INTRODUCTION

Researches from last years have shown that aromatherapy textiles are increasingly used because of the benefits offered as: environmentally friendly and beneficial effects on wellbeing and human health. Essential oils are a common source of bioactive ingredients and are used for their various functional properties (anti-inflammatory, anti-microbial, organoleptic, antioxidant, anti-arrhythmic, anti-thrombotic, anti-vasoconstrictive, anti-hypertension, anti-ucerous, anti-aging, anti-carcinogen, anti-diabetic, anti-depressant, anti-pyretic, and insect repellent) [1]. In textile field, most essential oils are used for their antimicrobial effect [2].

Although skin is not a common way of managing bioactive principles due to difficult absorption especially for water-soluble substances, in recent years, more attention has been paid to the benefits of transdermal administration: controlled release of biologically active principles leading to reduced invasiveness; reduction of the metabolic stages in the liver; avoiding stomach trauma [3, 4]. Losses by evaporation and difficulties in controlling releases make the application of essential oils to be limited. In this case, carrier systems (lipid particles, nano-emulsions, biocompatible polymer particles) can provide an ideal solution to achieve a controlled and targeted distribution of essential oil. Natural waxes are suitable for essential oils embedding [5]. Also, natural waxes are of food grade purity (insect waxes – bees wax and plant waxes – candelilla wax, carnauba wax) and exhibit interesting rheology and microstructure [5].

EXPERIMENTAL PART

Materials and methods

- Basic materials for emulsions preparation: raw and auxiliary materials

For all experimental researches, it was used as basic raw matter the essential mint oil received from the Turkish company Doğal Destek. As auxiliary materials, there were used: (i) beeswax purchased from a private apiary in the Northeast region of Romania; (ii) glycerin purchased from SC Elemental SRL, Romania, and (iii) Tween 80 (Merck, Germany).

...
All other chemical reagents used for analytical analysis were of analytical purity (p.a.), being purchased from Romanian companies (e.g., Chemical Company S.A., Iasi, RO), or from abroad (Sigma Co., or Merck Co.).

- **Emulsion preparation methodology**
 The beeswax was melted with a 700 rpm rate at a temperature of 65°C, over which distilled water was added at 63°C to form the wax/water system. Tween 80 emulsifier was added to the wax/water system, and the system was maintained under stirring for 10 minutes at 63°C, after which glycerol was added. After complete homogenization, the system was cooled to 40°C, over which the mint essential oil was added dropwise. There were prepared series of emulsions (\(M_i\)) which are different due to varying ratios of wax/essential oil used (there were selected as representative series – \(M_2, M_3, M_6\) and \(M_7\) emulsions having the ratio wax/essential oil varying in range of 1:2; 1:1.3; 1:5; and 1:6). The prepared essential mint oil-based emulsions were analyzed and characterized further especially for its stability and transformation degree.

Analysis methods
- **Emulsions appearance**
 The appearance of the four prepared emulsions was visually and microscopically analyzed using a KRÜSS optical microscope equipped with a NIKON Coolpix P 5100 photo digital camera.

- **\(pH\) determination**
 Emulsion \(pH\) was directly measured using a HANNA portable \(pH\)-meter immersed in the prepared non-diluted emulsion (\(M_i\)).

- **Density determination**
 All measurements were performed directly using an Anton Paar DMA 4500 Density Meter (Anton Paar GmbH, Grazn, Austria) at three different temperatures of 19°, 20° and 25°C. For each temperature, there were performed at least six till eleven measurements and calculated the mean value of density at specific temperature. This mean value was reported in our work.

- **Determination of the acidity index (AI)**
 Around 2.5 g of emulsion sample (weighted with precision of 0.001 g) was contacted with 12.5 mL of chloroform and 12.5 mL of ethyl alcohol, and the obtained solution was titrated under stirring with potassium hydroxide (0.1 M KOH) till a pink color obtained, stable at least 1 min. For calculation of the acidity index (AI) it was used the relation (1):

\[
AI = \frac{V_{\text{KOH}} \cdot M_{\text{KOH}} \cdot 56.11}{m} \quad [\text{mg of KOH g of emulsion}]
\]

(1)

where: \(AI\) – the acidity index (mg KOH/g of emulsion); \(V_{\text{KOH}}\) – the volume of KOH consumed at titration (mL); \(M_{\text{KOH}}\) – the concentration of KOH solution (mol/L); 56.11 – molecular weight of KOH (g/mol) and \(m\) – sample mass (g).

- **Determination of the peroxide index (PI)**
 In a closed glass vessel was weighed around 1–2 g of emulsion which was contacted with 5 mL of chloroform, 7.5 mL of glacial acetic acid and 1 mL of 10% KI. The closed vessel was stirred for 1 min and after set in a dark place for 15 min. It was added 37.5 mL of distilled water and, after stirring, was introduced starch solution till a dark stable blue color appears. The formed iodine is titrated with sodium thiosulfate (0.05 N Na\(_2\)S\(_2\)O\(_3\)). A control titration is performed in parallel with the basic determination. For calculation of the peroxide index (PI) it was considered the following relation:

\[
PI = \frac{(V_{\text{ref}} - V) \cdot 1000}{m} \quad [\text{mmol of peroxide g of emulsion}]
\]

(2)

where: \(PI\) is the peroxide index (mol of peroxide/kg of emulsion), \(V_{\text{ref}}\) – volume of Na\(_2\)S\(_2\)O\(_3\) solution consumed at titration of control sample (mL), \(V\) – volume of Na\(_2\)S\(_2\)O\(_3\) solution consumed at titration of analyzed emulsion sample (mL), \(N_{\text{Na}_2\text{S}_2\text{O}_3}\) – normal concentration of sodium thiosulfate solution (val/L), 1000 – calculation coefficient of [mol of peroxide/g] in [mol of peroxide/kg] and \(m\) – sample mass (g).

- **Determination of conjugated diene or triene concentration**
 The method is based on the absorbance measurement at a fixed wavelength in UV field for a constant mass of emulsion sample, i.e. 236, or 267 nm for diene and 273 nm for conjugated triene [8]. A emulsion sample of 0.1 g was diluted with distilled water till 25 mL in a volumetric flask. The absorbance measurement of emulsion sample was performed at Camspecspectrophotometer M 500. The value for conjugated diene (CD) and triene (CT) concentration is calculated as in relation (3) or (4):

\[
C_{\text{CD}} = \frac{A_{236/267}}{(\varepsilon \cdot l)/m} \quad (3)
\]

\[
C_{\text{CT}} = \frac{A_{273}}{(\varepsilon \cdot l)/m} \quad (4)
\]

where: \(C_{\text{CD}}\) – molar concentration of conjugated diene (mol/kg, or mmol/g of emulsion), \(C_{\text{CT}}\) – molar concentration of conjugated triene (mmol/cm\(^3\)), \(A_{236/267}\) or \(A_{273}\) – absorbance of diluted emulsion at 236, or 267 nm, and 273 nm, \(\varepsilon\) – molar absorbance (extinction coefficient) for linoleic acid hydroperoxide (\(\varepsilon = 2.525 \times 10^4\) M\(^{-1}\)cm\(^{-1}\)), \(l\) – cuvette length (l = 1 cm) and \(m\) – sample mass (g).

RESULTS AND DISCUSSIONS

Emulsion appearance

Emulsions appearance is presented in figure 1. According to microscopic images, the dispersed molecule phase is presented as a compact, dense small globule mass. Related to visual images, emulsions \(M_2\) and \(M_3\) are homogeneous, white, without agglomerations of particles and easily handle. Emulsions \(M_6\) and \(M_7\) are translucent and free of particles in suspension.
Physical-chemical analysis of emulsions

The physical-chemical properties of emulsions play a special role in preparation and further utilization of M_i emulsions based on mint essential oil and are dependent of the chemical and structural composition. Therefore, there are necessary serious investigations for selection of a few emulsion compositions with increased value and physical, oxidative and microbiological stability. In this context, there were determined a few basic quality indices of prepared M_i emulsions according with the international approved standard norms for cosmetic and food products.

The quality indices were determined at room temperature (19‒22°C) during the period of emulsions storage for at least 4 weeks.

The selection of emulsion composition was performed for obtaining an optimal ratio of poly unsaturated fatty acids in triglycerides with curative-prophylactic properties, good application on textile fabrics and assurance of emulsion resistance to different oxidations and also obtaining of an acceptable acidity (aggression) on contact with skin.

In table 1 are presented some values of physical-chemical quality indicators of the investigated M_i emulsions.

The general physical-chemical quality indicators of the four investigated M_i emulsions were analyzed being in range of 67.26–78.9% for separated aqueous phase, 21.21–32.26 % for separated fatty phase (organic phase), 3.5–4.9 for pH, 1.0204–1.0310 g/cm3 for average absolute density at 19°C, 1.0193–1.0307 g/cm3 for mean density at 20°C and 1.0171–1.0299 g/cm3 for mean density at 25°C. All these characteristics are corresponding to the standardized norms in cosmetic products.

During the storage period, the prepared M_i emulsions are supposed to possible degradation processes which can affect their quality. Usually, the emulsions can be slowly oxidized and converted in a complex organic system with a high number of components due to all oxidation steps (i.e. initiation, development and breaking of different macromolecular chains).

To analyze the in-time variation of prepared emulsions’ quality is one of the important aim of this work. That is why it is important to establish the dynamic of primary oxidation products formed (i.e. hydroperoxides) during the storage of M_i emulsions, considering especially the acidity index (AI), peroxide index (PI), conjugated diene (CD) and triene (CT) concentrations. The analysis is performed for a period of 4 weeks at room temperature (19‒23°C), in absence of light only in the night period.

The experimental results are summarized in table 2. In period of emulsions storage can take place the oxidative and hydrolytic degradation which is characterized by formation of oxidation and hydrolysis products, expressed by the value of free fatty acids or fatty phase separation, and acidity index.

The value of acidity index in the four investigated M_i emulsions was varied in 4 weeks between 1.121 and 85
An increase of UV absorption indicates the formation of primary oxidation products in the investigated emulsion. The intense absorption is registered at 273 nm. For the study of lipids oxidation, it must be analyzed the variation of conjugated diene and triene concentration which are produced from unsaturated fatty acids as result of hydroperoxide formation due to rearrangements of double bonds. The formed conjugated diene presents an intense absorption at the wave length of 234 nm or 267 nm, and in case of triene the intense absorption is registered at 273 nm. An increase of UV absorption indicates the formation of primary oxidation products in the investigated emulsions. This fact concludes clearly that the storage of M\textsubscript{f} emulsion at room temperature acts in direction of increasing the conjugated diene and triene concentrations. The highest value during 4 weeks of storage at room temperature was achieved for M\textsubscript{3} emulsion, i.e. 9.303–9.370 µmol/g of emulsion for diene concentration and 8.109–8.125 µmol/g of emulsion for triene concentration, and the lowest for M\textsubscript{7} emulsion, i.e. 1.611–1.856 µmol/g of emulsion for the diene concentration and 1.104–1.248 µmol/g of emulsion for the triene content. In addition, the peroxides are instable compounds, but in the process of emulsion storage these can be decomposed forming secondary oxidation products as aldehydes, ketones and its derivates with carbonyl chain of different lengths. The peroxides have no direct influence on sensory indices of emulsions, but if aldehydes and ketones are formed, they have rancid odor. In the case of M\textsubscript{i} emulsions it was found no such a rancid odor, being indicated that secondary oxidation products were not formed during the period of 4 weeks of emulsion storage at room temperature.

CONCLUSIONS

The physical-chemical quality indices of investigated M\textsubscript{i} emulsions based on mint essential oil were indicated that the highest stability had the M\textsubscript{6} emulsion followed by M\textsubscript{3} emulsion. The comparative analysis of experimental results performed for the acidity index, peroxide index, conjugated diene and triene concentration were permitted some preliminary information concerning the dynamic of M\textsubscript{i} emulsion degradation during the storage activity at room temperature for a time period of 4 weeks. The results indicated the formation of primary oxidation products (hydroperoxides), but no formation of secondary oxidation products (aldehydes and ketones) with their specific rancid odor. The general physical-chemical indicators of investigated M\textsubscript{i} emulsions were found corresponding with

Table 2

Physical-chemical quality indicators	Storage period	M\textsubscript{2}	M\textsubscript{3}	M\textsubscript{6}	M\textsubscript{7}
Acidity index (Al\textsubscript{i}), [mg KOH/g of emulsion]	1 week	1.121	2.263	0.862	0.885
	2 weeks	1.123	2.268	0.863	0.889
	3 weeks	1.136	2.270	0.865	0.892
	4 weeks	1.142	2.272	0.867	0.894
Peroxide index (Pl\textsubscript{i}), [mmol/g of emulsion]	1 week	6.7884	6.1611	5.7297	2.7002
	2 weeks	6.7890	6.1613	5.7298	2.8005
	3 weeks	6.7894	6.1625	5.7306	2.8018
	4 weeks	6.7895	6.1627	5.7306	2.8020
Diene concentration (Cd\textsubscript{i}), [umol/g of emulsion]	1 week	2.686	9.302	3.834	1.611
	2 weeks	2.712	9.325	3.836	1.618
	3 weeks	2.834	9.354	3.841	1.787
	4 weeks	2.998	9.370	3.840	1.856
Conjugated triene concentration (Ct\textsubscript{i}), [umol/g of emulsion]	1 week	2.358	8.109	2.645	1.104
	2 weeks	2.404	8.118	2.659	1.116
	3 weeks	2.512	8.123	2.668	1.203
	4 weeks	2.539	8.125	2.674	1.248
the standardized norms in cosmetics and textiles for topical applications.

ACKNOWLEDGEMENTS

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI – UEFISCDI, project number 29/2018 COFUND-MANUNET III-AromaTex, project title “Manufacturing of value-added textiles for aromatherapy and skin care benefits”, within PNCDI III.

BIBLIOGRAPHY

[1] Bakry, A.M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M.Y., Liang, L. Microencapsulation of oils: A Comprehensive review of benefits, techniques, and applications. In: Bioengineering, 2017, vol. 4, p. 74.
[2] Horrocks, A.R., Anand, S.C. Hand-book of Technical Textiles. Published by Woodhead Publishing Limited in association with The Textile Institute, 2010.
[3] Montenegro, L., Lai, F., Offerta, A., Sarpietto, M.G., Micicche, L., Maccioni, A.M., Valenti, D., Fadda, A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. In: Journal of Drug Delivery Science and Technology, 2016, vol. 32, p. 100.
[4] Radu, C.D., Cerempei, A., Salariu, M., Parteni, O., Ulea, E., Campagne, C. The potential of improving medical textile for cutaneous diseases. In: IOP Conference Series: Materials Science and Engineering, 2017, vol. 254, pp. 1–8.
[5] Milanovic, J., Manojlovic, V., Lević, S., Rajić, N., Nedović, V., Bugarski, B. Microencapsulation of flavors in Carnauba Wax. In: Sensors, 2010, vol. 10, p. 901.
[6] Khanzadi, M., Jafari, S.M., Mirzaei, H., Chegini, F.K., Maghsoudlou, Y., Dehnad, D. Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. In: Carbohydrate Polymers, 2015, vol. 118, p. 24.
[7] Namdariyan, R., Farahbakhsh, A., Golestani, H.A. Encapsulation ZnO nanoparticles by using beeswax. In: Proceedings of the 2nd International Conference on Oil, Gas and Petrochemical Issues(ICOGPI’2013), 2013, Kuala Lumpur (Malaysia), p. 67.
[8] Capcanari, T. Technologies of preparation of food emulsions from mixtures of sunflower oils and graves oil. In: Ph.D. Thesis, Technical University of Republic of Moldova, 2012, p. 47.
[9] Banu, C., Quality and quality control of food products. AGIR Ed., București, Romania, 2002, p. 55.

Authors:

Lecturer Ph.D. Eng. ANGELA DĂNILĂ
Associate Prof. Ph.D. Eng. CARMEN ZAHARIA
Prof. Ph.D. Eng. DANIELA ŞUTEU
Lecturer Ph.D. Eng. EMIL IOAN MUREŞAN
Prof. Ph.D. Eng. GABRIELA LISĂ
SINEM YAPRAK KARAVANA
ALI TOPRAK
PhD. Eng. ALINA POPESCU
PhD. Eng. LAURA CHIRILĂ

1 “Gheorghe Asachi” Technical University of Iasi, Faculty of Textile Leather Engineering and Industrial Management, Iasi, 29 Prof. Dr. Doc. Dimitrie Mangeron street, Romania
2 “Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Blvd, 700050 – Iasi, Romania
3 Ege University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 35100 Bornova, Izmir, Turkey
4 DoğalDestek Ürünleri AraştırmaSanayive Ticaret A.Ş., Atburgaz Mah. Abdüllêpeçi Cad. No:70 Söke-AYDIN Turkey
5 The National Research-Development Institute for Textiles and Leather Research, București, Romania
e-mail: angela.cerempei@yahoo.com; czah@ch.uluiasi.ro;dsuteu@ch.tuiasi.ro; eimuresan@yahoo.co.uk; gapreot@ch.tuiasi.ro;sinem.yaprak.karavana@ege.edu.tr; atoprak@dogaldestek.com.tr; alina.popescu@certex.ro; laura.chirila@certex.ro

Corresponding author:

CARMEN ZAHARIA
email: czah@ch.uluiasi.ro or czaharia2003@yahoo.com