Genetic Analysis of SLC12A3 Gene in Chinese Patients with Gitelman Syndrome

CDEF Yanmei Zeng*
BCDEF Ping Li*
BC Shu Fang
D Chunyan Wu
E Yudan Zhang
F Xiaochun Lin
ACDG Meiping Guan

* Yanmei Zeng and Ping Li contributed equally to this work

Corresponding Author: Meiping Guan, e-mail: mpguan@163.com

Source of support: The study was supported by National Natural Science Foundation of China (31400992, 81470047, 81628004, 81700771) and Free Application Project funded by Guangdong Natural Science Foundation (2017A030313545)

Background: The incidence of Gitelman syndrome (GS) has been increasing in our hospital. The aim of this study was to explore the diagnostic accuracy and features of SLC12A3 gene in Chinese patients with GS.

Material/Methods: We searched the literature about Chinese patients with GS in the PubMed database up to July 2018 and also included 8 GS Chinese patients from our hospital in our analysis that explored the features of SLC12A3 gene. We divided all the patients into 3 groups according to diagnostic consensus. Complete compliance was defined to mean containing 2 allelic mutations, partial compliance to mean one allelic mutation, and clinical compliance to mean no mutations.

Results: Totally, 137 patients were enrolled in this study and 90 mutations were counted. Missense mutations accounted for over 72% in Chinese GS patients and the most common one was Thr60Met. According to the consensus, there were 102 patients (74.5%) in the complete compliance group, 31 patients (22.6%) in the partial compliance group, and only 4 patients (2.9%) in the clinical compliance group.

Conclusions: The SLC12A3 gene analysis in Chinese GS patients revealed that the most common mutation was Thr60Met, one of the missense mutations. Most of the patients were in the complete compliance group (i.e., 2 allelic mutations); the other cases might be explained by gene rearrangement.

MeSH Keywords: DNA Mutational Analysis • Gitelman Syndrome • Solute Carrier Family 12, Member 3

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/916069
Background

Gitelman syndrome (GS) is an inherited tubular disease characterized by hypokalemia and metabolic alkalosis, accompanied by hypocalcemia, urinary calcium, and hypomagnesaemia. The dysfunction of thiazide-sensitive Na-Cl co-transporter (NCCT) in the distal convoluted tubules, caused by SLC12A3 gene mutation, lead to GS. According to the consensus and guidance on Gitelman syndrome published in 2016 [1] and the 2017 Expert Consensus for the Diagnosis and Treatment of Patients with GS [2], the detection of biallelic inactivating mutations in SLC12A3 gene is established as the diagnostic criteria of GS [1,2]. However, it has been reported that approximately 18–40% of patients clinically diagnosed as GS carry only 1 allelic mutation by SLC12A3 gene as detected by direct sequencing [3]. And among the mutations detected at SLC12A3, gene rearrangements may account for 26% [3]. Therefore, this study aimed to analyze the mutations of SLC12A3 gene in Chinese patients with GS, and explore its diagnostic coincidence rate.

Material and Methods

We searched the literature published by Chinese researchers on the PubMed database up to July 2018 using 2 keywords, namely, a combination of “Gitelman Syndrome” and “China”. In the retrieved literature, we included those describing the information for mutations in SLC12A3 gene of GS patients (such as the number of mutant alleles, type and location of mutation, predictive effect, etc.) into our study. And we also included 8 unrelated Chinese GS patients based on clinical and genetic diagnosis in our hospital from September 2015 to April 2018 in the study analysis. According to the diagnostic criteria based on consensus, we divided all the patients into 3 groups. Complete compliance was defined to mean having 2 allelic mutations, partial compliance to mean 1 allelic mutation, and clinical compliance to mean no mutations.

Results

Analysis of diagnostic coincidence rate

As shown in Table 1 [4–24], in total, 21 initial publications identifying SLC12A3 gene mutations in GS were retrieved. We divided the number of mutated allele into 3 groups, biallelic, monoallelic, and none inactivating mutation only, corresponding to the complete compliance group, partial compliance group, and clinical compliance group respectively. Of 137 cases, biallelic inactivating mutations were identified in 102 patients which accounted for 74.5% of the cases. And among the biallelic inactivating mutations, 28 cases were homozygous (27.5%) and 74 cases were compound heterozygous (72.5%). Monoallelic inactivating mutation was identified in 31 patients (22.6%). None inactivating mutation only appeared in 4 patients (2.9%). According to the consensus criteria, the complete compliance rate was 74.5%, the partial compliance rate was 22.6%, and the clinical coincidence rate was 2.9%.

Characterization of the SLC12A3 gene mutations

In our study, 90 different mutations were counted, and were spread throughout the gene. There are 21 novel variants reported by Chinese researchers for the first time (Table 1), and 14 of these were missense mutations. As shown in Figure 1, over 72% of SLC12A3 gene mutations were missense mutations, whereas nonsense, synonymy, deletion, insertion, and splice-site mutations were less frequently observed. Small deletions or insertions mutations account for approximately 17%, splice 6%, synonymy 2%, and nonsense 3%.

Figure 2 showed the distribution and frequency of the 248 mutated alleles in the 26 exons of the SLC12A3 gene. Four recurrent mutations including Thr60Met, Asp486Asn, Arg913Gln and Arg928Cys, and we found an allele frequency >3%. These recurrent mutations were mainly caused by the missense changes of amino acid in 81 alleles (67 patients). And the most common mutation in our study was Thr60Met found in 42 alleles (33 patients). Asp486Asn was found in 21 alleles (18 patients), Arg913Gln in 10 alleles (9 patients), and Arg928Cys in 8 alleles (7 patients).

Discussion

Because of similar clinical manifestations, GS is considered a subtype of Bartter Syndrome having hypomagnesaemia and hypocalciuria. A few years ago, the molecular basis of GS was revealed by Simon et al. They first demonstrated a linkage of GS to the locals encoding the renal NCC, an integral membrane protein consisting of 1030 amino acids with 12 transmembrane and intercellular N and C-terminal domains [8,25]. Thereafter, a series of studies identified the human SLC12A3 gene, which encodes the NCC. This gene is about 55 kb in length and locate on the long arm of chromosome 16q consisting of 26 separate exons.

By searching the human genome database (HGMD 2017.1), we found that 488 mutations of the SLC12A3 gene have been discovered in patients with GS [8]. And these mutations include missense mutations, shear mutations, deletion mutations, nonsense mutations, reading frame shift mutations, and other mutations [8]. Most mutations are compound heterozygous mutations, and missense mutation was the most common one. In our study, compound heterozygous mutations were discovered in
Table 1. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
Biallelic inactivating mutations in SLC12A3 (n=102)				
CoHomo	1	Exon24	Arg928Cys	4
		Exon2	Ala122Ala	
		Exon11	Thr465Thr	
	2	Exon16	Arg655Leu	5
		Exon1	Thr60 Met	
	3	Exon1	Thr60Met	6
		Exon15	Arg655His	
CoHet	4	Exon1	Thr60Met	7
	5	Exon15	Asn640Ser*	8
		Exon21	Asp841Gly*	
	6	Exon10	Cys430Gly	9
		Exon2	c.346−353delACTGATGG*	
	7	Exon1	Thr60Met	10
		Exon2	c.346−353delACTGATGG	
	8	Exon1	Thr60Met	10
		Exon10	Cys430Gly	
	9	Exon10	Gly439Val	10
		Exon24	c.2883−2884delAG	
	10	Exon14	Leu571Pro	10
		Exon26	c.2969insGCT	
	11	Exon8	Asn359Lys	10
		Exon10	Gly439Val	
	12	Exon8	Del n7426−n7438 and Ins(accgaaaatntt)	10
		Exon23	Arg913Gln	
	13	Exon17	Ser710X	10
		Exon24	Arg919Cys	
	14	Exon12	Asp486Asn	10
		Exon20	Gly800Trp	
	15	Exon1	Thr60 Met	11
		Exon2	Ala122Ala	
		Exon8	c.965−1_976del13ins12	
	16	Exon8	Asn359Lys	11
		Exon9	Thr382Met	
Table 1 continued. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

No.	Position	Predicted effect	Reference
CoHet	Exon23	Arg913Gln	17
Exon8	Asn359Lys	12	
Exon12	Asp486Asn	18	
Exon12	Asp486Asn	12	
Exon24	Arg928Cys	19	
Exon23	Arg913Gln	18	
Exon14	c.1670-8C>T	20	
Exon23	Arg913Gln	5	
Exon14	c.1670-8C>T	18	
Exon14	c.1670-8C>T	21	
Exon1	Thr60 Met	16	
Exon7	Thr304Met	22	
Exon10	Cys430Gly	23	
Exon21	1028frameshift	24	
Exon24	c.850-851delAG	25	
Exon24	c.850-851delAG	26	
Exon5	Leu215Pro	14	
Exon8	Asn359Lys	27	
Exon10	Arg399Cys	14	
Exon7	Thr304Met	28	
Exon12	Asp486Asn	14	
Exon15	Gln617Arg	29	
Exon3	Ala166Thr	30	
Exon16	Val677Met	14	
Exon25	Ser976Phe	31	
Exon17	Leu700Val	14	
Exon23	Arg913Gln	32	
Exon10	Thr428Ile	14	
Exon12	Asp486Asn	33	
Exon3	Trp151X	14	
Exon9	Ala370Pro	14	
Table 1 continued. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
CoHet	34	Exon20	Gly800Arg	
		Exon2	Glu131Lys	14
		Exon5	Gly201Asp	
	35	Exon2	Leu215Pro	
		Exon21	Trp844X	
	36	Exon1	Tyr70Cys	14
		Exon22	Arg861Cys	
	37	Exon10	Cys430Gly	14
		Exon24	Arg928Cys	
		Exon17	Ser710X	
	38	Exon3	c.486-490delTACGGinsA	14
		Exon10	Cys430Gly	
		Exon16	Val659Met	
	39	Exon4	Gly196Val	14
		Exon24	c.2877_2878del	
		Exon1	Thr60Met	15
	40	Exon1	Arg642His*	
		Exon8	Thr339ile*	15
		Exon8	Asn359Lys*	
	41	Exon8	Thr339ile*	15
		Exon15	Arg642His*	
		Exon23	Arg904Gln	
	42	Exon1	Thr60Met	15
		Exon23	Arg904Gln	
	43	Ivvs7,ex8	IVS7-1 G > A g.7427_7438delinsCGAAAATTTT	15
		Exon23	Arg904Gln	
	44	Ivvs7,ex8	IVS7-1 G > A g.7427_7438delinsCGAAAATTTT	15
		Exon10	Cys421Phe	
	45	Exon1	The60Met	16
		Exon1	c.234delG*	
	46	Exon15	Arg642His*	16
		Exon3	c.486-490delTACGGinsA	16
	47	Exon10	Gly439Ser	6
		Exon15	Ser615Leu	
	48	Exon21	c.2454_2461delCAAGGCCC	6
		Exon23	Arg913Gln	
	49	Exon1	Thr60Met	6
		Exon13	Asn534Lys	

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]

CLINICAL RESEARCH

© Med Sci Monit, 2019; 25: 5942-5952

Zeng Y. et al.: Genetic analysis of SLC12A3 gene in Chinese patients with Gitelman syndrome

This work is licensed under Creative Common Attribution-NonCommerical-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Table 1 continued. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
CoHet	50	Exon1	Arg83Gln	6
		Exon24	Arg928Cys	
	51	Exon12	Asp486Asn	6
		Exon6	c.806 ins TTGGCGCTGTCATGGTCA	
	52	Exon12	Asp486Asn	6
		Exon10	Arg399Cys	
	53	Intron3	c.506-1G>A	6
		Exon3	Leu170Gln	
	54	Exon16	Thr649Met	6
		Exon15	His637Tyr	
	55	Exon24	Arg928Cys	6
		Exon15	Arg642Cys	
	56	Exon8	Asn359Lys	6
		Exon15	Gln617Arg	
	57	Exon10	Gly439Ser	6
		Exon15	Arg642Cys	
	58	Exon22	Arg861His	6
		Exon14	Asn566Lys	
	59	Exon4	Thr180Lys	6
		Exon1	Thr60Met	
	60	Exon6	Leu272Pro	6
Intron7/Exon8	61	Exon4	Gly190Val*	9
		Exon10	Gly439Val*	9
	62	Exon1	Thr60Met	9
		Exon10	Cys430Gly*	
	63	Exon1	Thr60Met	9
		Exon11	c.1384delG*	
	64	Exon14	Leu571Pro*	9
		Exon26	c.2969insGCT*	
	65	Exon1	Thr60Met	9
		Exon12	Asp486Asn	
	66	Exon1	Thr60Met	17
Intron3	67	Exon1	Thr60Met	17
Table 1 continued. *SLC12A3* mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
CoHet		Intron3	c.506-1G>A	17
	68	Intron3	c.506-1G>A	
		Exon17	Ser710X	
	69	Exon8	c.506-490delTACGGinsA	17
		Exon8	c.965-1_969delCGGACinsACCGAAA	
	70	Exon1	Thr60Met	This study
		Exon3	Thr163Met	
		Exon22	Arg871His	
	71	Exon1	Arg83Gln	This study
		Exon3	Thr163Met	
		Exon22	Arg871His	
	72	Exon1	Arg83Gln	This study
		Exon3	Thr163Met	
		Exon22	Arg871His	
	73	Exon1	Thr60Met	This study
		Exon3	Arg83Gln	
		Exon22	Arg871His	
	74	Exon1	Thr60Met	This study
		Exon3	Thr163Met	
		Exon22	Arg871His	
	75	Exon3	Arg83Gln	This study
		Exon8	Gly362Ser	
	76	Exon17	Ser710X	4
		Exon8	c.976-977delGT	
	77	Exon1	Leu700Pro*	18
		Exon3	Thr163Met	19
	79	Exon17	Ser710X	4
		Exon1	Thr60Met	10
	81	Exon23	Arg913Gln	10
	82	Exon9	Tyr386Cys	10
	83	Exon1	Thr60Met	12
	84	Exon16	Arg655Leu	5
	85	Exon1	Thr60Met	5
	86	Exon1	Thr60Met	5
Table 1 continued. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
Homo	87	Exon1	Thr60Met	5
	88	Exon12	Asp486Asn	14
	89	Exon12	Asp486Asn	14
	90	Exon12	Asp486Asn	14
	91	Exon1	Thr60Met	14
	92	Exon17	Leu700Pro	14
	93	Exon12	Asp486Asn	14
	94	Exon10	Arg399Pro	20
	95	Exon16	Arg655His	15
	96	Exon9	Tyr386Cys*	15
	97	Exon1	Thr60Met	6
	98	Exon1	Thr60Met	9
	99	Exon1	Thr60Met	9
	100	Exon1	Thr60Met	9
	101	Exon23	Arg896Gln	9
	102	Exon23	Arg896Gln	21

Monoallelic inactivating mutations in SLC12A3 (n=31)

Het	No.	Position	Predicted effect	Reference
	103	Exon24	Arg919Cys	10
	104	Exon8	Del n7426–n7438 and Ins(accgaaaatttt)	10
	105	Exon14	Phe545Leu	10
	106	Exon1	Thr60Met	10
	107	Exon4	Thr180Lys	22
	108	Exon22	Leu849His	12
	109	Exon16	Leu671Pro*	12
	110	Exon14	Asn566Lys	5
	111	Exon6	Gly264Ala	23
	112	Exon6	M279R	24
	113	Exon12	Asp486Asn	14
	114	Exon7	Thr304Met	14
	115	Exon10	Arg399Cys	14
	116	Exon15	Ser615Leu	14
	117	Exon16	Arg655Cys	14
	118	Exon1	Thr60Met	15
	119	Exon12	Asp486Asn	15
	120	Ivs16,ex17	IVS16-2 A > G*	15
Table 1 continued. SLC12A3 mutations identified in 137 Chinese patients with Gitelman syndrome.

Homo/Het/CoHet	No.	Position	Predicted effect	Reference
Het	121	Exon12	Asp486Asn	6
	122	Exon14	Asn566Lys	6
	123	Exon12	Asp486Asn	6
	124	Exon16	Arg655Leu	6
	125	Exon23	Arg913Gln	6
	126	Exon23	Arg913Gln	6
	127	Exon24	Arg928Cys	6
	128	Exon12	Asp486Asn	6
	129	Exon24	Arg928Cys	6
	130	Exon12	Asp486Asn	6
	131	Exon6	c.806 ins TTGCGTGATCTCAGGCA	6
	132	Exon1	Thr60Met	9
	133	Exon3	c.486-490delTACGGinsA	17
None inactivating mutations in SLC12A3 (n=4)				
	134			12
	135			12
	136			12
	137			12

Homo – homozygous; Het – heterozygous; CoHet – compound heterozygous; CoHomo – compound homozygous; * novel variant.

Although global hotspots have not yet been discovered, certain mutations occur frequently in specific populations. For example, on study found the top 3 in Japanese populations was R919C, L849H, and T180 K [19]. IVS9+1G >T was the most common one in Gypsy populations and another mutation c.1196_1202dup7bp was the most frequent in Italian patients [26]. Data from Shao et al. first showed that Thr60Met was the most common amino acid mutation in a Chinese population and possibly specific to Asian populations [9]. From then on, several studies supported this conclusion [12,17,26,27]. Consistent with previous studies, we also found that the most common mutation was Thr60Met. This suggested to us that screening for the Thr60Met mutation in a Chinese population can provide genetic consultation on GS. The results of 3 studies [26–28] found that Asp486Asn was a recurrent mutation. And in the study of Liu et al. [27], Arg913Gln was also found as a recurrent mutation. This suggested to us that Asp486Asn and Arg913Gln might also be the hotspots in Chinese GS patients. As for Arg928Cys, no study has indicated its mutation frequency. More studies are needed to prove whether it is a common mutation in the Chinese population.

Figure 1. Pattern of mutations by type at the SLC12A3 gene.
At present, we diagnose GS mainly on the basis of the 2 consensus areas. From the consensus, we can see that identification of biallelic inactivating mutations in the SLC12A3 gene is the criteria for establishing a diagnosis of GS. However, many patients were found to carry only one mutated allele by direct sequencing. According to a large cohort study about the SLC12A3 gene mutations in 448 patients with GS in France, 2 mutations were identified by direct genomic DNA sequencing in 315 patients (70%), while 1 mutation was identified in 81 patients (18%), and no mutation in 52 patients (12%) using direct sequencing [3]. The results of the study in a Chinese population by Ma et al. showed that 2 pathogenic SLC12A3 mutations were identified in 38 patients (70.4%), 1 mutation in 11 patients (20.4%) and no mutation in 5 patients (9.3%) using direct sequencing [26]. However, in the study of 67 Chinese GS patients by Liu et al., they discovered approximately 83.6% of their GS patients carried both allele mutations and 16.4% carried only one mutant allele [27]. In our study, we found 2 SLC12A3 gene mutations in 102 patients (74.5%), 1 SLC12A3 gene mutation in 31 patients (22.6%), and no SLC12A3 gene mutation in 4 patients (2.9%). This suggested to us that the compliance rate is influenced by the sample size and therefore more studies are needed to confirm our findings. Surprisingly, Vargas-Poussou et al. found that almost half of patients suspected of having only 1 mutation by direct sequencing had large genomic rearrangements on the other allele [3]. Therefore, we should use multiplex ligation-dependent probe amplification (MLPA) to screen those carrying only 1 mutated allele. At the same time, we should keep in mind that even after MLPA analysis, still some patients carry only 1 pathogenic mutation. In this case, mutations in the SLC12A3 intron or other genes may be potential second molecular defects. As we all know, patients with mutations in the CLCNKB gene, which is associated with Bartter syndrome, can present with a Gitelman-like phenotype. And according to the results of Vargas-Poussou et al., about a third of those having no mutation in the SLC12A3 gene have mutations in the CLCNKB gene [3]. Furthermore, recently Kong et al. reported a girl with mutations in both in the SLC12A3 gene and the CLCNKB gene, indicating a digenetic inheritance due to a genetic double-hit mechanism [29]. This might indicate that our failure to identify SLC12A3 gene mutations is probably due to misdiagnosis of the patients. Therefore, for those clinical compliance patients, with no mutations in the SLC12A3 gene, we should look for mutations in the CLCNKB gene. But whether we would detect the CLCNKB gene in complete compliance and partial compliance patients still needs more evidence.

Conclusions

This genetic analysis of the SLC12A3 gene in Chinese patients with GS showed us compound heterozygous mutations were more common than homozygous mutations, which accounted for 72.5%. Furthermore, we discovered that missense mutations accounted for over 72% of the different mutations found in the SLC12A3 gene. Four recurrent mutations were found in our study and the most common mutation was Thr60Met, which suggested to us that screening for the Thr60Met mutation in a Chinese population can provide genetic consultation for GS. Moreover, our study showed that the complete compliance rate was 74.5%, the partial compliance rate was 22.6%, and the clinical coincidence rate was 2.9% by direct sequencing according to consensus. Therefore, in order to increase the diagnostic rate, we suggest that we use MLPA to screen large genomic rearrangements in those carrying only a single mutated allele.

Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

None.
References:

1. Blanchard A, Bockenhauer D, Bollignano D et al: Gitelman syndrome: Consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int, 2017; 91: 24–33
2. Gitelman Syndrome Collaborative Study Group: [Expert consensus for the diagnosis and treatment of patients with Gitelman syndrome.] Chin J Intern Med, 2017; 9: 712–16 [in Chinese]
3. Vargas-Poussou R, Dahan K, Kahlila D et al: Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol, 2011; 22: 693–703
4. Simon DB, Nelson-Williams C, Bia MJ et al: Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive NaCl cotransporter. Nat Genet, 1996; 12: 4–30
5. Chen Y, Zhang Z, Lin X et al: A novel compound heterozygous variant of the SLC12A3 gene in Gitelman syndrome pedigree. BMC Med Genet, 2018; 19: 17
6. Lü Q, Zhang Y, Song C et al: A novel SLC12A3 gene homoygous mutation of Gitelman syndrome in an Asian pedigree and literature review. J Endocrinol Invest, 2016; 39: 333–40
7. Ma J, Ren H, Lin L et al: Genetic features of Chinese patients with Gitelman syndrome: Sixteen novel SLC12A3 mutations identified in a new cohort. Am J Nephrol, 2016; 44: 113–21
8. Shao L, Ren H, Wang W et al: Novel SLC12A3 mutations in Chinese patients with Gitelman syndrome. Nephron Physiol, 2008; 108: 29–36
9. Miao M, Zhao CQ, Wang XL, Shan ZY: Clinical and genetic analyses of Chinese patients with Gitelman syndrome. J Am Soc Nephrol, 2011; 22: 693–703
10. Shi RR, Li CC, Fang L et al: [Clinical and genetic characteristics of Gitelman syndrome in S pedigrees.] Chin J Intern Med 2017; 56: 104–11 [in Chinese]
11. Liu T, Wang C, Lu J et al: Genotype/phenotype analysis in 67 Chinese patients with Gitelman’s syndrome. Am J Nephrol, 2016; 44: 159–68
12. Wang F, Shi C, Cui Y et al: Mutation profile and treatment of Gitelman syndrome in Chinese patients. Clin Exp Nephrol, 2017; 21: 293–99
13. Luo L, Yang X, Liang J, Li W: A pedigree analysis of two homozygous mutant Gitelman syndrome cases. Endocr J, 2015; 62: 29–36
14. Jiang L, Chen C, Yuan T et al: Clinical severity of Gitelman syndrome determined by serum magnesium. Am J Nephrol, 2014; 39: 357–66
15. Peng X, Jiang L, Chen C et al: Increased urinary prostaglandin E2 metabolite: A potential therapeutic target of Gitelman syndrome. PloS One, 2017; 12: e018081
16. Huang J, Zheng X, Guo D et al: [A case of Gitelman syndrome with physical retardation.] J Cent South Univ, 2017; 42: 1236–38 [in Chinese]
17. Ren H, Qin L, Wang W et al: Abnormal glucose metabolism and insulin sensitivity in Chinese patients with Gitelman syndrome. Am J Nephrol, 2013; 37: 152–57
18. Luo J, Meng X, Yang X et al: Analysis of mutations of two Gitelman syndrome family SLC12A3 genes and proposed treatments using Chinese medicine. Chin J Integr Med, 2017; 23: 461–68
19. Miao Z, Gao Y, Bindels RIM et al: Coexistence of normotensive primary aldosteronism in two patients with Gitelman’s syndrome and novel thiazide-sensitive NaCl cotransporter mutations. Eur J Endocrinol, 2009; 161: 275–83
20. Yuan T, Jiang L, Chen C et al: Glucose tolerance and insulin responsiveness in Gitelman syndrome patients. Endocr Connect, 2017; 6: 243–52
21. Qin L, Shao L, Ren H et al: Identification of five novel variants in the thiazide-sensitive NaCl co-transporter gene in Chinese patients with Gitelman syndrome. Nephrology, 2009; 14: 52–58
22. Li C, Zhou X, Han W et al: Identification of two novel mutations in SLC12A3 gene in two Chinese pedigrees with Gitelman syndrome and review of literature. Clin Endocrinol, 2015; 83: 985–93
23. Zhang Y, Zhang F, Chen D et al: A novel homozygous mutation in the solute carrier family 12 member 3 gene in a Chinese family with Gitelman syndrome. Braz J Med Biol Res, 2016; 49(11): e5261
24. Xia MF, Bian H, Liu H et al: Hypokalemia, hypomagnesemia, hypocalciuria, and recurrent tetany: Gitelman syndrome in a Chinese pedigree and literature review. Bognor Regis, 2017; 5: 578–86
25. Pan B, Mou L, Li H et al: Schizophrenia-like psychosis and Gitelman syndrome: A case report and literature review. Springerplus, 2016; 5(1): 875
26. Gu X, Su Z, Chen M et al: Acquired Gitelman syndrome in a primary Sjogren syndrome patient with a SLC12A3 heterozygous mutation: A case report and literature review. Nephrology (Carlton), 2017; 22: 652–55
27. Zha B, Zheng P, Liu J, Huang X: Coexistence of Graves’ disease in a 14-year-old young girl with Gitelman Syndrome. Chin Med Clin (Oxf), 2015; 83: 995–97
28. Luo Q, Dong Y, Wan H et al: Consideration of the diagnosis of hypertension accompanied with hypokalaemia: Monism or dualism? J Int Med Res, 2018; 46(7): 2944–53
29. Kong Y, Xu K, Yuan K et al: Digenetic inheritance of SLC12A3 and CLCNKB genes in a Chinese girl with Gitelman syndrome. BMC Pediatr, 2019; 19: 114