The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates

David Marjanović

Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany

ORCID: 0000-0001-9720-7726

Correspondence:
David Marjanović
david.marjanovic@gmx.at

Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata

Abstract

Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all thirty calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the sources I cite to constrain calibrations were published in 2019, half of the total of 276 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree; and that literature is not optimized for that task, but largely has other objectives.

1 Introduction

This work is not intended as a review of the theory or practice of node (or tip) dating with calibration dates (or tip dates) inferred from the fossil record; as the most recent reviews of methods and sources of error I recommend those by Barido-Sottani et al. (2019, 2020), Matschiner (2019), Marshall (2019), Guindon (2020), Powell et al. (2020), Pardo et al. (2020), and, with caveats of which I will address two (Materials and methods: Calibrations: Node 152 – Placentalia), Springer et al. (2019). Neither is it intended as a review of the history of the dates assigned to certain calibrations; as an example of a recent detailed review of three commonly used calibrations, I recommend Pardo et al. (2020). Although I discuss wider implications, the scope of this work is narrow: to evaluate each of
the 30 calibrations used in the largest vertebrate timetree yet published, that by Irisarri et al. (2017),
and the total impact of the errors therein on the results (using the same node-dating method they
used, which I do not evaluate beyond mentioning potential general points of criticism).

Irisarri et al. (2017) inferred a set of timetrees from the transcriptomes of 100 species of
gnathostomes (jawed vertebrates) and combinations of up to 30 calibrations from the fossil record.
On the unnumbered ninth page of their supplementary information, they described their calibration
dates as “five well-accepted fossil calibrations plus a prior on the root” and “24 additional well-
established calibration points with solid paleontological evidence”. For many of the calibrations,
these optimistic assessments are not tenable. I have tried to present, and use, the current state of
knowledge on each of these calibrations.

In doing so, the present work naturally resembles the compendia of suggested calibrations that
molecular biologists have occasionally compiled with the intent to provide a handy reference for
paleontologists who wish to date divergences (e.g. Müller and Reisz, 2007; Benton et al., 2015,
and six other articles in Palaeontology Electronica 18(1); Wolfe et al., 2016; Morris et al., 2018);
Irisarri et al. (2017) took seven of their 30 calibrations from the compendium in Benton and
Donoghue (2007: table 1) alone – without citing the enlarged update by Benton et al. (2015) –,
compared to six taken from the primary literature. However, I will show that all such compendia are
doomed to be (partially) outdated almost as fast as they are published in the best case, and faster than
they are published in the average case. Soon, therefore, the present work will no longer be reliable as
such a compendium either; rather, it is intended to show readers where the known uncertainties and
disagreements lie, and thus what anybody who wants to use a particular calibration should probably
search the most recent literature for. This is why I do not generally begin my discussion of a
calibration by presenting my conclusions on what the best, or least bad, minimum and maximum
ages of the calibration may be. (They are, however, presented without further ornament in Table 1.)

Instead, I walk the reader through a sometimes meandering discovery process, demonstrating how
this knowledge was arrived at and how it may soon change – how the sausage was made and how it
may spoil.

Some works used as compendia in this sense are not even compiled by paleontologists: molecular
biologists often copy from each other. Irisarri et al. (2017) took four of their calibrations from table 1
of Noonan and Chippindale (2006), a work that contains a phylogenetic and divergence-date analysis
of molecular data and cites severely outdated paleontological primary and secondary literature (from
1981 to 2003) as its sources.

A continually updated online compendium could largely avoid the problem that knowledge has a
half-life. There has been one attempt to create one, the Fossil Calibration Database (Ksepka et al.,
2015 – https://fossilcalibrations.org; not counting separately its predecessor, called Date a Clade,
which is no longer online and apparently merely presented table 1 of Benton and Donoghue, 2007). It
appears to have run out of funding long ago and has not been updated since 2 February 2018, the day
on which three of the numerous calibrations proposed in Wolfe et al. (2016) were added; other
calibrations from the same source were added on 30 and 31 January 2018 (one each) and 22
December 2017 (three), and no other updates were made on those days. I cannot resist pointing out
that this is one of many cases where funding menial labor in the sciences – reading and interpreting
papers, evaluating the contradictions between them, and entering the interpretations in a database, a
task that cannot be automated – would go a long way toward improving the quality of a large number
of publications, but is unlikely to be granted because it is not likely to result in a single flashy
publication or in an immediately marketable application directly, even though precise and accurate
timetrees are an essential component of our understanding of the model organisms used in
biomedical research.

This is a provisional file, not the final typeset article
A continually updated online database aiming to represent the entire fossil record exists, and is currently being funded: the Paleobiology Database, accessible through two different interfaces at http://www.pbdb.org and https://paleobiodb.org. Among many other things, it aims to contain the oldest currently known record of every taxon and would thus be useful as a source for calibrations. However, the warnings by Parham et al. (2011) still apply: the quality of the Paleobiology Database is quite heterogeneous. While some entries are written by the current top experts in the respective fields, others copy decades-old primary descriptive literature uncritically, often leading to severely outdated taxonomic, let alone phylogenetic placements (in all but the most recent literature that is not the same), not to mention misunderstandings based on the convoluted history of taxonomic nomenclature. It is not uncommon for two entries to contradict each other. Finally, despite the hundreds of contributors, our current knowledge of the fossil record is so vast that the database remains incomplete (again, of course, differently so for different taxa). Like Irisarri et al. (2017), I have not used the Paleobiology Database or the Fossil Calibration Database; I have relied on the primary literature.

1.1 Nomenclature

After the publication of the International Code of Phylogenetic Nomenclature (PhyloCode) (Cantino and de Queiroz, 2020) and its companion volume Phylonyms (de Queiroz et al., 2020), the registration database for phylogenetic nomenclature – RegNum (Cellinese and Dell, 2020) – went online on 8 June 2020; regulated phylogenetic nomenclature is therefore operational. In an effort to promote uniformity and stability in nomenclature, I have used the names and definitions from Phylonyms and Ezcurra et al. (2020: online methods) here; wherever applicable, all of them are followed by “[PN]” at least at the first mention (this includes vernacularized forms like “gnathostome”) to avoid confusion with earlier uses of the same names for different clades. I have not, however, followed the ICPN’s Recommendation 6.1A to set all taxonomic names in italics. The definitions of these names, their registration numbers (which establish priority among the combinations of name and definition) and the exact chapter citations can be found in RegNum, which is freely accessible (https://www.phyloregnum.org/).

ICPN-regulated names have not been created or converted according to a single overarching scheme. As a result, for example, the name Osteichthyes has been defined as applying to a crown group, and the corresponding total group has been named Pan-Osteichthyes; but the name Chondrichthyes has not been defined and could end up as the name for a crown group, a total group, or neither (indeed, current common usage by paleontologists is neither). This has required some awkward circumlocutions. Following Recommendation 9B of the ICPN, I have not coined any new names or definitions in the present work.

The shapes and definitions of most other taxonomic names used here do not currently compete for homonymy or synonymy under any code of nomenclature. (The ICPN is not retroactive, and the rank-based International Code of Zoological Nomenclature [ICZN, 1999] does not regulate the priority of names at ranks above the family group.) In such cases, I have followed current usage where that is trivial; I occasionally mention synonyms where that seems necessary.

The usage of “stem” and “crown” requires a comment. The crown group of a clade consists of the last common ancestor of all extant members of that clade, plus all its descendants. The rest of the clade in question is its stem group. For example, Gallus is a crown-group dinosaur, and Triceratops is a stem-group dinosaur. In a development that seems not to have been foreseen by the first two or so generations of phylogeneticists that established the terminology – for example, the zoology textbook by Ax (1987) exclusively named total groups, i.e. halves of crown groups! –, many clades
with defined names are now identical to their crown groups (in other words, they are crown clades); they do not contain any part of their stem. Aves [PN] is an example; although *Triceratops* is a stem-dinosaur [PN], a stem-dinosaursaurian morph [PN] and a stem-ornithodiran [PN] among other things, it is not a stem-bird or stem-avian because by definition there is no such thing. It is instead a stem-pan-avian [PN], i.e. a stem-group member of Pan-Aves [PN] (Ezcurra et al., 2020: online methods). If no name is available for a suitable larger group, I have resorted to the circumlocution that *Triceratops*, for instance, is “on the bird stem” or “in the avian total group” (expressing that it is closer to Aves than to any mutually exclusive crown group).

2 Materials and methods

Although I have followed the spirit of the guidelines developed by Parham et al. (2011) for how best to justify or evaluate a proposed calibration, I have not consistently followed their letter. Most notably, the specimen numbers of the fossils that I largely refer to by genus names can all be found in the directly cited primary literature, so they are not repeated here.

2.1 Hard and soft minima and maxima

Without discussing the matter, Irisarri et al. (2017) stated that they had treated all calibration ages as soft bounds, which, in the software they used, means that “a proportion of 0.05 of the total probability mass is allocated outside the specified bound(s) (which means, 5% on one side, in the cases of the pure lower and pure upper bounds, and 2.5% on each side in the case of a combination of lower and upper bound)” (Lartillot, 2015: manual). This is particularly odd for minimum ages; after all, the probability that a clade is younger than its oldest fossil is not 5% or 2.5%, it is 0%. A few other works have used soft minima as an attempt to account for phylogenetic or chronostratigraphic uncertainty of the specimens chosen as calibrations. I have not used the former approach here (despite two clumsy attempts in the first preprint of this paper – Marjanović, 2019 – that were rightly pointed out as incoherent by a reviewer): in the cases of phylogenetic uncertainty discussed below, different fossils that could calibrate the age of a cladogenetic event are commonly tens of millions of years apart, a situation that cannot be smoothed over by using the oldest one as a soft minimum. Soft minima that can be justified by uncertainty over the exact age of a calibrating fossil are very rare nowadays (as already pointed out by Parham et al., 2011); within the scope of this paper there is only one such case, the minimum age of Neognathae (node 113), which is determined by a specimen that is roughly 70 ± 1 Ma old according to a fairly long chain of inference. I have treated all other minima as hard, and I have not spelled this out below.

As recommended by Parham et al. (2011), minimum ages have generally been chosen in the literature as the youngest possible age of the calibrating specimen(s). This is practically guaranteed to result in ages that are too young for various reasons (Marshall, 2019). To account, if crudely, for non-zero branch lengths and especially for the nested phylogenetic positions of some calibrating specimens, and to counteract “the illusion of precision” (Graur and Martin, 2004: title) spread by calibration ages with five significant digits like 421.75 Ma (the minimum age chosen by Irisarri et al. [2017] for the root node, see below), I have rounded up (stratigraphically down) to the nearest million years, with a few exceptions suggested by mass extinction events.

Maximum ages are by default much more difficult to assign than minimum ages. Absence of proof is not proof of absence; absence of evidence is evidence of absence, but in most cases it is quite weak evidence. Yet, omitting maximum ages altogether and assigning only minimum ages to all calibrations automatically results in much too old divergence dates as nothing stops the 99.9% or 99.99% confidence or credibility intervals for all node ages from avoiding all overlap with the...
calibrated minimum ages. I have therefore followed Irisarri et al. (2017) and their sources in assigning as many maximum ages as I dare. For this purpose I have basically followed the recommendations of Parham et al. (2011) and Pardo et al. (2020: 11), which amount to assigning a maximum age whenever we can reasonably expect (after preservation biases, collection biases, collection intensity, paleobiogeography etc.) to have found evidence of the clade in question if it had been present at the time in question, but have not found any. This has widely been followed in the literature, but various compendia like Benton et al. (2015) have gone beyond this in many cases: in short, the oldest certain fossil provides the minimum age under that approach, while the oldest uncertain fossil of the same clade provides the maximum age. This practice is not defensible; therefore I assign, in the aggregate, fewer and more distant maximum ages than Irisarri et al. (2017). Given the limits of our current knowledge of the fossil record, all maximum ages might be expected to be soft bounds. In a few cases discussed below, however, I find that the absence of evidence is so hard to explain away that a hard maximum is justified. This generally concerns unrealistically old maxima that I have chosen because no younger maximum suggests itself. Ultimately, of course, this is subjective.

The choices of hard vs. soft bounds do not seem to make a great difference to the big picture. Due to practical constraints, a set of calibration ages mostly identical to the present ones was analyzed twice, with all bounds treated as soft or as hard, in the first preprint of this work (Marjanović, 2019); the results were quite similar to each other (Marjanović, 2019: fig. 1, table 2). Even so, however, in the run where all bounds were soft, most divergence dates were younger than in the run where all bounds were hard (usually negligibly so, but by 20 Ma in the extreme cases); the mean ages of some calibrated nodes even ended up younger than their minimum ages.

2.2 Calibrations

In the 29 subsections below and in the Supplementary Material I discuss the minimum and maximum ages of all 30 nodes used as calibrations by Irisarri et al. (2017), referring to each by clade names and by the node number assigned by Irisarri et al. (2017: especially supp. table 8 and supp. fig. 19), also shown in Fig. 1. The abbreviation Fm stands for Formation; ICSC refers to the International Chronostratigraphic Chart v2020/3 (Cohen et al., 2020a); Ma is the quasi-SI symbol for megayear (million years).

2.2.1 Root node (100): Gnathostomata [PN] (total group including Chondrichthyes – Pan-Osteichthyes [PN])

The cladogenesis that created the total groups of Chondrichthyes and Osteichthyes [PN] was assigned a minimum age of 421.75 Ma, a remarkably precise date close to the Silurian-Devonian boundary, and a maximum age of 462.5 Ma, which is currently (ICSC) thought to lie in the Darriwilian stage of the Middle Ordovician.

The Darriwilian should rather be regarded as the minimum age of this calibration date. While articulated bones and teeth of gnathostomes – both total-group chondrichthians (Burrow and Young, 1999) and pan-osteichthians (Choo et al., 2017, and references therein) – are only known from the Ludfordian (Ludlow, late Silurian) upward, a large diversity of scales that are increasingly confidently assigned to stem-chondrichthians extends all the way down into the early Darriwilian (Sansom et al., 2012; Andreev et al., 2015, 2016a, b; Žigaitė-Moro et al., 2018; Sansom and Andreev, 2018; and references therein). The Darriwilian is currently thought to have begun 467.3 ± 1.1 Ma ago and to have ended 458.4 ± 0.9 Ma ago (ICSC); for the purposes of reducing “the middle
How to calibrate gnathostome timetrees

part of the Stairway Sandstone” (Sansom et al., 2012: 243) to a single number, the age of 465 Ma should be adequate as the minimum age of Gnathostomata.

As a maximum age I cautiously propose the mid-Floian (Early Ordovician) upper fossiliferous level of the Burgess-like Fezouata Shale; at both levels, gnathostomes are absent among the “over 200 taxa, about half of which are soft-bodied” (Lefebvre et al., 2017: 296). Note that the oldest known hard tissues of vertebrates are Floian in age as well (reviewed by Sansom and Andreev, 2018). The Floian began 477.7 ± 1.4 Ma ago and ended 470.0 ± 1.4 Ma ago (ICSC), so I suggest a soft maximum age of 475 Ma for this calibration date.

The minimum and the maximum age proposed here are unexpectedly close together. This may be a sign that one or both is an unduly optimistic assessment of our knowledge of the fossil record – or that the origin of Gnathostomata formed part of the Great Ordovician Biodiversification Event (Sansom et al., 2012; Sansom and Andreev, 2018), which does not seem implausible.

2.2.2 Node 102: Osteichthyes [PN] (Pan-Actinopterygii [PN] – Sarcopterygii)

Irisarri et al. (2017) assigned a minimum age of 416 Ma and a maximum age of 439 Ma, spanning the Silurian-Devonian boundary, to the cladogenesis that created the osteichthyan crown-group by separating the sister-groups Pan-Actinopterygii and Sarcopterygii.

The minimum age of this cladogenesis event depends on the phylogenetic position of the “psarolepids” (Choo et al., 2017) *Guiyu* and *Sparalepis* from the Kuanti [Guandi] Fm of Yunnan, China, which represents an early part of the abovementioned Ludfordian stage (425.6 ± 0.9 to 423.0 ± 2.3 Ma ago: ICSC). The “psarolepids” lie either just outside Osteichthyes or just inside, on the sarcopterygian side of the basal dichotomy (Clement et al., 2018, and references therein). To some extent the result depends on the analysis method: Clement et al. (2018) found the “psarolepids” outside Osteichthyes by parsimony (bootstrap support throughout the tree artificially low due to missing data), but inside by Bayesian inference (94% posterior probability). Following the discussions of this issue in Choo et al. (2017), Lu et al. (2017) and Clement et al. (2018), and in particular the work of King (2019), I favor a stem-pan-osteichthyan position for this assemblage over a large number of unexpected reversals to a “placoderm” state.

The oldest known uncontroversial osteichthyan is the oldest known dipnomorph, *Youngolepis*, as discussed below; following the assignment of *Andreolepis* and *Lophosteus* to the osteichthyan stem (e.g. Botella et al., 2007; Chen et al., 2016), all certain or uncertain actinopterygians are Devonian or younger. Thus, the minimum age for this calibration is the same as that for the next, Node 104.

Likewise, for the same reasons as discussed under Node 104, I cannot assign a maximum age to this divergence other than that for the root node. I have, in other words, not calibrated this node, and recommend against using this cladogenetic event as a calibration date if Nodes 100 and 104 are available.

2.2.3 Node 104: Dipnomorpha – Tetrapodomorpha

The divergence of the sister-groups Dipnomorpha (the lungfish total group) and Tetrapodomorpha (the tetrapod total group) was assigned a minimum age of 408 and a maximum age of 419 Ma.

The minimum age may not contradict the age of the oldest known tetrapodomorph, *Tungsenia*, which is Pragian in age (Lu et al., 2012); the beginning of the Pragian is dated to 410.8 ± 2.8 Ma, its end to 407.6 ± 2.6 Ma (ICSC). However, the minimum age is clearly younger than the oldest known dipnomorphs. The oldest known specimens have been referred to *Youngolepis* and come from the lower part of the Xishancun Fm (Zhu and Fan, 1995). This formation is generally (e.g. Choo et al., 2017)
How to calibrate gnathostome timetrees

2017; Liu et al., 2017; and references therein) considered to represent the lower third or less of the
Lochkovian stage, its bottom coinciding with the Silurian-Devonian boundary, which is currently
dated to 419.2 ± 3.2 Ma (ICSC). However, Zhang et al. (2014) placed it in the middle of the
immediately preceding Přídolí stage, which began 423.0 ± 2.3 Ma ago (ICSC). Needing a single
number to summarize this uncertainty, I suggest a minimum age of 420 Ma for Node 104, the
divergence of Dipnomorpha and Tetrapodomorpha. (This is a revision stratigraphically downward
from the 410 Ma recommended by Marjanović and Laurin, 2007.)

A maximum age is difficult to assign. The abovementioned Kuanti Fm, which is universally (Zhang
et al., 2014) regarded as representing an early part of the Ludfordian stage which preceded the
Přídolí, has yielded several gnathostomes, but the sample seems too small to tell whether the absence
d of dipno- and tetrapodomorphs is real. Only one even partial articulated gnathostome is known from
any other Ludfordian site in the world (Yealepis, which lies on the chondrichthyan stem: Burrow and
Young, 1999). Comparably rich sites older than the Ludfordian have not been discovered. I cannot
recommend any particular maximum age for this calibration point, other than by implication the
maximum age of the root node (475 Ma, see above).

2.2.4 Node 105: Tetrapoda [PN] (Amphibia [PN] – Pan-Amniota [PN])

The divergence between the ancestors of lissamphibians and those of amniotes was assigned a
minimum age of 330.4 and a maximum of 350.1 Ma following Benton and Donoghue (2007).
Although Pardo et al. (2020) have reviewed the breadth of issues it raises far beyond the scope of this
work, and I broadly agree with their conclusions, a few points still remain to address or summarize.

For a long time, the oldest tetrapod was thought to be Lethiscus, variably supposed to be a stem-
amphibian or a stem-pan-amniote (see below), which is mid-Viséan in age (Smithson et al., 2012,
and references therein; the Viséan lasted from 346.7 ± 0.4 to 330.9 ± 0.2 Ma ago: ICSC). More
likely, Lethiscus and the other aïstopods are rather early-branching stem-stegocephalians [PN] (Pardo
et al., 2017, 2018; Clack et al., 2019; further discussion in Marjanović and Laurin, 2019). Whether
Caserinia from a geographically (southeastern Scotland) and stratigraphically close site (mid-late
Viséan: Paton et al., 1999; Smithson et al., 2012) can replace it in that function depends on two
unresolved issues: its own phylogenetic position, for which estimates range from very close to
Amniota (within Tetrapoda) into Temnospondyli (Marjanović and Laurin, 2019, and references
therein; Clack et al., 2019; Daza et al., 2020: fig. S15); and the controversial phylogenetic position of
Lissamphibia [PN] in the stegocephalian tree (Marjanović and Laurin, 2013a, 2019; Danto et al.,
2019; Laurin et al., 2019; Pardo et al., 2020; Daza et al., 2020; and references in all five), which
determines whether the temnospondyls are tetrapods or quite rootward stem-stegocephalians by
determining which node of the otherwise largely stable tree of early stegocephalians bears the name
Tetrapoda.

Anderson et al. (2015) reported a number of isolated anthracosaur [PN] (embolomere or eoherpetid)
bones from a mid-Tournaisian site (the Tournaisian preceded the Viséan and began at the
Devonian/Carboniferous boundary 358.9 ± 0.4 Ma ago: ICSC). Whether these are tetrapods depends on
the relative positions of temnospondyls, anthracosaurs and other clades in that region of the tree
(Pardo et al., 2018, 2020; Marjanović and Laurin, 2019; Ruta et al., 2020; and references in all four)
in addition to the position of Lissamphibia; even if the lissamphibians are temnospondyls, the
anthracosaurs may still be stem-stegocephalians.

The same site has also yielded the oldest colosteid remains (Anderson et al., 2015). Colosteidae
(“Colosteida” of Pardo et al., 2020) was referred to Temnospondyli throughout the 20th century and
found in that position by Marjanović and Laurin (2019) to our great surprise (also in some of the
trees by Daza et al., 2020: fig. S15); as pointed out by Pardo et al. (2020), this means it could belong
How to calibrate gnathostome timetrees

8

This is a provisional file, not the final typeset article
How to calibrate gnathostome timetrees

dated to 310 Ma (as discussed by Graur and Martin, 2004). Currently (ICSC), the Bashkirian is
thought to have ended 315.2 ± 0.2 and begun 323.2 ± 0.4 Ma ago, and the site (Joggins, Nova Scotia)
that has yielded *Hylonomus* has been dated to 317–319 Ma (Carpenter et al., 2015); thus, given the
phylogenetic position of *Hylonomus* (Ford and Benson, 2019, and references therein), I suggest a
minimum age of 318 Ma for this calibration.

There appears to be pan-mammalian material from the same site (Carroll, 1964; Mann et al., 2020),
which has also yielded various “microsaurs” that Pardo et al. (2017) included in Sauropsida (see also
Marjanović and Laurin, 2019, and Pardo et al., 2020). I should also emphasize that the next younger
sauropsids and pan-mammals (and “microsaurs”) older than 288 Ma come from several sites in each
following geological stage (Moscovian through Artinskian) and represent a considerable diversity;
from the Moscovian alone, four sites of successive ages are known that present more or less complete
skeletons of uncontroversial amniotes, namely sauropsids closely related to Diapsida and *Hylonomus*
(*Anthracodromeus, Brouffia, Cephalerpeton, Paleothyris*), the oldest “parareptile” (*Carbonodraco*)
as well as what appears to be the sister-group to most other sauropsids (*Coelostegus*), and, on the
pan-mammalian side, ophiacodontids (*Echinerpeton; Archaeothyris* from two sites). A fifth site
preserves the oldest varanopid, a group of amniotes of unclear phylogenetic position (Ford and
Benson, 2018, 2019). As reviewed in detail by Pardo et al. (2020), this implies ghost lineages for
several other amniote clades that might not have lived in coal swamps; several of these show up in
the fossil record of the next and last two stages of the Carboniferous, which ended 298.9 ± 0.15 Ma
ago (ICSC). For more information on the Carboniferous amniote record see Reisz and Modesto
(1996: fig. 3), Müller and Reisz (2006), Mann and Paterson (2019), Mann et al. (2019), Maddin et al.
(2019) and Pardo et al. (2020), the second and the third with phylogenetic analyses, as well as
references in all six. Additionally, the oldest known diadectomorphs (“diadectomorphs” of Pardo et
al., 2020) date from the Kasimovian (“Missourian” in Kissel, 2010) which follows the Moscovian;
they may represent the sister-group of Amniota, or they may be what should have been called non-
synapsid theropods (Marjanović and Laurin, 2019; Klembara et al., 2019; Pardo et al., 2020; and
references in all three).

The absence of amniotes (and diadectomorphs) in the Serpukhovian record preceding the Bashkirian
should not be given much weight for paleoecological reasons, as reviewed by Pardo et al. (2020);
note that “lepospondyls” like the Viséan *Kirktonecta* and *Westlothiana*, probably closely related to
but outside Amniota, are almost unknown from this age as well (candidates were described by
Carroll et al., 1991; Carroll and Chorn, 1995; Lombard and Bolt, 1999). Their absence from the
somewhat richer Viséan record (discussed above) suffers in part from the same problem, in part from
geographic restrictions. Thus, I refrain from recommending a maximum age other than that of the
preceding Node 105, even though such an early age would imply very slow rates of morphological
evolution in the earliest pan-mammals and sauropsids.

2.2.6 Node 107: Reptilia [PN] (Pan-Lepidosauria – total group of Archelosauria); node 108:
Archelosauria (Pan-Testudines [PN] – Pan-Archosauria [PN])

The origin of the sauropod crown group by a split into Pan-Lepidosauria and the total group of
Archelosauria was assigned a minimum age of 252 Ma and a maximum age of 257 Ma, both in the
Late Permian. Ezcurra et al. (2014; correction: The PLOS ONE Staff, 2014) agreed that the oldest
unambiguous reptile that can be clearly dated is the supposed pan-archosaur *Protosaurus*, which is,
however, 257.3 ± 1.6 Ma old as they also discussed. Therefore, they revised the minimum age to
255.7 Ma, the younger end of this confidence interval.

However, like all other recent phylogenetic analyses of molecular data, Irisarri et al. (2017) found the
turtles to be closer to Archosauria [PN] than Lepidosauria [PN]. Thus, the question whether
Eunotosaurus is a member of the turtle stem (Schoch and Sues, 2017, and references therein) becomes relevant, because the earliest occurrence of Eunotosaurus is roughly middle Capitanian in age (the Capitanian, the last stage of the Middle Permian, ended 259.1 ± 0.5 Ma ago and began 265.1 ± 0.4 Ma ago: ICSC), and further because Protorosaurus would presumably belong to Pan-Archosauria and thus calibrate Node 108, not 107. For present purposes I set the minimum age of Archelosauria (Node 108) as 263 Ma, the approximate midpoint of the Capitanian, and do not assign a minimum age to Reptilia (Node 107). But in general I have to, at our current level of understanding, recommend against using either of these nodes as a calibration. The reason are two major uncertainties about the topology of the phylogenetic tree. First, if Eunotosaurus has moved from the “parareptiles” well outside Diapsida [PN] – or well inside Diapsida, though presumably still in its stem-group (Ford and Benson, 2019) – to the turtle stem within the crown group of Diapsida (i.e. Reptilia [PN]), do any other “parareptiles” follow it? The oldest known member of that assemblage, Carbonodraco, comes from the site of Linton in Ohio (Mann et al., 2019), which is about 307–308 Ma old (compare Reisz and Modesto, 1996, and Carpenter et al., 2015), so that should be the minimum age of Archelosauria if all “parareptiles” are archelosaurs; the currently available phylogenetic analyses of “parareptiles” (Laurin and Piñeiro, 2018; MacDougall et al., 2019) have not adequately tested this question. While Schoch and Sues (2017) did test the mutual relationships of “parareptiles”, Eunotosaurus and diapsids and found Eunotosaurus nested in the latter, several nodes away from the former, these nodes were very poorly supported. The character and taxon samples of all existing matrices for analyses of amniote phylogeny need to be substantially improved (Ford and Benson, 2018, 2019; Laurin and Piñeiro, 2018; MacDougall et al., 2019; Mann et al., 2019); Ford and Benson (2019) made a large step in that direction, but deliberately excluded Eunotosaurus and the turtles from their analysis so as not to have to deal with all problems at the same time.

Second, the position of Protorosaurus as a pan-archosaur, accepted for decades, was thrown into doubt by Simões et al. (2018), who found it as such in their Bayesian analyses of morphological or combined data (Simões et al., 2018: ext. data fig. 5, 6; also, after a few changes to the dataset, Garberoglio et al., 2019: fig. S2; Sobral et al., 2020: fig. S9, S10), but not in their parsimony analyses of morphological data without or with implied weights (ext. data fig. 3, 4; likewise Garberoglio et al., 2019: fig. S3, and Sobral et al., 2020: fig. S7, S8), where it came out as a stem-sauropsid; the question was unresolved in their Bayesian tip-dating or tip-and-node dating analyses of combined data (ext. data fig. 7, 8). After a different set of changes to the dataset, Simões et al. (2020) found Protorosaurus as a pan-archosaur when they used MrBayes (supp. fig. 2–5) or when they used BEAST for dating with a correction (supp. fig. 7), but not when they used BEAST for dating without a correction (supp. fig. 6). Support was moderate throughout. However, these trees are hard to compare to that of Irisarri et al. (2017) because they all find the turtles outside the diapsid crown (with limited support); no extant archosaurs or turtles, and therefore no molecular data for them, are included in these datasets. Using a smaller dataset with much denser sampling of Triassic reptiles, Pritchard et al. (2018) found Protorosaurus closer to Archosauromorpha than to Lepidosauria with very strong support (parsimony bootstrap value: 100%, Bayesian posterior probability: 99.06%), but whether that is on the archosaur or the archelosaur stem could not be determined because there were no turtles in that dataset.

The maximum age of either node is likewise difficult to narrow down. Uncontroversial diapsids have a notoriously patchy Paleozoic record (Ford and Benson, 2018, and references therein); the same holds for “parareptiles”, which have only two known Carboniferous records so far (Modesto et al., 2015; Mann et al., 2019). I cannot express confidence in a maximum age other than that of Node 106,
How to calibrate gnathostome timetrees

which I cannot distinguish from the maximum age of Node 105 as explained above. This leaves Node 107 without independent calibrations in the current taxon sample.

2.2.7 Node 109: Archosauria [PN] (Crocodylotarsi – Pan-Aves [PN])

The origin of Archosauria by cladogenesis into the total groups of crocodiles and birds was given a minimum age of 243 Ma (Middle Triassic) and a maximum age of 251 Ma (Early Triassic).

The earliest securely dated known archosaur, belonging to the crocodile stem, is *Ctenosauriscus* from just before the end of the Olenëkian; several close relatives may be coeval or a little younger (Butler et al., 2011). The age of the Olenëkian/Anisian (Early/Middle Triassic) boundary is given in the ICSC as 247.2 Ma without a confidence interval; any such confidence interval cannot be long, however, because an Olenëkian sample has been dated to 247.32 ± 0.08 Ma, while an Anisian sample has been dated to 247.08 ± 0.11 Ma (Maron et al., 2018). Given the highly nested phylogenetic position of *Ctenosauriscus* in Archosauria (Butler et al., 2011; Ezcurra et al., 2020: ext. data fig. 4, 8), I propose 248 Ma as the minimum age of this calibration.

I accept the Permian-Triassic boundary (251.902 ± 0.024 Ma: ICSC; rounded to 252) as the soft maximum age on the grounds that a major radiation of pan-archosaurs at the beginning of the Triassic seems likely for ecological reasons: the Permian record, up to its very end, is full of pan-mammals that seem ecologically comparable to Triassic archosaurs, and given the Pangea situation of the time it seems reasonably unlikely that archosaurs existed in unsampled localities. I must caution, however, that the fossil record of pan-archosaurs and possible pan-archosaurs in the four million years of the Triassic preceding the minimum age, and in the Permian, is very patchy, with a poor fit between stratigraphy and phylogeny; indeed, the Permian record of archosauriforms [PN] is currently entirely limited to the poorly known non-archosaur *Archosaurus* and possibly the even more poorly known non-archosaur *Eorasaurus* (Ezcurra et al., 2014).

2.2.8 Node 111: Alligatoridae (Alligatorinae – Caimaninae)

The origin of Alligatoridae (the crown group of Globidonta) by split into Alligatorinae and Caimaninae was given a minimum age of 66 Ma (the Cretaceous/Paleogene boundary) and a maximum age of 75 Ma (Campanian, Late Cretaceous).

The minimum age would fit well with the finding by Cossette and Brochu (2018) that *Bottosaurus* from the very end of the Cretaceous is a caimanine. Given, however, the limited material and the stratigraphic gap between *Bottosaurus* and the next younger known caimaines, Cossette and Brochu (2018) expressed doubt about the result of their phylogenetic analysis which placed *Bottosaurus* not only within the caimanine crown-group but next to the extant *Paleosuchus*. Cossette and Brochu (2020) did not include *Bottosaurus* in their phylogenetic analysis.

If *Bottosaurus* is not an alligatorid at all, the oldest known member is the alligatorine *Navajosuchus* from within the first million years of the Paleocene (Puercan NALMA [North American Land Mammal Age]), translating to a minimum age of 65 Ma (Wang et al., 2016, and references therein). The oldest known caimaines (*Protocaiman, Eocaiman paleocenicus* and *Necrosuchus*: Bona et al., 2018) follow shortly thereafter (Peligran SALMA [South American Land Mammal Age], 64–63 Ma ago: Woodburne et al., 2014).

Halliday et al. (2013), however, found the Campanian to Maastrichtian *Brachychampsa* to be an alligatorine, as did Arribas et al. (2019) in a less densely sampled analysis of Crocodyliformes; Bona et al. (2018) found it and the newly added Campanian *Albertochampsa* to be caimaines, a finding expanded by Cossette and Brochu (2020) to *Stangerochampsa*. In all these cases, the earliest record of an alligatorid is *Brachychampsa sealeyi* from early in the Campanian, which began 83.6 ± 0.2 Ma.
How to calibrate gnathostome timetrees

12 ago (ICSC). These results were not replicated by Lee and Yates (2018) or by Groh et al. (2019), who both found *Brachychampsa* on the brevirostrine stem, not as an alligatorid, and who both did not include *Albertochampsa* in their datasets. I must caution, however, that Groh et al. (2019) found Alligatorinae, and even *Alligator* itself, as a Hennigian comb in which Caimaninae was nested; this result strongly suggests that the character sample was insufficient to resolve Brevirostres.

Given this uncertainty, I have used a minimum age of 65 Ma for present purposes, but generally recommend against using this cladogenesis as a calibration for timetrees.

Up to (and including) the Campanian, the record of neosuchians is a surprisingly spotty affair (e.g. Tykoski et al., 2002; Mateus et al., 2018). Although a Late Cretaceous age of Alligatoridae (i.e. less than 100.5 Ma: ICSC) is likely, I cannot, therefore, assign a maximum age younger than the Triassic/Jurassic boundary, i.e. twice as old (201.3 ± 0.2 Ma: ICSC; rounded to 200). Only in the Triassic is the record of ecologically comparable phytosaurs dense enough to really rule out the presence of amphibious crocodylomorphs such as alligatorids. However, I have treated this maximum as hard because the likelihood that the true age approaches it is very low.

2.2.9 Node 113: Neognathae (Galloanserae [PN] – Neoaves)

The last common ancestor of *Anas*, *Gallus* and *Meleagris* on one side and *Taeniopygia* on the other was assigned a minimum age of 66 Ma (the Cretaceous/Paleogene boundary) and a maximum age of 86.5 Ma (Coniacian/Santonian boundary. Late Cretaceous) following Benton and Donoghue (2007).

The oldest known neognath appears to be the presbyornithid stem-anserimorph (Elzanowski, 2014; Tambussi et al., 2019; within two steps of the most parsimonious trees of Field et al., 2020) *Teviornis* from somewhere low in the Late Cretaceous Nemegt Fm of Mongolia; it is known only from a carpometacarpus, two phalanges and the distal end of a humerus that all seem to belong to the same right wing (Kurochkin et al., 2002). The most recent work on the specimen has bolstered its presbyornithid identity (De Pietri et al., 2016), even though the next younger presbyornithids are middle or late Paleocene (i.e. younger than 61.6 Ma: ICSC).

The age of the Nemegt Fm is difficult to pin down; radiometric dating of this or adjacent formations has not been possible, and the only fossils available for biostratigraphy are vertebrates that have to be compared to those of North America where marine correlations and radiometric dates are known. These comparisons favor a vaguely early Maastrichtian age, without ruling out a Campanian component. Magnetostratigraphic evidence was reported in a conference abstract by Hicks et al. (2001); I have not been able to find a follow-up publication. Hicks et al. (2001) stated that the sampled sections from the Nemegt and the conformably underlying Baruungoyot Fm “can be quite reliably correlated to the Geomagnetic Reversal Time Scale […] and clearly lie in the Campanian/Maastrichtian interval that extends from the uppermost part of subchron C33n, through chron 32 into the lower half of chron 31.” Where the Baruungoyot/Nemegt boundary lies on this scale was not mentioned. The upper boundary of the Nemegt Fm is an unconformity with a Paleocene formation.

Hicks et al. (2001) also studied the Late Cretaceous Djadokhta Fm, finding that “a distinct reversal sequence is emerging that allows us to correlate the sections in a preliminary way to the late Campanian through Maastrichtian interval that ranges from C32 to C31.” While I have not been able to find a publication by an overlapping set of authors on this finding, it agrees at least broadly with Dashzeveg et al. (2005: 18, 26, 27), whose own magnetostratigraphic work on the Djadokhta Fm indicated “that the sediments were deposited during the rapid sequence of polarity changes in the late part of the Campanian incorporating the end of Chron 33 and Chron 32 between about 75 and 71 Ma […]”. However, this tentative correlation to the Geomagnetic Polarity Timescale cannot yet be
How to calibrate gnathostome timetrees

certainly established.” Hasegawa et al. (2008) disagreed with the stratigraphy by Dashzeveg et al. (2005), but not with their dating.

Most often, the Djadokhta Fm has been thought to underlie the Baruungoyot Fm, but a contact between the two has not so far been identified (Dingus et al., 2008; cited without comment e.g. by Chinzorig et al., 2017); they could be partly coeval (references in Hasegawa et al., 2008). Still, it seems safe to say that most of the Nemegt Fm is younger than most of the Djadokhta Fm.

According to Milanese et al. (2018: fig. 12), the Campanian-Maastrichtian boundary (72.1 ± 0.2 Ma ago: ICSC) lies near the end of chron 32. The Djadokhta Fm thus corresponds to the end of the Campanian, the Baruungoyot Fm should have at most the same age, and the youngest magnetostratigraphic sample from the Nemegt Fm, in the earlier half of chron 31, should be about 70 Ma old. Given the stratigraphic position of Teviornis low within the formation and its nested phylogenetic position within Neognathae, I propose 71 Ma (within the same subchron as 70 Ma: Milanese et al., 2018: fig. 12) as the soft minimum age of the present calibration.

Field et al. (2020: 400) stated that the likely stem-pangallanseran “Asteriornis provides a firm calibration point for the minimum age of divergence of the major bird clades Galloanserae and Neoaves. We recommend that a minimum age of 66.7 million years is assigned to this pivotal neornithine node in future divergence time studies, reflecting the youngest possible age of the Asteriornis holotype including geochronological uncertainty.” In their supplementary information (p. 13), however, they revealed being aware of Teviornis, citing De Pietri et al. (2016) for its position as a presbyornithid (and thus, by their own phylogenetic analyses, an anserimorph) without discussing it any further.

Should the fragmentary Teviornis fall out elsewhere, the minimum age might nonetheless not have to rest on Asteriornis, because Vegaviidae, a clade containing the late Maastrichtian (Clarke et al., 2005; Salazar et al., 2010) Vegavis, Polarornis and Neogaeornis and probably the end-Campanian McLachlan et al., 2017) Maaqwi, has been found on the anserimorph stem in some of the latest analyses (Agnolín et al., 2017; Tambussi et al., 2019). However, Mayr et al. (2018) discussed reasons for skepticism, and the analyses of McLachlan et al. (2017), Bailleul et al. (2019: supp. trees 7–11, 16, 17), Field et al. (2020) and O’Connor et al. (2020) found the vegaviids they included close to but outside Aves (or at least Galloanserae in the case of Bailleul et al., 2019, and O’Connor et al., 2020, who did not sample Neovaves or Palaeognathae in the analyses in question).

As the soft maximum age I tentatively suggest 115 Ma, an estimate of the mid-Aptian age of the terrestrial Xiagou Fm of northwestern China, which has yielded a diversity of stem-birds but no particularly close relatives of the crown (Wang et al., 2013; Bailleul et al., 2019; O’Connor et al., 2020; and references therein).

2.2.10 Node 117: Testudines [PN] (Pan-Pleurodira [PN] – Pan-Cryptodira [PN])

The origin of the turtle crown group by split into the pleurodiran [PN] and cryptodiran [PN] total groups was assigned a minimum age of 210 Ma and no maximum age; this was taken from Noonan and Chippindale (2006) who cited a work from 1990 as their source.

The calibration dates treated above are almost all too young (some substantially so, others by just a few million years). This one, in contrast, is far too old. It rests on the outdated interpretation of the Norian (Late Triassic) Proterochersis as a stem-group pan-pleurodire. With one short series of exceptions (Gaffney et al., 2006, 2007; Gaffney and Jenkins, 2010), all 21st-century treatments of Mesozoic turtle phylogeny have found Proterochersis and all other turtles older than those mentioned below to lie well outside the crown group (Shao et al., 2018: fig. S8, S9; Sterli et al., 2019, 2020; and references therein, in Gaffney and Jenkins, 2010, and in Romano et al., 2014a).
The three oldest known xinjiangchelyids, of which one was referred to *Protoxinjiangchelys*, seem to be between 170 Ma and 180 Ma old (Aalenian/Bajocian boundary, Middle Jurassic, to Toarcian, late Early Jurassic; Hu et al., 2020, and reference therein). In the last three years, the xinjiangchelyids have been found as stem-testudinates or as stem-pan-cryptodires (Shao et al., 2018; Evers et al., 2019; González Ruiz et al., 2019: fig. 6, supp. fig. 4; Gentry et al., 2019; Anquetin and André, 2020; Sterli et al., 2020: supp. fig. “X” = 19), even in both positions when the same matrix was analyzed with different methods (Sterli et al., 2019: supp. file SterlietalSupplementary_material_3.pdf).

The oldest known securely dated and securely identified crown-group turtle is thus the mid-late Oxfordian stem-pan-pleurodire *Caribemys* (de la Fuente and Iturralde-Vinent, 2001; Shao et al., 2018; mostly referred to *Notoemys* as *N. oxfordiensis* in more recent literature, e.g. Sterli et al., 2019). Given that the Oxfordian ended 157.3 ± 1.0 Ma ago (ICSC), I suggest a minimum age of 158 Ma.

The stem-trionychian cryptodire *Sinaspideretes* (Tong et al., 2013), which would provide a minimum age for Cryptodira (node 118) rather than only Testudines, was long thought to have the same age or to be somewhat older. Of the three known specimens, at least one (the exact localities where the type and the other specimen were found are unknown) comes from the Upper (Shang-) Shaximiao Fm (Tong et al., 2013), which conformably overlies a sequence of two supposedly Middle Jurassic formations and is overlain by two Upper Jurassic formations (Tong et al., 2011; Xing et al., 2013), so it should be about Oxfordian to Callovian in age. The biostratigraphic evidence for the age of the Upper Shaximiao Fm is conflicting; there was no consensus on whether it is Middle or Late Jurassic (Xing et al., 2013) before Wang et al. (2018) showed that the immediately underlying Lower (Xia-) Shaximiao Fm is at most 159 ± 2 Ma old, a confidence interval that lies entirely in the Late Jurassic (which began, with the Oxfordian, 163.5 ± 1.0 Ma ago: ICSC). Most likely, then, the same holds for all *Sinaspideretes* specimens, and none of them is older than *Caribemys*.

The unambiguously Early Jurassic and Triassic record of turtles throughout Pangea lies entirely on the stem and has a rather good stratigraphic fit (see Sterli et al., 2019, 2020). I therefore suggest a soft maximum age of 185 Ma (in the Pliensbachian: ICSC) that probably postdates all of these taxa but predates the oldest possible age of the oldest known xinjiangchelyids.

2.2.11 Node 124: Pleurodira [PN] (Pan-Chelidae – Pan-Pelomedusoides)

The origin of Pleurodira by the cladogenesis that generated Pan-Chelidae (represented by *Phrynops*) and Pan-Pelomedusoides (represented by *Pelusios*) was given a minimum age of 25 Ma (Oligocene) and no maximum age. This was miscopied from Noonan and Chippindale (2006: table 1), who assigned that age to Pelomedusidae (their calibration 18, represented here by *Pelusios* alone), not to Pleurodira; to Pleurodira they assigned (their calibration 17) a minimum age of 100 Ma (Early/Late Cretaceous boundary) and a maximum age of 150 Ma (Tithonian, Late Jurassic).

Pleurodira has long been known to extend into the Early Cretaceous (reviewed by Pérez-García, 2019); pan-podocnemids within Pelomedusoides have a particularly rich fossil record. At present, the oldest known pleurodire is the late Barremian pan-podocnemidid *Atolchelys* (Romano et al., 2014a; Pérez-García, 2019; Hermanson et al., 2020), suggesting a minimum age of 125 Ma for this calibration (Romano et al., 2014a; ICSC).

Due to the fairly highly nested position of *Atolchelys* within Pleurodira (whether or not it is a bothremydid – Romano et al., 2014a; Cadena, 2015; Hermanson et al., 2020), and due to the somewhat sparse record of stem-pleurodires (from the Late Jurassic onwards: Romano et al., 2014a; Cadena, 2015; Pérez-García 2019), I accidentally agree with Irisarri et al. (2017) in not assigning a maximum age other than that of Node 117. The maximum age assigned by Noonan and Chippindale...
(2006: table 1) “assumes the Late Jurassic Platychelys actually predates the origin of modern Pleurodira [sic],” which does not logically follow from the fact that it is close to but outside Pleurodira.

2.2.12 Node 125: Lepidosauria [PN] (Rhychocephalia – Pan-Squamata [PN])

The minimum age of this calibration, given as 238 Ma, has to be slightly revised to 244 Ma (both in the Middle Triassic) based on Megachirella, the oldest known unambiguous stem-pan-squamate (Renesto and Bernardi, 2013; Simões et al., 2018: table S2, 2020; Garberoglio et al., 2019; Sobral et al., 2020), which is older than the oldest known rhychocephalian (238–240 Ma: Jones et al., 2013). The Early Triassic Sophineta, a large collection of isolated bones, may be a stem-pan-squamate or a stem-pan-lepidosaur (Evans and Borsuk-Bialynicka, 2009a; Simões et al., 2018, 2020; Garberoglio et al., 2019; Sobral et al., 2020). The text of Sobral et al. (2020) makes clear that Vellbergia, another such animal, is younger than Megachirella, despite being shown as older in Sobral et al. (2020: fig. 4).

An Early Triassic or perhaps Late Permian maximum age seems reasonable, but, given the rarity of stem-pan-lepidosaurs and of Permian diapsids in general (Carroll’s Gap – Marjanović and Laurin, 2013a), I rather propose to use the ecologically similar small amniotes (e.g. Haridy et al., 2017; MacDougall et al., 2019) of Richards Spur (up to 289.2 ± 0.68 Ma; Woodhead et al., 2010; MacDougall et al., 2017), immediately before Carroll’s Gap, to support a soft maximum age of 290 Ma.

2.2.13 Node 129: Toxicofera (Pan-Serpentes [PN] – Anguimorpha + Pan-Iguania [PN])

This calibration was given a minimum age of 148 Ma (Tithonian, Late Jurassic) and no maximum age. Note that the minimum age was not operational because Node 131, Iguania, was given an older minimum age of 165 Ma; in other words, Node 129 was really not calibrated at all.

And indeed I should first mention that the pan-squamate fossil record suffers from three problems that make it difficult to calibrate this node. First, it exhibits Carroll’s Gap (Marjanović and Laurin, 2013a) very strongly. After the Middle Triassic stem-pan-squamate Megachirella and at least one Early Triassic pan-lepidosaur that may or may not be a pan-squamate (Sophineta in particular – compare the different phylogenetic analyses in Simões et al., 2018, 2020), the pan-squamate record as known today goes completely silent (see below under Node 131 for the one or two supposed exceptions) until the dam suddenly breaks in the Bathonian (Middle Jurassic) and representatives of the stem as well as, by current understanding, several parts of the crown appear in several sites in the northern continents and northernmost Gondwana. Second, these early representatives are all isolated and generally incomplete bones that preserve few diagnostic characters; the oldest complete skeletons come from one Tithonian (latest Jurassic) cluster of sites (Conrad, 2017), followed by a few Early Cretaceous ones as well as the oldest partially articulated material other than Megachirella. Third, the morphological datasets so far assembled for analysis of pan-squamate phylogeny are all so plagued by correlated characters and other problems that all of them support either Pan-Iguania as the sister-group to all other squamates, or the amphibiaenians (alone or even together with the dibamids) as the sister-group to Pan-Serpentes (e.g. Simões et al., 2020: supp. fig. 2), or both (e.g. Conrad, 2017: fig. 27, 28), while both are strongly contradicted by the molecular consensus (e.g. Irisarri et al., 2017; Garberoglio et al., 2019; Sobral et al., 2020: fig. S10; Simões et al., 2020: supp. fig. 1, 3, 5, 8).

(As I try to redate the exact tree topology of Irisarri et al. [2017], it is not relevant to the present work that interesting doubts about parts of the molecular consensus have been raised from the molecular
The oldest known toxicoferans appear to be represented by four isolated vertebral centra from the Anoual Fm of Morocco, which is early Bathonian in age (Haddoumi et al., 2015). These bones were assigned to “cf. Parviraptor” by Haddoumi et al. (2015). Other material – vertebrae and jaw fragments from Europe and North America discussed in Panciroli et al. (2020) – was originally assigned to “cf.” or “aff. Parviraptor”, including but not limited to the late Bathonian or earliest Callovian Eophis, the Kimmeridgian Diablophis and Portugalophis, and Parviraptor itself from around the Jurassic/Cretaceous (Tithonian/Berriasian) boundary. Traditionally regarded as representing the oldest anguimorphs, these fossils would calibrate Node 130, the split between Pan-Iguania [PN] and Anguimorpha; however, phylogenetic analyses following a redescription of much of the material have found it to constitute the oldest known pan-serpents, thus calibrating Node 129 (Caldwell et al., 2015; Martill et al., 2015; by implication Conrad, 2017; accepted without analysis by Garberoglio et al., 2019, Simões et al., 2020, and Schneider Fachini et al., 2020). As the Bathonian began 168.3 ± 1.3 Ma ago and ended 166.1 ± 1.2 Ma ago, i.e. with uncertainty ranges that overlap in the middle (ICSC), the suggestion of 167 Ma by Caldwell et al. (2015) would then be a reasonable minimum age for this calibration.

Alifanov’s (2019) casual referral of Parviraptor to an unusually large version of Mosasauria should not be construed to contradict this: the Cretaceous aquatic squamates, mosasaurs included, are probably all pan-serpents (see below), unless they lie on the common stem of Anguimorpha and Iguania (Simões et al., 2020: supp. fig. 8, with very low support).

As mentioned, all these remains are very fragmentary, and all are disarticulated; according to a reviewer, new, apparently unpublished material shows the “parviraptorids” are not snakes, and indeed Panciroli et al. (2020) were careful not to state in the text whether they agreed with the referral to the snake stem, designating “cf. Parviraptor sp.” as “Squamata indet.” in their faunal list (table 1).

The next younger record of a possible toxicoferan is the just as fragmentary Callovian Changetisaurus, a supposed anguimorph, though Alifanov (2019) provided reasons to doubt that it is a toxicoferan. It is followed by the several species of Dorsetisaurus, another assemblage of skull fragments with osteoderms from the Kimmeridgian through Berriasian of Europe and North America, that was explicitly accepted as an anguimorph by Caldwell et al. (2015) and, on different grounds, Alifanov (2019), but has not, to the best of my knowledge, been included in any phylogenetic analysis. (Older and secondary literature has often claimed that the oldest Dorsetisaurus specimens are 148 Ma old, but the Kimmeridgian ended 152.1 ± 0.9 Ma ago: ICSC.)

Most of the rich record of Cretaceous aquatic squamates has traditionally been referred to Anguimorpha, but more likely belongs to Pan-Serpentes (e.g. Garberoglio et al., 2019; Palci et al., 2019; Sobral et al., 2020: fig. S10; Simões et al., 2020: supp. fig. 3, 4, 6, 9; and references therein). It sets in in what seems to be the Hauterivian with Kaganaiais (Evans et al., 2006; Campbell Mekarski et al., 2019); the Hauterivian ended ~ 129.4 Ma ago (ICSC, uncertainty not quantified). If neither the “parviraptorids” nor Changetisaurus nor Dorsetisaurus are accepted as toxicoferans, the minimum age of Node 129 should thus be 130 Ma. To err on the side of caution, that is the age I have used here.

Due to Carroll’s Gap (Marjanović and Laurin, 2013a) I agree with Irisarri et al. (2017) in not assigning a maximum age other than that for Node 125.
2.2.14 Node 131: Iguania [PN] (Pan-Acrodonta [PN] – Pan-Iguanidae [PN])

The origin of Iguania by cladogenesis into Pan-Acrodonta and Pan-Iguanidae was assigned a minimum age of 165 Ma (late Middle Jurassic) and a maximum age of 230 Ma (Carnian, Late Triassic) following Noonan and Chippindale (2006).

Tikiguania was described as a Late Triassic acrodontan [PN]. Not only is it an acrodontan, it is a draconine agamid (Hutchinson et al., 2012); most likely, therefore, the very well preserved isolated lower jaw is not a fossil, but belongs to one of the draconine species that live on the site, and fell into the screenwashing sample (Hutchinson et al., 2012).

Bharatagama, cited by Noonan and Chippindale (2006), is known (Evans et al., 2002) from at least 85 maxilla and dentary fragments (with supposed genuine absence of the splenial and supposed fusion of the angular to the dentary) that undoubtedly come from the Upper Member of the Kota Fm in Andhra Pradesh (India), for which, on the balance of conflicting biostratigraphic evidence (Prasad and Manhas, 2007; Prasad et al., 2014), a late Middle Jurassic age seems most likely (notwithstanding the fact that the Lower Member conformably overlies the Dharmaram Fm, which extends down into the Triassic as shown by its phytosaurs and aëtosaurs: Goswami et al., 2016). Even so, this age (i.e. 163.5 ± 1.0 Ma or older: ICSC) is old enough by comparison to the pan-iguanian fossil record and the position of Iguania in all molecular phylogenies (including Irisarri et al., 2017) that Jones et al. (2013: 15), whose molecular dating found Toxicofera as a whole to be younger than *Bharatagama*, stated: “It is possible that *Bharatagama* represents an early stem crown-group [sic] squamate with a jaw morphology convergent with modern acrodont [= acrodontan] iguanians, or that it belongs to another clade.” Simões et al. (2017) cited these doubts without further comment. Evans et al. (2002: 306) listed a number of features shared by acrodontans and sphenodontians; three of these do not occur in the Cretaceous priscagamid stem-pan-acrodontans, but all are found in *Bharatagama*. Although no known sphenodontian is a good match (Evans et al., 2002), I very tentatively suggest that *Bharatagama* could represent a morphologically innovative clade of *Diphydontosaurus*-grade sphenodontians. It would not lie outside the large (Reynoso, 2005, and references therein) sphenodontian morphospace: the shape, size, implantation and attachment of the distal teeth recalls *Clevosaurus* (depicted in Evans et al., 2002), while the shape and size of the mesial teeth is reminiscent of *Sphenovipera* (Reynoso, 2005). Indeed, the one phylogenetic analysis that has ever included *Bharatagama* found it as a rynchcephalian rather than a squamate, although close to the pleurosaurans (despite the more *Diphydontosaurus*-like plesiomorphic gradient of tooth implantation) and, not surprisingly given the limited material, with weak support (Conrad, 2017). In sum, the optimism of Scarpetta (2019) about the usefulness of *Bharatagama* as a calibration point is unwarranted, because the status of *Bharatagama* as a pan-acrodontan is too doubtful.

Xianglong from the Yixian Fm of Liaoning (China), which dates to around the Barremian-Aptian boundary (~ 125.0 Ma; ICSC), was described as a pan-acrodontan, possibly an acrodontan (Li et al., 2007). Unfortunately, this rests on very limited evidence: the one known individual is clearly juvenile, and much of the skeleton remains unknown because is covered by exquisitely preserved soft tissue and has not been μCT-scanned (Li et al., 2007; Simões et al., 2017; Scarpetta, 2019, and reference therein).

Daza et al. (2016) briefly described three isolated hindlimbs from Burmese amber (99 Ma old: Daza et al., 2016, 2020) as agamids, and a largely complete articulated individual as a chamaeleonid. The supposed chamaeleonid later turned out to be an albanerpetid amphibian with a ballistic tongue (Matsumoto and Evans, 2018: 52–53; Daza et al., 2020), and the supposed agamids are so incomplete that they probably provide more ecological than phylogenetic information; indeed, the only supposed pan-acrodontan Daza et al. (2016) included in their phylogenetic analysis was the albanerpetid.
Therefore, again unlike Scarpetta (2019), I do not think any of these four specimens can be used to calibrate divergence dates.

Priscagamidae is a Campanian clade (from the Djadokhta, Baruungoyot and more or less coeval formations; see node 113 above and Borsuk-Bialynicka, 1996) of squamates that have usually been considered stem-pan-acrodontans (most recently found as such by Simões et al., 2018, and the three matrices independently derived from theirs: Garberoglio et al., 2019; Sobral et al., 2020; Simões et al., 2020; also by DeMar et al., 2017), but have also been found as stem-pan-iguanians (Conrad, 2015: fig. 6, with much denser sampling of pan-iguanians than in DeMar et al., 2017, or Simões et al., 2018, and their successors).

A consensus now appears to exist that Gobiguania (Conrad and Norell, 2007) is a clade or grade of Campanian and Maastrichtian stem-pan-iguanians (Simões et al., 2015; Conrad, 2015), though DeMar et al. (2017: supp. inf.) could not determine if their two gobiguanian clades were stem-pan-iguanians or stem-pan-iguaniids [PN].

“Ctenomastax” Gao and Norell, 2000, a junior homonym of the staphylinid beetle *Ctenomastax Kraatz in von Heyden, 1870*, is likewise known from the Djadokhta and Baruungoyot formations (see node 113); probably due to the poor preservation of the specimens (Gao and Norell, 2000), it has variously been found as the sister-group of all other pan-acrodontans (Simões et al., 2015; Reeder et al., 2015; DeMar et al., 2017) or as a gobiguanian stem-pan-iguanian (Conrad, 2015). In the latter case it cannot date the origin of Iguania.

Isodontosaurus, from the Djadokhta Fm and more or less coeval sites, is known from fairly large amounts of material representing much of the skeleton, but its phylogenetic position has been hard to determine (Gao and Norell, 2000); Conrad (2015) found it as a stem-pan-acrodontan, Reeder et al. (2015) as a gobiguanian, DeMar et al. (2017) in the “gobiguanian” grade.

DeMar et al. (2017: supp. inf.: 26–28) briefly reviewed the various Cretaceous specimens from North and South America that had been attributed to Pan-Iguanidae [PN], in some cases even Iguanidae [PN] (see node 132), and found all these attributions doubtful at best.

Alifanov (2013) described *Desertiguana* as a phrynosomatid iguanid [PN] based on an almost complete left lower jaw from the Baruungoyot Fm. Curiously, it has been summarily ignored ever since by everyone other than its author (in single-authored publications that do not provide further information and never contain phylogenetic analyses), except for a citation as a pan-iguanian without any comment by Head (2015). Given that Alifanov (2013) also classified three other Djadokhta/Baruungoyot genera otherwise considered gobiguanians as phrynosomatids, I cannot be certain that *Desertiguana* is not a gobiguanian stem-pan-iguanian as well.

Equally Campanian or older (summarized in Langer et al., 2019) is the stem-pan-acrodontan *Gueragama* (Simões et al., 2015, 2017). Known from an isolated but largely complete lower jaw, it appears to suffice for setting up a minimum age for Iguania at the Campanian/Maastrichtian boundary (72.1 ± 0.2 Ma: ICSC), which I round to 72 Ma. I should mention, however, that a reviewer doubts the phylogenetic position of *Gueragama* for unstated reasons, and that Romo de Vivar et al. (2020) found that most or all of the similarities between *Gueragama* and Acrodonta are shared with the Triassic pan-lepidosaur *Cargninia*, likely indicating that these features are evolutionarily correlated with each other and prone to convergence. Meanwhile, Alifanov (2020) called *Gueragama* an isodontosaurid (see above) without stating a reason.

Apesteguía et al. (2016) described *Jeddaherdan* from a Cenomanian jaw fragment. Using a dataset entirely restricted to iguanians, their parsimony analysis recovered it as a pan-acrodontan rather than a pan-iguianid (the only other option) and did not resolve it further until implied weighting was
applied, which placed *Jeddaherdan* in a clade with *Gueragama* and the extant agamid *Uromastyx*. Bayesian inference found the same result, although with rather low support (posterior probability of 0.8). As the authors pointed out, this topology implies that the occurrence of tooth replacement in *Gueragama* is a reversal. Given the very limited material, the taxon sample which presupposes that *Jeddaherdan* is an iguanian, the constraints on the applicability of implied weighting and the poorly understood performance of Bayesian inference with missing data distributed by body part (Marjanović and Laurin, 2019, and references therein; King, 2019), as well as the implications for *Gueragama*, I prefer not to use *Jeddaherdan* to date the origin of Iguania as long as further material has not been discovered.

If none of the taxa listed above are iguanians, the fossil record of Iguania is entirely restricted to the Cenozoic, possibly beginning in the Thanetian, the last stage of the Paleocene (reviewed in Alifanov, 2020 – a work that is, however, perfectly happy to name paraphyletic taxa that are not intended as clades). I cannot assign a maximum age other than that for Node 125.

2.2.15 Node 132: Iguanidae [PN] (Iguaninae + Corytophanidae – Dactyloidae + Phrynosomatidae)

The origin of Iguanidae was given a minimum age of 125 Ma (Barremian/Aptian boundary, Early Cretaceous) and a maximum age of 180 Ma (Toarcian, Early Jurassic). This was miscopied from Noonan and Chippindale (2006), who did assign a maximum age of 180 Ma, but a minimum age of only 25 Ma (late Oligocene), citing an early Miocene specimen and its description from 1991. Other than the abovementioned Cretaceous and Paleocene questionable iguanids like *Desertiguana* (see node 131), it is unexpectedly hard to determine from the literature what the oldest possible iguanid could be (though even the questionable ones are all much younger than 125 Ma). Smith (2009) described two assemblages of isolated skull bones from the Paleocene-Eocene boundary (56.0 Ma ago: ICSC) as the new taxa *Suzanniwana*, which he considered a likely stem-corytophanid, and *Anolbanolis*, which he thought close to *Polychrus* and Dactyloidae. He did not perform a phylogenetic analysis. Unfortunately, nobody has ever included *Anolbanolis* in a phylogenetic analysis to the best of my knowledge. DeMar et al. (2017) mentioned it in the text as one of the two oldest definitive iguanids (the other being the younger *Afairiguana*), but it does not occur in their tree figure or their entire supplementary information; *Suzanniwana* occurs nowhere in that publication at all. Conrad (2015), nowhere mentioning *Anolbanolis*, stated that *Suzanniwana* was one of the two “taxa with the most volatile positions within this analysis”, but only published the Adams consensus of that analysis, which shows *Suzanniwana* as part of a polytomy that also encompasses Corytophanidae and a clade containing all other extant iguanids – whether *Suzanniwana* remains inside Iguanidae in all of the 98 most parsimonious trees or is placed as the sister-group of Iguanidae in some could only be determined by repeating the analysis. Scarpetta (2020: supp. inf.) did include *Suzanniwana* in one of the two datasets he analyzed, and found it in the corytophanid total group or at least in a clade with Corytophanidae, *Polychrus* and Dactyloidae, but the sample of extinct species is extremely small in that matrix, and *Anolbanolis* is nowhere mentioned.

The oldest certain iguanid, then, is the oldest one known from articulated remains: the fairly highly nested *Kopidosaurus*, even though it is not clear where it is nested exactly (Scarpetta, 2020). Being slightly older than a 52.59 ± 0.12 Ma old tuff that overlies it (Scarpetta, 2020), and being followed by *Afairiguana* (which forms an exclusive clade with the extant *Polychrus* and Dactyloidae in the analysis of Conrad, 2015), the highly nested corytophanid *Babibasiliscus* and the less highly nested corytophanid *Geiseltaliellus* (Conrad, 2015) within the next five million years, it establishes a rather tight minimum age of 53 Ma for this calibration point, very close to the abovementioned 56 Ma.
If *Desertiguana* is not an iguanid, the absence of iguanids might suggest a late Campanian maximum age for Iguanidae. But as this possibility cannot be excluded at present, even apart from unknown geographic or ecological factors that could have kept iguanids out of the environments that deposited the Campanian and Maastrichtian formations of Asia and North America, I find myself unable to assign a maximum age other than, again, that for Node 125. The argument by Noonan and Chippindale (2006: table 1) was “based on observations of Evans et al. (2002) and the assumption that this origin of the group does not predate the earliest known Iguaninan [sic] in the Jurassic” and is therefore doubly untenable.

Burbrink et al. (2020) found extremely short internal branch lengths for the basal radiation of Iguanidae; similarly, Scarpetta (2020) found the phylogeny of Iguanidae difficult to resolve, which likewise suggests a fast radiation (but might also be a consequence of the sparse taxon sampling in both matrices). Paleontologically, the recovery phase immediately after the Cretaceous-Paleogene boundary suggests itself as the time of such a radiation. But this remains to be tested.

2.2.16 Node 150: Mammalia [PN] (Pan-Monotremata [PN] – Theriomorpha)

The origin of the crown-group Mammalia by the divergence of Pan-Monotremata represented by *Ornithorhynchus*, on one side, and Theriomorpha, which comprises Theria (to which all extant mammals except the monotremes belong), Spalacotherioidea, Meridiolestida, Dryolestidae, Multituberculata, (Eu)triconodonta and many others, on the other side, was assigned a minimum age of 162.5 Ma (Oxfordian, Late Jurassic) and a maximum age of 191.4 Ma (Early Jurassic) following Benton and Donoghue (2007).

The phylogenetic position of Haramiyida, a clade that reaches beyond these ages into the Late Triassic, has been controversial; Celik and Phillips (2020) have presented a strong argument that it lies well outside Mammalia, which is one of the two positions found in previous analyses.

The oldest uncontroversial mammals are the pan-monotremes *Asfaltomylos* and *Henosferus* and the volaticotherian (eu)triconodont *Argentoconodon*, which all come from a level that was originally thought to be high in the Cañadón Asfalto Fm and to be Callovian or even Oxfordian (late Middle or early Late Jurassic) in age, but has more recently been correlated to its very bottom, the transition with the underlying Lonco Trapial Fm (Cúneo et al., 2013). From this bottom of the Cañadón Asfalto Fm, three successive (from lowest to highest) U-Pb zircon dates were determined by Cúneo et al. (2013): 178.766 ± 0.23 Ma, 177.37 ± 0.12 Ma and 176.15 ± 0.24 Ma. These are maximum ages in that reworked zircon crystals occur in these lacustrine tuff beds, so that the youngest crystals, from which the cited ages were derived, could still be older than the deposition of the tuff beds themselves; however, given the correlation of the recovered ages with stratigraphic height, and the rarity of older zircons in the oldest and the youngest sample (Cúneo et al., 2013), a large discrepancy is unlikely. Therefore, I recommend a minimum age of 179 Ma for this calibration.

The maximum age assigned by Irisarri et al. (2017) may be intended to represent the Sinemurian/Pliensbachian boundary (190.8 ± 1.0 Ma: ICSC). Indeed, the Sinemurian record of mammalomorphs (tritylodontids, tritheledontids, *Sinoconodon*, morganucodontans, *Hydrocodium*) from North America, southern Africa and China is fairly rich and diverse, but has not yielded mammals so far. However, ghost lineages encompassing almost the entire Early Jurassic to the middle of the Middle Jurassic occur for haramiyidans and docodonts, both of which have been found in the Rhaetian and the Bathonian, but not so far in between; and while the Rhaetian and/or possibly Norian *Thomasia* and *Haramiyavia* lie outside the smallest clade of all other haramiyidans, the Rhaetian *Tikitherium* is the sister-group of all Jurassic docodonts except the probably Middle Jurassic *Gondtherium* (Zhou et al., 2019: supp. inf. M), requiring two such ghost lineages within Docodontia. Two more such ghost lineages for Pan-Monotremata and Theriomorpha would not be very surprising.
This may be especially relevant if Haramiyida, rather than the Sinemurian Hadrocodium, is the sister-group of Mammalia. Currently, the former is recovered by parsimony, the latter by Bayesian analysis of the same matrix (Huttenlocker et al., 2018: extended data fig. 9; Zhou et al., 2019: supp. inf. M), neither option having strong support by its own criteria; judging from the dashes in their fig. 2 and S1, Celik and Phillips (2020) may have found the same result using an improved version of the same matrix, but they did not publish their most parsimonious trees. For comparisons between the methods as applied to paleontological datasets, see the references cited under node 102 (above). Preferring to err on the side of caution, I place the hard maximum age in the Carnian Pluvial Episode 233 Ma ago (Maron et al., 2018), which is also substantially older than all possible haramiyidans, indeed older than all currently recognized mammalomorphs (Kligman et al., 2020, and references therein).

2.2.17 Node 151: Theria (Metatheria – Eutheria)

The origin of Theria by the split into the total groups Metatheria (crown group: Marsupialia) and Eutheria (crown group: Placentalia) was given a minimum age of 124.6 Ma (Barremian/Aptian boundary, Early Cretaceous) and a maximum age of 138.4 Ma (Valanginian, Early Cretaceous) following Benton and Donoghue (2007).

The oldest securely dated therian is currently the stem-eutherian Ambolestes at 126 Ma (Bi et al., 2018).

Juramaia (Luo et al., 2011) has often been cited as a much older stem-eutherian. However, both its age and its phylogenetic position are in doubt; if either of these doubts is corroborated, Juramaia becomes irrelevant to dating this node. Originally, the only known specimen was thought to come from the Lanqi Fm, specifically a site variably called Daxigou or Daxishan (Yuan et al., 2013: supp. inf.: 4), which has meanwhile been dated to between 160.889 ± 0.069 Ma and 160.254 ± 0.045 Ma (Jia and Gao, 2019). Meng (2014: 526, 529–530), however, doubted this, called the specimen “floating”, and pointed out its great similarity to Eomaia in particular (found as its sister-group in the very different matrices of Bi et al., 2018, and Zhou et al., 2019: supp. inf. M; Mao et al., 2019: fig. S9, did find Juramaia outside the clade of all other included eutherians, but did not sample Ambolestes despite building on the matrix of Bi et al., 2018) and to Barremian–Albian eutherians in general, as well as the long ghost lineages a mid-Oxfordian age for Juramaia would create within Eutheria, for Metatheria and for several of the closest relatives of Theria. Bi et al. (2018, 2019) referred to Meng (2014) for this issue but did not try to resolve it. As long as it is not resolved, I much prefer to consider the single Juramaia specimen to have been discovered in the Yixian Fm (like Ambolestes, Eomaia and Acristatherium), as suggested by Bi et al. (2019).

Celik and Phillips (2020) called Juramaia “purportedly Jurassic” without comment and found middling support for a sister-group relationship to Theria as a whole, noting that this agreed with earlier doubts (e.g. by Sweetman et al., 2017). However, like Mao et al. (2019), they did not sample Ambolestes, and the sensitivity of this result to whether parsimony or a model-based method is used was not published.

Sweetman et al. (2017) described two teeth from the very beginning of the Cretaceous (~ 145 Ma old) as two genera of Late-Cretaceous-grade eutherians, Durlstotherium and Durlstodon. In view of this limited material, I remain skeptical (see also Bi et al., 2018) and recommend 126 Ma as the minimum age for this calibration.

While the oldest uncontested metatherians are only some 110 Ma old (Bi et al., 2018), Mao et al. (2019: fig. S9) and Celik and Phillips (2020) have returned Sinodelphys (of the same age as Eomaia and Acristatherium, slightly younger than Ambolestes) to its status as the oldest known metatherian.
If this holds and if *Juramaia* has the same age instead of being Jurassic or is not a therian, and if further *Durlstootherium* and *Durlstodon* can be disregarded, virtually no ghost lineage is required at the base of Metatheria.

Accepting that *Juramaia* is not from the Lanqi Fm or not a therian, I propose 160 Ma as the soft maximum age of this calibration, on the grounds that therians or their closest relatives – other than, perhaps, *Juramaia* – are absent in the Lanqi Fm and the laterally equivalent Tiaojishan Fm, likewise absent in the Kimmeridgian and Tithonian of Portugal and the US (where the Morrison Fm, intensely sampled since the 1860s, extends across several states), and further absent in the end-Tithonian and Berriasian of England – other than, perhaps, *Durlstootherium* and *Durlstodon* – despite the diversity of ecologically comparable mammals found there. Given the strong evidence of a Laurasian origin of Theria (e.g. Huttenlocker et al., 2018; Bi et al., 2018), the earliest possible time and place for the origin of Theria that could stay out of the fossil record is therefore Asia after the deposition of the Tiaojishan and Lanqi formations ended in the Oxfordian.

2.2.18 Node 152: Placentalia (Atlantogenata – Boreo(eu)theria); Node 153: Boreo(eu)theria (Laurasiatheria – Euarchontoglires/Supraprimates)

The origin of Placentalia, the crown group of Eutheria, was given a minimum age of 95.3 Ma (Cenomanian, Late Cretaceous) and a maximum age of 113 Ma (Aptian/Albian boundary, Early Cretaceous) following Benton and Donoghue (2007). Its immediate descendant nodes were not constrained.

The minimum age rests on the assumption, commonly but not universally held in 2007, that the zhelestids are “ungulates”, i.e. belong to Placentalia, or perhaps even that the zalambdalestids are related to Glires and therefore belong to Placentalia. For a long time now, as already pointed out by Parham et al. (2011), every reinvestigation of the anatomy of these Cretaceous animals, and every phylogenetic analysis that sampled Cretaceous eutherians densely (i.e. not including Zhou et al., 2019: supp. inf. M), has found them on the eutherian stem, often not even particularly close to Placentalia (e.g. Novacek et al., 1997; Asher et al., 2005, 2019; Wible et al., 2009; Goswami et al., 2011; Halliday et al., 2015; Manz et al., 2015; Bi et al., 2018: fig. 2, SI-1; Wang et al., 2019: ext. data fig. 5; and references in Parham et al., 2011 “2012”; see also Fostowicz-Frelik and Kielan-Jaworowska, 2002).

A few terminal Cretaceous (late Maastrichtian) eutherians have been attributed to Placentalia in the past. This is at best dubious for all of them. *Protungulatum* (Wible et al., 2009; Halliday et al., 2015, 2019: fig. 1 contrary to the text; Manz et al., 2015: fig. 2a; Wang et al., 2019: ext. data fig. 5; Mao et al., 2019: fig. S9) and *Gypsonictops* (Halliday et al., 2015, 2019; Manz et al., 2015: fig. 2; Bi et al., 2018; Wang et al., 2019: ext. data fig. 5; Mao et al., 2019: fig. S9) are now placed close to but consistently outside Placentalia. *Deccanolestes* – at least if the teeth and the tarsal bones belong together – is placed far away (Goswami et al., 2011 [see there also for *Sahnitherium*]; Manz et al., 2015: fig. 2, SI-1; Penkrot and Zack, 2016; Halliday et al., 2019). The single worn tooth named *Kharmerungulatum*, which had been assigned to Placentalia mostly through comparison to *Protungulatum* in the first place (Prasad et al., 2007), has more recently been found outside Placentalia as well (“Although none of the strict consensus trees supported the placement of *Kharmerungulatum*, which had been assigned to Placentalia mostly through comparison to *Protungulatum* in the first place (Prasad et al., 2007), has more recently been found outside Placentalia as well (“Although none of the strict consensus trees supported the placement of..."

Specifically as an adapisoriculid like *Deccanolestes* when full molecular constraints were applied by Manz et al. (2015: fig. 2b). The stylinodontid taeniodont *Schowalteria* (Fox, 2016, and references..."
How to calibrate gnathostome timetrees

therein) belongs to a clade that survived into the Eocene; the conference abstract by Funston et al. (2020) reported that a very large phylogenetic analysis has found the group outside Placentalia.

The same reasons make it difficult to decide which of the earliest Paleocene eutherians should be accepted as securely enough identified placentalts. But in any case, Williamson et al. (2019: 220) reported that the herbivorous peripytchid Ectoconus, estimated to have reached about 100 kg, was “present within 0.4 Ma of the K-Pg boundary”; phylogenetic analyses have found it to be not only a placental, but a laurasiatherian – Halliday et al. (2015; regardless of constraints) found it and the other peripytchids on the pholidotan stem; Halliday et al. (2019), using combined data and maximum likelihood, found a comparable result with much less resolution; Püschel et al. (2019), using a somewhat smaller matrix with, however, a focus on peripytchids and new data on them, recovered them as stem-artiodactylomorphs. I therefore suggest 66 Ma, the Cretaceous/Paleogene boundary (66.021 ± 0.081 Ma: Clyde et al., 2016), as the minimum age for Node 153, the basal node of Boreoeutheria (a name apparently coined by accident by Murphy et al., 2001) or simply Boreotheria (explicitly coined by Waddell et al., 2001). For Node 152 I cannot recommend a separate minimum age.

Unambiguous placentalts continue to be absent worldwide in the rich Maastrichtian record (see above as well as Halliday et al., 2016, and Davies et al., 2017), and even ambiguous ones except Gypsonictops continue to be absent in the even richer Campanian record (although there are three isolated Turonian teeth indistinguishable from both species of Gypsonictops: Cohen and Cifelli, 2015; Cohen, 2017), despite the presence of stem-eutherians (all northern continents, Madagascar and India), stem-metatherians (Asia and North America), and ecologically comparable spalacotheroids (Asia and North America), meridiolestidans (South America) and gondwanatheres (South America, Madagascar, India, and some point between the late Turonian and latest Campanian of Africa – O’Connor et al., 2019). Thus, only Antarctica, Australia and New Zealand are left as paleocontinents where Campanian or Maastrichtian placentalts could have escaped the fossil record, and they are all unlikely for biogeographical reasons (e.g. Huttenlocker et al., 2018). Therefore, I suggest the Campanian/Maastrichtian boundary, rounded to 72 Ma, as the hard maximum age for Node 152. (I cannot make a separate recommendation for Node 153.) This is more generous than the result of Halliday et al. (2016), 95% of whose reconstructions of the age of Placentalia were 69.53 Ma old or younger. The discrepancy to the published molecular ages (references in Halliday et al., 2016) is most likely due to the effects of body size (Berv and Field, 2017; Phillips and Fruciano, 2018), or perhaps other factors like generation length, on rates of molecular evolution.

At this point, readers may be wondering why I have mentioned neither the extremely large phylogenetic analysis by O’Leary et al. (2013) nor the objections by Springer et al. (2019), who wrote in their abstract that “morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals”. It would be more accurate to say that phylogenetic analysis of morphological data has no track record of reconstructing the phylogeny of Placentalia, good or bad. To avoid long-branch attraction and long-branch repulsion, any such analysis of morphological data will have to sample the enormous and poorly understood diversity of Paleo- and Eocene eutherians very densely, which will have to entail sampling enough of the characters that unite and distinguish them without falling into the trap of accumulating redundant or otherwise correlated characters that inevitably distort the tree (Marjanović and Laurin, 2019; Sookias, 2019; Celik and Phillips, 2020; and references in all three). This is so much work, and so hard to get funded, that at the most generous count only three attempts at such a matrix have ever been made; I should also point out that matrices of such sizes were not computationally tractable until a few years ago, at least not in less than a few months of calculation time. The first attempt is the “phenomic” matrix by O’Leary et al. (2013); as Springer et al. (2019) pointed out repeatedly, it contains no less
How to calibrate gnathostome timetrees

than 4,541 characters – but several hundred of these are parsimony-uninformative (O’Leary et al., 2013), and many others are redundant, which means they represent a smaller number of independent characters of which many are weighted twice or more often. At 86 terminal taxa, almost all of which are extant, the taxon sample is hopelessly inadequate for eutherian phylogeny. It is no surprise that parts of the topology are highly implausible (e.g. the undisputed stem-whale Rodhocetus landing on the common ungulate [PN] stem, as pointed out by Springer et al., 2019) and that even such undisputed clades as Afrotheria, Lipotyphla and Artiodactyla are no longer recovered when the hundreds of soft-tissue characters, which cannot be scored for the extinct terminal taxa, are removed (Springer et al., 2019), which casts doubt on the ability of that matrix to place extinct taxa accurately.

The second attempt began in the doctoral thesis of Zack (2009) and was further modified and merged with other datasets in Halliday’s doctoral thesis that culminated in the publication of Halliday et al. (2015). The taxon sample contains an appreciable number of Cretaceous and Paleocene eutherians; the character sample is of course more modest and contains, as usual for mammals, a large proportion of tooth characters, some of which might be redundant (e.g. Kangas et al., 2004; Harjunmaa et al., 2014). The further improved version (Halliday et al., 2019) suffers from the drawback that all characters were reduced to two states to make the matrix tractable by maximum-likelihood software; this throws away a lot of information (probably for no gain: Sansom et al., 2018; King, 2019). The third is that of the PalM group; funded by an enormous grant, it involves a lot of people each revising a group of Paleo- or Eocene eutherians as their doctoral thesis and contributing the gained knowledge (e.g. Napoli et al., 2017) to a growing matrix (ultimately based on that of Wible et al., 2009) that will then be evaluated for character redundancy and other issues. The only phylogenetic publications that have yet resulted are conference abstracts, of which I have cited Püschel et al. (2019) and Funston et al. (2020) above.

Springer et al. (2019) went on to claim that “Sansom and Wills (2013) showed that fossils are more likely to move stemward than crownward when they are only known for biomineralized characters”. Indeed Sansom and Wills (2013) made that claim. They had taken 78 neontological matrices of extant animals with biomineralized tissues, deleted the data for soft-tissue characters from random taxa and found that those taxa changed their phylogenetic position significantly more often than random, and further underwent “stemward slippage” as opposed to “crownward slippage” significantly more often than random. Deleting data from hard-tissue characters instead had no such effect. Sansom and Wills (2013) concluded that some mysterious factor causes hard-tissue characters to contain a systematically misleading signal much more often than soft-tissue characters do, and that therefore the phylogenetic positions of all taxa known only from hard tissues – in other words most animal fossils – are highly suspect of falsely appearing more rootward than they really are. Therefore, fossils assigned to various stem groups could really belong to the crown groups, and the minimum ages of divergence-date calibrations could be systematically too young (Sansom and Wills, 2013), just as Springer et al. (2019) believed. A much simpler explanation is available: hard-tissue characters are unreliable specifically among extant species because the hard-tissue anatomy of extant species is usually very poorly known. For example (Marjanović and Witzmann, 2015), the vertebrae of some of western and central Europe’s most common newt species are simply unknown to science, even after 200 years or more of research, because neontologists have focused on soft-tissue anatomy, behavior and more recently the genome while treating the skeleton as an afterthought. And the appendicular skeleton also does is anybody’s guess at this point! As our knowledge of the skeletons of extant taxa would improve, so would, I predict, the ability of hard-tissue characters to accurately resolve the phylogenetic positions of extant taxa.
2.2.19 Node 154: Carnivora [PN] (Pan-Feliformia [PN] – Pan-Caniformia [PN])

The origin of Carnivora by the divergence of the sister-groups Pan-Feliformia (represented in this matrix by Felis) and Pan-Caniformia (represented by Canis) was assigned a minimum age of 42.8 Ma (Lutetian, Eocene) and a maximum age of 63.8 Ma (Danian, Paleocene). Irisarri et al. (2017) justified this by citing the identification of the middle Eocene Tapocyon as a pan-caniform by Wesley and Flynn (2003); this should be regarded as rendered obsolete by Spaulding and Flynn (2012) and Solé et al. (2016), who found Tapocyon as a stem-carnivoriform in phylogenetic analyses of two successively larger versions of a much larger dataset. The analysis by Tomiya and Tseng (2016) found Tapocyon as a pan-feliform, but used a much smaller sample of stem-carnivoriforms and of characters in a misaligned cladogram (e.g. Kearney and Clark, 2003; Wiens, 2003a,b; 2005a,b; Prevosti and Chemisquy, 2009; Marjanović and Laurin, 2019; King, 2019; Mongiardino Koch et al., 2020) to attempt to avoid missing data by throwing out known data.

With “Miacis” sylvestris being recovered even more rootward on the carnivoriform stem than Tapocyon by Spaulding and Flynn (2012) and Solé et al. (2016), the oldest securely dated and identified carnivoran specimens belong to the amphicyonid stem-caniform Daphoenus and the stem-canid Hesperocyon and are about 38 Ma old (Tomiya, 2011, and references therein). Lycophocyon could have the same age or be somewhat older (Tomiya, 2011), but unfortunately its phylogenetic position remains uncertain: it was published too late to be included by Spaulding and Flynn (2012), it was not added by Solé et al. (2016), and the much smaller phylogenetic analysis by Tomiya (2011) only resolved its position (as a stem-caniform closer to Caniformia than Daphoenus) after all post-Paleogene taxa were excluded. Given the uncertainties in both age and phylogenetic position, I provisionally ignore Lycophocyon and suggest 38 Ma as the minimum age of this calibration.

As a hard maximum age I suggest the Paleocene/Eocene boundary 56.0 Ma ago (ICSC), around which there is a very rich record of a range of carnivorous mammals of various sizes and ecologies, including stem-carnivoriforms and many others but not including carnivorans.

2.2.20 Node 155: Euarchontoglires/Supraprimates (Gliriformes – Primatomorpha)

The last common ancestor of mice and men, the first crown-group member of a clade called Euarchontoglires (a name apparently coined by accident by Murphy et al., 2001) or, perhaps less clumsily, Supraprimates (explicitly coined by Waddell et al., 2001), was placed between 61.5 Ma ago (Selandian, Paleocene) and 100.5 Ma ago (Early/Late Cretaceous boundary) following Benton and Donoghue (2007). The oldest purported total-group primatomorph – not necessarily a pan-primate [PN] (Ni et al., 2016) – is Purgorarius coracis, found in an outcrop of the Ravenscrag Formation that is at most 0.4 Ma younger than the 66.0-Ma-old Cretaceous/Paleogene boundary (Fox and Scott, 2011; Scott et al., 2016). However, Halliday et al. (2015, 2019) found Purgariorius outside of Placentalia despite the presence of stem-pan-primates in their analyses. When Manz et al. (2015) applied molecular constraints (fig. 2), they did find Purgariorius as a pan-primate, though in a strangely nested position when the monophyly of Laurasiatheria was enforced (fig. 2b). Without constraints, the included primatomorphs formed a grade outside most other placentals (and the included laurasiatherians formed a grade outside all other placentals: fig. SI3-1). Note that Halliday et al. (2015, 2019) scored Purgariorius for the tarsal bones that Chester et al. (2015) referred to this taxon (somewhat younger than P. coracis); Purgatorius is otherwise known exclusively from teeth and lower jaws (Chester et al., 2015; Scott et al., 2016), and Chester et al. (2015) referred the tarsals simply because their size fits and because they show arboreal adaptations which agree with the assumed pan-primate status of Purgariorius. Scott et al. (2016: 343) preferred to call these bones “several isolated, possible
pleiasdapiiform tarsals”, Plesiadapiformes being a clade or grade of stem-pan-primates or stem-
primatomorphs to which *Purgatorius* is generally thought to belong.

Excluding the purgatoriids, the diverse oldest known total-group primatomorphs are, in terms of
North American Land Mammal Ages, slightly younger than the Puercan/Torrejonian boundary
(Silcox et al., 2017), which dates to about 64.8 Ma ago (Wang et al., 2016).

On the presumably gliriform side, the oldest known members are anagalidans from the Lower
Member of the Wanghudun Fm: the anagalids *Anaptogale*, *Wanogale* and *Chianshania*, the
pseudictopid *Cartictops* and the astigalid *Astigale* (Missiaen et al., 2012; Wang et al., 2016; López-
Torres and Fostowicz-Frelık, 2018). Their ages are poorly constrained between 66 Ma and about 62.5
Ma, though probably closer to the older end of that range (Wang et al., 2016); López-Torres and
Fostowicz-Frelık (2018: fig. 4) illustrated *Anaptogale* as considerably older than *Wanogale* and
Chianshania, but did not explain why. However, Asher et al. (2019: fig. 4, S5B, supplementary file
S4-optimalTrees.nex) found Anagalida in a “primatomorph grade” when using equally weighted
parsimony or implied weights with K = 24, as afrotherians with K = 2, and on the eutherian stem by
Bayesian inference; at least in the latter two cases, anagalidans cannot calibrate this node.

Thus, I propose 65 Ma as the minimum age of this calibration. As the maximum age, if 66 Ma is
deemed too close to the minimum (although there are presently no proposed crown- or even total-
group supraprimates from the Cretaceous, despite the abundance of ecologically Glires-like and
early-primatomorph-like multituberculates, gondwanatheres and the presence – in India – of
ecologically pan-primate-like adapisoriculids) or to the age of the oldest *Purgatorius*, I can only offer
the maximum of Node 152 (Placentalia, see above).

2.2.21 Node 157: Marsupialia (Didelphimorphia – Paucituberculata + Australidelphia)

The origin of the metatherian crown group Marsupialia was given a minimum age of 61.5 Ma
(Selandian, Paleocene) and a maximum age of 71.2 Ma (Maastrichtian, Late Cretaceous) following
Benton and Donoghue (2007).

Eldridge et al. (2019) reviewed this question, and found that the oldest definitive marsupials are only
54.6 Ma old as far as understood today, dating from shortly after the beginning of the Eocene (56.0
Ma ago: ICSC). Their phylogenetic and geographic position (total-group australidelphians from
Australia) suggests a longer history for Marsupialia, but of the many metatherians known from the
Paleocene of South America and from the Late Cretaceous through Miocene of the northern
continents, none can currently be shown to belong to the crown group (Eldridge et al., 2019). I
therefore propose 55 Ma as a probably overly strict minimum age for this calibration.

Carneiro (2017; not cited by Eldridge et al., 2019, whose paper was accepted for publication on 15
January 2018) found the Maastrichtian tooth taxon *Glasbius* from North America as a
didelphimorphian marsupial in a phylogenetic analysis (greatly expanded from that of Carneiro and
Oliveira, 2017, with the same result, likewise not cited by Eldridge et al., 2019). That analysis,
however, implied an extraordinary number of transoceanic dispersals around the Paleocene and – as
the Gondwanan metatherians are all Cenozoic, but most Laurasian ones are Mesozoic – a surprisingly
high rate of survival of metatherians across the Cretaceous/Paleogene boundary. I must suspect that
correlation, if not downright redundancy, among mammalian tooth characters has been
underestimated once again (e.g. Kangas et al., 2004; Harjunmaa et al., 2014; Celik and Phillips,
2020). Indeed, Cohen et al. (2020b) found *Glasbius* on the metatherian stem; however, although they
discussed this result, they did not cite Carneiro (2017) or Carneiro and Oliveira (2017). Their
analysis also failed to find the two included australidelphian taxa as sister-groups despite the
morphological and molecular consensus (see Eldridge et al., 2019), but the bootstrap support for this was low.

Marsupials, other metatherians and indeed other therians are wholly absent from the Late Cretaceous mammaliform record of South America, which consists instead of gondwanatherian haramiyidans, a few multituberculates and a very wide variety of meridiolestan stem-theriiforms. The ages of the latest Cretaceous terrestrial sites of South America have been difficult to pinpoint, but there is evidence that they cover the entire Campanian and Maastrichtian (Rougier et al., 2008; Lawver et al., 2011; and references therein). The early Paleocene (Danian) sites of South America do contain stem-metatherians (and eutherians; references in Eldridge et al., 2019). If *Glasbius* is not a marsupial, it can be stated with great confidence that Marsupialia originated in South America (Eldridge et al., 2019, and references therein); if *Glasbius* is a marsupial, North America becomes the obvious candidate, and at least two clades of marsupials most likely survived the Cretaceous and immigrated into South America separately. In that case, it is noteworthy that *Glasbius* is the only possible marsupial out of the remarkable diversity of Maastrichtian, Campanian and in some cases yet earlier metatherians known from North America and to a lesser degree central Asia. Rather than the beginning of the Maastrichtian, I propose the beginning of deposition of the Lance and Hell Creek formations, where *Glasbius* has been found, as the hard maximum age for this calibration, which I estimate as 68 Ma – though the single tooth from the Williams Fork Fm that Cohen et al. (2020b) referred to *Glasbius* may be up to 2 Ma older.

2.2.22 Node 160: Batrachia (Urodela – Salientia)

The origin of Batrachia by the divergence of the sister-groups Urodela (the salamander total group now that Caudata [PN] is the crown group) and Salientia (the frog total group) was assigned a minimum age of 249 Ma and no maximum age. This was, as usual, done on the basis of *Triadobatrachus*, one of the two oldest known salientians (the other is *Czatkobatrachus*, which is probably early Olenëkian in age: Evans and Borsuk-Białynicka, 2009); all known definitive urodeles are considerably younger (Schoch et al., 2020). Irisarri et al. (2017) only cited the classic redescription of *Triadobatrachus* from 1989 for this age; more recent stratigraphic work has been reviewed by Ascarrunz et al. (2016: 206–207) and places *Triadobatrachus* either in the late Induan or the very beginning of the Olenëkian. Unfortunately, the precise age of the Induan-Olenëkian boundary remains unclear; the ICSC, indirectly citing a source from 2007, places it at 251.2 Ma without explicit error margins, while Maron et al. (2018) placed it at “~ 249.7 Ma” based on cyclostratigraphic counting away from the Permian-Triassic boundary, which is exceptionally precisely dated radiometrically. I conclude that 249 Ma is a perfectly adequate minimum age for this calibration point.

For a maximum age, I reiterate the suggestion of Marjanović and Laurin (2013b) to use the beginning of Carroll’s Gap (see Marjanović and Laurin, 2013a), i.e. the Early Permian record, which has yielded many tetrapods ecologically comparable to batrachians, but no batrachians, gymnophoniomorphs or albanerpetids so far (e.g. Schoch and Milner, 2014; Glienke, 2015). The abovementioned particularly rich site of Richards Spur, where small terrestrial and possibly amphibious temnospondyls particularly similar to batrachians are very common, has yielded three radiometric ages, of which the oldest is 289.2 ± 0.68 Ma old (Woodhead et al., 2010; MacDougall et al., 2017), so that 290 Ma may be a defensible soft maximum value. (The value of 275 Ma suggested by Marjanović and Laurin, 2007 and 2013b, is outdated.)
2.2.23 Node 169: crown group of Cryptobranchoidea (Hynobiidae – Pancryptobrancha)

The divergence between the salamander clades Pancryptobrancha (the smallest total group containing the crown group Cryptobranchidae: Vasilyan et al., 2013) and Hynobiidae was assigned a minimum age of 145.5 Ma and no maximum age.

The minimum age, intended to correspond to the Jurassic/Cretaceous boundary (~145.0 Ma ago: ICSC), constitutes a snapshot in the convoluted history of dating the Jurassic and Cretaceous Konservat-Lagerstätten of northeastern China. (Another such snapshot, likewise outdated, is the Valanginian age of 139.4 Ma suggested for this node by Marjanović and Laurin, 2007.) None of these sites are now considered Kimmeridgian through Valanginian in age. The oldest ones that have yielded purported caudates [PN] (references in Skutschas, 2015, beginning with Gao and Shubin, 2003, the reference cited for this calibration by Irisarri et al., 2017) belong to the Daohugou Beds, which correlate with the Haifanggou Fm and are Callovian (late Middle Jurassic) or earliest Oxfordian (Late Jurassic) in age (Gao and Shubin, 2012; Jiang et al., 2015; Liang et al., 2019; Rong et al., accepted; and references therein), not Bathonian as often claimed in older literature. These lithostratigraphic units immediately underlie the abovementioned (see node 151) Lanqi and Tiaojishan formations, which have – including in the abovementioned Daxishan or Daxigou site – likewise yielded purported caudates (Gao and Shubin, 2012; Jia and Gao, 2016, 2019).

Two Bathonian sites with supposed crown-group salamanders do exist. One (Kirtlington, UK; Forest Marble Fm) has yielded at least one undescribed vertebra called “Kirtlington salamander B”. The other (Berezovsk, Russia; Itat Fm) has yielded Kiyatriton krasnolutskii Skutschas, 2015; while the association of the isolated bones from different body parts with each other is rather daring, the holotype of this species (like the holotype of the much younger type species, another isolated atlantal centrum) does preserve a clear synapomorphy with Caudata and three similarities to Cryptobranchoidea (Skutschas, 2014, 2015). Both sites have also yielded isolated femora that show one potential synapomorphy with Hynobiidae (Skutschas, 2014, 2015). Potentially, then, K. krasnolutskii could be the oldest known crown-cryptobranchoid and necessitate a minimum age of about 169 Ma (ICSC) for this node. Unfortunately, no bone referred to Kiyatriton has yet been included in a phylogenetic analysis, and that is not likely to happen soon: the two existing morphological datasets for analysis of salamander phylogeny (latest published versions: Wiens et al., 2005; Rong et al., accepted) are very light on atlas characters, which moreover are mostly not accessible in the Chinese Mesozoic specimens (complete, articulated, flattened skeletons with soft-tissue outlines and melanosomes) and not well understood in extant salamanders – like the rest of the skeleton in general and the postcranial skeleton in particular, which neontologists have by and large ignored in favor of molecular, behavioral and soft-tissue characters (see Marjanović and Witzmann, 2015, for some drastic examples).

The latest published phylogenetic analysis of Mesozoic salamanders is that by Rong et al. (accepted). Like the morphological subset of Wiens et al. (2005), it produces – unless a molecular constraint is applied – a clear example of what Wiens et al. (2005: title) called “[o]ntogeny discombobulates phylogeny”: a clade composed of the extant neotenic non-cryptobranchoid salamander clades, i.e. (Amphiumidae (Sirenidae, Proteidae)), as the sister-group of the metamorphic ones. Indeed, its character sample is full of characters that translate straightforwardly to presence vs. absence of a complete metamorphosis (or of a strictly aquatic lifestyle). (That is in addition to simpler, even more objective problems in the character list of the lineage of matrices from Gao and Shubin [2012] through Jia and Gao [2016, 2019] to Rong et al. [accepted]; for example, in all four of these matrices, characters 77 and 78 are duplicates of each other – the haploid number of chromosomes and the diploid number of chromosomes. Instead, molecular data (e.g. Wiens et al., 2005; Irisarri et al., 2017; Vijayakumar et al., 2019: supplementary file Amphibia_New_India_SHL_Dryad.tre; Hime et
al., 2020; and references therein) have consistently shown that Sirenidae lies outside the smallest clade formed by all other extant non-cryptobranchoid salamanders (Salamandroidea), as had long been presumed based on other considerations like the retention of external fertilization in sirenids (Reinhard et al., 2013). Likewise, Amphiumidae and Plethodontidae are consistently sister-groups in phylogenetic analyses of molecular data, rather than Amphiumidae being close to Proteidae or Sirenidae, or Plethodontidae being close to Salamandridae (e.g. Rong, 2018; Rong et al., accepted) or Ambystoma (e.g. Jia and Gao, 2019). This may be particularly relevant because all of the Chinese Mesozoic salamanders are either only known from larval or neotenic individuals (e.g. Chunerpeton: Rong et al., accepted), or are metamorphic but aquatic (Pangerpeton: Wang and Evans, 2006), or combine features of different ontogenetic stages (perhaps indicating a less condensed metamorphosis than in extant metamorphic salamanders: Linglongtriton [Jia and Gao, 2019]; also Chunerpeton [Rong et al., accepted] and, though found outside Cryptobranchioidea, Beiyanerpeton: Gao and Shubin, 2012), or are metamorphic and apparently terrestrial but have not been sufficiently described to be included in a phylogenetic analysis (Laccotrion). All known possible pancryptobranchans except the terminal Paleocene stem-pancryptobranchan Aviturus (Vasilyan and Böhme, 2012; Vasilyan et al., 2013) have been neotenic or underwent only partial metamorphosis (the extant Andrias loses the gills, the gill slits and the coronoid bone, but does not rebuild the palate or grow eyelids); this may attract stem-cryptobranchiods or even some of the more crownward stem-urodèles toward them, even if some (Rong, 2018) or most (Jia and Gao, 2019) or a variable number (Rong et al., accepted) end up in the hynobiid total group rather than in Pancryptobrancha. Unfortunately, no published phylogenetic analysis has ever included extinct Cenozoic pancryptobranchans together with any Mesozoic salamanders; the overlap between the taxon samples of Vasilyan et al. (2013) and Pearson (2016) or Rong et al. (accepted), as well as all references in all three, is restricted to extant species.

I should point out that plesiomorphies unexpected in caudates have been found in some of the Chinese Mesozoic taxa. For example, as pointed out by Marjanović and Laurin (2019: appendix S1: 76) and confirmed by Rong et al. (accepted), free palatines occur in Chunerpeton (Wang et al., 2015; illustrated in Gao and Shubin, 2003, though not indicated or mentioned in the text), Beiyanerpeton (Gao and Shubin, 2012) and Qinglongtriton (Jia and Gao, 2016). This appears to be borne out by the phylogenetic analyses of Rong et al. (accepted).

It does not help that the known fossil record of possible hynobiids outside of the mentioned Lagerstätten only begins in the late Miocene and consists entirely of isolated bones (reviewed by Jia and Gao, 2016: 44–45). One possible exception is the metamorphic Iridotriton, known from a partial but well preserved skeleton from the early Tithonian (Galli et al., 2018; Maidment and Muxworthy, 2019) Brushy Basin Member of the Morrison Fm (Rainbow Park Microsite, Utah), originally argued to be a non-cryptobranchoid caudate (Evans et al., 2005), more recently found in an incompletely resolved position outside the cryptobranchoid crown-group (Pearson, 2016: fig. 4.11; Rong et al., accepted), and equipped with a confusing combination of characters (Evans et al., 2005). Mesozoic pancryptobranchans seem to be represented by a large number of isolated bones from the early Cenomanian through early Campanian of Kazakhstan, Uzbekistan and Tajikistan (Skutschas, 2013) usually grouped as Eoscapherpeton and Horezmia (but considered two species of Eoscapherpeton by Skutschas, 2013). Unfortunately, they have never been included in a phylogenetic analysis outside of Pearson’s (2016) doctoral thesis, but the arguments by Skutschas (2013) for referring at least some of the nonoverlapping material to Pancyptobranchia are not easily dismissed. In a Bayesian analysis of a matrix of morphological data containing extant lissamphibians, the Permian temnospondyls Doleserpeton and Gerobatrachus, the stem-salientian Triadobatrachus, Eoscapherpeton and a number of Cretaceous and Cenozoic scapherpetids but no other caudates,
Pearson (2016: fig. 4.2) recovered *Eoscapherpeton* as a stem-pancryptobranchan, though with a posterior probability of only 52%; adding further Mesozoic salamanders led to the breakdown of this resolution (Pearson, 2016: fig. 4.12).

The oldest wholly undisputed panchrobranchan is “*Cryptobranchus*” *saskatchewanensis*, which has been included in the phylogenetic analysis of Vasilyan et al. (2013). It comes from an exposure of the same Ravenscrag Fm that is mentioned under Node 155, but widely separated in space and age from the one mentioned there: in terms of North American Land Mammal Ages, the site with the oldest “*C.*” *saskatchewanensis* specimens – including the holotype – is Tiffanian-4 in age, thus between 59 and 60 Ma (Krause, 1978; Naylor, 1981; Wang et al., 2016: fig. 2). The material consists of isolated dentary fragments (like the holotype), maxilla fragments and an exoccipital referred by size alone; they all seem to be within the morphological range of known (Cenozoic) panchrobranchans, but not more convincing than the similarly fragmentary *Eoscapherpeton*.

I therefore use the beginning of the Cenomanian (100.5 Ma ago, given without uncertainty in the ICSC), rounded to 101 Ma ago, as the minimum age of this calibration for present purposes. Given the great uncertainty, I generally recommend against using this divergence as a calibration.

(My previous suggestion – Marjanović, 2019 – to use this age as a soft minimum was incoherent, as a reviewer pointed out. A soft minimum would imply that a tail of the probability distribution of the age of this node would extend to younger ages than 101 Ma, so that an age of 100 Ma would be treated as much more probable than an age of, say, 61 Ma. The opposite is the case: both 101 and 60 are much more probable than 100, which is younger than one potential minimum age but far older than the other. If *Eoscapherpeton* is a crown-group panchrobranchid, so that 101 Ma is “the correct” minimum age, 100 is impossible; if it is not a crown-group panchrobranchid, so that 60 is “correct”, 100 is so much older as to be much less probable than, say, 65.)

It is interesting in this respect that calibrating this node with an age around 139.4 Ma (Marjanović and Laurin, 2007) leads to far too high ages for cladogeneses within Hynobiidae and within Cryptobranchidae, even within *Andrias japonicus* judging by paleogeographic criteria (Matsui et al., 2008).

Like Irisarri et al. (2017), I cannot assign a maximum age other than that of Node 160. The oldest known stem-salamanders, except for the Middle or Late Triassic *Triassurus* (Schoch et al., 2020), are Bathonian (Skutschas, 2015, and references therein); the fossil record of total-group salamanders thus exemplifies Carroll’s Gap (Marjanović and Laurin, 2013a).

2.2.24 Node 170: Lalagobatrachia/Bombinanura (total group of Bombinatoroidea/Costata – total group of Pipanura); Node 171: Pipanura (total group of Pipoidea/Xenanura – total group of Acosmanura)

The last common ancestor of Bombinatoroidea or Costata, represented by *Bombina* and *Discoglossus*, and Pipanura, to which all other sampled frogs belong, was assigned a minimum age of 161.2 Ma (Oxfordian, Late Jurassic) and no maximum age. Pipanura itself was assigned a minimum age of 145.5 Ma (end-Jurassic) and no maximum age.

Following the finding that *Eodiscoglossus*, to which a Bathonian (Middle Jurassic) species has been referred that forms the basis for the original minimum age, is probably not a costatan (Báez, 2013; Báez and Gómez, 2016, 2019), the oldest purported lalagobatrachian/bombinanuran is the poorly known *Enneabatrachus* from a site dated to 152.51 ± 0.47 Ma (Trujillo et al., 2015), which has never been included in a phylogenetic analysis. Given, however, the presence of the pipanuran (rhinophrynid or stem-xenanuran: Henrici, 1998; Gómez, 2016; Aranciaga Rolando et al., 2019) *Rhadinosteus* at the same site as *Iridotriton* (the Rainbow Park Microsite, see node 169) and as
further specimens of *Enneabatrachus*, a minimum age of 153 Ma for Pipanura (and Bombinanura by implication), coinciding with the maximum age of the Kimmeridgian/Tithonian boundary (152.1 ± 0.9 Ma: ICSC) and constituting a minimal revision of the age proposed by Marjanović and Laurin (2013b), appears safe. *Enneabatrachus*, if not *Rhadinosteus*, is at present the oldest securely identified anuran (crown-group salientian). Remarkably, no salientians at all have so far been reported from the Yanliao Biota (Haifanggou, Lanqi, Tiaojishan and maybe other formations of Callovian to Oxfordian age in northeastern China), despite its wealth of salamanders (see node 169). The stem-salientian record is sparse (Marjanović and Laurin, 2013b; Stocker et al., 2019); the suggestion of a maximum age for Bombinanura of 170 to 185 Ma by Marjanović and Laurin (2013b) is based on the fairly good stratigraphic fit of stem-salientian phylogeny (Marjanović and Laurin, 2007, 2013a: fig. 5, 2013b; Stocker et al., 2019; and references therein), but given its poor geographic coverage, I prefer to follow Irisarri et al. (2017) in not assigning a maximum age other than that of node 160 for present purposes.

Thus, node 170 cannot currently be calibrated on its own: its minimum age is that of node 171, its maximum age is that of node 160.

2.2.25 Node 178: Pipidae (Pipinomorpha – Xenopodinomorpha)

The origin of Pipidae (the crown group of Pipimorpha) by the divergence of Pipinomorpha (crown group: Pipinae) and Xenopodinomorpha (crown group: Xenopodinae = *Xenopus* sensu lato) was given a minimum age of 86 Ma (Coniacian/Santonian boundary, Late Cretaceous) and no maximum age.

This cladogenesis is particularly difficult to date from the fossil record because molecular data support Hymenochirini as a member of Xenopodinomorpha, though less strongly than most other parts of the tree (Cannatella, 2015: fig. 1, with a bootstrap support of 71% while other branches have 74%, 93% or 100%, and with a Bayesian posterior probability of 99% while three others have 100%; Irisarri et al., 2017, with a jackknife support of 98% instead of the usual 100%; Vijayakumar et al., 2019: supplementary file Amphibia_New_India_SHL_Dryad.tre, with a Shimodaira/Hasegawa-like approximate likelihood ratio of 91% instead of the usual 100%; Hime et al., 2020: supp. fig. 4, with a bootstrap support of 100% but a local posterior measure of branch support of only 50.77% instead of the usual 80%–100%), while morphological data have so far only supported Hymenochirini as a member of Pipimorpha (with a Bayesian posterior probability of 100% in Cannatella, 2015). The only phylogenetic analysis of combined data from pipimorphs yet undertaken (Cannatella, 2015: analysis E1) found almost equal support for both possibilities (bootstrap support of 46% vs. 44%; Bayesian posterior probabilities below 50%), and the winning-sites test could not distinguish between them (p = 1.0: Cannatella, 2015: table 3), although tip-dating with three node calibrations strongly supported the hymenochirins as pipinomorphs at the cost of losing a terminal taxon (*Pachycentrata*, see below; Cannatella, 2015: analysis E6).

Using considerably updated and expanded versions of the morphological dataset Cannatella (2015) had used, Gómez (2016), de Souza Carvalho et al. (2019) and Aranciaga Rolando et al. (2019) all found the Cenomanian *Oumtkoutia* (not included by Cannatella, 2015) to be the oldest known pipid; the Cenomanian ended 93.9 Ma ago (ICSC, no error margin given). However, while the first of these three phylogenetic analyses found it as a stem-xenopodinomorph, the other two – whose matrices are almost identical to each other, and derived from that of the first with rather few changes – found it as a stem-pipinomorph, and the third cautioned that it may well be a stem-pipimorph because, although Rage and Dutheil (2008) described the material in great detail, it consists entirely of isolated braincases, vertebrae and pelves, and there is some character conflict as *Oumtkoutia* combines a
pipinomorph autapomorphy with stem-pipimorph plesiomorphies. The next younger pipid remains

Pachycentrata of end-Coniacian or Santonian age, found as a stem-hymenochirinomorph by Gómez
(2016) but as a stem-pipinomorph by de Souza Carvalho et al. (2019) and Aranciaga Rolando et al.
(2019); while the Coniacian ended 86.3 ± 0.5 Ma ago, the Santonian ended only 83.6 ± 0.2 Ma ago
(ICSC).

Given the presence of Pipa in South America but its extant sister-group Hymenochirini in Africa, and
further the facts that all known pipomorphs are strictly aquatic and that lissamphibians in general
tend to tolerate saltwater poorly, it is tempting to assume that this distribution is due to vicariance and
the cladogenesis that separated Pipa and the hymenochirins should be dated to the loss of contact
between Outer Gondwana (including South America) and Afro-Arabia around the Cenomanian – in
other words, a geological event should be used to calibrate this divergence date. If Pachycentrata is a
stem-hymenochirinomorph, as found by Gómez (2016), this scenario fits the phylogeny beautifully,
and neither any overseas dispersal nor any long ghost lineages need to be assumed, as Gómez (2016)
pointed out. Contrariwise, if Pachycentrata is a stem-pipinomorph, as found by de Souza Carvalho et
al. (2019) and Aranciaga Rolando et al. (2019), the fossil record offers no reason to date the origin of
Pipinae to the Mesozoic, and the most parsimonious hypothesis becomes that Pipa dispersed from
Africa to South America together with the platyrrhine monkeys and the caviomorph rodents, perhaps
on the same natural raft; de Souza Carvalho et al. (2019: 228) have discussed the possibility of a
Paleogene island chain or even landbridge on the Walvis Ridge and the Rio Grande Rise at some
length.

On the phylogenies by de Souza Carvalho et al. (2019) and Aranciaga Rolando et al. (2019), the
xenopodinomorph fossil record begins only in the late Oligocene (briefly reviewed in Blackburn et
al., 2019; see also Gardner and Rage, 2016: 184) rather than the Cenomanian (Gómez, 2016).

As mentioned, the only combined dataset yet brought to bear on this question (Cannatella, 2015:
dataset E), which is also the only dataset containing extinct taxa that supports the hymenochirins as
pipinomorphs, is based on a superseded morphological dataset that lacked Oumtkoutia and
Pachycentrata, not to mention any taxa described since 2007. Given this and the discussion in the
preceding paragraphs, it remains unclear whether Oumtkoutia is a pipid, and so I can only suggest 84
Ma as a safe minimum age for Pipidae.

Any maximum age will have to accommodate the undescribed possible pipid from the Aptian or
Barremian of Cameroon (Gardner and Rage, 2016: 177, 179). However, the only maximum age I feel
able to propose is much older: the end of deposition of the lake sediments of the Newark Supergroup
(Tanner and Lucas, 2015) sometime around the Hettangian/Sinemurian boundary (199.3 ± 0.3 Ma
ago: ICSC). All known pipimorphs, extant or extinct, have been fully aquatic (reviewed in
Cannatella, 2015). The upper formations of the Newark Supergroup, which represent the rift lakes
that preceded the opening of the Central Atlantic Ocean between Africa and North America, have
yielded whole species flocks of semionotid actinopterygians among other parts of a lake fauna and
flora (Olsen, 1988, 2010), and they cover so much space and time that if any aquatic salientians
existed in northwestern Pangea during that time, we should expect to have found them – yet,
salientians are consistently absent from these sediments (Olsen, 1988). The absence of salamanders
(Olsen, 1988) may be explained by geography in that that group may have originated in Asia or at
least northeastern Pangea (where indeed the Middle or Late Triassic Triassurus was found: Schoch et
al., 2020). All other Barremian or earlier xenoanurans, however, have so far been found on the
Iberian microcontinent or in North America, and the stratigraphic fit of their phylogeny (Gómez,
2016; Aranciaga Rolando et al., 2019) is good enough that if pipids older than Oumtkoutia existed,
northwestern Pangea is where we should look for them. I therefore propose 199 Ma as the hard
maximum age for this calibration.
It may be significant that anurans have not so far been found in the lacustrine Bathonian sediments (~167 Ma old) of the Anoual Fm in Morocco (Haddoumi et al., 2015).

2.2.26 Node 187: crown group of Chondrichthyes (Holocephali – Elasmobranchii)

The origin of the chondrichthyan crown group was given a minimum age of 410 Ma (Lochkovian/Pragian boundary, Devonian) and a maximum age of 495 Ma (Paibian, Furongian, Cambrian). Note that the maximum age was not operational because the root node was given a younger maximum age of 462.5 Ma.

By current understanding (Frey et al., 2019), the oldest known crown-chondrichthyan is the stem-elasmobranch *Phoebodus fastigatus* from the middle Givetian. The Givetian, part of the Middle Devonian, began 387.7 ± 0.8 Ma ago and ended 382.7 ± 1.6 Ma ago (ICSC), so I propose 385 Ma as the minimum age of the chondrichthyan crown-group.

Although I cannot assign a maximum age separate from that of the root node (node 100) to this calibration, no less than ninety million years before the minimum age, I note that this is still twenty million years after the 495 Ma assigned, futilely, by Irisarri et al. (2017).

2.2.27 Node 188: crown group of Elasmobranchii (Selachimorpha – Batomorpha)

The origin of the elasmobranch crown group by split into Selachimorpha (sharks) and Batomorpha (rays and skates) was given a minimum age of 190 Ma (Sinemurian/Pliensbachian boundary, Early Jurassic) and no maximum age. (Note that the name Neoselachii is consistently treated in the paleontological literature as if defined by one or more apomorphies, not by tree topology; it probably applies to a clade somewhat larger, and possibly much older, than its crown group.)

Any attempt to date this cladogenesis suffers from the fact that the elasmobranch fossil record consists mostly of ‘the tooth, the whole tooth and nothing but the tooth’ (as has often been said about the Mesozoic mammalian fossil record); scales and the occasional fin spine do occur, but more substantial remains are very rare. The shape of tooth crowns is naturally prone to homoplasy, the number of phylogenetically informative characters it offers is easily overestimated due to correlations between them (e.g. Kangas et al., 2004; Harjunmaa et al., 2014; Celik and Phillips, 2020; see node 157), and histological studies, which are needed to determine the states of certain characters (e.g. Andreev and Cuny, 2012; Cuny et al., 2017), have not been carried out on all potentially interesting tooth taxa.

Consequently, there is not as much interest in phylogeny among specialists of early elasmobranchs than among specialists of early mammals or early dinosaurs. This goes so far as to affect the use of terminology: Andreev and Cuny (2012) mentioned “stem selachimorphs” in the title of their work, implying that they understood Selachimorpha as a clade name, but quietly revealed it to be the name of a paraphyletic assemblage on p. 263 by stating that bundled enameloid is “diagnostic for Neoselachii exclusive of batomorphs, i.e., Selachimorpha”, and their consistent referral of Synechodontiformes (see below) to “Selachimorpha” is not necessarily a referral to the crown group – even though they called bato- and selachomorphs sister-groups in the next sentence.

A safe minimum age of 201 Ma, used here, is provided by the oldest unambiguous crown-group selachimorph, the total-group galeomorph *Agaleus*, dating from the Hettangian, apparently close to its beginning (Stumpf and Kriwet, 2019, especially fig. 5, and references therein), which was the beginning of the Jurassic and happened 201.3 ± 0.2 Ma ago (ICSC); I round this down (stratigraphically up) to avoid breaching the mass extinction event at the Triassic/Jurassic boundary.

The oldest batoid batomorph is only slightly younger, see node 192 below.
However, this may err very far on the side of caution. Indeed, for purposes beyond the present work, I must recommend against using the minimum age of this divergence to calibrate a timetree for at least as long as the histology of Paleozoic “shark” teeth has not been studied in much more detail in a phylogenetic context. As if by typographic error, the oldest widely accepted crown-group elasmobranch is not 190 but about 290 Ma old: the oldest fossils referred to the neoselachian $Synechodus$ are four teeth of Sakmarian age (referred to $S. antiquus$, whose type tooth comes from the following Artinskian age: Ivanov, 2005; Stumpf and Kriwet, 2019), and the Sakmarian ended 290.1 ± 0.26 Ma ago (ICSC). Teeth referred to other species of $Synechodus$ range into the Paleocene; $S. antiquus$ is the only Permian species (Andreev and Cuny, 2012). The histology of $S. antiquus$ remains unknown as of Koot et al. (2014); nonetheless, Cuny et al. (2017: 61) regarded $S. antiquus$ as “[t]he first proven selachimorph”. Rounding up, this would suggest suggest 291 Ma as the minimum age of this calibration.

(My previous suggestion – Marjanović, 2019 – to use that age as a soft minimum was incoherent, as a reviewer pointed out. A soft minimum would imply that a tail of the probability distribution of the age of this node would extend to younger ages than 291 Ma, so that an age of 290 Ma would be treated as much more probable than an age of 201 Ma. The opposite is the case: both 291 and 202 are much more probable than 290, which is younger than one potential minimum age but far older than the other. If $Synechodus antiquus$ is a crown-group elasmobranch, so that 291 Ma is “the correct” minimum age, 290 is impossible; if it is not a crown-group elasmobranch, so that 201 is “correct”, 290 is so much older as to be much less probable than, say, 205 or 210.)

Potential crown-group elasmobranchs older than 291 Ma are known: Andreev and Cuny (2012) and Cuny et al. (2017: 69) suggested that the tooth taxa $Cooleyella$ and $Ginteria$ could be stem-batomorphs. The oldest known $Cooleyella$ specimen dates from around the end of the Tournaisian (Richards et al., 2018), which occurred 346.7 ± 0.4 Ma ago (ICSC); $Ginteria$ appeared in the following Viséan stage. Cuny et al. (2017: 21, 69) further pointed out that $Mcmurdodus$, a tooth taxon that first appeared around the Early/Middle Devonian (Emsian/Eifelian) boundary (Burrow et al., 2008), has occasionally been placed within Selachimorpha, even within Hexanchiformes in the selachimorph crown-group (Burrow et al., 2008, and references therein); they very tentatively suggested a stem-selachimorph position. Boisvert et al. (2019) wondered instead if it is a stem-chondrichthyan.

The absence of any however tentative suggestions of crown-elasmobranchs before $Mcmurdodus$ in the rather rich total-group chondrichthyan microfossil record despite the traditional optimism of paleodontologists may, somewhat ironically, serve as a hard maximum age for this calibration; the ICSC places the Emsian/Eifelian boundary at 393.3 ± 1.2 Ma ago, so I suggest 395 Ma.

2.2.28 Node 192: Batoidea (skates – rays)

The origin of the batomorph crown group, Batoidea, by split into skates (Rajiformes; represented by $Raja$ and $Leucoraja$) and rays (taxonomically unnamed; represented by $Neotrygon$) was assigned a minimum age of 176 Ma (Toarcian, Early Jurassic) and no maximum age. The oldest known batoid is a single rajiform tooth named $Antiquaobatis$ from the late Pliensbachian, specifically the apyrenum subzone of the spinatum ammonite zone (Stumpf and Kriwet, 2019), which is close to the end of the Pliensbachian (Fraguas et al., 2018); that end occurred 182.7 ± 0.7 Ma ago (ICSC), so I propose 184 Ma as the minimum age for this calibration. (The name should of course have been “Antiquobatis”, but must not be amended: ICZN, 1999: Article 32.5.1.)

As a hard maximum age, the Triassic/Jurassic boundary (201.3 ± 0.2 Ma ago: ICSC; rounded to 201 Ma) suggests itself for ecological reasons: plesiomorphically, crown-group rays are fairly large.
marine durophages, a guild formed by the placodont amniotes in the well sampled Middle and Late Triassic.

2.2.29 Node 195: Neopterygii [PN] (Holostomorpha – Pan-Teleostei [PN])

The origin of Neopterygii by cladogenesis into the total groups of Holostei (bowfins – Amia – and gars, represented by Lepisosteus) and Teleostei [PN] (represented by the clupeocephalans Takifugu and Danio) was given a minimum age of 345 Ma and a maximum age of 392 Ma. At present, there are only two candidates for Paleozoic neopterygians. One is Acentrophorus, “a ‘semionotid’-like taxon that desperately requires restudy and formal analysis” (Friedman, 2015: 222; cited as current by Xu, 2019; also Sun et al., 2016) of Wujiaapingian age (between 254.14 ± 0.07 Ma and 259.1 ± 0.5 Ma: ICSC). The “semionotids” are stem-members of Gingelymodi, i.e. closer to Lepisosteus than to Amia (Giles et al., 2017: ext. data fig. 6–8; López-Arbarello and Sferco, 2018; Xu, 2019), but a generic “‘semionotid’-like taxon” could easily lie outside Neopterygii. In their in-depth study of neopterygian phylogeny, López-Arbarello and Sferco (2018) did not include Acentrophorus or even mention it in the text.

Sun et al. (2016) cited Archaeolepidotus, supposedly closely related to Watsonulus (see below), together with undescribed specimens as a Changxingian neopterygian (which was originally thought to be Early Triassic, but probably is not according to references in Ronchi et al., 2018). The Changxingian is the stage between the Wujiaapingian and the Permian/Triassic boundary (251.90 ± 0.024 Ma ago: ICSC). Archaeolepidotus does not appear to be well understood; Friedman (2015), Giles et al. (2017), López-Arbarello and Sferco (2018) and Xu (2019) did not mention it, let alone include it in a phylogenetic analysis, and Google Scholar only finds 17 occurrences in the entire literature.

The oldest certain member of Neopterygii is Watsonulus, a stem-halecomorph or stem-holostomorph (Friedman, 2015; Giles et al., 2017: ext. data fig. 6–8; López-Arbarello and Sferco, 2018; Xu, 2019) which comes from the Middle Sakamena Group of Madagascar (López-Arbarello and Sferco, 2018) just like Triadobatrachus (see node 160) and should therefore be around 249 Ma old. I therefore propose 249 Ma as the minimum age of Neopterygii.

Assuming from the almost phylogeny-free quantification of the Permo-Triassic fossil record of osteichthyans by Romano et al. (2014b) that at least the Asselian record of pan-actinopterygians [PN] is reasonably good, I suggest a soft maximum age for Neopterygii immediately before it, i.e. at the Carboniferous/Permian boundary (298.9 ± 0.15 Ma: ICSC), rounded to 299 Ma, which conveniently places it 50 Ma before the minimum age.

Table 1: The first four columns of Irisarri et al. (2017: supplementary table 8 and supplementary figure 19), here expanded to five, followed by the ages used here for the same calibrations and the differences (Δ). Boldface is a rough indicator of my confidence. Hard bounds are marked with an asterisk. Dates in parentheses were not specified in the analysis; the node was constrained in practice by the given constraint on a preceding (for maximum ages) or following node (for minimum ages) elsewhere in this table – see Fig. 1 for which nodes precede each other. The two dates in quotation marks were specified by Irisarri et al. (2017), but had no effect because they were in practice constrained by the dates specified for other nodes. Dashes in the second and third column separate the two branches stemming from the node in question. Depending on the node, see the text or the Supplementary Material for discussion and references.
How to calibrate gnathostome timetrees

Node number in Irisarri et al. (2017)	Description of cladogenesis	The sampled terminal taxa that stem from this node are:	Minimum age in Irisarri et al. (2017)	Maximum age in Irisarri et al. (2017)	Minimum age used here	Maximum age used here	Δ minimum ages	Δ maximum ages
100	Root node = Gnathostomata: total group including Chondrichthyes – Pan-Osteichthyes	entire sample	421.75	462.5	465*	475	+43.25	+12.5
102	Osteichthyes: Pan-Actinopterygii – Sarcopterygii	entire sample except Chondrichthyes	416	439	(420*)	(475)	+4	+36
104	Dipnomorpha – Tetrapodomorpha	Dipnoi – Tetrapoda	408	419	420*	(475)	+12	+56
105	Tetrapoda: Amphibia – Pan-Amniota	Lissamphibia – Amniota	330.4	350.1	335* (or 350*)	365	+4.6 (or +19.6)	+14.9
106	Amniota: Pan-Mammalia – Sauropsida	Mammalia – Reptilia	288	338	318*	(365)	+30	+27
107	Reptilia: Pan-Lepidosauria – total group of Archelosauria	Lepidosauria – Testudines, Crocodylia, Aves	252	257	(263*)	(365)	+11	+108
108	Archelosauria: Pan-Testudines – Pan-Archosauria	Testudines – Crocodylia, Aves	(243)	(257)	263*	(365)	+20	+108
109	Archosauria: Crocodylotarsi – Pan-Aves	Crocodylia – Aves	243	251	248*	252	+5	+1
How to calibrate gnathostome timetrees

Taxonomic Group	Clades	Time Estimate	Bootstrap Support	Branch Length	Time Estimate	Bootstrap Support		
111	Alligatoridae: Alligatorinae – Caimaninae	Alligator – Caiman	66	65*	200*	−1	+125	
113	Neognathae: Galloanserae – Neoaves	Anas, Gallus, Meleagris – Taeniopygia	66	86.5	71	115	+5	+28.5
117	Testudines: Pan-Pleurodira – Pan-Cryptodira	Phrynos, Pelusios – all other sampled turtles	210	(257)	158*	185	−52	−72
124	Pleurodira: Pan-Chelidae – Pan-Pelomedusoides	Phrynops – Pelusios	25	(257)	125*	(185)	+100	−122
125	Lepidosauria: Rhynchocephalia – Pan-Squamata	Sphenodon – Squamata	238	(257)	244*	290	+6	+33
129	Toxicofera: Pan-Serpentes – Anguimorpha + Pan-Iguania	snakes – their sister-group	“148” (165)	(257)	130*	(290)	“−18” (−35)	+33
131	Iguania: Pan-Acropoda – Pan-Iguanidae	Pogona, Chamaeleo – Iguana, Basiliscus, Sceloporus, Anolis	165	230	72*	(290)	−93	+60
132	Iguanidae: Iguaninae + Corytophanidae – Phrynosomatidae + Dactyloidae	Iguana, Basiliscus – Sceloporus, Anolis	125	180	53*	(290)	−72	+110
150	Mammalia (Pan-Monotremata – Theriimorpha)	Ornithorhynchus – Theria	162.5	191.4	179*	233*	+16.5	+41.6
How to calibrate gnathostome timetrees

Page	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Group 9
151	Theria: Metatheria – Eutheria	Marsupialia – Placentalia	124.6	138.4	**126**	160	+1.4	+21.6	
152	Placentalia: Atlantogenata – Boreo(eu)theria	*Loxodonta, Dasyurus – Felis, Canis, Homo, Mus*	95.3	113	*(66)*	**72**	−29.3	−41	
153	Boreo(eu)theria: Laurasiatheria – Euarchontoglires/Supraprimates	*Felis, Canis – Homo, Mus*	(61.5)	(113)	**66**	*(72)*	+4.5	−41	
154	Carnivora: Pan-Feliformia – Pan-Caniformia	*Felis – Canis*	42.8	63.8	**38**	**56**	−4.8	−7.8	
155	Euarchontoglires/Supraprimates: Gliriformes – Primatomorpha	*Mus – Homo*	61.5	100.5	**65**	*(72)*	+3.5	−28.5	
157	Marsupialia: Didelphimorphia – Paucituberculata + Australidelphia	*Monodelphis – Macropus, Sarcophilus*	61.5	71.2	**55**	**68**	−6.5	−3.2	
160	Batrachia: Urodela – Salientia	Caudata – Anura	249	(350.1)	**249**	**290**	0	−60.1	
169	crown group of Cryptobranchoidea: Hynobiidae – Pancryptobrancha	*Hynobius – Andrias*	145.5	(350.1)	**101**	*(290)*	−44.5	−60.1	
170	Lalagobatrachia/Bombinanura: total group of Bombinatoroidea/Costata – total group of Pipanura	*Bombina, Discoglossus* – all other sampled frogs	161.2	(350.1)	*(153)*	*(290)*	−8.2	−60.1	
171	Pipanura: total group of Pipioidea/Xenoanura – total group of *Pipa, Hymenochirus, Silurana* – their sister-	145.5	(350.1)	**153**	*(290)*	+7.5	−60.1		

This is a provisional file, not the final typeset article
How to calibrate gnathostome timetrees

178	Acosmanura group	Pipidae: Pipinomorpha – Xenopodinomorpha	Pipa – Silurana, Hymenochirus	86	(350.1)	84*	199*	−2	−151.1
187	crown group of Chondrichthyes (Holocephali – Elasmobranchii)	Callorhinchus – Elasmobranchii	“495” (462.5)	385*	(475)	−25	“−20” (+12.5)		
188	crown group of Elasmobranchii (Selachimorpha – Batomorpha)	sharks – rays	190	(462.5)	201*	395*	+11	−67.5	
192	Batoidea (Rajiformes – rays)	Neotrygon – Raja, Leucoraja	176	(462.5)	184*	201*	+8	−261.5	
195	Neopterygii (Holosteuomorpha – Pan-Teleostei)	Lepisosteus, Amia – Takifugu, Danio	345	392	249*	299	−96	−93	
2.3 Analysis methods

Johan Renaudie (Museum für Naturkunde, Berlin) kindly performed the divergence dating using the tree (topology and uncalibrated branch lengths), the model of evolution (CAT-GTR+Γ) and clock model (lognormal autocorrelated relaxed) inferred by Irisarri et al. (2017) and the data (“nuclear test dataset”: the variable sites of the 14,352 most complete amino acid positions of their “NoDP” dataset), but the calibrations presented above (all at once, not different subsets).

The intent was to also use the software Irisarri et al. (2017) had used (PhyloBayes, though the latest version, 4.1c: Lartillot, 2015). However, PhyloBayes is unable to treat some bounds as hard and others as soft in the same analysis; it can only treat all as soft, as Irisarri et al. (2017) had done, or all as hard. Consequently, we ran our analysis with all bounds treated as hard in order to account for the hard minima (discussed above: Materials and methods: Hard and soft minima and maxima).

The launch code for our PhyloBayes analysis is:
```
./pb -d ali14352.phy -T final_tree.tre -cal dm4.txt -r outgroups -bd -cat -gtr -ln -dc dm4hardDC.1 &
./pb -d ali14352.phy -T final_tree.tre -cal dm4.txt -r outgroups -bd -cat -gtr -ln -dc dm4hardDC.2
```

Irisarri et al. (2017) ran 100 gene-jackknifed analyses for each of their two sets of calibrations. Lacking the necessary computational resources, we only ran two analyses of the full dataset, without jackknifing. The results (Table 2, Fig. 1) are therefore less reliable, given the data, than those of Irisarri et al. (2017); but they fully suffice as a proof of concept to show that improved calibrations lead to many different inferred node ages.

Above I describe phylogenetic uncertainty leading to two different minimum ages for Tetrapoda (node 105), 335 Ma and “roughly” 350 Ma. Using the younger age results in a younger bound of 359 Ma on the 95% credibility interval of this node (mean age: 363 Ma, older bound: 365 Ma, i.e. the maximum age of the calibration: Table 2); therefore, I do not consider it necessary to set the minimum age of this node to 350 Ma and run a second analysis.

![Figure 1: Average timetree resulting from application of the calibrations described here. As in Table 2 and in Irisarri et al. (2017: fig. 3), the bars on the nodes are the superimposed 95% credibility intervals from the two runs in PhyloBayes. The calibrations are shown as red arrows horizontally in line with the nodes they apply to; note that the arrow that is almost aligned with the branch of Lalagobatrachia and the one that is almost aligned with the terminal branch for Silurana are the maximum and minimum ages of node 178 (Pipidae), the one on Iguana to node 131 (Iguania), and the one on Pelodiscus to node 117 (Testudines). The abbreviated genus names are spelled out as clade names on their common branches; where only one species per genus is sampled, see Irisarri et al. (2017) for full species names. To the extent possible, clade names with minimum-clade (node-based) definitions are placed close to those nodes, while names with maximum-clade (branch-based) definitions are shown close to the origin of that branch (i.e. the preceding node if sampled) and undefined names stay in the middle. Period/epoch symbols from oldest to youngest: Cambrian (cut off at 500 Ma), Ordovician, Silurian, Devonian, Carboniferous, Permian, Triassic, Jurassic, Early Cretaceous, Late Cretaceous, Paleogene, Neogene including Quaternary (which comprises the last 2.58 Ma and is not shown separately). Timescale (including colors) from the International Chronostratigraphic Chart, version 2020/03 (Cohen et al., 2020). Node numbers, also used in the text and the Tables, from Irisarri et al. (2017).](image-url)
Having evaluated (in the preceding section) the inherent uncertainty of each calibration before the analyses unlike Irisarri et al. (2017), I did not cross-validate the calibrations. In the words of Pardo et al. (2020), “a priori assessment of the quality of a priori node calibrations must retain logical primacy in assessing the quality of a molecular clock”. ‘Reductio ad absurdum’ cases aside (e.g. van Tuinen and Hedges, 2004: 46–47; Waggoner and Collins, 2004; Matsui et al., 2008; Phillips et al., 2009; Ruane et al., 2010), apparent inconsistencies between calibrations should be seen as indicating not that the calibrations are wrong, but that the rate of evolution varies substantially across the tree, as already expected from other considerations (e.g. Berv and Field, 2017).

3 Results and discussion

3.1 Bibliometry

Irisarri et al. (2017: supp. table 8) cited 15 works as sources for their calibrations, six of them compilations made by paleontologists to help molecular biologists calibrate timetrees.

Not counting Irisarri et al. (2017) and the ICSC (which has been updated at least once a year since 2008), I cite 235 references to discuss minimum ages (mostly for the age or phylogenetic position of a potentially calibrating specimen), 26 to discuss maximum ages (mostly to argue if observed absence of a clade is reliable), and 15 for both purposes. Of the total of 276, one each dates to 1964, 1978, 1981, 1988 and 1991, 2 each to 1994, 1995 and 1996, 1 each to 1997 and 1998, 3 to 1999, 1 to 2000, 2 to 2001, 4 to 2002, 1 to 2003, 0 to 2004, 7 to 2005, 4 to 2006, 6 each to 2007 and 2008, 4 to 2009, 5 to 2010, 8 to 2011, 9 to 2012, 15 to 2013, 12 to 2014, 23 to 2015, 24 to 2016, 23 to 2017, 28 to 2018, 50 to 2019, 27 to 2020, and one was published as an accepted manuscript in 2020 and may come out this or next year in final form. (Whenever applicable, these are the years of actual publication, i.e. public availability of the layouted and proofread work, not the year of intended publication which can be a year earlier, and not the year of print which is very often one or even two years later.) Only three of these are among the 14 used by Irisarri et al. (2017), and none of them are among the six compilations they cited.

Irisarri et al. submitted their manuscript on 16 September 2016. Assuming that half of the publications cited here that were published in 2016 came out too late to be used by Irisarri et al. (2017), the total proportion of the works cited here that would have been useful to them for calibrating their timetree but were not available amounts to 140 of 276, or 50.7%. Similarly, 249 of the works cited here, or 90.2%, were published since mid-2005. I conclude from this extreme “pull of the recent” that knowledge in this area has an extremely short half-life; calibration dates, therefore, cannot be taken from published compilations (including the present work) or other secondary sources, but must be checked every time anew against the current primary literature. This is time-consuming even in the digital age, much more so than I expected, and requires reading more works for context than actually end up cited (for some nodes three times as many); but there is no shortcut.

3.2 Changes in the calibration dates

Of the 30 minimum ages assigned by Irisarri et al. (2017), I find only one to be accurate by the current state of knowledge, that of Batrachia (node 160) anchored by good old Triadobatrachus (see Ascarrunz et al., 2016, for the latest and most thorough redescription and stratigraphy, and Daza et al., 2020, for the latest and largest phylogenetic analysis).

The minimum age of Pleurodira (node 124), which has long been known to be 100 Ma older than Irisarri et al. (2017) set it, turns out to be copied from the calibration of a much smaller clade in Noonan and Chippindale (2006), a secondary source whose minimum age for Pleurodira was actually
better by a factor of four. The minimum age of Iguanidae (node 132) turned out to be miscopied, most likely with a typographic error, from Noonan and Chippindale (2006), who had it as 25 Ma instead of the 125 Ma of Irisarri et al. (2017) – though 25 Ma is not tenable either, but too young by at least 28 Ma. In four more cases (Osteichthyes: node 102; Reptilia: node 107; Placentalia: node 152; Lalagobatrachia/Bombinanura: node 170) I find myself unable to assign any minimum age specific to that node. In two of these cases (Reptilia and Placentalia) the specimen previously thought to constrain that node actually constrains a less inclusive clade (Archelosauria, node 108; Boreo(eu)theria, node 153) that was sampled but not constrained by Irisarri et al. (2017); I have used these minimum ages to constrain the latter two nodes.

As might be expected, 15 of the minimum ages are too young, by margins ranging from 1.4 Ma to 100 Ma or, ignoring Pleurodira, 43.25 Ma (Table 1: last two columns). Unsurprisingly, this also holds for the two nodes that Irisarri et al. (2017) did not calibrate but I did: both of them were constrained by calibrated nodes whose minimum ages were too young for these two nodes. In eight cases, including Boreo(eu)theria (node 153), the reason is the expected one, the more or less recent discovery of previously unknown fossils (mostly before 2016); the magnitude of the resulting changes ranges from 1.4 Ma to 11 Ma. In four more cases, including the one used by Irisarri et al. (2017) to date Osteichthyes (node 102) but by me to date the subsequent split of Dipnomorpha and Tetrapodomorpha (node 104), the dating of the oldest known specimens has improved by 4 to 16.5 Ma. The specimen used to constrain Tetrapoda (node 105) is probably not a tetrapod, but the oldest known certain tetrapods are now nonetheless dated as roughly 5 Ma older than the minimum assigned by Irisarri et al. (2017); depending on the phylogenetic hypothesis, isolated bones or (!) footprints roughly 20 Ma older that were published in 2015 could represent the oldest tetrapods instead. The remaining six cases, including Reptilia (node 107) and Archelosauria (node 108) by implication, are caused by phylogenetic reassignments of previously known specimens (mostly before 2016) and have effects ranging from 4 Ma to 43.25 Ma.

The minimum ages of the remaining 13 nodes (including, accidentally, Iguanidae) are too old; the margins vary from 1 Ma to 96 Ma. This includes the case of Toxicofera (node 129), whose minimum age of 148 Ma assigned by Irisarri et al. (2017) was not operational as that node was in fact constrained by the minimum age of its constituent clade Iguania (node 131), 165 Ma; both of these ages are too old – I find minimum ages of 130 Ma for Toxicofera and 72 Ma for Iguania. Interestingly, none of the changes to minimum ages are due to more precise dating. There is one case of the opposite: I have changed the minimum age of Pipidae (node 178) from 86 to 84 Ma because the oldest known safely identified pipid, *Pachycentrata*, may be somewhat older than the Coniacian/Santonian boundary (86.3 ± 0.5 Ma ago: ICSC), but also somewhat younger, so the Santonian/Campanian boundary (83.6 ± 0.2 Ma ago: ICSC) is a safer approximation. All others are due to more or less recent findings that the oldest supposed members of the clades in question cannot, or at least cannot be confidently, assigned to these clades.

I agree with the reasoning for one of the maximum ages used by Irisarri et al. (2017), that for Archosaurus (node 109), though its numeric value had to be increased by 1 Ma due to improved dating of the Permian/Triassic boundary since the source Irisarri et al. (2017) used was published in 2005.

I find myself unable to assign a separate maximum age to seven of the 18 remaining nodes that Irisarri et al. (2017) used maximum ages for; these nodes are only constrained by the maximum ages of more inclusive clades in my reanalysis. This includes the case of Chondrichthyes (node 187), whose maximum age of 495 Ma assigned by Irisarri et al. (2017) was not operational as that node
was in fact constrained by the maximum age of the root node, 462.5 Ma; I can likewise constrain it only by the maximum age of the root, 475 Ma. In one of these cases the new implied maximum age is younger (by 28.5 Ma) than the previously explicit maximum; in the remainder it is older by 27 Ma to 110 Ma.

Of the remaining 11 maximum ages, six were too young by 12.5 Ma to 125 Ma. In one case (the root: Gnathostomata, node 100), the old maximum is younger than the new minimum, and in two more cases (Mammalia and Theria), phylogenetic (or, in the case of Theria, possibly stratigraphic) uncertainty is the reason; the remaining three merely show greater caution on my part in interpreting absence of evidence as evidence of absence.

The remaining five I consider too old by 3.2 Ma to 93 Ma; these show greater confidence on my part in interpreting absence of evidence as evidence of absence in well-sampled parts of the fossil record. The same holds, naturally, for the six nodes that lacked maximum ages in Irisarri et al. (2017) but that I propose maximum ages for; one of these new ages, however (for Lepidosauria, node 125), is older than the previously implied maximum age provided by the next more inclusive clade, and that by 33 Ma. The other five are 60.1 Ma to no less than 261.5 Ma younger than their previously implied equivalents.

3.3 Changes in the divergence dates

Reanalyzing the data of Irisarri et al. (2017) with their methods, but using the calibration ages proposed and discussed above and treating them all as hard bounds in PhyloBayes instead of treating all as soft (see Materials and methods: Hard and soft minima and maxima, Analysis methods), generally leads to implausibly old ages and large credibility intervals for the unconstrained nodes (Fig. 1, Table 2): e.g., the last common ancestor of chickens and turkeys (node 115) is placed around the Cretaceous/Paleogene boundary, with a 95% credibility interval that spans half of each period, and the credibility interval of the bird crown-group (Aves, node 112) spans most of the Jurassic, with a younger bound less than 10 Ma younger than the age of the distant stem-avialan *Archaeopteryx* (just over 150 Ma), while the oldest known crown-birds are less than half as old, about 71 Ma (see Materials and methods: Calibrations: Node 113).

There are exceptions, however. Most notably, the squamate radiation (nodes 126–129) is constrained only between the origin of Lepidosauria (see above under node 125: 244–290 Ma ago) and the origin of Toxicofera (see above under node 129: minimum age 130 Ma), yet it is bunched up close to the latter date, unlike in Irisarri et al. (2017) where it was more spread out and generally older even though both calibrations were younger. For example, the unconstrained origin of Squamata (node 126) was found to have a mean age of 199 Ma by Irisarri et al. (2017), but 153 Ma here (Table 2). The crucial difference may be that Lepidosauria did not have a maximum age, but this does not explain the very short internodes from Squamata to Iguania in my results. I should point out that the oldest likely squamate remains are close to 170 Ma old (reviewed in Panciroli et al., 2020).

In part, these implausible ages may be due to effects of body size (Berv and Field, 2017) or loosely related factors like generation length: most sampled squamates are small, while the two sampled palaeognath birds (node 116, with an evidently spurious mean age of 163 Ma) are much larger than all sampled neognaths. This may be supported by the body size increase in snakes: their oldest sampled node (Macrostoma or Afrophidia: node 136) is placed around the Early/Late Cretaceous boundary, followed by the origin of Endoglyptodonta (node 138) in the Late Cretaceous, while any Late Cretaceous caenophidians (a clade containing Endoglyptodonta) remain unknown, all potential Cretaceous total-group macrostomates are beset with phylogenetic uncertainty, and considerably younger dates were found by Burbrink et al. (2020) despite the use of a mid-Cretaceous potential
macrostomate as a minimum-age-only calibration. Similarly, the fact that the entire credibility
interval for Supraprimates/Euarchontoglires (node 155) was younger than its calibrated minimum age
when all bounds were treated as soft in Marjanović (2019) may be due to the fact that one of the two
sampled supraprimates is Homo, the second-largest sampled mammal and the one with the second-
longest generation span.

Whelan and Halanych (2016) found that the CAT-GTR model (at least as implemented in
PhyloBayes) is prone to inferring inaccurate branch lengths, especially in large datasets; this may
turn out to be another cause of the results described above. The omission of the constant characters
from the dataset, intended to speed up calculations (Irisarri et al., 2017), may have exacerbated this
problem by leading to inaccurate model parameters (Whelan and Halanych, 2016).

It is, however, noteworthy that all terminal branches inferred here are longer, in terms of time, than in
Irisarri et al. (2017).

Naturally, the changes to the calibration dates have changed the inferred ages of many calibrated
nodes and the sizes of their credibility intervals. For instance, Irisarri et al. (2017) inferred a mean
age of 207 Ma for Batoidea, with a 90-Ma-long 95% credibility interval that stretched from 172 Ma
ago to 262 Ma ago (node 192; Table 2); that node was calibrated with a soft minimum age set to 176
Ma, but not only was no maximum age set, no other node between there and the root node
(Gnathostomata, node 100) had a maximum age either, so that effectively the maximum age for
Batoidea was that of the root node, 462.5 Ma. Following the discovery of new fossils, I have
increased the hard minimum age to 184 Ma; however, out of ecological considerations, I have also
introduced a hard maximum age of 201 Ma, younger than the previously inferred mean age.

Naturally, the new inferred mean age is also younger: 193 Ma, with a 95% credibility interval that
spans the time between the calibration dates (Table 2).

Somewhat similarly, I have increased the minimum age of Mammalia (node 150) from 162.5 to 179
Ma following improved dating of the oldest certain mammals, increased its maximum age from 191.4
Ma to 233 Ma to account for phylogenetic uncertainty and the limits of the Norian (middle Late
Triassic) fossil record, and treated both bounds as hard. While Irisarri et al. (2017) found a mean age
of 165 Ma with a credibility interval from 161 Ma to 172 Ma, straddling the minimum age but not
reaching the maximum, I find an age range that reaches the new maximum but stays far away from
the new minimum (mean: 229 Ma, 95% credibility interval from 217 Ma to 233 Ma). While the next
less inclusive calibrated node (151: Theria) has an increased maximum but a barely changed
minimum age, both bounds of the next more inclusive calibrated node (106: Amniota) have increased
by about 30 Ma, apparently pulling the inferred age of Mammalia with them.

3.4 Pitfalls in interpreting the descriptive paleontological literature

It is widely thought that paleontologists are particularly eager to publish their specimens as the oldest
known record of some taxon. Indeed it happens that five different species of different ages are
published as the oldest record of the same taxon within ten years. In such cases, finding a specimen
that can establish a minimum age for that taxon can be as simple as finding the latest publication that
makes such a claim; and that can be as simple as a Google Scholar search restricted to the last few
years. But there are harder cases; I will present two.

Above (Materials and methods: Calibrations: Node 132 – Iguanidae) I argue for using the age of
Kopidosaurus, about 53 million years, as the minimum age of Iguanidae. Kopidosaurus was named
and described from a largely complete skull by Scarpetta (2020) in a publication where the words
“oldest” and “older” do not occur at all, and “first” and “ancient” only occur in other contexts – even
though Scarpetta (2019) had just published on calibration dates for molecular divergence date
How to calibrate gnathostome timetrees

analyses. The reason may be that he did not think *Kopidosaurus* was the oldest iguanid; one of the two matrices he used for phylogenetic analyses contained the 56-Ma-old *Suzanniwana*, and his analyses found it as an iguanid (Scarpetta, 2020: supp. inf.). Moreover, he was most likely aware that the publication that named and described *Suzanniwana* (Smith, 2009) also named and described *Anolbanolis* from the same site and age and argued that both of them – known from large numbers of isolated skull bones – were iguanids. Yet, *Anolbanolis* has never, to the best of my knowledge, been included in any phylogenetic analysis; and Conrad (2015), not mentioning *Anolbanolis* and not cited by Scarpetta (2020), had found the phylogenetic position of *Suzanniwana* difficult to resolve in the analysis of a dataset that included a much larger sample of early pan-iguanians.

Smith (2009: 312–313), incidentally, did not advertise *Suzanniwana* and *Anolbanolis* as the oldest iguanids either, accepting instead at least some of the even older jaw fragments that had been described as iguanid as “surely iguanid”, explicitly so for the “highly streamworn” over-62-Ma-old *Swainiguanoides* which had been described as “the oldest North American iguanid” (Sullivan, 1982).

All of that and more was considered too uncertain by DeMar et al. (2017: 4, file S1: 26–28), who pointed out not only how fragmentary that material was (and that some of the Cretaceous specimens more likely belong to certain other squamate clades), but also that the presence of exclusive synapomorphies with Iguanidae (if confirmed) does not mean the specimens are actually inside that crown clade – they could be on its stem. As the “oldest definitive” iguanids, DeMar et al. (2017: 4) accepted *Anolbanolis*, followed by the uncontroversial *Afairiguana* which is younger than *Kopidosaurus*; curiously, they did not mention *Suzanniwana* at all.

The conclusion that the status of *Suzanniwana* and *Anolbanolis* (let alone *Swainiguanoides* and the like) is too uncertain and that *Kopidosaurus*, nowhere advertised for that purpose, should be used to set the minimum age for node 132 was accessible to me as an outsider to the fossil record of iguanians (or indeed squamates in general), but it took me several days of searching and reading papers and their supplementary information.

It took me much less effort to find that, under some phylogenetic hypotheses, the oldest known tetrapod (Materials and methods: Calibrations: Node 105 – Tetrapoda) is *Casineria*, a specimen I have studied in person and published on (Marjanović and Laurin, 2019); yet, the idea had never occurred to me or apparently anyone else in the field, even though its possibility should have been evident since 2017 and even though the phylogenetic hypotheses in question are by no means outlandish – one of them is even majoritarian.

In short, the paleontological literature is not optimized for divergence dating; the questions of which is the oldest known member of a group or when exactly that group evolved often take a back seat to understanding the anatomy, biomechanics, ecology, extinction, phylogeny or generally speaking evolution of that group in the minds of paleontologists – paleobiologists –, and this is reflected in the literature. Mining it for bounds on divergence dates is still possible, as I hope to have shown, but also rather exhausting.

4 Summary and conclusions

Irisarri et al. (2017) published the largest vertebrate timetree to date, calibrated with 30 minimum and 19 maximum ages for selected nodes (although one of each was not operational because the calibrations of other nodes set tighter constraints). With just three years of hindsight, only one of these dates stands up to scrutiny. Of the remaining 29 minimum ages, two had to be removed altogether, two had to be moved to previously uncalibrated nodes (with modifications to their numeric values), 15 were 4 Ma to 100 Ma too young, and 13 were 1 Ma to 96 Ma too old. Of the 19
maximum ages, seven had to be canceled altogether, while six were too young by 13 to 125 Ma and five too old by 3 to 93 Ma.

One of the minimum ages was taken from the wrong node in the cited secondary source, an earlier divergence-date analysis of molecular data (Noonan and Chippindale, 2006); another from the same source had a hundred million years added without explanation, most likely by typographic error.

Only six of the 30 calibrated nodes were calibrated from primary literature. The calibration dates for seven nodes were taken from the compilation by Benton and Donoghue (2007), several from other compendia, four from Noonan and Chippindale (2006) who did not succeed in presenting the contemporary state of knowledge either.

Using software that was only able to treat all bounds as hard or all as soft (meaning that 2.5% or 5% of the credibility interval of each inferred node age must extend beyond the bound – younger than the minimum and older than the maximum age, where present), Irisarri et al. (2017) opted to treat all bounds as soft. For all minimum ages except one, this decision is not reproducible; it is even arguable for some of the maxima. This is not a purely theoretical problem; even the inferred mean ages of some calibrated nodes were younger than their minima in Marjanović (2019).

Redating of the tree of Irisarri et al. (2017) with the presumably improved calibrations results in many changes to the mean ages of nodes and to the sizes of their credibility intervals; not all of these changes are easily predictable.

Of the 276 references I have used to improve the calibrations, 50 were published in 2019, half of the total were published after mid-2016 (when Irisarri et al. seem to have completed the work on their manuscript), and 90% were published after mid-2005. Paleontology is a fast-moving field; secondary sources cannot keep up with the half-life of knowledge. A continually updated online compendium of calibration dates would be very useful, but the only attempt to create one (Ksepka et al., 2015) is no longer funded, has not been updated since early 2018, and had limited coverage. For the time being, each new attempt to calibrate node or tip ages will have to involve finding and studying the recent paleontological and chronostratigraphic literature on the taxa, strata and sites in question; although the Internet has made this orders of magnitude easier, it remains labor-intensive, in part because the oldest record of a clade is often not published as such, but has to be inferred from comparing several sources on phylogeny, chronostratigraphy and sometimes taphonomy or even phylogenetics, as I illustrate here.

I urge that such work be undertaken and sufficiently funded. Accurate and precise timetrees remain an essential component of our understanding of, for example, the model organisms that are used in biomedical research: how much they can tell us about ourselves depends on how much evolution has happened along both branches since our last common ancestor, and that is in part a function of time.

5 Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

6 Author Contributions

D. M. designed the experiments, gathered the data, interpreted the results, prepared the figure and the tables and wrote the paper.
Table 2: The ages found in PhyloBayes by Irisarri et al. (2017: supplementary table 9: last three columns) when all calibrations were used (all bounds treated as soft, mean ages averaged over 100 gene-jackknifed runs, extremes absolute over all runs), and the results obtained here in PhyloBayes with the updated calibrations (all bounds treated as hard, mean ages averaged over two runs with the full dataset, extremes absolute over both runs). All calibration dates are shown in Table 1. All ages are rounded to whole Ma. CI = credibility interval.

Node number	Irisarri et al. (2017)	Present results				
	Mean age	younger end of 95% CI	older end of 95% CI	Mean age	younger end of 95% CI	older end of 95% CI
100	460	452	465	472	467	475
101	393	383	403	390	363	415
102	437	431	440	462	453	471
103	426	420	431	435	427	445
104	412	408	418	423	420	4230
105	341	331	350	363	359	365
106	289	283	296	320	318	324
107	257	256	257	301	294	307
108	254	253	256	290	282	298
109	243	242	245	250	248	252
110	120	90	162	162	129	185
111	71	66	75	160	126	182
112	137	111	173	167	141	186
113	83	70	87	105	88	115
114	63	47	73	90	70	102
How to calibrate gnathostome timetrees

115	16	8	25	66	52	80
116	92	66	130	163	136	183
117	224	211	234	181	175	185
118	206	184	221	167	148	178
119	168	133	188	142	112	157
120	155	117	176	140	109	155
121	127	90	150	135	104	151
122	95	63	124	116	86	136
123	78	45	107	120	91	139
124	192	167	211	172	160	181
125	239	233	244	254	244	268
126	199	190	208	153	141	178
127	195	185	204	150	138	175
128	187	177	196	144	133	170
129	182	173	192	141	131	167
130	181	172	190	139	128	165
131	166	159	175	131	119	157
132	137	124	151	117	101	142
133	127	111	142	115	99	141
134	130	115	145	92	67	117
135	128	104	143	113	95	138
How to calibrate gnathostome timetrees

136	94	72	119	105	91	131
137	88	66	112	102	86	128
138	64	40	91	82	69	106
139	47	26	72	72	59	93
140	11	4	25	60	46	79
141	46	25	72	77	64	100
142	27	13	49	52	37	69
143	39	21	64	74	61	97
144	22	11	42	72	58	94
145	179	167	190	106	82	134
146	156	136	172	116	103	143
147	57	34	77	69	59	93
148	44	24	65	69	58	93
149	165	146	181	138	123	164
150	165	161	172	229	217	233
151	138	136	140	142	128	157
152	94	91	96	71	69	72
153	89	85	92	68	67	70
154	61	53	65	54	50	56
155	79	71	84	66	65	67
156	91	87	94	64	56	69
How to calibrate gnathostome timetrees

157	68	62	72	66	61	68
158	50	38	60	59	51	67
159	315	300	328	328	314	339
160	307	290	323	286	275	290
161	202	173	237	170	137	188
162	192	163	226	165	131	183
163	177	146	210	143	110	160
164	168	137	199	139	106	156
165	117	86	143	104	71	119
166	92	62	117	60	36	70
167	77	49	101	59	35	69
168	53	30	74	45	26	56
169	162	134	196	143	107	163
170	201	170	232	173	156	193
171	192	161	224	170	154	192
172	186	154	218	166	148	188
173	155	123	186	147	127	172
174	105	71	140	104	85	141
175	94	62	127	74	57	109
176	70	33	110	75	60	117
177	54	22	89	71	56	111
How to calibrate gnathostome timetrees

178	156	119	189	128	104	152
179	144	106	177	123	99	147
180	160	125	194	129	105	152
181	213	162	255	181	145	247
182	155	105	195	152	116	221
183	36	12	65	71	47	116
184	223	165	279	324	289	353
185	78	48	107	164	131	190
186	6	2	15	46	25	68
187	414	402	428	390	385	404
188	293	256	332	289	253	321
189	202	140	269	154	124	187
190	156	92	223	131	101	167
191	98	50	168	74	53	114
192	207	172	262	193	184	201
193	76	42	110	73	53	115
194	380	370	390	380	352	406
195	345	338	352	276	253	298
196	330	319	340	254	222	286
197	55	18	91	118	58	175
198	277	244	297	167	119	207

This is a provisional file, not the final typeset article
7 Funding

I received no funding for this work; indeed I had to interrupt it for a long time for this reason.

8 Acknowledgments

Glory to our pirate queen, without whose work this paper would at best have taken a lot longer to write and at worst would have been severely outdated before submission.

Thanks to Albert Chen, Matteo Belvedere and Jason Pardo for an electronic reprint that would likely have been impossible to acquire in a timely manner otherwise; to Johan Renaudie for making me aware of another; to Olga Karicheva and the editorial office for several deadline extensions; to Jason Silviria and Paige dePolo for discussion of early eutherians; to the editor, Denis Baurain, for finding five reviewers; to all five reviewers and the editor for helpful comments; and to the editor and the editorial office for several more deadline extensions.

PhyloBayes only runs on Unix systems; Johan Renaudie (Museum für Naturkunde, Berlin) has access to such and kindly performed the analyses after expertly overcoming the gaps in the documentation of PhyloBayes.

9 References

Agnolín, F. L., Brissón Egli, F., Chatterjee, S., García Marsà, J. A., Novas, F. E. (2017). Vegaviidae, a new clade of southern diving birds that survived the K/T boundary. *Sci. Nat.* 104, 87. doi: 10.1007/s00114-017-1508-y

Ahlberg, P. E., Clack, J. A. (2020). The smallest known Devonian tetrapod shows unexpectedly derived features. *R. Soc. Open Sci.* 7, 192117. doi: 10.1098/rsos.192117

Alifanov, V. R. (2013). *Desertiguana gobiensis* gen. et sp. nov., a new lizard (Phrynosomatidae, Iguanomorpha) from the Upper Cretaceous of Mongolia. *Paleont. J.* 47, 417–424. doi: 10.1134/S0031030113040023

Alifanov, V. R. (2019). Lizards of the families Dorisetisauridae and Xenosauridae (Anguimorpha) from the Aptian–Albian of Mongolia. *Paleont. J.* 53, 183–193. doi: 10.1134/S0031030119020023

Alifanov, V. R. (2020). A new lizard (Agamidae, Iguania) from the late Paleocene of south Mongolia. *Paleont. J.* 54, 410–413. doi: 10.1134/S0031030120040036

Anderson, J. S., Smithson, T. [R.], Mansky, C. F., Meyer, T., Clack, J. [A.] (2015). A diverse tetrapod fauna at the base of ‘Romer’s Gap’. *PLOS ONE* 10, e0125446. doi: 10.1371/journal.pone.0125446

Andreev, P. S., Cuny, G. (2012). New Triassic stem selachimorphs (Chondrichthyes, Elasmobranchii) and their bearing on the evolution of dental enameloid in Neoselachii. *J. Vert. Paleont.* 32, 255–266. doi: 10.1080/02724634.2012.644646

Andreev, P. S., Coates, M. I., Shelton, R. M., Cooper, P. R., Smith, M. P., Sansom, I. J. (2015). Upper Ordovician chondrichthyan-like scales from North America. *Palaeontology* 58, 691–704. doi: 10.1111/pala.12167

Andreev, P. [S.], Coates, M. I., Karatajūtė-Talima, V., Shelton, R. M., Cooper, P. R., Wang, N.-Z., Sansom, I. J. (2016a). The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. *PeerJ* 4, e1850. doi:10.7717/peerj.1850
Andreev, P. S., Coates, M. I., Karatajūtė-Talimaa, V., Shelton, R. M., Cooper, P. R., Sansom, I. J. (2016b). *Elegestolepis* and its kin, the earliest monodontode chondrichthysans. *J. Vert. Paleont.* 37, e1245664. doi: 10.1080/02724634.2017.1245664

Anquetin, J., André, C. (2020). The last surviving Thalassochelydia—A new turtle cranium from the Early Cretaceous of the Purbeck Group (Dorset, UK). *PaleorXiv*, 7pa5c version 3, peer-reviewed by PCI Paleo. doi: 10.31233/osf.io/7pa5c

Apesteguía, S., Daza, J. D., Simöes, T. R., Rage, J. C. (2016). The first iguanian lizard from the Mesozoic of Africa. *R. Soc. Open Sci.* 3, 160462. doi: 10.1098/rsos.160462

Aranciaga Rolando, A. M., Agnolin, F. L., Corsolini, J. (2019). A new pipoid frog (Anura, Pipimorpha) from the Paleogene of Patagonia. Paleobiogeographical implications. *C. R. Palevol* 18, 725–734. doi: 10.1016/j.crpv.2019.04.003

Arribas, I., Buscalioni, A. D., Royo Torres, R., Espílez, E., Mampel, L., Alcalá, L. (2019). A new goniopholidid crocodyliform, *Hulkepholis rori* sp. nov. from the Camarillas Formation (early Barremian) in Galve, Spain). *PeerJ* 7, e7911. doi: 10.7717/peerj.7911

Ascarrunz, E., Rage, J.-C., Legreneur, P., Laurin, M. (2016). *Triadobatrachus massinoti*, the earliest known lissamphibian (Vertebrata: Tetrapoda) re-examined by μCT scan, and the evolution of trunk length in batrachians. *Contr. Zool.* 85, 201–234. doi: 10.1163/18759866-08502004

Asher, R. J., Meng, J., Wible, J. R., McKenna, M. C., Rougier, G. W., Dashzeveg, D., Novacek, M. J. (2005). Stem Lagomorpha and the antiquity of Glires. *Science* 307, 1091–1094. doi: 10.1126/science.1107808

Asher, R. J., Smith, M. R., Rankin, A., Emry, R. J. (2019). Congruence, fossils and the evolutionary tree of rodents and lagomorphs. *R. Soc. Open Sci.* 6: 190387. doi: 10.1098/rsos.190387

Ax, P. (1987). *The phylogenetic system: the systematization of organisms on the basis of their phylogenesis*. New York: John Wiley & Sons.

Báez, A. M. (2013). Anurans from the Early Cretaceous Lagerstätte of Las Hoyas, Spain: New evidence on the Mesozoic diversification of crown-clade Anura. *Cret. Res.* 41: 90–106. doi: 10.1016/j.cretres.2012.11.002

Báez, A. M., Gómez, R. O. (2016). Revision of the skeletal morphology of *Eodiscoglossus santonjae*, an Early Cretaceous frog from northeastern Spain, with comments on its phylogenetic placement. *Foss. Imprint* 72, 67–77. doi: 10.14446/FI.2016.67

Báez, A. M., Gómez, R. O. (2019). Redescription of the overlooked basal frog *Wealdenbatrachus* reveals increased diversity among Early Cretaceous anurans. *Cret. Res.* 99, 14–29. doi: 10.1016/j.cretres.2019.02.006

Bailleul, A. M., O’Connor, J. K., Zhang, S., Li, Z., Wang, Q., Lamanna, M. C., et al. (2019). An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. *Nat. Commun.* 10, 1275. doi: 10.1038/s41467-019-09259-x

Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Studlar, T., Warnock, R. (2019). Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. *Proc. R. Soc. B* 286, 0685. doi: 10.1098/rspb.2019.0685

Barido-Sottani, J., van Tiel, N. M. A., Hopkins, M. J., Wright, D. F., Studlar, T., Warnock, R. C. M. (2020). Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates in time-[]calibrated tree inference. *Front. Genet.* 8, 183. doi: 10.3389/fevo.2020.00183
How to calibrate gnathostome timetrees

Benton, M. J., Donoghue, P. C. J. (2007). [Correction with unabridged table 1 to:] Palaeontological evidence to date the tree of life. *Mol. Biol. Evol.* 24, 889–891.

Benton, M. J., Donoghue, P. C. J., Asher, R. J., Friedman, M., Near, T. J., Vinther, J. (2015). Constraints on the timescale of animal evolutionary history. *Palaeont. Electron.* 18.1.1FC. doi: 10.26879/424

Berv, J. S., Field, D. J. (2017, printed 2018). Genomic signature of an avian Lilliput effect across the K-Pg extinction. *Syst. Biol.* 67, 1–13. doi: 10.1093/sysbio/syx064

Bi, S., Zheng, X., Wang, X., Cignetti, N. E., Yang, S., Wible, J. R. (2018). An Early Cretaceous eutherian and the placental–marsupial dichotomy. *Nature* 558, 390–395. doi: 10.1038/s41586-018-0210-3

Bi, S., Wible, J. R., Zheng, X., Wang, X. (2019). The Early Cretaceous eutherian *Ambolestes* and its implications for the eutherian-metatherian dichotomy [abstract, Society of Vertebrate Paleontology, 79th annual meeting]. *J. Vert. Paleont.* Program and Abstracts 2019, 64. Entire abstract book available at http://vertpaleo.org/Annual-Meeting/Annual-Meeting-Home/SVP-Program-book-v5_w-covers.aspx

Blackburn, D. C., Paluh, D. J., Krone, I., Roberts, E. M., Stanley, E. L., Stevens, N. J. (2019). The earliest fossil of the African clawed frog (genus *Xenopus*) from sub-Saharan Africa. *J. Herpetol.* 53, 125–130. doi: 10.1670/18-139

Boisvert, C. A., Johnston, P., Trinajstic, K., Johanson, Z. (2019). “Chondrichthyan Evolution, Diversity, and Senses”, in *Heads, Jaws, and Muscles. Anatomical, Functional, and Developmental Diversity in Chordate Evolution*, eds. J. Ziermann, R. Diaz Jr., R. Diogo (Cham: Springer), 65–91. doi: 10.1007/978-3-319-93560-7_4

Bona, P., Ezcurra, M. D., Barrios, F., Fernandez Blanco, M. V. (2018) A new Palaeocene crocodylian from southern Argentina sheds light on the early history of cainamines. *Proc. R. Soc. B* 285: 20180843. doi: 10.1098/rspb.2018.0843

Borsuk-Białynicka, M. (1996). The Late Cretaceous lizard *Pleurodontagama* and the origin of tooth permanency in Lepidosauria. *Acta Palaeont. Pol.* 41, 231–252. Available at https://www.app.pan.pl/article/item/app41-231.html

Botella, H., Blom, H., Dorka, M., Ahlberg, P. E., Janvier, P. (2007). Jaws and teeth of the earliest bony fishes. *Nature* 448, 583–586. doi: 10.1038/nature05989

Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., et al. (2020). Interrogating genomic-scale data for Squamata (lizards, snakes, and amphibiaens) shows no support for key traditional morphological relationships. *Syst. Biol.* 69, 502–520. doi: 10.1093/sysbio/syz062

Burrow, C. J., Young, G. C. (1999). An articulated teleostome fish from the Late Silurian (Ludlow) of Victoria, Australia. *Rec. West. Austral. Mus.* suppl. 57, 1–14. Available at http://www.academia.edu/download/4084574/burrow_young1999.pdf

Burrow, C. J., Hovestadt, D. C., Hovestadt-Euler, M., Turner, S., Young, G. C. (2008). New information on the Devonian shark *Mcmurdodus*, based on material from western Queensland, Australia. *Acta Geol. Pol.* 58, 155–163. Available at https://geojournals.pgi.gov.pl/agp/article/view/10016/8546

Butler, R. J., Brusatte, S. L., Reich, M., Nesbitt, S. J., Schoch, R. R., Hornung, J. J. (2011). The sail-backed reptile *Ctenosauriscus* from the latest Early Triassic of Germany and the timing and
biogeography of the early archosaur radiation. PLoS ONE 6, e25693. doi:
10.1371/journal.pone.0025693

Cadena, E. (2015). A global phylogeny of Pelomedusoides turtles with new material of Neochelys franzeni Schleich, 1993 (Testudines, Podocnemididae) from the middle Eocene, Messel Pit, of Germany. PeerJ 3, e1221. doi: 10.7717/peerj.1221

Caldwell, M. W., Nydam, R. L., Palci, A., Apesteguía, S. (2015). The oldest known snakes from the Middle Jurassic-Lower [sic] Cretaceous provide insights on snake evolution. Nat. Commun. 6, 5996. doi: 10.1038/ncomms6996

Campbell Mekarsi, M., Pierce, S. E., Caldwell, M. W. (2015). The oldest known snakes from the Middle Jurassic-Lower [sic] Cretaceous provide insights on snake evolution. Nat. Commun. 6, 5996. doi: 10.1038/ncomms6996

Cannatella, D. (2015). Xenopus in space and time: fossils, node calibrations, tip-dating, and paleobiogeography. Cytogenet. Genome Res. 145, 283–301. doi: 10.1159/000438910

Cantino, P. D., de Queiroz, K. (2020). International Code of Phylogenetic Nomenclature (PhyloCode). Version 6. Boca Raton, London, New York: CRC Press. Openly accessible at https://phylonames.org/code/

Carneiro, L. M. (2017, printed 2018). A new species of Varalaphodon (Mammalia, Metatheria, Sparassodonta) from the upper Cenomanian of southern Utah, North America: Phylogenetic and biogeographic insights. Cret. Res. 84, 88–96. doi: 10.1016/j.cretres.2017.11.004

Carneiro, L. M., Oliveira, É. V. (2017). The Eocene South American metatherian Zeusdelphys complicatus is not a protodidelphid but a hatcheriform: Paleobiogeographic implications. Acta Palaeont. Pol. 62, 497–507. doi: 10.4202/app.00351.2017

Carpenter, D. K., Falcon-Lang, H. J., Benton, M. J., Grey, M. (2015). Early Pennsylvanian (Langsettian) fish assemblages from the Joggins Formation, Canada, and their implications for palaeoecology and palaeobiogeography. Palaeontology 58, 661–690. doi: 10.1111/pala.12164

Carroll, R. L. (1964). The earliest reptiles. Zool. J. Linn. Soc. 45, 61–83. doi: 10.1111/j.1096-3642.1964.tb00488.x

Carroll, R. L., Chorn, J. (1995). Vertebral development in the oldest microsaur and the problem of “lepospondyl” relationships. J. Vert. Paleont. 15, 37–56. doi: 10.1080/02724634.1995.10011206

Carroll, R. L., Bybee, P., Tidwell, W. D. (1991). The oldest microsaur (Amphibia). J. Paleont. 65, 314–322. doi: 10.1017/s0022336000020552

Celik, M. A., Phillips, M. J. (2020). Conflict resolution for Mesozoic mammals: reconciling phylogenetic incongruence among anatomical regions. Front. Genet. 11, 0651. doi: 10.3389/fgene.2020.00651

Cellinese, N., Dell, C. (2020) RegNum – The international clade names repository [website]. https://www.phyloregnum.org/

Chen, D., Blom, H., Sanchez, S., Tafforeau, P., Ahlberg, P. E. (2016). The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature 539, 237–241. doi: 10.1038/nature19812

Chester, S. G. B., Bloch, J. I., Boyer, D. M., Clemens, W. A. (2015). Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates. PNAS 112, 1487–1492. doi: 10.1073/pnas.1421707112
How to calibrate gnathostome timetrees

Chinzorig, T., Kobayashi, Y., Tsogtbaatar, K., Currie, P.J., Watabe, M., Barsbold, R. (2017). First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia. Sci. Rep. 7, 5835. doi: 10.1038/s41598-017-05272-6

Choo, B., Zhu, M., Qu, Q., Yu, X., Jia, L., Zhao, W. (2017). A new osteichthyan from the late Silurian of Yunnan, China. PLOS ONE 12, e0170929. doi: 10.1371/journal.pone.0170929

Clack, J. A. (2011). A new microsaur from the Early Carboniferous (Viséan) of East Kirkton, Scotland, showing soft-tissue evidence. Spec. Pap. Palaeont. 29, 45–55. doi: 10.1111/j.1475-4983.2011.01073.x

Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., et al. (2016). Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nat. Ecol. Evol. 1, 0002. DOI 10.1038/s41559-016-0002

Clack, J. A., Ruta, M., Milner, A. R., Marshall, J. E. A., Smithson, T. R., Smithson, K. Z. (2019). Acherontiscus caledoniae: the earliest heterodont and durophagous tetrapod. R. Soc. Open Sci. 6, 182087. doi: 10.1098/rsos.182087

Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M., Ketcham, R. A. (2005). Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433, 305–308. doi: 10.1038/nature03150

Clement, A. M., King, B., Giles, S., Choo, B., Ahlberg, P. E., Young, G. C., Long, J. A. (2018). Neurocranial anatomy of an enigmatic Early Devonian fish sheds light on early osteichthyan evolution. eLife 7, e34349. doi: 10.7554/eLife.34349

Cohen, J. E. (2017) Radiation of tribosphenic mammals during the early Late Cretaceous (Turonian) of North America [doctoral thesis]. Norman: The University of Oklahoma. Available at https://hdl.handle.net/11244/52435

Cohen, J. E., Cifelli, R. L. (2015). The first eutherian mammals from the early Late Cretaceous of North America [abstract, Society of Vertebrate Paleontology, 75th annual meeting]. J. Vert. Paleont., Program and Abstracts 2015, 108. Entire abstract book available at http://vertpaleo.org/PDFS/SVP-2015-Program-and-Abstract-Book-9-22-2015.aspx

Cohen, K. M., Harper, D. A. T., Gibbard, P. L., Fan, J.-X. (2020a). International Chronostratigraphic Chart v2020/03 [chart]. International Commission on Stratigraphy. http://www.stratigraphy.org/ICSchart/ChronostratChart2020-03.jpg or .pdf

Cohen, J. E., Davis, B. M., Cifelli, R. L. (2020b). Geologically oldest Pediomyoidea (Mammalia, Marsupialiformes) from the Late Cretaceous of North America, with implications for taxonomy and diet of earliest Late Cretaceous mammals. J. Vert. Paleont. online early. doi: 10.1080/02724634.2020.1835935

Conrad, J. L. (2015). A new Eocene casquehead lizard (Reptilia, Corytophanidae) from North America. PLOS ONE 10, e0127900. doi: 10.1371/journal.pone.0127900

Conrad, J. L. (2017, printed 2018). A new lizard (Squamata) was the last meal of Compsognathus (Theropoda: Dinosauria) and is a holotype in a holotype. Zool. J. Linn. Soc. 183, 584–634. doi: 10.1093/zoolinnean/zlx055

Conrad, J. L., Norell, M. A. (2007). A complete Late Cretaceous iguanian (Squamata, Reptilia) from the Gobi and identification of a new iguanian clade. Am. Mus. Novit. 3584, 1–41. doi: 10.1206/0003-0082(2007)3584[1:AACLICIS]2.0.CO;2
Cossette, A. P., Brochu, C. A. (2018). A new specimen of the alligatoroid *Bottosaurus harlani* and the early history of character evolution in alligatorids. *J. Vert. Paleont.* 38, e1486321. doi: 10.1080/02726434.2018.1486321

Cossette, A. P., Brochu, C. A. (2020). A systematic review of the giant alligatoroid *Deinosuchus* from the Campanian of North America and its implications for the relationships at the root of Crocodylia. *J. Vert. Paleont.* 40, e1767638. doi: 10.1080/02724634.2020.1767638

Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A. M., Bowring, S. A. (2013). High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: Implications for terrestrial faunal and floral evolution in Jurassic. *Gondw. Res.* 24, 1267–1275. doi: 10.1016/j.gr.2013.01.010

Cuny, G., Guinot, G., Enault, S. (2017, apparently printed 2018). *Evolution of Dental Tissues and Paleobiology in Selachians*. London and Oxford: ISTE Press and Elsevier. doi: 10.1016/C2015-0-06183-4

Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A., Jones, M. M. (2016). Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. *Earth Planet. Sci. Lett.* 452, 272–280. doi: 10.1016/j.epsl.2016.07.041

Danto, M., Witzmann, F., Kamenz, S. K., Fröbisch, N. B. (2019). How informative is vertebral development for the origin of lissamphibians? *J. Zool.* 307, 292–305. doi: 10.1111/jzo.12648

Dashzeveg, D., Dingus, L., Loope, D. B., Swisher, C. C. III, Dulam, T., Sweeney, M. R. (2005). New stratigraphic subdivision, depositional environment, and age estimate for the Upper Cretaceous Djadochta Formation, southern Ulan Nur Basin, Mongolia. *Am. Mus. Novit.* 3498, 1–31. doi: 10.1206/0003-0082(2005)498[0001:NSSDEA]2.0.CO;2

Davies, T. M., Bell, M. A., Goswami, A., Halliday, T. J. D. (2017). Completeness of the eutherian mammal fossil record and implications for reconstructing mammal evolution through the Cretaceous/Paleogene mass extinction. *Paleobiology* 43, 521–536. doi: 10.1017/pab.2017.20

Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M., Grimaldi, D. A. (2016). Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. *Sci. Adv.* 2, e1501080. doi: 10.1126/sciadv.1501080

Daza, J. D., Stanley, E. L., Bolet, A., Bauer, A. M., Arias, J. S., Černhanský, A. et al. (2020). Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders. *Science* 370, 687–691. doi: 10.1126/science.abb6005

DeMar, D. G. Jr., Conrad, J. L., Head, J. J., Varricchio, D. J., Wilson, G. P. (2017). A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania). *Proc. R. Soc. B* 284, 20161902. doi: 10.1098/rspb.2016.1902

De Pietri, V. L., Scofield, R. P., Zelenkov, N., Boles, W. E., Worthy, T. H. (2016). The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. *R. Soc. Open Sci.* 3, 150635. doi: 10.1098/rsos.150635

Dingus, L., Loope, D. B., Dashzeveg, D., Swisher, C. C. III, Minjin, C., Novacek, M. J., Norell, M. A. (2008). The geology of Ukhaa Tolgod (Djadochta Formation, Upper Cretaceous, Nemegt Basin, Mongolia). *Am. Mus. Novit.* 3616, 1–40. doi: 10.1206/442.1

Eldridge, M. D. B., Beck, R. M. D., Croft, D. A., Travouillon, K. J., Fox, B. J. (2019). An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). *J. Mammal.* 100, 802–837. doi: 10.1093/jmammal/gyz018

This is a provisional file, not the final typeset article
Elżanowski, A. (2014). More evidence for plesiomorphy of the quadrate in the Eocene anseriform avian genus *Presbyornis*. *Acta Palaeont. Pol.* 59, 821–825. doi: 10.4202/app.00027.2013

Evans, S. E., Borsuk-Białynicka, M. (2009a). A small lepidosauromorph reptile from the Early Triassic of Poland. *Palaeont. Pol.* 65, 179–202. Available at http://www.palaeontologia.pan.pl/PP65/PP65_179-202.pdf

Evans, S. E., Borsuk-Białynicka, M. (2009b). The Early Triassic stem-frog *Czatkobatrachus* from Poland. *Palaeont. Pol.* 65, 79–105. Available at http://www.palaeontologia.pan.pl/PP65/PP65_079-106.pdf

Evans, S. E., Prasad, G. V. R., Manhas, B. K. (2002). Fossil lizards from the Jurassic Kota Formation of India. *J. Vert. Paleont.* 22, 299–312. doi: 10.1671/0272-4634(2002)022[0299:FLFTJK]2.0.CO;2

Evans, S. E., Lally, C., Chure, D. C., Elder, A., Maisano, J. A. (2005). A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America. *Zool. J. Linn. Soc.* 143, 599–616. doi: 10.1111/j.1096-3642.2005.00159.x

Evans, S. E., Manabe, M., Noro, M., Isaji, S., Yamaguchi, M. (2006). A long-bodied lizard from the Lower Cretaceous of Japan. *Palaeontology* 49, 1143–1165. doi: 10.1111/j.1475-4983.2006.00598.x

Evers, S. W., Barrett, P. M., Benson, R. B. J. (2019). Anatomy of *Rhinochelys pulchiceps* (Protostegidae) and marine adaptation during the early evolution of chelonioids. *PeerJ* 7, e6811. doi: 10.7717/peerj.6811

Ezcurra, M. D., Scheyer, T. M., Butler, R. J. (2014). The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. *PLOS ONE* 9, e89165. doi: 10.1371/journal.pone.0089165

Ezcurra, M. D., Nesbitt, S. J., Bronzati, M., Dalla Vecchia, F. M., Agnolin, F. M., Benson, R. B. J. et al. (2020) Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. *Nature* online early. doi: 10.1038/s41586-020-3011-4

Field, D. J., Benito, J., Chen, A., Jagt, J. W. M., Ksepka, D. T. (2020). Late Cretaceous neornithine from Europe illuminates the origins of crown birds. *Nature* 579, 397–401. doi: 10.1038/s41586-020-2096-0

Ford, D. P., Benson, R. B. J. (2018, printed 2019). A redescription of *Orovenator mayorum* (Sauropsida, Diapsida) using high-resolution μCT, and the consequences for early amniote phylogeny. *Pap. Palaeont.* 5, 197–239. doi: 10.1002/spp2.1236

Ford, D. P., Benson, R. B. J. (2019, printed 2020). The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. *Nat. Ecol. Evol.* 4, 57–65. doi: 10.1038/s41559-019-1047-3

Fostowicz-Frelik, Ł., Kielan-Jaworowska, Z. (2002). Lower incisor in zalambdalestid mammals (Eutheria) and its phylogenetic implications. *Acta Palaeont. Pol.* 47, 177–180. Available at http://www.app.pan.pl/article/pdf/47/item/app47-177.html

Fox, R. C. (2016). The status of *Schowalteria clemensi*, the Late Cretaceous taeniodont (Mammalia). *J. Vert. Paleont.* 36, e121166. doi: 10.1080/02724634.2016.1211666

Fox, R. C., Scott, C. S. (2011). A new, early Puercan (earliest Paleocene) species of *Purgatorius* (Plesiadapiformes, Primates) from Saskatchewan, Canada. *J. Paleont.* 85, 537–548. doi: 10.1666/10-059.1

Fraguas, Á., Comas-Rengifo, M. J., Goy, A., Gómez, J. J. (2018). Upper Sinemurian – Pliensbachian calcareous nanofossil biostratigraphy of the E Rodiles section (Asturias, N Spain): a reference
section for the connection between the Boreal and Tethyan Realms. *Newsl. Strat.* 51, 227–244. doi: 10.1127/nos/2017/0401

Frey, L., Coates, M., Ginter, M., Hairapetian, V., Rücklin, M., Jerjen, I., Klug, C. (2019). The early elasmobranch *Phoebodus*: phylogenetic relationships, ecomorphology and a new time-scale for shark evolution. *Proc. R. Soc. B* 286: 20191336. doi: 10.1098/rspb.2019.1336

Friedman, M. (2015). The early evolution of ray-finned fishes. *Palaeontology* 58, 213–228. doi: 10.1111/pala.12150

de la Fuente, M. S., Iturralde-Vinent, M. (2001). A new pleurodiran turtle from the Jagua Formation (Oxfordian) of western Cuba. *J. Paleont.* 75, 860–869. doi: 10.1666/0022-3360(2001)075<0860:ANPTFT>2.0.CO;2

Funston, G. F., Brusatte, S. L., Williamson, T. E., Wible, J. R., Shelley, S. L., Bertrand, O. C. et al. (2020). New information on the rise of mammals [abstract, Canadian Society of Vertebrate Palaeontology, 8th annual meeting]. *Vertebr. Anat. Morphol. Palaeont.* 8, 38. doi of entire abstract issue: 10.18435/vamp29365

Gaffney, E. S., Jenkins, F. A. Jr. (2010). The cranial morphology of *Kayentachelys*, an Early Jurassic cryptodire, and the early history of turtles. *Acta Zool.* 91, 335–368. doi: 10.1111/j.1463-2192.2009.00439.x

Gaffney, E. S., Tong, H., Meylan, P. A. (2006). Evolution of the side-necked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. *Bull. Am. Mus. Nat. Hist.* 300, 1–698. doi: 10.1206/0003-0090(2006)300[1:EOTSTT]2.0.CO;2

Gaffney, E. S., Rich, T. H., Vickers-Rich, P., Constantine, A., Vacca, R., Kool, L. (2007). *Chubutemys*, a new euctypodiran turtle from the Early Cretaceous of Argentina, and the relationships of the Meiolaniidae. *Am. Mus. Novit.* 3599, 1–35. doi: 10.1206/0003-0082(2007)3599[1:CANETF]2.0.CO;2

Galli, K. G., Buchwaldt, R., Lucas, S. G., Tanner, L. (2018). New chemical abrasion thermal ionization mass spectrometry dates from the Brushy Basin Member, Morrison Formation, western Colorado: implications for dinosaur evolution. *The J. Geol.* 126, 473–486. doi: 10.1086/699208

Gao, K., Norell, M. A. (2000). Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi desert. *Bull. Am. Mus. Nat. Hist.* 249, 1–118. doi: 10.1206/0003-0090(2000)249<0001:TCASOL>2.0.CO;2

Gao, K.-Q., Shubin, N. H. (2003). Earliest known crown-group salamanders. *Nature* 422, 424–428. doi: 10.1038/nature01491

Gao, K.-Q., Shubin, N. H. (2012). Late Jurassic salamandroid from western Liaoning, China. *PNAS* 109, 5767–5772. doi: 10.1073/pnas.1009828109

Garberoglio, F. F., Apesteguía, S., Simões, T. R., Palci, A., Gómez, R. O., Nydam, R. L. et al. (2019). New skulls and skeletons of the Cretaceous legged snake *Najash*, and the evolution of the modern snake body plan. *Sci. Adv.* 5, eaax5833. doi: 10.1126/sciadv.aax5833

Gardner, J. D., Rage, J.-C. (2016). The fossil record of lissamphibians from Africa, Madagascar, and the Arabian Plate. *Palaeobiodiv. Palaeoenv.* 96, 169–220. doi: 10.1007/s12549-015-0221-0

Gentry, A. D., Ebersole, J. A., Kiernan, C. R. (2019). *Asmodochelys parhami*, a new fossil marine turtle from the Campanian Demopolis Chalk and the stratigraphic congruence of competing marine turtle phylogenies. *R. Soc. Open Sci.* 6, 191950. doi: 10.1098/rsos.191950
Giles, S., Xu, G.-H., Near, T. J., Friedman, M. (2017). Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549, 265–268. doi: 10.1038/nature23654

Glieneke, S. (2015). Two new species of the genus Batropetes (Tetrapoda, Lepospondyli) from the Central European Rotliegend (basal Permian) in Germany. J. Vert. Paleont. 35, e918041. doi: 10.1080/02724634.2014.918041

Gómez, R. O. (2016). A new pipid frog from the Upper Cretaceous of Patagonia and early evolution of crown-group Pipidae. Cret. Res. 62, 52–64. doi: 10.1016/j.cretres.2016.02.006

González Ruiz, P., de la Fuente, M. S., Fernández, M. S. (2019, printed 2020). New cranial fossils of the Jurassic turtle Neusticemys neuquina and phylogenetic relationships of the only thalassochelydian known from the eastern Pacific. J. Paleont. 94, 145–164. doi: 10.1017/jpa.2019.74

Goodrich, E. S. (1916). On the classification of the Reptilia. Proc. R. Soc. Lond. B 89, 261–276. doi: 10.1098/rspb.1916.0012

Goswami, A., Prasad, G. V. R., Upchurch, P., Boyer, D. M., Seiffert, E. R., Verma, O., et al. (2011). A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India. PNAS 108, 16333–16338. doi: 10.1073/pnas.1108723108

Goswami, S., Gierlowski-Kordesch, E., Ghosh, P. (2016, printed 2018). Sedimentology of the Early Jurassic limestone beds of the Kota Formation: record of carbonate wetlands in a continental rift basin of India. J. Paleolimnol. 59, 21–38. doi: 10.1007/s10933-016-9918-y

Goodrich, E. S. (1916). On the classification of the Reptilia. Proc. R. Soc. Lond. B 89, 261–276. doi: 10.1098/rspb.1916.0012

Graur, D., Martin, W. (2004). Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 20, 80–86. doi: 10.1016/j.tig.2003.12.003

Groh, S. S., Upchurch, P., Barrett, P. M., Day, J. J. (2019, printed 2020). The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition. Zool. J. Linn. Soc. 188, 473–506. doi: 10.1093/zoolinnean/zlz117

Guindon, S. (2020). Rates and rocks: strengths and weaknesses of molecular dating methods. Front. Genet. 11, 526. doi: 10.3389/fgene.2020.00526

Haddoumi, H., Allain, R., Meslouh, S., Metais, G., Monbaron, M., Pons, D. et al. (2015, printed 2016). Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): First continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondw. Res. 29, 290–319. doi: 10.1016/j.gr.2014.12.004

Halliday, T. J. D., Brandalise de Andrade, M., Benton, M. J., Efimov, M. B. (2013). A re-evaluation of goniopholidid crocodylomorph material from Central Asia: biogeographic and phylogenetic implications. Acta Palaeont. Pol. 60, 291–312. doi: 10.4202/app.2013.0018

Halliday, T. J. D., Upchurch, P., Goswami, A. (2015, printed 2017). Resolving the relationships of Paleocene placental mammals. Biol. Rev. 92, 521–550. doi: 10.1111/brv.12242

Halliday, T. J. D., Upchurch, P., Goswami, A. (2016) Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 283, 20153026. doi: 10.1098/rspb.2015.3026

Halliday, T. J. D., dos Reis, M., Tamuri, A. U., Ferguson-Gow, H., Yang, Z., Goswami, A. (2019). Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proc. R. Soc. B 286: 20182418. doi: 10.1098/rspb.2018.2418
How to calibrate gnathostome timetrees

1. Haridy, Y., MacDougall, M. J., Reisz, R. R. (2017, printed 2018). The lower jaw of the Early Permian parareptile Delorhynchus, first evidence of multiple denticulate coronoids in a reptile. Zool. J. Linn. Soc. 184, 791–803. doi: 10.1093/zoolinnean/zlx085

2. Harjunmaa, E., Seidel, K., Häkkinen, T., Renvoisé, E., Corfe, I. J., Kallonen, A., et al. (2014). Replaying evolutionary transitions from the dental fossil record. Nature 512, 44–48. doi: 10.1038/nature13613

3. Hasegawa, H., Tada, R., Ichinnorov, N., Minjin, C. (2008, printed 2009). Lithostratigraphy and depositional environments of the Upper Cretaceous Djadokhta Formation, Ulun Nuur basin, southern Mongolia, and its paleoclimatic implication. J. As. Earth Sci. 35, 13–26. doi: 10.1016/j.jseaes.2008.11.010

4. Head, J. J. (2015). Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeont. Electron. 18, 6FC. doi: 10.26879/487

5. Henrici, A. C. (1998). A new pipoid anuran from the Late Jurassic Morrison Formation at Dinosaur National Monument, Utah. J. Vert. Paleont. 18, 321–332. doi: 10.1080/02724634.1998.10011060

6. Hermanson, G., Iori, F. V., Evers, S. W., Langer, M. C., Ferreira, G. S. (2020). A small podocnemidoid (Pleurodira, Pelomedusoides) from the Late Cretaceous of Brazil, and the innervation and carotid circulation of side-necked turtles. Pap. Palaeont. 6: 329–347. doi: 10.1002/spp2.1300

7. von Heyden, L. (1870). Entomologische Reise nach dem südlichen Spanien, der Sierra Guadarrama und Sierra Morena, Portugal und den Cantabrischen Gebirgen [...]. Berlin: Entomologischer Verein. Available at https://books.google.com/books?id=FXBTAAAAcAAJ

8. Hicks, J. F., Fastovsky, D., Nichols, D. J., Watabe, M. (2001). Magnetostratigraphic correlation of Late Cretaceous dinosaur-bearing localities in the Nemegt and Ulun [sic] Nuur basins, Gobi desert, Mongolia [abstract 135-0, Geological Society of America Annual Meeting]. Available at https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_28817.htm

9. Hime, P. M., Lemmon, A. R., Moriarty Lemmon, E. C., Prendini, E., Brown, J. M., Thomson, R. C., et al. (2020). Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. online early. doi: 10.1093/sysbio/syaa034

10. Hu, X., Li, L., Dai, H., Wang, P., Buffetaut, É., Wei, G. et al. (2020). Turtle remains from the Middle Jurassic Xintiangou Formation of Yunyang, Sichuan Basin, China | Restes de tortues de la Formation Xintiangou (Jurassique moyen) de Yunyang, bassin du Sichuan, Chine. Ann. Paléont. 106, 102440. doi: 10.1016/j.annpal.2020.102440

11. Hutchinson, M. N., Skinner, A., Lee, M. S. Y. (2012). Tikiguania and the antiquity of squamate reptiles (lizards and snakes). Biol. Lett. 8, 665–669. doi: 10.1098/rsbl.2011.1216

12. Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A., Luo, Z.-X. (2018). Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–112. doi: 10.1038/s41586-018-0126-y

13. [ICZN] International Commission on Zoological Nomenclature (1999). International Code of Zoological Nomenclature. 4th ed. London: International Trust for Zoological Nomenclature. Openly accessible, including the updates from 2012, at https://www.iczn.org/the-code/the-international-code-of-zoological-nomenclature/the-code-online/

14. Irisarri, I., Baurain, D., Brinkmann, H., Delsuc, F., Sire, J.-Y., Kupfer, A., et al. (2017). Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370–1378. doi: 10.1038/s41559-017-0240-5

This is a provisional file, not the final typeset article
How to calibrate gnathostome timetrees

Ivanov, A. (2005). Early Permian chondrichthyans of the Middle and South Urals. *Rev. Bras. Paleont.* 8, 127–138. Available at http://www.sbpbrasil.org/revista/edicoes/8_2/8(2)ivanov.pdf

Jia, J., Gao, K.-Q. (2016). A new basal salamandroid (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China. *PLOS ONE* 11, e0153834. doi: 10.1371/journal.pone.0153834

Jia, J., Gao, K.-Q. (2019). A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the Upper Jurassic (Oxfordian) of Liaoning Province, China. *J. Vert. Paleont.* 39, e1588285. doi: 10.1080/02724634.2019.1588285

Jiang, J.-Q., Cai, C.-Y., Huang, D.-Y. (2015, printed 2016). Progonocimicids (Hemiptera, Coleorrhyncha) from the Middle Jurassic Haifanggou Formation, western Liaoning, northeast China support stratigraphic correlation with the Daohugou beds. *Alcheringa* 40, 53–61. doi: 10.1080/03115518.2015.1086053

Jones, M. E. H., Anderson, C. L., Hipsley, C. A., Müller, J., Evans, S. E., Schoch, R. R. (2013) Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). *BMC Evol. Biol.* 13, 208. doi: 10.1186/1471-2148-13-208

Kangas, A. T., Evans, A. R., Thesleff, I., Jernvall, J. (2004). Nonindependence of mammalian dental characters. *Nature* 432, 211–214. doi: 10.1038/nature02927

Kearney, M., Clark, J.M. (2003). Problems due to missing data in phylogenetic analyses including fossils: a critical review. *J. Vert. Paleont.* 23, 263–274. doi: 10.1671/0272-4634(2003)023[0263:PDTMDI]2.0.CO;2

King, B. (2019). Which morphological characters are influential in a Bayesian phylogenetic analysis? Examples from the earliest osteichthyan. *Biol. Lett.* 15, 20190288. doi: 10.1098/rsbl.2019.0288

Kissel, R. (2010). *Morphology, Phylogeny and Evolution of Diadectomorphidae (Cotylosauria: Diadectomorpha)* [doctoral thesis]. University of Toronto. Available at http://hdl.handle.net/1807/24357

Klembara, J., Hain, M., Ruta, M., Berman, D. S, Pierce, S. E., Henrici, A. C. (2019, printed 2020). Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by high-resolution X-ray microcomputed tomography, and the origin of the amniote crown group. *Palaeontology* 63, 131–154. doi: 10.1111/pala.12448

Kligman, B. T., Marsh, A. D., Sues, H.-D., Sidor, C. A. (2020). A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. *Biol. Lett.* 16, 20200631. doi: 10.1098/rsbl.2020.0631

Koot, M. B., Cunyi, G., Orchard, M. J., Richoz, S., Hart, M. B., Twitchett, R. J. (2014, printed 2015). New hybodontiform and neoselachian sharks from the Lower Triassic of Oman. *J. Syst. Palaeont.* 13, 891–917. doi: 10.1080/14772019.2014.963179

Krause, D. W. (1978). Paleocene primates from western Canada. *Can. J. Earth Sci.* 15, 1250–1271. doi: 10.1139/e78-133

Ksepka, D. T., Parham, J. F., Allman, J. F., Benton, M. J., Carrano, M. T., Cranston, K. A. et al. (2015). The Fossil Calibration Database—a new resource for divergence dating. *Syst. Biol.* 64, 853–859. doi:10.1093/sysbio/syv025.

Kurochkin, E. N., Dyke, G. J., Karhu, A. A. (2002). A new presbyornithid bird (Aves, Anseriformes) from the Late Cretaceous of southern Mongolia. *Am. Mus. Novit.* 3386, 1–11. doi: 10.1206/0003-0082(2002)386<0001:ANPBAA>2.0.CO;2
How to calibrate gnathostome timetrees

Langer, M. C., de Oliveira Martins, N., Manzig, P. C., de Souza Ferreira, G., de Almeida Marsola, J. C., Fortes, E., et al. (2019). A new desert-dwelling dinosaur (Theropoda, Noasaurinae) from the Cretaceous of south Brazil. *Sci. Rep.* 9, 9379. doi: 10.1038/s41598-019-45306-9

Lartillot, N. (2015). *PhyloBayes* [software]. Version 4.1c. Available at http://www.atgc-montpellier.fr/phylobayes/

Laurin, M., Piñeiro, G. (2018). Response: Commentary: A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. *Front. Earth Sci.* 6, 220. doi: 10.3389/feart.2018.00220

Lawver, D. R., Debee, A. M., Clarke, J. A., Rougier, G. W. (2011). A new enantiornithine bird from the Upper Cretaceous La Colonia Formation of Patagonia, Argentina. *Ann. Carnegie Mus.* 80, 35–42. doi: 10.2992/007.080.0104

Lee, M. S. Y., Yates, A. M. (2018). Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. *Proc. R. Soc. B* 285, 20181071. doi: 10.1098/rspb.2018.1071

Lefebvre, B., Gutiérrez-Marco, J.C., Lehnert, O., Martin, E. L. O., Nowak, H., Akodad, M., et al. (2017, printed 2018). Age calibration of the Lower Ordovician Fezouata Lagerstätte, Morocco. *Lethaia* 51, 296–311. doi: 10.1111/let.12240

Li, P.-P., Gao, K.-Q., Hou, L.-H., Xu, X. (2007). A gliding lizard from the Early Cretaceous of China. *PNAS* 104, 5507–5509. doi: 10.1073/pnas.0609552104

Liang, C., Liu, Y., Hu, Z., Li, X., Li, W., Zheng, C. et al. (2019, printed 2020). Provenance study from petrography and geochronology of Middle Jurassic Haifanggou Formation in Xingcheng Basin, western Liaoning Province. *Geol. J.* 55, 2420–2446. doi: 10.1002/gj.3509

Liu, Y.-H., Gai, Z.-K., Zhu, M. (2017, printed 2018). New findings of galeaspids (Agnatha) from the Lower Devonian of Qujing, Yunnan, China. *Vert. PalAsiat.* 56, 1–15.

Lombard, R. E., Bolt, J. R. (1999). A microsaur from the Mississippian of Illinois and a standard format for morphological characters. *J. Paleont.* 73, 908–923. doi: 10.1017/s0022336000040749

López-Arbarello, A., Sferco, E. (2018). Neopterygian phylogeny: the merger assay. *R. Soc. Open Sci.* 5, 172337. doi: 10.1098/rsos.172337

López-Torres, S., Postowicz-Frelik, Ł. (2018). A new Eocene anagalid (Mammalia: Euarchontognires) from Mongolia and its implications for the group’s phylogeny and dispersal. *Sci. Rep.* 8, 13955. doi: 10.1038/s41598-018-32086-x

Lu, J., Zhu, M., Long, J. A., Zhao, W., Senden, T. J., Jia, L., Qiao, T. (2012) The earliest known stem-tetrapod[omorph] from the Lower Devonian of China. *Nat. Commun.* 3, 1160. doi: 10.1038/ncomms2170

Luo, Z.-X., Yuan, C.-X., Meng, Q.-J, Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. *Nature* 476, 442–445. doi: 10.1038/nature10291

This is a provisional file, not the final typeset article
How to calibrate gnathostome timetrees

MacDougall, M. J., Tabor, N. J., Woodhead, J., Daoust, A. R., Reisz, R. R. (2017). The unique preservational environment of the Early Permian (Cisuralian) fossiliferous cave deposits of the Richards Spur locality, Oklahoma. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 475, 1–11. doi: 10.1016/j.palaeo.2017.02.019

MacDougall, M. J., Winge, A., Ponstein, J., Jansen, M., Reisz, R. R., Fröbisch, J. (2019). New information on the early [sic] Permian lanthanosuchoid *Feererpeton oklahomensis* [sic] based on computed tomography. *PeerJ* 7, e7753. doi: 10.7717/peerj.7753

Maddin, H. C., Mann, A., Hebert, B. (2019, printed 2020). Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care in amniotes. *Nat. Ecol. Evol.* 4, 50–56. doi: 10.1038/s41559-019-1030-z

Maidment, S. C. R., Muxworthy, A. (2019). A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western U.S.A. *J. Sedim. Res.* 89, 1017–1038. doi: 10.2110/jsr.2019.54

Mann, A., Paterson, R. S. (2019, printed 2020). Cranial osteology and systematics of the enigmatic early ‘sail-backed’ synapsid *Echinmerpeton intermedium* Reisz, 1972, and a review of the earliest ‘pelycosaurs’. *J. Syst. Palaeont.* 18, 529–539. doi: 10.1080/14772019.2019.1648323

Manz, C. L., Chester, S. G. B., Bloch, J. I., Silcox, M. T., Sargis, E. J. (2015). New partial skeletons of Palaeocene Nyctitheriidae and evaluation of proposed euarchontan affinities. *Biol. Lett.* 11, 20140911. doi: 10.1098/rsbl.2014.0911

Mao, F., Hu, Y., Li, C., Wang, Y., Hill Chase, M., Smith, A. K., Meng, J. (2019). Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. *Science* 367, 305–308. doi: 10.1126/science.aay9220

Marjanović, D. (2019) Recalibrating the transcriptomic timetree of jawed vertebrates [first preprint of this paper]. *bioRxiv* 2019.12.19.882829v1. doi: 10.1101/2019.12.19.882829v1

Marjanović, D., Laurin, M. (2007). Fossils, molecules, divergence times, and the origin of lissamphibians. *Syst. Biol.* 56, 369–388. doi: 10.1080/10635150701397635

Marjanović, D., Laurin, M. (2013a). The origin(s) of extant amphibians: a review with emphasis on the “lepospondyl hypothesis”.* *Geodiversitas* 35, 207–272. doi: 10.5252/g2013n1a8

Marjanović, D., Laurin, M. (2013b, printed 2014). An updated paleontological timetree of lissamphibians, with comments on the anatomy of Jurassic crown-group salamanders (Urodela). *Hist. Biol.* 26, 535–550. doi: 10.1080/08912963.2013.797972

Marjanović, D., Laurin, M. (2019). Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. *PeerJ* 6, e5565. doi: 10.7717/peerj.5565

Marjanović, D., Witzmann, F. (2015). An extremely peramorphic newt (Urodela: Salamandridae: Pleurodelini) from the latest Oligocene of Germany, and a new phylogenetic analysis of extant and extinct salamandrids. *PLOS ONE* 10, e0137068. doi: 10.1371/journal.pone.0137068
How to calibrate gnathostome timetrees

Maron, M., Muttoni, G., Rigo, M., Gianolla, P., Kent, D. V. (2018, printed 2019). New magnetobiostatigraphic results from the Ladinian of the Dolomites and implications for the Triassic geomagnetic polarity timescale. *Palaeogeogr. Palaeoclimat. Palaeoecol.* 517, 52–73. doi: 10.1016/j.palaeo.2018.11.024

Marshall, C. R. (2019). Using the fossil record to evaluate timetree timescales. *Front. Genet.* 10, 1049. doi: 10.3389/fgene.2019.01049

Martill, D. M., Tischlinger, H., Longrich, N. R. (2015). A four-legged snake from the Early Cretaceous of Gondwana. *Science* 349, 416–419. doi: 10.1126/science.aaa9208

Mateus, O., Puértolas-Pascual, E., Callapez, M. (2018, printed 2019). A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia. *Zool. J. Linn. Soc.* 186, 501–528. doi: 10.1093/zoolinnean/zly064

Matschiner, M. (2019). Selective sampling of species and fossils influences age estimates under the fossilized birth–death model. *Front. Genet.* 10, 1064. doi: 10.3389/fgene.2019.01064

Matsumoto, R., Evans, S. E. (2018). The first record of albanerpetontid amphibians (Amphibia: Albanerpetontidae) from East Asia. *PLOS ONE* 13, e0189767. doi: 10.1371/journal.pone.0189767

Matsui, M., Tominaga, A., Liu, W.-z., Tanaka-Ueno, T. (2008). Reduced genetic variation in the Japanese giant salamander, *Andrias japonicus* (Amphibia: Caudata). *Mol. Phyl. Evol.* 49, 318–326. doi: 10.1016/j.ympev.2008.07.020

Mayr, G., De Pietri, V. L., Scofield, R. P., Worthy, T. H. (2018). On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 neornithine birds from the Upper Cretaceous of the Southern Hemisphere. *Cret. Res.* 86, 178–185. doi: 10.1016/j.cretres.2018.02.013

McLachlan, S. M. S., Kaiser, G. W., Longrich, N. R. (2017) *Maaqwi cascadensis*: A large, marine diving bird (Avialae: Ornithurae) from the Upper Cretaceous of British Columbia, Canada. *PLOS ONE* 12, e0189473. doi: 10.1371/journal.pone.0189473

Meng, J. (2014). Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. *Natl. Sci. Rev.* 1, 521–542. doi: 10.1093/nsr/nwu070

Milanese, F. N., Olivero, E. B., Raffi, M. E., Franceschinis, P. R., Gallo, L. C., Skinner, S. M., et al. (2018, printed 2019). Mid Campanian-Lower Maastrichtian magnetostratigraphy of the James Ross Basin, Antarctica: Chronostratigraphical implications. *Basin Res.* 31, 562–583. doi: 10.1111/bre.12334

Milner, A. C. (2019). A morphological revision of *Keraterpeton*, the earliest horned nectridean from the Pennsylvanian of England and Ireland. *Earth Env. Sci. Trans. R. Soc. Edinb.* 109, 237–253. doi: 10.1017/S1755691018000579

Milner, A. R., Sequeira, S. E. K. (1994, for 1993). The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. *Trans. R. Soc. Edinb. Earth Sci.* 84, 331–361. doi: 10.1017/s0263593300006155

Missiaen, P., Escarguel, G., Hartenberger, J.-L., Smith, T. (2012). A large new collection of *Palaeostylops* from the Paleocene of the Flaming Cliffs area (Ulan-Nur Basin, Gobi Desert, Mongolia), and an evaluation of the phylogenetic affinities of Arctostylopidae (Mammalia, Gliriformes). *Geobios* 45, 311–322. doi: 10.1016/j.geobios.2011.10.004
How to calibrate gnathostome timetrees

Modesto, S. P., Scott, D. M., MacDougall, M. J., Sues, H.-D., Evans, D. C., Reisz, R. R. (2015). The oldest parareptile and the early diversification of reptiles. *Proc. R. Soc. B* 282, 20141912. doi: 10.1098/rspb.2014.1912

Mongiardino Koch, N., Gauthier, J. A. (2018). Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata. *PLOS ONE* 13, e0202729. doi: 10.1371/journal.pone.0202729

Mongiardino Koch, N., Parry, L. A. (2020). Death is on our side: paleontological data drastically modify phylogenetic hypotheses. *Syst. Biol.* 55, 503–511. doi: 10.1080/10635150600755396

Müller, J., Reisz, R. R. (2006). The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. *Syst. Biol.* 55, 503–511. doi: 10.1080/10635150600755396

Müller, J., Reisz, R. R. (2007). Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. *BioEssays* 27, 1069–1075. doi: 10.1002/bies.20286

Murphy, W. J., Eizirik, E., O’Brien, S.J., Madsen, O., Scally, M., Douady, C. J., et al. (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. *Science* 294, 2348–2351. doi: 10.1126/science.1067179

Napoli, J. G., Williamson, T. E., Shelley, S. L., Brusatte, S. L. (2017, printed 2018). A digital endocranial cast of the early Paleocene (Puercan) ‘archaic’ mammal *Onychodectes tisonensis* (Eutheria: Taeniodonta). *J. Mammal. Evol.* 25, 179–195. doi: 10.1007/s10914-017-9381-1

Naylor, B. G. (1981). Cryptobranchid salamanders from the Paleocene and Miocene of Saskatchewan. *Copeia* 1981, 76. doi: 10.2307/1444042

Ni, X., Li, Q., Li, L., Beard, K.C. (2016). Oligocene primates from China reveal divergence between African and Asian primate evolution. *Science* 352, 673–677. doi: 10.1126/science.aaf2107

Noonan, B. P., Chippindale, P. T. (2006) Vicariant origin of Malagasy reptiles supports Late Cretaceous Antarctic land bridge. *The Am. Nat.* 168, 730–741. doi: 10.2307/4122245

Novacek, M., Rougier, G., Wible, J., McKenna, M. C., Dashzeveg, D., Horovitz, I. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. *Nature* 389, 483–486. doi:10.1038/39020

O’Connor, P. M., Krause, D. W., Stevens, N. J, Groenke, J. R., MacPhee, R. D. E., Kalthoff, D. C., Roberts, E. M. (2019). A new mammal from the Turonian–Campanian (Upper Cretaceous) Galula Formation, southwestern Tanzania. *Acta Palaeont. Pol.* 64, 65–84. doi: 10.4202/app.00568.2018

O’Connor, P. M., Turner, A. H., Groenke, J. R., Felice, R. N., Rogers, R. R., Krause, D. W., Rahantarisoa, L. J. (2020). Late Cretaceous bird from Madagascar reveals unique development of beaks. *Nature* online early. doi: 10.1038/s41586-020-2945-x

O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P. et al. (2013). The placental mammal ancestor and the post-K-Pg radiation of placentals. *Science* 339, 662–667. doi: 10.1126/science.1229237

Olsen, P. E. (1988). “Paleontology and paleoecology of the Newark Supergroup (early Mesozoic, eastern North America)”, in *Triassic-Jurassic Rifting: Continental Breakup and the Origin of the*
How to calibrate gnathostome timetrees

Atlantic Ocean and Passive Margins, Part A. Developments in Geotectonics 22, ed. W. Manspeizer (Amsterdam, Oxford, New York, Tokyo: Elsevier), 185–230.

Olsen, P. E. (2010). Fossil Great Lakes of the Newark Supergroup – 30 Years Later [field trip guide]. NYSGA Field Trip 4. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.418&rep=rep1&type=pdf

Palci, A., Hutchinson, M. N., Caldwell, M. W., Smith, K. T., Lee, M. S. Y. (2019, printed 2020). The homologies and evolutionary reduction of the pelvis and hindlimbs in snakes, with the first report of ossified pelvic vestiges in an anomalepidid (Liotyphlops beui). Zool. J. Linn. Soc. 188, 630–652. doi: 10.1093/zoolinnean/zlz098

Panciroli, E., Benson, R. B. J., Walsh, S., Butler, R. J., Andrade Castro, T., Jones, M. E. H., Evans, S. E. (2020). Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth Env. Sci. Trans. R. Soc. Edinb. online early. doi: 10.1017/S1755691020000055

Pardo, J. D., Szostakiewskyj, M., Ahlberg, P. E., Anderson, J. S. (2017). Hidden morphological diversity among early tetrapods. Nature 546, 642–645. doi: 10.1038/nature22966

Pardo, J. D., Holmes, R., Anderson, J. S. (2018, printed 2019). An enigmatic braincase from Five Points, Ohio (Westphalian D) further supports a stem tetrapod position for ästopods. Earth Env. Sci. Trans. R. Soc. Edinb. 109, 255–264. doi: 10.1017/S1755691018000567

Pardo, J. D., Lennie, K., Anderson J. S. (2020) Can we reliably calibrate deep nodes in the retrapod tree? Case studies in deep tetrapod divergences. Front. Genet. 11, 506749. doi: 10.3389/fgene.2020.506749

Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A. et al. (2011, printed 2012). Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359. doi: 10.1093/sysbio/syr107

Paton, R. L., Smithson, T. R., Clack, J. A. (1999). An amniote-like skeleton from the Early Carboniferous of Scotland. Nature 398, 508–513. doi: 10.1038/19071

Pearson, M. R. (2016). Phylogeny and systematic history of early salamanders [doctoral thesis]. University College London. Available at https://discovery.ucl.ac.uk/id/eprint/1507772/

Penkrot, T. A., Zack, S. P. (2016). Tarsals of Sespedectinae (?Lipotyphla) from the middle Eocene of southern California, and the affinities of Eocene ‘erinaceomorphs’. J. Vert. Paleont. 36, e1212059. doi: 10.1080/02724634.2016.1212059

Pérez-García, A. (2019). The African Aptian Francemys gadoufaouensis gen. et sp. nov.: New data on the early diversification of Pelomedusoides (Testudines, Pleurodira) in northern Gondwana. Cret. Res. 102, 112–126. doi: 10.1016/j.cretres.2019.06.003

Phillips, M. J., Bennett, T. H., Lee, M. S. Y. (2009). Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. PNAS 106, 17089–17094. doi: 10.1073/pnas.0904649106

Phillips, M. J., Fruciano, C. (2018). The soft explosive model of placental mammal evolution. BMC Evol. Biol. 18, 104. doi: 10.1186/s12862-018-1218-x

Powell, C. L. E., Waskin, S., Battistuzzi, F. U. (2020). Quantifying the error of secondary vs. distant primary calibrations in a simulated environment. Front. Genet. 11, 252. doi: 10.3389/fgene.2020.00252

This is a provisional file, not the final typeset article
Prasad, G. V. R., Manhas, B. K. (2007). A new docodont mammal from the Jurassic Kota Formation of India. *Palaeont. Electron.* 10, 7A. https://palaeo-electronica.org/2007_2/00117/index.html

Prasad, G. V. R., Verma, O., Sahni, A., Parmar, V., Khosla, A. (2007). A Cretaceous hoofed mammal from India. *Science* 318, 937. doi: 10.1126/science.1149267

Prasad, G. [V. R.], Parmar, V., Kumar, D. (2014). Recent vertebrate fossil discoveries from the Jurassic Kota Formation of India [abstract, Society of Vertebrate Paleontology, 74th annual meeting]. *J. Vert. Paleont.*, Program and Abstracts 2014, 208. Entire abstract book available at http://vertpaleo.org/CMSPages/GetFile.aspx?nodeguid=b51eb899-273b-4ed8-ae8a-ae067050a3a8

Prevosti, F. J., Chemisquy, M. A. (2009, printed 2010). The impact of missing data on real morphological phylogenies: influence of the number and distribution of missing entries. *Cladistics* 26, 326–339. doi: 10.1111/j.1096-0031.2009.00289.x

Pritchard, A.C., Gauthier, J.A., Hanson, M., Bever, G. S., Bhullar, Bh.-A. S. (2018). A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus. *Nat. Commun.* 9, 1213. doi: 10.1038/s41467-018-03508-1

Püschel, H. P., Shelley, S. L., Williamson, T. E., Wible, J. R., Brusatte, S. (2019). Testing the phylogeny of Periptychidae and “archaic” Paleocene mammals under different optimality criteria [abstract, Society of Vertebrate Paleontology, 79th annual meeting]. *J. Vert. Paleont.*, Program and Abstracts 2019, 174. Entire abstract book available at http://vertpaleo.org/Annual-Meeting/Annual-Meeting-Home/SVP-Program-book-v5_w-covers.aspx

de Queiroz, K., Cantino, P. D., Gauthier, J. A. (eds.) (2020). *Phylonyms – A companion to the PhyloCode*. Boca Raton, London, New York: CRC Press.

Rage, J.-C., Dutheil, D. B. (2008). Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco – A preliminary study, with description of a new genus of pipid frog. *Palaeontogr. A* 285, 1–22. doi: 10.1016/j.pala/2008/02-1

Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Wood, P. L. Jr., Sites, J. W. Jr., Wiens, J. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. *PLOS ONE* 10, e0118199. doi: 10.1371/journal.pone.0118199

Reinhard, S., Voitel, S., Kupfer, A. (2013). External fertilisation and paternal care in the paedomorphic salamander *Siren intermedia* Barnes, 1826 (Urodela: Sirenidae). *Zool. Anz.* 253, 1–15. doi: 10.1016/j.jcz.2013.06.002

Reisz, R. R., Modesto, S. P. (1996). *Archerpeton anthracos* from the Joggins Formation of Nova Scotia: a microsaur, not a reptile. *Can. J. Earth Sci.* 33, 703–709. doi: 10.1139/e96-053

Renesto, S., Bernardi, M. (2013, printed 2014). Redescription and phylogenetic relationships of *Megachirella wachtleri* Renesto et Posenato, 2003 (Reptilia, Diapsida). *Paläont. Z.* 88, 197–210. doi: 10.1007/s12542-013-0194-0

Reynoso, V.-H. (2005). Possible evidence of a venom apparatus in a Middle Jurassic sphenodontian from the Huizachal red beds of Tamaulipas, México. *J. Vert. Paleont.* 25, 646–654. doi: 10.1671/0272-4634(2005)025[0646:POEVAJ2.0.CO;2

Richards, K. R., Sherwin, J. E., Smithson, T. R., Bennion, R. F., Davies, S. J., Marshall, J. E. A., Clack, J. A. (2018). Diverse and durophagous: Early Carboniferous chondrichthians from the Scottish Borders. *Earth Env. Sci. Trans. R. Soc. Edinb.* 108, 67–87. doi: 10.1017/S1755691018000166
How to calibrate gnathostome timetrees

Romano, P. S. R., Gallo, V., Ramos, R. R. C., Antonioli, L. (2014a). *Atolchelys lepida*, a new side-necked turtle from the Early Cretaceous of Brazil and the age of crown Pleurodira. *Biol. Lett.* 10, 20140290. doi: 10.1098/rsbl.2014.0290

Romano, C., Koot, M. B., Kogan, I., Brayard, A., Minikh, A. V., Brinkmann, W., et al. (2014b, printed 2016). Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. *Biol. Rev.* 91, 106–147. doi: 10.1111/brv.12161

Romo de Vivar, P. R., Martinelli, A. G., Fonseca, P. H. M., Bento Soares, M. (2020): To be or not to be: the hidden side of *Carnigninia enigmatica* and other puzzling remains of Lepidosauromorpha from the Upper Triassic of Brazil. *J. Vert. Paleont.* online early. doi: 10.1080/02724634.2020.1828438

Ronchi, A., Santi, G., Marchetti, L., Bernardi, M., Gianolla, P. (2018). First report on swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). *Ann. Soc. Geol. Pol.* 88, 111–125. doi: 10.14241/asgp.2018.013

Rong, Y.-F. (2018). Restudy of *Regalerpeton weichangensis* [sic] (Amphibia: Urodela) from the Lower Cretaceous of Hebei, China. *Vert. PalAsiat.* 56, 121–136. doi: 10.19615/j.cnki.1000-3118.170627

Rong, Y.-F., Vasilyan, D., Dong, L.-P., Wang, Y. (accepted). Revision of *Chunerpeton tianyiense* (Lissamphibia, Caudata): is it a cryptobranchid salamander? *Palaeoworld*. doi: 10.1016/j.palwor.2020.12.001

Rougier, G. W., Chornogubsky, L., Casadio, S., Páez Arango, N., Giallombardo, A. (2008, printed 2009). Mammals from the Allen Formation, Late Cretaceous, Argentina. *Cret. Res.* 30, 223–238. doi: 10.1016/j.cretres.2008.07.006

Ruane, S., Pyron, R. A., Burbrink, F. T. (2010, printed 2011) Phylogenetic relationships of the Cretaceous frog *Beelzebufro* from Madagascar and the placement of fossil constraints based on temporal and phylogenetic evidence. *J. Evol. Biol.* 24, 274–285. doi: 10.1111/j.1420-9101.2010.02164.x

Ruta, M., Clack, J. A., Smithson, T. R. (2020) A review of the stem amniote *Eldeceeon rolfei* from the Viséan of East Kirkton, Scotland. *Earth Env. Sci. Trans. R. Soc. Edinb.* online early. doi: 10.1017/S1755691020000079

Salazar, C., Stinnesbeck, W., Quinzio-Sinn, L.A. (2010). Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in central Chile. *N. Jb. Geol. Paläont. Abh.* 257, 181–236. doi: 10.1127/0077-7749/2010/0072

Sansom, I. J., Andreev, P. S. (2018, printed 2019). “The Ordovician enigma. Fish, first appearances and phylogenetic controversies”, in *Evolution and Development of Fishes*, ed. Z. Johanson, C. Underwood, M. Richter (Cambridge, New York, Port Melbourne, New Delhi, Singapore: Cambridge University Press), 59–70. doi: 10.1017/9781316832172.004

Sansom, R. S., Wills, M. A. (2013). Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. *Sci. Rep.* 3, 2545. doi: 10.1038/srep02545

Sansom, I. J., Davies, N. S., Coates, M. I., Nicoll, R. S., Ritchie, A. (2012). Chondrichthyan-like scales from the Middle Ordovician of Australia. *Palaeontology* 55, 243–247. doi: 10.1111/j.1475-4983.2012.01127.x

Sansom, R. S., Choate, P. G., Keating, J. N., Randle, E. (2018). Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. *Biol. Lett.* 14, 20180263. doi: 10.1098/rsbl.2018.0263
How to calibrate gnathostome timetrees

Scarpetta, S. G. (2019). The first known fossil Uma: ecological evolution and the origins of North American fringe-toed lizards. *BMC Evol. Biol.* 19, 178. doi: 10.1186/s12862-019-1501-5

Scarpetta, S. G. (2020) Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian. *Sci. Rep.* 10, 15734. doi: 10.1038/s41598-020-72509-2

Schneider Fachini, T., Onary, S., Palci, A., Lee, M. S. Y., Bronzati, M., Schmaltz Hsiou, A. (2020). Cretaceous blind snake from Brazil fills major gap in snake evolution. *iScience* 23, 101834. doi: 10.1016/j.isci.2020.101834

Schoch, R. R., Milner, A. R. (2014). *Temnospondyli I*. Part 3A2 of *Handbook of Paleoherpetology*, ed. H.-D. Sues. Munich: Dr. Friedrich Pfeil.

Schoch, R. R., Sues, H.-D. (2017, printed 2018). Osteology of the Middle Triassic stem-turtle *Pappochelys rosinae* and the early evolution of the turtle skeleton. *J. Syst. Palaeont.* 16, 927–965. doi: 10.1080/14772019.2017.1354936

Schoch, R. R., Werneburg, R., Voigt, S. (2020). A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. *PNAS* 117, 11584–11588. doi: 10.1073/pnas.2001424117

Scott, C. S., Fox, R. C., Redman, C. M. (2016). A new species of the basal plesiadapiform *Purgatorius* (Mammalia, Primates) from the early Paleocene Ravenscrag Formation, Cypress Hills, southwest Saskatchewan, Canada: further taxonomic and dietary diversity in the earliest primates. *Can. J. Earth Sci.* 53, 343–354. doi: 10.1139/cjes-2015-0238

Shao, S., Li, L., Yang, Y., Zhou, C. (2018). Hyperphalangy in a new sinemydid turtle from the Early Cretaceous Jehol Biota. *PeerJ* 6, e5371. doi: 10.7717/peerj.5371

Silcox, M. T., Bloch, J. I., Boyer, D. M., Chester, S. G. B., López-Torres, S. (2017). The evolutionary radiation of plesiadapiforms. *Évol. Anthropol.* 26, 74–94. doi: 10.1002/evan.21526

Simões, T. R., Wilner, E., Caldwell, M. W., Weinschütz, L. C., Kellner, A. W. A. (2015). A stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. *Nat. Commun.* 6, 8149. doi: 10.1038/ncomms9149

Simões, T. R., Caldwell, M. W., Weinschütz, L. C., Wilner, E., Kellner, A. W. A. (2017). Mesozoic lizards from Brazil and their role in early squamate evolution in South America. *J. Herpetol.* 51, 307–315. doi: 10.1670/16-007

Simões, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., et al. (2018). The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. *Nature* 557, 706–709. doi: 10.1038/s41586-018-0093-3

Simões, T. R., Verno, O., Caldwell, M. W., Pierce, S. E. (2020). Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. *Nat. Commun.* 11, 3322. doi: 10.1038/s41467-020-17190-9

Skutschas, P. P. (2013). Mesozoic salamanders and albanerpetontids of Middle Asia, Kazakhstan, and Siberia. *Palaeobiodiv. Palaeoenv.* 93, 441–457. doi: 10.1007/s12549-013-0126-8

Skutschas, P. P. (2014). *Kiyatriton leshchinskiyi* Averianov et Voronkevich, 2001, a crown-group salamander from the Lower Cretaceous of Western Siberia, Russia. *Cret. Res.* 51, 88–94. doi: 10.1016/j.cretres.2014.05.014

Skutschas, P. P. (2015, printed 2016). A new crown-group salamander from the Middle Jurassic of Western Siberia, Russia. *Palaeobio. Palaeoenv.* 96, 41–48. doi: 10.1007/s12549-015-0216-x
How to calibrate gnathostome timetrees

Smith, K. T. (2009). A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: Biogeography during the warmest interval of the Cenozoic. *J. Syst. Palaeont.* 7, 299–358. doi: 10.1017/S1477201909002752

Smithson, T. R., Carroll, R. L., Panchen, A. L., Andrews, S. M. (1994, for 1993). *Westlothiana lizziae* from the Viséan of East Kirkton, West Lothian, Scotland, and the amniote stem. *Trans. R. Soc. Edinb. Earth Sci.* 84, 383–412. doi: 10.1017/s0263593300006192

Smithson, T. R., Wood, S. P., Marshall, J. E. A., Clack, J. A. (2012). Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. *PNAS* 109, 4532–4537. doi: 10.1073/pnas.1117332109

Sobral, G., Simões, T. R., Schoch, R. R. (2020). A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. *Sci. Rep.* 10, 2273. doi: 10.1038/s41598-020-58883-x

Solé, F., Smith, T., de Bast, E., Codrea, V., Gheerbrant, E. (2016). New carnivoraforms from the latest Paleocene of Europe and their bearing on the origin and radiation of Carnivoraformes (Carnivoromorpha, Mammalia). *J. Vert. Paleont.* 36, e1082480. doi: 10.1080/02724634.2016.1082480

Sookias, R. B. (2019, printed 2020). Exploring the effects of character construction and choice, outgroups and analytical method on phylogenetic inference from discrete characters in extant crocodilians [sic]. *Zool. J. Linn. Soc.* 189, 670–699. doi: 10.1093/zoolinnean/zlz015

de Souza Carvalho, I., Agnolin, F., Aranciaga Rolando, M. A., Novas, F. E., Xavier-Neto, J., de Freitas, F. I., Ferreira Gomes de Andrade, J. A. (2019). A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato Formation (Aptian) and the evolution of South American tongueless frogs. *J. S. Am. Earth Sci.* 92, 222–233. doi: 10.1016/j.jsames.2019.03.005

Spaulding, M., Flynn, J. J. (2012). Phylogeny of the Carnivoramorpha: the impact of postcranial characters. *J. Syst. Palaeont.* 10, 653–677. doi: 10.1080/14772019.2011.630681

Springer, M. S., Foley, N. M., Brady, P. L., Gatesy, J., Murphy, W. J. (2019). Evolutionary models for the diversification of placental mammals across the KPg boundary. *Front. Genet.* 10, 1241. doi: 10.3389/fgene.2019.01241

Sterli, J., de la Fuente, M. S., Rougier, G. W. (2019, for 2018). New remains of *Condorchelys antiqua* (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles. *J. Vert. Paleont.* 38, e1480112. doi: 10.1080/02724634.2018.1480112

Sterli, J., Martínez, R. N., Cerda, I. A., Apaldeetti, C. (2020). Appearances can be deceptive: bizarre shell microanatomy and histology in a new Triassic turtle (Testudinata) from Argentina at the dawn of turtles. *Pap. Palaeont.* online early. doi: 10.1002/spp2.1334

Stocker, M. R., Nesbitt, S. J., Kligman, B. T., Paluh, D. J., Marsh, A. D., Blackburn, D. C., Parker, W. G. (2019). The earliest equatorial record of frogs from the Late Triassic of Arizona. *Biol. Lett.* 15: 20180922. doi: 10.1098/rsbl.2018.0922

Stumpf, S., Kriwet, J. (2019). A new Pliensbachian elasmobranch (Vertebrata, Chondrichthyes) assemblage from Europe, and its contribution to the understanding of late Early Jurassic elasmobranch diversity and distributional patterns. *Paläont. Z.* 93, 637–658. doi: 10.1007/s12542-019-00451-4
How to calibrate gnathostome timetrees

Sullivan, R. M. (1982). Fossil lizards from Swain Quarry “Fort Union Formation,” middle Paleocene (Torrejonian), Carbon County, Wyoming. *J. Paleont.* 56, 996–1010. Available at

https://www.jstor.org/stable/1304719

Sun, Z.-y., Tintori, A., Lombardo, C., Jiang, D.-y. (2016). New miniature neopterygians from the Middle Triassic of Yunnan Province, South China. *N. Jb. Geol. Paläont. Abh.* 282, 135–156. doi:

10.1127/njgpa/2016/0610

Sweetman, S. C., Smith, G., Martill, D. M. (2017). Highly derived eutherian mammals from the earliest Cretaceous of southern Britain. *Acta Palaeont. Pol.* 62, 657–665. doi:

10.4202/app.00408.2017

Tambussi, C. P., Degrange, F. J., de Mendoza, R. S., Sferco, E., Santillana, S. (2019). A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl. *Zool. J. Linn. Soc.* 186, 673–700. doi: 10.1093/zoolinnean/zly085

Tanner, L. H., Lucas, S. G. (2015). The Triassic-Jurassic strata of the Newark Basin, USA: A complete and accurate astronomically-tuned timescale? *Stratigraphy* 12, 47–65. Available at

http://www.micropress.org/microaccess/stratigraphy/issue-316/article-1933

The PLOS ONE Staff (2014). Correction: The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. *PLOS ONE* 9, e97828. doi: 10.1371/journal.pone.0097828

Tomiya, S. (2011). A new basal caniform (Mammalia: Carnivora) from the middle Eocene of North America and remarks on the phylogeny of early carnivorans. *PLoS ONE* 6, e24146. doi:

10.1371/journal.pone.0024146

Tomiya, S., Tseng, Z. J. (2016) Whence the beardogs? Reappraisal of the Middle to Late [sic] Eocene ‘*Miapis’* from Texas, USA, and the origin of Amphicyonidae (Mammalia, Carnivora). *R. Soc. Open Sci.* 3, 160518. doi: 10.1098/rsos.160518

Tong, H., Danilov, I., Ye, Y., Ouyang, H., Peng, G. (2011, printed 2012). Middle Jurassic turtles from the Sichuan Basin, China: a review. *Geol. Mag.* 149, 675–695. doi:

10.1017/S0016756811000859

Tong, H., Li, L., Ouyang, H. (2013, printed 2014). A revision of *Sinaspideretes wimani* Young & Chow, 1953 (Testudines: Cryptodira: Trionychoidae) from the Jurassic of the Sichuan Basin, China. *Geol. Mag.* 151, 600–610. doi: 10.1017/S0016756813000575

Trujillo, K.C., Carrano, M.T., Chamberlain, K.R. (2015). A U-Pb zircon age for Reed’s Quarry 9, Upper Jurassic Morrison Formation, Albany County, WY [abstract, Society of Vertebrate Paleontology, 75th annual meeting]. *J. Vert. Paleont.* Program and Abstracts 2015, 226. Entire abstract book available at http://vertpaleo.org/PDFS/SVP-2015-Program-and-Abstract-Book-9-22-2015.aspx

van Tuinen, M., Hedges, S. B. (2004). The effects of external and internal fossil calibrations on the avian evolutionary timescale. *J. Paleont.* 78, 45–50. doi: 10.1666/0022-3360(2004)078<0045:TEOEAI>2.0.CO;2

Tykoski, R. S., Rowe, T. B., Ketcham, R. A., Colbert, M. W. (2002). *Calsoyasuchus valliceps*, a new crocodyliform from the Early Jurassic Kayenta Formation of Arizona. *J. Vert. Paleont.* 22, 593–611. doi: 10.1671/0272-4634(2002)022[0593:CVANCF]2.0.CO;2
How to calibrate gnathostome timetrees

Vasilyan, D., Böhme, M. (2012). Pronounced peramorphosis in lissamphibians—Aviturus exsecratus (Urodela, Cryptobranchidae) from the Paleocene–Eocene Thermal Maximum of Mongolia. PLOS ONE 7, e40665. doi: 10.1371/journal.pone.0040665

Vasilyan, D., Böhme, M., Chkhikvadze, V. M., Semenov, Yu. A., Joyce, W. G. (2013). A new giant salamander (Urodela, Pancretobranchia) from the Miocene of Eastern Europe (Grytsiv, Ukraine). J. Vert. Paleont. 33, 301-318. doi: 10.1080/02724634.2013.722151

Vijayakumar, S. P., Pyron, R. A., Dinesh, K. P., Torsekar, V. R., Srikanthan, A. N., Swamy, P., Stanley, E. L., Blackburn, D. C., Shanker, K. (2019). A new ancient lineage of frog (Anura: Nectritrachidae: Astrobatrachinae subfam. nov.) endemic to the Western Ghats of Peninsular India. PeerJ 7, e6457. doi: 10.7717/peerj.6457

Waddell, P. J., Kishino, H., Ota, R. (2001). A phylogenetic foundation for comparative mammalian genomics. Genome Informatics 12, 141–154. doi: 10.11234/gi1990.12.141

Waggoner, B., Collins, A. G. (2004) Reductio ad absurdum: testing the evolutionary relationships of Ediacaran and Paleozoic problematic fossils using molecular divergence dates. J. Paleont. 78, 51–61. doi: 10.1666/0022-3360(2004)078<0051:RAATTE>2.0.CO;2

Wang, Y., Evans, S. E. (2006). A new short-bodied salamander from the Upper Jurassic/Lower Cretaceous of China. Acta Palaeontol. Pol. 51, 127–130.

Wang, Y., Dong, L., Evans, S. E. (2015, printed 2016). Polydactyly and other limb abnormalities in the Jurassic salamander Chunerpeton from China. Palaeobiol. Palaeoenv. 96, 49–59. doi: 10.1007/s12549-015-0219-7

Wang, Y.-M., O’Connor, J. K., Li, D.-Q., You, H.-L. (2013). Previously unrecognized ornithuromorph bird diversity in the Early Cretaceous Changma Basin, Gansu Province, northwestern China. PLOS ONE 8, e77693. doi: 10.1371/journal.pone.0077693

Wang, Y.-Q., Li, C.-K., Li, Q., Li, D.-S. (2016). A synopsis of Paleocene stratigraphy and vertebrate paleontology in the Qianshan Basin, Anhui, China. Vert. PalAsiat. 54, 89–120. Available at http://www.ivpp.cas.cn/cbw/gjzdwxb/xbwzxz/201604/P020160429371137449751.pdf

Wang, J., Ye, Y., Pei, R., Tian, Y., Feng, C., Zheng, D., Chang, S.-C. (2018). Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution. GSA Bull. 130, 1493–1500. doi: 10.1130/B31910.1

Wang, H., Meng, J., Wang, Y. (2019). Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576, 102–105. doi: 10.1038/s41586-019-1792-0

Wesley, G. D., Flynn, J. J. (2003). A revision of Tapocyon (Carnivoramorpha), including analysis of the first cranial specimens and identification of a new species. J. Paleont. 77, 769–783. doi: 10.1017/S0022336000044486

Whelan, N. V., Halanych, K. M. (2016, printed 2017). Who let the CAT out of the bag? Accurately dealing with substitutional heterogeneity in phylogenomic analyses. Syst. Biol. 66, 232–255. doi: 10.1093/sysbio/syw084

Wible, J. R., Rougier, G. W., Novacek, M. J., Asher, R. J. (2009). The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull. Am. Mus. Nat. Hist. 327, 1–123. doi: 10.1206/623.1

Wiens, J. J. (2003a). Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? J. Vert. Paleont. 23, 297–310. doi: 10.1671/0272-4634(2003)023[0297:ITICAP]2.0.CO;2

This is a provisional file, not the final typeset article
How to calibrate gnathostome timetrees

Wiens, J. J. (2003b). Missing data, incomplete taxa, and phylogenetic accuracy. *Syst. Biol.* 52, 528–538. doi: 10.1080/10635150390218330

Wiens, J. J. (2005a). Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? *Syst. Biol.* 54, 731–742. doi: 10.1080/10635150500234583

Wiens, J. J. (2005b, printed 2006). Missing data and the design of phylogenetic analyses. *J. Biomed. Informatics* 39, 34–42. doi: 10.1016/j.jbi.2005.04.001

Wiens, J. J., Bonett, R. M., Chippindale, P. T. (2005). Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. *Syst. Biol.* 54, 91–110. doi: 10.1080/10635150590906037

Williamson, T. E., Flynn, A., Peppe, D. J., Heizler, M. T., Leslie, C. E., Secord, R., et al. (2019). A revised, high-resolution age model for the Paleocene of the San Juan Basin, New Mexico, U.S.A[,] and implications for faunal and floral dynamics during the dawn of the age of mammals [abstract, Society of Vertebrate Paleontology, 79th annual meeting]. *J. Vert. Paleont.*, Program and Abstracts 2019, 219–220. Entire abstract book available at http://vertpaleo.org/Annual-Meeting/Annual-Meeting/Home/SVP-Program-book-v5_w-covers.aspx

Wolfe, J. M., Daley, A. C., Legg, D. A., Edgecombe, G. D. (2016). Fossil calibrations for the arthropod Tree of Life. *Earth-Sci. Rev.* 160, 43–110. doi: 10.1016/j.earscirev.2016.06.008

Woodburne, M. O., Goin, F. J., Raigemborn, M. S., Heizler, M., Gelfo, J. N., Oliveira, E. V. (2014). Revised timing of the South American early Paleogene land mammal ages. *J. S. Am. Earth Sci.* 54, 109–119. doi: 10.1016/j.jsames.2014.05.003

Woodhead, J., Reisz, R. [R.], Fox, D., Drysdale, R., Hellstrom, J., Maas, R., et al. (2010). Speleothem climate records from deep time? Exploring the potential with an example from the Permian. *Geology* 38, 455–458. doi: 10.1130/G30354.1

Xing, L.-D., Lockley, M. G., Wei, C., Gierliński, G. D., Li, J.-J., Persons, W. S. IV, et al. (2013). Two theropod track assemblages from the Jurassic of Chongqing, China, and the Jurassic stratigraphy of Sichuan Basin. *Vert. PalAsiat.* 51, 107–130. Available at http://www.ivpp.cas.cn/cbw/gjzdxb/xbwzz/201305/P020130507384125932092.pdf

Xu, G.-H. (2019). Osteology and phylogeny of *Robustichthys luopingensis*, the largest holostean fish in the Middle Triassic. *PeerJ* 7, e7184. doi: 10.7717/peerj.7184

Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A. R., Luo, Z.-X. (2013). Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. *Science* 341, 779–783. doi: 10.1126/science.1237970

Zack, S. P. (2009). *The phylogeny of eutherian mammals: a new analysis emphasizing dental and postcranial morphology of Paleogene taxa* [doctoral thesis]. Baltimore: Johns Hopkins University. UMI number 3399111.

Žigaitė-Moro, Ž., Karatajútė-Talimaa, V., Joachimski, M. M., Jeffries, T. (2018). Silurian vertebrates from northern Mongolia: diversity, ecology and environment [abstract, 5th International Palaeontological Congress]. Entire abstract book available at https://ipc5.sciencesconf.org/data/IPC5_Abstract_Book.pdf

Zhang, Y., Wang, Y., Zhan, R., Fan, J., Zhou, Z., Fang, X. (2014). *Ordovician and Silurian Stratigraphy and Palaeontology of Yunnan, Southwest China. A guide to the field excursion across the South China, Indochina and Sibumasu [blocks]*. Beijing: Science Press. Cited pages available at https://doi.org/10.1101/2019.12.19.882829; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
How to calibrate gnathostome timetrees

Zhou, C.-F., Bhullar, Bh.-A. S., Neander, A. I., Martin, T., Luo, Z.-X. (2019). New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279. doi: 10.1126/science.aau9345

Zhu, M., Fan, J. (1995). Youngolepis from the Xishancun Formation (Early Lochkovian) of Qujing, China. Geobios 28 (supp. 2), 293–299. doi: 10.1016/S0016-6995(95)80130-8