Phosphonylated Acyclic Guanosine Analogues with the 1,2,3-Triazole Linker

Iwona E. Glowacka 1,*, Graciela Andrei 2, Dominique Schols 2, Robert Snoeck 2 and Dorota G. Piotrowska 1

1 Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Muszyński 1, Poland; E-Mail: dorota.piotrowska@umed.lodz.pl
2 Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium; E-Mails: Graciela.Andrei@rega.kuleuven.be (G.A.); Dominique.Schols@rega.kuleuven.be (D.S.); Robert.Snoeck@rega.kuleuven.be (R.S.)

* Author to whom correspondence should be addressed; E-Mail: iwona.glowacka@umed.lodz.pl; Tel.: +48-42-677-92-37; Fax: +48-42-678-83-98.

Academic Editor: Maria Emília de Sousa

Received: 1 September 2015 / Accepted: 17 September 2015 / Published: 16 October 2015

Abstract: A novel series of {4-[(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}alkylphosphonates and {4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}alkylphosphonates as acyclic analogues of guanosine were synthesized and assessed for antiviral activity against a broad range of DNA and RNA viruses and for their cytostatic activity toward three cancerous cell lines (HeLa, L1210 and CEM). They were devoid of antiviral activity; however, several phosphonates were found slightly cytostatic against HeLa cells at an IC50 in the 80–210 µM range. Compounds (1R,2S)-17k and (1S,2S)-17k showed the highest inhibitory effects (IC50 = 15–30 µM) against the proliferation of murine leukemia (L1210) and human T-lymphocyte (CEM) cell lines.

Keywords: azidophosphonates; acyclonucleotides; 1,2,3-triazoles; cycloaddition; antiviral; cytostatic
1. Introduction

An effective treatment for viral infections is one of the most difficult goals of contemporary medicine. The discovery of acyclic nucleosides/nucleotides, which act as antimetabolites, had a significant impact on the progress in the therapy of viral infections [1,2]. Among them, adefovir is active against DNA viruses and retroviruses [3–5], whereas tenofovir exhibits high potency and selectivity against HIV-1 and HIV-2 viruses and hepatitis B virus [6,7]. Ganciclovir [8–10] and its prodrug with improved oral bioavailability, valganciclovir [11,12], are used for the treatment of cytomegalovirus infections. Cidofovir [5,13,14] shows activity against herpes viruses, including cytomegalovirus, as well as aden- and pox-viruses. The specificity of the antiviral activity of the compounds already known strongly depends on the structural features of the aliphatic chain installed as a sugar ring replacer, whereas a choice of nucleobases is mostly limited to adenine, guanine and 2,6-diaminopurine. Various guanine-containing analogues of nucleosides have been reported as potent antiviral agents (Figure 1) [15–30]. Moreover, acyclic analogues of nucleotides having guanine and hypoxanthine as a nucleobase with antimalarial activity have also been reported [26,31]. Phosphorylation of nucleosides and their structural analogues is inefficient, and at the same time, it appears to be one of the most important steps with implications on their activity, since the first step of phosphorylation is carried out by viral kinases. Therefore, several nucleotide analogues have been designed by incorporation of a phosphonate residue ((RO)2P(O)–CH2–) instead of a phosphate group ((RO)2P(O)–O–C(5′)) to avoid the first phosphorylation step and to ensure the stability of phosphonates to enzymatic hydrolysis [32–35].

![Figure 1. Known biologically-active acyclic analogues of guanosine.](image)

In recent years, analogues of nucleotides containing various modifications of an acyclic fragment have been widely studied. Among them, extended linkers, including a 1,2,3-triazole moiety, were synthesized [36–40], and several compounds with promising anticancer (1–3) [38] and antiviral (3–8) [37–39] properties were found. Although various canonical nucleobases and their mimetics were applied, only a few acyclic guanosine, as well as 2-amino-6-chloropurine analogues containing the 1,2,3-triazole linker (9–13) have been obtained so far (Figure 2) [36,40–43]; however, among them, only Compound 13 was tested and revealed inhibitory activity against thymidine phosphorylase [40].
As a continuation of our ongoing project directed towards biologically-active acyclic analogues of nucleotides with the 1,2,3-triazole linker, a new series of analogues 16 and 17 containing 2-amino-6-chloropurine and guanine as nucleobases has been designed to study their antiviral and cytostatic properties. To install a guanine moiety at C4 in the 1,2,3-triazole ring, two strategies were used. The dipolar cycloaddition of the respective azidoalkylphosphonates 14 to propargylated guanines should directly lead to Compound 15 or 16 [41–43], whereas application of 2-amino-6-chloro-9-propargylpurine as dipolarophile in the reaction with azides 14 should produce Compound 17 to be subsequently transformed into 16 [40,44–47] (Scheme 1).

Scheme 1. Retrosynthesis of acyclic phosphonate guanosine analogues.

Generally, in order to secure sufficient bioavailability of active phosphonate nucleotide analogues, they are administered as prodrugs, namely the respective phosphonate esters or amides [33–35,48–53]. For this reason, we designed guanosine analogues 16 and 17 as the respective phosphonate esters to
ensure sufficient membrane permeability. Moreover, our recent experiences clearly supported the strategy to prepare diesters rather than free phosphonic acids, which are completely ionized at physiological pH. Indeed, we found several examples of active diesters in the class of 1,2,3-triazole phosphonates, whereas the respective free acids appeared inactive [38,39,54].

2. Results and Discussion

2.1. Chemistry

Propargylated 2-amino-6-chloropurine 19 [29,36,40,45,55], guanine 18a [29,44–47,55] and N2-acetylguanine 18b [42,43,56], as well as all azidoalkylphosphonates 14a–k [37,38,57–62] are known compounds and were obtained according to the literature procedures.

Although cycloadditions of propargylated guanines 18a (R = H) and 18b (R = Ac) to various azides have previously been mentioned [41–43], in our hands, the reaction of 18a, as well as 18b with the azidomethylphosphonate 14a failed because of the low solubility of guanines 18a and 18b (Scheme 2). Attempts at running a cycloaddition of the phosphonate 14a with propargylguanine 18a at 110 °C in toluene resulted in the recovery of starting materials only. Similarly, when the 3-azidopropylphosphonate 14c was treated with 18a or 18b at 110 °C in toluene, as well as under microwave (MW) irradiation in aqueous ethanol, no traces of cycloadducts were observed.

For this reason, we turned to 2-amino-6-chloro-9-propargylpurine 19, which was found to be sufficiently soluble in the reaction medium and reacted with the respective ω-azidoalkylphosphonates 14 to form the intermediate 2-amino-6-chloropurines 17, which were transformed into guanine analogues in the last step. Thus, azides 14 were subjected to cycloaddition with Compound 19 in the presence of Cu(I) salt under microwave irradiation to give 1,2,3-triazoles 17a–k. Reactions were complete at 35–40 °C within 15 min (Scheme 3). Subsequently, 17a–k were treated with 75% trifluoroacetic acid to provide acyclic guanosine analogues 16a–k in good yields (92%–98%). However, attempts at preparing (1R,2S)-16k and (1S,2S)-16k failed, since the treatment of (1R,2S)-17k and (1S,2S)-17k with trifluoroacetic acid led to severe decomposition. All final compounds were purified by chromatography,
and solids were finally recrystallized; their purity was ascertained by NMR spectroscopic methods and elemental analysis.

Scheme 3. Synthesis of Compounds 17a–k and 16a–j. Reaction and conditions: (a) 2-amino-6-chloro-9-propargylpurine 19, CuSO₄ × 5H₂O, sodium ascorbate, EtOH–H₂O, 35–40 °C, 15 min, microwave (MW); (b) 75% TFA, 24 h, r.t.

2.2. Antiviral Activity and Cytostatic/Cytotoxic Evaluation

All phosphonates 16a–j and 17a–k were evaluated for their antiviral activities against a wide variety of DNA and RNA viruses using the following cell-based assays: (1) human embryonic lung (HEL) cell cultures: herpes simplex virus-1 (KOS), herpes simplex virus-2 (G), vaccinia virus, vesicular stomatitis virus, herpes simplex virus-1 (TK⁺ KOS ACVr) and adenovirus-2, cytomegalovirus (AD-169 strain and Davis strain) and varicella-zoster virus (TK⁺ VZV stain and TK⁻ VZV stain); (2) HeLa cell cultures: vesicular stomatitis virus, Coxsackie virus B4 and respiratory syncytial virus; (3) Vero cell cultures: para-influenza-3 virus, reovirus-1, Sindbis virus, Coxsackie virus B4, Punta Toro virus; (4) Crandell-Rees feline kidney (CRFK) cell cultures: feline corona virus (FIPV) and feline herpesvirus (FHV); and (5) Madin-Darby canine kidney (MDCK) cell cultures: influenza A virus H1N1 subtype, influenza A virus H3N2 subtype and influenza B virus. Ganciclovir, cidofovir, acyclovir, brivudine, (S)-9-(2,3-dihydroxypropyl)adenine ((S)-DHPA), Hippeastrum hybrid agglutinin (HHA), Urtica dioica agglutinin (UDA), dextran sulfate (molecular weight 5000, DS-5000), ribavirin, oseltamivir carboxylate, amantadine and rimantadine were used as the reference compounds. The antiviral activity was expressed as the EC₅₀: the compound concentration required to reduce virus-induced cytopathogenicity by 50%. Unfortunately, no inhibitory activity against any virus was detected for the evaluated compounds at 250 µM.

The cytotoxicity of the tested compounds toward the uninfected host cells was defined as the minimum cytotoxic concentration (MCC) that causes a microscopically-detectable alteration of normal cell morphology. The 50% cytotoxic concentration (CC₅₀), causing a 50% decrease in cell viability, was determined using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay system. The cytostatic activity of the tested compounds was
defined as the 50% cytostatic inhibitory concentration (IC$_{50}$), causing a 50% decrease in cell proliferation, and was determined against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells (Table 1).

Table 1. Inhibitory effect of the tested compounds against the proliferation of murine leukemia (L1210), human T-lymphocyte (CEM) and human cervix carcinoma cells (HeLa).

Compounds 16a–k and 17a–k	IC$_{50}$ * (µM)		
	L1210	CEM	HeLa
17a	283 ± 17	≥250	≥250
17b	≥250	>250	227 ± 32
17c	227 ± 32	>250	≥250
17d	>250	>250	≥250
17e	>250	>250	>250
17f	>250	>250	>250
17g	>250	>250	>250
17h	>250	≥250	>250
17i	>250	>250	>250
17j	>250	>250	>250
(1S,2S)-17k	16 ± 6	30 ± 16	84 ± 12
(1R,2S)-17k	21 ± 2	26 ± 8	90 ± 33
16a	>250	>250	>250
16b	>250	>250	>250
16c	>250	>250	138 ± 52
16d	>250	>250	148 ± 25
16e	>250	>250	206 ± 49
16f	>250	>250	195 ± 78
16g	>250	>250	185 ± 35
16h	>250	>250	≥250
16i	>250	>250	210 ± 13
16j	>250	>250	212 ± 54
5-fluorouracil	0.33 ± 0.17	18 ± 5	0.54 ± 0.12

*50% Inhibitory concentration or compound concentration required to inhibit tumor cell proliferation by 50%.

None of the tested compounds affected cell morphology of HEL, HeLa, Vero, MDCK and CRFK cells at concentrations up to 100 µM. Instead, several compounds appeared slightly cytostatic, selectively against HeLa cells at an IC$_{50}$ in the 80–210 µM range. From the entire library of compounds, only (1R,2S)-17k and (1S,2S)-17k appeared to be the most active toward all tested cancerous cell lines, and they showed the highest inhibitory effect (IC$_{50}$ = 16–30 µM) against the proliferation of murine leukemia (L1210) and human T-lymphocytes (CEM).

The significantly higher activity of dibenzyl phosphonates (1R,2S)-17k and (1S,2S)-17k is probably due to their better penetration through cell membranes when compared to the other compounds in the series 17, as well as 16, which all were tested as diethyl esters.
3. Experimental Section

3.1. General

1H-NMR were taken in CDCl$_3$ or CD$_3$OD on the following spectrometers: Varian Mercury-300 (Varian NMR Instrument, Palo Alto, CA, USA) with TMS as an internal standard; chemical shifts δ in ppm with respect to TMS; coupling constants J in Hz. 13C-NMR spectra were recorded on Varian Mercury-300 (Varian NMR Instrument, Palo Alto, CA, USA) and Bruker Avance III spectrometers (Bruker Instruments, Karlsruhe, Germany) at 75.5 and 151 MHz, respectively. 31P-NMR spectra were taken in CDCl$_3$ or CD$_3$OD on a Varian Mercury-300 (Varian NMR Instrument, Palo Alto, CA, USA) at 121.5 MHz.

IR spectral data were measured on an Infinity MI-60 FT-IR spectrometer (ATI Instruments North America—Mattson, Madison, WI, USA). Melting points were determined on a Boetius apparatus (VEB Kombinat NAGEMA, Dresden, DDR—Currently Germany) and are uncorrected. Elemental analyses were performed by the Microanalytical Laboratory of this faculty on a Perkin Elmer PE 2400 CHNS analyzer (Perkin-Elmer Corp., Norwalk, CT, USA).

The following adsorbents were used: column chromatography, Merck silica gel 60 (70–230 mesh); analytical TLC, Merck TLC plastic sheets silica gel 60 F$_{254}$. TLC plates were developed in chloroform–methanol solvent systems. Visualization of spots was effected with iodine vapors. All solvents were purified by methods described in the literature.

Microwave irradiation experiments were carried out in 50-mL glass vials in a microwave reactor Plazmatronika RM 800 (Plazmatronika, Wrocław, Poland).

3.2. General Procedure for the Synthesis of 17a–k

To a solution of the respective azidoalkylphosphonate 14 (1.00 mmol) in EtOH (1 mL) and H$_2$O (1 mL), CuSO$_4$ \times 5H$_2$O (0.05 mmol), sodium ascorbate (0.10 mmol) and 2-amino-6-chloro-9-propargyl-purine (1.00 mmol) were added. The suspension was irradiated in the microwave reactor (Plazmatronika RM 800, 800 W, Plazmatronika, Wrocław, Poland) at 35–40 °C for 15 min. Solvents were removed by vacuum evaporation, and the residue was suspended in chloroform (5 mL) and filtered through a layer of Celite. The solution was concentrated in vacuo, and the crude product was purified on a silica gel column with chloroform–methanol mixtures (50:1, 20:1 or 10:1, v/v) to give the appropriate 1,2,3-triazoles 17.

Diethyl 14-[{(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}methylphosphonate (17a): A white solid (after crystallization from ethyl acetate), yield 88%; m.p. = 138–139 °C; IR (KBr): $\nu = 3327, 3211, 2988, 1796, 1613, 1565, 1518, 1468, 1408, 1241$ cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): $\delta = 7.94$ (d, $J = 0.8$ Hz, 1H, HC5'), 7.93 (s, 1H), 5.38 (s, 2H, CH$_2$), 5.31 (s, 2H, NH$_2$), 4.76 (d, $J = 13.3$ Hz, 2H, PCH$_2$), 4.15–4.04 (m, 4H, 2 \times POC$_2$H$_2$CH$_3$), 1.26 (t, $J = 6.9$ Hz, 3H, POCH$_2$C$_3$H$_3$), 1.25 (t, $J = 6.9$ Hz, 3H, POCH$_2$CH$_3$); 13C-NMR (75.5 MHz, CDCl$_3$): $\delta = 159.43, 153.44, 150.97, 142.27, 142.18, 124.52$ (d, $J = 5.2$ Hz, C5'), 63.81 (d, $J = 6.6$ Hz, POCH$_2$), 46.08 (d, $J = 155.2$ Hz, PC), 38.70, 16.46 (d, $J = 5.5$ Hz, POCC), 16.42 (d, $J = 5.5$ Hz, POCC); 31P-NMR (121.5 MHz, CDCl$_3$): $\delta = 15.93$ ppm. Anal. calcd. for C$_{13}$H$_{18}$ClN$_8$O$_3$P: C, 38.96; H, 4.53; N, 27.96. Found: C, 38.97; H, 4.33; N, 27.72.
Diethyl 2-[4-(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl|ethylphosphonate (17b): A white solid (after crystallization from ethyl acetate), yield 91%; m.p. = 145–146 °C; IR (KBr): v = 3325, 3211, 2985, 1796, 1613, 1565, 1468, 1408, 1223, 1050 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): δ = 7.94 (s, 1H, HC5'), 7.76 (s, 1H), 5.37 (s, 2H, CH\(_2\)), 5.21 (s, 2H, NH\(_2\)), 4.62 (dt, J = 13.4 Hz, J = 7.4 Hz, 2H, PCH\(_2\)CH\(_2\)), 4.10–4.00 (m, 4H, 2 \times POCH\(_2\)CH\(_3\)), 2.40 (dt, J = 18.3 Hz, J = 7.4 Hz, 2H, PCH\(_2\)), 1.26 (t, J = 7.1 Hz, 6H, POCH\(_2\)CH\(_3\)); \(^13\)C-NMR (75.5 MHz, CDCl\(_3\)): δ = 159.36, 153.34, 150.93, 142.19, 142.13, 141.81, 124.58, 123.73 (d, J = 4.0 Hz, C5'), 62.34 (d, J = 6.6 Hz, POCl), 44.74 (PCC), 38.55, 26.99 (d, J = 14.1 Hz, PC), 16.44 (d, J = 5.7 Hz, POCC), 16.40 (d, J = 5.7 Hz, POCC); \(^{31}\)P-NMR (121.5 MHz, CDCl\(_3\)): δ = 25.81 ppm. Anal. calcd. for C\(_{14}\)H\(_{20}\)ClN\(_8\)O\(_3\)P: C, 40.54; H, 4.86; N, 27.01. Found: C, 40.63; H, 4.60; N, 27.04.

Diethyl 3-[4-(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl|propylphosphonate (17c): White powder, yield 86%; m.p. = 74–76 °C; IR (KBr): v = 3300, 3210, 2985, 1797, 1617, 1564, 1468, 1409, 1215, 1025 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): δ = 7.94 (s, 1H, HC5'), 7.72 (s, 1H), 5.37 (s, 2H, CH\(_2\)), 5.28 (s, 2H, NH\(_2\)), 4.46 (t, J = 6.9 Hz, 2H, PCH\(_2\)CH\(_2\)CH\(_3\)), 4.14–4.02 (m, 4H, 2 \times POCH\(_2\)CH\(_3\)), 2.21 (dqu, J = 18.7 Hz, J = 6.9 Hz, 2H, PCH\(_2\)CH\(_2\)), 1.69 (dt, J = 18.7 Hz, J = 7.9 Hz, 2H, PCH\(_2\)), 1.31 (t, J = 7.2 Hz, 6H, POCH\(_2\)CH\(_3\)); \(^13\)C-NMR (75.5 MHz, CDCl\(_3\)): δ = 159.34, 153.42, 151.09, 142.24, 142.18, 141.93, 124.79, 123.49 (d, J = 3.1 Hz, C5'), 62.07 (d, J = 6.6 Hz, POCl), 50.16 (d, J = 14.6 Hz, PCCC), 38.69, 23.67 (d, J = 4.6 Hz, PCC), 22.46 (d, J = 142.9 Hz, PC), 16.62 (d, J = 5.7 Hz, POCC), 16.56 (d, J = 5.7 Hz, POCC); \(^{31}\)P-NMR (121.5 MHz, CDCl\(_3\)): δ = 30.26 ppm. Anal. calcd. for C\(_{16}\)H\(_{22}\)ClN\(_8\)O\(_3\)P: C, 42.01; H, 5.17; N, 26.13. Found: C, 41.92; H, 5.14; N, 25.83.

Diethyl 4-[4-(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl|butylphosphonate (17d): Colorless oil, yield 93%; IR (film): v = 3324, 3210, 2983, 1613, 1562, 1467, 1408, 1215, 1025 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): δ = 7.94 (s, 1H, HC5'), 7.65 (s, 1H), 5.37 (s, 2H, CH\(_2\)), 5.40–5.00 (very br s, 2H, NH\(_2\)), 4.36 (t, J = 6.9 Hz, 2H, PCCCC\(_2\)H\(_2\)), 4.20–4.00 (m, 4H, 2 \times POCH\(_2\)CH\(_3\)), 2.02 (qu, J = 6.9 Hz, 2H, PCCCC\(_2\)), 1.80–1.60 (m, 4H, PCCCC\(_2\) and PCH\(_2\)), 1.30 (t, J = 7.0 Hz, 6H, 2 \times POCH\(_2\)CH\(_3\)); \(^13\)C-NMR (151 MHz, CDCl\(_3\)): δ = 159.47, 153.50, 151.01, 142.26, 141.95, 124.67, 123.06, 61.69 (d, J = 6.6 Hz, 2 \times POCl), 49.76, 38.54, 30.43 (d, J = 15.0 Hz, PCCC), 24.66 (d, J = 141.9 Hz, PC), 19.48 (d, J = 4.9 Hz, PCC), 16.30 (d, J = 6.0 Hz, POCC); \(^{31}\)P-NMR (121.5 MHz, CDCl\(_3\)): δ = 31.33 ppm. Anal. calcd. for C\(_{18}\)H\(_{26}\)ClN\(_8\)O\(_3\)P: C, 43.40; H, 5.46; N, 25.30. Found: C, 43.21; H, 5.40; N, 25.23.

Diethyl 2-[4-(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl|1-hydroxyethylphosphonate (17e): White solid (after column chromatography and crystallization from ethyl acetate), yield 81%; m.p. = 174–175 °C; IR (KBr): v = 3433, 3218, 2986, 1618, 1565, 1468, 1409, 1215, 1021 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CDCl\(_3\)): δ = 7.86 (s, 1H, HC5'), 7.83 (s, 1H), 5.40 (br t, J = 4.6 Hz, 1H, OH), 5.73 (s, 2H, NH\(_2\)), 5.21 (AB, \(J_{AB} = 15.5\) Hz, 1H, HCH), 5.20 (AB, \(J_{AB} = 15.5\) Hz, 1H, HCH), 4.85–4.76 (m, 1H), 4.51–4.38 (m, 2H), 4.27–4.14 (m, 4H, 2 \times POCH\(_2\)CH\(_3\)), 1.35 (t, J = 7.0 Hz, 3H, POCH\(_2\)CH\(_2\)), 1.33 (t, J = 7.0 Hz, 3H, POCH\(_2\)CH\(_3\)); \(^13\)C-NMR (75.5 MHz, CDCl\(_3\)): δ = 159.50, 153.13, 150.61, 142.43, 141.49, 125.41, 123.93, 66.75 (d, J = 167.2 Hz, PC), 63.64 (d, J = 7.2 Hz, POCl), 63.56 (d, J = 7.2 Hz, POCl), 52.02 (PCC), 38.56, 16.63 (d, J = 5.7 Hz, 2 \times POCl); \(^{31}\)P-NMR (121.5 MHz,
CDCl₃): δ = 20.67 ppm. Anal. calcd. for C₁₄H₂₀ClN₈O₄P: C, 39.03; H, 4.68; N, 26.01. Found: C, 39.25; H, 4.42; N, 26.05.

Diethyl 3-{4-[2-amino-6-chloro-9H-purin-9-yl]methyl}-1H-1,2,3-triazol-1-yl}-2-hydroxypropylphosphonate (17f): Colorless oil, yield 89%; IR (film): ν = 3346, 3218, 3218, 2985, 1618, 1468, 1409, 1220, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ = 7.93 (s, 1H, HC₅), 7.87 (s, 1H), 5.30 (s, 4H, CH₂ and NH₂), 4.60–4.47 (m, 1H, PCCCₗHₐHb), 4.45–4.30 (m, 1H, PCCCₗH₂), 4.20–4.00 (m, 2H, 2 × POCₗH₂), 2.10–1.70 (m, 4H, CH₂ and NH₂), 1.33 (t, J = 7.1 Hz, 3H, POCH₂C₃H₃), 1.31 (t, J = 7.1 Hz, 3H, POCH₂C₃H₃); ¹³C-NMR (75.5 MHz, CDCl₃): δ = 160.33, 153.55, 151.00, 142.22, 141.87, 124.73, 124.69, 124.44, 124.40, 63.67 (d, J = 15.6 Hz, PCCC), 62.65 (d, J = 6.3 Hz, POCH₂C₃H₃), 62.61 (d, J = 6.3 Hz, POCH₂C₃H₃), 46.30 (d, J = 6.3 Hz, POCH₂C₃H₃), 38.50, 38.15 (d, J = 5.5 Hz, POCH₂C₃H₃); ³¹P-NMR (121.5 MHz, CDCl₃): δ = 24.00 ppm. Anal. calcd. for C₁₅H₂₂ClN₈O₄P: C, 40.50; H, 4.49; N, 25.19. Found: C, 40.54; H, 4.79; N, 24.97.

Diethyl 2-{4-[2-amino-6-chloro-9H-purin-9-yl]methyl}-1H-1,2,3-triazol-1-yl}-ethoxymethylphosphonate (17h): Colorless oil, yield 88%; IR (film): ν = 3325, 3209, 2988, 1798, 1633, 1614, 1470, 1410, 1220, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ = 8.02 (s, 1H, HC₅), 7.75 (s, 1H), 5.38 (s, 2H, CH₂), 4.58 (dd, J = 7.5 Hz, J = 5.8 Hz, 2H, PCOCH₂C₃H₃), 4.18–4.08 (m, 4H, 2 × POCₗH₂), 3.95 (t, J = 4.8 Hz, 2H, PCOCH₂C₃H₃), 3.70 (dt, J = 15.3 Hz, J = 7.0 Hz, 2H, POCH₂C₃H₃), 2.00 (br s, 2H, NH₂), 1.31 (t, J = 7.2 Hz, 3H, POCH₂C₃H₃); ¹³C-NMR (151 MHz, CDCl₃): δ = 160.53, 153.55, 151.00, 142.22, 141.87, 124.69, 124.44, 124.40, 63.67 (d, J = 15.6 Hz, PCCC), 62.65 (d, J = 6.3 Hz, POCH₂C₃H₃), 62.61 (d, J = 6.3 Hz, POCH₂C₃H₃), 46.30 (d, J = 6.3 Hz, POCH₂C₃H₃), 38.50, 38.15 (d, J = 5.5 Hz, POCH₂C₃H₃); ³¹P-NMR (121.5 MHz, CDCl₃): δ = 20.60 ppm. Anal. calcd. for C₁₅H₂₂ClN₈O₄P: C, 40.50; H, 4.99; N, 25.19. Found: C, 40.54; H, 4.79; N, 24.97.

Diethyl 2-{4-[2-amino-6-chloro-9H-purin-9-yl]methyl}-1H-1,2,3-triazol-1-yl}-ethoxyethylphosphonate (17i): Colorless oil, yield 95%; IR (film): ν = 3218, 3218, 2988, 1798, 1633, 1614, 1470, 1410, 1220, 1025 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ = 7.96 (s, 1H, HC₅), 7.96 (s, 1H), 5.37 (s, 2H, CH₂), 4.85 (dd, J = 5.0 Hz, J = 4.8 Hz, 2H, PCH₂CH₂OCH₂C₃H₃), 4.18–4.08 (m, 4H, 2 × POCₗH₂), 3.95 (dt, J = 5.3 Hz, J = 4.8 Hz, 2H, PCOCH₂C₃H₃), 3.70 (dt, J = 5.3 Hz, J = 4.8 Hz, 2H, PCOCH₂C₃H₃), 2.00 (br s, 2H, NH₂), 1.31 (t, J = 7.2 Hz, 3H, POCH₂C₃H₃); ¹³C-NMR (151 MHz, CDCl₃): δ = 159.53, 153.55, 151.00, 142.22, 141.87, 124.69, 124.44, 71.10 (d, J = 11.7 Hz, POCC), 65.18 (d, J = 168.2 Hz, PC), 62.61 (d, J = 6.6 Hz, POCC), 50.10, 38.58, 16.37 (d, J = 5.5 Hz, POCC); ³¹P-NMR (121.5 MHz, CDCl₃): δ = 20.60 ppm. Anal. calcd. for C₁₅H₂₂ClN₈O₄P: C, 40.50; H, 4.99; N, 25.19. Found: C, 40.37; H, 4.80; N, 25.10.
$J = 6.2$ Hz, POCC); 31P-NMR (121.5 MHz, CDCl$_3$): $\delta = 28.55$ ppm. Anal. calcd. for C$_{16}$H$_{24}$ClN$_8$O$_5$P: C, 41.88; H, 5.27; N, 24.42. Found: C, 42.01; H, 5.33; N, 24.60.

Diethyl 2-[4-[(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl]-acetamidoethylphosphonate (17j): White powder, yield 78%; m.p. = 193–195 °C; IR (KBr): $\nu = 3330, 3216, 2986, 1690, 1615, 1563, 1468, 1409, 1215, 1023$ cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): $\delta = 7.96$ (s, 1H, HCS5), 7.86 (s, 1H), 7.20 (br s, 1H, NHCO), 5.39 (s, 2H, CH$_2$), 5.01 (s, 2H), 4.15–4.06 (m, 4H, 2 × POCH$_2$CH$_3$), 3.72 (dd, $J = 11.9$ Hz, $J = 5.7$ Hz, 2H, PCH$_3$NH), 1.71 (br s, 2H, NH$_2$), 1.29 (t, $J = 6.9$ Hz, 6H, 2 × POCH$_2$CH$_3$); 13C-NMR (151 MHz, DMSO-d_6): $\delta = 165.91, 160.39, 154.37, 149.91, 143.43, 142.48, 125.41, 123.69, 62.32 (d, d, $J = 6.1$ Hz, POC), 51.92, 38.65, 34.70 (d, d, $J = 155.2$ Hz, PC), 16.66 (d, d, $J = 5.5$ Hz, POCC); 31P-NMR (121.5 MHz, CDCl$_3$): $\delta = 21.92$ ppm. Anal. calcd. for C$_{15}$H$_{21}$ClN$_9$O$_4$P: C, 39.35; H, 4.62; N, 27.54. Found: C, 39.57; H, 4.51; N, 27.47.

(1R,2S)-Dibenzyl 3-[4-[(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl]-2-benzyloxy-1-hydroxypropylphosphonate ((1R,2S)-17k): Colorless oil, yield 84%; $[\alpha]_D^{20} = +9.6$ (c = 1.12 in CHCl$_3$); IR (film): $\nu = 3333, 3212, 1690, 1616, 1564, 1457, 1409, 1215, 1135$ cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): $\delta = 7.96$ (s, 1H, HCS5), 7.61 (s, 1H), 7.31–7.23 (m, 1H), 7.22–7.15 (m, 2H), 7.08–7.02 (m, 2H), 5.27 (AB, $J_{AB} = 15.5$ Hz, 1H, HCH), 5.22 (AB, $J_{AB} = 15.5$ Hz, 1H, HCH), 5.08–4.96 (m, 4H, 2 × POCH$_2$Ph), 4.59 (dd, $J = 14.1$ Hz, $J = 5.7$ Hz, 1H, HCHN), 4.57 (d, $J = 10.8$ Hz, 1H, HCH-Ph), 4.47 (dd, $J = 14.1$ Hz, $J = 7.0$ Hz, 1H, HCHN), 4.32–4.20 (m, 1H, PCCCH), 4.17 (d, $J = 10.8$ Hz, 1H, HCH-Ph), 3.91 (dd, $J = 11.6$ Hz, $J = 3.2$ Hz, 1H, PCCCH), 1.90–1.10 (very br s, 3H, NH$_2$ and OH); 13C-NMR (151 MHz, CDCl$_3$): $\delta = 159.18, 153.37, 151.45, 142.19, 141.81, 136.69, 135.77$ (d, 5.8 Hz), 135.63 (d, 5.8 Hz), 128.77, 128.71, 128.69, 128.43, 128.22, 128.20, 128.17, 125.02, 124.53, 74.06, 68.71 (d, $J = 7.4$ Hz, POC), 68.41 (d, $J = 7.4$ Hz, POC), 68.28 (d, $J = 162.0$ Hz, PC), 50.66 (d, $J = 11.4$ Hz, PCCCH), 38.52; 31P-NMR (121.5 MHz, CDCl$_3$): $\delta = 22.35$ ppm. Anal. calcd. for C$_{32}$H$_{32}$ClN$_8$O$_5$P: C, 56.93; H, 4.78; N, 16.60. Found: C, 56.80; H, 4.52; N, 16.44.

(1S,2S)-Dibenzyl 3-[4-[(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl]-2-benzyloxy-1-hydroxypropylphosphonate ((1S,2S)-17k): White solid, yield 84%; $[\alpha]_D^{20} = +22.9$ (c = 0.096 in CHCl$_3$); m.p. = 76–78 °C; IR (KBr): $\nu = 3384, 3213, 1617, 1563, 1457, 1409, 1214$ cm$^{-1}$; 1H-NMR (300 MHz, CDCl$_3$): $\delta = 7.94$ (s, 1H, HCS5), 7.64 (s, 1H), 7.38–7.20 (m, 1H), 7.20–7.10 (m, 2H), 7.00–6.95 (m, 2H), 5.26 (s, 2H, CH$_2$), 5.04 (d, $J = 8.5$ Hz, 2H, POCH$_2$Ph), 5.01 (d, $J = 9.5$ Hz, 2H, POCH$_2$Ph), 4.73 (dd, $J = 14.5$ Hz, $J = 3.2$ Hz, 1H, HCHN), 4.60 (dd, $J = 14.6$ Hz, $J = 6.5$ Hz, 1H, HCHN), 4.39 (d, $J = 11.1$ Hz, 1H, HCH-Ph), 4.24 (d, $J = 11.1$ Hz, 1H, HCH-Ph), 4.17–4.10 (m, 1H, PCCCH), 4.03 (dd, $J = 9.0$ Hz, $J = 5.5$ Hz, 1H, PCH$_2$), 1.80–1.00 (very br s, 3H, NH$_2$ and OH); 13C-NMR (151 MHz, CDCl$_3$): $\delta = 159.16, 153.40, 151.42, 142.23, 141.60, 136.66, 135.80$ (d, $J = 5.8$ Hz), 135.70 (d, $J = 5.8$ Hz), 128.71, 128.68, 128.43, 128.17, 128.14, 128.01, 125.02, 124.68, 77.64 (d, $J = 5.2$ Hz), 72.73, 68.64 (d, $J = 7.4$ Hz, POC), 68.45 (d, $J = 7.4$ Hz, POC), 67.77 (d, $J = 161.6$ Hz, PC), 50.28 (d, $J = 5.8$ Hz, PCCCH), 38.56; 31P-NMR (121.5 MHz, CDCl$_3$): $\delta = 22.14$ ppm. Anal. calcd. for C$_{32}$H$_{32}$ClN$_8$O$_5$P: C, 56.93; H, 4.78; N, 16.60. Found: C, 56.71; H, 4.71; N, 16.31.

Molecules 2015, 20

18798
3.3. General Procedure for Transformation 17 into 16

The respective 2-amino-6-chloropurine derivative 17a–17j (1.00 mmol) was dissolved in a 75% aqueous solution of trifluoroacetic acid (6 mL) and left at room temperature overnight. The solvent was removed, and the residue was co-evaporated with water and subsequently with ethanol to give pure guanine derivatives 16a–16j.

Diethyl 4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl]methylphosphonate (16a): A white powder, yield 98%; m.p. = 135–138 °C; IR (KBr): ν = 3330, 3131, 2988, 2935, 1720, 1639, 1606, 1021 cm⁻¹; ¹H-NMR (300 MHz, CD₃OD): δ = 8.03 (s, 1H), 7.80 (s, 1H, HC₅'), 5.37 (s, 2H, CH₂), 5.02 (d, J = 13.1 Hz, 2H, PCH₂), 4.16–4.07 (m, 4H, 2 × POCH₂CH₃), 1.25 (t, J = 7.1 Hz, 6H, 2 × POCH₂C₃H₃); ¹³C-NMR (151 MHz, CD₃OD): δ = 155.52, 154.83, 150.53, 141.37, 137.21, 125.53, 109.68, 63.64 (d, J = 6.6 Hz, POC), 45.08 (d, J = 155.0 Hz, PC), 37.72, 15.28 (d, J = 5.5 Hz, POC); ³¹P-NMR (121.5 MHz, CD₃OD): δ = 18.13 ppm. Anal. calcd. for C₁₃H₁₉N₈O₄P: C, 40.84; H, 5.01; N, 29.31. Found: C, 40.98; H, 4.90; N, 29.44.

Diethyl 2-{4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}ethylphosphonate (16b): A thick resin, yield 92%; IR (film): ν = 3441, 3129, 2986, 1692, 1537, 1480, 1377, 1204, 1051, 1224 cm⁻¹; ¹H-NMR (300 MHz, CD₃OD): δ = 8.72 (s, 1H), 8.17 (s, 1H, HC₅'), 5.48 (s, 2H, CH₂), 4.66 (dt, J = 13.4 Hz, J = 7.4 Hz, 2H, PCH₂CH₂), 4.09–3.99 (m, 4H, 2 × POCH₂CH₃), 2.52 (dt, J = 18.3 Hz, J = 7.4 Hz, 2H, PC₂H₂), 1.25 (t, J = 7.0 Hz, 6H, POCH₂C₃H₃); ¹³C-NMR (151 MHz, CD₃OD): δ = 160.27, 155.40, 150.63, 141.18, 137.39, 124.70, 110.47, 62.34 (d, J = 6.6 Hz, POC), 44.29 (d, J = 2.9 Hz, PC), 38.99, 25.70 (d, J = 140.2 Hz, PC), 15.20 (d, J = 5.8 Hz, POCC); ³¹P-NMR (121.5 MHz, CD₃OD): δ = 28.14 ppm. Anal. calcd. for C₁₄H₂₁N₈O₄P: C, 42.43; H, 5.34; N, 28.27. Found: C, 42.60; H, 5.55; N, 28.40.

Diethyl 3-{4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}propylphosphonate (16c): Thick resin, yield 92%; IR (film): ν = 3437, 3134, 2940, 1693, 1538, 1479, 1376, 1228, 1051, 1025 cm⁻¹; ¹H-NMR (300 MHz, CD₃OD): δ = 8.03 (s, 1H, HC₅'), 7.89 (s, 1H), 5.36 (s, 2H, CH₂), 4.47 (t, J = 6.9 Hz, 2H, PCH₂CH₂), 4.15–4.00 (m, 4H, 2 × POCH₂CH₃), 2.22–2.08 (m, 2H, PCH₂CH₂), 1.83–1.71 (m, 2H, PCH₂), 1.28 (t, J = 7.0 Hz, 6H, POCH₂C₃H₃); ¹³C-NMR (75.5 MHz, CD₃OD): δ = 155.42, 155.07, 150.65, 141.14, 137.25, 124.56, 110.09, 62.09 (d, J = 6.6 Hz, POC), 53.50, 49.96 (d, J = 18.2 Hz, PC), 39.15, 23.20 (d, J = 143.5 Hz, PC), 15.34 (d, J = 5.7 Hz, POCC); ³¹P-NMR (121.5 MHz, CD₃OD): δ = 32.57 ppm. Anal. calcd. for C₁₅H₂₃N₈O₄P: C, 43.90; H, 5.65; N, 27.31. Found: C, 44.12; H, 5.77; N, 27.48.

Diethyl 4-{4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}butylphosphonate (16d): An yellowish powder, yield 94%; m.p. = 106–108 °C; IR (KBr): ν = 3330, 3200, 1693, 1538, 1479, 1376, 1228, 1053, 1025 cm⁻¹; ¹H-NMR (300 MHz, CD₃OD): δ = 8.03 (s, 1H, HC₅'), 7.89 (s, 1H), 5.36 (s, 2H, CH₂), 4.47 (t, J = 6.9 Hz, 2H, PCH₂CH₂), 4.15–4.00 (m, 4H, 2 × POCH₂CH₃), 2.22–2.08 (m, 2H, PCH₂CH₂), 1.83–1.71 (m, 2H, PCH₂), 1.28 (t, J = 7.0 Hz, 6H, POCH₂CH₃); ¹³C-NMR (75.5 MHz, CD₃OD): δ = 155.42, 155.07, 150.65, 141.14, 137.25, 124.56, 110.09, 62.09 (d, J = 6.7 Hz, POC), 53.50, 49.96 (d, J = 18.2 Hz, PC), 39.15, 23.20 (d, J = 4.4 Hz, PCC), 21.57 (d, J = 143.5 Hz, PC), 15.34 (d, J = 5.7 Hz, POCC); ³¹P-NMR (121.5 MHz, CD₃OD): δ = 32.57 ppm. Anal. calcd. for C₁₅H₂₃N₈O₄P: C, 43.90; H, 5.65; N, 27.31. Found: C, 44.12; H, 5.77; N, 27.48.
Diethyl 2-\{4-\{2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl\}methyl\}-1H-1,2,3-triazol-1-yl\}-1-hydroxyethylphosphonate (16e): White powder, yield 98%; m.p. > 265 °C; IR (KBr): ν = 3428, 3134, 3063, 2988, 1695, 1613, 1539, 1220, 1047, 1019 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CD\(_2\)OD): δ = 9.03 (s, 1H), 8.24 (s, 1H), 5.03 (s, 2H, CH\(_2\)), 4.77 (dd, J = 14.5 Hz, J = 7.1 Hz, J = 3.5 Hz, 1H, PCCCH\(_2\)H), 4.60 (dd, J = 14.5 Hz, J = 9.5 Hz, J = 6.6 Hz, 1H, PCCCH\(_2\)H), 4.37 (dt, J = 9.5 Hz, J = 3.5 Hz, 1H, PCH), 4.25–4.14 (m, 4H, 2 × POCH\(_2\)CH\(_3\)), 1.33 (t, J = 7.1 Hz, 6H, 2 × POCH\(_2\)CH\(_3\)); \(^{13}\)C-NMR (151 MHz, CD\(_2\)OD): δ = 155.67, 154.47, 150.54, 140.52, 137.10, 125.84, 108.92, 66.72 (d, J = 167.5 Hz, PC), 63.49 (d, J = 6.9 Hz, POCH), 63.28 (d, J = 6.9 Hz, POCH), 39.27, 15.38 (d, J = 4.9 Hz, 2 × POCC); \(^{31}\)P-NMR (121.5 MHz, CD\(_2\)OD): δ = 21.83 ppm. Anal. calcd. for C\(_{16}\)H\(_{25}\)N\(_8\)O\(_5\)P × 2H\(_2\)O: C, 38.96; H, 5.89; N, 24.23. Found: C, 39.16; H, 5.84; N, 24.39.

Diethyl 3-\{4-\{2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl\}methyl\}-1H-1,2,3-triazol-1-yl\}-2-hydroxypropylphosphonate (16f): White powder, yield 98%; m.p. = 144–147 °C; IR (KBr): ν = 3346, 3218, 3218, 2985, 1618, 1564, 1468, 1409, 1200, 1025 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CD\(_2\)OD): δ = 8.71 (s, 1H), 8.13 (s, 1H), 5.49 (s, 2H), 4.60 (dd, J = 13.7 Hz, J = 3.2 Hz, 1H, PCCCH\(_2\)H), 4.42 (dd, J = 13.7 Hz, J = 7.6 Hz, 1H, PCCCH\(_2\)H), 4.38–4.27 (m, 1H, PCCCH), 4.18–4.06 (m, 4H, 2 × POCH\(_2\)CH\(_3\)), 2.15 (dd, J = 18.8 Hz, J = 15.5 Hz, J = 5.5 Hz, 1H, PCH\(_2\)H), 2.02 (dd, J = 18.8 Hz, J = 15.5 Hz, J = 7.2 Hz, 1H, PCH\(_2\)H), 1.33 (t, J = 7.1 Hz, 3H, POCH\(_2\)CH\(_3\)), 1.32 (t, J = 7.1 Hz, 3H, POCH\(_2\)CH\(_3\)); \(^{13}\)C-NMR (151 MHz, CD\(_2\)OD): δ = 155.35, 155.30, 151.24, 140.86, 137.26, 125.52, 112.00, 65.30 (d, J = 2.5 Hz, PC), 62.06 (d, J = 6.4 Hz, POCH), 62.24 (d, J = 6.4 Hz, POCH), 55.95 (d, J = 14.3 Hz, PCCCH), 39.00, 30.51 (d, J = 140.6 Hz, PC), 15.28 (d, J = 6.1 Hz, 2 × POCC); \(^{31}\)P-NMR (121.5 MHz, CD\(_2\)OD): δ = 29.71 ppm. Anal. calcd. for C\(_{17}\)H\(_{23}\)N\(_8\)O\(_5\)P × 2H\(_2\)O: C, 38.96; H, 5.89; N, 24.23. Found: C, 39.16; H, 5.84; N, 24.33.

Diethyl 3-\{4-\{2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl\}methyl\}-1H-1,2,3-triazol-1-yl\}-1-hydroxyethoxymethylyphosphonate (16g): White powder, yield 98%; m.p. = 150–153 °C; IR (KBr): ν = 3330, 3208, 3133, 2989, 2932, 1728, 1690, 1643, 1572, 1410, 1204, 1023 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CD\(_2\)OD): δ = 8.44 (s, 1H), 8.10 (s, 1H), 5.44 (s, 2H, CH\(_2\)), 4.60 (dd, J = 7.9 Hz, J = 5.9 Hz, 2H, PCCCH\(_2\)H), 4.21–4.08 (m, 4H, 2 × POCH\(_2\)CH\(_3\)), 3.80 (ddd, J = 10.5 Hz, J = 7.1 Hz, J = 3.2 Hz, 1H, PCH), 2.43–2.03 (m, 2H, PCCCH\(_2\)H), 1.31 (t, J = 7.1 Hz, 3H, POCH\(_2\)CH\(_3\)), 1.30 (t, J = 7.1 Hz, 3H, POCH\(_2\)CH\(_3\)); \(^{13}\)C-NMR (151 MHz, CD\(_2\)OD): δ = 155.95, 154.99, 151.28, 141.57, 137.50, 124.47, 113.12, 63.67 (d, J = 168.1 Hz, PC), 63.09 (d, J = 7.1 Hz, POCC), 62.73 (d, J = 7.1 Hz, POCC), 46.42 (d, J = 15.6 Hz, PCCCH), 38.76, 31.79 (d, J = 4.1 Hz, PCC) 15.43 (d, J = 5.4 Hz, POCC), 15.39 (d, J = 5.4 Hz, POCC); \(^{31}\)P-NMR (121.5 MHz, CD\(_2\)OD): δ = 25.35 ppm. Anal. calcd. for C\(_{17}\)H\(_{23}\)N\(_8\)O\(_5\)P × 2H\(_2\)O: C, 38.96; H, 5.89; N, 24.23. Found: C, 38.72; H, 5.91; N, 24.39.

Diethyl 2-\{4-\{2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl\}methyl\}-1H-1,2,3-triazol-1-yl\}-ethoxymethylyphosphonate (16h): White powder, yield 98%; m.p. = 89–92 °C; IR (KBr): ν = 3330, 3136, 2992, 2934, 1727, 1649, 1601, 1206, 1023 cm\(^{-1}\); \(^1\)H-NMR (300 MHz, CD\(_2\)OD): δ = 8.91 (s, 1H), 8.20
Diethyl 2-[[2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl] ethoxyethyphosphonate (16i): Colorless oil, yield 98%; IR (film): \(\nu=3318, 3133, 2987, 2932, 1706, 1639, 1604, 1202, 1027 \text{ cm}^{-1}\); \(^1\)H-NMR (300 MHz, CD_3OD): \(\delta=8.96 (s, 1H), 8.22 (s, 1H), 5.02 (s, 2H, CH₂), 4.59 (t, \(J=5.3 \text{ Hz}, 2H, \text{PCH}_2\text{CH}_2\text{OCH}_2\text{CH}_3\)), 4.08–4.01 (m, 4H, 2 × \text{ POCH}_2\text{CH}_3), 3.86 (t, \(J=5.3 \text{ Hz}, 2H, \text{PCOC}_2\text{H}_2\text{CH}_2\)), 2.10 (dt, \(J=18.2 \text{ Hz}, J=6.8 \text{ Hz}, 2H, \text{PCCH}_2\text{CH}_3\)), 1.27 (t, \(J=7.1 \text{ Hz}, 6H, 2 \times \text{ POCH}_2\text{CH}_3\)); \(^{13}\)C-NMR (151 MHz, CD_3OD): \(\delta=155.39, 154.20, 150.32, 141.04, 137.41, 125.01, 68.51, 64.47 (d, \(J=3.0 \text{ Hz}, \text{PCCO})\), 61.96 (d, \(J=6.5 \text{ Hz}, \text{POC})\), 50.10, 39.09, 25.70 (d, \(J=140.3 \text{ Hz}, \text{PC})\), 15.29 (d, \(J=6.4 \text{ Hz}, \text{POCC})\); \(^{31}\)P-NMR (121.5 MHz, CD_3OD): \(\delta=30.92 \text{ ppm}\). Anal. calcd. for C_{15}H_{23}N_{8}O_{5}P×H_2O: C, 40.54; H, 5.67; N, 25.22. Found: C, 40.44; H, 5.50; N, 25.53.

Diethyl 2-[[2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl] acetamidophosphonate (16j): White powder, yield 98%; m.p. > 230 °C; IR (KBr): \(\nu=3331, 3127, 3099, 2930, 1729, 1680, 1635, 1563, 1478, 1389, 1209, 1024 \text{ cm}^{-1}\); \(^1\)H-NMR (300 MHz, CD_3OD): \(\delta=8.84 (s, 1H), 8.17 (s, 1H), 5.52 (s, 2H, CH₂), 5.23 (s, 2H), 4.18–4.08 (m, 4H, 2 × \text{ POCH}_2\text{CH}_3), 3.74 (brd, \(J=11.9 \text{ Hz}, 2H, \text{PCH}_2\text{NH})\), 1.30 (t, \(J=6.9 \text{ Hz}, 6H, 2 \times \text{ POCH}_2\text{CH}_3\)); \(^{13}\)C-NMR (151 MHz, CD_3OD): \(\delta=166.37 (d, J=3.4 \text{ Hz}, C=O), 155.70, 154.66, 149.94, 140.70, 137.04, 126.11, 109.88, 62.84 (d, \(J=6.5 \text{ Hz}, \text{POC})\), 51.50, 39.25, 34.37 (d, \(J=158.5 \text{ Hz}, \text{PC})\), 15.30 (d, \(J=5.7 \text{ Hz}, \text{POCC})\); \(^{31}\)P-NMR (121.5 MHz, CD_3OD): \(\delta=22.20 \text{ ppm}\). Anal. calcd. for C_{15}H_{22}N_{9}O_{5}P: C, 43.64; H, 5.72; N, 25.44. Found: C, 43.74; H, 5.86; N, 25.66.

3.4. Antiviral Activity Assays

The compounds were evaluated against the following viruses: herpes simplex virus type 1 (HSV-1) strain KOS, thymidine kinase-deficient (TK\(^−\)) HSV-1 KOS strain resistant to acyclovir (ACV\(^−\)), herpes simplex virus type 2 (HSV-2) strains Lyons and G, varicella-zoster virus (VZV) strain Oka, TK\(^−\) VZV strain 07–1, human cytomegalovirus (HCMV) strains AD-169 and Davis, vaccinia virus Lederle strain, respiratory syncytial virus (RSV) strain Long, vesicular stomatitis virus (VSV), Coxsackie B4, para-influenza 3, influenza virus A (subtypes H1N1, H3N2), influenza virus B, reovirus-1, Sindbis, reovirus-1, Punta Toro, human immunodeficiency virus type 1 strain IIIb and human immunodeficiency virus type 2 strain ROD. The antiviral, other than anti-HIV, assays were based on the inhibition of the virus-induced cytopathicity or plaque formation in human embryonic lung (HEL) fibroblasts, African green monkey cells (Vero), human epithelial cells (HeLa) or Madin-Darby canine kidney cells (MDCK). Confluent cell cultures in microtiter 96-well plates were inoculated with 100 CCID\(_{50}\) of virus (1 CCID\(_{50}\) being the virus dose to infect 50% of the cell cultures) or with 20 plaque forming units (PFU) (VZV) in
the presence of varying concentrations of the test compounds. Viral cytopathicity or plaque formation was recorded as soon as it reached completion in the control virus-infected cell cultures that were not treated with the test compounds. Antiviral activity was expressed as the EC50 or compound concentration required to reduce virus-induced cytopathogenicity or viral plaque formation by 50%.

3.5. Cytostatic Activity Assays

All assays were performed in 96-well microtiter plates. To each well were added \((5–7.5) \times 10^4\) tumor cells and a given amount of the test compound. The cells were allowed to proliferate for 48 h (murine leukemia L1210 cells) or 72 h (human lymphocytic CEM and human cervix carcinoma HeLa cells) at 37 °C in a humidified CO2-controlled atmosphere. At the end of the incubation period, the cells were counted in a Coulter counter. The IC50 (50% inhibitory concentration) was defined as the concentration of the compound that inhibited cell proliferation by 50%.

4. Conclusions

A novel series of \{4-[(2-amino-6-chloro-9H-purin-9-yl)methyl]-1H-1,2,3-triazol-1-yl}alkyl phosphonates 17 was synthesized and subsequently transformed into \{4-[(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl) methyl]-1H-1,2,3-triazol-1-yl}alkyl phosphonates 16 as acyclic analogues of guanosine. Evaluation of the antiviral activity of phosphonates 17a–k, as well as 16a–j was performed against a broad variety of DNA and RNA viruses; however, none of them was found active at concentrations up to 250 μM. The cytostatic properties of Compounds 17a–k and 16a–j were studied on L1210, CEM and HeLa cell lines. Among them, Compounds (1R,2S)-17k and (1S,2S)-17k were moderately active toward L1210 and CEM cells (IC50 in the 16–30 μM range).

Acknowledgments

The authors wish to express their gratitude to Małgorzata Pluskota, Leentje Persoons, Lies Van Den Heurck, Frieda De Meyer and Lizette van Berckelaer for excellent technical assistance. The synthetic part of this work was supported by the Medical University of Lodz internal fund (503-3014-01). The virological part of this work was supported by the Rega Institute for Medical Research KU KU Leuven (GOA No. 10/014).

Author Contributions

The research group from Medical University of Lodz (I.E.G. and D.G.P.) conceived of the research project, participated in all steps of the research, interpreted the results, discussed the experimental data and prepared the manuscript. The research group from KU Leuven (G.A., D.S. and R.S.) conducted the biological assays and provided the experimental procedures and results. All authors read, commented on and approved the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.
1. Herdewijn, P. Modified Nucleosides: In Biochemistry, Biotechnology and Medicine; John Wiley & Sons: Weinheim, Germany, 2008.

2. Chu, C.K. Antiviral Nucleosides: Chiral Synthesis and Chemotherapy; Elsevier: Amsterdam, The Netherlands, 2003.

3. Dando, T.; Plosker, G. Adefovir dipivoxil: A review of its use in chronic hepatitis B. **Drugs** 2003, 63, 2215–2234.

4. Danta, M.; Dusheiko, G. Adefovir dipivoxil: Review of a novel acyclic nucleoside analogue. **Int. J. Clin. Pract.** 2004, 58, 877–886.

5. Cundy, K.C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. **Clin. Pharmacokinet.** 1999, 36, 127–143.

6. Srinivas, R.V.; Fridland, A. Antiviral activities of 9-R-2-phosphonomethoxypropyl adenine (PMPA) and bis(isopropoxymethylcarbonyl)PMPA against various drug-resistant human immunodeficiency virus strains. **Antimicrob. Agents Chemother.** 1998, 42, 1484–1487.

7. Ayoub, W.S. Tenofovir: A new option for treatment of chronic hepatitis B. **Virus Adapt. Treat.** 2009, 1, 5–10.

8. Faulds, D.; Heel, R.C. Ganciclovir. **Drugs** 1990, 39, 597–638.

9. McGavin, J.K.; Goa, K.L. Ganciclovir: An update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. **Drugs** 2001, 61, 1153–1183.

10. Komatsu, T.E.; Pikis, A.; Naeger, L.K.; Harrington, P.R. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. **Antivir. Res.** 2014, 101, 12–25.

11. Cvetković, R.S.; Wellington, K. Valganciclovir: A review of its use in the management of CMV infection and disease in immunocompromised patients. **Drugs** 2005, 65, 859–878.

12. Len, O.; Gavaldá, J.; Aguado, J.M.; Borrell, N.; Cervera, C.; Cisneros, J.M.; Cuervas-Mons, V.; Gurugi, M.; Martin-Dávila, P.; Montejo, M.; et al. Valganciclovir as treatment for cytomegalovirus disease in solid organ transplant recipients. **Clin. Infect. Dis.** 2008, 46, 20–27.

13. Safrin, S.; Cherrinton, J.; Jaffè, H.S. Cidofovir: Review of current and potential clinical uses. **Adv. Exp. Med. Biol.** 1999, 458, 111–120.

14. De Clercq, E. Towards an effective chemotherapy of virus infections: Therapeutic potential of cidofovir [((S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl] cytosine, HPMPC] for the treatment of DNA virus infections. **Collect. Czechosl. Chem. Comunn.** 1998, 63, 480–506.

15. Halazy, S.; Ehrhard, A.; Danzin, C. 9-(Difluorophosphonoalkyl)guanines as a new class of multisubstrate analog inhibitors of purine nucleoside phosphorylase. **J. Am. Chem. Soc.** 1991, 113, 315–317.

16. Yokomatsu, T.; Abe, H.; Sato, M.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis of 1,1-difluoro-5-(1H-9-purinyl)-2-pentenylphosphonic acids and the related methano analogues. Remarkable effect of the nucleobases and thecyclopropane rings on inhibitory activity toward purine nucleoside phosphorylase. **Bioorg. Med. Chem.** 1998, 6, 2495–2505.
17. Yokomatsu, T.; Hayakawa, Y.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis and biological evaluation of 1,1-difluoro-2-(tetrahydro-3-furanyl)ethylphosphonic acids possessing a N9-purinylmethyl functional group at the ring. A new class of inhibitors for purine nucleoside phosphorylases. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2833–2836.

18. Kim, C.U.; Luh, B.Y.; Misco, P.F.; Bronson, J.J.; Hitchcock, M.J.M.; Ghazzouli, I.; Martin, J.C. Acyclic purine phosphonate analogs as antiviral agents. Synthesis and structure-activity relationships. *J. Med. Chem.* **1999**, *33*, 1207–1213.

19. Dvořáková, H.; Masojídková, M.; Holý, A.; Balzarini, J.; Andrei, G.; Snoeck, R.; de Clerq, E. Synthesis of 2′-aminomethyl derivatives of N-(2-(phosphonomethoxy)ethyl) nucleotide analogues as potential antiviral agents. *J. Med. Chem.* **1996**, *39*, 3263–3268.

20. Holý, A.; Günter, J.; Dvořáková, H.; Masojídková, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; de Clerq, E. Structure—Antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-phosphonomethoxy)ethyl] nucleotide analogues. 1. Derivatives substituted at the carbon atoms of the base. *J. Med. Chem.* **1999**, *42*, 2064–2086.

21. Yokomatsu, T.; Hayakawa, Y.; Kihara, T.; Koyanagi, S.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis and evaluation of multisubstrate analogue inhibitors of purine nucleoside phosphorylases. *Bioorg. Med. Chem.* **2000**, *8*, 2571–2579.

22. Radi, S.; Lazrek, H.B. Synthesis of certain new 1,2,3-triazole acyclonucleosides via 1,3-dipolar cycloaddition. *Bull. Korean. Chem. Soc.* **2002**, *23*, 437–440.

23. Iwanow, M.; Magnowska, I.; Yokomatsu, T.; Shibuya, S.; Bzowska, A. Interactions of potent multisubstrate analogue inhibitors with purine nucleoside phosphorylase from calf spleen—kinetic and spectrofluorimetric studies. *Nucleosides Nucleotides Nucleic Acids* **2003**, *22*, 1567–1570.

24. Zhou, D.; Lagoja, I.M.; Van Aerschot, A.; Herdewijn, P. Synthesis of aminopropyl phosphonate nucleosides with purine and pyrimidine bases. *Collect. Czechoslov. Chem. Commun.* **2006**, *71*, 15–34.

25. Hikishima, S.; Isobe, M.; Koyanagi, S.; Soeda, S.; Shimeno, H.; Shibuya, S.; Yokomatsu, T. Synthesis and biological evaluation of 9-(5′,5′,5′-difluoro-5′-phosphonopentyl)guanine derivatives for PNP-inhibitors. *Bioorg. Med. Chem.* **2006**, *14*, 1660–1670.

26. Keough, D.T.; Hocková, D.; Holý, A.; Naesens, L.; Skinner-Adams, T.S.; de Jersey, J.; Guddat, L. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: A new class of antimalarial therapeutics. *J. Med. Chem.* **2009**, *52*, 4391–4399.

27. Vertuani, S.; Baldisserotto, A.; Varani, K.; Borea, P.A.; Cruz, B.M.M.; Ferraro, L.; Manfredini, S.; Dalpiaz, A. Synthesis and in vitro stability of nucleoside 5′-phosphate derivatives. *Eur. J. Med. Chem.* **2012**, *54*, 202–209.

28. Tichý, T.; Andrei, G.; Snoeck, R.; Balzarini, J.; Dračínský, M.; Krečmerová, M. Synthesis and antiviral activities of hexadecyloxypropyl prodrugs of acyclic nucleoside phosphonates containing guanine or hypoxanthine and a (S)-HPMP or PEE acyclic moiety. *Eur. J. Med. Chem.* **2012**, *55*, 307–314.

29. Kramer, R.A.; Bleicher, K.H.; Wennemers, H. Design and synthesis of nucleoproline amino acids for the straightforward preparation of chiral and conformationally constrained nucleopeptides. *Helv. Chim. Acta* **2012**, *95*, 2621–2633.
30. Keough, D.T.; Špaček, P.; Hocková, D.; Tichý, T.; Vrbková, S.; Slavětínská, L.; Janeba, Z.; Naesens, L.; Edstein, M.D.; Chavchich, M.; et al. Acyclic nucleoside phosphonates containing a second phosphonate group are potent inhibitors of 6-oxopurine phosphoribosyltransferases and have antimalarial activity. *J. Med. Chem.* 2013, 56, 2513–2526.

31. Keough, D.T.; Špaček, P.; Hocková, D.; Tichý, T.; Vrbková, S.; Slavětínská, L.; Janeba, Z.; Naesens, L.; Edstein, M.D.; Chavchich, M.; et al. Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: A target for anti-malarial chemotherapy. *Mol. Biochem. Parasitol.* 2010, 173, 165–169.

32. De Clercq, E. Strategies in the design of antiviral drugs. *Nat. Rev. Drug Discov.* 2002, 1, 13–25.

33. De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. *Nat. Rev. Drug Discov.* 2005, 4, 928–940.

34. De Clercq, E. The acyclic nucleoside phosphonates (ANPs): Antonín Holý’s legacy. *Med. Res. Rev.* 2013, 33, 1278–1303.

35. Holý, A. Phosphonomethoxyalkyl analogs of nucleotides. *Curr. Pharm. Des.* 2003, 9, 2567–2592.

36. Diab, S.A.; Hienzch, A.; Lebargy, C.; Guillarme, S.; Pfund, E.; Lequeux, T. Synthesis of fluorophosphonylated acyclic nucleotide analogues via copper(I)-catalyzed Huisgen 1,3 dipolar cycloaddition. *Org. Biomol. Chem.* 2009, 7, 4481–4490.

37. Elayadi, H.; Smietana, M.; Pannecouque, Ch.; Leysse, P.; Neyts, J.; Vasseur, J.-J.; Lazrek, H.B. Straightforward synthesis of triazolocyclonucleotide phosphonates as potential HCV inhibitors. *Bioorg. Med. Chem. Lett.* 2010, 20, 7365–7368.

38. Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. *Eur. J. Med. Chem.* 2013, 70C, 703–722.

39. Głowacka, I.E.; Balzarini, J.; Piotrowska, D.G. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. *Bioorg. Med. Chem.* 2014, 22, 3629–3641.

40. Diab, S.A.; de Schutter, C.; Muzard, M.; Plantier-Royon, R.; Pfund, E.; Lequeux, T. Fluorophosphonylated nucleoside derivatives as new series of thymidine phosphorylase multisubstrate inhibitors. *J. Med. Chem.* 2007, 55, 2758–2759.

41. Lazrek, H.B.; Taourirte, M.; Oulih, T.; Lebtoumi, M.; Barascut, J.L.; Imbach, J.L. Synthesis of new 1,2,3-triazole acyclonucleoside analogs of ACV and HBG. *Nucleosides Nucleotides Nucleic Acids* 1997, 16, 1115–1118.

42. Lazrek, H.B.; Taourirte, M.; Oulih, T.; Barascut, J.L.; Imbach, J.L.; Pannecouque, C.; Witrouw, M.; de Clercq, E. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. *Nucleosides Nucleotides Nucleic Acids* 2001, 20, 1949–1960.

43. Krim, J.; Sillahi, B.; Taourirte, M.; Rakib, E.M.; Engels, J.W. Microwave-assisted click chemistry: Synthesis of mono and bis-1,2,3-triazole acyclonucleoside analogues of acyclovir via copper(I)-catalyzed cycloaddition. *Arkivoc* 2009, 142–152.

44. Luo, L.; He, X.P.; Shen, Q.; Li, J.-Y.; Shi, X.-X.; Xie, J.; Li, J.; Chen, G.-R. Synthesis of (glycopyranosyl-triazolyl)-purines and their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B). *Chem. Biodivers.* 2011, 8, 2035–2043.
45. Nagapradeep, N.; Verma, S. Characterization of an unprecedented organomercury adduct via Hg(II)-mediated cyclization of N9-propargylguanine. *Chem. Commun.* **2011**, *47*, 1755–1757.

46. Hocková, D.; Keough, D.T.; Janeba, Z.; Naesens, L.; Wang, T.-H.; de Jersey, J.; Guddat, L.W. Synthesis of novel N-branched acyclic nucleoside phosphonates as potent and selective inhibitors of human, plasmodium falciparum and plasmodium vivax 6-oxopurine phosphoribosyltransferases. *J. Med. Chem.* **2012**, *55*, 6209–6223.

47. Krečmerová, M.; Dračinský, M.; Hocková, D.; Holý, A.; Keough, D.T.; Guddat, L.W. Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogues as potential antimalarial agents. *Bioorg. Med. Chem.* **2012**, *20*, 1222–1230.

48. Liao, S.; Fan, S.-Y.; Liu, Q.; Li, C.-K.; Chen, J.; Li, J.-L.; Zhang, Z.-W.; Zhang, Z.-Q.; Zhong, B.-H.; Xie, J.-W. *In vitro* evaluation of 9-(2-phosphonomethoxyethyl)adenine analogues, a series of anti-HBV structures with improved plasma stability and liver release. *Arch. Pharm. Res.* **2014**, *37*, 1416–1425.

49. Keith, K.A.; Hitchcock, M.J.M.; Lee, W.A.; Holý, A.; Kern, E.R. Evaluation of nucleoside phosphonates and their analogs and prodrugs for inhibition of orthopoxvirus replication. *Antimicrob Agents Chemother.* **2003**, *47*, 2193–2198.

50. Jansa, P.; Baszczyński, O.; Dračinský, M.; Votruba, I.; Zídek, Z.; Bahador, G.; Stepan, G.; Cihlar, T.; Mackman, R.; Holý, A.; *et al.* A novel and efficient one-pot synthesis of symmetrical diamide (bis-amidate) prodrugs of acyclic nucleoside phosphonates and evaluation of their biological activities. *Eur. J. Med. Chem.* **2011**, *46*, 3748–3754.

51. De Clercq, E. Highlights in the discovery of antiviral drugs: A personal retrospective. *J. Med. Chem.* **2010**, *53*, 1438–1450.

52. Hecker, S.J.; Erion, M.D. Prodrugs of Phosphates and Phosphonates. *J. Med. Chem.* **2008**, *51*, 2328–2345.

53. Głowacka, I.E.; Balzarini, J.; Piotrowska, D.G. 1-Amino-3-(1H-1,2,3-triazol-1-yl)propylphosphonates as acyclic analogues of nucleotides. *Arch. Pharm. Chem. Life Sci.* **2014**, *347*, 496–505.

54. Lindsell, W.E.; Murray, Ch.; Preston, P.N.; Woodman, T.A.J. Synthesis of 1,3-diyynes in the purine, pyrimidine, 1,3,5-triazine and acridine series. *Tetrahedron* **2000**, *56*, 1233–1245.

55. Vo, D.D.; Staedel, C.; Zehnacker, L.; Benhinda, R.; Darfeullie, F.; Duca, M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. *ACS Chem. Biol.* **2014**, *9*, 711–721.

56. Głowacka, I.E.; Balzarini, J.; Piotrowska, D.G. 1-Amino-3-(1H-1,2,3-triazol-1-yl)propylphosphonates as acyclic analogues of nucleotides. *Arch. Pharm. Chem. Life Sci.* **2014**, *347*, 496–505.

57. Wróblewski, A.E; Głowacka, I.E. Synthesis of (1S,2S)- and (1R,2S)-3-amino-1,2-dihydroxypropylphosphonic acids. *Polish J. Chem.* **2005**, *79*, 1895–1899.

58. Wróblewski, A.E.; Głowacka, I.E. Synthesis of four enantiomerically pure 4-(4-carbamoyl-1,2,3-triazol-1-yl)-2,3-dihydroxy-1-methoxybutylphosphonic acids. *Tetrahedron* **2005**, *61*, 11930–11938.

59. Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Design, synthesis, antiviral, and cytotoxic evaluation of novel phosphorylated 1,2,3-triazoles as acyclic nucleotide analogues. *Nucleosides Nucleotides Nucleic Acids* **2012**, *31*, 293–318.
60. Glowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis and biological evaluation of novel 1,2,3-triazonucleotides. *Arch. Pharm. Chem. Life Sci.* **2013**, *346*, 278–291.

61. Glowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis of a new series of phosphorylated 1,2,3-triazoles as acyclic analogs of ribavirin. *Arch. Pharm. Chem. Life Sci.* **2013**, *346*, 677–687.

62. Bankowska, E.; Balzarini, J.; Glowacka, I.E.; Wróblewski, A.E. Design, synthesis, antiviral and cytotoxic evaluation of novel acyclic phosphonate nucleotide analogues with a 5,6-dihydro-1*H*-1,2,3-triazolo[4,5-\textit{d}]pyridazine-4,7-dione system. *Monatsh. Chem.* **2013**, *145*, 663–673.

Sample Availability: Not available.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).