Research Article

On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h-Convex Functions

Xiaobin Wang, 1 Muhammad Shoaib Saleem, 2 Kiran Naseem Aslam, 2 Xingxing Wu, 1 and Tong Zhou 1

1College of Science, Xinjiang Institute of Technology, Aksu 843100, China
2Department of Mathematics, University of Okara, Okara, Pakistan
3Public Basic Teaching Department, Xinjiang Institute of Technology, Aksu 843100, China

Correspondence should be addressed to Xiaobin Wang; 2016002@xjit.edu.cn

Received 24 September 2020; Revised 25 October 2020; Accepted 16 November 2020; Published 22 December 2020

Academic Editor: Sunil Kumar

Copyright © 2020 Xiaobin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The theory of convex functions plays an important role in engineering and applied mathematics. The Caputo–Fabrizio fractional derivatives are one of the important notions of fractional calculus. The aim of this paper is to present some properties of Caputo–Fabrizio fractional integral operator in the setting of h-convex function. We present some new Caputo–Fabrizio fractional estimates from Hermite–Hadamard-type inequalities. The results of this paper can be considered as the generalization and extension of many existing results of inequalities and convex functions. Moreover, we also present some application of our results to special means of real numbers.

1. Introduction and Preliminaries

The subject of fractional calculus got rapid development because of its diverse applications, not only in mathematics but also into many other fields of sciences. Nowadays, the researchers from biology (e.g., Cesaroni et al. [1] and Caputo and Cametti [2]), economy (e.g., Caputo [3]), demography (e.g., Jumarie [4]), geophysics (e.g., Iaffaldano et al. [5]), medicine (e.g., El Sahede [6]), and bioengineering (e.g., Magin [7]) and signal processing are using fractional calculus as a key tool.

Many researchers in the last three decades are studying fractional calculus [8–12]. Some researchers deduced that it is essential to define new fractional derivatives with different singular or nonsingular kernels in order to provide more sufficient area to model more real-world problems in different fields of science and engineering [13–19].

In the present research, we will restrict ourselves to Caputo–Fabrizio fractional derivative. The features that make the operators different from each other comprise singularity and locality, while kernel expression of the operator is presented with functions such as the power law, the exponential function, or a Mittag–Leffler function. The unique feature of the Caputo–Fabrizio operator is that it has a nonsingular kernel. The main feature of the Caputo–Fabrizio operator can be described as a real power turned into the integer by means of the Laplace transformation, and consequently, the exact solution can be easily found for several problems.

Fractional calculus plays a very significant role in the development of inequality theory. To study convex functions and its generalizations, the Hermite–Hadamard-type inequality is considered as one of the fundamental inequality is given as.

Theorem 1 (see [20]). Let $\psi: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $a_1, b_1 \in I$ with $a_1 < b_1$, then the following double inequality holds:

$$\psi\left(\frac{a_1 + b_1}{2}\right) \leq \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)dx \leq \frac{\psi(a_1) + \psi(b_1)}{2}. \quad (1)$$

The Hermite–Hadamard inequality has been generalized by numerous fractional integral operators [21–23]. For the
The paper is organized as follows: first of all, we give some definitions and preliminary material related to our work. In Section 2, we will establish Hermite–Hadamard-type inequalities via Caputo–Fabrizio fractional integral operator for modified h-convex functions. Section 3 is devoted for some new inequalities via Caputo–Fabrizio fractional operator. At last, we give some application to special means and concluding remarks for our paper.

Now, we start by some necessary definitions and preliminary results which will be used and in this paper.

In [28], Toader gave the concept of modified h-convex functions as follows.

Definition 2 (see [28]). Let \(\psi, h : I \subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I \), \(a \leq b \), \(a, b \in I \) and \(\sigma \in [0, 1] \) holds.

\[
\begin{align*}
 & (\psi)_{a,b}^{\sigma}(h) = \psi(h) + \sigma(h)\psi(a) + (1 - \sigma(h))\psi(b),
\end{align*}
\]

(2)

for all \(a, b, \sigma \in I \) and \(\sigma \in [0, 1] \) holds.

In [8, 29, 30], the concept of Caputo–Fabrizio fractional operator has been given.

Definition 1. For \(h \in H^1([a, b]) \), \(a \leq b \), \(a, b, \sigma \in [0, 1] \), the left fractional derivative in the sense of Caputo and Fabrizio is given by

\[
\left(D_{a,b}^{\sigma} \psi \right)(t) = \frac{B(\sigma)}{1 - \sigma} \int_a^t \psi'(x) e^{-\sigma(t-x)/\Gamma(1+\sigma)}\,dx,
\]

(3)

and the associated fractional integral is

\[
\left(I_{a,b}^{\sigma} \psi \right)(t) = \frac{1 - \sigma}{B(\sigma)} \psi(t) + \frac{\sigma}{B(\sigma)} \int_a^t \psi(x)\,dx,
\]

(4)

where \(B(\sigma) > 0 \) is a normalization function satisfying \(B(0) = B(1) = 1 \).

The right fractional derivative is given as

\[
\left(D_{b,a}^{\sigma} \psi \right)(t) = -\frac{B(\sigma)}{1 - \sigma} \int_t^b \psi'(x)e^{-\sigma(x-t)/\Gamma(1+\sigma)}\,dx,
\]

(5)

and the associated fractional integral is

\[
\int_{a}^{b} |\psi(x)\phi(x)|\,dx
\]

\[
\leq \frac{1}{b_a - a_1} \left[\left(\int_{a}^{b} (b_1 - x)|\psi(x)|^p\,dx \right)^{(1/p)} \left(\int_{a}^{b} (b_1 - x)|\phi(x)|^q\,dx \right)^{(1/q)} \right]^{(1/p)}
\]

(6)

The following lemma is proven by Dragomir and Agarwal in [31].

Lemma 1 (see [31], Lemma 2.1). Let \(\psi : [a_1, b_1] \rightarrow \mathbb{R} \) be a differentiable mapping on \(J \), \(a_1 < b_1 \). If \(\psi \in L^1([a_1, b_1]) \), then the following equality holds:

\[
\begin{align*}
\frac{1}{2} \left(\psi(a_1) + \psi(b_1) \right) & - \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)\,dx \\
& = \frac{b_1 - a_1}{2} \int_{0}^{1} (1 - 2\alpha)\psi(a_1) - (1 - \alpha)b_1)\,d\alpha.
\end{align*}
\]

(7)

Mustafa Gurbuz et al., in [32], generalized the kernel used in Lemma 1 with the help of Caputo–Fabrizio fractional integral operator.

Lemma 2 (see [32], Lemma 2). Let \(\psi : [a_1, b_1] \rightarrow \mathbb{R} \) be a differentiable mapping on \(J \), \(a_1 < b_1 \). If \(\psi \in L^1([a_1, b_1]) \) and \(\sigma \in [0, 1] \), then the following equality holds:

\[
\begin{align*}
\int_{0}^{1} (1 - 2\alpha)\psi(a_1 - (1 - \alpha)b_1)\,d\alpha & - \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi(k) \\
& = \frac{b_1 - a_1}{2} \int_{0}^{1} \psi(a_1) - (1 - \sigma)\psi(k) \\
& + \frac{B(\sigma)}{B(\sigma)} \left[\int_{a_1}^{b_1} \psi(x)\,dx \right]^{(1/p)} \left(\int_{a_1}^{b_1} \psi(x)\,dx \right)^{(1/q)}
\end{align*}
\]

(8)

where \(k \in [a_1, b_1] \) and \(B(\sigma) > 0 \) is a normalization function.

Iscan gave a refinement of Hölder integral inequality in [33], which is given in the following theorem.

Theorem 2 (Hölder–Iscan integral inequality [33]). Let \(p > 1 \) and \((1/p) + (1/q) = 1\). If \(\psi \) and \(\phi \) are real functions defined on interval \([a_1, b_1]\) and \(|\psi|, |\phi| \) are integrable functions on \([a_1, b_1]\), then

\[
\left(\int_{a_1}^{b_1} \psi(x)\,dx \right)^{1/p} \left(\int_{a_1}^{b_1} \phi(x)\,dx \right)^{1/q}
\]

(9)

A refinement of power-mean integral inequality is given in the following theorem.

Theorem 3 (improved power-mean integral inequality [34]). Let \(q \geq 1 \). If \(\psi \) and \(\phi \) are real functions defined on
interval \([a_1, b_1]\) and \(|\psi|, |\psi||g|^q\) are integrable functions on \([a_1, b_1]\), then

\[
\int_{a_1}^{b_1} |\psi(x)| \phi(x) \, dx
\]

\[
\leq \frac{1}{b_1 - a_1} \left[\left(\int_{a_1}^{b_1} (b_1 - x) |\psi(x)| \, dx \right)^{1-(1/q)} + \left(\int_{a_1}^{b_1} (x - a_1) |\psi(x)| \phi(x)^q \, dx \right)^{(1/q)} \right].
\]

(10)

2. Generalization of Hermite–Hadamard Inequality via the Caputo–Fabrizio Fractional Operator

The following theorem is a variant of Hermite–Hadamard inequality for modified \(h\)-convex functions.

\[
\psi\left(\frac{a_1 + b_1}{2}\right) \leq \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\int_{a_1}^{b_1} I^{\sigma}_{a_1} \psi(x) \, dx \right) + \left(\int_{a_1}^{b_1} I^{\sigma}_{b_1} \psi(x) \, dx \right) - \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) \right]
\]

\[
\leq \psi(a_1) + \left[\psi(b_1) - \psi(a_1) \right] \int_{0}^{1} h(\alpha) \, d\alpha,
\]

where \(k \in [a_1, b_1]\) and \(B(\sigma) > 0\) is a normalization function.

Proof. Since \(\psi\) is modified \(h\)-convex function on \([a_1, b_1]\), we can write

\[
2\psi\left(\frac{a_1 + b_1}{2}\right) \leq \frac{2}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x) \, dx
\]

\[
= \frac{2}{b_1 - a_1} \left[\int_{a_1}^{k} \psi(x) \, dx + \int_{k}^{b_1} \psi(x) \, dx \right].
\]

(12)

\[
= \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) + \frac{\sigma(b_1 - a_1)}{B(\sigma)} \psi\left(\frac{a_1 + b_1}{2}\right)
\]

\[
\leq \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) + \frac{\sigma}{B(\sigma)} \left[\int_{a_1}^{k} \psi(x) \, dx + \int_{k}^{b_1} \psi(x) \, dx \right]
\]

\[
= \frac{(1 - \sigma)}{B(\sigma)} \psi(k) + \frac{\sigma}{B(\sigma)} \left[\int_{a_1}^{k} \psi(x) \, dx \right] + \frac{(1 - \sigma)}{B(\sigma)} \psi(k) + \frac{\sigma}{B(\sigma)} \left[\int_{k}^{b_1} \psi(x) \, dx \right]
\]

\[
= \left(\int_{a_1}^{k} I^{\sigma}_{a_1} \psi(x) \, dx \right) + \left(\int_{k}^{b_1} I^{\sigma}_{b_1} \psi(x) \, dx \right).
\]

(13)

Theorem 4. Suppose that \(\psi: J = [a_1, b_1] \rightarrow \mathbb{R}\) is a modified \(h\)-convex function and \(\psi \in L_1[a_1, b_1]\). If \(\sigma \in [0, 1]\), then the following double inequality holds:

Multiplying both sides of (12) by \((\sigma(b_1 - a_1)/2B(\sigma))\) and adding \((2(1 - \sigma)/B(\sigma))\psi(k)\), we get
After suitable rearrangement of (13), we get the required left-hand side of (11).

For the right-hand side, we will use the right-hand side of Hermite–Hadamard inequality for modified h-convex functions:

$$
\frac{2}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)dx \leq 2\psi(a_1) + 2[\psi(b_1) - \psi(a_1)] \int_{0}^{1} h(\alpha)d\alpha.
$$

(14)

After suitable rearrangement of (15), we get the required right-hand side of (11), which completes the proof.

Remark 1. If we take $h(\alpha) = \alpha$, then inequality (11) reduces to the Hermite–Hadamard inequality for convex functions via Caputo–Fabrizio fractional operator [32].

By using the same operator with (12) in (14), we have

$$
\left(\frac{CF_{a_i}^{\alpha}}{\sigma(b_1 - a_1)} \right) \left[\left(\frac{CF_{a_i}^{\alpha}}{(b_1 - a_1)} \right) \psi(k) + \left(\frac{CF_{b_1}^{\alpha}}{B(\sigma)} \right) \psi(k) \right] \\
\leq 2 \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) + \frac{\sigma(b_1 - a_1)}{B(\sigma)} \left[\psi(a_1) + \psi(b_1) \right] \int_{0}^{1} h(\alpha)d\alpha.
$$

(15)

Theorem 5. Let ψ and ϕ be modified h-convex functions on J. If $\psi \in L([a_1, b_1])$, then we have the following inequality:

$$
\frac{2B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\frac{CF_{a_i}^{\alpha}}{(b_1 - a_1)} \right) \psi(k) + \left(\frac{CF_{b_1}^{\alpha}}{B(\sigma)} \right) \psi(k) \right] \\
\leq 2 \left[M(a_1, b_1) - N(a_1, b_1) \right] \int_{0}^{1} [h(\alpha)]^2 d\alpha \\
+ 2\psi(b_1)\phi(b_1) + 2[N(a_1, b_1) - 2\psi(b_1)\phi(b_1)] \int_{0}^{1} h(\alpha)d\alpha,
$$

(16)

where

$$
M(a_1, b_1) = \psi(a_1)\phi(a_1) + \psi(b_1)\phi(b_1), \\
N(a_1, b_1) = \psi(a_1)\phi(b_1) + \psi(b_1)\phi(a_1),
$$

(17)

$k \in [a_1, b_1]$, and $B(\sigma) > 0$ is a normalization function.

Proof. Since ψ and ϕ are convex on $[a_1, b_1]$, we have

$$
\psi(aa_1 + (1 - a)b_1) \phi(aa_1 + (1 - a)b_1) \leq [h(\alpha)]^2 \psi(a_1)\phi(a_1) + [1 - h(\alpha)]^2 \psi(b_1)\phi(b_1) + h(\alpha)[1 - h(\alpha)] \left[\psi(a_1)\phi(b_1) + \psi(b_1)\phi(a_1) \right].
$$

(18)

Multiplying both sides of (18) and (19), we have

$$
\phi(aa_1 + (1 - a)b_1) \leq h(\alpha)\psi(a_1) + (1 - h(\alpha))\psi(b_1), \quad \forall \alpha \in [0, 1],
$$

(19)

$$
\psi(aa_1 + (1 - a)b_1) \phi(aa_1 + (1 - a)b_1) \leq [h(\alpha)]^2 \psi(a_1)\phi(a_1) + [1 - h(\alpha)]^2 \psi(b_1)\phi(b_1) + h(\alpha)[1 - h(\alpha)] \left[\psi(a_1)\phi(b_1) + \psi(b_1)\phi(a_1) \right].
$$

(20)
Integrating (20) with “α” over [0, 1], and using the change of variable technique, we obtain

\[
\frac{1}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)\phi(x) \, dx \\
\leq \int_0^1 \left[[h(\alpha)]^2 \psi(a_1)\phi(a_1) + [1 - h(\alpha)]^2 \psi(b_1)\phi(b_1) \right] \, d\alpha \\
+ \int_0^1 [h(\alpha)][1 - h(\alpha)] [\psi(a_1)\phi(b_1) + \psi(b_1)\phi(a_1)] \, d\alpha \\
\leq M(a_1, b_1) \int_0^1 [h(\alpha)]^2 \, d\alpha + \psi(b_1)\phi(b_1) \int_0^1 [1 - 2h(\alpha)] \, d\alpha \\
+ N(a_1, b_1) \int_0^1 h(\alpha)[1 - h(\alpha)] \, d\alpha.
\]

So,

\[
\frac{2}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)\phi(x) \, dx \\
\leq 2[M(a_1, b_1) - N(a_1, b_1)] \int_0^1 [h(\alpha)]^2 \, d\alpha + 2\psi(b_1)\phi(b_1) \\
+ 2[N(a_1, b_1) - 2\psi(b_1)\phi(b_1)] \int_0^1 h(\alpha) \, d\alpha.
\]

Multiplying both sides of (22) by \((\sigma(b_1 - a_1)/2B(\sigma))\) and adding \((2(1 - \sigma)/B(\sigma))\psi(1)\phi(1), \) we get

\[
\frac{2(1 - \sigma)}{B(\sigma)} \psi(1)\phi(1) + \frac{\sigma}{B(\sigma)} \left[\int_{a_1}^{b_1} \psi(x)\phi(x) \, dx \right] \\
\leq \frac{2(1 - \sigma)}{B(\sigma)} \psi(1)\phi(1) + \frac{\sigma(b_1 - a_1)}{2B(\sigma)} \left[2[M(a_1, b_1) - N(a_1, b_1)] \int_0^1 [h(\alpha)]^2 \, d\alpha \right. \\
+ 2\psi(b_1)\phi(b_1) + 2[N(a_1, b_1) - 2\psi(b_1)\phi(b_1)] \int_0^1 h(\alpha) \, d\alpha \left. \right] \\
\]
Thus,

\[
\left(\frac{\text{CF} I^a_c \psi \phi}{a_1} \right)(k) + \left(\frac{\text{CF} I^b_i \psi \phi}{b_1} \right)(k) \\
\leq \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) \phi(k) + \frac{\sigma(b_1 - a_1)}{2B(\sigma)} \left[2[M(a_1, b_1) - N(a_1, b_1)] \int_0^1 [h(\alpha)]^2 d\alpha \right] \\
+ 2\psi(b_1)\phi(b_1) + 2[N(a_1, b_1) - 2\psi(b_1)\phi(b_1)] \int_0^1 h(\alpha) d\alpha \tag{25}
\]

with suitable rearrangements, and the proof is completed.

Remark 2. If we take \(h(\alpha) = \alpha \) in Theorem 5, we obtain ([32], Theorem 3).

We have

\[
\frac{1}{h(1/2)[1-h(1/2)]} \psi\left(\frac{a_1 + b_1}{2}\right) \phi\left(\frac{a_1 + b_1}{2}\right) - \frac{B(\sigma)[h(1/2)]^2 + [1-h(1/2)]^2}{\sigma(b_1 - a_1)h(1/2)[1-h(1/2)]} \psi(k) \phi(k) \\
\leq 2M(a_1, b_1) \int_0^1 h(\alpha)[1 - h(\alpha)] d\alpha + 2N(a_1, b_1) \int_0^1 [h(\alpha)]^2 + [1 - h(\alpha)]^2 d\alpha,
\]

where

\[
M(a_1, b_1) = \psi(a_1) \phi(a_1) + \psi(b_1) \phi(b_1), \quad N(a_1, b_1) = \psi(a_1) \phi(b_1) + \psi(b_1) \phi(a_1), \tag{27}
\]

and \(k \in [a_1, b_1] \), and \(B(\sigma) > 0 \) is a normalization function.

Theorem 6. Let \(\psi \) and \(\phi \) are modified \(h \)-convex functions on \(f \). If \(\psi \phi \in L([a_1, b_1]) \), the set of integrable functions and \(\psi \phi \in h(1/2][1 - h(1/2)] \neq 0 \), then we have the following inequality:

\[
\psi\left(\frac{a_1 + b_1}{2}\right) \leq h\left(\frac{1}{2}\right) \psi((1 - \alpha)a_1 + \alpha b_1) + \left[1 - h\left(\frac{1}{2}\right) \right] \psi(aa_1 + (1 - \alpha)b_1),
\]

\[
\phi\left(\frac{a_1 + b_1}{2}\right) \leq h\left(\frac{1}{2}\right) \phi((1 - \alpha)a_1 + \alpha b_1) + \left[1 - h\left(\frac{1}{2}\right) \right] \phi(aa_1 + (1 - \alpha)b_1), \tag{28}
\]

Proof: Since \(\psi \) and \(\phi \) are modified \(h \)-convex functions on \(f \), then for \(\alpha = (1/2) \), we have
Multiplying the above inequalities at both sides, we have

\[
\psi\left(\frac{a_1 + b_1}{2}\right)\phi\left(\frac{a_1 + b_1}{2}\right)
\leq \left[h\left(\frac{1}{2}\right)\right]^2 \psi((1 - a)a_1 + ab_1)\phi((1 - a)a_1 + ab_1)
+ \left[1 - h\left(\frac{1}{2}\right)\right]^2 \psi(aa_1 + (1 - a)b_1)\phi(aa_1 + (1 - a)b_1)
+ \left[h\left(\frac{1}{2}\right)\right] \left[1 - h\left(\frac{1}{2}\right)\right] \left[\psi((1 - a)a_1 + ab_1)\phi(aa_1 + (1 - a)b_1) + \psi(aa_1 + (1 - a)b_1)\phi((1 - a)a_1 + ab_1)\right]
\leq \left[h\left(\frac{1}{2}\right)\right]^2 \psi((1 - a)a_1 + ab_1)\phi((1 - a)a_1 + ab_1)
+ \left[1 - h\left(\frac{1}{2}\right)\right]^2 \psi(aa_1 + (1 - a)b_1)\phi(aa_1 + (1 - a)b_1)
+ \left[h\left(\frac{1}{2}\right)\right] \left[1 - h\left(\frac{1}{2}\right)\right] \left[\psi((1 - a)(a_1 + h(a)\phi(a_1)) + (1 - h(a))\phi(a_1))\right]
+ (h(a)\phi(a_1) + [1 - h(a)]\phi(b_1)) \left[1 - h(a)\phi(a_1) + h(a)\phi(b_1)\right]
\leq \left[h\left(\frac{1}{2}\right)\right]^2 \psi((1 - a)a_1 + ab_1)\phi((1 - a)a_1 + ab_1)
+ \left[1 - h\left(\frac{1}{2}\right)\right]^2 \psi(aa_1 + (1 - a)b_1)\phi(aa_1 + (1 - a)b_1)
+ \left[h\left(\frac{1}{2}\right)\right] \left[1 - h\left(\frac{1}{2}\right)\right] \left[\psi((1 - a)(a_1 + h(a)\phi(a_1)) + (1 - h(a))\phi(a_1))\right]
+ (h(a)\phi(a_1) + [1 - h(a)]\phi(b_1)) \left[1 - h(a)\phi(a_1) + h(a)\phi(b_1)\right]
\leq \left[h\left(\frac{1}{2}\right)\right]^2 \psi((1 - a)a_1 + ab_1)\phi((1 - a)a_1 + ab_1)
+ \left[1 - h\left(\frac{1}{2}\right)\right]^2 \psi(aa_1 + (1 - a)b_1)\phi(aa_1 + (1 - a)b_1)
+ \left[h\left(\frac{1}{2}\right)\right] \left[1 - h\left(\frac{1}{2}\right)\right] \left[\psi((1 - a)(a_1 + h(a)\phi(a_1)) + (1 - h(a))\phi(a_1))\right]
+ (h(a)\phi(a_1) + [1 - h(a)]\phi(b_1)) \left[1 - h(a)\phi(a_1) + h(a)\phi(b_1)\right]
\leq \left[h\left(\frac{1}{2}\right)\right]^2 \psi((1 - a)a_1 + ab_1)\phi((1 - a)a_1 + ab_1)
+ \left[1 - h\left(\frac{1}{2}\right)\right]^2 \psi(aa_1 + (1 - a)b_1)\phi(aa_1 + (1 - a)b_1)
+ \left[h\left(\frac{1}{2}\right)\right] \left[1 - h\left(\frac{1}{2}\right)\right] \left[\psi((1 - a)(a_1 + h(a)\phi(a_1)) + (1 - h(a))\phi(a_1))\right]
+ (h(a)\phi(a_1) + [1 - h(a)]\phi(b_1)) \left[1 - h(a)\phi(a_1) + h(a)\phi(b_1)\right].
\]
Integrating (29) with respect to α over $[0, 1]$ and using change of variable technique, we obtain

$$2\psi\left(\frac{a_1 + b_1}{2}\right)\phi\left(\frac{a_1 + b_1}{2}\right) \leq \left[h\left(\frac{1}{2}\right) \right]^2 + \left[1 - h\left(\frac{1}{2}\right) \right]^2$$

$$+ \frac{2}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)\phi(x)dx$$

$$+ 2h\left(\frac{1}{3}\right)[1 - h\left(\frac{1}{3}\right)] \left[2M(a_1, b_1) \int_{0}^{1} h(\alpha)[1 - h(\alpha)]d\alpha \right.$$

$$+ N(a_1, b_1) \int_{0}^{1} \left[[h(\alpha)]^2 + [1 - h(\alpha)]^2 \right]d\alpha \right].$$

So,

$$\frac{2}{[h(1/2)]^2 + [1 - h(1/2)]^2} \psi\left(\frac{a_1 + b_1}{2}\right)\phi\left(\frac{a_1 + b_1}{2}\right) \leq \frac{2}{b_1 - a_1} \int_{a_1}^{b_1} \psi(x)\phi(x)dx$$

$$+ \frac{2h(1/2), [1 - h(1/2)]}{[h(1/2)]^2 + [1 - h(1/2)]^2} \left[2M(a_1, b_1) \int_{0}^{1} h(\alpha)[1 - h(\alpha)]d\alpha \right.$$

$$+ N(a_1, b_1) \int_{0}^{1} \left[[h(\alpha)]^2 + [1 - h(\alpha)]^2 \right]d\alpha \right].$$

Multiplying both sides of (31) by $\left(\sigma(b_1 - a_1)/2B(\sigma)\right)$ and adding $(2(1 - \sigma)/B(\sigma))\psi(k)\phi(k)$, we get

$$\frac{\sigma(b_1 - a_1)}{B(\sigma)} \left[[h(1/2)]^2 + [1 - h(1/2)]^2 \right] \psi\left(\frac{a_1 + b_1}{2}\right)\phi\left(\frac{a_1 + b_1}{2}\right) + \frac{2(1 - \sigma)}{B(\sigma)} \psi(k)\phi(k)$$

$$\leq \frac{\sigma}{B(\sigma)} \left[\int_{a_1}^{b_1} \psi(x)\phi(x)dx + \int_{b_1}^{h(1/2), [1 - h(1/2)]} \left[2M(a_1, b_1) \int_{0}^{1} h(\alpha)[1 - h(\alpha)]d\alpha \right.$$

$$+ N(a_1, b_1) \int_{0}^{1} \left[[h(\alpha)]^2 + [1 - h(\alpha)]^2 \right]d\alpha \right] + \frac{2(1 - \sigma)}{B(\sigma)} \psi(k)\phi(k)$$

$$\leq \frac{(1 - \sigma)}{B(\sigma)} \psi(k)\phi(k) + \frac{\sigma}{B(\sigma)} \int_{a_1}^{b_1} \psi(x)\phi(x)dx + \frac{(1 - \sigma)}{B(\sigma)} \psi(k)\phi(k) + \frac{\sigma}{B(\sigma)} \int_{b_1}^{h(1/2), [1 - h(1/2)]} \left[2M(a_1, b_1) \int_{0}^{1} h(\alpha)[1 - h(\alpha)]d\alpha \right.$$

$$+ N(a_1, b_1) \int_{0}^{1} \left[[h(\alpha)]^2 + [1 - h(\alpha)]^2 \right]d\alpha \right].$$

Thus,
\[
\frac{\sigma(b_1 - a_1)}{B(\sigma)[h(1/2)^2 + 1 - h(1/2)]^2} \psi\left(\frac{a_1 + b_1}{2}\right) \phi\left(\frac{a_1 + b_1}{2}\right) + \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) \phi(k) \\
\leq \left(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi\phi(k)\right) + \left(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi\phi(k)\right)
\]
\[
+ \frac{\sigma(b_1 - a_1)h(1/2)[h(1/2)]^2 [1 - h(1/2)]^2}{B(\sigma)[h(1/2)^2 + 1 - h(1/2)]^2} \left[2M(a_1, b_1) \int_0^1 h(\alpha)[1 - h(\alpha)]d\alpha\right] \\
+ N(a_1, b_1) \int_0^1 [h(\alpha)^2 + 1 - h(\alpha)^2]d\alpha.
\]

This implies that

\[
\frac{\sigma(b_1 - a_1)}{B(\sigma)[h(1/2)^2 + 1 - h(1/2)]^2} \psi\left(\frac{a_1 + b_1}{2}\right) \phi\left(\frac{a_1 + b_1}{2}\right) \\
- \left[\left(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi\phi(k)\right) + \left(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi\phi(k)\right)\right] + \frac{2(1 - \sigma)}{B(\sigma)} \psi(k) \phi(k) \\
\leq \frac{\sigma(b_1 - a_1)h(1/2)[h(1/2)]^2 [1 - h(1/2)]^2}{B(\sigma)[h(1/2)^2 + 1 - h(1/2)]^2} \left[2M(a_1, b_1) \int_0^1 h(\alpha)[1 - h(\alpha)]d\alpha\right] \\
+ N(a_1, b_1) \int_0^1 [h(\alpha)^2 + 1 - h(\alpha)^2]d\alpha.
\]

Multiplying both sides of the above inequality by \((B(\sigma)[h(1/2)^2 + 1 - h(1/2)]^2)/(\sigma(b_1 - a_1)h(1/2)[h(1/2)]^2\)), we obtain our required result.

\[\square\]

Remark 3. If we take \(h(\alpha) = \alpha\) in Theorem 6, we obtain ([32], Theorem 4).

3. Some New Results Related with Caputo–Fabrizio Fractional Operator

In this section, we establish some new inequalities for modified \(h\)-convex functions via Caputo–Fabrizio fractional operator.

Theorem 7. Let \(\psi: J \longrightarrow \mathbb{R}\) be a differentiable function on \(J\). If \(|\psi'|\) is a modified \(h\)-convex function on interval \([a_1, b_1]\), where \(a_1, b_1 \in J\) with \(a_1 < b_1\), \(\psi' \in L_1[a_1, b_1]\) and \(\sigma \in [0, 1]\), then the following inequality holds:

\[
\left|\frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi)\phi(k)\right] + \left(\frac{\text{C}_1}{\alpha} \frac{\sigma}{\text{I}_B^\alpha} \psi\phi(k)\right)\right| \\
\leq \frac{b_1 - a_1}{2} \left[\left|\frac{\psi'(b_1)}{2}\right| + \left|\psi'(a_1)\right| - \left|\psi'(b_1)\right|\right] \int_0^1 [1 - 2\alpha|h(\alpha)|]d\alpha.
\]
where \(k \in [a_1, b_1] \), and \(B(\sigma) > 0 \) is a normalization function. Proof. Using Lemma 2 and the definition of modified \(h \)-convexity of \(|\psi'| \), we get

\[
\left| \frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1-\sigma)}{\sigma(b_1-a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1-a_1)} \left[\left(\int_{a_1}^{b_1} \psi' \right)(k) + \left(\int_{b_1}^{a_1} \psi' \right)(k) \right] \right|
\leq \frac{b_1 - a_1}{2} \int_0^1 |1 - 2\alpha| |\psi'(aa_1 - (1 - \alpha)b_1)| \, d\alpha
\leq \frac{b_1 - a_1}{2} \int_0^1 |1 - 2\alpha| [h(\alpha) |\psi'(a_1)| + (1 - h(\alpha)) |\psi'(b_1)|] \, d\alpha
\leq \frac{b_1 - a_1}{2} \left[|\psi'(b_1)| + [\psi'(a_1)] - |\psi'(b_1)| \right] \int_0^1 |1 - 2\alpha| h(\alpha) \, d\alpha.
\]

which completes the proof. \(\square \)

Remark 4. If we take \(h(\alpha) = \alpha \) in Theorem 7, we obtain ([32], Theorem 5).

\[
\left| \frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1-\sigma)}{\sigma(b_1-a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1-a_1)} \left[\left(\int_{a_1}^{b_1} \psi' \right)(k) + \left(\int_{b_1}^{a_1} \psi' \right)(k) \right] \right|
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{p+1} \right)^{1/(q)} \times \left[|\psi'(b_1)|^q + [\psi'(a_1)]^q - |\psi'(b_1)|^q \right] \int_0^1 h(\alpha) \, d\alpha \right]^{1/(q)}.
\]

Theorem 8. Let \(\psi: J \rightarrow \mathbb{R} \) be a positive differentiable function on \(J \). If \(|\psi'|^q \) is a modified \(h \)-convex function on interval \([a_1, b_1]\), \(a_1, b_1 \in J \) with \(a_1 < b_1, q > 1 \), \((1/p) + (1/q) = 1 \), where \(a_1, b_1 \in J \) with \(a_1 < b_1, \psi \in L^1[a_1, b_1] \) and \(\sigma \in [0, 1] \), then the following inequality holds:

\[
\left| \frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1-\sigma)}{\sigma(b_1-a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1-a_1)} \left[\left(\int_{a_1}^{b_1} \psi' \right)(k) + \left(\int_{b_1}^{a_1} \psi' \right)(k) \right] \right|
\leq \frac{b_1 - a_1}{2} \int_0^1 |1 - 2\alpha| |\psi'(aa_1 - (1 - \alpha)b_1)| \, d\alpha
\leq \frac{b_1 - a_1}{2} \times \left[\left(\int_0^1 |1 - 2\alpha|^p \, d\alpha \right)^{1/(p)} \left(\int_0^1 |\psi'(aa_1 - (1 - \alpha)b_1)|^q \, d\alpha \right)^{1/(q)} \right]
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{p+1} \right)^{1/(p)} \times \left(\int_0^1 |\psi'(aa_1 - (1 - \alpha)b_1)|^q \, d\alpha \right)^{1/(q)}
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{p+1} \right)^{1/(p)} \times \left(\int_0^1 [h(\alpha)|\psi'(a_1)|^q + (1 - h(\alpha))|\psi'(b_1)|^q] \, d\alpha \right)^{1/(q)}
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{p+1} \right)^{1/(p)} \times \left[|\psi'(b_1)|^q + [\psi'(a_1)]^q - |\psi'(b_1)|^q \right] \int_0^1 h(\alpha) \, d\alpha \right]^{1/(q)}.
\]
which completes the proof.

Remark 5. If we take $h(a) = \alpha$ in Theorem 8, we obtain ([32], Theorem 6).

\[
\frac{\psi(a_i) + \psi(b_i)}{2} + \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi'(k) - \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\frac{CF}{a_i} \psi(k) + \left(\frac{CF}{b_i} \psi(k) \right) \right) \right]
\]
\[
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{2} \right)^{1/(1/q)} \times \left[\left(\frac{\psi'(b_1)}{2} \right)^{1/(1/q)} + \left[|\psi'(a_1)|^q - |\psi'(b_1)|^q \right] \int_0^1 |1 - 2a| h(\alpha) d\alpha \right]^{(1/q)}
\]

where $k \in [a_1, b_1]$, and $B(\sigma) > 0$ is a normalization function.

Proof. Assuming $q > 1$, using Lemma 2 and the power mean inequality and modified h-convexity of $|\psi'|^q$, we get

\[
\frac{\psi(a_i) + \psi(b_i)}{2} + \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi'(k) - \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\frac{CF}{a_i} \psi(k) + \left(\frac{CF}{b_i} \psi(k) \right) \right) \right]
\]
\[
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{2} \right)^{1/(1/q)} \times \left[\left(\frac{\psi'(b_1)}{2} \right)^{1/(1/q)} + \left[|\psi'(a_1)|^q - |\psi'(b_1)|^q \right] \int_0^1 |1 - 2a| h(\alpha) d\alpha \right]^{(1/q)}
\]

Now, we will prove Theorems 8 and 9 by Hölder–Iscan and improved power mean integral inequality, respectively. Then, we will show that the results we have obtained in these theorems gives better approximation of Theorems 8 and 9, respectively.

Remark 6

(1) Under the assumptions of Theorem 9 with $q = 1$, we get conclusion of Theorem 7

(2) If we take $h(\alpha) = \alpha$ and $q = 1$ in Theorem 9, we obtain ([32], Theorem 5)
\[
\left| \frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1-\sigma)}{\sigma(b_1-a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1-a_1)} \left[\left(C_F I_a^{\sigma} \psi \right) (k) + \left(C_F I_b^{\sigma} \psi \right) (k) \right] \right|
\]
\[
\leq \frac{b_1-a_1}{2} \left(\frac{1}{2(p+1)} \right)^{(1/p)} \left(\frac{\left| \psi'(b_1) \right|^q}{2} + \left[\left| \psi'(a_1) \right|^q - \left| \psi'(b_1) \right|^q \right] \int_0^1 (1-\alpha)h(\alpha) d\alpha + \left| \psi'(b_1) \right|^q \int_0^1 (1-\alpha)h(\alpha) d\alpha \right) \left(\int_0^1 |(1-\alpha)\left(1-2\alpha \right)| d\alpha \right)^{(1/q)}
\]

where \(k \in [a_1, b_1] \), and \(B(\sigma) > 0 \) is a normalization function. Proof. Using Lemma 2, H"{o}lder–Isac integral inequality and modified \(h \)-convexity of \(|\psi'|^q \), we get

\[
\left| \frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1-\sigma)}{\sigma(b_1-a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1-a_1)} \left[\left(C_F I_a^{\sigma} \psi \right) (k) + \left(C_F I_b^{\sigma} \psi \right) (k) \right] \right|
\]
\[
\leq \frac{b_1-a_1}{2} \left(\frac{1}{2(p+1)} \right)^{(1/p)} \left(\frac{\left| \psi'(b_1) \right|^q}{2} + \left[\left| \psi'(a_1) \right|^q - \left| \psi'(b_1) \right|^q \right] \int_0^1 (1-\alpha)h(\alpha) d\alpha + \left| \psi'(b_1) \right|^q \int_0^1 (1-\alpha)h(\alpha) d\alpha \right) \left(\int_0^1 |(1-\alpha)\left(1-2\alpha \right)| d\alpha \right)^{(1/q)}
\]
which completes the proof.

\[\frac{\psi(a_i) + \psi(b_i)}{2} + \frac{2(1 - \sigma)}{\sigma(b_i - a_i)} \psi(k) - \frac{B(\sigma)}{\sigma(b_i - a_i)} \left[\left(\frac{\psi}{\sigma(a_i)} \left(\frac{\psi}{\sigma(b_i)} \right) (k) \right) \right] \]

\[\leq \frac{b_i - a_i}{4} \left(\frac{1}{p + 1} \right)^{(1/p)} \times \left[\left(\frac{\psi(a_i)}{q} + \frac{2}{3} \left(\frac{\psi(b_i)}{q} \right) \right)^{(1/q)} + \left(\frac{2}{3} \left(\frac{\psi(a_i)}{q} \right) + \left(\frac{\psi(b_i)}{q} \right) \right)^{(1/q)} \right]. \] (43)

Remark 7. The inequality (41) gives better results than inequality [35], and we have the following inequality:

\[\frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 (1 - \alpha) h(\alpha) d\alpha \]

\[+ \frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 ah(\alpha) d\alpha \]

\[\leq \frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 h(\alpha) d\alpha \] (44)

Proof. Using concavity of $\mu : [0, \infty) \rightarrow \mathbb{R}$, $\mu(x) = x^\lambda$, $0 < \lambda \leq 1$, we get

\[\frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 (1 - \alpha) h(\alpha) d\alpha \]

\[+ \frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 ah(\alpha) d\alpha \]

\[\leq \frac{b_i - a_i}{2} \left(\frac{1}{2p + 1} \right)^{(1/p)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 h(\alpha) d\alpha \] (45)

which completes the proof.

Theorem 11. Let $\psi : J \rightarrow \mathbb{R}$ be a positive differentiable function on J. If ψ^q is a modified h-convex function on interval $[a_i, b_i]$, $a_i, b_i \in J$ with $a_i < b_i$, $q \geq 1$, where $a_i, b_i \in J$ with $a_i < b_i$. If $\psi \in L_1[a_i, b_i]$ and $\sigma \in [0, 1]$, then the following inequality holds:

\[\left| \psi(a_i) + \psi(b_i) \right| + \frac{B(\sigma)}{\sigma(b_i - a_i)} \left(\frac{\psi}{\sigma(a_i)} + \frac{\psi}{\sigma(b_i)} \right)(k) \]

\[\leq \frac{b_i - a_i}{2} \left(\frac{1}{4} \right)^{(1/q)} \times \left[\frac{\left| \psi'(b_i) \right|}{q} + \frac{\left| \psi'(a_i) \right|}{q} - \left| \psi'(b_i) \right| \right] \int_0^1 (1 - \alpha) h(\alpha) d\alpha \] (46)
where \(k \in [a_1, b_1], \) and \(B(\sigma) > 0 \) is a normalization function.

Proof. Assuming \(q > 1 \) and using Lemma 2, improved power-mean integral inequality and modified \(h \)-convexity of \(|\psi|^q\), we get

\[
\frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\frac{CF^q\psi}{\sigma a_1}\right)(k) + \left(\frac{CF^q\psi}{\sigma b_1}\right)(k) \right]
\]

\[
\leq \frac{b_1 - a_1}{2} \int_0^1 |1 - 2\alpha| \psi'(aa_1 - (1 - \alpha)b_1) d\alpha
\]

\[
\leq \frac{b_1 - a_1}{2} \times \left(\int_0^1 |1 - 2\alpha| d\alpha \right)^{1-(1/q)} \left(\int_0^1 |1 - 2\alpha| \psi'(aa_1 - (1 - \alpha)b_1) d\alpha \right)^{(1/q)}
\]

\[
\leq \frac{b_1 - a_1}{2} \times \left(\int_0^1 |1 - 2\alpha| d\alpha \right)^{1-(1/q)} \left(\int_0^1 |1 - 2\alpha| \psi'(aa_1 - (1 - \alpha)b_1) d\alpha \right)^{(1/q)}
\]

\[
\leq \frac{b_1 - a_1}{2} \left(\int_0^1 |1 - 2\alpha| d\alpha \right)^{1-(1/q)} \left(\int_0^1 |1 - 2\alpha| \psi'(aa_1 - (1 - \alpha)b_1) d\alpha \right)^{(1/q)}
\]

For \(q = 1 \), we use the estimates of Theorem 7 which also follows step by step the above estimates. This completes the proof of theorem. □

Corollary 2. If we take \(h(\alpha) = \alpha \) in inequality (41), we get the following inequality:

\[
\left(\frac{\psi(a_1) + \psi(b_1)}{2} + \frac{2(1 - \sigma)}{\sigma(b_1 - a_1)} \psi(k) - \frac{B(\sigma)}{\sigma(b_1 - a_1)} \left[\left(\frac{CF^q\psi}{\sigma a_1}\right)(k) + \left(\frac{CF^q\psi}{\sigma b_1}\right)(k) \right] \right)
\]

\[
\leq \frac{b_1 - a_1}{8} \left[\left(\frac{|\psi'(a_1)|^q + 3|\psi'(b_1)|^q}{4} \right)^{(1/q)} + \left(\frac{3|\psi'(a_1)|^q + |\psi'(b_1)|^q}{4} \right)^{(1/q)} \right]
\]
Remark 8. Inequality (46) gives better results than inequality (39), and we have the following inequality:

\[
\frac{b_1 - a_1}{2} \left(\frac{1}{4} \right)^{1 - (1/q)} \times \left[\frac{\left| \psi' \left(b_1 \right) \right|^q}{4} + \left| \left[\psi' \left(a_1 \right) \right]^q - \left| \psi' \left(b_1 \right) \right|^q \right| \right] \int_0^1 (1 - \alpha) |1 - 2\alpha| h(\alpha) d\alpha \right]^{(1/q)}
\]

\[
+ \frac{b_1 - a_1}{2} \left(\frac{1}{4} \right)^{1 - (1/q)} \times \left[\frac{\left| \psi' \left(b_1 \right) \right|^q}{4} + \left| \left[\psi' \left(a_1 \right) \right]^q - \left| \psi' \left(b_1 \right) \right|^q \right| \right] \int_0^1 a |1 - 2\alpha| h(\alpha) d\alpha \right]^{(1/q)}
\]

\[
\leq \frac{b_1 - a_1}{2} \left(\frac{1}{2} \right)^{1 - (1/q)} \times \left[\frac{\left| \psi' \left(b_1 \right) \right|^q}{2} + \left| \left[\psi' \left(a_1 \right) \right]^q - \left| \psi' \left(b_1 \right) \right|^q \right| \right] \int_0^1 (1 - 2\alpha| h(\alpha) d\alpha \right]^{(1/q)}
\]

which completes the proof.

\[\square\]

4. APPLICATION TO MEANS

For two positive numbers \(a_1 > 0\) and \(b_1 > 0\), define

\[
A(a_1, b_1) = \frac{a_1 + b_1}{2},
\]

\[
L_p = L_p(a_1, b_1) = \left\{ \begin{array}{cl}
\left(\frac{b_1^{p+1} - a_1^{p+1}}{(p+1)(b_1 - a_1)} \right)^{(1/p)} & , a_1 \neq b_1, p \in \mathbb{R}, \{1, 0\}, \\
a_1 & , a_1 = b_2.
\end{array} \right.
\]

These means are, respectively, called the arithmetic and \(p\)-logarithmic means of two positive numbers \(a_1\) and \(b_1\).

Proposition 1. Let \(a_1, b_1 \in \mathbb{R} \cup \{0, \infty\}\) with \(a_1 < b_1\), then the following inequality holds:

\[
\left| A^n(a_1, b_1) - L^n_p(a_1, b_1) \right| \leq \frac{n(b_1 - a_1)}{2} \left[\frac{b_1^{n-1} - a_1^{n-1}}{2} + \left| b_1^{n-1} - |b_1^{n-1}| \right| \right] \int_0^1 (1 - 2\alpha| h(\alpha) d\alpha \right]^{(1/q)}
\]
Proof. In Theorem 7, if we set $\psi(x) = x^n$, where n is an even number with $\sigma = 1$ and $B(\sigma) = B(1) = 1$, we obtain the required result. □

5. Conclusion

Hermite–Hadamard-type inequalities for modified h-convex functions via Caputo–Fabrizio integral operator are derived. Some new and interesting integral inequalities involving Caputo–Fabrizio fractional integral operator are also obtained for modified h-convex functions. Many existing results in literature become the particular cases for these results as mentioned in remarks.

Data Availability

All data required for this paper are included within the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

All authors contributed equally to this paper.

References

[1] F. Cesarone, M. Caputo, and C. Cametti, “Memory formalism in the passive diffusion across a biological membrane,” *Journal of Membrane Science*, vol. 250, pp. 79–84, 2004.

[2] M. Caputo and C. Cametti, “Diffusion with memory in two cases of biological interest,” *Journal of Theoretical Biology*, vol. 254, no. 3, pp. 697–703, 2008.

[3] M. Caputo, "Modeling social and economic cycles," in *Alternative Public Economics*, F. Forte, P. Navarra, and R. Muddam, Eds., Elgar, Cheltenham, UK, 2014.

[4] G. Jumarie, "New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations," *Mathematical and Computer Modelling*, vol. 44, no. 3-4, pp. 231–254, 2006.

[5] G. Iaffaldano, M. Caputo, and S. Martino, "Experimental and theoretical memory diffusion of water in sand," *Hydrology and Earth System Sciences*, vol. 10, no. 1, pp. 93–100, 2006.

[6] M. El Shaed, *Fractional Calculus Model of Semilunar Heart Valve Vibrations*, International Mathematica Symposium, London, UK, 2003.

[7] R. L. Magin, *Fractional Calculus in Bio-Engineering*, Begell House Inc. Publishers, Danbury, USA, 2006.

[8] Z. Temur, "Kalanov Vector calculus and Maxwell’s equations: logic errors in mathematics and electrodynamics," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 343–355, 2020.

[9] E. Khoshrouye Ghiassi and S. Noeiaghdam, "Truncating the series expansion for unsteady velocity-dependent Eyring-Powell fluid," *Engineering and Applied Science Letter*, vol. 3, no. 4, pp. 28–34, 2020.

[10] S. M. Kang, G. Farid, W. Nazee, and B. Tariq, "Hadamard and FejérHadamard inequalities for extended generalized fractional integrals involving special functions," *Journal of Inequalities and Applications*, vol. 2018, no. 1, p. 119, 2018.

[11] Y. C. Kwun, G. Farid, S. Ullah, W. Nazee, K. Mahreen, and S. M. Kang, "Inequalities for a unified integral operator and associated results in fractional calculus," *IEEE Access*, vol. 7, pp. 126283–126292, 2019.

[12] Y. C. Kwun, M. S. Saleem, M. Ghafoor, W. Nazee, and S. M. Kang, "Hermite-Hadamard-type inequalities for functions whose derivatives are σ-convex via fractional integrals," *Journal of Inequalities and Applications*, vol. 2019, no. 1, pp. 1-16, 2019.

[13] N. Saba, B. Ali, and A. Boussayoud, "Complete homogeneous symmetric functions of Gauss Fibonacci polynomials and bivariate Pell polynomials," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 179–185, 2020.

[14] K. Mondoboi Lélén, T. Alowou-Egnim, G. Ngniamessan, and T. Kokou, "Second mixed problem for an Euler-PoissonDarboux equation with Dirac potential," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 174–178, 2020.

[15] M. G. Sobamowo, "Transient free convection heat and mass transfer of Casson nanofluid over a vertical porous plate subjected to magnetic field and thermal radiation," *Engineering and Applied Science Letters*, vol. 3, no. 4, pp. 35–54, 2020.

[16] R. Hassan, M. El-Agamy, M. S. A. Latif, and H. Nour, "On Backlund transformation of Riccati equation method and its application to nonlinear partial differential equations and differential-difference equations," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 56–62, 2020.

[17] S. A. Salawu, M. G. Sobamowo, M. G. Sobamowo, and O. M. Sadiq, "Dynamic analysis of non-homogenous varying thickness rectangular plates resting on Pasternak and Winkler foundations," *Engineering and Applied Science Letters*, vol. 3, no. 1, pp. 1–20, 2020.

[18] Z. Bekri, S. Benaicha, and S. Benaicha, "Positive solutions for boundary value problem of sixth-order elastic beam equation," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 9–17, 2020.

[19] A. D. Oguz and F. S. Topal, "Existence result for a singular semipositone dynamic system on time scales," *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 86–97, 2020.

[20] J. Hadamard, "Etude sur les proprietes des fonctions entieres en particulier dune fonction consideree par Riemann," *Journal de Mathématiques Pures et Appliquées*, vol. 58, pp. 171–215, 1893.
[21] G. Farid, W. Nazeer, M. Saleem, S. Mehmood, and S. Kang, "Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications," Mathematics, vol. 6, no. 11, p. 248, 2018.

[22] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, "Generalized riemann-liouville k-fractional integrals associated with ostrowski type inequalities and error bounds of hadamard inequalities," IEEE Access, vol. 6, pp. 64946–64953, 2018.

[23] X. Yang, G. Farid, G. Farid, W. Nazeer, Y.-M. Chu, and C. Dong, "Fractional generalized hadamard and fejér-hadamard inequalities for," AIMS Mathematics, vol. 5, no. 6, pp. 6325–6340, 2020.

[24] S. M. Kang, G. Farid, W. Nazeer, and S. Mehmood, "(h- m)-convex functions and associated fractional Hadamard and FejHadamard inequalities via an extended generalized Mittag-Leffler function," Journal of Inequalities and Applications, vol. 2019, no. 1, pp. 1–10, 2019.

[25] S. Mehmood, G. Farid, K. A. Khan, and M. Yussouf, "New Fractional Hadamard and Fejr-Hadamard inequalities associated with exponentially (h, m)-convex functions," Engineering and Applied Science Letter, vol. 3, no. 2, pp. 9–18, 2020.

[26] E. Ul Haq, M. Ali, and A. S. Khan, "On the solution of fractional Riccati differential equations with variation of parameters method," Engineering and Applied Science Letter, vol. 3, no. 3, pp. 1–9, 2020.

[27] J. S. S. Muhammad, "Uniformity of dynamic inequalities constituted on time Scales," Engineering and Applied Science Letter, vol. 3, no. 4, pp. 19–27, 2020.

[28] G. Toader, Some generalizations of convexity, pp. 329–338, Proc. Colloqu. Approx. Optim., Cluj-Napoca, Romania, 1984.

[29] T. Abdeljawad and D. Baleanu, "On fractional derivatives with exponential kernel and their discrete versions," Reports on Mathematical Physics, vol. 80, no. 1, pp. 11–27, 2017.

[30] T. Abdeljawad, "Fractional operators with exponential kernels and a Lyapunov type inequality," Advances in Difference Equations, vol. 2017, no. 1, p. 313, 2017.

[31] S. S. Dragomir and R. P. Agarwal, "Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula," Applied Mathematics Letters, vol. 11, pp. 91–95, 1998.

[32] M. Gurbuz, A. O. Akdemir, S. Rashid, and E. Set, "Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities," Journal of Inequalities and Applications, vol. 2020, 172 pages, 2020.

[33] İ. İmdat, "Is can, New refinements for integral and sum forms of Holder inequality," Journal of Inequalities and Applications, vol. 2019, no. 1, 2019.

[34] M. Kadakal, I. I. can, and H. Kadakal, "On improvements of some integral inequalities," Research gate, 2019, Preprint.

[35] E. F. D. Goufo, S. Kumar, and S. B. Mugisha, "Similarities in a fifth-order evolution equation with and with no singular kernel," Chaos, Solitons & Fractals, vol. 130, Article ID 109467, 2020.