Higgs Searches at the Tevatron

Scott S. Snyder

Brookhaven National Laboratory
SSI 04, SLAC

Outline:

• Introduction.
• SM Higgs Results.
• Non-SM Higgs Results.
• Summary.
Indirect Constraints

- Tevatron experiments can set indirect constraints on the Higgs mass via precision measurements of the W boson and top quark masses.
- Not the focus of this talk.
Standard Model Higgs

- For $m_H \lesssim 140$ GeV:
 - $H \rightarrow b\bar{b}$ dominates.
 - $gg \rightarrow H$ hopeless due to QCD background.
 - Look for associated W/Z production with leptonic decays.
- For higher masses:
 - $H \rightarrow WW$ dominates.
 - Can look for $gg \rightarrow H \rightarrow WW$.
- Cross section ~ 0.1 pb.
- Other channels:
 - $Hb\bar{b}$, $Ht\bar{t}$ have spectacular signatures, but $\sigma \sim 5$ fb.
- SM extensions may enhance $hb\bar{b}$, $H \rightarrow \gamma\gamma$.
Fermilab Tevatron

- Until the LHC turns on, this is the only place in the world capable of probing the Higgs sector.
- Collides \(p \) on \(\bar{p} \) at \(\sqrt{s} = 1.96 \) TeV.
- Bunch spacing: 396 ns.
 (36x36 bunches)
- Peak luminosity: \(80–100 \times 10^{30} \).

- Exceeded luminosity goals for 2004!
- Total delivered: \(> 600 \) pb\(^{-1} \).
Both feature: tracking in central B-field, silicon vertex tracker, outer tracking, calorimetry, muon system.
DØ
$WH \rightarrow \ell \nu b\bar{b}$

Signal

- “Golden” channel for the Tevatron experiments.
- Final state:
 - High-p_T lepton.
 - Large E_T.
 - Two b-jets.
- Essential capabilities:
 - Good, efficient lepton ID.
 - b-tagging.
 - $m(b\bar{b})$ resolution.

Backgrounds

- Light quark production: $p\bar{p} \rightarrow jjj \ldots$
- Heavy flavor production: $p\bar{p} \rightarrow b\bar{b}j \ldots$
- $W +$ light jets: $p\bar{p} \rightarrow Wjj$
 - Suppress with lepton, E_T, b-tagging cuts.
- $t\bar{t}$: $p\bar{p} \rightarrow \ell\nu q\bar{q}b\bar{b}$, $p\bar{p} \rightarrow \ell\nu\ell\nu b\bar{b}$.
 - ↑ A significant background!
 - Veto on extra leptons or jets.
- $Wb\bar{b}$ ($Wc\bar{c}$) ← Major background!
- $p\bar{p} \rightarrow t\bar{b} \rightarrow \ell\nu b\bar{b}$
- $p\bar{p} \rightarrow WZ \rightarrow \ell\nu b\bar{b}$
 - Look for $m(b\bar{b})$ mass peak.
 - Other event kinematics.
• Examples of $W/Z \rightarrow$ lepton plots for e, μ, and τ.
B tagging

- Being able to identify jets containing b quarks is essential for many Higgs analyses.
- E.g., separate $Wb\bar{b}$ from Wjj.
- Can look for semileptonic b decays: $b \to (e/\mu)\nu c$, but branching ratio is low and leptons are soft.
- B mesons have a relatively long lifetime.
- Travel about ~ 1 mm before decaying.
- Decay gives ~ 4 charged tracks.
- Look for tracks or vertices displaced from primary vertex.

- Important parameters:
 - Impact parameter resolution: $d/\sigma(d)$.
 - Decay length resolution: $L_{xy}/\sigma(L_{xy})$

- Numerous tagging algorithms have been developed by both experiments.
B tagging

- Example: DØ JLIP algorithm.
- Jet Lifetime Impact Parameter.
- Uses impact parameter significance.
- Tabulate $P_{PV}(d/\sigma(d))$.
 - Probability for track to come from primary vertex, as a function of impact parameter significance.
 - Bin according to p_T, number of hits, etc.
- Combine probabilities for all tracks in a jet.
- Typical performance (for jets with good tracks):
 - $\sim 50\%$ tagging efficiency
 - For $\sim 0.5\%$ mistag rate.
• Common element in many Higgs analyses: $h \rightarrow b\bar{b}$.

• Want to be able to reconstruct Higgs mass peak in $m(b\bar{b})$ to discriminate against background.

• $m(b\bar{b})$ is one of the most powerful variables available!

• Dijet mass resolution is important.
 – Improving resolution from 12% to 10% is equivalent to a 20% luminosity difference.

• Right: CDF studies on central jets.

• $\sim 10\%$ seems achievable.
$WH \rightarrow \ell \nu b\bar{b}$ results

Both: Large lepton p_T, E_T, jet E_T. Exactly two jets.

DØ

$\ell \equiv$ electrons only \quad 25 < M_{W_T} < 125 \quad \text{Two } b\text{-tags}

CDF

$\ell \equiv e$ or μ \quad \text{Extra lepton veto} \quad \text{One } b\text{-tag}

DØ Run II Preliminary \quad L = 174 pb$^{-1}$

$W + 2$ b-tagged jets, $25 \text{ GeV} < M_T (W) < 125 \text{ GeV}$

Observed \quad 2

Background \quad 0.9 \pm 0.4

Expected $WH (m_H=115 \text{ GeV})$ \quad 0.03 \pm 0.1

$\sigma(WH) \times B(H \rightarrow b\bar{b}) < 12.4 \text{ pb} @ 115$

$\sigma(Wbb) < 20.3 \text{ pb}$

CDF Run II Preliminary (162 pb$^{-1}$)

Observed \quad 62

Background \quad 60.55 \pm 4.43

Expected $WH (m_H=115 \text{ GeV})$ \quad 0.29

$\sigma(WH) \times B(H \rightarrow b\bar{b}) < 5 \text{ pb} @ 115$
\[(Z \rightarrow ee/\mu\mu)b\] Studies

- Measure the ratio \((Z+b)/(Z+j)\).
 - Study backgrounds for \(ZH\).
 - Probe PDF of \(b\)-quarks.
- Signature:
 - Two isolated, high-\(p_T\) leptons.
 - Dilepton mass near \(m_Z\).
 - Jet \(E_T > 20\) GeV and \(|\eta| < 2.5\).
- Backgrounds estimated from data.
 - QCD fakes and mistags.
- Systematics:
 - \(b\)-tagging efficiency: 16%.
 - Jet energy scale: 10%.
 - Background estimation: 6%.
- Result:
 \[\sigma(Z+b)/\sigma(Z+j) = 0.024 \pm 0.005(\text{stat})^{+0.005}_{-0.004}(\text{syst})\]
- Agrees with NLO calc \(\sim 0.02\) (hep-ph/0312024).
$H \rightarrow WW^*$

- Best mode at the Tevatron for $m_H \gtrsim 140$ GeV.

- Signature:
 - Two isolated, high-p_T leptons.
 - Large E_T.
 - Small jet activity.

- Spins of W’s are correlated; leptons tend to go in the same direction.
 - Small $m(\ell\ell)$.
 - Small $\Delta\phi(\ell\ell)$.

- Backgrounds:
 - Electroweak WW production.
 - $Z/\gamma \rightarrow \ell\ell$ with mismeasured E_T.
 - $W +$ jets with fake lepton.
 - ZZ, WZ.

DØ $e\mu$ channel: 158 pb$^{-1}$
After lepton preselection only
$H \rightarrow WW^* \rightarrow ee, e\mu, \mu\mu$

DØ
- Channels separate: \(\sim 160 \text{ pb}^{-1} \).
- \(\Delta \phi(ee) < 1.5, \Delta \phi(e\mu/\mu\mu) < 2.0 \).

CDF
- Channels combined: \(\sim 184 \text{ pb}^{-1} \).
- \(m(ll) < m_H/2 \).

Fit \(\Delta \phi(ll) \) to get limit.
$H \rightarrow WW^*$ Results

DØ

	ee	$e\mu$	$\mu\mu$
Observed	2	2	5
Expected	2.7 ± 0.4	3.1 ± 0.3	5.3 ± 0.6

$\sigma \times B(H \rightarrow WW) < 5.7 \text{ pb}$ \hspace{1cm} \leftarrow m_H = 160 \rightarrow$

CDF

	All
Observed	3
Expected	5.8 ± 0.6

$\sigma \times B(H \rightarrow WW) < 5.6 \text{ pb}$
The branching ratio of $H \to \gamma\gamma$ in the Standard Model is very small.
- $10^{-3} - 10^{-4}$.
- Not feasible for the Tevatron.

Some extensions to the Standard Model predict suppressed coupling of Higgs to various classes of fermions.
- Fermiophobic Higgs (no coupling to any fermions).
- Topcolor (the only fermion the Higgs couples to is the top quark).

With other decay modes suppressed, $H \to \gamma\gamma$ is enhanced.

Mrenna, Wells, PRD63 (2001).
Search for $H \rightarrow \gamma\gamma$

- DØ analysis from ~ 191 pb$^{-1}$.
- Require two photons > 25 GeV.
 - Isolated EM clusters with no associated tracks.
 - Shower shape cuts.
- $p_T(\gamma\gamma) > 35$ GeV.
- Classify events based on location of photon candidates:
 - CC: Central calorimeter.
 - EC: Endcap calorimeter.
- Data shown on right.
 - Blue: Data
 - Red: Total SM expectation
 - Gray: SM expectation error band
 - Green: QCD background
 - Brown: Drell-Yan $Z/\gamma \rightarrow ee$
 - Black: Direct $\gamma\gamma$.

Higgs Searches at the Tevatron – p. 1
Search for $H \rightarrow \gamma\gamma$: Results

- Use CC-CC and CC-EC events.
- Make final mass window cut in $m(\gamma\gamma)$.
- Varies with m_H.
- Width varies:
 - ~ 6 GeV for $m_H = 60$.
 - ~ 10 GeV for $m_H = 150$.
- Derive 95% limits for fermiophobic and topcolor scenarios.
- Results:
 - Black: Branching ratio limit.
 - Green: One particular model.
 - Magenta: Expected Tevatron exclusion limit for 2 fb^{-1}.
MSSM Higgs

- In supersymmetric models, there are five physical Higgs scalars:
 - CP-even: h, H.
 - CP-odd: A.
 - Charged: H^\pm.
- Two free parameters:
 - One Higgs mass.
 - $\tan \beta$
- For neutral scalars $\phi \equiv h/H/A$, $b\phi$ coupling is enhanced by $\tan \beta$.
- Look for $\phi b\bar{b}$ production, with $\phi \rightarrow b\bar{b}$.
DØ MSSM Higgs Search

- Data: $\sim 131 \text{ pb}^{-1}$.
- Require at least 3 b-tagged jets.
- Jet E_T, $|\eta|$ cuts and maximum jets allowed depend on m_H.
- At $m_H = 100$:
 - Jet $E_T > 40, > 35, > 15$.
 - $|\eta| < 2.5$.
 - $N_j \leq 4$.
- Backgrounds:
 - QCD light jets.
 - QCD $b\bar{b}j, c\bar{c}j$.
 - $b\bar{b}b\bar{b}$, $(Z \to b\bar{b})j, t\bar{t}$.
- Plot $m(jj)$ for leading two jets and fit to sum of signal and background.
- Set 95% C.L. limit.
Some models predict doubly-charged Higgs bosons: H^{++}, H^{--}.
- Example: L-R symmetric model.
- Model has parity symmetry at high energies.
- Parity nonconservation appears at low energies via SSB.
- Requires Higgs triplet.

Production at Tevatron via Z/γ^*:

- Look for like-sign lepton pairs.
 - ee, $e\mu$, $\mu\mu$.
- High-p_T.
- Isolated.
- Backgrounds:
 - $b\bar{b}$
 - $W + \text{jets}$
 - $Z \to \ell\ell$
 - WZ, WW
 - $t\bar{t}$

Decays for $m(H^{++})$ likely to be dominantly like-sign lepton pairs.

Branching ratios not well constrained.
Doubly-charged Higgs Results

	CDF: 240 pb$^{-1}$	DØ: 113 pb$^{-1}$						
	Bkg	Data	$m(H_L^{++})$	$m(H_R^{++})$	Bkg	Data	$m(H_L^{++})$	$m(H_R^{++})$
ee	1.5$^{+0.9}_{-0.6}$	0	> 133					
$\mu\mu$	0.8$^{+0.5}_{-0.4}$	0	> 136	> 113	1.5 \pm 0.4	3	> 118.4	> 98.2
$e\mu$	0.4 \pm 0.2	0	> 115					
Long-term Higgs Sensitivity

- Base projection:
 Exclude 115–130.
 3σ evidence up to $\sim 120–125$.

- Design projection:
 3σ evidence up to ~ 130.
 5σ discovery up to $\sim 115–120$.

- Caveat: Study assumed upgrades of vertex detectors (now canceled).

- Accelerator luminosity projections:
 - $\sim 8 \text{ fb}^{-1}$ by end of 2009 for design (challenging) projection.

- Base projection (conservative):
 - Allowing for schedule slippage and underperformance.
 $\sim 4 \text{ fb}^{-1}$ by end of 2009.

Tevatron Higgs Sensitivity Study 2003:
Summary

- Only a couple hundred pb$^{-1}$ analyzed so far.
- About half of what’s been recorded.
- Results so far focused on
 - Understanding detector response.
 - Understanding background processes.
- Tevatron can already set competitive limits for some non-SM processes.
- Tevatron is performing better than predicted for 2004.
- Data will keep accumulating.

- SM Higgs is very challenging to find. But if performance projections hold, we’ll have sensitivity to interesting range of Higgs masses.
References

- CDF results:
 http://www-cdf.fnal.gov/physics/exotic/exotic.html

- DØ results:
 http://www-d0.fnal.gov/Run2Physics/WWW/results/HIGGS/higgs.htm

- 2003 Higgs Sensitivity Study:
 http://www-d0.fnal.gov/Run2Physics/higgs_sensitivity_study.html

- 2000 Higgs Working Group Report:
 hep-ph/0010338