Original Research

Pancreatoblastoma in children: Clinical management and literature review

Tingting Liu a,1, Tong Zhao b,1, Cuicui Shi c, Lei Chen d,*

a Department of Pediatric Hematology/Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
b Department of Pathology, The Second People’s Hospital of Baoshan, Baoshan, Yunnan, China
c Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
d Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665, Shanghai, China

ARTICLE INFO

Keywords:
Pancreatoblastoma
Child
Treatment
Recurrence/relapse
Metastasis

ABSTRACT

Purpose: The aim of this study is to analyze the clinical and pathological features of pancreatoblastoma (PB) and to obtain better management for patients with relapsed or metastatic disease.

Methods: Four cases treated in our institution and 59 cases reported previously in the literature from the PubMed biomedical database (2000–2020) were reviewed and analyzed.

Results: Four cases with PB presented with abdominal pain and palpable abdominal masses, with the tumor size ranging from 5.2 to 18 cm in diameter. The invasion of the splenic vein and superior mesenteric artery, duodenum, and lymph nodes were risk factors for PB. Three cases were treated with combination therapy and showed favorable outcomes, while one case was treated with chemotherapy alone due to tumor progression and died of the disease. Squamous corpuscles were revealed in the tumor samples and considered a defining component for histological diagnosis.

Conclusions: Multidisciplinary diagnosis plays an important role in clinical management. The risk factors should be considered in the therapeutic stratification of PB before surgery.

Introduction

Pancreatoblastoma (PB) is an extremely rare pancreatic tumor that commonly occurs in infants and young children [1–3]. It comprises less than 1% of pancreatic tumors. The clinical presentations of PB are diverse and nonspecific, which leads to difficulties in its differentiation from other retroperitoneal tumors. Biological aggressiveness and elevated levels of serum α-fetoprotein (AFP) show similarities to hepatoblastoma [4]. The imaging features of CT and MRI are helpful in its differentiation from solid pseudopapillary neoplasms of the pancreas [5]. As such, a diagnosis of PB relies on its distinctive histological features [6].

PB is commonly considered to follow an indolent course and achieves long-term survival with surgical resection alone [7,8]; however, some studies have reported that the prognosis is poor in cases of metastasis or incomplete resection [9–11]. The standardized management for risk stratification in PB patients is rarely reported [9,12].

Moreover, there is limited data on the standard clinical treatment of relapsed and/or metastatic PB.

In this study, we describe the clinical characteristics, imaging features, serum parameters, pathological diagnosis, and treatment of four cases, as well as discuss the relevant literature, aiming to achieve better clinical management for patients with PB.

Materials and methods

Patients

In this study, four patients with PB hospitalized in our hospital between 2016 and 2020 were enrolled. Clinical data, including age at diagnosis, clinical presentation, site of disease, tumor size, serum AFP level, treatment modalities, and outcomes, were reviewed. The assessments of tumor location, size, extent of the tumor, and distant metastasis were analyzed by ultrasonography (US), computed tomography (CT), or positron emission tomography and computed tomography (PET-CT) (case 1). The treatment regimen of PLADO (cisplatin at 80 mg/m² on day

PB, pancreatoblastoma; AFP, serum α-fetoprotein; US, ultrasonography; CT, computed tomography; PET-CT, positron emission tomography and computed tomography; BWS, Beckwith-Wiedemann syndrome.

* Corresponding author.
E-mail address: chenlei02@xinhuamed.com.cn (L. Chen).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.tranon.2022.101359

Received 29 November 2021; Received in revised form 15 January 2022; Accepted 25 January 2022

1936-5233/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Translational Oncology 18 (2022) 101359

1; doxorubicin at 30 mg/m² on day 2,3) and ICE (ifosfamide at 1.5 g/m² on day 1–5, carboplatin at 450 mg/m² on day 1; etoposide at 100 mg/m² on day 1–3) were used. The literature search was conducted with the PubMed biomedical database, using keywords “pancreatoblastoma” and “pancreatoblastoma in children”. Additional studies derived from the references were also analyzed.

Results

Clinical features

There were three girls and one boy aged 3.6, 8.9, 5.5, and 4 years. Two patients presented with abdominal pain, and two patients presented with palpable abdominal masses. The imaging findings indicated well-defined heterogeneous masses in the pancreas, with tumor sizes of 7.6 cm, 5.2 cm, 18 cm, and 9.3 cm in maximum diameter, respectively. The invasion of the splenic vein and superior mesenteric artery, duodenum, and lymph nodes was observed. Liver recurrence was manifested in case 3. Cases 1 and 2 were treated with combination therapy (preoperative chemotherapy, pancreaticoduodenectomy, and postoperative chemotherapy), with a good outcome at follow-up. Case 3 underwent liver lobe resection and showed good outcome. Case 4 showed invasion of the splenic vein and superior mesenteric artery and died of severe ascites and multiple metastases.

Pathological features

Morphological features

Neoplastic cells usually showed an organoid arrangement of acinar, solid, trabecular, or ductal formations akin to acinar cell carcinomas. The solid component was comprised of polygonal tumor cells with whorled or nests, which were defined as squamous corpuscles. The nuclei were larger and more oval-shaped than those of the surrounding cells. The squamous corpuscles were detected in all tumors.

Immunohistochemical staining

Immunohistochemical staining showed evidence of acinar, endocrine, and ductal differentiation, according to trypsin, cytokeratin AE1/AE3, CK19, CK7, CK8, villin, and α1-AT staining. Endocrine markers, such as SYN and CgA, were focal positive. The squamous corpuscles were positive for CK5, but negative for CK7. Ki-67 ranged from 30 to 80%.

Case presentation

Case 1

A 3-year and 6-month-old girl was hospitalized in our unit due to an abdominal mass for 2 weeks. No tumor family history was provided. The physical examination showed a palpable abdominal mass below the right costal margin line. The AFP level reached to 2329.0 ng/ml
(normal, <20.0 ng/ml), and the AFP variant was 278.48 ng/ml (normal, 0–1 ng/ml). Increased serum LDH (508 U/L; normal range, 106–211 U/L) and NSE (69.8 ng/ml; normal range, 0–16.3 ng/ml) levels were presented. TORCH antigens, caused by *Toxoplasma gondii*, other (hepatitis viruses, parvovirus, human immunodeficiency virus, Epstein-Barr virus, syphilis), Rubella virus, Cytomegalovirus, and Herpes Simplex Virus were negative. US revealed a well-defined abdominal mass with heterogeneous echo in a local hospital. CT revealed a 7.6 × 7.5 cm mass in the pancreatic head with heterogeneous components, which was characterized by flocculent calcification and clear rim. The rich vasculum was identified by a CTA scan (Fig. 1a). The PET-CT image (Fig. 1e) showed that the surrounding duodenum liver, gallbladder, and gastric wall were compressed by the tumor, and tumor biopsy was performed through laparoscopic surgery according to multidisciplinary suggestions. He was diagnosed with PB as pathological evidence. The patient was referred to oncologists and treated with four cycles of the PLADO regimen, consisting of cisplatin at 80 mg/m² on day 1 and doxorubicin at 30 mg/m² on day 2,3. CT revealed 5.5 × 4.7 cm (Fig. 1b) and 3.5 × 3.1 cm (Fig. 1c) masses, which were characterized by heterogeneous components and flocculent calcification after the second and fourth cycle of chemotherapy. The serum AFP level decreased to 159.0 ng/ml, 10.4 ng/ml, 3.49 ng/ml, and 4.02 ng/ml after the first, second, third, and fourth cycle, respectively. Similarly, the AFP variant level was <0.6 ng/ml after the third cycle. Subsequently, pancreatectoduodenectomy with Roux-en-Y end-to-end cholangiojejunostomy was performed. After surgery, the patient was treated with three cycles of the PLADO regimen. The follow-up data showed a good outcome for 11 months. There was no residual tumor or recurrence on postoperative US and CT (Fig. 1d). The serum AFP level was <0.5 ng/ml, and the AFP variant was <0.6 ng/ml.

Case 2

An 8-year and 9-month-old girl was admitted to a local hospital with intermittent nausea for 2 months. A palpable abdominal mass was identified by her parents 1 month prior to hospitalization. No family members presented with tumors. The physical examination showed an abdominal mass without enlarged lymph nodes. US showed a heterogeneous echo in the middle of the abdomen and para-aortic hypoecho nodules. CT revealed a soft tissue shadow below the head of the pancreas with a size of 5.2 × 5.2 cm and surrounding lymphatic enlargement. Moreover, the duodenum and superior mesenteric vein invasion were noted.

Laboratory tests showed an elevated AFP level (323.00 ng/ml). Serum LDH (220 U/L; normal range, 106–211 U/L) and NSE (21.2 ng/ml; normal range, 0–16.3 ng/ml) levels were slightly elevated. With these findings, a biopsy of the pancreatic head tumor was performed through laparoscopic surgery according to multidisciplinary suggestions. CT revealed a soft tissue shadow below the head of the pancreas with a size of 5.2 × 5.2 cm and surrounding lymphatic enlargement. Moreover, the duodenum and superior mesenteric vein invasion were noted.

Laboratory tests showed an elevated AFP level (323.00 ng/ml). Serum LDH (220 U/L; normal range, 106–211 U/L) and NSE (21.2 ng/ml; normal range, 0–16.3 ng/ml) levels were slightly elevated. With these findings, a biopsy of the pancreatic head tumor was performed through laparoscopic surgery. The patient was diagnosed with PB according to the pathology results.

For further treatment, the patient came to our institution. Chemotherapy was given (cisplatin at 80 mg/m² on day 1; doxorubicin at 30 mg/m² on day 2,3). After the first cycle of chemotherapy, the tumor size was reduced to 4.1 × 3.5 cm (Fig. 2a), and the serum AFP level was reduced to 20 ng/ml. After the second cycle of chemotherapy, the serum AFP level was reduced to 6.83 ng/ml, and the AFP variant was <0.6 ng/ml.

Subsequently, pancreatectoduodenectomy was performed. Four cycles of the aforementioned chemotherapy regimen was given after surgery.
The follow-up data showed that there were no signs of recurrence for 9 months (Fig. 2b). The serum AFP level was 0.91 ng/ml, and the AFP variant was <0.6 ng/ml.

Case 3
A 5-year- and 5-month-old boy who suffered with abdominal pain for 1 month was hospitalized in a local hospital. An abdominal mass was detected by a physical examination. The serum AFP level was 1064.31 ng/ml, and a huge mass was identified in the body and tail of the pancreas by US. Enhanced CT revealed a huge mass with a size of $18 \times 10 \times 10$ cm, and the duodenum was compressed by the tumor. A resection of the pancreatic tumor was performed, and PB was diagnosed based on morphological and immunohistochemical features. His family refused further postoperative chemotherapy because of socio-economic reasons.

After 10 months, he developed liver metastasis and was transferred to our unit. US showed liver mass with a size of 14.9×13.5 cm. CT showed multiple intrahepatic nodules and enlarged portal/hilar lymph nodes with abundant blood vessels. The serum AFP level increased to 121,000.00 ng/ml. PLADO regimen was administered. After four cycles, the serum AFP level was reduced to 7069.00 ng/ml and then 519.70 ng/ml, and the tumor size was 10.7×7.1 cm by CT. After the fourth cycle of chemotherapy, the serum AFP level was 36.85 ng/ml, and the tumor size was 5.6×4.6 cm by CT (Fig. 3c). The patient underwent resection of segments 6 and 7 of the right liver lobe. The serum AFP level decreased to 5.61 ng/ml on the first day after the surgery. Postoperative chemotherapy with cisplatin and doxorubicin was given for four cycles. Subsequently, the serum AFP level was 3.7 ng/ml. CT showed multiple small abnormal signals in the liver, further treatment was given according to the ICE regimen as follows: ifosfamide at 1.5 g/\(m^2\) on day 1–5, carboplatin at 450 mg/\(m^2\) on day 1, and etoposide at 100 mg/\(m^2\) on day 1–3. The follow-up data showed that there were no signs of recurrence for 43 months (Fig. 3d).

Case 4
A 4-year-old girl suffering from abdominal pain for 3 months was admitted to a local hospital. The physical examination showed moderate jaundice of the skin mucosa. CT showed a 9.3 \times 8.8 cm heterogeneous mass with nodular calcification at the right retroperitoneal region. The adjacent organs, including the liver and gallbladder, were compressed. Multiple tumor thrombi in the splenic vein and superior mesenteric artery were detected. The laboratory examination showed an elevated serum AFP level (50.53 ng/ml). US-guided tumor biopsy was performed. According to the pathology results, she was diagnosed with PB.

She was transferred to our unit and was treated with the PLADO regimen. After one cycle, the patient’s jaundice subsided, and the serum AFP value was reduced to 23.87 ng/ml. After three cycles, the serum AFP level was reduced to 11.0 ng/ml, and the tumor size was 4.2×5.1 cm by CT. Tumor thrombi in the splenic vein and superior mesenteric artery were still present. Unfortunately, her family refused subsequent treatment for socio-economic reasons. After 15 months, she died of progressive disease and multiple organ failure.
Table 1
Pancreatoblastoma in children and the literature review.

No.	Age	Gender	Signs and Symptoms	Location	Size (cm)	AFP (ng/ml)	Pathology	Metastases/invasion	Type of surgery	Chemotherapy/radiotherapy Postoperative	Outcome (months)	Refs.	
1	Prenatal	F	Abdominal mass	H	11.0	>220.0†	Squamous corpuscle	N	Complete resection	N	N	Excellent (24)	[29]
2	Prenatal	M	Abdominal mass	B-T	4.0	U	Focal squamous	N	Complete resection	N	N	Excellent (26)	[15]
3	Prenatal	M	Abdominal mass	B-T	4.2	52876.0†	Squamous corpuscle	N	Distal pancreatectomy	N	N	Excellent (10)	[14]
4	Prenatal	F	Abdominal distension	T	14.1	3,018,290	Squamous corpuscle	U	partial excision	Yes	N	Excellent (18)	[30]
5	Prenatal	F	Abdominal mass	T	4.0	ND	Cords and tubules	N	Complete resection	N	N	Excellent (15)	[31]
6	0 y	M	BWS	B-T	4.0	Normal	Focal squamous	N	Complete resection	N	N	Excellent (26)	[9]
7	3 d	M	Jaundice	B-T	7.5	>1000†	Acinar and trabecular	Squamous nests	Complete resection	N	N	Excellent (60)	[18]
8	2 mo	M	BWS	B-T	4.3	23,748†	Acinar and trabecular	Squamous nests	Complete resection	N	N	Excellent (40)	[6]
9	2 mo	M	BWS	H	4.5	4639†	Squamous corpuscle	Hemorrhage, necrosis	Complete resection	N	N	Excellent (60)	[18]
10	3 mo	M	Abdominal mass	T	10.0	> 1000†	Squamous corpuscle	U	Complete resection	N	N	Excellent (24)	[17]
11	3 mo	F	Abdominal mass	T	ND	ND	Acinar and trabecular	Squamous nests	Complete resection	N	N	Excellent (39)	[8]
12	6 mo	F	Diarrhea	H-B-T	7.7	54,000†	Acinar, trabecular	Squamous corpuscles	Complete resection with en bloc	N	N	Died	[6]
13	7 mo	M	Abdominal mass	T	6.9	57.55	Acinar, trabecular	Squamous corpusules	Complete resection	N	N	Excellent (52)	[6]
14	1 y	M	Subcutaneous mass	H	2.0	Normal	Acinar, trabecular	Squamous corpusules	Biopsy of subcutaneous nodule	cyclophosphamide, doxorubicin, vindesine, ifosfamide, vinblastine, radiotherapy	N	Toxic death	[9]
15	1 y	M	Abdominal mass	H	8.5	66	Acinar, trabecular	Squamous nests	Distal pancreatectomy with en bloc	N	N	Excellent (50)	[6]
16	2 y	F	Abdominal pain, abdominal Mass	H	7.0	564.85†	Acinar, trabecular	Squamous nests	Complete resection with en bloc	N	N	Excellent (74)	[6]
17	2 y	M	Abdominal Mass	H	ND	450†	Acinar and trabecular	Squamous nests	Complete resection	N	N	Excellent (5)	[8]
18	2 y	M	Abdominal distention	B-T	11.5	ND	Solid islands	Squamous corpuscle	Complete resection	N	N	Excellent (120)	[24]
19	3 y	M	Abdominal mass	H-B	U	48.0	Acinar and trabecular	Squamous corpuscles	Pancreatoduodenectomy	Pirarubicin, Carboplatin	Excellent (72)	[21]	

(continued on next page)
No.	Age	Gender	Signs and Symptoms	Location	Size (cm)	AFP (ng/ml)	Pathology	Metastases/invasion	Type of surgery	Chemotherapy/radiotherapy	Outcome (months)	Refs.
20	3 y	F	Abdominal mass	B	8.6	2140†	Acinar, trabecular Squamous nests	N	Central pancreatectomy with Roux-en-Y end-to-end pancreatecojejunostomy	2 VAC 2 VCE	Excellent (50) [6]	
21	3 y	M	Abdominal mass	B-T	9.8	6412†	Acinar, trabecular Squamous corpuscles	N	Central pancreatectomy with Roux-en-Y end-to-end pancreatiecojejunostomy	N	Excellent [6]	
22	3 y	F	Abdominal Pain	H-B-T	15.3	ND	Acinar, trabecular Squamous corpuscles	Tumor thrombus in splenic vein Duodenum	Pancreatecoduodenectomy with Roux-en-Y end-to-end cholangiojejunostomy	PLADO PLADO	Excellent (11) Current Report (case 1)	
23	3.6 y	F	Abdominal mass	H	7.6	2329.0†	Acinar Squamous corpuscles	N	Excellent [6]			
24	4 y	F	Abdominal Pain	H	6.0	394.6†	Solid, acinar, glandular, and undifferentiated structures, necrosis and nests of squamous cells	N	Excellent (7) [2]			
25	4 y	F	Abdominal Pain	U	9.3	50.53	Small round cell Necrosis	No	PLADO	Died of severe ascites and multiple metastases Current Report (case 4)		
26	4 y	M	Abdominal Pain	B	8.0	U	Distant lymph nodes	Complete resection	PLADO + etoside VAC-ICE Melphalan Radiotherapy	N	Excellent (24) [9]	
27	4 y	F	Abdominal pain	B	9.0	Normal	Squamous corpuscles Acinar, glandular and undifferentiated structures	Superior mesenteric artery	Complete resection	PLADO Ifosfamide Etoposide	Excellent (84) [19]	
28	4 y	M	Abdominal Pain	B-T	10.5	1578†	Colon Liver	Distal pancreatectomy, splenectomy, and segmental colectomy	PLADO	liver metastases, Vinorelbine Cyclophosphamide	No chemotherapy given after surgery. Died Excellent (39) [6]	
29	4 y	M	Abdominal mass	B-T	10.4	3616†	Acinar, trabecular Squamous corpuscles	Spleenic vein, Mesenteric vein	Pylorus-preserving pancreatiecojejunostomy	6 PLADO	Excellent (39) [6]	
30	4 y	F	Abdominal pain	H	4.5	60	Acinar, trabecular Squamous corpuscles	N	Pylorus-preserving pancreatiecojejunostomy	1 CDV + 5-FU 1 OPEC	Excellent (23) [6]	
31	4 y	M	Abdominal pain	H	4.8	2.08	Acinar, trabecular Squamous corpuscles	Liver, Mesenteric vein	Abdominal cavity drainage	3 AVCP 2 IF 1 IP10 + VP + VCR	Died of severe ascites and multiple metastases [6]	
32	4 y	M	Abdominal pain	H	4.0	ND	Acinar, trabecular Squamous corpuscles	N	Pancreatecoduodenectomy (Whipple operation)	4 OPEC	Excellent (42) [6]	
33	4 y	M	Abdominal pain	T	9.1	426.87†	Acinar, trabecular Squamous corpuscles	Liver Spleenic vein	Spleen-preserving distal pancreatectomy resection of liver metastatic lesions Pancreatecoduodenectomy (Whipple operation)	4 CDV	Excellent (48) [6]	
34	4 y	F	Jaundice	H	9.7	7000†	Acinar, trabecular Squamous corpuscles	Liver	Subtotal pancreatectomy, complete hepatectomy	Yes	Excellent (84) [32]	
35	4 y	M	Abdominal pain	B	U	ND	Acinar, trabecular Squamous corpuscles	Liver	Subtotal pancreatectomy, complete hepatectomy	Yes	Excellent (84) [32]	

(continued on next page)
No.	Age	Gender	Signs and Symptoms	Location	Size (cm)	AFP (ng/ml)	Pathology	Metastases/invasion	Type of surgery	Chemotherapy/radiotherapy Preoperative	Chemotherapy/radiotherapy Postoperative	Outcome (months)	Refs.	
36	4.6 y	F	Abdominal pain	H	4.4	2394.60†	Acinar	Squamous corpuscles Necrosis	Distal pancreatectomy with elective splenectomy	cisplatin, SFU, vinorelbine, and doxorubicin	N	N	Excellent	[1]
37	4.7 y	M	Diarrhea	Root of the mesentery	12.5	591.8†	Acinar pattern, and Squamous corpuscles	2 CDV 2 OPEC	Excellent (81)	[6]				
38	4.8 y	F	Abdominal mass	H-B	10.0	9600†	Squamous corpuscles Glandular	Complete resection	Cyclophosphamide Pirarubicin Etoposide Cisplatin Isosfamide Vindesine Carboplatin Adr, VP16	Excellent (60)	[33]			
39	5 y	M	Abdominal pain	B-T	12.0	ND	Acinar and epithelial acinar cells	Spleen-preserving distal pancreatectomy + splenic vein resection	cisplatin 80 mg/m2, 24 h constant infusion; carboplatin 500 mg/m2, 1 h infusion and doxorubicin	Died (14)	[10]			
40	5 y	F	Abdominal pain	B-T	9.8	2307.42†	Squamous corpuscles	Distal pancreatectomy with elective splenectomy	PALDO PALDO ICE	Recurrence and Excellent (96)	[8]			
41	5 y	M	Abdominal pain	B-T	10.6	68.87	Acinar and trabecular Squamous corpuscles	Pancreatectomy with elective splenectomy	Cyclophosphamide Dactinomycin	Died (36)	[8]			
42	5 y	M	Abdominal pain	B	11	55117†	Squamous corpuscles Acinar, epithelial acinar cells	Pancreatectomy with elective splenectomy	Irinotecan and vincristine	Excellent (4)	[23]			
43	5.5 y	M	Abdominal Pain	B-T	U	1064.31†	Squamous corpuscles Necrosis	Pancreatectomy with elective splenectomy	Cisplatin, doxorubicin A course: cisplatin, vinorelbine;	Excellent (90)	[19]			
44	6 y	F	Abdominal pain	H	7.5	1280†	Acinar and trabecular	Pancreatectom N	Splenic vein, Mesenteric vein	Cyclophosphamide, etoposide, vinorelbine, pirarubicin and cisplatin radiation and stem cell transplantation	Excellent (11)	[6]		
45	6 y	F	Abdominal pain	H-B	9.0	884.8†	Squamous corpuscles	N	Splenic vein, Mesenteric vein, Portal vein	Excellent (11)	[6]			
46	6 y	M	Abdominal mass	H-B	15.4	1662†	Acinar, trabecular Squamous corpuscles	Spleen-preserving distal pancreatectomy	Cyclophosphamide, etoposide, vinorelbine, pirarubicin and cisplatin radiation and stem cell transplantation	Excellent (11)	[6]			
47	6 y	M	Abdominal distension	H	10.0	ND	Acinar, trabecular Squamous corpuscles	Spleen-preserving distal pancreatectomy	Cisplatin, doxorubicin, etoposide, vinorelbine, pirarubicin and cisplatin radiation and stem cell transplantation	Excellent (11)	[6]			
48	7 y	M	Abdominal pain	H-B-T	12.5	209.19†	Acinar, trabecular Squamous corpuscles	Distal pancreatectomy with elective splenectomy	Cisplatin, doxorubicin A course: cisplatin, vinorelbine;	Excellent (90)	[19]			
49	7 y	F	Abdominal mass	B	10.5	Normal	Squamous corpuscles Acinar and tubular structures	Complete resection	Excellent (90)	[19]				
No.	Age	Gender	Signs and Symptoms	Location	Size (cm)	AFP (ng/ml)	Pathology	Metastases/invasion	Type of surgery	Chemotherapy/radiotherapy	Postoperative	Outcome (months)	Refs.	
-----	-----	--------	--------------------	----------	-----------	-----------	-----------	--------------------	----------------	--------------------------	--------------	------------------	-------	
50	7 y	F	Abdominal pain	T	U	2275†	U	Mesenteric root, portal vein, liver	A distal pancreatectomy with splenectomy and liver transplantation	PLADO	B course: ifosfamide etoposide	Excellent	[26]	
51	8 y	M	Abdominal mass	B-T	13.2	6069†	Acinar, trabecular Squamous corpuscles	Tumor thrombus in Kidney vein Splenic vein	Spleen-preserving distal pancreatectomy and kidney vein and splenic vein resection with resection of kidney vein	CDV	OPEC	Lost (1)	[6]	
52	8 y	M	Vomiting	T	21.0	> 2100.0	Organized structures Squamous corpuscles Acinar structure	Complete excision and splenectomy	N	N (refuse)	Excellent	[7]		
53	8 y	F	Abdominal mass	T	15.0	> 1800.0	Organoid structures Squamous corpuscles Acinar structure	Complete excision	N	N (refuse)	Excellent	[7]		
54	8 y	F	Abdominal mass	B-T	U	1940†	Acinar and trabecular Squamous corpuscles	Liver, portal vein thrombus	Incomplete resection	PVB	Cyclophosphamide Dactinomycin	Radiotherapy	Died (30)	[8]
55	8.9 y	F	Abdominal mass	H	4.1	323†	Squamous corpuscles Acinar Lymph nodes, duodenum	Pancreatectoduodenectomy	PLADO	PLADO	Excellent	Current Report (case 2)		
56	9 y	F	Abdominal mass	T	10.0	> 1500†	Organoid structures Squamous corpuscles Acinar structure	Complete excision	N	N (refuse)	Excellent	[7]		
57	9 y	F	Abdominal mass	B-N D	1400†	Acinar and trabecular Squamous corpuscles	Acinar structure	Complete excision	2IVA	4 CDDP-doxorubicin	No	Excellent (60)	[8]	
58	10 y	M	Abdominal pain	H	ND ND	ND	Squamous corpuscles Acinar, trabecular Squamous corpuscles	Pancreatectoduodenectomy (Whipple operation)	2 CDDP + ADR/VP16	Excellent (156)	[6]			
59	11 y	M	Abdominal mass	H	U 20	Acinar and trabecular Squamous corpuscles	Lymph nodes	No possible resection	CDDP-doxorubicin	Radiotherapy	Liver metastases, Died (9)	[8]		
60	11 y	F	Abdominal pain	U	U 241.4†	U	Acinar and trabecular Squamous corpuscles	Lymph nodes	Pylorus-sparing pancreaticoduodenectomy (Whipple) Resection of tumor and intrahepatic masses	Gemcitabine and cisplatin CDDP Vincristine FU	Doxorubicin, cisplatin and carboplatin	Died of progressive disease	Excellent (72)	[34]
61	12 y	M	Abdominal pain	B-T	5.9	524†	Solid and tubular	Liver	Pylorus-sparing pancreaticoduodenectomy (Whipple) Resection of tumor and intrahepatic masses	Vincristine FU Gemcitabine Cisplatin	Radiotherapy	Autologous hematopoietic stem cell transplantation	Excellent (48)	[25]
62	14 y	F	Nausea	B-T	13.5 N	U	Peritumoral fibrosis and splenic vessels	Complete excision	PLADO	Carboplatin etoposide	Excellent (48)	[25]		
63	18 y	M	Abdominal pain	B-T	10.0 U	Acinar and glandular Squamous corpuscles	Liver	Complete excision	Adriamycin Gemcitabine Radiotherapy	Progressive disease of hepatic masses, invading the pancreatic head and enlarged tracheobronchial lymph nodes. Died (26)	[35]			

Notes: IVA, Ifosfamide+Vincristine+Daotinomycin; PVB, Cisplatin+Vinblastein+Bleomycin; PLADO, Cisplatin+Doxorubicin; IE, Ifosfamide+Etoposide; CDV, Cyclophosphamide+Daunorubicin+Vincristine; OPEC, Vincristine+Cyclophosphamide+Cisplatin+Etoposide; H, Head; B, Body; T, Tail; U, Unknown; N: None; VP16: Etoposide.
Discussion

PB is rare in children, typically affecting children between 1 and 8 years of age [13]. Due to the lack of comprehensive and effective diagnoses and treatment strategies, we reviewed 63 cases with PB, including our four cases and 59 cases reported previously in the literature [1,2,6-11,14,15,17-19,21-23,26-29,35] (Table 1). There were 35 males and 28 females. The age distribution of the 63 cases showed that more than 90% of patients were diagnosed before age of 10 years (Supplementary Fig. 1). Most patients presented with symptoms, including abdominal masses (30/63, 47.6%) and abdominal pain (28/63, 44.4%). Obstructive jaundice occurred in 7.9% of patients (5/63). Digestive system manifestations, including abdominal distension, diarrhea, and vomiting, were noted in some children (8/63, 12.7%). Anorexia (3/63, 4.8%), fever (2/63, 3.2%), and failure to thrive (1/63, 1.6%) were less common. Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by macrosomia, macroglossia, abdominal wall defects, organomegaly, hemihypertrophy, ear anomalies, renal abnormalities, and neonatal hypoglycemia [14-16]. In our reviewed cases, 6/63 (9.5%) presented with BWS [6,8,15,18,29,30]. Due to the rarity of PB complicated by BWS, the clinical treatment was still undefined.

Imaging findings suggested that tumors were more commonly located in the body-tail, head-body-tail, and head-body (23/63, 30%), followed by the head (17/63, 27.0%), tail (10/63, 15.9%), and body (9/63, 14.3%) of the pancreas. Weksberg et al. reported that tumors adhering to the transverse mesocolon may originate from ectopic pancreatic tissue in the mesentery [17]. Large-size tumors with ill-defined borders, calcification, absence of hemorrhage, intertumoral vessels, and peripancreatic vessel invasion are the common features.

A definitive diagnosis of PB relies on the histological identification of epithelial differentiation (acinar, glandular, and trabecular architectures) and squamous corpuscles. The squamous corpuscles are unique, and they distinguish PB from neuroblastoma, hepatoblastoma, and other small round cell tumors [1,10,14,18]. In the immunohistochemical investigation, tumors were positive for trypsin, cytokeratin AE1/AE3, CK19, CK7, CEA, and VIM. The areas of squamous differentiation were also marked by CK5 and EMA. Endocrine markers, including SYN, CGA, and CD56, were positive seldomly.

In the cases we reviewed, more than half of the patients had metastases or invasion of the surrounding tissues (35/63, 55.5%). The liver (16/35, 45.7%) and veins (16/35, 45.7%) are the most common site of metastasis, although metastasis may also occur in regional lymph nodes (7/35, 20.0%), duodenum and colon (4/35, 11.4%), and lung (2/35, 5.7%). Therefore, the risk factors should be considered in the therapeutic stratification of PB, including vein involvement, extrasplenic abdominal disease, distant metastases, lymph node metastases, tumor rupture, and intraperitoneal hemorrhage [6,8,19]. Moreover, we observed that 14 cases experienced recurrence or died of progressing disease. In this series, 71% (10/14) of the children were older than 3 years old, suggesting that age might be considered in the therapeutic stratification of PB.

According to the risk factors, PB can be further divided into low-, intermediate-, or high-grade by the multi-disciplinary team at initial diagnosis. Complete surgical resection is strongly recommended, if achievable. The first-line of treatment is based on complete tumor resection, followed by chemotherapy (cisplatin and doxorubicin), which presents favorable outcomes [13,20]. Preoperative chemotherapy is recommended to shrink the tumor and to achieve the possibility of complete resection in intermediate- or high-grade PB [1,2,6,7,19,20]. Despite the small numbers, patients with an intermediate-grade show a better response in preoperative chemotherapy of PLADO or ICE-based regimens (etoposide, ifosfamide, and carboplatin) [1,9,19,21,22].

Patients with distant metastases are identified as high-grade PB. Although there are no strict recommendations, radiotherapy is performed in PB patients if the tumors do not respond to chemotherapy, or if recurrent, residual, and metastatic disease is present [3,8,19,23]. Several studies have reported that autologous hematopoietic stem cell transplantation has meaningful efficacy in a few cases of tumor recurrence [21,23-25], suggesting it might be adopted in patients with high-grade PB. Picado et al. reported that liver transplantation may have a favorable outcome in pediatric PB with metastatic livers [26].

AFP is a glycoprotein that is derived from embryonic endoderm tissue cells. The serum AFP level is usually increased in PB, hepatoblastoma, and germ cell tumors, such as yolk sac tumors in children [27,28]. In our study, patients mostly show elevated serum AFP levels (>100 ng/ml, 38/50, 76%). After complete resection of the tumors, the AFP level in all patients was reduced, returning to the normal range at follow-up. These findings indicate that serum AFP might serve as a valuable tumor marker for preoperative diagnosis, and it can even indicate therapeutic effect and postoperative recurrence in PB patients.

In conclusion, PB is considered a curable tumor, and thus, a multi-disciplinary diagnosis should be made early. Squamoid nests are considered as a defining component of histological diagnosis. The risk factors should be considered in the therapeutic stratification of PB.

Supplementary

Fig. 1. Age and sex-specific incidence of 63 patients for PB. The first peak was observed before 1 year of age, and the second peak was observed at 4 years of age. The distribution of males and females showed no significant differences.

Ethics approval

This study was approved by the ethics committee of the Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

Informed consent

All patients enrolled provided written informed consent.

CRediT authorship contribution statement

Tingting Liu: Conceptualization, Visualization, Writing – original draft, Investigation, Formal analysis, Writing – review & editing. Tong Zhao: Conceptualization, Visualization, Writing – original draft, Investigation. Cuicui Shi: Conceptualization, Visualization, Writing – original draft. Lei Chen: Conceptualization, Visualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by Shanghai Municipal Commission of Health and Family Planning (201840165) and National Natural Science Foundation of China (82000193).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.tranon.2022.101359.
References

[1] W.Z. Gu, C.C. Zou, Z.Y. Zhao, L. Liang, H.F. Tang, Childhood pancreatoblastoma: clinical features and immunohistochemistry analysis, Cancer Lett. 264 (1) (2008) 119–126.

[2] L. Cao, D. Liu, Diagnosis and treatment of pancreatoblastoma in China, Pancreas 34 (1) (2007) 92–95.

[3] A.R. Dhebri, S. Connor, F. Campbell, P. Ghaneh, R. Sutton, J.P. Neoptolemos, Diagnosis, treatment and outcome of pancreatoblastoma, Pancreatology 4 (5) (2004) 441–453.

[4] T. Morohoshi, F. Sagawa, T. Mitsuya, Pancreatoblastoma with marked elevation of serum alpha-fetoprotein. An autopsy case report with immunocytochemical study, Virchows Arch. A Pathol. Anat. Histopathol. 416 (3) (1990) 265–270.

[5] Z. Yang, Y. Gong, M. Ji, B. Yang, Z. Qiao, Differential diagnosis of pancreatoblastoma (PB) and solid pseudopapillary neoplasms (SPNs) in children by CT and MR imaging, Eur. Radiol. 31 (4) (2021) 2209–2217.

[6] Y. Huang, W. Yang, J. Hu, Z. Zhu, H. Qin, W. Han, H. Wang, Diagnosis and treatment of pancreatoblastoma in children: a retrospective study in a single pediatric center, Pediatr. Surg. Int. 35 (11) (2019) 1231–1238.

[7] C. Xu, L. Zheng, Y. Wang, W. Wang, Z. Yang, X. Kang, C. Wang, Clinical analysis of pancreatoblastoma arising from the tail of the pancreas, J. Pediatr. Hematol. Oncol. 34 (5) (2012) e177–e181.

[8] A.S. Defachelles, E. Martin De Lasalle, P. Boutard, B. Neilen, P. Schneider, C. Patte, Pancreatoblastoma in childhood: clinical course and therapeutic management of seven patients, Med. Pediatr. Oncol. 37 (1) (2001) 47–52.

[9] P. Dall’igna, G. Cecchetto, G. Bisogno, et al., Pancreatic tumors in children and adolescents: the Italian TREP project experience, Pediatr. Blood Cancer 54 (5) (2010) 675–685.

[10] A. Argon, A. Çelik, H. Oniz, G. Özok, F.Y. Barbet, Pancreatoblastoma, a rare childhood tumor: a case report, Turk. J. Pathol. 33 (2) (2017) 164–167.

[11] C. Dhamne, C.E. Herzog, Response of relapsed pancreatoblastoma to a combination of vinorelbine and oral cyclophosphamide, J. Pediatr. Hematol. Oncol. 36 (2014) 241.

[12] G. Pelizzo, G. Conoscenti, K.D. Kalache, et al., Antenatal manifestation of congenital pancreatoblastoma in a fetus with Beckwith-Wiedemann syndrome, Prenat. Diagn. (2003) 292–294.

[13] C.T. Lee, Y.C. Tung, W.L. Hwu, J.C. Shih, W.H. Lin, M.Z. Wu, K.T. Kuo, Y.L. Yang, H.L. Chen, M. Chen, Y.N. Su, Y.J. Jong, S.Y. Liu, W.Y. Tsai, W.C. Lee, Mosaic paternal haploidy in a patient with pancreatoblastoma and Beckwith-Wiedemann spectrum, Am. J. Med. Genet. A 179 (2019) 1878–1883.

[14] M. Sugai, N. Kimura, M. Umebara, et al., A case of pancreatoblastoma prenatally diagnosed as intraperitoneal cyst, Pediatr. Surg. Int. 22 (2006) 845–847.

[15] A.A. Hamidi, M. Jalili, O. Khojasteh, et al., Autologous stem cell transplantation as treatment modality in a patient with relapsed pancreatoblastoma, Pediatr. Blood Cancer 55 (2010) 573–576.

[16] C.P.F. Menezes, C.G. de Castro Junior, A.L. Brunetto, Autologous stem cell transplantation as first line treatment after incomplete excision of pancreatoblastoma, Rev. Bras. Hematol. Hemoter. 35 (2013) 148–149.

[17] T. Yonekura, T. Tajiri, Y. Kinoshita, S. Tanaka, Y. Koga, A. Suminoe, T. Harai, K. Kohashi, Y. Oda, T. Taguchi, Successful treatment of advanced pancreatoblastoma by a pyrofos-preserving pancreatoduodenectomy after radiation and high-dose chemotherapy, Pediatr. Surg. Int. 26 (2010) 1045–1048.

[18] R. Muguerza, A. Rodriguez, E. Formigo, et al., Pancreatoblastoma associated with incomplete Beckwith-Wiedemann syndrome: case report and review of the literature, J. Pediatr. Surg. 40 (2005) 1341–1344.

[19] G. Ruggiani, M.C. Affininita, P. Dall’igna, R. Bhargava, C. Virgone, S. Sorbara, G. Bisogno, Treatment strategies for children with relapsed pancreatoblastoma: a literature review, J Pediatr Hematol Oncol. 43 (2021) 288–293, 000-000.

[20] Y.J. Lee, J.O. Hah, Long-term survival of pancreatoblastoma in children, J. Pediatr. Hematol. Oncol. 29 (2007) 845–847.

[21] T. Yonekura, T. Kosumi, M. Hokim, S. Hirooka, H. Kitayama, A. Kubota, Aggressive surgical and chemotherapeutic treatment of advanced pancreatoblastoma associated with tumor thrombus in portal vein, J. Pediatr. Surg. 41 (2006) 596–598.

[22] O. Picado, A. Ferrantelli, C. Zabalo, K. Rao, C.M. Thornton, J.E. Sola, E.A. Perez, Treatment patterns and outcomes for pancreatic tumors in children: an analysis of the National Cancer Database, Pediatr. Surg. Int. 36 (2020) 357–363.

[23] M. Mercadal-Hally, S. Vaidya, H. Vilca-Melendez, N. Heaton, A. Dhawan, T. Grammatikopoulos, Pancreatoblastoma: a rare indication for liver transplantation in children, Hepatobiliary Pediatr. Dis. Int. 19 (5) (2020) 499–501.

[24] X. Wang, W.Q. Alpha-Fetoprotein, H.C. Immunity, Can. J. Gastroenterol. Hepatol. 00 (2018) 1–8.

[25] S. Ferraro, A. Panzeri, F. Braga, M. Panteghini, Serum a-fetoprotein in pediatric oncology: not a children’s tale, Clin. Chem. Lab. Med. 57 (2019) 783–797.

[26] G. Pelizzo, G. Conoscenti, K.D. Kalache, et al., Antenatal manifestation of congenital pancreatoblastoma in a fetus with Beckwith-Wiedemann syndrome, Prenat. Diagn. (2003) 292–294.

[27] C.T. Lee, Y.C. Tung, W.L. Hwu, J.C. Shih, W.H. Lin, M.Z. Wu, K.T. Kuo, Y.L. Yang, H.L. Chen, M. Chen, Y.N. Su, Y.J. Jong, S.Y. Liu, W.Y. Tsai, W.C. Lee, Mosaic paternal haploidy in a patient with pancreatoblastoma and Beckwith-Wiedemann spectrum, Am. J. Med. Genet. A 179 (2019) 1878–1883.

[28] M. Sugai, N. Kimura, M. Umebara, et al., A case of pancreatoblastoma prenatally diagnosed as intraperitoneal cyst, Pediatr. Surg. Int. 22 (2006) 845–847.

[29] A.A. Ghaffarian, L. Book, R.L. Meyers, Liver transplant for metastatic pancreatoblastoma: 7-year event-free survival after chemotherapy, pancreatoectomy, complete hepatectomy, and liver transplant, Pediatric Transplantation. 22 (2018) 1–4.

[30] B. Ogawa, K. Okinaga, K. Obana, K. Nakamura, T. Hattori, T. Ito, Y. Yanagawa, F. Tanaka, T. Imaura, Pancreatoblastoma treated by delayed operation after effective chemotherapy, J. Pediatr. Surg. 35 (2000) 1663–1665.

[31] M.J. Bellettucci, D. Bigam, R. Bhoragava, et al., Use of gemcitabine with multi-stage surgical resection as successful second-line treatment of metastatic pancreatoblastoma, J. Pediatr. Hematol. Oncol. 35 (2013) e7–e10.

[32] L. Sheng, J. Weizsa, L. Longhai, Y. Jinning, Clinical and biologic analysis of pancreatoblastoma, Pancreas 30 (2005) 87–90.