Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish

Fan Ren1,4, Qiaohong Lin1,4, Gaorui Gong1, Xian Du2, Hong Dan1, Wenying Qin2, Ran Miao1, Yang Xiong1, Rui Xiao2, Xiaohui Li1, Jian-Fang Gui1,3 & Jie Mei1

Early embryogenesis relies on maternally inherited mRNAs. Although the mechanism of maternal mRNA degradation during maternal-to-zygotic transition (MZT) has been extensively studied in vertebrates, how the embryos maintain maternal mRNA stability remains unclear. Here, we identify Igf2bp3 as an important regulator of maternal mRNA stability in zebrafish. Depletion of maternal igf2bp3 destabilizes maternal mRNAs prior to MZT and leads to severe developmental defects, including abnormal cytoskeleton organization and cell division. However, the process of oogenesis and the expression levels of maternal mRNAs in unfertilized eggs are normal in maternal igf2bp3 mutants. Gene ontology analysis revealed that these functions are largely mediated by Igf2bp3-bound mRNAs. Indeed, Igf2bp3 depletion destabilizes while its overexpression enhances its targeting maternal mRNAs. Interestingly, igf2bp3 overexpression in wild-type embryos also causes a developmental delay. Altogether, these findings highlight an important function of Igf2bp3 in controlling early zebrafish embryogenesis by binding and regulating the stability of maternal mRNAs.

1 College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China. 2 Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071 Wuhan, China. 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 430072 Wuhan, China. 4 These authors contributed equally: Fan Ren, Qiaohong Lin. 8 Email: jmei@mail.hzau.edu.cn

https://doi.org/10.1038/s42003-020-0827-2
M
ternally inherited mRNAs direct early developmental events in vertebrates, such as egg activation, fertilization, and embryonic cell division, along with the assembly of cortical cytoskeleton. The post-transcriptional regulatory mechanisms that control maternal mRNA stability and degradation are fine-tuning and complex. In recent years, the degradation of maternal mRNA during the stage of maternal-to-zygotic transition (MZT) has been extensively studied in vertebrates, and it was found that some factors such as RNA-binding proteins (RBPs), microRNA, or codon usage mediate maternal RNA degradation. How maternal mRNAs maintain stability prior to MZT (pre-MZT) is one of the long-standing questions in the field of developmental and reproductive biology.

mRNA stability is usually modulated by their 5' cap and 3' poly (A) tail length. Recently, N6-methyladenosine (m6A), the most prevalent modification in eukaryotic mRNA, has been correlated with mRNA stability. The fate of m6A-modified mRNA was mostly determined by the "reader" proteins that were potential m6A-binding protein. Based on their mechanisms for selective binding to m6A-modified RNAs, the m6A reader proteins are divided into three classes, such as the m6A reader proteins containing a YTH domain (class I), heterogeneous nuclear ribonucleoproteins (hnRNPs), and hnRNPs, class II), and Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1-3, class III). The m6A reader YTHDF2 (YTH-domain family member 2) selectively recognized m6A-containing mRNAs and caused their degradation. IG2FBPs enhanced the stability and translation of m6A-containing mRNAs. HnRNPs selectively bound to m6A-containing RNAs through an m6A-switch mechanism and mediated RNA splicing. YTHDF2 has been shown to regulate maternal transcriptome during oocyte maturation and establish oocyte competent to ensure early embryo development in mice.

In the early zebrafish embryo, maternal mRNAs are degraded by a ythdf2-mediated pathway during the zebrafish MZT. The IGF2BPs have been reported as an RNA stabilizer in the P-body to enhance the stability of mRNAs in human cells. However, the functions of IGF2BPs are not clear in vivo, since there is no report about gene knockout studies of IGF2BPs in vertebrates. Therefore, we generated igf2bp1-3 mutant zebrafish employing CRISPR/Cas9 technology and found that only igf2bp3 mutant zebrafish displayed developmental defects during early embryogenesis. We observed that maternal-effect igf2bp3 mutant (Migf2bp3) embryos had severe defects during early embryo development and displayed a significant reduction of maternal mRNA levels at pre-MZT. Our results indicate that Igf2bp3 binds to maternal mRNAs and maintains their stability, thus adding to our knowledge about the regulatory mechanism for the fate of maternal mRNA during early embryo development.

Results

Maternal igf2bp3 is essential for early embryo development.

Tissue distribution of igf2bp3 transcript was detected by qRT-PCR. The zebrafish igf2bp3 was predominantly expressed in the ovary (Supplementary Fig. 1). To investigate the function of igf2bp3 during zebrafish development, we generated two igf2bp3 mutant lines with 2 bp deletion (named igf2bp3Δ2) and 41 bp deletion (named igf2bp3Δ41) using CRISPR-Cas9 technology (Fig. 1a). The genome sequencing results of F2 generation were shown to confirm the DNA lesion in the igf2bp3 mutants (Supplementary Fig. 2). Zebrafish Igf2bp3 protein consisted of six functional domains including two RRM domains and four KH domains. The mutations in igf2bp3Δ2 and igf2bp3Δ41 resulted in the open reading frame (ORF) shift and caused premature termination codons (Fig. 1b).

Homozygotic igf2bp3 mutants were morphologically normal, viable, and fertile. However, most maternal homozygous mutants of igf2bp3Δ2 and igf2bp3Δ41 lines displayed severe defects during early embryo development. In the following studies, we named the maternal igf2bp3 mutants as Migf2bp3. In wild type, the yolk granules coalesced during egg activation and the blastoderm was transparent at 2- and 4-cell stages, whereas the mutants displayed a defect in yolk coalescence and enriched opaque grains in the blastoderm (Fig. 1c). Early cleavage stages were characterized by the invagination of the adhesive membrane with the formation of the cleavage furrow. In Migf2bp3 embryos, cleavage furrow ingestion appeared normal before 8-cell stage. A clearly visible membrane septum was observed at 8-cell stage in wild-type embryos (black arrow), whereas the Migf2bp3 embryos lacked clearly defined septum (white arrow). Compared with a cellularized blastula in wild-type embryos at 32- and 512-cell stage, Migf2bp3 embryos exhibited non-adhesive blastomeres with rounded morphology (red arrow) (Fig. 1c). Statistically, both the igf2bp3Δ2 and igf2bp3Δ41 mutants displayed the same phenotype of defective cell division at 512-cell stage (Fig. 1d).

Migf2bp3 embryos display defects in cytoskeleton assembly.

During early embryo development, defective cell division was observed in the Migf2bp3 embryos. F-actin, a composition of the contractile ring apparatus, was normally recruited to the cleavage furrow and essential for the generation of adhesive cell walls. During the first embryonic division in wild-type zebrafish embryos, F-actin was recruited to and accumulated along the furrow to form the contractile ring (Fig. 2a). However, the amount of F-actin in the contractile ring was greatly reduced in Migf2bp3 embryos during furrow initiation. During cytokinesis at 4- and 8-cell stages, F-actin was concentrated at the cleavage furrow to form an adhesive cell wall in wild-type zebrafish embryos. The Migf2bp3 embryos exhibited decreased accumulation of F-actin in the cleavage furrow. Moreover, cytokinesis failure with lack of blastomere coherence appeared by the third cell cycle (Fig. 2a).

Next, we checked the tubulin structure in the embryos (Supplementary Fig. 5). During the initiation of the cleavage furrow, the furrow microtubule arrays (FMA) were arranged parallel to each other and perpendicular to the furrow in both wild type and Migf2bp3 embryos (Supplementary Fig. 5a, i). As the furrow matured, the microtubule gradually enriched at the distal end of furrows with tilted angles to form V-shaped structures (Supplementary Fig. 5b, j). A similar process was also shown in the second cleavage stage (Supplementary Fig. 5c, d, k, l). The result indicated that Migf2bp3 embryos displayed a normal microtubule dynamic. Meanwhile, we investigated whether igf2bp3 depletion affects DNA structure and found that Migf2bp3 embryos displayed regular nuclear division as the wild type at 4-cell stage (Supplementary Fig. 6).

β-Catenin, a main component of cell adhesion junctions, can be labeled to visualize the formation of mature adhesive cell wall. In wild-type embryos at 2-cell stage, β-catenin aggregated and localized along the cleavage plane in mature furrows. In contrast, distribution of the cleavage furrow associated β-catenin was disrupted in Migf2bp3 embryos (Fig. 2b). At 4- and 8-cell stages,
we observed abnormal cell division with disrupted and asymmetric furrow progression in M\textit{igf2bp3} embryos. Moreover, the expression of \(\beta\)-catenin was severely reduced in the furrows of \textit{Migf2bp3} embryos.

Sperm–egg fusion triggers the process of cortical granule cortical granule exocytosis (CGE) depending on the reorganization of F-actin network in which CGs are embedded\(^1\). Since the organization of F-actin was disrupted in the cleavage furrow, the distribution and exocytosis of CGs were quantified by labeling CGs with TRITC-conjugated \textit{Maclura pomifera} agglutinin (MPA), which could determine the size and density of CG vesicles\(^4\). At 2 min post fertilization (mpf), the size and density of CGs were similar between the wild type and \textit{Migf2bp3} embryos (Fig. 2c). However, the exocytosis process was blocked at later stages in \textit{Migf2bp3} embryos. At 10 mpf, a large number of unreleased CGs was retained in \textit{Migf2bp3} embryos, instead of almost completed CGs exocytosis in wild-type embryo. These results indicated that \textit{igf2bp3} regulated CGs release during early embryo development.

Accelerated decay of maternal RNAs in \textit{Migf2bp3} embryos. To obtain the global profile of mRNA expression during early zebrafish embryogenesis, we performed RNA sequencing (RNA-seq) on wild type and \textit{Migf2bp3} embryos at six different developmental stages including unfertilized egg, 1-cell, 4-cell, 64-cell, sphere and shield stages. According to previous studies, transcripts could be categorized into three superclusters including maternal, semi-stable and zygotic\(^6\). We found that the RNA abundance changes of maternal mRNAs (from unfertilized egg to 1-cell and 1-cell to 4-cell) in the \textit{Migf2bp3} embryos were markedly greater than those in the wild-type embryos, suggesting that loss of maternal \textit{igf2bp3} function led to accelerated mRNA decay (Fig. 3a, b). In total, 2282 and 2574 maternal genes were identified to be downregulated in \textit{Migf2bp3} embryos compared to control embryos at 1- and 4-cell stage, respectively (Fig. 3c, d).

Oogenesis is largely normal in the \textit{igf2bp3} mutants. Since obvious defects were detected in \textit{Migf2bp3} eggs after fertilization, we investigated whether \textit{igf2bp3} mutation affects oogenesis by histological analysis. The results of hematoxylin and eosin staining indicated that the morphology and distribution of CGs appeared normal in \textit{igf2bp3} mutant oocytes compared to wild type (Fig. 4a, b). Only a single Balbiani body was detected in the stage I oocytes in both wild type and mutants, which indicated that \textit{igf2bp3} mutant oocytes were polarized (Fig. 4a, c). Simultaneously, we observed grossly normal ovaries in \textit{igf2bp3} mutants.
compared with the wild type, indicated by normal morphology of vitelline envelope (VE), CG distribution, structure of the two layers of somatic follicle cells surrounding stage III oocytes of wild type and \textit{igf2bp3} mutants (Fig. 4e, f). Besides, in the unfertilized eggs, there was no significant difference in the expression levels of maternal mRNAs between wild type and \textit{igf2bp3} mutant (Fig. 4g). Furthermore, F-actin content and distribution were the same in the ovary and oocytes of wild type and \textit{igf2bp3} mutants (Fig. 4h, s). In summary, these data proved that the depletion of \textit{igf2bp3} did not affect ovarian and oocyte development.

\textit{Igf2bp3} binds to maternal mRNAs and regulates their stability. RNA-binding protein immunoprecipitation (RIP) followed by sequencing (RIP-Seq) was performed to identify mRNAs bound by \textit{Igf2bp3}, and 3608 target genes were ultimately identified (Supplementary Data 1). Gene ontology (GO) analysis indicated that most of the \textit{Igf2bp3} targets were enriched in RNA regulation and metabolism, cell division and cytoskeleton organization, and epigenetic modification processes (Fig. 5a). \textit{Aurkb} (aurora B) has been reported to mediate the process of cytokinesis and cytoskeleton in zebrafish21. As a target of \textit{Igf2bp3}, \textit{aurkb} displayed significant reduction of mRNA expression in \textit{Migf2bp3} embryos, compared to the wild type (Fig. 5b). Moreover, among the target maternal mRNAs of \textit{Igf2bp3}, the RNA abundance changes (from unfertilized egg to 1-cell, 1-cell to 4-cell) in the \textit{Migf2bp3} embryos were markedly greater than those in the wild-type embryos, suggesting that loss of maternal \textit{igf2bp3} function led to accelerated mRNA decay of its target maternal mRNAs (Fig. 5c, d). These results suggested that \textit{Igf2bp3} binds to the maternal RNAs and regulates their stability, while loss of \textit{Igf2bp3} function leads to rapid degradation of maternal mRNAs.

\textit{Ythdf2} and zygotically transcribed microRNA miR-430 have been reported to participate in the clearance of maternal mRNAs during zebrafish MZT5,6,22, while \textit{Igf2bp3} maintained the stability of maternal mRNAs during early embryogenesis. To investigate the mRNA degradation mechanism in \textit{Migf2bp3} embryos, comprehensive analysis of RNA-seq data was carried out to reveal the mRNA degradation profile of \textit{Migf2bp3} embryos, and Ythdf2-mediated degradation profile5,6. As a result, a large majority of the regulatory mRNAs of \textit{Igf2bp3}, \textit{miR-430}, and \textit{Ythdf2} were different (Supplementary Fig. 7a). Moreover, we compared the target mRNAs of \textit{Igf2bp3}, \textit{Ythdf2}, and \textit{miR-430}, and found that the majority of target mRNAs of each were not overlapped (Supplementary Fig. 7b), suggesting that the accelerated degradation of maternal mRNAs in \textit{Migf2bp3} embryos might not depend on \textit{Ythdf2} and \textit{miR-430}.

\textbf{Fig. 2} \textit{Migf2bp3} embryos exhibit abnormal cytoskeleton organization. \textbf{a, b} Expression and distribution of F-actin and \textit{β}-catenin in wild type and \textit{Migf2bp3} embryos at 2-, 4-, and 8-cell stages. The F-actin and \textit{β}-catenin were enriched in mature and apparent cleavage furrow (triangle). The inset showed a zoom-in of the boxed region at each stage. Zoomed-out scale bar = 100 μm; zoomed-in scale bar = 50 μm. \textbf{a} \textit{Migf2bp3} embryos at 4-cell stage did neither exhibit intact adhesion junction of F-actin cables nor form the mature furrow (white arrow). \textbf{b} \textit{Migf2bp3} embryos exhibited reduced expression of \textit{β}-catenin (white arrows) and did not form intact cell adhesion junction with defective furrow (white bracket). \textbf{c} Double localization of F-actin (green fluorescence) and CG (red fluorescence). The inset showed a zoom-in of the boxed region at each stage. Zoomed-out scale bar = 100 μm; zoomed-in scale bar = 50 μm.
igf2bp3 overexpression decelerates the decay of maternal mRNAs. To further determine whether Igf2bp3 regulates the stability of the maternal RNAs and early embryogenesis, we overexpressed igf2bp3 mRNA in wild-type embryos. The embryos injected with igf2bp3 mRNA exhibited a normal developmental process compared to the control (embryos injected with GFP mRNA) from fertilization to 64-cell stage. However, phenotype of developmental delay was detected at sphere stage and apparent at shield stage in igf2bp3-overexpressed embryos (Fig. 6a). The percentage of delayed embryos was calculated at shield stage and shown in Fig. 6b. After the injection of igf2bp3-HA mRNA into wild-type embryos, the protein started to be expressed at 4-cell stage (Supplementary Fig. 8). To investigate whether igf2bp3 overexpression enhanced mRNA stability, we performed qPCR to detect RNA abundance of a set of maternal mRNA. The results showed that ectopic expression of igf2bp3 decelerated the decay of these maternal mRNAs, instead of rapid clearance in the control (Fig. 6c). These results were consistent with previous studies that embryos displayed developmental delay due to uncleared maternal RNAs\(^6\), and suggested igf2bp3 as an RNA stabilizer to regulate maternal RNA stability.

Discussion
In vertebrates, maternal mRNAs accumulate in the egg and orchestrate subsequent embryonic development. Usually, the maternal mRNAs are stable for the first few hours of embryo development, and then are subjected to degradation during the MZT\(^3\). However, the mechanism of how maternal mRNAs keep stability pre-MZT is still unknown. In this study, we found that zebrafish Igf2bp3, an RBP, regulates zebrafish early embryogenesis through maintaining the stability of maternal mRNAs. The accelerated decay of maternal mRNAs and developmental defects occurred in Migf2bp3 embryos at the pre-MZT phase, as wave of
mRNA degradation was observed at as early as 1-cell and 4-cell stages (Fig. 3). The fates of m^6^A-modified mRNAs were controversial and determined by the m^6^A readers including YTHDF2 and IGF2BPs^11^.

The m^6^A-modified mRNAs were subjected to decay when binding to YTHDF2^6^, whereas they were stable when binding to IGF2BPs. More than 80% of IGF2BP targets had at least one m^6^A peak in human cells and IGF2BP bound to m^6^A-modified RNAs through KH3–4 domain^13^.

Other studies have suggested that IGF2BP did not bind directly to m^6^A, but instead showed that enhanced binding was a nonspecific consequence of m^6^A-induced mRNA unfolding^22^.

Meanwhile, RBPs (Ythdf2 and Igf2bp3) binding led to RNA structural changes, which played a central role in connecting transcription, translation, and RNA degradation^23^.

During early zebrafish embryogenesis, ythdf2 facilitated maternal mRNA clearance during the MZT^9^, while our studies indicated that Igf2bp3 maintained maternal RNA stability.

The RNA-binding protein IGF2BP has also been shown to regulate cell polarity and migration by modulating actin

Fig. 4 Oogenesis is largely unaffected in igf2bp3 homozygous mutant (igf2bp3^+/−^) zebrafish. a, b H&E-stained ovary sections indicated cortical granule movement toward the cortex, structure of the vitelline envelope, and somatic follicle cells surrounding stage I–IV oocytes of wild type and igf2bp3^+/−^ zebrafish. CGs cortical granules. Square box indicates CGs located centrally in young oocytes and round box indicates CGs in the cortex at late stage; Scale bars: 100 μm. c, d The normal polarization of stage Ib oocytes as indicated by the presence of the Balbiani body (black arrowheads) in igf2bp3^+/−^ zebrafish compared with the wild type. Scale bars: 50 μm. e, f H&E-stained stage III oocytes revealed cortical granule movement toward the cortex in wild type and igf2bp3^+/−^ zebrafish. VE vitelline envelope (triangle box); FCs follicle cells (two straight lines). Scale bars: 20 μm. g Violin and box plots depicting the expression levels of maternal genes in unfertilized eggs. Lower/middle/upper position in box plots indicated 25/50/75% quantile, respectively. The violin width shows the gene density. Two-sided Wilcoxon and Mann-Whitney test was used. n.s. no significant. h–s F-actin expression in wild type and igf2bp3 mutant oocytes. The inset showed a zoom-in of the boxed region. i, l, o, r in the subcortical regions of stage III–IV oocytes, the actin filaments became clearly distributed in both wild type and igf2bp3 mutant oocytes. j, m, p, s High magnification images of actin filaments in the oocyte cytoplasm. The actin columns were arranged from the inner to the outer across the cortical cytoplasm and thereby the column was arranged parallel to each other (brackets). Scale bars: 100 μm in h, k, n, q, 25 μm in i, l, o, r, 10 μm in j, m, p, s.
cytoskeleton including β-actin mRNA translation and F-actin organization24,25. The Drosophila Igf2bp predominantly localized in the cytoplasmic RNP granules and bound to 3′ UTRs of many genes that were involved in F-actin formation. Knockdown of Igf2bp led to significant reduction of F-actin levels26. The F-actin and β-catenin protein expression in the cleavage furrow were severely disturbed in Migf2bp3 embryos (Fig. 2a, b). The reorganization of F-actin cortex was associated with CG exocytosis19,27. By interacting with E-cadherin and the F-actin-binding protein αE-catenin during cellular cytoskeleton, β-catenin formed a cadherin–catenin complex to directly bind to F-actin28. Moreover, the target genes of Igf2bp3 were enriched in the process of cell division, cytoskeleton organization and cytokinesis (Fig. 5a). For example, the mRNA level of aurkb was significantly reduced in Migf2bp3 embryos. However, hnRNP I, an important gene controls the process of CGE29, was upregulated in the early stage of Migf2bp3 embryos from the RNA-seq data, suggesting that igf2bp3 regulated CGE in another unknown pathway. Accordingly, we observed severe developmental defects in both actin organization in cleavage furrow and CG release when loss of maternal igf2bp3 function. It remains to be elucidated the degradation mechanism of Igf2bp3-bound maternal mRNAs.

Methods

Zebrafish maintenance. AB line wild-type zebrafish were maintained at 28.5 °C on a 14 h light/10 h dark cycle. All embryos used were collected by natural spawning and staged according to standard procedures33.

CRISPR/Cas9 technology and mRNA microinjection. Igf2bp3 mutants were created using CRISPR/Cas9-mediated mutagenesis. The igf2bp3 target site in the first exon was designed by the online service of the website (http://crispr.mit.edu).
Fig. 6 Overexpression of igf2bp3 leads to enhanced maternal mRNA stability and causes developmental delay in wild-type embryos.

(a) Time-matched bright field images of embryos indicated that igf2bp3-overexpressing embryos experienced a developmental delay at early stages. Scale bars: 200 μm.

(b) The percentage of embryos with developmental delay at shield stage. The embryos exhibited delayed development in non-injected groups (N1 = 19/622, N2 = 15/503, N3 = 19/524), in GFP mRNA injected groups (N1 = 12/411, N2 = 4/460, N3 = 16/487), and in igf2bp3 mRNA injected groups (N1 = 378/481, N2 = 412/514, N3 = 439/503).

(c) qRT-PCR analysis of maternal mRNA decay in wild type and igf2bp3-overexpressing embryos. mRNA abundance was normalized to values of wild type. Error bars represent mean±S.D., n = 3. P values were calculated by two-sided Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001).

The DNA templates for gRNA transcription were amplified by PCR technology with synthesized primers gRNA-F: GTAATACGACTCACTATATG TGGATTGGCCCGAGCAGGTTTGTAGCTAGAATGTG and gRNA-R: AAAA GCACCGACTGCGTGCC. The purified PCR amplification was transcribed into gRNA using the transcript Aid T7 High Yield Transcript kit (Thermo Scientific, USA) as described. Cas9 plasmid was linearized by XhoI enzyme, purified and transcribed into Cas9 mRNA using the T7 mMESSAGE mMACHINE Kit (Ambition, USA). Cas9 and gRNA mRNAs were purified by lithium chloride precipitation. Three hundred picograms Cas9 and 20 pg gRNA mRNA were co-inject into zebrafish embryos at 1-cell stage. The primer vF: AGTCGCATCGCCCAAAGAGTA and vR: CCTTGCCCTTCAGTGGTTCT were used for genotyping.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0827-2 | www.nature.com/commsbio

Quantitative RT-PCR and whole-mount in situ hybridization. Total RNA was isolated from each tissue and embryo sample using TRIzol reagent and was treated with DNaseI (Promega). For evaluating tissue expression of igf2bp3, Oligo-dT primer (Promega) was used to synthesize cDNA using GoScript™ Reverse Transcription System (Promega). To check the expression of maternal genes during embryo development, the RNAs were reverse transcribed into cDNA with PrimeScript RT reagent kit (Takara). For qRT-PCR, 488 phalloidin (Cell Signaling, #8878), α-Tubulin (Sigma, T5168) were diluted at 1:1000 and 1:10000, and then staining was performed according to the previous description. The images of embryos were acquired by a Leica confocal microscope (TCS SP8) using LAS X software with 3D view model.

Immunostaining and immunofluorescence. After fixed with 4% paraformaldehyde (PFA), F-actin of zebrafish embryos was detected with 0.22 μM Alexa Fluor 488 phallolidin (Cell Signaling, #8878), as previously described. To stain F-actin in zebrafish ovary, dissected ovaries were fixed with actin stabilizing buffer and performed as described. Cgs were stained with 100 μg/ml TRITC-conjugated Maclura pomifera lectin (EY Labs, F-3901) and anti-β-Catenin (Abcam, ab16051) and anti-α-Tubulin (Sigma, T5168) were diluted at 1:1000 and 1:2000, and then staining was performed according to the previous description. The images of embryos were acquired by a Leica confocal microscope (TCS SP8) using LAS X software with 3D view model.

Ovary histology. Hematoxylin & eosin (H&E) staining was performed as previously described. Ovaries were dissected from anesthetized adult females and fixed in 4% PFA overnight. Tissues were dehydrated and embedded in paraffin, sectioned (10 μm thickness), and stained with hematoxylin & eosin solution. Images were acquired using a 3D Pannoramic MIDI and an ECLIPSE Ci camera (Nikon).

RIP and RIP-qPCR. Wild-type embryos were injected with igf2bp3-HA mRNA at 1-cell stage and collected at sphere stage (more than 5000 embryos), when egg
membrane and yolk were removed by pronase E and buffer 1 (55 mM NaCl, 108 mM KC1, 1.25 mM NaHCO3). RIP was performed as previously described40 with some modifications. The embryos were lysed in RIP buffer (50 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCl2, 0.5% NP40, 1 mM dTT with protease inhibitors Sigma P8340) with Murine RNase inhibitor (New England Biolabs, M0314). One microgram HA antibody (Cell Signalling, 3724) and IgGc (as control, Millipore N010) were incubated with Dynabeads Protein A (Thermo Fisher, 10010D) in lysis buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.5% NP40) and washed twice with lysis buffer. After digestion, the supernatant of embryo lysate was transferred to antibody-conjugated magnetic beads and rotated for incubation. After washing (twice with lysis buffer and twice with wash buffer (50 mM Tris, 150 mM NaCl, 1 mM MgCl2, 0.5% NP40)), the beads were eluted in wash buffer containing 1% SDS and protease K. At last, the RNA was purified with RNA cleanup kit (Zymo Research, R1015) according to the protocol. The RNAs were analyzed by qRT-PCR or RNA-seq. The igZbp3-bound RNA sequences were reverse transcribed into cDNA using PrimeScript RT reagent kit (Takara, RR047A) and used for qRT-PCR analysis with the primers listed in Supplementary Table 1.

Western blot. After removing egg membranes and yolk of embryos with pronase E and buffer 1 (55 mM NaCl, 108 mM KC1, 1.25 mM NaHCO3), 50–100 embryos were collected and lysed with 300 μL of cold lysis buffer (50 mM Tris at pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100 and protease inhibitors, Sigma P8340). An equal amount protein of each sample was separated in 10% SDS-PAGE gel, transferred onto PVDF membranes, and blotted with anti-HA antibody (Cell Signalling, 3724) and anti-actin antibody (Abclonal, AC026). The blots were detected with HRP-conjugated anti-rabbit IgG (H + L) and HRP-conjugated anti-mouse IgG (H + L) and visualized using ECL substrate (Bio-RAD, 17-5061).

RNA-seq and data processing of high-throughput sequencing. The total RNA of unfertilized eggs and embryos at different developmental stages of wild type and mutant zebrafish were isolated with TRIzol reagent, and mRNA was purified from total RNA as described previously41. Purified mRNAs and RIP RNAs were agarose-fragmented and RNA library was constructed using NBNexXt Ultra II Directional RNA Library Prep Kit for Illumina (NEB, E7760) according to the manufacturer’s instructions. RNA-seq and RIP-seq were sequenced on Illumina NovaSeq 6000 or HiSeq X-ten platform with paired-end 150 bp read length. For RNA-seq analysis, raw paired-end reads were filtered using fastq 0.19.7 under default parameters42. The filtering steps included the removal of reading pairs if either one read contained adapter contamination. Filtered reads were mapped to zebrafish genome version 11 (GRCz11) using STAR 2.7.2b43 with the default parameters for paired-end RNA-sequencing. The edgeR Bioconductor package48 in the R statistical computing environment49 was used for calculating FPKM and differential expression analysis. We de-identified the Nature Research Reporting Summary linked to this article.

Received: 3 December 2019; Accepted: 11 February 2020; Published online: 03 March 2020

References
1. Laver, J. D., Marsolais, A. J., Smibert, C. A. & Lipshitz, H. D. Regulation and function of maternal gene products during the maternal-to-zygotic transition in Drosophila. Curr. Top. Dev. Biol. 113, 43–84 (2015).
2. Wagner, D. S., Dosch, R., Mintzer, K. A., Wiemelt, A. P. & Mullins, M. C. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev. Cell 6, 781–790 (2004).
3. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).
4. Eno, C., Solanki, B. & Pelegri, F. a (m)ir 1p11 regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143, 1585–1596 (2016).
5. Giráldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).
6. Zhao, B. S. et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).
7. Lund, E., Liu, M., Hartley, R. S., Sheets, M. D. & Dahlberg, J. E. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15, 2351–2363 (2009).
8. Mishima, Y. & Tomari, Y. Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish. Mol. Cell 61, 874–885 (2016).
9. Chang, H. et al. Terminal uridylyltransferase executes programmed cleavage of maternal transcriptome in vertebrate embryos. Mol. Cell 70, 72–82.e7 (2018).
10. Wilusz, C. J., Wormington, M. & Pelz, S. W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).
11. Zhou, K. I. & Pan, T. An additional class of m(6)A readers. Nat. Cell Biol. 20, 230–232 (2018).
12. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).
13. Huang, H. et al. Recognition of RNA N6(methyladenosine) by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).
14. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).
15. Alarcon, C. R. et al. HNRNP2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).
16. Ivanova, I. et al. The RNA m(6)A Reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067.e4 (2017).
17. Webb, S. E., Goulet, C., Chan, C. M., Yuen, M. Y. & Miller, A. L. Biphasic assembly of the contractile apparatus during the first two cell division cycles in zebrafish embryos. Zygote 22, 218–228 (2014).
18. Urven, L. E., Yabe, T. & Pelegri, F. A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo. J. Cell Sci. 119, 4342–4352 (2006).
19. Becker, K. A. & Hart, N. H. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J. Cell Sci. 112(Pt 1), 97–110 (1999).
20. Bement, W. M., Benink, H., Mandato, C. A. & Swedstad, B. B. Evidence for direct membrane retrieval following cortical granule exocytosis in Xenopus oocytes and eggs. J. Exp. Zool. 266, 767–775 (2000).
21. Yabe, T. et al. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet. 5, e1000518 (2009).
22. Bazzini, A. A., Lee, M. T. & Giráldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).
23. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).
24. Hüttemayer, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZFP1. Nature 438, 512–515 (2005).
25. Stohr, N. et al. IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev. 26, 176–189 (2012).
26. Hansen, H. T. et al. Drosophila Lmmp1 cI2P identifies an RNA assembly coordinating F-actin formation. Genome Biol. 16, 123 (2015).
27. Sokac, A. M., Co, C., Taunton, J. & Bennett, W. Cdk4/6-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat. Cell Biol. 5, 727–732 (2003).
28. Buckley, C. D. et al. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

Statistics and reproducibility. All experiments were performed by independent replicates and the results of replicates were consistent. Sample sizes and groups were present in figure legends and source data. Statistical analysis was carried out using R and GraphPad Prism 7. All data were analyzed using the two-tailed Wilcoxon and Mann-Whitney test or unpaired Student’s t-test. Error bars represent standard deviation. P value of <0.05 was considered as significant (*), while P < 0.01 as extremely significant (**)) and (***) respectively.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. RNA-seq data and RIP-Seq data reported in this article could be accessed at NCBI BioProject under accession number PRJNA565584. Additionally, all data used for figures were provided as source data in Supplementary Data 2.
37. Becker, K. A. & Hart, N. H. The cortical actin cytoskeleton of unactivated zebrafish.
Development 136, 3007–3017 (2009).

30. White, R. J. et al. A high-resolution mRNA expression time course of embryonic development in zebrafish.
Elife 6, pii:e30860 (2017).

33. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish.
Dev. Dyn. 203, 253–310 (1995).

36. Xiong, S. et al. Essential roles of stat5.1/stat5b in controlling zebrafish growth.
EMBO J. 26, 3945–3956 (2007).

32. Ferg, M. et al. The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish.
EMBO J. 26, 3945–3956 (2007).

34. Mei, J., Zhang, Q. Y., Li, Z., Lin, S. & Gui, J. F. C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis.
Dev. Biol. 319, 273–284 (2008).

37. Becker, K. A. & Hart, N. H. The cortical actin cytoskeleton of unactivated zebrafish eggs: spatial organization and distribution of filamentous actin, nonfilamentous actin, and myosin-II.
Mol. Reprod. Dev. 43, 536–547 (1996).

38. Campbell, P. D., Heim, A. E., Smith, M. Z. & Marlow, F. L. Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis.
Development 142, 2996–3008 (2015).

39. Marlow, F. L. & Mullins, M. C. Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish.
Dev. Biol. 321, 40–50 (2008).