温室メロンの窒素栄養に関する研究（5）：窒素の給源とマグネシウムの供給濃度

花田, 勝美
九州大学農学部附属農場

https://doi.org/10.15017/22270

出版情報：九州大学農学部学芸雑誌. 35 (1/2), pp.55-63, 1981-03. 九州大学農学部
バージョン：
権利関係：
緒 言

マグネシウム（Mg）は葉緑素の構成元素であって、緑色植物に必須不可欠のものである（大平，1969；嶋田，1976；山崎，1975）。しかし大部分のMgは原形質中で結合した形態として、また遊離したマグネシウムイオン（Mg^{2+}）として存在する。ベクチン酸やフィチン酸などの有機酸の塩のMgはカリウム（K），カルシウム（Ca）と同様、組織の細胞形態の形成および種子中の糖（P）の貯蔵のために働いており、その他リポソーム細胞のコロイド状態の安定化に役立っている。また酵素の活性化物質としてのMgは糖類の合成・分解、TCA-cycleおよび醗酸転移などの諸反応に関与しており、Mgがすべての醗酸転移反応に必要であることは、これが糖代謝のみならず、蛋白質、脂質などの生成とも密接に関与していることを示している。このようにMgは若葉細胞中で代謝活性の盛んな組織に多く含まれている。

Mgが欠乏すると葉緑素の生成が抑制され、そのために作物はクロロシスを生ずる。作物に吸収されたMgは、その後Mgの供給が断たれると新しい組織に移行するので、クロロシスは古い葉に生ずる起こり、次に上部の葉がクロロシスを起こしてくる。

近年わが国においても、Mg欠乏が各地で発生して、その分布も広まりつつある。特に砂田や火山灰土塚はMgに乏しく（大平，1969；山崎，1975）。またMg^{2+}とカリウムイオン（K^{+}）との間には拮抗作用があるが、加里肥料を大量に施用するとMg欠乏を促進する（山崎，1967；山崎，1975）といわれている。

本報告は温室メロン（メロン）Cucumis melo L., var. reticularus Naudinの窒素（N）栄養に関する研究の第5報として、Mgの供給濃度の増大がメロンの生育と二つのN形態、アンモニア態窒素（NH_{4}-N）と硝酸態窒素（NO_{3}-N）の吸収および同化におよぼす影響を明らかにするために行った水耕栽培の実験結果である。

実 験 方 法

試験設計

N源はNO_{3}-NとNH_{4}-Nの2種、供給濃度は本報の第2報（花田，1980 b），第3報（花田，1980 c），第4報（花田，1981）同様100 ppmとした。Mg濃度は0 ppm，5 ppm，25 ppm，100 ppmの4段階とし，N源がNO_{3}-NのものをMg系列としてNMg_{0}，NMg_{5}，NMg_{25}，NMg_{100}の4処理区，NH_{4}-NのものをAMg系列としてAMg_{0}，AMg_{5}，AMg_{25}，AMg_{100}の4処理区の合計8区を設けた。
P, K, Caの供給濃度は第1報（花田，1980 a）の場合と同様，それぞれを25 ppm，100 ppm，100 ppmとし，微量要素は同じく、鉄：5 ppm，マンガン：2
栽培方法
栽培槽は魚箱の内側に厚さ 0.1 mm の塩化ビニールフィルムを張付けたものを使用した。ふたは厚さ 2.5 cm の発泡スチロールに孔をあけて、植物は茎に綿を巻いて、それで固定した。培養液は 1 箱当たり 20 l を使用し、その更新は 1 日置き、pH は 1 N-塩酸または 1 N-苛性ソーダを用い、毎日 10 時、13 時、17 時の 3 回 5.3～6.0 に調整した。通気は扇風機用エアーポンプを用いて行った。

栽培植物
温室メロン Earls Favourite の夏作品種、丸西 3 号を砂床に植え、昼夜温差の影響を増して、移植 14 日後隔間伸長開始直前の本葉 3 枚開花時に処理を開始した。メロンの栽培はすべてビニールハウスの中で行った。

分析方法
生育調査および分析用試料の採取は処理開始後 10 日目に行った。分析用試料は採取後直ちに蒸留水にて洗浄、70℃で迅速に通風乾燥を行い以下の分析に供した。

全窒素（T-N）：セミクロルダーゼ法。
K, P, ナトリウム（Na）, Ca および Mg の定量試料 0.5 g を 500℃で灰化、ケイ酸分離したろ液について、

P：モリブデン青による比色法。
K, Na：炎光度法。
Ca, Mg：原子吸光分光度法。

NH₄-N, NO₃-N および水溶性有機懸N の抽出は試料 1.0 g に蒸留水 25 ml を加え、80～83℃で 15 分間追い、これを 3 回回経した。

NH₄-N : コンウェイの微量拡散法。
NO₃-N : フェノールスルホン酸比色法。
水溶性有機懸N：セミクロルダーゼ法。
遊離アミノ酸およびアマイドは 80 %エチルアルコール 50 ml にて、50℃1 時間の抽出を行い、これを 3 回回経し、濃縮後クロルメタンにて脱色素を行った。更に試料は濃縮乾燥後 pH 2.2 のクエン酸緩衝液に溶解し、アミノ酸自動分析計により定量を行った。ただしグルタミンとアスパラギンの両アマイドの含量は脱色素した試料溶液に 2N-塩酸を 1:1 の割合に加え、1 時間沸騰中で蒸発することにより、アマイド懸のN を加水分解し、グリシン酸とアスパラギン酸に変換させ定量した値から加水分解前のそれぞれの定量値を差引きして算出した。またスレオニンとセリンは加水分解処理した試料のクロマトグラムから定量した。

Mg の形態別分画は第 1 報と同じ方法（花田, 1980 a）により、試料 1.0 g を 80 %エチルアルコール、水、1 N-塩化ナトリウム、2 %酢酸、0.6 N-塩酸の順に、各溶液 50 ml で 2 時間の抽出を行い、各分画を F₄Ac, F₃HCO₃, F₂Ac, F₁Ac, F₀Ac および F⁻HCO₃とした。抽出液は硝酸と過酸化水素により有機物を分解後、原子吸光分光光度法により定量した。

糖類は試料 0.5 g について 80 %エチルアルコール 50 ml で、100℃1 時間の抽出を 3 回繰返し、粗澱粉は 0.7 N-塩酸 50 ml で 2.5 時間加水分解を行い、それぞれの抽出液は除蛋白後をメジイ法により定量した。

実験結果

1) 生育状況と生育調査
第 1 図は処理開始後 9 日目の生育状況を示したものである。Mg の欠乏症は処理開始後 5 日目ごろから Mg 無施用区の下葉に出現し、日時の経過とともに激しくなり、7 日後には AMg 区に見られた。これららの区では、葉は内側に巻き込み、葉間部はクロス岽から第 2 でネクロソミーに移行する典型的な Mg 欠乏症を呈した。しかし他の処理区では Mg の欠乏症は認められなかった。

第 1 表. N の供給形態および Mg 濃度とメロンの生育

N の形態	地面葉数	矮長 (cm)	枝長 (cm)	
NO₃-N	0	5	11.3	17.4
(AMg 系列)	25	6	14.8	29.8
NH₄-N	0	5	10.2	17.6
(AMg 系列)	25	6	13.0	24.6

処理開始後 10 日目の生育調査の結果は第 1 表に示したものである。展開葉数は Mg 無施用区で 1 枚少ない以外、他の処理区は同じ 6 枚であった。枝長、葉生体重および根長はいずれも AMg 系列 > AMg 系列の関係があり、両系列間で顕著な差が認められた。

更に Mg の供給濃度の上昇により両系列とも生育量は明らかに増大したが、AMg 系列最大の AMg₃ 区
がNMs区に劣り、AMg系列の上昇率はNMs系列のものより明らかに低かった。

2）無機養分の含量と吸収量
無機養分含量の測定結果は第2図に示したとおりである。Mgの含量はMgの供給濃度の上昇とともにNMsおよびAMgの両系列とともに高くなったが、相対的にAMg系列がNMs系列より低かった。またCaの含量はMgの供給濃度の増大とともにMgとは逆に低下したが、その他のN、P、K、Naの含量はMgの無施用区を例外として、Mgの供給濃度に影響されなかった。更にAMg系列はNMs系列に比べて、NとPを除くK、Ca、Mg、Naの含量が低く、そのため総塩基含量（K+Ca+Mg+Na）もNMs系列の約0.40e/100gに対してAMg系列約0.25e/100gと低い値を示した。

次に無機養分の吸収量は第3図に示したとおりであ
花田 勝美

第3図. Nの供給形態およびMg濃度と無機養分吸収量。

○ N □ K △ Ca × P
○ K+Ca+Mg+Na ■ Na ▲ Mg

第4図. Nの供給形態およびMg濃度とMgの形態別分画。

N化合物の含有率
N化合物の含有率の測定結果は第2表に示したとおりである。NMg系列では、Mg濃度の上昇によりNO₃-Nの蓄積量はそれほど影響を受けなかった。しかしAMg系列では、NH₄-Nの含有率がMgの供給濃度の上昇とともに低下了。次に水溶性有機態

Nについてみると、Mgの供給濃度の上昇とともにNMg系列よりも特にAMg系列において低下した。しかしそれでもAMg系列＞NMg系列の関係が認められた。

次に各種遊離アミノ酸およびアミドの含有率を第
メロンの窒素源とマグネシウムの供給濃度

Nの供給形態およびMg濃度とN化合物の含有率(乾物当たり%)	NO₃-N	NH₄-N	水溶性	不溶性	T-N	水溶性	
Nの形態 (ppm)	NO₃-N	NH₄-N	有機態-N	有機態-N	不溶性-N	T-N	有機態-N
NO₃-N	1.81	0.025	1.14	3.64	5.99	19.0	
(NMg系列)	5	0.904	0.22	0.76	0.07	7.66	
NH₄-N	0	0.044	0.118	2.80	3.32	6.28	
(AMg系列)	5	0.029	0.094	2.35	3.34	6.11	

アミノ酸およびアミド	NO₃-N	NH₄-N
lysine	1.68	1.39
histidine	1.03	0.28
arginine	7.00	1.73
aspartic acid	6.15	6.49
asparagine	7.50	2.64
threonine	5.41	3.39
serine	10.18	4.09
glutamic acid	25.46	21.75
glutamine	19.81	2.84
proline	2.97	2.83
glycine	7.62	3.56
alanine	19.27	22.86
valine	4.34	3.22
methionine	0.52	0.41
isoleucine	2.27	2.01
leucine	4.62	4.06
tyrosine	0.71	1.02
phenylalanine	1.32	1.52

アミノ酸およびアミド	NO₃-N	NH₄-N
total	127.87	79.05

第3表に示した。各遊離アミノ酸のアミドの含有量はAMg系列ではMg濃度の上昇とともに水溶性有機態Nと同様増となり、AMg系列>NMg系列の関係が認められたが、アスパラギン酸のみがNMg系列において高い値を示した。AMg系列とNMg系列との差の大きな遊離アミノ酸およびアミドはアルギニン、セリン、グリシン、アラニン、グローバミン、グリタミンなどで、特にグリタミン酸とグリタミンは著しく高い値を示し、Mgの吸収率により、その差は著しく小さかった。Mgの濃度を100 ppmに高めても依然として、その差は認められた。

4) 炭水化物の含有率

炭水化物の含有率は第4表に示したとおりである。

Mg濃度（ppm）	糖の種類	適元糖	非還元糖	全糖	炭水化物	全糖
NO₃-N	1.41	0.48	0.60	40.5		
(NMg系列)	0.81	0.08	0.93	39.0		
NH₄-N	0.91	0.56	0.88	32.6		
(AMg系列)	0.52	0.08	0.60	37.3		

第4表に示した。Mgの供給濃度の増大は還元糖において、NMg系列にはほとんど影響なく、AMg系列では低下し、非還元糖においては両系列ともに低下した。しかし非還元糖の含有率はMgの供給濃度に

AMg系列であった。Mgの供給濃度の増大は還元糖において、NMg系列にはほとんど影響なく、AMg系列では低下し、非還元糖においては両系列ともに低下した。しかし非還元糖の含有率はMgの供給濃度に
はあまり影響されないようであった。

以上の実験結果は次のように要約できる。KおよびCa の場合と同じに、Nの供給形態がNO₂-NであるNMg 系列において、還元糖の含有率がエネルギーおよび炭素（C）骨格の供給源として順調に増加していることを反映するとすれば、AMg 系列は1.0〜1.5％と高く、糖代謝が不活発であることを示すことになる。更に還元糖および還酸粉含有率は植物体内的貯藏物質として、AMg 系列では糖のエネルギー代謝に有效地利用されていないことを示している。炭水化物の含有率においてNMg 系列とAMg 系列の差は、AMg 系列にMg の供給濃度の増大では解決できない生産障害の要因が含まれていることを示唆している。

考 察

植物がN源としてNH₄⁺を吸収するとNO₃⁻を吸収した場合に比べて、K、Ca、Mg などの塩基の吸収はNH₄⁺と陽イオンの間の拮抗作用（Barker and Maynard, 1972; Blair et al., 1970; Harada et al., 1968; Kirkby, 1968; Kirkby and Mengel, 1967）のために減少し、更に植物体内の代謝活性が著しく低下するために、エネルギーの発生およびC骨格の供給能力が顕著に減少し、N代謝が著しく影響を受ける（花田, 1980 a)。このようなことから、NH₄-Nで育った植物はNO₃⁻をN源で育ったものに比べ、生育がはるかに劣り、この傾向は水稲、陸稲などの好カイ酸性植物よりも著しい。トマトなどの好石灰性植物において大なることが認められている（原田, 1974; 高橋, 1974)。本実験に用いた温室メロンは好石灰性植物である（増村, 1960）とともに好酸性（花田・太田, 1972）であり、単位地表面積当たりの無機養分吸収量はトマト、キュウリなどと同様植物の中でも最も多い部分に属し、その上Nに比較して対照的にK, CaおよびMg などの吸収割合が低い植物である（松村, 1966)。

以上の意味から温室メロンを用いて、Nの供給形態とMg の供給濃度の関係を明らかにする意義は大である。

1) 生育調査

Mg 無施用区では葉が内側に萎込み葉肉内にクロシスを生じ、それが次第にネクロシスに変化して典型的なMg欠乏症（山崎, 1975)を呈した。AMg₅ 区はMg 無施用区より遅れて、Mg 欠乏症が認められたが、NMg₅ 区では処理期間内に発生は認められなかった。このことからMg の供給濃度が低い場合には、NMg 系列よりもAMg 系列においてMg 欠乏症が発生しやすいことがうかがわれる。更にMg 欠乏症を認められたNMg₅, AMg₅, AMg₇ の3区は他の処理区に比べ、茎長、葉葉生体重などの生育が顕著に低い値を示した。

以上のMg 欠乏症がAMg 系列に発生し易いこと、およびAMg₅, AMg₇ の両区の生育がMg の供給濃度の低いNMg₅区のものと近似していないこと、AMg 系列メロンがMg の供給濃度以外の要因、即ちNの供給形態の影響を強く受けたことを示している。

2) 無機質分

実験の結果を示すメロンの無機養分の吸収の面から検討すると、Mg 欠乏が発生した三つの処理区のMg 含量は0.020 e/100 g以下と他の処理区を対比した区よりも低い値を示した。

Mg 欠乏発生の限界含有率は、杉山（1966）によれば逆地のトマトで0.35％、Nicolas（杉山, 1966）は温室トマトで0.3％、横本（1953）は大葉で0.1％と報告しているが、植物の種類や栽培条件により、かなり変動があるものである。実験の結果からみると、メロンではMg 欠乏発生の限界含有率は0.25％と考える。

Mg の供給増により、Mg 含量は両系列ともに高くなるが、AMg 系列では上昇割合がNMg 系列に比べ相対的に低く、そのため供給濃度が高い場合でも含率が高まらず、Mg 欠乏症は見られず、Mg の供給濃度の増加に対する他の無機養分の変動を見ると、含量の上ではCa が低下する傾向を示す以外、他の要素では変動はみられなかった。しかし吸収量においてはMg の吸収割合によるN、P、K、Ca いずれもが増加し、塩基相互間の拮抗作用の概念で説明される象徴は認められなかった。このようなことから塩基酸吸収量はMg の吸収とともに増加するが、NMg 系列ではNと塩基の当量数が近似していたが、AMg 系列ではNに比べ塩基の吸収量がかなり低かった。このことは本報告の第1報の実験結果（花田, 1980 a) と一致するもので、塩基の吸収に対してMg の供給濃度よりも吸収するNの形態の影響が大であり、NH₄⁺の吸収は塩基の吸収を抑制することを示している。更に第5図はK、Ca、Mg の吸収量の和と乾物量の相關関係を示したものであるが、両者の間に正の相関が成し立つ。更にこの図からAMg 系列はNMg 系列に比べ、K + Ca + Mg の吸収量が高まらず、そのこと
メロンの窒素給与とマグネシウムの供給濃度

第5図 K, Ca, Mg の吸収量の和（mg）

が生育を低下させる一因になったと推測される。

Mg の形態別の分画は構本 (1953), 石原・谷田沢 (構本, 1955) によって試みられているが、研究者により Ca 同様抽出条件が異なるため、測定結果の直接の比較は困難である。葉緑素含量と推測される F_nuc 細胞の場合は、Me の供給濃度が 5 ppm 以下の区では一般に低く、N_Mg 区では Mg 欠乏症は認められなかったが 0.039 ％と AMg 区の 0.038 ％と近似していること、および Mg の供給濃度 25 ppm の F_nuc 細胞分合率においては各々 N_Mg の F_nuc 細胞における限定合率は 0.040 ％程度と推測される。次に Mg の各分画への分配率は AMg 系列の場合、N_Mg 系列と比較して F_nuc, Mg の両分画において高く、対照的に F_NaCl, F_sue の両分画において低し。F_sue は酢酸塩の Ca と同様にベクチン様の Mg (構本, 1953) といわれ、ミドリナメトの成熟成分として植物体の機械的強度の保持および植物病原菌に対する抵抗性を高める (構本・岡本, 1953; 竹塚・早川, 1950) ことにも役立っている。AMg 系列メロンにおける F_sue の含有率の低いことは、メロンが NH_4 + を吸収したことを示唆するものと、そのことから生育に対する影響の大きさであることを示唆している。

3) N 化合物

N 化合物の含有率から、N_Mg 系列の Mg 無施用区は NO_3 - の吸収量が少ないので N_Mg と好適な有機態 N の含有量が系列中で最も高い。このことから、NO_3 - の還元およびアンモニアからも蛋白質の合成が Mg の欠乏に伴い影響を受けた (Steinberg et al., 1950) といわれる。同様に AMg 系列の場合に AMg 区において、NH_4 - の有機態とそれれ共にアンモニアの蛋白化を顕著に影響されたと考えられる。
Mg である F_{see} において顕著であった。このことは Mg の供給濃度を高めても、AMg 系列の F_{see} 含有率が N の供給形態を変更しない限り高まらないことを示している。

4) Mg の欠乏は NO₃⁻N の還元、NH₄⁺N の有機化およびアミノ酸からの蛋白質の合成を遅延させた。AMg 系列では Mg 濃度が 25 ppm, 100 ppm と高くなると、グルタミンの含量は依然として高かった。このことはメロンが NH₄⁺ を吸収し、その解毒と貯蔵のためにグルタミンを蓄積したと考えられる。

5) AMg 系列では Mg の供給濃度が高い場合でも、還元糖の含有率が高く、糖がエネルギー源として、また CO₂の供給源として順調に機能していないと推測される。この原因は N 源としての NH₄⁺ の使用に存するもので、NH₄⁺ によるメロンの生育障害は Mg の供給濃度を高めることにより、ほとんど除去できなかった。

文献

Barker, A. V. and D. N. Maynard 1972 Cation- and nitrate accumulation in pea and cucumber plants as influenced by nitrogen nutrition. J. Amer. Soc. Hort. Sci., 97: 27-30

Blair, G. J., M. H. Miller and W. A. Michell 1970 Nitrate and ammonium as sources of nitrogen for corn and their influence on the uptake of their ions. Agron. J., 62: 530-532

花田勝美 1980a 温室メロンの窒素栄養に関する研究 第1報 窒素の給原とメロンの生育. 九大農学芸誌, 34: 67-79

花田勝美 1980b 温室メロンの窒素栄養に関する研究 第2報 窒素の給原と植物体中の窒素濃度. 九大農学芸誌, 34: 133-141

花田勝美 1980c 温室メロンの窒素栄養に関する研究 第3報 窒素の給原とカルシウムの供給濃度. 九大農学芸誌, 34: 143-151

花田勝美 1981 温室メロンの窒素栄養に関する研究 第4報 窒素の給原とカルシウムの供給濃度. 九大農学芸誌, 35: 45-54

花田勝美・大村 榮 1972 温室メロンの砂・ボタ栽培における栄養生理的研究. 九大農学芸誌, 26: 559-568

原田登五郎 1974 水田土壌の地力窒素, 原田登五郎教授退官記念事業会, 信岡

Harada, T., H. Takaki and Y. Yamada 1968 Effect of nitrogen source on the chemical components in young plants. Soil Sci. Plant Nutr., 14: 47-55

森本 武 1953 作物のマグネシウム栄養に関する研究（第1報）大豆の蓄葉の形態別マグネシウム代謝. 土肥誌, 24: 52-55

森本 武 1955 作物のマグネシウム栄養に関する研究（第2報）作物の Mg, Ca, K の関係. 土肥誌, 26: 139-142

森本 武・岡本 守 1953 作物のマグネシウム栄養に関する研究（第3報）マグネシウム欠乏大豆に於けるカルシウムの含量. 土肥誌, 24: 231-234

石塚善明・早川康夫 1950 水分の稲作強度に対する抵抗性と穂軽及び苦土との関係. 土肥誌, 21: 253-260

Kirkby, E. A. 1968 Influence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carbohydrate metabolism of white mustard plants grown in dilute nutrient solution. Plant Physiol., 60: 349-353

Kirkby, E. A. and K. Mengel 1967 Ionic balance in different tissues of the tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol., 42: 6-14

曽井正夫・福島与平・戸田幹彦・江崎和義 1966 メロンの養分吸収に関する研究（第2報）窒素, カリ, 石灰, マグネシウムについて. 園学誌, 29: 147-156

松村安治・寺島正夫・川西英之 1966 養分吸収量. 杉山良編: そ菜に関する土壌肥料研究集録. 全購読, 東京, 159-168頁

大平幸次 1969 作物栄養学. 朝倉書店, 東京

嶋田奨司 1976 資物栄養土壌肥料大事典. 奨賢堂, 東京

Steinberg, R. A., J. D. Bowling and J. E. McMutrey, Jr. 1950 Accumulation of free amino acids as a chemical basis for morphological symptoms in tobacco manifestingrenching and mineral deficiency symptoms. Plant Physiol., 25: 279-288

杉山理亮 1966 マグネシウム欠乏. 杉山良編: そ菜に関する土壌肥料研究集録. 全購読, 東京, 29-32頁

高橋英一 1974 比較植物栄養学. 養賢堂, 東京

山崎善哉 1967 菜の肥培に地球出版, 東京

山崎 伝 1975 養分要領と多量元素 土壌・作物の診断・対策. 博友社, 東京
Summary

As the fifth report on studies of nitrogen nutrition for muskmelon, this report deals with the results of experiment to clarify the influence of increased magnesium concentration in nutrient solution upon the growth of melon and the absorption and assimilation of two forms of nitrogen, \(\text{NH}_4\text{-N} \) and \(\text{NO}_3\text{-N} \), in the tissue of it. The results can be summarized as follows.

1. Magnesium deficiency appeared in the melons of three plots, \(\text{NMg}_d \), \(\text{AMg}_d \) and \(\text{AMg}_s \), and the growth of such as stem length and fresh matter weight of melon of those plots was remarkably lower than that of other plots. Furthermore, magnesium deficiency of melon tended to appear more easily on \(\text{AMg} \)-series than on \(\text{NMg} \)-series.

2. From the analytical results of mineral nutrients, the critical concentration of magnesium deficiency of melon is supposed to be 0.25%. On \(\text{AMg} \)-series in comparison to \(\text{NMg} \)-series, the absorption of magnesium was not so much even when the magnesium concentration increased excessively, for there is an antagonism between \(\text{NH}_4^+ \) and \(\text{Mg}^{2+} \).

3. From the formal fractionation of magnesium, the content and distribution ratio of both fractions of \(F_{\text{NaCl}} \) and \(F_{\text{ace}} \), of \(\text{AMg} \)-series were comparatively lower than those of \(\text{NMg} \)-series, and especially, the \(F_{\text{ace}} \), pectic magnesium was remarkably lowest. These facts indicate that the content of \(F_{\text{ace}} \) in \(\text{AMg} \)-series does not increase, so far as the supplying form of nitrogen is not changed.

4. Magnesium deficiency delayed the reduction of \(\text{NO}_3\text{-N} \), the assimilation of \(\text{NH}_4\text{-N} \) into amino acids, and the protein synthesis of amino acids in melon. However, glutamine content was still high even when the magnesium concentration of \(\text{AMg} \)-series increased to 25 ppm or 100 ppm. This fact indicates that melons absorbed \(\text{NH}_4^+ \) and accumulated glutamine in order to counteract and store it.

5. In \(\text{AMg} \)-series, reduced sugar content was high even when magnesium concentration increased. It is supposed that sugar did not act smoothly as the energy source as well as the source of carbon skeleton. This was caused by the use of \(\text{NH}_4\text{-N} \) as a sole nitrogen source, so that the retardation of melon by \(\text{NH}_4^+ \) could not be removed through increasing magnesium concentration.