Silver Nanopillar Arrayed Thin Films with Highly Surface-Enhanced Raman Scattering for Ultrasensitive Detection

Weiwei Zhang, Xiaomin Zhu, Zhanghua Chen, Vladimir I. Belotelov, and Yujun Song*

Cite This: ACS Omega 2022, 7, 25726−25731

ACCESS

ABSTRACT: Surface-enhanced Raman scattering (SERS) technique based on surface plasmon resonance has been considerably investigated in recent years due to its superior sensitivity in the detection of organic or biological molecules at trace levels. However, most research usually focuses on artificial architectures as SERS substrates that always have a complex and expensive micro/nanofabrication process. The high cost of masks for SERS substrates becomes a key obstacle for the widespread commercialization of SERS technology. In this paper, a biomimetic SERS substrate composed of silver-coated nanopillar arrays on the top of a cicada wing was advanced to overcome these challenges as both substrates and masks. Benefiting from the high near-field plasmon resonance coupling at the limited space among neighboring nanopillars, a dramatically increased SERS signal can be achieved using rhodamine 6G (R6G) as a model molecule. Encouragingly, the analytical enhancement factor of the order of more than 10^8 has been conveniently realized with a reliable detection concentration of R6G of about 100 pM or less. This work provides a promising route for designing cost-effective and highly sensitive SERS substrates and the related mask fabrication using our previously proposed template transfer nanoimprint.

INTRODUCTION

Thanks to the real-time and ultrasensitive detection of molecules in trace amounts, surface-enhanced Raman scattering (SERS) as an up-and-coming technique has been commonly used in various applications, including biosensors, medicine technology, plasmon-driven catalytic reactions, etc. To realize these applications, as a suitable SERS substrate, there should be high-density hotspots that result from strongly enhanced electromagnetic fields caused by the localized surface plasmon resonance (LSPR). Various types of SERS substrates have been fabricated by controllable fabrication methods to form effective hotspots, such as arrayed nanopore silver (Ag) thin films, Ag-coated polymeric nanopillar arrays, Ag nanoparticles assembled on a multilayer gold film by employing alumina as a spacer, RGO@MoS$_2$@Ag ternary nanocomposites for recyclable SERS detection, hydrophilic–hydrophobic Ag-modified PMMA substrates, a sandwiched Ag cap nanoparticles/SiO$_2$/silver film system that can significantly enhance local electric-field intensity and increase the density of electromagnetic hot spots, leading to a SERS enhancement factor of 2.38×10^9, and nanoscupltured thin films of silver that perform a fast, accurate, and stable detection performance. Additionally, the continuous metal films can also act as good electrodes for (Spectro)-electrochemistry. However, the complex fabrication process and the cost of SERS substrates are considered as the main obstacles to the widespread commercialization of SERS spectroscopy technology. In nature, many well-adapted organisms have unique and brilliant microstructures that provide a good template for research.

In this paper, a flexible and cost-effective method was proposed for the fabrication of SERS substrates. The Ag layer was directly deposited on a cicada wing using the magnetron sputtering method to form Ag-coated nanopillar SERS substrates. Benefiting from the high coupling of the electromagnetic field in the space between two adjacent nanopillars, the analytical enhancement factor (AEF) of the Ag-coated nanopillar SERS substrate for rhodamine 6G (R6G) detection can reach more than 10^8 as compared to that of the bare SERS substrate. This established relationship between the nature nanostructure and the corresponding SERS behavior provides

Received: May 15, 2022
Accepted: June 17, 2022
Published: July 11, 2022
an alternative for designing controllable platforms for biodetection applications at ultralow concentration.

RESULTS AND DISCUSSION

As shown in Figure 1a,b, biologic nanopillar cells with almost the same diameter of 50 nm at the bottom were observed on the pristine wings. The mean heights of the nanopillars on A5 and U3 samples calibrated from the three-dimensional scans were 200 and 150 nm, respectively. Here, the profiles were rezeroed based on the lowest \(z \)-coordinate when calculating the profile heights. After the magnetron sputtering process, the SEM image of the Ag-coated SERS substrate based on the A5 (Figure 1c) wing still displays a nanopillar pattern with a mean diameter of 130 nm shown in the inserted statistical image. For the U3 part, after the magnetron sputtering process, as shown in Figure 1d, it also exhibits a nanopillar pattern with a mean diameter of 123 nm, and the cross-section image inserted on the lower left corner shows that the sputtering process can form a continuous metal film on the sidewalls of the cicada wing. The optical reflectance of nanopillar substrates in A5 and U3 areas and the smooth film as reference was measured using UV–vis–NIR spectroscopy. As shown in Figure 1e, samples of A5 and U3 give a similar reflectance resonance with a dipping reflectance at 312 and 725 nm. Their reflectance increases from 350 to 700 nm. This result suggests that this kind of nanopillar thin films have higher reflectance and near-field enhancement in the optical range, which favors concentration of the energy and the surface-enhanced signals related to the reflectance and surface plasmon resonance, leading to surface-enhanced Raman scattering. 38,39

The SERS spectra shown in Figure 2a present a comparison of SERS performances of \(10^{-6} \) mol/L of R6G molecules adsorbed on Ag-coated nanopillars on A5 and U3 wings, Ag/ glass, and pure glass substrate. There are no apparent R6G Raman peaks for the glass and Ag/glass substrates, and the standard Raman signals are negligible. However, the well-defined peaks at 610, 774, 1127, 1183, 1305, and 1361 cm\(^{-1}\) can be observed for the two types of Ag nanopillar substrates. Such peaks are attributed to C–C–C ring in-plane bending (610 cm\(^{-1}\)), C–H out-of-plane bending in the xanthene
To investigate the detection limit of the Ag-coated nanopillar substrate, taking U3-based substrate as an example, the concentrations of R6G aqueous solutions varied from 10^{-2} to 10^{-10} mol/L, and the AEF was calculated relative standard deviation of the intensity based on the number of molecules measured within the laser excitation volume is required for this metric. Compared to the conventional enhancement factor (EF), AEF approaches signal enhancement from an analytical point of view, relating the signal intensity to the analyte concentration rather than the number of molecules. In this study, we use the AEF to describe the performance. AEF is an essential indicator of the SERS activity of a substrate and approaches signal enhancement from an analytical point of view, relating signal intensity to the analyte concentration rather than the number of molecules. This metric is beneficial when it is difficult to estimate the number of analyte molecules present, especially for analytes with no specific affinity for plasmonic surfaces. As summarized in Table 1, the average AEF was 8.46×10^2, and the AEF was up to more than 10^8 at 610 cm^{-1} and 774 cm^{-1} modes.

Table 1. Surface-Enhanced Raman Scattering Analytical Enhancement Factor (AEF) for Fabricated Ag Nanopillars

wavenumber (cm$^{-1}$)	610	774	1183	1313	1361	avg AEF
Ag/U3 (10^3)	1.06	1.17	0.97	0.46	0.57	0.846

To interpret the mechanism of SERS enhancement theoretically, the electric field distribution was calculated. As shown in Figure 4a, the SEM image at a scale of $1 \mu m \times 30 \mu m$ are shown in Figure 2b, and the calculated relative standard deviation of the intensity based on the number of molecules is required for this metric. Compared to the conventional enhancement factor (EF), AEF approaches signal enhancement from an analytical point of view, relating the signal intensity to the analyte concentration rather than the number of molecules. In this study, we use the AEF to describe the performance. AEF is an essential indicator of the SERS activity of a substrate and approaches signal enhancement from an analytical point of view, relating the signal intensity to the analyte concentration rather than the number of molecules. This metric is beneficial when it is difficult to estimate the number of analyte molecules present, especially for analytes with no specific affinity for plasmonic surfaces. As summarized in Table 1, the average AEF was 8.46×10^2, and the AEF was up to more than 10^8 at 610 cm^{-1} and 774 cm^{-1} modes.
with periodic boundary conditions in the x and y directions and a perfectly matched layer in the z direction. The maximum mesh in air space is 10 nm, and mesh of the metal in the paper is 2 nm. Parts b and c, respectively, of Figure 4 show the electric field distributions on the top surface and the simulated reflectance which is basically consistent with the experimental results shown in Figure 1e. It is noticed that the intensity of the electric field tends to be stronger between two nanopillars. This indicated that the high SERS AEF observed arose predominantly from the electromagnetic enhancement induced by the plasmonic resonance coupling between adjacent Ag nanopillars.

CONCLUSION

In summary, using biomimetic nanostructures to fabricate an available SERS substrate could be considered as a flexible and cost-effective method. The Ag-coated nanopillar SERS substrate was established by directly depositing silver films on the cicada wing, giving rise to an AEF of the order of more than 10⁸ in R6G detection based on the 610 cm⁻¹ and 774 cm⁻¹ modes due to the high near field resonance coupling of surface plasmon at the limited space among neighboring nanopillars (the mean interpillar spacing of ~20 nm). The reliable detection concentration using rhodamine 6G as a model molecule can be 100 pM or less. These experimental results provide an alternative path to design sensitive and cost-effective SERS plasmonic sensors for the rapid and reliable detection of trace organics in biological and environmental applications.

EXPERIMENTAL METHODS

In this experiment, a cicada was first brought indoors from its habitat to complete its molt. After its natural sacrifice, without loss of generality, a central part U3, and an edge part A5, labeled according to Molds, were cleaned and dried for future use. Then, atomic force microscopy (AFM) was used to characterize the microstructure of the two pristine wings to determine the actual width and height using a Nanoscope V Multimode 8 scanning probe microscope (Bruker Corp.). All experiments were conducted with the same AFM probe under ambient conditions (temperature of 25 °C, the relative humidity of 25%). After the AFM imaging, a 100 nm thick Ag film was deposited on the two wings using the magnetron sputtering method at room temperature with a base pressure of 4.7 × 10⁻⁹ Pa. The Ag target (purity >99.99%) was sputtered in a 15 mTorr argon gas atmosphere using a direct current sputtering apparatus with a power density of 2.5 W/cm². Subsequently, the surface morphologies were characterized using field emission scanning electron microscopy (SEM).

The optical reflectance of the fabricated nanopillar substrates in A5 and U3 areas was measured by a UV–vis–NIR spectroscope (PE Lambda 750, IET Ltd.: UV–vis resolution ≤0.17 nm; NIR ≤ 0.20 nm) from 190 to 800 nm. An R6G aqueous solution was first prepared using distilled deionized water, and then the Ag-coated nanopillar SERS substrates were immersed in the R6G (BR 99.5%) solutions at concentrations of 10⁻⁴ mol/L, 10⁻⁵ mol/L, and 10⁻⁶ mol/L for 3 h to make R6G molecules adsorbed on the prepared substrates. To evaluate the SERS performance of the Ag-coated wing substrates, an R6G solution at a concentration of 10⁻⁴ mol/L adsorbed on an Ag/glass substrate was prepared as a reference. Subsequently, all of the samples were dried at room temperature. Finally, the SERS measurements were performed using an Edinburgh Raman spectrometer (RMS) under 532 nm laser irradiation with 3.4 mW of the excitation laser power, and the wavenumber was scanned from 500 cm⁻¹ to 1700 cm⁻¹ with a 37 s integration time.

Generally, a silver-arrayed model was used to investigate the interaction between the light and the nanostructures using the finite element method package (COMSOL Multiphysics, RF module, version 5.6) by importing the SEM image at a scale of 1 μm × 1 μm to the software. The model was illuminated by linearly polarized light along the x-axis at normal incidence, and the electric field distribution was evaluated under 532 nm laser irradiation. During the calculation, the optical constants for the silver film at the wavelength range were selected from the literature. The refractive index of the environment used in the simulation was 1, since all nanostructures were immersed in the air atmosphere.
Corresponding Author

Yujun Song — Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, Haidian District, Beijing 100083, China; Zhengzhou Tianzhaob Biomedical Technology Company Ltd., Zhengzhou 451450, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou Ruida Biotechnology Company Ltd., Hangzhou, Zhejiang 310023, China; E-mail: songyj@ustb.edu.cn

Authors

Weiwei Zhang — Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, Haidian District, Beijing 100083, China; School of Mathematics and Physics, Hebei GEO University, Yuhua District, Shijiazhuang 050031, China; Shunde Graduate School, University of Science and Technology Beijing, Shunde Distric, Foshan 528399, China

Xiaomin Zhu — Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, Haidian District, Beijing 100083, China

Zhanghua Chen — Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, Haidian District, Beijing 100083, China

Vladimir I. Belotelov — Vernadsky Crimean Federal University, Simferopol 295007, Russia; NTI Center for Quantum Communications, National University of Science and Technology MISIS, Moscow 119049, Russia; Photonic and Quantum Technologies School, Lomonosov Moscow State University, Leninskie Gori 119991 Moscow, Russia; orcid.org/0000-0002-6939-4728

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c03022

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was financially supported by BRICS STI Framework Programme by NSFC (No. 51861145309), the National Natural Science Foundation of China (No. 519711029), National S&T Major Project of China (No. 2018ZX10301201), Russian Foundation for Basic Research (Project No. 18-52-80038), the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH005), the China Postdoctoral Science Foundation (No. 2020M680336), and the Teaching Reform Project (jgzd 20201006). V.I.B. appreciates the support from the interdisciplinary “Scientific and Educational School of Moscow University Photonics and Quantum technologies. Digital medicine. We thank Qingya Li (a scientific compass employee) from Shiyanjia Lab (www.shiyanjia.com) for the SERS test. Y.S. also appreciates the support from Zhengzhou Tianzhaob Biomedical Technology Co., Ltd. (Fund No. USTB: 39080070).

REFERENCES

(1) Goel, R.; Awasthi, V.; Rai, P.; Dubey, S. K. Design of Polarization Independent SERS Substrate with Raman Gain Evaluated Using Purcell Factor. Plasmonics 2021, 16 (4), 1365−1373.
(2) Huo, D.; Chen, B.; Li, M.; Meng, G.; Lei, Y.; Zhu, C. Template-assisted fabrication of Ag-nanoparticles@ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. Nanotechnology 2021, 32 (14), 145302.
(3) Choi, N.; Dang, H.; Das, A.; Sim, M. S.; Chung, I. Y.; Choo, J. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosens Bioelectron 2020, 164, 112362.
(4) Wang, M.; Li, M.; Jiang, S.; Gao, J.; Xi, P. Plasmonics meets super-resolution microscopy in biology. Micron 2020, 137, 102916.
(5) Srivastava, S. K.; Shalabney, A.; Khalaila, I.; Grner, C.; Rauschenbach, B.; Abdulhalim, I. SERS Biosensor Using Metallic Nano-Sculptured Thin Films for the Detection of Endocrine Disrupting Compound Biomarker Vitellogenin. Small 2014, 10 (17), 3579−3587.
(6) Gao, Y.; Hu, Z.; Wu, J.; Ning, Z.; Jian, J.; Zhao, T.; Liang, X.; Yang, X.; Xing, Z.; Zhao, Q.; Wang, J.; Wang, Z.; Dina, N. E.; Gherman, A. M. R.; Jiang, Z.; Zhou, H. Size-tunable Au@Ag nanoplatelets for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine. J. Pharm. Biomed. Anal. 2019, 174, 123−133.
(7) Lao, Z.; Zheng, Y.; Dai, Y.; Hu, Y.; Ni, J.; Ji, S.; Cai, Z.; Smith, Z. J.; Li, J.; Zhang, L.; Wu, D.; Chu, J. Nanopag Plasmonic Structures Fabricated by Switchable Capillary-Force Driven Self-Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS. Adv. Funct. Mater. 2020, 30 (15), 1909467.
(8) Cheng, Z. Q.; Li, Z. W.; Yao, R.; Xiong, K. W.; Cheng, G. L.; Zhou, Y. H.; Luo, X.; Liu, Z. M. Improved SERS Performance and Catalytic Activity of Dendritic Au/Ag Bimetallic Nanostuctures Based on Ag Dendrites. Nanoscale Res. Lett. 2020, 15 (1), 117.
(9) He, L.; Liu, C.; Tang, J.; Zhou, Y.; Yang, H.; Liu, R.; Hu, J. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl. Surf. Sci. 2018, 434, 265−272.
(10) rockia Jency, D.; Parimaladevi, R.; Arlin Jose Amali, A.; Sathe, G. V.; Umadevi, M. Colloidal design of Aug@Pt nanoflowers with good catalytic activity and SERS investigations on river soil. Colloids Surf., A 2018, 554, 218−226.
(11) Li, Z.; Gao, Y.; Zhang, L.; Fang, Y.; Wang, P. Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS. Nanoscale 2018, 10 (39), 18720−18727.
(12) Liang, A.; Li, C.; Wang, X.; Luo, Y.; Wen, G.; Jiang, Z. Immunocontrolling Graphene Oxide Catalytic Nanogold Reaction and Its Application to SERS Quantitative Analysis. ACS Omega 2017, 2 (10), 7349−7358.
(13) Nehra, K.; Pandian, S. K.; Bharati, M. S. S.; Soma, V. R. Enhanced catalytic and SERS performance of shape/size controlled anisotropic gold nanostructures. New J. Chem. 2019, 43 (9), 3835−3847.
(14) Wang, P.; Liu, W.; Lin, W.; Sun, M. Plasmon-exciton co-driven surface catalytic reaction in electrochemical G-SERS. J. Raman Spectrosc. 2017, 48 (9), 1144−1147.
(15) Wu, T.; Lu, Y.; Liu, J.; Zhang, S.; Zhang, X. In situ monitoring of catalytic reaction on single nanoporous gold nanowire with tuneable SERS and catalytic activity. Talanta 2020, 218, 12181.
(16) Lin, W.; Cao, E.; Zhang, L.; Xu, X.; Song, Y.; Liang, W.; Sun, M. Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. Nanoscale 2018, 10 (12), 5482−5488.
(17) Zhang, Y. J.; Chen, S.; Radjenovic, P.; Bodappa, N.; Zhang, H.; Yang, Z. L.; Tian, Z. Q.; Li, J. F. Probing the Location of a 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91 (8), 5316−5322.
(18) Wang, Y.; Wei, Z.; Zhang, Y.; Chen, Y. Glycerol-Assisted Construction of Long-Life Three-Dimensional Surface-Enhanced
Raman Scattering Hot Spot Matrix. *Langmuir* 2019, 35 (48), 15795–15804.

(19) Li, M.; Cushing, S. K.; Zhou, G.; Wu, N. Molecular hot spots in surface-enhanced Raman scattering. *Nanoscale* 2020, 12 (43), 22036–22041.

(20) Zhao, W.; Xiong, S.; Zhang, Y.; Fan, D.; Wen, J.; Qian, X.; Wang, D.; Cao, H.; He, W.; Qian, M.; Yang, Z. Binary “island” shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates. *Nanoscale* 2018, 10 (29), 14220–14229.

(21) Zha, Z.; Liu, R.; Yang, W.; Li, C.; Gao, J.; Shaï, M.; Fan, X.; Li, Z.; Du, X.; Jiang, S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films assisted by Al2O3. *Opt. Express* 2021, 29 (6), 8890–8901.

(22) Tian, Y.; Shuai, Z.; Shen, J.; Zhang, L.; Chen, S.; Song, C.; Zhao, B.; Fan, Q.; Wang, L. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. *Small* 2018, 14 (24), No. e1800669.

(23) Zhang, W.; Tian, Q.; Chen, Z.; Zhao, C.; Chai, H.; Wu, Q.; Li, W.; Chen, X.; Deng, Y.; Song, Y. Arrayed nanopore silver thin films for surface-enhanced Raman scattering. *RSC Adv.* 2020, 10 (40), 23908–23915.

(24) Kim, A. N.; Lim, H.; Lee, H. N.; Park, Y. M.; Yoo, B.; Kim, H.-J. Large-area and cost-effective fabrication of Ag-coated polymeric nanopillar array for surface-enhanced Raman spectroscopy. *Appl. Surf. Sci.* 2018, 446, 114–121.

(25) Chen, Y.; Liu, H.; Li, X.; Tang, S.; Gu, C.; Wei, G.; Jiang, T.; Zhou, X. Development of RGO@MoS2@Ag ternary nanocomposites with tunable geometry structure for recyclable SERS detection. *Sens. Actuators B* 2021, 339, 129856.

(26) Tang, S.; Liu, H.; Tian, Y.; Chen, D.; Gu, C.; Wei, G.; Jiang, T.; Zhou, J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic-hydrophobic Ag-modified PMMA substrate. *Spectrochim. Acta, Part A* 2021, 262, 120092.

(27) Wu, H.-Y.; Cunningham, B. T. Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering. *Appl. Phys. Lett.* 2011, 98 (15), 153103.

(28) Srivastava, S. K.; Hamo, H. B.; Kushmaro, A.; Marks, R. S.; Grüner, C.; Rauschenbach, B.; Abdulhalim, I. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanocutspored thin films. *Analyst* 2015, 140 (9), 3201–3209.

(29) Akinoglu, G. E.; Mir, S. H.; Gatensby, R.; Rydbeck, G.; Mokariyan-Tabari, P. Block Copolymer Derived Vertically Coupled Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy. *ACS Appl. Mater. Interfaces* 2020, 12 (20), 23410–23416.

(30) Viehrig, M.; Rajendran, S. T.; Sanger, K.; Schmidt, M. S.; Goni, A. R.; Tognalli, N. G.; Fainstein, A.; Roig, A.; Herranz, G. Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures. *Langmuir* 2012, 28 (24), 9010–20.

(31) Luigg, C. Color from Structure. *Scientist* 2013, 27 (2), 42–48.

(32) Oh, J.; Dana, C. E.; Hong, S.; Roman, J. K.; Jo, K. D.; Hong, J. W.; Nguyen, J.; Cropek, D. M.; Alleyne, M.; Miljkovic, N. Exploring the Role of Habitat on the Wettability of Cicada Wings. *ACS Appl. Mater. Interfaces* 2017, 9 (32), 27173–27184.

(33) Song, S.; Keating, M.; Chen, Y.; Placid, F. Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles. *Meas. Sci. Technol.* 2012, 23, 084007.

(34) Viehrig, M.; Rajendran, S. T.; Sanger, K.; Schmidt, M.; Goni, A. R.; Tognalli, N. G.; Fainstein, A.; Roig, A.; Herranz, G. Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures. *Langmuir* 2012, 28 (24), 9010–20.