Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres

Saleh Omairi1†, Antonios Matsakas2†, Hans Degens3,4, Oliver Kretz5,6, Kenth-Arne Hansson7, Andreas Våvang Solbrå7,8, Jo C Bruusgaard7,9, Barbara Joch10,11, Roberta Sartori12, Natasa Giallourou13, Robert Mitchell1, Henry Collins-Hooper1, Keith Foster1, Arja Pasternack14, Olli Ritvos14, Marco Sandri12, Vihang Narkar15, Jonathan R Swann13, Tobias B Huber5,6,16,17, Ketan Patel1,17*

1School of Biological Sciences, University of Reading, Reading, United Kingdom; 2Hull York Medical School, Hull, United Kingdom; 3School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; 4Lithuanian Sports University, Kaunas, Lithuania; 5Renal Division, University Medical Center Freiburg, Freiburg, Germany; 6Faculty of Medicine, University of Freiburg, Freiburg, Germany; 7Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway; 8Department of Physics, University of Oslo, Oslo, Norway; 9Department of Health Sciences, Kristiania University College, Oslo, Norway; 10Department of Neuroanatomy, University of Freiburg, Freiburg, Germany; 11Faculty of Medicine, University of Freiburg, Freiburg, Germany; 12Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy; 13Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; 14Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; 15Institute of Molecular Medicine, University of Health Science Center, Houston, Texas; 16BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Houston, Texas; 17FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis ZBSA, Freiburg, Germany

Abstract A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn+/ErrγTg+) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn+/ErrγTg+ mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced.

DOI: 10.7554/eLife.16940.001
Introduction

John Eccles and colleagues first applied the concept of ‘plasticity’ to skeletal muscle to describe the effect of cross-innervation experiments in cats on the size and fibre characteristics of skeletal muscle (Buller et al., 1960). Many factors have since been shown to profoundly effect on skeletal muscle structure and function, including chronic electrical stimulation, exercise, diet and ageing (Salmons and Vrbová, 1969; Hickson, 1980; Wade et al., 1990; Mitchell et al., 2012).

In mammalian skeletal muscle, fibres are broadly characterized as slow or fast fibres, where slow fibres express the myosin heavy chain (MHC) isoform I, whereas fast fibres express MHC IIA, IIX and/or IIb. Slow fibres generally have a smaller cross sectional area (CSA), contain more mitochondria which sustain a high oxidative capacity, and a denser microvascular network than fast fibres that rely predominantly on glycolysis for ATP production. Muscle fibres can change their phenotype, such as the expression of MHC, mitochondrial content and capillary supply in response to external stimuli (Pette and Staron, 1997, 2001).

We are beginning to understand some of the cellular, biochemical and molecular processes that act to concord muscle structure and morphology to the functional demands placed on the muscle. For instance, it has been shown that the development of the slow muscle fibre phenotype is largely controlled by Protein Kinase C, Calcineurin/NFAT, AMP Activated Protein kinase (AMPK), peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) and Sex determining region Y-box 6 (Sox6) (Gundersen, 2011; von Hofsten et al., 2008). Recently, we have shown that the Estrogenrelated receptor gamma (Errγ) is robustly expressed in slow muscle and can promote the formation of oxidative fibres in a PGC-1α independent manner (Narkar et al., 2011). Fast, glycolytic muscle development on the other hand seems to involve the activation of the Akt signalling pathway through the transcriptional regulation by molecules including Baf60c (also called Smarcd3) and T-box 15 (Tbx15) (Meng et al., 2013, 2014; Lee et al., 2015). Lifting the inhibition of Akt signalling mediated by Myostatin is also a potent means of inducing the formation of glycolytic muscle fibres (Trendelenburg et al., 2009). Additionally, a recent study has shown that the DNA binding protein Nuclear Factor I X (Nfix) acts to inhibit the slow muscle phenotype (Rossi et al., 2016).

Myostatin (Mtn), a member of the Transforming Growth Factor Beta (TGF-β) family of secreted proteins, is highly expressed in skeletal muscle (McPherron et al., 1997). It is a potent inhibitor of skeletal muscle growth and its deletion results in a hypermuscular phenotype called ‘Muscle Doubling’ seen in mice, cattle and even humans (McPherron et al., 1997; McPherron and Lee, 1997; Schuelke et al., 2004). We and others have shown that the glycolytic muscles that develop in the absence of Mtn have a mitochondrial deficit and a low specific force (Amthor et al., 2007; Mendias et al., 2006).

A fundamental concept of skeletal muscle biology is the existence of the inverse relationship between the oxidative capacity of a fibre and its cross-sectional area (CSA) that applies to muscles as diverse as the limb, diaphragm and masseter muscle within an animal and even across species boundaries (van Wessel et al., 2010; Degens, 2012; Van Der Laarse et al., 1997). This relationship, in theory, ultimately imposes a constraint on the size that mitochondria-rich and therefore high O2 -dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype less reliant on O2 (Desplanches et al., 1996; Deveci et al., 2001). The metabolic properties of muscle are believed not only to control fibre size but also the number of satellite cells. A number of correlative studies have described the number of SC increases as a muscle becomes progressively oxidative (Putman et al., 1999; Christov et al., 2007).

Here we investigated whether this suggested constraint between fibre size and oxidative capacity can be broken and sought to develop large oxidative fibres without compromising fatigue resistance. To that end, we developed a novel mouse line by introducing an Errγ over-expression allele driven by a skeletal muscle fibre promoter (Human α -Skeletal Muscle Actin) (Muscat and Kedes, 1987) that enhances the oxidative capacity (Narkar et al., 2011) into a hypertrophic Mtn−/− background. Based on the concept of a constraint between the CSA and oxidative capacity of a fibre we postulated three possible outcomes of the cross: (1) the Akt pathway that is de-repressed due to the absence of Mtn would prevail and lead to hypertrophic, but glycolytic fibres; (2) oxidative features would be imparted by the Errγ programme that would follow the inverse size relationship and lead to mitochondria-rich fibres which could be smaller than wild-type.
(Rangwala et al., 2010); (3) the constraint is broken in this strain and results in the development of hypertrophic yet oxidative fibres.

The main observations of the study are firstly that the muscles of Mtn^{−/−}/Err^{Tg/+} mice have large fibres with a larger than expected oxidative capacity, breaking the constraint of the inverse size-oxidative capacity relationship. This was attained through the activation of the Akt pathway, increased myoglobin gene expression, relocation of mitochondria to the sub sarcolemma and hyper-capillarisation of the muscle. We show that these modifications not only bring about normalization of many ultrastructural abnormalities in the hypertrophic muscles of Mtn^{−/−} mice, but the Mtn^{−/−}/Err^{Tg/+} mice even outperform wild type mice during an incremental exercise test. Secondly that the hypertrophic oxidative muscles from the Mtn^{−/−}/Err^{Tg/+} mice do not follow the dogma regarding metabolism and satellite cells number. We actually show that the metabolic reprogramming in this study led to a decrease in satellite cell number. However, this deficit did not impact at all in terms of the muscle’s ability to regenerate. We believe this highlights the importance of the microcirculation during regeneration and has major clinical implications.

Results

Body and skeletal muscle mass

Introduction of Err^γ in a skeletal muscle-specific manner into the Mtn^{−/−} background to generate double transgenic Mtn^{−/−}/Err^{Tg/+} resulted in viable, fertile offspring that were born at the expected Mendelian ratios. Firstly, we found that the HSA promoter used induced robust over-expression of Err^γ in the Mtn^{−/−} background (Figure 1A). The body mass of WT, Mtn^{−/−} and Mtn^{−/−}/Err^{Tg/+} animals was similar at 12 weeks of age (Figure 1B). However, the EDL, gastrocnemius, soleus and TA muscles were in both Mtn^{−/−} and Mtn^{−/−}/Err^{Tg/+} approximately 43%, 44%, 47% and 70% larger than their WT counterpart, respectively (Figure 1C–F). Importantly, there was no significant difference in mass for any of the muscles from Mtn^{−/−} and Mtn^{−/−}/Err^{Tg/+} mice (Figure 1C–F).

Exercise capacity

Using the running to exhaustion protocol on a treadmill, we found that Mtn^{−/−} mice performed worse than WT. However the Mtn^{−/−}/Err^{Tg/+} ran for approximately 80% longer than the Mtn^{−/−} and 25% longer than the WT mice (Figure 1G).

Force generating capacity

We found that the maximal isometric tetanic force generated by the EDL of Mtn^{−/−} was not significantly different from that of the WT mice, despite the larger muscle mass (Figure 1H). The tetanic force generated by Mtn^{−/−}/Err^{Tg/+} EDL was, however, greater than that of the EDL from both WT and Mtn^{−/−} mice. We next calculated the Specific Force (sP₀), the tetanic force per muscle mass. The sP₀ of the EDL of Mtn^{−/−} mice was lower that of the other groups, with that of the Mtn^{−/−}/Err^{Tg/+} mice being significantly greater than Mtn^{−/−} mice, but not normalized to WT levels (Figure 1). We also examined the force generating capacity of the soleus. The tetanic force of Mtn^{−/−} soleus muscle was significantly lower than those of WT. There was no difference in this parameter between the soleus muscles of WT and Mtn^{−/−}/Err^{Tg/+} (Figure 1—figure supplement 1A). The specific force of the soleus showed the same overall profile as that of the EDL but did not reach statistical significance, possibly due to low sample size (Figure 1—figure supplement 1A).

Muscle fibre number, area and MHC profile

The increased muscle mass in Mtn^{−/−} mice are due to both hypertrophy and hyperplasia. We found that the introduction of Err^γ into Mtn^{−/−} did not significantly change the number of fibres normally seen in Mtn^{−/−} EDL (Figure 2A–B) or soleus muscles (Figure 2—figure supplement 1A–B) both of which were greater than in WT. The fibre sizes were equivalent in the EDL of Mtn^{−/−} and Mtn^{−/−}/Err^{Tg/+} mice. Of particular note was that the MHCIIA fibres in the EDL were approximately 270% larger in both Mtn^{−/−} and Mtn^{−/−}/Err^{Tg/+} compared to WT (Figure 2B). The other notable result was the smaller size of MHCIIIA fibres in Mtn^{−/−}/Err^{Tg/+} than Mtn^{−/−}, but they were still larger than those in the WT (Figure 2B).
Figure 1. Concomitant skeletal muscle hypertrophy and tissue specific expression of ERRγ and resultant fatigue resistant characteristics. (A) ERRγ mRNA levels. (B) Body and (C–F) skeletal muscle mass in wild type (Wt), myostatin null (Mtn) and ERRγ transgenic mice on the myostatin null background (Mtn:Errγ). (G) Exercise tolerance test on a mouse treadmill. (H–I) Contractile properties of the EDL muscle. Specific force denotes tetanic force normalized to wet muscle mass. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05.

Figure 1 continued on next page
Introduction of Err γ into Mtn-/- caused a partial reversal of MHC profile of Mtn-/- towards the WT condition in all muscles examined (Figure 2C and Figure 2—figure supplement 1A and C). This conversion was only detected within the MHCII subtypes but did not extend to normalization of the proportion of MHCI fibres; in the soleus of Mtn-/-/Err γTg/+ , the proportion of MHCIIIB fibres was lower than that in Mtn-/- while that of MHCIIA fibres was higher. Nevertheless, both Mtn-/- and Mtn-/-/Err γTg/+ display a lower proportion of MHCI fibres in the soleus muscle than WT (Figure 2C).

Next, we examined the mechanism underpinning fibre enlargement. We found that the levels of phosphorylated Akt (an inducer of anabolism) were higher in the muscle of Mtn-/- and Mtn-/-/Err γTg/+ compared to WT (Figure 2D). A similar relationship was discovered for its downstream target 4EBP1 (Figure 2D). Akt not only promotes protein synthesis but also suppresses catabolism partly by phosphorylating and thereby inactivating FoxO3. We found that deletion of Mtn resulted in an increased ratio of the inactive:active (phosphorylated:non-phosphorylated) form of FoxO3. However, in muscles of Mtn-/-/Err γTg/+ mice the levels of inactive FoxO3 were lower than in that of the Mtn-/- (Figure 2D).

Oxidative fibre profiling and vascular organisation

In all muscles examined, the intensity of the SDH staining (measure of oxidative activity) of fibres was lower in muscle from Mtn-/- compared to WT (Figure 3A and Figure 3—figure supplement 1A–B). However, upon over-expression of Err γ, the intensity of SDH staining in fibres of Mtn-/- muscle was restored to that of WT. Indeed, also the number of SDH positive fibres was higher than that seen in even the WT muscles albeit not significantly so (Figure 3A and Figure 3—figure supplement 1C). Introduction of Err into Mtn-/- also caused normalization of the number PAS positive fibres (Figure 3A and Figure 3—figure supplement 1D). The capillary to fibre ratio (C:F); was lowest in the muscles of Mtn-/- mice and highest in those of the Mtn-/-/Err γTg/+ mice (Figure 3B).

Metabonomics

The muscle metabolite profile was characterized by 1H NMR spectroscopy. To identify any metabolic variation driven by the genotypic differences, principal components analysis (PCA) was applied to these profiles. A clear clustering was observed in the scores plot comparing all three genotypic groups demonstrating that they had distinctive metabolite profiles (Figure 3C). Comparing the metabolic signature of the Mtn-/- muscle to the Mtn-/-/Err γTg/+ showed clear differences between the two groups (Figure 3C) characterised by significantly greater levels of muscle lactate in Mtn-/- muscle compared to that of the Mtn-/-/Err γTg/+ consistent with a greater glycolytic phenotype. Furthermore the levels of creatine/phosphocreatine were also more pronounced in the muscle from Mtn-/- compared to Mtn-/-/Err γTg/+ . Err γ modification led to higher taurine and anserine content in the muscle of these animals.

Therefore, histochemical and NMR muscle profiles of the three genotypic groups provide further evidence that Err modification of Mtn-/- results in a remodeling of phenotype to a state that differentiates it not only from Mtn-/- but also WT.

Metabolic gene profile

Key molecular and cellular features that would explain the metabolic profile of Mtn-/-/Err γTg/+ muscle were defined. In the first instance, we examined key regulators of energy metabolism. We found that Err γ over-expression induced changes in levels of two key transcriptional regulators of metabolism; Perm1 and Pgc1α in Mtn-/- muscle (Figure 4A).

Next, we examined the expression of key regulators of glucose and fatty acid oxidation (Glut1, Glut4, Pdk4 and Had, Lpl and Cysc respectively). We found that Glut4 and Pdk4 were lower in Mtn-/-/Err γTg/+ compared to Mtn-/- . Moreover, Had and Lpl, was higher in Mtn-/-/Err γTg/+ than in
Figure 2. Muscle-specific expression of ERRγ maintain the hyperplasia in the myostatin null background and normalizes myosin type II phenotype. (A) Representative immunohistochemical images for MHC IIA and IIB staining in the EDL muscle. (B) EDL total fibre number and myofibre cross sectional area. (C) EDL and Soleus muscle MHC phenotype. (D) Superficial TA MHC phenotype and protein expression of pAKT(S473)/Akt, p4EBP1(T37/46)/4EBP1, and pFoxO3(S253)/FoxO3.
Bonferroni’s multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001.

Area (CSA, μm²). (C) EDL, soleus and superficial TA muscle fibre type composition (D) Protein expression of key regulators that control anabolism (pAKT, p4EBP1) and catabolism (pFoxO3) in the gastrocnemius muscle. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05, #p<0.01, ¥p<0.001.

DOI: 10.7554/eLife.16940.005

The following figure supplement is available for figure 2:

Figure supplement 1. Reprogramming of the soleus myostatin null muscle by ERRγ.

DOI: 10.7554/eLife.16940.004

Figure 2 continued

Mtn⁻/⁻. Of particular note was the finding that the expression of markers of fatty acid metabolism, *Hadh* and *Lpl*, were not only higher in *Mtn⁻/⁻/ErrγTg/+* than in *Mtn⁻/⁻* but also than in the WT condition (**Figure 4A**).

Oxidative metabolism relies on oxygen that can be stored in muscle by myoglobin. Secondly, oxidative metabolism generates destructive radicals which can be broken down by enzymes including catalase. We found that expression of *myoglobin*, which facilitates the diffusion of oxygen, and *catalase*, an anti-oxidant enzyme, were higher in the muscle of *Mtn⁻/⁻/ErrγTg/+* than in WT and *Mtn⁻/⁻* mice (**Figure 4A**).

Then we investigated genes that control oxidative energetics and examined the expression of molecules controlling fat metabolism (fatty acid transport and uptake molecules: *Cd36, Slc25a20, Fatp1, Fabp3* and regulators of fatty acid oxidation: *Acadl, Acadm*). We found that all six genes were expressed to a higher degree in *Mtn⁻/⁻/ErrγTg/+* than in *Mtn⁻/⁻* and WT mice (**Figure 4A**).

We established if the differences in oxidative metabolism between *Mtn⁻/⁻* and *Mtn⁻/⁻/ErrγTg/+* in muscle were mirrored by factors related to the microvascular supply to the muscle. We found that the expression of endothelial mitogenic factors (*Vegfa165, Vegf189* and *Ffg1*) was lower in the muscles of *Mtn⁻/⁻* than WT mice, but similar in those of *Mtn⁻/⁻/ErrγTg/+* and WT mice (**Figure 4B**).

Therefore, the muscle-specific expression of *Errγ* in *Mtn⁻/⁻* mice not only normalizes its metabolic molecular profile but also results in a better microvascular supply of the muscle.

Ultra-structure

The ultra-structure of muscle in the three cohorts were examined. Using transmission electron microscopy, we found a number of abnormalities in the structure of muscle from *Mtn⁻/⁻* mice heterogeneously sized sarcomeres, misaligned and disrupted Z-Lines, large inter-sarcomeric spaces and altered mitochondrial distribution and size (**Figure 5A**). In contrast, the muscle from *Mtn⁻/⁻/ErrγTg/+* largely lacked these abnormalities (**Figure 5A**). We found that the density of mitochondria in both sub-membrane and intrafusal locations was decreased significantly following the deletion of *Mtn*. However, the expression of *Errγ* significantly increased the mitochondrial density at both locations compared to *Mtn⁻/⁻* and at the major site, the sub-membrane region, increased it even compared to WT. Mitochondrial hypertrophy has been postulated to compensate for decreased mitochondrial number or function. Hypertrophy is thought to either protect against apoptosis or for functional mitochondria to fuse with aberrant ones resulting in the maintenance of cell function (*Frank et al.*, 2001; *Ono et al.*, 2001). Mitochondrial hypertrophy was evident in both compartments in muscle from *Mtn⁻/⁻* (**Figure 5B–E**) and was normalized by *Errγ* in the sub-membrane region (**Figure 5D**).

These results show that the deletion of *Mtn* leads to numerous ultra-structural abnormalities. Over-expression of *Errγ* in the *Mtn⁻/⁻* prevents almost all the ultra-structural abnormalities.

Myonuclear organization and satellite cell

We next examined the features of individual muscle fibres to determine the effect of *Errγ* in *Mtn⁻/⁻* mice. We found, that deletion of *Mtn* resulted in fewer satellite cells compared to WT and that the number of satellite cells was even lower in the muscles of the *Mtn⁻/⁻/ErrγTg/+* mice (**Figure 6A,C and D**). Next, we determined proliferation and differentiation characteristics of satellite cells in the three cohorts. We found that following 48 hr of culture, the number of progeny had increased in all the genotypes but the proportional relationship found in uncultured fibres persisted (**Figure 6E–F**). During the 48 hr period of culture, satellite cells not only divide but also form clusters (**Figure 6G–H**). We found that the number of clusters were similar in fibres from WT and *Mtn⁻/⁻* (**Figure 6G**), but
Figure 3. Musclespecific expression of ERRγ normalizes the metabolic and capillary profile of myostatin null mice. (A) SDH staining and quantification of EDL and soleus muscles of Wt, Mtn and Mtn:Ey mice. N = 5 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s Multiple Comparison Post-test. (B) CD31 staining and quantification of TA capillary density. (C) PCA analysis of different metabolites.
there were fewer clusters in the Mtn⁻/⁻/ErrgTg/+. Derived cultures. The number of cells per cluster was highest in WT and lowest in the Mtn⁻/⁻ with that of the Mtn⁻/⁻/ErrgTg/+ in between the two (Figure 6H). Finally, we found deletion of Mtn and the introduction of Errγ did not impact on the process of differentiation (Figure 6I).

Myonuclear number and organization were then determined. First, there were significantly more myonuclei in the fibres of Mtn⁻/⁻/ErrgTg/+ compared to WT (Figure 6A–B). Secondly, we examined the distribution of myonuclei within a fibre. This is thought to be a regulated process since myonuclei position is important to minimize issues related to macromolecule movement in larger cells. Therefore, the degree of regulation is inversely proportional to random positioning of the nuclei (Bruusgaard et al., 2003). In order to quantify this, we calculated the distance to the nearest
neighbour for the nuclei located at the periphery of single fibres from WT, Mtn\(^{-/-}\) and Mtn\(^{-/-}\)/Err\(^{Tg/+}\) mice. Confocal stacks of single fibres labelled with DAPI (Figure 6J) were used to generate the 3D coordinates of each nucleus in a fibre (Figure 6K) using Imaris software. Using custom made software, a simulation of randomly and optimally distributed nuclei was compared to the actual distribution (see Materials and methods). The WT fibres displayed an improvement from a random distribution of 20%. However Mtn\(^{-/-}\) and Mtn\(^{-/-}\)/Err\(^{Tg/+}\) fibres had distributions that were more random, with significantly lower improvements of 10% and 4%, respectively (Figure 6L). These results show that the expression of Err\(^{\gamma}\) in the Mtn\(^{-/-}\) does not normalize key features related to either the satellite cells, myonuclei number of their positioning.

Figure 5. Musclespecific expression of ERR\(^{\gamma}\) normalizes ultra-structural abnormalities myostatin null mice. (A) Transmission electron microscopy images in longitudinal and transverse sections of WT, Mtn and Mtn:E\(^{\gamma}\) muscle, scale 0.5 \(\mu\)m. Note the large spaces (red arrow) disrupted Z-lines (red arrowhead) and non-uniform sarcomere width (yellow arrows). (B) Quantification of submembrane mitochondrial density. (C) Quantification of Intrafusal mitochondrial density. (D) Quantification of submembrane mitochondrial size. (E) Quantification of intrafusal mitochondrial size. N = 3 male twelve-week old mice per group; One-way ANOVA followed by Bonferroni’s multiple comparison tests, *p<0.05.

DOI: 10.7554/eLife.16940.009
Figure 6. Oxidative muscle developed through ERRγ in the muscle of myostatin null mice shows depletion of satellite cells and increased myonuclei content. (A) Single EDL muscle fibres stained with DAPI to visualize myonuclei. (B) Quantification of myonuclear number in EDL fibres. (C) Quiescent satellite cells in myostatin null mice. (D) mRNA expression of Pax7 in myostatin null mice. (E) Myonuclear number in EDL fibres. (F) Satellite cells per fibre. (G) Average cluster number. (H) Satellite cell count. (I) Expression of myogenic markers. (J) Spatial distribution of Pax7 and MyoD. (K) Percentage of MyoD-positive cells. (L) Myonuclear number in EDL fibres.

Figure 6 continued on next page
Skeletal muscle regeneration

Thus, all changes in muscle resulting from the over-expression of Err/gin the Mtn/-/- were beneficial except for a lower number of satellite cells. In this section we determined the consequence of this deficit on the ability of skeletal muscle to regenerate, a process reliant on satellite cells. To that end, we induced injury of the TA using cardiotoxin and the progression of regeneration assessed at three crucial time points; day three (D3) as the process of debris clearance is ongoing and regeneration of fibres begins, day six (D6) when robust fibre regeneration can be quantified and day fourteen (D14) when debris clearance has been completed.

At D3 the muscle clearance of dying fibres was slowest in Mtn/-/- compared to the other two genotypes (Figure 7A–B). Clearance is mediated in part by macrophages and we found that the density of macrophages was highest in the muscle of Mtn/-/-/Err/Tg/+ compared to either Mtn/-/- or WT (Figure 7C–D). Furthermore, we found that the TA from Mtn/-/-/Err/Tg/+ at the early stages of regeneration contained the highest number of committed muscle cells (Figure 7E–F).

By D6, there was a greater degree of regeneration (size of newly formed eMHC+ fibres) in Mtn/-/-/Err/Tg/+ compared to either Mtn/-/- or WT (Figure 7G–H) and a more advanced removal of dying fibres in Mtn/-/-/Err/Tg/+ than in Mtn/-/- (Figure 7I–J). We also found evidence for a lower amount of cell death in the regenerating areas of Mtn/-/-/Err/Tg/+ compared to either Mtn/-/- or WT mice (Figure 7K–L). At D6 macrophage activity was still high in the muscle of Mtn/-/-/Err/Tg/+ compared to either Mtn/-/- or wild type (Figure 7M–N) as were the number of committed (Myo+/Pax7) muscle progenitor cells (Figure 7O–P). Precocious differentiation could lead to an exhaustion of cells which would ultimately attenuate fibre size. To examine this line of thought we examined damaged muscles at an advanced stage of regeneration (D14). We found further evidence for accelerated regeneration in the Mtn/-/-/Err/Tg/+ compared to either Mtn/-/- or WT gauged by a decrease in the density of fibres still expressing eMHC (Figure 7—figure supplement 1A). Importantly, there was no deficit in the size of newly regenerated fibre in the muscle of Mtn/-/-/Err/Tg/+ mice (Figure 7—figure supplement 1B). These results show that even though the muscles of Mtn/-/-/Err/Tg/+ have fewer satellite cells than the muscles of the WT and Mtn/-/- mice, their muscle regenerating capacity exceeds that of both Mtn/-/- and WT mice.

Non-genetic post-natal induction of oxidative skeletal muscle growth

Our newly generated hypermuscular, hyper-oxidative mouse line (Mtn/-/-/Err/Tg/+) displays a number of characteristics that make them attractive both in terms of physiology and regeneration. However, the muscle phenotype in these models is largely established during embryonic and post-natal development. Therefore, we next established if similar phenotypes could be obtained via non-genetic modifications. To do so, we inhibited Mtn at post-natal stages in Err/Tg/+ mice (which display an increased oxidative profile) by weekly injections of soluble activin receptor IIB protein (sActRIIB), which has been shown to antagonize signalling mediated by myostatin and related-proteins.

Following 8 weeks of weekly injections we found that sActRIIB caused an increase in the body mass of both WT and Err/Tg/+ mice (Figure 8A). Examination of isolated muscles showed an increase in muscle mass of approximately 70% in the EDL of WT and 44% in Err/Tg/+ above age-matched control animals (Figure 8B). Other muscles examined showed a similar increase in muscle mass (Figure 8—figure supplement 1A). The increase in muscle mass was not due to an increase in fibre number (data not shown) but due to hypertrophy of all MHC fibre types (Figure 8—figure supplement 1B). There was no change in the MHC fibre type composition following the injection of sActRIIB in either genotype (Figure 8C and F). However, we found that injection of sActRIIB induced a decrease in the oxidative capacity of the muscle in WT mice as indicated by a decreased proportion...
Figure 7. Skeletal muscle regeneration is accelerated by the expression of Err in myostatin null mice through enhanced macrophage and satellite cell activity. Skeletal muscle regeneration in response to cardiotoxin injury. (A) Muscle necrotic fibres visualized by IgG staining at Day 3 (arrows). (B) Ta necrotic fibre area (µm²) Myogenic progenitors.

Figure 7 continued on next page.
of SDH$^+$ fibres (Figure 8D and G). Strikingly, sActRIIB did not cause a reduction in the proportion of SDH$^+$ fibres in Erry$^{Tg/+}$ (Figure 8D and G). The increased oxidative capacity of the muscle was accompanied with a rise in the number of capillaries serving each fibre in the muscle from Erry$^{Tg/+}$ but not WT mice (Figure 8E and H and Figure 8—figure supplement 1D). These results show that it is possible to induce substantial muscle enlargement while maintaining oxidative capacity, challenging the generally accepted dogma that the size and oxidative capacity of a fibre are, because of diffusion constraints, inversely related.

Discussion

The main observations of this study are firstly that substantial hypertrophy can occur without a concomitant reduction in fibre oxidative capacity. This observation challenges the dogma that there is a trade-off between muscle fibre size and oxidative capacity. Secondarily, our results challenge the notion that slow oxidative muscle has a higher number of satellite cells than those that are fast glycolytic.

A number of studies have shown that deletion of myostatin leads to the development of hypertrophic muscle. Although such enlarged muscles appear essentially normal at the histological level, their ability to generate tension is impaired, particularly during prolonged periods of work (Amthor et al., 2007; Mendias et al., 2006; Relizani et al., 2014). The higher than normal fatigability of the muscle could be attributable to the lower number of mitochondria consequent to deletion of myostatin in the germline (Amthor et al., 2007).

To alleviate this mitochondrial deficit in Mtn$^{-/-}$ mice, we introduced the expression of Erry into skeletal muscle. This gene is highly expressed in tissues with a high oxidative capacity, such as the heart, kidneys, brain and slow oxidative skeletal muscle where it has been demonstrated to trigger mitochondrial biogenesis (Hong et al., 1996; Heard et al., 2000; Giguère, 2008; Narkar et al., 2011). Introduction of Erry overexpression that would increase oxidative capacity on a Mtn$^{-/-}$ background that is associated with hypertrophy would challenge the trade-off that is thought to exist between oxidative capacity and fibre size (Van Der Laarse et al., 1997; Degens, 2012).

One of the key features of Mtn$^{-/-}$ muscle is the lower SDH activity, indicative of a low oxidative status. This combination of a low oxidative capacity and a large fibre size fits nicely with the concept of the trade-off between fibre size and oxidative capacity. It also is associated with a larger proportion of type IIB fibres than seen in muscles from WT mice. Here we show that even though the muscle mass and fibre sizes did not differ between Mtn$^{-/-}$ and Mtn$^{-/-}$/Erry$^{Tg/+}$ mice, the latter had a higher SDH activity.

The higher SDH activity in Mtn$^{-/-}$/Erry$^{Tg/+}$ than Mtn$^{-/-}$ mice was associated with a partial normalisation of the MHC fibre profile; a decrease in the proportion of IIB fibres in all muscles examined. What was conspicuous, however, was the absence of normalisation of the proportion of MHC I fibres. We believe that this is significant and reveals a key feature of the influence of a metabolic programme on muscle physiology. We suggest that the oxidative programme, here driven by Erry, readily converts IIB to IIA fibres but is that it is unable to induce the transition to type I MHC.
Figure 8. Post-natal inhibition of myostatin in the muscle-specific ERRy mice leads to hypertrophic muscle with enhanced oxidative and vascular features. (A) Body mass in 12-week-old mice after an 8 week treatment regime. (B) EDL muscle mass after sActRIIB treatment. (C) Muscle fibre type
isoforms. Energy status (ATP/ADP or phosphocreatine) has been implicated as a determinant of the MHC fibre type with high levels inducing ever more fast forms in keeping with their myofibrillar ATPase activity (Conjad et al., 1998; Bottinelli et al., 1994). We show here from our NMR profiling that indeed the muscle of Mtn⁻/⁻ has high levels of phosphocreatine, which would be in keeping with the high ATPase activity of Type IIB fibres found in its muscle. Furthermore, we show Errγ over-expression in the muscle of Mtn⁻/⁻ normalizes this feature yet does not lead to the formation of I fibres. This observation adds to a growing body of evidence that the type II programme is plastic and adaptable whereas the Type I fibres are more resistant to change (Sutherland et al., 1998) and may not be part of the IIB→ⅠX→ⅠIA continuum. Indeed a number of studies have questioned whether the ‘final step’ (conversion of Type IIA to I) is even possible. Development of type I fibres has been described in a number of conditions, for example following Chronic low-frequency stimulation (CLFS) (Peuker et al., 1999; Kwong and Vrbová, 1981). However, these studies never examined whether Type I were formed as a consequence of the remodeling of Type II fibres or through the formation of new fibres, a process that would require satellite cells. Indeed the development of Type I fibres following extended CLFS can only be induced to significant levels when accompanied by robust myofibre regeneration (Pette et al., 2002; Maier et al., 1988). Taken together, these studies imply that myostatin signalling acts at an embryonic/foetal stage of muscle development to pattern a subpopulation of satellite cells/muscle precursors in a muscle specific manner to form Type I fibres. The protocol of over-expressing Errγ used in this study is unable to influence this process.

One of the intriguing aspects of the Mtn⁻/⁻ phenotype is the concurrence of a larger muscle mass and a low oxidative capacity, as also reflected by a low mitochondrial content (Amthor et al., 2007). As mentioned above, this association corresponds with the prediction of the concept of a trade-off between muscle fibre size and oxidative capacity. There could, however, also be another function for the high glycolytic capacity. For instance, the Warburg Effect is the observation that most cancer cells rely on glycolysis even in the presence of oxygen (Warburg et al., 1927) for the production of intermediates essential for the building blocks of any cell including nucleic acids, lipids and proteins (Deberardinis et al., 2008). In a similar way, glycolysis in the muscles of Mtn⁻/⁻ mice may support the high levels of protein synthesis required for the initial muscle hypertrophy and maintenance of the large muscle mass. An interesting point is that such cells are not only dependent on glycolysis but also often have decreased oxidative phosphorylation capacity (Petros et al., 2005). Where the similarities between the Warburg Effect in cancer cells and findings from this study differ is the outcome following an intervention that promotes oxidative metabolism. In cancer cells such an intervention reduces cell growth (Wang and Moraes, 2011) while we have shown with Errγ overexpression on a Mtn⁻/⁻ background not only re-establishes the oxidative capacity but also maintains the hypertrophic state. Consistent with the oxidative metabolic phenotype of the Mtn⁻/⁻/ErrγTg/+ mice are the higher levels of taurine and anserine observed in the NMR metabonomic analysis, since taurine is positively correlated with the oxidative capacity of muscle tissues (Dunnett et al., 1997). Anserine is β-alanine and histidine related dipeptide with antioxidant properties commonly found in skeletal muscle of many animals (Kohen et al., 1988). Thus, it may act as a scavenging agent of the byproducts arising from elevated oxidative activity in the muscle of Mtn⁻/⁻/ErrγTg/+ mice.

A number of studies have suggested that fibres that rely on oxidative phosphorylation limit their size in order that oxygen from the capillaries diffuses efficiently into the cells and to the mitochondria for ATP production (Kinsey et al., 2007; Van Der Laarse et al., 1997; van Wessel et al., 2010). The large fibres with a low oxidative capacity in Mtn⁻/⁻ mice conform to this concept and have a low capillary supply per fibre. During compensatory hypertrophy the time course of angiogenesis...
and fibre hypertrophy are similar (Eggington et al., 1998; Plyley et al., 1998) and the capillary supply to a fibre is related to the size of the fibre (Ahmed et al., 1997; Degens et al., 1994). Such a coupling between the fibre size and capillary supply seems to be altered in the Mtn^{-/-} mice in such a way that they have fewer capillaries than expected for the size of the fibre. However, over-expression of Err_γ in either WT or Mtn^{-/-} drives a robust angiogenic gene programme, increases the number of capillaries per fibre and ultimately muscle blood flow as shown previously (See Figure 3B and (Narkar et al., 2011; Matsakas et al., 2012b). An important finding here is that the angiogenesis programme promoted by muscle expression of Err_γ is responsive to change in fibre size so that when a fibre grows, it stimulates the formation of blood vessels presumably to ensure optimal perfusion (Figure 8H). Two additional modifications take place, an increase in myoglobin transcription and increasing the density of mitochondria at the sarcolemma that would sustain large oxidative fibres developed as a consequence of Err_γ in the Mtn^{-/-} background. These outcomes have been postulated to prevent a decline in maximum steady state power as an oxidative fibre increases size (Hickson, 1980; Heard et al., 2000).

In this study, we show that the muscle hypertrophy that develops following germline deletion of Mtn has many ultrastructural abnormalities including splitting of sarcomeres, misaligned Z-lines and alteration in mitochondrial distribution and morphology. The maintenance of muscle structure is largely mediated by mechanisms that remove unwanted proteins and organelles through either the proteasome or autophagic pathways (Sandri, 2013; Bonaldo and Sandri, 2013). Furthermore, deregulated proteasome activity or autophagy leads to muscle wasting in a number of diseased conditions (Sandri et al., 2004; Carmignac et al., 2011). As these pathways are involved in anabolic processes, it seems intuitive that they should be tuned down in order to support muscle growth. Indeed, we show that the activity of a key regulator of these processes, FoxO3 is suppressed in the absence of Mtn. However, we show that Err_γ expression in muscle leads to a substantial normalization of the ultrastructure Mtn^{-/-} skeletal muscle as well an improvement in the specific force. Most importantly, we show that a more physiological measure of muscle function- fatigability, is not only normalized but exceeds the value of WT mice. Our data demonstrate that the suppression of FoxO3 activity is alleviated by Err_γ. We suggest that the molecular and organelle clearance programmes being mediated by FoxO3 are generally not anabolic but are rather there to maintain cellular homeostasis. However, when its activity is attenuated, it leads to an accumulation of structural abnormalities that compromises muscle function. Nevertheless, not all features of the Mtn^{-/-} muscle were normalised by Err_γ expression; Myonuclei in Mtn^{-/-} and Mtn^{-/-}/Err_γ^{Tg/+} were more disorganized than those in WT fibres. Proper nuclear positioning is probably required for normal muscle function, possibly due to irregular size and spacing of myonuclear domains (Metzger et al., 2012) and myonuclear disorganization is observed both in ageing skeletal muscle and in models of muscular dystrophies (Bruusgaard et al., 2006; Meinke et al., 2014). Additionally, accretion of myonuclei is a prerequisite for maintaining specific force during hypertrophy and mitochondrial protein systems have been suggested to play a role in defining myonuclear domain size in rodents (Liu et al., 2009). The increased number of myonuclei and increased synthesis of mitochondria in the Mtn^{-/-}/Err_γ^{Tg/+} mice might compensate for the observed disorganized myonuclei, restoring specific force and ultrastructure.

Finally, our study gives a new perspective on the relationship between metabolism, satellite cell numbers and their activity during regeneration. A number of studies have implied that slow muscles contain more satellite cells than fast (Putman et al., 1999; Christov et al., 2007). In this study, we show that at least in the EDL as the fibres transitioned from Type IIB to Type IIA, the number of associated satellite cells was significantly reduced. One possible explanation for this finding is by taking into account the concomitant increase in the number of nuclei in the myofibre. Here, the relationship is opposite to satellite cell fibre number. We postulate that the absence of myostatin promotes myoblast fusion at the expense of satellite cell. Furthermore, that over-expression of Err_γ exacerbates this relationship. Severe depletion of satellite cell numbers has been reported to severely retard the process of muscle regeneration (Schuster-Gossler et al., 2007; Vasyutina et al., 2007). Here, we show that the depletion of satellite cells to less than 50% of their normal levels does not impact on skeletal muscle regeneration since they have a vast capacity to generate precursors which in most situations are never realized fully (Collins et al., 2005). Instead, we suggest that oxidative environment established by Err_γ is the key determinant in accelerating regeneration. Our work supports previous work showing that oxidative metabolism supports muscle regeneration (Lowrie et al., 2000; Schuster-Gossler et al., 2007; Vasyutina et al., 2007).
1982; Matsakas et al., 2012b, 2013) and are in agreement with a number of studies showing that genetic manipulations leading to a greater oxidative capacity accelerate muscle regeneration (Li et al., 2007; Hussain et al., 2013). One possible explanation for our results is our finding that Erry promotes hyper-vascularization. Angiogenesis is a key determinant in the muscle regeneration process. We suggest that the reduction of satellite cell is off-set by the ability to promote vascularization and clearance of the necrotic tissues, allowing the small number of satellite cells to expand greatly to enact rapid repair. This hypothesis is supported by our data investigating both macrophage density and the generation of myoblast in the Mtn−/−ErryTg/+ mice. Many studies have found that programmes of muscle repair are often at the expense of satellite cells which are not available for future cycles of degeneration/regeneration (Castets et al., 2011). We will investigate this avenue of research in the future by conducting a second round tissue damage in the three genetic lines described here. Encouragingly, our data show that although there was an increase in the number of myogenic precursors (Pax7+/MyoD+) as well as committed cells (Pax7−/MyoD+) in the Mtn−/−ErryTg/+ compared to WT at D6, this was not at the expense of cells with satellite cell character (Pax7+/MyoD+).

In summary, our work challenges the dogma of an inverse relationship between muscle fibre size and oxidative capacity. The deviation from this relationship may be realized by the increased capillarisation and myoglobin content of the muscle and redistribution of mitochondria to a subsarcolemmal location. These adaptations were not associated with the loss of muscle force generating capacity and in fact even resulted in improved exercise capacity. It is likely that the increased microvascular network plays a crucial role in muscle regeneration as the Mtn−/−ErryTg/+ mice had even lower satellite cell numbers than Mtn−/− mice, yet a regenerative capacity that even exceeded that of WT mice. In future we will determine whether it confers other advantages in particular the ability to confer resistance to obesity and sarcopenia.

Materials and methods

Ethical approval
The experiments were performed under a project license from the United Kingdom Home Office in agreement with the Animals (Scientific Procedures) Act 1986. The University of Reading Animal Care and Ethical Review Committee approved all procedures. Animals were humanely sacrificed via Schedule 1 killing between 8:00–13:00.

Animal maintenance
Healthy C57Bl/6 (WT), Mtn−/−, Mtn−/−/ErryTg/+ and ErryTg/+ mice were bred and maintained in accordance to the Animals (Scientific Procedures) Act 1986 (UK) and approved by the University of Reading in the Biological Resource Unit of Reading University. Mice were housed under standard environmental conditions (20–22°C, 12–12 hr light–dark cycle) and provided food and water ad libitum. We used male mice that were 4–5 months old at the start of the study. Each experimental group consisted of 3–12 mice. Mtn−/− and ErryTg/+ mice were a gift of Se-Jin Lee (John’s Hopkins USA) and Ronald Evans respectively (Salk Institute for Biological Studies, La Jolla, USA). Post-natal muscle growth was induced in one month-old males WT and ErryTg/+ mice that were injected twice weekly intraperitoneally with 10 mg/kg of the soluble activin receptor IIB (sActRIIB-Fc) for a period of two months. Each experimental group consisted of 5–6 mice.

Exercise fatigue test
Mice were acclimatised to running on a treadmill in three sessions (10 m min−1 for 15 min followed by a 1 m min−1 increase per minute to a maximum of 12 m min−1) (Columbus Instruments Model Exer 3/6 Treadmill, Serial S/N 120416). Exhaustion was determined by exercising the mice at 12 m min−1 for 5 min, followed by 1 m min−1 increases to a maximum of 20 m min−1 until the mouse was unable to run.

Muscle tension measurements
Dissection of the hind limb was carried out under oxygenated Krebs solution (95% O2 and 5% CO2). Under circulating oxygenated Krebs solution one end of a silk suture was attached to the distal
tendon of the extensor digitorum longus (EDL) and the other to a Grass Telefactor force transducer (FT03). The proximal tendon remained attached to the tibial bone. The leg was pinned to a Sylgard-coated experimental chamber. Two silver electrodes were positioned longitudinally on either side of the EDL. A constant voltage stimulator (S48, Grass Telefactor) was used to directly stimulate the EDL which was stretched to attain the optimal muscle length to produce maximum twitch tension (P_t). Tetanic contractions were provoked by stimulus trains of 500 ms duration at, 10, 20, 50, 100 and 200 Hz. The maximum tetanic tension (P_o) was determined from the plateau of the frequency-tension curve. Specific force was estimated by normalising tetanic force to EDL muscle mass (g).

Histological analysis and immunohistochemistry
Following dissection, the muscle was immediately frozen in liquid nitrogen-cooled isopentane and mounted in Tissue Tech freezing medium (Jung) cooled by dry ice/ethanol. Immunohistochemistry was performed on 10 μm cryosections that were dried for 30 min before the application of block wash buffer (PBS with 5% foetal calf serum (v/v), 0.05% Triton X-100). Antibodies were diluted in wash buffer 30 min before use. Details of primary and secondary antibodies are given in Supplementary file 1. F4/80 was detected using the Vector Laboratories ImmPRESS Excel Staining Kit. Morphometric analysis of fibre size was performed as previously described (Matsakas et al., 2012a).

Succinate dehydrogenase (SDH) staining
Transverse EDL muscle sections were incubated for 3 min at room temperature in a sodium phosphate buffer containing 75 mM sodium succinate (Sigma), 1.1 mM Nitroblue Tetrazolium (Sigma) and 1.03 mM Phenazine Methosulphate (Sigma). Samples were then fixed in 10% formal-calcium and cleared in xylene prior to mounting with DPX mounting medium (Fisher). Densitometry of the samples was performed on a Zeiss Axioskop2 microscope mounted with an AxioCam HRc camera. Axiovision Rel. 4.8 software was used to capture the images.

Transmission electron microscopy
To identify the distribution of the mitochondria in the muscle fibres, biceps and extensor carpi radialis muscle were removed cut in pieces of 1 mm3 and immerse fixed in 4% PFA and 2.5% glutaraldehyde in 0.1 M cacodylate buffer pH 7.4 (4°C, 48 hr). Tissue blocks were contrasted using 0.5% OsO$_4$ (Roth, Germany; RT, 1.5 hr) and 1% uranyl acetate (Polysciences, Germany) in 70% ethanol (RT, 1 hr). After dehydration tissue blocks were embedded in epoxy resin (Durcopan, Roth, Germany) and ultrathin sections of 40 nm thickness were cut using a Leica UC6 ultramicrotome (Leica, Wetzlar, Germany). Sections were imaged using a Zeiss 906 TEM (Zeiss, Oberkochen, Germany) and analysed using ITEM software (Olympus, Germany).

1H NMR spectroscopy-based metabonomic analysis
Polar metabolites were extracted from the gastrocnemius muscle using previously described protocols (Beckonert et al., 2007). Briefly, 40–50 mg of muscle tissue was snap frozen in liquid nitrogen and finely ground in 300 μL of chloroform: methanol (2:1) using a tissue lyzer. The homogenate was combined with 300 μL of water, vortexed and spun (13,000 g for 10 min) to separate the aqueous (upper) and organic (lower) phases. A vacuum concentrator (SpeedVac) was used to remove the water and methanol from the aqueous phase before reconstitution in 550 μL of phosphate buffer (pH 7.4) in 100% D$_2$O containing 1 mM of the internal standard, 3-(trimethylsilyl)-[2,2,3,3, 2H$_4$]-propionic acid (TSP). For each sample, a standard one-dimensional NMR spectrum was acquired with water peak suppression using a standard pulse sequence (recycle delay (RD)-90°-t_1-90°-t_m-90°-acquire free induction decay (FID)). RD was set as 2 s, the 90° pulse length was 16.98 μs, and the mixing time (t_m) was 10 ms. For each spectrum, 8 dummy scans were followed by 128 scans with an acquisition time per scan of 3.8 s and collected in 64 K data points with a spectral width of 12.001 ppm. 1H nuclear magnetic resonance (NMR) spectra were manually corrected for phase and baseline distortions and referenced to the TSP singlet at δ 0.0. Spectra were digitized using an in-house MATLAB (version R2009b, The Mathworks, Inc.; Natwick, MA) script. To minimize baseline distortions arising from imperfect water saturation, the region containing the water resonance was excised from
the spectra. Principal components analysis (PCA) was performed with Pareto scaling in MATLAB using scripts provided by Korrigan Sciences Ltd, UK.

Protein expression by western blotting

Frozen muscles were powdered and lysed in a buffer containing 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM MgCl$_2$, 1 mM DTT, 10% glycerol, 1% SDS, 1% Triton X-100, 1X Roche Complete Protease Inhibitor Cocktail, 1X Sigma Aldrich Phosphatase Inhibitor Cocktail 1 and 3. Then, the samples were immunoblotted and visualized with SuperSignal West Pico Chemiluminescent substrate (Pierce). Blots were stripped using Restore Western Blotting Stripping Buffer (Pierce) according to the manufacturer’s instructions and were reprobed if necessary. Details of antibodies are given in Supplementary file 1.

Quantitative PCR

Tissue samples were solubilised in TRIzol (Fisher) using a tissue homogeniser. Total RNA was prepared from skeletal muscles using the RNeasy Mini Kit (Quigen, Manchester, UK). Total RNA (5 µg) was reverse-transcribed to cDNA with SuperScript II Reverse Transcriptase (Invitrogen) and analyzed by quantitative real-time RT-PCR on a StepOne Plus cycler, using the Applied Biosystems SYBR-Green PCR Master Mix. Primers were designed using the software Primer Express 3.0 (Applied Biosystems). Relative expression was calculated using the ΔΔC$_t$ method with normalization to the housekeeping genes cyclophilin-B, hypoxanthine-guanine phosphoribosyltransferase (hprt) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Specific primer sequences are given in Supplementary file 1.

Myonuclear organisation

For visualizing myonuclei, fibres were mounted with ProLong Diamons Antifade Mountant with DAPI (Molecular Probes, P36962), and a confocal microscope (Olympus FluoView 1000, BX61W1, Olympus, Japan) was used to observe single muscle fibres. Pictures were taken in confocal planes, separated by z-axis steps varying between 0.4 and 2 µm according to the optical thickness and the desired Nyquist sampling frequency. Confocal microscope images used for mapping of Euclidean positions of myonuclei were processed and analysed using Imaris (Bitplane) and ImageJ (NIH, Bethesda, MD, USA).

For each muscle fibre, an idealized circular cylinder segment with constant radius was constructed, and the distance from each nucleus to its nearest neighbour was calculated.

In order to measure how ordered the nuclei distribution for a particular fibre is, the mean nearest neighbour distance was calculated for the experimental data, as well as for the random and optimal distribution using parameters from the experiment. We denote the experimental, random and optimal means by ME, MR and MO. An ‘orderness-score’, $g(ME)$, was then calculated as:

$$g(M_E, M_R, M_O) = \frac{M_E - M_R}{M_O - M_R}$$

Further details and availability of custom made software, please contact j.c.bruusgaard@ibv.uio.no.

Satellite cell culture

Single fibres from EDL were isolated using 0.2% collagenase I in DMEM medium and either fixed or cultured for 48 and 72 hr as previously described (Otto et al., 2008).

Skeletal muscle regeneration

Skeletal muscle damage was induced by injecting 30 µl of 50 µM cardiotoxin in the tibialis anterior (TA) muscle of one limb while the contralateral TA of the other limb was injected with 30 µl PBS to serve as an internal control. The degree of muscle regeneration was assessed on day 3 and day 6 post-injury.

Statistical analysis

Data are presented as mean ± SE. Significant differences between two groups were performed by Student’s t-test for independent variables. The normality of the data for two samples was checked
with a Kolmogorov–Smirnov test \((\alpha = 10\%)\). Differences among groups were analysed by one-way or two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison tests as appropriate. In the case of non-homogeneous variances (Lavene’s test; \(p<0.05\)) for a variable, ANOVA was performed using the square root of the observations. Statistical analysis was performed on SPSS 18.0 (Chicago, IL). Differences were considered statistically significant at \(p<0.05\).

Acknowledgements

The financial support from the Biotechnology and Biological Sciences Research Council is gratefully acknowledged (Grants BB/J016454/1 to HCH and BB/I015787/1 to RM). The study was also supported by the European Union and The Royal Society (Grants: FP7-PEOPLE-PCIG14-GA-2013-631440 and RG140470 Research Grant to AM).

Additional information

Funding

Funder	Grant reference number	Author
European Commission	FP7-PEOPLE-676	Antonios Matsakas
European Commission	PCIG14-GA-2013-631440	Antonios Matsakas
Royal Society	Research Grant, RG140470	Antonios Matsakas
Biotechnology and Biological Sciences Research Council	BB/I015787/1	Robert Mitchell
Biotechnology and Biological Sciences Research Council	BB/J016454/1	Henry Collins-Hooper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

SO, Acquisition of data, Analysis and interpretation of data; AM, NG, Acquisition of data, Analysis and interpretation of data; HD, Experimental design, Experimentation, data analysis, Manuscript preparation; OK, JCB, Experimentation, data analysis, Manuscript preparation; K-AH, AVS, Experimentation, data analysis; BJ, Experimentation; RS, RM, HC-H, Acquisition of data; KF, Analysis and interpretation of data, Drafting or revising the article; AP, OR, JRS, Conception and design; MS, Drafting or revising the article; VN, Conception and design, Drafting or revising the article; TBH, Conception and design, Analysis and interpretation of data, Drafting or revising the article; KP, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article

Author ORCIDs

Ketan Patel, http://orcid.org/0000-0002-7131-749X

Ethics

Animal experimentation: The experiments were performed under a project license (PPL70/7516) from the United Kingdom Home Office in agreement with the Animals (Scientific Procedures) Act 1986. The University of Reading Animal Care and Ethical Review Committee approved all procedures. All of the animals were handled according to approved institutional animal care and guidelines set out by the Home Office of the UK. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of reading. All surgery was performed under recommended anesthesia, and every effort was made to minimize suffering.
Additional files

Supplementary files

- Supplementary file 1. List of primary and secondary antibodies and qPCR primer sequences.
 DOI: 10.7554/eLife.16940.015

References

Ahmed SK, Egginton S, Jakeman PM, Mannion AF, Ross HF. 1997. Is human skeletal muscle capillary supply modelled according to fibre size or fibre type? Experimental Physiology 82:231–234. doi: 10.1113/expphysiol.1997.sp004012

Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Burger L, Patel K. 2007. Lack of myostatin results in excessive muscle growth but impaired force generation. PNAS 104:1835–1840. doi: 10.1073/pnas.0604893104

Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols 2:2692–2703. doi: 10.1038/nprot.2007.376

Bonaldo P, Sandri M. 2013. Cellular and molecular mechanisms of muscle atrophy. Disease Models & Mechanisms 6:25–39. doi: 10.1242/dmm.010389

Bottinelli R, Canepari M, Reggiani C, Stienen GJ. 1994. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. The Journal of Physiology 481:663–675. doi: 10.1113/jphysiol.1994.sp020472

Bruusgaard JC, Liestal K, Gundersen K. 2006. Distribution of myonuclei and microtubules in live muscle fibres of young, middle-aged, and old. Journal of Applied Physiology 100:2024–2030. doi: 10.1152/japplphysiol.00913.2005

Bruusgaard JC, Liestal K, Elmark M, Kollstad K, Gundersen K. 2003. Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. Journal of Physiology 551:467–478. doi: 10.1113/jphysiol.2003.045328

Buller AJ, Eccles JC, Eccles RM. 1960. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. Journal of Physiology 150:417–439. doi: 10.1113/jphysiol.1960.sp006395

Carmignac V, Svensson M, Körner Z, Elwsson L, Matsumura C, Gawlik KI, Allamand V, Durbeej M. 2011. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Human Molecular Genetics 20:4891–4902. doi: 10.1093/hmg/ddr427

Castets P, Bertrand AT, Beuvin M, Ferry A, Le Grand F, Castets M, Chazot G, Rederstorff M, Krol A, Lesnure A, Romero NB, Guicheney P, Allamand V. 2011. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics 20:694–704. doi: 10.1093/hmg/ddq515

Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. 2007. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Molecular Biology of the Cell 18:1397–1409. doi: 10.1091/mbc.E06-08-0693

Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE. 2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301. doi: 10.1016/j.cell.2005.05.010

Conjard A, Peuker H, Pette D. 1998. Energy state and myosin heavy chain isoforms in single fibres of normal and transforming rabbit muscles. Pflügers Archiv European Journal of Physiology 436:962–969. doi: 10.1007/s004240050730

Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. 2008. Brick by brick: metabolism and tumor cell growth. Current Opinion in Genetics & Development 18:54–61. doi: 10.1016/j.gde.2008.02.003

Degens H, Turek Z, Hoofd LJ, Binkhorst RA. 1994. Capillary proliferation related to fibre types in hypertrophied aging rat M. plantaris. Advances in Experimental Medicine and Biology 345:669–676. doi: 10.1007/978-1-4615-2468-7_88

Degens H. 2012. Determinants of skeletal muscle hypertrophy and the attenuated hypertrophic response at old age. Journal of Sports Medicine & Doping Studies s1:2161–2173. doi: 10.4172/2161-0673.S1-003

Desplanches D, Hoppeler H, Tücher L, Mayet MH, Spielvoegel H, Ferretti G, Kayser B, Leuenberger M, Grünenfelder A, Favier R. 1996. Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia. Journal of Applied Physiology 81:1946–1951.

Deveci D, Marshall JM, Egginton S. 2001. Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. American Journal of Physiology. Heart and Circulatory Physiology 281:H241–252.

Dunnett M, Harris RC, Soliman MZ, Suwar AA. 1997. Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Research in Veterinary Science 62:213–216. doi: 10.1016/S0034-5288(97)90192-2

Egginton S, Hudlická O, Brown MD, Walter H, Weiss JB, Bate A. 1998. Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. Journal of Applied Physiology 85:2025–2032.
Omairi et al. eLife 2016;5:e16940. DOI: 10.7554/eLife.16940

Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ. 2001. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental Cell 1:515–525. doi: 10.1016/S1534-5807(01)00055-7

Giguère V. 2008. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocrine Reviews 29:677–696. doi: 10.1210/er.2008-0017

Gunderson K. 2011. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biological Reviews 86:564–600. doi: 10.1111/j.1469-185X.2010.00161.x

Heard DJ, Norby PL, Holloway J, Visiting H. 2000. Human ERRgamma, a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors: tissue-specific isoforms are expressed during development and in the adult. Molecular Endocrinology 14:382–392. doi: 10.1210/mend.14.3.0431

Hickson RC. 1980. Interference of strength development by simultaneously training for strength and endurance. European Journal of Applied Physiology and Occupational Physiology 45:255–263. doi: 10.1007/BF00421333

Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR. 1996. GRP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. PNAS 93:4948–4952. doi: 10.1073/pnas.93.10.4948

Hussain G, Schmitt F, Henriques A, Lequeu T, René F, Bindler F, Dirrig-Grosch S, Oudart H, Paliardic L, Metz-Boutique M-H, Dupuis L, Marchioni E, Gonzalez De Aguilar J-L, Lefebvre J-P. 2013. Systemic down-regulation of Delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury. PLoS One 8:e64525. doi: 10.1371/journal.pone.0064525

Kinsey ST, Hardy KM, Locke BR. 2007. The long and winding road: influences of intracellular metabolite diffusion on cellular organization and metabolism in skeletal muscle. Journal of Experimental Biology 210:3505–3512. doi: 10.1242/jeb.000331

Kohen R, Yamamoto Y, Cundy KC, Ames BN. 1988. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain PNAS 85:3175–3179. doi: 10.1073/pnas.85.9.3175

Kwong WH, Vrbová G. 1981. Effects of low-frequency electrical stimulation on fast and slow muscles of the rat. Pflügers Arch - European Journal of Physiology 391:200–207. doi: 10.1007/BF00596171

Lee KY, Singh MK, Ussar S, Wetzel P, Hirshman MF, Goodyear LJ, Kispert A, Kahn CR. 2015. Tbx15 controls intrinsic metabolic and angiogenic reprogramming. Developmental Cell 36:284–294. doi: 10.1016/j.devcel.2015.03.010

Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J. 2007. Decorin gene transfer promotes skeletal muscle cell differentiation and muscle regeneration. Molecular Therapy 15:1616–1622. doi: 10.1038/sj.mt.6300250

Liu JX, Högland AS, Karlsson P, Lindblad J, Qaisar R, Aare S, Bengtsson E, Larsson L. 2009. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size. Experimental Physiology 94:117–129. doi: 10.1113/exphysiol.2008.043877

Lowrie MB, Krishnan S, Vrbová G. 1982. Recovery of slow and fast muscles following nerve injury during early post-natal development in the rat. Journal of Physiology 331:51–66. doi: 10.1113/jphysiol.1982.sp014364

Maier A, Leberer E, Pette D. 1988. Distribution of sarcoplasmic reticulum Ca-ATPase and of calcineurin at the polar regions of rat, rabbit and cat intrafusal fibers. Histochemistry 88:273–276.

Matsakas A, Macharia R, Otto A, Elashry MI, Moussel E, Romanello V, Sartori R, Amthor H, Sandri M, Narkar V, Patel K. 2012a. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Experimental Physiology 97:125–140. doi: 10.1113/exphysiol.2011.063008

Matsakas A, Yadav V, Lorca S, Evans RM, Narkar VA. 2012. Revascularization of ischemic skeletal muscle by estrogen-related receptor-γ. Circulation Research 110:1087–1096. doi: 10.1161/CIRCRESAHA.112.266478

Matsakas A, Yadav V, Lorca S, Narkar V. 2013. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. The FASEB Journal 27:4004–4016. doi: 10.1096/fj.13-228296

McPherron AC, Lawler AM, Lee S-J. 1997a. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 387:83–90. doi: 10.1038/387083a0

McPherron AC, Lee SJ. 1997. Double muscling in cattle due to mutations in the myostatin gene. PNAS 94:12457–12461. doi: 10.1073/pnas.94.23.12457

Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ. 2001. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Nature Medicine 7:260–266. doi: 10.1038/86706

Mendias CL, Marcin JE, Calerden DR, Faulkner JA. 2006. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. Journal of Applied Physiology 101:898–905. doi: 10.1152/japplphysiol.00126.2006

Meng ZZ, Li S, Wang L, Ko HJ, Lee Y, Jung DY, Okutsu M, Yan Z, Kim JK, Lin JD. 2013. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nature Medicine 19:640–645. doi: 10.1038/nm.3144

Meng ZZ, Wang L, Xiao Y, Lin JD. 2014. The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63:1533–1545. doi: 10.2337/db13-1061

Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK. 2012. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124. doi: 10.1038/nature10914

Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. 2012. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology 3:260. doi: 10.3389/physiol.2012.00260
Muscat GE, Kedes L. 1987. Multiple 5′-flanking regions of the human alpha-skeletal actin gene synergistically modulate muscle-specific expression. Molecular and Cellular Biology 7:4089–4099. doi: 10.1128/MCB.7.11.4089

Narkar VA, Fan W, Downes M, Yu RT, Jonker JW, Alaynick WA, Banayo E, Karunasiri MS, Lorca S, Evans RM. 2011. Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ. Cell Metabolism 13:283–293. doi: 10.1016/j.cmet.2011.01.019

Ono T, Isobe K, Nakada K, Hayashi J. 2001. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nature Genetics 28:272–275. doi: 10.1038/90116

Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K. 2008. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. Journal of Cell Science 121:2939–2950. doi: 10.1242/jcs.026534

Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC. 2005. mtDNA mutations increase tumorigenesis in prostate cancer. PNAS 102:719–724. doi: 10.1073/pnas.0408894102

Pette D, Sketelj J, Skorjanc D, Leisner E, Traub I, Bajrovic F. 2002. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation. Journal of Muscle Research and Cell Motility 23:215–221.

Pette D, Staron RS. 1997. Mammalian skeletal muscle fiber type transitions. International Review of Cytology 170:143–223. doi: 10.1007/s0074-7696(08)61622-8

Petruzzelli L, Marra A, Verlato G, Ciliberto L, Scarlato G, Scorrano L, Chiricoleo A, Ferraro A. 1998. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. Journal of Physiology 515:239–250.

Rangwala SM, Wang X, Calvo JA, Lindsley L, Zhang Y, Deynекo G, Beaulieu V, Gao J, Turner G, Markovits J. 2010. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. Journal of Biological Chemistry 285:22619–22629. doi: 10.1074/jbc.M110.125401

Relizani K, Mouiel S, Giannesini B, Houndé C, Patel K, Morales Gonzalez S, Jülicher K, Vignaud A, Pietr-Rouxel F, Fortin D, Garcia L, Blot S, Rivus O, Bendahan D, Ferry A, Ventura-Clapier R, Schuelke M, Amthor H. 2014. Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. Molecular Therapy 22:1423–1433. doi: 10.1038/mt.2014.90

Rossi G, Antonini S, Bonfanti C, Monteverde S, Vezzali C, Tajibakhsh S, Cossu G, Messina G. 2016. Nfx regulates temporal progression of muscle regeneration through modulation of myostatin expression. Cell Reports 14:2238–2249. doi: 10.1016/j.celrep.2016.02.014

Salmons S, Vrbová G. 1969. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. Journal of Physiology 201:535–549. doi: 10.1113/jphysiol.1969.sp008771

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412. doi: 10.1016/S0092-8674(04)00400-3

Sandri M. 2013. Protein transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 154:1297–1311. doi: 10.1016/j.cell.2013.04.023

Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Könen W, Braun T, Tobin JF, Lee SJ. 2004. Myostatin association with gross muscle hypertrophy in a child. New England Journal of Medicine 350:2682–2688. doi: 10.1056/NEJMoa040933

Schuster-Gossler K, Cordes R, Gossler A. 2007. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypertrophy in Delta1 mutants. PNAS 104:537–542. doi: 10.1073/pnas.0608281104

Sutherland H, Jarvis JC, Kwende MM, Gilroy SJ, Salmons S. 1998. The dose-related response of rabbit fast muscle to long-term low-frequency stimulation. Muscle & Nerve 21:1632–1646. doi: 10.1002/(SICI)1097-4598(199812)21:12<1632::AID-MUS3>3.0.CO;2-W

Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. 2009. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. AJP: Cell Physiology 296:C1258–C1270. doi: 10.1152/ajpcell.00105.2009

Van Der Laarse WJ, Diegenbach PC, Lee-De Groot MBE, Des Trombe AL. 1997. Size principle of striated muscle. Netherlands Journal of Zoology 48:213–223. doi: 10.1163/156854298X00075

van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. 2010. The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism? European Journal of Applied Physiology 110:665–694. doi: 10.1007/s00421-010-1545-0

Vasyutina E, Lenhard DC, Wende H, Erdmann B, Epstein JA, Birchmeier C. 2007. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. PNAS 104:4443–4448. doi: 10.1073/pnas. 0610647104

von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW. 2008. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Reports 9:683–689. doi: 10.1038/embor.2008.73
Wade AJ, Marbut MM, Round JM. 1990. Muscle fibre type and aetiology of obesity. The Lancet 335:805–808. doi: 10.1016/0140-6736(90)90933-V

Wang X, Moraes CT. 2011. Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Molecular Oncology 5:399–409. doi: 10.1016/j.molonc.2011.07.008

Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. Journal of General Physiology 8: 519–530. doi: 10.1085/jgp.8.6.519