Removal of radionuclides and toxic metal ions from water with use of new highly effective sorbiting material

E M Evsina1, T V Alikova2 and N V Zolotareva2

1Department of Automated Design and Modeling Systems, Astrakhan State University of Architecture and Civil Engineering, 18, Tatishchev St., Astrakhan 414056, Russia
2Department of Analytic and Physical Chemistry, Astrakhan State University, 20a, Tatishchev St., Astrakhan 414056, Russia

E-mail: evsinalena@mail.ru

Abstract. The adsorption of radionuclides of strontium, rubidium, cesium, uranium and some toxic metal ions from water streams using flasks has been experimentally and theoretically studied. When studying the adsorption of a number of metal ions on them, it was found that in a wide range of pH many cations are durably adsorbed, and in some cases irreversible sorption is observed. Ammonium, potassium, rubidium, cesium, iron, cobalt, nickel, manganese (II), chromium (III), zinc, cadmium, lead, mercury, copper and rare earth ions are durably adsorbed. At the same time, sodium, aluminum, gallium, zirconium, and molybdenum (VI) ions are captured during adsorption from solutions. These ions can be desorbed not only by acidification of the eluting solution, but also by washing the sorbent with water. An analysis of the results obtained in the study of the adsorption of cations made it possible to draw an initial conclusion: those ions that contain vacant d or f orbitals form strong adsorption complexes with flasks. Flasks are used to extract potassium, rubidium, cesium, calcium, strontium and barium ions from water of varying degrees of salinity.

1. Introduction

Natural sorbents, such as mordenite, diatomites, tripoli, synthetic and natural zeolites are very rarely used to remove potassium, rubidium, cesium and strontium ions from natural objects, in particular, from water.

Quantum-chemical calculations of the adsorption of cations on the surface of aluminosilicates are performed using a cluster approach with semi-empirical methods based on the so-called NDDO approximation (Neglect of Diatomic Differential Overlap).

Most of the calculations were performed using the PM3 method; for comparison, some AK models are calculated using the MNDO and AM1 methods [1-4]. The calculations were carried out using the MNDO-90 program. Some models were also calculated using ab initio GAMESS. The clusters contained the following active centers of the surface of aluminosilicates: an incompletely coordinated Al atom (Lewis Acid Center, LAC), =SiOH silanol group, adsorbed water molecules, a bridging OH group (Brönsted Acid centers, BAC) [5].

2. Materials and methods

The boundary conditions for the clusters, i.e. the effect of atoms in the bulk of a solid on the atoms of the surface group included in the cluster was taken into account with the help of a model of an orbital-
The selected fragment is a crystalline pseudocell, the orbital, electronic, and core composition (OSC) simulating a volume fragment of an ideal crystal must correspond to the stoichiometry of the modeled object. The basic set of OSC includes all valence atomic orbitals and electrons of internal atoms, and from boundary atoms, only those HLOs that correspond to σ-bonds with internal atoms. The number of electrons and the charge of the core introduced into the OSC from the BA (which in the general case can be fractional) correspond to the fraction of HLO participating in the OSC basis.

The total number of electrons for all atoms, the number of basic orbitals and the total charge of the core must be equal or multiple of those integer values that correspond to the formula unit of the simulated structure [6]. The transition from the OSC, which simulates the bulk structure of a solid, to cluster models of surface centers is carried out by dividing the “volume” OSC into its component parts corresponding to the simulated surface centers [9]. The boundary connections of the sorbent clusters closed on the BA silicon Si*. Each Si* atom introduces one sp3-hybrid orbital oriented towards the adjacent intracluster oxygen atom, one electron and the core charge 1 into the OSC basis. This means that silicon BAs do not participate in the OSC entirely, but only by “part” (one-quarter) corresponding to the share of its participation in the chemical bond with the neighboring oxygen atom.

Tables 1 and 2 show the electronic and energy characteristics of the structure of cluster models of aluminosilicates and silica by various methods. Separate designations: q is the charge of an atom; W is the Weiberg bond index; EVBMO is the energy of the valence band of the molecular orbital; ENVMO is the energy of the non-valent band of the molecular orbital [10-12].

By the example of these clusters, it is also seen that with an increase in the angle \(\angle \text{SiOH} \), the absolute values of the charges on the H, O, and Si atoms of the silanol group increase slightly, and the Weiberg indices of the corresponding bands remain almost unchanged [13].
When studying the adsorption of a number of metal ions on aluminosilicates, it was found that in a wide pH range many cations are durably adsorbed on aluminosilicates, and in some cases irreversible sorption is observed. Ammonium, potassium, rubidium, cesium, iron, cobalt, nickel, manganese (II), chromium (III), zinc, cadmium, lead, mercury, copper and rare earth ions are strongly adsorbed. At the same time, sodium, aluminum, gallium, zirconium, and molybdenum (VI) ions are captured during adsorption from solutions [14-16]. These ions can be desorbed not only by acidification of the eluting solution, but also by washing the sorbent with water.

Analysis of the results obtained in the study of the adsorption of cations made it possible to draw an initial conclusion: those ions that contain vacant d or f orbitals form durable adsorption complexes with aluminosilicates. The calculations were carried out taking into account the effect on the interaction energy with the silonal and siloxane groups of the sorbent s-, p-, d- and f-orbitals of cations (table 3).

Sorbate	CL-1	CL-2	CL-3	CL-4	-ΔE_theor	-ΔE_exper
NH₄⁺	7,1	7,5	7,8	12,1	11,9	
Na⁺	4,3	4,3	4,5	5,5	4,5	
K⁺	6,5	6,5	6,7	12,5	12,1	
Rb⁺	7,1	7,1	7,3	17,5	16,1	
Cs⁺	8,5	9,1	9,5	21,5	20,5	
Ca²⁺	7,5	7,5	7,5	8,3	8,1	
Sr²⁺	7,2	7,2	7,2	8,1	8,0	
Ba²⁺	6,3	6,2	6,3	7,5	6,3	
Fe³⁺	15,1	15,2	15,5	23,5	22,9	
Zn²⁺	5,8	5,8	5,8	7,5	6,8	
Cd²⁺	6,1	6,3	6,5	10,5	7,6	
Pb²⁺	8,5	9,1	9,8	26,5	23,2	
Hg²⁺	12,5	13,1	14,5	21,5	23,7	
Cr³⁺	10,5	10,5	10,5	16,5	13,7	
Mn²⁺	17,1	18,5	19,5	27,5	25,4	
Ti⁴⁺	17,1	17,5	20,5	28,5	25,1	
Pr³⁺	16,5	16,5	17,1	22,5	21,5	
Nd³⁺	16,5	16,7	17,5	22,5	22,1	
Gd³⁺	17,5	17,5	18,1	29,5	25,3	

As shown by the results of the calculations of ΔE_exper and ΔE_theor (for clusters 1-4), it is possible with a high degree of probability to make a prediction of the mechanism of the capture of cations by clusters of different structure. Now it can be considered proven that cations having vacant d and f orbitals form AKs with the participation of cluster 4 [17]. Proof that this particular cluster configuration is most likely is also due to the fact that sorbents C and CB from solutions in which the most different ratio is taken (for example, 1: 10,000) K: Na or Rb: Na or Cs: Na selectively sorbs K, Rb and Cs, and Na remains in solution [18].

Flasks of the Astrakhan region, are used to extract from water of varying degrees of salinity of potassium, rubidium, cesium, calcium, strontium and barium ions. For this purpose, the adsorption of the listed ions from specially prepared solutions, as well as from the water of natural reservoirs and brines, which filled the tanks for storing gas condensate and liquid hydrocarbons, which were created by a special ‘Vega’ project, was studied.

The content of all considered ions was determined by flame photometry and atomic absorption spectroscopy. The adsorption in the dynamic mode. The flow system was loaded with 2 kg of sorbent -
crushed flasks with a particle diameter of from 20 to 50 mm. Water was passed through this sorbent at a rate of 1 cm³/s until the content of the studied ions in the flowing water reached 10% of the content of these ions in the initial water [19]. The results of the experiments are shown in table 4.

Table 4. Changes in the content of metal ions in aqueous media depending on time. Sorbent - flask crumb diameter of 20-50mm.

Water source or solution	Initial content of ions, mg/dm³	Content of ions, mg/dm³ depending on transmission time (min)											
	1	10	60	600	6000	1	10	60	600	6000			
The solution prepared by dissolving salts in dist. water.	Ca²⁺	100	0.01	0.01	0.01	0.10	5.00	10.00					
	Sr²⁺	50	0.01	0.01	0.01	0.10	0.25	5.00					
	Ba²⁺	10	0.01	0.01	0.01	0.10	0.25	5.00					
	K⁺	100	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Rb⁺	20	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Cs⁺	10	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
er. Bereket, 1000 m to the S-E from the Astrakhan Gas Processing Plant	Ca²⁺	20	0.005	0.005	0.005	0.01	1.0	2.0					
	Sr²⁺	5	0.001	0.001	0.001	0.005	0.005	0.008					
Brines from hydrocarbon storage tanks	Ba²⁺	-	-	-	-	-	-	-					
	K⁺	20	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Rb⁺	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Cs⁺	0.1	не обн.										
Brines from hydrocarbon storage tanks	Ca²⁺	50	0.01	0.01	0.01	0.05	0.5	5.0					
	Sr²⁺	10	0.01	0.01	0.01	0.02	0.05	1.0					
	Ba²⁺	-	-	-	-	-	-	-					
	K⁺	250	0.01	0.01	0.01	0.01	0.01	0.10	10.0				
	Rb⁺	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Cs⁺	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
"AKSOL". Prepared 20% aqueous solution	Ca²⁺	20	0.005	0.005	0.005	0.01	0.01	5.0					
	Sr²⁺	20	0.005	0.005	0.005	0.01	0.01	5.0					
	Ba²⁺	-	-	-	-	-	-						
	K⁺	500	0.01	0.01	0.01	0.01	0.01	5.0					
	Rb⁺	15	0.001	0.001	0.001	0.001	0.1	2.0					
	Cs⁺	15	0.001	0.001	0.001	0.001	0.1	2.0					

Salt of the enterprise "AKSOL".

Static adsorption. At the bottom of three steel tanks (St-3) (1 × 1 × 0.5) m³, a layer of 50 mm of flasks with a diameter of 20-50mm was poured, river sand, or a platform were not specially created. 250 dm³ of the investigated water were poured into each tank and the content of ions in this water was determined at certain intervals [20-21]. The results of the experiments are shown in table 5.

4. Conclusions

As can be seen from the results given in table. 4 and 5, the grains from the flasks can be effectively used to purify water from calcium, strontium, barium, potassium, rubidium and cesium ions. If the reservoir contains a significant amount of these elements, so the best option is to cover the bottom of this reservoir with a layer of crushed flasks, and after a certain time the concentration of these elements in the water will sharply decrease. The elements themselves are not desorbed (Table 5) for a long time.
Table 5. Water purification from metal ions in a static mode with a crumb of flasks with a particle diameter from 20 to 50 mm.

Water source or solution	Initial content of ions, mg/dm³	Content of ions, mg/dm³ depending on transmission time (days)					
		1	10	30	60	300	
The solution prepared by dissolving salts in dist. water.	Ca²⁺	100	10,0	0,1	0,01	0,01	0,01
	Sr²⁺	50	10,0	0,1	0,01	0,01	0,01
	Ba²⁺	10	5,0	1,0	0,10	0,05	0,01
	K⁺	100	0,01	0,001	0,001	0,001	0,005
	Rb⁺	20	0,01	0,001	0,001	0,001	0,005
	Cs⁺	10	0,01	0,001	0,001	0,001	0,005
er. Bereket, 1000 m to the S-E from the Astrakhan Gas Processing Plant	Ca²⁺	20	0,05	0,01	0,01	0,01	0,01
	Sr²⁺	5	0,05	0,01	0,01	0,01	0,01
Brines from hydrocarbon storage tanks	K⁺	20	0,01	0,001	0,001	0,001	0,002
	Rb⁺	0,5	0,005	0,001	0,001	0,001	0,002
	Cs⁺	0,1	<0,001	<0,001	<0,001	<0,001	<0,001
* Salt of the enterprise "AKSOL". Prepared 20% aqueous solution	Ca²⁺	20	0,01	0,01	0,01	0,01	0,01
	Sr²⁺	10	0,01	0,01	0,01	0,01	0,01
	Ba²⁺	-	-	-	-	-	-
	K⁺	250	0,01	0,001	0,001	0,001	0,005
	Rb⁺	0,5	0,005	<0,001	<0,001	<0,001	<0,001
	Cs⁺	0,5	0,005	<0,001	<0,001	<0,001	<0,001

References

[1] Alykov N M and Voronin N I 2002 Use of natural sorbents for technology and analytical chemistry. *Natural Sciences. Journal of Fundamental and Applied Research* 4 160–172
[2] Alykova T V 2002 *Chemical monitoring of environmental objects* (Astrakhan: Publishing House Astrakhan state University) pp 32–37
[3] El-Korashy S A 2002 Synthetic Crystalline Calcium Silicate Hydrate (I): Cation Exchange and Caesium Selectivity *Monatshefte fur Chemie* 133 333–343
[4] Franta P, Vanura P and Tomic L 2007 Poloprovozni overeni technologie cisteni chladiva, bazenu skladovani vyhoreleho paliva jaderne elektrarny VI sorpci na syntetickeni mordenitu *Jad. Energy* 12 453–458
[5] Lumistea L, Muntera R, Sullb J and Kivimaeb T 2012 Removal of radionuclides from Estonian groundwater using aeration, oxidation, and filtration *Proceedings of the Estonian Academy of Sciences* 7 58–64
[6] Vesterbacka P 2005 21S U-series radionuclides in Finnish groundwater-based drinking waterand effective doses *International Atomic Energy Agency* 236 194–196
[7] Esmeray E, Aydin M E 2008 Comparison of natural radioactivity removal methods for drinking water supplies (Moscow: Chemistry) pp 142–146
[8] Chatunpik S, FransusW, Wysocka M and Gzyil G 2013 Environ application of zeolites for radium removal from mine water *Environmental Science Pollution Research* 20 7900–7906
[9] Vaaramaa K 2000 Removal of natural radionuclides from drinking water by ion exchange *Joint Finnish-Russian Symposium on Radiochemistry* 6
[10] Munter R 2013 Technology for the removal of radionuclides from natural water and waste management: state of the art Proceedings of the Estonian Academy of Sciences pp 122–132

[11] Mosiagin I G, Kulikov A V, Buzov Y Y, Kasatkin V I and Ponimatkin V P 2015 New-generation sorbent for drinking water purification from radionuclides Marine Medicine 6 5–13

[12] Privalova N M, Dvadnenko M V, Marochkina S G and Lyavina E V 2009 Magnetic fluid treatment of industrial oil-contaminated wastewater Progress in Modern Natural Science 7 151–152

[13] Mosyagin I G, Buzov E Ya, Gromov A I, Kuznetsov V G, Kasatkin V I and Kulikov AV Ponimatkin V P, Rybina L A 2016 New technologies for water decontamination from radionuclides and increasing its biotropism Human ecology 3 3–11

[14] Krivovichev S V, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev I G and Myasoedov B F, 2005 Nanoscale tubules in uranyl selenates Angew. Chem. Int. Ed 10 1134–1136

[15] Dong J Y, Zhan F Z and Huai Y Z Titanate 2008 Nanofibers as Intelligent Absorbents for the Removal of Radioactive Ions from Water Adv. Mater 11 2777–2781

[16] Bigall N C, Reitzig M, Naumann W and Simon P 2008 Fungal Templates for Noble-Metal Nanoparticles and Their Application in Catalysis Angew Chem. Int. Ed 14 7876–7879

[17] Schuster E, Dunn-Coleman N, Frisvad J and van Dijck P 2002 On the safety of Aspergillusniger Appl Microbio Biotechnol 59 426–435

[18] Alikova T V and Alykov N N 2002 Methods for determination of phenols in environmental objects after their concentration on the sorbent S-1 Natural Sciences 5 183–191

[19] Ahrens V Zh and Gridin O M 1997 Effective sorbents for the elimination of oil spills Ecology and industry of Russia 4 32–37

[20] GOST R 54655- 2011 Editions. National standard of the Russian Federation (Moscow: Standartinform) p 25

[21] Mtsiaryashvili M R, Portnova S V, Egorova S N and Garmonov S Yu 2016 Development of a method for chromatographic determination of hydrocortisone, nipagin and its validation Bulletin of the Kazan Polytechnic University 8 168–171