Supplementary Data

Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design

Jae Young Lee¹, Young-Joo Kim¹, Chanseok Lee¹, Jae Gyung Lee¹, Hiromasa Yagyu², Osamu Tabata³, and Do-Nyun Kim¹,4,∗

¹Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
²Department of Mechanical Engineering, Kanto Gakuin University, Yokohama, 236-8501, Japan.
³Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katusra, Kyoto 615-8540, Japan.
⁴Institute of Advanced Machines and Design, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
Table of contents

Supplementary Methods .. 4
Supplementary Method S1. Mechanical rigidities and coupling coefficients of a base-pair (BP) step .. 4
Supplementary Method S2. Derivation of mechanical rigidities of a base-pair (BP) step 6
Supplementary Method S3. Derivation of an equivalent isotropic rigidity in bending and shearing .. 9
Supplementary Method S4. Molecular dynamics simulation of twisting blocks of a six-helix-bundle (6HB) DNA origami structure ... 11
Supplementary Method S5. Prediction of the twist angle of a six-helix-bundle (6HB) DNA origami structure .. 12
Supplementary Method S6. CanDo simulation based on finite element method 14
Supplementary Method S7. Relation of the trans ratio with the twist angle of 6HB DNA structures .. 15

Supplementary Notes .. 18
Supplementary Note S1. The sensitivity of mechanical properties in simulating environments and neighboring sequence variation ... 18
Supplementary Note S2. Mechanical analysis of DNA bundle structures with BP-insertion 20
Supplementary Note S3. Comparison of the results of the reverse-phase cartridge (Bio-RP) and the polyacrylamide gel electrophoresis (PAGE) methods in the purification of staples .. 23

Supplementary Figures .. 24
Supplementary Figure S1. Root-mean-square deviation (RMSD) of DNA oligomers 24
Supplementary Figure S2. BP step parameters of the regular and nicked BP steps 25
Supplementary Figure S3. Comparison of the BP step parameters in stiffened BP steps by a nick ... 26
Supplementary Figure S4. Mechanical rigidity distributions in DNA oligomers 27
Supplementary Figure S5. Effects of force field, simulation time, and salt condition on mechanical properties of nicked GC/GnC step ... 29
Supplementary Figure S6. Effects of the-next-to-nearest-neighbor sequence on mechanical properties of nicked GG/CnC step .. 30
Supplementary Figure S7. Effects of the-second-adjacent sequence on the mechanical properties of the nicked AA/TnT step ... 31
Supplementary Figure S8. Comparison of mechanical rigidities and C/B ratio in CHARMM36 and parmbsc1 force fields ... 32
Supplementary Figure S9. Twisting block design and MD results .. 33
Supplementary Figure S10. CanDo results of 6HB DNA origami structures with different helicities and nick rigidities .. 34
Supplementary Figure S11. The results of MALDI-TOF using Bio-RP and PAGE methods 35
Supplementary Figure S12. Atomic force microscope (AFM) images of twisted 6HB DNA origami structures .. 36
Supplementary Figure S13. Agarose gel electrophoresis result of twisted 6HB DNA origami structures .. 39
Supplementary Tables

Supplementary Table S1. List of MD-simulated DNA oligomers ... 40
Supplementary Table S2. Sequence-dependent BP step parameters of regular BP steps 41
Supplementary Table S3. Sequence-dependent BP step parameters of nicked BP steps 42
Supplementary Table S4. Sequence-dependent mechanical rigidities of regular BP steps 43
Supplementary Table S5. Sequence-dependent mechanical rigidities of nicked BP steps 44
Supplementary Table S6. Sequence-dependent mechanical coupling coefficients of regular BP steps .. 45
Supplementary Table S7. Sequence-dependent mechanical coupling coefficients of nicked BP steps .. 46
Supplementary Table S8. Sequence-dependent BP step parameters of regular BP steps using the parmbsc1 force field .. 48
Supplementary Table S9. Sequence-dependent BP step parameters of nicked BP steps using the parmbsc1 force field .. 49
Supplementary Table S10. Sequence-dependent mechanical rigidities of regular BP steps using the parmbsc1 force field .. 50
Supplementary Table S11. Sequence-dependent mechanical rigidities of nicked BP steps using the parmbsc1 force field .. 51
Supplementary Table S12. Sequence-dependent mechanical coupling coefficients of regular BP steps using the parmbsc1 force field .. 52
Supplementary Table S13. Sequence-dependent mechanical coupling coefficients of nicked BP steps using the parmbsc1 force field .. 53
Supplementary Table S14. Rigidity ratio of nicked BP steps compared to regular BP steps 55
Supplementary Table S15. The number of nicked BP steps used in the experimental design and mean rigidity ratio .. 56
Supplementary Table S16. Summary of AFM analysis .. 57
Supplementary Table S17. The number of monomers and trans-cis ratio from AFM images 58
Supplementary Table S18. Staple sequences used in 6HB DNA origami structures 61
Supplementary Table S19. MALDI-TOF results by Bio-RP and PAGE methods 85

References .. 86
Supplementary Methods

Supplementary Method S1. Mechanical rigidities and coupling coefficients of a base-pair (BP) step.

MD trajectories of BP steps were analyzed on the basis of a mechanical model with quasi-harmonic strain energy. Six BP step parameters describe bending (tilt and roll denoted by τ and ρ), torsional (twist denoted by ω), shearing (shift and slide denoted by D_x and D_y), and stretching (rise denoted by D_z) modes. The strain energy for the six deformable modes in BP steps was assumed to the following form

$$E(U) = \frac{1}{2} U^T K U = \frac{1}{2} (x - \langle x \rangle)^T K (x - \langle x \rangle)$$ \hspace{1cm} (1)$$

where x represents the coordinate vector of BP step parameters as $x = [\tau \rho \omega D_x D_y D_z]^T$, whose average is denoted as the angle bracket, U is displacement vector whose components indicate the displacement from average configuration, and K is a positive definite stiffness matrix where the six diagonal and remaining symmetric off-diagonal terms represent mechanical stiffness (bending, torsion, shearing, and stretching) and coupling stiffness, respectively.

The probability distribution of BP step parameters can be approximated to an N-dimensional Gaussian function assuming moderate fluctuations under harmonic potential in contact with a heat bath of a certain temperature. The covariance matrix of the BP step parameters was used to induce the stiffness matrix of a BP step (1-3) as

$$K = k_B T F^{-1}$$ \hspace{1cm} (2)$$

where k_B is the Boltzmann constant, T is the absolute temperature used in MD simulation, and F is the covariance matrix. Here, the covariance matrix was obtained using from the sampled MD trajectories of the BP step parameters (4) as

$$F_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle$$ \hspace{1cm} (3)$$

The strain energy can be rewritten as the sum of diagonal and off-diagonal components as

$$E(U) = \frac{1}{2} \sum_i K_{ii} U_i^2 + \sum_{i \neq j} K_{ij} U_i U_j$$ \hspace{1cm} (4)$$

where i and j represent the BP step parameters as τ, ρ, ω, D_x, D_y, and D_z. Diagonal terms contribute to mechanical rigidities corresponding to the six BP step parameters, and mechanical coupling coefficients are derived from off-diagonal terms between two BP step parameters. Mechanical rigidities of a BP step were then obtained by multiplying the diagonal stiffness components to the axial length of a BP step from linear elastic theory as
\begin{align}
B_τ &= K_{ττ}(Dz) \\
B_ρ &= K_{ρρ}(Dz) \\
C &= K_{ωω}(Dz) \\
Y_{Dx} &= K_{DxDx}(Dz) \\
Y_{Dy} &= K_{DyDy}(Dz) \\
S &= K_{DzDz}(Dz)
\end{align}

where \(B_τ\) and \(B_ρ\) represent bending rigidities corresponding to tilt and roll, \(C\) is torsional rigidity, \(Y_{Dx}\) and \(Y_{Dy}\) indicate shear rigidities corresponding to shift and slide, \(S\) is stretching rigidity, and \(\langle Dz \rangle\) is the average of rise, respectively. The detailed derivation of each mechanical rigidity above was explained in Supplementary Method S2. The equivalent isotropic bending or shearing rigidities (\(B\) or \(Y\)) were obtained using the harmonic mean of anisotropic bending (\(B_τ\) and \(B_ρ\)) or shearing rigidities (\(Y_{Dx}\) and \(Y_{Dy}\)), respectively (Supplementary Method S3) as

\begin{align}
B &= \frac{2B_τB_ρ}{B_τ+B_ρ} \\
Y &= \frac{2Y_{Dx}Y_{Dy}}{Y_{Dx}+Y_{Dy}}
\end{align}

Likewise, mechanical coupling coefficients of a BP step were calculated by multiplying the off-diagonal stiffness to the axial length of the BP step as

\[g_{ij} = K_{ij}(Dz)\]

where \(g_{ij}\) represents the mechanical coupling coefficients of two different BP step parameters. For example, \(g_{ωDz}\) represents the mechanical coupling coefficient of twist and rise, implying the twist-stretch coupling.
Supplementary Method S2. Derivation of mechanical rigidities of a base-pair (BP) step.

Mechanical rigidities were derived as assuming DNA structures of a homogeneous linear elastic material. The initial shape was assumed to have an area \((A)\) and length \((L)\) with axial z-direction. Then, the representative mechanical rigidities \((B_\tau, B_\rho, C, Y_{Dx}, Y_{Dy}, \text{and } S)\) were derived by elastic theory.

(A) **Bending rigidities.** Bending moment \((M_b)\) is obtained by integrating the axial stress \((\sigma_{zz})\) multiplied by the moment arm \((s)\) perpendicular to the direction of bending moment over the cross-section area \((A)\) as

\[
M_b = \int_A \sigma_{zz}sdA = EI \frac{\Delta \theta}{L} \tag{9}
\]

where axial stress \((\sigma_{zz})\), axial strain \((\varepsilon_{zz})\), and the second moment of area \((I)\) are defined as

\[
\sigma_{zz} = E\varepsilon_{zz} = E \frac{\Delta \theta}{L} \tag{10}
\]

\[
\varepsilon_{zz} = \frac{\Delta \theta}{L} \tag{11}
\]

\[
I = \int_A s^2dA \tag{12}
\]

Bending rigidity \((EI)\) is then evaluated as

\[
EI = \frac{M_b}{\Delta \theta} L = k_{\text{bending}} L \tag{13}
\]

where \(k_{\text{bending}}\) is the stiffness defined by the ratio of applied bending moment and corresponding bending deformation. Bending rigidities of DNA, therefore, can be calculated in terms of components of stiffness matrix and BP step parameters as

\[
B_\tau = (EI)_{\tau} = K_{\tau\tau}(Dz) \tag{14}
\]

\[
B_\rho = (EI)_{\rho} = K_{\rho\rho}(Dz) \tag{15}
\]

where \(B_\tau\) and \(B_\rho\) represent tilt and roll bending rigidities, and \(K_{\tau\tau}\) and \(K_{\rho\rho}\) indicate the diagonal tilt and roll components in the stiffness matrix, respectively.
(B) Torsional rigidity. Torsional moment (M_z) is obtained by integrating the shear stress (σ_t) multiplied by the moment arm (r) over the cross-section area (A) as

$$M_z = \int_A \sigma_t r dA = GJ \frac{\Delta \phi}{L} \quad (16)$$

where shear stress (σ_t), shear strain (γ), and the second polar moment of area (J) are defined as

$$\sigma_t = G\gamma = G \frac{r \Delta \phi}{L} \quad (17)$$

$$\gamma = \frac{r \Delta \phi}{L} \quad (18)$$

$$J = \int_A r^2 dA \quad (19)$$

Then, the torsional rigidity (GJ) is evaluated as

$$GJ = \frac{M_z}{\Delta \phi L} = k_{\text{torsion}} L \quad (20)$$

where k_{torsion} is the stiffness defined by the ratio of applied torsional moment and corresponding torsional deformation. Therefore, we obtained the torsional rigidity of DNA corresponding to the twist parameter as

$$C = GJ = K_{\omega \omega} \langle Dz \rangle \quad (21)$$

where C is generally referred to torsional rigidity of DNA, and $K_{\omega \omega}$ is the diagonal twist component in the stiffness matrix.

(C) Shearing rigidities. Shearing rigidity is derived from the shear modulus (G) defined by the ratio of shear stress (σ_t) to the shear strain (γ) as

$$G = \frac{\sigma_t}{\gamma} = \frac{F/A}{\Delta \delta / L} = \frac{F L}{A \Delta \delta} \quad (22)$$

where F and ΔL are the applied shear force and corresponding shear displacement. The shearing rigidity (GA) is then obtained as

$$GA = \frac{F}{\Delta L} L = k_{\text{shearing}} L \quad (23)$$

where k_{shearing} is the stiffness defined by the ratio of applied shear force and corresponding displacement. We then obtained the shearing rigidities of DNA as

$$Y_{Dx} = (GA)_{Dx} = K_{DxDx} \langle Dz \rangle \quad (24)$$

$$Y_{Dy} = (GA)_{Dy} = K_{DyDy} \langle Dz \rangle \quad (25)$$

where Y_{Dx} and Y_{Dy} denote shearing rigidities corresponding to the shift and slide, and K_{DxDx} and K_{DyDy} are the diagonal shift and slide components in the stiffness matrix, respectively.
(D) Stretching rigidity. Stretching rigidity is derived from Young’s modulus \((E)\) defined as the ratio of axial stress \(\sigma_{zz}\) to the axial strain \(\varepsilon_{zz}\) as

\[
E = \frac{\sigma_{zz}}{\varepsilon_{zz}} = \frac{F/A}{\Delta L/L} = \frac{FL}{AAL}
\]

(26)

where \(F\) and \(\Delta L\) are the applied axial force and axial displacement. Stretching rigidity \((EA)\) is evaluated as

\[
EA = \frac{F}{\Delta L} = k_{\text{stretching}} L
\]

(27)

where \(k_{\text{stretching}}\) is the stiffness defined by the ratio of applied axial force and corresponding displacement. Therefore, the stretching rigidity of DNA is obtained corresponding to the rise mode as

\[
S = EA = K_{DzDz} Dz
\]

(28)

where \(S\) is generally referred to the axial rigidity of DNA, and \(K_{DzDz}\) is the diagonal component corresponding to the rise parameter in the stiffness matrix.
Supplementary Method S3. Derivation of an equivalent isotropic rigidity in bending and shearing.

Assuming a homogeneous linear elastic material, if a transverse load was applied to a beam, whose axis system coincides with the principal axes of bending, three-dimensional beam theory implies the following displacement field as

$$ u_z = y\theta_x(z) - x\theta_y(z) $$

(29)

where z is the axial direction of the beam, x and y are the planar directions on the cross-section of the beam, and θ_x and θ_y are rigid body rotations of the cross-section respectively. The strain field can be evaluated by the differentiation of the displacement field as

$$ \varepsilon_{zz} = y\kappa_x(z) - x\kappa_y(z) $$

(30)

$$ \varepsilon_{xx} = \varepsilon_{yy} = \gamma_{xy} = \gamma_{yx} = \gamma_{zz} = 0 $$

(31)

where the curvatures are defined as

$$ \kappa_x = \frac{d\theta_x}{dz} $$

(32)

$$ \kappa_y = \frac{d\theta_y}{dz} $$

(33)

The axial stress is described by Hooke’s law as

$$ \sigma_{zz} = E\varepsilon_{zz} = E[y\kappa_x(z) - x\kappa_y(z)] $$

(34)

The strain energy (π) stored in the beam with anisotropic bending rigidities is evaluated as

$$ \pi = \int_A \int \frac{1}{2} \sigma_{zz} \varepsilon_{zz} dA dz = \int_z \frac{1}{2} (EI_y\kappa_x^2 + EI_x\kappa_y^2) dz $$

(35)

where I_x and I_y are the second moment of area with respect to x- and y-directions on the cross-section.

When an equivalent isotropic beam is assumed, the force equation under a bending moment is found as

$$ M_b = EI_y\kappa_x = EI_x\kappa_y = EI_{eqv}\kappa_{eqv} $$

(36)

If the strain energy stored in anisotropic and equivalent beams is the same, the following equation is satisfied

$$ \pi = \int_z \frac{1}{2} (EI_y\kappa_x^2 + EI_x\kappa_y^2) dz = \int_z \frac{1}{2} \left(EI_{eqv}\kappa_{eqv}^2 + EI_{eqv}\kappa_{eqv}^2 \right) dz $$

$$ = \int_z \frac{1}{2} \left(EI_{eqv}\kappa_{eqv}^2 + EI_{eqv}\kappa_{eqv}^2 \right) dz = \int_z \frac{1}{2} \left(\frac{2M_b^2}{EI_{eqv}} \right) dz $$

(37)

Equivalent bending rigidity (B or EI_{eqv}) is then obtained by the harmonic mean of anisotropic bending rigidities as
\[B = \frac{2B_1B_2}{B_1 + B_2} \]

(38a)

or

\[E I_{\text{eqv}} = \frac{2E I_x E I_y}{E I_x + E I_y} \]

(38b)

Likewise, equivalent shearing rigidity \((Y \text{ or } G A_{\text{eqv}})\) is obtained as

\[Y = \frac{2Y_{dx}Y_{dy}}{Y_{dx} + Y_{dy}} \]

(39a)

or

\[G A_{\text{eqv}} = \frac{2G A_x G A_y}{G A_x + G A_y} \]

(39b)
Supplementary Method S4. Molecular dynamics simulation of twisting blocks of a six-helix-bundle (6HB) DNA origami structure.

We performed MD simulations of 6HB DNA origami structures with BP-insertion (Supplementary Figure S9). At each end of the simulated structure, 7-BP-long strands were added to eliminate the boundary effect. Since it was difficult to observe the effects of sequence control of nicked BP steps due to the limited system size, MD result of an arbitrary sequence was used to predict an approximately twist angle of 6HB structures. For the fast convergence of equilibrium states, the initial all-atom structures were developed after 100-ps-long the elastic network-guided simulation (5). All-atom explicit solvent simulations were then performed after energy minimization as previously described for DNA oligomers.

To smoothly convert the induced strain energy by BP-insertion into global torsion of structures, we applied weak harmonic constraints to Watson–Crick base-pairing from 0.5 kcal mol$^{-1}$ Å2 to zero during 60-ns-long simulation as previous MD studies on DNA origami structures (5,6). Final 20-ns-long equilibrated trajectories were sampled to calculate twist angle (Supplementary Method S5).
Supplementary Method S5. Prediction of the twist angle of a six-helix-bundle (6HB) DNA origami structure.

The twist angle of a 6HB structure was calculated by the summation of local twist angles of twisting blocks between sequential hexagonal cross-sections locating at Holliday-junctions. To obtain the local twist angle between hexagonal cross-sections, we defined six vertexes locating at helices of the 6HB structure as the averaged point of local origins in four neighboring BPs next to the hexagonal cross-section. A hexagonal cross-section was determined to satisfy the smallest sum of the distance between each vertex and an arbitrary plane. Auxiliary vectors \(\vec{A}_1, \vec{A}_2, \vec{A}_3 \) were defined in hexagonal cross-sections: \(\vec{A}_1 \), \(\vec{A}_2 \), and \(\vec{A}_3 \) were defined as the vectors from vertex 1 to 4, 2 to 5, and 3 to 6, respectively. Subsequently, the triads in hexagonal cross-sections were determined: x-vector (\(\vec{x} \)) representing normalized axial direction was defined as a normal vector of each cross-section, y-vector (\(\vec{y} \)) in the hexagonal cross-sections was described as a normalized vector with projection of an averaged vector of auxiliary vectors on the cross-section, and the z-vector (\(\vec{z} \)) was calculated using the cross product of x- and y-vector. A rotation matrix (\(\mathbf{R} \)) between sequential triads was then obtained using the triads as

\[
\begin{bmatrix}
\vec{x}_{i+1} \\
\vec{y}_{i+1} \\
\vec{z}_{i+1}
\end{bmatrix} = \mathbf{R} \begin{bmatrix}
\vec{x}_i \\
\vec{y}_i \\
\vec{z}_i
\end{bmatrix}
\]

where \(i \) and \(i + 1 \) represent successive hexagonal cross-sections. The rotation vector (\(\vec{\omega} \)) equivalent to the rotation matrix was obtained as

\[
\vec{\omega} = [-W_{23}, W_{13}, -W_{12}]^T
\]

where \(W_{ij} \) is a component of the skew-symmetric matrix (\(\mathbf{W} \)) defined as \(\mathbf{W} = \frac{1}{2} (\mathbf{R} - \mathbf{R}^T) \). The local twist angle between sequential hexagonal cross-sections (\(\Omega \)) was finally calculated as

\[
\Omega = \sin^{-1}\left(\frac{\vec{\omega} \cdot \vec{x}_i}{||\vec{\omega}||} \right)
\]
We obtained the Gaussian mean and standard deviation of the twist angle in the unit twisting block from MD simulation (Supplementary Figure S9). If the twist angle of the unit twisting block (Φ_u) follows Gaussian distribution (N_u) as

$$N_u = N_u(\Phi, \Phi_{u0}, \sigma_u) = \frac{1}{\sigma_u \sqrt{2\pi}} \exp\left(-\frac{(\Phi - \Phi_{u0})^2}{2\sigma_u^2}\right)$$ (43)

where Φ_{u0} and σ_u are the Gaussian mean and standard deviation of the twist angle of the twisting block, we could calculate the twist angle (Φ) of a DNA structure, in which same twisting blocks are connected in sequence and the number of twisting blocks is m, as the sum of the independent Gaussian distributions of the twisting blocks based on the probability theory as

$$N = N(\Phi, \Phi_0, \sigma) = mN_u = N(\Phi, m\Phi_{u0}, \sqrt{m}\sigma_u)$$ (44)

Since ten twisting blocks were employed in the entire structure, the approximate range of twist angle of the structure was estimated as the mean of $10\Phi_{u0}$ and the standard deviation of $\sqrt{10}\sigma_u$ using those of unit twisting blocks (Φ_{u0} and σ_u) by MD simulation.
Supplementary Method S6. CanDo simulation based on finite element method.

We performed CanDo simulation (7-9) for DNA origami structures used in experiments with the default setting (Supplementary Figure S10), where a double-stranded DNA was assumed as generic B-form DNA: geometry of diameter of 2.25 nm, axial rise of 0.34 nm per BP step, helicity of 10.5 BPs per turn, stretch rigidity (S) of 1100 pN, bending rigidity (B) of 230 pN nm2, and torsional rigidity (C) of 460 pN nm2. BP steps were modeled as two node linear elastic beam elements, and Holliday-junctions were modeled as rigid beam elements. To observe the effects of nicks on deformed shapes of DNA origami structures, we modeled nicks as same two node beam elements, but bending and torsional rigidities of nicked elements were modified by multiplying the mean B and C ratios of from experimental design as scale factors (Supplementary Table S15).
Supplementary Method S7. Relation of the trans ratio with the twist angle of 6HB DNA structures.

We followed the details of derivation in the previous study (10). Assuming that 6HB origami structures fluctuate in a harmonic potential, the Gaussian distribution of twist angle can be derived from the Boltzmann distribution as

$$N(\Phi, \Phi_0, \sigma) = N_0 \exp \left(-\frac{E}{k_B T} \right) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(\Phi - \Phi_0)^2}{2\sigma^2} \right)$$ \hspace{1cm} (45)

where N_0 is the normalization coefficient as $1/(\sigma \sqrt{2\pi})$, E is torsional harmonic energy as $E = k_t(\Phi - \Phi_0)^2/2$, Φ is the twist angle of 6HB structure, Φ_0 is the equilibrium twist angle, σ is the standard deviation of twist angle as $k_t/(k_B T)$, and $k_B T$ is the product of the Boltzmann constant, k_B, and the absolute temperature, T. Here, the torsional stiffness of 6HB structure (k_t) has a relation with torsional persistence length (L_p) and the length of 6HB structure (L) as

$$k_t = \frac{C_{6HB}}{L} = \frac{L_p k_B T}{L}$$ \hspace{1cm} (46)

with

$$L_p = \frac{C_{6HB}}{k_B T}$$ \hspace{1cm} (47)

where the torsional persistence length of 6HB DNA structures (L_p) was reported as 530 nm in a previous study (11), and the length of our structure is approximately 300 nm in AFM images (Supplementary Figure S12). Using the equations above, the torsional harmonic energy yields the standard deviation of twist angle as

$$\sigma = \sqrt{\frac{k_B T}{k_t}} = \sqrt{\frac{L}{L_p}} = \sqrt{\frac{300}{530}} \approx 0.7524 \text{ [rad]}$$ \hspace{1cm} (48)

with

$$\frac{1}{2}k_t \sigma^2 = \frac{1}{2}k_B T$$ \hspace{1cm} (49)

The probability to deposit into trans monomer of the 6HB structures is obtained as

$$f(\Phi) = \frac{|\Phi - 2k\pi|}{\pi} \quad (2k-1)\pi \leq \Phi \leq (2k+1)\pi$$ \hspace{1cm} (50)

where k is an integer as a parametric variable ($\cdots, -2, -1, 0, 1, 2, \cdots$). This probability to deposit into trans monomer is a kind of triangular function, which is plotted as
The trans ratio, \(TR(\Phi_0) \) in equilibrium is derived by the average probability of twist angle weighted in \(\Phi_0 \) for all \(\Phi \) domain as

\[
TR(\Phi_0) = \int_{-\infty}^{\infty} f(\Phi) N(\Phi, \Phi_0, \sigma) d\Phi = \sum_k \int_{(2k-1)n}^{(2k+1)n} \frac{1}{\alpha \sqrt{2\pi}} \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi
\]

\[
= \frac{1}{\alpha \sqrt{2\pi}} \sum_k \left\{ \int_{(2k-1)n}^{(2k+1)n} \Phi \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi - \int_{(2k-1)n}^{(2k+1)n} \Phi \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi \right\}
\]

\[
= \frac{1}{\alpha \sqrt{2\pi}} \sum_k \left\{ \int_{(2k-1)n}^{(2k+1)n} \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi + 2k\pi \int_{(2k-1)n}^{(2k+1)n} \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi \right\}
\]

(51)

Using the Gaussian integrals,

\[
\int \Phi \psi(A + B\Phi) d\Phi = -\frac{1}{b^2} \left(\psi(a + b\Phi) + a\Psi(a + b\Phi) \right) + \text{Const.}
\]

(52)

\[
\int \Psi(A + B\Phi) d\Phi = \frac{1}{b} \Psi(a + b\Phi) + \text{Const.}
\]

(53)

where

\[
\psi(a + b\Phi) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} (a + b\Phi)^2 \right)
\]

(54)

\[
\Psi(a + b\Phi) = \int_{-\infty}^{\Phi} \psi(t) dt = \frac{1}{2} \left(1 + \text{erf} \left(\frac{\Phi}{\sqrt{2}} \right) \right)
\]

(55)

\[
\text{erf} (\Phi) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\Phi} \exp(-t^2) dt
\]

(56)

\[
a = -\frac{\Phi_0}{\sigma}
\]

(57)

\[
b = \frac{1}{\sigma}
\]

(58)

We then obtained the four integral terms in the equation (51) as

\[
\int_{(2k-1)n}^{(2k+1)n} \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi = -\sigma^2 \left[\exp \left(-\frac{(2k+1)n-\Phi_0)^2}{2\alpha^2} \right) - \exp \left(-\frac{(2kn-\Phi_0)^2}{2\alpha^2} \right) \right]
\]

\[
+ \frac{\sigma \Phi_0 \pi}{\sqrt{2}} \left[\text{erf} \left(\frac{(2k+1)n-\Phi_0}{\alpha \sqrt{2}} \right) - \text{erf} \left(\frac{2kn-\Phi_0}{\alpha \sqrt{2}} \right) \right]
\]

(60a)

\[
\int_{(2k-1)n}^{(2k+1)n} \Phi \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi = -\sigma^2 \left[\exp \left(-\frac{(2k+1)n-\Phi_0)^2}{2\alpha^2} \right) - \exp \left(-\frac{(2kn-\Phi_0)^2}{2\alpha^2} \right) \right]
\]

\[
+ \frac{\sigma \Phi_0 \pi}{\sqrt{2}} \left[\text{erf} \left(\frac{(2k+1)n-\Phi_0}{\alpha \sqrt{2}} \right) - \text{erf} \left(\frac{2kn-\Phi_0}{\alpha \sqrt{2}} \right) \right]
\]

(60b)

\[
\int_{(2k-1)n}^{(2k+1)n} \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi = k\alpha \sqrt{2\pi} \left[\text{erf} \left(\frac{(2k+1)n-\Phi_0}{\alpha \sqrt{2}} \right) - \text{erf} \left(\frac{2kn-\Phi_0}{\alpha \sqrt{2}} \right) \right]
\]

(60c)

\[
\int_{(2k-1)n}^{(2k+1)n} \Phi \exp \left(-\frac{(\Phi-\Phi_0)^2}{2\alpha^2} \right) d\Phi = k\alpha \sqrt{2\pi} \left[\text{erf} \left(\frac{(2k+1)n-\Phi_0}{\alpha \sqrt{2}} \right) - \text{erf} \left(\frac{2kn-\Phi_0}{\alpha \sqrt{2}} \right) \right]
\]

(60d)

Hence, by substituting the equation (60a-d) into the equation (51), the relation of trans ratio with twist angle is derived as

16
\[\text{TR}(\Phi_0) = \sum_k \left\{ -\frac{\sigma}{\sqrt{2\pi}} \left[\exp \left(-\frac{\left(2k\pi+\pi-\Phi_0\right)^2}{2\sigma^2} \right) - 2\exp \left(-\frac{(2k\pi-\Phi_0)^2}{2\sigma^2} \right) + \exp \left(-\frac{(2k\pi-\pi-\Phi_0)^2}{2\sigma^2} \right) \right] \right\} \] (61)

Here, the arguments in the k-summation rapidly approach to zero when \(\Phi_0 \) is out of the range of \([2k-1)\pi, (2k+1)\pi]\). This relation is illustrated in the range of \(0 \leq \Phi \leq 4\pi\) as

Here, since multiple solutions of twist angle existed for a specific trans ratio, we obtained the approximate domain of twist angle from MD results of twisting blocks (336 ± 11° for 1-BP-insertion and 550 ± 12° for 2-BP-insertion in Supplementary Figure S9) and CanDo results of entire 6HB structures (206-225° for 1-BP-insertion and 598-644° for 2-BP-insertion in Supplementary Figure S10). This suggests the twist angle of structures would be in the range of 180-360° for 1-BP-insertion and 540-720° 2-BP-insertion, respectively, as expressed above. We then present the numerical solution of twist angle for a representative trans ratio using the equation (61) as below.

Numerical solution	Trans ratio						
	Trans ratio						
	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Twist angle [°]							
1-BP-insertion (180-360°)	346.8	311.6	289.7	270.0	250.3	228.4	193.2
2-BP-insertion (540-720°)	706.8	671.6	649.7	630.0	610.3	588.4	553.2
Supplementary Notes

Supplementary Note S1. The sensitivity of mechanical properties in simulating environments and neighboring sequence variation.

In this study, we investigated the mechanical properties of nicked BP steps, suggesting that BP steps can have distinct C/B ratio. The twist angle of DNA structures can be, therefore, finely tuned continuously by choosing the sequences of a target C/B ratio based on the spectrum of C/B ratios established here. We employed CHARMM36 force field for MD simulation since it showed a good agreement with experiments in previous MD studies for DNA nanostructures. It remains open, however, whether our results would stay if we use other force fields, ionic conditions, and neighboring sequences.

To verify, we simulated all the BP steps for 100 ns employing the parmbsc1 force field (12), another widely used force field in DNA oligomer simulations, to obtain the mechanical properties and the C/B ratios. As in the previous results obtained using the CHARMM36 force field, the parmbsc1 force field provided the sequence-dependent properties for regular and nicked BP steps (Supplementary Figure S8 and Supplementary Tables S8-S13). It was also confirmed that nicks led to a significant reduction in torsional rigidity regardless of the force field used. On the whole, the geometry, mechanical rigidities, and coupling coefficients predicted by two force fields were comparable for both regular and nicked BP steps. While the parmbsc1 force field predicted relatively smaller torsional and shearing rigidities than the CHARMM36 as found in previous studies (12,13), the C/B ratios predicted by the parmbsc1 were not significantly deviated from those obtained using the CHARMM36 because the torsional rigidity decreases for both regular and nicked BP steps (C/B ratio = \(\frac{(C/B)_{\text{nicked}}}{(C/B)_{\text{regular}}} \)) (Supplementary Figure S8). Therefore, we could confirm that the trend of C/B ratio (and hence our design approach) is not sensitive to the choice of force field.

While limited, we increased the time duration from 100 to 300 ns for the GC/GnC step as a selected subset. We also performed additional simulations of 300 ns using parmbsc1 force field with 100 mM of NaCl (Supplementary Figure S5). It was apparent that RMSD values were maintained within 2-8 Å, suggesting that oligomers stayed near an equilibrium state. Results indicated that the mechanical properties of BP steps did not considerably alter compared to original simulation either the simulation time was extended or salt concentrations was changed from MgCl\(_2\) to NaCl concentration.

Furthermore, to investigate the effect of the next-nearest-neighbor sequence variation, another additional MD simulations performed for nicked GG/CnC and AA/TnT steps as a limited subgroup in
order to evaluate the effect of adjacent sequence variation of a BP step (Supplementary Figures S6 and S7). The dinucleotide GG/CnC step analyzed in this study is the same with the tetranucleotide AGGA/TCnCT step when considering neighboring sequences for original DNA oligomer (Supplementary Table S1). Likewise, the AA/TnT step was identical to with the hexanucleotide GAAAAAG/CTTnTTC step. We modified the sequence of the original oligomer for GG/CnC step from GACT₄-GAC-TcnCT-CAG-TCAG₄ to GACT₄-GAC-ACnCA-CAG-TCAG₄ to have the same dinucleotide GG/CnC step in the center but different tetranucleotide TGGT/ACnCA step. Likewise, the oligomer with AA/TnT step was also modified from GACT₄-GA-CTTnTTC-AG-TCAG₄ to GACT₄-GA-GTTnTTG-AG-TCAG₄ with different hexanucleotide GTAATG/CATTAC step. We performed 100-ns-long MD simulations with same protocol with the CHARMM36 force field and MgCl₂ condition. In both steps, RMSD values were maintained within 2-10 Å. The results indicate that the overall trend of the mechanical properties in sequence variation may be consistent with that of original steps, observing the less influence of sequence change as the farther from the central BP step. Nevertheless, since our MD simulation was limited in the nanosecond (ns) time-scale, it is promising that further investigations on mechanical properties of nicked BP steps remain under microsecond (µs) simulation and another testing environment.
Supplementary Note S2. Mechanical analysis of DNA bundle structures with BP-insertion.

We theoretically investigated mechanical parameters related to the twist angle of a DNA bundle structure with BP-insertion. A two-helix-bundles (2HB) structure was introduced as the smallest twisting structure by BP-insertion (A), where terminal ends were constraint by Holliday-junctions. It was assumed that two identical and straight helices (H1 and H2) have the radius of r, bending rigidity of B, and torsional rigidity of C. Also, there was nothing to induce strain energy since the end of two helices cross exactly at both ends.

When BPs are inserted but one of the Holliday-junctions is not constrained (B), the initial twist angle due to the helicity of DNA can be regarded as

$$\Phi_0 = \langle \omega \rangle N_{BP}$$

(62)

where $\langle \omega \rangle$ is the mean twist angle of each helix and the number of inserted BPs was denoted as N_{BP}. Also, each helix is elongated to a longitudinal length of L.

![Diagram](image-url)
In equilibrium with the constraints at both ends of the helices (C), bending and torsional strain energy is induced at each helix to align the mismatch of connectivity and the center of twist. In addition, bending and torsional angle should satisfy a geometric constraint equation (g) as
\[g = L\theta - r\Phi = 0 \] (63)
where θ and Φ represent the equilibrium bending and twist angle of a helix. Then, the induced strain energy in the helix can be described using the method of Lagrange multipliers as
\[\pi = \int_0^L \frac{1}{2} M_b^2 \, dx + \int_0^L \frac{1}{2} M_z^2 \, dx + \lambda g \] (64)
where the bending (Mb) and torsional moment (Mz) were derived in Supplementary Method S2 as
\[M_b = B \frac{\Delta \theta}{L} \] (65)
\[M_z = C \frac{\Delta \Phi}{L} \] (66)
where the zero initial bending and initial twist angle by BP-insertion yield the angle deformation as
\[\Delta \theta = \theta \] (67)
\[\Delta \Phi = \Phi - \Phi_0 = \Phi - \langle \omega \rangle_{BP} \] (68)
Then, the strain energy is derived using the above equations as
\[\pi(\theta, \Phi, \lambda) = \frac{1}{2L} B\theta^2 + \frac{1}{2L} C(\Phi - \langle \omega \rangle_{BP})^2 + \lambda(L\theta - r\Phi) \] (69)
The equilibrium configuration minimizes this strain energy, suggesting that the gradient of the strain energy is zero vector. We, therefore, obtain the system of equations as
\[\frac{\partial \pi}{\partial \theta} = \frac{1}{L} B\theta + \lambda L = 0 \] (70)
\[\frac{\partial \pi}{\partial \Phi} = \frac{1}{L} C(\Phi - \langle \omega \rangle_{BP}) - \lambda r = 0 \] (71)
\[\frac{\partial \pi}{\partial \lambda} = L\theta - r\Phi = 0 \] (72)
From equations (70) and (72), the Lagrange multiplier, indicating the constraint force, was derived as
\[\lambda = -\frac{1}{L^2} B\theta = \frac{1}{rL} C(\Phi - \langle \omega \rangle_{BP}) \] (73)
Here, the bending angle (θ) can be substituted to twist angle (Φ) with the constraint equation (72), providing a relation of twist angle with rigidities of each helix and the number of inserted BPs as
\[\Phi = \langle \omega \rangle_{BP} \left(1 + \frac{\sigma^2/\mu^2}{C/B}\right)^{-1} \] (74)
This relation suggests that DNA bundle structures could be more twisted when BPs are more inserted or C/B is increased in helices. We found that nicks have significant effects on the reduction of torsional rigidity (C) rather than the reduction of bending rigidity (B). It is, therefore, speculated that the
twist angle of bundle structures could be controlled by adjusting the location of nicks to control C/B value. Here, we defined that C/B ratio of nicked BP steps normalized by corresponding regular BP steps as \(\frac{(C/B)_{\text{nicked}}}{(C/B)_{\text{regular}}} \) to quantify the effects of nicks from an ideal structure consisting of all regular BP steps. Utilizing the C/B ratio data from MD simulation, the twist angle of the structures with high C/B ratio could be deliberately designed greater than that with low C/B ratio, suggesting that the torsional energy stored by BP-insertion could be controlled by adjusting nicked BP steps. Future studies based on nonlinear analysis is promising to produce a more realistic theoretical prediction on the DNA structures since our approach is limited to only provide the insight of finding parameters to affect bundle structure due to the simple and linear assumption.
Supplementary Note S3. Comparison of the results of the reverse-phase cartridge (Bio-RP) and the polyacrylamide gel electrophoresis (PAGE) methods in the purification of staples.

We investigated whether the purification method used in the synthesis of oligonucleotides affects the trans ratio of assembled DNA origami structures. Here, 60 staples comprising ten twisting blocks of the flexible 1 design with 2-BP-insertion were purified using the polyacrylamide gel electrophoresis (PAGE) method, in which the manufacturer guarantees a higher purity of more than 95%. We obtained the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) data for representative ten staples (one staple per each twisting block) purified by both methods (Supplementary Table S19). According to the result of MALDI-TOF, purified staples using Bio-RP and PAGE showed almost identical mass spectrum with a single and clear peak, indicating only oligonucleotides with the desired length existed in the stock solution (Supplementary Figure S11). Noting that the maximum error of the MALDI-TOF spectrum is typically around 0.24%, we could confirm that both Bio-RP and PAGE methods were reliable to obtain the full-length and same sequence of staples. In addition, we constructed two versions of the flexible 1 design using the staples purified with Bio-RP and PAGE methods (Supplementary Figure S12). No distinguishable difference in the trans ratio was observed between these two versions of structures (Supplementary Table S16). The mean and standard deviation of the trans ratio by two methods were 0.7245 and 0.0609 for Bio-RP, and 0.7204 and 0.0272 for PAGE, respectively. Accordingly, we concluded that the trans ratio was hardly affected by the purification method for staples because both methods yield sufficiently high purity.
Supplementary Figures

Supplementary Figure S1. Root-mean-square deviation (RMSD) of DNA oligomers. Each RMSD value was calculated from the minimized structure omitting the four terminal BPs on each end.
Supplementary Figure S2. BP step parameters of the regular and nicked BP steps. Six figures represent overall BP step parameters: (A) tilt, (B) roll, (C) twist, (D) shift, (E) slide, and (F) rise. Blue represents the parameters of regular BP steps while red and green indicate the parameters of nicked BP steps.
Supplementary Figure S3. Comparison of the BP step parameters in stiffened BP steps by a nick.

GA/TnC, GC/GnC, and CG/CnG steps were stiffened by a nick for the stretching and bending rigidities with the decrease of roll (ρ) and shift (Dx).
Supplementary Figure S4. Mechanical rigidity distributions in DNA oligomers. Mechanical rigidities were calculated for total 33 BP steps except for the four terminal BPs on end in each oligomer: (A) tilt-bending, (B) roll-bending, (C) torsional, (D) shift-shearing, (E) slide-shearing, and (F) stretching rigidities. Noting that each oligomer has different sequences at the center at 16 to 18th BP steps, corresponding rigidities deviated, whereas a repeating tendency of rigidities occurs at the other BP steps due to the repetition of the sequence of AGTC from the center to terminal end. Black lines represent the mean and standard deviation of rigidity values of regular BP steps. Rigidities of 16-18th BP steps are illustrated as colored lines and marked with triangles for central nicked BP steps.
Supplementary Figure S4. (Continued)
Supplementary Figure S5. Effects of force field, simulation time, and salt condition on mechanical properties of nicked GC/GnC step. C36 and BSC1 represent the CHARMM36 and parmbsc1 force field, respectively. (A) RMSD trajectories. Each RMSD value was calculated from the minimized structure omitting the four terminal BPs on each end. (B, C) Mechanical rigidities and coupling coefficients. Each bar represents the overall value of the mechanical properties.
Supplementary Figure S6. Effects of the next-to-nearest-neighbor sequence on mechanical properties of nicked GG/CnC step. (A) RMSD trajectories. Each RMSD value was calculated from the minimized structure omitting the four terminal BPs on each end. (B, C) Mechanical rigidities coupling coefficients. Each bar represents the overall value of the mechanical properties.
Supplementary Figure S7. Effects of the second-adjacent sequence on the mechanical properties of the nicked AA/TnT step. (A) RMSD trajectories. Each RMSD value was calculated from the minimized structure omitting the four terminal BPs on each end. (B, C) Mechanical rigidities and coupling coefficients. Each bar represents the overall value of the mechanical properties.
Supplementary Figure S8. Comparison of mechanical rigidities and C/B ratio in CHARMM36 and parmbsc1 force fields. Equivalent bending and shearing rigidities were described (Supplementary Method S3). Sequence-dependent mechanical properties were listed in Supplementary Table S8-S13. The C/B ratios of CHARMM36 were sorted in ascending order and the corresponding values of parmbsc1 were indicated (Supplementary Table S14).
Supplementary Figure S9. Twisting block design and MD results. (A) caDNAno designs of twisting blocks with one or two BP-insertion. (B) Final configurations of twisting blocks in equilibrium by MD simulation. (C) RMSD and twist angle trajectories of twisting blocks. RMSD trajectory was calculated with respect to the minimized structure. Gaussian distribution of twist angles was obtained using the final 20-ns-long trajectory with mean and standard deviation as 33.6 ± 3.4° and 55.0 ± 3.7° for one and two BPs inserted blocks, respectively. The twist angles of 6HB structures with ten twisting blocks were then estimated as 336 ± 11° and 550 ± 12° for 1- and 2-BP-insertion (Supplementary Method S5).
Supplementary Figure S10. CanDo results of 6HB DNA origami structures with different helicities and nick rigidities. The details of CanDo simulations were explained in Supplementary Method S6.
Supplementary Figure S11. The results of MALDI-TOF using Bio-RP and PAGE methods. We obtained the MALDI-TOF results for representative ten staples (one staple per each twisting block). Red numbers in brackets indicate the ideal molecular weight of staple sequence (Supplementary Table S19).
Supplementary Figure S12. Atomic force microscope (AFM) images of twisted 6HB DNA origami structures. All scale bars represent 1 μm.
Supplementary Figure S12 (Continued).
Supplementary Figure S12 (Continued).
Supplementary Figure S13. Agarose gel electrophoresis result of twisted 6HB DNA origami structures. Ladder: 1kb DNA ladder (New England Biolabs N3232S). Scaffold: M13mp18 single-stranded scaffold DNA.
Supplementary Tables

Supplementary Table S1. List of MD-simulated DNA oligomers. Each oligomer is 42-BP-long DNA double helix and has the same sequence pattern, 5'-CTGA₅-MN-AGTC₅-3' / 5'-GACT₅-PQ-TCAG₅-3'. MN/PQ represents one of ten regular BP steps. Since MN/PQ or PQ/MN indicate identical one of ten BP steps, we selected notations by comparing M and P in order of A > G > T > C. For example, we chose AG/CT notation in AG/CT or CT/AG case. MnN/PQ or MN/PnQ represent one of sixteen nicked BP steps.

Type	Base-pair (BP) step	Oligomer sequence (5’→3’)	
Regular	RR/YY	AA/TT	CTG₅₋TT-AGTC₅ GACT₅₋AA-TCAG₅
		AG/CT	CTG₅₋AG-AGTC₅ GACT₅₋CT-TCAG₅
		GA/TC	CTG₅₋TC-AGTC₅ GACT₅₋GA-TCAG₅
		GG/CC	CTG₅₋GG-AGTC₅ GACT₅₋CC-TCAG₅
	RY/RY	AC/CT	CTG₅₋AC-AGTC₅ GACT₅₋GT-TCAG₅
		AT/AT	CTG₅₋AT-AGTC₅ GACT₅₋AT-TCAG₅
		GC/GC	CTG₅₋GC-AGTC₅ GACT₅₋GC-TCAG₅
	YR/YR	TG/CA	CTG₅₋TG-AGTC₅ GACT₅₋CA-TCAG₅
		TA/TA	CTG₅₋TA-AGTC₅ GACT₅₋TA-TCAG₅
		CG/CG	CTG₅₋CG-AGTC₅ GACT₅₋CG-TCAG₅
Nicked	RR/YnY	AA/TnT	CTG₅₋AA-AGTC₅ GACT₅₋TnT-TCAG₅
		AG/CnT	CTG₅₋AG-AGTC₅ GACT₅₋CnT-TCA₅
		GA/TnC	CTG₅₋GA-AGTC₅ GACT₅₋TnC-TCAG₅
		GG/CnC	CTG₅₋GG-AGTC₅ GACT₅₋CnC-TCAG₅
	RnR/YY	An/TT	CTG₅₋TT-AGTC₅ GACT₅₋AnA-TCAG₅
		AnG/CT	CTG₅₋CT-AGTC₅ GACT₅₋AnG-TCA₅
		GnA/TC	CTG₅₋TC-AGTC₅ GACT₅₋GnA-TCAG₅
		GnG/CC	CTG₅₋CC-AGTC₅ GACT₅₋GnG-TCAG₅
	RY/RnY	AC/GnT	CTG₅₋AC-AGTC₅ GACT₅₋GnT-TCAG₅
		AnC/GT	CTG₅₋GT-AGTC₅ GACT₅₋AnC-TCA₅
		AT/AnT	CTG₅₋AT-AGTC₅ GACT₅₋AnT-TCAG₅
		GC/GnC	CTG₅₋GC-AGTC₅ GACT₅₋GnC-TCAG₅
	YR/YnR	TG/CnA	CTG₅₋TG-AGTC₅ GACT₅₋CnA-TCAG₅
		TrnG/CA	CTG₅₋CA-AGTC₅ GACT₅₋TrnG-TCA₅
		TA/TrnA	CTG₅₋TA-AGTC₅ GACT₅₋TrnA-TCAG₅
		CG/CnG	CTG₅₋CG-AGTC₅ GACT₅₋CnG-TCAG₅
Supplementary Table S2. Sequence-dependent BP step parameters of regular BP steps. The mean and standard deviation are represented in the left and right column for each BP step parameter.

Regular	τ [°]	ρ [°]	ω [°]	Dx [nm]	Dy [nm]	Dz [nm]						
AA/TT	-3.62	4.34	6.17	5.52	36.40	3.99	-0.03	0.05	-0.01	0.04	0.34	0.03
AG/CT	-2.99	4.32	10.18	5.42	32.27	4.28	-0.03	0.06	-0.03	0.04	0.34	0.03
GA/TC	-1.11	5.16	3.70	5.64	39.02	4.25	-0.01	0.05	0.01	0.05	0.34	0.03
GG/CC	0.77	5.01	6.85	5.66	34.26	5.51	-0.01	0.07	-0.05	0.07	0.36	0.03
AC/CT	-0.50	4.78	5.03	5.86	32.10	5.09	0.04	0.06	-0.04	0.05	0.32	0.04
AT/AT	-0.13	4.13	3.33	5.79	31.97	4.14	0.02	0.07	-0.05	0.04	0.33	0.03
GC/GC	0.01	4.86	2.09	5.55	38.32	4.86	0.01	0.06	-0.04	0.04	0.34	0.03
TG/CA	1.04	5.22	13.57	7.00	32.27	5.11	0.00	0.07	-0.02	0.06	0.35	0.04
TA/TA	1.92	5.24	8.93	8.11	35.71	5.31	-0.02	0.07	0.01	0.07	0.35	0.04
CG/CG	-0.48	5.95	14.47	7.42	32.78	5.19	-0.03	0.06	0.02	0.05	0.35	0.04
Overall	-0.51	1.72	7.43	4.27	34.51	2.69	-0.01	0.02	-0.02	0.03	0.34	0.01
Supplementary Table S3. Sequence-dependent BP step parameters of nicked BP steps. The mean and standard deviation are represented in the left and right column for each BP step parameter.

Nicked	τ [°]	ρ [°]	ω [°]	D_x [nm]	D_y [nm]	D_z [nm]						
AA/TnT	-3.01	4.37	5.32	5.73	35.50	4.56	-0.03	0.06	-0.01	0.05	0.34	0.03
AnA/TT	-3.62	4.72	5.08	6.38	33.95	12.17	-0.01	0.08	-0.04	0.08	0.35	0.03
AG/CnT	-1.57	5.07	6.05	5.75	36.55	5.30	-0.02	0.06	0.00	0.05	0.33	0.03
AnG/CT	-2.87	4.52	6.70	5.92	31.29	7.83	0.02	0.09	-0.06	0.06	0.35	0.03
GA/TnC	-0.11	4.64	1.23	5.40	37.73	6.20	-0.06	0.06	0.03	0.05	0.34	0.03
GnA/TC	-1.01	5.61	2.18	6.17	42.05	8.08	-0.02	0.08	0.01	0.07	0.35	0.03
GG/CnC	-0.66	5.14	5.62	5.57	30.69	9.83	-0.07	0.09	-0.07	0.09	0.35	0.03
GnG/CC	1.28	5.44	7.64	6.29	31.19	9.41	0.05	0.09	-0.12	0.07	0.36	0.04
AC/GnT	-0.52	5.12	2.21	6.15	36.17	7.91	0.02	0.08	-0.04	0.08	0.34	0.04
AnC/GT	-1.05	4.38	4.02	6.30	26.22	9.47	0.09	0.09	-0.06	0.06	0.33	0.03
AT/AnT	0.24	4.41	3.90	6.61	29.72	8.05	-0.03	0.09	-0.05	0.07	0.33	0.03
GC/GnC	-0.23	5.17	0.19	5.08	39.29	6.64	-0.01	0.08	-0.03	0.04	0.35	0.03
TG/CnA	2.68	5.59	10.90	7.00	35.70	7.49	0.00	0.09	-0.01	0.07	0.36	0.04
TnG/CA	-1.53	5.54	11.65	7.26	32.83	7.42	0.07	0.07	-0.03	0.07	0.36	0.04
TA/TnA	0.32	6.00	7.96	7.72	31.80	10.24	-0.03	0.10	-0.03	0.09	0.34	0.04
CG/CnG	-0.45	6.32	12.71	7.36	33.61	6.79	-0.06	0.08	0.00	0.06	0.37	0.04
Overall	-0.76	1.59	5.83	3.68	34.02	3.95	0.00	0.05	-0.03	0.04	0.35	0.01
Supplementary Table S4. Sequence-dependent mechanical rigidities of regular BP steps. The mean and standard deviation are represented in the left and right column for each rigidity. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Regular	B_x [pN nm2]	B_y [pN nm2]	C [pN nm2]	Y_{dx} [pN]	Y_{dy} [pN]	S [pN]						
AA/TT	301.53	28.76	172.67	16.47	400.39	38.18	560.96	53.50	872.97	83.25	1920.88	183.18
AG/CT	317.62	29.97	171.36	16.17	347.47	32.78	452.93	42.73	789.85	74.52	2087.34	196.93
GA/TC	277.69	26.64	170.73	16.38	344.19	33.02	557.64	53.50	835.18	80.12	2361.15	226.52
GG/CC	309.91	29.72	164.48	15.77	288.76	27.69	391.30	37.52	560.77	53.77	2145.27	206.70
AC/GT	218.91	23.85	157.40	17.15	255.39	27.82	341.17	37.17	753.74	82.12	1711.07	186.42
AT/AT	263.28	26.20	161.00	16.02	332.80	33.12	266.11	26.48	773.42	76.97	1475.58	146.84
GC/GC	230.96	22.86	200.35	19.83	301.64	29.86	417.69	41.35	1340.78	132.73	2270.19	224.74
TG/CA	189.65	20.22	132.03	14.08	281.44	30.01	353.84	37.73	478.38	51.01	1396.03	148.85
TA/TA	174.92	17.75	123.80	12.56	309.72	31.42	333.37	33.82	380.62	38.62	1483.42	150.50
CG/CG	173.43	19.80	129.45	14.78	276.46	31.57	502.78	57.41	595.34	67.98	1401.16	160.00
Overall	**245.79**	**55.83**	**158.33**	**23.71**	**313.83**	**42.90**	**417.78**	**99.62**	**738.11**	**267.10**	**1825.21**	**377.37**
Supplementary Table S5. Sequence-dependent mechanical rigidities of nicked BP steps. The mean and standard deviation are represented in the left and right column for each rigidity. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Nicked	B_s [pN nm2]	B_p [pN nm2]	C [pN nm2]	Y_{dx} [pN]	Y_{dy} [pN]	S [pN]
AA/TnT	290.14	26.04	151.36	13.59	286.61	25.72
AnA/TT	266.41	26.66	125.85	12.59	70.31	7.04
AG/CnT	201.45	18.40	171.05	15.63	233.34	21.32
AnG/CT	298.20	29.83	151.99	15.21	181.74	18.18
GA/TnC	325.46	28.28	179.17	15.57	181.00	15.73
GnA/TC	264.98	26.14	152.94	15.09	155.48	15.34
GG/CnC	305.26	29.09	177.56	16.62	93.54	8.91
GnG/CC	274.88	30.13	152.00	16.66	159.88	17.52
AC/GnT	218.39	23.12	155.95	16.51	109.01	11.54
AnG/CT	244.64	24.90	152.75	15.55	107.29	10.92
AT/AnT	238.99	25.07	133.80	14.04	113.60	11.92
GC/GnC	236.59	20.83	225.72	19.87	181.73	16.00
TG/CnA	200.61	20.22	131.42	13.25	154.61	15.59
TnG/CA	195.50	20.62	124.14	13.10	155.75	16.43
TA/TnA	143.69	17.80	95.40	11.82	78.61	9.74
CG/CnG	203.66	21.56	132.67	14.04	178.67	18.91
Overall	244.30	48.87	150.86	29.41	152.57	57.12
	350.04	86.31	526.44	222.42	1777.69	421.11

Supplementary Table S6. Sequence-dependent mechanical coupling coefficients of regular BP steps. The mean and standard deviation are represented in the left and right column for each coefficient. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Regular	g_{xy} [pN nm]	g_{yx} [pN nm]	g_{xz} [pN nm]	g_{zx} [pN nm]	g_{dy} [pN nm]	g_{yd} [pN nm]	g_{dz} [pN nm]	g_{zd} [pN nm]				
AA/TT	-30.91	-2.95	-43.76	-4.17	-319.84	-30.50	-30.33	-2.89	-70.05	-6.68	-90.13	-8.59
AG/CT	-83.18	-7.85	-77.92	-7.35	-344.10	-32.46	15.82	1.49	9.08	0.86	-102.98	-9.72
GA/TC	-84.87	-8.14	-37.97	-3.64	-401.74	-38.54	-9.69	-0.93	-45.22	-4.34	-61.43	-5.89
GG/CC	-135.35	-12.98	-54.14	-5.19	-392.32	-37.62	26.71	2.56	14.63	1.40	-10.54	-1.01
AC/GT	-34.43	-3.75	-89.54	-9.76	-40.85	4.45	-1.46	-0.16	36.30	3.95	73.03	7.96
AT/AT	-10.37	-1.03	3.11	0.31	4.51	0.45	11.12	1.11	26.75	2.66	83.95	8.35
GC/GC	-123.64	-12.24	-16.63	-1.65	-13.07	-1.29	1.39	0.14	91.82	9.09	211.84	20.97
TG/CA	-41.36	-4.41	-20.37	-2.17	-55.92	-5.96	-18.19	-1.94	23.68	2.52	-141.52	-15.09
TA/TA	-21.11	-2.14	7.57	0.77	-15.79	-1.60	16.48	1.67	13.86	1.41	-128.83	-13.07
CG/CG	-138.13	-15.77	24.41	2.79	-5.57	-0.06	11.90	1.36	71.97	8.22	-180.78	-20.64
Overall	**-70.33**	**-49.15**	**-22.93**	**-42.78**	**-149.80**	**187.63**	**2.37**	**17.62**	**17.28**	**47.91**	**-34.74**	**123.43**

Regular	g_{xby} [pN nm]	g_{ybx} [pN nm]	g_{xdz} [pN nm]	g_{ydz} [pN nm]	g_{dyx} [pN nm]	g_{ydx} [pN nm]
AA/TT	37.99	3.82	-206.97	-19.74	-300.81	-28.69
AG/CT	108.65	10.25	-114.53	-10.81	-310.71	-29.31
GA/TC	13.20	1.27	-167.93	-16.11	-211.56	-20.30
GG/CC	78.30	7.51	-227.37	-21.80	-310.65	-29.79
AC/GT	26.98	2.94	-127.09	-13.85	-266.32	-29.02
AT/AT	-5.57	-0.65	-118.97	-11.84	-164.19	-16.34
GC/GC	8.64	0.86	-236.09	-23.37	-363.29	-35.96
TG/CA	36.09	3.85	-90.49	-9.65	-274.23	-29.24
TA/TA	8.62	0.87	-124.01	-12.58	-237.07	-24.05
CG/CG	25.41	2.90	-73.78	-8.43	-335.03	-38.26
Overall	**33.73**	**35.03**	**-148.72**	**57.47**	**-277.39**	**59.97**
Supplementary Table S7. Sequence-dependent mechanical coupling coefficients of nicked BP steps. The mean and standard deviation are represented in the left and right column for each coefficient.

The mean and standard deviation were calculated by multiplying the off-diagonal value of the stiffness matrix by the mean and standard deviation of the rise.

Nicked	g_{12} [pN nm]	g_{21} [pN nm]	g_{13} [pN nm]	g_{31} [pN nm]	g_{11} [pN]	g_{22} [pN]	g_{33} [pN]					
AA/TnT	-27.83	-2.50	-66.30	-5.95	-310.03	-27.83	-32.85	-2.95	-7.03	-0.63	-59.67	-5.36
AnA/TT	-27.26	-2.73	38.30	3.83	-373.65	-23.78	-33.31	-3.33	-0.75	-0.08	-43.74	-4.38
AG/CnT	-71.08	-6.49	23.52	2.15	-447.10	-13.44	-21.85	-2.00	-4.34	-0.40	-107.53	-9.82
AnG/CT	-59.02	-5.91	12.91	1.29	-286.55	-28.67	1.33	0.13	-5.52	-0.55	-125.54	-12.56
GA/TnC	-120.75	-10.49	12.57	1.09	-452.28	-39.30	-7.43	-0.65	28.29	2.46	-5.81	-0.50
Gn/TCA	-89.55	-8.83	79.29	7.82	-328.75	-32.43	10.57	1.04	39.89	3.93	-3.31	-0.33
GC/GnC	-122.11	-11.64	97.20	9.26	-353.33	-33.67	25.32	2.41	39.97	3.81	-59.60	-5.68
Gn/CG	-124.25	-16.14	93.38	10.23	-339.50	-37.21	-17.22	-1.89	54.21	5.94	-41.63	-4.56
Ac/GnT	-60.26	-6.38	-73.25	-7.75	48.44	5.13	-15.20	-1.61	82.57	8.74	78.52	8.31
AnC/CT	-31.40	-3.20	-6.71	-0.68	5.82	0.59	-14.71	-1.50	28.14	2.86	0.11	0.01
AT/AnT	-18.47	-1.94	14.36	1.51	70.88	7.44	20.77	2.18	8.39	0.88	-26.42	-2.77
GC/GnC	-138.14	-12.16	-19.00	-1.67	46.14	3.67	-11.14	-0.98	168.19	14.81	214.44	18.88
Tg/CnA	-68.88	-6.94	-51.49	-5.19	-11.78	-1.19	-27.78	-2.80	51.82	5.22	-157.29	-15.86
Tn/GCA	-98.71	-10.41	-4.98	-0.52	-105.70	-11.15	-16.73	-1.76	36.08	3.81	-135.67	-14.31
TA/TnA	-16.64	-2.06	-48.42	-6.00	-78.89	-9.77	4.29	0.53	22.01	2.73	-78.58	-9.73
Cg/CnG	-175.43	-18.57	9.41	1.00	93.84	9.93	-18.38	-1.95	66.90	7.08	-200.43	-21.22

| Overall | -79.55 | 50.05 | -5.23 | 52.82 | -149.43 | 180.24 | -9.64 | 17.69 | 38.05 | 43.80 | -47.01 | 98.36 |
Supplementary Table S7 (Continued).

Nicked	g_{u0z_x} [pN nm]	g_{u0y_x} [pN nm]	g_{u0z_y} [pN nm]
AA/TnT	-3.00	-0.27	-143.15
AnA/TT	80.93	8.10	-12.85
AG/CnT	3.54	0.32	-147.34
AnG/CT	119.35	11.94	-126.19
GA/TnC	-92.72	-8.06	-124.40
GnA/TC	88.15	8.70	-139.39
GG/CnC	-56.45	-5.38	-84.93
GnG/CC	138.65	15.20	-142.39
AC/GnT	-53.18	-5.63	-63.98
AnC/GT	74.83	7.62	-56.47
AT/AnT	-65.71	-6.89	-18.30
GC/GnC	-82.35	-7.25	-200.21
TG/CnA	-50.58	-5.10	-103.10
TnG/CA	76.66	8.09	-93.78
TA/TnA	-67.53	-8.36	-27.52
CG/CnG	-94.97	-10.05	-66.66
Overall	0.98	82.11	-100.56

The table continues with similar data for other nicked pairs.
Supplementary Table S8. Sequence-dependent BP step parameters of regular BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each BP step parameter.

Regular	τ [°]	ρ [°]	ω [°]	D_x [nm]	D_y [nm]	D_z [nm]						
AA/TT	-2.79	3.86	-0.50	4.98	37.37	3.97	-0.07	0.07	-0.02	0.05	0.33	0.03
AG/CT	-1.95	4.44	2.26	5.52	33.00	5.76	-0.02	0.09	-0.05	0.07	0.33	0.03
GA/TC	-0.74	4.72	1.03	5.10	36.65	6.40	-0.06	0.09	-0.01	0.07	0.34	0.03
GG/CC	2.04	4.85	3.24	6.31	35.38	5.31	-0.01	0.09	-0.06	0.08	0.35	0.03
AC/CT	-0.92	3.93	-1.53	5.23	34.44	4.49	0.03	0.08	-0.07	0.05	0.33	0.03
AT/AT	0.58	3.64	-1.28	4.54	32.75	3.52	0.00	0.06	-0.09	0.04	0.33	0.03
GC/GC	1.34	4.07	0.67	4.95	39.12	4.28	0.04	0.06	-0.03	0.05	0.34	0.03
TG/CA	2.61	5.34	6.40	6.81	32.19	6.03	0.08	0.10	0.00	0.05	0.32	0.03
TA/TA	0.06	5.36	8.19	6.90	34.80	6.49	-0.01	0.14	0.02	0.06	0.32	0.03
CG/CG	3.33	5.14	10.95	6.39	33.75	6.21	-0.08	0.08	0.02	0.05	0.33	0.03
Overall	**0.36**	**2.00**	**2.94**	**4.25**	**34.95**	**2.22**	**-0.01**	**0.05**	**-0.03**	**0.04**	**0.33**	**0.01**
Supplementary Table S9. Sequence-dependent BP step parameters of nicked BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each BP step parameter.

Nicked	τ [°]	ρ [°]	ω [°]	Dx [nm]	Dy [nm]	Dz [nm]						
AA/TnT	-3.52	4.19	2.29	6.40	35.87	6.07	0.00	0.06	-0.04	0.06	0.32	0.03
AnA/TT	-1.49	4.54	-0.21	5.01	32.83	7.74	0.00	0.06	-0.08	0.06	0.33	0.03
AG/CnT	-3.00	5.16	4.01	6.32	29.35	8.08	-0.01	0.07	-0.08	0.08	0.32	0.03
AnG/CT	0.65	5.27	2.22	6.18	28.44	12.03	-0.02	0.13	-0.14	0.07	0.33	0.03
GA/TnC	-0.93	4.75	1.01	6.29	33.16	10.16	-0.03	0.08	-0.03	0.07	0.32	0.03
GnA/TC	2.04	5.95	2.55	6.67	36.24	15.73	0.03	0.14	-0.08	0.09	0.33	0.03
GG/CnC	-2.57	4.92	8.10	6.36	30.06	9.27	-0.11	0.10	-0.03	0.08	0.31	0.03
GnG/CC	1.81	5.57	4.95	6.00	32.36	8.76	0.03	0.09	-0.14	0.07	0.35	0.03
AC/GnT	-2.89	4.54	0.14	5.56	36.34	6.92	0.09	0.07	-0.09	0.06	0.33	0.03
AnC/GT	-0.26	4.17	-0.31	4.98	27.51	6.75	-0.06	0.07	-0.08	0.07	0.32	0.03
AT/AnT	-0.62	4.02	-0.48	4.80	30.16	5.64	0.00	0.07	-0.09	0.05	0.32	0.03
GC/GnC	0.00	4.40	0.09	5.09	39.41	7.00	0.01	0.07	-0.05	0.06	0.34	0.03
TG/CnA	-0.65	5.30	10.43	6.51	31.51	8.35	0.05	0.09	-0.03	0.07	0.33	0.03
TnG/CA	1.16	5.44	12.19	6.35	26.31	9.58	-0.08	0.09	-0.08	0.06	0.32	0.04
TA/TnA	2.66	7.99	8.63	8.54	32.73	17.63	-0.05	0.16	-0.01	0.10	0.33	0.04
CG/CnG	0.15	4.81	10.46	5.36	30.15	7.56	-0.03	0.07	-0.02	0.06	0.32	0.03
Overall	-0.47	1.88	4.13	4.42	32.03	3.58	-0.01	0.05	-0.07	0.04	0.33	0.01
Supplementary Table S10. Sequence-dependent mechanical rigidities of regular BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each rigidity. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Regular	B_x [pN nm2]	B_y [pN nm2]	C [pN nm2]	Y_{dx} [pN]	Y_{dy} [pN]	S [pN]
AA/TT	354.13	28.01	189.04	14.95	347.38	27.48
	1457.74	36.21	743.95	58.85	2398.20	189.70
AG/CT	339.61	30.86	173.54	15.77	208.83	18.98
	272.15	24.73	360.76	32.78	2247.31	204.20
GA/TC	230.33	18.65	183.62	14.87	191.13	15.47
	291.92	23.63	644.33	52.16	2125.85	172.10
GG/CC	352.32	31.54	155.92	13.96	239.51	21.44
	313.51	28.07	361.09	32.33	2407.37	215.52
AC/CT	319.05	26.26	200.69	16.52	287.93	23.70
	252.15	20.75	718.94	59.17	2554.25	210.24
AT/AT	331.70	25.83	244.53	19.04	393.53	30.64
	365.02	28.42	1012.94	78.87	2446.95	190.53
GC/GC	323.66	25.22	224.49	17.49	294.53	22.95
	447.32	34.86	660.64	51.48	2831.09	205.03
TG/CA	205.69	18.84	130.02	11.91	198.38	18.17
	180.30	16.51	639.19	58.53	1766.95	161.81
TA/TA	187.88	17.24	130.70	11.99	232.12	21.29
	91.57	8.40	509.50	46.74	1800.52	165.17
CG/GG	238.97	21.47	130.46	11.72	177.32	15.93
	317.64	28.53	718.86	64.58	1888.00	169.60
Overall	288.33	64.85	176.30	40.19	257.07	71.91
	298.93	111.65	637.02	193.07	2226.65	316.17
Supplementary Table S11. Sequence-dependent mechanical rigidities of nicked BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each rigidity. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Regular	B_a [pN nm2]	B_p [pN nm2]	C [pN nm2]	Y_{dx} [pN]	Y_{dy} [pN]	S [pN]						
AA/TnT	32.67	29.18	112.16	10.14	171.76	15.53	445.96	40.33	420.60	38.03	2131.16	192.72
AnA/TT	26.14	23.10	180.90	15.76	136.03	11.85	451.07	39.30	637.17	55.51	1989.50	173.32
AG/CnT	225.68	22.50	120.85	12.05	101.69	10.14	228.24	22.64	278.70	27.79	2078.69	207.27
AnG/CT	169.52	17.37	150.93	15.47	95.80	9.82	232.65	23.84	387.32	39.70	1296.95	132.93
GA/TnC	286.92	25.83	147.30	13.26	94.51	8.51	292.48	26.33	380.45	34.25	2390.54	215.19
GnA/TC	157.00	15.39	145.29	14.24	77.27	7.57	224.65	22.02	371.97	36.46	1507.45	147.77
GG/CnC	288.84	30.74	126.59	13.47	68.24	7.26	188.83	20.10	245.40	26.12	2070.96	220.40
GnG/CC	163.06	15.06	158.21	14.61	138.93	12.83	275.00	25.40	383.15	35.39	1565.90	144.64
AC/GnT	242.32	21.58	171.80	15.30	137.10	12.21	344.28	30.66	546.96	48.71	2238.17	199.32
AnG/GT	262.84	22.30	207.00	17.56	121.12	10.28	316.83	26.89	377.20	32.01	2349.27	199.35
AT/AnT	274.58	22.49	205.69	16.85	158.86	13.01	337.50	27.64	659.28	53.99	2420.47	198.22
GC/GnA	273.71	22.54	213.23	17.56	133.34	10.98	356.91	29.40	564.27	46.48	2468.90	203.36
TG/CnA	198.08	19.68	132.30	13.14	92.87	9.23	216.09	21.47	343.66	34.14	1590.12	157.99
TnG/CA	173.99	19.76	126.90	14.41	97.49	11.07	247.25	28.08	458.22	52.03	1339.69	152.13
TA/TnA	120.94	13.25	104.35	11.43	81.66	8.94	260.88	28.57	324.59	35.55	1196.90	131.09
CG/CnG	220.00	21.23	173.56	16.75	108.03	10.43	329.03	31.75	431.17	41.61	1814.63	175.13
Overall	227.83	58.43	154.82	34.47	113.42	30.02	300.35	76.01	425.63	119.98	1903.08	433.19
Supplementary Table S12. Sequence-dependent mechanical coupling coefficients of regular BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each coefficient. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Regular	g_{1p} [pN nm$^{-2}$]	g_{1w} [pN nm$^{-2}$]	g_{2p} [pN nm$^{-2}$]	g_{3px} [pN nm$^{-2}$]	g_{3py} [pN]	g_{3p2x} [pN]	g_{3p2y} [pN]					
AA/TT	18.82	1.49	60.82	4.81	-316.65	-25.05	-161.58	-12.78	223.11	17.65		
AG/CT	26.49	2.59	52.31	4.75	47.68	4.33	47.96	4.36	170.93	15.53	270.92	24.62
GA/TC	0.66	0.05	-3.69	-0.30	38.27	3.10	-198.19	-16.05	-70.97	-5.75	225.80	18.28
GG/CC	-21.07	-1.69	7.73	0.69	37.57	3.36	-9.02	-0.81	161.96	14.50	404.06	36.17
AC/CT	33.72	2.78	41.41	3.41	51.33	4.22	-42.46	-3.50	78.53	6.64	573.88	47.23
AT/AT	-1.43	-0.11	2.00	0.16	59.20	4.61	-71.95	-5.60	-6.78	-0.53	471.14	36.88
GC/GC	4.38	0.34	8.69	0.68	27.33	2.13	-99.02	-7.72	2.01	0.16	496.81	38.71
TA/TA	6.82	0.62	-29.11	-2.67	58.59	5.37	-25.52	-2.34	-27.31	-2.50	42.34	3.88
CG/GC	-13.74	-1.23	-12.60	-1.13	47.39	4.26	-112.59	-10.11	-51.69	-4.64	94.01	8.45
Overall	5.31	17.43	13.26	29.01	48.79	14.72	-83.79	106.43	8.48	103.07	294.78	182.11

Regular	g_{1w} [pN nm]	g_{1w} [pN nm]	g_{1w} [pN nm]	g_{2px} [pN nm]	g_{2py} [pN nm]	g_{p2x} [pN nm]	g_{p2y} [pN nm]					
AA/TT	24.56	1.94	-6.28	-0.50	-329.44	-26.06	29.59	2.34	-21.04	-1.66	-6.48	-0.51
AG/CT	-81.54	7.41	7.33	0.66	-389.80	35.42	65.96	5.99	-11.02	-1.00	-40.44	-3.67
GA/TC	34.49	2.79	20.60	1.67	-181.36	-14.68	-20.43	1.65	-32.65	-2.64	-15.82	1.28
GG/CC	-169.38	-15.16	-35.06	-3.14	-435.37	-38.98	81.53	7.30	54.14	4.85	43.77	3.92
AC/CT	-41.87	-3.45	-10.97	-0.90	62.29	5.13	22.85	1.88	89.89	7.32	194.57	16.01
AT/AT	0.16	0.01	1.24	0.10	-12.40	-0.97	54.15	4.22	2.18	0.17	162.63	12.66
GC/GC	-129.99	-10.13	0.88	0.07	43.79	3.41	10.36	0.81	99.89	7.78	229.88	17.91
TA/TA	-91.95	-8.42	15.00	1.37	74.61	-6.83	-2.63	-0.24	56.92	5.21	-110.11	-10.08
CG/GC	-140.86	-12.55	-13.12	-1.18	-59.56	-5.35	36.48	3.28	27.93	2.51	-82.54	-7.41
Overall	-65.34	70.42	2.88	15.82	-140.51	182.99	29.52	31.23	29.71	45.54	26.15	127.40
Supplementary Table S13. Sequence-dependent mechanical coupling coefficients of nicked BP steps using the parmbsc1 force field. The mean and standard deviation are represented in the left and right column for each coefficient. The standard deviation is calculated by multiplying the off-diagonal value of the stiffness matrix by the standard deviation of the rise.

Nicked	g_{rx} [pN nm$^{-2}$]	g_{ry} [pN nm$^{-2}$]	g_{pz} [pN nm$^{-2}$]	g_{Dxy} [pN]	g_{Dyz} [pN]	g_{Dzx} [pN]
AA/TnT	5.89	0.53	29.36	2.66	30.89	2.79
AnA/TT	18.05	1.57	19.15	1.67	18.69	1.63
AG/CnT	12.99	1.21	36.73	3.66	26.50	2.64
AnG/CT	14.44	1.48	-0.74	0.08	19.03	1.95
GA/TnC	-17.05	-1.53	27.96	2.52	38.85	3.50
GnA/TC	1.22	0.12	-23.89	-2.34	32.39	3.18
GG/CnC	-40.90	-4.35	-4.98	-0.53	15.45	1.64
G/GnC	-0.12	-0.01	-17.66	-1.63	26.59	2.46
AC/GnT	16.63	1.48	20.76	1.85	9.21	0.82
AnC/GT	45.74	3.88	16.46	1.40	34.74	2.95
AT/AnT	-16.78	-1.37	-16.90	-1.38	18.97	1.55
GC/GnC	-2.61	-0.22	22.64	1.86	14.30	1.18
TG/CnA	-14.33	-1.42	6.14	0.61	31.75	3.15
TnG/CA	5.25	0.60	-38.59	-4.38	28.37	2.94
TA/TnA	7.04	0.77	0.99	0.11	35.33	3.87
CG/CnG	-17.44	-1.68	23.70	2.29	32.32	3.12

| Overall | 1.07 | 19.84 | 6.32 | 21.94 | 25.84 | 8.77 | -19.42 | 38.81 | 59.34 | 79.00 | 182.95 | 150.02 |

Nicked	g_{Dxy} [pN nm]	g_{Dyz} [pN nm]	g_{Dzx} [pN nm]
AA/TnT	-85.16	-7.70	-0.73
AnA/TT	2.51	0.22	91.58
AG/CnT	-89.33	-6.91	-59.26
AnG/CT	-12.45	-1.28	50.52
GA/TnC	-100.74	-9.07	-33.74
GnA/TC	20.02	1.96	87.91
GC/GnC	-34.30	-3.65	-13.07
AC/GnT	34.36	3.17	37.57
AT/AnT	-17.66	-1.50	46.41
GC/GnC	-96.96	-7.99	-69.11
TG/CnA	-90.30	-8.97	-14.66
TnG/CA	51.51	5.85	73.73
TA/TnA	-60.63	-6.64	-6.53
CG/CnG	-93.89	-9.06	-25.91

| Overall | -37.71 | 50.56 | 1.82 |

53
Supplementary Table S13 (Continued).

Nicked	$g_{\text{a} \text{a} \text{a}}$ [pN nm]	$g_{\text{a} \text{a} \text{b}}$ [pN nm]	$g_{\text{a} \text{b} \text{b}}$ [pN nm]
AA/TnT	55.01	4.97	-123.43
AnA/TT	-79.42	-6.92	-135.48
AG/CnT	-31.61	-3.15	-58.06
AnG/CT	-108.22	-11.09	-44.00
GA/TnC	-47.67	-4.29	-109.25
GnA/TC	-86.77	-8.51	-64.68
GG/CnC	30.14	3.21	-46.59
GnG/CC	-115.67	-10.68	-93.47
AC/GnT	-107.97	-9.62	-71.83
AnC/GT	-42.03	-3.57	-51.60
AT/AnT	-69.16	-5.66	-23.08
GC/GnC	-92.13	-7.59	-52.87
TG/CnA	-3.56	-0.35	-51.51
TnG/CA	-75.32	-8.55	-34.38
TA/TnA	-93.52	-10.24	-45.93
CG/CnG	-42.25	-4.08	-23.51
Overall	-56.88	49.85	-64.35

Note: The values represent the differences in energy barriers between the nicked and uncleaved states.
Supplementary Table S14. Rigidity ratio of nicked BP steps compared to regular BP steps.

Equivalent isotropic bending rigidity was used to calculate rigidity ratio values (Supplementary Method S3). The standard derivation (Std) of rigidity ratios in nicked BP steps compared to regular BP steps ($\sigma_{N/R}$) was approximated based on statistical theory as $\sigma_{N/R} = \frac{\alpha}{\beta} \sqrt{\sigma_\alpha^2 + \sigma_\beta^2}$ where α and β represent the mean values of two independent properties, and σ_α and σ_β indicate their standard deviations, respectively. For example, the standard deviation of C ratio as $\frac{C_{\text{nicked}}}{C_{\text{regular}}}$ was calculated when the mean and standard deviation values of C_{nicked} and C_{regular} were substituted into α, β, σ_α, and σ_β. Likewise, the standard deviations of B ratio or C/B ratio were obtained. A figure below the table shows the rigidity ratio values for each BP steps in ascending order of the mean C/B ratio.

Rigidity ratio (nicked/regular)	C/B ratio				C ratio				B ratio			
	Mean	Std	Rank	Mean	Std	Rank	Mean	Std	Rank	Mean	Std	Rank
AA/TnT	0.79	0.15	2	0.72	0.09	1	0.91	0.12	11			
AnA/TT	0.23	0.04	16	0.18	0.02	16	0.78	0.11	16			
AG/CnT	0.81	0.15	1	0.67	0.09	2	0.83	0.11	14			
AnG/CT	0.58	0.11	5	0.52	0.07	9	0.90	0.12	12			
GA/TnC	0.48	0.09	10	0.53	0.07	8	1.09	0.14	1			
GnA/TC	0.49	0.10	9	0.45	0.06	10	0.92	0.13	9			
GG/CnC	0.31	0.06	15	0.32	0.04	14	1.04	0.14	4			
GnG/CC	0.61	0.13	3	0.55	0.08	5	0.91	0.13	10			
AC/GnT	0.43	0.09	11	0.43	0.06	11	0.99	0.15	7			
AnC/CT	0.41	0.09	12	0.42	0.06	12	1.03	0.15	5			
AT/AnT	0.40	0.08	13	0.34	0.05	13	0.86	0.12	13			
GC/GnC	0.56	0.10	7	0.60	0.08	4	1.08	0.14	3			
TG/CnA	0.54	0.11	8	0.55	0.08	7	1.02	0.15	6			
TnG/CA	0.57	0.12	6	0.55	0.08	6	0.98	0.15	8			
TA/TnA	0.32	0.07	14	0.25	0.04	15	0.79	0.13	15			
CG/CnG	0.60	0.13	4	0.65	0.10	3	1.08	0.17	2			

A figure below the table shows the rigidity ratio values for each BP steps in ascending order of the mean C/B ratio.
Supplementary Table S15. The number of nicked BP steps used in the experimental design and mean rigidity ratio. Mean rigidity ratio was used as a reference value to design DNA origami structures.

Mean rigidity ratio of each structure was calculated by dividing the summation of multiplying each rigidity ratio and the corresponding number of nicked BP steps by sixty as the total number of nicked BP steps.

A figure below the table shows the mean rigidity ratio values for each structure.

The number of nicked BP steps	1-BP-insertion	2-BP-insertion	1-BP-insertion	2-BP-insertion				
	Stiff	Flexible	Moderate 1	Moderate 2	Flexible 1	Flexible 2		
AA/TnT	24	0	21	17	3	0	0	
AnA/Tt	0	26	0	0	5	23	23	
AG/CnT	12	0	6	10	0	0	0	
AnG/CT	1	0	4	5	12	5	0	0
GA/TnC	0	0	0	0	16	4	2	1
GnA/TC	0	3	0	0	5	5	2	2
GG/CnC	2	0	1	0	1	6	11	15
GtG/CC	0	2	2	3	0	4	0	0
AC/GnT	0	1	0	0	11	1	1	2
AnC/GT	0	0	0	0	4	3	4	5
AT/AnT	1	5	1	1	2	2	4	1
GC/GnC	4	0	4	3	1	3	0	0
TnG/CA	1	0	2	2	2	3	0	0
TA/TnA	0	11	0	0	0	4	13	11
CG/CnG	11	1	13	13	0	3	0	0
Sum	60	60	60	60	60	60	60	60

Mean rigidity ratio	1-BP-insertion	2-BP-insertion	1-BP-insertion	2-BP-insertion				
	Stiff	Flexible	Moderate 1	Moderate 2	Flexible 1	Flexible 2		
C/B ratio	0.7062	0.2986	0.6737	0.6710	0.4915	0.4803	0.3062	0.3023
C ratio	0.6580	0.2617	0.6352	0.6394	0.4889	0.4649	0.2722	0.2736
B ratio	0.9431	0.8607	0.9536	0.9633	0.9979	0.9591	0.8706	0.8864

<figure>

A figure below the table shows the mean rigidity ratio values for each structure.

- C/B ratio
- C ratio
- B ratio

56
Supplementary Table S16. Summary of AFM analysis. Trans ratio of DNA origami structures was calculated as the ratio of trans monomers for the total number of monomers. Trans ratio values of AFM images were used to calculate the standard deviation in brackets. Detailed values of AFM images were listed in Supplementary Table S11.

The number of monomers	1-BP-insertion	2-BP-insertion							
	Stiff	Flexible	Stiff 1	Stiff 2	Moderate 1	Moderate 2	Flexible 1	Flexible 2	Flexible 1 (PAGE)
Trans	760	860	722	681	714	895	818	788	523
Cis	1223	1308	631	490	489	498	311	317	203
Trans + Cis	1983	2168	1353	1171	1203	1393	1129	1105	887

Results	1-BP-insertion	2-BP-insertion							
	Stiff	Flexible	Stiff 1	Stiff 2	Moderate 1	Moderate 2	Flexible 1	Flexible 2	Flexible 1 (PAGE)
Trans ratio (Std)	0.3833 (0.0767)	0.3967 (0.0679)	0.5336 (0.0519)	0.5816 (0.0571)	0.5936 (0.0239)	0.6422 (0.0442)	0.7245 (0.0609)	0.7131 (0.0298)	0.7204 (0.0272)
Twist angle [°] (Std)	293.3 (16.0)	290.5 (13.8)	624.0 (8.5)	613.8 (11.4)	611.6 (4.8)	601.5 (9.6)	582.1 (17.6)	585.0 (9.5)	582.2 (7.2)
Supplementary Table S17. The number of monomers and trans-cis ratio from AFM images.

1-BP-insertion designs.

Structure design	AFM image	The number of monomers	Trans ratio	Cis ratio		
		Trans	Cis	Cis + Trans		
Stiff	1	22	32	54	0.4074	0.5926
	2	37	50	87	0.4253	0.5747
	3	52	59	111	0.4685	0.5315
	4	45	60	105	0.4286	0.5714
	5	33	50	83	0.3976	0.6024
	6	23	68	91	0.2527	0.7473
	7	20	53	73	0.2740	0.7260
	8	22	59	81	0.2716	0.7284
	9	25	60	85	0.2941	0.7059
	10	21	59	80	0.2625	0.7375
	11	26	58	84	0.3095	0.6905
	12	35	74	109	0.3211	0.6789
	13	48	65	113	0.4248	0.5752
	14	45	77	122	0.3889	0.6311
	15	52	55	107	0.4860	0.5140
	16	60	70	130	0.4615	0.5385
	17	35	66	101	0.3465	0.6535
	18	37	49	86	0.4302	0.5698
	19	34	47	81	0.4198	0.5802
	20	47	51	98	0.4796	0.5204
	21	41	61	102	0.4020	0.5980
	Sum	760	1223	1983	0.3833	0.6167
Flexible					0.0767	0.0767
	1	54	61	115	0.4696	0.5304
	2	47	64	111	0.4234	0.5766
	3	49	55	104	0.4712	0.5288
	4	42	51	93	0.4516	0.5484
	5	49	54	103	0.4757	0.5243
	6	56	53	109	0.5138	0.4862
	7	26	64	90	0.2889	0.7111
	8	29	66	95	0.3053	0.6947
	9	20	58	78	0.2564	0.7436
	10	36	67	103	0.3495	0.6505
	11	35	55	90	0.3889	0.6111
	12	45	80	125	0.3600	0.6400
	13	51	65	116	0.4397	0.5603
	14	36	68	104	0.3462	0.6538
	15	41	60	101	0.4059	0.5941
	16	44	60	104	0.4231	0.5769
	17	43	60	103	0.4175	0.5825
	18	33	74	107	0.3084	0.6916
	19	44	76	120	0.3667	0.6333
	20	38	57	95	0.4000	0.6000
	21	42	60	102	0.4118	0.5882
	Sum	860	1308	2168	0.3967	0.6033

58
Supplementary Table S17 (Continued).

2-BP-insertion designs.

Structure designs	AFM image	The number of monomers	Trans	Cis	Cis + Trans	Trans ratio	Cis ratio
Stiff 1	1	48	54	102	0.4706	0.5294	
	2	67	49	116	0.5776	0.4224	
	3	64	57	121	0.5289	0.4711	
	4	61	47	108	0.5648	0.4352	
	5	63	65	128	0.4922	0.5078	
	6	58	62	120	0.4833	0.5167	
	7	62	34	96	0.6458	0.3542	
	8	51	52	103	0.4951	0.5049	
	9	59	56	115	0.5130	0.4870	
	10	57	50	107	0.5327	0.4673	
	11	76	52	128	0.5938	0.4063	
	12	56	53	109	0.5138	0.4862	
	Sum	722	631	1353	Mean	0.5336	0.4664
					Std	0.0519	0.0519
	Stiff 2	1	62	55	117	0.5299	0.4701
		2	66	57	123	0.5366	0.4634
		3	56	47	103	0.5437	0.4563
		4	60	45	105	0.5714	0.4286
		5	76	32	108	0.7037	0.2963
		6	58	43	101	0.5743	0.4257
		7	70	42	112	0.6250	0.3750
		8	70	37	107	0.6542	0.3458
		9	56	41	97	0.5773	0.4227
		10	57	45	102	0.5588	0.4412
		11	50	46	96	0.5208	0.4792
		Sum	681	490	Mean	0.5816	0.4184
					Std	0.0571	0.0571
	Moderate 1	1	73	54	127	0.5748	0.4252
		2	63	37	100	0.6300	0.3700
		3	53	34	87	0.6092	0.3908
		4	52	41	93	0.5591	0.4409
		5	53	41	94	0.5638	0.4362
		6	70	46	116	0.6034	0.3966
		7	58	42	100	0.5800	0.4200
		8	61	42	103	0.5922	0.4078
		9	65	42	107	0.6075	0.3925
		10	59	34	93	0.6344	0.3656
		11	58	41	99	0.5859	0.4141
		12	49	35	84	0.5833	0.4167
		Sum	714	489	Mean	0.5935	0.4065
					Std	0.0239	0.0239
	Moderate 2	1	102	45	147	0.6939	0.3061
		2	85	41	126	0.6746	0.3254
		3	67	38	105	0.6381	0.3619
		4	67	51	118	0.5678	0.4322
		5	69	39	108	0.6389	0.3611
		6	65	47	112	0.5804	0.4196
		7	74	43	117	0.6325	0.3675
		8	72	31	103	0.6990	0.3010
		9	71	34	105	0.6762	0.3238
		10	78	53	131	0.5954	0.4046
		11	79	37	116	0.6810	0.3190
		12	66	39	105	0.6286	0.3714
		Sum	895	498	Mean	0.6425	0.3575
					Std	0.0442	0.0442
Supplementary Table S17 (Continued).

2-BP-insertion designs.

Structure designs	AFM image	The number of monomers	Trans ratio	Cis ratio				
		Trans	Cis	Trans + Cis				
Flexible 1	1	104	27	131	0.7939	0.2061		
	2	68	37	105	0.6476	0.3524		
	3	76	31	107	0.7103	0.2897		
	4	64	23	87	0.7356	0.2644		
	5	75	31	106	0.7075	0.2925		
	6	87	36	123	0.7073	0.2927		
	7	81	26	107	0.7570	0.2430		
	8	72	25	97	0.7423	0.2577		
	9	75	26	101	0.7426	0.2574		
	10	77	21	98	0.7857	0.2143		
	11	39	28	67	0.5821	0.4179		
		Sum	**818**	**311**	**1129**	**Mean**	**0.7245**	**0.2755**
						Std	**0.0609**	**0.0609**
Flexible 2	1	61	26	87	0.7011	0.2989		
	2	54	29	83	0.6506	0.3494		
	3	67	26	93	0.7204	0.2796		
	4	67	21	88	0.7614	0.2386		
	5	79	30	109	0.7248	0.2752		
	6	59	27	86	0.6880	0.3140		
	7	62	28	90	0.6889	0.3111		
	8	76	31	107	0.7103	0.2897		
	9	65	24	89	0.7303	0.2697		
	10	78	27	105	0.7429	0.2571		
	11	62	27	89	0.6966	0.3034		
	12	58	21	79	0.7342	0.2658		
		Sum	**788**	**317**	**1105**	**Mean**	**0.7131**	**0.2869**
						Std	**0.0298**	**0.0298**
Flexible 1 (PAGE)	1	70	26	96	0.7292	0.2708		
	2	74	32	106	0.6981	0.3019		
	3	77	24	101	0.7624	0.2376		
	4	69	26	95	0.7263	0.2737		
	5	71	33	104	0.6827	0.3173		
	6	83	29	112	0.7411	0.2589		
	7	79	33	112	0.7054	0.2946		
		Sum	**523**	**203**	**726**	**Mean**	**0.7204**	**0.2796**
						Std	**0.0272**	**0.0272**
Supplementary Table S18. Staple sequences used in 6HB DNA origami structures.

Stiff design with 1-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
2	Twisting block 1	TTGCTAAAGGAGGAGGAGAGCATAGTTAAAGGCTGAGTTACAGTC
3	Twisting block 1	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
4	Twisting block 1	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
5	Twisting block 1	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
6	Twisting block 1	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
7	Twisting block 2	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
8	Twisting block 2	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
9	Twisting block 2	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
10	Twisting block 2	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
11	Twisting block 2	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
12	Twisting block 2	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
13	Twisting block 3	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
14	Twisting block 3	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
15	Twisting block 3	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
16	Twisting block 3	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
17	Twisting block 3	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
18	Twisting block 3	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
19	Twisting block 4	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
20	Twisting block 4	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
21	Twisting block 4	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
22	Twisting block 4	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
23	Twisting block 4	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
24	Twisting block 4	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
25	Twisting block 5	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
26	Twisting block 5	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
27	Twisting block 5	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
28	Twisting block 5	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
29	Twisting block 5	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
30	Twisting block 5	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
31	Twisting block 6	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
32	Twisting block 6	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
33	Twisting block 6	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
34	Twisting block 6	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
35	Twisting block 6	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
36	Twisting block 6	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
37	Twisting block 7	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
38	Twisting block 7	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
39	Twisting block 7	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
40	Twisting block 7	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
41	Twisting block 7	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
42	Twisting block 7	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
43	Twisting block 8	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
44	Twisting block 8	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
45	Twisting block 8	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
46	Twisting block 8	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
47	Twisting block 8	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
48	Twisting block 8	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
49	Twisting block 9	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
50	Twisting block 9	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
51	Twisting block 9	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
52	Twisting block 9	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
53	Twisting block 9	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
54	Twisting block 9	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
55	Twisting block 10	TTGACCCCCAGCTGGAAAAGCTGAGTTAAATGGCTGGACAGAAAAC
56	Twisting block 10	TTGCTAAAGGAGGAGGAGGAGCATAGTTAAAGGCTGAGTTACAGTC
57	Twisting block 10	TAAACCCGAGCCCCTTATAGCTGAGTTAAAGGCTGAGTTACAGTC
58	Twisting block 10	GGAACCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
59	Twisting block 10	GAAATCTACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
60	Twisting block 10	GCACACATACACACTAACTAGCTGAGTTAAAGGCTGAGTTACAGTC
61	Flag 1	AAAAGGGGTAGACGTGAGTTAAAAGGCTGAGTTACAGTC
Supplementary Table S18 (Continued).

Flexible design with 1-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	CCCAGCTTGAATAAGCTTGAATGAAAACTTGAATTTGACGGACATA
2		AGCCCAAAGAGAAGAGGCAACGCGAGCAATATGGAAGG
3		TTTGCTAATGGAGGAGGATAGGTGTTATGACGAGG
4		ACCCTAACAAATCTACAAACTAAATAAGGTGACAG
5		ATTTTCTCAAGGATATAGCAGCAGTATGCAAGG
6		AGCCCGGAATAACCCCCGGATGTGAGCTTCTTGAATA
7	Twisting block 2	ACTGACCATAAGGATGAAAAAGAGGCCAGATGGCCAGGACAG
8		AGATTTTCTTGAAAAAAGAAATACATCAACCTCAGAAAA
9		GTTTTGTGCTTGTGSGGACACACATTCAACATAATAGGCTTGGAC
10		AGCCGGGGAACCTCAGACATCAGCCACACATGGAGGAGAAGAGAC
11		CTTAATTTAGAGGCAAGAGGAGGACAGTATGAAAGG
12		AAACGGAATAGGTTGAGCAGTATGGCAGAATCAGG
13	Twisting block 3	ACCGATGG TTCAGCACCAAGGACAGG
14		CAGGCAGTATAGGCGAGGAAGTGAAGACATTCTTTT
15		ACTAAGCTGGCTGAGAATAGCTTTGAGG
16		AACAGCTAATATGGAGTTGAGGACAG
17		GGCCGCTTAAATAGGCTGAGGTTGAGG
18		ATACAGCTTCTACATAAAACGAGATTGAGG
19		ACACCACGACCTTTAGGAGGTGAGGAGG
20		AGCGACCCAGACCTTTAGGAGGTGAGGAGG
21		ACAGAAGCTGGCATATAAGCCCAGCAGG
22		ACACTGCGGCAGGCTTGGAGGAGG
23		ACCTGACCGCAGCAGGCTTGGAGGAGG
24		ACCATGCCACCTTGGAGGAGG
25	Twisting block 4	ATGTTGCTTCAGGACGAATAAGTGAAGAGG
26		AGTTAAGGAAAGGCGCTAGGAAAATAGG
27		CTCTTTTATGACGAGGACAGG
28		TCTTCAATGTTGACGAATAAGTGAAGAGG
29		ATCATTTAGGAGGAGGAGGAGG
30		CTCAAGAGCAGCAGCAGGAGGAGG
31		CTTAGAAGCTGGCAGCAGGAGG
32		CTTAGAAGCTGGCAGCAGGAGG
33		ACAGAAGCTGGCAGCAGGAGG
34		ACAGAAGCTGGCAGCAGGAGG
35		ATGACGAGAAGAGGAGGAGG
36		ATGACGAGAAGAGGAGGAGG
37	Twisting block 5	ACCGAGAACACCGTCGTCAGACTGTAGCGCCTCTGAAGCTGAGACTC
38		AGTTTGCAGCGTCATGAAAAAGTTGAGG
39		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
40		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
41		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
42		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
43		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
44		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
45		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
46		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
47		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
48		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
49		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
50		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
51		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
52		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
53		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
54		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
55		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
56		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
57		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
58		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
59		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
60		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG
61		ATGGTTTAGAAATAACGAACTTTACTGAGGTGAGG

Flag 1: AAGGGGGAACGAGTGGATTTGGCACAGGAGGTCAGGAGGAGG

Flag 2: AAGGGTGAACGTGAGGTGAGGAAAGGAGGTCAGGAGGAGG
128	CCATACCGAATCTTTAAAAATGACCAAGTAAATT
129	CCACGCTTTTCATCAACAACATGGTCACGGCTATAATTT
130	CCTCAAATATAATCAACATGGTAGACACGCAACGACAG
131	CCTGTTTTTCTACTTTCTTGGACTCTGAAATAACAG
132	CGCGCTTTCTGTTAAATCCATAAGCAGCTTAGATGATCAAAGAA
133	CGTCTTTACCAAGTATAGATGTTGCTGATCTATATTAGTT
134	GAAATACCGCAGGAAAAAGCTGTATATAACAGAAGAAGG
135	GACGAAGTGGAATCAAAGACGCCACAGCGCTTTGCA
136	GCTGAAGAACCTCCGGCTAGGGGATACGGGACCT
137	GCTAATAGAAATAAGTAGGAAATATTACGCTAAAAAT
138	GGGGACATCGGAAGGGCCACATTAAAGGAATTAATAGGA
139	GTATACCCAGAGCTGGCTTGCTAATGTAAATTAGCTG
140	GTTATCTTACGGAACAACTCAGTGTAATATACGTTA
141	TAGAACCTACCATAAAAAAAGGAAATAGGAAACCACGAGG
142	TATACCTCTGAAATAATGAGAGGACATTTGCAAT
143	TATATGCTCTCTCTGCTCTTCGGAGGCTTTACG
144	TATCCCATACTAGTGCTGATAAAAATAGGGAAAAAAACAGC
145	TGAATAACTACATCTTTAACGTTGCTATCCATTT
146	TGAATAACCTGAGTGTGTTGAAATACCTCTTTCATAGAGTC
147	TGCTATTAGCCAGACCCACAGCACGCCGCTCAACTGAA
148	TGAATAATCCACCTGCCGACACATCTAAGAAGCATGGCAG
149	TTATTTTGGATATCAGATCGAACATATTAAATTTGCAGTTTATA
150	TCGTAAAAGATTTGCAATTTAAAGGAATACCTTGAGAT
151	TTTACAAACATTGGAATACATGGCTAATATGACCTG
152	TTTCATAGTTATCAGTAAAGGCAAAATGACCAAGCAG
153	TTGCTACATCCGGAGTGAATACCAAAGTACCTGGTCAATACA
154	TTTCAGCTAATTGGGTTTTTTCCGAGCAGAC
155	TTTCATACAAATTTTTCACCAGTCACAAACTTTCAATAGG
Supplementary Table S18 (Continued).

Stiff 1 design with 2-BP-insertion.

Index	Location	Staple sequence
1	Twisting 1	GCCAAAAAGGCTCCATCATTTTGACCCCCAGGCTTGATCAAGAGTT
Flag 2

DNA Sequence
AACGAGAAAAGCGGTATTGCTATATTTTATCTCACTACGGCTATG
AGGCCAATACGTCTAAATTATTTAAATTAATACAGGGTGATG
AGGTAAACCGGGGACCAAGGCTAAAGGAGAGGATTTTTCTG
AGGCAAAGCTCCACGCGGCTGTCAGGCTAGTTGAGTTG
AGGTTAAGGTTTGGCAGAGATAGCTTTCAGACAGGCTATG
ATTTAAGGCTGAGAACCGGTAAAGTGCTGGACAGAAGT
CAGAAAGCTCAGTTGCTGTTATACGACAGGCTACGAGATTG
CCGAATTTCGAAAGTCATCCCAAGACTTTTATTGAGTTG
CGGGTTGAGTAAACGTAAATTT
CGTAAAATTCATCATAATTCG
CTGACTAGCGCCGACAGTGGATATTTTATATTAC
CTGGAAGGTACCAAGCCGGAGACAGTCAGAACAAGAGTAAAA
CTGGTTTGTCTGGAAAAAGGTGGCATCACATTTGGTTATAGT
CTGTGTGAGTGTAAAGCCTCAACTGTTGGGATGTGCTGTTTC
GAAACAAAATTTTGCTTAGTAAATGAATTACCATCAGTCGAGGTG
GAACGAGAAAATTAATCTAGCTGATAAATAAAAGAAGTCATAA
GAGCTCACAATACATAGCAATTAACTGCTACCCCAACCGAGG
GATTAGCTGATCCGCTGAAATCCTCTATCAGTAATAGT
TATCCGCTCGAATTCGATATGAGCTGCATCGAGGATACC
TATTAAAGGAGAAAGAAACATGTAGCTACCCCAACCGAGG
TTCCAGGAGTGGCAGTACAACTCAGACAGACAAACAG
TTTCAGGAGTGAGCTAATCTGAGACACGGGAGGGAAGG
ACAAATCTCTTTGAGGTGCAGTATCAAGACAGGCAAGT
AGCAAGCTCAGTTGCTGTTATACGACAGGCTACGAGATTG
ATATTATTAGATAGTGACAAACCCAGTATTAAAGATAAATA
ATGTTAAGGTTTGGCAGAGATAGCTTTCAGACAGGCTATG
ATGTTTGTCTGGAAAAAGGTGGCATCACATTTGGTTATAGT
ATGTTGAGTGTAAAGCCTCAACTGTTGGGATGTGCTGTTTC
GTAGCTACGGCAAACCCCTCAAATGCTTATTAAGATCGCAAA
TTCCAGGAGTGAGCTAATCTGAGACACGGGAGGGAAGG
TTCCAGGAGTGAGCTAATCTGAGACACGGGAGGGAAGG

Flag 2
128	CCATACCGAATCTTTAAATAGAACAAATGCTCATGTAATTT
129	CCACGCTTTTCATCAACACTAGTTCCACCGCTCAATTCAAAT
130	CCTCAAAATAATAACAGTTGAAGATTAGAGCCGTCAAGAC
131	CCTGTCTTCTCATCTCTGTGACCCTCTGAAATAACGAG
132	CGCGCTCTGTGAAATCCATAGCAATGCTGATTCAAGGAA
133	CGACGCAAGAAATAAGGCAGGAGAGAGCACTTTGCA
134	CGTCTTTACCAAAAGGCTGTTTAAATAAAACAG
135	GACGAGCTGAGATCAAAGAAGCGAGAGAGCACTTTGCA
136	GCTGAGAACCTCCGCTTAAGGAAATACGGGCTT
137	GCTTAATATAAGTAGAATGAGAATGAGAAGGAGG
138	GGGACATGGAAAGGCAAAATTAAAGGTAAAG
139	GTAAACCCAGAAGCTGTAGAATCAAAGAG
140	GTGATCTTTGAGGAGCAACTAAGAACACTCGTGCAG
141	TAGAACCCTTACCATATAAAAAAGAATGAAAG
142	TATACCTTCTGATAATGAGAAGCAGATTGTTGAGT
143	TATATGTCCTTCTGTGCTGGAGAGGTTGTCAG
144	TATCCCATACGATCTGATATAAAATAAGGAAAAACAAAAG
145	TGAAACTACTACATTGTTGAAAAATAAGGGG
146	TGAAACTACTACATTGTTGAAAAATAAGGGG
147	TGCGCTCTGAGAAGCAGCAGACTCGTCAACTGAA
148	TTTAAAAAGGGCTTAGTGTGATGATATTGAAATAG
149	TTAATTTGATTACATGATGATGAAATAATACGCTGTGTTTATA
150	TTTTTAAAGGAGTACATGACGTAAATACGGAATAGCAGGATG
151	TTTCACAATGAGTAACATATTGAGAATGAGGATTACCTTGCAG
152	TTTTACATTACGTATAAAAGGCAATGACAGCAGG
153	TTGGTTGATACGGGAGTTGAATACGACGACGTCATCAGTCAATACAG
154	TTTTAGCAGTAATGAGGTTTTTTCTGAGGCAAGC
155	TTTTATACAAATTTTCACCAACTCAACAAACTTTCAGTAGG
Supplementary Table S18 (Continued).

Stiff 2 design with 2-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	GCCAAAAGGTCCTACATTTGAGCCGCCAGCTTTAGAAAGTGT
2		GAGAAATAGAAACACTGTTACATTGAGGGAACAATGGGAGGAAAGTGTT
3		ACTAAAGGGAGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
4		GCGACGCTGGATTTATCGGGGAACCTTATAAACAGCGATCTCGGGAGGT
5		GTGGCCGATACCGAGCAGGAGAACTATGATGTAAGGGTGTGAGCAGGTATCAGGAAA
6		TGGCTGCTTACACTACAGCGCCGATAGTGAAGGATTTGACGCTAGTATGAGC
7		GTGACAGGAGCGCCACCAAGCATTTAACAGGAAATATTGCTAGGATG
8		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
9		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
10		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
11		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
12		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
13		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
14		GCCACATCTCCACGTCACCACTACATTACAGCGGAGGAGGAAAGGAAAGGAA
15		GCGACGCTGGATTTATCGGGGAACCTTATAAACAGCGATCTCGGGAGGT
16		TGGCTGCTTACACTACAGCGCCGATAGTGAAGGATTTGACGCTAGTATGAGC
17		GTGACAGGAGCGCCACCAAGCATTTAACAGGAAATATTGCTAGGATG
18		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
19		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
20		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
21		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
22		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
23		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
24		GCCACATCTCCACGTCACCACTACATTACAGCGGAGGAGGAAAGGAAAGGAA
25		GCGACGCTGGATTTATCGGGGAACCTTATAAACAGCGATCTCGGGAGGT
26		TGGCTGCTTACACTACAGCGCCGATAGTGAAGGATTTGACGCTAGTATGAGC
27		GTGACAGGAGCGCCACCAAGCATTTAACAGGAAATATTGCTAGGATG
28		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
29		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
30		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
31		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
32		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
33		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
34		GCCACATCTCCACGTCACCACTACATTACAGCGGAGGAGGAAAGGAAAGGAA
35		GCGACGCTGGATTTATCGGGGAACCTTATAAACAGCGATCTCGGGAGGT
36		TGGCTGCTTACACTACAGCGCCGATAGTGAAGGATTTGACGCTAGTATGAGC
37		GTGACAGGAGCGCCACCAAGCATTTAACAGGAAATATTGCTAGGATG
38		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
39		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
40		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
41		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
42		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
43		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
44		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
45		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
46		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
47		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
48		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
49		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
50		GCCACATCTCCACGTCACCACTACATTACAGCGGAGGAGGAAAGGAAAGGAA
51		TGGCTGCTTACACTACAGCGCCGATAGTGAAGGATTTGACGCTAGTATGAGC
52		GTGACAGGAGCGCCACCAAGCATTTAACAGGAAATATTGCTAGGATG
53		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
54		TCAACCTTGATTTATCAGGCTAGTATACAGGAAATATTGCTAGGATG
55		GTAACAGGAGGAAAGGGAAGGAAAATAACGAAAATGAGGAAAGGAAAGGAAAGGAA
56		GAAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA
57		TAAAGACTCATGGCAGCAGCAGCACCAAGCAGACGGGTTAAGGGAAGGAAAGGAA
58		GTTACGCTTGTTACAGCGCCGACCGTATTTGAGGATTTGAGGAAAGGAAAGGAA
59		TCACTCGTGAATTGAGAACTTACAGCGCCGACTTTGAGTTGAGGAAAGGGAAGGAA
60	Flag 1	AAAGGGGAGGACACTCATTAGTTAGGTAAGGCGCCGCCATATACAA

70
Line	Sequence
62	AACGAGAAAGCGGTATTTGACCTATATTTATCTACGCTATTGACCATTAAGCATGAACAGGTTGTTT
63	AACGCAATCACGCTCAAAATTTAAATTAGCTGAGGAAATCTCACATGATATG
64	AGATAGGCAACGCGTGAACAAAGGCTGTTGTAAACGACGGTTAGG
65	AGTGCGGCTAACGCGGAAGCCACTACGGTGAACAGGACCAAGTAAAT
66	CAGAAACGCTGACACGAGGCTGACCTGACCATGATATG
67	CAAAACACAGCAGGAAAACAGGAGAAATCCGACGATATG
68	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
69	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
70	CGTGACGTATGTTATCCTGATGTGACGCTTATGAGGACCAAAAGCC
71	CGAAAGATTATCACTCTTTAATAATCAAGGAAGCTCATAAAAG
72	CTGACATCACGCAATAGCATACTGACGATATG
73	GAGCTGGCAACCGCTCCGGACAGGAAATCCGACGATATG
74	GCTTTTGATTTTCACTGGAAGAGGAAATCCGACGATATG
75	TATCCGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
76	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
77	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
78	CGTGACGTATGTTATCCTGATGTGACGCTTATGAGGACCAAAAGCC
79	CGAAAGATTATCACTCTTTAATAATCAAGGAAGCTCATAAAAG
80	CTGACATCACGCAATAGCATACTGACGATATG
81	GAGCTGGCAACCGCTCCGGACAGGAAATCCGACGATATG
82	GCTTTTGATTTTCACTGGAAGAGGAAATCCGACGATATG
83	TATCCGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
84	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
85	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
86	CTGACATCACGCAATAGCATACTGACGATATG
87	GAGCTGGCAACCGCTCCGGACAGGAAATCCGACGATATG
88	GCTTTTGATTTTCACTGGAAGAGGAAATCCGACGATATG
89	TATCCGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
90	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
91	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
92	CTGACATCACGCAATAGCATACTGACGATATG
93	GAGCTGGCAACCGCTCCGGACAGGAAATCCGACGATATG
94	GCTTTTGATTTTCACTGGAAGAGGAAATCCGACGATATG
95	TATCCGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
96	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
97	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
98	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
99	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
100	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
101	CCAGCTGCAGGTGTTGTGGGCGCATCGGATCGCACTTCGTG
102	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
103	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
104	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
105	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
106	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
107	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
108	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
109	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
110	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
111	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
112	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
113	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
114	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
115	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
116	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
117	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
118	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
119	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
120	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
121	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
122	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
123	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
124	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
125	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
126	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
127	CGGAAATTTTTTGACCAATAAAATCATCATAATGTGAGAGCC
---	---
128	CCATACCGGAAATCTTTAAATAGAAGCAGAATGCTCATGTAATTT
129	CCCAGCTTTTTCACAAAACATTTTTCACCGGCTCAATTTCAAT
130	CCTCAAAATAATCAACAGTGTGAATTAGAGCCGCTAGAAGAC
131	CCTGTTTTTCTTACTTCTTCTGACCTCTGAAATACGAG
132	CCGGCTTTCTGTGAAATCCATAGCGATAGCTTAGATTCAAAAGAA
133	CGTCTTTACCAGTAGTATAAGTCTCTGTATCATATAAGGT
134	GAATAACCGGACCAGAAAACCTGTAAAACAAAGAGAACAGG
135	GACGACGCTGAGAATCAAACGGAGAGACCAGCTTTTCGAAG
136	GCTGAGAACTCGGCCGTAGGGAATACGGCGTTTT
137	GCTTAAATAGAAATAAGTAGGAACTATTGCTAAAAAAT
138	GGGGATGCGAAAGGGCCATATTAGAAGTAAATGAATAAG
139	GTATACCCAGAGCTTGAGCTGAAATTGAAATATAGG
140	GTATCTTAGAGGCCCTAAACACTCTGATATTAAATAGT
141	TAAACAATACCATATAAAGAAATAGGAAACGAGAGGT
142	TATACCTCTGAAATAGAGGAGACATTTTCGAGTTTCAG
143	TATATGTCTTTTCTGCTGCGGAGGAGTTTCAG
144	TATCCCATACGTAGTTGATAAAATAAGGGAAAACAAACAGC
145	TGAATAACTCATTCTTTGTTCCGATTCTTCCAAATATA
146	TGAATAACCTGTAGTTGTTGAATACCTTTTTAAGAGTTCA
147	TGGCTTTATGCGAAACCAGACGAGACCGACTGCAACTGAA
148	TTAATTTAGCTTTAGATGCTATTACATAAAGCATGCGAGGAG
149	TTAATTTTAGCTTTAGATGCTATTACATAAAGCATGCGAGGAG
150	TTAATTTTAGCTTTAGATGCTATTACATAAAGCATGCGAGGAG
151	TTACAAACACACTTTGAGCAATACATGCAGAATACACACCAAT
152	TTACAGATTTAACGAATGAGCAGAATACACACCAAT
153	TTGCTTTACATCGGGATGTAATTACAGATCTCGTGCAATACA
154	TTATAGCGGTTAGGTTTTTTTCGAGGCAAGG
155	TTATACAAATTTTTCCACAGTCAACAAAACTTTTCAGTGGG
Supplementary Table S18 (Continued).

Moderate 1 design with 2-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	CGTTTTCGACTAACGAGCATAGTAAAGAGATTTGAGCCAGCGCAGG
2		CGCCGACTTTGGAATTATCTCGGAACTAAAGAGGCTACTGGGAG
3		AAAAGCTTCCATACTTGCAATTCATTGGAGATAGTTGAGGGGAG
4		TGGAGATAGTAAAGAGGAGCTACTGGGAGATAGTTGAGGGGAG
5		CCTTTTCGACTAACGAGCATAGTAAAGAGATTTGAGCCAGCGCAGG
6		CCTTTTCGACTAACGAGCATAGTAAAGAGATTTGAGCCAGCGCAGG
7	Twisting block 2	CGCTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
8		CGCTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
9		CGCTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
10		CGCTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
11		CCAGCCGACTAACGAGCATAGTAAAGAGATTTGAGCCAGCGCAGG
12		CCAGCCGACTAACGAGCATAGTAAAGAGATTTGAGCCAGCGCAGG
13	Twisting block 3	GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
14		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
15		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
16		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
17		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
18		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
19		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
20		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
21		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
22		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
23		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
24		GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
25	Twisting block 5	TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
26		TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
27		TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
28		TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
29		TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
30		TAATCAGTGTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
31	Twisting block 6	CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
32		CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
33		CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
34		CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
35		CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
36		CACGGTGTAAACCAGACGTAAACAACTTTCAACAGATTATATCGAAAT
37	Twisting block 7	GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
38		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
39		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
40		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
41		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
42		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
43		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
44		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
45		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
46		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
47		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
48		GGGATTTTAGAACCAGGCAGAGCCGCCACCCTCTACAGTGGAGATAGTTGAGGGGAG
49	Twisting block 8	TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
50		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
51		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
52		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
53		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
54		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
55		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
56		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
57		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
58		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
59		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
60		TATACATGGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG
61	Flag 1	GACGCTTGAATATGAGAGCTACCTTGGAGATAGTTGAGGGGAG

Flag 1

AAACAAAATTTTGTCTTGAATAGTTAATACCATCAGTGCGAG
AAAGGGTGAAAGCTGAGTTTTGCCAGAGGGTCAGGAACGGTGT
62
AACGAGAAAACGGGTTTAGCTATATTTTATTCTACGTCATTG
63
AACGCCAATCAGCTCATAATTTTTATTTAATCAGCGGTAAT
64
AGATAGGCAACCGTGCAATAAAGCCTCAATTCCCATCAAAGC
65
AGCTGGCGGGTAACGCCAGGGCACGACGTTGTAAAACGACGGTTA
66
AGTAGCATAACCTGATTGCATCAAAAAGTAAACAGGGTGGTT
67
AGTTGAAAGGGGGAAGGGCGCCATTTTTCCGGTCAGGAATAA
68
ATATTCACTTCAAAAGTTTGACCATTAGAGGCAAGGGAGAGG
69
ATCGGTTTTTCATTGCAAACTCCAACAGGGGTAATAGTCCAC
70
ATGGCTTTTACCAGGGCCCACTACGTGATTGAACCCTCATAT
71
ATTAGCATAGATTTTATCGCGTTTTAATCGGAATCTAGCCCG
72
ATTTTAAGGGCGATACGACGATAAAAACGGTCATTATAATGC
73
CAGAAGCATGACCACAGGCGAGCCCTGAGAGAGTTGTGAGAC
74
CCAAAAACAGGATGGCAAACAAGAGAATCGAGTAACAATAGG
75
CCAGCTGCCAGGTTGTTGCGCATTAGCCTGGACTGCTCGTG
76
CCGAATTITTTGGCATAATACATACATACATTGGAAGCC
77
CCGTCACGTTGATTCTCCATGTGAGCGATGAAAAAAGCC
78
CCTGAGGAGCCCCAGTAAATAACGAGCTACACCACCG
79
CCTGATAACAATCATACATAACCTCCTGATATTGTATCATCG
80
CGAAAGATTTGAAATACCTCCTTATAAATCTAATGCCGAAAGA
81
CGGTTGAGTTACGTAATACCTCCTCCTCCTGAAATCTGAAAT
82
CGTTGAGTAAACGTAATTIT
83
CCTGAATTITCATACATACAGTTTCTGAGGCTGCTCCTACTG
84
CTGACAGACGGCGCCAGATGTAAGCAATTITTTATACCC
85
CTGGAAGGGCGGAAAGCGACGAGCTGCAAGAAAGAGGAGGAA
86
CTGGTTTCTCGGGAAAAAGGTGCGATACATTITTTATACCC
87
CTGTGAGCTGTAAATACCATACATACATTGGAAGCC
88
GAGCTCAGAATATTCTCCTCTTTGAAAATTGCAATAAAAGAGGCT
89
GAGCTCAGAATATTCTCCTCTTTGAAAATTGCAATAAAAGAGGCT
90
GACAGAGCTGCAATATTCTCCTCTTTGAAAATTGCAATAAAAGAGGCT
91
GCATTGCGCATTCTGCAATTCTGCAAGGCGGCCAGTGCCAGCTTT
92
GCATTCTGCCAGGAAACTCTGCCAGGCCGCGCTCTGGGGGTT
93
GCTTTTGTATITCTTTTAAATATGCAATGTAATAAGATCTCAAA
94
GGGGAACAACAGCAGGTCTTTGAAAGAGGAGGCAA
95
GGGCAACTACGGCAGCAATTTATGCAATGTAATAAGATCTCAAA
96
GGTACCTTCCAGAATATTCTCCTCTTTGAAAATTGCAATAAAAGAGGCT
97
GTGCTTTTGTATITCTTTTAAATATGCAATGTAATAAGATCTCAAA
98
GATATCCAAATTTACATACATACATTGGAAGCC
99
GATATCCAAATTTACATACATACATTGGAAGCC
100
GATATCCAAATTTACATACATACATTGGAAGCC
101
GATATCCAAATTTACATACATACATTGGAAGCC
102
GATATCCAAATTTACATACATACATTGGAAGCC
103
GATATCCAAATTTACATACATACATTGGAAGCC
104
GATATCCAAATTTACATACATACATTGGAAGCC
105
GATATCCAAATTTACATACATACATTGGAAGCC
106
GATATCCAAATTTACATACATACATTGGAAGCC
107
GATATCCAAATTTACATACATACATTGGAAGCC
108
GATATCCAAATTTACATACATACATTGGAAGCC
109
GATATCCAAATTTACATACATACATTGGAAGCC
110
GATATCCAAATTTACATACATACATTGGAAGCC
111
GATATCCAAATTTACATACATACATTGGAAGCC
112
GATATCCAAATTTACATACATACATTGGAAGCC
113
GATATCCAAATTTACATACATACATTGGAAGCC
114
GATATCCAAATTTACATACATACATTGGAAGCC
115
GATATCCAAATTTACATACATACATTGGAAGCC
116
GATATCCAAATTTACATACATACATTGGAAGCC
117
GATATCCAAATTTACATACATACATTGGAAGCC
118
GATATCCAAATTTACATACATACATTGGAAGCC
119
GATATCCAAATTTACATACATACATTGGAAGCC
120
GATATCCAAATTTACATACATACATTGGAAGCC
121
GATATCCAAATTTACATACATACATTGGAAGCC
122
GATATCCAAATTTACATACATACATTGGAAGCC
123
GATATCCAAATTTACATACATACATTGGAAGCC
124
GATATCCAAATTTACATACATACATTGGAAGCC
125
GATATCCAAATTTACATACATACATTGGAAGCC
126
GATATCCAAATTTACATACATACATTGGAAGCC
127
GATATCCAAATTTACATACATACATTGGAAGCC

Flag 2

ACAATCTTTCATTTACGCTTGACGTAAACGCAATATTCTACGGTAC
112
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
113
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
114
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
115
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
116
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
117
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
118
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
119
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
120
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
121
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
122
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
123
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
124
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
125
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
126
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
127
AGCGAAAGTGAAATCTGCGGTTACTCAGTCTGAGCTTTTTTTTTTTT
128	CCATACCGAATCTTATAATAGAACAAGACATGCTCATGTAATTT
129	CCACGCTTTTTCACCAACATGTTTCGCGCTTACATTCAAT
130	CCTCAAAATAATAACAGATTGAAGATTAGACGCGATCAGAC
131	CCTGTTTTTCTACTCTTTGCTGACCCCTCTGAAAATAACGGAG
132	CGCCGCTCTGTGAAAATCCAGATAGCTTATATGAATAAGAA
133	GACGACCTGAGATCAAAGACGACGAGAAGATTGCAATTTGCA
134	GCTGAGAACCTCCGGCTTAGGGAATAGCGCTTT
135	GCTTAAATACATAAGATAGGAAATACGATTTGCTAAATAAA
136	GGGACATGGCAAGGGGCAATATTAAAGAAGAAATATAAGCA
137	GTATATACCGAGCTTGGCTCAATCTGAATAATITGAGGTT
138	GTTATCGGAGGCATAAACACTCTGTATATGAAACGGT
139	TAAACATCCATAAATAAAGAAATATGAAAAGTTGAAACCCGAGG
140	TATACTTCGATAAAATAGGAGACAGATTGTAAGG
141	TATATGTCCTTCTGCTGGCGAGATGTTT
142	TATCCATTACATGTTGATAAAAATAAGGGAAAAACACAGC
143	TGAATAACCTGAGTGGTTGGAATATCCCTTTTAAGGCTA
144	TGCTATATGCCAAGCCACGCCACGCCTGANACGAG
145	TTAATAAACGCTGAGACGCTGACAAATGATAGCAGAAG
146	TTATTGATACGATAGCTCAATATAGAGATTGCTAGATTTA
147	TTCAAAACGATGACGAAATATGAAAGAAGTTATAGG
148	TTGTTTCTGTGCTGAGCCACTTAACTGAGGTAAGAG
149	TTGTACCAGTATGAGTCAAAAGGCAAAGGCTTCAATAG
150	TTTCAGCAGTATGAGTCAAAAGGCAAAGGCTTCAATAG
151	TTGGTATACGTCGGAGTCACTGAGAAGTTTACAGAGC
152	TTGTTATACGTCGGAGTCACTGAGAAGTTTACAGAGC
153	TTGTACCAGTATGAGTCAAAAGGCAAAGGCTTCAATAG
154	TTGGTATACGTCGGAGTCACTGAGAAGTTTACAGAGC
155	TTGGTATACGTCGGAGTCACTGAGAAGTTTACAGAGC
Supplementary Table S18 (Continued).

Moderate 2 design with 2-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	AGAATAGAAAACACTGTTACTTAGCAGAATAGCCGAGTTA
2		CGTCCTTGAGCATACGAGGGCATAGTAAAGAATGTTGCGAAGCCGCC
3		GCCAAAAGCTCCATATCCTGGGCATTTGACCCCCAGCGTTTCAGAAGTTTTGT
4		CGCGAGCCTGGAATATCGGAACCCTAAAGGCGATCTACGGAGTG
5		AGTTGAGGGAACCCACAACTTAAACGATAAATACCTGTAAGCA
6		ATCCCACATACCCAGTCACCTAACACAGAAAGGATATTTC
7	Twisting block 2	TTCCACAGGGGAAAAATACACCATATCACTAGGGCCAAAAAGAAC
8		AGAAGCCTGAGTGATGTTAAAAAGCGCTCAAACAGGTTAAGAGAGGC
9		AAGACCTTATCAGGCGGTTAGACAGCCACACGATTTAGTGATAATTT
10		GTATCGGCTGCATTTTCTATGCCGGCTCTGTTAAAATATCGCCG
11		GAACGATCTGAGTCTGCACTATATCCCTCAGAAGCTGCAAGAGGAGAAC
12		AGGGGCCGTCAGACCCGCGAAGAGAGACTACAGCGAAGAGGAGAAC
13	Twisting block 5	CCACCCCTACTATGGTTGTGAATTACCTTATCAAATCAGCGAAAGAC
14		CAAAGAAGCTGGAAGCGGGAGCTAAACAGGGAGGGTTCCACCAC
15		CGGGTGCACCAATTGAGCAGGTAGACAGGGAAGGCCTTCTGAGGACTA
16		ATCTTACAAGTTTAAATAACAGTTTAGAGTATAATATTAGAGG
17		ACCATTAAAACAAATGAGTAACAGTGCCGATATAACATAAGAATTGA
18		GATATTCACCCATTAGGACAAAAGGGCGACATAACCCACCACTTGCAG
19	Twisting block 7	GAATTAGATAACAGTGCCCTTTTCTTACGCGTACAGCCGGCCGGGTTT
20		CGTCAGTAGTAAAGACCTCATTTGATACGGAGCAAGGAGGGTCACAGCC
21		CTTAGCCGAAAAGCATTACATCGCAGCCGAGGATAGTGAGG
22		ATACGACGTGAGTTACCGTGAGTATTGCGAGGAGCTGTAAGAAGGAGG
23		CTTGCTGAGTTTTCTTATGAGGAGCTGTAAGAAGGAGG
24		GTTGTTATGAGAGCTGTAAGAAGGAGG
25		TAACGACGTGAGTTACCGTGAGTATTGCGAGGAGCTGTAAGAAGGAGG
26		GTTGTTATGAGAGCTGTAAGAAGGAGG
27	Flag 1	AAAACAAAATTTTCTAGTAAATAGAATACCTGACACTGAGCAGG

76
Supplementary Table S18 (Continued).

Flexible 1 design with 2-BP-insertion.

Index	Location	Staple sequence
1	Twisting block 1	ACGCCAAAAACGCTCATTCTTTGACCCCCAGCTTTTACAAAGTGGTTTG
2		TCACCAGCTCTGAGGAAATTTAATCGCCAGAAGGCTGACCCAGAGGAGGA
3		ATACACTAAGGAAACACTCTGTTAGTGGCTAAGGAGGGCCGACATATA
4		ATAGAAAACACTCTGTTAGTGGCTAAGGAGGGCCGACATATAAGGAGG
5		TCCTTCTTACACTACCTCCGCTTTTAGTTATTAGTGGCTAAGGAGGG
6		CGTAAACCGAGGAGGAAATTTAATCGCCAGAAGGCTGACCCAGAGGAG
7	Twist block 2	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
8		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
9		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
10		TCAGTTGAGGGGAAACCGCACCACACCTACAAACGGCAGATTACCTAGC
11		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
12		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
13	Twist block 3	ATTTGACATGTTTTTCTAGGTCGAGCTTAAAAATACCCGAGG
14		AAGACTTTATCAGCGGGATAGCAAGCCCAACAAGTGTACGTATTTAA
15		ATGCCTAACCACATAAGGAGGAAATTTAATACCCGAGG
16		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
17		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
18		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
19	Twist block 4	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
20		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
21		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
22		TCAGTTGAGGGGAAACCGCACCACACCTACAAACGGCAGATTACCTAGC
23		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
24		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
25	Twist block 5	ATTTGACATGTTTTTCTAGGTCGAGCTTAAAAATACCCGAGG
26		AAGACTTTATCAGCGGGATAGCAAGCCCAACAAGTGTACGTATTTAA
27		ATGCCTAACCACATAAGGAGGAAATTTAATACCCGAGG
28		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
29		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
30		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
31	Twist block 6	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
32		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
33		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
34		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
35		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
36		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
37	Twist block 7	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
38		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
39		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
40		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
41		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
42		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
43	Twist block 8	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
44		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
45		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
46		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
47		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
48		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
49	Twist block 9	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
50		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
51		ATGCCACATCTCCACGTCACCAGTACAAACAGAAAGGAGATTCA
52		CGTTGAAATAGGAAACACTCATAGTTAGCGTAAGAGCCCCATACATA
53		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
54		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
55	Twist block 10	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCCAAAAGA
56		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
57		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
58		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
59		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
60		ATCATAAAATGGGCGGCGGAAACGAGGTCACCAAGAGAAGGAAGGCA
61	Flag 1	AAAAGGGTGACCTGTTGTTTTTCCAGAGGTCAGAGGAGGAGGAGGAGGA
Flag 2

AACAAAATTTTGCTTAGTAAATGAATTACCATCAGTCGAGGTGC
AACGAGAAAAGCGGTTTAGCTATATTTTATTCTACGTCATTG
AACGCCAATCAGCTCAAATATTTAAATTTAATCAGCGGTAAT
AGATAGGCAACCGTGCAATAAAGCCTCAATTCCCATCAAAGC
AGCTGGCGGGTAACGCCAGGGCACGACGTTGTAAAACGACGGTTA
AGTAGCATAACCTGATTGCATCAAAAAGTAAACAGGGTGGTT
AGTTGAAAGGGGGAAGGGCGCCATTTTTCCGGTCAGGAATAA
ATATTCACTTCAAAAGTTTGACCATTAGAGGCAAGGGAGAGG
ATCGGTTTTTCATTGCAAACTCCAACAGGGGTAATAGTCCAC
ATGGCTTTTACCAGGGCCCACTACGTGATTGAACCCTCATAT
ATTAGCATAGATTTTATCGCGTTTTAATCGGAATCTAGCCCG
ATTTTTAAGGGCGATACGACGATAAAAACGGTCATTATAATGC
CAGAAGCATGACCACAGGCGAGCCCTGAGAGAGTTGTGAGAC
CCAAAAACAGGATGGCAAACAAGAGAATCGAGTAACAATAGG
CCAGCTGCCAGGGTGGTTTGGCGCATCGGATCGCACTTCGTG
CCGAAATTTTTTGACCAATAAATCATACATACATTGGAAGCC
CCGTCACGTTGATTCTCCATGTGAGCGATGAAAAAAGCC
CCTGAGAGCCCCGTAAATACCAAAAAATGAGGTCTAAATCAGG
CGTTCAGTTGATCTCTAGTGAGATCGGTTCTTTTATTACC
CTGGAAAGGTACCAAGCCGGAGACAGTCAGAACAAGAGTAAAA
CTGGTTTGTCTGGAAAAAGGTGGCATCACATTTGGTTATAGT
CTGTGTGAGTGTAAAGCCTCAACTGTTGGGATGTGCTGTTTC
GAACCAGACTGGATGTTGTTCCAGTTTGAATCACCAAGCTAA
GAACGAGAAATTAATCTAGCTGATAAATAAAAGAAGTCATAA
GAGCTCACAATACATACGACATTACCTGCTACCCAACCGACGC
GATCTGCTACATGCACTTTGTTTAAATATGCAATGTAATAAGATTCA
GGGAGAACAACATGTCCTTTTGATAAGACAAAATAAAAACCG
GGGCAACTTGCGTATTGGGCGCATTAATGAATCGGTGCCCGC
GGTAGCTGATCCGCCTGAAATCCTCTATCAGTAATAGT
GTACCTTCAAAAGACTCAGTCAATATCGCAGGTTACCCCAACGC
TTACCCTCAAAAGACTCAGTCAATATCGCAGGTTACCCCAACGC
TATCCGCTGAAATCTGCAATGTTACCTGACCCTGAGGAGGACC
TATTAAAAGAGAAAGAACAATATAGCCTACCTTAAATGAGA
CTATCAATGCAATTTTACAAGGAGGATGTTTATTGGCC
TCTGGTGCGGCAAACGGCCATTCTCGATGGCGGGCTAGCAGCC
TGATATTGGTACGAGCATGTAGGTATAAACACCGGA
TGTTAGACGGGAACTCATATAACGCTGAGGATCAATAGT
TGACCGACAGCAAGGCGATTCCGCGTGAGTGAATGGTCCAG
TTTGTAACTAAAAAAACTATAGGTTGGAACAGGTTAATAGT
TTTCCAGGAGTGAACATTCACTACGGGCGAAGACTTTAATTTG
TTTACTGTATGGGTAACACGGGAGAGCTTAAATTTTAAAT
ACAAATCTTTTGGACGTTTCAGTAAATCAGAATACCCTGTCAC
AGCGAAACAGCAAAGAGGATGTTGGAAGAGGATTACACGCA
AGGGAACAGTATTCTGTAAATAGAGATAGAACAAAATGACG
AGCTGACCTTCAATCTGCTTTTATTATGCTTAAATATGAGG
AGTTAAGAGTTTTACAAATGACGCGGGATTACACGCA
AGTTGAAAGGGGGAAGGGCGCCATTTTTCCGGTCAGGAATAA
ATTAGATAGTATTGCTACAAACACCGTATTAAAGATATAAAA
ATTATGAACTATGGGAAAGAACGCGACGCGTTTCCTAAATAGG
CTAACAAATACCCGCTGAGCAAAGAAGAGGCGGCTAGCCTAAT
CATATTAAATACCCGCTGAGCAAAGAAGAGGCGGCTAGCCTAAT
CCATACCGAATCTTTAAATAGAACAAATGCTCATGTAATTT
CCCTCAAAATATAATCAACAGTGTGAATTAGAGCGCCTGAAGAC
CCTGTTTTTCTTACTTCTACTTCTAAGCTCCCTCTGAAATACGAG
CGGCGTTCTGTAAATCCATAGCGATAGCTTAGATTCAAAAGAA
GACGAGCGAGGTGAAATCAAGAAACGCGAGAGACCAGTTTTGCG
GCTGAGAACCTCCCAGTTGGAATACGGCGTTTT
GCTTAGACATCTGTAATAAGTAGGAATATTAGTTTTGATCAATTT
GGGACATCGCAAGACGCCATATTTAACAAGTAATTAATAGCA
GTATTAACCAGAGCTTGACGCTCAATCGTAAATTTATGCGTT
GTTATCTTAGGAGAATTTAAGAAGGTTACTTTTGAT
TATCCATTACTAGTGTGATAAAATAAGGGAAAACAACAGGC
TGAAATAACCTGAGTTTTGAATTTTCACTCTTTTTAAGAGCTCA
TGGCTATTAGCGAACCACCAGCAAGACGCGCTCAGACCAG
TTAAAGCGCTGAGAGCAGCAAATCTAAAGCATCGAGGAAG
TTAATTTTGTATTATACAGATGTACTTAAATATGTGATTTTATA
TTACAAAGGCTCAGTTAAGATGCGCAATATCTGCTTATCCAGAG
TTTACATAGTTATACGTAAGAAGCGCAAATATGACCAAGAGCG
TTTGTTACTGCAGTGTACCAAAGTCTGCTGTAACGTTCTCGAG
TTTACATCGAATTTTGTCTTTCGAGACGAC
TTTTATACAAATTTTCACCCAGTCAACAAATTTTCTACAGGA
Index	Location	Staple sequence
1	Twisting block 1	ATACACTAAAGGAAACTCATGTTAGCTTAGGACGCCCCCATACATA
2		CGGCACTTGGAATTATCGGAAACCTTAAAGGCGATCTACGGAGTGAAG
3		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
4		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
5		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
6		CGTTAACCAGAGTTAACAACTTTTCACAGATATTATGAGATCGAGAATTCAT
7	Twisting block 2	ATCATAAAATTAGGGCCGACCGAAAGGTCGAGAGACCTTTTTCTCAG
8		TTAGGGGAACCGGCAAAACCTTTAAACGATTAAACCTCTGAGATCACTC
9		ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
10		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
11		ACAGGGAAGAGGAGACCTTTAAAGGCAAAAAGAGGAGATGTCATAGTCAG
12		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
13	Twisting block 3	AGCAAAGCAATGATTATAAACAGGCTGCAAACGGTTACAGAATTCAGATGA
14		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
15		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
16		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
17		CGTTGAAATACGAAGGAACTGACCACTTTGGGTAGAAAAGGGA
18		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
19		ATCATAAAATTAGGGCCGACCGAAAGGTCGAGAGACCTTTTTCTCAG
20	Twisting block 4	ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
21		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
22		ACAGGGAAGAGGAGACCTTTAAAGGCAAAAAGAGGAGATGTCATAGTCAG
23		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
24		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
25	Twisting block 5	AGCAAAGCAATGATTATAAACAGGCTGCAAACGGTTACAGAATTCAGATGA
26		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
27		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
28		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
29		CGTTGAAATACGAAGGAACTGACCACTTTGGGTAGAAAAGGGA
30		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
31		ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
32		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
33		ACAGGGAAGAGGAGACCTTTAAAGGCAAAAAGAGGAGATGTCATAGTCAG
34		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
35		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
36	Twisting block 6	AGCAAAGCAATGATTATAAACAGGCTGCAAACGGTTACAGAATTCAGATGA
37		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
38		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
39		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
40		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
41		ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
42		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
43	Twisting block 7	AGCAAAGCAATGATTATAAACAGGCTGCAAACGGTTACAGAATTCAGATGA
44		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
45		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
46		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
47		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
48		ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
49		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
50		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
51	Twisting block 8	AGCAAAGCAATGATTATAAACAGGCTGCAAACGGTTACAGAATTCAGATGA
52		ACGGCAAAAGCCTCATATCTTTGGACCCCCGCGTTGAGATGTTTG
53		ATAGAAAAACCTGTTACATTTGAGGCCAAGATCGAGAGGTTT
54		TCGGCTTTGCACTAAGGAGCCATAGTAAAGGAAATTGTGCAGAACGGCG
55		AGAGCTTGACGACAGCCACTAAAGGAATTGCGAAAAGAGGAGACGGTCA
56		ATGCACACTTCCACGCTACCGATCAACAAACAGAGGATGTCATAGTCAG
57		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
58		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
59		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
60		CAGCAGAAAATACCACATTCAGTGGGGACCGGAAAAGAAGAGGTCAGGAG
61	Flag 1	AAAAAAGTGAACGTGAGTTTTGCCAGAGGGTCAGGAACGGTGT
AACAAAAATTGCTTAGTAAATGAAATACCATCAGTCGAGGTGC		
AACGAGAAAAGCGGTTTAGCTATATTTTATTCTACGTCATTG		
AACGCCAATCAGCTCAAATATTTAAATTTAATCAGCGGTAAT		
AGATAGGCAACCGTGCAATAAAGCCTCAATTCCCATCAAAGC		
AGCTGGCGGGTAACGCCAGGGCACGACGTTGTAAAACGACGGTTA		
AGTAGCATAACCTGATTGCATCAAAAAGTAAACAGGGTGGTT		
AGTTGAAAGGGGGAAGGGCGCCATTTTTCCGGTCAGGAATAA		
ATATTCACTTCAAAAGTTTGACCATTAGAGGCAAGGGAGAGG		
ATCGGTTTTTCATTGCAAACTCCAACAGGGGTAATAGTCCAC		
ATGGCTTTTACCAGGGCCCACTACGTGATTGAACCCTCATAT		
ATTAGCATAGATTTTATCGCGTTTTAATCGGAATCTAGCCCG		
ATTTTAAGGGCGATACGACGATAAAAACGGTCATTATAATGC		
CAGAAGCATGACCACAGGCGAGCCCTGAGAGAGTTGTGAGAC		
CCAAAAACAGGATGGCAAACAAGAGAATCGAGTAACAATAGG		
CCAGCTGCCAGGGTGTGTTGGCAGCTGGATGCTCCTCGTG		
CCGTCAGGGTAAATCTCATACATACATTGGAAGCC		
CCGTCACGTTGATTCTCCATGTGAGCGATGAAAAAAGCC		
CCTGAGAGCCCCATCAAATATCACTCGATGAGTATTTTAGC		
CGAAGATTGAGTATCCTGCTAACCAACCCGAAGAAGAGGCC		
CGGTTGAGTAAACGTAAATTT		
CGTAAAATTCATCATAATTCG		
CTGACTAGGGCSCCAGGATGTAIAAAGCATTTTTATAC		
CGTAAGGCTACAGCTCTACCTGCAAAGGAGCTGCAACTGTT		
GCCATACCGTCTCACTGCAAAGGAGCTGCAACTGTT		
GCTTTTGTGATTTTAAAATGCAATGTAATAAGATTCA		
GGGAGAACAACATGTCCTTTTGATAAGACAAAATAAAAACCG		
GGGCAACTTGCGTATTGGGCGCATTAATGAATCGGTGCCCGC		
GGTAGCTGATCCGCCTGAAATCCTCTATCAGTAATAGT		
GTACCTTCAAAAGAGACTCCAACGTCAATAGGTAACTTTTGC		
GTAGCTACGGCAAACCCCTCAAATGCTTATTAAGATCGCAAA		
TACCGCTCGAATCTGAACTGCTGAGCTCGCTCCTCGAGATTAC		
TATTAAAAGGAAAGAAACATGTAAGCTACCCACTTATTTTGA		
TCTCATATGGCATTTTCACCGAGAAGCTGATTTTIGGC		
TCTGGTGCGCAAAGGCGGACCTTCTCGGACCGGCTACCGCT		
TGATATTGAGTAGCGTCCAATACTGTCGAGCTATTCTGC		
TGCTCAATTAACAGAGACTCTCAACAAAGGGTTTGATTTTGC		
TGTAAGCTGCCCATGCAAGGAGCTCCATAGTTAAATACGTTA		
TGTTAAGCCGGAACCTTACATAGTTAAATACGTTA		
TTACCAGACCGAGACCGGCAGTCCCCTGCCGCTGAGTATTTTGC		
TTGTTAATCAAAAAAACAATTAAGTGGGAAACAGGTTATAGG		
TTTCCAGGAGTGAATCTCAGCGACAGGGTAAATTGCTA		
TTTACTGTAAGGGGCTAACCGAGAAGCTTTATTTTGA		
ACAATATCTTITTCAGCGTTCAGAAGCAATACCACTCGTCAC		
AGCCAAACAGACAGACAGGGCGAAGCTGCAACTGTT		
AGGGCGATTTCTGTAATAAGAGAATAAGAGGCAATATAAC		
AGGCTGAATATGACTTCTCAGCTCGAGTCTGAGATTAT		
ATACCAAAATCACCCACCTACGCCATTCAAGCAGTATTAACAC		
ATATTTTGCGCATATCCAGATTTTGAACAGAAGCGGACC		
ATCAATTATGAGAAAGATATTTACATACATTGCCGAGAAC		
ATCATTGATTTTGGCGCAAAACCGAGACAGCTGCAACTGTT		
AGTGAGTAAGTGGGAAACAGGTTAGACAGGTTA		
ATTATTGATGTTGCGACAACCAGCTATTAAAGATAAAATA		
CAAAAGCGTATTTCTAACAAGATACGTTAAGTCTGGA		
CAATTACACAGGCGTGAGCAGAAAAAGAGGCGGCGCTCCTAAT		
CATATTATACCGGTTAGAGCTGATGATAAAACCCCGA		
128	CCATACCGAATCTTTAAATAGAACAAATGCTCATGTAATTTTT	
129	CCACGCTTTTTCATCAACACATGTTCCACCCGCTAAATTCAAT	
130	CCTCAAAATATAATCAACAGTGTAGTAGGGGCTGGAACGAC	
131	CCTGTTTTTCTACTTCTATCTGACTCCTGGAAATAACGGAG	
132	GCCGCTTTCTGTGAAAATCCATAAGCTAGCTAGTATACAA	
133	CGTGTTACCAAATGATAGATAAGCTGTTACCTGAAATAACGAG	
134	GATGACCTTAGAGAAGGAAACAGCAGCACGTGGTTTTG	
135	GCTGAGAACCTCCGGCTTAGGGAATACGGCGTTTTG	
136	GCTTAATACATAATAGGTAGGGAAATACGGCGTTTTG	
137	GTAATACATAATAGGTAGGGAAATACGGCGTTTTG	
138	GTTAAATTCCGTAGCTCGAAATAACGTTAGG	
139	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
140	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
141	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
142	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
143	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
144	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
145	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
146	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
147	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
148	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
149	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
150	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
151	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
152	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
153	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
154	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
155	TTAAATTCCGTAGCTCGAAATAACGTTAGG	
Supplementary Table S19. MALDI-TOF results by Bio-RP and PAGE methods. For the comparison of Bio-RP and PAGE methods in oligonucleotides purification, representative ten staples were used to MALDI-TOF (Supplementary Figure S11). The error is the difference in molecular weight divided by the reference value.

Index	Staple sequence	Molecular weight [Da] (Reference)
1	TCGTCTTTTGACTAACGAGGCATAGTAAGAGAATTGTGCCAAGCGCA	
2	TTCCACAGGGGAAAAATACCACATTCAACTGAGGCGCAAAGGA	
3	ACACAGGAGCAGGAAACCATTATTACAAAAAGGAATACGTAG	
4	CCTCGTAACCATCAGGACGTTGGGAAGGACCTTCTGAGGACTA	
5	CGCCACCCTACTATGGTGTGAATTACCTTATCAAATCAGCCAAGA	
6	ATTACTCCCTCGGATAAGTGCCGTCGAAGGCCGACGGAATACCCAA	
7	CAGTCAGGAACAAACCGAGGAAACGCATTAGCAACATAGCCCCCTT	
8	AGAGGTCTAGGCAACCTTATTTAAGAAGAAGTAGAAGCTGCTGCTT	
9	CCCTGCTAGGAGAAGCAGAAACAAAGAAGATAACCGATCAGCAT	
10	ACGGGGTCAGAACTCCTAATATCAGAGAGATTCAACCCGACCGATAGCACA	

Index	Molecular weight [Da] (Bio-RP)	Molecular weight [Da] (PAGE)	Error [%] (Bio-RP)	Error [%] (PAGE)
1	14863.0	14811.0	0.15	0.20
2	13559.0	13539.0	0.10	0.04
3	13339.0	13317.0	0.08	0.08
4	13285.0	13238.0	0.24	0.11
5	14406.0	14361.0	0.11	0.20
6	14139.0	14099.0	0.18	0.10
7	14116.0	14091.0	0.12	0.06
8	13595.0	13555.0	0.23	0.07
9	14488.0	14434.0	0.14	0.23
10	15097.0	15066.0	0.13	0.07
References

1. Lankas, F., Sponer, J., Langowski, J. and Cheatham, T.E. (2003) DNA basepair step deformability inferred from molecular dynamics simulations. *Biophys. J.*, **85**, 2872-2883.

2. Fujii, S., Kono, H., Takenaka, S., Go, N. and Sarai, A. (2007) Sequence-dependent DNA deformability studied using molecular dynamics simulations. *Nucleic Acids Res.*, **35**, 6063-6074.

3. Dršata, T., Špačková, N., Jurečka, P., Zgarbová, M., Šponer, J. and Lankaš, F. (2014) Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. *Nucleic Acids Res.*, **42**, 7383-7394.

4. Brooks, B.R., Janežič, D. and Karplus, M. (1995) Harmonic analysis of large systems. I. Methodology. *J. Comput. Chem.*, **16**, 1522-1542.

5. Maffeo, C., Yoo, J. and Aksimentiev, A. (2016) De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. *Nucleic Acids Res.*, **44**, 3013-3019.

6. Yoo, J. and Aksimentiev, A. (2013) In situ structure and dynamics of DNA origami detemined through molecular dynamics simulations. *Proc. Natl. Acad. Sci. U.S.A.*, **110**, 20099-20104.

7. Kim, D.N., Kilchherr, F., Dietz, H. and Bathe, M. (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. *Nucleic Acids Res.*, **40**, 2862-2868.

8. Pan, K., Kim, D.N., Zhang, F., Adendorff, M.R., Yan, H. and Bathe, M. (2014) Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. *Nat. Commun.*, **5**, 5578.

9. Pan, K., Bricker, W.P., Ratanaalert, S. and Bathe, M. (2017) Structure and conformational dynamics of scaffolded DNA origami nanoparticles. *Nucleic Acids Res.*, **45**, 6284-6298.

10. Chen, H., Zhang, H., Pan, J., Cha, T.G., Li, S., Andreasson, J. and Choi, J.H. (2016) Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts. *ACS Nano*, **10**, 4989-4996.

11. Kauert, D.J., Kurth, T., Liedl, T. and Seidel, R. (2011) Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. *Nano Lett.*, **11**, 5558-5563.

12. Ivani, I., Dans, P.D., Noy, A., Perez, A., Faustino, I., Hospital, A., Walther, J., Andrio, P., Goni, R., Balaceanu, A. *et al.* (2016) Parmbsc1: a refined force field for DNA simulations. *Nat. Methods*, **13**, 55-58.

13. Hart, K., Foloppe, N., Baker, C.M., Denning, E.J., Nilsson, L. and Mackerell, A.D., Jr. (2012) Optimization of the CHARMM additive force field for DNA: Improved treatment of the BII conformational equilibrium. *J. Chem. Theory Comput.*, **8**, 348-362.