Supporting information for

Enhanced quinoline removal by zero-valent iron coupled novel anaerobic processes: performance and underlying function analysis

Sufang Wang, Aijuan Zhou, Jiaguang Zhang, Zhaohua Liu, Jierong Zheng, Xiaochan Zhao, Xiuping Yue*

*Corresponding author. E-mail: yuexiuping@tyut.edu.cn (X. Yue)

Contents

Supporting tables (Table S1, S2)
Supporting tables

Table S1 Alpha diversity parameters

Name	Seq num*1	OTU num*1	Shannon index	Simpson index	ACE index	Chao1 index
Control	56853	2134	4.08	0.059	15966.97	9584.53
IP	89490	3823	5.20	0.022	9891.16	9333.85
IS	40777	1591	3.86	0.074	8319.70	5061.21
RIS	49240	1622	3.24	0.145	13072.79	6913.01

*1: “Seq num” indicated the sequence numbers obtained from the high-throughput sequencing analysis; *2: “OTU num” indicated the classified OTU numbers obtained from the gene sequences with the identity of over 97%.
Table S2 Genera (relative abundance >1% in at least one samples)

Genera	Control	IP	IS	RIS
Azotobacter	16.33	8.88	21.81	4.72
Thermomonas	0.47	0.07	0.53	36.2
Alicyciphilus	12.56	1.79	7.83	3.01
Pseudomonas	3.77	2.26	4.76	12.41
Rhizobium	10.25	2.36	6.45	0.78
Novosphingobium	3.32	4.76	7.91	0.44
Rhizorhabdus	4.78	3.35	3.45	0.64
Comamonas	3.6	2.85	4.17	1.75
Ignavibacterium	5.75	0.57	5.18	2.11
Acinetobacter	0.28	6.9	0.27	0.5
Eubacterium	1.98	4.24	1.17	0.02
Exiguobacterium	0.76	4.39	0.82	1.15
Sphingopyxis	0.55	0.58	0.4	6.24
Citrobacter	0.5	3.3	0.53	0.85
Bacillus	0.09	0.14	0.04	7.13
Stenotrophomonas	0.92	0.16	0.69	5.23
Chelatococcus	1.19	2.14	1.2	0.15
Thauera	1.28	0.68	4.07	0.13
Planctomicrobium	0.1	2.96	0.06	0.03
Ornatilinea	0.86	1.53	0.67	0.18
Brevibacillus	0.52	1.09	1.48	0.14
Limnobacter	1.01	0.71	0.88	0.1
Clostridium sensu stricto	0.04	1.28	0.03	0.73
Methyloversatilis	1.12	0.52	0.76	0.11
Hydrotalea	0	0	0	2.67
*Saccharibacteria_genera_in_	0.08	1.34	0.08	0.04
certae_sedis				
Acetoanaerobium	0.01	1.19	0.01	0
Lactobacillus	0.02	1.02	0.03	0.02