Thermoelastic effects at low temperatures and quantum limits in displacement measurements

M. Cerdonio* and L. Conti
INFN Section of Padova and Department of Physics, University of Padova, Italy

A. Heidmann and M. Pinard
Laboratoire Kastler Brossel†, 4 place Jussieu, F75252 Paris, France
(September 29, 2000)

I. INTRODUCTION

In a recent paper Braginsky et al., henceforth BGV, considered the noise in interferometric gravitational-wave detectors due to thermoelastic fluctuations of the mirrors attached to the test masses of the interferometer. These thermoelastic fluctuations have contributions from two independent processes, both acting via the thermal expansivity of the mirror substrate material. The first one is the thermodynamic fluctuations in temperature of the body of the mirror substrate (these, in the approximation of small thermal expansion, are independent from the thermodynamic fluctuations in volume, which are responsible for the well studied thermal or brownian noise). The second one is the photothermal temperature fluctuations due to the fact that the number of photons absorbed by the mirror fluctuate.

BGV results for the thermodynamic noise, obtained for half-infinite mirrors, have been extended to the case of finite size mirrors, with particular reference to the design of advanced interferometric gravitational-wave detectors, such as LIGOII. In both cases the calculations are concerned with mirrors at room temperature, made of materials well in use for mirrors substrates as fused silica and sapphire, with km long Fabry-Perot cavities, which are characterized by laser beam spots of size \( r_0 \approx 1 \text{ cm} \) and comparatively low finesse \( F \approx 100 \), and with characteristic frequencies \( f \approx 100 \text{ Hz} \), for the mechanical motion to be monitored optically.

There are a number of situations, at variance with the above, which are of interest for optomechanical devices. In such situations one or both of the thermoelastic fluctuations effects may be of concern, when one would like to reach, in the measurements of small displacement, the so called Standard Quantum Limit (SQL). Already for LIGOII, BGV seems to discourage, in favour of fused silica, the use of sapphire, which on the other hand may be the material considered for cold mirrors in connection with advanced configurations of interferometric gravitational-wave detectors, under study as LCGT, LIGOIII and EURO.

The BGV effects would be of concern for very sensitive displacement sensors based on high-finesse Fabry-Perot cavities, to be used in connection with bar detectors of gravitational waves as dual cavity transducers, or to study the quantum effects of radiation pressure.

In both cases the cavities are much shorter (less than a few centimeter) than in a gravitational-wave interferometer, the beam spots are smaller \( r_0 \approx 10^{-2} \text{ cm} \), finesse much larger \( F \approx 10^5 \) and temperatures as low as \( T \approx 1 \text{ K} \). It may appear from BGV results that the thermoelastic effects would generate particularly large effects, inasmuch the volume involved in the fluctuation processes would be correspondingly smaller.

For these reasons, it is of interest to explore what would be the behaviour of both thermoelastic effects in the low temperatures and small beam spot regimes, where some BGV assumptions break down. In particular, the heat diffusion length \( l_h \) depends on the temperature and can become larger than the laser beam spot dimension \( r_0 \), so that the adiabatic approximation is no longer valid.

In Section 1 we give the essentials of the regime of phonons and heat propagation, which establishes at low enough temperatures, and we evaluate the thermoelastic noises with a simple calculation, in relation to the beam spot size and to the frequencies at which the optomechanical device is most sensitive.

In Sections 2 and 3 we give an exact calculation of both thermoelastic effects in the whole region of interest,

*visiting at Ecole Normale Supérieure, Laboratoire Kastler Brossel
†Laboratoire de l’Université Pierre et Marie Curie et de l’Ecole Normale Supérieure associé au Centre National de la Recherche Scientifique
that is for any value of the ratio $l_t/r_0$. The results, under the assumptions of low temperature regime of Section 1, would directly apply to actual mirrors for the quoted optomechanical devices. We also relate in a general way the photothermal noise to the displacement noise induced on the mirror by the quantum fluctuations of radiation pressure in the cavity.

In Section 3 we discuss limitations and relevance of our approach in the design of the SQL optomechanical displacement devices.

II. HEAT PROPAGATION AT LOW TEMPERATURES

Let us assume the optomechanical device to work in some frequency range centered around a frequency $f$ and let us discuss the photothermal effect. We revisit the calculation of BGV in the following way, so to use it to see the regime which sets up at low temperatures.

The multilayers coating of the mirror absorbs a small fraction of the light power and this induces an inhomogeneous increase of the temperature of the bulk. The absorbed power is a Poisson distributed random variable (the statistics of the absorbed photon will be discussed in more details in section 3), and these fluctuations lead to thermal fluctuations in the bulk of the mirror. They are consequently responsible for fluctuations of the position of the reflecting face of the mirror, via the thermal expansion of the mirror material.

The r.m.s. displacement noise of the mirror end face $\Delta z = \alpha z \Delta T$ is found by evaluating the r.m.s. fluctuation in temperature $\Delta T$, in a volume $V$ of the mirror of thickness $z$, linear thermal expansion coefficient $\alpha(T)$ and specific thermal capacity $C(T)$, as the absorbed photon flux $n$ fluctuates,

$$\Delta z = \alpha z \frac{\hbar \omega_0 \Delta n}{\rho C V},$$  \hspace{1cm} (1)

where $\hbar \omega_0$ is the energy per photon, $\Delta n = \sqrt{n/f}$ is the r.m.s. poissonian fluctuation of the number of photons absorbed over the time $1/f$ ($\overline{n}$ is the average absorbed photon flux), and $\rho$ is the density of the mirror material (axis $z$ is taken normal to the plane face of the mirror).

At room temperature and for large beam spots, BGV conditions apply: the phonon mean free path and relaxation times are very small respectively in comparison to the mirror coating thickness (where the photons create the phonons in the absorption process), and in comparison with the characteristic time $1/f$. The thermal diffusion length at frequency $f$ is given by

$$l_t = \sqrt{\frac{\kappa}{\rho C f}},$$  \hspace{1cm} (2)

where $\kappa$ is the thermal conductivity. For a frequency $f$ around 100 Hz, $l_t$ is on one hand larger than the coating thickness $z_c$, and on the other hand much smaller than the beam spot radius $r_0$.

$$z_c < l_t < r_0.$$ \hspace{1cm} (3)

This is the basic BGV approximation, which gives that the volume involved in the fluctuating thermal expansion effect is the fraction of mirror substrate $V \simeq l_t r_0^2$ and thus one has $z \simeq l_t$ in Eq. (3).

This argument reproduces the essential features of BGV spectral density $S_z[f]$ of photothermal displacement noise, as one may write around the frequency $f$,

$$S_z[f] \simeq \frac{\Delta^2}{f^2} \simeq \left( \frac{\alpha}{\rho C r_0} \right)^2 \frac{S_{abs}}{f^2},$$ \hspace{1cm} (4)

where $S_{abs} = \hbar \omega_0 W_{abs}$ is the spectral power noise of the absorbed light, with $W_{abs} = \hbar \omega_0 \overline{n}$ the average absorbed light power. In fact we see that Eq. (4) is the same final BGV relation (Eq. 8 of [1]), apart from a term with the Poisson ratio of the mirror material and numerical factors.

The condition (3) may break down for small beam spot radius $r_0$ or for low temperature $T$, as the thermal diffusion length gets longer, either in the mirror substrate or in the mirror coating or in both.

For mirrors substrates of crystalline materials, as specifically sapphire, for a frequency $f \simeq 1$ kHz, the thermal length $l_{ts}$ in the substrate at low temperature gets of the order of 10 cm, to be compared with a room temperature value $l_{ts}(300 \text{ K}) \simeq 10^{-2} \text{ cm}$ (see Table I). Then at low temperature we rather have

$$l_{ts} \gtrsim r_0,$$ \hspace{1cm} (5)

at all frequencies below some 1 kHz, both for mirrors of gravitational-wave interferometers (for which $r_0 \simeq 1.5 \text{ cm}$), and for optomechanical sensors (for which $r_0 \leq 3 \times 10^{-2} \text{ cm}$). This value for $l_{ts}$ stays constant in the whole region $T \leq 10 \text{ K}$, as crystalline materials follow Debye $T^3$ laws for $\alpha(T)$, $C(T)$ and $\kappa(T)$, and thus their ratios are all independent of $T$.

High reflection coatings are typically 40 layers one quarter wavelength thick of alternating amorphous materials as TiO$_2$ and SiO$_2$, with a total thickness $z_c \simeq 10^{-3} \text{ cm}$ for Nd-Yag laser light. For such a coating, the breakdown temperature for Eq. (3) is different for mirrors of large-scale interferometers and for mirrors of high-finesse cavities, because of the difference in $r_0$. For LIGOII mirrors for instance, taking SiO$_2$ as the reference material for the coating, the thermal length $l_{tc}$ in the coating is of the order of $r_0$ only at very low temperature, $T < 1 \text{ K}$. Amorphous silica films would have $l_{tc} > 10^{-2} \text{ cm}$ for $T < 10 \text{ K}$, so that for high-finesse cavities we have $l_{tc} \gtrsim r_0$ in the whole low temperature region.

Despite this difference, there are two features of relevance, which affect similarly the thermal behaviour of the coating-substrate composite in both types of mirrors.
In both cases we have that, at all low temperatures, the mean free path of phonons in the substrate is itself long, at least a fraction \( T \) of the coating crosses to the substrate in a time smaller than 1, and thus \( \alpha/\kappa \) is at least one order of magnitude smaller than \( \alpha/\kappa \) at low temperature (\( z_c \approx 10^{-5} \) m and \( l_{ts} \approx 0.1 \) m). We can then neglect the expansion of the coating over its thickness \( z_c \) and we find that the effect is dominated by the substrate properties,

\[
S_z[f] \approx \left( \frac{\alpha_s}{\kappa_s} \right)^2 \frac{S_{abs}}{f^2}.
\]

This is the relevant result of our discussion of thermal behavior of the coating-substrate composite at low temperature, in that now the temperature fluctuations involve comparatively large substrate volumes, instead of the comparatively small coating volume, where the actual absorption of photons occurs. Notice that, would not this be the case, one would have of course very large effects just concentrated in the volume, the external surface of which is that where displacements are going to be measured at SQL sensitivities.

When we substitute in Eq. (6) the expression (2) for the thermal length, we see a dramatic change of regime,

\[
S_z[f] \approx \left( \frac{\alpha_s}{\kappa_s} \right)^2 \frac{S_{abs}}{f^2}.
\]

where now the (substrate) thermal conductivity \( \kappa_s \) appears, instead of the thermal capacity, and the frequency dependence has disappeared. In fact the system behaves as in the low frequency region of a low pass filter, while, under BGV conditions, it was rather in the high frequency region.

We develop in the following sections a rigorous calculation of the effects in the low temperature regime, which gives in clear details the features grossly anticipated above and which can be directly applied to mirrors of interest for optomechanical devices, when the above thermal behavior of the coating-substrate system is realized.

## III. Thermodynamic Noise

In this section we determine the thermodynamic noise without any assumption on the ratio \( l_t/r_0 \) between the thermal diffusion length in the substrate and the beam spot size. Our analysis is an extension of the procedure developed by Liu and Thorne [3], but it is valid even when the adiabatic approximation is not satisfied. According to Eq. (2), the condition \( l_t < r_0 \) can actually be written as a condition over the frequency, \( f > \kappa/\rho Cr_0^2 \). Our treatment is thus also valid for an angular frequency \( \omega = 2\pi f \) smaller than the adiabatic limit \( \omega_c \) defined as

\[
\omega_c = \frac{\kappa}{\rho Cr_0^2}.
\]

As shown in the previous section we neglect any effects of the coating, taking only into account the thermal

| Thermal properties | 300 K | 10 K | 1 K |
|--------------------|--------|------|-----|
| \( \alpha (K^{-1}) \) | \( 5.5 \times 10^{-7} \) | \( -2.6 \times 10^{-7} \) | \( -2.6 \times 10^{-10} \) |
| \( \kappa (W/m.K) \) | 1.4 | 0.1 | 2 \times 10^{-2} |
| \( C (J/Kg.K) \) | 6.7 \times 10^2 | 3 | 3 \times 10^{-3} |
| \( \lambda (m) \) | 8 \times 10^{-10} | 8 \times 10^{-8} | 9 \times 10^{-6} |
| \( \alpha/\kappa (m/W) \) | 3.9 \times 10^{-7} | 2.6 \times 10^{-6} | 1.3 \times 10^{-8} |
| \( l_t (m) \) | 3 \times 10^{-5} | 1.2 \times 10^{-4} | 1.7 \times 10^{-3} |

**TABLE I.** Thermal properties of fused silica (top) and sapphire (bottom) at different temperatures. The thermal expansion coefficient \( \alpha \), thermal conductivity \( \kappa \), thermal capacity \( C \) and phonon mean free path \( \lambda \) are derived from [1] at room temperature, and from [13] at low temperatures. The thermal length \( l_t \) at 1 kHz is obtained from Eq. (3).
properties of the substrate of the mirror. We also neglect any finite-size effects since we have shown that the volume of substrate involved in the fluctuating heating is usually smaller than the size of the mirror, even at low temperature. We thus approximate the mirror as a half space, the coated plane face corresponding to the plane \( z = 0 \) in cylindrical coordinates.

The analysis is based on a general formulation of the fluctuation-dissipation theorem, used by Levin [18] to compute the usual thermal noise (brownian motion) of the mirrors in a gravitational-wave interferometer. We know that in an interferometer or in a high finesse Fabry-Perot cavity, the light is sensitive to the normal displacement \( u_z (z = 0, r, t) \) of the coated plane face of the mirror, spatially averaged over the beam profile. This averaged displacement \( \hat{u} \) is defined as

\[
\hat{u}(t) = \int d^2r \ u_z (z = 0, r, t) \frac{e^{-r^2/r_0^2}}{\pi r_0^2}.
\]  

(10)

To compute the spectral density \( S_{\hat{u}}[\omega] \) of the displacement \( \hat{u} \) at a given angular frequency \( \omega \), we determine the mechanical response of the mirror to a sinusoidally oscillating pressure. More precisely, we examine the effect of a pressure \( P(r, t) \) applied at every point \( r \) of the coated face of the mirror with the same spatial profile as the optical beam,

\[
P(r, t) = \frac{F_0}{\pi r_0^2} e^{-r^2/r_0^2} \cos(\omega t),
\]  

(11)

where \( F_0 \) is a constant force amplitude. We can compute the energy \( W_{\text{diss}} \) dissipated by the mirror in response to this force, averaged over a period \( 2\pi/\omega \) of the pressure oscillations. The fluctuation-dissipation theorem then states that the spectral density of the displacement noise is given by

\[
S_{\hat{u}}[\omega] = \frac{8k_B T W_{\text{diss}}}{\omega^2 F_0^2},
\]  

(12)

where \( k_B \) is the Boltzmann’s constant. This approach has been used by Levin to compute the brownian noise [18]. We are interested here in the thermodynamic noise so that \( W_{\text{diss}} \) corresponds to the energy dissipated by thermoelastic heat flow.

The rate of thermoelastic dissipation is given by the following expression (first term of Eq. (35.1) of Ref. [19]):

\[
W_{\text{diss}} = \left\langle T \frac{dS}{dt} \right\rangle = \left\langle \int d^3r \ \frac{\kappa}{T} (\nabla \delta T)^2 \right\rangle,
\]  

(13)

where the integral is over the entire volume of the mirror and the brackets \( \langle ... \rangle \) stand for an average over the oscillation period \( 2\pi/\omega \). \( \delta T \) is the temperature perturbation around the unperturbed value \( T \) induced by the oscillating pressure. \( W_{\text{diss}} \) is then related to the time derivative \( dS/dt \) of the mirror’s entropy, which depends on the temperature gradient \( \nabla \delta T \).

To calculate the rate of energy dissipation \( W_{\text{diss}} \), it is necessary to solve a system of two coupled equations, the first one for the displacement \( u(r, t) \) at every point \( r \) inside the substrate, and the second one for the temperature perturbation \( \delta T(r, t) \). As the time required for sound to travel across the mirror is usually smaller than the oscillation period \( 2\pi/\omega \), we can use a quasistatic approximation and deduce the displacement \( u \) from the equation of static stress balance [19]:

\[
\nabla (\nabla \cdot u) + (1 - 2\sigma) \nabla^2 u = -2\alpha (1 + \sigma) \nabla \delta T,
\]  

(14)

where \( \sigma \) is the Poisson ratio of the substrate (\( \alpha \) is the linear thermal expansion coefficient). The temperature perturbation \( \delta T \) evolves according to the thermal conductivity equation [19],

\[
\frac{\partial (\delta T)}{\partial t} - a^2 \Delta (\delta T) = \frac{-\alpha E T}{\rho C (1 - 2\sigma)} \frac{\partial (\nabla \cdot u)}{\partial t},
\]  

(15)

where \( a^2 = \kappa/\rho C \) and \( E \) is the Young modulus of the substrate (\( \rho \) is the density, \( C \) is the specific thermal capacity).

The solutions of Eqs. (14) and (15) must also fulfill boundary conditions. If we approximate the mirror as a half space, the temperature perturbation \( \delta T \) and the stress tensor \( \sigma_{ij} \) must satisfy the following boundary conditions on the coated plane face of the mirror,

\[
\sigma_{zz} (z = 0, r, t) = P(r, t),
\]  

(16a)

\[
\sigma_{zz} (z = 0, r, t) = \sigma_{zy} (z = 0, r, t) = 0,
\]  

(16b)

\[
\frac{\partial (\delta T)}{\partial z} (z = 0, r, t) = 0.
\]  

(16c)

The stress tensor \( \sigma_{ij} \) is defined in presence of changes of temperature as (see Eq. (6.2) of [19])

\[
\sigma_{ij} = -\frac{E}{(1 - 2\sigma)} \alpha T \delta_{ij} + \frac{E}{(1 + \sigma)} \left[ u_{ij} + \frac{\sigma}{(1 - 2\sigma)} \delta_{ij} \sum_k u_{kk} \right],
\]  

(17)

where the strain tensor \( u_{ij} \) is equal to \( \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \).

We solve perturbatively this system of equations at the first order in \( \alpha \). We first solve the static stress-balance equation at the zeroth order in \( \alpha \), neglecting the temperature term in the right part of Eq. (14) and in the expression (17) of the stress tensor. The solution \( u^{(0)} \) of this equation is well known (paragraph 8 of [19]). We then solve the thermal conductivity equation (15) using as a source term the solution \( u^{(0)} \) and we obtain the temperature perturbation \( \delta T^{(1)} \) in the first order in \( \alpha \). The calculation of \( u^{(0)} \) and \( \delta T^{(1)} \) and finally \( W_{\text{diss}} \) is done in Appendix A. Using the results of this appendix, we show that \( S_{\hat{u}}[\omega] \) is equal to

\[
S_{\hat{u}}[\omega] = 32\alpha^2 (1 + \sigma)^2 \frac{k_B T^2}{\rho C} I,
\]  

(18)
where the integral $I$ is given by
\[ I = \frac{a^2}{2\pi^3} \int dk_x dk_y dk_z \frac{k_x^2 e^{-k_x^2 r_0^2/2}}{k^2 (a^4 k^4 + \omega^2)}, \] (19)
with $k_x^2 = k_1^2 + k_2^2$ and $k^2 = k_1^2 + k_2^2$.

We can express $S_n [\omega]$ as a function of an integral $J [\Omega]$ which depends only on a dimensionless variable $\Omega$ equal to $\omega/\omega_c$, where $\omega_c = a^2/r_0^2$ corresponds to the adiabatic limit (see Eq. 3). We get
\[ S_n [\omega] = \frac{8}{\sqrt{2\pi}} \omega^2 (1 + \sigma)^2 \frac{\hbar k_B T^2 r_0}{\rho C a^2} J [\Omega], \] (20)
where $J [\Omega]$ is derived from the integral $I$ by the transformation of variables $u \equiv k_\perp r_0$ and $v \equiv k_\parallel r_0$,
\[ J [\Omega] = \sqrt{\frac{2}{\pi}} \int_0^\infty du \int_{-\infty}^{\infty} dv \frac{u^2 e^{-u^2/2}}{u^2 \left[(u^2 + v^2)^2 + \Omega^2\right]^2}. \] (21)

When $\omega \gg \omega_c$ (i.e. $\Omega \gg 1$), we can neglect $u^2 + v^2$ with respect to $\Omega$ in the denominator of the integral. $J [\Omega]$ can then be calculated analytically and we obtain
\[ J [\Omega \gg 1] = 1/\Omega^2. \] (22)

Using this result and the definition of $\Omega$, we finally show that $S_n [\omega]$ is equal to
\[ S_n [\omega \gg \omega_c] = \frac{8}{\sqrt{2\pi}} \omega^2 (1 + \sigma)^2 \frac{\hbar k_B T^2 a^2}{\rho C \omega^2 r_0^2}. \] (23)
This formula is identical to the expression (18) of Ref. [1] and to the expression (12) of BGV [1].

\[ \Omega = 1 \] is a cut-off frequency. For $\Omega > 1$ the curve has a slope equal to $-2$, whereas for $\Omega < 1$ the curve has a smaller slope of the order of $-1/2$. In this low frequency range, the noise is smaller than the one which would be obtained using the adiabatic approximation (dashed curve in figure [1]).

**IV. PHOTOTHERMAL NOISE**

We now briefly examine the case of the photothermal noise which exhibits somewhat a similar frequency behaviour as the thermodynamic noise. We use the same method as BGV [1] to calculate the spectral density $S_n [\omega]$ due to this noise but we do not make any adiabatic approximation so that the calculation is valid also for frequencies smaller than the adiabatic limit $\omega_c$. We then obtain:
\[ S_n [\omega] = \frac{2}{\pi^2} \alpha^2 (1 + \sigma)^2 \frac{\hbar \omega_0 W_{abs}}{(\rho C a^2)^2} K [\Omega], \] (24)
where the integral $K [\Omega]$ is equal to
\[ K [\Omega] = \left| \frac{1}{\pi} \int_0^\infty du \int_{-\infty}^{\infty} dv \frac{u^2 e^{-u^2/2}}{(u^2 + v^2)^2 (u^2 + v^2 + i\Omega)} \right|^2. \] (25)

When $\omega \gg \omega_c$ the adiabatic approximation is valid and the result of BGV should be recovered. Indeed, when $\Omega \gg 1$, we can neglect $u^2 + v^2$ with respect to $\Omega$ and calculate analytically $K [\Omega]$ which turns out to be equal to $1/\Omega^2$. Using the definition of $\Omega$, we finally show that $S_n [\omega]$ is equal to
\[ S_n [\omega \gg \omega_c] = \frac{2}{\pi^2} \alpha^2 (1 + \sigma)^2 \frac{\hbar \omega_0 W_{abs}}{C r_0^2 \omega^2}. \] (26)
This formula is identical to Eq. (8) of BGV [1].

For low values of $\Omega$, $K [\Omega]$ can be calculated numerically. The result is shown in figure [1]. As in the case of the thermodynamic effect (figure [1]), $\Omega = 1$ is a cut-off frequency: for $\Omega > 1$ the function has a slope equal to $-2$, whereas for $\Omega < 1$ the function has a much smaller slope and is almost constant.

This result is in perfect agreement with the simple derivation made in section [1]. The spectral density (24) can actually be written as
\[ S_n [\omega] = \frac{2}{\pi^2} (1 + \sigma)^2 \frac{\hbar \omega_0 W_{abs}}{C r_0^2 \omega^2} S_{abs} K [\Omega], \] (27)
which is similar to Eq. (3) at low frequency where $K [\Omega] \simeq 1$, apart from a term with the Poisson ratio. The frequency dependence of the photothermal noise then corresponds to a low-pass filter, with a cut-off frequency equal to the adiabatic limit $\omega_c$. At low frequency, that is when the thermal diffusion length $l_t$ in the substrate...
On the other hand, the absorbed photons always correspond to a poissonian statistics, even if it is not the case for the intracavity photons. The spectral power noise \( S_{\text{abs}} \) of the absorbed light is given by

\[
S_{\text{abs}} = \hbar \omega_0 W_{\text{abs}} = A \hbar \omega_0 W_{\text{cav}},
\]

where \( A \) is the absorption coefficient of the mirror (the average flux of absorbed photons is \( \pi = A N \)). This effect cannot be understood within the framework of a corpuscular model in which the photon absorption is described as a poissonian process: due to the super-poissonian statistics of the intracavity photons, one would find a super-poissonian statistics for the absorbed photons. One has to take into account the interferences between the intracavity field and the vacuum fluctuations associated with the mirror losses. This can be done by using a simple model where the absorption is described as a small transmission of the mirror and where the absorbed photons are identified to the photons transmitted by the mirror. One thus has a high-finesse cavity with two input-output ports and it is well known that the photon statistics of the light either reflected or transmitted by such a cavity are always poissonian, for coherent or vacuum incoming beams 21.

Eqs. (29) and (30) clearly show that both the radiation pressure effect and the photothermal noise are proportional to the intracavity light power \( W_{\text{cav}} \); however the displacements induced by radiation pressure have an extra dependence on the cavity finesse \( \mathcal{F} \). The photothermal noise can thus become negligible as compared to quantum effects for a high-finesse cavity.

To perform a quantitative comparison between the two effects, we calculate the susceptibility \( \chi_{\text{eff}} \) defined by Eq. (28). We determine here the mechanical response associated with the internal degrees of freedom of the mirror, which are of interest for displacement sensors. We thus ignore the radiation pressure effects associated with the global motion of suspended mirrors, which are the dominant contribution to SQL at low frequency in gravitational-wave interferometers. We calculate the average displacement \( \hat{u} \) induced by the radiation pressure \( P_{\text{rad,}} \) assuming the mirror is a half space \((z \geq 0)\). The normal displacement \( u_z(z = 0, r, t) \) of the coated face of the mirror can be deduced from the results of paragraph 8 of 19,

\[
u_z(z = 0, r, t) = \frac{2 \hbar k N(t)}{E \pi r_0^4} (1 - \sigma^2) \int d^2r' e^{-r^2/r_0^2} / |r - r'|.
\]

Using the definition (31) of \( \hat{u} \), we obtain

\[
\hat{u}(t) = \frac{2 \hbar k N(t)}{E \pi^3 r_0^4} (1 - \sigma^2) \int d^2r d^2r' e^{-(r^2 + r'^2)/r_0^2} / |r - r'|.
\]

The integral can easily be calculated by using a new set of variables \( u = r - r' \) and \( v = r + r' \). We finally get

\[
\chi_{\text{eff}}[\omega] = \frac{1 - \sigma^2}{2 \pi E r_0^2},
\]
and the noise spectrum $S_u(\omega)$ induced by radiation pressure fluctuations is equal to

$$S_u(\omega) = \left(\frac{2(1-\sigma)}{\sqrt{2\pi Ecr_0}}\right)^2 S_{\text{cav}}(\omega),$$  \hspace{1cm} (34)

where $c$ is the speed of light.

For all the displacement sensors considered in this paper the characteristic angular frequency $\omega$ is smaller than the cavity bandwidth $\omega_{\text{cav}}$. The noise spectrum $S_u(\omega)$ is consequently independent of $\omega$ and equal to

$$S_u(\omega \ll \omega_{\text{cav}}) = \left(\frac{2(1-\sigma)}{\sqrt{2\pi Ecr_0}}\right)^2 \frac{2F}{\pi} h\omega_0 W_{\text{cav}}.$$

This expression shows that the radiation pressure effect depends on the mechanical characteristics of the substrate ($E$ and $\sigma$) whereas the photothermal noise (Eq. 27) depends on the thermodynamic characteristics of the substrate via the ratio $\alpha/\kappa$. At low temperature, $K[\Omega]$ is of the order of 1 and the ratio $\alpha/\kappa$ is constant and equal to 1.4 $10^{-13}$ m/W for sapphire (see Table I). $E$ is equal to 4 $10^{11}$ J/m$^3$ and $\sigma$ is equal to 0.25 so that the ratio between the photothermal and radiation pressure noises is of the order of

$$S_u^{\text{pt}}/S_u^{\text{rad}} \approx 2.5 \times 10^{14} \frac{A\tau_0^2}{F}.$$  \hspace{1cm} (36)

For a 1 ppm absorption rate ($A = 10^{-6}$), a beam spot size $r_0$ of $10^{-4}$ m, and a cavity finesse $F$ of 10^5, the photothermal noise is more than 4 orders of magnitude smaller than the radiation pressure effects of internal degrees of freedom of the mirror. The photothermal noise is thus negligible as compared to quantum effects in optomechanical sensors.

Note that this is not the case in gravitational-wave interferometers where $r_0 \approx 10^{-2}$ m and $F \approx 100$. The photothermal noise is then 2 orders of magnitude larger than the quantum noise of internal motion. However, the interferometer is not expected to be sensitive to this quantum noise since for suspended mirrors it is overwhelmed by the quantum noise associated with external pendulum motion.

V. DISCUSSION AND CONCLUSION

We have shown that both thermoelastic and photothermal noises have a frequency dependence which looks like a low-pass filter: below a cut-off frequency $\omega_c$, these noises are much smaller than the noise which would be obtained according to the $1/\omega^2$ dependence at high-frequency.

First lines in tables I give the values of the cut-off frequency $\omega_c/2\pi$ for fused silica and sapphire, and for a beam spot size $r_0$ of 1 cm (first table) and $10^{-2}$ cm (second table). The results show that $\omega_c$ is increased when the temperature decreases (3 orders of magnitude for fused silica and 6 orders of magnitude for sapphire when the temperature is reduced from 300 K to 1 K).

If we consider a typical frequency $\omega/2\pi$ of 100 Hz, the adiabatic approximation is never valid for sapphire at low temperature, whereas it is valid for fused silica only for large beam spot size.

| $r_0 = 10^{-2}$ m | Fused silica | | Sapphire | | | |
|------------------|-------------|-----------------|---------------|-----------------|---------------|-----------------|
|                   | $300 K$     | $1 K$           | $300 K$       | $1 K$           |
| $\omega_c/2\pi$ (Hz) | $1.5 \times 10^{-3}$ | $4.8$ | $2 \times 10^{-2}$ | $1.9 \times 10^{1}$ |
| $\Omega^2$ $[\Omega]$ | $1$ | $0.74$ | $0.98$ | $1.3 \times 10^{-4}$ |
| $S_u^{\text{cav}}$ (m$^2$/Hz) | $2.7 \times 10^{-42}$ | $3.4 \times 10^{-45}$ | $1.5 \times 10^{-39}$ | $2.6 \times 10^{-49}$ |
| $S_u^{\text{adiabatic}}$ (m$^2$/Hz) | $2.7 \times 10^{-42}$ | $4.6 \times 10^{-45}$ | $1.5 \times 10^{-39}$ | $2 \times 10^{-45}$ |

| $r_0 = 10^{-4}$ m | Fused silica | | Sapphire | | | |
|------------------|-------------|-----------------|---------------|-----------------|---------------|-----------------|
|                   | $300 K$     | $1 K$           | $300 K$       | $1 K$           |
| $\omega_c/2\pi$ (Hz) | $15$ | $4.8 \times 10^{4}$ | $2 \times 10^{2}$ | $1.9 \times 10^{9}$ |
| $\Omega^2$ $[\Omega]$ | $0.51$ | $3.5 \times 10^{-5}$ | $6.4 \times 10^{-2}$ | $1.4 \times 10^{-10}$ |
| $S_u^{\text{cav}}$ (m$^2$/Hz) | $1.4 \times 10^{-36}$ | $1.6 \times 10^{-43}$ | $1 \times 10^{-34}$ | $2.8 \times 10^{-49}$ |
| $S_u^{\text{adiabatic}}$ (m$^2$/Hz) | $2.7 \times 10^{-36}$ | $4.6 \times 10^{-39}$ | $1.6 \times 10^{-33}$ | $2 \times 10^{-39}$ |

**Table II.** Results for fused silica and sapphire at different temperatures, for a frequency $\omega/2\pi = 100$ Hz and for a beam spot size $r_0 = 1$ cm (top) and $10^{-2}$ cm (bottom). The thermodynamic noise $S_u$ (3rd lines) is reduced as compared to its value obtained within the adiabatic approximation (4th lines) by a factor $\Omega^2 [\Omega]$ (2nd lines).

We first focus on the thermodynamic noise whose values calculated from Eq. (27) are shown in the third lines of tables I. The noise is smaller than the one which would be obtained within the adiabatic approximation (last lines in tables I). The reduction factor, equal to 1/$\Omega^2 [\Omega]$, can be as large as $10^4$ for sapphire at low temperature with $r_0 = 1$ cm, and as large as $10^{10}$ for $r_0 = 10^{-2}$ cm (second lines in tables I).

We immediately see the impact for gravitational-wave interferometers ($r_0 = 1$ cm): for sapphire at low temperature, the thermodynamic noise is more than 4 order of magnitude smaller than for fused silica, so that the choice of the material at low temperature would be just the opposite than, as in BGV, at room temperature. Furthermore, the thermodynamic noise at 100 Hz would be equal to $2.6 \times 10^{-49}$ m$^2$/Hz for sapphire at low temperature, well below the noise at room temperature ($2.7 \times 10^{-42}$ m$^2$/Hz for fused silica). It is also well below the SQL limit due to the external pendulum motion, equal to $3.6 \times 10^{-41}$ m$^2$/Hz for a mirror mass of 30 kg.

Similarly for optomechanical systems with smaller beam spot size ($r_0 \lesssim 10^{-2}$ cm), the thermodynamic noise can be made as small as 2.8 $10^{-49}$ m$^2$/Hz by using sapphire at low temperature, to be compared to a noise larger than $10^{-36}$ m$^2$/Hz at room temperature both for
sapphire and fused silica. It is worth noticing that this very low value is partly due to the reduction factor associated with the non adiabaticity which is of the order of $10^{10}$. This noise can be compared to the SQL limit due to the internal motion of the mirror, which is equal to $\hbar |\chi_{f}| \approx 10^{-22} m^2/Hz$ [22]. At low temperature, the thermodynamic noise is thus smaller than the SQL limit so that optomechanical sensors as in Refs. [13] would be able to get to the SQL limit.

Let us note that the thermodynamic noise for sapphire at $1 \, K$ is mostly independent of the beam spot size $r_0$: similar values are obtained for large spot sizes ($2.6 \times 10^{-49} m^2/Hz$ for $r_0 = 1 \, cm$) and small ones ($2.8 \times 10^{-49} m^2/Hz$ for $r_0 = 10^{-2} \, cm$). This result is due to the fact that, in contrast with fused silica, the adiabatic approximation is not valid for sapphire whenever the beam spot size is, as long as it is smaller than a few centimeters. The non adiabatic condition $\omega < \omega_c$ can actually be written as $r_0 < \sqrt{\kappa/\rho C_\omega}$ (see Eq. [1]). In this non adiabatic regime, we have shown that $J[\Omega]$ evolves as $1/\sqrt{\omega}$ which is proportional to $\sqrt{\omega_0}$ and then to $1/r_0$.

Let us finally note that the results obtained above apply in detail to an actual mirror system when the conditions described in section II are fulfilled. In particular the interplay of the various characteristic lengths (phonon mean free path and thermal lengths at the frequencies of interest, both in the substrate and in the coating, beam spot, coating thickness and mirror size) must in the end allow, in some temperature range, that the thermal properties of the substrate dominate.

This may be not easy to achieve and thus our analysis may correspond to a somewhat idealized situation. At the lowest temperatures $T \leq 0.5 \, K$, the phonon mean free path in the coating gets of the order of its thickness (as for an amorphous silica coating, see for example [15]), while the time constants for phonon local equilibrium continue to stay smaller than $2\pi/\omega$ both for the coating and the substrate. At first sight, it may appear that the equalization of coating versus substrate temperatures will be even more facilitated. However at some intermediate temperature below $10 \, K$ the phonon mean free path in substrates like sapphire may get so long to exceed the dimensions of the mirror. In this case a more ad hoc model has to be considered, in which one speci-
where the function $A [k]$ is given by
\begin{equation}
A [k] = \frac{2}{\rho C} \frac{(1 + \sigma) \alpha T}{k^2 (a^4 k^2 + i \omega)} k_\perp \frac{i \omega k_\perp}{k^2 (a^4 k^2 + i \omega)} |A [k]|^2.
\end{equation}

We now determine the thermoelastic dissipation $W_{\text{diss}}$. The integral over $z$ in Eq. (33) is limited to the volume of the mirror (infinite half space $z \leq 0$). Since $\delta T^{(1)} (r, t)$ is an even function of $z$, $W_{\text{diss}}$ can be written as
\begin{equation}
W_{\text{diss}} = \frac{\kappa}{2T} \int \frac{d^3 k}{(2\pi)^3} k^2 \left\langle \left| \delta T^{(1)} [k, t] \right|^2 \right\rangle,
\end{equation}
where the spatial integration is in the whole space. Using the Bessel-Perseval relation, we can express the dissipated energy $W_{\text{diss}}$ as a function of the temporal average of $|\delta T^{(1)} [k, t]|^2$, which is equal to $2 |A [k]|^2$ (Eq. (39)):
\begin{equation}
W_{\text{diss}} = \frac{\kappa}{2T} \int \frac{d^3 k}{(2\pi)^3} k^2 \left\langle |\delta T^{(1)} [k, t]|^2 \right\rangle.
\end{equation}

Using Eq. (40), we finally obtain
\begin{equation}
\frac{W_{\text{diss}}}{F_0^2} = \frac{4T}{\rho C} \alpha^2 (1 + \sigma)^2 \omega^2 I,
\end{equation}
where the integral $I$ is given by
\begin{equation}
I = \int \frac{d^3 k}{(2\pi)^3} \frac{a^2 k_\perp^2}{k^2 (a^4 k^2 + i \omega^2)} e^{-k_\perp^2 r_0^2/2}.
\end{equation}

This expression allows to determine the spectral density $S_\delta [\omega]$ of the displacement $\delta u$ from the fluctuation-dissipation theorem (Eq. (22)). One gets the result given in the text by Eq. (13):
\begin{equation}
S_\delta [\omega] = 32 \frac{\alpha^2 (1 + \sigma)^2 k_B T^2}{\rho c^3} I.
\end{equation}