ABSTRACT: Fix a sequence $c = (c_1, \ldots, c_n)$ of non-negative integers with sum $n - 1$. We say a rooted tree T has child sequence c if it is possible to order the nodes of T as v_1, \ldots, v_n so that for each $1 \leq i \leq n$, v_i has exactly c_i children. Let T be a plane tree drawn uniformly at random from among all plane trees with child sequence c. In this note we prove sub-Gaussian tail bounds on the height (greatest depth of any node) and width (greatest number of nodes at any single depth) of T. These bounds are optimal up to the constant in the exponent when c satisfies $\sum_{i=1}^n c_i^2 = O(n)$; the latter can be viewed as a “finite variance” condition for the child sequence.

© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 41, 253–261, 2012

Keywords: random trees; height; width; configuration model

1. INTRODUCTION

For a positive integer n, let $c = (c_i)_{i=1}^n$ be a sequence of non-negative integers whose sum is $n - 1$ (we call such a sequence a child sequence). In this paper we consider the random plane tree \mathcal{T}_c, chosen uniformly at random from the set of plane trees (rooted ordered trees) T with n nodes for which, for some ordering v_1, \ldots, v_n of the nodes of T, node v_i has c_i children, for each $i \in [n] = \{1, \ldots, n\}$. The number of such trees is

$$\frac{1}{n!} \frac{n!}{\prod_{k=1}^n n_k!},$$

(1)
are the following sub-Gaussian tail bounds on the width and height of T:

For a given tree T and call the invariants F or any n from

Theorem 1.

Theorem 1. For any $n \geq 1$ and all $m \geq 1$,

$$\Pr \left(w(T_c) \geq m + 2 \right) \leq 3e^{-m^2/(152|c|^2)} \quad \text{and} \quad \Pr \left(h(T_c) \geq m \right) \leq 7e^{-m^2/(608|c|^2|\epsilon|^2)}.$$

Remarks.

- When $|c|^2 = O(n)$, this result is best possible up to the constants in the exponents. For the width, this follows from a connection, explained below, between the width and the fluctuations of random lattice paths. For the height, consider for example the special case where $n = 2m + 1$ and c consists of m twos and $m + 1$ zeros. Then T_c is a uniformly random binary plane tree, and in this case our bound (and the fact that it is tight) is a well-known result of Flajolet, Gao, Odlyzko and Richmond [5, Theorem 1.3].
- A result related to Theorem 1 appears in [1]. Fix a random variable B with $\mathbb{E}B = 1$ and $0 < \text{Var}[B] < \infty$. Then, for $n \geq 1$, let T_n be a Galton–Watson tree with offspring distribution B, conditioned to have total progeny n. [1, Theorems 1.1 and 1.2] then state that, for some $\epsilon > 0$ not depending on n, $\Pr \{ w(T_n) > t \} \leq \exp(-\epsilon t^2/n)$, and if additionally $\text{Var}[B] > 0$ then $\Pr \{ h(T_n) > t \} \leq \exp(-\epsilon t^2/n)$. The requirement that $\text{Var}[B] > 0$ excludes the degenerate case where $\Pr \{ B = 1 \} = 1$. Note that if B_1, \ldots, B_n are independent copies of B then $\mathbb{E} \left[\sum_{i=1}^n B_i^2 \right] = n \cdot (\text{Var}[B] + 1)$, and so the finite variance condition would roughly correspond in our setting to a requirement that $|c|^2 = O(n)$. Now temporarily write C_1, \ldots, C_n for the numbers of children of the nodes of T_n (note that C_1, \ldots, C_n are exchangeable, but are not independent—their sum is $n - 1$—and are not distributed as B). We conjecture that in fact $\Pr \left[\sum_{i=1}^n C_i^2 - n \cdot (\text{Var}[B] + 1) \right]$ has Gaussian tails. A proof of this would show that the main results of [1] can be recovered from Theorem 1.
- • In forthcoming work [3], Broutin and Marckert use the tail bound for the height in Theorem 1 as an ingredient in proving that, under suitable conditions on the child sequence, c, the tree T_c converges in distribution to a Brownian continuum random tree after suitable rescaling.
- • In [2], a bound very similar to the second bound of Theorem 1 was required, for the height of a uniformly random labelled rooted tree of a fixed size. This bound was a key step in establishing the existence of a distributional Gromov–Hausdorff scaling limit.
for the sequence of rescaled components of a critical Erdős–Rényi random graph $G_{n,p}$ when $p = p(n)$ is in the critical window $p - 1/n = O(n^{-2/3})$. The results of this paper may thus be seen as a step towards establishing that the same scaling limit obtains for the sequence of components of a critical random graph with a given degree sequence [6, 7, 11]. This is a line of enquiry that we shall pursue in a future paper.

- The appearance of the term $1/\epsilon$ in the bound on the height is necessary. For example, the sequence $c = (1, 1, \ldots, 1, 0)$ corresponds to a unique rooted plane tree, of height n. (For technical convenience, we exclude this unique, degenerate case from consideration for the remainder of the paper. Note that for any other child sequence c, we have $|c| \geq n$.) More generally, given c, define the one-reduced sequence c^*, obtained by suppressing all entries of c which are equal to one. If c has k entries which are equal to one, then a tree with distribution T_c can then be generated from the tree T_c^* by repeatedly choosing a node v uniformly at random, then subdividing the edge between v and its parent (or, if v happens to be the root, then adding a new node above v and rerooting at this new node). Under this construction, each edge in T_c^* is subdivided $k/(n - k)$ times on average, and this is precisely the factor encoded by $1/\epsilon$.

The remainder of the note is devoted to proving Theorem 1. We first briefly describe a family of bijective correspondences between rooted plane trees and certain lattice paths; these correspondences allow us to prove bounds for the height and width by studying the fluctuations of a certain martingale. We accomplish this bounding by using a martingale concentration result of McDiarmid [9], which appears as Theorem 2, below. This immediately yields the first bound in Theorem 1; the second requires a little further thought, and the use of a negative association result of Dubhashi [4]. Forthwith the details.

2. THE ULAM–HARRIS TREE, BREADTH-FIRST SEARCH, LEX-DFS AND REV-DFS

Below is a brief review of some basic connections between rooted plane trees and lattice paths. An excellent and detailed reference, with proofs, is [8]. The Ulam–Harris tree U is the tree with root \emptyset whose non-root nodes correspond to finite sequences of positive integers $v_1 \ldots v_k$, with $v_1 \ldots v_k$ having parent $v_1 \ldots v_{k-1}$ and children $\{v_1 \ldots v_k i : i \in \{1, 2, \ldots\}\}$. For a node v of U we think of vi as the ith child of v. Any rooted plane tree T in which all nodes have at most countably many children can be viewed as a subtree of U by sending the root of T to the root \emptyset of U and using the ordering of children in T to recursively define an embedding of T into U.

Having viewed T as a subtree of U, we now define three orderings on the nodes of T:

1. breadth-first search (or BFS) order lists the nodes of T in increasing order of depth, and for nodes of the same depth, in lexicographic order (so, for example, node 2, 3 would appear before 3, 1 but after 1, 7);
2. lexicographic depth-first search (or lex-DFS) order lists the nodes of T in lexicographic order;
3. reverse lexicographic depth-first search (or rev-DFS) is most easily described informally. Let T^* be the mirror-image of T, and list the nodes of T in the order they (their mirror images) appear in a lexicographic depth-first search of T^*.

The use of rev-DFS to bound heights of trees was introduced in [1]. Each of these orders have the property that when a node v appears in the order, its parent in T has already appeared.
For such orders, we may define a queue process, as follows. Given the order \(u_1, \ldots, u_n \) of the nodes of \(T \). Let \(Q_0 = 1 \) and, for \(1 \leq i \leq n \), let \(Q_i = Q_{i-1} + c_{u_i} \), where \(c_{u_i} \) is the number of children of \(u_i \) in \(T \). Then \(Q_i \) is the number of nodes \(u \) of the tree whose parent is among \(u_1, \ldots, u_i \) but who are not themselves among \(u_1, \ldots, u_i \). We will thus always have \(Q_i > 0 \) for \(i < n \) and \(Q_n = 0 \). We write \((Q^i(T))_{i=1}^n \) for the queue process on the BFS order of \(T \), and likewise define \((Q^b(T))_{i=1}^n \) and \((Q^l(T))_{i=1}^n \) for the lex-DFS and rev-DFS orders, respectively.

Given the tree \(T \), the preceding three processes are uniquely specified. Conversely, given any of the three sequences \((Q^b(T))_{i=1}^n \), \(x \in b, l, r \), the tree \(T \) can be recovered. For each \(x \in b, l, r \), this provides a bijection between rooted plane trees with \(n \) nodes, on the one hand, and child sequences \((c_i)_{i=1}^n \) with \(\sum_{1 \leq i \leq k} (c_i - 1) \geq 0 \) for all \(1 \leq k < n \). Call such sequences tree sequences.

Given a sequence \(c = (c_i)_{i=1}^n \), set \(S_0 = 1 \) and \(S_i = S_i(c) = 1 + \sum_{j=1}^i (c_j - 1) \) for \(i \in [n] \). Also, given a permutation \(\sigma : [n] \to [n] \), write \(\sigma(c) \) for the sequence \((c_{\sigma(i)})_{i=1}^n \). For a given sequence \(c = (c_1, \ldots, c_n) \) of non-negative integers with sum \(n - 1 \), there is a unique cyclic permutation \(\sigma = \sigma_c : [n] \to [n] \) for which the sequence of partial sums \(\sigma(c) \) forms a tree sequence. (This fact yields a one-line proof of (1), above, by considering the number of permutations leaving \(c \) unchanged.) To be precise, \(\sigma \) is the cyclic permutation sending \(k \) to \(n \), where \(k \) is the least index at which the sequence \((S_i(c))_{i=0}^n \) achieves its minimum overall value. Fix \(x \in \{b, l, r\} \) and write \(T^x(c) \) for the tree \(T \) corresponding to \(\sigma_x(c) \) under the \(x \)-bijection. It follows that letting \(\tau \) be a uniformly random permutation of \([n]\), the tree \(T^\tau(x(c)) \) is a uniformly random tree with child sequence \(c \). Conversely, if \(T \) is a uniformly random tree, then \((Q^b(T))_{i=1}^n \) is distributed as \((S_i(\sigma_C(C(c))))_{i=0}^n \), where \(C = \tau(x) \) and \(\tau \) is a uniformly random permutation, independent of \(C \). In particular, \(\sigma_C(C) = \sigma_x(c) \).

3. Martingales for the Queue Processes

We will use a martingale inequality that can be found in [9]. Let \(\{X_i\}_{i=0}^n \) be a bounded martingale adapted to a filtration \(\{\mathcal{F}_i\}_{i=0}^n \). Let \(V = \sum_{i=0}^n \text{Var}[X_{i+1}|\mathcal{F}_i] \), where

\[
\text{Var}[X_{i+1}|\mathcal{F}_i] := E[(X_{i+1} - X_i)^2|\mathcal{F}_i] = E[X_{i+1}^2|\mathcal{F}_i] - X_i^2
\]

is the predictable quadratic variation of \(X_{i+1} \). Define

\[
v = \text{ess sup} V, \quad \text{and} \quad b = \max_{0 \leq i \leq n-1} \text{ess sup}(X_{i+1} - X_i|\mathcal{F}_i).
\]

Then we have the following bound.

Theorem 2 ([9], Theorem 3.15). For any \(t \geq 0 \),

\[
P\left(\max_{0 \leq i \leq n} X_i \geq t \right) \leq \exp\left(-\frac{t^2}{2v(1 + bt/(3v))} \right).
\]

In [9], this result is stated for \(P[X_n \geq t] \) rather than for the supremum of the \(X_i \) as above. However, as noted by McDiarmid, the proof is based on bounding \(E[e^{hX_n}] \) for suitably chosen \(h > 0 \). Since \(e^{hX_i}, 0 \leq i \leq n \) is a submartingale, the version for the supremum in fact holds by a simple application of Doob’s inequality.
Now, fix a child sequence \(c = (c_1, \ldots, c_n) \) and \(x \in \{b, l, r\} \). Let \(\tau : [n] \to [n] \) be a uniformly random permutation, and write \(C = (C_1, \ldots, C_n) = (\tau(c)) \).

For \(0 \leq k \leq n - 1 \) let \(n_k^i = \# \{ j : C_j = k \} = n_i(c) \). For \(i > 0 \) and \(0 \leq k \leq n - 1 \), define

\[
n_k^i = n_k^i (C) = \begin{cases} n_{k-1}^i & \text{if } C_i \neq k, \\ n_{k-1}^i - 1 & \text{if } C_i = k, \end{cases}
\]

and note that \(n_k^i = \# \{ j > i : C_j = k \} \). Then for all \(0 \leq i \leq n \), \(\sum_{k=0}^{n-1} n_k^i = n - i \).

Also, for each \(1 \leq i \leq n \), there is a single \(k \) with \(n_k^i \neq n_k^i - 1 \), and furthermore, for this \(k \),

\[
S_i(C) = S_{i-1}(C) + k - 1. \quad \text{Thus, for all } 0 \leq i \leq n,
\]

\[
\sum_{k=0}^{n-1} kn_k^i + S_i = \sum_{k=0}^{n-1} kn_k^i - i = n - 1 - i.
\]

Writing \(\mathcal{F}_i \) for the sigma-field generated by \(S_0, \ldots, S_i \), we then have

\[
\mathbb{E}[S_{i+1} | \mathcal{F}_i] = S_i + \sum_{j=0}^{n-1} (j-1) \frac{n_j^i}{n-i} = S_i - S_i + 1 \quad \text{and}
\]

\[
\mathbb{E}\left[S_{i+1}^2 | \mathcal{F}_i \right] = \sum_{k=0}^{n-1} (S_k + (k-1))^2 \frac{n_k^i}{n-i} = S_i^2 - 2S_i(S_i+1) \frac{n_i^i}{n-i} + \sum_{k=0}^{n-1} (k-1)^2 \frac{n_k^i}{n-i}.
\]

At this point it would be natural to turn to the study of the martingale whose value at time \(i \) is \(S_i + \sum_{j=0}^{i-1} (S_j + 1)/(n-j) \), or in other words to subtract off the predictable part. However, this would require us to separately bound the sums of the \((S_j + 1)/(n-j) \), and a more direct route is to simply bound these summands directly. From the preceding equations, for \(i < n \) we have

\[
\mathbb{E}\left[\frac{S_{i+1} + 1}{n-(i+1)} \right| \mathcal{F}_i \right] = \frac{S_i + 1}{n-(i+1)} - \frac{S_i + 1}{(n-i)(n-(i+1))} = \frac{S_i + 1}{n-i}.
\]

Here we take \(0/0 = 1 \) by convention to deal with the term \(i = n - 1 \). Thus, \(M_i = (S_i + 1)/(n-i) \) is an \(\mathcal{F}_i \)-martingale. Since \(S_{i+1} \geq S_i - 1 \) for each \(i < n \), for \(i < [n/2] \) we have

\[
M_{i+1} = \frac{S_{i+1} + 1}{n-(i+1)} = \frac{S_i + 1}{n-(i+1)} - \frac{2}{n}
\]

\[
= \frac{S_i + 1}{n-i} - \frac{S_i + 1}{(n-i)(n-(i+1))} - \frac{2}{n} \geq \frac{S_i + 1}{n-i} - \frac{4}{n} = M_i - \frac{4}{n},
\]

which we will use below when applying Theorem 2. We also have

\[
\text{Var}[M_{i+1} | \mathcal{F}_i] = \mathbb{E}[M_{i+1}^2 | \mathcal{F}_i] - M_i^2
\]

\[
= \frac{1}{(n-(i+1))^2} \left(\mathbb{E}[S_{i+1}^2 | \mathcal{F}_i] + 2\mathbb{E}[S_{i+1} | \mathcal{F}_i] + 1 \right) - \left(\frac{S_i + 1}{n-i} \right)^2.
\]
Writing \(a = \sum_{i=1}^{\lfloor n/2 \rfloor} c_i^2 / n \), for \(i < \lfloor n/2 \rfloor \) we obtain the bound

\[
\text{Var}[M_{i+1} | \mathcal{F}_i] \leq \frac{8a}{n^2},
\]

and so

\[
\sum_{i=1}^{\lfloor n/2 \rfloor} \text{Var}[M_i | \mathcal{F}_{i-1}] \leq \frac{8a}{n}.
\]

It follows by applying Theorem 2 to \(\{-M_i\}_{i=0}^{\lfloor n/2 \rfloor} \) that for all \(t \geq 0 \),

\[
P\left\{ \min_{0 \leq i \leq \lfloor n/2 \rfloor} S_i \leq -(t + 1) \right\} \leq P\left\{ \min_{0 \leq i \leq \lfloor n/2 \rfloor} \frac{S_i + 1}{n - i} \leq -\frac{t}{n} \right\} \leq \exp\left(-\frac{t^2}{164an + 8t/3}\right). \tag{2}
\]

Recall that \(\sigma_c \) is the unique cyclic permutation \(\sigma \) which makes \(\sigma(c) \) a tree sequence. We are now prepared for our principal bound on the fluctuations of \(\{S_i(\sigma(c)), 0 \leq i \leq n\} \).

Theorem 3. For any non-negative integer \(m \),

\[
P\left\{ \max_{0 \leq i \leq n} S_i(\sigma_c(c)) \geq m + 2 \right\} \leq 3 \exp\left(-\frac{m^2}{152|c|^2}\right).
\]

Proof. We will prove the theorem by showing that

\[
P\left\{ \max_{0 \leq i \leq n} S_i(\sigma_c(c)) \geq m + 2 \right\} \leq 3P\left\{ \min_{0 \leq i \leq \lfloor n/2 \rfloor} S_i \leq -(m/3 + 1) \right\}. \tag{3}
\]

Assuming that this bound holds, by (2) we then have that

\[
P\left\{ \max_{0 \leq i \leq n} S_i(\sigma_c(c)) \geq m + 2 \right\} \leq 3 \exp\left(-\frac{m^2}{144an + 8m}\right).
\]

But \(8m < 8(n - 3) < 8|c|^2 \) and \(144an = 144|c|^2 \), and the result follows.

It therefore remains to prove (3). Since \(\sigma_c(c) = \sigma_c(C) \), it suffices to bound the probability \(P\{\max_{0 \leq i \leq n} S_i(\sigma(C)) \geq m + 2\} \), which is what we shall do. Also, for \(m \geq n - 3 \) the event under consideration can never occur, so we may and shall assume \(m < n - 3 \). Finally, for this proof, by \(S_i \) we mean \(S_i(C) \) unless an argument is provided.

First note that if \(\max_{0 \leq i \leq n} S_i(\sigma(C)) = m + 2 \), then

\[
\max_{0 \leq i \leq n} S_i - \min_{0 \leq i \leq n} S_i = m + 3. \tag{4}
\]
If (a) does not occur then \(\{S_i, 0 \leq i \leq n\} \) drops in value significantly. Let \(m_0 = \max_{0 \leq i \leq \lfloor n/2 \rfloor} S_i \), and consider the following two events.

a. \(\min_{0 \leq i \leq \lfloor n/2 \rfloor} S_i \leq -(m + 3)/3 \)

b. \(S_{\lfloor n/2 \rfloor} \leq m_0 - (m + 3)/3 \).

If (a) does not occur then \(\{S_0, S_1, \ldots, S_{\lfloor n/2 \rfloor}\} \subset (- (m + 3)/3, m_0) \). Thus, if neither (a) nor (b) occur then for (4) to hold one of the following must take place.

c. \(m_0 > 2(m + 1)/3 \),

d. \(\max_{\lfloor n/2 \rfloor < i \leq n} S_i > 2(m + 3)/3 \),

e. \(\min_{\lfloor n/2 \rfloor < i \leq n} S_i < m_0 - (m + 3) \).

If (b) does not occur but (c) occurs then \(S_n - S_{\lfloor n/2 \rfloor} < -(m + 3)/3 \). If (d) occurs then since \(S_n = -1, S_n - \max_{\lfloor n/2 \rfloor < i \leq n} S_i < -2(m + 3)/3 \).

Now note that if either (a) or (b) occurs then

\[
\min_{0 \leq i \leq \lfloor n/2 \rfloor} (S_{\lfloor n/2 \rfloor} - S_{\lfloor n/2 \rfloor - i}) \leq -(m + 3)/3,
\]

and if (b) does not occur but one of (c), (d) does then \(S_n - \max_{\lfloor n/2 \rfloor < i \leq n} S_i < -(m + 3)/3 \), and so

\[
\min_{0 \leq i \leq \lfloor n/2 \rfloor} (S_n - S_{n-i}) < -(m + 3)/3.
\]

Finally, if (b) does not occur but (e) occurs then since \(S_{\lfloor n/2 \rfloor} > m_0 - (m + 3)/3 \), we have

\[
\min_{\lfloor n/2 \rfloor < i \leq n} (S_i - S_{\lfloor n/2 \rfloor}) < -2(m + 3)/3.
\]

Since \((S_{\lfloor n/2 \rfloor} - S_{\lfloor n/2 \rfloor - i}, 0 \leq i \leq \lfloor n/2 \rfloor) \) has the same distribution as \((S_i, 0 \leq i \leq \lfloor n/2 \rfloor) \), and \((S_i - S_{\lfloor n/2 \rfloor}, \lfloor n/2 \rfloor < i \leq n) \) and \((S_n - S_{n-i}, 0 \leq i \leq \lfloor n/2 \rfloor) \) both have the same distribution as \((S_i, 0 \leq i \leq \lfloor n/2 \rfloor) \), (3) follows from the preceding three offset equations.

4. BOUNDING THE WIDTH AND THE HEIGHT

The bounds of Theorem 1 follow straightforwardly from Theorem 3. Let \(T_c \) be a uniformly random tree with child sequence \(c \). As noted earlier, \((Q^V(T_c))_{v=0} \) is distributed as \((S_i(\sigma_C(C)))_{v=0} \), where \(C = \tau(c) \) and \(\tau \) is a uniformly random permutation, independent of \(c \). Furthermore, when the breadth-first exploration has just finished exploring all the nodes at depth \(k \), the queue length is precisely the number of nodes at depth \(k - 1 \). Recalling that \(\sigma_C(c) = \sigma_C(C) \), it follows by Theorem 3 that

\[
P[w(T_c) \geq m + 2] \leq P \left\{ \max_{0 \leq i \leq n} Q^i(T_c) \geq m + 2 \right\} \leq 3 \exp \left(\frac{-m^2}{152|c|^2} \right),
\]

proving the bound for the width. (Also, if at some point the queue length is at least \(m \) then \(w(T_c) \geq m/2 \), from which the optimality of the with bound when \(|c|^2 = O(n) \) follows straightforwardly.)

Random Structures and Algorithms DOI 10.1002/rsa
In bounding the height, we assume that \(m \geq 6\sqrt{n} \), or else the bound follows trivially since \(|e|^2 \geq n\). First suppose that \(e \) is one-reduced (so has no entries equal to one). For any node \(u \in T \), let \(\lambda(u) \) (resp. \(\rho(u) \)) be the index of \(u \) when the nodes of \(T \) are listed in lex-DFS order (resp. rev-DFS order). Since \(e \) is one-reduced, each ancestor of \(u \) in \(T \) has at least one child that is not an ancestor of \(u \), and so either \(Q^e_{\lambda(u)}(T) \) or \(Q^e_{\rho(u)}(T) \) is at least \(|u|/2\). It follows that when \(e \) is one-reduced,

\[
P\{h(T_c) \geq m + 4\} \leq P\left\{ \max_{0 \leq i \leq n} Q^e_i(T_c) \geq \lfloor m/2 \rfloor + 2 \right\} + P\left\{ \max_{0 \leq i \leq n} Q^e_i(T_c) \geq \lceil m/2 \rceil + 2 \right\} \\
\leq 6 \exp \left(-\frac{m^2}{602|e|^2} \right),
\]

proving the bound in this case.

More generally, write \(e^* \) for the one-reduced version of \(e \), obtained from \(e \) by removing all entries that are equal to one, and let \(n^* \) be the length (number of elements) of \(e^* \). Also, write \(T^* \) for the tree obtained from \(T \), by replacing each maximal path whose internal nodes all have exactly one child, by a single edge. List the edges of \(T^* \) according to some fixed rule as \((e_1, \ldots, e_{n^*-1}) \). Note that we always have \(n^* \leq n - 1 \). Each edge \(e_i \) corresponds to some path in \(T \), and we write \(s_i \) for the number of internal nodes of this path (i.e. the total number of nodes, minus two). Then \(T^* \) is distributed as a uniformly random tree with child sequence \(e^* \), and, independently of \(T^* \), \((s_1, \ldots, s_{n^*-1}) \) is a uniformly random element of the set of vectors of non-negative integers of length \(n^* - 1 \) with sum \(n - n^* - 1 \). From Theorem 3 we thus have

\[
P\{h(T^*) \geq m + 4\} \leq 6 \exp \left(-\frac{m^2}{608|e^*|^2} \right) \leq 6 \exp \left(-\frac{m^2}{608|e|^2} \right). \tag{5}
\]

If \(n^* \geq n - \sqrt{n} \) then \(h(T_c) \leq h(T^*) + \sqrt{n} \), and in this case the required bound follows (recall that we have shown we may assume \(m \geq 6\sqrt{n} \)). In what follows we thus assume \(n^* < n - \sqrt{n} \).

By Proposition 5 of [4], the entries of \((s_1, \ldots, s_{n^*-1}) \) are negatively correlated and thus standard Chernoff bounds apply to any restricted sum of elements of \((s_1, \ldots, s_{n^*-1}) \). In particular, for any node \(v \) of \(T^* \),

\[J_v = \{ i : e_i \text{ is an edge of the path from } v \text{ to the root of } T^* \}. \]

We always have \(J_v \leq h(T^*) - 1 \), and thus by a Chernoff bound (e.g., [9], Theorem 2.2),

\[
P\left\{ S_{J_v} \geq (1 + x)(m + 2) \frac{n - n^* - 1}{n^* - 1} \min_{h(T^*) \leq m + 3} \right\} \leq \exp \left(-2x^2(m + 2)\frac{n - n^* - 1}{n^* - 1} \right).
\]

To get a clean final bound, we choose \(x \) so that \((1 + x)(m + 2) = 2m\). It then follows by a union bound that

\[
P\{ \exists v \in T^* : S_{J_v} \geq 2m \frac{n - n^* - 1}{n^* - 1} \min_{h(T^*) \leq m + 3} \right\} \leq \exp \left(\left(\log(n^* - 1) - 2(m - 2)\frac{n - n^* - 1}{n^* - 1} \right) \right).
\]

Random Structures and Algorithms DOI 10.1002/rsa
\begin{align*}
\leq & \exp\left(-(m-2)^2 \frac{n-n^*-1}{n^*-1}\right) \\
\leq & \exp\left(-\frac{m^2(n-n^*-1)}{9|c|^2}\right)
\end{align*}

the second inequality holding since \((m-2)^2 \geq n^*-1\) and \(n-n^*-1 \geq \sqrt{n}-1 \geq \log(n^*-1)\), and the third holding since \(|c|^2 \geq n > n^*-1\) and \((m-2) \geq m/3\). Since \(m+4 \leq 2m = 2m(n^*-1)/(n^*-1)\), it then follows from (5) that

\[
P\left\{h(T_c) \geq 4m \frac{n-2}{n^*-1}\right\} \leq 7 \exp\left(-\frac{m^2}{608|c|^2}\right).
\]

But \((n-2)/(n^*-1) = 1_c\), and the result follows.

ACKNOWLEDGMENT

The author thanks two anonymous referees for their careful, swift reading of this paper.

REFERENCES

[1] L. Addario-Berry, L. Devroye, and S. Janson, Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees, Ann Prob, (in press).
[2] L. Addario-Berry, N. Broutin, and C. Goldschmidt, The continuum limit of critical random graphs, Prob Theory Relat Fields, (in press).
[3] N. Broutin and J. F. Marckert, Asymptotics for trees with a prescribed degree sequence, and applications, arXiv:1110.5203v2 [math.PR], October 2011.
[4] D. Dubhashi and D. Ranjan, Balls and bins: A study in negative dependence, Random Struct Algorithm 13 (1998), 99–124.
[5] P. Flajolet, Z. Gao, A. Odlyzko, and B. Richmond, The distribution of heights of binary trees and other simple trees, Combinator Probab Comput 2 (1993), 145–156.
[6] H. Hatami and M. Molloy, The scaling window for a random graph with a given degree sequence, Random Struct Algorithm 41 (2012).
[7] A. Joseph, The component sizes of a critical random graph with a given degree sequence, arXiv:1012.2352v2 [math.PR], December 2011.
[8] J. F. Le Gall, Random trees and applications, Prob Survey 2 (2005), 245–311.
[9] C. McDiarmid, Concentration, In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed (Editors), Probabilistic methods for algorithmic discrete mathematics, Springer Verlag, New York, 1998, pp. 195–248.
[10] J. W. Moon, Counting labelled trees, Canadian Mathematical Monographs, No. 1, Canadian Mathematical Congress, Montreal, Que., 1970, p. 113.
[11] O. Riordan, The phase transition in the configuration model, arXiv:1104.0613v1 [math.PR], April 2011.