DOI-HOPF MODULES AND YETTER-DRINFELD MODULES FOR QUASI-HOPF ALGEBRAS

D. BULACU, S. CAENEPEEL, AND B. TORRECILLAS

Abstract. For a quasi-Hopf algebra H, a left H-comodule algebra B and a right H-module coalgebra C we will characterize the category of Doi-Hopf modules $C\mathcal{M}(H)_B$ in terms of modules. We will also show that for an H-bicomodule algebra A and an H-bimodule coalgebra C the category of generalized Yetter-Drinfeld modules $\mathcal{YD}(H)^C_A$ is isomorphic to a certain category of Doi-Hopf modules. Using this isomorphism we will transport the properties from the category of Doi-Hopf modules to the category of generalized Yetter-Drinfeld modules.

Introduction

Recall that the defining axioms for a quasi-bialgebra H are the same as for a bialgebra, with the coassociativity of the comultiplication replaced by a weaker property, called quasi-coassociativity: the comultiplication is coassociative up to conjugation by an invertible element $\Phi \in H \otimes H \otimes H$, called the reassociator. There are important differences with ordinary quasi-bialgebras: the definition of a quasi-bialgebra is not selfdual, and we cannot consider comodules over quasi-bialgebras, since they are not coassociative coalgebras. However, the category of (left or right) modules over a quasi-bialgebra is a monoidal category. Using this categorical point of view, the category of relative Hopf modules has been introduced and studied in [6]. A right H-module coalgebra C is a coalgebra in the monoidal category \mathcal{M}_H, and a left $[C, H]$-Hopf module is a left C-comodule in the monoidal category \mathcal{M}_H. A generalization of this concept was presented in [3]: replacing the right H-action by an action of a left H-comodule algebra, we can define the notion of Doi-Hopf module over a quasi-bialgebra. At this point, we have to mention that there is a philosophical problem with the introduction of H-comodule algebras: we cannot introduce them as algebras in the category of H-comodules, since this category does not exist, as we mentioned above. However, a formal definition of H-comodule (and H-bicomodule) algebra was given by Hausser and Nill in [14]. A more conceptual definition has been proposed in [3]. If \mathfrak{A} is an associative algebra then the category of $(\mathfrak{A} \otimes H, \mathfrak{A})$-bimodules is monoidal. Moreover, $\mathfrak{A} \otimes H$ has a coalgebra structure within this monoidal category “compatible” with the unit element $1_{\mathfrak{A}} \otimes 1_H$ if and only if \mathfrak{A} is a right H-comodule algebra (for the complete statement see Proposition 1.1 below). Of course, a similar result holds

1991 Mathematics Subject Classification. 16W30.

Key words and phrases. quasi-Hopf algebra, Doi-Hopf module, Yetter-Drinfeld module.

The first author was financially supported by the bilateral project “Hopf Algebras in Algebra, Topology, Geometry and Physics” of the Flemish and Romanian governments, and SB 2002-0286. He would like to thank Free University of Brussels (Belgium) and University of Almeria (Spain) for their warm hospitality.
for a left H-comodule algebra (see Proposition 1.3). Moreover, if H is a quasi-Hopf algebra then any H-bicomaodule algebra can be viewed in two different (but twist equivalent) ways as a left (right) H-comodule algebra.

The aim of this paper is to study the category of Doi-Hopf modules over a quasi-Hopf algebra H, and its connections to the category of Yetter-Drinfeld modules.

If H is a quasi-bialgebra, \mathcal{B} a left H-comodule algebra and C a right H-module coalgebra then $\mathcal{B} \otimes C$ is a \mathcal{B}-coring (this means a coalgebra in the monoidal category of \mathcal{B}-bimodules) and the category of right-left (H, \mathcal{B}, C)-Hopf modules, denoted by $C \mathcal{M}(H)_{\mathcal{B}}$, is isomorphic to the category of right comodules over the coring $\mathcal{B} \otimes C$, conform [3] Theorem 5.4]. In particular, since $\mathcal{B} \otimes C$ is flat as a left \mathcal{B}-module we obtain that $C \mathcal{M}(H)_{\mathcal{B}}$ is a Grothendieck category.

It was shown in [3, Proposition 5.2] that the category $C \mathcal{M}(H)_{\mathcal{B}}$ is isomorphic to the category of right modules over the generalized smash product $C^* \triangleright \mathcal{B}$, if C is finite dimensional. In Section 2 we look at the case where C is infinite dimensional. Following the methods developed in [9, 11, 19], we will present two characterizations of the category of Doi-Hopf modules $C \mathcal{M}(H)_{\mathcal{B}}$. We first introduce the notion of rational (right) $C^* \triangleright \mathcal{B}$-module, and then we will show that the category $C \mathcal{M}(H)_{\mathcal{B}}$ is isomorphic to $\text{Rat}(\mathcal{M}_{C^* \triangleright \mathcal{B}})$, the category of rational (right) $C^* \triangleright \mathcal{B}$-modules.

We notice that, in the coassociative case, the notion of rational (right) $C^* \triangleright \mathcal{B}$-module reduces to the notion of right $C^* \triangleright \mathcal{B}$-module which is rational as a right C^*-module. Secondly, we will show that $\text{Rat}(\mathcal{M}_{C^* \triangleright \mathcal{B}})$ is equal to $\sigma_{C^* \triangleright \mathcal{B}}(C \otimes \mathcal{B})$, the smallest closed subcategory of $\mathcal{M}_{C^* \triangleright \mathcal{B}}$ containing $C \otimes \mathcal{B}$ (see Theorem 2.6). In this way we recover that $C \mathcal{M}(H)_{\mathcal{B}}$ is a Grothendieck category, a fortiori with enough injective objects. We will also introduce a generalized version of Koppinen’s smash product [10], relate it to the generalized smash product, and characterize the category of Doi-Hopf modules as the full subcategory of modules over the Koppinen smash product, consisting of rational modules.

In Section 3, we will generalize a result from [8]. If H is a quasi-Hopf algebra, then an H-bicomaodule algebra \mathcal{A} can be viewed in two different, but twist equivalent, ways as a right $H^{op} \otimes H$-comodule algebra. To this end, we first prove that any left H-comodule algebra \mathcal{B} can be turned into a right H^{op}-comodule algebra. So, by this correspondence, the two (twist equivalent) left $H \otimes H^{op}$-comodule algebra structures on \mathcal{A} obtained in [7] provide two (twist equivalent) right $H^{op} \otimes H$-comodule algebra structures on \mathcal{A}, which we will denote by \mathcal{A}^1 and \mathcal{A}^2. If C is an H-bimodule coalgebra (that is, a coalgebra in the monoidal category of H-bimodules), then C becomes in a natural way a left $H^{op} \otimes H$-module coalgebra, thus it makes sense to consider the Hopf module category $\mathcal{A}^2 \mathcal{M}(H^{op} \otimes H)^C$. The main result of Section 3 asserts that the category of generalized left-right Yetter-Drinfeld modules $\mathcal{A}^2 \mathcal{Y}D(H)^C$ is isomorphic to $\mathcal{A}^1 \mathcal{M}(H^{op} \otimes H)^C$, and also to $\mathcal{A}^1 \mathcal{M}(H^{op} \otimes H)^C$. Using the first isomorphism, we will characterize $\mathcal{A}^2 \mathcal{Y}D(H)^C$ as a category of comodules over a coring. In Section 3.3, we will characterize the category of Yetter-Drinfeld modules as a category of modules.

1. Preliminary results

1.1. Quasi-Hopf algebras. We work over a commutative field k. All algebras, linear spaces etc. will be over k; unadorned \otimes means \otimes_k. Following Drinfeld [12], a quasi-bialgebra is a fourtuple $(H, \Delta, \varepsilon, \Phi)$, where H is an associative algebra with unit, Φ is an invertible element in $H \otimes H \otimes H$, and $\Delta: H \rightarrow H \otimes H$ and $\varepsilon: H \rightarrow k$
are algebra homomorphisms satisfying the identities

\begin{align}
(1.1) & \quad (id \otimes \Delta)(\Delta(h)) = \Phi(\Delta \otimes id)(\Delta(h))\Phi^{-1}, \\
(1.2) & \quad (id \otimes \varepsilon)(\Delta(h)) = h, \quad (\varepsilon \otimes id)(\Delta(h)) = h,
\end{align}

for all \(h \in H; \Phi \) has to be a normalized 3-cocycle, in the sense that

\begin{align}
(1.3) & \quad (1 \otimes \Phi)(id \otimes \Delta \otimes id)(\Phi)(\Phi \otimes 1) = (id \otimes id \otimes \Delta)(\Phi)(\Delta \otimes id \otimes id)(\Phi), \\
(1.4) & \quad (id \otimes \varepsilon \otimes id)(\Phi) = 1 \otimes 1.
\end{align}

The map \(\Delta \) is called the coproduct or the comultiplication, \(\varepsilon \) the counit and \(\Phi \) the reassociator. As for Hopf algebras \cite{20} we denote \(\Delta(h) = h_1 \otimes h_2 \), but since \(\Delta \) is only quasi-coassociative we adopt the further convention (summation implicitly understood):

\begin{equation}
(\Delta \otimes id)(\Delta(h)) = h_{(1,1)} \otimes h_{(1,2)} \otimes h_2, \quad (id \otimes \Delta)(\Delta(h)) = h_1 \otimes h_{(2,1)} \otimes h_{(2,2)},
\end{equation}

for all \(h \in H \). We will denote the tensor components of \(\Phi \) by capital letters, and those of \(\Phi^{-1} \) by small letters, namely

\begin{align*}
\Phi &= X^1 \otimes X^2 \otimes X^3 = T^1 \otimes T^2 \otimes T^3 = V^1 \otimes V^2 \otimes V^3 = \cdots, \\
\Phi^{-1} &= x^1 \otimes x^2 \otimes x^3 = t^1 \otimes t^2 \otimes t^3 = v^1 \otimes v^2 \otimes v^3 = \cdots.
\end{align*}

A quasi-Hopf algebra is a quasi-bialgebra \(H \) equipped with an anti-automorphism \(S \) of the algebra \(H \) and elements \(\alpha, \beta \in H \) such that

\begin{align}
(1.5) & \quad S(h_1)\alpha h_2 = \varepsilon(h)\alpha \quad \text{and} \quad h_1 \beta S(h_2) = \varepsilon(h)\beta, \\
(1.6) & \quad X^1 \beta S(X^2)\alpha X^3 = 1 \quad \text{and} \quad S(x^1)\alpha x^2 \beta S(x^3) = 1,
\end{align}

for all \(h \in H \).

The antipode of a quasi-Hopf algebra is determined uniquely up to a transformation \(\alpha \mapsto U\alpha, \beta \mapsto \beta U^{-1}, S(h) \mapsto US(h)U^{-1} \), with \(U \in H \) invertible. The axioms imply that \(\varepsilon(\alpha)\varepsilon(\beta) = 1 \), so, by rescaling \(\alpha \) and \(\beta \), we may assume without loss of generality that \(\varepsilon(\alpha) = \varepsilon(\beta) = 1 \) and \(\varepsilon \circ S = \varepsilon \). The identities \cite{12,14} also imply that

\begin{equation}
(\varepsilon \otimes id \otimes id)(\Phi) = (id \otimes id \otimes \varepsilon)(\Phi) = 1 \otimes 1.
\end{equation}

If \(H = (H, \Delta, \varepsilon, \Phi, S, \alpha, \beta) \) is a quasi-bialgebra or a quasi-Hopf algebra then \(H^{\text{cop}} \), \(H^{\text{cop}} \) and \(H^{\text{cop}} \) are also quasi-bialgebras (respectively quasi-Hopf algebras), where the superscript “op” means opposite multiplication and “cop” means opposite co-multiplication. The structure maps are obtained by putting \(\Phi_{\text{op}} = \Phi^{-1}, \Phi_{\text{cop}} = (\Phi^{-1})^{321}, \Phi_{\text{op,cop}} = \Phi^{321}, S_{\text{op}} = S_{\text{cop}} = (S_{\text{op,cop}})^{-1} = S^{-1}, \alpha_{\text{op}} = S^{-1}(\beta), \beta_{\text{op}} = S^{-1}(\alpha), \alpha_{\text{cop}} = S^{-1}(\beta), \beta_{\text{cop}} = S^{-1}(\alpha) \). The definition of a quasi-bialgebra \(H \) is designed in such a way that the categories of left and right representations over \(H \) are monoidal (see \cite{15,13} for the terminology). Let \((H, \Delta, \varepsilon, \Phi) \) be a quasi-bialgebra. For are left (resp. right) \(H \)-modules \(U, V, W \), the associativity constraints \(a_{U,V,W} \) (resp. \(a_{U,V,W} \) : \(U \otimes V \otimes W \to U \otimes (V \otimes W) \) are given by the formulas

\begin{align*}
a_{U,V,W}((u \otimes v) \otimes w) &= \Phi \cdot (u \otimes (v \otimes w)); \\
a_{U,V,W}((u \otimes v) \otimes w) &= (u \otimes (v \otimes w)) \cdot \Phi^{-1}.
\end{align*}

Next we recall that the definition of a quasi-bialgebra or quasi-Hopf algebra is “twist covariant” in the following sense. An invertible element \(F \in H \otimes H \) is called a gauge transformation or twist if \((\varepsilon \otimes id)(F) = (id \otimes \varepsilon)(F) = 1 \). If \(H \) is
a quasi-bialgebra or a quasi-Hopf algebra and $F = F^1 \otimes F^2 \in H \otimes H$ is a gauge transformation with inverse $F^{-1} = G^1 \otimes G^2$, then we can define a new quasi-bialgebra (respectively quasi-Hopf algebra) H_F by keeping the multiplication, unit, counit (and antipode in the case of a quasi-Hopf algebra) of H and replacing the comultiplication, reassociator and the elements α and β by

\begin{align}
\Delta_F(h) &= F \Delta(h) F^{-1}, \\
\Phi_F &= (1 \otimes F)(id \otimes \Delta)(F)\Phi(\Delta \otimes id)(F^{-1})(F^{-1} \otimes 1), \\
\alpha_F &= S(G^1)\alpha G^2, \quad \beta_F = F^1 \beta S(F^2).
\end{align}

It is well-known that the antipode of a Hopf algebra is an anti-coalgebra morphism. For a quasi-Hopf algebra, we have the following statement: there exists a gauge transformation $f \in H \otimes H$ such that

\begin{equation}
f \Delta(S(h))f^{-1} = (S \otimes S)(\Delta^{cop}(h)), \quad \text{for all } h \in H.
\end{equation}

The element f can be computed explicitly. First set

\begin{align}
A^1 \otimes A^2 \otimes A^3 \otimes A^4 &= (\Phi \otimes 1)(\Delta \otimes id \otimes id)(\Phi^{-1}), \\
B^1 \otimes B^2 \otimes B^3 \otimes B^4 &= (\Delta \otimes id \otimes id)(\Phi)(\Phi^{-1} \otimes 1),
\end{align}

and then define $\gamma, \delta \in H \otimes H$ by

\begin{equation}
\gamma = S(A^2)\alpha A^3 \otimes S(A^1)\alpha A^4 \quad \text{and} \quad \delta = B^1 \beta S(B^4) \otimes B^2 \beta S(B^3).
\end{equation}

Then f and f^{-1} are given by the formulae

\begin{align}
f &= (S \otimes S)(\Delta^{cop}(x^1))\gamma \Delta(x^2 \beta S(x^3)), \\
f^{-1} &= \Delta(S(x^1)\alpha x^2)\delta(S \otimes S)(\Delta^{cop}(x^3)).
\end{align}

Furthermore the corresponding twisted reassociator (see (1.8)) is given by

\begin{equation}
\Phi_f = (S \otimes S \otimes S)(X^3 \otimes X^2 \otimes X^1).
\end{equation}

1.2. Comodule and bicomodule algebras. A formal definition of comodule algebras over a quasi-bialgebra was given by Hausser and Nill [14].

Definition 1.1. Let H be a quasi-bialgebra. A right H-comodule algebra is a unital associative algebra A together with an algebra morphism $\rho : A \to A \otimes H$ and an invertible element $\Phi_\rho \in A \otimes H \otimes H$ such that:

\begin{align}
\Phi_\rho(\rho \otimes id)(\rho(a)) &= (id \otimes \Delta)(\rho(a))\Phi_\rho, \quad \text{for all } a \in A, \\
(1_A \otimes \Phi)(id \otimes \Delta \otimes id)(\Phi_\rho)(\Phi_\rho \otimes 1_H) &= (id \otimes id \otimes \Delta)(\Phi_\rho)(\rho \otimes id \otimes id)(\Phi_\rho), \\
(id \otimes \varepsilon) \circ \rho &= id, \\
(id \otimes \varepsilon \otimes id)(\Phi_\rho) &= (id \otimes id \otimes \varepsilon)(\Phi_\rho) = 1_A \otimes 1_H.
\end{align}

In a similar way, a left H-comodule algebra is a unital associative algebra B together with an algebra morphism $\lambda : B \to H \otimes B$ and an invertible element $\Phi_\lambda \in H \otimes H \otimes B$.
such that the following relations hold:

\[(1.18) \quad (id \otimes \lambda)(\lambda(b))\Phi_\lambda = \Phi_\lambda(\Delta \otimes id)(\lambda(b)), \quad \forall \ b \in \mathcal{B}, \]
\[(1.19) \quad (1_H \otimes \Phi_\lambda)(id \otimes \Delta \otimes id)(\Phi_\lambda)(\Phi \otimes 1_\mathcal{B}) \]
\[(1.20) \quad (id \otimes \varepsilon \otimes \lambda)(\Phi_\lambda)(\Delta \otimes id \otimes id)(\Phi_\lambda), \]
\[(1.21) \quad (id \otimes \varepsilon \otimes id)(\Phi_\lambda) = (\varepsilon \otimes id \otimes id)(\Phi_\lambda) = 1_H \otimes 1_\mathcal{B}. \]

Observe that \(H \) is a left and right \(H \)-comodule algebra: take \(\rho = \lambda = \Delta, \Phi_\rho = \Phi_\lambda = \Phi \).

If \((\mathcal{B}, \lambda, \Phi_\lambda)\) is a left \(H \)-comodule algebra then

- \((\mathcal{B}, \lambda \circ \tau_{H,\mathcal{B}}, (\Phi_\lambda^{-1})^{321})\) is a right \(H^{cop} \)-comodule algebra;
- \((\mathcal{B}^{cop}, \lambda \circ \tau_{H,\mathcal{B}}, \Phi_\lambda^{321})\) is a right \(H^{cop}_{\lambda} \)-comodule algebra;
- \((\mathcal{B}^{cop}, \lambda, \Phi_\lambda^{-1})\) is a left \(H^{cop}_{\lambda} \)-comodule algebra,

and vice versa. \(\tau_{X,Y} : X \otimes Y \to Y \otimes X \) is the switch map mapping \(x \otimes y \) to \(y \otimes x \).

From [14], we recall the notion of twist equivalence for the coaction on a right \(H \)-comodule algebra \((\mathfrak{A}, \rho, \Phi_\rho)\): if \(V \in \mathfrak{A} \otimes H \) is an invertible element such that

\[(1.22) \quad (id_{\mathfrak{A}} \otimes \varepsilon)(V) = 1_{\mathfrak{A}} \]

then we can construct a new right \(H \)-comodule algebra \((\mathfrak{A}, \rho', \Phi_{\rho'})\) with

\[(1.23) \quad \rho'(a) = \forall \rho(a)V^{-1} \]

and

\[(1.24) \quad \Phi_{\rho'} = (id_{\mathfrak{A}} \otimes \Delta)(V)\Phi_\rho(\rho \otimes id_H)(V^{-1})(V^{-1} \otimes 1_H). \]

We say that \((\mathfrak{A}, \rho, \Phi_\rho)\) and \((\mathfrak{A}, \rho', \Phi'_{\rho'})\) are twist equivalent right \(H \)-comodule algebras.

We obviously have a similar notion for left \(H \)-comodule algebras. More precisely, if \((\mathcal{B}, \lambda, \Phi_\lambda)\) is a left \(H \)-comodule algebra and \(U \in H \otimes \mathcal{B} \) is an invertible element such that \((\varepsilon \otimes id_{\mathcal{B}})(U) = 1_{\mathcal{B}} \) then we have a new left \(H \)-comodule algebra \((\mathcal{B}, \lambda', \Phi_{\lambda'})\) with \(\lambda'(b) = U(b)\lambda(b)^{-1} \), for all \(b \in \mathcal{B} \), and

\[(\mathcal{B}, \lambda, \Phi_\lambda) \text{ and } (\mathcal{B}, \lambda', \Phi_{\lambda'}) \text{ are twist equivalent.} \]

For a right \(H \)-comodule algebra \((\mathfrak{A}, \rho, \Phi_\rho)\) we will use the following Sweedler-type notation, for any \(a \in \mathfrak{A} \).

\[\rho(a) = a_{(0)} \otimes a_{(1)}, \quad (\rho \otimes id)(\rho(a)) = a_{(0,0)} \otimes a_{(0,1)} \otimes a_{(1)} \text{ etc.}\]

Similarly, for a left \(H \)-comodule algebra \((\mathcal{B}, \lambda, \Phi_\lambda)\), if \(b \in \mathcal{B} \), we adopt the following notation:

\[\lambda(b) = b_{[-1]} \otimes b_{[0]}, \quad (id \otimes \lambda)(\lambda(b)) = b_{[-1]} \otimes b_{[0,-1]} \otimes b_{[0,0]} \text{ etc.}\]

In analogy with the notation for the reassociator \(\Phi \) of \(H \), we will write

\[\Phi_\rho = X_\rho^1 \otimes X_\rho^2 \otimes X_\rho^3 = Y_\rho^1 \otimes Y_\rho^2 \otimes Y_\rho^3 = \cdots\]

and

\[\Phi_\rho^{-1} = \tilde{X}_\rho^1 \otimes \tilde{X}_\rho^2 \otimes \tilde{X}_\rho^3 = \tilde{Y}_\rho^1 \otimes \tilde{Y}_\rho^2 \otimes \tilde{Y}_\rho^3 = \cdots.\]

We use a similar notation for the element \(\Phi_\lambda \) of a left \(H \)-comodule algebra \(\mathcal{B} \).
If \(H \) is an associative bialgebra and \(\mathfrak{A} \) is an ordinary right \(H \)-comodule algebra, then \(\mathfrak{A} \otimes H \) is a coalgebra in the monoidal category of \(\mathfrak{A} \)-bimodules. The quasi-bialgebra analog of this property was given in [3]. Let \(H \) be a quasi-bialgebra and \(\mathfrak{A} \) a unital associative algebra. We define by \(\mathfrak{A} \otimes H \mathfrak{A} \) the category of \(\mathfrak{A} \)-bimodules and \((H, \mathfrak{A})\)-bimodules \(M \) such that \(h \cdot (a \cdot m) = a \cdot (h \cdot m) \), for all \(a \in \mathfrak{A}, h \in H \) and \(m \in M \). Morphisms are left \(H \)-linear maps which are also \(\mathfrak{A} \)-bimodule maps. It is not hard to see that \(\mathfrak{A} \otimes H \mathfrak{A} \) is a monoidal category. The tensor product is \(\otimes \mathfrak{A} \) and for any two objects \(M, N \in \mathfrak{A} \otimes H \mathfrak{A} \), \(M \otimes \mathfrak{A} N \) is an object of \(\mathfrak{A} \otimes H \mathfrak{A} \) via

\[(a \otimes h) \cdot (m \otimes \mathfrak{A} n) \cdot a' = a \cdot (h_1 \cdot m) \otimes \mathfrak{A} h_2 \cdot n \cdot a'\]

for all \(m \in M, n \in N, a, a' \in \mathfrak{A} \), and \(h \in H \). The associativity constraints are given by

\[
\Delta_{M,N,P} : (M \otimes \mathfrak{A} N) \otimes \mathfrak{A} P \to M \otimes \mathfrak{A} (N \otimes \mathfrak{A} P),
\]

\[
\Delta_{M,N,P}(m \otimes \mathfrak{A} n \otimes \mathfrak{A} p) = X^1 \cdot m \otimes \mathfrak{A} (X^2 \cdot n \otimes \mathfrak{A} X^3 \cdot p);
\]

the unit object is \(\mathfrak{A} \) viewed as a trivial \(H \)-module, and the left and right unit constraints are the usual ones. Now, the definition of a comodule algebra in terms of monoidal categories can be restated as follows.

Proposition 1.2. ([3 Proposition 3.8]) Let \(H \) be a quasi-bialgebra and \(\mathfrak{A} \) an algebra, and view \(\mathfrak{A} \otimes H \) in the canonical way as an object in \(\mathfrak{A} \otimes H \mathfrak{A} \). There is a bijective correspondence between coalgebra structures \((\mathfrak{A} \otimes H, \overline{\Delta}, \overline{\varepsilon})\) in the monoidal category \(\mathfrak{A} \otimes H \mathfrak{A} \) such that \(\overline{\Delta}(1_\mathfrak{A} \otimes 1_H) \) is invertible and \(\overline{\varepsilon}(1_\mathfrak{A} \otimes 1_H) = 1_\mathfrak{A} \), and right \(H \)-comodule algebra structures on \(\mathfrak{A} \).

A similar result holds for a left \(H \)-comodule algebra \(\mathfrak{B} \). Denote by \(\mathfrak{B} \mathfrak{M}_{\mathfrak{B} \otimes H} \) the category whose objects are \(\mathfrak{B} \)-bimodules and \((\mathfrak{B}, H)\)-bimodules \(M \) such that \((m \cdot b) \cdot h = (m \cdot h) \cdot b\) for all \(m \in M, b \in \mathfrak{B} \) and \(h \in H \). Morphisms are right \(H \)-linear maps which are also \(\mathfrak{B} \)-bimodule maps. We can easily check that \(\mathfrak{B} \mathfrak{M}_{\mathfrak{B} \otimes H} \) is a monoidal category with tensor product \(\otimes \mathfrak{B} \) given via \(\Delta \), this means

\[b \cdot (m \otimes \mathfrak{B} n) \cdot (b' \otimes h) := b \cdot m \cdot h_1 \otimes \mathfrak{B} (n \cdot h_2) \cdot b'\]

for all \(M, N \in \mathfrak{B} \mathfrak{M}_{\mathfrak{B} \otimes H}, m \in M, n \in N, b, b' \in \mathfrak{B} \) and \(h \in H \). The associativity constraints are given by

\[
\Delta'_{M,N,P} : (M \otimes \mathfrak{B} N) \otimes \mathfrak{B} P \to M \otimes \mathfrak{B} (N \otimes \mathfrak{B} P),
\]

\[
\Delta'_{M,N,P}(m \otimes \mathfrak{B} n \otimes \mathfrak{B} p) = m \cdot x^1 \otimes \mathfrak{B} (n \cdot x^2 \otimes \mathfrak{B} p \cdot x^3),
\]

the unit object is \(\mathfrak{B} \) viewed as a right \(H \)-module via \(\varepsilon \), and the left and right unit constraints are the usual ones.

Proposition 1.3. Let \(H \) be a quasi-bialgebra and \(\mathfrak{B} \) an algebra, and view \(\mathfrak{B} \otimes H \) in the canonical way as an object in \(\mathfrak{M}_{\mathfrak{B} \otimes H} \). There is a bijective correspondence between coalgebra structures \((\mathfrak{B} \otimes H, \overline{\Delta}, \overline{\varepsilon})\) in the monoidal category \(\mathfrak{B} \mathfrak{M}_{\mathfrak{B} \otimes H} \) such that \(\overline{\Delta}(1_\mathfrak{B} \otimes 1_H) \) is invertible and \(\overline{\varepsilon}(1_\mathfrak{B} \otimes 1_H) = 1_\mathfrak{B} \), and left \(H \)-comodule algebra structures on \(\mathfrak{B} \).

Proof. Since the proof is similar to the one given in [3 Proposition 3.8], we restrict ourselves to a description of the correspondence. Suppose that \((\mathfrak{B} \otimes H, \overline{\Delta}, \overline{\varepsilon})\) is a coalgebra in \(\mathfrak{B} \mathfrak{M}_{\mathfrak{B} \otimes H} \) such that \(\overline{\Delta}(1_\mathfrak{B} \otimes 1_H) \) is invertible and \(\overline{\varepsilon}(1_\mathfrak{B} \otimes 1_H) = 1_\mathfrak{B} \). Write

\[
\overline{\Delta}(1_\mathfrak{B} \otimes 1_H) = (1_\mathfrak{B} \otimes \overline{X}_1^1) \otimes \mathfrak{B} (\overline{X}_1^2 \otimes \overline{X}_1^3),
\]
and consider \(\Phi_\lambda = \hat{\lambda}^1 \otimes \hat{\lambda}^2 \otimes \hat{\lambda}^3 \). Define \(\lambda : \rightarrow H \otimes B \) by
\[
\lambda(b) = \tau_{B,H}(b \cdot (1_B \otimes 1_H)),
\]
for all \(b \in B \). Then \((B, \lambda, \Phi_\lambda) \) is a left \(H \)-comodule algebra.

Conversely, if \((B, \lambda, \Phi_\lambda) \) is a left \(H \)-comodule algebra then \(B \otimes H \in B \mathcal{M}_{B \otimes H} \)
via
\[
b \cdot (b' \otimes h) : (b'' \otimes h') = b[0] b'' \cdot b[1] hh'.
\]

Moreover, \(B \otimes H \) is a coalgebra in \(B \mathcal{M}_{B \otimes H} \), with comultiplication and counit given by the formulas
\[
\Delta(b \otimes h) = (1_B \otimes \hat{X}_1^1 h_1) \otimes_B (\hat{X}_1^2 b \otimes \hat{X}_1^3 h_2),
\]
\[
\varepsilon(b \otimes h) = \varepsilon(h)b,
\]
for all \(b \in B \) and \(h \in H \).

Let \(B \) be a left \(H \)-comodule algebra, and consider the elements \(\tilde{\rho}_\lambda \) and \(\tilde{\eta}_\lambda \) in \(H \otimes B \) given by the following formulas:
(1.25) \[
\tilde{\rho}_\lambda = \tilde{\rho}_\lambda^1 \otimes \tilde{\rho}_\lambda^2 = \hat{\lambda}^2 S^{-1}(\hat{\lambda}^1 \beta) \otimes \hat{\lambda}^3, \quad \tilde{\eta}_\lambda = S(\hat{\lambda}^1) \Delta(\hat{\lambda}^3) \otimes \hat{\lambda}^3.
\]

Then we have the following formulas, for all \(b \in B \) (see [14]):
(1.26) \[
\lambda(b[0])\tilde{\rho}_\lambda[S^{-1}(b[-1]) \otimes 1_B] = \tilde{\rho}_\lambda[1_H \otimes b],
\]
(1.27) \[
[S(b[-1]) \otimes 1_H] \tilde{\eta}_\lambda(b[0]) = [1 \otimes b] \tilde{\eta}_\lambda,
\]
(1.28) \[
\lambda(\tilde{\rho}_\lambda^1) \tilde{\rho}_\lambda[S^{-1}(\tilde{\rho}_\lambda^2) \otimes 1_B] = 1_H \otimes 1_B,
\]
(1.29) \[
[S(\tilde{\rho}_\lambda^1) \otimes 1_B] \tilde{\eta}_\lambda(\tilde{\rho}_\lambda^3) = 1_H \otimes 1_B,
\]
(1.30) \[
\Phi^{-1}(id_B \otimes \lambda)(\tilde{\rho}_\lambda)(1_B \otimes \tilde{\rho}_\lambda)
\]
(1.31) \[
= [S(\tilde{\rho}_\lambda^1) \otimes S(\tilde{\rho}_\lambda^3) \otimes 1_B][f \otimes 1_B](\Delta \otimes id_B)(\tilde{\eta}_\lambda \lambda(\tilde{\rho}_\lambda^3)).
\]

Bicomodule algebras where introduced by Hausser and Nill in [14], under the name “quasi-commuting pair of \(H \)-coactions”.

Definition 1.4. Let \(H \) be a quasi-bialgebra. An \(H \)-bicomodule algebra \(\Lambda \) is a quintuple \((\Lambda, \lambda, \rho, \Phi_\lambda, \Phi_\rho)\), where \(\lambda \) and \(\rho \) are left and right \(H \)-coactions on \(\Lambda \), and where \(\Phi_\lambda \in H \otimes H \otimes \Lambda, \Phi_\rho \in \Lambda \otimes H \otimes H \) and \(\Phi_{\lambda,\rho} \in H \otimes \Lambda \otimes H \) are invertible elements, such that
- \((\Lambda, \lambda, \Phi_\lambda)\) is a left \(H \)-comodule algebra,
- \((\Lambda, \rho, \Phi_\rho)\) is a right \(H \)-comodule algebra,
- the following compatibility relations hold, for all \(u \in \Lambda \):
(1.32) \[
(\Phi_{\lambda,\rho}(\lambda \otimes id)(\rho(u)) = (id \otimes \rho)(\lambda(u))\Phi_{\lambda,\rho}
\]
(1.33) \[
(1_H \otimes \Phi_{\lambda,\rho})(id \otimes \lambda \otimes id)(\Phi_{\lambda,\rho})(\Phi_{\lambda,\rho} \otimes 1_H)
\]
(1.34) \[
(1_H \otimes \Phi_{\rho})(id \otimes \rho \otimes id)(\Phi_{\lambda,\rho})(\Phi_{\lambda,\rho} \otimes 1_H)
\]
It was pointed out in [14] that the following additional relations hold in an \(H \)-bicomodule algebra \(\Lambda \):
(1.35) \[
(id_H \otimes id_\Lambda \otimes \varepsilon)(\Phi_{\lambda,\rho}) = 1_H \otimes 1_\Lambda, \quad (\varepsilon \otimes id_\Lambda \otimes id_H)(\Phi_{\lambda,\rho}) = 1_\Lambda \otimes 1_H.
\]
As a first example, take $\mathbb{A} = H$, $\lambda = \rho = \Delta$ and $\Phi_\lambda = \Phi_\rho = \Phi_{\lambda,\rho} = \Phi$.

Let $(\mathbb{A}, \lambda, \rho, \Phi_\lambda, \Phi_\rho, \Phi_{\lambda,\rho})$ be an H-bicomodule algebra; it is not hard to show that

- $(\mathbb{A}, \rho \circ \tau, \lambda \circ \tau, (\Phi_{\rho}^{-1})^{321}, (\Phi_\lambda)^{321}, (\Phi_{\lambda,\rho})^{321})$ is an H^{cop}-bicomodule algebra,
- $(\mathbb{A}^{\text{op}}, \rho \circ \tau, \lambda \circ \tau, \Phi_\rho^{321}, \Phi_\lambda^{321}, \Phi_{\lambda,\rho}^{321})$ is an H^{cop}-bicomodule algebra,
- $(\mathbb{A}^{\text{op}}, \lambda, \Phi_\rho^{-1}, \Phi_\rho^{-1}, \Phi_{\lambda,\rho}^{-1})$ is an H^{op}-bicomodule algebra.

We will use the following notation:

$$
\Phi_{\lambda,\rho} = \Theta^1 \otimes \Theta^2 \otimes \Theta^3 = \overline{\Theta}^1 \otimes \overline{\Theta}^2 \otimes \overline{\Theta}^3;
$$

$$
\Phi_{\lambda,\rho}^{-1} = \theta^1 \otimes \theta^2 \otimes \theta^3 = \overline{\theta}^1 \otimes \overline{\theta}^2 \otimes \overline{\theta}^3.
$$

Let H be a quasi-Hopf algebra and \mathbb{A} an H-bicomodule algebra. We define two left $H \otimes H^{\text{op}}$-coactions $\lambda_1, \lambda_2 : \mathbb{A} \to (H \otimes H^{\text{op}}) \otimes \mathbb{A}$ on \mathbb{A}, as follows:

$$
\lambda_1(u) = (u_{<0>_1} \otimes S^{-1}(u_{<1>_2})) \otimes u_{<0>_2},
$$

$$
\lambda_2(u) = (u_{<1>_1} \otimes S^{-1}(u_{<0>_2})) \otimes u_{<0>_1},
$$

for all $u \in \mathbb{A}$. We also consider the following elements $\Phi_{\lambda_1}, \Phi_{\lambda_2} \in (H \otimes H^{\text{op}}) \otimes (H \otimes H^{\text{op}}) \otimes \mathbb{A}$:

$$
\Phi_{\lambda_1} = \left(\Theta^1 \overline{X}^1(\overline{x}^1_{\rho}), \otimes \Theta^2 \overline{X}^2(\overline{x}^2_{\rho} g) \right) \otimes \Theta^3 \overline{X}^3(\overline{x}^3_{\rho} g^3)
$$

$$
\otimes \left(\Theta^1_{\rho} \Theta^2_{\rho} \Theta^3_{\rho} \right)(x_{\rho} \otimes y_{\rho} \otimes z_{\rho}),
$$

$$
\Phi_{\lambda_2} = \left(\overline{Y}^1 \otimes S^{-1}(\theta^1 \overline{Y}^1 \overline{g}) \overline{Y}^3 \right)(x_{\rho} \otimes y_{\rho} \otimes z_{\rho})
$$

$$
\otimes \left(\theta^1 \overline{g} \otimes S^{-1}(\theta^2 \overline{g} \overline{Y}^2 \overline{Y}^3) \right)(x_{\rho} \otimes y_{\rho} \otimes z_{\rho}).
$$

It was proved in [7] that $(\mathbb{A}, \lambda_1, \Phi_{\lambda_1})$ and $(\mathbb{A}, \lambda_2, \Phi_2)$ are twist equivalent left $H \otimes H^{\text{op}}$-comodule algebras. In particular, if H is a quasi-Hopf algebra then the notion of H-bicomodule algebra can be restated in terms of monoidal categories. In Section 3, we will see that \mathbb{A} can be also viewed in two twist equivalent ways as a right $H^{\text{op}} \otimes H$-comodule algebra.

2. Doi-Hopf modules and rationality properties

2.1. Doi-Hopf modules.

The category of left (right) modules over a quasi-bialgebra is monoidal. A coalgebra in \mathcal{M} (resp. \mathcal{M}_H) is called a left (right) H-module coalgebra. Thus a left H-module coalgebra is a left H-module C together with a comultiplication $\Delta : C \to C \otimes C$ and a counit $\varepsilon : C \to k$ such that

\begin{align*}
(1.1) & \quad \Phi(\Delta \otimes id_C)(\Delta(c)) = (id_C \otimes \Delta)(\Delta(c)), \\
(1.2) & \quad \Delta(h \cdot c) = h_1 \otimes c_1 \otimes h_2 \cdot c_2, \\
(1.3) & \quad \varepsilon(h \cdot c) = \varepsilon(h)\varepsilon(c),
\end{align*}

for all $c \in C$ and $h \in H$. Similarly, a right H-module coalgebra C is a right H-module together with a comultiplication $\Delta : C \to C \otimes C$ and a counit $\varepsilon : C \to k$, satisfying the following relations

\begin{align*}
(2.4) & \quad (\Delta \otimes id_C)(\Delta(c))\Phi^{-1} = (id_C \otimes \Delta)(\Delta(c)), \\
(2.5) & \quad \Delta(c \cdot h) = c_1 \cdot h_1 \otimes c_2 \cdot h_2, \\
(2.6) & \quad \varepsilon(c \cdot h) = \varepsilon(c)\varepsilon(h),
\end{align*}
for all $c \in C$ and $b \in H$. Here we used the Sweedler-type notation

$$\Delta(c) = c_1 \otimes c_2, \quad (\Delta \otimes id_C)(\Delta(c)) = c_{(1,1)} \otimes c_{(1,2)} \otimes c_2, \quad \text{etc.}$$

It is easy to see that a left H-module coalgebra C is in a natural way a right H^{op}-module coalgebra (and vice versa).

Let H be a quasi-bialgebra and C a right H-module coalgebra. A left $[C,H]$-Hopf module is a left C-comodule in the monoidal category \mathcal{M}_H. This definition was generalized in \mathfrak{B}.

Definition 2.1. Let H be a quasi-bialgebra over a field k, C a right H-module coalgebra and $(\mathfrak{B}, \lambda, \Phi)$ a left H-comodule algebra. A right-left (H, \mathfrak{B}, C)-Hopf module (or Doi-Hopf module) is a k-module M, with the following additional structure: M is right \mathfrak{B}-module (the right action of \mathfrak{B} on M is denoted by $m \cdot b$), and we have a k-linear map $\lambda_M : M \rightarrow C \otimes M$, such that the following relations hold, for all $m \in M$ and $b \in \mathfrak{B}$:

\begin{align}
(2.7) \quad (\Delta \otimes id_M)(\lambda_M(m)) &= (id_C \otimes \lambda_M)(\lambda_M(m))\Phi,
(2.8) \quad (\varepsilon \otimes id_M)(\lambda_M(m)) &= m,
(2.9) \quad \lambda_M(m \cdot b) &= m_{(-1)} \cdot b_{[-1]} \otimes m_{(0)} \cdot b_{[0]}.
\end{align}

As usual, we use the Sweedler-type notation $\lambda_M(m) = m_{(-1)} \otimes m_{(0)}$. $C\mathcal{M}(H)_{\mathfrak{B}}$ is the category of right-left (H, \mathfrak{B}, C)-Hopf modules and right \mathfrak{B}-linear, left C-colinear k-linear maps.

Let M be a right \mathfrak{B}-module; then $C \otimes M$ is a right-left (H, \mathfrak{B}, C)-Hopf module, with structure maps given by the following formulas

\begin{align}
(2.10) \quad (c \otimes m) \cdot b &= c \cdot b_{[-1]} \otimes m \cdot b_{[0]},
(2.11) \quad \lambda_{C \otimes M}(c \otimes m) &= c_1 \cdot \hat{x}_1 \otimes c_2 \cdot \hat{x}_2 \otimes m \cdot \hat{x}_3,
\end{align}

for all $c \in C$, $b \in \mathfrak{B}$ and $m \in M$. We obtain a functor $F = C \otimes \cdot : \mathcal{M}_\mathfrak{B} \rightarrow C\mathcal{M}(H)_{\mathfrak{B}}$. The functor F sends a morphism ϑ to $id_C \otimes \vartheta$. In particular, $C \otimes \mathfrak{B} \in C\mathcal{M}(H)_{\mathfrak{B}}$, via the structure maps

$$\lambda_{C \otimes \mathfrak{B}}(c \otimes b) = c_1 \cdot \hat{x}_1 \otimes c_2 \cdot \hat{x}_2 \otimes b \hat{x}_3,$$

for all $c \in C$ and $b, b' \in \mathfrak{B}$.

The functor F has a left and a right adjoint, so it is an exact functor.

Proposition 2.2. Let H be a quasi-bialgebra, \mathfrak{B} a left H-comodule algebra and C a right H-module coalgebra. Then the functor $F = C \otimes \cdot$ is a right adjoint of the forgetful functor

$$C\mathfrak{U} : C\mathcal{M}(H)_{\mathfrak{B}} \rightarrow \mathcal{M}_\mathfrak{B},$$

and a left adjoint of the functor

$$\text{Hom}_{\mathfrak{B}}^C(C \otimes \mathfrak{B}, \cdot) : C\mathcal{M}(H)_{\mathfrak{B}} \rightarrow \mathcal{M}_\mathfrak{B}$$

defined as follows. For $M \in C\mathcal{M}(H)_{\mathfrak{B}}$, $\text{Hom}_{\mathfrak{B}}^C(C \otimes \mathfrak{B}, M)$ is a right \mathfrak{B}-module via the formula

$$(\eta \cdot b)(c \otimes b') = \eta(c \otimes bb'),$$

for all $\eta \in \text{Hom}_{\mathfrak{B}}^C(C \otimes \mathfrak{B}, M)$, $c \in C$ and $b, b' \in \mathfrak{B}$. For a morphism $\kappa : M \rightarrow N$ in $C\mathcal{M}(H)_{\mathfrak{B}}$, we let

$$\text{Hom}_{\mathfrak{B}}^C(C \otimes \mathfrak{B}, \kappa)(v) = \kappa \circ v,$$
for all \(v \in \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, M) \).

Proof. Let \(M \) be a right-left \((H, \mathcal{B}, C)\)-Hopf module and \(N \) a right \(\mathcal{B} \)-module. Define

\[
\xi_{M,N} : \text{Hom}_\mathcal{B}^C(M, N) \rightarrow \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N)), \quad \xi_{M,N}(\zeta)(m) = m_{(-1)} \otimes \zeta(m_{(0)}),
\]

for all \(\zeta \in \text{Hom}_\mathcal{B}^C(M, N) \) and \(m \in M \), and

\[
\zeta_{M,N} : \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N)) \rightarrow \text{Hom}_\mathcal{B}^C(M, N), \quad \zeta_{M,N}(\chi)(m) = (\zeta \otimes id_N)(\chi(m)),
\]

for all \(\chi \in \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N)) \) and \(m \in M \). It is not hard to see that \(\xi_{M,N} \) and \(\zeta_{M,N} \) are well-defined natural transformations that are inverse to each other. For \(M \in \mathcal{M}_\mathcal{B} \) and \(N \in C\mathcal{M}(H)_\mathcal{B} \), we define

\[
\xi'_{M,N} : \text{Hom}_\mathcal{B}^C(C \otimes M, N) \rightarrow \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N))
\]

by

\[
\xi'_{M,N}(\zeta')(m \otimes b) = \zeta'(c \otimes m \cdot b)
\]

and

\[
\zeta'_{M,N} : \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N)) \rightarrow \text{Hom}_\mathcal{B}^C(C \otimes M, N)
\]

by

\[
\zeta'_{M,N}(\chi')(c \otimes m) = \chi'(m)(c \otimes 1_\mathcal{B}),
\]

for all \(\zeta' \in \text{Hom}_\mathcal{B}^C(C \otimes M, N) \), \(\chi' \in \text{Hom}_\mathcal{B}^C(M, \text{Hom}_\mathcal{B}^C(C \otimes \mathcal{B}, N)) \), \(m \in M \), \(c \in C \) and \(b \in \mathcal{B} \). Then \(\xi' \) and \(\zeta' \) are well-defined natural transformations that are inverse to each other. \(\square \)

2.2. Doi-Hopf modules and comodules over a coring. It was proved in \([8]\) that the category of right-left Doi-Hopf modules is isomorphic to the category of right comodules over a suitable \(\mathcal{B} \)-coring. For a general treatment of the theory of corings, we refer to \([1, 2]\).

Let \(R \) be a ring with unit. An \(R \)-coring \(C \) is an \(R \)-bimodule together with two \(R \)-bimodule maps \(\Delta_C : C \rightarrow C \otimes R C \) and \(\varepsilon_C : C \rightarrow R \) such that the usual coassociativity and counit properties hold. A right \(C \)-comodule is a right \(R \)-module together with a right \(R \)-linear map \(\rho_M^r : M \rightarrow M \otimes R C \) such that

\[
(\rho_M^r \otimes R id_C) \circ \rho_M^r = (id_M \otimes_R \Delta_C) \circ \rho_M^r,
\]

\[
(id_M \otimes_R \varepsilon_C) \circ \rho_M^r = id_M.
\]

A map \(h : M \rightarrow N \) between two right \(C \)-comodules is called right \(C \)-colinear if \(h \) is right \(R \)-linear and \(\rho_N^r \circ h = (h \otimes_R id_C) \circ \rho_M^r \). \(\mathcal{M}^C \) will be the category of right \(C \)-comodules and right \(C \)-comodule maps. It is well-known that \(\mathcal{M}^C \) is a Grothendieck category (in particular with enough injective objects) if \(C \) is flat as a left \(R \)-module. The category \(\mathcal{C}_M \) of left \(C \)-comodules and left \(C \)-comodule maps can be introduced in a similar way.

Let \(H \) be a quasi-bialgebra, \((\mathcal{B}, \lambda, \Phi_\lambda)\) a left \(H \)-comodule algebra and \(C \) a right \(H \)-module coalgebra. It was proved in \([8]\) that \(C = \mathcal{B} \otimes C \) is a \(\mathcal{B} \)-coring. More precisely, \(C \) is a \(\mathcal{B} \)-bimodule via

\[
b \cdot (b' \otimes c) = bb' \otimes c \quad \text{and} \quad (b \otimes c) \cdot b' = bb'[0] \otimes c \cdot b'[1],
\]

and the comultiplication and counit are given by

\[
\Delta_C(b \otimes c) = (b\hat{x}^3_\lambda \otimes c_2 \cdot \hat{x}^2_\lambda) \otimes_{\mathcal{B}} (1_{\mathcal{B}} \otimes c_1 \cdot \hat{x}^1_\lambda)
\]
and
\[\varepsilon_C(c \otimes b) = \varepsilon(c)b, \]
for all \(b, b' \in \mathcal{B} \) and \(c \in C \). Then we have an isomorphism of categories (see [3] Theorem 5.4)
\[C^\mathcal{M}(H)_{\mathcal{B}} \cong \mathcal{M}^C. \]
\(\mathcal{C} \) is free, and therefore flat, as a left \(\mathcal{B} \)-module, and we conclude that \(C^\mathcal{M}(H)_{\mathcal{B}} \cong \mathcal{M}^C \) is a Grothendieck category, and has therefore enough injectives (see [13] Prop. 1.2] or [2] 18.14).

2.3. Doi-Hopf modules and the generalized smash product. We now want to discuss when the category of Doi-Hopf modules is isomorphic to a module category. In the case where \(C \) is finite dimensional, this was already done in [3] Proposition 5.2. Let us explain this more precisely.

Let \(H \) be a quasi-bialgebra. A left \(H \)-module algebra \(A \) is an algebra in the monoidal category \(H \mathcal{M} \). This means that \(A \) is a left \(H \)-module with a multiplication \(A \otimes A \to A \) and a unit element \(1_A \) satisfying the following conditions:
\begin{align}
(2.12) \quad (aa')a'' &= (X^1 \cdot a)(X^2 \cdot a')(X^3 \cdot a''), \\
(2.13) \quad h \cdot (aa') &= (h_1 \cdot a)(h_2 \cdot a'), \\
(2.14) \quad h \cdot 1_A &= \varepsilon(h)1_A,
\end{align}
for all \(a, a', a'' \in A \) and \(h \in H \). Following [3], we can define the generalized smash product of a left \(H \)-module algebra \(A \) and a left \(H \)-comodule algebra \(\mathcal{B} \): \(A \triangleright \mathcal{B} = A \otimes B \) as a vector space, with multiplication
\[(a \triangleright b)(a' \triangleright b') = (\tilde{x}_1 \cdot a)(\tilde{x}_2 b_{[-1]} \cdot a') \triangleright \tilde{x}_3 b_{[0]} b', \]
for all \(a, a' \in A \), \(b, b' \in \mathcal{B} \). \(A \triangleright \mathcal{B} \) is an associative algebra with unit \(1_A \triangleright 1_B \).

The linear dual \(C^* \) of a right \(H \)-module coalgebra \(C \) is a left \(H \)-module algebra. The multiplication is the convolution, the unit is \(\varepsilon \) and the left \(H \)-action is given by the formula \((h \cdot c')(c) = c'(c \cdot h) \), for all \(h \in H \), \(c' \in C^* \) and \(c \in C \). So we can consider the generalized smash product algebra \(C^* \triangleright \mathcal{B} \). Moreover, we have a functor
\[\mathcal{G} : \ C^\mathcal{M}(H)_{\mathcal{B}} \to \mathcal{M} C^* \triangleright \mathcal{B} \quad \mathcal{G}(M) = M, \]
with right \(C^* \triangleright \mathcal{B} \)-action given by
\[m \cdot (c^* \triangleright b) = c^*(m_{(-1)})m_{[0]} \cdot b, \]
for all \(m \in M \), \(c^* \in C^* \) and \(b \in \mathcal{B} \). If \(C \) is finite dimensional, then \(\mathcal{G} \) is an isomorphism of categories (see [3]).

Now let \(C \) be infinite dimensional. We will show that the category \(C^\mathcal{M}(H)_{\mathcal{B}} \) is isomorphic to the category \(\sigma_C \triangleright \mathcal{B} \)[C \otimes \mathcal{B}] \]. Recall that if \(\mathcal{A} \) is a Grothendieck category and \(M \) is an object of \(\mathcal{A} \) then \(\sigma_{\mathcal{A}}[M] \) is the class of all objects \(N \in \mathcal{A} \) which are subgenerated by \(M \), that is, \(N \) is a subobject of a quotient of direct sums of copies of \(M \). It is well-known that \(\sigma_{\mathcal{A}}[M] \) is the smallest closed subcategory of \(\mathcal{A} \) containing \(M \), and that for any closed subcategory \(\mathcal{D} \) of \(\mathcal{A} \) there exists an object \(M \) of \(\mathcal{A} \) such that \(\mathcal{D} = \sigma_{\mathcal{A}}[M] \). In particular, \(\sigma_{\mathcal{A}}[M] \) is a Grothendieck category, and has a fortiori enough injective objects. For more detail, the reader is invited to consult [10] 21.
Let \(H \) be a quasi-bialgebra, \(C \) a right \(H \)-module coalgebra and \(\mathcal{B} \) a left \(H \)-comodule coalgebra. For a right \(C^*\triangleright\mathcal{B} \)-module \(M \) we define the linear maps

\[
\mu_M : M \rightarrow \text{Hom}(C^* \otimes \mathcal{B}, M), \quad \nu_M : C \otimes M \rightarrow \text{Hom}(C^* \otimes \mathcal{B}, M),
\]

\[
\mu_M(m)(c^* \otimes b) = m \cdot (c^* \triangleright b),
\]

\[
\nu_M(c \otimes m)(c^* \otimes b) = c^* \cdot c \cdot (c \cdot m) \cdot (c \cdot b),
\]

for all \(m \in M \), \(c \in C \), \(c^* \in C^* \) and \(b \in \mathcal{B} \). It is easily verified that \(\mu_M \) and \(\nu_M \) are injective linear maps.

Inspired by [9, 11] we propose the following

Definition 2.3. Let \(M \) be a right \(C^*\triangleright\mathcal{B} \)-module. We say that \(M \) is rational if \(\text{Im}(\mu_M) \subseteq \text{Im}(\nu_M) \). \(\text{Rat}(M_{C^*\triangleright\mathcal{B}}) \) will be the full subcategory of \(M_{C^*\triangleright\mathcal{B}} \) consisting of rational \(C^*\triangleright\mathcal{B} \)-modules.

Remark 2.4. If \(H \) is a coassociative bialgebra, \(\mathcal{B} \) a left \(H \)-comodule algebra and \(C \) a right \(H \)-module coalgebra in the usual sense, then a rational \(C^*\triangleright\mathcal{B} \)-module \(M \) is nothing else that a \(C^*\triangleright\mathcal{B} \)-module which is rational as a \(C^* \)-module. Here \(M \) is viewed as a right \(C^* \)-module via the canonical algebra map \(C^* \hookrightarrow C^*\triangleright\mathcal{B} \).

It follows easily from Definition 2.3 that a right \(C^*\triangleright\mathcal{B} \)-module is rational if and only if for every \(m \in M \) there exist two finite sets \(\{c_i\}_i \subseteq C \) and \(\{m_i\}_i \subseteq M \) such that

\[
(2.15) \quad m \cdot (c^* \triangleright b) = \sum_i c_i \cdot c_i \cdot m_i \cdot (c^* \triangleright b),
\]

for all \(c^* \in C^* \) and \(b \in \mathcal{B} \). If \(\{c'_i\}_i \subseteq C \) and \(\{m'_i\}_i \subseteq M \) are two other finite sets satisfying (2.15), then \(\sum c_i \otimes m_i = \sum c'_i \otimes m'_i \), because of the injectivity of the map \(\nu_M \). So we have a well-defined map

\[
\lambda_M : M \rightarrow C \otimes M, \quad \lambda_M(m) = \sum_i c_i \otimes m_i,
\]

for all \(m \in M \). If \(C \) is finite dimensional, then any right \(C^*\triangleright\mathcal{B} \)-module is rational. Indeed, we take a finite dual basis \(\{(c_i, c^*)\}_i \) of \(C \) and then consider for each \(m \in M \) the finite sets \(\{c_i\}_i \subseteq C \) and \(\{m_i\}_i \subseteq M \.

We now summarize the properties of rational \(C^*\triangleright\mathcal{B} \)-modules.

Proposition 2.5. Let \(H \) be a quasi-bialgebra, \(C \) a right \(H \)-module coalgebra and \(\mathcal{B} \) a left \(H \)-comodule algebra. Then:

i) A cyclic submodule of a rational \(C^*\triangleright\mathcal{B} \)-module is finite dimensional.

ii) If \(M \) is a rational \(C^*\triangleright\mathcal{B} \)-module and \(N \) is a \(C^*\triangleright\mathcal{B} \)-submodule of \(M \), then \(N \) and \(M/N \) are rational \(C^*\triangleright\mathcal{B} \)-modules.

iii) If \((M_i)_{i \in I} \) is a family of rational \(C^*\triangleright\mathcal{B} \)-modules, then the direct sum \(M = \bigoplus_{i \in I} M_i \) in \(M_{C^*\triangleright\mathcal{B}} \) is a rational \(C^*\triangleright\mathcal{B} \)-module.

iv) To any right \(C^*\triangleright\mathcal{B} \)-module \(M \) we can associate a unique maximal rational submodule \(M^{\text{rat}} \), which is equal to \(M_{\mu_M^{-1}(\text{Im}(\nu_M))} \). It is also equal to the sum of all rational \(C^*\triangleright\mathcal{B} \)-submodules of \(M \). We have a left exact functor

\[
\text{Rat} : M_{C^*\triangleright\mathcal{B}} \rightarrow M_{C^*\triangleright\mathcal{B}}, \quad \text{Rat}(M) = M^{\text{rat}}.
\]

Proof. In fact this is a straightforward generalization of [20] Theorem 2.1.3 and [10] Theorem 2.2.6. Consider an element \(m \) of a rational \(C^*\triangleright\mathcal{B} \)-module \(M \). In what follows, \(\{c_i\}_i \subseteq C \) and \(\{m_i\}_i \subseteq M \) will then be two finite sets satisfying (2.15).
i) Let \(m \cdot (C^* \triangleright \mathfrak{B}) \) be a cyclic submodule of a rational \(C^* \triangleright \mathfrak{B} \)-module \(M \). \(m \cdot (C^* \triangleright \mathfrak{B}) \) is generated by the finite set \(\{m_i\}_i \), so it is finite dimensional.

ii) Take \(m \in N \subseteq M \). Choose the \(c_i \) in such a way that they are linearly independent. Fix \(j \), and take \(c^* \in C^* \) such that \(c^*(c_i) = \delta_{i,j} \). Then \(N \) contains \(m \cdot (c^* \triangleright 1_{\mathfrak{B}}) = \sum_i c^*(c_i) m_i \cdot (\triangleright 1_{\mathfrak{B}}) = m_j \), as needed.

Let \(\overline{m} \) be the class in \(N/M \) represented by \(m \in M \). For all \(c^* \in C^* \) and \(b \in \mathfrak{B} \), we have that \(\overline{m} \cdot (c^* \triangleright b) = \sum_i c^*(c_i) \overline{m_i} \cdot (\triangleright b) \), and it follows that \(M/N \) is a rational \(C^* \triangleright \mathfrak{B} \)-module.

iii) Every \(m \in M \) can be written in a unique way as

\[
m = \sum_{j \in J} m_j,
\]

with \(J \subset I \) finite, and \(m_j \in M_j \). Since \(M_j \) is a rational \(C^* \triangleright \mathfrak{B} \)-module, there exist two finite sets \(\{c_j^i\}_k \subseteq C \) and \(\{m_j^i\}_k \subseteq M_j \) such that

\[
m_j \cdot (c^* \triangleright b) = \sum_k c^*(c_j^i) m_j^i \cdot (\triangleright b),
\]

for all \(c^* \in C^* \) and \(b \in \mathfrak{B} \). We therefore have that

\[
m \cdot (c^* \triangleright b) = \sum_{j \in J} m_j \cdot (c^* \triangleright b) = \sum_{j \in J, k} c^*(c_j^i) m_j^i \cdot (\triangleright b),
\]

for all \(c^* \in C^* \) and \(b \in \mathfrak{B} \), and it follows that \(M \) is a rational \(C^* \triangleright \mathfrak{B} \)-module.

iv) Let \(M \) be a right \(C^* \triangleright \mathfrak{B} \)-module. We define \(M^{\text{rat}} = \mu_M^{-1}(\text{Im}(\nu_M)) \).

We first prove that \(M^{\text{rat}} \) is a right \(C^* \triangleright \mathfrak{B} \)-module. Take \(m \in M^{\text{rat}} \). Then there exist two finite sets \(\{c_i\}_i \subseteq C \) and \(\{m_i\}_i \subseteq M \) such that \(m \cdot (c^* \triangleright b) = c^*(c_i) m_i \cdot (\triangleright b) \), for all \(c^* \in C^* \) and \(b \in \mathfrak{B} \). Therefore:

\[
(m \cdot (c^* \triangleright b)) \cdot (d^* \triangleright b') = m \cdot ((c^* \triangleright b)(d^* \triangleright b'))
= m \cdot ((\tilde{x}_1^* \cdot c^*) (\tilde{x}_2^* b_{[-1]} \cdot d^*) \triangleright \tilde{x}_3^* b_{[0]} b')
= c^*(c_i) m_i \cdot (\tilde{x}_1 c_i \cdot \tilde{x}_2^* b_{[-1]} \cdot \tilde{x}_3^* b_{[0]} b)),
\]

for all \(m \in M, c^*, d^* \in C^* \) and \(b, b' \in \mathfrak{B} \). Thus \(m \cdot (c^* \triangleright b) \in M^{\text{rat}} \), hence \(M^{\text{rat}} \) is a \(C^* \triangleright \mathfrak{B} \)-submodule of \(M \). Using an argument similar to the one in the first part of the proof of assertion ii), we can easily check that \(M^{\text{rat}} \) is a rational \(C^* \triangleright \mathfrak{B} \)-module.

Let \(N \) be a rational \(C^* \triangleright \mathfrak{B} \)-submodule of \(M \), this means \(\text{Im}(\mu_N) \subseteq \text{Im}(\nu_N) \). Then

\[
\mu_M(N) = \mu_N(N) \subseteq \text{Im}(\nu_N) \subseteq \text{Im}(\nu_M),
\]

hence \(N \subseteq \mu_M^{-1}(\text{Im}(\nu_M)) = M^{\text{rat}} \), and we conclude that \(M^{\text{rat}} \) is the unique maximal rational submodule of \(M \). Assertions ii) and iii) show that \(M^{\text{rat}} \) is also equal to the sum of all rational \(C^* \triangleright \mathfrak{B} \)-submodules of \(M \). The proof of the final assertion is identical to the proof of [10, Theorem 2.2.6 iv)]. \(\square \)

We are now able to prove the main result of this Section.

Theorem 2.6. Let \(H \) be a quasi-bialgebra, \(\mathfrak{B} \) a left \(H \)-comodule algebra and \(C \) a right \(H \)-module coalgebra. The categories \(\mathcal{CM}(H)_{\mathfrak{B}} \) and \(\text{Rat}(\mathcal{CM}C^*, \triangleright \mathfrak{B}) \) are isomorphic, and \(\text{Rat}(\mathcal{CM}C^*, \triangleright \mathfrak{B}) \) is equal to \(\sigma_{C^* \triangleright \mathfrak{B}}[C \otimes \mathfrak{B}] \).
Proof. Recall that we have a functor

$$\mathcal{G} : C \times \mathcal{M}(H)_\mathcal{B} \to \mathcal{M}(C \times \mathcal{B}), \quad \mathcal{G}(M) = M,$$

with right $C^* \times \mathcal{B}$-action given by the formula

$$m \cdot (c^* \triangleright \triangleright b) = c^* (m_{(-1)}) m_{[0]} \cdot b.$$

It is clear that $\mathcal{G}(M)$ is rational as a $C^* \times \mathcal{B}$-module.

Consider a rational $C^* \times \mathcal{B}$-module M. Then M is a right \mathcal{B}-module through

$$m \cdot b = m \cdot (\varepsilon \triangleright \triangleright b).$$

We define a linear map $\lambda_M : M \to C \otimes M$ as follows:

$$\lambda_M(m) = \sum_i c_i \otimes m_i$$

if and only if

$$m \cdot (c^* \triangleright \triangleright b) = \sum_i c^*(c_i) m_i \cdot (\varepsilon \triangleright \triangleright b),$$

for all $c^* \in C^*$ and $b \in \mathcal{B}$. It is clear that λ_M is well-defined.

Fix i, and assume that

$$\lambda_M(m_i) = \sum_j c_j^i \otimes m_j^i,$$

or, equivalently,

$$m_i \cdot (c^* \triangleright \triangleright b) = c^*(c_j^i) m_j^i \cdot (\varepsilon \triangleright \triangleright b),$$

for all $c^* \in C^*$ and $b \in \mathcal{B}$. Therefore we have, for all $c^*, d^* \in C^*$ and $m \in M$, that

$$(c^* \otimes d^* \otimes id_M, (id_C \otimes \lambda_M)(\lambda_M(m)) \cdot \Phi_X) = c^* (c_j \cdot X_j) d^* \cdot X_j = m \cdot (X_j \cdot c^* \triangleright \triangleright b) \cdot (\varepsilon \triangleright \triangleright b)$$

proving that (2.3) is satisfied. (2.3) is trivial since $m = m \cdot (\varepsilon \triangleright \triangleright b)$ for all $m \in M$. We will next prove that (2.4) holds. First observe that

$$(m \cdot b) \cdot (c^* \triangleright \triangleright b') = (m \cdot (\varepsilon \triangleright \triangleright b)) \cdot (c^* \triangleright \triangleright b') = m \cdot ((\varepsilon \triangleright \triangleright b) (c^* \triangleright \triangleright b'))$$

$$= m \cdot (b_{[-1]} \cdot c^* \triangleright \triangleright b_{[0]} b') = c^* (c_i \cdot b_{[-1]})(m_i \cdot b_{[0]}) \cdot (\varepsilon \triangleright \triangleright b'),$$

for all $m \in M$, $c^* \in C^*$ and $b, b' \in \mathcal{B}$. This shows that $\lambda_M(m \cdot b) = c_i \cdot b_{[-1]} \otimes m_i \cdot b_{[0]}$, as needed, and it follows that $M \in \mathcal{C} \mathcal{M}(H)_\mathcal{B}$.

Let $\eta : M \to N$ be a morphism of rational $C^* \times \mathcal{B}$-modules. Take $m \in M$, and assume that $\lambda_M(m) = \sum_i c_i \otimes m_i$. We compute that

$$\eta(m) \cdot (c^* \triangleright \triangleright b) = \eta(m \cdot (c^* \triangleright \triangleright b)) = \sum_i c^*(c_i) \eta(m_i) \cdot (\varepsilon \triangleright \triangleright b),$$

for all $c^* \in C^*$ and $b \in \mathcal{B}$. This is equivalent to $\lambda_N(\eta(m)) = c_i \otimes \eta(m_i) = (id_C \otimes \eta)(\lambda_M(m))$, hence η is left C-colinear. It is clear that η is right \mathcal{B}-linear, so η is a morphism in $\mathcal{C} \mathcal{M}(H)_\mathcal{B}$, and we have a functor $\mathcal{G} : \mathcal{Rat}(\mathcal{M}(C \times \mathcal{B})) \to \mathcal{C} \mathcal{M}(H)_\mathcal{B}$, which is inverse to \mathcal{G}.

The proof of the fact that $\mathcal{Rat}(\mathcal{M}(C \times \mathcal{B}))$ and $\sigma_{C^* \times \mathcal{B}}[C \otimes \mathcal{B}]$ are equal is similar to the proof of [13] Lemma 3.9.

We first show that $M \in \sigma_{C^* \times \mathcal{B}}[C \otimes \mathcal{B}]$ for every $M \in \mathcal{Rat}(\mathcal{M}(C \times \mathcal{B}))$. We recall first that a right $C^* \times \mathcal{B}$-module belongs to $\sigma_{C^* \times \mathcal{B}}[C \otimes \mathcal{B}]$ if and only if there
exists a set \(I \), a right \(C^* \triangleright \mathfrak{B} \)-module \(N \), and two \(C^* \triangleright \mathfrak{B} \)-linear maps \(\iota : M \to N \) and \(\pi : (C \otimes \mathfrak{B})(I) \to N \) such that \(\iota \) is injective and \(\pi \) is surjective.

Let \(M \) be a rational \(C^* \triangleright \mathfrak{B} \)-module. Thus \(M \in C \mathcal{M}(H)_\mathfrak{B} \) and \(\mathfrak{G}(M) = M \) as right \(C^* \triangleright \mathfrak{B} \)-modules. It is easy to check that \(\iota = \lambda_M : M \to C \otimes M \) is an injective morphism in \(C \mathcal{M}(H)_\mathfrak{B} \); here \(C \otimes M \) has the right-left \(\text{Doi-Hopf} \) module structure given by \((\mathfrak{A}, \mathfrak{A}) \). The map

\[
\pi_M : \mathfrak{B}(M) \to M, \quad \pi_M((b_m)_m) = m \cdot b_m,
\]

is a surjective right \(\mathfrak{B} \)-linear map. By Proposition \(\mathfrak{A} \), it provides a surjective morphism \(id_C \otimes \pi_M : C \otimes \mathfrak{B}(M) \to C \otimes M \) in \(C \mathcal{M}(H)_\mathfrak{B} \), and since \(C \otimes \mathfrak{B}(M) \cong (C \otimes \mathfrak{B})(M) \) in \(C \mathcal{M}(H)_\mathfrak{B} \), we conclude that there exists a surjective morphism \(\pi : (C \otimes \mathfrak{B})(M) \to C \otimes M \) in \(C \mathcal{M}(H)_\mathfrak{B} \), so \(M \in \sigma_{C^* \triangleright \mathfrak{B}}[C \otimes \mathfrak{B}] \).

Take \(M \in \sigma_{C^* \triangleright \mathfrak{B}}[C \otimes \mathfrak{B}] \). Then we have right \(C^* \triangleright \mathfrak{B} \)-morphisms \(\iota : M \to N \) and \(\pi : (C \otimes \mathfrak{B})(I) \to N \) such that \(\iota \) is injective and \(\pi \) is surjective. Since the right \(C^* \triangleright \mathfrak{B} \)-module \(C \otimes \mathfrak{B} \) lies in the image of \(\mathfrak{G} \), it follows that \(C \otimes \mathfrak{B} \) is a rational module. By Proposition \(\mathfrak{A} \), \((C \otimes \mathfrak{B})(I) \) is a rational module too and since \(\pi \) is surjective we deduce from Proposition \(\mathfrak{A} \) ii) that \(N \) is rational. Finally, from Proposition \(\mathfrak{A} \) ii) and the fact that \(\iota \) is injective, it follows that \(M \) is a rational \(C^* \triangleright \mathfrak{B} \)-module. \(\square \)

Remark 2.7. It is well-known that the category \(\sigma_A[M] \) is a Grothendieck category, so it follows from Theorem \(\mathfrak{A} \) that \(C \mathcal{M}(H)_\mathfrak{B} \) is a Grothendieck category, an observation that we already made before.

Corollary 2.8. \(\mathfrak{A} \) Proposition 5.2 Let \(H \) be a quasi-bialgebra, \(\mathfrak{B} \) a left \(H \)-comodule algebra and \(C \) a finite dimensional right \(H \)-module coalgebra. Then the categories \(C \mathcal{M}(H)_\mathfrak{B} \) and \(\mathcal{M}_{C^* \triangleright \mathfrak{B}} \) are isomorphic.

Corollary 2.9. Let \(M \) be a right-left \((H, \mathfrak{B}, C)\)-Hopf module. Then the following assertions hold:

i) The right-left \((H, \mathfrak{B}, C)\)-Hopf submodule generated by an element of \(M \) is finite dimensional.

ii) \(M \) is the sum of its finite dimensional \((H, \mathfrak{B}, C)\)-Hopf submodules.

Proof. i) \(M \) is a rational \(C^* \triangleright \mathfrak{B} \)-module, so the right-left \((H, \mathfrak{B}, C)\)-Hopf submodule generated by an element \(m \in M \) coincides with the cyclic \(C^* \triangleright \mathfrak{B} \)-submodule generated by \(m \), by Theorem \(\mathfrak{A} \) We know from Proposition \(\mathfrak{A} \) i) that it is finite dimensional.

ii) View \(M \) as a rational \(C^* \triangleright \mathfrak{B} \)-module. Obviously, \(M \) is the sum of its cyclic \(C^* \triangleright \mathfrak{B} \)-submodules and all of these are finite dimensional right-left \((H, \mathfrak{B}, C)\)-Hopf submodules. \(\square \)

2.4. \textit{Doi-Hopf} modules and Koppinen’s smash product.

We begin this Section with some general results about corings, taken from \(\mathfrak{A} \) Sec. 19 and 20]. Let \(R \) be a ring, and \(C \) an \(R \)-coring. Then \(*C = \text{RHom}(C, R) \) is an \(R \)-ring, with multiplication

\[
(\varphi \# \psi)(c) = \psi(c_{(1)} \varphi(c_{(2)})�\),
\]

for all \(\varphi, \psi \in *C \). We have a functor \(F : \mathcal{M}^C \to \mathcal{M}^C \), \(F(M) = M \), with \(m \cdot \varphi = m_{(0)} \varphi(m_{(1)}) \), for all \(m \in M \) and \(\varphi \in *C \). If \(C \) is finitely generated and projective as a left \(R \)-module, then \(F \) is an isomorphism of categories.
Assume now that C is locally projective as a left R-module. Then \mathcal{M}^C is isomorphic to the category $\sigma_C[C]$, see [2, 19.3]; observe that our multiplication on *C is opposite to the one from [2], so that left *C-modules in [2] are our right *C-modules. Take a right *C-module M. $m \in M$ is called rational if there exists $\sum_i m_i \otimes c_i \in M \otimes C$ such that $m \cdot \varphi = \sum_i m_i \varphi(c_i)$, for all $\varphi \in ^*C$. Then $\text{Rat}^C(M) = \{m \in M \mid m$ is rational$\}$ is a right C-comodule, and we obtain a functor $\text{Rat}^C : \mathcal{M}_C \rightarrow \mathcal{M}^C$, which is right adjoint to F. M is called rational if $\text{Rat}^C(M) = M$. \mathcal{M}^C is isomorphic to the full category of \mathcal{M}_C consisting of rational right *C-modules.

Now let H be a quasi-bialgebra, \mathcal{B} a left H-comodule algebra, and C a right H-comodule algebra. We consider the \mathcal{B}-coring $C = \mathcal{B} \otimes C$ from Section 2.2. Since we work over a field k, C is projective as a k-module, hence C is projective (and a fortiori locally projective) as a left \mathcal{B}-module. Hence we can apply the above results to this situation. We have an isomorphism of vector spaces $^*C = \mathcal{B}\text{Hom}(\mathcal{B} \otimes C, \mathcal{B}) \cong \text{Hom}(C, \mathcal{B})$.

The multiplication on *C can be transported to a multiplication on $\text{Hom}(C, \mathcal{B})$. This multiplication makes $\text{Hom}(C, \mathcal{B})$ into a B-ring $\langle\langle C, \mathcal{B} \rangle\rangle$, which we will call the Koppinen smash product. The multiplication is given by the following formula:

\begin{equation}
(f \# g)(c) = \bar{x}_1^3 f(c_1 \cdot \bar{x}_1^1) g \left(c_2 \cdot \bar{x}_1^2 f(c_1 \cdot \bar{x}_1^1) \right).
\end{equation}

In the situation where H is an associative bialgebra, we recover the smash product introduced first by Koppinen in [15]. The relation to the generalized smash product introduced in Section 2.2 is discussed in Proposition 2.10.

Proposition 2.10. The k-linear map

$$\alpha : C^* \triangleright \triangleright \mathcal{B} \rightarrow \langle\langle C, B \rangle\rangle, \quad \alpha(c^* \triangleright \triangleright b) = f,$$

with $f(c) = \langle c^*, c \rangle b$, for all $c \in C$, is a morphism of \mathcal{B}-rings. It is an isomorphism if C is finite dimensional.

Proof. We have to show that α is multiplicative. Take $c^* \triangleright \triangleright b, d^* \triangleright \triangleright b' \in C^* \triangleright \triangleright \mathcal{B}$, and write $\alpha(c^* \triangleright \triangleright b) = f, \alpha(d^* \triangleright \triangleright b') = g$. Using (2.16), we compute that

$$f \# g)(c) = \bar{x}_1^3 \langle c^*, c_1 \cdot \bar{x}_1^1 \rangle b_{[0]} \langle d^*, c_2 \cdot \bar{x}_1^2 b_{[1]} \rangle b'.
\end{equation}

We also have that

$$(c^* \triangleright \triangleright b)(d^* \triangleright \triangleright b') = (\bar{x}_1^1 \cdot c^*)(\bar{x}_1^2 b_{[-1]} \cdot d^*) \triangleright \triangleright \bar{x}_1^3 b_{[0]} b',
\end{equation}

so

$$\alpha((c^* \triangleright \triangleright b)(d^* \triangleright \triangleright b'))(c) = \langle c^*, c_1 \cdot \bar{x}_1^1 \rangle \langle d^*, c_2 \cdot \bar{x}_1^2 b_{[1]} \rangle \bar{x}_1^3 b_{[0]} b',$$

as needed. \hfill \square

Take a right $\langle\langle C, B \rangle\rangle$-module M. $m \in M$ is rational if there exists $\sum_i m_i \otimes c_i \in M \otimes C$ such that

$$m \cdot f = \sum_i m_i f(c_i),$$

for all $f : C \rightarrow B$. M is called rational if every $m \in M$ is rational.
Corollary 2.11. Now let H be a quasi-bialgebra, \mathfrak{A} a left H-comodule algebra, and C a right H-comodule algebra. Then the category $\mathcal{CM}(H)_{\mathfrak{A}}$ is isomorphic to the full subcategory of $\mathcal{M}_{#(C,\mathfrak{B})}$, which is also equal to $\sigma_{#(C,\mathfrak{B})}(\mathfrak{B} \otimes C)$.

2.5. Left, right and right-left Doi-Hopf modules. For the sake of completeness, we also define the other Doi-Hopf module categories. In fact, we have four different types of Doi-Hopf modules. The first one was already studied, namely the right-left version. We also have the left-right, right-right and left-left versions.

Definition 2.12. Let H be a quasi-bialgebra, \mathfrak{A} a right H-comodule algebra and \mathfrak{B} a left H-comodule algebra. In the statements below we assume in i) and iii) that C is a right H-module coalgebra, and in ii) that C is a right H-module coalgebra, respectively.

i) A left-right (H, \mathfrak{A}, C)-Hopf module (or Doi-Hopf module) is a left \mathfrak{A}-module M together with a k-linear map $\rho_M : M \to M \otimes C$, $\rho_M(m) = m_{(0)} \otimes m_{(1)}$, such that the following relations hold, for all $m \in M$ and $a \in \mathfrak{A}$:

\[
\Phi_\rho, (\rho_M \otimes id_C)(\rho_M(m)) = (id_M \otimes \Delta)(\rho_M(m)),
\]

\[
(id_M \otimes \varepsilon)(\rho_M(m)) = m,
\]

\[
\rho_M(a \cdot m) = a_{(0)} \cdot m_{(0)} \otimes a_{(1)} \cdot m_{(1)}.
\]

$\mathfrak{A}M(H)^C$ is the category of left-right (H, \mathfrak{A}, C)-Hopf modules and left \mathfrak{A}-linear, right C-colinear maps.

ii) A right-right (H, \mathfrak{A}, C)-Hopf module (or Doi-Hopf module) is a right \mathfrak{A}-module M together with a k-linear map $\rho_M : M \to M \otimes C$, $\rho_M(m) = m_{(0)} \otimes m_{(1)}$, such that the following relations hold, for all $m \in M$ and $a \in \mathfrak{A}$:

\[
(\rho_M \otimes id_M)(\rho_M(m)) = (id_M \otimes \Delta)(\rho_M(m)) \cdot \Phi_\rho,
\]

\[
(id_M \otimes \varepsilon)(\rho_M(m)) = m,
\]

\[
\rho_M(m \cdot a) = m_{(0)} \cdot a_{(0)} \otimes m_{(1)} \cdot a_{(1)}.
\]

$\mathcal{M}(H)^{\mathfrak{A}C}$ is the category of right-right (H, \mathfrak{A}, C)-Hopf modules and left \mathfrak{A}-linear, right C-colinear maps.

iii) A left-left (H, \mathfrak{B}, C)-Hopf module (or Doi-Hopf module) is a left \mathfrak{B}-module M together with a left k-linear map $\lambda_M : M \to C \otimes M$, $\lambda_M(m) = m_{[-1]} \otimes m_{[0]}$, such that the following relations hold, for all $m \in M$ and $b \in \mathfrak{B}$:

\[
\Phi_\lambda, (\Delta \otimes id_M)(\lambda_M(m)) = (id_C \otimes \lambda_M)(\lambda_M(m)),
\]

\[
(\varepsilon \otimes id_M)(\lambda_M(m)) = m,
\]

\[
\lambda_M(b \cdot m) = b_{[-1]} \cdot m_{[-1]} \otimes b_{[0]} \cdot m_{[0]}.
\]

$\mathfrak{B}M(H)^C$ is the category of left-left (H, \mathfrak{B}, C)-Hopf modules and left \mathfrak{B}-linear, left C-colinear maps.

We remind that if $(\mathfrak{A}, \rho, \Phi_\rho)$ is a right H-comodule algebra then $\mathfrak{A}^{op} = (\mathfrak{A}^{op}, \rho \circ \tau_{\mathfrak{A},H}, (\Phi_\rho)^{s21})$ is a left H^{op}-\mathfrak{A}^{op}-comodule algebra and $\mathfrak{A} = (\mathfrak{A}, \rho \circ \tau_{\mathfrak{A},H}, (\Phi_\rho^{-1})^{s21})$ is a left H^{cop}-comodule algebra, where $\tau_{\mathfrak{A},H} : \mathfrak{A} \otimes H \to H \otimes \mathfrak{A}$ is the switch map. Also, if \mathfrak{B} is a left H-comodule algebra then $\mathfrak{B}^{op} = (\mathfrak{B}^{op}, \lambda, \Phi_\lambda^{op})$ is a left H^{op}-comodule algebra.
On the other hand, if C is a left H-module coalgebra then C is a right H^{op}-module coalgebra and C^{cop} is a right $H^{\text{cop}, \text{op}}$-module coalgebra (and vice versa). So if C is a right H-module coalgebra then C^{cop} is a right H^{cop}-module coalgebra.

Having these correspondences one can easily see that
\[\mathfrak{a} \mathcal{M}(H)^C \cong C^{\text{cop}} \mathcal{M}(H^{\text{op}, \text{cop}})_{\mathfrak{a}^{\text{op}}}, \quad \mathcal{M}(H)^C \cong C^{\text{cop}} \mathcal{M}(H^{\text{cop}})_{\mathfrak{a}^{\text{op}}}, \]
\[\mathfrak{a} \mathcal{M}(H) \cong C \mathcal{M}(H^{\text{op}})_{\mathfrak{a}^{\text{op}}}. \]

It follows that the four different types of Doi-Hopf modules are isomorphic to categories of comodules over suitable corings, and they are Grothendieck categories with enough injective objects. On the other hand, if C is finite dimensional then the above categories are isomorphic to categories of modules over certain generalized smash product algebras. More precisely, we have:

Remarks 2.13.

i) The category $\mathfrak{a} \mathcal{M}(H)^C$ is isomorphic to the category of right modules over the generalized smash product $(C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}}$ (over $H^{\text{op}, \text{cop}}$), and therefore also to the category of left modules over $((C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}})^{\text{op}}$. It is not hard to see that the multiplication rule in $((C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}})^{\text{op}}$ is
\[(c^{\ast} \triangleright a)(d^{\ast} \triangleright a') = (c^{\ast} \cdot a')_{(1)} (d^{\ast} \cdot a'_{(0)}) a_{(0)}, \]
for all $c^{\ast}, d^{\ast} \in C^{\ast}$ and $a, a' \in \mathfrak{a}$, where $(c^{\ast} \cdot h)(c) = c^{\ast}(h \cdot c)$ for all $c^{\ast} \in C^{\ast}$, $h \in H$ and $c \in C$. Therefore, under the trivial permutation of tensor factors we have that $((C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}})^{\text{op}} = \mathfrak{a} \triangleright C^{\ast}$, the right generalized smash product between the right H-comodule algebra \mathfrak{a} and the right H-module algebra C^{\ast} (see [2] for more details). We conclude that $\mathfrak{a} \mathcal{M}(H)^C \cong \mathfrak{a} \triangleright C^{\ast} \mathcal{M}$ if C is finite dimensional.

ii) The above arguments entail that
\[\mathcal{M}(H)^C_{\mathfrak{a}^{\text{op}}} \cong C^{\text{cop}} \mathcal{M}(H^{\text{op}})_{\mathfrak{a}^{\text{op}}} \cong \mathcal{M}(C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}} \cong ((C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}})^{\text{op}} \mathcal{M}, \]
where the generalized smash product is over H^{cop}. The explicit formula for the multiplication \circ on $((C^{\text{cop}})^{\triangleright} \mathfrak{a}^{\text{op}})^{\text{op}}$ is given by
\[(c^{\ast} \triangleright a)(d^{\ast} \triangleright a') = (\tilde{x}^{2} a'_{(1)} \cdot c^{\ast})(\tilde{x}^{3} \cdot d^{\ast}) \triangleright a_{(0)} a', \]
for all $c^{\ast}, d^{\ast} \in C^{\ast}$ and $a, a' \in \mathfrak{a}$.

iii) Obviously, $\mathfrak{a} \mathcal{M}(H) \cong \mathcal{M}_{C^{\ast}}^{\triangleright} \mathfrak{a}^{\text{op}}$, where the generalized smash product is taken over H^{op}.

Let H be a quasi-Hopf algebra and C a finite dimensional right H-module coalgebra. It was proved in [4] Proposition 3.2] that the category $\mathcal{M}_{H}^{C} = \mathcal{M}(H)^C_{H}$ is isomorphic to the category of left modules over the smash product algebra $C^{\ast} \# H = C^{\ast} \triangleright H$. Now, by Remark 2.13(ii) the category \mathcal{M}_{H}^{C} is isomorphic to the category of left modules over $((C^{\text{cop}})^{\#} H)^{\text{op}}$. The next result shows that the smash product algebras $C^{\ast} \# H$ and $((C^{\text{cop}})^{\#} H)^{\text{op}}$ are isomorphic.

Proposition 2.14. Let H be a quasi-Hopf algebra and C a right H-module coalgebra. Then the map
\[\varphi : C^{\ast} \# H \to ((C^{\text{cop}})^{\#} H)^{\text{op}}, \quad \varphi(c^{\ast} \# h) = S^{-1}(q^{1} h_{1} q^{1}) \cdot c^{\ast} \# S^{-1}(q^{2} h_{2} q^{2}) \]
is an algebra isomorphism. Here $f^{-1} = g^{1} \otimes g^{2}$ is the element defined by \([1, 2]\) and $\tilde{q}_{\Delta} = q^{1} \otimes q^{2}$ is the element defined in \([1, 2]\), in the special case where $\mathfrak{B} = H$.\]
Proof. We first show that \(\varphi \) is an algebra map. Let \(f = f^1 \otimes f^2, f^{-1} = g^1 \otimes g^2 = G^1 \otimes G^2 \) and \(\hat{q}_\Delta = q^1 \otimes q^2 = \Omega^1 \otimes \Omega^2 \) be the elements defined by \((\ref{X}) \), \((\ref{Y}) \) and \((\ref{Z}) \), respectively. We compute

\[
\varphi((c^* \# h)(d^* \# h')) = \varphi((x^1 \cdot c^*)(x^2 h_1 \cdot d^*) \# x^3 h_2 h')
\]

\[= \left[S^{-1}(f^2 q^1_1 x^1_{1,2}(h_2 h')_{(1,2)} g^1_2 G^2) x^1 \cdot c^* \right]
\]

\[= \left[S^{-1}(f^1 q^1_1 x^3_{(1,1)}(h_2 h')_{(1,1)} g^1_1 G^1) x^2 h_1 \cdot d^* \right] \# S^{-1}(q^2 x^3_2 (h_2 h') g^2)
\]

\[= \left[S^{-1}(q^1 \Omega^2_1(h_2 h')_{(2,1)} x^2 g^1_2 G^2) \cdot c^* \right] \left[S^{-1}(\Omega^1(h_2 h')_{1} X^1 g^1_1 G^1) x_1 \cdot d^* \right]
\]

\[= \# S^{-1}(q^2 \Omega^2_2(h_2 h')_{(2,2)} X^3 g^2)
\]

\[
= \left[X^2 S^{-1}(q^1 h_1 \Omega^2_1 h_{(2,1)} g^1_2 G^1) \cdot c^* \right] \left[X^3 S^{-1}(\Omega^1 h_1 g^1) \cdot d^* \right]
\]

\[= \# X^1 S^{-1}(q^2 h_2 \Omega^2_2 g^2_2 G^2)
\]

\[= \left[X^2 S^{-1}(\Omega^2 h_2 g^2) \right] \# S^{-1}(q^1 h_1 g^1) \cdot c^* \left[X^3 S^{-1}(\Omega^1 h_1 g^1) \cdot d^* \right]
\]

\[= \# X^1 S^{-1}(\Omega^2 h_2 g^2) \cdot S^{-1}(q^2 h_2 G^2)
\]

\[= \varphi(c^* \# h) \otimes \varphi(d^* \# h'),
\]

as needed. It is clear that \(\varphi(\xi \# 1_H) = \xi \# 1_H \), so it remains to be shown that \(\varphi \) is bijective.

First we introduce some notation. Let \(A \) be a right \(H \)-comodule algebra, and define the element \(\hat{q}_\rho \in A \otimes H \) as follows:

\[
(\ref{Z})
\]

\[\hat{q}_\rho = \tilde{q}_\rho \otimes \check{q}_\rho = X_\rho^1 \otimes S^{-1}(\alpha X_\rho^3) X_\rho^2.
\]

In the special situation where \(A = H \), the element \(\hat{q}_\Delta = q^1 \otimes q^2 \).

We now claim that \(\varphi^{-1} : ((C^{\text{cop}})^* \# H)^{\text{op}} \to C^* \# H \) is given by the formula

\[
\varphi^{-1}(c^* \# h) = g^1 S(q^2 h_2) \cdot c^* \# g^2 S(q^1 h_1),
\]

for all \(c^* \in C^* \) and \(h \in H \).

From \((\ref{Z}) \), Lemma 2.6, we recall the following formula:

\[
(\ref{Z})
\]

\[g^2 \alpha S^{-1}(q^1) = S^{-1}(\beta).
\]

Let \(\hat{p}_\Delta = p^1 \otimes p^2 \) be the element \(\hat{p}_\lambda \) defined in \((\ref{Z}) \), in the special case where \(B = H \). We then compute, for all \(c^* \in C^* \) and \(h \in H \):

\[
\varphi^{-1} \circ \varphi(c^* \# h) = \varphi^{-1}(S^{-1}(q^1 h_1 g^1) \cdot c^* \# S^{-1}(q^2 h_2 g^2))
\]

\[= q^2 h_{(2,1)} g^1 S(q^2) S^{-1}(q^1 h^1 g^1) \cdot c^* \# \check{q}^2_{(2,2)} g^2 S(q^1)
\]

\[= q^2 h_{(2,1)} X^2 g^2 \alpha S^{-1}(q^1 h_1 X^1 g^1) \cdot c^* \# \check{q}^2_{(2,2)} X^3 g^2
\]

\[= S^{-1}(q^1 h_1 S(q^2 h_{(2,1)} p^1)) \cdot c^* \# \check{q}^2_{(2,2)} X^3 g^2
\]

\[= S^{-1}(q^1 h_1 S(q^2 h_{(2,1)} p^1)) \cdot c^* \# \check{q}^2_{(2,2)} X^3 g^2
\]

\[= \hat{c}^* \# h.
\]

The proof of the fact that \(\varphi \circ \varphi^{-1} = id_{((C^{\text{cop}})^* \# H)^{\text{op}}} \) is based on similar computations. \(\square \)
Remark 2.15. The isomorphism \(\varphi \) in Proposition 2.14 can be defined more generally for a left \(H \)-module algebra \(A \) instead of a right \(H \)-module coalgebra \(C \). Observe that \(H \) cannot be replaced by an \(H \)-bicomodule algebra \(\mathcal{A} \), because of the appearance of the antipode \(S \) of \(H \) on the second position of the tensor product.

3. Yetter-Drinfeld modules are Doi-Hopf modules

In this Section, we will show that Yetter-Drinfeld modules are special case of Doi-Hopf modules. We will then apply the properties of Doi-Hopf modules to Yetter-Drinfeld modules.

3.1. Yetter-Drinfeld modules over quasi-bialgebras. The category of Yetter-Drinfeld modules over a quasi-Hopf algebra \(H \) was introduced by Majid, as the center of the monoidal category \(\mathcal{H} \). His aim was to define the quantum double by an implicit Tannaka-Krein reconstruction procedure, see [17]. From [7], we recall the following more general definition of Yetter-Drinfeld modules.

The category of \((H,H)\)-bimodules, \(\mathcal{H}_H \), is monoidal. The associativity constraints \(a_{U,V,W} : (U \otimes V) \otimes W \to U \otimes (V \otimes W) \) are given by

\[
a_{U,V,W}((u \otimes v) \otimes w) = \Phi \cdot (u \otimes (v \otimes w)) \cdot \Phi^{-1}
\]

for all \(U,V,W \in \mathcal{H}_H \), \(u \in U \), \(v \in V \) and \(w \in W \). A coalgebra in the category of \((H,H)\)-bimodules will be called an \(H \)-bimodule coalgebra. More precisely, an \(H \)-bimodule coalgebra \(C \) is an \((H,H)\)-bimodule (denote the actions by \(h \cdot c \) and \(c \cdot h \)) with a comultiplication \(\Delta : C \to C \otimes C \) and a counit \(\varepsilon : C \to k \) satisfying the following relations, for all \(c \in C \) and \(h \in H \):

\[
\begin{align*}
(3.2) \quad \Phi \cdot (\Delta \otimes \text{id}_C)(\Delta(c)) \cdot \Phi^{-1} &= (\text{id}_C \otimes \Delta)(\Delta(c)), \\
(3.3) \quad \Delta(h \cdot c) &= h_1 \cdot c_1 \otimes h_2 \cdot c_2, \quad \Delta(c \cdot h) = c_1 \cdot h_1 \otimes c_2 \cdot h_2, \\
(3.4) \quad (\varepsilon \otimes \text{id}_C) \circ \Delta &= (\text{id}_C \otimes \varepsilon) \circ \Delta = \text{id}_C, \\
(3.5) \quad \varepsilon(h \cdot c) &= \varepsilon(h) \varepsilon(c), \quad \varepsilon(c \cdot h) = \varepsilon(c) \varepsilon(h),
\end{align*}
\]

where we used the same Sweedler-type notation as introduced before.

For further use we note that an \(H \)-bimodule coalgebra \(C \) can be always viewed as a left \(H^{\text{op}} \otimes H \)-module coalgebra via the left \(H^{\text{op}} \otimes H \)-action given for all \(c \in C \) and \(h, h' \in H \) by

\[
(3.6) \quad (h \otimes h') \cdot c = h' \cdot c \cdot h.
\]

Definition 3.1. (\[\texttt{2}]\) Let \(H \) be a quasi-bialgebra, \(C \) an \(H \)-bimodule coalgebra and \(\mathcal{A} \) an \(H \)-bicomodule algebra. A left-right \((H,A,C)\)-Yetter-Drinfeld module is a \(k \)-vector space \(M \) with the following additional structure:

- \(M \) is a left \(\mathcal{A} \)-module; we write \(\cdot \) for the left \(\mathcal{A} \)-action;
- we have a \(k \)-linear map \(\rho_M : M \to M \otimes C \), \(\rho_M(m) = m_0 \otimes m_{(1)} \), called the right \(C \)-coaction on \(M \), such that for all \(m \in M \), \(\varepsilon(m_{(1)})m_{(0)} = m \) and \((\theta^2 \cdot m_{(0)})_{(0)} \otimes (\theta^2 \cdot m_{(0)})_{(1)} \cdot \theta^1 \otimes \theta^3 \cdot m_{(1)} \)

\[
= \hat{x}^1_\rho \cdot (\hat{x}^3_\lambda \cdot m)_{(0)} \otimes \hat{x}^2_\rho \cdot (\hat{x}^3_\lambda \cdot m)_{(1)}_{\rho} \cdot \hat{x}^1_\lambda \otimes \hat{x}^3_\lambda \cdot (\hat{x}^3_\lambda \cdot m)_{(1)}_{\rho} \cdot \hat{x}^2_\lambda,
\]

- for all \(u \in \mathcal{A} \) and \(m \in M \) the following compatibility relation holds:

\[
(3.8) \quad u_{<0>} \cdot m_{(0)} \otimes u_{<1>} \cdot m_{(1)} = (u_{[0]} \cdot m)_{(0)} \otimes (u_{[0]} \cdot m)_{(1)} \cdot u_{[-1]}.
\]

\(\mathcal{A} \mathcal{YD}(H)^C \) will be the category of left-right \((H,A,C)\)-Yetter-Drinfeld modules and maps preserving the \(\mathcal{A} \)-action \(C \)-coaction.
We have seen in Section 1.2 that H is an H-bimodule algebra; it is also clear that H is an H-bimodule coalgebra (take $\Delta = \Delta$ and $\varepsilon = \varepsilon$). If we take $H = \Lambda = C$ in Definition 5.1 then we recover the category of Yetter-Drinfeld modules introduced by Majid in [17], and studied in [14, 15]. It is remarkable that a quasi-bialgebra H is a coalgebra in the category of H-bimodules, but not in the category of vector spaces, or in the category of left (or right) H-modules.

Let H be a quasi-bialgebra, Λ an H-bimodule algebra and C a left H-module coalgebra. It is straightforward to check that C with the right H-module structure given by ε is an H-bimodule coalgebra. Then Φ and λ reduce respectively to (2.17) and (2.19), in which only the right H-coaction on Λ appears. So in this particular case the category $\mathcal{A}M(H)^C$ is just $\mathcal{A}YD(H)^C$.

In order to show that the Yetter-Drinfeld modules are special case of Doi-Hopf modules we need a Doi-Hopf datum. As we have already seen, an H-bimodule algebra C can be viewed as a left $H^{op} \otimes H$-module via the structure defined in (3.6). In order to provide a right $H^{op} \otimes H$-comodule algebra structure on an H-bimodule algebra Λ, we need the following result.

Lemma 3.2. Let H be a quasi-Hopf algebra and $(\mathcal{B}, \lambda, \Phi_\lambda)$ a left H-comodule algebra. Then \mathcal{B} is a right H^{op}-comodule algebra via the structure
\begin{align}
\rho : \ & \mathcal{B} \to \mathcal{B} \otimes H, \quad \rho(b) = b_0 \otimes S^{-1}(b_{-1}), \\
\Phi_\rho = \ & \tilde{x}_3^2 \otimes S^{-1}(f^2 \tilde{x}_3^2) \otimes S^{-1}(f^1 \tilde{x}_3^2) \in \mathcal{B} \otimes H \otimes H,
\end{align}

where $f^1 \otimes f^2$ is the Drinfeld twist defined in (1.17). Moreover, if $(\mathcal{B}, \lambda, \Phi_\lambda)$ and $(\mathcal{B}, \lambda', \Phi_{\lambda'})$ are twist equivalent left H-comodule algebras then the corresponding right H^{op}-comodule algebras are also twist equivalent.

Proof. The relation (1.15) follows easily by applying (1.18) and (1.17), and the relations (1.16). Since $\Phi_{op} = \Phi^{-1}$ we have
\begin{align}
\tilde{x}_3^1 \tilde{y}_3^1 \otimes x^1 \otimes (\tilde{x}_3^2)^{\text{op}} \otimes x^2 \otimes (\tilde{x}_3^3)^{\text{op}} \\
&= \tilde{x}_3^1 \tilde{y}_3^1 \otimes S^{-1}(f^2 \tilde{y}_3^2) \otimes S^{-1}(f^1 \tilde{x}_3^2) \otimes S^{-1}(f^1 \tilde{x}_3^1) \\
&= \tilde{x}_3^1 \tilde{y}_3^1 \otimes S^{-1}(f^2 \tilde{y}_3^2) \otimes S^{-1}(f^1 \tilde{x}_3^2) \otimes S^{-1}(f^1 \tilde{x}_3^1)
\end{align}

Finally, it is not hard to see that if the invertible element $U = U^1 \otimes U^2 \in H \otimes \mathcal{B}$ provides a twist equivalence between the left H-comodule algebras $(\mathcal{B}, \lambda, \Phi_\lambda)$ and $(\mathcal{B}, \lambda', \Phi_{\lambda'})$ then the invertible element $V = U^2 \otimes S^{-1}(U^1) \in \mathcal{B} \otimes H$ provides a twist equivalence between the associated right H^{op}-comodule algebras $(\mathcal{B}, \rho, \Phi_\rho)$ and $(\mathcal{B}, \rho', \Phi_{\rho'})$, respectively.
Proposition 3.3. Let H be a quasi-Hopf algebra and $(\Lambda, \lambda, \rho, \Phi, \Phi_\rho, \Phi_{\lambda, \rho})$ an H-bicomodule algebra. We define two right $H^{\text{op}} \otimes H$-coactions
\[\rho_1, \rho_2 : \Lambda \to \Lambda \otimes (H^{\text{op}} \otimes H) \]
on Λ, and corresponding elements $\Phi_{\rho_1}, \Phi_{\rho_2} \in \Lambda \otimes (H^{\text{op}} \otimes H) \otimes (H^{\text{op}} \otimes H)$ as follows:
\[\rho_1(u) = u_{(0)} \otimes \left(S^{-1}(u_{(0)}\cdot 1) \otimes u_{(1)} \right), \]
\[\Phi_{\rho_1} = (\tilde{X}_\rho^1(0) \tilde{X}_\rho^3 \tilde{\theta}_\rho^2) \otimes \left(S^{-1}(f_2^2(\tilde{X}_\rho^2\cdot 1) \cdot \tilde{\theta}_\rho^2) \otimes \tilde{X}_\rho^3 \right), \]
\[\rho_2(u) = u_{(0)} \otimes \left(S^{-1}(u_{-1}) \otimes u_{(1)} \right), \]
\[\Phi_{\rho_2} = (\tilde{X}_\rho^1)_{(0)} \tilde{X}_\rho^3 \tilde{\theta}_\rho^2 \otimes \left(S^{-1}(f_2^2(\tilde{X}_\rho^2(1) \cdot 1) \cdot \tilde{\theta}_\rho^2) \otimes \tilde{X}_\rho^3(1) \right), \]
\[\rho_2(\Phi_{\rho_1}) = \rho_2(\Phi_{\rho_2}) \]

Then $(\Lambda, \rho_1, \Phi_{\rho_1})$ and $(\Lambda, \rho_2, \Phi_{\rho_2})$ are twist equivalent right $H^{\text{op}} \otimes H$-comodule algebras.

Proof. The statement follows from Lemma 3.2. Indeed, we have seen at the end of Section II that Λ has two twist equivalent left $H \otimes H^{\text{op}}$-comodule algebra structures. Identifying $(H \otimes H^{\text{op}})^{\text{op}}$ and $H^{\text{op}} \otimes H$, and computing the induced right coactions we obtain the structures defined in (3.11-3.14). We point out that the reassociator, the antipode and the Drinfeld twist corresponding to $H \otimes H^{\text{op}}$ are given by

\[\Phi_{H \otimes H^{\text{op}}} = (X_1 \otimes x_1) \otimes (X_2 \otimes x_2) \otimes (X_3 \otimes x_3), \]
\[S_{H \otimes H^{\text{op}}} = S \otimes S^{-1}, \]
\[f_{H \otimes H^{\text{op}}} = (f^1 \otimes S^{-1}(g^2)) \otimes (f^2 \otimes S^{-1}(g^1)), \]
where, as usual, $g^1 \otimes g^2$ is the inverse of $f = f^1 \otimes f^2$. \hfill \Box

Let H be a quasi-Hopf algebra, C an H-bimodule coalgebra and \mathfrak{A} an H-bicomodule algebra. In the sequel, \mathfrak{A}_1 and \mathfrak{A}_2 will be our notation for the right $H^{\text{op}} \otimes H$-comodule algebras $(\mathfrak{A}, \rho_1, \Phi_{\rho_1})$ and $(\mathfrak{A}, \rho_2, \Phi_{\rho_2})$. By the above arguments, it make sense to consider the left-right Doi-Hopf module categories $\mathfrak{A}_1 \mathcal{M}(H^{\text{op}} \otimes H)^C$ and $\mathfrak{A}_2 \mathcal{M}(H^{\text{op}} \otimes H)^C$. It will follow from Proposition 3.3 that these two categories are isomorphic.

Proposition 3.4. Let H be a quasi-bialgebra, C a left H-module coalgebra and $\mathfrak{A}^1 = (\mathfrak{A}, \rho, \Phi_{\rho})$ and $\mathfrak{A}^2 = (\mathfrak{A}, \rho', \Phi_{\rho'})$ two twist equivalent right H-comodule algebras. Then the categories $\mathfrak{A}^1 \mathcal{M}(H)^C$ and $\mathfrak{A}^2 \mathcal{M}(H)^C$ are isomorphic.

Proof. If \mathfrak{A}^1 and \mathfrak{A}^2 are twist equivalent, then there exists $\Psi \in \mathfrak{A} \otimes H$ satisfying (1.22-1.24). Take $M \in \mathfrak{A}_1 \mathcal{M}(H)^C$; M becomes an object in $\mathfrak{A}_2 \mathcal{M}(H)^C$ by keeping the same left \mathfrak{A}-module structure and defining
\[\rho'_M : M \to M \otimes C, \quad \rho'(m) = \Psi \cdot \rho_C(m). \]

Conversely, take $M \in \mathfrak{A}_2 \mathcal{M}(H)^C$ via the structures \cdot and ρ'_M. Then M can be viewed as a left-right (H, \mathfrak{A}^1, C)-Hopf module via the same left \mathfrak{A}-action \cdot and the right C-coaction ρ_M defined by
\[\rho_M : M \to M \otimes C, \quad \rho_M(m) = \Psi^{-1} \cdot \rho'_M(m). \]
These correspondences define two functors which act as the identity on morphisms and produce inverse isomorphisms.

Remark 3.5. Let H be a quasi-bialgebra, and $F \in H \otimes H$ a gauge transformation. We can consider the twisted quasi-bialgebra H_F (see \ref{def:twisted-quasi-bialgebra}), and it is well-known that the categories of left H-modules and left H_F-modules are isomorphic. We have a similar property for Doi-Hopf modules.

Let $(\mathfrak{A}, \rho, \Phi)$ be a right H-comodule algebra, and let $\Phi_{\rho_F} = (1_\mathfrak{A} \otimes F)\Phi$. Then $\mathfrak{A}_F := (\mathfrak{A}, \rho, \Phi_{\rho_F})$ is a right H_F-comodule algebra, see \ref{def:comodule-algebra}.

Now let C be a left H-module coalgebra, and define a new comultiplication Δ_F as follows: $\Delta_F(c) = F\Delta(c)$, for all $c \in C$. Then straightforward computations show that $(C, \Delta_F, \varepsilon)$ is a left H_F-module coalgebra and that the categories $\mathcal{M}(H)^C$ and $\mathcal{M}(H_F)^C$ are isomorphic. Of course, a similar result holds for left comodule algebras.

3.2. Yetter-Drinfeld modules and Doi-Hopf modules. Our next aim is to show that the category of left-right Yetter-Drinfeld modules $\mathcal{YD}(H)^C$ is isomorphic to the category of Doi-Hopf modules $\mathcal{M}(H^{op} \otimes H)^C$ and, a fortiori, to $\mathcal{M}(H^{op} \otimes H)^C$, by Proposition \ref{prop:isomorphism-categories}. We have divided the proof over a few lemmas.

Lemma 3.6. Let H be a quasi-Hopf algebra, \mathfrak{A} an H-bicomodule algebra and C an H-bimodule coalgebra. We have a functor

$$F : \mathcal{YD}(H)^C \to \mathcal{M}(H^{op} \otimes H)^C$$

which acts as the identity on objects and morphisms. If M is a left-right (H, \mathfrak{A}, C)-Yetter-Drinfeld module then $F(M) = M$ as a left \mathfrak{A}-module, and with the newly defined right C-coaction

$$(3.15) \quad \rho'_M(m) = m_{(0)} \otimes m_{(1)} = (\tilde{p}_\lambda \cdot m)_{(0)} \otimes (\tilde{p}_\lambda \cdot m)_{(1)} \cdot \tilde{p}_\lambda,$$

for all $m \in M$. Here $\tilde{p}_\lambda = \tilde{p}_\lambda \otimes \tilde{p}_\lambda$ is the element defined by \ref{def:tilde-p-lambda}.

Proof. It is not hard to see that \ref{def:tilde-p-lambda} and \ref{def:tilde-p-lambda} imply

$$(3.16) \quad \Theta^2_{[0]} \tilde{p}_\lambda \otimes \Theta^2_{[-1]} \tilde{p}_\lambda^{-1} S^{-1}(\Theta^1) \otimes \Theta^3 = \theta^2(\tilde{p}_\lambda(0)) \otimes \theta^1 \tilde{p}_\lambda^{-1} \otimes \theta^3(\tilde{p}_\lambda(1)).$$

We now show that $F(M)$ satisfies the relations \ref{def:tilde-p-lambda} and \ref{def:tilde-p-lambda}. Let $\tilde{P}_\lambda \otimes \tilde{P}_\lambda$ be another copy of \tilde{p}_λ, and compute

$$\Phi_{\rho_2} \cdot (\rho'_M \otimes id_C)(\rho_M(m))$$

$$= (\tilde{x}^3(0) \tilde{X}^4_\lambda \Theta^2(0) \cdot (\tilde{P}_\lambda \cdot (\tilde{p}_\lambda \cdot m)(0))(0) \otimes (\tilde{x}^3(0) \tilde{X}^2_\lambda \Theta^2(1) \cdot (\tilde{p}_\lambda \cdot m)(1))(0)) \cdot \tilde{P}_\lambda S^{-1}(f^2 \tilde{x}^2 \Theta^1)$$

$$\otimes (\tilde{x}^3(1) \tilde{X}^3_\lambda \Theta^3 \cdot (\tilde{p}_\lambda \cdot m)(1)) \cdot \tilde{p}_\lambda S^{-1}(f^1 \tilde{x}^1)$$

$$= (\tilde{x}^3(0) \tilde{X}^4_\lambda \cdot (\theta^2(\tilde{P}_\lambda(0)) \otimes (\tilde{p}_\lambda \cdot m)(0))(0) \otimes (\tilde{x}^3(1) \tilde{X}^2_\lambda \cdot (\theta^2(\tilde{P}_\lambda(0)) \cdot (\tilde{p}_\lambda \cdot m)(0))(1)) \cdot \theta^1 \tilde{P}_\lambda S^{-1}(f^2 \tilde{x}^2)$$

$$\otimes (\tilde{x}^3(1) \tilde{X}^3_\lambda \cdot (\theta^2(\tilde{P}_\lambda(1)) \cdot (\tilde{p}_\lambda \cdot m)(1))(1)) \cdot \tilde{P}_\lambda S^{-1}(f^1 \tilde{x})$$
\[\begin{align*}
(\tilde{x}_3^1)_{(0)} & \cdot (\tilde{y}_A^3(\tilde{P}_2^2)_{(0)}\tilde{P}_2^2 \cdot m)_{(0)} \\
\otimes (\tilde{x}_3^1)_{(1)} & \cdot (\tilde{y}_A^3(\tilde{P}_2^2)_{(0)}\tilde{P}_2^2 \cdot m)_{(1)} \cdot \tilde{y}_A^3\tilde{P}_2^1 S^{-1}(f^2\tilde{x}_3^1) \\
\otimes (\tilde{x}_3^1)_{(1)_2} & \cdot (\tilde{y}_A^3(\tilde{P}_2^2)_{(0)}\tilde{P}_2^2 \cdot m)_{(1)_2} \cdot \tilde{y}_A^3(\tilde{P}_2^2)_{(-1)}\tilde{P}_2^1 S^{-1}(f^1\tilde{x}_3^1) \\
\otimes \tilde{P}_2^2 \cdot m)_{(0)} & \otimes (\tilde{P}_2^2 \cdot m)_{(1)} \cdot (\tilde{P}_2^3)_{(0)} \otimes (\tilde{P}_2^3)_{(1)} \cdot (\tilde{P}_2^3)_{(2)} \\
m_{(0)'} & \otimes m_{(1)'} \otimes m_2 = (id_M \otimes \Delta)(\rho'_M(m)),
\end{align*} \]
for all \(m \in M \), as needed. The relation (2.18) is trivial and (2.19) follows from (1.26), (3.18) and (3.19).

Lemma 3.7. Let \(H \) be a quasi-Hopf algebra, \(C \) an \(H \)-bimodule coalgebra and \(A \) an \(H \)-bimodule algebra. Then we have a functor

\[G : \mathcal{H}_2(M(H^\text{op} \otimes H))^C \to \mathcal{A}_2(D(H))^C \]

which acts as the identity on objects and morphisms. Let \(M \) be a left-right \((H^\text{op} \otimes H, A^2, C)\)-Hopf module, with left \(A \)-action \(\cdot \) and right \(C \)-coaction \(\rho_M \), \(\rho'_M(m) = m_{(0)'} \otimes m_{(1)'} \in M \otimes C \). Then \(G(M) = M \) as a left \(A \)-module, with new right \(C \)-coaction \(\overline{\rho}_M : M \to M \otimes C \), given by the formula

\[\overline{\rho}_M(m) = m_{(0)} \otimes m_{(1)} = (\tilde{q}_A^3)_{(0)} \cdot m_{(0)'} \otimes (\tilde{q}_A^3)_{(1)} \cdot m_{(1)'} \cdot S^{-1}(\tilde{q}_A^3), \]

for all \(m \in M \). Here \(\tilde{q}_A = \tilde{q}_A^3 \otimes \tilde{q}_A^3 \) is the element defined in (1.26).

Proof. The most difficult part is that we show that \(G(M) \) satisfies the relations (3.17) and \(\overline{\rho}_M \). \(M \) is a left-right \((H, A^2, C)\)-Hopf module, so we have by (2.47), (2.48) and (2.49):

\[\begin{align*}
\tilde{X}_\rho^1((\tilde{x}_3^2)_{(0)} \Theta^2)_{(0)} \cdot m_{(0)'} \otimes X_\rho^2((\tilde{x}_3^2)_{(0)} \Theta^2)_{(1)} \cdot m_{(1)'} \cdot S^{-1}(f^2\tilde{x}_3^2 \Theta^1) \\
\otimes \tilde{X}_\rho^1((\tilde{x}_3^1)_{(1)} \Theta^3 \cdot m_{(1)'} \cdot S^{-1}(f^1\tilde{x}_3^1) = m_{(0)'} \otimes m_{(1)'} \otimes m_{(1)'} \otimes m_{(1)'} \otimes m_{(1)'}.
\end{align*} \]

(3.19) \((u \cdot m)_{(0)'} \otimes (u \cdot m)_{(1)'} = u_{(0)'} \otimes u_{(0)'} \otimes u_{(0)'} \otimes u_{(0)'} \otimes u_{(0)'} \cdot S^{-1}(u_{(-1)}), \)

for all \(m \in M \) and \(u \in A \). Also, (2.10) and (2.14) imply that

(3.20) \[S(\Theta^1)\tilde{q}_A^3(\tilde{x}_3^2)_{(0)} \otimes \tilde{q}_A^3(\tilde{x}_3^2)_{(0)} \otimes \Theta^3 = \tilde{q}_A^3 \Theta^1 \otimes (\tilde{q}_A^3)_{(0)} \Theta^2 \otimes (\tilde{q}_A^3)_{(1)} \Theta^3. \]

Let \(\tilde{Q}_A^3 \otimes \tilde{Q}_A^3 \) be another copy of \(\tilde{q}_A \); for all \(m \in M \), we compute that

\[\begin{align*}
(\Theta^2 \cdot m_{(0)})_{(0)} & \otimes (\Theta^2 \cdot m_{(0)})_{(1)} \otimes \Theta^3 \cdot m_{(1)} \\
\quad = (\tilde{Q}_A^3 \Theta^1)_{(0)} \cdot m_{(0)'} \otimes (\tilde{Q}_A^3 \Theta^1)_{(1)} \cdot m_{(1)'} \cdot S^{-1}(\tilde{Q}_A^3) \\
\quad \otimes S^{-1}(\tilde{Q}_A^3)_{(0)'} \otimes ((\tilde{Q}_A^3)_{(0)} \Theta^3)_{(0)} \cdot m_{(0)} \otimes ((\tilde{Q}_A^3)_{(0)} \Theta^3)_{(1)} \cdot m_{(1)} \cdot S^{-1}(\tilde{Q}_A^3) \\
\quad \otimes S^{-1}(\tilde{Q}_A^3)_{(1)} \otimes (\tilde{Q}_A^3)_{(0)} \Theta^3 \cdot m_{(1)} \cdot S^{-1}(\tilde{Q}_A^3)
\end{align*} \]
Since \(F \) is obtained using first Lemma 3.7 and then Lemma 3.6 we have the quasi-Hopf algebra setting.

An \(\rho \) -bimodule coalgebra. Then the categories \(A \) \(\rho \) -coaction. If \(A \) \(\rho \) -modules we have only as needed. \(\text{S8} \) also holds since

\[
\left(q^k_{\lambda} \right) (u_{(0)} \cdot \left(q^k_{\lambda} \right) (u_{(1)}) \cdot \left(q^k_{\lambda} \right) (u_{(2)}), \right. \\
\left(q^k_{\lambda} \right) (u_{(0)} \cdot \left(q^k_{\lambda} \right) (u_{(1)}) \cdot \left(q^k_{\lambda} \right) (u_{(2)}), \right.
\]

for all \(u \in A \) and \(m \in M \). The remaining details are left to the reader. \(\square \)

Theorem 3.8. Let \(H \) be a quasi-Hopf algebra, \(A \) an \(H \)-bicomodule algebra and \(C \) an \(H \)-bimodule coalgebra. Then the categories \(\Lambda \mathcal{YD}(H)^C \) and \(\Lambda \mathcal{M}(H^{\text{op}} \otimes H)^C \) are isomorphic. In particular \(\Lambda \mathcal{YD}(H)^C \) is a Grothendieck category, and therefore it has enough injective objects.

Proof. We show that the functors \(F \) and \(G \) from Lemmas 3.6 and 3.7 are inverses. Since \(F \) and \(G \) act as the identity functor at the level of \(A \)-modules we have only to show that \(F \) and \(G \) are inverses at the level of \(C \)-coactions.

Let \(M \in \Lambda \mathcal{YD}(H)^C \) and \(\rho_M(m) = m_{(0)} \otimes m_{(1)} \) its right \(C \)-coaction. We denote by \(\overline{\rho}_M(m) = m_{(0)} \otimes m_{(1)} \) the right \(C \)-coaction of \(G(F(M)) \) obtained using first Lemma 3.6 and then Lemma 3.7.

For all \(m \in M \) we then have

\[
(\overline{\rho}_M(m) = m_{(0)} \otimes m_{(1)}) = \rho_M(m). \]

Conversely, let \(M \in \Lambda \mathcal{M}(H^{\text{op}} \otimes H)^C \) and denote by \(\rho'_M(m) = m_{(0)} \otimes m_{(1)} \) its right \(C \)-coaction. If \(\rho_M(m) = m_{(0)} \otimes m_{(1)} \) is the right \(C \)-coaction on \(F(G(M)) \) obtained using first Lemma 3.6 and then Lemma 3.7.

We have

\[
\rho_M(m) = \rho'_M(m), \]

for all \(m \in M \) and \(\rho_M(m) \).
for all \(m \in M \), so the proof is finished. \(\square \)

Let \(H \) be a quasi-bialgebra, \(\mathfrak{A} \) a right \(H \)-comodule algebra and \(C \) a left \(H \)-module coalgebra. Identifying the category of left-right \((H, \mathfrak{A}, C)\)-Hopf modules to the category of right-left \((H^{\text{op}}, \mathfrak{A}^{\text{op}}, C^{\text{co}})\)-Hopf modules using the construction preceding Proposition 222 we obtain the functor, after permuting the tensor factors:

\[
\mathcal{F}' = \bullet \otimes C : \mathfrak{A} \mathcal{M} \to \mathfrak{A} \mathcal{M} (H)^C.
\]

If \(M \) is a left \(\mathfrak{A} \)-module then \(\mathcal{F}'(M) = M \otimes C \) with structure maps

\[
\begin{align*}
\alpha \cdot (m \otimes c) &= a_{(0)} \cdot m \otimes a_{(1)} \cdot c, \\
\rho_M (m \otimes c) &= \tilde{x}_1^1 \cdot m \otimes \tilde{x}_2^2 \cdot \eta_{\mathfrak{A}}^1 \otimes \tilde{x}_3^3 \cdot \eta_{\mathfrak{A}}^2,
\end{align*}
\]

for all \(\alpha \in \mathfrak{A} \), \(m \in M \) and \(c \in C \). For a morphism \(\nu \) in \(\mathfrak{A} \mathcal{M} \), we have that \(\mathcal{F}'(\nu) = \nu \otimes \text{id}_C \). In particular, we obtain that \(\mathfrak{A} \otimes C \) is a left-right \((H, \mathfrak{A}, C)\)-Hopf module.

Moreover, \(\mathcal{F}' \) is a right adjoint of the forgetful functor \(\mathcal{U}^C : \mathfrak{A} \mathcal{M} (H)^C \to \mathfrak{A} \mathcal{M} \), and it is a left adjoint of the functor \(\text{Hom}^C_G (\mathfrak{A} \otimes C, \bullet) : \mathfrak{A} \mathcal{M} (H)^C \to \mathfrak{A} \mathcal{M} \) defined as follows. For \(M \in \mathfrak{A} \mathcal{M} (H)^C \), \(\text{Hom}^C_G (\mathfrak{A} \otimes C, \bullet)(M) = \text{Hom}^C_G (\mathfrak{A} \otimes C, M) \), the set of morphisms in \(\mathfrak{A} \mathcal{M} (H)^C \) between \(\mathfrak{A} \otimes C \) and \(M \), viewed as a left \(\mathfrak{A} \)-module via

\[
(a \cdot \eta) (a' \otimes c) = \eta(a' \alpha \otimes c),
\]

for all \(\eta \in \text{Hom}^C_G (\mathfrak{A} \otimes C, M), a, a' \in \mathfrak{A} \) and \(c \in C \). The functor \(\text{Hom}^C_G (\mathfrak{A} \otimes C, \bullet) \) sends a morphism \(\kappa \) from \(\mathfrak{A} \mathcal{M} (H)^C \) to the morphism \(\vartheta \mapsto \kappa \circ \vartheta \).

Corollary 3.9. Let \(H \) be a quasi-Hopf algebra, \(\mathfrak{A} \) an \(H \)-bicomodule algebra and \(C \) an \(H \)-bimodule coalgebra. We have a functor \(\mathfrak{F} = \bullet \otimes C : \mathfrak{A} \mathcal{M} \to \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C \). The structure maps on \(\mathfrak{F}(M) = M \otimes C \) are the following:

\[
\begin{align*}
\alpha \cdot (m \otimes c) &= u_{(0)} \cdot m \otimes u_{(1)} \cdot c \cdot S^{-1} (u_{-1}), \\
\rho_M \otimes C (m \otimes c) &= \psi^{2,1}_{(2), (1)} (\tilde{x}_1^1) (\tilde{x}_2^2) (\tilde{x}_3^3) \cdot m \otimes \theta^{2,1}_{(1)} \tilde{x}_2^2 \cdot \rho_M (m) \cdot a_{(1)} \cdot c_{(2)} \cdot S^{-1} (\tilde{x}_1^1),
\end{align*}
\]

for all \(u \in \mathfrak{A} \), \(m \in M \) and \(c \in C \). In particular, \(\mathfrak{A} \otimes C \) is a left-right \((H, \mathfrak{A}, C)\)-Yetter-Drinfeld module. Moreover, the following assertions hold:

i) \(\mathfrak{F} \) is right adjoint to the forgetful functor \(\mathfrak{U} : \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C \to \mathfrak{A} \mathcal{M} \).

ii) \(\mathfrak{F} \) is left adjoint to the functor \(\text{Hom}^C_G (\mathfrak{A} \otimes C, \bullet) : \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C \to \mathfrak{A} \mathcal{M} \). If \(M \in \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C \) then \(\text{Hom}^C_G (\mathfrak{A} \otimes C, \bullet)(M) = \text{Hom}^C_G (\mathfrak{A} \otimes C, M) \), the set of Yetter-Drinfeld morphisms from \(\mathfrak{A} \otimes C \) to \(M \), viewed as a right \(\mathfrak{A} \)-module via the action

\[
(u \cdot \eta) (u' \otimes c) = \eta(u' u \otimes c),
\]

for all \(\eta \in \text{Hom}^C_G (\mathfrak{A} \otimes C, M), u, u' \in \mathfrak{A} \) and \(c \in C \).

Proof. The functor \(\mathfrak{F} \) is well defined because it is the composition

\[
\mathfrak{F} : \mathfrak{A} \mathcal{M} = \mathfrak{A} \mathcal{M} \xrightarrow{\mathcal{F}'} \mathfrak{A} \mathcal{M} (H^{\text{op}} \otimes H)^C \xrightarrow{G} \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C,
\]

where \(\mathcal{F}' \) is the functor described above but now for the context given by \(\mathfrak{A}, \mathfrak{A} \mathcal{M}, \mathfrak{A} \mathcal{Y} \mathcal{D}(H)^C \), and \(G \) is the functor from Lemma 3.7. All the other details are left to the reader. \(\square \)
Let H be a quasi-bialgebra, \mathfrak{A} a right H-comodule algebra and C a left H-module coalgebra. Since the category $\mathfrak{A}\mathcal{M}(H)^C$ can be identified to a category of right-left Doi-Hopf modules it follows that $\mathfrak{A}\mathcal{M}(H)^C$ is isomorphic to a category of comodules over the coring $C' = C \otimes \mathfrak{A}$, with \mathfrak{A}-bimodule structure given by

$$a \cdot (c \otimes a') \cdot a'' = a_{(1)} \cdot (c \otimes a_{(0)} a' a'')$$

and comultiplication and counit given by

$$\Delta_C (c \otimes a) = (x_3^3 \cdot c_2 \otimes 1_{\mathfrak{A}}) \otimes A (x_3^3 \cdot c_2 \otimes x_3^1 a), \quad \varepsilon_C (c \otimes a) = \varepsilon(c) a$$

for all $a, a', a'' \in \mathfrak{A}$ and $c \in C$. Using arguments similar to the ones given in Theorem 5.4, one can easily check that $\mathfrak{A}\mathcal{M}(H)^C$ is isomorphic to $C^*\mathcal{M}$.

Corollary 3.10. Let H be a quasi-Hopf algebra, \mathfrak{A} an H-bicomodule algebra and C an H-bimodule coalgebra. Then the category of left-right Yetter-Drinfeld modules $\mathfrak{A}\mathcal{YD}(H)^C$ is isomorphic to the category of left comodules over the coring $C' = C \otimes \mathfrak{A}$, with the following structure maps. The \mathfrak{A}-bimodule is given by

$$u \cdot (c \otimes u') \cdot u'' = u_{[0]}(u_{(1)} \cdot c \cdot S^{-1}(u_{[-1]}) \otimes u_{[0]}) u' u''$$

and the comultiplication and counit are defined by the formulas

$$\Delta_C (c \otimes u) = \left(\theta^3 \tilde{x}_3^3 (\tilde{X}_3^3)_{(1)} \otimes 1_{\mathfrak{A}} \right)$$

$$\otimes A \left(\theta^3 \tilde{x}_3^3 (\tilde{X}_3^3)_{(1)} \cdot c_2 \cdot S^{-1}(\theta^3 \tilde{x}_3^2 (\tilde{X}_3^2) \otimes \theta^2 (\tilde{x}_2^1 (\tilde{X}_2^1) u)), \quad \varepsilon_C (c \otimes u) = \varepsilon(c) u,$$

for all $u, u', u'' \in \mathfrak{A}$ and $c \in C$.

Proof. This is a direct consequence of the above comments and Theorem 3.8. \(\square\)

3.3. The category of Yetter-Drinfeld modules as a module category.

Our next aim is to describe the category of Yetter-Drinfeld modules as a category of modules. We will need the (right) generalized diagonal crossed product construction, as introduced in [14, 17].

Let H be a quasi-bialgebra and \mathfrak{A} an H-bicomodule algebra. In the sequel, A will be an H-bimodule algebra. This means that A is an H-bimodule which has a multiplication and a usual unit 1_A such that for all $\varphi, \psi, \xi \in \mathfrak{A}$ and $h \in H$ the following relations hold:

$$\langle \varphi \psi \rangle \xi = \langle X^1 \cdot \varphi \cdot x^1 \rangle \langle \langle X^2 \cdot \psi \cdot x^2 \rangle \langle X^3 \cdot \xi \cdot x^3 \rangle \rangle,$$

$$h \cdot (\varphi \psi) = (h_1 \cdot \varphi)(h_2 \cdot \psi), \quad (\varphi \psi) \cdot h = (\varphi \cdot h_1)(\psi \cdot h_2),$$

$$h \cdot 1_A = \varepsilon(h) 1_A, \quad 1_A \cdot h = \varepsilon(h) 1_A.$$

If H is a quasi-bialgebra, then H^*, the linear dual of H, is an H-bimodule via the H-actions

$$\langle h \rightsquigarrow \varphi, h' \rangle = \varphi(h' h), \quad \langle \varphi \leftarrow h, h' \rangle = \varphi(h h'),$$

for all $\varphi \in H^*$, $h, h' \in H$. The convolution $\langle \varphi \psi, h \rangle = \varphi(h_1) \psi(h_2)$, $\varphi, \psi \in H^*$, $h \in H$, is a multiplication on H^* which is not associative in general, but with this multiplication H^* becomes an H-bimodule algebra.

Let H be a quasi-bialgebra, A an H-bimodule algebra and $(\Lambda, \lambda, \rho, \Phi_\Lambda, \Phi_\rho, \Phi_{\lambda, \rho})$ an H-bicomodule algebra. In the sequel (δ, Ψ) will be the pair

$$\delta_1 = (\lambda \otimes id_H) \circ \rho,$$

$$\Psi = (id_H \otimes \lambda \otimes id_H^2) \left((\Phi_{\lambda, \rho} \otimes 1_H)(\lambda \otimes id_H^2)(\Phi_{\rho}^{-1})\right)[\Phi_\Lambda \otimes 1_H^2].$$
or

\[\delta_r = (id_H \otimes \rho) \circ \lambda, \]
\[\Psi_r = (id_H^\otimes \otimes \rho \otimes id_H) \left((1_H \otimes \Phi_\lambda^{-1}) id_H^\otimes (\Phi_\lambda) \right) \cdot [1_H^\otimes \otimes \Phi_\rho^{-1}]. \]

\(\Omega_{L/r}, \Omega_{R/r} \in H^\otimes A \otimes H^\otimes \) are defined by the following formulas

\[\Omega_{L/r} = (id_H^\otimes \otimes \lambda \otimes S^{-1} \otimes S^{-1}) (\Psi^{-1}_r \cdot [1_H^\otimes \otimes \lambda \otimes S^{-1} (f^1) \otimes S^{-1} (f^2)], \]
\[\Omega_{R/r} = [S^{-1} (g^1) \otimes S^{-1} (g^2) \cdot 1_H \otimes 1_H^\otimes] \cdot (S^{-1} \otimes S^{-1} \otimes \lambda \otimes \lambda^\otimes) (\Psi^{-1}_r). \]

Here \(f^1 \otimes f^2 \) is the Drinfeld twist and \(f^{-1} = g^1 \otimes g^2 \) is its inverse. We will use the notation

\[\Omega_{L/r} = \Omega_{L/r}^1 \otimes \cdots \otimes \Omega_{L/r}^5. \]

Let \(A \bowtie_\delta A \) and \(A \bowtie_{\delta, A} A \) be the vector space \(A \otimes A \) furnished with the multiplication given respectively by the following formulas:

\[(\varphi \bowtie u) (\psi \bowtie u') = (\Omega_{L_1}^3 \varphi \cdot \Omega_{L_2}^3) (\Omega_{L_1}^2 u_{(0)} \cdot \psi \cdot S^{-1} (u_{(1)}) \Omega_{L_2}^2 \cdot u_{(0)}' \cdot u', \]
\[(\varphi \bowtie u) (\psi \bowtie u') = (\Omega_{L_1}^3 \varphi \cdot \omega_{L_2}^3) (\Omega_{L_1}^2 u_{(0)} \cdot \psi \cdot S^{-1} (u_{(1)}) \Omega_{L_2}^2 \cdot u_{(0)}' \cdot u', \]

for all \(\varphi, \psi \in A \) and \(u, u' \in A \). We write \(\varphi \bowtie u \) (respectively \(\varphi \bowtie_{\delta} u \)) for \(\varphi \bowtie u \) considered as an element of \(A \bowtie_\delta A \) (respectively \(A \bowtie_{\delta, A} A \)). \(A \bowtie_\delta A \) and \(A \bowtie_{\delta, A} A \) are isomorphic associative algebras with unit \(1_A \bowtie 1_A \bowtie 1_A \), containing \(A \bowtie_\delta A \bowtie_\delta A \) as unital subalgebra. These algebras are called the left generalized diagonal crossed products.

The right generalized diagonal crossed products are introduced in a similar way: denote

\[\Omega_{R/r} = \Omega_{R/r}^1 \otimes \cdots \otimes \Omega_{R/r}^5, \]

and let \(A \bowtie_{\delta} A \) and \(A \bowtie_{\delta, A} A \) be the vector space \(A \otimes A \) with the following product:

\[(u \otimes \varphi)(u' \otimes \psi) = uu_{(0)} \bowtie_\delta \Omega_{R_1}^3 \bowtie (\Omega_{R_2}^2 S^{-1} (u_{(0)}' \cdot \varphi \cdot u_{(1)}') \cdot \Omega_{R_3}^2 \cdot \psi \cdot \Omega_{R_4}^2), \]
\[(u \otimes \varphi)(u' \otimes \psi) = uu_{(0)} \bowtie_{\delta, A} \Omega_{R_1}^3 \bowtie (\Omega_{R_2}^2 S^{-1} (u_{(0)}' \cdot \varphi \cdot u_{(1)}') \cdot \Omega_{R_3}^2 \cdot \psi \cdot \Omega_{R_4}^2), \]

for all \(u, u' \in A \), \(\varphi, \psi \in A \). \(A \bowtie_{\delta} A \) and \(A \bowtie_{\delta, A} A \) are isomorphic associative algebras with unit \(1_A \bowtie 1_A \bowtie 1_A \) and \(1_A \bowtie_{\delta, A} 1_A \), containing \(A \) as a unital subalgebra.

As algebras, the left and right generalized crossed product algebras are isomorphic, see [14]. If \(H \) is a quasi-Hopf algebra then \(A = H^* \) is an \(H \)-bimodule algebra. In this particular case the left and right generalized diagonal crossed products are exactly the left and the right diagonal crossed products constructed in [14]. In this way Hauser and Nill gave four explicit realizations of \(D(H) \), the quantum double of a finite dimensional quasi-Hopf algebra \(H \). Two of them are build on \(H^* \otimes H \) and the other two on \(H \otimes H^* \). All these are, as algebras, diagonal crossed products. The first two realizations built on \(H^* \otimes H \) coincide to \(H \bowtie_{\delta} H \) and \(H^* \bowtie_{\delta} H \), and the last two realizations built on \(H \otimes H^* \) coincide to \(H \bowtie_{\delta} H \) and \(H \bowtie_{\delta} H^* \).
Proposition 3.11. Let H be a quasi-Hopf algebra, \mathbb{A} an H-bicoreflective algebra and C an H-bicomodule coalgebra. Then $\mathbb{A}^1 \bowtie C^* \equiv \mathbb{A} \bowtie_{\delta} C^*$ and $\mathbb{A}^2 \bowtie C^* \equiv \mathbb{A} \bowtie C^*$, as algebras. In particular, the algebras $\mathbb{A}^1 \bowtie C^*$ and $\mathbb{A}^2 \bowtie C^*$ are isomorphic to each other, and also to the four generalized diagonal crossed products.

Proof. Keeping the above concepts and notations it is not hard to see that for an H-bicomodule algebra A the reassociators Φ_{ρ_1} and Φ_{ρ_2} defined in (3.12) and (3.14), respectively, can be rewritten as

$$\Phi_{\rho_1} = \Omega_2^3 \otimes (\tilde{\Omega}_2^2 \otimes \Omega_1^1) \otimes (\tilde{\Omega}_1^1 \otimes \tilde{\Omega}_2^1),$$

$$\Phi_{\rho_2} = \Omega_3^3 \otimes (\tilde{\Omega}_3^2 \otimes \tilde{\Omega}_1^1) \otimes (\tilde{\Omega}_1^1 \otimes \tilde{\Omega}_3^1),$$

where we used the notation

$$\Omega^{-1}_{r_1/r} = \Omega_{R_1/r}^1 \otimes \cdots \otimes \Omega_{R_1/r}^{r_i}.$$

Now, if C is an H-bimodule coalgebra viewed as a left $H^\text{op} \otimes H$-module coalgebra via the structure defined in (3.10) then C^*, the linear dual space of C, is a right $H^\text{op} \otimes H$-module algebra. The multiplication of C^* is the convolution, that is $(c^* \cdot d^*)(c) = c^*(c_1) d^*(c_2)$, the unit is \mathbb{E} and the right $H^\text{op} \otimes H$-module action is given by the formula $(c^* \cdot (h \otimes h'))(c) = c^*(h' \cdot c \cdot h) = (h \cdot c^* \cdot h')$, for all $h, h' \in H$, $c^*, d^* \in C^*, c \in C$.

Since $\mathbb{A}^{1/2}$ are right $H^\text{op} \otimes H$-comodule algebras and C^* is a right $H^\text{op} \otimes H$-module coalgebra, it makes sense to consider the right generalized smash product algebras $\mathbb{A}^{1/2} \bowtie C^*$ (cf. Remark 2.13)). It also follows easily from Remark 2.13) that the multiplication on $\mathbb{A}^1 \bowtie C^*$ is given by

$$(u \bowtie c^*)(u' \bowtie d^*) = uu'c^* \cdot d^*$$

$$= uu'c^* \cdot (\tilde{\Omega}_2^2 \otimes \tilde{\Omega}_1^1) \otimes (\tilde{\Omega}_1^1 \otimes \tilde{\Omega}_2^1) \otimes (\tilde{\Omega}_1^1 \otimes \tilde{\Omega}_2^1)).$$

On the other hand, it is easy to see that the linear dual space C^* of an H-bicomodule coalgebra C is an H-bimodule algebra. The multiplication of C^* is the convolution, the unit is \mathbb{E} and the H-bimodule structure is given by the formula $(h \cdot c^* \cdot h') = c^*(h' \cdot c \cdot h)$, for all $h, h' \in H$, $c^* \in C^*, c \in C$. So we can consider the generalized right diagonal crossed product $\mathbb{A} \bowtie_{\delta} C^*$. From (3.23) it follows that the multiplication rule on $\mathbb{A} \bowtie_{\delta} C^*$ coincides with the multiplication of $\mathbb{A}^1 \bowtie C^*$, hence the algebras $\mathbb{A} \bowtie_{\delta} C^*$ and $\mathbb{A}^1 \bowtie C^*$ are equal. In a similar way we can show the equality of the k-algebras $\mathbb{A}^2 \bowtie C^*$ and $\mathbb{A} \bowtie_{\delta} C^*$.

Remark 3.12. It was shown in [7] that the left generalized crossed product algebras $\mathbb{A} \bowtie_{\delta} \mathbb{A}$ and $\mathbb{A} \bowtie_{\delta} \mathbb{A}$ coincide with the left generalized smash product algebras $\mathbb{A} \bowtie \mathbb{A}$ and $\mathbb{A} \bowtie \mathbb{A}$, respectively. The generalized smash products are made over $H \otimes H^\text{op}$ and by \mathbb{A}^1 and \mathbb{A}^2 we denote the left $H \otimes H^\text{op}$-comodule algebra structures on \mathbb{A} defined at the end of Section II.

Let H be a quasi-bialgebra, \mathfrak{M} a right H-comodule algebra and C a left H-module algebra. Viewing the category $\mathfrak{M}M(H)^C$ as a category of right-left Doi-Hopf modules, we deduce from Theorem 3.8 that $\mathfrak{M}M(H)^C$ is isomorphic to the category of rational $\mathfrak{M} \bowtie C^*$-modules, $\text{Rat}(\mathfrak{M} \bowtie C^*) = \sigma_{\mathfrak{M} \bowtie C^*} \cdot (\mathfrak{M} \otimes C)$.

A rational $A \triangleright \triangleright C^\ast$-module is a left $A \triangleright \triangleright C^\ast$-module M such that for any $m \in M$ there exist two finite families $\{c_i\}_i \subseteq C$ and $\{m_i\}_i \subseteq M$ such that
\[(a \triangleright \triangleright c^\ast) \cdot m = c^\ast(c_i)(a \triangleright \triangleright \varepsilon) \cdot m_i,\]
for all $a \in A$ and $c^\ast \in C^\ast$.

Corollary 3.13. Let H be a quasi-Hopf algebra, A an H-bicomodule algebra and C an H-bimodule coalgebra. Then the following assertions hold:

i) The category of left-right Yetter-Drinfeld modules $\mathcal{YD}(H)_C$ is isomorphic to the category of rational $A \triangleright \triangleright \delta_r C^\ast$-modules $\mathcal{Rat}(A \triangleright \triangleright \delta_r C^\ast M)$, which is also equal to the category $\sigma_{A \triangleright \triangleright \delta_r C^\ast}[A \otimes C]$.

ii) If C is finite dimensional then $\mathcal{YD}(H)_C$ is isomorphic to the category of left $C^\ast \bowtie \delta_l A$-modules.

Proof. The assertion i) follows easily from the above comments and Theorem 3.8.

ii) If C is finite dimensional then $\mathcal{Rat}(A \triangleright \triangleright \delta_r C^\ast M) = A \triangleright \triangleright \delta_r C^\ast M$. Moreover, $A \triangleright \triangleright \delta_r C^\ast$ is always isomorphic to $C^\ast \bowtie \delta_l A$ as an algebra. We note that another proof of this result can be found in [7]. □

References

[1] T. Brzeziński, The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties, *Algebr. Represent. Theory* 5 (2002), 389–410.
[2] T. Brzeziński and R. Wisbauer, “Corings and comodules”, *London Math. Soc. Lect. Note Ser. 309*, Cambridge University Press, Cambridge, 2003.
[3] D. Bulacu and S. Caenepeel, Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras, *J. Algebra* 270 (2003), no. 1, 55–95.
[4] D. Bulacu, S. Caenepeel and F. Panaite, Yetter-Drinfeld categories for quasi-Hopf algebras, *Comm. Algebra*, to appear.
[5] D. Bulacu, S. Caenepeel and F. Panaite, More properties of Yetter-Drinfeld modules over quasi-Hopf algebras, in “Hopf algebras in non-commutative geometry and physics”, S. Caenepeel and F. Van Oystaeyen (eds.), Lecture Notes Pure Appl. Math. 239, Dekker, New York, 2004.
[6] D. Bulacu and E. Nauwelaerts, Relative Hopf modules for (dual) quasi Hopf algebras, *J. Algebra* 229 (2000), 632–659.
[7] D. Bulacu, F. Panaite and F. Van Oystaeyen, Generalized diagonal crossed products and smash products for (quasi) Hopf algebras, preprint 2004.
[8] S. Caenepeel, G. Militaru and S. Zhu, Crossed modules and Doi-Hopf modules, *Israel J. Math.* 100 (1997), 221–247.
[9] S. Dăscălescu, C. Năstăsescu and B. Torrecillas, Co-Frobenius Hopf Algebras: Integrals, Doi-Koppinen Modules and Injective Objects, *J. Algebra* 220 (1999), 542–560.
[10] S. Dăscălescu, C. Năstăsescu and Ş. Raianu, Hopf Algebras: An Introduction, in: Monographs Textbooks in Pure Appl. Math., Vol. 235, Dekker, New York, 2001.
[11] Y. Doi, Generalized smash products and Morita contexts for arbitrary Hopf algebras, in “Advances in Hopf algebras”, J. Bergen and S. Montgomery, eds., *Lecture Notes Pure Appl. Math. 158*, Dekker, New York, 1994.
[12] V. G. Drinfeld, Quasi-Hopf algebras, *Leningrad Math. J.* 1 (1990), 1419–1457.
[13] L. El Kaoutit, J. Gómez-Torrecillas, F. Lobillo, Semisimple corings, *Algebra Colloquium*, to appear.
[14] F. Hausser and F. Nill, Diagonal crossed products by duals of quasi-quantum groups, *Rev. Math. Phys.* 11 (1999), 553–629.
[15] C. Kassel, “Quantum Groups”, *Graduate Texts in Mathematics 155*, Springer Verlag, Berlin, 1995.
[16] M. Koppinen, Variations on the smash product with applications to group-graded rings, *J. Pure Appl. Algebra* 104 (1994), 61–80.
[17] S. Majid, Quantum double for quasi-Hopf algebras, *Lett. Math. Phys.* 45 (1998), 1–9.
[18] S. Majid, “Foundations of quantum group theory”, Cambridge Univ. Press, 1995.
[19] C. Menini and M. Zucconi, Equivalence theorems and Hopf-Galois extensions, J. Algebra 194 (1997), 245–274.
[20] M. E. Sweedler, “Hopf algebras”, Benjamin, New York, 1969.
[21] R. Wisbauer, ”Foundations of module and ring theory”, Gordon and Breach, Philadelphia, 1991.

Faculty of Mathematics and Informatics, University of Bucharest, RO-010014 Bucharest 1, Romania
E-mail address: dbulacu@al.math.unibuc.ro

Faculty of Applied Sciences, Vrije Universiteit Brussel, VUB, B-1050 Brussels, Belgium
E-mail address: scaenepe@vub.ac.be
URL: http://homepages.vub.ac.be/~scaenepe/

Department of Algebra and Analysis, University of Almeria, 04071 Almeria, Spain
E-mail address: btorreci@ual.es