CONES OF WEIGHTED QUASIMETRICS, WEIGHTED QUASIHYPERMETRICS AND OF ORIENTED CUTS

Michel Deza, Vyacheslav P. Grishukhin, Elena Deza

Abstract: We show that the cone of weighted n-point quasi-metrics $WQMet_n$, the cone of weighted quasi-hypermetrics $WHyp_n$, and the cone of oriented cuts $OCut_n$ are projections along an extreme ray of the metric cone Met_{n+1}, of the hypermetric cone Hyp_{n+1} and of the cut cone Cut_{n+1}, respectively. This projection is such that if one knows all faces of an original cone then one knows all faces of the projected cone.

Keywords: distance, metrics, hypermetrics, cut metrics, quasi-metrics.

MSC: 52B12, 51F99, 90C57

1 Introduction

Oriented (or directed) distances are encountered very often, for example, these are one-way transport routes, a river with quick flow and so on.

The notions of directed distances, quasi-metrics and oriented cuts are generalizations of the notions of distances, metrics and cuts, which are central objects in graph theory and combinatorial optimization.

Quasi-metrics are used in semantics of computations (see, for example, [Se97]) and in computational geometry (see, for example, [AACMP97]). Oriented distances have been used already by Hausdorff in 1914, see [Ha14].

In [CMM06], an example of directed metric derived from a metric is given. Let d be a metric on a set $V \cup \{0\}$, where 0 is a distinguished point. Then a quasi-metric q on the set V is given as

$$q_{ij} = d_{ij} + d_{i0} - d_{j0}. $$

This quasi-metric belongs to a special important subclass of quasi-metrics, namely, to a class of weighted quasi-metrics. We show in this paper that any weighted quasi-metric is obtained from a metric by this method.

All semi-metrics on a set of cardinality n form a metric cone Met_n. There are two important sub-cones of Met_n, namely, the cone Hyp_n of hypermetrics, and the cone Cut_n of ℓ_1-metrics. These three cones form the following nested family $Cut_n \subseteq Hyp_n \subseteq Met_n$, see [DL97].

In this paper we introduce a special space Q_n, called a space of weighted quasi-metrics. We define in this space a cone $WQMet_n$, Elements of this cone satisfy triangle and non-negativity inequalities. Among extreme rays of the cone $WQMet_n$, there are rays spanned by cut vectors, i.e. incidence vectors of oriented cuts.

We define in the space Q_n a cone $OCut_n$ of oriented cuts as the cone hull of cut vectors. Elements of the cone $OCut_n$ are weighted quasi-ℓ-metrics.

Let metrics of the cone Met_{n+1} are defined on the set $V \cup \{0\}$. The cut-cone Cut_{n+1} of ℓ_1-metrics on this set is a cone hull of cut-metrics $\delta(S)$ for all $S \subseteq V \cup \{0\}$. The cut-metrics $\delta(S)$ are extreme rays of all the three cones Met_{n+1}, Hyp_{n+1} and Cut_{n+1}. In particular, $\delta(\{0\}) = \delta(V)$ is an extreme ray of these three cones.

In this paper, it is shown that the cones $WQMet_n$ and $OCut_n$ are projections of the corresponding cones Met_{n+1} and Cut_{n+1} along the extreme ray $\delta(V)$. We define a cone $WHyp_n$ of weighted quasi-hypermetrics as projection along $\delta(V)$ of the cone Hyp_{n+1}. So, we obtain a nested family $OCut_n \subseteq WHyp_n \subseteq WQMet_n$.

Weighted quasi-metrics and other generalizations of metrics are studied, for example, in [DD10] and [DDV11]. The cone and the polytope of oriented cuts are considered in [AM11].
2 Spaces \mathbb{R}^E and \mathbb{R}^{E^O}

Let V be a set of cardinality $|V| = n$. Let E and E^O be sets of all unordered (ij) and ordered ij pairs of elements $i, j \in V$. Consider two Euclidean spaces \mathbb{R}^E and \mathbb{R}^{E^O} of vectors $d \in \mathbb{R}^E$ and $g \in \mathbb{R}^{E^O}$ with coordinates $d_{(ij)}$ and g_{ij}, where $(ij) \in E$ and $ij \in E^O$, respectively. Obviously, dimensions of the spaces \mathbb{R}^E and \mathbb{R}^{E^O} are $|E| = \frac{n(n-1)}{2}$ and $|E^O| = n(n-1)$, respectively.

Denote by $(d, t) = \sum_{(ij) \in E} d_{(ij)} t_{(ij)}$ scalar product of vectors $d, t \in \mathbb{R}^E$. Similarly $(f, g) = \sum_{ij \in E^O} f_{ij} g_{ij}$ denote scalar product of vectors $f, g \in \mathbb{R}^{E^O}$.

Let $\{e_{(ij)} : (ij) \in E\}$ and $\{e_{ij} : ij \in E^O\}$ be orthonormal bases of \mathbb{R}^E and \mathbb{R}^{E^O}, respectively. Then, for $f \in \mathbb{R}^E$ and $q \in \mathbb{R}^{E^O}$, we have

$$(e_{(ij)}, f) = f_{(ij)} \text{ and } (e_{ij}, q) = q_{ij}.$$

For $f \in \mathbb{R}^{E^O}$, define $f^* \in \mathbb{R}^{E^O}$ as follows

$$f^*_{ij} = f_{ji} \text{ for all } ij \in E^O.$$

Call a vector q symmetric if $g^* = g$, and antisymmetric if $g^* = -g$. Each vector $g \in \mathbb{R}^{E^O}$ can be decompose into symmetric g^s and antisymmetric g^a parts as follows:

$$g^s = \frac{1}{2}(g + g^*), \quad g^a = \frac{1}{2}(g - g^*), \quad g = g^s + g^a.$$

Let $\mathbb{R}^{E^O}_s$ and $\mathbb{R}^{E^O}_a$ be subspaces of symmetric and antisymmetric vectors, respectively. Note that the spaces $\mathbb{R}^{E^O}_s$ and $\mathbb{R}^{E^O}_a$ are mutually orthogonal. In fact, for $p \in \mathbb{R}^{E^O}_s$ and $f \in \mathbb{R}^{E^O}_a$, we have

$$(p, f) = \sum_{ij \in E^O} p_{ij} f_{ij} = \sum_{(ij) \in E} (p_{ij} f_{ij} + p_{ji} f_{ji}) = \sum_{(ij) \in E} (p_{ij} f_{ij} - p_{ij} f_{ji}) = 0.$$

Hence

$$\mathbb{R}^{E^O} = \mathbb{R}^{E^O}_s \oplus \mathbb{R}^{E^O}_a,$$

where \oplus is direct sum.

Obviously, there is an isomorphism φ between the spaces \mathbb{R}^E and \mathbb{R}^{E^O}. Let $d \in \mathbb{R}^E$ have coordinates $d_{(ij)}$. Then we set

$$d^O = \varphi(d) \in \mathbb{R}^{E^O}_s \text{ such that } d^O_{ij} = d^O_{ji} = d_{(ij)}.$$

In particular,

$$\varphi(e_{(ij)}) = e_{ij} + e_{ji}.$$

The map φ is invertible. In fact, for $q \in \mathbb{R}^{E^O}_s$, we have $\varphi^{-1}(q) = d \in \mathbb{R}^E$ such that $d_{(ij)} = q_{ij} = q_{ji}$. The isomorphism φ will be useful in what follows.

3 Space of weights Q^w_n

One can consider the sets E and E^O as sets of edges (ij) and arcs ij of an unordered and ordered complete graphs K_n and K^O_n on the vertex set V, respectively. The graph K^O_n has two arcs ij and ji between each pair of vertices $i, j \in V$.

It is convenient to consider vectors $g \in \mathbb{R}^{E^O}$ as functions on the set of arcs E^O of the graph K^O_n. So, the decomposition $\mathbb{R}^{E^O} = \mathbb{R}^{E^O}_s \oplus \mathbb{R}^{E^O}_a$ is a decomposition of the space of all functions on arcs in E^O onto the spaces of symmetric and antisymmetric functions.
Besides, there is an important direct decomposition of the space \(\mathbb{R}^{E^O} \) of antisymmetric functions onto two subspaces. In theory of electric networks these spaces are called spaces of tensions and flows (see also [Aig79]).

The tension space relates to potentials (or weights) \(w_i \) given on vertices \(i \in V \) of the graph \(K_n^O \). The corresponding antisymmetric function \(g^{w}_{ij} \) is determined as

\[
g^{w}_{ij} = w_i - w_j.
\]

It is called tension on the arc \(ij \). Obviously, \(g^{w}_{ji} = w_j - w_i = -g^{w}_{ij} \). Denote by \(Q_n^w \) the subspace of \(\mathbb{R}^{E^O} \) generated by all tensions on arcs \(ij \in E^O \). We call \(Q_n^w \) by a space of weights.

Each tension function \(g^{w} \) is represented as weighted sum of elementary potential functions \(p(k) \) for \(k \in V \) as follows

\[
g^{w} = \sum_{k \in V} w_k p(k),
\]

where

\[
p(k) = \sum_{j \in V - \{k\}} (e_{kj} - e_{jk}), \text{ for all } k \in V,
\]

are basic functions that generate the space of weights \(Q_n^w \). Hence values of the basic functions \(p(k) \) on arcs are as follows

\[
p_{ij}(k) = \begin{cases} 1 & \text{if } i = k \\ -1 & \text{if } j = k \\ 0 & \text{otherwise.} \end{cases}
\]

We obtain

\[
g^{w}_{ij} = \sum_{k \in V} w_k p_{ij}(k) = w_i - w_j.
\]

It is easy to verify that

\[
p^2(k) = (p(k), p(k)) = 2(n - 1), (p(k), p(l)) = -2 \text{ for all } k, l \in V, k \neq l, \sum_{k \in V} p(k) = 0.
\]

Hence there are only \(n - 1 \) independent functions \(q(k) \) that generate the space \(Q_n^w \).

Weighted quasimetries lie in the space \(\mathbb{R}^{E^O} \oplus Q_n^w \) that we denote as \(Q_n \). Direct complements of \(Q_n^w \) in \(\mathbb{R}^{E^O} \) and \(Q_n \) in \(\mathbb{R}^{E^O} \) is a space \(Q_n^c \) of circuits (or flows).

4 Space of circuits \(Q_n^c \)

The space of circuits (or space of flows) is generated by characteristic vectors of oriented circuits in the graph \(K_n^O \). Arcs of \(K_n^O \) are ordered pairs \(ij \) of vertices \(i, j \in V \). The arc \(ij \) is oriented from the vertex \(i \) to the vertex \(j \). Recall that \(K_n^O \) has both the arcs \(ij \) and \(ji \) for each pair of vertices \(i, j \in V \).

Let \(G_s \subseteq K_n \) be an undirected subgraph with a set of edges \(E(G_s) \subseteq E \). We relate to the undirected graph \(G_s \) a directed graph \(G \subseteq K_n^O \) with the arc set \(E^O(G) \subseteq E^O \) as follows. An arc \(ij \) belongs to \(G \), i.e. \(ij \in E^O(G) \), if and only if \((ij) = (ji) \in E(G) \). This definition implies that the arc \(ji \) belongs to \(G \) also, i.e. \(ji \in E^O(G) \).

Let \(C_s \) be a circuit in the graph \(K_n \). The circuit \(C_s \) is determined by a sequence of distinct vertices \(i_k \in V \), where \(1 \leq k \leq p \) and \(p \) is the length of \(C_s \). Edges of \(C_s \) are unordered pairs \((i_k, i_{k+1}) \), where indices are taken modulo \(p \). By above definition, an oriented bicircuit \(C \) of the graph \(K_n^O \) relates to \(C_s \) of \(K_n \). Arcs of \(C \) are ordered pairs \(i_k i_{k+1} \) and \(i_{k+1} i_k \), where indices are taken modulo \(p \). Take an orientation of \(C \). Denote by \(-C \) the opposite circuit with opposite orientation. Denote an arc of \(C \) direct or opposite if its direction coincides with or is opposite to the given orientation of \(C \), respectively. Let \(C^+ \) and \(C^- \) be subcircuits of \(C \) consisting of direct and opposite arcs, respectively.
The following vector \(f^C \) is the characteristic vector of the bicircuit \(C \):

\[
f^C_{ij} = \begin{cases}
1 & \text{if } ij \in C^+, \\
-1 & \text{if } ij \in C^-, \\
0 & \text{otherwise}.
\end{cases}
\]

Note that \(f^{-C} = (f^C)^* = -f^C \), and \(f^C \in \mathbb{R}^{E_O} \).

Denote by \(Q^e_O \) the space linearly generated by circuit vectors \(f^C \) for all bicircuits \(C \) of the graph \(K^O_n \). It is well known that characteristic vectors of fundamental circuits form a basis of \(Q^e_O \). Fundamental circuits are defined as follows.

Let \(T \) be a spanning tree of the graph \(K_n \). Since \(T \) is spanning, its vertex set \(V(T) \) is the set of all vertices of \(K_n \), i.e. \(V(T) = V \). Let \(E(T) \subset E \) be the set of edges of \(T \). Then any edge \(e = (ij) \notin E(T) \) closes a unique path in \(T \) between vertices \(i \) and \(j \) into a circuit \(C^e_s \). This circuit \(C^e_s \) is called fundamental. Call corresponding oriented bicircuit \(C^e_s \) also fundamental.

There are \(|E - E(T)| = \frac{n(n-1)}{2} - (n-1) \) fundamental circuits. Hence

\[
\dim Q^e_n = \frac{n(n-1)}{2} - (n-1), \quad \text{and} \quad \dim Q_n + \dim Q^e_n = n(n-1) = \dim \mathbb{R}^{E_O}.
\]

This implies that \(Q^e_O \) is an orthogonal complement of \(Q^w_n \) in \(\mathbb{R}^O_n \) and \(Q_n \) in \(\mathbb{R}^{E_O} \), i.e.

\[
\mathbb{R}^{E_O} = Q^w_n \oplus Q^e_O \quad \text{and} \quad \mathbb{R}^{E_O} = Q_n \oplus Q^e_n = \mathbb{R}^{E_s} \oplus Q^w_n \oplus Q^e_n.
\]

5 Cut and ocut vector set-functions

The space \(Q_n \) is generated also by vectors of oriented cuts, which we define in this section.

Each subset \(S \subseteq V \) determines cuts of the graphs \(K_n \) and \(K^O_n \) that are subsets of edges and arcs of these graphs.

A cut \(\{S, V \setminus S \} \) of \(S \subseteq V \) is a subset of edges \((ij) \) of \(K_n \) such that \((ij) \in \text{cut}(S) \) if and only if \(|\{i,j\} \cap S| = 1 \).

A ocut \(\{S, V \setminus S \} \) of \(E^O \) is a subset of arcs \(ij \) of \(K^O_n \) such that \(ij \in \text{ocut}(S) \) if and only if \(|\{i,j\} \cap S| = 1 \). So, if \(ij \in \text{ocut}(S) \), then \(ji \in \text{ocut}(S) \) also.

An oriented cut is a subset \(\text{ocut}(S) \subseteq E^O \) of arcs \(ij \) of \(K^O_n \) such that \(ij \in \text{ocut}(S) \) if and only if \(i \in S \) and \(j \notin S \).

We relate to these three types of cuts characteristic vectors \(\delta(S) \in \mathbb{R}^E \), \(\delta^O(S) \in \mathbb{R}^{E_O} \), \(p(S) \in \mathbb{R}^{E_O} \) and \(c(S) \in \mathbb{R}^{E_O} \) as follows.

For cut \(\text{cut}(S) \), we set

\[
\delta(S) = \sum_{i \in S, j \notin S} e_{ij}, \quad \text{such that} \quad \delta_{(ij)}(S) = \begin{cases} 1 & \text{if } |\{i,j\} \cap S| = 1 \\
0 & \text{otherwise}, \end{cases}
\]

where \(\overline{S} = V - S \). For ocut \(\text{ocut}(S) \), we set

\[
\delta^O(S) = \varphi(\delta(S)) = \sum_{i \in S, j \notin S} (e_{ij} + e_{ji}) \quad \text{and} \quad p(S) = \sum_{i \in S, j \notin S} (e_{ij} - e_{ji}).
\]

Hence

\[
\delta^O_{ij}(S) = \begin{cases} 1 & \text{if } |\{i,j\} \cap S| = 1 \\
0 & \text{otherwise}, \end{cases} \quad \text{and} \quad p_{ij}(S) = \begin{cases} 1 & \text{if } i \in S, j \notin S \\
-1 & \text{if } j \in S, i \notin S \\
0 & \text{otherwise}.
\end{cases}
\]
Note that, for one-element sets $S = \{k\}$, the function $p(\{k\})$ is $p(k)$ of section 2. It is easy to see that

$$(\delta^O(S), p(T)) = 0 \text{ for any } S, T \subseteq V.$$

For the oriented cut $\text{ocut}(S)$, we set

$$c(S) = \sum_{i,j \in E} e_{ij}.$$

Hence

$$c_{ij}(S) = \begin{cases} 1 & \text{if } i \in S, j \notin S \\ 0 & \text{otherwise}. \end{cases}$$

Obviously, it holds $c(\emptyset) = c(V) = 0$, where $0 \in \mathbb{R}^{E^O}$ is a vector whose all coordinates are equal zero. We have the following equalities

$$c^*(S) = c(\overline{S}), \quad c(S) + c(\overline{S}) = \delta^O(S), \quad c(S) - c(\overline{S}) = p(S) \text{ and } c(S) = \frac{1}{2}(\delta^O(S) + p(S)).$$

Besides, we have

$$c^*(S) = \frac{1}{2}\delta^O(S), \quad c^a(S) = \frac{1}{2}p(S).$$

Recall that a set-function $f(S)$ on all $S \subseteq V$, is called \textit{submodular} if, for any $S, T \subseteq V$, the following \textit{submodular inequality} holds

$$f(S) + f(T) - (f(S \cap T) + f(S \cup T)) \geq 0.$$

It is well known that the vector set-function $\delta \in \mathbb{R}^E$ is submodular (see, for example, [Aig79]). The above isomorphism φ of the spaces \mathbb{R}^E and $\mathbb{R}_a^{E^O}$ implies that the vector set-function $\delta^O = \varphi(\delta) \in \mathbb{R}_a^{E^O}$ is submodular also.

A set-function $f(S)$ is called \textit{modular} if, for any $S, T \subseteq V$, the above submodular inequality holds as equality. This equality is called \textit{modular equality}. It is well known (and can be easily verified) that antisymmetric vector set-function $f^a(S)$ is modular for any oriented graph G. Hence our antisymmetric vector set-function $\varphi(S) \in \mathbb{R}_a^{E^O}$ for the oriented complete graph K^O_n is modular also.

Note that the set of all submodular set functions on a set V forms a cone in the space \mathbb{R}^{2^V}. Therefore the last equality in (3) implies that the vector set-function $c(S) \in \mathbb{R}^{E^O}$ is submodular.

The modularity of the antisymmetric vector set-function $\varphi(S)$ is important for what follows. It is well-known (see, for example, [Bir67]) (and it can be easily verified using modular equality) that any modular set-function $m(S)$ is completely determined by its values on the empty set and on all one-element sets. Hence a modular set-function $m(S)$ has the following form

$$m(S) = m_0 + \sum_{i \in S} m_i,$$

where $m_0 = m(\emptyset)$ and $m_i = m(\{i\}) - m(\emptyset)$. For brevity, we set $f(\{i\}) = f(i)$ for any set function $f(S)$. Since $p(\emptyset) = p(V) = 0$, we have

$$p(S) = \sum_{k \in S} p(k), \quad S \subseteq V, \text{ and } p(V) = \sum_{k \in V} p(k) = 0.$$

(4)

Using equations (3) and (4), we obtain

$$c(S) = \frac{1}{2}(\delta^O(S) + \sum_{k \in S} p(k)).$$

(5)

Now we show that cut vectors $c(S)$ for all $S \subseteq V$ linearly generate the space $Q_n \subseteq \mathbb{R}^{E^O}$. The space generated by $c(S)$ consists of the following vectors

$$c = \sum_{S \subseteq V} \alpha_S c(S), \text{ where } \alpha_S \in \mathbb{R}.$$

Recall that \(c(S) = \frac{1}{4}(\delta^O(S) + p(S)) \). Hence we have

\[
 c = \frac{1}{2} \sum_{S \subseteq V} \alpha_S (\delta^O(S) + p(S)) = \frac{1}{2} \sum_{S \subseteq V} \alpha_S \delta^O(S) + \frac{1}{2} \sum_{S \subseteq V} \alpha_S p(S) = \frac{1}{2}(d^O + p),
\]

where \(d^O = \varphi(d) \) for \(d = \sum_{S \subseteq V} \alpha_S \delta(S) \). For a vector \(p \) we have

\[
 p = \sum_{S \subseteq V} \alpha_S p(S) = \sum_{S \subseteq V} \alpha_S \sum_{k \in S} p(k) = \sum_{k \in V} \sum_{V \supseteq S \ni k} \alpha_S, \quad \text{where} \quad w_k = \sum_{V \supseteq S \ni k} \alpha_S.
\]

Since \(p_{ij} = \sum_{k \in V} w_k p_{ij}(k) = w_i - w_j \), we have

\[
 e_{ij} = \frac{1}{2}(d^O_{ij} + w_i - w_j). \quad (6)
\]

It is well-known (see, for example, [DL97]) that the vectors \(\delta(S) \in \mathbb{R}^E \) for all \(S \subseteq V \) linearly generate the full space \(\mathbb{R}^E \). Hence the vectors \(\delta^O(S) \in \mathbb{R}^{E^O}_s \) for all \(S \subseteq V \) linearly generate the full space \(\mathbb{R}^{E^O}_s \).

According to (5), antisymmetric parts of vectors \(c(S) \) generate the space \(Q_n^w \). This implies that the space \(Q_n = \mathbb{R}^{E^O}_s \oplus Q_n^w \) is generated by \(c(S) \) for all \(S \subseteq V \).

6 Properties of the space \(Q_n \)

Let \(x \in Q_n \) and let \(f^C \) be the characteristic vector of a bicircuit \(C \). Since \(f^C \) is orthogonal to \(Q_n \), we have

\[
 (x, f^C) = \sum_{ij \in C} f^C_{ij} x_{ij} = 0.
\]

This equality implies that each point \(x \in Q_n \) satisfies the following equalities

\[
 \sum_{ij \in C^+} x_{ij} = \sum_{ij \in C^-} x_{ij}
\]

for any bicircuits \(C \).

Let \(K_{1,n-1} \subseteq K_n \) be a spanning star of \(K_n \) consisting of all \(n - 1 \) edges incident to a vertex of \(K_n \). Let this vertex be 1. Each edge of \(K_n - K_{1,n-1} \) has the form \((ij) \), where \(i \neq 1 \neq j \). The edge \((ij)\) closes a fundamental triangle with edges \((1i), (1j), (ij)\). The corresponding bitriangle \(T(1ij) \) generates the equality

\[
 x_{1i} + x_{ij} + x_{1j} = x_{i1} + x_{1j} + x_{ji}.
\]

These inequalities were derived by another way in [AM11]. They correspond to fundamental bi-triangles \(T(1ij) \), for all \(i, j \in V = \{1\} \), and are all \(n(n-1)/2 - (n-1) \) independent equalities determining the space, where the \(Q_n \) lies.

Above coordinates \(x_{ij} \) of a vector \(x \in Q_n \) are given in the orthonormal basis \(\{ e_{ij} : ij \in E^O \} \). But, for what follows, it is more convenient to consider vectors \(q \in Q_n \) in another basis. Recall that \(\mathbb{R}^{E^O}_s = \varphi(\mathbb{R}^E) \). Let, for \((ij) \in E, \varphi(e_{ij}) = e_{ij} + e_{ji} \) be basic vectors of the subspace \(\mathbb{R}^{E^O}_s \). Let \(p(i) \in Q_n^w, i \in V \), be basic vectors (defined in (1)) of the space \(Q_n^w \subseteq Q_n \). Then, for \(q \in Q_n \), we set

\[
 q = q^s + q^a, \quad \text{where} \quad q^s = \sum_{(ij) \in E} q_{(ij)} \varphi(e_{ij}), \quad q^a = \sum_{i \in V} w_i p(i).
\]

Now, we obtain an important expression for the scalar product \((g, q)\) of vectors \(g, q \in Q_n \). Recall that \((\varphi(e_{ij}), p(k)) = ((e_{ij} + e_{ji}), p(k)) = 0 \) for all \((ij) \in E \) and all \(k \in V \). Hence \((g^s, q^a) = (g^s, q^a) = 0\), and we have

\[
 (g, q) = (g^s, q^s) + (g^a, q^a).
\]

Besides, we have

\[
 ((e_{ij} + e_{ji}), (e_{kl} + e_{lk})) = 0 \text{ if } (ij) \neq (kl), \quad (e_{ij} + e_{ji})^2 = 2.
\]
and (see Section 3)

\[(p(i), p(j)) = -2 \text{ if } i \neq j, \ (p(i))^2 = 2(n - 1).\]

Let \(v_i, w_i, i \in V\), be weights of the vector \(g, q\), respectively. Then we have

\[(g, q) = 2 \sum_{(ij) \in E} g_{(ij)}q_{(ij)} + 2(n - 1) \sum_{i \in V} v_iw_i - 2 \sum_{i \neq j \in V} v_iw_j.\]

For the last sum, we have

\[\sum_{i \neq j \in V} v_iw_j = (\sum_{i \in V} v_i)(\sum_{i \in V} w_i) - \sum_{i \in V} v_iw_i.\]

Since weights are defined up to an additive scalar, we can choose weights \(v_i\) such that \(\sum_{i \in V} v_i = 0\). Then the last sum in the product \((g, q)\) is equal to \(-\sum_{i \in V} v_iw_i\). Finally we obtain that the sum of antisymmetric parts is equal to \(2n \sum_{i \in V} v_iw_i\). So, for the product of two vectors \(g, q \in Q_n\) we have the following expression

\[(g, q) = (g^a, q^a) + (g^a, q^a) = 2(\sum_{(ij) \in E} g_{(ij)}q_{(ij)} + n \sum_{i \in V} v_iw_i) \text{ if } \sum_{i \in V} v_i = 0 \text{ or } \sum_{i \in V} w_i = 0.\]

In what follows, we consider inequalities \((g, q) \geq 0\). We can delete the multiple 2, and rewrite such inequality as follows

\[\sum_{(ij) \in E} g_{(ij)}q_{(ij)} + n \sum_{i \in V} v_iw_i \geq 0,\]

where \(\sum_{i \in V} v_i = 0\).

Below we consider some cones in the space \(Q_n\). Since the space \(Q_n\) is orthogonal to the space of circuits \(Q_n^c\), each facet vector of a cone in \(Q_n\) is defined up to a vector of the space \(Q_n^c\). Of course each vector \(g' \in \mathbb{R}^{E^c}\) can be decomposed as \(g' = g + g^c\), where \(g \in Q_n\) and \(g^c \in Q_n^c\). Call the vector \(g \in Q_n\) canonical representative of the vector \(g'\). Usually we will use canonical facet vectors. But sometimes not canonical representatives of a facet vector are useful.

Cones \(C\) that will be considered are invariant under the operation \(q \rightarrow q^*\), defined in Section 2. In other words, \(C^* = C\). This operation changes signs of weights:

\[q_{ij} = q_{(ij)} + w_i - w_j \rightarrow q_{(ij)} + w_j - w_i = q_{(ij)} - w_i + w_j.\]

Let \((g, q) \geq 0\) be an inequality determining a facet \(F\) of a cone \(C \subset Q_n\). Since \(C = C^*\), the cone \(C\) has with the facet \(F\) also a facet \(F^*\). The facet \(F^*\) is determined by the inequality \((g^*, q) \geq 0\).

7 Projections of cones \(Con_{n+1}\)

Recall that \(Q_n = \mathbb{R}^{E^c} \oplus Q_n^w, \mathbb{R}^{E^c} = \varphi(\mathbb{R}^E)\) and \(\text{dim}Q_n = \frac{n(n+1)}{2} - 1\).

Let \(0 \notin V\) be an additional point. Then the set of unordered pairs \((ij)\) for \(i, j \in V \cup \{0\}\) is \(E \cup E_0\), where \(E_0 = \{(0i) : i \in V\}\). Obviously, \(\mathbb{R}^{E \cup E_0} = \mathbb{R}^E \oplus \mathbb{R}^{E_0}\) and \(\text{dim}E \cup E_0 = \frac{n(n+1)}{2}\).

The space \(\mathbb{R}^{E \cup E_0}\) contains the following three important cones: the cone \(Met_{n+1}\) of semi-metrics, the cone \(Hyp_{n+1}\) of hyper-semi-metrics and the cone \(Cut_{n+1}\) of \(\ell_1\)-semi-metrics, all on the set \(V \cup \{0\}\). Denote by \(Con_{n+1}\) any of these cones.

Recall that a semi-metric \(d = \{d_{(ij)}\}\) is called metric if \(d_{(ij)} \neq 0\) for all \((ij) \in E\). For brevity sake, in what follows, we call elements of the cones \(Con_{n+1}\) by metrics (or hypermetrics, \(\ell_1\)-metrics), assuming that they can be semi-metrics.

Note that if \(d \in Con_{n+1}\) is a metric on the set \(V \cup \{0\}\), then a restriction \(d^V\) of \(d\) on the set \(V\) is a point of the cone \(Con_n = Con_{n+1} \cap \mathbb{R}^E\) of metrics on the set \(V\). In other words, we can suppose that \(Con_n \subset Con_{n+1}\).
The cones \(\text{Met}_{n+1}\), \(\text{Hyp}_{n+1}\) and \(\text{Cut}_{n+1}\) contain the cut vectors \(\delta(S)\) that span extreme rays for all \(S \subset V \cup \{0\}\). Denote by \(l_0\) the extreme ray spanned by the cut vector \(\delta(V) = \delta(\{0\})\). Consider a projection \(\pi(\mathbb{R}^E) = \mathbb{R}^F\) of the space \(\mathbb{R}^E\) along the ray \(l_0\) onto a subspace of \(\mathbb{R}^E\) that is orthogonal to \(\delta(V)\). This projection is such that \(\pi(\mathbb{R}^E) = \mathbb{R}^E\) and \(\pi(\mathbb{R}^E) = \mathbb{R}^E \oplus \pi(\mathbb{R}^E)\).

Note that \(\delta(V) \in \mathbb{R}^E\), since, by Section 5, \(\delta(V) = \sum_{v \in V} e_{(0i)}\). For simplicity sake, define the following vector

\[
e_0 = \delta(\{0\}) = \delta(V) = \sum_{v \in V} e_{(0i)}.
\]

Recall that the vector \(e_0\) spans the extreme ray \(l_0\). Obviously, the space \(\mathbb{R}^E\) is orthogonal to \(l_0\), and therefore \(\pi(\mathbb{R}^E) = \mathbb{R}^E\).

Let \(x \in \mathbb{R}^E\). We decompose this point as follows

\[
x = x^V + x^0,
\]

where \(x^V = \sum_{(ij) \in E} x_{(ij)} e_{(ij)} \in \mathbb{R}^E\) and \(x^0 = \sum_{i \in V} x_{(0i)} e_{(0i)} \in \mathbb{R}^E\). The projection \(\pi\) works on basic vectors as follows:

\[
\pi(e_{(ij)}) = e_{(ij)} \text{ for } (ij) \in E, \text{ and } \pi(e_{(0i)}) = e_{(0i)} - \frac{1}{n} e_0 \text{ for } i \in V.
\]

So, we have

\[
\pi(x) = \pi(x^V) + \pi(x^0) = \sum_{(ij) \in E} x_{(ij)} e_{(ij)} + \sum_{i \in V} x_{(0i)} e_{(0i)} - \frac{1}{n} e_0.
\]

It is useful to note that the projection \(\pi\) transforms the positive orthant of the space \(\mathbb{R}^E\) onto the whole space \(\pi(\mathbb{R}^E)\).

Now we describe how faces of a cone in the space \(\mathbb{R}^E\) are projected along one of its extreme rays.

Let \(l\) be an extreme ray and \(F\) be a face of a cone in \(\mathbb{R}^E\). Let \(\pi\) be the projection along \(l\). Let \(\dim F\) be dimension of the face \(F\). Then the following equality holds

\[
\dim \pi(F) = \dim F - \dim(F \cap l).
\]

Let \(g \in \mathbb{R}^E\) be a facet vector of a facet \(G\), and \(e\) be a vector spanning the line \(l\). Then \(\dim(G \cap l) = 1\) if \((g,e) = 0\), and \(\dim(G \cap l) = 0\) if \((g,e) \neq 0\).

Theorem 1. Let \(G\) be a face of the cone \(\pi(\text{Con}_{n+1})\). Then \(G = \pi(F)\), where \(F\) is a face of \(\text{Con}_{n+1}\) such that there is a face of \(\text{Con}_{n+1}\), containing both \(F\) and the extreme ray \(l_0\) spanned by \(e_0 = \delta(V)\).

In particular, \(G\) is a facet of \(\pi(\text{Con}_{n+1})\) if and only if \(G = \pi(F)\), where \(F\) is a facet of \(\text{Con}_{n+1}\) containing the extreme ray \(l_0\). Similarly, \(l'\) is an extreme ray of \(\pi(\text{Con}_{n+1})\) if and only if \(l' = \pi(l)\), where \(l\) is an extreme ray of \(\text{Con}_{n+1}\) lying in a facet of \(\pi(\text{Con}_{n+1})\) that contains \(l_0\).

Proof. Let \(F\) be a set of all facets of the cone \(\text{Con}_{n+1}\). Then \(\bigcup_{F \in F} \pi(F)\) is a covering of the projection \(\pi(\text{Con}_{n+1})\). By (9), in this covering, if \(l_0 \subset F \subset E\), then \(\pi(F)\) is a facet of \(\pi(\text{Con}_{n+1})\). If \(l_0 \not\subset F\), then there is a one-to-one correspondence between points of \(F\) and \(\pi(F)\). Hence \(\dim \pi(F) = n\), and \(\pi(F)\) cannot be a facet of \(\pi(\text{Con}_{n+1})\), since \(\pi(F)\) fills an \(n\)-dimensional part of the cone \(\pi(\text{Con}_{n+1})\).

If \(F'\) is a face of \(\text{Con}_{n+1}\), then \(\pi(F')\) is a face of the above covering. If \(F'\) belongs only to facets \(F \in F\) such that \(l_0 \not\subset F\), then \(\pi(F')\) lies inside of \(\pi(\text{Con}_{n+1})\). In this case, it is not a face of \(\pi(\text{Con}_{n+1})\). This implies that \(\pi(F')\) is a face of \(\pi(\text{Con}_{n+1})\) if and only if \(F' \subset F\), where \(F\) is a face of \(\text{Con}_{n+1}\) such that \(l_0 \subset F\). Suppose that dimension of \(F'\) is \(n-1\), and \(l_0 \not\subset F'\). Then \(\dim \pi(F') = n - 1\). If \(F'\) is contained in a facet \(F\) of \(\text{Con}_{n+1}\) such that \(l_0 \subset F\), then \(\pi(F') = \pi(F)\). Hence \(\pi(F')\) is a face of the cone \(\pi(\text{Con}_{n+1})\) that coincides with the facet \(\pi(F)\).
Now, the assertions of Theorem about facets and extreme rays of $\pi(Con_{n+1})$ follow. \hfill \Box

Theorem 1 describes all faces of the cone $\pi(Con_{n+1})$ if one knows all faces of the cone Con_{n+1}.

Recall that we consider $Con_n = Con_{n+1} \cap \mathbb{R}^E$ as a sub-cone of Con_{n+1}, and therefore $\pi(Con_n) \subset \pi(Con_{n+1})$. Since $\pi(\mathbb{R}^F) = \mathbb{R}^F$, we have $\pi(Con_n) = Con_n$. Let $(f, x) \geq 0$ be a facet-defining inequality of a facet F of the cone Con_{n+1}. Since $Con_{n+1} \subset \mathbb{R}^E \oplus \mathbb{R}^{E_0}$, we represent vectors $f, x \in \mathbb{R}^{E_0 \cup E}$ as $f = f^V + f^0$, $x = x^V + x^0$, where $f^V, x^V \in \mathbb{R}^E$ and $f^0, x^0 \in \mathbb{R}^{E_0}$. Hence the above facet-defining inequality can be rewritten as

$$(f, x) = (f^V, x^V) + (f^0, x^0) \geq 0.$$

It turns out that the cone Con_{n+1} has always a facet F whose facet vector $f = f^V + f^0$ is such that $f^0 = 0$. Since f^V is orthogonal to \mathbb{R}^{E_0}, the hyperplane $(f^V, x) = (f^V, x^V) = 0$ supporting the facet F contains the whole space \mathbb{R}^{E_0}. The equality $(f^V, x^V) = 0$ defines a facet $F^V = F \cap \mathbb{R}^E$ of the cone Con_n.

Definition. A facet F of the cone Con_{n+1} with a facet vector $f = f^V + f^0$ is called zero-lifting of a facet F^V of Con_n, if $f^0 = 0$ and $F \cap \mathbb{R}^E = F^V$.

Similarly, a facet $\pi(F)$ of the cone $\pi(Con_{n+1})$ with a facet vector f is called zero-lifting of F^V if $f = f^V$ and $\pi(F) \cap \mathbb{R}^E = F^V$.

It is well-known, see, for example, [DL97], that each facet F^V with facet vector f^V of the cone Con_n can be zero-lifted up to a facet F of Con_{n+1} with the same facet vector f^V.

Proposition 1. Let a facet F of Con_{n+1} be zero-lifting of a facet F^V of Con_n. Then $\pi(F)$ is a facet of $\pi(Con_{n+1})$ that is also zero-lifting of F^V.

Proof. Recall that the hyperplane $\{x \in \mathbb{R}^{E_0 \cup E_0} : (f^V, x) = 0\}$ supporting the facet F contains the whole space \mathbb{R}^{E_0}. Hence the facet F contains the extreme ray l_0 spanned by the vector $e_0 \in \mathbb{R}^{E_0}$. By Theorem 1, $\pi(F)$ is a facet of $\pi(Con_{n+1})$. The facet vector of $\pi(F)$ can be written as $f = f^V + f'$, where $f^V \in \mathbb{R}^E$ and $f' \in \pi(\mathbb{R}^{E_0})$. Since the hyperplane supporting the facet $\pi(F)$ is given by the equality $(f^V, x) = 0$ for $x \in \pi(\mathbb{R}^{E_0 \cup E_0})$, we have $f' = 0$. Besides, obviously, $\pi(F) \cap \mathbb{R}^E = F^V$. Hence $\pi(F)$ is zero-lifting of F^V. \hfill \Box

8 Cones $\psi(Con_{n+1})$

Note that basic vectors of the space $\mathbb{R}^{E_0 \cup E_0}$ are $e_{(ij)}$ for $(ij) \in E$ and $e_{(0i)}$ for $(0i) \in E_0$. Since $\pi(e_0) = \sum_{i \in V} \pi(e_{(0i)}) = 0$, we have $\dim(\mathbb{R}^{E_0}) = n - 1 = \dim Q_n$. Recall that $\pi(\mathbb{R}^E) = \mathbb{R}^E$. Hence there is a one-to-one bijection χ between the spaces $\pi(\mathbb{R}^{E_0 \cup E_0})$ and Q_n.

We define this bijection $\chi : \pi(\mathbb{R}^{E_0 \cup E_0}) \to Q_n$, as follows

$$\chi(\mathbb{R}^E) = \varphi(\mathbb{R}^E) = \mathbb{R}^E_{+},$$

where

$$\chi(e_{(ij)}) = \varphi(e_{(ij)}) = e_{ij} + e_{ji}, \text{ and } \chi(e_{(0i)}) = \chi(e_{(0i)} - \frac{1}{n} e_0) = p(i),$$

where $p(i)$ is defined in (1).

Note that $(e_{ij} + e_{ji})^2 = 2 = 2e_{(ij)}^2$ and

$$(p(i), p(j)) = -2 = 2(n((e_{(0i)} - \frac{1}{n} e_0), (e_{(0j)} - \frac{1}{n} e_0)), p^2(i) = 2(n - 1) = 2n(e_{(0i)} - \frac{1}{n} e_0)^2.$$

Roughly speaking, the map χ is a composition of homotheties that extends vectors $e_{(ij)}$ and $e_{(0i)} - \frac{1}{n} e_0$ up to vectors $e_{ij} + e_{ji}$ and $p(i)$ by the multiples $\sqrt{2}$ and $\sqrt{2n}$, respectively.

Setting $\psi = \chi \circ \pi$, we obtain a map $\psi : \mathbb{R}^{E_0 \cup E_0} \to Q_n$ such that

$$\psi(e_{(ij)}) = e_{ij} + e_{ji} \text{ for } (ij) \in E, \psi(e_{(0i)}) = p(i) \text{ for } i \in V.$$ (10)
Now we show how a point \(x = x^V + x^0 \in \mathbb{R}^{E \cup E_0} \) is transformed into a point \(q = \psi(x) = \chi(\pi(x)) \in Q_n \).

We have \(\pi(x) = x^V + \pi(x^0) \), where, according to (8), \(x^V = \sum_{(ij) \in E} x_{(ij)} e_{(ij)} \in \pi(\mathbb{R}^E) = \mathbb{R}^E \) and
\[
\pi(x^0) = \sum_{i \in V} x_{(0i)} (e_{(0i)} - \frac{1}{n} e_0) \in \pi(\mathbb{R}^{E_0}).
\]

Obviously, \(\chi(x^V + \pi(x^0)) = \chi(x^V) + \chi(\pi(x^0)) \), and
\[
\psi(x^V) = \chi(x^V) = \sum_{(ij) \in E} x_{(ij)} (e_{ij} + e_{ji}) = \varphi(x^V) = q^s \quad \text{and} \quad \chi(\pi(x^0)) = \sum_{i \in V} x_{(0i)} p(i) = q^a.
\]

Recall that \(q^s = \sum_{(ij) \in E} q_{(ij)} (e_{ij} + e_{ji}) \) and \(q^a = \sum_{i \in V} w_i p(i) \). Hence
\[
q_{(ij)} = x_{(ij)}, \quad (ij) \in E, \quad \text{and} \quad w_i = x_{(0i)}, \quad i \in V.
\]

Let \(f \in \mathbb{R}^{E \cup E_0} \) be a facet vector of a facet \(F \) of the cone \(Con_{n+1} \), \(f = f^V + f^0 = \sum_{(ij) \in E} f_{(ij)} e_{(ij)} + \sum_{i \in V} f_{(0i)} e_{(0i)} \).

Let \((f, x) \geq 0 \) be the inequality determining the facet \(F \). The inequality \((f, x) \geq 0 \) takes on the set \(V \cup \{0\} \) the following form
\[
(f, x) = \sum_{(ij) \in E} f_{(ij)} x_{(ij)} + \sum_{i \in V} f_{(0i)} x_{(0i)} \geq 0.
\]

Since \(x_{(ij)} = q_{(ij)}, \quad x_{(0i)} = w_i \), we can rewrite this inequality as follows
\[
(f, q) = (f^V, q^s) + (f^0, q^a) = \sum_{(ij) \in E} f_{(ij)} q_{(ij)} + \sum_{i \in V} f_{(0i)} w_i \geq 0.
\]

Comparing the inequality (12) with (7), we see that a canonical form of the facet vector \(f \) is \(f = f^s + f^a \), where
\[
f^s_{ij} = f_{(ij)}, \quad \text{for} \ (ij) \in E, \quad f^a_{ij} = v_i - v_j \quad \text{where} \quad v_i = \frac{1}{n} f_{(0i)}, \quad i \in V.
\]

Theorem 2. Let \(F \) be a facet of the cone \(Con_{n+1} \). Then \(\psi(F) \) is a facet of the cone \(\psi(Con_{n+1}) \) if and only if the facet \(F \) contains the extreme ray \(l_0 \) spanned by the vector \(e_0 \).

Let \(l \neq l_0 \) be an extreme ray of \(Con_{n+1} \). Then \(\psi(l) \) is an extreme ray of \(\psi(Con_{n+1}) \) if and only if the ray \(l \) belongs to a facet containing the extreme ray \(l_0 \).

Proof. By Theorem 1, the projection \(\pi \) transforms the facet \(F \) of \(Con_{n+1} \) into a facet of \(\pi(Con_{n+1}) \) if and only if \(l_0 \subset F \). By the same Theorem, the projection \(\pi(l) \) is an extreme ray of \(\pi(Con_{n+1}) \) if and only if \(l \) belongs to a facet containing the extreme ray \(l_0 \).

Recall that the map \(\chi \) is a bijection between the spaces \(\mathbb{R}^{E \cup E_0} \) and \(Q_n \). This implies the assertion of this Theorem for the map \(\psi = \chi \circ \pi \).

By Theorem 2, the map \(\psi \) transforms the facet \(F \) in a facet of the cone \(\psi(Con_{n+1}) \) only if \(F \) contains the extreme ray \(l_0 \), i.e. only if the equality \((f, e_0) = 0 \) holds. Hence the facet vector \(f \) should satisfy the equality
\[
\sum_{i \in V} f_{(0i)} = 0.
\]

The inequalities (12) give all facet-defining inequalities of the cone \(\psi(Con_{n+1}) \) from known facet-defining inequalities of the cone \(Con_{n+1} \).

So, we have the following algorithm for to find a list of facets of the cone \(\psi(Con_{n+1}) \) from a known list \(\mathcal{L} \) of facet vectors of the cone \(Con_{n+1} \).

Step 1. Take a facet vector \(f = \{f_{(ij)} : (ij) \in E \cup E_0\} \in \mathcal{L} \) of the cone \(Con_{n+1} \), and delete it from \(\mathcal{L} \). Find a point \(i \in V \cup \{0\} \) such that \(\sum_{k \in V \cup \{0\}} f_{(ik)} = 0 \). Go to Step 2.

Step 2. If such a point \(i \) does not exist, go to Step 1. Otherwise, make a permutation \(i \to 0, 0 \to i \), and go to step 3.

Step 3. By formula (13) form a facet vector of the cone \(\psi(Con_{n+1}) \) from the facet vector \(f \) of the cone \(Con_{n+1} \).

If \(\mathcal{L} \) is not empty, go to Step 1. Otherwise, end.

A proof of Proposition 2 below will be given later for each of the cones \(Met_{n+1}, Hyp_{n+1} \) and \(Cut_{n+1} \) separately.
Proposition 2. Let F be a facet of Con_{n+1} with facet vector $f = f^V + f^0$ such that $(f^0, e_0) = 0$. Then Con_{n+1} has also a facet F^* with facet vector $f^* = f^V - f^0$.

Proposition 2 implies the following important fact.

Proposition 3. For $q = q^a + q^b \in \psi(\text{Con}_{n+1})$, the map $q = q^a + q^b \rightarrow q^a = q^b - q^b$ preserves the cone $\psi(\text{Con}_{n+1})$, i.e.

$$(\psi(\text{Con}_{n+1}))^* = \psi(\text{Con}_{n+1}).$$

Proof. Let F be a facet of Con_{n+1} with facet vector f. By Proposition 2, if $\psi(F)$ is a facet of $\psi(\text{Con}_{n+1})$, then F^* is a facet of Con_{n+1} with facet vector f^*. Let $q \in \psi(\text{Con}_{n+1})$. Then q satisfies the inequality $(f, q) = (f^V, q^a) + (f^0, q^b) \geq 0$ (see (12)) so the inequality $(f^*, q) = (f^V, q^a) - (f^0, q^b) \geq 0$. But it is easy to see that $(f, q) = (f^*, q^a)$ and $(f^*, q) = (f, q^*)$. This implies that $q^* \in \psi(\text{Con}_{n+1})$.

Call a facet G of the cone $\psi(\text{Con}_{n+1})$ symmetric if $q \in F$ implies $q^* \in F$. Call a facet of $\psi(\text{Con}_{n+1})$ asymmetric if it is not symmetric.

The assertion of the following Proposition 4 is implied by the equality $(\psi(\text{Con}_{n+1}))^* = \psi(\text{Con}_{n+1})$.

Proposition 4. Let $g \in Q_n$ be a facet vector of an asymmetric facet G of the cone $\psi(\text{Con}_{n+1})$, and let $G^* = \{q^* : q \in G\}$. Then G^* is a facet of $\psi(\text{Con}_{n+1})$, and g^* is its facet vector.

Recall that Con_{n+1} has facets, that are zero-lifting of facets of Con_n. Call a facet G of the cone $\psi(\text{Con}_{n+1})$ zero-lifting of a facet F^V of Con_n if $G = \psi(F)$, where F is a facet of Con_{n+1} which is zero-lifting of F^V.

Proposition 5. Let $g \in Q_n$ be a facet vector of a facet G of the cone $\psi(\text{Con}_{n+1})$. Then the following assertions are equivalent:

(i) $g = g^*$;

(ii) the facet G is symmetric;

(iii) $G = \psi(F)$, where F is a facet of Con_{n+1} which is zero-lifting of a facet F^V of Con_n.

(iv) G is a zero-lifting of a facet F^V of Con_n.

Proof. (i)⇒(ii). If $g = g^*$, then $g = g^*$. Hence $q \in G$ implies $(g, q) = (g^*, q) = (g^*, q^*) = (g, q^*) = 0$. This means that $q^* \in G$, i.e. G is symmetric.

(ii)⇒(i). By Proposition 3, the map $q \rightarrow q^*$ is an automorphism of $\psi(\text{Con}_{n+1})$. This map transforms a facet G with facet vector g into a facet G^* with facet vector g^*. If G is symmetric, then $G^* = G$, and therefore $g^* = g$.

(iii)⇒(i). Let $f = f^V + f^0$ be a facet vector of a facet F of Con_{n+1} such that $f^0 = 0$. Then the facet F is zero-lifting of the facet $F^V = F \cap E$ of the cone Con_n. In this case, f^V is also a facet vector of the facet $G = \psi(F)$ of $\psi(\text{Con}_{n+1})$. Obviously, $(F^V)^* = f^V$.

(iii)⇒(iv). This implication is implied by definition of zero-lifting of a facet of the cone $\psi(\text{Con}_{n+1})$.

(iv)⇒(i). The map χ induces a bijection between $\pi(F)$ and $\psi(F)$. Since $\pi(F)$ is zero-lifting of F^V, the facet vector of $\pi(F)$ belongs to R^E. This implies that the facet vector g of $\psi(F)$ belongs to $R^{E\Sigma}$, i.e. $g^* = g$. □

The symmetry group of Con_{n+1} is the symmetric group Σ_{n+1} of permutations of indices (see [DL97]). The group Σ_n is a subgroup of the symmetry group of the cone $\psi(\text{Con}_{n+1})$. The full symmetry group of $\psi(\text{Con}_{n+1})$ is $\Sigma_n \times \Sigma_2$, where Σ_2 corresponds to the map $q \rightarrow q^*$ for $q \in \psi(\text{Con}_{n+1})$. By Proposition 4, the set of facets of $\psi(\text{Con}_{n+1})$ is partitioned into pairs G, G^*. But it turns out that there are pairs such that $G^* = \sigma(G)$, where $\sigma \in \Sigma_n$.

9 Projections of hypermetric facets
The metric cone Met_{n+1}, the hypermetric cone Hyp_{p+1} and the cut cone Cut_{n+1} lying in the space $\mathbb{R}^{E \cup E_0}$ have an important class of hypermetric facets, that contains the class of triangular facets.

Let $b_i, i \in V$, be integers such that $\sum_{i \in V} b_i = \mu$, where $\mu = 0$ or $\mu = 1$. Usually these integers are denoted as a sequence (b_1, b_2, \ldots, b_n), where $b_i \geq b_{i+1}$. If, for some i, we have $b_i = b_{i+1} = \ldots = b_{i+m-1}$, then the sequence is shortened as $(b_1, \ldots, b_i, b_{i+m}, \ldots, b_n)$.

One relates to this sequence the following inequality of type $b = (b_1, \ldots, b_n)$

$$(f(b), x) = -\sum_{i,j \in V} b_i b_j x_{(ij)} \geq 0,$$

where $x = \{x_{(ij)}\} \in \mathbb{R}^{E}$ and the vector $f(b) \in \mathbb{R}^E$ has coordinates $f(b)_{(ij)} = -b_i b_j$. This inequality is called of negative or hypermetric type if in the sum $\sum_{i \in V} b_i = \mu$ we have $\mu = 0$ or $\mu = 1$, respectively.

The set of hypermetric inequalities on the set $V \cup \{0\}$ determines a hypermetric cone Hyp_{p+1}. There are infinitely many hypermetric inequalities for metrics on $V \cup \{0\}$. But it is proved in [DL97], that only finite number of these inequalities determines facets of Hyp_{p+1}. Since triangle inequalities are inequalities $(f(b), x) \geq 0$ of type $b = (1^2, 0^{n-3}, -1)$, the hypermetric cone Hyp_{p+1} is contained in Met_{n+1}, i.e. $\text{Hyp}_{p+1} \subseteq \text{Met}_{n+1}$ with equality for $n = 2$.

The hypermetric inequality $(f(b), x) \geq 0$ takes the following form on the set $V \cup \{0\}$.

$$-\sum_{i,j \in V \cup \{0\}} b_i b_j x_{(ij)} = -\sum_{(ij) \in E} b_i b_j x_{(ij)} - \sum_{i \in V} b_i b_j x_{(0i)} \geq 0. \quad (14)$$

If we decompose the vector $f(b)$ as $f(b) = f^V(b) + f^0(b)$, then $f^V(b)_{(ij)} = -b_i b_j$, $(ij) \in E$, and $f^0(b)_{(0i)} = -b_i b_i, i \in V$.

Let, for $S \subseteq V$, the equality $\sum_{i \in S} b_i = 0$ hold. Denote by b^S a sequence such that $b^S_i = -b_i$ if $i \in S$ and $b^S_i = b_i$ if $i \not\in S$. The sequence b^S is called switching of b by the set S.

The hypermetric cone Hyp_{p+1} has the following property (see [DL97]). If an inequality $(f(b), x) \geq 0$ defines a facet and $\sum_{i \in S} b_i = 0$ for some $S \subseteq V \cup \{0\}$, then the inequality $(f(b^S), x) \geq 0$ defines a facet, too.

Proof of Proposition 2 for Hyp_{p+1}. Consider the inequality (14), where $(f^0(b), e_0) = -\sum_{i \in V} b_i b_i = 0$. Then $\sum_{i \in V} b_i = 0$. Hence the cone Hyp_{p+1} has similar inequality for b^V, where $b^V_i = -b_i$ for all $i \in V$. Hence if one of these inequalities defines a facet so does another. Obviously, $f^0(b^V) = -f^0(b)$. Hence these facets satisfy the assertion of Proposition 2. \(\square\)

Theorem 3. Let $(f(b), x) \geq 0$ define a hypermetric facet of a cone in the space $\mathbb{R}^{E \cup E_0}$. Then the map ψ transforms it either in a hypermetric facet if $b_0 = 0$ or in a distortion of a facet of negative type if $b_0 = 1$. Otherwise, the projection is not a facet.

Proof. By Section 8, the map ψ transforms the hypermetric inequality (14) for $x \in \mathbb{R}^{E \cup E_0}$ into the following inequality

$$-\sum_{(ij) \in E} b_i b_j q_{(ij)} - b_0 \sum_{i \in V} b_i w_i \geq 0$$

for $q = \sum_{(ij) \in E} q_{(ij)} \varphi(e_{(ij)}) + \sum_{i \in V} w_i q(i) \in Q_n$.

Since $f(b)$ determines a hypermetric inequality, we have $b_0 = 1 - \sum_{i \in V} b_i = 1 - \mu$. So, the above inequality takes the form

$$\sum_{(ij) \in E} b_i b_j q_{(ij)} \leq (\mu - 1) \sum_{i \in V} b_i w_i.$$

By Theorem 1, this facet is projected by the map ψ into a facet if and only if $(f(b), e_0) = 0$, where $e_0 = \sum_{i \in V} e_{(0i)}$. We have

$$(f(b), e_0) = \sum_{i \in V} f(b)_{(0i)} = -\sum_{i \in V} b_0 b_i = -b_0 \mu = (\mu - 1) \mu.$$
This implies that the hypermetric facet-defining inequality \((f(b), x) \geq 0\) is transformed into a facet-defining inequality if and only if either \(\mu = 0\) and then \(b_0 = 1\) or \(\mu = 1\) and then \(b_0 = 0\). So, we have:

- If \(\mu = 1\) and \(b_0 = 0\), then the above inequality is a usual hypermetric inequality in the space \(\psi(E) = \varphi(E) = R^E_{+}\).
- If \(\mu = 0\) and \(b_0 = 1\), then the above inequality is the following distortion of an inequality of negative type

\[
- \sum_{(ij) \in E} b_i b_j g_{(ij)} - \sum_{i \in V} b_i w_i \geq 0, \quad \text{where} \quad \sum_{i \in V} b_i = 0. \tag{15}
\]

Comparing (7) with the inequality (15), we see that a canonical facet vector \(g(b)\) of a facet of \(\psi(Hyp_{n+1})\) has the form \(g(b) = g^*(b) + g^n(b)\), where \(g_{ij}(b) = g_{(ij)}(b) + v_i - v_j\), and

\[
g_{(ij)}(b) = -b_i b_j, \quad v_i = -\frac{1}{n} b_i \quad \text{for all} \quad i \in V.
\]

Define a cone of weighted quasi-hyper-metrics \(WQHyp_n = \psi(Hyp_{n+1})\). We can apply Proposition 3, in order to obtain the following assertion.

Proposition 6. The map \(q \rightarrow q^*\) preserves the cone \(WQHyp_n\), i.e.

\[
(WQHyp_n)^* = WQHyp_n.
\]

In other words, if \(q \in WQHyp_n\) has weights \(w_i, i \in V\), then the cone \(WQHyp_n\) has a point \(q^*\) with weights \(-w_i, i \in V\). \(\Box\)

10 Generalizations of metrics

The metric cone \(Met_{n+1}\) is defined in the space \(R^{E_0} \cup E_0\). It has an extreme ray which is spanned by the vector \(e_0 = \sum_{i \in V} e_{(0i)} \in R^{E_0}\). Facets of \(Met_{n+1}\) are defined by the following set of triangle inequalities, where \(d \in Met_{n+1}\).

Triangle inequalities of the sub-cone \(Met_n\) **that define facets of** \(Met_{n+1}\) **that are zero-lifting and contain** \(e_0\):

\[
d_{(ik)} + d_{(kj)} - d_{(ij)} \geq 0, \quad \text{for} \quad i, j, k \in V. \tag{16}
\]

Triangle inequalities defining facets that are not zero-lifting and contain the extreme ray \(l_0\) **spanned by the vector** \(e_0\):

\[
d_{(ij)} + d_{(j0)} - d_{(i0)} \geq 0 \quad \text{and} \quad d_{(ij)} + d_{(i0)} - d_{(j0)} \geq 0, \quad \text{for} \quad i, j \in V. \tag{17}
\]

Triangle inequalities defining facets that do not contain the extreme ray \(l_0\) **and do not define facets of** \(Met_n\):

\[
d_{(i0)} + d_{(j0)} - d_{(ij)} \geq 0, \quad \text{for} \quad i, j \in V. \tag{18}
\]

One can say that the cone \(Met_n \in R^{E_0}\) is lifted into the space \(R^{E_0} \cup E_0\) using restrictions (17) and (18). Note that the inequalities (17) and (18) imply the following inequalities of non-negativity

\[
d_{(i0)} \geq 0, \quad \text{for} \quad i \in V. \tag{19}
\]

A cone defined by inequalities (16) and (19) is called by cone \(WMet_n\) of weighted metrics \((d, w)\), where \(d \in Met_n\) and \(w_i = d_{(0i)}\) for \(i \in V\) are weights.
If weights \(w_i = d_{i(u)} \) satisfy also the inequalities (17) additionally to the inequalities (19), then the weighted metrics \((d, w)\) form a cone \(dWMet_n\) of down-weighted metrics. If metrics have weights that satisfy the inequalities (19) and (18), then these metrics are called up-weighted metrics. Detail see in [DD10], [DDV11].

Above defined generalizations of metrics are functions on unordered pairs \((ij)\) \(\in E \cup E_0\). Generalizations of metrics as functions on ordered pairs \(ij, ki, kj \in E^O\) are called quasi-metrics.

The cone \(QMet_n\) of quasi-metrics is defined in the space \(\mathbb{R}^{n^3}\) by non-negativity inequalities \(q_{ij} \geq 0\) for all \(ij \in E^O\), and by triangle inequalities \(q_{ij} + q_{jk} - q_{ik} \geq 0\) for all ordered triples \(ijk\) for each \(q \in QMet_n\). Below we consider in \(QMet_n\) a sub-cone \(WQMet_n\) of weighted quasi-metrics.

11 Cone of weighted quasi-metrics

We call a quasi-metric \(q\) weighted if it belongs to the subspace \(Q_n \subset \mathbb{R}^{E^O}\). So, we define

\[
WQMet_n = QMet_n \cap Q_n.
\]

A quasi-metric \(q\) is called weightable if there are weights \(w_i \geq 0\) for all \(i \in V\) such that the following equalities hold

\[
q_{ij} + w_i = q_{ji} + w_j
\]

for all \(i, j \in V, i \neq j\). Since \(q_{ij} = q_{ij}^* + q_{ij}^n\), we have \(q_{ij} + w_i = q_{ij}^* + q_{ij}^n + w_i = q_{ji}^* + q_{ji}^n + w_j\), i.e. \(q_{ij}^n - q_{ji}^n = 2q_{ij}^n = w_j - w_i\), what means that, up to multiple \(\frac{1}{2}\) and sign, the antisymmetric part of \(q_{ij}\) is \(w_i - w_j\). So, weightable quasi-metrics are weighted.

Note that weights of a weighted quasi-metric are defined up to an additive constant. So, if we take weights non-positive, we obtain a weightable quasi-metric. Hence, sets of weightable and weighted quasi-metrics coincide.

By definition of the cone \(WQMet_n\) and by symmetry of this cone, the triangle inequality \(q_{ij} + q_{jk} - q_{ik} \geq 0\) and non-negativity inequality \(q_{ij} \geq 0\) determine facets of the cone \(WQMet_n\). Facet vectors of these facets are

\[
t_{ijk} = e_{ij} + e_{jk} - e_{ik} \quad \text{and} \quad e_{ij},
\]

respectively. It is not difficult to verify that \(t_{ijk}, e_{ij} \notin Q_n\). Hence these facet vectors are not canonical. Below, we give canonical representatives of these facet vectors.

Let \(T(ijk) \subseteq K^O_n\) be a triangle of \(K^O_n\) with direct arcs \(ij, jk, ki\) and opposite arcs \(ji, kj, ik\). Hence

\[
f^{T(ijk)} = (e_{ij} + e_{jk} - e_{ki}) - (e_{ji} + e_{kj} + e_{ik}).
\]

Proposition 7. Canonical representatives of facet vectors \(t_{ijk}\) and \(e_{ij}\) are

\[
t_{ijk} = t_{ijk}^* = t_{ijk} + t_{kji}, \quad \text{and} \quad g(ij) = (e_{ij} + e_{ji}) + \frac{1}{n} (p(i) - p(j)),
\]

respectively.

Proof. We have \(t_{ijk} - f^{T(ijk)} = e_{ji} + e_{kj} - e_{ki} = t_{kji} = t_{ijk}^*\). This implies that the facet vectors \(t_{ijk}\) and \(t_{kji}\) determine the same facet, and the vector \(t_{ijk} + t_{kji} \in \mathbb{R}^{E^O_n}\) is a canonical representative of facet vectors of this facet. We obtain the first assertion of Proposition.

Consider now the facet vector \(e_{ij}\). It is more convenient to take the doubled vector \(2e_{ij}\). We show that the vector

\[
g(ij) = 2e_{ij} - \frac{1}{n} \sum_{k \in V - \{i,j\}} f^{T(ijk)}.
\]
is a canonical representative of the facet vector $2e_{ij}$. It is sufficient to show that $g(ij) \in Q_n$, i.e.
$g_{ki}(ij) = g_{ij}(i) + w_k - w_i$. In fact, we have $g_{ji}(ij) = 2 - \frac{n-2}{n} = 1 + \frac{2}{n}, g_{ji}(ij) = -g_{ki}(ij) = -g_{ki}(ij) = -1, g_{jk}(ij) = -g_{kj}(ij) = -1, g_{kk}(ij) = 0$. Hence we have

$$g^q(ij) = e_{ij} + e_{ji}, \ w_i = -w_j = \frac{1}{n}, \ \text{and} \ w_k = 0 \ \text{for all} \ k \in V - \{i,j\}.$$

These equalities imply the second assertion of Proposition.

Let τ_{ijk} be a facet vector of a facet of Met_n determined by the inequality $d_{(ij)} + d_{(jk)} - d_{(ik)} \geq 0$. Then

$$t_{ij} + t_{kj} = \varphi(\tau_{ijk}),$$

where the map $\varphi : \mathbb{R}^E \rightarrow \mathbb{R}^E^0$ is defined in Section 2. Obviously, a triangular facet is symmetric.

Recall that $q_{ij} = q_{(ij)} + w_i - w_j$ if $q \in WQMet_n$. Let $i, j, k \in V$. It is not difficult to verify that the following equalities hold:

$$q_{ij} + q_{jk} - q_{ik} = q_{ij} + q_{jk} - q_{ij} \geq 0.$$ \hspace{1cm} (20)

Since $q_{ij} = q_{ij}$, these inequalities show that the symmetric part q^s of the vector $q \in WQMet_n$ is a semi-metric. Hence if $w_i = w$ for all $i \in V$, then the quasi-semi-metric $q = q^s$ itself is a semi-metric. This implies that the cone $WQMet_n$ contains the semi-metric cone Met_n. Moreover, $Met_n = WQMet_n \cap \mathbb{R}_+ E^0$.

Now we show explicitly how the map ψ transforms the cones Met_{n+1} and $dWMet_n$ into the cone $WQMet_n$.

Theorem 4. The following equalities hold

$$\psi(Met_{n+1}) = \psi(dWMet_n) = WQMet_n \ \text{and} \ WQMet_n^* = WQMet_n.$$

Proof. All facets of the metric cone Met_{n+1} of metrics on the set $V \cup \{\emptyset\}$ are given by triangular inequalities

$$d_{(ij)} + d_{(ik)} - d_{(ik)} \geq 0.$$

They are hypermetric inequalities $(g(b), d) \geq 0$, where b has only three non-zero values $b_j = b_k = 1$ and $b_i = -1$ for some triple $\{ijk\} \subseteq V \cup \{\emptyset\}$. By Theorem 3, the map ψ transforms this facet into a hypermetric facet, i.e. into a triangular facets of the cone $\psi(Met_{n+1})$ if and only if $b_0 = 0$, i.e. if $0 \not\in \{ijk\}$. If $0 \in \{ijk\}$, then, by the same theorem, the equality $b_0 = 1$ should be satisfied. This implies $0 \not\in \{ijk\}$. In this case the facet defining inequality has the form (15), that in the case $k = 0$, is

$$q_{ij} + w_i - w_j \geq 0.$$

This inequality is the non-negativity inequality $q_{ij} \geq 0$.

If $b_i = 1, b_j = -1$ and $k = 0$, the inequality $d_{(ij)} + d_{(j)} - d_{(i)} \geq 0$ is transformed into inequality

$$q_{(ij)} + w_j - w_i \geq 0, \ \text{i.e.} \ q_{ij} \geq 0.$$

This inequality and inequalities (20) imply the last equality of this Theorem.

The inequalities (18) define facets F of Met_{n+1} and $dWMet_n$ that do not contain the extreme ray l_0. Hence, by Theorem 3, $\psi(F)$ are not facets of $WQMet_n$. But, recall that the cone $dWMet_n$ contains all facet of Met_{n+1} excluding facets defined by the inequalities (18). Instead of these facets, the cone $dWMet_n$ has facets G_i defined by the non-negativity inequalities (19) with facet vectors $e_{(ij)}$ for all $i \in V$. Obviously all these facets do not contain the extreme ray l_0. Hence, by Theorem 2, $\psi(G_i)$ is not a facet of $\psi(dWMet_n)$. Hence we have also the equality $WQMet_n = \psi(dWMet_n)$. \hspace{1cm} \square

Remark. Facet vectors of facets of Met_{n+1} that contain the extreme ray l_0 spanned by the vector e_0 are $\tau_{ijk} = \tau_{ijk} = \tau_{ijk}, \tau_{i0} = \tau_{ij0} = \tau_{ij0} = \tau_{ij0} = \tau_{ij0} = \tau_{ij0}$, where $\tau_{ij0} = e_{(ij)}$ and $\tau_{ij0} = e_{(ij)} - e_{(ij)}$. Hence Proposition 2 is true for Met_{n+1}, and we can apply Proposition 3 in order to obtain the equality $WQMet_n^* = WQMet_n$ of Theorem 4.

12 The cone Cut_{n+1}

The cut vectors $\delta(S) \in \mathbb{R}^{E \cup E_0}$ for all $S \subseteq V \cup \{\emptyset\}$ span all extreme rays of the cut cone $Cut_{n+1} \subset \mathbb{R}^{E \cup E_0}$. In
other words, \(\text{Cut}_{n+1} \) is the conic hull of all cut vectors. Since the cone \(\text{Cut}_{n+1} \) is full dimensional, its dimension is dimension of the space \(\mathbb{R}^{E_0} \), that is \(\frac{n(n+1)}{2} \).

Recall that \(\delta(S) = \delta(V \cup \{0\} - S) \). Hence we can consider only \(S \) such that \(S \subseteq V \), i.e. \(0 \notin S \). Moreover, by Section 5,

\[
\delta(S) = \sum_{i \in S, j \notin S} e_{ij} = \sum_{i \in S, j \in V - S} e_{ij} + \sum_{i \in S} e_{(0)i} = \delta^V(S) + \sum_{i \in S} e_{(0)i},
\]

where \(\delta^V(S) \) is restriction of \(\delta(S) \) on the space \(\mathbb{R}^E = \psi(\mathbb{R}^E) \). Note that

\[
\delta(V) = \delta(\{0\}) = \sum_{i \in V} e_{(0)i} = e_0.
\]

Consider a facet \(F \) of \(\text{Cut}_{n+1} \). Let \(f \) be facet vector of \(F \). Set

\[
R(F) = \{ S \subseteq V : (f, \delta(S)) = 0 \}.
\]

For \(S \in R(F) \), the vector \(\delta(S) \) is called root of the facet \(F \). By (21), for \(S \in R(F) \), we have

\[
(f, \delta(S)) = (f, \delta^V(S)) + \sum_{i \in S} f_{(0)i} = 0. \tag{22}
\]

We represent each facet vector of \(\text{Cut}_{n+1} \) as \(f = f^V + f^0 \), where \(f^V \in \mathbb{R}^E \) and \(f^0 \in \mathbb{R}^{E_0} \).

The set of facets of the cone \(\text{Cut}_{n+1} \) is partitioned onto equivalence classes by switchings (see [DL97]). For each \(S, T \subseteq V \cup \{0\} \), the switching by the set \(T \) transforms the cut vector \(\delta(S) \) into the vector \(\delta(S \cup T) \), where \(\Delta \) is symmetric difference, i.e. \(S \Delta T = S \cup T - S \cap T \). It is proved in [DL97] that if \(T \in R(F) \), then \(\{\delta(S \cup T) : S \in R(F)\} \) is the set of roots of the switched facet \(F^{\delta(T)} \) of \(\text{Cut}_{n+1} \). Hence \(R(F^{\delta(T)}) = \{S \Delta T : S \in R(F)\} \).

Let \(F \) be a facet of \(\text{Cut}_{n+1} \). Then \(F \) contains the vector \(e_0 = \delta(V) \) if and only if \(V \in R(F) \). Hence Lemma 1 below is an extended reformulation of Proposition 2.

Lemma 1. Let \(F \) be a facet of \(\text{Cut}_{n+1} \) such that \(V \in R(F) \). Let \(f = f^V + f^0 \) be facet vector of \(F \). Then the vector \(f^* = f^V - f^0 \) is facet vector of \(F^{\delta(V)} \) of the facet \(F \), and \(V \in R(F^{\delta(V)}) \).

Proof. Since \(V \in R(F) \), \(F^{\delta(V)} \) is a facet of \(\text{Cut}_{n+1} \). Since \(S \Delta V = V - S = \overline{S} \), for \(S \subseteq V \), we have

\[
R(F^{\delta(V)}) = \{ \overline{S} : S \in R(F) \}.
\]

Since \(\emptyset \in R(F) \), the set \(\emptyset \Delta V = V \in R(F^{\delta(V)}) \). Now, using (22), for \(S \in R(F^{\delta(V)}) \), we have

\[
(f^*, \delta(S)) = ((f^V - f^0), \delta(S)) = (f^V, \delta^V(S)) - \sum_{i \in S} f_{(0)i}.
\]

Note that \(\delta^V(\overline{S}) = \delta^V(S) \), and, since \(V \in R(F) \), \(\delta(V) = \delta(\{0\}) \), we have \((f, \delta(S)) = \sum_{i \in V} f_{(0)i} = 0 \).

Hence \(\sum_{i \in S} f_{(0)i} = - \sum_{i \in S} f_{(0)i} \). It is easy to see, that \((f^*, \delta(S)) = (f, \delta(S)) \). Since \(S \in R(F^{\delta(V)}) \) if and only if \(\overline{S} \in R(F) \), we see that \(f^* \) is a facet vector of \(F^{\delta(V)} \).

The set of facets of \(\text{Cut}_{n+1} \) is partitioned into orbits under action of the permutation group \(\Sigma_{n+1} \). But some permutation non-equivalent facets are equivalent under switchings. We say that two facets \(F, F' \) of \(\text{Cut}_{n+1} \) belong to the same type if there are \(\sigma \in \Sigma_{n+1} \) and \(T \subseteq V \) such that \(\sigma(F') = F^{\delta(T)} \).

13 Cone \(\text{OCut}_n \)

Denote by \(\text{OCut}_n \subset \mathbb{R}^{E_0} \) the cone whose extreme rays are spanned by cut vectors \(c(S) \) for all \(S \subseteq V \), \(S \neq \emptyset, V \). In other words, let

\[
\text{OCut}_n = \{ c \in Q_n : c = \sum_{S \subseteq V} \alpha_{SC}(S), \alpha_{S} \geq 0 \}.
\]
Coordinates c_{ij} of a vector $c \in \text{OCut}_n$ are given in (6), where $w_i \geq 0$ for all $i \in V$. Hence $\text{OCut}_n \subset Q_n$. Recall that

$$c(S) = \frac{1}{2} (\delta^O(S) + \sum_{i \in S} p(i)), \quad (23)$$

where $\delta^O(S) = \varphi(\delta^V(S))$. Note that $\delta^O(\emptyset) = \delta^O(S)$ and $p(\emptyset) = -p(S)$, where $\emptyset = V - S$.

Denote by $\text{Cut}_n^O = \varphi(\text{Cut}_n)$ the cone generated by $\delta^O(S)$ for all $S \subset V$. The vectors $\delta^O(S)$ for all $S \subset V$, $S \neq \emptyset, V$, are all extreme rays of the cone Cut_n^O that we identify with Cut_n embedded into the space $\mathbb{R}^{	ext{ES}_n}$.

Lemma 2. For $S \subseteq V$, the following equality holds

$$\psi(\delta(S)) = 2c(S).$$

Proof. According to Section 8, $\psi(\delta^V(S)) = \varphi(\delta^V(S)) = \delta^O(S)$. Besides, $\psi(e_{(0)}) = p(i)$ for all $i \in V$. Hence, using (21), we obtain

$$\psi(\delta(S)) = \psi(\delta^V(S)) + \sum_{i \in S} \psi(e_{(0)}) = \varphi(\delta^V(S)) + \sum_{i \in S} p(i) = \delta^O(S) + p(S).$$

Recall that $\psi(\delta(V)) = \psi(e_0) = 0$ and $c(V) = 0$. Hence, according to (23), we obtain

$$\psi(\delta(S)) = 2c(S), \text{ for all } S \subseteq V.$$

Lemma is proved. □

Theorem 5. The following equalities hold

$$\psi(\text{Cut}_{n+1}) = \text{OCut}_n \text{ and } \text{OCut}_n^* = \text{OCut}_n.$$

Proof. Recall that the conic hull of vectors $\delta(S)$ for all $S \subseteq V$ is Cut_{n+1}. The conic hull of vectors $c(S)$ for all $S \subset V$ is the cone OCut_n. Since $\psi(\delta(V)) = c(V) = 0$, the first result follows.

The equality $\text{OCut}_n^* = \text{OCut}_n$ is implied by the equalities $c^*(S) = c(\emptyset)$ for all $S \subseteq V$.

By Lemma 1, the equality $\text{OCut}_n^* = \text{OCut}_n$ is a special case $\text{Con}_{n+1} = \text{Cut}_{n+1}$ of Proposition 3. □

14 Facets of OCut_n

Lemma 3. Let F be a facet of Cut_{n+1}. Then $\psi(F)$ is a facet of OCut_n if and only if $V \in R(F)$.

Proof. By Theorem 2, $\psi(F)$ is a facet of OCut_n if and only if $e_0 = \delta(V) \subset F$, i.e. if and only if $V \in R(F)$. □

For a facet G of OCut_n with facet vector g, we set

$$R(G) = \{ S \subseteq V : (g, c(S)) = 0 \}$$

and call the vector $c(S)$ for $S \in R(G)$ by root of the facet G.

Note that $\delta(\emptyset) = 0$ and $c(\emptyset) = c(V) = 0$. Hence $\emptyset \in R(F)$ and $\emptyset \in R(G)$ for all facet F of Cut_{n+1} and all facets G of OCut_n. The roots $\delta(\emptyset) = 0$ and $c(\emptyset) = c(V) = 0$ are called trivial roots.

Proposition 8. For a facet F of Cut_{n+1}, let $G = \psi(F)$ be a facet of OCut_n. Then the following equality holds

$$R(G) = R(F).$$
Remark. We give two proofs of this equality. Both are useful.

First proof. According to Section 8, the map \(\psi \) transforms an inequality \((f, x) \geq 0\) defining a facet of \(Cut_{n+1} \) into the inequality (12) defining the facet \(G = \psi(F) \) of \(OCut_n \). Recall the the inequality (12) relates to the representation of vectors \(q \in \mathbb{Q}_n \) in the basis \(\{ \varphi(e_{ij}), p(i) \} \), i.e. \(q = \sum_{(ij) \in E} q_{(ij)} \varphi(e_{ij}) + \sum_{i \in V} w_i p(i) \). Let \(q = c(S) \) for \(S \in R(G) \). Then, according to (23), we have \(q_{(ij)} = \frac{1}{2} \delta^T_{(ij)}(S) \), \(w_i = \frac{1}{2} \) for \(i \in S \) and \(w_i = 0 \) for \(i \in \mathbb{N} \). Hence, omitting the multiple \(\frac{1}{2} \), the inequality in (12) gives the following equality

\[
\sum_{(ij) \in E} f_{(ij)} \delta^T_{(ij)}(S) + \sum_{i \in S} f_{(0i)} = 0
\]

which coincides with (22). This implies the assertion of this Proposition.

Second proof. By Theorem 2, \(\psi(l) \) is an extreme ray of \(\psi(F) \) if and only if \(l \) is an extreme ray of \(F \) and \(l \neq l_0 \). Since \(l \) is spanned by \(\delta(S) \) for some \(S \in R(F) \) and \(\psi(l) \) is spanned by \(\psi(\delta(S)) = c(S) \), we have \(R(G) = \{ S \subset V : S \in R(F) \} \). Since \(c(V) = 0 \), we can suppose that \(V \in R(G) \), and then \(R(G) = R(F) \). \(\square \)

Remark. Note that \(\delta(V) = \delta(\{0\}) = e_0 \neq 0 \) is a non-trivial root of \(F \), i.e. \(V \in R(F) \). But \(c(V) = \psi(\delta(V)) = 0 \) is a trivial root of \(R(G) \).

Recall that, for a subset \(T \subseteq V \), we set \(\overline{T} = V - T \). Note that \(\overline{T} = V \triangle T \) and \(\overline{T} \neq V \cup \{0\} - T \).

Lemma 4. Let \(F \) be a facet of \(Cut_{n+1} \), and \(T \in R(F) \). Then the image \(\psi(F^\delta(T)) \) of the switched facet \(F^\delta(T) \) is a facet of \(OCut_n \) if and only if \(\overline{T} \in R(F) \).

Proof. By Lemma 3, \(\psi(F^\delta(T)) \) is a facet of \(OCut_n \) if and only if \(V \in R(F^\delta(T)) \), i.e. if and only if \(V \triangle T = \overline{T} \in R(F) \).

For a facet \(G \) of \(OCut_n \), define \(G^\delta(T) \) as the conic hull of \(c(S \triangle T) \) for all \(S \in R(G) \). Since each facet \(G \) of \(OCut_n \) is \(\psi(F) \) for some facet \(F \) of \(Cut_{n+1} \), Lemma 4 and Proposition 8 imply the following assertion.

Theorem 6. Let \(G \) be a facet of \(OCut_n \). Then \(G^\delta(T) \) is a facet of \(OCut_n \) if and only if \(T, \overline{T} \in R(G) \), and then \(R(G^\delta(T)) = \{ S \triangle T : S \in R(G) \} \). \(\square \)

Theorem 6 asserts that the set of facets of the cone \(OCut_n \) is partitioned onto equivalence classes by switchings \(G \rightarrow G^\delta(T) \), where \(T, \overline{T} \in R(G) \).

The case \(T = V \) in Theorem 6 plays a special role. Recall that \(V \in R(F) \) if \(F \) is a facet of \(Cut_{n+1} \) such that \(\psi(F) \) is a facet of \(OCut_n \). Hence Lemma 1 and Proposition 3 imply the following fact.

Proposition 9. Let \(F \) be a facet of \(Cut_{n+1} \) such that \(\psi(F) \) is a facet of \(OCut_n \). Let \(g = g^* + g^a \) be a facet vector of the facet \(\psi(F) \). Then the vector \(g^* = g^a - g^a \) is a facet vector of the facet \(\psi(F^\delta(V)) = (\psi(F))^\ast = (\psi(F))\delta(V) \) such that \(R((\psi(F))^\ast) = \{ S : S \in R(F) \} \). \(\square \)

Recall that roughly speaking \(OCut_n \) is projection of \(Cut_{n+1} \) along the vector \(\delta(V) = \delta(\{0\}) \).

Let \(\sigma \in \Sigma_n \) be a permutation of the set \(V \). For a vector \(q \in \mathbb{R}^E \), we have \(\sigma(q)_{ij} = q_{\sigma(i)\sigma(j)} \). Obviously if \(g \) is a facet vector of a facet \(G \) of \(OCut_n \), then \(\sigma(g) \) is the facet vector of the facet \(\sigma(G) = \{ \sigma(g) : q \in G \} \).

Note that, by Proposition 9, the switching by \(V \) is equivalent to the operation \(q \rightarrow q^* \). Hence the symmetry group of \(OCut_n \) contains the group \(\Sigma_n \times \Sigma_2 \), where \(\Sigma_2 \) relates to the map \(q \rightarrow q^* \) for \(q \in OCut_n \).

Theorem 7. The group \(\Sigma_n \times \Sigma_2 \) is the symmetry group of the cone \(OCut_n \).

Proof. Let \(\gamma \) be a symmetry of \(OCut_n \). Then \(\gamma \) is a symmetry of the set \(\mathcal{F}(e_0) \) of facets \(F \) of the cone \(Cut_{n+1} \) containing the vector \(e_0 \). The symmetry group \(\Gamma(e_0) \) of the set \(\mathcal{F}(e_0) \) is a subgroup of the symmetry group of the cut-polytope \(Cut_{n+1} \). In fact, \(\Gamma(e_0) \) is stabilizer of the edge \(e_0 \) of the polytope \(Cut_{n+1} \). But it is well-known that
\[\Gamma(e_0) \] consists of the switching by \(V \) and permutations \(\sigma \in \Sigma_{n+1} \) leaving the edge \(e_0 \) non-changed. The map \(\psi \) transforms these symmetries of \(\mathcal{F}(e_0) \) into symmetries \(\sigma \in \Sigma_n \) and \(q \to q^* \) of the cone \(OCut_n \).

The set of all facets of \(OCut_n \) is partitioned onto orbits of facets that are equivalent by the symmetry group \(\Sigma_n \times \Sigma_2 \). It turns out that, for some facets \(G \), subsets \(S \in R(G) \) and permutations \(\sigma \in \Sigma_n \), we have \(C^g(S) = \sigma(G) \).

By Proposition 5, if a facet of \(Cut_{n+1} \) is zero-lifting of a facet \(F \) of \(Cut_n \), then the facet \(G = \psi(F) \) of \(OCut_n \) is symmetric and \(G = G^* = C^g(V) \) is zero-lifting of \(F \).

So, there are two important classes of orbits of facets of \(OCut_n \). Namely, the orbits of symmetric facets, that are zero-lifting of facets of \(Cut_n \), and orbits of asymmetric facets that are \(\psi \)-images of facets of \(Cut_{n+1} \) and are not zero-lifting.

\[\text{15 Cases} \ 3 \leq n \leq 6 \]

It is worth to compare results of this Section with Table 2 of [DDV11].

Most of described below facets are hypermetric or negative type. We give here the corresponding vectors \(b \) in accordance with Section 9.

n=3. Note that \(Cut_4 = Hyp_4 = Met_4 \). Hence

\[OCut_3 = WQHyp_3 = WQMet_3. \]

All these cones have two orbits of facets: one orbit of non-negativity facets with \(b = (1, 0, -1) \) and another orbit of triangular facets with \(b = (1^2, -1) \).

n=4. We have \(Cut_5 = Hyp_5 \subset Met_5 \). Hence

\[OCut_4 = WQHyp_4 \subset WQMet_4. \]

The cones \(Hyp_5 = Cut_5 \) have two orbits of facets: triangular and pentagonal facets. Recall that a triangular facet with facet vector \(\tau_{ijk} \) is zero-lifting if \(0 \not\in \{i,j,k\} \). Hence the cones \(WQHyp_4 = OCut_4 \) have three orbits of facets: of non-negativity with \(b = (1,0^2,-1) \), triangular with \(b = (1^2,0,-1) \) and weighted version of negative type with \(b = (1^2,-1^2) \).

n=5. We have again \(Cut_6 = Hyp_6 \subset Met_6 \). Hence

\[OCut_5 = WQHyp_5 \subset WQMet_5. \]

The cones \(Hyp_6 = Cut_6 \) have four orbits of facets, all are hypermetric: triangular with \(b = (1^2,0^3,-1) \), pentagonal with \(b = (1^3,0,-1^2) \) and two more types, one with \(b = (2,1^2,-1^3) \) and its switching with \(b = (1^4,-1,-2) \). These four types provide 6 orbits of facets of the cones \(WQHyp_5 = OCut_5 \): non-negativity with \(b = (1,0^3,-1) \), triangular with \(b = (1^2,0^2,-1) \), of negative type with \(b = (1^2,0,-1^2) \), pentagonal with \(b = (1^3,-1^2) \), and two of negative type with \(b = (2,1,-1^3) \) and \(b = (1^3,-1,-2) \).

The last two types belong to the same orbit of the full symmetry group \(\Sigma_5 \times \Sigma_2 \). Hence the cone \(OCut_5 \) has 5 orbits of facets under action of its symmetry group.

n=6. Now, we have \(Cut_7 \subset Hyp_7 \subset Met_7 \). Hence

\[OCut_6 \subset WQHyp_6 \subset WQMet_6. \]

The cone \(Cut_7 \) has 36 orbits of facets under action of the permutation group \(\Sigma_7 \). Switchings contract these orbits into 11 types \(F_k, 1 \leq k \leq 11 \), (see [DL97], Sect. 30.6). J. Vidali compute orbits of facets of \(OCut_6 \) under action of the group \(\Sigma_6 \). Using these computations, we give in Table below numbers of orbits of facets of cones \(Cut_7 \) and \(OCut_6 \) (cf. Figure 30.6.1 of [DL97]).
The first row of Table gives types of facets of Cut_7. In the second row of Table, for each type F_k, numbers of orbits of facets of Cut_7 of type F_k under action of the group Σ_7. The third row of Table, for each type F_k, gives numbers of orbits of facets of $OCut_6$ that are obtained from facets of type F_k under action of the group Σ_6. The fourth row gives, for each type F_k, numbers of orbits of facets of $OCut_6$ that are obtained from facets of type F_k under action of the group $\Sigma_6 \times \Sigma_2$.

The last column of Table gives total numbers of orbits of facets of the cones Cut_7 and $OCut_6$.

Table
types

Σ_7
Σ_6
$\Sigma_6 \times \Sigma_2$

The first three types F_1, F_2, F_3 relate to 4 orbits of hypermetric facets $F(b)$ of Cut_7 that are zero-lifting, where $b = (1^2, 0^4, -1)$, $b = (1^3, 0^2, -1^2)$ and $b = (2, 1^2, 0, -1^3)$, $b = (1^4, 0, -1, -2)$. Each of these four orbits of facets of Cut_7 under action of Σ_7 gives two orbits of facets of $OCut_6$ under action of the group Σ_6.

The second three types F_4, F_5, F_6 relate to 6 orbits of hypermetric facets $F(b)$ of Cut_7 that are not zero-lifting. Each of these 6 orbits gives one orbit of facets of $OCut_6$ under action of the group Σ_6.

The third three types F_7, F_8, F_9 relate to 16 orbits of facets of clique-web types $CW_7(b)$. These 16 orbits give 26 orbits of facets of $OCut_6$ under action of Σ_6.

The last two types $F_{10} = Par_7$ and Gr_7 are special (see [DL97]). They relate to 10 orbits of Cut_7, that give 21 orbits of facets of $OCut_6$ under action of Σ_6.

The subgroup Σ_2 of the full symmetry group $\Sigma_6 \times \Sigma_2$ contracts some pairs of orbits of the group Σ_6 into one orbit of the full group. The result is given in the forth row of Table.

Note that the symmetry groups of Cut_7 and $OCut_6$ have 36 and 37 orbits of facets, respectively.

Bibliography

[AACMP97] O.Aichholzer, F.Auerhammer, D.Z.Chen, D.T.Lee, A.Mukhopadhyay and E.Papadopoulou, Voronoi diagrams for direction-sensitive distances, Proceedings of 13th Annual ACM Symposium Computational Geometry, Nice, France (1997), 418–420.

[Aig79] M.Aigner, Combinatorial Theory, Springer-Verlag, Berlin 1979, (Chapter VII 3B).

[AM11] D.Avis and C.Meagher, On the Directed Cut Cone and Polytope, Manuscript Draft No. MAPR-D-11-00057, 2011.

[Bir67] G.Birkhoff, Lattice Theory, AMS, Providence, Rhode Island, 1967.

[CMM06] M.Charikar, K.Makarychev, and Y.Makarychev, Directed metrics and directed graph partitioning problem Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (2006) 51–60.

[DD10] M.Deza and E.Deza, Cones of Partial Metrics, Contributions in Discrete Mathematics, 6 (2010), 26–41.

[DDV11] M.Deza, E.Deza and J.Vidali, Cones of Weighted and Partial Metrics, arXiv: 1101.0517v2[math.Co]04 Jan 2011.

[DL97] M.Deza and M.Laurent, Geometry of cuts and metrics, Springer-Verlag, 1997.

[Ha14] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig,Verlag "Veit and Co", 1914.

[Se97] A.K.Seda, Quasi-metrics and semantic of logic programs, Fundamenta Informaticae, 29 (1997), 97–117.
Authors' Information

Michel Deza - Ecole Normale Superieure, Paris.

Vyacheslav P. Grishukhin - CEMI, Russian Academy of Sciences, Moscow, the speaker and corresponding author.

Elena Deza - Moscow State Pedagogical University, Moscow.