First Survey on the Edible Non-Wood Forest Products Sold in Uíge Province, Northern Angola

M. Mawunu, P. Macuntima, T. Lautenschläger, L. Masidivinga, N. Luyindula, K.N. Ngbolua and L. Lukoki

Abstract — This study aimed to inventory, identify, characterize and valorize the various edible non-wood forest products (NWFPs) sold in Uíge Province. Data for this study were collected between October 2016 and February 2020. A total of 156 edible NWFPs sellers were individually interviewed using semi-structured questionnaire at the 30 sales sites. 93.5% of edible NWFP sellers were female and 6.5% male. The main edible NWFPs sold in Uíge Province are animal products with 47 species, of which 48.9% are Mammals, 21.3% Insects, 12.8% Actinopterygii, 6.4% Birds, 8.5% Reptiles, and 2.1% Sarcopterygii. Plants represent 38.5% (35 species) of the edible NWFPs sold in the study area, of which 78.8% are Dicotyledones, 21.2% Monocotyledones, 2.9% Gnetophytes and 2.9% Pteridophytes. Besides, Mushrooms account for barely 9.9% of the edible NWFPs sold in this region. On the other hand, edible NWFPs are sold on formal and informal markets, in the bus parking lots, taxi runk, roadsides, restaurants and at the seller’ homes. For the sale of edible forest products, the vendors use non-standardized measuring units. The income generated by the sale of NWFPs is used to solve socio-economic problems in the household, including the purchase of basic necessities, health care, clothing, cosmetics, school materials, well-being, etc.

Index Terms — Uíge Province, Angola, Surveys, Edible non-wood forest products, Systematic identification, Market information.

I. INTRODUCTION

Non-wood forest products (NWFPs) are defined as biological materials other than round wood or timber that may originate from natural ecosystems, natural forest plantations or agroforestry systems used in households, marketed or having socio-cultural or spiritual significance [1]. According to Food and Agriculture Organization of the United Nations (FAO), "FAO [2], NWFPs are non-wood biological goods derived from forests, other wooded land or trees outside forests. NWFPs can be harvested from the wild or produced and harvested from forest plantations, agroforestry schemes or trees outside forests". Also, according to FAO [1], NWFPs are all biological materials other than wood that are extracted from the forest for human use; NWFPs include all tangible, natural, artisanal or processed products derived from forests or other lands with similar uses, other than wood. They also include foods, medicines, oils, resins, gums, tannins, bamboo, firewood, charcoal, and game sold and consumed locally, nationally, or internationally.

In this study, NWFPs are classified into three categories: plants and plant products; animals and animal products [3]. The last category consists of mushrooms [4].

In the most tropical countries, particularly in sub-Saharan Africa, NWFPs play an important role in daily life by ensuring the well-being of local communities. Not only used for local consumption, but NWFPs also function as commodities that can be traded on local, regional, national, and international markets. The sale of NWFPs is a response to daily needs, demand for employment, a source of income [1], [5] and economic diversification.

According to Grieg-Gran et al. [6], African economies are often anchored in abundant natural resources from the myriad ecosystems that span the continent. Forests are an integral part of Africa's economic fabric, providing for subsistence needs for food, energy and medicinal plants and providing key regulating and supporting ecosystem services of local, national and global importance.

Numerous studies in different parts of the African continent e.g. [7]-[11] have shown the importance of NWFPs, both commercial and non-commercial, as well as a source of livelihoods, wild foods, animal fodder and wood fuels for African people. On the other hand, FAO estimates [12] show the commercial importance of NWFPs, with an estimated value of gross production in Africa in 2011 placed at US$ 5.3 billion, which represents 0.3 per cent of the region's GDP. As for Ndoye et al, [13], NWFP markets are also important at the regional and international levels, as they provide income to stockholders directly involved in a development project. Moreover, the importance of NWFPs is well established, as their development can generate added value for local populations [14]. On the other hand, NWFPs are emerging on the world scene as a tool for establishing sustainable forest communities. They represent jobs for various sectors of society and increase the benefits from forests, involving local expertise and culture [15].

Indeed, for centuries NWFPs have played an important role of food and trade in Africa [16]. More than half of the African population depends on natural forest resources [17]. The consumption and sale of NWFPs such as edible and medicinal plants and game are likely to contribute to the food and nutritional security of population [2], [9]. According to Brian et al. [18], NWFPs can provide sources
of income and opportunities for poverty reduction in both rural and urban areas. Furthermore, according to Tinde van Andel [19], the most forest products never reach the market, only a small percentage is sold in local and regional markets, which is an important source of financial income. Similarly, Noubissie et al. [20] show that trade in NWFPs generates employment opportunities, substantial income and supports the livelihoods of communities living around the forest. Currently, approximately 75% of the world's poor depend on NWFPs for their livelihoods, while 80% of forest populations in developing countries use NWFPs daily. Moreover, according to Chidebere-Mark et al. [21], NWFPs are capable of providing food, health care and income to sustain livelihoods.

Despite numerous studies conducted worldwide on the commerce of edible NWFPs e.g. [1], [16], [2] data on Angola and particularly Uíge Province are still fragmentary [7]-[9] [22]-[25].

Besides, many edible NWFPs are sold daily on rural and urban markets in Uíge Province, so it would be appropriate to carry out a study on these forest products in order to know them better and add value to them.

To our knowledge, no scientific work has been carried out in this part of Angola that has dealt simultaneously with the inventory, characterization, and valorization of edible NWFPs (plants, animals and mushrooms) sold in the province of Uíge.

The present work focuses on three different types of edible forest products marketed in Uíge Province, namely: animals, plants, and wild mushrooms.

The objectives of this study are as follows: (1) To make an inventory of the three types of edible forest products sold in Uíge Province; (2) To identify and characterize them taxonomically; (3) To know the socio-economic profile of edible forest products sellers; and finally; (4) To know the marketing sites and methods of customer loyalty, sales methods, savings and income allocation. Despite the socio-economic importance of NWFPs, there is little information in the literature on edible forest products sold in Angola, particularly in Uíge Province. This work contributes to the existing data in Angola's NWFPs. The data from this study will be used for sustainable management and the development of market organization strategies for edible forest products to ensure the well-being of local communities in Angola. Also, the study will provide information to students, researchers, international organizations, policy makers and the general public.

II. MATERIALS AND METHODS

A. Description of the study area and selection of respondents

The Uíge Province, located in the north of Angola, covers an area of 58,698 km² and has a population of more than 1.4 million [26]. Uíge has a tropical savannah climate with a dry season (Sivu or Mbangala in the Kikongo language) [8] from May to September and annual rainfall of 900 to 1500 mm; the average annual temperature of the capital of Uíge is 23 °C [27], [28]. The province of Uíge enjoys excellent edaphoclimatic conditions (extensive arable land and regular rainfall) and also has a dense hydrographic network that waters the region (7). The economy of Uíge province is mainly based on subsistence agriculture, livestock, hunting, small trade [9], [29] and traditional fishing.

Data for this study were collected between October 2016 and February 2020. The choice of the study area was made after a pre-survey that confirmed the existence of edible NWFPs for sale in the markets of the province of Uíge. Field visits were carried out in 15 of the 16 municipalities of the province (Fig. 1). Respondents were selected based on their availability and socio-economic activity, sale of edible NWFPs. The method adopted for data collection was the ethnobiological and socio-economic survey applied by Monizi et al. [7], [8]. It first consists of drafting a questionnaire that allows for a better understanding of the different types and uses of edible NWFPs sold in the Study Area. Also, data collection was carried out through direct field observation and individual interviews with sellers of edible NWFPs.

![Fig. 1. Location of the study area and edible NWFP sales sites in Uíge Province, Republic of Angola.](image)

B. Biological Material

The biological material to be studied consists of edible animals, plants and mushrooms. For taxonomic identification, several books and works have been used: Monizi et al. [7], Lautenschläger et al. [25], [30]-[34].

C. Questionnaire

The survey questionnaire was divided into three sections: (1) Vendor's data (age, gender, education, marital status and main source of income); (2) Biological material (scientific and vernacular name(s), the origin of NWFPs, conservation status, uses of plant organs); (3) Market information (sales, pricing and customer loyalty patterns, sales locations, sales methods and units of measurement, savings and income allocation). In addition, the study was based on targeted sampling. Eligibility criteria were the sale of edible NWFPs and the availability of respondents in anthropological surveys. The semi-structured questionnaire was submitted
A total of 156 vendors from 30 edible NWFP marketing sites were interviewed in Uíge Province. Of all the edible NWFP vendors surveyed, women are in the majority (93.5 %) than men who represent only 6.5 % of the vendors. The results of this study attest to previous studies that the sale of edible NWFPs is a woman’s domain. Besides, Monizi et al. [7] who worked in the same region and showed that, the sale of edible NWFPs is mostly (92 %) practiced by women. Similarly, Monizi et al. [8] report that 83 % of the Raphia wine sellers in this part of Angola are women. According to FAO [1], in Southern Africa, women are particularly involved in the collection and sale of NWFPs. Also, these observations are similar to those reported by FAO [2] that the commercial NWFP sector in Central Africa is more than 80 % dominated by women.

The results of this study also show that the average age of edible NWFP sellers in the study area is 35 years. Referring to this average age, it shows that the profession of edible NWFP sales in this region is exercised by young people who will ensure its continuity for a long time. These results are close to those of Monizi et al. [7], [8] who found in their work an average age of 36 and 38 years, respectively among sellers of Raphia wine and Dracaena Cameroonian leaves in the same region. The study also revealed that the average number of people per household of forest product vendors is 5.8 people. This result is higher than the general national average of 4.6 persons per household obtained in the general population and housing Angola’s 2014 census conducted [26].

In addition, the results on anthropological parameters from this study show that, trade is the main (55.3%) source of income and employment for edible NWFP sellers in the Study Area. Besides, agriculture and other activities (sale of labour force, public service, etc.) account for 30.6 % and 14.1 % respectively. Regarding civil status, married people predominate with 58.4 % of the people surveyed. People living in separation or divorce represent, 25.5 %. On the other hand, the single (8.7 %) and widows (7.4 %) are in the minority among the vendors of forest food products in Uíge.

Also, literate people predominate (92.4 %) among vendors of NWFPs for food use than those who have never been to school (7.6 %). These results are similar to those of Monizi et al. [8] who showed that 95 % of the stockholders in the wine value chain of Raphia in Uíge province are literate. In the same vein, Monizi et al. [7], also showed that edible NWFPs with Dracaena Cameroonian leaves attract both educated and never attended school with 75.7 % and 24.3 % respectively.

Finally, the results of this study show that sellers of edible NWFPs in Uíge Province have an average of 5 years’ experience in their business. Trade in edible NWFPs seems to be relatively beneficial, as 63.7 % of the sellers have more than 5 years of experience in the sale of these products. On the other hand, those with less than five years of experience represent 36.3 %.

B. Biological Characterization of Edible NWFPs

Three types of edible NWFPs (animals, plants and mushrooms) available for sale in Uíge Province were identified in this study. The biological diversity of these NWFPs is documented in Tables 1 to 3.

1. NWFPs of plant origin

1.1. Systematic description

A total of 35 species of plant NWFPs were identified from edible NWFP vendors in the Study Area, divided into 29 genera and 23 botanical families (Table 1). Analysis of the numerical importance of the families in the floristic list (Table 1) shows that the botanical families best represented in number of species are:

- Apocynaceae (4 species), Fabaceae and Zingiberaceae with 3 species. On the other hand, the families Annonaceae, Arecaceae, Asteraeaceae, Burseraceae, Euphorbiaceae, and Loganiaceae each have two species. The least represented families are those of Anisophyllaceae, Asparagaceae, Bombaceae, Celastraceae, Cucurbitaceae, Dennstaedtiaceae, Gnetaceae, Malvaceae, Moraceae, Myrtaceae, Piperaceae and Verbenaceae each with only one species. In addition, Angiosperms constitute 94.3 % of the food plant NWFPs sold in the province of Uíge with a predominance of Broadleaf (74.3 %) and 20.0 % of Monocotyledons. Finally, Gymnosperms (Gnetum africanum) and Polyopodiopsida (Pteridium aquilinum) only have one species each, representing 5.7 % of all edible plant NWFPs identified in this study.

1.2. Used edible parts of plants

The results of this study on edible parts of plants used (Table 1) reveal that fruits and fruit pulps are the majority of plant parts (44.2 %) sold in the province of Uíge as NWFPs for food use. Also, leaves and seeds occupy 20.9 % and 14.0 % respectively. Finally, the other edible organs of the plants are shoots and stems (7.0 %), saplings (4.7 %), bark (4.7 %), roots (2.3 %) and inflorescences (2.3 %). In addition, Mawunu et al., [9] recorded 7 edible parts sold in the municipality of Ambuila (Uíge Province), of which 25 % of the leaves, 25 % of the beans and 50 % of the fruits and seeds, respectively.

1.3. Uses of edible plant organs

Examination of the results of this study on the food use of plant organs (Table 1) shows that fruits and fruit juices are the most widely used (38.5 %). In addition, the other food
uses identified are leafy vegetables (20.5%), spices (17.9%), tea (10.3%), palm oil and wines of *Elaeis guineensis* and *Raphia spp* (7.7%) and nibble/amuse-geule (5.1%). On the other hand, Mawunu et al. [9], identified 6 uses of the edible parts of plants sold in the municipality of Ambuila (Uíge Province), beverages (33.3%), vegetables (16.7%), snacks (16.7%), teas (16.7%) and spices (16.7%).

2. Animal NWFPs

2.1. Systematic description

The results of the inventory in Table 2 show that 47 species of wild animals sold in the province of Uíge belong to 30 zoological families. The zoological families of Bovidae, Saturiniidae, Muridae and Viverriidae are the most represented with 5, 4, 3 and 3 species respectively. And the rest of the families have only one or two species. These are Varanidae, Testudinidae, Termitidae, Apidae, Cercopithecidae, Channidae, Cichlidae, Clariidae, Curculionidae, Cyprinidae, Gyrinidae, Hystriidae, Leporidae, Manidae, Muridae, Nesomyidae, Noctuidae, Numidididae, Passeridae, Phasianidae, Protopterygidae, Pteropodidae, Pythonidae, Sciridae, Termitidae and Testudinidae. Mammals occupy 48.9% (23 species) of the NWFPs of animal origin sold in the province of Uíge. Furthermore, in this class of mammals, rodents dominate with 10 species, followed by Artiodactyls (6 species), Carnivores (4 species), Pholidotes (1 species), Chiroptera (1 species), and Primates (1 species). In addition, Insects occupy 21.3% (10 species) of the edible NWFPs sold in the study area, including 6 species of Lepidoptera, 1 species of Blatodea, 1 species of Coleoptera, 1 species of Hymenoptera, and 1 species of Orthoptera. Finally, the other inventoried classes of animals are Actinopterygii (12.8%, 6 species), Birds with (6.4%, 3 species), Reptiles (8.5%, 4 species), and Sarcopoterigii (2.1%, 1 species).

3. Mycological NWFPs

3.1. Systematic description

The results of this study (Table 3) show that the 9 species of wild edible fungi recorded in the province of Uíge all belong to the class Agaricomycetes and are distributed in 4 different mycological families. The family Lyophyllaceae is the best represented with 5 species (*Termitomyces micocarpus*, *Termitomyces titanicus*, *Termitomyces aurantiacus*, *Termitomyces mammiformis*, *Amanita loosii*). In addition, the family Auriculariaceae occupies the second position with 2 species (*Auricularia spec.*, *Auricularia cornea*). In addition, the rest of the families each have one species, the Cantharelaceae (*Cantharellus sp.*) and the Russulaceae (*Lactarius edulis*).

C. Market-related Information

A total of 91 edible NWFPs were inventoried at markets and restaurants in the Study Area. 95.6% (84 species) of the NWFPs marketed in the province of Uíge are local products. In addition, the other (2) edible NWFPs sold in this province come from exclusively abroad, the Democratic Republic of Congo (DRC). These are Nzombo (*Protoperus dolloi*) and Mungusu (*Parachanna obscura*). Furthermore, most of Nyasa (Dracyrodides edulis) and Nkuati (*Cirina forda*) sold to Uíge and Luanda (capital of Angola) comes from RDC. These four forest food products are part of the cross-border trade between Angola (Uíge province) and DRC (Kongo Central province).

D. Units of Measurement and Methods of Sale of Edible NWFPs

The results of this study revealed that there are no standardized units of measurement used in the marketing of edible NWFPs in Uíge Province. As a result, the local population uses an improvised variety of local units or measuring instruments (Tables 1, 2 and 3) used for the sale of forest products. These instruments are adapted according to the nature or physical state (liquid or solid) of the edible NWFPs on sale in the study area. For example, stems (*Crassocephalum montuosum*, *C. rubens*, *Lippia multiflora*) (Fig. 2a), leaves (*Gnetum africanum*) (Fig. 2b), Draecena *camerooniana*, *Mondia whitei*, *Salaria pyraehtii*, shoots (*Pteridium aquilinum*) (Fig. 2c), inflorescences (*Cymbopogon densiflorus*) (Fig. 2d) and roots (*Mondia whitei*) are sold in bunches, fruit pulp (*Adansonia digitata*) is sold in heaps, buckets (Fig. 2e) or plastic basins, or even in 50 kg bags. Also, fruits (*Afromomum albo-violaceum, A. angustifolium*) (Fig. 2f), *Anisophylla quangensis*, *Canarium schweinfurthii*, *Dacryodes edulis*, *Lundocchia lanceolata*, *Strychnos cocculoides*, seeds (*Cola acuminata, Monodora angolensis, Piper guineense*, etc. (Fig. 2g), *Treculia africana*) and bark (*Ochna afzelii subsp. mechwiana, Scordophohoeus zikeria*) are sold in heaps or small plastic basins or even in metal cans, commonly called kilos (*Canarium schweinfurthii*, Fig. 2h). In addition, liquid edible NWFPs such as honey, forest wines (wine from *Elaeis guineensis* and *Raphia spp.*) and red palm oil (*Elaeis guineensis*, Fig. 2i) are sold in transparent bottles of 0.5 or 1 liter or in plastic cans of 5 or 20 liters. Also, edible NWFPs of animal origin, such as Seke (*Passer spp.*), *Cricoetis brachytrepes membracae* (Fig. 2j), *Catfish (Clarias angolensis)* (Fig. 2k), *Nkusu (Lemmiscomys Griselda)* and *Mbende (L. striatus)* (Fig. 2l), *Sheatfish (Chanallabes apus)*, etc. are sold in skewers. Python (*Python sebae*) and oothers game, *Cane-rat (Thryonomys swinderianus)* (Fig. 2m), *Antelope (Tragelaphus spekii)* (Fig. 2n)) including some large fish such as *Mungusu (Parachanna obscura)* (Fig. 2o) and *Nzombo (Protoperus dolloi)* (Fig. 2p) are also sold in heaps of small pieces; in large pieces or whole. Finally, mushrooms are sold in heaps (*Auricularia cornea*) (Fig. 2q), buckets or small basins (*Termitomyces aurantiacus*) (Fig. 2r) or even as a rosary, as in the case of *Mvumbu (Lactarius edulis)*.

E. Price Determination Methods

Selling prices are generally set according to market habits. Prices are determined according to seasonality, the law of supply and demand, the appearance of the buyer (belonging to a given social class), the quality of the product (state of perishability), the size or thickness of the product, and also other factors such as the cost of production. Besides, it was noted that there is almost no labelling or price display (99.3%) on food NWFPs on sale in Uíge Province. This is a deliberate practice that protects the seller from competition and guarantees the seller a good margin of manoeuvre when it comes to determining the price according to the appearance of the customer.
TABLE 1: List of edible vegetation NWPF sold in Uíge Province, Angola

Local Names	Scientific name	Family	Edible parts	Uses	Units and Modes of sale	Conservation Status
Bulukutu	Lippia multiflora Moldenke	Verbenaceae	Leaf, stem	Tea	1	N. R
Bungudi, Bungudia	Crassostachys montuosum (S. Moore)	Asteraceae	Leaf	Vegetable	1	N. R
Bungudi, Bungudia	Crassostachys rubens (Juss. Ex Jacq.) S. Moore	Asteraceae	Leaf	Vegetable	1	N. R
Kikaya	Non ident.	Non ident.	Leaf	Tea	1	N. R
Kumpidi/Kampidi	Piper guineense Schumach. & Thonn.	Piperaceae	Seeds	Spice	2	N. R
Malumbi, Kalankonki	Strychnos coccoloides L.	Loganiaceae	Fruit	Fruit	2; 3	N. R
Mahata/Maata	Landolphia lanceolata (K. Schum.) Pichon	Apocynaceae	Fruit	Fruit	2; 3	N. R
Makanzu	Cola acuminata (Beauv.) Scht & Endl.	Sterculiaceae	Nuts	Snacks	2	N. R
Malombwa	Landolphia ovatensis P. Beauv.	Apocynaceae	Fruit	Fruit	2; 3	N. R
Mampodia	Aframomum stanfieldii Hepper	Zingiberaceae	Fruit	Fruit	2; 3	N. R
Mansansa ma finda	Aframomum angustifolium (Oliv. & De B.) K. Schum.	Zingiberaceae	Fruit	Fruit	2; 3	N. R
Mansanja/ mansansa ma londe	Aframomum albo-violaceum (Ridl.) K. Schum.	Zingiberaceae	Fruit	Fruit	2; 3	N. R
Matombe/mavusu	Raphia spp	Arecaaceae	Fruit, seed	Fruit, wine	4; 5; 6	N. R
Mbidi	Canarium schweinfurthii Engl.	Burseraceae	Fruit	Fruit	2; 7	N. R
Mbonde/mbondi	Salacia pynaertii De Wild.	Celastraceae	Leaf	Vegetable	1	N. R
Mfumbwa	Gnetum africanum Welw.	Gnetaceae	Leaf	Vegetable	1	Vul.
Mfungu/loengo	Anisophylea guanensis Engl.Henriq.	Anisophyleaceae	Fruit	Fruit	2	N. R
Mitekua teku	Pteridium aquilinum subsp. africanum (L.) Kuhn	Dennstaedtiaceae	Shoot	Vegetable	1	N. R
Mpeve	Monodora angolensis Welw.	Annonaceae	Seeds	Spice	2; 7	N. R
Mungoma ngoma	Erythrina abyssinica DC.	Fabaceae	Bark	Tea	1	N. R
Munkula	Pterocarpus angolensis DC.	Leguminosae	Leaf	Vegetable	2; 3	Vul.
Ngoitti, Nkosi nti	Ochna afzelii subsp. mechowiana (O. Hoffm.) N. Robson	Ochnaceae	Bark	Tea	1	N. R
Ba dia Ngari	Elaeis guineensis Jacq.	Arecaceae	Fruit, seed	Oil and palm wine	2; 4; 6	N. R
Nkasu	Plunketia conophora Müll.Arg.	Euphorbiaceae	Fruit	Spice	2	N. R
N’kizco	Syzygium guineense subsp. macrocarpum Engl.	Myrtaceae	Fruit	Fruit	2; 3	N. R
Nkondo, Macua	Adansonia digitata L.	Bombacaceae	Fruit, pulp	Juice	2; 3; 8	Vul.
Nkuwa nkuwa, N’sanu	Xylopia aethiopica (Dunal) A. Rich	Annonaceae	Fruit, seed	Spice	2	N. R
N’londo n’londo, kimbilegnua	Monodia whitei (Hook.f.) Skeels	Apocynaceae	Leaf, root	Vegetable	1	N. R
Nsatu	Dacyrodes edulis (G. Don) H. J. Lam	Burseraceae	Fruit	Fruit	2; 3	N. R
Nsalaka bakala	Drocarna camerouniana Baker	Asparagaceae	Leaf	Vegetable	1	N. R
Nsungi, tsongo	Treculia africana Decne.ex Trécul	Moraceae	Seeds	Spice	2	N. R
Pepino	Cucumis metuliferus E.Mey	Cucurbitaceae	Fruit	Vegetable	2	N. R
Sangu sangu	Cymbopogon densiflorus (Steud.) Stapf	Poaceae	Leaf, inflorescence	Tea	1	N. R
Tu menga nena	Landolphia lecomtei Dewére	Apocynaceae	Fruit	Fruit	2; 3	N. R
Wayi, mukubi	Scorodophloeus zenkeri Harms	Fabaceae	Bark, fruit	Spice	2	N. R

Legends: N. R = Nothing to report concerning the species for which there is no identified risk; Vul = Vulnerable species; Mex = Species threatened with extinction. Units and modes of sale: 1: Bundle; 2: Pile/heap; 3: Small plastic basin; 4: Bottles; 5: Plastic canister; 6: Liter; 7: Kilogram; 8: Bag of 50 kg.
TABLE 2: LIST OF EDIBLE ANIMALS NWPF SOLD IN UIGE PROVINCE

Local names	Scientific name	Family	Units and Modes of sale	Conservation status
Cacusso/tilapia	*Tilapia sp.*	Cichlidae	Heap	Inv.
Kamba	Chanallabes apus (Günther 1873)	Claridae	Brochettes	N. R
Kimb erti	Cephalophus castaneus (Thomas 1892)	Bovidae	Entire, chunks	N. R
Kusu	Lemniscomys griselda (Thomas 1904)	Muridae	Brochettes	N. R
Lussoa	Macrotomus subulatus (Rambur, 1842)	Muridae	Entire, chunks	N. R
Mansende	Gonimbrasia (Naduarella) dione (Fabricius 1793)	Satumidiidae	Kilo, Heap	N. R
Mansende	Imbrasia obscura (Butler 1878)	Satumidiidae	Kilo, heap	N. R
Mbala	Genetta genetta felina (Linnaeus, 1758)	Viverridae	Entire, chunks	N. R
Mbende	Lemniscomys striata (Linnaeus 1758)	Muridae	Brochettes	N. R
Mboma	Python sebae (Günther 1873)	Pythonidae	Entire, chunks	N. R
Nzimbulu	Apis mellifera adamsoni (Latreille 1804)	Apidae	Litre	N. R
Mfuenge	Genetta tigrina (Schreber, 1778)	Viverridae	Entire, chunks	Vul.
Mfu lu tutu	Kinyx xerosa (Schwegger 1812)	Testudinidae	Entire, chunks	N. R
Milenda	Sciuatta inconcisa (Walker 1869)	Noctuidae	Kilo, heaps	N. R
Minzundu/Minzunzu	Anaphe pando (Boddart, 1785)	Notodontidae	Kilo, heaps	N. R
Mpakasa	Syncerus caffer nanus (Boddart, 1785)	Bovidae	Chunks	M. ex
Mumfungua	Non ident.	Chbbidae	Heap, Brochettes	N. R
Munguela	Imbrasia epimethea (Druy 1773)	Satumidiidae	Kilo, heap	N. R
Mungusu	Parachanna obcura (Teugles & Daugt 1984)	Chbbidae	Entire, heap	N. R
N’kanka	Fanisciurus pyrrhopus (Cuvier, 1833)	Sciuridae	Entire	N. R
Ngandu	Crocodylus niloticus (Laurenti, 1768)	Crocodyidae	Heap	Vul.
Ngemba	Epomops frangi (Tomes 1860)	Pteropodidae	Brochettes, Heap	N. R
Ngola	Clarias angolensis (Steindachner 1866)	Clariidae	Brochettes	N. R
Ngone	Non ident.	Muridae	Brochettes	N. R
Ngulu a mfuta	Potamochoerus porcus (Linnaeus 1758)	Suidae	Heap	N. R
Ngulu a nzimba	Hystrix afer (Peters, 1852)	Hystricidae	Entire, chunks	N. R
Ngumbe	Fraconius acher (Stattius Müller 1766)	Phasianidae	Entire	N. R
Nkaka	Phataginus tricuspis (Rafinesque 1821)	Mammalia	Entire, chunks	N. R
Nkayi	Trepalagubs scriptus (Pallas, 1766)	Bovidae	Entire, chunks	N. R
Nkulele	Nimida melagris (Linnaeus 1758)	Numididae	Entire	N. R
Nkima	Cercopites ascanius (Audebert 1799)	Cercopithecidae	Entire, chunks	N. R
Nkuki	Cercopites tigrinus (Westwood 1849)	Satumidiidae	Entire, chunks	N. R
Nkumbi	Cricetomys emini (Wroughton 1910)	Nesomyidae	Entire	N. R
Nkumbi	Cricetomys ansorgei (Thomas 1904)	Nesomyidae	Entire	N. R
Nlumba a londe	Lepus sp.	Leporidae	Entire	N. R
Nskelele	Atherurus africanus (Gray 1842)	Hystricidae	Entire, chunks	N. R
Ngambo, nhambu	Varanus niloticus (Linnaeus 1766)	Varanidae	Entire, chunks	N. R
Nsfe	Cephalopous monticolia (Thamberg 1789)	Bovidae	Entire, chunks	N. R
Nsizi, cambuige	Thryonomys swidernians (Temminck, 1827)	Thryonomyidae	Entire, heap	N. R
Nsombe	Rhynchosporus phoenicis (Fabricius 1801)	Curculionidae	Brochettes, heap	Vul.
Ntoto	Mangos mango (Gmelin 1788)	Herpestidae	Entire	N. R
Nssetza, bmbutu	Non ident.	Bovidae	Chunks	N. R
Nzenze	Barotripus meneagris (Drury 1770)	Grylidae	Brochettes, heap	N. R
Nzimba, kombe	Civettictis civetta (Schreber 1776)	Viverridae	Entire, chunks	Vul.
Nzimba, kombe	Prototus doliol (Boutonel 1900)	Proctotteridae	Entire, chunks	N. R
Nzomimi	Enteromys sp.	Cricynidae	Brochettes, heap	N. R
Seke	Passer spp.	Passeridae	Brochettes, heap	N. R

Legend: N. R = Nothing to report concerning the species for which there is no identified risk; Inv = Invasive species; Vul = Vulnerable species; Mex = Species threatened with extinction.

TABLE 3: LIST OF EDIBLE MYCOLOGICAL NWPF SOLD IN UIGE PROVINCE

Local names	Scientific name	Family	Edible parts	Units and Modes of sale	Conservation status
Kuete kuete, Wunkulu nkulu	*Cantharellus sp.*	Cantharellaceae	Hat	Heap	N. R
Mvumbu, Mvubu	Lactarius edulis (Verbeke & Buyck, 1994)	Russulaceae	Hat, stem	Rosary/chapelet	N. R
Nssembelia	Termitomyces auricularius (R. Heim 1942)	Lyophyllaceae	Hat, stem	Heap, small basin	N. R
Wunguwa, Uunguva, Ngäguva	Termitomyces titanius (Pege & Peche)	Lyophyllaceae	Hat, stem	Entire, heap, small basin	N. R
Unzenga nzenga, Nkutu bala	Auricuriarica sp.	Auricuriaricae	Hat	Heap	N. R
Nkaka matu, bokutu kutu	Auricularia cormea (Ehrenb. 1820)	Auricuriaricae	Hat	Heap, small basin	N. R
Mbala nto	Termitomyces mannifiss (R. Heim 1942)	Lyophyllaceae	Hat, stem	Heap, small basin	N. R
Unzawu, Nsawu	Termitomyces microcarpus (Berk. & Broome) R. Heim (1942)	Lyophyllaceae	Hat, stem	Heap, small basin	N. R
Ntumbudia	Termitomyces mannifiss (R. Heim 1942)	Lyophyllaceae	Hat, stem	Heap, small basin	N. R

Legend: N. R = Nothing to report concerning the species for which there is no identified risk.
F. Sales Sites and Customer Loyalty Methods

Analysis of the data from this study shows that edible NWFPs are sold in various locations in Uíge Province. Forest beverages (Elaeis guineensis and Raphia spp. wines) are sold in markets or in makeshift “barracas”, roadside stands and even in homes. Also, game is sold at roadsides, market stalls and restaurants.

Finally, plants (fruit, seeds, vegetables, roots, and bark) and mushrooms are sold on roadsides, in markets, bus parking lots and even in homes. The work of Monizi et al. [7], [8] shows that the trade of edible NWFPs in Uíge province takes place in rural, peri-urban, and urban markets, roadsides, bus parking lots and even in homes.

As for customer loyalty, the results of the socio-economic surveys showed that sellers of edible NWFPs in the study area use several techniques, including selling on credit to loyal customers and granting a discount (reduction on the selling price) and a bonus to the buyer, i.e. a surplus of the purchased product. This practice is commonly known as ntelo in Kikongo language or esquebra in Angolan Portuguese.

G. Savings and Income Allocation

The majority (70.7 %) of edible NWFP sellers in Uíge Province save their money at home. On the other hand, 29.3 % practice a kind of tontine locally called Dikelemba or Temo in Kikongo language. These results corroborate those of Monizi et al. [7] who showed that the income from the sale of NWFPs with Dracaena camerooniana leaves is kept in a kind of local tontine called Quixikila in Angolan Portuguese or Dikelemba in Kikongo language. Finally, it is necessary to note that this income generated by the sale of NWFPs helps to solve some specific and unpredictable problems of the household (assistance to parents in particular). In terms of income allocation, the money generated from the sale of edible NWFPs is used to solve several specific household problems, such as: the purchase of basic necessities, health care, bereavement, marriage, rent, clothing and beauty products, school supplies, telecommunications, etc. The results of this study corroborate those of Monizi et al. [7], [8] who worked in the same region and showed that income support contributes to the strengthening of food security, purchase of school materials, health care, basic necessities, purchase of clothes, offering to the church, cosmetics, funerals, weddings, etc. On the other hand, Lautenschläger et al. [25], have shown that the collection and sale of some edible insects is part of the livelihood diversification strategy in northern Angola and provides multiple income opportunities for households.

H. Conservation Status of Edible NWFPs Sold in Uíge Province

The fauna and flora species of Angola are classified according to their statutory categories. In 2018, the Ministry of the Environment of Angola drew up a list of extinct (Extinct), endangered (Endangered), vulnerable (Vul) and invasive (Inv) plant and animal species, now called the Red List of Angolan Species. The results of the surveys of edible NWFP sellers in Uíge Province identified 8 of the 91 species on the Red List. The 8 species surveyed are Gnetum africanum, Rynochophorus phoenicus, Adansonia digitata, Crocodylus niloticus, Civettictis civetta, Genetta tigrina, Pterocarpus caffer nanus (M. ex). When questioning sellers of edible NWFPs in Uíge about the existence of a red list of plant and animal species in Angola, the answer to this question showed that none of them had ever heard of the existence of this list. Based on this answer, it is clear that the ignorance of this section of the population about the existence of the red list of species of wild flora and fauna in Angola is due to a lack of information. Furthermore, respect for the conservation of the environment would only be possible if the information provided by the Ministry of the Environment reaches the population in general and the sellers of edible NWFPs in particular through TV, newspapers, workshops, etc., promptly.

IV. Conclusions

This study allowed the inventory, characterization, and valorization of some edible NWFPs marketed in Uíge Province. The results obtained reveal that the sale of forest products for food use is an activity carried out mainly by women. In addition, the study inventoried three types of
edible NWFPs on sale in the study area, including 47 animals, 35 plants and 9 fungi. Also, edible NWFPs are sold at roadides, bus parking lots, markets, restaurants, and vendors’ homes. On the other hand, NWFPs are sold using non-standardized units of measurement. And most sellers of edible NWFPs do not display the price on their merchandise. The study also found that the income generated from the sale of NWFPs is used to solve specific household problems such as health care, weddings, clothing, school supplies, etc. The study also found that NWFPs are sold in a variety of ways. The results of this study constitute a database providing additional information on Angola’s edible NWFPs, especially those sold in Uíge province. That this work be complemented by economic studies aimed at quantifying the volume of activities in this sector.

Finally, this work has just contributed to the creation of a database essential for sustainable management and the development of strategies for the organization of the edible NWFP market that will guarantee the socio-economic.

REFERENCES

[1] Food and Agriculture Organization of the United Nations. Evaluation de l’importance des produits forestiers non ligneux au Sénégal, FAO, Bureau régional de l’Afrique, Accra, Ghana, 2ème édition, 2001.
[2] Food and Agriculture Organization of the United Nations. Living in and from the forests of Central Africa. Rome, Italy, 200pp, 2017.
[3] Food and Agriculture Organization of the United Nations. Towards a harmonised definition of non-wood forest products, N°.198, vol. 50. 1999a.
[4] B. Tiorambe. Place des PFNL dans l’aménagement durable de la Réserve de Biosphère de Luki en R.D.C. Travail de fin d’études. Gembloux: FUSAGx. 77pp. 2005.
[5] Food and Agriculture Organization of the United Nations. Non-wood forest products for rural income and sustainable forestry. Roma. 127pp,1995.
[6] M. Greg-gran, S. Bass, F. Booker, and M. Day. The role of forests in a green economy transformation in Africa. PNUDE. 2005.
[7] M. Monizi, A. Dionisio Canga, L. Lukoki, K. N. Ngboula and N. Luyiundula. Ethnobotanical and Socio-economic of Draacaena cameronianiana Baker in Uíge Province, Northern Angola. Journal of Agriculture and Ecology Research International, 20 (2): pp. 1-15, 2019.
[8] M. Monizi, V. Mayawa, J. Fernando, C. Neinhuis, L. Thea. The cultural and socio-economic role of Raffia wine in the Province Uíge, Angola”. Discovery, 54 (268), pp. 119-129, 2018.
[9] M. Maswani, K. Bongo, E. Alonso, M. M. Zu Vua, L. Nkulu et K. N. Ngboula. Contribution à la connaissance des produits forestiers non ligneux de la Municipalité d’Ambula (Uíge, Angola): Les plantes sauvages comestibles. International Journal of Innovation and Scientific Research, 26. pp. 190-204, 2016.
[10] Gumbo D. Regional review of SPM and policy approaches to promote it – sub-Saharan Africa. Background Paper for the forests chapter In: UNEP, Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication, UNEP, 2011.
[11] P. Vedeld, A. Angelsen, E. Sjaastad and G. Kobugabe Berg. Counting on the environment: forest incomes and the rural poor. Environmental Economics Series, Paper No. 98, World Bank Environment Department, World Bank, Washington, D.C, 2004.
[12] Food and Agriculture Organization of the United Nations. State of the world’s forests, 2014. Enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of the United Nations, Rome, 2014.
[13] O. Ndoye, M. Ruiz Perez, et A. Eyeye. The market of non-timber forest products in the humid forest zone of Cameroon. ODI Rural Development Forestry network (22) ODI, London, 1998.
[14] M.A.C. Bikoue et H. Essomba. Gestion des ressources naturelles fournissant les PFNL alimentaire en Afrique centrale. 104pp, 2007.
[15] H. War. La gestion participative et le développement des PFNL comme moyen de réduction de la pauvreté féminine en zones rurales: cas du Magreb et du Sahel, mémoire de DESS, Faculté des Hautes Etudes en Gestion de la Politique Économique, Cocody. 76p, 2007.

DOI: http://dx.doi.org/10.24018/efood.2020.2.6.135
Mr. Monizi Mawunun was born on 27th September and obtained his BSc in Biotechnology in 2003 from the University of Kinshasa, and MSc in sustainable food in 2013 from Montpellier SupAgro-Institut des Régions Chaudes. He published several papers (19) in international journals. His field of research are ethnobotany, ethnobiology, ethnopharmacology, endogenous knowledge, food and medicinal plants. He is Lecturer at Kimpa Vita University in Uige Province, Angola and he is Master of Science student in Biology at the University of Kinshasa, Democratic Republic of the Congo.

Dr. Thea Lautenschläger obtained her Ph.D. in the Institute of Botany, Technische Universität Dresden, Germany, in 2011. Since 2012, she is the head of the Ethnobiology working group with the focus on studies in Angola. Further areas of interest are biomechanics and didactics. She has published over 40 publications in reputable national and international journals.

Mr. Masidivinga Landu was born on the 3rd November. He obtained his BSc degree in Economics, from the University of Kinshasa, Democratic Republic of the Congo in 1997. He obtained also a master’s degree in accounting and Finance from the Higher Institute of Accounting and administration in Pirto (Portugal). He is Lecturer in the University Kimpa Vita (Uige) in Angola and speaker of several conference announcements.

Professor Luyindula Ndiku Sébastien holds a degree in Science from the Lovanium University of Kinshasa (1971) and a Doctorate in Science from the State University in Liège (Belgium, 1977). Former trainee at the Laboratory of Cell Biochemistry in the Department of Radiobiology at the Center for Nuclear Studies in Mol (Belgium), Professor Luyindula has carried out research on the molecular approach to the phenomenon of symbiosis between bacteria of the genus Rhizobium and legumes. He has extensively studied the phenomenon of biological nitrogen fixation and protein productivity of legumes and has specialized in the use of isotopes and nuclear techniques for the study of Sol-plant relationships. He masters in vitro plant tissue culture techniques. In 1987, Professor Luyindula was visiting Scientist at the University of Texas A&M College Station (USA) and During the years 1989 and 1990 worked as an associate researcher at the International Center for Livestock Institute (ILRI) based in Addis Ababa (Ethiopia). Later, in May 1994, he visited the Universities of Delaware (Newark) and Hawaii (Niftal) in the USA; In April 2005, he made a study trip to the Laboratory of Biotechnology and Androgenesis, University of Picardie, Jules Verne, Amiens/France. Professor LUYINDULA is Director of Research and Scientific Director of the General Commissariat for Atomic Energy (CGEA) and teaches plant biology and biotechnology at the University of Kinshasa and the other Universities in the Democratic Republic of Congo. Honorary Rector of the Protestant University of Kimpese (Kongo Central, DRC), he is author or co-author of more than 80 scientific publications and Promoter or Co-Promoter of several PhD theses in Sciences.

Dr. K.N. Ngbolua was born in Abuzi, Nord-Ubangi Province, Democratic Republic of the Congo (DRC) on October 27, 1972. He obtained his Bachelor of Science in Biology (Biotechnology), from the University of Kinshasa, DRC in 2002; Master of Science in Molecular Biology from the same University in 2005. He is Doctor of Philosophy in Molecular Biology of the University of Kinshasa and Malagasy Institute of Applied Research (IMRA), Madagascar since 2012. Dr Ngbolua is Full Professor of Molecular biology, Biochemistry and Biophysics at the University of Kinshasa and currently serves as the Chancellor/Rector of the University of Gdado-Lite (Province of Nord-Ubangi) in DRC. He has his expertise in Biodiversity monitoring and Biological evaluation of medicinal plants (Bioguided fractionation assays) and structural characterization of bioactive secondary metabolites of relevance for improving the human health and wellbeing. Prof. Ngbolua is member of American Society for Cell Biology (ASCB), USA. His H-index is: 33 (ResearchGate); 30 (Google Scholar).

Dr. Féliçien Lukoki Luyeye was born in Kisunda, Kongo Central Province, DRC on the 01st May 1947. He holds a state diploma of Scientific Humanities (Biochemistry) from the Scholar Medical Center of Kisantu in 1966. He is a candidate in Biological and Agricultural Sciences from the Lovanium University in 1970 and an Agricultural Engineer of Tropical Regions from the National University of Zaire, Kinshasa Campus in 1973. His is Doctor of Philosophy in Agricultural Sciences from the State Faculty of Agronomic Sciences in Gembloux (Belgium) in 1980. Former Ordinary Professor of the Faculty Institute of Agronomic Sciences (IFA) of Yangambi, Former Professor of Seminary of Mayidi. Former Dean of the Faculty of Economics and Development and Honorary Vice-Rector of the Catholic University of Congo, he is currently Ordinary Professor at the Department of Biology, Faculty of Science, University of Kinshasa. Director of the Herbarium IUK of Kinshasa and Head of the Laboratory of Systematic Botany and plant Ecology at the Department of Biology. He is the author of several scientific publications in the field of plant ecology. He is the author of the books such as “Traditional Kongo Medicine –Nkisi mi Bakulu”.

Mr. Macuintuma Pedro was born in Damba mi (Uige) in the Republic of Angola on June 16, 1969. He is holder of a Diploma of Scientific Humanities B (Biochemistry) from the Pre-University Center (PUNIV) of Uige in 1988. He did his University studies at the Agronomic and Veterinary Institute of Mohamed V University in Rabat, Kingdom of Morocco (Horticultural Complex of Agadir) obtaining the Diploma of Graduation in Horticulture and Physiatry in 1994. Subsequently, he obtained his bachelor and MSc (1997, 1999) in forestry at the National Forestry School of Engineers in Rabat, Kingdom of Morocco. He is currently teaching at Kimpa Vita University Uige, Republic of Angola.