ON NON-NEGATIVELY CURVED METRICS
ON OPEN FIVE-DIMENSIONAL MANIFOLDS

VALERY MARENICH AND MIKAEL BENGTSSON

ABSTRACT. Let V^n be an open manifold of non-negative sectional curvature with a soul Σ of co-dimension two. The universal cover \tilde{N} of the unit normal bundle N of the soul in such a manifold is isometric to the direct product $M^{n-2}\times \mathbb{R}$. In the study of the metric structure of V^n an important role plays the vector field X which belongs to the projection of the vertical planes distribution of the Riemannian submersion $\pi: V \to \Sigma$ on the factor M in this metric splitting $\tilde{N} = M \times \mathbb{R}$. The case $n = 4$ was considered in [GT] where the authors prove that X is a Killing vector field while the manifold V^4 is isometric to the quotient of $M^2 \times (\mathbb{R}^2, g_F) \times \mathbb{R}$ by the flow along the corresponding Killing field. Following an approach of [GT] we consider the next case $n = 5$ and obtain the same result under the assumption that the set of zeros of X is not empty. Under this assumption we prove that both M^3 and Σ^3 admit an open-book decomposition with a bending which is a closed geodesic and pages which are totally geodesic two-spheres, the vector field X is Killing, while the whole manifold V^5 is isometric to the quotient of $M^3 \times (\mathbb{R}^2, g_F) \times \mathbb{R}$ by the flow along corresponding Killing field.

1. Introduction

Let (V^n, g) be a complete open Riemannian manifold of non-negative sectional curvature. Remind that as follows from [CG] and [P] an arbitrary complete open manifold V^n of non-negative sectional curvature contains a closed absolutely convex and totally geodesic submanifold Σ (called a soul) such that the projection $\pi: V \to \Sigma$ of V onto Σ along geodesics normal to Σ is well-defined and is a Riemannian submersion (see also [CaS]). The (vertical) fibers $F_P = \pi^{-1}(P), P \in \Sigma$ of π define a metric foliation in V and two distributions: a vertical \mathcal{V} distribution of subspaces tangent to fibers and a horizontal distribution \mathcal{H} of subspaces normal to \mathcal{V}. For an arbitrary point P on Σ, an arbitrary geodesic $\gamma(t)$ on Σ and arbitrary vector field $V(t)$ which is parallel along γ and normal to Σ the following

\begin{equation}
\Pi(t,s) = \exp_{\gamma(t)} sV(t)
\end{equation}

are totally geodesic surfaces in V^n of zero curvature, i.e., flats.

When $\dim \Sigma = 1$ or $\text{codim}(\Sigma) = 1$ the manifold V^n is locally isometric to the direct product of Σ and Euclidean space of a complementary dimension and of non-negative curvature. Study of the next case $\text{codim}(\Sigma) = 2$ was begun in [M1], where we noted that the manifold V^4 or is a direct product when the holonomy of the normal bundle of Σ in V is trivial, or the holonomy group acts transitively on normal vectors, every geodesic normal to Σ is a ray and (1) holds. The metric structure in this case might be more complicated. In [GT] the authors consider four-dimensional manifolds diffeomorphic to direct products $M^2 \times \mathbb{R}^2$ and prove the following.

1991 Mathematics Subject Classification. 53C20, 53C21. Supported by the Faculty of Natural Sciences of the Hogskolan i Kalmar, (Sweden).

Key words and phrases. open manifolds, non-negative curvature.
Theorem A. [GT]. Every non-negatively curved metric on $M^2 \times R^2$ is isometric to a Riemannian quotient of the form $((M^2, g_0) \times (R^2, g_F) \times R)/R$. Here R acts diagonally on the product by the flow along Killing vector fields on (M^2, g_0) and (R^2, g_F) and by translations on R.

The very important role in the proof of the Theorem A plays the vector field X which is the projection of the vertical vector field in the universal cover \tilde{N} of the boundary of some metric s-tube N of the soul on the "horizontal" factor M in the metric splitting $\tilde{N} = M \times R$, see below. In the four-dimensional case this vector field X restricted to M^2 always has zeros since M^2 is a two-dimensional sphere. In our case the soul Σ of V and M^3 are three-dimensional spheres, and hence, X might be nowhere zero as the following simple example shows. Let $h : S^3 \rightarrow S^2$ be the Hopf bundle, i.e., the factoring of a unit sphere S^3 in the complex plane C^2 by S^1 action - multiplication by complex numbers of absolute value 1. Consider V^5 which is the the quotient of the direct product of $S^3 \times R^2 \times S^3$, where the S^1 acts on $R^2 = C$ by rotations, i.e., again, multiplication in C^1 by unit complex numbers. Then for the manifold $V^5 = S^3 \times R^2 \times S^1$ the vector field X is nowhere zero.\(^1\) The objective of this note is to expand an approach from [GT] to the case of non-negatively curved five-dimensional V^5 diffeomorphic to a direct product $S^3 \times R^2$ under the following assumption.

Assumption 1. The set of zeros of the vector field X is not empty.

Our main result is very similar to the Theorem A above.

Theorem B. Let V^5 be an open manifold of non-negative sectional curvature and diffeomorphic to $S^3 \times R^2$. Assume that the vector field X has non-empty zero set Z. Then Z is a closed geodesic and the manifold M^3 admits a singular foliation - "open-book decompositions" by totally geodesic and isometric to each other horizontal two-dimensional spheres $S^2(\psi)$, where the singular set of this decompositions - "bindings", equal the closed geodesic Z. The flow along Killing field X acts as "turning pages" in this open-book decomposition, while V^5 itself is isometric to a Riemannian quotient of the form $M^3 \times (R^2, g_F) \times R/R$ with R acting diagonally on the product by the flow along Killing vector fields on M^3 and (R^2, g_F) and by translations on R. The Riemannian submersion $\pi : V^5 \rightarrow \Sigma$ conveys the open-book decomposition of M^3 to a similar open-book decomposition of Σ with the pages $\Sigma^2(\psi)$ isometric to $S^2(\psi)$.

In the same way as Theorem A in [GT] our Theorem B follows from the fact that the vector field X on N is Killing for every s, where N is the boundary of s-metric neighborhood of the soul Σ in V, see Theorem 3 below. Thus, after proving Theorem 3, we complete the proof of Theorem B by referring to the corresponding arguments from [GT], see section 5.

Note that the general case of five-dimensional open manifold V^5 with a soul of codimension 2 can be reduced to the one under consideration as follows. First, we note that if the fundamental group of Σ (which is isomorphic to that of V) is not finite, the universal cover \tilde{V} contains a straight line in the universal cover $\tilde{\Sigma}$ of the soul. Then both \tilde{V} and $\tilde{\Sigma}$ split into direct products, and the case is reduced to the already studied one of open four-dimensional manifolds. When the fundamental group of Σ is finite the universal cover $\tilde{\Sigma}$ is diffeomorphic to a sphere S^3 due to the non-negativity of the curvature. Next: because an arbitrary vector bundle over simply connected S^3 is, obviously, trivial we see that an investigation of the metric structure of an arbitrary V^5 with a soul of codimension 2 is reduced to the case when V^5 is diffeomorphic to the direct product $S^3 \times R^2$.\(^2\)

Below we assume that the holonomy of the normal bundle is not trivial, for otherwise by a direct product theorem from [M1,4] the manifold V is a metric product.

\(^1\)For corresponding M^3 and S^3 the one-form given by the scalar product with X is a (nowhere degenerated) contact form α with $\alpha \wedge d\alpha$ - the volume form.

\(^2\)The case when five-dimensional V^5 has a soul of codimension 3 we considered in [M5].
2. Vector field X and its zeros

Fix some positive s_0 smaller than a focal radius of Σ in V. For some $s < s_0$ denote by $N\Sigma(s)$, or simply by N, the boundary of an s-neighborhood of Σ. Due to our choice it is a smooth manifold. It consists of all points $Q(P,V) = \exp_{P}(sV)$, where P is a point on Σ and V is a unit vector normal to Σ at P.

Lemma 1. $N(s)$ has non-negative curvature if s is sufficiently small.

Proof. This follows from the Gauss equations and the fact that $N(s)$ bounds a convex subset in a manifold V of non-negative curvature. The last is obviously true when the holonomy of the (trivial) normal bundle $\nu\Sigma$ of the soul is trivial, i.e., all parallel translations along closed curves in Σ acts identically on vectors normal to Σ because then V is isometric to the direct metric product $\Sigma \times (\mathbb{R}^2,h)$, see [M1]. If the holonomy is not trivial, then all normal vectors are so called ray directions, and $N(s)$ coincides with the boundary ∂C_s of an absolutely convex set constructed in [CG], see again [M1]. The Lemma 1 is proved.

Lemma 2. The universal cover \tilde{N} of $N(s)$ is isometric to the direct product $(M,g) \times \mathbb{R}$, where M is diffeomorph to S^3. The composition of a covering map and a submersion π provides a diffeomorphism between an arbitrary factor M and the soul Σ which we denote by $\pi^M: M \to \Sigma$.\(^3\)

Proof. This follows from the fact that $N(s)$ is diffeomorphic to the trivial circle bundle over three-dimensional sphere Σ, i.e., has an infinite cycle fundamental group generated by a homotopy class of a fiber. Then by standard arguments the universal cover $\tilde{N}(s)$ admits a straight line, and hence by Toponogov splitting theorem is isometric to the direct product $(M,g) \times \mathbb{R}$.

Denote by E the unit vector field in $N(s)$ tangent to the projections of straight lines (i.e., R-factor) from \tilde{N} to N. By W we denote the (vertical) vector field on N which is the speed of the natural S^1-action on N given by rotations in a positive direction of a normal vectors to Σ as follows: for $Q = Q(P,V)$ denote by $Q_\phi = Q_\phi(P,V) = Q(P,V_\phi)$, where V_ϕ is V rotated by the angle ϕ in the bundle of unit normals to Σ in V (which is correctly defined since the bundle is topologically trivial). Finely, denote by X the vector field on N which is the component of W normal to E.\(^4\)

$$X = W - (W,E)E. \quad (2)$$

Note, that N naturally inherits from V a horizontal distribution \mathcal{H}, while the vector field W belongs to the vertical distribution. If by M we denote an image of some (M,g)-factor in the direct metric product \tilde{N} under the projection $pr: \tilde{N} \to N$, then (the restriction of) E on M would be the unit vector field of normals to M, X is a vector field tangent to M, while another vector field Y tangent to M would be a horizontal if and only if it is normal to X. In particular, the tangent subspace T_QM is horizontal H_Q if and only if $X(Q) = 0$.

Note that the vector field W in N is never tangent to any of the M-factor, or (equivalently) never orthogonal to E. Indeed, if so then some homotopically non-trivial closed geodesic $\Gamma(s)$ in N which is the images of a straight line in the universal cover \tilde{N} is never horizontal at some point, and therefore, horizontal everywhere, which obviously can not be homotopically non-trivial in N. To see this denote by $\tilde{\Gamma}(s)$ its image under π in Σ, and by $V(s)$ the normal vector field of vertical geodesics connecting $\tilde{\Gamma}(s)$ and $\Gamma(s)$. Since Σ is simply connected their exists a disk D in Σ with a boundary Γ and extension of the vector field V over D (because the restriction of a normal bundle to D is trivial). The vertical lift of D along this extension will provide us a disk in N with a boundary Γ implying that Γ is contractible in N. The obtained contradiction proves that E is never horizontal, or that the map $\pi^M: M \to \Sigma$ from any of the image M of a factor in the direct product $N = (M^3,g) \times \mathbb{R}$ into the soul Σ is a diffeomorphism. The Lemma 2 is proved.\(^5\)

\(^3\)Note, that this statement and forthcoming (3) both are true for an arbitrary V^n with simply connected soul of codimension two.

\(^4\)Note, that our X is different from similar X of [GT].

\(^5\)This also fills the gap in the arguments from Lemma 2.1 in [GT].
By definition the differential of the diffeomorphism $\pi^M : M \to \Sigma$ is an isometry on the subspace of horizontal vectors, i.e., on the subspace in $T_Q M$ normal to X (or on the whole $T_Q M$ if $X(Q) = 0$), while

$$\|d\pi^M_Q(X)\| = \cos(\alpha(Q))\|X\|,$$

where $\alpha(Q)$ denotes the angle at the point $Q \in M$ between vectors E and W. The map $\pi^N : N \to \Sigma$ is the composition of the projection in the universal cover to the horizontal factor and then π^M.

When X is identically zero the submanifold M is horizontal in N, isometric to Σ by (3), the holonomy of the normal bundle $\nu \Sigma$ is trivial, and, again, V is isometric to the direct product $\Sigma \times (R^2, h)$ of the soul Σ and some non-negatively curved plane (R^2, h).

Next we prove that if X is not identically zero, or has no zeros at all, then X vanish along some closed geodesic.

Theorem 1. If the set of zeros Z of the vector field X in M is a proper subset (i.e., is not M itself or empty) then Z is a closed geodesic. Every minimal geodesic connecting two points from Z is itself a subset of Z.

Proof. If Z is a proper subset of M then for some $P \in Z$ there exists a sequence of points $Q_i \to P$ such that $X(Q_i) \neq 0$. As in [GT], see Lemma 2.1; we note that every geodesic $L(P, Q; t)$ in M connecting a point P where X vanish with an arbitrary point Q with non-vanishing $X(Q)$ is orthogonal to $X(Q)$,

$$QP \perp X(Q),$$

where $\bar{P}Q$ denotes the vector of direction of $L(P, Q; t)$ at the point Q. Hence, Z belongs to the exponential image $\Pi(Q, X(Q))$ of a plane in $T_Q M$ of all vectors normal to $X(Q)$:

$$Z \subset \Pi(Q, X(Q)).$$

The surface $\Pi(Q, X(Q))$ near Q is "almost a plane" - smooth with a second form vanishing at Q. Fix for a moment some $Q = Q_1$ close enough to P. Then in a small closed ball B around P with radius $dist(P, Q)$ zeros of X belong to this "almost a plane" $\Pi(Q, X(Q))$. Thus there exists the farthest point $Q' \in B$ to Π where $X(Q') \neq 0$. Then by (5) the part of the set Z inside the ball B belongs to the intersection of two "almost planes" $\Pi(Q, X(Q))$ and $\Pi(Q', X(Q'))$ which both are "almost orthogonal". This intersection, as easy to see, is a smooth curve with geodesic curvature of the order $dist(P, Q)$. Because the point $Q = Q_1$ can be chosen arbitrary close to P we conclude that the set Z is inside some finite collection of intervals of geodesics. Next, we verify that Z is connected. Indeed, if not we may find two different points P_1 and P_2 from its different components and such that the minimal geodesic $L = L(P_1, P_2; t)$ connecting these points does not intersect Z. In some small ball B around the middle point Q of this geodesic the vector field X will be non-zero with $X(Q)$ normal to L. Consider the "almost plane" Π in B going through the point Q and normal to L. From (4) we see that the vector field X in this plane not only is almost tangent to Π, but also almost tangent to small circles in Π around Q. Which implies that the projection of X on Π has index ± 1 at the center Q of these circles, i.e., equals zero at Q. The obtained contradiction proves that Z is a closed geodesic.\(^6\) Clearly, if some minimal geodesic L connects two zeros P and Q from Z, but does not belong to Z we may repeat arguments above to show that there exists one more point in the interior of L where X vanish. Which completes the proof of our theorem.

Note, that in our arguments we used only condition (4). Hence we have the following.

\(^6\)By the arguments above we immediately deduce that Z is a connected geodesic. The fact that this geodesic can not be infinite follows from the compactness of M and that it can not accumulate to something other than itself.
Corollary 1. If some smooth (not identically zero) vector field X in some compact three-dimensional manifold M satisfies (4), then its set of zeros Z is a closed geodesic.

Next we consider the metric structures of M when Z is a closed geodesic.\(^7\)

3. $Z = S^1$

Assume that the set of zeros Z of the vector field X is some closed geodesic $Z = Z(t), 0 \leq t \leq 1$. Then $Z(t)$ is horizontal, its projection by the submersion π to the soul Σ is again a closed geodesic $\tilde{Z}(t)$ of the same length, for every t the geodesic $l_t(s)$ connecting $\tilde{Z}(t)$ and $Z(t)$ is normal to Σ with a direction $V(t)$ parallel along $\tilde{Z}(t)$. Now take an arbitrary point Q in M and connect it with all the points $Z(t)$ by minimal geodesics $L_t(s)$. All this geodesics are horizontal, and, if $\tilde{Q} = \pi(Q)$, their projections $L_t(s)$ are minimal geodesics connecting \tilde{Q} with $\tilde{Z}(t)$. Also, if $V(t,s)$ denotes the (unit) vector of the direction of the (vertical) geodesic connecting $L_t(s)$ with $L_t(s)$, then $V(t,s)$ is parallel along $L_t(s)$. In particular, it follows that the parallel translation along a closed path from \tilde{Q} to \tilde{Q} consisting of two $L_t(s)$ and $L_t(s)$ and a part $L(t), t' \leq t \leq t''$ acts trivially on V - the direction of QQ. Which by the prism construction from [M1-3] implies that the O’Neill’s fundamental tensor α vanishes at Q for horizontal vectors tangent to the family of geodesics $L_t(s)$. As we already saw, this family belongs to the plane $\Pi(Q,X(Q))$ of all geodesics, issuing from Q in directions normal to $X(Q)$. Thus we have

(6) \[A_Y Z(Q) = 0 \]

for all Y,Z. Again, by the same prism construction we have

(7) \[R(\tilde{Y}(t), \tilde{Z}(t))V(t) = 0 \]

along $\tilde{Z}(t)$, where $\tilde{Z}(t)$ is the unit tangent to $\tilde{Z}(t)$, $\tilde{Y}(t)$ any tangent to Σ, and $V(t)$ is the direction of the vertical geodesic $\tilde{Z}(t)Z(t)$.

Because Q (and \tilde{Q} correspondingly) was arbitrary, the tensor α vanishes identically in M on vectors normal to the vector field X.

Theorem 2. Distribution in $M \setminus Z$ of the two-planes normal to the vector field X is integrable. It is tangent to the family of totally geodesic spheres with a common intersection set - the closed geodesic Z.

Proof. Indeed, from (6) immediately follows that the Lie bracket of arbitrary fields Y,Z orthogonal to X is also orthogonal to X:

(8) \[([Y,Z],X) = ([Y,Z],W-(W,E)E) = ([Y,Z],W) = (A_Y Z - A_Z Y) = 0. \]

\(^7\)When X has no zeros we may introduce the following A-"contact" structure on M. Denote by α the 1-form on M^3 given by the scalar product with a vector field X. Because the vector field E on N is parallel, from $\nabla^N E \equiv 0$ (here ∇^N is the covariant derivative in N in a metric induced by $N \subset V$) we see that

(9) \[(\nabla^N_Y X, Z) = (\nabla_Y W - (\nabla_Y W), E)E, Z) = (\nabla_Y W, Z) \]

for arbitrary Y,Z tangent to M. Therefore, because M is totally geodesic in N we have by direct calculations that

\[\alpha \wedge d\alpha = a(P)d\text{vol}^M, \]

where $d\text{vol}^M$ is the volume form of M and the function $a(P)$ is given by

\[a(P) = (A_Y Z, X) \]

or by (A'_Y, Z', X') where (X', Y', Z') an arbitrary orthonormal (positively orientated) basis in $T_P M$. The horizontal distribution on M is not involutive outside zeros of α. It would be interesting to find examples with α vanishing somewhere and nowhere zero α.

Thus, the vector field X is, actually, the field of normals to some family of hyper-surfaces in M. But, as we already know, every geodesic L_t connecting Q with a point $Z(t)$ of Z belongs to such a surface. From which, obviously, follows that this family of surfaces coincide with the family of our planes $\Pi(Q, X(Q))$. Because at Q the second form of this surface vanish, and Q is arbitrary our surfaces have vanishing second forms or are totally geodesic. For definiteness, from now on we call by $\Pi(Q)$ the union of all geodesics L_t connecting Q with Z. It is a totally geodesic surface which boundary is the closed geodesic $Z(t)$. Therefore, the vector $Y(t)$ tangent to Π and normal to this boundary at the point $Z(t)$ is parallel along Z. Because the tangent vector $Z(t)$ to this geodesic is also (auto-)parallel, we see that the holonomy around Z is trivial, i.e., parallel translation along $Z(t)$ is the identity operator. If we choose some parallel vector field $Y^*(y)$ along Z normal to $Z(t)$, we can define the angle function ψ for vectors $Y(t)$ normal to $Z(t)$ as the the angle between $Y(t)$ and $Y^*(t)$. Corresponding $\Pi(Q)$ we denote also by $\Pi(\psi)$. To complete the proof of the theorem we note that for (a half-sphere) $\Pi(\psi)$ there exists another one $\Pi(\psi + \pi)$ which normal to their common boundary $Z(t)$ equals $-Y(t)$. Their union in a neighborhood of $Z(t)$ is again an exponential image of planes tangent to $Y(t)$ and $Z(t)$, and therefore, is a smooth surface: a sphere which we denote by $S^2(Q)$, or by $S^2(\psi)$ (then $S^2(\psi) = S^2(\psi + \pi)$). Theorem 2 is proved.

Configuration we described in the last theorem is well-known and is called an open book decomposition.

Corollary 2. If the set of zeros of X is a closed geodesic $Z(t)$, then M admits an open book decomposition with a bending Z and pages $\Pi(\psi)$ which are totally geodesic half-spheres.

Next we look more closely on the family of diffeomorphisms between pages $\Pi(\psi)$ of our open book decomposition given by shifts in directions normal to them. Let $f_\theta : \Pi(\psi) \to \Pi(\psi + \theta)$ denotes the map sending the point Q in $\Pi(\psi)$ into the intersection of $\Pi(\psi + \theta)$ with an integral curve of the field of normals to pages issuing from Q. If we denote

$$\frac{\partial f_\theta(Q)}{\partial \theta} = X^*(f_\theta(Q)),$$

then the field X^* is proportional to X, i.e., $X^*(Q) = k'(Q)X(Q)$ for some positive function on $M \setminus Z$. By k we denote its norm: $k(Q) = \|X^*(Q)\|$. Because all pages $\Pi(\psi)$ are totally geodesic all maps f_θ are isometries. Therefore, we call the family of these isometries: "turning pages". If, in addition, k is constant along trajectories of X^* (or X, which is the same) then $f_\theta : M \to M$ is a family of isometries of the entire M,

and the vector field X^* is a Killing vector field. Note also the following trivial statement.

Lemma 3. All trajectories of the vector field X^* in M are closed circles around Z.

Proof. Indeed, take some geodesic $L_t(s)$ in $S^2(\psi)$ connecting some Q with the point $Z(t)$ which is nearest to it, and consider the orbit of this geodesic under our family of "rotations": $\Phi(s, \theta) = f_\theta(L_t(s))$. We choose natural parameter s on $L_t(s)$ in such a way that $Z(t) = L_t(0)$. Because for every θ the curve $f_\theta(L_t(s))$ lies in the totally geodesic $\Pi(\psi + \theta)$ and f_θ is an isometry, this $f_\theta(L_t(s))$ is again the geodesic in M. Therefore, $\Phi(s, \theta)$ is a part of the "plane" $\Pi(Z(t), Z(t))$ of all geodesics issuing from $Z(t)$ in directions normal to $Z(t)$. For a fixed s the line $\Phi(s, \theta)$ is a closed circle in this "plane".

8"reading the book"

9It is interesting to note also the following property of these circles. As we will show, the vector field X^* is Killing and constant along its trajectories, i.e., circles $f_\theta(Q)$. Therefore, the norm k of X^* attains its maximum on some set Z^* which is invariant under rotations f_θ. We claim that Z^* is a collection of closed geodesics in M. Indeed, from $Y(X^*, X^*) \equiv 0$ for every Y tangent to $S^2(\psi)$ at some point Q of Z^* it follows that $\nabla_{X^*} X^* \equiv 0$, or that the geodesic curvature of the orbit $f_\theta(Q)$ equals zero. Every closed geodesic from Z^* is linked with Z.

4. X^* is Killing

As we saw above, A_Z vanishes along Z, see (6,7). Also the holonomy of the normal bundle is trivial along the projection $\bar{Z}(t)$ of Z under submersion π which is the closed geodesic in the soul Σ. Therefore, applying the simplified version of arguments\(^\text{10}\) from the proof of the Theorem A from [M5] (see section 5 there) we get

\begin{equation}
\nabla_W W \equiv 0 \quad \text{and} \quad R[W(t), Z(t)] \equiv 0
\end{equation}

for a unit vertical field $W(t)$ along Z.

Take another vector $V(\phi)$ normal to Σ at $\bar{P} = \bar{Z}(0)$ with an angle ϕ to V. Its parallel transport along $\bar{Z}(t)$ is again $V(\phi)$. Denote by $V(\phi, t)$ the corresponding parallel vector field along $\bar{Z}(t)$. The vertical lifts of $\bar{Z}(t)$ into N along this vector field are again closed geodesics which we denote by $Z(\phi, t)$. Easy to see that (6,7) are satisfied along them\(^\text{11}\), which in turn implies (10) along $Z(\phi, t)$, or that the vertical fibers of the submersion $\pi : Z(\phi, t) \to \bar{Z}(t)$ have zero geodesic curvature, or are geodesic lines in N. Hence, they coincide with projections of straight lines, i.e., R-factors under universal cover $M \times R \to N$. We formulate the obtained result as follows.

Lemma 4. The set of zeros of the vector field X in N is a tori which is the image of the direct product of $Z \subset M$ with a straight-line factor R in the universal cover $\bar{N} = M \times R$ under covering map $\bar{N} \to N$. For an arbitrary choice of M in N the π-projection of the set of zeros of X in M is the same closed geodesic \bar{Z} in Σ.

The obtained claim means that every vertical fibre in N stays in the set of zeros of the vector field X if it contains some of the point where X vanish. Now we can repeat arguments from [GT] and prove the following statement.

Theorem 3. The vector field X^* is Killing, if it has non-empty zero set.

Proof. Indeed, the Lemma 4’s claim enable us to repeat arguments from [GT]: for every point Q of M denote by $(f_i(Q), t)$ the points of the fiber of the submersion $\pi : N \to \Sigma$ issuing from Q. These are trajectories of the vector field W in N. As we saw, the distance between $f_i(Q)$ and $f_i(F)$ is constant for every F from the zero set Z since the geodesic connecting them in $M \times \{t\}$ is horizontal. By the Lemma 4 we see f_i is the identity map on Z. Therefore, $f_i(Q)$ are circles S^1_{Q} around Z, they coincide with the circles $f_0(Q)$ which are orbits of the vector field X^* above. To show that X^* is Killing consider the cylinder $C_Q = \{(f_0(Q), t)\}$, (see Lemma 2.1 in [GT]). The restriction of π on C_Q is a Riemannian submersion of a flat cylinder onto some circle in Σ, or by [GG] has fibers tangent to some Killing field on C_Q. This proves that X^* has constant norm along C_Q and is a Killing vector field.

5. Proof of the Theorem B

From Theorem 3 it follows that the restriction of the Riemannian submersion $\pi : V \to \Sigma$ on N, which is the boundary of some s-metric neighborhood of the soul, can be described as the factoring by the action along trajectories of the Killing vector field X^*. From this fact the Theorem B follows in the same way as Theorem A; see section 3 in [GT] for the meticulous analysis of the cooperation between Killing vector fields X^* on different s-metric neighborhoods of the soul which ensures the claim of both Theorems A and B.

References

[CaS] J. Cao, M.-C. Shaw The smoothness of Riemannian submersions with nonnegative sectional curvature, arXiv: math.DG/0309328 (2003).

\(^{10}\)when $\text{codim}\Sigma = 2$ instead of $\text{codim}\Sigma = 3$.

\(^{11}\)for the proof note, that (7) implies (6) through the prism construction, see the Lemma 2 in [M5]
[CG] J. Cheeger, D. Gromoll, *On the structure of complete manifolds of nonnegative curvature*, Ann. Math. 96 no.3 (1972), 413–443.

[GG] D. Gromoll and K. Grove, *One-dimensional metric foliations in constant curvature spaces*, Differential Geometry and Complex Analysis (1985), 165–168.

[GT] D. Gromoll and K. Tapp, *Nonnegatively curved metrics on $S^2 \times R^3$*, Geometriae Dedicata 99 (2003), 127–136.

[M1] V. Marenich, *Metric structure of open manifolds of nonnegative curvature*, Doklady Acad. Sc. USSR 261:4 (1981), 801-804.

[M1 rus] V. Marenich, *Metric structure of open manifolds of nonnegative curvature (complete version in russian)*, Ukrainian Geom. Sb. 26 (1983), 79-96.

[M2] V. Marenich, *The metric of nonnegative curvature on the tangent bundle of two-dimensional sphere*, Sibirsk. Math. Zh. 27:2 (1986), 121-138.

[M3] V. Marenich, *The holonomy in open manifolds of nonnegative curvature*, MSRI, Preprint No. 003–94, (1993).

[M4] V. Marenich, *The holonomy in open manifolds of nonnegative curvature*, Michigan Math. Journal 43:2 (1996), 263–272.

[M5] V. Marenich, *Rigidity of non-negatively curved metrics on open five-dimensional manifolds*, arXiv math/DG 0411632 (2004).

[O’N1] B. O’Neill, *The fundamental equations of submersion*, Mich. Math. J. 13 no. 4 (1966), 459–469.

[P] G. Perelman, *Proof of the soul conjecture of Cheeger and Gromoll*, J. Differential Geometry 40 (1994), 209–212.

[T] K. Tapp, *Rigidity for Nonnegatively curved Curved Metrics on $S^2 \times R^3$*, Ann. of Global Analysis and Geometry 25 (2004), 43–58.

Högskolan i Kalmar, 391 82, Kalmar, Sweden

E-mail address: valery.marenich@hik.se, mikael.bengtsson@hik.se