Performance Evaluation of Drip Irrigation System and Water Productivity (WP) of Rock Melon Grown inside Netted Rain House Shelter

Mohd Fauzie Jusoh¹²*, Nurhayatie Adnan², Muhammad Firdaus Abdul Muttalib¹ and Ayob Katimon¹

¹School of Bioprocess Engineering, Universiti Malaysia Perlis, Jejawi Complex of Education 3, Jejawi Industrial Zone, 02600 Arau, Perlis, Malaysia.
²Department of Agriculture Science, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.

E-mail: fauzie_jsh@yahoo.com

Abstract. The yield of the crops may be subject to the distribution of water directly to the plant root zone using drippers or emitters. To date, there has not been adequate work to evaluate irrigation system performance and water productivity (WP) specifically for rock melon inside a netted rain house shelter in tropical area. Amongst the problem of this system is the non-functional irrigation components after been used for specific of time, thus reducing the irrigation efficiencies and distribution uniformity. This study evaluates irrigation performance of drip irrigation system and estimates WP of rock melon cultivation in the netted rain house shelter. The results indicate that the operating pressure of the drip irrigation system tested varied from 0.8 to 3.0 psi with a discharge rate between 0.14 and 0.25 L/min. Water application uniformity between laterals varied from 66.06 to 89.72%. The WP of rock melon was around 7.93 kg/m³, which is considerably high and in similar range as demonstrated in previous literature. The field evaluation also reveals that the manipulation of valve controller at lateral based on a few selected scenarios did not provide a significant difference in pressure and discharge at the head, middle, and tail section of the drip irrigation system. Such findings would be a very useful information for a precision water management particularly for rock melon cultivation grown under rain house shelter system.

1. Introduction

Drip irrigation technology is one of the modern irrigation methods to keep the soil root zone moist. Irrigation technology has gradually improved along with the evolution in water technology, water transfer, and agriculture system [1]. Irrigation is designed to supply a sufficient amount of water promptly to crops. Therefore, the effective and sustainable use of water for agriculture has become a global priority and it contributes to the development of cultivation processes in agriculture [1,2].

A typical drip irrigation system consists of a few components for instance, pumping unit, control head, main line, submain line, lateral line, microtube and emitter or dripper. The pressure is necessary to force water flowing through the components of the system by a suitable pressure generated by the pump [3,4]. Moreover, excellent uniformity of water application can be achieved if the correct size of...
the pump is used [5]. The main line, sub main line, and lateral line with a diameter of 40, 32, and 16
mm respectively have commonly been used by Malaysian farmers. Typically, these pipes made up of
PVC or polyethylene hose so that it is not easily degraded when exposed to direct solar radiation.
Reference [4], stated that sub main line usually not available for small scale fertigation projects. Emitters
are mounted on the lateral lines through microtube (1 mm) and attached to a dripper.

Drip irrigation system directly supplies the water and fertilizer requirements by allowing water to
drip slowly to the plant’s roots zone with minimum losses [6]. The drip irrigation system applies a low
flow rate and low pressure at the emitters. Consequently, this method can save the water because it is
typically designed to permit the water drip slowly direct to the root zone [7]. However, a good filtration
system is required as it is easily clogged by the suspended solids (chemical reaction of nutrients) in the
irrigation water due to the small water hole [8]. Although drip irrigation system slowly and moderately
wets the soil near the plant root zone, it is difficult to distribute the equal amount of water to plants
within the field [9].

Drip irrigation system typically uses 30-50% less water than a sprinkler system. In this regard, the
fertigation system enables to water only the specific plants and not the row crops [10]. Drip irrigation
working at a low flow rate and operating pressure between 10 to 20 psi at the dripper and the pump
outlet typically needs around 40 psi [11] depending on the farm size. Reference [5], has argued
adequately designed and maintained drip irrigation can give high performance. The use of a drip
irrigation system offers high uniformity and higher water use efficiency [6]; beside, it provides efficient
use of water and fertilizer [9]. Reference [12], proved that interaction between different irrigation
management and nitrogen rates resulted in higher water productivity up to 37 kg m⁻³ for greenhouse-
grown tomato. Therefore, the adoption of a highly efficient irrigation system such as a drip irrigation
system is one of the suitable applications of irrigation water. This system usually uses to water the
orchard and greenhouse plants. Drip irrigation also adaptable for almost soil type and topography with
an adequate design system [5][6]. Moreover, this system has been designed specifically for the drought
areas and also for limited farming space [8]. In contrast, this irrigation system is complex, need proper
maintenance, more expensive compared to other irrigation system and only a few farmers using this
type of irrigation system [13].

A rain house shelter has excellent irrigation performance if the design of the drip irrigation system
follows a standard specifications. However, unused agriculture structure for a long time (more than six
months), due to electricity supply and water storage issues, may affect the irrigation efficiency. Poor
irrigation efficiency will impact crop production since it disturbs irrigation water supply and reduces
nutrients uptake by the plants. Therefore, this study attempts to evaluate the performance of a drip
irrigation system and estimate water use efficiency for rock melon under newly developed, unused, and
abandoned rain house shelter.

2. Materials and Methods

2.1 Study area

The field experiments were conducted under netted rain house shelter at Agro Techno Park, Universiti
Malaysia Kelantan, Jeli. The study area is located at the coordinate of 5°45’09.0” N latitude and
101°52’27.6” E longitude. The temperatures of inside and outside netted rain house shelter varied from
30.1 to 41.7 °C (indoor) and 30.2 to 37.1 °C (outdoor) respectively. Meanwhile, the minimum and
maximum relative humidity was 40 and 89% respectively. Both temperature and relative humidity were
monitored by using a hygrometer during the growing period. Figure 1 shows the outside and inside view
of the netted rain house shelter.
2.2 Drip irrigation system layout
The dimensions of the netted rain house shelter were 6×30 m (wide \times length). The drip irrigation system was equipped with a 2 horsepower (hp) centrifugal pump to supply the water from the mixing tank to the point of discharge during the tested period. Flow rate meter was installed to the fertigation system to measure the volume of water supplied and the data was recorded based on weekly inspection. The system consists of four tanks (one mixing water tank and three storage water tanks) to supply the water and fertilizer to the field. The capacity of each tank is 300 gallons (0.3 m³). Main line (high density polyethylene, HDPE, 32 mm diameter) was connected directly to 5 lateral lines with individual control valve. The length of the main line and lateral were 5.7 and 13.4 m respectively. Each lateral has 30 drippers and located at a distance of 0.5 m apart.

The netted rain house shelter was divided into three sections, which were the head, middle, and tail sections (Figure 2). Pressure gauges were installed at the laterals to measure operating pressure during the cultivation period. The whole system was tested one week before rock melon transplanting to ensure the laterals and drippers were correctly functions and no leakage along the pipelines. The clogged or damage drippers detected were replaced with the new one.

2.3 Site preparation and rock melon cultivation
Netted rain house shelter was cleaned and sprayed with fungicide (Previcur N) before planting. Cocopeat (100%) was filled into polybags (33 cm length, 50 cm wide) as planting media and each polybag was soaked into the water to gain the weight between 7 and 8 kg per polybag. Rock melon seeds were treated with lukewarm water before sowing inside the planting tray filled with peat moss. Hand sprayer was used to moist the media on planting tray and later, it was wrapped using black plastic and keep in the nursery to accelerate the germination rate. After 7 days, germinated seedlings were transplanted into
polybags. Each lateral line consists of 30 plants and the total number of rock melon inside the house were 300 plants. Raffia string was used as a trellis to support its stem for creeping.

Commercial fertilizer A and B for rock melon were diluted and mixed according to its desired electrical conductivity (EC) values, as suggested by the manufacturer. The values of pH also were recorded during the mixing process. The best pH for the solution was between 5.5 and 6.5. Weeding, pruning and monitoring were executed as regular practices by the farmers. During the flowering stage, hand pollination was performed between 8.00 am until 10.00 am daily by using the male flower collected from a different plant. Developed fruit (1 fruit per plant) was wrapped using newspapers to prevent insects’ attack. Rock melon was harvested after 65 days and all the fruits were weighed using the weighing scale.

2.4 Irrigation performance
Irrigation performance of drip irrigation system was evaluated with and without crop cultivation. The pressure was measured at four points (refer to Figure 2) by using pressure gauges. Discharges at emitters were measured by using collecting bottles and measuring cylinders. The coefficient of variation (CV) is used to measure the variability of flow in the drip irrigation system by using Equation 1. The obtained value was compared with Table 1 to classify the drip irrigation performance. Reference [14], expressed CV as:

$$CV = \frac{\text{Standard Deviation}}{\text{Mean for a sampled number}}$$ (1)

Table 1. Coefficient of variation values and its corresponding classification

CV	Classification
< 0.1	Excellent
0.2 – 0.1	Very good
0.3 – 0.2	Acceptable
0.4 – 0.3	Poor
> 0.4	Unacceptable

Source: [15]

Equation 2 was used to calculate water application uniformity (AU), where it depends on the uniformity of water discharge. This equation also gives information on how water distributed efficiently in the field. Water application uniformity obtained was compared with the general criteria for uniformity value as depicted in Table 2. WP is defined as ratio between amount of crop produced and the amount of water involved in crop production system [27]. Crop yield was estimated by weighing the weight of rock melon during harvesting day and the total amount of water consumed was evaluated by continuous monitoring of flow rate meter reading weekly.

$$AU = (1.0 - CV) \times 100$$ (2)

Table 2. Percentage of application uniformity and its corresponding classification

AU (%)	Classification
100-95	Excellent
90-85	Good
80-75	Fair
70-65	Poor
< 60	Not Acceptable

Source: [5]
2.5 Effect of valve opening-closing on discharge

A separate experiment was performed to evaluate the effect of closing and opening of the valve at laterals to the discharge rate according to selected different scenarios (refer to Table 3). Discharges were measured by collecting the volume of water dripped from the emitter in one minute at the head, middle and tail sections of the fertigation system.

Table 3. Different scenarios of valve opening and closing at laterals

Scenario	Lateral				
	1	2	3	4	5
1	☐	☐	☐	☐	☐
2	☐	☐	☐	☐	☐
3	☐	☐	☐	☐	☐
4	☐	☐	☐	☐	☐
5	☐	☐	☐	☐	☐

☼阀 full opened; ☐阀 fully closed

3. Results and Discussion

Figure 3 presents the amount of water consumed during the rock melon cultivation. Total water consumed and rock melon yield was 18.59 m³ and 147.50 kg respectively. Therefore, WP was estimated to be 7.93 kg/m³. The high value of WP means high yield can be produced with a low amount of water applied and vice versa. Reference [16], calculated WP for dripped open field cultivated muskmelon in the range of 7-13 kg/m³ at different actual evapotranspiration. However, reference [17], estimated lower WP for melon, which was 5-6 kg/m³ under a drip irrigation system. WP obtained in this study is in an acceptable range and this variation might be due to different field practices and irrigation frequency applied. As asserted by [18], different crop types and varieties had different WP values where these values depending on their rainfall pattern, soil type and climatic conditions. Proper and reliable water supply is the main contributing factor to high production and high value of WP [19]. The WP could be increased by mulching practice as suggested by [20] since it can improve soil water content. High WP value indicated high water use efficiency.

![Cumulative Water Use](image)

Figure 3. The amount of water consumed during rock melon cultivation

Irrigation level with higher amounts of water generally has lower WP and water use efficiency values [21]. Frequently applied of low irrigation water amount can increase fruit yield due to the consumption of water by the plant was higher when irrigation begins at low soil water content. Throughout the study, the operating pressure of the drip irrigation system tested varied from 0.8 to 3.0 psi with a discharge rate between 0.14 and 0.25 L/min. The working pressure was considered 1.5 times higher compared to the recommended pump power by [22] for 300 polybags. The existing system can still be operated normally
since excess pressure developed in the piping system being controlled by a valve to recirculate water to the mixing tank. However, this contributed to losses in power consumption and expenditure wastage. It is suggested to replace the 2.0 hp pump with 0.5 hp pump for better irrigation performance.

Table 4 illustrates the coefficient of variation (CV) and water application uniformity (AU) values with crop and without crop. In general, CV values were mostly classified as very good and acceptable in both conditions. CV values at laterals with crop and without crop were in the range of 0.14-0.45 and 0.10-0.34 respectively. It seems that CV estimation without crop showed lower values and duration taken to estimate it influencing these values. CV values obtained from without cropping can be classified mostly as the good and acceptable performance of irrigation system compared with without crop (mostly very good and excellent) as described by [15]. As eloquently stated by [23], different categories of CV also could be observed because of manufacturing variability, clogging due to the suspended fertilizer and damaged emitter.

Table 4. The parameter values that indicate the performance of lateral line in irrigation system with and without crop.

Condition	Lateral	Mean	SD	CV	AU	Classification of CV	Classification of AU
With Crop	1	0.29	0.06	0.22	77.69	Acceptable	Fair
	2	0.24	0.05	0.21	79.30	Very Good	Fair
	3	0.25	0.07	0.30	70.05	Acceptable	Poor
	4	0.18	0.08	0.45	54.64	Poor	Unacceptable
	5	0.18	0.04	0.25	74.96	Acceptable	Poor
	6	0.17	0.03	0.20	79.94	Very Good	Fair
	7	0.19	0.06	0.32	67.80	Poor	Fair
	8	0.19	0.05	0.27	73.16	Acceptable	Fair
	9	0.21	0.03	0.14	85.53	Very Good	Good
	10	0.16	0.04	0.26	73.82	Acceptable	Poor
Average		0.21	0.05	0.26	73.71		
Without Crop	1	0.25	0.03	0.12	87.62	Very Good	Good
	2	0.19	0.02	0.10	89.59	Excellent	Good
	3	0.17	0.02	0.10	89.72	Excellent	Good
	4	0.16	0.02	0.13	87.39	Very Good	Good
	5	0.17	0.02	0.14	85.99	Very Good	Good
	6	0.14	0.05	0.33	67.00	Poor	Poor
	7	0.15	0.03	0.17	82.77	Very Good	Fair
	8	0.19	0.03	0.14	86.14	Very Good	Good
	9	0.15	0.05	0.34	66.06	Poor	Poor
	10	0.14	0.04	0.29	71.27	Acceptable	Fair
Average		0.17	0.03	0.19	81.36		

It can be observed that CV without crop has a lower value than CV with crop cultivation as shown in Figure 4. Pair sample t-test showed significant different of CV between two conditions. Frequently flushing for whole cropping season guarantee each plant obtained the same amount of irrigation water every day. [25] reported that flushing was needed to remove the accumulation of sediments in the lateral before emitters become completely clogged. Therefore, it is vital to flush the laterals as frequent flushing reduce water variation along the lateral lines.
Figure 4. Comparison between the coefficient of variation values with crop cultivation and without crop cultivation. The different letters at the line represent a significantly different (p<0.05).

Water application uniformity (AU) express how evenly the uniformity of water is spread over the irrigated area used. AU between lateral with crop conditions was found to be in the ranged 0f 54 % and 85 % with an overall average of 74 %. These contributed to fair classification of AU between laterals for with crop conditions. On the contrary, AU between lateral without crop conditions was performed better (67% - 89%) with an average AU of 81%. Sixty percent of laterals without crop conditions were categorized as good and others as fair (2%) and poor (2%). [5] indicated that uniformity of water application decline due to defective of irrigation pump, broken or twisted distribution lines, obstruction in the dripper or filters, corrosion of parts in irrigation system, and inadequate design. [24] tested the performance of a drip irrigation system and found that average uniformity for drip irrigation system under the greenhouse was 80%. This value was almost similar to the result obtained (74%-81%). The application uniformity was depending on the manufacturing variation in emitters and pressure variation in the system due to pipe friction and elevation changes [13]. Therefore, maintenance and repair works have to be performed with great care periodically. Figure 5 compares the AU values with crop and without crop cultivation. Paired sample t-test showed significant AU on lateral 3 and 4. However, AU did not significant at lateral 1,2 and 5 for both conditions. This result might be due to same pressure magnitude at the beginning and at the last of lateral point. [26] mentions that the design and management of irrigation system not the only factor that influences water uniformity, but it could be from hydraulic gradients existing within the wetted soil which affect the water movement. Figure 6 expresses the mean of discharge was not significant among the head, middle and tail sections. The mean discharge for head (0.364 L/min⁻¹) was reported to have the highest value compared to the middle (0.317 L/min⁻¹) and tail (0.257 L/min⁻¹). Droplets of water at the head section had the highest average discharge due to the nearest point from water resource and distribution of water movement did not influence by the precipitation or sediments compared to the other drippers at middle and tail sections.

Figure 5. Comparison between AU values of with crop and without crop cultivation. The different letters at the bar chart represent significantly different (p<0.05).
4. Conclusion
Irrigation performance and WP for the rock melon cultivation inside the netted rain house shelter using the drip irrigation system was successfully evaluated. The WP obtained for rock melon using this system was 7.93 kgm⁻³ which is inline with the predicted WP value in the previous literature. Generally, most of the lateral lines performed well and some need to be monitored periodically, especially during the growing process to prevent clogging to the dripping system. The existing pump should be replaced with lower water pump power for the designated greenhouse to reduce energy consumption and better irrigation performance. The results also demonstrated variation of water application uniformity and water coefficient variation between laterals line, although they are located in the same fertigation system. Performance irrigation should be evaluated continuously from the beginning of greenhouse completion until current usage for detecting any abnormalities and leakage of the irrigation system.

References
[1] Toriman M. and Mokhtar M 2012 Irrigation: Types, Sources and Problems in Malaysia in Lee, T.S (Eds.), Irrigation Systems and Practices in Challenging Environments, (pp. 361–370). Croatia: InTech.
[2] Azizi N R, Yasari E and Kakularimi A 2013 Evaluation of Drip Irrigation in the Province of Mazandaran of Northern Iran a Case Study on the City of Babol. Agricultural and Crop Science, 6(8) 522–528.
[3] Brouwer C, Prins K, Kay M and Heibloem M 1985 Irrigation water management: Irrigation methods. Wageningen, The Netherlands: Food and Agriculture Organization.
[4] Elamin A W M, Abd Eldaiaam A M, Abdalla N A and Hussain M E 2017 Hydraulic performance of drip irrigation system under different emitter types, and operating pressures using treated wastewater at Khartoum state. International Journal of Development and Sustainability, 6(9) 1086-1095.
[5] Goyal M R 2013 Management of drip, trickle or micro irrigation. Canada: Apple Academic Press.
[6] Mistry P, Akil M, Suryanarayana T M V and Parekh F P 2017. Evaluation Of Drip Irrigation System For Different Operating Pressures. International Journal Of Advance Engineering And Research Development, 72(4) 2348–4470.
[7] Jondhale A S, Bhosale V P and Takate V S 2017 Irrigation System and Its Methods. International Journal for Research in Applied Science and Engineering Technology, 5(5) 1549-1552.
[8] Prayong K 2013 Comparison of drip and sprinkler irrigation system for the cultivation plants vertically. ARPN Journal of Agricultural and Biological Science, 8(11) 740-744.
[9] Arya C K, Purohit RC, Dashora L K, Singh P K and Kothari M 2017 Performance evaluation of drip irrigation systems. International Journal of Current Microbiology and Applied Sciences, 6(4) 2287–2292.
[10] Alabas M A A 2013 Evaluation the hydraulic performance of drip irrigation system with multi cases. Global Journal of Researches in Engineering, 13(2) 12-18.
[11] Megersa G and Abdulahi J 2015 Irrigation system in Israel: A review. International Journal of Water Resources and Environmental Engineering, 7(3) 29-37.
[12] Wang X, Yun J, Shi P, Li Z, Li P and Xing Y 2019 Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels. Journal of Plant Growth Regulation, 38 400–415.
[13] Asif M, Islam-ul-haq C, Mangrio A G, Mustafa N and Iqbal B 2015 Analysis of application uniformity and pressure variation of microtube emitter of trickling irrigation system. Net Journal of Agricultural Science, 3(1) 14–22.
[14] Madramootoo C A 1988 Effect of pressure changes on the discharge characteristics of pressure compensating emitters Journal of Agricultural Engineering Research, 40(2) 159-164.
[15] Solomon K 1979 Manufacturing variation of trickle emitters Transactions of the ASAE, 22(5) 1034–1038.
[16] Al-Mefleh N K, Samarah N, Zaitoun S and Al-Ghawzi A A 2012 Effect of irrigation levels on fruit characteristics, total fruit yield and water use efficiency of melon under drip irrigation system. Journal of Food, Agriculture and Environment, 10(2) 540-545.
[17] Ramezan D, Asil M H, Salehi R and Dehghanian S H 2015 The effect of different levels of irrigation on growth, yield, fruit quality and water use efficiency of grafted and ungrafted melon (Cucumis melo l. Zarde Jalali) under drip irrigation system. Iranian Horticultural Science, 74(3) 725-737.
[18] Mbavaa N, Mutemab M, Zengenia R, Shimelisa H and Chaplota V 2020 Factors affecting crop water use efficiency: A worldwide meta-analysis. Agricultural Water Management, 228 105878.
[19] Fan T, Stewart B A, Yong W, Junjie L and Guangye Z 2005 Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agriculture Ecosystem Environment, 106 313–329.
[20] Sharma A R, Singh R, Dhyani S K and Dube R K 2010 Moisture conservation and nitrogen recycling through legume mulching in rainfed maize (Zea mays)–wheat (Triticum aestivum) cropping system Nutrient Cycle Agroecosystem 87 187–197.
[21] Ertek A, Sensoy S, Küçükuyumuk C and Gedik I 2004 Irrigation frequency and amount affect yield. Agricultural Water Management 67 63-67.
[22] Mardi A K 2009 Manual on cultivation through fertigation. Koperasi Institut Pertanian Ayer Hitam Berhad, Johor.
[23] Abdallah M A M 2015 Hydraulic evaluation of three types of drip irrigation emitters using different operating pressures under field conditions of Shambat - Sudan University of Khartoum (Unpublished Dissertation).
[24] Acar B, Yavuz F C and Topak R 2011 Research on Drip Irrigation System Performance under Greenhouse Conditions. Bulletin UASVM Agriculture, 68(1) 21-27.
[25] Puig-Bargués J, Arbat G, Elbana M, Duran-Ros M, Barragan J, Cartagena R and Lamm F R 2010 Effect of flushing frequency on emitter clogging in surface and subsurface drip irrigation. International Conference on Agricultural Engineering, Clermont-Ferrand, France.
[26] Al-Ghawzi H M 2012 A comparison of water application uniformity for drip irrigation system above and below soil surface at various soil depths and scheduling techniques in arid region, WIT Transactions on Ecology and The Environment, 168(2) 311–322.
[27] Ali M H and Talukder M S U 2008 Increasing water productivity in crop production A synthesis. Agricultural Water Management, 95 1201-1213.