel® OD-R, partículas de 10 µm, 250 x 4,6 mm (Chiral Technologies Inc, Exton, PA, USA) com pré-coluna LiChrospher® C-18, partículas de 5 µm, 4x4 mm (Merck, Damstadt, Alemanha). A fase móvel que eluiu pelo sistema na vazão de 0,5 mL/min foi constituída por acetonitrila:água (25:75, v/v), contendo 0,2% de ácido fórmico. A coluna foi mantida na temperatura de 20 ± 1°C.
3.2.1.3. Condições de detecção pelo espectrômetro de massa

O sistema de detecção por espectrometria de massas (MS-MS) utilizado na análise da CPA foi o Quattro Micro LC triplo quadrupolo (Micromass, Manchester, Reino Unido) equipado com uma interface por eletronebulização (EIS). As análises foram executadas no modo positivo. A voltagem do capilar no EIS foi de 3,0 kV. A temperatura da fonte e a temperatura de dessovatação foram mantidas a 120°C e 200°C, respectivamente. O nitrogênio foi utilizado como gás de nebulização na vazão de 416 L h⁻¹. O argônio foi utilizado como gás de colisão na pressão de aproximadamente 2,07 x 10⁻³ mbar. A voltagem do cone foi mantida em 25 V para a CPA e para o PI. A energia de colisão foi de 20 eV para a CPA e para o PI.

As condições de otimização do MS-MS foram obtidas por infusão direta da solução estoque de CPA 400 μg/mL preparada na fase móvel e introduzida com bomba de infusão, na vazão de 20 μL/min. As análises foram executadas no modo MRM (Multiple Reaction Monitoring). Os íons protonados [M + H]⁺ e seus respectivos íons-produtos foram monitorados nas transições: 261 > 141 para a CPA e 189 > 104 para o PI. A aquisição de dados e a quantificação das amostras foram realizadas utilizando o programa MassLynx, versão 3,5 (Micromass, Manchester, Reino Unido).

3.2.1.4. Preparação das amostras

Às aliquotas de 200 μL de plasma humano foram adicionados 25 μL da solução de padrão interno (0,1 mg/mL da solução de antipirina). A CPA foi extraída das amostras de plasma com 5 mL do solvente extrator, acetato de etila:clorofórmio (75:25, v/v), em agitador horizontal (Marconi modelo MA 139/CFT, Piracicaba, SP) durante 30 minutos. Após a centrifugação (2000g durante 10 minutos), a fase orgânica foi retirada, evaporada no evaporador Jouan RC 10.22 e RCT 90 (St. Herblain, França) e retomada em 200 μL da fase móvel e em 100 μL de n-hexano. Após agitação em mixer durante 30 s e centrifugação a 1800g durante 5 minutos, foram retirados 100 μL da fase aquosa e injetados 40 μL no sistema cromatográfico (Figura 4).
Figura 4. Preparação das amostras para análise dos enantiômeros da CPA em plasma.

3.2.1.5. Determinação da ordem de eluição dos enantiômeros da CPA

Uma alíquota de 25 µL de solução 4 mg de CPA racêmica/mL em etanol foi evaporada à secura em temperatura ambiente. O resíduo foi retomado em 200 µL da fase móvel constituída por mistura de acetonitrila:água (25:75, v/v) adicionada de 0,2% de ácido fórmico, dos quais 40 µL foram injetados na coluna Chiralcel® OD-R e analisados por UV a 195 nm. As frações do eluato correspondentes a cada enantiômero foram coletadas e submetidas ao procedimento de extração acima descrito. Os resíduos foram analisados de acordo com o procedimento descrito por Corlett & Chrystyn (1996), o qual emprega coluna Chiral-AGP® com fase móvel constituída por mistura de acetonitrila:tampão fosfato 0.015 M pH 4.0 (1:99, v/v).
3.2.1.6. Efeito da matriz

O efeito da matriz foi avaliado comparando as alturas dos picos do (-)-(S)-CPA, (+)-(R)-CPA e do padrão interno (PI) injetados diretamente na fase móvel, com as alturas dos picos obtidas nas situações de adição dos padrões a extratos de plasma branco oriundos de 04 diferentes voluntários. As amostras foram avaliadas nas concentrações de 0,5; 10 e 20 µg de cada enantiômero da CPA/mL de plasma.

3.2.1.7. Validação do método

O método foi validado de acordo com a Resolução 899 de 29 de maio de 2003 da Agência Nacional de Vigilância Sanitária (ANVISA).

As amostras de plasma humano, empregadas na validação do método analítico, foram, inicialmente, avaliadas quanto a ausência de picos interferentes.

A eficiência do procedimento de extração foi avaliada pela análise, em triplicata, de alíquotas de 200 µL de plasma branco fortificadas com três diferentes concentrações de CPA (0,5, 10 e 25 µg/mL de cada enantiômero). A recuperação foi avaliada pela comparação das áreas dos picos obtidas da injeção das amostras de plasma submetidas ao procedimento de extração com aquelas áreas obtidas da injeção direta das soluções padrão dos enantiômeros (R)-(+)CPA e (S)-(−)-CPA.

O limite de quantificação foi definido como a menor concentração plasmática de cada enantiômero da CPA, analisada com precisão e exatidão aceitáveis (coeficientes de variação e desvios ≤ 20%).

A linearidade foi determinada pela análise das amostras de plasma branco fortificadas com concentrações de CPA no intervalo 0,0025-25 µg de cada enantiômero/mL. A equação da regressão linear e os coeficientes de correlação foram obtidos das razões das áreas dos picos padrão/PI, plotadas contra suas respectivas concentrações.

A precisão e a exatidão intra e interensaios foram avaliadas nas concentrações de 0,5; 10,0 e 25,0 µg/mL de plasma de cada enantiômero da CPA. As alíquotas de plasma fortificadas com CPA foram armazenadas a −20°C e analisadas em replicatas (n=10) para as avaliações intra-ensaio e em quintuplicatas, por cinco dias consecutivos, para as avaliações interensaios.

A estabilidade de curta duração dos enantiômeros (R)-(+)CPA e (S)-(−)-CPA em plasma foi avaliada mantendo as amostras (0,5 e 25,0 µg/mL) em repouso
durante 4 horas em temperatura ambiente (25º C). A estabilidade pós-processamento também foi avaliada, permanecendo o extrato já retomado na fase móvel em repouso por 12 horas à temperatura de 16º C. Estas amostras foram mantidas no interior do injetor automático. A estabilidade após três ciclos de congelamento/descongelamento foi avaliada em alíquotas das mesmas amostras usadas no teste de estabilidade de curta duração.

3.2.2. Análise do midazolam em plasma

A análise do midazolam em plasma foi realizada empregando LC–MS-MS com base em estudo anterior do nosso grupo (JABOR, et al., 2005). Aliquotas de 1 mL de plasma adicionadas da solução do padrão interno (clobazam) foram extraídas em meio básico (NaOH 0,1M) com 4 mL de tolueno-álcool isoamílico (100:1, v/v) durante 30 minutos em agitador mecânico horizontal. Após centrifugação de 2000g por 5 minutos, as fases orgânicas foram separadas e evaporadas até a secura. Os resíduos foram dissolvidos em 50 µL de fase móvel [acetonitrila e acetato de amônia 10 mmol/L (50:50)]. As amostras foram analisadas por LC–MS-MS. O midazolam e o padrão interno foram separados em coluna RP-18 com a referida fase móvel. Foi empregada interface por eletronebulização operando no modo íon positivo. As espécies protonadas [M+H]+ e seus respectivos íons produtos foram monitorados nas transições m/z 301>259 para o padrão interno e 326>291 para o midazolam. A curva analítica foi construída no intervalo de 0,1 – 100 ng/mL de plasma.

3.2.3. Análise farmacocinética e estatística

Ciclofosfamida

A análise farmacocinética foi realizada utilizando o software WinNonlin versão 4.0 (Pharsight Corporation, Mountain View, EUA). A disposição cinética enantiosseletiva da CPA, na administração intravenosa em pacientes com câncer de mama, foi avaliada através de modelo monocompartimental e cinética de primeira ordem, sem inclusão de lag time. Os parâmetros farmacocinéticos foram calculados com base nas concentrações plasmáticas, obtidas até 24 horas após a administração do fármaco.

A área sob a curva concentração plasmática versus tempo (AUC$^{0-\infty}$) foi determinada pelo método linear trapezoidal do tempo zero até a última amostra
coletada (24 h) e extrapolada para o infinito através da razão entre a última concentração plasmática e a constante de velocidade de eliminação. O software WinNonlin produziu as estimativas iniciais e os limites superiores e inferiores para a correta estimativa final dos parâmetros farmacocinéticos. As estimativas finais incluem a constante de velocidade de eliminação (kel), o volume de distribuição (Vd), a meia-vida de eliminação (t½) e o clearance total (Cl). Os parâmetros Cmax e tmax foram calculados utilizando-se as equações padrão do software. O clearance total (Cl) de cada enantiômero da CPA foi estimado através da equação Cl = dose/AUC0-∞, e o volume de distribuição (Vd) dividindo-se o clearance total (Cl) pela respectiva constante de velocidade de eliminação (kel).

Os resultados foram expressos através das medianas e intervalos de confiança de 95% (IC 95%). O teste de Wilcoxon foi empregado para avaliar as razões enantioméricas (R)-(+) / (S)-(−) diferentes da unidade, com significância fixada em P ≤ 0,05.

Midazolam

A disposição cinética do MDZ, administrado via endovenosa (bolus) nas pacientes portadoras do câncer de mama, foi avaliada através do modelo monocompartimental e cinética de primeira ordem, com o auxílio do programa WinNonlin. A área sob a curva concentração plasmática versus tempo (AUC 0-∞) foi determinada no intervalo de 0 – 8 horas, através do método dos trapézios e extrapolada para o infinito através da razão entre a última concentração plasmática avaliada e a constante de velocidade de eliminação (Kel). A constante de velocidade de eliminação foi obtida através da equação Kel = 0,693/t½. O clearance total do MDZ foi obtido através da equação Cl = dose/AUC0-∞.

Os resultados estão expressos através das medianas e intervalos de confiança de 95% (IC 95%).

O teste de regressão ortogonal foi empregado para avaliar a relação entre o Cl do MDZ e o Cl de cada enantiômero da CPA, com significância fixada em P ≤ 0,05. O teste de regressão ortogonal foi realizado com o auxílio do programa GMC (Geraldo Maia Campos, versão 6,6).
3.2.4. Extração do DNA genômico

O DNA genômico foi extraído pela técnica de *salting out*, a partir de 5mL de sangue total para a investigação dos genótipos CYP2B6, CYP2C9 e CYP2C19, de acordo com o procedimento descrito por Miller et al., (1988). Para identificar o polimorfismo do CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3 e CYP2C19*17 foram amplificados segmentos de DNA genômico utilizando a técnica de RFLP-PCR (*Restriction Fragment Lenght Polymorphism – Polimerase Chain Reaction*), seguida de digestão por enzimas de restrição AVA2 (CYP2C9*2), AVA3 (CYP2C9*3), SMA I (CYP2C19*2), Bam HI (CYP2C19*3) e MN1 (CYP2C9*17) (New England Biolabs, Inc., Beverly, MA) e submetidas à eletroforese em gel de agarose a 2%. As variantes alélicas CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3 e CYP2C19*17 foram identificados a partir dos perfis das bandas reveladas.

Para a análise da freqüência do polimorfismo CYP2B6 G516T, segmentos de DNA genômico foram amplificados por RFLP-PCR, digeridos pela enzima Bsr1 (New England Biolabs, Inc., Beverly, MA) e submetidos à eletroforese em gel de acrilamida a 10%, de acordo com a técnica descrita por Ariyoshi et al., (2001) e Jacob et al., (2004).
RESULTADOS
4. RESULTADOS

4.1 Métodos

4.1.1. Análise enantiosseletiva da ciclofosfamida em plasma

A análise dos enantiômeros da CPA em plasma foi realizada após extração líquido-líquido. A separação dos enantiômeros da CPA foi obtida utilizando coluna quiral Chiralcel® OD-R com pré-coluna LiChrospher® C-18, e fase móvel constituída por acetonitrila:água (25:75, v/v), contendo 0,2% de ácido fórmico, na vazão de 0,5 mL/min. Os cromatogramas apresentados na figura 5 mostram que os componentes endógenos do plasma não interferem no método analítico e que os enantiômeros da CPA são eluídos na seqüência (S)-(−)-CPA (14,61 min) e (R)-(+)–CPA (16,45 min).

Figura 5. Cromatogramas: (A) plasma branco, (B) amostra de plasma enriquecida com 10µg/mL de CPA racêmica, e (C) amostra de plasma obtida após 3h de infusão da CPA racêmica. Picos (1) padrão interno (PI); (2) (S)-(−)-CPA; (3) (R)-(+)–CPA.
Os espectros de massas do íon molecular protonado da CPA (A) e seu íon-produto (B) estão apresentados na figura 6.

Figura 6. Espectros de massas do íon molecular protonado da CPA (A) e seu íon-produto (B).
Os dados apresentados na tabela 3 mostram que o efeito da matriz é praticamente ausente para os enantiômeros S-(-)-CPA e R-(+)-CPA e para o padrão interno antipirina.

Tabela 3 - Efeito da matriz para o (S)-(-)-CPA, (R)-(+)−CPA e PI em quatro diferentes lotes de plasma humano (resultados expressos como média)

Concentração nominal (µg/mL)	Efeito da matriz (%)		
	S-(-)−CPA	R-(+)−CPA	PI
0,5	105,4	104,3	
10,0	98,0	98,2	97,6
25,0	97,8	97,4	

O método desenvolvido foi validado quanto a: recuperação, linearidade, limite de quantificação, precisão e exatidão intra e interensaios, estabilidade e seletividade. As tabelas 4 e 5 mostram os resultados obtidos na validação do método de análise dos enantiômeros da CPA em plasma humano. Esse método apresentou limite de quantificação, seletividade, precisão e exatidão compatíveis com a aplicação em estudos de disposição cinética da CPA administrada em regime de dose única.
Tabela 4 - Limites de confiança para a análise enantiosseletiva da CPA por LC-MS-MS

Recuperação % (n=3)	(S)-(−)-CPA	(R)-(+)-CPA
0,5 µg/mL	105,4	103,6
10 µg/mL	98,1	99,8
25 µg/mL	96,5	97,9

Linearidade

Intervalo linear (µg/mL)	Equação	Coeficiente de determinação (r)	
		0,0025 -25 m	0,0025 -25 m
		r = 0,99	r = 0,99

Limite de quantificação (n=10)

Concentração (ng/mL)	Precisão (CV%)	Exatidão (erro relativo %)

Precisão e exatidão

Precisão intra-ensaio; Coeficiente de variação (%); n= 10

Concentração (µg/mL)	Precisão	Exatidão
0,5 µg/mL	2,0	-6,0
10 µg/mL	2,6	1,6
25 µg/mL	1,6	

Precisão inter ensaios; Coeficiente de variação (%); n= 5

Concentração (µg/mL)	Precisão	Exatidão
0,5 µg/mL	1,9	1,0
10 µg/mL	3,5	4,3
25 µg/mL	2,6	2,7

Exatidão intra-ensaio; erro relativo (%); n=10

Concentração (µg/mL)	Exatidão
0,5 µg/mL	1,0
10 µg/mL	4,3
25 µg/mL	5,9

Exatidão inter ensaios; erro relativo (%); n= 5

Concentração (µg/mL)	Exatidão
0,5 µg/mL	2,8
10 µg/mL	5,0
25 µg/mL	8,3

Tabela 5 - Testes de estabilidade (valores de P) dos enantiômeros da CPA em plasma

Estabilidade	(S)-(−)-CPA	(R)-(+)-CPA
Curta duração (4h, 25°C)		
0,5 µg/mL	0,5286	0,7735
25 µg/mL	0,4301	0,2029
Amostrador automático (12h, 16°C)		
0,5 µg/mL	0,0742	0,2697
25 µg/mL	0,2737	0,1375

* P≤0,05, teste t de Student
4.1.2. Polimorfismos dos genes CYP2B6, CYP2C9 e CYP2C19

Foram incluídas na investigação 15 pacientes adultas, portadoras de câncer de mama, com indicação de tratamento quimioterápico adjuvante com CPA e epirrubicina. Os dados demográficos das pacientes estão apresentados na tabela 1.

A tabela 6 mostra a frequência dos polimorfismos dos genes CYP2B6, CYP2C9 e CYP2C19 nas pacientes investigadas (n=13). Os dados mostram que uma paciente é homozigota para o alelo mutante T (CYP2B6), relacionado com o aumento da atividade da enzima; uma paciente apresenta dois alelos mutantes (*2/*3) para o CYP2C9, relacionado com redução da atividade da enzima e duas pacientes são homozigotos para o alelo *17 (CYP2C19), relacionado com o aumento da atividade da enzima.

Tabela 6 - Frequência dos polimorfismos dos genes CYP2B6, CYP2C9 e CYP2C19 nas pacientes investigadas (n=13)

Pacientes	Genótipo	Genótipo	Genótipo
	CYP2B6	CYP2C9	CYP2C19
1	G/T	*1/*2	*1/*1
2	G/G	*1/*1	*1/*2
3	G/G	*1/*3	*1/*1
4	T/T	*1/*1	*1/*1
5	G/G	*1/*2	*1/*17
6	G/G	*1/*1	*1/*2
7	G/T	*1/*1	*17/*17
8	G/G	*1/*1	*1/*3
11	G/T	*1/*2	*1/*1
12	G/T	*1/*1	*17/*17
13	G/G	*2/*3	*1/*1
14	G/G	*1/*1	*1/*17
15	G/T	*1/*1	*1/*17

n = 13

G/G: 7 (53,85%) *1/*1 = 8 (61,54%) *1/*1 = 5 (38,46%)
G/T: 5 (38,46%) *1/*2 = 3 (23,07%) *1/*2 = 2 (15,38%)
T/T: 1 (7,69%) *1/*3 = 1 (7,69%) *1/*3 = 1 (7,69%)

Alelo selvagem (G); alelo mutante (T).
A tabela 7 apresenta os clearances dos enantiômeros (S)-(−)-CPA e (R)-(+)−CPA das pacientes genotipadas como G/G ou G/T. Ao compararmos os clearances entre os enantiômeros, observamos uma diferença significativa (P ≤ 0,05) para o polimorfismo G/G, baseada no teste de Wilcoxon. Por outro lado, não foi considerado significante o valor de P, quando comparado os clearances dos enantiômeros entre os polimorfismos G/G e G/T (P ≤ 0,05; teste de Mann-Whitney).

Tabela 7 - Clearances dos enantiômeros da CPA nas pacientes genotipadas como G/G ou G/T para o CYP2B6. Dados expressos como mediana, média e IC 95%

Polimorfismos	CYP2B6	Cl (L/h)	*P
	(S)-(−)-CPA	(R)-(+)−CPA	
G/G (n=7)	5,8	6,3*	0,0156
	5,8 (4,1 - 7,6)	6,7 (4,3 - 9,1)	
G/T (n=5)	4,9	5,3	0,0625
	5,6 (2,5 – 8,7)	6,4 (2,4 – 10,4)	

*P ≤ 0,05 teste de Wilcoxon ((S)-(−)-CPA vs (R)-(+)−CPA).

**P ≤ 0,05 teste de Mann-Whitney (G/G vs G/T).

O clearances dos enantiômeros (S)-(−)-CPA e (R)-(+)−CPA das pacientes genotipadas para os polimorfismos do CYP2C9 estão apresentados na tabela 8. De acordo com os resultados obtidos, houve uma diferença significativa entre os clearances dos enantiômeros para o polimorfismo CYP2C9*1/*1 (P ≤ 0,05; teste de Wilcoxon). Não foi observada diferença entre os enantiômeros quando se comparou os polimorfismos *1/*1 ou *1/*2 e *1/*3 (P ≤ 0,05; teste de Mann-Whitney).

Tabela 8 - Clearances dos enantiômeros da CPA nas pacientes genotipadas como *1/*1 ou *1/*2 e *1/*3 para o CYP2C9. Dados expressos como mediana, média e IC 95%

Polimorfismos	CYP2C9	Cl (L/h)	P
	(S)-(−)-CPA	(R)-(+)−CPA	
*1/*1 (n=8)	5,0	5,5*	0,0078
	5,6 (3,9 – 7,4)	6,4 (4,2 – 8,6)	
*1/*2 e *1/*3 (n=4)	4,5	5,2	0,1250
	5,3 (1,4 – 9,2)	6,3 (0,8 – 11,8)	

* P ≤ 0,05 teste de Wilcoxon (*1/*1 vs *1/*2 e *1/*3).

**P ≤ 0,05 teste de Mann-Whitney (*1/*1 vs *1/*2 e *1/*3).
A tabela 9 apresenta os *clearances* dos enantiômeros *(S)*-(-)-*CPA* e *(R)*-(+)-*CPA* das pacientes genotipadas para os polimorfismos do CYP2C19. De acordo com os resultados, não houve uma diferença significativa entre os enantiômeros para o polimorfismo *CYP2C19*/*1/*1 (P≤0,05; teste de Wilcoxon). Não foi observada diferença entre os enantiômeros quando se comparou os polimorfismos *1/*1, *1/*2 e *1/*3, *1/*17 e *17/*17 (P≤0,05; teste de Kruskal-Wallis).

Tabela 9 - *Clearances* dos enantiômeros da CPA nas pacientes genotipadas como *1/*1, *1/*2 e *1/*3, *1/*17 e *17/*17 para o CYP2C19. Dados expressos como mediana, média e IC 95%.

Polimorfismos	Cl (L/h)			
	(S)-(−)-CPA	(R)-(+)−CPA		
CYP2C19				
*1/*1	4,0	4,8		0,0625
(n=5)	4,5 (3,0 – 6,1)	5,3 (3,3 – 7,3)		
*1/*2 e *1/*3	5,1	5,7		0,25
(n=3)	5,5 (1,1 – 9,9)	6,0 (1,0 – 11,1)		
*1/*17 e *17/*17	5,8	6,3		0,0625
(n=5)	6,7 (3,6 – 9,8)	7,9 (3,6 – 12,2)		

* P≤0,05 teste de Wilcoxon (*1/*1 vs *1/*2 e *1/*3 vs *1/*17).*
**P≤0,05 teste de Kruskal-Wallis (*1/*1 vs *1/*2 e *1/*3 vs *1/*17 e *17/*17).*
4.1.3. Avaliação da atividade *in vivo* do CYP3A

A tabela 10 apresenta os dados da avaliação da atividade *in vivo* do CYP3A, utilizando o midazolam (MDZ) (1 mg, i.v.) como fármaco marcador administrado imediatamente antes da infusão da ciclofosfamida. Os dados mostram que a maioria das pacientes investigadas (11 entre 15) apresenta valores de *clearance* acima e abaixo da faixa de referência de 0,35-0,69 L/h/kg reportada por Chen et al. (2006) na investigação de mulheres saudáveis (n=37).

Tabela 10 - Avaliação da atividade *in vivo* do CYP3A utilizando o midazolam como fármaco marcador nas pacientes investigadas (n=15)

Pacientes	CI MDZ (L/h/kg)
1	0,35
2	0,06
3	1,68
4	0,32
5	1,08
6	0,18
7	1,01
8	0,86
9	0,46
10	0,25
11	0,33
12	1,18
13	0,63
14	0,47
15	0,31

| Mediana | 0,46 |
| Médi (IC 95%) | 0,61 (0,36 - 0,86) |
As figuras 7 e 8 mostram a ausência de correlações significativas entre os clearances dos enantiômeros da CPA e a atividade in vivo do CYP3A, avaliada pelo clearance do MDZ. As retas ajustadas e as respectivas bandas de confiança foram obtidas com auxílio do programa SAS (SAS/STAT® /User’s Guide, Version 9/, Cary, NC, USA: SAS Institute Inc., 2002-2003).

Figura 7. Bandas de confiança para a reta ajustada: y=0,42+0,03x; r=0,16; p=0,56

Figura 8. Bandas de confiança para a reta ajustada: y=0,45+0,03x; r=0,12; p=0,67
4.1.4. Farmacocinética dos enantiômeros da CPA em pacientes com câncer de mama

A figura 9 mostra as curvas de concentração plasmática do (R)-(+) CPA e (S)-(-) CPA versus tempo, das 15 pacientes com câncer de mama, tratadas com 900 a 1000 mg de CPA racêmica durante 1 hora de infusão. Os dados estão apresentados como média e EPM (erro padrão da média).

Figura 9. Concentração plasmática dos enantiômeros (R)-(+) CPA e (S)-(-) CPA versus tempo (n=15). Dados apresentados como média ± EPM.
Os parâmetros farmacocinéticos calculados para os enantiômeros (S)(-) CPA e (R)(+)- CPA estão apresentados na tabela 11 como mediana, média e IC 95%. Os parâmetros farmacocinéticos com razões enantioméricas diferentes da unidade (P≤0,05) foram avaliados com base no teste não paramétrico de Wilcoxon.

Tabela 11 - Disposição cinética dos enantiômeros (S)(-)- CPA e (R)(+)- CPA após dose única IV da CPA racêmica a pacientes com câncer de mama (n=15). Dados apresentados como mediana, média e IC 95%

Parâmetros	(S)(-)- CPA	(R)(+)- CPA	P
t½ (h)	5,8	5,1*	0,0001
	5,9 (5,1-6,7)	5,2 (4,4-5,9)	
Kel (h⁻¹)	0,12	0,14*	0,0001
	0,12 (0,11-0,14)	0,14 (0,12-0,17)	
Cmax (µg/mL)	21,5 (17,3-25,8)	21,6 (17,4-25,9)	0,3028
AUC₀-∞ (h.µg/mL)	188,8 (158,8-218,9)	168,1 (139-197,3)	0,0001
Cl (L/h)	5,1	5,7*	0,0001
	5,6 (4,6-6,6)	6,4 (5,1-7,8)	
Vd (L)	46,0	45,6*	0,0084
	46,1 (39,0-53,2)	45,3 (38,6-52)	

* P≤0,05, teste de Wilcoxon.
DISCUSSÃO
5. DISCUSSÃO

O estudo da enantiosseletividade na farmacocinética exige a disponibilidade de métodos analíticos com sensibilidade e especificidade compatíveis com as exigências da investigação.

A análise da CPA, como mistura enantiomérica em plasma humano, é descrita utilizando técnicas cromatográficas, incluindo a cromatografia líquida com detector UV (HPLC-UV), cromatografia gasosa com detector nitrogênio-fósforo (GC-NPD), cromatografia gasosa acoplada ao espectrômetro de massas (GC-MS), cromatografia líquida acoplada ao espectrômetro de massas (LC-MS) e cromatografia em camada delgada (BAUMANN; PREISS, 2001). Entretanto, poucos métodos relatam a análise da CPA como mistura enantiomérica empregando LC-MS-MS. Sottani et al. (1998), Barbieri et al. (2006) e Kasel et al. (2004) desenvolveram e validaram métodos para a análise da CPA e seus metabólitos em urina humana usando LC-MS-MS. Por sua vez, Sadagopan et al. (2001) descreveram um método LC-MS-MS para determinar a CPA e a 4-OHCPA em plasma de camundongo, enquanto que de Jonge et al. (2004) descreveram um método LC-MS-MS para a determinação simultânea da CPA, 4-OHCPA, tiotepa e tepa em plasma humano, aplicado à investigação da disposição cinética e metabolismo.

A análise enantiosseletiva da CPA em plasma é descrita por poucos autores empregando colunas quirais ou agentes de derivatização quirais e utilizando HPLC com detecção UV ou GC-MS (REID; STOBAUGH; STERNSON, 1989; CORLETT; CHRYSTYN, 1996; WILLIAMS et al., 1999; WILLIAMS et al., 1999 b; LIU et al., 2004; de JONGE et al., 2004). Masurel e Wainer (1989) descreveram a resolução dos enantiômeros da CPA na coluna Chiralcel® OD usando detector UV. Corlett e Chrystyn (1996) descreveram a análise dos enantiômeros da CPA em soro humano na coluna Chiral-AGP® usando detector UV, com tempo de análise de 15 minutos. Reid, Stobaugh e Sternson (1989) determinaram os enantiômeros da CPA em plasma humano empregando derivatização quiral com cloreto de (+)-6-metoxi-α-metil-2-acetilnaftaleno. A resolução dos diasteroisômeros foi determinada na coluna Hypersil® ODS com detecção por UV, com tempo de análise de 25 minutos. Williams et al. (1999 b) reportaram a determinação dos enantiômeros da CPA em plasma e urina humana por GC-MS, usando uma coluna capilar revestida com fase
estacionária quiral composta por heptakis (6-O-hexildimetil-sili-2-3-di-O-metil-β-ciclodextrina).

O método desenvolvido e validado no presente estudo emprega, pela primeira vez, coluna quiral acoplada ao sistema LC-MS-MS, para a análise da CPA em plasma. Os enantiômeros da CPA foram resolvidos na coluna quiral Chiralcel® OD-R, usando como fase móvel a mistura acetonitrila:água (25:75, v/v), contendo 0,2% de ácido fórmico. Os enantiômeros (S)-(−)-CPA e (R)-(+)−CPA foram eluídos em 14,61 e 16,45 minutos, respectivamente (Figura 5). A ordem de eluição dos enantiômeros da CPA foi obtida pela análise individual de cada enantiômero, separados e coletados da coluna Chiralcel® OD-R, como descrito acima e analisados na coluna Chiral-AGP®, usando tampão fosfato 0,015M pH 4,0 e acetonitrila (99:1, v/v), como previamente descrito por Corlett e Chrystyn (1996). O enantiômero (S)-(−)-CPA foi o primeiro a ser eluído da coluna Chiralcel® OD-R, o oposto do que foi descrito para a coluna Chiral-AGP®.

Os enantiômeros da CPA e o padrão interno foram extraídos do plasma usando uma mistura de acetato de etila:clorofórmio (75:25, v/v) como solvente extrator. A decisão de escolha desse solvente extrator foi tomada após o teste de outros solventes de extração, como diclorometano, acetato de etila e éter metil-terc-butilíco. Todos apresentaram valores de recuperação menores que a mistura acetato de etila:clorofórmio, 75:25, v/v. No nosso estudo a recuperação para cada enantiômero da CPA foi satisfatória, maior que 95%, e foi independente da concentração analisada (Tabela 4). Somente alguns estudos reportam sobre a recuperação do método de análise da CPA em plasma, embora como mistura enantiomérica. Altos valores de recuperação da CPA, como mistura enantiomérica, foram descritos por de Jonge et al. (2004), empregando precipitação de proteínas com acetonitrila:metanol (50:50, v/v), seguida por diluição com solução de amônia 1mM. Liu et al. (2004) e Baumann et al. (1999) usaram extração em fase sólida e obtiveram recuperações da CPA, como mistura enantiomérica, em média de 98,6±2,3% e 78,53%, respectivamente. Corlett e Chrystyn (1996) desenvolveram um método aquiral-quiral com extração em fase sólida e descreveram recuperação média de 96% para a CPA como mistura enantiomérica.

O efeito da matriz foi avaliado com base na comparação direta da altura dos picos da (S)-(−)-CPA, (R)-(+)−CPA e do padrão interno (PI) injetados diretamente na fase móvel e adicionados a extratos de plasma oriundos de quatro diferentes lotes
de plasma humano. Os dados apresentados na tabela 3 indicam que o efeito da matriz para os enantiômeros (S)-(−)-CPA, (R)-(−)-CPA e para o PI foi praticamente ausente.

As curvas analíticas mostraram linearidade no intervalo 0,0025-25 µg/mL de plasma, com coeficientes de correlação iguais ou maiores que 0,99 (Tabela 4). Os amplos intervalos lineares abrangem todas as concentrações experimentadas. O limite de quantificação de 2,5 ng/mL para ambos enantiômeros da CPA foi obtido com a extração de somente 200 µL de plasma (Tabela 4). Corlett e Chrystyn (1996) e Reid, Stobaugh e Sternson (1989) quantificaram os enantiômeros da CPA em plasma empregando HPLC-UV e reportaram limites de quantificação de 1,25 e 0,99 µg/mL, respectivamente. Sadagopan et al. (2001) e de Jonge et al. (2004) obtiveram, respectivamente, limite de quantificação de 12,5 ng/mL e 200 ng/mL para a mistura enantiomérica. Portanto, o método descrito neste estudo, o qual apresenta limite de quantificação de 2,5 ng/mL para cada enantiômero em plasma pode ser considerado como o mais sensível até então reportado.

Os dados apresentados na tabela 4 mostram a precisão e a exatidão do método. Os coeficientes de variação e os erros relativos obtidos foram menores que 10% para todas as concentrações avaliadas. Os dados apresentados na tabela 5 mostram a estabilidade dos enantiômeros da CPA em plasma humano, durante 4 horas a 25°C (estabilidade de curta duração) e a estabilidade de pós-processamento no injetor automático dos enantiômeros da CPA em amostras de plasma, durante 12 horas a 16°C.

A farmacocinética dos enantiômeros da CPA foi reportada em poucos estudos, todos com pacientes portadores de câncer (WILLIAMS et al., 1999 b; HOLM et al., 1990; JARMAN et al., 1989; BRAMWELL et al., 1979). Os autores não observaram diferenças nos parâmetros farmacocinéticos entre os enantiômeros (R)-(−)-CPA e (S)-(−)-CPA. O presente estudo investigou a disposição cinética dos enantiômeros da CPA em pacientes com câncer de mama (n=15) tratadas com o fármaco racêmico [(R, S)-CPA], após administração de dose única i.v. de 900 – 1000 mg durante 1 hora de infusão. As pacientes investigadas foram inicialmente submetidas à cirurgia para retirada do tumor da mama, recebendo em seguida tratamento quimioterápico adjuvante com ciclofosfamida e epirrubicina.

A figura 9 mostra as concentrações plasmáticas do (R)-(−)-CPA e (S)-(−)-CPA versus tempo e a tabela 11 apresenta os parâmetros farmacocinéticos observados
durante a investigação. As pacientes investigadas apresentaram volume de distribuição de 46,0 e 45,6 L, respectivamente para os enantiômeros (S)-(−)-CPA e (R)-(+)−CPA (Tabela 11), com significância estatística entre os enantiômeros (P≤0,05). Jarman et al. (1979) relatam valores semelhantes para os enantiômeros (S)-(−)-CPA e (R)-(+)−CPA, respectivamente de 49,6 ± 8,5 e 50,6 ± 11,4 L. Corlett e Chrystyn (1996) reportam valores de 0,45 ± 0,08 L/kg e 0,43 ± 0,07 L/kg respectivamente, para os enantiômeros (S)-(−)-CPA e (R)-(+)−CPA. De acordo com os dados citados por Jarman et al. (1979), a ligação da CPA às proteínas plasmáticas não é enantiosseletiva em pacientes com câncer de pulmão. Os valores de ligação dos enantiômeros às proteínas plasmáticas são próximos, 35% para o enantiômero (R)-(+)−CPA e 36% para o enantiômero (S)-(−)-CPA.

As pacientes apresentaram clearance total de 5,1 e 5,7 L/h para os enantiômeros (S)-(−)-CPA e (R)-(+)−CPA, respectivamente (Tabela 11), com significância estatística entre os enantiômeros (P≤0,05). Essa diferença entre os clearances dos enantiômeros da CPA não foi observada em nenhum dos estudos até então disponíveis. Assim, para o clearance total, Williams et al. (1999 b) e Corlett e Chrystyn (1996) observaram valores de 6,9L/h e 0,049 ± 0,021 L/h.Kg para o (R)-(+)−CPA e valores de 7,2 L/h e 0,048 ± 0,02 L/h.Kg para o (S)-(−)-CPA, respectivamente. A observação de valores diferentes de clearance total entre os enantiômeros da CPA aumenta a discussão sobre a contribuição de cada isômero no efeito farmacológico final após a administração da mistura racêmica. Ressalta-se que Paprocka et al (1986) observaram maior efeito antitumoral e maior índice terapêutico para o S-enantiômero em tumores sólidos quando comparado ao R-enantiômero. Na presente investigação, as concentrações plasmáticas do enantiômero (S)-(−)-CPA foram significativamente maiores do que aquelas observadas para o antípoda (R)-(+)−CPA (AUC 195,0 vs 174,80 µg.h/mL).

As meias-vidas de eliminação obtidas nesse estudo diferiram entre os enantiômeros (Tabela 11), o que não foi observado nos estudos existentes na literatura (JARMAN et al., 1979; BRAMWELL et al., 1979; HOLM et al., 1990; CORLETT; CHRYSTYN, 1996; WILLIAMS et al., 1999 b). Williams et al. (1999 b) investigaram pacientes com câncer, tratados com 2,1g de CPA racêmica (1h de infusão) e citaram meias-vidas de eliminação de 5,8h para o (R)-(+)−CPA e 5,7h para o (S)-(−)-CPA. Em 1996 Corlett e Chrystyn apresentaram valores similares, de 6,82 ± 2,27h e de 7,13 ± 1,84h, para os enantiômeros (R)-(+)−CPA e (S)-(−)-CPA,
respectivamente, em pacientes com câncer tratados com 0,98g de CPA racêmica, administrada como bolus i.v. Em 1979 Jarman et al. investigaram a disposição cinética dos enantiômeros da CPA em 4 pacientes com câncer tratados com 1g de CPA racêmica, administrada como bolus i.v., seguida pela administração individual dos enantiômeros da CPA após um intervalo de 3 semanas entre as doses. Os autores reportaram valores de meias-vidas de eliminação de 7,3 ± 1,8h para o (R)-(+-)CPA e de 7,9 ± 1,7h para o (S)-(--)-CPA. Os dados disponíveis na literatura, embora sem significância estatística, mostraram uma tendência de meia-vida de eliminação mais prolongada para o enantiômero (S)(--)-CPA e, portanto, de acordo com os dados do nosso trabalho (5,9 vs 5,0 h, respectivamente, para os enantiômeros (S)(--)-CPA e (R)(+-)CPA).

O metabolismo da CPA é amplamente aceito como chave determinante da sua atividade antitumoral, seus efeitos adversos e sua efetividade na quimioterapia. O estudo da enantiosseletividade na farmacocinética da CPA apresentada nessa investigação foi realizado em um grupo de 15 pacientes, todas portadoras do câncer de mama, submetidas a dosagens de 900 ou 1000 mg/m² de CPA e sem fazer uso de medicamentos indutores ou inibidores do seu metabolismo. Estas características permitem afirmar que este grupo de pacientes fosse considerado homogêneo. Williams et al. (1999 b) incluíram no seu estudo 12 pacientes com diversos tipos de tumor, dos quais 9 deles receberam dose única de CPA de 2,1 g/m² durante 1 hora de infusão, enquanto os outros 3 pacientes receberam uma dose de 60 mg/Kg durante 2 horas por dois dias. Jarman et al. (1979) estudaram o metabolismo dos enantiômeros da CPA em apenas 4 pacientes com câncer de pulmão, sendo uma mulher e três homens. Holm et al. (1990) não observaram enantiosseletividade na farmacocinética da CPA em pacientes portadores de câncer (n = 9), após administração i.v. de 500 mg/m². Os referidos autores não citam o tipo de câncer dos pacientes.

Em 1979 Jarman et al. relataram excreção urinária igual entre os enantiômeros ou ligeiramente favorecida para o enantiômero (S)(--)-CPA em pacientes portadores do carcinoma de pulmão. O clearance de formação do metabólito descloreticiclofosfamida difere entre os enantiômeros com maiores valores para o (R)(+-)CPA (0,25 vs 0,14 L/h) em 12 pacientes com diversos tipos de câncer (WILLIAMS et al., 1999 b). Embora o enantiômero (R)(+-)CPA seja preferencialmente descloretilado, apenas uma pequena porcentagem da dose é
convertida ao referido metabólito (3,6 vs 1,9%) (WILLIAMS et al., 1999 b). Os referidos autores não observaram diferenças entre os enantiômeros no *clearance* de formação do metabólito ativo 4-OH-CPA (5,1 vs 5,6 L/h, respectivamente para o (R)-(+-)CPA e (S)(-)-CPA). O acúmulo plasmático do enantiômero (S)(-)-CPA observado no presente estudo (AUC 195 vs 174,8 µg.h/mL) pode, ainda que parcialmente, ser explicado pela descloroetilação preferencial do enantiômero (R)-(+-)CPA.

No atual estudo foram incluídas 15 pacientes, portadoras de câncer de mama, das quais 10 receberam dose única de CPA de 1000 mg e outras 5 receberam dose única de 900 mg, ambas via I.V.. A análise de um *n* elevado (*n*=15) e uma homogeneidade em relação ao sexo (feminino), tipo de patologia (câncer de mama), fármacos associados (epirrubicina e ondansetrona) e dose administrada (900 e 1000 mg) oferecem uma maior consistência na conclusão dos resultados aqui obtidos, os quais contrariam os estudos anteriores relacionados à enantiosseletividade da CPA em humanos. De acordo com Gilbert et al. (1998) e Cagnoni et al. (1999), a ondansetrona aumenta o *clearance* da CPA e reduz em 17% as concentrações plasmáticas do quimioterápico. Em relação a epirrubicina, não foram encontrados estudos relativos a interação farmacocinética com a CPA.

Os dados apresentados nas tabelas 7, 8 e 9 mostram que os *clearances* de ambos os enantiômeros da CPA não diferem entre as pacientes genotipadas como G/G (*n*=7) ou G/T (*n*=5) para o CYP2B6, não diferem entre as pacientes genotipadas como *1/*1 (*n*=8) ou *1/*2 e *1/*3 (*n*=4) para o CYP2C9 e não diferem entre as pacientes genotipadas como *1/*1 (*n*=5), *1/*2 e *1/*3 (*n*=3), *1/*17 e *17/*17 (*n*=5) para o CYP2C19. Segundo Xie et al. (2006), a velocidade de 4-hidroxilação da CPA em pacientes com a variante alélica *CYP2B6 G516T* (*n*= 8) é duas vezes maior do que nos pacientes com os alelos selvagens *CYP2B6*, no entanto os valores de *clearance* total dos enantiômeros individuais da CPA não foram suficientemente sensíveis para detectar tal alteração. De acordo com Nakajima et al. (2007), foram observados valores maiores de *clearance* total da CPA como mistura enantiomérica em pacientes homozigotos para o alelo CYP2B6*6 quando comparados com pacientes homozigotos ou heterozigotos para o alelo CYP2B6*1. Segundo Griskevicius et al. (2003), o CYP2C19 contribui parcialmente na bioativação da CPA em microssomas de fígado humano. No entanto, não há dados na literatura para concluir que o genótipo *CYP2C19* influencia no metabolismo da CPA. Segundo os
O CYP2C9 não contribui de maneira significativa na 4-hidroxilação da CPA em microssomas de fígado humano.

Os dados apresentados nas tabelas 7 e 8 ainda mostram que, quando as pacientes são distribuídas em grupos com base no genótipo, a enantiosseletividade no Clearance total da CPA é observada somente no grupo de pacientes caracterizadas como G/G para o CYP2B6 e as que apresentam os dois alelos selvagens para o CYP2C9. Em relação ao CYP2C19 (Tabela 9), foi observada diferença ligeiramente significante entre os clearances dos enantiômeros da CPA para as pacientes que apresentam os dois alelos selvagens para o CYP2C19.

Não foi observada correlação entre o Clearance do MDZ e os clearances de ambos os enantiômeros da CPA nas pacientes investigadas (Figuras 7 e 8).

Concluindo, a farmacocinética da CPA é enantiosseletiva em pacientes portadoras de câncer de mama, tratadas concomitantemente com epirubicina e ondansetrona. Os clearances de ambos os enantiômeros da CPA não diferem em função dos genótipos CYP2B6, CYP2C9 e CYP2C19 e da atividade in vivo do CYP3A, sugerindo que a genotipagem e fenotipagem não contribuem no ajuste do regime de dosagem da CPA.
6. CONCLUSÕES

1. O método de análise dos enantiômeros (R)-(+)\(\text{-}\)CPA e (S)-(\(-\))\(\text{-}\)CPA em plasma humano, empregando coluna quiral acoplada ao sistema LC-MS/MS, apresenta limites de confiança compatíveis com a aplicação em estudo clínico de disposição cinética da CPA.

2. A disposição cinética da CPA é enantiosseletiva em pacientes com câncer de mama com acúmulo plasmático do enantiômero (S)-(\(-\))\(\text{-}\)CPA em função do clearance preferencial do enantiômero (R)-(\(+\))\(\text{-}\)CPA.

3. Os clearances de ambos os enantiômeros da CPA não diferem em função dos genótipos CYP2B6, CYP2C9 e CYP2C19 e da atividade in vivo do CYP3A4 avaliada pelo clearance do MDZ.

4. Não há correlação entre o clearance do MDZ e os clearances de ambos os enantiômeros da CPA nas pacientes investigadas.
REFERÊNCIAS BIBLIOGRÁFICAS
7. REFERÊNCIAS A BIBLIOGRÁFICAS

ANVISA. Agência Nacional de Vigilância Sanitária. RE 899 de 29 de maio de 2003. http://www.anvisa.gov.br/legis/resol/2003/re/899_03.htm.

ARIYOSHI, N.; MIYAZAKI, M.; TOIDE, K.; SAWAMURA, Y.; KAMATAKI, T. A single nucleotide polymorphism of CYP2B6 found in Japanese enhances catalytic activity by autoactivation. Biochemical and Biophysical Research Communications, New York, v. 281, p. 1256-1260, 2001.

BARBIERI, A.; SABATINI, L.; INDIVERI, P.; BONFIGLIOLI, R.; LODI, V.; VIOLANTE, F.S. Simultaneous determination of low levels of methotrexate and Cyclophosphamide in human urine by micro liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, London, v. 20, p. 1889-1893, 2006.

BAUMANN, F.; PREISS, R. Cyclophosphamide and related anticancer drugs. Journal of Chromatography B, Amsterdam, v. 764, p. 173-192, 2001.

BAUMANN, F.; LORENZ, C.; JAEHDE, U.; PREISS, R. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography-mass spectrometry. Journal of Chromatography B, Amsterdam, v. 729 p. 297-305, 1999.

BODDY, A.V.; YULE, S.M. Metabolism and Pharmacokinetics of Oxazaphosphorines. Clinical Pharmacokinetic, New York, v. 38, n. 4, p. 291-304, 2000.

BRAMWELL, V.; CALVERT, R.T.; EDWARDS, G.; SCARFFE, H.; CROWThER, D. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemotherapy and Pharmacology, Berlin, v. 3, 4, p. 253-259, 1979.

CAGNONI, P.J.; MATTHES, S.; DAY, T.C.; BEARMAN, S.I.; SHPALL, E.J.; JONES, R.B. Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemetics. Bone Marrow Transplantation, London, v. 24, p. 1-4, 1999.

CHEN, M.; MA, L.; DRUSANO, G.L.; BERTINO, J.S.; NAFZIGER, A.N. Sex differences in CYP3A activity using intravenous and oral midazolam. Journal of Clinical Pharmacology and Therapeutics, München, v. 80, p. 531-538, 2006.
CONTI, F.; CARPANO, S.; SERGI, D.; DI LAURO, L.; AMODIO, A.; VICI, P.; ABBATE, M.I.; FERRANTI, F.R.; VIOLA, G.; BOTTI, C.; FOGLI, P.; SPERDUTI, I.; LOPEZ, M. [High-dose CEF (cyclophosphamide, epirubicin, fluorouracil) as primary chemotherapy in locally advanced breast cancer: long-term results]. La Clinica Terapeutica, Roma, v. 158, n. 4, p. 331-41, 2007.

CORLETT, S.A.; CHRYSTYN, H. High-performance liquid chromatographic determination of the enantiomers of cyclophosphamide in serum. Journal of Chromatography B, Amsterdam, v. 682, p. 337-342, 1996.

COX, P.; FARMER, P.; JARMAN, M.; JONES, M.; STEG, W.; KINAS, R. Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide. Biochemical Pharmacology, New York, v. 25, p. 993 - 996, 1976.

De JONGE, M.E.; HUIITEMA, D.R.; RODENHUIS, S.; BEIJEN, J.H. Clinical Pharmacokinetics of Cyclophosphamide. Clinical Pharmacokinetic, New York, v. 44, n. 11, p. 1135–1164, 2005.

De JONGE, M.E.; VAN DAM, S.M.; HILLEBRAND, M.J.X.; ROSING, H.; HUIITEMA, A.D.R.; RODENHUIS, S.; BEIJNEN, J.H. Simultaneous quantification of cyclophosphamide, 4-hydroxycyclophosphamide, N, N', N''-triethylenethiophosphoramide (thiotepa), and N, N', N''-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, Chichester, v. 39, p. 262-271, 2004.

EDER, P. Neoplasias. In: PAGE, C.P.; SUTTER, M.C.; CURTIS, M.J.; WALKER, M.J.A.; HOFFMAN, B.B. Farmacologia Integrada. 1ª edição. São Paulo: Manole, p. 501–522, 1999.

GERMANAS, J.; PANDYA, A.G. Alkylating agents. Dermatologic Therapy, Copenhagen, v. 15, p. 317-324, 2002.

GILBERT, C.J.; PETROS, W.P.; VREDENBURGH, J.; HUSSEIN, A.; ROSS, M.; RUBIN, P.; FEHDRAU, R.; CAVANAUGH, C.; BERRY, D.; McKinstry, C.; PETERS, W.P. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemotherapy and Pharmacology, Berlin, v. 42, p. 497-503, 1998.
GRISKEVICIUS, L.; YASAR, U.; SANDBERG, M.; HIDESTRAND, M.; ELIASSON, E.; TYBRING, G.; HASSAN, M.; DAHL, M.L. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. European Journal of Clinical Pharmacology, Berlin, v. 59, p. 103–109, 2003.

HASSAN, M.; SVENSSON, U.S.; LJUNGMAN, P.; BJÖRKSTRAND, B.; OLSSON, H.; BIELENSTEIN, M.; ABDEL-REHIM, M.; NILSSON, C.; JOHANSSON, M.; KARLSSON, M.O. A mechanism-based pharmacokinetics-enzyme model for cyclophosphamide autoinduction in breast cancer patients. British Journal of Clinical Pharmacology, London, v. 48, p. 669-677, 1999.

HAUBITZ, M.; BOHNENSTENGEL, F.; BRUNKHORST, R.; SCHWAB, M.; HOFMANN, U.; BUSSE, D. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney International, New York, v. 61, p. 1495-1501, 2002.

HOLM, K.A.; KINDBERG, C.G.; STOBAUGH, J.F.; SLAVIK, M.; RILEY, C.M. Stereoselective pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Preliminary results in humans and rabbits. Biochemical Pharmacology, New York, v. 39, p. 1375-1384, 1990.

JABOR, V.A.P.; COELHO, E.B.; SANTOS, N.A.G.; BONATO, P.S.; LANCHOTE, V.L. A highly sensitive LC–MS–MS assay for analysis of midazolam and its major metabolite in human plasma: Applications to drug metabolism. Journal of Chromatography B, Amsterdam, v. 822, p. 27–32, 2005.

JACOB, R.M.; JOHNSTONE, E.C.; NEVILLE, M.J.; WALTON, R.T. Identification of CYP2B6 sequence variants by use of multiplex PCR with allele-specific genotyping. Clinical Chemistry, Baltimore, v. 50, n. 8, p. 1372-1377, 2004.

JAMALY, F.; MEHVAR, R.; PASSUTO, F.M. Enantioselective aspects of drug action and disposition: therapeutics pitfalls. Journal of Pharmacological Sciences, Kyoto, v. 78, n. 9, p. 695–715, 1989.
JARMAN, M.; MILSTED, R.A.V; SMYTH, J.F; KINAS, R.W.; PANKIEWICZ, K.; STECL, W.J. Comparative metabolism of 2-[Bis(2–chloroethyl) amino] tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (Cyclophosphamide) and its enantiomers in humans. *Cancer Research*, Baltimore, v. 39, p. 2762–2767, 1979.

JOQUEVIEL, C.; MARTINO, R.; GILARD, V.; MALET-MARTINO, M.; CANAL, P.; NIEMEYER, U. Urinary excretion of cyclophosphamide in humans, determined by phosphorus-31 nuclear magnetic resonance spectroscopy. *Drug Metabolism and Disposition*, Baltimore, v. 26, n. 5, p. 418-428, 1998.

KASEL, D.; JETTER, A.; HARLFINGER, S.; GEBHARDT, W.; FUHR, U. Quantification of Cyclophosphamide and its metabolites in urine using liquid chromatography/tandem mass spectrometry. *Rapid Communications in Mass Spectrometry*, London, v. 18, p. 1472-1478, 2004.

KLEINROK, Z.; CHMIELEWSKA, B.; CZUCZWAR, J.S.; KOZICKA, M.; RAJTAR, G.; JARZABEK, G.; SAWINIEC, Z. Comparison of pharmacological properties of cyclophosphamide and its enantiomers. *Archivum Immunologiae et Therapiae Experimentalis*, Warszawa, v. 34, n. 3, p. 263-273, 1986.

KROEMER, H.K.; FROMM, M.F.; EICHELBAUM, M. Stereoselectivity in drug metabolism and action: effects of enzyme inhibition and induction. *Therapeutic Drug Monitoring*, New York, v. 18, n. 4, p. 388-392, 1996.

LANG, T.; KLEIN, K.; FISCHER, J.; NUSSLER, A.K.; NEUHAUS, P.; HOFMANN, U.; EICHELBAUM, M.; SCHWAB, M.; ZANGER, U.M. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. *Pharmacogenetics*, London, v. 11, p. 399–415, 2001.

LEVINE, M.N.; PRITCHARD, K.I.; BRAMWELL, V.H.; SHEPHERD, L.E.; TU, D.; PAUL, N. Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. *Journal of Clinical Oncology*, New York, v. 23, n. 22, p. 5166-5170, 2005

LIU, J.J.; KESTELL, P.; FINDLAY, M.; RILEY, G.; ACKLAND, S.; SIMPSON, A.; ISAACS, R.; MCKEAGE, M.J. Application of liquid chromatography-mass spectrometry to monitoring plasma cyclophosphamide levels in phase I trial cancer patients. *Clinical and Experimental Pharmacology and Physiology*, Oxford, v. 31, p. 677-682, 2004.
MARTIN, H.; SARSAT, J.P.; DE WAZIERS, I.; HOUSSET, C.; BALLADUR, P.; BEAUNE, P.; ALBALADEJO, V.; LERCHE-LANGRAND, C. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharmaceutical Research, New York, v. 20, n. 4, p. 557-568, 2003.

MASUREL, D.; WAINER, I. W. Analytical and preparative high-performance liquid chromatographic separation of the enantiomers of ifosfamide, cyclophosphamide trofosfamide and their determination in plasma. Journal of Chromatography Biomedical Applications, Amsterdam, v. 490, p. 133-143, 1989.

MILLER, S.A.; DYKES, D.D.; POLESKY, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, London, v. 16, p. 1215, 1988.

NAKAJIMA, M.; KOMAGATA, S.; FUJIKI, Y.; KANADA, Y.; EBI, H.; ITOH, K.; MUKAI, H.; YOKOI, T.; MINAMI, H. Genetic polymorphisms fo CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenetics and Genomics, Hagerstown, v. 17, n. 6, p. 431-445, 2007.

NELSON, D.R.; KOYMANS, L.; KAMATAKI, T.; STEGEMAN, J.J.; FEYEREISEN, R.; WAXMAN, D.J.; WATERMAN, M.R.; GOTOH, O.; COON, M.J.; ESTABROOK, R.W.; GUNSAULUS, I.C.; NEBERT, D.W.; P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, London, v. 6, p. 1-42, 1996.

PAPROCKA, M.; KUSNIERCZYK, H.; BUDZYNSKI, W.; RAK, J.; RADZIKOWSKI, C. Comparative studies on biological activity of /+/R and /-/S enantiomers of cyclophosphamide and ifosfamide. I. Antitumour effect of cyclophosphamide and ifosfamide enantiomers. Archivum Immunologiae et Therapiae Experimentalis, Warszawa, v. 34, n. 3, p. 275-284, 1986.

PETROS, W.P.; HOPKINS, P.J.; SPRUILL, S.; BROADWATER, G.; VREDENBURGH, J.J.; COLVIN, O.M.; PETERS, W.P.; JONES, R.B.; HALL, J.; MARKS, J.R. Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. Journal of Clinical Oncology, New York, v. 23, n. 25, p. 6117-6125, 2005.

REID, J.M.; STOBAUGH, J.F.; STERNSON, L.A. Liquid chromatographic determination of cyclophosphamide enantiomers in plasma by precolumn chiral derivatization. Analytical Chemistry, Washington, v. 61, p. 441-446, 1989.
SADAGOPAN, N.; COHEN, L.; ROBERTS, B.; COLLARD, W.; OMER, C. Liquid chromatography-tandem mass spectrometry quantification of cyclophosphamide and its hydroxyl metabolite in plasma and tissue for determination of tissue distribution. *Journal of Chromatography B*, Amsterdam, v. 759, p. 277-284, 2001.

SASLOW, D.; BOETES, C.; BURKE, W.; HARMS, S.; LEACH, M.; LEHMAN, C.; MORRIS, E.; PISANO, E.; SCHNALL, M.; SENER, S.; SMITH, R.; WARNER, E.; YAFFE, M.; ANDREWS, K.; RUSSELL, C. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography. *A Cancer Journal for Clinicians*, New York, v. 57, p. 75-89, 2007.

SOTTANI, C.; TURCI, R.; PERBELLINI, L.; MINOIA, C. Liquid–liquid extraction procedure for trace determination of cyclophosphamide in human urine by high-performance liquid chromatography tandem mass spectrometry. *Rapid Communications in Mass Spectrometry*, London, v. 12, p. 1063-1068, 1998.

STREETMAN, D.S.; JR. BERTINO, J.S.; NAFZIGER; A.N. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. *Pharmacogenetics*, London, v. 10, p. 187-216, 2000.

TATEISHI, T.; WATANABE, M.; NAKURA, H.; ASOH, H.; SHIRAI, H.; MIZOROGI, Y.; KOBAYASHI, S.; THUMMEL, K.E.; WILKINSON, G.R. CYP3A activity in European American and Japanese men using midazolam as an in vivo probe. *Clinical Pharmacology Therapeutics*, St. Luis, v. 69, n. 5, p. 333-339, 2001.

THULER, L.C.; MENDONÇA, G.A. Estadiamento inicial dos casos de câncer de mama e colo de útero em mulheres brasileiras. *Revista Brasileira de Ginecologia e Obstetrícia*, São Paulo, v. 27, n. 11, p. 656 – 660, 2005.

TRENT, J.C.; VALERO, V.; BOOSER, D.J.; ESPARZA-GUERRA, L.T.; IBRAHIM, N.; RAHMAN, Z.; VERNILLET, L.; PATEL, S.; DAVID, C.L.; MURRAY, J.L.; CRISTOFANILLI, M.; HORTOBAGYI, G.N. A phase I study of docetaxel plus cyclophosphamide in solid tumors followed by a phase II study as first line therapy in metastatic breast cancer. *Clinical Cancer Research*, Denville, v. 9, p. 2426-2434, 2003.

VARONESI, U.; BOYLE, P.; GOLDHIRSCH, A.; ORECCHIA, R.; VIALE, G.; Breast Cancer. *Lancet*, v. 365, p. 1727 – 1741, 2005.

WILLIAMS, M.L.; WAINER, I.W.; EMBREE, L.; GRANVIL, C.P.; BARNETT, M.; DUCHARMEN, M.P. Enantioselective induction of cyclophosphamide metabolism by phenytoin. *Chirality*, New York, v. 11, p. 569-574, 1999.
WILLIAMS, M.L; WAINER, I.W.; GRANVIL, C.P.; GEHRCKE, B.; BERNSTEIN, M.L.; DUCHARME, M.P. Pharmacokinetics of (R) - and (S) - cyclophosphamide and their dechloroethylated metabolites in cancer patients. *Chirality*, New York, v. 11, p. 301-308, 1999 b.

XIE, H-J.; YASAR, U.; LUN DGREN, S.; GRISKEVICIUS, L.; TERE LIUS, Y.; HASSAN, M.; RANE, A. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. *Pharmacogenomics*, London, v. 3, p. 53-61, 2003.

XIE, H-J.; GRISKEVICIUS, L.; STAHLE, L.; HASSAN, Z.; YASAR, U.; RANE, A.; BROBERG, U.; KIMBY, E.; HASSAN, M. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. *European Journal of Pharmaceutical Sciences*, Amsterdam, v.27, p.54-61, 2006.

YOUNIS, T.; RAYSON, D.; SELLON, M.; SKEDGEL, C. Adjuvant chemotherapy for breast cancer: a cost-utility analysis of FEC-D vs. FEC 100. *Breast Cancer Research Treatment*, The Hague, 2007 Oct 5 [Epub ahead of print].

ZHANG, J.; TIAN, Q.; CHAN, S.Y.; LI, S.C.; ZHOU, S. Metabolism and transport of oxazaphosphorines and the clinical implications. *Drug Metabolism Reviews*, New York, v. 37, p. 611–703, 2005.
ANEXOS
ANEXO I

HOSPITAL DAS CLÍNICAS DA FACULDADE DE MEDICINA
DE RIBEIRÃO PRETO DA UNIVERSIDADE DE SÃO PAULO

CEP: 14048-900
Ribeirão Preto - S.P.
BRASIL

CAMPUS UNIVERSITÁRIO – MONTE ALEGRE
FONE: 622-1000 - FAX (016) 633-1144

Ribeirão Preto, 30 de maio de 2005

Ofício n° 1426/2005
CEP/SPC

Prezado Senhor:

O trabalho intitulado “ENANTIOSSELETIVIDADE NA FARMACOCINÊTICA DA CICLOFOSFAMIDA EM PACIENTES COM CÂNCER DE MAMA”, foi analisado pelo Comitê de Ética em Pesquisa, em sua 202ª Reunião Ordinária realizada em 23/05/2005, e enquadrado na categoria: APROVADO, de acordo com o Processo HCRP nº 2719/2005.

Aproveite a oportunidade para apresentar a Vossa Senhoria protestos de estima e consideração.

PROF. DR. SÉRGIO PEREIRA DA CUNHA
Coordenador do Comitê de Ética em Pesquisa do HCFMRP-USP e da FMRP-USP

Ilustríssimo Senhor
BRUNO JOSÉ DUMÊT FERNANDES
PROFª DRª VERA LÚCIA LANCHOTE(Orientadora)
Faculdade de Ciências Farmacêuticas-USP-Laboratório de Toxicologia
Em mãos
ANEXO II

HOSPITAL DAS CLÍNICAS DA FACULDADE DE MEDICINA DE RIBEIRÃO PRETO - USP

PESQUISA CIENTÍFICA

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

NOME DO PACIENTE / IDADE: __/______
REGISTRO E/OU DOCUMENTO DE IDENTIFICAÇÃO: ___________________________

NOME DA PESQUISA: “ENANTIOSSELETIVIDADE NA FARMACOCINÉTICA DA CICLOFOSFAMIDA EM PACIENTES COM CÂNCER DE MAMA”

RESPONSÁVEL CLÍNICO: Prof. Dr. Jurandyr Moreira de Andrade

OBSERVAÇÕES: Projeto Integrado Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP e Faculdade de Ciências Farmacêuticas de Ribeirão Preto – USP
DECLARAÇÃO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Declaro que em _____/_____/______ concordei voluntariamente em participar, como paciente do projeto de pesquisa acima referido. Fui devidamente informado em detalhes pelo médico responsável que:

O estudo implica em que eu me submeta a procedimentos, exames complementares e tratamentos devidamente planejados, conforme texto a seguir:

A ciclofosfamida é um remédio indicado para tratar o câncer de mama. O nosso estudo visa entender como esse remédio é distribuído e eliminado do seu organismo. Inicialmente, a senhora receberá uma injeção da ciclofosfamida, juntamente com um medicamento chamado midazolam. O midazolam será utilizado para entender melhor a eliminação da ciclofosfamida. Necessitaremos obter sangue para medir a quantidade desses dois remédios e para tal a senhora será picada uma só vez, por um profissional altamente qualificado, sob a responsabilidade da enfermeira Dra. Tais de Oliveira Gozzo, ou a quem ela indicar, sendo mantida uma pequena agulha na sua veia para retiradas sucessivas de 5 mL, num volume total de aproximadamente 60mL.

Necessitaremos, também, obter amostras de urina, a cada oito horas até completar 24 horas da administração dos dois remédios. No material coletado realizaremos exames para verificar como o corpo da senhora elimina os remédios. Considerando que a senhora será tratada com 6 doses de ciclofosfamida, administradas a intervalos de 21 dias, o mesmo procedimento de coletas seriadas de sangue e urina, realizado após a administração da primeira dose de ciclofosfamida, será repetido após a administração da sexta e última dose do seu remédio.
A sua colaboração será importante para entendermos como o câncer de mama afeta o funcionamento da ciclofosfamida, possibilitando, no futuro, avaliar a eficácia desse medicamento, assim como o ajuste melhor das doses para outras pacientes com câncer de mama.

Eu,__, abaixo assinada, tendo recebido as informações acima, e ciente dos meus direitos abaixo relacionados, concordo em participar:

1. O compromisso de me proporcionar informação atualizada durante o estudo, ainda que esta possa afetar minha vontade de continuar participando;

2. A liberdade de retirar meu consentimento a qualquer momento e deixar de participar no estudo sem que isso traga prejuízo à continuação do meu cuidado e tratamento;

3. A garantia de receber a resposta a qualquer pergunta ou esclarecimento a qualquer dúvida acerca dos benefícios, procedimentos e riscos de infecções ocasionados pela internação, assim como outros assuntos relacionados com a pesquisa e o tratamento a que serei submetida;

4. Os pesquisadores se comprometem a manter sigilo da sua participação e de publicar os resultados da pesquisa para a comunidade médica e científica pertinente;

5. A disponibilidade de tratamento médico e a indenização que legalmente teria direito, por parte da Instituição à saúde, em caso de danos que a justifiquem, diretamente causados pela pesquisa.
Tenho ciência do exposto acima e desejo o produto como método terapêutico recomendado pelo médico que subscreve este documento.

Ribeirão Preto, ________ de______________________ de____________

__________________________ ____________________________
Assinatura da paciente Prof. Dr. Jurandyr Moreira de Andrade

Ou de seu responsável

TESTEMUNHAS NÃO LIGADAS À PESQUISA:

1 ____________________________ ______________________________
Assinatura Identificação

2 ____________________________ ______________________________
Assinatura Identificação
Determination of Cyclophosphamide Enantiomers in Plasma by LC-MS/MS: Application to Pharmacokinetics in Breast Cancer and Lupus Nephritis Patients

CAROLINA DE MIRANDA SILVA,1 BRUNO JOSE DUMÉT FERNANDES,1 MARIA PAULA MARQUES PEREIRA,1 LUCIENIR MARIA DA SILVA,2 EDUARDO ANTONIO DONADI,2 ÂNGELO DO CARMO SILVA MATTHES,3 JURANDYR MOREIRA DE ANDRADE,2 AND VERA LUCIA LANCHOTE1*

1Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
2Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
3Faculdade de Medicina do Centro Universitário Barão de Mauá, Ribeirão Preto, SP, Brazil

ABSTRACT

This article describes the enantioselective analysis of cyclophosphamide (CPA) in human plasma using LC-MS/MS. CPA enantiomers were extracted from plasma using a mixture of ethyl acetate and chloroform (75:25, v/v). The enantiomers were separated on a Chiralcel OD-R column, with the mobile phase consisting of a mixture of acetonitrile and water (75:25, v/v) plus 0.2% formic acid. The protonated ions and their respective product ions were monitored using two functions, 261 > 141 for CPA enantiomers and 189 > 104 for the internal standard (antipyrine). Recovery rates were higher than 95% and the quantification limit was 2.5-ng/ml plasma for both enantiomers. The coefficients of variation and the relative errors obtained for the validation of intra- and interassay precision and accuracy were less than 10%. The method was applied for the investigation of the enantioselective pharmacokinetics of CPA in a lupus nephritis patient treated with 1 g CPA infused over 2 h and in a breast cancer patient treated with 0.9 g infused over 1 h. No stereoselectivity in the pharmacokinetic parameters was observed for either patient. Clearance values of 2.63 and 2.93 l/h and of 3.36 and 3.61 l/h for (−)-(S) and (+)-(R)-CPA were obtained for the breast cancer and lupus nephritis patient, respectively. Chirality 00:000–000, 2008. © 2008 Wiley-Liss, Inc.

KEY WORDS: LC-MS/MS; cyclophosphamide enantiomers; pharmacokinetics; lupus nephritis; breast cancer

INTRODUCTION

Cyclophosphamide (CPA) (Fig. 1) is a chiral drug widely used in cancer and immunosuppressive therapy, which is administered as a racemic mixture of its two enantiomers, (+)-(R)-CPA and (−)-(S)-CPA.1 (−)-(S)-CPA is considerably more effective (lower ID90) in killing tumor cells than (+)-(R)-CPA.2 CPA is primarily converted by liver cytochrome P450 enzymes into 4-hydroxycyclophosphamide (4-OHCPA), an active metabolite. This compound is then transported to target tissues and transformed into phosphoramide mustard when entering cells, which produces cytotoxic events by alkylating nuclear DNA.3 CPA is the most widely used alkylating agent in the treatment of hematological malignancies and of a variety of solid tumors, including leukemia, breast cancer, lung cancer, lymphomas, prostate cancer, ovarian cancer, and multiple myeloma. Although its role in the treatment of ovarian cancer and small-cell lung cancer is declining, CPA continues to be used in the treatment of advanced breast cancer as a critical component of the CMF (CPA, methotrexate and 5-fluourouracil), CEF (CPA, epirubicin and 5-fluourouracil), MVC (mitoxantrone, vinblastine and CPA), and TAC (docetaxel, doxorubicin and CPA) regimens. Higher doses of CPA are used in the treatment prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies for the mobilization of hematopoietic progenitor cells from the bone marrow into peripheral blood. Moreover, CPA has been used as an immunosuppressive drug to treat several autoimmune diseases including systemic lupus erythematosus and rheumatoid arthritis.4

Despite the vast number of clinical pharmacokinetic reports on CPA, few studies have investigated the stereo-
selectivity in the kinetic disposition and metabolism of CPA. It has been suggested that (+)-(R) and (−)-(S)-CPA may differ in their therapeutic and toxic effects, but the clinical consequences of these differences have not been adequately determined.

Many chromatography-based analytical techniques have been used to measure CPA as enantiomeric mixture in human plasma, including high-performance liquid chromatography with ultraviolet detection (HPLC-UV), gas chromatography-nitrogen phosphorus detection (GC-NPD), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and thin-layer chromatography (TLC)-photography densitometry. However, there are few methods for the analysis of CPA as enantiomeric mixture by LC-MS/MS. Sottani et al.11 Barbieri et al.12 and Kasel et al.13 developed and validated methods for the analysis of CPA and its metabolites in human urine using LC-MS/MS. Sadagopan et al.14 described an LC-MS/MS method to determine CPA and 4-OHCPA in mouse plasma. De Jonge et al.15 reported an LC-MS/MS method for the simultaneous determination of CPA, 4-OHCPA, thiotepa, and tepa in human plasma applied for the investigation of kinetic disposition and metabolism.

Enantioselective analysis of CPA in plasma samples has been performed using chiral columns or chiral derivatizing agents and employing LC with UV detection or GC-MS.1,5–7 Masurel and Wainer16 described the resolution of CPA enantiomers in human serum samples on a Chiral-AGP column using UV detection. Corlett and Chrystyn17 analyzed CPA enantiomers in human serum samples on a Chiral-OD column using UV detection, with the analytical run time being 15 min. Reid et al.6 determined CPA enantiomers in human plasma by precolumn chiral derivatization using (+)-6-methoxy-α-methyl-2-naphthaleneacetyl chloride. The resulting diastereomeric pair was resolved on a Hypersil ODS column and detected by UV with an analytical run time of 25 min. Williams et al.1 reported the determination of CPA enantiomers in human plasma and urine by GC-MS using a capillary column coated with a chiral stationary phase composed of heptakis(6-O-hexyldimethyl-silyl-2-3-di-O-methyl-β-cycloextrin).

The pharmacokinetics of CPA enantiomers have only been reported for cancer patients. The authors showed no differences in pharmacokinetic parameters between (+)-(R)-CPA and (−)-(S)-CPA.

We describe here a method developed and validated for the analysis of CPA enantiomers by LC/MS/MS using a Chiralcel OD-R column. Corlett and Chrystyn5 and Reid et al.6 reported the determination of CPA enantiomers in plasma by LC-UV with a quantification limit of 1.25 and 0.99 µg/ml for each enantiomer, respectively. Therefore, the method described in this article, which presents a quantification limit of 2.5 ng/ml for each enantiomer in plasma, possesses the lowest quantification limit among the methods employing LC. The method was applied to the investigation of enantioselectivity in the kinetic disposition of CPA administered in a 2-h iv infusion to a patient with systemic lupus erythematosus and mesangial nephritis and in a 1-h iv infusion to a patient with breast cancer.

MATERIALS AND METHODS

Reagents and Standard Solutions

CPA monohydrate, ISOPAC (purity >99.5%) was purchased from Sigma (St. Louis, MO) as a racemic mixture. Standard stock solutions were prepared in ethanol at a concentration of 4 mg/ml and stored at −20°C. Working solutions of CPA were prepared by appropriate dilution with ethanol in the concentration range of 4–200 µg/ml. The internal standard (IS), antipyrine (Sigma), was prepared in ethanol at a concentration of 0.1 mg/ml.

Drug-free pooled human plasma samples from blood donors were supplied by the Blood Center of the University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. Spiked plasma samples were obtained by the addition of known aliquots (50 µl) of the standard working solutions to drug-free plasma (200 µl) to reach a concentration ranging from 0.5–25.0 µg of each enantiomer/ml.

Acetonitrile, ethyl acetate, and chloroform were obtained from Merck (Darmstadt, Germany) as HPLC grade. Formic acid (88%) was from J.T. Baker (Phillipsburg, NJ). Water was distilled and purified with the MilliQ Plus System (Millipore, Bedford, MA).

Instrumentation

The liquid chromatography system consisted of an LC10AD pump and a CTO-10AS column oven from Shimadzu (Kyoto, Japan). (+)-(R)-CPA, (−)-(S)-CPA, and the IS were separated on a Chiralcel OD-R chiral column (250 mm × 4.6 mm ID, 10-µm particle size) (Chiral Technologies, Exton, PA), equipped with a LiChrospher® 100 RP 18-e precolumn (4 × 4 mm LD, 5-µm particle size; Merck). The mobile phase consisting of a mixture of acetonitrile:water (25:75, v/v) plus 0.2% formic acid was pumped at a flow rate of 0.5 ml/min. The column was kept at a temperature of 20 ± 1°C.

Conditions of Detection by Mass Spectrometry

The CPA enantiomers were detected with a Quattro Micro LC triple quadrupole mass spectrometer (Micromass, Manchester, UK) fitted with an electrospray interface source and tandem mass operated in the positive ion mode. The LC flow was split so that ~200 µl/min entered the mass spectrometer. The desolvation temperature was maintained at 200°C, the source at 120°C and the capillary voltage was 3.00 kV. Nitrogen and argon were used as nebulizer/desolvation gas at 415 l/h and collision gas at 2.07 × 10⁻³ mbar of pressure, respectively. Cone voltage and collision energy were 25 V and 20.0 eV, respectively.
The MS conditions were optimized by direct infusion of standard CPA solution (10 μg/ml) prepared in the mobile phase and delivered through a syringe pump at a flow rate of 10 μl/min.

For quantification, the MS/MS was operated in the multiple reaction monitoring mode to monitor the IS (transition ions 189 > 104) and CPA (transition ions 261 > 141), with the dwell time set at 1 sec for each mass transition (Fig. 2). Data acquisition and quantitative analysis were performed using the MassLynx (Micromass) data acquisition system, version 3.5.

Sample Preparation

Aliquots of 200 μl of human plasma were supplemented with 25 μl IS (0.1 mg/ml antipyrine solution). CPA and IS were extracted from plasma samples with 5.0 ml ethyl acetate:chloroform (75:25, v/v) in a horizontal shaker for 30 min. After centrifugation at 2000 g for 10 min, the organic phases were collected and evaporated to dryness in a centrifugal evaporator vacuum system (models RCT90 and RC 10.22) from Jouan AS (St. Herblain, France). The residues were dissolved in 200 μl of the mobile phase and 100 μl hexane. These residues were vortexed for 20 sec and centrifuged at 1000 g for 5 min. A 40-μl aliquot of the aqueous phase from each sample was injected into the analytical column.

Determination of the Elution Order of the (+)-(R)-CPA and (−)-(S)-CPA

An aliquot (25 μl) of racemic CPA solution (4 mg/ml ethanol) was evaporated to dryness at room temperature. The residue was resuspended in 200 μl of the mobile phase consisting of acetonitrile:water (25:75, v/v) plus 0.2% formic acid and 40 μl of the mixture was submitted to chromatographic analysis on a Chiralcel OD-R column with UV detection at 195 nm. Fractions of the eluate corre-
sponding to the separated enantiomers were collected and the enantiomers were extracted as described above. After drying, the residues were submitted to chromatographic analysis as described by Corlett and Chrystyn using a Chiral-AGP column and a mobile phase consisting of acetoni- trile: 0.015 M phosphate buffer pH 4.0 (1:99, v/v).

Validation of the Method

The human drug-free plasma employed for the validation of the analytical method was initially used to determine the absence of interference peaks. The calibrations curves were constructed by analyzing in duplicate 200-μl samples of drug-free plasma spiked with known amounts of CPA. The linear regression equations and the correlation coefficients were obtained from the area ratios of the peaks plotted against their respective concentrations: 0.5–25.0 μg/ml plasma for (+)-(R)-CPA and (-)-(S)-CPA.

The efficiency of the extraction procedure was assessed by analyzing in triplicate 200-μl aliquots of drug-free plasma spiked with three different concentrations of CPA (0.5, 10.0, and 25 μg/ml for each enantiomer). Recovery was measured by comparing the peak areas of spiked plasma samples after the extraction procedure to those obtained by direct injection of standard (+)-(R)-CPA and (-)-(S)-CPA solutions.

The quantification limit was defined as the lowest plasma concentration of each CPA enantiomer analyzed with a relative error of 20% or lower. Linearity was determined by the analysis of plasma samples spiked with CPA at concentrations of 0.0025–25 μg of each CPA enantiomer/ml.

Intraday and interday accuracy and precision were evaluated at three concentrations by analyzing plasma samples spiked with 0.5, 10.0, and 25.0 μg/ml of (+)-(R)-CPA and (-)-(S)-CPA. Aliquots of these plasma samples were stored at −20°C and analyzed in replicate experiments (n = 10) using a single calibration curve for intraassay evaluation, and in replicate experiments (n = 5) on five consecutive days for interassay evaluation.

The short-term stability of (+)-(R)-CPA and (−)-(S)-CPA in plasma was evaluated for samples (0.5 and 25.0 μg/ml) kept on the bench top for 4 h at room temperature (25°C). The stability of extracted samples was evaluated in the autosampler (16°C) during 12 h. Freeze/thaw stability was evaluated after three cycles of freezing and thawing of aliquots of the same samples used for the evaluation of benchtop stability. The area ratios were compared with those obtained for freshly extracted samples using the Student t test.

Application of the Method

A patient (an 18-yr-old man weighing 67.2 kg and measuring 170 cm in height) with lupus nephritis (mesangial glomerulonephritis with mesangial hypercellularity) was treated with a single 1-g dose of racemic CPA (2-h infusion) and another patient (a 56-yr-old woman weighing 60 kg and measuring 155 cm in height) with breast cancer was treated with a single 900-mg dose of racemic CPA (1-h infusion). The protocol was approved by the Ethics Committee of the University Hospital of the Faculty of Medicine of Ribeirão Preto, USP, and the patients received detailed information about the study and gave written informed consent to participate. Blood samples were collected at 15, 30, 45, and 60 min, and at 1.15, 1.30, 2.0, 3.0, 5.0, 8.0, 12.0, 14.0, 16.0, 20.0, and 24.0 h after infusion of the drug. The blood samples were transferred to tubes

![Fig. 3. Chromatograms: plasma sample spiked with 5 ng/ml of (+)-(R)-CPA and (-)-(S)-CPA, Peak (1) (-)-(S)-CPA; peak (2) (+)-(R)-CPA and peak (3) internal standard.](https://example.com/fig3.png)
containing heparin (Liquemine®, 5000 IU, Roche, São Paulo, SP, Brazil). The samples were centrifuged at 2000 g for 10 min and the plasma samples were stored at −25°C until the time for chromatographic analysis.

Maximum plasma concentrations (C\text{max}) and the time to reach C\text{max} (t\text{max}) were directly determined from the data obtained. The area under the curve for plasma concentrations vs. time (AUC\text{0-1}) was calculated by the trapezoidal method and extrapolated to infinity. Total clearance (CL) was obtained using the equation CL = dose/AUC\text{0-1}. The elimination constant (k\text{e}) was estimated using the equation 0.693/t\text{1/2}. The enantioselective kinetic disposition of CPA was determined using the WinNonlin software, version 4.0 (Pharsight, Mountain View, CA).

RESULTS AND DISCUSSION
The present method is the first to use a chiral column in a liquid chromatography system coupled to a mass spectrometry detector (MS-MS) with application for CPA. CPA enantiomers were resolved on a Chiralcel OD-R chiral column using a mixture of acetonitrile and water (25:75, v/v) plus 0.2% formic acid as the mobile phase. (−)-(S)-CPA and (+)-(R)-CPA enantiomers were eluted at 15.11 and 15.94 min, respectively (Fig. 3). The elution order of the CPA enantiomers was determined by the analysis of the individual enantiomers, separated and collected from a Chiralcel OD-R as described above and analyzed on a Chiral-AGP column using 0.015 M phosphate buffer, pH 4.0, and acetonitrile: methanol (50:50, v/v) protein precipitation followed by dilution in 1 mM ammonia solution. Liu et al.3 and Baumann et al.17 used a solid-phase extraction LC-MS technique with derivatization and

Recovery (% n = 3)	(−)-(S)-Cyclophosphamide	(+)-(R)-Cyclophosphamide
0.5 µg/ml	105.35	103.64
10 µg/ml	98.05	99.82
25 µg/ml	96.51	97.88

Linearity		
Range (µg/ml)		
Equation		
Coefficient of determination (r)	r = 0.99	r = 0.99

Quantitation limit (n = 10)		
Concentration (µg/ml)		
Intra-assay precision (CV%, n = 10)		
Interassay precision (CV%, n = 5)		
Intra-assay accuracy (relative error %, n = 10)		
Interassay accuracy (relative error %, n = 5)		

CV = coefficient of variation.

TABLE 2. Matrix effect for (+)-(R)-CPA, (−)-(S)-CPA and IS in four different lots of human plasma (mean data)
Nominal concentration (µg/ml)
0.5
10.0
25.0

TABLE 1. Confidence limits for the enantioselective analysis of cyclophosphamide by LC-MS/MS

Chirality DOI 10.1002/chir
TABLE 3. Stability tests (P values) for cyclophosphamide enantiomers in plasma

Stability	(−)-(S)-Cyclophosphamide	(+)-(R)-Cyclophosphamide
Short-term (n = 3)		
0.5 µg/ml	0.5286	0.7735
25 µg/ml	0.4301	0.2029
Autosampler (n = 3)		
0.5 µg/ml	0.0742	0.2697
25 µg/ml	0.2737	0.1375

P < 0.05, Student t test.

obtained mean recovery rates for CPA as enantiomeric mixture of 98.6% ± 2.3% and 78.53%, respectively. Corlett and Chrystyn5 used an HPLC achiral–chiral coupled assay with solid-phase extraction and obtained a mean recovery rate of 96% for CPA as enantiomeric mixture. Recovery rates were not reported in the study of Sadagopan et al.14

The matrix effect was evaluated based on direct comparison of the peak heights of (−)-(S)-CPA, (+)-(R)-CPA, and internal standard (IS) injected directly in mobile phase, and spiked postextraction into extracts originating from four different sources of human plasma. Data shown in Table 2 indicate that the matrix effect for (−)-(S)-CPA, (+)-(R)-CPA, and IS was practically absent.

A quantification limit of 2.5 ng/ml was obtained for both enantiomers with the extraction of plasma aliquots of only 200 µl. Corlett and Chrystyn5 and Reid et al.6 quantified CPA enantiomers by HPLC with UV detection and reported quantification limits of 1.25 and 0.99 µg/ml, respectively, for each enantiomer in plasma. Sadagopan et al.14 and de Jonge et al.15 obtained quantification limits of 12.5 and 200 ng/ml for the enantiomeric mixture using LC-MS/MS. Therefore, the method described in this article, which presents a quantification limit of 2.5 ng/ml for each enantiomer in plasma, possesses the lowest quantification limit among the methods employing liquid chromatography.

The data in Table 1 show that the method is precise and accurate. The coefficients of variation and the relative errors obtained were lower than 10% at all concentrations tested.

The data shown in Table 3 demonstrate the short-term and autosampler stability of CPA enantiomers in plasma samples (P > 0.05, Student t test).

There are a few studies reporting the pharmacokinetic parameters of the CPA enantiomers, which only involve cancer patients.1,8,9 The authors reported no differences in pharmacokinetic parameters between (+)-(R)-CPA and (−)-(S)-CPA. Figure 3 shows the plasma concentration of (+)-(R)-CPA and (−)-(S)-CPA vs. time and Table 4 presents the pharmacokinetic parameters observed during the investigation of a patient with lupus nephritis and a patient with breast cancer treated with 1 g and 900 mg racemic CPA infused over 2 and 1 h, respectively. The kinetic disposition of the CPA enantiomers observed for the two patients was similar to that previously described for cancer patients. The lowest concentration found during the study period was close to 1 µg/ml (Fig. 4). However, the method could be applied in other pharmacokinetic studies of CPA enantiomers employing lower CPA doses or occupational exposure CPA studies.

Williams et al.1 investigated cancer patients treated with 2.1 g racemic CPA (1-h infusion) and reported a mean elimination half-life of 5.8 h (18.4% variation) for (+)-(R)-CPA. Corlett and Chrystyn5 reported similar values of 6.82 ± 2.27 h for patients receiving 0.98 g racemic CPA administered as an iv bolus. Jarman et al.9 investigated the kinetic disposition of CPA enantiomers in four cancer patients treated with a 1-g iv bolus of racemic CPA, followed by the administration of the individual CPA enantiomers after a 3-wk-interval between doses, and reported an elimination half-life of 7.25 ± 1.75 h for (+)-(R)-CPA. For (−)-(S)-CPA, Williams et al.,1 Corlett and Chrystyn5, and Jarman et al.9 reported elimination half-lives of 5.7 h (51.9% variation), 7.13 ± 1.84 h and 7.9 ± 1.7 h, respectively. Total clearance was 6.9 l/h (36.3% variation) and 0.049 ± 0.021 l/h kg for (+)-(R)-CPA and 7.2 l/h (41.6% variation) and 0.048 ± 0.021 l/h kg for (−)-(S)-CPA in the studies of Williams et al.1 and Corlett and Chrystyn5, respectively.

Corlett and Chrystyn5 reported distribution volumes of 0.43 ± 0.07 l/kg and 0.45 ± 0.08 l/kg for (+)-(R)-CPA and (−)-(S)-CPA, respectively, whereas Jarman et al.9 obtained distribution volumes of the CPA enantiomers of 50.6 ±

TABLE 4. Enantioselective kinetic disposition of cyclophosphamide (CPA) in patients with lupus nephritis and breast cancer

Parameters	Patient with breast cancer	Patient with lupus nephritis		
	(−)-(S)-CPA	(+)-(R)-CPA	(−)-(S)-CPA	(+)-(R)-CPA
Cmax (µg/ml)	16.93	17.01	12.51	13.15
tmax (h)	0.5	0.5	1.6	1.6
Vd (l)	25.75	25.34	34.46	34.29
t1/2 (h)	6.73	5.99	7.52	6.58
AUC(0−∞) (µg h/ml)	170.93	153.57	148.59	138.46
AUC(0−∞) S/R	1.13	1.07	1.13	
Cl (ml/h)	2632.52	2930.15	3364.98	3610.98
Kel (h−1)	0.1029	0.1156	0.0922	0.1053

Chirality DOI 10.1002/chir
11.14 l and 49.6 ± 8.5 l for (+)-(R)-CPA and (-)-(S)-CPA, respectively.

In conclusion, the confidence limits of the method for the analysis of the (+)-(R)-CPA and (-)-(S)-CPA enantiomers in human plasma are compatible with the application of the method to the clinical study of the kinetic disposition of CPA infused over 1 and 2 h.

LITERATURE CITED
1. Williams ML, Wainer IW, Granvil CP, Barnett M, Ducharme MP. Pharmacokinetics of (R)- and (S)- cyclophosphamide and their dechloroethylated metabolites in cancer patients. Chirality 1999;11:301–308.
2. Cox PJ, Farmer PB, Jarman M, Jones M. Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide. Biochem Pharmacol 1976;25:993–996.
3. Liu JJ, Kestell P, Findlay M, Riley G, Ackland S, Simpson A, Isaacs R, Mckeeage MJ. Application of liquid chromatography-mass spectrometry to monitoring plasma cyclophosphamide levels in phase I trial cancer patients. Clin Exp Pharmacol Physiol 2004;31:677–682.
4. Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2005;37:611–703.
5. Corlett SA, Chrystyn H. High-performance liquid chromatographic determination of the enantiomers of cyclophosphamide in serum. J Chromatogr B Biomed Appl 1996;682:337–342.
6. Reid JM, Stobaugh JF, Sternson LA. Liquid chromatographic determination of cyclophosphamide enantiomers in plasma by precolumn chiral derivatization. Anal Chem 1989;61:441–446.
7. Williams ML, Wainer JW, Embree L, Granvil CP, Barnett M, Ducharme MP. Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 1999;11:569–574.
8. Holm KA, Kindberg CG, Stobaugh JF, Slavik M, Riley CM. Stereoselective, pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Biochem Pharmacol 1990;39:1375–1384.
9. Jarman M, Milsted RAV, Smyth JF, Kinas RW, Pankiewicz K, Stecl WJ. Comparative metabolism of 2-[Bis(2-chloroethyl) amino] tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (Cyclophosphamide) and its enantiomers in humans. Cancer Res 1979;39:2762–2767.
10. Baumann F, Preiss R. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl 2001;764:173–192.
11. Sottani C, Turci R, Perbellini L, Minoia C. Liquid–liquid extraction procedure for trace determination of cyclophosphamide in human urine by high-performance liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 1998;12:1063–1068.
12. Barbieri A, Sabatini L, Indiveri P, Bonfiglioli R, Lodi V, Violante FS. Simultaneous determination of low levels of methotrexate and Cyclophosphamide in human urine with electro spray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2006;20:1889–1893.
13. Kasel D, Jetter A, Hafner S, Gebhardt W, Fuhr U. Quantification of Cyclophosphamide and its metabolites in urine using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2001;20:1472–1478.
14. Sadagopan N, Cohen L, Robets B, Collard W, Omer C. Liquid chromatography/tandem mass spectrometry quantification of cyclophosphamide and its hydroxyl metabolite in plasma and tissue for determination of tissue distribution. J Chromatogr B Biomed Sci Appl 2001;759:277–284.
15. de Jonge ME, van Dam SM, Hillebrand MJ, Rosing H, Huitema ADR, Rodenhuis S, Beijnen JH. Simultaneous quantification of cyclophosphamide, 4-hydroxy-cyclophosphamide, N,N',N'-triethylenethiophosphoramide (tiophepa) and N,N',N'-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Mass Spectrom 2004;39:262–271.
16. Masudel D, Wainer IW. Analytical and preparative high-performance liquid chromatographic separation of the enantiomers of ifosfamide, cyclophosphamide trofosfamide and their determination in plasma. J Chromatogr 1989;490:133–143.
17. Baumann F, Lorenz C, Jaelde U, Preiss R. Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl 1999;729:297–305.
APÊNDICES
APÊNDICE A

Apêndice-A Dados das funções hepática e renal das pacientes envolvidas no estudo (n = 15)

Paciente	Crea mg/dL	Uréia mg/dL	TGO U/L	TGP U/L	Na+ meq/L	K+ meq/L	Bil. tot. mg/dL	Bil. dir. mg/dL	Bil. ind. mg/dL
1	0,8	32	13	17	140	4,0	0,34	0,06	0,28
2	0,9	34	20,8	18	141	4,3	0,34	0,09	0,43
3	0,8	31	31	11	141,6	4,7	0,49	0,27	0,22
4	0,8	29	24	38	143	4,3	0,2	0,07	0,13
5	0,7	36	21,5	20	141	4,5	0,22	0,02	0,19
6	0,7	22	13	12	141	4,2	0,3	0,05	0,25
7	0,9	33	30	19	140	4,6	0,20	0,05	0,15
8	1,0	28	20	25	141	3,7	0,22	0,06	0,16
9	0,9	29	26	17	139	5,0	0,7	0,2	0,49
10	0,7	29	17	10	138	4,6	0,43	0,06	0,37
11	0,7	24	17	24	144	3,9	0,38	0,05	0,33
12	0,9	14	12	19	141	4,0	0,19	0,04	0,15
13	0,7	30	24	21	139	4,4	0,65	0,18	0,47
14	0,7	18	25	17	139	4,3	0,63	0,09	0,54
15	0,7	28	22	20	140	3,5	0,67	0,12	0,55

Crea: creatinina; TGO: transaminase glutâmico oxalacética; TGP: transaminase glutâmico pirúvica; Bil. tot.: bilirrubina total; Bil. dir.: bilirrubina direta; Bil. ind.: bilirrubina indireta
Apêndice B

Disposição cinética do enantiômero (S)-(-)-CPA após dose única IV da CPA

Pacientes	dose	t\(_{50}\)	Kel	C\(_{\text{max}}\)	t\(_{\text{max}}\)	AUC\(_{0-\infty}\)	Cl	Vd
	mg	h	h\(^{-1}\)	µg/mL	h	h·µg/mL	L/h	L
1	900	6,11	0,113	25,45	1,25	237,40	3,79	33,43
2	1000	5,59	0,124	22,73	0,5	195,00	5,13	41,38
3	1000	4,41	0,157	42,53	0,25	292,48	3,42	21,76
4	900	8,03	0,09	18,74	1	226,70	4,0	46,02
5	1000	4,05	0,171	17,89	1,5	113,78	8,79	51,37
6	1000	5,77	0,120	15,28	2	135,10	7,40	61,68
7	900	8,73	0,08	16,83	1	220,5	4,1	51,42
8	1000	5,00	0,138	33,38	0,5	258,02	3,88	27,98
9	1000	7,28	0,095	14,48	1,25	159,54	6,27	65,85
10	1000	6,63	0,104	19,72	1,25	198,96	5,03	48,15
11	1000	5,97	0,116	21,31	1,25	194,53	5,14	44,31
12	1000	3,74	0,18	17,1	1,25	101,30	9,9	53,4
13	900	7,08	0,098	13,18	2	141,38	6,37	65,06
14	900	4,55	0,152	21,76	0,75	154	5,84	38,37
15	1000	5,84	0,120	22,83	0,75	204	4,91	41,31

Mediana

| 1000 | 5,13 | 0,119 | 19,72 | 1,25 | 195,00 | 5,13 | 46,02 |

- t\(_{50}\): meia vida de eliminação; Kel: constante de eliminação; C\(_{\text{max}}\): concentração máxima obtida; t\(_{\text{max}}\): tempo em que é obtido a concentração máxima; AUC\(_{0-\infty}\): área sob a curva de zero ao infinito; Cl: clearance; Vd: volume de distribuição.
Apêndice C

Disposição cinética do enantiômero (R)-(+)-CPA após dose única IV da CPA

Pacientes	dose	$t\frac{1}{2}$	Kel	C_{max}	t_{max}	AUC$_{0-\infty}$	Cl	Vd
1	900	5,59	0,124	25,53	1,25	219,00	4,12	33,16
2	1000	4,97	0,139	22,75	0,5	174,80	5,72	41,03
3	1000	4,00	0,173	42,84	0,25	269,45	3,71	21,43
4	900	6,62	0,105	18,74	1	188,6	4,8	45,59
5	1000	3,07	0,226	18,01	1,5	89,17	11,21	49,71
6	1000	5,09	0,136	15,52	2	121,85	8,21	60,24
7	900	7,98	0,09	16,74	1	201,1	4,5	51,50
8	1000	4,62	0,150	33,12	0,5	237,94	4,20	28,04
9	1000	6,36	0,109	15,52	1,25	150,32	6,65	61,06
10	1000	5,88	0,118	19,74	1,25	177,61	5,63	47,80
11	1000	4,95	0,140	20,82	1,25	159,36	6,27	44,81
12	1000	3,1	0,22	16,7	1,25	83,3	12,0	53,60
13	900	5,83	0,119	13,32	2	118,94	7,57	63,70
14	900	4,13	0,168	22,10	0,75	143	6,3	37,53
15	1000	5,24	0,132	23,20	0,75	187	5,34	40,39

Mediana

dose	$t\frac{1}{2}$	Kel	C_{max}	t_{max}	AUC$_{0-\infty}$	Cl	Vd
1000	5,09	0,136	19,74	1,25	174,8	5,72	45,59

$t\frac{1}{2}$: meia vida de eliminação; Kel: constante de eliminação; C_{max}: concentração máxima obtida; t_{max}: tempo em que é obtido a concentração máxima; AUC$_{0-\infty}$: área sob a curva de zero ao infinito; Cl: clearance; Vd: volume de distribuição.
APÊNDICE-D

Curvas de concentração plasmática do (R)-(+) CPA e (S)-(−) CPA vs tempo (n=15).

PACIENTE 5

APÊNDICE-D

Curvas de concentração plasmática do (R)-(+) CPA e (S)-(−) CPA vs tempo (n=15).

PACIENTE 2

APÊNDICE-D

Curvas de concentração plasmática do (R)-(+) CPA e (S)-(−) CPA vs tempo (n=15).

PACIENTE 6
