Cryo-EM of ABC transporters: an ice-cold solution to everything?

Dovile Januliene1,2 and Arne Moeller1,2

1 University of Osnabrück, Germany
2 Max-Planck Institute of Biophysics, Frankfurt am Main, Germany

Correspondence
A. Moeller or D. Januliene, Department of Structural Biology, University of Osnabrück, Barbarastrasse 13, Osnabrück D-49076, Germany
Tel: +49 541 969 7500 (AM); +49 541 969 7505 (DJ)
E-mails: arne.moeller@uni-osnabrueck.de (AM); dovile.januliene@uni-osnabrueck.de (DJ)

(Received 22 July 2020, revised 28 August 2020, accepted 27 October 2020)
doi:10.1002/1873-3468.13989
Edited by Ute Hellmich

High-resolution cryo-EM has revolutionized how we look at ABC transporters and membrane proteins in general. An ever-increasing number of software tools and faster processing now allow dissecting the molecular details of nanomachines at atomic precision. Considering the further benefits of significantly reduced sample demands and increased speed, cryo-EM will dominate the structure determination of membrane proteins in the near future without compromising on data quality or detail. Moreover, improved and new algorithms make it now possible to resolve the conformational spectrum of macromolecular machines under turnover conditions and to analyze heterogeneous samples at high resolution. The future of cryo-EM is, therefore, bright, and the growing number of imaging facilities and groups active in this field will amplify this trend even further. Nevertheless, expectations have to be managed, as cryo-EM alone cannot provide an ultimate answer to all scientific questions. In this review, we discuss the capabilities and limitations of cryo-EM together with possible solutions for studies of ABC transporters.

Keywords: ABC transporters; conformational spectrum; cryo-EM; membrane proteins

The resolution revolution [1] in cryo-EM marks a new chapter in structural biology, especially for membrane proteins [2,3]. Nevertheless, when the first subnanometer cryo-EM reconstruction of an ABC transporter appeared in 2015 [4], no one would have predicted that cryo-EM could soon rival with X-ray crystallography for ABC transporters at resolutions comparable to those of X-ray crystallography already emerged in 2016 [5,6] and, suddenly, cryo-EM-based drug design with ABC transporters appeared on the horizon [7]. It took only another three years to pass the 3 Å barrier for this class of transporters [8].

Owing to significant technological developments of hardware and software [9–15], cryo-EM is growing exponentially, and new breakthroughs in resolution

Abbreviations
ABC, ATP-binding cassette; ABCA1, ATP-binding cassette super-family A member 1; ABCB11, ATP-binding cassette super-family B member 11; ABCB4, ATP-binding cassette super-family B member 4; ABCD4, ATP-binding cassette super-family D member 4; ABCG2, ATP-binding cassette super-family G member 2; BCRP, breast cancer resistance protein; CFTR, cystic fibrosis transmembrane conductance regulator; CHS, cholesteryl hemisuccinate; cryo-EM, cryo-electron microscopy; cryo-ET, cryo-electron tomography; DDM, n-dodecyl-β-maltoside; DIBMA, diisobutylene/maleic acid; ECVs, extracellular vesicles; GDN, glyco-diosgenin; KATP, ATP-sensitive potassium channel; LMNG, lauryl maltose neopentyl glycol; MRP1, multidrug resistance-associated protein 1; NBD, nucleotide-binding domain; PCAT, peptidase-containing ATP-binding cassette transporter; Pgp, P-glycoprotein; PLC, MHC-I peptide loading complex; SMA, styrene/maleic acid; SUR1, sulfonylurea receptor 1; TAP, transporter associated with antigen processing; TMD, transmembrane domain; TmrAB, Thermus thermophilus multidrug resistance protein A and B; UDM, n-undecyl-β-maltoside.
and lowest analyzable molecule size are constantly witnessed [16–18]. The field is expanding not only by the amount of resolved structures, but also by the number of users and developers, as more and more researchers are turning to cryo-EM to answer their specific scientific questions. This popularity is certainly based on the fact that samples are imaged in vitrified suspension, which abolishes the need for crystallization, the major obstacle to X-ray structure determination of membrane proteins. As such, cryo-EM enabled the analysis of ABC transporters that defied crystallography, such as the cystic fibrosis transmembrane conductance regulator (CFTR) [6,19–23] and ABCG2 [7,24–26], also known as breast cancer resistance protein (BCRP). Moreover, the low sample amount requirements in cryo-EM provide the opportunity to study low-abundant, native, fragile, or flexible complexes [27–34], while the high tolerance to various hydrophobic environments [35–41] enables structure determination of ABC transporters not only in different detergents [5,6,28,29,42–52], but also within a lipid environment [8,24,53–56]. Additionally, cryo-EM can dissect conformational and compositional heterogeneity, which sets the ground to study structural dynamics and assembly states of ABC transporters and their complexes [8,28]. However, cryo-EM must not be seen as the silver bullet that can be directly used to resolve all controversies within the ABC-transporter field. In this review, we provide a personal perspective on the benefits and limitations of cryo-EM for structural studies of ABC transporters and highlight the importance of integrative approaches.

Cryo-EM and insights into ABC-transporter dynamics

One transporter – multiple structures

In cryo-EM, individual proteins are not confined by crystal packing, but suspended within a thin layer of aqueous solution, which is rapidly plunged into liquid ethane for vitrification [57]. This process is tolerant to minor modifications of the sample, as for example, addition of nucleotides or small alterations of the construct. Therefore, unlike in crystallography, many different structures of the same transporter, trapped in various conformations, can be prepared and analyzed in a timely manner, as demonstrated by the three seminal publications on CFTR within less than a year [6,19,20]. Improvements in microscope hardware and software, together with the larger computing capacities and live data processing, are continuously accelerating structure determination [12,13,15,58]. As a result, for ABC transporters, it is now common to deliver multiple structures per publication, typically, with different substrates and inhibitors [7,23,25,26,30,47,54], or in different conformations [8,25,51,53,55] (Fig. 1). In essence, cryo-EM has dramatically increased the chances of obtaining an ABC-transporter structure and shrunk the obstacles to decipher multiple conformations or nucleotide states, providing a broader view and deeper mechanistic insights, which raises the impact of the research.

Many conformations within one sample

In cryo-EM single-particle analysis [59], multimodel classifications [60] allow to decipher conformational and compositional heterogeneity within the sample [13,61,62]. Therefore, the particles do not have to be trapped in a single conformation, but instead can also be imaged under active turnover conditions. This allows assessing their conformational spectrum and, likewise, to follow their reaction to various compounds. In the past, before the resolution revolution [1], such studies were limited by the signal and accuracy of the electron detection system and the amount of particle images that could be obtained. Accordingly, the analyses were restricted to negative-stain EM, where the obtained signal-to-noise ratio is significantly better; however, at the cost of imaging the imprint of a dried sample, using a heavy-metal solution. If done right, negative-stain EM is a robust, quick, and simple method; however, the precise assignment of the conformations in an ABC-transporter sample is not unambiguous by this technique, mostly due to the possible misinterpretation of conformation and orientation of individual particles. Therefore, more elaborated workflows, involving random-conical tilt [63], are necessary. Such a workflow allowed to describe conformational spectrum of several ABC transporters [64], albeit only at domain resolution, prohibiting interpretation at atomistic levels. In modern cryo-EM, it is now possible to perform such experiments in solution and at resolutions equivalent to those of X-ray crystallography, as shown for the heterodimeric ABC-transporter TmrAB [8]. In this study, TmrAB was imaged under active turnover conditions, which, combined with trapping of transient intermediate states, allowed to decipher the full conformational cycle of the transporter. Fundamental to this study was the ability to acquire large datasets involving millions of particles, as, despite the high fidelity of electron detectors, sufficient number of particles need to be obtained to get enough signal for each conformation. For the statistical analysis, the
Fig. 1. Overview of ABC-transporter cryo-EM structures. Only cryo-EM structures with a nominal resolution of better than 6 Å and deposited models are included. Resolution, origin, nucleotide state, ligand binding, hydrophobic environment, and EMDB identification number are reported next to each of the 68 maps depicted herein.
relative occurrence of each observed conformation can be directly related to its approximate lifetime. The states, that are not detected in the dataset, either do not exist under the given conditions, or their lifetime is too short and the accumulated particle number is insufficient to obtain an interpretable 3-D reconstruction. The latter assumption holds the promise that, by increasing the size of the dataset, more states can eventually be identified. In essence, this would mean that a well-setup cryo-EM experiment under turnover conditions could deliver not only multiple high-resolution structures, but the statistical analysis of their relative appearance would further provide insights into the dynamics, dwell times, and energy landscapes. Through the analysis of bound nucleotides and substrates, the various conformations could be sorted in accordance with their nucleotide hydrolysis and substrate transport state—a new way of performing qualitative ATPase activity and substrate transport assays on the grid.

Challenges in statistical analysis

However, in cryo-EM, it is not always simple to obtain robust statistics, as the entire particle population has to be accurately represented within the

Table 1. Advantages and limitations of cryo-EM for analysis of difficult targets and conformational dynamics together with possible solutions.
Advantages
Difficult targets (multisubunit, fragile, and native complexes)
Imaging in vitrified suspension
Imaging under turnover conditions—many conformations in one sample
Applicability to heterogeneous and flexible samples
Studies in native membranes
Compatiblity with various hydrophobic environments
Conformational dynamics
Imaging under turnover conditions—many conformations in one sample
Applicability to heterogeneous and flexible samples
Antibody technology [105,106]
dataset. For single-particle analysis, this poses a tremendous obstacle, as particles are iteratively discarded during processing. Most of the times, the rejected particles are broken or simply do not provide enough high-resolution signal, but even good quality particles are at high risk to be discarded and left out of the equation, if they belong to under-represented conformations. How or whether discarded particles have to be integrated into the statistical analysis is currently unclear. Additionally, particle picking algorithms still result in significant numbers of false positives and negatives, which skews particle statistics. Furthermore, individual conformers may exhibit different stability and some may be more vulnerable to the relatively harsh cryo-EM specimen preparation than others. The combined effect of these various problems remains unexplored and poses a major challenge for the statistical analysis. The ongoing optimization of both sample preparation and particle picking algorithms should already lead to more robust statistics. For example, neuronal network-based particle pickers [58,65,66] allow to minimize false positives and, moreover, implement micrograph denoising algorithms to enable detection of low-signal particles. Gentler cryo-EM specimen preparation methods [67–72] are expected to reduce the number of damaged particles. In combination, this should result in a cleaner and healthier pool of particles—whether this is really the case, still needs to be investigated.

Caveats of cryo-EM sample preparation

Another source of errors can be found in the specimen preparation itself (Table 1). To enable imaging of hydrated ABC transporters in high vacuum and also to protect them from radiation damage, they need to be vitrified. This process is complex and gives rise to two major concerns. First of all, cryo-EM imaging requires a thin specimen, which is typically achieved by applying the sample onto a hydrophilic object carrier, blotting it to a thin film and rapidly flash cooling it in liquid ethane for vitrification. This approach is not only wasteful, as the vast majority of the sample is disposed, but it can also disintegrate the proteins. The composition of the filter paper and its contact with the sample [73], as well as the extensive interaction of the proteins at the air–water interface, is most detrimental [74]. Especially, the air–water interface is well documented to cause severe sample damage [75] and, furthermore, leads to preferred particle orientation hindering 3-D reconstruction. The approaches to overcome the caveats in cryo-EM sample preparation are reviewed in [76] and new ways of sample preparation, without the need of conventional blotting, are in development [67–72] to minimize sample damage. Ultimately, such technology will be crucial to allow a more robust analysis of the conformational distribution in the dataset.

Additionally, it is currently unclear to what extent the flash cooling in liquid ethane affects particle dynamics. On the order of macromolecular time scales, the rapid plunge-freezing may be not fast enough to avoid a temperature shock of the protein and could, therefore, affect the observed conformational spectrum, which would skew the interpretation. How vitrification affects ABC transporters is currently unclear and cannot be answered without additional experiments. To address this, it would be necessary to systematically assess the effects of vitrification by an integrative approach, using identical samples. A similar strategy would be necessary to obtain the spatio-temporal information, which is missing in cryo-EM experiments. To compensate for that, methods for time-resolved cryo-EM [72,77–80] are developed; however, integrative approaches, combining cryo-EM with single molecule techniques, seem to be the easiest way to obtain such information for now.

Cryo-EM and low-abundant ABC transporters

Structural analysis of native proteins and multiprotein complexes

Cryo-EM provides a unique opportunity to study low-abundant native samples, purified from endogenous sources. While high-affinity tags are absent in such preparations, utilization of tagged inhibitors and substrates, monoclonal antibodies or nanobodies offer a facile approach to pull endogenous complexes out of the cell. This strategy allows to stay close to native conditions and to overcome the common challenges of overexpression in recombinant systems, which often prevent the analysis of multiprotein assemblies, like it has been the case for the human MHC-I peptide loading complex (PLC) [28]. In this study, the PLC was purified from its native environment, using a tagged viral inhibitor as bait, for structural characterization. Using multimodel analysis, several assembly states of the complex were detected in the sample, providing valuable insights into the biological function of the PLC.

While multimodel classifications allow to compensate for compositional heterogeneity, multiprotein complexes are often fragile and tend to dissociate,
which limits the applicability of this approach. In such cases, where sample quality is the limiting factor, simply expanding the dataset may not be a solution. To improve stability of the complex, it can be treated by cross-linking [81] or other biochemical methods, as it was done in the case of the MacAB-TolC ABC-type tripartite multidrug efflux pump [27], which spans the entire Escherichia coli cell envelope and is embedded into two membranes.

The yields of endogenous or multisubunit complexes are typically low, but cryo-EM sample preparation is compatible with comparably small volumes. Recent developments in cryo-EM specimen preparation [67–72], involving picoliter dispensing, reduce the required sample amounts even further and alleviate the burden of large-scale protein production. In the near future, it is very likely that picoliter dispensing is going to become routine, which will open entirely new perspectives on sample preparation and the ability to study low-abundant targets and rare complexes.

Challenges in obtaining sufficient particle concentration

While picoliter dispensing significantly reduces sample volumes, concentration requirements are increased when compared to the traditional blotting-based approach. The reasons for this are not entirely clear, but are likely connected to reduced interactions of the protein at the air–water interface and the absence of blotting-related concentration effects [82]. Therefore, to obtain sufficient number of particles on the grid, the purified protein typically needs to be concentrated, which is not optimal for fragile membrane protein complexes that often do not survive this process. Cross-linking renders the sample sturdy enough to withstand the concentration procedure [28]; however, at the same time, it inactivates the protein complex, which may not be desirable. Since standard cross-linking in solution may lead to sample aggregation and other artifacts, gentler cross-linking procedures, like gradient fixation (GraFix) [81] or agarose fixation (AgarFix) [83], have been developed specifically for cryo-EM sample preparation.

To increase the concentration and, additionally, delimit particle interactions with the air–water interface, the sample can be suspended on a thin support layer that spreads across the object carrier. As pristine graphene is invisible to the electron beam, it does not raise any additional background and is, therefore, the ideal choice of support layer, especially for small proteins like ABC transporters. The generation of pristine graphene is currently very challenging and limits its broad usage in the field; however, many efforts are put in optimization of graphene grids [84–86] and, therefore, the situation is likely to change soon.

Cryo-EM structure determination of ABC transporters in lipid environments

ABC transporters in native environment

Obtaining high-resolution structures of proteins and their complexes within their cellular environment has been a long-awaited dream of many scientists. With cryo-electron tomography (cryo-ET) and subtomogram averaging this vision is now becoming true for large or highly symmetric targets. For example, the HIV-1 capsid-SP1 was imaged to 3.9 A resolution [87], and recent software developments allowed to visualize a drug-bound ribosome inside the cell at 3.7 A resolution [88]. For ABC transporters, however, high-resolution in situ studies are hampered by their relatively small size and low abundance in the membrane. Significant technological developments will be necessary to overcome this limitation. Nevertheless, where high resolution is not absolutely necessary, in situ analyses of multisubunit complexes are already feasible as demonstrated for the MacAB-TolC-related RND-type tripartite multidrug efflux pump AcrAB-TolC [89].

Imaging in native lipid environment can also be achieved by usage of fragmented cells, liposomes, or budded extracellular vesicles (ECVs). ECVs from mammalian cell culture provide an especially appealing option for small proteins like ABC transporters. Combined with subtomogram averaging, ECVs were already been shown to be applicable to in situ characterization of proteins below 100 kDa [90]. Altogether, this demonstrates the potential to study ABC-transporter complexes within their native environment, albeit, currently, at resolutions that are insufficient to accurately build models.

Compromises for in vitro systems

In an ideal experiment, the supporting hydrophobic shell accurately represents the native lipid environment, resembling not only the specific composition of the various lipids but also additional factors, such as the lateral pressure and membrane curvature. However, for in vitro systems this cannot be fulfilled. For single-particle analysis, the transporter has to be isolated from the cell and stabilized as a single unit, therefore, the simulation of an ideal membrane is close to impossible and compromises have to be made.
Traditionally, the cells are solubilized using a mild detergent that preserves the structural integrity of the complex. For ABC transporters, digitonin seems to be a popular choice [6,19–23,29,32–34,47,48,52,91,92] (Fig. 2). After solubilization, the detergent can also be exchanged into alternatives, such as amphipols or nanodisks. Of note, co-purification of annular lipids is commonly encountered, even when the protein is treated with detergent. However, it is desirable to keep the environment as close to native as possible and avoid the usage of detergent. In this regard, styrene/maleic acid (SMA) [41] and diisobutylene/maleic acid (DIBMA) [93] copolymers provide an especially beneficial alternative to membrane protein solubilization. While SMA lipid particles (SMALPs) have been shown to be suitable for structural studies in general, their application for ABC-transporter studies is rather limited due to incompatibility with divalent ions, like Mg^{2+}. SMA derivatives, like styrene maleimide—quaternary ammonium (SMA-QA) polymers [94], which display higher stability in the presence of divalent metal ions and large pH range, is, therefore, a better alternative. Another good substitute in this regard is DIBMA lipid particles, but the applicability of these two systems for high-resolution structural studies still needs to be proven. While the full repertoire of detergents, nanodisks and various polymers can be used to stabilize the transmembrane domains of ABC transporters [35,37,39,40,95–97] for cryo-EM, the choice of the hydrophobic environment remains sample-specific and various systems should be screened to best preserve structural integrity and activity, and yield high-resolution structures.

Environment-dependent bias

ABC transporters seem to be very sensitive to the composition of their hydrophobic environment. As such, their ATPase activity is typically significantly reduced in detergent, when compared to liposomes or
Cryo-EM of ABC transporters

Cryo-EM in ABC-transporter drug discovery

Substrate and inhibitor binding studies

ABC transporters are of high clinical relevance as they are responsible for multidrug resistance in bacteria and cancer cells and are also associated with various diseases, including cystic fibrosis, hypercholesterolemia, Stargardt disease, and other retinal dystrophies [99]. Extensive efforts are, therefore, directed toward development of specific ABC-transporter inhibitors and modulators. Typically, such drug-discovery studies are aided by X-ray crystallography; however, human ABC transporters are challenging targets to crystallize, raising high interest in cryo-EM for substrate/inhibitor binding studies. By now, cryo-EM can contribute comparative studies of the same transporter under different conditions, it is insufficient to explain the molecular triggers that cause conformational bias on its own. Integrative approaches are, therefore, necessary to evaluate the interdependence of activity, conformational spectrum, and the hydrophobic environment. To fully address this phenomenon, in situ analyses are required.

High resolution of small particles

For a long time, the potential of cryo-EM in structure-based drug design (SBDD) has been considered to be low due to the limitations in resolution, molecule size, and low throughput; however, the situation is rapidly changing and expectations from the pharmaceutical industry are increasing. SBDD, typically, requires resolutions in the range of 2.5 Å or better [100]. Given the current resolution record of 1.2 Å for an ideal test specimen [16,17], it is now demonstrated that cryo-EM has the potential to achieve sufficiently high resolutions for SBDD. However, the sample remains the limiting factor in terms of high resolution. Compared to test samples, the additional complexity of ABC transporters, comprising a more demanding sample preparation, the requirement for an ideal hydrophobic environment, their large flexibility, and relatively small molecular weight, is currently limiting similar results. The latter two points pose the biggest challenges in cryo-EM, where the signal that can be deducted from the micrographs is one of the main factors limiting the achievable resolution. To alleviate size-related challenges or to stabilize a transporter in a particular conformation, antibodies can be used. Such technology has been shown to enable high-resolution characterization of as small membrane proteins as, for example, 50-kDa malaria parasite transporter [18] and has also been successfully applied to several ABC transporters [8,24,54]. On the other hand, resolutions in the 3.1–3.5 Å range for ABC transporters are now becoming common even without such fiducials [19,22,23,26,42,44–47,49,51,56,91,92]. Therefore, it is preferable to avoid antibodies whenever possible to minimize the risk of locking the transporter in a non-physiological conformation.

Recently, cryo-EM structures below 3 Å have been reported [8], indicating that structure-based drug design is within reach for these flexible proteins. Given the rapid developments in the field, higher resolutions are to be expected in the near future. However, care must be taken when interpreting cryo-EM maps, as the computed resolution as a sole readout is
insufficient to judge the quality of the reconstruction. This is a well-known problem in the cryo-EM field, causing numerous discussions.

Low throughput

For antibody epitope mapping projects, cryo-EM has been shown to be especially useful [101]. However, in SBDD, where many drug–protein complexes need to be characterized in a short period of time, the throughput is still insufficient. Despite the increasing speed of direct electron detectors, improvements in microscope hardware and the application of beam-image shift for data collection [15], which significantly reduced data acquisition time, cryo-EM still cannot nearly compete with X-ray crystallography in terms of throughput. Furthermore, the limited access to high-end microscopes prevents the broad application of cryo-EM in SBDD. Nevertheless, the foundation has been laid and once many synchrotron-like cryo-EM facilities are established the situation is likely to change. Altogether, this yields high expectations for cryo-EM application in SBDD in the near future, especially, for ABC transporters that are not approachable by X-ray crystallography.

Conclusions and perspectives

The staggering amount of high-resolution structures obtained by cryo-EM (Fig. 1) over the past few years indicates that cryo-EM has become the method of choice for most ABC transporters, even those that have been successfully crystallized. Indeed, cryo-EM provides not only high-resolution structures but also enables multiple new approaches to analyze these highly dynamic machines. Further advances in data processing will permit to outline the conformational spectra with even higher fidelity, and to understand the inner workings of ABC transporters in unprecedented detail. Given the increasing importance of cryo-EM for such studies, it is now imperative to evaluate the impact of vitrification and to provide the dimension of time. To address these issues, integrative approaches will be necessary.

New sample preparation strategies will push cryo-EM to the next level. For instance, miniaturization [102] will enable direct analysis of endogenous samples and of native multicomponent complexes, especially those resisting recombinant expression. Cryo-ET and subtomogram averaging are gaining attention from both users and developers, which raises expectations for *in situ* studies of ABC transporters. High-resolution data of membrane protein complexes within native membranes, therefore, represent the major goal for future experimental design and research.

Equally important is to increase the throughput of cryo-EM to facilitate streamlined SBDD and to accelerate screening and sample optimization. Likewise, more cryo-EM facilities have to be established to provide access to high-end electron microscopes without the burden of the significant financial investments.

Despite its tremendous success and wide applicability to many research topics, cryo-EM alone cannot and will not provide an answer to everything, but it supplies researchers with a versatile arsenal of tools and empowers them to look at ABC transporters from a new angle.

Acknowledgements

We are grateful for the support from the German Research Foundation (Mo2752/2) and acknowledge W. Kühlbrandt and D. Mills for access to the cryo-EM facility at the Max Planck Institute of Biophysics, funded by the Max Planck Society. We thank all members of the Department of Structural Biology (Max Planck Institute of Biophysics) for discussions and comments on the manuscript. While we tried to incorporate all studies that are relevant for our review, due to the wealth of literature on ABC transporters and cryo-EM, we were certainly not able to include all relevant studies, for which we apologize. Open Access funding enabled and organized by ProjektDEAL.

References

1 Kühlbrandt W (2014) The resolution revolution. *Science* **343**, 1443–1444. http://dx.doi.org/10.1126/science.1251652
2 Liao M, Cao E, Julius D and Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. *Nature* **504**, 107–112. http://dx.doi.org/10.1038/nature12822
3 Cao E, Liao M, Cheng Y and Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. *Nature* **504**, 113–118. http://dx.doi.org/10.1038/nature12823
4 Kim JM, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampé R, Craik CS *et al.* (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. *Nature* **517**, 396–400. http://dx.doi.org/10.1038/nature13872
5 Oldham ML, Grigorieff N and Chen J (2016) Structure of the transporter associated with antigen processing
trapped by herpes simplex virus. *Elife* 5, e21829. http://dx.doi.org/10.7554/elife.21829

6 Zhang Z and Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. *Cell* 167, 1586–1597.e9. http://dx.doi.org/10.1016/j.cell.2016.11.014

7 Jackson SM, Manolaridis I, Kowal J, Zechnier M, Taylor NMI, Bause M, Baur S, Bartholomaeus R, Bernhardt G, Koenig B et al. (2018) Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. *Nat Struct Mol Biol* 25, 333–340. http://dx.doi.org/10.1038/s41594-018-0049-1

8 Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé R et al. (2019) Conformation space of a heterodimeric ABC exporter under turnover conditions. *Nature* 571, 580–583. http://dx.doi.org/10.1038/s41586-019-1391-0

9 Campbell MG, Cheng A, Brilot AF, Moeller A, Lyunkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B et al. (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. *Structure* 20, 1823–1828. http://dx.doi.org/10.1016/j.str.2012.08.026

10 McMullan G, Faruqi AR, Clare D and Henderson R (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. *Ultramicroscopy* 147, 156–163. http://dx.doi.org/10.1016/j.ultramic.2014.08.002

11 Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA and Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. *Nat Methods* 10, 584–590. http://dx.doi.org/10.1038/nmeth.2472

12 Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJH, Lindahl E and Scheres SHW (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife* 7, e42166. http://dx.doi.org/10.7554/elife.42166

13 Punjani A, Rubinstein JL, Fleet DJ and Brubaker MA (2017) CryoSPARC: algorithms for rapid supervised cryo-EM structure determination. *Nat Methods* 14, 290–296. http://dx.doi.org/10.1038/nmeth.4169

14 Grant T, Rohou A and Grigorieff N (2018) CisTEM, user-friendly software for single-particle image processing. *Elife* 7, e35383. http://dx.doi.org/10.7554/elife.35383

15 Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD, Kim LY, Potter CS and Carragher B (2018) High resolution single particle cryo-electron microscopy using beam-image shift. *J Struct Biol* 204, 270–275. http://dx.doi.org/10.1016/j.jsb.2018.07.015

16 Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, Grigoras IT, Malinauskaitė L, Malinauskas T, Miehling J et al. (2020) Single-particle cryo-EM at atomic resolution. *Nature* 587, 152–156. http://dx.doi.org/10.1038/s41586-020-2829-0

17 Yip KM, Fischer N, Paknia E, Chari A, Stark H (2020) Atomic-resolution protein structure determination by cryo-EM. *Nature* 587(7832), 157–161. http://dx.doi.org/10.1038/s41586-020-2833-4

18 Kim J, Tan YZ, Wicht KJ, Erramilli SK, Dhingra SK, Okombo J, Vendome J, Hagenah LM, Giacometti SI, Warren AL et al. (2019) Structure and drug resistance of the *Plasmodium falciparum* transporter PfCRT. *Nature* 576, 315–320. http://dx.doi.org/10.1038/s41586-019-1795-x

19 Zhang Z, Liu F and Chen J (2017) Conformational changes of CFTR upon phosphorylation and ATP binding. *Cell* 170, 483–491.e8. http://dx.doi.org/10.1016/j.cell.2017.06.041

20 Liu F, Zhang Z, Csanády L, Gadsby DC and Chen J (2017) Molecular structure of the human CFTR ion channel. *Cell* 169, 85–95.e8. http://dx.doi.org/10.1016/j.cell.2017.02.024

21 Fay JF, Aleksandrov LA, Jensen TJ, Cui LL, Kousourouf KN, He L, Aleksandrov AA, Gingerich DS, Riordan JR and Chen JZ (2018) Cryo-EM visualization of an active high open probability CFTR anion channel. *Biochemistry* 57, 6234–6246. http://dx.doi.org/10.1021/acs.biochem.8b00763

22 Zhang Z, Liu F and Chen J (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. *Proc Natl Acad Sci USA* 115, 12757–12762. http://dx.doi.org/10.1073/pnas.1815287115

23 Liu F, Zhang Z, Levit A, Levering J, Touhara KK, Shoichet BK and Chen J (2019) Structural identification of a hotspot on CFTR for potentiation. *Science* 364, 1184–1188. http://dx.doi.org/10.1126/science.aaw7611

24 Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H and Locher KP (2017) Structure of the human multidrug transporter ABCG2. *Nature* 546, 504–509. http://dx.doi.org/10.1038/nature22345

25 Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H and Locher KP (2018) Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. *Nature* 563, 426–430. http://dx.doi.org/10.1038/s41586-018-0680-3

26 Orlando BJ and Liao M (2020) ABCG2 transports anticancer drugs via a closed-to-open switch. *Nat Commun* 11, 1–11. http://dx.doi.org/10.1038/s41467-020-16155-2

27 Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai XC, Okada U, Murakami S, Van Veen HW, Zachariae U, Scheres SHW et al. (2017) Structure of the MacAB-ToIC ABC-type tripartite multidrug efflux pump. *Nat Microbiol* 2, 17070. http://dx.doi.org/10.1038/nmicrobiol.2017.70
Cryo-EM of ABC transporters

D. Januliene and A. Moeller

28 Blees A, Janulienie D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A and Tampé R (2017) Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528. http://dx.doi.org/10.1038/nature24627

29 Li N, Wu JX, Ding D, Cheng J, Gao N and Chen L (2017) Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110.e10. http://dx.doi.org/10.1016/j.cell.2016.12.028

30 Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C and Shyng SL (2019) Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Elife 8, e46417. http://dx.doi.org/10.7554/elife.46417

31 Lee KPK, Chen J and Mackinnon R (2017) Molecular structure of human kcat in complex with ATP and ADP. Elife 6, e32481. http://dx.doi.org/10.7554/elife.32481

32 Martin GM, Kandasamy B, Dimaio F, Yoshioka C and Shyng SL (2017) Anti-diabetic drug binding site in a mammalian KATP channel revealed by cryo-EM. Elife 6, e31054. http://dx.doi.org/10.7554/elife.31054

33 Ding D, Wang M, Wu JX, Kang Y and Chen L (2019) The structural basis for the binding of repaglinide to the pancreatic K ATP channel. Cell Rep 27, 1848–1857.e4. http://dx.doi.org/10.1016/j.celrep.2019.04.050

34 Lyons JA, Shahsavar A, Paulsen PA, Pedersen BP and Nissen P (2016) Expression strategies for structural studies of eukaryotic membrane proteins. Curr Opin Struct Biol 38, 137–144. http://dx.doi.org/10.1016/j.sbi.2016.06.011

35 Bayburt TH, Grinkova YV and Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2, 853–856. http://dx.doi.org/10.1021/nl025623k

36 Frauenfeld J, Löving R, Armache JP, Sonnen AFP, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JAG et al. (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13, 345–351. http://dx.doi.org/10.1038/nmeth.3801

37 Carlson ML, Young JW, Zhao Z, Fabre L, Jun D, Li J, Li J, Dhupar HS, Wason I, Mills AT et al. (2018) The peptidoc, a simple method for stabilizing membrane proteins in detergent-free solution. Elife 7, e34085. http://dx.doi.org/10.7554/elife.34085

38 Tribet C, Audebert R and Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93, 15047–15050. http://dx.doi.org/10.1073/pnas.93.26.15047

39 Tao H, Lee SCC, Moeller A, Roy RSS, Siu FYY, Zimmermann JJ, Stevens RCC, Potter CSS, Carragher B and Zhang Q (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat Methods 10, 759–761. http://dx.doi.org/10.1038/nmeth.2533

40 Lee SC, Knowles TJ, Postis VLG, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP et al. (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11, 1149–1162. http://dx.doi.org/10.1038/nprot.2016.070

41 Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT and Chen J (2020) Structural basis of substrate recognition by a polypeptide processing and secretion transporter. Elife 9, e51492. http://dx.doi.org/10.7554/elife.51492

42 Chen L, Hou WT, Fan T, Liu B, Pan T, Li YH, Jiang YL, Wen W, Chen ZP, Sun L et al. (2020) Cryo-electron microscopy structure and transport mechanism of a wall teichoic acid ABC transporter. MBio 11, e02749-19. http://dx.doi.org/10.1128/mbio.02749-19

43 Rempel S, Gati C, Nijland M, Thangaratnarajach A, Karyolaimos A, de Gier JW, Gusakov A and Slotboom DJ (2020) A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580, 409–412. http://dx.doi.org/10.1038/s41586-020-2072-8

44 Wang L, Hou WT, Chen L, Jiang YL, Xu D, Sun L, Zhou CZ and Chen Y (2020) Cryo-EM structure of human bile salts exporter ABCB11. Cell Res 30, 623–625. http://dx.doi.org/10.1038/s41422-020-0302-0

45 Wang Z, Hu W and Zheng H (2020) Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. Sci Adv 6, eaay7997. http://dx.doi.org/10.1126/sciadv.aay7997

46 Johnson ZL and Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRPI. Cell 168, 1075–1085.e9. http://dx.doi.org/10.1016/j.cell.2017.01.041

47 Qian H, Zhao X, Cao P, Lei J, Yan N and Gong X (2017) Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239.e10. http://dx.doi.org/10.1016/j.cell.2017.05.020

48 Kim Y and Chen J (2018) Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359, 915–919. http://dx.doi.org/10.1126/science.aat7389

49 Alam A, Küng R, Kowal J, McLeod RA, Trempl N, Broude EV, Roninson IB, Stahlberg H and Locher KP (2018) Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc Natl Acad Sci
D. Januliene and A. Moeller
Cryo-EM of ABC transporters

US4 115, E1973–E1982. http://dx.doi.org/10.1073/pnas.171044115
51 Tang X, Chang S, Luo Q, Zhang Z, Qiao W, Xu C, Zhang C, Niu Y, Yang W, Wang T et al. (2019) Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nat Commun 10, 1–12. http://dx.doi.org/10.1038/s41467-019-11977-1
52 Xu D, Feng Z, Hou WT, Jiang YL, Wang L, Sun L, Zhou CZ and Chen Y (2019) Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. Cell Res 29, 1039–1041. http://dx.doi.org/10.1038/s41422-019-0222-z
53 Mi W, Li Y, Yoon SH, Ernst RK, Walz T and Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237. http://dx.doi.org/10.1038/nature23649
54 Alam A, Kowal J, Broude E, Roninson I and Locher K (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, e36861. http://dx.doi.org/10.7554/elif.e36861
55 Frank J (1987) Three-dimensional reconstruction from single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146, 113–136. http://dx.doi.org/10.1111/j.1365-2818.1987.tb01333.x
56 Moeller A, Lee SC, Tao H, Speir JA, Chang G, Urbatsch IL, Potter CS, Carragher B and Zhang Q (2015) Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23, 450–460. http://dx.doi.org/10.1016/j.str.2014.12.013
57 Alam A, Kowal J, Broude E, Roninson I and Locher K (2018) Characterisation of molecular motions in cryo-EM single-particle data. J Struct Biol 195, 190–198. http://dx.doi.org/10.1016/j.jsb.2016.06.001
58 Scheres SHW (2016) Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16, 1153–1160. http://dx.doi.org/10.1038/s41592-019-0575-8
59 Wagner T, Merino F, Stabinin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum M and Cramer P (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2, 218. http://dx.doi.org/10.1038/s42003-019-0437-z
60 Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ and Berger B (2019) Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16, 1153–1160. http://dx.doi.org/10.1038/s41592-019-0575-8
61 Tegunov D and Cramer P (2020) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 17, 1146–1152. http://dx.doi.org/10.1038/s41592-019-0580-y
62 Cheng Y, Grigorieff N, Penczek PA and Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161, 438–449. http://dx.doi.org/10.1016/j.cell.2015.03.050
63 Shatsky M, Hall RJ, Nogales E, Malik J and Brenner SE (2010) Automated multi-model reconstruction from single-particle electron microscopy data. J Struct Biol 170, 98–108. http://dx.doi.org/10.1016/j.jsb.2010.01.007
64 Nakane T, Kimanis D, Lindahl E and Scheres SHW (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife 7, e36861. http://dx.doi.org/10.7554/elif.e36861
65 Rademacher M, Wagenknecht T, Verschoor A and Frank J (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146, 113–136. http://dx.doi.org/10.1111/j.1365-2818.1987.tb01333.x
Cryo-EM of ABC transporters

D. Januliene and A. Moeller

preparation device for time-resolved structural studies. JUCr 6, 1024–1031. http://dx.doi.org/10.1107/s2052251919011345

73 Armstrong M, Han BG, Gomez S, Turner J, Fletcher DA and Glaeser RM (2020) Microscale fluid behavior during cryo-EM sample blotting. Biophys J 118, 708–719. http://dx.doi.org/10.1016/j.bpj.2019.12.017

74 Glaeser RM and Han B-G (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophysics Reports 3, 1–7. http://dx.doi.org/10.1007/s10408-016-0026-3

75 D’Imprima E, Floris D, Joppe M, Sánchez R, Grüninger M and Kühlbrandt W (2019) Protein denaturation at the air-water interface and how to prevent it. Elife 8, e42747. http://dx.doi.org/10.7554/elif.e42747

76 Drulyte I, Johnson RM, Hesketh EL, Hurdiss DL, Scarff CA, Porav SA, Ranson NA, Muench SP and Thompson RF (2018) Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol 74, 560–571. http://dx.doi.org/10.1107/2005979831800649

77 Berriman J and Unwin N (1994) Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252. http://dx.doi.org/10.1016/0304-3991(94)90012-4

78 Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM and Wagenknecht T (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168, 388–395. http://dx.doi.org/10.1016/j.jsb.2009.08.004

79 Kalehdonkar S, Fu Z, White H and Frank J (2018) Time-resolved cryo-electron microscopy using a microfluidic chip. In Methods in Molecular Biology, (Marsh J, ed), pp. 59–71. Humana Press, New York, NY. http://dx.doi.org/10.1007/978-1-4939-7759-8_4

80 Dandey VP, Budell WC, Wei H, Bode B, Maruthi K, Kopylov M, Eng ET, Kahn PA, Hinshaw JE, Kundu N et al. (2020) Time-resolved cryo-EM using Spotiton. Nat Methods 17, 897–900. http://dx.doi.org/10.1038/s41592-020-0925-6

81 Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E et al. (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5, 53–55. http://dx.doi.org/10.1038/nmeth1139

82 Klebl DP, Gravett MSC, Kontziampasis D, Wright DJ, Bon RS, Monteiro DCF, Trebbin M, Sobott F, White HD, Darrow MC et al. (2020) Need for speed: examining protein behavior during cryo-EM grid preparation at different timescales. Structure 28, 1238–1248.e4. http://dx.doi.org/10.1016/j.str.2020.07.018

83 Adamus K, Le SN, Elmlund H, Boudes M and Elmlund D (2019) AgarFix: simple and accessible stabilization of challenging single-particle cryo-EM specimens through crosslinking in a matrix of agar. J Struct Biol 207, 327–331. http://dx.doi.org/10.1016/j.jsb.2019.07.004

84 Han Y, Fan X, Wang H, Zhao F, Tully CG, Kong J, Yao N and Yan N (2019) High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proc Natl Acad Sci USA 117, 1009–1014. http://dx.doi.org/10.1073/pnas.1919114117

85 Naydenova K, Peet MJ and Russo CJ (2019) Multifunctional graphene supports for electron cryomicroscopy. Proc Natl Acad Sci USA 116, 11718–11724. http://dx.doi.org/10.1073/pnas.1904766116

86 Liu N, Zhang J, Chen Y, Liu C, Zhang X, Xu K, Wen J, Luo Z, Chen S, Gao P et al. (2019) Bioactive functionalized monolayer graphene for high-resolution cryo-electron microscopy. J Am Chem Soc 141, 4016–4025. http://dx.doi.org/10.1021/jacs.8b13038

87 Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirpatrick JM, Sachse C, Kräusslich HG and Briggs JAG (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508. http://dx.doi.org/10.1126/science.aaf9620

88 Tegunov D, Xue L, Diemann C, Cramer P and Mahamid J (2020) Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.7 Å inside cells. bioRxiv 2020.06.05.136341 [PREPRINT]. http://dx.doi.org/10.1101/2020.06.05.136341

89 Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, Villarreal H, Jakana J, Du D, Luisi BF et al. (2019) In situ structure and assembly of the multidrug efflux pump AcrAB-ToIC. Nat Commun 10, 1–6. http://dx.doi.org/10.1038/s41467-019-10512-6

90 Zeev-Ben-Mordehai T, Vasishth D, Siebert CA, Whittle C and Grünewald K (2014) Extracellular vesicles: a platform for the structure determination of membrane proteins by cryo-EM. Structure 22, 1687–1692. http://dx.doi.org/10.1016/j.str.2014.09.005

91 Johnson ZL and Chen J (2018) ATP binding enables pump AcrAB-TolC. Nat Commun 9, 1–6. http://dx.doi.org/10.1038/s41467-019-10512-6

92 Wang L, Johnson ZL, Wasserman MR, Leving J, Chen J and Liu S (2020) Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. Elife 9, 1–20. http://dx.doi.org/10.7554/elife.56451

93 Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C and Keller S (2017) Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a disobutylene/maleic acid copolymer. Angew Chem Int Ed Engl 56, 1919–1924. http://dx.doi.org/10.1002/anie.201610778
Cryo-EM of ABC transporters

94 Ravula T, Hardin NZ, Di Mauro GM and Ramamoorthy A (2018) Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. *Eur Polym J* **108**, 597–602. http://dx.doi.org/10.1016/j.eurpolymj.2018.09.048

95 Nath A, Atkins WM and Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. *Biochemistry* **46**, 2059–2069. http://dx.doi.org/10.1021/bi602371n

96 Chae PS, Rasmussen SGF, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y et al. (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. *Nat Methods* **7**, 1003–1008. http://dx.doi.org/10.1038/nmeth.1526

97 Pollock NL, Lee SC, Patel JH, Gulamhussein AA and Rothnie AJ (2018) Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. *Biochim Biophys Acta Biomembr* **1860**, 809–817. http://dx.doi.org/10.1016/j.bbamem.2017.08.012

98 Nasr ML, Baptista D, Strauss M, Sun ZYJ, Grigoriu S, Huser S, Plückthun A, Hagn F, Walz T, Hogle JM et al. (2016) Covalently circularized nanodiscs for studying membrane proteins and viral entry. *Nat Methods* **14**, 49–52. http://dx.doi.org/10.1038/nmeth.4079

99 Gottesman MM and Ambudkar SV (2001) Overview: ABC transporters and human disease. *J Bioenerg Biomembr* **33**, 453–458. http://dx.doi.org/10.1016/S0021-9150(01)80004-5

100 Renaud JP, Charle A, Ciferri C, Liu WT, Rémyg HW, Stark H and Wiesmann C (2018) Cryo-EM in drug discovery: achievements, limitations and prospects. *Nat Rev Drug Discov* **17**, 471–492. http://dx.doi.org/10.1038/nrd.2018.77

101 Lyumkis D, Julien JP, De Val N, Cupo A, Potter CS, Klasse PJ, Burton DR, Sanders RW, Moore JP, Carragher B et al. (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. *Science* **342**, 1484–1490. http://dx.doi.org/10.1126/science.1245627

102 Schmidt C, Albiez S, Rima L, Riggetto R, Mohammed I, Oliva P, Kovacic L, Stahlberg H and Braun T (2019) Microfluidic protein isolation and sample preparation for high-resolution cryo-EM. *Proc Natl Acad Sci USA* **116**, 15007–15012. http://dx.doi.org/10.1073/pnas.1907214116

103 Schwartz O, Axelrod JJ, Campbell SL, Turbaugh C, Glaeser RM and Müller H (2019) Laser phase plate for transmission electron microscopy. *Nat Methods* **16**, 1016–1020. http://dx.doi.org/10.1038/s41592-019-0552-2

104 Bepler T, Kelley K, Noble AJ and Berger B (2020) Topaz-Denoise: general deep denoising models for cryoEM and cryoET. *Nat Commun* **11**, 1–12. http://dx.doi.org/10.1038/s41467-020-18952-1

105 Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL et al. (2012) Fabs enable single particle cryoEM studies of small proteins. *Structure* **20**, 582–592. http://dx.doi.org/10.1016/j.str.2012.02.017

106 Uchański T, Masiulis S, Fischer B, Kalichuk V, Wohlkönig A, Zögg T, Remaut H, Vranken W, Arescues AR, Pardon E et al. (2019) Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. *bioRxiv* 1–28 [PREPRINT]. http://dx.doi.org/10.1101/812230

107 Zi Tan Y, Baldwin PR, Davis JH, Williamson JR, Potter CS, Carragher B and Lyumkis D (2017) Addressing preferred specimen orientation in single-particle cryo-EM through tilting. *Nat Methods* **14**, 793–796. http://dx.doi.org/10.1038/nmeth.4347

108 Chen J, Noble AJ, Kang JY and Darst SA (2019) Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO. *J Struct Biol X* **1**, 100005. http://dx.doi.org/10.1016/j.jsbx.2019.100005

109 Noble AJ, Wei H, Dandey VP, Zhang Z, Tan YZ, Potter CS and Carragher B (2018) Reducing effects of particle adsorption to the air–water interface in cryo-EM. *Nat Methods* **15**, 793–795. http://dx.doi.org/10.1038/s41592-018-0139-3

110 Punjani A, Zhang H, Fleet DJ (2020) Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. *Nature Methods* **17** (12), 1214–1221. http://dx.doi.org/10.1038/s41592-020-00990-8

111 Punjani A and Fleet D (2020) 3D Variability analysis: directly resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM images. *bioRxiv* 2020.04.08.032466 [PREPRINT]. http://dx.doi.org/10.1101/2020.04.08.032466