Zika virus (ZIKV) is a member of the genus Flavivirus from the Flaviviridae family, first isolated following blood analyses of a rhesus monkey in 1947, in a forest in Uganda, called Zika (Dick, 1952). ZIKV is classified as an arbovirus, because it is transmitted by the female Aedes aegypti mosquito bite. However, more recently, vertical (maternal to fetal) and sexual transmission have been described (Besnard, Lastère, Teissier, Cao-Lormeau, & Musso, 2014; D’Ortenzio et al., 2016; Musso & Gubler, 2016; Figure 1).

ZIKV has been associated with a mild, self-limiting illness characterized by fever, rash, joint pain, and conjunctivitis. However, there are some reports associating ZIKV infection with meningoencephalitis and other immune system-mediated manifestations, such as acute myelitis and Guillain-Barré syndrome (GBS; Cao-Lormeau et al., 2016; Musso & Gubler, 2016; Figure 1).

ZIKV has been associated with microcephaly in newborns. Intrauterine ZIKV infections have been associated with a spectrum of clinical findings, including skeletal disorders such as arthrogryposis and hip dislocation, craniofacial disproportion, ocular (retinal) derangements, hearing loss, and other neurological alterations such as convulsions and hypotonia, which characterize a new medical entity called the congenital Zika syndrome (CZS; Alvarado & Schwartz, 2017). Supporting these clinical findings, strong evidence correlating ZIKV infection with damage in the central nervous system (CNS), such as microcephaly, has been reported in mouse fetuses after viral vertical transmission (Cugola et al., 2016). Here, we review the effects of ZIKV infection and exposure in the CNS and its consequences, both in adults and in newborns.

1 | INTRODUCTION

1 Department of Surgery, University of São Paulo, São Paulo, Brazil
2 Department of Microbiology, University of São Paulo, São Paulo, Brazil
3 Department of Pathology, University of Pernambuco, Recife, Pernambuco, Brazil
4 Department of Obstetrics, School of Arts Sciences and Humanities, São Paulo, Brazil

Correspondence
Prof. Patricia Beltrão-Braga, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, CEP 05508-270, São Paulo, SP, Brazil.
Email: patriciacbbbbraga@usp.br

Summary
Starting with the outbreak in Brazil, Zika virus (ZIKV) infection has been correlated with severe syndromes such as congenital Zika syndrome and Guillain-Barré syndrome. Here, we review the status of Zika virus pathogenesis in the central nervous system (CNS). One of the main concerns about ZIKV exposure during pregnancy is abnormal brain development, which results in microcephaly in newborns. Recent advances in in vitro research show that ZIKV can infect and obliterate cells from the CNS, such as progenitors, neurons, and glial cells. Neural progenitor cells seem to be the main target of the virus, with infection leading to less cell migration, neurogenesis impairment, cell death and, consequently, microcephaly in newborns. The downsizing of the brain can be directly associated with defective development of the cortical layer. In addition, in vivo investigations in mice reveal that ZIKV can cross the placenta and migrate to fetuses, but with a significant neurotropism, which results in brain damage for the pups. Another finding shows that hydrocephaly is an additional consequence of ZIKV infection, being detected during embryonic and fetal development in mouse, as well as after birth in humans. In spite of the advances in ZIKV research in the last year, the mechanisms underlying ZIKV infection in the CNS require further investigation particularly as there are currently no treatments or vaccines against ZIKV infection.

KEYWORDS
brain damage, congenital Zika syndrome, flaviviruses, microcephaly, Zika, ZIKV

2 | MICROCEPHALY AND THE CZS

At the beginning of the ZIKV outbreak in Brazil, an increase in the number of newborns with microcephaly was observed. Actually, from mid-July 2015 to December 2016, about 2,000 cases of ZIKV infection and microcephaly in newborns in Brazil were confirmed. This increase in cases has raised serious concerns correlated to an increase in the number of newborns with microcephaly in Brazil.
Brazilian Ministry of Health. At the beginning of the outbreak, the correlation of microcephaly and ZIKV infection was done based on serology and epidemiological data. A causal relationship was later proved by means of carefully designed experimental models described below (Cugola et al., 2016).

The condition of microcephaly due to congenital ZIKV infection is a complex assembly of cephalic defects readily detected by clinical and image examinations. These include microcrany with prominence of occipital protuberance, redundant scalp, a small brain with nonsymmetric lobes bearing dilations of ventricular cavities, variable amount of calcifications, irregular in shape and location, simplification of brain gyrus pattern, malformation of corpus callosum, and enlargement of extra axial spaces (Hazin et al., 2016; Soares de Oliveira-Szejnfeld et al., 2016). The definition of microcephaly is key for the correct clinical identification of the condition; otherwise, misinterpretation can occur. The World Health Organization describes microcephaly as a reduction in the circumference of the head (cephalic perimeter) with the occipitofrontal measurement of a newborn with 37 weeks of gestation as equal or less than 31.9 cm for boys and 31.5 cm for girls.

Microcephaly results in serious neurological faults, such as cerebral palsy, seizures, and mental retardation (Ashwal et al., 2009). Although microcephaly due to ZIKV infection is better characterized after birth, it is possible to identify brain malformations by gestational ultrasound examination observing a small skull, small brain, ventricular malformation, cerebral atrophy with calcifications, and, in some cases, abnormal blood flow (Brasil et al., 2016; de Fatima et al., 2016; Rasmussen et al., 2016).

Although microcephaly is the most shocking consequence of ZIKV exposure during pregnancy, a spectrum of fetal malformations, associated with intrauterine infection, have been described, giving rise to the designation of CZS (Alvarado & Schwartz, 2017). CZS includes a series of neurological manifestations, like microcephaly, lissencephaly, hydrocephalus, polymicrogyria, agyria, ventriculomegaly, holoprosencephaly, and brain calcifications (Alvarado & Schwartz, 2017). Apart from the above neurological findings, CZS includes abnormalities in the development of musculoskeletal system (arthrogryposis, scoliosis, and hip dislocation), ocular (retinal disorders), craniofacial disproportion, genitourinary and pulmonary systems, and intrauterine growth
3 | EXPERIMENTAL FINDINGS THAT CLARIFIED ZIKV PATHOLOGY IN THE CNS

The use of in vitro and in vivo models has greatly advanced knowledge of the mechanisms and consequences of ZIKV pathology in the CNS. In vitro and in vivo systems have been used to address the link between ZIKV and microcephaly, as well as other neurological impairments.

Until 2015, ZIKV was not related to neurological symptoms or brain damage in humans.

However, in vitro systems have been successfully established to investigate this link using advances from the stem cell field such as induced pluripotent stem cells (PSC) and embryonic stem cell lineages (ESC; Yamanaka et al., 2007). PSC have been successfully differentiated into neuroprogenitors, neurons, glial cells, and into brain organoid structures. This platform has been very important for understanding ZIKV behavior in general and its effects, particularly in the brain. ZIKV was not associated with neurological symptoms or brain damage in humans until 2015 when a new circulating strain, called ZIKV BR, was identified. This strain was first investigated in vitro revealing itself as highly neurotropic, causing cellular death, especially in neuroprogenitor cells (NPC) and immature cortical neurons (Cugola et al., 2016). Both cell types allowed viral replication, which induced apoptosis and which was compatible with the missing brain tissue observed in the malformation of the cortex and in the microcephaly as a whole (Tang, Hammack, Ogden, & Jin, 2016). The Brazilian ZIKV strain looked more aggressive and seemed to affect neurogenesis much more than other strains reported previously (Brasil et al., 2016; Liang et al., 2016), particularly when compared with the original ZIKV strain, the MR766 (Cugola et al., 2016). Other strains, IbH30656, H/PF/2013, and FB-GWUH-2016, were also reported to cause infection and impair growth of human fetal neural stem cells (NSCs) in vitro, thereby affecting the neurogenesis. Furthermore, these strains were related to the depletion of progenitors in the cortical layer of brain organoids (Gabriel et al., 2017; Liang et al., 2016; Tsai, Chang, Lee, & Kao, 2009). The strain isolated from Porto Rico (ZIKV-PRVABC59) was able to infect primary human fetal NPC, showing replication up to 28 days, but with a limited cytopathic effect (Hanners et al., 2016).

As ZIKV can infect several cell types, it is essential to identify cellular receptors used for viral attachment. Because the virus is transmitted by a mosquito bite, epithelial cells are probably the first targets for viral infection and were used to investigate ZIKV target receptors (Hamel et al., 2015). The TAM receptors (Tyro3, AXL, and Mer), T cell immunoglobulin and mucin domain receptors, phosphatidylinositol, C-type lectin receptors, and DC-SIGN receptors have already been reported to serve as flavivirus entry pathways (Hamel et al., 2015; Perera-Lecoin, Meertens, Carnec, & Amara, 2013). The TAM receptors are a family of tyrosine kinase receptors whose roles are essential for homeostatic regulation of immune responses (Lemke, 2013). TAM receptors also act to maintain neurogenesis in the adult brain (Johnson & Ji, 2015) and support NSC survival, proliferation, and differentiation (Ji et al., 2014). Despite the fact that TAM receptors are not essential for embryonic brain development, they are present in cortical neuronal progenitor cells during embryogenesis (Wang et al., 2011), as well as in NPCs derived from PSC (Cugola et al., 2016). AXL is considered a candidate for ZIKV entry, also being the TAM receptor most expressed in NPCs (Cugola et al., 2016; Hamel et al., 2015; Nowakowski et al., 2016). However, because ZIKV was able to infect cells in epithidymis and testis in Axl^+/− transgenic mice, AXL is clearly not the only receptor used for ZIKV infection, suggesting that other molecules could also be involved in this process (Govero et al., 2016).

After infection, some cells will undergo apoptosis. p53 is a key protein in the apoptotic pathway, and in ZIKV-infected NPCs, p53 protein levels were increased as well as the amount of phosphorylated p53, which is compatible with genotoxic stress and apoptosis induction (Ghouzzi et al., 2017). In ZIKV-infected neuroepithelial cells and neural cortical stem cells, phosphorylated TANK-binding kinase-1 (pT8K1), a protein that participates in cell cycle and in the antiviral innate immune response, was reallocated from centrosomes to the mitochondria, thereby altering the cell cycle and consequently inducing cell death (Onorati et al., 2016). Interestingly, cranial neuro crest cells also present a degree of apoptosis after ZIKV infection. These cells release cytokines as a response to viral damage, promoting cell death and aberrant neurogenesis by NPCs (Bayless, Greenberg, Swigut, Wysocka, & Blash, 2016), the process responsible for populating the brain with neurons (Götz & Huttner, 2005). One of the key pathways in neurogenesis is the PI3K-Akt-mTOR axis that induces cellular differentiation, migration, and maturation (Lee, 2015; Wahane et al., 2014). After exposure to the two nonstructural ZIKV proteins, NS4A and NS4B, the PI3K-Akt-mTOR pathway was strongly suppressed, leading to upregulation of the autophagy and impairment of neurogenesis in fetal NSC (Liang et al., 2016).

Three-dimensional in vitro CNS models (brain organoids) have also proved advantageous to study the mechanisms involved in ZIKV pathogenesis (Cugola et al., 2016; Lancaster & Knoblich, 2014; Marton & Pasca, 2016). Such studies have revealed that the MR766 ZIKV strain caused a decrease in overall size of the organoid (Dang et al., 2016) whereas another study using the Brazilian ZIKV strain led to more pronounced reduction of the cortical layer compared to MR766. This reduction correlated with cell death of the immature cortical neurons (Cugola et al., 2016), which was also observed using the ZIKV Asian strain (Qian et al., 2016).

When the outbreak began, the correlation between ZIKV infection and newborns with microcephaly was based on epidemiological and serological findings, focusing on mothers infected with ZIKV during pregnancy and their newborns presenting microcephaly (Brasil et al., 2016). Later, the demonstration of viral particles found inside the brain of a fetus infected vertically made the case stronger (Mlakar et al., 2016). Later, the demonstration of viral particles found inside the brain of a fetus infected vertically made the case stronger (Mlakar et al., 2016). However, the firm evidence came when the offspring of SJL mice, which were infected by the Brazilian ZIKV strain during pregnancy, showed symptoms of CZS. This was key proof that the virus was able to pass through placental tissue and reach the fetus. The brains of the pups presented viral RNA; a reduction of the cortical layer, had fewer brain cells, and exhibited viral cytopathic effects
During the ZIKV outbreak in French Polynesia, 42 patients with ZIKV disease were found to have the GBS, which represented a marked increase given that only five cases annually were detected during the previous 4 years (dos Santos et al., 2016). GBS is a post infectious, immune-mediated disorder characterized by transient bilateral flaccid limb weakness and dysautonomic manifestations attributable to peripheral nerve damage (Hughes & Cornblath, 2005). This condition was recently associated with ZIKV infection also in the Americas, especially, the acute inflammatory demyelinating polyneuropathy form of this syndrome (Parra et al., 2016). In Colombia and Puerto Rico, around 60% of symptomatic GBS patients were serologically positive for ZIKV (Dirlikov et al., 2016).

4 | Therapeutic Strategies and Prevention Against ZIKV Infection

There are currently no prescribed drugs to prevent or treat the neurological damage caused by ZIKV exposure. Scientists around the world have been focusing on FDA-approved drugs in order to find an effective treatment as fast as possible (Bullard-Feibelman et al., 2017; Onorati et al., 2016; Retallack et al., 2016; Xu et al., 2016). Recently, 774 approved drugs were tested, and some drugs such as daptomycin, sertraline-HCl, ivermectin, bortezomib, cyclosporin A, mycophenolic acid, and pyrimethamine showed pharmacological potential for reducing flavivirus infection (Barrows et al., 2016). Currently, in terms of preventing ZIKV infection, there is no available vaccine. However, the Brazilian government and National Institutes of Health have plans to produce an effective vaccine in the next few years (Chang, Ortiz, Ansari, & Gershwin, 2016).

5 | Final Remarks

The number of newborns with microcephaly has emerged as a public health problem, mainly in Brazil, due to the high number of cases. Despite ZIKV infection causing a congenital syndrome, microcephaly was the symptom that received most attention. Given the still early clinical follow-up of children infected with the virus and ones born with CZS, we still do not know what will happen as far as these children develop further. Some are now manifesting progressive signs of neurological damage, such as gradual blindness, hydrocephaly, muscular weakness, and acquired microcephaly (for ones born with normal head circumference). Considering the consequences of ZIKV exposure to the CNS, we hypothesize that these children will grow presenting varying degrees of cognitive and mental impairment. Given the substantial impact of ZIKV infection, there is an urgent need to develop therapies to treat infection and prevent CNS damage as well as design strategies to prevent transmission. As Brazil is a tropical country that is propitious for mosquito proliferation, an urgent strategy should be the development of a vaccine to prevent ZIKV infection. Nevertheless, despite tremendous advances in ZIKV research over the last year, the underlying mechanisms of ZIKV infection still need to be further investigated to provide the basis for the development of such preventative and therapeutic strategies.
CONFLICT OF INTEREST

Authors have no conflict of interest to declare.

ACKNOWLEDGEMENTS

We would like to thank Anita Brito for English revision and Lenon Della Rovere for the figure drawing.

REFERENCES

Alvarado, M. G., & Schwartz, D. A. (2017). Zika virus infection in pregnancy, microcephaly, and maternal and fetal health: What we think, what we know, and what we think we know. Archives of Pathology & Laboratory Medicine, 141, 26–32.

Ashwal, S., Michelson, D., Plawner, L., Dobyns, W. B., & Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society (2009). Practice parameter: Evaluation of the child with microcephaly (an evidence-based review) report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 73, 887–897.

Barrows, N. J., Campos, R. K., Powell, S. T., Prasanth, K. R., Schott-Lerner, G., Soto-Acosta, R., … Garcia-Blanco, M. A. (2016). A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host & Microbe, 20, 259–270.

Bayless, N. L., Greenberg, R. S., Swigut, T., Wysocka, J., & Blish, C. A. (2016). Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host & Microbe, 20, 423–428.

Bell, T. M., Field, E. J., & Narang, H. K. (1971). Zika virus infection of the central nervous system of mice. Archiv für die Gesamte Virusforschung, 35, 183–193.

Bensard, M., Lastère, S., Teissier, A., Cao-Lormeau, V., & Musso, D. (2014). Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveillance, 19, 20751.

Ghounzi, V. E., Bianchi, F. T., Molineris, I., Mounce, B. C., Berto, G. E., Rak, M., … Di Cunto, F. (2017). Zika virus elicits p53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death & Disease, 8, e2567.

Brasil, P., Pereira, J. P. Jr., Gabaglia, C. R., Damasceno, L., Wakimoto, M., Ribeiro Nogueira, R. M., … Nielsen-Saines, K. (2016). Zika virus infection in pregnant women in Rio de Janeiro—Preliminary report. The New England Journal of Medicine.

Bullard, K., Gao, L., & Shcherbakov, D. (2017). Zika virus infection in human skin cells. Antiviral Research, 137, 134–140.

Calvet, G., Aguilar, R. S., Melo, A. S., Sampaio, S. A., de Filippis, I., Fabri, A., … de Filippis, A. M. (2016). Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. The Lancet Infectious Diseases, 16, 653–660.

Cao-Lormeau, V. M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., … Gwöhlcé, F. (2016). Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet, 387, 1531–1539.

Carreño, G., Maquart, M., Bedet, A., Contou, D., Brugière, P., Fourati, S., … Menkonsto Dessap, A. (2016). Zika virus associated with meningocerehalitis. The New England Journal of Medicine, 374, 1592–1595.

Chang, C., Ortiz, K., Ansari, A., & Gershwin, M. E. (2016). The Zika outbreak of the 21st century. Journal of Autoimmunity, 68, 1–13.

Cugola, F. R., Fernandes, I. R., Fusco, F. B., Freitas, B. C., Dias, J. L., Guimarães, K. P., … Guimarães, K. (2016). The Brazilian Zika virus strain causes microcephaly. Nature, 534, 267–271.

D’Ortenzio, E., Matheron, S., Yazdanpanah, Y., de Lamballerie, X., Hubert, B., Piorkowsk, G., … Leparc-Goffart, I. (2016). Evidence of sexual transmission of Zika virus. The New England Journal of Medicine, 2195–2198.

Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., & Rana, T. M. (2016). Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 19, 258–265.

Dick, G. W. (1952). Zika virus. II. Pathogenicity and physical properties. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46, 521–534.

Dirlikov, E., Major, C. G., Mayshack, M., Medina, N., Matos, D., Ryff, K. R., … Rivera-García, B. (2016). Guillain-Barré syndrome during ongoing Zika virus transmission—Puerto Rico, January 1–July 31, 2016. MMWR. Morbidity and Mortality Weekly Report, 65, 910–914.

Dowall, S. D., Graham, V. A., Rayner, E., Atkinson, B., Gall, H., Watson, R. J., … Hewson, R. (2016) A susceptible mouse model for Zika virus infection. 1–13. PLoS Neglected Tropical Diseases, 10, e0004658.

Dudley, D. M., Aliota, M. T., Mohr, E. L., Weiler, A. M., Lehrer-Brey, G., Weisgau, K. L., … O’Connor, D. H. (2016). A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 7, 12204.

de Fatima, V. A. M., Van Der Linden, V., Brainer-Lima, A. M., Coeli, R. R., Rocha, M. A., Sobral da Silva, P., … Valenza, M. M. (2016). Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: Retrospective case series study. BMJ (Clinical research ed.), 352, i1901.

Gabriel, E., Ramani, A., Karow, U., Gottardo, M., Natarajan, K., Gooi, L. M., … Gopalakrishnan, J. (2017). Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell, 1–10.

Goodfellow, F. T., Tesla, B., Simchick, G., Zhao, Q., Hodge, T., Brindely, M. A., & Stice, S. L. (2016). Zika virus induced mortality and microcephaly in chicken embryos. Stem Cells and Development, 25, 1691–1697.

Götz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nature Reviews. Molecular Cell Biology, 6, 777–788.

Govero, J.,乙, Scheaffer, S. M., Fernandez, E., Drury, A., Platt, D. J., … Diamond, M. S. (2016). Zika virus infection damages the testes in mice. Nature, 540, 438–442.

Hamel, R., Dejarnac, O., Wicht, S., Echharav, P., Neyret, A., Luptjop, N., … et al. (2015). Biology of Zika Virus Infection in Human Skin Cells., 8980–8996.

Hanners, N. W., Elston, J. L., Usui, N., Richardson, B. R., Wexler, E. M., Konopka, G., & Schoegens, J. W. (2016). Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited Immunogenic effects. Cell Reports, 15, 2315–2322.

Hazar, A. N., Poretti, A., Burchi Martelli, C. M., Huisman, T. A., Microcephaly Epidemic Research Group, Di Cunto, F., Van der Linden, J., … et al. (2016). Computed tomographic findings in microcephaly associated with Zika virus. Eng J Med, 374, 2193–2195.

Hughes, R. A., & Cornblath, D. R. (2005). Guillain-Barré syndrome. Lancet, 366, 1653–1666.

Ji, R., Meng, L., Jiang, X., Cvm, N. K., Ding, J., Li, Q., & Lu, Q. (2014). TAM receptors support neural stem cell survival, proliferation and neuronal differentiation. PLoS One, 9, e115140.

Johnson, K., & Ji, R. (2015). TAM receptors: Two pathways to regulate adult neurogenesis. Neural Regeneration Research, 10, 344–345.

Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 19, 593–598.
Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S. S., Lee, S. A., ... Jung, J. U. (2016). Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Stem Cells, 19, 663–671.

Marton, R. M., & Pasca, S. P. (2016). Neural differentiation in the third dimension: Generating a human midbrain. Cell Stem Cell, 19, 145–146.

Mécharles, S., Herrmann, C., Poullain, P., Tran, T. H., Deschamps, N., Mathon, G., ... Lannuzel, A. (2016). Acute myelitis due to Zika virus infection. Lancet, 387, 1481.

Miner, J. J., Cao, B., Govero, J., Smith, A. M., Fernandez, O. H., ... Espinal, M. A., Nogueira, M., Poljanc, T. (2016). Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human cortical neural progenitors and attenuates their growth brief report. Stem Cells, 59, 596–604.

Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., ... Avišić Županc, T. (2016). Zika virus associated with microcephaly. The New England Journal of Medicine, 374, 951–958.

Musso, D., & Gubler, D. J. (2016). Zika Virus. Clin Microbiol Rev., 29, 487–524.

Nowakowski, T. J., Pollen, A. A., Di Lullo, E., Sandoval-Espinosa, C., Bershteyn, M., & Kriegstein, A. R. (2016). Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells brief report. Neural stem cells. Cell Stem Cell, 18, 591–596.

Onorati, M., Li, Z., Liu, F., Sousa, A. M., Nakagawa, N., & Li, M. (2016). Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Reports, 16, 2576–2592.

Parra, B., Lizarazo, J., Jiménez-Arango, J. A., Zea-Vera, A. F., González-Manrique, G., Vargas, J., ... Pardo, C. A. (2016). Guillain-Barré syndrome associated with Zika virus infection in Colombia. The New England Journal of Medicine, 375, 1513–1523.

Perera-Leconin, M., Meertens, L., Carnec, X., & Amara, A. (2013). Flavivirus entry receptors: An update. Virus, 6, 69–88.

Qian, X., Nguyen, H. N., Song, M. M., Hadíono, C., Ogden, S. C., Hammack, C., ... Ming, G. L. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165, 1238–1254.

Rasmussen, S. A., Jamieson, D. J., Honein, M. A., Ph, D., & Petersen, L. R. (2016). Zika virus and birth defects—Reviewing the evidence for causality. The New England Journal of Medicine, 374, 1981–1987.

Retallack, H., Di Lullo, E., Arias, C., Knoopp, K. A., Laurie, M. T., & Sandoval-Espinosa, C. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences of the United States of America, 113, 14408–14413.

dos Santos, T., Rodríguez, A., Almiron, M., Sahnueza, A., Ramon, P., de Oliveira, W. K., ... Espinal, M. A. (2016). Zika virus and the Guillain–Barré syndrome—Case series from seven countries. The New England Journal of Medicine, 375, 1598–1601.

Schwartz, D. A. (2017). The origins and emergence of Zika virus, the newest TORCH infection: What’s old is new again. Archives of Pathology & Laboratory Medicine, 141, 18–25.

Schwartzmann, P. V., Ramalho, L. N., Neder, L., Vilar, F. C., Ayub-Ferreira, S. M., Romeiro, M. F., ... Simões, M. V. (2017). Zika virus meningoencephalitis in an immunocompromised patient. Mayo Clinic Proceedings, 92, 460–466.

Shao, Q., Herrlinger, S., Yang, S. L., Lai, F., Moore, J. M., Brindley, M. A., & Chen, J. F. (2016). Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development, 143, 4127–4136.

Soares de Oliveira-Szejnfeld, P., Levine, D., Melo, L. M., Amorim, M. M., Batista, A. G. M., Chimelli, L., ... Tovar-Moll, F. (2016). Congenital brain abnormalities and Zika virus: What the radiologist can expect to see prenatally and postnatally. Radiology, 281, 203–218.

Tang, H., Hammack, C., Ogden, S. C., & Jin, P. (2016). Zika virus infects human cortical neural progenitors and attenuates their growth brief report. Stem Cells, 18, 587–590.

Tsai, Y., Chang, S., Lee, C., & Kao, C. (2009). Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cellular Microbiology, 11, 604–615.

Velho, T., de Araújo, B., Rodrigues, L.C., Arraia, R., Ximenes, D.A., & Miranda-filho, D.D.B. (2016) Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. 3099: 1–8.

Wahane, S. D., Hellbach, N., Pretzell, M. T., Weise, S. C., Vezzali, R., Kreutz, C., ... Vogel, T. (2014). PI3K-P110-alpha-subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of mTORC2. Journal of Neurochemistry, 130, 255–267.

Wang, J., Zhang, H., Young, A. G., Qiu, R., Argalian, S., Li, X., ... Lu, Q. (2011). Transcriptome analysis of neural progenitor cells by a genetic dual reporter strategy. Stem Cells, 29, 1589–1600.

Wu, K. Y., Zuo, G. L., Li, X. F., Ye, Q., Deng, Y. Q., Huang, X. Y., ... Luo, Z. G. (2016). Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Research, 26, 645–654.

Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W., Qian, X., ... Tang, H. (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 22, 1101–1107.

Yamanaka, S., Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., ... Tomoda, K. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

Yockey, L. J., Varela, L., Rakib, T., Khouyr-Hanold, W., Fink, S. L., Stutz, B., ... Iwasaki, A. (2016). Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection article vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell, 166, 1247–1256.