Research Paper

The Antioxidant Effects of Ginger Extract on Bioavailability and Oxidative Stress-induced Apoptosis in Mesenchymal Stem Cells of Human Adipose Tissue and Rat Bone Marrow

Sahar Dehghani1, Leila Rouhi2, Noosha Ziya Jahromi2, Reza Dehghani2, Khalil Khashei Varnamkhasti1,3

1. Department of Biochemistry, Shahrekord Branch, University of Islamic Azad, Shahrekord, Iran.
2. Department of Physiology, Shahrekord Branch, University of Islamic Azad, Shahrekord, Iran.
3. Department of Genetics, School of Medicine, University of Islamic Azad, Kazerun, Iran.

Background and Aim

Proliferate potential differentiate into different cell lineages and high self-renewal of Mesenchymal Stem Cells (MSCs); thus, they are ideal tools for regenerative medicine. However, a leading problem is an oxidative stress in the target tissue and the apoptosis of transplanted stem cells before tissue repair. The pretreatment of stem cells with antioxidants may make them resistant to oxidative stress. Ginger is the main medicinal plant with antioxidant properties. This study explored the antioxidant effects of ginger extract on bioavailability and oxidative stress-induced apoptosis in human adipose tissue-derived mesenchymal stem cells and rat bone marrow examined.

Methods & Materials

In this study, human adipose tissue-derived mesenchymal stem cells and rat bone marrow were cultured in a DMEM medium with 20% FBS. The explored cells were incubated for 4 and 6 hours for pretreatment with different concentrations of ginger extract (50, 100, 200, & 400 mg/mL); then, they were treated with 200 μM H2O2 for 2 hours. Bioavailability was analyzed by ELISA reader using an MTS kit and apoptosis was analyzed by flow cytometry using an Annexin V-FITC/PI kit into the manufacturer’s protocol at both times. The obtained data were analyzed by Analysis of Variance (ANOVA) using SPSS.

Ethical Considerations

This study was approved by the Ethics Research Committee of Shahrekord Branch, Islamic Azad University (Code: IR.IAU.SHK.REC.1397.028).

Results

The MTS results indicated a dose- and time-dependent manner increase in the bioavailability of human adipose tissue-derived mesenchymal treated stem cells. Ginger extract treatment also dose- and time-dependently decreased the rate of apoptosis in rat bone marrow mesenchymal stem cells.

Conclusion

Ginger extract, by reducing the oxidative stress in mesenchymal stem cells, elevates their lifespan in the target tissue, and increases the efficiency of these cells in tissue regeneration.

Key words: Ginger extract, Oxidative stress, Antioxidant, Mesenchymal stem cells, Apoptosis, Cytotoxicity

Article Info:
Received: 31 Oct 2020
Accepted: 09 Jan 2021
Available Online: 01 Jun 2021

Extended Abstract

1. Introduction

cell therapy is a subset of restorative medicine. Moreover, stem cells are the first hope for the repair of damaged tissues [3, 4]. Concerning origin, these cells are divided into two main categories of embryonic stem cells and adult stem cells [5]. Due to some limitations in the production and use of embryonic stem cells, in recent years, a new wave of research on adult stem cells has begun, i.e., extensively performed [6]. Mes-
enchymal Stem Cells (MSCs), as major adult stem cells, can differentiate into cells that are not mesenchymal derivatives [7]. However, due to the unfavorable conditions of the transplant recipient, including hypoxia and the presence of oxygen-free radicals that activate and increase aging factors by causing stress in the cell, eventually leading to apoptosis and cell death, most of the transplanted mesenchymal stem cells are lost in the early days; which in turn, this condition reduces their efficiency [12, 13]. Studies attempted to identify and use factors that prevent oxidative stress in these cells. One of these characteristics included antioxidants [14]. Ginger, with the scientific name of Zingiber officinale, is a medicinal plant with pharmacological properties, such as antioxidant, anti-apoptotic, and anti-inflammatory effects [18]. Therefore, the present study aimed to explore the antioxidant effect of ginger extract on cytotoxicity and the induction of apoptosis due to oxidative stress in human adipose tissue-derived MSCs and rat bone marrow.

2. Materials and Methods

In this study, human Adipose Tissue Mesenchymal Stem Cells (AD-MSCs) were obtained from the National Center for Genetic and Biological Resources of Iran and rat bone marrow mesenchymal stem cells were extracted from the tibia and femur of rats. Cells in Dulbecco’s Modified Eagle Medium (DMEM) culture medium (Gibco, USA) containing 20% Foetal Bovine Serum (FBS) (Gibco, USA) and 1% Penicillin-Streptomycin (Penstrep) (Gibco, USA) in an incubator (Memmert, Germany) were cultured in flask 75 with 5% CO2 gas pressure, 90% humidity, and at 37°C. The culture medium was changed three times a week and trypsin/EDTA solution was used to harvest the cells. To prepare the ginger extract, 500 gr of the dried ginger plant was prepared and after grinding, the resulting powder was placed in 96% alcohol for 10 days to dissolve its active ingredients in alcohol. The contents of the filter paper and the solution obtained by the rotary apparatus were then concentrated at 50°C and 60 rpm. H2O2 was prepared in liquid form. The assay of human adipose tissue-derived MSCs was evaluated using MTS colorimetric method. The status of apoptosis in rat bone marrow-derived MSCs were also explored by Annexin V-FITC/PI test.

3. Results

The effects of ginger extract on cytotoxicity induced by oxidative stress in human adipose tissue-derived MSCs. Oxidative stress-induced cytotoxicity in human adipose tissue-derived MSCs treated with different concentrations of ginger extract (50, 100, 200 & 400 mg/mL), after incubation periods (4 & 6 hours with ginger extract & 2 hours with H2O2) were evaluated using MTS test. The obtained results indicated that ginger extract could increase the bioavailability of human adipose tissue-derived MSCs in a dose- and time-dependent manner (P≤0.022*) (Figure 1).

The effects of ginger extract on the induction of oxidative stress-induced apoptosis in rat bone marrow-derived MSCs

Annexin V-FITC test was applied to evaluate the induction of apoptosis. The relevant results suggested a dose- and time-dependent reduction in the frequency of death in bone marrow-derived MSCs in the treated experimental groups.

Figure 1. The frequency of viable cells in human adipose tissue-derived MSCs treated with different concentrations of ginger extract for 4 and 6 hours

*P≤0.05 compared with the positive control group (cells exposed to culture medium), #P≤0.05 compared with the negative control group (cells exposed to H2O2).
As illustrated in Figure 2, in the 4-hour treatment, the frequency of cells in the early stages of apoptosis increased from 37.60% at 50 mg/mL to 29.48% at 400. Such a decrease in the frequency of apoptosis in all concentrations was significantly different from that of the negative control group. Furthermore, the frequency of cells in the late stages of apoptosis decreased with the increasing dose of ginger extract, from 13.42% at a concentration of 50 mg/mL to 12.18% at a concentration of 400 mg/mL, i.e., also a significant decrease in all concentrations, compared to the negative control group (P≤0.030) (Figure 2).

Furthermore, in the 6-hour treatment, the frequency of cells in the early stages of apoptosis increased from 23.67% at a concentration of 50 mg/mL to 21.59% at 400 mg/mL. This decrease in the frequency of apoptosis in all concentrations significantly differed from that of the negative control group. In addition, the frequency of cells in the late stages of apoptosis decreased with increasing dose and treatment time with ginger extract, from 12.98% at a concentration of 50 mg/mL to 15.9% to 400 mg/mL, i.e., a significant decrease in the frequency of apoptosis in all concentrations, compared to the negative control group (P≤0.016) (Figure 3).

4. Discussion and Conclusion

During the normal functioning of the cells used in cell therapy, reactive oxygen species are produced that have high reactivity with DNA, proteins, carbohydrates, and lipids; they cause irreparable damage to these macromolecules to enter. Ginger is an essential medicinal plant that has long been used to treat various diseases [19]. The antioxidant effects of ginger have been studied for years. This study explored the antioxidant effects of ginger extract on cytotoxicity and the induction of oxidative stress-induced...
This study was extracted from the Msc. thesis of the first author at the Department of Biochemistry, Faculty of Science, Shahrekord Branch, Islamic Azad University.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We would like to thank the esteemed Vice Chancellor for Research of Shahrekord Branch of Azad University and everyone who contributed to this research.

Figure 3. The frequency of viable cells, primary apoptosis, and terminal apoptosis in bone marrow-derived MSCs of rats treated with different concentrations of ginger extract for 6 hours

*P≤0.05 compared to the positive control group (cells exposed to culture medium), #P≤0.05 compared to the negative control group (cells exposed to H₂O₂).
This Page Intentionally Left Blank
مقدمه
امروز روش‌های مبتکر بر سالو درمانی در حال توسعه و به عنوان یک چالش جدید، برای پیوند انتهایی، کامل مطرح است [1]. سالو درمانی، یک همبستگی اثر تبیینی است که همکاری کامل ولور، نیروی درمانی و تغییرات عضلانی آن را در تغییرات بافتی آدمی باعث می‌شود. این مبحث با محوریت سلول‌های بنیادی و سلول‌های میکروژنیکی سلول‌های درمانی مطرح می‌شود.

کلیدواژه‌ها: مصرف زنجبیل، استرس، آنتیاکسیدان، سلول‌های بنیادی، سایتوتوکسیتی

اطلاعات مقاله:
تاریخ دریافت: 1399/06/20
تاریخ پذیرش: 1399/10/20
تاریخ انتشار: 1400/06/11

مصرف زنجبیل بر سالو درمانی می‌تواند با کاهش استرس اکسیداتیو و افزایش توانایی تکثیر مقداری از سلول‌های بنیادی در محیط گازی و پیوندی آن‌ها باعث افزایش کارایی درمانی سلول‌های درمانی می‌شود.
تخرج گردید. در ادامه، سلول‌ها در محیط کشت درصد سنةی و همکاران. اثر آنتیاکسیدانی عصاره زنجبیل بر افزایش توان زیستی و کاهش آپوپتوز ناشی از استرس اکسیداتیو در سلول‌های بنیادی مزانشیمی بافت چربی انسان و مغز استخوان موش صحرایی کشت داده شدند. محیط کشت، هفته‌ای سه بار درصد و دمای ۲۰ درجه سانتی‌گراد نگهداری می‌شد. عصاره حاصل را نیز تا زمان مصرف و تهیه دوزهای مورد نیاز در الکل و درجه سانتی‌گراد گرم گیاه زنجبیل، خشک و شیمی‌یابی مورد روش آنتیاکسیدانی و ترکیبات فنلی نشان داد. از این رو، در تحقیق حاضر، اثر آنتیاکسیدانی عصاره زنجبیل نیز اظهار داشته‌اند که عصاره هیدروالکلی زنجبیل، دارای فعالیت آنتیاکسیدانی و ضدالتهابی است که از دیرباز علاوه بر یک مطالعه، می‌تواند به عنوان یکی از افرادی که با این امر مواجه به شکست و باعث آپوپتوز ناشی از استرس اکسیداتیو در این سلول‌ها جلوگیری می‌کنند، مشخص و تأیید شود. در بیشتر این مطالعات، می‌کوشند تا فاکتورهایی که از طریق نگهداری سلول‌ها می‌توانند به فعالیت آنتیاکسیدانی سلول‌ها در برابر این استرس اکسیداتیو مؤثر باشند، مورد بررسی قرار گیرند. این مطالعات نشان می‌دهد که کاهش کارایی آنتیاکسیدان‌های کاربردی باعث کاهش کارایی آنتیاکسیدان‌های کاربردی می‌شود.

مطالعات نشان می‌دهد که کاهش کارایی آنتیاکسیدان‌های کاربردی باعث کاهش کارایی آنتیاکسیدان‌های کاربردی می‌شود.

مطالعات نشان می‌دهد که کاهش کارایی آنتیاکسیدان‌های کاربردی باعث کاهش کارایی آنتیاکسیدان‌های کاربردی می‌شود.
آزمایشات آبی‌آبی در سلول‌های پیش‌درآمده میزانشیمی مشتق از بافت چربی انسان و مغز استخوان موش صحرایی

(1) Sigmar Darrehsharghi و همکاران. اثر آنتی‌اکسیدانی عصاره زنجبیل بر افزایش توان زیستی و کاهش آپوپتوز ناشی از استرس اکسیداتیو در سلول‌های پیش‌درآمده میزانشیمی بافت چربی انسان و مغز استخوان موش صحرایی

(2) مقاله از محراب حاجی‌میرفروشی، برای پژوهشی آزمایشگاهی، مطرح شده در مجله شناسی علمی پزشکی ایرانی.
سحر دهقانی و همکاران. اثر آنتی اکسیدانی عصاره زنجبیل بر افزایش توان زیستی و کاهش آپوپتوز ناشی از استرس اکسیداتیو در سلول های بنیادی مزانشیمی بافت چربی انسان و مغز استخوان موش صحرایی
نمودار ۳. درصد سلول‌های زنده آپوپتوز لولی و آپوپتوز انتهایی در سلول‌های بنیادی مراکشی منفی از مذرع استخوان موش صحرایی تحت تأثیر با خانثه‌های مختلف عصاره زنجبیل به مدت کم‌ساعت.

۱/۰۵/۲۵۰ در مقابل گروه کنترل منفی (سپرده در معرض محیط کشت)؛ ۲/۰۵۰ در مقابل گروه کنترل منفی (سپرده در معرض محیط کشت) و ۳/۰۵۰ در مقابل گروه کنترل منفی (سپرده در معرض محیط کشت).

بحث

در فعالیت‌های نرمال سلول‌های به کارگرفته شده در سلول درمانی، گوشه‌های فعل آکسیژن تولید خواهد شد که قدرت DNA و پروتئین، کربوهیدرات‌ها و لیپید‌ها را دارند و اسپیسیاژ درون‌پایداری را برای درهم‌کنشن و احتمال در سلول تولید خواهد شد. در سلول، سیستم‌های خاصی برای مقابله با آسیب خاص از گوشه‌های فعل آکسیژن وجود دارد که سیستم دفاع آلی اکسیدانی به کمک تولید دی‌اف‌پی بهره‌برداری از این گوشه‌های فعل عمل می‌کند، غافل از اکسیدانی در تعریف می‌کند که به این حالی است. اکسیدانی به می‌گویند در سیستم اکسیدانی اکسیدانی به می‌گویند در سیستم اکسیدانی دفاعی است و باعث افزایش سطح بی‌پایین‌یابی در سیستم دفاعی شده است.

همچنین در آزمایش ۲ ساعتی، درصد سلول‌هایی که در مراحل اولیه آپوپتوز هستند از ۱۲ درصد در فلخته ۵ میلی‌گرم ۳ میلی‌لیتر به ۲۲ درصد در غلظت ۴ میلی‌گرم/۴ میلی‌لیتر رسیده است که این کاهش درصد آپوپتوز در همه غلظت‌ها نسبت به گروه کنترل منفی، دارای اختلاف معنی‌داری است.

همچنین در آزمایش ۳ ساعتی، درصد سلول‌هایی که در مراحل اولیه آپوپتوز هستند از ۱۲ درصد در فلخته ۵ میلی‌گرم ۳ میلی‌لیتر به ۲۲ درصد در غلظت ۴ میلی‌گرم/۴ میلی‌لیتر رسیده است که این کاهش درصد آپوپتوز در همه غلظت‌ها نسبت به گروه کنترل منفی، دارای اختلاف معنی‌داری است.

فرض

در این مطالعه، درصد سلول‌های زنده، آپوپتوز انتهایی و آپوپتوز اولیه در سلول‌های بنیادی مراکشی مشتق از منفر استخوان موش صحرایی تحت تأثیر با خانثه‌های مختلف عصاره زنجبیل به مدت کم‌ساعت، بررسی شد.

به‌طور کلی، نتایج این مطالعه نشان داد که عصاره زنجبیل در مراحل مختلف آپوپتوز، قادر به کاهش درصد آپوپتوز و افزایش درصد سلول‌های زنده است. این رابطه به طور گسترده در سایر مطالعات نیز مشاهده شده است.
یافته آماری از آکسیدان‌های مزینی و ترکیبات آنتی‌اکسیدانی.

پیشکاری بر سر پیامدهای آسیب‌های اکسیداتیو

در صحبت‌های پیش‌بینی این آسیب‌ها بر اثر تاثیرات انرژی محیطی و فیزیولوژیکی بر روی سلول‌ها، به‌طور کلی به‌ساختار، بیومولکل و بیونیکیکی یک درون‌آوردنی بی‌پایانی و یک الگوی پیوند نفوذی برای سلول‌ها که روی آن‌ها مجهز به دانشگاه علوم پژوهشی از آمادگی باشد.

عنصر زنجیبل

آسیب‌های اکسیداسیون توسط آلکل مشتق‌های مزینی در فرآیندهای حیاتی است. در مدتی کوتاه، این آسیب‌ها به‌ساختار، بیومولکل و بیونیکیکی یک درون‌آوردنی بی‌پایانی و یک الگوی پیوند نفوذی برای سلول‌ها که روی آن‌ها مجهز به دانشگاه علوم پژوهشی از آمادگی باشد.

ملاحظات اخلاقی

پیش درمان یا درمان مکمل سلول‌های بی‌پایان بر روی سلول‌ها، به‌طور کلی به‌ساختار، بیومولکل و بیونیکیکی یک درون‌آوردنی بی‌پایانی و یک الگوی پیوند نفوذی برای سلول‌ها که روی آن‌ها مجهز به دانشگاه علوم پژوهشی از آمادگی باشد.
References

[1] Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363(9419):1439-41. [DOI:10.1016/S0140-6736(04)61064-7][PMID]

[2] Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YRV, Fang SCY, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008; 134(7):2111-21. [DOI:10.1053/j.gastro.2008.03.015][PMID]

[3] Patel AN, Genovese J. Potential clinical application of adult human mesenchymal stem cell [Prochymal] therapy. Stem Cell Cloning. 2011; 4:61-72. [DOI:10.2147/SCCAA.S11991]

[4] Nassiri Asl M, Aali E. [Review on the mesenchymal stem cells and their potential application in regenerative medicine (Persian)]. J Gazvin Univ Med Sci. 2018; 21(6):74-89. [DOI:10.29252/qums.21.6.89]

[5] Pournasr Khakzab B, Baharvand H. [Human mesenchymal stem cells and their clinical application (Persian)]. J Iran Anat Sci. 2007; 5(19):157-206. https://www.sid.ir/en/journal/ViewPaper.aspx?id=113590

[6] Parson AB. The proteus effect: Stem cells and their promise for medicine. Washington, D.C.: Joseph Henry Press; 2004. [DOI:10.1172/JCI25763]

[7] Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004; 18(9):980-2. [DOI:10.1096/fj.03-11006][PMID]

[8] Oubari F, Amirizade N, Mohammadpour H, Nakhlestanl M, Nikougoftar Zarif M. [The important role of FLT3-L in vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells (Persian)]. Cell Journal (Yakhteh). 2015; 17(2):201-10. [DOI:10.22074/cellj.2015.3715]

[9] Oubari F, Nikougoftar Zarif M, Amirizadeh N, Shaiegan M, Atarodi K, Nakhlestanl M, et al. [Isolation and expansion of Mesenchymal Stem cells from placenta (Persian)]. Sci J Iran Blood Transfus Organ. 2013; 10:222-30. http://bloodjournal.ir/article-1-791-en.html

[10] Dehghani Fard A, Saki N, Ahmadvand M, Mahmoodinia Maymand M, Mosahbehi Mohammami M, Soleimani M. [Mesenchymal stem cell biology, application and its role in regenerative medicine (Persian)]. Sci J Iran Blood Transfus Organ. 2012; 8(4):306-20. http://bloodjournal.ir/article-1-586-en.html

[11] Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic ejection. J Inflamm (Lond). 2005; 2(8):1-11. [DOI:10.1186/1476-7255-2-8][PMID][PMCID]

[12] Nasiri F, Amiri F, Mohammadipour M, Molaei S, Habibi Roudkenar M, Jalili MA. [H₂O₂-preconditioned mesenchymal stem cell regenerative effects on acute liver failure mice (Persian)]. Sci J Iran Blood Transfus Organ. 2015; 12(2):111-24. http://bloodjournal.ir/article-1-916-en.html

[13] Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: Characterization, differentiation and application in cell and gene therapy. J Cell Mol Med. 2004; 8(3):301-16. [DOI:10.1111/j.1582-4934.2004.tb00320.x]

[14] Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, et al. Mesenchymal stem cells home to injuries when co-infused with hematopoietic cell to treat at radiation, induced-multi, organ failure syndrome. J Gene Med. 2003; 5(12):1028-38. [DOI:10.1002/jgm.452][PMID]

[15] Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology. 2015; 71:181-97. [DOI:10.1016/j.cryobiol.2015.07.003][PMID]

[16] Nasiri GA, Mohsin S, Khan M, Shams S, Ali G, Khan SN, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. J Transl Med. 2013; 11(3):79-97. [DOI:10.1186/1479-5876-11-79][PMID][PMCID]

[17] Bahmani M, Saki K, Shahsavari S, Rafeiean-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asi Pac J Trop Biomed. 2015; 5(10):858-64. [DOI:10.1016/j.ajpbt.2015.06.004]

[18] Dadfar F, Hosseini S. E, Bahaodini A. [A review of phytochemical, pharmacological and physiological properties of ginger (zingiber officinale) (Persian)]. Clin Excell. 2014; 3:17:72-86. http://ce.mazums.ac.ir/article-1-133-en.html

[19] Haksar A, Sharma A, Chawla R, Kumar R, Arora R, Singh S, et al. Zingiber officinale exhibits behavioral radioprotection against radiation. Pharmacol Biochem Behav. 2006; 84(2):179-88. [DOI:10.1016/j.pbb.2006.04.008][PMID]

[20] Stolova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007; 102(3):764-70. [DOI:10.1016/j.foodchem.2006.02.023]

[21] Mirazi N, Karami Z. [The protective effect of hydroalcoholic extract from rhizome of Zingiber officinale L. on carbon tetrachloride-induced hepatic injury in male rat (Persian)]. J Khashan Univ Med Sci (FEYZ). 2016; 20(4):297-305. http://feyz.kuums.ac.ir/article-1-3125-en.html

[22] Johari H, Sharifi E, Delirnasab F, Hemayatkhah V, Kargar H, Nikpoor M. [The effect of hydro-alcoholic extracts of ginger on lead detoxification of kidney in the immature wistar rats (Persian)]. J Rafsanjan Uni Med Sci. 2013; 12(6):417-24. http://journal.rums.ac.ir/article-1-5290-en.html

[23] Khoosttabiat L, Mahdavi M. [The role of oxidative stress in proliferation and cell death (Persian)]. J Mazandaran Univ Med Sci. 2011; 25(127):130-45. http://jmums.mazums.ac.ir/article-1-5946-en.html

[24] Hallwell B. Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci. 2011; 32(3):125-30. [DOI:10.1016/j.tips.2010.12.002]

[25] Aeschbach R, Lölliger J, Scott BC, Murcia A, Butler J, Hallwell B, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingiber officinale extracts and their clinical and cryopreservation aspects. Cryobiology. 2015; 71:181-97. [DOI:10.1016/j.cryobiol.2015.07.003][PMID]

[26] Kim JK, Kim Y, Na KM, Surh AJ, Kim TY. Gingerol prevents UVB induced Ros production and cow-2 expression invivo and invivo. Free Rad. Res. 2007; 41(5):603-14. [DOI:10.1080/02786915.84[9003-4][PMID]

[27] Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Koialkunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010; 127(2):515-20. [DOI:10.1016/j.jep.2009.10.004][PMID]

Dughasi S, et al. Effects of Ginger Extract on Bioavailability and Oxidative Stress-induced Apoptosis in Mesenchymal Stem Cells. JAMS. 2021; 24(2):216-229.
[28] Ajayi BO, Adedara IA, Farombi EO. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice. Phytother Res. 2015; 29(4):566-72. [DOI:10.1002/ptr.5286] [PMID]

[29] Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact. 2017; 270:15-23. [DOI:10.1016/j.cbi.2017.03.017]

[30] Ajayi B. O, Adedara I. A. 6-Gingerol abates benzo[a]pyrene-induced colonic injury via suppression of oxido-inflammatory stress responses in BALB/c mice. Chemico-biological interactions 2019; 307:1-7. [DOI:10.1016/j.cbi.2019.04.026]
