Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect

Hamed Mirzaei and Michael R. Hamblin

1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran; 2Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa

The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5’-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.

Otto Heinrich Warburg first discovered that tumors tended to show a specific metabolic phenotype in the 1920s. Cancer cells, even when they have sufficient oxygen, tend to make ATP using glycolysis, rather than the oxidative phosphorylation (OXPHOS) that occurs in normal cells and generates more ATP per glucose molecule. This phenomenon of aerobic glycolysis became known as the “Warburg effect.” In glycolysis, the glucose uptake by the cancer cells is higher, and lactic acid is produced from pyruvate, thus reducing the pH of the tumor.1,2

Soon after the discovery, Warburg proposed that the mitochondrial function was fundamentally altered in tumor cells, and he even proposed that this could be a cause of cancer.3 However, he subsequently stated that mitochondrial function was not damaged in most kinds of cancer cells.4

Moreover, Warburg suggested that the increase in glucose/glutamine consumption by cancer cells could lead to them becoming “glucose addicted” or “glutamine addicted,” which may induce cell death. Metabolic intermediates that are produced by cells through glucose/glutamine catabolism act as building blocks and reducing agents for the production of macromolecules and the generation of ATP.5

In addition to ATP, rapidly proliferating cancer cells have a high requirement for proteins, membrane phospholipids, nucleic acids, and fatty acids. Glycolysis can provide intermediates and substrates for producing many biological macromolecules. It also produces small molecules or precursors, such as non-essential amino acids, acetyl-coenzyme A (CoA), and ribose for the biosynthesis of nucleotides needed for the rapid replication of DNA.3,4,6 The increased metabolism of tumors tends to create high quantities of reactive oxygen species (ROS). In tumor cells, these ROS can trigger senescence and apoptosis caused by oxidative stress.7

The “reverse Warburg effect” defines a situation when cancer-associated stromal cells could metabolically support adjacent cancer cells by carrying out glycolysis. The transfer of metabolites can induce stromal cell-cancer cell coupling, which could allow cancer cells to generate more ATP in order to support proliferation.8

The switch to glycolysis away from OXPHOS therefore tends to reduce the levels of ROS generated in the mitochondria. The glycolytic intermediates provide the required sources of carbon for rapid cell proliferation, but less ATP is formed compared to OXPHOS.9 The lactate produced by glycolysis reduces the pH levels in the extracellular matrix (ECM).10 The acidic microenvironment can enhance tumor invasion and metastasis, while also increasing the resistance to treatment with ionizing radiation.11,12 Therefore, the Warburg effect can be regarded as a pathway in which tumor cells harness cellular stress to progress.13,14 In the Warburg effect, it is proposed that the cellular metabolism is adapted to increase the incorporation of molecules into the biomass, such as nucleotides, amino acids, and lipids, which are needed for production of new cells. In support of this idea, numerous signaling pathways involved in cell proliferation can also regulate the metabolic pathways that incorporate nutrients into the biomass. Moreover, specific cancer-associated mutations could enable cancer cells to take up and metabolize nutrients in a way that is conducive to proliferation rather than ATP production.7

Additionally, it has been found that glycolysis in cancer cells is regulated by N6-methyladenosine modifications in several mRNAs. Pyruvate dehydrogenase kinase 4 is involved in N6-methyladenosine-regulated glycolysis. When the 5’ untranslated region (UTR) of pyruvate dehydrogenase kinase 4 is modified with N6-methyladenosine, translation elongation is improved by binding to the YTHDF1/eEF-2.
complex. Moreover, mRNA stability can also be improved by interacting with IGF2BP3.15 Although most N6-methyladenosine modifications take place on mRNAs, it has been shown that N6-methyladenosine modifications can also occur on noncoding RNAs, especially miRNAs and circular RNAs (circRNAs).16

Many proteomic and genomic pathways are involved in the initiation and progression of cancer.17–19 Genome-wide surveys of cancer cells have revealed that there are frequent changes or variations in copy number located within non-coding regions of the DNA.17,20 In the human genome, it has been reported that 95% of the total sequence do not actually code for proteins. This non-coding DNA (ncRNA) is transcribed to produce tens of thousands of functional ncRNAs. These ncRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), long ncRNAs (lncRNAs), and antisense RNAs (asRNAs).20–23 Recently, new types of ncRNAs, namely circRNAs, have been reported.24–26 A large portion of the circRNAs are produced from the exons of coding genes, but many of them do not encode any protein.24–26

Glycolysis in Cancer

As reviewed by Zhang and Yang,27 cancer cells frequently tend to display the glycolytic phenotype. Bonnet et al.28 suggested that by switching the glycolytic phenotype toward OXPHOS, this could cause the cancer cells to die. In addition, the restoration of the mitochondrial-K+ channel function was enough to enhance apoptosis because the mitochondrial-K+ channel axis of cancer cells was suppressed. This study provided two important hypotheses: (1) glycolysis facilitates the growth of tumor notwithstanding a suppressed mitochondrial-K+ channel axis, and (2) reversal of the glycolytic phenotype back to OXPHOS may enhance cancer cell death.

The lack of a sufficient blood supply, which is characteristic of rapidly growing tumors, causes areas of hypoxia in which OXPHOS is inactive, and a metabolic switch from mitochondrial respiration to glycolysis is accompanied by mitochondrial dysfunction.29,30 In functionally active mitochondria, the occurrence of aerobic glycolysis under normoxic conditions is intriguing. It is noteworthy that mutations in mitochondrial DNA (mtDNA) can affect the enzymes of OXPHOS, in particular three enzymes, that is, isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate dehydrogenase (FDH) (reviewed by Wallace31). Similarly, mutations in the nuclear DNA (nDNA) can also affect the bioenergetics of cancer cells.31 These changes in enzyme activity are related to many cellular pathways, and the metabolic machinery of cancer cells can be reprogrammed; for example, SDH mutations lead to the accumulation of succinate, which inhibits prolyl hydroxylase dehydrogenase (PHD) and finally causes hypoxia-inducible factor (HIF)-1\textalpha stabilization. This mechanism links HIF-1\textalpha and angiogenesis to aerobic glycolysis and lactate production.

However, the laboratory depletion of mtDNA in cancer cells using ethidium bromide (rho zero cells) led to a decreased growth rate and colony formation and inhibited tumorigenicity.32 These rho zero cells showed an increased sensitivity to cytotoxic drugs, thus refuting the argument that drug resistance was based on functional mitochondria. Warburg’s original statement that dysfunctional mitochondria were a “common cause of cancer growth” must now be seen to be more complex. Transfer of mitochondria from adjoining normal healthy cells can compensate for the function of OXPHOS.33 However, although the exact relationship between alterations of mitochondrial function and the cancer phenotype remains controversial, the energy metabolism of cancer cells, in particular glycolysis and lactate production, is considered a valid target for therapeutic intervention.

Despite the fact that glycolysis produces a lower amount of ATP compared to mitochondrial OXPHOS, tumors can still derive some benefits from the switch.34 First, the rate of turnover in the glycolytic enzymes is much higher (up to 100 times faster) compared to OXPHOS.35 The low yield of ATP but the high rate of production36 means that there are selective benefits in the case of shared energy sources, proposing an evolutionary advantage to glycolysis.37 Rapidly dividing cells such as microorganisms with a doubling time in the range of a few minutes to several hours require ATP for proliferation, while cancer cells with a relatively longer doubling time (~24 h) require ATP more for cell maintenance, although their proliferation is still rapid compared to normal cells. Hence, for the growth of cancer, the ATP made by glycolysis is sufficient, but the rapid rate provides a selective growth benefit.38,39 In addition to ATP, cancer cells need a more abundant supply of metabolic precursors and intermediates, which are essential for the biosynthesis of macromolecules and for increasing the tumor mass.40 The accumulation of glycolytic intermediates has been found to be important for the pentose phosphate pathway (PPP), leading to the generation of ribulose-5-phosphate and NADPH. Both molecules are necessary for the biosynthesis of nucleic acids and lipids. Finally, the increased NADPH levels allows the cancer cells to maintain adequate levels of reduced glutathione (GSH), which is an important non-enzymatic antioxidant. GSH plays a fundamental role in the protection of cancer cells from their elevated levels of ROS, and from damage caused by anti-neoplastic agents and chemotherapeutic drugs.41,42 In this regard, Zhou et al.37 showed that chemoresistant cell lines had elevated levels of aerobic glycolysis, demonstrating a biochemical connection between glycolysis and chemoresistance. Additionally, aerobic glycolysis has been implicated in the resistance of cancer cells to radiotherapy.43

KRAS can act as an oncogene by altering the metabolism of cancer cells in many ways, such as increasing the uptake of glucose, and triggering glycolysis even in the presence of oxygen (the Warburg effect).44 These effects of oncogenic KRAS are due to the upregulation of the expression of glucose transporters as well as glycolytic enzymes.45 Amendola et al.46 found that hexokinase 1 (HK1) can interact with KRAS4A, which can change the activity of the kinase, and suggested that HK1 could be considered as an effector of KRAS4A. The palmitoylation-depalmitoylation cycle that KRAS4A undergoes enables co-localization with HK1 at the outer membrane of mitochondria. Therefore, KRAS4A expression in different cancer
cells may drive specific metabolic alterations that could be used as therapeutic targets.

The pyruvate kinase isoform (pyruvate kinase M2 [PKM2]), an alternatively spliced product of the PKM2 gene, can alter glucose metabolism in cancer cells and increase tumorigenesis. This function is due not to its known enzyme activity, but to a direct interaction with the HIF-1 subunit HIF-1α, leading to the transactivation of HIF-1 target genes through increasing the binding of HIF-1 and recruitment of p300 to the hypoxia response elements.47

The PPP plays an important role in the biosynthesis of macromolecules, and recent studies have associated it with antioxidant protection and resistance to radiation and chemotherapy.48 The transketolase (TKTL1) enzyme is particularly involved in cell survival under starvation and stress conditions.49–51 Other reports have indicated that TKTL1 can influence the chemosensitivity of cancer cells to cetuximab52 and imatinib.53 Therefore, it is clear that aerobic glycolysis together with the pentose shunt pathway can provide multiple advantages to cancer cells, including for tumor progression and development of resistance to treatment. Therefore, tumor glycolysis could present a promising target for therapeutic intervention.

miRNA Biogenesis

The biosynthesis mechanism of miRNA is evolutionarily conserved. The pathway involves successive endonuclease cleavage steps mediated by two ribonuclease (RNase) III enzymes called Dicer and Drosha (see Figure 1).54 The primary miRNA transcript (pri-miRNA) is produced in the nucleus by RNA polymerase II (RNA Pol II). The pri-miRNA is transformed by Drosha into a hairpin structure of ~60–100 nt, called the precursor-miRNA (pre-miRNA) (see Figure 1).55–58 The pre-miRNA is carried out of the nucleus by the interaction between Ran-GTP and exportin-5. The pre-miRNA then undergoes further processing catalyzed by Dicer (see Figure 1)59,60 to produce an ~22-nt double-stranded RNA (dsRNA) construct composed of the passenger (miRNA*) strand and the mature miRNA guide strand (see Figure 1). The mature miRNA strand binds to the 3′ UTR of its target genes. This binding triggers the assembly of a large protein complex called the RNA-induced silencing complex (RISC), which reduces gene expression, either by the degradation of the mRNA or by inhibiting translation.61
The binding of the miRNA to the miRNA-recognition site in the 3’ UTR of the target mRNA can accommodate incomplete base pairing within the sequence. The incomplete nature of the binding between miRNA and mRNA means that any single miRNA could potentially target tens to hundreds of different miRNAs. The miRNA-RISC complex increases miRNA degradation and translational inhibition, causing silencing of the particular gene. These effects are heavily involved in cell differentiation, embryonic development, cell death, metabolism, and proliferation.

Regulation of Glycolysis by miRNAs in Cancer

Many different oncogenes and tumor suppressor genes are regulated by miRNAs. The effects of miRNAs on gene regulation have been reported in the pathogenesis of cancers originating in multiple origins and composed of different cell types.

Among other cellular functions, miRNA can regulate metabolic pathways, many of which are altered in cancer. The changes in tumor metabolism have been associated directly or indirectly with the downstream targets of many different miRNAs. Table 1 lists the glycolytic pathways involved in cancer that have been reported to be regulated by miRNAs, either directly or at the level of oncogenes.

The glucose transporter (GLUT) family of receptors (GLUT1–GLUT4) mediates transport of glucose through the plasma membrane of eukaryotic cells. GLUT3 as well as GLUT1 are mostly unmodified in many cancer types. However, GLUT4 activity is regulated by insulin or insulin-like growth factor (IGF) signaling, whereas the function of GLUT3 and GLUT1 is independent of insulin. Many miRNAs have been found to regulate the expression levels of GLUT3 and GLUT1, although none of these has been experimentally shown to target the mRNA levels of GLUT3 or GLUT1. However, the expression of GLUT4 was reduced by miRNA (miR)-133 and miR-223 in cardiomyocytes. Whether the expression levels of GLUT4 are involved in the metabolic phenotype in cancer remains to be investigated.

The targets of miRNAs include some glycolytic enzymes. The first step in the glycolytic pathway is the action of hexokinases (HKs) that are responsible for transferring a phosphoryl group from ATP to the 6-hydroxyl of glucose for synthesizing glucose-6-phosphate (G6P). In this manner, glucose phosphorylation directs the glucose into the cells by maintaining the gradient essential for facilitating GLUTs. There is no evidence yet suggesting the role of miRNAs in regulating HKs. The miR-200 family (miR-200a, miR-200b, and miR-200c) regulates phosphoglycerate isomerase that plays roles in the invasion and metastasis of cancer cells. Mimetics of miR-122 acting by miRNAs, either directly or at the level of oncogenes. However, a direct relationship has still to be confirmed. TPI1 and ALDOA were detected in a proteomic screen carried out in MEG-01 leukemic cells to be regulated through the miR-15a/16-1 cluster, and they were downregulated or eliminated in chronic lymphocytic leukemia (CLL) B cells. TPI1 was also predicted to be a direct target of the miR-15a/16-1 cluster. ALDH6A1 (aldehyde dehydrogenase 6 family member A1) was detected in a microarray screen in CLL to be regulated by the miR-15a/16-1 cluster. The expression levels of the target genes of phosphoglucomutase 1 (PGM1), ENO1, and PGK1 were detected using proteomic analysis in the invasive lung cancer cell line DLKP-A and found to be modulated by miR-29a. The mechanism involved miRNA downregulating ENO2d in the HepG2 hepatocarcinoma cell line, and this was confirmed because ENO2 levels were significantly upregulated by Drosha knockdown. Nevertheless, the details of ENO2-targeting miRNAs are so far unclear. Some cancer cells significantly overexpress PKM2, which is a direct target of miR-326. In solid tumors, the gene for PKM2 is also targeted by miR-133a and miR-133b. A large amount of pyruvate is converted into lactate, instead of acetyl-CoA embracing the mitochondrial Krebs cycle, within the glycolysis in cancer cells. The produced cytosol lactate leaves the cells with the help of monocarboxylate transporters (MCTs). In a study on human pancreatic cancer, the molecular mechanisms of miR-124 to regulate glycolysis were evaluated by Wu et al., who found higher expression of MCT1 in PDAC tissue when comparing with normal tissue. The metabolism of lactate is influenced by the MCT1 inhibition, and the results are increased intracellular pH and decreased PAN-1 cell proliferation. The target gene of miR-124 is MCT1. The results of an in vitro study showed that the glycolytic activity of PAN-1 cells is impeded by miR-124 through targeting MCT1, which causes a decrease in the tumor phenotype by raising the intracellular pH via LDH-A and HIF-1α. The tumor growth was significantly blocked by miR-124 overexpression and MCT1 silencing within an in vivo study. In the lactate metabolic pathway, the PAN-1 progression is inhibited by miR-124 through MCT1 targeting. The results from the present study reported new findings regarding further functional studies of miR-124 that predispose potential therapeutic strategies to PDAC.

According to Pullen et al., DNA methylation at the Mct1 promoter is probably associated with cell type-specific transcriptional repression (three miRNAs, i.e., miR-29a, miR-29b, and miR-124) selectively targeting MCT1 3’ UTRs in humans and mice. The effects of the miRNAs of mutated miR-29 or miR-124 binding sites are blocked, meaning a direct function of these miRNAs on the MCT1 message. Although it is expressed in the mouse β cell line MIN6, no expression of miR-124 was evident in mature mouse islets, whereas the three miR-29 isoforms are expressed and enriched in mouse islets in large amounts. According to our results, Mct1 mRNA levels are elevated due to miR-29a inhibition in primary mouse islets, so the isoforms of miR-29 cause β cell-specific silencing of the MCT1 transporter and influence the secretion of insulin.
Table 1. Selected MicroRNAs Involved in the Regulation of Glycolysis Processes in Various Cancers

Cancer	MicroRNAs	Expression in Cancer	Target	Model	Samples	References
Pancreatic cancer	miR-124	downregulation	MCT1, PANC-1	in vitro	78	
	miR-7	downregulation	LKB1-AMPK-mTOR	in vitro	79	
	miR-135	upregulation	phosphofructokinase-1	in vitro		
	miR-218	upregulation	HK2, Bim1	in vitro	21	81
Glioma	miR-150	upregulation	HIF-1α	in vitro		82
	miR-451	downregulation	GLUT1	in vitro		83
	miR-200b	downregulation	LDHA	in vitro		85
	miR-491-5p	downregulation	PKM2	in vitro		86
	miR-142-3p	downregulation	LDHA	in vitro		87
	miR-125b	downregulation	HK2	in vitro		88
	miR-125a	downregulation	HK2	in vitro		88
	miR-199a-5p	downregulation	HIF-1α	in vitro		89
	miR-505	downregulation	IGF-1R	in vitro, human	60	90
Hepatocellular carcinoma	miR-34a	downregulation	LDHA	in vitro, human	22	91
	miR-139-5p	downregulation	HK1, PKFB3	in vitro, human		92
	miR-21-5p	upregulation	PDHA1	human	46	93
	miR-34a	downregulation	LDHA	human	73	94
	miR-214	upregulation	A2AR, PRDM16	in vitro		95
	miR-139-5p	downregulation	PRKAA1	in vitro		96
	miR-148b	downregulation	GLUT1	in vitro		97
	miR-181b	downregulation	HK2	in vitro		98
Liver cancer	miR-409-3p	downregulation	PDK1	in vitro		99
	miR-143	downregulation	K-RAS	in vitro, human		100
	miR-15b-5p	downregulation	LDHA	in vitro		101
	miR-323a-3p	downregulation	LDHA	in vitro		102
	miR-33b	downregulation	LDHA	in vitro		103
	miR-125b	downregulation	HK2	in vitro		104
	miR-186	downregulation	PTG1 and HIF-1	in vitro		105
	miR-150	downregulation	Gkat1	in vitro		106
	miR-185	downregulation	hexokinase 2	in vitro, human	30	107
Renal cell carcinoma	miR-199a-3p	downregulation	LDHA, Sp1	in vitro		108
Osteosarcoma	mitomiR-2392	upregulation	HK2 and PKM2	in vitro, in vivo		109
	miR-27b	upregulation	PDHX	in vitro		110
	miR-31	downregulation	DNMT3	in vitro		111
	miR-155	upregulation	PIK3R1-PDK/ AKT-FOXO3a- cMYC	in vitro		112
	miR-340	downregulation	MCU	in vitro		113
	miR-30a-5p	downregulation	LDHA	in vitro		114
	miR-342-3p	downregulation	MCT1	in vitro, human	146	115
Testicular tumors	miR-31-5p	upregulation	HIF-1α inhibitor	in vitro, in vivo		116
Tongue squamous cell carcinoma	miR-214	upregulation	HK2, PKM2, PTEN/mTOR	in vitro		117
	miR-449a	downregulation	LDHA	in vitro		118

(Continued on next page)
Table 1. Continued

Cancer	MicroRNAs	Expression in Cancer	Target	Model	Samples	References
Ovarian cancer	miR-124	downregulation	AKT-GLUT1/HK2	in vitro		119
	miR-155	upregulation	HK2	in vitro		120
	miR-144	downregulation	GLUT1	in vitro		121
	miR-14	upregulation	HK2, DNMT3A	in vitro		122
	miR-603	downregulation	HK2	human		21
	miR-21	upregulation	HK2, PKM2, and LDHA	in vitro		123
	miR-383	downregulation	LDHA	in vitro		124
	miR-203	upregulation	PDHB	in vitro, in vivo		125
	miR-450a	downregulation	TIMMDC1, MT-ND2, ACO2, ATP5B	in vitro, in vivo		126
	miR-603	upregulation	HK2	in vitro, in vivo		127
Gall bladder carcinoma	miRNA-139-5p	downregulation	PKM2	in vitro, in vivo		128
	let-7a-5p	upregulation	PKM2, Stat3	in vitro		129
	miR-304-5p	downregulation	LDHA	human		130
Laryngeal squamous cell carcinoma	miR-125b-5p	downregulation	HK2	in vitro, human		131
Prostate cancer	miR-29c	downregulation	SLC2A3	in vitro, human		132
	miR-137	upregulation	NOX4	in vitro		133
	miR-101	downregulation	NADPH, TIGAR	in vitro		134
	miR-132	downregulation	GLUT1	in vitro		135
Bladder cancer	miR-200c	downregulation	LDHA	in vitro		136
	miR-361-5p	downregulation	Sp1/PKM2	in vitro		137
	miR-145	downregulation	KLF4/PTBP1/PKM3	in vitro		138
	miR-204-3p	downregulation	LDHA	in vitro, human		139
Melanoma	miR-625-5p	downregulation	PKM2	in vitro		140
	miR-137	downregulation	GLO1	in vitro		141
	miR-33a-5p	downregulation	HIF-1α	in vitro, human		142
	miR-33b	downregulation	HIF-1α	in vitro, human		143
	miR-370	upregulation	PDHB	human		144
	miR-23a~27a~24 cluster	upregulation	HIF-1α	in vitro		145
Colorectal cancer	miR-9-5p, miR-98-5p, and miR-199-5p	upregulation	HK2	human		146
	miR-142-5p	upregulation	SDHB	in vitro		147
	miR-328	downregulation	SLC2A1/GLUT1	human		148
	miR-1	downregulation	HIF-1α, HK2, MCT4	in vitro, in vivo		149
	miR-98	upregulation	HK2	in vitro, human		150
Esophageal squamous cell carcinoma	miR-143	downregulation	HK2	in vitro, human		151
Nasopharyngeal carcinoma	miR-34b-3, miR-449a	downregulation	LDHA	in vitro		152
Cutaneous squamous cell carcinoma	miR-365	upregulation	HK2, GLUT1, PDK1	in vitro		153
Oral squamous cell carcinoma	miR-143	downregulation	HK2	in vitro		154
Thyroid cancer	miR-125a-5p	downregulation	CD147	in vitro		155
	miR-143	downregulation	HK2	in vitro, in vivo		156
Aberrant miR-1 expression in aerobic glycolysis (the Warburg effect) was shown by Xu et al. in cancer cells. The aerobic glycolysis and proliferation of tumor cells were blocked by miR-1 because of Smad3 inactivation and HIF-1α targeting. Therefore, the expression of HK2 and MCT4 was decreased, indicating a new pathway that mediates aerobic glycolysis in cancer cells. The tumor glycolysis was reduced significantly following the overexpression miR-1 mimics, including the generation of lactate and the absorption of glucose, as well as cell proliferation, and ectopic Smad3 expression reversed these effects. HIF-1α is regulated by and interacts with endogenous Smad3; this activates Smad3, which is significantly suppressed by miR-1 addition. Based on their results, Smad3 has a pivotal role in the effects of miR-1 in colorectal cancer cells. This presents a mechanism for the first time so that the Warburg effect is provided easily by the miR-1/Smad3/HIF-1α axis in enhancing cancer progression, in vitro and in vivo. miR-1 is associated with tumor suppression, and thus it can act as a suppressor in molecular therapy of patients suffering from advanced colorectal cancer.

The tumor cells frequently overexpress lactate dehydrogenase A (LDHA). Wang et al. observed higher LDHA levels in patients with colorectal cancer when comparing samples with adjacent normal tissue. The production of lactate and ATP and the adsorption of glucose were reduced following LDHA knockdown. A much slower growth rate was seen for the colorectal cancer cells with LDHA knockdown compared to the control cells. Their results showed that LDHA is targeted by miR-34a, miR-34c, miR-369-3p, miR-374a, and miR-4524a/b, thereby regulating glycolysis in cancer cells. In colorectal cancer tissues, an inverse correlation has been found between these miRNAs and LDHA expression. They detected a genetic locus related to the high progression of colorectal cancer, that is, rs18407893 at 11p15.4 (in the 3’ UTR of LDHA), which maps to the seed sequence identified by miR-374a. The LDHA level is lower in cancer cells overexpressing miR-374a than in miR-374a-mutant (MUT) (rs18407893 at 11p15.4). These new results can present promising therapeutic strategies to the Warburg effect and therapeutic targets of cancer energy metabolism.

Yuan et al. in their studies evaluated the expression and function of LDHA in bladder cancer and reported the upregulation of LDHA in bladder cancer cells, enhancing proliferation, invasion, and glycolysis. According to their results, LDHA is targeted directly by miR-200c in bladder cancer cells. As well, LDHA-induced glycolysis, cell proliferation, and invasion were inhibited by ectopic expression of miR-200c. In fact, one of the possible therapeutic approaches can be LDHA targeting via miR-200c in bladder cancer. Mammalian cells extracted an array of cellular processes for maintaining their survival by improving glycolysis and considering low oxygen hypoxia or tension. Under these conditions, the use of genes was operated frequently by HIF-1α, which is fundamental for the helix-loop-helix transcription element of the PAS family. The factor of transcription act as a function of a heterodimer of HIF-1β and HIF-1α. Note that HIF-1α protein can be degraded due to existing oxygen (normoxia) by the ubiquitin-proteasomal procedure, whereas HIF-1β and HIF-1α are basically transcribed and translated.

Kelly et al. specified enzyme glycerol-3-phosphate dehydrogenase 1-like (GPD1L) as a new regulator of a direct target of miR-210 and HIF-1α stability. In response to the expression of miR-210, the levels of HIF-1α were stabilized by reduced levels of GPD1L, leading to enhancing HIF-1α target genes. The enhancement of HIF-1α protein levels and hypoxia-induced miR-210 suppresses GPD1L by suppression of PHD activity. Different influences of HIF-1α onto the transcription of metabolic genes were determined to be straight; nevertheless, HIF-1α additionally adjusts a number of miRNAs, including miR-210, that can regulate an excess of genes in various physiological functions. In multiple cancers, miR-210 can be overexpressed dramatically. In addition, it suppresses ISCU1/2 and hence reduces the activity of prototypical iron-sulfur proteins controlling mitochondrial metabolism, consisting of complex I as well as aconitate, by taking into account hypoxic conditions. However, miR-210 suppresses mitochondrial respiration and can be a reason for more aerobic glycolysis in cancer, indirectly. By apparatuses independent of aerobic glycolysis, many miRNAs may overall affect the homeostasis of glucose. miR-375, known as one such miRNA, can adjust glucose homeostasis in the body with the modulation of insulin secretion. In β cells, the mentioned overexpression prevents insulin exocytosis with related mechanisms, which are independent of variations in the intracellular Ca2+ signaling and transmembrane Ca2+ fluxes. Many previous investigations have demonstrated that glucose homeostasis regulation using miR-375 can be mediated by taking into consideration modulation of the phosphatidylinositol 3-kinase (PI3K) signaling procedure in pancreatic β cells. In pancreatic adenocarcinoma cells, expression levels of miR-375 were dramatically downregulated. Hence, the accurate influence of the downregulation on the metabolism of glucose as well as the potential objectives have not been determined in the case of the tumor cells.

Biogenesis of IncRNAs

IncRNAs play important roles in several human diseases and also in normal development. An understanding of the biogenesis of IncRNAs has been very helpful for differentiating them from other types of ncRNAs, and also for deciphering their functional importance. The biogenesis of IncRNAs is cell stage- and cell type-dependent. Many IncRNAs have been transcribed from DNA sequences, such as promoters, intergenic regions, and enhancer regions in eukaryotic genomes. The first step involved in IncRNA biogenesis is cleavage by RNase P for generating mature ends. Most IncRNAs undergo 5’ capping and 3’ polyadenylation in the same way as mRNAs, but others have small nucleolar RNA (snoRNA) caps at the ends. In recent years, sub-nuclear structures called “paraspeckles” about 200–1,000 nm in size have been identified between the chromatin structures. Paraspeckles consist of several proteins wrapped around a IncRNA core. RNA interference (RNAi) evaluations of 40 paraspeckle proteins (PSPs) led to the identification of 4 PSPs that were essential for the formation of paraspeckles. The mechanisms for formation and regulation of many IncRNAs are
not entirely understood. New techniques, such as chromatin isolation by RNA purification sequencing (ChIRP-seq), ribosome profiling, cross-linking immunoprecipitation (CLIP), phylogenetic lineage tracing, and RNA structure mapping using genetic screens and CRISPR, will provide much more information on the structure and function of lncRNAs.195–197

lncRNAs carry out regulatory functions because of their modular structure and RNA-DNA or RNA-RNA base pairing ability.20 IncRNAs regulate gene function in several ways, including (1) recruitment of the chromatin remodeling complex to alter the chromatin organizational pattern; (2) acting as “sponges” by base pairing with miRNAs to reduce their effects; (3) providing docking sites for proteins that are located within the same pathway; (4) guiding certain transcription factors (TFs) to bind to the promoters; and (5) sequestering transcription factors and keeping them away from the promoters.196

Figure 2. lncRNAs Regulate Some Molecules Involved in Glucose Metabolism in Cancer

IncRNAs regulate glucose uptake and glycolytic flux by modulating GLUTs and glycolytic enzymes. This figure was adapted from Fan et al.200

Yiya is an lncRNA that was found to be upregulated in several cancers, and it is located on 1q41.201 The expression of Yiya is associated with cell proliferation and cell cycle regulation.201 Cyclin-dependent kinase 6 (CDK6) is considered a major regulator of the cell cycle and modulates several cell functions, although this is not completely understood.202 When CDK6 was deleted in mice, they found disorders related to hematopoiesis.203 According to some studies, CDK6 controls the PPP.204 Small molecule inhibitors of CDK6 impaired PPP activity and lactate synthesis.204 In one study, Xing et al.205 assessed the effects of Yiya expression on glycolysis in breast cancer. Yiya was associated with cytosolic CDK6 and modulated CDK6-
that MALAT1 was upregulated in ovarian cancer, and it played a role in glycolysis and tumor development. In 40% of breast cancer cases, the expression of Yiya was related to CKD6 and a poor prognosis.\(^\text{205}\)

NORAD (ncRNA activated by DNA damage) is also known as LOC647979 or LINC00657.\(^\text{206}\) NORAD is known to be an oncogene and is implicated in breast cancer\(^\text{207}\) and pancreatic cancer.\(^\text{208}\) It is known that some IncRNAs can interact with miRNAs and act as RNA sponges that reduce their effect on the target mRNAs.\(^\text{209,210}\) In pancreatic cancer, NORAD functions as a sponge for miR125a3p in order to modulate the Ras homolog family member A.\(^\text{208}\) NORAD interacts with miR-202 and can promote the epithelial-mesenchymal transition, leading to metastasis and a poor prognosis in colorectal cancer.\(^\text{211}\) NORAD is also highly expressed in non-small-cell lung cancer (NSCLC) and could be related to glycolysis and increased cell viability in lung cancer as reported by Gao et al.\(^\text{212}\) These workers used quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) to investigate the expression of NORAD, miR136-5p, and markers of glycolysis and cell proliferation. The direct interaction of miR136-5p with NORAD was investigated using RNA immunoprecipitation and a luciferase reporter assay. NORAD was upregulated in NSCLC cell lines, and glycolysis and proliferation were also increased. They proposed that NORAD acted as a competing endogenous RNA for miR136-5p. Gain- and loss-of-function assays showed that miR136-5p reversed the effects of NORAD in lung cancer.\(^\text{212}\)

MALAT1 (metastasis associated lung adenocarcinoma transcript 1) plays an oncogenic role in some cancers. For instance, Zhang et al.\(^\text{213}\) showed that MALAT1 participates in renal cell carcinoma by modulation of the miR-203/BIRC5 axis. Sun et al.\(^\text{214}\) also showed that MALAT1 was upregulated in ovarian cancer, and it played a role in apoptosis and proliferation by targeting miR503. Si et al.\(^\text{215}\) reported that MALAT1 could suppress apoptosis and promote autophagy by sponging miR-101 in colorectal cancer. MALAT1 is highly expressed in multiple myeloma (MM),\(^\text{216}\) and Liu et al.\(^\text{217}\) reported that downregulation of MALAT1 by RNAi activated apoptosis and suppressed proliferation.

Ftx (five prime to the X-inactivation center [XIST]) is located near XIST on the X chromosome.\(^\text{222}\) Ftx encodes a transcript of 2,300 nt with nine introns, the second and seventh of which encode two clusters of miRNAs, that is, miR-545/miR-374a and miR-421/miR-374b. The other introns encode Ftx itself, so there are no overlaps between miRNAs and Ftx. IncRNA Ftx/miR-545 participates in tumorigenesis in hepatocellular carcinoma (HCC) by affecting the P38K/RAC-α serine/threonine-protein kinase axis via targeting the DExD/H-box helicase 58.\(^\text{221}\) The relationship between glycolysis and Ftx is not yet clear.

Peroxisome proliferator-activated receptor γ (PPARγ) combines with PPAR elements to modulate the transcription of target genes, and it heterodimerizes with the retinoid X receptor. PPARγ has a role in steatosis-associated hepatic tumorogenesis,\(^\text{224}\) and it is involved in cellular sensitivity to insulin and insulin resistance.\(^\text{225}\) It has a role in the regulation of some enzymes in carbohydrate metabolism. For instance, it promotes GLUT4 expression\(^\text{226}\) and suppresses PDK1 expression.\(^\text{227}\) PPARγ was reported to reduce the production of leptin and tumor necrosis factor (TNF)-α and improve cellular sensitivity to insulin and facilitate glucose utilization.\(^\text{228}\)

Li et al.\(^\text{229}\) studied the role of Ftx in glycolysis in HCC. High expression levels of Ftx enhanced invasion, migration, and proliferation of HCC, while low expression of Ftx had the opposite effects. Ftx played a role in glycolysis, the expression of enzymes related to carbohydrate metabolism, glucose transporter expression, glucose consumption, and lactate production. PPARγ expression was related to the expression of Ftx in HCC. The inhibition of PPARγ using GW9662 in HuH7 HCC cells that overexpressed Ftx partially abrogated the increases in glucose uptake, lactate production, and relative glycolytic enzyme expression induced by Ftx. Conversely, in Bel-7402 HCC cells, activation of PPARγ rescued Ftx-mediated suppression of lactate production, glycolytic enzyme expression, and glucose uptake induced by Ftx.\(^\text{229}\)

Proteins, lipids, and nucleotides derived from glycolytic metabolism are used for cell division and proliferation.\(^\text{230}\) LDHA catalyzes the last step of the glycolysis pathway. Abnormal expression levels of LDHA have been found in some cancers such as pancreatic cancer,\(^\text{230}\) HCC,\(^\text{231}\) and breast cancer.\(^\text{232}\) Suppression of LDHA decreases malignant transformation and delays tumor progression.\(^\text{4}\) Studies have investigated the mechanisms of the suppression of tumor growth after LDHA inhibition.\(^\text{231,232}\) Reduction of LDHA activity either by siRNA
or by a small molecule inhibitor altered energy metabolism and caused oxidative stress and cell death in lymphoma both in vitro and in vivo.233 LDHA deletion inhibited tumorigenicity via stimulation of oxidative stress-mediated mitochondrial apoptosis in breast cancer.234 In one study, Chen et al.235 assessed the role of the IncRNA CRYBG3 on glycolysis in lung cancer. Overexpression of CRYBG3 stimulated glycolysis and enhanced glucose uptake and lactate production, while its deletion had the opposite effect.235

GLUT1 (also known as SLC2A1) is a transporter for glucose uptake, and it is expressed by cancer cells for rapid proliferation and energy production by glycolysis. SLC2A1 is highly expressed in lung cancer,236 colon cancer,237 and gastric cancer.237 Chen et al.238 showed that CREB (cyclic AMP [-cAMP]-responsive element binding protein) affected glucose transport via modulating the expression of SLC2A1 and modulated the metabolism and progression of glioma. Shi et al.239 investigated the effect of LINC00174 on glycolysis in glioma. \textit{In situ} hybridization and quantitative RT-PCR were used to examine the expression of LINC00174 in glioma cell lines and samples. ELISA assays, a transwell invasion assay, scratch wound healing, TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling), and a Cell Counting Kit-8 (CCK-8) assay were used to examine the effects on glioma cells. Western blotting, RNA pull-down, dual-luciferase reporter, and RNA immunoprecipitation assays were performed to understand the mechanism. A nude mouse xenograft model was used to understand the role of LINC00174 in glioma development. LINC00174 was overexpressed in glioma tissues and cell lines. LINC00174 deletion suppressed glycolysis, proliferation, migration, and invasion and also affected glioma tumorigenesis. Suppression of miR-152-3p or overexpression of SLC2A1 could reverse the anti-tumor effects of LINC00174 deletion on glioma. Downregulation of LINC00174 reduced the tumor volume and delayed tumor development.239

Phosphatase and tensin homolog (PTEN) is known to function as a tumor inhibitor in some cancers, such as endometrial carcinoma, kidney cancer, and melanoma.240–242 In esophageal squamous cell carcinoma (ESCC), epigenetic silencing of PTEN by promoter hypermethylation was shown to be a mechanism of PTEN reduction.243 Li et al.244 investigated the effects of LINC00184 on glycolysis in esophageal cancer. Quantitative RT-PCR was used to examine LINC00184, and it was found to be upregulated in ESCC, and at the same time PTEN was downregulated. Gain and loss of function was used to evaluate cellular processes \textit{in vivo} and \textit{in vitro}. Deletion of LINC00184 was found to suppress colony formation, proliferation, migration, and invasion, while glycolysis was reduced and mitochondrialOXPHOS was restored. LINC00184 promoted promoter methylation of PTEN by recruiting DNMT1. Suppression of PTEN promoter methylation increased mitochondrialOXPHOS while it inhibited glycolysis. LINC00184 was proposed to regulate glycolysis and mitochondrialOXPHOS in ESCC via Akt phosphorylation, and when Akt was inhibited by LY294002 the effects of LINC00184 on mitochondrialOXPHOS and glycolysis were reversed.244

The dysregulation of the oncogene MYC has been found to be a common event in tumorigenesis. MYC encodes a transcription factor, c-Myc, that stimulates proliferation and cell growth. Kim et al.245 showed that HIF-1 could act cooperatively with dysregulated c-Myc to promote glycolysis in the P493-6 Burkitt’s lymphoma model with an inducible MYC. The expression of the glycolysis enzyme hexokinase 2 was induced, and also pyruvate dehydrogenase kinase 1 that can inactivate pyruvate dehydrogenase and decrease mitochondrial respiration. The IncRNA PCGEM1 (prostate cancer gene expression marker 1) can affect many metabolic processes at the transcriptional level, such as the PPP, glucose metabolism, fatty acid biosynthesis, nucleic acid, and the tricarboxylic acid cycle. PCGEM1 was shown to directly interact with c-Myc, promote c-Myc chromatin recruitment, and bind to the promoters of target genes.246 The effects of c-Myc on glycolytic gene expression can increase glucose metabolism under normal oxygen conditions. The c-Myc protein level can be decreased by the IncRNA MIF (c-Myc inhibitory factor), hence suppressing glycolysis. It was proposed that IncRNA-MIF works as an endogenous competitive RNA to sequester miR-586, thereby decreasing the inhibitory effect of miR-586 against Fbxw7 (F-box/WD repeat-containing protein 7). Fbxw7 is an E3 ubiquitin ligase that can reduce the stability of c-Myc protein. Therefore, IncRNA-MIF can increase the expression of Fbxw7 and reduce the level of c-Myc protein. As shown in Figure 3, there is a feedback loop between IncRNA-MIF and c-Myc that can regulate glucose metabolism and glycolysis.247 Alternatively, the metabolic signaling pathways shown in Figure 3 do not completely reflect the current understanding of these complex networks. For example, the insulin receptor (IR) activates the PI3K/Akt signaling pathway, which is responsible for most of the metabolic activity of insulin. The IR has two splice isoforms, both of which can phosphorylate at least six known IR substrate (IRS) proteins. These IRSs are capable of interacting with eight known forms of the PI3K regulatory subunit. PI3K regulatory subunits, in turn, can associate with three forms of the PI3K catalytic subunit, and the products of PI3K enzyme activity can then activate three isoforms of Akt. The combinatorial possibilities of the IR/IRS/PI3K/Akt part of the insulin-signaling pathway alone exceed 1,000 combinations. When differential compartmentalization, stoichiometry, and the kinetics of the various downstream signaling components are taken into account, this number increases dramatically248 (Table 2).

circRNA Biogenesis

In eukaryotic cells, the processing of the exons of pre-mRNAs by alternative splicing can lead to linear mRNA sequences. circRNAs are produced by a different kind or aberrant RNA splicing in contrast to linear RNAs.274 circRNAs are more resistant to degradation by RNAse enzymes, and they have been found to be more stable compared to linear RNAs due to the presence of a covalent closed-loop structure.275 Vo et al.26 characterized circRNAs in more than 2,000 different cancer samples. They found a general reduction in the global abundance of circRNAs compared to the adjoining normal tissues. Many subtypes of circRNA have recently been characterized using next-generation technologies. There are now four recognized subtypes of circRNAs: (1) exonic circRNAs (ecircRNAs) derived from several or many single

Molecular Therapy: Oncolytics Vol. 19 December 2020 227
exons; (2) circular intronic RNAs (ciRNAs) derived only from introns; (3) exonic-intronic circRNAs (EIciRNAs), including both exons and introns; and (4) tRNA intronic circRNAs (tricRNAs) created by the splicing of pre-tRNA introns. Recently, most of the sequenced circRNAs have been determined to be ecircRNAs. The biogenesis mechanisms of circRNAs depend on the particular sub-type. ecircRNAs are produced by back splicing and lariat-driven circularization. In the lariat, the existing introns are removed, and the exons are linked together by a 5'-3' phosphodiester bond. The downstream donor and the upstream splice acceptor sites are then closed in a circle to create a lariat, which includes the exons.276 In the downstream and upstream introns, interactions occur with RNA-binding proteins (RBPs) to form a “bridge,” followed by back splicing for the formation of ecircRNAs. The biogenesis mechanisms of circRNAs depend on the particular sub-type. ecircRNAs are produced by back splicing and lariat-driven circularization. In the lariat, the existing introns are removed, and the exons are linked together by a 5'-3' phosphodiester bond. The downstream donor and the upstream splice acceptor sites are then closed in a circle to create a lariat, which includes the exons.276 In the downstream and upstream introns, interactions occur with RNA-binding proteins (RBPs) to form a “bridge,” followed by back splicing for the formation of ecircRNAs.277,278 In base pairing-driven circularization of ecircRNAs, the downstream splicing donor site can be linked to the upstream splicing receptor site based on ALU complementary sequences. The机制 of how circRNAs regulate gene function have been investigated in several studies, leading to three main possibilities.277,283 (1) circRNAs often have miRNA binding sites that allow them to bind to miRNAs, acting as a “miRNA sponge” in order to inhibit miRNA binding to the target mRNAs. (2) circRNAs can also interact with RBPs, which leads to the depletion of RBPs and thus reduces their interaction with RNA targets. (3) It has been suggested that the circRNAs that are generated by circularization of exons might compete with the splicing of
pre-mRNA into linear RNA, because they act on the same splice sites. Therefore, the mRNAs might lack the exons that were present in the circRNA, thus altering the composition of the mRNAs.284

Regulation of Glycolysis by circRNAs

As mentioned above, circRNAs have been found to be widespread and involved in many developmental steps as well as normal physiological conditions using high-throughput deep RNA sequencing as well as bioinformatics technology.275,285 Naturally occurring circRNAs play an important role in the interaction network of RNA. circRNAs are relatively stable, diverse, extremely abundant, and highly conserved.275 circRNAs are involved in processes such as controlling the expression of parental genes, acting as endogenous RNAs to sponge miRNAs, regulating RNA–protein interactions and functioning as scaffolds for the assembly of protein complexes, as well as modulating alternative splicing.286,287

It has also been discovered that circRNAs are involved in the pathogenesis of many human diseases, including cardiovascular disorders,288 nervous system disorders,289 osteoarthritis,290 diabetes,291 Alzheimer’s disease,292 and cancer.293,294 circRNAs have important roles in the growth of cancer, stemness of the malignant cells, metastasis, and treatment resistance.295,296

There is one circRNA, named circMYC (hsa_circ_0085533), that has been found in HepG2 cancer cells, HeLa S3 cells, normal human epidermal keratinocytes, and human lung fibroblasts. It is located on chromosome 8 with a 555-base genomic length.285 circMYC is highly expressed in melanoma and is related to tumorigenesis. LDHA changes pyruvate into lactate and is one of the hallmarks of cancers.297 LDHA is considered a valid therapeutic target in many cancers, such as pancreatic cancer, lymphoma, and lung, liver, and breast cancers. Increased LDHA activity and lactate production are

| Table 2. Selected lncRNAs Involved in the Regulation of Glycolysis in Various Cancers |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Cancer | lncRNAs | Expression in Cancer | Target | Model | Samples | References |
| Pancreatic ductal adenocarcinoma | PVT1 | upregulation | HIF-1α | in vitro, in vivo, human | 33 | 245 |
| Hepatocellular carcinoma | SLC2A1-AS1 | downregulation | STAT3/FOXM1/GLUT1 pathway | in vitro, in vivo, human | 167 | 231 |
| | LINC001554 | downregulation | PKM2, Akt/mTOR signaling pathway | in vitro, in vivo, human | 38 | 222 |
| | HOTAIR | upregulation | HIF-1α | in vitro, human | 40 | 222 |
| | HNF1A-AS1 | upregulation | MYO6 | in vitro, human | 52 | 225 |
| | LINRIS | upregulation | IG2BP2 | in vitro, in vivo, human | 40 | 225 |
| | MAFG-AS1 | upregulation | NDUF4 | in vitro, in vivo, human | 113 | 226 |
| | GLCC1 | upregulation | LDHA | in vitro, human | 70 | 225 |
| | BCYRN1 | upregulation | PKM2 | in vitro, human | 20 | 222 |
| | LINC00243 | upregulation | HKII | in vitro, in vivo, human | 45 | 225 |
| | HOTITP | upregulation | HMGRI | in vitro, human | 56 | 225 |
| | MALAT1 | upregulation | SOX13 | in vitro, in vivo, human | 30 | 244 |
| Endometrial carcinoma | SNHG16 | upregulation | HK2 | in vitro, in vivo, human | 45 | 225 |
| | LINC00174 | upregulation | SLC2A1 | in vitro, in vivo, human | 56 | 225 |
| | LINC00689 | upregulation | PKM2 | in vitro, in vivo, human | 84 | 244 |
| | UCA1 | upregulation | PTEN | in vitro, human | 88 | 234 |
| | YTHA | upregulation | CDK6 | in vitro, human | 20 | 266 |
| | MEG3 | downregulation | PI3K/Akt pathway | in vitro, in vivo, human | 20 | 266 |
| | LINC00992 | upregulation | CXCL14 | in vitro, in vivo, human | 58 | 266 |
| | ANRIL | upregulation | mTOR signaling pathway | in vitro, human | 159 | 266 |
| | LINC003504 | upregulation | HK2, PDK1, LDHA | in vitro, in vivo, human | 95 | 266 |
| | p23154 | upregulation | GLUT1 | in vitro, in vivo, human | 45 | 271 |
| | UCA1 | upregulation | hexokinase 2 pathway | in vitro, human | 49 | 271 |
| | VIT1 | upregulation | HK2 | in vitro, human | 46 | 271 |

CAF, cancer-associated fibroblast.
Table 3. Selected Circular RNAs Involved in the Regulation of Glycolysis in Various Cancers

Cancer	Circular RNAs	Expression in Cancer	Target	Model	Samples	Reference
Melanoma	circMYC	upregulation	3’ UTR of LDHA	in vitro, human	25	311
Non-small-cell carcinoma	circACACA	upregulation	PI3K/PKB pathway	in vitro, in vivo, human	25	312
Lung cancer	circAKT3	upregulation	STAT3	in vitro, in vivo, human	28	313

associated with poor prognosis and resistance to chemotherapy and radiotherapy.231,234,298,299 LDHA was found to be overexpressed in nevic melanocytes and primary and metastatic melanomas.300 In one study, Jin et al.301 assessed the effect of circMYC on glycolysis in melanoma. circMYC increased the proliferation in Mel-CV cells and human melanoma cells. Overexpression of circMYC led to inhibition of LDHA activity and lower glycolysis. circMYC targeted miR-1236 and bound to it as a molecular sponge.301

The PI3K/protein kinase B (PKB) signaling pathway is critical for cell apoptosis and survival.302 It has been proposed that some cancers are related to the incorrect activation of that pathway.303 The PI3K/PKB signaling pathway was implicated in the initiation of endometrial cancer304 and cisplatin (DDP) resistance in lung cancer.305 Understanding of the PI3K/PKB pathway could help to improve therapies for lung cancer.

Wu et al.306 studied the effects of circACACA on glycolysis in NSCLC. qPCR was used to measure the expression of miR-1183 and the circACACA Transwell assay, and CCK-8 assays were used to measure migration and proliferation. The Seahorse XF96 analyzer was used to study mitochondrial metabolism, and western blotting was used to quantify the expression of GLUT1, matrix metallopeptidase 9, c-Myc protein, PTEN, phosphorylated (p-)PI3K, PKB, p-PKB, and PI3K. An RNA pull-down assay, RNA immunoprecipitation assay, and dual-luciferase reporter assays were used to study the correlation between circACACA and miR-1183. A xenograft tumor model was used to understand the biological role of circACACA. circACACA was highly expressed in NSCLC samples and cell lines, and the pattern was the opposite of miR-1183 expression. Deletion of circACACA suppressed glycolysis, proliferation, and migration in NSCLC. miR-1183 was targeted by circACACA, and circACACA modulated the PI3K/PKB signaling pathway by interacting with miR-1183. Reducing the expression of circACACA inhibited tumor development.306

Signal transducer and activator of transcription 3 (STAT3) has a role in ischemic cardiac hypertrophy and tumor-associated macrophage differentiation.307,308 Dong et al.309 showed that circ_0076305 regulated DDP resistance in NSCLC by positively modulating STAT3 via sponging of miR-296–5p. Xu et al.310 investigated the effects of circAKT3 on glycolysis in NSCLC. Western blotting and quantitative real-time PCR were used to examine the expression of miR-516b-5p, circAKT3, and STAT3 in NSCLC. MTT was used to measure the sensitivity to DDP. For measuring the lactate production and glycolysis in cells treated with different plasmids or 2-deoxy-glucose (2-DG), a lactate assay and glucose assay kits were used. The expression of HIF-1α in H1299 and A549 cells was detected by western blotting. Relationships between circAKT3, miR-516b-5p, and STAT3 were studied using a dual-luciferase reporter assay. circAKT3 and STAT3 were highly expressed in lung cancer while miR-516b-5p showed low expression. Deletion of circAKT3 inhibited glycolysis and increased the sensitivity to DDP. In A549 cells, the inhibition of HIF-1α-induced glycolysis abrogated the circAKT3-induced chemoresistance. miR-516b-5p was found to bind to circAKT3. Suppression of miR-516b-5p reversed the effects of circAKT3 deletion on glycolysis, as well as DDP sensitivity. Deletion of circAKT3 inhibited development of tumors in vivo by the miR-516b-5p/STAT3 axis310 (Table 3).

Conclusions
Cancer is a complex disease at the cellular level, whose causative factors include environmentally induced mutations, heritable genetic conditions, and epigenetic alterations. Cancer cells are further required to modulate their metabolism in accord with the tumor microenvironment in order to survive and proliferate under the conditions imposed on them by the unrestricted growth of the tumor. The metabolic reprogramming that occurs in tumors to support cell expansion and proliferation is facilitated by the loss of tumor suppressor proteins or the activation of oncogenes. In recent times, a large number of different ncRNAs have been discovered, and these are now accepted as major mechanisms of epigenetic control of gene expression. Many ncRNAs have been implicated in the initiation, progression, and metastatic spread of different types of cancer. The dysregulated metabolism in cancer cells (called the Warburg effect) relies on switching energy production away from OXPHOS toward aerobic glycolysis. Several different sub-types of ncRNAs, including miRNAs, IncRNAs, and circRNAs, have been found to play regulatory roles in cancer metabolism, particularly in mitochondrial functions, and in the metabolism of lipids, glucose, and glutamine. Many ncRNAs have been implicated in cancer metabolic reprogramming and the switch to glycolysis, thus increasing the overall aggressiveness of the tumor. Not only could further investigations into the mechanisms and functions of ncRNAs allow the discovery of additional prognostic biomarkers, but they could also be beneficial for the development of novel therapeutic approaches.

AUTHOR CONTRIBUTIONS
H.M. and M.R.H. contributed to the conception, design, data collection, and drafting of the manuscript. Both authors approved the final version for submission.
REFERENCES

1. Warburg, O. (1956). On the origin of cancer cells. Science 123, 309–314.
2. Warburg, O. (1928). The chemical constitution of respiration ferment. Science 68, 437–443.
3. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
4. Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 432–434.
5. Nguyen, T.-L., and Druzin, R.V. (2018). Glutamine metabolism in cancer therapy. Cancer Drug Resist. 1, 126–138.
6. Deleradmiris, R.J., Mancuso, A., Daikhen, E., Nissim, I., Yudkoff, M., Weihrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 104, 19345–19350.
7. Wang, Y., Wu, Y., Wang, Y., Fu, A., Gong, L., Li, W., and Li, Y. (2017). Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nr2f2/Keap1 signaling pathway and decreasing ROS production. Appl. Microbiol. Biotechnol. 101, 3015–3026.
8. Wilde, L., Roche, M., Domingo-Vidal, M., Tansen, K., Philip, N., Curry, J., and Martinez-Outschoorn, U. (2017). Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin. Oncol. 44, 198–203.
9. Brooks, G.A. (2009). Cell-cell and intracellular lactate shuttles. J. Physiol. 587, 5591–5600.
10. Held-Warmkessel, J., and Dell, D.D. (2014). Lactic acidosis in patients with cancer. Clin. J. Oncol. Nurs. 18, 592–594.
11. Peppicelli, S., Bianchini, F., and Calorini, L. (2014). Extracellular acidity, a “reappraised” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 33, 823–832.
12. Shirasih, T., Verdone, J.E., Huang, J., Kahler, U.D., Hernandez, J.R., Torga, G., Zarril, J.-C., Epstein, T., Gatenby, R., McCartney, A., et al. (2015). Glycolysis is the primary oxidative pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6, 130–143.
13. Zhao, M., Fan, J., Liu, Y., Yu, Y., Yu, J., Wen, Q., Zhang, J., Fu, S., Wang, B., Xiang, L., et al. (2016). Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-kB pathway modulation. Int. J. Oncol. 48, 756–764.
14. Faubert, B., Vincent, E.E., Griss, T., Samsombo, B., Iriego, S., Svensson, R.U., Mamer, O.A., Azorins, C., Shockelld, D.B., Shaw, R.I., and Jones, R.G. (2014). Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc. Natl. Acad. Sci. USA 111, 2554–2559.
15. Li, Z., Peng, Y., Li, J., Chen, Z., Chen, F., Tu, J., Lin, S., and Wang, H. (2020). N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat. Commun. 11, 2578.
16. Wang, T., Kong, S., Tao, M., and Ju, S. (2020). The potential role of RNA N6-methyladenosine in cancer progression. Mol. Cancer 19, 88.
17. Yu, A.-M., Jian, C., Yu, A.H., and Tu, M.-I. (2019). RNA therapy: are we using the right molecules? Pharmocol. Ther. 196, 91–104.
18. Hayes, J., Peruzzi, P.P., and Lwaller, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469.
19. Li, Y., Xu, Q., Lv, N., Wang, L., Zhao, H., Wang, X., Guo, J., Chen, C., Li, Y., and Yu, L. (2017). Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J. Hematol. Oncol. 10, 41.
20. Guttman, M., and Rinn, J.L. (2012). Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346.
21. Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874.
22. Matsu, M., and Corey, D.R. (2017). Non-coding RNAs as drug targets. Nat. Rev. Drug Discov. 16, 167–179.
23. Yoon, S., and Rossj, J.B. (2018). Therapeutic potential of small activating RNAs (saRNAs) in human cancers. Curr. Pharm. Biotechnol. 19, 604–610.
24. Dong, Y., He, D., Peng, Z., Peng, W., Shi, W., Wang, J., Li, B., Zhang, C., and Duan, C. (2017). Circular RNAs in cancer: an emerging key player. J. Hematol. Oncol. 10, 2.
25. Li, X., Yang, L., and Chen, L.-L. (2018). The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442.
26. Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y.M., Dhuanekatran, S.M., Engelle, C.G., Cao, X., et al. (2019). The landscape of circular RNA in cancer. Cell 176, 869–881.e13.
27. Zhang, Y., and Yang, J.-M. (2013). Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol. Ther. 14, 81–89.
28. Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Bonnet, S., et al. (2007). A mitochondrial potassium channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51.
29. Hu, Y., Lu, W., Chen, G., Wang, P., Chen, Z., Zhou, Y., Ogawara, M., Trachootham, D., Feng, L., Pelicano, H., et al. (2012). K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 22, 399–412.
30. Lu, W., Hu, Y., Chen, G., Chen, Z., Zhang, H., Wang, F., Feng, L., Pelicano, H., Wang, H., Keating, M.J., et al. (2012). Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 10, e1001326.
31. Wallace, D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698.
32. Cavalli, L.R., Varela-Garcia, M., and Liang, B.C. (1997). Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 8, 1189–1198.
33. King, M.P., and Attardi, G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503.
34. de Souza, A.C.S., Justo, G.Z., de Araújo, D.R., and Cavagis, A.D.M. (2011). De novo mitochondrial biogenesis is associated with malignant transformation. PLoS One 6, e18138.
35. Locasale, J.W., and Cantley, L.C. (2010). Altered metabolism in cancer. BMC Biol. 8, 88.
by regulating monocarboxylate transporter 1-mediated cancer lactate metabolism. Cell. Physiol. Biochem. 50, 924–935.

79. Liu, Y., Tang, Z.-G., Lin, Y., Xu, Q.-G., Lv, W., Wang, G.-B., and Li, C.L. (2017). Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother. 92, 33–38.

80. Yang, Y., Ishak Gaba, M.B., Hanse, E.A., Lowman, X.H., Tran, T.Q., Li, H., Milman, N., Liu, J., Reid, M.A., Locasale, J.W., et al. (2019). miR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat. Commun. 10, 809.

81. Chen, H., He, J., Lanzafame, R., Stadler, I., Hamidi, H.E., Liu, H., Celli, J., Hamblin, M.R., Huang, Y., Oakley, E., et al. (2017). Quantum dot light emitting devices for photomedical applications. J. Soc. Inf. Disp. 25, 177–184.

82. Li, S.J., Liu, H.L., Tang, S.L., Li, X.J., and Wang, X.Y. (2017). MicroRNA-150 regulates glycolysis by targeting von Hippel-Lindau in glioma cells. Am. J. Transl. Res. 9, 1058–1066.

83. Guo, H., Nan, Y., Zhen, Y., Zhang, Y., Guo, L., Yu, K., Huang, Q., and Zhong, Y. (2016). miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glycolate transporter 1. Tumour Biol. 37, 13751–13761.

84. Yu, F., Lu, Z., Huang, K., Wang, X., Xu, Z., Chen, B., Dong, P., and Zheng, J. (2016). MicroRNA-17-5p-activated Wnt/b-catenin pathway contributes to the progression of liver fibrosis. Onco target 7, 81–93.

85. Xu, Q., Dou, C., Liu, X., Yang, L., Ni, C., Wang, J., Guo, Y., Yang, W., Tong, X., and Huang, D. (2018). Oviductus ranae protein hydrolase (ORHP) inhibits the growth, metastasis and glycolysis of HCC by targeting miR-491-5p/PKM2 axis. Biomed. Pharmacother. 107, 1692–1704.

86. Hua, S., Liu, C., Cai, L., and Li, H. (2019). miR-185 regulates the growth of osteosarcoma cells by reprogramming glucose metabolism and regulating mitochondrial transcription. Cancer Res 79, 1069–1084.

87. Li, L., Kang, L., Zhao, W., Feng, Y., Liu, W., Wang, T., Mai, H., Huang, J., Chen, S., and He, L., et al. (2017). Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res 79, 1069–1084.

88. Eastlack, S.C., Dong, S., Ivan, C., and Alahari, S.K. (2018). Suppression of PDHx by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer. Mol. Cancer 17, 100.

89. Fan, S., Tian, T., Chen, W., Lv, X., Lei, X., Zhang, H., Sun, S., Cai, L., Pan, G., He, L., et al. (2019). MicroRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Onco target 8, 83660–83672.

90. Yang, Y., Huang, Y.Y., Wang, Y., Lu, P., and Hamblin, M.R. (2017). Red (660 nm) near-infrared (810 nm) photothermal modulation stimulates white blood cells. Cell. Physiol. Biochem. 42, 2757–2765.

91. Wang, Y., He, Y., Bai, H., Dang, Y., Gao, J., and Lv, P. (2018). Phosphoinositide-dependent kinase-1-associated glycolysis is regulated by miR-409-3p in clear cell renal carcinoma. J. Cell. Biochem. 120, 126–134.

92. Takai, T., Tsuino, T., Yoshikawa, Y., Inamoto, T., Sugito, N., Kuranaga, Y., Heishima, K., Soga, T., Hayashi, K., Miyata, K., et al. (2019). Synthetic miR-143 inhibits an anti-cancer effect via the downregulation of KRAS networks of renal cell cancer cells in vitro and in vivo. Mol. Ther. 27, 1017–1027.

93. Weng, Y., Shen, Y., He, Y., Pan, X., Xu, J., Jiang, Y., Zhang, Q., Wang, S., Kong, F., Zhao, S., et al. (2018). The miR-15b-5p/PDK4 axis regulates osteosarcoma proliferation through modulation of the Warburg effect. Biochem. Biophys. Res. Commun. 501, 2749–2755.

94. Chen, H., Gao, S., and Cheng, C. (2018). miR-323a-3p suppresses the glycolysis of osteosarcoma via targeting LDHA. Hum. Cell 31, 300–309.

95. Zhang, X.M., Xu, C.W., and Wang, F. (2018). miR-33b inhibits osteosarcoma cell proliferation through suppression of glycolysis by targeting lactate dehydrogenase A (LDHA). Cell. Mol. Biol. 64, 31–35.

96. Hua, S., Lei, L., Deng, L., Weng, X., Liu, C., Qi, X., Wang, S., Zhang, D., Zou, X., Cao, C., et al. (2018). miR-135-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS3. Oncogene 37, 1624–1636.

97. Liu, Z., Ye, M., Chen, C., and Kong, D. (2017). miR-505 suppresses the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci. Rep. 39, 20170085.

98. Wang, Y., Huang, Y.Y., Wang, Y., Lu, P., and Hamblin, M.R. (2017). Red (660 nm) near-infrared (810 nm) photothermal modulation stimulates white blood cells. Cell. Physiol. Biochem. 42, 2757–2765.

99. Liu, H., Zhang, Z., Xue, J., and Gao, X. (2018). LINC00152/miR-139-5p regulates gastric cancer cell migration by enhancing the Warburg effect in gastric carcinoma cells. Cancer Biomark 17, 75–81.
via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed. Pharmacother 105, 545–552.

118. Ferguson, S.W., Wang, J., Lee, C.L., Liu, M., Neelamegham, S., Canty, I.M., and Nguyen, J. (2018). The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci. Rep. 8, 1419.

119. Zhao, X., Lu, C., Chu, W., Zhang, R., Zhen, Q., Wang, R., Zhang, Y., Li, Z., Lv, B., Li, H., and Liu, J. (2017). MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT/GLUT1/HKII. Tumour Biol. 39, 1010428317706215.

120. Lv, X., Yao, L., Zhang, J., Han, P., and Li, C. (2016). Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism. Mol. Med. Rep. 14, 1332–1338.

121. Liu, M., Gao, J., Huang, Q., Jin, Y., and Wei, Z. (2016). Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol. Lett. 11, 3772–3776.

122. Zhang, S., Pei, M., Li, Z., Li, H., Liu, Y., and Li, J. (2018). Double-negative feedback interaction between DNA methyltransferase 3A and microRNA-145 in the Warburg effect of ovarian cancer cells. Cancer Sci 109, 2734–2745.

123. Lu, J., Wang, L., Chen, W., Wang, Y., Zhen, S., Chen, H., Cheng, J., Zhou, Y., Li, X., and Zhao, L. (2019). miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells. Arch. Biochem. Biophys. 661, 1–9.

124. Guo, N.L., Zhang, J.X., Wu, J.P., and Xu, Y.H. (2017). Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochondrial oxidative phosphorylation in ovarian cancer cells. Biosci. Rep. 37, BSR20170818.

125. Han, R.L., Wang, F.P., Zhang, P.A., Zhou, X.Y., and Li, Y. (2017). miR-383 inhibits the Warburg effect in prostatic adenocarcinoma. Mol. Carcinog. 57, 772–783.

126. Xiaohong, Z., Lichun, F., Na, X., Kejian, Z., Xiaolan, X., and Shaosheng, W. (2016). MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol. 37, 14989–14997.

127. Muys, B.R., Sousa, J.F., Placa, J.R., de Araujo, L.F., Sarshad, A.A., Anastasakis, D.G., Wang, X., Li, X.L., de Molletta, G.A., Ramão, A., et al. (2019). miR-459a acts as a tumor suppressor in ovarian cancer by regulating energy metabolism. Cancer Res 79, 3294–3305.

128. Chen, J., Yu, Y., Chen, X., He, Y., Hu, Q., Li, H., Han, Q., Ren, F., Li, J., Li, C., et al. (2018). MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 51, e12510.

129. Yao, A., Xiang, Y., Si, Y.R., Fan, L.J., Li, J.P., Guo, W., He, H.X., Liang, X.J., Tan, Y., et al. (2019). PKM2 promotes glucose metabolism and aerobic glycolysis by targeting lactate dehydrogenase A. Oncotarget 10, 1127–1137.

130. He, Y., Chen, X., Yu, Y., Li, J., Ha, Q., Xue, C., Chen, J., Shen, S., Luo, Y., Ren, F., et al. (2018). LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol. Carcinog. 57, 772–783.

131. Hui, L., Zhang, J., and Guo, X. (2018). miR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed. Pharmacother 103, 1194–1201.

132. Ghasemi, A., Rabiei, N., Ahmadi, S., Hashemzadeh, S., Lolas, F., Bororgomid, M., Kalbasi, A., Nasser, B., Shiralizadeh Dezfuli, A., Aref, A.R., et al. (2018). Optical assays based on colloidal inorganic nanoparticles. Analyst (Lond.) 143, 3249–3283.

133. Wu, Q.Q., Zheng, B., and Weng, G.B. (2019). Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer. J. Cell. Biochem. 120, 6542–6554.

134. He, Y., Chen, X., Yu, Y., Li, J., Hu, Q., Xue, C., Chen, J., Shen, S., Luo, Y., Ren, F., et al. (2018). LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol. Carcinog. 57, 772–783.

135. Huang, S., Yang, Z., Ma, Y., Yang, Y., and Wang, S. (2017). miR-101 enhances cisplatin-induced DNA damage through decreasing nicotinamide adenine dinucleotide phosphate levels by directly repressing TP53-induced glycolysis and apoptosis regulator expression in prostate cancer cells. DNA Cell Biol. 36, 303–310.

136. Qu, W., Ding, S.M., Cao, G., Wang, S.J., Zheng, X.H., and Li, G.H. (2016). miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio 6, 735–741.
154. Sun, X., and Zhang, L. (2017). MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. Biosci. Rep. 37, BSRO160404.

155. Huang, L., El-Hussein, A., Xuan, W., and Hamblin, M.R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J. Photochem. Photobiol. B 178, 277–286.

156. Miao, Y., Zhang, L.F., Zhang, M., Guo, R., Liu, M.F., and Li, B. (2019). Therapeutic delivery of miR-143 targeting tumor metabolism in poorly differentiated thyroid cancer xenografts and efficacy evaluation using 18F-FDG microPET-CT. Hum. Gene Ther. 30, 882–892.

157. Huang, L., El-Hussein, A., Xuan, W., and Hamblin, M.R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J. Photochem. Photobiol. B 178, 277–286.

156. Huang, L., El-Hussein, A., Xuan, W., and Hamblin, M.R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J. Photochem. Photobiol. B 178, 277–286.

155. Huang, L., El-Hussein, A., Xuan, W., and Hamblin, M.R. (2018). Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J. Photochem. Photobiol. B 178, 277–286.

154. Sun, X., and Zhang, L. (2017). MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. Biosci. Rep. 37, BSRO160404.
194. Krol, J. (2017). Paraspeckles: nuclear nests helping to raise mature miRNAs. Nat. Struct. Mol. Biol. 24, 783–784.

195. Yoon, J.-H., and Gorospe, M. (2016). Cross-linking immunoprecipitation and qPCR (CLIP-qPCR) analysis to map interactions between long noncoding RNAs and RNA-binding proteins. Methods Mol. Biol. 1402, 11–17.

196. Salehi, S, Taheri, M.N., Azarpira, N., Zare, A., and Behzad-Behbahan, A. (2017). State of the art technologies to explore long non-coding RNAs in cancer. J. Cell. Mol. Med. 21, 3120–3140.

197. Li, J.-H., Liu, S., Zheng, L.-L., Wu, J., Sun, W.-J., Wang, Z.-L., Zhou, H., Qu, L.-H., and Yang, J.-H. (2015). Discovery of protein-IncRNA interactions by integrating large-scale CLIP-seq and RNA-seq datasets. Front. Bioeng. Biotechnol. 2, 88.

198. Liu, X., and Gan, B. (2016). lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1. Cell Cycle 15, 3471–3481.

199. Ellis, B.C., Graham, L.D., and Molloy, P.L. (2014). CRNDE, a long non-coding RNA regulates genomic stability by sequestering PUMilio proteins. Cell 164, 69–80.

200. Lim, S., and Kaldis, P. (2013). Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the cancer cell. J. Cell. Biochem. 114, 2773–2783.

201. Tay, Y., Rinn, J., and Pandolfo, M. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369.

202. Roe, S., and Pandolfo, M. (2014). The multilayered complexity of ceRNA regulation. Cell 157, 1352–1363.

203. Si, Y., Yang, Z., Ge, Q., Yu, L., Yao, M., Sun, X., Ren, Z., and Ding, C. (2019). Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer. Cell. Mol. Biol. Lett. 24, 50.

204. Cho, S.-F., Chang, Y.C., Chang, C.-S., Lin, S.-F., Liu, Y.-C., Hsiao, H.-H., Chang, J.G., and Liu, T.-C. (2014). MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer 14, 809.

205. Liu, H., Wang, H., Wu, B., Yao, K., Liao, A., Miao, M., Li, Y., and Yang, W. (2017). Down-regulation of long non-coding RNA MALAT1 by RNA interference inhibits proliferation and induces apoptosis in multiple myeloma. Clin. Exp. Pharmacol. Physiol. 44, 1032–1041.

206. He, Z., Ruan, X., Liu, X., Zheng, J., Liu, Y., Liu, M., Jia, L., Shao, L., Wang, D., Shen, S., et al. (2019). FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in glioma. J. Exp. Clin. Cancer Res. 38, 65.

207. Bie, L.-Y., Li, D., Wei, Y., Li, N., Chen, X.-B., and Luo, S. X. (2019). SOX13 dependent PAX8 expression promotes the proliferation of gastric carcinoma cells. Artif. Cells Nanomed. Biotechnol. 47, 3180–3187.

208. Xu, H., Li, J., and Zhou, Z.G. (2018). NEAT1 promotes cell proliferation in multiple myeloma by activating P38/JAK/PT pathway. Eur. Rev. Med. Pharmacol. Sci. 22, 6403–6411.

209. Liu, N., Feng, S., Li, H., Chen, X., Bai, S., and Liu, Y. (2020). Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of multiple myeloma via miR-1271-5p/SOX13 axis. J. Cancer Res. Clin. Oncol. 146, 367–379.

210. Chureau, C., Chantalat, S., Romito, A., Galvani, A., Duret, L., Avner, P., and Rougeulle, C. (2011). Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum. Mol. Genet. 20, 705–718.

211. Liu, Z., Dou, C., Yao, B., Xu, M., Ding, L., Wang, Y., Jia, Y., Li, Q., Zhang, H., Tu, K., et al. (2016). Ftx non-coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget 7, 25350–25365.

212. Patitucci, C., Coughy, G., Bagattin, A., Catheque, T., de Reynis, A., Scoazec, J.-Y., Rodriguez, R., Pontoglio, M., Zucman-Rossi, J., Pende, M., and Panasyuk, G. (2017). Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARα transcription. J. Clin. Investig. 127, 1873–1888.

213. Janani, C., and Ranjitha Kumari, B.D. (2015). PPAR gamma gene—a review. Diabetes Metab. Syndr. 9, 46–50.

214. Wu, Z., Xie, Y., Morrison, R.F., Bucher, N.L., and Farmer, S.R. (1998). PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J. Clin. Investig. 101, 22–32.

215. Lecarpentier, Y., Claes, V., Vallée, A., and Hiber, J.-L. (2017). Thermodynamics in cancers: opposing interactions between PPAR γ and the canonical WNT/beta-catenin pathway. Clin. Transl. Med. 6, 14.

216. Ranwala, S.M., and Lazar, M.A. (2004). Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol. Sci. 25, 331–336.

217. Li, X., Zhao, Q., Qi, J., Wang, W., Zhang, D., Li, Z., and Qin, C. (2018). IncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma. Int. J. Oncol. 53, 551–566.

218. Shi, M., Cui, J., Wei, D., Jia, Z., Zhang, J., Zhu, Z., Gao, Y., and Xie, K. (2014). A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin. Cancer Res. 20, 4370–4380.

219. Sheng, S.L., Liu, J.J., Dai, Y.H., Sun, X.G., Xiong, X.P., and Huang, G. (2012). Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J. 279, 3898–3910.

220. Zhao, Y.H., Zhou, M., Liu, H., Ding, Y., Klung, H.T., Yu, D., Fodstad, O., and Tan, M. (2009). Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene 28, 3689–3701.
Review

233. Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander Jagt, D.L., Semenza, G.L., and Dani, C.V. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 107, 2037–2042.

234. Wang, Z.-Y., Loo, T.Y., Shen, J.-G., Wang, N., Wang, D.-M., Yang, D.-P., Mo, S.-L., Guan, X.-Y., and Chen, J.-P. (2012). LDL-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res. Treat. 131, 791–800.

235. Chen, H., Pei, H., Hu, W., Ma, J., Zhang, J., Mao, W., Nie, J., Xu, C., Li, B., Hei, T.K., et al. (2018). Long non-coding RNA GRYB2G regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. J. Cancer 9, 2580–2588.

236. Kim, S.-J., Hwang, S.-H., Kim, J.-H., Lee, C.H., Lee, S.-Y., and Lee, E.Y. (2010). The association of 18F-deoxyglucose (FDG) uptake of PET with polymorphisms in the glucose transporter gene (SLC2A1) and hypoxia-related genes (HIFIA, VEGFA, APEX1) in non-small cell lung cancer. SLC2A1 polymorphisms and FDG-PET in NSCLC patients. J. Exp. Clin. Cancer Res. 29, 69.

237. Goos, J.A., de Cuba, E.M., Coupé, V.M., Diosdado, B., Delis-Van Diemen, P.M., Karga, C., Belien, J.A., Menke-Verheul van Oordt, C.W., Geldof, A.A., Meijer, G.A., et al.; DeCoRe PET Group (2016). Glucose transporter 1 (SLC2A1) and vascular endothelial growth factor A (VEGFA) predict survival after resection of colorectal cancer liver metastasis. Ann. Surg. 263, 138–145.

238. Chen, J., Zhang, C., Mi, Y., Chen, F., and Du, D. (2017). CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1. Mol. Cell. Biochem. 458, 79–86.

239. Shi, J., Zhang, Y., Qin, B., Wang, Y., and Zhu, X. (2019). Long non-coding RNA LINC00174 promotes glycolysis and tumor progression by regulating miR-152-3p/SLC2A1 axis in glioma. J. Exp. Clin. Cancer Res. 38, 395.

240. Que, W.C., Qiu, H.Q., Cheng, Y., Liu, M.B., and Wu, C.Y. (2018). PTEN in kidney tumor suppressor by promoting host immune response. Oncogene 33, 4632–4642.

241. Feng, Z.-Z., Chen, J.-W., Yang, Z.-R., Lu, G.-Z., and Cai, Z.-G. (2012). Expression of c-Myc degradation. EMBO Rep. 13, 1204–1209.

242. Kung, H.J. (2014). A long noncoding RNA connects c-Myc to tumor metabolism. Cell 158, 289–301.

243. Mahalingam, M., and Wajapeyee, N. (2014). PTEN functions as a melanoma tumor suppressor through miR-490-3p/HIF1A and hypoxia-related genes. Oncotarget 5, 18697–18702.

244. Liu, X., Zhu, Q., Guo, Y., Xiao, Z., Hu, L., and Xu, Q. (2019). lncRNA HOTTIP promotes hypoxia-induced glycolysis through targeting miR-388-3p/PMK2 axis. Mol. Cell. Biochem. 462, 127–136.

245. Shi, J., Wang, H., Feng, W., Huang, S., An, J., Qiu, Y., and Wu, K. (2019). Long non-coding RNA BCYRN1 promotes glycolysis and tumor progression through the regulation of aerobic glycolysis in non-small-cell lung cancer. Oncotargets Ther. 11, 6071–6080.

246. Feng, X., and Yang, S. (2020). Long non-coding RNA LINC00243 promotes proliferation and glycolysis in non-small cell lung cancer cells by positively regulating PDK4 through sponging miR-507. Mol. Cell. Biochem. 462, 127–136.

247. Shi, J., Wang, H., Feng, W., Huang, S., An, J., Qiu, Y., and Wu, K. (2019). Long non-coding RNA HOTTIP promotes hypoxia-induced glycolysis through targeting miR-615-3p/HMG18 in non-small cell lung cancer cells. Eur. J. Pharmacol. 82615, 176215.

248. Liu, N., Feng, S., Li, H., Chen, X., Bai, S., and Liu, Y. (2020). Long non-coding RNA MALAT1 facilitates the tumourigenesis, invasion and glycolysis of multiple myeloma via miR-1271-5p/SOX13 axis. J. Cancer Res. Clin. Oncol 146, 367–379.

249. Zhang, G., Ma, A., Jin, Y., Pan, G., and Wang, C. (2019). lncRNA SNHG16 induced by TFAP2A modulates glycolysis and proliferation of endometrial carcinoma through miR-490-3p/PK2 axis. Am. J. Transl. Res. 11, 7137–7145.

250. Liu, X., Zhu, Q., Guo, Y., Xiao, Z., Hu, L., and Xu, Q. (2019). lncRNA LINCO9689 promotes the growth, metastasis and glycolysis of glioma cells by targeting miR-338-3p/PKM2 axis. Biomed. Pharmacother. 117, 109069.

251. Wu, F., Zhou, D., Cui, Y., Shen, G., and Wei, F. (2018). Long non-coding RNA UCA1 modulates the glycolysis of cervical cancer cells by miR-493-5p/HPK2. Int. J. Clin. Exp. Pathol. 11, 3943–3951.

252. Zhu, M., Wang, X., Gu, Y., Wang, F., Li, L., and Qiu, X. (2019). MEG3 overexpression inhibits the tumourigenesis of breast cancer by downregulating miR-21 through the PI3K/Akt pathway. Arch. Biochem. Biophys. 661, 22–30.

253. Zhao, L., Ji, G., Le, X., Wang, C., Xu, L., Feng, M., Zhang, Y., Yang, H., Xuan, Y., Yang, Y., et al. (2017). Long noncoding RNA LINCO0992 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 77, 1369–1382.

254. Zou, Z.W., Ma, C., Medoro, L., Chen, L., Wang, R., Gupta, R., Liu, T., Yang, X.Z., Chen, T.T., Wang, R.Z., et al. (2016). lncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprogramming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget 7, 61741–61754.

255. Yang, B., Zhang, L., Cao, Y., Chen, S., Cao, J., Wu, D., Chen, J., Xiong, H., Pan, Z., Qiu, F., et al. (2017). Overexpression of lncRNA IGFBP4-I reprograms energy metabolism to promote lung cancer progression. Mol. Cancer 16, 154.

256. Feng, Z., Chen, R., Huang, N., and Luo, C. (2020). Long non-coding RNA ASMTL-AS1 inhibits tumor growth and glycolysis by regulating the miR-93-3p/miR-660/FOXO1 axis in papillary thyroid carcinoma. Life Sci. 244, 117298.
227. Liu, Y., He, X., Chen, Y., and Cao, D. (2020). Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244. Mol. Cell. Biochem. 464, 39–50.

228. Wang, Y., Zhang, X., Wang, Z., Hu, Q., Wu, J., Li, Y., Ren, X., Wu, T., Tao, X., Chen, X., et al. (2018). IncRNA p21s154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. Cancer Lett. 434, 172–183.

229. Zhang, Y., Liu, Y., and Xu, X. (2018). Knockdown of IncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J. Cell. Biochem. 119, 6296–6308.

230. Song, J., Wu, X., Liu, F., Li, M., Sun, Y., Wang, Y., Wang, C., Zhu, K., Jia, X., Wang, B., and Ma, X. (2017). Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem. Biophys. Res. Commun. 490, 217–224.

231. Coquerelle, C., Mascrec, B., Hétuin, D., and Bailleul, B. (1993). Mis-splicing yields circular RNA retards cell cycle progression via forming ternary complexes with circular RNA splicing enzymes: joining of exons and circularization of introns. RNA 3, 319–330.

232. Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66.

233. Conn, S.I., Pillman, K.A., Toubia, J., Conn, V.M., Salamandin, M., Phillips, C.A., Roslan, S., Schreiber, A.W., Gregory, P.A., and Goodall, G.J. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134.

234. Zhang, Y., Zhang, X.-O., Chen, T., Xiang, J.-F., Yin, Q.-F., Xing, Y.-H., Zhu, S., Yang, L., and Chen, L.L. (2013). Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806.

235. Saita, S.R., Singh, S.K., Gurha, P., and Gupta, R. (2003). Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns. RNA 9, 319–330.

236. Zaphiropoulos, P.G. (1996). Circular RNAs from transcripts of the rat cytochrome P450 2C4 gene: correlation with exon skipping. Proc. Natl. Acad. Sci. USA 93, 6536–6541.

237. Zong, W., Feller, A.C., Kornak, U., and Moschos, S.J. (2012). Importance of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and tumor initiation. J. Biol. Chem. 287, 289–302.

238. Liang, H.-F., Zhang, X.-Z., Liu, B.-G., Jia, G.-T., and Li, W.-L. (2017). Circular RNA circ-ABC10 promotes breast cancer proliferation and progression through sponging miR-127. Am. J. Cancer Res. 7, 1566–1576.

239. Zdralevic, M., Brand, A., Di Ianni, L., Dettmer, K., Reinders, J., Singer, K., Peter, K., Schnell, A., Bruss, G., Decking, S.M., et al. (2018). Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism. J. Biol. Chem. 293, 15947–15961.

240. Augoff, K., Hyniewicz-Jankowska, A., and Tabola, R. (2015). Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 358, 1–7.

241. Xie, H., Hanai, J., Ren, J.-G., Kats, L., Burgess, K., Bhargava, P., Signoretto, S., Billiard, J., Duffy, K.J., Grant, A., et al. (2014). Targeting lactate dehydrogenase—a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Metab. 19, 795–809.

242. Ho, J., de Moura, M.B., Lin, Y., Vincent, G., Thorne, S., Duncan, L.M., Hui-Min, L., Kirkwood, J.M., Becker, D., Van Houten, B., and Moschos, S.I. (2012). Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol. Cancer 11, 76.

243. Jin, C., Dong, D., Yang, Z., Xia, R., Tao, S., and Piao, M. (2020). circMYC regulates glycolysis and cell proliferation in melanoma. Cell Biochem. Biophys. 78, 77–88.

244. Kirkwood, J.M., Becker, D., Van Houten, B., and Moschos, S.J. (2012). Importance of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J. Transl. Med. 12, 231.

245. Chen, K., Abduwulufuer, A., Zhang, H., Luo, L., Suoetsiyali, M., and Zou, Y. (2019). SNHG7 mediates cisplatin-resistance in non-small cell lung cancer by activating PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 23, 6935–6943.

246. Wu, W., Xu, L., Li, H., Yang, M., and Yao, X. (2020). Circular RNA circ-ACACA regulates proliferation, migration and glycolysis in non-small-cell lung carcinoma via miR-1183 and PI3K/PKB pathway. Int. J. Mol. Med. 45, 1814–1824.

247. Yuan, L., Qiu, L., Ye, Y., Wu, J., Wang, S., Wang, X., Zhou, N., and Zou, Y. (2018). Heat-shock transcription factor 1 is critically involved in the ischaemia-induced cardiac hypertrophy via JAK2/STAT3 pathway. J. Cell. Mol. Med. 22, 4302–4309.

248. Kumar, V., Cheng, P., Condamine, T., Mony, S., Languino, L.R., McCaffrey, J.C., Hockstein, N., Guarino, M., Masters, G., Penneman, E., et al. (2016). CD45 phosphorylation inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44, 303–315.

249. Dong, Y., Xu, T., Zheng, S., Wang, B., Zhang, H., Wang, X., Wang, P., Li G., and Yang, S. (2019). circ_0076305 regulates cisplatin resistance of non-small cell lung cancer via positively modulating STAT3 by sponging miR-296-5p. Life Sci. 239, 116984.
310. Xu, Y., Jiang, T., Wu, C., and Zhang, Y. (2020). circAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol. Lett. 42, 1123–1135.

311. Jin, C., Dong, D., Yang, Z., Xia, R., Tao, S., and Piao, M. (2020). circMYC regulates glycolysis and cell proliferation in melanoma. Cell Biochem. Biophys 78, 77–88.

312. Wu, W., Xi, W., Li, H., Yang, M., and Yao, X. (2020). Circular RNA circACACA regulates proliferation, migration and glycolysis in nonsmall cell lung carcinoma via miR1183 and PI3K/PKB pathway. Int. J. Mol. Med 45, 1814–1824.

313. Xu, Y., Jiang, T., Wu, C., and Zhang, Y. (2020). circAKT3 inhibits glycolysis balance in lung cancer cells by regulating miR-516b-5p/STAT3 to inhibit cisplatin sensitivity. Biotechnol. Lett. 42, 1123–1135.