Impact of developmental origin, niche mechanics and oxygen availability on osteogenic differentiation capacity of mesenchymal stem/stromal cells*

Natalia Bryniarska1,3#, Andrzej Kubiać2,3#, Anna Łabędź-Masłowska3 and Ewa Zuba-Surma3

1Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; 2Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland; 3Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland

Mesenchymal Stem/Stromal Cells (MSCs) have been widely considered as a promising source of cells for tissue regeneration. Among other stem cells, they are characterized by a high osteogenic potential. Intensive studies in this field had shown that even if basic osteogenic differentiation is relatively simple, its clinical application requires more sophisticated approaches to prepare effective and safe cell therapy products. The aim of this review is to underline biological, physical and chemical factors which play a crucial role in osteogenic differentiation of MSCs. Existence of two distinct mechanisms of ossification (intramembraneous and endochondral) indicate that choosing a proper source of MSCs may be critical for successful regeneration of a particular bone type. In this context, Dental Pulp Stem Cells representing a group of MSCs and originating from neural crest (a structure responsible for development of cranial bones) are considered as the most promising for skull bone defect repair. Factors which facilitate osteogenic differentiation of MSCs include changes in forces exerted on cells during development. Thus, culturing of cells in hydrogels or on biocompatible three-dimensional scaffolds improves osteogenic differentiation of MSCs by both, the mechanotransductive and chemical impact on cells. Moreover, atmospheric oxygen concentration routinely used for cell cultures in vitro does not correspond to lower oxygen concentration present in stem cell niches. A decrease in oxygen concentration allows to create more physiological cell culture conditions, mimicking the ones in stem cell niches, which promote the MSCs stemness. Altogether, factors discussed in this review provide exciting opportunities to boost MSCs propagation and osteogenic differentiation which is crucial for successful clinical applications.

Key words: mesenchymal stem/stromal cells, dental pulp stem cells, ossification, neural crest, hypoxia, bone repair

Received: 20 October, 2019; revised: 13 November, 2019; accepted: 05 December, 2019; available on-line: 28 December, 2019

Abbreviations: Adult Stem Cells, ASCs; Alkaline Phosphatase, ALP; Bone Morphogenetic Protein 2, BMP2; Cluster of Differentiation, CD; Contact Inhibition of Locomotion, CICL; Cranial Neural Crest, CNC; Dental Pulp Stem Cells, DPPSCs; Extracellular Matrix, ECM; Hypoxia-Inducible Factor 1, HIF-1; Mesenchymal Stem/ Stromal Cells, MSCs; Neural Crest Stem Cells, NCSCs; Pyruvate Dehydrogenase Kinase, PDK; Stem Cells, SC; Stromal Cell-derived Factor-1, SDF-1; Two-dimensional, 2D; Three-dimensional, 3D; Vascular Endothelial Growth Factor, VEGF

STEM CELL TYPES AND PERSPECTIVES OF THEIR USE IN REGENERATIVE MEDICINE

Nowadays, stem cells (SCs) represent one of the most intensely studied subjects in cell biology. Their basic features include the ability to proliferate and differentiate into more specialized cells (Reya et al., 2001). These properties make SCs an attractive biological material with a wide application potential for its further use in regeneration of injured tissues. Various SC fractions may be distinguished based on their origin and potential for differentiation. SCs of an embryonic origin are the most primitive cells, and therefore they have the widest differentiation potential. Cells arising after zygote divisions (up to the 8-cell stage) are classified as totipotent cells and are able to give rise to all cell types of a developing embryo, along with placental tissues (Zychowicz, 2012). Embryonic stem cells (ESCs) isolated from the blastocyst inner cell mass also represent pluripotent cells capable of differentiation into cells derived from the three germ layers (Murray et al., 2006). Although human ESCs may potentially represent a rich source of somatic cells for transplantation, the research conducted on these cells is associated with an ethical controversy. Therefore, scientists have been looking for other methods of obtaining primary SCs with a wide differentiation potential, alternative to ESCs (Zychowicz, 2012). The second largest group of SCs are adult stem cells (ASCs). Several cell fractions can be distinguished among ASCs, including multipotent cells (able to differentiate into a specific pool of cells derived from a given germ cell) and unipotent or progenitor cells capable of differentiating into a specific type of more specialized cells (Fortier, 2005). Mesenchymal Stem/Stromal Cells (MSCs) of various origin represent one of the most intensely studied populations of ASCs, which have been also widely employed in several clinical trials in humans.

MSCs were described in the 70s of the last century as cells isolated by adhesion to a plastic surface, which are characterized by high in vitro proliferation potential and
the ability to differentiate into a wide range of tissues – mainly of the mesodermal origin (Bajek et al., 2011).

The main advantages of using MSCs in regenerative therapies include their effective isolation and culture, low immunogenicity and safety of transplantation (Reya et al., 2001; Afzal et al., 2015). These cells exhibit immunomodulatory properties which include secretion of immunomodulatory factors, such as interleukin 6 (IL-6) that may play a dual function in regulating the process of inflammation, hepatocyte growth factor (HGF), prostaglandin E2 and many others (Williams & Hare, 2011). Importantly, it has been shown that MSCs exhibit predominantly anti-inflammatory properties, favoring processes accompanying tissue repair. Moreover, they exhibit low immunogenicity following allogenic transplantations. Therefore, they are an attractive material for allogenic transplantations (Zhang et al., 2015). Nowadays, 999 clinical trials using MSCs in human patients are registered in the worldwide ClinicalTrials.gov database and that number has significantly increased over the last 9 months (Fig. 1).

A large number of studies conducted on MSCs, with sometimes conflicting results, e.g. regarding the potential of MSCs to differentiate into neuronal tissues (Bianco et al., 2013), has led to the need to harmonize guidelines on MSCs characteristics. For human MSCs, the minimal criteria for defining MSCs include:

- ability to adhere to plastic surfaces when maintained under standard culture conditions in vitro,
- ability to differentiate into three mesodermal lines in vitro: osteoblasts, chondroblasts and adipocytes,
- specific expression profile of surface antigens: expression of CD73, CD90, CD105 and lack of expression of CD34, CD45, CD14 or CD11b, CD79 or CD19, HLA-DR (Dominici et al., 2006) as presented in Fig. 2.

MSCs can be isolated from various tissues, including bone marrow, umbilical cord blood, umbilical cord Wharton’s Jelly, adipose tissue or peripheral blood (Kern et al., 2006), as presented in Fig. 2. However, the presence of cells with MSC characteristics has been also demonstrated in many other tissues, such as the heart (Carlson et al., 2011) or lungs (Foronjy & Majka, 2012).

In 2000, Gronthos and others (Gronthos et al., 2000) described a unique population of cells with mesenchymal characteristics (such as ability to adhere to plastic surfaces, fibroblast-like morphology, lack of expression of CD14, CD34 or CD45, potential to differentiate into osteoblast) and of ectomesenchymal origin, which were isolated from dental pulp and called Dental Pulp Stem Cells (DPSCs). DPSCs have been subsequently compared with other MSC populations, including bone marrow-derived cells (BM-MSCs), indicating a similar phenotype of these two cell populations in terms of their antigenic phenotype (Alge et al., 2010). It has been shown that DPSCs express several markers typical for BM-MSCs, such as CD29, CD44, CD73, CD90, CD105, and do not possess CD34, CD45, CD14 or CD19 and HLA-DR surface molecules (Luo et al., 2018). Interestingly, DPSCs have displayed a significantly higher clonogenic potential than BM-MSCs (Alge et al., 2010). Moreover, DPSCs were shown to produce more calcium deposits and alkaline phosphatase (ALP) during in vitro osteogenic differentiation, when compared to BM-MSCs, suggesting their greater osteogenic capacity. The authors have also performed a functional comparison by in vitro evaluation of bone formation in a porcine critical-size bone defect...
model, where DPSCs and BM-MSCs were implanted on polycaprolactone – hyaluronic acid – tricalcium phosphate scaffolds. Similarly to the in vitro studies, DPSCs generated more bone tissue than BM-MSCs when seeded on the scaffold and transplanted in vivo (Jensen et al., 2016). In another study, employing a rabbit calvarial bone defect model in vivo, the animals implanted with DPSCs or BM-MSCs seeded on commercially available scaffolds, exhibited a similar bone mineral density and potential for new bone formation, as well as expression of osteogenesis-related proteins, confirming their osteogenic capacity (Lee et al., 2019). Herein, it is important to emphasize that the general characteristics and immunophenotype define DPSCs as a population resembling “mesenchymal stem/stromal cells” (MSCs), as it was also postulated by Ledesma-Martinez et al. in 2016. However, some investigators have pointed out that the exact status of DPSCs as a MSC population is still not fully defined and requires further investigations (Lan et al., 2019). However, taking into consideration that stem/stromal cells isolated from different tissues are today classified as MSCs when they fulfill the “MSC classification criteria” published by ISCT, we may consider DPSCs as a MSC population, but we should still consider their unique properties, including developmental origin.

Going back to the biological potential of DPSCs, when these cells were cultured ex vivo and implanted subcutaneously in immunodeficient mice, they showed the ability to form dentin-like structures (Gronthos et al., 2000). An important feature of DPSCs is their ontogenic origin, strictly related to the dental pulp tissue arising mainly from the ectodermal neural crest cells (Hall, 2009). This feature means that many studies based on DPSCs are focused on their use in regeneration of the nervous system (Kern et al., 2006). This is favored by the fact that mesoderm-derived BM-MSCs are already being used in clinical trials to treat ischemic stroke (Steinberg et al., 2016), amyotrophic lateral sclerosis (Mazzini et al., 2009) or mechanical brain damage (Zhang et al., 2008). Therefore, the use of MSCs derived from the ectomesenchyme, such as DPSCs, may be a very attractive perspective for the treatment of injuries of the nervous system. This has been envisioned by the fact that DPSCs are capable to give rise to neuron-like cells expressing a number of neuronal markers, as well as to some electrophysiological activity as evidenced in both, the mouse (Ellis et al., 2014) and human models (Gervois et al., 2015), while the neural differentiation was more prominent in human DPSCs. Recently, Lan et al. reviewed the use of DPSCs in a rodent stroke model. In all publications considered by authors of that review, the use of DPSCs has led to a significant improvement of brain function or a decrease in the infract size after stroke (Lan et al., 2019).

ECTODERMAL ORIGIN OF DPSCS AND ITS IMPACT ON THEIR POTENTIAL – BIOLOGY OF THE NEURAL CREST DEVELOPMENT

The neural crest is formed in the course of embryonic development through interaction between the neural tube and the epidermal ectoderm (Hall, 2009). This structure has exceptional cellular plasticity. Neural crest stem cells (NCSCs) differentiate into a wide variety of cell types – these include the pigmented cells, peripheral neurons, Schwann cells, glial cells (Zhang et al., 2014; Hall, 2009), adrenal medullary cells, cranial chondrocytes and osteocytes, myofibroblasts, and smooth muscle cells of the neck and head (Dupin & Sommer, 2012), arterial pole, endocardial pads (Vincent & Buckingham, 2010) or dental pulp (Young et al., 2013). Particularly interesting is the ability of neural crest cells to differentiate into bone and cartilage-like cells. Cranial neural crest (CNC) cells correspond to a population that, at the relatively early stage of development (in mice between 9 and 10 days of...
SCs, with particular emphasis on MSCs, have been increasingly used in the treatment of human skeletal system damage (Saeed et al., 2016). Nevertheless, despite the initial successes of clinical trials, further optimization of methods is still required for both, the \textit{ex vivo} preparation of these cells for cell therapy and the methodology of the cell therapy applications – including bone defects (Veronesi et al., 2013). In this context, understanding the mechanisms underlying the ossification process, and thus osteogenic SCs differentiation, plays a particularly important role. Due to the bone type, two separate processes are responsible for bone formation during individual development.

The first process represents intramembranous ossification, characterizing flat bones, with particular emphasis on flat bones of the skull, but also of the jaw bones (Kini & Nandeesh, 2012; Bartel, 2004). The second is endochondral ossification, which is characteristic for long bones, but in practice applies to most peripheral bones (Bartel, 2004). Ectomesenchymal tissue originating from the neural crest plays a key role during intramembranous ossification (Kaukua et al., 2016). MSCs residing within the neural crest specialize in actively proliferating osteogenic progenitor cells (Heino & Hentunen, 2008). These cells – expressing the Sox9 and Runx2 transcription factors, exhibit bipotent characteristics and can differentiate into both, the bone and the cartilage cells. At a later stage of osteogenic differentiation, progenitor cells differentiate towards osteoblasts, which is associated with an increase in the expression level of genes characterizing osteogenic differentiation, such as Runx2 and Osterix transcription factors, and extracellular matrix (ECM) proteins, such as type I collagen, fibronectin and growth factor Bone morphogenetic protein 2 (BMP2) (Javed et al., 2010). Synthesis of ECM proteins is particularly important at this stage of osteogenic differentiation. They form an osteoid – an organic bone matrix constituting about 20% of its mass and consisting in about 90-95% of collagen I (Kini & Nandeesh, 2012). ECM, which at this stage becomes enriched in collagen I, promotes activation of signal cascades affecting transcriptional activity of cells in the niche. The effects of these interactions are: maintenance of expression of genes responsible for the osteogenesis process, gradual inhibition of cell proliferation resulting from reduction in histone protein synthesis, and induction of synthesis of additional ECM proteins characteristic for the bones, such as the osteopontin, osteocalcin, bone sialoprotein and osteonectin (Javed et al., 2010). The final stage of differentiation at the cellular level is formation of osteocytes – cells located in the bone cavi-

Figure 3. Cross section of a molar tooth and location of stem cell subpopulations identified in dental tissue structures.

embryonic development), expresses Sox10 resulting from binding of Sox9, Ets1 and cMyb transcription factors to one of the two enhancers for this gene – Sox10E2. The CNC cells migrate by well-defined pathways, colonizing the corresponding skull fragments (Gong, 2014; Kaukua et al., 2014). Their targeted migration is ensured by chemoattraction to the Stromal cell-derived factor-1 (SDF-1), as well as by mechanisms combining the stream of migrating cells – contact inhibition of locomotion (CIL), and preventing separation of individual neural crest cells from the stream – co-attraction (Theveneau & Mayor, 2012). As a result of this precise mechanism of migration, CNC cells originating in the forebrain and upper part of the interbrain, colonize the frontonasal and periorcular region of the skull; CNC cells originating in the lower part of the interbrain inhabit the maxillary part of the first branchial arch – corresponding to the mandible and jaw bones in humans; and CNC cells originating from the cerebellar area form the hyoid bone (Gong, 2014). Within the areas of the skull, which they inhabit, CNC cells differentiate into many tissues, such as the bones and cartilage of the neck or jaw, smooth muscles of the head or tooth elements – including dental pulp (Gong, 2014). Irregularities in migration of CNC cells within individual skull structures may contribute to the occurrence of numerous diseases – e.g. the Treacher-Collins syndrome, whose symptoms include malformations within the head (Kasat & Baldawa, 2011). Hence, the study of the biology of cells originating from the neural crest can contribute to a better understanding of the etiology of such diseases, as well as creation of future therapies (Gong, 2014; Trainor, 2010). A very important aspect related to participation of CNC in the formation of skull bones is the ossification mechanism. It should be emphasized that it differs from the mechanism of ossification of long bones (Kini & Nandeesh, 2012). A separate mechanism of bone formation makes the cells derived from the neural crest attractive in terms of their potential use in regeneration of the skull damage (Kini et al., 2006; Laino et al., 2005; Javed et al., 2010).

OSTEOGENIC DIFFERENTIATION

OSTEOGENIC DIFFERENTIATION

The initial successes of clinical trials, further optimization of methods is still required for both, the \textit{ex vivo} preparation of these cells for cell therapy and the methodology of the cell therapy applications – including bone defects (Veronesi et al., 2013). In this context, understanding the mechanisms underlying the ossification process, and thus osteogenic SCs differentiation, plays a particularly important role. Due to the bone type, two separate processes are responsible for bone formation during individual development.

The first process represents intramembranous ossification, characterizing flat bones, with particular emphasis on flat bones of the skull, but also of the jaw bones (Kini & Nandeesh, 2012; Bartel, 2004). The second is endochondral ossification, which is characteristic for long bones, but in practice applies to most peripheral bones (Bartel, 2004). Ectomesenchymal tissue originating from the neural crest plays a key role during intramembranous ossification (Kaukua et al., 2016). MSCs residing within the neural crest specialize in actively proliferating osteogenic progenitor cells (Heino & Hentunen, 2008). These cells – expressing the Sox9 and Runx2 transcription factors, exhibit bipotent characteristics and can differentiate into both, the bone and the cartilage cells. At a later stage of osteogenic differentiation, progenitor cells differentiate towards osteoblasts, which is associated with an increase in the expression level of genes characterizing osteogenic differentiation, such as Runx2 and Osterix transcription factors, and extracellular matrix (ECM) proteins, such as type I collagen, fibronectin and growth factor Bone morphogenetic protein 2 (BMP2) (Javed et al., 2010). Synthesis of ECM proteins is particularly important at this stage of osteogenic differentiation. They form an osteoid – an organic bone matrix constituting about 20% of its mass and consisting in about 90-95% of collagen I (Kini & Nandeesh, 2012). ECM, which at this stage becomes enriched in collagen I, promotes activation of signal cascades affecting transcriptional activity of cells in the niche. The effects of these interactions are: maintenance of expression of genes responsible for the osteogenesis process, gradual inhibition of cell proliferation resulting from reduction in histone protein synthesis, and induction of synthesis of additional ECM proteins characteristic for the bones, such as the osteopontin, osteocalcin, bone sialoprotein and osteonectin (Javed et al., 2010). The final stage of differentiation at the cellular level is formation of osteocytes – cells located in the bone cavi-

Figure 3. Cross section of a molar tooth and location of stem cell subpopulations identified in dental tissue structures.

OSTEOGENIC DIFFERENTIATION
ties with a characteristic morphology determined by the network of tabs (Bartel, 2004). These tabs allow osteocytes to contact each other with the help of gap joints. It is the osteocytes that are responsible for the synthesis of approximately 70% of bone mass inorganic matrix, consisting in 99% of hydroxyapatite (Kini & Nandeesh, 2012). It should be emphasized that only about 15% of the initial osteoblast pool undergoes terminal differentiation to osteocytes, the others undergo programmed death accompanied by high expression of proapoptotic genes from the Bax family and inhibited expression of the Bcl-2 gene (Javed et al., 2010).

The second mechanism of bone formation is endochondral ossification, which is a complex process and consists of the following five successive stages: 1. development of the cartilaginous model, 2. growth of the cartilaginous model, 3. production of primary ossification centers, 4. production of secondary ossification centers, 5. final production of articular cartilage and epiphyseal plate.

In the first stage, the cartilaginous model develops from the mesenchyme. Built from vitreous cartilage, the model lengthens as a result of intensive proliferation of chondrocytes with simultaneous deposition of ECM. In the next stage of long bone formation, the cartilage surrounding the bone model is transformed into the periosteum (Kini & Nandeesh, 2012). It comes about as a result of blood vessels penetration into the cartilaginous tissue, which promotes the transformation of primitive cartilage cells into osteoblasts synthesizing components of the osteoid (Kini & Nandeesh, 2012; Bartel, 2004). This process begins in the central part of the cartilaginous model, corresponding to the middle of the shaft of the future bone. The place where ossification is initiated is called the primary ossification center. Within it, chondrocyte overgrowth occurs – hypertrophic chondrocytes are formed (Kini & Nandeesh, 2012). They take part in the synthesis of the mineralized matrix and gradually undergo apoptosis during bone formation, creating empty spaces inside which will be occupied by blood vessels at a later stage (Yang et al., 2016). Nevertheless, the latest research with transgenic animal models indicates that a certain pool of hypertrophic chondrocytes is not apoptotic, but instead it is transdifferentiated into osteoblasts, showing progressive expansion of both, the Osterix transcription factor and Collagen 1A1 (Yang et al., 2016). Secretion of the vascular endothelial growth factor (VEGF) plays a very important role in hypertrophic chondrocytes during the ossification process (Yang et al., 2012). It results in invasion of the blood vessels that are being transformed into perichondrial periosteum (Kini & Nandeesh, 2012). In this way, a vascular bud is created that allows osteoblast precursors to penetrate into the bone, which then colonize niches formed by dead hypertrophic chondrocytes and undergo further osteogenic differentiation (Maes et al., 2010). Secondary ossification centers are formed within the epiphysis of the bones using an analogous mechanism as the primary centers, resulting in epiphyseal ossification (Kini & Nandeesh, 2012). The epiphyseal cartilage is present between the bone shaft and its root until about 20 years of age, which allows continuous bone growth in length (Bartel, 2004). It is worth mentioning that processes similar to those described above involve natural bone repair mechanisms (Kini & Nandeesh, 2012). Hence, the awareness of the existence of two separate ossification mechanisms is particularly important from the point of view of regenerative medicine. Considering the ontogenetic origin of the skull bones, membranous ossification appears to be a natural process whose exact reconstruction is associated with the possibility of the most perfect bone tissue regeneration for the treatment of skull lesions (Kini & Nandeesh, 2012; Laino et al., 2005; Javed et al., 2010; Bartel, 2004; Kaučka et al., 2016).

THE INFLUENCE OF THREE-DIMENSIONAL CULTURE ON OSTEOCGENIC DIFFERENTIATION OF STEM CELLS

The osteogenic differentiation of SCs described in the previous section, resulting in bone formation, is always a process embedded in the three-dimensional (3D) niche of a developing organism (Bartel, 2004; Mohyeldin et al., 2010). Despite this fact, many studies on SCs differentiation are carried out in a two-dimensional (2D) culture, directly on a culture plastic or on a surface protein-coated with ECM proteins (Kim et al., 2011). Such conditions will never be able to fully reflect the native conditions prevailing in the body, which may even be associated with the loss of the parenthood potential of cells grown ex vivo (Yang et al., 2014). Such a phenomenon was observed in the case of skeletal muscle SCs, which very quickly lose their native characteristics during standard ex vivo cultivation on a polystyrene cell culture surface. In contrast, those grown on a flexible hydrogel retain the features of SCs and are able to reconstitute in a niche after re-implantation within the muscles of the limbs of mice (Gilbert et al., 2011) The fate of SCs, and above all their behavior, is defined in vitro by their niche. The niche of SCs is not only their location, but a whole range of factors affecting these cells, such as: the spatial arrangement of different types of cells relative to each other, the interaction of cells with ECM proteins, and intercellular interactions resulting from their paracrine activity (Li & Xie, 2005). Therefore, in vitro reproducing of conditions as close as possible to those in a native niche is very important from the point of view of tissue regeneration. 3D cultures allow simulation of a number of environmental properties defined by the SCs niche, such as the physical properties (stiffness, deformation) (Yang et al., 2014; Humphrey et al., 2014), or the presence of substances forming ECM (Lee et al., 2007). In the case of osteogenic differentiation where niche-derived factors exert a great influence on its course, the use of 3D cultures brings beneficial in vitro effects. MSCs derived from the rat bone marrow, cultured in 3D constructs in the in vitro rotational system, showed significantly higher expression levels of osteogenic differentiation markers (e.g. Osterix, Osteopontin, Collagen 1A1) when compared to cells differentiated under 2D conditions. Also, cells derived from the 3D constructs differentiated in the rotational system showed significantly greater deposition capacity of the mineralized ECM when compared to cells derived from the 2D culture, as demonstrated by the Von Kossa staining (Tang et al., 2017). Osteogenic differentiation of human MSCs derived from bone marrow also occurred more efficiently when grown in alginate beads. This process was more successful than under 2D culture conditions, both when the 3D culture was supplemented with ALP, as well as when unmodified beads were used. An interesting finding from this study was that the beads in which ALP was immobilized under conditions of lower calcium concentration, were destabilized due to disintegration of calcium-alginate bonds used for the bead cross-linking. Such a phenomenon may contribute to the release of differentiated cells from beads after transplantation in vivo, when the availability of free calcium ions will decrease due to the ALP activity (Westhrin et al., 2015). The use of 3D scaffolds to regenerate skeletal tissues has been also used in vivo. Os-
the action of hypoxia-inducible factor 1 (HIF-1), which inhibits activity of the proliferation promoting transcription factor e-Myc (Eliasson & Jönsson, 2010). A similar role for HIF-1 has been demonstrated in case of MSCs, where 1% oxygen-induced HIF-1 activity (induced in an in vitro culture) resulted in increased expression of the p27 protein, and thus a blockade of DNA replication and proliferation (Kumar & Vaidya, 2016). This hypoxia-induced factor is a key element in regulation of the SCs behavior by the availability of oxygen. HIF-1 is a heterodimeric protein consisting of HIF-1α and HIF-1β subunits (Ito & Suda, 2014). Under conditions of lower oxygen concentration, HIF-1α is not degraded and is dimerized with HIF-1β forming a transcription factor affecting expression of a very large group of genes (Simon & Keith, 2008). However, in several studies on MSC behavior in hypoxia, it has been shown that the permanent exposure of these cells to a low oxygen concentration (1–5%), generally enhances their proliferative, as well as colony-forming potential, which may be utilized for their effective expansion in vitro (elegantly summarized in Burakova et al., 2014). Thus, the exact conditions regarding duration of the MSC exposure to hypoxia should be considered depending on the required functional outcome expected from these cells in an in vitro culture.

One of the most important effects of hypoxia is the switch of cellular metabolism from mitochondrial respiration to glycolysis. Under conditions of low oxygen concentration, activation of HIF-1α-dependent pyruvate dehydrogenase kinase (PDK) occurs (Murray et al., 2006). As a result, oxidation of pyruvate to acetyl-CoA is significantly limited because PDK inhibits the pyruvate dehydrogenase activity (Ito & Suda, 2014), which in turn blocks the formation of acetyl-CoA and hence the Krebs cycle. Mitochondrial respiration - and especially the electron transport chain, are the main sites for the formation of reactive oxygen species in the cell. Under conditions where the cell metabolism is based on glycolysis, their quantity decreases (Murray et al., 2006), and thus the risk of DNA, RNA, lipid and protein damage is reduced. Proliferation is also inhibited, which prevents the uncontrolled growth of the population of the most primitive SCs, and also reduces the risk of mutation accumulation resulting from random polymerase errors within the genome of these cells (Murray et al., 2006; Ito & Suda, 2014). The location of the BM-MSCs within the niche they occupy is the subject of many debates (Bianco et al., 2013), but it is known that they are located in the bone marrow regions richer in oxygen than HSCs cells. However, taking into account the range of oxygen concentration assumed for bone marrow (1–6%) and the conditions necessary for HIF-1α activity (oxygen concentration approx. 5%), there is no doubt that in their native niche these cells are exposed to lower oxygen concentration than the one used in standard cultures (Mohyeldin et al., 2010; Simon & Keith, 2008).

The results of studies on the effect of hypoxia on the behavior of human MSCs derived from bone marrow do not provide unambiguous answers about its effect. A comparison of osteogenic differentiation of human MSCs at 21% and 1% oxygen concentrations shows conflicting observations, depending on the work being analyzed (Hsu et al., 2013; Hung et al., 2012). Depending on the analyzed work, hypoxia resulted in a significantly lower expression of genes associated with osteogenic differentiation (e.g. Osteopontin, Osteocalcin) (Hsu et al., 2013) or a higher level of expression of genes associated with osteogenic differentiation (e.g. Osteopontin, Osteocalcin, Collagen1α1) (Hung et al., 2012). The results of
studies on osteogenic differentiation of human MSCs were also characterized by large individual variability. This has manifested itself, among others, through a large diversity in the deposition ability of the mineralized matrix, intra-group fluctuations in the proliferative index and the ability to form colonies for cells from different patients under both, the normoxia and hypoxia conditions (Ciapetti et al., 2016). Interestingly, using an animal system in vivo, it was observed that a decrease in blood flow within the dental pulp results in increased mineralization and differentiation of DPSCs in the rat odonto-blast layer (Ito et al., 2015). On the other hand, human DPSCs grown at 3% oxygen concentration had exhibited an essentially lower ALP activity and also a significantly lower degree of mineralization when compared to DPSCS cultured at a 21% oxygen concentration (Iida et al., 2010). However, research in this area using DPSCS is still being optimized. Therefore, further research on the effect of hypoxia on the process of differentiation of MSCs, including DPSCS, as well as on their proliferative capacity as described above, is still required.

In this context, in order to elucidate a more complete and accurate mechanism of the impact of hypoxia and other factors on osteogenic differentiation of MSCs, with particular emphasis on future applications of these results in regenerative medicine, it is important to optimize the methods used for the cell isolation and ex vivo propagation. Discrepancies in the methodology often resulted in contradictory data obtained by different groups studying MSC potential (Kumar & Vaidya, 2016; Hsu et al., 2013; Hung et al., 2012; Ciapetti et al., 2016; Ito et al., 2015; Iida et al., 2010; Ahmed et al., 2016). Thus, further optimization of the protocols for the effective harvesting and expansion of MSCs with high differentiation potential as well as strategies for examining their biological properties and pregerogenic mechanisms, are still required to fully understand the application potential of these cells.

REFERENCES

Aizal M, Samanta A, Shah ZI, Jeewanantham V, Abdel-Latif A, Zaburria EK, Dawn B (2015) Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Cardiovasc Revasc Med 17: 558–575. https://doi.org/10.1016/CIR-CRESAHA.114.304792

Ahmed NE, Murakami M, Kanelo S, Nakashima M (2016) The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Arch Oral Biol 61: 354–361. https://doi.org/10.1016/j.archoralbio.2016.06.007

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prokop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317. https://doi.org/10.1080/14653240600855905

Dupin E, Sommer I. (2012) Neural crest progenitors and stem cells: From early development to adulthood. Dev Biol 366: 83–95. https://doi.org/10.1016/j.ydbio.2012.03.055

Eliasson P, Jonsson, JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222: 17–22. https://doi.org/10.1002/jcp.21908

Ellis KM, O’Carroll DC, Lewis MD, Rychkov GY, Koblar SA (2014) Neurogenic potential of dental pulp stem cells isolated from murine incisors. Stem Cell Res Ther 5: 30. https://doi.org/10.1186/srep4419

Foronjy RF, Majka SM (2012) The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells 1: 874–885. https://dx.doi.org/10.3390%2Fcells1040874

Fortier LA (2005) Stem cells: Classifications, controversies, and clinical applications. Vélour Surg 34: 413–423. https://doi.org/10.1111/j.1532-950X.2005.00063.x

Gervois P, Struys T, Hillenks P, Bronkaers A, Ratezjarzki J, Politis C, Bröne B, Lambrecht J, Martens W (2015) Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev 24: 296–311. https://doi.org/10.1089/scd.2014.0117

Gilbert PM, Havenstrite KL, Magnusson KE, Sacco E, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2011) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078–1081. https://doi.org/10.1126/science.1191035

Gong SG (2014) Cranial neural crest: Migratory cell behavior and regulatory networks. Exp Cell Res 325: 90–95. https://doi.org/10.1016/j.yexcr.2013.03.015

Grontos S, Mankani M, Braham J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97: 13625–13630. https://doi.org/10.1073/pnas.9734099

Hall BK (2009) The Neural Crest and Neural Crest Cells in Vertebrate Development and Evolution. Springer-Verlag New York, XXII. https://doi.org/10.1007/978-0-387-80946-3

Heino T, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3: 131–145. https://doi.org/10.2174/157488808742420352

Hsu SH, Chen CT, Wei YH (2013) Inhibitory effects of hypoxia on osteoblastic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells 31: 2779–2788. https://doi.org/10.1002/stem.1441

Humphrey JD, Dufresne ER, Schwartza MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15: 802–812. https://doi.org/10.1038/nrm3896

Hung SP, Ho JH, Shih YR, Lo T, Lee OK (2012) Hypoxia promotes proliferation and osteogenic differentiation potentials of human dental stem cells. J Orthop Res 30: 260–266. https://doi.org/10.1002/jort.20117

Iida K, Takeda-Kawaguchi T, Tezuka Y, Kimisada T, Shibata T, Tzeuza K (2010) Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells. Arch Oral Biol 55: 648–654. https://doi.org/10.1016/j.archoralbio.2010.06.005

Ito K, Matsuoka K, Matuszka K, Morinaga K, Inoue T (2015) Hypoxic condition promotes differentiation and mineralization of dental pulp cells in vitro. Int Endod J 48: 118–23. https://doi.org/10.1111/iwj.12288

Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15: 243–256. https://doi.org/10.1038/nrm3771

Javed A, Chen H, Ghori FY (2010) Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am 22: 283–293. https://doi.org/10.1016/j.coms.2010.05.008

Jensen J, Texedese C, Röföhn JF, Fokdager CB, Lysholdt H, Kraft DC, Chen M, Baas J, Le DQ, Binger CE (2016) Dental pulp-deprived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. STEM CELL 20: 12135. https://doi.org/10.1016/j.stem.2016.09.004

Kasat V, Baldawa R (2011) Treacher Collins syndrome – a case report and review of literature. J Clin Exp Dent Sci 3: e395–e399. https://doi.org/10.4137/ecd3.0035

Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kai E, M, Petersen J, Pachnis V, Nicolas SK, Yu T, Sharpe P,
Kumar S, Vaidya M. (2016) Hypoxia inhibits mesenchymal stem cell
Kini U, Nandeesh, BN (2012)
Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M,
Furlan A, An Z, Wang I, Hultman I, Ahrlander-Richter I, Blom,
Brismar H, Lopes NA, Paehnis V, Suter U, Clevers H, Thesleff I,
Sharpe P, Emfors P, Fried K, Adamczyk I (2014) Glial origin of mesenchymal stem cells in a tooth model system: Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. Nature 513: 551–554. https://doi.org/10.1038/nature13536
Kern C, Eichmann K, Jünger H, Biebl H, Grotendorst GR (2007) Analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24: 1294–1301. doi:10.1634/stemcells.2006-2654
Kim, BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaie T, Cho CS (2011) Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 36: 238–268. https://doi.org/10.1016/j.progpolymsci.2010.09.001
Kini U, Nandeesh, BN (2012) Radionucleide and Hybrid Bone Imaging. Springer-Verlag Berlin Heidelberg. XIV. https://doi.org/10.1007/978-3-642-02409-9_2
Kumar S, Vaidya M. (2016) Hypoxia inhibits mesenchymal stem cell proliferation through HIF-1α-dependent regulation of P27. Mol Cell Biol Res Commun 1–2: 29–38. https://doi.org/10.1111/1946-597X.12203
Laino G, d’Aquino R, Graziano A, Lanza V, Carini F, Naro F, Pirrozi G, Papaccio G (2005) A new population of human adult dental pulp cells of living autologous tubed bone tissue (LAB). J Bone Min Res 20: 1394–1402. https://doi.org/10.1359/JBMR.050525
Laino G, d’Aquino R, Pirrozi G, Lanza V, Valizante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206: 693–701. https://doi.org/10.1002/jcp.20256
Lan X, Sun Z, Cho C, Bolbe J, Li S (2019) Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke. Front Neurol 2: 824. https://doi.org/10.3389/fneur.2019.00824
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int vol. 2016, Article ID 4709572. https://doi.org/10.1155/2016/4709572
Lee YC, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365. https://doi.org/10.1038/nmeth1015
Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW (2019) Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 10: pii: E5015. https://doi.org/10.3390/ijms2019.00824
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int. vol. 2016, Article ID 4709572. https://doi.org/10.1155/2016/4709572
Li X, Tice X (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 653–631. https://doi.org/10.1146/annurev.cellbio.21.012704.131525
Liu A, Sun M, Yang X, Ma C, Liu Y, Yang X, Yan S, Gou Z (2016) Three-dimensional printing acellular porous scaffolds for load-bearing bone tissue repair: An investigation of osteogenic and mechanical evolution. J Biomater Appl 31: 650–660. https://doi.org/10.1177/0883942416664839
Luo I, He Y, Wang X, Key B, Lee BH, Li H, Ye Q (2018) Potential roles of dental pulp stem cells in pulp regeneration and repair. Stem Cells Int vol. 2018. Article ID 1731289. https://doi.org/10.1155/2018/1731289
Maes C, Kobayashi T, Selig K, Torrecsken S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19: 329–344. https://doi.org/10.1016/j.devcel.2010.07.012
Mazzoni I, Ferrara L, Laparelli V, Rustichelli D, Gunetti M, Marecchi K, Testa I, Stecco A, Tarletti R, Rognoni GD, Caricco A, Cantello R, Monaco F, Fagioli F (2009) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp Neurol 223: 229–237. https://doi.org/10.1016/j.expneurol.2009.08.017
Mohyeldin A, Garzon-Murillo T, Quitoños-Hinojosa A (2010) Oxygen in the stem-cell field: a critical component of the stem-cell niche. Stem Cell 7: 150–161. https://doi.org/10.1007/s12955-010-0070-0
Murray RK, Granner DK, Rodwell VW (2006) Harper’s Illustrated Biochemistry. 26th Edition, McGraw Hill Education, ISBN-10: 0071461973
Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111. https://doi.org/10.1038/35102167
Scheid H, Ahsan M, Saleem Z, Iqtedar M, Islam M, Danish Z, Khan AM (2016) Mesenchymal stem cells (MSCs) as skeletal therapeutics—an update. J Biomed Sci 23: 41. https://doi.org/10.1186/s12929-016-0254-3
Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9: 285–296. https://doi.org/10.1038/nrm2354
Steinberg GK, Kondziolka D, Wechsler LR, Lansford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE (2016) Clinical outcomes of transplanted modified mesenchymal stem cells in stroke a phase 1/2a study. Stroke 47: 1817–1824. https://doi.org/10.1161/STROKEAHA.116.012995
Tang Y, Xu Y, Xiao Z, Zhao Y, Li J, Han S, Chen L, Dai B, Wang L, Chen B, Wang H (2017) Combination of transplanted mesenchymal stem cells and rotary cycle system promotes the proliferation and maintains the differentiation potential of rat BMSCs. Sci Rep 7: 192. https://doi.org/10.1038/s41598-017-00087-x
Thelen T, Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Marecchi K, Testa I, Stecco A, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19: 329–344. https://doi.org/10.1016/j.devcel.2010.07.012
Westhrin M, Xie Y, Yuan X, Yuan R, Guo Q (2019) Expression of HIF-1α in cycling-stimulated osteogenic differentiation of human mesenchymal stem cells. Mol Rep 22: 4499–4498. https://doi.org/10.1007/s41598-017-00087-x
Zychowiec M (2012) Control of developmental decisions of neural crest cells. Front Dev Neurosci 6. pii: E5015. https://doi.org/10.3389/fnard.2019.00824
Zhang K, Huang X, Wang H, Liu Y, Yang S, Yuan R, Guo Q (2019) Expression of HIF-1α in cycling-stimulated osteogenic differentiation of human mesenchymal stem cells. Mol Rep 22: 4499–4498. https://doi.org/10.1007/s41598-017-00087-x
Zhang K, Huang X, Wang H, Liu Y, Yang S, Yuan R, Guo Q (2019) Expression of HIF-1α in cycling-stimulated osteogenic differentiation of human mesenchymal stem cells. Mol Rep 22: 4499–4498. https://doi.org/10.1007/s41598-017-00087-x
