Study of caffeine and coumarin extraction kinetics in an aqueous two-phase system based on polyethylene glycol 1500

I V Zinov’eva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prospect, Moscow, 119991, Russia
iz@igic.ras.ru

Abstract. Caffeine and coumarin are organic compounds of plant origin, which have biological activity and have found wide application in medicine, pharmaceutical, perfumery and food industries. Recovery of caffeine and coumarin from aqueous solutions using liquid-liquid extraction is the most effective method. In the present work the kinetic dependences of caffeine and coumarin in the aqueous two-phase system (ATPS) of PEG 1500 - Na₂SO₄ - H₂O were experimentally obtained. It was established that equilibrium in the system is achieved after 17 minutes for caffeine and after 12 minutes for coumarin. The effect of ultrasound on the extraction rate of caffeine and coumarin in an aqueous two-phase system was also studied.

Keywords: extraction, aqueous two-phase system, caffeine, coumarin, ultrasound

1. Introduction
The recovery of bioactive compounds from aqueous solutions is an urgent issue that requires special attention. To extract organic substances from aqueous solutions, filtration [1], sorption [2], extraction [3-5], chromatography [6], etc. [7-9] are mainly used. Today, numerous works are aimed at the development of environmentally friendly, effective methods for the extraction of organic compounds that are not inferior to classical extraction systems based on toxic and harmful organic solvents [10-12]. The aqueous two-phase system is of great interest as an alternative extraction system, which is eco-friendly, easy to utilize, efficient and cost-effective [13-17]. Yazdabadi A et al. established the regularities of caffeine extraction in the system based on tetrabutylphosphonium bromide and sorbitol [18]. de Araujo Sampaio D et al. conducted the study on the caffeine extraction in a system based on polyethylene glycol 400 and sodium sulfate at different temperatures, which showed that caffeine is mainly distributed in the polymer phase [19]. All these research results show the prospects of ATPS application for the extraction of organic compounds. However, little information is presented in the literature on the kinetics of extraction of substances in ATPS, which is necessary for the calculation of mass transfer characteristics and the design of extraction equipment [20,21].

Recently, mass transfer processes, including liquid-liquid extraction, are undergoing greater modernization, and combining with the method of ultrasonic intensification [22-26]. However, attempts to intensify, using ultrasound, the processes of metal ion extraction are accompanied by a
decrease in the quantitative characteristics of extraction. Gradov et al. carried out an experimental study of the interphase distribution dependence of Fe (III) ion using an aqueous two-phase system on the time of phase contact with the ultrasonic exposure use and in its absence [27]. It was found that the use of ultrasound irradiation has the effect of slowing down the extraction of this metal ion into the PEG phase. Hu Y et al. studied the effect of ultrasound on the lactic acid extraction from the fermentation solution. Lactic acid was extracted into extractant after 10-15 minutes with ultrasound exposure, which is several times faster than without ultrasound [28].

Caffeine and coumarin, widely used in the pharmaceutical, food and perfume industries, were chosen as model objects. In this work, the caffeine and coumarin extraction kinetics in an aqueous two-phase system based on polyethylene glycol 1500 and sodium sulfate with constant interphase area was studied for the first time. The time to achieve equilibrium in the distribution of the studied substances between the polymer and salt phases was determined. The kinetic dependencies of caffeine and coumarin distribution in ATPS under the influence of ultrasound were obtained for the first time.

2. Experimental details

2.1. Reagents
Polyethylene glycol with a molecular weight of 1500 was purchased from Fluka (Shanghai, China). Na$_2$SO$_4$ was used as phase-forming salt and was purchased from Chimmed (Moscow, Russia). Caffeine and coumarin were used from Sigma-Aldrich (St. Louis, MO, USA) (99% purity). All solutions were prepared using distilled water purified in a UPVA-5 unit for the production of analytical grade water (Livam, Belgorod, Russia). The structural formulas of the research objects are shown in Figure 1.

![Figure 1. The structural formulas of caffeine and coumarin.](image)

2.2. Experiment method
To carry out the extraction experiment, a glass cylinder with an interphase area value of 5.31 cm2 was used when mixing equal volumes (15 ml) of polymer and salt phases. The recoverable substance of a given concentration was prepared by dissolution in the salt phase. Both phases were mixed using a top-driven stirrer with a stirring speed of 100 rpm. We used an ultrasonic generator with a frequency of 35 kHz and a maximum power of 110 W. Figure 2 shows the installation for an extraction experiment.
The concentration of recoverable compounds was detected in the polymer phase by spectrophotometry in the ultraviolet region of the spectrum ($\lambda = 270$ nm) using a fiber optic probe with an optical path length of 10 mm. Measurement of optical density was carried out on the Cary-60 spectrophotometer (Agilent Tech., USA). Determination of the optical density of caffeine and coumarin in experiments without ultrasound was carried out online in a cylinder every 10 seconds. With ultrasound, measurement of optical density carried out every minute at the initial site of dependence before the establishment of constant values of optical density, then the measurement frequency was reduced to 5 minutes. The spectrophotometer was controlled and the results were processed using the Cary WinUV software. All presented experimental data were the result of a series of experiments and processed by the methods of mathematical statistics.

3. Results and Discussion

3.1. Caffeine and coumarin extraction kinetics in PEG 1500 - Na$_2$SO$_4$ - H$_2$O system with and without the use of ultrasound

The dependence of interphase distribution of caffeine (initial concentration of 0.00225 mol/L) and coumarin (initial concentration of 0.002 mol/L) in an aqueous two-phase system (PEG 1500 (15 wt%) – Na$_2$SO$_4$ (9 wt %) – water) on time was experimentally investigated. Figures 3 and 4 illustrate the data obtained without ultrasound. The equilibrium in the system is achieved in 17 and 12 minutes for caffeine and coumarin, respectively, which is probably due to the low interphase tension of the ATPS. Comparing the results with the experiments obtained by Kaplanow I et al. where the mass transfer of lysozyme and bromelain was studied in the PEG system 4000/sodium citrate, the equilibrium of caffeine and coumarin in the system proposed here is achieved faster than the one of proteins [29]. The rapid transition of caffeine and coumarin can be justified by the use of polyethylene glycol with a
lower molecular weight. The results obtained can be used to calculate the mass transfer coefficient and extraction rate for the design of liquid-liquid processes [30,31].

Figures 5 and 6 show the kinetic dependencies for caffeine and coumarin with ultrasound exposure. Comparing the results obtained, it can be seen that the time to reach equilibrium between caffeine and coumarin remains unchanged. It can be noted that in the case of caffeine and coumarin extraction in ATPS it is not necessary to use additional effects, because the equilibrium in the system is reached quickly enough, unlike the results in other works [32].

![Figure 3](image1.png)
Figure 3. Concentration profile of caffeine in the polymer phase over the time of extraction in the PEG 1500 - Na₂SO₄ - H₂O system without ultrasound.

![Figure 4](image2.png)
Figure 4. Concentration profile of coumarin in the polymer phase over the time of extraction in the PEG 1500 - Na₂SO₄ - H₂O system without ultrasound.

![Figure 5](image3.png)
Figure 5. Concentration profile of caffeine in the polymer phase over the time of extraction in the PEG 1500 - Na₂SO₄ - H₂O system with ultrasound.

![Figure 6](image4.png)
Figure 6. Concentration profile of coumarin in the polymer phase over the time of extraction in the PEG 1500 - Na₂SO₄ - H₂O system with ultrasound.
Conclusions
In this work, the kinetics of extraction of caffeine and coumarin in an aqueous two-phase system based on polyethylene glycol 1500 and sodium sulfate was studied. It was established the time after which equilibrium is reached in the system for caffeine and coumarin, equal to 17 and 12 minutes, respectively. The effect of ultrasound on the extraction of the studied compounds in aqueous two-phase system was evaluated.

References
[1] López-Garzón C S and Straathof A J J 2014 Recovery of carboxylic acids produced by fermentation Biotechnol. Adv. 32 5 873–904.
[2] Tsai W T, Hsien K J and Hsu H C 2009 Adsorption of organic compounds from aqueous solution onto the synthesized zeolite J. Hazard. Mater. 166 2-3 635–41.
[3] Voshkin A A, Zakhodyaeva Yu A, Zinov’eva I V and Shkinev V M 2018 Interphase distribution of aromatic acids in the polyethylene glycol-sodium sulfate-water system Theor. Found. Chem. Eng. 52 5 890-3.
[4] Kholkin A I, Belova V V, Zakhodyaeva Y A and Voshkin A A 2013 Solvent extraction of weak acids in binary extractant systems Sep. Sci. Technol. 48 9 1417–25.
[5] Belova V V, Kulichenkov S A, Voshkin A A, Khol’kin A I, Kuvaeva Z I and Soldatov V S 2007 Extraction of mineral acids with methyltriocetylammonium dinonylnaphthalenesulfonate Russ. J. Inorg. Chem. 52 3 460-4.
[6] Zakhodyaeva Yu A and Voshkin A A 2013 Extraction and separation of carboxylic acids by liquid-liquid extraction and chromatography Theor. Found. Chem. Eng. 47 4 4461-6.
[7] Chuo S C, Abd-Talib N, Mohd-Setapar S H et al. 2018 Reverse micelle extraction of antibiotics using an eco-friendly sophorolipids biosurfactant Sci. Rep. 8 477.
[8] Lee H D, Lee M Y, Hwang Y S, Cho Y H, Kim H W and Park H B 2017 Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes Ind. Eng. Chem. Res. 56 29 8301–10.
[9] Kostenko M O, Pokrovskiy O I, Zakhodyaeva Yu A, Voshkin A A and Lunin V V 2019 Unusual effect of flow rate on retention in analytical supercritical fluid chromatography exemplified by polyethylene glycol separation J. Chrom. A 1610 460513.
[10] Zakhodyaeva Yu A, Rudakov D G, Solov’ev V O, Voshkin A A and Timoshenko A V 2019 Liquid-liquid equilibrium in an extraction system based on polyvinylpyrrolidone-3500 and sodium nitrate Theor. Found. Chem. Eng. 53 2 159–65.
[11] Da Cruz Silva K, Abreu C S, Vieira A W, Mageste A B, Rodrigues G D, de Lemos L R 2020 Aqueous two-phase systems formed by different phase-forming components: Equilibrium diagrams and dye partitioning study Fluid Phase Equilib. 520 112664
[12] Zakhodyaeva Yu A, Rudakov D G, Solov’ev V O, Voshkin A A and Timoshenko A V 2019 Liquid-liquid equilibrium of aqueous two-phase system composed of poly(ethylene oxide) 1500 and sodium nitrate J. Chem. Eng. Data 64 3 1250–55.
[13] Zakhodyaeva Y A, Zinov’eva I V, Tokar E S and Voshkin A A 2019 Complex extraction of metals in an aqueous two-phase system based on poly(ethylene oxide) 1500 and sodium nitrate Molecules 24 22 4078.
[14] Fedorova M I, Zinov’eva I V, Zakhodyaeva Yu A and Voshkin A A 2020 Extraction of Fe(III), Zn(II), and Mn(II) using a system with a green solvent for trioctylmethylammonium thiocyanate Theor. Found. Chem. Eng. 54 2 313–8.
[15] Zinov’eva I V, Zakhodyaeva Yu A and Voshkin A A 2019 Extraction of monocarboxylic acids from diluted solutions with polyethylene glycol Theor. Found. Chem. Eng. 53 5 871–4.

[16] Zinov’eva I V, Zakhodyaeva Yu A and Voshkin A A 2020 Data on the extraction of benzoic, salicylic and sulfosalicylic acids from dilute solutions using PEG-based aqueous two-phase systems Data in Brief 28 105033.

[17] Zinov’eva I V, Zakhodyaeva Yu A and Voshkin A A 2019 Interphase distribution of caffeine and coumarin in extraction systems with polyethylene glycol and sodium sulfate. Theor. Found. Chem. Eng. 53 996–1000.

[18] Yazdabadi A, Shahriari S and Salehifar M 2019 Extraction of caffeine using aqueous two-phase systems containing ionic liquid and sorbitol Fluid Phase Equilib. 502 112287.

[19] de Araujo Sampaio D, Mafra L I, Yamamoto C I, de Andrade E F, de Souza M O, Mafra M R and de Castilhos F 2016 Aqueous two-phase (polyethylene glycol+sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study J. Chem. Thermodyn. 98 86–94.

[20] Pandey N K, Augustine E, Murali R, Desigan N, Kamachi Mudali U and Joshi J B 2016 Kinetics of extraction of nitric acid into binary mixture of tri-n-butyl phosphate and normal paraffin hydrocarbon Chem. Eng. Res. Des. 111 492–503.

[21] Wang Y, Wang Y, Zhou H, Li F and Sun X 2017 Extraction kinetics of mixed rare earth elements with bifunctional ionic liquid using a constant interfacial area cell RSC Adv. 7 39556-563.

[22] Gradov O M, Zakhodyaeva Yu A and Voshkin A A 2018 Breakup of immiscible liquids at the interface using high-power acoustic pulses Chem. Eng. Process.: Process Intensification, 131 125–30.

[23] Gradov O M, Voshkin A A and Zakhodyaeva Yu A 2017 Estimating the parameters of ultrasonically induced mass transfer and flow of liquids in the pseudomembrane method. Chem. Eng. Process.: Process Intensification 118 54–61.

[24] Voshkin A A and Gradov O M 2017 Parametric splitting and transfer of liquid cuts for the intensification of mass exchange in a cylindrical volume Theor. Found. Chem. Eng. 51 3 274–81.

[25] Gradov O M, Voshkin A A and Zakhodyaeva Yu A 2017 Analysis of the possible applications of the acoustic flow effect for the breakup and transfer of liquid substances in a cylindrical volume Theor. Found. Chem. Eng. 51 5 876–882.

[26] Zhou L, Jiang B, Zhang T, Li S 2019 Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Polygonum cuspidatum Food Biosci. 31 100442.

[27] Gradov O M, Zakhodyaeva Yu A, Zinov’eva I V and Voshkin A A 2019 Some features of the ultrasonic liquid extraction of metal ions Molecules 24 19 3549.

[28] Hu Y, Kwan T H, Daoud W A and Lin C S K 2017 Continuous ultrasonic-mediated solvent extraction of lactic acid from fermentation broths J. Clean. Prod. 145 142–50.

[29] Kaplanow I, Goerzgen F, Merz J et al. 2019 Mass transfer of proteins in aqueous two-phase systems Sci. Rep. 9 3692.

[30] Kostanian A E and Voshkin A A 2007 Analysis of new counter-current chromatography operating modes J. Chromatogr. A 1151 1-2 126–30.

[31] Kostanyan A E and Voshkin A A 2011 Analysis of cyclic liquid chromatography. Theor. Found. Chem. Eng 45 1 68–74.

[32] Kulaguin Chicaroux A and Zeiner T 2019 Theoretical and experimental investigation of mass transfer in aqueous two-phase systems based on linear and branched polymers Fluid Phase Equilib. 479 106–13.

Acknowledgments
This work was supported by IGIC RAS state assignment.