The effects of vegetative type, edges, fire history, rainfall, and management in fire-maintained habitat

DAVID R. BREININGER,1† TAMMY E. FOSTER,1 GEOFFREY M. CARTER,1 BREA N W. DUNCAN,1 ERIC D. STOLEN,1 AND JAMES E. LYON2

1NASA Ecology Program, John F Kennedy Space Center, IMSS-300, Kennedy Space Center, Florida 32899 USA
2Merritt Island National Wildlife Refuge, Titusville, Florida 32901 USA

Citation: Breininger, D. R., T. E. Foster, G. M. Carter, B. W. Duncan, E. D. Stolen, and J. E. Lyon. 2018. The effects of vegetative type, edges, fire history, rainfall, and management in fire-maintained habitat. Ecosphere 9(3):e02120. 10.1002/ecs2.2120

Abstract. The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2–1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10-ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads and forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions, and non-linear relationships. Tall territories resulted from 28 yr of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 yr of habitat restoration and prescribed fires, half the territories remained tall, suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states, making mechanical cutting an important tool to compliment frequent prescribed fires.

Key words: adaptive management; edges; fire; Florida scrub-jays; fragmentation; mapping; multistate; scrub; transition.

Received 6 January 2018; accepted 10 January 2018. Corresponding Editor: Debra P. C. Peters.

Copyright: © 2018 Breininger et al. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.† E-mail: david.r.breininger@nasa.gov

INTRODUCTION

Lightning-caused fire regimes have been major evolutionary drivers on nearly all continents (Tucker and Cadotte 2013), but the significance and management needs of biodiversity hotspots characterized by natural fire remain underestimated (Parr et al. 2014, Noss et al. 2015, Rundel et al. 2016). Habitat loss has exceeded 70% of the North American Coastal Plain (NACP), which has only been recently recognized as a global biodiversity hotspot that needs practical models to guide science-based fire management to restore and maintain its unique plants and animals (Noss et al. 2015). The Florida scrub-jay is an endemic bird confined to the Florida scrub and flatwoods ecosystem of the NACP and is an important indicator species for habitat management (Noss et al. 1995).

The natural fire regime of the scrub and flatwoods ecosystem has been greatly altered by
humans (Duncan et al. 2009), as has occurred among fire-adapted communities within the NACP and worldwide (Driscoll et al. 2010). The scrub and flatwoods ecosystem requires prescribed fire management to sustain biodiversity and prevent catastrophic wildfires from impacting human interests because anthropogenic land-cover types (e.g., roads and cities) impede fire spread (Duncan and Schmalzer 2004).

The interactions among factors that influence the transitory dynamics of fire-maintained ecosystems are important to understand and manage to conserve biological diversity, but most studies focus only on habitat responses relative to the last fire (Nimmo et al. 2013). New approaches are needed to quantify spatial variation that results from repeated fires that do not burn all areas equally (Bradstock et al. 2005, Driscoll et al. 2010). Fire history seems particularly important in scrub and flatwoods because repeated fires influence above-ground fuel characteristics (e.g., dead fuels above ground) and dominant plants depend on accumulated below-ground biomass (roots, buds, and starches) for sprouting after fire (Menges and Hawkes 1998).

Mechanical cutting is often used to restore long unburned oak scrub because the habitat becomes difficult to ignite and support fire spread (Schmalzer and Boyle 1998). Evaluating ecosystem restoration usually involves comparing restoration sites to historical references, but one or a few reference sites often do not capture spatial and temporal variability (Kirkman et al. 2013). Restoration trajectories are often not linear or smooth; failure to understand alternative endpoints or exceptions to a deterministic trajectory can limit success (Matthews et al. 2009). Interactions between environmental variables (e.g., rainfall) and fire history have many effects on the direction and stochasticity of restoration trajectories (Zedler et al. 1983, Artman et al. 2001, Drewa et al. 2002, Clarke et al. 2014).

Variations in the intervals between fires can produce nonlinear relationships that are often described as memory or legacy effects (e.g., cavities, snags, and stored underground biomass; Ripplinger et al. 2015, Johnstone et al. 2016). Nonlinear relationships cause management thresholds in ecosystem state changes described by resilience theory (Ghermandi et al. 2010, Mori 2011, Johnson et al. 2013). Resilience theory commonly uses state-and-transition models that summarize ideas about how complex systems work through feedback loops, thresholds, and triggers (Bagchi et al. 2012, Ratajczak et al. 2014).

Multistate models are new approaches to empirically quantify ecosystem dynamics by measuring states and using generalized linear models to estimate how environmental covariates influence transition probabilities between states (Breininger et al. 2010, Veran et al. 2012, Zweig and Kitchens 2014). We previously used multistate models and multimodel inference to quantify scrub and flatwoods habitat transition probabilities of potential Florida scrub-jay territories at 5-yr intervals (1994–2004) using combinations of environmental factors that focused on vegetation type, edges, and management actions as covariates (Breininger et al. 2010). We used landscape units that defined potential Florida scrub-jay territories because transition probabilities within potential territories provide the parameters to predict how alternative management actions can be used to better manage and restore the scrub and flatwoods ecosystem (Williams et al. 2011).

Here, we use multistate modeling and multimodel inference to predict how annual habitat state transition probabilities (2004–2015) are influenced by environmental covariates important in previous studies and new environmental covariates that incorporate information on fire history, rainfall, and open sandy areas. These new covariates were described as important in many ecosystem studies and likely to be influential in early successional state transitions, which dominated historical scrub and flatwoods landscapes (Duncan et al. 2004, 2009).

Our approach for applying habitat states (short, medium, and tall) for potential territories does not consider all elements of Florida scrub-jay habitat quality (Burgman et al. 2001). However, characterizing landscape units into these states is practical to conduct across broad geographic areas annually and is useful for adaptive management (Johnson et al. 2011). Nearly 30 yr of data on demography and dispersal shows that short and tall states are population sinks where mortality exceeds recruitment and the medium state is a source where recruitment exceeds mortality (Breininger et al. 2014).

Although in habitat-specific demography studies we have subdivided the medium state into
open and closed based on open sandy areas (gaps) between shrubs, here, we focused on states defined entirely by height because we lacked enough samples to study how many factors influence transition probabilities into or from open medium because persistent openings have become uncommon (Duncan et al. 2009). We tested whether openings are an important covariate influencing height state dynamics because openings can, for example, reduce fire spread as open sandy gaps cause discontinuity in fuels (Schmalzer 2003, Menges et al. 2008, Duncan et al. 2015). Fires in scrub can also spread poorly depending on meteorological conditions such as soil and fuel moisture that can be influenced by rainfall (Adrian 2006), and thus, a rapidly changing climate is likely to further impact disturbance regimes (Turner 2010, Foster et al. 2017).

Our primary objective was to test a competing model set of ecological hypotheses to investigate whether a few simple covariates or many covariates (from above) best describe transition probabilities in scrub and flatwoods, including models with interactions and nonlinear effects. We also compare new state abundance trends with earlier predictions (Breininger et al. 2010) and use new transition probability estimates to predict future trends of habitat states. Our final objectives include quantifying trends in management effort based on the number of potential territories burned and cut each year to identify trends in management effort that might further explain possible differences in new habitat state trend predictions with the earlier predictions.

METHODS

Study system

Our study was conducted on Kennedy Space Center/Merritt Island National Wildlife Refuge (KSC/MINWR), a barrier island complex located along central Florida’s Atlantic Coast. Oak scrub and flatwoods are heterogeneous vegetative communities dominated by scrub oaks, saw palmetto, grasses, and ericaceous plants. Cover of scrub oaks is greatest on the most well-drained soils (hereafter “oak”) and declines on moderately drained soils (hereafter “flatwoods”) where the more flammable flatwoods species increase. Although considered distinct plant communities, oak and flatwoods are often termed scrubby flatwoods when they are intermixed within fire management units (Breininger et al. 2002). Plant composition changes little after fire because most plants are clonal and re-sprout within weeks (Schmalzer and Hinkle 1992).

Scrub and flatwoods ecosystems on KSC/MINWR had many openings and little forest prior to a fire suppression period (1950–1978), which caused a loss of openings and increases in tall shrubs and forests (Duncan et al. 1999). Marshes are extensively intermingled within scrub and flatwoods, but many of these became hardwood swamps during the fire suppression period. A subsequent prescribed fire program focused on fuel management as part of a national program to reduce threats of catastrophic fires on human interests. Getting the ecosystem back to short and medium habitat states has been difficult, as tall shrubs and forests burn poorly and mechanical cutting is generally needed to reintroduce fire into degraded areas (Schmalzer and Boyle 1998). Currently, the fire return interval in a management unit can be as often as 3–5 yr, but specific patches may burn only every 14 yr or longer (Duncan et al. 2009).

Data collection

The study area was delineated by 695 10-ha square polygons that approximate potential Florida scrub-jay territories. Florida scrub-jay territories average 10 ha when habitat is fully saturated by Florida scrub-jays; studying the dynamics of potential territories is useful because most Florida scrub-jay populations have declined by >50% leaving much potential habitat unoccupied (Breininger et al. 2006). These 695 potential territories represented all potential habitat within areas managed using prescribed fires, while excluding habitat fragments that were no longer managed or relatively isolated scrub patches that had minimal contribution to the Florida scrub-jay population (Carter et al. 2006).

We measured habitat states (short, medium, and tall) described below each year from 2004 to 2015 using 1.0-m-resolution aerial photography. Field observations supplemented state estimation because most potential territories were within long-term demographic study sites where we uniquely mark and resight Florida scrub-jays (Breininger et al. 2009, 2010). Years were defined as April 1–March 31 corresponding to Florida
scrub-jay nesting season and the timing of most aerial photographs. Short territories have many openings between shrubs, medium has a uniform (flat) appearance, and tall shows texture on images because tall shrubs produce shade. Short lacks shrubs >1.2 m tall and experienced a recent (<5 yr), extensive burn. Medium and tall territories often had heterogeneous shrub heights because fires in oak and flatwoods often burn in mosaic patterns so that potential territories include patches of vegetation with different fire histories. Long-term demographic research that defined these criteria was based on having enough medium shrubs to support recruitment that exceeded mortality, but not too many tall shrubs that caused Florida scrub-jay territories to have mortality that exceeded recruitment across a range of population densities. Medium includes at least 0.4 ha of shrubs 1.2–1.7 m tall (optimal height) and excludes large patches (>1.0 ha) of tall shrubs (>1.7 m tall). Tall includes areas with >1.0 ha of tall shrubs (Breininger et al. 2010). On average, it takes 8 yr without disturbance for oaks to reach medium height and 20 yr for scrub to become tall (Schmalzer and Hinkle 1992, Duncan et al. 1995).

We identified a suite of covariates predicted to influence the transition probabilities between habitat states. The static (non-time-varying) covariate oak identified potential territories intersecting well-drained soils, and flatwoods identified potential territories that included moderately drained soils with smaller patches of oaks than are found on well-drained soils. The static covariate edge recorded whether a man-made or forest edge intersected a potential territory. The dynamic (time-varying) covariate open was a categorical variable that distinguished whether scrub in potential territories was open (>50% or area had open sandy gaps between shrubs) or closed (few gaps). The dynamic covariate cutting distinguished territories where at least one-fourth of the territory burned that year based on remote sensing and fire records (Shao and Duncan 2007). We chose three fire history variables that reflected different hypotheses about how fire history would affect habitat transitions that we predicted to be uncorrelated with fire and each other. The first fire history covariate time-since-fire (TSF) represented the number of years without fire prior to the current interval and therefore independent of fire during the current interval. We selected TSF because growth is more rapid soon after fires and then slows (Schmalzer 2003). The second fire history covariate longest fire interval (LFI) represented the longest period without fire during the previous 20 yr, recognizing that fire-free intervals approaching 20 yr result in states resilient to fire (Duncan et al. 1999). The third fire covariate NF included the number of fires for the previous 10 yr because repeated, short-interval fires can deplete underground biomass (Saha et al. 2010).

The dynamic covariate standardized precipitation index (SPI) was obtained from Florida climate division 3 from the National Climatic Data Center, Asheville, North Carolina, USA (www.ncdc.noaa.gov). The SPI describes the observed precipitation over a time period as the number of standard deviations above or below the long-term mean precipitation for that time period (McKee et al. 1993) and has been useful in studying responses in scrub vegetation (Foster et al. 2014, 2015). We used the 12-month SPI for April–March 31 as a measure of drought. The 12-month SPI for March compares the cumulative precipitation from the previous April to the current March to the historic pattern of precipitation for that time period.

Data analyses

We used multistate models to analyze annual transition probabilities between states (Fig. 1) as a multinomial model of static and dynamic environmental covariates. Static variables were oak/flatwoods and edge/no edge. One dynamic variable (SPI) was the same for all potential territories, but unique to each time interval. Other dynamic variables were specific to each interval and potential territory: fire/no fire, mechanical cutting/no cutting, openings/no openings, three fire history variables.

Each multistate model consisted of a likelihood combining three multinomials, one for each of
We estimated transition probabilities for state changes (e.g., short-to-medium); transition probability estimates of states remaining the same between years (e.g., short-to-short) were estimated by subtracting the transition probability estimates of state changes from 1.0. The transition of short-to-tall was constrained to zero because it did not occur, which enhanced numerical estimation. We developed 40 competing models representing hypotheses of how combinations of different variables, two-way interactions, and linear and quadratic relationships would affect state transitions. Models were implemented in Program Mark (White et al. 2006), which produced an Akaike’s information criterion, corrected for sample sizes (AIC_c) model-selection table, estimates of βs (regression parameters), and transition probabilities along with and their precision (i.e., standard error [SE] and confidence interval [CI]). We made a priori predictions about the direction for each β, similar to the previous modeling in order to represent specific ecological hypotheses for each transition probability (Breininger et al. 2010).

We used a simple approach to present how state transitions (and measures of precision) varied annually based only on plant composition (oak vs. flatwoods), excluding environmental covariates because oak and flatwoods are often considered distinct plant communities. We also predicted future abundances of each state for the next 12 yr by Markov projections, beginning with the 2015 vector of state abundances, as we did previously (Breininger et al. 2010). The Markov matrices for the future predictions were estimated with time constant models, separately for oak and flatwoods without other environmental covariates (Breininger et al. 2010). To determine whether there were trends in management effort, we used linear regression of the number of grid cells burned (1983–2015) and cut (2004–2015) for time periods with data on these management efforts.

RESULTS

No simple models that included only vegetation type (oak/flatwoods) and habitat management actions (fire/no fire, cutting/no cutting) had support, whereas six more complicated models had >99% of the empirical support (Table 1). There was much similarity among the top models, and

Table 1. Model selection table for top five models (AIC_c weight >0.01) of the 40 a priori models.

Model	Longest fire interval	Openings	Openings × oak	Number fires	Delta AIC_c	AIC_c weight	No. parameters	Deviance
1	ψSM ψ^{TS} ψTM	ψ^{MT}		w^{TS} wTM	0.00	0.45	45	4420
2	ψSM ψ^{MS} ψ^{MT} ψ^{TS} ψTM	ψ^{MS} ψ^{MT}	ψ^{MS} ψ^{TS} ψTM	1.39	0.23	50	4411	
3	ψSM ψ^{MS} ψ^{MT} ψ^{TS} ψTM	ψ^{MS} ψ^{MT}	ψ^{MS} ψTM	1.67	0.20	42	4427	
4	ψSM ψ^{MS} ψ^{MT} ψ^{TS} ψTM	ψ^{MS} ψ^{MT}	ψ^{MS} ψ^{TS} ψTM	3.72	0.07	48	4417	
5	ψSM ψ^{MS} ψ^{MT} ψ^{TS} ψTM	ψ^{MS} ψ^{MT}	ψ^{MS} ψTM	5.25	0.03	52	4411	

Notes: AIC_c, Akaike’s information criterion, corrected for sample sizes. Superscripts refer to particular transition probabilities between states S, short; M, medium; T, tall. All top models included the effects of edge and oak × fire for all ψ. All top models included a quadratic relationship for oak × time-since-fire (TSF) for ψSM. All top models included a linear TSF effect for ψ^{MT}. The effect of standardized precipitation index applied only to oak for ψ^{MS}, ψ^{TS}, ψTM among the top models. The effect of cutting applied only to ψSM, ψ^{MT} and ψTM for top models.
but differences among transition probabilities regarding which covariates were important. Models with support included all covariates that were previously important (oak, edge, fire, and cutting) and new covariates involving fire history (TSF, longest fire-free interval, NF in previous 10 yr, and openings) and annual rainfall (SPI).

Table 2 compares our a priori predictions with results for all covariates important in the best-supported model. We presented only the best model because other top models were similar and βs absent in the top model involved interactions that had SEs many times greater than mean estimates. The best model had mean βs with CIs that overlapped zero, but excluding these effects during post hoc analyses produced models without AICc support. The main effect for βs describing the oak vs. flatwoods often had CI that overlapped zero, but we included the oak-vs.-flatwoods effect because all supported models included an oak-vs.-flatwoods effect, and many covariates had different effects depending on whether the site was oak or flatwoods (Table 2). All supported models had an effect for whether fire occurred in the current interval, but the CIs overlapped zero for transitions from earlier to later successional states.

Every transition probability included an edge effect; βs representing covariates in the best model usually had the same direction of effects that we predicted, except for the NF in the previous 10 yr. The negative βs for openings clarified the effect where authors disagreed on a priori predictions. Supported models included many covariate effects for transitions between short-to-medium, medium-to-short, and medium-to-tall, which were transition probabilities that previously had low sample sizes and therefore limited our abilities to test many covariate effects. In this study, transitions from short and medium to other states were more common because the states had greater relative abundances, and we estimated transition probabilities from 11 annual intervals vs. three five-year intervals (Breininger et al. 2010).

The fire history TSF affected transitions from earlier to later successional states, with a nonlinear effect for short-to-medium. Other fire history covariates (NF and LFI) often had weak effects (small βs) with uncertain directions (CI overlapped zero). Fire history covariates were not highly correlated ($r^2 < 0.4$), and post hoc analyses to remove covariates from models with multiple fire history covariates did not improve model support or change directions of the β estimates of fire history covariates, as can occur when covariates are highly correlated (Zuur et al. 2010). Each of the three covariates was chosen for a different a priori mechanism that might affect transition probabilities (e.g., nonlinear growth, underground biomass depletion, developing inflammable above-ground fuel structure) and eliminating one to two fire history covariates in post hoc analyses resulted in models that had no support compared to the top models, indicating that the three fire history covariates provided different information, albeit with comparably weak effects and poor precision.

Precipitation did not influence transitions to a later successional state (growth) but influenced transitions to an earlier successional state and in oak. The quadratic relationship occurred because transition probabilities peaked at low-to-medium drought conditions being lowest during severe droughts (when prescribed fires are not allowed) or when rainfall was average or greater.

All habitat states were widely distributed throughout the landscape (Fig. 2), and tall territories remained the most abundant habitat state (Fig. 3). Tall territories declined and medium (optimal) territories increased confirming predictions made from the earlier model (Breininger et al. 2010). Our use of Markov processes to generate a vector of state abundances predicted almost no change in state abundances across the next 12 yr vs. a continued tall state decrease and medium state increase predicted from the earlier data (Breininger et al. 2010). There was a slight increase in the number of grid cells burned each year and no trends in cutting. Cutting only occurred in <25 grid cells each year, except for 2006 and 2011 (Fig. 4).

Transition probabilities from tall to earlier successional states were usually among the smallest and annual transition probabilities varied greatly, especially for short-to-medium, which generally had the greatest transition probabilities between states (Table 3). Transition probabilities to earlier successional states were greatest during the greatest droughts (2007–2008 and 2011–2012).
Nonlinear relationships were represented by a squared term (quadratic), had a \(\Psi \) or \(\Psi \) transition index. Transition probability superscripts were: SM, short-to-medium; MS, medium-to-short; MT, medium-to-tall; TS, tall-to-short; TM, tall-to-medium. Superscripts that included flatswoods had a \(\beta \) specific to flatswoods and superscripts without oak or flatswoods had a single \(\beta \) for both oak and flatswoods transitions. Nonlinear relationships were represented by a squared term (quadratic).

Table 2. Comparing estimated regression slopes (\(\beta \)) with a priori predictions for the best habitat transition model.

Transitions \(\psi \)	\(\beta \) description	\(\beta \)	Lower CL	Upper CL	A priori prediction	Explanation
\(\psi^{SM} \)	Flatwoods vs. oak	-1.12	-1.93	-0.32	-	Agreement, flatwoods more likely to burn extensively
\(\psi^{SM} \)	Edge	0.41	0.12	0.70	+	Agreement, edges reduce fire spread
\(\psi^{SM} \) oak	Fire vs. no fire	-0.11	-0.77	0.56	-	Agreement (but CI overlapped 0.0), fires reduce height
\(\psi^{SM} \) flatswoods	Fire vs. no fire	-1.56	-2.36	-0.76	-	Agreement, fires reduce height
\(\psi^{SM} \) oak	TSF	0.48	0.26	0.70	+	Agreement, growth after fire
\(\psi^{SM} \) oak	TSF squared	-0.02	-0.03	-0.01	-	Agreement, growth rapid immediately after fire than slows
\(\psi^{SM} \) flatswoods	TSF	1.01	0.66	1.36	+	Agreement, growth after fire
\(\psi^{SM} \) flatswoods	TSF squared	-0.08	-0.12	-0.05	-	Agreement, growth rapid immediately after fire than slows
\(\psi^{SM} \)	LFI	0.04	0.01	0.07	+	Agreement, longer fire intervals allow faster regrowth
\(\psi^{SM} \)	Flatwoods vs. oak	0.05	-1.04	1.14	+	Agreement (but CI overlapped 0.0), we predicted flatwoods more likely to burn extensively
\(\psi^{MS} \) oak	Edge	-0.78	-1.22	-0.35	-	Agreement, edges reduce fire spread
\(\psi^{MS} \) oak	Fire vs. no fire	3.38	2.51	4.24	+	Agreement, fires reduce height
\(\psi^{MS} \) flatswoods	Fire vs. no fire	3.72	2.96	4.49	+	Agreement, fires reduce height
\(\psi^{MS} \) oak	SPI	-1.17	-1.79	-0.54	-	Agreement, fire spread increases in drought for oak
\(\psi^{MS} \) oak	SPI squared	-1.49	-2.04	-0.95	-	Agreement, no prescribed fire in extreme drought
\(\psi^{SM} \)	Flatwoods vs. oak	0.06	-0.27	0.39	+	Agreement (but CI overlapped 0.0), we predicted flatswoods recovers faster than oak
\(\psi^{MT} \)	Edge	1.07	0.74	1.39	+	Agreement, edges reduce fire spread
\(\psi^{MT} \) oak	Fire vs. no fire	-0.58	-1.11	-0.05	-	Agreement, fires reduce height
\(\psi^{MT} \) flatswoods	Fire vs. no fire	-0.24	-0.80	0.31	-	Agreement (but CI overlapped 0.0), fires reduce height
\(\psi^{MT} \)	TSF	0.06	0.01	0.11	+	Agreement, growth after fire
\(\psi^{MT} \)	Cutting	-2.09	-4.07	-0.11	-	Agreement, mechanical cutting decreases height
\(\psi^{MT} \) oak	Openings	-1.46	-1.94	-0.97	+ and	Clarification, open areas suggest slow shrub recovery
\(\psi^{TS} \)	Flatwoods vs. oak	0.91	-0.49	2.30	+	Agreement (but CI overlapped 0.0), we predicted flatwoods more likely to burn extensively
\(\psi^{TS} \) oak	Edge	-1.36	-1.83	-0.90	-	Agreement, edges reduce fire spread
\(\psi^{TS} \) oak	Fire vs. no fire	3.94	2.67	5.22	+	Agreement, fires reduce height
\(\psi^{TS} \) flatswoods	Fire vs. no fire	3.42	2.73	4.11	+	Agreement, fires reduce height
\(\psi^{TS} \) oak	Cutting	2.19	1.63	2.75	+	Agreement, mechanical cutting decreases height
\(\psi^{TS} \) oak	SPI	-1.07	-1.89	-0.25	-	Agreement, fire spread increases in drought for oak
\(\psi^{TS} \) oak	SPI squared	-1.12	-1.72	-0.51	-	Agreement, no prescribed fire in extreme drought
\(\psi^{TS} \)	Number fires	-0.17	-0.43	0.09	-	Disagreement (but CI overlapped 0.0), we predicted more fires increase recovery
\(\psi^{TS} \)	LFI	-0.03	-0.07	0.01	-	Agreement (but CI overlapped 0.0), longer fire intervals slow restoration to earlier states
\(\psi^{TM} \)	Flatwoods vs. oak	1.50	-0.21	3.21	+	Agreement (but CI overlapped 0.0), we predicted flatwoods more likely to burn extensively
\(\psi^{TM} \) oak	Edge	-0.71	-1.21	-0.21	-	Agreement, edges reduce fire spread
\(\psi^{TM} \) oak	Fire vs. no fire	4.50	3.08	5.92	+	Agreement, fires reduce height
\(\psi^{TM} \) flatswoods	Fire vs. no fire	3.48	2.55	4.42	+	Agreement, fires reduce height
\(\psi^{TM} \)	Number fires	-0.25	-0.51	0.01	-	Disagreement (but CI overlapped 0.0), we predicted more fires increase transitions to earlier successional states
\(\psi^{TM} \)	LFI	-0.09	-0.13	-0.04	-	Agreement, longer fire intervals slow restoration to earlier states
\(\psi^{TM} \)	Cutting	0.62	-0.08	1.32	+	Agreement (but CI overlapped 0.0), mechanical cutting decreases height
\(\psi^{TM} \) oak	SPI	-0.87	-1.54	-0.20	-	Agreement, fire spread increases in drought
\(\psi^{TM} \) oak	SPI squared	-0.01	-0.05	0.50	-	Agreement, doughts have biggest effect

Notes: CI, confidence interval; CL, confidence limit; TSF, time-since-fire; LFI, longest fire interval; SPI, standardized precipitation index. Transition probability superscripts were: SM, short-to-medium; MS, medium-to-short; MT, medium-to-tall; TS, tall-to-short; TM, tall-to-medium. Superscripts that included flatswoods had a \(\beta \) specific to flatswoods and superscripts without oak or flatswoods had a single \(\beta \) for both oak and flatswoods transitions. Nonlinear relationships were represented by a squared term (quadratic).
Multistate models provided a unifying modeling framework to empirically quantify the effects of many environmental variables on habitat dynamics, by breaking a large landscape into potential territories and developing a longitudinal history of states and environmental covariates. No simple model explained habitat dynamics, as all models with empirical support included many environmental factors for each transition probability; these effects included interactions and nonlinear relationships, which are common in fire ecology studies (Driscoll et al. 2010). Results expanded previous work (Breininger et al. 2010) identifying complex interactions between covariates, and many new covariate effects (fire history, precipitation, openings) for many transitions (e.g., short-to-medium, medium-to-short, and medium-to-tall).

Restoration and management actions (e.g., fire and cutting) had important effects, but other environmental factors often had greater effects on transition probabilities (e.g., edge effects on tall-to-medium: Table 2). Edges (roads and forests), primarily resulting from anthropogenic factors, were among the most influential factor across transition probabilities; these strong effects made sense because edges disrupt fire spread (Duncan and Schmalzer 2004). Forests of many environmental variables on habitat dynamics, by breaking a large landscape into potential territories and developing a longitudinal history of states and environmental covariates. No simple model explained habitat dynamics, as all models with empirical support included many environmental factors for each transition probability; these effects included interactions and nonlinear relationships, which are common in fire ecology studies (Driscoll et al. 2010). Results expanded previous work (Breininger et al. 2010) identifying complex interactions between covariates, and many new covariate effects (fire history, precipitation, openings) for many transitions (e.g., short-to-medium, medium-to-short, and medium-to-tall).

Restoration and management actions (e.g., fire and cutting) had important effects, but other environmental factors often had greater effects on transition probabilities (e.g., edge effects on tall-to-medium: Table 2). Edges (roads and forests), primarily resulting from anthropogenic factors, were among the most influential factor across transition probabilities; these strong effects made sense because edges disrupt fire spread (Duncan and Schmalzer 2004). Forests
were relatively rare in the historical landscapes and resulted from reductions in fire frequency from natural fire regimes causing low flammability (Duncan et al. 1999, 2004). Habitat fragmentation typically increases ignitions and fire spread in other ecosystems, but still has detrimental impacts (Kraaij et al. 2013).

Cutting was an important management action influencing transitions because tall scrub had become resistant to fire, and cutting along edges and frequent fire appear to be the only solution to Florida scrub-jay population recovery on KSC/MINWR (Johnson et al. 2011). We agree with colleagues that mechanical cutting is not a replacement for fire, and care is needed to avoid the spread of exotics and reducing the cover of species important for spreading fires (Schmalzer and Boyle 1998, Menge and Gordon 2010).

Fire history effects were practical to study in our system because fires occurred every few years instead of decades, or longer. The presence/absence of fire during an annual interval usually had a larger effect than fire history variables, except that TSF had a great effect for the short-to-medium transition in oak. The presence/absence of fire might have had a lesser impact than TSF because short scrub generally lacks enough fuels to burn extensively. The TSF nonlinear effect could be explained by growth being most rapid a few years after fire (Schmalzer and Hinkle 1992).

We predicted stronger effects from other fire history covariates, especially for the length of the fire-free interval (LFI) because scrub is difficult to restore once it is unburned for ≥20 yr. We expected that LFI would be important because increasing underground biomass allows for more rapid regrowth after fire (Maliakal et al. 2000, Boughton et al. 2006). One explanation for only small fire history effects might be that the effects of fire history on vegetation might have occurred at a smaller geographic scale than potential territories, which would have had heterogeneous fire histories. The NF decreased tall-to-short and tall-to-medium transitions contradicting our a priori hypothesis, but the effect was poorly estimated (CI overlapped zero). One explanation might be that it takes at least 3–5 yr for enough fuels to accumulate to carry fire and greater fuel levels

Table 3. Annual transition probability estimates (95% CI).

Year	Short-medium	Medium-short	Medium-tall	Tall-short	Tall-medium
Scrub					
2004–2005	0.57 (0.45–0.68)	n/a	0.18 (0.12–0.26)	0.00 (0.00–0.03)	0.01 (0–0.04)
2005–2006	0.71 (0.53–0.84)	0.04 (0.02–0.09)	0.29 (0.22–0.37)	0.01 (0.00–0.04)	n/a
2006–2007	0.22 (0.09–0.46)	n/a	0.09 (0.05–0.16)	0.00 (0.00–0.03)	0.01 (0.01–0.04)
2007–2008	0.40 (0.19–0.65)	0.28 (0.21–0.37)	0.03 (0.01–0.08)	0.08 (0.05–0.11)	0.03 (0.01–0.05)
2008–2009	0.19 (0.11–0.31)	0.02 (0.01–0.08)	0.05 (0.02–0.12)	0.01 (0–0.03)	0.03 (0.01–0.06)
2009–2010	0.13 (0.06–0.25)	0.01 (0.00–0.07)	0.04 (0.01–0.1)	n/a	n/a
2010–2011	0.48 (0.34–0.62)	0.05 (0.02–0.11)	0.15 (0.09–0.23)	0.04 (0.02–0.08)	0.03 (0.02–0.06)
2011–2012	0.46 (0.32–0.61)	0.06 (0.03–0.12)	0.07 (0.03–0.13)	0.03 (0.02–0.06)	0.14 (0.11–0.19)
2012–2013	0.24 (0.13–0.41)	0.08 (0.05–0.14)	0.02 (0.01–0.06)	n/a	0.00 (0.00–0.03)
2013–2014	0.12 (0.05–0.26)	n/a	0.02 (0.01–0.06)	n/a	n/a
2014–2015	0.17 (0.08–0.32)	0.01 (0.00–0.05)	0.07 (0.04–0.12)	n/a	0.01 (0–0.04)

Year	Short-medium	Medium-short	Medium-tall	Tall-short	Tall-medium
Flatwoods					
2004–2005	0.54 (0.66–0.54)	0.09 (0.04–0.20)	0.31 (0.21–0.45)	0.08 (0.05–0.13)	0.01 (0–0.05)
2005–2006	0.38 (0.26–0.52)	0.10 (0.05–0.19)	0.31 (0.21–0.42)	0.01 (0.00–0.04)	n/a
2006–2007	0.23 (0.12–0.39)	0.05 (0.02–0.14)	0.21 (0.13–0.33)	0.03 (0.01–0.06)	n/a
2007–2008	0.16 (0.07–0.31)	0.16 (0.09–0.29)	0.11 (0.05–0.22)	0.07 (0.04–0.12)	0.01 (0.00–0.04)
2008–2009	0.15 (0.07–0.26)	0.15 (0.07–0.28)	0.06 (0.02–0.18)	0.03 (0.01–0.06)	0.04 (0.02–0.08)
2009–2010	0.12 (0.06–0.23)	n/a	0.02 (0.00–0.12)	n/a	n/a
2010–2011	0.44 (0.31–0.58)	0.02 (0.00–0.11)	0.12 (0.06–0.23)	0.01 (0.00–0.04)	0.01 (0.00–0.04)
2011–2012	0.25 (0.13–0.43)	0.17 (0.10–0.28)	0.03 (0.01–0.1)	0.12 (0.08–0.18)	0.10 (0.06–0.15)
2012–2013	0.10 (0.05–0.21)	0.22 (0.15–0.32)	0.01 (0.00–0.08)	0.04 (0.02–0.09)	0.07 (0.04–0.12)
2013–2014	0.08 (0.03–0.16)	n/a	0.07 (0.03–0.15)	n/a	n/a
2014–2015	0.25 (0.16–0.36)	0.11 (0.06–0.2)	0.11 (0.06–0.2)	0.08 (0.05–0.14)	0.07 (0.04–0.13)

Note: CI, confidence interval; n/a, annual transitions that did not occur.
Anthropogenic effects often produce alternative states that are resistant to change or states that are unstable (Scheffer and Carpenter 2003, Larson et al. 2013, Johnstone et al. 2016). Following 28 yr of fire suppression, 35 yr of prescribed fires only reduced slightly the extent of tall territories that had become resistant to restoration. Other complications included restrictions on prescribed fires that must be ignited under particular wind directions to avoid smoke impacts to smoke-sensitive areas. These restoration challenges occur across the geographic region making many small Florida scrub-jay populations vulnerable to extinction (Duncan et al. 2004, Breininger et al. 2006).

Restoration programs often focus on conducting enough management to get past a threshold that alters system behavior, removing feedback loops that lead to a degraded state, and enhancing feedback loops that produce a desired stable state (Suding 2011). Burning during the best season to stimulate grasses and promote fire spread might be advantageous (Fill et al. 2015), but fire managers in our study sites had extreme limitations regarding meteorological and operational constraints that made burning only during the dry-to-wet transitional season (e.g., May) difficult. Cutting was an expensive tool, and it may be unreasonable to remove most forest edges and edges associated with human landscape features so that prioritization of management efforts becomes necessary. We have observed many habitat and population management restoration successes in particular landscapes, but most conservation areas are at less than half Florida scrub-jay carrying capacity (Breininger et al. 2006). Population modeling and Florida scrub-jay sociobiology suggest that habitat management prioritization might focus on maintaining the largest populations because population recovery can be slow, especially when there are not large numbers of nonbreeding individuals that enhance recruitment in these cooperative breeders (Breininger et al. 1999, 2014b).

Funding for prescribed fires often focuses on maximizing fuel reduction allowing fuels to accumulate until fires can burn them extensively, causing potential Florida scrub-jay territories to have a large sink (short, tall)-to-source (medium) habitat ratio, as occurred herein. We believe optimal habitat management might be better at reducing catastrophic fire risk than fuel...
management in priority areas (Breininger et al. 2014a). In an optimal habitat management strategy, prescribed fires would be initiated sooner than a fuel reduction strategy by attempting prescribed fires before all fuels are likely to ignite, thus creating transitory openings and heterogeneity among shrub patches at the territory scale. In habitat occupied by Florida scrub-jays near carrying capacity, optimal habitat management would attempt mosaic fires to provide some unburned patches to serve as nest sites, provide acorns, and areas to escape predators. Such fire mosaics would require greater post-fire monitoring because unburned patches might reignite. Fire modeling suggests this strategy would reduce fuel continuity decreasing the risk of spreading potentially catastrophic fires (e.g., wildfires) that are expensive to control (Duncan et al. 2015). In our view, waiting until fuels accumulate to levels that support complete fires increases the risks of catastrophic wildfires between controlled fires. Frequent and severe fires could be conducted in unoccupied Florida scrub-jay habitat in an attempt to set the system back into an earlier successional state associated with historical conditions promoting population recovery in those areas at a later date.

Our study does not take into account the effects of a changing climate; however, it is likely that the areal extent of oak and flatwoods will be reduced with rising sea levels putting pressure on managing biodiversity in increasingly smaller areas (Foster et al. 2017). Changes in precipitation might include heavier precipitation events and longer periods between precipitation events; droughts may become more frequent (Karl et al. 2009). We observed the effects of SPI on oak transitions to earlier successional states were not linear because drought promotes fire spread, but extreme droughts force a shutdown of prescribed fire because of increased catastrophic fire risk. Droughts might not have affected flatwoods because the vegetation is more flammable and the water table closer to the root zone (Schmalzer and Hinkle 1992).

Scientists need to broaden study implications, but generalizations also lead to debates as to whether Florida scrub-jays, for example, should be a scrub management indicator for all scrub (Menges and Gordon 2010). A nuanced approach could consider regional biodiversity where opportunities for conservation vary among species and conservation areas. In our study region, conservation opportunities are limited by urbanization and species geographic differences (Duncan et al. 2004). Most species of conservation concern in our study site benefited by conditions best for Florida scrub-jays, and we know of no species of conservation concern that would decline from Florida scrub-jay management directed at one of the species last remaining extant large populations.

Plant ecologists recommend pyrodiversity to account for the requirements of lesser known species while animal ecologists have increasingly questioned whether pyrodiversity creates faunal biodiversity (Parr and Andersen 2006, Menges 2007, Clarke 2008, Farnsworth et al. 2014). Our study site had great pyrodiversity but was of poor habitat quality for Florida scrub-jays because of too much tall scrub. Rather than simple statistical distributions, fire frequency should be based on species biology (Gill and McCarthy 1998, Kelly et al. 2015), such as habitat and population state (Johnson et al. 2011, Williams et al. 2011). Optimal Florida scrub-jay territories in our study area include a specific fire mosaic because openings disappear a few years after fire and medium height scrub on average is 8–20 yr post-fire (Breininger et al. 2014b).

Long-term studies have shown geographic differences in vegetative response to fire and fire return rates (Menges et al. 2008). Depth to water table, nutrient availability, and the geological age of soils help explain these geographic differences (Schmalzer and Hinkle 1992). Focusing on broad-scale policies does not always consider spatial and temporal complexities and fine-scale habitat features important to endemic species (Bond and Parr 2010, Watson et al. 2011, Noss et al. 2015). A strength of our study is demonstrating that a monitoring approach can evaluate how management and environmental factors interact to affect habitat quality while being site-specific.

Monitoring is often most effective when it informs decision making (Williams et al. 2002, Nichols and Williams 2006). The transition probabilities estimated herein can be updated through monitoring to drive management decision models (Johnson et al. 2011, Williams et al. 2011) and link habitat quality to population predictions (McCarthy and Thompson 2001, Akcakaya et al. 2014).
2004, Burgman et al. 2005, Duarte et al. 2016). Multistate modeling enhanced the ability to examine relationships among environmental factors and fire history, as such relationships have been understudied (Haslem et al. 2012, Levick et al. 2015). Quantification of progress toward desired conditions that incorporates the ability to account for spatial and temporal variability might be more useful than simple comparisons with historical benchmarks or reference sites (Kirkman et al. 2013).

ACKNOWLEDGMENTS

We thank L. Phillips, P. Schmalzer, M. Legare, J. Nichols, Kennedy Space Center, Merritt Island National Wildlife Refuge, and dozens of fire managers that regularly contribute to our understanding. The study was funded by NASA and U.S. Fish and Wildlife Service. The authors do not claim a conflict of interest.

LITERATURE CITED

Adrian, F. W. 2006. Fire management in the inter galactic interface or 30 years of fire management at Merritt Island National Wildlife Refuge/Kennedy Space Center, Florida. Pages 739–749 in Fuels Management-How to Measure Success: Conference Proceedings. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.

Akcakaya, H. R., V. C. Radeloff, D. J. Mladenoff, and H. S. He. 2004. Integrating landscape and metapopulation modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conservation Biology 18:526–537.

Artman, V. L., E. K. Sutherland, and J. F. Downhower. 2001. Prescribed burning to restore mixed-oak communities in Southern Ohio: effects on breeding-bird populations. Conservation Biology 15:1423–1434.

Bagchi, S., D. D. Briske, X. B. Wu, M. P. McClaran, B. T. Bestelmeyer, and M. E. Fernández-Giménez. 2012. Empirical assessment of state-and-transition models with a long-term vegetation record from the Sonoran Desert. Ecological Applications 22:400–411.

Bond, W. J., and C. L. Parr. 2010. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biological Conservation 143:2395–2404.

Boughton, E., A. F. Quintana-Ascencio, E. Menges, and R. Boughton. 2006. Association of ecotones with relative elevation and fire in an upland Florida landscape. Journal of Vegetation Science 17:361–368.

Bradstock, R. A., M. Bedward, A. M. Gill, and J. S. Cohn. 2005. Which mosaic? A landscape ecological approach for evaluating interactions between fire regimes, habitat and animals. Wildlife Research 32:409–423.

Breininger, D. R., M. A. Burgman, and B. M. Stith. 1999. Influence of habitat quality, catastrophes, and population size on extinction risk of the Florida scrub-jay. Wildlife Society Bulletin 27:810–822.

Breininger, D. R., B. W. Duncan, and N. J. Dominy. 2002. Relationships between fire frequency and vegetation type in pine flatwoods of East-Central Florida, USA. Natural Areas Journal 22:186–193.

Breininger, D., B. Duncan, M. Eaton, F. Johnson, and J. Nichols. 2014a. Integrating land cover modeling and adaptive management to conserve endangered species and reduce catastrophic fire risk. Land 3:874–897.

Breininger, D., E. Stolen, G. Carter, D. Oddy, and S. Legare. 2014b. Quantifying how territory quality and sociobiology affect recruitment to inform fire management. Animal Conservation 17:72–79.

Breininger, D. R., J. D. Nichols, G. M. Carter, and D. M. Oddy. 2009. Habitat-specific breeder survival of Florida scrub-jays: inferences from multistate models. Ecology 90:3180–3189.

Breininger, D. R., J. D. Nichols, B. W. Duncan, E. D. Stolen, G. M. Carter, D. K. Hunt, and J. H. Dresé. 2010. Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities. Ecology 91:3354–3364.

Breininger, D. R., B. Toland, D. M. Oddy, and M. L. Legare. 2006. Landcover characterizations and Florida scrub-jay (Aphelocoma coerulescens) population dynamics. Biological Conservation 128:169–181.

Burgman, M. A., D. R. Breininger, B. W. Duncan, and S. Ferson. 2001. Setting reliability bounds on habitat suitability indices. Ecological Applications 11:70–78.

Burgman, M. A., D. B. Lindenmayer, and J. Elith. 2005. Managing landscapes for conservation under uncertainty. Ecology 86:2007–2017.

Cansler, C. A., and D. McKenzie. 2014. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecological Applications 24:1037–1056.

Carter, G. M., E. D. Stolen, and D. R. Breininger. 2006. A rapid approach to modeling species–habitat relationships. Biological Conservation 127:237–244.

Clarke, M. F. 2008. Catering for the needs of fauna in fire management: Science or just wishful thinking? Wildlife Research 35:385–394.
Clarke, P. J., K. J. Knox, R. A. Bradstock, C. Munoz-Robles, and L. Kumar. 2014. Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. Journal of Vegetation Science 25:1033–1044.

Drewa, P. B., W. J. Platt, and E. B. Moser. 2002. Fire effects on resprouting of shrubs in headwaters of southeastern longleaf pine savannas. Ecology 83: 755–767.

Driscott, D. A., et al. 2010. Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biological Conservation 143:1928–1939.

Duarte, A., J. S. Hattfield, T. M. Swannack, M. R. Forstner, M. C. Green, and F. W. Weckerly. 2016. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty. Ecological Modelling 320:52–61.

Duncan, B. W., S. Boyle, D. R. Breininger, and P. A. Schmalzer. 1999. Coupling past management practice and historic landscape change on John F. Kennedy Space Center, Florida. Landscape Ecology 14:291–309.

Duncan, B. W., D. R. Breininger, P. A. Schmalzer, and V. L. Larson. 1995. Validating a Florida scrub-jay habitat suitability model using demographic data on Kennedy Space Center. Photogrammetric Engineering and Remote Sensing 61:1361–1370.

Duncan, B. W., V. L. Larson, and P. A. Schmalzer. 2004. Historic landcover and recent landscape change in the north Indian River Lagoon Watershed, Florida, USA. Natural Areas Journal 24:198–215.

Duncan, B. W., and P. A. Schmalzer. 2004. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecology 19:153–165.

Duncan, B. W., P. A. Schmalzer, D. R. Breininger, and E. D. Stolen. 2015. Comparing fuels reduction and patch mosaic fire regimes for reducing fire spread potential: a spatial modeling approach. Ecological Modelling 314:90–99.

Duncan, B. W., G. Shao, and F. W. Adrian. 2009. Delineating a managed fire regime and exploring its relationship to the natural fire regime in East Central Florida, USA: a remote sensing and GIS approach. Forest Ecology and Management 258:132–145.

Fang, L., J. Yang, J. Zu, G. Li, and J. Zhang. 2015. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management 356:2–12.

Farnsworth, L. M., D. G. Nimmo, L. T. Kelly, A. F. Bennett, and M. F. Clarke. 2014. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Diversity and Distributions 20:663–673.

Fill, J. M., W. J. Platt, S. M. Welch, J. L. Waldron, and T. A. Mousseau. 2015. Updating models for restoration and management of fiery ecosystems. Forest Ecology and Management 356:54–63.

Foster, T. E., P. A. Schmalzer, and G. A. Fox. 2014. Timing matters: the seasonal effect of drought on tree growth. Journal of the Torrey Botanical Society 141:225–241.

Foster, T. E., P. A. Schmalzer, and G. A. Fox. 2015. Seasonal climate and its differential impact on growth of co-occurring species. European Journal of Forest Research 134:497–510.

Foster, T. E., E. D. Stolen, C. R. Hall, R. Schaub, B. W. Duncan, D. K. Hunt, and J. H. Drese. 2017. Modeling vegetation community responses to sea-level rise on Barrier Island systems: a case study on the Cape Canaveral Barrier Island complex, Florida, USA. PLoS ONE 12:e0182605.

Ghermandi, L., M. de Torres Curth, J. Franzese, and S. Gonzalez. 2010. Non-linear ecological processes, fires, environmental heterogeneity and shrub invasion in northwestern Patagonia. Ecological Modelling 221:113–121.

Gill, A. M., and M. A. McCarthy. 1998. Intervals between prescribed fires in Australia: What intrinsic variation should apply? Biological Conservation 85:161–169.

Haslem, A., et al. 2012. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biological Conservation 152: 212–221.

Johnston, F. A., D. R. Breininger, B. W. Duncan, J. D. Nichols, M. C. Runge, and B. K. Williams. 2011. A Markov decision process for managing habitat for Florida scrub-jays. Journal of Fish and Wildlife Management 2:234–246.

Johnson, F. A., B. K. Williams, and J. D. Nichols. 2013. Resilience thinking and a decision-analytic approach to conservation: Strange bedfellows or essential partners? Ecology and Society 18:1–17.

Johnstone, J. F., et al. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment 14:369–378.

Karl, T. R., J. M. Melillo, and T. C. Peterson, editors. 2009. Global climate change impacts in the United States: A state of knowledge report from the U.S. Global Change Research Program. Cambridge University Press, Washington, D.C., USA.

Kelly, L. T., A. F. Bennett, M. F. Clarke, and M. A. McCarthy. 2015. Optimal fire histories for biodiversity conservation. Conservation Biology 29:473–481.

Kirkman, L. K., A. Barnett, B. W. Williams, J. K. Hiers, S. M. Pokswinski, and R. J. Mitchell. 2013. A dynamic
reference model: a framework for assessing biodiversity restoration goals in a fire-dependent ecosystem. Ecological Applications 23:1574–1587.
Kraaij, T., R. M. Cowling, and B. W. Van Wilgen. 2013. Fire regimes in eastern coastal fynbos: imperatives and thresholds in managing for diversity. Koedoe 55:01–09.

Larson, A. J., R. T. Belote, C. A. Cansler, S. A. Parks, and M. S. Dietz. 2013. Latent resilience in ponderosa pine forest: effects of resumed frequent fire. Ecological Applications 23:1243–1249.
Levick, S. R., C. A. Baldeck, and G. P. Asner. 2015. Demographic legacies of fire history in an African savanna. Functional Ecology 29:131–139.
Levick, S. R., C. A. Baldeck, and G. P. Asner. 2015. Demographic legacies of fire history in an African savanna. Functional Ecology 29:131–139.
Lindenmayer, D. B., W. Blanchard, L. McBurney, D. Blair, S. C. Banks, D. Driscoll, A. L. Smith, and A. M. Gill. 2013. Fire severity and landscape context effects on arboreal marsupials. Biological Conservation 167:137–148.
Maliakal, S. K., E. S. Menges, and J. Denslow. 2000. Community composition and regeneration of Lake Wales Ridge wiregrass flatwoods in relation to time-since-fire. Journal of the Torrey Botanical Society 2000:125–138.
Matthews, J. W., G. Spyreas, and A. G. Endress. 2009. Trajectories of vegetation-based indicators used to assess wetland restoration progress. Ecological Applications 19:2093–2107.
McCarthy, M. A., and C. Thompson. 2001. Expected minimum population size as a measure of threat. Animal Conservation 4:351–355.
McKee, T. B., N. J. Doeskin, and J. Kleist. 1993. The relationship of drought frequency and duration to time scales. Pages 179–184 in Proc. 8th Conf. on Applied Climatology, January 17–22. American Meteorological Society, Boston, Massachusetts, USA.

Menges, E. S. 2007. Integrating demography and fire management: an example from Florida scrub. Australian Journal of Botany 55:261–272.
Menges, E. S., A. Craddock, J. Salo, R. Zinthefer, and C. W. Weekley. 2008. Gap ecology in Florida scrub: species occurrence, diversity and gap properties. Journal of Vegetation Science 19:503–514.
Menges, E. S., and D. R. Gordon. 2010. Should mechanical treatments and herbicides be used as fire surrogates to manage Florida’s uplands? A review Florida Scientist 73:147.

Menges, E. S., and C. V. Hawkes. 1998. Interactive effects of fire and microhabitat on plants of Florida scrub. Ecological Applications 8:935–946.
Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell, R. M. Creasy, and J. W. Sherlock. 2009. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113:645–656.
Mori, A. S. 2011. Ecosystem management based on natural disturbances: hierarchical context and non-equilibrium paradigm. Journal of Applied Ecology 48:280–292.
Nichols, J. D., and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology & Evolution 21:668–673.
Nimmo, D., L. Kelly, L. Spence-bailey-Bailey, S. Watson, R. Taylor, M. Clarke, and A. Bennett. 2013. Fire mosaics and reptile conservation in a fire-prone region. Conservation Biology 27:345–353.
Noss, R. 2013. Forgotten grasslands of the south: natural history and conservation. Island Press, Washington, D.C., USA.
Noss, R. F., E. T. LaRoe, and J. M. Scott. 1995. Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. U.S. Department of the Interior, National Biological Service, Washington, D.C., USA.
Noss, R. F., W. J. Platt, B. A. Sorrie, A. S. Weakley, D. B. Means, J. Costanza, and R. K. Peet. 2015. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions 21:236–244.
Parr, C. L., and A. N. Andersen. 2006. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation Biology 20:1610–1619.
Parr, C. L., C. E. Lehmann, W. J. Bond, W. A. Hoffman, and A. N. Andersen. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology & Evolution 29:205–213.
Platt, W. J., G. W. Evans, and M. M. Davis. 1988. Effects of fire season on flowering of forbs and shrubs in longleaf pine forests. Oecologia 76:353–363.
Ratajczak, Z., J. B. Nippert, J. M. Briggs, and J. M. Blair. 2014. Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America. Journal of Ecology 102:1374–1385.
Ripplinger, J., J. Franklin, and T. C. Edwards. 2015. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe. Journal of Vegetation Science 26:923–933.
Rundel, P. W., M. T. Arroyo, R. M. Cowling, J. E. Keeley, B. B. Lamont, and P. Vargas. 2016. Mediterranean biomes: evolution of their vegetation, floras and climate. Annual Review of Ecology, Evolution, and Systematics 47:383–407.
Saha, S., A. Catanzazi, and E. S. Menges. 2010. Does time since fire explain plant biomass allocation in
the Florida, USA, scrub ecosystem. Fire Ecology 6:13–25.

Scheffer, M., and S. R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.

Schmalzer, P. A. 2003. Growth and recovery of oak saw palmetto scrub through ten years after fire. Natural Areas Journal 23:5–13.

Schmalzer, P. A., and S. Boyle. 1998. Restoring long-unburned oak-mesic flatwoods requires mechanical cutting and prescribed burning. Restoration and Management Notes 16:96–97.

Schmalzer, P. A., and C. R. Hinkle. 1992. Recovery of oak-saw palmetto scrub after fire. Castanea 1992: 158–173.

Shao, G., and B. W. Duncan. 2007. Effects of band combinations and GIS masking on fire-scar mapping at local scales in east-central Florida, USA. Canadian Journal of Remote Sensing 33:250–259.

Suding, K. N. 2011. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Pages 465–487 in D. J. Futuyma, H. B. Shaffer, and D. Simberloff, editors. Annual review of ecology, evolution, and systematics. Volume 42. Annual Reviews, Palo Alto, California, USA.

Tucker, C. M., and M. W. Cadotte. 2013. Fire variability, as well as frequency, can explain coexistence between seeder and resprouter life histories. Journal of Applied Ecology 50:594–602.

Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849.

Veran, S., K. J. Kleiner, R. Choquet, J. A. Collazo, and J. D. Nichols. 2012. Modeling habitat dynamics accounting for possible misclassification. Landscape Ecology 27:943–956.

Watson, L. H., T. Kraaij, and P. Novellie. 2011. Management of rare ungulates in a small park: habitat use of bontebok and Cape mountain zebra in Bontebok National Park assessed by counts of dung groups. South African Journal of Wildlife Research 41: 158–166.

White, G. C., W. L. Kendall, and R. J. Barker. 2006. Multistate survival models and their extensions in Program MARK. Journal of Wildlife Management 70:1521–1529.

Williams, B. K., M. J. Eaton, and D. R. Breininger. 2011. Adaptive resource management and the value of information. Ecological Modelling 222:3429–3436.

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic Press, New York, New York, USA.

Zedler, P. H., C. R. Gautier, and G. S. McMaster. 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809–818.

Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3–14.

Zweig, C. L., and W. M. Kitchens. 2014. Reconstructing historical habitat data with predictive models. Ecological Applications 24:196–203.