New guidelines for the diagnosis and management of pulmonary embolism: Key changes

Anastasia Erythropoulou-Kaltsidou, Stelina Alkagiet, Konstantinos Tziomalos

ORCID number: Anastasia Erythropoulou-Kaltsidou (0000-0002-9148-9993); Stelina Alkagiet (0000-0001-5089-1161); Konstantinos Tziomalos (0000-0002-3172-1594).

Author contributions: Erythropoulou-Kaltsidou A and Alkagiet S drafted the editorial; Tziomalos K critically revised the draft.

Conflict-of-interest statement: All authors declare no conflict of interest related to this publication.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: February 29, 2020
Peer-review started: February 29, 2020
First decision: April 7, 2020
Revised: April 29, 2020
Accepted: May 5, 2020
Article in press: May 5, 2020
Published online: May 26, 2020

Abstract

Pulmonary embolism (PE) is an important public health problem. In August 2019, the European Society of Cardiology in collaboration with the European Respiratory Society released new guidelines for the diagnosis and management of PE. We discuss the basic changes between these recent guidelines and the previous guidelines that were published in 2014. Regarding diagnosis, the new guidelines propose the use of an age-adjusted cut-off level of D-dimers instead of a fixed cut-off value. A D-dimer test adapted to clinical possibility should also be considered instead of fixed cut-off level of D-dimer. Detailed recommendations for the diagnosis of PE during pregnancy are also provided. Regarding risk stratification, assessment of PE-related early mortality risk is recommended. Moreover, the importance of right ventricular dysfunction is emphasized in low-risk patients. For further risk stratification of the severity of PE in patients without severe comorbidities, who are not of high risk for sudden death and in whom proper medical management at home and proper medical follow up can be ensured. The new guidelines also suggest that pro-brain natriuretic peptide levels, right ventricular function and the presence of thrombus in the right heart could be useful for guiding the decision of early discharge. Overall, these new guidelines introduce several key changes and knowledge and adherence to them will improve the outcome of patients with PE.

Key words: Pulmonary embolism; Guidelines; Diagnosis; Treatment; D-dimers; Pregnancy
Core tip: We discuss the basic changes between the recent guidelines published in August 2019 by the European Society of Cardiology in collaboration with the European Respiratory Society regarding the diagnosis and management of pulmonary embolism and the previous guidelines that were published in 2014. The use of age-specific cut-off levels of D-dimers, detailed recommendations for risk stratification and the possibility of outpatient management are some of the key changes. Knowledge and adherence to these new guidelines will improve the outcome of patients with pulmonary embolism.

INTRODUCTION

Venous thromboembolism (VTE), which includes both deep vein thrombosis (DVT) and pulmonary embolism (PE), is an important public health problem. The annual incidence of first-time VTE in the United States is 71-117 cases per 100000[1]. Moreover, the 28-d case fatality rate after a first episode of VTE is approximately 11%[2]. However, PE-related mortality rates have declined recently[3,4]. This decrease could be due to improvements in the diagnosis and management of PE[4]. However, the decrease in PE-mortality might also be related to the overdiagnosis of PE, due to introduction and overuse of computed tomographic pulmonary angiography, in which non-clinically important PE is diagnosed and treated[5].

In August 2019, the European Society of Cardiology (ESC) in collaboration with the European Respiratory Society released the new guidelines for the diagnosis and management of PE[6]. This editorial will focus on the basic changes between the recent guidelines of the ESC for the diagnosis and management of PE and the previous guidelines that were published in 2014.

CHANGES IN THE DIAGNOSIS OF PULMONARY EMBOLISM

Flow chart for the diagnosis of pulmonary embolism was shown in Figure 1. Based on the new ESC guidelines, instead of a fixed-cut off level of D-dimers (500 ng/mL), an age-adjusted cut-off level of D-dimers should be considered to exclude PE in patients with low or intermediate clinical possibility for PE and in those where PE is unlikely[7,8]. The age-adjusted cut-off level of D-dimers is calculated by multiplying the age of the patient by 10 (for patients older than 50 years). Thus, in a 60-year-old patient who has a low or intermediate clinical possibility for PE or who is unlikely to have PE, D-dimers levels < 600 ng/mL (i.e., age × 10) instead of D-dimers levels < 500 ng/mL (i.e., the fixed-cut off level) excludes PE. On the other hand, in a 40-year-old patient who has a low or intermediate clinical possibility for PE or who is unlikely to have PE, the fixed-cut off D-dimers level of < 500 ng/mL should be used, since the patient is younger than 50 years.

A D-dimer test adapted to clinical possibility should also be considered instead of fixed cut-off level of D-dimer[6]. Based on the YEARS study, if D-dimer levels are < 1000 ng/mL and none of the 3 clinical items of Wells score (signs of DVT, hemoptysis or PE being the most likely diagnosis) are present or if D-dimer levels are < 500 ng/mL and one or more clinical items of Wells score are present, then a diagnosis of PE should be excluded[9].

There is also a change in the class of recommendation for the use of D-dimer levels during pregnancy and the post-partum period. According to the new guidelines, D-dimer measurement and clinical prediction rules should be considered to exclude PE during pregnancy and post-partum period[6]. Moreover, in case of suspected PE during pregnancy or the first 6 weeks post-partum, a specific diagnostic workup is provided to rule out or confirm the diagnosis of PE[6]. This updated diagnostic
Figure 1 Flow chart for the diagnosis of pulmonary embolism. PE: Pulmonary embolism; RV: Right ventricle; CTPA: Computed tomography pulmonary angiography.

CHANGES IN RISK ASSESSMENT OF PULMONARY EMBOLISM

In the 2019 guidelines, there is a definition of haemodynamic instability, which indicates acute high-risk PE. Three clinical manifestations of haemodynamic instability are mentioned (cardiac arrest, obstructive shock and persistent hypotension) and for each one, a clear definition is given, so that clinicians can decide if the patient is hemodynamically unstable or not. More specifically, haemodynamic instability is defined as: (1) Cardiac arrest i.e., need for cardiopulmonary resuscitation; (2) Obstructive shock i.e., systolic blood pressure (SBP) < 90 mmHg (or need for vasopressors to achieve SBP ≥ 90 mmHg) despite adequate filling status and end-organ hypoperfusion (altered mental status, cold/clammy skin, oliguria/anuria or increased serum lactate); or (3) Persistent hypotension i.e., SBP < 90 mmHg or SBP drop ≥ 40 mmHg, lasting > 15 min and not caused by new-onset arrhythmia, hypovolemia or sepsis.

Although the first risk stratification is based on the clinical manifestations of haemodynamic instability, assessment of PE severity and PE-related, early mortality risk is also recommended for patients with PE but without symptoms and signs of haemodynamic instability[6]. The prognostic criteria, on which the further risk stratification is based, are separated into 2 categories: (1) Clinical, imaging and laboratory parameters, the most important of which is right ventricular dysfunction; and (2) Comorbidities and other conditions that have an adverse effect on early prognosis.

In the 2019 guidelines, emphasis is given to right ventricular dysfunction, which is associated with increased risk for short-term mortality in hemodynamically stable
patients with PE. Right ventricular dysfunction should be evaluated either with ultrasound or with laboratory prognostic biomarkers [cardiac troponins, brain natriuretic peptide (BNP) or proBNP], even if the Pulmonary Embolism Severity Index (PESI) is low or the simplified PESI (sPESI) is zero⁶,¹²,¹³.

For further risk stratification of the severity of PE in patients without hemodynamic instability, use of validated scores (the Bova and the H-FABP scores) that combine clinical, imaging and laboratory PE-related prognostic factors might also be considered⁶,¹⁴,¹⁵.

CHANGES IN THE TREATMENT OF PULMONARY EMBOLISM

Patients with PE are treated according to their hemodynamic status and their risk profile. More specifically, thrombolysis is recommended in patients with PE who are hemodynamically unstable and at high risk. If thrombolysis is contraindicated or unsuccessful, surgical pulmonary embolectomy or percutaneous catheter-directed therapy might be considered⁶,¹⁶,¹⁷. Even though reperfusion therapy might be lifesaving, it is not indicated in all patients with PE because of the increased bleeding risk⁶,¹⁶,¹⁸.

The new guidelines also mention the possibility of early discharge (i.e., at 24 h) in patients without severe comorbidities, who are not of high risk for sudden death and in whom proper medical management at home and proper medical follow up can be ensured⁶. This recommendation is based on the results of the multi-center HESTIA trial, which evaluated the out-of-hospital treatment in patients with low-risk PE and showed that they could safely be treated at home. In fact, only 2% of these patients experienced recurrent VTE and none of these episodes occurred during the first 7 d of treatment⁹. In another study, patients with PE and a low PESI score were treated at home and had a very low PE-related and all-cause mortality⁹. The new guidelines also suggest that proBNP levels, right ventricular function and the presence of thrombus in the right heart could be useful for guiding the decision of early discharge⁶,²¹.

Long-term treatment of patients with PE includes anticoagulant therapy for at least 3-6 mo⁶. Whether the treatment should be extended beyond this period depends on the risk of recurrence⁶. In patients with PE due to a treatable or transient risk factor, discontinuation of anticoagulation at 3 mo is recommended⁶.

Direct-acting oral anticoagulants are the treatment of choice in patients with PE, except during pregnancy and in patients with severe renal impairment or the antiphospholipid syndrome⁶. In patients with antiphospholipid syndrome, vitamin K antagonists indefinitely are the treatment of choice⁶. In pregnant women and in patients with severe renal impairment, low-molecular weight heparin is the recommended treatment⁶. Patients with cancer should also be treated with low-molecular weight heparin even though Direct-acting oral anticoagulants can also be considered based on the results of recent trials⁶,²²,²³.

The use of vena cava filters is suggested only in patients with absolute contraindications to anticoagulant treatment⁶. However, they do not appear to reduce the risk of PE recurrence or PE-related mortality⁶,²⁲,²³.

Finally, all patients with PE should be followed-up regularly because of the increased incidence of cancer (which might not be detectable at the time of PE), the risk of bleeding complications and the risk for development of chronic thromboembolic pulmonary hypertension⁶.

CONCLUSION

The recent guidelines for the diagnosis and treatment of PE include several key changes which facilitate the management of this common and potentially life-threatening medical emergency (Table 1). Knowledge and adherence to these guidelines will improve the outcome of these patients.
Table 1. Key changes in the 2019 guidelines of the European Society of Cardiology regarding the diagnosis and treatment of pulmonary embolism

Diagnosis	Treatment
An age-adjusted cut-off level of D-dimers can be used instead of a fixed cut-off value	The possibility of early discharge is mentioned in patients without severe comorbidities, who are not of high risk for sudden death and in whom proper medical management at home and proper medical follow up can be ensured
Assessment of PE-related early mortality risk is recommended	The importance of right ventricular dysfunction is emphasized in low-risk patients

PE: Pulmonary embolism.

REFERENCES

1. **White RH.** The epidemiology of venous thromboembolism. *Circulation* 2003; 107: 14-18 [PMID: 12814897 DOI: 10.1161/01.CIR.0000078468.11849.66]

2. **Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P, Folsom AR.** Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. *Am J Med* 2004; 117: 19-25 [PMID: 15210384 DOI: 10.1016/j.amjmed.2004.01.018]

3. **Horrlander KT, Mannino DM, Leeper KV.** Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. *Arch Intern Med* 2003; 163: 1711-1717 [PMID: 12885567 DOI: 10.1001/archinte.163.14.1711]

4. **Jiménez D, de Miguel-Diez J, Guijarro R, Trujillo-Santos J, Otero R, Barba R, Muriel A, Meyer G, Yusen RD, Monreal M; RIEITE Investigators.** Trends in the Management and Outcomes of Acute Pulmonary Embolism: Analysis From the RIEITE Registry. *J Am Coll Cardiol* 2016; 67: 162-170 [PMID: 26791063 DOI: 10.1016/j.jacc.2015.07.090]

5. **Wiener RS, Schwartz LM, Woloshin S.** Time trends in pulmonary embolism in the United States: evidence of overdiagnosis. *Arch Intern Med* 2011; 171: 831-837 [PMID: 21555660 DOI: 10.1001/archinternmed.2011.778]

6. **Konstantinides SV, Meyer G, Becattini C, Buono H, Geersing GJ, Harjola VP, Huisman MV, Humbert M, Jennings CS, Jiménez D, Kucher N, Lang IM, Lankeit M, Lorussa R, Mazzolai L, Meneveau N, Ni Áinle F, Prandoni P, Pruszczyk P, Righini M, Treadwell A, Van Belle E, Zamorano JL; ESC Scientific Document Group.** 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). *Eur Heart J* 2020; 41: 543-603 [PMID: 31504429 DOI: 10.1093/eurheartj/ehz503]

7. **Schouten HJJ, Geersing GJ, Koel HL, Zuiithoff NP, Janssen KJ, Dommel RA, van Delden MJ, Moons KG, Reitsma JB.** Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis. *BMJ* 2013; 346: F2492 [PMID: 23643857 DOI: 10.1136/bmj.f2492]

8. **Righini M, Van Es J, Den Exter PL, Roy PM, Verschuren F, Ghyysen A, Rutschmann OT, Sanchez O, Jafffrelot M, Trinh-Duc A, Le Gall C, Moustafa F, Principe A, Van Houten AA, Ten Wolde M, Douma RA, Hazelaar G, Erens PM, van Kralingen KW, Grootenboers MJ, Meyer G, Brounneaux H, Huisman MV, Kamphuisen PW, Le Gal G.** Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. *JAMA* 2014; 311: 1171-1124 [PMID: 24643601 DOI: 10.1001/jama.2014.2135]

9. **van der Hulle T, Cheung WY, Kooij S, Beenen LF, van Bemmel T, van Es JD, Roy PM, Chauleur C, Rutschmann OT, Le Gal G; CT-PE-Pregnancy Group.** Diagnosis of Pulmonary Embolism During Pregnancy: A Multicenter Prospective Management Outcome Study. *Ann Intern Med* 2018; 169: 766-773 [PMID: 30572723 DOI: 10.7326/M18-1670]

10. **van der Pol LM, Tromeur C, Bistervels IM, Ni Áinle F, van Bemmel T, Kruijf MJHA, Le Moigne E, Schmidt J, Le Gall C, Cornuz J, Aujesky D, Roy PM, Chauleur C, Rutschmann OT, Poletti PA, Le Gal G; CT-PE-Pregnancy Group.** Diagnosis of Pulmonary Embolism During Pregnancy: A Multicenter Prospective Management Outcome Study. *Ann Intern Med* 2018; 169: 766-773 [PMID: 30572723 DOI: 10.7326/M18-1670]

11. **Righini M, Robert-Ebadi H, Alias A, Sanchez O, Le Mogine E, Schmidt J, Le Gall C, Cornuz J, Aujesky D, Roy PM, Chauleur C, Rutschmann OT, Poletti PA, Le Gal G; CT-PE-Pregnancy Group.** Diagnosis of Pulmonary Embolism During Pregnancy: A Multicenter Prospective Management Outcome Study. *Ann Intern Med* 2018; 169: 766-773 [PMID: 30572723 DOI: 10.7326/M18-1670]

12. **Barco S, Mahmoodpour SH, Planquette B, Sanchez O, Konstantinides SV, Meyer G.** Prognostic value of right ventricular dysfunction or elevated cardiac biomarkers in patients with low-risk pulmonary embolism: a systematic review and meta-analysis. *Eur Heart J* 2019; 40: 902-910 [PMID: 30590531 DOI: 10.1093/eurheartj/ehy873]

13. **Coutance G, Cauderlier E, Ebtisham J, Hamon M, Hamon M.** The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. *Crit Care* 2011; 15: R103 [PMID: 21443777 DOI: 10.1186/cc10119]

14. **Hobohm L, Hellenkamp K, Hasenfult G, Münzel T, Konstantinides S, Lankeit M.** Comparison of risk assessment strategies for not-high-risk pulmonary embolism. *Eur Respir J* 2016; 47: 1170-1178 [PMID: 26743479 DOI: 10.1183/13993003.01605-2015]

15. **Dellas C, Tscheppe M, Sebecer V, Zwiener I, Kuhnert K, Schäfer K, Hasenfult G, Konstantinides S, Lankeit ...
M. A novel H-FABP assay and a fast prognostic score for risk assessment of normotensive pulmonary embolism. *Thromb Haemost* 2014; 111: 996-1003 [PMID: 24477222 DOI: 10.1160/TH13-08-0663]

16 Jaff MR, McMurray MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaelis AD, Thistlethwaite P, Vedantham S, White RJ, Zierler BK; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. *Circulation* 2011; 123: 1788-1830 [PMID: 21622387 DOI: 10.1161/CIR.0b013e3182149144]

17 Beckerman Z, Bolotin G. Surgical Treatment of Acute Massive Pulmonary Embolism. In: Islam M. *Thrombosis and Embolism: from Research to Clinical Practice*. Adv Exp Med Biol 2016; 906 [DOI: 10.1007/5584_2016_107]

18 Meyer G, Vician E, Danays T, Agneli G, Becattini C, Beyer-Westendorf J, Bode VT, Bouvier C, Brenner B, Couturaud F, Della C, Denninger K, Franca A, Galié N, Geibel A, Goldhaber SZ, Jimenez D, Kozak M, Kupatt C, Kucher N, Lang IM, Laca M, Lenaert M, Meneghello A, Milas L, Moncure A, Pratzaczyk P, Rugolotto M, Salvi A, Schellong S, Sebbane M, Sobkowicz B, Stefanovic BS, Thiele H, Torbicki A, Verhamme P, Konstantinides SV; PEITHO Investigators. Fibrinolysis for patients with intermediate-risk pulmonary embolism. *N Engl J Med* 2014; 370: 1402-1411 [PMID: 24716681 DOI: 10.1056/NEJMoa1302097]

19 Zondag W, Mos IC, Creemers-Schild D, Hoogerbrugge AD, Dolsma J, Eijserhoven M, Faber LM, Hofstee HM, Huisman MV; Hestia Study Investigators. Outpatient treatment in patients with acute pulmonary embolism: the Hestia Study. *J Thromb Haemost* 2011; 9: 1500-1507 [PMID: 21645235 DOI: 10.1111/j.1538-7836.2011.04388.x]

20 Aujesky D, Obarsky DS, Pabst A, Aarlaard-Van Der Feer J, Timmerman J, Fine MJ. Derivation and validation of a prognostic model for pulmonary embolism. *Am J Respir Crit Care Med* 2003; 168: 1041-1046 [PMID: 16020800 DOI: 10.1164/rccm.200302-277OC]

21 Klok FA, Mos IC, Huisman MV. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. *Am J Respir Crit Care Med* 2008; 178: 425-430 [PMID: 18556626 DOI: 10.1164/rccm.200803-459OC]

22 van Es N, Coppers M, Schulten M, Middeldorp S, Büller HR. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. *Blood* 2014; 124: 1968-1975 [PMID: 24963045 DOI: 10.1182/blood-2014-04-571232]

23 van der Hulle T, Koosman J, den Exter PL, Dekkers OM, Klok FA, Huisman MV. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: evidence from phase 3 trials. *J Thromb Haemost* 2014; 12: 320-328 [PMID: 24330006 DOI: 10.1111/j.1538-7836.2014.04195.x]

24 Bikdeli B, Wang Y, Minges KE, Desai NR, Kim N, Desai MM, Spertus JA, Masoudi FA, Hallstrom BK, Goldhaber SZ, Krumholz HM. Vena Cava Filter Utilization and Outcomes in Pulmonary Embolism: Medicare Hospitalizations From 1999 to 2010. *J Am Coll Cardiol* 2016; 67: 1027-1035 [PMID: 26940921 DOI: 10.1016/j.jacc.2015.12.029]

25 White RH, Brunson A, Romano PS, Li Z, Wun T. Outcomes After Vena Cava Filter Use in Noncancer Patients With Acute Venous Thromboembolism: A Population-Based Study. *Circulation* 2016; 133: 2018-2029 [PMID: 27048765 DOI: 10.1161/CIRCULATIONAHA.115.020338]
