Looking at a soliton through the prism of optical supercontinuum

Dmitry V. Skryabin and Andrey V. Gorbach

Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath, BA2 7AY, United Kingdom

A traditional view on solitons in optical fibers as robust particle-like structures suited for information transmission has been significantly altered and broadened over the past decade, when solitons have been found to play the major role in generation of octave broad supercontinuum spectra in photonic-crystal and other types of optical fibers. This remarkable spectral broadening is achieved through complex processes of dispersive radiation being scattered from, emitted and transformed by solitons. Thus solitons have emerged as the major players in nonlinear frequency conversion in optical fibers. Unexpected analogies of these processes have been found with dynamics of ultracold atoms and ocean waves. This colloquium focuses on recent understanding and new insights into physics of soliton-radiation interaction and supercontinuum generation.

Contents

I. Introduction

II. Modeling of supercontinuum

III. Soliton self-frequency shift and soliton dispersion

IV. Radiation emission by solitons

V. Scattering of radiation from solitons and supercontinuum

VI. Radiation trapping and supercontinuum

VII. Gravity-like effects, freak waves and turbulence of light in fiber

VIII. Summary

IX. Perspectives

References

I. INTRODUCTION

Interplay of dispersion and nonlinear self-action in wave dynamics has been at the focus of attention across many branches of physics since the middle of the past century after the seminal Fermi-Pasta-Ulam work on heat dissipation in solids. This work has been quickly followed by the discovery of many nonlinear wave equations integrable with the inverse scattering technique (IST). Solitons is a particular class of localized and remarkably robust solutions found with the IST technique. Soliton studies have quickly become a subject of its own and have soon developed far beyond the initial subset of integrable models. Localised nonlinear waves in the non-integrable models are often called solitary waves to distinguish them from IST solitons. However, the use of the original term ‘soliton’ has now spread widely into non-integrable cases. Solitons have been experimentally observed and studied theoretically in fluid dynamics, mechanical systems, condensed matter and notably in nonlinear optics. Historic and scientific accounts of these developments can be found, e.g., in the excellent book by Alwyn Scott (Scott, 1999).

Optical solitons in fibers (Hasegawa and Tappert, 1973; Mollenauer et al., 1980), have been most extensively researched as potential information carriers (Agrawal, 2007; Mollenauer and Gordon, 2006). With this view in mind solitons can be treated as particle-like objects and their dynamics can be conveniently reduced to the Newton-like equations for the soliton degrees of freedom, such as, e.g. position and phase (Agrawal, 2007; Gorshkov and Ostrovsky, 1981; Kaup and Newell, 1978; Mollenauer and Gordon, 2006). Ability of perturbed solitons to emit dispersive radiation is a property vividly expressing their wave nature. Radiation emission by solitons has been well known in 20th century (Akhmediev and Karlsson, 1993; Karpman, 1993; Kivshar and Malomed, 1989; Wai et al., 1990), however, it was considered at that time as something that to the large degree undermines usefulness of the soliton concept. This vision has changed dramatically around and after 2000, when the first experimental observation of an octave wide spectral broadening in photonic crystal fibers was reported by Ranka et al. (Ranka et al., 2000) and subsequently reproduced in dozens of labs. This effect has become known as the fiber supercontinuum. One of recent reviews, and Fig. 1. The above reviews discuss impressive applications of supercontinuum for frequency comb generation, in metrology, spectroscopy and imaging.

Already after first experiments on generation of supercontinuum in fibers it has become obvious that solitons...
are the major players in this process. Spectrally they dominate in the infrared, where the group velocity dispersion (GVD) is typically anomalous. The visible part of supercontinua most often spans through the range of normal GVD and is associated with dispersive radiation. Crucially, the dispersive radiation and solitons overlap in the time domain and hence interact by means of the Kerr and Raman nonlinearities.

What was overlooked in the research on fiber solitons in the pre-supercontinuum era is the fact that interaction of solitons with dispersive waves and the associated frequency conversion processes can be efficient and practically important. Not only experiments, but also theory of the soliton-radiation interaction was not developed much beyond the spectrally local Taylor expansion) of the fiber dispersion. Recent studies of the Raman nonlinearity with respect to the Kerr one [Kivshar and Malomed, 1989; Kuznetsov et al., 1993; Zakharov and Shabat, 1972]. Our primary aim here is to explain the frequency conversion effects resulting from the soliton-radiation interaction and leading to supercontinuum generation in optical fibers, and to discuss few other fascinating soliton related effects, which have stem from the supercontinuum research.

II. MODELING OF SUPERCONTINUUM

Talking about supercontinuum generation and soliton-radiation interaction we consider a fiber with sufficiently high nonlinearity and the zero GVD point close to the pump wavelength. These conditions are found in fibers with silica cores of few (∼ 1 - 5) microns in diameter, which can be, e.g., either photonic crystal or tapered fibers pumped with a variety of sources. The later include femtosecond pulses of mode-locked Ti:sapphire lasers with wavelength around 800nm [Ranka et al., 2000] and nano-second pulses from microchip lasers close to 1µm [Stone and Knight, 2008]. An important aspect of the dispersion profile allowing to achieve wide supercontinuum is the normal GVD extending towards shorter ("bluer") wavelengths, see Fig. 2(a). Spectral broadening with the opposite GVD slope has also been studied [Efimov et al., 2004; Harbold et al., 2002].

The widely accepted model well reproducing experimental measurements of supercontinuum is

\[\partial_z A = i k (i \partial_t) A + \rightarrow \delta A^2 + i \gamma A \int_0^\infty dt' R(t') |A(t-t')|^2. \]

Eq. (1) includes three ingredients:

- **dispersion** (1st term in the righthand side)
- **nonlinear phase modulation** due to instantaneous Kerr nonlinearity (2nd term)
- **Raman scattering** (3rd term)

Taken separately these effects are well known. Notably, the last two lead to generation of new spectral content.

FIG. 2 (color online) (a) Group index, that is, speed of light divided by the group velocity, \(n_g = c \delta k \), (dashed line) and GVD \(\beta_2 = \partial^2 k / \partial t^2 \) (full line) typical for photonic-crystal fibres used in supercontinuum experiments. The zero GVD point is at \(\lambda \approx 790 \text{nm} \) (380THz) and the normal GVD range is for wavelengths \(\lambda < 790 \text{nm} \). (b) XFROG spectrogram showing simultaneous frequency and time domain pictures of the supercontinuum from Fig. 3 at \(z = 1.5 \text{m} \). Pump wavelength is 850nm (350 THz).
acting on their own. However, conversion into discrete Raman side-bands does not manifest itself in the typical supercontinuum experiments. Also self- (SPM) and cross- (XPM) phase modulations (as particular cases of the generic nonlinear phase modulation) generate spectra, which are relatively narrow \cite{Agrawal2007}, and can not explain fully developed supercontinua. It is only when dispersion comes into play and all three of the above effects act together in symphony, then the qualitatively new phenomenon of supercontinuum generation occurs. A typical supercontinuum experiment with the femtosecond 800nm pump leads to spectra covering range from 400nm to 2000nm after propagation in a ~1m long photonic crystal fiber \cite{Gu et al. 2003; Ranka et al. 2000; Wadsworth et al. 2002}. Figs. 2(b) and 3 show numerical modelling of this process using Eq. 1.

Results obtained using Eq. 1 have been directly compared with many experimental measurements of femtosecond pulse propagation in photonic crystal fibers in both time and frequency domains and excellent agreement has been established \cite{Efimov et al. 2003; Skryabin et al. 2003}. Probably the most convenient way of representing the data for such comparisons is using the cross-correlation frequency resolved optical gating (XFROG) spectrograms \cite{Efimov et al. 2004; Gu et al. 2003; Hori et al. 2004}. The XFROG spectrogram is the Fourier transform of a product of the signal field E with the reference pulse E_r delayed by time τ: $I_{XFROG}(\tau, \delta) = \int_{-\infty}^{\infty} E_r(t-\delta)E(t)e^{-it\delta}dt^2$. E_r is usually a pump pulse and the product of the two fields is generated by the sum frequency process in a $\chi^{(2)}$ crystal.

As with any model, Eq. 1 has limits to its applicability. In particular, it is not applicable to describe sharp field variations happening over few femtoseconds and less. However, so far the role of such ultrashort features in typical fiber supercontinuum experiments has not been revealed and the octave spectral broadening happens through nonlinear interactions of dispersive waves and solitons which both are well described by Eq. 1. In particular, formation of the coupled soliton-radiation states with the continuously blue shifting radiation component and the red shifting soliton plays a key role in supercontinuum expansion \cite{Cumberland et al. 2008; Gorbach and Skryabin 2007; Hill et al. 2009; Kudlinski and Mussot 2008; Stone and Knight 2008; Travers 2009}.

The relative smoothness of a temporal field profile associated with a typical supercontinuum is one of the reasons why self-steepening (wave breaking) \cite{Agrawal 2007} does not make a notable quantitative and qualitative impact if included or excluded from Eq. 1. Furthermore, going beyond the amplitude model is likely to be needed for correct description of self-steepening, see, e.g., \cite{Amiranashvili et al. 2008}. Therefore we have opted for not taking it into account. In our experience, the most noticeable disagreements of Eq. 1 with the experimental measurements are due to omission of the frequency dependent losses. Other neglected effects are possible excitation of higher order or orthogonally polarized modes, dispersion of the Kerr nonlinearity, third harmonic generation and noise. Spontaneous Raman noise and input noise are unavoidably present in experiments. The spectra averaged over the statistical ensemble may, in some cases, be better suited for a comparison with measurements, where the fine spectral features of a single pulse excitation can be obscured due to resolution and long (over many pulses) integration time of a spectrum analyser \cite{Corwin et al. 2003; Dudley and Coen 2002}. Small to moderate pulse to pulse fluctuations in the generated spectra should not prevent us from unraveling and understanding of the deterministic nonlinear processes underlying the supercontinuum generation and the soliton role in it.

III. SOLITON SELF-FREQUENCY SHIFT AND SOLITON DISPERSION

During the first stage of the supercontinuum development SPM induces spectral broadening and associated chirping of a femtosecond pulse \cite{Agrawal 2007}, which are compensated by the anomalous GVD ($\beta_2k < 0$). Competition of these processes initiates formation of multiple solitons from an initial high power pump pulse (soliton fission), see Fig. 3. Amongst the host of the soliton related effects, there are two, which are particularly important for us. These are the soliton self-frequency shift induced by the Raman scattering \cite{Mitschke and Mollenauer 1986} and emission of dispersive radiation. The latter comes from the overlap of the soliton spectrum with the range of frequencies where the fiber GVD is normal \cite{Akhmediev and Karlsson 1995; Karpman 1993; Wai et al. 1990}.

Spectra of femto- or pico-second solitons are sufficiently narrow, so that the Raman gain profile of silica peaking at 13THz can be approximated by a straight line rising across the soliton spectrum from the negative values (damping) at the short-wavelength end of the soliton spectrum to the positive values (gain) at the long-wavelength end \cite{Agrawal 2007; Gorbach and Skryabin 2008; Luan et al. 2006}. The net result on the soliton is that its spectral center of mass is shifted towards re-
under frequencies [Mitschke and Mollenauer, 1986], which is referred as the soliton self-frequency shift. The group index \(n_g \) (ratio of the vacuum speed of light \(c \) to the group velocity, \(n_g = c \partial_\delta k \)) increases with the wavelength providing that the GVD is anomalous. This leads to continuous negative acceleration (deceleration) of solitons by the Raman scattering, which is very important for supercontinuum, but often forgotten in soliton studies.

An approximate soliton solution of Eq. (1) moving with a constant acceleration can be derived under the assumption that the fiber group index varies linearly in frequency (i.e., \(\partial_\delta k \sim \delta \) and hence \(k \sim \delta^2 \)). For the zero initial frequency, this solution is given by [Gagnon and Belanger, 1990; Gorbach and Skryabin, 2007a,b]:

\[
\begin{align*}
A_s &= \psi(t-t_s) \exp\left[-i\delta_s t + i\phi(z)\right], \\
\psi(t) &= \sqrt{2q/\gamma} \text{sech}\left(\sqrt{\frac{2q}{|k'|^2}} t\right), \\
\phi(z) &= qz + \frac{1}{3} k'' \delta^2 z, \\
\delta_s &= \frac{g_0 z}{k''}, \\
\beta^2 &= \frac{32 T q^2}{15}.
\end{align*}
\]

The soliton delay caused by the Raman effect is \(t_s = g_0 z^2/2 \). \(q > 0 \) is the soliton wavenumber shift proportional to its intensity. The soliton trajectory in the \((t, z)\)-plane is a parabola given by \(t = t_s \) (see Fig. 4(a)). \(\delta_s \) is the soliton frequency, which decreases linearly with \(z \) (see Fig. 4(b)).

Soliton-radiation interaction discussed below is sensitive to the phase matching conditions. Therefore it is important to derive spectral representation for an accelerating soliton. The soliton spectrum is calculated as

\[
\tilde{A}_s(\delta) = \int_{-\infty}^{\infty} dt A_s e^{i\delta t} = e^{i\phi(z) + it_s (\delta - \delta_s)} \psi(\delta - \delta_s),
\]

where \(\tilde{\psi}(\delta) = \int_{-\infty}^{\infty} \psi(t) e^{i\delta t} dt \) is a real function. Wavenumbers of the soliton spectral components are

\[
k_s(\delta) = \partial_s [\phi(z) + (\delta - \delta_s) t_s] = q + \partial_\delta k_{s=\delta_s} \delta - \partial_\delta k_{s=\delta_s} + k(\delta_s).
\]

\(k_s(\delta) \) is linear in \(\delta \), expressing the fact that the soliton is immune to GVD and hence \(\partial^2_\delta k_s = 0 \). Also it can be seen that \(k_s(\delta) \) is actually a tangent to the dispersion of linear waves \(k(\delta) = \frac{1}{2} \beta_2 \delta^2 \) taken at \(\delta = \delta_s \) and shifted away from it by the offset \(q \). If GVD is anomalous for all the frequencies (\(\beta_2 < 0 \)) the soliton spectrum does not touch the spectrum of linear dispersive waves, see Fig. 4(c).

\(\psi \), as in Eq. (3), is of course an approximate solution, and the Raman effect forces the soliton to shake off some radiation, see Fig. 2(b), Fig. 4(a). This radiation can be approximated by Airy functions [Akhmediev et al., 1990; Gorbach and Skryabin, 2008]. Airy waves emitted in a typical supercontinuum setting are very weak, broad band and have spectrum almost exclusively belonging to the anomalous GVD range. The latter is the main reason why they practically do not interact with solitons and their impact on the supercontinuum spectrum is secondary in importance.

IV. RADIATION EMISSION BY SOLITONS

Solitons dominate the long-wavelength edge of the supercontinuum (see Figs. 1b, 2), while the so-called resonant (or ‘Cherenkov’) radiation (Akhmediev and Karlsson, 1995; Biancalana et al., 2004; Karpman, 1993; Skryabin et al., 2003). Wai et al., 1990) comes to mind as one of the reasons for the spectrum created in the normal GVD range (Cristiani et al., 2004, Gu et al., 2003; Herrmann et al., 2002). Despite the importance of the resonant radiation identified in the first efforts to model fiber supercontinuum (Herrmann et al., 2002; Husakou and Herrmann, 2001), later it has become clear that it is only when the initially emitted radiation has a chance to interact with the solitons over long propagation distance, the expanding supercontinua observed in experiments can be reproduced in modelling (Genty et al., 2004a, 2005; Gorbach and Skryabin, 2007a; Skryabin and Yulin, 2007). The Raman effect is the key factor ensuring such interaction.
Linear dispersive solution of Eq. (8) is \(A = e^{i k z - i s t} \) with \(k(\delta) = \frac{1}{3} \beta_2 \delta^2 + \frac{i}{3!} \beta_3 \delta^3 \). The zero GVD point is located at \(\delta_0 = -\beta_2 / \beta_3 \). The soliton existence condition is \(\beta_2 < 0 \) and hence if, e.g., \(\beta_3 > 0 \), then the GVD is normal \((\partial^2 k > 0)\) towards higher frequencies \(\delta > \delta_0 \), see Figs. 5(c). The pulse spectrum entering this range is not able to propagate in the soliton regime, which leads to the radiation emission.

Small amplitude Cherenkov radiation \(F_{Ch} \) with frequency detuned far from the soliton obeys (Khokhlov, 1979; Afanasiev et al., 1991; Biancalana et al., 2004; Karpman, 1993; Gorbach and Skryabin, 2004)

\[
\left(i \partial_z - \frac{1}{2!} \beta_2 \partial_t^2 - \frac{i}{3!} \beta_3 \partial_t^3 \right) F_{Ch} \propto \partial^3 A_s. \tag{9}
\]

Unlike the above mentioned Airy waves, the resonant radiation is phase matching dependent and therefore it is narrow band. Using Fourier expansion \(F_{Ch} = \int_{-\infty}^{\infty} F_{Ch}(\delta) e^{i k(\delta) z - i s t} d\delta \), taking Eq. (8), and calculating \(z \) derivatives of the phases involved, we then equate the wave numbers of the left and right hand sides of Eq. (9) to find the wavenumber matching condition

\[
k(\delta) = k_s(\delta). \tag{10}
\]

The roots of Eq. (10) are the resonance frequencies \(\delta_{Ch} \). \(\beta_3 > 0 \) (\(\beta_3 < 0 \)) gives the blue (red) shifted dispersive waves, see Figs. 5, 6, respectively. Accounting for the higher order dispersions is effortless and may lead to several roots of Eq. (10) (Falk et al., 2002; Frosz et al., 2003; Genty et al., 2004b). Energy of the emitted wave (or waves) is drawn from the entire soliton spectrum resulting in the adiabatic decay of the soliton

(Biancalana et al., 2004; Skryabin et al., 2003).

In a typical supercontinuum setting with \(\beta_3 > 0 \) the Raman effect increases frequency detuning \((\Delta = \delta_{Ch} - \delta_s)\) between the soliton and its resonance radiation, see Fig. 5(c). For \(\beta_3 < 0 \) the situation is the opposite, see Fig. 6(c). The amplitude of the emitted radiation is proportional to \(e^{-a^2|\Delta|} \) \((a\) is a constant), where \(\Delta \propto z \) (Khokhlov, 1979; Afanasiev et al., 1991; Biancalana et al., 2004; Karpman, 1993; Gorbach and Skryabin, 2004; Wai et al., 1990).

Thus for \(\beta_3 > 0 \) the soliton self-frequency shift induces exponential decay of the radiation amplitude with propagation (Biancalana et al., 2004; Gorbach et al., 2006).

Practically this implies that the soliton emits significant shortwavelength radiation only at the initial stage of the supercontinuum generation. The radiation emission quickly becomes unnoticeable when the solitons are shifted away from the zero GVD point. Then the natural question is what causes the continuous blue shift of the short-wavelength edge of the supercontinuum, see Fig. 3. The answer is - soliton-radiation interaction (not mere radiation emission) (Cumberland et al., 2008; Genty et al., 2004a, 2005; Gorbach and Skryabin, 2007; Kudlinski and Mussot, 2008; Stone and Knight, 2008; Travers, 2009). The rest of this section and sections V and VI elaborate on this in great details.
FIG. 7 A weak gaussian pulse in normal GVD range initially placed behind the soliton experiences multiple reflections from the latter. After each collision some light gets through the soliton and some is reflected back. The reflected light is localized close to the soliton and almost indistinguishable from it in the (z,t)-plot (a). However, the reflected light is clearly visible in the spectral (z,δ)-plot (b), because its frequency is blue-shifted after each collision.

If $\beta_3 > 0$, then the resonant radiation emitted by the soliton has group velocity less than the soliton itself, so that the radiation appears behind the soliton (Fig. 5(a)). However, after some propagation the radiation catches up with the soliton, which is continuously decelerated by the Raman effect, and the two collide (Fig. 5(a), 7(a)). During this collision the radiation is reflected from the soliton backwards, and so the next collision becomes unavoidable, through the same mechanism. The process can be repeated many times, see Fig. 7. Note, that the radiation colliding with the soliton should not be necessarily emitted by the soliton itself, it can be initiated by other mechanisms, e.g., via SPM or emitted by other solitons (Figs. 5(a), 7(a)). An important condition for the reflection of the radiation from a soliton to actually happen is that the radiation frequency should belong to the normal GVD range. The radiation in the anomalous GVD range practically does not see solitons, since the model is close to the ideal integrable NLS.

Reflection of the radiation backwards (towards smaller z and larger t) from the soliton, implies that the radiation group velocity is further reduced, i.e. the group index $\partial_t \delta k$ for the radiation increases. For the normal GVD ($\partial^2_k \delta > 0$) the increase in the group index happens together with the increase in frequency δ. Therefore the backward reflections have to be accompanied by the blue shifting of the radiation frequency, see Fig. 7(b). This is exactly the type of process happening between the solitons and the short wavelength radiation in the expanding supercontinuum shown in Fig. 3 (Gorbach et al., 2006; Gorbach and Skryabin, 2007b,c). Obiously the reflection process is nonlinear in its nature, which is explained in details in the next section.

For $\beta_3 < 0$, the detuning between the radiation and soliton gets smaller with propagation (Fig. 6(c)), therefore the radiation is exponentially amplified in z. This amplification leads to the strong spectral recoil on the soliton followed by the compensation of the soliton self-frequency shift (Biancalana et al., 2004; Efimov et al., 2004; Skryabin et al., 2003; Tsoy and deSterke C.M., 2006) (see Fig. 6(b)). In this case the radiation is emitted ahead of the soliton and has no chance of interacting with it, see, Fig. 6(a). The radiation can, however, interact with other solitons present in the fibers, bounce back from them and has its frequency transformed (Efimov et al., 2004; Gorbach and Skryabin, 2007b,c, see Fig. 8).

We also note at the end of this section that dark solitons existing for the normal GVD are known to emit Cherenkov radiation into the anomalous GVD range (Afanasjev et al., 1996, Karpman, 1993). Amplification of this radiation by the Raman effect and its possible use for generation of broad continua has been recently
investigated [Milianet al., 1986].

V. SCATTERING OF RADIATION FROM SOLITONS AND SUPERCONTINUUM

In its essence the scattering of a dispersive wave from a soliton is a four-wave mixing (FWM) nonlinear process sensitive to the phase matching conditions [Efimov et al., 2004, 2005, Gorbach et al., 2006, Skryabin and Yulin, 2005]. The latter, however, work out in an unusual way. An important difference of the soliton-radiation interaction with the text-book four-wave mixing of dispersive waves only (Agrawal, 2007), is that one of the participating fields is a non-dispersing pulse (soliton) having straight-line dispersion and moving with a group (not phase) velocity, see Eq. (7).

Let’s assume that F_p and δ_p are the amplitude and frequency of the dispersive wave incident on the soliton A_s, while F is the reflected signal field with an unknown frequency δ. The equation for F is (Skryabin and Yulin, 2005):

$$
\left(i \partial_z - \frac{1}{2} \beta_3 \partial_t^2 - \frac{i}{3} \beta_1 \partial_t \right) F = -\gamma |A_s|^2 F_p - \gamma A_s^2 F_p^* .
$$

Thus F is exited by $|A_s|^2 F_p$ and $A_s^2 F_p^*$ with relative efficiency of the two excitation channels determined by the phase matching. Assuming that the incident wave is $F_p = \epsilon_p e^{i(k(\delta_p) - i\delta_p) t}$ and using Eqs. (2)–(7), we find the spectral content of the FWM terms:

$$
|A_s|^2 F_p = \epsilon_p e^{i(k(\delta_p) - i\delta_p) z} \times \int_{-\infty}^{\infty} f(\delta - \delta_p) e^{i\delta_s (\delta - \delta_p) - i\delta t} d\delta ,
$$

$$
A_s^2 F_p^* = \epsilon_p e^{i[k(\delta_p) - i(\delta_p) z]} \times \int_{-\infty}^{\infty} f(\delta - \delta_p) e^{i\delta_s (\delta - \delta_p) - i\delta t} d\delta ,
$$

where $f(\delta) = \int_{-\infty}^{\infty} \psi^2(t) e^{i\delta t} dt$.

Using Fourier expansion $F = \int_{-\infty}^{\infty} \epsilon(\delta) e^{i k(\delta) z - i \delta t} d\delta$ and taking z derivatives of the phases involved (cf. Eq. (7)) we equal the wavenumber of F to the wavenumbers of δ_p and δ_s. The result is (Efimov et al., 2004, 2006, Gorbach et al., 2006, Skryabin and Yulin, 2005, Yulin et al., 2004)

$$
k(\delta) = k_s(\delta) - |k_s(\delta_p) - k(\delta_p)|, \quad (14)
$$

$$
k(\delta) = k_s(\delta) + |k_s(\delta_p) - k(\delta_p)|. \quad (15)
$$

Here k is the wavenumber of the generated wave. $k_s(\delta)$ and $k_s(\delta_p)$ are the soliton wavenumbers at the generated frequency and at the frequency of the wave incident on the soliton, respectively. For $\delta_s = 0$, $k_s(\delta) = q$ and Eqs. (14) (15) are simplified to the form $k(\delta) = k(\delta_p)$, $k(\delta) = 2q - k(\delta_p)$.

Solving Eqs. (14), (15) graphically we find that they predict up to 4 resonances, see Fig. 9(a,c) (Skryabin and Yulin, 2005). One resonance is obvious $\delta = \delta_p$ and it coincides with the frequency of the incident wave (cw pump). $|A_s|^2 F_p$ term and Eq. (14) are responsible for two nontrivial resonances falling into the regions of normal and anomalous GVD. The former one is typically much stronger and corresponds to the reflection of the wave from the soliton potential. The remaining one and the resonance predicted by Eq. (15) usually do not scatter much of the incident wave and produce weak, but detectable signals. Figs. 9(a,b) show the case when the incident wave is reflected backwards from the soliton with simultaneous upshift of the reflected wave frequency. Figs. 9(c,d) show the case when the radiation-soliton collision happens at the front edge of the soliton and the wave is reflected ahead of the soliton. The frequency is down shifted in the latter example.

Eqs. (14), (15) apply without a change if the soliton and dispersive waves are orthogonally polarized, which has been used in the experimental measurements of the soliton-radiation interaction [Efimov et al., 2006, 2005]. These measurements fully confirmed validity of both Eq. (14), Efimov et al., 2005) and Eq. (15) (Efimov et al., 2006). Corresponding examples of the experimental XFROG spectrograms are shown in Fig. 10.

It has been verified that the frequency up-shift of the radiation, resulting from the cascaded back reflection of the radiation from intensity of the accelerating soliton $|A_s|^2$, is the mechanism ensuring blue shift of the short wavelength edge of the supercontinuum (Gorbach et al., 2006). Phase matching conditions (14) work out in a way that with every reflection the frequencies of the incident and reflected waves both tend towards the limit point, where the group velocity of the dispersive wave coincides with the soliton group velocity (Gorbach et al., 2006, Skryabin and Yulin, 2005), see Fig. 11. Indeed, if

FIG. 9 (color online) Wave number matching diagrams (a,c) and XFROG spectrograms (b,d) for the fiber pumped with the soliton and cw (Raman effect is disregarded). (a,b) correspond to $\beta_3 > 0$ and (c,d) to $\beta_3 < 0$. The black curved lines in (a,c) are $k = \beta_2 s^2 / 2 + \beta_3 s^3 / 6$. The upper and lower horizontal lines in (a,c) correspond to the FWM resonances given by Eq. (14) and (15), respectively. The middle horizontal lines in (a,c) give Cherenkov resonances, Eq. (10).
Reflection of radiation from a soliton plays the major role in the trapping mechanism. Mathematically this is described by Eq. 11 with the first nonlinear term in the right-hand side, see the previous section. Switching into the reference frame moving together with the soliton reveals two distinct propagation regimes. If the offset of group velocities of the soliton and radiation is sufficiently large and fiber length is relatively short, then the reflection from the soliton of course happens, but recurrent collisions leading to trapping can be disregarded (Skrabin and Yulin, 2007). The trapping phenomenon becomes the dominant feature of the propagation, when group velocities of the soliton and radiation are sufficiently close (Gorbach and Skryabin, 2007). The trapping phenomenon becomes the dominant feature of the propagation, when group velocities of the soliton and radiation are sufficiently close (Gorbach and Skryabin, 2007). The trapping phenomenon becomes the dominant feature of the propagation, when group velocities of the soliton and radiation are sufficiently close (Gorbach and Skryabin, 2007).

So, what does stop dispersive spreading of the radiation? Switching into the reference frame moving together with the soliton reveals two distinct propagation regimes. If the offset of group velocities of the soliton and radiation is sufficiently large and fiber length is relatively short, then the reflection from the soliton of course happens, but recurrent collisions leading to trapping can be disregarded (Skrabin and Yulin, 2007). The trapping phenomenon becomes the dominant feature of the propagation, when group velocities of the soliton and radiation are sufficiently close (Gorbach and Skryabin, 2007).

We have introduced g parameter to indicate that the deceleration rate for the soliton interacting with radiation can be different from g_0 for a pure soliton, see Eq. (19). GVD for the soliton and radiation are anomalous ($k''_s < 0$) and normal ($k''_p > 0$), respectively. Thus directions of the frequency shifts acquired by the two waves are opposite, see the first terms in the exponential factors of Eqs. (17), (18). The group indices felt by the soliton and radiation ($\partial z_{ts} = g z$) increase with the same rate (see also discussion in the previous section) and hence they experience equal negative acceleration.

Now our problem is reduced to a formal question: is there a solution for ϕ retaining its localized form? In order to answer this formally we substitute (13) into Eq. (1) and neglect several small terms, including the ones nonlinear in the radiation amplitude $[\phi]^2$ (Gorbach and Skryabin, 2007). Then, the z-independent, i.e. shape preserving, radiation waves have to satisfy

$$\frac{1}{2}k''_p \phi''_n + 2\gamma |\phi|^2 \phi_n + \frac{g z}{k'_p} \phi_n = \lambda_n \phi_n , k''_p > 0 . \quad (19)$$

The above is the linear Schrödinger equation with the effective potential energy $V = 2\gamma |\phi|^2 + \frac{g z}{k'_p}$. The first
The term inside V is the repelling potential created by the refractive index change induced by the soliton. The dispersive wave reflects from it, as described in the previous section. The second term in V is the potential linearly increasing in ξ, which exists only due to the fact that we have switched into the non-inertial frame of reference accelerating together with the soliton. Hence this term represents a type of inertial force acting on photons. It is known from classical mechanics, that inertial forces act as usual ones, but show up in the equations of motion only, when an appropriate non-inertial frame of reference is introduced.

Overall the potential $V(\xi)$ has the well defined minimum and therefore supports quasi-localised modes (bound states), see Fig. 12. These modes can be found either numerically or using a variational approach (Gorbach and Skryabin, 2007c). Taking soliton plus one of these modes and substituting them into Eqs. (17), (18) results in the spectral evolution shown in Fig. 13. The soliton spectrum moves continuously to the smaller frequencies and the radiation spectrum moves towards higher frequencies. The sign of β_3 is implicit, but very important here. If $\beta_3 > 0$, as in the typical supercontinuum generation experiments, then initially $\delta_s < \delta_p$ and radiation and soliton spectrally diverge with propagation. However, if $\beta_3 < 0$, then $\delta_s > \delta_p$, while the spectral shifts still act in the same directions, so that frequencies of the radiation and soliton converge with propagation (Gorbach and Skryabin, 2007c).

One can notice that taking the higher order modes leads to temporal (Fig. 12(c)) and spectral (Fig. 13) broadening of the radiation. Spectral trajectories in Fig. 13 follow the straight lines because Eqs. (17), (18) assume frequency independent GVD. In a real fiber the soliton and radiation moving away from the zero GVD point encounter increasing absolute values of the GVD. This leads to the adiabatic broadening of the soliton and reduces its Raman shift (Fig. 14(b)). The result is the gradually slowing spectral divergence of the soliton and radiation (Fig. 14(a)). Physically, the frequency conversion of the radiation wavepacket is due to the intrapulse four-wave mixing (see previous section), which is made possible by the sustained overlap of the radiation and soliton pulses.

Each of the solitons inside the supercontinuum shown in Figs. 2(b), 11 has its own radiation pulse continuously drifting towards shorter wavelengths. We have found that the strongest soliton on the long-wavelength edge of the supercontinuum spectrum in Fig. 1(a) creates the potential V trapping around 20 modes on the short-wavelength edge. The radiation captured by the soliton can be represented as a superposition of these modes. Adiabatic transformation of the soliton power and width.
with propagation, caused by the increasing dispersion, induces weak adiabatic evolution of the mode parameters, but apart from this the modes are stationary solutions and hence their temporal and spectral dynamics are suppressed. Therefore approximating the radiation field as

$$F(z, \xi) = e^{-itgz/k^2_z + g^2z^2/(3k^4_z)} \sum_n \phi_n(\xi) e^{i\lambda_n z} \quad (20)$$

gives the very good matching with numerically computed spectral evolution of the short wavelength edge of the supercontinuum (Gorbach and Skryabin, 2007d).

At the end of this section we’d like to draw your attention to few points. Firstly, the potential barrier, see Fig. 12, on the soliton side is high, but still finite, so that some light leaks through it. The leaked radiation is especially noticeable in the higher-order modes, Figs. 2(b), 12(c). Secondly, from numerical modelling of supercontinuum it can be found that the rate of the soliton self-frequency shift on the red edge of the supercontinuum is actually higher than for the bare soliton. Analytically this effect can be captured if g is calculated with non-linear in ϕ terms accounted for (Gorbach and Skryabin, 2007c). The resulting expression is $g = g_0(1 + Pb^2)$. Here P is the peak power of the radiation and b^2 is a constant.

Thirdly, to generate spectra shown in Figs. 8 and 11(a), (c) we have used the same dispersion profiles and input powers, but different input wavelengths. For the Fig. 11(a), (c) the pump was only 10nm away from the zero GVD point, this has led to formation of less powerful solitons. Hence their frequency shift and associated frequency shift of the short wavelength edge of the supercontinuum were substantially smaller leading to much narrower continua. Fourthly, it has been reported that for high pump powers the solitons at the infrared edge of the continuum tend to collide and form bound states (Podlipensky et al., 2008). These effects are naturally expected to influence radiation at the short wavelength edge, through the change of the trapping potential and the collision induced changes in soliton frequencies (Luan et al., 2006).

It is important to note, that the simultaneous and opposite soliton-radiation frequency conversion and radiation trapping have been observed in few experiments not related to the mainstream of the fiber supercontinuum research. First known to us paper is the 1987 experiment by Beaud et al (Beaud et al., 1987). Then there was a gap until 2001, when Nishizawa and Goto reported a series of spectral and time domain measurements of the effect of pulse trapping by a soliton across the zero GVD point (Nishizawa and Goto, 2002). For recent experimental observations and frequency conversion applications of the trapping effect, see, e.g. (Cumberland et al., 2008; Hill et al., 2009; Kudlinski and Mussot, 2008; Nishizawa and Itoh, 2009; Stone and Knight, 2008).

VII. GRAVITY-LIKE EFFECTS, FREAK WAVES AND TURBULENCE OF LIGHT IN FIBER

Parameter g used in the above section has an obvious analogy with the acceleration of free fall. Eq. (19) can be interpreted as the equation for a quantum particle in the gravity field and subject to the additional potential created by the soliton. If the radiation wave is prepared in such a way that it is both well localised in time and shifted away from the potential minimum, then it is a highly multimode state. Thus, according to the correspondence principle, one should expect quasi-classical dynamics to be seen. The wave packet should roll down a linear potential towards the soliton, reflect back from the latter and, after some time, reconstruct itself in the original location. It is known though, that the quasi-classical bouncing carries on only for limited time, until it is replaced by the complete delocalization of the wave packet, which restores its shape again later.

This effect is known as quantum bouncing (Robinett, 2004). Previously bouncing has been observed with clouds of Bose-condensed ultracold atoms subject to the field of gravity and reflecting of an atom mirror, see (Bongs et al., 1999; Saba et al., 1999) and Fig. 15(a). Fig. 15(b) shows numerically modeled space-time evolution of the radiation pulse in the normal GVD range of an optical fiber bouncing on a decelerating soliton (Gorbach and Skryabin, 2007a). Similar light bouncing effects have also been reported for the curved waveguide arrays (Della Valle et al., 2007; Longhi, 2008). An important feature of our case, is that on each reflection from the soliton the frequency of the radiation is up shifted (see Fig. 15(c)). Recently, reflection of the radiation from the soliton and the associated blue shift have been interpreted as the frequency shift at the white-hole horizon (Philbin et al., 2008). The same works have predicted that the quantum effects of horizons, in particular Hawking radiation, can potentially be seen due to soliton-radiation interaction in optical fibers.

Another problem recently posed by the supercontinuum and soliton research has been the question about existence of optical freak or rogue waves (Solli et al., 2007). This phenomenon has been actively studied in the context of ocean waves, where the rare waves, with probability not described by the tails of the gaussian distribution, and the amplitude few times larger than the average (for the current conditions) wave height pose serious and hardly predictable threat for ships and offshore indus-
tries. NLS model is known to describe deep water waves including the freak events (Janssen, 2003). Therefore one can expect appearance of similar phenomena in fiber optics. In particular, cases of the notable pulse to pulse fluctuations of the supercontinuum, can be attributed to generation of the infrared solitons with unusually large amplitudes (Dudley et al., 2008; Solli et al., 2008, 2007). Probability of this to happen is described by the tail of the shaped distribution function. These freak solitons emerge essentially due to anomalously strong focusing developing in the course of modulational instability and the higher order soliton fission (Dudley et al., 2008; Solli et al., 2008, 2007). There is also another class of localized freak wave solutions of NLS equation. These solution are breathers, i.e. localized waves periodically absorbing and releasing their energy into the continuous wave background (Akhmediev et al., 2008, 2009; Dyachenko et al., 1992). Spectral broadening due to multiple four-wave mixing processes of random weakly nonlinear waves can be associated with irreversible evolution of the spectrally narrow pump towards spectrally broad thermodynamic equilibrium (Barviau et al., 2008, 2009a,b). Current theoretical approaches to the turbulence research and undergoing the stage of active exploration. Supercontinuum generation has been of course known outside the fiber context in bulk solids, liquids and gases, see, e.g. (Berge et al., 2007; Couairon and Mysyrowicz, 2007; Kolesik and Mysyrowicz, 2007), where all three space dimensions are important. Role of spatial and spatio-temporal solitons in these systems is still far from been fully explored.

VIII. SUMMARY

For convenience of our readers we summarize here those of the soliton properties, which are most important for supercontinuum generation

- Interaction of a soliton with dispersive radiation leads to the phase-matching sensitive generation of new frequencies. The most pronounced, out of few possible interaction channels, is the reflection of the radiation from the refractive index change created by the soliton intensity. The reflection happens providing the radiation frequency belongs to the normal GVD range. Depending on the sign of the 3rd order dispersion and frequency of the incident radiation, the frequency of the reflected wave gets either up- or down-shifted.

- Raman effect decelerates solitons and down-shifts their frequency. Such solitons can interact with radiation repeatedly, trap it on the time scales of 100fs and continuously up-shift the radiation frequency.

The prevalent scenario of the supercontinuum generation in photonic crystal fibers pumped by femtosecond pulses with the input wavelength around the zero GVD point can be summarized as:

- Spectrum of the input pulse is distributed in some proportion between the frequency ranges with normal and anomalous GVD. This happens through the combination of nonlinear processes. SPM dominates during the first few centimeters of propagation. Then the soliton fission accompanied by the radiation emission and reflection of the dispersive waves from emerging solitons lead to further spectral broadening.

- The next stage is when the Raman shifted solitons on the long-wavelength edge of the supercontinuum enter into the regime of the cascaded interaction with dispersive radiation. This quickly leads to formation of the bound soliton-radiation states responsible for continuous spectral divergence of the supercontinuum edges. The necessary condition for this to happen is the near matching of the group velocities across the zero GVD point. Using nano-second or cw pump for supercontinuum generation leads to modulational instability and subsequent creation of a soliton train. The latter traps radiation and the above scenario is realized again albeit with greater number of solitons (Cumberland et al., 2008; Kuulini and Mussot, 2008; Stone and Knight, 2008; Travers, 2009) and greater sensitivity to noise (Solli et al., 2007; Turitsyn and Derevynk, 2008).

IX. PERSPECTIVES

Interaction between solitons and radiation, optical turbulence, freak waves, and development of ideas around the gravity-like forces exerted on light by solitons all are on the list of problems stimulated by the fiber supercontinuum research and undergoing the stage of active exploration. Supercontinuum generation has been of course known outside the fiber context in bulk solids, liquids and gases, see, e.g. (Berge et al., 2007; Couairon and Mysyrowicz, 2007; Kolesik and Mysyrowicz, 2007), where all three space dimensions are important. Role of spatial and spatio-temporal solitons in these systems is still far from been fully explored.
Generation of broad spatial and frequency spectra in nonlinear photonic crystals is another area where interaction of solitons with diffracting and dispersing waves can be important. Strong field localisation in metallic optical nano-antennas has been demonstrated to lead to supercontinuum generation, thereby linking the effects discussed above with nanophotonics. A possibility of nonlinear optical processes in nature made optical waveguides, e.g., found in sea organisms and sometimes having a structure of fibers with few micron core diameters and photonic crystal cladding, remains an intriguing problem to consider. Overall, a bidirectional flow of ideas between fiber photonics and other branches of optics and physics in general is more than likely to stimulate further progress in the soliton and supercontinuum related research.

References

Afanasev V.V., Y.S. Kivshar, and C.R. Menyuk, Opt. Lett. 21, 1975 (1996).
Agrawal, G., 2007, Nonlinear Fiber Optics (Academic Press).
Aizemberg, J., V. C. Sundar, A. D. Yablon, J. C. Weaver, and G. Chen, 2004, Proc. Nat. Acad. Sciences of the USA 101, 3358.
Akmediev, N., A. Ankiewicz, and M. Taki, 2009, Phys. Lett. A 373, 675.
Akmediev, N., M. Karlsson, 1995, Phys. Rev. A 51, 2602.
Akmediev, N., W. Krolikowski, and A. Lowery, 1996, Opt. Commun. 131, 260.
Akmediev, N. N., and S. Wabnitz, 1992, J. Opt. Soc. Am. B 9, 236.
Amiranashvili, S., A. G. Vladimirov, and U. Bandelow, 2008, Phys. Rev. A 77, 063821.
Babin, S. A., V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, 2008, Phys. Rev. A 77, 033803.
Babushkin, I., A. Husakou, J. Herrmann, and Y. S. Kivshar, 2007, Opt. Lett. 15, 11978.
Bartal, G., O. Manela, and M. Segev, 2006, Phys. Rev. Lett. 97, 073906.
Barvius, B., B. Kibler, S. Coen, and A. Picozzi, 2008, Opt. Lett. 33, 2833.
Barvius, B., B. Kibler, A. Kudlinski, A. Mussot, G. Millot, and A. Picozzi, 2009a, Opt. Express 17, 7392.
Barvius, B., B. Kibler, and A. Picozzi, 2009b, Phys. Rev. A 79, 063840.
Beaud, P., W. Hodel, B. Zyssetz, and H. Weber, 1987, IEEE J. Quant. Elect. 23, 1938.
Benton, C. J., A. V. Gorbach, and D. V. Skryabin, 2008, Phys. Rev. A 78, 033818.
Berger, L., S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, 2007, Rep. Prog. Phys. 70, 1633.
Biancalana, F., D. V. Skryabin, and A. V. Yulin, 2004, Phys. Rev. E 70, 016615.
Bongs, K., S. Burger, G. Birkl, K. Sengstock, W. Ertmer, K. Rzazewski, A. Sanpera, and M. Lewenstein, 1999, Phys. Rev. Lett. 83, 3577.
Chouli, S., and P. Grelu, 2009, Opt. Express 17, 11776.
Corwin, K. L., N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, 2003, Phys. Rev. Lett. 90, 113904.
Couairon, A., and A. Mysyrowicz, 2007, Phys. Rep. 441, 47.
Cristiani, I., R. Tediosi, L. Tartara, and V. Degiorgio, 2004, Opt. Express 12, 124.
Cumberland, B. A., J. C. Travers, S. V. Popov, and J. R. Taylor, 2008, Opt. Lett. 33, 2122.
Della Valle, G., M. Savoini, M. Ornigotti, P. Laporta, V. Foglietti, M. Finazzi, L. Duo, and S. Longhi, 2009, Phys. Rev. Lett. 102, 180402.
Dong, R., C. E. Ruter, D. Kip, O. Manela, M. Segev, C. L. Yang, and J. J. Xu, 2008, Phys. Rev. Lett. 101, 183903.
Dudley, J., and S. Coen, 2002, Opt. Lett. 27, 1180.
Dudley, J. M., G. Genty, and S. Coen, 2006, Rev. Mod. Phys. 78, 1135.
Dudley, J. M., G. Genty, and B. J. Eggleton, 2008, Opt. Express 16, 3644.
Dudley, J. M., and J. R. Taylor, 2009, Nature Photonics 3, 35.
Dyachenko, S. A. C. Newell, A. Pushkarev, and V. E. Zakharov, 1992, Physica D 57, 96.
Efimov, A., A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, 2004, Opt. Express 12, 6498.
Efimov, A., A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, 2006, Opt. Lett. 31, 1624.
Efimov, A., A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, 2005, Phys. Rev. Lett. 95, 213902.
Falk, P., M. H. Frosz, and O. Bang, 2005, Opt. Express 13, 7535.
Frosz, M. H., P. Falk, and O. Bang, 2005, Opt. Express 13, 6181.
Gagnon, L., and P. A. Belanger, 1990, Opt. Lett. 15, 466.
Genty, G., M. Lehtonen, and H. Ludvigsen, 2004a, Optics Express 12, 4614.
Genty, G., M. Lehtonen, and H. Ludvigsen, 2005, Opt. Lett. 30, 756.
Genty, G., M. Lehtonen, H. Ludvigsen, and M. Kaivola, 2004b, Opt. Express 12, 3471.
Gorbach, A., D. Skryabin, J. Stone, and J. Knight, 2006, Opt. Express 14, 9854.
Gorbach, A. V., and D. V. Skryabin, 2007a, Opt. Express 15, 14560.
Gorbach, A. V., and D. V. Skryabin, 2007b, Nature Photonics 1, 653.
Gorbach, A. V., and D. V. Skryabin, 2007c, Phys. Rev. A 76, 053803.
Gorbach, A. V., and D. V. Skryabin, 2008, Opt. Express 16, 4858.
Goshev, K. A., and L. A. Ostrovsky, 1981, Physica D 3, 428.
Gu, X., M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, 2003, Opt. Express 11, 2697.
Harbold, J. M., F. O. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, 2002, Opt. Lett. 27, 1558.
Hasegawa, A., and F. Tappert, 1973, Appl. Phys. Lett. 23, 142.
