Calcium Signaling in Brain Mitochondria
INTERPLAY OF MALATE ASPARTATE NADH SHUTTLE AND CALCIUM UNIPORTER/MITOCHONDRIAL DEHYDROGENASE PATHWAYS

Laura Contreras and Jorgina Satrústegui
From the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-CSIC and CIBER de Enfermedades Raras, 28049 Madrid, Spain

Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate α-ketoglutarate (αKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that αKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in αKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of αKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter (CaU)2 and activation of mitochondrial dehydrogenases (mitDH) (1). However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-gluta-

mate carriers (AGCs) and not the CaU (2–5). Aralar (Slc25a12), also named aralar1, the AGC isoform with predominant expression in brain (6–8), is a component of the NADH malate-aspartate shuttle (MAS), which in brain is activated by extramitochondrial Ca2+ (S\textsubscript{Ca} 324 nM) (4). Immunocytochemistry and in situ hybridization data and mRNA levels in acutely isolated brain cells indicate that aralar is localized preferentially in neurons (8–12). This is consistent with a higher MAS activity in neuronal than astrocyte cultures (8) and with aralar being one of the most enriched proteins during differentiation of P19 cells to a neuronal phenotype (13). It is also consistent with the higher levels of aralar in total than in synaptosome-free mitochondrial fractions (9).

Studies in cultured neurons, which have aralar as only AGC isoform, showed that small Ca2+ signals that have limited access to mitochondria are able to activate the aralar-MAS pathway (4). However, large Ca2+ signals that induce robust mitochondrial Ca2+ transients fail to activate the pathway (4). This suggested that in neuronal mitochondria the aralar-MAS pathway is inhibited under conditions in which the CaU-mitDH pathway is activated. This surprising result indicates that Ca2+ activation of the malate aspartate shuttle and tricarboxyclic acid cycle activity are somehow mutually exclusive in neurons. We have now studied the interplay between the AGG-MAS and CaU-mitDH pathways in brain mitochondria under Ca2+-stimulation conditions. Our results show that the shared metabolite αKG controls the relationship between the second transporter of MAS, the oxoglutarate carrier (OGC, Slc25a11), and αKGDH in the Krebs cycle, by virtue of the effects of Ca2+ on the kinetics of αKGDH. Interestingly, the inhibition of OGC and MAS is fully reversible, in parallel with Ca2+ egress from mitochondria.

Behaviorally evoked brain activation results in an increased cerebral blood flow and increased glucose utilization, but paradoxically, this is not accompanied with an equivalent increase in oxygen utilization (14, 15). As a consequence, the oxygen glucose index, which is close to 6 when glucose is fully oxidized in resting conditions, falls to about 5 (16). This is accompanied by an increase in brain lactate production (14, 16–19). Our results suggest that MAS inhibition during Ca2+-induced Krebs cycle activation would drive pyruvate to lactate formation and may play a role in lactate formation during brain activation.

EXPERIMENTAL PROCEDURES

Animals and Materials—3-Month-old C57BL/6xSv129 mice were housed with a 12-h light cycle and fed ad libitum on standard chow. Animals were sacrificed by cervical dislocation, and...
the tissue of interest was quickly dissected and kept in ice-cold media for mitochondrial isolation, which was carried out at 4°C. All animal procedures were approved by European guidelines. All reagents were obtained from Sigma, except malate dehydrogenase (Roche Applied Science), Fura-2, Calcium-Green5N (Molecular Probes, Eugene, OR), and CGP-37157 (Tocris Biosciences, Ellisville, MO).

Mitochondrial Isolation—Mitochondria were isolated from the brain, liver, and heart of 3-month-old C57BL/6xSv129 mice, as described previously (20–22) with modifications (4, 23). Briefly, mitochondria (0.1–0.15 mg of brain and liver and 0.020–0.030 mg of heart) were resuspended in 3 ml of MSK (with 100 μM digitonin for brain preparations), and the shuttle was reconstituted in the presence of 4 units/ml aspartate aminotransferase, 6 units/ml malate dehydrogenase, 66 μM NADH, 5 mM aspartate, 5 mM malate, 0.5 mM ADP. When appropriate, 200 nM Ruthenium Red (RR) and calibrated calcium additions were made. Mitochondrial protein was measured by the Bradford method, with bovine serum albumin as standard.

MAS Reconstitution and mitGPDH Measurement—MAS was reconstituted following published methods (24–26), with modifications (4, 23). Briefly, mitochondria (0.1–0.15 mg of brain and liver and 0.020–0.030 mg of heart) were resuspended in 3 ml of MSK (with 100 μM digitonin for brain preparations), and the shuttle was reconstituted in the presence of 4 units/ml aspartate aminotransferase, 6 units/ml malate dehydrogenase, 66 μM NADH, 5 mM aspartate, 5 mM malate, 0.5 mM ADP. When appropriate, 200 nM Ruthenium Red (RR) and calibrated calcium concentrations were present. mitGPDH activity was measured in a similar way in MSK, with 0.5 mM ADP, 66 μM NADH, and 2 units/ml glycerol-3-phosphate dehydrogenase (27). Once a base line is achieved, either 5 mM glutamate (MAS) or 5 mM glycerol-3-phosphate (mitGPDH) was added to trigger shuttle activity, coupled to the decrease in NADH fluorescence (excitation 340 nm, excitation 465 nm). All assays were performed at 37°C under constant stirring.

Measurement of OGC Activity—Transport of α-KG through the OGC was measured by a modification of the MAS reconstitution system. Appropriate amounts of mitochondrial protein of the tissue of interest were resuspended in 3 ml of MSK supplemented with 66 μM NADH, 0.5 mM ADP, 3 mM (NH₄)₂SO₄, 5 mM glutamate, 10 units/ml GDH (and 100 μM digitonin when brain mitochondria were assayed). 5 mM malate addition initiated αKG efflux from mitochondria, which was followed by a decrease in NADH fluorescence. Experiments were performed at 37°C under constant stirring. When indicated, 200 nM RR and calibrated calcium additions were made.

Free Calcium Calibration—The free calcium concentrations in the assays obtained after the different CaCl₂ additions were determined in the presence of Fura-2 (under 1 μM, Kₛ = 224 nM; excitation, 340 and 380 nm; emission, 510 nm; concentration 5 μM) or Calcium-Green5N (over 1 μM, Kₛ = 14 μM; excitation, 506 nm; emission, 532 nm; concentration 0.1 μM). Free calcium concentration was calculated as established for ratio-metric and nonratiometric probes (28, 29).

Enzymatic Assays—Enzyme activities were assayed in either freshly isolated or freeze-thawed mitochondria from different tissues of 3-month-old C57BL/6xSv129 mice. Experiments were performed in a final volume of 200 μl and 20–50 μg of protein in a FLUOstar optima (BMG-Labtech) plate fluorimeter at 30°C. Activities were calculated as the initial slope of NADH fluorescence changes per mg of protein. An NADH calibration curve was performed daily by adding known amounts of NADH to medium. The following additions were made to the medium (MME: 50 mM KCl, 10 mM HEPES, pH 7.4; 0.2% Triton, and 10 μM rotenone (32); 0.2 mM NAD⁺ for measurement of GDH; 0.2 mM NADH, 5 units/ml malate dehydrogenase, and 12.5 mM αKG for aspartate aminotransferase measurement; 0.2 mM NAD⁺, 0.3 mM thiamine pyrophosphate, 10 μM CaCl₂, 0.2 mM MgCl₂, 0.14 mM CoASH, and 0.5 mM ADP to assay αKGDH. After establishment of a base line, activity was triggered with the appropriate substrate as follows: 5 mM glutamate or aspartate and 12.5 mM αKG (GDH, aspartate aminotransferase, and αKGDH, respectively (30–33).

Mitochondrial Membrane Potential—Mitochondrial membrane potential was estimated by quenching of tetracyanobimane methyl ester (TMRM, 549 nm excitation, 575 nm emission) fluorescence, as described previously (34). Briefly, after stabilization of TMRM (300 nm) fluorescence, 100 μg of mitochondria were added to 2 ml of MSK containing 5 mM aspartate. Changes in membrane potential were followed qualitatively by the variations of the TMRM fluorescence after addition of substrates (glutamate/malate, 5 mM), ADP (0.5 mM), and calcium (5 μM free calcium). When indicated, 50 mM Na⁺ replaced 50 mM K⁺ in MSK (MSKNa medium). A calcium-unbuffered medium (MSK or MSKNa without EDTA) was also used.

Ca²⁺ Egress from Mitochondria—Brain mitochondria (0.25 mg/ml) were incubated in calcium-unbuffered medium (i.e. MSK or MSKNa without EDTA) in the presence of ADP (0.5 mM), aspartate (5 mM), malate (5 mM), digitonin (100 μM) and Calcium-Green5N (0.1 μM). After a stable base line was achieved, an addition of 10 μM CaCl₂ was made (40 nmol/ml, giving a free calcium of 5 μM), and calcium uptake was monitored for 5 min before glutamate (5 mM) addition. Where indicated, ruthenium red (200 nM) was added to stop calcium uptake through the uniporter. In some assays, CGP-37157 (10 μM) was added to inhibit the mitochondrial Na⁺-Ca²⁺ exchanger (NCX) (35).

RESULTS

Regulation of MAS and Glycerol-3-P Dehydrogenase Activity by Extramitochondrial and Intramitochondrial Ca²⁺—MAS activity was shown to increase in response to extramitochondrial calcium in brain and heart mitochondria (3, 4, 36). Paradoxically, it became inhibited in a calcium-dependent manner when calcium was allowed to enter the mitochondria through the Ca²⁺ uniporter (4). In brain mitochondria, the remaining activity drops to 79 ± 4%, 58 ± 7%, and 17 ± 3% in the presence of 0, 0.3, and 5 μM [Ca²⁺]ₗ, respectively (Fig. 1A). MAS inhibition by intramitochondrial Ca²⁺ is not as large in heart mitochondria, with 77 ± 6% residual activity at 5 μM free calcium (Fig. 1B). In contrast, MAS activity in liver mitochondria is not affected by intramitochondrial Ca²⁺, as its activity is the same in the absence or presence of RR, although it is activated by extramitochondrial calcium to a smaller extent than in brain or heart (Fig. 1C) as reported earlier (36).

It is unlikely that the inhibitory effects of matrix Ca²⁺ on MAS activity are because of Ca²⁺-induced permeability transition pore opening and loss of mitochondrial metabolites (particularly NAD⁺) as follows: first, because assays were con-

MAS Inhibition by Intramitochondrial Calcium

TABLE 1

Effect of intra- and extramitochondrial calcium on the activity of the OGC

	0 μM [Ca\(^{2+}\)]\(_{free}\)	5 μM [Ca\(^{2+}\)]\(_{free}\)	
	No RR	RR present	
	Brain	Heart	Liver
	116.03 ± 33.12	105.16 ± 17	46.06 ± 7***
	105.16 ± 17	46.06 ± 7***	127.5 ± 15
	378.13 ± 66	329.2 ± 56	356.4 ± 66*
	329.2 ± 56	356.4 ± 66*	447.4 ± 53
	66 329.2	66* 447.4	103.2 ± 11

FIGURE 1. Effect of intra- and extramitochondrial calcium on the malate-aspartate NADH shuttle. A, scheme of MAS. Abbreviations used are as follows: asp, aspartate; glu, glutamate; OAA, oxalacetate; mal, malate; AST, aspartate transaminase; MDPH, malate dehydrogenase. MAS activity in brain (B), heart (C), and liver mitochondria (D) in the presence (solid circles) or absence (open circles) of 200 nM RR at different free calcium concentrations is shown. Data are means ± S.E. of three experiments performed in triplicate. Asterisks indicate a significant difference (Student’s t test) between the presence and absence of RR at each calcium concentration (*, p < 0.05; **, p < 0.005; ***, p < 0.0005).

Ca\(^{2+}\) in the intermembrane space, as full activation is obtained in the presence of RR in all tissues. The kinetics of activation agrees with a low S\(_{0.5}\) for activation, as the maximal activity was attained at 0.3 μM free Ca\(^{2+}\) (supplemental Fig. 1). On the other hand, Ca\(^{2+}\) entry in the matrix (i.e. RR not present in the assay) did not affect mitGPDH activity in either brain or liver mitochondria (supplemental Fig. 1).

Therefore, the results indicate that in brain mitochondria Ca\(^{2+}\) activation of MAS, but not mitGPDH, is prevented by strong Ca\(^{2+}\) signals that reach mitochondrial matrix. This suggests that reducing equivalents transfer to mitochondria may still proceed through mitGPDH when Ca\(^{2+}\) entry in mitochondria leads to an inhibition of MAS activity. This depends on whether a glycerol-P shuttle is actually present in brain, with its two enzymes within the same cell, as suggested to be the case from the astrocyte and neuronal transcriptome findings (12, 44–46).

To test the effects of both extra- and intramitochondrial calcium on OGC activity, αKG efflux was measured in the absence or presence of the calcium uniporter inhibitor RR, both in Ca\(^{2+}\)-free medium or in the presence of 5 μM free Ca\(^{2+}\). In the presence of 200 nM RR, there was no difference in αKG efflux at the two calcium concentrations in brain, heart and liver mitochondria (Table 1), indicating that the OGC is not activated by extramitochondrial Ca\(^{2+}\), in accordance to the lack of calcium-binding motifs in the OGC sequence (48).

Having shown that extramitochondrial Ca\(^{2+}\) does not modify the OGC activity, the influence of intramitochondrial Ca\(^{2+}\) was studied by carrying out the same experiments in the absence of RR, when the Ca\(^{2+}\) uniporter is not inhibited (Table 1). Under these conditions the addition of Ca\(^{2+}\) results in a decrease of αKG efflux in mitochondria from brain and heart (to 37 ± 5% and 78 ± 10% residual activity, respectively (Table 1)), indicating that the OGC in these tissues is inhibited by intramitochondrial Ca\(^{2+}\). In liver, the absence of RR resulted in an inhibition of αKG efflux both in the absence or presence of Ca\(^{2+}\). (Table 1), clearly a nonspecific effect, unrelated to Ca\(^{2+}\) entry in mitochondria, which was not studied any further. Therefore, inhibition of αKG efflux by mitochondrial Ca\(^{2+}\) may explain the inhibition of MAS in brain and heart mitochondria.

The effect of both intra- and extramitochondrial calcium on the activity of the OGC was studied by measuring the efflux of αKG from mitochondria, in medium containing glutamate dehydrogenase (GDH). GDH will transform αKG into glutamate in the presence of NADH and ammonium, resulting in a decrease in NADH fluorescence, when malate is added to trigger αKG efflux from mitochondria (supplemental Fig. 2). The supplemental Fig. 2B shows that the decrease of NADH fluorescence was dependent on the presence of ammonium and was prevented by the OGC inhibitor phenylsuccinate (45, 47).

The effect of calcium on OGC activity, αKG efflux was measured in the absence or presence of the calcium uniporter inhibitor RR, both in Ca\(^{2+}\)-free medium or in the presence of 5 μM free Ca\(^{2+}\). In the presence of 200 nM RR, there was no difference in αKG efflux at the two calcium concentrations in brain, heart and liver mitochondria (Table 1), indicating that the OGC is not activated by extramitochondrial Ca\(^{2+}\), in accordance to the lack of calcium-binding motifs in the OGC sequence (48).

Having shown that extramitochondrial Ca\(^{2+}\) does not modify the OGC activity, the influence of intramitochondrial Ca\(^{2+}\) was studied by carrying out the same experiments in the absence of RR, when the Ca\(^{2+}\) uniporter is not inhibited (Table 1). Under these conditions the addition of Ca\(^{2+}\) results in a decrease of αKG efflux in mitochondria from brain and heart (to 37 ± 5% and 78 ± 10% residual activity, respectively (Table 1)), indicating that the OGC in these tissues is inhibited by intramitochondrial Ca\(^{2+}\). In liver, the absence of RR resulted in an inhibition of αKG efflux both in the absence or presence of Ca\(^{2+}\). (Table 1), clearly a nonspecific effect, unrelated to Ca\(^{2+}\) entry in mitochondria, which was not studied any further. Therefore, inhibition of αKG efflux by mitochondrial Ca\(^{2+}\) may explain the inhibition of MAS in brain and heart mitochondria.
MAS Inhibition by Intramitochondrial Calcium

Influence of Mitochondrial αKG Sources and Utilization Pathways on αKG Efflux Along the OGC—OGC and αKGDH have a common substrate, αKG. When mitochondrial Ca\(^{2+}\) increases, it activates αKGDH, which causes a decrease in the \(K_m\) value for its substrate, αKG, and a decrease in mitochondrial αKG levels (49, 50). Our working hypothesis is that this leads to the decrease in OGC activity that we have shown above in brain and heart mitochondria. As OGC is a member of MAS, this may explain the decrease of MAS activity in brain and heart mitochondria when calcium is allowed to enter the organelle (see Fig. 1A and supplemental Fig. 2A).

We figured that a high OGC activity with respect to αKGDH would make the OGC relatively independent of αKGDH activity, and this could be a possible explanation for the lack of effect of intramitochondrial Ca\(^{2+}\) on liver MAS and OGC activities. However, Table 2 shows that this is not the case. Measurements of αKGDH activity in mitochondria from different tissues showed that the ratio of αKG efflux to αKGDH activity is similar in liver and brain mitochondria.

A second possibility is that liver mitochondria OGC could utilize an additional source of αKG making it independent of αKGDH. The source of αKG in the OGC assays is external glutamate, which enters mitochondria through the AGC and is transaminated with oxaloacetate by mitochondrial aspartate aminotransferase (see supplemental Fig. 2A). The transaminase can be inhibited by 5 mM aminooxyacetate (AOAA) (45), which leads to a complete block of αKG efflux in brain and heart mitochondria (supplemental Fig. 3, A and B). However, this is not the case in liver mitochondria, where AOAA only decreased the efflux to 62 ± 15\% in the presence of RR and 5 \(\mu\)M calcium, but it had no effect in the absence of RR and 5 \(\mu\)M calcium (supplemental Fig. 3C).

The lack of effect of AOAA on αKG efflux in liver mitochondria points to an extra(s) source(s) of αKG in this tissue. This is probably glutamate dehydrogenase (GDH), which in liver has the highest activity among the tissues explored in this study (Table 2).

Inhibition of OGC and MAS Activity in Brain Mitochondria Is Reversible—We have shown that Ca\(^{2+}\) entry in heart and brain mitochondria prevents Ca\(^{2+}\) activation of MAS activity through an inhibition of αKG efflux along the OGC because of the Ca\(^{2+}\) activation of αKGDH, a situation that does not take place in liver. In these two types of mitochondria, the maximal activity of the malate-aspartate shuttle (limited by the AGC) is only slightly lower than that of the OGC (see Table 2), as has also been observed in rat brain mitochondria using an entirely different method (9). This makes MAS activity very sensitive to the decrease of the OGC activity brought about by matrix Ca\(^{2+}\). Because Ca\(^{2+}\) activation of αKGDH should last as long as Ca\(^{2+}\) remains in the mitochondrial matrix, we have studied whether net Ca\(^{2+}\) efflux from mitochondria allows reactivation of MAS. To this end, we have first allowed mitochondria to take up Ca\(^{2+}\), while carrying out MAS activity during 3 min, and then Ca\(^{2+}\) uptake was stopped by addition of RR, and mitochondria were allowed to release the accumulated Ca\(^{2+}\) along RR-insensitive Ca\(^{2+}\) efflux pathways. The recovery of MAS and OGC activities was studied at the same time (Fig. 2). MAS activity was clearly inhibited after the incubation in the presence of Ca\(^{2+}\) (compare slopes of traces a and b in Fig. 2A). As observed in Fig. 2A, RR addition results in a reactivation of MAS, which is almost complete 10 min after RR addition (Fig. 2A, compare final slopes of traces a and c, and Fig. 2B). αKG efflux along the OGC was also re-activated upon Ca\(^{2+}\) efflux, as expected, although its activity was not fully recovered within this time period (Fig. 2C, recovery after 10 min addition of RR).

Enhanced Recovery of OGC and MAS Activity in Brain Mitochondria by NCX-mediated Ca\(^{2+}\) Efflux—The previous experiments were performed in a sodium-free medium (MSK), in which calcium efflux proceeds mainly through the Na\(^{+}\)-independent Ca\(^{2+}\) efflux pathway, mitochondrial Na\(^{+}\)-independent/Ca\(^{2+}\) exchanger (51–53), or a putative low conductance form of the permeability transition pore (54–56). As the main mitochondrial calcium efflux pathway in brain is the Na\(^{+}\)/Ca\(^{2+}\) exchanger, NCX (52, 57, 58), we have studied the recovery of MAS activity in a medium with sodium (MSK with 50 mM NaCl

TABLE 2

Enzyme and transporter activities involved in αKG production and utilization in mitochondria using glutamate and malate as substrates

The results are mean ± S.E. of four independent experiments performed at least in duplicate. αKG production was computed as the sum of AGC-MAS and GDH, whereas αKG utilization was the sum of αKGDH and OGC. Differences (Bonferroni test) with liver (\(*p < 0.05; **p < 0.005\)) or heart (\(**p < 0.005\)) are indicated.

Activity	Brain	Heart	Liver
mitAST	1798 ± 374	2170 ± 283	2569 ± 608
αKGDH	31.3 ± 6.78***	275.4 ± 28	218.6 ± 4.5***
OGC	127.5 ± 16***	447.4 ± 59	103.2 ± 12***
AGC-MAS	96.4 ± 8.5***	372 ± 35	99 ± 2.7***
GDH	11.3 ± 0.27*	6.6 ± 0.7**	55.26 ± 13
Ratio production/utilization	0.848 ± 0.0381*	0.589 ± 0.066**	1.38 ± 0.22

FIGURE 2. Recovery of MAS and αKG efflux after RR addition in MSK. A, MAS activity in brain mitochondria in the presence (trace a, Control), absence (trace b, No RR), or addition (trace c, Recovered) of RR where indicated. 5 μM free calcium was present in the assay. Traces are representative of three independent experiments. B, MAS measured 10 min after RR was added to induce recovery of activity in Na\(^{+}\)-free medium (MSK). C, αKG efflux (OGC) measured 10 min after RR was added to induce recovery of activity in Na\(^{+}\)-free medium (MSK) or Na\(^{+}\) medium (MSKNa). Data are mean ± S.E. of three independent experiments performed in triplicate. (Significant difference from control, **, \(p < 0.005\); or recovered, &, &&, \(p < 0.005\)).
MAS Inhibition by Intramitochondrial Calcium

Replacing 50 mM KCl (MSKNa). Unexpectedly, we found that MAS activity was more inhibited by matrix Ca\(^{2+}\) in a Na\(^{+}\)-containing than in a Na\(^{+}\)-free medium, and recovery of MAS activity after RR addition was not complete (supplemental Fig. 4). In contrast, inhibition of αKG efflux through the OGC by intramitochondrial calcium is not so prominent in MSKNa, and its recovery induced by RR addition is much larger (Fig. 3C). These results indicate that failure to recover MAS activity in Na\(^{+}\) medium is not because of a failure to recover OGC activity. On the contrary, OGC activity is not as inhibited in Na\(^{+}\)-containing as it is in Na\(^{+}\)-free media, probably because the free calcium levels in mitochondria (and αKGDH activity) are lower when NCX is active, and Ca\(^{2+}\) efflux and deactivation of αKGDH are faster.

A possible explanation for the paradoxical effects of Na\(^{+}\) in the recovery of MAS activity is based on the steep dependence of AGC on the proton electrochemical gradient. The transport of glutamate plus H\(^{+}\) against aspartate is electrogenic (3, 59–61), and the mitochondrial membrane potential may be dissipated by Ca\(^{2+}\) + Na\(^{+}\) cycling, with Ca\(^{2+}\) entry along the uniporter, and exit through the NCX coupled to efflux of Na\(^{+}\) back to the cytosol through Na\(^{+}\)/H\(^{+}\) exchange (62, 63). This paradoxical effect of Na\(^{+}\) would not affect the OGC, which is electroneutral and thus independent upon Δp (64, 65).

Indeed, we found that mitochondria were partially depolarized when incubated in the presence of 50 mM NaCl (MSKNa; supplemental Fig. 4B). However, depolarization was not Ca\(^{2+}\)-dependent and consequently not due to Na\(^{+}\) and Ca\(^{2+}\) cycling. It was possibly caused by Na\(^{+}\) influx through a channel in the mitochondrial membrane, which is inhibited by Mg\(^{2+}\) (66), and consequently a complete depolarization was observed in the presence of Mg\(^{2+}\) (supplemental Fig. 4C).

Under these conditions RR recovery of MAS activity was almost complete (supplemental Fig. 4A).

To verify the relationship between matrix Ca\(^{2+}\) and Ca\(^{2+}\) inhibition of MAS, we have next studied MAS recovery and Ca\(^{2+}\) efflux upon RR addition in parallel. To this end, Ca\(^{2+}\) fluxes were determined through the
changes in extramitochondrial Ca\(^{2+}\) levels measured with Calcium Green in a medium with no calcium buffers and with traces of Mg\(^{2+}\) (i.e. MSK or MSKNa without EDTA). There were no differences in the mitochondrial membrane potential generated in the presence of glutamate + malate when mitochondria were incubated in Ca\(^{2+}\)-unbuffered media in the absence (MSK without EDTA) or presence (MSKNa without EDTA) of Na\(^{+}\) (compare traces in A1 and B1 in Fig. 3). After the addition of Ca\(^{2+}\) (40 nmol/mg protein, giving 5 \(\mu\)M free Ca\(^{2+}\)), most of it was taken up by energized mitochondria. However, the total amount of Ca\(^{2+}\) taken up after glutamate addition was higher in the absence than in the presence of Na\(^{+}\) (about 41 ± 1.6 versus 26.6 ± 3.7 nmol/mg protein in MSK and MSKNa, respectively), as observed previously with rat brain mitochondria (58, 67). Interestingly, MAS activity measured in these two conditions varied inversely with the accumulated Ca\(^{2+}\). It was strongly inhibited (about 50%) in the absence of Na\(^{+}\) (Fig. 3, A3 and A4), but much less so in the presence of Na\(^{+}\) (about 20%) (Fig. 3, B3 and B4).

Ca\(^{2+}\) efflux triggered by RR addition was strongly increased in a Na\(^{+}\) medium (182 ± 10 and 22.5 ± 8 nmol/min/mg initial speed in MSKNa and MSK, respectively), and after 10 min the amount of Ca\(^{2+}\) released was 24 or 66% of the calcium taken up in MSK and MSKNa, respectively (compare traces A2 and B2 in Fig. 3). This difference was abolished in the presence of the NCX inhibitor CGP-37157 (results not shown and see Ref. 35). Under these conditions MAS activity fully recovered control levels in Na\(^{+}\) media (Fig. 3B4), but recovery was not complete in the absence of Na\(^{+}\) (Fig. 3A4). The loss of the inhibitory effect of matrix Ca\(^{2+}\) on MAS was clearly because of stimulated Ca\(^{2+}\) efflux along the NCX because the effect of external Na\(^{+}\) was abolished in the presence of the NCX inhibitor (Fig. 3B4).

DISCUSSION

Tissue-specific Effects of Matrix Ca\(^{2+}\) on MAS Activity—Activation by Ca\(^{2+}\) of mitochondrial metabolism is mainly due to Ca\(^{2+}\) entry to the matrix through the calcium uniporter and activation of three matrix dehydrogenases (pyruvate dehydrogenase, aKGDH, and isocitrate dehydrogenase) (1, 5, 68). In addition, Ca\(^{2+}\) binding to aralar on the external side of the inner mitochondrial membrane activates MAS (4, 36) and explains the activation of respiration of brain mitochondria by extramitochondrial Ca\(^{2+}\) when malate plus glutamate are used as substrates (69). In this study we report that the effect of matrix Ca\(^{2+}\) on aKGDH results in an inhibition of MAS activity, at least in two tissues, brain and heart, but not in liver. We conclude that MAS inhibition is because of matrix Ca\(^{2+}\) activation of aKGDH and consequent inhibition of OGC, as suggested for heart mitochondria (70, 71). Both activities have similar \(K_{m}\) value for aKGDH (1.5 and 2.1 mm for the OGC and aKGDH, respectively (49, 72)). Upon entry through the uniporter, Ca\(^{2+}\) stimulates aKGDH by reducing its \(K_{m}\) value for aKGDH (from 2.1 to 0.16 mm, with an \(S_{0.5}\) = 1.2 \(\mu\)M for calcium (49)). In this situation, OGC will be at a disadvantage, and thus aKGDH efflux will become impaired (Fig. 4C). This competition of the two pathways for a common substrate is consistent with the findings of O’Donnell et al. (71), who reported a 4-fold reduction of MAS activity in heart under high workload conditions.

In liver mitochondria we have failed to observe such an inhibition of MAS by matrix Ca\(^{2+}\) (Fig. 1C), and a similar situation was found in beta cell mitochondria (73). As aKGDH efflux in liver mitochondria is only partially blocked by the transaminase inhibitor, this points to an alternative source of aKGDH different from transamination. This is probably GDH, which has a high activity in liver (Table 2), and beta-cell (74, 75) mitochondria. In mitochondria utilizing malate plus glutamate as substrates, aKGDH production can be expressed as the sum of the glutamate transported through AGC and then transaminated (aspartate aminotransferase is highly active, and thus the limiting step in this pathway is the AGC), and that generated in the GDH activity. aKGDH can then either be transported out of mitochondria by the OGC or serve as substrate of aKGDH (aKGDH consumption). If enough aKGDH is produced to comply with the activity of consuming pathways (aKGDH production/consumption ratio >1 as in liver mitochondria), no inhibition of OGC will be observed, oth-
TABLE 3

Metabolite levels during brain stimulation conditions in vivo and in vitro

Data for glutamate (Glu), aspartate (Asp), and Lactate (Lact) content both at control (rest) and during brain work (stimulated) conditions from indicated Tables of the selected references are shown. ND, not determined in the original study; NMDA, N-methyl-D-aspartic acid.

System	Stimulation	Rest	Stimulated	Ref.
Rat dorsal cerebral cortex	5-min sensory stimulation	Glu 12.5 ± 0.6	13.3 ± 0.3	µmol/g wet weight (Ref. 18, see Tables 3 and 4)
		Asp 4.0 ± 0.3	3.3 ± 0.3	
		Lact 0.6 ± 0.1	1.7 ± 0.4	
Rat, microdialysis	Acoustic stimulation	Glu ND	ND	mm (Ref. 17, see Table V)
		Asp ND	ND	
		Lact 0.09 ± 0.02	0.2 ± 0.05	µmol/g wet weight (Ref. 16, see Table 2)
Rat dorsal cerebral cortex	Sensory stimulation	Glu ND	ND	
		Asp ND	ND	
		Lact 1.0 ± 0.5	1.9 ± 0.4	
Mouse cerebral cortical slices	Repetitive K+ depolarization	Glu 48.6 ± 6.6	37.2 ± 7.6	mmol/mg protein (Ref. 85, see Table 1)
		Asp 20.7 ± 3.5	11.4 ± 3.7	
		Lact ND	ND	
Cerebellar neuron culture	Repetitive NMDA and K+ depolarization	Glu 51 ± 17.2	42.9 ± 0.9	mmol/mg protein; lactate % labeling (Ref. 86, see Table 1)
		Asp 14.3 ± 21	10.1 ± 1.3	
		Lact 5.6 ± 1.8	11.5 ± 0.9	
In vivo human brain NMR spectroscopy	Visual cortex stimulation	Glu +0.23 ± 0.01	% change versus rest (Ref. 19, see Table 1)	
		Asp -14 ± 0.02	0.01%	
		Lact +24 ± 0.01	0.01%	
Rat cortex	Bicuculline-induced seizure	Glu 11.8 ± 1.8	11.5 ± 1.1	µmol/g (Ref. 87, see Table 4)
		Asp 3.6 ± 0.8	2.8 ± 0.3	
		Lact 3.2 ± 0.7	13 ± 4.9	

As MAS is the main NADH shuttle in brain, this may disrupt the cytosolic NAD+/NADH ratio, directing some of the pyruvate to lactate and limiting pyruvate supply to mitochondria. Because of the transitory nature of the calcium spikes, this imbalance should be a temporal one, and the reactivation of MAS at the end of the spike and beyond the duration of mitochondrial Ca2⁺ transient may be important to re-establish resting cytosolic NAD+/NADH and pyruvate/lactate ratios. Interestingly, a new mechanism to limit the duration of the mitochondrial Ca2⁺ elevation in response to a persistent elevation in cytosolic Ca2⁺, as would occur during repeated stimulation, has been described (77). According to this mechanism, CaU is inhibited by extramitochondrial calcium within a similar range of calcium concentrations as those leading to its activation (10–20 μM), but with a time constant for the uptake (=7.9 s at 10 μM calcium) at about half that for the inhibition (=16 s at 10 μM calcium) (77). Whether this mechanism is also present in brain mitochondria remains to be established.

Studies in heart have shown that activity-dependent inhibition of the OGC and MAS decreases the cytosolic levels of αKG and glutamate (71), and this will lead to a decrease in aspartate efflux from mitochondria and a fall in cytosolic aspartate. Brain aspartate levels are extremely dependent on the AGC activity, and they fall drastically in the aralar/AGC1 knock-out mouse (23). Although it is unlikely that total brain glutamate levels reflect MAS activity, as they are only marginally affected in the aralar knock-out mouse, the changes in aspartate levels could give some clues to MAS activity. Interestingly, Table 3 shows that aspartate levels consistently decrease during brain stimulation, supporting the possibility that MAS is actually inhibited under these conditions. From the above considerations it is obvious that increases in the lactate/pyruvate ratio would be predicted to occur in the brain in vivo, whether as the consequence of sporadic transient increases in cytosolic NADH/NAD⁺ or of trains of cytosolic NADH/NAD⁺ transients upon

Note: αKG efflux (and MAS activity) will be inhibited upon calcium entry to the mitochondria and activation of αKGDH (αKG production/consumption ratio <1, as in brain and heart mitochondria; see Table 2).

Physiological Role of Reversible Matrix Ca2⁺-induced MAS Inhibition—The fact that the activation by extramitochondrial Ca2⁺ of the AGC-MAS pathway is abolished when matrix dehydrogenases are activated by intramitochondrial Ca2⁺ seems paradoxical, especially because MAS is required to keep a stimulated production of glucose-derived pyruvate. However, it must be borne in mind that Ca2⁺ signals are usually of a transient nature, and it is their frequency more than their amplitude that matters in terms of decoding and generation of an output. In every Ca2⁺ spike that reaches mitochondria eliciting a mitochondrial Ca2⁺ transient, the AGC-MAS pathway would be active at the beginning and end of the spike, but in the central part of it the CaU-mitDH pathway would take over (5). The prevalence of MAS at the beginning of a spike is based on the lower S0.5 of the system (300 nM) compared with the apparent affinity for Ca2⁺ of the CaU (1–20 μM) and to the lag between cytosolic and mitochondrial calcium increases (76). With a limited Ca2⁺ entry in mitochondria, the activation of the AGC-MAS pathway accounts for most of the increase in mitochondrial NADH production elicited by the Ca2⁺ spike (4), and this may prime mitochondria in the face of an immediate rise in energy expenditure (Fig. 4B) (4, 5). At the end of the spike, MAS re-activation could take place if basal levels of matrix Ca2⁺ are regained before cytosolic ones are reached (Fig. 4D). Indeed, MAS inhibition by intramitochondrial calcium disappears when Ca2⁺ efflux is enhanced over calcium uptake upon CaU inhibition. Furthermore, if the cytosolic Na⁺ concentration increases, as expected in depolarizing conditions, the more active NCX will reduce the extent of MAS inhibition at the center of the spike, and it will hasten the recovery of activity both of OGC and MAS activities at the end of the spike.

Our results suggest that the main NADH-producing pathway in mitochondria at the center of the spike is the Ca2⁺-activated tricarboxylic acid cycle or Krebs cycle, and not MAS.
repeated depolarization, as one would expect during periods of brain activation. In agreement with this, a number of studies have shown that during task-dependent brain activation, there is an increase in brain glucose utilization larger than the increase in oxygen use and a simultaneous lactate production (14, 16–19) (see Table 3).

It has been proposed that most of the lactate produced upon brain activation arises in astrocytes, which increase the glycolytic rate to energize the uptake of glutamate along with Na⁺. In this context, brain activation arises in astrocytes, which increase the glycolytic rate to energize the uptake of glutamate along with Na⁺ (14, 16–19) (see Table 3).

Conclusions—In this work, we show that MAS activation by extramitochondrial calcium is abolished in the event of αKGDH activation by intramitochondrial calcium, in brain and heart mitochondria. This inhibition is based on the competition of both pathways for the shared substrate αKG. When matrix calcium concentrations regain a basal level, MAS activity is recovered, and this may extend the mitochondrial energization beyond the end of the cytosolic Ca²⁺ signal. This inhibition of MAS activity may contribute, in part, to explain the “lactate paradox” observed upon brain stimulation in vivo, as it would lead to increased aerobic glycolysis and lactate formation, although enough oxygen is available and the Krebs cycle is activated.

Acknowledgments—We thank Barbara Sesé, Inmaculada Ocaña, Juliana Sánchez García, and Isabel Manzo for excellent technical assistance. The CIBER de Enfermedades Raras is an initiative of the ISCIII.

REFERENCES

1. Nichols, B. J., and Denton, R. M. (1995) Mol. Cell. Biochem. 149–150, 203–212
2. Lasorsa, F. M., Pinton, P., Palmieri, L., Fiermonte, G., Rizzuto, R., and Palmieri, F. (2003) J. Biol. Chem. 278, 38686–38692
3. Palmieri, L., Pardo, B., Lasorsa, F. M., del Arco, A., Kobayashi, K., Iijima, M., Runswick, M. J., Walker, J. E., Saheki, T., Satrustegui, J., and Palmieri, F. (2001) EMBO J. 20, 5060–5069
4. Pardo, B., Contreras, L., Serrano, A., Ramos, M., Kobayashi, K., Iijima, M., Saheki, T., and Satrustegui, J. (2006) J. Biol. Chem. 281, 1039–1047
5. Satrustegui, J., Pardo, B., and del Arco, A. (2007) Physiol. Rev. 87, 29–67
6. Begum, L., Jalil, M. A., Kobayashi, K., Iijima, M., Li, M. X., Yasuda, T., Horiuchi, M., del Arco, A., Satrustegui, J., and Saheki, T. (2002) Biochim. Biophys. Acta 1574, 283–292
7. del Arco, A., Morcillo, J., Martinez-Moreales, J. R., Galán, C., Martos, V., Bovolenta, P., and Satrustegui, J. (2002) Eur. J. Biochem. 269, 3313–3320
8. Ramos, M., del Arco, A., Pardo, B., Martinez-Serrano, A., Martinez-Moreales, J. R., Kobayashi, K., Yasuda, T., Bogonez, E., Bovolenta, P., Saheki, T., and Satrustegui, J. (2003) Brain Res. Dev. Brain Res. 143, 33–46
9. Berkich, D. A., Ola, M. S., Cole, J., Sweat, A. J., Hutson, S. M., and LaNoue, K. F. (2007) J. Neurosci. Res. 85, 3367–3377
10. Cañer, D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barnes, B. A. (2008) J. Neurosci. 28, 264–278
11. Xu, Y., Ola, M. S., Berkich, D. A., Gardner, T. W., Barber, A. J., Palmieri, F., Hutson, S. M., and LaNoue, K. F. (2007) J. Neurosci. 101, 120–131
12. Lovatt, D., Sonnewald, U., Waaagepetersen, H. S., Schousboe, A., He, W., Lin, J. H., Han, X., Takano, T., Wang, S., Sim, F. J., Goldman, S. A., and Nedergaard, M. (2007) J. Neurosci. 27, 12255–12266
13. Watkins, J., Basu, S., and Bogenhagen, D. F. (2008) J. Proteome Res. 7, 328–338
14. Fox, P. T., Raichle, M. E., Mintun, M. A., and Dence, C. (1988) Science 241, 462–464
15. Raichle, M. E., and Mintun, M. A. (2006) Ann. Rev. Neurosci. 29, 449–476
16. Madsen, P. L., Cruz, N. F., Sokoloff, L., and Dienel, G. A. (1999) J. Cereb. Blood Flow Metab. 19, 393–400
17. Cruz, N. F., Ball, K. K., and Dienel, G. A. (2007) J. Neurosci. Res. 85, 3254–3266
18. Dienel, G. A., Wang, R. Y., and Cruz, N. F. (2002) J. Cereb. Blood Flow Metab. 22, 1490–1502
19. Manjia, S., Tkac, I., Gruetter, R., Van de Moortele, P. F., Maraviglia, B., and Ugurbil, K. (2007) J. Cereb. Blood Flow Metab. 27, 1055–1063
20. Han, D., Antunes, F., Canali, R., Rettori, D., and Cadenas, E. (2003) J. Biol. Chem. 278, 5557–5563
21. Martinez-Serrano, A., and Satrustegui, J. (1992) Mol. Biol. Cell 3, 235–248
22. Rolfo, D. F., Hubbert, A. J., and Brand, M. D. (1994) Biochim. Biophys. Acta 1188, 405–416
23. Jalil, M. A., Begum, L., Contreras, L., Pardo, B., Iijima, M., Li, M. X., Ramos, M., Marmol, P., Horiuchi, M., Shimotsu, K., Nakagawa, S., Okubo, A., Sameshima, M., Isashiki, Y., Del Arco, A., Kobayashi, K., Satrustegui, J., and Saheki, T. (2005) J. Biol. Chem. 280, 31333–31339
24. Atlante, A., Gagliardi, S., Marra, E., Calissano, P., and Passarella, S. (1999) J. Neurochem. 73, 237–246
25. Cederbaum, A. I., Lieber, C. S., Beattie, D. S., and Rubin, E. (1973) Arch. Biochem. Biophys. 158, 763–781
26. Cheeseman, A. J., and Clark, J. B. (1988) J. Neurochem. 50, 1559–1565
27. Dawson, A. G., and Cooney, G. J. (1978) FEBS Lett. 91, 169–172
28. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
29. Martinez, A., Vitorica, J., and Satrustegui, J. (1988) Neurosci. Lett. 88, 336–342
30. Robert, R., and Horder, M. (1983) in Methods of Enzymatic Analysis. Enzymes I: Oxidoreductases, Transferases (Bergmeyer, H. U., Bergmeyer, H., and Grassl, M., eds) Vol. III, 3rd Ed., Verlag Chemie, Weinheim, Germany
31. Erakovic, V., Zupan, G., Varljen, J., Laginja, J., and Simonic, A. (2001) Epilepsia 42, 181–189
32. Staruk, A. A., Fiskum, G., Chinopoulos, C., Lorenzo, B. J., Browne, S. E., Patel, M. S., and Beal, M. F. (2004) J. Neurosci. 24, 7779–7788
33. Tretter, L., and Adam-Vizi, V. (2000) J. Neurosci. 20, 8972–8979
34. Chalmers, S., and Nicholls, D. G. (2003) J. Biol. Chem. 278, 19062–19070
35. Hernandez-SanMiguel, E., Vay, L., Santo-Domingo, J., Lobaton, C. D., Moreno, A., Montero, M., and Alvarez, J. (2006) Cell Calcium 40, 53–61
36. Contreras, L., Gomez-Puertas, P., Iijima, M., Kobayashi, K., Saheki, T., and Satrustegui, J. (2007) J. Biol. Chem. 282, 7098–7106
37. Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M. A. (2006) FEBS J. 273, 2077–2099
38. Panov, A., Dikalov, S., Shalbuevya, N., Hemendinger, R., Greenamyre, J. T., and Rosenfeld, J. (2007) Am. J. Physiol. 292, C708–C718
MAS Inhibition by Intramitochondrial Calcium

39. Rutter, G., Pralong, W., and Wollheim, C. (1992) Biochim. Biophys. Acta
1175, 107–113

40. MacDonald, M. J., and Brown, L. J. (1996) Arch. Biochem. Biophys. 326,
79–84

41. Wernet, M. E., Ochs, R. S., and Lardy, H. A. (1981) J. Biol. Chem. 256,
12767–12771

42. Scholz, T. D., and Koppenhafer, S. L. (1995) Pediatr. Res. 38, 221–227

43. Scholz, T. D., Koppenhafer, S. L., TenEyck, C. J., and Schutte, B. C. (1997)
J. Mol. Cell. Cardiol. 29, 1605–1613

44. Leveille, P. J., McGinnis, J. F., Maxwell, D. S., and de Vellis, J. (1980)
J. Bioenerg. Biomembr.

45. McKenna, M. C., Waagepetersen, H. S., Schousboe, A., and Sonnewald, U.
Biochem. J. 29, 2375–2381

46. Bernardinelli, Y., Azarias, G., and Chatton, J. Y. (2006) Glia 54, 460–470

47. de Bari, L., Atlante, A., Guaragnella, N., Principato, G., and Passarella, S.
Biochim. Biophys. Acta 170, 41–49

48. Runswick, M., Walker, J., Bisaccia, F., Iacobazzi, V., and Palmieri, F. (1990)
Proc. Natl. Acad. Sci. U. S. A. 87, 13430–13439

49. McCormack, J. G., and Denton, R. M. (1979) Brain Res. 196, 287–305

50. McCormack, J. G., Halestrap, A. P., and Denton, R. M. (1990) Biochem.
Pharmacol. 71, 399–407

51. Gunter, T. E., Yule, D. I., Gunter, K. K., Eliseev, R. A., and Salter, J. D.
J. Biol. Chem. 264, 13430–13439

52. Gunter, K. K., and Gunter, T. E. (1994) J. Bioenerg. Biomembr. 26,
471–485

53. Gunter, T. E., Yule, D. L., Gunter, K. K., Eliseev, R. A., and Salter, J. D. (2004)
FEBS Lett. 567, 96–102

54. Ichas, F., Mazat, J. P., and Klee, C. (eds) pp. 529–544, Oxford University Press, New
York

55. Vitorica, J., and Satrustegui, J. (1985) FEBS Lett. 180, 533–544

56. Wang, W., Fang, H., Groom, L., Cheng, A., and Palmieri, F. (1990)
Biochemistry 29, 11033–11040

57. Carafoli, E. (2002) Arch. Biochem. Biophys. 161, 347–359

58. Vitorica, J., and Satrustegui, J. (1985) Biochem. J. 225, 41–49

59. LaNoue, K. F., Blyra, J., and Bassett, D. J. (1974) J. Biol. Chem. 249,
7514–7521

60. LaNoue, K. F., Meijer, A. J., and Brouwer, A. (1974) Arch. Biochem. Biophys.
161, 544–550

61. LaNoue, K. F., and Tischler, M. E. (1974) J. Biol. Chem. 249, 7522–7528

62. Bernardinelli, Y., Azarias, G., and Chatton, J. Y. (2006) Glia 54, 460–470

63. Nicholls, D. G. (1978) Biochem. J. 170, 511–522

64. Gunter, T. E., and Pfeiffer, D. R. (1990) Am. J. Physiol. 258, C755–C786

65. McCormack, J. G., Halestrap, A. P., and Denton, R. M. (1990) Physiol. Rev.
70, 391–425

66. Bernardi, P., Angrilli, A., and Azzzone, G. F. (1990) Eur. J. Biochem. 188,
91–97

67. Nicholls, D. G., and Scott, I. D. (1980) Biochem. J. 186, 833–839

68. McCormack, J., and Denton, R. (1999) in Calcium as a Cellular Regulator
(Carafoli, E., and Klee, C., eds) pp. 529–544, Oxford University Press, New
York

69. Gellerich, F. N., Gizzuttullina, Z., Nguyen, H. P., Trumbeckaite, S., Viel-
haber, S., Seppet, E., Zierz, S., Landwehrmeyer, B., Riess, O., von Horsten,
S., and Striggow, F. (2008) J. Biol. Chem. 283, 30715–30724

70. O'Donnell, J. M., Doumen, C., LaNoue, K. F., White, L. T., Yu, X., Alpert,
N. M., and Lewandowski, E. D. (1998) Am. J. Physiol. 274, H467–H476

71. O'Donnell, J. M., Kudej, R. K., LaNoue, K. F., Patle, S. F., and Lewan-
dowski, E. D. (2004) Am. J. Physiol. 286, H2237–H2242

72. Sluse, F. E., Goffart, G., and Liebecq, C. (1973) Eur. J. Biochem. 32,
283–291

73. Marmol, P., Pardo, B., Wiederkehr, A., Del Arco, A., Wollheim, C. B., and
Satrustegui, J. (2009) J. Biol. Chem. 284, 515–524

74. Carobbio, S., Frigerio, F., Ribi, B., Vetterli, L., Bloksgaard, M., Gjinoveci, A.,
Pourournourmohammadi, S., Herrera, P. L., Reith, W., Mandrup, S., and
Maechler, P. (2008) J. Biol. Chem. 283, 921–929

75. Yang, S. J., Huh, J. W., Kim, M. I., Lee, W. J., Kim, T. U., Choi, S. Y., and
Cho, S. W. (2003) Biochimie (Paris) 85, 581–586

76. Monteith, G. R., and Blaustein, M. P. (1999) Am. J. Physiol. 276,
C1193–C1204

77. Moreau, B., Nelson, C., and Parekh, A. B. (2006) Curr. Biol. 16, 1672–1677

78. Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R., and Webb,
W. W. (2004) Science 305, 99–103

79. Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. (1999)
Science 283, 496–497

80. Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R., and Webb,
W. W. (2004) Proc. Natl. Acad. Sci. U. S. A. 91, 10625–10629

81. Poiry, C. L., Poiry, S., and Tsacopoulos, M. (1995) J. Neurosci. 15,
5179–5191

82. Nehlig, A., and Coles, J. A. (2007) Glia 55, 1238–1250

83. Caesar, K., Hashemi, P., Douhou, A., Bonvento, G., Bouteille, M. G., Walls,
A. B., and Lauritzen, M. (2008) J. Physiol. (Lond.) 586, 1337–1349

84. Kasischke, K. A. (2008) J. Physiol. (Lond.) 586, 1207–1208

85. Waglepetersen, H. S., Doring, S., and Schousboe, A. (2008) Neurochem.
Res. 33, 1610–1617

86. Nakagawa, K., Schousboe, A., Sonnewald, U., and Waglepetersen, H. S. (2006)
Neurochem. Res. 31, 1610–1617

87. Patel, A. B., Chowdhury, G. M., de Graaf, R. A., Rothman, D. L., Shulman,
R. G., and Behar, K. L. (2005) J. Neurosci. Res. 79, 128–138