QUASICONFORMAL MAPPINGS AND HÖLDER CONTINUITY

DAVID KALAJ AND ARSEN ZLLATICANIN

Abstract. We establish that every K-quasiconformal mapping w of the unit ball \mathbb{B} onto a C^2-Jordan domain Ω is Hölder continuous with constant $\alpha = 2 - \frac{n}{p}$, provided that its weak Laplacean Δw is in $L^p(\mathbb{B})$ for some $n/2 < p < n$. In particular it is Hölder continuous for every $0 < \alpha < 1$ provided that $\Delta w \in L^n(\mathbb{B})$.

1. Introduction

In this paper \mathbb{B} denotes the unit ball in \mathbb{R}^n, $n \geq 2$ and S^{n-1} denotes the unit sphere. Also we will assume that $n > 2$ (the case $n = 2$ has been already treated in [17]). We will consider the vector norm $|x| = (\sum_{i=1}^n x_i^2)^{1/2}$ and the matrix norms $|A| = \text{sup} \{ |Ax| : |x| = 1 \}$.

A homeomorphism $u : \Omega \to \Omega'$ between two open subsets Ω and Ω' of Euclidian space \mathbb{R}^n will be called a $K (K \geq 1)$ quasi-conformal or shortly a q.c mapping if

(i) u is absolutely continuous function in almost every segment parallel to some of the coordinate axes and there exist the partial derivatives which are locally L^n integrable functions on Ω. We will write $u \in ACL^n$ and

(ii) u satisfies the condition

$$|\nabla u(x)|^n / K \leq J_u(x) \leq Kl(\nabla u(x))^n,$$

at almost everywhere x in Ω where

$$l(\nabla u(x)) := \text{inf} \{ |\nabla u(x)\zeta| : |\zeta| = 1 \}$$

and $J_u(x)$ is the Jacobian determinant of u (see [21]).

Notice that, for a continuous mapping u the condition (i) is equivalent to the condition that u belongs to the Sobolev space $W^{1,1}_{\text{loc}}(\Omega)$.

Let P be Poisson kernel i.e. the function

$$P(x, \eta) = \frac{1 - |x|^2}{|x - \eta|^n},$$

and let G be the Green function i.e. the function

$$G(x, y) = c_n \left\{ \begin{array}{ll}
\frac{1}{|x-y|^{n-2}} & \text{if } n \geq 3; \\
\log \frac{1}{|x-y|} & \text{if } n = 2 \text{ and } x, y \in \mathbb{C} \cong \mathbb{R}^2.
\end{array} \right.$$
where $c_n = \frac{1}{(n-2)\omega_{n-1}}$, and Ω_{n-1} is the measure of S^{n-1}. Both P and G are harmonic for $|x| < 1$, $x \neq y$.

Let $f: S^{n-1} \to \mathbb{R}^n$ be a L^p, $p > 1$ integrable function on the unit sphere S^{n-1} and let $g: \mathbb{B}^n \mapsto \mathbb{R}^n$ be continuous. The weak solution of the equation (in the sense of distributions) $\Delta u = g$ in the unit ball satisfying the boundary condition $u|_{S^{n-1}} = f \in L^1(S^{n-1})$ is given by

$$u(x) = P[f](x) - G[g](x) := \int_{S^{n-1}} P(x, \eta)f(\eta)d\sigma(\eta) - \int_{B^n} G(x, y)g(y)dy,$$

for $|x| < 1$. Here $d\sigma$ is Lebesgue $n - 1$ dimensional measure of Euclid sphere satisfying the condition: $P[1](x) \equiv 1$. It is well known that if f and g are continuous in S^{n-1} and in $\overline{B^n}$ respectively, then the mapping $u = P[f] - G[g]$ has a continuous extension \bar{u} to the boundary and $\bar{u} = f$ on S^{n-1}. If $g \in L^\infty$ then $G[g] \in C^{1,\alpha}(\overline{B^n})$. See [6, Theorem 8.33] for this argument.

We will consider those solutions of the PDE $\Delta u = g$ that are quasiconformal as well and investigate their Lipschitz character.

A mapping f of a set A in Euclidean n-space \mathbb{R}^n into \mathbb{R}^n, $n \geq 2$, is said to belong to the Hölder class $\text{Lip}_\alpha(A)$, $\alpha > 0$, if there exists a constant $M > 0$ such that

$$|f(x) - f(y)| \leq M|x - y|^\alpha$$

for all x and y in A. If D is a bounded domain in \mathbb{R}^n and if f is quasiconformal in D with $f(D) \subset \mathbb{R}^n$, then f is in $\text{Lip}_\alpha(A)$ for each compact $A \subset D$, where $\alpha = K(f)^{1/(1-n)}$ and $K(f)$ is the inner dilatation of f. Simple examples show that f need not be in $\text{Lip}_\alpha(D)$ even when f is continuous in D.

However O. Martio and R. Nääkö in [20] showed that if f induces a boundary mapping which belongs to $\text{Lip}_\alpha(\partial D)$, then f is in $\text{Lip}_\beta(D)$, where

$$\beta = \min(\alpha, K(f)^{1/(1-n)});$$

the exponent β is sharp.

In a recent paper of the second author and Saksman [10] it is proved the following result, if f is quasiconformal mapping of the unit disk onto a Jordan domain with C^2 boundary such that its weak Laplacean $\Delta f \in L^p(\mathbb{B}^2)$, for $p > 2$, then f is Lipschitz continuous. The condition $p > 2$ is necessary also. Further in the same paper they proved that if $p = 1$, then f is absolutely continuous on the boundary of $\partial \mathbb{B}^2$. The results from [10] optimise in certain sense the results of the first author, Mateljević, Pavlović, Partyka, Sakan, Manojlović, Astala ([13, 14, 15, 16, 23, 24, 25, 26, 11, 12, 3]), since it does not assume that the mapping is harmonic, neither its weak Laplacean is bounded.
We are interested in the condition under which the quasiconformal mapping is in $\text{Lip}_\alpha(B^n)$, for every $\alpha < 1$. It follows from our results that the condition that u is quasiconformal and $|\Delta u| \in L^p$, such that $p > n/2$ guarantees that the selfmapping of the unit ball is in $\text{Lip}_\alpha(B^n)$, where $\alpha = 2 - \frac{2}{n}$. In particular if $p = n$, then $f \in \text{Lip}_\alpha(B^n)$ for $\alpha < 1$.

Our result in several-dimensional case is the following:

Theorem 1. Let $n \geq 2$ and let $p > n/2$ and assume that $g \in L^p(B^n)$. Assume that w is a K-quasiconformal solution of $\Delta w = g$, that maps the unit ball onto a bounded Jordan domain $\Omega \subset \mathbb{R}^n$ with C^2-boundary.

- If $p < n$, then w is Hölder continuous with the Hölder constant $\alpha = 2 - \frac{2}{p}$.
- If $p = n$, then w is Hölder continuous for every $\alpha \in (0, 1)$.
- If $n > p$ then w is Lipschitz continuous.

The proof is given in the next section.

2. Proofs of the results

In what follows, we say that a bounded Jordan domain $\Omega \subset \mathbb{R}^n$ has C^2-boundary if it is the image of the unit disc B^n under a C^2-diffeomorphism of the whole complex plane onto itself. For planar Jordan domains this is well-known to be equivalent to the more standard definition, that requires the boundary to be locally isometric to the graph of a C^2-function on \mathbb{R}^{n-1}.

In what follows, Δ refers to the distributional Laplacian. We shall make use of the following well-known facts.

Proposition 2.1 (Morrey’s inequality). Assume that $n < p \leq \infty$ and assume that U is a domain in \mathbb{R}^n with C^1 boundary. Then there exists a constant C depending only on n, p and U so that

$$
||u||_{C^{\alpha}(U)} \leq C||u||_{W^{1,p}(U)}
$$

for every $u \in C^1(U) \cap L^p(U)$, where

$$
\alpha = 1 - \frac{n}{p}.
$$

Lemma 1. See e.g. [3]. Suppose that $w \in W^{2,1}_{\text{loc}}(B^n) \cap C(\overline{B^n})$, that $h \in L^p(B^n)$ for some $1 < p < \infty$ and that

$$
\Delta w = h \text{ in } B^n, \text{ with } w|_{\partial B^n} = 0,
$$

a) If $1 < p < n$, then

$$
||\nabla w||_{L^q(B^n)} \leq c(p, n)||h||_{L^p(B^n)}, \quad q = \frac{pn}{n-p}.
$$
b) If \(p = n \) and \(1 < q < \infty \) then
\[
\| \nabla w \|_{L^q(\mathbb{R}^n)} \leq c(q, n)\| h \|_{L^p(\mathbb{R}^n)}.
\]

c) if \(p > n \), then
\[
\| \nabla w \|_{L^q(\mathbb{R}^n)} \leq c(p, n)\| h \|_{L^p(\mathbb{R}^n)}.
\]

Now we prove

Lemma 2. If \(\Delta u = g \in L^p \) and \(r < 1 \), then \(Du \in L^q(\mathbb{R}^n) \) for \(q \leq \frac{np}{n-p} \).

Proof of Lemma By writing \(u = v + w \) from (2), and differentiating it we have

\[
Du(x) = Dv + Dw = \int_{S^{n-1}} \nabla P(x, \eta) f(\eta) d\sigma(\eta) - \int_{\mathbb{R}^n} \nabla_x G(x, y) g(y) dy.
\]

Then
\[
\int_{r\mathbb{B}} |Du(x)|^q dx = \int_{r\mathbb{B}} \left| \int_{S^{n-1}} \nabla_x P(x, \eta) f(\eta) d\sigma(\eta) - \int_{\mathbb{R}^n} \nabla_x G(x, y) g(y) dy \right|^q dx.
\]

Thus
\[
\| Du \|_{L^q(r\mathbb{B})} = \| Dv \|_{L^q(r\mathbb{B})} + \| Dw \|_{L^q(r\mathbb{B})} \\
\leq \left(\int_{r\mathbb{B}} \left| \int_{S^{n-1}} \nabla_x P(x, \eta) f(\eta) d\sigma(\eta) \right|^q dx \right)^{1/q} \\
+ \left(\int_{r\mathbb{B}} \left| \int_{\mathbb{R}^n} \nabla_x G(x, y) g(y) dy \right|^q dx \right)^{1/q}.
\]

There is a constant \(C \) so that

\[
|\nabla_x P(x, \eta)| \leq \frac{C}{(1 - |x|)^{n+1}}.
\]

From Lemma 1 and (6) we have \(\| Du \|_{L^q(r\mathbb{B})} < \infty \). \(\square \)

Now we formulate the following fundamental result of Gehring

Proposition 2.2. \(\square \) Let \(f \) be a quasiconformal mapping of the unit ball \(\mathbb{B}^n \) onto a Jordan domain \(\Omega \) with \(C^2 \) boundary. Then there is a constant \(p = p(K, n) > n \) so that

\[
\int_{\mathbb{B}^n} |Df|^p < C(n, K, f(0), \Omega).
\]

Then we prove

Lemma 3. If \(H : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(w = (w_1, \ldots, w_n) : A \rightarrow B \) (where \(A, B \) are open subsets in \(\mathbb{R}^n \)) are functions from \(C^2 \) class, then:

\[
\Delta(H \circ w) = \sum_{i=1}^{n} \frac{\partial^2 H}{\partial w_i^2} |\nabla w_i|^2 + 2 \sum_{1 \leq i < j \leq n} \frac{\partial^2 H}{\partial w_i \partial w_j} \langle \nabla w_i, \nabla w_j \rangle + \sum_{i=1}^{n} \frac{\partial H}{\partial w_i} \Delta w_i
\]
Thus

\[
\mathcal{A}(H \circ w) = \sum_{k=1}^{n} \frac{\partial^{2}(H \circ w)(x_1, \ldots, x_n)}{\partial x_k^2}
\]

\[
= \sum_{k=1}^{n} \left[\sum_{i=1}^{n} \frac{\partial^2 H}{\partial w_i \partial w_j} \left(\frac{\partial w_i}{\partial x_k} \frac{\partial w_j}{\partial x_k} \right) + \sum_{i=1}^{n} \frac{\partial H}{\partial w_i} \frac{\partial^2 w_i}{\partial x_k^2} \right]
\]

\[
= \sum_{k=1}^{n} \frac{\partial^2 H}{\partial w_i \partial w_j} \left(\frac{\partial w_i}{\partial x_k} \frac{\partial w_j}{\partial x_k} \right) + \sum_{i=1}^{n} \frac{\partial H}{\partial w_i} \sum_{k=1}^{n} \frac{\partial^2 w_i}{\partial x_k^2}
\]

\[
= \sum_{i=1}^{n} \frac{\partial^2 H}{\partial w_i^2} |\nabla w_i|^2 + 2 \sum_{1 \leq i < j \leq n} \frac{\partial^2 H}{\partial w_i \partial w_j} \langle \nabla w_i, \nabla w_j \rangle + \sum_{i=1}^{n} \frac{\partial H}{\partial w_i} \Delta w_i
\]
The quasiconformality of \(f \) and the behavior of \(\nabla H \) near \(\partial \Omega \) imply that there is \(r_0 \in (0, 1) \) so that the weak gradients satisfy
\[
|\nabla h(x)| \approx |\nabla w(x)| \quad \text{for} \quad r_0 \leq |x| < 1.
\]
Moreover, by Lemma \[\text{(2)}\]
for \(q \in (1, \frac{np}{n-p}) \), we have
\[
||\nabla h(x)||_{L^{q}(\partial \Omega)} \leq ||\nabla w(x)||_{L^{q}(\partial \Omega)} \leq C.
\]
It follows that for any \(q \in (1, \frac{np}{n-p}) \) we have that
\[
\nabla h \in L^{q}(\mathbb{B}^{n}) \quad \text{if and only if} \quad \nabla w \in L^{q}(\mathbb{B}^{n}).
\]
A direct computation (from Lemma \[\text{(3)}\]) by using the fact that \(H \in C^{2} \) is real valued, we obtain
\[
|\Delta h| \leq |\nabla w|^{2} + |g|.
\]
The higher integrability of quasiconformal self-maps of \(\mathbb{B}^{n} \) makes sure that \(\nabla (u \circ w) \in L^{q}(\mathbb{B}^{n}) \) for some \(q > n \), which implies that \(\nabla w \in L^{q}(\mathbb{B}^{n}) \). By combining this with the fact that \(g \in L^{p}(\mathbb{B}^{n}) \) with \(p > 1 \), we deduce that \(\Delta h \in L^{r}(\mathbb{B}^{n}) \) with \(r = \min(p, q/2) > 1 \). We use bootstrapping argument based on the following observation: in our situation
\[
\text{if} \quad \nabla w \in L^{q}(\mathbb{B}^{n}) \quad \text{with} \quad n < q < 2n, \quad \text{then} \quad \nabla w \in L^{q/(2n-a)}(\mathbb{B}^{n}),
\]
where \(a = q \wedge 2p \). In order to prove \[\text{(10)}\], assume that \(\nabla w \in L^{q}(\mathbb{B}^{n}) \) for an exponent \(q \in (n, 2n) \). Then \[\text{(9)}\] and our assumption on \(g \) verify that \(\Delta h \in L^{q/(2\wedge p)}(\mathbb{B}^{n}) \). Since \(h \) vanishes continuously on the boundary \(\partial \mathbb{B}^{n} \), we may apply Lemma \[\text{(1 a)}\] to obtain that \(\nabla h \in L^{q/(2n-a)}(\mathbb{B}^{n}) \) which yields the claim according to \[\text{(8)}\].

We then claim that in our situation one has \(\nabla w \in L^{q}(\mathbb{B}^{n}) \) with some exponent \(q > 2n \). To prove that, fix an exponent \(q_{0} > n \) obtained from the higher integrability of the quasiconformal map \(w \) so that \(\nabla w \in L^{q_{0}}(\mathbb{B}^{n}) \). By diminishing \(q_{0} \) if needed, we may well assume that \(q_{0} \in (n, 2n) \) and \(q_{0} \notin \{2^{m}/(2^{m-1} - 1), m = 3, 4, \ldots \} \). Then we may iterate \[\text{(10)}\] and deduce inductively that \(\nabla w \in L^{q_{k}}(\mathbb{B}^{n}) \) for \(k = 0, 1, 2 \ldots k_{0} \), where the indexes \(q_{k} \) satisfy the recursion \(q_{k+1} = \frac{np}{2n-q_{k}} \) and \(k_{0} \) is the first index such that \(q_{k_{0}} > 2n \). Such an index exists since by induction we have the relation \((1 - n/q_{k}) = 2^{k}(1 - n/q_{0}) \), for \(k \geq 0 \). So \(q_{k} > n \). If \(q_{k} \leq 2n \), then we have \(\limsup_{k \rightarrow \infty} (1 - n/q_{k}) = \infty \) which is impossible.

Thus we may assume that \(\nabla w \in L^{q}(\mathbb{B}^{n}) \) with \(q > 2n \). At this stage \[\text{(9)}\] shows that \(\Delta h \in L^{p\wedge(q/2)}(\mathbb{B}^{n}) \). As \(p \wedge (q/2) = p \), Lemma \[\text{(1 a)}\] verifies that \(\nabla h \in L^{p/(n-a-p)}(\mathbb{B}^{n}) \). Finally, by \[\text{(8)}\] we have the same conclusion for \(\nabla w \), and hence by Morrey’s inequality \(w \) is H"{o}lder continuous with the constant \(c = \alpha = 2 - \frac{a}{p} \) as claimed. \(\square \)

If follows from the proof of the previous theorem that
Theorem 2. Assume that $g \in L^2(\mathbb{R}^n)$. If w is a K-quasiconformal solution of $\Delta w = g$, that maps the unit disk onto a bounded Jordan domain $\Omega \subset \mathbb{R}^n$ with C^2-boundary, then $ Dw \in L^p(\mathbb{R}^n)$ for every $p < \infty$.

References

[1] S. Agmon, A. Douglis, and L. Nirenberg: Estimates near the boundary for Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I, Comm. Pure and Appl. Math. 12 (1959) 623–727.
[2] L. Ahlfors: Lectures on Quasiconformal mappings, Van Nostrand Mathematical Studies, D. Van Nostrand 1966.
[3] K. Astala and V. Manojlović: On Pavlović theorem in space, ArXiV Math 1410.7575, To appear in Potential Analysis, DOI 10.1007/s11118-015-9475-4.
[4] R.A. Fefferman, C.E. Kenig and J. Pipher: The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65–124.
[5] Gehring, F.W., The L^p -integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973).
[6] D. Gilbarg and N. Trudinger: Elliptic Partial Differential Equations of Second Order. 2 Edition, Springer 1977, 1983.
[7] G. L. Goluzin: Geometric function theory. Nauka, Moskva 1966.
[8] J. P. Kahane: Trois notes sur les ensembles parfait linearés, Enseign. Math. 15 (1969) 185–192.
[9] D. Kalaj, M. Markovic and M. Mateljević: Carathéodory and Smirnov type theorems for harmonic mappings of the unit disk onto surfaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 565–580.
[10] D. Kalaj, E. Saksman: Quasiconformal mappings with controlled Laplacean, arXiv:1410.8439 to appear in Journal d’ Analyse Math.
[11] D. Kalaj: Harmonic mappings and distance function. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 669–681.
[12] D. Kalaj: On boundary correspondences under quasiconformal harmonic mappings between smooth Jordan domains. Math. Nachr. 285, No. 2-3, 283-294 (2012).
[13] D. Kalaj: A priori estimate of gradient of a solution to certain differential inequality and quasiregular mappings, Journal d’Analyse Mathematique 119 (2013), 63–88.
[14] D. Kalaj: Quasiconformal harmonic mappings between Dini’s smooth Jordan domains, Pac. J. Math. 276, No. 1, 213-228 (2015).
[15] D. Kalaj, M. Mateljević: (K, K')-quasiconformal harmonic mappings. Potential Anal. 36, No. 1, 117-135 (2012).
[16] D. Kalaj, M. Mateljević: Inner estimate and quasiconformal harmonic maps between smooth domains. J. Anal. Math. 100 (2006).
[17] D. Kalaj, M. Pavlović: On quasiconformal self-mappings of the unit disk satisfying the Poisson equation, Trans. Amer. Math. Soc. 363 (2011) 4043–4061.
[18] O. Martio: On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn., Ser. A I 425 (1968), 3-10.
[19] O. Martio, Näkki, R.: Continuation of quasiconformal mappings. (Russian) Translated from the English by N. S. Dairbekov. Sibirsk. Mat. Zh. 28 (1987), no. 4, 162–170.
[20] O. Martio, R. Näkki, Boundary Hölder continuity and quasiconformal mappings. J. London Math. Soc. (2) 44 (1991), no. 2, 339–350.
[21] Yu. G. Reshetnyak: *Generalized derivatives and differentiability almost everywhere.* (Russian) Mat. Sb. (N.S.) 75(117) 1968, 323–334.

[22] C. Pommerenke: *Boundary behaviour of conformal maps.* Grundlehren der Mathematischen Wissenschaften. 299. Berlin: Springer-Verlag. ix, 300 p. (1992).

[23] D. Partyka and K. Sakan: *Heinz type inequalities for Poisson integrals.* Comput. Methods Funct. Theory 14, No. 2-3, 219-236 (2014).

[24] D. Partyka and K. Sakan: *On bi-Lipschitz type inequalities for quasiconformal harmonic mappings,* Ann. Acad. Sci. Fenn. Math. Vol 32, pp. 579-594 (2007).

[25] D. Partyka and K. Sakan: *Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains.* Ann. Acad. Sci. Fenn., Math. 39, No. 2, 811-830 (2014).

[26] M. Pavlović: *Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disc,* Ann. Acad. Sci. Fenn., Vol 27, (2002) 365-372.

[27] G. Piranian: *Two monotonic, singular, uniformly almost smooth functions,* Duke Math. J. 33 (1966), 255–262.

[28] W. Rudin: *Real and complex analysis.* Third edition. McGraw-Hill 1986.

[29] E. M. Stein: *Singular integrals and differentiability properties of functions.* Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970

[30] E. M. Stein: *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.* With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993.

[31] H. Triebel: *Interpolation theory, function spaces, differential operators.* 2. Auflage. Barth, Heidelberg 1995.

University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b. 81000 Podgorica, Montenegro

E-mail address: davidkalaj@gmail.com

Department of Mathematics, University Luigi Gurakuqi, Shkodra, Albania

E-mail address: arsen_zn@yahoo.fr