ORDINARY ALGEBRAIC CURVES WITH MANY AUTOMORPHISMS IN POSITIVE CHARACTERISTIC

GÁBOR KORCHMÁROS AND MARIA MONTANUCCI

Keywords: Algebraic curves, algebraic function fields, positive characteristic, automorphism groups.

Subject classifications: 14H37, 14H05.

Abstract. Let X be an ordinary (projective, geometrically irreducible, nonsingular) algebraic curve of genus $g(X) \geq 2$ defined over an algebraically closed field K of odd characteristic p. Let $\text{Aut}(X)$ be the group of all automorphisms of X which fix K element-wise. For any solvable subgroup G of $\text{Aut}(X)$ we prove that $|G| \leq 34(g(X) + 1)^{3/2}$. There are known curves attaining this bound up to the constant 34. For p odd, our result improves the classical Nakajima bound $|G| \leq 84(g(X) - 1)g(X)$, see [8], and, for solvable groups G, the Gunby-Smith-Yuan bound $|G| \leq 6(g(X)^2 + 12\sqrt{21}g(X)^{3/2})$ where $g(X) > cp^2$ for some positive constant c; see [2].

1. Introduction

In this paper, X stands for a (projective, geometrically irreducible, nonsingular) algebraic curve of genus $g(X) \geq 2$ defined over an algebraically closed field K of odd characteristic p. Let $\text{Aut}(X)$ be the group of all automorphisms of X which fix K element-wise. The assumption $g(X) \geq 2$ ensures that $\text{Aut}(X)$ is finite. However the classical Hurwitz bound $|\text{Aut}(X)| \leq 84(g(X) - 1)$ for complex curves fails in positive characteristic, and there exist four families of curves satisfying $|\text{Aut}(X)| \geq 8g^3(X)$; see [11], Henn [4], and also [3, Section 11.12]. Each of them has has p-rank $\gamma(X)$ (equivalently, its Hasse-Witt invariant) equal to zero; see for instance [1]. On the other hand, if X is ordinary, i.e. $g(X) = \gamma(X)$, Guralnik and Zieve announced in 2004, as reported in [2, 5], that for odd p there exists a sharper bound, namely $|\text{Aut}(X)| \leq c_p g(X)^{8/5}$ with some constant c_p depending on p. It should be noticed that no proof of this sharper bound is available in the literature. In this paper, we concern with solvable automorphism groups G of an ordinary curve X, and for odd p we prove the even sharper bound:

Theorem 1.1. Let X be an algebraic curve of genus $g(X) \geq 2$ defined over an algebraically closed field K of odd characteristic p. If X is ordinary and G is a solvable subgroup of $\text{Aut}(X)$ then

$$|G| \leq 34(g(X) + 1)^{3/2}. \tag{1}$$

For odd p, our result provides an improvement on the classical Nakajima bound $|G| \leq 84(g(X) - 1)g(X)$, see [8], and, for solvable groups, on the recent Gunby-Smith-Yuan bound $|G| \leq 6(g(X)^2 + 12\sqrt{21}g(X)^{3/2})$ proven in [2] under the hypothesis that $g(X) > cp^2$ for some positive constant c.

The following example is due to Stichtenoth and it shows that (1) is the best possible bound apart from the constant c. Let \mathbb{F}_q be a finite field of order $q = p^b$ and let $\overline{\mathbb{F}}_q$ denote its algebraic closure. For a positive integer m prime to p, let Y be the irreducible curve with affine equation

$$y^q + y = x^m + \frac{1}{x^m}. \tag{2}$$
and $F = \mathbb{K}(\mathcal{Y})$ its function field. Let $t = x^{m(q-1)}$. The extension $F|\mathbb{K}(t)$ is a non-Galois extension as the Galois closure of F with respect to H is the function field $\mathbb{K}(x, y, z)$ where x, y, z are linked by \eqref{2} and $z^q + z = x^m$. Furthermore, $\mathfrak{g}(\mathcal{Y}) = (q-1)(qm-1)$, $\gamma(\mathcal{Y}) = (q-1)^2$ and $\text{Aut}(\mathcal{Y})$ contains a subgroup $Q \rtimes U$ of index 2 where Q is an elementary abelian normal subgroup of order q^2 and the complement U is a cyclic group of order $m(q-1)$. If $m = 1$ then \mathcal{Y} is an ordinary curve, and in this case $2\mathfrak{g}(\mathcal{Y})^{3/2} = 2(q-1)^3 < 2q^2(q-1)$ which shows indeed that \eqref{1} is sharp up to the constant c.

2. Background and Preliminary Results

For a subgroup G of $\text{Aut}(\mathcal{X})$, let $\bar{\mathcal{X}}$ denote a non-singular model of $\mathbb{K}(\mathcal{X})^G$, that is, a (projective non-singular geometrically irreducible) algebraic curve with function field $\mathbb{K}(\mathcal{X})^G$, where $\mathbb{K}(\mathcal{X})^G$ consists of all elements of $\mathbb{K}(\mathcal{X})$ fixed by every element in G. Usually, $\bar{\mathcal{X}}$ is called the quotient curve of \mathcal{X} by G and denoted by \mathcal{X}/G. The field extension $\mathbb{K}(\mathcal{X})|\mathbb{K}(\mathcal{X})^G$ is Galois of degree $|G|$.

Since our approach is mostly group theoretical, we prefer to use notation and terminology from Group theory rather than from Function field theory.

Let Φ be the cover of $\mathcal{X}|\bar{\mathcal{X}}$ where $\bar{\mathcal{X}} = \mathcal{X}/G$. A point $P \in \mathcal{X}$ is a ramification point of G if the stabilizer G_P of P in G is nontrivial; the ramification index e_P is $|G_P|$, a point $\bar{Q} \in \bar{\mathcal{X}}$ is a branch point of G if there is a ramification point $P \in \mathcal{X}$ such that $\Phi(P) = \bar{Q}$, the ramification (branch) locus of G is the set of all ramification (branch) points. The G-orbit of $P \in \mathcal{X}$ is the subset $o = \{ R \mid R = g(P), g \in G \}$ of \mathcal{X}, and it is long if $|o| = |G|$, otherwise o is short. For a point \bar{Q}, the G-orbit o lying over \bar{Q} consists of all points $P \in \mathcal{X}$ such that $\Phi(P) = \bar{Q}$. If $P \in o$ then $|o| = |G|/|G_P|$ and hence \bar{Q} is a branch point if and only if o is a short G-orbit. It may be that G has no short orbits. This is the case if and only if every non-trivial element in G is fixed–point-free on \mathcal{X}, that is, the cover Φ is unramified. On the other hand, G has a finite number of short orbits. For a non-negative integer i, the i-th ramification group of \mathcal{X} at P is denoted by $G_P^{(i)}$ (or $G_i(P)$ as in \cite{10} Chapter IV]) and defined to be

$$G_P^{(i)} = \{ g \mid \text{ord}_P(g(t) - t) \geq i + 1, g \in G_P \},$$

where t is a uniformizing element (local parameter) at P. Here $G_P^{(0)} = G_P$.

Let $\bar{\mathfrak{g}}$ be the genus of the quotient curve $\bar{\mathcal{X}} = \mathcal{X}/G$. The Hurwitz genus formula gives the following equation

$$2\bar{\mathfrak{g}} - 2 = |G|(2\bar{\mathfrak{g}} - 2) + \sum_{P \in \mathcal{X}} d_P,$$

where the different d_P at P is given by

$$d_P = \sum_{i \geq 0} (|G_P^{(i)}|-1).$$

Let γ be the p-rank of \mathcal{X}, and let $\bar{\gamma}$ be the p-rank of the quotient curve $\bar{\mathcal{X}} = \mathcal{X}/S$. The Deuring-Shafarevich formula, see \cite{12} or \cite{3} Theorem 11.62], states that

$$\gamma - 1 = |G|(|\bar{\gamma} - 1| + \sum_{i=1}^k (|G| - \ell_i))$$

where ℓ_1, \ldots, ℓ_k are the sizes of the short orbits of G.

A subgroup of $\text{Aut}(\mathcal{X})$ is a prime to p group (or a p'-subgroup) if its order is prime to p. A subgroup G of $\text{Aut}(\mathcal{X})$ is tame if the 1-point stabilizer of any point in G is p'-group. Otherwise, G is non-tame (or wild). Obviously, every p'-subgroup of $\text{Aut}(\mathcal{X})$ is tame, but the converse is not always true. By a theorem of Stichtenoth, see \cite{3} Theorem 11.56, if $|G| > 84(q(\mathcal{X})-1)$ then G is non-tame. An orbit o of G is tame if G_P is a p'-group for $P \in o$. The stabilizer G_P of a point $P \in \mathcal{X}$ in G is a semidirect product $G_P = Q_P \rtimes U$ where the normal subgroup Q_P is a p-group while the complement U is a cyclic prime to p group; see \cite{3}
Theorem 11.49). By a theorem of Serre, if X is an ordinary curve then Q_P is elementary abelian and no nontrivial element of U commutes with a nontrivial element of Q_P; see \[3, \text{Lemma 11.75}\]. In particular, $|U|$ divides $|Q_P| - 1$, see \[3, \text{Proposition 1}\], and G_P is not abelian when either Q_P or U is nontrivial.

The following two lemmas of independent interest play a role in our proof of Theorem 1.1.

Lemma 2.1. Let X be an ordinary algebraic curve of genus $g(X) \geq 2$ defined over an algebraically closed field \mathbb{K} of odd characteristic p. Let H be a solvable automorphism group of $\text{Aut}(X)$ containing a normal p-subgroup Q such that $|Q|$ and $|H : Q|$ are coprime. Suppose that a complement U of Q in H is abelian and that

$$|H| > \begin{cases} 18(g - 1) & \text{for } |U| = 3, \\ 12(g - 1) & \text{otherwise.} \end{cases}$$

Then U is cyclic, and the quotient curve $\overline{X} = X/Q$ is rational. Furthermore, Q has exactly two (non-tame) short orbits, say Ω_1, Ω_2. They are also the only short orbits of H, and $g(X) = |Q| + (|\Omega_1| + |\Omega_2|) + 1$.

Proof. From the Schur-Zassenhaus theorem \[\mathbb{Z} \text{ Corollary 7.5}\], $H = Q \times U$. Set $|Q| = p^k$, $|U| = u$. Then $p \nparallel u$. Furthermore, if $u = 2$ then $|H| = 2|Q| > 9g(X)$ whence $|Q| > 4.5g(X)$. From Nakajima’s bound X, see \[3, \text{Theorem 11.84}\], has zero p-rank. Therefore $u \geq 3$.

Three cases are treated separately according as the quotient curve $\overline{X} = X/Q$ has genus \tilde{g} at least 2, or \overline{X} is elliptic, or rational.

If $g(X) \geq 2$, then $\text{Aut}(X)$ has a subgroup isomorphic to U, and \[3, \text{Theorem 11.79}\] yields $4g(X) + 4 \geq |U|$. Furthermore, from the Hurwitz genus formula applied to Q, $g - 1 \geq |Q|(g(X) - 1)$. Therefore, if $c = 12$ or $c = 18$, according as $|U| > 3$ or $|U| = 3$,

$$(4g(X) + 4)|Q| \geq |U||Q| = |H| > c(g - 1) = 12|Q|(g(X) - 1),$$

whence

$$c < 4 \frac{g(X) + 1}{g(X) - 1} \leq 12,$$

a contradiction.

If X is elliptic, then the cover $X|\overline{X}$ ramifies, otherwise X itself would be elliptic. Thus, Q has some short orbits. Take one of them together with its images $o_1, \ldots, o_{|U|}$ under the action of H. Since Q is a normal subgroup of H, $o = o_1 \cup \ldots \cup o_{|U|}$ is a H-orbit of size u_1p^v where $p^v = |o_1| = \ldots |o_{|U|}|$. Equivalently, the stabilizer of a point $P \in o$ has order $p^{k-v}u/u_1$, and it is the semidirect product $Q_1 \rtimes U_1$ where $|Q_1| = p^{k-v}$ and $|U_1| = u/u_1$ for a subgroup Q_1 of Q and U_1 of U respectively. The point \overline{P} lying under P in the cover $X|\overline{X}$ is fixed by the factor group $U_1 = U_1Q/Q$. Since \overline{X} is elliptic, \[3, \text{Theorem 11.94}\] implies $|U_1| \leq 12$ for $p = 3$ and $|U_1| \leq 6$ for $p > 3$. As $U_1 \cong U_1$, this yields the same bound for $|U_1|$, that is, $u \leq 4u_1$ for $p = 3$ and $u \leq 6u_1$ for $p > 3$. Furthermore, $d_P \geq 2(p^{k-v} - 1) \geq \frac{2}{3}p^{k-v}$. From the Hurwitz genus formula applied to Q, if $p = 3$ then

$$2g - 2 \geq 3^v u_1 d_P \geq 3^v u_1 (\frac{2}{3}p^{k-v}) \geq \frac{4}{3}3^k u_1 \geq \frac{1}{3}p^k u = \frac{1}{3}|Q||U| = \frac{1}{3}|H|,$$

while for $p > 3$,

$$2g - 2 \geq p^v u_1 d_P \geq p^v u_1 (\frac{2}{3}p^{k-v}) \geq \frac{4}{3}p^k u_1 \geq \frac{2}{3}p^k u = \frac{2}{3}|Q||U| = \frac{2}{3}|H|,$$

But this contradicts (6).

If \overline{X} is rational, then Q has at least one short orbit. Furthermore, $\overline{U} = UQ/Q$ is isomorphic to a subgroup of $\text{PGL}(2, \mathbb{K}) \cong \text{Aut}(\overline{X})$. Since $U \cong \overline{U}$, the classification of finite subgroups of $\text{PGL}(2, \mathbb{K})$, see \[14\], shows that U is cyclic, \overline{U} fixes two points P_0 and \overline{P}_∞ but no nontrivial element in \overline{U} fixes a point other than P_0 and \overline{P}_∞. Let o_∞ and o_0 be the Q-orbits lying over P_0 and \overline{P}_∞, respectively. Obviously, o_∞ and o_0 are short orbits of H. We show that Q has at most two short orbits, the candidates being o_∞ and o_0. By absurd, there is a Q-orbit o of size p^m with $m < k$ which lies over a point $P \in \overline{X}$ different from both P_0 and \overline{P}_∞.
Since the orbit of \bar{P} in \bar{U} has length u, then the H-orbit of a point $P \in o$ has length up^n. If $u > 3$, the Hurwitz genus formula applied to Q gives

$$2g - 2 \geq -2p^k + up^n(p^{k-m} - 1) \geq -2p^k + up^n \cdot \frac{2}{3}p^{k-m} \geq -2p^k + \frac{2}{3}up^k \geq \frac{2}{3}(u - 3)p^k \geq \frac{1}{3}up^k = \frac{1}{3}|H|,$$

a contradiction with $|H| > 12(g - 1)$. If $u = 3$ then $p > 3$, and hence

$$2g - 2 \geq -2p^k + 3p^m(p^{k-m} - 1) = p^k - 3p^m > \frac{1}{3}p^k,$$

whence $|H| = 3p^k < 18(g - 1)$, a contradiction with \mathfrak{R}. This proves that H has exactly two short orbits. Assume that Q has two short orbits. They are o_∞ and o_0. If their lengths are p^a and p^b with $a, b < k$, the Deuring-Shafarevich formula applied to Q gives

$$g(\mathcal{X}) - 1 = g(\mathcal{Y}) - 1 = -p^k + (p^k - p^a) + p^k - p^b$$

whence $g(\mathcal{X}) = p^k - (p^a + p^b) + 1 > 0$. The same argument shows that if Q has just one short orbit, then $g(\mathcal{X}) = 0$, a contradiction. \hfill \square

Lemma 2.2. Let N be an automorphism group of an algebraic curve of even genus such that $|N|$ is even. Then any 2-subgroup of N has a cyclic subgroup of index 2.

Proof. Let U be a subgroup of $\text{Aut}(\mathcal{X})$ of order $d = 2^n \geq 2$, and $\bar{X} = \mathcal{X}/N$ the arising quotient curve. From the Hurwitz genus formula applied to U,

$$2g(\mathcal{X}) - 2 = 2(p - 2)p^{n-1} = 2^n(2p\bar{X} - 2) + \sum_{i=1}^{m} (2\ell_i - \ell_i)$$

where ℓ_1, \ldots, ℓ_m are the short orbits of U on \mathcal{X}. Since $2(p - 2)p^{n-1} \equiv 2 \pmod{4}$ while $2^n(2p\bar{X} - 2) \equiv 0 \pmod{4}$, some ℓ_i ($1 \leq i \leq m$) must be either 1 or 2. Therefore, U or a subgroup of U of index 2 fixes a point of \mathcal{X} and hence is cyclic. \hfill \square

3. The proof of Theorem 1.1

The assertion holds for $g(\mathcal{X}) = 2$, as $|G| \leq 48$ for any solvable automorphism group G of a genus two curve; see \cite[Proposition 11.99]{[R]}]. For $g(\mathcal{X}) > 2$, \mathcal{X} is taken by absurd for a minimal counterexample with respect the genera so that for any solvable subgroup of $\text{Aut}(\mathcal{X})$ of an ordinary curve $\bar{\mathcal{X}}$ of genus $g(\bar{\mathcal{X}}) \geq 2$ we have $|\bar{G}| \leq 34(\bar{g} + 1)^{3/2}$. Two cases are treated separately.

3.1. Case I: G contains a minimal normal p-subgroup.

Proposition 3.1. Let \mathcal{X} be an ordinary algebraic curve of genus g defined over an algebraically closed field \mathbb{K} of odd characteristic $p > 0$. If G is a solvable subgroup of $\text{Aut}(\mathcal{X})$ containing a minimal normal p-subgroup N, then $|G| \leq 34(g + 1)^{3/2}$.

Proof. Take the largest normal p-subgroup Q of G. Let \bar{X} be the quotient curve of X with respect to Q and let $\bar{G} = G/Q$. The quotient group \bar{G} is a subgroup of $\text{Aut}(\bar{X})$ and it has no normal p-subgroup, otherwise G would have a normal p-subgroup properly containing Q. For $\bar{g} = g(\bar{X})$ three cases may occur, namely $\bar{g} \geq 2$, $\bar{g} = 1$ or $\bar{g} = 0$. If $\bar{g} \geq 2$, from the Hurwitz genus formula,

$$2\bar{g} - 2 \geq |Q|(2\bar{g} - 2) = \frac{|G|}{|\bar{G}|}(2\bar{g} - 2)$$

whence $|\bar{G}| > 34(\bar{g} + 1)^{3/2}$. Since \bar{X} is still ordinary, this contradicts our choice of \mathcal{X} to be a minimal counterexample. If $\bar{g} = 1$ then the cover $\mathbb{K}(\mathcal{X})/\mathbb{K}(\bar{X})$ ramifies. Take short orbit Δ of Q. Let Γ be the non-tame short orbit of G that contains Δ. Since Q is normal in G, the orbit Γ partitions into short orbits...
of Q whose components have the same length which is equal to $|\Delta|$. Let k be the number of the Q-orbits contained in Γ. Then,
\[|G_P| = \frac{|G|}{k|\Delta|}, \]
holds for every $P \in \Gamma$. Moreover, the quotient group G_PQ/Q fixes a place on \tilde{X}. Now, from [3, Theorem 11.94 (ii)],
\[\frac{|G_PQ|}{|Q|} = \frac{|G_P|}{|G_P \cap Q|} = \frac{|G_P|}{|Q_P|} \leq 12. \]
From this together with the Hurwitz genus formula and [3, Theorem 2 (i)],
\[2g - 2 \geq 2k|\Delta|(|Q_P| - 1) \geq 2k|\Delta|\frac{|Q_P|}{2} \geq \frac{k|\Delta||G_P|}{12} = \frac{|G|}{12}, \]
which contradicts our hypothesis $|G| > 34(g + 1)^{3/2}$.

It turns out that \tilde{X} is rational. Therefore \tilde{G} is isomorphic to a subgroup of $PGL(2, \mathbb{K})$ which contains no normal p-subgroup. From the classification of finite subgroups of $PGL(2, \mathbb{K})$, see [13], \tilde{G} is a prime to p subgroup which is either cyclic, or dihedral, or isomorphic to one of the the groups Alt_4, Sym_4. In all cases, \tilde{G} has a cyclic subgroup U of index at most 6 and of order distinct from 3. We may dismiss all cases but the cyclic one assuming that $G = Q \times U$ with $|G| \geq \frac{2}{3}(g(X) + 1)^{3/2}$. Then $|G| > 12(g - 1)$. Therefore, Lemma 2.1 applies to G. Thus, Q has exactly two (non-tame) orbits, say Ω_1 and Ω_2, and they are also the only short orbits of G. More precisely,
\[\gamma - 1 = |Q| - (|\Omega_1| + |\Omega_2|). \]
We may also observe that G_p with $P \in \Omega_1$ contains a subgroup V isomorphic to U. In fact, $|Q||U| = |G| = \frac{|G_p||\Omega_1|}{|Q_p \times V||\Omega_1|} = \frac{|V||Q_P||\Omega_1|}{|V||Q_P||\Omega_1|}$ with a prime to p subgroup V fixing P, whence $|U| = |V|$. Since V is cyclic the claims follows.

We go on with the case where both Ω_1 and Ω_2 are nontrivial, that is, their lengths are at least 2.

Assume that Q is non-abelian and look at the action of its center $Z(Q)$ on X. Since $Z(Q)$ is a nontrivial normal subgroup of G, arguing as before we get that the factor group $X/Z(Q)$ is rational, and hence the Galois cover $X/(X/Z(Q))$ ramifies at some points. In other words, there is a point $P \in \Omega_1$ (or $R \in \Omega_2$) such that some nontrivial subgroup T of $Z(Q)$ fixes P (or Q). Suppose that the former case occurs. Since Ω_1 is a P-orbit, T fixes Ω_1 pointwise.

The group G induces a permutation group on Ω_1 and let M_1 be the kernel of this permutation representation. Obviously, T is a nontrivial p-subgroup of M_1. Therefore M contains some but not all elements from Q. Since both M_1 and Q are normal subgroups of G, $N = M_1 \cap Q$ is a nontrivial normal p-subgroup of G. From (ii), the quotient curve $X = X/N$ is rational, and hence the factor group $\tilde{G} = G/N$ is isomorphic to a subgroup of $PGL(2, \mathbb{K})$. Since $1 \leq N \leq Q$, the order of \tilde{G} is divisible by p. From the classification of subgroups of $PGL(2, \mathbb{K})$, see [13], $\tilde{G} = \tilde{Q} \times \tilde{U}$ where \tilde{Q} is an elementary abelian p-group of order q and $\tilde{U} \cong U/N \cong U$ with $|\tilde{U}| = |U|$ is a divisor of $q - 1$.

This shows that Q acts on Ω_1 as an abelian transitive permutation group. Obviously this holds true when Q is abelian. Therefore, the action of Q on Ω_1 is sharply transitive. In terms of 1-point stabilizers of Q on Ω_1, we have $Q_{P} = Q_{P'}$ for any $P, P' \in \Omega_1$. Moreover, $Q_{P} = N$, and hence Q_{P} is a normal subgroup of G.

Furthermore, since X is an ordinary curve, Q_{P} is an elementary abelian group by [3, Theorem 2 (i)] and [3 Theorem 11.74 (iii)].

The quotient curve X/Q_{P} is rational and its automorphism group contains the factor group Q/Q_{P}. Hence, exactly one of the Q_{P}-orbits is preserved by Q. Since Ω_1 is a Q-orbit consisting of fixed points of Q_{P}, Ω_2 must be a Q_{P}-orbit. Similarly, if $Z(Q) \neq Q_{P}$, the factor group $Z(Q)Q_{P}/Q_{P}$ is an automorphism group of X/Q_{P} and hence exactly one of the Q_{P}-orbits is preserved by $Z(Q)$. Either $Z(Q)$ fixes a point in Ω_1 but then $Z(Q) = Q_{P}$, or Ω_2 is a $Z(Q)$-orbit. This shows that either $Z(Q) = Q_{P}$ or $Z(G)$ acts transitively on Ω_2.\"
Two cases arise according as Q_P is sharply transitive and faithful on Ω_2 or some nontrivial element in Q_P fixes Ω_2 pointwise.

If some nontrivial element in Q_P fixes Ω_2 pointwise then the kernel M_2 of the permutation representation of H on Ω_2 contains a nontrivial p-subgroup. Hence the above results extends from Ω_1 to Ω_2, and Q_R is a normal subgroup of Q.

If Q_P is (sharply) transitive on Ω_2 then the abelian group $Z(Q)Q_P$ acts on Ω_2 as a sharply transitive permutation group, as well. Hence either $Z(Q) = Q_P$, or as before M_2 contains a nontrivial p-subgroup, and Q_R is a normal subgroup of Q. In the former case, $Q = Q_PQ_R$ and $Q_R \cap Q_P = \{1\}$, and $Z(Q) = Q_P$ yields that

$$Q = Q_P \times Q_R.$$

This shows that Q is abelian, and hence $|Q| \leq 4g + 4$. Also, either $|Q_P|$ (or $|Q_R|$) is at most $\sqrt{4g + 4}$. Since \mathcal{X} is an ordinary curve, the second ramification group $G^{(2)}_P$ at $P \in \Omega_1$ is trivial. For $G_P = Q_P \times V$, Lemma 11.81 gives $|U| = |V| \leq |Q_P| - 1$. Hence $|U| < |Q_P| \leq \sqrt{|Q|} \leq \sqrt{4g + 4}$ whence

$$|G| = |U||Q| \leq 8(g + 1)^3/2.$$

If Q_R is a normal subgroup, take a point R from Ω_2, and look at the subgroup $Q_P \cap Q_R$ of Q_P fixing R. Actually, we prove that both $Q_P \cap Q_R = Q_P$ or $Q_P \cap Q_R$ is trivial. Suppose that $Q_P \cap Q_R \neq \{1\}$. Since $Q_P \cap Q_R = Q_P \cap Q_R$ and both Q_P and Q_R are normal subgroups of G, then same holds for $Q_P \cap Q_R$. By (ii), the quotient curve $\mathcal{X}/Q_P \cap Q_R$ is rational and hence its automorphism group $Q/Q_P \cap Q_R$ fixes exactly one point. Furthermore, each point in Ω_1 is totally ramified. Therefore, $Q_R = Q_P \cap Q_R$, otherwise $Q_R/Q_P \cap Q_R$ would fix any point lying under a point in Ω_1 in the cover $\mathcal{X}/Q_P \cap Q_R$.

It turns out that either $Q_P = Q_R$ or $Q_P \cap Q_R = \{1\}$, whenever $P \in \Omega_1$ and $R \in \Omega_2$.

In the former case, from the Deuring-Shafarevič formula applied to Q_P, the stabilizer Q_P of Q_P of Q_P is abelian, since Q_P is the image of Q_P in G_P, and hence G_P has a permutation representation on Ω_2 with kernel K. As Ω_2 is a short orbit of Q, the stabilizer Q_R of $R \in \Omega_2$ in Q is nontrivial. Since Q is abelian, this yields that K is nontrivial, and hence it is a nontrivial elementary abelian normal subgroup of G. In other words, Q is an r-dimensional vector space $V(r, p)$ over a finite field \mathbb{F}_p with $|Q| = p^r$, the action of each nontrivial element of U by conjugacy is a nontrivial automorphism of $V(r, p)$, and K is a K-invariant subspace. By Maschke’s theorem, see for instance [7 Theorem 6.1], K has a complementary U-invariant subspace. Therefore, Q has a subgroup M such that $Q = K \times M$, and M is a normal subgroup of G. Since $K \cap M = \{1\}$, and Ω_2 is an orbit of Q, this yields $|M| = |\Omega_2|$. The factor group G/M is an automorphism group of the quotient curve \mathcal{X}/M, and Q/M is a nontrivial p-subgroup of G/M whereas G/M fixes two points on \mathcal{X}/M. Therefore the quotient curve \mathcal{X}/M is not rational since the 2-point stabilizer in the representation of $\text{PGL}(2, \mathbb{K})$ as an automorphism group of the rational function field is a prime to p (cyclic) group. We show that \mathcal{X}/M is neither elliptic. From the Deuring-Shafarevič formula, $g(\mathcal{X}) - 1 = g(\mathcal{X}/M) - 1 = |\Omega| + 1 + |\Omega_2|$, and so $g(X)$ is even. Since M is a normal subgroup of odd order, $g(X) \equiv 0 \pmod{2}$ yields that $g(X/M) \equiv 0 \pmod{2}$. In particular, $g(\mathcal{X}/M) \neq 1$. Therefore, $g(\mathcal{X}/M) \geq 2$. At this point we may repeat our previous argument and prove $|G/M| > 34g(\mathcal{X}/M) + 1)^{3/2}$. Again, a contradiction to our choice of X to be a minimal counterexample, which ends the proof in the case where just one of Ω_1 and Ω_2 is trivial.
We are left with the case where both short orbits of \(Q \) are trivial. Our goal is to prove a much stronger bound for this case, namely \(|U| \leq 2\) whence

\begin{equation}
|G| \leq 2(g(\mathcal{X}) + 1).
\end{equation}

We also show that if equality holds then \(\mathcal{X} \) is a hyperelliptic curve with equation

\begin{equation}
f(U) = aT^2 + b + cT^{-1}, \quad a, b, c \in \mathbb{K}^*.
\end{equation}

where \(f(U) \in \mathbb{K}[U] \) is an additive polynomial of degree \(|Q|\).

Let \(\Omega_1 = \{P_1\} \) and \(\Omega_2 = \{P_2\} \). Then \(Q \) has two fixed points \(P_1 \) and \(P_2 \) but no nontrivial element in \(Q \) fixes a point of \(\mathcal{X} \) other than \(P_1 \) and \(P_2 \). From the Deuring-Shafarevič formula

\begin{equation}
g(\mathcal{X}) + 1 = \gamma(\mathcal{X}) + 1 = |Q|.
\end{equation}

Therefore, \(|U| \leq g(\mathcal{X})\). Actually, for our purpose, we need a stronger estimate, namely \(|U| \leq 2\). To prove the latter bound, we use some ideas from Nakajima’s paper [8], regarding the Riemann-Roch spaces \(\mathcal{L}(D) \) of certain divisors \(D \) of \(\mathbb{K}(\mathcal{X}) \). Our first step is to show

(i) \(\text{dim}_K \mathcal{L}((Q) - 1)P_1) = 1 \),

(ii) \(\text{dim}_K \mathcal{L}((Q) - 1)P_1 + P_2 \geq 2 \).

Let \(\ell \geq 1 \) be the smallest integer such that \(\text{dim}_K \mathcal{L}(\ell P_1) = 2 \), and take \(x \in \mathcal{L}(\ell P_1) \) with \(v_{P_1}(x) = -\ell \). As \(Q = Q_{P_1} \), the Riemann-Roch space \(\mathcal{L}(\ell P_1) \) contains all \(c_x = \sigma(x) - x \) with \(\sigma \in \mathbb{C} \). This yields \(c_x \in \mathbb{K} \) by \(v_{P_1}(c_x) \geq -\ell + 1 \) and our choice of \(\ell \) to be minimal. Also, \(Q = Q_{P_2} \) together with \(v_{P_2}(c_x) \geq 1 \) show \(v_{P_2}(c_x) \geq 1 \). Therefore \(c_x = 0 \) for all \(\sigma \in \mathbb{C} \), that is, \(x \) is fixed by \(Q \). From \(\ell = [\mathbb{K}(\mathcal{X}) : \mathbb{K}(x)] = [\mathbb{K} : \mathbb{K}(\mathcal{X})^Q][\mathbb{K}(\mathcal{X})^Q : \mathbb{K}(x)] \) and \(|Q| = [\mathbb{K} : \mathbb{K}(\mathcal{X})^Q] \), it turns out that \(\ell \) is a multiple of \(|Q|\). Thus \(\ell > |Q| - 1 \) whence (i) follows. From the Riemann-Roch theorem, \(\text{dim}_K \mathcal{L}((Q) - 1)P_1 + P_2 \geq |Q| - g + 1 = 2 \) which proves (ii).

Let \(d \geq 1 \) be the smallest integer such that \(\text{dim}_K \mathcal{L}(dP_1 + P_2) = 2 \). From (ii)

\begin{equation}
d \leq |Q| - 1.
\end{equation}

Let \(\alpha \) be a generator of the cyclic group \(U \). Since \(\alpha \) fixes both points \(P_1 \) and \(P_2 \), it acts on \(\mathcal{L}(dP_1 + P_2) \) as a \(\mathbb{K} \)-vector space automorphism \(\bar{\alpha} \). If \(\bar{\alpha} \) is trivial then \(\alpha(u) = u \) for all \(u \in \mathcal{L}(dP_1 + P_2) \). Suppose that \(\bar{\alpha} \) is nontrivial. Since \(U \) is a prime to \(p \) cyclic group, \(\bar{\alpha} \) has two distinct eigenspaces, so that \(\mathcal{L}(dP_1 + P_2) = \mathbb{K} \oplus \mathbb{K} u \) where \(u \in \mathcal{L}(dP_1 + P_2) \) is an eigenvector of \(\bar{\alpha} \) with eigenvalue \(\xi \in \mathbb{K}^\times \) so that \(\bar{\alpha}(u) = \xi u \). Therefore there is \(u \in \mathcal{L}(dP_1 + P_2) \) with \(u \neq 0 \) such that \(\alpha(u) = \xi u \) with \(\xi^{[U]} = 1 \). The pole divisor of \(u \) is

\begin{equation}
div(u)_{\infty} = dP_1 + P_2.
\end{equation}

Since \(Q = Q_{P_1} = Q_{P_2} \), the Riemann-Roch space \(\mathcal{L}(dP_1 + P_2) \) contains \(\sigma(u) \) and hence it contains all

\begin{equation}
\theta_{\sigma} = \sigma(u) - u, \quad \sigma \in Q.
\end{equation}

By our choice of \(d \) to be minimal, this yields \(\theta_{\sigma} \in \mathbb{K} \), and then defines the map \(\theta \), from \(\mathbb{C} \) into \(\mathbb{K} \) that takes \(\sigma \) to \(\theta_{\sigma} \). More precisely, \(\theta \) is a homomorphism from \(\mathbb{C} \) into the additive group \((\mathbb{K}, +) \) of \(\mathbb{K} \) as the following computation shows:

\begin{equation}
\theta_{\sigma_1 \circ \sigma_2} = (\sigma_1 \circ \sigma_2)(u) - u = \sigma_1(\sigma_2(u) - u + u) - u = \sigma_1(\theta_{\sigma_2}) + \sigma_1(u) - u = \theta_{\sigma_2} + \theta_{\sigma_1} = \theta_{\sigma_1 + \theta_{\sigma_2}}.
\end{equation}

Also, \(\theta \) is injective. In fact, if \(\theta_{\sigma_0} = 0 \) for some \(\sigma_0 \in \mathbb{C} \setminus \{1\} \), then \(u \) is in the fixed field of \(\sigma_0 \), which is impossible since \(v_{P_2}(u) = -1 \) whereas \(P_2 \) is totally ramified in the cover \(\mathcal{X}/(\mathcal{X}/(\sigma P)) \). The image \(\theta(Q) \) of \(\theta \) is an additive subgroup of \(\mathbb{K} \) of order \(|Q|\). The smallest subfield of \(\mathbb{K} \) containing \(\theta(Q) \) is a finite field \(\mathbb{F}_{p^n} \) and hence \(\theta(Q) \) can be viewed as a linear subspace of \(\mathbb{F}_{p^n} \) considered as a vector space over \(\mathbb{F}_p \). Therefore the polynomial

\begin{equation}
f(U) = \prod_{\sigma \in Q} (U - \theta_{\sigma})
\end{equation}
is a linearized polynomial over \mathbb{F}_p; see [4] Section 4, Theorem 3.52. In particular, $f(U)$ is an additive polynomial of degree $|Q|$; see also [11] Chapter V, § 5. Also, $f(U)$ is separable as θ is injective. From (15), the pole divisor of $f(u) \in \mathbb{K}(\mathcal{X})$ is
\[
(16) \quad \text{div}(f(u)) = |Q|(dP_1 + P_2).
\]
For every $\sigma_0 \in Q$,
\[
\sigma_0(f(u)) = \prod_{\sigma \in Q} (\sigma(u) - \theta) = \prod_{\sigma \in Q} (u + \theta - \sigma) = \prod_{\sigma \in Q} (u - \theta - \sigma) = f(u).
\]
Thus $f(u) \in \mathbb{K}(\mathcal{X})^Q$. Furthermore, from $\alpha \in N_{G}(Q)$, for every $\sigma \in Q$ there is $\sigma' \in Q$ such that $\alpha \sigma = \sigma' \alpha$. Therefore
\[
\alpha(f(u)) = \prod_{\sigma \in Q} (\alpha(u) - \sigma) = \prod_{\sigma \in Q} (\alpha(\sigma(u)) - \xi u) = \prod_{\sigma \in Q} (\sigma'(\sigma(u)) - \xi u) = \prod_{\sigma \in Q} (\sigma' u - \xi u) = \xi f(u).
\]
This shows that if $R \in \mathcal{X}$ is a zero of $f(u)$ then $\text{Supp}(\text{div}(f(u)_0))$ contains the U-orbit of R of length $|U|$. Actually, since $\sigma(f(u)) = f(u)$ for $\sigma \in Q$, $\text{Supp}(\text{div}(f(u)_0))$ contains the G-orbit of R of length $|G| = |Q||U|$. This together with (16) give
\[
(17) \quad |U| = (d + 1).
\]
On the other hand, $\mathbb{K}(\mathcal{X})^Q$ is rational. Let P_1 and P_2 the points lying under P_1 and P_2, respectively, and let R_1, R_2, \ldots, R_k with $k = (d + 1)/|U|$ be the points lying under the zeros of $f(u)$ in the cover $\mathcal{X}/(\mathcal{X}/Q)$. We may represent $\mathbb{K}(\mathcal{X})^Q$ as the projective line $\mathbb{K} \cup \{\infty\}$ over \mathbb{K} so that $P_1 = \infty$, $P_1 = 0$ and $R_i = t_i$ for $1 \leq i \leq k$. Let $g(t) = t^d + t^{-1} + h(t)$ where $h(t) \in \mathbb{K}[t]$ is a polynomial of degree $k = (d + 1)/|U|$ whose roots are r_1, \ldots, r_k. It turns out that $f(u), g(t) \in \mathbb{K}(\mathcal{X})$ have the same pole and zero divisors, and hence
\[
(18) \quad c f(u) = t^d + t^{-1} + h(t), \quad c \in \mathbb{K}^*.
\]
We prove that $\mathbb{K}(\mathcal{X}) = \mathbb{K}(u, t)$. From [12], see also [3] Remark 12.12, the polynomial $ctf(x) - T^{d+1} - 1 - h(T)T$ is irreducible, and the plane curve C has genus $g(C) = \frac{1}{2}(q - 1)(d + 1)$. Comparison with (12) shows $\mathbb{K}(\mathcal{X}) = C$ and $d = 1$ whence $|U| \leq 2$. If equality holds then $\deg h(T) = 1$ and \mathcal{X} is a hyperelliptic curve with equation (14).

3.2. Case II: G contains no minimal normal p-subgroup.

Proposition 3.2. Let \mathcal{X} be an ordinary algebraic curve of genus g defined over a field \mathbb{K} of odd characteristic $p > 0$. If G is a solvable subgroup of $\text{Aut}(\mathcal{X})$ with a minimal normal subgroup N satisfying Case II, then $|G| \leq 34(g(\mathcal{X})) + 1)^{3/2}$.

Proof. From Proposition 3.1 G contains no nontrivial normal p-subgroup. The factor group $\tilde{G} = G/N$ is a subgroup of $\text{Aut}(\mathcal{X})$ where $\mathcal{X} = \mathcal{X}/N$. Furthermore, $|N| \leq 4g(\mathcal{X}) + 4$ as N is abelian; see [3] Theorem 11.79. Arguing as in Section 3.1 we see that \mathcal{X} is either rational or elliptic, that is, $g(\mathcal{X}) \geq 2$ is impossible.

A detailed description of the arguments is given below. Assume that \mathcal{X} is a minimal counterexample with respect to the genus. Since \mathcal{X} is ordinary, any p-subgroup S of G is an elementary abelian group and it has a trivial second ramification group at any point \mathcal{X}. The latter property remains true when \mathcal{X} is replaced by \mathcal{Y}. To show this claim, take $P \in \mathcal{X}$ and let S_P the subgroup of the factor group $S = SN/N$ fixing P. Since $p \not| |N|$ there is a point $P \in \mathcal{X}$ lying over P which is fixed by S. Hence the stabilizer S_P of P in S is a nontrivial normal subgroup of G_P. Since N is a normal subgroup in G, so is N_P in G_P. This yields that the product $N_P S_P$ is actually a direct product. Therefore N_P is trivial, otherwise the second ramification group of S in P is nontrivial by a result of Serre; see [3] Theorem 11.75. Actually, N may be assumed to be the largest normal subgroup N_1 of G whose order is prime to p. If the quotient curve $\mathcal{X}_1 = \mathcal{X}/N_1$ is neither rational, nor elliptic then its \mathbb{K}-automorphism group $G_1 = G/N_1$ has order bigger than $34(g(\mathcal{X}_1)) + 1)^{3/2}$, by the Hurwitz genus formula applied to N_1. Since G and hence G_1 is solvable, G_1 has a minimal normal d-subgroup where d must
be equal to p by the choice of N_1 to be the largest normal, prime to p subgroup of G. Take the largest normal p-subgroup N_2 of G_1. Observe that $N_2 \subseteq G_1$, otherwise G_1 is an (elementary) abelian group of order bigger than $34(g(X_1) + 1)^{3/2}$ contradicting the bound $4(g(X_1) + 4)$; see [3 Theorem 11.79]. Now, define X_2 to be the quotient curve X_1/N_2. Since the second ramification group of N_1 at any point of X_1 is trivial, the Hurwitz genus formula together with the Deuring-Shafarevich formula give $g(X_1) - \gamma(X_1) = |N_2|(g(X_2) - \gamma(X_2))$. In particular, X_2 is neither ordinary or rational by the choice of p.

Theorem 11.127]. Also, the factor group g cyclic prime to p.

This and (19) yield a contradiction.

First we investigate the elliptic case. Since $g(X) \geq 2$, the Hurwitz genus formula applied to X ensures that N has a short orbit. Let Γ be a short orbit of G containing a short orbit of N. Since N is a normal subgroup of G, Γ is partitioned into short-orbits $\Sigma_1, \ldots, \Sigma_k$ of N each of length $|\Sigma|$.

Take a point R_i from Σ_i for $i = 1, 2, \ldots, k$, and set $\Sigma = \Sigma_1$ and $S = S_1$. With this notation, $|G| = |G_S||\Gamma| = |G_S||\Sigma|$, and the Hurwitz genus formula gives

\[2g(X) - 2 \geq \sum_{i=1}^{k} |\Sigma_i||N_{S_i}| - 1 = k|\Sigma||N_S| - 1) \geq \frac{1}{2}k|\Sigma||N_S| = \frac{1}{2}|G||N_S|/|G_S|. \]

Also, the factor group G_S/N is a subgroup of $\text{Aut}(X)$ fixing the point of X lying under S in the cover $X|\mathcal{X}$. From [3 Theorem 11.94 (ii)],

\[\frac{|G_S N|}{|N|} = \frac{|G_S|}{|G_S \cap N|} = \frac{|G_S|}{|N_S|} \leq 12. \]

This and (19) yield $|G| \leq 48(g(X) - 1)$, a contradiction with our hypothesis $34(g(X) + 1)^{3/2}$.

Therefore, X is rational. Thus G is isomorphic to a subgroup of $PGL(2, \mathbb{C})$. Since p divides $|G|$ but $|N|$, G contains a nontrivial p-subgroup. From the classification of the finite subgroups of $PGL(2, \mathbb{C})$, see [13], either $p = 3$ and $G \cong \text{Alt}_4$, Sym_4, or $G = \bar{Q} \times \tilde{C}$ where \bar{Q} is a normal p-subgroup and its complement \tilde{C} is a cyclic prime to p subgroup and $|\tilde{C}|$ divides $|Q| - 1$.

If $G \cong \text{Alt}_4, \text{Sym}_4$ then $|G| \leq 24$ whence $|G| \leq 24|N| \leq 96(g(X) + 1)$ as N is abelian. Comparison with our hypothesis $|G| \geq 34(g(X) + 1)^{3/2}$ shows that $g(X) \leq 6$. For small we need a little more. If $|N|$ is prime then $|N| \leq 2g(X) + 1$; see [3 Theorem 11.108], and hence $|G| \leq 48(g(X) + 1)$ which is inconsistent with $|G| \geq 34(g(X) + 1)^{3/2}$. Otherwise, since $p = 3$ and $|N|$ has order a power of prime distinct from p, the bound $|N| \leq 4(g(X) + 1)$ with $g(X) \leq 6$ is only possible for $g(X)$, $|N| \in \{3, 16\}$.

Comparison of $|G| \leq 24|N|$ with $|G| \geq 34(g(X) + 1)^{3/2}$ rule out the latter three cases. Furthermore, since N is an elementary abelian group of order 16, $g(X)$ must be odd by Lemma 2.2. Finally, $g(X) = 3, |N| = 16$, $G/N \cong \text{Sym}_4$ is impossible as Henn’s bound $|G| \geq 8g(X)^3$ implies that X has zero p-rank, see [3 Theorem 11.127].

Therefore, the case $G = \bar{Q} \times \tilde{C}$ occurs. Also, \tilde{G} fixes a unique place $\tilde{P} \in X$. Let Δ be the N-orbits in X lying over \tilde{P} in the cover $X|\mathcal{X}$. We prove that Δ is a long orbit of N. By absurd, the permutation
representation of G on Δ has a nontrivial 1-point stabilizer containing a nontrivial subgroup M of N. Since N is abelian, M is in the kernel. In particular, M is a normal subgroup of G contradicting our choice of N to be minimal.

Take a Sylow p-subgroup Q of G of order $|Q| = p^h$ with $h \geq 1$, and look at the action of Q on Δ. Since $|\Delta| = |N|$ is prime to p, Q fixes a point $P \in \Delta$, that is, $Q = Q_P$. Since \mathcal{X} is an ordinary curve, Q_P and hence Q is elementary abelian; see [8, Theorem 2 (i)] or [3, Theorem 11.74 (iii)]. Therefore, $G_P = Q \rtimes U$ where U is a prime to p cyclic group. Thus

\begin{equation}
|\bar{Q}||C||N| = |\bar{G}||N| = |G| = |G_P||\Delta| = |Q||U||\Delta| = |Q||U||N|,
\end{equation}

whence $|Q| = |\bar{Q}|$ and $|U| = |\bar{C}|$. Consider the subgroup H of G generated by G_P and N. Since Δ is a long N-orbit, $G_P \cap N = \{1\}$. As N is normal in H this implies that $H = N \rtimes G_P = N \rtimes (Q \rtimes U)$ and hence $|H| = |N||Q||U|$ which proves $G = H = N \rtimes (Q \rtimes U)$.

Since \mathcal{X} is rational and \bar{P} is the unique fixed point of nontrivial elements of \bar{Q}, each \bar{Q}-orbit other than $\{\bar{P}\}$ is long. Furthermore, \bar{C} fixes a point \bar{R} other than \bar{P} and no nontrivial element of \bar{C} is fixed point distinct from \bar{P} and \bar{R}. This shows that the G-orbit Ω_1 of \bar{R} has length $|Q|$. In terms of the action of G on \mathcal{X}, there exist as many as $|Q|$ orbits of N, say $\Delta_1, \ldots, \Delta_{|Q|}$, whose union Λ is a short G-orbit lying over Ω_1 in the cover $\mathcal{X}|\mathcal{X}$. Obviously, if at least one of Δ_i is a short N-orbit then so all are.

We show that this actually occur. Since the cover $\mathcal{X}|\mathcal{X}$ ramifies, N has some short orbits, and by absurd there exists a short N-orbit Σ not contained in Λ. Then Σ and Λ are disjoint. Let Γ denote the (short) G-orbit containing Σ. Since N is a normal subgroup of G, Γ is partitioned into N-orbits, say $\Sigma = \Sigma_1, \ldots, \Sigma_k$, each of them of the same length $|\Sigma|$. Here $k = |Q||U|$ since the set of points of \bar{X} lying under these k short N-orbits is a long G-orbit. Also, $|N| = |\Sigma_i||N_{R_i}|$ for $i \leq k$ and $R_i \in \Sigma_i$. In particular, $|\Sigma_1| = |\Sigma|$ and $|N_{R_1}| = |B_{R_1}|$. From the Hurwitz genus formula,

\begin{equation}
2g(\mathcal{X}) - 2 \geq -2|N| + \sum_{i=1}^{k} |\Sigma_i|(|N_{R_i}| - 1) = -2|N| + |Q||U||\Sigma_1|(|N_{R_1}| - 1).
\end{equation}

Since N_{R_i} is nontrivial, $|N_{R_i}| - 1 \geq \frac{1}{2}|N_{R_i}|$. Therefore,

\begin{equation}
2g(\mathcal{X}) - 2 \geq -2|N| + \frac{1}{2}|Q||U||\Sigma_1|(|N_{R_1}| - 1) = -2|N| + \frac{1}{2}|Q||U||N| = |N|\left(\frac{1}{2}|Q||U| - 2\right) = \frac{1}{2}|N||\bar{Q}||U| - 4).
\end{equation}

As $|Q||U| - 4 \geq \frac{1}{2}|Q||U|$ by $|Q||U| \geq 4$, this gives

\begin{equation}
2g(\mathcal{X}) - 2 \geq \frac{1}{4}|N||\bar{Q}||Q| = \frac{1}{4}|G|.
\end{equation}

But this contradicts our hypothesis $|G| > 34(g(\mathcal{X}) + 1)^{3/2}$.

Therefore, the short orbits of N are exactly $\Delta_1, \ldots, \Delta_{|Q|}$. Take a point S_i from Δ_i for $i = 1, \ldots, |Q|$. Then N_{S_i} and N_{S_i} are conjugate in G, and hence $|N_{S_i}| = |N_{S_i}|$. From the Hurwitz genus formula applied to N,

\begin{equation}
2g(\mathcal{X}) - 2 \geq -2|N| + \sum_{i=1}^{|Q|} |\Delta_i|(|N_{S_i}| - 1)) = -2|N| + |Q||\Delta_1|(|N_{S_1}| - 1) \geq -2|N| + \frac{1}{2}|Q||\Delta_1||N_{S_1}|.
\end{equation}

Since $|N| = |\Delta_1||N_{S_1}|$, this gives $2g(\mathcal{X}) - 2 \geq \frac{1}{2}|N||Q| - 4|Q|$ whence $2g(\mathcal{X}) - 2 \geq \frac{1}{4}|N||Q|$ provided that $|Q| \geq 5$. The missing case, $|Q| = 3$, cannot actually occur since in this case $|\bar{C}| = |U| \leq |Q| - 1 = 2$, whence $|Q| = |Q||U||N| \leq 6|N| \leq 24(g(\mathcal{X}) + 1)$, a contradiction with $|G| > 34(g(\mathcal{X}) + 1)^{3/2}$. Thus

\begin{equation}
|N||Q| \leq 8(g(\mathcal{X}) - 1).
\end{equation}

Since $|N||U| < |N||Q|$, this also shows

\begin{equation}
|N||U| < 8g(\mathcal{X}) - 1).
\end{equation}

Therefore,

\begin{equation}
|G||N| = |N|^2|U||Q| < 64(g(\mathcal{X}) - 1)^2.
\end{equation}
Equations (21) and (22) together with our hypothesis \(|G| > 34(g(X) + 1)^{3/2}\) yield

\[
|N| < \frac{64}{34} \sqrt{g(X) - 1}.
\]

From (23) and \(|G| = |N||Q||U| \geq 34(g(X) + 1)^{3/2}\) we obtain

\[
|Q||U| > \frac{34^2}{64}(g(X) - 1) > 18(g(X) - 1)
\]

which shows that Lemma 2.1 applies to the subgroup \(Q \times U\) of \(\text{Aut}(X)\). With the notation in Lemma 2.1, this gives that \(Q \times U\) and \(Q\) have the same two short orbits, \(\Omega_1 = \{P\}\) and \(\Omega_2\). In the cover \(X/\overline{X}\), the point \(\overline{P} \in \overline{X}\) lying under \(P\) is fixed by \(Q\). We prove that \(\Omega_2\) is a subset of the \(N\)-orbit \(\Delta\) containing \(P\). For this purpose, it suffices to show that for any point \(R \in \Omega_2\), the point \(\overline{R} \in \overline{X}\) lying under \(R\) in the cover \(X/\overline{X}\) coincides with \(\overline{P}\). Since \(\Omega_2\) is a \(Q\)-short orbit, the stabilizer \(Q_R\) is nontrivial, and hence \(Q\) fixes \(\overline{R}\). Since \(\overline{X}\) is rational, this yields \(\overline{P} = \overline{R}\). Therefore, \(\Omega_2 \cup \{P\}\) is contained in \(\Delta\), and either \(\Delta = \Omega_2 \cup \{P\}\) or \(\Delta\) contains a long \(Q\)-orbit. In the latter case, \(|U| < |Q| < |N|\), and hence

\[
|G| = |N||Q||U|/|Q||U| < |N||Q||U||U|/|N|^2 \leq \frac{64^2}{34}(g(X) - 1)^3
\]

whence \(|G| < 34(g(X) + 1)^{3/2}\), a contradiction with our hypothesis. Otherwise \(|N| = |\Delta| = 1 + |\Omega_2|\). In particular, \(|N|\) is even, and hence it is a power of 2. Also, from the Deuring-Shafarevič Formula, \(g(X) - 1 = \gamma(X) - 1 = -|Q| + 1 + |\Omega_2|\) where \(|\Omega_2| \geq 1\) is a power of \(p\). This implies that \(g(X)\) is also even. Since \(N\) is an elementary abelian 2-group, Lemma 2.2 yields that either \(|N| = 2\) or \(|N| = 4\).

If \(|N| = 2\) then \(\Omega_2\) consists of a unique point \(P\) and \(Q \times U\) fixes both points \(P\) and \(R\). Since \(\Delta = \{P, R\}\), and \(\Delta\) is a \(G\)-orbit, the stabilizer \(G_{P,R}\) is an index 2 (normal) subgroup of \(G\). On the other hand, \(G_{P,R} = Q \times U\) and hence \(Q\) is the unique Sylow \(p\)-subgroup of \(Q \times U\). Thus \(Q\) is a characteristic subgroup of the normal subgroup \(G_{P,R}\) of \(G\). But then \(Q\) is a normal subgroup of \(G\), a contradiction with our hypothesis.

If \(|N| = 4\) then \(|\Delta| = 4\) and \(p = 3\). The permutation representation of \(G\) of degree 4 on \(\Delta\) contains a 4-cycle induced by \(N\) but also a 3-cycle induced by \(Q\). Hence if \(K = \ker\) then \(G/K \cong \text{Sym}_4\). On the other hand, since both \(N\) and \(\ker\) are normal subgroups of \(G\), their product \(NK\) is normal, as well. Hence \(NK/K\) is a normal subgroup of \(G/K\), but this contradicts \(G/K \cong \text{Sym}_4\). \(\Box\)

References

[1] M. Giulietti and G. Korchmáros, Garden of curves with many automorphisms, in Algebraic curves and finite fields, 93–120, Radon Ser. Comput. Appl. Math., 16, De Gruyter, Berlin, 2014.
[2] G.B. Gunby, A. Smith and A. Yuan, Irreducible canonical representations in positive characteristic, Research in Number Theory (2015) 1:3, 1-25.
[3] J.W.P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics, Princeton (2008).
[4] H.W. Henn, Funktionenkörper mit großem Automorphismengruppe, J. Reine Angew. Math. 302 (1978), 96–115.
[5] A. Kontogeorgis and V. Rotger, On abelian automorphism groups of Mumford curves, Bull. London Math. Soc. 40 (2008), 353-362.
[6] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications 20, Cambridge Univ. Press, Cambridge, 1997, xiv+755 pp.
[7] A. Machì, Groups, An introduction to ideas and methods of the theory of groups, Unitext, 58, Springer, Milan, 2012. xiv+371 pp.
[8] S. Nakajima, \(p\)-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), 595-607.
[9] J.P. Serre, Corps locaux, Hermann, Paris, (1968).
[10] J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer, New York, (1979). viii+241 pp.
[11] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahl- charakteristik. II. Ein spezieller Typ von Funktionenkörpern, Arch. Math. 24 (1973), 615–631.
[12] F. Sullivan, \(p\)-torsion in the class group of curves with many automorphisms, Arch. Math. 26 (1975), 253–261.
[13] R.C. Valenti and M.L. Madan, A Hauptsatz of L.E. Dickson and Artin–Schreier extensions, J. Reine Angew. Math. 318 (1980), 156–177.
Authors’ addresses:
Gábor KORCHMÁROS and Maria MONTANUCCI
Dipartimento di Matematica, Informatica ed Economia
Università degli Studi della Basilicata
Contrada Macchia Romana
85100 Potenza (Italy).
E-mail: gabor.korchmaros@unibas.it and maria.montanucci@unibas.it