Extended Axion Electrodynamics: Optical Activity Induced by Nonstationary Dark Matter

A. B. Balakin* and N. O. Tarasova**

Department of General Relativity and Gravitation, Kazan Federal University, Kremlevskaya ul., 18, Kazan 420008, Russia

Received September 30, 2011

Abstract—We suggest a new self-consistent Einstein-Maxwell-axion model based on the Lagrangian which is linear in the pseudoscalar (axion) field and its four-gradient and includes the four-vector of macroscopic velocity of the axion system as a whole. We consider extended equations of axion electrodynamics and the modified gravity field equations and discuss nonstationary effects in the phenomenon of optical activity induced by axions.

DOI: 10.1134/S0202289312010033

1. INTRODUCTION

Axions (pseudo-Goldstone bosons) are considered to be Weakly Interacting Massive Particles (WIMPs) appearing as a result of a spontaneous phase transition predicted by Peccei and Quinn [1]. These (hypothetic) particles can play a fundamental role in the formation of Dark Matter (DM), whose contribution into the Universe energy balance is estimated to be about 23% (see, e.g., [2–5]). The axion electrodynamics established by Weinberg and Wilczek [6–8] gives us a new instrument for DM investigation since the model of coupling between photons and the pseudoscalar (axion) four- vector; second order in derivatives; third, the cross-terms in the Lagrangian are linear in the pseudoscalar field and its four-gradient; fourth, the Lagrangian of the model includes the macroscopic velocity four-vector of the system as a whole but does not contain its derivatives.

2. EXTENDED MODEL OF AXION-PHOTON COUPLING

2.1. On the Lagrangian of the Extended Model

The standard Einstein-Maxwell-axion model is based on the Lagrangian formalism with the action functional

\[S(0) = \int d^4x \sqrt{-g} \mathcal{L}_0, \]

\[\mathcal{L}(0) = \frac{R+2\Lambda}{\kappa} + \frac{1}{2} F_{mn} F^{mn} + \frac{1}{2} \phi \mathcal{F}_m \mathcal{F}^m + \Psi_0^2 \left[-\nabla_m \phi \nabla^m \phi + V (\phi^2) \right]. \]

Here, \(g \) is the determinant of the metric tensor \(g_{ik} \), \(\nabla_m \) is the covariant derivative, \(R \) is the Ricci scalar, \(\kappa \equiv 8\pi G/c^4 \) is the Einstein coupling constant, \(\Lambda \) is the cosmological constant. The Maxwell tensor \(F_{mn} \) is given by

\[F_{mn} \equiv \nabla_m A_n - \nabla_n A_m, \quad \nabla_k F^{*ik} = 0, \]

where \(A_m \) is an electromagnetic potential four-vector; \(\mathcal{F}^{mn} \equiv \frac{1}{2} \mathcal{F}_{mnpq} \mathcal{F}^{pq} \) is the tensor dual to \(\mathcal{F}_{pq} \), \(\mathcal{F}^{mnpq} \equiv \frac{1}{2} \mathcal{E}^{mnpq} \) is the Levi-Civita tensor, \(\mathcal{E}^{mnpq} \) is the absolutely antisymmetric Levi-Civita symbol with \(\mathcal{E}^{0123} = 1 \). It is the third term in the Lagrangian that describes the pseudoscalar-photon interaction [9]. The symbol \(\phi \) stands for a pseudoscalar field, this quantity being dimensionless.
axion field itself, \(\Phi \), is considered to be proportional to this quantity \(\Phi = \Psi_0 \phi \) with a phenomenological constant \(\Psi_0 \). The function \(V(\phi^3) \) describes the potential of the pseudoscalar field.

Now we extend the Lagrangian (2) by terms which are quadratic in the Maxwell tensor \(F_{mn} \), linear in \(\phi \) or in \(\nabla_k \phi \), and contain the normalized four-vector \(U^k \) \((U^kU_k = 1)\). The quantity \(U^k \) describes the macroscopic velocity of the axion system as a whole and may be chosen as the timelike eigenvector of the stress-energy tensor of the pseudoscalar (axion) field. To list all the irreducible scalars which satisfy these requirements, let us recall the important identity

\[
\left(F^i_k F^k_j \right) = \frac{1}{4} g^i_j F^m_n F^*_{mn},
\]

Clearly, all the invariants which we could construct using \(g_{ij}, F^i_k, F^*_{mn}, U^k \) as well as \(\phi \) or \(\nabla_k \phi \), definitely contain at least one convolution of the type \(F^i_k F^k_j \). Thus it is easy to check that due to (4) all the new terms in the extended Lagrangian can be reduced to the invariant

\[
\mathcal{L}_{(\text{int})} = \frac{1}{4} \nu F^m_n F^*_{mn} U^k \nabla_k \phi,
\]

where \(\nu \) is some new coupling constant introduced phenomenologically.

2.2. Extension of Axion Electrodyamics

The variation of the action functional containing a sum of the Lagrangians \(\mathcal{L}_{(0)} + \mathcal{L}_{(\text{int})} \) with respect to the four-vector potential \(A_i \) gives the equations of axion electrodynamics

\[
\nabla_k H^k_i = 0.
\]

Here the excitation tensor \(H^k_i \) is given by

\[
H^k_i = F^k_i + F^*_{k i} (\phi + \nu \nabla \phi),
\]

and \(\nabla \phi \) is the convective derivative. Using the linear constitutive equations

\[
H^k_i = C^{ikmn} F_{mn},
\]

we readily obtain that the linear response tensor \(C^{ikmn} \) now takes the form

\[
C^{ikmn} = \frac{1}{2} \left(g^{i m} g^{k n} - g^{i n} g^{k m} \right) + \frac{1}{2} \epsilon^{ikmn} (\phi + \nu \nabla \phi).
\]

This means that the dielectric permittivity and magnetic impermeability tensors of the axion-photon system are the same as in vacuum, i.e.,

\[
\varepsilon^{im} = 2C^{ikmn} U_k U_n = \Delta^{im},
\]

where \(\Delta^{im} = g^{im} - U^i U^m \) is the projector, and

\[
(\mu^{-1})_{pq} = -\frac{1}{2} \eta_{pik} C^{ikmn} \eta_{mnq} = \Delta_{pq},
\]

where \(\eta_{pik} \equiv \epsilon_{pikj} U^j \). The tensor of magneto-electric coefficients

\[
\nu^m = \eta_{pik} C^{ikmn} U^i = -\Delta^m (\phi + \nu \nabla \phi),
\]

describing the optical activity effects (see, e.g., [15]), is now characterized by an additional term linear in \(\nabla \phi \).

2.3. Pseudoscalar Field Evolution

Variation of the extended action functional with respect to the pseudoscalar field \(\phi \) gives the equation

\[
\nabla_k \nabla^k \phi + \phi V'(\phi^3) = \frac{1}{4\Psi_0^2} \left[F^*_{mn} F^{mn} (\nu \theta - 1) + \nu \nabla (F^*_{mn} F^{mn}) \right],
\]

where \(\theta \equiv \nabla_k U^k \) is the expansion scalar of the velocity field, and the prime denotes a derivative of the potential \(V(\phi^3) \) with respect to its argument.

2.4. Gravity Field Equations

Modified Einstein’s equations obtained by variation of the extended action functional with respect to the metric \(g^{pq} \) can be presented in the form

\[
R_{pq} - \frac{1}{2} g_{pq} R = \Lambda g_{pq}
\]

\[
+ \kappa \left[T_{pq}^{(EM)} + T_{pq}^{(A)} + \nu T_{pq}^{(s)} \right].
\]

Here the stress-energy tensor of the electromagnetic field

\[
T_{pq}^{(EM)} = \frac{1}{4} g_{pq} F_{mn} F^{mn} - F_{pm} F^m_q
\]

and the stress-energy tensor of the pure axionic field

\[
T_{pq}^{(A)} = \Psi_0^2 \left\{ \nabla_p \phi \nabla_q \phi - \frac{1}{2} g_{pq} \left[\nabla_m \phi \nabla^m \phi - V(\phi^3) \right] \right\}
\]

are represented by the well-known expressions. The tensor

\[
T_{pq}^{(s)} = -\frac{1}{8} F^*_{mn} F^{*}_{mn} (U_p \nabla_q \phi + U_q \nabla_p \phi),
\]

describes a basically new source term in the right-hand side of the gravity field equations. Let us mention that the term \(\nu T_{pq}^{(s)} \) is obtained by variation of the
term with the interaction Lagrangian (5) by using the formula
\[\delta U^i = \frac{1}{2} \delta g^{pq} \left(U_p \delta_q^i + U_q \delta_p^i \right) \]
for a variation of the velocity four-vector (see [16] for details). The standard interaction term \(\frac{1}{2} \sqrt{-g} \phi \times F_{mn} F^*_{mn} = \frac{1}{2} \phi E^{ikmn} F_{ik} F_{mn} \) does not contribute to the stress-energy tensor in the process of variation with respect to the metric. Thus the appearance of the term (17) is a new event in modeling of the gravity field of the photon-axion system.

2.5. An Example of Application

Let us consider the propagation of a test electromagnetic wave coupled to the axionic subsystem of the DM in a spatially homogeneous FLRW-type spacetime with the scale factor \(a(t) \). Let the electromagnetic wave propagate in the direction 0\(x \) and be characterized by the potential four-vector \(A_i = \delta_i^2 A_2(t, x) + \delta_i^3 A_3(t, x) \). The equations of axion electrodynamics can now be reduced to
\[
\begin{align*}
\left[\frac{\partial^2}{\partial t^2} - \frac{1}{a^2} \frac{\partial^2}{\partial x^2} + H \frac{\partial}{\partial t} \right] A_2 &= -\frac{2\dot{\Theta}}{a} \frac{\partial}{\partial x} A_3, \\
\left[\frac{\partial^2}{\partial t^2} - \frac{1}{a^2} \frac{\partial^2}{\partial x^2} + H \frac{\partial}{\partial t} \right] A_3 &= \frac{2\dot{\Theta}}{a} \frac{\partial}{\partial x} A_2,
\end{align*}
\]
where \(H(t) = \dot{a}/a \) is the Hubble function and
\[\Theta(t) = \frac{1}{2} \left(\phi(t) + \nu \dot{\phi}(t) \right) \]
(in the cosmological context we use the units with \(c = 1 \)). Clearly, if \(\nu = 0 \) and \(\dot{\phi} \neq 0 \), the electromagnetic wave cannot keep linear polarization, however, in the case where \(\nu \neq 0 \) and the pseudoscalar field evolves exponentially, \(\phi(t) \propto \exp(-t/\nu) \), it can be possible. In the approximation of short wavelengths \(k \gg H \), a solution of (19), (20) for a circularly polarized wave has the form
\[
\begin{align*}
A_2 &= -A_0 \sin \left[W - \varphi(t) \right], \\
A_3 &= A_0 \cos [W - \varphi(t)], \\
W &= W(t_0) + k \left[\int_{t_0}^t \frac{dt'}{a(t')} - x \right], \\
\varphi(t) &= \Theta(t) - \Theta(t_0),
\end{align*}
\]
where \(k \) is a constant reciprocal to the wavelength. On the one hand, the quantity \(\varphi(t) \) is expressed in terms of \(\phi \) and \(\dot{\phi} \) (see (23) and (21)) and describes the rotation angle of the polarization vector of the electromagnetic wave traveling through the axion system; it can be studied in optical experiments. On the other hand, it is well known that in the cosmological context the function \(\dot{\phi} \) can be presented in terms of the DM energy density \(\mathcal{E} \) and pressure \(P \) as follows:
\[\dot{\phi} = \pm \frac{1}{\Psi_0} \sqrt{\mathcal{E}(t) + P(t)}. \]
Thus the extended axion electrodynamics can be considered as a tool for studying nonstationary effects in the evolution of the axionic DM.

ACKNOWLEDGMENTS

The authors are grateful to A.E. Zayats for fruitful comments. This work was supported by the FTP “Scientific and Scientific-Pedagogical Personnel of the Innovative Russia” (grants Nos 16.740.11.0185 and 14.740.11.0407), and by RFBR (grants nos. 11-02-01162 and 11-05-97518-p-center-a).

REFERENCES

1. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
2. G. G. Raffelt, Phys. Rep. 198, 1 (1990).
3. M. S. Turner, Phys. Rep. 197, 67 (1990).
4. A. Del Popolo, Astron. Rep. 51, 169 (2007).
5. R. Battesti et al., Lect. Notes Phys. 741, 199 (2008).
6. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
7. W. G. Wilson, Phys. Rev. Lett. 741, 199 (2008).
8. F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
9. W.-T. Ni, Phys. Rev. Lett. 38, 301 (1977).
10. W.-T. Ni, Prog. Theor. Phys. Suppl. 172, 49 (2008).
11. E. Zavattini et al. (PVLAS Collaboration), Phys. Rev. Lett. 96, 110406 (2006).
12. S.-J. Chen, H.-H. Mei, and W.-T. Ni, Mod. Phys. Lett. A 22, 2815 (2007).
13. R. Battesti et al., Eur. Phys. J. D 46, 323 (2008).
14. A. B. Balakin and W.-T. Ni, Class. Quantum Grav. 27, 055003 (2010).
15. T. H. O’Dell, The Electrodynamics of Magneto-Electric Media (Amsterdam: North-Holland, 1970).
16. A. B. Balakin, Grav. Cosmol. 13, 163 (2007).