Methylenetetrahydrofolate Reductase Gene Polymorphism and Risk of Type 2 Diabetes Mellitus

Jian-Hong Zhong1,*, A. Chapin Rodríguez1,2,*, Na-Na Yang3, Le-Qun Li1,4

1Surgery Oncology Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China, 2Scientific Training Department, Association for Promotion of Multimedia Education (UMNA), Zagreb, Croatia, 3Nursing Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China

Abstract

Objective: This review aimed to comprehensively assess the literature examining a possible link between the rs1801133 polymorphism (677C→T) in the gene encoding the methylenetetrahydrofolate reductase (MTHFR) gene and risk of type 2 diabetes mellitus (DM).

Research Design and Methods: Several research databases were systematically searched for studies examining the genotype at the rs1801133 polymorphism in healthy control individuals and individuals with type 2 DM. Genotype frequency data were examined across all studies and across subsets of studies according to ethnicity and presence of serious DM-related complications. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated.

Results: A total of 4855 individuals with type 2 DM and 5242 healthy controls from 15 countries comprising Asian, Caucasian and African ethnicities were found to satisfy the inclusion criteria and included in the review. Genotype at the rs1801133 polymorphism was not consistently associated with either increased or reduced risk of type 2 DM; the OR across all studies was 0.91 (95% CI 0.82 to 1.00) for the C- vs. T-allele, 0.88 (0.75 to 1.03) for CC vs. CT+TT, 0.82 (0.71 to 0.95) for CC vs. TT, and 1.15 (1.03 to 1.29) for TT vs. CC+CT. Similar results were found when the meta-analysis was repeated separately for each ethnic subgroup, and for subgroups with or without serious DM-related complications.

Conclusions: There does not appear to be compelling evidence of an association between the genotype at the rs1801133 polymorphism of the MTHFR gene and risk of type 2 DM.

Introduction

Diabetes mellitus (DM) is a global health epidemic, affecting approximately 171 million people in 2000 and projected to affect more than 360 million in 2030 [1]. Approximately 90% of people with DM have type 2 disease (T2DM) [2]. In contrast to T1DM, which is genetically inherited, T2DM has a complex aetiology that appears to involve numerous environmental risk factors and potentially some genetic risk factors.

Predicting T2DM risk is important because the disease can severely affect quality of life. T2DM is associated with a broad array of cardiovascular diseases, including retinopathy, nephropathy, acute myocardial infarction, stroke and atherosclerosis. It is important to diagnose and manage T2DM as early as possible to ensure therapeutic efficacy and avoid more serious long-term complications.

The rising prevalence of T2DM and the importance of early detection and management has led many investigators to search for environmental and genetic risk factors for T2DM and T2DM-related complications. Elevated plasma levels of homocysteine, a condition known as hyperhomocystinaemia (HHcy), have been linked with such T2DM features as endothelial dysfunction and arterial stiffness [3], insulin resistance [4,5], prothrombotic inflammation and hypercoagulability [6], macroangiopathy [4,7] and nephropathy [8,9]. HHcy has also been associated with atherosclerosis [10], coronary heart disease [11] and death [12] among individuals with T2DM.

The enzyme methylenetetrahydrofolate reductase (MTHFR) methylates homocysteine to generate methionine [13], and its dysfunction can lead to HHcy. Therefore numerous studies have investigated whether reduced MTHFR activity is a risk factor for T2DM. The single nucleotide polymorphism (SNP) rs1801133 (677C→T) leads to an Ala222Val substitution in the N-terminal catalytic domain of the enzyme. This mutation reduces enzyme activity, such that the activity in individuals with CT and TT genotypes is approximately 65% and 35%, respectively, that of individuals with the wild-type CC genotype [14,15,16]. As a result, individuals with the TT genotype have significantly higher Hcy levels than do individuals with CT and CC genotypes [17]. More recent genome-wide association studies (GWAS) have confirmed the association between rs1801133 genotype and homocysteine levels in healthy populations [18,19].
Study (ref.)	Ethnicity	Cases/Controls	Serious DM-related complications*	Duration of DM (yr)*	Genotype by PCR-RFLP	P_{HWE} ^<c>					
			CC	CT	TT	CC	CT	TT			
Asian											
Bazzaz 2010 [46]	Iranian	281/207	NR			148	102	31			
Chang 2011 [27]	Taiwanese	56/62	NR			1	25	30			
Chauhan 2012 [43]	Indian	1018/1006	NR			31	310	677			
Chen 2010 [29]	Chinese	40/55	No metabolic syndrome, inflammatory disease, kidney disease, or coronary heart disease	NR	23	13	4	34	17	4	0.439
Dai 2012 [26]	Chinese	60/60	No diabetic nephropathy	11.7±0.9	29	28	3	31	27	2	0.310
Eroglu 2007 [47]	Turkish	56/128	No diabetic nephropathy	NR	25	25	6	63	58	7	0.272
Hasegawa 2003 [45]	Japanese	62/200	No renal failure or macroangiopathy. Retinopathy present in 77.4% of cases.	18.5 (10–40)	23	32	7	78	96	26	0.762
Ho 2005 [36]	Taiwanese	20/42	Normal renal function; no deep vein thrombosis or coronary artery disease	NR	13	5	2	28	11	3	0.326
Luo 2009 [31]	Chinese	71/85	No cardiovascular disease or coronary heart disease	NR	39	26	6	43	31	11	0.204
Miao 2004 [37]	Chinese	41/47	No cerebrovascular disease	5.68±4.22	19	17	5	26	18	3	1.000
Mei 2012 [28]	Chinese	116/124	NR	19	70	27	14	73	37	0.025	
Mowa 2011 [44]	Indian	100/100	No history or family history of renal complications	12.16±4.07	68	32	0	91	9	0	1.000
Raza 2012 [21]	Indian	87/88	NR	35	37	15	49	26	13	0.009	
Shi 2006 [33]	Chinese	104/110	No microvascular complications	NR	70	29	5	68	34	8	0.273
Sun 2006 [7]	Chinese	104/114	No overt nephropathy, cerebrovascular disease, coronary heart disease or peripheral vascular disease	7.04±4.71	60	27	17	63	31	20	<0.001
Tutuncu 2005 [48]	Turkish	87/91	Coronary artery disease present in 18% of cases; cerebrovascular disease, 3%; diabetic retinopathy, 18%; neuropathy, 9%.	8.7±7.1	39	37	11	47	39	5	0.593
Xiao 2006 [34]	Chinese	41/73	No nephropathy, cerebrovascular disease, coronary heart disease or peripheral vascular disease	NR	8	31	2	47	25	1	0.439
Xu 2003 [34]	Chinese	54/52	No diabetic nephropathy	6.77±4.08	24	21	9	20	25	7	1.000
Wang 2001 [42]	Chinese	117/85	No overt nephropathy	5.42±3.81	57	48	12	37	38	10	1.000
Wen 2008 [32]	Chinese	59/57	No nephropathy	4.8±5.3	21	32	6	27	25	5	1.000
Table 1. Cont.

Study (ref.)	Ethnicity	Cases/Controls	Serious DM-related complications^a	Duration of DM (yr)^b	Genotype by PCR-RFLP	\(P_{\text{HWE}} \) ^c					
					Cases	Controls					
					CC	CT	TT	CC	CT	TT	
Yang 2001 [41]	Chinese	102/62	No diabetic nephropathy, diabetic retinopathy, and other microvascular complications	>10	32	56	14	26	28	8	1.000
Yilmaz 2004 [22]	Turkish	249/214	Left ventricular hypertrophy present in 11.2% of cases	9.5±7.7	121	98	30	101	93	20	1.000
Yue 2006 [35]	Chinese	140/30	No diabetic nephropathy, diabetic retinopathy, or other microvascular complications	NR	43	76	21	17	11	2	1.000
Zhang 2002 [40]	Chinese	100/100	No macroangiopathy complications	NR	32	55	13	40	49	11	0.662
Zhang 2010 [30]	Chinese	206/194	Left ventricular hypertrophy present in 11.2% of cases	17.0±6.7	63	65	18	67	68	15	0.853
Zhou 2004 [38]	Chinese	67/69	No macroangiopathy complications	NR	5	42	20	8	31	30	1.000

Caucasian

Study (ref.)	Ethnicity	Cases/Controls	Serious DM-related complications^a	Duration of DM (yr)^b	Genotype by PCR-RFLP	\(P_{\text{HWE}} \) ^c					
					Cases	Controls					
					CC	CT	TT	CC	CT	TT	
Benè 2001 [53]	Czech	49/209	No coronary artery disease	NR	24	20	5	86	106	17	0.062
Bluthner 1999 [55]	German and Polish	146/150	No diabetic nephropathy	17.0±7.0	63	65	18	67	68	15	0.853
Cenerelli 2002 [52]	Italy	30/43	No diabetic nephropathy, neuropathy, nephropathy, cardiovascular disease or coronary heart disease	3.1±6.5	8	14	8	13	21	9	1.000
Heffenstein 2005 [57]	Brazilian	50/56	No atherosclerosis, myocardial infarction, or diabetic retinopathy	NR	26	20	4	26	24	6	1.000
Książek 2004 [50]	Polish	155/170	No diabetic nephropathy. Retinopathy present in 8.4% of cases.	9.8±5.1	82	58	15	71	83	16	0.304
Mazza 2005 [54]	Italian	105/120	No coronary artery disease, cerebrovascular disease, kidney dysfunction, or diabetic proliferative retinopathy	11.4±8.0	35	47	23	35	66	19	0.264
Russo 2008 [49]	Italian	90/91	No cardiovascular disease	NR	28	42	20	23	50	18	0.403
Soares 2008 [56]	Brazilian	7/16	No coronary disease, stroke, or chronic renal failure	>1	5	2	0	9	5	2	0.530
Wirta 2002 [51]	Finnish	81/114	Background retinopathy present in 3.6% of cases	3 mos. (range, 1–11 mos.)	44	29	8	60	47	7	0.811

African

Study (ref.)	Ethnicity	Cases/Controls	Serious DM-related complications^a	Duration of DM (yr)^b	Genotype by PCR-RFLP	\(P_{\text{HWE}} \) ^c					
					Cases	Controls					
					CC	CT	TT	CC	CT	TT	
Benraham 2012 [58]	Moroccan	282/262	Neuropathic complications present in 30.5% of cases; cardiovascular complications, 17.4%; nephropathic complications, 25%.	NR	160	97	25	114	122	26	0.487
Mackawy 2011 [59]	Egyptian	40/40	No history of ischemic stroke	NR	24	10	6	32	6	2	0.090
Numerous studies around the world have examined whether an association exists between the 677C→T SNP and risk of T2DM. These studies have arrived at different conclusions, with some suggesting a significant association and others no association. This discrepancy is doubtless due in part to the wide variation in genotype frequencies at the rs1801133 locus. The TT genotype, for example, is present in 9–13% of Brazilians [20], 15–17% of north Indians [21], 18–20% of Chinese [7], and 20–30% of Turkish [22]. This makes it particularly important to systematically assess the association between this polymorphism and risk of T2DM across a range of ethnicities.

Despite the divergent results among single-country studies and strong evidence that rs1801133 genotype depends on ethnicity, no systematic review has been undertaken to determine conclusively whether this MTHFR SNP is associated with risk of T2DM, and whether the association is universal or specific to particular ethnic groups. To address this question as comprehensively as possible, we carried out a systematic review of case-control studies in the medical literature.

Methods

Literature Search Strategy

The most recent on-line versions of the following research databases were searched in April 2013 without language restrictions: Chinese National Knowledge Infrastructure (CNKI), Cochrane Library (http://onlinelibrary.wiley.com/cochranelibrary/search), Directory of Open-Access Journals (www.doaj.org), Embase, Public Library of Science (www.plosmedicine.org), PubMed, SciELO (www.scielo.org), Scopus, and Web of Knowledge. The following search terms were used to identify studies: “methylenetetrahydrofolate reductase” or MTHFR, gene or polymorphism or variation or genotype or genetic or mutation, diabetes or mellitus or “diabetes mellitus”. We also searched the Catalog of Published Genome-Wide Association Studies (www.genome.gov/gwastudies) of the US National Human Genome Research Institute.

Inclusion Criteria

We included in the systematic review full-length research studies that satisfied the following criteria: (a) they assessed the association between T2DM and the 677C→T polymorphism of the MTHFR gene; (b) they used a case-control design in which cases were T2DM patients and controls were healthy individuals; and (c) they provided sufficient published data for estimating an odds ratio (OR) with a 95% confidence interval (95%CI). Conference abstracts or other forms of summary publication were not included.

If studies included case groups of DM patients with serious DM-related complications or control groups other than healthy individuals, data for those additional groups were not extracted. Serious DM-related complications, which included cardiovascular disease, coronary heart disease, nephropathy and diabetic retinopathy, were defined as complications aside from the more frequent clinical manifestations of T2DM such as hyperlipidaemia, hypertension and obesity. In the case of multiple studies apparently based on the same case or control population, we included only the study with the largest number of participants.

Data Extraction

Two authors (J-HZ, ACR) independently extracted the following data from included studies: first author’s family name, year of publication, numbers of cases and controls, presence of serious complications among cases, duration of T2DM at the time of the
study, Hardy-Weinberg equilibrium (HWE) of controls, and rs1801133 genotype frequencies in cases and controls. Extracted data were compared and discrepancies resolved by discussion.

Statistical Methods and Bias Testing

The unadjusted OR with 95%CI was used to assess the strength of the association between the 677C\(\rightarrow\)T polymorphism of the MTHFR gene and T2DM risk based on the genotype frequencies in cases and controls. The meta-analysis examined the association of different genotypes at 677C\(\rightarrow\)T MTHFR with T2DM risk by comparing the C allele with the T allele, comparing homozygous genotypes, and applying recessive and dominant genetic models.

All statistical tests for this meta-analysis were performed using RevMan 5.14 (Cochrane Collaboration) and Stata 11.0 (StataCorp, College Station, USA). Pooled ORs were calculated using fixed- or random-effect models, and the significance of those ORs was assessed using the Z-test. The threshold for significance in the Z-test was defined as P<0.05. We used a chi squared-based Q-test to assess heterogeneity among studies. In this test, P>0.10 was taken to suggest that effect sizes were larger than those expected by chance [23,24], indicating the absence of statistical heterogeneity. In this case, a pooled OR was calculated for each study using the fixed-effect model. Otherwise, the random-effect model was used. HWE in the control group was assessed using the asymptotic test, with P<0.05 considered significant.

Publication bias was assessed by visual inspection of Begg's funnel plots. Small-study bias was assessed by Harbord's modified test [25].

Subgroup and Sensitivity Analysis

To detect associations that might be masked in the overall sample, we performed subgroup analyses based on subsets of the included studies defined according to ethnicity (African, Asian, and Caucasian) and according to whether the studies included T2DM cases with serious DM-related complications, such as cardiovascular disease, coronary heart disease, nephropathy and diabetic retinopathy. For subgroup analysis based on the presence or absence of serious DM-related complications, we defined two subgroups of studies: one subgroup in which the authors explicitly stated that such complications were absent, and another subgroup in which the authors either reported the presence of such complications or did not report on the presence or absence of complications at all. We also performed subgroup analysis separately on studies in which the MTHFR alleles in the control group were in HWE and on studies in which they were not in HWE. To assess the reliability of the outcomes in the meta-analysis, a sensitivity analysis was performed by excluding one study at a time.

Results

Several research databases were searched without language restrictions to identify case-control studies assessing the possible association between the rs1801133 polymorphism in the MTHFR gene and risk of T2DM. A total of 4436 studies were identified, none of which was a GWAS. This list was reduced to 143 after removing duplicates and screening based on the title and abstract review. These articles were read in full, and 99 studies were
Figure 2. Forest plot assessing the potential association between the genotype at MTHFR polymorphism rs1801133 and risk of T2DM in all included studies (C-allele vs. T-allele).
doi:10.1371/journal.pone.0074521.g002
Table 2. Overall and stratified meta-analyses of the association between methylenetetrahydrofolate reductase polymorphism 677C→T and risk of type 2 diabetes mellitus.

Genotype comparison	OR [95% CI]	Z (P value)	Heterogeneity of study design	Analysis model
			χ^2 df (P value)	I²
All studies (4855 cases, 5242 controls)				
C-allele vs. T-allele	0.91 [0.82, 1.00]	1.97 (0.05)	76.62 38 (<0.001)	50% Random
CC vs. CT+TT	0.88 [0.75, 1.03]	1.56 (0.12)	95.21 38 (<0.001)	60% Random
CC vs. TT	0.82 [0.71, 0.95]	2.62 (0.009)	35.40 37 (0.54)	0% Fixed
TT vs. CC+CT	1.15 [1.03, 1.29]	2.57 (0.01)	26.07 37 (0.91)	0% Fixed
Subgroups by ethnicity				
Asian (3438 cases, 3455 controls)				
C-allele vs. T-allele	0.86 [0.76, 0.96]	2.62 (0.009)	45.38 25 (0.008)	45% Random
CC vs. CT+TT	0.81 [0.66, 0.98]	2.14 (0.03)	59.41 25 (<0.001)	58% Random
CC vs. TT	0.82 [0.68, 0.99]	2.11 (0.04)	24.34 24 (0.44)	1% Fixed
TT vs. CC+CT	1.12 [0.99, 1.27]	1.76 (0.08)	19.40 24 (0.73)	0% Fixed
Caucasian (713 cases, 969 controls)				
C-allele vs. T-allele	1.06 [0.91, 1.22]	0.73 (0.47)	4.19 8 (0.84)	0% Fixed
CC vs. CT+TT	1.22 [0.99, 1.49]	1.91 (0.06)	3.63 8 (0.89)	0% Fixed
CC vs. TT	0.92 [0.67, 1.27]	0.51 (0.61)	2.25 8 (0.97)	0% Fixed
TT vs. CC+CT	1.23 [0.91, 1.65]	1.35 (0.18)	2.06 8 (0.98)	0% Fixed
Subgroups by DM-related complications				
T2DM with serious complications (3062 cases, 3248 controls)				
C-allele vs. T-allele	0.91 [0.79, 1.04]	1.37 (0.17)	32.40 13 (0.002)	60% Random
CC vs. CT+TT	0.96 [0.77, 1.20]	0.38 (0.71)	38.46 13 (<0.001)	66% Random
CC vs. TT	0.83 [0.69, 1.00]	1.99 (0.05)	20.32 13 (0.09)	36% Fixed
TT vs. CC+CT	1.17 [1.02, 1.33]	2.32 (0.02)	12.21 13 (0.51)	0% Fixed
T2DM without serious complications (1793 cases, 1994 controls)				
C-allele vs. T-allele	0.90 [0.78, 1.04]	1.43 (0.15)	44.11 24 (0.007)	46% Random
CC vs. CT+TT	0.83 [0.66, 1.03]	1.68 (0.09)	55.21 24 (<0.001)	57% Random
CC vs. TT	0.82 [0.65, 1.03]	1.71 (0.09)	15.09 23 (0.89)	0% Fixed
TT vs. CC+CT	1.13 [0.92, 1.39]	1.13 (0.26)	13.78 23 (0.93)	0% Fixed
Subgroups by HWE				
Alleles in control group in HWE (4281 cases, 4516 controls)				
C-allele vs. T-allele	0.91 [0.82, 1.01]	1.75 (0.08)	64.89 34 (0.001)	48% Random
CC vs. CT+TT	0.89 [0.75, 1.05]	1.36 (0.17)	83.85 34 (<0.001)	59% Random
CC vs. TT	0.83 [0.70, 0.97]	2.33 (0.02)	28.57 33 (0.69)	0% Fixed
TT vs. CC+CT	1.16 [1.04, 1.31]	2.53 (0.01)	21.44 33 (0.94)	0% Fixed
Alleles in control group not in HWE (574 cases, 726 controls)				
C-allele vs. T-allele	0.88 [0.63, 1.24]	0.74 (0.46)	10.80 3 (0.01)	72% Random
CC vs. CT+TT	0.83 [0.54, 1.26]	0.88 (0.38)	7.81 3 (0.05)	62% Random
CC vs. TT	0.88 [0.51, 1.51]	0.46 (0.64)	6.80 3 (0.08)	56% Random
TT vs. CC+CT	1.09 [0.81, 1.48]	0.57 (0.57)	4.52 3 (0.21)	34% Fixed

doi:10.1371/journal.pone.0074521.t002
removed because they did not include a healthy control group without T2DM, while another 5 studies were removed because they analysed overlapping patient populations. In the end, 39 studies were included in the meta-analysis (Fig. 1) [7,8,21,22,26–60]. The main characteristics of the included studies are shown in Table 1.

These studies involved 4855 individuals with T2DM and 5242 healthy controls from 15 countries in Asia (26 studies), Europe (7), North Africa (4), and Brazil (2). Of the 39 studies, 14 were published in Chinese and 25 in English. Meta-analysis of all included studies indicated that the genotype at MTHFR polymorphism rs1801133 was not consistently associated with either increased or reduced risk of T2DM across the genetic models tested: the OR across all studies was 0.91 (95% CI 0.82 to 1.00) for the C- vs. T-allele (Fig. 2), 0.88 (0.75 to 1.03) for CC vs. CT+TT, 0.82 (0.71 to 0.95) for CC vs. TT, and 1.15 (1.03 to 1.29) for TT vs. CC+CT (Table 2).

To test the robustness of these findings, we recalculated ORs and 95% CIs across all studies after systematically removing each of them, one at a time. The results after deleting each study were similar to those obtained across all studies.

Subgroup Analysis by Ethnicity

We performed subgroup analysis based on ethnicity in order to uncover any evidence of an association between the MTHFR SNP and risk of T2DM that might go undetected in the overall sample. We loosely classified the study populations as African, Asian, or Caucasian based on the majority ethnicity of the participants. Meta-analysis of each of the three subgroups failed to provide clear, consistent evidence that the genotype at MTHFR polymorphism rs1801133 was associated with either increased or reduced risk of T2DM (Table 2).

Subgroup Analysis by Presence or Absence of Serious Complications of T2DM

Our original intention was to include only studies in which cases were T2DM without serious complications, which we defined as complications such as nephropathy, retinopathy, and coronary heart disease—in other words, complications aside from the hyperlipidaemia, HHcy, and obesity typically observed in patients with T2DM. Many studies, however, included cases with T2DM and serious complications, even when the study purported to assess only the association between the MTHFR SNP and T2DM per se. Therefore we divided the 39 studies into two subgroups: 14 studies that explicitly reported the presence of serious complications among cases or failed to report on such complications at all [9,21,22,27,28,30,43,45,46,48,50,51,56,60], and 25 studies that explicitly reported the absence of serious complications [7,26,29,31–42,44,47,49,52–55,59]. Meta-analysis of these two subgroups, like the meta-analysis across all included studies, failed to provide clear, consistent evidence that the genotype at MTHFR polymorphism rs1801133 was associated with either increased or reduced risk of T2DM (Table 2).

Since the rs1801133 alleles in the control groups of several studies were not in HWE, we analysed those studies separately from those in which the alleles in the control groups were in HWE. The results were similar to those obtained across all included studies (Table 2).

Bias Testing

Begg’s funnel plots were prepared for the 39 studies to assess publication bias for studies about 677C→T MTHFR and T2DM risk. The shape of the funnel plots appeared to be symmetrical for allele contrast, homozygous comparison, and recessive and dominant genetic models, suggesting the absence of publication bias. Small-study bias tests showed no significant bias (P = 0.939, Figure 3).

Discussion

This systematic review sought to assess the evidence for an association between the rs1801133 polymorphism in the MTHFR gene and risk of T2DM. We failed to find any clear, consistent evidence of such an association across all 39 studies conducted in 15 countries. In addition, no compelling evidence of an association was found specifically for African, Asian, or Caucasian populations, or specifically for populations with T2DM in the presence or absence of serious DM-related complications.

One of the challenges in conducting this systematic review was taking into account the clinical profile of the T2DM cases in the included studies. Such characterisation is important, because diabetes is a syndrome that can have far-reaching effects on various organ systems. For example, individuals with T2DM have approximately 2-fold higher risk of cardiovascular events than do individuals without diabetes [61]. This may make it difficult to determine whether the rs1801133 polymorphism is associated with T2DM, a T2DM-related complication or both. In order to isolate as much as possible an association between the MTHFR polymorphism and onset of T2DM per se, we analysed results separately for studies in which cases were explicitly described as having or lacking serious DM-related complications. The results of this subgroup meta-analysis were similar to those of the meta-analysis across all studies, further supporting the lack of an association between the MTHFR 677C→T SNP and risk of T2DM.

Our finding of a lack of association between this SNP and risk of T2DM contrasts with studies suggesting that this polymorphism is associated with certain serious DM-related complications. A meta-analysis of 29 studies found the TT genotype to be associated with moderately elevated risk for diabetic nephropathy and retinopathy [62]. Individual studies have reported the T allele to be associated with diabetic nephropathy [50,63] and diabetic macroangiopathy [7,45], but not with T2DM per se. These findings, in light of our meta-analysis results, highlight the need for rigorous, large-scale prospective studies that separate genetic risk of disease onset from genetic risk of complications. This work is crucial for clarifying
whether MTHFR can affect long-term T2DM progression and patient prognosis.

Genotype frequencies at the rs1801133 locus of MTHFR vary widely by ethnicity [7,20–22], raising the possibility that any association between this SNP and risk of T2DM may likewise depend on ethnicity. Therefore we repeated our meta-analysis separately for the ethnic groups that emerged from our literature searches: African, Asian, and Caucasian. We were restricted to these large, loosely defined ethnic categories because of the lack of detailed ethnicity data within the included studies. Meta-analysis results for each of the three ethnic groups failed to provide compelling evidence of an association between the MTHFR SNP and risk of T2DM. These findings are important because diabetes prevalence is projected to increase at substantially different rates in different ethnic groups. For example, diabetes prevalence is projected to increase between 2000 and 2030 by 26% in Italy, 71% in USA, 104% in China, 148% in Brazil, and 205% in Iran [1]. If this differential increase has a genetic basis, it seems unlikely to involve polymorphism in the MTHFR gene.

Another SNP in the MTHFR gene, 1298A→C (Glu429Ala), was reported to reduce enzyme activity based on studies of endogenous enzyme in lymphocyte extracts [15,16], raising the possibility that it might be a risk factor for HHcy just like the 677C→T SNP. However, the 1298A→C SNP lowers MTHFR activity substantially less than does 677C→T [15,16,64], and biochemical studies with purified recombinant enzyme suggest that the originally reported lower activity for Glu429Ala enzyme may have been an artifact [65]. Furthermore, compelling evidence that the 1298A→C SNP is associated with HHcy is lacking [66]. The much milder effects observed with 1298A→C than with 677C→T are consistent with the fact that 1298A→C causes a mutation in the C-terminal regulatory domain of the enzyme, whereas 677C→T causes a mutation in the catalytic domain. Thus the 1298A→C SNP has not been the focus of studies of genetic risk factors of T2DM, and it was not considered in this systematic review.

The lack of an association between the 677C→T SNP and risk of T2DM may be consistent with studies calling into question whether HHcy plays a role in the disease. For example, although some authors have associated HHcy with macroangiopathy [4,67], other authors have reported no such association [68]. Some studies have reported a positive association between total homocysteine levels and insulin levels in blood [69], while others have found a negative association [70] or no association at all [4]. To make the situation more complex, the negative effects of HHcy, at least with respect to increased risk of stroke, appear to be exacerbated by low folate [71]. Most of the studies included in the present systematic review did not analyze Hcy levels in cases and controls, making it difficult to gain a comprehensive picture. Of the studies that did examine whether Hcy levels were associated with the rs1801133 polymorphism, 11 found the TT genotype to be associated with higher Hcy levels than the CT or CC genotypes in patients with T2DM [7,8,31,32,35,45,46,51,54,59,60], while 6 found no such association [27,48,49,52,56,57]. A meta-analysis published in 1998 concluded there was an association between the TT genotype and elevated plasma homocysteine levels in individuals with T2DM [17], while a more recent prospective study found no such association [72]. Thus, we second the conclusions of previous authors that the link between Hcy levels and T2DM remains unclear [48,53,56,60]. The recommendation of the College of American Pathologists to measure Hcy only in patients with documented atherosclerotic disease [73] seems reasonable, given that HHcy is commonly accepted to be an independent risk factor for atherosclerosis and thrombomobolism [74].

The findings in this systematic review are limited by the designs of the included studies. Only three studies [21,43,57] reported statistical power (76–90%), raising the possibility that other included studies were underpowered, which might lead to inaccuracy in our meta-analysis results. Nearly all included studies examined polymorphism only in the MTHFR gene, even though evidence suggests that this gene may interact with others in conferring risk or protection from diabetes. For example, the ID polymorphism in the gene encoding angiotensin-converting enzyme may act synergistically with the MTHFR 677C→T polymorphism to enhance diabetes risk [60]. Another design limitation is that most included studies looked only at a genetic association between MTHFR SNP genotype and T2DM risk. This is different from examining the downstream effects of different MTHFR SNP genotypes. For example, since more than half the included studies did not examine plasma Hcy levels in individuals with different genotypes, it is difficult to gain further insight into whether these levels are directly linked to risk of T2DM and thereby resolve the contradictory information in the literature.

Several studies in our meta-analysis included patients with T2DM who had been managing their disease with medication, while other studies excluded such patients; studies also diverged significantly with respect to how long their participants had been living with the disease. Further studies should aim to control for as many possible confounders as possible.

Our findings fail to provide compelling evidence for an association between the MTHFR polymorphism rs1801133 and risk of T2DM, regardless of the ethnicity of the patient or the presence of serious DM-related complications. The possibility remains that MTHFR does affect risk of T2DM in concert with other genetic risk factors, which might include the 1298A→C SNP or additional polymorphisms that recent GWAS have linked to homocysteine levels [18].

Reporting of this meta-analysis has been guided by the PRISMA statement (Checklist S1).

Supporting Information

Checklist S1 PRISMA 2009 Checklist.

Author Contributions

Conceived and designed the experiments: J-HZ. Performed the experiments: J-HZ ACR. Analyzed the data: J-HZ N-NY. Contributed reagents/materials/analysis tools: L-QL. Wrote the paper: J-HZ ACR.

References

1. World Health Organization. “Country and regional data on diabetes: Prevalence of diabetes worldwide”. Available: who.int/diabetes/facts/ world_figures/en/index.html, accessed 2013 February 17.
2. World Health Organization. “Genetics and diabetes”. Available: who.int/ genetics/about/Diabetes-fin.pdf, accessed 2013 February 17.
3. Dougiot J, Eleftheriadou I, Kokkinos A, Perrea D, Pavlato C, et al. (2010) Acute hyperhomocysteinemia impairs endothelium function in subjects with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 118: 453–456.
4. BuysseMaert M, Drasmia AS, Wallemacq PE, Hermans MP (2000) Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care 23: 1016–1022.
5. Masaki T, Anan F, Anai M, Higuchi K, Tsubone T, et al. (2007) Hyperhomocysteinemia is associated with visceral adiposity in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 77: 168–173.
31. Luo D, Yan S, Cheng X, Song Y (2009) [Levels of homocysteine and
28. Mei QB, Chen P, LH Z (2012) [Correlation study between gene polymorphism
27. Chang YH, Fu WM, Wu YH, Yeh CJ, Huang CN, et al. (2011) Prevalence of
26. Dai SH, Y Z (2012) [An Association Study of MTHFR and eNOS Genes
25. Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects
24. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis.
21. Raza ST, Abbas S, Ahmed F, Fatima J, Zaidi ZH, et al. (2012) Association of
20. Errera FI, Silva ME, de Oviedo J, Brulin I (1998) [Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98: 2520-2526.
19. Paré G, Chasan-Taber L, Parker AN, Zee RY, Malarcher A, et al. (2009) Novel associations of CPS1, MUT, NOXA1, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide association study in the Women’s Genome Health Study. Circ Cardiovasc Genet 2: 142–150.
18. Lange LA, Croteau-Chonka DC, Marfelle AV, Qin L, Gaudton KJ, et al. (2010) Genome-wide association study of homocysteine levels in Filipinos provides evidence for contribution of SNPs in women and a stronger MTHFR effect. Hum Mol Genet 19: 2059-2068.
17. Brattström L, Wåken DE, Ohrvik J, Brulin I (1998) [Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98: 2520-2526.
16. Vázquez-Joyas J, Fabregas J, Núñez S (1992) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Gen Metab 49: 169-172.
15. Weinberg IS, Jacques PF, Selhub J, Bosron WG, Chen Z, et al. (2001) The 195G>A polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene in vitro expression and association with homocysteine. Atherosclerosis 156: 409-415.
14. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase (MTHFR) gene. Nat Genet 10: 111–113.
13. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, et al. (1994) Methylenetetrahydrofolate reductase (MTHFR) gene mutation associated with chronic hyperhomocysteinemia and venous thromboembolism. Am J Hum Genet 55: 705-713.
12. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, et al. (2000) The homocysteine-methionine cycle is associated with the development of carotid atherosclerosis in the Hoorn Study. Circulation 101: 1506–1511.
11. Sun J, Xu Y, Xue J, Zhu Y, Lu H (2005) Methylenetetrahydrofolate reductase polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. Mol Cell Endocrinol 229: 95–101.
10. Akalin A, Alatas O, Colak O (2008) Relation of plasma homocysteine levels to metabolic syndrome in Chinese population. Clin Invest Med 33: E290–297.
9. Ukinc K, Ersoz HO, Karahan C, Erem C, Eminagaoglu S, et al. (2009) Association of MTHFR gene polymorphism with the prevalence of vascular diseases in young women. J Mod Lab Med 9: 162–163.
8. Aso Y, Yoshida N, Okumura K, Wakabayashi S, Matsutomo R, et al. (2004) Association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and risk of diabetic nephropathy in Taiwanese patients with Type 2 diabetic mellitus. Clin Biochem 44: 1370–1374.
7. Sun J, Xu Y, Xue J, Zhu Y, Lu H (2005) Methylenetetrahydrofolate reductase polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. Mol Cell Endocrinol 229: 95–101.
6. Aso Y, Yoshida N, Okumura K, Wakabayashi S, Matsutomo R, et al. (2004) Methylenetetrahydrofolate reductase polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. Mol Cell Endocrinol 229: 95–101.
5. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, et al. (2000) The homocysteine-methionine cycle is associated with the development of carotid atherosclerosis in the Hoorn Study. Circulation 101: 1506–1511.
4. Yeh CJ, Chiang WC, Hsu CH, Kao BL, Kong CW, et al. (2004) Endothelial dysfunction and other factors on plasma homocysteine and risk of thromboembolic disease in Chinese. J Clin Med Assoc 68: 560–565.
3. Mao L, Gao YF, Qin WH, H S (2004) (The Association of Methylenetetrahydrofolate Reductase Gene Polymorphism with Cerebral Infarction in Type II Diabetes Mellitus). Acta Academiae Medicinae Nantong 24: 146–150.
2. Zhou J, Li XX, JC Z (2004) [Relationship between the C677T polymorphism in the methylenetetrahydrofolate reductase gene and cerebral infarction complicated type 2 diabetes]. J Apoplexy Nervous Diseases 21: 136–138.
1. Xu JS, Zhang J, Shan DS, HC M (2003) [Relationship between methylenetetrahydrofolate reductase gene polymorphism and diabetic nephropathy in type 2 diabetes mellitus in the Hans of Inner Mongolia]. Clinical Focus 18: 787–789.
57. Helfenstein T, Fonseca FA, Relvas WG, Santos AO, Diabla ML, et al. (2005) Prevalence of myocardial infarction is related to hyperhomocysteinemia but not influenced by C677T methylenetetrahydrofolate reductase and A2756G methionine synthase polymorphisms in diabetic and non-diabetic subjects. Clin Chim Acta 355: 163–172.

58. Benrahma H, Abidi O, Melouk L, Ajjemami M, Rouba H, et al. (2012) Association of the C677T polymorphism in the human methylenetetrahydrofolate reductase (MTHFR) gene with the genetic predisposition for type 2 diabetes mellitus in a Moroccan population. Genet Test Mol Biomarkers 16: 383–387.

59. Mackawy AMH, Badawy M (2011) Methylene tetrahydrofolate reductase gene polymorphism and the risk of ischemic stroke in type 2 diabetic Egyptian patients. Global J Health Sci 3: 162–174.

60. Mehri S, Koubaa N, Nakhi A, Hammami S, Chaaba R, et al. (2010) Relationship between genetic polymorphisms of angiotensin-converting enzyme and methylenetetrahydrofolate reductase as risk factors for type 2 diabetes in Tunisian patients. Clin Biochem 43: 259–266.

61. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375: 2215–2222.

62. Niw W, Qi Y (2012) An updated meta-analysis of methylenetetrahydrofolate reductase gene 677C/T polymorphism with diabetic nephropathy and diabetic retinopathy. Diabet Res Clin Pract 95: 110–118.

63. Cui WP, Du B, Jia Y, Zhou WH, Liu SM, et al. (2012) Is C677T polymorphism in methylenetetrahydrofolate reductase gene a risk factor for diabetic nephropathy or diabetes mellitus in a Chinese population? Arch Med Res 43: 42–50.

64. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62: 1044–1051.

65. Yamada K, Chen Z, Rosen R, Matthews RG (2001) Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci USA 98: 14853–14858.

66. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Sellah J, et al. (1999) A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr 129: 1656–1661.

67. Smalders YM, Raik C, Slaats EH, Treskes M, Sijbrands EJ, et al. (1999) Fasting and post-methionine homocysteine levels in NIDDM: Determinants and correlations with retinopathy, albuminuria, and cardiovascular disease. Diabetes Care 22: 125–132.

68. Chico A, Perez A, Cordoba A, Arcehas R, Carreras G, et al. (1999) Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia 41: 684–693.

69. Shimomura T, Anan F, Umeno Y, Eshima N, Saikawa T, et al. (2000) Hyperhomocysteinaemia is a significant risk factor for white matter lesions in Japanese type 2 diabetic patients. Eur J Neurol 15: 289–294.

70. Bar-On H, Kidron M, Friedlander Y, Ben-Yehuda A, Sellah J, et al. (2000) Plasma total homocysteine levels in subjects with hyperinsulinemia. J Intern Med 247: 207–294.

71. Holmes MV, Newcombe P, Hubacek JA, Sofat R, Rickerts SL, et al. (2011) Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomized trials. Lancet 378: 504–509.

72. Mello AL, Cunha SF, Foss-Freitas MC, Vannucchi H (2012) Evaluation of plasma homocysteine level according to the C677T and A1298C polymorphism of the enzyme MTHFR in type 2 diabetic adults. Arq Bras Endocrinol Metabol 56: 429–434.

73. College of American Pathologists. "Consensus Conference XXXVI: Diagnostic issues in thrombophilia (November 9–11, 2001)". Available: www.cap.org/apps/docs/committees/coagulation/pocketbookpdf, Accessed 2013 February 17.

74. Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354: 407–413.