Assessment of seminal plasma free amino acids among fertile men

Marwa O. Aboelwafa, Tahia H. Seleem, Hassan M. Ibraheem, Mohammed H. Hassan

Medical Biochemistry Department, Faculty of Medicine, South Valley University, Qena, Egypt.

Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.

Dermatology, Venereology, Andrology Department, Qena University Hospital, South Valley University, Qena, Egypt.

Abstract:

Background: Amino acids can elevate sperm count, motility, and morphology. Increasing the availability of these amino acids can help to improve male fertility, certain foods can help to improve sperm parameters. This is due to the high concentration of specific amino acids. There are many amino acids involved in the production, development and maintenance of sperm.

Aims: Assessment of seminal plasma free amino acids among fertile men.

Patients and methods: This study done on 50 fertile men assessment of free amino acids in their seminal plasma. Semen analyses were done and amino acids measured in seminal plasma using H.P.L C.

Results: The median and range of their semen analysis parameters were: volume 2 (3-3), liquefaction time 10 (10-15), sperm concentration 60 (50-75) million/ml, total sperm motility 80 (80-80) %, abnormal sperm 35 (30-40), viability 67.5 (60-80) %, the range of seminal plasma leucine was 1.68-1.87, isoleucine 1.22-1.31, valine 0.33-0.53, tyrosine 1.11-1.22, phenylalanine 0.79-0.89, histidine 1.28-1.51, tryptophan 0.26-0.36.

Conclusions: Assessment of seminal plasma amino acids is very helpful in evaluation of male fertility.

Keywords: amino acids, fertility, seminal plasma, semen analysis.

Introduction:

Amino acids can elevate sperm count, motility, and morphology. Increasing the availability of these amino acids can help to improve male fertility. Certain foods can help to improve sperm parameters. This is due to the high concentration of specific amino acids. There are many amino acids involved in the production, development and maintenance of sperm, (Schachter et al., 1973) for example: arginine amino acid is found in high concentrations within sperm, particularly in sperm heads. It’s also the precursor in the synthesis of spermidine, putrescine and spermine. These three compounds are all important components of sperm.

Although sperm may still be produced without adequate levels of arginine, elevating L-arginine availability will increase blood flow to the reproductive organs. This makes it easier to develop and maintain erections. L-arginine is necessary for the production of nitric oxide, therefore indirectly facilitating healthy blood circulation and vessel dilation. Not only does this help to reduce any possible erectile dysfunction, it also improves nutrient supply to the developing...
sperm, supplement with L-arginine will boost sperm count. (Aydin et al., 1995).

The present study was carried out on 50 fertile men their age ranges from 24 to 35 years old.

The patients were selected from the outpatient clinics of dermatology, venereology and andrology department, Qena university hospitals in the duration from January and June 2018 to evaluate normal levels of different free amino acids in fertile men.

Data collection:

A- History suggestive of epididymo-orchitis, prostatitis, genital trauma, testicular torsion, cryptorchidism, inguinal or genital surgery.

B- History of chronic medical diseases, or receiving hormonal therapy or chemotherapy or radiotherapy.

C- Genital diseases such as (cryptorchidism, maldescended testes or any uro-genital anomalies, obstructive azoospermia, urinary tract infection or varicocele, prostatitis, genital trauma and testicular torsion).

D- Hypertension, autoimmune or inflammatory disorders, coronary artery disease, diabetes mellitus, or chronic renal failure or those receiving hormonal therapy or chemotherapy were excluded from the study.

E- Abnormal hormonal profile and presence of any endocrinopathy.

Ethical consideration:

All patients will be included in the study after taking a written consent from the patient's parents after full explanation of the purpose, nature and risks of all procedures used according to the ethical committee of the Qena University hospital.

Physical examination:

A-General examination including:

Patients and methods:

1- Measurement of patients weight, height, for BMI calculation and BP.

2- Assessment of gynecomastia and secondary sex characteristics such as hair distribution.

B-Genital examination:

1- Examination of the penis: including the location of the urethral meatus.

2- Palpation of the testis and measurement of their size.

3- Presence and consistency of both vasa epididymis Presence of varicocele.

4- Secondary sex characteristics including body habitus, hair distribution, and breast development.

5- Digital rectal exam.

C- Investigation:

Semen analysis:

Semen samples were collected from the subjects, after 3-5 days of sexual abstinence, by masturbation. Macroscopic and microscopic semen analysis was performed according to WHO criteria (WHO, 2010).

After allowing 30 min for liquefaction, then each semen sample was centrifuged at 4000 rpm for 10 min and the supernatent clear seminal plasma was transferred into 1 ml cryotubes and stored at -80°C till time of biochemical analysis of amino acids.

Amino acid assay: The assays were performed by using an automatic amino acid analyzer.

Statistical analysis:

Data were analyzed using IBM SPSS statistics for windows version 20 (Armonk, NY: IBM Corp). The data were tested for normality using Kolmogrov-Smirnov and Shapiro-Wilk tests. Qualitative data were presented as number, percentage, Quantitative
data were expressed as mean and standard deviation (if were parametric data), median and interquartile range (for non parametric data).

Results:

The study has been conducted on 50 fertile men with their age ranges from 24 to 35 years old. The median and range of their semen analysis parameters were: volume 2(3-3), liquefaction time 10(10-15), sperm concentration 60(50-75) million / ml, total sperm motility 80(80-80) %, abnormal sperm 35(30-40), viability 67.5(60-80) %

The median and range of essential amino acids in seminal plasma were: valine, 0.42, (0.33-0.53), isoleucine 1.29, (1.22-1.31), leucine 1.78, (1.68-1.87), Phenylalanine 0.83, (0.79-0.89), Histidine, 1.5 (1.28-1.51), Tryptophan, 0.33 (0.26-0.36), Table 1.

The median and range of basic amino acids were: ornithine, 2(1.7-2.3), Lysine, 2.6 (2.1-2.8), Arginine, 1.44 (1.39-1.59). The median and range of hydroxy amino acids aspartic acid, 1.2 (1.1-1.5), tyrosine, 1.14 (1.11-1.22), Table 2.

Table 1. Seminal plasma levels of essential amino acids

Semen plasma amino acids	Median (Range) (μmol/mg seminal plasma protein)
Valine	0.42(0.33-0.53)
Isoleucine	1.29(1.22-1.31)
Leucine	1.78(1.68-1.87)
Phenylalanine	0.83(0.79-0.89)
Histidine	1.5(1.28-1.51)
Tryptophan	0.33(0.26-0.36)

Semen plasma amino acids

Median (Range) (μmol/mg seminal plasma protein)
Ornithine
2(1.7-2.3)
Lysine
2.6(2.1-2.8)
Arginine
1.44(1.39-1.59)
Aspartic acid
1.2(1-1.5)
Tyrosine
1.14(1.11-1.22)
Threonine
1.1(1.08-1.2)

Table 2: seminal plasma levels of basic, acidic and hydroxyamino acids:

Semen plasma amino acids	Median (Range) (μmol/mg seminal plasma protein)	Fertile men (N=50)
Ornithine	2(1.7-2.3)	
Lysine	2.6(2.1-2.8)	
Arginine	1.44(1.39-1.59)	
Aspartic acid	1.2(1-1.5)	
Tyrosine	1.14(1.11-1.22)	
Threonine	1.1(1.08-1.2)	

Discussion:

Amino acids play an important role in male fertility. Little is known about the significance of free amino acids in semen (Silvestroni et al., 2009) so this study was carried on 50 fertile men to evaluate levels of different amino acids in seminal plasma among fertile men and found that the range of: leucine (1.68-1.87), valine (0.33-0.53), isoleucine (1.22-1.31), Table 1 regarding branched chain amino acids, and the range of tyrosine (1.11-1.22), phenylalanine (0.79-0.89), histidine (1.28-1.51), tryptophan (0.26-0.36), Table 2 regarding aromatic amino acids, the range of threonine (1.08-1.2), lysine (2.1-2.8), arginine (1.39-1.59), Table 3 regarding the essential amino acids, the range of ornithine (1.7-2.3), Table 4, aspartic acid (1-1.5), Table 5 also this was in accordance to the study done by (Morisi et al., 1979) that was carried on 15 selected patients with idiopathic oligozoospermia, 27-39 yr of age.

Control studies were performed on 15 age-matched
Subjects defined as fertile and they found the level of amino acids in fertile men: ornithine, Lysine, Histidine, Arginine, Aspartic acid, Threonine, Glutamic acid, Alanine Valine, Isoleucine, Leucine, Tyrosine, Phenylalanine. The levels of ornithine, Lysine, Histidine, Arginine, Aspartic acid, Threonine, Glutamic acid, Alanine, Valine, Isoleucine, Leucine, Tyrosine, Phenylalanine were 0.24, 2.70, 2.12, 2.79, 0.82, 2.15, 5.35, 0.74, 0.92, 1.84, 2.45, 3.00, 0.63 respectively while in infertile groups the levels of ornithine, Lysine, Histidine, Arginine, Aspartic acid, Threonine, Glutamic acid, Alanine, Valine, Isoleucine, Leucine, Tyrosine, Phenylalanine were 0.17, 0.83, 0.86, 1.47, 0.28, 0.93, 2.11, 0.22, 0.70, 1.04, 1.01, 1.66, 0.22 respectively.

Also, recent Austrian study about the important role that amino acids have in assisting men with sub-fertile problems. The study assessed changes to sperm quality in sub-fertile males following supplementation with micronutrients. Results revealed that men who took the supplement had a 215 percent improvement in the density of sperm cells, 33 percent improvement in the volume of ejaculated sperm, and a 23 percent improvement in overall sperm motility. Arginine, has specific roles associated with male fertility.

Elevating L-arginine availability will increase blood flow to the reproductive organs. This makes it easier to develop and maintain erections. L-arginine is necessary for the production of nitric oxide, it also improves nutrient supply to the developing sperm. Supplement with L-arginine will boost sperm count. (Aydin et al., 1995); (Schachter et al., 1973). Forward sperm motility is also improved when regularly taking L-arginine supplements - (Morgante et al., 2010).

Conclusion:
It is important to measure seminal plasma amino acids in the routine assessment of male fertility.

References:
Aydin S, Palmer R, Ashton D, Moncada S. (1995). Vascular endothelial cells synthesize nitric oxide from L-arginine. Research Laboratories, Beckenham, Kent, UK. 333(6174):664-666.

Morgante G, Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A et al. (2010). Natural ways to enhance male fertility, Fertil Steril, (84)5:1444-9.

Morisi G, Malandrino F, Frajese G. (1979). Free Amino Acids in Semen: Measurement and Significance in Normal and Oligozoospermic Men, Arch Androl, 2(3):257-259.

Schachter A, Barbul A, Arnal A, Armstrong M, Becker R, Castillo L et al. (1973): Orthomolecular medical use of L-citrulline for vasoprotection, relaxative smooth muscle tone and cell protection. Normal Values for Children and Adults", Metab, 22:561-569.

Silvestrini L, Morisi G, Malandrino F, Frajese G. (2009). Free Amino Acids in Semen: Measurement and Significance in Normal and Oligozoospermic Men, Arch Androl, 2(3):257-261.