Nota de investigación

Containers and seedling quality for Quercus crassipes Bonpl.

Roselia Venancio Nabor¹, Dante Arturo Rodríguez Trejo¹*, Leopoldo Mohedano Caballero¹, Edgar Arturo Sánchez Moreno¹.

Abstract

Mexico is the richest country in oak species and they span over its territory, however, there is scarce research about its propagation and its seedling quality. Was studied this last in *Quercus crassipes* Bonpl., in two sizes of containers: large (210 mL) and small (150 mL). The growing media was composted pine bark (60 %), vermiculite (30 %) and agrolite (10 %). During the establishment phase was applied starter fertilizer (9-45-15), 100 ppm P, 21.97 ppm N, 62.23 ppm K. During the growing phase, was applied growth fertilizer (20-20-20), 150 ppm N, 66 ppm P, 123 ppm K. In the hardening phase, was used finalizer fertilizer (4-25-35), 150 ppm de K, 20 ppm de N y 56.87 ppm P. Were measured height, caliper, number of leaves, foliar area, foliar dry weight, tap root length, number of lateral roots, shoot dry weight, root dry weight, and total dry weight. Were calculated shoot/root ratio, slenderness coefficient and Dickson index. Was utilized a randomized complete block experimental design (four replications) and performed an analysis of variance and the Tukey test (SAS). The larger container showed larger \((p \leq 0.05)\) height (19.2 and 16 cm), caliper (4.3 and 3.6 mm) and tap root length. The other variables exhibited no significant differences. Overall the plant showed good seedling quality indicators, but is preferred the large one, for there is research evidence for other species of its higher field survival. Large containers and the growing media and fertilization employed may be used to produce quality seedlings, while the indicators obtained may be used as reference.

Key words: Seedling quality, *Quercus crassipes* Bonpl., quality indicators, container size, forest nurseries, technified nurseries.

Resumen

México es el país con más especies de encinos, pero hay pocas investigaciones sobre su propagación y calidad de planta. Se estudió esta última en *Quercus crassipes*, en contenedores de 210 mL y de 150 mL. El sustrato fue composta de corteza de pino (60 %), vermiculita (30 %) y agrolita (10 %). Durante la fase de establecimiento, se aplicó fertilizante iniciador (9-45-15), 100 ppm P, 21.97 ppm N y 62.23 ppm K. En la de crecimiento: fertilizante para crecimiento (20-20-20), 150 ppm N, 66 ppm P y 123 ppm K. En el endurecimiento: fertilizante finalizador (4-25-35), 150 ppm de K, 20 ppm de N y 56.87 ppm P. Se midieron altura, diámetro, número de hojas, área foliar, peso seco foliar, longitud de raíz principal, número de raíces laterales, peso seco aéreo, de raíz y total; la relación peso seco aéreo/peso seco de raíz, coeficiente de esbeltez e índice de Dickson. Se empleó un diseño experimental en bloques completos al azar (cuatro repeticiones); se aplicó un análisis de varianza y la prueba de Tukey. A los 7 meses, las plantas del contenedor grande mostraron valores superiores para \((p \leq 0.05)\) altura (19.2 y 16 cm), diámetro (4.3 y 3.6 mm) y longitud de raíz principal. Las demás variables no tuvieron diferencias significativas. La planta presentó calidad en sus indicadores, pero se prefiere la de mayor tamaño, ya que en otras especies presenta más supervivencia. Los contenedores grandes, sustrato y fertilización empleados, se recomiendan para producir planta de calidad y los indicadores obtenidos, como referencia.

Palabras clave: Calidad de planta, *Quercus crassipes* Bonpl., indicadores de calidad, tamaño de contenedor, viveros forestales, viveros tecnificados.
Desarrollo del Tema

Existen 450 especies de *Quercus* en el planeta y México es el país más rico con 170 de ellas (Zavala, 2007). A pesar de su gran extensión y relevancia ecológica, usos tradicionales y potencial económico, los encinos se utilizan muy poco en reforestaciones dentro del territorio nacional, y casi no hay información para su propagación en viveros y sobre su calidad de planta. *Quercus crassipes* Bonpl. es un taxón ampliamente distribuido en la república mexicana, se localiza en 11 estados: Ciudad de México, Guanajuato, Hidalgo, Jalisco, Estado de México, Michoacán, Morelos, Oaxaca, Puebla, Querétaro y Tlaxcala; entre 2 400 y 2 900 msnm (Zavala, 2003, Arizaga *et al*., 2009). Puede alcanzar 35 m de altura y 1 m de diámetro normal. El objetivo de este trabajo fue evaluar la calidad de la planta producida en dos tamaños de contenedor mediante índices morfológicos.

El vivero donde se realizó el experimento se ubica en las coordenadas 98°53´ O y 19°23´ N, a 2 240 m. El clima es del tipo C (wo) (w) b (i´) g; templado subhúmedo con régimen de lluvias en verano, temperatura del mes más frío entre -3 y 18 ºC y poca variación térmica, precipitación media anual de 686 mm (García, 1981). Las semillas (2 kg) se recolectaron en la comunidad de San Jerónimo Amanalco, Texcoco, Estado de México; en donde se presenta un clima templado subhúmedo, temperatura media anual de 13.4 ºC y precipitación media anual de 1 156 mm, y altitud de 2 750 m (19°31’07” N, 98°44’14” O), en noviembre de 2012. Se seleccionaron semillas que no tenían daños, ni estaban plagadas; estas se mantuvieron en condiciones de cuarto fresco (aproximadamente entre 10 y 15 ºC) durante cinco meses. En abril de 2013, fueron sembradas en semilleros portátiles de plástico, en una mezcla de turba de musgo (40 %), agrolita (20 %) y vermiculita (40 %). Se hizo una aplicación inicial y otra a los quince días de Captán® (1.5 g L⁻¹) para prevenir la presencia de hongos fitopatógenos. Las semillas permanecieron durante poco más de un mes en
invernadero, hasta su germinación. En junio de 2013, la radícula de varias de las plántulas (de 8 cm de altura) se podó con tijeras a 10 cm de longitud, durante su trasplante a dos tipos de charolas (tratamientos) de polietileno rígido negro: 54 cavidades de 210 mL (contenedores grandes, sección transversal cuadrada y 5.1 × 4.8 cm, longitud de 14.8 cm) y 60 cavidades de 150 mL (contenedores pequeños, sección cuadrada de 4.8 × 4.8 cm y longitud igual a 11 cm). Se trasplantó la plántula a ocho charolas (cuatro repeticiones por tamaño de charola).

El sustrato en las charolas fue una mezcla de composta de corteza de pino (60 %), vermiculita (30 %), agrolita (10 %) y 3 kg m⁻³ de fertilizante granular de liberación lenta Osmocote© 15-9-12. También, se adicionó inóculo de Trichoderma harzianum (cepa T-22, Plant Health Care de México©), como hongo antagónico de fitopatógenos. Las charolas se trasladaron a una cama de crecimiento, para iniciar la etapa de establecimiento y se les colocó una malla sombra de 40 % (la cual fue retirada luego de dos meses) y se suministró fertilizante iniciador Peters© (9-45-15, que contiene además 0.1 % Mg, 0.007 % B, 0.05 % Fe, 0.004 % Cu, 0.025 % Mn, 0.001% Mo y 0.0025 % Zn) con una dosis de 0.506 g L⁻¹ (100 ppm de P, 21.97 ppm N y 62.23 ppm K). Asimismo, se reguló el pH del agua de riego (por ejemplo, inicialmente de 7.3 a 5.6, con 1.38 mL H₃PO₄). Los riegos fueron cada tercer día, a capacidad de campo.

Para la etapa de crecimiento se aplicó el fertilizante de crecimiento rápido Peters© (20-20-20, que incluye también 0.05 % Fe, 0.03 % Mn, 0.01 % B, 0.013 % Cu, 0.005 % Mo y 0.025 % Zn) con una dosis de 0.75 g L⁻¹ (150 ppm N, 66 ppm P y 123 ppm K). La duración de la fase de crecimiento fue de cuatro meses. La etapa de endurecimiento inició en octubre de 2013 y duró dos meses. Durante esta, se utilizó el fertilizante finalizador Peters© (4-25-35, además con 0.3 % Mg, 0.025 % B, 0.4 % Fe, 0.06 % Cu, 0.06 % Mn, 0.005 % Mo y 0.06 % Zn), 0.52 g L⁻¹ (150 ppm de K, 20 ppm de N y 56.9 ppm P).
La toma de datos se hizo a los siete meses de edad de la planta (noviembre 2013), se recolectaron 10 plantas por repetición (80 plantas en total) y se determinaron las siguientes variables: altura (A, regla, cm) y diámetro al cuello de la raíz (D, vernier digital, mm), área foliar (AF, malla milimétrica de puntos, cm^2), número de hojas (NH), número de raíces laterales (NRL) y peso seco de parte aérea (PSA) y raíz (PSR) (secadas en horno, Ríos Rocha® mod. H41, a 70 °C, hasta obtener peso constante). Dichas variables permitieron calcular los siguientes índices: relación peso seco aéreo/peso seco raíz (PSA/PSR), coeficiente de esbeltez ($CE=A/D$), índice de calidad de Dickson ($ID=\text{PST}/[(PSA/PSR) + CE]$) (Landis et al., 2010); así como: peso seco total (PST), relación área foliar/peso seco total (AF/PST), área foliar/peso seco aéreo (AF/PSA) y área foliar/peso seco radical (AF/PSR).

En vivero se estableció un diseño experimental en bloques completos al azar con cuatro repeticiones. El factor fue el tamaño del contenedor con dos niveles: grande y pequeño. Se usaron 240 plantas de contenedor grande y 216 de contenedor pequeño, para un total de 456 plantas. El modelo estadístico fue:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

Donde

$Y_{ijk} =$ Respuesta de la k-ésima planta al j-ésimo bloque y el i-ésimo nivel del efecto tamaño de contenedor

$\mu =$ Media general

$\alpha_i =$ Efecto del i-ésimo nivel del factor tamaño de contenedor

$\beta_j =$ Efecto del j-ésimo bloque

$\varepsilon_{ijk} =$Error experimental
Se realizó un análisis de varianza, así como la prueba de comparación de medias de Tukey (ambas con \(p < 0.05 \), cuando el primero fue significativo). Para ello, se empleó el procedimiento PROC ANOVA del programa de análisis estadístico SAS V.9 (SAS Institute, 2002).

Los contenedores grandes produjeron planta con mayor altura que los pequeños (19.2 vs 16.0 cm, respectivamente; \(P = 0.0344 \)); diámetro (4.3 y 3.6 mm, \(P = 0.0249 \)); y longitud de raíz principal (15.0 y 9.0 cm, \(P = 0.0127 \)), pero sin diferencias significativas para el resto de las variables (\(P > 0.05 \)). Lo anterior indica que la biomasa total, aérea y subterránea, así como las relaciones entre diferentes biomasas fueron proporcionales, independientemente del tamaño del contenedor (Figura 1).
$A =$ Altura (cm); $D =$ Diámetro (mm); $NH =$ Número de hojas; $LRP =$ Longitud de raíz principal (cm); $NRL =$ Número de raíces laterales; $AF =$ Área foliar (cm2), $PSH =$ Peso seco de hojas (g); $PSA =$ Peso seco aéreo (g); $PSR =$ Peso seco de raíz (g); $PST =$ Peso seco total (g); $PSA/PSR =$ Peso seco aéreo/peso seco de raíz; $CE =$ Coeficiente de esbeltez; $ID =$ Índice de calidad de Dickson; $AF/PSA =$ Área foliar/peso seco aéreo (cm2 g$^{-1}$); $AF/PSR =$ Área foliar/peso seco de raíz (cm2 g$^{-1}$); $AF/PST =$ Área foliar/peso seco total (cm2 g$^{-1}$). Pares de barras con letras diferentes tuvieron diferencias significativas ($Tukey$, $P \leq 0.05$).

Figura 1. Comparación de medias de indicadores de calidad.
Aunque este trabajo se limitó a la fase de vivero, para cualquier especie un mayor diámetro representa diferentes ventajas: como un sistema radical con mayor biomasa, posibilidad de almacenar agua y carbohidratos, resistencia mecánica y abundancia de yemas para rebrotar, así como más supervivencia en sitios con limitaciones de humedad (Rodríguez-Trejo, 2008; Landis et al., 2010).

Quercus rugosa Née producido en vivero con mayor altura (16 a 24 cm), lo mismo que la mayoría de las especies tienden a tener mejor supervivencia en campo (Ramírez y Rodríguez, 2004; Cuesta et al., 2010). Así, para *Q. ilex* L. en España, sobre sitios con limitaciones de humedad, Del Campo et al. (2010) señalan que la planta grande (altura = 15 cm y diámetro = 4 mm) compite mejor que las plantas silvestres y es más resistente a la sequía. Del Campo et al. (2010) registran, para *Q. ilex*, que en años secos la altura (12-17 cm) y el diámetro (3.5-4.8 mm) predicen la supervivencia a dos años. Ramírez y Rodríguez (2004) observaron la misma tendencia para *Q. rugosa* producido en bolsa; la planta grande (16-24 cm de altura y de 2-4 mm de diámetro) tuvo mayores porcentajes de supervivencia (63 %) en campo y crecimiento en altura y diámetro que la más pequeña en sitios con limitaciones de humedad; en particular, si la primera se planta en exposiciones NE y en micrositios (NE de una roca). Asimismo, las plantas grandes pueden crecer más, como *Q. rubra* L. y *Q. alba* L. en EE. UU., cuyas altura y diámetro fueron buenos predictores para esas mismas variables, luego de dos años de plantados (Jacobs et al., 2005).

Un estudio con *Picea mariana* Kuntze demuestra que la planta con menor coeficiente de esbeltez mantiene un mejor estado hídrico y consumo moderado de agua en condiciones de sequía (Stewart y Bernier, 1995). Las variables de biomasa y sus relaciones no evidenciaron diferencias entre tamaños de contenedor, lo cual puede deberse a que para tales variables no hubo una diferencia significativa en el espacio de crecimiento disponible, y la fertilización resultó adecuada para ambos tamaños de contenedor, si bien esta no fue evaluada, ya que solo se tuvo un tratamiento de fertilización.

Una investigación sobre la producción de *Q. crassipes* en bolsa (Velázquez-et al., 1996) probó diferentes niveles de sombra durante todo el ciclo de producción; y se
comparan variables con el tratamiento a pleno sol. Con el mayor espacio de crecimiento disponible en bolsa (8 cm de diámetro y 18 cm de longitud, capacidad de 905 cm³), la altura (26 cm), el diámetro (5 mm), el número de hojas (71.4), el peso seco aéreo (5.3 g), el subterráneo (8.5 g) y el total (13.8 g) fueron mayores que en el presente estudio, lo mismo que el PSA/PSR (8.5). No obstante, además de más espacio de crecimiento, el tiempo de producción en bolsa, 16 meses, fue poco más del doble que el del experimento que aquí se documenta. El índice de Dickson tuvo un valor medio aceptable de 0.45, similar al 0.5 obtenido por De Jesús et al. (2021) para Q. rugosa en contenedores de 135 mL.

De acuerdo con Landis et al. (2010), la relación PSA/PSR con valor bajo (promedio de 0.95) es indicativa de planta de calidad, apta para sitios con limitaciones de humedad; lo mismo que el CE (4.5 en promedio). Con base en el primer indicador, la planta tiene un balance entre parte aérea y subterránea que previene la mayor posibilidad de deshidratación que ocurre cuando la biomasa de raíz es menor a la de la parte aérea.

Plantas de pino con un CE inferior a 6, se considera que tienen una buena proporción (Prieto-Ruiz et al., 2009; Landis et al., 2010; Rueda et al., 2012). Se concluye que la planta del contenedor grande ofrece características morfológicas que se relacionan con supervivencia y resistencia al estrés en campo en otras especies. A partir del diámetro y PSA/PSR obtenidos, el sustrato utilizado, que incluye corteza composteada, así como el régimen de fertilización proporcionado y sombra, en las primeras etapas del cultivo, resultaron convenientes para la producción de Q. crassipes. Los estándares morfológicos de calidad obtenidos en el presente estudio, si bien queda pendiente un mejor ajuste con la época de plantación, esta última y evaluación de supervivencia en campo, sirven como referente para la producción de planta de calidad de Q. crassipes.
Conflicto de intereses

Los autores manifiestan que no existe conflicto de intereses.

Contribución por autor

Roselia Venancio Nabor: concepción del estudio, cultivo de árboles, trabajo de laboratorio, revisión de literatura, análisis estadístico y de resultados, escritura; Dante Arturo Rodríguez Trejo: concepción del estudio, diseño experimental, supervisión de cultivo y trabajo de laboratorio, y del experimento, en general, análisis estadístico y de resultados, escritura y revisión del escrito; Leopoldo Mohedano Caballero y Edgar Arturo Sánchez Moreno: diseño experimental, supervisión de cultivo y trabajo de laboratorio, y del experimento en general, revisión del escrito.

Referencias

Arizaga, S., J. Martínez C., M. Salcedo C. y M. Á. Bello G. 2009. Manual de la Biodiversidad de Encinos Michoacanos. Semarnat, INE. México, D.F., México. 147 p.
Cuesta, B., P. Villar-Salvador, J. Puértolas, D. F. Jacobs and J. M. R. Benayas. 2010. Why do large, Nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. Forest Ecology and Management 260: 71-80. Doi: 10.1016/j.foreco.2010.04.002.
De Jesús A., F., R. Ignacio H., D. A. Rodríguez T. y L. Mohedano C. 2021. Calidad de planta de Quercus rugosa Née en vivero. Revista Mexicana de Ciencias Forestales 12(67): 147-167. Doi: 10.29298/rmcf.v12i67.967.
Del Campo, A. D., R. M. Navarro and C. J. Ceacero. 2010. Seedling quality and field performance of commercial stocklots of containerized holm oak (*Quercus ilex* L.) in Mediterranean Spain: an approach for establishing a quality standard. New Forests 39: 19-37. Doi: 10.1007/s11056-009-9152-9.

García, E. 1981. Modificaciones al sistema de clasificación climática de Köppen: para adaptarlo a la República Mexicana (UNAM). México, D.F., México. 246 p.

Jacobs, D. F., K. F. Salifu and J. R. Seifert. 2005. Relative contribution of initial root and shoot morphology in predicting field performance of hardwood seedlings. New Forests, 30, 235-251. Doi: 10.1007/s11056-005-5419-y.

Landis, T. D., R. K. Dumroese and D. L. Haase. 2010. The Container Tree Nursery Manual. Vol. 7. Seedling Processing, Storage, and Outplanting Agricultural Handbook 674. U. S. Department of Agriculture Forest Service. Washington, DC, USA. 200 p.

Prieto-Ruiz, J. A., J. L. García R., J. M. Mejía B., A. S. Huchín y J. L. Aguilar V. 2009. Producción de planta del género *Pinus* en vivero en clima templado frío. Publicación Especial No. 28. Campo Experimental Valle del Guadiana INIFAP-SAGARPA. Durango, Dgo., México. 48 p.

Ramírez C., A. y D. A. Rodríguez T. 2004. Efecto de la calidad de planta, exposición y micrositio en una plantación de *Quercus rugosa*. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 10(1): 5-11. https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=29&articulo=403 (20 de julio de 2021).
Rodríguez-Trejo, D. A. 2008. Indicadores de Calidad de Planta Forestal. Mundi Prensa-UACH. México, D.F., México. 156 p.

Rueda, S., A., J. de D. Benavides S., J. A. Prieto R., J. T. Sáenz R., G. Orozco G. y A. Molina C. 2012. Calidad de planta producida en los viveros forestales de Jalisco. Revista Mexicana de Ciencias Forestales 3(14): 69-82. Doi:10.29298/rmcf.v3i14.475.

Statistical Analysis System Institute (SAS Institute) 2002. SAS Program v. 9.0. Cary, NC, USA.

Stewart, J. D. and P. Y. Bernier. 1995. Gas exchange and water relations of three sizes of containerized *Picea mariana* seedlings subjected to atmospheric and edaphic water stress under controlled conditions. Annals of Forest Sciences 52: 1-9. https://www.researchgate.net/publication/43326656_Gas_exchange_and_water_relations_of_3_sizes_of_containerized_Picea_mariana_seedlings_subjected_to_atmospheric_and_edaphic_water_stress_under_controlled_conditions (20 de julio de 2021).

Velázquez R., J. M., D. A. Rodríguez T. y R. Bonilla B. 1996. Evaluación de *Quercus crassipes* Humb. et Bonpl. en vivero bajo diferentes tipos de sustrato e intensidades de luz. Revista Chapingo. Serie Ciencias Forestales 1: 97-109.

Zavala C., F. 2003. Identificación de Encinos de México. División de Ciencias Forestales, Universidad Autónoma Chapingo. Chapingo, Edo de Méx., México. 190 p.

Zavala C., F. 2007. Guía de los Encinos de la Sierra de Tepotzotlán, México. Universidad Autónoma Chapingo. Chapingo, Edo de Méx., México. 89 p.

Todos los textos publicados por la *Revista Mexicana de Ciencias Forestales* –sin excepción– se distribuyen amparados bajo la licencia [Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional)](https://creativecommons.org/licenses/by-nc/4.0/), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.

211