Design and manufacturing of 15 DOF myoelectric controlled prosthetic hand

15 serbestlik dereceli myoelektriksel kontrollü protez elin tasarım ve imalati

Beyda TAŞAR1,*, Arif GÜLTEN2, Oğuz YAKUT3

1-3Department of Mechatronics Engineering, Engineering Faculty, Firat University, Elazig, Turkey.

Abstract
This study’s main purpose is to manufacture a low-cost, highly functional, myoelectric signal-controlled prosthetic hand for amputees in developing countries below a certain economic level. In this study, a prosthetic hand with five fingers was modelled on 15-degree freedom, and an independent joint movement was achieved through the use of a separate motor actuator for each joint in the fingers. The hand of the prosthetic can therefore keep the objects in the best possible way. The prosthetic was produced by hand using PLA material on a 3D printer to reduce cost. Bioelectric signals provide the human-prosthetic hand interaction, i.e. identification of the form of hand gesture. With 97 percent progress, the classification of a human hand with the SVM algorithm has been achieved. The prosthetic hand’s total cost is US$ 450. The hand was compared in terms of qualitative and quantitative performance metrics with other high-priced rivals and the findings were interpreted.

Keywords: prosthetic hand, 3D Manufacturing, PLA, Myo-controlled hand, EMG, Supported vector machine, Gesture recognition.

1 Introduction

Thirty million people around the world suffer without one or more limbs because of illnesses, injuries, and congenital defects. Approximately 80% of these people live in developed countries with low incomes and are deprived of robotic prosthetic [1,2]. Many amputations occurred in the 0 to 5-year age group and 54% of 2,238 patients had hand-related amputations of trauma [3]. There are two groups of existing prosthetic hands on the market. The first group is non-functional prosthetics [4] that only solve the cosmetic requirements of the consumers, and the second group is functional prosthetics that can mimic the human hand movement. The second group of prosthetics can cost as much as $15,000-$50,000[5, 6] and the cost of repairing can make the price even higher for professional assistance. Most advanced technology companies in the United States and Europe will design and manufacture high-quality prosthetic hand with high functionality and realistic appearance and sell it at relatively affordable prices. Nevertheless, the prices are generally very high in the developing countries that need to import these goods, rendering them unavailable to most amputees. Functional, affordable, and easy-to-maintain prosthetics are therefore required for people living in economically disadvantaged communities with trans-radial amputations. In order to reduce prices, the design of the robotic prosthetic hands can be facilitated [7]. The most common way to simplify the hand design is by reducing the hand’s degrees of freedom (DOF). Even though people have 27 DOFs in their hands [8], prosthetic modeling uses only the most useful DOFs. It reduces the ability to mimic forms with motion and grasp. Such devices have limited functionality, and many of them have either one open or closed hand function [9]. They lack the ability to maintain their daily lives. The second way to lower costs is to lower the material price used to make the prosthetic hand. 3D printer technology has been developed over the past decade and research has begun in the field of medicine and biomedical device design in the field of organ implants[10].

Three-dimensional printing technology makes it possible to produce an artificial hand using many different materials, e.g. Poly Lactic Acid (PLA), acrylonitrile butadiene styrene, styrenemaleic anhydride[11,12]. Prosthetic and orthotic devices developed with three-dimensional design programs are translated to Stereolithography (STL) files and moved to a 3D printer system that transforms print codes into STL files [13], making it possible to produce low-cost [14]. The third way to

*Corresponding author/Yazılan Yazar

Revised/Düzeltme Tarihi: 09.01.2020
Received/Geliş Tarihi: 24.09.2019
Accepted/Kabul Tarihi: 13.02.2020

doi: 10.5505/pajes.2020.10.12268

Anahtar kelimeler: protez el, 3B imalat, PLA, Myo kontrolü el, EMG, Desteklenen vektör makinesi, Hareket tipi tanımı.
reduce costs is to use less and inexpensive sensors that are as critical as the mechanical design of the prosthetic hand for the cognitive interaction user and prosthetic hand.

2 Material and method

We attempted to test five parameters when designing a prosthetic hand for amputees living in developing countries, i.e. low cost, high performance, reliability, profitability, and easy and fast manufacturing.

2.1 Structure of the human hand and designed prosthetic hand

The human hand has a high functionality and a very complex modeling mechanism. This is due to the high degree of freedom. In other words, a large number of joints act independently from one another have been placed in the human hand. The three tiny bones and joints compose of each finger as shown in Figure 1. These little bones are referred to as phalanx.

![Figure 1. Structure of the human hand.](image)

There are different studies on human hand anatomy, such as muscle and bone structure, the functional limit of joint, and age and sex determination according to bone structure [19]-[22]. Tables 1 and 2 describe the finger length and the angular articulation limits related to ideal functional orthosis for the finger [23],[24].

Joints	Mean	SD	Min	Max	Range
Index MCP	32	16	−25	78	103
Index PIP	34	13	−1	84	84
Index DIP	15	10	−23	59	82
Middle MCP	34	17	−20	79	99
Middle PIP	38	14	2	87	85
Middle DIP	16	12	−8	70	77
Ring MCP	21	15	−18	66	84
Ring PIP	40	16	3	96	93
Ring DIP	12	10	−10	55	65
Little MCP	19	20	−25	80	105
Little PIP	38	16	−3	92	95
Little DIP	20	12	−6	68	74

![Figure 2. 3D design of FiMec Hand and parts.](image)

The 3D model of the mechanism was created after the determination of the size and motion limit of the finger orthosis and virtual motions were realized using SolidWorksTM. Figure 2 shows CAD views of the designed orthosis of the finger. With five fingers and 15 DoF, the prosthetic hand was made. Unlike the prosthetics used by the tendon powder and gear method, a single-motor is used for every joint in the present designed. The movement restrictions on these fingers are not mentioned in MCP DIP and PIP joint. The mounting difficulty has been reduced in comparison to the yield decreases induced by both the tendons and the pulley system. We tried to select engines with high torque as well as low cost. The ultra-Nano DC servo motors that drive each joint are developed as hollow finger joints to be placed inside the corresponding fingers, reducing the number of cables and conductors. This FiMec prosthetic allows the hand to be relatively light. The thumb is composed of three parts, the other fingers are of four parts and the palm is one piece. A FiMec hand has consist totally 20 parts. The assembly can be carried out sequentially. During the repair, only removal and repair of the damaged part is sufficient. Thanks to its high degree of freedom and functional design, the FiMec can hold objects of any size and feature manually. As biological hand anatomy, the dimensions of the prosthetic hand were determined (Table 1-2). A flat cylinder-shaped finger design, which is closer to reality and makes the object easier to understand, was preferred instead of the cylindrical fingers in all the other designs.
2.2 EMG based control strategy of prosthetic hand

In literature, the features of the EMG signal are grouped under three different domain headings, i.e., time-domain features, frequency domain features, and time-frequency domain features. The time-domain features of the sEMG were described by Hudgins [30]. They refer to a bioelectric signal according to the mean absolute value, the mean absolute slope, changes in the sign of the slope, the wavelength, and the zero-crossing number of the signal [30]-[32], and the time-domain features are known as the ‘Hudgins features.’ When this feature set is used as an input to the classifier, the classification failure is much higher than the raw signal [33],[34]. To achieve the best accuracy performance of EMG signal gesture classification by Englehart et al., the proposed time-frequency domain features and the time-domain features proposed by Hudgins et al. [35] were compared [36]. Time-frequency domain properties are effective feature sets in the classification of bioelectrical signals, but, due to their high size and high resolution, the reduction of the dimension often is required [37]. The mean frequency, median frequency, mean peak frequency, spectral moments, frequency ratio, power spectrum ratio, and variance of central frequency give very successful results when used in the classification of EMG signals [38]. However, Artificial Neural Networks were used to compare the time domain, frequency domain, and wavelet coefficients with research in which the diagnostic performance was assessed, and the results were determined to be 78.3% for the time domain, 62.5% for the frequency domain, and 66.2% for the wavelet transform [39]. For that reason, time-domain feature-extraction methods were used in this study.

In this study, EMG signals from four muscle groups were used to develop an interaction network between human and prosthetic hand. The bioelectrical signals are recorded from Flexor Pollicis Longus Muscles, Flexor Carpi Radialis Muscles, Brachioradialis Muscles, Extensor Carpi Radialis Muscles, Extensor Digiti Minimi Muscles, And Extensor Carpi Ulnaris Muscles via Olimex four-channel EMG recorder. Channels 1, 2, 3, and 4 contained information about the motions of the little, ring, middle, and index fingers, respectively. The surface electrodes were placement according to the SENIAM protocol, as shown in Figure 4 [40].

EMG Signals were recorded respectively when a female subject made hand gestures in Figure 5, who is able-bodied with no neurological or muscular disorders. EMG signals are biometric features for the identification of human [41-42]. EMG signal; is directly related to the physiology of each individual. For these reasons contrary to other researches in the literature, the data belonging to a single person were taken and a unique control prosthetic hand was produced. This has both increased the classification success and removed the normalization process for using the signal from different people as the control signal.

\[
E = \int_{t_1}^{t_2} |m(t)|dt \quad (1)
\]
\[
AVR = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |m(t)|dt \quad (2)
\]
\[
RMS = \left(\frac{1}{T} \int_{0}^{T} (m(t))^2 dt \right)^{1/2} \quad (3)
\]
\[
VAR = \frac{1}{T} \int_{0}^{T} (x - ORT)^2 m(t)dt \quad (4)
\]

Motion recognition using EMG signals is used extensively in the control of multi-functional prosthetic devices. The types of classifiers that are used extensively to classify EMG signals are Artificial Neural Networks (ANNs), the Fuzzy Classifier, Linear Discriminant Analysis (LDA), Self-Organized Map (SOM), and Support Vector Machines (SVMs) [14].

![Figure 3. Firat Mechatronics (FiMec) hand: the open-source, affordable, myoelectric prosthetic hand.](image)

![Figure 4. Placements of the electrodes.](image)

![Figure 5. Photographs of recognized hand gestures.](image)
Researchers prefer SVM and LDA classifiers for controlling prosthetic devices because of their simplicity and ease of training [47],[48]. Many researchers have used the artificial neural network classification algorithm to classify EMG signals for both linear and non-linear systems. For real-time classification applications of EMG, Del and Park stated that ANN is a suitable technique [49]. Some researchers have tried to teach the network of multi-layered Perceptron-type artificial neural networks, EMG data, with an uncontrolled learning technique, and then to recognize the test data automatically [50]. Tsuji et al. used a back-propagation artificial neural network model of six forearm gestures using the entropy of recorded bioelectrical signals [51]. They have developed a new EMG classification method based on the Hidden Markov model, and they named the new method the Recurrent Log-Linearized Gaussian Mixture Network [52]. To classify the wrist gestures Naik et al. has tried four methods and compared their results. These four methods are Fast ICA, JADE-ICA, Infomax-ICA, and Temporal Decor-relation Source Separation (TDSEP) [53]. Khezri et al. used a neural-based fuzzy logic classification algorithm to classify hand gestures via EMG signals [54]. Subasi et al. suggested using two different classifiers together to determine EMG signals, i.e., the backpropagation artificial neural network and the wavelet neural network [55]. In order to detect neuromuscular disorders, Christodoulou and colleagues extracted the amplitude-frequency modulation characteristics of the EMG signals from 20 healthy and 11 myopathic patients [56] and compared the classification performances using the KNN, SOM, and SVM classification algorithms. The results indicated that the SVM algorithm was
the most successful in classification [57]. For this reason, SVM classifier was used in this study.

The Support Vector Machines (SVM) classification was used to solve the gesture classification problem in this study. SVM an algorithm that is based on statistical learning theory. SVMs originally was designed for the problem of two-class classification and then generalized to multi-class classification [58-59]. Our classification problem consists of four different classes. Thus, we used the “one-against-one” approach [60] multi-class SVM classifier. According to this approach, \(k \) denotes the number of classes, and \(k(k-1)/2 \) classifiers are constructed, with each one training data from two classes. For training data from the ith and the jth classes, the two-class classification problem is solved in Eqs. (5-6) [60].

\[
\min_{w_{ij}, b_{ij}} \frac{1}{2}(w_{ij})^T w_{ij} + C \sum_{t} (\xi_{ij})_t
\]

subject to \((w_{ij})^T \phi(x_t) + b_{ij} \geq 1 - \xi_{ij}, \text{ if } x_t \text{ in } \text{ith class}, (w_{ij})^T \phi(x_t) + b_{ij} \leq 1 + \xi_{ij}, \text{ if } x_t \text{ in } \text{jth class}, \xi_{ij} \geq 0\)

3 Results

The experimental test set in Figure 7 consisted of a prosthetic with 15 degrees of freedom (DoF), an EMG signal recorder with four channels, and a MATLAB program to process and classify the EMG signals.

![Image of experimental setup](image)

Figure 7. Photograph of the experimental setup.

The size of FiMec hand is 240 x 110 x 25 mm, the mass of the FiMec hand is about 328.45 grams. The characteristic value of FiMec is very similar to the biological hand. Finger has got flat connection equipment.

The multi-class SVM classifier was used to determine hand gestures [61]. Used function for multiclass Support Vector Machine was written by ANAND MISHRA (Machine Vision Lab. CEERI, Pilani, India) [62]. Calculated energy (E), maximum value (M), the average value(AVR), effective value (RMS), and variance(VAR) features for four channels were given to SVM for input values. SVM made real-time predict using input according to trained six hand motion type. The performances of multi-class SVM algorithms are estimated according to the Receiver Operator Characteristics Curve (ROC) analysis in Table 3.

3 Results

Sensitivity(S) = (TP / (TP + FN))

True positive rate (TPR) = TP / (TP + FN)

True negative rate (TNR) = TN / (FP + TN)

Accuracy rate (ACC) = (TP + TN) / (TP + FP + TN + FN)

![Table 3. Results of the ROC analysis for SVM](image)

The performance values for each hand motion were calculated using Eqs. (7) - (10) [63]. (TP =True positive, TN=True Negative, FP= False Positive, FN= False Negative)

Figure 8. Firat Mechatronics (FiMec) hand: the open-source, affordable, myoelectric prosthetic hand with six gestures.

The performance values for each hand motion were calculated using Eqs. (7) - (10) [63]. (TP =True positive, TN=True Negative, FP= False Positive, FN= False Negative)

Sensitivity(S) = (TP / (TP + FN))

True positive rate (TPR) = TP / (TP + FN)

True negative rate (TNR) = TN / (FP + TN)

Accuracy rate (ACC) = (TP + TN) / (TP + FP + TN + FN)

HAND CLOSURE (HC)	HAND ON (HO)	THUMB-INDEX TOUCH (TIT)						
TP	FN	15	TP	FN	15	TP	FN	15
PP	TN	90	PP	TN	90	PP	TN	90
15	90	90	15	90	90	15	90	90
TPR= 1.00	ACC=1.00	TPR= 1.00	ACC=1.00					
TP = 1.00	TN = 0.97	TP = 1.00	TN = 0.97					
THUMB-MIDDLE TOUCH (TMT)	THUMB-INDEX TOUCH (TIT)	THUMB-RING TOUCH (TRT)						
------------------	-------------	---------------------						
TP	FN	15	TP	FN	15	TP	FN	15
PP	TN	75	PP	TN	75	PP	TN	75
15	75	75	15	75	75	15	75	75
TPR= 1.00	ACC=1.00	TPR= 1.00	ACC=1.00					
TP = 1.00	TN = 0.97	TP = 1.00	TN = 0.97					
THUMB-LITTLE TOUCH (TLT)								
------------------	-------------	---------------------						
TP	FN	15	TP	FN	15	TP	FN	15
PP	TN	75	PP	TN	75	PP	TN	75
15	75	75	15	75	75	15	75	75
TPR= 1.00	ACC=1.00	TPR= 1.00	ACC=1.00					
TP = 1.00	TN = 0.97	TP = 1.00	TN = 0.97					
ACC= 0.96								

Figure 8. Firat Mechatronics (FiMec) hand: the open-source, affordable, myoelectric prosthetic hand with six gestures.
that the FiMec hand is the lightest design with the highest torque. In terms of the costs of their engines, the Tact and Dextrus hands are passable, but i-Limb, a commercial rival, is 75% more suitable. In addition, the total cost of the FiMec hand is much more affordable since the inter-articular power transmission elements, i.e., the special gearing system and the reel system FiMec, which increase the cost of the i-Limb, Dextrus, and Tact hands, are not used in the FiMec hand. If the power that will be consumed is considered, it is obvious that the life of the battery, which is a major concern for users, will be much longer with the FiMec than others.

Four-channel EMG circuitry, electrodes, and microcontroller are required to control the FiMec hand. An EMG sensor circuit and a staggered microcontroller with electrodes can be purchased and installed at a price of $25. The microcontroller program that provides EMG signals and prosthetic hand control is presented as open-source information and code. Each is made from PLA material using 3D printing technology, a SolidWorks drawing, and STL files of the fingertip, all of which reduce the cost. Production and assembly are very easy and fast. Manufacturing details and assembly instructions for parts are open sources, allowing anyone to access these resources to produce FiMec hands at a low cost.

The entire production and installation of the FiMec hand, consisting of 21 pieces, takes between 10 and 16 hours. The production and assembly of a FiMec hand can be done easily by one person without the need for any assistance. The total cost is approximately 450 USD. This cost is very affordable given that other commercial products have prices that range between $15,000 and $50,000 and provide only 15 functionalities. Extensive studies of prosthetic and orthotic devices have indicated that the recognition of hand motions by sEMG is one of the most important steps in controlling these rehabilitation devices. To increase the percentage of successful recognitions of the hand motions, researchers are working to determine the optimum number of channels, the types of features that should be monitored, and the best classification algorithms. The results obtained in this study are compared to the results of other researchers in Table 5. The classification that was achieved in this research was reasonably good.

5 Conclusion

The low cost, prosthetic production research is an academic experiment not created for commercial purposes. It is planned to buy a high-prosthetic hand from those who are not strong financially. SolidWorks drawings and EMG-based control algorithm files of FiMec hand was shared with people free of charge over the internet in detail, so every amputee people, who want, can manufacture his/her own prosthetic hand according to instructions easily.

6 Acknowledgment

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethics Committee Permit Document for this study is the attachment.

Data Availability Statement: All data used to support the findings of this study are included in the article.
Table 4. Correlation of hand characteristics.

Developer	FiMec	Tact	Dextrus	I-Limb	BeBionics
Mass (g)	3284.5	350	428	450-615	495-539
Size (length x width x height)	240 x 110 x 25	200 x 90 x 27	205.8 x 88.4 x 27	182 x 80 x 41	198 x 90 x 50
Link Shape	flat cylindrical	cylindrical	cylindrical	cylindrical	cylindrical
DoF	15	11	15	11	11
Number of Actuators	15	6	6	6	6
Motor Stall Torque (Nm)	0.143	0.3	0.143	0.143	0.143
Size (length x width x height)	18.6 x 7.6 x 5.5 mm	16 x 5.2 mm	16 x 5.2 mm	10 x 5.2 x 5.5 mm	208.88
Mass (g)	4.5	38	38	38	38
Used Number of Actuator	15	6	6	6	6

Table 5. Comparison of the results of different EMG classification systems.

Hand gesture	Classifier	Average Accuracy
Six hand motion	Supported Vector Machines	97%
Six hand motion	Adaptive Neuro-fuzzy interference system (ANFIS)	92%
Hand motion	BPANN	89.2%
Eight hand motion	SVM	92-98%
Four hand motion	BPANN (Gradient-descent algorithm)	97.5%
Six Motion	Error back-propagation type neural networks	90%
Classify	BPANN (Gradient-descent algorithm)	99%
Chinese number	k-NN, LDA and QDA algorithms	91-97%
Four hand motion	ANN	83.5%

7 References

[1] World Health Organization. "World Report on Disability". New York, NY: World Health Organization, 2011. https://www.who.int/disabilities/world_report/2011/report.pdf (24.09.2019).

[2] Hamner SR, Narayan VG, Donaldson, KM. "Designing for scale: Development of the remotion knee for global emerging markets". *Annals of Biomedical Engineering*, 41(9), 1851-1859, 2013.

[3] Borne A, Porter A, Recicar J, Maxson, T and Montgomery C. "Pediatric Traumatic Amputations in the United States". *Journal of Pediatric Orthopaedics*, 37(2), 104-107, 2017.

[4] Strait E. "Prosthetics in Developing Countries". http://www.sandp.org/publications/resident/pdf/DevelopingCountries.pdf. 25.05.2010.

[5] Smith M. "Engadget-new bebionic hand almost doubles its grip-strength, steered by users’ electrical skin signals". http://www.engadget.com/2012/09/07/bebionic-3-bionic-hand/ (24.09.2019).

[6] Webster G. “The bionic hand with the human touch”. https://edition.cnn.com/2013/02/01/tech/bionic-hand-limb-prosthetic/index.html. (24.09.2019).

[7] Lightbody S. "Design of an Articulated Thumb for a Low-Cost Prosthetic Hand". Department of Engineering, Sweet Briar College, Lecturer Notes, Virginia, ABD.

[8] Marrero IC. "Hand Anatomy". http://emedicine.medscape.com/article/1285060-overview. (01.01.2010).

[9] Cipriani C, Controzzi M, and Carrozza, MC. "Objectives, criteria and methods for the design of the SmartHand transradial prosthesis". *Robotica*, 28(6), 919-927, 2010.

[10] Slade P, Akhtar A, Nguyen, M, Bretl, T. "Tact: Design and Performance of an Open-Source, Affordable, Myoelectric Prosthetic Hand". 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington State Convention Center, Seattle, Washington, May 26-30, 2015.
[11] Stratasys Direct Manufacturing. “3D Printing Materials: Choosing the Right Material for Your Application”. https://docplayer.net/22763790-3d-printing-advanced-manufacturing-3d-printing-materials-choosing-the-right-material-for-your-application-stratasysdirect-com.html. (24.09.2019).

[12] Mcor Technologies, “How Paper-Based 3D Printing Works”. http://www.sanhirota.com/uploads/8/3/3/4/344944 /mcor-wpeu-06092013_low.pdf (24.09.2019).

[13] Zhao Z. and Lapерриère, L. “Adaptive Direct Slicing of the Solid Model for Rapid Prototyping”. International Journal of Production Research, 38(1), 69-83, 2000.

[14] Parasa V, Gopichand A, Shankar NVS, Rao KR. “Fabrication of low cost prosthetic arm with foamed fingers”. International Journal of Engineering Research & Science, 2(10),47-50, 2016.

[15] Mangezi A, Rosendo A, Howard M and Stopforth R. “Embroidered archimean spiral electrodes for contactless prosthetic control”. International Journal of Rehabilitation Robotics, London, UK, 17-20 July 2017.

[16] Palli G, Melchiorri C, Vassura G, Scarica U, Moriello L, Berselli G, Cavallo A, De Maria G, Natale C, Pirrozi S. “The dextarm hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping”. The International Journal of Robotics Research, 33(5), 799-824, 2014.

[17] Jacobsen SC, Inversen Ek, Knutti DF, Johnson RT and Biggers KB. “Design of the Utah/MIT Dextrous Hand”. IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7-10 April 1986.

[18] Tarmizi, WFBW, Elamvazuthi, I, San Francisco, CA, USA, 6 June 2009.

[19] Eshak GA, Ahmed HM, Abdel Gawad EA. “Gender determination from hand bones length and volume using multidetector computed tomography: A study in Egyptian people”. Journal of Forensic and Legal Medicine, 18(6), 246-52,2011.

[20] Case,D. and Ross,AH. “Sex determination from hand and foot bone lengths”. Journal of Forensic Sciences, 52(2), 2007.

[21] Buryanov A, Kotuk, V. “Proportions of hand segments”. International Journal of Morphology, 28(3), 755-758, 2010.

[22] Gustav A, Stüß fried G, Visser J, Jörntell H, Van der Smagt, P. “Human hand modeling: Kinematics, dynamics, applications”. Biological Cybernetics, 106, 741-755, 2012.

[23] James N, Ingram, Konrad P, Körding, Ian S, Howard, Daniel MW.. “The statistics of natural hand movements”. Experimental Brain Research, 188(2), 223-236,2009.

[24] Buryanov, A. Kotuk, V. “Proportions of hand segments”. The International Journal of Morphology, 28(3), 755-758, 2010.

[25] Belter JT, Segil JL, Dollar AM and Weir RF. “Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review”. Journal of Rehabilitation Research & Development, 50(5), 599-618, 2013.

[26] Touch Bionics. “i-limb™ ultra revolution”. http://www.touchbionics.com/sites/default/files/files/i- limb%20ultra%20revolution%20user%20manual%20septemb er%202014.pdf (24.09.2019).

[27] RSL Steeper. “Prosthetics”. https://www.steepergroup.com/ (24.09.2019).

[28] Gibbard J, “Open Hand Project: A low cost Robotic Hand”. 2014. https://www.indiegogo.com/projects/the-open-hand-project-a-low-cost-robotic-hand#/ (24.09.2019).

[29] Parasa V, Gopichand A, Shankar NVS, Rao KR. “Fabrication of low cost prosthetic arm with foamed fingers”. International Journal of Engineering Research & Science, 2(10),47-50, 2016.

[30] Hudgins B, Parker P, Scott RN, “A new strategy for multifunction myoelectric control”. IEEE Transactions on Biomedical Engineering, 40, 82-94,1993.

[31] Englehart K, Hudgins B, Parker P, Multifunction Control of Prostheses Using the Myoelectric Signal. Editors: Teodorescu, HNL, Jain LC. In Intelligent Systems and Technologies in Rehabilitation Engineering, New York, NY, USA, CRC Press, 2000.

[32] Englehart K, Hudgins B. “A robust, real-time control scheme for multifunction myoelectric control”. IEEE Transactions on Biomedical Engineering, 50, 848-854,2003.

[33] Ibrahimy M, Khalifa O, Ahsan MR. “EMG Motion pattern classification through design and optimization of neural network”. In Proceedings of the International Conference on Biomedical Engineering, Kuala Lumpur, Malaysia, 27-28 February 2012.

[34] Rajesh V, Kumar PR, Reddy DV. “SEM based human machine interface for controlling wheel chair by using ANN”. In Proceedings of the International Conference of Control, Automation, Communication and Energy Conservation, Perundurai, Tamilnadu, India, 4-6 June 2009.

[35] Hudgins B, Parker P, Scott RN, “A new strategy for multifunction myoelectric control”. IEEE Transactions on Biomedical Engineering, 40, 82-94,1993.

[36] Englehart K, Hudgins B, Parker PA, Stevenson M, “Classification of the myoelectric signal using time-frequency based representations”. Medical Engineering & Physics, 21, 431-438, 1999.

[37] Hargrove LJ, Li G, Englehart KB, Hudgins BS. “Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control”. IEEE Transactions on Biomedical Engineering, 56, 1407-1414, 2009.

[38] Phinyomark A, Phukpattaranont P, Lim sakul C. “Feature reduction and selection for EMG signal classification”. Expert Systems With Applications, 39, 7420-7431, 2012.

[39] Reaz MBI, Hussain MS, Mohd-Yasin F. “Techniques of EMG signal analysis: detection, processing, classification and applications”. Biological Procedures, 8(1), 11-35, 2006.

[40] Seniham Project Management Group. “SENIAEM EMG protocol”. http://www.seniham.org/ (24.09.2019).

[41] Sang-Ho K, Jae-Hwan R, Byeong-Hyeon L, Deok-Hwan K. “Human identification using EMG signal based artificial neural network”. Journal of the Institute of Electronics and Information Engineers, 53(4), 142-148,2016.

[42] Belgacem N, Fournier R, Nait-Alí A and Bereksi-Reguif F. “A novel biometric authentication approach using ECG and EMG signals”. Journal of Medical Engineering & Technology, 39(4), 226-238, 2015.
[43] Englehart K, Hudgins B, Parker P, Stevenson M. “Time-Frequency Representation for Classification of the Transient Myoelectric Signal”. 20th Annual International Conference on Engineering in Medicine and Biology Society, Hong Kong, China, 06 August 2002.

[44] Englehart K. Signal Representation for Classification of the Transient Myoelectric Signal. Doctoral Thesis. University of New Brunswick, Fredericton, New Brunswick, Canada, 1998.

[45] Daud WMBW, Yahya AB, Horng CS, Sulaima MF, Sudirman R. “Features extraction of electromyography signals in time domain on biceps brachii muscle”. International Journal of Modeling and Optimization, 3(6), 515-519, 2013.

[46] Phinyomark A, Phulpattaranon P, Limsakul C. “Feature reduction and selection for EMG signal classification”. Expert Systems With Applications, 39, 7420-7431, 2012.

[47] Scheme E, Englehart K. “Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use”. Journal of Rehabilitation Research Development, 48, 643-659, 2011.

[48] Jiang N, Dosen S, Muller KR, Farina D. “Myoelectric control of artificial limbs: is there a record to change focus?”. IEEE Signal Processing Magazine, 29, 152-150, 2012.

[49] Al-Mulla MR, Sepulveda F, Colley M. “A review of non-invasive techniques to detect and predict localised muscle fatigue”. Sensors, 11, 3545-3594, 2011.

[50] Boca AD, Park DC. “Myoelectric signal recognition using fuzzy clustering and artificial neural networks in real time”. IEEE International Conference on Neural Networks and IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27 June-2 July 1994.

[51] Tsuji T, Ichinobe H, Ito K, Nagasaki, M. “Discrimination of forearm motions from EMG signals by error back propagation typed neural network using entropy”. Transactions of the Society of Instrument and Control Engineers, 29, 1213-1220, 1993.

[52] Nan B, Fukuda O, Tsuji T. “EMG-based motion discrimination using a novel recurrent neural network”. The Journal of Intelligent Information Systems, 21, 113-126, 2003.

[53] Naik GR, Kumar DK, Weghorn H. “A comparison of ICA algorithms in surface EMG signal processing”. The Journal of Intelligent Information Systems, 6, 363-374, 2011.

[54] Khezri M, Jahed M. “A neuro-fuzzy inference system for semg-based identification of hand motion commands”. IEEE Transactions on Industrial Electronics, 58, 1952-1960, 2011.

[55] Subasi A, Yilmaz M, Ozcalik HR. “Classification of EMG signals using wavelet neural network”. Journal of Neuroscience Methods, 156, 360-367, 2006.

[56] Christodoulou Cl, Kaplanis PA, Murray V, Pattichis MS, Pattichis CS, Kyriakides T. “Multi-scale AM-FM analysis for the classification of surface electromyographic signals”. Biomedical Signal Processing and Control, 7, 265-269, 2012.

[57] Güler NF, Koçer, S. “Use of support vector machines and neural network in diagnosis of neuromuscular disorders”. The Journal of Medical Systems, 29, 271-284, 2005.

[58] Pal M, Foody GM. “Feature selection for classification of hyperspectral data by SVM”. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2297-2307, 2010.

[59] Peker M. “A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM”. Journal of Medical Systems, 40, 116, 2016.

[60] Schölkopf B, Smola A, Williamson R, Bartlett PL. “New support vector algorithms”. Neural Computation, 12, 1207-1245, 2000.

[61] Chih-Chung Chang, Chih-Jen Lin, LIBSVM: A library for support vector machines”. Journal ACM Transactions on Intelligent Systems and Technology (TIST), 2(3) 27, 2011.

[62] Anand M. “Multi Class Support Vector Machine, MathWorks File Exchange”. https://www.mathworks.com/matlabcentral/fileexchange/33170-multi-class-support-vector-machine/01.01.2020).

[63] Kılıç, S. “Klinik karar vermede ROC analizi”. Journal of Mood Disorders, 3(3), 2013.

[64] Pylatiuk C, Schulz S, and Doderlein L. “Results of an internet survey of myoelectric prosthetic hand users”. Prosthetics and Orthotics International, 31(4), 362-70, 2007.

[65] Ibrahimy MI, Khalifa O0, Ahsan MR. “EMG motion pattern classification through design and optimization of neural network”. In Proceedings of the International Conference on Biomedical Engineering, Kuala Lumpur, Malaysia, 27-28 February 2012.

[66] Rajesh V, Kumar PR, Reddy DV. “SEMG based human machine interface for controlling wheel chair by using ANN”. The International Conference of Control, Automation, Communication and Energy Conservation, Perundurai, Tamilnadu, India, 4-6 June 2009.

[67] Tsuji T, Ichinobe H, Ito K, Nagamachi, M. “Discrimination of forearm motions from EMG signals by error back propagation typed neural network using entropy”. Transactions of the Society of Instrument and Control Engineers, 29, 1213-1220, 1993.

[68] Khezri M, Jahed M. “A neuro-fuzzy inference system for semg-based identification of hand motion commands”. IEEE Transactions on Industrial Electronics, 58, 1952-1960, 2011.

[69] Shenoy P, Miller KJ, Crawford B, Rao RN. “Online electromyographic control of a robotic prosthesis”. IEEE Transactions on Biomedical Engineering, 55, 1128-1135, 2008.

[70] Naik GR, Kumar DK, Palaniswami M. “Multi Run ICA and Surface EMG Based Signal Processing System for Recognising Hand Gestures”. IEEE International Conference on Computer and Information Technology, Sydney, Australia, 8-11 July 2008.

[71] Chen X, Wang Z. “Pattern recognition of number gestures based on a wireless surface EMG system”. Biomedical Signal Processing and Control, 8(2), 184-192, 2013.

[72] Eldin HSD, Manimegalai P. “Hand gesture recognition based on EMG signals using ANN”. International Journal of Computer Application, 3(2), 31-39, 2013.

Appendix

Open Source FiMEC hand design document: (https://grabcad.com/library/emg-controlled-prosthetic-hand-fimec-hand-1)