Another Consequence of the Warburg Effect? Metabolic Regulation of Na\(^+\)/H\(^+\) Exchangers May Link Aerobic Glycolysis to Cell Growth

Eivind Salmorin Birkeland\(^{1,2}\), Lisa Maria Koch\(^{1,2}\) and Reinhard Dechant\(^1\)*

\(^1\) Institute of Biochemistry, Department of Biology, ETH Zürich, Zurich, Switzerland, \(^2\) Life Science Zurich, Ph.D. Program for Molecular Life Sciences, Zurich, Switzerland

To adjust cell growth and proliferation to changing environmental conditions or developmental requirements, cells have evolved a remarkable network of signaling cascades that integrates cues from cellular metabolism, growth factor availability and a large variety of stresses. In these networks, cellular information flow is mostly mediated by posttranslational modifications, most notably phosphorylation, or signaling molecules such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc) as a highly conserved cellular signal driving cell growth and proliferation, suggesting that pH-dependent protonation of specific proteins also regulates cellular signaling. In mammalian cells, pHc is regulated by growth factor derived signals and responds to metabolic cues in response to glucose stimulation. Importantly, high pHc has also been identified as a hallmark of cancer, but mechanisms of pH regulation in cancer are only poorly understood. Here, we discuss potential mechanisms of pH regulation with emphasis on metabolic signals regulating pHc by Na\(^+\)/H\(^+\)-exchangers. We hypothesize that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to as the Warburg effect. This hypothesis not only provides an explanation for the growth advantage conferred by a switch to aerobic glycolysis beyond providing precursors for accumulation of biomass, but also suggests that treatments targeting pH regulation as a potential anti-cancer therapy may effectively target the result of altered tumor cell metabolism.

Keywords: Na\(^+\)/H\(^+\)-exchanger, cytosolic pH, growth and proliferation, metabolism, aerobic glycolysis

pHc REGULATES CELL GROWTH AND PROLIFERATION

Evidence for pH-dependent cell growth is largely based on experiments modulating the activity of Na\(^+\)/H\(^+\)-exchangers (NHE) of the SLC9A family of transport proteins. These proteins regulate intracellular pH by using the Na\(^+\) gradient to transport protons across their target membranes. NHE1-5 (SLC9A1-5) localize to the plasma-membrane and regulate pHc (1). In contrast, NHE6-9 are found in organelles of the endomembrane system to regulate luminal pH, but can also...
affect pHc (1, 2). NHE proteins form homo-dimers with 12 transmembrane domains located in the N-terminal part of the protein and a large C-terminal cytoplasmic domain, which is target of several kinases. The C-terminal domain also interacts with phospholipids and the actin cytoskeleton to regulate cell migration and contribute to metastasis [Figure 1A and Ref. (3)].

In addition to NHEs, several other regulators of pHc have been identified. These include Na+/Bicarbonate transporters and monocarboxylate transporters (MCTs), ATP-driven proton pumps, as well as carbonic anhydrases (4). All these pH regulators have been linked to a growing number of physiological activities including regulation of cellular signaling, transcription and cell growth, and have been associated with cancer (5–9). While NHE proteins are ubiquitously expressed to regulate intracellular pH (10), other pH regulators become critical only under specific conditions. For example, MCTs, which transport lactate and protons across the plasma-membrane, are critical to maintain pHc in rapidly proliferating cells and primary tumors, but are less important in differentiated cells (11–14).

A large body of evidence suggests that activation of NHE proteins upon growth factor stimulation is a critical step in promoting cell growth and proliferation (15). Growth factor stimulation triggers an increase in pHc of about 0.2–0.3 pH units (16–24). As this increase in pH is tightly correlated with increased Na+ influx and blocked by amiloride, it was concluded that pH regulation depends on Na+/H+-exchangers. Similar conclusions were drawn from overexpression or injection of activated Ras into quiescent cells (25, 26), or overexpression of v-Mos (26). Importantly, increased pHc is also necessary for initiation of cell-cycle progression under these conditions (25, 27). Although the increase in pHc is maximal several minutes following injection of active Ras, addition of amiloride as late as 6 h after the injection of the activated protein effectively suppresses DNA replication.

FIGURE 1 | A network of cellular metabolism and cellular signaling governs cell growth and regulation of pHc. (A) NHE1 is a key regulator of pHc in mammalian cells. A schematic representation of the NHE1 structure together with key regulatory inputs and potential functions for cancer development is shown. (B) Regulation of glycolytic activity by PI3K/Akt signaling. Glucose transporters (GLUT) and the metabolic enzymes hexokinase (HK), phosphofructokinase (PFK), aldolase A (Aldo A) indicated in red are all direct or indirect targets of growth factor (GF) dependent regulation, leading to enhanced aerobic glycolysis upon stimulation with GFs. Glycolytic activity is also directly coupled to pHc regulation by lactate export using Monocarboxylate transporters. (C) Proposed model for how signaling, metabolism, and pH interact to regulate cell growth and proliferation. Glucose metabolism can be stimulated by glucose, growth factors and oncogenic activation (red arrow) to produce precursors for biomass production, but may also increase pHc through activation of NHE activity, further contributing to enhanced cell growth and proliferation.
that Akt-dependent phosphorylation of NHE1 is key for acid loading and mutating S648 to a non-phosphorylatable NHE1 at Ser-770 and Ser-771 (51ñ55). Akt is required to phosphorylates NHE1 at Ser-648, while Erk1/2 phosphorylates their contribution to the disease.

REGULATION OF NHE ACTIVITY BY MITOGENIC KINASES

Regulation of NHE activity in response mitogenic stimuli has been mostly attributed to direct phosphorylation of NHE proteins by growth factor activated kinases. Indeed, activation of Protein Kinase C (PKC) by phorbol esters (15ñ17, 45ñ47), or its endogenous activator diacyl-glyceride triggers an NHE-dependent increase in pHc (16, 48, 49), while inhibition of PKC by trifluoperazine can abolish the rise in pHc upon growth factor stimulation (50). Thus, it was suggested that PKC is the primary target downstream of growth factors for pH regulation. Yet, as no PKC-dependent phosphorylation sites on NHE proteins have been identified, the effect of PKC on NHE activation may be indirect.

In contrast, both Akt and Erk1/2 have been suggested to directly phosphorylate NHE1 (Figure 1A). In vitro, Akt phosphorylates NHE1 at Ser-648, while Erk1/2 phosphorylates NHE1 at Ser-770 and Ser-771 (51ñ55). Akt is required to reestablish physiological pH following an acidicification stress due to acid loading and mutating S648 to a non-phosphorylatable residue impairs NHE1 function (52), strongly suggesting that Akt-dependent phosphorylation of NHE1 is key for increased pHc and cell proliferation. Yet, evidence for in vivo phosphorylation of this site has remained limiting. Nevertheless, these phosphorylation sites are conserved in NHE2 and NHE4, and other NHE proteins harbor MAPK or CDK consensus sites (SP) at the corresponding position. Thus, phosphorylation might be a general mechanism for the regulation of Na+/H+-exchangers.

Excellent reviews are available that summarize NHE regulation by phosphorylation (10, 51, 53). Here, we rather focus on the interaction between cellular metabolism and pHc. We hypothesize that an increased pHc and increased glycolytic activity, both commonly found in cancers, are two sides of the same coin, which contribute to enhanced cell growth and proliferation. Specifically, we discuss potential mechanisms of regulation of Na+/H+-exchange by cellular metabolism as a mechanism to control cell growth.

AEROBIC GLYCOLYSIS MAY INCREASE pHc VIA NHE1 ACTIVATION

Several reports have shown that glucose stimulation of cells is sufficient to increase pHc in an NHE1-dependent manner. Specifically, glucose availability stimulates pHc via NHEs in pancreatic beta-cells, which may contribute to glucose stimulated insulin release (56ñ60). NHE-dependent regulation of pHc by glucose was also observed in liver or muscle cells (61ñ63), but the underlying mechanisms are only poorly understood. Importantly, glucose-dependent regulation of pHc can be observed in the absence of growth-factors (59, 60), and inhibition of glycolysis by 2-deoxy-glucose strongly decreased NHE activity (64ñ66), suggesting that Na+/H+-exchange is regulated by a metabolic signal derived from glycolysis, or might be coupled to energy metabolism.

Increased glucose uptake and metabolism to fuel aerobic glycolysis is also a general feature of mitogenic stimulation under physiological conditions and oncogenic transformation [Figure 1B and Refs. (67ñ69)] and is generally referred to as the Warburg effect. Although it was originally assumed that tumor cells upregulate glycolysis even in the presence of oxygen due to defective mitochondria, it is now clear that increased rates of glycolysis allow the redirection of metabolic fluxes toward more efficient biomass production (69, 70) in actively proliferating cells and form the molecular basis of using PET scans for tumor detection (71).

However, if NHE activity is regulated by a metabolic signal in response to increased glucose concentration, the same mechanisms activating NHE activity should also be in place when glucose uptake and glycolysis are activated by growth factors or oncogenic transformation. Thus, understanding the regulation of NHE activity by metabolic cues might identify mechanisms how altered tumor cell metabolism contributes to elevated pHc and enhanced cell growth (Figure 1C).

Activation of aerobic glycolysis is best understood in response to PI3-kinase signaling and Akt activation, which has been suggested to be the Warburg kinase (72) (Figure 1B). Akt is required for growth factor-stimulated glucose uptake by
triggering translocation of glucose transporters (GLUTs) to
the plasma-membrane (73ñ75), via phosphorylation of the
GTPase activating protein (GAP) for Rab10, AS160 (76).
mTORC1 activation downstream of PI3-kinase/Akt signaling
also promotes expression of Hexokinase II (77ñ79). In addition,
Akt phosphorylates Hexokinase to promote its association
with mitochondria, which protects cells from apoptosis, but
may not contribute to enhanced enzymatic activity (80). Akt
also indirectly stimulates phosphofructokinase 1 (PFK-1), the
major control point of glycolysis. Specifically, Akt promotes
the accumulation of the glycolytic side-product and most potent
allosteric activator of PFK-1, Fructose-2,6-bisphosphate by
phosphorylation of PFK-2 (81, 82). Finally, PI3-kinase signaling
increases Aldolase A activity (83). Collectively, these processes
lead to enhanced glycolytic activity and ATP production (84).

The PI3-Kinase/Akt pathway is probably the most frequently
activated pathway in cancer, therefore explaining the shift toward
high aerobic glycolysis in a large number of tumors. However,
the transcriptional activity of glucose uptake and glycolysis can also be observed upon activation of c-myc, mTORC1, and K-Ras, or upon loss of p53 (85ñ91), further
underscoring the importance of enhanced aerobic glycolysis to
sustain, or even signal enhanced cell growth.

POTENTIAL MECHANISMS OF NHE
REGULATION BY GLUCOSE
METABOLISM

How could glucose metabolism be linked to NHE-dependent
pH regulation? In principle, glucose could regulate the specific
activity of NHE proteins, or affect the Na\(^+\)/K\(^+\) gradient by the
Na\(^+\)/K\(^+\)-ATPase (Figure 2A). Similar to NHE proteins, the
Na\(^+\)/K\(^+\)-ATPase is also subject to growth factor-dependent
activation and the same kinases regulating NHEs have been
linked to activation of the Na\(^+\)/K\(^+\)-ATPase (92ñ94). In
particular, PKC directly phosphorylates Na\(^+\)/K\(^+\)-ATPase,
possibly explaining PKC-dependent activation of Na\(^+\)/H\(^+\)exchange (95). Indeed, Na\(^+\)/K\(^+\)-ATPase activity rapidly
increases upon glucose stimulation in different cell types (96, 97),
which could translate into changes of pHc.

At least two key kinases regulating NHEs respond to changes
in cellular metabolism. PKC is regulated by glucose availability
through modulating the levels of its activator DAG (98).
Similarly, Erk1/2 activity is subject to glucose regulation (99, 100).
Thus, both kinases could directly or indirectly contribute to NHE
activation in response to glucose (101). Yet, careful assessment
of the basal activity of these kinases and NHE phosphorylation
in the absence of growth factors would be required to study a
potential role in glucose-dependent regulation of pHc, before
potential molecular mechanisms can be addressed.

Direct Regulation of NHE Activity by
Metabolic Cues

Conceptually, direct coupling of metabolism to NHE activity may be more appealing. In particular, coupling of
glycolytic activity, or flux, to pH regulation would readily
explain the observed increase in pHc by glucose availability,
stimulation of glucose metabolism by mitogenic activation,
and metabolic reprogramming in cancer. Interestingly, in
all highly glycolytic cells, glycolysis is directly coupled to
pHc via MCTs, which secrete lactic acid, the end-product
of fermentation (102, 103). This is also the basis of using
extracellular acidification rates as a means of estimating
glycolytic flux (104, 105). Yet, it is less clear how glycolysis could
be coupled to NHE activity.

FIGURE 2 | Potential mechanisms for how NHE activity can be linked to glucose metabolism. (A) In mammalian cells, pHc is regulated by NHE activity, which may be linked to ATP production directly or indirectly via Na\(^+\)/K\(^+\)-ATPase. Localized production of ATP by glycolysis at the plasma membrane may generate distinct pools of ATP (red) that might help to explain coupling of cellular metabolism to pH regulation. Potential regulatory or catalytic ATP binding sites in ion pumps and exchangers are indicated in red. See text for details. (B) Evolutionary conservation of glucose-dependent regulation of pHc. In yeast, pHc is regulated by an ATP-dependent proton pump (P-ATPase) independent of Na\(^+\)/H\(^+\) exchange. P-ATPase activity is coupled to glycolytic activity, but molecular mechanisms remain to be fully established. Color code for ATP regulated domains and hypothetical localized ATP pools same as in panel (A).
It has been hypothesized that sensing of metabolic flux may depend on the accumulation of metabolites, which tightly correlate with pathway activity and trigger the appropriate cellular response (106). For example, the abundance of fructose-1,6-bisphosphate (FBP) tightly correlates with glycolytic flux in yeast and bacteria, and binding of FBP to a transcription factor allows for coupling of glycolytic flux to gene expression (107, 108). Similarly, in pancreatic beta-cells, ATP correlates with glucose concentration and glycolytic activity and triggers insulin secretion by binding to ATP-sensitive K⁺-channels (109).

ATP concentration may also link glycolytic flux to the regulation of pHc by NHE activity. As discussed above, Akt activation results in increased ATP concentrations (84). Moreover, the establishment of the Na⁺ gradient necessary for NHE activity consumes a large fraction of cellular ATP production (110), suggesting tight linkage to energy metabolism.

Indeed, NHE1 activity directly depends on the presence of ATP. Basal Na⁺/H⁺-exchange can occur in the absence of ATP based on the concentration gradient of the transported cations (111, 112). Yet, depletion of cells from ATP abolishes NHE activity (65, 66), while readdition of ATP restores NHE activity in patch-clamp experiments (65). Half maximal activation of NHE1 was achieved at 5 mM ATP, suggesting that NHE activity could be modulated by changes in the ATP concentration in vivo. Interestingly, ATP depletion reduces the affinity of NHE proteins to protons by 0.5 pH units, readily explaining ATP-dependent pH regulation (66, 113).

Surprisingly, NHE activity could also be triggered by the poorly hydrolysable ATP analog ATPγS and did not depend on the presence of Mg²⁺ (65). Thus, ATP-dependency is unlikely to be mediated by associated kinases or ATPases. Instead, Na⁺/H⁺-exchange may depend on direct binding of ATP to NHE proteins or a membrane associated activator. Consistently, ATP dependence of NHE1 requires the presence of its cytoplasmic C-terminal domain (114, 115). Although no consensus sequences from known ATP-binding motives can be identified in the primary sequence, cross-linking experiments have revealed evidence for direct binding of ATP to the cytoplasmic domain of NHE1 (116). While mapping of the potential ATP binding site will be required to generate mutants to directly test the significance of ATP binding in vivo, this model offers an attractive mechanism of coupling metabolic activity to NHE activity (Figure 2A).

Indirect Regulation of NHE Activity by Metabolic Cues

An alternative model for coupling of energy metabolism to regulation of pHc through ATP-dependent ion pumps may be suggested by evolutionary considerations of pH-dependent cell growth. In yeast, pHc is regulated by a P-type ATPase, PMA1, that directly pumps protons across the plasma-membrane in an ATP-dependent manner (117, 118), but does not require NHE activity at the plasma-membrane (Figure 2B). PMA1 activity and pHc increase with the quality and quantity of the available carbon source (119). As in mammalian cells, high pHc drives cell growth and proliferation, at least in part, by activating TORC1 (99, 119).

The differences in pH regulation in yeast and mammals are readily explained by the different environmental constraints for single cellular organisms and cells embedded within a complex organism. In their natural environment yeast cells are constantly exposed to changes in osmolarity and thus may rely on ATP-dependent proton pumps rather than a Na⁺ gradient. In contrast, establishing a proton gradient with a similar concentration profile as the Na⁺ gradient in mammalian cells (120, 121) would yield pH differences of more than 1 pH unit across the plasma-membrane and may thus require indirect regulation of pH via Na⁺-H⁺-exchange. Yet, the conservation of pHc as a glucose-dependent signal regulating cell growth indicates that regulation of pH in mammalian cells may also be mediated by coupling of Na⁺/K⁺-ATPase to glucose metabolism (Figure 2A).

Indeed, several ATP-dependent ion pumps have been suggested to be regulated by energy metabolism in mammalian cells. In particular, direct modulation by ATP has been proposed for ATP-dependent cation exchangers and ion channels (122–130) despite the fact that the Km of these pumps for ATP hydrolysis have been consistently found to be significantly lower than physiological ATP concentrations (131–133), making a direct coupling of their activity to changing ATP concentrations in cells unlikely. To resolve this contradiction, it has been suggested that these pumps may be coupled to glycolytic ATP production by concentrating ATP producing enzymes close to the ATP-dependent pumps, thereby allowing physical or kinetic coupling of ATP synthesis to hydrolysis (124, 134). For example, glycolytic enzymes including hexokinase, phosphofructokinase and pyruvate kinase co-purify with the plasma-membrane in pancreatic cancer cells, which may allow direct regulation of an ATP-dependent Ca²⁺-pump (124). In cardiomyocytes and erythrocytes, glycolytic enzymes localize to the plasma-membrane (130, 135) and have been suggested to regulate Na⁺/K⁺-ATPase (122) as well as ATP-sensitive K⁺-channels (130, 134), possibly by direct interaction and localized ATP production (125).

Theoretical considerations argue against the formation of localized pools of metabolites based on local enrichment of metabolic enzymes, as rapid intracellular diffusion of metabolites outcompetes even the fastest enzymes, leading to rapid dissipation of local concentration differences (136). Yet, it remains a possibility that in vitro determination of enzymatic parameters fall short of accurately replicating the specific conditions in the microenvironment at the target membranes. Interestingly, indirect measurements of local ATP concentrations by targeting luciferase, which emits light in an ATP-dependent manner, to different cellular locations clearly support the existence of separated, local pools of ATP. Specifically, this method allows to follow the dynamics of ATP concentration in different cellular compartments following a glucose pulse. While ATP only very transiently accumulates in the cytosol upon glucose stimulation, ATP stabilizes at elevated levels at the plasma-membrane upon glucose stimulation (137). More detailed measurements of localized metabolite distributions, for example using FRET reporters would be key to further
support localized pools of metabolites regulating ATP-dependent processes at the plasma-membrane. Similarly, to discriminate between direct and indirect mechanisms to couple metabolism to NHE activity, dynamic measurements of Na⁺/K⁺-ATPase and/or the resulting Na⁺ gradient would be required.

CONCLUSION

While the molecular mechanisms linking glucose or energy metabolism to increased pHc await further clarification, the existing data strongly argue for a tight coupling of glucose metabolism to NHE activity. As glucose metabolism can be stimulated by increasing glucose concentration or induction of the Warburg effect, this coupling readily explains the elevated pHc found in cancer cells. In turn, an elevated pHc may further enhance aerobic glycolysis due to the pH-sensitivity of pHc found in cancer cells. In turn, an elevated pHc may signal that relays changes in cellular metabolism to cell growth and proliferation, but further identification of pH-sensitive steps governing cell growth and proliferation will be required to better understand the functional importance of pHc in normal and cancer cells.

Targeting cellular metabolism for cancer therapy has triggered great interest as potential treatments could be widely applicable to a range of tumors with similar metabolic alterations. Indeed, several glycolytic inhibitors have been tested as potential anti-cancer treatments, but have largely failed due to high toxicity at the effective dose (138, 139). Targeting pH regulation by NHE proteins may act as a treatment of the consequences of altered tumor metabolism and may help to devise novel treatment strategies. While similar considerations of toxicity by targeting NHE proteins may apply, a better understanding of NHE regulation in normal and cancer cells will help to further dissect the interplay between cellular metabolism and signaling, and to define windows of opportunities to treat cancer by targeting pHc regulation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

The work in the Dechant laboratory was supported by the SNF and ETHZ (ETH Zurich Research Grant 28 17-2).

ACKNOWLEDGMENTS

The authors thank Sung Sik Lee and Alfredo J. Ibanez for helpful comments on the manuscript.

REFERENCES

1. Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na⁺/H⁺ exchangers. *Pflugers Arch.* (2014) 466:61–76. doi: 10.1007/s00424-013-1408-8
2. Galenkamp KMO, Sosicka P, Jung M, Recouveux MV, Zhang Y, Moldenhauer MR, et al. Golgi acidification by NHE7 regulates cytosolic pH homeostasis in pancreatic cancer cells. *Cancer Discov.* (2020) 10:822–35. doi: 10.1158/2159-8290.cd-19-1007
3. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na⁺/H⁺ exchanger in metastasis. *Nat Rev Cancer.* (2005) 5:786–95. doi: 10.1038/nrc1713
4. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. *Nat Rev Mol Cell Biol.* (2009) 11:50–61. doi: 10.1038/nrm2820
5. Raja DA, Gotherwal V, Burse SA, Subramaniam YJ, Sultan F, Vats A, et al. pH-controlled histone acetylation amplifies melanocyte differentiation downstream of MITF. *EMBO Rep.* (2020) 21:e48333.
6. Pamarthry S, Kulsheethra A, Katara GK, Beaman KD. The curious case of vascular ATPase: regulation of signaling pathways. *Mol Cancer.* (2018) 17:41.
7. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF. Regulation and roles of bicarbonate transporters in cancer. *Front Physiol.* (2014) 5:130.
8. Supuran CT, Winum JY. Carbonic anhydrase IX inhibitors in cancer therapy: an update. *Future Med. Chem.* (2015) 7:1407–14. doi: 10.4155/fmc.15.71
9. Tozzi M, Sorensen CE, Magni L, Christensen NM, Bouazzi R, Buch CM, et al. Proton pump inhibitors reduce pancreatic adenocarcinoma progression by selectively targeting H(+), K⁺-ATPases in pancreatic cancer and stellate cells. *Cancers (Basel).* (2020) 12:640. doi: 10.3390/cancers12030640
10. Baumgartner M, Patel H, Barber DL. Na⁺/H⁺ exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. *Am J Physiol Cell Physiol.* (2004) 287:C844–50.
11. Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. *Nature.* (2020) 577:115–20. doi: 10.1038/s41586-019-1847-2
12. Flores A, Schell J, Krall AS, Jelinké D, Miranda M, Grigorian M, et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. *Nat Cell Biol.* (2017) 19:1017–26. doi: 10.1038/ncllb3575
13. Counillon L, Bouret Y, Marchiq I, Pouyssegur J. Na(+)÷H(+) antipporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism. *Biochim Biophys Acta.* (2016) 1863:2465–80. doi: 10.1016/j.bbamcr.2016.02.018
14. Marchiq I, Le Floch R, Roux D, Simon MP, Pouyssegur J. Genetic disruption of lactate/H÷ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. *Cancer Res.* (2015) 75:171–80. doi: 10.1158/0008-5472.can-14-2260
15. Moolenaar WH. Effects of growth factors on intracellular pH regulation. *Annu Rev Physiol.* (1986) 48:363–76. doi: 10.1146/annurev.ph.48.030186.002051
16. Moolenaar WH, Tsertsv undes L, De Laat SW. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. *Nature.* (1984) 312:371–4. doi: 10.1038/312371a0
17. Burns CP, Rozengurt E. Serum, platelet-derived growth factor, vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells. *Biochem Biophys Res Commun.* (1983) 116:931–8. doi: 10.1016/s0006-291x(83)80231-9
18. Moolenaar WH, Tsertsv undes L, De Laat SW. Na(+)÷H(+) exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. *Nature.* (1983) 304:645–8. doi: 10.1038/304645a0
19. Casel D, Rothenberg P, Zhuang YX, Deuel TF, Glaser L. Platelet-derived growth factor stimulates Na÷H exchange and induces cytoplasmic alkalization in NR6 cells. *Proc Natl Acad Sci USA.* (1983) 80:6224–8. doi: 10.1073/pnas.80.20.6224
20. Rothenberg P, Glaser L, Schlesinger P, Cassel D. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells. J Biol Chem. (1983) 258:12644–53.

21. Hesketh TR, Moore JP, Morris JD, Taylor MV, Rogers J, Smith GA, et al. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature. (1985) 313:481–4. doi: 10.1038/313481a0

22. Lopez-Rivas A, Stroobant P, Waterfield MD, Rozengurt E. Ionic responses rapidly elicited by porcine platelet-derived growth factor in Swiss 3T3 cells. EMBO J. (1984) 3:939–44. doi: 10.1002/j.1460-2075.1984.tb01191.x

23. Moore RD. Stimulation of Na+/H+ exchange by insulin. Biophys J. (1981) 33:203–10. doi: 10.1016/0006-3495(81)84881-3

24. Putnam RW. Effect of insulin on intracellular pH in frog skeletal muscle fibers. Am J Physiol. (1985) 248(3 Pt 1):C330–6.

25. Haggag N, Lachat JC, Graber M, Aaronson S, Viola MV. Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol Cell Biol. (1987) 7:1984–8. doi: 10.1128/mcb.7.5.1984

26. Doppler W, Jaggi R, Groner B. Induction of v-mos and activated Ha-ras oncogene expression in quiescent NIH 3T3 cells causes intracellular alkalisation and cell-cycle progression. Gene. (1987) 54:147–53. doi: 10.1016/0378-1179(87)90357-x

27. Pousyssegur J, Franchi A, L’Allemand G, Paris S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett. (1985) 190:115–9. doi: 10.1016/0014-5793(85)80439-7

28. Chambard JC, Pousyssegur J. Intracellular pH controls growth factor-induced ribosomal protein S6 phosphorylation and protein synthesis in the G0—G1 transition of fibroblasts. Exp Cell Res. (1986) 164:282–94. doi: 10.1016/S0014-4827(86)90029-7

29. Finger DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. (2004) 23:3151–71. doi: 10.1038/sj.onc.1207542

30. Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C, et al. Regulation of mTORC1 Signaling by pH. PLoS One. (2011) 6:e21549.

31. Charpentier JC, Chen D, Lapinski PE, Turner J, Grigorova I, Swanson JA, et al. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun. (2020) 11:180.

32. Goto Y, Kida K, Kaino Y, Ito T, Matsuda H. Inhibitory effect of amiloride on glucose transport in isolated rat adipocytes. Diabetes Res Clin Pract. (1993) 20:1–5. doi: 10.1016/0168-8227(93)90015-w

33. White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by pH and cancer. Two faces of the same coin—one single nature. Biochim Biophys Acta. (2017) 1864:2988–96. doi: 10.1016/j.bjba.2017.05.006

34. Huber V, De Milt H, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, et al. Proton dynamics in cancer. J Transl Med. (2010) 8:57.

35. Orive G, Reshkin SJ, Harguindey S, Pedraz JL. Hydrogen ion dynamics and the Na+/H+ exchanger in cancer angiogenesis and antiangiogenesis. Br J Cancer. (2003) 89:1395–9. doi: 10.1038/sj.bjc.6601286

36. Reshkin SJ, Cardone RA, Harguindey S, Pedraz JL. Hydrogen ion dynamics and the Na+/H+ exchanger in cancer angiogenesis and antiangiogenesis. Br J Cancer. (2003) 89:1395–9. doi: 10.1038/sj.bjc.6601286

37. Vara F, Schneider JA, Rozengurt E. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells. Proc Natl Acad Sci USA. (1985) 82:2384–8. doi: 10.1073/pnas.82.8.2384

38. Grinstein S, Cohen SJ, Goetz JD, Rothstein A, Gelfand EW. Characterization of the activation of Na+/H+ exchange in lymphocytes by phorbol esters: change in cytoplasmic pH dependence of the antiport. Proc Natl Acad Sci USA. (1985) 82:1429–33. doi: 10.1073/pnas.82.5.1429

39. Amith SR, Fliegl E. Regulation of the Na+/H+ Exchanger (NHE1) in breast cancer metastasis. Cancer Res. (2013) 73:1259–64. doi: 10.1158/0008-5472. can-12-4031

40. Meima ME, Webb RA, Witkowska HE, Barber DL. The sodium-hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factors. J Biol Chem. (2009) 284:26666–75. doi: 10.1074/jbc.m109.019448

41. Fliegl E. Structural and functional changes in the Na(+)/H(+) exchanger isoform 1, Induced by Erk1/2 phosphorylation. Int J Mol Sci. (2019) 20:2378. doi: 10.3390/ijms20102378

42. Trebilcock R, Lynch A, Tomlinson S, Best L. Na+/H+ exchange is responsible for intracellular pH regulation in insulin-secreting HIT-T15 cells. J Biol Chem. (1985) 258(3 Pt 1):C330–6.

43. Amith SR, Fliegl E. Mitogen-activated protein kinase-dependent activation of the Na+/H+ exchanger is mediated through phosphorylation of amino acids Ser770 and Ser771. J Biol Chem. (2007) 282:6292–9. doi: 10.1074/jbc.M10732002

44. Wang H, Silva NL, Lucchesi PA, Haworth R, Wang K, Michalk M, et al. Phosphorylation and regulation of the Na+/H+ exchanger through mitogen-activated protein kinase. Biochemistry. (1997) 36:9151–8. doi: 10.1021/bi970802f

45. Stirnert P, Nenquin M, Moulin P, Jonas JC, Henquin JC. Glucose-induced cytosolic pH changes in beta-cells and insulin secretion are not causally related: studies in islets lacking the Na+/H+ exchangeR NHE1. J Biol Chem. (1999) 274:20707–12. doi: 10.1074/jbc.274.31.20707

46. Harguindey S, Arranz JL, Polo JM, Orozco JD, Rauch C, Fais S, Cardone RA, et al. Carpirodor and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs—an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med. (2013) 11:282. doi: 10.1186/1479-5876-11-282

47. Jost JT, Bergersen L, Arkhammar P, Nilsson T, Rorsman P, Berggren PO. Glucose-induced increase in cytoplasmic pH in pancreatic beta-cells is mediated by the Na+/H+ exchanger, an effect not dependent on protein kinase C. J Biol Chem. (1999) 274:23537–41. doi: 10.1074/jbc.274.31.23537

48. Trebickoc R, Lynch A, Tomlinson S, Best L. Na+/H+ exchange is responsible for intracellular pH regulation in insulin-secreting HIT-T15 cells. Mol Cell Endocrinol. (1990) 71:21–5. doi: 10.1016/0303-7207(90)90070-o

49. Comolli R, Casale A, Mariotti D. Amiloride and glucose effects on the Na+/H+ exchange and cancer metastasis. Oncoscience.422

50. Halpern MV, Rothstein A, Gelfand EW. Activation of the Na+/H+ antiport by changes in cell volume and by phorbol esters; possible role of protein kinase. In: Arnott KFB, Peter S A, Walter F B editors. Current Topics in Membranes and Transport. Cambridge, MA: Academic Press (1986). p.26.
62. Szkicowski M, Ng LL. Glucose-induced changes in activity and phosphorylation of the Na+/H+ exchanger, NHE-1, in vascular myocytes from Wistar-Kyoto and spontaneously hypertensive rats. *Metabolism*. (1996) 45:114–9. doi: 10.1006/metm.1996.0001

63. Williams B, Howard RL. Glucose-induced changes in Na+/H+ antiport activity and gene expression in cultured vascular smooth muscle cells. *Role of protein kinase C*. *J Clin Invest.* (1994) 93:2623–31. doi: 10.1172/jci117275

64. Demaurex N, Grinstein S. Na+/H+ antiport: modulation by ATP and role in cell volume regulation. *J Exp Biol*. (1994) 196:389–404.

65. Demaurex N, Romanek RR, Orlovskij I, Grinstein SATP. dependence of Na+/H+ exchange. Nucleotide specificity and assessment of the role of phospholipids. *J Gen Physiol*. (1997) 109:117–28.

66. Cassel D, Katz M, Rotman M. Depletion of cellular ATP inhibits Na+/H+ antiport in cultured human cells. Modulation of the regulatory effect of intracellular protons on the antiporter activity. *J Biol Chem*. (1986) 261:5460–6.

67. Baltazar F, Afonso J, Costa M, Granja S. Lactate beyond a waste metabolite: other protein kinases of the insulin signaling cascades. *doi: 10.1038/sj.onc.1209595

68. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and the signaling pathway involved in the regulation of hexokinase II gene expression. *Cell Metab*. (2018) 27:441–64. doi: 10.1016/j.smc.2017.11.003

69. Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus activates glucose transporter in epidermal growth factor receptor target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated Lung adenocarcinoma. *J Biol Chem*. (2015) 290:17495–504. doi: 10.1074/jbc.m115.660498

70. Yu Y, Maguire TG, Alwine JC. Human cytomelagovirus activates glucose transporter 4 expression to increase glucose uptake during infection. *J Virol*. (2011) 85:1573–80. doi: 10.1128/jvi.01967–10

71. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell survival. *Front Oncol*. (2020) 10:2321.

72. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. *Annu Rev Cell Dev Biol*. (2011) 27:441–64. doi: 10.1146/annurev-cellbio-092910-154237

73. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science*. (2009) 324:1029–33. doi: 10.1126/science.1160809

74. Delerardinus RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. (2020) 2:127–9. doi: 10.1038/s41538-020-0172-2

75. Bensing SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. *Semin Cell Dev Biol*. (2012) 23:352–61. doi: 10.1016/j.semcdb.2012.02.003

76. Robey RB, Hay N. Is Akt the "Warburg kinase"?: Akt-energy metabolism interactions and oncogenesis. *Semin. Cancer Biol*. (2009) 19:25–31. doi: 10.1016/j.semcancer.2008.11.010

77. Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, et al. Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. *Biochem Biophys Res Commun.* (2010) 388:271–8. doi: 10.1016/j.bbrc.2009.09.089

78. Yu L, Chen X, Sun X, Wang L, Chen S. The glycolytic switch in tumors: mediator of intracellular protons on the antiporter activity. *J Biol Chem*. (1986) 261:5460–6.

79. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isozyme type M2 is critical for aerobic glycolysis and tumor growth. *Proc Natl Acad Sci USA*. (2011) 108:4129–34. doi: 10.1073/pnas.1014769108

80. Shukla SK, Gunda V, Abrego J, Haridas D, Mishra A, Souchek J, et al. MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. *Oncotarget*. (2015) 6:19118–31. doi: 10.18632/oncotarget.4078

81. Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. *FASEB J*. (1995) 9:1067–78. doi: 10.1096/fasebj.9.8.749600

82. Bensaad K, Tsuura A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. *Cell*. (2006) 126:107–20. doi: 10.1016/j.cell.2005.05.036

83. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. *Cancer Res*. (2004) 64:2627–33. doi: 10.1158/0008-5472.can-03-0846

84. Chabalin AV, Kovalenko MV, Ryder JW, Feraire E, Wallberg-Henriksson H, Zierath JR. Insulin- and glucose-induced phosphorylation of the Na(+),K(+)-adenosine triphosphate alpha-subunits in rat skeletal muscle. *Endocrinology*. (2001) 142:347–82. doi: 10.1210/endo.142.8.8294

85. Al-Khalili L, Kotova O, Tsuchida H, Ehren I, Feraire E, Krook A, et al. ERK1/2 mediates insulin stimulation of Na(+),K(+)-ATPase by phosphorylation of the alpha-subunit in human skeletal muscle cells. *J Biol Chem*. (2004) 279:25211–8. doi: 10.1074/jbc.M402152200

86. Serhan MF, Kreydiyyeh SI. Insulin targets the Na(+)/K(+) ATPase in rat carotid body. *J Exp Biol*. (1994) 196:389–404. doi: 10.1242/jeb.196.2.389

87. Balaban RS, Bader JP. Studies on the relationship between glycolysis and (Na+ + K+)-ATPase in cultured cells. *Biochim Biophys Acta*. (1984) 804:419–26. doi: 10.1016/0005-2760(84)90069–7

88. Elmia I, Idahl LA, Sandstrom PE, Sehlin J, D-glucose stimulates the Na+/K+ pump in mouse pancreatic islet cells. *Int J Exp Diabetes Res*. (2000) 1:155–64. doi: 10.1515/edr.2000.1.155

89. Miele C, Paturzo F, Miele R, Mannelli F, Panella C. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization. *J Biol Chem*. (2007) 282:31835–43. doi: 10.1074/jbc.m702481200

90. Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through binding to PKA-responsive element binding protein activation after beta cell stimulation by glucose and its alteration due to glucotoxicity. *Ann N Y Acad Sci*. (2004) 1030:230–42. doi: 10.1196/annals.1329.029
121. Milosavljevic N, Monet M, Lena I, Brau F, Lacas-Gervais S, Feliciangeli S, Karmazyn M, Avkiran M, Fliegel L. The Sodium-Hydrogen Exchanger, From...

120. Little PJ, Weissberg PL, Cragoe EJ Jr., Bobik A. Dependence of Na+/H+...