Актуальность

Миотоническая дистрофия (МД) является наиболее частым заболеванием мышц у взрослых. МД – наследственное заболевание с аутосомно-доминантным типом наследования, практически 100% пенетрантностью и выраженным клиническим полиморфизмом. Механизм развития заболевания заключается в том, что мутантный ген DMPK (протеинкиназы миотонической дистрофии) нарушает нормальный метаболизм РНК, что приводит к дефекту созревания и трансляции мРНК. Нарушение в гене DMPK затрагивает не только поперечно-полосатую мускулатуру, но и глазные мышцы и кардиомиоциты. Основным клиническим симптомом, отличиям МД от других, является спонтанная или провоцируемая неспособность расслаблять мышцы (феномен миотонии). К эндокринным нарушениям, возникающим при МД 1-го типа (МД1), с более высокой частотой, чем в среднем в популяции, относят гипергонадотропный гипогонадизм, нарушение толерантности к глюкозе с гиперинсулинемией, а также инсулинорезистентность. Функция щитовидной железы может оставаться нормальной, хотя описано много случаев аутоиммунного тиреоидита с исходом в гипотиреоидизм, а также болезни Грейвса. Важным является отсутствие каких-либо значимых жалоб со стороны мышечной системы при наличии характерного для этого заболевания повышения уровня креатинфосфокиназы (КФК), а также временной динамики тиреоидного статуса и характера аутоиммунного поражения щитовидной железы.

Ключевые слова: миотоническая дистрофия, гипогонадизм, болезнь Грейвса, гипотиреоидизм, тиреоидит, полигландулярная недостаточность, клинический случай.

Аутоиммунные полигландулярные нарушения при миотонической дистрофии

© Е.А. Трошина, Е.А. Панфилова, Т.С. Паневин*
Национальный медицинский исследовательский центр эндокринологии, Москва, Россия

Миотоническая дистрофия (МД) является наиболее частым заболеванием мышц у взрослых. МД – наследственное заболевание с аутосомно-доминантным типом наследования, практически 100% пенетрантностью и выраженным клиническим полиморфизмом. Механизм развития заболевания заключается в том, что мутантный ген DMPK (протеинкиназы миотонической дистрофии) нарушает нормальный метаболизм РНК, что приводит к дефекту созревания и трансляции мРНК. Нарушение в гене DMPK затрагивает не только поперечно-полосатую мускулатуру, но и глазные мышцы и кардиомиоциты. Основным клиническим симптомом, отличиям МД от других, является спонтанная или провоцируемая неспособность расслаблять мышцы (феномен миотонии). К эндокринным нарушениям, возникающим при МД 1-го типа (МД1), с более высокой частотой, чем в среднем в популяции, относят гипергонадотропный гипогонадизм, нарушение толерантности к глюкозе с гиперинсулинемией, а также инсулинорезистентность. Функция щитовидной железы может оставаться нормальной, хотя описано много случаев аутоиммунного тиреоидита с исходом в гипотиреоидизм, а также болезни Грейвса. Важным является отсутствие каких-либо значимых жалоб со стороны мышечной системы при наличии характерного для этого заболевания повышения уровня креатинфосфокиназы (КФК), а также временной динамики тиреоидного статуса и характера аутоиммунного поражения щитовидной железы.

Ключевые слова: миотоническая дистрофия, гипогонадизм, болезнь Грейвса, гипотиреоидизм, тиреоидит, полигландулярная недостаточность, клинический случай.

Autoimmune polyglandular disorders in myotonic dystrophy

© Ekaterina A. Troshina, Elena A. Pantilova, Taras S. Panevin*
Endocrinology research centre, Moscow, Russia

Myotonic dystrophy (MD) is the most common muscle disorder in adults. MD is a hereditary disease with an autosomal dominant mode of inheritance, almost 100% penetrance and pronounced clinical polymorphism. The mechanism for the development of the disease is that a mutation of the DMPK (dystrophia myotonica protein kinase) gene disrupts the normal metabolism of RNA, which leads to a defect in the maturation and translation of mRNA. The disorder in the DMPK gene affects not only striated musculature, but also smooth myocytes and cardiomyocytes. The main clinical symptom that distinguishes MD from others is the spontaneous or provoked inability to relax muscles (myotonia phenomenon). Endocrine disorders arising from type 1 MD (MD1) with a higher than average frequency in the population include hypergonadotropic hypogonadism, impaired glucose tolerance with hyperinsulinism, and insulin resistance. Thyroid function may remain normal, although many cases of autoimmune thyroiditis resulting in hypothyroidism, as well as Graves’ disease, have been described. A description is given of a patient suffering from MD1 with a number of endocrine disorders, including hypergonadotropic hypogonadism, autoimmune thyroid disease, hyperinsulinism, and impaired calcium-phosphorus metabolism. Important features are the absence of any significant complaints from the muscular system in the presence of an increase in creatine phosphokinase (CPK), which is characteristic of this disease, as well as the temporal dynamics of thyroid status and the nature of the autoimmune thyroid disease.

Keywords: myotonic dystrophy, hypogonadism, Graves’ disease, hypothyroidism, thyroiditis, autoimmune polyendocrinopathy, case report.
мысках, в передней большеберцовой мышце, в мальых мышцах верхней конечности. Выделяют два типа данного заболевания.

МД 1-го типа (МД1) впервые была описана больше 100 лет назад. Причиной ее развития является накопление тринуклеотидных повторов CTG. В норме число (CTG)n не превышает 50. При МД 1 число повторов мутантной аллели в локусе 19q13.3 может достичь 4000. Основной механизм заключается в том, что мутантный ген DMPK (протеинкиназы миотонической дистрофии) нарушает нормальный металллизм РНК, что приводит к нарушению регулирования альтернативного соединения, мРНК-транспляции и мРНК-созревания [3]. С увеличением числа повторов отмечается более ранний дебют заболевания и более выраженные клинические проявления. Кроме того, для данного заболевания характерен феномен «генетической антиципации», который заключается в том, что у пациентов с более протяженными повторами CTG и соответственно более тяжелыми клиническими проявлениями происходит спонтанное укорочение (CTG)n в гаметогенезе, что приводит к более легким клиническим проявлениям. При легких формах заболевания, наоборот, отмечается большая стабильность (CTG)n и, как следствие, увеличение повторов в гаметогенезе.

К эндокринным нарушениям, возникающим при МД1 с повышенной частотой, относят гипергонадотропный гипогонадизм, нарушение толерантности к глюкозе с гиперинсулинемией, а также инсулинорезистентность. При МД отмечается нарушение обмена фосфора и кальция, однако повышение уровня фосфора в крови (0,92 ммоль/л), при нормальном содержании ионизированного кальция. Уровень КФК был в норме. Отмечался высокий титр АТ к рТТГ – 29,2 МЕ/л (0–18,2). Сохранялся повышенный титр АТ к ТПО. Уровни ФСГ (50 Ед/л) и ЛГ – 11,7 Ед/л, тестостерона – 2,08 нмоль/л (11–35,5), что свидетельствовало о гипогонадизме. В спермограмме – олигоастенотератозооспермия. Несколько позднее инициирована терапия ХГЧ.

Описание случая

Пациент Т, 40 лет.

В 2011 г. в возрасте 35 лет отметил мышечную слабость. Из анамнеза известно, что мать пациента также предъявляла жалобы на мышечную слабость. Схожее состояние отмечалось и у бабушки больного: затруднение при вставании, входе в общественный транспорт. Генетическое исследование выявило у пациента мутацию в гене DMPK; диагностирована МД1.

В декабре 2012 г. впервые обратился в ФГБУ «НИИЦ эндокринологии» Минздрава России в связи с бесплодием. По данным лабораторного обследования: ТТГ – 5,7859 мМЕ/л (0,25–3,5), Т4 св. – 14,49 пмоль/л (9,0–20,0), АТ к ТПО >1000. УЗИ щитовидной железы выявило признаки хронического аутоиммунного тиреоидита. Диагностирован первый субклинический гипотиреоз в исконе аутоиммунного тиреоидита, инициирована терапия левотироксином натрия (50 мкг/сут) с последующим увеличением дозы до 88 мкг/сут. В том же декабре 2012 г. уровень ФСГ составлял 6,51 Ед/л (1,6–9,7), ЛГ – 2,63 Ед/л (2,5–11,0), тестостерона – 2,08 нмоль/л (11–35,5), что свидетельствовало о гипогонадизме. В спермограмме – олигоастенотератозооспермия. Несколько позднее инициирована терапия ХГЧ.

В феврале 2016 г. на фоне длительного (более 2 лет) приема левотироксина в дозе 88 мкг/сут пациент отметил тромор рук и учащенное сердцебиение (до 110 уд/мин). Уровень ТТГ составил 0 мМЕ/л. Левотироксин был отменен. На фоне инъекционной терапии ХГЧ в рамках подготовки к ЭКО уровень ФСГ составлял 31,5 Ед/л (25–75), ЛГ – 11,7 Ед/л, тестостерона – 23,1 нмоль/л, пролактина – 298,7 мЕд/л (60–510), секс-стероид-связывающего глобулина (СССГ) – 70,19 нмоль/л (20–100), тестостерона – 2,08 нмоль/л (11–35,5), что свидетельствовало о нормальном фенотипе. В спермограмме – олигоастенотератозооспермия. Несколько позднее инициирована терапия ХГЧ.

В июле 2016 г. в плановом порядке госпитализирован в ФГБУ «НИИЦ эндокринологии» Минздрава России с сохраняющейся кардиальной тиреотоксикоза. Выявлен высокий титр АТ к рТТГ – 92,2 МЕ/л (0–1,75), уровень ТТГ – 0 мМЕ/л, Т4 св. – 30,8 пмоль/л, Т3 св. – 16,8 пмоль/л (2,63–5,70). Сохранялся высокий титр АТ к ТПО. Уровни ФСГ (50 Ед/л) и ЛГ (33,8 Ед/л) оставались высокими. Концентрация общего тестостерона на фоне инъекционной терапии ХГЧ в рамках подготовки к ЭКО составляла 52,5 нмоль/л. Уровень КФК был в норме. Отмечался высокий уровень фосфора в крови (0,92 ммоль/л), при нормальном содержании ионизированного кальция.

По данным УЗИ, общий объем щитовидной железы – 27,7 мл, гипогонадная структура. Диффузное усиление кровотока, увеличение лимфоузлов без признаков онкологического процесса. Таким обра-
зом, у пациента выявлена манифестация болезни Грейвса и инициирована терапия тиамазолом в дозе 30 мг/сут, в связи с тахикардией был назначен бисопролол. Офтальмологом эндокринной офтальмопатии не выявлено. В качестве метода радикального лечения болезни Грейвса предложена терапия радиоактивным йодом.

Через 2 нед после выписки из стационара отмечен положительный эффект тиреостатической терапии – снижение уровней свободных Т3 и Т4 (см. таблицу). Зарегистрирован повышенный уровень общей КФК (675 Ед/л) при нормальном уровне МВ-фракции (22 Ед/л). В последующем проведена терапия диффузно-го токсического зоба радиоактивным йодом с достижением гипотиреоза и назначением заместительной терапии препаратами тиреоидных гормонов.

В 2015 г. у пациента (с его слов) однократно фиксировалось повышение уровня инсулина в крови до 20,6 мкМЕ/мл на фоне эугликемии. Специально следует отметить, что ни у матери, ни у бабушки пациента эндокринных нарушений не отмечалось.

В 1997 г. у пациента диагностирована мочекаменная болезнь: множественные микролиты в обеих почках, часто рецидивирующее течение. Согласно предоставленной медицинской документации, у пациента периодически повышался уровень общего кальция в крови и суточной экскреции кальция с моющей при нормальном уровне ПТГ и нормализованного кальция. Значения этих показателей представлены в таблице.

Обсуждение

Данный клинический случай является наглядным примером эндокринных поражений, развивающихся при МД1. К эндокринным нарушениям, возникающим при МД1 с повышенной частотой, относятся гипергонадотропный гипогонадизм, нарушения то-лерантности к глюкозе с гиперинсулинизмом, а также инсулинорезистентность. При МД1 отмечается нарушение обмена фосфора и кальция, а также снижение основного обмена при нормальной функции щитовидной железы. Предполагается, что эндокринная дисфункция, как и поражение мышц, при МД1 прогрессирует. Встречаемость гиперпаратиреоза при МД1 повышена на 78%, СД 2-го типа – на 300%, отклонений уровня ТТГ от нормы – на 133%, дефицита андрогенов – на 85% по сравнению с общей популяцией. Выраженность гормональных сдвигов не соответствует тяжести заболевания: не выявлено никакой связи между гормональной дисфункцией и потерей мышечной силы или числом повторов (CTG) n. Распространенность гормональных нарушений не зависит от возраста дебюта болезни [5].

По данным одного из исследований, изначально у 30 из 68 пациентов выявлялось, по крайней мере, одно гормональное нарушение. Через 8 лет уже 57 из 68 пациентов имели хотя бы одну эндокринопатию. СД вначале наблюдения был обнаружен у одного пациента, а через 8 лет – у четырех. Частота случаев гиперпаратиреоза возросла с 14 до 25%, а отклонений уровня ТТГ от референтных показателей – с 9 до 21%. Повышенный уровень ЛГ вначале регистрировался у 7 из 33 мужчин, а через 8 лет – уже у 16. Таким образом, частота эндокринных аномалий среди пациентов с МД1 со временем нарастает [6].

Среди феноменов, ассоциированных с данным заболеванием, можно отметить высокую частоту атрофии яичек с развитием гипогонадотропного гипогонадизма [7].

T. Ken и соавт. описали случай МД1 с редким сочетанием эндокринопатий: СД, комбинированная форма гипогонадизма и дисфункция гипоталамо-гипофизарно-подпочечниковой системы. СД сопровождалась выраженной инсулинорезистентностью и

Основные лабораторные показатели пациента T. в динамике

Показатель	2012 г.	2014 г.	2015 г.	02.2016 г.	07.2016 г.	08.2016 г.
ТТГ, мМЕ/л	5,79	4,73	–	0	0	29,7
Т3в, пмоль/л	–	–	–	–	16,8	1,9
Т4в, пмоль/л	14,5	–	–	–	30,8	5,8
AT-ТПО, Ед/л	–	–	>1000	–	>1000	–
AT-рТТГ, Ед/л	–	–	–	–	29,2	40
ФСГ, Ед/л	6,5	–	32,5	31,5	50,0	–
ЛГ, Ед/л	2,6	–	12,6	11,7	33,8	–
Тестостерон общий, нмоль/л	2,08	–	–	33,1	52,5	–
Инсулин, мкЕ/мл	–	30,6	–	–	–	–
КФК, Ед/л	–	–	–	93,0	84,0	675,0
КФК-MВ, Ед/л	–	–	–	–	16,8	22,0
ПТГ, пг/мл	–	39,3	–	32,7	21,0	–
Кальций общий, ммоль/л	–	2,61	2,76	2,49	2,57	2,49
Кальций инсулиновый, ммоль/л	–	1,18	–	1,19	1,22	1,19
Фосфор, ммоль/л	–	–	–	1,69	0,92	–
гиперинсулинемией. Примечательно, что у этого пациента в процессе лечения гипогонадизма тестостероном возрос мышечный и уменьшился жировой компонент массы тела. Таким образом, проявления гипогонадизма могут быть скрытыми симптомами МД. Клинические признаки надпочечниковой недостаточности отсутствовали. Авторы подчеркивают необходимость оценки и лечения множественных эндокринопатий у пациентов с МД1. Поражения гипоталамо-гипофизарно-надпочечниковой системы у пациентов с МД1 характеризуются аномальным сухоточным ритмом секреции АКТГ и кортизоля, выраженным приростом уровня АКТГ в крови после стимуляции КРГ и низким ответом надпочечников на стимуляцию АКТГ [8]. У пациентов с МД1 предполагается нарушение дигидропирдин-чувствительного переноса Ca2+ в кортикотрофах и рассматривается связь между активностью мышечной протеинкиназы и регуляцией кальциевых каналов [6].

В другом исследовании у 1 из 25 пациентов с МД1 была диагностирована первичная надпочечниковая недостаточность в отсутствие АТ к 21-гидроксилазе. У больных был снижен базальный уровень кортизола и регистрировался ослабленный ответ кортизола на стимуляцию АКТГ [9]. Как отмечалось выше, примерно у 80% пациентов с МД1 отмечается атрофия яичек. Яички таких пациентов характеризуются увеличением числа и размера клеток Лейдига, а также трубчатой атрофией, гиалинизацией, фиброзом семенных каналцев и сниженным сперматогенезом [10]. Часто наблюдается олиго-тестостерон [11]. Повышенный базальный уровень гонадотропинов на фоне нормального или смешанного ответа гонадотропинов на стимуляцию ГнРГ при МД1 согласуются с диагнозом первичного гипогонадизма. В то время у пациентов с МД1 встречается и гипогонадотропный гипогонадизм, подтвержденный низким ответом гонадотропинов на стимуляцию ГнРГ [12]. При наличии вторичного или смешанной формы гипогонадизма выбор терапии между ХГЧ и тестостероном определяется наличием перитубулярных миоцитов, приводящего к атрофии семявыносящих протоков, а также поражению клеток Лейдига (гипогонадизм) [18]. Отсутствие клеток Лейдига при МД1 не ясна. Однако при аутопсии у 37% пациентов с МД1 обнаруживается клеточная инфильтрация тяжелыми клетками [16].

При МД1 часто находит снижение основного обмена, что может быть связано со снижением общей мышечной массы, а не с нарушением функции щитовидной железы. Природа аутоиммунного поражения щитовидной железы при МД1 неясна. Однако при аутоиммунных заболеваниях микроэритроцитов, вовлекающих тяжелые клетки, может быть более высокой частотой развития зоба при МД1 [3].

При гипотиреозе возможна особая форма поражения мышц, называемая псевдомиотонией гипотиреоидной миопатией. При данной патологии нарушается сокращение и расслабление мышц, что клинически отличает ее от истинной миотонии. Тем не менее без электромиографии эту форму можно отличить от истинной миотонии.

При МД1 часто находит снижение основного обмена, что может быть связано со снижением общей мышечной массы, а не с нарушением функции щитовидной железы. Природа аутоиммунного поражения щитовидной железы при МД1 неясна. Однако при аутоиммунных заболеваниях микроэритроцитов, вовлекающих тяжелые клетки, может быть более высокой частотой развития зоба при МД1 [3].
Заключение

В описанном клиническом случае имело место большинство сопутствующих МД1 эндокринных наруше-ний. Важными особенностями являлись отсутствие каких-либо значимых жалоб со стороны мышечной системы на фоне характерного для данного заболевания повышения уровня КФК, а также временная динамика тиреоидного статуса и характера аутоиммунного поражения щитовидной железы. Первой жалобой, заставившей пациента обратиться к эндо-кринологу, было бесплодие. Гиперинсулинемия и нарушение фосфорно-кальциевого обмена на данном этапе не являлись клинически значимыми. Опи-санный случай иллюстрирует необходимость не толь-ко рутинного скрининга вышеназванных нарушений при диагностике МД1, но и регулярного пожизнен-ного наблюдения данной категории пациентов эндо-кринологом.

Дополнительная информация

Источник финансирования. Публикация подготовлена в рамках реализации научной программы, поддержанной Российским научным фондом (грант РФФИ №17-75-30035). Согласие пациента. Пациент добровольно подписал информированное согласие на публикацию медицинской информации в обезличенной форме в журнале “Проблемы эндокринологии”.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Участие авторов. Паневин Т.С. — анализ литературы, написание текста, подготовка таблиц; Панфилова Е.А. — анализ литературы, написание текста, редакционная правка; Трошина Е.А. — анализ литературы, написание текста, редакционная правка. Все авторы внесли существенный вклад в проведение поисково-аналитиче-ской работы и подготовку статьи, прочли и одобрили финальную версию перед публикацией.

ЛИТЕРАТУРА

1. Pelargonio G. Myotonic Dystrophy and the Heart. Heart. 2002; 88(6):665-670. doi: https://doi.org/10.1136/heart.88.6.665
2. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799-808. doi: https://doi.org/10.1016/0092-8674(92)90154-5
3. Romeo V. Myotonic Dystrophy Type 1 or Steinert’s disease. Adv Exp Med Biol. 2012;724-239-257. doi: https://doi.org/10.1007/978-1-4614-0653-2_18
4. Ptacek LJ, Johnson KJ, Griggs RC. Genetics and physiology of the myotonic muscle disorders. N Engl J Med. 1993;328(7):482-489. doi: https://doi.org/10.1056/NEJM199308193280707
5. Rioperez E, Botella JM, Palacio A, et al. Myotonic dystrophy associated with thyroid disease. J Neurol Sci. 1979;43(3):357-366. doi: https://doi.org/10.1016/0022-510X(79)90105-7
6. Henrikson OA, Sundsfjord JA, Nyborg-Hansen R. Evaluation of the endocrine functions in dystrophia myotonica. Acta Neurol Scand. 2009;58(3):178-189. doi: https://doi.org/10.1111/j.1600-0404.1978.tb02877.x
7. Dhalqvist JR, Ormgreen MC, Witting N, Vissing J. Endocrine function over time in patients with myotonic dystrophy type 1. Eur J Neurol. 2015;22(1):116-122. doi: https://doi.org/10.1111/ene.12542
8. Ken T, Hirotsu A, Tatsuya I, et al. Myotonic dystrophy type 1 with diabetes mellitus, mixed hypogonadism and adrenal insufficiency. Endocrinol Diabetes Metab Case Rep. 2018;2018. doi: https://doi.org/10.1530/EDM-17-0143
9. Forga L, Anda E, Basterra FJ, et al. Glucocorticoid hypofunction in myotonic dystrophy. An Sist Sanit Navar. 2007;30(2):199-205. doi: https://doi.org/10.23938/ASSN.0221
10. Takase S, Okita N, Sakuma H, et al. Endocrinological abnormalities in myotonic dystrophy: Consecutive studies of eight tolerance tests in 26 patients. Tohoku J Exp Med. 1987;153(4):355-374. doi: https://doi.org/10.1620/tjem.153.355
11. Antonini G, Clemenzi A, Bucci E, et al. Hypogonadism in DM1 and its relationship to erectile dysfunction. J Neurol. 2011; 258(7):1247-1253. doi: https://doi.org/10.1007/s00415-011-5914-3
ИНФОРМАЦИЯ ОБ АВТОРАХ
*Паневин Тарас Сергеевич [Taras S. Panevin, MD]; адрес: Россия, 117036, Москва, ул. Дм. Ульянова, д. 11 [address: 11 Dm. Ulyanova street, Moscow, 117036, Russia]; ORCID: https://orcid.org/0000-0002-5290-156X; eLibrary SPIN: 7839-3145; e-mail: tarasel@list.ru

Трошина Екатерина Анатольевна [Ekaterina A. Troshina, MD, PhD, Professor]; ORCID: https://orcid.org/0000-0002-8520-8702; eLibrary SPIN: 8821-8990; e-mail: troshina@inbox.ru

Панфилова Елена Александровна [Elena A. Panfilova, MD]; ORCID: https://orcid.org/0000-0003-2770-1205; eLibrary SPIN: 6686-1620; e-mail: e4erepanova@gmail.com

КАК ЦИТИРОВАТЬ:
Трошина Е.А., Панфилова Е.А., Паневин Т.С. Аутоиммунные полигландулярные нарушения при миотонической дистрофии. // Проблемы эндокринологии. – 2019. – Т. 65. – №3. – С. 155-160. doi: https://doi.org/10.14341/probl9775

TO CITE THIS ARTICLE:
Troshina EA, Panfilova EA, Panevin TS. Autoimmune polyglandular disorders in myotonic dystrophy. Problems of Endocrinology. 2019;65(3):155-160. doi: https://doi.org/10.14341/probl9775