A Chiron approach towards the stereoselective synthesis of polyfluorinated carbohydrates

Vincent Denavit¹, Danny Lainé¹, Jacob St-Gelais¹, Paul A. Johnson¹ & Denis Giguère¹

The replacement of hydroxyl groups by fluorine atoms on hexopyranose scaffolds may allow access to the discovery of new chemical entities possessing unique physical, chemical and ultimately even biological properties. The prospect of significant effects generated by such multiple and controlled substitutions encouraged us to develop diverse synthetic routes towards the stereoselective synthesis of polyfluorinated hexopyranoses, six of which are unprecedented. Hence, we report the synthesis of heavily fluorinated galactose, glucose, mannose, talose, allose, fucose, and galacturonic acid methyl ester using a Chiron approach from inexpensive levoglucosan. Structural analysis of single-crystal X-ray diffractions and NMR studies confirm the conservation of favored \(^4C_1 \) conformation for fluorinated carbohydrate analogs, while a slightly distorted conformation due to repulsive 1,3-diaxial F···F interaction is observed for the trifluorinated talose derivative. Finally, the relative stereochemistry of multi-vicinal fluorine atoms has a strong effect on the lipophilicities (\(\log P \)).

¹Département de chimie, 1045 av. De la Médecine, Université Laval PROTEO, RQRM, Québec City, QC G1V 0A6, Canada. Correspondence and requests for materials should be addressed to D.Gèr. (email: denis.giguere@chm.ulaval.ca)
The synthesis, physical characterizations, and biological investigations of fluorinated compounds have attracted tremendous research interest in the past decades. In this context, the efficient and controlled incorporation of fluorine atoms into organic derivatives has quickly become a powerful tool to discover original chemical entities with unique physical, chemical and even biological properties.

The replacement of hydroxyl groups with fluorine atoms to generate fluorine-substituted analogs of naturally occurring or biologically active organic compounds is extensively studied. The rationale to prepare such compounds arises from similarities between OH group and F atom in regard to polarity and isosteric relationship. Another important feature is the loss of hydrogen donating capacity for the F atom, but the high C–F bond energy renders them resistant to metabolic transformation. Finally, the addition of a fluorine group can lead to greater lipophilicity, which in turn can increase bioavailability, tissue distribution and cell permeability.

Since only a limited number of fluorine-containing natural products have been isolated so far, chemical syntheses or enzymatic transformations represent the best routes to study and access complex organofluorines. The synthesis of fluorine-containing contiguous stereochemical center is challenging. Despite significant progress in asymmetric fluorination methodology, the development of innovative synthetic methods should attract more attention. Tremendous synthetic efforts greatly contributed to the presence of a large number of fluorinated agrochemicals and pharmaceuticals on the market and also useful biochemical probes for the in vivo magnetic resonance imaging. Representative recent examples of polyfluorinated organic molecules are presented in Fig. 1a. The intriguing all-cis-1,2,3,4,5,6-hexafluorocyclonexane 1 represents one of the most striking candidate and the synthetic tour de force was achieved by the group of O’Hagan in 2015, and more recently by the group of Glorius with a Rh-catalyzed single step from hexafluorobenzene. All of the fluorine atoms are cis in this molecule and the high facial polarization generates an unusually large dipole moment. Among promising applications, the use of this resulting Janus-faced structure may open up new avenues in material science. In 2016, the group of Carreira presented the synthesis of Fluorodanicilpin A 2, a fluorinated analog of chlorosulfolipid daniicalpin A. This pioneering work shows that both bromo-danicilpin and fluoro-danicilpin A disclosed similar solution conformations, but adverse effects may be due to the lipophilicity of the halogens. This example clearly demonstrates that preparation of fluorinated analogs of natural products may provide compounds with novel biological activities.

Interestingly, numerous fluorinated carbohydrates were also widely investigated as interesting and suitable imaging agents for 18F-positron-emitting tomography for cancer diagnosis, in the footsteps of the early development of radiopharmaceutical [18F]FDG (2-deoxy-2-(18F)fluoro-D-glucose). Fluorinated carbohydrates also play interesting roles in biological systems as mechanistic probes or to modulate lectin–carbohydrate interactions. Almost two decades ago, the group of DiMagno synthesized the hexafluorinated analog 31 (Fig. 1a) and this compound crosses red blood cell membrane at a tenfold higher rate than glucose. This example indicates that increasing the polar hydrophobicity may be a useful strategy for improving biological molecular recognition. This outcome has recently been proved accurate by the development of tetrafluoroethylene-containing monosaccharide 4 by the group of Linclau. This compound gained affinity to UDP-galactopyranosyl mutase from Mycobacterium tuberculosis showing that tetrafluorination can have beneficial effect on binding compared to unmodified analogs.

This example strongly suggests that more research should be directed towards polyfluorination in the design of carbohydrate mimetics.

In this context, the stereoselective synthesis and conformational analysis of polyfluorinated derivatives, and a fortiiori multi-vcinal organofluorine isomers, remain a tedious challenge. Consequently, systematic biological investigations of heavily fluorinated carbohydrates have often been impeded by the weak efficiency of the multistep sequences used in de novo approaches. In addition, these long synthetic sequences generally give rise to enantiomeric or diastereomeric mixtures of products, leading to difficult silica gel chromatographies for isolation of pure products. Herein, we proposed a Chirone approach for the preparation of heavily fluorinated sugars shown in Fig. 1b. The accessible variety of synthesized derivatives spans over seven distinct members of functionalized carbohydrates containing distinctive cis and trans chemical relationships between fluorine atoms. More specifically, original polyfluorinated D-galactopyranoside 5, D-galacturonic acid methyl ester 6, and D-fucoside 7 were generated from this approach, and contained a 2,3-trans, 3,4-cis pattern for the integrated fluorine atoms.

The versatility of the methodology was further demonstrated with the access to trifluorinated D-glucose derivative 8 (2,3-trans, 3,4-trans), along with D-mannose 9 (2,3-cis, 3,4-trans), D-talose 10 (2,3-cis, 3,4-cis), and D-allose 11 (2,3-cis, 3,4-cis). Beyond its versatility, this convenient methodology included practical features that allowed operations on a large scale starting from inexpensive starting material. The proposed sequences enable a minimal usage of protection/deprotection cycles, allow an excellent regio- and stereocontrols; and avoid tedious purifications. Our synthetic endeavors will start from commercially available 1,6-anhydro-β-D-galactopyranoside (levoglucocon). This choice has been motivated since the 1,6-anhydro core prevents protection of both O-6 and anemic positions and allows navigation on the pyran ring to install fluorine atoms using simple experimental protocols. Finally, the discovery of rather unique approach to construct multiple C–F bonds in one single transformation is described herein.

Results

Synthesis of 2,3,4,6-tetrafluorinated galactoside. The synthesis of 2,3,4,6-tetra-2-deoxy-2,3,4,6-tetrafluorogalactopyranoside 27 is described in Fig. 2 and was initiated with easily accessible Cerny’s epoxide 13 preliminarily generated from levoglucocon 12 in an efficient 4-step sequence. Nucleophilic fluorination of the 2,3-anhydro derivative 13 was subsequently achieved upon exposure to KH[F]2 in 73% yield. Then treatment of resulting compound 14 with Deoxo-Fluor™ furnished 2,3-dideoxy-difuoro glucon 15 with complete retention of configuration (2,3-trans relationship). A TiCl4-mediated benzylic deprotection generated containing the desired free hydroxyl group, which was further activated as triflate (17) and subjected to a nucleophilic fluorination using TBAF. Despite several attempts, 1,6-anhydro-2,3,4-trideoxy-2,3,4-trifluoro-β-D-galactopyranoside 18 proved to be difficult to isolate due to its high volatility. Consequently, acetylation of the crude mixture under acidic conditions (H2SO4, Ac2O) furnished the desired di-acetylated derivative 19 in a satisfactory 63% yield over 3 steps (α/β = 5:1), with the anticipated 2,3-trans, 3,4-cis relationship (19F NMR (470 MHz, Chloroform-d): 3JF2-H3 = 12.8 Hz, 3JF4-H5 = 3JF4-H6 = 27.0 Hz, for details, see Supplementary Fig. 14). The last hurdle involved the C-6 fluorination and to that end, an O-aryl group was first installed to block the anomeric position. It is well documented that an electron-withdrawing polyfluoroalkyl group destabilizes adjacent carbocation center. In this context, glycosylation...
and tetra-
ultimately transformed into the corresponding carboxylic acid
to ease the recrystallization procedure, the benzoate aglycone was
smoothly generated 2,3,4,6-tetradeoxy-2,3,4,6-tetra-
activation of C-6 hydroxyl group
was isolated in a 60% yield, along with the adverse elimination
β-hydroxybenzoate and as expected, the desired
mediate 19
using an excess of hydrogen bromide in acetic acid from inter-
involving an oxocarbenium species was avoided and as a result, a
phase-transfer-catalyzed nucleophilic displacement was estab-
lished. The α-galactosyl bromide 20 was slowly generated (2 days)
using an excess of hydrogen bromide in acetic acid from inter-
mediate 19. Then, intermediate 20 was treated with methyl p-
hydroxybenzoate and as expected, the desired β-galactoside 21
was isolated in a 60% yield, along with the adverse elimination
product that led to the trifluoro glycal derivative in 20% yield. The
first C-6 deoxofluorination attempts were directed to the
activation of C-6 hydroxyl group 22 as triflate 23 and subsequent
treatment with TBAF generated within a 10:1 mixture of
elimination products: arabinino-hex-5-enopyranoside 24 and
compound 25 in 73% yield. Only trace amounts of the targeted
tetrafluorinated product were observable under these conditions.
We suspected that side product 24 was prone to elimination
reactions, and this tendency was confirmed when its treatment
with TBAF over a prolonged period of time (3 days) allowed a
clean conversion to 25 in 86% yield. The second option proved to
be more direct and successful. A DAST-mediated deoxo-
fluorination on 2,3,4-trifluorinated galactopyranoside 22
smoothly generated 2,3,4,6-tetrahydroxygalactopyranoside 26 in 96% yield [as a 1:1 mixture with the chromatographically separable arabinino-hex-5-enopyranoside derivative 24 (for details, see Supplementary Methods)]. In order
to ease the recrystallization procedure, the benzoate aglycone was
ultimately transformed into the corresponding carboxylic acid 27
with the use of aqueous 1 M LiOH solution.

Conformational analysis and theoretical calculations. X-ray
analyses proved to be very instructive. In the solid state, com-
 pound 27 is a dimer (Fig. 2) and the pyran ring adopts the 4C1
conformation. Interestingly, the 1,3-C–F bond repulsion usually
noticed when 2 fluorine atoms are placed 1,3 on a hydrocarbon
chain46,47 is not observed in this particular case, even though the
fluoromethyl group (C5–C6 linkage) is free to rotate. In the solid
state, compound 27 adopts the highest energetic conformation
(GG), which is unusual for galactoside derivatives.48 At first, we
proposed that this 1,3-alignment increases the overall molecular
dipole moment 49,50 allowing intermolecular C–F–H–C inter-
actions responsible, in part, for the solid-state ordering as seen in
the crystal structures packing (Fig. 3a).32,31,52 Intermolecular
interactions include π-stacking from the aromatic portion and
also possibly hydrogen bonds involving the C-6 fluorine atoms: d(H6,F6) = 2.79 Å (C6–H–F6; θ = 121.4°), d(H5,F6) = 2.63 Å
(C5–H–F6; θ = 111.9°), and d(H4,F6) = 2.51 Å (C4–H–F6; θ = 123.2°).53 Also, the C-4 fluorine might be involved in this
hydrogen bonding network: d(H4,F4) = 2.86 Å (C4–H–F4; θ =
118.3°), and d(H3,F4) = 2.57 Å (C3–H–F4; θ = 113.7°), for details
see Supplementary Table 17. One more argument supporting
possible intermolecular C–F–H–C interactions is the shielded
chemical shift of fluorine atoms for compound 27; 19F NMR (470
MHz, Acetone-d6) δ –201.83 (F3), –207.14 (F2), –217.20 (F4),
–230.43 (F6) (for details, see Supplementary Fig. 53).54 Density
functional theory (DFT) calculations were performed with
Gaussian 09, revision E.0155 to evaluate our hypothesis.
Fig. 2 Stereoselective synthesis of 2,3,4,6-tetradeoxy-2,3,4,6-tetrafluorogalactopyranoside 27 from levogulcan 12. Reagents and conditions: (a) ref 40; (b) KHF2 (7.0 equiv), ethylene glycol, 200 °C, 2.5 h, 73%; (c) Deoxo-Flour (2.0 equiv), THF, microwave irradiation, 100 °C, 1.5 h, 87%; (d) TiCl4 (1.1 equiv), hydroxybenzoate (3.0 equiv), TBAHS (1.0 equiv), EtOAc, 1 M Na2CO3, rt, 18 h; 60% over 2 steps; (j) 1 M NaOMe, MeOH, rt, 1 h, 99%; (k) 1 M TBAF in THF.

Calculations were performed with the CAM-B3LYP functional26 using Grimme’s D3 correction37 and the 6–31 + G(d,p) basis set. The polarizable continuum model (PCM) was used to study possible solvent effects in acetone (for details, see Supplementary Discussion).38,59 The molecular dipole moment of the three staggered conformations corresponding to the rotation about the C5–C6 bond were computed. That of the GG conformer is 5.29 D, in strong contrast with the other two conformers (GT conformer: 3.49 D and TG conformer: 2.03 D). Following this observation, we performed a Natural Bonding Orbital (NBO) analysis50,61 to evaluate the possibility of hydrogen bonding involving fluorine atoms. Specifically, we looked at the NBO populations of the lone pairs on the fluorine centers (donors), as well as the C–H antibonding orbitals (acceptors) and the results are presented in the supplementary information. Briefly, no appreciable portion of the lone pair NBO population is donated to the antibonding pairs. This suggests that intermolecular C–F…H–C interactions are very weak. However, to the best of our knowledge, this is the first example of facially polarized organofluorine possibly responsible for crystal packing at the expense of strong 1,3-C–F bond repulsion. Finally, an HOESY (Heteronuclear Overhauser Effect Spectroscopy) experiment was performed on compound 27 (Acetone-d6) in order to determine the conformation of the fluoromethyl group (C5–C6 linkage). Key correlations are presented in Fig. 2 and suggested that the tetrafluorinated galactoside derivative prefers a GT conformation in solution (Acetone-d6).38

This was also confirmed after analysis of the 1H NMR spectrum (500 MHz, Acetone-d6). The proton at C-5 has a chemical shift of 4.52 ppm with, amongst others, a coupling constant 3JHH-F6 of 12.9 Hz, corresponding to a gauche conformation with F-6 for details, see Supplementary Fig. 52). The results of our modeling calculations also support this finding. The rotation about the C5–C6 bond was scanned and results indicated three minima corresponding to the staggered conformations (Fig. 3b). The GG conformer, corresponding to the one from the crystal structure, is the least favorable (ΔG = 1.41 kcal/mol) as compared with the GT conformer (ΔG = 0.98 kcal/mol) and the TG conformer (ΔG = 0.20 kcal/mol). The calculated free energy difference is small and suggests that both GT and TG conformers will be present at room temperature.

Synthesis of 2,3,4-trifluorinated hexopyranosides. Encouraged by the successful synthesis of the first tetrafluorinated carbohydrate (where all the hydroxyl groups were replaced by fluorine atoms), we maintained our efforts to perform standard synthetic derivatizations from key-synthon 22 in order to prepare phosphogalactopyranoside, galacturonic acid methyl ester, and fucoside derivative (Fig. 4). Thus, starting from hydroxyl 22, direct phosphorylation afforded phospho-galactopyranoside 28 in 84% yield. In addition, a TEMPO/BAIB-mediated oxidation allowed the formation of the corresponding uronic acid, directly treated in situ with methyl iodide under basic conditions to provide the
galacturonic acid methyl ester analog 29. Finally, compound 22 was further deoxygenated at C-6 starting with installation of iodine, followed by a radical deiodination allowing the clean isolation of D-fucopyranoside 30 in a satisfactory yield. These results indicated that even if compound 22 is prone to elimination (see Fig. 2), standard modifications at C-6 can be accomplished on this complex fluorinated carbohydrate with only minor modifications of existing synthetic techniques. As such, these synthetic developments could be initiators of complex derivatizations and anticipated as straightforward methodologies towards the incorporation of these heavily fluorinated carbohydrate analogs into biologically active molecules.

We next turned our attention to the synthesis of contiguous stereogenic center with other cis, trans chemical relationships between fluorne atoms at position C-2, C-3, and C-4. The galactose derivative 19 integrates a 2,3-trans, 3,4-cis relationship and the preparation of a fluorinated analog with a 2,3-trans, 3,4-trans relationship could be straightforward from intermediate 16 (Fig. 2). The preparation of the 2,3,4-trideoxy—2,3,4-trifluoroglucopyranose analog 33 is summarized in Fig. 5. Intermediate 16 was subjected to a Lattrell-Dax epimerization via trflate 17 allowing the quasi-quantitative formation of the 1,6-anhydrogalactopyranose derivative 31. Nucleophilic fluorination at C-4 was achieved using TBAF via a trflate derivative and subsequent acetolysis furnished the acetyl protected 2,3-trans, 3,4-trans 2,3,4-trideoxy-2,3,4-trifluoroglucopyranose 8 (19F NMR (470 MHz, CDCl3) 3J_F2,H3 = 13.0 Hz, 3J_F4,H3 = 16.1 Hz, 3J_F4,H5 = 4.2 Hz, for details, see Supplementary Fig. 81) from the late acetylation of the intermediate 32. Standard deprotection under basic conditions furnished known glucose derivative 33, initially prepared by the group of O’Hagan in 15 steps (0.4% global yield) from butyndioic. In comparison, the present strategy only required a 9-step sequence (only 6 purifications) from Cerny’s epoxide 13 with an overall 25% yield. Of interest, this Chiron approach avoided the formation of cumbersome enantiomers’ mixtures commonly encountered in de novo synthetic approaches.

Fig. 3 Conformation of compound 27. a Crystal molecular packing arrangement of galactoside analog 27 highlighting possible C—F—H—C interactions (dot line). ORTEP diagram showing 50% thermal ellipsoid probability, carbon (gray), oxygen (red), fluorine (light green), hydrogen (white); b Relative energy of the dihedral angle plot (CAM-B3LYP-D3/6-31 + G(d,p)) for rotation about C5—C6 bond for compound 27, along with their calculated molecular dipole moment (shown in the frame).
As a demonstration of the usefulness of levoglucosan as starting material for the construction of fluorinated carbohydrates, we successfully completed the synthesis of 2,3,4-trideoxy-2,3,4-trifluoromannopyranose and 2,3,4-trideoxy-2,3,4-trifluorotolopyranose as shown in Fig. 6. The first step transformed the 1,6-anhydroglucose into intermediate only one puri multigram-scale via a described route, 16 h, 84%; (b) (i) TEMPO (0.2 equiv.), BAIB (2.5 equiv.), CH2Cl2/H2O, rt, piperidinyloxy, 2 steps; (c) (i) PPh3 (1.5 equiv.), I2 (1.5 equiv.), imidazole (2.0 equiv.), THF, re 56% over 2 steps.

Ac2O and conditions: (a) ClP(O)(OPh)2 (1.5 equiv.), DMAP (1.5 equiv.), CH2Cl2, NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06901-y | www.nature.com/naturecommunications

Fig. 4 Derivatization of 2,3,4-trifluorinated galactopyranoside. Reagents and conditions: (a) ClP(O)(OPh)2 (1.5 equiv.), DMAP (1.5 equiv.), CH2Cl2, rt, 16 h, 84%; (b) (i) TEMPO (0.2 equiv.), BAIB (2.5 equiv.), CH2Cl2/H2O, rt, 1.0 h; (ii) Mel, K2CO3, CH3CN, rt, 18 h, 88% over 2 steps; (c) (i) PPh3 (1.5 equiv.), I2 (1.5 equiv.), imidazole (2.0 equiv.), THF, reflux, 2.5 h, (ii) TTMSS (2.0 equiv.), AIBN (0.1 equiv.), toluene, reflux, 18 h, 56% over 2 steps. AIBN 2,2′-azobis(2-methylpropionitrile), BAIB bis (acetoxyiodo)benzene, CH3CN acetonitrile, DMAP 4-(dimethylamino) pyridine, PPh3 triphenylphosphine, TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy, THF tetrahydrofuran, TTMSS tris(trimethylsilyl)silane

Fig. 5 Stereoselective synthesis of 2,3,4-trideoxy-2,3,4-trifluoroglucopyranose. Reagents and conditions: (a) Tf2O (2.0 equiv), pyridine (3.0 equiv), CH2Cl2, 0 °C, 0.5 h; (b) TBANO2 (3.0 equiv), CH3CN, microwave irradiation, 100 °C, 3 h, 95% over 2 steps; (c) TBAF-3H2O (1.5 equiv), CH2Cl2, rt, 18 h; (d) Ac2O (30 equiv), H2SO4 (10 equiv), 0 °C to rt, 18 h, then NaOAc (20 equiv), rt, 0.3 h, 63% over 3 steps, α/β = 5:1; (e) 1 M NaOAc, MeOH, rt, 1 h, 98%. Ac2O acetic anhydride, TBAF tetrabutylammonium fluoride, TBANO2 tetrabutylammonium nitrate, Tf2O trifluoromethanesulfonic anhydride

As a demonstration of the usefulness of levoglucosan as starting material for the construction of fluorinated carbohydrates, we successfully completed the synthesis of 2,3,4-trideoxy-2,3,4-trifluoromannopyranose and 2,3,4-trideoxy-2,3,4-trifluorotolopyranose as shown in Fig. 6. The first step transformed the 1,6-anhydroglucose into intermediate only one puri multigram-scale via a described route, 16 h, 84%; (b) (i) TEMPO (0.2 equiv.), BAIB (2.5 equiv.), CH2Cl2/H2O, rt, piperidinyloxy, 2 steps; (c) (i) PPh3 (1.5 equiv.), I2 (1.5 equiv.), imidazole (2.0 equiv.), THF, reflux, 2.5 h, (ii) TTMSS (2.0 equiv.), AIBN (0.1 equiv.), toluene, reflux, 18 h, 56% over 2 steps. AIBN 2,2′-azobis(2-methylpropionitrile), BAIB bis (acetoxyiodo)benzene, CH3CN acetonitrile, DMAP 4-(dimethylamino) pyridine, PPh3 triphenylphosphine, TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy, THF tetrahydrofuran, TTMSS tris(trimethylsilyl)silane

With the continuous objective of developing a straightforward synthesis of trifluorinated hexopyranose, we opted to start with cis-tosylate, readily accessible from levoglucosan in a multi-gram scale (Fig. 7). Upon extensive experimentation, we discovered that treatment of with KHF2 (4 equiv.) and TBAF-3H2O (8 equiv.) neat at 180 °C for 24 h led to the formation of 1,6-anhydro-2,4,4-difluoroglucopyranose in 60% yield. This procedure successfully allowed the stereoselective incorporation of two fluoride atoms placed 1,3-syn on a pyranose ring. The formation of intermediates may be speculated to rationalize this transformation. In this context, a series of epoxide formation-opening sequence with nucleophilic
fluorine would be distributed over a one-pot 4-step process (~88% yield per step), involving the break of 2 C–O bonds and the concomitant formation of 2 C–F bonds. Of interest, the application of the procedure at a multigram-scale reaction allowed the isolation of about 5 grams of bis-fluorinated carbohydrate analog 49 in one single batch. At this point, preparation of the 2,3,4-trideoxy-2,3,4-trifluorallopyranose followed a standard procedure. Thus, intermediate 49 was activated as triflate and treated with Et3N·3HF allowing the formation of only one diastereoisomer 53 corresponding to the inversion of
configuration at C-3. Finally, acetylation yielded fluorinated allopyranose derivative 11 (2,3-cis, 3,4-cis product) in 34% over 3 steps, requiring only 2 chromatographic purifications starting from bis-tosylate 48. The stereochemistry of the fluorine atoms was unambiguously proven by ^19F NMR ((470 MHz, CDCl₃) 3JF₃, H₂ = 25.6 Hz, 3JF₄,H₅ = 1.9 Hz, for details, see Supplementary Fig. 145) and X-ray crystallographic analysis of compound 11. This landmark synthesis shows that rapid access to complex fluorinated organic molecule is possible and continuous research should be directed towards this goal.

Interesting features can be addressed upon closer look at the torsion angle of the ⁴C₄₁ chair conformations for compounds 27, 44, 47, and 11 in the solid state (Fig. 8). In order to avoid syn-1,3-difluoro contact, talose derivative 47 shows significant intranuclear torsion angle.⁶⁷ This repulsion leads to a greater distance between fluorine atoms at C-2 and C-4 of the pyran ring (2.817 (2) Å). Based on this observation, it can be concluded that 2,3,4-trideoxy-2,3,4-trifluorotalopyranose 47 preserves a slightly different shape and conformation as compared to other trifluorinated hexopyranoses and as compared with α-D-talopyranose in the solid state (distance O2–O4 = 2.655(4) Å).⁶⁸

As for the compounds 27, 44, and 11 they adopt standard ⁴C₄₁-like conformation and this was also confirmed using NMR analysis (for details, see Supplementary Tables).

Fig. 8 Newman projection of fluorinated pyrans. Talopyranose derivative 47 owns 1,3-diaxial repulsion between C–F bonds.

Fig. 9 Lipophilicities of fluorinated carbohydrates. Compounds 33, 43, 46, 54–56 were prepared in this study and tetrafluorohexose analogs 57 and 58 were synthesized by the group of Linclau.

Lipophilicities of fluorinated carbohydrates. Fluorination can be effective for lipophilicity (logP) modulation, as recently demonstrated by the group of Linclau that ascertained the lipophilicity of two trifluorinated hexoses (compound 57 and 58, Fig. 9).⁶⁹ Interestingly, their rational investigation drawn preliminary trends correlating fluorination and lipophilicity for fluorinated carbohydrates. More particularly, large lipophilicity variations were observed within a same family of fluorinated carbohydrates in which hydroxyl group at C-4 had different relative configurations or replaced with a fluorine substitutes.⁶⁹ In order to complement the investigation and to evaluate the influence of several structural parameters including the position, the stereochemistry, and the number of integrated fluorination sites in our set of fluorinated compounds, we used a logP determination method developed recently by the same group, based on ^19F NMR spectroscopy (for details, see Supplementary Figs. 166–175). First of all, among all trifluorinated analogs, both all-cis analogs (46 and 56) were the most hydrophilic. This is probably due to the increase in the overall dipole moment cause by facially polarized C–F bonds. Nevertheless, a significant difference of about 0.3 logP unit was observable, highlighting that the inversion of the facial polarization contribute to a marked lipophilicity differentiation. In comparison, all-trans glucose derivative 33 is more lipophilic with a logP value of −0.18. Epimerization at C-2 (mannose derivative 43) is responsible for an
increase in lipophilicity (log P value of −0.06), while epimerization at C-4 (galactose derivative 55) resulted in an important decrease in the log P value (−0.44 corresponding to Δlog P = 0.26). This trend is also emphasized by the large log P difference (Δlog P = 0.78) between diastereoisomers 46 (2,3-cis, 3,4-cis) and 43 (2,3-cis, 3,4-trans), which only differs in the stereochemistry of the C-4 fluorine atom. These observations thus reinforced previous trends and suggested that both stereochemistry and substitution on C-4 contribute to the pivotal role of this position regarding the overall lipophilicity. Finally, as expected, tetrafluorinated galactose analog 54 was more lipophilic with a log P value of 0.33.

Discussion
The synthesis of organofluorine compounds with the aim of discovering new chemical entities possessing unique and unsuspected physical, chemical and biological properties has attracted attention over the past years. In order to make our own contribution en route to this goal, the stereoselective synthesis of a family of polyfluorinated hexopyranoses was accomplished using a Chiron approach. Structural analysis of the original 2,3,4,6-tetra-2,3,4,6-tetrafluorohexopyranosiose analog of galactose indicated that crystal packing overcompensates the 1,3-C–F bond repulsion. This was corroborated with DFT calculations of the relative energy and molecular dipole moments of the three staggered conformations corresponding to the rotation about the C5-C6 bond. The flexibility of the developed strategy led to the preparation of 2,3,4-trideoxy-2,3,4-trifluoro glucose, mannose, talose, fucose, and galacturonic acid methyl ester. Also, the rapid access to 2,3,4-trideoxy-2,3,4-trifluoropyranose was possible via a one-step operation, 4-step process that allow to construct 2 C–F bonds in high yield and stereoselectivity. All the fluorinated hexopyranoses were found to conserve their 4C1 conformation. However, a slightly distorted conformation due to repulsive 1,3-diaxial F–F interaction was observed in the talose analog. Also, the lipophilicities of fluorinated carbohydrates were measured and it was notably determined that the relative stereochemistry of multi-vascular fluorine atoms had a strong effect on the log P value. By blending organic synthesis, method development endeavors and carbohydrate chemistry, we strongly believe that the resulting molecules and the associated synthetic protocols could serve as useful tools to deepen investigations on the use of intriguing fluoride-containing carbohydrate analogs and to underscore their relevance and their yet underestimated potential to chemistry, biology, and material sciences.

Methods
General Information
Unless otherwise stated, all reactions were carried out under an argon atmosphere with dry solvents and under anhydrous conditions. Tetrahydrofuran (THF) was distilled from sodium/benzophenone and dichloromethane (CH₂Cl₂) was distilled from calcium hydride immediately before use. Reactions were monitored by 0.20 μm Silicyle silica gel plates (F-254) thin-layer chromatography (TLC) using UV light as visualizing agent and using a TLC stain (solution of 3 g of PhOH and 5 mL of H₂SO₄ in 100 mL of EtOH). Flash column chromatography (TLC) using UV light as visualizing agent and using a TLC stain (solution of 3 g of PhOH and 5 mL of H₂SO₄ in 100 mL of EtOH). Flash column chromatography were performed using SiliaFlash® 60 40–63 μm (230–400 mesh). Nuclear magnetic resonance (NMR) spectra were recorded with an Agilent DD2 500 MHz spectrometer and calibrated using residual undeuterated solvent (CDCl₃: δH = 7.26 ppm, 13C = 77.16 ppm; acetone-d₆: δH = 2.05 ppm, 13C = 29.28 ppm) as an internal reference. Calibration of 19F NMR was performed using hexafluorobenzene, which have been measured at 162.29 ppm compared to the chemical shift of reference compound CFCl₃. Coupling constants (J) followed these abbreviations to designate multiplicities: br: broad, s: singlet, d: doublet, t: triplet, q: quartet, p: quintet, m: multiplet (reported in Hertz (Hz)). Assignments of NMR signals were made by homonuclear (COSY) and heteronuclear (HSQC, HMBC) two-dimensional correlation spectroscopy. A Thermo Scientific Nicolet 380 FT-IR spectrometer was used to record infrared spectra (absorptions are given in wavenumbers: cm⁻¹). An Agilent 6210 LC of Time Flight mass spectrometer was used to collect high-resolution mass spectra (HRMS). Electrospray mode in either protonated molecular ions [M + nH]⁺, ammonium adducts [M + NH₄]⁺ or sodium adducts [M + Na]⁺ were used for confirmation of the empirical formula. A JASCO DIP-360 digital polarimeter was used to record optical rotations (reported in units of 10⁻¹ (degree cm²g⁻¹)).

Further experimental data
For detailed experimental procedures, see Supplementary Methods, for crystallographic data of compounds 11, 27, 44, and 47, see Supplementary Tables 1, 7, 13, and 19. For detailed on theoretical calculations, see Supplementary Discussion. For NMR spectra of the synthesized compounds, see Supplementary Figures.

Data availability
Crystallographic data are deposited at the Cambridge Crystallographic Data Centre (CCDC). CCDC 1848261, 1824901, 1824902, and 1837072 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. All the data supporting the findings of this study are available as Supplementary Information, or from the corresponding author on request.

Received: 7 May 2018 Accepted: 26 September 2018
Published online: 09 November 2018

References
1. Chambers, R. D. Fluorine in Organic Chemistry. (Blackwell, Oxford, 2004).
2. Ni, C. & Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluororadikations. Chem. Soc. Rev. 45, 5441–5454 (2016).
3. Kirsch, P. Modern fluoroorganic chemistry. Synthesis, reactivity, applications. 2nd edn., (Wiley-VCH, Weinheim, 2013).
4. Uneyama, K. Organofluorine Chemistry. (Blackwell, Oxford, 2006).
5. Ors, D. L. & Altman, R. A. Exploiting the unusual effects of fluorine in methodology. Chem. Commun. 53, 7168–7181 (2017).
6. Hoffmann, M. & Rychlewski, J. When, in the context of drug design, can a fluorine atom successfully substitute a hydroxyl group? Int. J. Quant. Chem. 89, 419–427 (2002).
7. Bohm, H. J. et al. Fluorine in medicinal chemistry. ChemBioChem 5, 637–643 (2004).
8. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).
9. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8335–8359 (2015).
10. Chan, K. K. J. & O’Hagan, D. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology. Methods Enzymol. 516, 219–235 (2012).
11. Champagne, P. A., Desroches, J., Hamel, J.-D., Vandamme, M. & Paquin, J.-F. Monofluorination of organic compounds: 10 years of innovation. Chem. Rev. 115, 9073–9174 (2015).
12. O’Hagan, D. & Deng, H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem. Rev. 115, 634–649 (2015).
13. Zhu, Y. et al. Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).
14. Brunet, V. A. & O’Hagan, D. Catalytic asymmetric fluorination comes of age. Angew. Chem. Int. Ed. 47, 1179–1182 (2008).
15. Lectard, S., Hamashima, Y. & Sodeoka, M. Recent advances in catalytic enantioselective fluorination reactions. Adv. Synth. Catal. 352, 2708–2732 (2010).
16. Zhao, Y., Pan, Y., Sim, S.-B. D. & Tan, C.-H. Enantioselective organocatalytic fluorination using organofluoro nucleophiles. Org. Biomol. Chem. 10, 479–485 (2012).
17. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).
18. Cahard, D., Xu, X., Couve-Bonnaire, S. & Pannecouque, X. Fluorine and chirality: how to create a nonracemic stereogenic carbon–fluorine centre? Chem. Soc. Rev. 39, 558–568 (2010).
19. Porcari, P. et al. Multi-nuclear MRS and 19F MRI of 19F-labelled and 10B-enriched p-borono phenylalanine-fructose complex to optimize boron neutron capture therapy: phantom studies at high magnetic fields. Phys. Med. Biol. 51, 3141–3154 (2006).
20. Tirotta, I. et al. 19F Magnetic resonance imaging (MRI): from design of fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).
