Nitroester drug’s effects and their antagonistic effects against morphine on human sphincter of Oddi motility

Shuo-Dong Wu, Zhen-Hai Zhang, Dong-Yan Li, Jun-Zhe Jin, Jing Kong, Zhong Tian, Wei Wang, Min-Fei Wang

Abstract

AIM: To evaluate the effects of nitroester drugs on human sphincter of Oddi (SO) motility and their antagonistic effects against morphine which shows excitatory effect on Oddi’s sphincter motility.

METHODS: The effects of these drugs on SO were evaluated by means of choledochofiberoscopy manometry. A total of 67 patients having T-tubes after cholecystectomy and choledochotomy were involved in the study, they were randomly divided into glyceryl trinitrate (GTN) group, isosorbide dinitrate (ISDN) group, pentaerythritol tetranitrate (PTN) group, morphine group associated with GTN group, morphine associated with ISDN group and morphine associated with PTN group. Basal pressure of Oddi’s sphincter (BPOS), amplitude of phasic contractions (SOCA), frequency of phasic contractions (SOF), duration of phasic contractions (SOD), duodenal pressure (DP) and common bile duct pressure (CBDP) were scored and analyzed. Morphine was given intramuscularly while nitroester drugs were applied sublingually.

RESULTS: BPOS and SOCA decreased significantly after administration of ISDN and GTN, BPOS reduced from 10.95±3.49 mmHg to 5.92±4.04 mmHg (P<0.05) evidently after application of PTN. BPOS increased from 7.37±5.58 mmHg to 16.60±13.87 mmHg, SOCA increased from 54.09±38.37 mmHg to 100.70±43.51 mmHg, SOF increased from 7.15±3.20 mmHg to 10.38±2.93 mmHg and CBDP increased 3.75±1.95 mmHg to 10.49±8.21 mmHg (P<0.01) evidently after injection of morphine. After associated application of ISDN and GTN, the four indications above decreased obviously. As for application associated with PTN, SOCA and SOF decreased separately from 100.64±44.99 mmHg to 66.17±35.88 mmHg and from 10.70±2.76 mmHg to 9.04±1.71 mmHg (P<0.05) markedly.

CONCLUSION: The regular dose of GTN, ISDN and PTN showed inhibitory effect on SO motility, morphine showed excitatory effect on SO while GTN, ISDN and PTN could antagonist the effect of morphine. Among the three nitroester drugs, the effect of ISDN on SO was most significant.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Sphincter of Oddi; Nitroester drugs; Glyceryl trinitrate; Isosorbide dinitrate; Pentaerythritol tetranitrate; Morphine; Choledochofiberoscopy manometry

Wu SD, Zhang ZH, Li DY, Jin JZ, Kong J, Tian Z, Wang W, Wang MF. Nitroester drug’s effects and their antagonistic effects against morphine on human sphincter of Oddi motility. World J Gastroenterol 2005; 11(15): 2319-2323

http://www.wjgnet.com/1007-9327/11/2319.asp

INTRODUCTION

The Oddi’s sphincter is the smooth muscle junction connecting the common bile duct and the duodenum which provides regulation of bile flow and hinders duodenobiliary reflux. During phasic contractions the papilla is closed and bile flow stops. Between phasic contractions the papillary muscle is relaxed and the bile flows from the common bile duct to the duodenum. Oddi’s sphincter manometry (OSM) is considered as the gold standard method for evaluating the function of Oddi’s sphincter. OSM can be directly performed during surgery, or indirectly during ERCP, via a T-tube or percutaneously. A basal pressure and phasic contractions of Oddi’s sphincter can be obtained with OSM.

Nitroester drugs are organic nitrates which have been shown to relax the smooth muscle of blood vessels. This effect has been widely accepted for the treatment of angina pectoris. Nitrates also act on a range of smooth muscles and effectively relax muscles of the gallbladder, the bile duct and the SO (SO) not in superscript[4-6]. Morphine can cause excitatory effect on Oddi’s sphincter motility and therefore induces upper abdominal pain with characteristics of biliary colic in some patients. Morphine could increase intrabiliary duct pressure[7,8], and delay bile flow to the duodenum[9] So morphine should not be used during ERCP manometry or choledochoscopy examination. Few reports have described if nitroester drugs could antagonize the excitatory effect of morphine on Oddi’s sphincter motility.

The first aim of this study is to evaluate the effects of three nitroester drugs on human Oddi’s sphincter motility by choledochoscopy manometry. While the second aim is to assess if nitroester drugs can antagonize morphine’s excitatory effect on SO motor function.
performed, and then the third, 20 min after administration. 20 mg. Ten minutes later, the second manometry was 1 mg while ISDN in doses of 5 mg and PTN in doses of the first measurement. GTN was administered in dose of receive one of the different schemes of drug administration. at 10 min intervals. Patients were selected randomly, to were administered sublingually or injected intramuscularly duct motility tracings were recorded respectively. Drugs through choledochofiberoscopy. The SO and common bile it could also be confirmed by direct observation corrected. The position of catheter in the sphincter was confirmed by the characteristic pressure changes seen on the screen. It could also be confirmed by direct observation through choledochofiberoscopy. The SO and common bile duct motility tracings were recorded respectively. Drugs were administered sublingually or injected intramuscularly at 10 min intervals. Patients were selected randomly, to receive one of the different schemes of drug administration. GTN group, ISDN group and PTN group, one of the three nitroester drugs was administered sublingually after the first measurement. GTN was administered in dose of 1 mg while ISDN in doses of 5 mg and PTN in doses of 20 mg. Ten minutes later, the second manometry was performed, and then the third, 20 min after administration. Morphine associated with GTN group, morphine associated with ISDN group and morphine associated with PTN group. Morphine was administered intramuscularly in doses of 10 mg after the first measurement. Ten minutes later, the second manometry was performed. Then the patient took sublingual administration of 1 mg GTN or 5 mg ISDN or 20 mg PTN. Therefore 10 and 20 min later, the procedure was repeated for the third and the fourth time. Basal pressure of Oddi’s sphincter (BPOS), amplitude of phasic contractions (SOCA), frequency of phasic contractions (SOF), duration of phasic contractions (SOD), DP and common bile duct pressure (CBDP) were recorded and analyzed with a special computer program. Statistical analysis was carried out using the Student’s t-test. Data were expressed as mean±SD. A single-tailed P value<0.05 was considered statistically significant.

RESULTS
Sixty-seven patients with T-tube who had no evidence of ampullary abnormality underwent SOM. Clear tracings of pressure and phasic contractions were acquired. Every group had data of three or four times which were compared and contrasted.

Effect of solo nitroester drugs on the SO motility
Ten minutes after sublingual administration of 5 mg ISDN or 1 mg GTN, BPOS and SOCA decreased markedly (P<0.05). Even 20 min later, the effects still persisted (P<0.05) (Tables 1 and 2). As for the PTN group, BPOS reduced significantly 20 min after administration (P<0.05). SOCA and CBD decreased slightly 10 and 20 min after application, but it is not statistically significant (Table 3).

Effects of nitroester drugs antagonize morphine on the SO motility
Morphine at a dose of 10 mg produced an immediate and markedly stimulatory effect on the SO and the common bile duct. Levels of BPOS, SOCA, SOF and CBDP significantly increased 10 min after injection (P<0.01) (Table 4). Then 10 min after sublingual application of TPN, the four

Table 1	Manometric data before and after administration of GTN in 10 patients (mean±SD)		
	Before GTN administration (control)	10 min after GTN administration	20 min after GTN administration
Sphincter of Oddi basal pressure (mmHg)	9.70±4.54	5.71±4.95^c	5.80±4.2^c
Amplitude of phasic contractions (mmHg)	88.8±68.77	52.0±23.59^c	49.7±32.6^c
Frequency of phasic contractions (n/min)	6.71±2.21	7.32±2.69	5.57±2.05
Common bile duct pressure (mmHg)	5.4±4.40	4.19±4.19	5.4±4.39

^aP<0.05, ^bP<0.05 vs themselves, n = 10 (n represents the number of patients involved in the research).

Table 2	Manometric data before and after administration of ISDN in 16 patients (mean±SD)		
	Before ISDN administration (control)	10 min after ISDN administration	20 min after ISDN administration
Sphincter of Oddi basal pressure (mmHg)	10.78±10.79	5.56±4.38^d	5.40±4.78
Amplitude of phasic contractions (mmHg)	92.06±33.36	60.8±33.64^d	38.1±18.38^d
Frequency of phasic contractions (n/min)	7.88±2.58	6.83±4.63	7.13±4.47
Common bile duct pressure (mmHg)	4.49±5.33	3.42±1.56	3.13±2.17

^aP<0.05, ^bP<0.05^cP<0.01 vs themselves, n = 16 (n represents the number of patients involved in the research).
Prior to that time, the SO motility was evaluated by indirect and transphincteric flow studies via a T-tube either during surgery, or indirectly during ERCP, via a T-tube or percutaneously. In this study we studied nitroester drugs’ effects and their antagonistic effects against morphine on human SO motility via choledochofiberoscopy manometry.

Nitroester drugs can relax vascular smooth muscles, including that of gastrointestinal tract. They also can effectively relax the muscle of Oddi’s sphincter. Among these drugs the effect of glyceryl trinitrate (GTN) on the SO has been well researched. There are relatively few reports about isosorbide dinitrate (ISDN) and no report about pentaerythritol tetranitrate (PTN) on the SO motility. Staritz et al[9] first reported that sublingual administration of 1.2 mg of GTN markedly lowered the SO basal tone and phasic contraction amplitude. Later on, Brandstatter et al[10] also found a remarkable decrease of the BPOS and the phasic SO contraction amplitude. Further, Staritz et al[11] and Uchida et al[12] found that sublingual GTN enables the endoscopic extraction of small (6-12 mm) increased indications decreased markedly to normal levels ($P<0.01$), but the effects were transient. As for 20 min after administration, all the indications had no difference to that of 10 min after morphine injection (Table 5) BPOS, CBDP and SOCA lowered significantly 10 and 20 min after application of ISDN, SOF decreased obviously 20 min after administration ($P<0.05$) (Table 6). BPOS decreased evidently 10 and 20 min after the usage of PTN, SOF slowed down slightly 10 min after administration ($P<0.05$) (Table 7).

DISCUSSION

The advent of OSM in the mid-1970s was the most important development in understanding of the motility of the SO. Prior to that time, the SO motility was evaluated by indirect methods such as cineradiography, contrast media drainage time, and transphincteric flow studies via a T-tube either during or after biliary tract surgery. From then on, OSM has obtained widespread application in the evaluation of patients for SO dysfunction (SOD). OSM could be directly performed during surgery, or indirectly during ERCP, via a T-tube or percutaneously. In this study we studied nitroester drugs’ effects and their antagonistic effects against morphine on human SO motility via choledochofiberoscopy manometry.

Table 3	Manometric data before and after administration of PTN in 11 patients (mean±SD)		
Before PTN administration (control)	10 min after PTN administration	20 min after PTN administration	
Sphincter of Oddi basal pressure (mmHg)	10.95±7.49	8.59±1.90	5.92±4.04
Amplitude of phasic contractions (mmHg)	86.19±42.04	68.08±38.23	59.51±27.35
Frequency of phasic contractions (n/min)	7.04±1.50	5.95±2.79	7.31±2.80
Common bile duct pressure (mmHg)	7.26±4.25	4.83±4.13	5.57±3.49

$^aP<0.05$ vs themselves, $n=11$ (n represents the number of patients involved in the research).

Table 4	Manometric data before and after administration of morphine in 30 patients (mean±SD)	
Before morphine administration (control)	10 min after morphine administration	
Sphincter of Oddi basal pressure (mmHg)	7.37±5.58	16.60±13.87b
Amplitude of phasic contractions (mmHg)	54.09±38.37	100.70±43.51c
Frequency of phasic contractions (n/min)	7.15±3.20	10.38±2.93a
Common bile duct pressure (mmHg)	3.75±1.95	10.49±8.21

$^aP<0.01$, $^bP<0.01$, $^cP<0.01$ vs themselves, $n=30$ (n represents the number of patients involved in the research).

Table 5	Antagonism of GTN against morphine on the SO motility in 10 patients (mean±SD)		
10 min after morphine administration (control)	10 min after GTN associated administration	20 min after GTN associated administration	
Sphincter of Oddi basal pressure (mmHg)	12.49±5.40	6.46±6.88a	13.47±7.69
Amplitude of phasic contractions (mmHg)	96.56±48.49	56.54±27.19a	63.89±34.56
Frequency of phasic contractions (n/min)	8.98±1.34	6.96±1.83a	7.66±2.50
Common bile duct pressure (mmHg)	10.99±4.75	4.94±3.27a	7.87±4.72

$^aP<0.01$, $^bP<0.01$, $^cP<0.01$ vs themselves, $n=10$ (n represents the number of patients involved in the research).

Table 6	Antagonism of ISDN against morphine on the SO motility in 10 patients (mean±SD)		
10 min after morphine administration (control)	10 min after ISDN associated administration	20 min after ISDN associated administration	
Sphincter of Oddi basal pressure (mmHg)	24.63±19.55	5.43±4.82a	9.8±6.22a
Amplitude of phasic contractions (mmHg)	112.89±35.04	39.65±21.08a	43.45±28.65a
Frequency of phasic contractions (n/min)	11.46±3.83	8.82±2.67	8.52±2.21a
Common bile duct pressure (mmHg)	11.79±8.21	6.05±4.76a	5.75±3.87a

$^aP<0.05$, $^bP<0.05$, $^cP<0.05$, $^dP<0.01$, $^eP<0.01$ vs themselves, $n=10$ (n represents the number of patients involved in the research).
common bile duct (CBD) stones. Because of its potential side effect, such as severe headache, Luman et al.[12] recently demonstrated that topical infusion 5 or 10 mg of GTN significantly decreased the basal SO tone and phasic motor function. They stated that local administration of GTN was not accompanied by adverse effects. Wehrmann et al.[13] found that topical application of GTN or ISDN evoked a profound inhibition of SO motor function, and the effect of ISDN was longer than that of GTN. However, locally administered GTN did not facilitate selective bile-duct access during routine ERCP. Yasuyoshi et al.[14] described the removal of small common bile duct stones through the combined use of intravenous injection of ISDN and baskets and/or balloons without the use of endoscopic sphincterotomy. Stones were completely removed in 15 of the 18 patients.

We found that both GTN and ISDN could decrease BPOS and SOCA, PTN could reduce SOCA, showed inhibitory effects on SO. Among the three drugs, the effect of ISDN on SO was most significant. Nitroester drugs are nitric oxide (NO) donors, application of NO donors could significantly inhibit SO motor function.[15,16] The effect of cholecystokinin, a major hormone with relaxing properties, on the SO was mediated through stimulation of non-adrenergic non-cholinergic (NANC) nerves. Sari et al.[17] found that nitroglycerin increased the cyclic GMP concentration. Neither tetrodotoxin (TTX) nor vasoactive intestinal polypeptide (VIPa) modified this response. It could also increase the cyclic AMP concentration, which was blocked by both TTX and VIPa. This indicated that relaxation of the SO by NO donors involves a glibenclamide-sensitive mechanism which was closely related to increased formation of cyclic AMP but not of cyclic GMP. So we thought the mechanism which was closely related to increased formation of cyclic AMP but not of cyclic GMP. This indicated that relaxation of the SO by NO donors involves a glibenclamide-sensitive mechanism which was closely related to increased formation of cyclic AMP but not of cyclic GMP. Nitroglycerin has been used to reverse the spasm induced by narcotic usage.[21,22] But there was no research in manometry evaluated if nitroester drugs can antagonize the excitatory effect of morphine on Oddi’s sphincter motility. We found that all the three nitroester drugs could antagonize the excitatory induction induced by morphine. But the mechanism was not well known, and needs to be researched further.

The risk of pancreatitis induced by ERCP cannot be eliminated presently. The etiology of ERCP-induced pancreatitis is multifactorial. Attempts to prevent this complication by using administration of glucagon[23,24], nifedipine[25,26], hydrocortisone[27] and octreotide[28] have been disappointing. Somatostatin[29,30] is effective in reducing the incidence of pancreatitis after therapeutic ERCP, but the cost is relatively expensive. Sudhindran et al.[31] found prophylactic treatment with GTN reduced the incidence of pancreatitis following ERCP but did not reduce the extent of hyperamylasemia or the severity of pancreatitis.

In summary, our results indicate that all the three nitroester drugs have inhibitory effects on human SO, they also can antagonize the excitation effect of morphine on SO. Among them the effect of ISDN is most obvious. This action is mediated through stimulation of the NANC nerves. These drugs could be used for several purposes: (1) to remove small- and medium-sized common bile duct stones through intact papillae; (2) to facilitate cannulation of the ampulla in diagnostic ERCP; (3) to relieve the pain caused by biliary colic in patients with SO dysfunction; (4) to reverse the spasm of Oddi’s sphincter induced by narcotic usage; and (5) to reduce the incidence of pancreatitis following ERCP.

REFERENCES

1. Greaves R, Miller J, O’Donnell L, McLean A, Farthing MJ. Effect of the nitric oxide donor, glyceryl trinitrate, on human gall bladder motility. Gut 1998; 42: 410-413

Table 7 Antagonism of PTN against morphine on the SO motility in 10 patients (mean±SD)

	10 min after morphine administration (control)	10 min after PTN associated administration	20 min after PTN associated administration
Sphincter of Oddi basal pressure (mmHg)	13.25±9.63	10.61±11.00	13.12±12.09
Amplitude of phasic contractions (mmHg)	100.6±4.44	75.8±3.21	66.17±3.55
Frequency of phasic contractions (n/min)	10.70±2.76	9.95±1.08	9.04±1.71
Common bile duct pressure (mmHg)	6.99±6.30	6.49±3.66	4.48±1.15

*P<0.05, *P<0.05 vs themselves, n = 10 (n represents the number of patients involved in the research).
Nitroester drug's effects on Oddi motility 2323

2 Chelly J, Tannieres ML, Tournay D, Franchiaet F, Alexandre JH, Passelecq J. Nitroglycerin and amyl nitrite action on common bile duct during operation for vesicular lithiasis (author's transl). Anesth Analg (Paris) 1979; 36: 557-560

3 Staritz M. Pharmacology of the sphincter of Oddi. Endoscopy 1988; 20 Suppl 1: 171-174

4 Sarles JC, Midejean A, Devaux MA. Electromyography of the sphincter of Oddi. Technic and experimental results in the rabbit: Effect of certain drugs. Am J Gastroenterol 1975; 63: 221-231

5 Dedrick DF, Tanner WW, Bushkin FL. Common bile duct pressure during enflurane anesthesia. Effects of morphine and subsequent naloxone. Arch Surg 1980; 115: 820-822

6 Radnay PA, Duncalf D, Novakovic M, Lesser ML. Common bile duct pressure changes after fentanyl, morphine, meperidine, butorphanol, and naloxone. Anesth Analg 1984; 63: 441-444

7 Joehl RJ, Koch KL, Nahrwold DL. Opioid drugs cause bile duct obstruction during hepatobiliary scans. Am J Surg 1984; 147: 134-138

8 Staritz M, Poralla T, Ewe K, Meyer zum Buschenfelde KH. Effect of glyceryl trinitrate on the sphincter of Oddi motility and baseline pressure. Gut 1985; 26: 194-197

9 Brandsatter G, Schinzel S, Wurzer H. Influence of spasmodic analgesics on motility of sphincter of Oddi. Dig Dis Sci 1996; 41: 1814-1818

10 Staritz M, Poralla T, Dormeyer HH, Meyer zum Buschenfelde KH. Endoscopic removal of common bile duct stones through the intact papilla after medical sphincter dilation. Gastroenterology 1985; 88: 1807-1811

11 Uchida N, Ezaki T, Hirabayashi S, Minami A, Fukuma H, Matsuoka H, Yachida M, Kurokohchi K, Morshed SA, Nishioka M, Matsuoka M, Nakatsu T. Endoscopic lithotomy of common bile duct stones with sublingual nitroglycerin and guidewire. Am J Gastroenterol 1997; 92: 1440-1443

12 Luman W, Pryde A, Heading RC, Palmer KR. Topical glyceryl trinitrate relaxes the sphincter of Oddi. Gut 1997; 40: 541-543

13 Wehrmann T, Schmitt T, Stergiou N, Caspary WF, Seifert H. Topical application of nitrates onto the papilla of Vater: manometric and clinical results. Endoscopy 2001; 33: 323-328

14 Ibuki Y, Kudo M, Todo A. Endoscopic retrograde extraction of common bile duct stones with drip infusion of isosorbide dinitrate. Gastrointest Endosc 1992; 38: 178-180

15 Slivka A, Chuttani R, Carr-Locke DL, Kobzik L, Bredt DS, Loscalzo J, Stamler JS. Inhibition of sphincter of Oddi function by the nitric oxide carrier S-nitroso-N-acetylcysteine in rabbits and humans. J Clin Invest 1994; 94: 1792-1798

16 Kaufman HS, Shermak MA, May CA, Pitt HA, Lillemeoe KD. Nitric oxide inhibits resting sphincter of Oddi activity. Am J Surg 1993; 165: 74-80

17 Behar J, Biancani P. Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the common gallbladder and sphincter of Oddi. Gastroenterology 1987; 92: 764-770

18 Sari R, Peitl B, Kovacs P, Lonovics J, Palvolgyi A, Hegyi P, Nagy I, Nemeth J, Szilvassy Z, Porszasz R. Cyclic GMP-mediated activation of a glibenclamide-sensitive mechanism in the rabbit sphincter of Oddi. Dig Dis Sci 2004; 49: 514-520

19 Helm JF, Venu RP, Geenen JE, Hogan WJ, Dodds WJ, Toulou J. Arndorfer RC. Effects of morphine on the human sphincter of Oddi. Gut 1988; 29: 1402-1407

20 Blaut U, Mareck J, Hartwich A, Herman RM, Laskiewicz J, Thor PJ. The effect of transcutaneous nerve stimulation on intraduodenal biliary pressure in post-cholecystectomy patients with T-drainage. Eur J Gastroenterol Hepatol 2003; 15: 21-26

21 Wu SD, Kong J, Wang W, Zhang Q, Jin JZ. Effect of morphine and M-cholinoreceptor blocking drugs on human sphincter of Oddi during choledochofiberscopy manometry. Hepatobiliary Pancreat Dis Int 2003; 2: 121-125

22 Butler KC, Selden B, Pollack CV Jr. Relief by naloxone of morphine-induced spasms of the sphincter of Oddi in a post-cholecystectomy patient. J Emerg Med 2001; 21: 129-131

23 Humphreys HK, Fleming NW. Opioid-induced spasms of the sphincter of Oddi apparently reversed by nalbuphine. Anesth Analg 1992; 74: 308-310

24 Jones RM, Detmer M, Hill AB, Bjoraker DG, Pandit U. Incidence of choledochoduodenal sphincter spasm during fentanyl-supplemented anesthesia. Anesth Analg 1981; 60: 638-640

25 Velosy B, Madacsy L, Lonovics J, Csernay L. Effect of glyceryl trinitrate on the sphincter of Oddi spasm evoked by prostigmine-morphine administration. Eur J Gastroenterol Hepatol 1997; 9: 1109-1112

26 Toyoyama H, Kariya N, Hase I, Toyoda Y. The use of intravenous nitroglycerin in a case of spasm of the sphincter of Oddi during laparoscopic cholecystectomy. Anesthesiology 2001; 94: 708-709

27 Chang FY, Guo WS, Liao TM, Lee SD. A randomized study comparing glucagon and hyoscine N-butyl bromide before endoscopic retrograde cholangiopancreatography. Scand J Gastroenterol 1995; 30: 283-286

28 Sand J, Nordback I. Prospective randomized trial of the effect of nifedipine on pancreatic irritation after endoscopic retrograde cholangiopancreatography. Digestion 1993; 54: 105-111

29 Prat F, Amaris J, Ducot B, Bocquentin M, Fritsch J, Choury AD, Pelletier G, Buffet C. Nifedipine for prevention of post-ERCP pancreatitis: a prospective, double-blind randomized study. Gastrointest Endosc 2002; 56: 202-208

30 Manolakopoulos S, Agervinos A, Vlachogiannakos J, Armonis A, Viazin N, Papadimitriou N, Mathou N, Stefanidis G, Rekoumis G, Vienna E, Tsourmakiotis D, Raptis SA. Octreotide versus hydrocortisone versus placebo in the prevention of post-ERCP pancreatitis: a multicenter randomized controlled trial. Gastrointest Endosc 2002; 55: 470-475

31 Arvanitidis D, Anagnostopoulos GK, Giannopoulos D, Pantes A, Agaritsi R, Margantinis G, Tsiakas S, Sakorafas G, Kostopoulos P. Can somatostatin prevent post-ERCP pancreatitis? Results of a randomized controlled trial. J Gastroenterol Hepatol 2004; 19: 278-282

32 Poon RT, Yeung C, Liu CL, Lam CM, Yuen WK, Lo CM, Tang A, Fan ST. Intravenous bolus somatostatin before diagnostic cholangiopancreatography reduces the incidence of pancreatitis associated with therapeutic endoscopic retrograde cholangiopancreatography procedures: a randomised controlled trial. Gastroenterology 2003; 52: 1768-1773

33 Sudhindran S, Bromwich E, Edwards PR. Prospective randomised double-blind placebo-controlled trial of glyceryl trinitrate in endoscopic retrograde cholangiopancreatography-induced pancreatitis. Br J Surg 2001; 88: 1178-1182

Science Editor Guo SY Language Editor Elsevier HK