Cross-sectional Study

Early intraoperative hypotension and its associated factors among surgical patients undergoing surgery under general anesthesia: An observational study

Netsanet Temesgen*, Efrem Fenta, Chernet Eshetie, Moges Gelaw
Debre Tabor University, Ethiopia

ARTICLE INFO

Keywords:
Early intraoperative hypotension
General anesthesia
Surgical procedures

ABSTRACT

Background: Early intraoperative hypotension (eIOH) is a common complication of general anesthesia and is significantly associated with postoperative morbidity and mortality. The incidence of eIOH was high, especially in resource-limited settings. Identifying the factors associated with the occurrence of eIOH might allow avoidance and planning of a timely treatment of it.

Objective: To assess the incidence of early intraoperative hypotension and its associated factors among surgical patients undergoing surgical procedures under general anesthesia at XX Comprehensive Specialized Hospital, North-central Ethiopia, 2021.

Methods: A total of 424 surgical patients under general anesthesia were included in this prospective observational study. The data were collected by a structured questionnaire. Variables with p-values of less than 0.2 in the bivariable logistic regression were fitted to multivariable logistic regression. Data was presented in odds ratios with a 95% confidence interval. Descriptive statistics were used to summarize data.

Results: The incidence of early intraoperative hypotension (eIOH) was 21.2%. In this study older age (age ≥ 60 years) (AOR: 2.063 (95% CI;1.194, 3.563)), ASA physical status (AOR: II2.259 (95% CI;1.229, 4.153)), III(AOR: 2.810 (95% CI;1.319, 5.986)), a BMI of 25–29.9 kg/m2 (AOR: 2.098 (1.128, 3.901), a BMI of ≥30 kg/m2 (AOR: 3.090 (95% CI;1.324, 7.210)), emergency surgical procedures (AOR: 2.215 (95% CI;1.287, 3.810)), the estimated blood loss greater than 500 ml (AOR: 2.510 (95% CI;1.478, 4.261)) were found to be independent factors of eIOH.

Conclusion: This study revealed that the incidence of eIOH was high (21.2%). Older age, ASA II and III, BMI ≥25, emergency surgical procedures, and a significant amount of blood loss (EBL ≥500 ml) were the main predictors of an increased occurrence of eIOH.

1. Introduction

There were a variety of definitions for eIOH. Hypotension was defined as either mean arterial blood pressure (MAP) decrease of >40% and MAP <70 mm Hg or MAP<60 mm Hg. A decline in arterial blood pressure of 30% from the preoperative reading value is another definition of it. The other definition of eIOH is a decrement in systolic blood pressure SBP less than 90 mmHg.

In this study, early intraoperative hypotension (eIOH) was defined as a decrease in systolic blood pressure SBP< 90 mmHg, which was supported by recent literature that might lead to similar conclusions for having postoperative IOH-related risk of morbidity and mortality in contrast to a decline of arterial blood pressure from a baseline [1–3]. Early intraoperative hypotension has been associated with adverse outcomes like kidney failure, myocardial injury, and mortality. Therefore prevention of early IOH may be a key in improving patient outcomes [4].

Arterial hypotension in patients undergoing surgery under general anesthesia usually described by the very general term ‘intraoperative hypotension (IOH) is highly prevalent and associated with unfavorable patient outcomes. An arterial blood pressure decline below the lower limit of the vascular autoregulation curve might lead to ischemia of vital organs (i.e. Heart, Brain, and Kidney) [5]. An association between intraoperative hypotension and adverse outcomes remains debatable.
and there is no consensus on the lowest acceptable intraoperative blood pressure. Data indicate a higher mortality rate in the elderly when there is a decrease in SBP of 40–45% from the preoperative baseline. However, recent reports indicated that intraoperative hypotension contributes to troponin elevation and is associated with increased 30-day mortality [6].

In recent years, evidences are growing that the development of IOH is associated with adverse postoperative outcomes in terms of both morbidity and mortality. In a large observational study in 10,440 adult patients undergoing non-cardiac surgery increased durations of IOH (defined by MAP thresholds between 50 and 80 mmHg) were strongly associated with 30-day mortality. In another large retrospective cohort study in 18,756 patients undergoing non-cardiac surgery these findings again confirmed the case, as an increase in 30-day mortality was found for patients with either SBP <70 mmHg, MAP <49 mmHg, or DBP <30 mmHg for at least 5 min.

Multiple other studies have shown the association between IOH and postoperative morbidity in terms of myocardial and acute kidney injury and possibly for the occurrence of ischemic stroke too. Importantly, these studies also demonstrated that even short instances of IOH (in some studies as short as 1 min) were associated with adverse outcomes. For example in one of these studies performed in 33,330 patients underwent non-cardiac surgery, the odds ratio of postoperative myocardial injury and kidney injury when MAP was lower than 55 mmHg for only 1–5 min. Moreover, even short periods of post-induction hypotension before surgical incision are associated with postoperative acute kidney injury [4].

Intraoperative blood pressures, MAP less than 55 mmHg was associated with the development of acute kidney injury, myocardial injury, and cardiac complications [7].

Arterial hypotension during the early phase of anesthesia can lead to adverse outcomes such as a prolonged postoperative stay or even death. Predicted hypotension during anesthesia induction is complicated by its diverse causes [8].

The occurrence of eIOH after general anesthesia for general surgery is a common problem, especially in resource-limited settings like ours. Knowing the incidence and associated factors causing eIOH helps urgent need of safety and treatment in the service of anesthesia and surgery. This research can also help as formulate baseline information for future researches in Ethiopia. This study will help to determine the incidence and factors associated with eIOH in surgical procedures under general anesthesia in XX Comprehensive Specialized Hospital.

2. Methods and materials

2.1. Study area and period

XX comprehensive special Hospital is a public Hospital established in 1934 and located in South Gonder Zone, Amara region 667 km northwest of Addis Ababa, the capital city of Ethiopia at Debre Tabor town which is 97 km to the southwest of Bahir Dar, the capital city of Amara region. According to the 2007 census, the total population of this town was 155,596. The study was conducted in Debre Tabor Town at XX Referral Hospital 2021 GC. It has one referral hospital, and its altitude of 2706 m or 8878 feet above sea level [9]. The hospital has 6 operation rooms which are divided into specialties i.e. 2 rooms for general surgery, 1 room for obstetrics, 1 room for gynecological procedures, and 2 rooms for orthopedics. So, the study participants were taken from any surgery performed with induction agents as propofol, ketamine, and thiopental with intubating relaxation by suxamethonium, and the study would have been carried out from January 1 to April 25/2021 GC.

2.2. Study design

A prospective Observational study design was used, this study has been registered in a research registry http://www.researchregistry.com with a registry number 6911.

Our work is fully compliant with the STROCSS criteria www.strocss guideline.com, in which a completed STROCSS checklist stating the page numbers(Agha R, Abdall-Razak A, Crossley E, Dowlut N, Issifidis C and Mathew G, for the STROCSS Group. The STROCSS 2019 Guideline: Strengthening the Reporting of Cohort Studies in Surgery. International Journal of Surgery 2019; 72:156–165).

2.3. Population

2.3.1. Source of population

All elective and emergency surgical patients who would undergo surgery under general anesthesia

2.3.2. Study population

All elective and emergency surgical patients who would undergo surgery under general anesthesia met the inclusion criteria during the study period.

2.4. Variables

2.4.1. Dependent variable

Early intraoperative Hypotension (Yes/No)

2.4.2. Independent variables

Section 1: demographic variables; Age, sex, ASA physical status, BMI (Kg/m²), patient has any co morbidity, Use of chronic medications

Section 2: Surgery-related variables: Surgeon experience, Planned procedure, Urgency of the procedure, Estimated blood loss, Intraoperative positioning, Duration of surgery,

Section 3: Anesthetic related variables: Anesthetist experience, Premedication, Preoperative fluid intake, Intravenous induction agent, Analgesics used, Muscle relaxant used, ETT size, Number of Intubation attempts, Intraoperative fluid, Intraoperative vasoactive agent.

2.5. Sampling size determination and sampling technique

2.5.1. Sampling size determination

The sample size was determined by taking the following assumption; since there is no previous study conducted in Ethiopia. We will assume the proportion is 50%, confidence interval of 95% and margin of error of to be tolerated 0.05%.The sample size to be taken for the study was determined using the formula:

\[n = \frac{z^2(p)(1-p)}{d^2}\]

Whereas, \(n\) = sample size; \(Z = confidence\ interval\ (1.96)\) for 95% confidence interval; \(P = estimated\ prevalence\ (0.5)\); \(d = margin\ of\ sampling\ error\ to\ be\ tolerated\ (0.05)\).

\[n = (1.96)^20.5(1-0.5)/0.05^2=385\], by adding 10% non-response rate the total sample size was 424.

2.5.2. Sampling technique

The final study subjects were chosen by a consecutive convenience sampling technique. The study units that happen to be available at the time of data collection were the participants of the study.

2.6. Inclusion and exclusion criteria

2.6.1. Inclusion criteria

All age ≥18years patients who came to OR for elective and emergency surgery under GA during the study period were included.
2.6.2. Exclusion criteria
✓ Shocked patient
✓ Pregnant mother
✓ Cardiac patient
✓ ASA IV and more
✓ Two or more intubation attempts

2.7. Data collection technique and instrument

Data was collected using structured questionnaires prepared in English. Data was collected by trained anesthetists. The study tool includes demographic data of the study participants (age, sex, ASA physical status, BMI (kg/m²), patient has any comorbidity, use of chronic medications, surgery-related data of the study participants (surgeon experience, planned procedure, urgency of the procedure, estimated blood loss, intraoperative positioning, duration of surgery), and anesthetic related data of the study participant (anesthetist experience, premedication, preoperative fluid intake, intravenous induction agent, analgesics used, muscle relaxant used, ETT size, number of intubation attempts, intraoperative fluid, intraoperative vasoactive agent). This tool was developed after searching various literatures related to this topic [2, 10, 5, 11, 12, 13].

2.8. Ethical considerations

Ethical approval was obtained from the Ethical Review Committee of XXU. A formal letter was written to XXCSH. Permission was asked from the responsible Authorities of DTCSH. Written consent was obtained from each participant after giving brief explanation about the objective (purpose) and benefit of the study as clearly as possible to the study participants.

2.9. Data quality control and assurance

To ensure the quality of data, a pre-test of the questionnaire was performed on 5% of study populations who fulfill the inclusion criteria at CC specialized and teaching hospital. The completed questionnaire would have been submitted and reviewed daily to avoid loss of data. Close supervision and daily information exchange including by telephone would have been used as a means to correct problems during the data collection period. Data consistency and completeness would have been made throughout the data collection, data entry, and analysis.

2.10. Data processing and analysis

The data were coded and entered and in SPSS version 25 statistics software for analysis. The association between the dependent variable (eIOH) with independent variables was analyzed by bivariable logistic regression and multivariable logistic regression. Variables with p-values of less than 0.2 in the bivariable logistic regression were fitted to multivariable logistic regression. Data was presented in Odds ratios with a 95% confidence interval. Descriptive statistics were be used to summarize data. Tables were used to present the data.

2.11. Operational definitions

Early intraoperative hypotension: Is a systolic blood pressure less than 90 mmHg during the first 30min of surgery [5]. Baseline blood pressure: The measurement of arterial blood pressure taken before the induction of anesthesia.

3. Results

3.1. Demographic and patient-related data of the study participants

Four hundred twenty-four adult elective and emergency surgical patients under general anesthesia took part in this study. Among the participants, 59.9% were male. In this study, 70.75% were ASA I, and the majority (85.85%) did not have co morbidities (Table 1).

3.2. Surgery-related data of study participants

From 424 surgical patients majority of the surgery constituents abdominal and elective surgical procedure accounts 349(82.32%) and 307(72.4%) respectively and incidence of early intraoperative hypotension during emergency surgery accounts 41(9.67%) (Table 2).

3.3. Anesthetic-related data of the study participants

The majority of study participants (41.04%) were induced ketamine. The majority of study participants (89.15%) did not take vasopressors, and most of surgical patients (67.69%) took less than 1000 ml of crystalloids in the intraoperative period (Table 3).

3.4. The incidence of early intraoperative hypotension

In this study, Early intraoperative hypotension was found in 90 (21.2%) of study participants. The majority of (19.6%) of the eIOH occurred within 5 min after the induction of anesthesia (Fig. 1).

3.5. The variables associated with the eIOH

In this study older age 2 times (age ≥ 60 years) (AOR: 2.063 (95% CI;1.194, 3.563)) more likely to develop eIOH, ASA II patients had 2.2 times (AOR: 2.259 (95% CI;1.229, 4.153)) more likely to develop eIOH

Table 1

Variables	Presence of eIOH	Total, No. (%)
Age (Years) (n = 424)		
19-59	48 (11.32%)	309 (72.88%)
≥60	73 (17.22%)	115 (27.12%)
Sex		
Male	60 (14.15%)	254 (59.9%)
Female	194 (45.75%)	170 (40.1%)
ASA Physical status		
ASA I	46 (10.85%)	254 (59.9%)
ASA II	54 (12.7%)	81 (19.11%)
ASA III	26 (6.13%)	43 (10.14%)
BMI (kg/m2)		
18.5-24.9	49 (11.56%)	319 (75.23%)
25-29.9	28 (6.6%)	75 (17.69%)
≥30	13 (3.08%)	364 (85.85%)
Presence of co morbid disease		
NO	72 (17%)	364 (85.85%)
Yes	292 (68.87%)	60 (14.15%)
Use of chronic anti-		
hypertension medications		
NO	75 (17.7%)	374 (88.2%)
Yes	299 (70.5%)	50 (11.8%)

Comprehensive Specialized Hospital, 2021 (N = 424).
as compared to ASA I patients, ASA III patients were 2.8 times (AOR: 2.810 (95% CI; 1.319, 5.986)) more likely to develop eIOH when compared to ASA I patients, a BMI of 25–29.9 kg/m² was 2 times (AOR: 2.098 (1.128, 3.901) more likely to develop eIOH when compared with patients having normal BMI, a BMI of ≥30 kg/m² was 3 times (AOR: 3.090 (95% CI; 1.287, 3.810)) more likely to develop eIOH when compared with patients having normal BMI, emergency surgical procedures were 2.2 times (AOR: 2.215 (95% CI; 1.287, 3.810)) more likely to develop eIOH when compared with elective surgical procedures, the estimated blood loss greater than 500 ml was 2.5 times (AOR: 2.510 (95% CI; 1.478, 4.261)) more likely to develop eIOH when compared with patients having an estimated blood loss less than 500 ml (Table 4).

4. Discussion

Early intraoperative hypotension is associated with postoperative morbidity and mortality (8,9,19,21–23). In this study, we found that the incidence of early intraoperative hypotension within 30 min after general anesthesia in major surgery was 21.2%. In line with our finding, a study conducted by Su et al. [5] found that the incidence of eIOH was 24.7%. Incongruent to our result, Kalezic et al. [11] reported that the incidence of IOH was lower (6.5%) as compared to our finding. This difference might be due to most of the patients were induced with propofol.

In this study, early intraoperative hypotension (eIOH) was defined as a decrease in systolic blood pressure SBP<90 mmHg. Some recent studies support this approach, revealed that definitions of eIOH using SBP less than 90 mmHg might lead to similar conclusions for having postoperative IOH-related risk of morbidity and mortality when compared with a lower arterial blood pressure from baseline (SBP >30% decline from prooperative arterial BP) [2,5].

In this study older age (age≥ 60 years), ASA physical status (II, III),

Type of surgery	Presence of eIOH	Total	
Abdominal	69	280(66%)	349(82.32%)
Gynecological	15(5.33%)	15(5.33%)	36(8.46%)
Orthopedics	6(1.4%)	1(0.62%)	7(1.74%)
Elective	30(60%)	60(45.05%)	90(29.95%)
Emergency	11(22%)	17(34.68%)	28(72.4%)
Positioning	7(17%)	28(66.7%)	35(83.73%)
Lateral	18(4.24%)	51(12%)	69(16.27%)
EBL <500 ml	47	250	297
≥500 ml	43	84	127
Surgeon experience (years) 0–3	12(2.8%)	63(14.9%)	75(17.7%)
4–6	60(14.1%)	183	243
≥7	18(4.3%)	80(20.7%)	98(23.05%)
Duration of surgery (minute) <60 min	38(8.96%)	152	190
≥60 min	52	182	234
Positioning	72(17%)	283	355
Lateral	18(4.24%)	51(12%)	69(16.27%)

Table 3: Anesthetic-related data in patients undergoing surgical procedures under general anesthesia at XX Comprehensive Specialized Hospital, 2021 (N = 424).

Variables	Presence of eIOH	Total	
Preoperative fluid intake	<1000 ml	60	282
	1000 ml-2000 ml	18	107
	2000–3000 ml	12	35
Aspiration prophylaxis	NO	36(8.5%)	109
	Metoclopramide	54	225(53%)
Intraoperative analgesics used	Opioids	51(12%)	159
	Diclofenac	16	69
IV induction agent	Ketamine	36	138
	Propofol	30	73
	Ketorolac	24	123(29%)
Muscle relaxant used	Suxamethonium	18	81
	Suxamethonium & Vecuronium	72	253
ETT size	6.5	18	74
	7.0	40(9.54%)	173
	7.5	30	117
Number of intubation attempts	Single	72	282
	Multiple	18	70
Amount intraoperative fluid intake	<1000 ml	54	233
	1000–2000 ml	36(8.5%)	101
Vasoactive agent used	No	78	300
	Yes	12	34
Anesthetist experience (years) 0–3	12	52	
	4–6	60	244
	≥7	18	38

Fig. 1. The incidence of early intraoperative hypotension in patients undergoing surgical procedures under general anesthesia at XX Comprehensive Specialized Hospital, 2021 (N = 424).
loss in contrast with our study that most of the surgical procedures were a relatively short duration of time and less amount of estimated blood possible explanation for this difference could be thyroidectomy requires consideration the duration of hypotension, and managing eIOH ac eIOH(2). The other limitation could be this study does not take into interpretations of the results of studies concerning the occurrence of variability of definitions of eIOH, significantly impacts comparisons and significant blood loss.

In this study BMI (≥25 kg/m²), emergency surgical procedures, estimated blood loss greater than 500 ml were found to be independent factors of an increased occurrence of eIOH.

In this study ASA physical status (II, III) was found to be an independent factor of an increased occurrence of eIOH. In line with this study, Su et al. [5] revealed that ASA physical status affects the occurrence of eIOH. Identifying those factors might allow the avoidance and planning of a timely treatment of hypotensive episodes during general anesthesia.

Table 4

Variables associated with the early intraoperative hypotension in patients undergoing surgical procedures under general anesthesia at XX Comprehensive Specialized Hospital, 2021 (N = 424).

Variables	Presence of eIOH	COR (95% CI)	AOR (95% CI)	P-value
Age (Years)				
<60	Yes	1	1	0.009
≥60	No	1	2.063 (1.194, 3.563)	
ASA Physical status				
ASA I	46	1	2.761 (1.579, 4.827)	0.009
ASA II	27	1	2.259 (1.229, 4.153)	
ASA III	17	1	2.810 (1.319, 5.986)	
BMI (Kg/m²)				
<25	49	1	3.283 (1.879, 5.736)	0.019
≥25	20	1	2.098 (1.128, 3.901)	
≥30	13	1	4.214 (1.925, 9.226)	0.009
Urgency				
Elective	49	1	2.840 (1.745, 4.624)	0.004
Emergency	41	1	2.215 (1.287, 3.810)	
EBL (ml)				
<500	47	1	2.723 (1.682, 4.408)	0.001
≥500	43	1	2.510 (1.478, 4.261)	

BMI (>25 kg/m²), emergency surgical procedures, estimated blood loss greater than 500 ml were found to be independent factors of an increased occurrence of eIOH.

The definition of hypotension is the main problem of this study. The variability of definitions of eIOH, significantly impacts comparisons and interpretations of the results of studies concerning the occurrence of eIOH(2). The other limitation could be this study does not take into consideration the duration of hypotension, and managing eIOH according to the available medical equipment and drugs (e.g. adrenaline is a frequently administered drug for hypotension) could be the limitations of this study.

5. Conclusion

The incidence of eIOH was high (21.2%). Older age, ASA II and III, BMI ≥25, emergency surgical procedures, and a significant amount of blood loss (EBL ≥500 ml) were the main predictors of an increased occurrence of eIOH. Identifying those factors might allow the avoidance and planning of a timely treatment of hypotensive episodes during general anesthesia.

Ethical approval

Ethical clearance was obtained from Debre tabor University research review committee.

Sources of funding

No funding is required.

Author contribution

All authors equally contributed to the study concept or design, data searching, data analysis or interpretation, writing the paper.

Guarantor

Mr. Netsanet Temesgen.

Consent

Not applicable for that.

Funding

None.

Declaration of competing interest

The authors declared that there is no conflict of interest.

Acknowledgements

Debre Tabor University for providing internet Access for our work. All Staff members of Department of Anesthesia from the University for their meticulous help.

Acronyms and abbreviations

- AOR: Adjusted odds ratio
- ASA: American Societies Anesthesiologist
- CI: Confidence interval
- COR: Crud odds ratio
- XXCISH: XX Comprehensive Specialized Hospitals
- eIOH: early Intraoperative Hypotension
- EBL: Estimated blood loss
- GA: General Anesthesia
- MAP: Mean Arterial Blood Pressure
- OR: Operation Room
- SBP: Systolic Blood Pressure
- SPSS: Statistical Package for Social Sciences

Provenance and peer review

Not commissioned, externally peer-reviewed.
References

[1] M.F. Ranck, F.M.R. Adtke, C.P. Rahe, M.S. Eirling, N.P. Apkalla, Documented intraoperative hypotension according to the three most common definitions does not match the application of antihypotensive medication, J. Int. Med. Res. 39 (2011) 846–856.

[2] J.B. Bijker, W.A. Van Klei, T.H. Kappen, L. Van Wolftswinkel, K.G.M. Moons, C.J. Kalkman, Incidence of intraoperative hypotension as a function of the chosen definition, Anesthesiology 107 (2) (2007) 213–220.

[3] V. Salmasi, K. Maheshwari, Y. Dongsheng, E.I. Mascha, A. Singh, D.I. Sessler, et al., Thresholds, and acute kidney and myocardial injury after noncardiac surgery, Anesthesiology 126 (1) (2017) 47–65.

[4] J.J. Vos, T.W.L. Scheeren, Intraoperative hypotension and its prediction, Indian J. Anaesth. 63 (2019) 877–885.

[5] S. Su, S. Brechnitz, J.Y. Wagner, P.C. Reese, H.O. Pinnschmidt, D.A. Reuter, et al., Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia, Br J Anaesthesia 119 (1) (2017) 57–64.

[6] F. Granath, A. Sahle, M. Bell, L. Hallqvist, J. Ma, Intraoperative hypotension is associated with myocardial damage in noncardiac surgery, Eur. J. Anaesthesiol. 33 (2016) 450–456.

[7] M. Walsh, A. Kurz, A. Turan, R.N. Rodseth, J. Cywinski, L. Thabane, et al., Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery toward, Anesthesiology 119 (3) (2013) 507–515.

[8] A. Reum, K. Id, J. Lee, W. Jung, M. Lee, S. Young, et al., Development of a prediction model for hypotension after induction of anesthesia using machine learning, PLoS One [Internet 15 (4) (2020), https://doi.org/10.1371/journal.pone.0231172. Available from:

[9] T. Langer, A. Santini, F. Zdek, M. Chioli, P. Pugni, V. Cordolocini, et al., Intraoperative hypotension is not associated with postoperative cognitive dysfunction in elderly patients undergoing general anesthesia for surgery: results of a randomized controlled pilot trial, J Clin Anesth [Internet 52 (2019) 111–118, https://doi.org/10.1016/j.jclinane.2018.09.021. Available from:

[10] O. Jor, J. Maca, J. Koutna, M. Gemrrotova, T. Vymazal, M. Litschmannova, Hypotension after induction of general anesthesia: occurrence, risk factors, and therapy. A prospective multicentre observational study, J Anesth [Internet] 32 (5) (2018) 673–680, https://doi.org/10.1007/s00540-018-2532-6. Available from:

[11] M. Stojanovic, I. Paunovic, V. Sahtjak, Risk factors for intraoperative hypotension during thyroid surgery. Med Sci Monit 19 (2013) 236–241.

[12] N.A. Khan, N.R. Campbell, S.D. Frost, K. Gilbert, F.A. Michota, A. Usmani, et al., Risk of intraoperative hypotension with loop diuretics: a randomized controlled trial, Am J Med [Internet] 123 (11) (2010), https://doi.org/10.1016/j.ajmmed.2010.07.019, 1059.e1-1059.e8. Available from:

[13] S.M. Brabant, D. Eyraud, Refractory hypotension after induction of anesthesia in a patient chronically treated with angiotensin receptor antagonists, Anesth. Analg. 89 (1999) 887–888.

[14] C.C. Cheung, A. Martyn, N. Campbell, S. Frost, Predictors of intraoperative hypotension and bradycardia, Am J Med [Internet] 128 (5) (2015) 532–538, https://doi.org/10.1016/j.amjmed.2014.11.030. Available from:

[15] D.L. Reich, S. Hossain, M. Krol, A. Bernstein, C.A. Bodian, Predictors of hypotension after induction of general anesthesia, Anesth. Analg. 101 (2005) 622–628.