Ocular adnexal lymphoma: an updated review of pathogenesis, diagnosis, and treatment

Hyun Uk Chung¹, Jun Hyuk Son²

¹Yeungnam Eye Center, Yeungnam University Hospital, Daegu, Korea
²Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Korea

Lymphoma is the most common primary tumor of the orbit, accounting for 55% of all orbital malignancies. When divided into histopathological subtypes, extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) comprises the largest proportion. Clinical manifestations are unspecific, but in patients with slow-growing painless orbital mass, or red conjunctival lesion suggestive of ‘salmon patch’, ocular adnexal lymphoma (OAL) should be suspected. Although the pathogenetic mechanism of ocular adnexal MALT lymphoma (OAML) is not yet fully understood, the relationship between OAML and *Chlamydia psittaci* has been hypothesized recently, similar to that between gastric MALT lymphoma and *Helicobacter pylori*. This suggests a new treatment option for OAML; bacterial eradication therapy with systemic antibiotics. Several other treatment methods for OAML have been introduced, but no treatment guidelines have been established yet. In this article, we summarize the current knowledge on the clinical features, pathogenesis, diagnostic methods, therapeutic strategies, and prognosis of OAML.

Keywords: Etiology; *Chlamydia psittaci*; Marginal zone B-cell lymphoma; Ocular adnexal lymphoma; Orbital neoplasms

Introduction

Lymphoma is a type of blood malignancy that begins in lymphocytes which include B-lymphocytes, T-lymphocytes, and natural killer (NK) cells. There are two main categories of lymphoma: those presenting with a specific type of cellular abnormality dubbed a Reed-Sternberg cell, called classic Hodgkin lymphomas (HLs), and the others called non-Hodgkin lymphomas (NHLs) [1]. HL accounts for approximately 10% of all lymphomas, while the remaining 90% are NHL [2]. NHL is also divided into B-cell and T-cell lymphomas. B-cell lymphoma accounts for more than 85% of all lymphoid neoplasms [1]. Although orbital lymphoma is rare, accounting for only 1% of all NHL cases, it is the most common primary orbital cancer in adults, accounting for 55% of all malignancies in the orbit [3-5]. The majority of NHL of the orbit and ocular adnexa are extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) [6]. This review article summarizes the previously published literature on ocular adnexal MALT lymphoma (OAML), with an overview of its clinical features, treatment options, and prognostic outcome.

Clinical features

Ocular adnexal lymphoma (OAL), which mainly involves the conjunctiva, lacrimal gland, orbital fat, lacrimal sac, and eyelid, has various clinical presentations depending on the lesion. In addition, it cannot be easily differentiated from other orbital diseases because it has no pathognomonic signs or symptoms.

Conjunctival involvement is observed in 26% of OALs, which shows a characteristic red, swollen, painless lesion called 'salmon
patch,’ making it easier to detect the disease [7]. However, a high index of suspicion is required because it may mimic chronic conjunctivitis in rare cases [8].

Intraorbital lymphoma usually presents with a variety of symptoms, including proptosis, palpable mass, swelling, ptosis, limited eye motility, displacement of the eye, and diplopia [7,9-12]. In particular, computed tomography (CT) or magnetic resonance imaging (MRI) should be considered in patients with proptosis, especially unilateral proptosis, since it is the most common symptom of orbital B-cell lymphoma [11,13].

Pathogenesis

The histopathological features of OAML are similar to those of other MALT lymphomas. Under physiological conditions, the connective tissues of the orbit are devoid of lymphoid tissue and lymphatic drainage [14]. Hence, for lymphoma to develop in the orbit, organized lymphoid tissue must be acquired first, as observed in gastric MALT lymphoma [15]. Several conditions, including chronic inflammation and autoimmune disorders, are associated with the pathogenesis of OAML.

1. Chronic antigenic stimulation

Over the last few years, the relationship between lymphoma and chronic antigenic stimulation has garnered increasing attention. As a paradigmatic example, *Helicobacter pylori* infection triggers chronic antigenic stimulation and plays a key role in the development of gastric MALT lymphoma [15]. Likewise, the detection of *Chlamydia psittaci* DNA in 80% of patients with OAML suggests that *C. psittaci* infection is related to the development of OAML [16]. *C. psittaci* is the known causative bacterium of psittacosis, which is caused by contact with infected animals, and half of the OAL patients have reported close contact with household animals [16,17]. Potential pathogenesis of OAML related to chlamydial infection is similar to that of gastric MALT lymphoma caused by *H. pylori*. This pathogenesis model is also observed in cutaneous B-cell lymphoma caused by *Borrelia burgdorferi* and small intestinal MALT lymphoma caused by *Campylobacter jejuni*. The chronic inflammation induced by *C. psittaci* facilitates the development of MALT in the orbit. Then, clonal expansion and proliferation of B-cell in the marginal zone of lymphoid follicles could occur in a state of persistent chlamydial infection. These clonal B-cells (antigen-dependent lymphoma clones) invade the germinal center of lymphoid follicles, causing chromosomal aberrations, resulting in an environment in which clonal expansion can continue without antigenic stimulation (antigen-independent lymphoma clones) [18]. Several studies have confirmed an association between *C. psittaci* and OAL, while others did not, which indicates the possibility of geographical variation [7,13,19-26]. Interestingly, tumor regression was observed in 38% of *C. psittaci* DNA-negative OAL after bacterial eradication therapy with doxycycline, suggesting that other microbial agents, such as doxycycline-sensitive bacteria, may be involved in the development of OAL [27]. Epstein-Barr virus (EBV), human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV), and human herpes simplex virus-8 are known to be associated with malignant lymphoma, and one study reported HCV seropositivity in 13% of OAL patients [28,29].

2. Immune disorders

Lymphoma is the most common cancer and the most common cause of cancer-deaths in human immunodeficiency virus (HIV)-infected patients [30,31]. Although the mechanism of lymphoma development in HIV patients is not clearly known, one study found that virologic suppression with highly active antiretroviral therapy reduces the risk of lymphoma [31]. Hence, advanced immunosuppression, higher levels of circulating viremia, and a high prevalence of oncogenic viruses (especially EBV) may be associated with an increased risk of lymphoma in HIV patients [31-34].

In addition, it has been reported that there is an increased risk of NHL in patients with autoimmune disorders such as Sjögren syndrome, systemic lupus erythematosus, rheumatoid arthritis, Hashimoto thyroiditis, immune thrombocytopenic purpura, and autoimmune hemolytic anemia [35,36].

3. Genetic abnormality

Similar to other malignancies, several chromosomal abnormalities are observed in the OAL. In the case of MALT lymphoma, different chromosomal alterations are detected depending on the site of origin [20]. In particular, trisomy 3 and 18, 5q (ODZ2) and 9p (JMJD2C), t(11;18)(q21;q21), t(14;18)(q32;q21), t(3;14) (p14.1;q32), and A20 inactivation (6q23 deletion) are associated with OAML [20,37]. One study reported a higher incidence of trisomy 3 in orbital MALT lymphoma than in conjunctival MALT lymphoma, while another reported that trisomy 18 was more common in young women with conjunctival involvement, which shows a high recurrence rate [38,39]. However, there is not much data yet on the genetic aspect of OAL, so further investigation is needed to fully understand it.

Diagnosis

The definitive diagnostic method of OAL is histopathologic verification. However, neuroimaging techniques, including CT or MRI, are also necessary to measure the size of the lesion or to differenti-
ate it from other orbital diseases. In a two-phase contrast enhancement CT scan, orbital lymphoma shows a decrease in density in the delayed phase, which is in contrast to the orbital inflammatory pseudotumor showing increased density on delayed imaging [40]. An MRI scan shows a mass with isointensity on the T1 image and an iso-hyperintense signal on T2. Furthermore, quantified tumor blood flow (TBF) values measured by arterial spin labeling and apparent diffusion coefficient (ADC) on diffusion-weighted imaging could be helpful in differentiating lymphoma from other expansive orbital diseases. In particular, lymphoma represents high TBF and low ADC values compared to idiopathic orbital inflammatory pseudotumors, which may be difficult to differentiate clinically [41,42]. After determining the size and location of the lesion, a histopathologic examination should be performed through an open biopsy [1]. Histopathologic examination of OAML may not always be conclusive since it mainly consists of small lymphoma cells that lack cellular atypia, and have a similar appearance to small lymphocytes [43,44]. Thus, it is often challenging to differentiate lymphoma from reactive lymphoid hyperplasia [44]. In this case, determining the clonal B-cell population by polymerase chain reaction (PCR) analysis of immunoglobulin heavy chain gene rearrangement can help in the differential diagnosis [45]. Further immunohistochemical examination shows CD20+, CD79a+, IgM+ with light-chain restriction, PAX5+, bcl-2+, TCL1+, CD11c+, CD43+, CD21+, CD35+, IgD–, CD3–, CD5–, CD10–, cyclin D1+, bcl–6–, and MUM1– cells as classical immunophenotype [38,46-51]. In addition, systemic evaluation, such as full-body positron emission tomography-CT and bone marrow biopsy should also be performed [52,53].

Staging

The Ann Arbor staging system, commonly used in the staging of NHL, is a system for the staging of HL [54-56]. This staging system divides the disease into four stages: (I) single localized disease, (II) two or more lesions on one side of the diaphragm, or (III) both sides of the diaphragm, and (IV) metastatic disease. The involvement of the localized extranodal site is recognized by the subscript E (i.e., stage IE) [57]. However, the Ann Arbor system is not suitable for the staging of OAML because it does not consider anatomic location, multicentricity, bilaterality, or extent of primary tumor infiltration; thus, two-thirds of OAML cases are classified as stage I [56,58,59]. To overcome this limitation of the Ann Arbor system, the American Joint Committee on Cancer proposed a new staging system for OAL [60]. This TNM staging system determines the stage of OAL based on the size and extent of the primary tumor (T), involvement of local lymph nodes (N), and the presence or absence of tumor metastasis (M) [56,59]. Although several studies have demonstrated the usefulness of TNM staging for OAL, new treatment protocols based on this staging system remain to be investigated [58,59].

Treatment

Although many treatment options for OAL have been reported, no definite guidelines have yet been universally accepted. When a therapeutic decision for OAL is made, the location and extension of the tumor, the presence or absence of metastasis, prognostic factors of the patients, and treatment-related toxicity or adverse effects should be considered.

1. **Surgical resection**

Surgical resection is listed first, not only because it is the most conventional treatment option for tumors but also because it is necessary for the diagnosis of OAL. Some MALT lymphomas of the conjunctiva or lacrimal glands can be completely resected; however, excessive efforts to completely resect lymphoma are not recommended, as they could be associated with a high risk of complications. Furthermore, a study reported that complete resection of OAML did not affect overall survival rates [61]. Surgery can be used in combination with other treatment options, such as chemotherapy and radiation therapy, to reduce the tumor size. For localized low-grade MALT lymphoma in older patients who do not want invasive treatment, the watch-and-wait strategy could be an option after surgical resection or biopsy [61,62].

2. **Radiation therapy**

Radiation therapy is frequently used in the treatment of OAL and has been the mainstay of treatment for many years. It may be used to eradicate tumors and is also used to reduce the size of the tumor before surgery or as a combination therapy with chemotherapy or immunotherapy. Although there is no gold standard for the dose of radiation, 28–36 Gy is commonly prescribed for low-grade lymphomas such as MALT lymphoma or follicular lymphoma, and 30–40 Gy for high-grade lymphomas such as diffuse large B-cell lymphoma (DLBCL) or mantle cell lymphoma (MCL) [62]. In low-grade lymphoma, the 5-year local control rate was 86% for < 30 Gy and 100% for ≥ 30 Gy. In the case of MALT lymphoma alone, the overall local control rate was 96% at 5 years and 86% at 10 years (range, 23.1–45 Gy; median D1.8, 31.8 Gy) [63]. As noted in many studies, radiation therapy shows a good local control rate, but it can cause some adverse effects, including cutaneous reactions, cataracts, dry eyes, macular degeneration, retinopathy, and corneal ulceration, particularly at doses of 30 Gy or higher [64-67].

https://doi.org/10.12701/yujm.2021.01263
Therefore, some authors prefer ultra-low-dose radiation therapy, which uses only 4–8 Gy in total, and the minimal incidence of adverse effects has been reported [68,69]. However, this remains controversial, as some authors reported a high recurrence rate in low-dose treatment, especially below 30 Gy [12,24,63]. Likewise, a lens shielding technique using a lead contact lens or cylindrical shield to prevent the development of cataract is worth considering, although there are some reports of high recurrence rates [11,12,50,64,65].

3. Chemotherapy
Chemotherapy is often used in OAL with systemic involvement or high-grade lymphomas such as DLBCL. The combination regimen of cyclophosphamide, doxorubicin (hydroxydaunorubicin/adriamycin), vincristine (Oncovin; Eli Lilly and Company, Indianapolis, IN, USA), and prednisone (CHOP) is the most commonly used. Other common combination regimens include hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, and cytarabine) and CVP (cyclophosphamide, vincristine, and prednisone). As a monotherapy, chlorambucil is frequently used for treating indolent lymphomas, showing a 79% complete response and 21% partial response (PR) rate with good tolerability in orbital MALT lymphoma [70]. Oxaliplatin and purine analogs, including fludarabine and cladribine, have also been used recently [50,71-73].

4. Systemic antibiotics
More than 90% of gastric MALT lymphomas are related to H. pylori infection, and after this was proven, bacterial eradication therapy with systemic antibiotics became an important part of treatment [74-76]. A similar relationship between C. psittaci and OAL has been proposed. Several authors have reported high rates of C. psittaci infection in patients with OAML, 80% in Italy [16] and 78% in South Korea [77]. However, no such association has been found in Japan [21,78], the Netherlands [22], France [79], Cuba [80], and the United States [7,23,38,81], suggesting geographical variation. A multicenter prospective phase II trial conducted in four countries (Chile, Italy, Spain, and Switzerland) showed a good response rate to first-line eradication therapy with doxycycline for OAML; complete remission (CR) in 18%, PR in 47%, and overall response rate (ORR) of 65% [26]. In South Korea, a study on 90 patients with OAML found a 34% ORR with first-line doxycycline treatment. In addition, this study reported that the ORR of second-line treatment with radiotherapy for patients who progressed after doxycycline treatment was 100% [82]. Furthermore, considering that doxycycline treatment was effective even in 38% of C. psittaci DNA-negative patients according to one study, it seems that it could be used in most OAML patients [27]. On the other hand, one author reported that doxycycline treatment in patients who had not been tested for chlamydia infection showed no effect on OAML [83]. In summary, the effectiveness of bacterial eradication therapy with doxycycline for OAML remains controversial, but it is worth considering as it is a safe and cost-effective treatment option.

5. Immunotherapy
Rituximab is a chimeric human/mouse monoclonal antibody against CD20 and B-lymphocyte surface antigens [84]. The function of CD20 is not fully known, and it is thought to be involved in the activation and regulation of B-cells [85]. Although rituximab is a mainstay in the treatment of B-cell NHL, it is not commonly used as monotherapy in OAML patients, and only a few authors have reported the efficacy of this monoclonal antibody [86,87]. Except in the case of relapsed OAML, rituximab shows a good response, but its efficacy is lower than that reported in gastric MALT lymphomas due to its high recurrence rate [87]. Rituximab is also widely used as part of a combination regimen with chemotherapy. For example, the combination of rituximab and chlorambucil showed great success in OAL patients with EMZL and follicular lymphoma as first-line treatment (CR in 89%, PR in 11%, ORR in 100%) [88]. In addition, combination therapy with CHOP (R-CHOP) has improved treatment outcomes in patients with DLBCL and MCL [89,90]. Several authors have reported successful results from intralesional interferon-α injection in conjunctival MALT lymphoma with minimal side effects [91-93], although further research through large clinical trials is needed.

Prognosis
Based on the available scientific literature, the histological subtype may act as the most important predictor of mortality in OAL. One study found that the 5-year lymphoma-related mortality rate was as follows: 12% for EMZL, 19% for diffuse lymphoplasmacytic lymphoma, 22% for follicle center lymphoma, 48% for DLBCL, and 53% for other lymphoma variants (i.e., MCL, chronic lymphocytic lymphoma, etc.) [94]. Another study reported lymphoma-related mortality as 2% for EMZL, 33% for follicular lymphoma, 38% for DLBCL, 100% for MCL, and 100% for peripheral T-cell lymphoma and NK cell lymphoma [95]. Other prognostic factors include the stage at presentation, primary or secondary status, and whether the disease is unilateral or bilateral [95-97]. According to a study, the rates of extraorbital spread and lymphoma-related death are the lowest in conjunctival lymphoma, followed by deep orbital lymphoma and lacrimal gland lymphoma.

https://doi.org/10.12701/yujm.2021.01263
and the highest in eyelid lymphoma [97].

Conclusion

As the most common cancer that occurs in the orbit, the characteristics of OAL should be noted. Furthermore, the incidence of OAL has been reported to increase steadily over the past few decades [5,25,98]. In South Korea, OAML accounts for a particularly higher proportion of OAL compared to that in Western countries [99,100]. The size and location of the tumor should be measured using radiology imaging techniques such as CT and MRI, and an open biopsy should be performed to make a histopathological diagnosis. OAL has different prognostic outcomes depending on its histological subtype, and MALT-type lymphoma has a good ORR if treated properly. Although the TNM staging of OAL is not yet widely used and no large-scale clinical trial has been conducted, further research should be conducted in the future to establish a first-line treatment protocol based on it.

Notes

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Author contributions

Conceptualization, Formal analysis, Project administration, Supervision: JHS; Data curation: HUC; Writing-original draft: HUC; Writing-review & editing: JHS.

ORCID

Hyun Uk Chung, https://orcid.org/0000-0003-4419-2860
Jun Hyuk Son, https://orcid.org/0000-0001-9807-8962

References

1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Geneva: World Health Organization; 2017.
2. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet 2012;380:848–57.
3. Ahmed S, Shahid RK, Sison CP, Fuchs A, Mehrotra B. Orbital lymphomas: a clinicopathologic study of a rare disease. Am J Med Sci 2006;331:79–83.
4. Demirci H, Shields CL, Shields JA, Honavar SG, Mercado GJ, Tovilla JC. Orbital tumors in the older adult population. Ophthalmology 2002;109:243–8.
5. Margo CE, Mulla ZD. Malignant tumors of the orbit: analysis of the Florida Cancer Registry. Ophthalmology 1998;105:185–90.
6. Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue: a distinctive type of B-cell lymphoma. Cancer 1983;52:1410–6.
7. Rosado MF, Byrne GE Jr, Ding F, Fields KA, Ruiz P, Dubovy SR, et al. Ocular adnexal lymphoma: a clinicopathologic study of a large cohort of patients with no evidence for an association with Chlamydia psittaci. Blood 2006;107:467–72.
8. Akpek EK, Polcharoen W, Ferry JA, Foster CS. Conjunctival lymphoma masquerading as chronic conjunctivitis. Ophthalmology 1999;106:757–60.
9. Bhatia S, Paulino AC, Buatti JM, Mayr NA, Wen BC. Curative radiotherapy for primary orbital lymphoma. Int J Radiat Oncol Biol Phys 2002;54:818–23.
10. Martinet S, Ozsahin M, Belkacémí Y, Landmann C, Poortmans P, Oehler C, et al. Outcome and prognostic factors in orbital lymphoma: a Rare Cancer Network study on 90 consecutive patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 2003;55:892–8.
11. Olsen TG, Heegaard S. Orbital lymphoma. Surv Ophthalmol 2019;64:45–66.
12. Uno T, Isobe K, Shikama N, Nishikawa A, Oguchi M, Ueno N, et al. Radiotherapy for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue originating in the ocular adnexa: a multiinstitutional, retrospective review of 50 patients. Cancer 2003;98:865–71.
13. Sjö LD. Ophthalmic lymphoma: epidemiology and pathogenesis. Acta Ophthalmol 2009;87(Thesis 1):1–20.
14. van der Gaag R. Immunological responses in the eyelid and orbit. Eye (Lond) 1988;2(Pt 2):158–63.
15. Du MQ, Isacsson PG. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol 2002;3:97–104.
16. Ferreri AJ, Guidoboni M, Ponzoni M, De Conciliis C, Dell’Oro S, Fleischhauer K, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 2004;96:586–94.
17. Byrne GI, Ocicius DM. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2004;2:802–8.
18. Collina F, De Chiara A, De Renzo A, De Rosa G, Botti G, Franco R. Chlamydia psittaci in ocular adnexa MALT lymphoma: a possible role in lymphomagenesis and a different geographical distribution. Infect Agent Cancer 2012;7:8.
19. Chanudet E, Zhou Y, Bacon CM, Wotherspoon AC, Müller-Hermelink HK, Adam P, et al. Chlamydia psittaci is variably as-
associated with ocular adnexal MALT lymphoma in different geographical regions. J Pathol 2006;209:344–51.

20. Couland SE. Molecular pathology of lymphoma. Eye (Lond) 2013;27:180–9.

21. Daibata M, Nemoto Y, Togitani K, Fukushima A, Ueno H, Ouchi K, et al. Absence of Chlamydia psittaci in ocular adnexal lymphoma from Japanese patients. Br J Haematol 2006;132:651–2.

22. Mulder MM, Hedema ER, Pannekoek Y, Faridpooya K, Oud ME, Schilder-Tol E, et al. No evidence for an association of ocular adnexal lymphoma with Chlamydia psittaci in a cohort of patients from the Netherlands. Leuk Res 2006;30:1305–7.

23. Vargas RL, Fallone E, Felgar RE, Friedberg JW, Arbini AA, Andersen AA, et al. Is there an association between ocular adnexal lymphoma and infection with Chlamydia psittaci?: the University of Rochester experience. Leuk Res 2006;30:547–51.

24. Bayraktar S, Bayraktar UD, Stefanovic A, Lossos IS. Primary ocular adnexal mucosa-associated lymphoid tissue lymphoma (MALT): single institution experience in a large cohort of patients. Br J Haematol 2011;152:72–80.

25. Bernardini FP, Bazzan M. Lymphoproliferative disease of the orbit. Curr Opin Ophthalmol 2007;18:398–401.

26. Ferreri AJ, Govi S, Pasini E, Mappa S, Bertoni F, Zaja F, et al. Chlamydomphila psittaci eradication with doxycycline as first-line targeted therapy for ocular adnexae lymphoma: final results of an international phase II trial. J Clin Oncol 2012;30:2988–94.

27. Ferreri AJ, Ponzoni M, Guidoboni M, Resti AG, Politi LS, Cortelazzo S, et al. Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst 2006;98:1375–82.

28. Ferreri AJ, Viale E, Guidoboni M, Resti AG, De Conciliis C, Politi L, et al. Clinical implications of hepatitis C virus infection in MALT-type lymphoma of the ocular adnexa. Ann Oncol 2006;17:769–72.

29. Fischbach W. Gastric MALT lymphoma: update on diagnosis and treatment. Best Pract Res Clin Gastroenterol 2014;28:1069–77.

30. Achenbach CJ, Cole SR, Kitahata MM, Casper C, Willig JH, Mugavero MJ, et al. Mortality after cancer diagnosis in HIV-infected individuals treated with antiretroviral therapy. AIDS 2011;25:691–700.

31. Riedel DJ, Rositch AF, Redfield RR, Blattner WA. HIV-associated lymphoma sub-type distribution, immunophenotypes and survival in an urban clinic population. Leuk Lymphoma 2016;57:306–12.

32. Bruyand M, Thiebaut R, Lawson-Ayayi S, Joly P, Sasco AJ, Mer-

cié P, et al. Role of uncontrolled HIV RNA level and immunodeficiency in the occurrence of malignancy in HIV-infected patients during the combination antiretroviral therapy era: Agence Nationale de Recherche sur le Sida (ANRS) CO3 Aquitaine Cohort. Clin Infect Dis 2009;49:1109–16.

33. Guiguet M, Boué F, Cadranel J, Lang JM, Rosenthal E, Costagiol D, et al. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FH-DH-ANRS CO4): a prospective cohort study. Lancet Oncol 2009;10:1152–9.

34. Zoufaly A, Stellbrink HJ, Heiden MA, Kollan C, Hoffmann C, van Lunzen J, et al. Cumulative HIV viremia during highly active antiretroviral therapy is a strong predictor of AIDS-related lymphoma. J Infect Dis 2009;200:79–87.

35. Teixeira Mendes LS, Wotherspoon A. Marginal zone lymphoma: associated autoimmunity and auto-immune disorders. Best Pract Res Clin Haematol 2017;30:65–76.

36. Zintzaras E, Voulgaris M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med 2005;165:2337–44.

37. Du MQ, MALT lymphoma: many roads lead to nuclear factor-kb activation. Histopathology 2011;58:26–38.

38. Ruiz A, Reischl U, Swerdlov SH, Hartke M, Streubel B, Procop G, et al. Extranodal marginal zone B-cell lymphomas of the ocular adnexa: multiparameter analysis of 34 cases including interphase molecular cytogenetics and PCR for Chlamydia psittaci. Am J Surg Pathol 2007;31:792–802.

39. Tanimoto K, Sekiguchi N, Yokota Y, Kaneko A, Watanabe T, Maeshima AM, et al. Fluorescence in situ hybridization (FISH) analysis of primary ocular adnexal MALT lymphoma. BMC Cancer 2006;6:249.

40. Priego G, Majos C, Climent F, Muntane A. Orbital lymphoma: imaging features and differential diagnosis. Insights Imaging 2012;3:337–44.

41. Eissa L, Abdel Razek AA, Helmy E. Arterial spin labeling and diffusion-weighted MR imaging: Utility in differentiating idiopathic orbital inflammatory pseudotumor from orbital lymphoma. Clin Imaging 2021;71:63–8.

42. Politi LS, Forghani R, Godi C, Resti AG, Ponzoni M, Bianchi S, et al. Ocular adnexal lymphoma: diffusion-weighted MR imaging for differential diagnosis and therapeutic monitoring. Radiology 2010;256:565–74.

43. Isaacson PG, Norton AJ. Extranodal lymphomas. Edinburgh: Churchill Livingstone; 1996.

44. Mannami T, Yoshino T, Oshima K, Takase S, Kondo E, Ohara N, et al. Clinical, histopathological, and immunogenetic analysis of ocular adnexal lymphoproliferative disorders: characteriza-
tion of malt lymphoma and reactive lymphoid hyperplasia. Mod Pathol 2001;14:641–9.

45. Kremer M, Cabras AD, Fend F, Schulz S, Schwarz K, Hoefler H, et al. PCR analysis of IgH-gene rearrangements in small lymphoid infiltrates microdissected from sections of paraffin-embedded bone marrow biopsy specimens. Hum Pathol 2000;31:847–53.

46. Adachi A, Tamaru J, Kaneko K, Kuroda H, Miura I, Kojima T, et al. No evidence of a correlation between BCL10 expression and API2-MALT1 gene rearrangement in ocular adnexal MALT lymphoma. Pathol Int 2004;54:16–25.

47. Coupland SE, Damato B. Lymphomas involving the eye and the ocular adnexa. Curr Opin Ophthalmol 2006;17:523–31.

48. Coupland SE, Hellmich M, Auw-Haedrich C, Lee WR, Stein H. Prognostic value of cell-cycle markers in ocular adnexal lymphoma: an assessment of 230 cases. Graefes Arch Clin Exp Ophthalmol 2004;242:130–45.

49. Coupland SE, Krause L, Delecluse HJ, Anagnostopoulos I, Foss HD, Hummel M, et al. Lymphoproliferative lesions of the ocular adnexa: analysis of 112 cases. Ophthalmology 1998;105:1430–41.

50. Ferreri AJ, Dolcetti R, Du MQ, Doglioni C, Resti AG, Politi LS, et al. Ocular adnexal MALT lymphoma: an intriguing model for antigen-driven lymphomagenesis and microbial-targeted therapy. Ann Oncol 2008;19:835–46.

51. Franco R, Camacho FI, Caleo A, Staibano S, Bifano D, De Renzo A, et al. Nuclear bcl10 expression characterizes a group of ocular adnexa MALT lymphomas with shorter failure-free survival. Mod Pathol 2006;19:1055–67.

52. Bouali S, Said IB, Yedeas MD, Abderrahmen K, Maatar N, Boubaker A, et al. Primary sporadic Burkitt lymphoma of the orbit, clinical characteristics, management, and outcomes: a case study. Childs Nerv Syst 2016;32:437–40.

53. Rasmussen P, Sjö LD, Prause JU, Ralfkiaer E, Heegaard S. Mucosa-associated lymphoid tissue lymphoma. Br J Ophthalmol 2009;93:1047–51.

54. Armitage JO. Staging non-Hodgkin lymphoma. CA Cancer J Clin 2005;55:368–76.

55. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res 1971;31:1860–1.

56. Coupland SE, White VA, Rootman J, Damato B, Finger PT. A TNM-based clinical staging system of ocular adnexal lymphomas. Arch Pathol Lab Med 2009;133:1262–7.

57. Rosenberg SA, Boiron M, DeVita VT Jr, Johnson RE, Lee BJ, Ullmann JE, Viamonte M Jr. Report of the Committee on Hodgkin’s Disease Staging Procedures. Cancer Res 1971;31:1862–3.
of mucosa-associated lymphoid tissue of the orbit. Ophthal-
mology 2006;113:1209–13.
71. Jäger G, Neumeister P, Quehenberger F, Wöhrrer S, Linkesch W,
Raderer M. Prolonged clinical remission in patients with extran-
odal marginal zone B-cell lymphoma of the mucosa-associated
lymphoid tissue type treated with cladribine: 6 year follow-up
of a phase II trial. Ann Oncol 2006;17:1722–3.
72. Raderer M, Wöhrrer S, Bartsch R, Prager G, Drach J, Hejna M, et
al. Phase II study of oxaliplatin for treatment of patients with
mucosa-associated lymphoid tissue lymphoma. J Clin Oncol
2005;23:8442–6.
73. Zinzani PL, Stefoni V, Musuraca G, Tani M, Alinari L, Gabriele
A, et al. Fludarabine-containing chemotherapy as frontline
treatment of nongastrointestinal mucosa-associated lymphoid
tissue lymphoma. Cancer 2004;100:2190–4.
74. Kim JS, Kang SH, Moon HS, Sung JK, Jeong HY, et al. Chla-
mymia psittaci infection and clinicopathologic analysis of ocular
adnexal lymphomas in Korea. Am J Hematol 2007;82:821–3.
75. Isaacson PG, Du MQ. MALT lymphoma: from morphology to
molecules. Nat Rev Cancer 2004;4:644–53.
76. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG.
Helicobacter pylori-associated gastritis and primary B-cell gas-
tric lymphoma. Lancet 1991;338:1175–6.
77. Yoo C, Ryu MH, Huh J, Park JH, Jeong HY. Clinical outcome
of eradication therapy for gastric mucosa-associated lymphoid
tissue lymphoma according to H. pylori infection status.
Gastroenterol Res Pract 2016;2016:6794848.
78. Liu YC, Ohyashiki JH, Itô Y, Iwaya K, Serizawa H, Mukai K, et
al. Chlamydia psittaci in ocular adnexal lymphoma: Japanese
experience. Leuk Res 2006;30:1587–9.
79. de Cremoux P, Subtil A, Ferreri AJ, Vincent-Salomon A, Pon-
zoni M, Chaoui D, et al. Re: Evidence for an association be-
tween Chlamydia psittaci and ocular adnexal lymphomas. J Natl
Cancer Inst 2006;98:365–6.
80. Gracia E, Froesch P, Mazzucchelli L, Martin V, Rodríguez-
Abreu D, Jiménez J, et al. Low prevalence of Chlamydia psittaci
in ocular adnexal lymphomas from Cuban patients. Leuk Lym-
phoma 2007;48:104–8.
81. Zhang GS, Winter JN, Varikojis D, Reich S, Lissner GS, Bryar
P, et al. Lack of an association between Chlamydia psittaci and
ocular adnexal lymphoma. Leuk Lymphoma 2007;48:577–83.
82. Han JJ, Kim TM, Jeon YK, Kim MK, Khwarg SI, Kim CW, et al.
Long-term outcomes of first-line treatment with doxycycline in
patients with previously untreated ocular adnexal marginal zone
B cell lymphoma. Am J Hematol 2015;90:1578–9.
83. Grünberger B, Hauff W, Lukas J, Wöhrrer S, Zielinski CC,
Streubel B, et al. ‘Blind’ antibiotic treatment targeting Chlamyd-
ia is not effective in patients with MALT lymphoma of the ocu-
lar adnexa. Ann Oncol 2006;17:484–7.
84. Tuncer S, Tanyıldız B, Basaran M, Buyukbabani N, Dogan O.
Systemic rituximab immunotherapy in the management of pri-
mary ocular adnexal lymphoma: single institution experience.
Curr Eye Res 2015;40:780–5.
85. Riley JK, Sliwkowski MX. CD20: a gene in search of a function.
Semin Oncol 2000;27(6 Suppl 12):17–24.
86. Annibali O, Chiodi F, Sarlo C, Cortes M, Quaranta-Leoni FM,
Quattrocchi C, et al. Rituximab as single agent in primary
MALT lymphoma of the ocular adnexa. Biomed Res Int 2015;
2015:295105.
87. Ferreri AJ, Ponzoni M, Martinelli G, Muti G, Guidoboni M,
Dolcetti R, et al. Rituximab in patients with mucosal-associated
lymphoid tissue-type lymphoma of the ocular adnexa. Haema-
tologica 2005;90:1578–9.
88. Rigacci L, Nasi L, Puccioni M, Mappa S, Polito E, Dal Pozzo S,
et al. Rituximab and chlorambucil as first-line treatment for low-
grade ocular adnexal lymphomas. Ann Hematol 2007;86:565–
8.
89. Knudsen MK, Rasmussen PK, Coupland SE, Esmaeli B, Finger
PT, Graue GF, et al. Clinicopathological features of ocular ad-
nexal mantle-cell lymphoma in an international multicenter co-
hort. JAMA Ophthalmol 2017;135:1367–74.
90. Rasmussen PK. Diffuse large B-cell lymphoma and mantle cell
lymphoma of the ocular adnexal region, and lymphoma of the
lacrimal gland: an investigation of clinical and histopathological
features. Acta Ophthalmol 2013;91(Thesis 5):1–27.
91. Blasi MA, Gherlinzoni F, Calvisi G, Sasso P, Tani M, Cellini M,
et al. Local chemotherapy with interferon-alpha for conjunctival
mucosa-associated lymphoid tissue lymphoma: a preliminary
report. Ophthalmology 2001;108:559–62.
92. Blasi MA, Tiberti AC, Valente P, Laguardia M, Sammarco MG,
Balestrazzi A, et al. Intratemporal interferon-α for conjunctival
mucosa-associated lymphoid tissue lymphoma: long-term re-
sults. Ophthalmology 2012;119:494–500.
93. Lachapelle KR, Rathee R, Kratky V, Dexter DF. Treatment of
conjunctival mucosa-associated lymphoid tissue lymphoma
with intralesional injection of interferon alfa-2b. Arch Ophthal-
mol 2000;118:284–5.
94. Jenkins C, Rose GE, Bunce C, Wright JE, Cree IA, Plowman N,
et al. Histological features of ocular adnexal lymphoma (REAL
classification) and their association with patient morbidity and
survival. Br J Ophthalmol 2000;84:907–13.
95. McKelvie PA, McNab A, Francis IC, Fox R, O’Day J. Ocular ad-
nexal lymphoproliferative disease: a series of 73 cases. Clin Exp
Ophthalmol 2001;29:387–93.
96. Sullivan TJ, Whitehead K, Williamson R, Grimes D, Schlect D, Brown I, et al. Lymphoproliferative disease of the ocular adnexa: a clinical and pathologic study with statistical analysis of 69 patients. Ophthalmic Plast Reconstr Surg 2005;21:177–88.

97. Jenkins C, Rose GE, Bunce C, Cree I, Norton A, Plowman PN, et al. Clinical features associated with survival of patients with lymphoma of the ocular adnexa. Eye (Lond) 2003;17:809–20.

98. Moslehi R, Devesa SS, Schairer C, Fraumeni JF Jr. Rapidly increasing incidence of ocular non-hodgkin lymphoma. J Natl Cancer Inst 2006;98:936–9.

99. Cho EY, Han JJ, Ree HJ, Ko YH, Kang YK, Ahn HS, et al. Clinicopathologic analysis of ocular adnexal lymphomas: extranodal marginal zone b-cell lymphoma constitutes the vast majority of ocular lymphomas among Koreans and affects younger patients. Am J Hematol 2003;73:87–96.

100. Lee JL, Kim MK, Lee KH, Hyun MS, Chung HS, Kim DS, et al. Extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue-type of the orbit and ocular adnexa. Ann Hematol 2005;84:13–8.