THE CANONICAL ARITHMETIC HEIGHT OF SUBVARIETIES
OF AN ABELIAN VARIETY
OVER A FINITELY GENERATED FIELD

ATSUSHI MORIWAKI

INTRODUCTION

This paper is the sequel of [4]. In [4], S. Zhang defined the canonical height of subvarieties of an abelian variety over a number field in terms of adelic metrics. In this paper, we generalize it to an abelian variety defined over a finitely generated field over \(\mathbb{Q} \). Our way is slightly different from his method. Instead of using adelic metrics directly, we introduce an adelic sequence and an adelic structure (cf. §§3.1).

Let \(K \) be a finitely generated field over \(\mathbb{Q} \) with \(d = \text{tr} \deg_{\mathbb{Q}}(K) \), and \(\mathcal{B} = (\mathcal{B}, \mathcal{H}_1, \ldots, \mathcal{H}_d) \) a polarization of \(K \), i.e., \(\mathcal{B} \) is a projective arithmetic variety whose function field is \(K \), and \(\mathcal{H}_1, \ldots, \mathcal{H}_d \) are nef \(C^\infty \)-hermitian line bundles on \(\mathcal{B} \). Let \(A \) be an abelian variety over \(K \), and \(\mathcal{L} \) a symmetric ample line bundle on \(A \). Fix a projective arithmetic variety \(\mathcal{A} \) over \(\mathcal{B} \) and a nef \(C^\infty \)-hermitian \(\mathcal{Q} \)-line bundle \(\mathcal{L} \) on \(\mathcal{A} \) such that \(A \) is the generic fiber of \(\mathcal{A} \rightarrow \mathcal{B} \) and \(\mathcal{L} \) is isomorphic to \(\mathcal{L} \) on \(A \). Then we can assign the naive height \(\hat{h}^{\mathcal{B}}_{(\mathcal{A}, \mathcal{X})}(X) \) to a subvariety \(X \) of \(A_K \). Indeed, if \(X \) is defined over \(K \), \(\hat{h}^{\mathcal{B}}_{(\mathcal{A}, \mathcal{X})}(X) \) is given by

\[
\hat{h}^{\mathcal{B}}_{(\mathcal{A}, \mathcal{X})}(X) = \frac{\deg (c_1(\mathcal{L}|_X))^{\dim X + 1} \cdot c_1(\pi_X^*(\mathcal{H}_1)) \cdot \cdots \cdot c_1(\pi_X^*(\mathcal{H}_d))}{(\dim X + 1) \deg (\mathcal{L}|_X^{\dim X})},
\]

where \(\mathcal{X} \) is the Zarisky closure of \(X \) in \(\mathcal{A} \) and \(\pi_X : \mathcal{X} \rightarrow \mathcal{B} \) is the canonical morphism. The canonical height \(\hat{h}^{\mathcal{B}}_L(X) \) of \(X \) with respect to \(L \) and \(\mathcal{B} \) is characterized by the following properties:

(a) \(\hat{h}^{\mathcal{B}}_L(X) \geq 0 \) for all subvarieties \(X \) of \(A_K \).

(b) There is a constant \(C \) such that

\[
\left| \hat{h}^{\mathcal{B}}_L(X) - \hat{h}^{\mathcal{B}}_{(\mathcal{A}, \mathcal{X})}(X) \right| \leq C
\]

for all subvarieties \(X \) of \(A_K \).

(c) \(\hat{h}^{\mathcal{B}}_L([N](X)) = N^2 \hat{h}^{\mathcal{B}}_L(X) \) for all subvarieties \(X \) of \(A_K \) and all non-zero integers \(N \).

The main result of this paper is the following theorem, which is a generalization of [3].

Theorem (cf. Theorem [5, 7]). If the polarization \(\mathcal{B} \) is big (i.e., \(\mathcal{H}_1, \ldots, \mathcal{H}_d \) are nef and big), then, for a subvariety \(X \) of \(A_K \), the following are equivalent.

*Date: 19/October/1999, 0:20PM (JP), (Version 1.0).

1991 Mathematics Subject Classification. Primary 11G35, 14G25, 14G40; Secondary 11G10, 14K15.

Key words and phrases. height function, abelian variety, finitely generated field, Arakelov Geometry, Bogomolov’s conjecture."
(1) X is a translation of an abelian subvariety by a torsion point.
(2) The set $\{ x \in X(\mathbb{K}) \mid h_{\mathbb{K}}^X(x) \leq \epsilon \}$ is Zariski dense in X for every $\epsilon > 0$.
(3) The canonical height of X with respect to L and \mathcal{B} is zero, i.e., $h_{\mathbb{K}}^X(X) = 0$.

Next let us consider a case where a curve and its Jacobian. Let X be a smooth projective curve of genus $g \geq 2$ over K, and J the Jacobian of X. Let Θ be a symmetric theta divisor on J, and $j : X \to J$ a morphism given by $j(x) = \omega_X - (2g - 2)x$. Then, since $j^*(\mathcal{O}_J(\Theta)) = \omega_X^{2g(g-1)}$, we can assign the canonical adelic structure \mathcal{X}^1 to ω_X. As a corollary of the above theorem, we have the following, which is a generalization of [3].

Corollary (cf. Corollary 5.4). If the polarization \mathcal{B} is big, then the adelic self intersection number of \mathcal{X}^1 with respect to \mathcal{B} is positive, i.e., $\langle \mathcal{X}^1 \cdot \mathcal{X}^1 \rangle_{\mathcal{B}} > 0$.

1. Preliminaries

For the basic notation of Arakelov Geometry, we follow the paper [2].

Let X be a projective arithmetic variety with $d = \dim X_{\mathbb{Q}}$, and \mathcal{L} a C^∞-hermitian \mathbb{Q}-line bundle on X. First we review several kinds of positivity of \mathcal{L}.

- **ample**: We say \mathcal{L} is ample if L is ample, $c_1(\mathcal{L})$ is a semipositive form on $X(\mathbb{C})$, and, for a sufficiently large n, $H^0(X, L^{\otimes n})$ is generated by $\{ s \in H^0(X, L^{\otimes n}) \mid \|s\|_{\text{sup}} < 1 \}$.

- **nef**: We say \mathcal{L} is nef if $c_1(\mathcal{L})$ is a semipositive form on $X(\mathbb{C})$ and, for all one-dimensional integral closed subschemes Γ of X, $\deg (\mathcal{L}_\Gamma) \geq 0$.

- **big**: \mathcal{L} is said to be big if $\rk_{\mathbb{Z}} H^0(X, L^{\otimes n}) = O(m^n)$, and there is a non-zero section s of $H^0(X, L^{\otimes n})$ with $\|s\|_{\text{sup}} < 1$ for some positive integer n.

- **\mathbb{Q}-effective**: We say \mathcal{L} is \mathbb{Q}-effective, denote by $\mathcal{L} \succeq 0$, if there are a positive integer n and a non-zero section $s \in H^0(X, L^{\otimes n})$ with $\|s\|_{\text{sup}} \leq 1$. Moreover, if U is a non-empty Zariski open set of X with $\text{div}(s) \subseteq X \setminus U$, then we use the notation $\mathcal{L} \succeq_U 0$. Let \mathcal{M} be another C^∞-hermitian \mathbb{Q}-line bundle on X. If $\mathcal{L} \otimes \mathcal{M}^{\otimes -1} \succeq 0$ (resp. $\mathcal{L} \otimes \mathcal{M}^{\otimes -1} \succeq_U 0$), then we denote this by $\mathcal{L} \succeq \mathcal{M}$ (resp. $\mathcal{L} \succeq_U \mathcal{M}$).

Proposition 1.1. (1) If \mathcal{L} is a nef C^∞-hermitian \mathbb{Q}-line bundle and \mathcal{A} is an ample C^∞-hermitian \mathbb{Q}-line bundle, then $\mathcal{L} + \epsilon \mathcal{A}$ is ample for all positive rational numbers ϵ.
(2) If $\mathcal{L}_1, \ldots, \mathcal{L}_{d+1}$ are nef C^∞-hermitian \mathbb{Q}-line bundles, then
$$\widehat{\deg} (c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{d+1})) \geq 0.$$
(3) If $\mathcal{L}_1, \ldots, \mathcal{L}_d$ are nef C^∞-hermitian \mathbb{Q}-line bundles and \mathcal{M} is a \mathbb{Q}-effective C^∞-hermitian \mathbb{Q}-line bundle, then
$$\widehat{\deg} (c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_d) \cdot c_1(\mathcal{M})) \geq 0.$$
(4) Let $\mathcal{L}_1, \ldots, \mathcal{L}_{d+1}$ and $\mathcal{M}_1, \ldots, \mathcal{M}_{d+1}$ be nef C^∞-hermitian line bundles on X. If $\mathcal{M}_i \succeq \mathcal{L}_i$ for every i, then
$$\widehat{\deg} (c_1(\mathcal{M}_1) \cdots c_1(\mathcal{M}_{d+1})) \geq \widehat{\deg} (c_1(\mathcal{L}_1) \cdots c_1(\mathcal{L}_{d+1})).$$
Theorem 1.1. Let X be a projective arithmetic variety, and L a big C^∞-hermitian \mathbb{Q}-line bundle on X. Let x be a (not necessarily closed) point of X. Then, there are a positive number n and a non-zero section $s \in H^0(X, L^\otimes n)$ with $s(x) = 0$ and $\|s\|_{\sup} < 1$.

Proof. Since $\text{rk}_\mathbb{Z} H^0(X, L^\otimes m) = O(m^d)$, there are a positive number n_0 and a non-zero section $s_0 \in H^0(X, L^\otimes n_0)$ with $s_0(x) = 0$. On the other hand, there is a non-zero section $s_1 \in H^0(X, L^\otimes n_1)$ with $\|s_1\|_{\sup} < 1$ for some positive integer n_1. Let n_2 be a positive integer with $\|s_0\|_{\sup}^n \|s_1\|^n_{\sup} < 1$.

Thus, if we set $s = s_0 \otimes s_1^\otimes n_2 \in H^0(X, L^\otimes n_0+n_1n_2)$, then we have the desired assertion.

Lemma 1.2. Let X be a projective arithmetic variety, and L a bundle on X. Then, we have the following lemma.

Lemma 1.3. Let B be a projective arithmetic variety and K the function field of B. Let X be a projective variety over K, and L an ample line bundle on X. Then, there are a projective arithmetic variety \mathcal{X} over B, and an ample C^∞-hermitian \mathbb{Q}-line bundle \mathcal{L} on \mathcal{X} such that X is the generic fiber of $\mathcal{X} \to B$ and \mathcal{L} coincides with L in $\text{Pic}(X) \otimes \mathbb{Q}$.

Proof. Choose a sufficiently large integer n such that $\phi|_{L^\otimes n}$ gives rise to an embedding $X \hookrightarrow \mathbb{P}^N_K$. Let \mathcal{X} be the Zariski closure of X in $\mathbb{P}^N_B = \mathbb{P}^N \times B$. Since $\mathcal{O}_{\mathbb{P}^N}(1)$ is relative ample, there is an ample line bundle Q on B such that $\mathcal{A} = \mathcal{O}_{\mathbb{P}^N}(1) \otimes \pi^*(Q)$ is ample, where π is the natural projection $\mathbb{P}^N_B \to B$. We choose a C^∞-hermitian metric of \mathcal{A} such that $\mathcal{A} = (\mathcal{A}, \|\cdot\|)$ is ample. Thus, if we set $\mathcal{L} = (\mathcal{A}|_{\mathcal{X}})^{\otimes 1/n}$, then we have our assertion.

Next, let us consider the following relative positivity.

• π-nef (nef with respect to a morphism): Let $\pi : X \to B$ be a morphism of projective arithmetic varieties, and L a C^∞-hermitian \mathbb{Q}-line bundle on X. We say L is nef with respect to $X \to B$ (or π-nef) if the following properties are satisfied:

(1) For any analytic maps $h : M \to X(\mathbb{C})$ from a complex manifold M to $X(\mathbb{C})$ with $\pi(h(M))$ being a point, $c_1(h^*(L))$ is semipositive.

(2) For every $b \in B$, the restriction $L|_{X_\pi}$ of L to the geometric fiber over b is nef.

Then, we have the following lemma.

Lemma 1.4. Let $\pi : X \to B$ be a morphism of projective arithmetic varieties with $d = \text{dim } B_\mathbb{Q}$ and $e = \text{dim}(X/B)$. Let H_1, \ldots, H_d be nef C^∞-hermitian \mathbb{Q}-line bundles on B. Then, we have the following.
(1) Let $\mathcal{L}_1, \ldots, \mathcal{L}_e$ be π-nef C^∞-hermitian \mathbb{Q}-line bundles on X, and \mathcal{L} a C^∞-hermitian \mathbb{Q}-line bundle on X. If there is a non-empty Zariski open set U of B with $\mathcal{L} \not\supseteq_{\pi^{-1}(U)} 0$, then

$$\deg(\hat{c}_1(\mathcal{L}_1) \cdots \hat{c}_1(\mathcal{L}_e) \cdot \hat{c}_1(\mathcal{L}) \cdot \hat{c}_1(\pi^*\mathcal{H}_1) \cdots \hat{c}_1(\pi^*\mathcal{H}_d)) \geq 0.$$

(2) Let $\mathcal{T}_1, \ldots, \mathcal{T}_{e+1}$ and $\mathcal{T}_1^{\prime}, \ldots, \mathcal{T}_{e+1}^{\prime}$ be π-nef C^∞-hermitian \mathbb{Q}-line bundles on X. If there is a Zariski open set U of B such that $\mathcal{T}_i \not\supseteq_{\pi^{-1}(U)} \mathcal{T}_i^{\prime}$ for all i, then

$$\deg(\hat{c}_1(\mathcal{T}_1) \cdots \hat{c}_1(\mathcal{T}_{e+1}) \cdot \hat{c}_1(\pi^*\mathcal{H}_1) \cdots \hat{c}_1(\pi^*\mathcal{H}_d)) \geq \deg(\hat{c}_1(\mathcal{T}_1) \cdots \hat{c}_1(\mathcal{T}_{e+1}^{\prime}) \cdot \hat{c}_1(\pi^*\mathcal{H}_1) \cdots \hat{c}_1(\pi^*\mathcal{H}_d)).$$

Proof. (1) By our assumption, there are a positive integer n and a non-zero section $s \in H^0(X, L^\otimes n)$ such that $\|s\|_{\sup} \leq 1$ and $\text{Supp}(\text{div}(s)) \subseteq X \setminus \pi^{-1}(U)$. Let $\text{div}(s) = a_1 \Delta_1 + \cdots + a_r \Delta_r$ be the decomposition as cycles. Then,

$$\int_{X(\mathbb{C})} \log(\|s\|) c_1(\mathcal{L}_1) \wedge \cdots \wedge c_1(\mathcal{L}_e) \wedge c_1(\pi^*\mathcal{H}_1) \wedge \cdots \wedge c_1(\pi^*\mathcal{H}_d).$$

First, by the Fubini’s theorem,

$$\int_{X(\mathbb{C})} \log(\|s\|) c_1(\mathcal{L}_1) \wedge \cdots \wedge c_1(\mathcal{L}_e) \wedge c_1(\pi^*\mathcal{H}_1) \wedge \cdots \wedge c_1(\pi^*\mathcal{H}_d)$$

$$= \int_{B(\mathbb{C})} \left(\int_{X(\mathbb{C})/B(\mathbb{C})} \log(\|s\|) c_1(\mathcal{L}_1) \wedge \cdots \wedge c_1(\mathcal{L}_e) \right) c_1(\mathcal{H}_1) \wedge \cdots \wedge c_1(\mathcal{H}_d).$$

Here, by the property (1) of “π-nef”,

$$\int_{X(\mathbb{C})/B(\mathbb{C})} \log(\|s\|) c_1(\mathcal{L}_1) \wedge \cdots \wedge c_1(\mathcal{L}_e)$$

is a non-negative locally integrable function on $B(\mathbb{C})$. Thus, the integral part of (1.4.1) is non-negative. Let b_i be the generic point of $\pi(\Delta_i)$. Then, by the projection formula, we can see

$$\deg(\hat{c}_1(\mathcal{L}_1|_{\Delta_i}) \cdots \hat{c}_1(\mathcal{L}_e|_{\Delta_i}) \cdot \hat{c}_1(\pi^*\mathcal{H}_1|_{\Delta_i}) \cdots \hat{c}_1(\pi^*\mathcal{H}_d|_{\Delta_i}))$$

$$= \begin{cases}
0 & \text{if codim}(\pi(\Delta_i)) \geq 2 \\
\deg(L_1|_{(\Delta_i)_{b_i}} \cdots L_e|_{(\Delta_i)_{b_i}}) \deg(\hat{c}_1(\mathcal{H}_1|_{\pi(\Delta_i)}) \cdots \hat{c}_1(\mathcal{H}_d|_{\pi(\Delta_i)})) & \text{if codim}(\pi(\Delta_i)) = 1
\end{cases}$$

Therefore, we get (1) because

$$\deg(L_1|_{(\Delta_i)_{b_i}} \cdots L_e|_{(\Delta_i)_{b_i}}) \geq 0 \quad \text{and} \quad \deg(\hat{c}_1(\mathcal{H}_1|_{\pi(\Delta_i)}) \cdots \hat{c}_1(\mathcal{H}_d|_{\pi(\Delta_i)})) \geq 0.$$
(2) Since
\[\widehat{c}_1(\mathcal{L}_1) \cdots \widehat{c}_1(\mathcal{L}_{e+1}) - \widehat{c}_1(\mathcal{L}_1) \cdots \widehat{c}_1(\mathcal{T}_{e+1}) = \sum_{i=1}^{e+1} \widehat{c}_1(\mathcal{L}_1) \cdots \widehat{c}_1(\mathcal{L}_{i-1}) \cdot \left(\widehat{c}_1(\mathcal{L}_i) - \widehat{c}_1(\mathcal{T}_i) \right) \cdot \widehat{c}_1(\mathcal{T}_{i+1}) \cdots \widehat{c}_1(\mathcal{T}_{e+1}), \]

(2) is a consequence of (1). \qed

Finally, let us consider the following lemma.

Lemma 1.5. Let \(\pi : X \to B \) be a morphism of projective arithmetic varieties, and \(\mathcal{T} \) a \(C^\infty \)-hermitian line bundle on \(X \). Let \(U \) be a non-empty Zariski open set of \(B \) such that \(B \setminus U = \text{Supp}(D) \) for some effective Cartier divisor \(D \) on \(B \). If there is a non-zero rational section \(s \) of \(L \) with \(\text{Supp}(\text{div}(s)) \subseteq X \setminus \pi^{-1}(U) \), then there are a positive integer \(n \) and a \(C^\infty \)-metric \(\| \cdot \|_{nD} \) of \(\mathcal{O}_B(nD) \) with
\[\pi^*(\mathcal{O}_B(nD), \| \cdot \|_{nD}) \lesssim_{\pi^{-1}(U)} \mathcal{T} \lesssim_{\pi^{-1}(U)} \pi^*(\mathcal{O}_B(nD), \| \cdot \|_{nD}). \]
Moreover, if \(D \) is ample, then we can choose \(\| \cdot \|_{nD} \) such that \((\mathcal{O}_B(nD), \| \cdot \|_{nD}) \) is ample.

Proof. First, we fix a hermitian metric \(\| \cdot \|_D \) of \(\mathcal{O}_B(D) \). If \(D \) is ample, then we choose \(\| \cdot \|_D \) such that \((\mathcal{O}_B(D), \| \cdot \|_D) \) is ample. Find a positive integer \(n \) with
\[-nf^*(D) \leq \text{div}(s) \leq nf^*(D). \]
Let \(l \) be a section of \(\mathcal{O}_Y(nD) \) with \(\text{div}(l) = nD \). We set \(t_1 = l \otimes s^{-1} \) and \(t_2 = l \otimes s \). Then, \(t_1 \) and \(t_2 \) are global sections of \(\mathcal{O}_X(nf^*(D)) \otimes L^{-1} \) and \(\mathcal{O}_X(nf^*(D)) \otimes L \) respectively. Choose a sufficiently small positive number \(c \) such that if we give a norm of \(\mathcal{O}_B(nD) \) by \(c\| \cdot \|_D \), then \(\|t_1\|_{\text{sup}} \leq 1 \) and \(\|t_2\|_{\text{sup}} \leq 1 \). Thus we get our lemma. \qed

2. Arithmetic height of subvarieties

Let \(K \) be a finitely generated field over \(\mathbb{Q} \) with \(d = \text{tr. deg}_{\mathbb{Q}}(K) \), and \(\mathcal{L} = (B, \mathcal{L}_1, \ldots, \mathcal{L}_d) \) a polarization of \(K \). Let \(X \) be a projective variety over \(K \), and \(L \) a nef line bundle on \(X \). Let \(\mathcal{X} \) be a projective arithmetic variety over \(B \) such that \(X \) is the generic fiber of \(\mathcal{X} \to B \), and let \(\mathcal{L} \) be a \(C^\infty \)-hermitian \(\mathbb{Q} \)-line bundle on \(\mathcal{X} \) such that \(\mathcal{L} \) coincides with \(L \) in \(\text{Pic}(X) \otimes \mathbb{Q} \). The pair \((\mathcal{X}, \mathcal{L}) \) is called a \(C^\infty \)-model of \((X, L) \). We assume that \(\mathcal{L} \) is nef with respect to \(\mathcal{X} \to B \). Note that if \(L \) is ample, then there is a \(C^\infty \)-model \((\mathcal{X}, \mathcal{E}) \) of \((X, L) \) such that \(\mathcal{E} \) is ample by Lemma 1.3.

Let \(Y \) be a subvariety of \(X_{\mathcal{L}} \). We assume that \(Y \) is defined over a finite extension field \(K' \) of \(K \). Let \(B^{K'} \) be the normalization of \(B \) in \(K' \), and let \(\rho^{K'} : B^{K'} \to B \) be the induced morphism. Let \(\mathcal{X}^{K'} \) be the main component of \(\mathcal{X} \times_B B^{K'} \). We set the induced morphisms as follows.

\[
\begin{array}{ccc}
\mathcal{X}^{K'} & \xleftarrow{\pi^{K'}} & \mathcal{X}^{K'} \\
\downarrow & & \downarrow
\pi^{K'} \\
B & \xleftarrow{\rho^{K'}} & B^{K'}
\end{array}
\]
Let Y be the Zariski closure of Y in $\mathcal{X}^{K'}$. Then the naive height $h_{(\mathcal{X}, \mathcal{L})}(Y)$ of Y with respect to $(\mathcal{X}, \mathcal{L})$ and \mathcal{B} is defined by

$$h_{(\mathcal{X}, \mathcal{L})}(Y) = \deg \left(\frac{\deg \left(\mathcal{L}^{\mathcal{X}(\mathcal{L})} \right)^{\dim Y + 1}}{[K' : K](\dim Y + 1) \deg(L|Y)} \right).$$

Note that the above definition does not depend on the choice of K' by the projection formula. Here we have the following proposition. By this proposition, we may denote by h_{L}^N the class of $h_{(\mathcal{X}, \mathcal{L})}$ modulo the set of bounded functions. Moreover, we say h_{L}^N is the height function associated with L and \mathcal{B}.

Proposition 2.1. Let $(\mathcal{X}', \mathcal{L}')$ be another model of (X, L) over B such that \mathcal{L}' is nef with respect to $\mathcal{X}' \rightarrow B$. Then, there is a constant C such that

$$\left| h_{(\mathcal{X}, \mathcal{L})}(Y) - h_{(\mathcal{X}', \mathcal{L}')}(Y) \right| \leq C$$

for all subvarieties Y of X_K.

Proof. Let U be a Zariski open set of B with $\mathcal{X}_U = \mathcal{X}'_U$ and $\mathcal{L}_U = \mathcal{L}'_U$ in Pic(\mathcal{X}_U) $\otimes \mathbb{Q}$. Let A be an ample line bundle on B and I the defining ideal of $B \setminus U$. Then, there is a non-zero section t of $H^0(B, A^{\otimes m} \otimes I)$ for some positive integer m. Thus, $B \setminus U \subseteq \mathrm{Supp}(\mathrm{div}(s))$. Therefore, shrinking U, we may assume that there is an effective ample Cartier divisor D on B with $\mathrm{Supp}(D) = B \setminus U$.

Let $\mu : Z \rightarrow \mathcal{X}$ and $\mu' : Z \rightarrow \mathcal{X}'$ be birational morphisms of projective arithmetic varieties such that μ and μ' are the identity map over \mathcal{X}_U. Then, $h_{(\mathcal{X}, \mathcal{L})}(Y) = h_{(\mathcal{X}, \mathcal{L})}(Y)$ and $h_{(\mathcal{X}', \mathcal{L}')}(Y) = h_{(\mathcal{X}', \mathcal{L}')}(Y)$ for all subvarieties Y of X_K. Thus, to prove our proposition, we may assume that $\mathcal{X} = \mathcal{X}'$.

First of all, by Lemma 1.3, there is a nef C^∞-hermitian line bundle \mathcal{L} on B such that

$$(2.1.1) \quad \pi^*(\mathcal{L})^{\otimes -1} \preceq \pi_{-1}(U) \mathcal{L} \otimes \mathcal{L}^{\otimes -1} \preceq \pi_{-1}(U) \pi^*(\mathcal{L}),$$

where $\pi : \mathcal{X} \rightarrow B$ is the canonical morphism. Let Y be a subvariety of X_K. We assume that Y is defined over a finite extension field K' of K. Let $B^{K'}$ be the normalization of B in K', and $\mathcal{X}^{K'}$ the main components of $\mathcal{X} \times_B B^{K'}$. Let \mathcal{Y} be the closure of Y in $\mathcal{X}^{K'}$. Then,

$$h_{(\mathcal{X}, \mathcal{L})}(Y) = \deg \left(\frac{\deg \left(\mathcal{L}^{\mathcal{X}(\mathcal{L})} \right)^{\dim Y + 1}}{[K' : K](\dim Y + 1) \deg(L|Y)} \right)$$

and

$$h_{(\mathcal{X}', \mathcal{L}')}(Y) = \deg \left(\frac{\deg \left(\mathcal{L}^{\mathcal{X}'(\mathcal{L}')} \right)^{\dim Y + 1}}{[K' : K](\dim Y + 1) \deg(L|Y)} \right),$$

where $\mathcal{L}^{\mathcal{X}(\mathcal{L})}$ and $\mathcal{L}^{\mathcal{X}'(\mathcal{L}')}$ are the pullbacks of \mathcal{L} and \mathcal{L}' to \mathcal{X} and \mathcal{X}', respectively.
where \(\mathcal{L}^{K'}, \mathcal{L}'^{K'} \) and \(\mathcal{H}'_i^{K'} \)'s are pullbacks of \(\mathcal{L}, \mathcal{L}' \) and \(\mathcal{H}'_i \)'s to \(X^{K'} \) respectively. Here, by virtue of (2.1.1),
\[
\mathcal{L}^{K'} \otimes T^{K' \otimes -1} \simeq \mathcal{L}'^{K'} \simeq \mathcal{L}'^{K'} \otimes T^{K'}.
\]
Therefore, by (2) of Lemma [4], we can see that
\[
\left| \text{deg} \left(\hat{c}_1 \left(\mathcal{L}^{K'} \right|_Y \right) - \text{deg} \left(\hat{c}_1 \left(\mathcal{H}'_1^{K'} \right|_Y \right) \cdots \hat{c}_1 \left(\mathcal{H}'_d^{K'} \right|_Y \right) \right| \leq [K': K](\dim Y + 1) \deg(L_{1, Y}^{\text{dim} Y}) \deg(T \cdot H_1 \cdots H_d).
\]
Thus we get our proposition. \(\square \)

3. Adelic sequence and adelic structure

3.1. Adelic sequence, adelic structure and adelic line bundle. Let \(K \) be a finitely generated field over \(\mathbb{Q} \) with \(d = \text{tr} \cdot \deg_{\mathbb{Q}}(K) \), and \(B = (B; H_1, \ldots, H_d) \) a polarization of \(K \).

Let \(X \) be a projective variety over \(K \), and \(L \) a nef line bundle on \(X \).

A sequence of \(C^\infty \)-models \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \) of \((X, L) \) is called an adelic sequence of \((X, L) \) (with respect to \(B \)) if \(\mathcal{L}_n \) is nef with respect to \(\mathcal{X}_n \to B \) for every \(n \), and there is a non-empty Zariski open set \(U \) of \(B \) with following properties:

\((1) \) \(\mathcal{X}_n|_U = \mathcal{X}_m|_U \) (say \(\mathcal{X}_U \)) and \(\mathcal{L}_n|_U = \mathcal{L}_m|_U \) in \(\text{Pic}(\mathcal{X}_U) \otimes \mathbb{Q} \) for all \(n, m \).

\((2) \) For each \(n, m \), there are a projective arithmetic variety \(\mathcal{X}_{n,m} \) over \(B \), birational morphisms \(\mu_{n,m}^*: \mathcal{X}_{n,m} \to \mathcal{X}_n \) and \(\mu_{m,n}^*: \mathcal{X}_{n,m} \to \mathcal{X}_m \), and a nef \(C^\infty \)-hermitian \(\mathbb{Q} \)-line bundle \(\mathcal{D}_{n,m} \) on \(\mathcal{X}_{n,m} \) such that
\[
\pi_{n,m}^* \left(\mathcal{D}_{n,m}^{\otimes -1} \right) \simeq \pi_{n,m}^* \left(\mathcal{L}_n \right) \otimes \left(\mu_{n,m}^* \right)^* \left(\mathcal{D}_{m}^{\otimes -1} \right) \simeq \pi_{n,m}^* \left(\mathcal{D}_{n,m} \right)
\]
and that
\[
\text{deg} \left(\hat{c}_1 \left(\mathcal{D}_{n,m} \right) \cdot \hat{c}_1 \left(\mathcal{H}_1 \right) \cdots \hat{c}_1 \left(\mathcal{H}_d \right) \right) \to 0
\]
as \(n, m \to \infty \), where \(\pi_{n,m} \) is the natural morphism \(\mathcal{X}_{n,m} \to B \).

The open set \(U \) as above is called a common base of the sequence \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \). Note that if \(U' \) is a non-empty Zariski open set of \(U \), then \(U' \) is also a common base of \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \).

Let \(\{ (\mathcal{Y}_n, \mathcal{M}_n) \} \) be another adelic sequence of \((X, L) \). We say \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \) is equivalent to \(\{ (\mathcal{Y}_n, \mathcal{M}_n) \} \), denoted by \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \sim \{ (\mathcal{Y}_n, \mathcal{M}_n) \} \), if the concatenated sequence
\[
(\mathcal{X}_1, \mathcal{L}_1), (\mathcal{Y}_1, \mathcal{M}_1), \ldots, (\mathcal{X}_n, \mathcal{L}_n), (\mathcal{Y}_n, \mathcal{M}_n), \ldots
\]
is adelic. In other words, if we choose a suitable common base \(U \), then, for each \(n \), there are a projective arithmetic variety \(\mathcal{Z}_n \) over \(B \), birational morphisms \(\nu_n : \mathcal{Z}_n \to \mathcal{X}_n \) and \(\nu_n : \mathcal{Z}_n \to \mathcal{Y}_n \), and a nef \(C^\infty \)-hermitian \(\mathbb{Q} \)-line bundle \(\mathcal{D}_n \) on \(\mathcal{Z}_n \) such that
\[
\pi_{\mathcal{Z}_n}^* \left(\mathcal{D}_n^{\otimes -1} \right) \simeq \pi_{\mathcal{Z}_n}^* \left(\mathcal{L}_n \right) \otimes \nu_n^* \left(\mathcal{M}_n^{\otimes -1} \right) \simeq \pi_{\mathcal{Z}_n}^* \left(\mathcal{D}_n \right)
\]

Thus, we have
\[
\pi_{\mathcal{Z}_n}^* \left(\mathcal{D}_n^{\otimes -1} \right) \simeq \pi_{\mathcal{Z}_n}^* \left(\mathcal{L}_n \right) \otimes \nu_n^* \left(\mathcal{M}_n^{\otimes -1} \right)
\]
for all \(n \).
and that
\[
\lim_{n \to \infty} \widehat{\deg} \left(\hat{c}_1(D_n) \cdot \hat{c}_1(H_1) \cdots \hat{c}_1(H_d) \right) = 0,
\]
where \(\pi_{Z_n} \) is the natural morphism \(Z_n \to B \).

An equivalent class of adelic sequences of \((X, L)\) is called an *adelic structure of \(L \)* (with respect to \(B \)). Further, a line bundle \(L \) with an adelic structure is called an *adelic line bundle* and is often denoted by \(\mathcal{T} \) for simplicity. If an adelic line bundle \(\mathcal{T} \) is given by an adelic sequence \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \), then we denote this by \(\mathcal{T} = \lim_{n \to \infty} (\mathcal{X}_n, \mathcal{L}_n) \). Moreover, we say \(\mathcal{T} \) is nef if \(\mathcal{T} = \lim_{n \to \infty} (\mathcal{X}_n, \mathcal{L}_n) \) and \(\mathcal{L}_n \) is nef for \(n \gg 0 \).

Let \(g : Y \to X \) be a morphism of projective varieties over \(K \), and \(\mathcal{T} \) an adelic line bundle on \(X \). We assume that \(\mathcal{T} \) is given by an adelic sequence \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \). Let us fix a morphism \(g_n : \mathcal{Y}_n \to \mathcal{X}_n \) of projective arithmetic varieties over \(B \) for each \(n \) with the following properties:

(a) \(g_n : \mathcal{Y}_n \to \mathcal{X}_n \) coincides with \(g : Y \to X \) over \(K \) for every \(n \).

(b) There is a non-empty Zariski open set \(U \) of \(B \) such that \(\mathcal{Y}_n|_U = \mathcal{Y}_m|_U, \mathcal{X}_n|_U = \mathcal{X}_m|_U \), and \(g_n|_U = g_m|_U \) for all \(n, m \).

Then it is not difficult to see that \(\{ (\mathcal{Y}_n, g_n^*(\mathcal{L}_n)) \} \) is an adelic sequence of \((Y, g^*(L)) \). We denote by \(g^*(\mathcal{T}) \) the adelic structure given by \(\{ (\mathcal{Y}_n, g_n^*(\mathcal{L}_n)) \} \). Note that this adelic structure does not depend on the choice of the adelic sequence \(\{ (\mathcal{X}_n, \mathcal{L}_n) \} \) and the morphisms \(g_n : \mathcal{Y}_n \to \mathcal{X}_n \).

3.2. Adelic sequence by an endomorphism.

Let \(K \) be a finitely generated field over \(\mathbb{Q} \) with \(d = \text{tr. deg}_{\mathbb{Q}}(K) \), and \(B = (B; \mathcal{P}_1, \ldots, \mathcal{P}_d) \) a polarization of \(K \). Let \(X \) be a projective variety over \(K \), and \(L \) an ample line bundle on \(X \). We assume that there is a surjective morphism \(f : X \to X \) and an integer \(d \geq 2 \) with \(L^\otimes d \simeq f^*(L) \). Let \((\mathcal{X}, \mathcal{T}) \) be a \(C^\infty \)-model of \((X, L)\) such that \(\mathcal{T} \) is nef with respect to \(\mathcal{X} \to B \). Note that the existence of a \(C^\infty \)-model \((\mathcal{X}, \mathcal{T})\) of \((X, L)\) with \(\mathcal{L} \) being nef with respect to \(\mathcal{X} \to B \) is guaranteed by Lemma 1.3. Then, there is a Zariski open set \(U \) of \(B \) such that \(f \) extends to \(f_U : \mathcal{X}_U \to \mathcal{X}_U \) and \(\mathcal{L}_U^\otimes d = f_U^*(\mathcal{L}_U) \) in \(\text{Pic}(\mathcal{X}_U) \otimes \mathbb{Q} \). Let \(\mathcal{X}_n \) be the normalization of \(\mathcal{X}_U \xrightarrow{f_U^n} \mathcal{X}_U \to \mathcal{X} \), and \(f_n : \mathcal{X}_n \to \mathcal{X} \) the induced morphism. Then, we have the following proposition.

Proposition 3.2.1.

1. \(\{ (\mathcal{X}_n, f_n^*(\mathcal{T})^\otimes d-n) \} \) is an adelic sequence of \((X, L)\). Moreover, if \(\mathcal{T} \) is nef, then the adelic line bundle \(\lim_{n \to \infty} (\mathcal{X}_n, f_n^*(\mathcal{T})^\otimes d-n) \) is nef.
2. Let \(f' : X \to X \) be another surjective morphism with \(L^\otimes d' \simeq f'^*(L) \) for some \(d' \geq 2 \). Let \((\mathcal{X}', \mathcal{T}') \) be another \(C^\infty \)-model of \((X, L)\) such that \(\mathcal{T}' \) is nef with respect to \(\mathcal{X}' \to B \). Let \(U' \) be a non-empty Zariski open set of \(B \) such that \(f' \) extends to \(f_U' : \mathcal{X}_U' \to \mathcal{X}_U' \) and \(\mathcal{L}_U'^\otimes d' = f_U'^*(\mathcal{L}_U') \) in \(\text{Pic}(\mathcal{X}_U') \otimes \mathbb{Q} \). Let \(\mathcal{X}_n' \) be the normalization of \(\mathcal{X}_U' \xrightarrow{f_U'^n} \mathcal{X}_U' \to \mathcal{X}' \), and \(f_n' : \mathcal{X}_n' \to \mathcal{X}' \) the induced morphism. If \(f \cdot f' = f' \cdot f \), then

\[
\left\{ (\mathcal{X}_n, f_n^*(\mathcal{T})^\otimes d-n) \right\} \sim \left\{ (\mathcal{X}_n', f_n'^*(\mathcal{T})^\otimes d'-n) \right\}.
\]
Definition 3.2.2 (f-adelic structure). The adelic sequence \(\left\{ (\mathcal{X}_n, f_n^*(\overline{\mathcal{L}})^{\otimes d^{-n}}) \right\} \) in the above proposition gives rise to the adelic structure on \(L \), which is called the \(f \)-adic structure of \(L \). The line bundle \(L \) with this adelic structure is denoted by \(\overline{T}^f \), i.e., \(\overline{T}^f = \lim_{n \to \infty} (\mathcal{X}_n, f_n^*(\overline{\mathcal{L}})^{\otimes d^{-n}}) \). Considering a case “\(f = f^m \)” in (2), we can see that \(\overline{T}^f \) does not depend on the choice of the \(C^\infty \)-model \((\mathcal{X}, \overline{\mathcal{L}})\). Moreover, (2) says us that if \(f \cdot f' = f' \cdot f \), then \(\overline{T}^f = \overline{T}'^f \). Further, \(\overline{T}^f \) is nef by the second assertion of (1) and Lemma 1.3.

Proof of Proposition 3.2.1 In the same way as in the proof of Proposition 2.1, shrinking \(U \) if necessarily, we may assume that there is an effective ample Cartier divisor \(D \) on \(B \) with \(\Supp(D) = B \setminus U \).

(1) For simplicity, we denote \(f_n^*(\overline{\mathcal{L}})^{\otimes d^{-n}} \) by \(\overline{\mathcal{L}}_n \). From now on, we treat the group structure of the Picard group additively. Note that \(X_0 = \mathcal{X} \) and \(\overline{\mathcal{L}}_0 = \overline{\mathcal{L}} \). Let \(\mathcal{Y} \) be a projective arithmetic variety over \(B \) such that there are birational morphisms \(\rho_0 : \mathcal{Y} \to X_0 \) and \(\rho_1 : \mathcal{Y} \to X_1 \), which are the identity map over \(U \). We fix \(n > m \geq 0 \). Let \(\mathcal{Z} \) be a projective arithmetic variety over \(B \) with the following properties:

(a) \(Z_U = X_U \).
(b) For each \(m \leq i \leq n \), there is a birational morphism \(\mu_i : \mathcal{Z} \to X_i \), which is the identity map over \(U \).
(c) For each \(m \leq j < n \), there is a morphism \(g_j : \mathcal{Z} \to \mathcal{Y} \) which is an extension of \(f_U^* : Z_U \to Y_U \).

Here we claim the following.

Claim 3.2.3. (i) \(\mu_{j+1}(\overline{\mathcal{L}}_{j+1}) = d^{-j}g_j^*(\rho_1^*(\overline{\mathcal{L}}_1)) \) for each \(m \leq j \leq n \).
(ii) \(\mu_j^*(\overline{\mathcal{L}}_j) = d^{-j}g_j^*(\rho_0^*(\overline{\mathcal{L}}_0)) \) for each \(m \leq j < n \).
(iii) \(\mu_m^*(\overline{\mathcal{L}}_m) - \mu_m^*(\overline{\mathcal{L}}_m) = \sum_{j=m}^{n-1} d^{-j}g_j^*(\rho_1^*(\overline{\mathcal{L}}_1) - \rho_0^*(\overline{\mathcal{L}}_0)). \)

(i) Let us consider the following two morphisms between \(\mathcal{Z} \) and \(X_0 \):
\[
\mathcal{Z} \xrightarrow{g_j} \mathcal{Y} \xrightarrow{\rho_1} X_1 \xrightarrow{f_1} X_0 \quad \text{and} \quad \mathcal{Z} \xrightarrow{\mu_{j+1}} X_{j+1} \xrightarrow{f_{j+1}} X_0.
\]
These are same over \(U \). Thus, so are over \(B \). Therefore, \(g_j^*\rho_1^*f_1^*(\overline{\mathcal{L}}) = \mu_{j+1}^*f_{j+1}^*(\overline{\mathcal{L}}) \), which shows us the assertion of (i).

(ii) In the same way as above, we can see \(\mu_j \cdot f_j = \rho_0 \cdot g_j \). Thus we get (ii).

(iii) Since \(\mu_{n}(\overline{\mathcal{L}}_n) - \mu_{m}(\overline{\mathcal{L}}_m) = \sum_{j=m}^{n-1} \mu_{j+1}(\overline{\mathcal{L}}_{j+1}) - \mu_{j}^*(\overline{\mathcal{L}}_{j}) \), this is a consequence of (i) and (ii).

By Lemma 1.3, there is an ample \(C^\infty \)-hermitian line bundle \(\Delta \) on \(B \) such that
\[
-\pi_\mathcal{Y}^*(\Delta) \lesssim_{\pi_\mathcal{Y}^{-1}(U)} \rho_1^*(\overline{\mathcal{L}}_1) - \rho_0^*(\overline{\mathcal{L}}_0) \lesssim_{\pi_\mathcal{Y}^{-1}(U)} \pi_\mathcal{Y}^*(\Delta).
\]
Hence, by (iii) of the above claim, we get
\[- \left(\sum_{j=m}^{n-1} d^{-j} \right) \pi_{\bar{\Delta}}^* (\bar{\Delta}) \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} \mu_n^* (\mathcal{L}_n) - \mu_m^* (\mathcal{L}_m) \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} \left(\sum_{j=m}^{n-1} d^{-j} \right) \pi_{\bar{\Delta}}^* (\bar{\Delta}).\]

Thus, we obtain the first assertion of (1). The second assertion is obvious.

(2) Let us consider the following cases:

Case 1: \(f = f' \).

Case 2: \(\mathcal{X} = \mathcal{X}' \) and \(\bar{\mathcal{L}} = \bar{\mathcal{L}}' \).

Clearly, it is sufficient to check (2) under the assumption Case 1 or Case 2.

Case 1: In this case, we assume \(f = f' \). Shrinking \(U \) and \(U' \), we may assume that \(U = U' \), \(\mathcal{X}_U = \mathcal{X}'_U \), and \(\mathcal{L}_U = \mathcal{L}'_U \) in \(\text{Pic}(\mathcal{X}_U) \otimes \mathbb{Q} \). For each \(n \geq 0 \), let \(Z_n \) be a projective arithmetic variety over \(B \) such that there are birational morphisms \(\nu_n : Z_n \to \mathcal{X}_n \) and \(\nu'_n : Z_n \to \mathcal{X}'_n \), which are the identity map over \(U \). We may assume that there is a morphism \(g_n : Z_n \to Z_0 \) such that the following diagrams are commutative:

\[
\begin{array}{c}
Z_0 \leftarrow g_n \downarrow \leftarrow g_n \downarrow \leftarrow g_n \\
\mathcal{X}_0 \leftarrow f_n \downarrow \leftarrow f_n \downarrow \leftarrow f_n
\end{array}
\]

Then,
\[d^{-n} \nu_n^* (f_n^* (\mathcal{L})) - d^{-n} \nu_n' (f_n' (\mathcal{L}')) = d^{-n} g_n^* (\nu_0^* (\mathcal{L}) - \nu_0' (\mathcal{L}')).\]

By Lemma [3], there is an ample \(C^\infty \)-hermitian line bundle \(\bar{\Delta} \) on \(B \) such that
\[- \pi_{\bar{\Delta}}^* (\bar{\Delta}) \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} \nu_0^* (\bar{\mathcal{L}}) - \nu_0' (\bar{\mathcal{L}}') \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} \pi_{\bar{\Delta}}^* (\bar{\Delta}).\]

Therefore, we have
\[-d^{-n} \pi_{\bar{\Delta}}^* (\bar{\Delta}) \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} d^{-n} \nu_n^* (f_n^* (\mathcal{L})) - d^{-n} \nu_n' (f_n' (\mathcal{L}')) \lesssim_{\pi_{\bar{\Delta}}^{-1}(U)} d^{-n} \pi_{\bar{\Delta}}^* (\bar{\Delta}),\]
which shows us our assertion in this case.

Case 2: In this case, we assume that \(\mathcal{X} = \mathcal{X}' \) and \(\bar{\mathcal{L}} = \bar{\mathcal{L}}' \). We denote \(f_n^* (\bar{\mathcal{L}})^{\otimes d^{-n}} \) and \(f_n' (\bar{\mathcal{L}})^{\otimes d^{-n}} \) by \(\bar{\mathcal{L}}_n \) and \(\bar{\mathcal{L}}'_n \) respectively. Let \(\mathcal{Y} \) be a projective arithmetic variety over \(B \) such that there are birational morphisms \(\rho : \mathcal{Y} \to \mathcal{X}, \rho_1 : \mathcal{Y} \to \mathcal{X}_1, \) and \(\rho'_1 : \mathcal{Y} \to \mathcal{X}'_1, \) which are the identity map over \(U \). We fix \(n > 0 \). Let \(Z \) be a projective arithmetic variety over \(B \) with the following properties:

(a) \(Z_U = \mathcal{X}_U \).

(b) For each \(0 \leq i \leq n \), there are birational morphisms \(\mu_i : Z \to \mathcal{X}_i \) and \(\mu'_i : Z \to \mathcal{X}'_i \), which are the identity map over \(U \).

(c) For each \(0 \leq j \leq n \), there are morphisms \(g_j : Z \to \mathcal{Y} \) and \(g'_j : Z \to \mathcal{Y} \) which are extensions of \(f_j^U : \mathcal{Z}_U \to \mathcal{Y}_U \) and \(f'_j^U : \mathcal{Z}_U \to \mathcal{Y}_U \) respectively.
Note that $\mu_0 = \mu'_0$. Then, in the same way as in (1) ((iii) of Claim 3.2.3), we can see

\begin{equation}
\mu_n^*(\mathcal{L}_n) - \mu_0^*(\mathcal{E}) = \sum_{j=0}^{n-1} d^{-j} g_j^* (\rho_1^* \mathcal{L}_1 - \rho_0^*(\mathcal{L}))
\end{equation}

and

\begin{equation}
\mu'_n^*(\mathcal{L}'_n) - \mu'_0^*(\mathcal{E}) = \sum_{j=0}^{n-1} d'^{-j} g'_j (\rho'_1^* \mathcal{L}'_1 - \rho'_0^*(\mathcal{L})).
\end{equation}

Let \mathcal{Z}_n (resp. \mathcal{Z}'_n) be the normalization of $\mathcal{Z}_U \xrightarrow{f_0} \mathcal{Z}_U \rightarrow \mathcal{Z}$ (resp. $\mathcal{Z}_U \xrightarrow{f'_0} \mathcal{Z}_U \rightarrow \mathcal{Z}$) and let $h_n : \mathcal{Z}_n \rightarrow \mathcal{Z}$ (resp. $h'_n : \mathcal{Z}'_n \rightarrow \mathcal{Z}$) be the induced morphism. Moreover, let T be a projective arithmetic variety over B such that there are birational morphisms $\tau : T \rightarrow \mathcal{Z}_n$, $\tau' : T \rightarrow \mathcal{Z}'_n$, $\sigma : T \rightarrow \mathcal{X}_n$, and $\sigma' : T \rightarrow \mathcal{X}'_n$, which are the identity map over U. Now we have a lot of morphisms, so that we summarize them. The following morphisms are birational and the identity map over U.

\begin{align*}
\mathcal{Y} \xrightarrow{\rho} \mathcal{X} \quad & \quad \mathcal{Y} \xrightarrow{\rho_1} \mathcal{X}_1 \quad \mathcal{Z} \xrightarrow{\mu} \mathcal{X}_i \quad T \xrightarrow{\tau} \mathcal{Z}_n \quad T \xrightarrow{\sigma} \mathcal{X}_n \\
\mathcal{Y} \xrightarrow{\rho'_1} \mathcal{X}'_1 \quad \mathcal{Z} \xrightarrow{\mu'} \mathcal{X}'_i \quad T \xrightarrow{\tau'} \mathcal{Z}'_n \quad T \xrightarrow{\sigma'} \mathcal{X}'_n
\end{align*}

Moreover, the following morphisms are extensions of the power of f or f'.

\begin{align*}
\mathcal{X}_n \xrightarrow{f_n} \mathcal{X} \quad & \quad \mathcal{Z} \xrightarrow{g_j} \mathcal{Y} \quad \mathcal{Z}_n \xrightarrow{h_n} \mathcal{Z} \\
\mathcal{X}'_n \xrightarrow{f'_n} \mathcal{X}' \quad & \quad \mathcal{Z} \xrightarrow{g'_j} \mathcal{Y} \quad \mathcal{Z}'_n \xrightarrow{h'_n} \mathcal{Z}
\end{align*}

Here, $f_n \cdot \mu_n \cdot h_n \cdot \tau' = f'_n \cdot \mu'_n \cdot h_n \cdot \tau$ over U because $f \cdot f' = f' \cdot f$. Hence, so is over B as $T \rightarrow \mathcal{X}$. Thus,

\begin{equation}
d^{-n} \tau^* h_n^*(\mu_n^*(\mathcal{L}_n) - \mu_0^*(\mathcal{E})) - d^{-n} \tau^* h_n^*(\mu'_n^*(\mathcal{L}'_n) - \mu'_0^*(\mathcal{E})) = d^{-n} \tau^* h_n^* \mu_0^*(\mathcal{L}) - d^{-n} \tau'^* h'_n^* \mu'_0^*(\mathcal{L})
\end{equation}

Moreover, since $\mu_0 \cdot h_n \cdot \tau = f_n \cdot \sigma$ and $\mu_0 \cdot h'_n \cdot \tau' = f'_n \cdot \sigma'$, by the above equation, we have

\begin{equation}
d^{-n} \tau^* h_n^*(\mu_n^*(\mathcal{L}_n) - \mu_0^*(\mathcal{L})) - d^{-n} \tau^* h_n^*(\mu'_n^*(\mathcal{L}'_n) - \mu'_0^*(\mathcal{L})) = \sigma^*(\mathcal{L}) - \sigma'^*(\mathcal{L}')
\end{equation}

On the other hand, by Lemma 3.3, we can find ample C^∞-hermitian \mathbb{Q}-line bundles \mathcal{X} and \mathcal{L}' such that

\begin{equation}
-\pi_1^*(\Delta) \preceq_{\pi_1^*(\mathcal{U})} \rho_1^*(\mathcal{L}_1) - \rho^*(\mathcal{L}) \preceq_{\pi_1^*(\mathcal{U})} \pi_1^*(\Delta)
\end{equation}

and

\begin{equation}
-\pi_1^*(\Delta) \preceq_{\pi_1^*(\mathcal{U})} \rho'_1^*(\mathcal{L}'_1) - \rho^*(\mathcal{L}) \preceq_{\pi_1^*(\mathcal{U})} \pi_1^*(\Delta)
\end{equation}

Therefore, if we set

\begin{align*}
d_n = \left(d^{-n} \sum_{j=0}^{n-1} d^{-j} \right) \quad & \quad d'_n = \left(d^{-n} \sum_{j=0}^{n-1} d'^{-j} \right)
\end{align*}
then, by (3.2.4) and (3.2.5),
\[-d_n π_τ(Δ) \lesssim π_{τ^{-1}(U)} d''^{-n} \tau^* h^*_n (μ^*_n(\overline{L}) - μ^*_0(\overline{L})) \lesssim π_{τ^{-1}(U)} d_n π_τ(Δ),\]
and
\[-d'_n π_τ(\overline{\Delta}) \lesssim π_{τ^{-1}(U)} d''^{-n} \tau^* h^*_n (μ^*_n(\overline{L}) - μ^*_0(\overline{L})) \lesssim π_{τ^{-1}(U)} d'_n π_τ(\overline{\Delta}).\]

Hence, using (3.2.8),
\[-π_τ \left(d_n Δ + d'_n \overline{\Delta} \right) \lesssim π_{τ^{-1}(U)} \sigma^*(\overline{L}) - σ^*(\overline{L}) \lesssim π_{τ^{-1}(U)} π_τ \left(d_n Δ + d'_n \overline{\Delta} \right).\]

Therefore, we have this case because \(\lim_{n→∞} d_n = \lim_{n→∞} d'_n = 0.\) □

4. Adelic intersection number and adelic height

4.1. Adelic intersection number. Let \(K\) be a finitely generated field over \(\mathbb{Q}\) with \(d = \text{tr. deg}_\mathbb{Q}(K)\), and \(\mathcal{B} = (B; \mathcal{H}_1, \ldots, \mathcal{H}_d)\) a polarization of \(K\).

Proposition 4.1.1. Let \(X\) be an \(e\)-dimensional projective variety over \(K\), and let \(L_1, \ldots, L_{e+1}\) be nef line bundles on \(X\). Let \(\{(X^{(i)}_n, \overline{X}^{(i)}_n)\}\) be an adelic sequence of \((X, L_i)\) for each \(1 ≤ i ≤ e + 1\). Let \(\mathcal{Z}_n\) be a projective arithmetic variety over \(B\) such that there are birational morphisms \(μ^{(i)}_n : \mathcal{Z}_n → X^{(i)}_n (i = 1, \ldots, e + 1)\). Then, the limit
\[\overline{\text{deg}} \left(\hat{c}_1(μ^{(1)}_n(\overline{X}^{(1)}_n)) \cdots \hat{c}_1(μ^{(e+1)}_n(\overline{X}^{(e+1)}_n)) \cdot \hat{c}_1(π^*_Z(\mathcal{H}_1)) \cdots \hat{c}_1(π^*_Z(\mathcal{H}_d)) \right)\]
as \(n → ∞\) exists, where \(π_Z : \mathcal{Z}_n → B\) is the natural morphism. Moreover, if \(\{(Y^{(i)}_n, \overline{Y}^{(i)}_n)\}\) is another adelic sequence of \((X, L_i)\) for each \(1 ≤ i ≤ e + 1\), and \(\{(X^{(i)}_n, \overline{X}^{(i)}_n)\}\) is equivalent to \(\{(Y^{(i)}_n, \overline{Y}^{(i)}_n)\}\) for each \(i\), then the limit by \(\{(X^{(i)}_n, \overline{X}^{(i)}_n)\}\) coincides with the limit by \(\{(Y^{(i)}_n, \overline{Y}^{(i)}_n)\}\).

Proof. Let \(\mathcal{Z}_{n,m}\) be a projective arithmetic variety over \(B\) such that there are birational morphisms \(\mathcal{Z}_{n,m} → \mathcal{Z}_n\) and \(\mathcal{Z}_{n,m} → \mathcal{Z}_m\). By abuse of notation, we denote birational morphisms \(\mathcal{Z}_{n,m} → X^{(i)}_n\) and \(\mathcal{Z}_{n,m} → X^{(j)}_m\) by \(μ^{(i)}_n\) and \(μ^{(j)}_m\) respectively. First of all, we can see
\[
\hat{c}_1(μ^{(1)}_n(\overline{X}^{(1)}_n)) \cdots \hat{c}_1(μ^{(e+1)}_n(\overline{X}^{(e+1)}_n)) = \sum_{i=1}^{e+1} \hat{c}_1(μ^{(1)}_n(\overline{X}^{(1)}_n)) \cdots \hat{c}_1(μ^{(i)}_n(\overline{X}^{(i)}_n)) \cdots \hat{c}_1(μ^{(e+1)}_m(\overline{X}^{(e+1)}_m)).
\]

Therefore, it is sufficient to show that, for any positive \(ε\), there is a positive integer \(N\) such that if \(n, m ≥ N\), then
\[\overline{\text{deg}} \left(Δ_{n, m, i} \cdot \hat{c}_1(π^*_Z(\mathcal{H}_1)) \cdots \hat{c}_1(π^*_Z(\mathcal{H}_d)) \right) ≤ ε,\]
where \(Δ_{n, m, i} = \hat{c}_1(μ^{(1)}_n(\overline{X}^{(1)}_n)) \cdots \hat{c}_1(μ^{(i)}_n(\overline{X}^{(i)}_n)) \cdots \hat{c}_1(μ^{(e+1)}_m(\overline{X}^{(e+1)}_m)).\) By the definition of adelic sequences, there are a projective arithmetic variety \(X_{n,m}\) over \(B\), a
birational morphism \(\nu_{n,m} : X_{n,m} \to Z_{n,m} \), and a nef \(C^\infty \)-hermitian \(\mathbb{Q} \)-line bundle \(\mathcal{D}_{n,m} \) on \(B \) such that
\[
-\pi^*_{X_{n,m}}(\mathcal{D}_{n,m}) \geq \nu^*_{n,m} \left(\mu^{(i)*}_n(\mathcal{L}^{(i)}_{n}) - \mu^{(i)*}_m(\mathcal{L}^{(i)}_{m}) \right) \geq \pi^*_{X_{n,m}}(\mathcal{D}_{n,m}).
\]
Here, since \(\mathcal{L}^{(i)}_n \)'s are nef with respect to \(X^{(i)}_{n} \to B \) and \(\mathcal{H}_j \)'s are nef, by using Lemma 1.4 together with the projection formula, we can see
\[
\left| \widehat{\deg} \left(\Delta_{n,m,i} \cdot \hat{c}_1(\pi^*_{Z_{n,m}}(\mathcal{H}_1)) \cdots \hat{c}_1(\pi^*_{Z_{n,m}}(\mathcal{H}_d)) \right) \right|
\leq \deg(L_1 \cdots L_{i-1} \cdot L_{i+1} \cdots L_{e+1}) \left| \widehat{\deg} \left(\hat{c}_1(\mathcal{D}_{n,m}) \cdot \hat{c}_1(\mathcal{H}_1) \cdots \hat{c}_1(\mathcal{H}_d) \right) \right|.
\]
Thus we get the first assertion. The second one is obvious by the definition of equivalence.

Definition 4.1.2 (Adelic intersection number). Let \(\mathcal{L}_1, \ldots, \mathcal{L}_{e+1} \) be adelic line bundles on \(X \). Then, by the above proposition, the limit of intersection numbers does not depend on the choice of adelic sequences representing each \(\mathcal{L}_i \). Thus, we may define the adelic intersection number \(\langle \mathcal{L}_1 \cdots \mathcal{L}_{e+1} \rangle_B \) to be the limit in Proposition 4.1.1.

Here let us consider the following two propositions. The second proposition is a property concerning the specialization of adelic intersection number.

Proposition 4.1.3. Let \(\mathcal{L}_1, \ldots, \mathcal{L}_{e+1} \) be adelic line bundles on \(X \). Then, we have the following.

1. If \(\mathcal{L}_1, \ldots, \mathcal{L}_{e+1} \) are nef, then \(\langle \mathcal{L}_1 \cdots \mathcal{L}_{e+1} \rangle_B \geq 0 \).
2. Let \(\mathcal{H}_1, \ldots, \mathcal{H}_d \) be nef \(C^\infty \)-hermitian line bundles on \(B \) with \(\mathcal{H}_i \supseteq \mathcal{H}_j \) for all \(i \). If \(\mathcal{L}_1, \ldots, \mathcal{L}_{e+1} \) are nef, then
\[
\langle \mathcal{L}_1 \cdots \mathcal{L}_{e+1} \rangle_{(B; \mathcal{H}_1, \ldots, \mathcal{H}_d)} \geq \langle \mathcal{L}_1 \cdots \mathcal{L}_{e+1} \rangle_{(B; \mathcal{H}_1, \ldots, \mathcal{H}_d)}.
\]
3. Let \(g : Y \to X \) be a generically finite morphism of projective varieties over \(K \). Then,
\[
\langle g^*(\mathcal{L}_1) \cdots g^*(\mathcal{L}_{e+1}) \rangle_B = \deg(g) \langle \mathcal{L}_1 \cdots \mathcal{L}_{e+1} \rangle_B
\]

Proof. (1) is a consequence of (2) of Proposition 1.1. (2) follows from (4) of Proposition 1.1. (3) is a consequence of the projection formula.

Proposition 4.1.4. Let \(\{ \langle X_n, \mathcal{L}_n \rangle \} \) be an adelic sequence of \((X, L) \) such that \(\mathcal{L}_n \) is nef for every \(n \), and let \(\mathcal{L} \) be a nef adelic line bundle on \(X \) given by the adelic sequence \(\{ \langle X_n, \mathcal{L}_n \rangle \} \). Let \(U \) be a common base of the adelic sequence \(\{ \langle X_n, \mathcal{L}_n \rangle \} \) (cf. the definition of adelic sequences in §3.1). Let \(\gamma \) be a point of codimension one in \(U_Q \) such that \(X_U \) is flat over \(\gamma \) and the fiber \(X_\gamma \) of \(X_U \to U \) over \(\gamma \) is integral. Then, \(X_\gamma \) is a projective variety over the residue field \(\kappa(\gamma) \) at \(\gamma \), and \(L_\gamma = \mathcal{L}|_{X_\gamma} \) is a line bundle on \(X_\gamma \). Let \(\Gamma \) be the Zariski closure of \(\{ \gamma \} \) in \(B \), and \(\mathcal{Z}_n \) the Zariski closure of \(X_\gamma \) in \(X_n \). If \(\mathcal{H}_d \) is big, then we have the following.

1. \(\{ \langle \mathcal{Z}_n, \mathcal{L}_n \rangle \} \) is an adelic sequence of \((X_\gamma, L_\gamma) \) with respect to \(\langle \Gamma; \mathcal{H}_1|_\Gamma, \ldots, \mathcal{H}_{d-1}|_\Gamma \rangle \).
(2) If we denote by \(\mathcal{T} \) the adelic line bundle arising from the adelic sequence \(\{(\mathcal{Z}_n, \mathcal{L}_n|\mathcal{Z}_n)\} \), then \(\langle \mathcal{T}^{\dim X+1} \rangle_{(B; \mathcal{H}_1, \ldots, \mathcal{H}_d)} = 0 \) implies \(\langle \mathcal{T}_\gamma^{\dim X+1} \rangle_{(\Gamma; \mathcal{H}_1|\Gamma, \ldots, \mathcal{H}_{d-1}|\Gamma)} = 0 \).

Proof. First of all, by using Lemma 1.2, we fix a positive integer \(N \) and a non-zero section \(s \in H^0(B, \mathcal{H}_d^N) \) with \(s(\gamma) = 0 \) and \(\|s\|_{\sup} \leq 1 \). Then, \(\text{div}(s) = \Gamma + \Sigma \) for some effective divisor \(\Sigma \).

(1) To prove (1), it is sufficient to show that
\[
\lim_{n,m \to \infty} \sup \langle \deg (\mathcal{D}_{n,m}|\Gamma) \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle = 0,
\]
where \(\mathcal{D}_{n,m} \) is a nef \(C^\infty \)-hermitian \(\mathbb{Q} \)-line bundle on \(B \) appeared in the definition of adelic sequences (cf. §3.3). First of all,
\[
N \langle \deg (\mathcal{D}_{n,m} \cdot \mathcal{H}_1 \cdots \mathcal{H}_d) \rangle = \langle \deg (\mathcal{D}_{n,m}|\Gamma) \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle + \langle \mathcal{H}_1 \cdots \mathcal{H}_d \rangle + \int_{B(\mathbb{C})} -\log(\|s\|) c_1(\mathcal{D}_{n,m}) \wedge c_1(\mathcal{H}_1) \wedge \cdots \wedge c_1(\mathcal{H}_d).
\]

Here every term is non-negative. Thus, we can see that
\[
\lim_{n,m \to \infty} \sup \langle \deg (\mathcal{D}_{n,m}|\Gamma) \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle = 0.
\]

(2) We can set \(\text{div}(\pi_{\mathcal{X}_n}^*(s)) = \mathcal{Z}_n + \Delta_n \) for some effective divisor \(\Delta_n \). Therefore,
\[
N \langle \deg (\mathcal{Z}_n)^{e+1} \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle = \langle \deg (\mathcal{Z}_n)^{e+1} \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle + \langle \mathcal{H}_1 \cdots \mathcal{H}_d \rangle + \int_{\mathcal{X}_n(\mathbb{C})} -\log(\|\pi_{\mathcal{X}_n}^*(s)\|) c_1(\mathcal{Z}_n)^{e+1} \wedge c_1(\mathcal{H}_1) \wedge \cdots \wedge c_1(\mathcal{H}_d).
\]

Since the last two terms of the above equation are non-negative, we have
\[
N \langle \deg (\mathcal{Z}_n)^{e+1} \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle \geq \langle \deg (\mathcal{Z}_n)^{e+1} \cdot \mathcal{H}_1 \cdots \mathcal{H}_d \rangle.
\]

Thus, taking \(n \to \infty \),
\[
N \langle \mathcal{T}^{\dim X+1} \rangle_{(B; \mathcal{H}_1, \ldots, \mathcal{H}_d)} \geq \langle \mathcal{T}_\gamma^{\dim X+1} \rangle_{(\Gamma; \mathcal{H}_1|\Gamma, \ldots, \mathcal{H}_{d-1}|\Gamma)}.
\]

Therefore, we get (2). \(\square \)
4.2. Adelic height. Let K be a finitely generated field over \mathbb{Q} with $d = \text{tr. deg}_\mathbb{Q}(K)$, and $\mathcal{B} = (B; \mathcal{P}_1, \ldots, \mathcal{P}_d)$ a polarization of K. Let X be a projective variety over K, and L an ample line bundle on X.

Let \mathcal{T} be an adelic line bundle given by an adelic sequence $\{(X_n, \mathcal{L}_n)\}$. Let K' be a finite extension of K, B' the normalization of B in K', and let $\rho : B' \to B$ be the induced morphism. Let X'_n be the main component of $X_n \times_B B'$. We set the induced morphisms as follows.

$$X_n \xleftarrow{\tau_n} X'_n$$
$$\pi_n \downarrow \quad \downarrow \pi'_n$$

Then, $\{(X'_n, \rho^*(\mathcal{L}_n))\}$ is an adelic sequence of $(X_{K'}, L_{K'})$. We denote by $\mathcal{T}_{K'}$ the adelic line bundle induced by $\{(X'_n, \rho^*(\mathcal{L}_n))\}$. With this notation, if $\mathcal{T}_1, \ldots, \mathcal{T}_{e+1}$ are adelic line bundles on X, then we can see

$$(4.2.1) \quad \langle (\mathcal{T}_1)_{K'} \cdots (\mathcal{T}_{e+1})_{K'} \rangle_{B_{K'}} = [K' : K] \langle (\mathcal{T}_1)_{K'} \cdots (\mathcal{T}_{e+1})_{K'} \rangle_{\mathcal{B}}$$

by virtue of the projection formula, where $\mathcal{B}_{K'} = (B'; \rho^*(\mathcal{P}_1), \ldots, \rho^*(\mathcal{P}_d))$.

Let Y be a subvariety of $X_{K'}$. We assume that Y is defined over K'. Let Y'_n be the closure of Y in X'_n. Then, $\{Y'_n, \rho^*(\mathcal{L}_n) |_{Y'_n}\}$ is an adelic sequence of $(Y, L_{K'} |_{Y'})$. We denote by $\mathcal{T}_{K'} |_{Y'}$ the adelic line bundle given by $\{Y'_n, \rho^*(\mathcal{L}_n) |_{Y'_n}\}$. We define the height of Y with respect to \mathcal{T} to be

$$h^{\mathcal{B}}_{\mathcal{T}}(Y) = \frac{\langle (\mathcal{T}_{K'} |_{Y'})^{\dim Y + 1} \rangle_{\mathcal{B}}}{[K' : K](\dim Y + 1) \deg (L_{K'} |_{Y'})}.$$

Note that by virtue of $(4.2.1)$, the above does not depend on the choice of K'. We call $h^{\mathcal{B}}_{\mathcal{T}}(Y)$ the adelic height of Y with respect to \mathcal{T} and \mathcal{B}.

Proposition 4.2.2. Let X be a projective variety over K, and L an ample line bundle on X. We assume that there is a surjective morphism $f : X \to X$ and an integer $d \geq 2$ with $L^{\otimes d} \simeq f^*(L)$. Let \mathcal{T}^f be the adelic line bundle with the f-adelic structure. Then, we have the following.

1. $h^{\mathcal{B}}_{\mathcal{T}^f}(Y) \geq 0$ for all subvarieties Y of $X_{K'}$.
2. For a C^∞-model $(\mathcal{X}, \mathcal{L})$ of (X, L) with \mathcal{L} being nef with respect to $\mathcal{X} \to B$, there is a constant C such that

$$|h^{\mathcal{B}}_{\mathcal{T}^f}(Y) - h^{\mathcal{B}}_{(\mathcal{X}, \mathcal{L})}(Y)| \leq C$$

for any subvarieties Y of $X_{K'}$.
3. $h^{\mathcal{B}}_{\mathcal{T}^f}(f(Y)) = dh^{\mathcal{B}}_{\mathcal{T}^f}(Y)$ for any subvarieties Y of $X_{K'}$.

Moreover, $h^{\mathcal{B}}_{\mathcal{T}^f}$ is characterized by the above properties (1), (2) and (3).
Proof. (1) Since \mathcal{L}^f is nef by Proposition 3.2.1, (1) is a consequence of (1) of Proposition 4.1.3.

(2) We choose a Zariski open set U of B such that f extends to $f_U : \mathcal{X}_U \to \mathcal{X}$ and $\mathcal{L}^d_f = f^*(\mathcal{L}_U)$ in $\text{Pic}(\mathcal{X}_U) \otimes \mathbb{Q}$. Let \mathcal{X}_n be the normalization of \mathcal{X}_U, $f^n_\mathcal{X} : \mathcal{X}_n \to \mathcal{X}$ the induced morphism. We denote $f_n^*(\mathcal{L})(\otimes d-n)$ by \mathcal{L}_n. Then, as in proof of (1) of Proposition 3.2.1, there are a projective arithmetic variety \mathcal{Z}_n over B, birational morphisms $\mu_n : \mathcal{Z}_n \to \mathcal{X}_n$ and $\nu_n : \mathcal{Z}_n \to \mathcal{X}$ (which are the identity map over U), and an ample C^∞-hermitian line bundle \mathcal{D} on B such that

$$-d_n \pi_n^*(\mathcal{D}) \geq \pi_n^{-1}(U) \mu_n^*(\mathcal{L}_n) - \nu_n^*(\mathcal{D}) \geq \pi_n^{-1}(U) d_n \pi_n^*(\mathcal{D}),$$

where $d_n = \sum_{j=0}^{n-1} d^{-j}$.

Let Y be a subvariety of \mathcal{X}_K. We assume that Y is defined over a finite extension field K' of K. Let B' be the normalization of B in K', and let $\rho : B' \to B$ be the induced morphism. We denote by \mathcal{X}', \mathcal{X}'_n and \mathcal{Z}'_n the main components of $\mathcal{X} \times_B B'$, $\mathcal{X} \times_B B'$ and $\mathcal{Z} \times_B B'$ respectively. We set the induced morphisms as follows.

$$\begin{align*}
\mathcal{X} & \leftarrow \pi \mathcal{X}' \leftarrow \mathcal{X}'_n \leftarrow \mathcal{Z}'_n \leftarrow \mathcal{Z}'_n \\
\mathcal{X}_n & \leftarrow \pi_n \mathcal{X}'_n \leftarrow \mathcal{X}'_n \leftarrow \mathcal{Z}'_n \leftarrow \mathcal{Z}'_n \\
B & \leftarrow \rho \mathcal{B}' \leftarrow \mathcal{B}' \leftarrow \mathcal{B}' \leftarrow \mathcal{B}'
\end{align*}$$

We also have the induced morphisms $\mu'_n : \mathcal{Z}'_n \to \mathcal{X}'_n$ and $\nu'_n : \mathcal{Z}'_n \to \mathcal{X}'. Then,

$$-d_n \pi_n^*(\rho^*\mathcal{D}) \geq \pi_n^{-1}(U) \mu'_n^*(\tau_n^*\mathcal{L}_n) - \nu'_n^*(\tau_n^*\mathcal{D}) \geq \pi_n^{-1}(U) d_n \pi_n^*(\rho^*\mathcal{D}),$$

On the other hand, since

$$\hat{c}_1(\mu'_n(\tau_n^*\mathcal{L}_n))^{\dim Y+1} - \hat{c}_1(\nu'_n(\tau_n^*\mathcal{D}))^{\dim Y+1} = \sum_{i=1}^{\dim Y+1} \hat{c}_1(\mu'_n(\tau_n^*\mathcal{L}_n))^{-i-1} \cdot (\hat{c}_1(\mu'_n(\tau_n^*\mathcal{L}_n)) - \hat{c}_1(\nu'_n(\tau_n^*\mathcal{D}))) \hat{c}_1(\nu'_n(\tau_n^*\mathcal{D}))^{\dim Y-i+1},$$

by using Lemma 4.4, we have

$$\left| \hat{\deg} \left(\hat{c}_1(\tau_n^*\mathcal{L}_n) \right)^{\dim Y+1} \cdot \hat{c}_1(\pi_j^*\rho^*\mathcal{H}_1) \cdots \hat{c}_1(\pi_j^*\rho^*\mathcal{H}_d) \right|$$

$$-\hat{\deg} \left(\hat{c}_1(\tau^*\mathcal{L}) \right)^{\dim Y+1} \cdot \hat{c}_1(\pi_j^*\rho^*\mathcal{H}_1) \cdots \hat{c}_1(\pi_j^*\rho^*\mathcal{H}_d)$$

$$\leq d_n[K' : K] \left(\dim Y + 1 \right) \deg(L_Y^{\dim Y}) \hat{\deg} \left(\hat{c}_1(\mathcal{D}) \cdot \hat{c}_1(\mathcal{H}_1) \cdots \hat{c}_1(\mathcal{H}_d) \right),$$

where \mathcal{Y} and \mathcal{Y}_n are the Zariski closures of Y in \mathcal{X}' and \mathcal{X}'_n respectively. Thus we get (2).

(3) Clearly, we may assume Y is defined over K. Let $(\mathcal{X}, \mathcal{L})$ be a C^∞ model of (\mathcal{X}, L). Let us consider a sequence of morphisms of projective arithmetic varieties over B:

$$\mathcal{X} = \mathcal{X}_0 \leftarrow f_1 \mathcal{X}_1 \leftarrow f_2 \cdots \leftarrow f_{n-1} \mathcal{X}_{n-1} \leftarrow f_n \mathcal{X}_n \leftarrow f_{n+1} \mathcal{X}_{n+1} \leftarrow f_{n+2} \cdots.$$
such that X is the generic fiber of $X_n \to B$ for every n, and that $f_n : X_n \to \overline{X}_{n-1}$ is an extension of f for each n. Let \overline{Y}_n be the Zariski closure of Y in X_n. Then, $f_{n+1}(Y_{n+1})$ is the Zariski closure of $f(Y)$ in X_n. By the definition of the height,

\begin{equation}
(4.2.2.1) \quad h\overline{f}\overline{L}/(Y) = \lim_{n \to \infty} \frac{\text{deg} \left(\widehat{c}_1(f_n^* f_n^* \cdots f_1^*(\overline{L})) \cdot \widehat{c}_1(f_{n+1}^* \overline{X}_n(\overline{H}_1)) \cdots \widehat{c}_1(f_{n+1}^* \overline{X}_n(\overline{H}_d)) \right) \cdot (Y_{n+1}, 0)}{(\dim Y + 1) \text{deg}(L_{\dim Y}^{\overline{f}(Y)} d^{(n+1)(\dim Y + 1)})}.
\end{equation}

On the other hand, by the projection formula,

\begin{equation}
(4.2.2.2) \quad \text{deg} \left(\widehat{c}_1(f_n^* f_n^* \cdots f_1^*(\overline{L})) \cdot \widehat{c}_1(f_{n+1}^* \overline{X}_n(\overline{H}_1)) \cdots \widehat{c}_1(f_{n+1}^* \overline{X}_n(\overline{H}_d)) \cdot (Y_{n+1}, 0) \right) = \text{deg}(f|_Y) \text{deg} \left(\widehat{c}_1(f_n^* \cdots f_1^*(\overline{L})) \cdot \widehat{c}_1(\overline{X}_n(\overline{H}_1)) \cdots \widehat{c}_1(\overline{X}_n(\overline{H}_d)) \cdot (f_{n+1}(Y_{n+1}), 0) \right).
\end{equation}

Here, since $L^\otimes d \simeq f^*(L)$, we have $L^\otimes d|_Y \simeq (f|_Y)^* \left(L|_{f(Y)} \right)$, which implies

\begin{equation}
(4.2.2.3) \quad d^{\dim Y} \text{deg}(L|_{\dim Y}) = \text{deg}(f|_Y) \text{deg}(L|_{f(Y)}).
\end{equation}

Moreover,

\begin{equation}
(4.2.2.4) \quad h\overline{f}\overline{L}/(f(Y)) = \lim_{n \to \infty} \frac{\text{deg} \left(\widehat{c}_1(f_n^* \cdots f_1^*(\overline{L})) \cdot \widehat{c}_1(\overline{X}_n(\overline{H}_1)) \cdots \widehat{c}_1(\overline{X}_n(\overline{H}_d)) \cdot (f_{n+1}(Y_{n+1}), 0) \right)}{(\dim Y + 1) \text{deg}(L|_{f(Y)}^{\dim Y}) d^{(n+1)(\dim Y + 1)}}.
\end{equation}

Therefore, by (4.2.2.1), (4.2.2.2), (4.2.2.3), and (4.2.2.4), we obtain

\[h\overline{f}\overline{L}/(f(Y)) = dh\overline{f}\overline{L}/(Y). \]

Finally, the last assertion is obvious. For, by (2) and (3), we can see

\[h\overline{f}\overline{L}/(Y) = \lim_{n \to \infty} \frac{h\overline{f}\overline{L}/(\overline{X}/\overline{L}) (f^n(Y))}{d^n}. \]

\[\square \]

5. The canonical height of subvarieties of an abelian variety over finitely generated fields

Let K be a finitely generated field over \mathbb{Q} with $d = \text{tr. deg}_{\mathbb{Q}}(K)$, and $\overline{E} = (B; \overline{H}_1, \ldots, \overline{H}_d)$ a polarization of K. Let A be an abelian variety over K, and L a symmetric ample line bundle on A. Since $[2]^*(L) \simeq L^\otimes 4$, we have an adelic line bundle $\overline{L}^{[2]}$ with the $[2]$-adic structure. Let $f : A \to A$ be an endomorphism with $f^*(L) \simeq L^\otimes d$ for some $d \geq 2$. Then, since $f \cdot [2] = [2] \cdot f$, by (2) of Proposition 3.2.1, $\overline{L}^f = \overline{L}^{[2]}$. Thus, the adelic structure does not depend on the choice of the endomorphism. In this sense, we have the line bundle \overline{L}^{an} with the canonical adelic structure.
Let X be a subvariety of $A_{\overline{K}}$. We denote by $\hat{h}_L^*(X)$ the adelic height $h_{L,can}^*(X)$ of X with respect to the line bundle L_{can} with the canonical adelic structure. Then, by Proposition 4.2.2, we can see the following:

(a) $\hat{h}_L^*(X) \geq 0$ for all subvarieties X of $A_{\overline{K}}$.

(b) For a C^∞-model $(\mathcal{A}, \overline{\mathcal{L}})$ of (A, L) with $\overline{\mathcal{L}}$ being nef with respect to $A \to B$, there is a constant \hat{C} such that

$$\left| \hat{h}_L^*(X) - \hat{h}_{(\mathcal{A}, \overline{\mathcal{L}})}^*(X) \right| \leq \hat{C}$$

for all subvarieties X of $A_{\overline{K}}$.

(c) $\hat{h}_L^*([N](X)) = N^2 \hat{h}_L^*(X)$ for all subvarieties X of $A_{\overline{K}}$ and all non-zero integers N.

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let A be an abelian variety over K, and L a symmetric ample line bundle on A. Let X be a subvariety of $A_{\overline{K}}$. If the polarization \overline{B} is big, then the following are equivalent.

1. X is a translation of an abelian subvariety by a torsion point.
2. The set $\{ x \in X(\overline{K}) \mid \hat{h}_L^*(x) \leq \epsilon \}$ is Zariski dense in X for every $\epsilon > 0$.
3. $\hat{h}_L^*(X) = 0$.

Proof. Let us begin with the following two lemmas.

Lemma 5.2. Let A be an abelian subvariety over K, C an abelian subvariety of A, and $\rho : A \to A' = A/C$ the natural homomorphism. Let X be a subvariety of A such that $X = \rho^{-1}(\rho(X))$. Let L and L' be symmetric ample line bundles on A and A' respectively. If $\hat{h}_L^*(X) = 0$, then $\hat{h}_{L'}^*(Y) = 0$, where $Y = \rho(X)$.

Proof. Replacing L by $L^{\otimes n}$ ($n > 0$), we may assume that $L \otimes \rho^*(L')^{\otimes -1}$ is generated by global sections. Let $(\mathcal{A}, \overline{\mathcal{L}})$ and $(\mathcal{A}', \overline{\mathcal{L}}')$ be C^∞-models of (A, L) and (A', L') over B with the following properties:

1. $\overline{\mathcal{L}}$ and $\overline{\mathcal{L}}'$ are nef and big.
2. There is a morphism $\mathcal{A} \to A'$ over B as an extension of $\rho : A \to A'$. (By abuse of notation, the extension is also denoted by ρ.)

Let $\pi : \mathcal{A} \to B$ be the canonical morphism. Replacing \mathcal{L} by $\mathcal{L} \otimes \pi^*(Q)$ for some ample line bundle Q on B, we may assume that $\pi_*(\mathcal{L} \otimes \rho^*(\mathcal{L}')^{\otimes -1})$ is generated by global sections. Thus, there are sections s_1, \ldots, s_r of $H^0(\mathcal{L} \otimes \rho^*(\mathcal{L}')^{\otimes -1})$ such that $\{ s_1, \ldots, s_r \}$ generates $L \otimes \rho^*(L')^{\otimes -1}$ on A. Moreover, replacing the metric of $\overline{\mathcal{L}}$, we may assume that s_1, \ldots, s_r are small sections, i.e., $\| s_i \|_{\text{sup}} < 1$ for all i.

Let \mathcal{A}_n (resp. \mathcal{A}'_n) be the normalization of $A \xrightarrow{[2^n]} A \hookrightarrow \mathcal{A}$ (resp. $A' \xrightarrow{[2^n]} A' \hookrightarrow \mathcal{A}'$). Then, we have the following commutative diagram:

$$
\begin{array}{ccc}
\mathcal{A} & \xleftarrow{f_n} & \mathcal{A}_n \\
\rho \downarrow & & \downarrow \rho_n \\
\mathcal{A}' & \xleftarrow{f'_n} & \mathcal{A}'_n
\end{array}
$$
where f_n and f'_n are extension of $[2^n]$. Here the adelic structure of \mathcal{L} (resp. \mathcal{T}) is induced by $\{4^{-n}f_n^*(\mathcal{L})\}$ (resp. $\{4^{-n}f'_n^*(\mathcal{L})\}$). Let X_n (resp. Y_n) be the Zariski closure of X in \mathcal{A}_n (resp. Y in \mathcal{A}'_n). Then, since $f^*_n(s_1), \ldots, f^*_n(s_r)$ generate $f^*_n(L \otimes \rho^*(L')^{\otimes -1})$ on A, we can find $f^*_n(s_i)$ such that $f^*_n(s_i) \neq 0$ on X_n. This means that $f^*_n(\mathcal{L})|_{X_n} \otimes \rho^*_n(f^*_n(\mathcal{L}))^{\otimes -1}|_{X_n}$ is effective. Therefore, if we denote $\dim X$ and $\dim Y$ by e and e' respectively, then, by virtue of (4) of Proposition 1.1 together with the projection formula,

$$\deg \left(\widehat{\deg} \left(\hat{c}_1(f^*_n(\mathcal{L})|_{X_n})^{e+1} \cdot \hat{c}_1(\pi^*_n, \mathcal{H}) \right) \right)$$

$$\geq \deg \left(\hat{c}_1(\rho^*_n f'_n^*(\mathcal{L})|_{X_n})^{e'+1} \cdot \hat{c}_1(f^*_n(\mathcal{L})|_{X_n})^{e-e'} \cdot \hat{c}_1(\rho^*_n \pi^*_n, \mathcal{H}) \right)$$

$$= 4^{n(e-e')} \deg(L|_{\mathcal{C}}^{e-e'}) \hat{c}_1(f^*_n(\mathcal{L})|_{X_n})^{e+1} \cdot \hat{c}_1(\pi^*_n, \mathcal{H})$$

Hence,

$$\hat{h}_{\mathcal{L}}^F(X) \geq \frac{(e'+1) \deg(L|_{\mathcal{C}}^{e'}) \deg(L|_{\mathcal{C}}^{e-e'}) \hat{h}_{\mathcal{L}}^F(Y)}{(e+1) \deg(L|_{X}^e) \hat{h}_{\mathcal{L}}^F(Y)}$$

Thus we get our assertion. \qed

Lemma 5.3. Let A and S be algebraic varieties over a field of characteristic zero, and let $f : A \to S$ be an abelian scheme. Let X be a subvariety of A such that $f|_X : X \to B$ is proper and flat. Let s be a point of S. If X_s is a translation of an abelian subvariety of A_s, then there is a Zariski open set U of S such that (1) $s \in U$ and (2) X_t is a translation of an abelian subvariety of A_t for all $t \in U$. In particular, the geometric generic fiber X_{η} is a translation of an abelian subvariety.

Proof. Since X_s is smooth and $q(X_s) = \dim(X/S)$, there is a Zariski open set U of S such that $s \in U$, X_U is smooth over U, and that $q(X_t) \leq \dim(X/S)$ for all $t \in U$. By Ueno’s theorem (cf. [4, Theorem 10.12]), $q(X_t) \geq \dim(X/S)$ and the equality holds if and only if X_t is a a translation of an abelian subvariety. Thus we get our lemma. \qed

Let us start the proof of Theorem 5.1. First of all, we may assume that X is defined over K.

“(1) \implies (2)” is obvious. “(2) \implies (1)” is nothing more than Bogomolov’s conjecture solved in [4].

“(1) \implies (3)”: We set $X = A' + x$, where A' is an abelian subvariety of $A_{\mathcal{L}}$ and x is a torsion point. Let N be a positive integer with $Nx = 0$ and $N \geq 2$. Then, $[N](X) = A' = [N](A')$. Thus, by Proposition 4.2.2,

$$\hat{h}_{\mathcal{L}}^F(X) = (1/N^2) \hat{h}_{\mathcal{L}}^F([N](X)) = (1/N^2) \hat{h}_{\mathcal{L}}^F([N](A')) = \hat{h}_{\mathcal{L}}^F(A')$$

On the other hand,

$$\hat{h}_{\mathcal{L}}^F(A') = \hat{h}_{\mathcal{L}}^F([N](A')) = N^2 \hat{h}_{\mathcal{L}}^F(A')$$

Therefore, $\hat{h}_{\mathcal{L}}^F(X) = \hat{h}_{\mathcal{L}}^F(A') = 0$.
“(3) \implies (1)”: Let \overline{H} be an ample C^∞-hermitian line bundle on B. Then, there is a positive integer n such that $\overline{H}_i^{\otimes n} \otimes \overline{H}_{i-1} \geq 0$. for all i. Then, by using (4) of Proposition 1.1, we can see that an adelic sequence with respect to $(B; \overline{H}_1, \ldots, \overline{H}_d)$ is an adelic sequence with respect to $(B; \overline{H}, \ldots, \overline{H})$, and that

$$0 \leq \hat{h}_L^{(\overline{H}_1, \ldots, \overline{H})}(X) \leq n^d \hat{h}_L^{(\overline{H}_1, \ldots, \overline{H}_d)}(X).$$

Thus, we may assume that $\overline{H}_1, \ldots, \overline{H}_d$ are ample. We prove the assertion “(3) \implies (1)” by induction on $d = \text{tr. deg}_Q(K)$. If $d = 0$, then this was proved by Zhang [5]. We assume $d > 0$. Then, by the above lemma together with hypothesis of induction and Proposition 4.1.4, X is a translation of an abelian subvariety C. Let us consider $\pi : A \to A' = A/C$. Then, $\pi(X)$ is a point, say P. Then, by Lemma 5.2, $\hat{h}_L(P) = 0$ for a symmetric ample line bundle L' on A'. Thus, P is a torsion point by [2, Proposition 3.4.1]. Therefore, we can see that X is a translation of C by a torsion point.

Let X be a smooth projective curve of genus $g \geq 2$ over K. Let J be the Jacobian of X and L_Θ a line bundle given by a symmetric theta divisor Θ on J, i.e., $L_\Theta = \mathcal{O}_J(\Theta)$. Let $j : X \to J$ be a morphism given by $j(x) = \omega_X - (2g - 2)x$. Then, it is well known that $j^*(L_\Theta) = \omega_X^{\otimes 2g - 2}$. Let $\mathcal{L}_\Theta^{\text{can}}$ be the canonical adelic structure of L_Θ. Thus, we have the adelic line bundle $j^*(\mathcal{L}_\Theta^{\text{can}})$ on X. In terms of this, we can give the canonical adelic structure on ω_X. We denote this by ω_X^a. Then, as a corollary of Theorem 5.1 and (3) of Proposition 4.1.3, we have the following.

Corollary 5.4. If the polarization \mathcal{B} is big, then $\langle \omega_X^a, \omega_X^a \rangle_{\mathcal{B}} > 0$.

References

[1] S. Iitaka, Algebraic Geometry, GTM 76 (1982).
[2] A. Moriwaki, Arithmetic height functions over finitely generated fields, [math.NT/9809016](http://arxiv.org/abs/math.NT/9809016), to appear in Invent. Math..
[3] E. Ullmo, Positivité et discétion des points algébriques des courbes, Ann. Math., 147 (1998), 167-179.
[4] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281–300
[5] S. Zhang, Equidistribution of small points on abelian varieties, Ann. Math., 147 (1998), 159-165.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502, Japan

E-mail address: moriwaki@kusm.kyoto-u.ac.jp