Research Article

Roland Silga and Gilbert Bayili*

Polynomial stability of the wave equation with distributed delay term on the dynamical control

https://doi.org/10.1515/msds-2020-0134
Received November 24, 2020; accepted October 7, 2021

Abstract: Using the frequency domain approach, we prove the rational stability for a wave equation with distributed delay on the dynamical control, after establishing the strong stability and the lack of uniform stability.

Keywords: distributed delay term, dynamical control, strong stability, lack of uniform stability, polynomial decay.

MSC: 35B35, 35B40, 35L05, 93D15

1 Introduction

In the literature, there are full practical processes that might be modelled by distributed delay systems, which present a wide range of applications in various fields such as micro-organism growth [25], hematopoiesis [1, 2], logistics [4] and traffic flow [21]. In the recent past (last four decades), many researchers have fruitfully investigated on that subject, and successfully applied them in more widespread other areas. They have developed mathematical tools in order to establish polynomial or exponential decays of these systems. We refer readers to [20] for a list of early works, and to [8–10, 12–15, 22, 26, 27] and the references therein, for some other relevant results.

In this paper, we consider the following wave equation with a distributed delay term on the dynamical control:

\[
\begin{align*}
 u_{tt}(x, t) - u_{xx}(x, t) &= 0 \quad \text{in }]0, 1[\times (0, +\infty) \\
 u(0, t) &= 0 \\
 u_x(1, t) + \eta(t) &= 0 \quad \forall \, t \in (0, +\infty) \\
 \eta_t(t) - u_t(1, t) + \beta_1 \eta(t) + \int_{\tau_1}^{\tau_2} \beta_2(s) \eta(t-s) ds &= 0 \quad \forall \, t \in (0, +\infty) \\
 u(\cdot, 0) &= u_0, \quad u_t(\cdot, 0) = u_1 \quad \text{in }]0, 1[\\
 \eta(0) &= \eta_0 \in \mathbb{R} \\
 \eta(-t) &= f_0(-t) \quad \forall \, t \in (0, \tau_2),
\end{align*}
\] (1)

Roland Silga: Université Joseph Ki-ZERBO, Laboratoire de Mathématiques et Informatique (LAMI), UFR. Sciences Exactes et appliquées, Département de Mathématiques 03 B.P.7021 Ouagadougou 03, Burkina Faso, silgaroland@gmail.com

*Corresponding Author: Gilbert Bayili: Université Joseph Ki-ZERBO, Laboratoire de Mathématiques et Informatique (LAMI), UFR. Sciences Exactes et appliquées, Département de Mathématiques 03 B.P.7021 Ouagadougou 03, Burkina Faso, E-mail: bgilbert8@yahoo.fr
where \(\eta \) denotes the dynamical control, while \(\tau_1 \) and \(\tau_2 \) are two real numbers verifying
\[
0 \leq \tau_1 < \tau_2;
\]
moresover \(\beta_1 \) is a positive constant, \(\beta_2 : [\tau_1, \tau_2] \to \mathbb{R} \) is a positive \(L^\infty \) function and the initial data \((u_0, u_1, f_0)\) belong to a suitable space. The damping of the system is made via the indirect damping mechanism. Throughout all paper, we assume that \(\beta_2 : [\tau_1, \tau_2] \to \mathbb{R} \) is a positive \(L^\infty \) function verifying:
\[
\int_{\tau_1}^{\tau_2} \beta_2(s)\,ds < \beta_1. \tag{2}
\]
It is well known that if \(\beta_2 = 0 \) (that is no delay occurs in the system), the energy of problem (1) is polynomially decaying to zero with the rate \(t^{-1} \); see for instance Wehbe [28] for one dimensional case and Toufayli [24] for higher dimension.

But in the presence of a delay, namely for such a below system
\[
\begin{align*}
\frac{\partial u}{\partial t}(x, t) - \Delta u(x, t) &= 0 \quad \text{in } \Omega \times (0, +\infty) \\
u(0, t) &= 0 \\
u(t, 0) &= 0, \quad \frac{\partial u(t, 0)}{\partial \nu} = u_1 \quad \text{in } \Omega, \\
\left. \frac{\partial u}{\partial \nu}(x, t) + \mu_1 u(x, t) + \mu_2 u(x, t - \tau) \right|_{\partial \Omega} &= 0 \quad \text{on } \Gamma_N \times (0, +\infty) \\
u(x, 0) &= u_0, \quad u_t(x, 0) = u_1 \quad \text{in } \Omega \\
\left. u(x, t - \tau) = f_0(x, t - \tau) \right|_{\Gamma_N} &= 0 \quad \text{on } \Gamma_N \times (0, \tau),
\end{align*}
\tag{3}
\]
with constants \(\beta_1 \) and \(\beta_2 \) verifying the following assumption that there exists a positive constant \(\zeta \) verifying
\[
\tau \beta_1 < \zeta < \tau(2\beta_1 - \beta_2), \tag{4}
\]
it has been proved in Gilbert and . al [7] that the energy of problem (3) decays polynomially with the same rate as in [24, 28].

In the case of the wave equations, Nicaise and Pignotti [16] investigated exponential stability results with delay concentrated at \(\tau \) for the system
\[
\begin{align*}
\frac{\partial u}{\partial t}(x, t) - \Delta u(x, t) &= 0 \quad \text{in } \Omega \times (0, +\infty) \\
u(x, t) &= 0 \quad \text{on } \Gamma_D \times (0, +\infty) \\
\frac{\partial u}{\partial \nu}(x, t) + \mu_1 u_t(x, t) + \mu_2 u_t(x, t - \tau) &= 0 \quad \text{on } \Gamma_N \times (0, +\infty) \\
u(x, 0) &= u_0, \quad u_t(x, 0) = u_1 \quad \text{in } \Omega \\
\left. u(x, t - \tau) = f_0(x, t - \tau) \right|_{\Gamma_N} &= 0 \quad \text{on } \Gamma_N \times (0, \tau),
\end{align*}
\tag{5}
\]
under the condition \(\mu_2 < \mu_1 \), by combining inequalities due to Carleman estimates and compactness-uniqueness arguments. Later, they also obtain in [17] the exponential stability with distributed delay of the
Polynomial stability of the wave equation with distributed delay

system

\[
\begin{align*}
\begin{cases}
 u_{tt}(x, t) - \Delta u(x, t) = 0 \text{ in } \Omega \times (0, +\infty) \\
 u(x, t) = 0 \text{ on } \Gamma_D \times (0, +\infty) \\
 \frac{\partial u}{\partial v}(x, t) + \mu_1 u_t(x, t) + \int_{\tau_1}^{\tau_2} \mu_2(s) u_t(x, t - s) \, ds = 0 \text{ on } \Gamma_N \times (0, +\infty) \\
 u(x, 0) = u_0, \quad u_t(x, 0) = u_1 \text{ in } \Omega \\
 u(x, -t) = f_0(x, -t) \text{ on } \Gamma_N \times (0, \tau), \\
 u(x, t) = 0 \text{ on } \partial\Omega \times (0, +\infty) \\
 u_{tt}(x, t) = 0 \text{ in } \Omega \times (0, +\infty).
\end{cases}
\end{align*}
\]

(6)

under the assumption

\[
\int_{\tau_1}^{\tau_2} \mu_2(s) \, ds < \mu_1.
\]

(7)

In this paper, staying on the one dimensional space, we propose a dynamical boundary moment control \(\eta \) with a distributed delay term, and we look for the possible ways to stabilize the system (1). To our knowledge polynomial stability with distributed delay term has not yet been done, even if the system (3), that is time delay concentrated at \(\tau \), decays polynomially.

The paper is organized as follows: section 2 is devoted to the well posedness of problem (1), while the section 3 deals with the strong stability of problem (1); furthermore, section 4 establishes the lack of uniform stability, and finally in section 5 stands on the polynomial stability of problem (1).

2 Well posedness

In this section, we will establish the well posedness of the problem (1), using the semigroup theory. Let us set

\[
z(\rho, t, s) = \eta(t - s \rho), \quad \rho \in (0, 1), \ s \in (\tau_1, \tau_2), \ t > 0.
\]

(8)

The problem (1) is now equivalent to

\[
\begin{align*}
\begin{cases}
 u_{tt}(x, t) - u_{xx}(x, t) = 0 \text{ in } [0, 1] \times (0, +\infty) \\
 sz_t(\rho, t) + z_\rho(\rho, t) = 0 \text{ in } (0, 1) \times (0, +\infty) \times (\tau_1, \tau_2) \\
 u(0, t) = 0 \quad \forall \ t \in (0, +\infty) \\
 u(1, t) + \eta(t) = 0 \quad \forall \ t \in (0, +\infty) \\
 \eta_t(t) - u_t(1, t) + \beta_1 \eta(t) + \int_{\tau_1}^{\tau_2} \beta_2(s) z(1, t, s) \, ds = 0 \quad \forall \ t \in (0, +\infty) \\
 z(0, t, s) = \eta(t) \quad \forall \ t \in (0, +\infty) \\
 u(\cdot, 0) = u_0, \quad u_t(\cdot, 0) = u_1 \text{ in } [0, 1] \text{ and } \eta(0) = \eta_0 \\
 z(\rho, 0, s) = f_0(-\rho s) \quad \forall \ s \in (0, \tau_2).
\end{cases}
\end{align*}
\]

(9)
Let us set
\[\mathcal{U} = (u, u_t, \eta, z)^T. \]

Then we have
\[\mathcal{U}_t = (u_t, u_{tt}, \eta_t, z_t)^T = (u_t, u_{xx}, u_t(1, t) - \beta_1 \eta(t) - \int_0^{\tau_2} \beta_2(s)z(1, t, s)ds, -s^{-1}z_\rho)^T. \]

Therefore problem (9) can be rewritten in an abstract framework:

\[
\begin{cases}
\mathcal{U}_t = \mathcal{A} \mathcal{U} \\
\mathcal{U}(0) = (u_0, u_1, \eta_0, f_0(-s))
\end{cases}
\] (10)

where the operator \(\mathcal{A} \) is defined by
\[
\mathcal{A} (u, v, \eta, z)^T = \left(v, u_{xx}, v(1) - \beta_1 \eta - \int_0^{\tau_2} \beta_2(s)z(1, s)ds, -s^{-1}z_\rho \right)^T,
\]

with domain
\[
\mathcal{D}(\mathcal{A}) = \{(u, v, \eta, z)^T \in (H^2(0, 1) \cap V) \times \mathbb{R} \times L^2((\tau_1, \tau_2); H^1(0, 1)) : z(0) = \eta, u_x(1) + \eta = 0\}.
\]

where
\[
V = \{ u \in H^1(0, 1), u(0) = 0 \}.
\]

Let us now introduce the Hilbert space
\[
\mathcal{H} = V \times L^2(0, 1) \times \mathbb{R} \times L^2((\tau_1, \tau_2); L^2(0, 1))
\]

endowed with the norm
\[
\left\| (u, v, \eta, z)^T \right\|_{\mathcal{H}}^2 = \|u_x\|_{L^2(0, 1)}^2 + \|v\|_{L^2(0, 1)}^2 + |\eta|^2 + \int_0^{\tau_2} \left(\int_0^1 |z(\rho, s)|^2 d\rho \right) ds.
\]

So, the natural associated inner product is
\[
\left\langle \left(\begin{array}{c} u \\ v \\ \eta \\ z \end{array} \right), \left(\begin{array}{c} u^* \\ v^* \\ \eta^* \\ z^* \end{array} \right) \right\rangle_{\mathcal{H}} = \int_0^1 \left(u_x \overline{u}_x + v \overline{v} \right) dx + \eta \overline{\eta} + \int_0^{\tau_2} \left(\int_0^1 \frac{1}{\rho} z(\rho, s) z^*(\rho, s) d\rho \right) ds.
\]

Proposition 2.1.

The operator \(\mathcal{A} \) defined above is \(m \)-dissipative.

Proof. We see that
\[
\left\langle \mathcal{A} \left(\begin{array}{c} u \\ v \\ \eta \\ z \end{array} \right), \left(\begin{array}{c} u \\ v \\ \eta \\ z \end{array} \right) \right\rangle_{\mathcal{H}} = \left\langle \left(\begin{array}{c} v \\ u_{xx} \\ \eta \\ -s^{-1}z_\rho \end{array} \right), \left(\begin{array}{c} v \\ u_x(1 - \beta_1 \eta - \int_0^{\tau_2} \beta_2(s)z(1, s)ds) \\ \eta \\ z \end{array} \right) \right\rangle_{\mathcal{H}}.
\]
Using Green formula, Cauchy Schwarz's inequality and the definition of $D(\mathcal{A})$ we obtain

$$
\Re\left\langle \mathcal{A}\begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix} \right\rangle = \Re \left(u(1) - \beta_1 \eta - \int_{t_1}^{t_2} \beta_2(s)z(1, s) ds \right) \eta + \frac{1}{2} \int_{t_1}^{t_2} \beta_2(s) \left(|z(1, s)|^2 - |z(0, s)|^2 \right) ds + \frac{1}{2} \left| \beta_2(s) ds \right|
$$

Now, the relation (2) allows to conclude that \mathcal{A} is dissipative.

Let us prove that the operator $\lambda I - \mathcal{A}$ is surjective for at least one $\lambda > 0$.

For $(f, g, h, k)^T \in \mathcal{H}$, we look for $(u, v, \eta, z)^T \in D(\mathcal{A})$ solution of

$$
\begin{cases}
\lambda u - v = f & \text{in }]0, 1[\\
\lambda v - u_{xx} = g & \text{in }]0, 1[\\
\lambda \eta - \left(v(1) - \beta_1 \eta - \int_{t_1}^{t_2} \beta_2(s)z(1, s) ds \right) = h & \\
\lambda z + s^{-1}z_\rho = k & \text{in }]0, 1[.
\end{cases}
$$

(11)
Suppose that we have found \(u \) with the appropriate regularity. It means that we have also found \(\eta \). Then \(v = \lambda u - f \), and we can determine \(z \) by solving the system

\[
\begin{aligned}
\begin{cases}
\quad s^{-1}z_{\rho} + \lambda z = k & \text{in }]0, 1[\\
\quad z(0) = \eta.
\end{cases}
\end{aligned}
\]

(12)

We obtain

\[z(\rho, s) = \eta e^{-\lambda \rho} + se^{-\lambda \rho} \int_0^\rho k(\sigma, s)e^{\lambda \sigma} \, d\sigma. \]

In particular

\[z(1, s) = \eta e^{-\lambda s} + se^{-\lambda s} \int_0^1 k(\sigma, s)e^{\lambda \sigma} \, d\sigma. \]

The function \(u \) verifies now

\[
\begin{aligned}
\begin{cases}
-u_{xx} + \lambda^2 u = g + \lambda f & \text{in }]0, 1[\\
\quad u(0) = 0 \\
\quad u_s(1) = -z(0)
\end{cases}
\end{aligned}
\]

(13)

By using Lax-Milgram’s Lemma, the problem (13) admits a unique weak solution. Indeed, multiplying the first equation by \(v \in V \) and by integrating formally by parts, we get

\[
a(u, v) = F(v), \forall v \in V,
\]

(14)

where the bilinear and continuous form \(a \) is given by

\[
a(u, v) = \int_0^1 \left(u_s v_s + \lambda^2 uv \right) \, dx \quad \forall u, v \in V,
\]

while the linear form \(F \) is

\[
F(v) = \int_0^1 (g + \lambda f)v \, dx + \eta v(1), \quad \forall v \in V.
\]

Since \(a \) is clearly strongly coercive on \(V \) and \(F \) is continuous on \(V \), by Lax-Milgram’s Lemma, problem (13) admits a unique solution \(u \in V \). By taking test functions \(v \in D(0; 1) \), we recover the first identity of (13). This guarantees that \(u \) belongs to \(H^2(0, 1) \). Using now Green’s formula, we see that \(u \) satisfies the third identity of (13).

Finally, we define \(\eta \) and \(v \) by setting

\[
v = \lambda u - f \quad \text{and} \quad \eta = \frac{v(1) - \int_1^{\tau_1} \beta_2(s)z(1, s) \, ds + h}{\beta_1 + \lambda}.
\]

This shows that the operator \(\mathcal{A} \) is m-dissipative on \(\mathcal{H} \) and it generates a \(C_0 \) semigroup of contractions in \(\mathcal{H} \), under Lumer-Phillips theorem. So, we have found \((u, v, \eta, z)^T \in D(\mathcal{A}) \) which verifies (13).

We can now state on the following existence results.

Theorem 2.2.

*If \(U_0 = (u_0, u_1, \eta_0, f_0)^T \) belongs to \(\mathcal{H} \), then problem (1) has one and only one weak solution \(U = (u, u_t, \eta, z)^T \) verifying:

\[
\begin{aligned}
\begin{cases}
\quad u \in C([0, \infty), V) \cap C^1([0, \infty), L^2(0, 1)) \\
\quad \eta \in C([0, \infty))
\end{cases}
\end{aligned}
\]

(15)*
Furthermore, if \(U_0 = (u_0, u_1, \eta_0, f_0) \) belongs to \(D(A) \), then problem (1) has one and only one strong solution \(U = (u, u_t, \eta, z)^T \) which satisfies

\[
\begin{cases}
 u \in C([0, \infty), H^2(0, 1) \cap V) \cap C^1([0, \infty), V) \cap C^2([0, \infty), L^2(0, 1)) \\
 \eta \in C^1([0, \infty))
\end{cases}
\]

(16)

Proof. This result is easy to check following the Hille-Yosida theory.

3 Strong stability

In this section, we establish strong stability result. The main result of this subsection is the following.

Theorem 3.1.
The \(C_0 \)-semigroup \(\left(e^{tA} \right)_{t \geq 0} \) is strongly stable on the energy space \(\mathcal{H} \), that is for any \(U_0 \in \mathcal{H} \),

\[
\lim_{t \to 0} \| e^{tA} U_0 \|_{\mathcal{H}} = 0.
\]

Proof. We use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [3, 6, 23]. Following this theory, since the resolvent of \(A \) is compact, it suffices to establish that \(A \) has no eigenvalue on the imaginary axis. For our purpose, it is easy to prove that the resolvent of the operator \(A \) defined in (10) is compact. We are ready now to achieve the proof of theorem 3.1 with the following lemma.

Lemma 3.2.
There is no eigenvalue of \(A \) on the imaginary axis, that is

\(i\mathbb{R} \subset \rho(A) \).

Proof. By contradiction argument, we assume that there exists at least one \(i\lambda \in \sigma(A), \lambda \in \mathbb{R}, \lambda \neq 0 \) on the imaginary axis. Let \(U = (u, v, \eta, z)^T \in D(A) \) be the corresponding normalized eigenvector, that is verifying \(\| U \| = 1 \) and

\[
A(u, v, \eta, z)^T = i\lambda(u, v, \eta, z)^T,
\]

(17)

which is equivalent to

\[
\begin{cases}
 v - i\lambda u = 0 \quad \text{in } (0, 1) \\
 u_{xx} - i\lambda v = 0 \quad \text{in } (0, 1) \\
 v(1) - \beta_1 \eta - \int_{\tau_2}^{\tau_1} \beta_2(s) z(1, s) ds - i\lambda \eta = 0 \\
 s^{-1} z_\rho - i\lambda z = 0 \quad \text{in } (0, 1).
\end{cases}
\]

(18)

Recalling the dissipativity of \(A \), it follows that

\[
0 = \Re \left(\left\langle A(u, v, \eta, z)^T, (u, v, \eta, z)^T \right\rangle_{\mathcal{H}} \right) \leq |\eta|^2 \left(-\beta_1 + \int_{\tau_2}^{\tau_1} \beta_2(s) ds \right) \leq 0;
\]

(19)

that is \(\eta = 0 \).

Owing to the definition of \(z \) in §2, we deduce that \(\eta = z = 0 \).

Now (18) becomes

\[
\begin{cases}
 v - i\lambda u = 0 \quad \text{in } (0, 1) \\
 u_{xx} - i\lambda v = 0 \quad \text{in } (0, 1) \\
 v(1) = 0.
\end{cases}
\]

(20)
From the first equation of (20), we deduce that
\[u(1) = 0 \]
Setting \(v = i\lambda u \), it remains to find \(u \in V \) which verifies
\[
\begin{cases}
 u_{xx} + \lambda^2 u = 0 & \text{in } (0, 1) \\
 u_x(1) = 0 \\
 u(1) = 0.
\end{cases}
\] (21)

Therefore, from the general theory of ordinary differential equations, we deduce that
\[u = 0, \text{ on } (0, 1). \] (22)

Now it follows that \((u, v, \eta, z)^T = (0, 0, 0, 0)^T \) which contradicts the fact that \(\|U\| = 1 \). We conclude that \(\mathcal{A} \) has no eigenvalue on the imaginary axis. \(\square \)

As the conditions of the spectral decomposition theory of Sz-Nagy-Foias and Foguel are full satisfied, the proof of theorem 3.1 is thus completed. \(\square \)

4 Lack of exponential stability

In this section, we will show that the system (1) is lack of exponential decay rate. Our future computations are based on frequency domain approach for exponential stability (see Huang [11] and Prüss [19]), more precisely on the below result.

Lemma 4.1.
A \(\mathcal{C}_0 \)-semigroup \(\left(e^{tA} \right) \) of contractions on a Hilbert space \(\mathcal{H} \) is exponentially stable that is
\[
\left\| e^{tA} U_0 \right\|_{\mathcal{H}} \leq C e^{-\omega t} \|U_0\|_{\mathcal{H}} \quad \forall \ U_0 \in \mathcal{H}, \ \forall \ t \geq 0,
\] (23)
for some positive constants \(C \) and \(\omega \), if and only if
\[
\rho(A) \not\supset \{i\beta, \ \beta \in \mathbb{R}\} \equiv i\mathbb{R}
\] (24)
and
\[
\sup_{\beta \in \mathbb{R}} \left\| (i\beta - A)^{-1} \right\|_{L(\mathcal{H})} < \infty,
\] (25)
where \(\rho(A) \) denotes the resolvent set of the operator \(A \).

The main result of the current section is the following.

Theorem 4.2.
The system (1) is not exponentially stable in the energy space \(\mathcal{H} \).

Proof. Following the lemma 4.1 above, we prove that the condition (25) is not satisfied in the sense that there exists some sequences \(\lambda_n \), \(U_n = (u, v, \eta, z)^T \) and \(F_n = (f_{1n}, f_{2n}, f_{3n}, f_{4n})^T \) such that
\[
(i\lambda_n - \mathcal{A})U_n = F_n;
\] (26)
\[
\|F_n\|_{\mathcal{H}} = O(1);
\] (27)
and
\[\lim_{n \to +\infty} ||U_n||_{\mathcal{C}} = +\infty. \]
(28)

The relation (26) is equivalent to
\[
\begin{cases}
 i\lambda_n u - v = f_{1n} \\
 i\lambda_n v - u_{xx} = f_{2n} \\
 i\lambda_n \eta - \left(\nu(1) - \beta_1 \eta - \int_0^{\tau_2} \beta_2(s)z(1, s)ds \right) = f_{3n} \\
 i\lambda_n z + s^{-1}z_\rho = f_{4n}.
\end{cases}
\]
(29)

We look for a particular solution, defined for \(f_{1n} = f_{3n} = f_{4n} = 0 \), and \(f_{2n} \) will be chosen later. Then (29) becomes
\[
\begin{cases}
 i\lambda_n u - v = 0 \\
 i\lambda_n v - u_{xx} = f_{2n} \\
 i\lambda_n \eta - \left(\nu(1) - \beta_1 \eta - \int_0^{\tau_2} \beta_2(s)z(1, s)ds \right) = 0 \\
 i\lambda_n z + s^{-1}z_\rho = 0.
\end{cases}
\]
(30)

The fourth equation of (30) combining with the condition \(z(0) = \eta \) gives \(z(\rho, s) = \eta e^{-i\lambda_n \rho} \), that is
\[z(1, s) = \eta e^{-i\lambda_n s}. \]
(31)

Combining the first and the second equation of (30), and using the fact that \((u, \nu, \eta, x)^T \in \mathcal{D}(A)\), it follows that
\[
\begin{cases}
 u_{xx} + \lambda_n^2 u = -f_{2n} \\
 u(0) = 0 \\
 u_x(1) = -\eta.
\end{cases}
\]
(32)

The homogeneous equation associated to (32) can be solved as
\[u_p(x) = k_1 \cos(\lambda_n x) + k_2 \sin(\lambda_n x), \quad k_1, k_2 \in \mathbb{R}. \]

Notice that \(u_1(x) = \cos(\lambda_n x) \) et \(u_2(x) = \sin(\lambda_n x) \) are both the solutions of the homogeneous equation associated to (32).

Let us denote by \(\mathcal{W}(u_1, u_2) \) the “Wronskien” of the family \((u_1, u_2)\). We have
\[
\mathcal{W}(u_1, u_2) = \begin{vmatrix} \cos(\lambda_n x) & \sin(\lambda_n x) \\ -\lambda_n \sin(\lambda_n x) & \lambda_n \cos(\lambda_n x) \end{vmatrix} = \lambda_n \neq 0.
\]

As \(\mathcal{W}(u_1, u_2) \neq 0 \), the family \((u_1, u_2)\) forms a fundamental system of solutions. Consequently we can search the particular solution of (32) in the form
\[u_p(x) = k_1(x) \cos(\lambda_n x) + k_2(x) \sin(\lambda_n x) \]
(33)

where \(k_1 \) and \(k_2 \) are functions which verify
\[
\begin{cases}
 k_1' \cos(\lambda_n x) + k_2' \sin(\lambda_n x) = 0 \\
 -k_1' \lambda_n \sin(\lambda_n x) + k_2' \lambda_n \cos(\lambda_n x) = -f_{2n}.
\end{cases}
\]
(34)

The equation (34) can be solved as
\[k_1(x) = \frac{1}{\lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n s)ds \quad \text{and} \quad k_2(x) = -\frac{1}{\lambda_n} \int_0^x f_{2n}(s) \cos(\lambda_n s)ds. \]
(35)
Combining (35) and (33), we get
\[u_0(x) = -\frac{1}{\lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n(x-s)) \, ds. \]
(36)

Now the general solution of (32) can be written as
\[u(x) = k_1 \cos(\lambda_n x) + k_2 \sin(\lambda_n x) - \frac{1}{\lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n(x-s)) \, ds, \quad k_1, k_2 \in \mathbb{R}. \]
(37)

On the one hand we have
\[u(0) = 0 \quad \Rightarrow \quad k_1 = 0. \]

On the other hand we compute
\[u(1) = k_2 \sin(\lambda_n) - \frac{1}{\lambda_n} \int_0^1 f_{2n}(s) \sin(\lambda_n(1-s)) \, ds; \]
from which follows
\[k_2 = u(1) \frac{1}{\sin \lambda_n} + \frac{1}{\lambda_n \sin \lambda_n} \int_0^1 f_{2n}(s) \sin(\lambda_n(1-s)) \, ds. \]

Consequently the general solution of (32) can be rewritten as
\[u(x) = u(1) \frac{\sin(\lambda_n x)}{\sin \lambda_n} + \frac{\sin(\lambda_n x)}{\lambda_n \sin \lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n(1-s)) \, ds - \frac{1}{\lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n(x-s)) \, ds. \]
(38)

Differentiating the above relation, it follows that
\[u_s(x) = \lambda_n u(1) \frac{\cos(\lambda_n x)}{\sin \lambda_n} + \frac{\cos(\lambda_n x)}{\lambda_n \sin \lambda_n} \int_0^x f_{2n}(s) \sin(\lambda_n(1-s)) \, ds - \frac{1}{\lambda_n} \int_0^x f_{2n}(s) \cos(\lambda_n(x-s)) \, ds \]
that is
\[u_s(1) = \lambda_n u(1) \cot \lambda_n + \cot \lambda_n \int_0^1 f_{2n}(s) \sin(\lambda_n(1-s)) \, ds - \frac{1}{\lambda_n} \int_0^1 f_{2n}(s) \cos(\lambda_n(1-s)) \, ds. \]
(39)

Now using (39) and the boundary condition \(u_s(1) = -\eta \), we get
\[u(1) = -\frac{\eta \tan \lambda_n}{\lambda_n} - \frac{1}{\lambda_n} \int_0^1 f_{2n}(s) \sin(\lambda_n(1-s)) \, ds + \tan \lambda_n \int_0^1 f_{2n}(s) \cos(\lambda_n(1-s)) \, ds. \]
(40)

From the first and the third equations of (30) we compute
\[\left(\int_{r_1}^{r_2} \beta_1 + \int_{r_1}^{r_2} \beta_2(s)e^{-i\lambda_n s} \, ds \right) \eta = i\lambda_n u(1) \]
\[= -i\eta \tan \lambda_n - i \int_0^1 f_{2n}(s) \sin(\lambda_n(1-s)) \, ds \]
\[+ i \tan \lambda_n \int_0^1 f_{2n}(s) \cos(\lambda_n(1-s)) \, ds \]}
that is
\[
\left(i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s)e^{-i\lambda_n s} ds + i \tan \lambda_n \right) \eta = -i \int_0^1 f_{2n}(s) \sin (\lambda_n(1 - s)) \ ds
\]
\[
+ i \tan \lambda_n \int_0^1 f_{2n}(s) \cos (\lambda_n(1 - s)) \ ds.
\]
Let us set
\[
\Pi_n = i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s)e^{-i\lambda_n s} ds + i \tan \lambda_n.
\]
Before computing \(\eta \), let us demonstrate that \(\Pi_n \neq 0 \) with the choice \(\lambda_n = 2n\pi + \frac{1}{\sqrt{n}} \).

We have
\[
\Pi_n = i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s) \frac{\cos (\lambda_n s) + i \sin (\lambda_n s)}{\cos (\lambda_n s) + i \sin (\lambda_n s)} ds + i \tan \left(\frac{1}{\sqrt{n}} \right)
\]
\[
= i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s) \cos (\lambda_n s) ds + i \left(\lambda_n - \int_{t_1}^{t_2} \beta_2(s) \sin (\lambda_n s) ds + \tan \left(\frac{1}{\sqrt{n}} \right) \right).
\]

We have
\[
0 < \beta_1 - \int_{t_1}^{t_2} \beta_2(s) ds < \beta_1 + \int_{t_1}^{t_2} \beta_2(s) \cos (\lambda_n s) ds
\]
So we can deduce that
\(\Pi_n \neq 0 \), and
\[
\eta = -\frac{i}{\Pi_n} \int_0^1 f_{2n}(s) \sin (\lambda_n(1 - s)) \ ds + \frac{i \tan \lambda_n}{\Pi_n} \int_0^1 f_{2n}(s) \cos (\lambda_n(1 - s)) \ ds.
\]
Inserting (41) in (40), it follows that
\[
u(1) = \frac{i \tan \lambda_n}{\lambda_n \Pi_n} \int_0^1 f_{2n}(s) \sin (\lambda_n(1 - s)) \ ds - \frac{i \tan^2 \lambda_n}{\lambda_n \Pi_n} \int_0^1 f_{2n}(s) \cos (\lambda_n(1 - s)) \ ds
\]
\[
- \frac{1}{\lambda_n} \int_0^1 f_{2n}(s) \sin (\lambda_n(1 - s)) \ ds + \frac{\tan \lambda_n}{\lambda_n} \int_0^1 f_{2n}(s) \cos (\lambda_n(1 - s)) \ ds
\]
that is
\[
u(1) = -\frac{i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s)e^{-i\lambda_n s} ds}{\lambda_n \Pi_n} \int_0^1 f_{2n}(s) \sin (\lambda_n(1 - s)) \ ds
\]
\[
+ \frac{\left(i\lambda_n + \beta_1 + \int_{t_1}^{t_2} \beta_2(s)e^{-i\lambda_n s} ds \right) \tan \lambda_n}{\lambda_n \Pi_n} \int_0^1 f_{2n}(s) \cos (\lambda_n(1 - s)) \ ds.
\]
If we take \(\lambda_n \) large enough in (41), we get

\[
u(1) = \frac{C_0}{\lambda_n} \int_0^1 f_{2n}(s) \sin \left(\lambda_n(1-s) \right) ds. \tag{42}\]

Now let us compute \(\lambda_n u(x) \), using (42). We get

\[
\lambda_n u(x) = \lambda_n u(1) \frac{\sin(\lambda_n x)}{\sin \lambda_n} + \frac{\sin(\lambda_n x)}{\sin \lambda_n} \int_0^1 f_{2n}(s) \sin \left(\lambda_n(1-s) \right) ds - \int_0^x f_{2n}(s) \sin \left(\lambda_n(x-s) \right) ds
\]

\[
= C_0 \frac{\sin(\lambda_n x)}{\sin \lambda_n} \int_0^1 f_{2n}(s) \sin \left(\lambda_n(1-s) \right) ds + \frac{\sin(\lambda_n x)}{\sin \lambda_n} \int_0^1 f_{2n}(s) \sin \left(\lambda_n(1-s) \right) ds
\]

\[
- \int_0^x f_{2n}(s) \sin \left(\lambda_n(x-s) \right) ds
\]

\[
= (1 - C_0) \frac{\sin(\lambda_n x)}{\sin \lambda_n} \int_0^1 f_{2n}(s) \sin \left(\lambda_n(1-s) \right) ds - \int_0^x f_{2n}(s) \sin \left(\lambda_n(x-s) \right) ds.
\]

Consequently we have

\[
\lambda_n u(x) = (1 - C_0) \frac{\sin(\lambda_n x)}{\sin \lambda_n} P_n(1) - \frac{P_n(x)}{H_n(x)} \tag{43}
\]

where we set

\[
P_n(x) := \int_0^x f_{2n}(s) \sin \left(\lambda_n(x-s) \right) ds. \tag{44}
\]

Let us set \(f_{2n}(x) := \sin(\lambda_n x) \). Then computing \(P_n(x) \), we obtain

\[
P_n(x) = \int_0^x \sin(\lambda_n s) \sin \left(\lambda_n(x-s) \right) ds
\]

\[
= \int_0^x \sin(\lambda_n s) \left(\sin(\lambda_n x) \cos(\lambda_n s) - \cos(\lambda_n x) \sin(\lambda_n s) \right) ds
\]

\[
= \sin(\lambda_n x) \int_0^x \sin(\lambda_n s) \cos(\lambda_n s) ds - \cos(\lambda_n x) \int_0^x \sin^2(\lambda_n s) ds
\]

\[
= \frac{\sin(\lambda_n x)}{2\lambda_n} \int_0^x \left(\sin^2(\lambda_n s) \right)' ds - \frac{\cos(\lambda_n x)}{2} \int_0^x (1 - \cos(2\lambda_n s)) ds
\]

\[
= \frac{\sin^3(\lambda_n x)}{2\lambda_n} - \frac{x \cos(\lambda_n x)}{2} + \frac{\cos(\lambda_n x) \sin(2\lambda_n x)}{4\lambda_n}
\]

\[
= \frac{\sin^3(\lambda_n x)}{2\lambda_n} - \frac{x \cos(\lambda_n x)}{2} + \frac{\cos^2(\lambda_n x) \sin(\lambda_n x)}{2\lambda_n}
\]

\[
= \frac{\sin(\lambda_n x) - x \cos(\lambda_n x)}{2\lambda_n}.
\]

Recalling the choice of \(\lambda_n \), we have that \(\sin(\lambda_n) = \frac{1}{\sqrt{n}} \), \(\cos(\lambda_n) = 1 \) and \(\lambda_n = 2n\pi \). So we get

\[
P_n(1) = \frac{1}{2\pi n^{3/2}} - \frac{1}{2} = -\frac{1}{2}.
\]
Then it follows that
\[
\int_0^1 |H_n(x)|^2 \, dx \geq \int_0^1 \frac{x^2 \cos^2(\lambda_n x)}{8} \, dx - \frac{C_1}{\lambda_n^2}
\]
(where \(C_1\) is a generic positive constant)
\[
\geq \frac{1}{48} - \frac{C_1}{\lambda_n^2}.
\]
that is
\[
\int_0^1 |H_n(x)|^2 \, dx \geq \frac{1}{48} - \frac{C_1}{\lambda_n}.
\]
(45)

Furthermore we have
\[
\int_0^1 |K_n(x)|^2 \, dx = \int_0^1 \left| (1 - C_0) \frac{\sin(\lambda_n x)}{\sin(\lambda_n)} P_n(1) \right|^2 \, dx
\]
\[
\geq \frac{C_2}{\sin^2(\lambda_n)} \int_0^1 \sin^2(\lambda_n x) \, dx
\]
(where \(C_2\) is a generic positive constant)
\[
\geq C_2 n \left[\frac{x}{2} - \frac{\sin(2\lambda_n x)}{4\lambda_n} \right]_0^n
\]
that is
\[
\int_0^1 |K_n(x)|^2 \, dx \geq C_3 n + C_4
\]
(46)

with \(C_3\) (positive) and \(C_4\) are generic constants.

Following (43) we have that
\[
\int_0^1 |\lambda_n u(x)|^2 \, dx = \int_0^1 |K_n(x) + H_n(x)|^2
\]
\[
= \int_0^1 |K_n(x)|^2 \, dx + \int_0^1 |H_n(x)|^2 \, dx + 2 \int_0^1 K_n(x) H_n(x) \, dx
\]
(47)

A straightforward calculation using the identity \(2ab \geq -a^2 - b^2\) gives for all \(\varepsilon > 0\):
\[
K_n H_n = \left(\frac{1}{\sqrt{\varepsilon}} K_n \right) \left(\sqrt{\varepsilon} H_n \right)
\]
\[
\geq - K_n^2 / \varepsilon - \varepsilon H_n^2.
\]
(48)

Inserting (48) in (47) it follows that
\[
\int_0^1 |\lambda_n u(x)|^2 \geq \left(1 - \frac{2}{\varepsilon} \right) \int_0^1 |K_n(x)|^2 \, dx + (1 - 2\varepsilon) \int_0^1 |H_n(x)|^2 \, dx.
\]
(49)

Now combining (49), (46) and (45), we obtain
\[
\int_0^1 |\lambda_n u(x)|^2 \geq C_3 \left(1 - \frac{2}{\varepsilon} \right) n + C_4 \left(1 - \frac{2}{\varepsilon} \right) + (1 - \varepsilon) \left(\frac{1}{12} + \frac{C}{\lambda_n} \right).
\]
Consequently there exists a positive constant γ_1, and another constant γ_2 such that

$$\int_0^1 \left| \lambda_n u(x) \right|^2 \, dx \geq \gamma_1 n + \gamma_2. \tag{50}$$

We deduce from (50) that

$$\| U_n \|_{\mathcal{C}}^2 \geq \| v \|_{L^2(0,1)}^2 = \int_0^1 \left| \lambda_n u(x) \right|^2 \, dx \geq \gamma_1 n + \gamma_2, \tag{51}$$

which implies

$$\lim_{n \to +\infty} \| U_n \|_{\mathcal{C}} = +\infty.$$

On the other hand, according to the choice of F_n we have

$$\| F_n \|_{\mathcal{C}} = \frac{1}{2} \int_0^1 \sin^2(\lambda_n x) \, dx = \frac{1}{2} \frac{\sin(2\lambda_n)}{4\lambda_n}$$

which implies

$$\| F_n \|_{\mathcal{C}} = O(1).$$

Finally we have found some sequences λ_n, U_n and F_n which verifies (26)-(28). Consequently system (1) is not uniformly stable.

\[\square\]

5 Rational stabilization result

In this section, we shall prove that problem (1) is polynomially stable under assumption (2). To obtain this, we use method based on the following result due to Borichev and Tomilov [5]:

Theorem 5.1.

Let A be the generator of a C_0-semigroup of bounded operators on a Hilbert space X such that $i \mathbb{R} \subset \rho(A)$. Then, we have the polynomial decay

$$\left\| e^{tA} U_0 \right\| \leq \frac{C}{t^{(1/2)_+}} \| U_0 \|, \quad t > 0,$$

if and only if

$$\limsup_{|\lambda| \to +\infty} \frac{1}{|\lambda|^6} \left\| (i\lambda - A)^{-1} \right\| < \infty.$$

The main result of this section is the next theorem.

Theorem 5.2.

The semigroup of system (1) decays polynomially as

$$\left\| e^{tA} U_0 \right\| \leq \frac{C}{t} \| U_0 \|, \quad \forall \ U_0 \in \mathcal{D}(A), \quad \forall \ t > 0. \tag{52}$$
Proof. It suffices to show following the results in [18, 28] and the above theorem, that for any \(U = (u, v, \eta, z)^T \in \mathcal{D}(A) \) and \(F = (f, g, h, k)^T \in \mathcal{H} \), the solution of
\[
(iA - A) U = F
\]
verifies
\[
\|U\|_{\mathcal{H}} \leq C\lambda\|F\|_{\mathcal{H}};
\]
where \(\lambda > 0 \) and \(C \) a positive constant.

Problem (1) without delay is the following one
\[
\begin{cases}
 u_{tt}(x, t) - u_{xx}(x, t) = 0 \text{ in }]0, 1[\times (0, +\infty) \\
 u(0, t) = 0 \\
 u_x(1, t) + \eta(t) = 0 \ \forall \ t \in (0, +\infty) \\
 u_t(t) - u_x(1, t) + \beta \eta(t) \ \forall \ t \in (0, +\infty) \\
 u(\cdot, 0) = u_0, \ u_t(\cdot, 0) = u_1 \ \text{in }]0, 1[, \ \eta(0) = \eta_0 \in \mathbb{R}
\end{cases}
\]
which is well-posed in
\[
\mathcal{H}_0 := V \times L^2(0, 1) \times \mathbb{R}
\]
endowed with the norm
\[
\|(u, v, \eta)^T\|_{\mathcal{H}_0}^2 := \|u_x\|_{L^2(0,1)}^2 + \|v\|_{L^2(0,1)}^2 + \eta^2.
\]
The generator of its semigroup is \(A_0 \) defined by
\[
A_0 (u, v, \eta)^T := (v, u_{xx}, v(1 - \beta_1 \eta))^T
\]
with domain
\[
\mathcal{D}(A_0) := \{(u, v, \eta)^T \in \left(H^2(0, 1) \cap V\right) \times V \times \mathbb{R} : u_x(1) + \eta = 0\}.
\]
Thanks to [28], the operator \(A_0 \) generates a polynomial stable semigroup with optimal decay rate \(t^{-1} \). Therefore the solution \((u^*, v^*, \eta^*)^T\) of
\[
(iA - A_0) \begin{pmatrix} u^* \\ v^* \\ \eta^* \end{pmatrix} = \begin{pmatrix} u \\ v \\ \eta \end{pmatrix}
\]
verifies
\[
\|(u^*, v^*, \eta^*)^T\|_{\mathcal{H}_0} \leq C_0 \lambda \|(u, v, \eta)^T\|_{\mathcal{H}_0}
\]
where \(C_0 \) is a positive constant.

On the other hand the system (59) can be rewritten as
\[
\begin{cases}
 i\lambda u^* - v^* = u \\
 i\lambda v^* - u_{xx} = v \\
 i\lambda \eta^* - v^*(1) + \beta_1 \eta^* = \eta.
\end{cases}
\]
Let \(\varepsilon \) be a positive constant, the choice of which will be made later.

With the help of integrations by parts and using (61), we have
\[
\langle (iA - A) \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u^* \\ v^* \\ \eta^* \\ -\frac{1}{\varepsilon} z \end{pmatrix} \rangle_{\mathcal{H}} = \langle \begin{pmatrix} i\lambda u - v \\ i\lambda v - u_{xx} \\ i\lambda \eta - v(1) + \beta_1 \eta + \int_{t_2}^{t_3} \beta_2(s)z(1, s)ds \\ i\lambda z + s^{-1} z_{t_3} \end{pmatrix}, \begin{pmatrix} u^* \\ v^* \\ \eta^* \\ -\frac{1}{\varepsilon} z \end{pmatrix} \rangle_{\mathcal{H}}
\]
\[
\frac{1}{\epsilon} \int_{r_1}^{r_2} (s \beta_2(s)) \left(\int_{0}^{1} (i \lambda z + s^{-1} z \rho) \, dp \right) \, ds
\]

\[
= \int_{0}^{1} (i \lambda u - v) \, dx + \int_{0}^{1} (i \lambda v - u_{xx}) \, dx
\]

\[
+ \left(i \lambda \eta - v(1) + \beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) \, ds \right) \eta
\]

\[
- \frac{1}{\epsilon} \int_{r_1}^{r_2} (s \beta_2(s)) \left(\int_{0}^{1} (i \lambda z + s^{-1} z \rho) \, dp \right) \, ds
\]

\[
= i \lambda \int_{0}^{1} u_x u_t \, dx - \int_{0}^{1} v_x u_x \, dx + i \lambda \int_{0}^{1} v \, dx - \int_{0}^{1} u_{xx} v \, dx
\]

\[
+ \left(i \lambda \eta - v(1) + \beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) \, ds \right) \eta
\]

\[
- \frac{i \lambda}{\epsilon} \int_{r_1}^{r_2} (s \beta_2(s)) \left(\int_{0}^{1} |z|^2 \, dp \right) \, ds - \frac{1}{\epsilon} \int_{r_1}^{r_2} \beta_2(s) \int_{0}^{1} z \rho \, dp \, ds
\]

\[
\left((i \lambda A) \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u^* \\ v^* \\ \eta^* \\ -\frac{1}{\epsilon} z^* \end{pmatrix} \right)_{\mathcal{C}} = i \lambda \int_{0}^{1} u_x u_t \, dx + v(1) \eta + \int_{0}^{1} v_x u_x \, dx + i \lambda \int_{0}^{1} v \, dx
\]

\[
+ \eta v(1) + \int_{0}^{1} u_x v_x \, dx + \left(i \lambda \eta - v(1) + \beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) \, ds \right) \eta
\]

\[
- \frac{i \lambda}{\epsilon} \int_{r_1}^{r_2} (s \beta_2(s)) \left(\int_{0}^{1} |z|^2 \, dp \right) \, ds - \frac{1}{\epsilon} \int_{r_1}^{r_2} \beta_2(s) \int_{0}^{1} z \rho \, dp \, ds
\]

\[
\left((i \lambda A) \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u^* \\ v^* \\ \eta^* \\ -\frac{1}{\epsilon} z^* \end{pmatrix} \right)_{\mathcal{C}} = -\int_{0}^{1} |u_x|^2 \, dx - \int_{0}^{1} |v|^2 \, dx - |\eta|^2 + \left(2 \beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) \, ds \right) \eta
\]

\[
- \frac{i \lambda}{\epsilon} \int_{r_1}^{r_2} (s \beta_2(s)) \left(\int_{0}^{1} |z|^2 \, dp \right) \, ds - \frac{1}{\epsilon} \int_{r_1}^{r_2} \beta_2(s) \int_{0}^{1} z \rho \, dp \, ds
\]
Recalling (53) and using (56), we deduce from the above relation that

\[
\begin{align*}
\| (u, v, \eta) \|_{\mathcal{H}_0}^2 &= -\Re \left\langle F, \begin{pmatrix} u^* \\ v^* \\ \eta^* \end{pmatrix} \right\rangle + \Re \left(2\beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) ds \right) \eta^* \\
&- \Re \left(\frac{1}{\varepsilon} \int_{r_1}^{r_2} \beta_2(s) \int_0^1 \Re (z_0 \overline{z}) \, dp \, ds \right) \\
&- \frac{1}{\varepsilon} \int_{r_1}^{r_2} \beta_2(s) \left[|z(s, s)|^2 \right] ds \\
&= -\Re \left\langle F, \begin{pmatrix} u^* \\ v^* \\ \eta^* \end{pmatrix} \right\rangle + \Re \left(2\beta_1 \eta + \int_{r_1}^{r_2} \beta_2(s) z(1, s) ds \right) \eta^* \\
&- \frac{1}{\varepsilon} \int_{r_1}^{r_2} \beta_2(s) \left(|z(1, s)|^2 - |z(0, s)|^2 \right) \, ds
\end{align*}
\]

Now, using triangular, Cauchy-Schwarz's and Young's inequalities, we get

\[
\| (u, v, \eta) \|_{\mathcal{H}_0}^2 \leq \| F \|_{\mathcal{H}} \left(\frac{1}{\varepsilon} \| (0, 0, 0, z) \|_{\mathcal{H}} + \| (u^*, v^*, \eta^*) \|_{\mathcal{H}_0}^2 \right) + \frac{\beta_1^2}{\varepsilon} \| \eta \|^2 + \frac{\varepsilon}{2} \| \eta^* \|^2 \\
+ \frac{1}{\varepsilon} \int_{r_1}^{r_2} \beta_2(s) |z(1, s)|^2 \, ds + \frac{\varepsilon}{2} \| \eta^* \| \int_{r_1}^{r_2} \beta_2(s) \, ds - \frac{1}{\varepsilon} \int_{r_1}^{r_2} \beta_2(s) |z(1, s)|^2 \, ds
\]
\[\begin{align*}
&+ \frac{|\eta|^2}{2E} \int_{r_1}^{r_2} \beta_2(s) \, ds \\
&\leq |F|_{2C} \left(\frac{1}{E} \left\| (u, v, \eta, z)^T \right\|_{2C} + \left\| (u^*, v^*, \eta^*)^T \right\|_{2C_0} \right) + \left(\frac{\beta_1^2}{E} + \frac{1}{2E} \int_{r_1}^{r_2} \beta_2(s) \, ds \right) |\eta|^2 \\
&+ \varepsilon |\eta^*|^2 \left(\frac{1}{2} \int_{r_1}^{r_2} \beta_2(s) \, ds + 1 \right) \int_{r_1}^{r_2} \left(s\beta_2(s) \int_0^1 \|z(\rho, s)\|^2 \, d\rho \right) \, ds
\end{align*} \]

that is, using the definition of \(\mathcal{C} \)-norm of \(U = (u, v, \eta, z)^T \) and (60)

\[\|U\|_{2C}^2 \leq |F|_{2C} \left(\frac{1}{E} \left\| (u, v, \eta, z)^T \right\|_{2C} + \left\| (u^*, v^*, \eta^*)^T \right\|_{2C_0} \right) + \left(\frac{\beta_1^2}{E} + \frac{1}{2E} \int_{r_1}^{r_2} \beta_2(s) \, ds \right) |\eta|^2 \\
+ \int_{r_1}^{r_2} \left(s\beta_2(s) \int_0^1 \|z(\rho, s)\|^2 \, d\rho \right) \, ds \tag{62} \]

From the dissipativity of \(A \), it follows that

\[\Re \left((i\lambda I - A) \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix} \right) \geq |\eta|^2 \left(\beta_1 - \int_{r_1}^{r_2} \beta_2(s) \, ds \right) ; \]

that is, using (53) and the Cauchy-Schwarz’s inequality

\[|\eta|^2 \left(\beta_1 - \int_{r_1}^{r_2} \beta_2(s) \, ds \right) \leq \Re \left((i\lambda I - A) \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix}, \begin{pmatrix} u \\ v \\ \eta \\ z \end{pmatrix} \right) \]

\[\leq \Re \left(F, U \right)_{2C} \leq |F|_{2C} \|U\|_{2C}. \]

Then we deduce that

\[|\eta|^2 \leq \frac{1}{\left(\beta_1 - \int_{r_1}^{r_2} \beta_2(s) \, ds \right)} \|F\|_{2C} \|U\|_{2C}. \tag{63} \]

Note further that (59) and (60) combining with the dissipativeness of \(A_0 \) directly yield

\[\beta_1 |\eta^*|^2 = \Re \left((i\lambda I - A_0) \begin{pmatrix} u^* \\ v^* \\ \eta^* \end{pmatrix}, \begin{pmatrix} u^* \\ v^* \\ \eta^* \end{pmatrix} \right) \leq \left\| (u, v, \eta)^T \right\|_{2C_0} \left\| (u^*, v^*, \eta^*)^T \right\|_{2C_0} \leq C\lambda \left\| (u, v, \eta)^T \right\|_{2C_0}^2 \]

that is

\[\beta_1 |\eta^*|^2 \leq C\lambda \|U\|_{2C}^2. \tag{64} \]
So using (64) and (63) in (62), we get

\[\|U\|^{2}_{\mathcal{H}} \leq \left(\frac{1}{\varepsilon} + C_{0} \lambda \right) \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + C_{1} \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + C_{2} \lambda \varepsilon \|U\|^{2}_{\mathcal{H}} + \int_{r_{1}}^{r_{2}} \left(s \beta_{2}(s) \int_{0}^{1} z^{2}(\rho, s) \, d\rho \right) \, ds \]

where \(C_{1} \) and \(C_{2} \) defined below are constants not dependent on \(\lambda \)

\[
C_{1} = \frac{\left(\frac{\beta_{1}^{2}}{\varepsilon} + \frac{1}{2\varepsilon} \int_{r_{1}}^{r_{2}} \beta_{2}(s) \, ds \right)}{\beta_{1} - \int_{r_{1}}^{r_{2}} \beta_{2}(s) \, ds},
\]

\[
C_{2} = \frac{C_{0}}{\beta_{1}} \left(\frac{1}{2} \int_{r_{1}}^{r_{2}} \beta_{2}(s) \, ds + 1 \right).
\]

Setting \(\varepsilon = \frac{1}{2C_{2}A} \) in the above relation such that \(C_{2} \lambda \varepsilon = \frac{1}{2} \), we have

\[\frac{1}{2} \|U\|^{2}_{\mathcal{H}} \leq (C_{3} \lambda + C_{1}) \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + \int_{r_{1}}^{r_{2}} \left(s \beta_{2}(s) \int_{0}^{1} z^{2}(\rho, s) \, d\rho \right) \, ds \] (65)

Now we need a best estimation for \(\int_{r_{1}}^{r_{2}} \left(s \beta_{2}(s) \int_{0}^{1} z^{2}(\rho, s) \, d\rho \right) \, ds \).

Following (53) and solving the next Cauchy problem (66)

\[
\begin{cases}
 s^{-1} z_{\rho} + i \lambda z = k \\
 z(0),
\end{cases}
\]

we obtain

\[z(\rho) = z(0) e^{-i\lambda s_{0}} + s \int_{0}^{\rho} e^{-i\lambda s(\rho-\sigma)} k(\sigma) \, d\sigma, \quad \forall \rho \in (0, 1). \] (67)

Using the triangular inequality, it follows from (67) that

\[|z(\rho)| \leq |z(0)| + s \int_{0}^{\rho} |k(\sigma)| \, d\sigma, \quad \forall \rho \in (0, 1), \]

that is

\[|z(\rho)|^{2} \leq |z(0)|^{2} + s^{2} \left(\int_{0}^{\rho} |k(\sigma)| \, d\sigma \right)^{2} + 2 |z(0)| s \left(\int_{0}^{\rho} |k(\sigma)| \, d\sigma \right), \quad \forall \rho \in (0, 1). \] (68)
On the one hand, by Cauchy-Schwarz’s inequality we obtain

\[
\left(\int_0^\rho |k(\sigma)| \, d\sigma \right)^2 \leq \left(\int_0^\rho |k(\sigma)|^2 \, d\sigma \right) \left(\int_0^\rho \, d\sigma \right)
\]

\[
\leq \rho \int_0^\rho |k(\sigma)|^2 \, d\sigma
\]

\[
\leq \int_0^\rho |k(\sigma)|^2 \, d\sigma;
\]

that is

\[
\left(\int_0^\rho |k(\sigma)| \, d\sigma \right)^2 \leq \int_0^\rho |k(\sigma)|^2 \, d\sigma.
\] \hspace{1cm} (69)

On the other hand, Young’s inequality guarantees that

\[
2 |z(0)| \left(\int_0^\rho |k(\sigma)| \, d\sigma \right) \leq |z(0)|^2 + \rho \int_0^\rho |k(\sigma)|^2 \, d\sigma.
\] \hspace{1cm} (70)

Combining (68), (69) and (70), it follows that

\[
|z(\rho, s)|^2 \leq 2 |\eta|^2 + 2s^2 \int_0^\rho |k(\sigma)|^2 \, d\sigma.
\] \hspace{1cm} (71)

Integrating (71) on \((\tau_1, \tau_2) \times (0, 1)\) and making easy computations, we get

\[
\int_{\tau_1}^{\tau_2} \left(s^2 \beta_2(s) \int_0^1 z^2(\rho, s) \, d\rho \right) \, ds \leq 2 |\eta|^2 \int_{\tau_1}^{\tau_2} s \beta_2(s) \, ds + 2 \int_{\tau_1}^{\tau_2} \left(s^3 \beta_2(s) \int_0^1 |k(\sigma)|^2 \, d\sigma \right) \, ds
\]

\[
\leq 2\tau_2 |\eta|^2 \int_{\tau_1}^{\tau_2} \beta_2(s) \, ds + 2\tau_2 \int_{\tau_1}^{\tau_2} \left(s \beta_2(s) \int_0^1 |k(\sigma)|^2 \, d\sigma \right) \, ds
\]

\[
\leq 2\tau_2 \beta_1 |\eta|^2 + 2\tau_2 \int_{\tau_1}^{\tau_2} \left(s \beta_2(s) \int_0^1 |k(\sigma)|^2 \, d\sigma \right) \, ds
\]

We arrive at

\[
\int_{\tau_1}^{\tau_2} \left(s \beta_2(s) \int_0^1 z^2(\rho, s) \, d\rho \right) \, ds \leq C_4 \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + 2\tau_2^2 \|F\|_{\mathcal{H}}^2,
\] \hspace{1cm} (72)

where \(C_4 = \frac{2\tau_2 \beta_1}{\beta_1 - \int_{\tau_1}^{\tau_2} \beta_2(s) \, ds}\) is a constant not dependent on \(\lambda\).

Finally, combining (72) and (66), it follows that

\[
\|U\|_{\mathcal{H}}^2 \leq 2 (C_3 \lambda + C_4) \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + 4\tau_2^2 \|F\|_{\mathcal{H}}^2.
\] \hspace{1cm} (73)

Taking \(\lambda\) sufficiently large in (73), we get \(\|U\|_{\mathcal{H}}^2 \leq C \left(\lambda \|F\|_{\mathcal{H}} \|U\|_{\mathcal{H}} + \|F\|_{\mathcal{H}}^2 \right)\), from where follows that \(\|U\|_{\mathcal{H}} \leq C \lambda \|F\|_{\mathcal{H}}\). Therefore recalling (53), we conclude that

\[
\limsup_{\lambda \to +\infty} \frac{1}{\lambda} \left\| (i\lambda - A)^{-1} \right\| < \infty.
\]

So from Theorem 5.1, the semigroup decays polynomially with the rate \(t^{-1}\).
Conflict of interest: The author states that there is no conflict of interest.

Data Availability Statement: Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

[1] Mostafa Adimy and Fabien Crauste. Global stability of a partial differential equation with distributed delay due to cellular replication. *Nonlinear Analysis*, 54:1469–1491, 09 2003.

[2] Mostafa Adimy, Fabien Crauste, and Abderrahim Abdllaoui. Asymptotic behaviour of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. *Mathematical Modelling of Natural Phenomena*, 1:1 – 22, 01 2006.

[3] C. D. Benchimol. A note on weak stabilization of contraction semigroups. *SIAM J. Control optim.*, 16:373–379, 1978.

[4] Leonid Berezansky and Elena Braverman. Oscillation properties of a logistic equation with distributed delay. *Nonlinear Analysis - real World Applications* - *NONLINEAR ANAL-REAL WORLD APP*, 4:1–19, 03 2003.

[5] A. Borichev and Y. Tomilov. Optimal polynomial decay of functions and operator semigroups. *Math. Ann.*, 347:455–478, 2010.

[6] S. R. Foguel. Powers of contraction in hilbert space. *Pacific J. Math.*, 13(1):551–561, 1963.

[7] Bayiil Gilbert, Serge Nicaise, and Silga Roland. Rational energy decay rate for the wave equation with delay term on the dynamical control. *IMA*, 495:124693, 2021.

[8] K. Gu, J. Chen, and V.L. Kharitonov. *Stability of Time-Delay Systems*. Control Engineering. Birkhäuser Boston, 2003.

[9] Keqin Gu. An improved stability criterion for systems with distributed delays. *International Journal of Robust and Nonlinear Control*, 13:819 – 831, 07 2003.

[10] Qing-Long Han. Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. *IMA Journal of Mathematical Control and Information*, 20, 12 2003.

[11] F. L. Huang. Strong asymptotic stability of linear dynamical systems in banach spaces. *J. Berlin*, 35:585–603, 1985.

[12] Shujun Long and Daoyi Xu. Global exponential stability of impulsive dynamical systems with distributed delays. *Electronic Journal of Qualitative Theory of Differential Equations*, 10:1–13, 04 2007.

[13] Wim Michiels, Sabine Mondié, Dirk Roose, and Michel Dambrine. The effect of approximating distributed delay control laws on stability. In Silviu-Iulian Niculescu and Keqin Gu, editors, *Advances in Time-Delay Systems*, pages 207–222, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[14] Ulrich Münz and Frank Allgöwer. L 2 -gain based controller design for linear systems with distributed delays and rational delay kernels. *IFAC Proceedings Volumes*, 45(7):77–82, 09 2007.

[15] Constantin-Irinel Morț, Silviu-Iulian Niculescu, and Wim Michiels. Asymptotic stability of some distributed delay systems: An algebraic approach. 7, 01 2006.

[16] Serge Nicaise and Cristina Pignotti. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. *SIAM J. Control Optim*. ©2006, 45(5):1561–1585, 2006.

[17] Serge Nicaise and Cristina Pignotti. Stabilization of the wave equation with boundary or internal distributed delay. *Differential and Integral Equations*, 21(9-10):935–958, 2008.

[18] Higidio Portillo Oquendo and Patricia Sánchez Pacheco. Optimal decay for coupled waves with kelvin-voigt damping. 67:16–20, 2017.

[19] J. Prüss. On the spectrum of C_0 semigroups. *Trans. Amer. Math. Soc.*, 284:847–857, 1984.

[20] Jean-Pierre Richard. Time delay systems: an overview of some recent advances and open problems. science direct automatica 39, 1667-1694. *Automatica*, 39:1667–1694, 10 2003.

[21] Rifat Sipahi, Fatihcan Atay, and Silviu-Iulian Niculescu. Stability of traffic flow behaviour with distributed delays modelling the memory effects of the drivers. *SIAM Journal of Applied Mathematics*, 68:738–759, 01 2007.

[22] Young Suh, Hee-Jun Kang, and Young Ro. Stability condition of distributed delay systems based on an analytic solution to lyapunov functional equations. *Asian Journal of Control*, 8:91 – 96, 03 2006.

[23] Sree Hari Rao Vadrevu and P. Rao. Global stability in chemostat models involving time delays and wall growth. *Nonlinear Analysis - real World Applications* - *NONLINEAR ANAL-REAL WORLD APP*, 5:141–158, 02 2004.

[24] Erik Verriest. Stability of systems with distributed delays. In *Preprints of the IFAC Conference on System, Structure and Control, Nantes, France*, page 294–299, July 1995.

[25] Erik Verriest. Linear systems with rational distributed delay: Reduction and stability. *European Control Conference, ECC 1999 - Conference Proceedings*, pages 3637–3642, 03 2015.

[26] A. Wehbe. Rational energy decay rate for a wave equation with dynamical control. *Applied Mathematics Letters*, 16:357–364, 2003.