Association of Statins for Primary Prevention of Cardiovascular Diseases With Hospitalization for COVID-19: A Nationwide Matched Population-Based Cohort Study

Kim Bouillon MD, PhD; Bérangère Baricault MSc; Laura Semenzato MSc; Jérémie Botton PharmD, PhD; Marion Bertrand MSc; Jérôme Drouin MSc; Rosemary Dray-Spira MD, PhD; Alain Weill MD; Mahmoud Zureik MD, PhD

BACKGROUND: There is little evidence on the relationship between statin use and the risk of hospitalization attributable to COVID-19.

METHODS AND RESULTS: The French National Healthcare Data System database was used to conduct a matched-cohort study. For each adult aged ≥40 years receiving statins for the primary prevention of cardiovascular diseases, one nonuser was randomly selected and matched for year of birth, sex, residence area, and comorbidities. The association between statin use and hospitalization for COVID-19 was examined using conditional Cox proportional hazards models, adjusted for baseline characteristics, comorbidities, and long-term medications. Its association with in-hospital death from COVID-19 was also explored. All participants were followed up from February 15, 2020, to June 15, 2020. The matching procedure generated 2,058,249 adults in the statin group and 2,058,249 in the control group, composed of 46.6% of men with a mean age of 68.7 years. Statin users had a 16% lower risk of hospitalization for COVID-19 than nonusers (adjusted hazard ratio [HR], 0.84; 95% CI, 0.81–0.88). All types of statins were significantly associated with a lower risk of hospitalization, with the adjusted HR ranging from 0.75 for fluvastatin to 0.89 for atorvastatin. Low- and moderate-intensity statins also showed a lower risk compared with nonusers (HR, 0.78 [95% CI, 0.71–0.86] and HR, 0.84 [95% CI, 0.80–0.89], respectively), whereas high-intensity statins did not (HR, 1.01; 95% CI, 0.86–1.18). We found similar results with in-hospital death from COVID-19.

CONCLUSIONS: Our findings support that the use of statins for primary prevention is associated with lower risks of hospitalization for COVID-19 and of in-hospital death from COVID-19.

Key Words: COVID-19 ▪ hospitalization ▪ mortality ▪ SARS-CoV-2 ▪ statins

A better understanding of the determinants associated with COVID-19 helps to identify vulnerable individuals and to provide satisfactory health care management. Given the absence of a specific treatment for COVID-19, several existing drugs were thought to be beneficial, in particular those with anti-inflammatory or immunomodulatory activities such as statins.1 Besides their well-known lipid-lowering effect, statins have been reported to have pleiotropic beneficial actions by regulating numerous biological pathways implicated in anti-inflammatory, immune-modulatory, or anticoagulant actions. These drugs were found to be effective in previous outbreaks, namely those of hemagglutinin type 1 and neuraminidase type 1 (H1N1) influenza2,3 and the Ebola virus.3,4 It has also been shown that they have been useful for survival in SARS-CoV and Middle
CLINICAL PERSPECTIVE

What Is New?
• The evidence about statins and serious in-hospital COVID-19 outcomes is abundant but is scarce for initial outcomes in the disease course such as hospitalization for COVID-19. We conducted a population-based matched cohort study including 2 million adults aged ≥40 years who used statins for the primary prevention of cardiovascular diseases compared with 2 million nonusers.
• Our finding supports that statin use was associated with a lower risk of hospitalization for COVID-19, and we found similar results with all types of statins.
• Low- and moderate-intensity statins were also associated with a lower risk compared with non-use, whereas high-intensity statins were not.

What Are the Clinical Implications?
• Statins are now known to be beneficial in primary prevention, decreasing all-cause mortality, cardiovascular diseases, coronary heart disease, and stroke without any evidence of serious harm caused by their use.
• Since the beginning of the COVID-19 pandemic, many clinicians have suggested that statins could be used as an adjunctive treatment for SARS-CoV infection.
• Our finding supports the hypothesis that low- and moderate-intensity statin use might contribute to a small risk reduction of hospitalization for COVID-19.

East respiratory syndrome coronavirus (MERS-CoV) infections. Statins exert an anti-inflammatory effect by directly inhibiting the toll-like receptor MYD88-NF-κB pathway and by upregulating angiotensin-converting enzyme 2 (ACE-2) expression.

Numerous epidemiological studies demonstrate that individuals who were previously treated with statins had a lower risk of experiencing severe COVID-19 outcomes, including admission into an intensive care unit, invasive mechanical intubation, acute respiratory distress syndrome, and in-hospital death, compared with nonexposed individuals. In total, 36 of 49 studies (73%) show a lower risk of severe COVID-19 outcomes—in particular mortality—among statin users compared with nonusers. In 11 studies, ratio measures were close to 1. In 2 studies, an increased risk was observed. Most of these studies were conducted in hospitalized patients and/or patients tested for COVID-19. This could have led to a collider bias—which could have distorted the association between statin exposure and severe COVID-19 outcomes compared with that observed in the general population. That is, both the cause of using statins and the risk for COVID-19-related hospitalization may influence the likelihood of being selected for the study. Furthermore, in the literature, there is little evidence on statin use with hospitalization for COVID-19.

In this context, we conducted a matched-cohort study in a general population aimed at studying the relationship between statin use before the start of the COVID-19 pandemic and symptomatic COVID-19 leading to hospitalization, using a French nationwide database. In addition, we examined its association with in-hospital death from COVID-19, frequently investigated in published studies.

METHODS

According to data protection and French regulation, the authors cannot publicly release data from the SNDS (French National Healthcare Data System [Système National des Données de Santé]). However, any person or structure, public or private, for-profit or non-profit, can access SNDS data on authorization from the CNIL (French Data Protection Office [Commission Nationale de l’Informatique et des Libertés]).
been extensively used in France to conduct real-life and anonymous number. Since 2006, SNDS has recorded all reimbursement data on: (1) outpatient care including drugs, imaging, and laboratory tests; (2) inpatient care (including diagnoses and procedures performed) from the national hospital discharge database (PMSI [Programme de Médicalisation des Systèmes d'Information]); and (3) health expenditure for patients with long-term diseases, such as cancer and diabetes, which is fully reimbursed. SNDS also contains sociodemographic data and, when applicable, the date of death.

As a routine, information on hospital stays is collected monthly in the PMSI and integrated annually into the SNDS the following year. In April 2020, the French government encouraged hospitals to report all hospital stays attributable to COVID-19 once or twice a week through an exceptional fast-tracking procedure (“fast-track” PMSI). The present study was based on the fast-track PMSI database available as of September 30, 2020. A cutoff discharge date of June 15, 2020, was chosen to ensure completeness of data over the study period, which covers the first epidemic wave in France. At this date, 87,809 participants were admitted with a principal diagnosis of COVID-19, and 95% of them were linked to outpatient data using anonymized identifiers. Of these 87,809 participants, 15,661 died in hospital.

All variables used in this study were defined based on International Statistical Classification of Diseases, Tenth Revision (ICD-10), codes for primary and secondary diagnosis; the French common classification of medical procedures Classification Commune des Actes Médicaux (CCAM) codes for procedures; and Anatomical Therapeutic Chemical, Code Identifiant de Présentation (CIP), or Unité Commune de Dispensation (UCD) codes for drugs. We used algorithms developed by the national health insurance in the Diseases and Health Expenditures Mapping, which are detailed in Tables S1 through S4. For the ICD-10 and CCAM codes, any occurrence in the 5 years preceding inclusion is used. For the anatomical therapeutic chemical and CIP codes, at least 3 drug dispensing (or 2 when at least one concerned the dispensing of large pack size) during 2019 are used. A small pack size usually contains a sufficient number of pills for a 1-month treatment and a large one for 3 months. For the exposure variable, statins, we added another condition: at least one dispensing in the last month (if small pack size) or 3 months (if large pack size) preceding inclusion. The inclusion or index date was defined as February 15, 2020, considered the start date of the epidemic in France.

Data Source

This cohort study used data from the SNDS, formerly known as SNIIRAM, established in 2006. SNDS covers the entire population of France (67 million residents). Each person is identified by a unique and anonymous number. Since 2006, SNDS has recorded all reimbursement data on: (1) outpatient care including drugs, imaging, and laboratory tests; (2) inpatient care (including diagnoses and procedures performed) from the national hospital discharge database (PMSI [Programme de Médicalisation des Systèmes d’Information]); and (3) health expenditure for patients with long-term diseases, such as cancer and diabetes, which is fully reimbursed. SNDS has been extensively used in France to conduct real-life pharmacoepidemiological studies including those on the COVID-19 pandemic. SNDS also contains sociodemographic data and, when applicable, the date of death.

As a routine, information on hospital stays is collected monthly in the PMSI and integrated annually into the SNDS the following year. In April 2020, the French government encouraged hospitals to report all hospital stays attributable to COVID-19 once or twice a week through an exceptional fast-tracking procedure (“fast-track” PMSI). The present study was based on the fast-track PMSI database available as of September 30, 2020. A cutoff discharge date of June 15, 2020, was chosen to ensure completeness of data over the study period, which covers the first epidemic wave in France. At this date, 87,809 participants were admitted with a principal diagnosis of COVID-19, and 95% of them were linked to outpatient data using anonymized identifiers. Of these 87,809 participants, 15,661 died in hospital.

All variables used in this study were defined based on International Statistical Classification of Diseases, Tenth Revision (ICD-10), codes for primary and secondary diagnosis; the French common classification of medical procedures Classification Commune des Actes Médicaux (CCAM) codes for procedures; and Anatomical Therapeutic Chemical, Code Identifiant de Présentation (CIP), or Unité Commune de Dispensation (UCD) codes for drugs. We used algorithms developed by the national health insurance in the Diseases and Health Expenditures Mapping, which are detailed in Tables S1 through S4. For the ICD-10 and CCAM codes, any occurrence in the 5 years preceding inclusion is used. For the anatomical therapeutic chemical and CIP codes, at least 3 drug dispensing (or 2 when at least one concerned the dispensing of large pack size) during 2019 are used. A small pack size usually contains a sufficient number of pills for a 1-month treatment and a large one for 3 months. For the exposure variable, statins, we added another condition: at least one dispensing in the last month (if small pack size) or 3 months (if large pack size) preceding inclusion. The inclusion or index date was defined as February 15, 2020, considered the start date of the epidemic in France.

Study Population

Individuals receiving at least 1 health care reimbursement after February 15, 2019, and aged ≥40 years were included in this study. The exposed group was composed of those using statins in monotherapy for the primary prevention of cardiovascular diseases to avoid confounding biases related to these conditions.

The statin group was further studied according to statin type (atorvastatin, fluvastatin, pravastatin, rosuvastatin, simvastatin) and intensity (low, moderate, high), based on information (international nonproprietary name and dose) from the most recently dispensed statin between November 15, 2019, and February 15, 2020 (index date). Statin intensity on low-density lipoprotein cholesterol reduction was defined by the American College of Cardiology/American Heart Association.

For each statin user, we randomly selected one nonuser (ratio 1:1) matched for year of birth, sex, residence area (101 French departments, administrative divisions), hypertension, diabetes, and chronic respiratory condition to further control for main confounding biases.

Noninclusion Criteria

The noninclusion criteria were all individuals: (1) aged <40 years, (2) using a statin combined with another statin or a lipid-lowering drug other than a statin (eg, fibrates, ezetemib, and PCSK9 inhibitors), (3) with a history of cardiovascular diseases including coronary artery disease, heart failure, and stroke (statins used as secondary prevention), cancer, kidney condition (chronic transplant, or dialysis), and dementia.

Covariates

The following baseline characteristics were described according to statin use status: social deprivation index categorized into quintiles as a marker of socioeconomic status based on the residence area’s median household income; percentage of high school graduates in the population aged ≥15 years; percentage of manual workers in the labor force; and unemployment in the individual’s city of residence. Other variables
Outcomes Definition

The primary outcome was COVID-19–related hospitalization defined based on 1 of the following principals or secondary diagnosis discharge codes derived from the ICD-10 codes: U07.10 (COVID-19, respiratory form, virus identified), U07.11 (COVID-19, respiratory form, virus not identified), U07.14 (COVID-19, other clinical forms, virus identified), U07.15 (COVID-19, other clinical forms, virus not identified), and U04.9 (severe acute respiratory syndrome). The secondary outcome was in-hospital mortality from COVID-19. The latter allowed us to compare results from our study with those of other published studies. The individuals were followed up from the index date (February 15, 2020) until the occurrence of the outcome of interest or until the closure of the study on June 15, 2020.

Statistical Analysis

Categorical variables are reported as frequencies with percentages and continuous variables as means with SDs. To report the balance in each covariate between statin users and nonusers, the difference in proportions for categorical variables and means for continuous variables is standardized.76–78 The imbalance between the groups is defined as an absolute value >0.10.77

Conditional Cox proportional hazards models were used to take into account the matched design and to compare the incidence of events between the various groups: (1) statin and control groups (nonusers) for the main analysis; (2) atorvastatin, fluvastatin, pravastatin, rosuvastatin, simvastatin, and control groups; (3) low, moderate, high statin intensity, and control groups; and (4) statin intensity and type (low [fluvastatin 20/40, pravastatin 10/20, simvastatin 10], moderate [atorvastatin 10/20, fluvastatin 80, pravastatin 40, rosuvastatin 5/10, simvastatin 20/40], and high [atorvastatin 40/80, rosuvastatin 20]), and control groups.

We ran 4 types of conditional Cox proportional hazards models: (1) unadjusted (model 1); (2) adjusted for all baseline characteristics described in the Covariates section (model 2); (3) stabilized inverse probability of treatment weighting (IPTW) using the propensity score (model 3)79; and (4) stabilized IPTW further adjusted with all covariates (model 4). Models 3 and 4 were run after trimming the IPTWs at the first and 99th percentiles, as extremely large weights may disproportionately influence results and yield estimates with high variance.80

RESULTS

Of the 27 250 310 eligible individuals, 2 071 465 were identified as statin users for the primary prevention of cardiovascular diseases. The 1:1 matching procedure generated 4 116 498 participants aged ≥40 years: 2 058 249 in the statin group and 2 058 249 in the control group (Figure).

Table 1 shows that the comparison groups were well balanced according to matching variables: the participants were aged 68.7 years on average (SD, 10.4), and 46.6% were men. The participants’ distribution according to residence area was similar to that of the general population (Table S5). Hypertension was present in 42% of the population, diabetes in 34%, and a chronic respiratory condition in 9%.

Statin users and nonusers were comparable regarding the most extensively studied covariates (ASD <0.10), except for low-dose aspirin (ASD, 0.40): statin users were more likely to use low-dose aspirin than nonusers (26.4% versus 11.2%, respectively). For
antiplatelet agents, the difference was marginal in terms of ASD (2.5% versus 0.8%; ASD, 0.14) (Table 1). ASDs were close to 0 for these variables after IPTW (Figure S1).

Among statin users, atorvastin was the most frequently used (40.2%), followed by simvastatin (20.1%), rosuvastatin (18.7%), pravastatin (18.3%), and fluvastatin (2.7%). When statins were categorized according to their intensity of activity on low-density lipoprotein cholesterol reduction, moderate-intensity statins were primarily used (72.7%), followed by low-intensity (20.9%) and high-intensity (6.3%) statins. The statin group was also described according to intensity and type. The results are reported in Table 1.

Table 2 shows the association between statin use—wife its 4 definitions (statin exposure [no/yes], type of statin, statin intensity, and statin intensity and its type)—and the risk of hospitalization for COVID-19. Of the total number of study participants, 9396 were hospitalized for COVID-19: 4372 statin users and 5024 nonusers. Overall, the results from crude and adjusted models show a lower risk of hospitalization among statin users compared with nonusers. The fully adjusted (model 2) and IPTW further adjusted models (model 4) provided similar results. The results from the model with IPTW are presented in Table S6. Statin users had a 16% lower risk of hospitalization for COVID-19 than nonusers (adjusted hazard ratio [HR], 0.84; 95% CI, 0.81–0.88 [P <0.0001]).

The strength of the association remained unchanged after participants taking low-dose aspirin were excluded (Table S7).

All types of statins were significantly associated with a lower risk of hospitalization, with the adjusted HR ranging from 0.75 (95% CI, 0.57–0.99) for fluvastatin to 0.89 (95% CI, 0.84–0.95) for atorvastatin. Low- and moderate-intensity statins showed a lower adjusted risk compared with nonusers (adjusted HR, 0.78 [95% CI, 0.71–0.86] and 0.84 [95% CI, 0.80–0.89], respectively); whereas high-intensity statins were not associated (adjusted HR, 1.01; 95% CI, 0.86–1.18). This subgroup, representing 6.3% of the statin group, had a different profile from those with low and moderate intensity: individuals with high-intensity statins were younger and more likely to have cardiovascular disease risks (male, diabetes, smoking, obesity) and to

Figure. Flowchart of participants’ inclusion.
Table 1. Baseline Characteristics According to Statin Exposure

Matching variables	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
Age, y	Mean (SD)	Mean (SD)	
	68.65 (10.36)	68.65 (10.36)	0.00000
Age categories, y			
40–59	395 018 (19.2)	395 018 (19.2)	
60–69	683 378 (33.2)	683 378 (33.2)	
70–79	660 264 (32.1)	660 264 (32.1)	
≥80	319 589 (15.5)	319 589 (15.5)	
Sex			
Men	958 989 (46.6)	958 989 (46.6)	0.00000
Women	1 099 260 (53.4)	1 099 260 (53.4)	
Residence area*			
Auvergne-Rhône-Alpes	213 640 (10.4)	213 640 (10.4)	0.00000
Bourgogne-Franche-Comté	98 693 (4.8)	98 693 (4.8)	
Bretagne	104 714 (5.1)	104 714 (5.1)	
Centre-Val de Loire	95 625 (4.6)	95 625 (4.6)	
Corse	8697 (0.4)	8697 (0.4)	
Grand Est	192 826 (9.4)	192 826 (9.4)	
Hauts-de-France	234 718 (11.4)	234 718 (11.4)	
Ile-de-France	317 010 (15.4)	317 010 (15.4)	
Normandie	121 260 (5.9)	121 260 (5.9)	
Nouvelle-Aquitaine	199 285 (9.7)	199 285 (9.7)	
Occitanie	164 959 (8.0)	164 959 (8.0)	
Pays de la Loire	125 184 (6.1)	125 184 (6.1)	
Provence-Alpes-Côte d'Azur	133 389 (6.5)	133 389 (6.5)	
Overseas departments	47 939 (2.3)	47 939 (2.3)	
Overseas territories	310 (0.0)	310 (0.0)	
Hypertension			
No	1 198 186 (58.2)	1 198 186 (58.2)	0.00000
Yes	860 063 (41.8)	860 063 (41.8)	
Diabetes			
No	1 364 924 (66.3)	1 364 924 (66.3)	0.00000
Yes	693 325 (33.7)	693 325 (33.7)	
Chronic respiratory condition			
No	1 872 316 (91.0)	1 872 316 (91.0)	0.00000
Yes	185 933 (9.0)	185 933 (9.0)	
Covariates			
Social deprivation index (quintiles)			
1 (least deprived)	343 795 (16.7)	330 208 (16.0)	0.05887
2	366 832 (17.8)	364 376 (17.7)	
3	393 467 (19.1)	393 311 (19.1)	
4	422 536 (20.5)	428 084 (20.8)	
5 (most deprived)	449 430 (21.8)	459 712 (22.3)	
Unknown	82 189 (4.0)	82 558 (4.0)	
Smoking-related condition			
No	2 001 677 (97.3)	1 975 967 (96.0)	0.06923
Yes	56 572 (2.7)	82 282 (4.0)	
Table 1. Continued

Alcohol-related condition	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 025 242 (98.4)	2 027 375 (98.5)	−0.00838
Yes	33 007 (1.6)	30 874 (1.5)	

Obesity-related condition	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 015 058 (97.9)	2 015 593 (97.9)	−0.00182
Yes	43 191 (2.1)	42 656 (2.1)	

Liver failure	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 030 710 (98.7)	2 042 408 (99.2)	−0.05568
Yes	27 539 (1.3)	15 841 (0.8)	

NSAID	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 732 982 (84.2)	1 719 946 (83.6)	0.01722
Yes	325 267 (15.8)	338 303 (16.4)	

Low-dose aspirin	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 827 030 (88.8)	1 514 305 (73.6)	0.39618
Yes	231 219 (11.2)	543 944 (26.4)	

Antiplatelet agent	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 042 260 (99.2)	2 005 808 (97.5)	0.13885
Yes	15 989 (0.8)	52 441 (2.5)	

Heparin	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 044 349 (99.3)	2 045 508 (99.4)	−0.00702
Yes	13 900 (0.7)	12 741 (0.6)	

Anticoagulant	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 010 491 (97.7)	1 999 837 (97.2)	0.03266
Yes	47 758 (2.3)	58 412 (2.8)	

Oral corticosteroid	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 944 371 (94.5)	1 948 469 (94.7)	−0.00878
Yes	113 878 (5.5)	109 780 (5.3)	

Anxiolytic	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 872 500 (91.0)	1 823 388 (88.6)	0.07887
Yes	185 749 (9.0)	234 881 (11.4)	

Hypnotic	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 975 317 (96.0)	1 952 287 (94.9)	0.05349
Yes	82 932 (4.0)	105 962 (5.1)	

Antidepressant	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	1 902 683 (92.4)	1 847 672 (89.8)	0.09399
Yes	155 566 (7.6)	210 577 (10.2)	

Antipsychotic	No exposure (n=2 058 249)	Statin exposure (n=2 058 249)	Standardized difference
No	2 044 795 (99.3)	2 040 905 (99.2)	0.02193
Yes	13 454 (0.7)	17 344 (0.8)	

Statin description			
Type of statin	Atorvastatin	827 752 (40.2)	
	Fluvastatin	55 585 (2.7)	
	Pravastatin	375 936 (18.3)	
	Rosuvastatin	384 904 (18.7)	
	Simvastatin	414 072 (20.1)	

(Continued)
be treated for cardiovascular conditions other than those listed in the noninclusion criteria, necessitating a higher use of low-dose aspirin and antiplatelet agents (Table S8). The absence of a lower risk of hospitalization among high-intensity statin users persisted after participants taking low-dose aspirin were excluded (Table S7).

Similar results were observed when the exposure was categorized according to statin intensity and type. For certain groups, the strength of the association did not reach statistical significance because of the small number of events in each group. The results of the association between all covariates and hospitalization, examined in a fully adjusted model, are displayed in Table S9.

The E-values (relative risk) for the point estimate and upper confidence bound for hospitalization for COVID-19 were 1.70 and 1.56, respectively.

Similar observations can be made when the association between statin use and in-hospital deaths from COVID-19 was examined. However, the reduction of risk with statin use (adjusted HR, 0.77; 95% CI, 0.69–0.86) was higher with this outcome (Table 3 and Table S10). A subanalysis conducted only in patients hospitalized for COVID-19 also showed a lower risk of in-hospital death for COVID-19 (Table S11).

Subgroup analyses conducted using the fully adjusted model showed a lower risk with statin use in all age classes, men and women, regardless of whether the participants had comorbidities (hypertension, diabetes, and chronic respiratory condition) (Table 4).

DISCUSSION

This population-based matched cohort study was conducted in >2 million adults aged ≥40 years who used statins for the primary prevention of cardiovascular diseases compared with 2 million of those who did not use statins. Our results show that statins were associated with a lower risk of hospitalization attributable to COVID-19: statin users had a 16% lower risk than nonusers. This lower risk was observed in all age classes, men and women, regardless of whether the participants had comorbidities (hypertension, diabetes, and chronic respiratory condition). All types of statins showed a lower risk of COVID-19 outcomes. When we examined statin users according to statin intensity on low-density lipoprotein cholesterol–lowering reduction, we did not observe an association between high-intensity statin use and the risk of hospitalization. We observed similar results with in-hospital deaths from COVID-19.

Possible Underlying Mechanisms

COVID-19 is primarily a respiratory viral illness; however, it has widespread effects on the body including hypercoagulability, a hyperinflammatory state, and...
endothelial dysfunction. An autopsy study of COVID-19–positive patients showed that the lung was injured with diffuse alveolar damage (90%), while other effects include pulmonary emboli and microthrombi in multiple organ systems including the brain, as well as hemophagocytosis and cardiac enlargement; results that are consistent with the clinical presentation of symptomatic patients with COVID-19.83 The lower risk of hospitalization among statin users compared with nonusers that we found in this study, if causal, would likely be attributable to the pleiotropic beneficial effects of statins as anti-inflammatory, immune-modulatory, and anticoagulant agents.84 Indeed, several in vitro studies have supported the argument that statins may prevent individuals from being infected or having a serious COVID-19 outcome.85–88 SARS-CoV-2 infects type II pneumocytes present in the oral mucosa and lungs of the host by docking its spike protein onto ACE-285 on the plasma membrane.86 Lipid rafts—plasma membrane microdomains mainly composed of cholesterol, glycosphingolipids, and phospholipids—including ACE-2 are the sites of the initial binding, activation, internalization, and cell-to-cell transmission of SARS-CoV-2.87 They also are key

Hospitalization N=9396	Statin exposure	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡			
		HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
No	5024 (0.24)	1	1			1	
Yes	4372 (0.21)	0.87 (0.83–0.90)	<0.0001	0.84 (0.81–0.88)	<0.0001	0.84 (0.80–0.87)	<0.0001

Type of statin

No exposure	Atorvastatin 1944 (0.23)	0.93 (0.87–0.99)	0.0152	0.89 (0.84–0.95)	0.0006	0.88 (0.83–0.94)	0.0002
Fluvastatin 92 (0.17)	0.74 (0.56–0.97)	0.0293	0.75 (0.57–0.99)	0.0401	0.71 (0.53–0.95)	0.0212	
Pravastatin 730 (0.19)	0.86 (0.78–0.95)	0.0027	0.84 (0.76–0.93)	0.0006	0.84 (0.76–0.93)	0.0012	
Rosuvastatin 794 (0.21)	0.83 (0.75–0.91)	<0.0001	0.80 (0.72–0.88)	<0.0001	0.80 (0.72–0.88)	<0.0001	
Simvastatin 812 (0.20)	0.80 (0.73–0.88)	<0.0001	0.79 (0.72–0.87)	<0.0001	0.78 (0.71–0.87)	<0.0001	

Statin intensity

No exposure	Low 778 (0.18)	0.79 (0.72–0.87)	<0.0001	0.78 (0.71–0.86)	<0.0001	0.78 (0.71–0.87)	<0.0001
Moderate 3231 (0.22)	0.87 (0.83–0.91)	<0.0001	0.84 (0.80–0.89)	<0.0001	0.83 (0.79–0.88)	<0.0001	
High 363 (0.28)	1.10 (0.95–1.28)	0.1957	1.01 (0.88–1.18)	0.9090	1.04 (0.88–1.23)	0.6193	

Statin intensity and its type

No exposure	Fluvastatin 20/40 58 (0.17)	0.75 (0.54–1.06)	0.1031	0.77 (0.54–1.08)	0.1331	0.74 (0.51–1.06)	0.0973
Pravastatin 10/20 537 (0.19)	0.83 (0.74–0.93)	0.0015	0.81 (0.72–0.91)	0.0005	0.81 (0.72–0.92)	0.0007	
Moderate Simvastatin 10 183 (0.17)	0.72 (0.59–0.87)	0.0006	0.72 (0.59–0.87)	0.0008	0.72 (0.59–0.89)	0.0018	
Atorvastatin 10/20 1638 (0.23)	0.90 (0.84–0.96)	0.0026	0.88 (0.82–0.94)	0.0002	0.86 (0.80–0.93)	<0.0001	
Fluvastatin 80 34 (0.16)	0.72 (0.46–1.12)	0.1454	0.72 (0.48–1.14)	0.1599	0.67 (0.42–1.09)	0.1048	
Pravastatin 40 193 (0.22)	0.95 (0.78–1.16)	0.6144	0.92 (0.75–1.13)	0.4427	0.94 (0.76–1.17)	0.5806	
Rosuvastatin 5/10 737 (0.20)	0.81 (0.73–0.89)	<0.0001	0.78 (0.71–0.87)	<0.0001	0.78 (0.71–0.87)	<0.0001	
Simvastatin 20/40 629 (0.21)	0.83 (0.75–0.93)	0.0007	0.82 (0.73–0.91)	0.0003	0.81 (0.72–0.90)	0.0001	
High Atorvastatin 40/80 306 (0.28)	1.08 (0.92–1.27)	0.3426	0.99 (0.84–1.18)	0.9442	1.02 (0.85–1.22)	0.8238	
Rosuvastatin 20 57 (0.28)	1.24 (0.84–1.83)	0.2793	1.11 (0.74–1.65)	0.6174	1.18 (0.78–1.80)	0.4359	

HR indicates hazard ratio.
*Conditional Cox proportional hazards model.
†Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index; smoking-, alcohol-, and obesity-related conditions; liver failure; and concomitant medications (NSAID, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
‡Conditional Cox proportional hazards model with inverse probability of treatment weighting (IPTW) and further adjustment with the same variables as those in the full adjusted model.
regulators of immune and inflammatory responses following the infection. Depletion of cholesterol by statins is shown to disrupt lipid rafts, which, in turn, disturbs viral binding to ACE-2 cells and leads to a significant reduction in viral replication.88

Comparison With Other Studies

We found one study32 that examined the association between statin use and the risk of hospitalization for COVID-19. Oh et al concluded that the risk of developing COVID-19 was 35% lower in statin users compared with nonusers (odds ratio, 0.65; 95% CI, 0.60–0.71). However, the level of evidence was not sufficient given its design: first, the authors selected eligible participants based on a case-control design—COVID-19 patients matched with the general population for age, sex, and place of residence—and performed a second matching based on propensity score between statin users and nonusers. We also identified studies that focused on risk factors and drugs associated with SARS-CoV-2 infection, conducted on patients with varied conditions (history of diabetes,89 hypertension,90 undergoing transcatheter aortic valve implantation,91 or pancreas, biliary, or liver conditions92) or in the general population.93–97 Results of association with statin use in these studies were heterogeneous: a significantly lower risk,89,93,97 a lower risk but not statistically significant,90,91,95 and an increased risk of COVID-19 diagnosis.92,94,96 Our cohort study, specifically planned using a matched exposed/nonexposed design to examine the relationship between statin use and hospitalization

Table 3. Association Between Statin Exposure and In-Hospital Death for COVID-19

Statin exposure	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡			
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
No exposure	1.00 (1.00–1.00)	1	1.00 (1.00–1.00)	1	1.00 (1.00–1.00)	1
Statin exposure	0.77 (0.69–0.86)	<0.0001	0.76 (0.68–0.85)	<0.0001		

Type of statin

Type of statin	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡			
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
Atorvastatin	0.80 (0.73–0.88)	<0.0001	0.77 (0.69–0.86)	<0.0001		
Fluvastatin	0.88 (0.80–1.00)	0.3375	0.81 (0.74–1.02)	0.0849		
Pravastatin	0.70 (0.55–0.88)	0.0027	0.68 (0.53–0.87)	0.0023		
Rosuvastatin	0.71 (0.57–0.89)	0.0035	0.69 (0.54–0.88)	0.0023		
Simvastatin	0.73 (0.58–0.91)	0.0048	0.75 (0.59–0.94)	0.0142		

Statin intensity

Statin intensity	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡			
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
Low	0.76 (0.61–0.94)	0.0134	0.76 (0.60–0.96)	0.0190		
Moderate	0.78 (0.70–0.88)	<0.0001	0.75 (0.66–0.86)	<0.0001		
High	1.18 (0.83–1.69)	0.3619	1.06 (0.72–1.55)	0.7586		

Statin intensity and its type

Statin intensity and its type	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡			
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
Fluvastatin 20/40	0.74 (0.37–1.47)	0.3859	0.76 (0.37–1.55)	0.4461	0.82 (0.39–1.72)	0.6016
Pravastatin 10/20	0.69 (0.53–0.91)	0.0076	0.68 (0.52–0.91)	0.0078	0.66 (0.50–0.88)	0.0041
Simvastatin 10	1.00 (0.63–1.58)	1.0000	1.04 (0.65–1.68)	0.8569	1.01 (0.62–1.64)	0.9769
Atorvastatin 10/20	0.88 (0.75–1.03)	0.1149	0.83 (0.70–0.99)	0.0368	0.80 (0.67–0.96)	0.0169
Fluvastatin 80	1.33 (0.46–3.84)	0.5943	1.10 (0.37–3.31)	0.8655	1.08 (0.33–3.55)	0.9052
Pravastatin 40	0.70 (0.43–1.16)	0.1680	0.67 (0.39–1.13)	0.1351	0.67 (0.38–1.17)	0.1628
Rosuvastatin 5/10	0.71 (0.56–0.90)	0.0045	0.68 (0.53–0.87)	0.0025	0.71 (0.55–0.91)	0.0072
Simvastatin 20/40	0.66 (0.51–0.85)	0.0014	0.67 (0.52–0.88)	0.0038	0.68 (0.52–0.91)	0.0079
Atorvastatin 40/80	1.30 (0.88–1.94)	0.1927	1.13 (0.74–1.73)	0.5633	1.02 (0.65–1.61)	0.9380
Rosuvastin 20	0.75 (0.32–1.78)	0.5141	0.79 (0.32–1.94)	0.6052	0.93 (0.37–2.34)	0.8697

HR indicates hazard ratio.

*Conditional Cox proportional hazards model.
†Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index; smoking-, alcohol-, and obesity-related conditions; liver failure; and concomitant medications (NSAID, low-dose aspirin, antplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
‡Conditional Cox proportional hazards model with inverse probability of treatment weighting (IPTW) and further adjustment with the same variables as those in the full adjusted model.
Table 4. Association Between Statin Exposure and COVID-19 Outcomes: Subgroup Analyses

	Hospitalization among nonusers n=5024	Hospitalization among statin users n=4372	Fully adjusted model*	Death among nonusers n=914	Death among statin users n=734	Fully adjusted model*		
	HR (95% CI)	P value	HR (95% CI)	P value		HR (95% CI)	P value	
Age categories, y								
40–59	862/395 018 (0.22)	805/395 018 (0.20)	0.90 (0.81–1.00)	0.0494	62/395 018 (0.016)	42/395 018 (0.011)	0.64 (0.39–1.05)	0.0746
60–69	1437/683 378 (0.21)	1237/683 378 (0.18)	0.85 (0.78–0.92)	0.0001	193/683 378 (0.028)	129/683 378 (0.019)	0.71 (0.55–0.92)	0.0107
70–79	1499/660 264 (0.23)	1329/660 264 (0.20)	0.84 (0.78–0.91)	<0.0001	268/660 264 (0.041)	242/660 264 (0.037)	0.87 (0.71–1.06)	0.1625
≥80	1206/319 589 (0.38)	1001/319 589 (0.31)	0.79 (0.72–0.86)	<0.0001	391/319 589 (0.122)	321/319,589 (0.100)	0.75 (0.63–0.89)	0.0011
Sex								
Men	2,841/958,989 (0.30)	2,414/958,989 (0.25)	0.82 (0.77–0.87)	<0.0001	567/958,989 (0.059)	454/958,989 (0.047)	0.77 (0.67–0.89)	0.0003
Women	2,183/1,099,260 (0.20)	1,958/1,099,260 (0.18)	0.87 (0.81–0.93)	<0.0001	347/1,099,260 (0.032)	280/1,099,260 (0.025)	0.77 (0.64–0.92)	0.0034
Hypertension								
No	3,249/1,198,186 (0.27)	2,853/1,198,186 (0.24)	0.84 (0.80–0.89)	<0.0001	614/1,198,186 (0.051)	471/1,198,186 (0.039)	0.74 (0.65–0.85)	<0.0001
Yes	1775/860 063 (0.21)	1519/860 063 (0.18)	0.84 (0.78–0.90)	<0.0001	300/860 063 (0.035)	263/860 063 (0.031)	0.85 (0.71–1.03)	0.0985
Diabetes								
No	2522/1,364,924 (0.18)	2152/1,364,924 (0.16)	0.83 (0.78–0.88)	<0.0001	416/1,364,924 (0.030)	343/1,364,924 (0.025)	0.79 (0.67–0.92)	0.0034
Yes	2502/693,325 (0.36)	2220/693,325 (0.32)	0.85 (0.80–0.91)	<0.0001	498/693,325 (0.072)	391/693,325 (0.056)	0.77 (0.66–0.90)	0.0007
Chronic respiratory condition								
No	4279/1,872,316 (0.23)	3746/1,872,316 (0.20)	0.84 (0.80–0.88)	<0.0001	765/1,872,316 (0.041)	620/1,872,316 (0.033)	0.77 (0.69–0.87)	<0.0001
Yes	745/1,853,933 (0.40)	626/1,853,933 (0.34)	0.83 (0.74–0.94)	0.0024	149/1,853,933 (0.080)	114/1,853,933 (0.061)	0.77 (0.58–1.03)	0.0754

HR indicates hazard ratio.

*Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index; smoking-, alcohol-, and obesity-related conditions; liver failure; and concomitant medications (NSAID, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
for COVID-19, showed strong evidence of lower risk of COVID-19 outcomes associated with statins.

We also present other original findings. Our study, which was sufficiently powered to examine the risk of hospitalization for COVID-19 according to types of statins, showed that all types of statins were significantly associated with a lower risk. When we examined the exposed group according to the intensity of statins, we identified a small percentage of high-intensity statin users (6.3%). This subgroup had a different profile from those with low- and moderate-intensity statin subgroups, with more risk factors for cardiovascular diseases. The absence of lower risk of COVID-19 outcomes in the high-intensity statin group compared with the unexposed group may be attributable to: (1) the lack of statistical power because of the low frequency of this group, (2) the inability to control for unmeasured confounders, or (3) a lower risk associated with statins potentially being hindered by an increased risk of hospitalization associated with cardiovascular disease risk factors.

Regarding the secondary outcome, namely inhospital deaths from COVID-19, we found a lower risk among participants treated with statins compared with those without this treatment. This finding is consistent with that observed in numerous studies.

Limitations and Strengths

This study has some limitations. First, our study could not assess any association between statin use and SARS-CoV-2 infection. Because databases containing this information were not available, we used a surrogate outcome: hospitalization attributable to COVID-19. In doing so, we did not include participants with asymptomatic or mild symptoms that did not lead to hospitalization.

Second, our study may have been impacted by selection bias as individuals who take statins might generally be more health conscious than nonusers and, therefore, manage their comorbidities better and seek care earlier in the course of COVID-19. To evaluate this bias, we used an indicator that may reflect health-conscious behavior such as the history of influenza vaccination within 2 years before the index date. Indeed, statin users were more likely to receive this vaccination than nonusers: 48.6% versus 40.0%, respectively (ASD, 0.17). The strength of the association between statin exposure and severe COVID-19 outcomes remained unchanged (Table S12).

Third, as in all observational studies, we cannot rule out a residual confounding effect from unmeasured covariates, in particular those of socioeconomic status such as education. However, the sensitivity analysis using E-value methodology indicated that the observed HR of 0.84 for COVID-19–related hospitalization could only be explained by an unmeasured confounder that was associated with both statin use and COVID-19–related hospitalization by a relative risk association at least as large as 1.70, conditional on the measured covariates in this study (upper confidence bound, 1.56). In our study, the HRs for some of the known COVID-19–related hospitalization risk factors were 1.49 (95% CI, 1.34–2.12) for obesity-related conditions, 1.69 (95% CI, 1.34–2.12) for liver failure, and 1.55 (95% CI, 1.37–1.75) for oral corticosteroids (Table S9). It is not likely that an unmeasured or unknown confounder would have a substantially greater effect on COVID-19–related hospitalization than these known risk factors by having a relative risk exceeding 1.70.

Last, to limit selection or collider bias, our matched cohort was set up from the general population—unlike other studies where hospitalized or COVID-19–positive patients were included—with the exposed group taking statins for the primary prevention of cardiovascular disease.

The SNDS, a claims database comprising the entire population of France, has allowed us to comprehensively examine the association between statins and severe COVID-19 outcomes. To avoid confounding bias as much as possible, we limited the study of the effect of statins to the context of primary prevention of cardiovascular diseases as these comorbidities are known to be strongly associated with an increased risk of hospitalization for COVID-19. After matching for age, sex, residence area, hypertension, diabetes, and chronic respiratory condition, statin users and nonusers were comparable for 14 of 15 covariates. The only imbalanced variable was low-dose aspirin. This imbalance was taken into account by including this variable in multivariable analyses and in the calculation of IPTW, which rendered comparison groups similar among all covariates. In observational studies, adjustment for adequate covariates is the most important step. This is particularly crucial in studies examining the association between statins and COVID-19 outcomes. To illustrate this, we observed unadjusted and adjusted ratio measures (OR or HR) in published studies investigating the role of statins in in-hospital mortality by COVID-19 (Figure S2): in propensity score–matched cohort studies, unadjusted odds ratios or HRs were very close to those with adjustment. In other studies where this design was not applied, adjustment systematically decreased odds ratios or HRs. In certain cases, the direction of odds ratios or HRs changed drastically after adjustment: statin use was significantly associated with a higher risk in unadjusted analysis while it was associated with lower risk in adjusted analysis. In addition, not including adjusted ratio measures in

References 7,13,18,19,23,28,36,47,49.
meta-analyses, which is recommended by the Cochrane group.98 leads to spurious results, notably the absence of association between statin use and COVID-19 outcomes.100 Meta-analyses that did include adjusted ratio measures showed a lower risk of COVID-19 outcomes with the statin use.101,102

Our findings indicate that the lower risk of statins on hospitalization for COVID-19, although modest, is robust. Statins are now known to be beneficial in primary prevention, decreasing all-cause mortality, cardiovascular disease, coronary heart disease, and stroke. Furthermore, there is no evidence of any serious harm caused by their use.103 Our study found an additional lower risk of statins against serious COVID-19 symptoms that lead to hospitalization. Since the beginning of the COVID-19 pandemic, many clinicians have suggested that statins could be used as an adjunctive treatment for the SARS-CoV-2 infection. This population-based matched cohort study conducted in 2 million adults aged ≥40 years who used statins for the primary prevention of cardiovascular diseases compared with 2 million nonusers supports the hypothesis that statin use is associated with a lower risk of hospitalization for COVID-19. All types of statins showed a similar effect.

REFERENCE

REFERENCES

1. Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, RayegoAM, Ortiz A, Egido J, et al. Statins: could an old friend help in the fight against COVID-19? Br J Pharmacol. 2020;177:4873–4886. doi: 10.1111/bph.15166

2. Fedson DS. Treating influenza with statins and other immunomodulatory agents. Antiviral Res. 2013;99:417–435. doi: 10.1016/j.antiviral.2013.06.018

3. Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med. 2016;4:421. doi: 10.21037/atm.2016.11.03

4. Shrivastava-Ranjan P, Flint M, Bergeron E, McElroy AK, Chatterjee P, Albarriño CG, Nichol ST, Sproppoulou CF. Statins suppress Ebola virus infectivity by interfering with glycoprotein processing. MBio. 2016;9. doi: 10.1128/mBio.00680–16

5. Yuan S. Statins may decrease the fatality rate of Middle East respiratory syndrome infection. MBio. 2015;6. doi: 10.1128/mBio.01220–15

6. Ho P, Zheng QJ, Wu CC, Hou YC, Liu WC, Lu CL, Zheng CM, Lu KC, Chao YC. Perspective adjunctive therapies for COVID-19: beyond antiviral therapy. Int J Med Sci. 2021;18:314–324. doi: 10.7150/ijms.51935

7. Lee KC, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis. 2020;96:615–617. doi: 10.1016/j.ijid.2020.05.115

8. Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. MBio. 2020;11. doi: 10.1128/mBio.00398-20

9. Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V, Sriravasan K. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol. 2015;93:343–351. doi: 10.1016/j.bcp.2014.11.013

10. Dong B, Zhang C, Feng JB, Zhao XY, Li SY, Yang YP, Dong QL, Deng BP, Zhu L, Yu GT, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:1270–1276. doi: 10.1161/ATVBAHA.108.164715

11. Gupta A, Madhavan MV, Poterucha TJ, DeFilippis EM, Hennessey MA, Cardenas CL, Malhotra R. Estimating risk of mechanical ventilation in hospitalized patients with COVID-19. Transl Med. 2021;28:355–364. doi: 10.1007/s40292-021-00452-y

12. Gupta A, Madhavan MV, Poterucha TJ, DeFilippis EM, Hennessey JA, Redfons B, Eckhardt C, Bikdeli B, Platt J, Nabiandian A, et al. Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19. Res Sq. 2020. doi: 10.21203/rs.3.rs-56210/v1

13. Nicholson CJ, Wooster L, Sigursld HH, Li RF, Jiang W, Tian W, Cardenas CL, Malhotra R. Estimating risk of mechanical ventilation and mortality among adult COVID-19 patients admitted to mass general Brigham: the VICE and DICE scores. MedRxiv Prepr Serv Health Sci. 2020. doi: 10.1101/2020.04.14.2004670

14. Aparsis A, Amat-Santos JJ, Otero DL, Marcos-Mangas M, González-Juanatey JR, San Román JA. Impact of statins in patients with COVID-19. Rev Esp Cardiol. 2021. doi: 10.1016/j.recesp.2021.01.009

15. Sreedhar B, Vaghasia M, Rajendra J, Patrick S, Ramesh S, Siddiqui F, et al. Statin use and in-hospital mortality in patients with diabetes mellitus and COVID-19. J Am Heart Assoc. 2020;9. doi: 10.1161/JAHA.120.018475

16. Mallow PJ, Belik KW, Topmiller M, Hooker AE. Outcomes of hospitalized COVID-19 patients by risk factors: results from a United States hospital claims database. J Health Econ Outcomes Res. 2020;7:165–174. doi: 10.36469/jheor.2020.17331

17. Lee HY, Ahn J, Park J, Kyung Kang C, Won SH, Wook Kim D, Park JH, Chung KH, Jih JS, Bang JH et al. Beneficial effect of statins...
in COVID-19-related outcomes. Arterioscler Thromb Vasc Biol. 2021;41:e175–e182. doi: 10.1161/ATVBHA.120.315551

23. Lohia P, Kapur S, Benjam S, Mir T. Association between antecedent statin use and severe disease outcomes in COVID-19: a retrospective study with propensity score matching. J Clin Lipidol. 2021;15:451–459. doi: 10.1016/j.jcllip.2021.03.002

24. Lala A, Johnson KW, Jianuzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76:533–546. doi: 10.1016/j.jac.2020.06.007

25. Memel ZN, Lee JJ, Foukis AS, Chung RT, Thaweethi B, Bloom PR. Association of statins and 28-day mortality rates in patients hospitalized with severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2020;221:29–29. doi: 19.03/fitness/p393

26. Masana L, Corregi E, Rodríguez-Borjabad C, Anoro E, Arroyo JA, Jericó C, et al. Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients. Eur J Heart J – Cardiovasc Pharmacother. 2020. doi: 10.1093/ehjcvp/pzaa126

27. Zhang XJ, Qin JJ, Cheng XU, Shen L, Zhao YC, Yuan Y, Lei F, Chen MM, Yang H, Bai L, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020;32:176–187.e4. doi: 10.1016/j.cmet.2020.06.015

28. Rosenthal N, Cao Z, Gundrum J, Sianis J, Sato S. Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. JAMA Netw Open. 2020;3:e2029058. doi: 10.1001/jamanetworkopen.2020.290358

29. Torres-Peña JD, Pérez-Belmonte LM, Fuentes-Jiménez F, López-Carmona MD, Pérez-Martínez P, López-Miranda J, Carrasco Sánchez FJ, Vargas Núñez JA, del Corral Beamenté E, Magalanés Gamboa JO, et al. Prior treatment with statins is associated with improved outcomes of patients with COVID-19: data from the SEMI-COVID-19 registry. Drugs. 2021;81:685–695. doi: 10.1007/s40265-021-01498-x

30. Anström BJ, Frithiof R, Hultström M, Larsson IM, Strandberg G, Lipcsey M. The Swedish covid-19 intensive care cohort: risk factors of ICU admission and ICU mortality. Acta Anaesthesiol Scand. 2021;65:525–533. doi: 10.1111/aans.13781

31. Oddy C, McCaul J, Keeling P, Allington J, Senn D, Soni N, Morrison H, Mawella R, Samuel T, Dixon J. Pharmacological predictors of morbidity and mortality in COVID-19. J Clin Pharmacol. 2021;61:1286–1300. doi: 10.1177/0022048021104508

32. Oh TK, Song IA, Jeon YT. Statin therapy and the risk of COVID-19: a cohort study of the national health insurance service in South Korea. J Pers Med. 2021;11:116. doi: 10.3390/jpm11020116

33. Bifulco M, Ciccarelli M, Bruzzese D, Dipasquale A, Lania AG, Mazziotti V, Van Vleck T, Vaid A, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76:533–546. doi: 10.1016/j.jac.2020.06.007

34. De Spiegeleer A, Bronselaer A, Teo JT, Byttebier G, De Tré G, Belmans G, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020;32:176–187.e4. doi: 10.1016/j.cmet.2020.06.015

35. Rosenthal N, Cao Z, Gundrum J, Sianis J, Sato S. Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. JAMA Netw Open. 2020;3:e2029058. doi: 10.1001/jamanetworkopen.2020.290358

36. Anström BJ, Frithiof R, Hultström M, Larsson IM, Strandberg G, Lipcsey M. The Swedish covid-19 intensive care cohort: risk factors of ICU admission and ICU mortality. Acta Anaesthesiol Scand. 2021;65:525–533. doi: 10.1111/aans.13781

37. Oddy C, McCaul J, Keeling P, Allington J, Senn D, Soni N, Morrison H, Mawella R, Samuel T, Dixon J. Pharmacological predictors of morbidity and mortality in COVID-19. J Clin Pharmacol. 2021;61:1286–1300. doi: 10.1177/0022048021104508

38. Wander PL, Lowy E, Beste LA, Tulloch-Palomino L, Korpak A, Peterson AC, Young BA, Boyko EJ. Risk factors for adverse outcomes among 35 879 veterans with and without diabetes after diagnosis with COVID-19. BMJ Open Diabetes Res Care. 2021;9:759. doi: 10.1136/bmjdrr-2021-002252

39. Bergqvist A, Ahlgqvist VH, Lundberg M, Hergens MP, Sundström J, Bell M, Magnusson C. HMG-CoA reductase inhibitors and COVID-19 mortality in Stockholm, Sweden: a registry-based cohort study. PLoS Medicine. 2021;18:e1003820. doi: 10.1371/journal.pmed.1003820

40. Choi D, Chen Q, Goonewardena SN, Pacheco H, Mejia P, Smith RL, Rosenson RS. Efficacy of statin therapy in patients with hospital admission for COVID-19. Cardiovasc Drugs Ther. 2021;1–9. doi: 10.1007/s10557-021-07263-2

41. Daniels LB, Ren J, Kumar K, Bui OM, Zhang J, Zhang X, Sawan MA, Eisen H, Longhurst CA, Messer K. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: findings from the American Heart Association’s COVID-19 cardiovascular disease registry. PLoS One. 2021;16:e0254635. doi: 10.1371/journal.pone.0254635

42. Haj Aghajani M, Moradi O, Achdini Tehrani H, Ahmni H, Pourheider E, Elastami F, Rabiee B. Impact of Diabetes Mellitus on COVID-19 Severity: a retrospective study with propensity score matching. Cardiovasc Diabetol. 2021;20:140. doi: 10.1186/s12933-021-01336-0

43. Lee SW, Kim SY, Moon SY, Yoo IK, Yoo EG, Eom GH, Kim JM, Shin JI, Jeong MH, Yang JM, et al. Statin use and COVID-19 infectivity and severity in South Korea: two population-based nationwide cohort studies. JIMIR Public Health Survell. 2021;7:e20397. doi: 10.2196/29379

44. Lohia P, Kapur S, Benjam S, Cantor Z, Mahabadi N, Mir T, Badr MS. Statins and clinical outcomes in hospitalized COVID-19 patients with and without Diabetes Mellitus: a retrospective cohort study with propensity score matching. Cardiovasc Diabetol. 2021;20:140. doi: 10.1186/s12933-021-01336-0

45. Wander PL, Lowy E, Beste LA, Tulloch-Palomino L, Korpak A, Peterson AC, Young BA, Boyko EJ. Risk factors for adverse outcomes among 35 879 veterans with and without diabetes after diagnosis with COVID-19. BMJ Open Diabetes Res Care. 2021;9:759. doi: 10.1136/bmjdrr-2021-002252

46. Wander PL, Lowy E, Beste LA, Tulloch-Palomino L, Korpak A, Peterson AC, Young BA, Boyko EJ. Risk factors for adverse outcomes among 35 879 veterans with and without diabetes after diagnosis with COVID-19. BMJ Open Diabetes Res Care. 2021;9:759. doi: 10.1136/bmjdrr-2021-002252
null
90. Vila-Córcoles A, Satue-Gracia E, Ochoa-Gondar O, Torrente-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Rovira-Veciana D, et al. Use of distinct anti-hypertensive drugs and risk for COVID-19 among hypertensive people: a population-based cohort study in Southern Catalonia. Spain. J Clin Hypertens. 2020;22:1379–1386. doi: 10.1111/jch.13948

91. Kibler M, Dietrich L, Kanso M, Carmona A, Marchandot B, Matsushita K, Trimalle A, How-Chooong C, Odier A, Gennesseaux G, et al. Risk and severity of COVID-19 and ABO blood group in transcatheter aortic valve patients. J Clin Med. 2020;9:3769. doi: 10.3390/jcm9113769

92. Dayem Ullah AZM, Sivapalan L, Kocher HM, Chelala C. COVID-19 in patients with hepatobiliary and pancreatic diseases: a single-centre cross-sectional study in East London. BMJ Open. 2021;11. doi: 10.1136/bmjopen-2020-045077

93. Hippisley-Cox J, Young D, Coupland C, Channon KM, Tan PS, Harrison DA, Rowan K, Aveyard P, Pavord ID, Watkinson PJ. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106:1503–1511. doi: 10.1136/heartjnl-2020-317393

94. Ho FK, Celis-Morales CA, Gray SR, Katkireddi SV, Niedzwiedz CL, Haste C, Ferguson LD, Berry C, Mackay DF, Gill JMR, et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: results from a UK Biobank prospective cohort study. BMJ Open. 2020;10:e040402. doi: 10.1136/bmjopen-2020-040402

95. Huh K, Ji W, Kang M, Hong J, Bae GH, Lee R, Na Y, Choi H, Gong SY, Jung J. Association of previous medications with the risk of COVID-19: a nationwide claims-based study from South Korea. MedRxiv. 2020. doi: 10.1101/2020.05.04.20089904

96. Yan H, Valdes AM, Vijay A, Wang S, Liang L, Yang S, Wang H, Tan X, Du J, Jin S, et al. Role of drugs used for chronic disease management on susceptibility and severity of COVID-19: a large case-control study. Clin Pharmacol Ther. 2020;108:1185–1194. doi: 10.1002/cpt.2047

97. Satué-Gracia EM, Vila-Córcoles A, de Diego-Cabanes C, Vila-Rovira A, Torrente-Fraga C, Gómez-Bertomeu F, Hospital-Guardiola I, Ochoa-Gondar O, Martin-Luján F. Susceptibility and risk of SARS-COV-2 infection among middle-aged and older adults in Tarragona area, Spain. Med Clin (Barc). 2021. doi: 10.1016/j.medcli.2021.03.027

98. Ganjali S, Bianconi V, Penson PE, Pirro M, Banach M, Watts GF, Sahebkar A. Commentary: Statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020;113:154375. doi: 10.1016/j.metabol.2020.154375

99. Higgins J, Li T, Deeks J. Chapter 8: choosing effect measures and computing estimates of effect. Cochrane Handb Syst Rev Interv. Version 62, Cochrane, 2021.
SUPPLEMENTAL MATERIAL
Table S1. Non-inclusion criteria

Most criteria were defined based on ICD-10 and ATC codes.

ICD-10 codes: any occurrence in the 5 years preceding inclusion date (February 15, 2020) is used.

ATC codes: having 3 dispensing (or 2 when at least one concerned the dispensing of large pack size) in the year preceding inclusion date is used. For lipid lowering drugs, additional condition was required: having at least one dispensing in the last month (if small pack size) or 3 months (if large pack size) preceding inclusion.

Other codes were also detailed.

Exclusion criteria	Codes
Lipid lowering drugs	
Fibrates	
ATC	C10AB
Bile acid sequestrants	
ATC	C10AC
Nicotinic acid and derivatives	
ATC	C10AD
Other lipid lowering drugs (ezetimibe, PCSK9 inhibitors,* etc.)	C10AX
ATC	
Combinations of lipid lowering drugs	C10B
Cardiovascular and neurovascular diseases	
Include following conditions:	
Acute or chronic coronary artery disease	
Acute stroke or aftermath	
Acute or chronic heart failure	
Peripheral vascular disease	
Arrhythmia or cardiac conduction disorders	
Valvular heart disease	
Acute pulmonary embolism	
Other cardiovascular conditions	
ICD-10	
I 50 J 81 I 11 I 13 K 76 I 20 I 21 I 22 I 23 I 24 I 25 I 48 I 05 I 06	
I 07 I 08 I 34 I 35 I 36 I 37 I 38 I 39 I 44 I 45	
I 47 I 48 I 49 I 702 I 26	
I 739 I 74 0 I 74 3 I 74 4 I 74 5 G 46 I 60 I 61 I 62 I 63 I 64	
I 65 I 66 I 67 I 68 I 69 G 45 I 26 I 800 I 801 I 802	
I 803 I 808 I 809 I 81 I 82	
I 70 I 73 I 74 only for those included in the list of long-term diseases	
Other comorbidities	
Cancer	
ICD-10	
D 00 x D 09 x	
Z 08 Z 51 0 Z 51 1	
Kidney transplant, dialysis	
ICD-10	
N 18 (long-term diseases), Z 940	
CCAM	
J A E A 0 0 3, H N E A 0 0 2	
J V J B 0 0 1, J V J F 0 0 4, J V J F 0 0 8, J V R P 0 0 4, J V R P 0 0 7, J V R P 0 0 8, YYYY 0 0 7	
Diagnosis related group	
2 7 C 0 6 2 4 M 3 9 Z 1 1 M 1 7	
Billing code for dialysis session conducted at home, self-care dialysis, in a dialysis unit under medical supervision	11K02, 28Z01-28Z04
---	-------------------
Dementia	D11-D16, D20-24
ICD-10	F00 F01 F02 F03 F051 G30
ATC	N06DA04 N06DX01

*For PCSK9 inhibitors: any dispensing in the past year.
Table S2. Exposure of interest

Definition (ATC codes): having 3 dispensing (or 2 when at least one concerned the dispensing of large pack size) in the year preceding inclusion date and having at least one dispensing in the last month (if small pack size) or 3 months (if large pack size) preceding inclusion.

Types and statin intensity was defined based on the lastly dispensed statin between November 15, 2019 and February 15, 2020 (index date).

Types of statins

Statins (HMG CoA reductase inhibitors)	ATC codes
Atorvastatin	C10AA05
Fluvastatin	C10AA04
Pravastatin	C10AA03
Rosuvastatin	C10AA07
Simvastatin	C10AA01

Classification of statins according to their intensity

This classification is based on an article published by ACC/AHA, Circulation, 2019.

Intensity (LDL-cholesterol lowering)	Dose 1	Dose 2
Low (< 30%)		
Fluvastatin	20	40
Pravastatin	10	20
Simvastatin	10	
Moderate (30% - 49%)		
Atorvastatin	10	20
Rosuvastatin	5	10
Simvastatin	20	40
Pravastatin	40	
Fluvastatin	80	
High (≥50%)		
Atorvastatin	40	80
Rosuvastatin	20	
Table S3. Matching variables

Most criteria were defined based on ICD-10 and ATC codes.

ICD-10 codes: any occurrence in the 5 years preceding inclusion date (February 15, 2020) is used.

ATC codes: having 3 dispensing (or 2 when at least one concerned the dispensing of large pack size) in the year preceding inclusion date is used.

In addition to year of birth, sex, residence area, other matching variables were:

Covariates	Codes
Hypertension ATC	C02AB02, C02AC01, C02AC02, C02AC05, C02AC06, C02CA01, C02CA06, C02DC01, C02LA01, C03AA01, C03AA03, C03BA04, C03BA10, C03BA11, C03BX03, C03CA01, C03CA02, C03CA03, C03DA01, C03DB01, C03EA01, C03EA04, C07AA02, C07AA03, C07AA05, C07AA06, C07AA12, C07AA15, C07AA16, C07AA23, C07AB02, C07AB03, C07AB04, C07AB05, C07AB07, C07AB08, C07AB12, C07AG01, C07BA02, C07BB02, C07BB03, C07BB07, C07BB12, C07CA03, C07DA06, C07FB02, C07FB03, C08CA01, C08CA02, C08CA03, C08CA04, C08CA05, C08CA08, C08CA09, C08CA11, C08CA13, C08CX01, C08DA01, C08DB01, C08GA02, C09AA01, C09AA02, C09AA03, C09AA04, C09AA05, C09AA06, C09AA07, C09AA08, C09AA09, C09AA10, C09AA13, C09AA15, C09AA16, C09BA01, C09BA02, C09BA03, C09BA04, C09BA05, C09BA06, C09BA07, C09BA09, C09BA15, C09BB02, C09BB04, C09BB10, C09BX02, C09CA01, C09CA02, C09CA03, C09CA04, C09CA06, C09CA07, C09CA08, C09DA01, C09DA02, C09DA03, C09DA04, C09DA06, C09DA07, C09DA08, C09DB01, C09DB02, C09DB04, C09XA02, C09XA52, C10BX03
Diabetes mellitus ICD-10	E10, E11, E12, E13, E14, G59.0, G63.2, G73.0, G99.0, H28.0, H36.0, I79.2, L97, M14.2, M14.6, N08.3
ATC	A10 excluding benfluorex (A10BX06)
Chronic respiratory condition ICD-10	J40, J41, J42, J43, J44, J45, J46, J47, J96 (excluding J96.0, J96.9), J98
ATC	R03 (drugs for obstructive airway diseases)
Table S4. Covariates

Most criteria were defined based on ICD-10 and ATC codes.

ICD-10 codes: any occurrence in the 5 years preceding inclusion date (February 15, 2020) is used.

ATC codes: having 3 dispensing (or 2 when at least one concerned the dispensing of large pack size) in the year preceding inclusion date is used.

Other codes were also detailed.

Covariates	Codes
Health behavior characteristics	
Smoking-related condition	
ICD-10	Z716 F17 T652 Z720
ATC	N07BA
Primary care delivery	Tobacco consultation service (9566, 9526, 9527) in the 5 years preceding index date (at least once)
Alcohol-related condition	
ICD-10	E244, E512, F10, G312, G621, G721, I426, K292, K70, K860, R780, T51, X45, X65, Y15, Y90, Y91, Y573, Z502, Z714, or Z721
ATC	N07BB01, N07BB03, N07BB04, N07BB05 at least 2 dispensing in the 5 years preceding index date M03BX01 (baclofen) without following neurological disease (ICD-10): C70, C71, C793, C794, D32, D33, D42, D43, G04, G05, G06, G09, G12, G13, G24, G25, G26, G31, G32, G35, G36, G37, G46, G80, G81, G82, G83, G91, G93, G95
Laboratory test (NABM)	516, 517, 519 (gamma-GT)
Obesity-related condition	
ICD-10	E66 excluding E66.03, E66.13, E66.83, E66.93 (since 2006)
CCAM	HFCA001, HFCC003, HFFA001, HFFA011, HFFC004, HFFC018, HFGC900, HFKA001, HFKA002, HFKC001, HFLC900, HFLE002, HFMA009, HFMA010, HFMA011, HFMC006, HFMC007, HFMC008, HGCA009, HGCC027 (bariatric surgery)
Comorbidities or comediations	
Liver and pancreas disorder	
ICD-10	B18, I85, K70, K71, K72, K73, K74, K75, K76, K85, K86
ATC/UCD/CIP	Treatment for chronic hepatitis B:
	J05AF08, J05AF10, J05AF11
	9212525, 9212531 (UCD, Zeffix®)
	3519671, 3519694 (CIP, Zeffix®)
	Treatment for chronic hepatitis B:
	L03AB05, L03AB09, L03AB10, L03AB11
	J05AB04
	J05AP08, J05AP51, J05AP55, J05AP56, J05AX (3400930108765 (CIP), 3400894287391 (UCD)), J05AX14, J05AX15, J05AX16, J05AX65, J05AX67, J05AX68
Laboratory test (NABM)	4125: hepatitis C genotype
	4124: hepatitis C viral load
	1000 to 1002 (Fibrotest®, Fibromètre®V, Hépascore®)
CCAM	HLQM002, HLHB001, HLHH001, HLHH005, HLHJ003 (liver biopsy, etc.)
Medications (ATC)	
Non-steroidal anti-inflammatory drugs (ATC)	M01AE09, M01AE11, M01AE01, M01AE02, M01AB01, M01AE03, M01AB05, M01AB16, M01AH01, M01AH05, M01AC01, M01AC02, M01AC06, M01AX01, M01AX17, M01AB08, M01AE16, M01AX02, M01AX22, M01AX21
---	--
Low-dose aspirin (CIP)	18 CIP codes:
	3400934744198
	3400933247379
	3400931893639
	3400932703616
	3400926939939
	3400938206371
	340093226558
	3400934323492
	3400934300141
	3400930013953
	3400930013984
	3400930014035
	3400930014066
	3400935902269
	3400935984814
	3400926940188
	3400930182543
	3400930195697
Antplatelet	B01AC04-B01AC07
	B01AC22-B01AC24
	B01AC30
Heparin	B01AB,B01AX
Anticoagulant	B01AA,B01AE,B01AF,B01AX
Oral corticosteroid	H02A
Anxiolytic	N05BA01, N05BA04, N05BA05, N05BA06, N05BA08, N05BA09, N05BA11, N05BA12, N05BA16, N05BA18, N05BA21, N05BA23, N05BB01, N05BB02, N05BC01, N05BE01, N05BX03
Hypnotic	N05BC51, N05CD02, N05CD03, N05CD04, N05CD05, N05CD06, N05CD07, N05CD11, N05CF01, N05CF02, N05CM11, N05CM16, N05CX
Antidepressant	N06A, N05AN01, N03AG02, 3400934876233, 3400934876691, 3400935444271 (CIP)
Antipsychotic	N05A (excluding N05AN01 and N05AL06), 3400932896332 (CIP)

NABM: *nomenclature des actes de biologie médicale.*
Region	Population (January 1, 2021*)	No exposure	Statin exposure
Auvergne-Rhône-Alpes	8,092,598 (12.4)	213,640 (10.4)	213,640 (10.4)
Bourgogne-Franche-Comté	2,786,205 (4.3)	98,693 (4.8)	98,693 (4.8)
Bretagne	3,371,297 (5.2)	104,714 (5.1)	104,714 (5.1)
Centre-Val de Loire	2,562,431 (3.9)	95,625 (4.6)	95,625 (4.6)
Corse	349,273 (0.5)	8,697 (0.4)	8,697 (0.4)
Grand Est	5,524,817 (8.5)	192,826 (9.4)	192,826 (9.4)
Hauts-de-France	5,977,46 (9.2)	234,718 (11.4)	234,718 (11.4)
Île-de-France	12,326,429 (18.9)	317,010 (15.4)	317,010 (15.4)
Normandie	3,306,092 (5.1)	121,260 (5.9)	121,260 (5.9)
Nouvelle Aquitaine	6,039,767 (9.3)	199,285 (9.7)	199,285 (9.7)
Occitanie	5,985,751 (9.2)	164,959 (8.0)	164,959 (8.0)
Pays de la Loire	3,838,060 (5.9)	125,184 (6.1)	125,184 (6.1)
Provence-Alpes-Côte d’Azur	5,089,661 (7.8)	133,389 (6.5)	133,389 (6.5)
Total	65,249,843	2,058,249	2,058,249

*Source: INSEE, Population census. Data available on the French Institute for Demographic Studies website (INED: https://www.ined.fr).
Table S6. Association between statin exposure and hospitalization for COVID-19

Statin exposure	Hospitalization N=9396	IPTW\(^{*}\)	IPTW further adjusted model\(^{†}\)		
	HR [95%CI]	P-value	HR [95%CI]	P-value	
No exposure	5,024 (0.24)	1	1	.	
Statin exposure	4,372 (0.21)	0.85 [0.82-0.89]	<.0001	0.84 [0.80-0.87]	<.0001

Type of statin					
No exposure	5,024 (0.24)	1	1	.	
Atorvastatin	1,944 (0.23)	0.91 [0.85-0.97]	0.0035	0.88 [0.83-0.94]	0.0002
Fluvastatin	92 (0.17)	0.69 [0.52-0.92]	0.0114	0.71 [0.53-0.95]	0.0212
Pravastatin	730 (0.19)	0.86 [0.77-0.95]	0.0038	0.84 [0.76-0.93]	0.0012
Rosuvastatin	794 (0.21)	0.82 [0.75-0.91]	<.0001	0.80 [0.72-0.88]	<.0001
Simvastatin	812 (0.20)	0.79 [0.72-0.87]	<.0001	0.78 [0.71-0.87]	<.0001

Statin intensity					
No exposure	5,024 (0.24)	1	1	.	
Low	778 (0.18)	0.79 [0.71-0.87]	<.0001	0.78 [0.71-0.87]	<.0001
Moderate	3,231 (0.22)	0.85 [0.81-0.89]	<.0001	0.83 [0.79-0.88]	<.0001
High	363 (0.28)	1.12 [0.95-1.31]	0.1756	1.04 [0.88-1.23]	0.6193

Statin intensity and its type					
No exposure	5,024 (0.24)	1	1	.	
Low					
Fluvastatin 20/40	58 (0.17)	0.71 [0.50-1.01]	0.0595	0.74 [0.51-1.06]	0.0973
Pravastatin 10/20	537 (0.19)	0.82 [0.73-0.93]	0.0015	0.81 [0.72-0.92]	0.0007
Simvastatin 10	183 (0.17)	0.71 [0.59-0.87]	0.0009	0.72 [0.59-0.89]	0.0018
Moderate					
Atorvastatin 10/20	1,638 (0.23)	0.88 [0.82-0.95]	0.0004	0.86 [0.80-0.93]	<.0001
Fluvastatin 80	34 (0.16)	0.66 [0.41-1.06]	0.0886	0.67 [0.42-1.09]	0.1048
Pravastatin 40	193 (0.22)	0.97 [0.79-1.20]	0.8066	0.94 [0.76-1.17]	0.5806
Rosuvastatin 5/10	737 (0.20)	0.80 [0.72-0.88]	<.0001	0.78 [0.71-0.87]	<.0001
Simvastatin 20/40	629 (0.21)	0.82 [0.73-0.91]	0.0003	0.81 [0.72-0.90]	0.0001
High					
Atorvastatin 40/80	306 (0.28)	1.09 [0.91-1.29]	0.3393	1.02 [0.85-1.22]	0.8238
Rosuvastatin 20	57 (0.28)	1.29 [0.85-1.95]	0.2252	1.18 [0.78-1.80]	0.4359

\(^{*}\)HR for hazard ratio; 95%CI for 95% confidence interval; IPTW for inverse probability of treatment weighting.

\(^{†}\)Conditional Cox proportional hazards model with IPTW.

\(^\dagger\)Conditional Cox proportional hazards model with IPTW further adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
Table S7. Association between statin exposure and hospital outcomes after excluding participants with low-dose aspirin

	Fully adjusted model*	
	HR [95%CI]	P-value
Hospitalization for COVID-19		
Statin exposure		
No	1	-
Yes	0.84 [0.79-0.89]	<.0001
Statin intensity		
No exposition	1	-
Low	0.79 [0.70-0.89]	0.0002
Moderate	0.84 [0.79-0.90]	0.0000
High	1.04 [0.83-1.31]	0.7330
In-hospital deaths for COVID-19		
Statin exposure		
No	1	-
Yes	0.80 [0.68-0.92]	0.0028
Statin intensity		
No exposition	1	-
Low	0.74 [0.54-1.02]	0.0639
Moderate	0.78 [0.66-0.93]	0.0061
High	1.36 [0.73-2.54]	0.3352

HR for hazard ratio; 95%CI for 95% confidence interval.

*Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
Matching variables	Before IPTW	After IPTW
Age (years)		
Mean (SD)	68.65 (10.36)	68.77 (10.45)
40-59	395,018 (19.2)	393,908 (19.1)
60-69	683,378 (33.2)	675,066 (32.8)
70-79	660,264 (32.1)	659,763 (32.1)
>=80	319,589 (15.5)	331,128 (16.1)
Sex		
Men	958,989 (46.6)	953,716 (46.3)
Women	1,099,260 (53.4)	1,106,151 (53.7)
Residence area		
Auvergne-Rhône-Alpes	213,640 (10.4)	211,820 (10.3)
Bourgogne-Franche-Comté	98,693 (4.8)	98,760 (4.8)
Bretagne	104,714 (5.1)	103,224 (5.0)
Centre-Val de Loire	95,625 (4.6)	94,986 (4.6)
Corse	8,697 (0.4)	9,048 (0.4)
Grand Est	192,826 (9.4)	196,157 (9.5)
Hauts-de-France	234,718 (11.4)	241,077 (11.7)
Ile-de-France	317,010 (15.4)	313,047 (15.2)
Normandie	121,260 (5.9)	122,824 (6.0)
Nouvelle-Aquitaine	199,285 (9.7)	198,574 (9.6)
Occitanie	164,959 (8.0)	163,733 (8.0)
Overseas departments	47,939 (2.3)	48,232 (2.3)
Overseas territories	310 (0.0)	315 (0.0)
Pays de la Loire	125,184 (6.1)	124,445 (6.0)
Provence-Alpes-Côte d’Azur	133,389 (6.5)	133,618 (6.5)

Covariates	Before IPTW	After IPTW	
Hypertension			
No	1,198,186 (58.2)	1,194,456 (58.0)	
Yes	860,063 (41.8)	865,410 (42.0)	
Diabetes mellitus			
No			
Yes			
Condition	No	Yes	p-value
--	-------------	--------------	----------
Yes	1,364,924 (66.3)	693,325 (33.7)	0.00001
Chronic respiratory condition			
No	1,872,316 (91.0)	185,933 (9.0)	0.00001
Social deprivation index (quintiles)			
1 (least deprived)	343,795 (16.7)	56,468 (8.5)	0.00001
2	366,832 (17.8)	60,410 (4.0)	0.00001
3	393,467 (19.1)	93,531 (13.5)	0.00001
4	422,536 (20.5)	73,531 (10.5)	0.00001
5 (most deprived)	449,430 (21.8)	135,549 (19.1)	0.00001
Unknown	82,189 (4.0)	3,668 (0.5)	0.00001
Smoking-related condition			
No	2,001,677 (97.3)	56,572 (2.7)	0.00001
Alcohol-related condition			
No	2,025,242 (98.4)	56,572 (2.7)	0.00001
Obesity-related condition			
No	2,015,058 (97.9)	43,191 (2.1)	0.00001
Liver and pancreas disorder			
No	2,030,710 (98.7)	27,539 (1.3)	0.00001
Non-steroidal anti-inflammatory			
No	1,732,982 (84.2)	32,697 (1.7)	0.00001
Low-dose aspirin			
No	1,827,030 (88.8)	231,219 (11.2)	0.00001
Antiplatelet agent			
No	2,042,260 (99.2)	15,989 (0.8)	0.00001
Heparin			
No	2,044,349 (99.3)	13,900 (0.7)	0.00001
Yes	1,364,924 (66.3)	693,325 (33.7)	0.00001
Anti-inflammatory and platelet disorders			
Yes	242,613 (98.2)	7,554 (1.8)	0.00001
Yes	1,459,937 (97.5)	36,872 (2.5)	0.00001
Yes	2,021,734 (98.2)	8,015 (6.2)	0.00001
Yes	2,046,403 (99.4)	862 (0.7)	0.00001
Yes	13,463 (0.7)	13,900 (0.7)	0.00001
Yes	1,487,559 (99.4)	2,629 (0.6)	0.00001
Yes	1,29,411 (99.3)	9,250 (0.6)	0.00001
Yes	2,046,403 (99.4)	862 (0.7)	0.00001
Yes	13,463 (0.7)	13,900 (0.7)	0.00001
	No	Yes	
---------------	-------------------------	-------------------------	
Anticoagulant	2,010,491 (97.7) 419,361 (97.3) 1,455,088 (97.2) 125,388 (96.3) 2,005,242 (97.4) 419,692 (97.3) 1,458,442 (97.4) 126,253 (96.9)	47,758 (2.3) 11,806 (2.7) 41,721 (2.8) 4,885 (3.7) 54,624 (2.7) 11,187 (2.6) 38,794 (2.6) 3,558 (2.7)	
Oral corticosteroid	1,944,371 (94.5) 409,134 (94.9) 1,416,044 (94.6) 123,291 (94.6) 1,947,198 (94.6) 407,439 (94.5) 1,415,769 (94.6) 122,676 (94.2)	113,878 (5.5) 22,033 (5.1) 80,765 (5.4) 112,668 (5.5) 23,439 (5.4) 81,468 (5.4) 7,135 (5.5)	
Anxiolytic	1,872,500 (91.0) 381,414 (88.5) 1,326,948 (88.7) 115,006 (88.3) 1,844,824 (89.6) 386,921 (89.7) 1,343,356 (89.7) 116,067 (89.1)	185,749 (9.0) 49,753 (11.5) 169,861 (11.3) 215,043 (10.4) 43,958 (10.2) 153,881 (10.3) 13,744 (10.6)	
Hypnotic	1,975,317 (96.0) 409,748 (95.0) 1,419,181 (94.8) 123,358 (94.7) 1,962,836 (95.4) 411,091 (95.3) 1,427,986 (95.4) 123,565 (94.9)	82,932 (4.0) 21,419 (5.0) 77,628 (5.2) 6,915 (5.3) 97,031 (4.7) 19,787 (4.6) 69,250 (4.6) 6,246 (4.8)	
Antidepressant	1,902,683 (92.4) 386,729 (89.7) 1,344,623 (89.8) 116,320 (89.3) 1,873,144 (91.0) 392,469 (91.0) 1,363,551 (91.1) 117,950 (90.5)	155,566 (7.6) 44,438 (10.3) 152,186 (10.2) 13,953 (10.7) 186,722 (9.1) 38,410 (8.9) 133,686 (8.9) 11,861 (9.1)	
Antipsychotic	2,044,795 (99.3) 427,542 (99.2) 1,484,359 (99.2) 129,004 (99.0) 2,044,152 (99.3) 427,614 (99.2) 1,486,009 (99.3) 128,817 (98.9)	13,454 (0.7) 3,625 (0.8) 12,450 (0.8) 1,269 (1.0) 15,715 (0.8) 3,265 (0.8) 11,227 (0.8) 995 (0.8)	
Table S9. Association between covariates and hospitalization for COVID-19 examined in a fully adjusted model

Covariate	Fully adjusted model*			
	HR	95%CI	P-value	
Statin exposure				
No exposure	1.00	1.00	1.00	
Statin exposure	0.84	0.81	0.88	<.0001
Social deprivation index (quintiles)				
1 (least deprived)	1.00	1.00	1.00	
2	1.18	1.07	1.31	0.0014
3	1.38	1.23	1.54	<.0001
4	1.42	1.27	1.59	<.0001
5 (most deprived)	1.58	1.42	1.75	<.0001
Unknown	1.34	0.98	1.82	0.0631
Smoking-related condition				
No	1.00	1.00	1.00	
Yes	0.50	0.41	0.63	<.0001
Alcohol-related condition				
No	1.00	1.00	1.00	
Yes	1.31	1.02	1.67	0.0322
Obesity-related condition				
No	1.00	1.00	1.00	
Yes	1.49	1.25	1.79	<.0001
Liver failure				
No	1.00	1.00	1.00	
Yes	1.69	1.34	2.12	<.0001
Non-steroidal anti-inflammatory				
No	1.00	1.00	1.00	
Yes	1.11	1.03	1.21	0.0084
Low-dose aspirin				
No	1.00	1.00	1.00	
Yes	1.13	1.06	1.22	0.0006
Antiplatelet agent				
No	1.00	1.00	1.00	
Yes	1.58	1.29	1.93	<.0001
Heparin				
No	1.00	1.00	1.00	
Yes	1.14	0.81	1.60	0.4629
Anticoagulant				
No	1.00	1.00	1.00	
Yes	1.35	1.16	1.57	<.0001
Oral corticosteroid				
No	1.00	1.00	1.00	
Yes	1.55	1.37	1.75	<.0001
Anxiolytic				
No	1.00	1.00	1.00	
Yes	1.06	0.96	1.18	0.2398
Hypnotic				
No	1.00	1.00	1.00	

*Fully adjusted model for association between covariates and hospitalization for COVID-19.
	Fully adjusted model*			
	HR	95%CI	P-value	
Yes	0.94	0.82	1.09	0.4046
Antidepressant				
No	1.00			
Yes	1.10	0.98	1.22	0.0984
Antipsychotic				
No	1.00			
Yes	1.91	1.40	2.60	<.0001

HR for hazard ratio; 95%CI for 95% confidence interval.

*Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index, smoking, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
Table S10. Association between statin exposure and in-hospital COVID-19 deaths

Statin exposure	Death N=1648	IPTW* HR [95%CI]	P-value	IPTW further adjusted model† HR [95%CI]	P-value
No exposure	914 (0.044)	1	1	1	.
Statin exposure	734 (0.036)	0.77 [0.69-0.85]	<.0001	0.76 [0.68-0.85]	<.0001
Type of statin					
No exposure	914 (0.044)	1	1	1	.
Atorvastatin	329 (0.040)	0.86 [0.73-1.01]	0.0584	0.83 [0.70-0.98]	0.0280
Fluvastatin	22 (0.040)	0.87 [0.48-1.57]	0.6457	0.88 [0.47-1.65]	0.6970
Pravastatin	118 (0.031)	0.66 [0.52-0.84]	0.0009	0.66 [0.51-0.85]	0.0014
Rosuvastatin	126 (0.033)	0.73 [0.58-0.93]	0.0093	0.72 [0.56-0.92]	0.0084
Simvastatin	139 (0.034)	0.73 [0.58-0.91]	0.0065	0.75 [0.59-0.96]	0.0212
Statin intensity					
No exposure	914 (0.044)	1	1	1	.
Low	142 (0.033)	0.72 [0.58-0.90]	0.0038	0.74 [0.59-0.94]	0.0116
Moderate	527 (0.035)	0.76 [0.68-0.86]	<.0001	0.75 [0.66-0.85]	<.0001
High	65 (0.050)	1.05 [0.71-1.55]	0.8103	1.00 [0.66-1.51]	0.9977
Statin intensity and its type					
No exposure	914 (0.044)	1	1	1	.
Low					
Fluvastatin 20/40	14 (0.040)	0.78 [0.39-1.56]	0.4890	0.82 [0.39-1.72]	0.6016
Pravastatin 10/20	91 (0.032)	0.65 [0.49-0.85]	0.0019	0.66 [0.50-0.88]	0.0041
Simvastatin 10	37 (0.034)	0.94 [0.59-1.50]	0.8084	1.01 [0.62-1.64]	0.9769
Moderate					
Atorvastatin 10/20	273 (0.038)	0.82 [0.69-0.98]	0.0278	0.80 [0.67-0.96]	0.0169
Fluvastatin 80	8 (0.038)	1.17 [0.37-3.73]	0.7888	1.08 [0.33-3.55]	0.9052
Pravastatin 40	27 (0.031)	0.72 [0.42-1.24]	0.2379	0.67 [0.38-1.17]	0.1628
Rosuvastatin 5/10	117 (0.032)	0.72 [0.57-0.92]	0.0093	0.71 [0.55-0.91]	0.0072
Simvastatin 20/40	102 (0.033)	0.67 [0.51-0.87]	0.0029	0.68 [0.52-0.91]	0.0079
High					
Atorvastatin 40/80	56 (0.051)	1.10 [0.71-1.71]	0.6626	1.02 [0.65-1.61]	0.9380
Rosuvastatin 20	9 (0.044)	0.85 [0.35-2.10]	0.7307	0.93 [0.37-2.34]	0.8697

HR for hazard ratio; 95%CI for 95% confidence interval; IPTW for inverse probability of treatment weighting.

*Conditional Cox proportional hazards model with IPTW.

†Conditional Cox proportional hazards model with IPTW further adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic).
Table S11. Association between statin exposure and in-hospital deaths in COVID-19-related hospitalized individuals (N=9,396)

Statin exposure	Unadjusted model	Fully adjusted model	IPTW further adjusted model				
	HR [95% CI]†	P-value	HR [95% CI]†	P-value	HR [95% CI]†	P-value	
No exposure	839 (16.70)	1	.	1	.	1	.
Statin exposure	690 (15.78)	0.94 [0.85-1.04]	0.2597	0.84 [0.76-0.93]	0.0012	0.87 [0.79-0.96]	0.0083

Type of statin	HR [95% CI]†	P-value	HR [95% CI]†	P-value	HR [95% CI]†	P-value	
No exposure	839 (16.70)	1	.	1	.	1	.
Atorvastatin	309 (15.90)	0.95 [0.83-1.08]	0.4297	0.85 [0.74-0.97]	0.0141	0.85 [0.74-0.97]	0.0191
Fluvastatin	21 (22.83)	1.44 [0.93-2.22]	0.0998	1.23 [0.80-1.90]	0.3445	1.33 [0.86-2.08]	0.2017
Pravastatin	113 (15.48)	0.93 [0.76-1.13]	0.4650	0.81 [0.67-0.99]	0.0402	0.84 [0.68-1.03]	0.0868
Rosuvastatin	121 (15.24)	0.91 [0.75-1.10]	0.3185	0.83 [0.68-1.00]	0.0515	0.88 [0.73-1.07]	0.1981
Simvastatin	126 (15.52)	0.93 [0.77-1.12]	0.4214	0.83 [0.69-1.00]	0.0553	0.89 [0.73-1.07]	0.2098

Statin intensity	HR [95% CI]†	P-value	HR [95% CI]†	P-value	HR [95% CI]†	P-value	
No exposure	839 (16.70)	1	.	1	.	1	.
Low	133 (17.10)	1.03 [0.86-1.24]	0.7353	0.91 [0.76-1.10]	0.3452	0.96 [0.80-1.16]	0.6716
Moderate	494 (15.29)	0.91 [0.82-1.02]	0.1034	0.82 [0.73-0.92]	0.0007	0.85 [0.76-0.95]	0.0050
High	63 (17.36)	1.04 [0.81-1.34]	0.7635	0.87 [0.67-1.13]	0.3038	0.85 [0.64-1.14]	0.2830

Statin intensity and its type	HR [95% CI]†	P-value	HR [95% CI]†	P-value	HR [95% CI]†	P-value	
No exposure	839 (16.70)	1	.	1	.	1	.
Fluvastatin 20/40	13 (22.41)	1.42 [0.82-2.45]	0.2102	1.27 [0.73-2.19]	0.3974	1.44 [0.84-2.45]	0.1813
Pravastatin 10/20	87 (16.20)	0.97 [0.78-1.21]	0.8087	0.86 [0.68-1.07]	0.1674	0.88 [0.70-1.10]	0.2616
Simvastatin 10	33 (18.03)	1.09 [0.77-1.54]	0.6311	0.99 [0.70-1.40]	0.9481	1.06 [0.75-1.51]	0.7270
Atorvastatin 10/20	255 (15.57)	0.93 [0.81-1.07]	0.2969	0.84 [0.73-0.97]	0.0151	0.85 [0.74-0.98]	0.0286
Fluvastatin 80	8 (23.53)	1.47 [0.73-2.95]	0.2775	1.18 [0.59-2.38]	0.6418	1.15 [0.53-2.53]	0.7223
Pravastatin 40	26 (13.47)	0.81 [0.55-1.19]	0.2842	0.70 [0.47-1.03]	0.0699	0.72 [0.47-1.09]	0.1162
Rosuvastatin 5/10	112 (15.20)	0.91 [0.74-1.10]	0.3240	0.83 [0.68-1.01]	0.0626	0.88 [0.72-1.07]	0.2051
Simvastatin 20/40	93 (14.79)	0.88 [0.71-1.09]	0.2396	0.79 [0.63-0.98]	0.0293	0.84 [0.67-1.04]	0.1054
Atorvastatin 40/80	54 (17.65)	1.06 [0.81-1.40]	0.6765	0.89 [0.67-1.17]	0.3935	0.84 [0.62-1.16]	0.2907
Rosuvastatin 20	9 (15.79)	0.93 [0.48-1.80]	0.8366	0.80 [0.41-1.55]	0.5091	0.91 [0.46-1.78]	0.7755

HR for hazard ratio; 95% CI for 95% confidence interval; IPTW for inverse probability of treatment weighting.
There is a lower number of 119 individuals (44 in statin group and 75 in unexposed group) compared with the total number of deaths reported in Table 3 (n=1648). These individuals were not included in the present table as they died of COVID-19 but were hospitalized for other reasons than COVID-19.

†Cox proportional hazards model.

‡Cox proportional hazards model adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic), and influenza vaccination.

§Cox proportional hazards model with IPTW and further adjustment with the same variables as those in the full adjusted model.

‖The strength of the association between statins and in-hospital death for COVID-19 was less strong than that of Table 3. This may be due to the difference in the used designs: conventional Cox proportional hazards model in this table vs conditional Cox proportional hazards model on Table 3. The latter model could not be used here as the number of paired statin users and their matched controls was small (n=17) in this sub-sample of hospitalized individuals for COVID-19.
Table S12. Impact of history of influenza vaccination on the association between statin exposure and severe COVID-19 outcomes

a. Description of influenza vaccination according to statin exposure

Influenza vaccination since November 15, 2017	No exposure (n = 2,058,249)	Statin exposure (n = 2,058,249)	Standardized difference
No	1,235,041 (60.0)	1,058,253 (51.4)	0.17357
Yes	823,208 (40.0)	999,996 (48.6)	

*Variable defined from ATC codes J07BB (at least one dispensing since November 15, 2017).

b. Association between statin exposure and hospitalization for COVID-19 in a fully adjusted conditional Cox proportional hazards model with further adjustment for history of influenza vaccination

Hospitalization N = 9396	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡
Statin exposure			
No	5,024 (0.24)	1.00	1.00
Yes	4,372 (0.21)	0.87 [0.83-0.90]	<.0001

HR for hazard ratio; 95% CI for 95% confidence interval; IPTW for inverse probability of treatment weighting.

*Conditional Cox proportional hazards model.

†Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic), and influenza vaccination.

‡Conditional Cox proportional hazards model with IPTW and further adjustment with the same variables as those in the full adjusted model.

c. Association between statin exposure and in-hospital death for COVID-19 in a fully adjusted conditional Cox proportional hazards model with further adjustment for history of influenza vaccination

Death N= 1648	Unadjusted model*	Fully adjusted model†	IPTW further adjusted model‡
Statin exposure			
No	914 (0.044)	1.00	1.00
Yes	734 (0.036)	0.80 [0.73-0.88]	<.0001

HR for hazard ratio; 95% CI for 95% confidence interval; IPTW for inverse probability of treatment weighting.

*Conditional Cox proportional hazards model.

†Conditional Cox proportional hazards model adjusted for the following covariates: social deprivation index, smoking-, alcohol-, and obesity-related conditions, liver failure, and concomitant medications (non-steroidal anti-inflammatory, low-dose aspirin, antiplatelet agent, heparin, anticoagulant, oral corticosteroid, anxiolytic, hypnotic, antidepressant, antipsychotic), and influenza vaccination.

‡Conditional Cox proportional hazards model with IPTW and further adjustment with the same variables as those in the full adjusted model.
Figure S1. Standardized differences before and after inverse probability of treatment weighting (IPTW)
Figure S2. Association between statin exposure and in-hospital deaths from COVID-19: results from literature review

Author	Matching	Adjustment	RM	LCI	UCI
Aparisi et al	No	Unadjusted	1.13	0.80	1.61
Aparisi et al	No	Adjusted	0.48	0.30	0.77
Butt et al	No	Unadjusted	2.87	2.39	3.46
Butt et al	No	Adjusted	0.96	0.78	1.18
Daniels et al	No	Unadjusted	0.60	0.28	1.24
Daniels et al	No	Adjusted	0.29	0.11	0.71
De Spiegeleer et al	No	Unadjusted	0.75	0.25	1.85
De Spiegeleer et al	No	Adjusted	0.75	0.24	1.87
Grasselli et al	No	Unadjusted	1.76	1.59	1.95
Grasselli et al	No	Adjusted	0.98	0.81	1.20
Lee et al	No	Unadjusted	2.51	1.69	3.73
Lee et al	No	Adjusted	0.64	0.43	0.95
Lohia et al	No	Unadjusted	1.10	0.84	1.44
Lohia et al	No	Adjusted	0.66	0.46	0.95
Nicholson et al	No	Unadjusted	1.63	1.20	2.22
Nicholson et al	No	Adjusted	0.47	0.24	0.92
Rosenthal et al	No	Unadjusted	0.99	0.94	1.04
Rosenthal et al	No	Adjusted	0.60	0.56	0.65
Saeed et al	No	Unadjusted	0.54	0.46	0.63
Saeed et al	No	Adjusted	0.51	0.43	0.61
Song et al	No	Unadjusted	1.07	0.49	2.32
Song et al	No	Adjusted	0.88	0.37	2.08
Wargny et al	No	Unadjusted	1.35	1.12	1.62
Wargny et al	No	Adjusted	1.42	1.00	2.02
Fan et al	PSM	Unadjusted	0.25	0.07	0.93
Fan et al	PSM	Adjusted	0.25	0.07	0.92
Lee et al	PSM	Unadjusted	0.58	0.38	0.89
Lee et al	PSM	Adjusted	0.55	0.36	0.85
Zhang et al	PSM	Unadjusted	0.53	0.39	0.72
Zhang et al	PSM	Adjusted	0.58	0.43	0.80

RM for ratio measures referring to effect measures such as odds ratio and hazard ratio; LCI for 95% lower limit of the confidence interval; UCI for 95% upper limit of the confidence interval; PSM for propensity score matching.