Complete genome sequence of *Acidimicrobium ferrooxidans* type strain (ICP¹)

Alicia Clum¹, Matt Nolan¹, Elke Lang², Tijana Glavina Del Rio¹, Hope Tice¹, Alex Copeland¹, Jan-Fang Cheng¹, Susan Lucas¹, Feng Chen¹, David Bruce³, Lynne Goodwin³, Sam Pitluck¹, Natalia Ivanova¹, Konstantinos Mavromatis¹, Natalia Mikhailova¹, Amrita Pati¹, Amy Chen⁴, Krishna Palaniappan³, Markus Göker², Stefan Spring², Miriam Land⁵, Loren Hauser⁵, Yun-Juan Chang⁵, Cynthia C. Jeffries⁵, Patrick Chain¹,⁶, Jim Bristow¹, Jonathan A. Eisen¹,⁷, Victor Markowitz⁴, Philip Hugenholtz¹, Nikos C. Kyrpides¹, Hans-Peter Klenk², and Alla Lapidus¹*

¹ DOE Joint Genome Institute, Walnut Creek, California, USA
² DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico USA
⁴ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁵ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁶ Lawrence Livermore National Laboratory, Livermore, California, USA
⁷ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Alla Lapidus

Keywords: Moderate thermophile, ferrous-iron-oxidizing, acidophile, Acidimicrobiales.

A. ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family *Acidimicrobiaceae* and in the order *Acidimicrobiales*. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO₂ concentration is characteristic for *A. ferrooxidans*. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order *Acidimicrobiales*, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the *Genomic Encyclopedia of Bacteria and Archaea* project.

Introduction

A. ferrooxidans strain ICP* (DSM 10331 = NBRC 103882 = JCM 15462) is the type strain of the species, and was first isolated by Clark and Norris from hot springs in the Krýsuvík geothermal area, Iceland [1, 2]. For over fifteen years *A. ferrooxidans* ICP* remained extremely isolated phylogenetically as the sole type strain in the actinobacterial subclass *Acidimicrobidae* [3] (Figure 1). Only at the time this manuscript was written, Kurahashi et al. [4] and Johnson et al. [5] described three novel type strains representing one novel family, *Iamiaceae* [4], and two novel genera within the *Acidimicrobiales* [5]: *Iamia majanohamensis* (isolated from sea cucumber [4]), *Ferromicrobium acidiphilum* (from a mine site in North Wales, UK [5]) and *Ferrithrix thermotolerans* (from Yellowstone National Park, Wyoming, USA [5]). With the exception of *I. majanohamensis*, all these strains live in acidic environments. Here we present a summary classification and a set of features for *A. ferrooxidans* ICP* (Table. 1), together with the description of the complete genomic sequencing and annotation.
Table 1. Classification and general features of *A. ferrooxidans* ICP based on MIGS recommendations [12]

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	*Bacteria*	
	Phylum	*Actinobacteria*	TAS [13]
	Class	*Actinobacteria*	TAS [3]
	Order	*Acidimicrobiales*	TAS [3]
	Suborder	*Acidimicrobineae*	
	Family	*Acidomicrobiaceae*	TAS [3]
	Genus	*Acidimicrobium*	TAS [1]
	Species	*Acidimicrobium ferrooxidans*	TAS [1]
	Type strain	ICP	
	Gram stain	positive	TAS [1]
	Cell shape	rod shaped	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	nonsporulating	TAS [1]
	Temperature range	moderate thermophile, 45-50°C	TAS [1]
	Optimum temperature	48°C	TAS [1]
	Salinity	not reported	
MIGS-22	Oxygen requirement	aerobic	TAS [1]
	Carbon source	CO₂ (autotrophic), yeast extract (heterotrophic) autotrophic: oxidation of ferrous iron with	TAS [1]
	Energy source	oxygen as the electron acceptor; heterotrophic: yeast extract	
MIGS-6	Habitat		
MIGS-15	Biotic relationship	free living	NAS
MIGS-14	Pathogenicity	none	NAS
	Biosafety level	1	TAS [14]
	Isolation	hot springs	TAS [2]
MIGS-4	Geographic location	Krisuvik geothermal area, Iceland	TAS [2]
MIGS-5	Sample collection time	before 1993	TAS [1]
MIGS-4.1	Latitude – Longitude	63.93, -22.1	TAS [2]
MIGS-4.3	Depth	not reported	
MIGS-4.4	Altitude	not reported	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [15]. If the evidence code is IDA the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.

Classification and features

Members of the species *A. ferrooxidans* have been isolated or identified molecularly from warm, acidic, iron-, sulphur- or mineral-sulfide-rich environments. Strain TH3, isolated from a copper leaching dump [1], shares 100% 16S rRNA gene sequence identity with strain ICP, whose genome sequence is reported here. The moderately thermophilic bacterium N1-45-02 (EF199986) from a spent Canadian copper sulfide heap, and strain Y00168 from a geothermal site in Yellowstone National Park [6] are the only other pure cultivated members of the species. *Acidimicrobium* species in mixed cultures used for bioleaching were frequently reported [7]. Uncultured clone sequences with significant sequence similarity (>98%) were observed by Inskeep and colleagues from several hot springs in Yellowstone National Park (e.g. AY882832,

http://standardsingenomics.org
Acidimicrobium ferrooxidans type strain (ICPT)

DQ179032 and others), and from hydrothermally modified volcanic soil at Mount Hood (EU419128). Screening of environmental genomic samples and surveys reported at the NCBI BLAST server indicated no closely related phylotypes (the highest observed sequence identity was 91%) that can be linked to the species or genus. Several DGGE analyses indicated the presence of members of the genus Acidimicrobium in metal-rich mine waters and geothermal fields around the world.

Figure 1 shows the phylogenetic neighborhood of A. ferrooxidans strain ICPT in a 16S rRNA based tree. The sequences of the two identical copies of the 16S rRNA genes in the genome differ in 16 positions (1.1%) from the previously published 16S rRNA sequence generated from of A. ferrooxidans DSM 10331 (U75647). The higher sequence coverage and overall improved level of sequence quality in whole-genome sequences, as compared to ordinary gene sequences, implies that the significant difference between the genome data and the previously reported 16S rRNA gene sequence might be due to sequencing errors in the previously reported sequence data.

Cells of strain ICPT are rather small (0.4 µm × 1-1.5 µm) Gram-positive rods [1]. Optimal growth occurs at 45-50°C, pH 2, with a maximal doubling time of six hours at 48°C [1]. Cells are motile during heterotrophic growth on yeast extract. ICPT forms small colonies when grown autotrophically on ferrous iron containing solid medium under air [1]. The closely related strain TH3 differs from the type strain ICPT only by its tendency to grow in filaments, which has not been observed for strain ICPT [1]. Strain ICPT can be distinguished from members of the genus Sulfobacillus by its lower requirement of CO₂ for autotrophic growth [1]. Iron oxidation by ICPT cells was not influenced by supplementation of either glucose nor by increased CO₂ concentration [1]. Thin section electron micrographs of A. ferrooxidans strains indicate intracellular vesicles when cells were grown on ferrous iron and yeast extract [1] (Figure 2).

Figure 1. Phylogenetic tree highlighting the position of A. ferrooxidans strain ICPT relative to all other type strains within the Acidimicrobiales and the type strains of all other orders within the Actinobacteria. The tree was inferred from 1,306 aligned characters [8, 9] of the 16S rRNA gene under the maximum likelihood criterion [10] and rooted with Rubrobacteriales. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [11] are shown in blue, published genomes in bold.

Chemotaxonomy

The murein of A. ferrooxidans ICPT contains mesoDAP, like all other characterized type species from the Acidimicrobiales [3, 4]. It differs from the other characterized Acidimicrobiales strains in MK-9(H₈) being the predominant menaquinone, whereas F. acidiphilum has MK-8(H₁₀) as the predominant menaquinone [5], and I. majanohamensis possesses a mixture MK-9(H₈), MK-9(H₄), and MK-9(H₆) [4]. The major cellular fatty acids of strain ICPT are saturated branched acids: iso- (i-) C₁₆:0 (83%) and anteiso- (ai-) C₁₇:0 (8%) [4], which is more similar to F. thermotolerans (90% i-C₁₆:0) and F. acidiphilum (64% i-C₁₆:0 and 11% i-C₁₄:0) [5], than to I. majanohamensis which predominantly possesses straight chain acids (C₁₇:0, C₁₆:0 and C₁₅:0) [4].
Figure 2. Scanning electron micrograph of *A. ferrooxidans* ICP (Manfred Rohde, Helmholtz Centre for Infection Research, Braunschweig)

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of each phylogenetic position, and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project. The genome project is deposited in the Genome OnLine Database [11] and the complete genome sequence in GenBank (CP001631). Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	One Sanger library: 8kb pMCL200
MIGS-29	Libraries used	One 454 pyrosequence standard library
MIGS-30	Libraries used	and one Illumina library
MIGS-31.2	Sequencing platforms	ABI3730, 454 GS FLX, Illumina GA
MIGS-30	Sequencing coverage	6.8 x Sanger; 52.9 x pyrosequence
MIGS-32	Assemblers	Newbler, Arachne
MIGS-32	Gene calling method	Prodigal
MIGS-32	INSDC / Genbank ID	CP001631
MIGS-32	Genbank Date of Release	not available
MIGS-32	GOLD ID	Gc01023
MIGS-32	Database: IMG-GEBA	2501533204
MIGS-13	Source material identifier	DSM 10331
MIGS-13	Project relevance	Tree of Life, GEBA
Acidimicrobium ferrooxidans type strain (ICPT)

Growth conditions and DNA isolation
A. ferrooxidans strain ICPT, DSM 10331, was grown in DSMZ medium 709 (Acidimicrobium Medium) at 45°C. DNA was isolated from 1-1.5 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) with a modified protocol for cell lysis containing an additional 200µl lysozyme and doubled (1 hour) incubation at 37°C.

Genome sequencing and assembly
The genome was sequenced using a combination of Sanger, 454 and Illumina sequencing platforms. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI web site. 454 Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 2356 overlapping fragments of 1000bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the Arachne assembler. Possible mis-assemblies were corrected and gaps between contigs were closed by custom primer walks from sub-clones or PCR products. 118 Sanger finishing reads were produced. Illumina reads were used to improve the final consensus quality using an in-house developed tool (the Polisher). The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 59.7 x coverage of the genome.

Genome annotation
Genes were identified using Prodigal [16] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [17]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes (IMG-ER) platform [18].

Genome properties
The genome is 2,158,157 bp long and comprises one main circular chromosome with a 68.3% GC content (Table 3 and Figure 3). Of the 2,092 genes predicted, 2038 were protein coding genes, and 54 RNAs. Seventy four pseudogenes were also identified. A total of 75.7% of the genes were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Attribute	Value	% of Total
Genomic size (bp)	2,158,157	100.00%
DNA Coding region (bp)	1,988,736	92.15%
DNA G+C content (bp)	1,473,791	68.29%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2092	100.00%
RNA genes	54	2.58%
rRNA operons	2	
Protein-coding genes	2038	97.42%
Pseudo genes	74	3.54%
Genes with function prediction	1584	75.72%
Genes in paralog clusters	1969	9.37%
Genes assigned to COGs	1526	72.94%
Genes assigned Pfam domains	1603	76.63%
Genes with signal peptides	591	28.25%
Genes with transmembrane helices	436	20.84%
CRISPR repeats	2	
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 4. Number of genes associated with the 21 general COG functional categories

Code	Value	%	Description
J	134	6.6	Translation, ribosomal structure and biogenesis
A	1	0.0	RNA processing and modification
K	94	4.6	Transcription
L	119	5.8	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	24	1.2	Cell cycle control, mitosis and meiosis
Y	0	0.0	Nuclear structure
V	22	1.1	Defense mechanisms
T	73	3.6	Signal transduction mechanisms
M	84	4.1	Cell wall/membrane biogenesis
N	31	1.5	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
Acidimicrobium ferrooxidans type strain (ICPT)

Code	Value	%	Description
O	70	3.4	Posttranslational modification, protein turnover, chaperones
C	149	7.3	Energy production and conversion
G	87	4.3	Carbohydrate transport and metabolism
E	172	8.4	Amino acid transport and metabolism
F	54	2.6	Nucleotide transport and metabolism
H	110	5.4	Coenzyme transport and metabolism
I	86	4.2	Lipid transport and metabolism
P	60	2.9	Inorganic ion transport and metabolism
Q	34	1.7	Secondary metabolites biosynthesis, transport and catabolism
R	151	7.4	General function prediction only
S	98	4.8	Function unknown
-	512	25.1	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Petra Aumann for growing *A. ferrooxidans* cultures and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, as well as German Research Foundation (DFG) INST 599/1-1.

References

1. Clark DA, Norris PR. *Acidimicrobium ferrooxidans* gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with *Sulfobacillus* species. *Microbiology* 1996; **142**:785-790 doi:10.1099/00221287-142-4-785

2. Norris PR, Owen JP. Mineral sulphide oxidation by enrichment cultures of novel thermoacidophilic bacteria. *FEMS Microbiol Rev* 1993; **11**:51-55 doi:10.1111/j.1574-6976.1993.tb00266.x

3. Stackebrandt E, Rainey F, Ward-Rainey N. Proposal for a new hierarchic classification system, *Actinobacteria* classis nov. *Int J Syst Bacteriol* 1997; **47**:479-491 doi:10.1099/00221287-47-2-479

4. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. *Syst Biol* 2008; **57**:758-771 PMID:18853362 doi:10.1080/10635150802429642

5. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. *Iamia majanoahamensis* gen. nov., sp. nov., an actinobacterium isolated from sea cucumber *Holothuria edulis*, and proposal of *lamiaeae* fam. nov. *Int J Syst Evol Microbiol* 2009; **59**:869-873 PMID:19329622 doi:10.1099/ijs.0.005611-0

6. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB. *Ferrimicrobium acidophilum* gen. nov., sp. nov. and *Ferrithrix thermotolerans* gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. *Int J Syst Evol Microbiol* 2009; **59**:1082-1089 PMID:19406797 doi:10.1099/ijs.0.65409-0

7. Johnson DB, Okibe N, Roberto FF. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. *Arch Microbiol* 2003; **180**:60-68 PMID:12802481 doi:10.1007/s00203-003-0562-3

8. Cleaver AA, Burton NP, Norris PR. A novel *Acidimicrobium* species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. *Appl Environ Microbiol* 2007; **73**:4294-4299 PMID:17468267 doi:10.1128/AEM.02658-06
9. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; **17:**540-552 [PMID:10742046]

10. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; **18:**452-464 [PM-ID:11934745] doi:10.1093/bioinformatics/18.3.452

11. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2008; **36:**D475-479 [PMID:17981842] doi:10.1093/nar/gkm884

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; **26:**541-547 [PMID:18464787] doi:10.1038/nbt1360

13. Cavalier-Smith T. The neomuran origin of archaeabacteria, the negibacterial root of the universal tree and bacterial megaclassification. *Int J Syst Evol Microbiol* 2002; **52:**7-76 [PMID:11837318]

14. Anonymous. Biological Agents: Technical rules for biological agents. <www.baua.de>.

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; **25:**25-29 [PMID: 10802651] doi:10.1038/75556

16. Anonymous. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. Oak Ridge National Laboratory and University of Tennessee 2009 <comp-bio.ornl.gov/Prodigal/>

17. Pati. GenePRIMP: A Gene Prediction Improvement Pipeline for microbial genomes. (Submitted).

18. Markowitz V, Mavromatis K, Ivanova N, Chen I-M, Chu K, Palaniappan K, Szeto E, Anderson J, Lykidis A, Kyrpides N. Expert Review of Functional Annotations for Microbial Genomes. (Submitted 2009).