Growth of the Native Xerophyte *Convolvulus cneorum* L. on an Extensive Mediterranean Green Roof under Different Substrate Types and Irrigation Regimens

Lamprini Tassoula and Maria Papafotiou1
Laboratory of Floriculture and Landscape Architecture, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece

Georgios Liakopoulos
Laboratory of Plant Physiology and Morphology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece

Georgios Kargas
Laboratory of Agricultural Hydraulics, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece

Additional index words. water stress, soil, pumice, perlite, grape marc compost, semi-arid, chlorophyll fluorescence

Abstract. The possibility of using *Convolvulus cneorum* L., a native Mediterranean xerophyte, with compact dome-like canopy and extended blooming period, on extensive green roofs in areas with semiarid Mediterranean climate was investigated in a 27-month experimental period, which included three summers (the dry season of the year). The aim was to preserve the local character and biodiversity, as well as to reduce water consumption and construction weight. *Convolvulus cneorum* rooted cuttings were planted in the beginning of July 2011 in experimental modules on a fully exposed flat roof at the Agricultural University of Athens, with a green roof infrastructure (substrate moisture retention and protection of the insulation, drainage element, and filter sheet). Two types of substrate with 10 cm depth were used, one with soil, i.e., grape marc compost:perlite:soil:pumice (3:3:2:2, v/v) and a lighter one without soil, i.e., grape marc compost:perlite:pumice (3:3:4, v/v). Two irrigation frequencies were applied during the dry periods, i.e., every 5 days (normal) and 7 days (sparse) in 2011 and 2012 and every 4 days (normal) and 6 days (sparse) in 2013. The chemical properties of the two substrates were similar, while their physical properties differ slightly as the substrate that contained soil was holding more water at saturation and it had lower saturated hydraulic conductivity and higher easily available water (EAW). The substrate type affected growth since plant height and diameter, shoot number, and aboveground dry weight were promoted by the soil substrate. Irrigation frequency did not affect plant growth. However, plants cultivated on soil substrate and irrigated normally had the highest growth, particularly compared with plants in soilless substrate under sparse irrigation. Flowering was abundant in April (spring) and in the first year flower number was promoted by the soil substrate. During the dry periods, sparse irrigation resulted in increased stomatal resistance one day before irrigation, indicating that water availability was marginal for the plants, while normal transpiration rate was restored the day after irrigation. According to photosystem II photochemical parameters measured one day before and the morning after an irrigation event, no evidence of damage to the photosynthetic apparatus was recorded in any of the treatments. In general, after 27 months of culture, plant size and roof coverage was appearing more or less similar in all the experimental treatments, therefore the combination of the lighter soilless substrate with sparse irrigation is highly suggested for *C. cneorum* cultivation on Mediterranean green roofs.

Eighty percent of European citizens live in urban areas and the quality of their life and their environment depends on how cities look and function. European urban areas face several environmental challenges including poor air quality, high level of greenhouse gas emissions and ambient noise, neglect of the built environment, and low biodiversity (European Commission, 2007). Green roofs can contribute to addressing these challenges. A number of reviews and books (Berardi et al., 2014; Dunnett and Kingsbury, 2008; Getter and Rowe, 2006; Oberndorfer et al., 2007; Santamouris, 2012) refer to ecosystem services provided by green roofs in urban areas. Thus extensive green roofs are generally seen as a desirable building element providing numerous benefits, where water availability does not restrict their implementation (Schweitzer and Erell, 2014).

In Mediterranean countries, citizens have not turned to green roofs; however, the number of green roofs constructed is constantly increasing. As most Mediterranean areas have long dry summers, requiring irrigation to sustain vegetation, water use is a major issue of concern in green roof constructions at these areas. *Sedum* taxa are a good choice for extensive green roofs, combining high drought tolerance with shallow root system that is harmless for the roof insulation membranes (Durham et al., 2007; Rowe et al., 2012). Recognizing that green roofs are a means to increase biodiversity and habitat (Cook-Patton and Bauerle, 2012), as well as local character in urban areas, several researchers have turned their interest in native Mediterranean perennials, mostly xerophytes, capable of growing on extensive green roofs (Benvenu and Bacci, 2010; Kotsiris et al., 2012; Nektarios et al., 2011; Papafotiou et al., 2012, 2013). These species are usually taller and have larger canopy diameter than *Sedum* taxa and, thus, could be more effective than the latter in reducing water runoff from green roofs (Nagase and Dunnett, 2012; Whittinghill et al., 2015) and provide better thermal insulation of the building (Blanusa et al., 2013; Theodosiou, 2003; Vanuytrecht et al., 2014). Apart from biodiversity reasons, mixing multiple species in a green roof was shown to enhance plant performance and ecological services through optimal water loss and roof surface cooling (Butler and Orians, 2011; Dvorak and Volder, 2010; Lee et al., 2014). A research on green roofs at work places in Chicago and Toronto showed that “although ‘wilder’ prairie-style green roofs are not always well liked, they are more likely to be associated with fascination, creative thinking and calm wellbeing than *Sedum* green roofs, linking to an ethic of care and providing ‘loose fit’ places for better health and relaxing office workers” (Loder, 2014). Plant characteristics related to survival, growth, and performance of key ecosystem services could be used to simplify the process of plant selection for green roofs (Farrell et al., 2013).

Another issue to be faced in green roof constructions at Mediterranean cities is the weight of the construction, as most of the buildings in the center of the old Mediterranean cities are aged and it is likely they have low weight-bearing capacity. Speaking about extensive or semi-intensive green roofs, the load of the construction is mainly dependent on the type and depth of the substrate, and the weight of the plants is not so determinant (Scrivens, 1990). Agro-industrial wastes, locally produced, which are used in composting, as well as recycled materials are recommended for green roof substrates (Getter and
Rowe, 2006; Molineux et al., 2009), contributing to the reduction of construction cost and carbon footprint. In this work, grape marc compost was used, as it has been found to be very efficient for various horticultural applications (Papafotiou et al., 2011a, 2011b; Reis et al., 2001), including green roofs (Papafotiou et al., 2012, 2013). It can also suppress plant pathogens, such as *Rhizoctonia solani*, *Sclerotium rolfsii* (Gorodecki and Hadar, 1990; Mandelbaum et al., 1985), and *Pythium* soilborne mycosis (Santos et al., 2008).

C. cneorum L. (silverbush) is a small evergreen Mediterranean shrub, in the Comvolucaee family, forming a low mound to 60 cm in height, with a similar spread. It has gray-green elliptical leaves covered in fine hairs that give the plant a silvery appearance, and in spring it bears numerous white flowers (occasionally pinkish), 20–35 mm in diameter, borne in dense terminal heads and may almost completely cover the plants (Blamey and Grey-Wilson, 1988). Its fruit is hairy and poisonous and the plant is included in the FDA (U.S. Food and Drug Administration) Poisonous Plant Database (Hartman, 1977). It is a C_{3} plant (Sage, 2001) and includes laticifers that contribute to its defense against herbivores (Fineran et al., 1988). It prefers calciferous and alkaline soil, full sun, good drainage, and it sprouts up in rocky coastal areas; it is cold hardy to –9 °C (Blamey and Grey-Wilson, 1988; Irish, 2006). *C. cneorum* is used as an ornamental plant, often in earthenware pots, because of its nice arch shoots, it succeeds in groundcover and is convenient (Van Mechelen et al., 2012, 2013). It can also suppress plant pathogens, such as *Sclerotium rolfsii* (Gorodecki and Hadar, 1990; Mandelbaum et al., 1985), and *Pythium* soilborne mycosis (Santos et al., 2008).

Irrigation and meteorological data. The first dry period, from planting until Oct. 2011, was characterized by very low rainfall. After Oct. 2011, irrigation was applied manually to allow water to drain off the container. The first week after planting, irrigation was applied every 2 d for the plants to overcome transplant stress. On 22 July 2011, the plants were irrigated and then exposed to a preliminary drought experiment for determining the number of days that the plants could withstand without irrigation. Daily measurements of the substrate moisture (% v/v) were taken (three measurements from each module at 1900 to 2000 h) using a handheld moisture meter (HH12; Delta-T devices, Cambridge, UK), with a soil moisture dielectric sensor (WET-2; Delta-T devices) inserted from the surface that measured 65 mm in depth and 45 mm in width. It was found that plants showed wilting symptoms 7 d after irrigation. On this day, the mean substrate moisture measured was 8% to 11% v/v. Therefore, this was decided to be the “sparse” irrigation frequency. The “normal” irrigation frequency was decided to be when substrate moisture was of about 17% to 20% v/v and this was measured on day 5. Substrate moisture tests were carried out until 15 Oct. 2011 when irrigation stopped. At the beginning of May 2012, the irrigation schedule was applied as in Summer 2011. From 15 July 2012, manual irrigation was replaced by automatic drip irrigation on the surface of the media, applied before sunrise by two drippers placed at equal distances from the center of the module and the plants (dripper supply 3.3 L h\(^{-1}\), irrigation period: 60 min, adequate to allow water to drain off the container). Substrate moisture tests were carried out regularly from May until 15 Oct. 2012, when irrigation stopped. Based on substrate moisture tests in May 2013, when plants were bigger compared with previous years, the automatic irrigation frequency during Summer 2013 was set every 4 d (normal) and 6 d (sparse), to have substrate moisture before irrigation was same with that of previous years.

The ambient average temperature, relative humidity, total radiation, and precipitation (Fig. 1A and B) were recorded by the Laboratory of General and Agricultural Meteorology at the Agricultural University of Athens. During the three water stress periods applied to the experimental plants, there were almost no rain incidents (Fig. 1A).

Plant growth evaluation. Plant growth was evaluated monthly measuring plant height (from a mark put at planting on each container at substrate level to the upper plant point) and plant diameter (average of the biggest diameter and its perpendicular). Flower number is presented for April, when the flower number peaked, as flower number per plant and as flower number per plant divided by plant diameter. At the end of the experiment in 25 Oct. 2013 (27 months after planting), the dry weight of the aboveground part and the root system of the plants were measured after oven-drying at 70 °C for 8 d. For the latter, as it was impossible to separate the root system of each individual plant in an...
experimental module and to excise the roots that were penetrated in the layering system of the module, a quadrat cube (35 cm × 25 cm surface) of the substrate from the middle of each experimental module was taken as a sample. The substrate was carefully washed off the root biomass under running tap water and over a fine mesh to collect possible roots that might break off during washing.

Physiological parameters. Leaf stomatal resistance \(R_{s,t} \) was recorded with an AP4 Porometer (Delta-T devices) in July (the hottest month) 2012 and 2013, in two young fully expanded leaves per plant, one day before and the morning after an irrigation event. \(R_{s,t} \) recordings were performed between 1000 and 1200 h, since minimum stomatal resistance is limited to this period judging from preliminary diurnal recordings of \(R_{s,t} \) in well-irrigated plants. The maximum quantum yield of PSII photochemistry \(\Phi_{PSII} \) was measured in all plants in July 2012 and 2013, the day before and the day after an irrigation event, with a Photosynthesis Yield Analyzer (MINI-PAM Portable Fluorometer; Walz, Effeltrich, Germany). Eight measurements per treatment (one on each plant) were taken from healthy leaves of the same growth stage, with similar orientation and exposure to sunlight, before sunrise. The intensity of the measuring light of the MINI-PAM was set once so that chlorophyll fluorescence yield base levels \(F_o \) were within the limits set by the manufacturer and held constant thereafter. Maximum fluorescence yield \(F_m \) was recorded by applying a saturation pulse of 12,000 μmol quanta-m⁻²·s⁻¹ for a 0.8 s duration and \(\Phi_{PSII} \) was calculated as \((F_m - F_o)/F_m \).

Substrate characteristics. Physical and chemical properties of the substrates and their components (Fig. 2; Tables 1 and 2) were measured in three samples, which were mixed and taken as one measurement. The physical properties were determined after saturating for 48 h. Samples were prepared as detailed in Federal Compost Quality Assurance Organization (FCQAO), 1994. Hydraulic conductivity at saturation \(K_s \), bulk density, and water retention were evaluated according to Reynold and Elrick (2002), Blake and Hartge (1986), and Klute (1986), respectively. Easily available water was determined from water retention curves as the quantity of water released when the suction was increased from 10 to 50 cm. Substrate pH was determined in 1:2.5 volume water extracts and EC was determined in 1:5 volume water extracts (FCQAO, 1994) according to Peech (1965) and Bower and Wilcox (1965), respectively. In compost, total nitrogen (N) and phosphorus (P) were measured by the Kjeldahl method and the dry ashing procedure, respectively (Karla, 1998). In soil, plant-available P (Olsen et al., 1954), and total N were measured by two-way analysis of variance (ANOVA) (F test, discrete variables followed the normal distribution). The treatment means were arranged following the completely randomized design. The significance of the results was tested by two-way analysis of variance (ANOVA) (F test, discrete variables followed the normal distribution). The treatment means were compared using Fisher’s least significant difference (LSD) or Student’s t test at 0.05. JMP version 8 statistical software (SAS Institute Inc., Cary, NC) was used.

Results and Discussion

C. cneorum was successfully established on the green roof under all experimental treatments although it was planted at the beginning of summer that is the hot and dry period of the year. Statistical analysis showed that there was no interaction of the main experimental factors (Table 3). Soil substrate
 favored shoot number, as well as final canopy height, diameter, and dry weight, while irrigation frequency, normal (n) or sparse (s) and substrate type (with soil: 3GC:3P:2S:2Pu or soilless: 3GC:3P:4Pu), and the effect of the experimental treatments, affected flowering in the first year (2012). Plants that received normal irrigation developed slightly larger diameter compared with plants in all other treatments (Fig. 3). Concerning the monthly increase of plant diameter during the 27-month culture period (Table 3), it can be seen that during the first dry period (Summer 2011) and the following autumn, diameter increase was strongly promoted by soil substrate. Although irrigation frequency did not affect plant establishment during the first dry period (Figs. 3 and 4), it can be seen that during the first dry period (Summer 2011) and the following autumn, diameter increase was strongly promoted by soil substrate. Although irrigation frequency did not affect plant establishment at the beginning of the experiment, plants grew bigger, the roots went deeper into the substrate where the rooting system of the young plants was protected, and the moisture retention mat, similarly to the soil substrate, reduced the distance between the shoots and the drainage layer (Table 1; Fig. 2) possibly resulting in lower moisture content at the upper level of the substrate (Table 1). The substrates had similar pH at planting and at the end of the experiment in the soil substrate (Table 1). The substrates had similar pH at planting and at the end of the experiment in the soil substrate (Table 1). The substrates had similar pH at planting and at the end of the experiment (Table 1), thus a differential effect of pH on nutrient availability to plants is unlikely.

During spring and up to July 2012, plants in soilless substrate grew faster in diameter and reached the diameter size of those in soil substrate. Plants growing in soil substrate developed more lateral shoots compared with plants in soilless substrate (Table 3), thus we can assume that the elongation of those laterals and the terminal flowering in spring, the latter being much more pronounced in soil substrate (Table 3), prevented the elongation of the main shoots and consequently the horizontal growth of the plants. Later, from July to the end of the growing season (Nov. 2012), there was an indication that plants in soil substrate and normal irrigation developed slightly larger diameter compared with plants in all other treatments (Fig. 3). During the period of Summer 2011–Autumn 2012, plant height, contrary to plant...
height should also be taken into account, as taller plants such as plants of larger diameter may be more effective in reducing water runoff from green roofs (Nagase and Dunnett, 2012; Whittinghill et al., 2015).

The organic content in the substrates was in accordance with the FLL (2010) guidelines for extensive green roofs. Using grape marc compost in both substrates at 30% likely positively affected plant growth, as according to Dunnett and Nagase (2010) substrates containing more than 10% organic matter provoke efficient plant growth, favoring compensation of the adverse conditions occurring on a green roof. Apart from N, the high K content of the grape marc compost (Table 2) was possibly a major determinant of plant growth, particularly under the adverse conditions of a green roof, namely drought, heat, and wind (Cakmak 2005; Egilla et al., 2001). It is remarkable that at the end of the experiment (Oct. 2013), under sparse irrigation plants developed similar diameter and height in both substrate types (Figs. 3 and 4). In agreement with previous studies with Mediterranean xerophytes cultured on green roofs in shallow substrates (Papafotiou et al., 2012, 2013), limited irrigation during summer period did not lead to significant reduction of plant growth. Because roots were able to directly draw water from the drainage layer and the moisture retention layer, it can be assumed that substrate moisture was not that influential on plant growth. Apparently, this is part of the advantage of using this type of infrastructure in green roofs, because during the dry period it allows reuse of a big amount of drained water by the plants, significantly influencing the amount of water available to plants, particularly to shallower substrates (Savi et al., 2013).

R_{leaf}, measured in the hottest month of the year (July 2012 and 2013) one day before irrigation, was increased in plants under sparse irrigation indicating water limitation (Table 4). R_{leaf} was also affected by the substrate type, and was increased in plants grown in soil substrate. The increased water limitation of plants grown in soil substrate was probably due to higher evapotranspiration. This can be partially ascribed to larger aboveground biomass of plants grown in soil substrate, particularly under normal irrigation (Table 4; Figs. 3 and 4).

Values of Φ_{PSII}, one day before irrigation were reduced for all treatments following the increase of R_{leaf} possibly due to restricted supply of CO$_2$ to carboxylation centers. However, the magnitude of decrease of Φ_{PSII} under drought indicates that the PSII photochemistry was functional independently of the experimental treatment. Moreover, the recovery of Φ_{PSII} values after water supply at optimal levels during all stress periods (Table 4) indicate that no permanent photoinhibition was developed because of sparse irrigation in any of the substrates tested. The Φ_{PSII} parameter is used for the assessment of damage of water stress to the photosynthetic apparatus. A slight decrease
Table 4. The effect of the main experimental factors, i.e., irrigation frequency, normal (n) or sparse (s) and substrate type, with soil: 3GC:3P:2S:2 Pu or soilless: 3GC:3P:4Pu, and the effect of the experimental treatments, on leaf stomatal resistance (R_{leaf}, S cm$^{-1}$) and on maximum quantum yield of PSII photochemistry (Φ_{PSII}), one day before and one day after an irrigation event, in July 2012 and 2013.

Main factor	R_{leaf}, before, 2012	R_{leaf}, after, 2012	R_{leaf}, before, 2013	R_{leaf}, after, 2013	Φ_{PSII}, before, 2012	Φ_{PSII}, after, 2012	Φ_{PSII}, before, 2013	Φ_{PSII}, after, 2013	
n	7.3 b*	4.7 a	8.7 b	5.4 a	0.813 a	0.842 a	0.780 a	0.855 a	
s	12.8 a	5.5 a	12.3 a	6.1 a	0.815 a	0.842 a	0.794 a	0.845 a	
Soil	12.0 a	5.0 a	12.2 a	5.9 a	0.818 a	0.840 a	0.788 a	0.841 b	
Soiless	8.1 b	5.1 a	8.9 b	5.6 a	0.815 a	0.843 b	0.786 a	0.859 a	
$F_{\text{irrigation}}$	*	*	*	*	NS	NS	NS	NS	
$F_{\text{substrate}}$	*	*	*	*	NS	NS	NS	NS	
$F_{\text{irrigation} \times \text{substrate}}$	NS	*	NS	*	NS	NS	NS	NS	
Treatment	Soil/n	9.6 a	5.7 ab	10.4 ab	6.8 ab	0.819 a	0.841 a	0.774 a	0.847 bc
	Soil/s	13.1 a	4.3 bc	14.6 bc	5.1 bc	0.818 a	0.839 a	0.802 a	0.835 c
	Soiless/n	5.0 b	7.1 b	4.0 c	0.818 a	0.842 a	0.787 a	0.864 a	
	Soiless/s	11.2 a	6.7 a	10.7 ab	7.2 a	0.812 a	0.844 a	0.785 a	0.855 ab

*Mean comparison in columns with each main factor with Student’s t test at $P \leq 0.05$.

*Means followed by the same letter are not significantly different at $P \leq 0.05$.

*df $F_{1,60}$.

* = significant at $P \leq 0.05$; NS = nonsignificant.

of this parameter often accompanies mild water stress conditions despite the significant decrease of gas exchange parameters, while severe water stress causes pronounced effects of this parameter often accompanies mild water stress conditions despite the significant decrease of gas exchange parameters, while severe water stress causes pronounced effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168:521–530.

Cook-Patton, S.C. and T.L. Bauerle. 2012. Potential benefits of plant diversity on vegetated roofs: A literature review. J. Environ. Manage. 106:347–363.

Dunnett, N. and A. Nagase. 2010. The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs. Landsc. Urban Plan. 103(2):230–236.

Dunnett, N.P. and N. Kingsbury. 2008. Planting green roofs and living walls. 2nd ed. Timber Press, Portland, OR.

Durham, A.K., D.B. Rowe, and C.L. Rugh. 2007. Effect of substrate depth on initial coverage, and survival of 25 succulent green roof plant taxa. HortScience 42:588–595.

Dvorak, B. and A. Volder. 2010. Green roof vegetation for North American ecoclimates: A literature review. Landsc. Urban Plan. 96 (4):197–213.

Egilla, J.N., F.T. Davies, and M.C. Drew. 2001. Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Lepchaean: Plant growth, leaf macro- and micronutrient content and root longevity. Plant Soil 229:213–224.

European Commission. 2007. Integrated environmental management. Guidance in relation to the thematic strategy on the urban environment. Technical report 2007-013. European Commission. <http://ec.europa.eu/environment/urban/psd/iegmd.pdf>.

Farrell, C., C. Szo, N.G.S. Williams, and S.K. Arndt. 2013. High water users can be drought tolerant: Using physiological traits for green roof plant selection. Plant Soil 372:177–193.

Fassman, E.A., R. Simcock, and E. Voyde. 2010. Extensive green roofs may be considered as an adaptation strategy against climate change in urban areas. Appl. Energy 115:411–428.

Ghaffarian Hoseini. 2014. State-of-the-art review of the performance of Mediterranean xerophytes in green roofs. Appl. Energy 115:411–428.

Kotsinis, G., P.A. Nektarios, and A.T. Parazkevopoulos. 2012. Lavandula angustifolia growth and physiology is affected by substrate type and depth when grown under Mediterranean semi-intensive green roof conditions. HortScience 47:311–317.

Lee, K.E., K.J.H. Williams, L.D. Sargent, C. Farrell, and N.S. Williams. 2014. Living roof pre-fabrication: Region selection and performance of green roof systems. J. Environ. Manage. 126:94–106.

Loder, A. 2014. There’s a meadow outside my workplace: A phenomenological exploration of aesthetics and green roofs in Chicago and Toronto. Landsc. Urban Plan. 122:152–159.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.

Molineux, C.J., C.H. Fentiman, and A.C. Gange. 1994. Methods book for the analysis of soil. 2nd ed. Blackwell, Oxford.
extensive green roofs: Effects of plant species, diversity and plant structure. Landsc. Urban Plan. 104:356–363.

Nektarios, P.A., I. Amountzias, I. Kokkinou, and N. Nikolou. 2011. Green roof substrate type and depth affect the growth of the native species Dianthus fruticosus under reduced irrigation regimes. HortScience 46:1208–1216.

Oberndorfer, E., J. Lundholm, B. Bass, R.R. Coffman, H. Doshi, N. Dannett, S. Gaffin, M. Kohler, K.K.Y. Liu, and B. Rowe. 2007. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 57:823–833.

Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extracting with sodium bicarbonate. USDA Circ. 939. U.S. Gov. Print. Office, Washington, D.C.

Papafotiou, M., N. Pergialioti, I. Tassoula, I. Massas, and G. Kargas. 2013. Growth of native aromatic xerophytes in an extensive Mediterranean green roof, as affected by substrate type and depth, and irrigation frequency. HortScience 48:1327–1333.

Papafotiou, M., N. Pergialioti, E.A. Papanastassatos, I. Tassoula, I. Massas, and G. Kargas. 2012. Effect of substrate type and depth and the irrigation frequency on growth of semiwoody Mediterranean species in green roofs. Acta Hort. 990:481–486.

Papafotiou, M., E.A. Papanastassatos, I. Massas, and I. Chatzipavlidis. 2011b. Combined effect of inorganic fertilization and various composts from agroindustrial wastes on Ficus benjamina growth [in Greek]. Proc. Hellenic Soc. Hort. Sci. 14(b):443–448.

Papafotiou, M., G. Kargas, and I. Lytra. 2005. Olive-mill waste compost as a growth medium component for foliage potted plants. HortScience 40:1746–1750.

Peech, M. 1965. Hydrogen-ion activity, p. 914–925. In: C.A. Black (ed.). Methods of soil analysis. Part 2: Chemical and microbiological properties. ASA, SSSA, Madison, WI.

Posch, S. and L.T. Bennett. 2009. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol. 11:83–93.

Reis, M., H. Inácio, A. Rosa, J. Caceddilio, and A. Monteiro. 2001. Grape marc compost as an alternative growing media for greenhouse tomato. Acta Hort. 554:75–82.

Reynold, W.D. and D.E. Elrick. 2002. Constant head soil core method, p. 804–808. In: Methods of soil analysis. Part 4: Physical methods. SSSA, Madison, WI.

Roe, D.B., K.L. Getter, and A.K. Durhman. 2012. Effect of green roof media depth on Crassulacean plant succession over seven years. Landsc. Urban Plan. 104:310–319.

Sage, R.F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Review article. Department of Botany, University of Toronto, Toronto, ON, Canada.

Sanantouris, M. 2012. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103:682–703.

Santos, M., F. Dianez, M. Gonzalez del Valle, and J. Tello. 2008. Grape marc compost: Microbial studies and suppression of soil-borne mycosis in vegetable seedlings. World J. Microb. Biot. 24(8):1493–1505.

Savi, T., S. Andri, and A. Nardini. 2013. Impact of different green roof layering on plant water status and drought survival. Ecol. Eng. 57:188–196.

Scrivens, S. 1990. Urban landscape and roof gardens, p. 131–151. In: B. Clouston (ed.). Landscape design with plants. 2nd ed. Butterworth-Heinemann Ltd., Oxford, UK.

Shackleton, K., N. Bell, H. Smith, and L. Davies. 2012. The role of shrubs and perennials in the capture and mitigation of particulate air pollution in London. Centre for Environmental Policy, Imperial College, London, UK.

Schweitzer, O. and E. Erell. 2014. Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy Build. 68:25–32.

Theodosiou, T.G. 2003. Summer period analysis of the performance of planted roof as a passive cooling technique. Energy Build. 35(9):909–917.

Thomas, G.W. 1982. Exchangeable cations, p. 159–166. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.). Methods of soil analysis. Part 2: Chemical and microbiological properties. ASA, SSSA, Madison, WI.

Van Mechelen, C., T. Dutoit, and M. Hermy. 2014. Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc. Urban Plan. 121:81–91.

Vanuytrecht, E., C. Van Mechelen, K. Van Meerbeek, P. Willems, M. Hermy, and D. Raes. 2014. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 122:68–77.

Whittinghill, L.J., D.B. Rowe, J.A. Andresen, and B.M. Cregg. 2015. Comparison of stormwater runoff from Sedum, native prairie, and vegetable producing green roofs. Urban Ecosyst. 18:13–29.