The minimum modulus of gap power series and h-measure of exceptional sets

T. M. Salo

Institute of Applied Mathematics and Fundamental Sciences, National University ”Lvivs’ka Polytehnika”, Ukraine
tetyan.salo@gmail.com

O. B. Skaskiv

Department of Mechanics and Mathematics, Ivan Franko National University of L’viv, Ukraine
olskask@gmail.com

Abstract

For entire function of the form \(f(z) = \sum_{k=0}^{\infty} f_k z^{n_k} \), where \((n_k)\) is a strictly increasing sequence of non-negative integers, we establish conditions when the relations

\[
M_f(r) = (1 + o(1))m_f(r), \quad m_f(r) = (1 + o(1))\mu_f(r)
\]

is true as \(r \to +\infty \) outside some set \(E \) such that \(h\text{-meas}(E) = \int_E \frac{dh(r)}{r} < +\infty \) uniformly in \(y \in \mathbb{R} \), where \(h(r) \) is positive continuous function increasing to \(+\infty\) on \([0, +\infty)\) with non-decreasing derivative, and \(M_f(r) = \max\{|f(z)|: |z| = r\}, \quad m_f(r) = \min\{|f(z)|: |z| = r\}, \quad \mu_f(r) = \max\{|f_k|r^{n_k}: k \geq 0\} \) the maximum modulus, the minimum modulus and the maximum term of \(f \) respectively.

Subject Classification: 30B50

Keywords: gap power series, minimum modulus, maximum modulus, maximal term, entire Dirichlet series, exceptional set

1 Introduction

Let \(L \) be the class of positive continuous functions increasing to \(+\infty\) on \([0; +\infty)\). By \(L^+ \) we denote the subclass of \(L \) which consists of the differentiable functions with non-decreasing derivative, and \(L^- \) the subclass of functions with non-increasing derivative.
Let f be an entire function of the form
\[f(z) = \sum_{k=0}^{+\infty} f_k z^{n_k}, \tag{1} \]
where (n_k) is a strictly increasing sequence of non-negative integers. For $r > 0$ we denote by $M_f(r) = \max\{|f(z)| : |z| = r\}$, $m_f(r) = \min\{|f(z)| : |z| = r\}$, $\mu_f(r) = \max\{|f_k r^{n_k} : k \geq 0\}$ the maximum modulus, the minimum modulus and the maximum term of f respectively.

P.C. Fenton [1] (see also [2]) has proved the following statement.

Theorem 1.1 ([1]). If
\[\sum_{k=0}^{+\infty} \frac{1}{n_{k+1} - n_k} < +\infty, \tag{2} \]
then for every entire function f of the form (1) there exists a set $E \subset [1, +\infty)$ of finite logarithmic measure, i.e. $\log\text{-}\text{meas} E := \int_E d\log r < +\infty$, such that relations
\[M_f(r) = (1 + o(1))m_f(r), \quad M_f(r) = (1 + o(1))\mu_f(r) \tag{3} \]
hold as $r \to +\infty$ ($r \notin E$).

P. Erdős and A.J. Macintyre [2] proved that conditions (2) implies that (3) holds as $r = r_j \to +\infty$ for some sequence (r_j).

Denote by $D(\Lambda)$ the class of entire (absolutely convergent in the complex plane) Dirichlet series of form
\[F(z) = \sum_{n=0}^{+\infty} a_n e^{z\lambda_n}, \tag{4} \]
where $\Lambda = (\lambda_n)$ is a fixed sequence such that $0 = \lambda_0 < \lambda_n \uparrow +\infty$ ($1 \leq n \uparrow +\infty$).

Let us introduce some notations for $F \in D(\Lambda)$ and $x \in \mathbb{R}$: $\mu(x, F) = \max\{|a_n e^{x\lambda_n} : n \geq 0\}$ is the maximal term, $M(x, F) = \sup\{|F(x+iy)| : y \in \mathbb{R}\}$ is the maximum modulus, $m(x, F) = \inf\{|F(x+iy)| : y \in \mathbb{R}\}$ is the minimum modulus, $\nu(x, F) = \max\{n : |a_n e^{x\lambda_n} = \mu(x, F)\}$ is the central index of series (4).

In [3] (see also [4]) we find the following theorem.

Theorem A (O.B. Skaskiv, 1984). For every entire function $F \in D(\Lambda)$ relation
\[F(x + iy) = (1 + o(1))a_{\nu(x, F)} e^{(x+iy)\lambda_{\nu(x, F)}} \tag{5} \]
The minimum modulus of gap power series

holds as \(x \to +\infty \) outside some set \(E \) of finite Lebesgue measure \((\int_E dx < +\infty)\) uniformly in \(y \in \mathbb{R} \), if and only if

\[
\sum_{n=0}^{+\infty} \frac{1}{\lambda_{n+1} - \lambda_n} < +\infty.
\] (6)

Note, in the paper [5] was proved the analogues of other assertions from the article of Fenton [1] for the subclasses of functions \(F \in D(\Lambda) \) defined by various restrictions on the growth rate of the maximal term \(\mu(x, F) \).

The finiteness of Lebesgue measure of an exceptional set \(E \) in Theorem A is the best possible description. It follows from the such statement.

Theorem B (T.M. Salo, O.B. Skaskiv, 2001 [6]). For every sequence \(\lambda = (\lambda_k) \) (including those which satisfy (6)) and for every positive continuous differentiable function \(h: [0, +\infty) \to [0, +\infty) \) such that \(h'(x) \not\to +\infty \) \((x \to +\infty)\) there exist an entire Dirichlet series \(F \in D(\lambda) \), a constant \(\beta > 0 \) and a measurable set \(E_1 \subset [0, +\infty) \) of infinite \(h \)-measure (\(h\)-meas \((E_1) \) \(\triangleq \int_{E_1} dh(x) = +\infty \)) such that

\[
(\forall \: x \in E_1): \: M(x, F) > (1 + \beta)\mu(x, F), \: M(x, F) > (1 + \beta)m(x, F). \] (7)

Recently, Ya.V. Mykytyuk showed us, that in Theorem it is enough to require that the positive non-decreasing function \(h \) be such that

\[
h(x)/x \to +\infty \quad (x \to +\infty).
\]

From Theorem B follows that the finiteness of logarithmic measure of an exceptional set \(E \) in Fenton’s Theorem 1.1 also is the best possible description.

It is easy to see that the relation

\[
F(x + iy) = (1 + o(1))a_\nu(x, F)e^{(x+iy)\lambda_\nu(x, F)}
\]

holds as \(x \to +\infty \) \((x \notin E)\) uniformly in \(y \in \mathbb{R} \), if and only if

\[
M(x, F) \sim \mu(x, F) \quad \text{and} \quad M(x, F) \sim m(x, F) \quad (x \to +\infty, \: x \notin E). \] (8)

Due to Theorem B the natural question arises: what conditions must satisfy the entire Dirichlet series that relation (5) is true as \(x \to +\infty \) outside some set \(E_2 \) of finite \(h \)-measure, i.e.

\[
h\text{-meas} \((E_2) < +\infty? \)
\]

In this paper we obtain the answer to this question when \(h \in L^+ \).
2 \(h \)-measure with non-decreasing density

According to Theorem B, in case \(h \in L^+ \) condition (6) must be fulfilled. Therefore, in subclass

\[
D(\Lambda, \Phi) = \{ F \in D(\Lambda) : \ln \mu(x, F) \geq x\Phi(x) \ (x > x_0) \}, \quad \Phi \in L,
\]

it should be strengthened. The following theorem indicates this.

Theorem 2.1. Let \(\Phi \in L, h \in L^+ \) and \(\varphi \) be the inverse function to the function \(\Phi \). If

\[
(\forall b > 0) : \sum_{k=0}^{+\infty} \frac{1}{\lambda_{k+1} - \lambda_k} h'\left(\varphi(\lambda_k) + \frac{b}{\lambda_{k+1} - \lambda_k}\right) < +\infty, \quad (9)
\]

then for all \(F \in D(\Lambda, \Phi) \) holds (5) is true as \(x \to +\infty \) outside some set \(E \) of finite \(h \)-measure uniformly in \(y \in \mathbb{R} \).

Proof of Theorem 2.1. Note first that condition (9) implies the convergence of series (6). Denote \(\Delta_0 = 0 \) and for \(n \geq 1 \)

\[
\Delta_n = \sum_{j=0}^{n-1} (\lambda_{j+1} - \lambda_j) \sum_{m=j+1}^{+\infty} \left(\frac{1}{\lambda_m - \lambda_{m-1}} + \frac{1}{\lambda_{m+1} - \lambda_m} \right).
\]

Consider the function

\[
f_q(z) = \sum_{n=0}^{+\infty} \frac{a_n}{\alpha_n} e^{z\lambda_n},
\]

where \(\alpha_n = e^{q\Delta_n}, \ q > 0 \).

Since \(\Delta_n \geq 0 \), then \(f_q \in D(\Lambda) \) and \(\nu(x, f_q) \to +\infty \ (x \to +\infty) \).

Repeating the proof of Lemma 1 from [8], it is not difficult to obtain the following lemma.

Lemma 2.1. For all \(n \geq 0 \) and \(k \geq 1 \) inequality

\[
\frac{\alpha_n}{\alpha_k} e^{\tau_k(\lambda_n - \lambda_k)} \leq e^{-q|n-k|}, \quad (10)
\]

is true, where \(\tau_k = \tau_k(q) = qx_k + \frac{q}{\lambda_k - \lambda_{k-1}}, \ x_k = \frac{\Delta_{k-1} - \Delta_k}{\lambda_k - \lambda_{k-1}} \).

Proof of Lemma 1. Since

\[
\ln \alpha_n - \ln \alpha_{n-1} = q(\Delta_n - \Delta_{n-1}) = -qx_n(\lambda_n - \lambda_{n-1}),
\]
Then for \(n \geq k + 1 \) we have

\[
\ln \frac{\alpha_n}{\alpha_k} + \tau_k(\lambda_n - \lambda_k) = -q \sum_{j=k+1}^{n} x_j(\lambda_j - \lambda_{j-1}) + \tau_k \sum_{j=k+1}^{n} (\lambda_j - \lambda_{j-1}) =
\]

\[
= - \sum_{j=k+1}^{n} (qx_j - \tau_k)(\lambda_j - \lambda_{j-1}) \leq - \sum_{j=k+1}^{n} (qx_j - \tau_j)(\lambda_j - \lambda_{j-1}) =
\]

\[
= -q \sum_{j=k+1}^{n} 1 = -q(n - k).
\]

Similarly, for \(n \leq k - 1 \) we obtain

\[
\ln \frac{\alpha_n}{\alpha_k} + \tau_k(\lambda_n - \lambda_k) = - \ln \frac{\alpha_k}{\alpha_n} - \tau_k(\lambda_k - \lambda_n) =
\]

\[
= q \sum_{j=n+1}^{k} x_j(\lambda_j - \lambda_{j-1}) - \tau_k \sum_{j=n+1}^{k} (\lambda_j - \lambda_{j-1}) = - \sum_{j=n+1}^{k} (\tau_k - qx_j)(\lambda_j - \lambda_{j-1}) \leq
\]

\[
\leq - \sum_{j=n+1}^{k} (\tau_j - qx_j)(\lambda_j - \lambda_{j-1}) = -q \sum_{j=n+1}^{k} 1 = -q(k - n)
\]

and Lemma 1 is proved.

Let \(J \) be the range of central index \(\nu(x, f_q) \). Denote by \((R_k)\) the sequence of the jump points of central index, numbered in such a way that \(\nu(x, f_q) = k \) for all \(x \in [R_k, R_{k+1}] \) and \(R_k < R_{k+1} \). Then for all \(x \in [R_k, R_{k+1}] \) and \(n \geq 0 \) we have

\[
\frac{a_n e^{x\lambda_n}}{\alpha_n} \leq \frac{a_k e^{x\lambda_k}}{\alpha_k}.
\]

According to Lemma 1, for \(x \in [R_k + \tau_k, R_{k+1} + \tau_k] \) we obtain

\[
\frac{a_n e^{x\lambda_n}}{a_k e^{x\lambda_k}} \leq \frac{\alpha_n}{\alpha_k} e^{\tau_k(\lambda_n - \lambda_k)} \leq e^{-q|n-k|} \quad (n \geq 0).
\]

Therefore,

\[
\nu(x, F) = k, \quad \mu(x, F) = a_k e^{x\lambda_k} \quad (x \in [R_k + \tau_k, R_{k+1} + \tau_k]) \tag{11}
\]

and

\[
|F(x + iy) - a_{\nu(x,F)} e^{(x+iy)\lambda_{\nu(x,F)}}| \leq
\]

\[
\leq \sum_{n \neq \nu(x,F)} \mu(x, F) e^{-q|n-\nu(x,F)|} \leq 2 \frac{e^{-q}}{1 - e^{-q}\mu(x, F)} \tag{12}
\]
for all \(x \in [R_k + \tau_k, R_{k+1} + \tau_k] \) and \(k \in J \). Thus, inequality (12) holds for all \(x \notin E_1(q) \) defined as \(\bigcup_{k=0}^{+\infty} [R_{k+1} + \tau_k, R_{k+1} + \tau_{k+1}] \).

Since \(\tau_{k+1} - \tau_k = 2q/(\lambda_{k+1} - \lambda_k) \), and by the Lagrange theorem
\[
h(R_{k+1} + \tau_{k+1}) - h(R_{k+1} + \tau_k) = (\tau_{k+1} - \tau_k)h'(R_{k+1} + \tau_k + \theta_k(\tau_{k+1} - \tau_k)),
\]
where \(\theta_k \in (0; 1) \), then for every \(q > 0 \) we have

\[
\text{h-meas}\left(E_1(q)\right) = \sum_{k=0}^{+\infty} \int_{R_{k+1} + \tau_k}^{R_{k+1} + \tau_{k+1}} dh(x) =
\]
\[
= \sum_{k=0}^{+\infty} (h(R_{k+1} + \tau_{k+1}) - h(R_{k+1} + \tau_k)) \leq
\]
\[
\leq 2q \sum_{k=0}^{+\infty} \frac{1}{\lambda_{k+1} - \lambda_k} h'(R_{k+1} + \tau_k + 2q \frac{1}{\lambda_{k+1} - \lambda_k}).
\]

Here we applied the condition \(h \in L^+ \).

For \(F \in D(\Lambda, \Phi) \) as \(x > \max\{x_0, 1\} \) we have

\[
x \Phi(x) \leq \ln \mu(x, F) = \ln \mu(1, F) + \int_1^x \lambda_{\nu(x,F)} dx \leq \ln \mu(1, F) + (x-1)\lambda_{\nu(x-0,F)},
\]
and for all \(x \geq x_1 \geq x_0 \) it implies

\[
x \Phi(x) \leq x\lambda_{\nu(x-0,F)},
\]

i.e.

\[
x \leq \varphi\left(\lambda_{\nu(x-0,F)}\right) \quad (x \geq x_1).
\]

Thus, according to (11) for \(k \geq k_0 \) we obtain

\[
R_{k+1} + \tau_k \leq \varphi(\lambda_{\nu(R_{k+1} + \tau_k - 0,F)} = \varphi(\lambda_k).
\]

Applying the previous inequality to inequality (13), by the condition \(h \in L^+ \)
we have

\[
\text{h-meas}\left(E_1(q)\right) \leq 2q \sum_{k=0}^{+\infty} \frac{1}{\lambda_{k+1} - \lambda_k} h'(\varphi(\lambda_k) + 2q \frac{1}{\lambda_{k+1} - \lambda_k}).
\]

Therefore, using (9) we conclude that \(\text{h-meas}\left(E_1(q)\right) < +\infty \).
Let \(q_k = k \). Since \(\text{h-meas}(E_1(q_k)) < +\infty \), then

\[
\text{h-meas}(E_1(q_k) \cap [x, +\infty)) = o(1) \quad (x \to +\infty),
\]
The minimum modulus of gap power series

thus it is possible to choose an increasing to $+\infty$ sequence (x_k) such that

$$h\text{-meas} \left(E_1(q_k) \cap [x_k; +\infty) \right) \leq \frac{1}{k^2}$$

for all $k \geq 1$. Denote $E_1 = \bigcup_{k=1}^{+\infty} (E_1(q_k) \cap [x_k; x_{k+1}])$. Then

$$h\text{-meas} (E_1) = \sum_{k=1}^{+\infty} h\text{-meas} (E_1(q_k) \cap [x_k; x_{k+1})) \leq \sum_{k=1}^{+\infty} \frac{1}{k^2} < +\infty,$$

On the other hand from inequality (12) we deduce for $x \in [x_k; x_{k+1}) \setminus E_1$

$$|F(x + iy) - a_{\nu(x,F)} e^{(x+iy)\lambda_{\nu(x,F)}}| \leq 2 \frac{e^{-q_k}}{1 - e^{-q_k}} \mu(x, F),$$

whence, as $x \to +\infty$ ($x \notin E_1$) we obtain (5). Theorem 2.1 is proved. \Box

Note, if $h(x) \equiv x$ then condition (9) turn into condition (6), and h - measure of the set E is it’s Lebesgue measure.

Let $\Phi \in L$. Consider the classes

$$D_0(\Lambda, \Phi) = \{ F \in D(\Lambda) : (\exists K > 0) [\ln \mu(x, \Phi) \geq K x \Phi(x) \ (x > x_0)]\},$$

$$D_1(\Lambda, \Phi) = \{ F \in D(\Lambda) : (\exists K_1, K_2 > 0) [\ln \mu(x, \Phi) \geq K_1 x \Phi(K_2 x) \ (x > x_0)]\}.$$

Theorem 2.2. Let $\Phi_0 \in L$, $h \in L^+$ and φ_0 be the inverse function to the function Φ_0. If

$$(\forall b > 0) : \sum_{n=0}^{+\infty} \frac{1}{\lambda_{n+1} - \lambda_n} h' \left(\varphi_0(b\lambda_n) + \frac{b}{\lambda_{n+1} - \lambda_n} \right) < +\infty, \quad (16)$$

then for each function $F \in D_0(\Lambda, \Phi_0)$ relation (5) holds as $x \to +\infty$ outside some set E of finite h - measure uniformly in $y \in \mathbb{R}$.

Theorem 2.3. Let $\Phi_1 \in L$, $h \in L^+$, and φ_1 be the inverse function to the function Φ_1. If

$$(\forall b > 0) : \sum_{n=0}^{+\infty} \frac{h'(b\varphi_1(b\lambda_n))}{\lambda_{n+1} - \lambda_n} < +\infty, \quad (17)$$

then for every function $F \in D_1(\Lambda, \Phi_1)$ relation (5) holds as $x \to +\infty$ outside some set E of finite h-measure uniformly in $y \in \mathbb{R}$.

Proof of Theorems 2 and 3. Theorems 2 and 3 immediately follow from Theorem 2.1.

Indeed, if $F \in D_0(\Lambda, \Phi_0)$ then $F \in D(\Lambda, \Phi)$ as $\Phi(x) = K\Phi_0(x)$. But in this case $\varphi(x) = \varphi_0(x/K)$ and thus condition (9) follows from condition (16). It remains to apply Theorem 2.1.

Similarly, if $F \in D_1(\Lambda, \Phi_1)$ then $F \in D(\Lambda, \Phi)$ as $\Phi(x) = K_1\Phi_1(K_2x)$. But in this case $\varphi(x) = \varphi_1(x/K_1)/K_2$ and thus condition (9) follows from condition (17). It remains to apply Theorem 2.1 again.

Remark 2.1. It is easy to see, that for every fixed functions $h \in L^+$ and $\Phi \in L$ there exists a sequence Λ such that conditions (9), (16) and (17) hold.

The following theorem indicates that condition (17) is necessary for relations (5), (8) to hold for every $F \in D_1(\Lambda, \Phi_1)$ as $x \to +\infty$ outside a set of finite h - measure. Here we assume that condition (6) is satisfied.

Theorem 2.4. Let $\Phi_1 \in L$, $h \in L^+$, and φ_1 is the inverse function to the function Φ_1. For every sequence Λ such that

$$\tag{18} (\exists b > 0) : \sum_{n=0}^{+\infty} \frac{h'(b\varphi_1(b\lambda_n))}{\lambda_{n+1} - \lambda_n} = +\infty,$$

there exist a function $F \in D_1(\Lambda, \Phi_1)$, a set $E \subset [0, +\infty)$ and a constant $\beta > 0$ such that inequalities (7) hold for all $x \in E$ and h-meas $(E) = +\infty$.

Proof of Theorem 2.4. Denote $\varkappa_1 = \varkappa_2 = 1$, $\varkappa_n = \sum_{k=1}^{n-2} r_k$ $(n \geq 3)$, where

$$r_1 = \max \left\{ b\varphi_1(b\lambda_2), \frac{1}{\lambda_2 - \lambda_1} \right\},$$

$$r_k = \max \left\{ b\varphi_1(b\lambda_{k+1}) - b\varphi_1(b\lambda_k), \frac{1}{\lambda_{k+1} - \lambda_k} \right\} \quad (k \geq 2),$$

and also choose $a_0 = 1$, $a_n = \exp \left\{ -\sum_{k=1}^{n} \varkappa_k (\lambda_k - \lambda_{k-1}) \right\}$ $(n \geq 1)$. We prove that the function F defined by series (4) of the so-defined coefficients (a_n) and indices (λ_n) belongs to class $D_1(\Lambda, \Phi_1)$.

Since $\sum_{n=0}^{+\infty} \frac{1}{\lambda_{n+1} - \lambda_n} < +\infty$ implies $n = o(\lambda_n)$ $(n \to +\infty)$, thus $\frac{\ln n}{\lambda_n} \to 0 \quad (n \to +\infty)$. By the construction $\varkappa_n = \frac{\ln a_{n-1} - \ln a_n}{\lambda_n - \lambda_{n-1}}$ $(n \geq 1)$ and $\varkappa_n \uparrow +\infty \quad (n \to +\infty)$, therefore Stolz’s theorem yields $\frac{\ln a_n}{\lambda_n} \to +\infty \quad (n \to +\infty)$ and by Valiron’s theorem [9, p.85]) the abscissa of absolute convergence of series (4) is equal to $+\infty$, i.e. $F \in D(\Lambda)$.

Moreover, it is known that in case \(\kappa_n \uparrow +\infty \) \((n \to +\infty)\)
\[
\forall x \in [\kappa_n, \kappa_{n+1}) : \quad \mu(x, F) = a_n e^{x\lambda_n}, \quad \nu(x, F) = n. \tag{19}
\]
Since by the construction
\[
\kappa_n \leq b\varphi_1(b\lambda_{n-1}) + \sum_{k=1}^{n-2} \frac{1}{\lambda_{k+1} - \lambda_k} \leq 2b\varphi_1(b\lambda_{n-1}) \quad (n > n_0),
\]
for sufficiently large \(n \) for all \(x \in [\kappa_n, \kappa_{n+1}) \)
\[
\ln \mu(2x, F) = \ln \mu(x, F) + \int_2^x \lambda_\nu(t) dt \geq x\lambda_\nu(x) =
\]
\[
= x\lambda_n \geq \frac{x}{b}\Phi_1 \left(\frac{\kappa_{n+1}}{2b} \right) \geq \frac{x}{b}\Phi_1 \left(\frac{x}{2b} \right).
\]
Hence, for \(x \geq x_0 \) we have
\[
\ln \mu(x, F) \geq \frac{1}{2b}x\Phi_1 \left(\frac{x}{4b} \right)
\]
and thus \(F \in D_1(\Lambda, \Phi_1) \).

Note that
\[
\kappa_{n+1} - \kappa_n = \kappa_{n-1} \geq \frac{1}{\lambda_n - \lambda_{n-1}} \quad (n \geq 1).
\]
For \(x \in \left[\kappa_n, \kappa_n + \frac{1}{\lambda_n - \lambda_{n-1}} \right] \) we have
\[
a_{n-1} e^{x\lambda_{n-1}} \mu(x, F) = a_{n-1} e^{x\lambda_{n-1}} = \exp \left\{ (\lambda_n - \lambda_{n-1})(\kappa_n - x) \right\} \geq e^{-1} := \beta, \tag{20}
\]
and, therefore, for \(x \in E = \bigcup_{n=1}^{\infty} \left[\kappa_n, \kappa_n + \frac{1}{\lambda_n - \lambda_{n-1}} \right] \), choosing \(n = \nu(x, F) \), we obtain
\[
F(x) \geq a_{n-1} e^{x\lambda_{n-1}} + a_n e^{x\lambda_n} = \mu(x, F) \left(1 + \frac{a_{n-1} e^{x\lambda_{n-1}}}{a_n e^{x\lambda_n}} \right) \geq (1 + \beta)\mu(x, F),
\]
hence inequalities (7) are true.

Now we prove that \(h\text{-meas}(E) = +\infty \). By the construction \((\kappa_n) \) for all \(n \geq 1 \) we have
\[
\kappa_n \geq b\varphi_1(b\lambda_{n-1}). \tag{21}
\]
Taking into account the Lagrange theorem, condition \(h \in L^+ \) and inequality (21) we obtain
\[
\text{h-meas}(E) = \sum_{n=1}^{+\infty} \int_{\kappa_n}^{\kappa_n + \frac{1}{\lambda_n - \lambda_{n-1}}} dh(x) = \sum_{n=1}^{+\infty} \left(h(\kappa_n + \frac{1}{\lambda_n - \lambda_{n-1}}) - h(\kappa_n) \right) \geq
\]
T. M. Salo, O. B. Skaskiv

\[\sum_{n=1}^{+\infty} \frac{h'(z_n)}{\lambda_n - \lambda_{n-1}} \geq \sum_{n=1}^{+\infty} \frac{h'(b\varphi_1(b\lambda_n))}{\lambda_n - \lambda_{n-1}} = +\infty. \]

Theorem 2.4 is proved. \(\square\)

The following criterion immediately follows from Theorems 2.3 and 2.4.

Theorem 2.5. Let \(\Phi_1 \in L, h \in L^+ \) and \(\varphi_1 \) be the inverse function to the function \(\Phi_1 \). For every entire function \(F \in D_1(\Lambda, \Phi_1) \) relation (5) holds as \(x \to +\infty \) outside some set \(E \) of finite \(h \)-measure uniformly in \(y \in \mathbb{R} \) if and only if (17) be true.

It is worth noting that if condition (16) of Theorem 2.2 is not fulfilled, that is
\[(\exists b_1 > 0) : \sum_{n=0}^{+\infty} \frac{1}{\lambda_{n+1} - \lambda_n} h'(\varphi_0(b_1\lambda_n) + \frac{b_1}{\lambda_{n+1} - \lambda_n}) = +\infty, \]
then for \(b = \max\{b_1; 2\} \) we have
\[\sum_{n=0}^{+\infty} \frac{h'(b\varphi_0(b\lambda_n))}{\lambda_{n+1} - \lambda_n} = +\infty. \]

Therefore, condition (18) holds and according to Theorem 2.4 there exists a function \(F \in D_1(\Lambda, \Phi_0) \), a set \(E \subset [0, +\infty) \) and a constant \(\beta > 0 \) such that inequalities (7) hold for all \(x \in E \) and \(h\)-\meas \((E) = +\infty \).

Since for \(\Phi_0(x) = x^\alpha \) (\(\alpha > 0 \)) we have \(D_0(\Lambda, \Phi_0) = D_1(\Lambda, \Phi_0) \), then from Theorem 2.2 and 2.4 we obtain the following theorem.

Theorem 2.6. Let \(\Phi_0(x) = x^\alpha \) (\(\alpha > 0 \)), \(h \in L^+ \). For every entire function \(F \in D_0(\Lambda, \Phi_0) \) relation (5) holds as \(x \to +\infty \) outside some set \(E \) of finite \(h \)-measure uniformly in \(y \in \mathbb{R} \) if and only if
\[(\forall b > 0) : \sum_{n=0}^{+\infty} \frac{1}{\lambda_{n+1} - \lambda_n} h'(b(\lambda_n)^{1/\alpha} + \frac{b}{\lambda_{n+1} - \lambda_n}) < +\infty, \]
is true.

3 \(h \)-measure with non-increasing density

Note that for every differentiable function \(h : \mathbb{R}_+ \to \mathbb{R}_+ \) with the bounded derivative \(h'(x) \leq c < +\infty \) (\(x > 0 \))
\[\int_E dh(x) = \int_E h'(x)dx \leq c \int_E dx, \]
thus, the finiteness of Lebesgue measure of the set $E \subset \mathbb{R}_+$ implies h-meas $(E) < +\infty$. Therefore, according to Theorem A, condition (6) is sufficient to have the exceptional set E of finite h-measure. However, we express an assumption that for $h \in L^-$ in the subclass

$$D_\varphi(\Lambda) = \{ F \in D(\Lambda) : (\exists n_0)(\forall n \geq n_0)[|a_n| \leq \exp\{-\lambda_n \varphi(\lambda_n)\}] \}, \quad \varphi \in L,$$

condition (6) can be weakened significantly. The following conjecture seems to be true.

Conjecture 3.1. Let $\varphi \in L$, $h \in L^-$. If

$$\sum_{n=0}^{+\infty} \frac{h'(\varphi(\lambda_n))}{\lambda_{n+1} - \lambda_n} < +\infty,$$

then for all $F \in D_\varphi(\Lambda)$ relation (5) is true as $x \to +\infty$ outside some set E of finite h-measure uniformly in $y \in \mathbb{R}$.

4 h-measure and lacunary power series

The important corollaries for entire functions represented by lacunary power series of the form (1) ensue from the well-proven theorems.

For entire function f of the form (1) we put $F(z) = f(e^z)$, $z \in \mathbb{C}$.

Note that for $x = \ln r$, $y = \varphi$

$$F(x + iy) = F(\ln r + i\varphi) = f(re^{i\varphi})$$

and $M(x, F) = M_f(r)$, $m(x, F) = m_f(r)$, $\mu(x, F) = \mu_f(r)$, $\nu(x, F) = \nu_f(r)$. In addition, for $E_2 \overset{\text{def}}{=} \{ r \in \mathbb{R} : \ln r \in E_1 \}$ and h_1 such that $h'_1(x) = h'(e^x)$ it is true

$$h\text{-log-meas}(E_2) \overset{\text{def}}{=} \int_{E_2} \frac{dh(r)}{r} = \int_{E_1} \frac{dh(e^x)}{e^x} = \int_{E_1} dh_1(x) = h_1\text{-meas}(E_1).$$

Hence, the next corollary follows from Theorem B.

Corollary 4.1. For every sequence (n_k) such that condition (6) holds and for every function $h \in L^+$ there exist an entire function f of the form (1), a constant $\beta > 0$ and a set E_2 of infinite h-log-measure, i.e. ($\int_{E_2} \frac{dh(r)}{r} = +\infty$) such that

$$(\forall r \in E_2) : M_f(r) \geq (1 + \beta)\mu_f(r), \quad M_f(r) \geq (1 + \beta)m_f(r). \quad (22)$$

In turn, from Theorem 2.1 we obtain the following consequence.
Corollary 4.2. Let $\Phi \in L$, $h \in L^+$ and φ be the inverse function to the function Φ. If for an entire function f of the form (1)
\[\ln \mu_f(r) \geq \ln r \Phi(\ln r) \quad (r \geq r_0) \] (23)
and
\[(\forall b > 0) : \sum_{k=0}^{+\infty} \frac{1}{n_{k+1} - n_k} h'(\exp \{ \varphi(n_k) + \frac{b}{n_{k+1} - n_k} \}) < +\infty, \] (24)
then relation
\[f(re^{i\varphi}) = (1 + o(1))\alpha_{\nu_f(r)} r^{\nu_f(r)} e^{i\varphi \nu_f(r)} \] (25)
holds as $r \to +\infty$ outside some set E_2 of finite h-log-measure uniformly in $\varphi \in [0, 2\pi]$.

In fact, from condition (23) it follows that $F \in D(\Lambda, \Phi)$ with $\Lambda = (n_k)$ and it remains to apply Theorem 2.1 with the function h_1.

Denote by \mathcal{E} the class of entire functions of positive lower order, i.e.
\[\lambda_f := \lim_{r \to +\infty} \frac{\ln \ln M_f(r)}{\ln r} > 0. \]

Immediately from Theorem 2.5 we obtain following assertion.

Corollary 4.3. Let $h \in L^+$. In order that relations (3) hold for every function $f \in \mathcal{E}$ of the form (1) as $r \to +\infty$ outside a set of finite h-log-measure, necessary and sufficient
\[(\forall b > 0) : \sum_{k=0}^{+\infty} \frac{1}{n_{k+1} - n_k} h'((n_k)^b) < +\infty. \]

Acknowledgements. We are indebted to Dr. A.O.Kuryliak for helpful comments and corrections to previous versions of this note.

References

[1] P.C. Fenton, The minimum modulus of gap power series, *Proc. Edinburgh Math. Soc.* 21 (1978), 49–54.

[2] P. Erdős, A.J. Macintyre, Integral functions with gap power series, *Proc. Edinburgh Math. Soc.* (2) 10 (1953), 62–70.

[3] O.B. Skaskiv, Maximum of the modulus and maximal term of an integral Dirichlet series, *Dop. Akad. Nauk Ukr. SSR, Ser. A*, No.11 (1984), 22–24. (in Ukrainian)
The minimum modulus of gap power series

[4] R.P. Srivastava, On the entire functions and their derivatives represented by Dirichlet series, *Ganita*, 9 (1958) No.2, 82–92.

[5] O.B. Skaskiv, M.N. Sheremeta, On the asymptotic behavior of entire Dirichlet series. (English. Russian original) *Math. USSR, Sb.* 59 (1988) No.2, 379-396; translation from Mat. Sb., Nov. Ser. 131(173) (1986) No.3(11), 385-402.

[6] T.M. Salo, O.B. Skaskiv, O.M. Trakalo, On the best possible description of exceptional set in Wiman–Valiron theory for entire functions, *Mat. Stud.*, 16 (2001) No.2, 131–140.

[7] T. Salo, O. Skaskiv, On the maximum modulus and maximal term absolute convergent Dirichlet series, *Mat. Visn. Nauk. Tov. Im. Shevchenka*, 4 (2007), 564–574. (in Ukrainian)
http://journals.iapmm.lviv.ua/ojs/index.php/MBSSS/article/view/53/45

[8] M.R. Lutsyshyn, O.B. Skaskiv, *Asymptotic properties of a multiple Dirichlet series*, Mat. Stud., 3 (1994) 41–48. (in Ukrainian)
http://matstud.org.ua/texts/1994/3/3_041-048.pdf

[9] A.F. Leont’ev. Entire functions. Exponential series, M.: Nauka, 1983, 176 p. (in Russian)