Multi-paraphrase Augmentation to Leverage Neural Caption Translation

Johanes Effendi¹, Sakriani Sakti¹,², Katsuhito Sudoh¹,², Satoshi Nakamura¹,²
{johanes.effendi.ix4,ssakti,sudoh,s-nakamura}@is.naist.jp

¹Nara Institute of Science and Technology, Japan
²RIKEN, Center for Advanced Intelligence Project AIP, Japan
Outline

- Introduction
- Image-based Paraphrasing
- Proposed Idea
- Corpus Creation
- Experimental Settings
- Experiment Results
- Conclusion and Future Works
Introduction
Machine Translation

- Text-to-text translation
- Parallel text dataset
- What about similar sentences?
- Concept-to-concept translation
 - Mapping latent representation into another latent representation

Source sentence EN \[\rightarrow\] MT \[\rightarrow\] Target sentence DE

(this latent representation can be represented into different sentences)
Multiple sources or references

• Multiple sources into one target

• Multiple references
Multimodal NMT

• WMT17 Multimodal Translation Task
 – Translate a caption with the image provided

• Based on concept-to-concept idea:

Source sentence EN MT Target sentence DE

(this latent representation can be represented into different sentences)
Multimodal NMT (cont.)

- Common approach:
 - Incorporate latent image representation in various NMT components
 - Caglayan et al. (2016,2017), Calixto et al. (2017)
• Zhang et al. (2017) integrated similar image information as additional input
Difficulties with Multimodal NMT

- Powerful, but complicated
- The image encoder (VGG, ResNet) are resource intensive
- Difficulties combining latent spaces from different modalities
 - Not all information is useful for translation
- Improvement reached might not be as rewarding as the effort
Image-based Paraphrasing
Image-based Paraphrasing

- Represent image as texts

Common approach

Our proposed approach

- Image-based paraphrase / Visually Grounded Paraphrase
- Rewrite source sentence with image as basis of paraphrasing
- Enable multi-source information in NMT
Difference with common MT paraphrases

• Paraphrasing to elaborate source language data
• Augment the dataset size in SMT
 • (Nichols et al., 2010, He et al., 2011)
• **Recent work:** only reordering and substitution are used

• **In this work:** with image as the basis of paraphrasing, deletion and insertion of information is possible
How to generate paraphrase from image?

- If random paraphrase is inputted, it might become noisy to each other
 - How many variations?
- Bhagat and Hovy (2013) studied on how many paraphrase operations language can possibly make
 - 25 quasi-paraphrases
 - Survey the occurrence of each quasi-paraphrases in Microsoft Research Paraphrase Corpus (MSR Corpus)
Quasi Paraphrases - Frequency

No	name	%Freq in MSR
1	Synonym substitution	19
2	Antonym substitution	0
3	Converse substitution	0
4	Change of voice	1
5	Change of person	1
	Pronoun/Co-referent	
6	substitution	1
7	Repetition/Ellipsis	4
8	Function word variations	30
9	Actor/Action Substitution	0
	Verb/Semantic-role noun	
10	substitution	0
	Manipulator/Device	
11	substitution	0
	General/Specific	
12	substitution	3
13	Metaphor substitution	1
14	Part/Whole substitution	
15	Verb/Noun conversion	0
	Verb/Adjective	
16	conversion	0
17	Verb/Adverb conversion	0
	Noun/Adjective	
18	conversion	0
	Verb-preposition/Noun	
19	substitution	0
20	Change of tense	1
21	Change of aspect	0
22	Change of modality	0
23	Semantic implication	4
	Approximate numerical	
24	equivalences	2
25	External knowledge	32

Some quasi-paraphrases have low frequency in MSR Corpus

Bhagat, R., & Hovy, E. (2013). What Is a Paraphrase? Computational Linguistics, 39(3), 463-472.
Simplify into four elements

- Some quasi-paraphrases have low frequencies
- Some quasi-paraphrases are too fine-grained
- Having 25 kinds of input sentences might be too difficult

25 kinds of paraphrases?

Source sentence
Source sentence
Source sentence
Source sentence
Source sentence

NMT

Target sentence
We grouped it into four elementary operations:

- Deletion
- Insertion
- Reordering
- Substitution

Each source sentence now paraphrased into four paraphrase
Proposed Idea
Two Possibilities on Data Usage

• Several paraphrase as input enables two scenario:
 – data augmentation
 – multi-source

• Simple data augmentation == combining all data

• Multi-source: separate dataset per paraphrase operation
Determining Integration Point

- Multi-source combination:
 - preserves relation between paraphrases
 - on which NMT stage?
- Decoding phase and result space for this work
- Other phase is omitted for further study

Feature combination and selection

Variable length, different alignment problem

Combining attention and encoded rep.

Expert ensembling

Feature space → Encoding phase → Decoding phase → Result space (this study)
Multi-source NMT

- Modification from Zoph and Knight (2016)
 - Used for purely NMT task {Fr, De} -> En
 - In this research, used for monolingual input or pair
 - Investigate various combination functions

Could be Paraphrasing Each other
Garmash et al. (2016) proposed that using decoder hidden state to predict weight combination yields better result.

- Combination of several encoder-decoder model regarded as expert
- Used for paraphrased source sentences in this study
- Mixture model predicts weight for every model
- Final aggregated output weight is the linear combination:

\[W_{agg} = g_0 W_0 + g_1 W_1 + \cdots + g_n W_n \]
Overall System: Paraphrase + Translation

Multi-paraphrase Augmentation to Leverage Neural Caption Translation – IWSLT 2018
Corpus Creation
Multi-paraphrase corpus creation

• Paraphrase WMT 2017 Multimodal Translation corpus
 – using crowdsourcing
• Using image as the basis of paraphrasing, the crowdworker paraphrase
 – Original -> {deletion, insertion, reordering, substitution}
• 3 months; 201 workers; 16 countries
 – English speaking countries, or at least English as second language
• Crowdsourced 10k of training data, dev, test

Caption : A little gray dog jumps over a small hurdle.
Deletion : A little gray dog jumps over a hurdle.
Insertion : A little gray dog jumps over a small hurdle successfully.
Substitution: A little gray dog pass over a small hurdle.
Reordering : Over a small hurdle, a little gray dog jumps.
Generating the remaining paraphrases

- WMT dataset size is 29k pair
- Crowdsourcing successfully paraphrased 10k sentences

- Trained LSTM Encoder Decoder models for each paraphrase operation
 - Using 10k crowdsourced paraphrase
 - To generate remaining 19k paraphrase
Experimental Settings
Data Composition

• Combined paraphrased dataset with original dataset
 – Resulting 58k training data for each operation
 – The paraphrased data works as regularizer

• For dev and test dataset:
 – For paraphrasing: paraphrased dataset is used
 – For translation: original dataset is used

For each expert translation model:

Training data 58k	Original data 29k	Paraphrased data 29k
		Crowdsourced 10k
		Generated 19k
Experiment Results
- BLEU and METEOR are actually metrics for translation
- In this result, it is used to measure the performance of paraphrasing model
 - To give some sense of the paraphrasing performance

Operation	BLEU	METEOR
Deletion	53.0	42.2
Insertion	56.1	40.5
Reordering	47.2	42.0
Substitution	59.6	44.8
Experiment Result - Translation

Model Name	Test 2016		Test 2017		Test COCO 2017	
	BLEU	METEOR	BLEU	METEOR	BLEU	METEOR
Our NMT Baseline	37.7	55.6	30.1	49.7	25.0	44.6
Combine all data	36.7	53.9	29.6	47.7	25.1	43.7
Multi-source	37.0	55.0	30.8	49.6	25.0	44.3
Uniform weighted	39.6	56.9	31.4	50.7	26.7	46.0
Mixture of Expert	40.5	57.6	32.5	51.3	28.0	46.8

- Combining all data shows decrease in performance
- Mixture of Expert yields the best result
- Test COCO 2017 (ambiguous situation)
Result comparison with other models

Model Name	Type	Test 2016	Test 2017	Test COCO 2017			
		BLEU	MTR	BLEU	MTR		
Official WMT Baseline	Textual	32.5	52.5	19.3	41.9	18.7	37.6
Zhang et al. (2017)	Textual	-	-	31.9	53.9	28.1	48.5
Madhyastha et al. (2017)	Multimodal	-	-	25.0	44.5	21.4	40.7
Calixto et al. (2017)	Multimodal	41.3	59.2	29.8	50.5	26.4	45.8
Ma et al. (2017)	Multimodal	-	-	31.0	50.6	27.4	46.5
Helcl and Libovicky (2017)	Multimodal	36.8	53.1	31.1	51.0	26.6	46.0
Caglayan et al. (2017)	Multimodal	41.0	60.4	33.4	54.0	28.5	48.8
(Ours) Mixture-of-Expert	Textual	40.5	57.6	32.5	51.3	28.0	46.8

- Outperform almost all models, except one
- Works in par with other multimodal model
 - Only using textual information
Result Example - Unsuccessful

Type	Source Sentences	Translation Model	Type	Target Sentences	BLEU-1
(Data)	a little girl climbing metal rope cables wearing a long pink skirt and black t-shirt	Baseline /NMT	Original	ein kleines mädchen klettert metall an einem seil, das einen langen rosafarbenen rock und einem schwarzen t-shirt klettert.	0.9
(Data)			Single Paraphrased	ein kleines mädchen klettert metall seilen und einem schwarzen t-shirt klettert.	0.47
(Data)			Insertion	ein kleines mädchen klettert mit einem langen rosafarbenen rock an einem seil hoch.	0.61
(Data)			Reordering	ein kleines mädchen in einem langen pinkfarbenen rock und schwarzem t-shirt klettert metall an einem seil.	0.76
(Data)			Substitution	ein kleines mädchen klettert an einem seil seilen metall und einem schwarzen t-shirt klettert.	0.63
(Data)			Uniform Weight	ein kleines mädchen klettert an einem seil seil und einem schwarzen t-shirt hoch.	0.59
(Data)			Mixture of Expert	ein kleines mädchen klettert metall mit einem langen rosafarbenen rock und einem schwarzen t-shirt.	0.67
(Data)			(Data)	ein kleines mädchen, das an metallseilen hochklettert und einen langen rosafarbenen rock und ein schwarzes t-shirt trägt.	

Final hypothesis is quite different with target
Result Example - Successful

Type	Translation Model	Source Sentences (Data)	Target Sentences	BLEU-1
(Data)	Original	two motorcycles drive on a road along the river .	zweie Motorradfahrer fahren auf einer Straße entlang .	0.75

The word “motorradfahrer” should be “motorräder fahren”

“dem fluss” is missing

Corrected in final result

Corrected in final result
Conclusions and Future Works
Conclusions

• A single caption cannot represent all the information of the image to which it refers to

• Generated multi-paraphrase of the WMT17 Multimodal Translation Task
 – Partially crowdsourcing with image as the basis of paraphrasing
 – Neural paraphrasing to complete the paraphrasing in semi-supervised way

• Proposed a textual model, in which the image information is not included in the model, but diffused in form of paraphrased caption

• +2.4 BLEU improvement over our NMT baseline
Future Works

- Try different combination strategies/integration point
- Investigate this proposed approach for another usage
 - Not limited for image caption translation
- Further investigate various methods of incorporating visual information
• Thanks for your attention!
References

- Rahul Bhagat and Eduard Hovy. What is a paraphrase? Computational Linguistics, 39(3):463–472, 2013.
- Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 28–39. Association for Computational Linguistics, 2017.
- Yee Seng Chan, Hwee Tou Ng, and David Chiang. Word sense disambiguation improves statistical machine translation. In ACL, 2007.
- Marine Carpuat and Dekai Wu. Improving statistical machine translation using word sense disambiguation. In In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 61–72, 2007.
- Katharina Wäschle and Stefan Riezler. Integrating a large, monolingual corpus as translation memory into statistical machine translation. In Proceedings of the 18th Annual Conference of the European Association for Machine Translation, 2015.
- Çağlar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barrault, Huei- Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural machine translation. CoRR, abs/1503.03535, 2015.
- Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96. Association for Computational Linguistics, 2016.
- 42Rajen Chatterjee, Matteo Negri, Marco Turchi, Marcello Federico, Lucia Specia, and Frédéric Blain. Guiding neural machine translation decoding with external knowledge, 01 2017.
- 43Liang Zhou, Chin-Yew Lin, and Eduard Hovy. Re-evaluating machine translation results with paraphrase support. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 77–84, Stroudsburg, PA, USA, 2006.
- 44Santanu Pal, Pintu Lohar, and Sudip Kumar Naskar. Role of paraphrases in pb-smt. In Proceedings of the 15th International Conference on Computational Linguistics and Intelligent Text Processing - Volume 8404, CICLing 2014, pages 242–253, Berlin, Heidelberg, 2014. Springer-Verlag.
- 45Nitin Madnani and Bonnie J. Dorr. Generating targeted paraphrases for improved translation. ACM Trans. Intell. Syst. Technol., 4(3):40:1–40:25, July 2013.
- 46Eric Nichols, Francis Bond, D Scott Appling, and Yuji Matsumoto. Paraphrasing training data for statistical machine translation. Journal of Natural Language Processing, 17(3):3101–3122, 2010.
- 47Wei He, Shiqi Zhao, Halfeng Wang, and Ting Liu. Enriching smt training data via paraphrasing. In IJCNLP, 2011.
- 48Anabela Barreiro. SPIDER: A System for Paraphrasing in Document Editing and Revision — Applicability in Machine Translation Pre-editing, pages 365–376. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
- 49Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical machine translation using paraphrases. In Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL ’06), pages 17–24, Stroudsburg, PA, USA, 2006.
- 50Michel Simard, Cyril Goutte, and Pierre Isabelle. Statistical phrase-based post-editing. In Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT-NAACL ’07), pages 508–515, Rochester, NY, USA, 2007.
- 51Ekaterina Garmash and Christof Monz. Ensemble learning for multi-source neural machine translation. In COLING, 2016.
- 52Barret Zoph and Kevin Knight. Multi source neural translation. arXiv preprint arXiv:1601.00710, 2016.
- 53Ozan Caglayan, Walid Aransa, Adrien Bardet, Mercedes Garcia-Martinez, Fethi Bougares, Loïc Barrault, Marc Masana, Luis Herranz, and Joost van de Weijer. LIUM-CVC submissions for WMT17 multimodal translation task. CoRR, abs/1707.04481, 2017.
- 54Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and Satoshi Nakamura. Nict-naist system for wmt17 multimodal translation task. In WMT, 2017.
- 55Jindrich Helcl and Jindrich Libovicky. CUNI system for the WMT17 multimodal translation task. CoRR, abs/1707.04550, 2017.
Multi-paraphrase Augmentation to Leverage Neural Caption Translation – IWSLT 2018