MULTI-ANISOTROPIC GEVREY REGULARITY
OF HYPOELLIPTIC OPERATORS

CHIKH BOUZAR AND AHMED DALI

Abstract. We show a multi-anisotropic Gevrey regularity of solutions of hypoelliptic equations. This result is a precision of a classical result of Hörmander

1. Introduction

An important problem among others of linear partial differential equations is the C^∞ or Gevrey regularity of solutions of these equations. L. Hörmander has completely characterized the C^∞ regularity (hypoellipticity) of linear partial differential operators with complex constant coefficients, see [7]. An another fundamental result obtained by L. Hörmander says that every hypoelliptic differential operator $P(D)$ is anisotropic Gevrey hypoelliptic, i.e. $\exists \varrho = (\varrho_1, \ldots, \varrho_n) \in \mathbb{R}_+^n$ such that

$$u \in \mathcal{D}'(\Omega) \text{ and } P(D)u = 0 \implies u \in G^\varrho(\Omega),$$

where $G^\varrho(\Omega)$ is an anisotropic Gevrey space associated with $P(D)$.

A large class of hypoelliptic differential operators is the class of multi-quasielliptic differential operators, see V. P. Mikhaïlov [8], J. Friberg [3] and S. G. Gindikin, L. R. Volevich [4].

L. Zanghirati [10], proved that multi-quasielliptic differential operators are multi-anisotropic Gevrey hypoelliptic, i.e.

$$u \in \mathcal{D}'(\Omega) \text{ and } P(D)u \in G^{s, \Gamma}(\Omega) \implies u \in G^{s, \Gamma}(\Omega),$$

where $G^{s, \Gamma}(\Omega)$ is a Gevrey multi-anisotropic space associated with $P(D)$. This result clarifies the classical result of Hörmander in the case of multi-quasielliptic operators. The result of L. Zanghirati has been extended by C. Bouzar and R. Chaïli in [1] to multi-quasielliptic systems of differential operators.

The aim of this paper is to prove the multi-anisotropic Gevrey regularity of hypoelliptic linear differential operators with complex constant coefficients, and consequently we precise the result of Hörmander and extend the result of Zanghirati.

2. Multi-quasiellipticity

Let Ω be an open subset of \mathbb{R}_+^n, if $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, $q = (q_1, \ldots, q_n) \in \mathbb{R}_+^n$ and $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}_+^n$, we set

$$|\alpha| = \alpha_1 + \ldots + \alpha_n$$

$$< \alpha, q > = \sum_{j=1}^n \alpha_j q_j$$

1991 Mathematics Subject Classification. Primary 35H10; Secondary 35D10, 35H30.
Key words and phrases. Hypoelliptic operators, Gevrey regularity, Multi-anisotropic Gevrey spaces, Newton polyhedron, Multi-quasiellipticity, Gevrey vectors.
\[\xi^\alpha = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n} \]
\[D^\alpha = D_1^{\alpha_1} \cdots D_n^{\alpha_n}, D_j = \frac{1}{i} \partial_{\xi_j}, \ j = 1, \ldots, n. \]
\[\mathbb{R}^n_+ = \{ \xi \in \mathbb{R}^n : \xi_j > 0, \ j = 1, \ldots, n \} \]

The space \(\mathcal{C}_0^\infty (\Omega) \) is the space of functions \(u \in \mathcal{C}_0^\infty \) with compact support in \(\Omega \). The space of distributions on \(\Omega \) is denoted \(\mathcal{D}' (\Omega) \).

Definition 1. Let \(A \) be a finite subset of \(\mathbb{R}^n_+ \), the Newton's polyhedron of \(A \), denoted \(\Gamma (A) \), is the convex hull of \(\{ 0 \} \cup A \).

A Newton's polyhedron \(\Gamma \) is always characterized by
\[
\Gamma = \bigcap_{q \in A (\Gamma)} \{ \alpha \in \mathbb{R}^n_+, \langle q, \alpha \rangle \leq 1 \},
\]
where \(A (\Gamma) \) is a finite subset of \(\mathbb{R}^n \ \{ 0 \} \).

Definition 2. Let \(\Gamma = \bigcap_{q \in A (\Gamma)} \{ \alpha \in \mathbb{R}^n_+, \langle q, \alpha \rangle \leq 1 \} \) be a Newton's polyhedron, \(\Gamma \) is said to be regular, if
\[
q_j > 0, \ \forall j = 1, \ldots, n; \ \forall q = (q_1, \ldots, q_n) \in A (\Gamma)
\]
We associate with a regular Newton's polyhedron \(\Gamma \) the following elements
\[
\mathcal{V} (\Gamma) = \{ s^0 = 0, s^1, \ldots, s^{\alpha (\Gamma)} \} \text{ the set of vertices of } \Gamma
\]
\[
|\xi|_\Gamma = \sum_{\nu \in \mathcal{V} (\Gamma)} |\xi^{\nu}|, \ \xi \in \mathbb{R}^n, \ \text{where } |\xi|^\nu = |\xi_1|^{|\nu_1|} \cdots |\xi_n|^{|\nu_n|}
\]
\[
k (\alpha, \Gamma) = \inf \{ t > 0, t^{-1} \alpha \in \Gamma \} = \max_{q \in A (\Gamma)} \langle \alpha, q \rangle, \ \alpha \in \mathbb{R}^n_+
\]
\[
\mu (\Gamma) = \max_{q \in A (\Gamma)} q_j^{-1} \text{ called the formal order of } \Gamma
\]
\[1 \leq j \leq n \]

A differential operators with complex constant coefficients
\[P(D) = \sum_{\alpha} a_\alpha D^\alpha \]
has its complete symbol
\[P(\xi) = \sum_{\alpha} a_\alpha \xi^\alpha \]

Definition 3. The Newton's polyhedron of \(P \), denoted \(\Gamma (P) \), is the convex hull of the set
\[\{ 0 \} \cup \{ \alpha \in \mathbb{Z}^n_+ : a_\alpha \neq 0 \} \]
Define the weight function
\[|\xi|_P = \sum_{\alpha \in \mathcal{V} (P)} |\xi_\alpha|, \ \forall \xi \in \mathbb{R}^n, \]
where \(\mathcal{V} (P) = \mathcal{V} (\Gamma (P)) \) is the set of vertices of \(\Gamma (P) \). Recall
\[d(\xi) := \text{dist}(\xi, N(P)), \ \text{where } N(P) := \{ \zeta \in \mathbb{C}^n : P(\zeta) = 0 \} \]
Definition 4. The differential operator $P(D)$ is said hypoelliptic in Ω, if

$$\text{singsupp} P(D)u = \text{singsupp} u, \forall u \in \mathcal{D}'(\Omega)$$

The characterization of hypoelliptic differential operators with constant coefficients is due to L. Hörmander. The following result, see the theorem 4.1.3 of [7], gives some characterizations of the hypoellipticity.

Theorem 1. Let $P(D)$ be a differential operator with constant coefficients, the following properties are equivalent:

i) The operator $P(D)$ is hypoelliptic.

ii) $\exists C > 0, \exists d > 0, |\xi|^d \leq Cd(\xi), \forall \xi \in \mathbb{R}^n, |\xi| \text{ large}.$

iii) If $\xi \in \mathbb{R}^n, |\xi| \to +\infty$, then $\frac{|D^\alpha P(\xi)|}{|P(\xi)|} \to 0, \forall \alpha \neq 0.$

iv) $\exists C > 0, \exists \rho > 0, \frac{|D^\alpha P(\xi)|}{|P(\xi)|} \leq C |\xi|^{-\rho|\alpha|}, \forall \xi \in \mathbb{R}^n, |\xi| \text{ large}.$

The connection between an hypoelliptic operator and its Newton’s polyhedron is given by the following proposition.

Proposition 2. The Newton’s polyhedron of an hypoelliptic differential operator is regular.

Proof. See [3].

Remark 1. The converse is not true, $\Box = D_x^2 - D_y^2$ has a regular Newton’s polyhedron with vertices $\{(0,0), (2,0), (0,2)\}$, but the operator \Box is not hypoelliptic.

We introduce multi-quasielliptic polynomials which are a natural generalization of the classical quasi-elliptic operators. These operators were characterized first by V. P. Mikhaïlov [8], then studied by J. Friberg [3] and finally far developed by S. G. Gindikin and L. R. Volevich [4].

Definition 5. The polynomial $P(\xi) = \sum a_\alpha \xi^\alpha$ is said to be multi-quasielliptic, if

i) its Newton’s polyhedron $\Gamma(P)$ is regular.

ii) $\exists C > 0$ such that $|\xi|_p \leq C(1 + |P(\xi)|), \forall \xi \in \mathbb{R}^n$

Proposition 3. A multi-quasielliptic operator $P(D)$ is hypoelliptic.

Proof. See [3] or [4].

Remark 2. The converse is not true. Indeed, consider the following polynomial

$$P(\xi, \eta) = i\xi^5 + i\xi\eta^4 - 4i\xi^4\eta - 4i\xi^2\eta^3 + 6i\xi^3\eta^2 + i\xi^3 + i\xi\eta^2 + \xi^4\eta^2 + \eta^6 - 4\xi^3\eta^3 - 4\xi\eta^5 + 6\xi^2\eta^4 + \eta^2\xi^2 + \eta^4,$$

which is hypoelliptic thanks to the theorem 4.1.9 of [7]. We have

$$P_{(1,1)}(\xi, \eta) = \eta^2 \left(\xi^4 + \eta^4 - 4\xi^3\eta - 4\xi\eta^3 + 6\xi^2\eta^2 \right) = \eta^2 (\xi - \eta)^4$$

The $q = (1,1)$-quasiprincipal part of $P(\xi, \eta)$ degenerates on the straight $\xi = \eta$, hence the polynomial $P(\xi, \eta)$ is not multi-quasielliptic, see [4].
3. Multi-anisotropic Gevrey vectors

The multi-anisotropic Gevrey spaces were explicitly defined by L. Zanghirati in [10] for studying the multi-anistropic Gevrey regularity of multi-quasielliptic differential operators by the method of elliptic iterates.

Definition 6. Let Ω be an open subset of \mathbb{R}^n, Γ a regular Newton’s polyhedron and $s \geq 1$. Denote $G^{s, \Gamma}(\Omega)$ the space of functions $u \in C^\infty(\Omega)$ such that $\forall K \subset \Omega, \exists C > 0, \forall \alpha \in \mathbb{Z}^n_+$,
\[
\sup_{x \in K} |D^\alpha u(x)| \leq C^{s|\alpha|+1}(\alpha, \Gamma)^{s\mu(\alpha, \Gamma)}
\]

Example 1. If Γ is the regular Newton’s polyhedron defined by
\[
\Gamma = \left\{ \alpha \in \mathbb{R}^n_+ : \sum_{j=1}^n m_j^{-1}\alpha_j \leq 1, m_j \in \mathbb{R}_+ \right\},
\]
then
\[
G^{s, \Gamma}(\Omega) = \left\{ u \in C^\infty(\Omega), \forall K \subset \Omega, \exists C > 0, \forall \alpha \in \mathbb{Z}^n_+ \right\},
\]
where $q := \left(\frac{m_1}{m_1}, ..., \frac{m_n}{m_n} \right)$ and $m := \max_j m_j$, i.e. $G^{s, \Gamma}(\Omega)$ is the classical anisotropic Gevrey space $G^{s, q}(\Omega)$. If $m_1 = m_2 = ... = m_n$, we obtain the classical isotropic Gevrey space $G^s(\Omega)$.

Definition 7. Let Γ be the regular Newton’s polyhedron of $P(D)$ and $s \geq 1$, the space of Gevrey vectors of $P(D)$, denoted $G^s(\Omega, P)$, is the space of $u \in C^\infty(\Omega)$ such that, $\forall K$ compact of $\Omega, \exists C > 0, \forall l \in \mathbb{N}$,
\[
\|P^l u\|_{L^\infty(K)} \leq C^{l+1}(l!)^{s\mu(\Gamma)}
\]

Remark 3. We can take $t^{s\mu(\Gamma)}$ instead of $(l!)^{s\mu(\Gamma)}$.

We recall a result of L. Zanghirati [10] and C. Bouzar and R. Chaïli [1] which gives the multi-anisotropic Gevrey regularity of Gevrey vectors of multi-quasielliptic operators.

Theorem 4. Let Ω be an open subset of \mathbb{R}^n, $s > 1$ and P a linear differential operator with complex constant coefficients with regular Newton’s polyhedron Γ. Then the following assertions are equivalent:

i) P is multi-quasielliptic in Ω

ii) $G^s(\Omega, P) = G^{s, \Gamma}(\Omega)$

4. Multi-anisotropic Gevrey hypoellipticity of hypoelliptic operators

In this section, $P = \sum a_\alpha D^\alpha$ is an hypoelliptic differential operator with complex constant coefficients.

Definition 8. A finite set $H \subset \mathbb{R}^n_+$ is said a polyhedron of hypoellipticity of P, if

1. $\forall \nu \in H, \exists C > 0, \forall \xi \in \mathbb{R}^n, |\xi|^{l'} \leq C (1 + d(\xi))$

2. H has vertices with rational components.

3. H is regular.
Remark 4. If \(\nu \) belongs to the convex hull of \(\mathcal{H} \), i.e. \(\nu = \sum_{i \in I} \lambda_i \beta_i \), where \(\beta_i \in \mathcal{H} \) and \(\sum_{i \in I} \lambda_i = 1, \lambda_i \geq 0 \), then \(|\xi|^\nu \leq C (1 + d(\xi)) \), \(\forall \xi \in \mathbb{R}^n \), therefore it is natural to assume that \(\mathcal{H} \) is convex.

Remark 5. The set \(\mathcal{H} \) is never empty, as an hypoelliptic operator satisfies: \(\exists C > 0, \exists d > 0, |\xi|^d \leq C (1 + d |\xi|) \), \(\forall \xi \in \mathbb{R}^n \).

Definition 9. Denote \(\sigma \) be the smallest natural integer such that \(\sigma \mathcal{V}(\mathcal{H}) \subset 2\mathbb{N}_0^n \), and define the differential operator \(Q_{\mathcal{H}}(D) \), by

\[
Q_{\mathcal{H}}(D) = \sum_{\alpha \in \mathcal{V}(\mathcal{H})} D^{\sigma \alpha}
\]

Proposition 5. The operator \(Q_{\mathcal{H}}(D) \) is multi-quasielliptic.

Proof. The Newton’s polyhedron of the differential operator \(Q_{\mathcal{H}} \) has vertices with even positive integer components. Then

\[
|Q_{\mathcal{H}}(\xi)| = \sum_{\alpha \in \mathcal{V}(\mathcal{H})} |\xi^{\sigma \alpha}| = |\xi|_{Q_{\mathcal{H}}},
\]

hence

\[
1 + |\xi|_{Q_{\mathcal{H}}} \leq (1 + |Q_{\mathcal{H}}(\xi)|), \forall \xi \in \mathbb{R}^n
\]

Lemma 6. Let \(u \) be a solution of the equation \(Pu = 0 \) defined in the ball \(B_\varepsilon = \{ x \in \mathbb{R}^n : |x| < \varepsilon \} \), and let \(\varphi \in C_0^\infty(B_1) \) and the integer \(s \geq 1 \). Then

\[
\sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \left(\int_{B_\varepsilon} |P^{(\alpha)}(D)(\varphi^\varepsilon u)|^2 \right)^{1/2} \leq C \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \left(\int_{B_\varepsilon} |P^{(\alpha)}(D)u|^2 \right)^{1/2} dx,
\]

where \(C \) is independent of \(\varepsilon \) and \(u \).

Remark 6. In the lemma \(\varphi^\varepsilon \) denotes \(\varphi^\varepsilon(x) := \varphi(\frac{x}{\varepsilon}) \).

Thanks to this lemma, we obtain the following result.

Lemma 7. Let \(\beta \in \mathbb{Z}_n^+ \cap \sigma \mathcal{H} \), then there exists a constant \(C > 0 \), such that for every solution \(u \) of \(Pu = 0 \) in \(B_\varepsilon \) and \(\varepsilon \in [0,1] \), we have

\[
\varepsilon^{2\alpha} \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \left(\int_{B_\varepsilon^2} |P^{(\alpha)}(D)D^\beta u|^2 \right)^{1/2} dx \leq C \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \left(\int_{B_\varepsilon} |P^{(\alpha)}(D)u|^2 \right)^{1/2} dx
\]
Proof. Let $\beta \in \mathbb{Z}^n_+ \cap \sigma \mathcal{H}$, from (1) of definition 4.1, we have
\[|\xi^\beta| \leq C^\sigma (1 + d(\xi))^\sigma, \]
hence $\exists C > 0, \forall \xi \in]0, 1[, \forall \xi \in \mathbb{R}^n$,
\[(3) \quad \varepsilon^\sigma |\xi^\beta| \leq C^\sigma d_{\sigma, \varepsilon}(\xi) \]
Multiplying (4.2) by $(2\pi)^{-n} |\hat{v}(\xi)|$ and integrating with respect to ξ, we obtain
\[(4) \quad \varepsilon^{2\alpha} \int |D^\beta v|^2 \ dx \leq C^2 ||v||^2_{\sigma, \varepsilon} \]
Let $\varphi \in C^{\infty}_0(B_1)$ equals 1 in $B_{\frac{1}{2}}$ and apply the estimate (4.3) to $v = P(\alpha) (D) (\varphi^\varepsilon u)$, then
\[\varepsilon^{2\alpha} \int |P(\alpha) (D) D^\beta (\varphi^\varepsilon u)|^2 \ dx \leq C^2 ||P(\alpha) (D) (\varphi^\varepsilon u)||^2_{\sigma, \varepsilon} \]
\[\varepsilon^{2\alpha} \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \int |P(\alpha) (D) D^\beta (\varphi^\varepsilon u)|^2 \ dx \leq C^2 \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} ||P(\alpha) (D) (\varphi^\varepsilon u)||^2_{\sigma, \varepsilon} \]
consequently lemma 4.6 gives
\[\varepsilon^{2\alpha} \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \int |P(\alpha) (D) D^\beta (\varphi^\varepsilon u)|^2 \ dx \leq C^2 \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \int |P(\alpha) (D) (u)|^2 \ dx \]
As $\varphi^\varepsilon(x) = \varphi\left(\frac{x}{\varepsilon}\right) = 1$ in $B_{\frac{1}{2}}$, then
\[\varepsilon^{2\alpha} \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \int_{B_{\frac{1}{2}}} |P(\alpha) (D) D^\beta u|^2 \ dx \leq C \sum_{\alpha \neq 0} \varepsilon^{-2|\alpha|} \int_{B_1} |P(\alpha) (D) (u)|^2 \ dx \]
\[\square \]

Proposition 8. Let Ω be a bounded open set in \mathbb{R}^n and $\beta \in \mathbb{Z}^n_+ \cap \sigma \mathcal{H}$, then there exists a constant $C > 0$, such that for every u solution of $Pu = 0$ in Ω and $\delta \in]0, 1[$, we have
\[\sum_{\alpha \neq 0} \delta^{-2|\alpha|} \int_{\Omega_\delta} |P(\alpha) (D) D^\beta u|^2 \ dx \leq C \delta^{-2\sigma} \sum_{\alpha \neq 0} \delta^{-2|\alpha|} \int_{\Omega} |P(\alpha) (D) (u)|^2 \ dx, \]
where
\[\Omega_\delta = \{ x \in \Omega : \text{dist}(x, \partial \Omega) > \delta \} \]
Proof. The proof is obtained from the precedent lemma and follows the same reasoning as the proof of theorem 4.4.2 of [7].

Corollary 9. Let $P(D)$ an hypoelliptic operator, then $\exists C > 0$ such that for every solution of $P(D) u = 0$ in $\Omega, \forall \varepsilon \in]0, 1[, \forall j = 1, 2, \ldots$, we have
\[\varepsilon^{2\alpha} \sum_{\theta \neq \alpha \in \mathbb{N}_0^n} \varepsilon^{-2|\alpha|} \left\| Q_H(D) P(\alpha) (D) u \right\|^2_{L^2(\Omega_{\varepsilon(j-1)})} \leq C \sum_{\theta \neq \alpha \in \mathbb{N}_0^n} \varepsilon^{-2|\alpha|} \left\| P(\alpha) (D) u \right\|^2_{L^2(\Omega_{\varepsilon(j-1)})} \]
The principal result of this section is the following theorem.

Theorem 10. Let u be a solution of the hypoelliptic equation $P(D) u = 0$ in Ω, then for every $\omega \subset \subset \Omega$, there is a constant $C > 0$, such that $\forall j \in \mathbb{N}$, we have
\[\left\| Q_H^j(D) u \right\|_{L^2(\omega)} \leq C^{(j+1)} j^{\sigma j} \]
Proof. Since $\rho = \rho(\omega, \partial \Omega) > 0$, then there exists $\delta \in]0, \rho[$ such that $\omega \subset \Omega_\delta \subset \Omega$. Take $\varepsilon = \frac{\delta}{j}$, $j \in \mathbb{N}$, and let us show by induction on j the following estimate

$$
\varepsilon^{2j+2m} \sum_{0 \neq \alpha \in \mathbb{N}_0^n} \varepsilon^{-2|\alpha|} \left\| (Q^j_H(D) P^{(\alpha)}(D) u) \right\|^2_{L^2(\Omega_\varepsilon)} < C^{2(j+1)},
$$

where m is the order of P.

As every solution u of an hypoelliptic equation is C^{∞}, then there exists $C > 0$ such that (4.6) is satisfied for $j = 0$. Suppose that (4.6) is true for $j \leq l$ ($l \geq 0$), we have to prove that it remains true for $j = l + 1$. Since $v = Q^l_H(D) u$ is also a solution of equation $P(D) u = 0$, then from corollary 4.10, we obtain

$$
\varepsilon^{2(l+1)+2m} \sum_{0 \neq \alpha} \varepsilon^{-2|\alpha|} \left\| (Q^{l+1}_H(D) P^{(\alpha)}(D) u) \right\|^2_{L^2(\Omega_{\varepsilon(l+1)})} \leq C^{2(l+1)}.
$$

By the induction hypothesis, we have

$$
\varepsilon^{2l+2m} \sum_{0 \neq \alpha} \varepsilon^{-2|\alpha|} \left\| P^{(\alpha)}(D) Q^l_H(D) u \right\|^2_{L^2(\Omega_{\varepsilon l})} \leq C_1^{2(l+1)},
$$

consequently, we obtain

$$
\varepsilon^{2\sigma(l+1)+2m} \sum_{0 \neq \alpha} \varepsilon^{-2|\alpha|} \left\| (Q^{l+1}_H(D) P^{(\alpha)}(D) u) \right\|^2_{L^2(\Omega_{\varepsilon(l+1)})} \leq C_2^{2(l+2)},
$$

hence $\forall j \in \mathbb{N}$, we have

$$
\varepsilon^{2\sigma j+2m} \sum_{0 \neq \alpha} \varepsilon^{-2|\alpha|} \left\| P^{(\alpha)}(D) Q^j_H(D) u \right\|^2_{L^2(\Omega_{\varepsilon j})} \leq C_2^{2(j+1)}.
$$

The estimate (4.8) with $|\alpha| = m$ gives $\forall j \in \mathbb{N},$

$$
\left\| Q^j_H(D) u \right\|^2_{L^2(\Omega_{\varepsilon j})} \leq \varepsilon^{-2\sigma j} C_2^{2(j+1)},
$$

as $\varepsilon = \frac{\delta}{j}$, then

$$
\left\| Q^j_H(D) u \right\|^2_{L^2(\Omega_{\varepsilon j})} \leq \left(\frac{j}{\delta} \right)^{2\sigma j} C_2^{2(j+1)} \leq C(j+1)^{2\sigma j},
$$

hence

$$
\left\| Q^j_H(D) u \right\|_{L^2(\Omega_{\varepsilon j})} \leq C(j+1)^{\sigma j}.
$$

We denote $G^{\mu, \mathcal{H}}(\Omega)$ the multi-anisotropic Gevrey space associated with \mathcal{H} and by $\mu_\mathcal{H}$ and μ_Q the respective formal orders of the Newton’s polyhedrons \mathcal{H} and $\Gamma(Q_\mathcal{H})$, then we have the following relations

$$
\Gamma(Q_\mathcal{H}) = \sigma \mathcal{H} \quad \text{and} \quad \mu_Q = \sigma \mu_\mathcal{H}.
$$

The principal result of this paper is the following theorem.

Theorem 11. Every solution $u \in \mathcal{D}'(\Omega)$ of the hypoelliptic equation $P(D) u = 0$ is a function of $G^{\mu_\mathcal{H}, \mathcal{H}}(\Omega)$.
Proof. The theorem 4.11 says that every u solution of the hypoelliptic equation $Pu = 0$ is a Gevrey vector of the operator $Q_{\mathcal{H}}$, i.e. we have $u \in G^{s\sigma}_{\mathcal{H}}(\Omega, Q_{\mathcal{H}})$. From theorem 3.4 and as the operator $Q_{\mathcal{H}}$ is multi-quasielliptic, then we have $u \in G^{s\sigma}_{\mathcal{H}}(\Omega)$, and consequently $u \in G^{s\sigma}_{\mathcal{H}}(\Omega)$. A simple computation shows that in general $G^{s, \sigma}(\Omega) = G^{ss, \mathcal{H}}(\Omega)$, hence $u \in G^{ss, \mathcal{H}}(\Omega)$. □

Remark 7. It is interesting to compare the result of the theorem with the microlocal Gevrey regularity result obtained in [2].

References

[1] C. Bouzar, R. Chaïli, Gevrey vectors of multi-quasieilliptic systems, Proc. Amer. Math. Soc. 131 (5) (2003), 1565-1572
[2] C. Bouzar, R. Chaïli, A Gevrey microlocal analysis of multi-anisotropic differential operators. Rend. Sem. Mat. Univ. Pol. Torino, Vol. 64, 3, (2006), 305-318
[3] J. Friberg, Multi-quasieilliptic polynomials, Ann. Sc. Norm. Sup. Pisa. Cl. di. Sc. 21 (1967), 239-260.
[4] S. G. Gindikin, L. R. Volevich, The method of Newton polyhedron in the theory of partial differential equations, Kluwer, (1992)
[5] G. H. Hakobyan, Estimates of the higher order derivatives of the solution of hypoelliptic equations. Rend. Sem. Mat. Univ. Pol. Torino, Vol. 61:4, (2003), 443–459.
[6] L. Hörmander, Distributions theory and Fourier analysis, Springer, (1990).
[7] L. Hörmander, Linear partial differential operators, Springer (1969).
[8] V. P. Mikhaïlov, The behavoir at infinity of a class of polynomials, Proc. Steklov. Inst. Mat. 91 (1967), 59-80.
[9] L. Rodino, Linear partial differential operators in Gevrey spaces, World Scientific, (1993).
[10] L. Zanghirati, Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Suppl. Boll. U.M.I. (1980), 177-195.

Oran-Essenia University, Algeria
E-mail address: bouzar@yahoo.com

University of Bechar, Algeria
E-mail address: Ahmedalimat@yahoo.fr