AFFINE OPEN SUBSETS IN \mathbb{A}^3 WITHOUT THE CANCELLATION PROPERTY

ADRIEN DUBOULOZ

Abstract. We give families of examples of principal open subsets of the affine space \mathbb{A}^3 which do not have the cancellation property. We show as a by-product that the cylinders over Koras-Russell threefolds of the first kind have a trivial Makar-Limanov invariant.

Introduction

The generalized Cancellation Problem asks if two algebraic varieties X and Y with isomorphic cylinders $X \times \mathbb{A}^1$ and $Y \times \mathbb{A}^1$ are isomorphic themselves. Although the answer turns out to be affirmative for a large class of varieties including the case when one of the varieties is the affine plane \mathbb{A}^2 [10] [13], counter-examples exist for affine varieties in any dimension ≥ 2, and the particular case when one of the two varieties is an affine space \mathbb{A}^n, $n \geq 3$, still remains a widely open problem.

The first counter-example for complex affine varieties has been constructed by Danielewski [1] in 1989: he exploited the fact that the non isomorphic affine surfaces $S_1 = \{xz = y^2 - 1\}$ and $S_2 = \{x^2z = y^2 - 1\}$ in $\mathbb{A}^3_{\mathbb{C}}$ can be equipped with free actions of the additive group \mathbb{G}_a admitting geometric quotients in the form of non trivial \mathbb{G}_a-bundles $\rho_i : S_i \to \mathbb{A}^1$, $i = 1, 2$ over the affine line with a double origin. It then follows that the fiber product $S_1 \times_{\mathbb{A}^1} S_2$ inherits simultaneously the structure of a \mathbb{G}_a-bundle over S_1 and S_2 via the first and the second projection respectively, but since S_1 and S_2 are both affine, the latter are both trivial, providing isomorphisms $S_1 \times \mathbb{A}^1 \simeq S_1 \times \mathbb{A}^1$ and $S_2 \simeq S_2 \times \mathbb{A}^1$. Since then, Danielewski’s fiber product trick has been the source of many new counter-examples in any dimension [7, 3, 8, 5], some of these being very close to affine spaces either from an algebraic or a topological point of view.

However, a counter-example over the field of real numbers was constructed earlier by Hochster [9] using the algebraic counterpart of the classical fact from differential geometry that the tangent bundle of the real sphere S^2 is non trivial but 1-stably trivial. His argument actually applies more generally to the situation when a finitely generated domain R over a field k admits a non trivial projective module M of rank $n - 1 \geq 1$ such that $M \oplus R \simeq R^{\oplus n} \oplus R$. Indeed, these hypotheses immediately imply that the varieties $X = \text{Spec}(k(\text{Sym}(M)))$ and $Y = \text{Spec}(R[x_1, \ldots, x_n])$ are not isomorphic as schemes over $Z = \text{Spec}(R)$ while their cylinders are. Of course, there is no reason in general that X and Y are not isomorphic as k-varieties, but this holds for instance when Z does not admit any dominant morphism from an affine space \mathbb{A}^n_k since then any isomorphism between X and Y necessarily descends to an automorphism of Z ([10] [2]). Recently, Jelonek [11] gave revival to Hochster idea by constructing families of examples of non uniruled affine open subsets of affine spaces of any dimension ≥ 8 with 1-stably trivial but non trivial vector bundles, which fail the cancellation property.

While affine affine open subsets of affine spaces of dimension ≤ 2 always have the cancellation property (see e.g. loc. cit.), we derive in this note from a variant of Danielewski’s fiber product trick that cancellation already fails for suitably chosen principal open subsets of \mathbb{A}^3.

As an application of our construction we also obtain that all cylinders over Koras-Russell threefolds $X_{d,k,l} = \{x^d z = y^l + x - t^k = 0\} \subset \mathbb{A}^3$, $d \geq 2$ and $2 \leq l < k$ relatively prime [12], have a trivial Makar-Limanov invariant [13].

2000 Mathematics Subject Classification. 14R10, 14R20.
Key words and phrases. Cancellation problem; Koras-Russell threefolds.
1. Principal open subsets in \mathbb{A}^3 without the cancellation property

For every $d \geq 1$ and $l \geq 2$, we denote by $B_{d,l}$ the surface in $\mathbb{A}^3 = \text{Spec}(\mathbb{C}[x,y,z])$ defined by the equation $f_{d,l} = y^l + x - x^d z = 0$ and by $U_{d,l} = \mathbb{A}^3 \setminus B_{d,l}$ its open complement. By construction, $U_{d,l}$ comes equipped with a flat isotrivial fibration $f_{d,l} : U_{d,l} \rightarrow \mathbb{A}^1 = \text{Spec}(\mathbb{C}[t])$ with closed fibers isomorphic to the surface $S_{d,l} \subset \mathbb{A}^3 = \text{Spec}(\mathbb{C}[X,Y,Z])$ defined by the equation $X^d Z = Y^l + X - 1$. A surface $S_{d,l}$ having no non constant invertible function, an isomorphism $\varphi : U_{d,l} \overset{\simeq}{\rightarrow} U_{d',l'}$ necessarily maps closed fibers of $f_{d,l}$ isomorphically onto that of $f_{d',l'}$. But since $S_{d,l}$ is isomorphic to $S_{d',l'}$, if and only if $(d',l') = (d,l)$ (see e.g. [6] Theorem 3.2 and Proposition 3.6), it follows that the threefolds $U_{d,l}$, $d \geq 1$, $l \geq 2$, are pairwise non isomorphic. In contrast, we have the following result:

Theorem 1. For every fixed $l \geq 2$, the fourfolds $U_{d,l} \times \mathbb{A}^1$, $d \geq 1$, are all isomorphic.

Proof. We exploit the fact that every $U_{d,l}$ admits a free G_a-action defined by the locally nilpotent derivation $x^d \partial_y + y^{l-1} \partial_y$ of its coordinate ring $\mathbb{C}[x,y,z]_{f_{d,l}}$. A free G_a-action being locally trivial in the étale topology, it follows that a geometric quotient $\nu_{d,l} : U_{d,l} \rightarrow \mathfrak{S}_{d,l} = U_{d,l}/G_a$ exists in the form of an étale locally trivial G_a-bundle over a certain algebraic space $\mathfrak{S}_{d,l}$. Then it is enough to show that for every fixed $l \geq 2$, the algebraic spaces $\mathfrak{S}_{d,l}$ are all isomorphic, say to a fixed algebraic space \mathfrak{S}_l. Indeed, if so, then for every $d, d' \geq 1$, the fiber product $U_{d,l} \times \mathfrak{S}_l \times U_{d',l}$ will be simultaneously a G_a-bundle over $U_{d,l}$ and $U_{d',l}$ via the first and second projection respectively whereas will be simultaneously isomorphic to the trivial G_a-bundles $U_{d,l} \times \mathbb{A}^1$ and $U_{d',l} \times \mathbb{A}^1$ as $U_{d,l}$ and $U_{d',l}$ are both affine.

The algebraic spaces $\mathfrak{S}_{d,l}$ can be described explicitly as follows: one checks that the isotrivial fibration $f_{d,l} : U_{d,l} \rightarrow \mathbb{A}^1$, $u \mapsto t = u^l$, with isomorphism $\Phi_{d,l} : S_{d,l} \times \mathbb{A}^1 \overset{\sim}{\rightarrow} U_{d,l} \times \mathbb{A}^1$ given by $(X,Y,Z,u) \mapsto (u^l X, uY, u^{l-1}Z, u)$ and the μ_l-invariant morphism $\pi_{d,l} = \text{pr}_1 \circ \Phi_{d,l} : S_{d,l} \times \mathbb{A}^1 \rightarrow U_{d,l}$ descends to an isomorphism $(S_{d,l} \times \mathbb{A}^1)/\mu_l \simeq U_{d,l}$. The G_a-action on $U_{d,l}$ lifts via the proper étale morphism $\pi_{d,l}$ to the free G_a-action on $S_{d,l} \times \mathbb{A}^1$ commuting with that of μ_l defined by the locally nilpotent derivation $u^{ld-1}(X^d \partial_Y + Y^{l-1} \partial_Z)$ of its coordinate ring $\mathbb{C}[X,Y,Z]/(X^d Z - Y^l - X + 1) \{u \pm 1\}$. The principal divisor $\{X = 0\}$ of $S_{d,l} \times \mathbb{A}^1$ is G_a-invariant and it decomposes into the disjoint union of irreducible divisors $D_{\eta} = \{X = Y - \eta = 0\}_{\eta \in \mu_l} \simeq \text{Spec}(\mathbb{C}[Z]/\{u \pm 1\})$ on which μ_l acts by $D_{\eta} \ni (Z,u) \mapsto (Z, \pm u) \in \mathfrak{S}_l$. Now a similar argument as in [7] Lemma 1.2 implies that for every $\eta \in \mu_l$, the G_a-invariant morphism $\text{pr}_X \times \text{id} : S_{d,l} \times \mathbb{A}^1 \rightarrow \mathbb{A}^3 \times \mathbb{A}^1$ restricts on $(S_{d,l} \times \mathbb{A}^1) \setminus \bigcup_{\eta \in \mu_l} \{D_{\eta}\}$ to a trivial G_a-bundle over $\mathbb{A}^3 \times \mathbb{A}^1$. Letting $C(l)$ be the scheme over $\mathbb{A}^3 = \text{Spec}(\mathbb{C}[X])$ obtained by gluing l copies C_{η}, $\eta \in \mu_l$, of $\mathbb{A}^3 = \text{Spec}(\mathbb{C}[X])$ outside their respective origins, it follows that $\text{pr}_X \times \text{id}$ factors through a μ_l-equivariant G_a-bundle $\rho_{d,l} \times \text{id} : S_{d,l} \times \mathbb{A}^1 \rightarrow C(l) \times \mathbb{A}^1$, where μ_l acts freely on $(C(l) \times \mathbb{A}^1)$ by $C_{\eta} \times \mathbb{A}^1 \ni (x,u) \mapsto (x, \pm u) \in C_{\eta} \times \mathbb{A}^1$

A quotient $(C(l) \times \mathbb{A}^1)/\mu_l$ exist in the category of algebraic spaces in the form of a principal μ_l-bundle $\sigma_l : C(l) \times \mathbb{A}^1 \rightarrow \mathfrak{S}_l$, and the above description implies that $\rho_{d,l} \times \text{id}$ descends to an étale locally trivial G_a-bundle $\nu_{d,l} : U_{d,l} \rightarrow \mathfrak{S}_l$ for which the diagram

$$
\begin{array}{ccc}
S_{d,l} \times \mathbb{A}^1 & \overset{\pi_{d,l}}{\rightarrow} & U_{d,l} \simeq (S_{d,l} \times \mathbb{A}^1)/\mu_l \\
\rho_{d,l} \times \text{id} & \downarrow & \\
C(l) \times \mathbb{A}^1 & \overset{\sigma_l}{\rightarrow} & \mathfrak{S}_l,
\end{array}
$$

is cartesian. By virtue of the universal property of categorical quotients one has necessarily $\mathfrak{S}_{d,l} \simeq \mathfrak{S}_l$ for every $d \geq 1$. In particular, the isomorphism type of $\mathfrak{S}_{d,l}$ depends only on l, which completes the proof. □

Remark 2. The algebraic spaces $\mathfrak{S}_l = (C(l) \times \mathbb{A}^1)/\mu_l$, $l \geq 2$, considered in the proof above cannot be schemes: indeed, otherwise the image in \mathfrak{S}_l of the point $(0,1) \in \mathbb{C}^l \times \mathbb{A}^1 \subset C(l) \times \mathbb{A}^1$ would have a Zariski open affine neighborhood V. But then the inverse image of V by the finite étale cover $\sigma_l : C(l) \times \mathbb{A}^1 \rightarrow \mathfrak{S}_l$ would be a μ_l-invariant affine open neighborhood of $(0,1)$ in $C(l) \times \mathbb{A}^1$, which
is absurd since $(0,1)$ does not even have a separated $μ_1$-invariant open neighborhood in $C(ι) × A^1_i$. This implies in turn that the free G_a-action on $U_{d,l}$ defined by the locally nilpotent derivation $x^d_3∂_y + y^{l-1}_3∂_z$ is not locally trivial in the Zariski topology. In contrast, the latter property holds for its lift to $S_{d,l} × A^1_i$ via the étale Galois cover $π_{d,l} : S_{d,l} × A^1_i → U_{d,l}$. Remark 3. In Danielewski’s construction for the surfaces $S_i = \{ x^i z = y^2 - 1 \} ⊂ A^3$, $i = 1, 2$, the geometric quotients $S_i / G_a ≃ A^1$, $i = 1, 2$, were obtained from the categorical quotients $S_i / G_a = Spec(C[x,y,z]^{G_a}_μ)$ taken in the category of affine schemes by replacing the origin by two copies of itself, one for each orbit in the zero fiber of the quotient morphism $q = pr_2 : S_i → A^1$. For the threefolds $U_{d,l}$, the difference between the quotients $U_{d,l} / G_a = Spec(C[x,y,z]^{G_a}_μ)$ in the category of (affine) schemes and the geometric quotients $S_i = U_{d,l} / G_a$ is very similar: indeed, we may identify $U_{d,l}$ with the closed subvariety of $A^3 × A^1_i = Spec(C[x,y,z][t^{±1}])$ defined by the equation $x^d_3 z = y^2 + x - t$ in such a way that $f_{d,l} : U_{d,l} → A^1_i$ coincides with the projection $pr_{d,l} |_{U_{d,l}}$. Then, the kernel of the locally nilpotent derivation $x^d_3∂_y + y^{l-1}_3∂_z$ of the coordinate ring of $U_{d,l}$ coincides with the subalgebra $C[x,y,z][t^{±1}]$ and so, the G_a-invariant morphism $q = pr_{d,l} : U_{d,l} → A^1_i × L = Spec(C[x,z][t^{±1}])$ is a categorical quotient in the category of affine schemes. One checks easily that q restricts to a trivial G_a-bundle over the principal open subset $\{ x ≠ 0 \}$ of $A^3 × A^1_i$, whereas the inverse image of the punctured line $\{ x = 0 \} ≃ L$ is isomorphic to $A^1_i × L = Spec(C[y,z][t^{±1}]/(y^2 - t)z)$ where G_a acts by translations on the second factor. So we may interpret the geometric quotient $S_i = U_{d,l} / G_a$ as being obtained from $U_{d,l} / G_a = A^3 × L$ by replacing the punctured line $\{ x = 0 \} ≃ L$ not by l disjoint copies of itself but, instead, by the total space L of the nontrivial étale Galois cover $pr_{d,l} : L → L$. The Koras-Russell threefolds $X_{d,k,l}$ are smooth complex affine varieties defined by equations of the form $x^d_3 z = y^l + x - t^k$, where $d ≥ 2$ and $2 ≤ l < k$ are relatively prime. While all diffomorphic to the euclidean space R^6, none of these threefold is algebraically isomorphic to the affine A^3. Indeed, it was established by Kaliman and Makar-Limanov [13, 12] that they have fewer algebraic G_a-actions than the affine space A^3: the subring $ML(X_{d,k,l})$ of their coordinate ring consisting of regular functions invariant under all algebraic G_a-actions on $X_{d,k,l}$ is equal to the polynomial ring $C[x]$, while $ML(A^3)$ is trivial, consisting of constants only. However, it was observed by the author in [3] that the Makar-Limanov invariant ML fails to distinguish the cylinder over the so-called Russell cubic $X_{2,2,3}$ from the affine space A^3. This phenomenon holds more generally for cylinders over all Koras-Russell threefolds $X_{d,k,l}$: Corollary 4. All the cylinders $X_{d,k,l} × A^1$ have a trivial Makar-Limanov invariant. Proof. We consider $X_{d,k,l} × A^1$ as the subvariety of $Spec(C[x,y,z,t][v])$ defined by the equation $f_{d,l} = t^k = 0$. While $ML(X_{d,k,l} × A^1) ⊂ ML(X_{d,k,l}) = C[x]$, it is enough to construct a locally nilpotent derivation of $C[x,y,z,t][v]/(f_{d,l} - t^k)$ which does not have x in its kernel. One checks easily that $ML(U_{d,l} × A^1) = C[f_{d,l}^{±1}]$ is the intersection of the kernels of the locally nilpotent derivations $x∂_y + y^{l-1}_3∂_z$ and $y^{l-1}_3∂_x + (z-1)∂_y$ of $C[x,y,z][f_{d,l}]$. Theorem 3 above implies in particular that $ML(U_{d,l} × A^1) ≃ ML(U_{d,l} × A^1) = C[f_{d,l}^{±1}]$ and so, there exists a locally nilpotent derivation $δ_{d,l}$ of $Γ(U_{d,l} × A^1, C_{U_{d,l} × A^1}) = C[x,y,z][f_{d,l}]$ which does not have x in its kernel. Up to multiplying it by a suitable power of $f_{d,l} ∈ Ker(δ_{d,l})$, we may further assume that $δ_{d,l}$ is the extension to $C[x,y,z][f_{d,l}]$ of a locally nilpotent derivation of $C[x,y,z][v]$ which has $f_{d,l}$ but not x in its kernel. This implies in particular that $B_{d,l} × A^1 = Spec(C[x,y,z]/(f_{d,l}))$ is invariant under the corresponding G_a-action on $A^3 = Spec(C[x,y,z][v])$. The projection $p = pr_{x,y,z,v} : X_{d,k,l} × A^1 → A^3$ being a finite Galois cover with branch locus $B_{d,l} × A^1$, it follows that the G_a-action on A^3 lifts to a one on $X_{d,k,l} × A^1$ for which $p : X_{d,k,l} × A^1 → A^3$ is G_a-equivariant. By construction, the corresponding locally nilpotent derivation of $C[x,y,z][v]/(f_{d,l} - t^k)$ does not have x in its kernel. In the proof above, we used the following classical fact that we include here because of a lack of an appropriate reference.

\[^1\]These are called Koras-Russell threefolds of the first kind in [15].
Lemma 5. Let X be a variety defined over a field of characteristic zero and equipped with a non trivial \mathbb{G}_a-action, let Z be a normal variety and let $p : Z \to X$ be a finite surjective morphism. Suppose that there exists a \mathbb{G}_a-invariant affine open subvariety U of X over which p restricts to an étale morphism. Then there exists a unique \mathbb{G}_a-action on Z for which $p : Z \to X$ is a \mathbb{G}_a-equivariant morphism.

Proof. The induced \mathbb{G}_a-action on the invariant affine open subvariety U of X is determined by a locally nilpotent derivation ∂ of $\Gamma(U, \mathcal{O}_U)$. Since $p : p^{-1}(U) \to U$ is étale and proper, $p^{-1}(U)$ is an affine open subvariety of Z and ∂ lifts in a unique way to a derivation of $\Gamma(p^{-1}(U), \mathcal{O}_{p^{-1}(U)})$ which is again locally nilpotent by virtue of [17]. By construction, the latter defines a \mathbb{G}_a-action on $p^{-1}(U)$ for which the restriction of p to $p^{-1}(U)$ is equivariant. Now the assertion follows from [16, Lemma 6.1] which guarantees that the \mathbb{G}_a-action on $p^{-1}(U)$ can be uniquely extended to a one on Z with the desired property. □

References

1. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, Preprint Warsaw 1989.
2. R. Drylo, Non uniruledness and the cancellation problem II, Ann. Polon. Math. 92 (2007), 41–48.
3. A. Dubouloz, Additive group actions on Danielewski varieties and the Cancellation Problem, Math. Z. 255 (2007), no. 1, 77–93.
4. A. Dubouloz, The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant, Transformation Groups 14 (2009), no. 3, 531–539.
5. A. Dubouloz, L. Moser-Jauslin, and P.M. Poloni, Non cancellation for smooth contractible affine threefolds, To appear in Proc. of the AMS (2011), preprint arXiv 1004.4723.
6. A. Dubouloz and P.-M. Poloni, On a class of Danielewski surfaces in affine 3-space, Journal of Algebra 321 (2009), 1797–1812.
7. K.-H. Fieseler, On complex affine surfaces with \mathbb{C}^+-action, Comment. Math. Helv. 69 (1994), no. 1, 5–27.
8. D.R. Finston and S. Maubach, The automorphism group of certain factorial threefolds and a cancellation problem, Israel J. Math. 163 (2008), 369–381.
9. M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc 34 (1972), 81–82.
10. S. Itakoa and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123–127.
11. Z. Jelonek, On the cancellation problem, Math. Annalen 344 (2009), no. 4, 769–778.
12. S. Kaliman and L. Makar-Limanov, On the Russell-Koras contractible threefolds., J. Algebraic Geom. 6 (1997), no. 2, 247–268.
13. L. Makar-Limanov, On the hypersurface $x + x^2 y + z^2 + t^3 = 0$ in \mathbb{C}^4 or a \mathbb{C}^3-like threefold which is not \mathbb{C}^3, Israel J. Math. 96 (1996), 419–429.
14. M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11–42.
15. L. Moser-Jauslin, Automorphism group of Koras-Russell threefolds of the first kind, To appear in Proceedings of "Affine Algebraic Geometry : A conference in Honour of Peter Russell", Montreal 1-5 june, 2009, CRM Proceedings Lecture Notes.
16. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972), no. 3, 511–556.
17. W. Vasconcelos, Derivations of commutative noetherian rings, Math. Z. 112 (1969), no. 3, 229–233.

CNRS, INSTITUT DE MATHEMATIQUES DE BOURGOGNE, UNIVERSITE DE BOURGOGNE, 9 AVENUE ALAIN SAVARY - BP 47870, 21078 DIJON CEDEX, FRANCE
E-mail address: adrien.dubouloz@u-bourgogne.fr