Omalizumab for Aspirin Hypersensitivity and Leukotriene Overproduction in Aspirin-exacerbated Respiratory Disease: A Randomized Controlled Trial

Hiroaki Hayashi1,2, Yuma Fukutomi1, Chiihiro Mitsui1, Keichi Kajiwara1, Kentaro Watai1, Yosuke Kamide1, Yuto Nakamura1,3, Yuto Hamada1,3, Yasuhiro Tomita1,2, Kiyoshi Sekiya1, Takahiro Tsuburai1,4, Kenji Izuhaara5, Keiko Wakahara2, Naozumi Hashimoto2, Yoshinori Hasegawa2, and Masami Taniguchi1,6

1Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan; 2Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; 3Department of Allergy and Clinical Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan; 4Department of Respiratory Medicine, St. Mariana University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan; 5Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan; and 6Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kamakura, Japan

Abstract

Rationale: Aspirin-exacerbated respiratory disease is characterized by severe asthma, nonsteroidal antiinflammatory drug hypersensitivity, nasal polyposis, and leukotriene overproduction. Systemic corticosteroid therapy does not completely suppress lifelong aspirin hypersensitivity. Omalizumab efficacy against aspirin-exacerbated respiratory disease has not been investigated in a randomized manner.

Objectives: To evaluate omalizumab efficacy against aspirin hypersensitivity, leukotriene E4 overproduction, and symptoms during an oral aspirin challenge in patients with aspirin-exacerbated respiratory disease using a randomized design.

Methods: We performed a double-blind, randomized, crossover, placebo-controlled, single-center study at Sagamihara National Hospital between August 2015 and December 2016. Atopic patients (20–79 yr old) with aspirin-exacerbated respiratory disease diagnosed by systemic aspirin challenge were randomized (1:1) to a 3-month treatment with omalizumab or placebo, followed by a >18-week washout period (crossover design). The primary endpoint was the difference in area under logarithm level of urinary leukotriene E4 concentration versus time curve in the intent-to-treat population during an oral aspirin challenge.

Measurements and Main Results: Sixteen patients completed the study and were included in the analysis. The area under the logarithm level of urinary leukotriene E4 concentration versus time curve during an oral aspirin challenge was significantly lower in the omalizumab phase (median [interquartile range], 51.1 [44.5–59.8]) than in the placebo phase (80.8 [interquartile range, 65.4–87.8]) (P < 0.001). Ten of 16 patients (62.5%) developed oral aspirin tolerance up to cumulative doses of 930 mg in the omalizumab phase (P < 0.001).

Conclusions: Omalizumab treatment inhibited urinary leukotriene E4 overproduction and upper/lower respiratory tract symptoms during an oral aspirin challenge, resulting in aspirin tolerance in 62.5% of the patients with aspirin-exacerbated respiratory disease.

Keywords: aspirin-exacerbated respiratory disease; aspirin hypersensitivity; aspirin tolerance; leukotriene E4; omalizumab

(Received in original form June 21, 2019; accepted in final form March 4, 2020)

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Supported by the Practical Research Project for Allergic Diseases and Immunology, Japan Agency for Medical Research and Development (grant number 19ek0410040h0003).

Data sharing statement: The data collected for this study and related documents will not be made available to others.

Correspondence and requests for reprints should be addressed to Masami Taniguchi, M.D., Ph.D., Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, Kanagawa 252-0392, Japan, E-mail: m_taniguchi@shonankamakura.or.jp.

This article has a related editorial.

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

Am J Respir Crit Care Med Vol 201, Iss 12, pp 1488–1498, Jun 15, 2020
Copyright © 2020 by the American Thoracic Society
Originally Published in Press as DOI: 10.1164/rcrm.201906-1215OC on March 6, 2020
Internet address: www.atsjournals.org
Aspirin-exacerbated respiratory disease (AERD) is characterized by severe asthma, hypersensitivity to aspirin and other nonsteroidal antiinflammatory drugs, chronic rhinosinusitis, mast cell activation, and overproduction of cysteinyl leukotrienes. The management of AERD involves guideline-based treatments for asthma and chronic rhinosinusitis, and avoidance of all medications that inhibit cyclooxygenase-1. Although systemic corticosteroid treatment was reported to partially attenuate upper and lower respiratory tract symptoms after aspirin challenge in AERD, all types of antiasthma medication have failed to completely suppress aspirin hypersensitivity, which continues throughout the life span of patients.

At a Glance Commentary

Scientific Knowledge on the Subject: Aspirin-exacerbated respiratory disease (AERD) is characterized by severe asthma, hypersensitivity to aspirin and other nonsteroidal antiinflammatory drugs, chronic rhinosinusitis, mast cell activation, and overproduction of cysteinyl leukotrienes. The management of AERD involves guideline-based treatments for asthma and chronic rhinosinusitis, and avoidance of all medications that inhibit cyclooxygenase-1. Although systemic corticosteroid treatment was reported to partially attenuate upper and lower respiratory tract symptoms after aspirin challenge in AERD, all types of antiasthma medication have failed to completely suppress aspirin hypersensitivity, which continues throughout the life span of patients.

What This Study Adds to the Field:

This study is the first double-blind, randomized, placebo-controlled, crossover study to evaluate the efficacy of omalizumab against the overproduction of leukotriene E4, aspirin hypersensitivity, and disease symptoms during an oral aspirin challenge in patients with AERD and at least one positive result in the specific IgE test for common environmental allergens. Omalizumab treatment suppressed overproduction of urinary leukotriene E4 and 11,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-1,20-dioic acid, which is a key feature of the pathogenesis of AERD, after an aspirin challenge. Furthermore, aspirin hypersensitivity disappeared in more than half of the patients after 3 months of omalizumab therapy, and serious eosinophilic airway inflammation and mast cell activation in AERD were effectively suppressed by omalizumab starting within 24 hours.

Methods

Study Design and Participants

The study was a randomized, double-blind, single-center, placebo-controlled, crossover trial with two treatment phases of 3-month duration in patients with AERD (Figure 1A). An oral aspirin challenge was conducted.

Author Contributions: All authors contributed to this research study. M.T. developed the study concept. H.H. and M.T. developed the study design. H.H., Y.F., K. Wakahara, N.H., Y. Hasegawa, and M.T. contributed to the critical revision of the manuscript. All authors additionally assisted in study design and data interpretation, and provided comments on the final article.
at the end of each treatment phase. The Ethics Committee of the National Hospital Organization Sagamihara National Hospital (Sagamihara, Japan) approved the study protocol. Written informed consent was obtained from all patients. This study was registered with the University Hospital Medical Information Network (number UMIN000018777; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000021562) in Japan.

Asthma was diagnosed according to the American Thoracic Society criteria (31) by pulmonologists and allergists. In addition, AERD was diagnosed by a positive result for systemic aspirin challenge, based on a modified oral challenge protocol (32, 33) within the last 2 years before enrollment. Positive reactions were evaluated by a respiratory function test and/or clinical

Figure 1. (A) Study design. (B) Flow diagram. AERD = aspirin-exacerbated respiratory disease; F_{ENO} = fractional exhaled nitric oxide.
symptoms (nasal and/or extrapulmonary symptoms) (see Methods section in the online supplement). All patients had at least one positive result in the specific IgE test for common environmental allergens. Maintenance oral corticosteroids and other regular asthma treatments were unchanged for the duration of the study. Information regarding the inclusion and exclusion criteria for study patients, randomization, masking, and anti-IgE and placebo therapies are provided in the online supplement.

Study Outcomes

The primary endpoint was the difference in the area under the logarithm level of urinary biomarker concentration versus time curve (AUC(before-24 h)) of LTE4 between the placebo and omalizumab phases during an oral aspirin challenge, because the AUC reflects the overall production of LTE4 in response to exposure to systemic aspirin. The secondary endpoints included the differences in urinary concentrations of LTE4 (34) and tetranor-PGDM (30) during the treatment phase (when there was no aspirin exposure), and the AUC(before-24 h) of tetranor-PGDM during oral aspirin challenge, blood samples (peripheral blood eosinophil counts, peristin [35, 36], eosinophilic cationic protein, tryptase, platelet activation markers [37], cytokines, and chemokines), lung function (FEV₁%, predicted, FVC% predicted, forced expired flow between 25% and 75% of the volume expired, and fractional exhaled nitric oxide (FENO)) and Global Evaluation of Treatment Effectiveness (GETE) (20). Adverse events and medication use and adherence were also assessed at every study visit.

Statistical Analyses

The baseline characteristics of patients were described as follows: number and percentage for categorical variables and the median (interquartile range [IQR]) for continuous variables. To compare the effects of treatments, the McNemar test for categorical variables and the Wilcoxon signed-rank test were used. A *P* < 0.05 was considered statistically significant. Bonferroni corrections were applied to adjust for the impact of multiple comparisons. Our sample size estimate was based on a change in the logarithm level of urinary LTE4 concentration between before and after omalizumab treatment in our previous study (28). The mean change before and after omalizumab treatment in the log-transformed urinary LTE4 concentration (pg/mg of creatinine) was −0.70 with an SD of 0.525, and the number of participants was calculated to be nine patients at a significance level of 0.05 (two-sided) and power of 90%. To account for not being able to evaluate many endpoints during the long-term study period (>10 mo), and to perform at least two aspirin challenges in participants in stable condition in up to 40% of patients with AERD, we set an initial enrollment goal of 16 patients. Intent-to-treat data were analyzed unless otherwise indicated. All statistical analyses were performed using R version 3.2.4 (41).

The AUC(before-24 h) of LTE4 and tetranor-PGDM was calculated using the trapezoidal rule. The AUC using the trapezoidal rule was defined as follows:

\[
AUC = \frac{\sum_{i=1}^{4} (t_{i+1} - t_i)(C_i + C_{i+1})}{2}
\]

where \(t_i\) (\(i = 1, 2, 3, 4, 5\)) is the observation time (Before, 3 h, 6 h, 9 h, and 24 h, respectively) and \(C_i\) is the logarithm level of LTE4 or tetranor-PGDM for each time point. To calculate the AUC, we assumed that Before equaled 0 h.

Results

Patient Recruitment and Characteristics

Screening visits were arranged for 21 patients; 16 were randomized to therapy and five were excluded before randomization (Figure 1B). The first patient was screened...
on August 24, 2015 and the last patient was screened on December 15, 2016. All patients completed the study as planned. The clinical characteristics of the patients are shown in Table 1. The study population consisted of 16 patients (10 female and six male) with a median age of 53 years (IQR, 44.0–60.0 yr), a median asthma onset age of 43.0 years (IQR, 27.0–56.3 yr), and a median serum IgE level of 169.0 IU/ml (IQR, 45.5–482.8 IU/ml). The median dose of monthly omalizumab was 300 mg (IQR, 150–600 mg). Three of the 16 patients (18.8%) received omalizumab every 2 weeks. The participants in this study demonstrated good adherence to the asthma medications.

Figure 2. Difference in the area under the logarithm level of urinary biomarker concentration versus time curve (AUC\(_\text{Before-24 h}\)) and levels of urinary LTE\(_4\) and tetranor-PGDM concentrations during oral aspirin challenge between the placebo and omalizumab phases. (A) AUC\(_\text{Before-24 h}\) of LTE\(_4\). (B) AUC\(_\text{Before-24 h}\) of tetranor-PGDM. (C and D) Time course of log-transformed levels of urinary LTE\(_4\) (C) and tetranor-PGDM (D) concentrations. Wilcoxon signed-rank test. *P < 0.05 and **P < 0.01. The log-transformed urinary LTE\(_4\) and tetranor-PGDM concentrations are expressed as medians and interquartile ranges. LTE\(_4\) = leukotriene E\(_4\); tetranor-PGDM = 11,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-1,20-dioic acid.

Table 2. Difference in the Area under the Logarithm Level of Urinary Biomarker Concentration versus Time Curve during Oral Aspirin Challenge

	Placebo Phase (N=16)	Omalizumab Phase (N=16)	P Value
LTE\(_4\)	80.8 (65.4–87.8)	51.1 (44.5–59.8)	<0.001
Tetranor-PGDM	61.2 (57.9–64.0)	53.8 (51.3–56.8)	<0.001

Definition of abbreviations: LTE\(_4\) = leukotriene E\(_4\); tetranor-PGDM = 11,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-1,20-dioic acid.

Data are presented as medians and interquartile ranges. Significance testing was performed using the Wilcoxon signed-rank test.
original article

Table 3. Change in the Cumulative Provoking Aspirin Dose during an Oral Aspirin Challenge

Number	Sex	Age (yr)	Placebo Phase	Omalizumab Phase
Developed aspirin tolerance	1	M 53	90	930*
	2	F 67	30	930*
	3	M 72	210	930*
	4	M 53	930	930*
	5	F 65	450	930*
	6	F 57	210	930*
	7	F 42	90	930*
	8	M 60	90	930*
	9	F 57	210	930*
	10	M 44	210	930*
Did not develop aspirin tolerance	11	F 21	90	210
	12	F 60	210	210
	13	F 49	90	210
	14	F 52	210	210
	15	M 44	90	210
	16	F 40	90	210

Significance testing was performed using the McNemar test.
*No symptoms were observed after the cumulative dose of aspirin (930 mg).

Omalizumab phases during an oral aspirin challenge are shown in Figure 2A and Table 2. There was a significant reduction in the AUC_{Before-24 h} of urinary LTE4 concentrations in the omalizumab phase (51.1 [IQR, 44.5–59.8]) compared with the placebo phase (80.8 [IQR, 65.4–87.8]) (P < 0.001). In addition, there was a significant reduction in the AUC_{Before-24 h} of urinary tetranor-PGDM concentrations, which was a secondary outcome, in the omalizumab phase (53.8 [51.3–56.8]) compared with the placebo phase (61.2 [57.9–64.0]) (P < 0.0001) (Figure 2B and Table 2).

Figures 2C and 2D show the time course of changes in the levels of urinary LTE4 and tetranor-PGDM concentrations during an oral aspirin challenge. The levels at each time point (3, 6, 9, and 24 h) after the oral aspirin challenge were significantly lower in the omalizumab phase than in the placebo phase.

Development of Aspirin Tolerance and Change in the Cumulative Provoking Aspirin Dose

In the placebo phase, all patients showed a positive reaction to the oral aspirin challenge. The median cumulative provocation dose of aspirin in the placebo phase was 150 mg (IQR, 90–210 mg). Conversely, in the omalizumab phase, 10 of 16 patients (62.5%) did not show a positive reaction, even after the highest cumulative dose (930 mg) was administered (P = 0.004; Table 3), indicating that these patients developed aspirin tolerance. Of the six patients with a positive reaction, the cumulative dose in four of the six patients increased from 90 mg to 210 mg. However, this was unchanged in the other two patients. Tables E1 and E2 and Figure E1 in the online supplement show the differences were statistically significant.

Regarding VAS, statistically significant differences were first observed at Month 1 for ACQ-6 and SNOT-22, and at Month 2 for ACT. All differences remained statistically significant up to Month 3, although the differences in ACQ-6 and ACT were small, indicating they were not clinically important differences (42, 43). Regarding the VAS, statistically significant differences were first observed at Month 1 for asthma symptoms (dyspnea, wheezing, and cough) and at Month 2 for nasal symptoms (nasal congestion, anterior rhinorrhea, and anosmia). All remained statistically significant up to Month 3.

Urinary Concentrations of LTE4 and Tetranor-PGDM during the Treatment Phase

Significantly lower levels of urinary concentrations of LTE4 and tetranor-PGDM in the omalizumab phase compared with the placebo phase were observed as early as Day 1 (Figure 4 and Table 4), and the low levels of LTE4 were maintained until Month 3. Levels of tetranor-PGDM also tended to be lower in the omalizumab phase than in the placebo phase throughout the treatment period, although this did not reach statistical significance at Day 7, Month 2, or Month 3.

Blood Biomarkers during the Treatment Phase

Day 7 was the first day statistically significant differences were observed for
peripheral blood eosinophil counts and serum periostin. All remained statistically significant until Month 3 (see Figure E2 and Table 4). The levels of serum eosinophilic cationic protein and tryptase were significantly lower at several time points in the omalizumab phase than in the placebo phase. In contrast, there were no significant differences in the platelet surface markers of free plasma platelets (CD62P and CD63) and the levels of soluble P-selectin between the placebo and omalizumab phases (see
Table E5). The concentration of serum B-cell activating factor, a tumor necrosis factor family/B-lymphocyte stimulator member, was significantly increased in the omalizumab phase compared with the placebo phase (see Table E6), although this was not observed after Bonferroni correction.

Respiratory Functions and FeNO during the Treatment Phase

All respiratory functions, except for FVC% predicted and FeNO, were significantly higher in the omalizumab phase than in the placebo phase (see Table E8). Regarding the forced oscillation technique, there were no significant differences in all parameters (respiratory system resistance and reactance) between the placebo and omalizumab phases (data not shown).

Safety and Adverse Events

Subcutaneous bleeding was reported as an adverse event in two patients (placebo phase, n = 0; omalizumab phase, n = 2). Two patients in the omalizumab phase reported injection-site erythema that was mostly mild. However, no moderate or severe adverse events related to omalizumab use, including generalized urticarial or anaphylaxis, were reported during the study period.

Discussion

To the best of our knowledge, this is the first randomized, placebo-controlled trial to evaluate the efficacy of omalizumab against overproduction of LTE₄ and aspirin hypersensitivity, and upper and lower respiratory tract symptoms—all of which are important pathogenic factors in AERD—during an oral aspirin challenge. Omalizumab suppressed LTE₄ and tetranor-PGDMD overproduction during a systemic aspirin challenge, suggesting that omalizumab has inhibitory effects on mast cell function during an aspirin challenge, and therefore potentially during clinical adverse responses to aspirin. In addition, omalizumab significantly suppressed the urinary concentrations of LTE₄ and tetranor-PGDMD during treatment periods (when there was no aspirin exposure), suggesting that it has inhibitory effects on ongoing mast cell activation. Although no medication has been reported to completely suppress hypersensitivity symptoms after aspirin exposure (3, 10), 10 of 16 patients (62.5%) in our study became tolerant to aspirin under omalizumab treatment. These study findings indicate that omalizumab might be a potential orphan drug for AERD.

With regard to general asthma, the response to omalizumab was characterized by a progressive onset, and at least 12 weeks of omalizumab treatment was required before we could determine whether a satisfactory response had been achieved (15, 44). In contrast, in previous studies, early onset (within 1 d to 4 wk) of omalizumab efficacy was reported for most patients with chronic idiopathic urticaria/chronic spontaneous urticaria (45, 46). The findings of our study also demonstrated early onset of omalizumab efficacy: 3 of 16 patients (18.8%) reported rapid symptomatic improvement within 1 day of omalizumab treatment, and an additional 4 patients reported an improvement within 7 days. When early responders (n = 7, response until Day 7) were compared with late responders (n = 4, response after Month 1), the early responders tended to have more severe symptoms at baseline (Day 0) and showed a rapid improvement of the symptoms until Day 7 after starting treatment (data not shown). Symptoms after oral aspirin challenge were also suppressed relatively early: 10 of 16 patients (62.5%) developed aspirin tolerance after only 3 months of omalizumab treatment.

In our study, urinary LTE₄ levels were significantly lower in the omalizumab phase than in the placebo phase as early as 1 day after initiation of treatment. In addition, peripheral eosinophil counts and serum peristin levels were significantly suppressed within 7 days of omalizumab treatment. These findings suggest that omalizumab can begin to effectively suppress serious eosinophilic airway inflammation and mast cell activation in AERD (1, 7–9) within 24 hours, with the potential to improve aspirin hypersensitivity within 3 months. These findings were also supported by relatively rapid clinically significant improvements in GETE and each symptom score in the omalizumab phase compared with the placebo phase.

Previous studies suggested that omalizumab exerts its effects against general asthma by depleting free IgE and preventing the formation of an IgE/high-affinity IgE Fc receptor/mast cell axis (17, 23, 24). A duration of >10 weeks was reported to be required for the reduction of high-affinity IgE Fc receptors on mast cells (23). However, recent in vitro studies demonstrated that omalizumab dissociated prebound IgE from its high-affinity IgE Fc...
Table 4. Difference of Each Urine and Blood Biomarker between Placebo and Omalizumab Phases

Variable	Placebo (N = 16)	Omalizumab (N = 16)	P Value
Urine biomarkers, log-transformed			
LTE₄, pg/mg of creatinine			
Day 0	2.1 (2.0–2.8)	2.4 (2.1–2.6)	0.404
Day 1	2.2 (2.1–2.8)	2.1 (2.0–2.4)	0.008
Day 7	2.3 (2.1–2.7)	2.0 (1.8–2.3)	0.002
Month 1	2.4 (2.1–2.8)	2.0 (1.8–2.2)	0.008
Month 2	2.3 (2.2–3.0)	2.0 (1.9–2.2)	0.002
Month 3	2.4 (2.2–2.8)	1.9 (1.8–2.1)	<0.001
Tetranor-PGDM, pg/mg of creatinine			
Day 0	2.4 (2.3–2.5)	2.5 (2.4–2.7)	0.376
Day 1	2.3 (2.3–2.5)	2.2 (2.0–2.4)	0.012
Day 7	2.5 (2.3–2.5)	2.3 (2.2–2.6)	0.821
Month 1	2.4 (2.3–2.6)	2.2 (2.2–2.4)	0.016
Month 2	2.4 (2.3–2.6)	2.4 (2.2–2.6)	0.300
Month 3	2.5 (2.4–2.6)	2.4 (2.3–2.5)	0.051
Blood biomarkers			
Eosinophil count per microliter			
Day 0	380.0 (287.5–457.5)	320.0 (257.5–482.5)	0.497
Day 1	355.0 (302.5–502.5)	395.0 (267.5–440.0)	0.536
Day 7	385.0 (292.5–475.0)	315.0 (187.5–430.0)	0.028
Month 1	400.0 (295.0–607.5)	275.0 (150.0–370.0)	0.006
Month 2	385.0 (297.5–562.5)	325.0 (172.5–372.5)	0.007
Month 3	335.0 (250.0–442.5)	220.0 (170.0–290.0)	0.026
Periostin, ng/ml			
Day 0	113.5 (103.2–157.0)	111.0 (98.8–133.0)	0.934
Day 1	121.0 (97.8–146.0)	111.5 (104.8–131.2)	0.831
Day 7	126.0 (98.8–177.0)	105.5 (91.5–128.5)	0.004
Month 1	109.0 (98.0–160.2)	107.5 (92.8–119.0)	0.038
Month 2	133.5 (96.8–161.8)	94.5 (85.8–116.2)	0.001
Month 3	123.5 (100.5–137.0)	96.0 (86.8–113.0)	0.001
Eosinophil cationic protein, µg/L			
Day 0	13.3 (9.6–17.9)	11.3 (6.3–13.4)	0.021
Day 1	11.7 (7.5–15.0)	12.0 (5.0–14.9)	0.940
Day 7	15.4 (7.8–20.9)	11.0 (4.9–13.3)	0.039
Month 1	12.8 (7.5–16.2)	9.3 (6.1–14.1)	0.376
Month 2	16.2 (11.6–18.2)	9.6 (5.9–13.7)	0.039
Month 3	8.1 (5.6–15.0)	7.3 (5.4–10.4)	0.083
Tryptase, µg/L			
Day 0	3.4 (2.7–5.1)	3.1 (2.4–4.0)	0.049
Day 1	3.1 (2.8–4.9)	3.1 (2.3–4.2)	0.696
Day 7	3.1 (2.6–4.6)	2.9 (2.5–3.6)	0.022
Month 1	3.1 (2.8–4.1)	3.0 (2.3–3.6)	0.009
Month 2	3.0 (2.9–5.2)	2.8 (2.4–3.6)	0.140
Month 3	3.1 (2.7–4.6)	2.9 (2.6–3.5)	0.003

Definition of abbreviations: LTE₄ = leukotriene E₄; tetranor-PGDM = 11,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-1,20-dioic acid. Data are presented as medians and interquartile ranges. Significance testing was performed using the Wilcoxon signed-rank test.

receptor on mast cells, and that the inhibition of mast cells by omalizumab started rapidly, within 24 hours (47, 48). Increased levels of prostaglandin D₂ in urine were reported in stable patients with AERD compared with patients with general asthma (1, 8, 49, 50). The early suppression of LTE₄ and tetranor-PGDM overproduction by omalizumab during the treatment periods (when there was no aspirin exposure) observed in our study may be explained by its suppressive efficacy against ongoing, exposure-independent mast cell activation, which is an important pathogenetic feature of AERD (1, 7–9, 50). However, the mechanism of ongoing mast cell activation in AERD remains to be determined.

GETE is a subjective and single-item questionnaire that is completed by patients to determine the perceived effectiveness of a treatment before and after omalizumab treatment on a five-point categorical scale. The response scale is not centered on 0, or no change, because its three levels indicate a positive improvement and only one level definitively reflects a worse outcome. Therefore, although GETE simply measures perceived treatment effectiveness, it is commonly used in clinical trials of omalizumab therapy (14, 20, 51). Of note, it was previously reported that GETE responses were similar between patients and investigators (20).

The management of AERD involves guideline-based treatments for asthma and chronic rhinosinusitis and avoiding all medications that inhibit cyclooxygenase-1 (2, 3, 12). However, patients with severe asthma require daily corticosteroid therapy and/or frequent steroid bursts to control their disease (1–3). Given the possible side effects of chronic corticosteroid therapy...
(e.g., osteoporosis, increased risk of infection, diabetes mellitus, weight gain, and adrenal suppression) (52), the ability to taper or stop corticosteroid treatment is a major clinical benefit of omalizumab. In this study, no moderate-to-severe adverse events (e.g., anaphylaxis) or other clinically relevant adverse events were observed during the omalizumab phase.

This study has some limitations. First, it included a limited sample size of 16 patients, which was estimated before the start of the study, from a single center. Second, because this study was performed in Japanese patients with AERD, results from populations with other ethnic and genetic backgrounds were not available. Third, a selection bias toward patients with relatively mild AERD may have occurred. This is because patients with severe AERD who were preferentially enrolled in our previous investigator-initiated trial. However, this is a minor limitation because the study endpoints were objective outcomes with minimal sensitivity to subjective bias.

Finally, although both prostaglandin D2 and cysteinyl leukotrienes have been reported to promote the chemotaxis of group 2 innate lymphoid cells (53, 54), we did not evaluate the efficacy of omalizumab against group 2 innate lymphoid cells in this study. Investigators should consider these limitations when designing future studies.

In conclusion, this randomized study showed the efficacy of omalizumab against the overproduction of LTE4, mast cell activation, and the results of aspirin challenge in patients with AERD. Omalizumab treatment led to the development of aspirin tolerance and markedly reduced urinary LTE4 concentrations during an oral aspirin challenge. These findings indicate that omalizumab has efficacy against the key pathogenic features of AERD and might be an important therapeutic candidate for AERD.

Author disclosures are available with the text of this article at www.atsjournals.org.

Acknowledgment: The authors thank Mr. Ryosuke Kage, Ms. Katsue Sumi, Ms. Chiharu Shibuya, Ms. Isukoto Ito, and Dr. Haruhiisa Mita for quantifying urinary LTE4 and tetranor-PGDM; Junya Ono BSc. (Shino-Test Co.) for measuring serum peristin levels; and Ms. Yuka Takahashi, Ms. Natsuko Hasebe, Ms. Emi Onhaska, Ms. Moe Egawa, Ms. Nozomi Hayakawa, and Ms. Masako Ikono for their assistance in this study. Statistical analysis support was provided by StaGen Co. Ltd.
available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 2005;60:309–316.

21. Abraham I, Alhossan A, Lee CS, Kutbi H, MacDonald K. ‘Real-life’ effectiveness studies of omalizumab in adult patients with severe allergic asthma: systematic review. Allergy 2016;71:593–610.

22. Holgate ST. New strategies with anti-IgE in allergic diseases. World Allergy Organ J 2014;7:17.

23. Beck LA, Marcotte GV, MacGlashan D, Togias A, Saini S. Omalizumab-induced reductions in mast cell Fc epsilon RI expression and function. J Allergy Clin Immunol 2004;114:527–530.

24. Chang TW, Chen C, Lin CJ, Metz M, Church MK, Maurer M. The potential pharmacologic mechanisms of omalizumab in patients with chronic urticaria. J Allergy Clin Immunol 2015;135:337–342.

25. MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, McKenzie-White J, et al. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 1997;158:1438–1445.

26. Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA, et al. Omalizumab rapidly decreases nasal allergic response and Fc epsilon RI on basophils. J Allergy Clin Immunol 2004;113:297–302.

27. Prussin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB. Omalizumab treatment downregulates dendritic cell Fc epsilon RI expression. J Allergy Clin Immunol 2003;112:1147–1154.

28. Hayashi H, Mitsui C, Nakatani E, Fukutomi Y, Kajiwara K, Watai K, et al. Omalizumab reduces cysteinyl leukotriene and 9x,11x-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016;137:1585–1587.e4.

29. Phillips-Angles E, Barranco P, Luch-Bernal M, Dominguez-Ortega J, Lopez-Carrasco V, Quire S. Allergic tolerance in patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease following treatment with omalizumab. J Allergy Clin Immunol Pract 2017;5:842–845.

30. Higashi N, Mita H, Yamaguchi H, Fukutomi Y, Akiyama K, Taniguchi M. Urinary tetranor-PGDM concentrations in aspirin-intolerant asthma and anaphylaxis. J Allergy Clin Immunol 2012;129:557–559, 559.e1–e2.

31. Guidelines for the evaluation of impairment/disability in patients with allergy. World Allergy Organization 2019;12:575–576.

32. Stevenson DD. Diagnosis, prevention, and treatment of adverse reactions to aspirin and nonsteroidal anti-inflammatory drugs. J Allergy Clin Immunol 1984;74:617–622.

33. Stevenson DD. Aspirin sensitivity and desensitization for asthma and sinusitis. Curr Allergy Asthma Rep 2009;9:155–165.

34. Mita H, Oosaki R, Mizushima Y, Kobayashi M, Akiyama K. Efficient method for the quantitation of urinary leukotriene E4: extraction using an Empore C18 disk cartridge. J Chromatogr B Biomed Sci Appl 1997;692:461–466.

35. Kanemitsu Y, Matsumoto H, Izuhara K, Tohda Y, Kita H, Horiguchi T, et al. Increased periostin associates with greater airway limitation in patients with aspirin-exacerbated respiratory disease. Chest 2019;156:2021–2031.e9.

36. Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CT, Matthews JG, et al. Roles of periostin in respiratory disorders. Am J Respir Crit Care Med 2016;193:949–956.

37. Mitsu H, Kajiwara K, Hayashi H, Ito J, Mita H, Ono E, et al. Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016;137:400–411.

38. Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol 2004;113:59–65.

39. Juniper EF, O’Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999;14:902–907.

40. Kennedy JL, Hubbard MA, Huyett P, Patrie JT, Borish L, Payne SC. Sino-nasal outcome test (SNOT-22): a predictor of postsurgical improvement in patients with chronic sinusitis. Ann Allergy Asthma Immunol 2013;111:246–251.e2.

41. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2016. https://www.R-project.org/.

42. Juniper EF, Svensson K, Mörk AC, Stähl E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir Med 2005;99:553–558.

43. Schatz M, Kosinski M, Yarlas AS, Hanlon J, Watson ME, Jingrana P. The minimally important difference of the asthma control test. J Allergy Clin Immunol 2009;124:719–723.e1.

44. Bousquet J, Wenzel S, Holgate S, Lumry W, Freeman P, Fox H. Predicting response to omalizumab, an anti-IgE antibody, in patients with allergic asthma. Chest 2004;125:1378–1386.

45. Kaplan A, Ferrer M, Bernstein JA, Antonova E, Trzaskoma B, Raimundo K, et al. Timing and duration of omalizumab response in patients with chronic idiopathic/spontaneous urticaria. J Allergy Clin Immunol 2016;137:474–481.

46. Kaplan AP, Giménez-Arnau AM, Saini SS. Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy 2017;72:519–533.

47. Eggel A, Baravalle G, Hobli G, Krim B, Buschor P, Forrer P, et al. Accelerated dissociation of IgE-Fc(epsilon)RI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J Allergy Clin Immunol 2014;133:1709–1719.e8.

48. Serrano-Candelas E, Martínez-Aranguren R, Valero A, Bartra J, Gastaminza G, Goikoetxea MJ, et al. Comparable actions of omalizumab on mast cells and basophils. Clin Exp Allergy 2016;46:92–102.

49. Buchheit KM, Cahill KN, Katz HR, Murphy KC, Feng C, Lee-Sarwar K, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016;137:1566–1576.e5.

50. Taniguchi M, Mitsui C, Hayashi H, Ono E, Kajiwara K, Mita H, et al. Aspirin-exacerbated respiratory disease (AERD): current understanding of AERD. Allergol Int 2019;68:289–295.

51. Braunstahl GJ, Chen CW, Maykut R, Georgiou P, Peachey G, Bruce J. The eXpeRience registry: the ‘real-world’ effectiveness of omalizumab in allergic asthma. Respir Med 2013;107:1141–1151.

52. Sullivan PW, Ghushchyan VH, Globe G, Schatz M. Oral corticosteroid exposure and adverse effects in asthmatic patients. J Allergy Clin Immunol 2018;141:110–116, e7.

53. Eastman JJ, Cavagnaro KJ, Deconde AS, Kim AS, Karta MR, Broide DH, et al. Group 2 innate lymphoid cells are recruited to the nasal mucosa in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2017;140:101–108, e3.

54. White AA, Doherty TA. Role of group 2 innate lymphocytes in aspirin-exacerbated respiratory disease pathogenesis. Am J Rhinol Allergy 2018;32:7–11.