DIRICHLET’S AND THOMSON’S PRINCIPLES FOR NON-SELFADJOINT ELLIPTIC OPERATORS WITH APPLICATION TO NON-REVERSIBLE METASTABLE DIFFUSION PROCESSES.

C. LANDIM, M. MARIANI, I. SEO

Abstract. We present two variational formulae for the capacity in the context of non-selfadjoint elliptic operators. The minimizers of these variational problems are expressed as solutions of boundary-value elliptic equations. We use these principles to provide a sharp estimate for the transition times between two different wells for non-reversible diffusion processes. This estimate permits to describe the metastable behavior of the system.

1. Introduction

This article is divided in two parts. In the first one, we present two variational formulae which extend the classical Dirichlet’s and Thomson’s principles to non-selfadjoint elliptic operators. In the second one, we use these formulae to describe the metastable behavior of a non-reversible diffusion process in a double-well potential field.

Fix a smooth, bounded, domain (open and connected) $\Omega \subset \mathbb{R}^d$, $d \geq 2$, and a smooth function $f: \mathbb{R}^d \to \mathbb{R}$. Denote by Ω_f the set of functions $v: \Omega \to \mathbb{R}$ such that $v = f$ on $\partial \Omega$, the boundary of Ω. The classical Dirichlet’s principle \cite{15, 1} states that the energy

$$\int_\Omega \| \nabla u(x) \|^2 \, dx$$

is minimized on Ω_f by the harmonic function on Ω which takes the value f at the boundary, that is, by the solution of

$$\Delta u = 0 \text{ on } \Omega \text{ and } u = f \text{ on } \partial \Omega. \quad (1.1)$$

When $\Omega = D \setminus \overline{B}$, where $B \subset D \subset \mathbb{R}^d$ are smooth domains, and $f = 1$, 0 on B, D^c, respectively, the minimal energy is called the capacity. In electrostatics, it corresponds to the total electric charge on the conductor ∂B held at unit potential and grounded at D^c. It is denoted by $\text{cap}_D(B)$ and can be represented, by the divergence theorem, as

$$\text{cap}_D(B) = - \int_{\partial B} \frac{\partial h}{\partial n_B} \, d\sigma, \quad (1.2)$$

where h is the harmonic function which solves \cite{1.1}, n_B is the outward normal vector to ∂B, and σ the surface measure at ∂B.

Key words and phrases. Non-reversible diffusions, Potential theory, Metastability, Dirichlet’s principle, Thomson principle, Eyring-Kramers formula.
These results have long been established for self-adjoint operators of the form
\[(Lu)(x) = e^{V(x)} \nabla \cdot (e^{-V(x)} S(x) \nabla u(x)),\]
provided \(S(x), \ x \in \mathbb{R}^d\), are smooth, positive-definite, symmetric matrices, and \(V\) is a smooth potential. They have been extended, more recently, by Pinsky \([20, 22]\) to the case in which the operator \(L\) is not self-adjoint. In this situation, the minimization formula for the capacity, mentioned above, has to be replaced by a minmax problem.

The first main result of this article provides two variational formulae for the capacity \([1,2]\) in terms of divergence-free flows. In contrast with the minmax formulae, the first optimization problem is expressed as an infimum, while the second one is expressed as a supremum, simplifying the task of obtaining lower and upper bounds for the capacity.

Analogous Dirichlet’s and Thomson’s principles were obtained by Gaudillièr and Landim \([13]\) (the Dirichlet’s principle) and by Slowik \([24]\) (the Thomson principle) for continuous-time Markov chains.

In the second part of the article, we use the formulae for the capacity to examine the metastable behavior of a non-reversible diffusion in a double well potential.

Let \(U : \mathbb{R}^d \rightarrow \mathbb{R}\) be a smooth, double-well potential which diverges at infinity, and let \(M\) be a non-symmetric, positive-definite matrix. We impose in Section 5 further assumptions on \(U\). Denote by \(M^T\) the transpose of \(M\) and by \(S = (M + M^T)/2\) its symmetric part. Consider the diffusion \(X_t^\epsilon, \ \epsilon > 0\), described by the SDE
\[dX_t^\epsilon = -M(\nabla U)(X_t^\epsilon) \, dt + \sqrt{2\epsilon} \, \mathbb{K} \, dW_t, \tag{1.3}\]
where \(W_t\) is a standard \(d\)-dimensional Brownian motion, and \(\mathbb{K}\) is the symmetric, positive-definite square root of \(S\), i.e., \(S = \mathbb{K}\mathbb{K}\).

Assume that \(U\) has two local minima, denoted by \(m_1, m_2\), separated by a single saddle point \(\sigma\), and that \(U(m_2) \leq U(m_1)\). The stationary state of \(X_t^\epsilon\), given by \(\mu_\epsilon(dx) \sim \exp\{-U(x)/\epsilon\} \, dx\), is concentrated in a neighborhood of \(m_2\) when the previous inequality is strict.

If \(X_t^\epsilon\) starts from a neighborhood of \(m_1\), it remains there for a long time in the small noise limit \(\epsilon \rightarrow 0\) until it overcomes the potential barrier and jumps to a neighborhood of \(m_2\) through the saddle point \(\sigma\). Denote by \(\tau\) the hitting time of a neighborhood of \(m_2\). The asymptotic behavior of the mean value of \(\tau \epsilon\) as \(\epsilon \rightarrow 0\) has been the object of many studies.

The Arrhenius’ law \([3]\) asserts that the mean value is logarithmic equivalent to the potential barrier:
\[\lim_{\epsilon \rightarrow 0} \epsilon \log \mathbb{E}_{m_1}[\tau_\epsilon] = U(\sigma) - U(m_1) =: \Delta U,\]
where \(\mathbb{E}_{m_1}\) represents the expectation of the diffusion \(X_t^\epsilon\) starting from \(m_1\). The sub-exponential corrections, known as the Eyring-Kramers formula \([10, 16]\), have been computed when the matrix \(M\) is symmetric and the potential non-degenerate at the critical points. Assuming that the Hessian of the potential is positive definite at \(m_1\) and that it has a unique negative eigenvalue at \(\sigma\), denoted by \(-\lambda\), while all the others are strictly positive, the sub-exponential prefactor is given by
\[\mathbb{E}_{m_1}[\tau_\epsilon] = \left[1 + o_\epsilon(1)\right] \frac{2\pi}{\lambda} \frac{\sqrt{-\det [(\text{Hess} \ U)(\sigma)]}}{\sqrt{\det [(\text{Hess} \ U)(m_1)]}} e^{\Delta U/\epsilon},\]
where \(o_\epsilon(1) \rightarrow 0\) as \(\epsilon\) vanishes.

This estimate appears in articles published in the 60’s. A rigorous proof was first obtained by Bovier, Eckhoff, Gayrard, and Klein \([8]\) with arguments from potential theory, and right after by Helffer, Klein and Nier \([13]\) through Witten Laplacian...
analysis. We refer to Berglund [6] and Bouchet and Reygner [7] for an historical overview and further references.

Recently, Bouchet and Reygner [7] extended the Eyring-Kramers formula to the non-reversible setting. They showed that in this context the negative eigenvalue $-\lambda$ has to be replaced by the unique negative eigenvalue of $(\text{Hess } U)(\sigma) M$.

We present below a rigorous proof of this result, based on the variational formulae obtained for the capacity in the first part of the article, and on the approach developed by Bovier, Eckhoff, Gayrard, and Klein [8] in the reversible case. This estimate permits to describe the metastable behavior of the diffusion X_t^e in the small noise limit. Analogous results have been derived for random walks in a potential field in [17, 18].

2. Notation and Results

We start by introducing the main assumptions. We frequently refer to [12] for results on elliptic equations and to [11, 22] for results on diffusions.

2.1. A Dirichlet’s and a Thomson’s principle. Fix $d \geq 2$, and denote by $C^k(\mathbb{R}^d)$, $0 \leq k \leq \infty$, the space of real functions on \mathbb{R}^d whose partial derivatives up to order k are continuous. Let $M_{m,n}$, $1 \leq m, n \leq d$, be functions in $C^2(\mathbb{R}^d)$ for which there exists a finite constant C_0 such that

$$\sum_{m,n=1}^d M_{m,n}(x)^2 \leq C_0 \quad \text{for all } x \in \mathbb{R}^d. \quad (2.1)$$

Denote by $M(x)$ the matrix whose entries are $M_{m,n}(x)$. Assume that the matrices $M(x)$, $x \in \mathbb{R}^d$, are uniformly positive-definite: There exist $0 < \lambda < \Lambda$ such that for all $x, \xi \in \mathbb{R}^d$,

$$\lambda \|\xi\|^2 \leq \xi \cdot M(x) \xi \leq \Lambda \|\xi\|^2, \quad (2.2)$$

where $\eta \cdot \xi$ represents the scalar product in \mathbb{R}^d, and $\|x\|$ the Euclidean norm.

Let V be a function in $C^4(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^d} \exp\{-V(x)\} \, dx < \infty$, and assume, without loss of generality, that $\int_{\mathbb{R}^d} \exp\{-V(x)\} \, dx = 1$. Denote by μ the probability measure on \mathbb{R}^d defined by $\mu(dx) = \exp\{-V(x)\}dx$.

Denote by \mathcal{L} the differential operator which acts on functions in $C^2(\mathbb{R}^d)$ as

$$(\mathcal{L}f)(x) = e^{V(x)} \nabla \cdot \{ e^{-V(x)} M(x) (\nabla f)(x) \}. \quad (2.3)$$

In this formula, ∇g represents the gradient of a function $g: \mathbb{R}^d \to \mathbb{R}$ and $\nabla \cdot \Phi$ the divergence of a vector field $\Phi: \mathbb{R}^d \to \mathbb{R}^d$. The previous formula can be rewritten as

$$(\mathcal{L}f)(x) = \sum_{j=1}^d b_j(x) \partial_{x_j} f(x) + \sum_{j,k=1}^d S_{j,k}(x) \partial_{x_j,x_k} f(x), \quad (2.4)$$

where the drift $b = (b_1, \ldots, b_d)$ is given by

$$b_j(x) = \sum_{k=1}^d \left\{ \partial_{x_k} M_{k,j}(x) - (\partial_{x_k} V)(x) M_{k,j}(x) \right\}, \quad (2.5)$$

and where $S(x) = (1/2)[M(x) + M^t(x)]$ represents the symmetric part of the matrix $M(x)$, $M^t(x)$ being the transpose of $M(x)$.
Denote by \(B(r) \subset \mathbb{R}^d \), \(r > 0 \), the open ball of radius \(r \) centered at the origin, and by \(\partial B(r) \) its boundary. We assume that
\[
\lim_{n \to \infty} \inf_{z \in \partial B(n)} V(z) = \infty ,
\]
and that there exist \(r_1 > 0 \), \(c_1 > 0 \) such that
\[
(LV)(x) \leq -c_1
\]
for all \(x \) such that \(\|x\| \geq r_1 \). By (2.4), this last condition can be rewritten as
\[
\sum_{j,k=1}^d (\partial_{x_j} M_{j,k})(x) (\partial_{x_k} V)(x) + \sum_{j,k=1}^d S_{j,k}(x) \partial_{x_j,x_k}^2 V(x) + c_1
\]
\[
\leq (\nabla V)(x) \cdot S(x)(\nabla V)(x)
\]
for all \(x \) such that \(\|x\| \geq r_1 \).

It follows from the first condition in (2.6) that \(V \) is bounded below by a finite constant: there exists \(c_2 \in \mathbb{R} \) such that \(V(y) \geq c_2 \) for all \(y \in \mathbb{R}^d \). Of course, \(M(x) = I \), where \(I \) represents the identity matrix, and \(V(x) = \|x\|^2 + c \) satisfy all previous hypotheses for an appropriate constant \(c \).

The regularity of \(M \) and \(V \), and assumptions (2.1), (2.2) are sufficient to guarantee the existence of smooth solutions of some Dirichlet problems. By [22, Theorem 6.1.3], these conditions together with (2.6), (2.7) yield that the process whose generator is given by \(L \) is positive recurrent.

Elliptic equations. Fix a domain (open and connected set) \(\Omega \subset \mathbb{R}^d \). Denote by \(C^k(\Omega) \), \(k \geq 0 \), the space of functions on \(\Omega \) whose partial derivatives up to order \(k \) are continuous, and by \(C^{k,\alpha}(\Omega) \), \(0 < \alpha < 1 \), the space of function in \(C^k(\Omega) \) whose \(k \)-th order partial derivatives are Hölder continuous with exponent \(\alpha \).

Denote by \(\overline{\Omega} \) the closure of \(\Omega \) and by \(\partial \Omega \) its boundary. The domain \(\Omega \) is said to have a \(C^{k,\alpha} \)-boundary, if for each point \(x \in \partial \Omega \), there is a ball \(B \subset \mathbb{R}^d \) centered at \(x \) and a one-to-one map \(\psi \) from \(B \) onto \(\mathcal{C} \subset \mathbb{R}^d \) such that
\[
\psi(B \cap \Omega) \subset \{ z \in \mathbb{R}^d : z_d > 0 \}, \quad \psi(B \cap \partial \Omega) \subset \{ z \in \mathbb{R}^d : z_d = 0 \},
\]
\[
\psi \in C^{k,\alpha}(B), \quad \text{and} \quad \psi^{-1} \in C^{k,\alpha}(\mathcal{C}).
\]
Denote by \(L^2(\Omega) \) the space of functions \(f : \Omega \to \mathbb{R} \) endowed with the scalar product \(\langle \cdot, \cdot \rangle_\mu \) given by
\[
\langle f, g \rangle_\mu = \int_\Omega f g \, d\mu ,
\]
and by \(W^{1,2}(\Omega) \) the Hilbert space of weakly differentiable functions endowed with the scalar product \(\langle f, g \rangle_1 \) given by
\[
\langle f, g \rangle_1 = \int_\Omega f g \, d\mu + \int_\Omega \nabla f \cdot \nabla g \, d\mu .
\]

Fix \(0 < \alpha < 1 \), a function \(g \) in \(L^2(\Omega) \cap C^\alpha(\overline{\Omega}) \) and a function \(b \) in \(W^{1,2}(\Omega) \cap C^{2,\alpha}(\overline{\Omega}) \). Assume that \(\Omega \) has a \(C^{2,\alpha} \)-boundary. It follows from assumptions (2.1), (2.2) and Theorems 8.3, 8.8 and 9.19 in [22] that the Dirichlet boundary-value problem
\[
\begin{aligned}
(Lu)(x) &= -g(x) \quad x \in \Omega , \\
u(x) &= b(x) \quad x \in \partial \Omega .
\end{aligned}
\]

(2.8)
The sets $A \cup \sigma B$ are bounded domains of \mathbb{R}^d with $C^{2,\alpha}$-boundaries, for some $0 < \alpha < 1$, and finite perimeter, $\sigma(A) < \infty$, $\sigma(B) < \infty$. Moreover, $d(A, B) > 0$, and the set $\Omega = (A \cup B)^c$ is a domain.

Denote by $h_{A,B}$ the unique solution of the Dirichlet problem \[2.8\] with $\Omega = (A \cup B)^c$, $g = 0$, and h such that $h(x) = 1$, 0 if $x \in \partial A$, ∂B, respectively. The function $h_{A,B}$ is called the equilibrium potential between A and B. Similarly, denote by $h_{A,B}^*$ the solution to \[2.8\] with M replaced by its transpose M^\top and the same functions g and b.

The capacity between A and B, denoted by $\text{cap}(A, B)$, is defined as

$$
\text{cap}(A, B) = \int_{\partial A} \left[M(x) \nabla h_{A,B}(x) \cdot n_\Omega(x) e^{-V(x)} \sigma(dx)\right],
$$

where $\sigma(dx)$ represents the surface measure on the boundary $\partial \Omega$ and n_Ω represents the outward normal vector to $\partial \Omega$ (and, therefore, the inward normal vector to $\partial A \cup \partial B$). Since ∂A is the 1-level set of the equilibrium potential $h_{A,B}$ which, by the maximum principle, is bounded by 1. Therefore $\nabla h_{A,B} = c(x) n_\Omega(x)$ for some nonnegative scalar function $c: \partial A \to \mathbb{R}$, so that

$$
M(x) (\nabla h_{A,B})(x) \cdot n_\Omega(x) = S(x) (\nabla h_{A,B})(x) \cdot n_\Omega(x) \geq 0.
$$

The capacity can also be expressed as

$$
\text{cap}(A, B) = -\int_{\partial A} \frac{\partial h_{A,B}}{\partial v} e^{-V} d\sigma,
$$

where $v(x) = M^\top(x) n_A(x)$.

In Section 3 we develop a more systematic approach to the study of capacities, and we introduce here just the basic notation used in the Propositions 2.1, 2.2 below. For vector fields $\varphi: \Omega \to \mathbb{R}^d$ define the quadratic form

$$
\langle \varphi, \varphi \rangle = \int_\Omega \varphi(x) \cdot S(x)^{-1} \varphi(x) e^{V(x)} dx.
$$

Let $F = F_{A,B}$ be the Hilbert space of vector fields φ such that $\langle \varphi, \varphi \rangle < +\infty$ up to a.e. identification, with the scalar product induced by polarization. By assumption \[2.2\], $\varphi \in F$ if $\int_\Omega \|\varphi(x)\|^2 e^{V(x)} dx < \infty$.

For $c \in \mathbb{R}$, let $F^{(c)}$ be the space of vector fields $\varphi \in F$ of class $C^1(\overline{\Omega})$ such that

$$
\nabla \cdot \varphi(x) = 0 \quad \text{for} \ x \in \Omega,
$$

and

$$
-\int_{\partial A} \varphi(x) \cdot n_\Omega(x) \sigma(dx) = c = \int_{\partial B} \varphi(x) \cdot n_\Omega(x) \sigma(dx).
$$
The reason for the minus sign is due to the convention that $\mathbf{n}_\Omega(x)$ is the inward normal to $\partial \Omega$. The integrals over $\partial \Omega$, ∂B are well defined because φ is continuous, and \mathcal{A}, \mathcal{B} have finite perimeter. On the other hand, the integral over ∂B must be equal to minus the integral over $\partial \mathcal{A}$ because φ is divergence free on Ω.

For a function $f : \Omega \to \mathbb{R}$ in $C^2(\Omega) \cap W^{1,2}(\Omega)$, denote by Φ_f, Φ^*_f, Ψ_f the elements of \mathcal{F} given by

$$
\Psi_f = e^{-V \nabla f}, \quad \Phi_f = e^{-V \nabla f}, \quad \Phi^*_f = e^{-V \nabla f}.
$$

(2.13)

Denote by $C_{\mathcal{A}, \mathcal{B}}^{a,b}$, $a, b \in \mathbb{R}$ the set of bounded functions f in $C^2(\Omega) \cap W^{1,2}(\Omega)$ such that $f(x) = a, x \in \partial \mathcal{A}, f(y) = b, y \in \partial \mathcal{B}$.

Proposition 2.1 (Dirichlet’s Principle). Let \mathcal{A}, \mathcal{B} be two disjoint open subsets of \mathbb{R}^d satisfying Assumption S. Then,

$$
cap(\mathcal{A}, \mathcal{B}) = \inf_{f \in C_{\mathcal{A}, \mathcal{B}}^{a,b}} \inf_{\varphi \in F^{(0)}} \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle.
$$

(2.14)

The minimum is attained at $f = (1/2)(h_{\mathcal{A}, \mathcal{B}} + h_{\mathcal{A}, \mathcal{B}}^*)$, and $\varphi = \Phi_f - \Psi_{h_{\mathcal{A}, \mathcal{B}}}^*$.

Proposition 2.2 (Thomson principle). Let \mathcal{A}, \mathcal{B} be disjoint two open subsets of \mathbb{R}^d satisfying Assumptions S. Then,

$$
cap(\mathcal{A}, \mathcal{B}) = \sup_{f \in C_{\mathcal{A}, \mathcal{B}}^{a,b}} \sup_{\varphi \in F^{(1)}} \frac{1}{\langle \Phi_f - \varphi, \Phi_f - \varphi \rangle}.
$$

(2.15)

The maximum is attained at $f = (h_{\mathcal{A}, \mathcal{B}} - h_{\mathcal{A}, \mathcal{B}}^*)/2 \cap(\mathcal{A}, \mathcal{B})$, and $\varphi = \Phi_f - \Psi_{g_{\mathcal{A}, \mathcal{B}}}$, where $g_{\mathcal{A}, \mathcal{B}} = h_{\mathcal{A}, \mathcal{B}}/\cap(\mathcal{A}, \mathcal{B})$.

These principles can be extended to other contexts, provided that the underlying process admits a unique, stationary probability measure and that the sets \mathcal{A} and \mathcal{B} are recurrent and sufficiently regular. In particular, in Section 4 we establish these principles for non-reversible elliptic operators in compact manifolds without boundaries.

The article is organized as follows. In Sections 3 and 4 we prove Propositions 2.1 and 2.2 and an extension of these results to the context of elliptic operators in compact manifolds without boundaries. As an application of these results, in Section 5 we introduce a class of non-reversible metastable diffusion process and we provide a sharp estimate for the transition time between two wells, the so-called Eyring-Kramers formula. The proof of this estimate is given in Sections 6 and 7.

3. **Dirichlet’s and Thomson’s principles on Euclidean spaces**

Denote by $C([0, \infty), \mathbb{R}^d)$ the space of continuous functions ω from \mathbb{R}_+ to \mathbb{R}^d endowed with the topology of uniform convergence on bounded intervals. Let X_t, $t \geq 0$ be the one-dimensional projections: $X_t(\omega) = \omega(t), \omega \in C([0, \infty), \mathbb{R}^d)$. We sometimes represent X_t as $X(t)$.

It follows from the assumptions on \mathcal{M} and V, and from Theorems 1.10.4 and 1.10.6 that there exists a unique solution, denoted hereafter by $\{\mathbb{P}_x : x \in \mathbb{R}^d\}$, to the martingale problem associated to the generator \mathcal{L} introduced in (2.3). Moreover, the family $\{\mathbb{P}_x : x \in \mathbb{R}^d\}$ is strong Markov and possesses the Feller property. Expectation with respect to \mathbb{P}_x is expressed as \mathbb{E}_x.

The process X_t can be represented in terms of a stochastic differential equation. Denote by $\mathbb{K} : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ the square root of $S(x)$, in the sense that
\(\mathbb{K}(x)\) is a positive-definite, symmetric matrix such that \(\mathbb{K}(x)\mathbb{K}(x) = S(x)\). By [11, Lemma 6.1.1], the entries of \(\mathbb{K}\) inherit the regularity properties of \(S\): \(\mathbb{K}_{m,n}\) belongs to \(C^3(\mathbb{R}^d)\) for \(1 \leq m, n \leq d\). Recall the drift \(b(\cdot)\) from (2.5). Then, the process \(X_t\) is the unique solution of the stochastic differential equation

\[
dX_t = b(X_t) \, dt + \sqrt{2} \mathbb{K}(X_t) \, dB_t,
\]

where \(B_t\) stands for a \(d\)-dimensional Brownian motion.

In view of the regularity of \(M\) and \(V\) and conditions (2.6), (2.7), by [22, Theorem 6.1.3], the process \(X_t\) is positive recurrent. Furthermore, by [22, Theorem 4.9.6], \(\mathbb{E}[H_C] < \infty\) for all open sets \(C \subset \mathbb{R}^d\) and all \(x \notin C\). Finally, an elementary computation shows that the probability measure \(\mu\) is stationary.

The solutions of the elliptic equation (2.8) can be represented in terms of the equilibrium potential between \(A\) and \(B\), introduced just above (2.10), is given by

\[
h_{A,B}(x) = \mathbb{P}_x[H_A < H_B].
\]

3.1. Properties of the capacity. We present in this subsection some elementary properties of the capacity. We begin with an alternative formula for the capacity.

Lemma 3.1.
Recall that the capacity \(\text{cap}(A, B)\) was defined in (2.10). It holds

\[
\text{cap}(A, B) = \int_{\mathbb{R}^d} \nabla h_{A,B}(x) \cdot S(x) \, \nabla h_{A,B}(x) \, \mu(dx).
\]

Proof. Since the function \(h_{A,B}\) is harmonic on \(\Omega = (A \cup B)^c\), and since it is equal to 1 on the set \(\partial A\) and 0 on the set \(\partial B\), the capacity \(\text{cap}(A, B)\) can be written as

\[
\int_{\partial A} h_{A,B}(x) [M(x) \, \nabla h_{A,B}(x)] \cdot n_{\Omega}(x) \, e^{-V(x)} \sigma(dx)
+ \int_{\partial B} h_{A,B}(x) [M(x) \, \nabla h_{A,B}(x)] \cdot n_{\Omega}(x) \, e^{-V(x)} \sigma(dx)
- \int_{\Omega} h_{A,B}(x) \nabla \cdot [e^{-V(x)} M(x) \, \nabla h_{A,B}(x)] \, dx.
\]

Note that the function \(h_{A,B}\) belongs to \(C^{2+\alpha}(\overline{\Omega}) \cap W^{1,2}(\Omega)\) and the matrix \(S\) represents the symmetric part of the matrix \(M\). Hence, if we apply the divergence theorem at the third term in the previous expression, then the resulting boundary terms exactly coincide with the first two terms of the same expression, and we obtain that (3.3) equals

\[
\int_{\Omega} \nabla h_{A,B}(x) \cdot S(x) \, \nabla h_{A,B}(x) \, \mu(dx).
\]

As the equilibrium potential is constant in \(A \cup B\), we may replace in the last formula the integration domain \(\Omega\) to \(\mathbb{R}^d\), which completes the proof. \(\square\)
Since $h_{\mathcal{E},\mathcal{A}} = 1 - h_{\mathcal{A},\mathcal{B}}$, it follows from the previous lemma that the capacity is symmetric: for every disjoint subsets \mathcal{A}, \mathcal{B} of \mathbb{R}^d,
\[
\text{cap}(\mathcal{A}, \mathcal{B}) = \text{cap}(\mathcal{B}, \mathcal{A}).
\] (3.4)

Adjoint generator. Denote by \mathcal{L}^* the $L^2(\mu)$ adjoint of the generator \mathcal{L}, which acts on functions in $C^2(\mathbb{R}^d)$ as
\[
(\mathcal{L}^*f)(x) = e^{V(x)} \nabla \cdot \{e^{-V(x)} \mathcal{M}^\dagger(x) (\nabla f)(x)\}.
\]
Let \mathcal{S} be the symmetric part of the generator \mathcal{L}, defined as $\mathcal{S} = (1/2)(\mathcal{L} + \mathcal{L}^*)$ and acting on $C^2(\mathbb{R}^d)$ as $\mathcal{S}f = e^{V(x)} \nabla \cdot (e^{-V(x)} \nabla f)$.

Denote by $\text{cap}^*(\mathcal{A}, \mathcal{B})$ the capacity between the open sets \mathcal{A}, \mathcal{B} with respect to the adjoint generator \mathcal{L}^*. In view of (2.10), this capacity $\text{cap}^*(\mathcal{A}, \mathcal{B})$ is defined as
\[
\text{cap}^*(\mathcal{A}, \mathcal{B}) = \int_{\partial \mathcal{A}} [\mathcal{M}^\dagger(x) \nabla h_{\mathcal{A},\mathcal{B}}^*(x)] \cdot n_\Omega(x) e^{-V(x)} \sigma(dx),
\] (3.5)
where $h_{\mathcal{A},\mathcal{B}}^*: \mathbb{R}^d \to [0, 1]$, called the equilibrium potential between \mathcal{A} and \mathcal{B} for the adjoint generator, is the unique solution in $C^2(\overline{\Omega}) \cap W^{1,2}(\Omega)$ of the elliptic equation
\[
\begin{aligned}
(L^* u)(x) &= 0 \quad x \in \Omega, \\
u(x) &= \chi_\mathcal{A}(x) \quad x \in \partial \Omega,
\end{aligned}
\]
where $\chi_\mathcal{A}(\cdot)$ represents the indicator function of the set \mathcal{A}.

The next lemma states that the capacity between two disjoint subsets \mathcal{A}, \mathcal{B} of \mathbb{R}^d coincides with the capacity with respect to the adjoint process. Recall that we are assuming that \mathcal{A} and \mathcal{B} fulfill Assumption \mathcal{S}.

Lemma 3.2. For every open subsets \mathcal{A}, \mathcal{B} of \mathbb{R}^d,
\[
\text{cap}(\mathcal{A}, \mathcal{B}) = \text{cap}^*(\mathcal{A}, \mathcal{B}).
\]

Proof. As in the proof of Lemma 3.1 we may write $\text{cap}(\mathcal{A}, \mathcal{B})$ as
\[
\int_{\partial \mathcal{A}} h_{\mathcal{A},\mathcal{B}}^*(x) [\mathcal{M}(x) \nabla h_{\mathcal{A},\mathcal{B}}(x)] \cdot n_\Omega(x) e^{-V(x)} \sigma(dx)
\]
\[- \int_{\partial \mathcal{B}} h_{\mathcal{A},\mathcal{B}}^*(x) [\mathcal{M}(x) \nabla h_{\mathcal{A},\mathcal{B}}(x)] \cdot n_\Omega(x) e^{-V(x)} \sigma(dx)
\]
\[- \int_{\Omega} h_{\mathcal{A},\mathcal{B}}^*(x) \nabla \cdot [e^{-V(x)} \mathcal{M}(x) \nabla h_{\mathcal{A},\mathcal{B}}(x)] dx,
\] (3.6)

By the arguments presented in the proof of the previous lemma, and the divergence theorem, this expression is equal to
\[
\int_{\Omega} \nabla h_{\mathcal{A},\mathcal{B}}^*(x) \mathcal{M}(x) \nabla h_{\mathcal{A},\mathcal{B}}(x) \mu(dx) = \int_{\Omega} \nabla h_{\mathcal{A},\mathcal{B}}(x) \mathcal{M}^\dagger(x) \nabla h_{\mathcal{A},\mathcal{B}}^*(x) \mu(dx).
\]
By the divergence theorem once more, we obtain that this integral is equal to the sum (3.6), in which $\nabla h_{\mathcal{A},\mathcal{B}}$ and $\nabla h_{\mathcal{A},\mathcal{B}}^*$ are interchanged and $\mathcal{M}(x)$ is replaced by $\mathcal{M}^\dagger(x)$. We may remove the function $h_{\mathcal{A},\mathcal{B}}^*$ in the first line because it is equal to 1 on $\partial \mathcal{A}$. The second line vanishes because $h_{\mathcal{A},\mathcal{B}}^*$ is equal to 0 at $\partial \mathcal{B}$, and the third line vanishes because $h_{\mathcal{A},\mathcal{B}}$ is harmonic on Ω. This completes the proof of the lemma. \square
Recall from \[2.13\] the definition of the vector fields \(\Psi_f, \Phi_f, \Phi^*_f\). Note that for every function \(f, g\) in \(C^2(\Omega) \cap W^{1,2}(\Omega)\),
\[
\langle \Psi_f, \Psi_g \rangle = \int_{\Omega} (\nabla f)(x) \cdot \nabla (\nabla g)(x) \mu(dx).
\]

In particular, by Lemma \[3.1\]
\[
\text{cap}(A, B) = \langle \Psi_{h_{A,B}}, \Psi_{h_{A,B}} \rangle. \tag{3.7}
\]

On the other hand, for every function \(f, g\) in \(C^2(\Omega) \cap W^{1,2}(\Omega)\),
\[
\langle \Phi_f, \Psi_g \rangle = \int_{\Omega} (\nabla g)(x) \cdot M(x) (\nabla f)(x) \mu(dx),
\]
\[
\langle \Phi^*_f, \Psi_g \rangle = \int_{\Omega} (\nabla g)(x) \cdot M(x) (\nabla f)(x) \mu(dx). \tag{3.8}
\]

Proof of Proposition \[2.1\] We first claim that for all \(f \in C_{A,B}^{1,0}, \varphi \in \mathcal{F}^{(0)}\),
\[
\langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle = \text{cap}(A, B). \tag{3.9}
\]

Indeed, on the one hand, for any \(f \in C_{A,B}^{1,0}, \varphi \in \mathcal{F}^{(0)}\), by definition of \(\Psi_f\), by the divergence theorem, and since \(f\) is bounded and belongs to \(W^{1,2}(\Omega)\), and since \(\int_{\Omega} \|\varphi(x)\|^2 \exp\{V(x)\} dx\) is finite, \(\langle \Psi_f, \varphi \rangle\) is equal to
\[
\int_{\Omega} \varphi(x) \cdot (\nabla f)(x) dx = \int_{\Omega} f(x) \varphi(x) \cdot n_{\Omega}(x) \sigma(dx) - \int_{\Omega} (\nabla \cdot \varphi)(x) f(x) dx.
\]
The second integral on the right-hand side vanishes because \(\varphi\) is divergence free in \(\Omega\), while the first integral vanishes because \(f\) is constant on each set \(\partial A, \partial B\) and the vector field \(\varphi\) belongs to \(\mathcal{F}^{(0)}\).

Therefore, by \[3.8\],
\[
\langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle = \langle \Phi_f, \Psi_{h_{A,B}} \rangle = \int_{\Omega} (\nabla f)(x) \cdot M(x) (\nabla h_{A,B})(x) e^{-V(x)} dx.
\]

By the divergence theorem, the previous expression is equal to
\[
- \int_{\Omega} f(x) (\nabla h_{A,B})(x) \mu(dx) + \int_{\partial \Omega} f(x) e^{-V(x)} M(x) (\nabla h_{A,B})(x) \cdot n_{\Omega}(x) \sigma(dx).
\]
The first integral vanishes because \(h_{A,B}\) is harmonic on \(\Omega\). Since \(f\) belongs to \(C_{A,B}^{1,0}\), we may first restrict the second integral to \(\partial A\), and then remove the function \(f\) to conclude that
\[
\langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle = \int_{\partial A} e^{-V(x)} M(x) (\nabla h_{A,B})(x) \cdot n_{\Omega}(x) \sigma(dx),
\]
which proves claim \[3.9\] in view of \[2.10\].

By \[3.9\] and by the Cauchy-Schwarz inequality \(\langle \varphi, \psi \rangle^2 \leq \langle \varphi, \varphi \rangle \langle \psi, \psi \rangle\), for every \(f \in C_{A,B}^{1,0}, \varphi \in \mathcal{F}^{(0)}\),
\[
\text{cap}(A, B)^2 = \langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle^2 \leq \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \langle \Psi_{h_{A,B}}, \Psi_{h_{A,B}} \rangle.
\]

By \[3.7\], the last term is equal to \(\text{cap}(A, B)\), which proves that
\[
\langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \geq \text{cap}(A, B)
\]
for all \(f \in C_{A,B}^{1,0}\) and \(\varphi \in \mathcal{F}^{(0)}\).
To complete the proof of the proposition, it remains to show that \(\varphi = \Phi_f - \Psi_{h_{A,B}} \) belongs to \(\mathcal{F}^{(0)} \) for \(f = (1/2)(h_{A,B} + h^*_{A,B}) \). This is indeed the case. Recall that \(h_{A,B}, h^*_{A,B} \) are bounded and belong to \(C^2(\Omega) \cap W^{1,2}(\Omega) \). On the one hand, by definition of \(f \), for every \(x \in \Omega \),
\[
\nabla \cdot [\Phi_f - \Psi_{h_{A,B}}] = e^{-V(x)}(\mathcal{L}f)(x) - e^{-V(x)}(Sh_{A,B})(x),
\]
where \(\mathcal{S} = (1/2)(\mathcal{L} + \mathcal{L}^*) \). Since \(f = (1/2)(h_{A,B} + h^*_{A,B}) \) by definition of \(\mathcal{S} \), this expression is equal to
\[
\frac{1}{2} e^{-V(x)}(\mathcal{L}^* h^*_{A,B})(x) - \frac{1}{2} e^{-V(x)}(\mathcal{L} h_{A,B})(x) = 0.
\]
On the other hand, by definition of \(f \)
\[
\int_{\partial A} [\Phi_f(x) - \Psi_{h_{A,B}}(x)] \cdot n_\Omega(x) \sigma(dx)
= \frac{1}{2} \int_{\partial A} e^{-V(x)} M^\top(x) (\nabla h^*_{A,B})(x) \cdot n_\Omega(x) \sigma(dx)
- \frac{1}{2} \int_{\partial A} e^{-V(x)} M(x) (\nabla h_{A,B})(x) \cdot n_\Omega(x) \sigma(dx).
\]
By definition of the capacities and by Lemma 3.2, this expression is equal to \((1/2)\{\text{cap}(A, B) - \text{cap}^*(A, B)\} = 0 \). As \(\Phi_f - \Psi_{h_{A,B}} \) is divergence free on \(\Omega \), the same identity holds at \(\partial B \), which concludes the proof of the proposition. \(\square \)

Proof of Proposition 2.2. We claim that for every \(f \in C^{0,0}_{A,B} \), \(\varphi \in \mathcal{F}^{(1)} \),
\[
\langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle = -1.
\]
Indeed,
\[
\langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle = \int_{\Omega} (\nabla f)(x) M(x) (\nabla h_{A,B})(x) \mu(dx) - \int_{\Omega} \varphi(x) (\nabla h_{A,B})(x) dx.
\]
By the divergence theorem, this expression is equal to
\[
- \int_{\Omega} f(x) (\mathcal{L} h_{A,B})(x) \mu(dx) + \int_{\partial \Omega} f(x) M(x) (\nabla h_{A,B})(x) \cdot n_\Omega(x) e^{-V(x)} \sigma(dx)
+ \int_{\partial \Omega} (\nabla \cdot \varphi)(x) h_{A,B}(x, \partial \Omega) dx - \int_{\partial \Omega} h_{A,B}(x) \varphi(x) \cdot n_\Omega(x) \sigma(dx).
\]
The integrals over \(\Omega \) vanish because \(h_{A,B} \) is harmonic and the vector field \(\varphi \) is divergence free. The second integral in the first line also vanishes because \(f \) belongs to \(C^{0,0}_{A,B} \). The last integral is equal to \(-1 \) because \(\varphi \) belongs to \(\mathcal{F}^{(1)} \). This proves claim \(\text{(3.10)} \).

Therefore, by the Cauchy-Schwarz inequality,
\[
1 = \langle \Phi_f - \varphi, \Psi_{h_{A,B}} \rangle^2 \leq \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \langle \Psi_{h_{A,B}}, \Psi_{h_{A,B}} \rangle.
\]
Since \(\langle \Psi_{h_{A,B}}, \Psi_{h_{A,B}} \rangle = \text{cap}(A, B) \), it follows from the previous relation that
\[
\text{cap}(A, B) \geq \sup_{f \in C^{0,0}_{A,B}} \sup_{\varphi \in \mathcal{F}^{(1)}} \frac{1}{\langle \Phi_f - \varphi, \Phi_f - \varphi \rangle}.
\]
To complete the proof of the proposition, it remains to check that \(\varphi = \Phi_f - \Psi_{g_{A,B}} \) belongs to \(\mathcal{F}^{(1)} \), where \(g_{A,B} = h_{A,B} / \text{cap}(A, B) \), \(f = (1/2)(h_{A,B} - h_{1,A,B}) / \text{cap}(A, B) \). Since for \(x \in \Omega \),

\[
(\nabla \cdot \varphi)(x) = \frac{1}{2 \text{cap}(A, B)} e^{-V(x)} \left\{ \left[\mathcal{L}^* (h_{A,B} - h_{1,A,B}) \right](x) - (2S h_{A,B})(x) \right\} = \frac{-1}{2 \text{cap}(A, B)} e^{-V(x)} \left\{ \left(\mathcal{L}^* h_{A,B} \right)(x) + (\mathcal{L} h_{A,B})(x) \right\} ,
\]

the vector field \(\varphi \) is divergence free on \(\Omega \). On the other hand, the integral of \(\varphi \cdot n_\Omega \) over the set \(\partial A \) is equal to

\[
\frac{-1}{2 \text{cap}(A, B)} \int_{\partial A} \{ M(x) (\nabla h_{A,B})(x) + M^\top(x) (\nabla h^*_{A,B})(x) \} \cdot n_\Omega(x) e^{-V(x)} \sigma(dx) .
\]

By definition \(\text{(2.10)} \) and by Lemma \(\text{3.2} \) this expression is equal to \(-1\), which proves that \(\varphi \) belongs to \(\mathcal{F}^{(1)} \). This completes the proof of the proposition. \(\square \)

3.2. The reversible case. When the matrix \(M \) is symmetric and the generator \(\mathcal{L} \) is symmetric in \(L^2(\mu) \), the previous variational formulæ are simplified and we recover the Dirichlet’s and the Thomson’s principles for reversible diffusions.

Fix two open subsets \(A, B \) of \(\mathbb{R}^d \). On the one hand, since \(h_{A,B} = h_{1,A,B} \), and since all vector fields \(\Phi_f, \Phi_f^*, \Psi_f \) coincide, by Proposition \(\text{2.1} \) the minimum over \(\varphi \) in \(\text{(2.14)} \) is attained at \(\varphi = 0 \), so that

\[
\text{cap}(A, B) = \inf_{f \in C_0^1(A,B)} \langle \Psi_f, \varphi \rangle = \inf_{f \in C_0^1(A,B)} \int_{\Omega} (\nabla f)(x) \cdot S(x) (\nabla f)(x) \mu(dx) ,
\]

(3.11)

which is the well-known Dirichlet’s principle.

Similarly, the supremum over \(f \) in \(\text{(2.15)} \) is attained at \(f = 0 \), so that

\[
\text{cap}(A, B) = \sup_{\varphi \in \mathcal{F}^{(1)}} \frac{1}{\langle \varphi, \varphi \rangle} ,
\]

(3.12)

which is the classical Thomson principle.

3.3. The equilibrium measure. Recall that the sets \(A, B \) are assumed to fulfill Assumption \(S \). Let \(\nu_{A,B} \) be the equilibrium measure on \(\partial A \):

\[
\nu_{A,B}(dx) = \frac{1}{\text{cap}(A, B)} M^\top(x) (\nabla h^*_{A,B})(x) \cdot n_\Omega(x) e^{-V(x)} \sigma(dx) .
\]

(3.13)

By maximum principle, the equilibrium potential \(h^*_{A,B} \) is bounded by 1, and since \(\partial A \) is in the 1-level set of \(h^* \), it holds \(\nabla h^*_{A,B} = c(x) n_\Omega(x) \) for some nonnegative scalar function \(c: \partial A \rightarrow \mathbb{R}_+ \), so that

\[
M^\top(x) (\nabla h^*_{A,B})(x) \cdot n_\Omega(x) = S(x) (\nabla h^*_{A,B})(x) \cdot n_\Omega(x) \geq 0 .
\]

This shows that \(\nu_{A,B} \) is a probability measure.

Proposition 3.3. For any two bounded, open subsets \(A, B \) satisfying Assumption \(S \), and for every bounded function \(f \) in \(C_0^\alpha(\mathbb{R}^d), 0 < \alpha < 1 \),

\[
\mathbb{E}_{\nu_{A,B}} \left[\int_0^H f(X_s) \, ds \right] = \frac{1}{\text{cap}(A, B)} \int_{\mathbb{R}^d} h^*_{A,B}(x) f(x) e^{-V(x)} \, dx .
\]

(3.14)
Proof. Fix a bounded function f in $C^\alpha(\mathbb{R}^d)$, and let $\Omega_B = \mathbb{R}^d \setminus B$. Denote by u the unique solution in $W^{1,2}(\Omega_B) \cap C^2(\Omega_B)$ of the elliptic equation (2.8) with $\Omega = \Omega_B$, $g = f$, $b = 0$. In view of the representation (3.1) of u and by definition of the equilibrium measure $\nu_{A,B}$, the left-hand side of (3.14) equals

$$\frac{1}{\text{cap}(A, B)} \int_{\partial A} u(x) \left[M(x) \nabla h^*_{A,B}(x) \right] \cdot n(x) e^{-V(x)} \sigma(dx).$$

The integral of the same expression at ∂B vanishes due to the presence of the function u. Hence, by the divergence theorem, this expression is equal to

$$\frac{1}{\text{cap}(A, B)} \int_{\Omega} \nabla \cdot \left\{ [M(x) \nabla h^*_{A,B}(x)] e^{-V(x)} u(x) \right\} dx.$$

Since the equilibrium potential $h^*_{A,B}$ is harmonic on Ω, the previous equation is equal to

$$\frac{1}{\text{cap}(A, B)} \int_{\Omega} e^{-V(x)} \nabla h^*_{A,B}(x) \cdot \nabla u(x) \sigma(dx).$$

By the divergence theorem and since the equilibrium potential $h^*_{A,B}$ is equal to 1 on ∂A and 0 on ∂B, this expression becomes

$$\frac{1}{\text{cap}(A, B)} \int_{\partial A} e^{-V(x)} M(x) (\nabla u)(x) \cdot n(x) \sigma(dx)$$

$$- \frac{1}{\text{cap}(A, B)} \int_{\Omega} h^*_{A,B}(x) \nabla \cdot \left\{ e^{-V(x)} M(x) (\nabla u)(x) \right\} dx. \tag{3.15}$$

As $n(x) = -n(x)$ on ∂A and $L u = -f$ on A, the first term of (3.15) is equal to

$$\frac{-1}{\text{cap}(A, B)} \int_{A} \nabla \cdot \left\{ e^{-V(x)} M(x) (\nabla u)(x) \right\} dx = \frac{1}{\text{cap}(A, B)} \int_{A} f(x) e^{-V(x)} dx.$$

Since the equilibrium potential $h^*_{A,B}$ is equal to 1 on A, we may insert it in the integral. On the other hand, by definition of u,

$$\nabla \cdot \left\{ e^{-V(x)} M(x) (\nabla u)(x) \right\} = \exp(-V(x))(Lu)(x) = -\exp(-V(x)) f(x).$$

Thus, the second term of (3.15) is equal to

$$\frac{1}{\text{cap}(A, B)} \int_{\Omega} h^*_{A,B}(x) f(x) e^{-V(x)} dx.$$

Since the equilibrium potential $h^*_{A,B}$ vanishes at B, we may extend this integral to the set B, which completes the proof of the proposition.

Proposition 3.3 can be restated as follows. Let u be the solution of (2.8) with $g = -f$, $b = 0$, $\Omega = B^c$. Then,

$$\int_{\partial A} u(x) \nu_{A,B}(dx) = \frac{1}{\text{cap}(A, B)} \int_{\partial A} h^*_{A,B}(x) f(x) e^{-V(x)} dx. \tag{3.16}$$

Equation (3.14) has been derived previously in the context of non-reversible Markov chains in [5, Proposition A.2], and for non-reversible diffusions in the case $f = 1$ in [19 Proposition 1.8].
4. Dirichlet’s and Thomson’s principles on a compact manifold

4.1. Notation. Let \(\mathcal{M} \) be a compact manifold without boundary, equipped with a smooth Riemannian tensor \(g = a^{-1} \). Since \(\mathcal{M} \) is compact, \(a \) satisfies the ellipticity condition (2.2). Denote by \(\nabla \) the gradient, by \(\nabla \cdot \) the divergence and by \(\Delta = \nabla \cdot \nabla \) the Laplace-Beltrami operators on \(\mathcal{M} \). Since in this section it is convenient to keep an intrinsic notation, the tangent and cotangent norms induced by the tensor \(g \) on a tangent or cotangent vector \(\eta \) are denoted by \(|\eta| \), and the tangent-cotangent duality is simply denoted by \(\cdot \). Thus, in this section, \(|\nabla \phi|^2 \) stands for what has been denoted by \(a \nabla \phi \cdot \nabla \phi \) in the previous section. Recall from [2] Definition 3.35, page 143 that a set \(A \subset \mathcal{M} \) has finite perimeter if \(\chi_A \), the indicator function of \(A \), has bounded variation. In such a case the notation \(n_A := \nabla \chi_A \) is used, so that \(n_A \) represents the inward pointing unit normal field of the boundary \(\partial A \). The volume measure on \(\mathcal{M} \) is denoted by \(dx \). If \(\mu(dx) = \rho(x) \sigma(dx) \) for some continuous function \(\rho : \mathcal{M} \to \mathbb{R} \) and if \(A \) has finite perimeter, with some abuse of notation, we denote by \(\mu_A \) the measure \(\rho(x) \sigma(dx) \) on \(\partial A \). Hence, for every smooth tangent vector field \(\varphi \),

\[
\int \varphi(x) \cdot n(x) \mu_A(dx) = \int \varphi(x) \cdot n(x) \rho(x) \sigma(dx) .
\]

4.2. Generator. Denote by \(\hat{L} \) the generator given by

\[
\hat{L} f = \Delta f + b \cdot \nabla f \quad f \in C^2(\mathcal{M}) ,
\]

where \(b : \mathcal{M} \to \mathbb{R}^d \) is a smooth vector field. Since \(\mathcal{M} \) is compact and the coefficients are smooth, there exists a unique Borel probability measure such that \(\mu \hat{L} = 0 \). Moreover, \(\mu(dx) = e^{-V(x)} dx \), where \(V \) is the unique solution to the Hamilton-Jacobi equation

\[
|\nabla V|^2 + b \cdot \nabla V = \Delta V + \nabla \cdot b ,
\]

such that \(\mu(\mathcal{M}) = 1 \). Since \(a \) satisfies condition (2.2), \(b \) and \(\rho(x) = e^{-V(x)} \) is the solution of a linear second-order elliptic equation, by [12, Theorem 8.3], \(V \) is smooth. The generator \(\hat{L} \) extends to a closed, unbounded operator \(L \) on \(L_2(\mu) \). It is easy to check that \(L \) writes uniquely in the form

\[
L f = e^V \nabla \cdot (e^{-V} \nabla f) + c \cdot \nabla f \tag{4.1}
\]

for a suitable vector field \(c \), which is also smooth and satisfies \(\nabla \cdot (e^{-V} c) = 0 \). This in turn implies that for any \(A \subset \mathcal{M} \), and smooth functions \(f, g : \mathcal{M} \to \mathbb{R} \),

\[
\int_{\mathcal{M} \setminus A} c \cdot n d\mu_A = \int_{\mathcal{M} \setminus A} e^V \nabla \cdot (e^{-V} c) d\mu = 0 ,
\]

\[
\int_{\mathcal{M}} f c \cdot \nabla g d\mu = - \int_{\mathcal{M}} g c \cdot \nabla f d\mu . \tag{4.2}
\]

Namely, the operator \(c \cdot \nabla \) is skew-adjoint in \(L_2(\mu) \). Denote by \(H^1 = H^1(\mathcal{M}) \) the Hilbert space of weakly differentiable functions endowed with the scalar product \(\langle f, g \rangle_1 \) given by

\[
\langle f, g \rangle_1 = \int f g d\mu + \int \nabla f \cdot \nabla g d\mu .
\]

Functions in \(H^1 \) admit a weak trace at the boundary of sets of finite perimeter, see [3]. By [3, Theorem 2.1-2.2], the usual integration by parts formulae hold w.r.t. to this trace. Let \(A \) and \(B \) be disjoint closed subsets of \(\mathcal{M} \) with a finite perimeter
and let \(f, g \in H^1 \). If \(f \) and \(g \) are such that \(f \restriction_{\partial A}, g \restriction_{\partial A}, f \restriction_{\partial B} \) and \(g \restriction_{\partial B} \) are (possibly different) constant, then

\[
\int_{\mathfrak{M} \setminus (A \cup B)} fc \cdot \nabla g \, d\mu = - \int_{\mathfrak{M} \setminus (A \cup B)} gc \cdot \nabla f \, d\mu \tag{4.3}
\]

since all the boundary terms in the integration by parts vanish in view of (4.2). In particular \(c \cdot \nabla \) is skew-adjoint on \(L_2(\mu\restriction_{A \cup B}) \) when restricted to \(H^1 \) functions that take a constant value at the boundary. On the other hand \(e^V \nabla \cdot (e^{-V} \nabla) \) is self-adjoint in \(L_2(\mu) \), so that (4.1) provides a decomposition \(\mathcal{L} = \mathcal{L}_s + \mathcal{L}_a \) in the symmetric and skew part of \(\mathcal{L} \) in \(L_2(\mu) \). The adjoint \(\mathcal{L}^\ast \) of \(\mathcal{L} \) is then defined as

\[
\mathcal{L}^\ast f = \mathcal{L}_s f - \mathcal{L}_a f = e^V \nabla \cdot (e^{-V} \nabla f) - c \cdot \nabla f . \tag{4.4}
\]

4.3. Stochastic processes.

\(\mathcal{L} \) and \(\mathcal{L}^\ast \) are the generators of a Feller process on \(\mathfrak{M} \) with invariant measure \(\mu \). We denote by \((P_x)\) and \((P_x^\ast)\) the induced probability measures on \(C([0, +\infty); \mathfrak{M}) \). If \(A \) is closed, let \(H_A \) be the hitting time of \(A \) and for a given \(f \in L_2(\mu) \) consider the function

\[
u(x) := \mathbb{E}_x \left[\int_0^{H_A} f(X_t) \, dt \right]. \tag{4.5}
\]

If \(A \) is the closure of an open set with smooth boundary then \(\nu \) is the unique \(H^1(M \setminus A) \) solution to

\[
\begin{cases}
\mathcal{L} u = f & \text{on } M \setminus A, \\
u & \text{on } \partial A.
\end{cases} \tag{4.6}
\]

Similarly, if \(A \) and \(B \) are closed, disjoint sets that are the closure of open sets with smooth boundary, define

\[
h_{A,B}(x) = \mathbb{P}_x(H_A < H_B) , \quad h^\ast_{A,B}(x) = \mathbb{P}_x^\ast(H_A < H_B) .
\]

Then \(h \) and \(h^\ast \) are the unique \(H^1 \) solutions to

\[
\begin{cases}
\mathcal{L} h = 0 & \text{on } M \setminus (A \cup B), \\
h & = 1 & \text{on } A, \\
h & = 0 & \text{on } B,
\end{cases} \quad \begin{cases}
\mathcal{L}^\ast h^\ast = 0 & \text{on } M \setminus (A \cup B), \\
h^\ast & = 1 & \text{on } A, \\
h^\ast & = 0 & \text{on } B.
\end{cases} \tag{4.7}
\]

4.4. Capacity.

For \(\mathcal{L} \), \(A \) and \(B \) as above, the *capacities* \(\text{cap}(A, B) \), \(\text{cap}^\ast(A, B) \) are defined as

\[
\text{cap}(A, B) := \int |\nabla h_{A,B}|^2 \, d\mu \, , \quad \text{cap}^\ast(A, B) := \int |\nabla h^\ast_{A,B}|^2 \, d\mu . \tag{4.8}
\]

Hereafter we fix the sets \(A \) and \(B \) and denote \(h \equiv h_{A,B} \) and \(h^\ast \equiv h^\ast_{A,B} \).

Lemma 4.1. We have that

\[
\text{cap}(A, B) = \text{cap}(B, A) = \oint_{\partial A} (\nabla h) \cdot n \, d\mu_A = \oint_{\partial A} (\nabla h + n \cdot c \cdot \nabla h) \cdot n \, d\mu_A .
\]

Moreover,

\[
\text{cap}(A, B) = \int \{ \nabla h \cdot \nabla h^\ast - h^\ast c \cdot \nabla h \} \, d\mu = \int \{ \nabla h \cdot \nabla h^\ast + h c \cdot \nabla h^\ast \} \, d\mu , \tag{4.9}
\]

and \(\text{cap}(A, B) = \text{cap}^\ast(A, B) \).
Proof. \(\text{cap}(B, A) = \text{cap}(A, B)\) since \(h_{B, A} = 1 - h_{A, B}\) as \(A \cap B = \emptyset\). On the other hand, since \(h = 1\{\partial A}\) on \(\partial A \cup \partial B\), by the explicit form of the generator \(L\) and by an integration by parts,

\[
\int |\nabla h|^2 d\mu = - \int h e^V \nabla \cdot (e^{-V} \nabla h) \, d\mu + \oint h \nabla h \cdot n \, d\mu_{A \cup B} = \int h (c \cdot \nabla h) \, d\mu + \oint \nabla h \cdot n \, d\mu_A. \tag{4.10}
\]

The first term vanishes in view of the second identity of (4.2). This proves the second assertion of the lemma. The third assertion follows from the first equation in (4.2) and from the fact that \(h\) is constant in \(\partial A\). A similar reasoning to the one in (4.10) yields

\[
\int \nabla h \cdot \nabla h^* \, d\mu = - \int h c \cdot \nabla h^* \, d\mu + \text{cap}(A, B),
\]

where the last identity follows from the first part of the proof. The previous equation is the first identity in (4.9). The second identity in (4.9) is obtained from (4.2). The same computations inverting the roles of \(h\) and \(h^*\) gives that

\[
\int \nabla h \cdot \nabla h^* \, d\mu = - \int h e^V c \cdot \nabla h \, d\mu + \text{cap}^*(A, B),
\]

In particular, \(\text{cap}(A, B) = \text{cap}^*(A, B)\), which completes the proof of the lemma. \(\square\)

4.5. Equilibrium measure. Fix \(A\) and \(B\) as above. Define the probability measure \(\nu \equiv \nu_{A, B}\) as the equilibrium measure on \(\partial A \cup \partial B\) conditioned to \(\partial A\) as

\[
d\nu := - \frac{1}{\text{cap}(A, B)} \nabla h^* \cdot n \, d\mu_A.
\]

Proposition 4.2. For each \(f \in L^2(\mu)\) it holds

\[
E_\nu \left[\int_0^{H_B} f(X_t) \, dt \right] = \frac{1}{\text{cap}(A, B)} \int h^* \, f \, d\mu.
\]

Proof. Take \(u\) as in (4.5) with \(A\) changed to \(B\). Since \(u\) vanishes on \(\partial B\),

\[
\int u \nabla h^* \cdot n \, d\mu_A(x) = \int_{\mathbb{R}^n \setminus A \cup B} e^V \nabla \cdot (ue^{-V} \nabla h^*) \, d\mu
\]

\[
= \int_{\mathbb{R}^n \setminus A \cup B} \{ \nabla h^* \cdot \nabla u + u e^V \nabla \cdot (e^{-V} \nabla h^*) \} \, d\mu \tag{4.12}
\]

\[
= \int_{\mathbb{R}^n \setminus A \cup B} (\nabla h^* \cdot \nabla u + u c \cdot \nabla h^*) \, d\mu
\]

where we used the fact that \(L^* h^* = 0\) in the last equality. Since \(\nabla h^*\) vanishes on \(A\), the quantity in (4.12) also equals

\[
\int_{\mathbb{R}^n \setminus B} (\nabla h^* \cdot \nabla u + u c \cdot \nabla h^*) \, d\mu = \int_{\mathbb{R}^n \setminus B} \{ - h^* e^V \nabla \cdot (e^{-V} \nabla u) + u c \cdot \nabla h^* \} \, d\mu
\]
where in the last equality we used the fact that \(h^* = 0 \) on \(\partial B \), so that boundary terms vanish in the integration by parts. Since \(u \) satisfies (4.6) we gather
\[
\oint u \nabla h^* \cdot n \, d\mu_A = \int_{\partial B} \{ - h^* f + h^* c \cdot \nabla u + u c \cdot \nabla h^* \} \, d\mu .
\]
However the last two terms sum up to zero since \(h \) and \(u \) are constant on \(\partial B \) and (4.3) holds (with \(A = \emptyset \)). Thus, since \(h^* \) vanishes on \(B \),
\[
\oint u \nabla h^* \cdot n \, d\mu_A = - \int_{\partial B} h^* f \, d\mu .
\]
Therefore, by linearity of the expectation and by the previous equation,
\[
\mathbb{E}_\nu \left[\int_0^{H_B} f(X_t) \, dt \right] = \oint u \, d\nu = - \frac{1}{\text{cap}(A,B)} \int u \nabla h^* \cdot n \, d\mu_A
\]
\[
= \frac{1}{\text{cap}(A,B)} \int h^* f \, d\mu .
\]
\[
\square
\]

4.6. **Variational formulae for the capacity.** In view of Proposition 4.2, it may be useful to have variational formulae for the capacity in order to estimate the expected value of hitting times. Let \(\mathcal{F} \equiv \mathcal{F}_{A,B} \) be the Hilbert space of \(L^2(\mu|_{\mathcal{M} \setminus A \cup B}) \) tangent vector fields on \(\mathcal{M} \setminus A \cup B \), and let \(\langle \cdot, \cdot \rangle \) be the associated scalar product:
\[
\langle \varphi, \psi \rangle := \int_{\mathcal{M} \setminus A \cup B} a^{-1} \varphi \cdot \psi \, d\mu .
\]

For \(\gamma \in \mathbb{R} \) let also \(\mathcal{F}^{(\gamma)} \) be the closure in \(\mathcal{F} \) of the space of smooth tangent vector fields \(\varphi \in \mathcal{F} \) such that
\[
\nabla \cdot (e^{-V} \varphi) = 0 , \quad \oint \varphi \cdot n \, d\mu_A = - \gamma . \tag{4.13}
\]

It is a well-known fact that \(\mathcal{F}^{(\gamma)} \) is the space of tangent vector fields such that \(\nabla \cdot (e^{-V} \varphi) = 0 \) weakly, and that such vector fields admit a weak normal trace \(\varphi \cdot n \) such that (4.13) holds (cf. [9, Theorem 2.2]). Let also \(\mathcal{H}_{\alpha,\beta} \equiv \mathcal{H}_{\alpha,\beta,A,B} \) be the space of \(H^1 \) functions \(f \) on \(\mathcal{M} \setminus A \cup B \) such that their normal trace at \(A \) and \(B \) is constant and equal to \(\alpha \) and \(\beta \) respectively (these traces exist since we assumed \(A \) and \(B \) to have finite perimeter). For \(f \in \mathcal{H}_{\alpha,\beta} \) define \(\Phi_f := \nabla f - c f \).

Lemma 4.3. If \(\varphi \in \mathcal{F}^{(\gamma)} \) and \(f \in \mathcal{H}_{\alpha,0} \) then
\[
\langle \Phi_f - \varphi , \nabla h \rangle = \gamma + \alpha \text{cap}(A,B) .
\]

Proof. By definition of \(\Phi_f \),
\[
\langle \Phi_f - \varphi , \nabla h \rangle = \int_{\mathcal{M} \setminus A \cup B} (\nabla f - f c - \varphi) \cdot \nabla h \, d\mu .
\]

Integrating by parts, since \(f = \alpha \) on \(\partial A \) and \(f = 0 \) on \(\partial B \), the previous term becomes
\[
- \int_{\mathcal{M} \setminus A \cup B} \left\{ f e^V \nabla \cdot (e^{-V} \nabla h) + [f c + \varphi] \cdot \nabla h \right\} \, d\mu + \alpha \oint \nabla h \cdot n \, d\mu_A .
\]
By Lemma 4.1, the last integral is the capacity between A and B, while the expression involving f is equal to $-f Lh$. Since h is L-harmonic in $\mathfrak{M} \setminus A \cup B$, by an integration by part, the previous equation is equal to
\[
\int_{\mathfrak{M} \setminus A \cup B} h \ e^V \nabla \cdot (e^{-V} \varphi) \, d\mu - \oint_{\partial \Omega} \varphi \cdot n \, d\mu_A + \alpha \text{cap}(A, B).
\]
By (4.13), this expression is equal to $\gamma + \alpha \text{cap}(A, B)$, as claimed. \square

Proposition 4.4 (Dirichlet’s principle). It holds
\[
\text{cap}(A, B) = \inf_{f \in \mathcal{H}_{1,0}} \inf_{\varphi \in \mathcal{F}^{(1)}} \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle,
\]
and the infimum is attained for $\bar{f} = (1/2)(h + h^*)$ and $\bar{\varphi} = \Phi_f - \nabla h$.

Proof. From Lemma 4.3 (applied with $\gamma = 0$ and $\alpha = 1$), for f and φ as in (4.14), by the Cauchy-Schwarz inequality,
\[
\text{cap}(A, B)^2 = \langle \Phi_f - \varphi, \nabla h \rangle^2 \leq \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \langle \nabla h, \nabla h \rangle = \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \text{cap}(A, B)
\]
so that $\text{cap}(A, B) \leq \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle$ for every f and φ as in (4.14). Since $\text{cap}(A, B) = \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle$, to complete the proof of the proposition, one only needs to check that $\bar{f} \in \mathcal{H}_{1,0}$, and $\bar{\varphi} \in \mathcal{F}^{(1)}$. It is easy to check the first condition, while the second one follows from the identities
\[
\nabla \cdot (e^{-V} \varphi) = (1/2) e^{-V} (L^* h^* - L h) = 0,
\]
\[
\oint_{\partial \Omega} \bar{\varphi} \cdot n \, d\mu_A = \frac{1}{2} \oint (\nabla h^* - h^* c) \cdot n \, d\mu_A - \frac{1}{2} \oint (\nabla h + h c) \cdot n \, d\mu_A.
\]
By Lemma 4.1 and (4.11), the previous expression is equal to $(1/2)\{\text{cap}^*(A, B) - \text{cap}(A, B)\} = 0$, which completes the proof of the proposition. \square

Proposition 4.5 (Thomson principle). It holds
\[
\text{cap}(A, B) = \sup_{f \in \mathcal{H}_{0,0}} \sup_{\varphi \in \mathcal{F}^{(1)}} \frac{1}{\langle \Phi_f - \varphi, \Phi_f - \varphi \rangle}.
\]
Moreover, the supremum is attained at $\bar{f} = (h - h^*)/2 \text{cap}(A, B)$ and $\bar{\varphi} = \Phi_f - \nabla h/\text{cap}(A, B)$.

Proof. By Lemma 4.3 (applied with $\alpha = 0$ and $\gamma = 1$) and by the Cauchy-Schwarz inequality, for f and φ as in (4.15) we have that
\[
1 = \langle \Phi_f - \varphi, \nabla h \rangle^2 \leq \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \langle \nabla h, \nabla h \rangle = \langle \Phi_f - \varphi, \Phi_f - \varphi \rangle \text{cap}(A, B).
\]
Since $\langle \Phi_f - \varphi, \Phi_f - \varphi \rangle = 1/\text{cap}(A, B)$, one only need to check that $\bar{f} \in \mathcal{H}_{0,0}$, and $\bar{\varphi} \in \mathcal{F}^{(1)}$. It is easy to verify the first condition, while the second follows from
\[
\nabla \cdot (e^{-V} \bar{\varphi}) = \frac{-1}{2 \text{cap}(A, B)} e^{-V} (L^* h^* + L h) = 0
\]
\[
\oint_{\partial \Omega} \bar{\varphi} \cdot n \, d\mu_A = \frac{-1}{2 \text{cap}(A, B)} \left\{ \oint (\nabla h^* - h^* c) \cdot n \, d\mu_A + \oint (\nabla h + h c) \cdot n \, d\mu_A \right\}.
\]
By Lemma 4.1 and (4.11), the expression inside braces is equal to $\text{cap}^*(A, B) + \text{cap}(A, B) = 2 \text{cap}(A, B)$, so that $\bar{\varphi} \in \mathcal{F}^{(1)}$. This completes the proof of the proposition. \square
5. DIFFUSIONS IN A DOUBLE-WELL POTENTIAL FIELD

In this section, we state the Eyring-Kramers formula for a non-reversible diffusion in a double-well potential field.

Potential field. Consider a potential \(U : \mathbb{R}^d \to \mathbb{R} \). Denote by \(H_{x,y} \) the height of the saddle points between \(x \) and \(y \in \mathbb{R}^d \):

\[
H_{x,y} = \inf_{\gamma} H(\gamma) := \inf_{\gamma} \sup_{z \in \gamma} U(z),
\]

where the infimum is carried over the set \(\Gamma_{x,y} \) of all continuous paths \(\gamma : [0, 1] \to \mathbb{R}^d \) such that \(\gamma(0) = x, \gamma(1) = y \). Let \(G_{x,y} \) be the smallest subset of \(\{ z \in \mathbb{R}^d : U(z) = H_{x,y} \} \) with the property that any path \(\gamma \in \Gamma_{x,y} \) such that \(H(\gamma) = H_{x,y} \) contains a point in \(G_{x,y} \). The set \(G_{x,y} \) is called the set of gates between \(x \) and \(y \). In addition, we assume that the potential function \(U \) is such that

(P1) \(U \in C^3(\mathbb{R}^d) \) and \(\lim_{x \to \mp \infty} \inf_{|x| \geq n} U(x) = \infty \).

(P2) The function \(U \) has finitely many critical points. Only two of them, denoted by \(m_1 \) and \(m_2 \), are local minima. The Hessian of \(U \) at each of these minima has \(d \) strictly positive eigenvalues.

(P3) The set of gates between \(m_1 \) and \(m_2 \) is formed by \(\ell \geq 1 \) saddle points, denoted by \(\sigma_1, \ldots, \sigma_{\ell} \). The Hessian of \(U \) at each saddle point \(\sigma_i \) has exactly one strictly negative eigenvalue and \((d-1) \) strictly positive eigenvalues.

(P4) The function \(U \) satisfies

\[
\lim_{\|x\| \to \infty} \frac{x}{\|x\|^2} \cdot \nabla U(x) = \lim_{\|x\| \to \infty} \left\{ \|\nabla U(x)\| - 2\Delta U(x) \right\} = \infty,
\]

and

\[
Z_\epsilon := \int_{\mathbb{R}^d} \exp \left\{ -U(x)/\epsilon \right\} dx < \infty
\]

for all \(\epsilon > 0 \).

It is not difficult to show that the conditions (5.2) imply that, for all \(a \in \mathbb{R} \),

\[
\int_{x : U(x) \geq a} e^{-U(x)/\epsilon} dx \leq C(a) e^{-a/\epsilon}
\]

where the constant \(C(a) \) is uniform in \(\epsilon \in (0, 1] \).

Diffusion model. Let \(M \) be a \(d \times d \) (generally non-symmetric) positive-definite matrix: \(v \cdot Mv > 0 \) for all \(v \neq 0 \). Denote by \(\{ X_t^\epsilon : t \in [0, \infty) \} \), \(\epsilon > 0 \), the diffusion process associated to the generator \(\mathcal{L}_\epsilon \) given by

\[
(\mathcal{L}_\epsilon f)(x) = -\nabla U(x) \cdot M(\nabla f)(x) + \epsilon \sum_{1 \leq i,j \leq d} M_{ij} (\partial^2 U/\partial x_i \partial x_j)(x).
\]

Note that we can rewrite the generator \(\mathcal{L}_\epsilon \) as

\[
(\mathcal{L}_\epsilon f)(x) = \epsilon e^{U(x)/\epsilon} \nabla \cdot \left[e^{-U(x)/\epsilon} M(\nabla f)(x) \right].
\]

Thus, this generator is a special form of (2.3) that we investigated in the first part of the paper. The additional factor \(\epsilon \) can be regarded merely as the time rescaling of the process. The probability measure

\[
\mu_\epsilon(dx) := Z_\epsilon^{-1} \exp \left\{ -U(x)/\epsilon \right\} dx
\]

is the stationary state of the process \(X_t^\epsilon \).
The process X_t^ε can also be written as the solution of a stochastic differential equation. As in Section 3, denote by K the symmetric, positive-definite square root of the symmetric matrix $S = (M + M^\dagger)/2$: $S = KK$. It is easy to check that X_t^ε is the solution of the stochastic differential equation (1.3).

Let $A, B \subset \mathbb{R}^d$ be two open subsets of \mathbb{R}^d satisfying the assumptions S, and let $\Omega = (\overline{A} \cup B)^c$. In the present context, the capacity, defined in (2.10), is given by

$$\text{cap}(A, B) = \frac{c}{Z_\varepsilon} \int_{\partial A} [M(x) \nabla h_{A,B}(x)] \cdot n_{\Omega}(x) e^{-U(x)/\varepsilon} \sigma(dx).$$

(5.4)

Structure of valleys. Let $h_i = U(m_i)$, $i = 1, 2$, and assume without loss of generality that $h_1 \geq h_2$, so that m_2 is the global minimum of the potential U. Denote by H the height of the saddle points $\mathcal{S} := \{\sigma_1, \ldots, \sigma_\ell\}$:

$$H := U(\sigma_1) = \cdots = U(\sigma_\ell).$$

Let Ω be the level set defined by saddle points which separate m_1 from m_2:

$$\Omega := \{x \in \mathbb{R}^d : U(x) < H\}.$$

Denote by \mathcal{W}_1 and \mathcal{W}_2 the two connected components of Ω such that $m_i \in \mathcal{W}_i$, $i = 1, 2$, respectively. Note that $\overline{\mathcal{W}_1} \cap \overline{\mathcal{W}_2} = \mathcal{S}$.

Denote by \mathcal{V}_1 and \mathcal{V}_2 two metastable sets containing m_1 and m_2, respectively. More precisely, \mathcal{V}_i, $i = 1, 2$, is a open subset of \mathcal{W}_i which satisfies assumptions S and such that

$$B_\varepsilon(m_i) \subset \mathcal{V}_i \subset \{x \in \mathbb{R}^d : U(x) < U(\sigma) - \kappa\}$$

for some $\kappa > 0$, where $B_\varepsilon(m_i)$ represents the ball of radius ε centered at m_i: $B_\varepsilon(m_i) = \{x : |x - m_i| < \varepsilon\}$.

Metastability results. Fix a saddle point σ of the potential U. Denote by $-\lambda_1^\sigma < 0 < \lambda_2^\sigma < \cdots < \lambda_\ell^\sigma$ the eigenvalues of $(\text{Hess } U)(\sigma) := \mathcal{L}^\sigma$. By [17] Lemma A.1], both $\mathcal{L}^\sigma M$ and $\mathcal{L}^\sigma M^\dagger$ have a unique negative eigenvalue. The negative eigenvalues of $\mathcal{L}^\sigma M$ and $\mathcal{L}^\sigma M^\dagger$ coincide because $\mathcal{L}^\sigma M^\dagger = L^\sigma(L^\sigma M)^\dagger(L^\sigma)^{-1}$. Denote by $-\mu^\sigma$ this common negative eigenvalue, and let

$$\omega(\sigma) := \frac{\mu^\sigma}{\sqrt{-\det((\text{Hess } U)(\sigma))}} : \sigma \in \mathcal{S}.$$

(5.5)
We prove in Section 6 the following sharp estimate for capacity between the valleys V_1 and V_2.

Theorem 5.1. We have the following estimate on the capacity.

$$\text{cap}(V_1, V_2) = [1 + o_\epsilon(1)] \frac{1}{Z_\epsilon} e^{-H/\epsilon} \left(\frac{2\pi \epsilon}{2\pi}\right)^d \sum_{i=1}^\ell \omega(\sigma_i).$$ \hfill (5.6)

The metastable behavior of X_ϵ^t follows from this result. In Section 7, we derive a sharp estimate for the transition time between the two different wells stated below.

Denote by $P^\epsilon_{x, x} \in \mathbb{R}^d$, the probability measure on $C(\mathbb{R}_+, \mathbb{R}^d)$ induced by the Markov process X_ϵ^t starting from x. Expectation with respect to X_ϵ^t is represented by $E^\epsilon_{x, x}$. Denote by H^ϵ_C, C an open subset of \mathbb{R}^d, the hitting time of the set C:

$$H^\epsilon_C = \inf\{t \geq 0 : X_\epsilon^t \in C\}.$$ \hfill (5.7)

We henceforth omit the superscript ϵ in these definitions since there is no risk of confusion.

Theorem 5.2. Under the notations above,

$$E^\epsilon_{m_1} [H_{V_2}] = [1 + o_\epsilon(1)] \frac{2\pi e^{(H-h_1)/\epsilon}}{\sqrt{\det(\text{Hess } U(m_1))}} \left(\sum_{i=1}^\ell \omega(\sigma_i)\right)^{-1}.$$ \hfill (5.8)

The remaining part of the paper is devoted to provide a detailed proof of Theorems 5.1 and 5.2. In Section 6, we prove Theorem 5.1 by constructing vector fields which approximate the optimal ones for the Dirichlet’s and the Thomson’s principles. The properties of these vector fields are derived in Section 8, based on general estimates presented in Section 7. Section 9 is dedicated to Theorem 5.2.

We close this section with some remarks on the last theorems.

Remark 5.3. A careful reading of the proofs reveals that the error term $o_\epsilon(1)$ appearing in Theorems 5.1 and 5.2 are of order $O(\epsilon^{1/2}(\log \epsilon)^{3/2})$, as in the reversible case [8]. It is not clear, however, that this error is sharp.

Remark 5.4. Let $\Xi \subset \mathbb{R}^d$ be a bounded domain with a boundary in C^2, $0 < \alpha < 1$. Assume that the potential has no critical points at $\partial \Xi$ and that $n_\Xi \cdot \nabla U > 0$ at $\partial \Xi$. A similar result can be proven for a diffusion evolving on Ξ with Neumann boundary conditions.

Remark 5.5. In view of [4, 5], Theorems 5.1 and 5.2 represent the first main step in a complete description of the metastable behavior of the diffusion X_ϵ^t, which can be easily foretell. Let $\theta_\epsilon = e^{-(H-h_1)/\epsilon}$, and denote by Y_ϵ^t the diffusion X_ϵ^t speeded-up by θ_ϵ: $Y_\epsilon^t := X_\theta_\epsilon^t$. Assume that $X_\epsilon^0 = m_1$. As $\epsilon \downarrow 0$, we expect Y_ϵ^t to converge to a two-state Markov chain on \{m_1, m_2\} which starts from m_1. If $U(m_2) < U(m_1)$ the process remains for ever at m_2 once it hits this point. In contrast, if $U(m_2) = U(m_1)$, it jumps back and forth from m_2 to m_1.

Remark 5.6. The arguments presented in the next sections to prove Theorems 5.1 and 5.2 apply to the case in which the entries of the matrix $M(x)$ belong to $C^2(\mathbb{R}^d)$ and satisfy conditions (2.1), (2.2).
6. Proof of Theorem 5.1

Throughout this section, to avoid unnecessary technical considerations, we assume that there is a unique saddle point of height H between the two valleys around m_1 and m_2: $\mathcal{S} = \{\sigma\}$. The general case can be handled without much effort. We refer to [17] for the details.

By a translation and change of coordinates we may assume that $\sigma = 0$ and $(\text{Hess } U)(0) = \mathbb{I}\sigma^n = \text{diag}(-\lambda_1^0, \lambda_2^0, \ldots, \lambda_d^0)$. We shall drop the superscript 0 in these notations from now on. According to these assumptions, the eigenvectors of L are the vectors of the canonical basis of \mathbb{R}^d, represented by e_1, e_2, \ldots, e_d. Assume, furthermore, that e_1 is directed toward W_1, i.e., that there exists $t_0 > 0$ such that $te_1 \in W_1$ for all $t \in (0, t_0)$. (cf. Figure 2)

A neighborhood of the saddle point. We first introduce a neighborhood of the saddle point, cf. [17]. For a large enough constant K define

$$\delta := K \sqrt{\varepsilon \log(1/\varepsilon)}.$$ (6.1)

Let C_ε be the closed hyperrectangle around the saddle point 0 defined by

$$C_\varepsilon = [-\delta, \delta] \times \prod_{i=2}^d \left[-\sqrt{\frac{2\lambda_1}{\lambda_i}} \delta, \sqrt{\frac{2\lambda_1}{\lambda_i}} \delta\right],$$

and denote by ∂C_ε its boundary. Write $z \in \mathbb{R}^d$ as $z = \sum_{i=1}^d z_i e_i$, and define the boundaries $\partial_+ C_\varepsilon, \partial_0 C_\varepsilon, \partial_0 C_\varepsilon$ by

$$\partial_+ C_\varepsilon = \{z \in \partial C_\varepsilon : z_1 = \delta\}, \quad \partial_0 C_\varepsilon = \{z \in \partial C_\varepsilon : z_1 = -\delta\}, \quad \partial_0 C_\varepsilon = \partial C_\varepsilon \setminus (\partial_+ C_\varepsilon \cup \partial_0 C_\varepsilon).$$

Recall that $U(0) = H$.

Lemma 6.1. For all $z \in \partial_0 C_\varepsilon$, we have that $U(z) \geq H + [1 + o_\varepsilon(1)](1/2)\lambda_1 \delta^2$.

Proof. For $z \in C_\varepsilon$, by the Taylor expansion,

$$U(z) = H - \frac{1}{2} \lambda_1 z_1^2 + \frac{1}{2} \sum_{j=2}^d \lambda_j z_j^2 + O(\delta^3).$$
For \(z \in \partial \mathcal{C}_\epsilon \), there exists \(2 \leq i \leq d \), such that \(z_i = \pm \sqrt{2\lambda_1 / \lambda_2} \delta \). Therefore,

\[
- \lambda_1 z_i^2 + \sum_{j=2}^{d} \lambda_j z_j^2 \geq - \lambda_1 \delta^2 + \lambda_1 \left(\sqrt{\frac{2\lambda_1}{\lambda_1}} \right)^2 = \lambda_1 \delta^2.
\]

To complete the proof, it remains to report this estimate to the first identity. \(\square \)

Let

\[
\Omega_\epsilon = \{ z \in \mathbb{R}^d : U(z) < H + (1/4) \lambda_1 \delta^2 \}, \quad \mathcal{B}_\epsilon = \mathcal{C}_\epsilon \cap \Omega_\epsilon.
\]

Since the saddle point \(\sigma = 0 \) is the unique critical point separating the two local minima \(m_1, m_2 \) of \(U \), by Lemma 6.1, for \(\epsilon \) small enough, there are two connected components \(W^1_\epsilon \) and \(W^2_\epsilon \) of \(\Omega_\epsilon \setminus \mathcal{B}_\epsilon \) such that \(m_i \in W^i_\epsilon \), \(i = 1, 2 \). Note that \(\mathcal{V}_1 \subset W^1_\epsilon \), \(i = 1, 2 \), for sufficiently small \(\epsilon \). Let \(\mathcal{X}_\epsilon = \mathbb{R}^d \setminus (W^1_\epsilon \cup W^2_\epsilon \cup \mathcal{B}_\epsilon) \). These sets are represented in Figure 2.

Approximations of the equilibrium potentials. We introduce in this subsection an approximation of the equilibrium potentials \(h_{\mathcal{V}_1, \mathcal{V}_2}, h^*_{\mathcal{V}_1, \mathcal{V}_2} \). As pointed out in [8] for reversible diffusions and in [17] for non-reversible Markov chains, the crucial point consists in defining these approximations in a mesoscopic neighborhood of the saddle point, denoted above by \(\mathcal{B}_\epsilon \).

Let \(-\mu \) be the unique negative eigenvalue of the matrices \(\mathbb{L}^2, \mathbb{L}^2 \), and let \(\mathbf{v}, \mathbf{v}^* \) be the associated normal eigenvectors. By Lemma 6.1 below, the first component of \(\mathbf{v} \), denoted by \(v_1 \), does not vanish. Assume, without loss of generality, that \(v_1 > 0 \). Similarly, assume that \(v^*_1 \), the first component of \(\mathbf{v}^* \), is positive.

Let

\[
\alpha = \frac{\mu}{\mathbf{v} \cdot \mathbb{M} \mathbf{v}}, \quad \alpha^* = \frac{\mu}{\mathbf{v}^* \cdot \mathbb{M} \mathbf{v}^*},
\]

and let

\[
C_\epsilon = \int_{-\infty}^{\infty} \exp \left\{ -\frac{\alpha}{2\epsilon} t^2 \right\} dt, \quad C^*_\epsilon = \int_{-\infty}^{\infty} \exp \left\{ -\frac{\alpha^*}{2\epsilon} t^2 \right\} dt.
\]

Of course, \(C_\epsilon = \sqrt{2\pi \epsilon / \alpha}, \quad C^*_\epsilon = \sqrt{2\pi \epsilon / \alpha^*} \). The constants \(\alpha \) and \(\alpha^* \) were introduced in [17] and they play a significant role in the estimation of the capacity.

Since \(\nabla U(z) = \mathbb{L}z + O(||z||^2) \), denote by \(\tilde{\mathcal{L}} \) the approximation of the generator \(\mathcal{L} \) around the origin, namely,

\[
(\tilde{\mathcal{L}}f)(z) = -(\mathbb{L}z) \cdot \mathbb{M} (\nabla f)(z) + \epsilon \sum_{1 \leq i, j \leq d} M_{ij}(\partial^2 z_j, z_j f)(z).
\]

Since the equilibrium potential satisfies the boundary conditions \(f \simeq 1 \) on \(\partial \mathcal{B}_\epsilon \cap \partial \mathcal{C} \), and \(f \approx 0 \) on \(\partial \mathcal{B}_\epsilon \cap \partial \mathcal{C} \), a natural approximation of the equilibrium potentials \(h_{\mathcal{V}_1, \mathcal{V}_2}, h^*_{\mathcal{V}_1, \mathcal{V}_2} \) in the neighborhood \(\mathcal{B}_\epsilon \) are

\[
\begin{align*}
p_{\epsilon}(z) &= \left(1/C_\epsilon \right) \int_{-\infty}^{\infty} \exp\left\{ -\alpha / 2\epsilon \right\} dt \quad \text{for} \quad z \in \mathcal{B}_\epsilon, \\
p^*_\epsilon(z) &= \left(1/C^*_\epsilon \right) \int_{-\infty}^{\infty} \exp\left\{ -\alpha^* / 2\epsilon \right\} dt \quad \text{for} \quad z \in \mathcal{B}^*_\epsilon, \\
p^*_{\epsilon}(z) &= \left(1/C^*_\epsilon \right) \int_{-\infty}^{\infty} \exp\left\{ -\alpha^* / 2\epsilon \right\} dt \quad \text{for} \quad z \in \mathcal{B}_\epsilon, \\
p^*_{\epsilon}(z) &= \left(1/C^*_\epsilon \right) \int_{-\infty}^{\infty} \exp\left\{ -\alpha / 2\epsilon \right\} dt \quad \text{for} \quad z \in \mathcal{B}^*_\epsilon.
\end{align*}
\]
be removed in order to use these functions as test functions for the Dirichlet’s and Thomson’s principles.

To introduce the vector fields \(\Theta_{q^*}, \Theta_{q^*}^*, \Theta_{q^*}^{-}, \Theta_{q^*}^{-*} \), which approximate the vectors fields \(\Phi_{h^{-1}, v}, \Phi_{h^{-1}, v}^* \), \(\Phi_{h^{-1}, v}^* \) and \(\Phi_{h^{-1}, v}^* \), respectively, let

\[
q_e(z) = \begin{cases}
(\nabla p_e)(z) & \text{if } z \in B_e \\
0 & \text{otherwise},
\end{cases}
\]

and set

\[
\Theta_{q^*}(z) = \frac{\epsilon}{Z_e} e^{-U(z)/\epsilon} M^e q_e(z), \quad \Theta_{q^*}^*(z) = \frac{\epsilon}{Z_e} e^{-U(z)/\epsilon} M^e q_e(z),
\]

\[
\Theta_{q^*}^{-}(z) = \frac{\epsilon}{Z_e} e^{-U(z)/\epsilon} M^e q_e(z), \quad \Theta_{q^*}^{-*}(z) = \frac{\epsilon}{Z_e} e^{-U(z)/\epsilon} M^e q_e(z).
\]

One could be tempted to set \(\Theta_{q^*} = \Phi_{p^*} \). One has to be cautious, however, because \(p_e \) is discontinuous along \(\partial B_e \), and these jumps become significant when applying the divergence theorem.

Let \(T_e \) be the time scale given by

\[
T_e := \frac{1}{Z_e} e^{-(H/\epsilon)} \frac{(2\pi\epsilon)^{d/2}}{2\pi}.
\]

In the presence of a unique saddle point separating two wells, Theorem \(5.1 \) becomes

Theorem 6.2. We have that

\[
\text{cap}(V_1, V_2) = [1 + o_\epsilon(1)] \; T_e \; \omega(0).
\]

In view of the explicit expression for the minimizers of the variational problem \((2.14) \) in Proposition \(2.1 \), the function \(f_e = (1/2)(p_e + p_e^*) \) and the vector field \(\varphi_e = (1/2)(\Theta_{q^*} - \Theta_{q^*}^*) \) are the natural candidates to estimate the capacity \((6.5) \) through \((2.14) \). However, \(f_e \) does not belong to the set \(C^1_{V_1, V_2} \), being discontinuous along the \((d-1) \)-dimensional surface \(\partial X_e \cup \partial B_e \). To overcome this difficulty, we convolve \(f_e \) with a smooth mollifier \(\phi_\eta(\cdot) := (1/\eta^d)\phi(\cdot/\eta) \), where \(\phi \) is supported on the \(d \)-dimensional unit ball.

Denote by \(g^{(\eta)}(\cdot) \) the convolution of a function \(g : \mathbb{R}^d \to \mathbb{R} \) with the mollifier \(\phi_\eta \):

\[
g^{(\eta)}(\cdot) := g \ast \phi_\eta.
\]

It follows from the explicit expression of \(p_e \) and \(p_e^* \) that \(p^{(\eta)}_e \) and \((p^{(\eta)}_e)^* \) belongs to the set \(C^1_{V_1, V_2} \) for sufficiently small \(\eta \).

We turn to the test vector field \(\varphi_e = (1/2)(\Theta_{q^*} - \Theta_{q^*}^*) \). Note that this flow is discontinuous along \(\partial B_e \). As we need a smooth flow to apply the Dirichlet principle, one might be tempted to continuously extend this test field all the way to the valleys \(V_1 \) and \(V_2 \) along a suitable tube connecting these valleys and passing through the saddle point. This is indeed the scheme carried out for the test function in the reversible case considered in \([8]\). The corresponding extension procedure for the test flow is not as simple, mainly because constructing a smooth divergence-free field which matches the boundary condition \((2.12) \) is very difficult.

We stress that in the discrete case \([17]\), this difficulty is confronted directly and is solved by a delicate computation. We do not know yet how to carry out a similar procedure in the continuous context. Instead of applying Proposition \(2.1 \) we insert a discontinuous vector field in the proof of this proposition and we estimate the error terms coming from the lack of regularity of the vector field. In particular, the proof below shows that the regularity conditions imposed on the vector fields in the variational formulae for the capacity can be overpassed.
Proof of Theorem 6.2. We start with the upper bound. Let $\eta = \epsilon^2$ and let

$$f_\epsilon^{(n)} = \frac{1}{2} \left\{ p_\epsilon^{(n)} + (p_\epsilon^*)^{(n)} \right\}, \quad \varphi_\epsilon = \frac{1}{2} (\Theta_q^* - \Theta_q^*) .$$

Although φ_ϵ does not satisfy the hypotheses of Proposition 2.1, inserting φ_ϵ in the proof of Proposition 2.1 provides an upper bound for the capacity.

By the Cauchy-Schwarz inequality,

$$\langle \Phi_{f_\epsilon^{(n)}} - \varphi_\epsilon, \Psi_{h(V_1, V_2)} \rangle \leq \left\| \Phi_{f_\epsilon^{(n)}} - \varphi_\epsilon \right\|^2 \left\| \Psi_{h(V_1, V_2)} \right\|^2 .$$

(6.6)

Since, for sufficiently small ϵ, $f_\epsilon^{(n)}$ belongs to $C_{V_1, V_2}^{1,0}$, by the proof of Proposition 2.1

$$\langle \Phi_{f_\epsilon^{(n)}}, \Psi_{h(V_1, V_2)} \rangle = \text{cap}(V_1, V_2) .$$

Therefore, by Lemma 6.5

$$\langle \Phi_{f_\epsilon^{(n)}} - \varphi_\epsilon, \Psi_{h(V_1, V_2)} \rangle = \text{cap}(V_1, V_2) + \alpha_\epsilon(1) T_\epsilon .$$

(6.7)

On the other hand, by (6.11) and by the triangle inequality,

$$\left\| \Phi_{f_\epsilon^{(n)}} - \varphi_\epsilon \right\| \leq \left\| \frac{\Theta_q + \Theta_q^*}{2} - \varphi_\epsilon \right\| + \alpha_\epsilon(1) \sqrt{T_\epsilon} .$$

Since

$$\frac{\Theta_q + \Theta_q^*}{2} - \varphi_\epsilon = \frac{\Theta_q^* - \Theta_q}{2} ,$$

by the last two displayed equations and by Lemma 6.3

$$\left\| \Phi_{f_\epsilon^{(n)}} - \varphi_\epsilon \right\|^2 \leq [1 + \alpha_\epsilon(1)] T_\epsilon \omega(0) .$$

(6.8)

By (6.6), (6.7), (6.8), and since $\left\| \Psi_{h(V_1, V_2)} \right\|^2 = \text{cap}(V_1, V_2)$,

$$\left\{ \text{cap}(V_1, V_2) + \alpha_\epsilon(1) T_\epsilon \right\}^2 \leq [1 + \alpha_\epsilon(1)] T_\epsilon \omega(0) \text{cap}(V_1, V_2) .$$

so that

$$\text{cap}(V_1, V_2) \leq [1 + \alpha_\epsilon(1)] T_\epsilon \omega(0) .$$

This is the upper bound for the capacity.

In order to obtain the lower bound, we repeat the proof of Proposition 2.2. Let

$$g_\epsilon^{(n)} = \frac{p_\epsilon^{(n)} - (p_\epsilon^*)^{(n)}}{2 T_\epsilon \omega(0)}, \quad \psi_\epsilon = -\frac{\Theta_q^* + \Theta_q}{2 T_\epsilon \omega(0)} .$$

By the Cauchy-Schwarz inequality,

$$\langle \Phi_{g_\epsilon^{(n)}} - \psi_\epsilon, \Psi_{h(V_1, V_2)} \rangle \leq \left\| \Phi_{g_\epsilon^{(n)}} - \psi_\epsilon \right\|^2 \left\| \Psi_{h(V_1, V_2)} \right\|^2 .$$

(6.9)

Since $g_\epsilon^{(n)} \in C_{V_1, V_2}^{0,0}$ for sufficiently small ϵ, as in the proof of Proposition 2.2 we obtain that

$$\langle \Phi_{g_\epsilon^{(n)}}, \Psi_{h(V_1, V_2)} \rangle = 0 .$$

On the other hand, by Lemma 6.5

$$\langle \psi_\epsilon, \Psi_{h(V_1, V_2)} \rangle = 1 + \alpha_\epsilon(1) .$$

In particular, the left-hand side of (6.9) is equal to $1 + \alpha_\epsilon(1)$.

Consider the first term on the right-hand side of (6.9). By (6.11) and by the triangle inequality,

$$\left\| \Phi_{g_\epsilon^{(n)}} - \psi_\epsilon \right\| \leq \left\| \frac{\Theta_q - \Theta_q^*}{2 T_\epsilon \omega(0)} - \psi_\epsilon \right\| + \frac{\alpha_\epsilon(1)}{\sqrt{T_\epsilon}} .$$

(6.10)
Since
\[\frac{\Theta_{q_e} - \Theta_{q_e}^*}{2 T_{\epsilon} \omega(0)} - \psi_{\epsilon} = \frac{\Theta_{q_e} + \Theta_{q_e}^*}{2 T_{\epsilon} \omega(0)}, \]
by Lemma 6.3, the right-hand side of (6.10) is less than or equal to
\[[1 + o_\epsilon(1)] \{ T_{\epsilon} \omega(0) \}^{-1/2}. \]
Putting together the previous estimates, since \(\| \Psi_{hV_1, V_2} \|^2 = \text{cap}(V_1, V_2) \), we obtain from (6.9) that
\[[1 + o_\epsilon(1)]^2 \leq [1 + o_\epsilon(1)] \frac{1}{T_{\epsilon} \omega(0)} \text{cap}(V_1, V_2). \]
This completes the proof of lower bound. \(\square \)

We conclude this section with three lemmata, whose proofs are postponed to Section 8.

Lemma 6.3. We have that
\[\left\| \frac{\Theta_{q_e} + \Theta_{q_e}^*}{2} \right\|^2 = [1 + o_\epsilon(1)] T_{\epsilon} \omega(0). \]

Recall from (6.1) that \(\delta = K \sqrt{\epsilon \log(1/\epsilon)} \), where \(K \) is an arbitrary positive number.

Lemma 6.4. Assume that \(\eta \ll \delta \), in the sense that \(\lim_{\epsilon \to 0} \eta(\epsilon)/\delta(\epsilon) = 0 \). There exist positive constants \(C_1, C_2, C_3 \) and \(C_4 \), which do not depends on \(\epsilon \) and \(\eta \), such that
\[
\left\| \Phi_{p_\epsilon}^{(\eta)} - \Theta_{q_e} \right\|^2 \leq \frac{C_1}{Z_{\epsilon}} e^{-H/\epsilon} \left\{ \frac{C_2 K^2}{\eta^d} e^{C_3 \eta/\epsilon} + o_\epsilon(1) e^{d/2} \left[\frac{\eta}{\epsilon} \right]^2 + \frac{\eta}{\epsilon} \left(1 + e^{C_4 \eta/\epsilon} \right) \right\}.
\]
A similar estimate holds for \(\Phi_{p_\epsilon}^{(\eta)} \), \(\Phi_{(p_\epsilon^*)^{(\eta)}} \) and \(\Phi_{(p_\epsilon^*)^{(\eta)}}^* \).

Since \(p_\epsilon \) is discontinuous along \(\partial X_\epsilon \cup \partial B_\epsilon \), the function \(p_\epsilon^{(\eta)} \) has a bump around this boundary. The first term in the bracket takes this into account. Taking \(\eta = \epsilon^2 \) and \(K \) a large enough real number, it follows from Lemma 6.4 that
\[\left\| \Phi_{p_\epsilon^{(\eta)}} - \Theta_{q_e} \right\|^2 = o_\epsilon(1) T_{\epsilon}. \]
We could have chosen \(\eta = \epsilon \) to complete the proof of Theorem 5.1. We selected \(\eta = \epsilon^2 \) to obtain an error of order \(O(\epsilon^{1/2}(\log \epsilon)^{3/2}) \), as stated in Remark 5.3.

Lemma 6.5. We have that
\[\langle \Theta_{q_e}^* - \Psi_{hV_1, V_2} \rangle = - [1 + o_\epsilon(1)] T_{\epsilon} \omega(0). \]
The same estimate holds for \(\Theta_{q_e}^* \).
7. The equilibrium potential

The main result of this section establishes a pointwise bound on the equilibrium potential between two open sets. The proofs roughly go along the lines of [8] in the reversible case. We provide detailed proofs for sake of completeness.

We start recalling some classical estimates on the solutions of elliptic equations. Fix $0 < \alpha < 1$. Unless otherwise stated, throughout this section $\Omega \subset \mathbb{R}^d$ is a domain with boundary in $C^{2,\alpha}$, g a function in $L^2(\Omega) \cap C^\alpha(\overline{\Omega})$ and b a function in $W^{1,2}(\Omega) \cap C^{2,\alpha}(\overline{\Omega})$, where the reference measure is $Z^{-1}_\epsilon \exp\{-U(x)/\epsilon\}dx$. We examine the Dirichlet problem (2.8) with L replaced by \mathcal{L}_ϵ.

Harnack and Hölder estimates. In this subsection, $\Omega \subset \mathbb{R}^d$ represents a bounded domain and $W^{2,p}(\Omega)$, $p \geq 1$, the space of twice weakly differentiable functions whose derivatives of order $n \leq 2$ are in $L^p(\Omega)$.

Since M is a positive-definite matrix, there exist $0 < \lambda < \Lambda$ such that

$$\lambda \|x\|^2 \leq x \cdot Mx \leq \Lambda \|x\|^2 \quad \text{for all } x \in \mathbb{R}^d. \quad (7.1)$$

Clearly, $\gamma = \Lambda/\lambda < \infty$. For a domain $\Omega \subset \mathbb{R}^d$, let

$$\nu_\Omega = \frac{1}{2^d} \frac{\|M\|_2^2}{\Lambda} \sup_{x \in \Omega} \|(\nabla U)(x)\|^2,$$

where $\|(\nabla U)(x)\|^2 = \sum_j (\partial_j U)(x)^2$, $\|M\|_2^2 = \sum_{j,k} M_{j,k}^2$.

The Harnack inequality presented in the next result is [12, Corollary 9.25]. Denote by $B_r(x)$ the open ball of radius $r > 0$ centered at $x \in \mathbb{R}^d$.

Lemma 7.1. Let $u \in W^{2,d}(\Omega)$ be a non-negative function which satisfies the equation $\mathcal{L}_\epsilon u = 0$ in Ω. Suppose that $B_{2R}(x) \subset \Omega$ for some $R > 0$, $x \in \Omega$. Then, there exists a constant $C_0 = C_0(d,\gamma,\nu_\Omega R^2) < \infty$ such that

$$\sup_{x \in B_R(x)} u(x) \leq C_0 \inf_{x \in B_R(x)} u(x).$$

Denote by $\text{osc}(u,\mathcal{A})$ the oscillation of a function $u : \mathcal{A} \to \mathbb{R}$ in the set \mathcal{A}: $\text{osc}(u,\mathcal{A}) = \sup_{x \in \mathcal{A}} u(x)-\inf_{x \in \mathcal{A}} u(x)$. The Hölder estimate stated below is [12, Corollary 9.24].

Lemma 7.2. Let $u \in W^{2,d}(\Omega)$ satisfy the equation $\mathcal{L}_\epsilon u = f$ in Ω for some $f \in L^d(\Omega)$. Suppose that $B_{R_0}(x) \subset \Omega$ for some $R_0 > 0$, $x \in \Omega$. Then, there exist constants $C_0 = C_0(d,\gamma,\nu_\Omega R_0^2) < \infty$, $\alpha = \alpha(d,\gamma,\nu_\Omega R_0^2) > 0$ such that for all $R \leq R_0$,

$$\text{osc}(u, B_R(x)) \leq C_0 \left(\frac{R}{R_0} \right)^\alpha \left(\text{osc}(u, B_{R_0}(x)) + R_0 \|f\|_{d,B_{R_0}(x)} \right),$$

where $\|f\|_{d,B_{R_0}(x)}$ stands for the $L^d(B_{R_0}(x))$ norm of f.

The Green function. We present in this subsection several properties of the Green function associated to the boundary-value problem (2.8). We do not assume $\Omega \subset \mathbb{R}^d$ to be bounded.

By the assumptions (P4) in Section 5 and by [22] Theorems 6.1.3, 4.2.1 (ii), 4.2.5, the generator \mathcal{L}_ϵ possesses a non-negative Green function, denoted by $G_{\Omega} : \Omega \times \Omega \to \mathbb{R}_+$, such that for each $y \in \Omega$,

$$G_{\Omega}(.\,\cdot\,,y) \in C^{2,\alpha}(\Omega \setminus \{y\}), \quad \mathcal{L}_\epsilon G_{\Omega}(.\,\cdot\,,y) = 0 \text{ on } \Omega \setminus \{y\}. \quad (7.3)$$
The solutions of the boundary-value problem \[2.8\] can be represented in terms of the Green function. Next result follows from hypothesis (P4), which guarantees that the process is positive recurrent, and Theorems 3.6.4 and 4.3.7 in \[22\] with \(\lambda = 0\).

Lemma 7.3. Assume that \(\Omega\) has a \(C^{2,\alpha}\)-boundary for some \(0 < \alpha < 1\). Then, for any function \(g\) in \(C^\alpha(\overline{\Omega}) \cap L^2(\Omega)\) which vanishes at \(\partial \Omega\), the function
\[
f(x) = \int \Omega G(\Omega, y) g(y) \, dy
\]
belongs to \(C^{2,\alpha}(\overline{\Omega})\) and is the unique solution of the problem \[2.8\] with \(g = g, b = 0\).

The previous result asserts that the Green function, as an operator, is the inverse of \(-L\). In particular, it inherits the dual properties of the generator. More precisely, if we denote by \(G^*_\Omega\) the Green function of the adjoint generator \(L^*_\Omega\), it follows from the previous lemma that \(G^*_\Omega\) is the adjoint of \(G_\Omega\) in \(L^2(\mu\varepsilon)\) so that
\[
e^{-U(x)/\varepsilon} G_\Omega(x, y) = e^{-U(y)/\varepsilon} G^*_\Omega(y, x), \quad x \neq y \in \overline{\Omega}.
\]

By Lemma 7.3
\[
G_\Omega(x, y) = 0 \quad \text{for all } x \in \partial \Omega, \ y \in \Omega.
\]

On the other hand, by (7.4) and (7.5) for \(G^*_\Omega\) in place of \(G_\Omega\),
\[
G_\Omega(x, y) = 0 \quad \text{for all } x \in \Omega, \ y \in \partial \Omega.
\]

Of course, all previous properties are in force for the adjoint Green function \(G^*_\Omega\).

Next result is Theorem 4.2.8 in \[22\].

Lemma 7.4. For each compact set \(K \subset \Omega\), there exist constants \(0 < c_1 < c_2 < \infty\) and \(r_0 \in (0, 1)\) such that for each \(x \in K\),
\[
c_1 \| y - x \|^{2-d} \leq G_\Omega(x, y) \leq c_2 \| y - x \|^{2-d}
\]
for all \(\| y - x \| < r_0\) if \(d \geq 3\), and
\[
-c_1 \log \| y - x \| \leq G_\Omega(x, y) \leq -c_2 \log \| y - x \|
\]
for all \(\| y - x \| < r_0\) if \(d = 2\).

By (7.3), the function \(G_\Omega(\cdot, x)\) is harmonic on \(\Omega \setminus \{x\}\), and, by Lemma 7.4, it diverges at \(x\). The next lemma turns rigorous the formal identity \([\mathcal{L}_c G_\Omega(\cdot, x)](y) = -\delta_x(y)\), where \(\delta_x\) is the Dirac delta function at \(x\).

Lemma 7.5. Assume that \(\Omega\) has a \(C^{2,\alpha}\)-boundary for some \(0 < \alpha < 1\), and let \(f\) be a function in \(C_0^\alpha(\overline{\Omega})\). Then, for all \(x \in \Omega\),
\[
f(x) = \lim_{\delta \to 0} \int_{\partial B_\delta(x)} e^{[U(x)-U(y)]/\varepsilon} f(y) \frac{1}{\varepsilon} \nabla G^*_\Omega(y, x) \cdot n_{B_\delta(x)}(y) \sigma(dy).
\]

Proof. Fix \(x \in \Omega\) and modify \(f\) outside a neighborhood of \(x\) for \(f\) to vanish at \(\partial \Omega\).

We first claim that
\[
f(x) = -\int \Omega e^{[U(x)-U(y)]/\varepsilon} G^*_\Omega(y, x) (\mathcal{L}_c f)(y) \, dy.
\]

To prove this identity, denote by \(h\) the function defined by integral on the right-hand side. Applying (7.4), we may replace \(e^{[U(x)-U(y)]/\varepsilon} G^*_\Omega(y, x)\) by \(G_\Omega(x, y)\).

By assumption, \(\mathcal{L}_c f\) belongs to \(C_0^\alpha(\overline{\Omega})\) and vanishes at \(\partial \Omega\). Therefore, by Lemma
Problem 7.3 h is the unique solution of (2.8) with $g = L_\epsilon f$ and $b = 0$. Since $-f$ solves the same equation, by uniqueness, $h = -f$, proving the identity.

By Lemma 7.4 the integral on the right-hand side of the previous displayed equation is equal to
\[
\lim_{\delta \to 0} \int_{\Omega \setminus B_\delta(x)} e^{[U(x)-U(y)]/\epsilon} G_{\Omega}^\epsilon(y, x) (L_\epsilon f)(y) \, dy.
\]
By the divergence theorem and since $G_{\Omega}^\epsilon(\cdot, x)$ vanishes at $\partial \Omega$, the previous integral is equal to
\[
e \int_{\partial B_\delta(x)} e^{[U(x)-U(y)]/\epsilon} G_{\Omega}^\epsilon(y, x) \nabla f(y) \cdot \nu_{B_\delta(x)}(y) \sigma(dy) - \epsilon \int_{\Omega \setminus B_\delta(x)} e^{[U(x)-U(y)]/\epsilon} \nabla G_{\Omega}^\epsilon(y, x) \nabla f(y) \, dy.
\]
By Lemma 7.4, the first integral vanishes as $\delta \to 0$. By the divergence theorem, since f vanishes on $\partial \Omega$ and since $|L_\epsilon^* G_{\Omega}(\cdot, x)|(y) = 0$ on $\Omega \setminus \{x\}$, the second one is equal to
\[
- \epsilon \int_{\partial B_\delta(x)} e^{[U(x)-U(y)]/\epsilon} f(y) \nabla G_{\Omega}^\epsilon(y, x) \cdot \nu_{B_\delta(x)}(y) \sigma(dy).
\]
This completes the proof of the lemma. \square

Lemma 7.6. Assume that Ω has a $C^{2,\alpha}$-boundary for some $0 < \alpha < 1$, and let b be a function in $C^{2,\alpha}(\overline{\Omega}) \cap W^{1,2}(\Omega)$. The unique solution in $C^{2,\alpha}(\overline{\Omega})$ of the Dirichlet problem (2.8) with $g = 0$, $b = b$, denoted by f, can be represented as
\[
f(x) = - \epsilon \int_{\partial \Omega} b(y) e^{[U(x)-U(y)]/\epsilon} \nabla G_{\Omega}^\epsilon(y, x) \cdot \nu_{\Omega}(y) \sigma(dy), \quad x \in \Omega.
\]
Proof. Fix x, and let $h(y) = G_{\Omega}^\epsilon(y, x)$. By (7.3) and (7.5), $h \in C^{2,\alpha}(\Omega \setminus \{x\})$, $(L_\epsilon^* h)(y) = 0$, $y \in \Omega \setminus \{x\}$, and $h(y) = 0$, $y \in \partial \Omega$.

Denote by f the solution of the Dirichlet problem (2.8) with $g = 0$, $b = b$. Fix $\delta > 0$. Since $L_\epsilon f = 0$ and since h vanishes on $\partial \Omega$, by the divergence theorem,
\[
0 = \int_{\Omega \setminus B_\delta(x)} h(y) \nabla \cdot (e^{-U/\epsilon} \nabla f)(y) \, dy
= - \epsilon \int_{\Omega \setminus B_\delta(x)} e^{[U(y)]/\epsilon} \nabla h(y) \cdot \nabla f(y) \, dy + o_\delta(1).
\]
The expression $o_\delta(1)$ comes from the integral on $\partial B_\delta(x)$, which vanishes as $\delta \to 0$ as we have seen in (7.7).

Applying the divergence theorem once more, since $L_\epsilon^* h = 0$ on $\Omega \setminus B_\delta(x)$, the right-hand side of the previous identity is equal to
\[
- \epsilon \int_{\partial B_\delta(x)} f(y) e^{[U(y)]/\epsilon} \nabla h(y) \cdot \nu_{B_\delta(x)}(y) \sigma(dy)
- \epsilon \int_{\partial \Omega} f(y) e^{[U(y)]/\epsilon} \nabla h(y) \cdot \nu_{\Omega}(y) \sigma(dy) + o_\delta(1).
\]
As f belongs to $C^{2,\alpha}(\overline{\Omega})$ and is equal to b on $\partial \Omega$, by Lemma 7.5 letting $\delta \to 0$, this sum converges to
\[
- \epsilon^{-1} f(x) e^{-U(x)/\epsilon} - \int_{\partial \Omega} b(y) e^{-U(y)/\epsilon} \nabla h(y) \cdot \nu_{\Omega}(y) \sigma(dy).
\]
This completes the proof of the lemma. □

The equilibrium potential. In this subsection, we establish a bound on the harmonic function in terms of capacities and simple bounds for the capacity between two sets. Together these estimate provide a useful bound on the harmonic function.

Let $A, B \subset \mathbb{R}^d$ be two open subsets of \mathbb{R}^d satisfying Assumption S, and let $\Omega = (A \cup B)^c$. The next result presents a formula for the equilibrium potential. The same proof provides an identity for $h^*_{A,B}$ in place of $h_{A,B}$.

Lemma 7.7. Let A and B be open sets satisfying Assumption S. Then, for all $x \notin B$,

$$h_{A,B}(x) = \epsilon \int_{\partial A} G_{B^c}(x,y) M \nabla h_{A,B}(y) \cdot n_{A,B} - \epsilon \int_{\partial A \cup \partial B} e^{[U(x) - U(y)]/\epsilon} G_{B^c}(y,x) M \nabla h_{A,B}(y) \cdot n_{(A \cup B)^c} \sigma(dy).$$

Proof. Consider the integral on the right-hand side. Since $G_{B^c}(x, \cdot)$ vanishes at ∂B, we may extend the integral to $\partial A \cup \partial B$. By (7.4), we may replace $G_{B^c}(x,y)$ by $\exp{[U(x) - U(y)]/\epsilon} G_{B^c}(y,x)$. On the other hand, as $h_{A,B} = 1 - h_{B,A}$, we may also replace $\nabla h_{A,B}$ by $-\nabla h_{B,A}$. After these modifications, the integral appearing in the statement of the lemma becomes

$$-\epsilon \int_{\partial A \cup \partial B} e^{[U(x) - U(y)]/\epsilon} G_{B^c}(y,x) M \nabla h_{B,A}(y) \cdot n_{(A \cup B)^c} \sigma(dy).$$

In the argument below, as we did in the two previous lemmata, we need to remove from the integration region a ball $B_\delta(x)$ and let $\delta \to 0$. As the argument should be clear at this point, we ignore the singularity of the Green function at x. By the divergence theorem, and since $L h_{B,A} = 0$ on $(A \cup B)^c$, this expression is equal to

$$-\epsilon \int_{(A \cup B)^c} e^{[U(x) - U(y)]/\epsilon} M \nabla h_{B,A}(y) \cdot \nabla h_{B,A}(y) \sigma(dy).$$

Applying the divergence theorem a second time, as $L G_{B^c}(\cdot, x) = -\delta_x(\cdot)$ and $h_{B,A} = 1\{B\}$ on $\partial A \cup \partial B$, this expression becomes

$$-h_{B,A}(x) - \epsilon \int_B e^{[U(x) - U(y)]/\epsilon} M \nabla h_{B,A}(y) \cdot \nabla h_{B,A}(y) \sigma(dy).$$

By Lemma 7.6, the integral is equal to $f(x)$ where f is the solution of (2.8) with $\Omega = B^c$, $g = 0$ and $b = 1$. Since the solution of this equation is equal to 1, the previous expression is equal to $1 - h_{B,A}(x) = h_{A,B}(x)$, as claimed. □

In the present context, the equilibrium measure $\nu_{A,B}$, introduced in (3.13), is the probability measure on ∂A given by

$$\nu_{A,B}(dy) = \frac{\epsilon}{Z_\epsilon \text{cap}(A,B)} e^{-U(y)/\epsilon} M \nabla h^*_{A,B}(y) \cdot n_{A,B}(y) \sigma(dy).$$

(7.8)

In particular, in view of (7.4), in terms of the equilibrium measure, the formula for $h^*_{A,B}$ becomes

$$h^*_{A,B}(x) = Z_\epsilon \text{cap}(A,B) e^{U(x)/\epsilon} \int_{\partial A} G_{B^c}(y,x) \nu_{A,B}(dy), \quad x \notin B.$$

Therefore, since $h^*_{A,B}(x) = 1$ for $x \in A$ and since the equilibrium measure is a probability measure, we obtain that

$$\inf_{y \in \partial A} G_{B^c}(y,x) \leq \frac{e^{-U(x)/\epsilon}}{Z_\epsilon \text{cap}(A,B)}, \quad x \in A.$$
Lemma 7.8. Let \(D \) be an open set with a \(C^{2,\alpha} \)-boundary for some \(0 < \alpha < 1 \). Fix \(x \notin \overline{D} \). For every \(r > 0 \) there exists a finite constant \(C_0 \), depending only on \(r \) and \(U \), such that for all \(0 < \epsilon < \epsilon_0 = d(x, D)/2r \),
\[
\sup_{y \in \partial B_r(x)} G_{D,\epsilon}(y, x) \leq C_0 \inf_{y \in \partial B_r(x)} G_{D,\epsilon}(y, x) .
\]

Proof. The proof is a well-known application of the Harnack inequality, see e.g. [7, Lemma 4.6]. Note that the supremum and infimum are carried over the boundary of \(B_\epsilon(x) \). The result does not hold if this boundary is replaced by the ball since the Green function diverges on the diagonal, as stated in Lemma 7.4.

Proposition 7.9. Let \(A \) and \(B \) be open sets satisfying Assumption S. Fix \(x \notin \overline{A \cup B} \) and \(r > 0 \). Let \(\epsilon_0 = d(x, A \cup B)/2r \). There exists a finite constant \(C_0 \), depending only on \(r \) and \(U \), such that for all \(\epsilon < \epsilon_0 \),
\[
h_{A,B}(x) \leq C_0 \frac{\text{cap}(B_\epsilon(x), A)}{\text{cap}(B_\epsilon(x), A \cup B)} .
\]

Proof. Fix two open sets \(A \), \(B \) satisfying Assumption S and \(x \notin \overline{A \cup B} \). By Lemma 7.6
\[
h_{A,B}(x) = -\epsilon \int_{\partial A} e^{[U(x) - U(y)]/\epsilon} M_{\epsilon} \nabla G_{(A \cup B)^c}(y, x) \cdot n_{A^c}(y) \sigma(dy) .
\]

Let \(C \) be an open set with a smooth boundary and such that \(d(C, A \cup B) > 0 \), \(x \in C \). Since \(h_{A,B,C} = 1 \) on \(\partial A \) we may add \(h_{A,B,C} \) inside the integral and then extend the integral to \(\partial A \cup \partial B \cup \partial C \). By the divergence theorem, since \(x \in C \) and \(\mathcal{L}_x^* G_{(A \cup B)^c}^*(\cdot, x) = 0 \) on \((A \cup B \cup \overline{C})^c \), the previous expression is equal to
\[
-\epsilon \int_{(A \cup B \cup C)^c} e^{[U(x) - U(y)]/\epsilon} \nabla h_{A,B,C}(y) \cdot M_{\epsilon} \nabla G_{(A \cup B)^c}(y, x) dy .
\]

Applying once more the divergence theorem, and since \(\mathcal{L}_x h_{A,B,C} = 0 \) on \((A \cup B \cup \overline{C})^c \), the previous expression is equal to
\[
-\epsilon \int_{\partial C} e^{[U(x) - U(y)]/\epsilon} G_{(A \cup B)^c}^*(y, x) M \nabla h_{A,B,C}(y) \cdot n_{C^c}(y) \sigma(dy) .
\] (7.10)

Note that the integration is carried over \(\partial C \) because \(G_{(A \cup B)^c}^*(y, x) \) vanishes on \(\partial A \cup \partial B \).

We prove below that for all \(y \in \partial C \), it holds that
\[
M \nabla h_{A,B,C}(y) \cdot n_{C^c}(y) \geq M \nabla h_{A,C}(y) \cdot n_{C^c}(y) .
\] (7.11)

Then, after replacing \(\nabla h_{A,B,C} \) by \(\nabla h_{A,C} \) in (7.10) and observing that \(\nabla h_{A,C} = -\nabla h_{C,A} \), we conclude that
\[
h_{A,B}(x) \leq e^{U(x)/\epsilon} \int_{\partial C} e^{-U(y)/\epsilon} G_{(A \cup B)^c}^*(y, x) M \nabla h_{C,A}(y) \cdot n_{C^c}(y) \sigma(dy)
\]
\[
\leq e^{U(x)/\epsilon} \sup_{y \in \partial C} G_{(A \cup B)^c}^*(y, x) \int_{\partial C} e^{-U(y)/\epsilon} M \nabla h_{C,A}(y) \cdot n_{C^c}(y) \sigma(dy)
\]
\[
= e^{U(x)/\epsilon} \sup_{y \in \partial C} G_{(A \cup B)^c}^*(y, x) Z_\epsilon \text{cap}(C, A) .
\]

In the last step we used the formula (2.10) for the capacity.
Fix \(r > 0 \), let \(\epsilon_0 = d(x, A \cup B)/2r \), and set \(C = B_{r\epsilon}(x) \). By Lemma 7.8 with \(D = A \cup B \), there exists a finite constant \(C_0 = C_0(r) \) such that
\[
h_{A,B}(x) \leq C_0 e^{U(x)/\epsilon} \inf_{y \in \partial B_{r\epsilon}(x)} G_{(A \cup B)^c}^*(y, x) Z_{c} \text{cap}(B_{r\epsilon}(x), A).
\]

To complete the proof of the lemma, it remains to recall estimate (7.9).

It remains to show that (7.11). Fix \(x \in \partial C \). The vector \(M^\top n_{C^c}(x) \) points inward to \(C \) because \(n_{C^c}(x) \cdot M^\top n_{C^c}(x) = n_{C^c}(x) \cdot S n_{C^c}(x) > 0 \). In particular, for \(\delta \) small enough, \(x - \delta M^\top n_{C^c}(x) \in (A \cup B \cup C)^c \). Since, by (3.2), \(h_{A,B \cup C} \leq h_{A,C} \) on this set,
\[
h_{A,B \cup C}(x - \delta M^\top n_{C^c}(x)) \leq h_{A,C}(x - \delta M^\top n_{C^c}(x))
\]
for \(\delta \) small enough. Subtracting \(h_{A,B \cup C}(x) = h_{A,C}(x) = 0 \) on both sides, dividing by \(\delta \) and letting \(\delta \to 0 \) yields that
\[
n_{C^c}(x) \cdot M \nabla h_{A,B \cup C}(x) \geq n_{C^c}(x) \cdot M \nabla h_{A,C}(x),
\]
as claimed. \(\square\)

Lemma 7.10. There exists a finite constant \(C_0 \) and \(\epsilon_0 > 0 \) such that for all \(y \in W_2 \), \(0 < \epsilon < \epsilon_0 \),
\[
\text{cap}(B_\epsilon(y), V_1) \leq C_0 Z_{\epsilon^{-1}} e^{-H/\epsilon}, \quad \text{cap}(B_\epsilon(y), V_2) \geq C_0 Z_{\epsilon^{-1}} e^{\epsilon} e^{-U(y)/\epsilon}.
\]

Proof. The generator \(\mathcal{L} \) satisfies a sector condition with constant \(\Lambda/\lambda \). Indeed, by the Cauchy-Schwarz inequality and by (7.1), for any smooth functions \(f, g : \mathbb{R}^d \to \mathbb{R} \),
\[
\langle f, \mathcal{L} g \rangle_{\mu} \leq \frac{\Lambda}{\lambda} (f, (-\mathcal{L} f))_{\mu} \langle g, (-\mathcal{L} g) \rangle_{\mu}.
\]
It follows from Lemmata 2.5 and 2.6 in [13] that the capacity between two sets can be estimated from below and from above by the capacity associated to the symmetric operator \((1/2)(\mathcal{L} + \mathcal{L}^*)\). Denote by \(\text{cap}^*(A,B) \) the capacity between the sets \(A, B \) for the symmetric process.

We start with the upper bound. Let \(\overline{W}_2 = \{ x : d(x, W_2) \leq t \} \), \(t \geq 0 \). Let \(\epsilon_0 > 0 \) such that \(V_1 \cap \overline{W}_2^{\epsilon_0} = \emptyset \), and fix \(0 < \epsilon < \epsilon_0 \). There exist a smooth function \(h_\epsilon \), independent on \(\epsilon \), such that \(h_\epsilon \equiv 1 \) on \(\overline{W}_2^\epsilon \), \(h_\epsilon \equiv 0 \) on \((\overline{W}_2^\epsilon)^c \), and
\[
\| \nabla h_\epsilon(x) \| \leq C_0 \epsilon^{-1} \text{ for all } x \in \overline{W}_2^\epsilon \setminus \overline{W}_2.
\]
Then, since \(B_\epsilon(y) \subset \overline{W}_2 \) and \(V_1 \subset (\overline{W}_2^\epsilon)^c \), and since \(U(x) = H + O(\epsilon) \) for all \(x \in W_2^\epsilon \setminus W_2^\epsilon \), by the Dirichlet’s principle for reversible processes,
\[
\text{cap}^*(B_\epsilon(y), V_1) \leq \epsilon Z_{\epsilon^{-1}} \int_{\mathbb{R}^d} e^{-U(x)/\epsilon} \nabla h_\epsilon(x) \cdot S \nabla h_\epsilon(x) dx
\]
\[
\leq C_0 \epsilon Z_{\epsilon^{-1}} e^{-H/\epsilon} \epsilon^{-2} \text{vol } (\overline{W}_2^\epsilon \setminus \overline{W}_2^\epsilon) \leq C_0 \epsilon Z_{\epsilon^{-1}} e^{-H/\epsilon}.
\]

We turn to the lower bound, where we follow the argument of [8 Proposition 4.7]. Fix \(0 < \epsilon < 1 \). Let \(\rho(t) \) be a smooth path connecting \(y \) to \(m_2 \) such that \(U(\rho(t)) \) is decreasing in \(t \), and \(|\rho(t)| = 1 \) for all \(t \). Let \(D_\epsilon \) be a \((d-1)\)-dimensional disk of radius \(\epsilon \) centered at origin. By the proof [8 Proposition 4.7] up to equation (4.26), we obtain that
\[
\text{cap}^*(B_\epsilon(y), V_2) \geq \epsilon Z_{\epsilon^{-1}} \int_{D_\epsilon} d\zeta \left[\int_0^1 |\rho| dt e^{U(\rho(t) + \zeta \perp)/\epsilon} \right]^{-1}.
\]
Let \(L_0 = \sup_{x \in \mathbb{R}^d} \| \nabla U(x) \| \). As \(U(\rho(t)) \) decreases in \(t \),
\[
\int_0^{|\rho|} e^{U(\rho(t)+z_\perp)/\epsilon} dt \leq e^{L_0} \int_0^{|\rho|} e^{U(\rho(t))/\epsilon} dt \leq e^{L_0} |\rho| e^{U(y)/\epsilon}.
\]
Since the set \(W_2 \) is bounded, we can choose smooth paths with length \(|\rho| \) uniformly bounded. Hence, by the previous estimates,
\[
\text{cap}^s(B_\epsilon(y), V_1) \geq C_0 \frac{e^d}{Z_\epsilon} e^{-U(y)/\epsilon},
\]
as claimed. \(\square \)

Proposition 7.11. There exists a finite constant \(C_0 \) and \(\epsilon_0 > 0 \) such that for all \(y \in W_2, 0 < \epsilon < \epsilon_0 \),
\[
h_{V_1, V_2}(y) \leq C_0 e^{-d} e^{-|H-U(y)|/\epsilon}.
\]

Proof. Fix \(y \in W_2 \). By Proposition 7.9 with \(r = 1 \), for all \(\epsilon \) small enough and since the capacity is monotone in its arguments,
\[
h_{V_1, V_2}(y) \leq C_0 \frac{\text{cap}(B_\epsilon(y), V_1)}{\text{cap}(B_\epsilon(y), V_2)}.
\]
By Lemma 7.10, this expression is bounded above by the right-hand side of (7.12) for all \(\epsilon \) small enough, as claimed. \(\square \)

8. The vector fields \(\Theta_{\alpha}, \Theta^*_{\alpha} \)

We prove in this section Lemmata 6.3, 6.4 and 6.5. Throughout this section, \(C_1, C_2, C_3 \) represent large but finite positive constants, independent of the variables \(\epsilon \) and \(\eta \) introduced in Section 6, and whose value may change from line to line. Similarly, \(c_1, c_2 \) represent small but positive constants with the same properties of \(C_1, C_2 \).

We start by recalling basic properties of the vector \(\nu \) and the matrices \(M, L \). Most of these results were proven in Section 4 of \cite{17}. Recall that we write a vector \(u \in \mathbb{R}^d \) as \(\sum_{1 \leq i \leq d} u_i e_i \), that we represent by \(v \) the eigenvector of \(LM \) associated to the eigenvalue \(-\mu \), and that we assumed \(v_1 > 0 \).

Lemma 8.1. We have that
\[
v \cdot L^{-1} v = -\frac{v_1^2}{\lambda_1} + \sum_{k=2}^d \frac{v_k^2}{\lambda_k} = -\frac{1}{\alpha}.
\]

Proof. Since \(v \) is the eigenvector of \(LM \) associated to the eigenvalue \(-\mu \), by (6.2),
\[
-v \cdot L^{-1} v = -v \cdot M(LM)^{-1} v = \frac{1}{\mu} v \cdot M v = \frac{1}{\alpha}.
\]
\(\square \)

The next two results are Lemmata 4.1 and 4.2 of \cite{17}. Denote by \(w^\dagger \) the transpose of a vector \(w \in \mathbb{R}^d \).

Lemma 8.2. The matrix \(L + 2\alpha vv^\dagger \) is positive definite and \(\det(L + 2\alpha vv^\dagger) = -\det L \).
Lemma 8.3. The matrix $L + \alpha v v^\top$ is non-negative definite and $\det(L + \alpha v v^\top) = 0$. The null space of the matrix $L + \alpha v v^\top$ is one-dimensional and spanned by the vector $L^{-1}v$.

A. Proof of Lemma 6.3

The proof of Lemma 6.3 is based on the following estimate.

Lemma 8.4. We have that

$$
\int_{B_\epsilon} \nabla p_\epsilon(z) \cdot M \nabla p_\epsilon(z) e^{-(U(z) - H)/\epsilon} \, dz = [1 + o_\epsilon(1)] (2\pi \epsilon)^{d/2} \omega(0).
$$

Proof. By the definition (6.3) of p_ϵ,

$$
\nabla p_\epsilon(z) = \frac{1}{C_\epsilon} \exp \left\{ - \frac{\alpha}{2\epsilon} (z \cdot v)^2 \right\} v,
$$

and by the Taylor expansion of the potential U around 0, on the set B_ϵ,

$$
U(z) - H = (1/2) z \cdot L z + O(\delta^3).
$$

Since $\exp\{\delta^3/\epsilon\} = 1 + o_\epsilon(1)$ and $C_\epsilon = \sqrt{2\pi \epsilon / \alpha}$, by (6.2) and by the two previous identities, the left-hand side of the expression appearing in the statement of the lemma is equal to

$$
[1 + o_\epsilon(1)] \frac{\mu}{2\pi \epsilon} \int_{B_\epsilon} \exp \left\{ \frac{1}{2\epsilon} z \cdot [L + 2\alpha vv^\top] z \right\} \, dz.
$$

It is easy to verify that

$$
[-\delta, \delta] \times \prod_{i=1}^d \left[-\sqrt{\frac{\lambda_1}{4(d-1)\lambda_i}}, \sqrt{\frac{\lambda_1}{4(d-1)\lambda_i}} \right] \subseteq B_\epsilon.
$$

Hence, by the change of coordinates $y = (1/\sqrt{\epsilon}) z$, and by Lemma 8.2 the last integral is equal to

$$
[1 + o_\epsilon(1)] \frac{(2\pi \epsilon)^{d/2}}{\sqrt{-\det L}}.
$$

This completes the proof of the lemma since $\omega(0) = \mu / \sqrt{-\det L}$.

We may now turn to the Proof of Lemma 6.3.

Proof of Lemma 6.3. By the definition of Θq_ϵ and Θq_ϵ^*, it is easy to check that

$$
\left\| \Theta q_\epsilon + \Theta q_\epsilon^* \right\|^2 = \epsilon Z_\epsilon \int_{B_\epsilon} \nabla p_\epsilon(x) \cdot M \nabla p_\epsilon(x) e^{-U(x)/\epsilon} \, dx.
$$

At this point, the assertion of Lemma 6.3 follows from Lemma 8.4.

B. Proof of Lemma 6.4

Define a mollified version of the vector field q_ϵ as $q_\epsilon^{(n)} = q_\epsilon \ast \phi_\eta$, where $\eta = \eta(\epsilon)$ is such that $\lim_{\epsilon \to 0} \eta(\epsilon)/\delta(\epsilon) = 0$. Let $\Theta q_\epsilon^{(n)}(z) = \epsilon Z_\epsilon e^{-U(z)/\epsilon} \int q_\epsilon^{(n)}(z)$, By Young’s inequality,

$$
\| \Phi \Phi^{(n)}_{p_\epsilon} - \Theta q_\epsilon^{(n)} \|^2 \leq 2 \| \Phi_{p_\epsilon}^{(n)} - \Theta q_\epsilon^{(n)} \|^2 + 2 \| \Theta q_\epsilon^{(n)} - \Theta q_\epsilon \|^2.
$$

We estimate the two terms on the right-hand side separately. Lemma 6.4 follows from Lemmata 8.5 and 8.6 below.
Lemma 8.5. There exist finite constants C_1, C_2, C_3, such that

$$\| \Phi_{p(\epsilon)} - \Theta_{q(\epsilon)} \|^2 \leq \frac{C_1}{\epsilon^d} e^{-H/\epsilon} \frac{e^{C \delta^2}}{\eta^d} e^{C_3 n/\epsilon}.$$

The proof of this lemma is divided in several steps. The crucial point is the control of the discontinuity of p_ϵ along the boundary $\partial \mathcal{X}_\epsilon \cup \partial \mathcal{B}_\epsilon$. For $z \in \partial \mathcal{X}_\epsilon$, let $n(z)$ be the inner normal vector to \mathcal{X}_ϵ at z (and hence the outer normal vector to $W_1^\epsilon \cup W_2^\epsilon \cup \mathcal{B}_\epsilon$). Similarly, for $z \in \partial \mathcal{B}_\epsilon \setminus \partial \mathcal{X}_\epsilon$, let $n(z)$ be the outer normal vector to \mathcal{B}_ϵ at z. In this manner, the normal vector is defined for all $z \in \partial \mathcal{X}_\epsilon \cup \partial \mathcal{B}_\epsilon$.

Define the functions θ^+, θ^- on $\partial \mathcal{X}_\epsilon \cup \partial \mathcal{B}_\epsilon$ by

$$\theta^+(z) = \lim_{t \to 0^+} p_\epsilon (z + t n(z)), \quad \theta^-(z) = \lim_{t \to 0^+} p_\epsilon (z - t n(z)).$$

Let $\theta : \partial \mathcal{X}_\epsilon \cup \partial \mathcal{B}_\epsilon \to \mathbb{R}$ be given by $\theta = \theta^+ - \theta^-$, so that $\theta(z)$ represents the discontinuity of p_ϵ at z. The next assertion provides an estimate of θ.

Assertion 8.A. There exist finite constants $C_1, C_2 > 0$, such that

$$|\theta(z)|^2 e^{-U(z)/\epsilon} \leq C_1 e^{-H/\epsilon} e^{C_2 \delta^2}$$

for all $z \in \partial \mathcal{X}_\epsilon \cup \partial \mathcal{B}_\epsilon$.

Proof. Fix $z \in \partial \mathcal{X}_\epsilon$, so that $|\theta(z)| \leq 1$, and $U(z) = H + (1/4)\lambda_1 \delta^2$. In this case Assertion 8.A follows from the definition of $\delta = K \sqrt{\epsilon \log(1/\epsilon)}$.

Fix $z \in \partial \mathcal{B}_\epsilon \setminus \partial \mathcal{X}_\epsilon$ so that, by Lemma 6.1, $z \in \partial_+ \mathcal{C}_\epsilon \cup \partial_- \mathcal{C}_\epsilon$. The proof in this case is similar to the one of Lemma 4.7 in [17]. Assume that $z \in \partial_+ \mathcal{C}_\epsilon$, the proof for $z \in \partial_- \mathcal{C}_\epsilon$ being similar. For $z \in \partial_+ \mathcal{C}_\epsilon$, $\theta^+(z) = 1$ and

$$\theta^-(z) = \frac{1}{C_\epsilon} \int_{-\infty}^{z \cdot v} \exp \left\{ \frac{-\alpha t^2}{2 \epsilon} \right\} dt,$$

so that

$$\theta(z) = \frac{1}{C_\epsilon} \int_{z \cdot v}^{\infty} \exp \left\{ \frac{-\alpha t^2}{2 \epsilon} \right\} dt = \frac{1}{\sqrt{2\pi}} \int_{z \cdot v}^{\infty} e^{-t^2/2} dt. \quad (8.1)$$

We claim that there exists a constant $c > 0$ such that, for every $z \in \partial_+ \mathcal{C}_\epsilon$, either $z \cdot v \geq c \delta$ or $z \cdot \mathbb{L} z \geq c \delta^2$. Indeed, by Lemma 8.1 and since $v_1 > 0$, there exists $c > 0$ such that

$$(\lambda_1 + c) \sum_{k=2}^d \frac{v_k^2}{\lambda_k} < (v_1 - c)^2. \quad (8.2)$$

The claim is in force with this constant c. Assume it is not. This means that there exists $z \in \partial_+ \mathcal{C}_\epsilon$ such that $z \cdot v < c \delta$ and $z \cdot \mathbb{L} z < c \delta^2$. Since $z \in \partial_+ \mathcal{C}_\epsilon$, z can be expressed as

$$z = \delta \left(e_1 + \sum_{k=2}^d z_k e_k \right).$$

Since $v = \sum_{1 \leq i \leq d} v_k e_k$, the condition $z \cdot v < c \delta$ is equivalent to

$$v_1 - c < - \sum_{k=2}^d z_k v_k.$$
On the other hand, the condition \(z \cdot L z < c \delta^2 \) can be rewritten as
\[
\sum_{k=2}^{d} z_k^2 \lambda_k < \lambda_1 + c.
\]
Inserting the two previous bounds in (8.2) we obtain that
\[
\sum_{k=2}^{d} z_k^2 \lambda_k < \left(\sum_{k=2}^{d} z_k v_k \right)^2,
\]
which contradicts to the Cauchy-Schwarz inequality. This proves the claim.

We are now in a position to prove Assertion 8.A. Suppose first that \(z \cdot v \geq c \delta \). Since \(\int_a^{\infty} \exp\{-t^2/2\} \ dt \leq (1/a) \exp\{-a^2/2\} \) for \(a > 0 \), by (8.1) and since \(z \cdot v \geq c \delta \),
\[
0 \leq \dot{\vartheta}(z) \leq \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\sqrt{c}}{\partial}} e^{-z^2/2} \leq C \sqrt{\frac{\sqrt{c}}{\partial}} e^{-z^2/2}
\]
for some finite constant \(C \). On the other hand, by the Taylor expansion,
\[
U(z) = H + \frac{1}{2} z \cdot L z + O(\delta^3). \tag{8.3}
\]

In view of the two previous displayed equations,
\[
\dot{\vartheta}(z)^2 e^{-U(z)/\epsilon} \leq C e^{-H/\epsilon} \exp\{-1/\sqrt{2\epsilon} \left[L + 2 \alpha \nu \nu^\dagger \right] z \}.
\]

By Lemma 8.2 \(L + 2 \alpha \nu \nu^\dagger \geq r_0 I \), where \(r_0 > 0 \) is the smallest eigenvalue of the positive-definite matrix \(L + 2 \alpha \nu \nu^\dagger \). Hence, as \(z_1 = \delta \),
\[
z \cdot \left[L + 2 \alpha \nu \nu^\dagger \right] z \geq r_0 |z|^2 \geq r_0 \delta^2.
\]

In view of the previous two displayed equations, to complete the proof of Assertion 8.A it remains to recall the definition of \(\delta \).

Assume now that \(z \cdot L z \geq c \delta^2 \). In this case, Assertion 8.A is direct consequence from the bound \(|\dot{\vartheta}(z)| \leq 1 \) and from (8.3).

The next result expresses the difference \(\nabla p^{(n)}_\epsilon - q^{(n)}_\epsilon \) in terms of the function \(\dot{\vartheta} \).

Assertion 8.B. For any \(z \in \mathbb{R}^d \),
\[
\nabla p^{(n)}_\epsilon(z) - q^{(n)}_\epsilon(z) = \int_{\partial X_1 \cup \partial B_\epsilon} \dot{\vartheta}(y) \phi_\eta(z - y) n(y) \sigma(dy).
\]

Proof. We first note that
\[
\nabla p^{(n)}_\epsilon(z) = \int_{\mathbb{R}^d} p_\epsilon(y) (\nabla \phi_\eta)(z - y) \ dy.
\]

Since \(p_\epsilon \) is smooth on each domain \(B_\epsilon \), \(W_1^\epsilon \), \(W_2^\epsilon \) and \(\mathbb{R}^d \setminus (B_\epsilon \cup W_1^\epsilon \cup W_2^\epsilon) \), we decompose the last integral into four integrals in these domains, and then apply divergence theorem for each integrals. For instance,
\[
\int_{B_\epsilon} p_\epsilon(y) (\nabla \phi_\eta)(z - y) \ dy = \int_{B_\epsilon} q_\epsilon(y) \phi_\eta(z - y) \ dy + \int_{\partial B_\epsilon} \partial^+ (y) \phi_\eta(z - y) n(y) \sigma(dy).
\]
The proof is completed by adding four identities obtained in this manner. \(\square \)
Proof of Lemma 8.5. There exists a finite constant \(C \) such that \(MS^{-1}M^\dagger < C \mathbb{I} \), where \(\mathbb{I} \) stands for the \(d \times d \) identity matrix. Therefore,

\[
\| \Phi_{p_e(n)} - \Theta_{q_e(n)} \|^2 = \frac{e}{Z_e} \int_{\mathbb{R}^d} e^{-U(z)/\epsilon} \left[\nabla p_e(n)(z) - q_e(n)(z) \right] \cdot MS^{-1}M^\dagger \left[\nabla p_e(n)(z) - q_e(n)(z) \right] \, dz
\]

\[
\leq \frac{C e}{Z_e} \int_{\mathbb{R}^d} e^{-U(z)/\epsilon} \left| \nabla p_e(n)(z) - q_e(n)(z) \right|^2 \, dz.
\]

By Assertion 8.C, this expression is equal to

\[
\frac{C e}{Z_e} \int_{\mathbb{R}^d} e^{-U(z)/\epsilon} \left| \nabla p_e(n)(z) - q_e(n)(z) \right|^2 \, dz.
\]

Since the surface volume of \(\partial X_e \cup \partial B_e \) is \([1 + o_\epsilon(1)]M\), where \(M \) is the surface volume of \(\partial W_1 \cup \partial W_2 \), by the Cauchy-Schwarz inequality, the last expression is bounded by

\[
\frac{C e}{Z_e} \int_{\mathbb{R}^d} \int_{\partial X_e \cup \partial B_e} e^{-U(y)/\epsilon} \sigma(y) \, dy \, dz.
\]

for some finite constant \(C \), whose value may change from line to line.

Since \(U \) is Lipschitz continuous on the compact set

\[
\{ z : |z - y| \leq \eta \text{ for some } y \in \partial X_e \cup \partial B_e \},
\]

there exists a finite constant \(C \), independent of \(\epsilon \), such that \(U(z) \geq U(y) - C\eta \) for \(y \in \partial X_e \cup \partial B_e \), \(|z - y| \leq \eta\). As \(\phi_\eta(z - y) = 0 \) if \(|z - y| \geq \eta\), and as

\[
\int_{\mathbb{R}^d} \phi_\eta^2(z) \, dz = \frac{C}{\eta^d},
\]

the last integral is bounded by

\[
\frac{C e}{Z_e} \frac{e^{C\eta/\epsilon}}{\eta^d} \int_{\partial X_e \cup \partial B_e} e^{-U(y)/\epsilon} \sigma(y) \, dy.
\]

To complete the proof of the lemma it remains to recall Assertion 8.A.

Lemma 8.6. Assume that \(\eta \ll \delta \). There exists a finite constant \(C_1 \), independent of \(\epsilon \) and \(\eta \), such that

\[
\| \Theta_{q_\eta} - \Theta_q \|^2 \leq o_\epsilon(1) \frac{1}{Z_e} e^{-H/\epsilon} e^{d/2} \frac{H}{\epsilon} \left(1 + \frac{\eta}{\epsilon} \right) \left(1 + e^{C_1\eta^d/\epsilon} \right).
\]

Denote by \(\partial^n B_e \) the neighborhood of the boundary \(\partial B_e \) defined by

\[
\partial^n B_e = \{ z : |z - y| \leq \eta \text{ for some } y \in \partial B_e \},
\]

and let \(B^n_\eta = B_e \setminus \partial^n B_e \). Since \(q_\eta(e)(z) = q_e(z) = 0 \) if \(z \notin B^n_\eta \cup \partial^n B_e \),

\[
\| \Theta_{q_\eta} - \Theta_q \|^2 = \frac{e}{Z_e} \int_{B^n_\eta \cup \partial^n B_e} e^{-U(z)/\epsilon} \left[q_\eta(e)(z) - q_e(z) \right] \cdot MS^{-1}M^\dagger \left[q_\eta(e)(z) - q_e(z) \right] \, dz.
\]

In particular, since \(MS^{-1}M^\dagger < C \mathbb{I} \) for some finite constant,

\[
\| \Theta_{q_\eta} - \Theta_q \|^2 \leq \frac{C e}{Z_e} \int_{B^n_\eta \cup \partial^n B_e} e^{-U(z)/\epsilon} \left| q_\eta(e)(z) - q_e(z) \right|^2 \, dz.
\]
In Assertions 8.C and 8.D below, we estimate the last integral on B_η^n and $\partial^n B_\eta$, respectively. Lemma 8.6 follows from these two assertions.

Assertion 8.C. Assume that $\eta \ll \delta$. There exist finite constants C_1, C_2, independent of ϵ and η, such that

$$\int_{B_\eta^n} e^{-U(z)/\epsilon} \left| q^{(\epsilon)}_c(z) - q_c(z) \right|^2 \, dz \leq \frac{C_2 \delta^2}{\epsilon^3} e^{d/2} \eta^2 e^{-H/\epsilon} e^{C_1 \eta \delta / \epsilon}.$$

Proof. We first derive a pointwise estimate of $\left| q^{(\epsilon)}_c(z) - q_c(z) \right|$ for $z \in B_\eta^n$. Recall that $B_\eta(x)$ the ball of radius η centered at $x \in \mathbb{R}^d$. Note that $B_\eta(z) \subset B_\eta$ for all $z \in B_\eta^n$. Hence, by the Cauchy-Schwarz inequality and the mean value theorem,

$$\left| q^{(\epsilon)}_c(z) - q_c(z) \right|^2 = \left| \int_{\mathbb{R}^d} \phi_\eta(y) \left[\nabla p_c(z + y) - \nabla p_c(z) \right] \, dy \right|^2 \leq \int_{\mathbb{R}^d} \phi_\eta(y) \left| \nabla p_c(z + y) - \nabla p_c(z) \right|^2 \, dy \leq \int_{\mathbb{R}^d} \phi_\eta(y) |y|^2 \sum_{i,j=1}^d \sup_{x \in B_\eta(z)} \left| \nabla^2_{x_i,x_j} p_c(x) \right|^2 \, dy.$$

By a direct computation,

$$\nabla^2_{x_i,x_j} p_c(x) = -\frac{\alpha}{C_\epsilon \epsilon} (x \cdot v) e^{-(\alpha/2\epsilon)(x \cdot v)^2} v_i v_j.$$

Since $\eta \ll \delta$ and $z \in B_\eta^n$, there exists a finite constant C_1 such that $(x \cdot v)^2 \geq (z \cdot v)^2 - C_1 \eta \delta$ for all $x \in B_\eta(z)$. Hence, as $C_\epsilon = \sqrt{2\pi \alpha / \alpha}$ and $(x \cdot v)^2 \leq C_2 \delta^2$, there exists a finite constant C, independent of ϵ and η such that

$$\left| \nabla^2_{x_i,x_j} p_c(x) \right|^2 \leq \frac{C_2 \delta^2}{\epsilon^3} e^{-(\alpha/\epsilon)(z \cdot v)^2} e^{C_1 \delta \eta / \epsilon}$$

for all $x \in B_\eta(z)$.

Therefore, in view of (8.4),

$$\left| q^{(\epsilon)}_c(z) - q_c(z) \right|^2 \leq \frac{C_2 \delta^2}{\epsilon^3} e^{-(\alpha/\epsilon)(z \cdot v)^2} e^{C_1 \delta \eta / \epsilon} \int_{\mathbb{R}^d} \phi_\eta(y) |y|^2 \, dy = \frac{C_2 \delta^2}{\epsilon^3} e^{-(\alpha/\epsilon)(z \cdot v)^2} e^{C_1 \delta \eta / \epsilon} \eta^2.$$

In consequence,

$$\int_{B_\eta^n} e^{-U(z)/\epsilon} \left| q^{(\epsilon)}_c(z) - q_c(z) \right|^2 \, dz \leq \frac{C_2 \delta^2}{\epsilon^3} e^{C_1 \delta \eta / \epsilon} \eta^2 \int_{B_\eta^n} e^{-U(z)/\epsilon} e^{-(\alpha/\epsilon)(z \cdot v)^2} \, dz.$$

By the Taylor expansion, $U(z) = H + (1/2) z \cdot L z + O(\delta^3)$ for $z \in B_\eta^n$. Hence, by Lemma 8.2 the last integral is bounded by

$$C_3 e^{-H/\epsilon} \int_{\mathbb{R}^d} \exp \left\{ -\frac{1}{2\epsilon} z \cdot [L + 2\alpha vv^\dagger] z \right\} \, dz = C_3 e^{-H/\epsilon} \epsilon^{d/2} \sqrt{\det L}$$

for some finite constant C_3, independent on ϵ and η. This completes the proof. \[\square\]

Assertion 8.D. Assume that $\eta \ll \delta$. There exist finite constants C_1, C_2, independent of ϵ, η, such that

$$\int_{\partial^n B_\eta} e^{-U(z)/\epsilon} \left| q^{(\epsilon)}_c(z) - q_c(z) \right|^2 \, dz \leq C_1 \frac{\eta \delta^{-1}}{\epsilon} e^{-H/\epsilon} \left(1 + e^{C_2 \eta \delta / \epsilon} \right).$$
Proof. We first derive pointwise bounds for $|q_e(z)|$ and $|q^{(n)}_e(z)|$. For the former, we have the trivial bound

$$|q_e(z)| \leq {C_1 \over C_\epsilon} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2}$$

(8.5) for some finite constant C_1. For the latter, by definition, by the previous inequality and by the bound on $(x \cdot \nu)^2$ in terms of $(z \cdot \nu)^2$, obtained in the proof of the previous assertion,

$$|q^{(n)}_e(z)| \leq \int_{\mathbb{R}^d} |q_e(z + y)| \phi_\eta(y) \, dy \leq \int_{\mathbb{R}^d} {C_1 \over C_\epsilon} e^{-(\alpha/2\epsilon)((z+y) \cdot \nu)^2} \phi_\eta(y) \, dy$$

$$\leq \int_{\mathbb{R}^d} {C_1 \over C_\epsilon} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2} e^{C_2\eta \delta/\epsilon} \phi_\eta(y) \, dy \leq {C_1 \over C_\epsilon} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2} e^{C_2\eta \delta/\epsilon}$$

for some finite constant C_2.

By the two previous estimates of $|q_e(z)|$ and $|q^{(n)}_e(z)|$, and by the Taylor expansion,

$$e^{-U(z)/\epsilon} |q^{(n)}_e(z) - q_e(z)|^2 \leq {C_1 \over \epsilon} e^{-H/\epsilon} e^{-(1/2\epsilon)z \cdot [L + 2\alpha\nu\nu^T]z} \left(1 + e^{C_2\eta \delta/\epsilon}\right)$$

$$\leq {C_1 \over \epsilon} e^{-H/\epsilon} \left(1 + e^{C_2\eta \delta/\epsilon}\right).$$

This pointwise estimate completes the proof of the assertion since the volume of $\partial^n B_\epsilon$ is bounded by $C_1 \eta \delta^{d-1}$.

C. Proof of Lemma 6.5. Since q_e vanishes everywhere, but on the set B_ϵ,

$$\langle \Theta^{*}_{q_e}, \Psi_{h_{v_1, v_2}} \rangle = \int_{B_\epsilon} \nabla h_{v_1, v_2}(z) \cdot \Theta^{*}_{q_e} \, dz.$$

Note that the inner product of vector fields has been defined only for smooth vector fields, but it can be extended to weakly differentiable vector fields.

By the divergence theorem, the last integral is equal to

$$- {1 \over Z_\epsilon} \int_{B_\epsilon} h_{v_1, v_2}(z) e^{-U(z)/\epsilon} [L_{\epsilon} p_\epsilon](z) \, dz + \int_{\partial B_\epsilon} h_{v_1, v_2}(z) \left[\Theta^{*}_{q_e} \cdot n(z)\right] \sigma(dz),$$

(8.6)

where, we recall, $n(z)$ stands for the outer normal vector to B_ϵ at z. The next lemma states that the first term is negligible. This result holds because p_ϵ has been defined as an approximation in B_ϵ of the solution of the equation $L_{\epsilon} f = 0$ with some boundary conditions.

Lemma 8.7. We have that

$$Z^{-1}_\epsilon \int_{B_\epsilon} e^{-U(z)/\epsilon} |L_{\epsilon} p_\epsilon(z)| \, dz = o_\epsilon(1) T_\epsilon.$$

Proof. By definition of p_ϵ,

$$\nabla p_\epsilon(z) = {1 \over C_\epsilon} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2} \nu, \quad \partial^2_{z_i, z_j} p_\epsilon(z) = - {\alpha \over \epsilon C_\epsilon} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2} (z \cdot \nu) v_i v_j.$$

By the Taylor expansion, $\nabla U(z) = \mathbb{L}z + O(\delta^2)$. Hence, since ν is the eigenvector of $\mathbb{L}M = \mathbb{L}^\ast \mathcal{M}$ associated to $-\mu$, the first order part of $(L_{\epsilon} p_\epsilon)(z)$ is equal to

$$- {1 \over C_\epsilon} \left\{ \mathbb{L} z \cdot \mathcal{M} \nu + O(\delta^2) \right\} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2} = {1 \over C_\epsilon} \left\{ \mu (z \cdot \nu) + O(\delta^2) \right\} e^{-(\alpha/2\epsilon)(z \cdot \nu)^2}.$$
By (6.2), the second order part of \((L_p \varphi)(z) \) is equal to
\[
- \frac{\alpha}{C_\epsilon} (z \cdot v) (v \cdot M) e^{-(\alpha/2\epsilon)(z \cdot v)^2} = - \frac{\mu}{C_\epsilon} (z \cdot v) e^{-(\alpha/2\epsilon)(z \cdot v)^2}.
\]

Since \(C_\epsilon = O(\sqrt{\epsilon}) \), it follows from the two previous identities that there exists a finite constant \(C_1 \) such that
\[
|L_p \varphi(z)| \leq \frac{C_1 \delta^2}{\sqrt{\epsilon}} e^{-(\alpha/2\epsilon)(z \cdot v)^2}
\]
for all \(z \in B_\epsilon \).

As \(U(z) = H + (1/2) z \cdot \|z\| + O(\delta^3) \), for \(z \in B_\epsilon \), by the previous estimate,
\[
\int_{B_\epsilon} e^{-U(z)/\epsilon} |L_p \varphi(z)| dz \leq \frac{C_1 \delta^2}{\sqrt{\epsilon}} e^{-H/\epsilon} \int_{B_\epsilon} e^{-(1/2\epsilon)z \cdot (L + \alpha vv^T)z} dz. \quad (8.7)
\]

It remains to estimate the last integral. Recall Lemma 8.3 and denote by \(\theta_1 = 0, \theta_2, \ldots, \theta_d > 0 \) the eigenvalues of the matrix \(L + \alpha vv^T \), and by \(w_i, 1 \leq i \leq d \), the normal eigenvector corresponding to \(\theta_i \). Let \(\mathcal{P}_a, a \in \mathbb{R} \), be the \((d-1)\)-dimensional space given by
\[
\mathcal{P}_a = a w_1 + \langle w_2, w_3, \ldots, w_d \rangle,
\]
where \(\langle x_1, \ldots, x_n \rangle \) stands for the linear space generated by the vectors \(x_1, \ldots, x_n \in \mathbb{R}^d \).

Since \(B_\epsilon \subseteq C_\epsilon \), there exists \(M > 0 \) such that
\[
B_\epsilon \subseteq \bigcup_{a:|a| \leq M\delta} \mathcal{P}_a.
\]

Consider the last integral of (8.7). Perform the change of variable \(z = \sum x_i w_i \), and extend the region of integration to \(\bigcup_{a:|a| \leq M\delta} \mathcal{P}_a \), to obtain that
\[
\int_{B_\epsilon} e^{-(1/2\epsilon)z \cdot (L + \alpha vv^T)z} dz \leq C_1 \int_{-M\delta}^{M\delta} dx_1 \int_{\mathbb{R}^{d-1}} \exp \left\{ - \frac{1}{2\epsilon} \sum_{i=2}^{d} \theta_i x_i^2 \right\} dx_2 \cdots dx_d
\]
\[
= C_1 M\delta (2\pi \epsilon)^{(d-1)/2} \prod_{i=2}^{d} \frac{\delta}{\theta_i^{1/2}}.
\]
Therefore, by (8.7),
\[
\int_{B_\epsilon} e^{-U(z)/\epsilon} |L_p \varphi(z)| dz \leq \frac{C_1 \delta^3}{\epsilon} e^{-H/\epsilon} \epsilon^{d/2}.
\]
This completes the proof of the lemma since \(\delta^3/\epsilon = o_\epsilon(1) \). \(\square \)

We turn to the second integral of (8.6).

Lemma 8.8. We have that
\[
\int_{\partial B_\epsilon} h_{\nu_1, \nu_2}(z) [\Theta_{q_{\epsilon}}, n(z)] \sigma(dz) = [1 + o_\epsilon(1)] T_\epsilon \omega(0).
\]

Decompose the boundary \(\partial B_\epsilon \) in three pieces, denoted by \(\partial_+ B_\epsilon, \partial_- B_\epsilon \), and \(\partial_0 B_\epsilon \), where \(\partial_+ B_\epsilon = \partial B_\epsilon \cap \partial_+ C_\epsilon, \partial_- B_\epsilon = \partial B_\epsilon \cap \partial_- C_\epsilon \), and \(\partial_0 B_\epsilon = \partial B_\epsilon \setminus (\partial_+ B_\epsilon \cup \partial_- B_\epsilon) \).

We claim that the contribution to the integral of the piece corresponding to the boundary \(\partial_0 B_\epsilon \) is negligible. Since \(|h_{\nu_1, \nu_2}| \leq 1 \), this claim follows from the next assertion.
Assertion 8.E. We have that
\[
\int_{\partial_0 B_\epsilon} |\Theta_{q_\epsilon}^*(z)| \sigma(dz) = o_{\epsilon}(1) T_\epsilon .
\]

Proof. Since \(\partial_0 B_\epsilon \subset \partial \mathcal{X}_\nu \),
\[
U(z) = H + (\lambda_1/4) \delta^2 \quad \text{for all } z \in \partial_0 B_\epsilon.
\]
Therefore, since \(\exp \left\{ -(\alpha/2\epsilon)(z \cdot \nu)^2 \right\} \leq 1 \) and \(C_\epsilon = \sqrt{2\pi \epsilon/\alpha} \), by definition of \(\delta \),
\[
|\Theta_{q_\epsilon}^*(z)| \leq \frac{C_1}{Z_\epsilon} e^{-H/\epsilon} \sqrt{\epsilon} e^{-(\lambda_1 \delta^2/4\epsilon)} = \frac{C_1}{Z_\epsilon} e^{-H/\epsilon} \epsilon^{(1/2) + (\lambda_1 K^2/4)}
\]
for some finite constant \(C_1 \). Since the surface volume of \(\partial_0 B_\epsilon \) is of order \(\delta^{d-1} \), the statement of the assertion is straightforward consequence from this uniform bound on \(\Theta_{q_\epsilon}^* \).

We turn to the boundaries \(\partial_+ B_\epsilon \) and \(\partial_- B_\epsilon \). To estimate the integral appearing in the statement of Lemma 8.8 on these sets, bounds on the equilibrium potential \(h_{\mathcal{V}_1,\mathcal{V}_2} \) are needed.

Assertion 8.F. There exist a finite constant \(C_0 \) and \(\epsilon_0 > 0 \) such that for all \(\epsilon < \epsilon_0 \),
\[
1 - h_{\mathcal{V}_1,\mathcal{V}_2}(y) \leq \frac{C_0}{\epsilon^d} \exp \left\{ \frac{U(y) - H}{2\epsilon} \right\} \quad \text{for all } y \in \partial_+ B_\epsilon
\]
and
\[
h_{\mathcal{V}_1,\mathcal{V}_2}(y) \leq \frac{C_0}{\epsilon^d} \exp \left\{ \frac{U(y) - H}{2\epsilon} \right\} \quad \text{for all } y \in \partial_- B_\epsilon .
\]

Proof. Consider first (8.9). If \(y \in \partial_- B_\epsilon \) satisfies \(U(y) \geq H \), then (8.9) is obvious for all sufficiently small \(\epsilon \). Otherwise, \(y \in \mathcal{W}_2 \), and the result follows by Proposition 7.11.

The proof of the first claim of the Assertion is analogous. The previous arguments provide an upper bound for \(h_{\mathcal{V}_1,\mathcal{V}_2} \), which is the function \(1 - h_{\mathcal{V}_1,\mathcal{V}_2} \).

We are now in a position to prove Lemma 8.8 at the boundaries \(\partial_+ B_\epsilon \) and \(\partial_- B_\epsilon \).

Assertion 8.G. For sufficiently large \(K \), we have that
\[
\int_{\partial_+ B_\epsilon} [1 - h_{\mathcal{V}_1,\mathcal{V}_2}(z)] \left[\Theta_{q_\epsilon}^* \cdot n(z) \right] \sigma(dz) = o_{\epsilon}(1) T_\epsilon,
\]
\[
\int_{\partial_- B_\epsilon} h_{\mathcal{V}_1,\mathcal{V}_2}(z) \left[\Theta_{q_\epsilon}^* \cdot n(z) \right] \sigma(dz) = o_{\epsilon}(1) T_\epsilon .
\]

Proof. We concentrate on the first claim, the proof of the second one being similar. By Assertion 8.F and since \(C_\epsilon = O(\sqrt{\epsilon}) \),
\[
\left| \int_{\partial_+ B_\epsilon} [1 - h_{\mathcal{V}_1,\mathcal{V}_2}(z)] \left[\Theta_{q_\epsilon}^* \cdot n(z) \right] \sigma(dz) \right|
\leq \frac{C_1 \epsilon^{1/2-d}}{Z_\epsilon} \int_{\partial_+ B_\epsilon} \exp \left\{ \frac{U(z) - H}{2\epsilon} \right\} \exp \left\{ -\frac{U(z)}{\epsilon} - \frac{\alpha}{2\epsilon} (z \cdot \nu)^2 \right\} \sigma(dz)
\]
for some finite constant \(C_1 \). Note that the exponential terms in the last integral can be written as
\[
-\frac{H}{\epsilon} = \frac{U(z) - H}{2\epsilon} - \frac{\alpha}{2\epsilon} (z \cdot \nu)^2 .
\]
By applying the Taylor expansion of \(U \) at the second term, we are able to deduce that the right-hand side of the penultimate displayed equation is bounded above by

\[
\frac{C_1 e^{1/2-d}}{Z} e^{-H/\epsilon} \int_{\partial_e B_e} \exp \left\{ - \frac{1}{4\epsilon} z \cdot \left[\mathbb{L} + 2\alpha \mathbf{v} \mathbf{v}^\dagger \right] z \right\} \sigma(dz)
\]

\[
\leq \frac{C_1 e^{1/2-d}}{Z} e^{-H/\epsilon} \int_{\partial_e B_e} \exp \left\{ - \frac{\gamma}{4\epsilon} ||z||^2 \right\} \sigma(dz),
\]

where \(\gamma > 0 \) is the smallest eigenvalue of the positive-definite matrix \(\mathbb{L} + 2\alpha \mathbf{v} \mathbf{v}^\dagger \).

Since \(||z||^2 \geq \delta^2 \) for \(z \in \partial_e B_e \), the last integral is less than or equal to \(C_1 e^{\gamma K^2/4 \delta^{-1}} \), which completes the proof of the assertion in view of the definition of \(T_e \), provided that \(K \) is sufficiently large.

Next assertion completes the proof of Lemma 8.8.

Assertion 8.H. We have that

\[
\int_{\partial_e B_e} \Theta q_e^* \cdot \mathbf{n}(z) \sigma(dz) = [1 + o_e(1)] T_e \omega(0)
\]

Proof. Since \(\mathbf{n}(z) = e_1 \) for \(z \in \partial_e B_e \), by the Taylor expansion, the left-hand side of the previous equation can be written as

\[
[1 + o_e(1)] \frac{e}{Z} \frac{\alpha}{2\pi \epsilon} e^{-H/\epsilon} \mathbf{e}_1 \cdot \mathbf{m} \int_{\partial_e B_e} e^{-(1/2)\epsilon} \mathbf{z} \cdot \left[\mathbb{L} + \alpha \mathbf{v} \mathbf{v}^\dagger \right] \mathbf{z} \sigma(dz). \tag{8.10}
\]

Let \(\theta_k = (\delta \nu_k \lambda_1)/(\nu_1 \lambda_k) \), \(2 \leq k \leq d \), and define the variable \(\mathbf{y} = (y_2, \ldots, y_d) \) by

\[
\mathbf{z} = \delta \mathbf{e}_1 + \sum_{k=2}^{d} (y_k - \theta_k) \mathbf{e}_k,
\]

An elementary computation, based on the identity provided by Lemma 8.1, yields that

\[
\mathbf{z} \cdot \left(\mathbb{L} + \alpha \mathbf{v} \mathbf{v}^\dagger \right) \mathbf{z} = \mathbf{y} \cdot \left(\mathbb{L} + \alpha \mathbf{w} \mathbf{w}^\dagger \right) \mathbf{y},
\]

where \(\mathbf{w} \) is the \((d-1)\)-dimensional vector given by \(\mathbf{w} = (v_2, \ldots, v_d) \) and \(\mathbb{L} \) is the \((d-1) \times (d-1)\) diagonal matrix diag \((\lambda_2, \ldots, \lambda_d)\).

Perform the change of variables presented in the penultimate displayed equation to write the last integral in (8.10) as

\[
\int_{D_e} e^{-(1/2)\epsilon} \mathbf{y} \cdot \left[\mathbb{L} + \alpha \mathbf{w} \mathbf{w}^\dagger \right] \mathbf{y} d\mathbf{y},
\]

where \(D_e \subset \mathbb{R}^{d-1} \) is the domain of integration obtained from \(\partial_e B_e \) by the change of variables. By Lemma 8.1 and a Taylor expansion \(U(\delta, -\theta_1, \ldots, -\theta_d) < H + (1/4)\lambda_1 \delta^2 \) for all \(\epsilon \) small enough. In particular, for \(\epsilon \) small enough, \(D_e \) contains a ball centered at the origin and of radius \(r \delta \) for some \(r > 0 \), \(D_e \supset B(0, r \delta) \).

Furthermore, it is easy to verify that \(\mathbb{L} + \alpha \mathbf{w} \mathbf{w}^\dagger \) is positive definite and hence the last integral is equal to

\[
[1 + o_e(1)] \left(2\pi \epsilon\right)^{(d-1)/2} \left\{ \det \left(\mathbb{L} + \alpha \mathbf{w} \mathbf{w}^\dagger \right) \right\}^{-1/2}.
\]
Since $\det(A + xy^t) = (1 + y^t A^{-1} x) \det A$, by Lemma 8.1, $\det(\tilde{L} + \alpha \mathbf{w} \mathbf{w}^t)$ is equal to

$$(1 + \alpha \mathbf{w}^t \tilde{L}^{-1} \mathbf{w}) \det \tilde{L} = \alpha \left(1 + \sum_{k=2}^{d} \frac{v_k^2}{\lambda_k} \prod_{i=2}^{d} \lambda_i \right) = \alpha \frac{v_1^2}{\lambda_1} \prod_{i=2}^{d} \lambda_i.$$

On the other hand, since \mathbf{v} is the eigenvector of $L M$ associated to the eigenvalue $-\mu$,

$$e_1 \cdot M \mathbf{v} = e_1 \cdot L^{-1} L M \mathbf{v} = -\mu e_1 \cdot L^{-1} \mathbf{v} = \frac{\mu}{\lambda_1} v_1.$$

To complete the proof of the assertion, it remains to recollect all estimates, and to recall the definition of $\omega(0)$, introduced in (5.5), and the one of T_r, given in (6.4).

9. Proof of Theorem 5.2

Recall from (5.1) that we denote by $H_{x,y}$ the height of the saddle point between x and $y \in \mathbb{R}^d$.

For $U(m_1) < r < U(\sigma_1)$, let \mathcal{N}_r be the neighborhood of m_1 given by all points which are connected to m_1 by a continuous path whose height lies below r:

$$\mathcal{N}_r = \{ x \in \mathbb{R}^d : H_{x,m_1} \leq r \}.$$

An elementary computation shows that there exists a finite constant $C_0 = C_0(r)$ such that $(L_c U)(x) \leq C_0$ on \mathcal{N}_r. Thus, if H_r stands for the hitting time of the boundary of \mathcal{N}_r, which is finite because, by condition (P4), the process is positive recurrent,

$$\mathbb{E}_x[U(X_{t,H_r})] - U(x) \leq C_0 \mathbb{E}_x[H_r]$$

for all $t \geq 0$. Letting $t \to \infty$, we obtain that for all $\epsilon > 0$, $U(m_1) < s < r < U(\sigma_1)$, $x \in \mathcal{N}_s$,

$$\mathbb{E}_x[H_r] \geq (r - s)/C_0.$$

Since m_1 is a non-degenerate critical point of U, there exists a finite constant C_1 such that $\|\nabla U(x)\| \leq C_1 \|x - m_1\|$ for all $x \in B_1(m_1)$. In particular, on $B_{r,\sqrt{c}}(m_1)$, $r > 0$, $\|\nabla U\| \leq C_1 r^{1/2}$. Hence, by (7.2), $\nu_{B_{r,\sqrt{c}}(m_1)} \leq C_1 r^2 \epsilon^{-1}$, so that

$$\nu_{B_{r,\sqrt{c}}(m_1)} \epsilon \leq C_0(r).$$ (9.2)

Lemma 9.1. Let $w(x) = \mathbb{E}_x[H_{V_2}]$. There exists a finite constant C_0 such that

$$\sup_{x \in B_{r,\sqrt{c}}(m_1)} w(x) \leq C_0 \inf_{x \in B_{r,\sqrt{c}}(m_1)} w(x).$$

Proof. Fix x, $x' \in B_{r,\sqrt{c}}(m_1)$. Let G_{V_2} be the Green function associated to the diffusion killed at V_2. Since w solves (2.8) with $g = 1$, $b = 0$, by Lemma 7.3,

$$w(x) = \int_{V_2} G_{V_2}(x, y) \, dy.$$

Fix $y \in V_2 \setminus B_{2\sqrt{c}}(m_1)$. The function $G_{V_2}(\cdot, y)$ is non-negative and harmonic in $B_{2\sqrt{c}}(m_1)$. Hence, by Lemma 7.4 and (9.2), $G_{V_2}(x, y) \leq C_0 G_{V_2}(x', y)$. The right-hand side of the previous formula is thus bounded above by

$$C_0 \int_{V_2 \setminus B_{2\sqrt{c}}(m_1)} G_{V_2}(x', y) \, dy + \int_{B_{2\sqrt{c}}(m_1)} G_{V_2}(x, y) \, dy.$$

The first term is bounded by $C_0 w(x')$, while the second one, in view of Lemma 7.4, is less than or equal to $C_0 a_d(\epsilon)$, where $a_d(\epsilon) = \epsilon$, $d \geq 3$, and $a_2(\epsilon) = \epsilon \log \epsilon^{-1}$.
Fix $U(m_1) < r < U(\sigma_1)$. Since $H_r \leq H_{v_2}$, where H_r has been introduced above (9.1), $w(x') \geq [U(\sigma_1) - U(m_1)]/C_0$. We may therefore bound $a_d(\epsilon)$ by $w(x')$ to complete the proof of the lemma. \hfill \Box

Lemma 9.2. We have that

$$
\mathbb{E}_{\beta_{(m_1)}}[H_{v_2}] = (1 + o_{\epsilon}(1)) \frac{1}{\text{cap}(B_{\epsilon}(m_1), v_2)} \int_{\mathbb{R}^d} h_{B_{\epsilon}(m_1), v_2}^\ast(y) \mu_\epsilon(dy) .
$$

Proof. Recall that $w(x) = \mathbb{E}_{\epsilon}[H_{v_2}]$. Since w solves $\mathcal{L} w = -1$ on $B_{\sqrt{\epsilon}}(m_1)$, and since, by (9.2), $\nu_{B_{\sqrt{\epsilon}}(m_1)}(\sqrt{\epsilon})^2 \leq C_0$, by Lemma 7.2 with $R = \epsilon$,

$$
\sup_{x \in B_{\epsilon}(m_1)} w(x) \leq w(m_1) + C_0 e^{\alpha/2} \left(\text{osc}_{B_{\sqrt{\epsilon}}(x)} + R_0 \right)
$$

$$
\leq w(m_1) + C_0 e^{\alpha/2} \left(\sup_{x \in B_{\sqrt{\epsilon}}(m_1)} w(x') + \sqrt{\epsilon} \right),
$$

where we used the fact that w is non-negative in the last inequality and we replaced R_0 by $\sqrt{\epsilon}$. Recall from the proof of the previous lemma that $w(m_1) > c_0 > 0$ for some positive constant c_0 independent of ϵ. Hence, by Lemma 9.1, the previous expression is bounded by

$$
w(m_1) + C_0 e^{\alpha/2} \left(w(m_1) + \sqrt{\epsilon} \right) \leq w(m_1) + C_0 e^{\alpha/2} w(m_1) ,
$$

so that

$$
\sup_{x \in B_{\epsilon}(m_1)} w(x) \leq (1 + o_{\epsilon}(1)) w(m_1) .
$$

A lower bound for $\inf_{x \in B_{\epsilon}(m_1)} w(x)$ is derived analogously.

Recall from (3.13) the definition of the equilibrium measure $\nu_{B_{\epsilon}(m_1), v_2}$. Since it is concentrated on $\partial B_{\epsilon}(m_1)$, it follows from the previous estimates that

$$
w(m_1) = (1 + o_{\epsilon}(1)) \int_{\partial B_{\epsilon}(m_1)} w(y) \nu_{B_{\epsilon}(m_1), v_2}(dy) ,
$$

To complete the proof of the lemma, it remains to recall identity (3.16). \hfill \Box

Lemma 9.3. We have that

$$
\int_{\mathbb{R}^d} h_{B_{\epsilon}(m_1), v_2}^\ast(y) e^{-U(y)/\epsilon} dy = (1 + o_{\epsilon}(1)) \frac{(2\pi)^d/2 e^{-U(m_1)/\epsilon}}{\sqrt{\text{det}(\text{Hess} U)(m_1)}} .
$$

Proof. We estimate separately the integral on different parts. Recall from (6.1) the definition of δ. We claim that

$$
\int_{B_{\delta}(m_1)} h_{B_{\epsilon}(m_1), v_2}^\ast(y) e^{-U(y)/\epsilon} dy = (1 + o_{\epsilon}(1)) \frac{(2\pi)^d/2 e^{-U(m_1)/\epsilon}}{\sqrt{\text{det}(\text{Hess} U)(m_1)}} .
$$

Indeed, by Proposition 7.11 on $B_{\delta}(m_1)$, $h_{B_{\epsilon}(m_1), v_2}^\ast(y) = 1 - h_{B_{\epsilon}, B_{\delta}(m_1)}^\ast(y) = 1 + o_{\epsilon}(1)$. A Taylor expansion of U around m_1 together with Gaussian estimates permits to conclude.

Let κ_1 the smallest eigenvalue of $(\text{Hess} U)(m_1)$. There exists $r_0 > 0$ such that $U(x) - U(m_1) \geq (1/4)\kappa_1 \|x\|^2$ for all $x \in B_{r_0}(m_1)$. We claim that

$$
\int_{B_{r_0}(m_1) \setminus B_{\delta}(m_1)} h_{B_{\epsilon}(m_1), v_2}^\ast(y) e^{-U(y)/\epsilon} dy = o_{\epsilon}(1) \epsilon^{d/2} e^{-U(m_1)/\epsilon} .
$$
By the bound on U and since the harmonic function is bounded by 1, the integral is less than or equal to
\[
e^{-U(m_1)/\epsilon} \int_{B_{r_0}(m_1) \setminus B_1(m_1)} e^{-(1/4)(\kappa_1/\epsilon)}\|y\|^2 \, dy.
\]
A change of variables and an elementary computation yields that the integral is equal to $a_0(1) e^{d/2}$, which completes the proof of (9.5).

Let $a_0 = \inf_{x \in \partial B_{r_0}(m_1)} U(x) > U(m_1)$. Assume that $a_0 < U(\sigma_1)$. If this is not the case replace a_0 by a_0' where $U(m_1) < a_0' < U(\sigma_1)$. Let $S(a_0) = \{ x \in \mathbb{R}^d : U(x) \geq a_0 \}$. It follows from this bound and (5.3) that
\[
\int_{S(a_0)} h_{B_t(m_1),\nu_2}^y(y) e^{-U(y)/\epsilon} \, dy = e^{-U(m_1)/\epsilon} e^{-a/\epsilon}
\]
for some $a > 0$, which is exponentially smaller than the right-hand side of (9.3).

It remains to estimate the integral over the set $A = \{ x \in \mathbb{R}^d : U(x) \leq a_0, U(x) = U(z(x,m_2)) \}$. By property (P1), the set A is bounded. On this set, by Proposition 7.12, $h_{B_t(m_1),\nu_2}^y(x) \leq C_0 e^{-d} \exp \{ -\epsilon^{-1} [U(\sigma_1) - U(x)] \}$. Therefore,
\[
\int_A h_{B_t(m_1),\nu_2}^y(y) e^{-U(y)/\epsilon} \, dy \leq C_0 e^{-d} \int_A e^{-U(\sigma_1)/\epsilon} \, dy \leq C_0 e^{-d} e^{-U(m_1)/\epsilon} e^{-a/\epsilon}
\]
for some $a > 0$. This completes the proof of the lemma.

Proof of Theorem 9.3 It is enough to put together the estimates of Lemmata 9.2 with the estimate of the capacity, stated in Theorem 5.1 with $V_1 = B_r(m_1)$. □

Grants: C. Landim has been partially supported by FAPERJ CNE E-26/201.207/2014, by CNPq Bolsa de Produtividade em Pesquisa PQ 303538/2014-7, and by ANR-15-CE40-0020-01 LSD of the French National Research Agency. M. Mariani’s visit to IMPA was supported by the grant FAPERJ CNE E-26/102.338/2013, and he also acknowledges Russian Academic Excellence Project 5-100’. I. Seo was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2018R1C1B6006896) and by POSCO Science Fellowship from the POSCO TJ Park Foundation.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] D. R. Adams, L. I. Hedberg, *Function Spaces and Potential Theory*, Grundlehren der mathematischen Wissenschaften 314, Springer, 1996.

[2] L. Ambrosio, N. Fusco, D. Pallara: *Functions of bounded variation and free discontinuity problems*, Oxford Mathematical Monographs, The Clarendon Press, New York, 2000.

[3] S. Arrhenius: On the reaction velocity of the inversion of cane sugar by acids. J. Phys. Chem. 4, 226 (1889).

[4] J. Beltrán, C. Landim: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065-1114, (2010)

[5] J. Beltrán, C. Landim: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598-618, (2012)

[6] N. Berglund: Kramers’ law : validity, derivations and generalisations. Markov Process. Related Fields, 19, 459-490 (2013).

[7] F. Bouchet, J. Reygner: Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes. J. Ann. Henri Poincaré 17, 3499–3532 (2016)

[8] A. Bovier, M. Eckhoff, V. Gayrard, M. Klein: Metastability in reversible diffusion process I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)
METASTABILITY IN NON-REVERSIBLE DIFFUSION PROCESSES

[9] G. Q. Cheng, H. Frid: On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat. 32, 401–433, 2001.

[10] H. Eyring: The activated complex in chemical reactions. J. Chem. Phys. 3, 107-115 (1935).

[11] A. Friedman. Stochastic differential equations and applications. Academic Press, 1975

[12] D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order. Springer, 2015.

[13] A. Gaudilli`ere, C. Landim: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Related Fields 158, 55–89 (2014)

[14] B. Helffer, M. Klein, F. Nier: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp., 26, 41–86 (2004).

[15] O. D. Kellogg. Foundations of potential theory. Springer Science & Business Media 31, 2012.

[16] H. A. Kramers: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284-304, (1940).

[17] C. Landim, I. Seo: Metastability of non-reversible random walks in a potential field, the Eyring-Kramers transition rate formula. Commun. Pure Appl. Math. LXXI, 203–266 (2018).

[18] C. Landim, I. Seo: Metastability of non-reversible, mean-field Potts model with three spins. J. Stat. Phys. 165, 693-726 (2016)

[19] J. Lu, J. Nolen: Reactive trajectories and the transition path process. Probab. Theory Relat. Fields 161, 195–244 (2015)

[20] R. G. Pinsky: A generalized Dirichlet principle for second order nonselfadjoint elliptic operators. SIAM J. Math. Anal. 19, 204-213 (1988).

[21] R. G. Pinsky: A minimax variational formula giving necessary and sufficient conditions for recurrence or transience of multidimensional diffusion processes. Ann. Probab. 16, 662-671 (1988).

[22] R. G. Pinsky. Positive harmonic functions and diffusion. Cambridge studies in advanced mathematics Vol. 45. Cambridge University Press, 1995.

[23] M. Slowik: A note on variational representations of capacities for reversible and nonreversible Markov chains. unpublished, Technische Universität Berlin, 2012

[24] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes. Springer, 2007

IMPA, ESTRADA DONA CASTORINA 110, CEP 22460 RIO DE JANEIRO, BRASIL AND CNRS UMR 6085, UNIVERSITÉ DE ROUEN, FRANCE.
e-mail: landim@impa.br

FACULTY OF MATHEMATICS, NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS, 6 USACHEVA ST., 119048 MOSCOW, RUSSIA.
e-mail: mmariani@hse.ru

DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY GWANAK-RO 1, GWANAK-GU 08826, SEOUL, REPUBLIC OF KOREA.
e-mail: insuk.seo@snu.ac.kr