Antagonistic effects of some commonly used herbs on the efficacy of Artemisinin derivatives in the treatment of malaria in experimental mice

O. A. Idowu¹, A. S. Babalola¹* and J. Olukunle²

Abstract

Background: The use of herbs in combination with drugs in treatment of malaria is increasing, and this necessitated research on the possible antagonistic, additive, potentiating or synergistic properties of commonly used plants with standard drugs in treatment of malaria. In this study, extracts of Morinda morindiodes (Mm) root, Morinda lucida (ML) leaf and Vernonia amygdalina (Va) leaf were combined with artesunate (Ar) and assessed for anti-malarial activities against established Plasmodium berghei NK65 infection in 45 experimental mice randomly distributed into 9 groups and treated at a graded dose of 100 mg/kg for the herbs and herbs–drugs combination, while chloroquine and artesunate was administered at 10 mg/kg

Results: At the end the sixth day, Mm root extract, ML leaf and Va leaf extract reduced parasitaemia by 86.83%, 84.20% and 48.10%, respectively (p < 0.05). A total parasite clearance (100% chemosuppression) was observed in the group treated with artesunate and chloroquine. However, the combination of each extracts of M. lucida, M. morindiodes and V. amygdalina with artesunate significantly reduced the chemosuppression to 89.93%, 89.43% and 86.93%, respectively.

Conclusion: This study showed that though the extracts of Morinda morindiodes and Morinda lucida possess convincing antiplasmodial effect when administered singly, the combination of these extracts with artesunate could not produce total parasite clearance. There is need to enlighten the public on the possible setback associated with combined use of antimalarial plants with antimalaria drugs.

Keywords: Malaria, Treatment, Plasmodium, Herbs, Artesunate, Antagonist

Background

Malaria, a parasitic disease caused by protozoans of the genus Plasmodium, remains the world most devastating human parasitic infection (WHO 2013, 2020). Antimalarial drugs have been utilized in diverse ways to prevent or treat malaria infections in malaria endemic areas for many years. The issue of resistance of malaria parasite to anti-malaria drugs has been a lot of concern recently (WHO 2015; Ouji et al. 2018). As a result, researches are ongoing with aims of discovering more effective agents against the parasites. Currently, there are reports of parasite resistance to the currently developed Artemisinin combination therapy in some regions of Sub-Saharan Africa (WHO 2015; Ouji et al. 2018).

In recent times, natural products of plant sources have been given a lot of consideration as the main source of new, safer and more effective bioactive compounds with medicinal properties (Dike et al. 2012; Afolabi and Abejide 2020). Studies have documented over 1200

*Correspondence: ayodelebabalola2011@gmail.com
¹ Malaria Research Unit, Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
Full list of author information is available at the end of the article
plant species from 160 families used in the treatment of malaria or fever (Wilcox and Bodeker 2001). In fact, it is believed strongly that malaria would have destroyed Africa, if the herbs used to treat malaria by our ancestors were not effective. In Nigeria, malaria has become a household name, and the use of herbs to treat its symptoms is well established. A study revealed that different tribes in Nigeria maintain some sort of traditional medicine practitioner for treatment of various diseases including malaria (Ezekwesili and Okaka 2019). Furthermore, surveys conducted in different parts of Nigeria revealed many plants that had been identified by users to be potent against malaria (Nwachukwu et al. 2010; Idowu et al. 2010; Oludele and Olufunso 2018).

Vernonia amygdalina (bitter-leaf commonly found in West and Central African countries and _Morinda lucida_ commonly found in northern and southern Nigeria, Fer nadopo and over the Congo basin (Keay 1989) have been proven to have anti-plasmodial or anti-malarial activities against drug sensitive _Plasmodium berghei_ in mice (Abosi and Raserokere 2003; Bello et al. 2009; Ebiloma et al. 2011; Paula et al. 2011; Lawal et al. 2012; Afolabi and Abejide 2020). A recent study has demonstrated that _Morinda lucida_ possesses antimalarial properties attributed to anthraquinones (Idowu et al. 2010). The stem bark extract as well as the aqueous leaf extract of _M. lucida_ has been reported to have chemosuppression properties ranging between 70% to 96.4%, respectively (Obih et al. 2008; Ebiloma et al. 2011; Afolabi and Abejide 2020). These plants are among the most frequently used plants by healers and herbalists in Nigeria against malaria. Studying herb–drugs interactions in human is faced with ethical challenges; hence, animal models are used as substitutes to explain human related phenomena. Therefore, this study was conducted to determine the possible antagonistic effects of some commonly used herbs on the efficacy of Artemisinin derivatives in the treatment of malaria in experimental mice.

Methods

Plant collection, identification and extraction

Fresh leaves of _M. lucida, V. amygdalina_ and roots of _M. morindiodes_ were collected from locations around Odeda Local Government, Abeokuta. Permission to collect the plants was granted by the state Ministry of Forestry and later by the owners of land where the plants were located. Visual identification and authentication were carefully done by a plant taxonomist Dr. Ekundayo of the Forestry Research Institute of Nigeria (FRIN).

Preparation of crude extract

The plant parts were washed, dried at room temperature (28 ± 2°C) and then pulverized using plant grinder. These were soaked separately in distilled water for 24 h and later filtered. The filtrates were afterward evaporated to dryness over water bath at 35°C for further use (Idowu et al. 2014).

Parasites

Sample of _P. berghei_ (NK-65), obtained from National Institute of Medical Research (NIMR), Lagos, Nigeria, was used for the research to evaluate the anti-malarial activity of the plant materials used in this study.

Source of animals

A total of 45 (sample size was determined according to the resource equation formulae my Charan and Kanthasiramale 2013) BALB/c mice (each weighing between 23.0 and 23.2 g) with mean weight of 23.2 ± 0.2 g and same physiological age commercially obtained from Nigerian Institute of Medical Research (NIMR), Yaba, were used for this study. The mice were free of pathogens and have not been used for any initial experiment.

Animal housing and husbandry

The mice were kept in plastic cages which contained dried wood shavings as beddings at room temperature (28 ± 2°C) and were fed with standard ration (Vital Feeds Limited, Ibadan) and clean water in the animal house. The mice were kept at 12 h light and dark cycle.

A. et al. Bull Natl Res Cent (2020) 44:176
Experimental design
A total of 45 mice (each weighing between 23.0 and 23.2 g) were randomly divided into 9 groups. Six out of the nine groups were treated with the extracts (singly and in combination with artesunate) using oral administration with a single dose per day. A dosage of 100 mg/kg body weight was administered to each mouse for treatment with single plant extract. The untreated group served as the negative control, while the group treated with artesunate and chloroquine at a dose of 10 mg/kg body weight served as the positive control for the experiment. Groups 1–3 were treated with the plant extracts at 100 mg/kg, while groups 4–6 were treated with combination of the plant extracts and artesunate. The treatment continued daily for six consecutive days. The experimental groups are presented in Table 1. At the end of experiment, the mice were kept for further studies.

Inoculation of experimental mice
Malaria parasite inoculums were prepared by collecting blood samples from donor mouse. The blood collected from the donor mouse was then diluted with normal saline such that 0.1 ml contained 10^4 of the parasite.

Forty-five (45) mice were divided into nine (9) groups of five mice each; all the mice were infected with the parasites by inoculating them intraperitonially with 0.1 ml of the prepared blood solution.

Treatment of infected mice
Leaves extracts of *M. lucida* (Leaves), *M. morindiodes* (Root) and *V. amygdalina* (Leaves) and their various combinations with artesunate were administered to the mice orally with the aid of an oral cannula at 100 mg/kg bodyweight. Single administration with chloroquine and artesunate was administered at 10 mg/kg bodyweight, respectively.

Measurement of experimental outcomes

Estimation of percentage chemosuppression
Each day, blood samples were taken from the caudal vein of each mouse on a clean glass slide; thin films were prepared and stained with 10% Giemsa solution. The parasitaemia was estimated by careful examination of the well-stained thin blood film. Parasitaemia was determined by dividing the number of parasitized red blood by the total number of red blood cells and then multiplied by 100 to express it as a percentage.

Percentage malaria parasitaemia (%) and Day 6 chemosuppression (%) were determined using the formula below:

\[
\text{Percentage malaria parasitaemia} = \frac{\text{Number of parasitized RBC}}{\text{Total number of RBC counted}} \times 100
\]

\[
\text{Day 6 Malaria chemosuppression} = \frac{\text{MP of untreated at day 6} - \text{MP of treated at day 6}}{\text{MP of untreated at day 6}} \times 100
\]

where MP is the percentage malaria parasitaemia.

Statistical analysis
Raw data obtained from the laboratory were analysed using one-way analysis of variance (ANOVA) to compare means across groups using Statistical Product and Service Solution (SPSS), version 21.0 (Chicago, IL). The data

Table 1 Experimental plans for test animals and control

Groups	Experimental plan	Remarks
1, 2, 3	Were infected with *Plasmodium berghei* and administered with 100 mg/kg body weight of *Morinda lucida*, *Morinda morindiodes* and *Vernonia amygdalina* plant extracts, respectively, for 6 consecutive days	Treatment
4, 5, 6	Were infected with *Plasmodium berghei* and administered with 100 mg/kg body weight of combination of *Morinda lucida*, *Morinda morindiodes* and *Vernonia amygdalina* plant extracts with artesunate, respectively, for 6 consecutive days	Herb–drug combined treatment
7, 8	Were infected with *Plasmodium berghei* and administered with 10 mg/kg body weight of artesunate and chloroquine for 6 consecutive days	Drug treatment control
9	Were infected but not Treated	Untreated control
Results

A steady and consistent reduction in parasitaemia was observed in mice treated with all plant extracts from day 1 to 6. However, the level of chemosuppression varies with each plant extracts (Table 2).

The root extract of *M. morindiodes* was observed to produce a high reduction in parasitaemia (Table 2) with chemosuppression of 86.83% on day 6 (Fig. 1). Furthermore, the root extract of *M. morindiodes* recorded a significantly higher day 1 ($p < 0.05$) chemosuppression than the positive control (artesunate) (Fig. 1). There was a close margin between the chemosuppression demonstrated by *M. morindiodes* and artesunate even at day 2 of treatment. Though chemosuppression increased significantly in groups treated with *M. morindiodes* in the subsequent days, a wide gap in chemosuppression was observed between the artesunate group and *M. morindiodes* group (Fig. 1).

Chemosuppression of *Morinda lucida* on day 1 was 6.87% compared with 21.45% recorded in *Morinda morindiodes* ($p < 0.05$). The wide gap in chemosuppression between *M. morindiodes* and *M. lucida* continued for 4 days. As at the 5th day of treatment, there was no significant difference between the chemosuppression demonstrated by both plants (Fig. 1).

Vernonia amygdalina produced a significantly ($p < 0.05$) lower chemosuppression than *M. morindiodes* and *M. lucida* on day 6 of the experiment. The

Table 2 Mean percentage parasitaemia of mice treated with single therapy

Treatment Grps	Day1	Day2	Day3	Day4	Day5	Day6
M. morindiodes	23.25 ± 0.29^a	21.83 ± 0.29^c	20.38 ± 0.29^c	11.72 ± 0.13^c	10.25 ± 0.04^b	4.21 ± 0.11^b
M. lucida	27.73 ± 0.04^d	26.73 ± 0.04^d	24.98 ± 0.04^d	18.18 ± 0.11^d	10.99 ± 0.56^b	6.99 ± 0.02^c
V. amygdalina	29.07 ± 0.02^e	28.20 ± 0.18^e	23.81 ± 0.33^d	19.15 ± 0.60^d	18.34 ± 0.67^d	17.38 ± 0.60^d
Artesunate	26.38 ± 0.13^c	20.76 ± 0.13^d	10.05 ± 0.13^b	3.26 ± 0.00^d	0.00 ± 0.00^a	0.00 ± 0.00^a
Chloroquine	25.75 ± 0.13^b	17.48 ± 0.13^b	8.56 ± 0.13^a	2.5 ± 0.07^a	0.00 ± 0.00^a	0.00 ± 0.00^a
Untreated	29.88 ± 0.13^e	30.43 ± 0.13^e	30.71 ± 0.13^e	31.14 ± 0.00^d	33.05 ± 0.00^d	32.67 ± 0.07^e

Values were expressed as mean ± standard deviation (SD). Values with different superscripts (Alphabets) in a column are significantly different ($p < 0.05$) from each other. This implies that for each day, values with superscript a are the least value, followed by b then c, d e to f (highest). For example, at day 1, the lowest values for percentage parasitaemia were recorded in mice treated with *M. morindiodes* followed by that of chloroquine, while the highest parasitaemia was in untreated mice. These differences are statistically significant (all the values did not have similar superscript). At days 5 and 6, mice treated with artesunate and chloroquine have the lowest values for parasitaemia and both the same superscripts (a). This means they are not significantly different from one another.

Mean values were from five mice observed in each group.
differences observed in chemosuppression of *M. morindiodes* and *M. lucida* was observed to be statistically ($p < 0.05$) significant throughout the experiments. All the plant extracts show significant differences ($p < 0.05$) when compared with the untreated group (Table 2).

Combined treatment (Herb vs. artesunate)

A total parasite clearance was observed in mice treated among the mice treated with chloroquine and artesunate alone (Table 3). However, the combination of each extracts of *M. lucida*, *Morinda morindiodes* and *V. amygdalina* with artesunate significantly reduced the chemosuppression to 89.93%, 89.43% and 86.93%, respectively ($p < 0.05$) when compared with the control groups treated with artesunate and chloroquine alone (Fig. 2).

The group treated with combination of artesunate with *V. amygdalina* (*Ar + Va*) recorded the lowest day 1 chemosuppression when compared with other combinations ($p < 0.05$). However, high increase in chemosuppression was observed during the subsequent days of treatment. As at the 5th day of treatment, there was a close gap in chemosuppression between all the combined treatment groups (Fig. 2).

Treatment Grps	Day1	Day2	Day3	Day4	Day5	Day6
Artesunate + Va	29.18 ± 0.13a	29.01 ± 0.13a	26.9 ± 0.17a	11.35 ± 0.07a	5.35 ± 0.7d	4.19 ± 0.07d
Artesunate + Mm	25.91 ± 0.13d	26.03 ± 0.13d	17.33 ± 0.13c	9.36 ± 0.07d	3.81 ± 0.07c	3.59 ± 0.07c
Artesunate + Ml	23.13 ± 0.13a	23.53 ± 0.13d	13.78 ± 0.13c	8.03 ± 0.07c	4.44 ± 0.07c	3.37 ± 0.07c
Artesunate	26.38 ± 0.13d	20.76 ± 0.13d	10.05 ± 0.13b	3.26 ± 0.07c	0.00 ± 0.00c	0.00 ± 0.00c
Chloroquine	25.75 ± 0.13d	17.48 ± 0.13d	8.56 ± 0.13c	2.5 ± 0.07c	0.00 ± 0.00c	0.00 ± 0.00c
Untreated	29.88 ± 0.13c	30.43 ± 0.13f	30.71 ± 0.13e	31.14 ± 0.00d	33.05 ± 0.00e	32.67 ± 0.03d

Values were expressed as mean ± standard deviation (SD). Values with different superscripts (Alphabets) in a column are significantly different ($p < 0.05$) from each other. This implies that for each day, values with superscript (a) are the least value, followed by b then c, d to f (highest). For example, at day 1, the lowest values for percentage parasitaemia were recorded in mice treated with artesunate + Ml followed by that of chloroquine while the highest parasitaemia was in untreated mice. These differences are statistically significant (all the values did not have similar superscript). At days 5 and 6, mice treated with artesunate and chloroquine have the least values for parasitaemia and both the same superscripts (a). This means they are not significantly different from one another. The opposite goes for mice treated with (artesunate + Mm) and (artesunate + Ml) at day 6. The former was significantly higher than the latter ($p < 0.05$) due to the fact that the two values share different superscripts (b and c).

Mean values were from five mice observed in each group.
Though the combination of *M. lucida* plant extracts and artemesunate produced the highest day 1 chemosuppression compared with the positive control (artesunate) (Fig. 2), its combination with artemesunate reduced the efficacy of artemesunate during this study.

Discussion

In this study, the anti-plasmodial effects of three plant extracts in both single therapy and combined therapy (herb–drugs) was observed in a six-day treatment of *P. berghei* infected mice.

Morinda morindiodes initiated a very early chemosuppression than artemesunate and other plant extracts when administered singly. (It recorded a significantly higher chemosuppression than artemesunate on the first day of treatment.) However, it could not maintain the property when combined with artemesunate. Studies have shown that *M. morindiodes* is able to act faster as an anti-plasmodial agent when administered singly (Idowu et al. 2014). This finding is in conformity with other report from Nigeria that recorded similar performance in water extract of the root of *Morindamorindiodes* in a significant decrease in parasitaemia (70%) was reported in comparison with the activities of other plant parts in *P. berghei* infected mice (Soniran et al. 2011).

Leaf extract of *M. lucida* in this study demonstrated a chemosuppression of 84.2% in a six-day treatment. This is in keep with the findings of Ebiloma et al. (2011), who reported up to 85.05% chemosuppression in vivo antiplasmodial activity of aqueous leaf extract of *M. lucida* carried out in *P. berghei* NK-65 parasitized mice.

A more recent study on antiplasmodial effect of crude extract of *M. lucida* root showed a chemosuppression of 56.3% (Maimuna et al. 2013). The disparity observed with this current study could be as a result of the plant parts used. This could suggest that Leaf *M. lucida* may possess more antiplasmodial properties compared with other parts.

Alkaloids and flavonoid have been identified as the predominant secondary metabolite from the phytochemical screening of the aqueous leaf extract of *M. lucida* (Ebiloma et al. 2011). The high alkaloid and flavonoid contents could be linked to the observed antimalarial activity in the group treated with *M. lucida*. Previous works have also shown the antimalaria activity of alkaloids and flavonoids in plants (Balogun et al. 2009; Okokon et al. 2005).

Leaf extract of *V. amygdalina* demonstrated a percentage chemosuppression of 48.1% in a six-days treatment. Leaf extract of *V. amygdalina* assessed against *P. berghei* by Abosi and Raseroke (2003) produced 67% suppression of parasitaemia. The huge difference in suppression rate observed in the mice treated with *V. amygdalina* in this study could be attributed to the dose-dependent nature of its crude extract (Abosi and Raseroke 2003; Njan et al. 2008; Paula et al. 2011). Majority of the studies that reported high suppression administered the plant extract at higher dose (> 200 mg/kg compared with 0.1 mg/g employed in this study).

The production of varieties of flavonoids and bitter sesquiterpene lactones has contributed to the bioactivities of *V. amygdalina* (Favi et al. 2008). However, the taxonomy of *V. amygdalina* from different geographical area could be different, hence, possessing variable bioactivities (Austin 2000). Thus, the low suppression of parasitaemia observed in the mice treated with *Vernonia amygdalina* compared with some other studies (Abosi and Raseroke 2003; Njan et al. 2008) could also be attributed to difference in geographical locations in which the plants were collected.

Viewing from the angle of herb–drug relationship, all the plant extracts reduce the efficacy of artemesunate, implying a sort of an antagonistic effect. The standard drug (artesunate) produced the highest efficacy, when compared with the activities of the plant extracts. One reason is the fact that the plant extracts are in their crude forms with the active components not isolated and developed into active drugs (Adzu and Haruna 2007; Ebiloma et al. 2011; Idowu et al. 2014). On the other hand, this might be an indication that there is some level of antagonistic relationship between the plant extracts and artemesunate in this study. This could be as a result of possible reduction in the bioavailability of artemesunate in the host blood (Brinker et al. 1998) or the stimulation of enzyme activities to degrade the drug. The reduction in the efficacy of artemesunate recorded in this study has implication for development of drug resistance (Watkins and Wosobo 1993). It has been reported that combination of herbs with western pharmaceuticals without regards for any interaction between them is a common phenomenon in malaria endemic areas (Idowu and Mafiana 2007; Uzor et al. 2020). One major limitation of this study is that the bioavailability of the drug was not accessed in the experimental mice. Hence, our future studies will the tailored toward that direction.

Conclusion

This study showed that though the extracts of *Morinda morindiodes* and *Morinda lucida* possess convincing antiplasmodial effect when administered singly, the combination of these extracts with artemesunate could not produce total parasite clearance. There is need to enlighten the public on the possible setback associated with combined use of antimalarial plants with antimalaria drugs.
Abbreviations
Mm: Morinda morindiodes; M: Morinda lucida; V: Vernonia amygdalina; M. lucida: Morinda lucida; V. amygdalina: Vernonia amygdalina; M. morindiodes: Morinda morindiodes; MP: Morinda morindiodes; NIMR: Nigeria Institute of Medical Research.

Acknowledgements
Our appreciations go to Mrs. Adenubi of the Department of Veterinary physiology and pharmacology for the help rendered during the extraction of the plant extracts. We also want to appreciate Dr. Aina of NIMR for his assistance in providing the parasite.

Authors’ contributions
Author IOA conceptualized this research. Authors BAS and IOA designed the research protocol and methodology. Authors BAS and IOA carried out the field work. Author OJ provided studies and other technical inputs. Author BAS did the statistical analysis and developed the manuscript. All the authors read, corrected and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Availability of data and materials
The datasets generated during and/or analysed during the current study are not publicly available due [General agreement among the authors] but are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Nigeria Institute of Medical Research gave approval to use the animals for this study. The ethics and consent concerning the use of mice for this research were approved by the Department of Biological Sciences, University of Agriculture, Abeokuta, Nigeria, with Reference number UG/2007/0920. Experiments were performed in accordance with the Guide of the Care and Use of Laboratory Animals of the National Institutes of Health.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Malaria Research Unit, Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria. 2 Pharmacology Research Unit, Department of Veterinary Physiology and Pharmacology, Federal University of Agriculture, Abeokuta, Nigeria.

Received: 30 July 2020 Accepted: 27 September 2020 Published online: 09 October 2020

References
Abosi AO, Raseroke BH (2003) In vivo antimalarial activity of Vernonia amygdalina. Br J Biomed Sci 60(2):89–91
Adzub B, Haruna A (2007) Studies on the use of Zuphos Spina-Christi against pain in rats and mice. Afr J Biotech 6:1317–1324
Afolabi OJ, Abejide AE (2020) Antiplasmodial activities of Morinda lucida: A review. Afr J Biotech 6:1317–1324
Afolabi OJ, Abejide AE (2020) Antiplasmodial activities of Morinda lucida: A review. Afr J Biotech 6:1317–1324
Bello IS, Oduola T, Adeosun OG, Omiore NO, Raheem GO, Ademosun AA (2009) Evaluation of antimalarial activity of various fractions of Morinda lucida leaf extract and Alstonia boonei stem bark. Glob J Pharmacol 3(3):163–165
Birker F (1998). Herb contraindications and drug interactions. Eclectic Institute Publishers, 46–47
Churan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmcol Pharmacother 4(4):303–306. https://doi.org/10.1016/j.jane.2012.03.007
Cohen B, Ernst D (2010) Safety of herbal supplements: a guide for cardiologists. Cardiovasc Therapy 28(4):246–253
Dike IP, Obembe OO, Adebiyi FE (2012) Ethnobotanical survey for potential anti-malarial plants in south-western Nigeria. J Ethnopharmacol 144(3):618–626
Ebioma GU, Onyame J, Aminu RO (2011) Suppressive, curative and prophylactic potentials of MorindalucidaBenth against erythrocytic stage of mice infective Plasmodium berghei NK-65. Br J Appl Sci Technol 1(3):131–140
Ezekwesili JO, Akoka ANC (2019) Herbal medicines in African traditional medicine. Herbal Med 19:191–219. https://doi.org/10.5772/intechopen.80348
Favi E, Cantrell CL, Mebrahtu T, Kramr ME (2008) Leaf peltate granular trichomes of V. amygdalina spp. Galamensisavathiopigilbart: development, ultrastructure and chemical composition. Int J Plant Sci 169:605–614
Idowu OA, Mañana CF (2007) Malaria in pregnancy: Knowledge, attitude and practices of pregnant women in Abeokuta Nigeria. J Parasitol 28(2):61–64
Idowu OA, Babalola AS, Adenubi OT, Olufunso OO (2018) Toxicology of solvent extract and fractions of Vernonia amygdalina and Morinda lucida against Plasmodium berghei infected mice. Zoologist 11:40–45
Idowu OA, Soniran OT, Ajana O, Awoirdo ON (2010) Ethnobotanical survey of medicinal plants used in Ogun State, South West Nigeria. Afr J Pharm Pharmacol 4(25):55–60
Kambu, K. (1990). Elements of phytotherapeutic compare. Plants Medicinales Africanus, CRP-Kinshasha, 20–22
Keay, R.W.J. (1989). Trees of Nigeria. Oxford Science Publishers, pp. 418–437.
Lawal HO, Etatuvie SO, Fawehinmi AB (2012) Ethnomedicinal and pharmacological properties of Morindalucida. J Nat Prod 5(2012):93–99
Maimuna BU, Emmanuel OQ, Josephine YI, Oluwakanyinsola AS, Adeniyi YT, Ibrahim MH (2013). Antiplasmodial efficacy of methanolic root and leaf extracts of Morindalucida. J Nat Res 3(2): ISSN 2224-3186
Njan AA, Adzu B, Agaba AG, Byarugaba D, Diaz-Llera S, Bangsberg DR (2008) The analgesic and antiplasmodial activities and toxicity of Vernonia amygdalina. J Med Food 11:574–581
Nwachukwu CIJ, Umehe CN, Kalu KG, Okere S, Nwokol MC (2010) Identification and traditional uses of some common medicinal plants in Enzinhitte Mbaise L.G.A., of Imo State, Nigeria. Report Opinion 261:1–8
Oboh PO, Makinde JM, Lawey JV (1998) Investigation of various extracts of Morindalucida for antimalarial actions on Plasmodium berghei in mice. Afr J Med Sci 14:45–49
Okonkwo JE, Ofoduom KC, Ajibesin KK (2005) Pharmacological screening and evaluation of antimalarial activity by Croton zambesiensis against Plasmodium berghei infection in mice. Indian J Pharmacol 37:243–246
Oludefe JO, Olufunso OO (2018) Toxicology of solvent extract and fractions of Alstonia boonei (DC) wild stem bark in rats. Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan. J Herbmed Pharmacol 7(3):129–135
Ouji M, Augereau JM, Palouque L, Benoit-Vical F (2018) Plasmodium falci- rum resistance to artemisinin-based combination therapies: a sword of Damocles in the path toward malaria elimination. Parasite 25:24. https://doi.org/10.1051/parasite/2018021
Paula M, William C, Paschal E, Peter S (2011) In vitro and in vivo antimalarial activities of extracts of Cymbopogon citratus Staph and Vernonia amygdali-DeDille leaves. J Nat Prod 4(2011):0974–2511
Scott JB, Aneesh AA, Yvonne SL, Swati N, Mary FP (2014) Herb-Drug Interactions: challenges and opportunities for improved predictions. Drug Metab Dispos 42(3):301–317
Soniran OT, Idowu OA, Idowu AB, Ajana O (2011) Evaluation of in vivo Antiplasmodial Activities of extracts of Morindamorindoides (Bak.) in the treatment of malaria in Ogun State. Int J Biomed Health Sci 7(4):299–306
Uzor PF, Prasasty VD, Agubata CO (2020) Natural products as sources of antimalarial drugs. Evid-Based Complementary Alternat Med 20:1–2. https://doi.org/10.1155/2020/9385125
Watkins WM, Wosobo M (1993) Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg 87:75–78
WHO (2013) Water-related diseases. World Health Organization, Geneva, Switzerland. Retrieved from: https://www.who.int/water_sanitation_health/diseases/malaria/en/

WHO (2015) Control of residual malaria parasite transmission. Global malaria programme, 2015
WHO (2020) Malaria eradication: benefits, future scenarios and feasibility: a report of the Strategic Advisory Group on Malaria Eradication. World Health Organization, Geneva, Switzerland. Retrieved from: https://www.who.int/publications/i/item/malaria-eradication-benefits-future-scenarios-feasibility
Wilcox ML, Bodeker G (2001) Traditional herbal medicines for malaria. BMJ 329:1156–1159

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.