Characterizing the far-infrared properties of distant X-ray detected AGNs: evidence for evolution in the infrared–X-ray luminosity ratio

J. R. Mullaney,1⋆ D. M. Alexander,1 M. Huynh,2 A. D. Goulding1 and D. Frayer2

1Department of Physics and Astronomy, Durham University, South Road, Durham DH1 3LE
2Infrared Processing and Analysis Center, California Institute of Technology, 100-22, Pasadena, CA 91125, USA

Accepted 2009 September 18. Received 2009 September 18; in original form 2009 July 3

ABSTRACT
We investigate the far-infrared (FIR) properties of X-ray sources detected in the Chandra Deep Field-South (CDF-S) survey using the ultradeep 70 and 24 μm Spitzer observations taken in this field. Since only 30 (i.e. ∼10 per cent) of the 266 X-ray sources in the region of the 70 μm observations are detected at 70 μm, we rely on stacking analyses of the 70 μm data to characterize the average 70 μm properties of the X-ray sources as a function of redshift, X-ray luminosity and X-ray absorption. Using Spitzer-IRS data of the Swift-Burst Alert Telescope (BAT) sample of z ≈ 0 active galactic nuclei (AGNs), we show that the 70/24 μm flux ratio can distinguish between AGN-dominated and starburst-dominated systems out to z ∼ 1.5. Among the X-ray sources detected at 70 μm, we note a large scatter in the observed 70/24 μm flux ratios, spanning almost a factor of 10 at similar redshifts, irrespective of object classification, suggesting a range of AGN:starburst ratios. From stacking analyses we find that the average observed 70/24 μm flux ratios of AGNs out to an average redshift of 1.5 are similar to z ≈ 0 AGNs with similar X-ray luminosities (L_X = 10^{42–44} erg s^{-1}) and absorbing column densities (N_H ≤ 10^{23} cm^{-2}). Furthermore, both high-redshift and z ≈ 0 AGNs follow the same tendency towards warmer 70/24 μm colours with increasing X-ray luminosity (L_X). From analyses of the Swift-BAT sample of z ≈ 0 AGNs, we note that the 70 μm flux can be used to determine the IR (8–1000 μm) luminosities of high-redshift AGNs. We use this information to show that L_X = 10^{42–43} erg s^{-1} AGNs at high redshifts (z = 1–2) have IR to X-ray luminosity ratios (L_{IR}/L_X) that are, on average, 4.7^{+1.0}_{−2.0} and 12.7^{+7.1}_{−2.6} times higher than AGNs with similar X-ray luminosities at z = 0.5–1 and ∼0, respectively. By comparison, we find that the L_{IR}/L_X ratios of L_X = 10^{43–44} erg s^{-1} AGNs remain largely unchanged across this same redshift interval. We explore the consequences that these results may have on the identification of distant, potentially Compton-thick AGNs using L_{IR}/L_X ratios. In addition, we discuss possible scenarios for the observed increase in the L_{IR}/L_X ratio with redshift, including changes in the dust covering factor of AGNs and/or the star formation rates of their host galaxies. Finally, we show how deep observations to be undertaken by the Herschel Space Observatory will enable us to discriminate between these proposed scenarios and also identify Compton-thick AGNs at high redshifts.

Key words: galaxies: active – galaxies: high-redshift – infrared: galaxies – X-rays: galaxies.

1 INTRODUCTION
Deep X-ray surveys undertaken by the Chandra and XMM–Newton observatories have provided the most efficient method to date of identifying large number of active galactic nuclei (AGNs) out to high redshifts (z ≈ 5; e.g. Alexander et al. 2001; Barger et al. 2003; Bauer et al. 2004; Szokoly et al. 2004; Brandt & Hasinger 2005; Mainieri et al. 2005). Due to the high penetrating power of hard (i.e. >2 keV) X-rays, they provide a means of identifying AGNs that is much less biased towards unobscured AGNs than, for example, that obtained at optical wavelengths alone. Consequently, deep X-ray surveys have revealed that a large fraction (up to ∼75 per cent; Mainieri et al. 2002; Dwelly & Page 2006; Tozzi et al. 2006; Tajer et al. 2007) of highly obscured AGNs are often unidentified or misclassified by observations at other wavelengths (e.g. Barger et al. 2003; Röttgering et al. 2004; Bauer et al. 2005; Mainieri et al. 2005).
2 DATA

Our main focus throughout this work is the analysis of the MIR and FIR (5–30 and 30–300 μm, respectively) emission of X-ray detected sources in the CDF-S field. To aid in the interpretation of the CDF-S data, we also make use of archival spectra obtained using Spitzer’s Infrared Spectrograph (IRS) and IRAS photometry for the Swift-BAT sample of local X-ray AGNs, two archetypal AGNs (NGC 1068 and NGC 6240) and a distant quasi-stellar object (QSO) sample. We describe the CDF-S sample in Section 2.1 and the comparison samples in Section 2.2.

2.1 CDF-S sample of X-ray detected AGNs and starbursts

2.1.1 Chandra data

The X-ray data for our main sample are taken from the 1 Ms CDF-S X-ray observations (Giacconi et al. 2002), as analysed by Alexander et al. (2003). In total, there are 201, 304 and 326 X-ray detected

1 URL: http://herschel.esac.esa.int/Docs/KPOT/GOODS_Herschel.pdf
objects in this region down to limiting 2–8 keV fluxes of 10^{-15}, 10^{-16} and 10^{-17} erg s$^{-1}$ cm$^{-2}$, respectively. The CDF-S data is deep enough to detect star formation activity out to $z \approx 1$. Since the primary aim of this study is to explore the IR properties of X-ray detected AGNs, we have used the Bauer et al. (2004) X-ray source classifications to separate AGNs from star-forming galaxies. In the full catalogue of X-ray sources, there are 288 X-ray AGNs and 15 X-ray SBs (the remaining 23 are classed as either normal galaxies or stars and are excluded from further discussion). The absorption corrected 2–10 keV X-ray luminosities (L_X) and X-ray absorption column densities (N_H) are taken from Tozzi et al. (2006). Here, we only consider those 266 X-ray AGNs/SBs with well defined L_X and N_H measurements. Spectroscopic and photometric redshifts for these 266 X-ray AGNs/SBs were also taken from Tozzi et al. (2006); 137 have spectroscopic redshifts (113 of which are described as secure, see Tozzi et al. 2006 for details). We use photometric redshifts for the remaining 129 X-ray AGNs/SBs that lack spectroscopic redshifts.

In Fig. 1, we present the L_X-redshift distribution of the 266 X-ray AGNs/SBs considered in this study. As is to be expected in flux limited samples, there is a strong bias towards the detection of more luminous sources at higher redshifts. Furthermore, as is shown in Fig. 2, there is a bias towards higher column densities at higher X-ray luminosities because (i) only the brightest X-ray sources can be detected behind $N_H > 10^{22} - 23$ cm$^{-2}$ and (ii) it is difficult to measure low values of N_H at high redshifts due to the absorption cut-off being shifted out of the lowest Chandra energy band. In our analysis, we consider two main samples: (i) the full sample of classified X-ray AGNs/SBs and (ii) a ‘restricted’ sample limited to those AGNs with $L_X = 10^{42-44}$ erg s$^{-1}$ and $N_H < 10^{23}$ cm$^{-2}$ within the redshift range of $0.5 < z < 2.0$ (indicated by the shaded regions in Figs 1 and 2). The ‘restricted’ sample is used to mitigate the effects of absorption and selection biases on the average results; the L_X and N_H range of the restricted sample is also well matched to the $z \approx 0$ Swift-BAT comparison sample (see Section 2.2.1).

2.1.2 Spitzer data

The 24 and 70 µm Spitzer-MIPS GOODS/CDF-S2 observations (PID: 20147; P. I.: D. Frayer) and FIDEL3 legacy surveys (PID: URL: http://www.stsci.edu/science/goods/)

2 URL: http://www.stsci.edu/science/goods/

3 URL: http://irsa.ipac.caltech.edu/data/SPITZER/FIDEL/
0.2 per cent. Given the small value of \(P \), it was not necessary to apply the correction to the matching procedure described by Downes et al. (1986).

We matched the X-ray sources to the 24 \(\mu m \) sources using a 3.0 arcsec search radius; this search radius was found to provide the best compromise between finding real matches while reducing the number of spurious matches. Of the 266 CDF-S X-ray AGNs/SBs, we found 172 have 24 \(\mu m \) counterparts (i.e. \(\approx 65 \) per cent). The number of spurious matches in the CDF-S field was estimated to be \(\approx 6.5 \) per cent using two approaches (i) by calculating the area of the field covered by 24 \(\mu m \) sources, assuming that each source is a circle of radius 3.0 arcsec and (ii) by shifting the positions of the 24 \(\mu m \) sources by a random displacement between 20 and 55 arcsec and then rematching to the X-ray sample. This spurious matching fraction is consistent with the \(P \)-statistic (\(\approx 3 \) per cent), assuming \(n \approx 1.5 \times 10^4 \) deg\(^{-2} \) (see above). In spite of the larger \(P \)-statistic associated with the 24 \(\mu m \) matches compared to the 70 \(\mu m \) matches, the correction described in Downes et al. (1986) need only be applied to 15 (6 per cent) of the 266 X-ray sources and has negligible effect on any of our results.

All but one of the 70 \(\mu m \) detected sources has a 24 \(\mu m \) counterpart. Further investigation reveals that the lack of a matched 24 \(\mu m \) counterpart is the result of the larger point spread function (PSF) of the 70 \(\mu m \) image; at the corresponding position in the 24 \(\mu m \) image there is a cluster of sources that lie just outside the 3.0 arcsec matching radius which blend to form a single ‘source’ in the 70 \(\mu m \) image. To mitigate source blending, we deblend the 70 \(\mu m \) sources with Gaussians placed at the 24 \(\mu m \) positions. It is these ‘deblended’ fluxes that are reported in Table 1.

Finally, one of the 70 \(\mu m \) detected X-ray sources lies within 3.0 arcsec of two 24 \(\mu m \) sources (Tozzi et al. 2006, Index: 31); in Table 1, we list both 24 \(\mu m \) matches but assume that the brighter of the two 24 \(\mu m \) sources is the real match in our analysis.

2.1.4 24 and 70 \(\mu m \) stacking procedure

As the majority of the X-ray sources are not detected at 70 \(\mu m \), we rely on stacking analyses to provide insight into their average MIR to FIR properties. Stacking was performed using the code of Huynh et al. (2007). Cutouts of 128 \times 128 arcsec\(^2\) (32 \times 32 pixels) were made from the 70 \(\mu m \) image at the stack positions and combined using a weighted mean. The 70 \(\mu m \) stacked flux density was measured using an aperture of 8.0 arcsec at the stacked image centre. Offset stacks were generated using random but nearby offset positions (<64 arcsec) in the 70 \(\mu m \) image. 200 randomly offset stacks were made and the uncertainty in the stacked flux is taken as the standard deviation of the measured flux density in the 200 offset stacks.

We created stacks that either include or exclude the 70 \(\mu m \) detected sources; the former (hereafter ‘all’) provides a global average of the FIR properties of all X-ray sources and the latter (hereafter ‘undetected’) provides the average of the 70 \(\mu m \) undetected X-ray sources that is less skewed by individual bright 70 \(\mu m \) sources. We also stack only the 70 \(\mu m \) detected sources for comparison (hereafter ‘detected’). Because the all stacks often appear to be dominated by the few 70 \(\mu m \) detected sources we generally use the detected and undetected stacks in our analysis.

In order to isolate trends between the IR emission from AGNs and other physical properties, we further split the ‘Restricted’ sample (see Section 2.1.1) in terms of \(L_X(=10^{22}-43, =10^{33}-44 \) erg s\(^{-1}\)), \(N_{HI}(<10^{22}, =10^{22}-23 \) cm\(^{-2}\)) and redshift (\(z = 0.5-1.0, 1.0-2.0 \)).
Table 1. The 30 X-ray detected sources with $>3\sigma$ detections at 70 μm.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Name	RA	Dec.	z	z flag	log(L_X) (ergs s$^{-1}$)	N_H (1022 cm$^{-2}$)	S_X (μJy)	S_{24} (μJy)	S_{24}/S_X	L_IR (L_\odot)	Classification		
T06	A03												

Notes. (1) Source index from Tozzi et al. (2006); (2) source index from Alexander et al. (2003); (3) source name; (4–5) X-ray position (J2000); (6) source redshift; (7) redshift flag; (8) intrinsic (i.e. corrected for absorption) 2–10 keV luminosity; (9) column density in units of 1022 cm$^{-2}$; (10) 70 μm flux; (11) 24 μm flux; (12) 70/24 μm flux ratio; (13) L_IR derived from the 70 μm flux using the method described in the text; (14) Classification from Bauer et al. (2004); and information in columns (1), (3)–(9) are taken from Tozzi et al. (2006).
2.2 Comparison samples

In our analysis, we compare the results from the sample of CDF-S X-ray AGNs/SBs to the IR properties of two archetypal AGNs, a sample of bright QSOs from Richards et al. (2006) and, most importantly, a sample derived from local (z < 0.1) AGNs in the Swift-BAT catalogue of hard X-ray detected AGNs (see Section 2.2.1, Appendix and Tueller et al. 2008). For the latter, we selected those AGNs that cover the same range of X-ray properties (i.e. LX and N\textsubscript{H}; see Fig. 2) as the CDF-S X-ray AGNs sample and also have archival Spitzer-IRS spectra and/or IRS flux density measurements. The result is a sample that is directly comparable to the more distant CDF-S AGNs, but which has far superior IR data due to the relative proximity of the sources.

2.2.1 The Swift-BAT sample

The Swift telescope is currently undertaking a survey of X-ray bright (F_{14–195 keV} \geq 5 \times 10^{-11} \text{ erg s}^{-1} \text{ cm}^{-2}) AGNs using its on-board (BAT); the second data release (DR2) of this survey has recently been published in Tueller et al. (2008). As the BAT instrument is sensitive only to very hard X-rays (14–195 keV), this survey has resulted in a sample of local\(^5\) AGNs that is largely unaffected by absorption (to N\textsubscript{H} < 10^4 \text{ cm}^{-2}). The LX and N\textsubscript{H} distributions of the 104 AGNs for which archival 2–10 keV data exist (Bassani et al. 1999; Winter et al. 2009) are comparable to the CDF-S sample (see figs 7 and 10 of Winter et al. 2009). Of these 104 AGNs, 61 have flux density measurements from all four IRAS bands (these 61 objects are hereafter referred to as the BAT/IRS sample) which we convert to L\textsubscript{IR} using equations (2) and (3) in table 1 of Sanders & Mirabel (1996). A search of the Spitzer archives reveals that 36 of the 104 AGNs with 2–10 keV data have Spitzer-IRS spectroscopy between 5.2–38 \mu m (these 36 objects are hereafter referred to as the BAT/IR sample) which we use in conjunction with IRAS data to derive the expected observed 24 and 70 \mu m fluxes at the redshifts covered by the CDF-S sample. All of the AGNs in the BAT/IR sample are also in the BAT/IRS sample (see Appendix for full details of the IRS/IRAS analysis).

On separating the BAT/IRS sample into SB- and AGN-dominated objects, we find that the S_{70}/S_{24} ratio is able to discriminate between these two types of sources out to z \approx 1.5 (see shaded regions in Fig. 4 and Appendix). Furthermore, we note that the 70 \mu m flux density can predict the IR luminosities of all the BAT/IRS objects (i.e. both SB- and AGN-dominated AGNs), as well as the SB galaxies described in Brandl et al. (2006), to within a factor of \approx 3. This compares to a factor of \approx 12 uncertainty in L\textsubscript{IR} using 24 \mu m flux densities alone (see Appendix and Fig. A3).

In the plots that follow, we indicate the average IR properties of the BAT/IR sample using red and blue lines for the AGN- and SB-dominated systems, respectively. Shading is used to indicate the range of MIR and FIR properties of the BAT/IRS sample.

2.2.2 NGC 1068, NGC 6240 and the QSO sample

In addition to the BAT/IRS sample, we also compare the CDF-S AGNs with two well-studied heavily obscured AGNs, NGC 1068 and NGC 6240. The former is regarded as the ‘quintessential’ type II AGN, showing evidence of a hidden broad-line region in polarized light (e.g. Antonucci & Miller 1985); the latter is a heavily obscured AGN that is SB-dominated at IR wavelengths and is often cited to characterize the properties of faint X-ray AGNs. The tracks for these AGNs were derived from archival Spitzer-IRS spectra following the same procedure as used for the BAT/IRS sample as outlined in the Appendix.

Finally, we use the average QSO SED of Richards et al. (2006) to give an indication of the typical IR properties of luminous, unobscured type I AGNs.

We stress that the comparison samples considered here do not cover the full range of SEDs seen in the general galaxy population. It is known, for example, that very strongly starbursting systems have larger S_{70}/S_{24} flux ratios than NGC 6240 (e.g. Arp 220). Furthermore, some quiescent galaxies are known to have low S_{70}/S_{24} flux ratios similar to those of AGNs in the BAT/IRS sample (see Alexander et al., in preparation). However, our main aim here is to explore the IR emission of AGNs with X-ray properties comparable to the CDF-S AGNs, which excludes such extreme systems. We find that the known starbursting systems, such as those presented in Brandl et al. (2006), all produce expected S_{70}/S_{24} flux ratios either consistent with or higher than those of the SB-dominated BAT/IRS AGNs, as indicated by the shaded region in Fig. A3.

3 RESULTS

In our analysis, we investigate the IR properties of the CDF-S X-ray AGNs and SBs, including the S_{70}/S_{24} flux ratios, the IR luminosities and the IR–X-ray luminosity ratios. To aid in our analysis, we compare the properties of the CDF-S X-ray sources with expectations based on the more detailed analysis of nearby AGNs with the same X-ray properties as the CDF-S sample (i.e. L\textsubscript{X}; N\textsubscript{H}). Since only a minority of CDF-S X-ray AGNs are detected at 70 \mu m, our analyses rely significantly on 70 \mu m stacking analyses and the 24 \mu m fluxes of individual sources.

3.1 Individual 70 \mu m detected sources

3.1.1 X-Ray properties and redshift distribution

In Fig. 1, we show the X-ray luminosity–redshift distribution for the CDF-S X-ray AGNs/SBs and highlight the 70 \mu m detected objects. As might be expected, there is a preference for bright X-ray AGNs to be detected at 70 \mu m. However, there are up to two orders of magnitude difference in L\textsubscript{X} for 70 \mu m detected sources at the same redshift, suggesting a large range of X-ray/IR luminosity ratios. As we show in Fig. 3, detection at 70 \mu m is strongly dependent on the 24 \mu m flux density. None of the AGNs with S_{24} < 200 \mu Jy, and fewer than a quarter (10/45; \approx 22 per cent) of those with 200 < S_{24}/\mu Jy < 500, are detected at 70 \mu m. Conversely, the majority (19/28; \approx 68 per cent) of those AGNs with S_{24} > 500 \mu Jy are detected at 70 \mu m.

The 70 \mu m detected sources span a broad range of X-ray properties. Of the 29 sources detected at both 70 and 24 \mu m, 15 (\approx 52 per cent) are non-broad-line AGNs (non-BLAGNs), six (\approx 21 per cent) are broad-line AGNs (BLAGNs) and eight (\approx 27 per cent) are X-ray detected SBs. These 70 \mu m detected sources comprise 15/218 (\approx 7 per cent) of the non-BLAGNs, 6/34 (\approx 18 per cent) of BLAGNs and 6/14 (\approx 43 per cent) of the X-ray detected SBs; the bias towards the BLAGNs and X-ray detected SBs could

\(^{5}\) 135 of the 153 AGNs with measured redshifts in the BAT sample (presented in Tueller et al. 2008) have z < 0.1.
be due to the BLAGNs and SBs having high L_X and large IR–X-ray luminosity ratios, respectively. The 70 μm detection of AGNs shows no apparent dependency on absorbing column density: for example, at $z < 1.5$, 6/17 (≈ 35 per cent) 70 μm detected sources are unabsorbed ($N_H < 10^{22}$ cm$^{-2}$), 5/17 (≈ 29 per cent) are absorbed ($N_H \approx 10^{22} - 10^{23}$ cm$^{-2}$) and 6/17 (≈ 35 per cent) are heavily absorbed ($N_H > 10^{23}$ cm$^{-2}$).

3.1.2 Distinguishing between SB- and AGN-dominated systems

In Fig. 4, we show the S_{70}/S_{24} flux ratios of all of the CDF-S X-ray AGNs/SBs and compare them to the range expected for the BAT/IRS AGN sample and the well studied local AGNs and quasars (see Section 2.2.1 and Appendix). The S_{70}/S_{24} flux ratio provides an effective discrimination between those AGNs with AGN- or SB-dominated IR SEDs to $z \approx 1–1.5$. Using the tracks derived for the BAT/IRS sample, we find that 15/23 (≈ 65 per cent) and 5/23 (≈ 22 per cent) of the 70 μm detected CDF-S AGNs have S_{70}/S_{24} flux ratios consistent with SB- and AGN-dominated systems, respectively; the remaining three 70 μm detected AGNs lie in regions of the $S_{70}/S_{24} - z$ plot that are consistent with either SB- or AGN-dominated systems. 10 (≈ 42 per cent) of the 70 μm detected CDF-S AGNs have S_{70}/S_{24} flux ratios within a factor of 1.5 of the NGC 6240 track, five of which are X-ray absorbed and five of which are X-ray unabsorbed. The maximum S_{70}/S_{24} flux ratio of the 70 μm detected sources is 24.4 \pm 1.9. This is marginally inconsistent with Papovich et al. (2007) who found 3/30 (≈ 10 per cent) X-ray detected AGNs in their 70 μm selected sample with $S_{70}/S_{24} > 30$. However, the larger area covered by their survey increases the likelihood of finding rare AGNs with more extreme S_{70}/S_{24} flux ratios that are not represented by our comparison samples (see Section 2.2).

Among the 70 μm detected sources, we find no difference in S_{70}/S_{24} flux ratio between BLAGNs and non-BLAGNs, nor between X-ray absorbed and X-ray unabsorbed AGNs (i.e. $N_H > 10^{22}$ cm$^{-2}$ and $N_H < 10^{22}$ cm$^{-2}$, respectively), implying that the material that absorbs photons at X-ray and optical wavelengths is optically thin to rest-frame MIR–FIR radiation (see Section 3.1.1). The average S_{70}/S_{24} flux ratios and redshifts of the absorbed (unabsorbed) 70 μm detected AGNs are $S_{70}/S_{24} = 8.2 \pm 4.3 (11.8 \pm 7.3)$ and $\bar{z} = 1.1 \pm 0.6 (0.76 \pm 0.56)$, respectively.

All six 70 μm detected X-ray SBs have S_{70}/S_{24} flux ratios consistent with that expected of SB-dominated systems. However, one of the SBs has a S_{70}/S_{24} flux ratio larger than that expected from the BAT/IRS sample and is typical of the extreme SB systems presented in Brandl et al. (2006) (see Fig. A3). The 70 μm detected X-ray SBs also span the same range of S_{70}/S_{24} flux ratios as the seven 70 μm detected X-ray AGNs that lie in the same redshift interval (i.e., $z = 0.2–0.7$), providing further evidence that these AGNs have SB-dominated IR SEDs.

Figure 3. Left-hand panels: 70 μm (top) and 24 μm (bottom) flux densities of the CDF-S X-ray SBs and AGNs that are detected in both the 70 and 24 μm wavebands (strong colours) and only the 24 μm waveband (faint colours). Right-hand panels: the average 70 μm (top) and 24 μm (bottom) flux densities of the 70 μm detected and 70 μm undetected AGNs in the ‘Restricted’ sample, split according to L_X and z. These averages are derived from stacking analyses. The fractions indicate the number of AGNs in each stack as well as in the whole subsample. The five tracks in each panel show the expected flux densities of the comparison AGNs, normalized to $L_{IR} = 10^{12} L_\odot$, at $z = 0.25–2.5$.

6 Given errors correspond to the standard deviation in the stacked flux.
Figure 4. Top: S_{70}/S_{24} flux ratios of the CDF-S X-ray AGNs/SBs that are detected at 70 μm. Bottom: the average S_{70}/S_{24} flux ratios of the 70 μm detected and 70 μm undetected AGNs in the ‘Restricted’ sample, split according to L_X and z. These averages are derived from stacking analyses. The fractions indicate the number of AGNs in each stack as well as in the whole subsample. The five tracks indicate the expected S_{70}/S_{24} flux ratios of the comparison AGNs at $z = 0.25–2.5$; see Section 2.2 and Appendix. The shaded regions indicate the range of expected S_{70}/S_{24} flux ratios of the AGNs in the BAT/IRS sample throughout the redshift range, $z = 0.25–2.5$.

3.1.3 IR fluxes and luminosities of individual, 70 μm-detected AGNs

Since we can provide a good characterization of the basic IR SEDs of the 70 μm detected CDF-S X-ray AGNs, we can accurately estimate their IR luminosities. We derive L_{IR} for the 70 μm detected sources by first selecting one of the five tracks plotted in Fig. 4 that best matches the S_{70}/S_{24} flux ratio of a given CDF-S X-ray AGN, then scaling its IR luminosity to reproduce S_{70} of the CDF-S source if observed at the same redshift. Estimating L_{IR} in this manner assumes that the IR SEDs of AGNs at the redshifts covered by the CDF-S observations are similar to those seen in the comparison AGN samples. We take some confidence that this is indeed the case as the range of S_{70}/S_{24} flux ratios of the 70 μm detected subsample is largely bounded by the tracks of our comparison sample.

In the left-hand panel of Fig. 5, we show the L_{IR} of the 70 μm detected sample plotted as a function of L_X. We find no significant difference in L_{IR} between BLAGNs and non-BLAGNs or between X-ray absorbed and unabsorbed AGNs. This independence of L_{IR} on classification provides further supporting evidence that the material that absorbs photons at X-ray and optical wavelengths is optically thin to rest-frame MIR–FIR radiation (see Sections 3.1.1 and 3.1.2). The 70 μm detected CDF-S X-ray AGNs are typically more IR luminous than their counterparts in the BAT/IRS sample of local AGN. This result may be due to the low sensitivity of the 70 μm observations, which could lead to a bias towards the detection of the most IR-luminous AGNs; indeed, the range of IR luminosities (∼2 orders of magnitude) for the CDF-S X-ray AGNs is narrower than the range of X-ray luminosities (∼3 orders of magnitude). Overall, the IR to X-ray luminosity ratios (L_{IR}/L_X) of the 70 μm detected CDF-S AGNs/SBs span almost 2 orders of magnitude.

The 70 μm detected X-ray SBs have higher L_{IR}/L_X ratios than the majority (20/22; ∼91 per cent) of the 70 μm detected X-ray AGNs. We find all three 70 μm detected X-ray AGNs with $L_X < 10^{41}$ erg s$^{-1}$ have L_{IR}/L_X ratios and S_{70}/S_{24} flux ratios comparable to the 70 μm detected X-ray SBs (Tozzi et al. 2006, Index: 525, 538, 575; see Table 1). However, two of these sources (Index: 525, 538) have optical spectra consistent with AGNs (Szokoly et al. 2004).
while the remainder (Index: 575) has a flat X-ray spectral index in the deeper 2 Ms CDF-S catalogue (\(\Gamma < 0.1 \); Luo et al. 2008). While this confirms their classification as AGNs, it is clear that their IR SEDs are SB dominated.

As only a small fraction of the CDF-S X-ray AGN sample is detected at 70 \(\mu \)m, we are unable to reliably constrain the IR properties of the majority of the CDF-S X-ray AGNs/SBs using the 70 \(\mu \)m data alone. To better characterize the IR properties for the majority of the CDF-S X-ray AGNs, we therefore use stacking analyses.

3.2 24 and 70 \(\mu \)m stacking analysis

The advantage of stacking analyses is that it provides the average properties of sources that lie below the individual source detection limit. However, naturally, information is lost on the fluxes of individual sources. We also stacked the 70 and 24 \(\mu \)m data following the procedure outlined in Section 2.1.4 and present the results in Table 2; although the majority of the CDF-S X-ray sources are detected at 24 \(\mu \)m, we stacked the 24 \(\mu \)m data to provide flux density constraints consistent with those obtained at 70 \(\mu \)m. For completeness, we report the results from stacking the whole sample as well as a range of subsamples (split into bins of \(L_X \), \(N_{HI} \), \(z \), 24 \(\mu \)m flux density, and object classification). As noted in Section 2.1.4, we stacked all X-ray sources in each subsample (‘all’), and also stacked only the 70 \(\mu \)m detected objects (‘detected’) and only the 70 \(\mu \)m undetected objects (‘undetected’). The majority of our analyses will focus on the ‘Restricted’ sample to reduce selection and sensitivity biases (see Section 2.1.1).

All of the CDF-S X-ray sample is detected significantly in the 70 \(\mu \)m stacks, with an average flux density of \(S_{70} = 4824 \pm 210 \) mJy. Significant detections (S/N > 3) are also found from 70 \(\mu \)m stacking analyses for the majority of the subsamples; however, we note that only 9 (<50 per cent) of the eighteen 70 \(\mu \)m undetected subsamples are significantly detected. From stacking the CDF-S X-ray sample in bins of 24 \(\mu \)m flux density (i.e. \(S_{24} = 50–150, 150–500 \) mJy), we find that the 70 \(\mu \)m flux density and the significance of the detection is positively correlated with the 24 \(\mu \)m flux density of the stacked sources, confirming our previous result for the 70 \(\mu \)m detected sources (see Section 3.1).

We find that when the ‘Restricted’ sample is stacked in bins of \(N_{HI} \) and \(z \) (i.e. stacks 5, 6, 7 and 8 in Table 2) only one 70 \(\mu \)m undetected stack is detected at 70 \(\mu \)m at a significance > 3\(\sigma \). The upper limits for these non-detections reveal no significant differences in the IR properties of these subsamples; they are all consistent with \(S_{70}/S_{24} \approx 4 \) and \(L_{IR} \approx 10^{44} \) L\(_{\odot}\). The lack of any significant difference between these stacks may be interpreted as providing further tentative evidence that the material that absorbs X-rays is optically thin to rest-frame MIR–FIR radiation (see Sections 3.1.1, 3.1.2 and 3.1.3). Similarly, none of the \(L_X = 10^{43–44} \) erg s\(^{-1}\), 70 \(\mu \)m undetected stacks (rows 13 and 14 of Table 2) are detected at > 3\(\sigma \) in either redshift bin (\(z = 0.5–1 \) and 1–2). However, in this case, the upper limits do provide significant insight into the IR properties of the CDF-S X-ray AGNs, revealing that high \(L_X \) AGNs have, on average, warmer \(S_{70}/S_{24} \) flux ratios than their low \(L_X \) counterparts (as discussed in Section 3.2.1).

We proceed with the analysis of the stacked data following a similar procedure as outlined in Section 3.1 for the 70 \(\mu \)m detected sources.

3.2.1 SB/AGN contribution to the average IR emission of AGNs

In the lower panel of Fig. 4, we show the \(S_{70}/S_{24} \) flux ratios of the ‘Restricted’ subsamples split in terms of \(L_X \) and \(z \) (rows 11, 12, 13 and 14 of Table 2). We find that the average \(S_{70}/S_{24} \) flux ratios of all four 70 \(\mu \)m undetected stacks lie within the range of \(S_{70}/S_{24} \) flux ratios expected for the BAT/IRAS AGNs out to \(z \approx 2.5 \), and run roughly parallel to the average AGN-dominated and average SB-dominated tracks (see Section 2.2.1 and Appendix). The simplest interpretation of this result is that there is little change in the average IR colour with redshift for AGNs in both the...
Table 2. Descriptions and average properties of the AGN and SB stacks.

(1) Index	(2) Description	(3) N	(4) Mean z	(5) log(L_{X}) (ergs s$^{-1}$)	(6) Stacked S_{0} (μJy)	(7) Stacked S_{2} (μJy)	(8) L_{BR} (L_{B})
		All	Det.	Und.	All	Det.	Und.
1	Starbursts	14	6	8	0.46 ± 0.44	0.47 ± 0.47	9960 ± 500
		25	3	22	0.43 ± 0.29	0.45 ± 0.45	1540 ± 160
2	z < 1 L_{X} = 1041–42	12	0	12	3.52 ± 3.52	44.31 ± 44.31	280 ± 180
3	z > 3	34	6	28	1.54 ± 1.02	1.65 ± 43.94	2050 ± 150
4	BLAGN	32	3	29	0.74 ± 0.72	0.74 ± 43.10	2180 ± 170
5	z = 0.5–1 L_{X} = 1042–44 N_{H} < 1022	19	2	17	1.38 ± 1.03	1.42 ± 43.39	1230 ± 160
6	z = 1–2 L_{X} = 1042–44 N_{H} < 1022	31	3	28	0.75 ± 0.67	0.76 ± 42.99	750 ± 140
7	z = 0.5–1 L_{X} = 1042–44 N_{H} < 1022–23	32	2	30	1.38 ± 1.32	1.39 ± 43.35	680 ± 140
8	z = 1–2 L_{X} = 1042–44 N_{H} < 1022–23	63	6	57	0.74 ± 0.69	0.75 ± 43.05	1440 ± 110
9	z = 0.5–1 L_{X} = 1042–44 N_{H} < 1023	51	4	47	1.38 ± 1.18	1.40 ± 43.36	920 ± 110
10	z = 1–2 L_{X} = 1042–44 N_{H} < 1023	44	3	41	0.74 ± 0.58	0.75 ± 42.63	1390 ± 130
11	z = 0.5–1 L_{X} = 1042–45 N_{H} < 1023	19	1	18	1.35 ± 1.03	1.37 ± 42.68	1110 ± 170
12	z = 1–2 L_{X} = 1042–45 N_{H} < 1023	19	3	16	0.77 ± 0.81	0.76 ± 43.43	1510 ± 200
13	z = 0.5–1 L_{X} = 1043–44 N_{H} < 1023	32	3	29	1.40 ± 1.23	1.42 ± 43.53	870 ± 140
14	z = 1–2 L_{X} = 1043–44 N_{H} < 1023	68	0	68	1.40 ± 1.40	1.40 ± 43.73	1263 ± 97
15	S_{24} = 50–150 μJy	68	10	58	1.37 ± 1.00	1.44 ± 43.75	7040 ± 230
16	S_{62} = 50–500 μJy	20	13	7	1.10 ± 1.01	1.27 ± 44.02	1570 ± 66
17	S_{12} ≥ 500 μJy	156	23	133	1.35 ± 1.35	1.41 ± 43.79	7640 ± 190
Notes: (1) Stack index; (2) stack description; (3) the numbers of CDF-S AGNs/SBs in each stack; (4) mean redshift of the sources in each stack; (5) logarithm of the mean, absorption corrected X-ray luminosity of the sources in each stack; (6) stacked 70 μm flux density per source; and (8) stacked 24 μm flux density per source; (9) IR luminosity per source (over the 8–1000 μm interval), derived from the 70 μm flux density. Upper limits include the uncertainty on the $S_{70} - L_{BR}$ correction. We do not calculate L_{BR} for stack (4), $z > 3$ AGN, as the mean redshift is beyond the range of the tracks derived from the BAT/IRS sample.							
$L_X = 10^{42-43}$ and 10^{43-44} erg s$^{-1}$ bins. However, the conservative upper limits on the S_{70}/S_{24} flux ratios of the $L_X = 10^{42-43}$ erg s$^{-1}$ 70 μm undetected AGNs place them below those of the $L_X = 10^{42-43}$ erg s$^{-1}$ 70 μm undetected AGNs in each redshift bin. Based on the BAT/IRS tracks, this result suggests that the more X-ray luminous AGNs may have, on average, more AGN-dominated IR SEDs than their lower L_X counterparts; however, deeper data will be required to confirm this result. However, we find that the stacks of the $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs lie in ambiguous regions of the $S_{70}/S_{24} - z$ plot, which limits the conclusions that can be directly derived on the relative contributions from AGN and SB activity to these stacks using the S_{70}/S_{24} flux ratios alone; in Section 4.1, we explore a variety of approaches to constrain the relative AGN and SB contributions using additional data.

3.2.2 Average IR fluxes and luminosities

The average IR luminosities of the stacked subsamples are calculated by taking the same approach as that used for the individual 70 μm detected sources (see Section 3.1.3). For those stacks with less than 3σ detections, we use the nominal S_{70}/S_{24} flux ratio (rather than upper limits) when determining the closest match out of the five tracks considered; although, we note that using upper limits to select the appropriate track changes the estimates of L_{IR} by less than 20 per cent. In both redshift bins, the nominal S_{70}/S_{24} flux ratios of the $L_X = 10^{42-43}$ and 10^{43-44} erg s$^{-1}$ 70 μm undetected stacks are most closely matched by the average AGN and average QSO SEDs, respectively. We note, however, that the 3σ upper limits on the S_{70}/S_{24} flux ratios of stacked $L_X = 10^{43-44}$ erg s$^{-1}$ AGNs are also consistent with the average AGN SED (see Fig. 4).

In Fig. 5, we plot the IR luminosity versus L_X for the CDF-S X-ray sources and the BAT/IRS sample. In the case of the $L_X = 10^{42-43}$ erg s$^{-1}$ undetected AGNs, we find that L_{IR} is larger by a factor of ≈ 5 for the $z = 1.0-2.0$ AGNs when compared to the $z = 0.5-1.0$ AGNs ($L_{IR} = 2.5 \times 10^{43}$ and $5.0 \times 10^{43} L_\odot$, respectively), and a factor of ≈ 20 times larger than the average $42 < \log(L_{X}/L_{IR}) < 43$, $N_{H}>10^{24}$ cm$^{-2}$ BAT/IRS AGN (i.e. at $z \approx 0$; $L_{IR} = 1.3 \times 10^{43} L_\odot$). This is in spite of these subsamples having almost the same average X-ray luminosities ($\overline{L_X} = 4.9 \times 10^{42}$, 4.3×10^{42} and 3.7×10^{42} erg s$^{-1}$ for $z = 1.0-2.0$, 0.5-1.0 and $z \approx 0$, respectively). This difference corresponds to a factor of $4.7_{-2.1}^{+1.7}$ and $12.7_{-2.6}^{+2.1}$ increase in L_{IR}/L_X from $z = 0.5-1.0$ to 1–2 and from $z \approx 0$ to 1.0–2.0, respectively (these conservative errors correspond to the full range of IR luminosities derived using all five tracks in Fig. 4). The stacked data, therefore, suggest that the average L_{IR}/L_X ratio of $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs strongly evolves with redshift, as illustrated in Fig. 6. Although this result is based on stacking analyses, we show in Section 3.3 that we obtain the same result using 24 μm constraints for individual sources.

The 70 μm undetected stacks of the $L_X = 10^{43-44}$ erg s$^{-1}$ AGNs at both $z = 0.5-1$ and 1–2 are not significantly detected, limiting the constraints that we can place on L_{IR} using the 70 μm data alone; the limits are $L_{IR} < 1.5 \times 10^{43}$ and $< 4.6 \times 10^{43} L_\odot$ for the AGNs at $z = 0.5-1$ and 1–2, respectively (these upper limits include the uncertainty in the $S_{70} - L_{IR}$ correction). However, because the upper limits on the S_{70}/S_{24} flux ratios of these stacks provide significant constraints to the range of potential matching BAT/IRS AGN SEDs, we can estimate the average IR luminosities from the stacked 24 μm flux densities to a much higher degree of accuracy than would normally be the case (to within a factor of ≈ 3, rather than ≈ 12). This reduced uncertainty is based on the fact that the S_{70}/S_{24} flux

Figure 6. L_{IR}/L_X versus redshift for the stacked 70 μm undetected sources in the ‘Restricted’ sample of CDF-S X-ray AGNs, separated according to L_X (black squares). Vertical error bars indicate the range of L_{IR}/L_X produced by assuming the various tracks in Figs 3 and 4. Small, grey squares indicate the L_{IR}/L_X ratios of each X-ray AGN in the ‘Restricted’ sample derived from their 24 μm flux densities, assuming the average AGN and average QSO SEDs for the $L_X = 10^{42-43}$ and $L_X = 10^{43-44}$ erg s$^{-1}$ AGNs, respectively (see Section 3.3). For those sources undetected at 24 μm, we derive upper limits by assuming a 24 μm flux density limit of 50 μJy. For comparison, we include the individual and average L_{IR}/L_X ratios of the BAT/IRS sample, separated according to L_X (vertical error bars indicate the standard deviation of L_{IR}/L_X of the BAT/IRS sample). Both the stacking analysis and the individual 24 μm detections clearly show a consistent increase in the L_{IR}/L_X ratio of $L_X = 10^{42-43}$ erg s$^{-1}$ AGN from $z \approx 0$ to $z = 1–2$.
constrain the X-ray–MIR luminosity ratios [hereafter we focus on \(S_\nu L_\nu (6 \mu m)/L_X \)] of more typical, distant AGNs found in deep, multiwavelength surveys. At \(z \approx 0 \), the \(vL_\nu (6 \mu m)/L_X \) ratios of the average AGN and average QSO SEDs are consistent with Lutz et al. (2004) (i.e. \(\approx 3 \) and \(\approx 2 \), respectively).\(^\text{7}\) To calculate the \(vL_\nu (6 \mu m)/L_X \) ratios of the CDF-S AGNs we assume the same SEDs as those used to derive their \(L_\nu /L_X \) ratios (i.e. average AGN and average QSO SEDs for \(L_X = 10^{42–43} \) erg s\(^{-1} \) and \(L_X = 10^{43–44} \) erg s\(^{-1} \) AGNs, respectively). We, therefore, find that the average \(vL_\nu (6 \mu m)/L_X \) ratios of \(L_X = 10^{42–43} \) erg s\(^{-1} \) AGNs increase from \(\approx \) at \(z \approx 0 \) to \(\approx 10 \) and \(\approx 43 \) at \(z \approx 0.5–1 \), respectively. By contrast, the average \(vL_\nu (6 \mu m)/L_X \) ratios of \(L_X = 10^{43–44} \) erg s\(^{-1} \) AGNs remain largely unchanged to \(z \approx 2 \) (i.e. \(vL_\nu (6 \mu m)/L_X \approx 1–2 \)). Our data, therefore, suggest that deep IR observations can be used as a reliable method of identifying intrinsically bright (i.e. \(L_X = 10^{43–44} \) erg s\(^{-1} \)), potentially Compton-thick AGNs. However, we urge caution when using either the \(L_\nu /L_X \) or \(vL_\nu (6 \mu m)/L_X \) ratios to locate less luminous obscured AGNs (i.e. \(L_X \lesssim 10^{43} \) erg s\(^{-1} \)) unless other indicators of luminous AGN activity are present (e.g. emission line spectra; see Alexander et al. 2008).

3.3 24 μm properties

The results on the \(L_\nu /L_X \) ratios in Section 3.2 were based on stacking analyses, which could be biased by a few bright 70 μm undetected sources. Since the majority of the CDF-S X-ray AGNs are individually detected at 24 μm, we can perform a complementary test of our results that does not rely significantly on stacking analyses. The advantage of this approach is that we can assess the range of \(L_\nu \) for the X-ray AGNs, although there can be considerable uncertainty in the conversion between 24 μm flux density and \(L_\nu \) for individual objects (see Fig. 3). However, as we show in Fig. 3, provided the average SED is not predominantly SB-dominated, then we can predict the average \(L_\nu /L_X \) ratio, on the basis of the 24 μm data, to within a factor of \(\approx 3 \); on the basis of Fig. 4, the average SEDs are AGN-dominated, and would be increasing so if the stacked 70 μm flux is dominated by bright undetected sources. Furthermore, so long as the average SEDs of the \(z = 0.5–1 \) AGNs are the same as the \(z = 1–2 \) AGNs, then we can accurately assess the relative change in \(L_\nu /L_X \) between these redshifts; we provide evidence in Section 4.1 that this does appear to be the case. To convert from 24 μm flux densities to \(L_\nu \), we use the same SEDs as assumed when calculating \(L_\nu \) from the stacked 70 μm flux densities (i.e. average AGN and average QSO for the \(L_X = 10^{42–43} \) and \(10^{43–44} \) erg s\(^{-1} \) subsamples, respectively) as well as the mean and median \(L_\nu /L_X \) ratios derived from the individual 24 μm flux densities. Finally, we provide the mean and median \(L_\nu /L_X \) derived from the individual 24 μm flux densities assuming the two BAT/IRAS tracks that most closely match the \(S_{70}/S_{24} \) flux ratios of the \(L_X = 10^{42–43} \) and \(10^{43–44} \) erg s\(^{-1} \) subsamples at both \(z = 0.5–1 \) and 1–2: NGC 1275 and Mrk 290, respectively.

\(^\text{7}\) We also note that the \(vL_\nu (10.5 \mu m)/L_X \) ratios of the average AGN and average QSO at \(z \approx 0 \) are largely consistent with the relationship presented in Krabbe et al. (2001) [i.e. \(vL_\nu (10.5 \mu m)/L_X \approx 2.5 \) and \(\approx 1.9 \), respectively].

Table 3. Average properties of the CDF-S X-ray AGNs in the 70 μm undetected, ‘Restricted’ sample (see Section 2.1.1).

\(z \)	\(L_X \)	\(\log(T_X) \)	\(\log(L_X) \)	\(\text{Stacks} \)	\(\text{Avg.} \)	\(\text{BAT/IRAS} \)					
\(0.5–1 \), \(L_X = 10^{42–43} \) erg s\(^{-1} \)	41	28	0.7	42.6	42.6	42.7	26.2	24.9	18.0	28.1	20.3
\(1–2 \), \(L_X = 10^{42–43} \) erg s\(^{-1} \)	19	10	1.4	42.7	42.6	201.2	133.3	112.6	80.2	164.2	100.2
\(0.5–1 \), \(L_X = 10^{43–44} \) erg s\(^{-1} \)	16	15	0.8	43.5	43.4	< 17.4	7.7	6.4	5.3	8.9	7.7
\(1–2 \), \(L_X = 10^{43–44} \) erg s\(^{-1} \)	30	19	1.4	43.5	43.4	35.1	13.9	11.4	7.8	19.9	14.1

Note. \(N_{\text{all}} \) is the number of AGNs detected in each bin and \(N_{\text{det}} \) is the number of those that are detected at 24 μm. \(\tau \) is the mean redshift of the AGNs in each subsample and \(\log(T_X) \) and \(\log(L_X) \) indicate their mean and median \(L_X \). We provide the mean \(L_\nu /L_X \) ratios derived from the 70 and 24 μm stacks (assuming the average AGN and average QSO SEDs for the \(L_X = 10^{42–43} \) and \(10^{43–44} \) erg s\(^{-1} \) subsamples, respectively) as well as the mean and median \(L_\nu /L_X \) ratios derived from the individual 24 μm flux densities. Finally, we provide the mean and median \(L_\nu /L_X \) derived from the individual 24 μm flux densities assuming the two BAT/IRAS tracks that most closely match the \(S_{70}/S_{24} \) flux ratios of the \(L_X = 10^{42–43} \) and \(10^{43–44} \) erg s\(^{-1} \) subsamples at both \(z = 0.5–1 \) and 1–2: NGC 1275 and Mrk 290, respectively.

4 DISCUSSION

We have provided multiple lines of evidence for an increase in the \(L_\nu /L_X \) ratio for AGNs over the redshift range \(z = 0–2 \), with \(L_X = 10^{42–43} \) erg s\(^{-1} \) AGNs \(\approx 5 \) times more IR luminous at \(z = 1 \)–2 than at \(z = 0.5–1 \) (and \(\approx 20 \) times more IR luminous than at \(z \approx 0 \)). The evidence for an increase in \(L_\nu \) for \(L_X = 10^{43–44} \) erg s\(^{-1} \) AGNs is less conclusive: a factor of \(\approx 2 \) between \(z = 0.5–1 \) and 1–2 and no change from \(z \approx 0 \) and 1–2.

These results provide new insight into the production of IR emission from distant AGNs and lead to a number of questions, which we address below.
4.1 What is driving the increase in L_{IR}?

The L_{IR}/L_X ratio for the $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs at $z = 1-2$ is higher than that found for lower redshift X-ray AGNs (see Table 3). However, the L_{IR}/L_X ratio for the $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs is broadly consistent with $z \approx 2$ submillimeter emitting galaxies (SMGs) hosting AGN activity ($L_{IR}/L_X \approx 250$; Alexander et al. 2005). On the basis of sensitive Spitzer-IRS spectroscopy, the large L_{IR}/L_X ratio from AGN-hosting SMGs appears to be due to intense star formation activity, with an average contribution to L_{IR} from AGN activity of ≈ 10 per cent (e.g. Pope et al. 2008; Menéndez-Delmestre et al. 2007, 2009). Can the increase in the average L_{IR}/L_X ratio of the $z = 1-2$ AGNs also be due to increased star formation activity?

There is no clear relative offset between the stacked S_{70}/S_{24} flux ratio and the AGN-dominated track for the $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs over the redshift range $z = 0.5-2$, appearing to suggest that the relative AGN/SB contribution to L_{IR} has not changed with redshift. If we derive the relative AGN/SB contribution to the stacked S_{70}/S_{24} using the average AGN and SB tracks, then we approximate ≈ 60 and ≈ 70 per cent of the AGNs with $L_X = 10^{42-43}$ erg s$^{-1}$ have AGN-dominated SEDs at $z = 0.5-1$ and 1–2, respectively; by comparison, the stacked S_{70}/S_{24} of the $L_X = 10^{41-42}$ erg s$^{-1}$ AGNs suggest ≈ 100 per cent have AGN-dominated SEDs over the full redshift range. However, since it is difficult to unambiguously determine the relative AGN/SB contribution to L_{IR} from the S_{70}/S_{24} flux ratios at $z > 1.5$ (see Fig. 4), this result should be considered tentative.\footnote{We note that we also find a similar fraction (≈ 30 per cent) of $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs at $z = 1-2$ have IRAC 3.6-8.0 μm colours suggesting AGN-dominated SEDs (based on Stern et al. 2005) as that found for $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs at $z = 0.5-1$. This also suggests that the relative AGN/SB contribution for $L_X = 10^{42-43}$ erg s$^{-1}$ AGNs is constant with redshift but we caution that this result is based on shorter wavelength data than used to derive L_{IR}.}

Therefore, we explore below the implications of our results assuming both an increase in star formation and AGN activity.

If the observed increase in L_{IR} is attributed to star formation, it would imply a significantly higher (i.e. a factor of ≈ 5) ratio between star formation and black hole growth at $z = 1-2$ compared to $z = 0.5-1$, and a factor of ≈ 13 increase between $z \approx 0$ and 1–2. Whether this has significant implications for the black hole–bulge mass relationship depends on the location of the star formation in the host galaxy and on the AGN fraction (i.e. the duty cycle of black hole growth). For example, using equation (4) of Kennicutt (1998) to derive the star formation rate from L_{IR} and deriving the mass accretion rate from L_X, we estimate that the ratio between the average star formation and mass accretion rate is ≈ 500 in the $z = 1-2$ AGNs, which is consistent with the black hole to bulge mass ratio observed in the local Universe (i.e. ≈ 800; McLure & Dunlop 2002; Marconi & Hunt 2003). This would appear to suggest a closer relationship between black hole and stellar growth at $z = 1-2$ than found at $z = 0.5-1$, where the average star formation and mass accretion rate would be ≈ 100 (and ≈ 30 at $z \approx 0$), based on the same assumptions as above. However, these different results could be reconciled if the AGN fraction is higher at higher redshifts or if the majority of the star formation at higher redshifts is occurring in the galaxy disc rather than the galaxy bulge, or vice versa.

If, however, the increase in the L_{IR}/L_X ratio is due to the AGN, it would imply that a larger fraction of the intrinsic emission from the accretion disc is reprocessed by dust. This increase in the L_{IR}/L_X ratio may, therefore, be due to larger AGN dust covering factors at higher redshifts; there is tentative evidence that this is indeed the case from measurements of the obscured to unobscured ratios of AGNs in deep X-ray surveys (e.g. La Franca et al. 2005; Hasinger 2008). Results presented in Hasinger (2008) predict a factor of ≈ 2 increase in the ratio of obscured-to-unobscured AGNs between $z = 0$ and 1–2, significantly lower than what we measure here. However, this is based on a sample of AGNs covering a broader range of L_X than focused on here and there is evidence that any increase in the dust covering fraction will be weaker in more X-ray luminous AGNs (e.g. Ueda et al. 2003; Akylas et al. 2006; Treister, Krolik & Dullemond 2008; and supported by the reduced L_{IR}/L_X ratios of the $L_X = 10^{43}$ erg s$^{-1}$ AGNs reported here).

Therefore, on the basis of the X-ray survey results, it is plausible that at least some of the increase in L_{IR}/L_X ratio is due to a larger dust covering factor at $z \approx 1-2$ than seen at lower redshifts. An increase in dust-covering factor with redshift is predicted by a number of theoretical models, which suggest that AGNs undergo early growth during a hidden phase before expelling their obscuring gas and dust, revealing a luminous, unobscured quasar (Silk & Rees 1998; Springel, Di Matteo & Hernquist 2005; Hopkins et al. 2006).\footnote{More direct constraints on the origin of the increase in the L_{IR}/L_X ratio will be placed using the Herschel Space Observatory (see Section 4.3) and Spitzer-IRS, for the fraction of X-ray AGNs that have Spitzer-IRS data (see Mullaney et al., in preparation).}

4.2 What is the contribution of AGNs to the cosmic IR background?

We can use the results of our stacking analysis to place constraints on the AGN contribution to the 70 μm background. If we stack all of the 251 X-ray AGNs, irrespective of whether they are individually detected at 70 μm, we obtain an average 70 μm flux density of 1040 ± 80 mJy, and therefore an integrated 70 μm flux density of 260 ± 20 mJy, over the 391.3 arcmin2 of the CDF-S field. On the basis of the analysis of the IR background in both GOODS fields and the Lockman Hole (e.g. Dole et al. 2006), this corresponds to $\gtrsim 5$ per cent of the average resolved 70 μm background. This constraint is a lower limit since (i) the X-ray observations will not have identified the most heavily obscured luminous AGNs in this field, (ii) the 70 μm field is too small to include X-ray bright AGNs and (iii) the X-ray observations are not sensitive to the lowest luminosity AGNs.

On the basis of Tozzi et al. (2006), we would predict ≈ 80 per cent of $L_X > 10^{41}$ erg s$^{-1}$, $N_\text{H} < 10^{23}$ AGNs in the CDF-S (i.e. to $z \approx 5$) to be X-ray undetected. If we assume that they have the same IR SED as the X-ray detected AGNs, then they increase our estimate of the resolved 70 μm background by a factor of 5 to 8 per cent; from a study of nearby sources, Lutz et al. (2004) finds that the IR emission of AGNs is not significantly depressed in the most heavily obscured sources (we confirm that this is also the case for the BAT/IRS sample). Since X-ray surveys are insensitive to the most heavily obscured AGNs (i.e. Compton-thick sources with $N_\text{H} > 10^{24}$ cm$^{-2}$), the overall contribution to the 70 μm background could potentially double to 8-10 per cent (e.g. Daddi et al. 2007; Alexander et al. 2008).

To estimate the contribution to the 70 μm background from bright AGNs that are too rare to lie in the small CDF-S field would require the same analyses as performed here to be made on a shallower survey that covers a larger area of the sky. As it stands, the most accurate 70 μm analysis in a larger field is that of Papovich et al. (2007) of the E-CDFS. They find that bright AGNs (i.e. $L_X > 10^{44}$ erg s$^{-1}$) contribute only 7×10^{-4} MJy sr$^{-1}$ to the IR background at 70 μm, corresponding to an insignificant fraction
Figure 7. Top: predicted fractions of CDF-S X-ray AGNs detected in the upcoming GOODS deep IR survey to be undertaken by the *Herschel Space Observatory*. The expected observed 100 μm flux densities are calculated by extrapolating the *Spitzer*-MIPS 24 μm flux densities along the average SB-dominated and average AGN-dominated SEDs, derived from the BAT/IRS sample of AGNs. If all the X-ray AGNs were to have SB-dominated IR SEDs, we would expect to detect at least as high a fraction at 100 μm as we currently detect at 24 μm. Also shown for comparison are the fractions of CDF-S AGNs detected by MIPS at 70 μm in each redshift bin. Bottom: the number of CDF-S X-ray AGNs in each redshift bin.

(≪1 per cent) of the total IR background at this wavelength. However, the E-CDFS field is not a great deal larger than the CDF-S field and a full study of the contribution of X-ray bright AGNs to the IR background will require the analysis of the much larger Cosmological Evolution Survey (COSMOS)9 and/or Bootes10 fields at 70 μm.

4.3 What advances may we expect for deep surveys with *Herschel*?

Our study of the FIR properties of X-ray detected AGNs allows us to place constraints on the properties of AGNs detected in deep *Herschel* fields at >70 μm. We anticipate that the improved sensitivity of *Herschel*’s Photometer Array Camera (PACS) over *Spitzer*-MIPS will result in a significant increase in the fractions of X-ray AGNs that will be detected at FIR wavelengths, which will provide more direct insight into the processes driving the increase in LIR at z = 1–2. Depending on the assumed SED, we predict that approximately 45–60, 50–70, 50–65 and 45–65 per cent of the CDF-S X-ray sources at z < 1, z = 1–2, 2–3 and 3–4, respectively, will be detected at 100 μm in the proposed ultradeep GOODS survey (limiting flux = 0.6 mJy; see Fig. 7). These estimated detection levels are calculated by extrapolating the 24 μm flux densities along the average SB-dominated and average AGN-dominated SEDs (derived from the BAT/IRS sample).

In Fig. 8, we present the results of passing the IR spectra of the BAT/IRS sample through the various PACS filter response curves. Our analysis shows that, although the S_{100}/S_{24} flux ratio will not push our constraints on the relative contributions from AGN activity and star formation to higher redshifts (due to the influence of the MIR spectral features that shift into the observed 24 μm band at high redshifts), the S_{100}/S_{70} and S_{160}/S_{70} flux ratios will ‘take over’ and provide this information out to a redshift of ~5 (i.e. the redshift of the most distant AGNs currently detected in the deepest X-ray surveys). Deep, IR observations undertaken by *Herschel* will, therefore, provide a method of identifying a significant proportion of the long sought after population of Compton-thick AGNs out to z ≈ 6.

5 SUMMARY

We have investigated the MIR and FIR properties of X-ray detected AGNs and SBs in the CDF-S using deep 24 and 70 μm observations undertaken by the *Spitzer Space Telescope* as part of the GOODS and FIDEL legacy surveys. Out of the 266 X-ray AGNs/SBs, 30 (∼11 per cent) and 172 (∼65 per cent) have counterparts at 70 and 24 μm, respectively, with a bias towards the detection of SBs and BLAGNs at 70 μm. As the majority of CDF-S X-ray AGNs are undetected at 70 μm, we rely on stacking analysis to measure their average MIR and FIR properties. We compare the IR properties of the CDF-S AGNs/SBs with those of a sample of local AGNs that have X-ray properties (i.e. L_X and N_H) covering the same range as the CDF-S AGNs (i.e. the BAT/IRS sample). In the following points, we summarize the main conclusions of this study:

9 URL: http://cosmos.astro.caltech.edu/
10 URL: http://www.lsstmail.org/noao/noaodeep/
We find strong evidence at both 24 and 70 μm that the average IR luminosity of L_X = 10^{42–43} erg s^{-1} AGNs at z = 1–2 is significantly higher than those at z = 0.5–1 and z ≈ 0 (i.e. by a factor of ≈ 5 and ≈ 20, respectively). This difference corresponds to a factor of 4.7^{+1.0}_{-0.7} and 12.7^{+1.8}_{-1.0} increase in L_{IR}/L_X, respectively. This large increase in L_{IR} is not, however, seen for AGNs with higher X-ray luminosities (i.e. L_X \approx 10^{43–44} erg s^{-1}). We, therefore, argue that deep IR observations can be used as a reliable method to identify intrinsically bright (i.e. L_X = 10^{43–44} erg s^{-1}) Compton-thick AGNs, but urge caution when using this ratio to locate less luminous obscured AGNs (i.e. L_X \lesssim 10^{41} erg s^{-1}), unless other indicators of AGN activity are present.

(ii) Due to the low numbers of AGNs detected at 70 μm, we are unable to establish what process is driving this increase in the average L_{IR}; however, both increased star formation and/or increased AGN dust covering factors are likely candidates. If the former, then the z = 1–2 epoch may represent a period of rapid growth of the bulge to black hole mass ratio. However, there is tentative evidence from X-ray observations that the dust covering fraction is, indeed, higher at large redshifts. We predict that the forthcoming deep surveys to be carried out by the Herschel Space Observatory will enable us to resolve what process is driving the increase in L_{IR} (see Sections 3.2.2, 3.3 and 4.1).

(iii) On average, more X-ray luminous CDF-S AGNs have lower S_24/S_70 flux ratios. Based on the IR properties of a sample of local AGNs with similar X-ray properties (i.e. L_X and N_H), we conclude that more X-ray luminous CDF-S AGNs have IR SEDs that are more AGN-dominated (rather than SB-dominated) (see Section 3.2.1).

(iv) Despite measuring a large increase in L_{IR} among z = 1–2 AGNs [see point (i) above], we find that the X-ray detected AGNs in the CDF-S contribute only ≈ 5 per cent of the 70 μm background. However, if we extrapolate this fraction to take into account those ≈ 80 per cent of AGNs that are undetected in X-rays, we estimate that ≈ 25 per cent of the 70 μm background is attributable to AGNs (see Section 4.2).

(v) We anticipate that the undertaking of deep, FIR surveys by the Herschel Space Observatory will allow us to detect between 40 and 75 per cent of the X-ray detected AGNs in the 1 Ms CDF-S, depending on whether the IR SEDs are predominantly AGN- or SB-dominated, respectively. Furthermore, the FIR diagnostics used in our analysis can be directly applied to the PACS filters on board Herschel to enable us to discriminate between AGNs with SB- or AGN-dominated IR SEDs (see Section 4.3).

ACKNOWLEDGMENTS

We would like to thank David Elbaz for his useful comments on the paper and for providing us with the PACS filter response curves. We would also like to thank Chris Done for her useful comments on the bolometric luminosities of X-ray detected AGNs. Furthermore, we would like to thank the anonymous referee for their comments, particularly those concerning the X-ray to IR matching procedure. This work is based (in part) on observations made with the Spitzer Space Telescope and has made use of the NASA/IPAC Infrared Science Archive, which are both operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We gratefully acknowledge support from the Leverhulme Trust (JRM; DMA) and the Royal Society (DMA).

REFERENCES

Akiyama A., Georgantopoulos I., Georgakakis A., Kitsionas S., Hatziminaoglou E., 2006, A&A, 459, 693
Alexander D. M., Brandt W. N., Hornschemeier A. E., Garmire G. P., Schneider D. P., Bauer F. E., Griffiths R. E., 2001, AJ, 122, 2156
Alexander D. M. et al., 2003, AJ, 126, 539
Alexander D. M., Bauer F. E., Chapman S. C., Smail I., Blain A. W., Brandt W. N., Ivison R. J., 2005, ApJ, 632, 736
Alexander D. M. et al., 2008, ApJ, 687, 835
Antonucci R., 1993, ARA&A, 31, 473
Antonucci R. R. J., Miller J. S., 1985, ApJ, 297, 621
Barger A. J. et al., 2003, AJ, 126, 632
Bassani L., Dadina M., Maiolino R., Salvati M., Risaliti G., della Ceca R., Matt G., Zamorani G., 1999, ApJS, 121, 473
Bauer F. E., Alexander D. M., Brandt W. N., Schneider D. P., Treister E., Hornschemeier A. E., Garmire G. P., 2004, AJ, 128, 2048
Benson A. J., Bower R. G., Frenk C. S., Lacey C. G., Baugh C. M., Cole S., 2003, ApJ, 599, 38
Booth C. M., Schaye J., 2009, MNRAS, 398, 53
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Brandl B. R. et al., 2006, ApJ, 653, 1129
Brandt W. N., Hasinger G., 2005, ARA&A, 43, 827
Daddi E. et al., 2007, ApJ, 670, 173
Dole H. et al., 2006, A&A, 451, 417
Donley J. L., Rieke G. H., Pérez-González P. G., Rigby J. R., Alonso-Herrero A., 2007, ApJ, 660, 167
Downes A. J. B., Peacock J. A., Savage A., Carrie D. R., 1986, MNRAS, 218, 31
Dwelly T. Page M. J., 2006, MNRAS, 372, 1755
Elvis M. et al., 1994, ApJS, 95, 1
Elvis M. et al., 2008, ApJ, 672, 94
Frayer D. T. et al., 2006, ApJL, 647, L9
Gebhardt K. et al., 2000, ApJ, 539, L13
Genzel R. et al., 1998, ApJ, 498, 579
Georgantopoulos I., Georgakakis A., Rowan-Robinson M., Rovilos E., 2008, A&A, 484, 671
Giacconi R. et al., 2002, ApJS, 139, 369
Granato G. L., De Zotti G., Silva L., Bressan A., Danese L., 2004, ApJ, 600, 580
Guainazzi M., Matt G., Perola G. C., 2005, A&A, 444, 119
Hasinger G., 2008, A&A, 490, 905
Hopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2006, ApJS, 163, 1
Horst H., Gandhi P., Smette A., Duschl W. J., 2008, A&A, 479, 389
Huynh M. T., Pope A., Frayer D. T., Scott D., 2007, ApJ, 659, 305
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kennicutt R. C. Jr., 1998, ARA&A, 36, 189
Krabbe A., Böker T., Maiolino R., 2001, ApJ, 557, 626
Krolik J. H., Begelman M. C., 1988, ApJ, 329, 702
La Franca F. et al., 2005, ApJ, 635, 864
Lehmer B. D. et al., 2005, ApJS, 161, 21
Luo B. et al., 2008, ApJS, 179, 19
Lutz D., Maiolino R., Spoon H. W. W., Moorwood A. F. M., 2004, A&A, 418, 465
Magnelli B., Elbaz D., Chary R. R., Dickinson M., Le Borgne D., Frayer D. T., Willner C. N. A., 2009, A&A, 496, 57
Magorrian J. et al., 1998, AJ, 115, 2285
Mainieri V., Bergeron J., Hasinger G., Lehmann I., Rosati P., Schmidt M., Szokoly G., Della Ceca R., 2002, A&A, 393, 425
Mainieri V. et al., 2005, A&A, 437, 805
Maiolino R., Shemmer O., Imanishi M., Netzer H., Oliva E., Lutz D., Sturm E., 2007, A&A, 468, 979
Malizia A., Bassani L., Stephen J. B., Di Cocco G., Fiore F., Dean A. J., 2003, ApJ, 589, L17
Marconi A., Hunt L. K., 2003, ApJ, 589, L21
McLure R. J., Dunlop J. S., 2002, MNRAS, 331, 795
APPENDIX A: THE SWIFT-BAT COMPARISON SAMPLE

To aid in the interpretation of the Spitzer MIPS data used to characterize the CDF-S X-ray sample, we selected a local sample of AGNs from the Swift-BAT survey with Spitzer-IRS low-resolution spectroscopy (5.2–38 \mu m). The Spitzer-IRS data allows us to accurately distinguish between AGNs with AGN- and SB-dominated IR SEDs on the basis of the MIR spectral features in the Swift-BAT AGNs. The Swift-BAT survey provides the ideal local AGN comparison sample since the sensitivity of the BAT telescope to hard X-ray photons (14–195 keV) provides an almost absorption-independent selection of AGNs (to N_H \approx 10^{20} \text{ cm}^{-2}). Indeed, the range of X-ray luminosities and absorbing column densities of the Swift-BAT AGNs are comparable to those of the CDF-S AGNs (see Tueller et al. 2008; Winter et al. 2009); see Section 2.2.1.

36 of the 104 Swift-BAT AGNs with good-quality L_{2-10\text{keV}} and N_H constraints from Winter et al. (2009) or Bassani et al. (1999) have both Short–Low (SL; 3.6 \times 136.0 \text{ arcsec}^2; R \approx 60–127) and Long–Low (LL; 10.5 \times 360 \text{ arcsec}^2; R \approx 57–126) Spitzer-IRS spectroscopy, providing full coverage at 5.2–38 \mu m. All 36 BAT/IRS AGNs were observed in staring-mode with two nod positions, which are required for background subtraction. Basic calibrated data (BCD) images were combined and cleaned as described in Goulding & Alexander (2009). Differing nod positions were subtracted from each other to produce background subtracted images before extracting the spectra using spice. The objects were sufficiently bright and the observations were sufficiently short that there was no significant effect from latent charge build-up on the detector. Long-slit orders were clipped using the wavelength trim ranges given in Table 5.1 of the Spitzer-IRS Observers Manual. The continuum of each source in every order was fitted using a first or second-order polynomial. The spectra were then matched to give a single continuous spectrum for each source. Flux calibration was carried out using the latest available Spitzer-IRS calibration files (version 17.2) and is largely consistent with archival IRAS 25 \mu m flux densities (to within a factor of 2.5 in \approx 97 per cent of cases). The BAT/IRS AGNs have absorption corrected 2–10 keV luminosities spanning 4.3 \times 10^{41} to 1.9 \times 10^{44} \text{ erg s}^{-1} and absorbing column densities in the range 2.5 \times 10^{20} to 2.2 \times 10^{24} \text{ cm}^{-2} (i.e. roughly the same as those CDF-S X-ray AGN/SBs with L_X and N_H measurements published in Tozzi et al. 2006).

To determine whether the S_70/S_24 flux ratio can distinguish between SB- and AGN-dominated systems, we classified the BAT/IRS sample into those objects with (i) a prominent PAH feature at 6.2 \mu m, which we assume is a good indicator of a strong starburst component (SB-dominated; e.g. Genzel et al. 1998; 11 objects) and (ii) a power-law MIR to FIR continuum with no sign of any PAH feature at 6.2 \mu m, which we assume indicates an AGN-dominated object (25 objects). The 6.2 \mu m PAH feature is preferred over other lines as it lies in a region of the IR spectrum that is largely free of other strong spectral features, in particular the silicate absorption/emission band at 9.7 \mu m. We show the Spitzer-IRS spectra of the BAT/IRS sample in Fig. A1 (AGN-dominated systems) and Fig. A2 (SB-dominated systems).

To calculate the expected S_70/S_24 flux ratio tracks each of for the 36 BAT/IRS AGNs as a function of redshift, we shift each spectrum by a factor of 1 + \frac{z}{z} in wavelength (where z is increased from 0.25 to 2.5 in steps of 0.025) and pass the resulting spectrum through the MIPS 24 and 70 \mu m filters. To determine the observed 70 \mu m fluxes at z \approx 0.75 requires knowledge of the IR SED beyond the wavelength coverage of the Spitzer-IRS spectra (i.e. >38 \mu m). To provide this longer wavelength coverage, we extrapolated the longest wavelength bin of the IRS spectra to the 60 and 100 \mu m flux densities from the IRAS Point Source and Faint Source Catalogues. 32 of the 36 AGNs with IRS data have well constrained IRAS 60 and 100 \mu m fluxes. The remaining four (all classed as AGN dominated) have IRAS 60 or 100 \mu m flux densities that are flagged as upper limits in the IRAS catalogues. However, including these faint sources in our average AGN SED by assuming the upper limits as detections has no effect on any of our results. In Fig. A3, we show the S_70/S_24 flux ratios derived from the BAT/IRS sample as a function of redshift. There is a clear separation between AGN- and SB-dominated AGNs at z \approx 1.5. However, the S_70/S_24 flux ratio can be used as an efficient method to determine whether AGN or star formation activity dominates the IR emission of X-ray detected AGNs.

Calculating L_{IR} for high-redshift sources using the 24 \mu m flux density alone is susceptible to systematic errors caused by spectral features that are redshifted into this waveband at z > 0.7. We can use the BAT/IRS sample to establish the uncertainties in deriving L_{IR} from either 70 or 24 \mu m data. In the lower panels of Fig. A3, we show the expected observed frame 70 and 24 \mu m fluxes for the BAT/IRS sample, if observed at z = 0.25–2.5 and normalized to L_{IR} = 10^{12} L_{\odot} (the normalization factor, 10^{12} L_{\odot}/L_{IR}, is derived by calculating L_{IR} from the IRAS flux densities using the equations presented in table 1 of Sanders & Mirabel 1996). Depending on the shape of the IR SED, sources of the same L_{IR} can differ in their observed 24 \mu m flux density by up to a factor of \approx 12 at z \approx 1, compared to factor of only \approx 3 at 70 \mu m. This range of 70 \mu m flux density is almost independent of redshift out to z \approx 2.5, indicating that S_70 is up four times more accurate for determining L_{IR} when no information on the SED shape is available.

11 URL: http://ssc.spitzer.caltech.edu/postbcd/spice.html
12 The Spitzer-IRS Observers Manual is available at http://ssc.spitzer.caltech.edu/irs/irsdr.html.
13 Available from: http://frsa.ipac.caltech.edu/applications/Gator/index.html
Figure A1. IRS spectra of the 25 BAT/IRS AGNs that we classify as having AGN-dominated IR SEDs on the basis of the lack of a prominent PAH feature at 6.2 μm. Also indicated are the PAH features at 7.7 and 11.4 μm, although these were not used to distinguish between AGN- and SB-dominated systems.
Figure A2. IRS spectra of the 11 BAT/IRS AGNs that we classify as having SB-dominated IR SEDs on the basis of the presence of a prominent PAH feature at 6.2 μm. Also indicated are the PAH features at 7.7 and 11.4 μm, although these were not used to distinguish between AGN- and SB-dominated systems.

Figure A3. Top: the expected S_{70}/S_{24} flux ratio of the AGNs in the BAT/IRS AGNs over the redshift range $z = 0.25–2.5$. Middle: the expected observed 70 μm flux densities of the BAT/IRS AGNs over the redshift range $z = 0.25–2.5$, each normalized to $L_{\text{IR}} = 10^{12} L_\odot$. Bottom: the expected observed 24 μm flux densities of the BAT/IRS AGNs over the redshift range $z = 0.25–2.5$, again normalized to $L_{\text{IR}} = 10^{12} L_\odot$. We show the ratios and flux densities as expected if the AGNs were to be observed at $z = 0.25–2.5$. Solid, red lines refer to AGN-dominated and dashed blue lines to SB-dominated AGNs. The green shaded areas indicate the spread of flux ratios and flux densities of the Brandl et al. (2006) starburst galaxies expected over the redshift range $z = 0.25–2.5$.

This paper has been typeset from a TeX/LaTeX file prepared by the author.