De Novo Genome Assembly of *Populus simonii* Further Supports That *Populus simonii* and *Populus trichocarpa* Belong to Different Sections

Hainan Wu, Dan Yao, Yuhua Chen, Wenguo Yang, Wei Zhao, Hua Gao, and Chunfa Tong

Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

ORCID IDs: 0000-0003-2890-9702 (H.W.); 0000-0001-5937-3467 (D.Y.); 0000-0002-4530-8653 (Y.C.); 0000-0002-5191-828X (W.Y.); 0000-0002-7130-7670 (W.Z.); 0000-0001-9795-211X (C.T.)

ABSTRACT *Populus simonii* is an important tree in the genus *Populus*, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of *P. simonii* using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contains 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the *P. simonii* assembly. Genomic repeat analysis revealed that 41.47% of the *P. simonii* genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the *P. simonii* genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that *P. simonii* and *Populus trichocarpa* should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different *Populus* species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing *P. simonii* with other *Populus* species.

KEYWORDS
- genome assembly
- PacBio sequencing
- Illumina sequencing
- genetic linkage maps
- *Populus simonii*

Populus simonii (Salicaceae; *Populus*) is one of the most important native trees in northern China, which is mainly distributed from Qinghai to the east coast and from the Heilongjiang River to the Yangtze River (Wei et al. 2013). It is a primary tree species in the three northern regions of China (northwest, north, and northeast) and plays an important role in preventing desertification, reducing soil erosion, counteracting wind damage, and fixing sand dunes. Because of its drought resistance, barren tolerance, wide adaptability, strong rooting ability and interspecific cross-compatibility, *P. simonii* has been regarded by poplar breeders as one of the best parents for breeding poplar clone varieties (Zhu et al. 2018). Based on this recognition, we established an F1 hybrid population by crossing *P. deltoides* and *P. simonii* and used this population to construct genetic linkage maps and map quantitative trait loci (QTL) (Tong et al. 2016; Mousavi et al. 2016).

The acquisition of genomic sequences provides a solid basis for understanding the biological significance of individual species. In our previous study, paired-end (PE) reads from the Illumina HiSeq platform were used to construct a draft genome sequence of *P. simonii* as a reference sequence for generating single nucleotide polymorphism (SNP) markers that can be used to construct genetic linkage maps, but the assembly has relatively poor continuity and lacks annotated information on repetitive sequences and functional
genes (Mousavi et al. 2016). In studies of the stress resistance of *P. simonii* (Chen et al. 2013; Song et al. 2013), some transcriptional regulators related to drought and cold tolerance were found by analyzing transcriptome sequencing data, but the lack of genomic information for *P. simonii* made it difficult to further study the molecular mechanism of stress resistance. Although the genome assemblies of *Populus deltoides* (http://www.phytozome.net), *Populus euphratica* (Ma et al. 2013), and *Populus trichocarpa* (Tuskan et al. 2006) are available online, there are significant differences in the genomes of different poplar species (Yang et al. 2017; Liu et al. 2017; Ma et al. 2019). Moreover, comparative genomics based on de novo assembly in poplar is still in its infancy. Further development of genomic resources for *P. simonii* will provide unique opportunities for comparative genomics and will also accelerate understanding of the evolutionary process underlying the phenotypic and adaptive differences exhibited by *P. simonii*. To improve the understanding of the *P. simonii* genome, explore its complex stress-resistance characteristics, and further study its genome through genetic linkage analysis and QTL mapping, it is necessary to obtain a genome assembly of *P. simonii* that possesses high continuity.

To date, more than 200 plant genomes have been sequenced (Vanburen et al. 2018), including some highly heterozygous plant genomes such as Norway spruce (Nystedt et al. 2013) and *Liriodendron* (Chen et al. 2019). Recently, some de novo assemblies of plant genomes such as *Ganoderma lucidum* (Liu et al. 2012), *Siraitia grosvenorii* (Itkin et al. 2016), and *Populus pruinosa* (Yang et al. 2017) were obtained using next-generation sequencing (NGS) technology. Due to the complexity of plant genomes, the draft assembled sequences obtained with NGS platforms generally have poor continuity, and many gaps remain, resulting in the potential loss of a large number of important biological characteristics (Vanburen et al. 2018). With recent advances in sequencing technology, several new platforms such as PacBio and Oxford Nanopore have been used to assemble large and complex genomes from tens of thousands of long individual reads. Several of these genomes, including those of opium poppy (Guo et al. 2018), *Panicum miliaceum* (Shi et al. 2019), maize (Yang et al. 2019), and strawberry (Edger et al. 2019), were assembled using reads generated on the PacBio sequencing platform, while others such as those of *Arabidopsis thaliana* (Michael et al. 2018), *Chrysanthemum nankingense* (Song et al. 2018) and *Tectona grandis* (Yasodha et al. 2018) were assembled using the Nanopore sequencing technology.

In this study, we report a high-quality genome sequence of *P. simonii* that was mainly assembled using long reads generated by the PacBio Sequel system. These reads were incorporated with paired-end (PE) short reads from the Illumina HiSeq platform and with high-density genetic maps of *P. deltoides* and *P. simonii*. The draft genome sequence is of high quality in terms of both genome integrity and base quality. Genomic repetitive sequences were analyzed, and a large number of protein-coding genes were predicted and annotated. Concomitant phylogenetic analysis provided genome-level evidence for the placement of *P. simonii* and *P. trichocarpa* in different sections. The genome assembly of *P. simonii* provides a valuable resource for identifying genome variants among individuals, performing comparative genomics within and between species, and mining candidate genes that underlie ecologically and economically important traits.

MATERIALS AND METHODS

Sampling and sequencing

As the male parent in an F1 hybrid population, a single *P. simonii* tree was chosen from a forestland managed by the Luoning Forest Bureau of Henan Province, China and planted at the Xiashu Forest Farm of Nanjing Forestry University, Jurong, Jiangsu Province, China (Mousavi et al. 2016). Fresh leaves were collected from the paternal tree, immediately transferred to liquid nitrogen, and stored until DNA extraction. Genomic DNA was extracted using the CTAB protocol (Porebski et al. 1997), and a library with an insert size of 20 kb was constructed using a BluePippin DNA size selection instrument (Sage Science, MA, USA) with a lower size limit of 10 kb. The prepared library was sequenced using P6/C4 chemistry according to the manufacturer’s protocols (Pacific Biosciences, USA). Single-molecule real-time (SMRT) sequencing of long reads was performed at BMK (Biomarker Technologies Corporation, Beijing, China) and at FTC (Frasergen Technologies Corporation, Wuhan, China) on the PacBio Sequel platform (Pacific Biosciences, USA). After the removal of adapter sequences using SMRTLink (v7.0.1; https://www.pacb.com/support/software-downloads), the remaining sequences were used for genome assembly and error correction.

In addition, using the same individual tree described above, we sequenced the whole genome of *P. simonii* by the Illumina HiSeq 2000 sequencing platform at BMK. The detailed procedure used for whole-genome sequencing is described in Mousavi et al. (2016). The PE reads data are available from the NCBI SRA database under the accession number SRP071167. These whole-genome sequencing data were filtered using the NGC QC toolkit with default parameters (Patel and Mukesh 2012) to obtain high-quality data for correcting the contigs assembled with the PacBio sequencing data.

For the purpose of genome annotation, we also performed RNA sequencing of fresh leaf tissue isolated using TRIzol Reagent (Invitrogen, USA). The RNA libraries were prepared using the TruSeq RNA Library Preparation Kit (Illumina, CA, USA), and PE sequencing with a read length of 90 bp was then conducted on the Illumina HiSeq 2000 platform at Beijing Genomics Institute (BGI). These transcriptome reads were already deposited in the SRA database at the NCBI with the accession number SRR9113443. The RNA sequencing data were also filtered using the NGC QC toolkit with default parameters (Patel and Mukesh 2012).

Genome assembly and correction

The genome size of *P. simonii* was estimated based on the k-mer method using the sequencing data from the Illumina DNA library (Lamichhaney et al. 2016). High-quality reads were subjected to 17-mer distribution using the Jellyfish program (Marçais and Kingsford 2011). The genome size was estimated according to the formula $G = (K_{total} - K_{error})/D$, where K_{total} is the total number of K-mers, K_{error} is the number of K-mers at low frequency (frequency $<=1$), D is the depth of K-mer, and G is the final predicted genome size. In addition, the genome heterozygosity was estimated using GenomeScope software (Vurture et al. 2017).

As shown in Figure 1, we first obtained the contigs of *P. simonii* by assembling the long reads sequenced from the PacBio Sequel platform. The reads data in BAM format were transformed into FASTA format by the standard PacBio SMRTLink software package after removal of adapter sequences. After further filtering out short sequences (<500 bp), the remaining reads were used in the subsequent analysis. The contig assembly of *P. simonii* was conducted using the FALCON assembler (v0.3.1) (Chin et al. 2016). FALCON is a hierarchical genome assembly software package developed by PacBio that uses the following steps to generate a genome assembly from a set of sequencing reads: (1) Raw subreads overlapping for error correction; (2) Preassembly and error correction; (3) Overlapping detection of the error-corrected reads; (4) Overlap filtering; (5) Construction of a graph from the overlaps;
and (6) Construction of contigs from the graph. Through adjusting the parameters of the FALCON software in error correction and assembly several times, the following best parameters for assembly were obtained: length_cutoff = 1000; length_cutoff_pr = 1000; pa_daligner_option = -e.70 -l1000 -k18 -h480 -w8 -s100; falcon_sense_option = –output-multi –min-cov-aln 4 –min-idt 0.70 –min-cov 4 –max-n-read 200; overlap_filtering_setting = –max-diff 60–max-cov 100–min-cov 2. Due to the complexity of forest genomes (Minio et al. 2019), we further used FALCON-unzip with the default parameters to phase the reads based on heterozygous SNPs identified in the initial assembly. The purpose of this step was to produce a set of partially phased primary contigs and fully phased haplotigs (Chin et al. 2016).

To improve the accuracy of the genome assembly, we polished the contigs described above in two ways. First, all the SMRT clean reads were aligned to the contigs of *P. simonii* using the command *blsr* in SMRTLink; then, Arrow software (Chin et al. 2013) was used to correct the errors in the contigs. Next, second-round correction was performed using the high-quality Illumina short reads. The PE reads data were aligned to the contigs using the command *mem* in the software BWA (v0.7.15) (Li and Durbin 2009); SAMtools software (v1.8) (Li et al. 2009) was then used to convert the output files to BAM format. We applied the software Pilon (v1.22) (Walker et al. 2014) to the alignment results to further correct the contigs of the assembly under the default parameters.

Assembly integration with genetic linkage maps

Two parental linkage maps of *P. deltoides* and *P. simonii* were used to anchor the contigs into chromosomes using the software ALLMAPS (Tang et al. 2015). The linkage maps, which were constructed in a previous study (Yao et al. 2018), contained a total of 3,913 SNPs on the maternal map of *P. deltoides* and 2,584 SNPs on the paternal map of *P. somonii*. To match each linkage group with the chromosome in *Populus*, we mapped a 41-bp sequence flanking each SNP to the reference genome of *P. trichocarpa* using the program blastn from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.8.1/). If the majority of SNPs in a linkage group were mapped to a chromosome, the linkage group was considered to correspond to the chromosome. The sequence representing a SNP was also aligned to the contigs assembled above by setting the query coverage equal to 90%. After that, two csv-formatted files were prepared for each parental linkage map according to the requirement of ALLMAPS; these files contained records for each mapped SNP, including the contig identifier, the position on the contig, the linkage group identifier, and the position in the linkage group. Finally, the anchoring process was conducted using ALLMAPS with equal weights for the two linkage maps.

Assessment of the genome assembly

To evaluate the base level accuracy of the genome assembly, high-quality PE reads data were mapped to the assembled genome using BWA software to generate mapping ratio statistics. Then, the erroneous bases and homozygous SNP loci in the genome were identified using the software Freebayes (v1.2.0) (Garrison and Marth 2012) with the BAM files generated in BWA. We further evaluated the completeness of the genome assembly using Benchmarking Universal Single-Copy Orthologs software (BUSCO v3) (Simão et al. 2015) with the embryophytaodb10 database (http://busco.ezlab.org) and the parameter settings “-m genome -c 30”. The completeness of genome assembly was assessed on
the basis of the proportion of the complete BUSCOs present in the genome.

Repetitive sequences and noncoding RNA annotation

Plant genomes, especially complex plant genomes in which many of the repetitive sequences are transposable elements (TEs), usually contain large numbers of repetitive sequences (Xu et al. 2019). To identify transposable elements, the software RepeatModeler (Taratola-Gravoc and Chen 2009) was used to identify de novo repeat types in *P. simonii*. Then, combination of the results from RepeatModeler with the repeat sequence database Repbase (Bao et al. 2013) was used as the final repeat sequence library for subsequent analysis with RepeatMasker (Taratola-Gravoc and Chen 2009). This step yields a more accurate annotation result for repetitive elements in *P. simonii*.

In the process of annotating noncoding RNAs (ncRNA), we identified miRNA and snRNA genes in the genome of *P. simonii* by searching the Rfam database using INFERNAL software with default parameters (v1.1.2) (Kalvari et al. 2018). Moreover, we used tRNAscan-SE software with default parameters for tRNA annotation (v1.3.1) (Lowe and Eddy 1997) and RNAmmer for rRNA annotation (v1.2) (Lagesen et al. 2007).

Gene prediction

We identified the protein-coding genes of *P. simonii* using ab initio prediction, homology-based prediction, and RNA-seq-assisted prediction methods. The transcripts were obtained by de novo assembling the RNA-seq data of *P. simonii* with Trinity (v2.4.0) (Haas et al. 2013). Before gene prediction, an initial gene model file was constructed by analyzing the transcriptomic data with the software PASA (v2.3.3) (Campbell et al. 2006). In addition, the repetitive sequences of the transcripts were screened according to the annotations of repetitive sequences to prevent them from interfering with the results of gene prediction. Next, the Augustus (v3.3.1) (Stanke et al. 2006), SNAP (v2006-07-28) (Korf 2004) and GeneMark (v4.46) (Ter-Hovhannisyan et al. 2008) software packages were applied with default parameters to create three ab initio training files incorporating the use of PASA for gene model training. For homology-based prediction, protein sequences from 4 closely related species, *Salix suchowensis* (Dai et al. 2014), *Populus trichocarpa* (Tuskan et al. 2006), *Populus deltoids* (https://phytozone.jgi.doe.gov/pz/portal.html), and *Populus euphratica* (Ma et al. 2013), were aligned to the genome assembly of *P. simonii* using blastn with the default parameters. Furthermore, Exonerate software (Slater and Birney 2005) was used to polish the blast hits to obtain exact intron and exon positions. Finally, all the predictions results were integrated using the software package MAKER (v3.01.02) (Holt 2011) to generate a consensus gene set, and the quality of the gene annotation was assessed using BUSCO (v3) with the parameters set as follows: “-c 30 –m proteins –l embryophyta_odb10”.

Functional annotation of protein-coding genes

Functional annotations of the protein-coding genes in *P. simonii* were obtained according to the best matches by aligning the predicted protein sequences to well-known databases using the local blastp command with an e-value threshold of 1e-5. The databases included Nonredundant protein sequences (Nr) as of March 12, 2019, eukaryotic orthologous groups of proteins (KOG) as of September 9, 2018 (Tatusov et al. 2001), the Kyoto Encyclopedia of Genes and Genomes (KEGG) as of July 1, 2019 (Ogata et al. 2000) and Swissprot as of August 10, 2019 (Bairoch and Boeckmann 1991). To derive the annotation information for motifs and domains, we searched the protein sequences in the Pfam database (Pfam 28) as of May 20, 2015 (Zdobnov and Apweiler 2001) using the software hmmer (v3.1b2) (Mistry et al. 2013) with default parameters. The blast hits of the protein-coding genes were mapped to the Gene Ontology (GO) terms using the BLAST2GO pipeline (Conesa et al. 2005). InteractiVenn software (Heberle et al. 2015) was used to plot a Venn diagram of the number of protein-coding genes with functional annotations based on the six databases described above.

Comparative and evolutionary genomics

To cluster families from protein-coding genes, we downloaded the online protein data for eight other species, including three species in the genus *Populus*. We retrieved protein data of *P. trichocarpa* (v3.1), *P. deltoides* WV94 (v2.1), *Ricinus communis* (v0.1), *Oryza sativa* (v7), *Carica papaya* ASGPB (v0.4), *Manihot esculenta* (v6.1), and *Salix purpurea* (v1.0) from Phytozone (https://phytozone.jgi.doe.gov/pz/portal.html). The data for *P. euphratica* (v1.0) were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/genome/). The *Salix suchowensis* (v4.1) data were obtained from the ftp site at Nanjing Forestry University (ftp://plantgenie.org/Data/PopGenEl/Salix-suchowensis). To remove redundant sequences caused by alternative splicing variations, we retained only the gene model at each gene locus that encodes the longest potential protein sequence. We then employed DIAMOND software to identify potentially orthologous gene families among the filtered protein sequences in these species using a maximum e-value of 1e-5 (Buchfink et al. 2015). The pipeline OrthoFinder was used to cluster gene families based on the aligned results under the default parameters (v2.3.3) (Emms and Kelly 2015). STRIDE software (Emms and Kelly 2017) was used to identify gene duplication events based on the orthogroups generated by OrthoFinder.

The *P. simonii* genome was compared to the *P. trichocarpa* genome (v3.1) using the MUMmer software package (v3.23) (Kurtz et al. 2004). The chromosome-level sequences of *P. simonii* were aligned to the reference genome of *P. trichocarpa* with the PROmer script in the package followed a filtering process using the delta-filter script with parameter setting as “-i 1100 -i 1150”. A postscript file was then generated using the mummerplot script for visualization of the genomic structure comparison.

To reveal the phylogenetic relationship between *P. simonii* and other *Populus* species, we conducted phylogenetic analysis using the orthologs from the single-copy gene families. MAFFT software (v7.158b) (Katoh and Standley 2013) was used to generate multiple sequence alignments of protein-coding sequences for each single-copy gene with an accurate option (LINS-i). The software trimAl (v1.2) (Capella-Gutierrez et al. 2009) was used with the default parameters to remove poorly aligned positions and divergent regions. The alignments for all the single-copy genes were then concatenated to form a super matrix. The super matrix was used for phylogenetic tree construction by RAxML software (v8.2.12) (Stamatakis 2014) with the model JTT+G+F (determined by the BIC model selection criterion) and bootstrap replicates of 1000. Next, r8s software (v1.71) (Sanderson 2003) was applied to estimate the divergence time among species with selected parameter settings as follows: “bformat lengths=per site nsites=462057 ultrametric=no; set smoothing=100; divtime method=PL algorithm=TN” and the others as defaults. The divergence times of *Oryza sativa* (115-308 Mya), *Ricinus communis* (70-86 Mya), and *Salix purpurea* (12-48 Mya) obtained from the TimeTree database (http://www.timetree.org/) were used as the calibration points. Finally, the phylogenetic tree was visualized in FigTree (v1.4.3) (Drummond and Rambaut 2007).
To investigate whole-genome duplication (WGD) events in \textit{P. simonii}, the distribution of synonymous substitution rate (Ks) was obtained from its CDS sequences, compared with \textit{P. trichocarpa}. The pipeline \textit{wdg} (Zwaenepoel and Van de Peer 2019) was used to calculate the Ks from its CDS sequences, compared with \textit{nii}. Gene functional annotation information can be found in File S6. The genome annotation was saved in File S5 in gff3 format. Sequences with the predicted genes are contained in File S4 in fasta format. Annotation of noncoding RNAs can be found in File S3. The protein sequences with the predicted genes are contained in File S4 in fasta format. The genome annotation was saved in File S5 in gff3 format. Functional annotation information can be found in File S6. The supplementary tables (Tables S1-S7) and figures (Figures S1-S11) can be found in File S7. Supplemental material available at figshare: https://doi.org/10.25387/g3.9905492.

RESULTS

Sequencing

SMRT sequencing of long reads was conducted on a PacBio Sequel platform with 6 cells. After filtering out the low quality and adapter sequences, a total of 3,412,303 reads were obtained (Table 1 and Figure S1). After further filtering out the short sequences (<500 bp), 3,147,743 high-quality reads up to 29.65 Gb remained, with an average read length of 9,418 bp and a longest read length of 112,390 bp (Table 2 and File S1).

The short fragments of the DNA and RNA libraries were sequenced using the Illumina HiSeq 2000 sequencing platform. A total of 326,922,690 PE reads representing 32.02 Gb were obtained by genomic sequencing. After filtering out the low-quality sequences, 256,124,774 high-quality reads representing 25.87 Gb of genomic data remained. For the transcriptome sequencing, we obtained approximately 8.50 Gb of RNA-Seq data after filtering out the low-quality reads (Table 2).

Data availability

The data of the whole-genome PE short reads from the Illumina platform, the two batches of long reads from the PacBio system, and the transcriptome reads have been deposited in the SRA database at the National Center for Biotechnology Information (NCBI) with accession numbers of SRP071167, SRR9112943, SRR9887262, and SRR9113443, respectively. The genome assembly of \textit{P. simonii} is available under the GenBank assembly accession number GCA_007827005.2. Statistical information on the PacBio Sequel raw data can be found in File S1. The repetitive sequence annotation was saved in File S2. The protein sequences with the predicted genes are contained in File S4. The genome annotation was saved in File S5. Functional annotation information can be found in File S6. The supplementary tables (Tables S1-S7) and figures (Figures S1-S11) can be found in File S7. Supplemental material available at figshare: https://doi.org/10.25387/g3.9905492.

Table 1 Clean data* generated by the PacBio sequel platform

Cell ID#	Reads Num#	Total Bases(bp)	Reads N50(bp)	Mean Length(bp)	Longest Read(bp)
4_D03	427,147	2,583,955,526	11,500	6,049	70,237
3_G01	651,595	4,705,217,582	12,948	7,221	84,525
4_H01	329,754	2,855,303,758	13,761	8,659	61,755
2_B05	509,634	5,109,633,303	14,523	10,026	84,905
1_A09	827,878	6,622,523,144	13,683	7,999	96,519
G01	666,295	4,705,217,582	13,761	8,659	61,755
Total	3,412,303	29,717,070,834	15,473	8,709	112,390

*Clean data: The sequences remaining after filtering out low-quality reads and adapters. Cell ID: Chip ID. Reads Num: number of reads.

Table 2 Statistics of high-quality reads data and library information

Data Type	Platform	Number of Reads	Bases(bp)	Insert Size(bp)	Average Read Length(bp)
DNA Sequence	Illumina	256,124,774	25,868,602,174	300-500	101
(short insert)	PacBio Sequel	3,147,743	29,647,972,079	20,000	9,418
DNA Sequence	Illumina	94,464,940	8,501,844,600	300-500	90
(long insert)	PacBio Sequel	3,412,303	29,717,070,834	15,473	8,709

| RNA-Seq (short insert) | Illumina | 256,124,774 | 25,868,602,174 | 300-500 | 101 |

Genome size estimation, assembly and correction

To determine the amount of data needed for sequencing, we estimated the genome size of \textit{P. simonii}. The genome size was predicted based on K-mer analysis using the software Jellyfish with the Illumina genomic sequencing data (Marçais and Kingsford 2011). Taking the k-mer size as 17 bp, a total of 21,770,605,790 k-mers were generated with 932,308 error kmers and a kmer depth of 53, leading to an estimated genome size of approximately 411 Mb and an estimated heterozygosity rate of 1.34% (Figure S2). De novo assembly of \textit{P. simonii} genome was performed using FALCON software with the PacBio long reads data. To improve the accuracy of the PacBio data, we first used the self-correcting program of FALCON to correct the HQ long reads, obtaining 1,690,300 reads up to 16.15 Gb (~34x coverage) with an average length of 9,553 bp for de novo assembly. After performing the primary assembly, we obtained a draft genome size (G1) of 447 Mb with 911 contigs and a contig N50 of 1.89 Mb (Table 3). We then used FALCON-unzip to phase the primary contigs, obtaining 440 Mb partially phased primary contigs (G2) and 328 Mb fully phased haplotigs with contig N50s of 1.93 Mb and 202 kb, respectively (Table 3). Next, the assembled genome was error-corrected using Arrow software with the PacBio data to obtain a consensus sequence. This step corrected 946,062 insertions, 142,410 deletions, and 540,656 substitutions, leading to a corrected genome size of 441 Mb. To further improve the accuracy of the genome assembly, we also used Pilon software and the Illumina genomic reads to correct the consensus sequences again. This identified 181,316 insertion sites, 76,138 deletion sites, and 152,077 substitution sites that required correction. After the two rounds of error correction, the final genome assembly (G3) of \textit{P. simonii} contained 686 contigs and had a total length of 441 Mb and a contig N50 of 1.94 Mb; the longest contig was equal to 8.12 Mb, and the GC content was 33.65% (Table 3).

Integration of the genome assembly using linkage maps

The two high-quality genetic linkage maps from our previous study (Yao et al. 2018) were used to anchor the contigs assembled above into...
Repetitive sequence and noncoding RNA analysis

Repetitive sequence analysis of the assembly (G3, Table 3) showed that the repetitive sequences comprised approximately 183 Mb (41.47%) of the P. simonii genome (File S2); of these, interspersed repeats accounted for 40.17%, simple repeats occupied approximately 5,723,970 bp (1.30%), and DNA elements made up 3.99% (Table 5). In the non-coding RNA analysis, we identified 1,153 miRNAs, 1,177 tRNAs, 290 rRNAs, and 618 snRNAs in the P. simonii genome (Table S2; File S3).

Gene prediction and functional annotation

We predicted genes with ab initio, homologous annotation and transcriptome sequencing-based methods using the MAKER software package. A total of 45,459 protein-coding genes were predicted in the P. simonii genome; they were distributed in 369 scaffolds (G4, Table 3) with an average of 123 genes per scaffold (Table S3; File S4).

Assembly evaluation

To evaluate the accuracy of our genome assembly, the 25.87 Gb Illumina genomic DNA sequencing data were aligned to the final assembled genome of P. simonii (G4) using BWA. The results showed that 97.56% of the reads were mapped to the genome assembly, indicating a high mapping ratio. We then used the software Freebayes to identify the erroneous bases in the P. simonii genome assembly. A total of 80,463 homozygous mutation sites were identified with a mutation rate of 1.82x10^-4, indicating a high-quality genome assembly.

We also evaluated the completeness of the genome assembly (G3, Table 3) using BUSCO with the embryophyta_oda10 database. The results showed that 97.9% of the complete BUSCO genes were identified in the assembly (1,347 vs. 1,375 genes), with 0.5% partial BUSCOs identified and only 1.6% missed (Table S1). Overall, all the results suggest that the quality of the assembly is high with respect to the base level accuracy and the completeness of the assembly.
using the software OrthoFinder; of these, 966 were identified as single-copy orthologous gene families, and 10 were identified as unique to P. simonii (Tables S5 and S6). There were 24,955 gene families containing sequences from the four Populus species, of which 15,556 (62.3%), 4,451 (17.8%), 4,237 (17.0%), and 711 (2.8%) were shared by 4, 3, 2, and only one of these species, respectively (Figure 3). Excluding the gene families shared by all four Populus species, we found that the desert tree species P. euphratica shared 996 gene families with any one or two of the three species P. trichocarpa, P. deltoides, and P. simonii, while 7,692 gene families were shared within the remaining three Populus species. The results show that the average number of gene families (2,564) shared within the three Populus species was almost 2.6 times the number of gene families shared between P. euphratica and any one or two of the other three Populus species. This indicates that P. simonii is more closely related to P. trichocarpa and P. deltoides than to P. euphratica. In particular, the genome structure of P. simonii was evaluated by comparing it with that of P. trichocarpa, performed by genomic alignments at the chromosome level using MUMmer software (Kurtz et al. 2004). As a result, P. simonii structure was globally similar to that of P. trichocarpa, without large rearrangements, inversions or translocations (Figure S7).

The evolutionary relationship of P. simonii to the other eight species was constructed using the 966 single-copy orthologous genes, and the divergence time and the extrapolated calibration time point were estimated. The phylogenetic tree analysis showed that P. simonii is more closely related to P. deltoides and P. trichocarpa than to P. euphratica (Figure 4), consistent with the above inference from the number of shared gene families. However, the analysis also showed that P. trichocarpa is more closely related to P. deltoides than to P. simonii, which is contrary to the traditional section classification according to morphology (Eckenwalder 1996) but consistent with the results in recent studies using molecular data (Wang et al. 2014; Zong et al. 2019); this suggests that P. simonii and P. trichocarpa should be assigned to different sections in the genus Populus (see more in Discussion). Moreover, it was estimated that P. simonii diverged approximately 4.36 million years ago from its common ancestor with P. deltoides and P. trichocarpa (Figure S8). The number of gene duplications was also estimated along each branch on the species tree; this indicated that there were 2,777 gene duplications in P. simonii (Figure S9). Furthermore, from the density curves of Ks distributions for the paralogs of P. simonii and P. trichocarpa (Figure S10), we observed that the two species shared similar peaks near the Ks value of 0.23. This indicated that P. simonii experienced the same WGD events as P. trichocarpa (Ma et al. 2019; Liu et al. 2019). Additionally, the analysis of gene family expansion and

Table 5 Summary statistics of annotated repeats
Type
DNA
LINE
SINE
LTR
Unknown
Simple repeats
Total

Figure 2 Gene Ontology (GO) function annotation of Populus simonii using WEGO 2.0 (Ye et al. 2018). The horizontal axis shows the GO classification types, and the vertical axis represents the number of annotated protein-coding genes.
contraction showed that 2,356 gene families were expanded and 5,224 families were contracted in the \textit{P. simonii} genome compared to the other plant species (Figure S11 and Table S7).

DISCUSSION

High-quality genome assembly is particularly important for improving the annotation of gene models as well as for facilitating evolutionary and functional genomics analyses (Lin et al. 2018). Here, we present a chromosome-scale genome assembly of \textit{P. simonii} with fewer gaps and higher continuity. This assembly was obtained by combining the use of PacBio long reads with the use of Illumina short reads and the related genetic linkage maps. The assembly described here can be considered a high-quality draft genome of \textit{P. simonii} because we attempted to maximize its quality by optimizing the parameters of FALCON, an undertaking that has not previously been reported, as well as by performing two polishing iterations using different sequencing technologies. The size of the assembly was approximately 441 Mb with a contig N50 of 1.94 Mb. Compared with previously published genomes in \textit{Populus}, such as \textit{P. alba} with contig N50 of 9.8 kb (Ma et al. 2019) and \textit{P. pruinosa} with contig N50 of 14 kb (Yang et al. 2017), the contig N50 of the \textit{P. simonii} genome obtained by SMRT data are greatly improved. Furthermore, the PacBio-based assembly contains more complete repetitive sequences than the Illumina-based assembly (Winkler et al. 2018). This confirms that the strategy of combining third-generation sequencing (used to obtain contig with higher continuity) and Illumina sequencing technology (used to obtain high-quality base sequences) can be effectively applied to the assembly of complex plant genomes (Li et al. 2017; Jung et al. 2019). However, the contig N50 value of our assembly is still far from that of the other plant genomes assembled using the PacBio Sequel platform, such as \textit{Hordeum vulgare} (Zeng et al. 2018) and \textit{Brassica rapa} (Zhang et al. 2018). This may be due to the higher heterozygosity of the genomes of forest trees and could be improved by increasing the sequencing depth of the PacBio long reads in \textit{P. simonii} from the current ~50X to 80X (Lin et al. 2018).

On the other hand, the quality of a chromosome-level genome assembly largely depends on the genetic linkage map used to anchor...
the contigs. The key problem in creating a linkage map is whether the order of the molecular markers within each linkage group is sufficiently accurate. Errors in the order of markers in a linkage map will seriously affect the order of contigs in the anchoring process. We used two high-density genetic linkage maps to anchor 336 contigs into chromosomes with a size of 398 Mb, accounting for 90.2% of the genome in this study. The linkage maps were constructed using SNPs generated from the RADseq data across the mapping population in our previous study (Yao et al. 2018). Compared with previous genetic mapping studies in _Populus_ (Bradshaw et al. 1994; Yin et al. 2002; Zhang et al. 2004; Zhang et al. 2009; Paolucci et al. 2010), the linkage maps used in this study could be considered to be of high quality because they contained many more SNPs that were confirmed to be of high quality. Moreover, the number of divided linkage groups perfectly matched the karyotype of _Populus_ under a wide range of LOD thresholds, which was rarely reported in the previous studies. This suggests that the SNPs were uniformly distributed on the genome and were of high quality. Undoubtedly, high-quality SNPs can improve the accuracy of ordering SNPs using the available mapping software, thus enhancing the quality of our chromosome-level genome assembly. However, there is still room to improve the algorithms used to order markers in the current mapping software; ordering tens or hundreds of markers in a linkage group belongs to the NP-hard category of problems (Wu et al. 2008; Monroe et al. 2017), which involves choosing the optimal order of the markers among a huge number of possible orders. Advances in ordering markers would substantially increase the precision of genetic mapping and hence improve the accuracy of chromosome-level genome assembly.

In the context of gene predictions and annotations, our assembled genome has some characteristics similar to those of previous genome assembly studies in _Populus_. The annotation of the _P. simonii_ genome is almost complete, with 97.9% of the complete BUSCOs, higher than the completeness of annotation in _P. alba_ (91.10%) (Ma et al. 2019), _P. trichocarpa_ (93.95%) (Tuskan et al. 2006) and _P. euphratica_ (94.35%) (Ma et al. 2013). Approximately 41.47% of the genome was annotated as containing repetitive sequences, similar to the values estimated for other _Populus_ species (Tuskan et al. 2006; Ma et al. 2013; Yang et al. 2017; Ma et al. 2019). A total of 45,459 genes were predicted in the genome of _P. simonii_, slightly more than the number of genes predicted in _P. trichocarpa_ (42,950 genes) and in _P. deltoides_ (44,853 genes). The expansion in the number of predicted genes may be attributed to repeated gene duplication (Yang et al. 2018); this could be confirmed by analyzing the whole-genome duplications as well as the gene families. Among the predicted genes, 39,833 (87.6%) were annotated with relevant functional information, laying the foundation for further elucidation of the biological characteristics of _P. simonii_, such as its drought stress response, its barren tolerance and its developed root system.

Overall, the acquisition of the genome of _P. simonii_ provides an important genetic resource for comparative genomics in _Populus_ and facilitates further studies on phylogenetic inference and whole-genome duplication events.

We measured the phylogenetic affinity of _P. simonii_ with three other _Populus_ species, _P. deltoides_, _P. trichocarpa_, and _P. euphratica_, because these species provide the only genome data available to date in _Populus_. According to important morphological characteristics, Eckenwalder (1996) assigned _P. simonii_ and _P. trichocarpa_ to the section _Tacamahaca_, _P. deltoides_ to the section _Aigeiros_, and _P. euphratica_ to the section _Turanga_, suggesting that _P. simonii_ and _P. trichocarpa_ are more closely related than any other two of the four species. This classification of the _Populus_ species is not consistent with our current phylogenetic result, which shows that _P. deltoides_ and _P. trichocarpa_ are more closely related to each other than _P. simonii_ is to either _P. trichocarpa_ or _P. deltoides_. Interestingly, this is not the first report of an inconsistent phylogenetic relationship within the _Populus_ genus based on the use of different methods. Using nuclear and plastid DNA sequences, Wang et al. (2014) found that the section _Tacamahaca_ could be divided into two groups, with _P. simonii_ belonging to section _Leucoides_ or to a sister group to section _Algerois_ and _P. trichocarpa_ belonging to the other group as a subsection in _Tacamahaca_. More recently, Zong et al. (2019) divided _P. simonii_ and _P. trichocarpa_ into different clades but placed _P. deltoides_ and _P. trichocarpa_ in the same clade using whole chloroplast genome sequences. Overall, in addition to the fact that there is almost no controversy regarding the relationship of _P. euphratica_ to other _Populus_ species, the phylogenetic relationships among _P. simonii_, _P. deltoides_, and _P. trichocarpa_ revealed by these two studies are consistent with the results obtained in the current study.

Figure 4 Phylogenetic relationships of _Populus simonii_ and related species. A maximum likelihood phylogenetic tree of _P. simonii_ and 8 other plant species was constructed through the concatenated alignment of 966 1-to-1 single-copy orthologous genes and then using RAxML software with the model JTT+G+F. The number on the nodes represents the bootstrap support value estimated from 1000 bootstrap tests.
CONCLUSIONS

Herein, we report the first chromosome-scale genome assembly for *P. simonii*; it was obtained through an assembly strategy that combined the use of PacBio long reads data with the use of Illumina short PE reads data and related genetic linkage maps. With the assembly data, phylogenetic analysis indicates that *P. simonii* and *P. trichocarpa* should be assigned to different sections in the genus *Populus*. The genome assembly, which includes predicted genes and functional annotations, not only provides an important resource for the comparative and functional genomics of *Populus* species, but also provides the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing *P. simonii* and other *Populus* species. The assembly strategy used in this work can be applied to other species in *Populus* to generate chromosome-level genome assemblies in a fast and cost-effective manner.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant No. 31870654 and 31270706) awarded to CT and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

LITERATURE CITED

Conesa, A., S. Götz, J. M. García-Gómez, J. Terol, M. Talón et al., 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. https://doi.org/10.1093/bioinformatics/bti610

Bairack, A., and B. Boeckmann, 1991 The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 19: 2247–2249. https://doi.org/10.1093/nar/19.suppl.2247

Bao, W., K. K. Kojima, and D. Kohany, 2015 Rephase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6: 11. https://doi.org/10.1186/s13100-015-0041-9

Bradshaw, H. D., M. Villar, B. D. Watson, K. G. Otto, S. Stewart et al., 1994 Molecular genetics of growth and development in *Populus*. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor. Appl. Genet. 89: 167–178. https://doi.org/10.1007/BF00225137

Buchfink, B., C. Xie, and D. H. Huson, 2015 Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59–60. https://doi.org/10.1038/nmeth.3176

Campbell, M. A., B. J. Haas, J. P. Hamilton, S. M. Mount, and C. R. Buell, 2006 Comprehensive analysis of alternative splicing in rice and comparative analyses with *Arabidopsis*. BMC Genomics 7: 327–343. https://doi.org/10.1186/1471-2164-7-327

Capella-Gutiérrez, S., J. M. Silla-Martínez, and T. Gabaldón, 2009 trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Chen, J., Z. Hao, X. Guang, C. Zhao, P. Wang et al., 2019 *Lirioidendron* genome sheds light on angiosperm phylogeny and species–pair differentiation. Nat. Plants 5: 18–25. Erratum: 328. https://doi.org/10.1038/s41477-018-0323-6

Chen, J., Y. Song, Z. He, and D. Zhang, 2013 Genome-wide analysis of gene expression in response to drought stress in *Populus simonii*. Plant Mol. Biol. Report. 31: 946–962. https://doi.org/10.1007/s11105-013-0563-6

Chin, C. S., D. H. Alexander, P. Marks, A. A. Klammer, J. Drake et al., 2013 Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563–569. https://doi.org/10.1038/nmeth.2474

Chin, C. S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion et al., 2016 Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13: 1050–1054. https://doi.org/10.1038/nmeth.4035

Dai, X., Q. Hu, Q. Cai, K. Feng, N. Ye et al., 2014 The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 24: 1274–1277. https://doi.org/10.1038/cr.2014.83

De Bie, T., N. Cristianini, J. P. Demuth, and M. W. Hahn, 2006 CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22: 1269–1271. https://doi.org/10.1093/bioinformatics/btl097

Drummond, A. J., and A. Rambaut, 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214. https://doi.org/10.1186/1471-2148-7-214

Eckenwalder, J. E., 1996 Systematics and evolution of Populus, pp. 7–32 in *Biolog of Populus and its implications for management and conservation*, edited by Stettler, R. F., H. D. Bradshaw, P. E. Heilman, and T. Hinckley. NRC Research Press, National Council of Canada, Ottawa.

Edger, P. P., T. J. Poorten, R. VanBuren, M. A. Hardigan, M. Colle et al., 2019 Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51: 541–547. Erratum: 765. https://doi.org/10.1038/s41588-019-0356-4

Emms, D. M., and S. Kelly, 2015 OrthoFinder: solving fundamental bias in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16: 157. https://doi.org/10.1186/s13059-015-0721-2

Emms, D. M., and S. Kelly, 2017 STRIDE: Species tree root inference from gene duplication events. Mol. Biol. Evol. 34: 3267–3278. https://doi.org/10.1093/molbev/msx259

Garrison, E., and G. Marth, 2012 Haploifye-based variant detection from short-read sequencing. arXiv: 1207.3907.

Guo, L., T. Winzer, X. Yang, Y. Li, Z. Ning et al., 2018 The opium poppy genome and morphinan production. Science 362: 343–347. https://doi.org/10.1126/science.aat6096

Haas, B. J., P. Alexie, Y. Moran, G. Manfred, P. D. Blood et al., 2013 De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8: 1494–1512. https://doi.org/10.1038/nprot.2013.084

Heberle, H., G. V. Meirelles, F. R. da Silva, G. P. Telles, and R. Minghim, 2015 InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16: 169–175. https://doi.org/10.1186/s12859-015-0611-3

Holt, C., 2011 MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12: 491–504. https://doi.org/10.1186/1471-2105-12-491

Itkin, M., R. Davidovich-Rikanati, S. Cohen, V. Portnoy, A. Doron-Faigenboim et al., 2016 The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from *Siraitia grosvenorii*. Proc. Natl. Acad. Sci. USA 113: E7619–E7628. Erratum: E3862. https://doi.org/10.1073/pnas.1604828113

Mistry, J., R. D. Finn, S. R. Eddy, B. Alex, and P. Marco, 2013 Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41: E3862. Erratum: E3862. https://doi.org/10.1073/pnas.1604828113

Katoh, K., and D. M. Standley, 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. https://doi.org/10.1093/molbev/mst010

Korf, I., 2004 Gene finding in novel genomes. BMC Bioinformatics 5: 59–67. https://doi.org/10.1186/1471-2105-5-59

Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway et al., 2004 Versatile and open software for comparing large genomes. Genome Biol. 5: R12. https://doi.org/10.1186/gb-2004-5-2-r12

Lagesen, K., P. Hallin, E. A. Rødland, H. H. Staerfeldt, T. Rognes et al., 2007 RNAmer: consisment and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100–3108. https://doi.org/10.1093/nar/gkm160
Wang, Z. S., S. H. Du, S. Dayanandan, D. S. Wang, Y. F. Zeng et al., 2014 Phylogeny reconstruction and hybrid analysis of Populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS One 9: e103645. https://doi.org/10.1371/journal.pone.0103645

Wei, Z., Q. Du, J. Zhang, B. Li, and D. Zhang, 2013 Genetic diversity and population structure in Chinese indigenous poplar (Populus simonii) populations using microsatellite markers. Plant Mol. Biol. Report. 31: 620–632. https://doi.org/10.1007/s11105-012-0527-2

Winkler, S., J. G. Roscito, K. Sameith, M. Hiller, G. Myers et al., 2018 The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. Gigascience 7: giy141.

Wu, Y., P. R. Bhat, T. J. Close, and S. Lonardi, 2008 Efficient and accurate construction of genome linkage maps from the minimum spanning tree of a graph. PLoS Genet. 4: e1000212. https://doi.org/10.1371/journal.pgen.1000212

Xu, C.-Q., H. Liu, S.-S. Zhou, D.-X. Zhang, W. Zhao et al., 2019 Genome sequence of Malania oleifera, a tree with great value for nervous acid production. Gigascience 8: giy164. https://doi.org/10.1093/gigascience/giy164

Yang, N., J. Liu, Q. Gao, S. Gui, L. Chen et al., 2019 Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51: 1052–1059. https://doi.org/10.1038/s41588-019-0427-6

Yang, W., K. Wang, J. Zhang, J. Ma, J. Liu et al., 2017 The draft genome sequence of a desert tree Populus prunosa. Gigascience 6: 1–7. https://doi.org/10.1093/gigascience/gix075

Yang, X., Y. Yue, H. Li, W. Ding, G. Chen et al., 2018 The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Hortic. Res. 5: 72–84. https://doi.org/10.1038/s41438-018-0108-0

Yao, D., H. Wu, Y. Chen, W. Yang, H. Gao et al., 2018 gmRAD: an integrated SNP calling pipeline for genetic mapping with RADseq across a hybrid population. Brief. Bioinform. bby114. https://doi.org/10.1093/bib/bby114

Yasodha, R., R. Vasudeva, S. Balakrishnan, A. R. Sakthi, N. Abel et al., 2018 Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Res. 25: 409–419. https://doi.org/10.1093/dnares/dsy013

Ye, J., Y. Zhang, H. Cui, J. Liu, Y. Wu et al., 2018 WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 46: W71–W75. https://doi.org/10.1093/nar/gky400

Yin, T., X. Zhang, M. Huang, M. Wang, Q. Zhu et al., 2002 Molecular linkage maps of the Populus genome. Genome 45: 541–555. https://doi.org/10.1139/g02-013

Zdobnov, E. M., and R. Apweiler, 2001 InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848. https://doi.org/10.1093/bioinformatics/17.9.847

Zeng, X., X. Li, L. Bai, Y. Wang, T. Xu et al., 2018 Improved high-quality genome assembly and annotation of Qingke, Tibetan hulless barley. bioRxiv. https://doi.org/10.1101/409136

Zhang, B., C. Tong, T. Yin, X. Zhang, Q. Zhu et al., 2009 Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping. Tree Genet. Genomes 5: 539–552. https://doi.org/10.1007/s11295-009-0207-z

Zhang, D., Z. Zhang, K. Yang, and B. Li, 2004 Genetic mapping in (Populus tomentosa × Populus bollleana) and P. bollleana Carr. using AFLP markers. Theor. Appl. Genet. 108: 657–662. https://doi.org/10.1007/s00122-003-1478-7

Zhang, L., X. Cai, J. Wu, M. Liu, S. Grob et al., 2018 Improved Brasica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic. Res. 5: 50–60. Erratum: 124. https://doi.org/10.1038/s41438-018-0071-9

Zhu, J., J. Tian, J. Wang, and S. Nie, 2018 Variation of traits on seeds and germination derived from the hybridization between the sections Taca-arces and Algeiros of the genus Populus. Forests 9: 516–530. https://doi.org/10.3390/f9090516

Zong, D., P. H. Gan, A. P. Zhou, Y. Zhang, X. L. Zou et al., 2019 Plastome sequences help to resolve deep-level relationships of Populus in the Family Salicaceae. Front. Plant Sci. 10: 5. https://doi.org/10.3389/fpls.2019.00005

Zwaenepoel, A., and Y. Van de Peer, 2019 wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35: 2153–2155. https://doi.org/10.1093/bioinformatics/bty915

Communicating editor: R. Hernandez