Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic, and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group (SFG) and typhus group (TG) rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism toward cultured tick and insect cells. The mechanisms responsible for rickettsial pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and non-pathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as R. prowazekii, are much more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and non-pathogenic species of SFG rickettsiae (SFRG) in mammalian cells. The growth of non-pathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of non-pathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the non-pathogenic rickettsiae and the growth of the pathogenic rickettsia. Autophagy is restricted in these cells. These results are discussed in this review.

Keywords: Rickettsia, tropism, pathogenicity, spotted fever group, typhus group, vector, tick, insect
the eruption, pyrexia, and endotoxin shock observed during the course of rickettsial infection.

It is worth noting that the vector ranges of each rickettsial species are rather restricted; i.e., the vectors for SFG species are usually ticks (except those for *R. akari* and *R. felis*, which are mites and fleas, respectively) belonging to *Arachnida*. On the other hand, those for TGR species are lice and fleas, which belong to *Insecta* (Table 1; Higgins et al., 1996). *R. felis* carries its pRF genes on a plasmid so it does not fully meet the criteria for the SFG or TG. Rather, this indicates that *R. felis* has participated in horizontal gene transfer involving the AG and might be better classified into a transitional group along with *R. akari*, which displays both SFG and TG characteristics (Gillespie et al., 2007, 2012). This plasmid might have been incorporated into the chromosomes of the other *Rickettsia* during the course of their evolution (Gillespie et al., 2007). The mechanisms responsible for the vector tropism of rickettsiae have not been studied in detail.

TROPISM OF RICKETTSIAE TOWARD ARTHROPOD VECTORS AND CULTURED CELLS

Although the relationships between rickettsiae and their vectors are relatively fixed, the mechanisms responsible for the tropism of rickettsiae toward arthropod vectors have not been elucidated. Studies using cell lines derived from arthropods are indispensable for clarifying these mechanisms. In studies using insect cells, Uchiyama reported that the growth of some SFGR species, *R. japonica*, and *R. montanensis*, was restricted in the NIAS-AeAl-2 (AeAl2) insect cell line, which is derived from *Aedes albopictus*, even though SFGR species have been demonstrated to be capable of adhering to and invading these cells (Figures 1–3; Mitsuhashi, 1981; Mizuki et al., 1999; Noda et al., 2002; Uchiyama, 2005). Scanning and transmission electron microscopy confirmed these results (Figure 3; Uchiyama, 2006). Rickettsiae seem to begin their invasion of AeAl2 cells immediately after adhering to them. The superinfection of SFGR-infected AeAl2 cells with a TGR species on day three of infection resulted in the growth of the TGR species but not the SFGR species. Furthermore, the SFGR-infected AeAl2 cells suffered rapid cell death; however, as no DNA fragmentation, lobed nuclei, or peripheral chromosome condensation were observed, the growth inhibition of these cells was possibly due to their non-apoptotic necrotic cell death. Concerning this issue, induced cell death (subsequently renamed programmed necrosis), which is one of the candidates for the mechanism responsible for growth inhibition, has been found to act in opposition to anti-apoptotic factors (Laster et al., 1988; Holler et al., 2000; Chan et al., 2003). For example, cells infected with Cowpox virus cause tumor necrosis factor (TNF)-induced programmed necrosis, which is opposed by the anti-apoptotic factor CrmA (Chan et al., 2003). When T cells or fibroblastic cells are infected with the Vaccinia virus, apoptosis is inhibited by the anti-apoptotic factor B13R/Spi2; however, TNF-induced programmed necrosis can also occur (Cho et al., 2009). Thus, programmed necrosis might occur when AeAl2 cells are infected with SFGR. Contrary to our results, a previous report found that some non-pathogenic SFGR species, *R. montanensis*, and *R. peacockii*, were able to grow in two mosquito cell lines (the *A. albopictus* cell line Aa23 and the *Anopheles gambiæ* cell line Sua5B; Sakamoto and Azad, 2007). The reason for this discrepancy is poorly understood.

Table 1 | Classifications, vectors, and reservoirs of *Rickettsia* that are known to be pathogenic to humans.

Antigenic group	Species	Disease	Vector	Reservoir(s)
Spotted fever group	*R. aeschlimannii*	African tick-bite fever	Tick	Unknown
	R. africae	African rickettsial fever	Tick	Ruminants
	R. akari	Rickettsialpox	Mite	Mice, rodents
	R. australis	Queensland tick typhus	Tick	Rodents
	R. conorii	Mediterranean spotted fever or Boutonneuse fever	Tick	Dogs, rodents
	R. felis	Cat flea rickettsiosis	Flea	Cats, rodents, opossums
	R. heilongiangensis	Far Eastern spotted fever	Tick	Rodents
	R. honei	Aneruptive fever	Tick	Rodents, reptiles
	R. japonica	Japanese spotted fever or Oriental spotted fever	Tick	Rodents
	R. massillae	Mediterranean spotted feverlike disease	Tick	Unknown
	R. parkeri	Maculatum infection	Tick	Rodents
	R. rickettsii	Rocky Mountain spotted fever, Febre maculosa, São Paulo exanthematic typhus, Minas Gerais	Tick	Rodents
	R. sibirica	North Asian tick typhus, Siberian tick typhus	Tick	Rodents
	R. sibirica mongolotimonae	Lymphangitis-associated rickettsiosis	Tick	Rodents
	R. slovaca	Tick-borne lymphadenopathy (TIBOLA), Dermacentor-borne necrosis and lymphadenopathy (DEBONEL)	Tick	Lagomorphs, rodents
Typhus group	*R. prowazekii*	Epidemic typhus, Brill-Zinsser disease	Louse	Humans, flying squirrels
	R. typhi	Murine typhus	Flea	Rodents
Although *R. conorii* as shown in Table 1 was confirmed to be able to survive in mammalian cells (*Escherichia coli* using PCR, rather than in an infective assay. Another report found that the transcription of spoT gene paralogs was suppressed during the maintenance of *R. conorii* in *A. albipictus* (C6/36) cells at 10°C for 38 days. Shifting the temperature to 37°C resulted in a rapid upregulation of spoT gene expression (Rivery et al., 2005). Although *R. conorii* were confirmed to be able to survive in the cells at low temperature, their growth was not directly assayed after the temperature was increased.

As for studies using tick cell lines, several reports have demonstrated the growth of SFGR species in cells derived from ticks (Policastro et al., 1997; Munderloh et al., 1998). In our study (Uchiyama et al., 2009), the DALBE3 cell line from * Dermacentor albipictus* and the ISE6 cell line from *Ixodes scapularis* were inoculated with *R. japonica* and *R. conorii* as SFGR species and *R. prowazekii* as TGR species. The SFGR grew well in these tick cells as well as in Vero, HeLa, and ECV304 mammalian cells (Figures 1 and 2). On the contrary, the growth of TGR was restricted in these tick cells, even though they successfully adhered to the cells, which was also true for other combinations of rickettsiae and host cells. These findings were confirmed by transmission electron microscopy. Rickettsiae were found to be able to escape into the cytoplasm from phagosomes after being engulfed by the tick cells. Thus, the observed growth restriction occurred after these steps, although the precise mechanism responsible for it is yet to be elucidated. These results from studies using various combinations of SFGR or TGR and tick or insect cells suggest that the host vector tropism of rickettsiae is at least partially based on host cellular tropism (Figure 1).

PATHOGENICITY OF RICKETTSIAE

As shown in Table 1, many rickettsial species have displayed evidence of being pathogenic to humans. On the other hand, many other species have not displayed any evidence of being pathogenic to humans, some of which might be weakly pathogenic. To date, various putative factors that might be associated with the pathogenicity of rickettsiae have been proposed; however, the molecular basis for the pathogenicity of rickettsiae is yet to be precisely established.

It is reasonable to think that the degree of growth of *Rickettsia* in human blood vessels; i.e., endothelial cells (EC), primarily determines the severity of their effects on the host, with the exception of *R. akari*, the causative agent of Rickettsialpox, which principally targets macrophages (Walker et al., 2007). Thus, every step of the growth of rickettsiae in host cells could affect their pathogenicity. The events involved in host cell infection by rickettsiae are summarized in Figure 4. The first steps involve the adherence of the rickettsiae to host cells and their subsequent invasion of these cells, since *Rickettsia* are obligate intracellular parasitic bacteria. Internalization occurs within minutes, and rickettsiae escape from phagosomes into the cytoplasm via the phospholipase activities of hemolysin C (TlyC) and phospholipase D (Pld; Teyssiere et al., 1995; Whitworth et al., 2005). It has been clarified that among the 17 subfamilies of Sca autotransporter proteins, rOmpA (=Sca0), and rOmpB (=Sca5) are involved in host cell adherence and invasion by rickettsiae. rOmpA is one of the major surface antigen proteins of SFGR, and treatment with the antibody against rOmpA or immunization with recombinant rOmpA protected animal models against infection by rickettsiae (Anacker et al., 1985, 1987; McDonald et al., 1987; Li et al., 1988; McDonald et al., 1988; Vishwanath et al., 1990; Sumner et al., 1995; Croquet-Valdes et al., 2001). The role of rOmpA in the adherence of rickettsiae to host cells has also been examined using cultured cells (Li and Walker, 1998). However, TG rickettsiae do not possess rOmpA, although a remnant (369 bp) of its ORF (6,063 bp) still exists in the equivalent region in *R. prowazekii*. rOmpB, which is the only major surface antigen protein common to the genus *Rickettsia*, was also confirmed to play roles in host cell adherence and invasion by rickettsiae in studies using *Escherichia coli* expressing recombinant *R. japonica* rOmpB on their surface (Uchiyama, 1999; Uchiyama et al., 2006; Chan et al., 2009). rOmpB is well conserved among the *Rickettsia* genus.
including SFGR and TGR, e.g., the rOmpB amino acid sequences of *R. prowazekii* and *R. conorii* share 70% homology, which might reflect the importance of the molecule for rickettsial growth (Carl et al., 1990; Gilmore et al., 1991; Hahn et al., 1993). rOmpB might also play other roles, e.g., in the maintenance of the structure of the bacteria or as a molecular sieve, etc. rOmpB associates with Ku70 on the plasma membrane (Martinez et al., 2005), and this interaction is sufficient to mediate the rickettsial invasion of non-phagocytic host cells (Chan et al., 2009). Clathrin and caveolin-2-dependent endocytosis are responsible for the internalization of rickettsiae. The recruitment of c-Cbl, a ubiquitin ligase, to the entry site is also required for the ubiquitination of Ku70 (Martinez et al., 2005). *R. conorii* enters non-phagocytic cells via an Arp2/3 complex-dependent pathway (Martinez and Cossart, 2004). Pathways involving Cdc42, phosphoinositide 3-kinase, c-Src, cortactin, and tyrosine-phosphorylated proteins activate Arp2/3, resulting in localized actin rearrangement during rickettsial entry. Furthermore, activation of the p38 mitogen-activated protein kinase module facilitates host cell invasion by *R. rickettsii* in vitro (Rykina et al., 2005, 2008). Recently, it has been clarified that some of the other outer membrane proteins belonging to the Sca family, Sca1, and Sca2, also play roles in host cell adherence and invasion by rickettsiae (Cardwell and Martinez, 2009; Riley et al., 2010). Overlay assays involving biotinylated EC, 2D-PAGE, and mass spectrometry have demonstrated that the β-peptide, Adr1, and Adr2 are also putative rickettsial adhesins (Renesto et al., 2006).
FIGURE 3 | Scanning electron microscopy of cells infected with TGR and SFGR. (A) AeA2 cells infected with R. typhi at 10 and 60 min after infection. (B) AeA2 cells infected with R. japonica at 10 and 60 min after infection. Successful adherence to and invasion of AeA2 insect cells was achieved by both TGR and SFGR soon after their inoculation. The yellow and red arrows indicate adherent and invading rickettsiae, respectively.

In addition to studies of these early events during the course of rickettsial infection, there have been many genomic analyses of the pathogenicity of rickettsiae (Andersson et al., 1998; Li and Walker, 1998; Ogata et al., 2001; Uchiyama, 2003; Joshi et al., 2004; Sahni et al., 2005; Whitworth et al., 2005; Uchiyama et al., 2006; Chan et al., 2009; Fournier et al., 2009; Clark et al., 2011). Rickettsial genomes possess homologs of the virB operon, which is known to be related to the type IV secretion system (T4SS) and might be associated with rickettsial pathogenicity. It was reported that Vero cells that had been infected with R. conorii displayed upregulated virB operon expression when they were exposed to nutrient stress (La et al., 2007). The factors secreted by the T4SS, such as Sec7, LepA, LepB, and patatins, might upregulate the synthesis of nutrients that allow rickettsiae to survive in stressful...
The infection of cultured human EC with *R. rickettsii* induced the early cell-to-cell spread of the bacteria, resulting in widespread membrane damage and finally cell death (Silverman, 1984). However, EC are not only injured by infection, but also initiate cellular responses such as endothelial activation. Specifically, the infection of EC with *R. prowazekii* or *R. conorii* induces surface platelet adhesion (Silverman, 1986); the release of von Willebrand factor from the phagosomes that engulfed them by secreting the phospholipases TyC and Pid. In the case of SFGR, the surface molecules RicA and Sca2 recruit Arp2/3 to polymerize actin, resulting in the formation of an actin tail, which aids the movement of the bacteria. However, in the case of TGR, *R. prowazekii* does not have an actin tail, while *R. typhi* has a very short actin tail. SFGR invade the adjacent cells very early in the course of the infection. Rickettsiae grow within cells by binary fission. The VirB-related T4SS is essential for the intracellular survival of rickettsiae as it allows them to secrete effector molecules.

A comparative study of rickettsial genomes suggested that the inactivation of some genes by genome reduction during the course of their evolution abrogated host-induced rickettsial growth restriction (Blanc et al., 2007). In fact, a conflicting relationship was detected between a smaller genome size and increased pathogenicity in rickettsiae, e.g., *R. prowazekii*, which possesses a smaller genome, causes more severe symptoms than *Rickettsia* species with larger genomes such as *R. conorii* (Fournier et al., 2009; Botelho-Nevers and Raoult, 2011). A comparison of the growth of the virulent and avirulent strains of *R. rickettsii* revealed that the relA/spoT gene is essential for growth restriction (Clark et al., 2011).

The growth kinetics of pathogenic rickettsiae in mammalian cells were compared with those of non-pathogenic rickettsiae. Vero and HeLa cells derived from mammals were inoculated with a non-pathogenic species of SFGR, *R. montanensis* (Bell et al., 1963; Uchiyama et al., 2012). The growth of *R. montanensis* in the mammalian cells was restricted; however, the infection was persistent, and low levels of rickettsiae were produced throughout its course (Figure 5). On the other hand, superinfection of the *R. montanensis*-infected cells with the pathogenic *R. japonica* resulted in increased yields of the non-pathogenic *R. montanensis* and *R. japonica* growth. Western blotting confirmed that autophagy had been induced in the cells infected with *R. montanensis* alone. On the contrary, autophagy was restricted in the *R. montanensis*-infected cells that had been superinfected with pathogenic *R. japonica*. These results were consistent with the findings of ultrastructural observations (Figure 6). Thus, it is suggested that...
Although autophagy is one of the innate defense systems against Shigella cellular growth, such as invading microbes, other pathogenic bacteria that display intratamensis might secrete an unidentified autophagy restriction factor(s).

Although autophagy is one of the innate defense systems against invading microbes, other pathogenic bacteria that display intracellular growth, such as Shigella, Listeria, and Burkholderia, also possess mechanisms for escaping from autophagic degeneration (Sasakawa, 2010). Shigella escapes from autophagic recognition by secreting IcsB via the type III secretion system (TTSS; Ogawa et al., 2005). Listeria recruits the Arp2/3 complex and Ena/VASP to its surface via the bacterial ActA protein and disguises them from autophagic recognition (Yoshikawa et al., 2009), and Burkholderia secretes the BopA protein via the TTSS to evade autophagy (Cullinane et al., 2008).

It is also known that the BopA protein shares 23% homology with IcsB of Shigella. Another of the putatively non-pathogenic SFGR, Rickettsia sp. LON, which was isolated from Haemaphysalis longicornis (a tick), but has never been isolated from human spotted fever patients in Japan (Fujita, 2008; Hanaoka et al., 2009), is genetically closely related to R. japonica and in fact is classified within the R. japonica group. Its growth in mammalian cells was examined in a recent study (Uchiyama and Fujita, 2012). The growth of Rickettsia sp. LON is restricted in mammalian cells, as was found for R. montanensis. However, its growth can be recovered by superinfection of the pathogenic R. japonica. These results further strengthen the hypothesis that the degree of rickettsial growth in mammalian cells basically determines the pathogenicity of Rickettsia. Another non-pathogenic Rickettsia, R. peacockii, which is also known as the East Side agent, was isolated from Rocky Mountain Wood ticks (Dermacentor andersoni) from Montana, USA (Bell et al., 1963; Burgdorfer et al., 1981). R. rickettsii-carrying D. andersoni display a markedly reduced prevalence on the east side of the Bitterroot Valley, while Rocky Mountain spotted fever predominantly occurs on the west side of the valley (Philip and Casper, 1981).

Thus, the presence of R. peacockii in D. andersoni ticks might prevent the transovarial transmission of R. rickettsii and limit its spread in the tick population, although it is uncertain whether R. peacockii actively interferes with R. rickettsii in ticks or whether ticks carrying R. peacockii have a reproductive advantage over those carrying R. rickettsii. R. rickettsii has been demonstrated to have a lethal effect on its tick vector D. andersoni (Niebylski et al., 1999). A comparative study has also been performed of the genome sequences of the pathogenic R. rickettsii and the non-pathogenic R. peacockii (Niebylski et al., 1997; Felsheim et al., 2009). In R. peacockii, the genes encoding an ankyrin repeat containing protein, DsbA, RickA, protease II, rOmpA, ScA1, and a putative phosphoethanolamine transferase, which are related to its pathogenicity, were deleted or mutated. The gene coding for the ankyrin repeat containing protein is especially noteworthy as it is also mutated in the attenuated Iowa strain of R. rickettsii. The precise mechanisms by which these factors contribute to the pathogenicity of SFGR are yet to be clarified.

PERSPECTIVES

The vector tropism of rickettsiae seems to correspond with their growth in cultured mammalian cells. It has been clarified that the growth restriction of SFGR in AeAl2 cells depends on the non-apoptotic cell death induced after host cell adherence and invasion by rickettsiae. It is important to analyze the mechanisms responsible for this cell death and the cell death inhibition observed in AeAl2 cells infected with TGR. Moreover, the mechanisms responsible for the restriction of TGR growth in tick cells and the abrogation of the growth restriction in tick cells infected with SFGR also need to be elucidated.

A relationship was detected between the ability of Rickettsia species to grow in cultured mammalian cells and their pathogenicity; however, the growth abilities of Rickettsia species are affected by many host and rickettsial factors during the various stages of rickettsial infection. In order to elucidate the mechanisms governing rickettsial pathogenicity, it is necessary to compare these factors between pathogenic and non-pathogenic strains.

Although I have attempted to elucidate the relationships between various rickettsiae species and cell types in this review, it is also necessary to clarify the roles of innate and acquired immunity against rickettsiae infection.

FIGURE 5 | Growth kinetics of non-pathogenic and pathogenic SFGR in mammalian cells. The growth of non-pathogenic and pathogenic rickettsiae was monitored. Some of the cells that had been infected with non-pathogenic R. montanensis were superinfected with pathogenic R. japonica on day three of infection, and the growth of each Rickettsia was monitored. The growth of non-pathogenic SFGR was restricted in mammalian cells. The superinfection of the infected cells with pathogenic SFGR induced an elevated yield of the non-pathogenic SFGR and the growth of the pathogenic species.
ACKNOWLEDGMENTS

This work was supported, in part, by a Grant-in-Aid for Scientific Research (C; 21590481) from the Japan Society for the Promotion of Science and by a Grant-in-Aid for Research on Emerging and Re-Emerging Infectious Diseases (H21-Shinkou-Ippan-006) from the Ministry of Health, Labor, and Welfare of Japan.

REFERENCES

Anacker, R. L., List, R. H., Mann, R. E., Hayes, S. F., and Thomas, L. A. (1985). Characterization of monoclonal antibodies protecting mice against Rickettsia rickettsii. J. Infect. Dis. 151, 1052–1066.

Beati, L., and Raoult, D. (1993). Rickettsia massiliae sp. nov., a new spotted fever group Rickettsia. Int. J. Syst. Bacteriol. 43, 839–840.

Bechelli, J. B., Rydлина, E., Colonne, P. M., and Sahni, S. K. (2009). Rickettsia rickettsii infection protects human microvascular endothelial cells against staurosporine-induced apoptosis by a cAP2-independent mechanism. J. Infect. Dis. 119, 1389–1398.

Bell, E. J., Kohls, G. M., Stemmer, H. G., and Lackman, D. B. (1963). Nonpathogenic rickettsiae related to the spotted fever group isolated from ticks, Dermacentor variabilis and Dermacentor andersoni from Eastern Montana. J. Immunol. 90, 770–781.

Blanc, G., Ogata, H., Robert, C., Audic, S., Suhre, K., Vestris, G., Claverie, J.-M., and Raoult, D. (2007). Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3, e14. doi:10.1371/journal.pgen.0030014

Botelho-Nevers, E., and Raoult, D. (2011). Host, pathogen and treatment-related prognostic factors in rickettsiosis. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1139–1150.

Brumpt, E. (1932). Longévité du virus de la fièvre boutonneuse (Rickettsia conorii, n. sp.) chez la tique Rhizophy- cephalus sanguineus. C. R. Seances Soc. Biol. Fil. 110, 1119–1202.

Beati, L., and Raoult, D. (1993). Rickettsia massiliae sp. nov., a new spotted fever group Rickettsia. Int. J. Syst. Bacteriol. 43, 521–526.

Beati, L., and Raoult, D. (1991). "Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii," in Rickettsiae and Rickettsial Diseases, eds W. Burgdorfer and R. L. Anacker (New York, NY: Academic Press), 585–594.

Cardwell, M. M., and Martinez, J. J. (2009). The Sc2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77, 5272–5280.

Carl, M., Dobson, M. E., Ching, W.-M., and Dusch, G. A. (1990). Characterization of the gene encoding the protective paracrystalline-surface layer protein of Rickettsia prowazekii: presence of a truncated identical homolog in Rickettsia typhi. Proc. Natl. Acad. Sci. U.S.A. 87, 8237–8241.

Chan, F. K.-M., Shielar, J., Bixby, J. G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B., and Lenardo, M. J. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621.

Chen, Y. G. Y., Cardwell, M. M., Hermans, T. M., Uchiyama, T., and Martinez, J. J. (2009). Rickettsial outer membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11, 629–644.

Cho, V. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., and Chan, F. K.-M. (2009). Phosphorylation-driven assembly of RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123.

Clark, T. R., Ellison, D. W., Kleba, B., and Hackstadt, T. (2011). Complementation of Rickettsia rickettsii relAspoT restores a nonlytic plaque phenotype. Infect. Immun. 79, 1631–1637.

Croquet-Valdes, P. A., Diaz-Montero, C. M., Feng, H. M., Li, H., Barrett, A. D. T., and Walker, D. H. (2001). Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 20, 979–988.

Cullinan, M., Gong, L., Li, X., Lazar, Adler, N., Tra, T., Wolvetang, E., Prescott, M., Boyce, J. D., Devenish, R. J., and Adler, B. (2008). Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4, 744–753.

FIGURE 6 | Transmission electron microscopy of Vero cells infected with non-pathogenic and pathogenic SFGR. (A) Vero cells infected with R. montanensis alone was observed at 7 days after infection. An arrow marks a degenerating rickettsia in an autophagosome-like vacuole. (B)
Dignat-George, F., Teysereir, N., Mutin, M., Bardin, N., Lesaulge, G., Raoult, D., and Sampol, J. (1997). "Rickettsia conorii" infection enhances vascular cell adhesion molecule-1 and intercellular adhesion molecule-1-dependent mononuclear cell adherence to endothelial cells. J. Infect. Dis. 175, 1142–1152.

Drancourt, M., Alliessi, M. C., Levy, P. Y., Jihan-Vague, L., and Raoult, D. (1990). Selection of tissue-type plasminogen activator and plasminogen activator inhibitor by Rickettsia conorii and Rickettsia rickettsii-infected cultured endothelial cell. Infect. Immun. 58, 2459–2463.

Dyer, R. E., Rumreich, A., and Badger, L. E. (1931). Typhus fever: a virus of the typhus type derived from fleas collected from wild rats. Public Health Rep. 46, 334–338.

Felsheim, R. F., Kurtti, T. J., and Munderloh, U. G. (2009). Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS ONE 4, e8361. doi:10.1371/journal.pone.0008361

Fournier, P.-E., Dumler, J. S., Greub, G., Zhang, J., Wu, Y., and Raoult, D. (2003). Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heliogiangensis sp. nov. J. Clin. Microbiol. 41, 3215–3225.

Fournier, P.-E., El Karkouri, K., Leroy, Q., Robert, C., Giunelli, B., Renesto, P., Socolovschi, C., Parola, P., Audic, S., and Raoult, D. (2009). Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10, 166. doi:10.1186/1471-2164-10-166

Fournier, P.-E., Gourier, F., Broquai, P., Lucht, E., and Raoult, D. (2005). Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clin. Infect. Dis. 40, 1435–1444.

Fujita, H. (2008). Cell culture system for isolation of disease agents: 15 years of experience in Ohara Research Laboratory. Annu. Rev. Ohara Hosp. 48, 21–42.

Gillespie, J. I., Joardar, V., Williams, K. P., Driscoll, T., Hostetter, J. B., Nordberg, E., Shukla, M., Walenz, B., Hill, C. A., Nene, V. M., Azad, A. E., Sobral, B. W., and Caler, E. (2012). A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J. Bacteriol. 194, 376–394.

Gilmour, R. D. Jr., Cieplak, W. J., Poli, castro, P. F., and Hackstadt, T. (1991). The 120 kilodalton outer membrane protein of Rickettsia rickettsii is encoded by an unusually long open reading frame: evidence for protein processing from a large precursor. Mol. Microbiol. 5, 2361–2370.

Hahn, M.-I., Kim, K.-K., Kim, I.-S., and Chang, W. H. (1993). Cloning and sequence analysis of the gene encoding the crystalline surface layer protein of Rickettsia typhi. Gene 133, 129–153.

Hamaoka, N., Matsutani, M., Kawabata, H., Yamamoto, S., Fujita, H., Sakata, A., Azuma, Y., Ogawa, M., Takano, A., Watanabe, H., Kishimoto, T., Shira, M., Kurane, I., and Ando, S. (2009). Diagnostic assay for Rickettsia japonica. Emerging Infect. Dis. 15, 1994–1997.

He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. J. Immunol. 183, 1100–1101.

Higgins, J. A., Radulovic, S., Schriefer, M.E., and Azad, A. (1996). Rickettsia felis: a new species of pathogenic Rickettsia isolated from cat fleas. J. Clin. Microbiol. 34, 671–675.

Holler, N., Zaru, R., Micheau, O., Tlome, H., Attinger, A., Valitutti, S., Bodmer, L.-J., Schneider, P., Bode, M., and Tischopp, J. (2000). Fas triggers an alternative, caspase-dependent pathway. J. Immunol. 164, 1299–1308.

Lin, W. S., Cunneen, T., and Lee, C. Y. (1994). Sequence analysis and molecular characterization of genes coding for the 150-kDa outer membrane protein of Rickettsia prowazekii. In vitro Cell. Dev. Biol. Anim. 30, 423–427.

Mcdonald, G. A., Anacker, R. L., Mann, R. E., and Milich, L. J. (1988). Protection of guinea pigs from experimental Rocky Mountain spotted fever with a cloned antigen of Rickettsia rickettsii. J. Infect. Dis. 158, 228–231.

Mitsuhashi, J. (1981). A new continuous cell line from larvae of the mosquito Aeles albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606.

Nordberg, E., Shukla, M., Walenz, B., Ogata, H., Audic, S., Renesto-Audiffren, B., Barbry, P., Schrenzel, J., Raoult, D., and Renesto, P. (2007). Development of a method for recovering rickettsial RNA from infected cells to analyze gene expression profiling of obligate intracellular bacteria. J. Microbiol. Methods 71, 292–297.

Liu, H., Lenz, B., and Walker, D. H. (1988). Protective monoclonal antibody bodies recognize heat-labile epitopes on surface proteins of spotted fever group rickettsiae. Infect. Immun. 56, 2587–2593.

Liu, H., and Walker, D. H. (1998). rOmp A is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24, 289–298.

Lin, W. S., Cunneen, T., and Lee, C. Y. (1994). Sequence analysis and molecular characterization of genes required for the biosynthesis of type I capsular polysaccharide in Staphylococcus aureus. J. Bacteriol. 176, 7005–7016.

Martinez, J. J., and Cossart, P. (2004). Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell. Sci. 117, 5097–5106.

Mcdonald, G. A., Anacker, R. L., and Garjian, K. (1987). Cloned gene of Rickettsia rickettsii surface antigen: candidate vaccine for Rocky Mountain spotted fever. Science 235, 83–85.

McDonald, G. A., Anacker, R. L., Mann, R. E., and Milich, L. J. (1988). Protection of guinea pigs from experimental Rocky Mountain spotted fever with a cloned antigen of Rickettsia rickettsii. J. Infect. Dis. 158, 228–231.

Mediannikov, O. Y., Sidelnikov, Y., Ivanov, L., Mokretsova, E., Fournier, P.-E., Tarasevich, I., and Raoult, D. (2004). Acute tick-borne rickettsiosis caused by Rickettsia heliogiangensis in Russian Far East. Emerging Infect. Dis. 10, 810–817.

Mitsuhashi, J. (1981). A new continuous cell line from larvae of the mosquito Aeles albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606.

Mitsuhashi, J. (1981). A new continuous cell line from larvae of the mosquito Aeles albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606.

Mitsuhashi, J. (1981). A new continuous cell line from larvae of the mosquito Aeles albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606.

Mitsuhashi, J. (1981). A new continuous cell line from larvae of the mosquito Aeles albopictus (Diptera, Culicidae). Biomed. Res. 2, 599–606.
Raoult, D., Berbis, P., Roux, V., Xu, W., Policastro, P. F., Munderloh, U. G., Plotz, H., Smadel, J. E., and Bennet, R. J. P. (2004). Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 38, 405–411.

Philip, R. N., and Casper, E. A. (1981). Serotypes of spotted fever group rickettsiae isolated from Dermacentor andersoni (Stiles) ticks in western Montana. Am. J. Trop. Med. Hyg. 30, 230–238.

Philip, R. N., Casper, E. A., Anacker, R. L., Cory, J., Hayes, S. F., Burgdorfer, W., and Yunker, E. (1985). Rickettsia bellii sp. nov.: a tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int. J. System. Bacteriol. 33, 94–106.

Ploetz, H., Smadel, J. E., and Bennet, B. I. (1946). North Queensland tick typhus: studies of the aetiologi-cal agent and its relation to other rickettsial diseases. Med. J. Aust. 263–268.

Policastro, P. F., Munderloh, U. G., Fischer, E. R., and Hackstall, T. (1997). Rickettsia rickettsii growth and temperature-inducible pro-tein expression in embryonic tick cell lines. J. Med. Microbiol. 46, 839–845.

Raoult, D., Berbis, P., Roux, V., Xu, W., and Maurin, M. (1997). A new tick-transmitted disease due to Rickettsia slovaca. Lancet 350, 112–113.

Renesto, P., Samson, L., Ogata, H., Azza, S., Fourquet, P., Gorvel, J.-P., Heinzen, R. A., and Raoult, D. (2000). Identification of two putative rickettsial adhesins by proteomic analysis. Res. Microbiol. 158, 605–612.

Riley, S. P., Goh, K. C., Hermans, T. M., Cardwell, M. M., Chan, Y. G. A., and Martinez, J. J. (2010). The Rickettsia conorii autotransporter protein ScI promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78, 1895–1904.

Roverry, C., Renesto, P., Crapoulet, N., Matsumoto, K., Parola, P., Ogata, H., and Raoult, D. (2005). Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation. Res. Microbiol. 156, 211–218.

Rydkina, E., Sahni, S. K., Santucci, L. A., Turpin, L. C., Baggs, R. B., and Silverman, D. I. (2004). Selective modula-tion of antioxidant enzyme activi-ties in host tissues during Rickettsia conorii infection. Microb. Pathog. 36, 293–301.

Rydkina, E., Silverman, D. I., and Sahni, S. K. (2005). Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induc-tion of chemokine response. Cell. Microbiol. 7, 1519–1530.

Rydkina, E., Turpin, L. C., and Sahni, S. K. (2008). Activation of p38 mitogen-activated protein kinase module facilitates in vitro host cell invasion by Rickettsia rickettsii. J. Med. Microbiol. 57, 1172–1175.

Sahni, S. K., Rydkina, E., Sahni, A., Joshi, S. G., and Silverman, D. I. (2005). Potential roles for regulatory oxy-genases in rickettsial pathogenesis. Ann. N. Y. Acad. Sci. 1063, 207–214.

Sakamoto, J. M., and Azad, A. F. (2007). Propagation of arthropod-borne Rickettsia spp. in two mos-quito cell lines. Appl. Environ. Microbiol. 73, 6637–6643.

Sakawaka, C. (2010). A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proc. Jpn. Acad., Ser. B Phys. Biol. Sci. 86, 229–243.

Shi, R. J., Simpson-Haidaris, P. J., Marder, V. J., Silverman, D. I., and Sporn, L. A. (1986). Adherence of Rickettsia rickettsii to human platelets to human endothelial cells in vitro. Blood 68, 112–113.

Shigella spp. in two mos-quito cell lines. Appl. Environ. Microbiol. 73, 6637–6643.

Sakawaka, C. (2010). A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proc. Jpn. Acad., Ser. B Phys. Biol. Sci. 86, 229–243.

Shi, R. J., Simpson-Haidaris, P. J., Marder, V. J., Silverman, D. I., and Sporn, L. A. (1986). Adherence of Rickettsia rickettsii to human platelets to human endothelial cells in vitro. Blood 68, 112–113.

Shigella spp. in two mos-quito cell lines. Appl. Environ. Microbiol. 73, 6637–6643.

Sakawaka, C. (2010). A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proc. Jpn. Acad., Ser. B Phys. Biol. Sci. 86, 229–243.

Shi, R. J., Simpson-Haidaris, P. J., Marder, V. J., Silverman, D. I., and Sporn, L. A. (1986). Adherence of Rickettsia rickettsii to human platelets to human endothelial cells in vitro. Blood 68, 112–113.
of immunity against rickettsiae: new perspectives and opportunities offered by unusual intracellular parasite. Microbes Infect. 4, 625–633.

Vishwanath, S., Mcdonald, G. A., and Watkins, N. G. (1990). A recombinant Rickettsia conorii vaccine protects guinea pigs from experimental boutonneuse fever and Rocky Mountain spotted fever. Infect. Immun. 58, 646–653.

Walker, D. H., Hudnall, S. D., Szaniawski, W. K., and Feng, H. M. (2007). Monoclonal antibody-based immunohistochemical diagnosis of Rickettsialpox: the macrophage is the principal target. Mod. Pathol. 12, 529–533.

Walker, T. S., Brown, J. S., Hoover, C. S., and Morgan, D. A. (1990). Endothelial prostaglandin secretion: effects of typhus Rickettsiae. J. Infect. Dis. 162, 1136–1144.

Weisburg, W. G., Dobson, M. E., Samuel, J. E., Dasch, G. A., Mallavia, L. P., Baca, O., Mandelco, L., Sechrest, J. E., Weiss, E., and Woese, C. R. (1989). Phylogenetic diversity of the Rickettsiae. J. Bacteriol. 171, 4202–4206.

Whitworth, T., Popov, V. L., Yu, X. J., Walker, D. H., and Bouyer, D. H. (2005). Expression of the Rickettsia prowazekii pld or thc gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73, 6668–6673.

Wolbach, S. B. (1919). Studies on Rocky Mountain spotted fever. J. Med. Res. 41, 1–197.

Yoshikawa, Y., Ogawa, M., Hain, T., Yoshida, M., Fukumatsu, M., Kim, M., Minuro, H., Nakagawa, I., Yanagawa, T., Ishii, T., Kakizuka, A., Sztul, E., Chakraborty, T., and Sasakawa, C. (2009). Lystena monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11, 1233–1240.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 May 2012; accepted: 05 June 2012; published online: 25 June 2012.

Citation: Uchiyama T (2012) Tropism and pathogenicity of rickettsiae. Front. Microbio. 3:230. doi: 10.3389/fmicb.2012.00230

This article was submitted to Frontiers in Virology, a specialty of Frontiers in Microbiology.

Copyright © 2012 Uchiyama. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.