Receptor of advanced glycation end-products axis and gallbladder cancer: A forgotten connection that we should reconsider

Armando Rojas, Cristian Lindner, Iván Schneider, Ileana González, Miguel Angel Morales

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Shalaby MN, Egypt; Yasukawa K, Japan

Received: June 27, 2022
Peer-review started: June 27, 2022
First decision: August 1, 2022
Revised: August 5, 2022
Accepted: September 9, 2022
Article in press: September 9, 2022
Published online: October 21, 2022

Abstract
Compelling evidence derived from clinical and experimental research has demonstrated the crucial contribution of chronic inflammation in the development of neoplasms, including gallbladder cancer. In this regard, data derived from clinical and experimental studies have demonstrated that the receptor of advanced glycation end-products (RAGE)/AGEs axis plays an important role in the onset of a crucial and long-lasting inflammatory milieu, thus supporting tumor growth and development. AGEs are formed in biological systems or foods, and food-derived AGEs, also known as dietary AGEs are known to contribute to the systemic pool of AGEs. Once they bind to RAGE, the activation of multiple and crucial signaling pathways are triggered, thus favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration. In the present review, we aimed to highlight the relevance of the association between high dietary AGEs intakes and high risk for gallbladder cancer, and emerging data supporting that dietary intervention to reduce gallbladder cancer risk is a very attractive approach that deserves much more research efforts.

Key Words: Gallbladder cancer; Advanced glycation end-products; Receptor of advanced glycation end-products; Chronic inflammation; Nutrition

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: A growing body of data has demonstrated a positive association between the risk of gallbladder cancer and high dietary intake of advanced glycation end-products (AGEs). These noxious compounds are important contributors to the onset of a chronic inflammatory response, through the activation of the receptor of AGEs (RAGE). We herein discuss how RAGE activation is crucial in the development of gallbladder cancer and the relevance of new incoming data supporting the role of dietary interventions to reduce the risk of gallbladder cancer.

INTRODUCTION

Gallbladder cancer development is linked to both genetic and environmental factors, and where the onset of chronic inflammation is a crucial contributor to gallbladder carcinogenesis. This chronic inflammatory condition can be triggered by several factors including not only chronic infection by *Salmonella* spp., or *Helicobacter pylori* [1-4] but also some dietary habits or metabolic conditions [5-9], which are associated with an overactivation of the receptor of advanced glycation end-products (RAGE).

At present, the onset of many of both age- and diet-related noncommunicable diseases, including different cancer types, is widely associated with the chronicity of low-grade inflammation [10,11]. At this point, the diet is widely recognized as an important modulator of this chronic and systemic inflammation [12,13], particularly the western-type dietary patterns [14].

One common and important element in this unhealthy diet is the advanced glycation end-products (AGEs), which are a large and heterogeneous group of compounds that were initially recognized in the Maillard reaction, but they can also form by other reactions, including the oxidation of sugars, lipids, and amino acids [15,16].

Food-derived AGEs, also known as dietary AGEs, substantially contribute to the systemic pool of AGEs. Their intake has been linked in humans and mice to an increased level of oxidative stress and inflammation, thus playing an important role in the onset and development of several health disorders [17,18].

The pathogenic mechanisms of dietary AGEs are the same as those endogenously produced, either by activation of the RAGE or by covalent crosslinking of proteins, thus altering protein structure and function. The receptor-dependent and receptor-independent mechanisms are recognized as important contributors to tumor growth and development [19,20].

In the present review, we aim to highlight the burden of RAGE axis activation on gallbladder cancer, its therapeutic potential, as well as the significance of lowering dietary consumption of AGEs in subjects at risk.

THE RAGE/AGEs AXIS AND GALLBLADDER CANCER: NEW INCOMING PIECES OF EVIDENCE

There is growing evidence supporting the key role of dietary AGEs as major contributors to the systemic pool of AGEs [21], which notably increase oxidative stress and chronic/acute inflammation, contributing to the pathophysiology of many human inflammatory and malignant diseases [18,22,23].

Since the multicenter prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study, which investigated the relationship of dietary and environmental factors with the incidence of cancer and other chronic diseases [24-27], a growing body of evidence has revealed strong findings to support that a proinflammatory diet with high levels of dietary AGEs intake increases the risk of several types of cancer [28], such as breast, skin and those originating from the digestive tract [29-31].

Recently, Mayén et al. [32] conducted a multinational cohort study using the EPIC database to characterize the daily dietary intake (mg/d) of three AGEs including Nε-[carboxymethyl] lysine (CML), Nε-[1-carboxyethyl] lysine (CEL), and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1) for each study participant, to assess AGE consumption with hepatobiliary cancer risk. In this study, the authors found a positive association between the risk of gallbladder cancer and high dietary intake of CML [hazard ratio (HR) = 1.30, 95% confidence interval (CI): 1.07–1.57] and MG-H1 (HR = 1.26, 95%CI: 1.06–1.50), and thus suggesting that higher intakes of dietary AGEs may increase the risk of gallbladder cancer.
cancer.

Although the study of Mayen et al.[32] has some limitations, particularly in estimating dietary AGEs exposure, other epidemiological studies have revealed an increased tumor progression and mortality of gallbladder cancer patients, with inflammatory comorbidities related to overactivation of the RAGE axis, such as high-fat diet consumption[33], metabolic syndrome[34], and diabetes mellitus [35-38], due to the increased endogenous formation of AGEs reported in these entities.

Some studies have shown increased expression of RAGE in gallbladder cancer cells, which were directly in concordance with the invasive ability of the neoplastic cell lines[39]. Additionally, compelling evidence has been reported of a strong increase in AGEs formation under hyperglycemic conditions[40, 41]. Noteworthy, the gallbladder accumulation of AGEs is significantly higher in the gallbladder of diabetic mice when compared to control animals. These findings support the role of the RAGE/AGEs axis activation in gallbladder carcinogenesis[42].

Furthermore, other in vivo analyses of adenocarcinoma cells treated under a hyperglycemic milieu, a condition favoring the increased accumulation of AGEs, have been revealed to promote tumor cell proliferation and migration[43].

Emerging in vitro and in vivo analyses have revealed overexpression of several RAGE ligands such as high mobility group B1 (HMGB1) and members of the S100P protein family in malignant gallbladder epithelial cells compared to benign tissue[44,45].

This increased expression of those RAGE ligands in gallbladder cancer cells has been closely correlated with malignant progression and therefore may then be considered an independent risk factor for poor prognosis and proliferation in gallbladder cancer[45-47].

A key consequence of RAGE binding with its ligands is the activation of multiple and crucial signaling pathways[48], that are involved in gallbladder carcinogenesis, such as reactive oxygen species (ROS)[49], Erk1/2 (p44/42) mitogen-activated protein kinases (MAPKs)[50], C-Jun n-terminal kinase and p38 MAPK[51], and phosphatidylinositol 3-kinase pathways[52].

These signals trigger important downstream inflammatory and procarcinogenic consequences such as activation of signal transducer and activator of transcription 3[53,54], activator protein-1[55], and nuclear factor (NF)-kB pathways[49,54,56-58], favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration such as tumor necrosis factor-[59,60]. Hence, this proinflammatory milieu continuously fuels chronic inflammation in gallbladder carcinogenesis in a RAGE-dependent manner[19,61].

THERAPEUTIC POTENTIAL OF THE RAGE/AGEs AXIS IN TUMOR BIOLOGY

RAGE is recognized as a pattern recognition receptor, and its activation plays a pivotal role in the propagation of immune responses and inflammatory reactions[62]. It is expressed at low levels in most differentiated adult cells in a regulated manner. However, upregulation of RAGE expression is associated with many inflammation-related pathological entities, including cancer[63].

RAGE engagement subsequently converts transient cellular stimulation into a sustained cellular dysfunctional state driven by long-term activation of NF-kB[64]. There is compelling evidence that RAGE activation promotes many crucial steps during tumorigenesis, from DNA damage and genetic instability to supporting many phenotypic changes in tumor cells favoring their growth and dissemination[65].

Since the work by Taguchi et al.[66], which experimentally reported that in vivo blockade of the RAGE–amphotericin axis suppresses tumor growth and dissemination, intense research efforts have been focused towards the development of new therapeutic approaches to modulate both deleterious proinflammatory and procarcinogenesis effects of RAGE axis activation[67,68].

The use of novel RAGE-targeting antibodies and blocking peptides derived from RAGE ligands such as S100P and HMGB1 has demonstrated to block the ability of ligands to stimulate RAGE activation in cancer cells both in vitro and in vivo models, thus inhibiting tumor growth, metastasis, and inflammation [69], as well as significant reductions in tumor growth with acceptable toxicity levels in several in vivo mouse adenocarcinoma models[70,71]. Furthermore, the treatment of cancer cell lines with anti-RAGE antibodies demonstrates that RAGE blocking may even enhance the chemotherapeutic effects of antineoplastic drugs[72,73].

Recent evidence has also revealed that the antibody targeting of RAGE ligands such as HMGB1 and AGEs may effectively decrease tumor progression in solid malignancies[74]. This approach can even enhance the antitumoral response of cancer immunotherapies by remobilizing the antitumor immune response[75].

Another emerging therapeutic approach is based on the high binding affinity to RAGE of some members of the family of glycosaminoglycans such as chondroitin sulfate, heparan sulfate (HS), and low molecular weight and semisynthetic glycosaminoglycan[76]. These molecules have been reported to be involved in effectively inhibiting RAGE signaling pathways in both in vitro and in vivo models[71,77].

Strikingly, new evidence has revealed that HS acts as a crucial element for RAGE signaling, leading to the formation of stable RAGE–HS complexes, which drive the RAGE oligomerization and subsequent
These observations have revealed a new strategy for treating RAGE-associated diseases by hindering RAGE oligomerization.

The use of synthetic compounds with both anticancerogenic and anti-inflammatory activities based on their capacities to interfere with the HMGB1–RAGE axis seems to be a promising strategy for several cancer types, including gallbladder cancer[80,81].

A novel molecule, recently discovered by Tanuma et al[82], 7-methoxy-3-hydroxy-styrylchromone (c6), is not only an effective suppressor of cell cycle/proliferation but also an initiator of apoptosis in cancer cells, and a promising potentiator of the anticancer effects of DNA-damaging antineoplastic agents.

RAGE gene silencing has been demonstrated to significantly downregulate AGE-induced inflammation and RAGE-dependent release of proinflammatory cytokines in normal human cells[83], while in malignant cells, RAGE gene silencing can decrease the colony-forming ability, proliferation, migration, and the invasive potential of cancer cells, through inhibiting RAGE-dependent mechanisms that sustain cancer cell progression and invasion[84].

The requirement of the cytoplasmic tail of RAGE to interact with its molecular effector DIAPH1 to mediate downstream signal transduction has been highlighted as a promising approach to inhibit RAGE signaling[85-87].

This novel screening strategy of searching for molecules able to block protein–protein interactions has been demonstrated to be successful to inhibit the RAGE-mediated expression of inflammatory genes in diabetes complications[88,89] and atherosclerosis[90].

A growing body of experimental data using the DNA-aptamer technology against RAGE has demonstrated that this novel approach can inhibit the inflammatory reactions triggered by activation of the RAGE axis in different in vivo models[91-93].

Experimental research has reported interesting results in different cancer types, as revealed in tumor-bearing mice treated with RAGE-aptamers, where marked inhibition of tumor growth was achieved[94]. The use of this technology on tumor-bearing mice is also able to inhibit macrophage infiltration and neoangiogenesis through the inhibition of RAGE/NF-kB/VEGF-A-dependent signaling pathways[94-96] (Figure 1).

In many clinical entities where the activation of the RAGE/AGEs axis is crucial in the underlying pathogenic mechanisms, restriction of dietary AGEs has been extensively studied in clinical trials[97-101]. Under the same rationale, and based on the active role of RAGE-mediated mechanisms in tumor biology, different interventional clinical studies already published[102-107] (Table 1), or in progress, have supported the use of restriction of AGEs intake in human cancers, as documented on the website ClinicalTrials.gov (ClinicalTrials.gov identifier: NCT03712371, NCT04716764, NCT02946996, NCT03092635, NCT01820299, NCT01363141, NCT03147339). However, it must be emphasized that therapeutic interventions, including dietary interventional actions on the RAGE axis, have been focused on achieving clinical improvements in disease course, including dietary interventional actions, and therefore the potential of modulating RAGE activation in terms of cancer prevention is still controversial.

REDUCING DIETARY AGEs INTAKE IN SUBJECTS AT RISK OF GALLBLADDER CANCER. A HOPEFUL APPROACH?

International consensus estimates that almost 40% of cancer cases are preventable through a healthy lifestyle[108]. Compelling evidence derived from epidemiological studies of different cancer types suggests that lifestyle changes, including dietary habits, may play a crucial role in determining the risk of various cancers[109-113].

Currently, the western diet is considered a major driver of chronic, low-grade, metabolic inflammation, which is a crosswise element in the pathogenesis of many human diseases, including cancer[114]. Data derived from preclinical investigations, and observational and interventional studies, has provided conclusive evidence that the western diet is associated with an increased incidence of many malignancies, such as colorectal, pancreatic, prostate and breast cancers[115-118].

In modern society, dietary AGE consumption – as a component of modern westernized diets – is markedly increased. Therefore, dietary AGE restriction is now recognized as a useful intervention, as demonstrated in several pathologies[119-123].

Western diet generally contains large amounts of fructose, thus promoting AGE formation[124]. This diet is also an important source of AGE precursors, such as methylglyoxal and glyoxal[125]. In light of these findings, dietary AGEs have gained particular importance due to their capacity to support the onset of many human diseases, including cancer, mainly due to their proinflammatory and pro-oxidant properties[17,18].

The role of RAGE/AGEs axis activation has emerged as a crucial element in the tumor microenvironment to promote cancer cell migration, invasion, survival, and even resistance to chemotherapy[19]. Additionally, the accumulation of AGEs in tissues can promote protein structural damage and
Table 1 Some clinical trials supporting the usefulness of restriction of advanced glycation end-products intake in human cancers

Ref.	Year	Condition	Outcome
-----------------	------	-------------------------	
Jiao et al[102]	2015	Pancreatic cancer	Increased risk of pancreatic cancer
Peterson et al[103]	2020	Breast cancer	Increased breast cancer risk in postmenopausal women
Omofuma et al[104]	2020	Breast cancer	Increased risk of breast cancer
Aglago et al[105]	2021	Colorectal cancer	Increased risk of CRC
Mao et al[106]	2021	Colorectal cancer	Increased CRC mortality in non-T2D patients
Omofuma et al[107]	2021	Breast cancer	Increased breast cancer mortality
Mayén et al[32]	2021	Hepatobiliary cancers	Increased risk of gallbladder cancer

CRC: Colorectal cancer; T2D: Type 2 diabetes.

Figure 1 Different therapeutic approaches used to inhibit the consequences of the receptor of advanced glycation end-products axis activation in cancer. RAGE: Receptor of advanced glycation end-products; AGEs: Advanced glycation end-products.

modification of the mechanical and physiological functions of the extracellular matrix, thus contributing to carcinogenesis and inflammation[20].

Therefore, the report recently published by Mayén et al[32] showed a positive association between dietary AGEs and the risk of gallbladder cancer in the EPIC cohort, which deserves special attention. We believe that actions such as dietary recommendations for the reduction of dietary AGEs intake to individuals at risk of gallbladder cancer will be beneficial. In this regard, it is important to highlight that some pre-existing clinical conditions such as diabetes mellitus and metabolic syndrome are risk factors for the development of gallbladder cancer[34,35-38]. Additionally, the demonstrated links between genetic ancestry and gallbladder cancer development may represent another risk factor for some populations[126,127]. Other recommendations that focus on reducing the RAGE/AGEs axis activation are attractive, particularly the consumption of polyphenol-rich foods due to the inhibitory activities of polyphenols on the RAGE/AGEs axis at different levels, such as by inhibition of ROS formation during glycation reactions, chelation of transition metal ions, trapping dicarbonyls, and activation of AGE detoxification pathways[128].
CONCLUSION

Gallbladder cancer is an aggressive and rare neoplasm with an unusual geographic distribution. Most patients are diagnosed in the advanced stages of the disease, and therefore the life expectancy is low. Compelling evidence supports the role of several risk factors, which are linked to the onset, and chronicity of an inflammatory reaction. The report of Taguchi et al.[66] represented a critical point in understanding the role of the RAGE axis in tumor biology, and highlighting the potential of therapeutic interventions on a hyperactive cellular signaling pathway that causes disease, as the RAGE axis is[129].

The role of RAGE axis activation in gallbladder cancer is supported by its active contribution to the pathogenic framework of the main risk factors associated with this neoplasm, such as infectious agents[130,131], some metabolic conditions[132,133], and dietary habits[32].

Although much research is needed, lowering dietary AGEs intake as well as increasing the consumption of foods rich in polyphenols in subjects at risk of gallbladder cancer, either by pre-existing metabolic conditions or genetic ancestry, seems to be a plausible recommendation, to avoid the hyperactivation of the RAGE/AGEs axis.

FOOTNOTES

Author contributions: All authors contributed to the original ideas and writing of this paper; Rojas A designed the report and wrote the paper; Lindner C artwork and data acquisition, drafting and revising the manuscript; Schneider I, Gonzalez I, and Morales MA, data acquisition, drafting and revising the manuscript.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Chile

ORCID number: Armando Rojas 0000-0001-9911-7142; Cristian Lindner 0000-0002-2642-4288; Iván Schneider 0000-0001-5294-5995; Ileana González 0000-0002-2488-9380; Miguel Angel Morales 0000-0001-7698-9669.

S-Editor: Gong ZM
L-Editor: Kerr C
P-Editor: Gong ZM

REFERENCES

1 Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol 2000; 95: 784-787 [PMID: 10710073 DOI: 10.1111/j.1572-0241.2000.01860.x]
2 Leong KW, Sung JJ. Review article: Helicobacter species and hepatobiliary diseases. Aliment Pharmacol Ther 2002; 16: 1037-1045 [PMID: 12030944 DOI: 10.1046/j.1365-2036.2002.01282.x]
3 Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 2010; 16: 5395-5404 [PMID: 21086555 DOI: 10.3748/wjg.v16.i43.5395]
4 Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Jansen H, Song JY, Neefjes-Borst EA, te Riele H, Holden DW, Nath G, Neefjes J. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe 2015; 17: 763-774 [PMID: 26028364 DOI: 10.1016/j.chom.2015.05.002]
5 Strom BL, Soloway RD, Rios-Dalenz JL, Rodriguez-Martinez HA, West SL, Kinman JL, Polansky M, Berlin JA. Risk factors for gallbladder cancer. An international collaborative case-control study. Cancer 1995; 76: 1747-1756 [PMID: 8625043 DOI: 10.1002/1097-0142(19951115)76:10<1747::aid-cncr2820761011>3.0.co;2-l]
6 Zatonski WA, Lowenfels AB, Boyle P, Maisonneuve P, Bueno de Mesquita HB, Ghaemmaghami P, Jain M, Przewozniak K, Baghurst P, Moerman CJ, Simard A, Howe GR, McMichael AJ, Hsieh CC, Walker AM. Epidemiologic aspects of gallbladder cancer: a case-control study of the SEARCH Program of the International Agency for Research on Cancer. J Natl Cancer Inst 1997; 89: 1132-1138 [PMID: 9262251 DOI: 10.1093/jnci/89.15.1132]
7 Kato K, Akai S, Tominaga S, Kato I. A case-control study of biliary tract cancer in Niigata Prefecture, Japan. Jpn J Cancer Res 1989; 80: 952-938 [PMID: 2515177 DOI: 10.1111/j.1349-7006.1989.tb01629.x]
8 Larsson SC, Wolk A. Obesity and the risk of gallbladder cancer: a meta-analysis. Br J Cancer 2007; 96: 1457-1461 [PMID: 17375043 DOI: 10.1038/sj.bjc.6603703]
9 Park JH, Hong JY, Park YS, Kang G, Han K, Park JO. Association of prediabetes, diabetes, and diabetes duration with
Mayén AL, Weiderpass E, Gunter MJ, Heath AK, Jenab M. Plasma concentrations of advanced glycation end-products and colorectal cancer risk in the EPIC study. Carcinogenesis 2021; 42: 705-713 [PMID: 33780524 DOI: 10.1093/carcin/bga026]

González CA, Jakusyn P, Pera G, Agudo A, Bingham S, Palli D, Ferrari P, Boecking H, del Giudice G, Plebani M, Carneiro F, Nesi G, Berrino F, Sacerdote C, Tumino R, Panico S, Berglund G, Simán H, Nyren O, Hallmans G, Martínez C, Dormerom NS, Baurier A, Navarro C, Quiros JR, Allen N, Key TJ, Day NE, Lissiense J, Nagel G, Bergmann MM, Overvad K, Jensen MK, Tjønneland A, Olsen A, Bueno-de-Mesquita HB, Ocke M, Peeters PH, Nuñez M, Clavel-Chapelon F, Boutein-Ruault MC, Trichopoulou A, Psaltopoulou T, Roukos D, Lund E, Hernon B, Kaaks R, Norat T, Riboli E. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 2006; 98: 345-354 [PMID: 16507831 DOI: 10.1093/jnci/dji071]

Mayén AL, Aglako EK, Knaze V, Cordova R, Chorkewik CG, Wagner KH, Aleksandrova K, Fedirko V, Keski-Rahkonen P, Leitzmann MF, Katzev V, Srou Shulze MB, Masala G, Krogv H, Panico S, Tumino R, Bueno de Mesquita B, Brustad M, Agudo A, Chirlaque López MD, Amiano P, Olihson B, Ramme S, Aune D, Weiderpass E, Jenab M, Freising L. Dietary intake of advanced glycation end-products and risk of hepatobiliary cancers: A multinational cohort study. Int J Cancer 2021 [PMID: 33899229 DOI: 10.1002/ijc.33612]

Pérez-Moreno P, Riquelme I, García P, Brebi P, Roa JC. Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12 [PMID: 35207722 DOI: 10.3390/jpm20020234]

Borena W, Edlinger M, Bjorke T, Häggström C, Lindkvist B, Engelberg A, Stocks T, Strohmaier S, Manjik J, Selmir R, Tretti S, Concin H, Hallmans G, Jonsson H, Stattin P, Ulmer H. A prospective study on metabolic risk factors and gallbladder cancer in the metabolic syndrome and cancer (Me-Can) collaborative study. PLoS One 2014; 9: e89368 [PMID: 24286723 DOI: 10.1371/journal.pone.089368]

Jing C, Wang Z, Fu X. Effect of diabetes mellitus on survival in patients with gallbladder Cancer: a systematic review and meta-analysis. BMC Cancer 2020; 20: 689 [PMID: 32709224 DOI: 10.1186/s12885-020-03713-9]

Tsilidis KK, Kasisic JC, Lopez DS, Nuzzano EF, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 2015; 350: j6760 [PMID: 25558821 DOI: 10.1136/bmj.j6760]

Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, Rizos EC, Monori G, Ward HA, Kyriou M, Gunter MJ, Tsilidis KK. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol Biomarkers Prev 2021; 30: 1218-1228 [PMID: 33737302 DOI: 10.1158/1055-9965.EPI-20-1245]

Gu J, Yan S, Wang B, Shen F, Cao H, Fan J, Wang Y. Type 2 diabetes mellitus and risk of gallbladder cancer: a systematic review and meta-analysis of observational studies. Diabetes Metab Res Rev 2016; 32: 63-72 [PMID: 26111736 DOI: 10.1002/dmr.2671]

Hirata K, Takada M, Suzuki Y, Kuroda Y. Expression of receptor for advanced glycation end products (RAGE) in human biliary cancer cells. Hepatogastroenterology 2003; 50: 1205-1207 [PMID: 14571699]

Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehljen H, Hanssen KF. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999; 22: 1186-1190 [PMID: 10388987 DOI: 10.2337/diacare.22.7.1186]

Bellier J, Nokim MJ, Larée E, Karoyan P, Peulen O, Castronovo V, Bellahcène A. Methylglyoxal, a potent inducer of AGES, connects between diabetes and cancer. Diabetes Res Clin Pract 2019; 148: 200-211 [PMID: 30664892 DOI: 10.1016/j.diabres.2019.01.002]

Szwarc-Basile DA, Lu D, Tran KQ, Graewin S, Nakeeb A, Pitt HA. Advanced glycation end products accumulate in the diabetic gallbladder. J Surg Res 2006; 130: 302 [DOI: 10.1016/j.jss.2005.11.410]

Liao YF, Yin S, Chen QZ, Li F, Zhao B. High glucose promotes tumor cell proliferation and migration in lung adenocarcinoma via the RAGENOXs pathway. Mol Med Rep 2018; 17: 8536-8541 [PMID: 29693146 DOI: 10.3892/mmr.2018.8541]

Wang W, Ai KX, Yuan Z, Huang XY, Zhang HZ. Different expression of S100A8 in malignant and benign gallbladder diseases. Dig Dis Sci 2013; 58: 150-162 [PMID: 22860654 DOI: 10.1007/s10620-012-2307-0]

Shi Z, Huang Q, Chen J, Yu P, Wang X, Yang X, Han H, Chen Y, Dong Y. Correlation of HMGB1 expression to progression and poor prognosis of adenocarcinoma and squamous cell adenocarcinoma of gallbladder cancer. Am J Transl Res 2015; 7: 2015-2025 [PMID: 26692945]

Li Z, Chen Y, Wang X, Zhang H, Zhang Y, Gao Y, Weng M, Wang L, Liang H, Li M, Zhang F, Zhao S, Liu S, Cao Y, Shi Y, Bao R, Zhou J, Liu X, Yan Y, Zhen L, Dong Q, Liu Y. LASP-1 induces proliferation, metastasis and cell cycle arrest at the G2/M phase in gallbladder cancer by down-regulating S100P via the PI3K/AKT pathway. Cancer Lett 2016; 372: 239-250 [PMID: 26797416 DOI: 10.1016/j.canlet.2016.01.008]

Li BX, Tang CT, Dai XJ, Zeng L, Cheng F, Chen Y, Zeng C. Prognostic Value of S100P Expression in Patients With Digestive System Cancers: A Meta-Analysis. Front Oncol 2021; 11: 593728 [PMID: 33747914 DOI: 10.3389/fonc.2021.593728]

Rojas A, Delgado-López F, González I, Pérez-Castro R, Romero J, Rojas I. The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 2013; 25: 609-614 [PMID: 23200851 DOI: 10.1016/j.cellsig.2012.11.022]

Yu J, Shi L, Lin W, Lu B, Zhao Y. UCP2 promotes proliferation and chemoresistance through regulating the NF-κB/β-catenin axis and mitochondrial ROS in gallbladder cancer. Biochem Pharmacol 2020; 172: 113754 [PMID: 31811866 DOI: 10.1016/j.bcp.2019.113745]

Tang H, Shi X, Zhu P, Guo W, Li J, Yan B, Zhang S. Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol Lett 2021; 22: 609 [PMID: 34188711 DOI: 10.3892/ol.2021.12870]

Liu S, Chu B, Cai C, Wu X, Yao W, Wu Z, Yang Z, Li F, Liu Y, Dong P, Gong W. DGCR5 Promotes Gallbladder Cancer by Sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK Pathways. J Cancer 2020; 11: 5466-5477 [PMID: 32742494 DOI: 10.7150/jca.46531]
Atherosclerosis and pancreatic cancer.

Wendel U, Neville T, Vetter SW, Hollingsworth MA, Leclerc E. Inhibition of the Receptor for Advanced Glycation End Products

10.1074/jbc.M111.313437

specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered

Mizumoto S. Immunother Cancer

against the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer.

Clarkson R, Seaton G, Frostell A, Fagge T, McKee C, Margarit L, Conlan RS, Gonzalez D. Antibody drug conjugates

10.1158/1078-0432.CCR-12-0221

Arumugam T, Shen CY, Rojas A, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM. Blockade of RAGE-amphoterin signalling

Rojas A, Bierhaus A, Palanissami G, Gonzalez I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A. The immunobiology of the receptor of advanced
glycation end-products: trends and challenges.

González I, Ouyang B, Liu JL, Ding YB, Xia JG, Chen GY. Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer through

lymphatic metastasis of gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. J Exp Clin Cancer Res 2020; 39: 234 [PMID: 33135467 DOI: 10.1186/s13046-020-01742-4]

Nakada S, Kuboki S, Nojima H, Yoshitomi H, Furukawa K, Takayashiki T, Takano S, Miyazaki M, Ohtsuka M. Roles of Pin1 as a Key Molecule for EMT Induction by Activation of STAT3 and NF-κB in Human Gallbladder Cancer. Ann Surg Oncol 2019; 26: 907-917 [DOI: 10.1245/s10434-018-01372-7]

Hong He, C., Zhu S., Zhang Y., Wang X., She F., Chen Y. CCR7 mediates the TNF-α-induced lymphatic metastasis of gallbladder cancer through the "ERK1/2 - AP-1" and "JNK - AP-1" pathways. J Exp Clin Cancer Res 2016; 35: 51 [PMID: 27009073 DOI: 10.1186/s13046-016-0318-y]

Zhang DC, Liu JL, Ding YB, Xia JG, Chen GY. Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer by suppressing NF-κB. Acta Pharmacol Sin 2013; 34: 301-308 [PMID: 23274410 DOI: 10.1038/aps.2012.162]

Bao D, Yuan RX, Zhang Y. Effects of InRNA MEGS on proliferation and apoptosis of gallbladder cancer cells through regulating NF-κB signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24: 6632-6638 [PMID: 32633352 DOI: 10.26355/eurev.202006.21649]

Ouyang B, Pan N, Zhang H, Xing C, Ji W. miR146b5p inhibits tumorigenesis and metastasis of gallbladder cancer by targeting Tolllike receptor 4 via the nuclear factorsB pathway. Oncol Rep 2021; 45 [PMID: 33649824 DOI: 10.3892/or.2021.7966]

Zhu G, Du Q, Wang X, Tang N, She F, Chen Y. CCR7 mediates the TNF-α-promotes gallbladder cancer cell growth and invasion through autocrine mechanisms. Int J Mol Med 2014; 33: 1431-1440 [PMID: 24676340 DOI: 10.3892/ijmm.2014.1711]

Hong Y, Jiang L, Liu Y, He C, Zhu G, Du Q, Wang X, She F, Chen Y. TNF-alpha promotes lymphangiogenesis and lymphatic metastasis of gallbladder cancer through the ERK1/2/AP-1/VEGF-D pathway. BMC Cancer 2016; 16 [PMID: 26992854 DOI: 10.1186/s12885-016-2259-4]

Li Y, Zhang J, Ma H. Chronic inflammation and gallbladder cancer. Cancer Lett 2014; 345: 242-248 [PMID: 23981574 DOI: 10.1016/j.canlet.2013.08.034]

González I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A. The immunobiology of the receptor of advanced
glycation end-products: trends and challenges. Immunobiology 2013; 218: 790-797 [PMID: 23182709 DOI: 10.1016/j.imbio.2012.09.005]

Palanisami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer-a Review. Hормon Cancer 2018; 9: 295-325 [PMID: 29987748 DOI: 10.1021/acs.cancer.8b00865]

Bierhaus A, Humphert PM, Marcos M, Wendl T, Chavakis T, Arnold B, Stern DM, Nawroth PP. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005; 83: 876-886 [PMID: 16133426 DOI: 10.1007/s00109-005-0688-7]

Rojas A, Schneider I, Lindner C, González I, Morales MA. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42 [PMID: 35727208 DOI: 10.1042/BSR20220395]

Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced

glycation end-products: trends and challenges. Nature 2001; 405: 354-360 [PMID: 11030965 DOI: 10.1038/35012626]

Rojas A, Morales M, Gonzalez L, Araya P. Inhibition of RAGE Axis Signaling: A Pharmacological Challenge. Curr Drug Targets 2019; 20: 340-346 [PMID: 30124149 DOI: 10.2174/1389450119666180820105956]

Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25 [PMID: 33261212 DOI: 10.3390/molecules25235591]

Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 2012; 18: 4356-4364 [PMID: 22718861 DOI: 10.1158/1078-0432.CCR-12-0221]

Healey GD, Pan-Castillo B, Garcia-Parr a J, Davies J, Roberts S, Jones E, Dhar K, Nandanan S, Tofazzal N, Piggott L, Clarkin R, Seaton G, Föstl A, Fagge T, McKee C, Margarit L, Conlan RS, Gonzalez D. Antibody drug conjugates conjugates for the receptor for advanced glycation end products (RAGE), a novel therapeutic target in endometrial cancer. J Immunother Cancer 2019; 7: 280 [PMID: 31665084 DOI: 10.1186/s40425-019-0765-z]

Mizumoto S, Takahashi J, Sugahara K. Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells. J Biol Chem 2012; 287: 18895-18899 [PMID: 22493510 DOI: 10.1074/jbc.M111.313437]

Zhao Z, Wang H, Zhang L, Mei X, Hu J, Huang K. Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wat pathway. Anticancer Drugs 2017; 28: 187-196 [PMID: 27831944 DOI: 10.1097/CAD.0000000000000451]

Swami P, O'Connell KA, Thiyagarajan S, Crawford A, Patil P, Radhakrishnan P, Shin S, Caffrey TC, Grunkemeyer J, Neville T, Vetter SW, Hollingsworth MA, Leclerc E. Inhibition of the Receptor for Advanced Glycation End Products Enhances the Cytoxic Effect of Gemcitabine in Murine Pancreatic Tumors. Biocell 2021; 11 [PMID: 33915939 DOI: 10.3390/biocell11040526]

Wendel U, Persson N, Risinger C, Bengtsson E, Norlin B, Danielsson L, Welinder C, Nordin Fredrikson G, Jansson B, Blixt O. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer. PLoS One 2018; 13: e0191872 [PMID: 29420566 DOI: 10.1371/journal.pone.0191872]

Hubert P, Roncarati P, Demoulins S, Pi Iard C, Ancion M, Reynolds C, Lerho T, Bruyere D, Lebeau A, Radermecker C, Meunier M, Nokin MJ, Hendrick E, Peu lon O, Delvenne P, Hers F. Extracellular HMGB1 blockade inhibits tumor
growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. *J Immunother Cancer* 2021; 9 [PMID: 33712445 DOI: 10.1103/jitc-2020-00196]

76 Mizumoto S, Sugahara K. Glycosaminoglycans are functional ligands for receptor for advanced glycation end-products in tumors. *FEBS J* 2013; 280: 2462-2470 [PMID: 23360476 DOI: 10.1111/febs.12156]

77 Takeuchi A, Yamamoto Y, Munese S, Harashima A, Watanabe T, Yonekura H, Yamamoto H, Tsuchiya H. Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells. *Cancer Sci* 2013; 104: 740-749 [PMID: 23421467 DOI: 10.1111/cas.12133]

78 Xu D, Young JH, Krahn JM, Song D, Corbett KD, Chazin WJ, Pedersen LC, Esko JD. Stable RAGE-heparan sulfate complexes are essential for signal transduction. *ACS Chem Biol* 2013; 8: 1611-1620 [PMID: 23679870 DOI: 10.1021/cb4001553]

79 Li M, Ong CY, Langouët-Astrié CJ, Tan L, Verma A, Yang Y, Zhang X, Shah DK, Schmidt EP, Xu D. Heparan-sulfate-dependent RAGE oligomerization is indispensable for pathophysiological functions of RAGE. *Elife* 2022; 11 [PMID: 35137686 DOI: 10.7554/eLife.71403]

80 Li ML, Wang XF, Tan ZJ, Dong P, Gu J, Lu JH, Wu XS, Zhang L, Ding QC, Wu WG, Rao LH, Mu JS, Yang JH, Weng H, Ding Q, Zhang WJ, Chen L, Liu YB. Ethyl pyruvate administration suppresses growth and invasion of gallbladder cancer cells via downregulation of HMGB1-RAGE axis. *Int J Immunopathol Pharmacol* 2012; 25: 955-965 [PMID: 23298486 DOI: 10.1177/0394632012500413]

81 Yang Y, Zhao LH, Huang B, Wang RY, Yuan SX, Tao QF, Xu Y, Sun HY, Lin C, Zhou WP. Pioglitazone, a PPARγ agonist, inhibits growth and invasion of human hepatocellular carcinoma via blockade of the rage signaling. *Mol Carcinog* 2015; 54: 1584-1595 [PMID: 25307746 DOI: 10.1002/mc.22231]

82 Tanuma SI, Oyama T, Okazawa M, Yamazaki H, Takao K, Sugita Y, Amano S, Abe T, Sakagami H. A Dual Anti-Inflammatory and Anti-Proliferative 3-Styrylchromone Derivative Synergistically Enhances the Anti-Cancer Effects of DNA-Damaging Agents on Colon Cancer Cells by Targeting HMGB1-RAGE/ERK1/2 Signaling. *Int J Mol Sci* 2022; 23 [PMID: 35408766 DOI: 10.3390/ijms23073426]

83 Ramiya R, Coral K, Bharathidevi SR. RAGE silencing deters CML–AGE induced inflammation and TLR4 expression in endothelial cells. *Exp Eye Res* 2021; 206: 108519 [PMID: 33639133 DOI: 10.1016/j.exer.2021.108519]

84 Yu XY, Pan WC, Cheng YF. Silencing of advanced glycosylation and glycosylation and product-specific receptor (RAGE) inhibits the metastasis and growth of non-small cell lung cancer. *Am J Transl Res* 2017; 9: 2760-2774 [PMID: 28670367]

85 Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D’Agati V, Schmidt AM. Interaction of the RAGE cytopathic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. *J Biol Chem* 2008; 283: 34457-34468 [PMID: 18922799 DOI: 10.1074/jbc.M801465200]

86 Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slatterey T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. *Cell* 1999; 97: 889-901 [PMID: 10599917 DOI: 10.1016/S0092-8674(00)00801-6]

87 Toreü F, Fritz G, Li Q, Rai V, Daffu G, Zou YS, Rosario R, Ramasamy R, Alberts AS, Yan SF, Schmidt AM. Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. *Circ Res* 2012; 110: 1279-1293 [PMID: 22511750 DOI: 10.1161/CIRCRESAHA.111.1262519]

88 Manigrasso MB, Pan J, Rai V, Zhang J, Reverdatto S, Quadri N, DeVita RJ, Ramasamy R, Shekhtman A, Schmidt AM. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPIH Signal Transduction. *Sci Rep* 2016; 6: 22450 [PMID: 27613629 DOI: 10.1038/srep22450]

89 Manigrasso MB, Rabbani P, Egaña-Gorroño L, Quadri N, Frye L, Zhou B, Reverdatto S, Ramirez LS, Dansereau S, Pan J, Li H, D’Agati VD, Ramasamy R, DeVita RJ, Shekhtman A, Schmidt AM. Small-molecule antagonism of the interaction of the RAGE cytopathic domain with DIAPIH reduces diabetic complications in mice. *Sci Transl Med* 2021; 13: eabf7084 [PMID: 34818060 DOI: 10.1126/scitranslmed.eabf7084]

90 Leerach N, Munese S, Harashima A, Kinura K, Oshima Y, Kawano S, Tanaka M, Niinuma A, Sakulsuk N, Yamamoto H, Hori O, Yamamoto Y. RAGE silencing suppresses mouse macrophage foam cell formation. *Biochem Biophys Res Commun* 2021; 555: 74-80 [PMID: 33813279 DOI: 10.1016/j.bbrc.2021.03.139]

91 Koga Y, Sotokawauchi A, Higashimoto Y, Nishino Y, Hashizume N, Kakuma T, Akiba J, Tanaka Y, Matsui T, Yagi M, Yamagishi SI. DNA-Aptamer Raised against Receptor for Advanced Glycation End Products Improves Survival Rate in Septic Mice. *Oxid Med Cell Longev* 2021; 2021: 9932311 [PMID: 34421390 DOI: 10.1155/2021/9932311]

92 Sotokawauchi A, Matsui T, Higashimoto Y, Nishino Y, Koga Y, Yagi M, Yamagishi SI. DNA aptamer raised against receptor for advanced glycation end products suppresses renal tubular damage and improves insulin resistance in diabetic mice. *Diab Vas Dis Res* 2021; 18: 1479164121990533 [PMID: 35353822 DOI: 10.1177/1479164121990533]

93 Kaida Y, Fukami K, Matsui T, Higashimoto Y, Nishino Y, Obara N, Nakayama Y, Ando R, Toyonaga M, Ueda S, Takeuchi M, Inoue H, Okuda S, Yamagishi S. DNA aptamer raised against AGES blocks the progression of experimental diabetic nephropathy. *Diabetes* 2013; 62: 3241-3250 [PMID: 23630304 DOI: 10.2337/db12-1608]

94 Ojima A, Matsui T, Maeda S, Takeuchi M, Inoue H, Higashimoto Y, Yamagishi S. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. *Lab Invest* 2014; 94: 422-429 [PMID: 24514068 DOI: 10.1038/lab Invest2014.5]

95 Zhong J, Zhu W, He F, Li Z, Cai N, Wang HH. An Aptamer-Based Antagonist against the Receptor for Advanced Glycation End-Products (RAGE) Blocks Development of Colorectal Cancer. *Mediators Inflamm* 2021; 2021: 9958051 [PMID: 34035661 DOI: 10.1155/2021/9958051]

96 Nakamura N, Matsui T, Ishibashi Y, Sotokawauchi A, Fukami K, Higashimoto Y, Yamagishi SI. RAGE-aptamer Attenuates the Growth and Liver Metastasis of Malignant Melanoma in Nude Mice. *Med Mol Mol Biol* 2017; 23: 295-306 [PMID: 29387865 DOI: 10.2119/molmed.2017.00099]

97 Lotan R, Ganmore I, Shelly S, Zacharia M, Uribarri J, Beisswenger P, Cai W, Troen AM, Schneider Beeri M. Long Term Dietary Restriction of Advanced Glycation End-Products (AGEs) in Older Adults with Type 2 Diabetes Is Feasible and
Efficacious-Results from a Pilot RCT. *Nutrients* 2020; 12 [PMID: 33076217 DOI: 10.3390/nu12103143]

98 Yacoub R, Nugent M, Cai W, Nadkarni GN, Chaves LD, Abyad S, Honan AM, Thomas SA, Zheng W, Valiyaparambil SA, Bryniareski MA, Sun Y, Buck M, Genco RJ, Quigg RJ, He JC, Uribarri J. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. *PLoS One* 2017; 12: e0184789 [PMID: 28931089 DOI: 10.1371/journal.pone.0184789]

99 Berdún R, Jove M, Sol J, Cai W, He JC, Rodríguez-Mortera R, Martín-Gari M, Pamplona R, Uribarri J, Portero-Otin M. Restriction of Dietary Advanced Glycation End Products Induces a Differential Plasma Metabolome and Lipidome Profile. *Mol Nutr Food Res* 2021; 65: e2000499 [PMID: 34599622 DOI: 10.1002/mnr.202004999]

100 Goudarzi R, Sedaghat M, Hedayati M, Hekmatdoost A, Sohrab G. Low advanced Glycation end product diet improves the central obesity, insulin resistance and inflammatory profiles in Iranian patients with metabolic syndrome: a randomized clinical trial. *J Diabetes Metab Disord* 2020; 19: 1129-1138 [PMID: 33520830 DOI: 10.1007/s40249-020-00614-0]

101 Gutierrez-Mariscal FM, Cardejo MP, de la Cruz S, Alcalá-Diaz JF, Roncero-Ramos I, Gulier I, Vals-Delgado C, López-Moreno A, Luque RM, Delgado-Lista J, Perez-Martínez P, Yuberbo-Serrano EM, Lopez-Miranda J. Reduction in Circulating Advanced Glycation End Products by Mediterranean Diet Is Associated with Increased Likelihood of Type 2 Diabetes Remission in Patients with Coronary Heart Disease: From the Cordemprev Study. *Mol Nutr Food Res* 2021; 65: e1901290 [PMID: 32529753 DOI: 10.1002/mnfr.201901290]

102 Jiao L, Stolzenberg-Solomon R, Zimmerman TP, Duan Z, Chen L, Kahlé L, Risch A, Subar AF, Cross AJ, Hollenbeck A, Vlassara H, Striker G, Sinha R. Dietary consumption of advanced glycation end products and pancreatic cancer in the prospective NIH-AARP Diet and Health Study. *Am J Clin Nutr* 2015; 101: 126-134 [PMID: 25527736 DOI: 10.3945/ajcn.114.098061]

103 Peterson LL, Park S, Park Y, Colditz GA, Anbantar N, Turner DP. Dietary advanced glycation end products and the risk of postmenopausal breast cancer in the Modern Instructors of Health--AARP Diet and Health Study. *Cancer* 2020; 126: 2648-2657 [PMID: 32097496 DOI: 10.1002/cncr.32798]

104 Omofoma OO, Turner DP, Peterson LL, Merchant AT, Zhang J, Steck SE. Dietary Advanced Glycation End-products (AGE) and Risk of Breast Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). *Cancer Prev Res (Phila)* 2020; 13: 601-610 [PMID: 32169887 DOI: 10.1158/1940-6207.CAPR-19-0457]

105 Aglago EK, Mayal AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksson AK, Tjønneland A, Boutou-Ruault MC, Rothwell JA, Severi G, Kaaks R, Katzev V, Schulze MB, Birukov A, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Gram IT, Sandander T, Quiro's JR, Luján-Barroso L, Sánchez MJ, Amiano P, Chirafaez MD, Gurrea AB, Johansson I, Manjer J, Perez-Cornago A, Weiderpass E, Gunter MJ, Heath AK, Schalkwijk CG, Jenn M. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. *Nutrients* 2021; 13 [PMID: 34579010 DOI: 10.3390/nu13093132]

106 Mao Z, Aglago EK, Zhao Z, Schalkwijk C, Jiao L, Freisling H, Weiderpass E, Hughes DJ, Eriksson AK, Tjønneland A, Severi G, Rothwell JA, Boutou-Ruault MC, Katzev V, Kaaks R, Schulze MB, Birukov A, Krogh V, Panico S, Tumino R, Ricceri F, Bueno-de-Mesquita HB, Vermeulen RCH, Gram IT, Skeie G, Sandander TM, Quiro's JR, Courou-Bou M, Sánchez MJ, Amiano P, Chirafaez MD, Barricarte Gurrea A, Manjer J, Johansson I, Perez-Cornago A, Jenn M, Fedirko V. Dietary Intake of Advanced Glycation End Products (AGEs) and Mortality among Individuals with Colorectal Cancer. *Nutrients* 2021; 13 [PMID: 34959986 DOI: 10.3390/nu13124343]

107 Omofoma OO, Peterson LL, Turner DP, Merchant AT, Zhang J, Thomson CA, Neuhouser ML, Sneselaar LG, Caan BJ, Shadyab AH, SaquiN, Banack HR, Uribarri J, Steck SE. Dietary Advanced Glycation End-Products and Mortality after Breast Cancer in the Women's Health Initiative. *Cancer Epidemiol Biomarkers Prev* 2021; 30: 2217-2226 [PMID: 34583965 DOI: 10.1158/1055-9965.EPI-21-0610]

108 Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J, Singletoratam I, Flanders WD, Brawley OW, Gapstur SM, Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. *CA Cancer J Clin* 2018; 68: 31-54 [PMID: 29160902 DOI: 10.3322/caac.21440]

109 Du H, Cao T, Lu X, Zhang T, Luo B, Li Z. Mediterranean Diet Patterns in Relation to Lung Cancer Risk: A Meta-Analysis. *Front Nutr* 2022; 9: 844382 [PMID: 35495942 DOI: 10.3390/finut.2022.844382]

110 Long T, Liu K, Long J, Li J, Cheng L. Dietary glycemic index, glycemic load and cancer risk: a meta-analysis of prospective cohort studies. *Eur J Nutr* 2022; 61: 2115-2127 [PMID: 33043169 DOI: 10.1007/s00394-022-02797-z]

111 Papadimitriou N, Markozannes G, Kanellopoulou A, Critselis E, Alhardan S, Karafousia V, Kasimis JC, Katsaraki C, Papadopoulou Z, Zografou M, Lopez DS, Chan DSM, Kyrgiou M, Ntizani E, Cross AJ, Marrone MT, Platz EA, Gunter MJ, Tsilidis KK. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. *Nat Commun* 2021; 12: 4579 [PMID: 34321471 DOI: 10.1038/s41467-021-2486-1]

112 Kazemi A, Barati-Boldaji R, Soltani S, Mohammadipoor N, Emaezelinezhad Z, Clark CCT, Babajafari S, Akbarzadeh M. Intake of Various Food Groups and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. *Adv Nutr* 2021; 12: 809-849 [PMID: 33271590 DOI: 10.1093/advances/nmaa147]

113 Key TJ, Allen NE, Spencer EA, Travis RC. The effect of diet on risk of cancer. *Lancet* 2002; 360: 861-868 [PMID: 12443933 DOI: 10.1016/S0140-6736(02)09958-0]

114 Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. *Diabetes Metab Syndr Obes* 2019; 12: 2221-2236 [PMID: 31695465 DOI: 10.2147/DMSO.S216791]

115 Benninghoff AD, Hintze KJ, Monsanto SP, Rodriguez DM, Hunter AH, Phatak S, Pestka JJ, Wettere AJV, Ward RE. Consumption of the Total Western Diet Promotes Colitis and Inflammation-Associated Colorectal Cancer in Mice. *Nutrients* 2020; 12 [PMID: 32093192 DOI: 10.3390/nu120544]

116 Zheng J, Guinter MA, Merchant AT, Wirth MD, Zhang J, Stolzenberg-Solomon RZ, Steck SE. Dietary patterns and risk of pancreatic cancer: a systematic review. *Nutr Rev* 2017; 75: 883-908 [PMID: 29025004 DOI: 10.1093/nutrit/nux038]

117 Fabiani R, Minelli L, Bertarelli G, Bacci S. A Western Dietary Pattern Increases Prostate Cancer Risk: A Systematic
Review and Meta-Analysis. *Nutrients* 2016; 8 [PMID: 27754328 DOI: 10.3390/nu8100626]

118 Xiao Y, Xia J, Li K, Ke Y, Cheng J, Xie Y, Chu W, Cheung P, Kim JH, Colditz GA, Tamimi RM, Su X. Associations between dietary patterns and the risk of breast cancer: a systematic review and meta-analysis of observational studies. *Breast Cancer Res* 2019; 21: 16 [PMID: 30696460 DOI: 10.1186/s13058-019-1096-1]

119 Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, He C, Vlassara H. Restriction of dietary glycoxidins reduces excessive advanced glycation end products in renal failure patients. *J Am Soc Nephrol* 2003; 14: 728-731 [PMID: 12595569 DOI: 10.1097/01.asn.0000515934.41395.b9]

120 Vlassara H, Cai W, Cramdall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycoxidins, a major risk factor for diabetic angiopathy. *Proc Natl Acad Sci U S A* 2002; 99: 15596-15601 [PMID: 12429856 DOI: 10.1073/pnas.242407999]

121 Vlassara H, Cai W, Goodman S, Pyzik R, Yong A, Chen X, Zhu L, Neade T, Beer M, Silverman JM, Ferrucci L, Tansman L, Striker GE, Uribarri J. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. *J Clin Endocrinol Metab* 2009; 94: 4483-4491 [PMID: 19820033 DOI: 10.1210/jc.2009-00089]

122 Luévano-Contreras C, Garay-Sevilla ME, Wrobek K, Malacara JM. Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. *J Clin Biochem Nutr* 2013; 52: 22-26 [PMID: 23341693 DOI: 10.3164/jcn.12.40]

123 de Courten B, de Courten MP, Soldatos G, Dougherty SL, Straznicky N, Schaich M, Sourris KC, Chand V, Scheijen JL, Kingwell BA, Cooper ME, Schalkwijk CG, Walker KZ, Forbes JM. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. *Am J Clin Nutr* 2016; 103: 1426-1433 [PMID: 27030534 DOI: 10.3945/ajcn.115.125427]

124 Gugliucci A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. *Adv Nutr* 2017; 8: 54-62 [PMID: 28096127 DOI: 10.3945/an.116.013912]

125 Aragno M, Mastrocucco R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. *Nutrients* 2017; 9: 385 [PMID: 28420091 DOI: 10.3390/nu9040385]

126 Lorenzo Bermejo J, Boekstegers F, González Silos R, Marcelain K, Baez Benavides P, Barahona Ponce C, Müller B, Ferreccio C, Koshito J, Fischer C, Peil B, Sinzheimer J, Fuentes Guajardo M, Barajas O, Gonzalez-Jose R, Bedoya G, Cátira Bortolini M, Canizales-Quinteros S, Gallo C, Ruiz Linares A, Rothhammer F. Subtypes of Native American ancestry and leading causes of death: Mapuche ancestry-specific associations with gallbladder cancer risk in Chile. *PLoS Genet* 2017; 13: e1006765 [PMID: 28542165 DOI: 10.1371/journal.pgen.1006765]

127 Boekstegers F, Marcelain K, Barahona Ponce C, Baez Benavides PF, Müller B, de Toro G, Retamales J, Barajas O, Ahumada M, Morales E, Rojas A, Sanhueza V, Loader D, Rivera MT, Figueroa H, Llanos J, Morales E, Pérez-Castro R. Evidence of involvement of the receptor for advanced glycation end-products (RAGE) in the adhesion of Helicobacter pylori to gastric epithelial microvilli. *Microbes Infect* 2011; 13: 818-823 [PMID: 21270403 DOI: 10.1016/j.micinf.2011.04.005]

128 Gonzalez I, Morales MA, Rojas A. Polyphenols and AGEs/RAGE axis. Trends and challenges. *Food Res Int* 2020; 129: 108843 [PMID: 32036875 DOI: 10.1016/j.foodres.2019.108843]

129 Liotta LA, Clair T. Cancer. Pointcounter for invasion. *Nature* 2000; 405: 287-288 [PMID: 10830943 DOI: 10.1038/35012728]

130 Rojas A, González I, Rodríguez B, Romero J, Figueroa H, Llanos J, Morales E, Pérez-Castro R. Evidence of involvement of the receptor for advanced glycation end-products (RAGE) in the adhesion of Helicobacter pylori to gastric epithelial microvilli. *Microbes Infect* 2011; 13: 818-823 [PMID: 21609778 DOI: 10.1016/j.micinf.2011.04.005]

131 Yamamoto Y, Harashima A, Saito H, Tsuneyama K, Munesue S, Motoyoshi S, Han D, Watanabe T, Asano M, Takasawa S, Okamoto H, Shimmura T, Yonekura H, Yamamoto H. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. *J Immunol* 2011; 186: 3248-3257 [PMID: 21270403 DOI: 10.4049/jimmunol.1002253]

132 Garay-Sevilla ME, Gomez-Ojeda A, Gonzalez I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. *Mol Cell Biochem* 2021; 476: 1555-1573 [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z]

133 Rojas A, González I, Morales E, Pérez-Castro R, Romero J, Figueroa H. Diabetes and cancer: Looking at the multiligand/RAGE axis. *World J Diabetes* 2011; 2: 108-113 [PMID: 21860609 DOI: 10.4239/wjd.v2i7.108]
