CLASSIFICATION OF FINITE ENERGY SOLUTIONS
TO THE FRACTIONAL LANE-EMDEN-FOWLER EQUATIONS
WITH SLIGHTLY SUBCRITICAL EXPONENTS

WOOCHEOL CHOI AND SEUNGHYEOK KIM

ABSTRACT. We study qualitative properties of solutions to the fractional Lane-Emden-Fowler equations with slightly subcritical exponents where the associated fractional Laplacian is defined in terms of either the spectra of the Dirichlet Laplacian or the integral representation. As a consequence, we classify the asymptotic behavior of all finite energy solutions. Our method also provides a simple and unified approach to deal with the classical (local) Lane-Emden-Fowler equation for any dimension greater than 2.

Contents
1. Introduction 1
2. Preliminaries on Fractional Laplacians 6
3. Moving Sphere Argument and Pointwise Upper Bound 11
4. Application of the Pointwise Upper Estimate 15
5. Proof of Main Theorems for the Spectral Fractional Laplacians 21
6. The Restricted Fractional Laplacian and the Classical Laplacian 26
Appendix A. Lower and Upper Estimates of the Standard Bubble in \mathbb{R}^{N+1} 26
Appendix B. Elliptic Regularity Results and Derivation of (4.22) and (4.23) 28
References 30

1. Introduction

Suppose that $s \in (0, 1), N > 2s, p = \frac{N+2s}{N-2s}$ and Ω is a smooth bounded domain. In this paper we are concerned with the asymptotic behavior of solutions to the nonlinear nonlocal elliptic problem

$$
\begin{aligned}
(-\Delta)^s u &= u^{p-\epsilon} \quad \text{in } \Omega, \\
u > 0 &\quad \text{in } \Omega, \\
u = 0 &\quad \text{on } \Sigma = \partial \Omega \text{ or } \mathbb{R}^N \setminus \Omega,
\end{aligned}
$$

when a small parameter $\epsilon > 0$ tends to zero. Here $(-\Delta)^s$ is understood as the spectral fractional Laplacian or the restricted fractional Laplacian according to the choice of the boundary $\Sigma = \partial \Omega$ or $\mathbb{R}^N \setminus \Omega$, respectively (see Subsection 2.1 for the definition of the fractional Laplacians).

Recently various nonlocal differential equations have attracted lots of researchers. Especially, equations involving the fractional Laplacian were treated extensively in both pure and applied mathematics, because not only the fractional Laplacian is an operator which naturally interpolates the classical Laplacian $-\Delta$ and the identity $(-\Delta)^0 = \text{id}$, but also it appears in diverse areas including physics, biological modeling and mathematical finances, as a tool describing nonlocal characteristic.

2010 Mathematics Subject Classification. Primary: 35R11, Secondary: 35B33, 35B44, 35B45, 35J08.
Key words and phrases. Fractional Laplacian, Critical nonlinearity, Multi-peak solutions, Blow-up analysis.
Acknowledgement. W. Choi is grateful to the financial support from POSCO TJ Park Foundation. S. Kim is supported by FONDECYT Grant 3140530.
Owing to technical difficulties arising from the nonlocality, there had not been enough progress in theory of equations involving the fractional Laplacian. However, about a decade ago, Caffarelli and Silvestre [15] interpreted the fractional Laplacian in \(\mathbb{R}^N \) in terms of a Dirichlet-Neumann type operator in the extended domain \(\mathbb{R}^{N+1} = \{(x,t) \in \mathbb{R}^{N+1} : t > 0\} \), and this idea allowed one to analyze nonlocal problems by utilizing well-known arguments such as the mountain pass theorem, the moving plane method, the Moser iteration, monotonicity formulae, etc. A similar extension was also devised by Cabré-Tan [14], and Stinga-Torrea [58] (see Capella-Dávila-Dupaigne-Sire [17], Brändle-Colorado-de Pablo-Sánchez [10], Tan [61] and Chang-González [19] also for nonlocal elliptic equations on bounded domains with zero Dirichlet boundary condition.

Based on these extensions (or the integral representation of a differential operator itself), a lot of studies on nonlocal problems of the form \((-\Delta)^s u = f(u)\) (for a certain function \(f : \mathbb{R} \rightarrow \mathbb{R} \)) were conducted. For the results of particular equations, we refer to papers on the Schrödinger equations [33, 29, 22, 3], the Allen-Cahn equations [12, 13], the Fisher-KPP equations [8, 11], the Nirenberg problem [3, 39, 40], and the Yamabe problem [35, 36, 24, 41], respectively. Also, Brezis-Nirenberg type problems have been tackled in [60, 6, 57, 7]. Most results mentioned here considered on the existence of solutions with some desired property. Meanwhile, several regularity results such as the Schauder estimate and the strong maximum principle were derived in [14, 58, 17, 12, 39, 16] and references therein.

Due to its simple form, the Lane-Emden-Fowler problem \((1.1)\) has been regarded as one of the most fundamental nonlinear elliptic equations. It is now a classical fact that the exponent \(p = \frac{N+2s}{N-2s} \) is a threshold on the existence of a solution to \((1.1)\). If \(\epsilon > 0 \), one can find a solution to \((1.1)\) by applying the standard variational argument with the compact embedding \(H^s(\Omega) \hookrightarrow L^{p+1-\epsilon}(\Omega) \). If \(\epsilon \leq 0 \) and \(\Omega \) is star-shaped, the Pohozaev identity (obtained in [14, 61] for the spectral Laplacians and in [54] for the restricted Laplacians) implies that no solution exists. In view of the corresponding result of Bahri-Coron [4] to the case \(s = 1 \), it is expected that \((1.1)\) has a solution if the domain \(\Omega \) has nontrivial topology.

On the other hand, it is well-known that the Brezis-Nirenberg type problem
\[
\begin{cases}
(-\Delta)^s u = u^p + \epsilon u^q & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \Sigma = \partial \Omega \cup \mathbb{R}^N \setminus \Omega,
\end{cases}
\]
where \(N > 2s, 0 < q < p \) and \(\epsilon > 0 \) is a parameter, shares many common characteristics with \((1.1)\). Through the papers [60, 6, 57, 7], it was determined that its solvability relies on \(\epsilon, p, q, N \) and \(\Omega \).

Once the existence theory is settled, the very next step would be to obtain information on the shape of solutions.

For equation \((1.1)\) with general exponents on the nonlinearity, an answer of this question is provided by the moving plane argument. It yields that for any \(p - \epsilon > 1 \) each solution to \((1.1)\) increases along lines emanating from a boundary point to a certain interior point. It then induces symmetry of a solution from that of the domain \(\Omega \). We refer to [14, 52, 61] for further discussion.

On the other hand, it is natural to guess that if \(\epsilon \rightarrow 0 \), then the solution \(u_\epsilon \) may possess a singular behavior, since \(p = \frac{N+2s}{N-2s} \) is the critical exponent. This idea intrigues one to investigate the shape of \(u_\epsilon \) in detail for \(\epsilon > 0 \) small enough. In this regards, Choi-Kim-Lee [25] and Dávila-López-Sire [30] constructed multiple blow-up solutions by applying the Lyapunov-Schmidt reduction method (refer to Theorem [A] below). When the fractional Laplacian is defined in terms of the spectra of the Dirichlet Laplacian, the authors of [25] also characterized the asymptotic behavior of a sequence \(\{u_\epsilon\}_{\epsilon > 0} \) of minimal energy solutions to \((1.1)\) and \((1.2)\) (with \(q = 1 \)). It turned out that \(u_\epsilon \) blows up at a single point which is a critical point of the Robin function of \((-\Delta)^s\).

In this line of research, an important remaining problem is to study the asymptotic character of solutions \(\{u_\epsilon\}_{\epsilon > 0} \) without the minimal energy condition. This is what we address in the current paper. Precisely, we shall give a detailed description for the asymptotic behavior of all finite energy...
solutions to (1.1) where the fractional Laplacian is either spectral or restricted one. We believe that the same phenomena should happen to finite energy solutions to (1.2).

Theorem 1.1. For any given $s \in (0, 1)$ and $N > 2s$, suppose that there exists a sequence $\{u_n\}_{n \in \mathbb{N}}$ in \mathcal{H} such that each of the function u_n solves equation (1.1) with $\epsilon = \epsilon_n \to 0$. In addition, assume $\sup_{n \in \mathbb{N}} \|u_n\|_{\mathcal{H}} < +\infty$. Then one of the following holds: Up to a subsequence, either

1. the function u_n converges strongly in \mathcal{H} to a function v satisfying
 \[
 \begin{cases}
 (-\Delta)^sv = v^p & \text{in } \Omega, \\
 v > 0 & \text{in } \Omega, \\
 v = 0 & \text{on } \Sigma = \partial \Omega \text{ or } \mathbb{R}^N \setminus \Omega
 \end{cases}
 \] (1.3)
 as $n \to \infty$, or

2. the asymptotic behavior of u_n is given by
 \[
 u_n = \sum_{i=1}^{m} Pw_{\lambda_i, x_i}^n + r_n
 \] (1.4)
 where $\lambda_i \to 0$ and $x_i \to x_i^0 \in \Omega$ as $n \to \infty$. Here $Pw_{\lambda, x}$ is the projected bubble defined after (2.18) and r_n is a remainder term converging to zero in \mathcal{H}. Furthermore the following properties are valid.

- There is a constant $C_0 > 0$ independent of $n \in \mathbb{N}$ such that $\frac{\lambda_i}{\lambda_i^n} < C_0$ holds for all $n \in \mathbb{N}$. and $i, j = 1, \ldots, m$.
- There is a constant $d_0 > 0$ such that $|x_i^n - x_j^n| > d_0$ for any $n \in \mathbb{N}$ and $i, j = 1, \ldots, m$ with $i \neq j$.
- Let $b_i = \left(\lim_{n \to \infty} \frac{d_i}{m}\right)^{\frac{N}{2s}}$ and $b_0 = \lim_{n \to \infty} (\lambda_i^0)^{-(N-2s)} \epsilon_n$. Then the value
 \[
 ((b_1, \ldots, b_m), (x_1^0, \ldots, x_m^0)) \in (0, \infty)^m \times \Omega^m
 \]
 is a critical point of the function Φ_m defined by
 \[
 \Phi_m(b_1, \ldots, b_m, x_1, \ldots, x_m) = c_1 \left(\sum_{i=1}^{m} b_i^2 H(x, x_i) - \sum_{i \neq k} b_i b_k G(x, x_i) \right) - c_2 \log(b_1 \cdots b_m) \cdot b_0
 \] (1.5)
 where
 \[
 c_1 = \int_{\mathbb{R}^N} w_{1,0}^{p^*} dx > 0 \quad \text{and} \quad c_2 = \left(\frac{N - 2s}{N} \right) \int_{\mathbb{R}^N} w_{1,0}^{p^*+1} dx > 0
 \] (1.6)
 Here $G : \Omega \times \Omega \to \mathbb{R}$ is Green’s function of $(-\Delta)^s$, $H : \Omega \times \Omega \to \mathbb{R}$ is its regular part, and $w_{1,0}$ is the standard bubble on \mathbb{R}^N given in (2.14). (See Section 2 for more details.)

Remark 1.2. As we mentioned, equation (1.1) may have a solution even for $\epsilon \leq 0$ if the topology of the domain Ω is not simple (say, its homology group over $\mathbb{Z}/(2\mathbb{Z})$ is non-trivial). Hence the first case (1) of Theorem 1.1 cannot be excluded for general domains.

If the blow-up points satisfy a certain non-degeneracy condition, then we can determine the blow-up rates in terms of an explicit power of ϵ^{-1} as the following theorem shows.

Theorem 1.3. Let $\{u_n\}_{n \in \mathbb{N}}$ be a sequence of solutions to (1.1) satisfying (2) of Theorem 1.1. Let us set an $m \times m$ symmetric matrix $M = (m_{ij})_{1 \leq i, j \leq m}$ by

\[
 m_{ij} = \begin{cases}
 H(x_i^0, x_j^0) & \text{if } i = j, \\
 G(x_i^0, x_j^0) & \text{if } i \neq j.
 \end{cases}
\]

Then it is nonnegative definite. If it is nondegenerate (i.e. positive definite), then for any $1 \leq i \leq m$, we have

\[
 \lim_{n \to \infty} \log \epsilon_n \lambda_i^n = \frac{1}{N - 2s}
\] (1.7)
Recall that equation (1.1) has multi-bubble solutions as the following result indicates.

Theorem A (Choi-Kim-Lee [25] and Dávila-López-Sire [30]). Assume $s \in (0, 1)$ and $N > 2s$. Given arbitrary $m \in \mathbb{N}$, suppose that the function Φ_m in (1.5) with $b_0 = (N - 2s)/4s$ has a stable critical set Λ_m such that

$$
\Lambda_m \subset \left\{((\lambda_1, \cdots, \lambda_m), (x_1, \cdots, x_m)) \in (0, \infty)^m \times \Omega^m : x_i \neq x_j \text{ if } i \neq j \text{ and } i, j = 1, \cdots, m\right\}.
$$

Then there exist a point $((\lambda^1_0, \cdots, \lambda^m_0), (x^1_0, \cdots, x^m_0)) \in \Lambda_m$ and a small number $\epsilon_0 > 0$ such that for $0 < \epsilon < \epsilon_0$, there is a family of solutions u_{ϵ} of (1.1) which concentrate at each point x^1_0, \cdots, x^{m-1}_0 and x^m_0 as $\epsilon \to 0$ in the form (1.4), after extracting a subsequence if necessary.

The asymptotic behavior of solutions figured in Theorem 1.3(2) corresponds exactly to the multi-peak solutions described in the above theorem. This reveals the accuracy and sharpness of our classification results. The question of finding a blow-up sequence of solutions not satisfying (1.7) is open even for the local case $s = 1$.

Before introducing our strategy for the proof of the classification results, it is worth to remind that problem (1.1) is a nonlocal version of the Lane-Emden-Fowler equation

$$
\begin{cases}
-\Delta u = u^{\frac{N+2}{N-2} - \epsilon} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
$$

(1.8)

In [49], Rey constructed one-peak solutions to (1.8). Then multi-peak solutions were found by Bahri-Li-Rey [5], Rey [51] and Musso-Pistoia [47] (for $N \geq 3$) by different ways. Furthermore, the classification of solutions was conducted in Han [38] and Rey [49] for one-peak case ($N \geq 3$), and in Bahri-Li-Rey [5] and Rey [51] for general case ($N \geq 4$ and $N = 3$, respectively).

Theorem B (Bahri-Li-Rey [5] and Rey [51]). Assume that $N \geq 3$ and $\{u_n\}_{n \in \mathbb{N}} \subset H^1_0(\Omega)$ is a sequence of solutions to (1.8) with $\epsilon = \epsilon_n \searrow 0$. Also, suppose that $\sup_{n \in \mathbb{N}} \|u_n\|_{H^1_0(\Omega)} < \infty$.

1. Passing to a subsequence, either u_n strongly converges to a solution u of (1.3) with $s = 1$, or it has the asymptotic behavior (1.4) where $Pw_{\lambda, \xi}$ is the projected bubble defined as

$$
-\Delta w_{\lambda, \xi} = w_{\lambda, \xi}^{\frac{N+2}{N-2} - \epsilon} \quad \text{in } \Omega \quad \text{and} \quad Pw_{\lambda, \xi} = 0 \quad \text{on } \partial \Omega.
$$

($w_{\lambda, \xi}$ is given in (2.14)). Moreover, all characteristics of the concentration points $\{x^1_0, \cdots, x^m_0\}$ and rates $\{\lambda^1_0, \cdots, \lambda^m_0\}$ in the statement of Theorem 1.3 remain to hold. If the nonnegative matrix M defined in the statement of Theorem 1.3 is in fact positive, then (1.7) is valid.

In [5][51], a certain decomposition of the space $H^1_0(\Omega)$ is crucially used (see Remark 1.4(1) below), which produces large error in the lowest dimension case $N = 3$. In this reason, improved estimates had to be made additionally in [51]. Remarkably, as we will see later, our proof for Theorems 1.1 and 1.3 provides a unified and neater approach to treat this local situation $s = 1$. As a result, we have a new proof of Theorem 1.3 working for all dimensions $N \geq 3$ at the same time. See Subsection 6.2.

The framework of the proofs for our main theorems comprises of the following three steps:

Step 1. Concentration-compactness principle;

Step 2. Pointwise bounds of u_ϵ obtained from a moving sphere argument and their applications;

Step 3. Two identities regarding Green’s function and the Robin function coming from a type of Green’s identity.

Let us briefly explain each step by assuming that the spectral fractional Laplacian is under consideration.

In **Step 1**, we recall the concentration-compactness principle for problem (1.1). This renowned principle is found by Struwe [59] for equation (1.8), and recently extended to problem (1.1) by
Almaraz [2] for $s = \frac{1}{2}$, and by Fang-González [32] and Palatucci-Pisante [48] for all $0 < s < 1$ (in slightly different setting). It makes possible to decompose solutions \(\{u_n\}_{n \in \mathbb{N}} \) of (1.1) as

\[
 u_n = v_0 + \sum_{i=1}^{m} P_{\lambda_i,n,x_i^n} + r_n,
\]

where v_0 is the \mathcal{H}-weak limit of $\{u_n\}_{n \in \mathbb{N}}$, $P_{\lambda_i,n,x_i^n} \in \mathcal{H}$ is the projected bubble and r_n converges to zero in \mathcal{H}. See Lemma 2.2 for the complete description of $x_i^n, \lambda_i^n, v_0, P_{\lambda_i,n,x_i^n}$ and r_n.

Now our task is reduced to getting further information on the sequence $\{u_n\}_{n \in \mathbb{N}}$ whose elements are expressed as (1.9), which is one of the main contributions of this paper. We immediately encounter a difficulty, because we do not know at this moment even whether two different concentration points x_i^n and x_j^n may collide or not. This technicality will be tackled in Step 2, where we attain a pointwise bound of u_n near each concentration point by employing the moving sphere method towards the extended problem (2.5) of equation (1.1) (see Section 3). This allows us to deduce no coincidence of two different blow-up points and to obtain further valuable information on solutions such as the alternative between $v_0 = 0$ and $m = 0$, and compatibility of blow-up rates of all peaks (see Section 4). This part is motivated by Schoen [55].

Given the pointwise bound and its consequences derived in Step 2, we show in Step 3 that the L^∞-normalized sequence of the solutions u_n converges to a combination of Green’s functions. Then inserting this information into a Green-type identity [5.3] will lead us to discover two identities (5.4) and (5.11) regarding on the limit of the blow-up profile $(\lambda_i^n, x_i^n, x_i^0, \ldots, x_i^n)$, which will complete the proof of our main results. On passing to the limit, one needs to know a uniform C^2-estimate of the x-harmonic extensions of $\{u_n\}_{n \in \mathbb{N}}$. It is not a trivial issue since we are handling the nonlocal problem (1.1), or the associate degenerate local problem (2.5) with the weighted Neumann boundary condition. Appendix B is devoted to deducing the desired regularity results.

The above strategy extends Han’s method [38] in a quite natural manner, while the argument in Bahri-Li-Rey [5] and Rey [51] can be regarded as further developments of Rey [49, 50].

We conclude this section, presenting some additional remarks.

Remark 1.4. (1) The corresponding result to Step 3 for the local problem (1.8) was achieved in Bahri-Li-Rey [5] and Rey [51]. The argument in [5] requires one to estimate $\|r_n\|_{H^1_0(\Omega)}$ in terms of powers of ϵ_i and $\max_{1 \leq k \leq m} \lambda_k^n$. For this aim, the authors replaced $\sum_{i=1}^{m} P_{\lambda_i^n,x_i^n}$ in the expansion (1.9) of u_n with $\sum_{i=1}^{m} \alpha_i' P_{\lambda_i^n,x_i^n}$ (for some $\alpha_i' \in \mathbb{R}$) and then perturbed the parameters $(\alpha_i', \lambda_i^n, x_i^n)$ so that r_n satisfies the $H^1_0(\Omega)$-orthogonality

\[
 \langle r_n, P_{\lambda_i^n,x_i^n} \rangle_{H^1_0(\Omega)} = \left(r_n, \frac{\partial P_{\lambda_i^n,x_i^n}}{\partial x_j} \right)_{H^1_0(\Omega)} = 0 \quad \text{for } 1 \leq i \leq m, 1 \leq j \leq N,
\]

as in Bahri-Coron [4]. After that, they followed the argument of Rey [49, 50] to get a sharp estimate $\|r_n\|_{H^1_0(\Omega)}$. Their argument is simplified in our proof in the point that we do not need the estimate of the remainder term r_n.

(2) An advantage of the argument in [5] is that it deals with the energy functional of (1.8) directly so that it suggests a way to compute the Morse index of the solutions. Recently, asymptotic behavior of the first $(N + 2)m$-eigenvalues and eigenfunctions for the linearized equation of (1.8) was examined in [37, 26]. They give the information on the Morse index as a particular corollary.

The rest of this paper is organized as follows. In Section 2 we review the extension problem for the spectral and restricted fractional Laplacians, Green’s function, the Robin function and the projected bubbles. Moreover, we recall the concentration-compactness principle which brings with a decomposition result of blow-up solutions. Section 3 is devoted to the proof of a pointwise upper bound which makes use of a moving sphere argument. In Section 4, by using this estimate, we attain various refined information for the blow-up solutions, and in particular, show that suitably normalized blow-up solutions converge to combinations of Green’s functions. In Section 5 we
obtain essential information of the blow-up points and their blow-up rates by using a Green-type identity, which proves our main results. For the sake of brevity, we concentrate only on the spectral fractional Laplacian in Sections 3-5. Instead, all necessary modifications to deal with the restricted fractional Laplacian or the classical (local) Laplacian are listed in Section 6. Finally, a decay estimate of the standard bubble $W_{1,0}$ (see Subsection 2.4) needed in Section 3 and elliptic regularity results necessary for Lemma 4.6 are derived in Appendices A and B, respectively.

Notations.

- The letter z represents a variable in the half-space $\mathbb{R}^{N+1}_+ = \mathbb{R}^N \times (0, \infty)$. Also, it is written as $z = (x, t) = (x_1, \ldots, x_N, x_{N+1})$ with $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$ and $t = x_{N+1} > 0$.

- For any fixed smooth bounded domain $\Omega \subset \mathbb{R}^N$, let $C := \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$ be the associated cylinder of Ω and $\partial_t C := \partial \Omega \times (0, \infty)$ its lateral boundary. Set also $C^r := \Omega \times (0, \infty)$. Moreover, for any given cylinder $C = \Omega \times (0, \infty)$, the following positive constants will appear in (2.1), (2.3), (2.4), (2.9), (2.14) and (2.15):

- We will denote by p the critical exponent $\frac{N+2s}{N-2s}$.

- Let $B^N_r(x, 0)$ be the half-ball in \mathbb{R}^{N+1} of radius r centered at $(x, 0) \in \mathbb{R}^N \times \{0\}$. Moreover, we set $\partial_1 B^N_r(0, 0) = \partial B^N_r(0, 0) \cap \mathbb{R}^{N+1}$.

- dS stands for the surface measure. Also, a subscript attached to dS (such as dS_x or dS_z) denotes the variable of the surface.

- For an arbitrary domain $D \subset \mathbb{R}^n$, the map $\nu = (\nu_1, \ldots, \nu_n) : \partial D \to \mathbb{R}^n$ denotes the outward unit normal vector on ∂D.

- Suppose that D is a domain and $T \subset \partial D$. If f is a function on D, then the trace of f on T is denoted by $\text{tr}_T f$ whenever it is well-defined.

- $|S^{N-1}| = 2\pi^{N/2}/\Gamma(N/2)$ denotes the Lebesgue measure of $(N-1)$-dimensional unit sphere S^{N-1}.

- The following positive constants will appear in (2.1), (2.3), (2.4), (2.9), (2.14) and (2.15):

\[
\kappa_s := \frac{2^s s \Gamma(N+2s)}{\pi^{s/2} \Gamma(1-s)}, \quad \kappa_s := \frac{\Gamma(s)}{2^{1-2s} \Gamma(1-s)}, \quad \rho_s := \frac{\Gamma(N+2s)}{\pi^{s/2} \Gamma(s)}, \quad \nu_s := \frac{1}{|S^{N-1}|}, \quad \frac{2^{1-2s} \Gamma(N+2s)}{\Gamma(s)}.
\]

\[
\alpha_s := 2^s \pi^{s/2} \left(\frac{\Gamma(N+2s)}{\Gamma(N)} \right)^{\frac{N-2s}{2s}} \quad \text{and} \quad \beta_s := 2^{-s} \pi^{s/2} \left(\frac{\Gamma(N+2s)}{\Gamma(N)} \right)^{\frac{N-2s}{2s}} \left(\frac{\Gamma(N)}{\Gamma(1-s)} \right)^{\frac{s}{2}}.
\]

- $C > 0$ is a generic value that may vary from line to line.

2. Preliminaries on Fractional Laplacians

In this section we review some preliminary notions and results which will be needed throughout the proofs of the main theorems.
2.1. Definition of Sobolev Spaces and Fractional Laplacians. For any smooth bounded domain \(\Omega \), let \(\{\lambda_k, \phi_k\}_{k=1}^{\infty} \) be a sequence of the eigenvalues and the corresponding \(L^2(\Omega) \)-normalized eigenvectors of the Dirichlet Laplacian \(-\Delta \) in \(\Omega \),

\[
\begin{align*}
-\Delta \phi_k &= \lambda_k \phi_k \quad \text{in} \ \Omega \quad \text{and} \quad \phi_k = 0 \quad \text{on} \ \partial \Omega,
\end{align*}
\]

where \(0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \). Introduce a space

\[
\mathcal{V}^s(\Omega) = \left\{ u = \sum_{i=1}^{\infty} a_i \lambda_i^{2s} \phi_i \mid a_i \in \mathbb{R} \right\},
\]

Then the spectral Laplacian is defined as

\[
(-\Delta)^s u = \sum_{i=1}^{\infty} a_i \lambda_i^{2s} \phi_i \quad \text{for any} \quad u = \sum_{i=1}^{\infty} a_i \phi_i \in \mathcal{V}^s(\Omega).
\]

It is known that

\[
\mathcal{V}^s(\Omega) = \left\{ u = \text{tr}_{\partial \Omega \times \{0\}} U : U \in H^{1,2}_0(\mathbb{C}; t^{1-2s}) \right\} = \begin{cases} H^s(\Omega) & \text{for} \ 0 < s < 1/2, \\ H^0_0(\Omega) & \text{for} \ s = 1/2, \\ H^0_{\partial \Omega}(\Omega) & \text{for} \ 1/2 < s < 1 \end{cases}
\]

where \(H^s(\Omega) \) is the usual fractional Sobolev space, \(H^0_{\partial \Omega}(\Omega) \) is the closure of \(C_0^\infty(\Omega) \) with respect to the Sobolev norm \(\| \cdot \|_{H^s(\Omega)} \) and

\[
H^{1/2}_{00}(\Omega) := \left\{ u \in H^{1/2}(\Omega) : \int_{\Omega} \frac{u(x)^2}{\text{dist}(x, \partial \Omega)} \, dx < \infty \right\}
\]

(see [18]).

On the other hand, for any \(s \in (0, 1) \) and \(u \in H^s(\mathbb{R}^N) \), we are capable of defining the fractional Laplacian by using the integral representation

\[
(-\Delta)^s u(x) = c_{N,s} \text{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \, dy.
\]

Here the exact value of \(c_{N,s} > 0 \) (as well as other constants such as \(\kappa_s \) or \(p_{N,s} \) below) can be found at the last part of the previous section. If this operator is restricted to functions in \(H^0_{\partial \Omega}(\Omega) \), then it is called the restricted fractional Laplacian.

To compare two different fractional Laplacians, the reader is advised to check the papers [46] [56] [9].

We set

\[
\mathcal{H} = \begin{cases} \mathcal{V}^s(\Omega) & \text{if the spectral fractional Laplacian is concerned,} \\ H^0_{\partial \Omega}(\Omega) & \text{if the restricted fractional Laplacian is concerned.} \end{cases}
\]

Remark 2.1. At the first glance, the boundary condition of (1.1), that is, \(u = 0 \) in \(\partial \Omega \) for \(0 < s < 1/2 \) may be ambiguous because \(H^0_{\partial \Omega}(\Omega) = H^s(\Omega) \). However, elliptic regularity guarantees that \(u \) is bounded, so the representation formula makes sense. It is continuous up to the boundary and has zero boundary values.

2.2. Localization of Fractional Laplacians. For a fixed function \(u \in \mathcal{V}^s(\Omega) \) (or \(H^s(\mathbb{R}^N) \)), let us set \(U \in H^{1/2}_0(\mathbb{C}; t^{1-2s}) \) (or \(D^{1,2}(\mathbb{R}^N; t^{1-2s}) \), respectively) to be the \(s \)-harmonic extension of \(u \), namely, a unique solution of the equation

\[
\begin{align*}
\text{div}(t^{1-2s} \nabla U) &= 0 \quad \text{in} \ \mathbb{R}^N \quad (\text{or} \ \mathbb{R}^{N+1}), \\
U &= 0 \quad \text{on} \ \partial_t C \quad (\text{or} \ \partial_t \mathbb{R}^{N+1} = 0), \\
U(\cdot, 0) &= u \quad \text{on} \ \Omega \quad (\text{or} \ \mathbb{R}^N).
\end{align*}
\]
Then by the celebrated results of Caffarelli-Silvestre [15] (for the Euclidean space \mathbb{R}^N) and Cabré-Tan [14] (for bounded domains Ω, see also [58] [17] [61]), it holds that
\[(-\Delta)^s u(x) = \partial_s^x U(x) := -\kappa_s \lim_{t \to 0^+} t^{1-2s} \frac{\partial U}{\partial t}(x,t) \quad \text{for} \ x \in \Omega \ (\text{or} \ \mathbb{R}^N). \] (2.3)

Moreover, if $u \in H^s(\mathbb{R}^N)$, then the Poisson representation formula gives that
\[U(x,t) = p_{N,s} \int_{\mathbb{R}^N} t^{2s} \frac{u(y)}{|x-y|^2 + t^2} \frac{1}{2s} \, dy \] (2.4)
while for $u \in \mathcal{V}'(\Omega)$ it is possible to describe U in terms of a series (refer to [17]).

As a result, if the spectral fractional Laplacian is concerned, then the s-harmonic extension $U_s \in H^{1,2}(C; t^{-1-\gamma})$ of a solution $u_s \in \mathcal{V}^s(\Omega)$ to problem (1.1) satisfies
\[
\begin{cases}
\text{div}(t^{-1-\gamma} \nabla U_s) = 0 & \text{in } C, \\
U_s = 0 & \text{on } \partial C, \\
U_s = u_s & \text{on } \Omega \times [0], \\
\partial_n \delta_x U_s = u_s^{1-\gamma} & \text{on } \Omega \times [0].
\end{cases}
\] (2.5)

In light of the Sobolev inequality (2.15), we see
\[\|U_s\|_{H^{1,2}(C; t^{-1-\gamma})} = \|u_s\|_{H^{1,2}(\Omega)} \leq C \|u_s\|_{\mathcal{V}^s(\Omega)}. \] (2.6)

Therefore if we have $\sup_{t>0} \|u_s\|_{\mathcal{V}^s(\Omega)} < +\infty$, then $\sup_{t>0} \|U_s\|_{H^{1,2}(C; t^{-1-\gamma})} < +\infty$. Moreover, by the strong maximum principle (12 Corollary 4.12) or [31] Lemma 2.7), it holds that $U_s > 0$ in C.

A similar (and in fact simpler) formulation is available when the restricted fractional Laplacian is studied. In this case, the equation we have to consider is
\[
\begin{cases}
\text{div}(t^{-1-\gamma} \nabla U_\varepsilon) = 0 & \text{in } \mathbb{R}^{n+1}, \\
U_\varepsilon = 0 & \text{on } (\mathbb{R}^n \setminus \Omega) \times [0], \\
U_\varepsilon = u_\varepsilon & \text{on } \Omega \times [0], \\
\partial_n \delta_x U_\varepsilon = u_\varepsilon^{1-\gamma} & \text{on } \Omega \times [0].
\end{cases}
\] (2.7)

2.3. Green’s Functions of Fractional Laplacians. In this subsection, we review Green’s functions.

We consider first the case when the fractional Laplacian is defined in terms of the spectra of the Laplacian. We refer to [25] for more details.

Let G be Green’s function of the the spectral fractional Laplacian $(-\Delta)^s$ on a smooth bounded domain Ω with the zero Dirichlet boundary condition. Then it can be regarded as the trace of Green’s function $G_C = G_C(z, x) \ (z \in C, x \in \Omega)$ for the Dirichlet-Neumann problem on the extended domain C which satisfies
\[
\begin{cases}
\text{div}(t^{-1-2s} \nabla G_C(\cdot, x)) = 0 & \text{in } C, \\
G_C(\cdot, x) = 0 & \text{on } \partial C, \\
\partial_n G_C(\cdot, x) = \delta_x & \text{on } \Omega \times [0]
\end{cases}
\] (2.8)
where δ_x is the Dirac delta function on \mathbb{R}^n with center at $x \in \Omega$.

Green’s function G_C on the half-cylinder C can be decomposed into the singular and regular parts. The singular part is given by Green’s function
\[G_{N,1}((x,t), y) := \frac{\gamma_{N,s}}{|(x - y, t)|^{N-2s}} \] (2.9)
on the half-space \mathbb{R}^{N+1} satisfying
\[
\begin{cases}
\text{div}(t^{-1-2s} \nabla (\cdot, y) G_{N,1}((x,t), y)) = 0 & \text{in } \mathbb{R}^{N+1}, \\
\partial_n G_{N,1}((x,0), y) = \delta_y(x) & \text{on } \mathbb{R}^N = \partial \mathbb{R}^{N+1}
\end{cases}
\] (2.10)
for each \(y \in \mathbb{R}^N \). The regular part is given as the function \(H_C : C \to \mathbb{R} \) which solves

\[
\begin{align*}
\text{div} \left(t^{1-2s} \nabla_{(x,t)} H_C((x,t),y) \right) &= 0 \quad \text{in } C, \\
H_C((x,t),y) &= \frac{\gamma_{N,s}}{|x-y|^{|N-2s|}} \quad \text{on } \partial_t C, \\
\partial_t \partial_t^u H_C((x,0),y) &= 0 \quad \text{on } \Omega \times \{0\}
\end{align*}
\]

(2.11)

for any \(y \in \Omega \). Its existence can be verified in a variational method (see Lemma 2.2 in [25]). We then have

\[
G_C((x,t),y) = G_{\mathbb{R}^{N+1}}((x,t),y) - H_C((x,t),y).
\]

Now, letting \(H(x,y) = H_C((x,0),y) \), we can decompose \(G(x,y) = G_C((x,0),y) \) as follows.

\[
G(x,y) = \frac{\gamma_{N,s}}{|x-y|^{N-2s}} - H(x,y).
\]

Let us recall some regularity properties of the function \(H \). For any index \(\alpha, r, \xi \in (\mathbb{N} \cup \{0\})^N \), the partial derivatives \(\partial_t^\alpha H_C \) of \(H_C \) in the \(x \)-variable always exist (see Lemma 4.1 in [25]). In addition, it follows from (2.11) that

\[
\begin{align*}
\text{div} \left(t^{1-2s} \nabla_{(x,t)} \partial_t^\alpha H_C((x,t),y) \right) &= 0 \quad \text{in } C, \\
\partial_t^\alpha \partial_t^u H_C((x,0),y) &= 0 \quad \text{on } \Omega \times \{0\}.
\end{align*}
\]

Therefore, by applying [12 Lemma 4.5] to each \(\partial_t^\alpha H_C \), we see that there is a constant \(C = C(\alpha, r, \xi) > 0 \) such that

\[
|\partial_t^\alpha H_C((x,t),y)| \leq C
\]

(2.12)

and

\[
|t^{1-2s} \partial_t \partial_t^u H_C((x,t),y)| \leq C
\]

(2.13)

for all \((x,t) \in B_{\mathbb{R}^+}((\xi,0),r) \) provided that \(\xi \in \Omega \) and \(r > 0 \) satisfy the condition \(r < \text{dist}(\xi, \partial \Omega) \).

When the restricted fractional Laplacian is dealt with, we observe that the above discussion is still valid once we let \(C = \mathbb{R}^{N+1}_+ \) and substitute the boundary conditions in (2.8) and (2.11) with

\[
G_C(\cdot, x) = 0 \quad \text{on } \partial_b C \quad \text{and} \quad H_C((x,t),y) = \frac{\gamma_{N,s}}{|x-y|^{N-2s}} \quad \text{on } \partial_b C
\]

respectively, where \(\partial_b C := (\mathbb{R}^N \setminus \Omega) \times \{0\} \). (The function \(G_C \) in this paragraph should not be confused with the fundamental solution \(G_{\mathbb{R}^{N+1}} \) in (2.9).)

2.4. Sharp Sobolev and Trace Inequalities. Given any \(\lambda > 0 \) and \(\xi \in \mathbb{R}^N \), let \(w_{\lambda, \xi} \) be the bubble defined by

\[
w_{\lambda, \xi}(x) = \alpha_{N,s} \left(\frac{\lambda}{\lambda^2 + |x-\xi|^2} \right)^{\frac{N-2s}{2}} \quad \text{for } x \in \mathbb{R}^N.
\]

(2.14)

Then it is true that

\[
\left(\int_{\mathbb{R}^N} |u|^{p+1} \, dx \right)^{\frac{1}{p+1}} \leq S_{n,s} \left(\int_{\mathbb{R}^N} |(-\Delta)^{\nu/2} u|^2 \, dx \right)^{\frac{1}{2}},
\]

(2.15)

and the equality holds if and only if \(u(x) = cw_{\lambda, \xi}(x) \) for any \(c > 0, \lambda > 0 \) and \(\xi \in \mathbb{R}^N \) (refer to [45] [13] [34]). Furthermore, it was shown in [20] [42] [44] that if a suitable decay assumption is imposed, then \(\{w_{\lambda, \xi} : \lambda > 0, \xi \in \mathbb{R}^N\} \) is the set of all solutions for the problem

\[
(-\Delta)^{\nu} u = u^p, \quad u > 0 \quad \text{in } \mathbb{R}^N \quad \text{and} \quad \lim_{|x| \to \infty} u(x) = 0.
\]

Denote also the \(s \)-harmonic extension of \(w_{\lambda, \xi} \) by \(W_{\lambda, \xi} \in D^{1-2s}(\mathbb{R}^{N+1}_+, t^{1-2s}) \) so that \(W_{\lambda, \xi} \) solves

\[
\begin{align*}
\text{div}(t^{1-2s} W_{\lambda, \xi}(x,t)) &= 0 \quad \text{in } \mathbb{R}^{N+1}_+, \\
W_{\lambda, \xi}(x,0) &= w_{\lambda, \xi}(x) \quad \text{on } \mathbb{R}^N.
\end{align*}
\]

(2.16)
It follows that for the Sobolev trace inequality
\[\left(\int_{\mathbb{R}^N} |U(x,0)|^{p+1} dx \right)^{\frac{1}{p+1}} \leq \sqrt{\kappa} S_{n, \gamma} \left(\int_0^\infty \int_{\mathbb{R}^N} t^{1-2\gamma} |\nabla U(x,t)|^2 dx dt \right)^{\frac{1}{2}}, \] (2.17)
the two sides are equal if and only if \(U(x,t) = c W_{\lambda, \xi}(x,t) \) for any \(c > 0 \), \(\lambda > 0 \) and \(\xi \in \mathbb{R}^N \).

2.5. Concentration-Compactness Principle. Firstly, we treat the spectral fractional Laplacian case. Let \(PW_{\lambda, \xi} \) stand for the projection of the bubble \(W_{\lambda, \xi} \) into \(H_{0, \xi}^{1, 2}(\mathbb{R}^N; t^{1-2\gamma}) \), that is, the solution of
\[
\begin{align*}
\text{div}(t^{1-2\gamma} \nabla PW_{\lambda, \xi}) &= 0 & \text{in } C, \\
PW_{\lambda, \xi} &= 0 & \text{on } \partial_t C, \\
\partial_t \nabla PW_{\lambda, \xi} &= \partial_t \nabla W_{\lambda, \xi} = W_{\lambda, \xi}^{p^*} & \text{on } \Omega \times [0, \infty),
\end{align*}
\] (2.18)
and \(PW_{\lambda, \xi} = \text{tr}|_{\Omega \times [0]} PW_{\lambda, \xi} \). By the maximum principle \([23, \text{Lemma 2.1}]\), we have \(0 \leq PW_{\lambda, \xi} \leq W_{\lambda, \xi} \) in \(C \). Also \([23, \text{Lemma C.1}]\) says that
\[PW_{\lambda, \xi}(z) = W_{\lambda, \xi}(z) - c_1 \lambda^{\frac{4-2\gamma}{2}} H(z, \sigma) + o(\lambda^{\frac{4-2\gamma}{2}}) \] (2.19)
uniformly for \(z \in C \) where \(c_1 > 0 \) is the number appeared in (1.5).

The following result is a fractional version of Struwe \([59]\).

Lemma 2.2. Let \(\{U_n\}_{n \in \mathbb{N}} \) be a sequence of solutions to (2.5) with \(\epsilon = \epsilon_n \searrow 0 \) which satisfies the norm condition \(\sup_{n \in \mathbb{N}} \|U_n\|_{H_0^{1,2}(\mathbb{R}^N; t^{1-2\gamma})} < \infty \). Then there exist an integer \(m \in \mathbb{N} \cup \{0\} \) and a sequence \((\lambda_n^i, \xi_n^i)_{i \in \mathbb{N}} \subset (0, \infty) \times \Omega \) of positive numbers and points for each \(i = 1, \cdots, m \) such that
\[R_n := U_n - \left(V_0 + \sum_{i=1}^m PW_{\lambda_n^i, \xi_n^i} \right) \rightarrow 0 \text{ in } H_0^{1,2}(\mathbb{R}^N; t^{1-2\gamma}) \] (2.20)
(up to a subsequence) where \(V_0 \) is the weak limit of \(U_n \) in \(H_0^{1,2}(\mathbb{R}^N; t^{1-2\gamma}) \), which satisfies
\[
\begin{align*}
\text{div}(t^{1-2\gamma} \nabla V_0) &= 0 & \text{in } C, \\
V_0 &= 0 & \text{on } \partial_t C, \\
\partial_t \nabla V_0 &= V_0^{\frac{4-2\gamma}{2}} & \text{on } \Omega \times [0, \infty).
\end{align*}
\] (2.21)

In addition, it holds that
\[
\frac{1}{\lambda_n^i} \text{dist}(\xi_n^i, \partial \Omega) \rightarrow \infty \quad \text{and} \quad \frac{\lambda_n^i}{\lambda_n^j} + \frac{1}{\lambda_n^i \lambda_n^j} |\xi_n^i - \xi_n^j|^2 \rightarrow \infty \quad \text{as } n \rightarrow \infty
\] (2.22)
for all \(1 \leq i \neq j \leq m \).

Proof. See \([2] \) and \([32] \) where an analogous conclusion is deduced in the setting of asymptotically hyperbolic manifolds. Since their approach still works for our case, we omit the proof. \(\square \)

Let \(v_0 = \text{tr}|_{\Omega \times [0]} V_0 \) and \(r_n = \text{tr}|_{\Omega \times [0]} R_n \).

Extracting a subsequence of \(\{U_n\}_{n \in \mathbb{N}} \) and reordering the indices if necessary, we may assume that
\[\lambda_n^1 \leq \lambda_n^2 \leq \cdots \leq \lambda_n^m \quad \text{for all } n \in \mathbb{N} \quad \text{and} \quad \xi_n^i \rightarrow \bar{\xi}_n^i \in \bar{\Omega} \quad \text{as } n \rightarrow \infty. \] (2.23)

Using the Kelvin transform and the moving plane argument, Choi \([23, \text{Lemma 4.1}]\) proved that \(\{U_n\}_{n \in \mathbb{N}} \) are uniformly bounded near the boundary \(\partial \Omega \times [0, \infty) \). That is, there exists constants \(\delta > 0 \) and \(C > 0 \) such that
\[\sup_{n \in \mathbb{N}} \sup_{(x,t) \in \Omega \times [0, \infty)} |U_n(x,t)| \leq C. \]
Hence
\[\text{dist}(\xi_n^i, \partial \Omega) \geq \delta \quad \text{for } i = 1, \cdots, m. \] (2.24)

For the restricted fractional Laplacian, we define \(PW_{\lambda, \xi} \) by (2.18) whose second line is replaced with \(PW_{\lambda, \xi} = 0 \) in \(\mathbb{R}^N \setminus \Omega \). Then it is not hard to draw analogous results to Lemma 2.2.(cf. \([43]\)).
and \(2.24\). Besides one can check that \(2.24\) still holds as follows: If the domain \(\Omega\) is strictly convex, we apply the moving plane method with the maximum principle for small domains (given in \([53\text{ Lemma 5.1}]\), getting
\[
\sup_{n \in \mathbb{N}} \sup_{\dist(x, \partial \Omega) < \delta} |u_n(x)| \leq C. \quad (2.25)
\]
In the case that \(\Omega\) does not have the convexity assumption, we first use the conformal invariance of equation (1.1) (refer to \([52\text{ Proposition A.1}]\)) and then employ the moving plane method to obtain \(2.25\). Now combining \(2.20\) and \(2.25\) gives \(2.24\) at once. See \([38\text{ Section 2}]\) to recall the argument used for the local case \(s = 1\).

In the next two sections, further information on blow-up rates \(\{j^i_n\}_{i=1}^m\) and points \(\{x^i_n\}_{i=1}^m\) in the decomposition \(2.20\) will be examined. In what follows, we simply denote \(w_{1,0}\) and \(W_{1,0}\) by \(w\) and \(W\), respectively. Since \(W = W(x, t)\) is radially symmetric in the \(x\)-variable, we will often write \(W(x, t) = W(\rho, t)\) where \(\rho = |x|\). In addition, the operator \((-\Delta)^s\) is understood as the spectral fractional Laplacian (and hence \(\Sigma = \partial \Omega\) in equation (1.1)) in Sections 3, 4 and 5. Consideration on the restricted fractional Laplacian is postponed to Section 6.

3. Moving Sphere Argument and Pointwise Upper Bound

The aim of this section is to obtain a sharp pointwise upper bound of solutions \(U_\varepsilon\) to \(2.5\). To this end, we will employ the method of moving spheres (refer to \([55\text{, 21\text{, 43}]\)).

Proposition 3.1. Let \(\eta > 0\) be any fixed small number. Assume that \(\{M_\varepsilon\}_{\varepsilon > 0}\) is a family of positive numbers such that \(\lim_{\varepsilon \to 0} M_\varepsilon = \infty\) and \(\lim_{\varepsilon \to 0} M_\varepsilon^2 = 1\). If a family \(\{V_\varepsilon\}_{\varepsilon > 0}\) of positive functions which satisfy
\[
\begin{align*}
\div (\varepsilon^{1-2s} \nabla V_\varepsilon) &= 0 \quad \text{in } B^N(0, r_0 M_\varepsilon^{-2s} \varepsilon) \times (0, \infty), \\
\partial_t^\varepsilon V_\varepsilon &= V_\varepsilon^{p-\varepsilon} \quad \text{on } B^N(0, r_0 M_\varepsilon^{-2s} \varepsilon), \\
\|V_\varepsilon\|_{L^\infty(B^N(0, r_0 M_\varepsilon^{-2s} \varepsilon))} &\leq c
\end{align*}
\]
for some \(c > 0\), and
\[
V_\varepsilon \to W \text{ weakly in } D^{1,2}(\mathbb{R}^N_{\varepsilon}; t^{1-2s}) \quad \text{as } \varepsilon \to 0, \quad (3.1)
\]
then there are constants \(C > 0\) and \(0 < \delta_0 < \eta_0\) independent of \(\varepsilon > 0\) such that
\[
V_\varepsilon(z) \leq CW(z) \quad \text{for all } z \in B^{N+1}_\varepsilon(0, \delta_0 M_\varepsilon^{-2s}).
\]

For the proof of the above proposition, we make some remarks.

Remark 3.2. (1) By \(3.1\), \(3.2\) and the Hölder regularity due to Cabre-Sire \([12]\), if a constant \(\zeta_1 > 0\) and a compact set \(K \subset \mathbb{R}^N_{\varepsilon} \setminus \{0\}\) are given, then there exist \(\varepsilon_i > 0\) small and \(\alpha \in (0, 1)\) such that
\[
\|V_\varepsilon - W\|_{C^\alpha(K)} \leq \zeta_1 \quad \text{for } \varepsilon \in (0, \varepsilon_i). \quad (3.3)
\]
(2) For any function \(F\) in \(\mathbb{R}^N_{\varepsilon}\), let \(F^1\) be its Kelvin transform of defined as
\[
F(z) = \left(\frac{\lambda}{|z|}\right)^{N-2s} F(z^1) \quad \text{where } z^1 := \frac{\lambda z}{|z|^2} \in \mathbb{R}^N_{\varepsilon}. \quad (3.4)
\]
If we write \(D^1_\varepsilon = V_\varepsilon - V_\varepsilon^1\), then it holds that
\[
\partial_t^\varepsilon D^1_\varepsilon = V_\varepsilon^{p-\varepsilon} - \left(\frac{\lambda}{|z|}\right)^{(N-2s)p-\varepsilon} \geq V_\varepsilon^{p-\varepsilon} - (V_\varepsilon^1)^{p-\varepsilon} = \xi_\varepsilon(x) D^1_\varepsilon \quad \text{for } |x| \geq \lambda \text{ and } t = 0
\]
where
\[
\xi_\varepsilon(x) = \begin{cases}
\frac{V_\varepsilon^{p-\varepsilon} - (V_\varepsilon^1)^{p-\varepsilon}}{(V_\varepsilon - V_\varepsilon^1)(x, 0)} & \text{if } V_\varepsilon(x, 0) \neq V_\varepsilon^1(x, 0), \\
\frac{(p-\varepsilon)(V_\varepsilon^{p-\varepsilon})^{-1}(x, 0)}{V_\varepsilon - V_\varepsilon^1(x, 0)} & \text{if } V_\varepsilon(x, 0) = V_\varepsilon^1(x, 0).
\end{cases}
\]
(3) For each $R > 0$, let us introduce Green’s function G^R of the spectral fractional Laplacian $(-\Delta)^s$ in $\Omega = B^N(0, R)$ with zero Dirichlet boundary condition and Green’s function G^R_C of equation (2.8) in the cylinder $C = B^N(0, R) \times (0, \infty)$. By the scaling invariance, we have

$$G^R(x, y) = \frac{1}{RN^{-2s}}G^1\left(\frac{x}{R}, \frac{y}{R}\right) \quad \text{for } x, y \in B^N(0, R)$$

and

$$G^R_C((x, t), y) = \frac{1}{RN^{-2s}}G^1_C\left(\left(\frac{x}{R}, \frac{t}{R}\right), \frac{y}{R}\right) \quad \text{for } x, y \in B^N(0, R) \text{ and } t > 0. $$

Thus we can decompose Green’s function in $B^N(0, R)$ into its singular part and regular part as follows:

$$G^R_C((x, t), y) = \frac{\gamma_{N,s}}{|(x - y, t)|^{N-2s}} - \frac{1}{RN^{-2s}}H^1_C\left(\left(\frac{x}{R}, \frac{t}{R}\right), \frac{y}{R}\right) \quad \text{for } x, y \in B^N(0, R), \ t > 0. \quad (3.5)$$

The precise value of the normalizing constant γ_n is given in Notations.

As a preliminary step, we prove the minimum of V_ϵ on any half-sphere $\{z \in \mathbb{R}^{N+1}_+: |z| = r \}$ is controlled by the value $W(r, 0)$ whenever r is at most of order M_N^2 and $\epsilon > 0$ is small enough.

Lemma 3.3. Let $\{V_\epsilon\}_{\epsilon > 0}$ be the family in the statement of Proposition 3.1. Then, for any $\hat{z}_2 > 0$, there exist small constants $\delta_1 \in (0, r_0)$ and $\epsilon_2 > 0$ such that

$$\min_{\{z \in \mathbb{R}^{N+1}_+: |z| = r\}} V_\epsilon(z) \leq (1 + \hat{z}_2)W(r, 0) \quad \text{for any } 0 < r \leq \delta_1 M_N^{\frac{2s}{s-1}} \text{ and } \epsilon \in (0, \epsilon_2). \quad (3.6)$$

Proof. The proof is divided into 3 steps.

Step 1. We assert that for any parameter $0 < \lambda < 1$, there exists a large number $R = R(\lambda) > 0$ such that

$$W - W_{\lambda, 0}(z) > 0 \quad \text{for } \lambda < |z| \leq R. \quad (3.7)$$

A direct computation with (2.14) shows that $w^\lambda(x) = w_{\lambda, 0}(x)$ for any $\lambda > 0$ and $x \in \mathbb{R}^N$. By [31, Proposition 2.6] and the uniqueness of the s-harmonic extension, it follows that $W^\lambda = W_{\lambda, 0}$ in \mathbb{R}^{N+1}_+. Hence (3.4) and (3.1) imply that

$$\begin{cases}
\text{div}(t^{1-2s} \nabla (W - W_{\lambda, 0})) = 0 & \text{in } \mathbb{R}^{N+1}_+,
(W - W_{\lambda, 0})(z) = (W - W^\lambda)(z) = 0 & \text{on } |z| = \lambda \text{ and } t > 0,
(W - W_{\lambda, 0})(z) > 0 & \text{on } |z| = R \text{ and } t > 0,
(W - W_{\lambda, 0})(x, 0) > 0 & \text{on } \lambda < |x| \leq R
\end{cases}$$

for some $R > 0$ large. Now the (classical) strong maximum principle justifies our claim (3.7).

We also notice that

$$W(x, t) \leq w(x) \leq w(0) = \alpha_{N,s} \quad \text{for } (x, t) \in \mathbb{R}^{N+1}_+ \quad (3.8)$$

where $\alpha_{N,s} > 0$ is given in Notations.

Step 2. From the definition (3.4) we have

$$V_\epsilon^\lambda(z) = \left(\frac{\lambda}{|z|}\right)^{N-2s}V_\epsilon(z) \quad (3.9)$$

By (3.3) and (3.8), there are values $\eta_1 > 0$ small and $R_0 > 0$ large such that

$$V_\epsilon^\lambda(z) \leq \left(1 + \frac{\hat{z}_2}{4}\right)\alpha_{N,s}|z|^{-(N-2s)} \quad \text{for any } 0 < \lambda < 1 + \eta_1 \text{ and } |z| \leq R_0, \quad (3.10)$$

provided $\epsilon > 0$ small enough. Let us take $\lambda_1 = 1 - \eta_1$ and $\lambda_2 = 1 + \eta_1$. Thanks to estimates (3.3) and (3.7), it is possible to select numbers $\eta_2 > 0$ small and $R_1 > R_0$ large such that

$$\begin{cases}
D_{\lambda_1}^\epsilon(z) = V_\epsilon(z) - V_\epsilon^\lambda(z) > 0 & \text{for } \lambda_1 < |z| \leq R_1,
V_\epsilon^\lambda(z) \leq (1 - 2\eta_2)\alpha_{N,s}|z|^{-(N-2s)} & \text{for } |z| \geq R_1
\end{cases} \quad (3.11)$$

and
\[\int_{B^N(0;R_1)} V_0^{\rho'}(x,0) \, dx \geq \left(1 - \frac{\eta_2}{2}\right) \int_{\mathbb{R}^N} w^\gamma(x) \, dx \] (3.12)
for any sufficiently small \(\epsilon > 0 \).

Furthermore, we also have
\[V_\epsilon(z) \geq (1 - \eta_2) a_{N,s} |z|^{-(N-2s)} \quad \text{for} \quad R_1 \leq |z| \leq \delta_1 M_0^{\frac{2}{N-2s}} \] (3.13)
if \(\delta_1 > 0 \) is small enough. To verify it, let us choose a function \(\hat{v} \) which solves
\[(-\Delta)^s \hat{v}_\epsilon = V_\epsilon^{\rho'}(\cdot,0) \quad \text{in} \quad B^N(0,r_0 M_0^{\frac{2}{N-2s}}) \quad \text{and} \quad \hat{v}_\epsilon = 0 \quad \text{on} \quad \partial B^N(0,r_0 M_0^{\frac{2}{N-2s}}), \]
and denote by \(\hat{V}_\epsilon \) its \(s \)-harmonic extension to the cylinder \(B^N(0,r_0 M_0^{\frac{2}{N-2s}}) \times (0,\infty) \). Then the comparison principle [25, Lemma 2.1] tells us that \(V_\epsilon \geq \hat{V}_\epsilon \). Since \(H^1_C((z,y) \in \mathbb{R}^{N+1} \times \mathbb{R}^N : |z|, |y| \leq 1/2) \), we obtain
\[H^1_C((x,t),y) \leq \frac{\eta_2}{4} \cdot \frac{\gamma_{N,s}}{|(x,y,t)|^{N-2s}} \quad \text{for} \quad |(x,t)|, |y| \leq \frac{\delta_1}{r_0} \] (3.14)
by making \(\delta_1 \in (0, r_0) \) smaller if necessary. Moreover, because
\[|(x,y,t)| \leq \left(1 - \frac{1}{2}\right) |(x,t)| \quad \text{for} \quad |(x,t)| \geq lR_1 \quad \text{and} \quad |y| \leq R_1 \]
given any large \(l > 1 \), we see from (3.5), (3.12) and (3.14) that
\[\hat{V}_\epsilon(x,t) = \int_{B^N(0,r_0 M_0^{\frac{2}{N-2s}})} V_\epsilon^{\rho'}(y,0) \mathcal{E}^{r_0 M_0^{\frac{2}{N-2s}}}((x,t),y) \, dy \]
\[\geq \left(1 - \frac{\eta_2}{2}\right) \int_{B^N(0,r_0 M_0^{\frac{2}{N-2s}})} V_\epsilon^{\rho'}(y,0) \frac{\gamma_{N,s}}{|(x,y,t)|^{N-2s}} \, dy \]
\[\geq (1 - \eta_2) \left(\int_{\mathbb{R}^N} w^\gamma(y) \, dy\right) \frac{\gamma_{N,s}}{|(x,t)|^{N-2s}} \] (3.15)
\[\geq (1 - \eta_2) \frac{\alpha_{N,s}}{|(x,t)|^{N-2s}} \quad \text{for} \quad lR_1 \leq |(x,t)| \leq \delta_1 M_0^{\frac{2}{N-2s}} \]
by choosing \(l \) large enough. If \(R_1 \leq |z| \leq lR_1 \), we have \(V_\epsilon(z) \geq (1 - \eta_2) a_{N,s} |z|^{-(N-2s)} \) for \(\epsilon > 0 \) small, for \(V_\epsilon \) converges to \(W \) uniformly over a compact set. This shows the validity of (3.14).

Step 3. Suppose that (3.6) does not hold with \(\delta_1 > 0 \) chosen in the previous step. Then
\[\min_{|z| \in \mathbb{R}^{N+1} : |z| = \rho_k} V_\epsilon(z) > (1 + \zeta_2)W(r_k,0) \]
for some sequences \(\{\epsilon_k\}_{k \in \mathbb{N}} \) and \(\{r_k\}_{k \in \mathbb{N}} \) of positive numbers such that \(\epsilon_k \to 0 \) and \(r_k \in (0, \delta_1 M_0^{\frac{2}{N-2s}}) \). Because of (3.2), it should hold that \(r_k \to \infty \). Thus Lemma [8,1] implies
\[\min_{|z| \in \mathbb{R}^{N+1} : |z| = \rho_k} V_k(z) \geq \left(1 + \frac{\epsilon_k}{2}\right) a_{N,s} r_k^{-(N-2s)} \] (3.16)
where \(V_k := V_{\rho_k} \).

Now we employ the method of moving spheres to the function \(D_k^l \) (see Remark [3,2] (2) for its definition). For any \(k \in \mathbb{N} \) and \(\mu \in [\lambda_1, \lambda_2] \), let
\[\Sigma_k^\mu = \left\{ x \in \mathbb{R}^{N+1} : \mu < |z| < r_k \right\} \]
and define a number $\bar{\lambda}_k$ by

$$\bar{\lambda}_k = \sup \left\{ \lambda \in [\lambda_1, \lambda_2] : D_k^\mu(z) \geq 0 \text{ for all } \lambda_1 \leq \mu \leq \lambda \right\}. $$

By (3.11) and (3.13), we see that $\bar{\lambda}_k \geq \lambda_1$. We shall show that $\bar{\lambda}_k = \lambda_2$ for sufficiently large $k \in \mathbb{N}$.

To the contrary, assume that $\bar{\lambda}_k < \lambda_2$ for some large fixed index $k \in \mathbb{N}$. By continuity it holds that $D_k^{\bar{\lambda}} \geq 0$ in $\Sigma_k^{\bar{\lambda}}$. Moreover, from (3.16) and (3.10), we have $D_k^{\bar{\lambda}} > 0$ on $|z| \in R_+^{N+1} : |z| = r_k$, which implies that $D_k^{\bar{\lambda}} \neq 0$ in $\Sigma_k^{\bar{\lambda}}$. Thus it holds that $D_k^{\bar{\lambda}} > 0$ in $\Sigma_k^{\bar{\lambda}}$ thanks to the strong maximum principle. Pick $\delta > 0$ so that the maximum principle for domains with small volume [31 Lem. 2.8] can be applied. If we choose a compact set $K \subset \Sigma_k^{\bar{\lambda}}$ such that $|\Sigma_k^{\bar{\lambda}} \setminus K| < \delta$, then

$$\inf_K D_k^{\bar{\lambda}} > 0,$$

and we see from $[31, \text{Lemma 2.8}]$ that $D_k^{\bar{\lambda}} \geq 0$ in $\Sigma_k^{\bar{\lambda}}$, we get

$$W(z) \geq W^{\bar{\lambda}}(z) \text{ in } |z| \geq \lambda_2.$$However it is impossible since $\lambda_2 > 1$. Therefore (3.6) should be true.

We now complete the proof of Proposition 3.1.

Lemma 3.4. Let $\{V_\epsilon \}_{\epsilon > 0}$ be the family in the statement of Proposition 3.7 and $\delta_1 > 0$ the number selected in the proof of the previous lemma. Then there exist a constant $C > 0$ and small parameter $\delta_0 \in (0, \delta_1)$ such that

$$V_\epsilon(z) \leq CW(z) \quad \text{for all } z \in B_+^{N+1}(0, \delta_0 M_\epsilon^{-2s})$$

provided that $\epsilon > 0$ is sufficiently small.

Proof. By virtue of Lemmas 3.3 and [41] we have a point $z_0 = (x_0, t_0) \in \mathbb{R}_+^{N+1}$ such that $|z_0| = \delta_2 M_\epsilon^{-2s}$ and

$$V_\epsilon(z_0) \leq (1 + \zeta_2)W(|z_0|, 0) \leq (1 + 2\zeta_2)\kappa_{N,s}|z_0|^{(N-2s)}$$

for any small $\delta_2 \in (0, \delta_1)$. Let G_ϵ^* be Green’s function of (2.8) in the semi-infinite cylinder $C = B(0, \delta_1 M_\epsilon^{-2s}) \times (0, \infty)$ (refer to Remark 3.2 (3)). Then we are able to choose a constant $\delta_3 \in (0, \delta_2)$ so small that

$$V_\epsilon(z_0) \geq \int_{B(0, \delta_3 M_\epsilon^{-2s})} V_\epsilon^{p-\epsilon}(y,0) G_\epsilon^*(z_0,y) \, dy$$

as in (3.15). Combining the above two estimates with (3.12), we obtain

$$\int_{B(0, \delta_3 M_\epsilon^{-2s}) \setminus B(0, R_1)} V_\epsilon^{p-\epsilon}(y,0) \, dy \leq C\zeta_2. \quad (3.17)$$

Since V_ϵ is uniformly bounded, we observe from (3.17) that

$$\int_{B(0, \delta_3 M_\epsilon^{-2s}) \setminus B(0, R_1)} V_\epsilon^{p+\epsilon}(y,0) \, dy \leq C\zeta_2. \quad (3.18)$$

Now let us define $V_{r,\epsilon}(z) = r^{-\frac{2}{N-2s}}V_\epsilon(rz)$ on the half-annulus $\{z \in \mathbb{R}_+^{N+1} : 1/2 \leq |z| \leq 2 \}$ for each $2R_1 \leq r \leq \delta_3 M_\epsilon^{-2s}/2$ and $\epsilon > 0$ small. Then one can apply the Moser iteration method with (3.18).
Corollary 3.5. More precisely, we first show that
\[\sup_{z \in \mathbb{R}^{N+1}: 3/4 \leq |z| \leq 3/2} V_{r,\epsilon}(z) \leq C \inf_{z \in \mathbb{R}^{N+1}: 3/4 \leq |z| \leq 3/2} V_{r,\epsilon}(z) \]
where \(C > 0 \) is a universal constant. This inequality with Lemma 3.3 and (3.3) concludes the proof of the lemma (giving \(\delta_0 = 3\delta_3/4 \)).

The following assertion is an immediate consequence of Proposition 3.1.

Lemma 4.1. Recall from (2.20), (2.23) and (2.24) that
\[\int_{\Omega} \nabla U \cdot \nabla \nabla U dx = \kappa \int_{\Omega} (1-2s) \nabla U \cdot \nabla \nabla U dx = \int_{\Omega} u_n \cdot u_n^p dx. \]
(4.2)

4. Application of the Pointwise Upper Estimate

In this section, we gather refined information on finite energy solutions \(U_\epsilon \) to equation (2.5). More precisely, we first show that \(V_0 \) vanishes identically if \(m \neq 0 \) in (2.20). Then we prove that any two different blow-up points do not collide and blow-up rates of each bubbles are compatible to the others. Finally, we get sharp pointwise upper bounds of \(U_\epsilon \) over the whole cylinder \(C \), and deduce that a suitable \(L^{\infty} \)-normalization of \(U_\epsilon \) converges to a certain function as \(\epsilon \searrow 0 \), which can be described as a combination of Green’s function.

Recall from (2.20), (2.23) and (2.24) that
\[U_n = V_0 + \sum_{i=1}^{m} PW_{\lambda_n, x_n} + R_n \quad \text{in } C' \]
and \(x_n = \lim_{n \to \infty} x_n \in \Omega \) for each \(i = 1, \cdots, m \). We also remind with (2.22) that the concentration rate \(\lambda_n \) on each blow-up part tends to 0 as \(n \to \infty \). The next lemma ensures that this convergence is not too fast.

Lemma 4.1. Let \((U_n)_{n \in \mathbb{N}} \) be a sequence of solutions to (2.5) with \(\epsilon = \epsilon_n \searrow 0 \), which admits a decomposition of the form (4.1). Then we have \(\lim_{n \to \infty} (\lambda_n)^{\nu n} = 1 \) for each \(1 \leq i \leq m \).

Proof. Fix any \(i \in \{1, \cdots, m\} \). Multiplying (2.5) by \(PW_{\lambda_n, x_n} \), integrating by parts and using (2.16), we get the equality
\[\int_{\Omega} u_n^{p-\epsilon_n} PW_{\lambda_n, x_n} dx = \kappa \int_{\Omega} (1-2s) \nabla U_n \cdot \nabla PW_{\lambda_n, x_n} dx + \int_{\Omega} u_n u_n^p dx. \]
(4.2)

Let us estimate the leftmost and rightmost sides of (4.2). By making use of (4.1), (2.22), the mean value theorem, and the fact that \(v_0 \) is bounded on \(\Omega \times \{0\} \) and \(\lim_{n \to \infty} \|R_n\|_{H^{1/2}(\Omega^{1-2s})} = 0 \), we obtain
\[\int_{\Omega} \left| u_n^{p-\epsilon_n} - (PW_{\lambda_n, x_n})^{p-\epsilon_n} \right| PW_{\lambda_n, x_n} dx \]
\[\leq C \int_{\Omega} \sum_{j \neq i} PW_{\lambda_n, x_n} + v_0 + r_n \left(\sum_{j=1}^{m} (PW_{\lambda_n, x_n})^{p-1-\epsilon_n} + |v_0|^{p-1-\epsilon_n} + |r_n|^{p-1-\epsilon_n} \right) PW_{\lambda_n, x_n} dx = o(1). \]
Hence it holds
\[
\int_{\Omega} u_n^{p-\epsilon_n} Pw_{\lambda_n^1} \, dx = \int_{\Omega} (Pw_{\lambda_n^1})^{p+1-\epsilon_n} \, dx + o(1).
\]
(4.3)
Moreover, it is easy to check that
\[
\int_{\Omega} (Pw_{\lambda_n^1})^{p+1-\epsilon_n} \, dx = (\lambda_n^1)^{-(\frac{\alpha}{n})} \int_{\Omega_{\lambda_n^1,0}} (Pw_{1,0})^{p+1-\epsilon_n} \, dx
\]
\[
= (\lambda_n^1)^{-(\frac{\alpha}{n})} \left(\int_{\mathbb{R}^N} w^{p+1} \, dx + o(1) \right).
\]
(4.4)
Similarly, one may show that
\[
\int_{\Omega} u_n w^{p_\eta} \, dx = \int_{\mathbb{R}^N} w^{p+1} \, dx + o(1).
\]
(4.5)
Inserting (4.3), (4.4) and (4.5) into (4.2), we conclude that \(\lim_{n \to \infty} (\lambda_n^1)^{\eta} = 1 \). The lemma is proved. \(\square \)

In the following, we give the proof of several claims stated in the beginning of this section, applying the previous lemma.

Lemma 4.2. Let \(\{U_n\}_{n \in \mathbb{N}} \) be a sequence of solutions of (2.5) with \(\varepsilon = \epsilon_n \) which admits an asymptotic behavior \((1.1)\). Suppose that there exists at least one bubble in \((4.1)\), i.e., \(m \neq 0 \). Then \(V_0 \equiv 0 \).

Proof. Firstly, we aim to show that
\[
U_n(z) \leq C(\lambda_n^1)^{-\frac{\alpha}{n-1}}
\]
uniformly for any \(z \in C \) and \(n \in \mathbb{N} \). (4.6)
To do so, we consider the function \(\tilde{U}_n(z) := (\lambda_n^1)^{\frac{\alpha}{n-1}} U_n(\lambda_n^1 z) \) defined in \(C_n := (\lambda_n^1)^{-1} C \). One can easily observe that it satisfies
\[
\begin{align*}
\text{div}(t^{1-2\alpha} \nabla \tilde{U}_n) &= 0 \quad \text{in } C_n, \\
\tilde{U}_n &= 0 \quad \text{on } \partial C_n, \\
\partial_t \tilde{U}_n &= (\lambda_n^1)^{\frac{\alpha}{n-1}} U_n^{p-\epsilon_n} \quad \text{on } \Omega_n \times [0)
\end{align*}
\]
where \(\Omega_n := (\lambda_n^1)^{-1} \Omega \). Also it is plain to check
\[
\sup_{n \in \mathbb{N}} \int_{C_n} t^{1-2\alpha} |\nabla \tilde{U}_n(x,t)|^2 \, dx \, dt < C \quad \text{and} \quad \sup_{n \in \mathbb{N}} \int_{\Omega_n} |\tilde{U}_n(x,0)|^{\frac{2\alpha}{\alpha-2}} \, dx < C.
\]
(4.7)
Owing to Hölder’s inequality, it holds that
\[
\sup_{n \in \mathbb{N}} \int_{B^{N,1}(y, r_0) \cap \Omega_n} |\tilde{U}_n(x,0)|^2 \, dx < C
\]
for any \(y \in \Omega_n \) and a small value \(r_0 > 0 \) to be fixed soon. Combining this with the first estimate of (4.7) yields
\[
\sup_{n \in \mathbb{N}} \int_{B^{N,1}(y, r_0) \cap C_n} t^{1-2\alpha} |\tilde{U}_n(x,t)|^2 \, dx \, dt < C
\]
(4.8)
(see the proof of [24, Lemma 3.1]). Let \(\delta > 0 \) be the number in Lemma [23]. Then, from (2.24), (4.1) and the fact that
\[
\lim_{n \to \infty} \int_{\Omega_n} \left| (\lambda_n^1)^{-\frac{\alpha}{n-1}} R_n(\lambda_n^1 x,0) \right|^{\frac{2\alpha}{\alpha-2}} \, dx = 0,
\]
it is possible to choose \(r_0 > 0 \) small enough so that
\[
\sup_{n \in \mathbb{N}} \int_{B^{N,1}(y, r_0) \cap \Omega_n} |\tilde{U}_n(x,0)|^{\frac{2\alpha}{\alpha-2}} \, dx < \delta.
\]
Therefore, by invoking Lemma 3.1 with \(a = (\lambda_n^1)^{(N-2)/2} \), we may conclude that
\[
\sup_{n \in \mathbb{N}} \left\| \tilde{U}_n \right\|_{L^n(B^{N_0}(\gamma_0, v_0/2) \cap \Omega)} \leq C \sup_{n \in \mathbb{N}} \int_{B^{N_1}((\gamma_0, 0) \cap C_{n})} t^{1-2f} \left| \tilde{U}_n(x, t) \right|^2 \, dx \, dt \leq C
\]
where the last inequality is due to (4.8). Since \(y \in \Omega_n \) is chosen arbitrarily and \(\tilde{U}_n \) attains its maximum on \(\Omega_n \times \{0\} \), it follows
\[
\sup_{n \in \mathbb{N}} \sup_{(x, t) \in C_{n}} \tilde{U}_n(x, t) = \sup_{n \in \mathbb{N}} \tilde{U}_n \left(x, 0 \right) \leq C.
\]
This proves (4.6).

Now, by virtue of (4.6), Corollary 3.5 and Lemma 4.1 we obtain
\[
U_n(z) \leq C(\lambda_n^1)^{(N-2)/2} W\left(\frac{z - (x_0^1, 0)}{\lambda_n^1} \right) \quad \text{for all } z \in B^{N_1+1}((x_0^1, 0), \delta_0),
\]
which implies
\[
\lim_{n \to \infty} U_n(z) = 0 \quad \text{for any } z \in B^{N_1+1}((x_0^1, 0), \delta_0/2) \setminus \{(x_0^1, 0)\}.
\]
Since \(R_n(\cdot, 0) \to 0 \) in \(L^{N\epsilon\infty}(\Omega) \), there exists a point \(x' \in B^N(x_0^1, \delta_0/2) \setminus \{x_0^1, \ldots, x_m^1\} \) such that \(\lim_{n \to \infty} R_n(x', 0) = 0 \). Furthermore, we know from (4.1) that \(U_n(x, 0) \geq V_0(x, 0) + R_n(x, 0) \) for all \(x \in \Omega \), so it should hold that \(V_0(x', 0) = 0 \).

On the other hand, each \(U_n \) and its weak limit \(V_0 \) are nonnegative in \(C \). Therefore one concludes from the strong maximum principle that \(V_0 \equiv 0 \).

In Lemmas 4.3, 4.6 we are mainly interested in the case \(m \neq 0 \). In this case, solutions \(U_n \) to (2.5) with the asymptotic behavior (4.1) can be rewritten in the form
\[
U_n = \sum_{i=1}^{m} PW_{\lambda_n^i, x_i^0} + R_n \quad \text{in } C'
\]
where \(\lim_{n \to \infty} \| R_n \|_{H^1(\Omega)} = 0 \).

Lemma 4.3. Assume that a sequence \(\{U_n\}_{n \in \mathbb{N}} \) of solutions to (2.5) with \(\epsilon = \epsilon_n \) has the asymptotic behavior given by Lemma 2.2 with \(m \geq 1 \). Then there exists a constant \(d_0 > 0 \) such that
\[
|a_i^0 - a_j^0| \geq d_0 \quad \text{for any } 1 \leq i < j \leq m.
\]

Proof. Assume that two different blow-up points converge to the same point \(x' \in \Omega \). By (2.22) and (2.23), one of the following holds:

1. \(\lim_{n \to \infty} \frac{\lambda_n^i}{\lambda_n^j} = 0 \) or
2. \(\lim_{n \to \infty} \frac{|a_i^0 - a_j^0|}{\lambda_n^i \lambda_n^j} = \infty. \)

Suppose that (1) holds. Then by (2.23) it should be true that
\[
\lim_{n \to \infty} \frac{\lambda_n^1}{\lambda_n^m} = 0.
\]

We shall prove that it cannot happen. By Corollary 3.5 we have an upper bound (4.9). Furthermore, we can find a lower bound
\[
U_n(z) \geq C(\lambda_n^m)^{(N-2)/2} \quad \text{for all } z \in B^{N+1}_+(x', 0), \delta_0)
\]
where \(\delta_0 > 0 \) is a number in (4.9) (taken smaller if required). Indeed, by (2.19), (2.20), (2.22) and Lemma 4.2 we have
\[
(\lambda_n^m)^{(N-2)/2} u_n(\lambda_n^m y + x_n^m) \to u(y) \quad \text{for a.e. } y \in \mathbb{R}^N.
\]
Thus Green’s representation formula, Fatou’s lemma and Lemma 4.1 show
\[
U_n(z) \geq \int_{B^+((x_0', \delta_0))} G_C(z, x) u_n^{p-\epsilon_n}(x) \, dx \geq C \int_{B^+((x_0', \delta_0))} u_n^{p-\epsilon_n}(x) \, dx \\
= C(\lambda_n^m)^{N-2s/(1+\epsilon_n)} \int_{B^N(0, \delta_0/\alpha)} (\lambda_n^m)^{N-2s} u_n (x_n^m y + x_n^m) \, dy \\
\geq C \left(\int_{\mathbb{R}^N} u^p(y) \, dy + o(1) \right) (\lambda_n^m)^{N-2s},
\]
which confirms (4.13). Now fixing any point \(z^+ \in \mathbb{R}^{N+1}_+ \) such that \(|z^+ - (x', 0)| = \delta_0/2 \) and putting it into (4.9) and (4.13), we discover that \((\lambda_n^m)^{N-2s} \leq C(\lambda_n^m)^{N-2s} \) for some \(C > 0 \), contradicting (4.12). Therefore (1) is false and we may assume that
\[
\lim_{n \to \infty} \frac{\lambda'_n}{\lambda_n} = c_0 \quad \text{for some } c_0 \in (0, 1].
\]

Assume that (2) is true. Owing to (4.15), inequality (4.6) can be written as
\[
U_n(z) \leq C(\lambda_n^m)^{N-2s} \leq C(\lambda_n^m)^{N-2s} \quad \text{for } z \in C \text{ and } n \in \mathbb{N}.
\]

Hence we infer from elliptic regularity and Corollary 3.5 that
\[
(\lambda_n^m)^{N-2s} u_n (x_n^m \cdot + x_n^m) \to w \quad \text{in } C^\alpha(\mathbb{R}^N) \text{ for some } \alpha \in (0, 1)
\]
and
\[
U_n(z) \leq C(\lambda_n^m)^{N-2s} W \left(\frac{z - (x_0^m, 0)}{\lambda_n^m} \right) + \left(\frac{x_n^m - x_n^m, 0}{\lambda_n^m} \right) \to o(1) \cdot \left(\lambda_n^m \right)^{N-2s}
\]
for all \(z \in B^{N+1}_+((x', 0), \delta_0/2) \) and large \(n \in \mathbb{N} \). Since \(\lim_{n \to \infty} |x_n^m - x_n^m|/\lambda_n^m = \infty \) holds because of (2.23), if we take \(z = (x_n^m, 0) \) in inequality (4.17) and use (4.16), then we get
\[
C(\lambda_n^m)^{N-2s} \leq u_n(x_n^m) \leq C(\lambda_n^m)^{N-2s} w \left(\frac{x_n^m - x_n^m}{\lambda_n^m} \right) = o(1) \cdot (\lambda_n^m)^{N-2s}
\]
provided \(n \in \mathbb{N} \) large. However, this is absurd as (4.15) holds, and so (2) does not hold either.

Summing up, every possible case is excluded if two blow-up points tend to the same point. Accordingly, (4.11) has the validity. \(\square \)

In the following lemma, we study the behavior of solutions \(u_n \) to (1.1) outside the blow-up points \(\{x_0^m, \ldots, x_0^m\} \). We set
\[
A_r = \Omega \setminus \bigcup_{i=1}^m B^N(x_0^m, r) \quad \text{for any } r > 0.
\]

Lemma 4.4. Suppose that \(\{U_n\}_{n \in \mathbb{N}} \) is a family of solutions for (2.5) with \(\epsilon = \epsilon_n \) satisfying the asymptotic behavior (4.10). Then for any small \(r > 0 \), we have \(u_n(x) = O((\lambda_n^m)^{N-2s}) \) uniformly for \(x \in A_r \).

Proof. Let \(a_n = u_n^{p-1-\epsilon_n} \) so that \(\partial_t^+ U_n = a_n u_n \) in \(\Omega \times \{0\} \). Then we see from (1.4) that
\[
\|a_n\|_{L^2(A_r)} \leq C \sum_{i=1}^m \|w_i x_n^m\|_{L^{p-1-\epsilon_n}}\|w_i\|_{L^{p-1-\epsilon_n}(B^N(x_0^m, r/4))} + \|R_n\|_{H_0^1(\mathbb{R}^N \setminus B^N(x_0^m, r))} = o(1).
\]
Therefore we can proceed the Moser iteration argument to get \(\|a_n\|_{L^2(A_r)} = o(1) \) for some \(q > \frac{N}{2s} \), and it further leads to \(\|u_n\|_{L^q(A_r)} = o(1) \) (see Section 3 in [2.5]).

Assume that \(r \in (0, \min\{d_0, d_0/2\}) \) where \(d_0 > 0 \) and \(d_0 \) are the numbers picked up in Corollary 3.5 and Lemma 4.3 respectively. Then the argument used to derive (4.6) with Lemma 4.3 deduces
\[
U_n(x, t) \leq C(\lambda_n^m)^{N-2s} \quad \text{for } |x - x_0^m| \leq r \text{ and } t \geq 0
\]
so that Corollary 3.5 implies
\[u_n(x) \leq C(x_n)^{-\frac{N}{n-2}} u \left(\frac{x - x_n}{\lambda_n} \right) \leq C(x_n)^{-\frac{N}{n-2}} \text{ for } \frac{r}{2} \leq |x - x_n| \leq r \]
where \(i = 1, \cdots, m \). By Green’s representation formula, one may write
\[
u_n(x) = \int_{A_{i/2}} G(x, y) u_n^{p - \epsilon_n}(y) dy + \sum_{i=1}^{m} \int_{B^N(x_n, r/2)} G(x, y) u_n^{p - \epsilon_n}(y) dy.
\]
If we set \(b_n = |u_n|_{L^p(A_{i/2})} \), then we observe with assumption (2.23) that
\[
\int_{A_{i/2}} G(x, y) u_n^{p - \epsilon_n}(y) dy \leq \int_{A_{i/2}} G(x, y) \left(b_n^{p - \epsilon_n} + \max \{ \lambda_n, \cdots, \lambda_m \}^{\frac{N}{n-2}} (p - \epsilon_n) \right) dy
\]
for any \(x \in A_i \). Besides, Corollary 3.5 and Lemma 4.1 give us that
\[
\int_{B^N(x_n, r/2)} G(x, y) u_n^{p - \epsilon_n}(y) dy \leq C(b_n^{p - \epsilon_n})
\]
for all \(x \in A_i \) and each \(i = 1, \cdots, m \). Hence, by combining (4.19) and (4.20), we get
\[
b_n \leq C(b_n^{p - \epsilon_n} + (\lambda_n^{p - \epsilon_n})^{\frac{N}{n-2}}).
\]
Since we have \(p - \epsilon_n > 1 \) and \(b_n = o(1) \), the above inequality implies that \(b_n \leq C(\lambda_n^{p - \epsilon_n})^{\frac{N}{n-2}} \). The lemma is proved.

We prove the compatibility of the blow-up rates \(\{\lambda_n^1, \cdots, \lambda_n^m\} \).

Lemma 4.5. There exists a constant \(C_0 > 0 \) independent of \(n \in \mathbb{N} \) such that
\[
\frac{\lambda_n^i}{\lambda_n^j} \leq C_0 \text{ for any } 1 \leq i, j \leq m.
\]

Proof. As in (4.14), it can be verified that \(u_n(x) \geq C(x_n)^{-\frac{N}{n-2}} \) in \(\bigcup_{i=1}^{m} B^N(x_n, r) \) for each \(i = 1, \cdots, m \). As a matter of fact, it is possible to substitute \(x_n^i \) and \(\lambda_n^i \) in (4.14) with \(x_n^i \) and \(\lambda_n^i \), respectively.

On the other hand, we know from Lemma 4.4 that \(u_n(x) \leq C(\lambda_n^{p - \epsilon_n})^{\frac{N}{n-2}} \) for \(x \in B^N(x_n^i, r/2) \). Thus we have \((\lambda_n^i)^{\frac{N}{n-2}} \leq C(\lambda_n^{p - \epsilon_n})^{\frac{N}{n-2}} \) for any \(1 \leq i, j \leq m \). The proof is done.

As in the statement of Theorem 1.1 we set \(b_i = \lim_{n \to \infty} \left(\frac{\lambda_n^i}{\lambda_n^j} \right)^{\frac{N}{n-2}} \in (0, \infty) \) for any \(i = 1, \cdots, m \).

Lemma 4.6. Suppose that \(\{U_n\}_{n \in \mathbb{N}} \) is a sequence of solutions to equation (2.3) with \(\epsilon = \epsilon_n \) which admit the asymptotic behavior (4.10). Then it holds
\[
\lim_{n \to \infty} (\lambda_n^i)^{-\frac{N}{n-2}} U_n(x, t) = c_1 \sum_{i=1}^{m} b_i \nabla x^i G_C((x, t), x_n^i)
\]
in \(C^0(C \setminus \{x_0^1, 0, \cdots, (x_0^m, 0)\}) \). Furthermore, we have
\[
\lim_{n \to \infty} (\lambda_n^i)^{-\frac{N}{n-2}} \nabla x^i U_n(x, t) = c_1 \sum_{i=1}^{m} b_i \nabla x^i \nabla x^i G_C((x, t), x_n^i)
\]
for $1 \leq k \leq 2$ and

$$\lim_{n \to \infty} (\lambda_n)_{k+\frac{N-2s}{2}} l^{-2s} \partial_i^l \partial_j^k U_n(x, t) = c_1 \sum_{i=1}^m b_i t^{-2s} \partial_i^l \partial_j G(x, t, x_0)$$

(4.23)

for any pair (k, l) such that $0 \leq k \leq 1$, $1 \leq l \leq 2$ and $1 \leq k + l \leq 2$ in $C^0(\mathbb{R}^N \setminus \{x_0\}, (x_0^m, 0))$.

We remind that $C^t = \Omega \times [0, \infty)$ and $c_1 = \int_{\mathbb{R}^N} w^p(x) \, dx > 0$.

Proof. Take any $r > 0$ small for which Lemma 4.4 holds. We are concerned with the values of $U_n(z)$ for $z \in A' := C^t \setminus \bigcup_{i=1}^m B^N_{\epsilon^i+1}((x_0^i, 0), r)$. Let us look at

$$U_n(z) = \int_{A_{r/2}} G_C(z, y) u_n^{p-r-E}(y) \, dy + \sum_{i=1}^m \int_{B^N_{\epsilon^i+1/2}} G_C(z, y) u_n^{p-r-E}(y) \, dy.$$

(4.24)

Then by the previous lemma we have

$$(\lambda_n)_{k+\frac{N-2s}{2}} \int_{A_{r/2}} G_C(z, y) u_n^{p-r-E}(y) \, dy \leq C (\lambda_n)_{k+\frac{N-2s}{2}} \int_\Omega G_C(z, y) \, dy = o(1).$$

Let us decompose

$$\int_{B^N_{\epsilon^i+1/2}} G_C(z, y) u_n^{p-r-E}(y) \, dy = G_C(z, x_0^i) \int_{B^N_{\epsilon^i+1/2}} u_n^{p-r-E}(y) \, dy + \int_{B^N_{\epsilon^i+1/2}} (G_C(z, y) - G_C(z, x_0^i)) u_n^{p-r-E}(y) \, dy$$

for each $i \in \{1, \ldots, m\}$. Since

$$(\lambda_n)_{k+\frac{N-2s}{2}} u_n \left(x_0^i y + x_0^i \right) \to w(y) \quad \text{weakly in } H^s(\mathbb{R}^N),$$

according to Corollary 3.8 and the Lebesgue dominated convergence theorem, we get

$$(\lambda_n)_{k+\frac{N-2s}{2}} \int_{B^N_{\epsilon^i+1/2}} u_n^{p-r-E}(y) \, dy \to b_i \int_{\mathbb{R}^N} w^p(y) \, dy.$$

Also, employing the mean value theorem, we calculate

$$\left| (\lambda_n)_{k+\frac{N-2s}{2}} \int_{B^N_{\epsilon^i+1/2}} (G_C(z, y) - G_C(z, x_0^i)) u_n^{p-r-E}(y) \, dy \right|$$

$$\leq (\lambda_n)_{k+\frac{N-2s}{2}} \int_{B^N_{\epsilon^i+1/2}} \sup_{z \in A^t, a \in (0, 1)} \| \nabla_y G_C(z, ay + (1-a)x_0) \| \cdot |y - x_0^i| u_n^{p-r-E}(y) \, dy$$

$$\leq C (\lambda_n)_{k+\frac{N-2s}{2}} r^{1-s} \int_{B^N_{\epsilon^i+1/2}} |y - x_0^i|^s u_n^{p-r-E}(y) \, dy$$

$$\leq C b_i r^{1-s} \left[(\lambda_n)_{k+\frac{N-2s}{2}} \left(\int_{\mathbb{R}^N} |y|^s w^p(y) \, dy + o(1) \right) + |x_0^i - x_0^i|^s \left(\int_{\mathbb{R}^N} w^p(y) \, dy + o(1) \right) \right] = o(1).$$

Therefore, combining all the computations, we see that (4.21) holds uniformly for $z = (x, t) \in A'$. Since $r > 0$ is arbitrary, it follows that (4.21) is valid in $C^0(\mathbb{R}^N \setminus \{x_0^i, x_0^m\}, (x_0^m, 0))$.

In order to show (4.22) and (4.23), we need some results on elliptic regularity. The proof is deferred to Appendix B. □

Remark 4.7. For the future use, we rewrite (4.21) as

$$\lim_{n \to \infty} (\lambda_n)_{k+\frac{N-2s}{2}} U_n(x, t) = \frac{c_1 b_i}{(x - x_0^i, t)^{N-2s}} + T_i(x, t)$$

(4.25)
for \((x, t) \in C' \setminus \{(x_0^1, 0), \ldots, (x_0^m, 0)\}\) and \(1 \leq i \leq m\). Here \(c_3 := c_1 \gamma_{N, \iota} > 0\) and \(T_i\) is a map defined by
\[
T_i(x, t) = -c_1 b_i H_{C}((x, t), x_0^i) + c_1 \sum_{k \neq i} b_k G_{C}((x, t), x_0^k).
\]
(4.26)

If \(r \in (0, d_0/2)\) where \(d_0 > 0\) is set in Lemma 4.3, then (2.10) and (2.11) imply that the functions \(T_i\), \(\frac{\partial T_i}{\partial x_j}\) and \(z \cdot \nabla T_i\) are \(s\)-harmonic in \(B_{N+1}^N(x_0^i, 0)\), for all \(1 \leq i \leq m\) and \(1 \leq j \leq N\), i.e.,
\[
\begin{align*}
\text{div}(t^{1-2s} \nabla T_i) &= \text{div} \left(t^{1-2s} \nabla \left[\frac{\partial T_i}{\partial x_j} \right] \right) = \text{div} \left(t^{1-2s} \nabla (z \cdot \nabla T_i) \right) = 0 \quad \text{in } B_{N+1}^N(x_0^i, 0), \\
\partial_s T_i &= \partial_s \left(\frac{\partial T_i}{\partial x_j} \right) = \partial_s (z \cdot \nabla T_i) = 0 \quad \text{on } B^N(x_0^i, 0)
\end{align*}
\]
holds.

5. Proof of Main Theorems for the Spectral Fractional Laplacians

This section is devoted to the proof of our main theorems. To get the desired results, we will derive two identities regarding blow-up points and rates by exploiting a type of Green’s identity. For notational simplicity, we use \(z - x_0^i\) to denote \((x - x_0^i, t)\) throughout the section.

As before, let \(\{U_n\}_{n \in \mathbb{N}}\) be a sequence of solutions to (2.5) with \(\epsilon = \epsilon_n\) of the form (4.10). We remind from (2.5) that \(U_n\) is a solution of the problem
\[
\begin{align*}
\text{div}(t^{1-2s} \nabla U_n) &= 0 \quad \text{in } C, \\
\partial_s^2 U_n &= U_n^{p-\epsilon_n} \quad \text{on } \Omega \times [0).
\end{align*}
\]
(5.1)

By the translation and scaling invariance of (5.1), the functions \(V = \frac{\partial U_n}{\partial x_j}\) and \(\nu = (z - x_0^i) \cdot \nabla U_n + \left(\frac{2s}{p-1-\epsilon_n}\right) U_n\) (for each \(1 \leq i \leq m\) and \(1 \leq j \leq N\)) satisfy the equation
\[
\begin{align*}
\text{div}(t^{1-2s} \nabla V) &= 0 \quad \text{in } C, \\
\partial_s^2 V &= (p - \epsilon_n) U_n^{p-\epsilon_n} \quad \text{on } \Omega \times [0).
\end{align*}
\]
(5.2)

Lemma 5.1. Assume that a function \(V \in H_{0}^{1,2}(C; t^{1-2s})\) satisfies (5.2). Then for any point \(y \in \Omega\), the following identity
\[
\kappa_s \int_{B_{N+1}^N(y, 0), r} t^{1-2s} \left(\frac{\partial U_n}{\partial v} V - \frac{\partial V}{\partial v} U_n \right) dS_z = (p -1 - \epsilon_n) \int_{B^N(y, r)} U_n^{p-\epsilon_n} V \, dx
\]
holds for any \(r \in (0, \text{dist}(y, \partial \Omega))\).

Proof. Multiplying the first equation of (5.1) by \(V\) and that of (5.2) by \(U_n\), and then integrating the results over \(B_{N+1}^N(y_0, 0), r\), we obtain
\[
\kappa_s \int_{B_{N+1}^N(y, 0), r} t^{1-2s} \left(\frac{\partial U_n}{\partial v} V - \frac{\partial V}{\partial v} U_n \right) dS_z = - \int_{B^N(y, r)} (\partial_s^2 U_n \cdot V - \partial_s^2 V \cdot U_n) \, dx
\]
\[
= (p - 1 - \epsilon_n) \int_{B^N(y, r)} U_n^{p-\epsilon_n} V \, dx.
\]
Here the second equality comes from the second equations of (5.1) and (5.2). This proves (5.3).

Based on the previous identity, we now deduce two kinds of information on the concentration points and rates.

Lemma 5.2. For any \(1 \leq i \leq m\) and \(1 \leq j \leq N\), we have \(\frac{\partial T_i}{\partial x_j}(x_0^i, 0) = 0\) for \(H_i\) defined in (4.20), or equivalently,
\[
b_i \frac{\partial H}{\partial x_j}(x_0^i, x_0^j) - \sum_{k \neq i} b_k \frac{\partial G}{\partial x_j}(x_0^i, x_0^k) = 0.
\]
(5.4)
Proof. Fix any $i \in \{1, \cdots, m\}$. Taking $V = \frac{\partial U_n}{\partial r}$ and $y = x_0^i$ in (5.3), we have
\[
k_s \int_{\partial B^{N+1}(x_0^i, 0), r} t^{1-2s} \left[\frac{\partial U_n}{\partial v} \frac{\partial U_n}{\partial x_j} - \frac{\partial U_n}{\partial v} \left(\frac{\partial U_n}{\partial x_j} \right) U_n \right] dS_z
\]
\[= (p - 1 - \epsilon_n) \int_{B^N(x_0^i, r)} U_n^{p-\epsilon_n} \frac{\partial U_n}{\partial x_j} dx = \left(\frac{p - 1 - \epsilon_n}{p + 1 - \epsilon_n} \right) \int_{\partial B^N(x_0^i, r)} U_n^{p-\epsilon_n} \frac{\partial U_n}{\partial x_j} dS_x. \tag{5.5}
\]
By Lemmas 4.1, 4.4 and 4.5
\[
(\lambda_1^j)^{(N-2s)} \int_{\partial B^N(x_0^i, r)} U_n^{p-\epsilon_n} \frac{\partial U_n}{\partial x_j} dS_x = (\lambda_1^j)^{(N-2s)} O(\lambda_1^j)^{(N-2s)} = o(1). \tag{5.6}
\]
Hence we see from (5.5) and (5.6) that
\[
\lim_{n \to \infty} (\lambda_1^j)^{(N-2s)} \int_{\partial B^N(x_0^i, r)} t^{1-2s} \left[\frac{\partial U_n}{\partial v} \frac{\partial U_n}{\partial x_j} - \frac{\partial U_n}{\partial v} \left(\frac{\partial U_n}{\partial x_j} \right) U_n \right] dS_z = 0. \tag{5.7}
\]
Using (4.25), we evaluate the left-hand side of (5.7) as follows:
\[
\lim_{n \to \infty} (\lambda_1^j)^{(N-2s)} \int_{\partial B^N(x_0^i, 0), r} t^{1-2s} \left[\frac{\partial U_n}{\partial v} \frac{\partial U_n}{\partial x_j} - \frac{\partial U_n}{\partial v} \left(\frac{\partial U_n}{\partial x_j} \right) U_n \right] dS_z
\]
\[= \int_{\partial B^N(x_0^i, 0), r} t^{1-2s} \left[\frac{(N-2s)c_3 b_i}{|z - x_0^i|^{N-2s+2}} \frac{\partial T_i}{\partial v}(z) \left(\frac{(N-2s)c_3 b_i (x - x_0^i)}{|z - x_0^i|^{N-2s+2}} \frac{\partial T_i}{\partial x_j}(z) \right) - \frac{(N-2s)c_3 b_i (x - x_0^i)}{|z - x_0^i|^{N-2s+2}} \frac{\partial T_i}{\partial x_j}(z) \right] dS_z
\]
\[= \int_{\partial B^N(x_0^i, 0), r} t^{1-2s} \left[\frac{(N-2s)c_3 b_i (x - x_0^i)}{|z - x_0^i|^{N-2s+2}} \frac{\partial T_i}{\partial v}(z) \right] dS_z
\]
\[:= I_1 + I_2 + I_3. \]
Let us compute each of the terms I_1, I_2 and I_3. Firstly, (4.27) yields that
\[
I_3 = - \int_{B^N(x_0^i, r)} \left[\frac{\partial T_i}{\partial v}(z) \cdot \left(\frac{\partial T_i}{\partial x_j}(z) \right) \right] dx = 0. \tag{5.8}
\]
Also, according to estimates (2.12) and (2.13), we have
\[
\lim_{r \to 0} |I_2| \leq \lim_{r \to 0} \int_{\partial B^N(x_0^i, 0), r} t^{1-2s} \frac{\partial}{\partial v} \left(\frac{\partial T_i}{\partial x_j}(z) \right) \frac{c_3 b_i}{|z - x_0^i|^{N-2s+2}} dS_z
\]
\[\leq C \lim_{r \to 0} \int_{\partial B^N(x_0^i, 0), r} \left(\frac{1}{|z - x_0^i|^{N-2s+1}} + 1 \right) dS_z \leq C \lim_{r \to 0} (r + 2r) = 0. \tag{5.9}
\]
Therefore we only need to compute $\lim_{r \to 0} I_1$. By homogeneity, its first term is calculated to be
\[
- \lim_{r \to 0} \int_{\partial B^N(x_0^i, 0), r} t^{1-2s} \frac{(N-2s)c_3 b_i (x - x_0^i)}{|z - x_0^i|^{N-2s+2}} \frac{\partial T_i}{\partial x_j}(z) dS_z
\]
\[= \frac{\partial T_i}{\partial x_j}(x_0^i, 0) \cdot (N - 2s)c_3 b_i \int_{\partial B^N(0, 1)} \frac{t^{1-2s}}{|z|^{N-2s+2}} dS_z.
\]
For the second term, one can deduce
\[
- \lim_{r \to 0} \int_{\partial B^{N+1}(x_0^j, 0, r)} \frac{t^{1-2s}(N - 2s)c_3 b_j(x - x_0^j)}{|z - x_0^j|^{N-2s+2}} \partial T_j(z) dS_z
\]
\[
= -(N - 2s)c_3 b_j \lim_{r \to 0} \int_{\partial B^{N+1}(x_0^j, 0, r)} \frac{t^{1-2s}(x - x_0^j)_k(x - x_0^j)_k}{|z - x_0^j|^{N-2s+3}} \partial T_j(z) dS_z
\]
\[
= -\frac{\partial T_j(x_0^j, 0) \cdot (N - 2s)c_3 b_j}{\partial x_j} \int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s} x_j^2}{|z - x_0^j|^{N-2s+3}} dS_z,
\]
because the mean value formula with (2.12) and (2.13) imply
\[
\left| \frac{t^{1-2s}(x - x_0^j)_j(x - x_0^j)_k}{|z - x_0^j|^{N-2s+3}} \left(\frac{\partial T_j}{\partial x_k}(c) - \frac{\partial T_j}{\partial x_k}(x_0^j, 0) \right) \right| \leq C \left(1 + t^{1-2s} \right) \frac{1}{|z - x_0^j|^{N-2s+3}}
\]
for \(1 \leq j, k \leq N + 1\) so that the value of its integration over the half-sphere \(\partial B^{N+1}(x_0^j, 0, r)\) is bounded by \(C(r + r^2)\) (see (2.9)). Finally, by direct computation, we discover
\[
\lim_{r \to 0} \int_{\partial B^{N+1}(x_0^j, 0, r)} t^{1-2s} \left(\frac{\partial}{\partial y} \frac{(N - 2s)c_3 b_j(x - x_0^j)}{|z - x_0^j|^{N-2s+2}} \partial T_j(z) dS_z
\]
\[
= -(N - 2s)(N - 2s + 1)c_3 b_j \lim_{r \to 0} \int_{\partial B^{N+1}(x_0^j, 0, r)} t^{1-2s} \frac{x_j^2}{|z - x_0^j|^{N-2s+3}} \partial T_j(z) dS_z
\]
\[
= -\frac{\partial T_j(x_0^j, 0) \cdot (N - 2s)(N - 2s + 1)c_3 b_j}{\partial x_j} \int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s} x_j^2}{|z|^{N-2s+5}} dS_z
\]
where we used \(T_j(x, 0) = T_j(x_0^j, 0) + (x - x_0^j) \cdot \nabla_x T_j(x_0^j, 0) + O(|x - x_0^j|^2)\) to find the second equality. Thus (5.7) is reduced to
\[
-\frac{\partial T_j}{\partial x_j}(x_0^j, 0) \left(\int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s}}{|z|^{N-2s+1}} dS_z + (N - 2s + 2) \int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s} x_j^2}{|z|^{N-2s+3}} dS_z \right) = 0.
\]
Therefore \(\frac{\partial T_j}{\partial x_j}(x_0^j, 0) = 0\), proving the lemma. \(\square\)

Remark 5.3. It is shown in [25, Section 4] that
\[
\int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s}}{|z|^{N-2s+1}} dS_z = \frac{|S|^{N-1}}{2} B \left(1 - s, \frac{N}{2} \right)
\]
and
\[
\int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s} x_j^2}{|z|^{N-2s+3}} dS_z = \frac{|S|^{N-1}}{2N} B \left(1 - s, \frac{N + 2}{2} \right) = \frac{1}{N - 2s + 2} \int_{\partial B^{N+1}(0, 1)} \frac{t^{1-2s}}{|z|^{N-2s+1}} dS_z
\]
where \(B\) is the Beta function.

Lemma 5.4. For each \(1 \leq i \leq m\) we have
\[
b_i^2 H(x_0^j, x_0^q) - \sum_{k \neq i} b_k b_j G(x_0^j, x_0^q) = \frac{c_2}{2c_1} b_0
\]
where \(c_2 > 0\) in (1.6) and \(b_0 = \lim_{n \to 0}(\Lambda_n^1)^{(N-2s)} \epsilon_n\).

Proof. Fix \(i \in \{1, \cdots, m\}\). Taking \(V = \epsilon U_N = (z - x_0^j) \cdot \nabla U_N + \left(\frac{2s}{p-1 - \epsilon_0} \right) U_N\) and \(y = x_0^j\) in (5.3), we find
\[
\kappa_i \lim_{n \to 0}(\Lambda_n^1)^{(N-2s)} \int_{\partial B^{N+1}(x_0^j, 0, r)} \frac{\partial U_N}{\partial y} V_n - \frac{\partial V_n}{\partial y} U_N dS_z = \lim_{n \to 0}(\Lambda_n^1)^{(N-2s)} (p - 1 - \epsilon_0) \int_{B^{N}(x_0^j)} U_n^{p - \epsilon_0} v_n dx
\]
(5.12)
where \(v_n = \text{tr}(\Omega \times (0)) V_n \). To evaluate the left-hand side of (5.12), we observe from (4.25) that
\[
\lim_{n \to \infty} (\lambda_n^1)^{(N-2s)} \frac{N-2s}{2} \Omega V_n(z) = - \left(\frac{N-2s}{2} \right) \frac{c_3 b_j}{|z-x_0^i|^{N-2s}} + (z-x_0^i) \cdot \nabla \mathcal{T}_i(z) + \left(\frac{N-2s}{2} \right) \mathcal{T}_i(z)
\]
for \(z = (x, t) \in C' \setminus \{(x_0^1, 0, \ldots, (x_m^m, 0)) \}. \) Thus we get
\[
\lim_{n \to \infty} (\lambda_n^1)^{(N-2s)} \frac{N-2s}{2} \int_{\partial B^N(\xi_0^i, 0, r)} t^{1-2s} \frac{\partial U_n}{\partial v} V_n - \frac{\partial V_n}{\partial v} U_n \bigg| \frac{N-2s}{2} \bigg| \frac{c_3 b_j}{|z-x_0^i|^{N-2s+1}} \left((z-x_0^i) \cdot \nabla \mathcal{T}_i + (N-2s) \mathcal{T}_i \right) dS_z
\]
\[
= - \int_{\partial B^N(\xi_0^i, 0, r)} t^{1-2s} \frac{c_3 b_j}{|z-x_0^i|^{N-2s+1}} \left((z-x_0^i) \cdot \nabla \mathcal{T}_i + (N-2s) \mathcal{T}_i \right) dS_z
\]
\[
+ \int_{\partial B^N(\xi_0^i, 0, r)} t^{1-2s} \frac{\partial \mathcal{T}_i}{\partial v} \left((z-x_0^i) \cdot \nabla \mathcal{T}_i + \left(\frac{N-2s}{2} \right) \mathcal{T}_i \right)
\]
\[
- \mathcal{T}_i \frac{\partial \mathcal{T}_i}{\partial v} \left((z-x_0^i) \cdot \nabla \mathcal{T}_i + \left(\frac{N-2s}{2} \right) \mathcal{T}_i \right) dS_z
\]
\[
:= J_1 + J_2 + J_3.
\]
As the previous proof, let us estimate each of \(J_1, J_2 \) and \(J_3 \). As demonstrated in (5.8), we have \(J_3 = 0 \). Besides (2.12) and (2.13) lead us to derive
\[
\lim_{r \to 0} |J_2| \leq C \lim_{r \to 0} \int_{\partial B^N(\xi_0^i, 0, 1)} \frac{(t^{1-2s} + 1)}{|z-x_0^i|^{N-2s}} dS_z = 0.
\]
Lastly, since
\[
[(z-x_0^i) \cdot \nabla \mathcal{T}_i(z) + (N-2s) \mathcal{T}_i(z)]_{z=(x_0^i, 0)} = (N-2s) \mathcal{T}_i(x_0^i, 0),
\]
we have
\[
\lim_{r \to 0} J_1 = -c_3 b_j(N-2s)^2 \left(\int_{\partial B^N(\xi_0^i, 0, 1)} \frac{t^{1-2s}}{|z-x_0^i|^{N-2s+1}} dS_z \right) \mathcal{T}_i(x_0^i, 0).
\]
As a result, after the limit \(r \to 0 \) being taken, the left-hand side of (5.12) becomes
\[
c_1 c_3 k_s (N-2s)^2 \left(\int_{\partial B^N(\xi_0^i, 0, 1)} \frac{t^{1-2s}}{|z-x_0^i|^{N-2s+1}} dS_z \right) b_i^2 H_C((x_0^i, 0), x_0^i) - \sum_{k \neq i} b_i b_j G_C((x_0^i, 0), x_0^j).
\]
(5.13)

Meanwhile, using integration by parts, we deduce that
\[
\int_{B^N(\xi_0^i, r)} u_n^{p-\epsilon_n} (x-x_0^i) \cdot \nabla_x u_n + \left(\frac{2s}{p-1-\epsilon_n} \right) u_n^p \bigg| \frac{2s}{p-1-\epsilon_n} \bigg| u_n^p dS_z
\]
\[
= \frac{1}{p-1-\epsilon_n} \int_{B^N(\xi_0^i, r)} (x-x_0^i) \cdot \nabla_x u_n^{p+1-\epsilon_n} dS_x + \left(\frac{2s}{p-1-\epsilon_n} \right) \int_{B^N(\xi_0^i, r)} u_n^{p+1-\epsilon_n} dS_x
\]
\[
= \frac{1}{p-1-\epsilon_n} \int_{\partial B^N(\xi_0^i, r)} (x-x_0^i) \cdot \nabla_x u_n^{p+1-\epsilon_n} dS_x + \left(\frac{2s}{p-1-\epsilon_n} \right) \int_{\partial B^N(\xi_0^i, r)} u_n^{p+1-\epsilon_n} dS_x.
\]

Note that
\[
\frac{2s}{p-1-\epsilon_n} - \frac{N}{p-1-\epsilon_n} = \frac{(N-2s)\epsilon_n}{\left(\frac{2s}{N-2s} - \epsilon_n \right)} = \frac{(N-2s)^3 \epsilon_n}{8N} (1 + o(1))
\]
and
\[
\int_{\partial B^N(\xi_0^i, r)} (x-x_0^i) \cdot \nabla_x u_n^{p+1-\epsilon_n} dS_x = O\left((\lambda_n^1)^N \right).
\]
Hence the right-hand side of (5.12) equals to
\[
(\lambda_n^i)^{(N-2s)} \eta_n(1 + o(1)) \cdot \frac{(N-2s)^2}{2N} \int_{\mathbb{R}^N} w^{p+1} \, dx + O((\lambda_n^i)^{2s}).
\] (5.14)

From (5.12), (5.13), (5.14) and (5.10), we get
\[
\frac{b_0}{N} \int_{\mathbb{R}^N} w^{p+1} \, dx = c_1 c_3 k_{ij} \frac{S^{N-1}}{2} B \left(1 - \frac{N}{2} \right) \left[b_i^2 H_C((x_0^i, 0), x_0^j) - \sum_{k \neq i} b_k b_k G_C((x_0^i, 0), x_0^k) \right]
\]
= \frac{2}{N - 2s} \left(\int_{\mathbb{R}^N} w^p \, dx \right)^2 \left[b_i^2 H(x_0^i, x_0^j) - \sum_{k \neq i} b_k b_k G(x_0^i, x_0^k) \right].
\]

This completes the proof. \(\square\)

We are now prepared to complete the proof of our main theorems.

Proof of Theorem 1.1. Assume that \(\sup_{n \in \mathbb{N}} \|u_n\|_{H^1} < \infty\). Then, if we let \(U_n\) be the \(s\)-harmonic extension of \(u_n\) over the half-cylinder \(C = \Omega \times (0, \infty)\), we have \(\sup_{n \in \mathbb{N}} \|U_n\|_{H^2(C; t^{1-2s})} < \infty\) by inequality (2.6). Thus we can apply Lemma 2.2 to the sequence \(\{U_n\}_{n \in \mathbb{N}}\) to deduce the existence of an integer \(m \in \mathbb{N} \cup \{0\}\) and sequences of positive numbers and points \((x_0^i, x_0^j)_{n \in \mathbb{N}} \subseteq (0, \infty) \times \Omega\) for each \(i = 1, \ldots, m\) such that relation (2.22) holds (in particular \(\lambda_n^i \to 0\) and
\[
U_n - \left(V_0 + \sum_{i=1}^m PW_{x_0^i, x_0^j} \right) \to 0 \quad \text{in} \quad H^1_0(C; t^{1-2s}) \quad \text{as} \quad n \to \infty
\] (5.15)
along a subsequence. Here \(V_0\) is the weak limit of \(U_n\) in \(H^1_0(C; t^{1-2s})\), which is a solution to (2.21), and \(PW_{x_0^i, x_0^j}\) is the projected bubble whose definition can be found in (2.18).

We now split the problem into two cases.

Case 1 \((m = 0)\). By (2.3) and the strong maximum principle, \(v_0(x) = V_0(x, 0)\) for \(x \in \Omega\) satisfies equation (1.3). In addition, by (5.15), it holds that
\[
\lim_{n \to \infty} \|u_n - v\|_{H^1} = \lim_{n \to \infty} \|U_n - V_0\|_{H^1_0(C; t^{1-2s})} = 0.
\]
This case corresponds to the first alternative (1) of Theorem 1.1.

Case 2 \((m \geq 1)\). Thanks to Lemma 4.2, we have \(V_0 = 0\) in this situation. Hence (5.15) and discussion in Subsection 5.2 give decomposition (1.4) as well as \(x_0^i \to x_0^i \in \Omega\). Also, by Lemmas 4.3 and 4.5 there are constants \(d_0, C_0 > 0\) independent of \(n \in \mathbb{N}\) such that
\[
|x_0^i - x_0^j| \geq d_0 \quad \text{and} \quad \frac{\lambda_n^i}{\lambda_n^j} \leq C_0 \quad \text{for any} \quad 1 \leq i \neq j \leq m.
\]
Thus we may set a positive value \(b_i = \lim_{n \to \infty} \left(\frac{\lambda_n^i}{\lambda_n^j} \right)^{\frac{N-2s}{2}}\) for each \(1 \leq i \leq m\). Furthermore, Lemmas 5.2 and 5.4 imply that \((b_1, \ldots, b_m, (x_0^1, \ldots, x_0^m)) \subset (0, \infty)^m \times \Omega^m\) is a critical point of the function \(\Phi_m\) introduced in (1.5). We have proved that the case \(m \geq 1\) corresponds to the second alternative (2) in Theorem 1.1. The proof is finished. \(\square\)

Proof of Theorem 1.3. The fact that \(M\) is a nonnegative matrix can be shown as in Appendix A of [4], so we left it to the reader.

Suppose that \(M\) is nondegenerate. Since the left-hand side of (5.11) is finite, it should hold that \(b_0 \in (0, \infty)\). To the contrary, let us assume that \(b_0 = 0\). Then we see
\[
b_i H(x_0^i, x_0^j) - \sum_{k \neq i} b_j G(x_0^i, x_0^k) = 0
\]
for each \(1 \leq i \leq m \). It means that \(\mathbf{b} = (b_1, \cdots, b_m) \) is a nonzero vector such that \(M \mathbf{b} = 0 \). However this is nonsense because the nondegeneracy condition of \(M \) tells us that \(\mathbf{b} = 0 \). Hence \(b_0 \neq 0 \) should be true, and thus

\[
\lim_{n \to \infty} \log \epsilon_n \lambda_i^n = \lim_{n \to \infty} \log \epsilon_n \left[\frac{1}{n^{2s}} \left(b_0 \frac{1}{n^{2s}} + o(1) \right) \left(b_i \frac{1}{n^{2s}} + o(1) \right) \right] = \frac{1}{N - 2s}.
\]

The proof is now complete. \(\square \)

6. The Restricted Fractional Laplacian and the Classical Laplacian

6.1. Proof of Theorems 1.1 and 1.3 for the Restricted Fractional Laplacian. Here we briefly mention how the proof for the main theorems 1.1 and 1.3 can be carried out for the restricted fractional Laplacian.

First of all, as mentioned before, the Struwe’s concentration-compactness principle type result (Step 1 in Introduction) can be obtained as in [2, 22, 48]. Besides the moving plain argument in Section 3 (corresponding to Step 2) is local in nature, so the same proof as in Section 3 works. For Section 4 one can check each lemma remains valid even if (2.5) is replaced with (2.7). Finally, we notice that Lemmas 5.2 and 5.4 were obtained from the information on the solutions \(\{U_n_{n \in \mathbb{N}} \} \) to (2.5) over the half-balls \(\{ B_{N+1} \} \). Therefore the same argument goes through for (2.7), completing Step 3. Theorems 1.1 and 1.3 for the restricted fractional Laplacians now follow.

6.2. Proof of Theorem B. To validate Theorem B we follow the strategy used to prove Theorems 1.1 and 1.3 for nonlocal problems.

The representation formula (1.9) of finite energy solutions \(\{u_n\}_{n \in \mathbb{N}} \) to (1.8) is due to Struwe [59] (Step 1). Also, as in [26, Appendix A], a moving sphere argument can be applied to deduce a pointwise upper bound of \(u_n \). It implies Lemmas 4.2, 4.3, and 4.5 for the local case, which are originally given in [55]. It can be easily seen that Lemma 4.1 remains true, and the local versions of Lemmas 4.4 and 4.6 are found in [26, Section 2], whence Step 2 is finished. Regarding Lemma 5.3 we have

Lemma 6.1. Suppose that a function \(v \in H_0^{1,2}(\Omega) \) satisfies

\[-\Delta v = (p - \epsilon_n) u_n^{p-1-\epsilon_n} v \quad \text{in } \Omega.\]

Then for any point \(y \in \Omega \), the following identity

\[
\int_{\partial B^{N}(y,r)} \left(\frac{\partial v}{\partial v} - \frac{\partial u}{\partial v} \right) dS_x = (p - 1 - \epsilon_n) \int_{B^{N}(y,r)} u_n^{p-\epsilon_n} v dx \quad (6.1)
\]

holds for any \(r \in (0, \text{dist}(y, \partial \Omega)) \).

By taking \(u = u_n \) and \(v = \frac{\partial u}{\partial n} \) for \(j = 1, \cdots, N \) or \(v = \left(x - x_j^0 \right) \cdot \nabla u_n + \left(\frac{2}{p - 1 - \epsilon_n} \right) u_n \) for \(i = 1, \cdots, m \) in (6.1), we get Lemmas 5.2 and 5.4 where the constants \(c_1 \) and \(c_2 \) are given by (1.6) with \(s = 1 \). Thus Step 3 is done. Putting all the results together, we complete the proof of Theorem B.

Appendix A. Lower and Upper Estimates of the Standard Bubble in \(\mathbb{R}^{N+1}_+ \)

Here we shall prove a decay estimate of \(W_{A,0} \), which is necessary in applying the moving sphere argument (see Section 3).

Lemma A.1. Then for any \(\eta > 0 \) there exists \(R = R(\eta) > 1 \) so large that

\[
\alpha_{N,s}(1 - \eta) \lambda^{N-2s}(\eta) \leq W_{A,0}(z) \leq \alpha_{N,s}(1 + \eta) \lambda^{N-2s}(\eta) \quad \text{for all } |z| > R \quad (A.1)
\]

where \(\alpha_{N,s} > 0 \) is the constant defined in Notations.
Proof. Since \(W_{\lambda,0}(z) = \lambda^{-N/2} W(\lambda^{-1} z) \), we may assume that \(\lambda = 1 \). Let us prove the lower estimate first. Taking a small number \(\delta > 0 \) to be determined later, we consider two exclusive cases: (1) \(|x| > \delta |t| \) and (2) \(|x| \leq \delta |t| \).

For the case (1), we see from Green’s representation formula, (2.9) and (2.14) that

\[
W(x,t) \geq \alpha_{N,s}^p, \gamma \int_{\|y\| \leq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy
\]

\[
\geq \frac{1}{|1+(\delta)t|^{N-2s}} \cdot \alpha_{N,s}^p, \gamma \int_{\|y\| \leq |t|} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy
\]

\[
\geq \frac{1}{|1+(\delta)t|^{N-2s}} \cdot \alpha_{N,s}^p, \gamma \cdot \int_{\|y\| \leq |t|} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy - o(1)
\]

\[
= \frac{1}{(1+(\delta)t)^{N-2s}} (\alpha_{N,s} - o(1))
\]

where \(o(1) \to 0 \) as \(|z| = |(x,t)| \to \infty \).

For the case (2), we have

\[
W(x,t) \geq \alpha_{N,s}^p, \gamma \int_{\|y\| \leq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy
\]

\[
\geq \frac{1}{|1+2\delta|^{N-2s}} \cdot \alpha_{N,s}^p, \gamma \int_{\|y\| \leq |t|} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy
\]

\[
\geq \frac{1}{|1+2\delta|^{N-2s}} (\alpha_{N,s} - o(1))
\]

where \(o(1) \to 0 \) as \(|z| = |(x,t)| \to \infty \).

Hence if we choose \(\delta > 0 \) small and \(R > 0 \) large so that

\[
\frac{1}{|1+2\delta|^{N-2s}} \geq 1 - \frac{\eta}{2} \quad \text{and} \quad \alpha_{N,s} - o(1) \geq \left(1 - \frac{\eta}{2} \right) \alpha_{N,s},
\]

we obtain the desired estimate from (A.2) and (A.3).

We turn to prove the upper estimate. Again, we take into account the cases (1) \(|x| > \delta |t| \) and (2) \(|x| \leq \delta |t| \) separately.

For the case (1), we estimate

\[
\alpha_{N,s}^p, \gamma \int_{\|y\| \leq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy \leq \frac{\alpha_{N,s}}{|(1-\delta)x,t|^{N-2s}} \leq \frac{1}{|1-\delta|^{N-2s}} \frac{\alpha_{N,s}}{|(x,t)|^{N-2s}}
\]

and

\[
\alpha_{N,s}^p, \gamma \int_{\|y\| \geq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy
\]

\[
= \alpha_{N,s}^p, \gamma \left(\int_{\|y\| \geq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy \right)
\]

\[
\leq \alpha_{N,s}^p, \gamma \left(\int_{\|y\| \geq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy + \int_{|y| \geq |t|} \frac{1}{|x-y|^{N-2s}} \frac{1}{(1+|y|^2)^{\frac{N-2s}{2}}} \, dy \right)
\]

\[
\leq \frac{2^{N/2} \alpha_{N,s}'}{\delta^{2(N+s)} |(x,t)|^N},
\]

where \(\alpha_{N,s}' > 0 \) is a certain constant relying only on \(N \) and \(s \). Observe that the last inequality came from \(|(x,t)| < \sqrt{1+\delta^2} |x| \leq \sqrt{2}\delta^{-1} |x| \) for \(\delta > 0 \) small enough. Combining the above estimates, we get

\[
W(x,t) \leq \frac{1}{|1-\delta|^{N-2s}} \frac{\alpha_{N,s}}{|(x,t)|^{N-2s}} + \frac{2^{N/2} \alpha_{N,s}'}{\delta^{2(N+s)} |(x,t)|^N}.
\]
For the case (2), we have
\[W(x, t) \leq \alpha_{N,s}^p y_{N,s} \int_{\mathbb{R}^n} \frac{1}{|y|^{N-2s}} \frac{1}{(1 + |y|^2)^{\frac{N+2s}{2}}} dy = \frac{\alpha_{N,s}}{|y|^{N-2s}} \leq (1 + \delta)^{N-2s} \frac{\alpha_{N,s}}{(x, t)|y|^{N-2s}}. \] (A.5)

Consequently, with the choices
\[\frac{1}{(1 - \delta)^{N-2s}} \leq 1 + \frac{\eta}{2} \quad \text{and} \quad \frac{2^{N/2} \alpha_{N,s}'}{\delta^{2(N+s)} R^N} = \frac{\eta}{2}, \]
estimates (A.4) and (A.5) imply the second inequality of the lemma. The proof is completed. □

Appendix B. Elliptic Regularity Results and Derivation of (4.22) and (4.23)

This section is devoted to present some elliptic regularity results and its application to justifica-

We need to recall two lemmas which can be proved with Moser’s iteration method. One is an a

Now we are ready to prove the main result of this section.

Proposition B.3. Let \(1 < q \leq \frac{N+2s}{N-2s} \). Suppose that \(U \in H_{0}^{1,2}(Q_{2r}; t^{1-2s}) \) is a positive solution of
\[\begin{align*}
&\text{div}(t^{1-2s}\nabla U) = 0 \quad \text{in } Q_{2r}, \\
&\partial_{t} U = U^q \quad \text{on } B_{2r},
\end{align*} \] (B.1)

Assume that \(\int_{B_{r}} U^{\frac{p}{2}(q-1)^2}(x, 0) \, dx \leq \delta \) for some small value \(\delta = \delta(N, s) > 0 \). Then \(U(x, t) \) is twice differentiable in the \(x \)-variable in \(Q_{r/2} \). Moreover, the following estimates hold:
\[\|\nabla_x U\|_{C^1(Q_{r/2})} \leq C \left(1 + \|U^{q-1}\|_{L^{\infty}(B_{r})} \right) \|U\|_{L^{\infty}(Q_{r})}, \]
This completes the proof. □

which is the third inequality of Proposition B.3. On the other hand, by employing Lemma B.2 (2),

Next, by employing Lemma B.2 (2), we obtain the second inequality, i.e.,

for any \(1 \leq i, j \leq N\).

Let us prove validity of the estimates. Applying Lemma B.1 to equations (B.1) and (B.2), we get

Using this chain of inequalities and Lemma B.1 once more, we find

Hence Lemma B.2 (1) gives the first inequality of Proposition B.3,

Next, by employing Lemma B.2 (2), we obtain the second inequality, i.e.,

Besides, an application of Lemma B.1 to (B.3) as well as inequality (B.4) imply that

Therefore Lemma B.2 (1) shows

which is the third inequality of Proposition B.3. On the other hand, by employing Lemma B.2 (2) to (B.2) again, we deduce the fourth inequality

Finally, the last inequality follows from the fact that

This completes the proof.

As a corollary of the above result, we get
Corollary B.4. Let \(\{U_n\}_{n \in \mathbb{N}} \) is a sequence of solutions of \(\mathcal{L}_k \) with \(\epsilon = \epsilon_n \). For any \(r > 0 \), let \(A'_r = C' \setminus \bigcup_{i=1}^m B_{N+1}^{1/k}((x^i_0, 0), r) \). Then there exists \(\alpha \in (0, 1) \) and a constant \(C > 0 \) independent of \(n \in \mathbb{N} \) such that
\[
\sum_{k=1}^2 \left\| \nabla_x \left((1_n^{1/k})^{\frac{2-\alpha}{\alpha}} U_n \right) \right\|_{C^\alpha(A'_r)} + \sum_{0 \leq k \leq 1, 1 \leq l \leq 2} \left\| r^{2-2s} \partial_l^k \nabla_x \left((1_n^{1/k})^{\frac{2-\alpha}{\alpha}} U_n \right) \right\|_{C^\alpha(A'_r)} \leq C
\]
for any \(n \in \mathbb{N} \) large enough.

Proof. Fix any compact subset \(K \subset A'_r \) such that \(K \cap \Omega \neq \emptyset \). By (4.21), we have \(\| U_n \|_{L^\infty(K)} \leq C(\lambda_n^{\frac{2-\alpha}{\alpha}}) \) (cf. Lemma 4.3). Since Green’s function \(G_C \) is positive in \(C \), again (4.21) tells us that the value \(\inf_{z \in K} (\lambda_n^{1/k})^{\frac{2-\alpha}{\alpha}} U_n(z) \) is bounded away from zero for large \(n \in \mathbb{N} \). Thus even in the case that \(p - 2 - \epsilon_n = \frac{6-N}{N-2} - \epsilon_n < 0 \) (i.e. \(N \geq 6 \)), we know
\[
\| U p^{2-\epsilon_n} \|_{L^\infty(B_r)} \leq C(\lambda_n^{\frac{2-\alpha}{\alpha}})^{p-\epsilon_n}.
\]
As a consequence,
\[
\sum_{k=1}^2 \left\| \nabla_x U_n \right\|_{C^\alpha(A'_r)} + \sum_{0 \leq k \leq 1, 1 \leq l \leq 2} \left\| r^{2-2s} \partial_l^k \nabla_x U_n \right\|_{C^\alpha(A'_r)} \leq C(\lambda_n^{1/k})^{\frac{2-\alpha}{\alpha}}.
\]
The proof is finished. \(\square \)

Derivation of (4.22) and (4.23). Consider the sequence \(\{ \nabla_x U_n \}_{n \in \mathbb{N}} \). By Corollary B.4, it converges to some function \(F \) uniformly over a compact subset of \(A'_r \). Then (4.21) and an elementary analysis fact imply that \(F = c_1 \sum_{i=1}^m b_i \nabla_x G_C((x, t), x^i_0) \). The other functions can be treated similarly. This proves (4.22) and (4.23). \(\square \)

References

[1] W. Abdelhedi and H. Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal. 265 (2013), 2937–2955.
[2] S. Almaraz, The asymptotic behavior of Palais-Smale sequences on manifolds with boundary, Pacific J. Math. 269 (2014), 1–17.
[3] W. Ao, J. Wei and W. Yang, Infinitely many positive solutions of a fractional nonlinear Schrödinger equation with non-symmetric potentials, preprint.
[4] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253–294.
[5] A. Bahri, Y. Y. Li, and O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67–93.
[6] B. Barrios, E. Colorado, A. de Pablo, and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.
[7] B. Barrios, E. Colorado, R. Servadei, and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2015), 875–900.
[8] H. Berestycki, A. Coulon, J. Roquejoffre, and L. Rossi, The effect of a line with nonlocal diffusion on Fisher-KPP propagation, Math. Models Methods Appl. Sci. 25 (2015), 2519–2562.
[9] M. Bonforte, Y. Sire, and J.-L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, preprint, arXiv:1404.6195.
[10] C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 39–71.
[11] X. Cabré and J. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys. 320 (2013), 679–722.
[12] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.
[13] ________, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc. 367 (2015), 911–941.
[14] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.
[15] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

[16] L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press.

[17] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), 1353–1384.

[18] E. A. Carlen and M. Loss, Extremals of functionals with competing symmetries, J. Funct. Anal. 88 (1990), 437–456.

[19] S.-Y. Chang and M. González, Fractional Laplacian in conformal geometry, Adv. Math. 226 (2011), 1410–1432.

[20] W. Chen, C. Li, and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

[21] C. C. Chen and C. S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes. II., J. Diff. Geom. 49 (1998), 115–178.

[22] G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Comm. Pure Appl. Anal. 13 (2014), 2359–2376.

[23] W. Choi, On strongly indefinite systems involving the fractional Laplacian, Nonlinear Anal. 120 (2015), 127–153.

[24] W. Choi and S. Kim, On perturbations of the fractional Yamabe problem, preprint, arXiv:1501.00641

[25] W. Choi, S. Kim, and K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal. 266 (2014), 6531–6598.

[26] _____, Qualitative properties of multi-bubble solutions for nonlinear elliptic equations involving critical exponents, preprint, arXiv:1408.2364

[27] W. Choi and J. Seok, Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings, preprint, arXiv:1404.1132

[28] J. Dávila, M. del Pino, and Y. Sire, Non degeneracy of the bubble in the critical case for non local equations, Proc. Amer. Math. Soc. 141 (2013), 3865–3870.

[29] J. Dávila, M. del Pino, and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equations, J. Differential Equations 256 (2014), 858–892

[30] J. Dávila, L. López, and Y. Sire, Bubbling solutions for nonlocal elliptic problems, preprint, arXiv:1410.5461

[31] M. M. Fall and T. Wei, Nonexistence results for a class of fractional elliptic boundary value problems. J. Funct. Anal. 263 (2012), 2205–2227.

[32] Y. Fang and M. D. González, Asymptotic behavior of Palais-Smale sequences associated with fractional Yamabe type equations, to appear in Pacific J. Math.

[33] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262.

[34] R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations 39 (2010), 85–99.

[35] M. González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Analysis and PDE 6 (2013), 1535–1576.

[36] M. González and M. Wang, Further results on the fractional Yamabe problem: the umbilic case, preprint, arXiv:1503.02862

[37] M. Grossi and F. Pacella, On an eigenvalue problem related to the critical exponent, Math. Z. 250 (2005), 225–256.

[38] Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 159–174.

[39] T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111–1171.

[40] _____, On a fractional Nirenberg problem, Part II: Existence of Solutions, Int. Math. Res. Notices, 2015 (2015), 1555–1589.

[41] S. Kim, M. Musso and J. Wei, A non-compactness result on the fractional Yamabe problem in large dimensions, preprint, arXiv:1505.06183

[42] Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. 6 (2004), 153–180.

[43] Y. Y. Li and L. Zhang, Compactness of solutions to the Yamabe problem. II, Calc. Var. Partial Differential Equations 24 (2005), 185–237.

[44] Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J. 80 (1995), 383–417.

[45] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349–374.

[46] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations 39 (2014), 1780–1790.
[47] M. Musso and A. Pistoia, *Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent*, Indiana Univ. Math. J. 51 (2002), 541–579.

[48] G. Palatucci and A. Pisante, *A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces*, Nonlinear Anal. 117 (2015), 1–7.

[49] O. Rey, *The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent*, J. Funct. Anal. 89 (1990), 1–52.

[50] __________, *Blow-up points of solutions to elliptic equations with limiting nonlinearity*, Differential Integral Equations 4 (1991), 1155–1167.

[51] __________, *The topological impact of critical points at infinity in a variational problem with lack of compactness: The dimension 3*, Adv. Differential Equations 4 (1999), 581–616.

[52] X. Ros-Oton and J. Serra, *The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary*, J. Math. Pures. Appl. 101 (2014), 275–302.

[53] __________, *The extremal solution for the fractional Laplacian*, Calc. Var. Partial Differential Equations 50 (2014), 723–750.

[54] __________, *The Pohozaev identity for the fractional Laplacian*, Arch. Ration. Mech. Anal. 213 (2014) 587–628.

[55] R. Schoen, *Topics of differential geometry*, given at Stanford University and New York University (1988–1989), Available at: https://www.math.washington.edu/~pollack/research/Schoen-1988-notes.html.

[56] R. Servadei and E. Valdinoci, *On the spectrum of two different fractional operators*, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.

[57] __________, *The Brezis-Nirenberg result for the fractional Laplacian*, Trans. Amer. Math. Soc. 367 (2015), 67–102.

[58] P. R. Stinga and J. L. Torrea, *Extension problem and Harnack’s inequality for some fractional operators*, Comm. Partial Differential Equations 35 (2010), 2092–2122.

[59] M. Struwe, *A global compactness result for elliptic boundary value problems involving limiting nonlinearities*, Math. Z., 187 (1984), 511–517.

[60] J. Tan, *The Brezis-Nirenberg type problem involving the square root of the Laplacian*, Calc. Var. Partial Differential Equations 42 (2011), 21–41.

[61] __________, *Positive solutions for non local elliptic problems*, Discrete Contin. Dyn. Syst. 33 (2013), 837–859.

(Woocheol Choi) School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
E-mail address: wchoi@kias.re.kr

(Seunghyeok Kim) Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
E-mail address: shkim0401@gmail.com