SHARP \((H_p, L_p)\) AND \((H_p, \text{weak} - L_p)\) TYPE INEQUALITIES OF WEIGHTED MAXIMAL OPERATORS OF \(T\) MEANS WITH RESPECT TO VILENKIN SYSTEMS

D. BARAMIDZE

Abstract. We discuss \((H_p, L_p)\) and \((H_p, \text{weak} - L_p)\) type inequalities of weighted maximal operators of \(T\) means with respect to the Vilenkin systems with monotone coefficients, considered in [50] and prove that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out.

2000 Mathematics Subject Classification. 42C10, 42B25.

Key words and phrases: Vilenkin groups, Vilenkin systems, partial sums of Vilenkin-Fourier series, \(T\) means, Vilenkin-Nörlund means, Fejér mean, Riesz means, martingale Hardy spaces, \(L_p\) spaces, \(\text{weak} - L_p\) spaces, maximal operator, strong convergence, inequalities.

1. Introduction

The definitions and notations used in this introduction can be found in our next Section.

It is well-known that Vilenkin systems do not form bases in the space \(L_1\). Moreover, there is a function in the Hardy space \(H_p\), such that the partial sums of \(f\) are not bounded in \(L_p\)-norm, for \(0 < p \leq 1\). Approximation properties of Vilenkin-Fourier series with respect to one- and two-dimensional cases can be found in Persson, Tephnadze and Wall [30], Simon [37], Blahota [3] and Gát [8], Tephnadze [44, 45, 46], Tutberidze [47] (see also [18]). In the one-dimensional case the weak \((1,1)\)-type inequality for the maximal operator of Fejér means

\[
\sigma^* f := \sup_{n \in \mathbb{N}} |\sigma_n f|
\]

can be found in Schipp [34] for Walsh series and in Pál, Simon [28] for bounded Vilenkin series. Fujji [15] and Simon [36] verified that \(\sigma^*\) is bounded from \(H_1\) to \(L_1\). Weisz [53] generalized this result and proved boundedness of \(\sigma^*\) from the martingale space \(H_p\) to the space \(L_p\), for \(p > 1/2\). Simon [35] gave a counterexample, which shows that boundedness does not hold for \(0 < p < 1/2\). A counterexample for \(p = 1/2\) was given by Goginava [10] (see also Tephnadze [38]). Moreover, Weisz [55] proved that the maximal operator of the Fejér means \(\sigma^*\) is bounded from the Hardy space \(H_{1/2}\) to the space \(\text{weak} - L_{1/2}\). In [39] and [40] the following result was proved:

Theorem T1: Let \(0 < p \leq 1/2\). Then the weighted maximal operator of Fejér means \(\tilde{\sigma}^*_p\), defined by

\[
\tilde{\sigma}^*_p f := \sup_{n \in \mathbb{N}} \frac{|\sigma_n f|}{(n + 1)^{1/p - 2} \log^{2[1/2+p]}(n + 1)}
\]

is bounded from the martingale Hardy space \(H_p\) to the Lebesgue space \(L_p\).

The research was supported by Shota Rustaveli National Science Foundation grant no. PHDF-21-1702.
Moreover, the rate of the weights \(\left\{ 1/(n + 1)^{1/p - 2} \log^{2[p+1/2]}(n + 1) \right\}_{n=1}^{\infty} \) in \(n \)-th Fejér mean was given exactly.

In [43] (see also [2] and [16]) it was proved that the maximal operator of Riesz means
\[
R^* f := \sup_{n \in \mathbb{N}} |R_n f|
\]
is bounded from the Hardy space \(H_{1/2} \) to the space weak \(-L_{1/2}\) and is not bounded from \(H_p \) to the space \(L_p \), for \(0 < p \leq 1/2 \). There was also proved that Riesz summability has better properties than Fejér means. In particular, the following weighted maximal operators
\[
\log n |R_n f| \quad \frac{(n + 1)^{1/p - 2} \log^{2[1/2+p]}(n + 1)}{(n + 1)}
\]
are bounded from \(H_p \) to the space \(L_p \), for \(0 < p \leq 1/2 \) and the rate of weights are sharp.

Similar results with respect to Walsh-Kaczmarz systems were obtained in [11] for \(p = 1/2 \) and in [41] for \(0 < p < 1/2 \). Approximation properties of Fejér means with respect to Vilenkin and Kaczmarz systems can be found in Tephnadze [42], Tutberidze [49], Persson, Tephnadze and Tutberidze [32], Blahota and Tephnadze [6] and Persson, Tephnadze, Tutberidze and Wall [33], Gogolashvili, Nagy and Tephnadze [12] and Persson, Tephnadze and Wall [31].

Móricz and Siddiqi [20] investigated the approximation properties of some special Nörlund means of Walsh-Fourier series of \(L_p \) function in norm. In the two-dimensional case approximation properties of Nörlund means were considered by Nagy [21, 22, 23] (see also [24, 25, 26, 27]). In [29] (see also [7, 17] and [31]) it was proved that the maximal operators of Nörlund means \(t^* \) defined by
\[
t^* f := \sup_{n \in \mathbb{N}} |t_n f|
\]
either with non-decreasing coefficients, or non-increasing coefficients, satisfying the condition
\[
(1) \quad \frac{1}{Q_n} = O \left(\frac{1}{n} \right), \quad \text{as} \quad n \to \infty
\]
are bounded from the Hardy space \(H_{1/2} \) to the space weak \(-L_{1/2}\) and are not bounded from the Hardy space \(H_p \) to the space \(L_p \), when \(0 < p \leq 1/2 \).

In [48] was proved that the maximal operators \(T^* \) of \(T \) means defined by
\[
T^* f := \sup_{n \in \mathbb{N}} |T_n f|
\]
either with non-increasing coefficients, or non-decreasing sequence satisfying condition
\[
(2) \quad \frac{q_{n-1}}{Q_n} = O \left(\frac{1}{n} \right), \quad \text{as} \quad n \to \infty,
\]
are bounded from the Hardy space \(H_{1/2} \) to the space weak \(-L_{1/2}\). Moreover, there exists a martingale and such \(T \) means for which boundedness from the Hardy space \(H_p \) to the space \(L_p \) does not hold when \(0 < p \leq 1/2 \).

In [50] (see also [13, 14]) it was proved that if \(T \) is either with non-increasing coefficients, or non-decreasing sequence satisfying condition (2) that the weighted maximal operator of \(T \) means \(\tilde{T}_p^* \) defined by
\[
\tilde{T}_p^* f := \sup_{n \in \mathbb{N},} \frac{|T_n f|}{(n + 1)^{1/p - 2} \log^{2[1/2+p]}(n + 1)}
\]
is bounded from the martingale Hardy space H_p to the Lebesgue space L_p.

Some general means related to T means was investigated by Blahota and Nagy [4] (see also [3]).

In this paper we discuss (H_p, L_p) and $(H_p, \text{weak } - L_p)$ type inequalities of weighted maximal operators of T means with respect to the Vilenkin systems with monotone coefficients, considered in [50] and prove that the rate of the weights in (3) are the best possible in a special sense. As applications, both some well-known and new results are pointed out.

This paper is organized as follows: In order not to disturb our discussions later on some definitions and notations are presented in Section 2. The main results with their proof and some of consequences can be found in Section 3.

2. Definitions and Notation

Denote by \mathbb{N}_+ the set of the positive integers, $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Let $m := (m_0, m_1, \ldots)$ be a sequence of the positive integers not less than 2. Denote by

$$Z_{m_k} := \{0, 1, \ldots, m_k - 1\}$$

the additive group of integers modulo m_k.

Define the group G_m as the complete direct product of the groups Z_{m_i} with the product of the discrete topologies of Z_{m_i}'s.

The direct product μ of the measures $\mu_k(\{j\}) := 1/m_k$ $(j \in Z_{m_k})$ is the Haar measure on G_m with $\mu(G_m) = 1$.

In this paper we discuss bounded Vilenkin groups, i.e. the case when $\sup_n m_n < \infty$.

The elements of G_m are represented by sequences

$$x := (x_0, x_1, \ldots, x_j, \ldots), \quad (x_j \in Z_{m_j})$$

Set $e_n := (0, \ldots, 0, 1, 0, \ldots) \in G_m$, the n-th coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$. It is easy to give a basis for the neighborhoods of G_m:

$$I_0(x) := G_m, \quad I_n(x) := \{y \in G_m \mid y_0 = x_0, \ldots, y_{n-1} = x_{n-1}\}$$

where $x \in G_m, n \in \mathbb{N}$.

If we define the so-called generalized number system based on m in the following way:

$$M_0 := 1, \quad M_{k+1} := m_k M_k \quad (k \in \mathbb{N})$$

then every $n \in \mathbb{N}$ can be uniquely expressed as $n = \sum_{j=0}^{\infty} n_j M_j$, where $n_j \in Z_{m_j}$ $(j \in \mathbb{N}_+)$ and only a finite number of n_j's differ from zero.

We introduce on G_m an orthonormal system which is called the Vilenkin system. At first, we define the complex-valued function $r_k(x) : G_m \to \mathbb{C}$, the generalized Rademacher functions, by

$$r_k(x) := \exp \left(2\pi i x_k / m_k \right), \quad (i^2 = -1, x \in G_m, \ k \in \mathbb{N})$$

Next, we define the Vilenkin system $\psi := (\psi_n : n \in \mathbb{N})$ on G_m by:

$$\psi_n(x) := \prod_{k=0}^{\infty} r_{nk}^n(x), \quad (n \in \mathbb{N})$$

Specifically, we call this system the Walsh-Paley system when $m \equiv 2$.
The norms (or quasi-norms) of the spaces $L_p(G_m)$ and weak $- L_p(G_m)$ ($0 < p < \infty$) are respectively defined by

$$
\|f\|_p := \int_{G_m} |f|^p d\mu, \quad \|f\|_{\text{weak}-L_p} := \sup_{\lambda > 0} \lambda^p \mu(f > \lambda) < +\infty.
$$

The Vilenkin system is orthonormal and complete in $L_2(G_m)$ (see [51]).

Now, we introduce analogues of the usual definitions in Fourier-analysis. If $f \in L_1(G_m)$ we can define Fourier coefficients, partial sums and Dirichlet kernels with respect to the Vilenkin system in the usual manner:

$$
\hat{f}(n) := \int_{G_m} f \overline{\psi_n} d\mu, \quad S_n f := \sum_{k=0}^{n-1} \hat{f}(k) \psi_k, \quad D_n := \sum_{k=0}^{n-1} \psi_k, \quad (n \in \mathbb{N}_+).
$$

Let $\{q_k : k \geq 0\}$ be a sequence of non-negative numbers. The n-th T means T_n for a Fourier series of f are defined by

$$
T_n f := \frac{1}{Q_n} \sum_{k=0}^{n-1} q_k S_k f, \quad \text{where} \quad Q_n := \sum_{k=0}^{n-1} q_k.
$$

We always assume that $\{q_k : k \geq 0\}$ is a sequence of non-negative numbers and $q_0 > 0$. Then the summability method (4) generated by $\{q_k : k \geq 0\}$ is regular if and only if $\lim_{n \to \infty} Q_n = \infty$.

Let $\{q_k : k \geq 0\}$ be a sequence of nonnegative numbers. The n-th Nörlund mean t_n for a Fourier series of f is defined by

$$
t_n f = \frac{1}{Q_n} \sum_{k=1}^{n} q_{n-k} S_k f, \quad \text{where} \quad Q_n := \sum_{k=0}^{n-1} q_k.
$$

If $q_k \equiv 1$ in (4) and (5) we respectively define the Fejér means σ_n and Kernels K_n as follows:

$$
\sigma_n f := \frac{1}{n} \sum_{k=1}^{n} S_k f, \quad K_n := \frac{1}{n} \sum_{k=1}^{n} D_k.
$$

The well-known example of Nörlund summability is the so-called (C, α) mean (Cesàro means) for $0 < \alpha < 1$, which are defined by

$$
\sigma^\alpha_n f := \frac{1}{A_n^\alpha} \sum_{k=1}^{n} A_k^{\alpha-1} S_k f,
$$

where

$$
A^\alpha_0 := 0, \quad A^\alpha_n := \frac{(\alpha + 1) \ldots (\alpha + n)}{n!}.
$$

We also consider the "inverse" (C, α) means, which is an example of T means:

$$
U_n^\alpha f := \frac{1}{A_n^\alpha} \sum_{k=0}^{n-1} A_k^{\alpha-1} S_k f, \quad 0 < \alpha < 1.
$$
Let V_n^α denote the T mean, where $\{q_0 = 0, q_k = k^{\alpha-1} : k \in \mathbb{N}_+\}$, that is

$$V_n^\alpha f := \frac{1}{Q^n} \sum_{k=1}^{n-1} k^{\alpha-1} S_k f, \quad 0 < \alpha < 1.$$

The n-th Riesz logarithmic mean R_n and the Nörlund logarithmic mean L_n are defined by

$$R_n f := \frac{1}{l_n} \sum_{k=1}^{n-1} S_k f, \quad \text{and} \quad L_n f := \frac{1}{l_n} \sum_{k=1}^{n-1} S_k f, \quad n - k,$$

respectively, where $l_n := \sum_{k=1}^{n-1} 1/k$.

If $\{q_k : k \in \mathbb{N}\}$ is monotone and bounded sequence, then we get the class B_n of T means with non-decreasing coefficients:

$$B_n f := \frac{1}{Q^n} \sum_{k=1}^{n-1} q_k S_k f.$$

The σ-algebra generated by the intervals $\{I_n(x) : x \in G_m\}$ will be denoted by $\mathcal{F}_n (n \in \mathbb{N})$. Denote by $f = (f^{(n)}, n \in \mathbb{N})$ a martingale with respect to $\mathcal{F}_n (n \in \mathbb{N})$. (for details see e.g. [52]). The maximal function of a martingale f is defined by $f^* := \sup_{n \in \mathbb{N}} |f^{(n)}|$. For $0 < p \leq \infty$ the Hardy martingale spaces H_p consist of all martingales f for which

$$\|f\|_{H_p} := \|f^*\|_p < \infty.$$

If $f = (f^{(n)}, n \in \mathbb{N})$ is a martingale, then the Vilenkin-Fourier coefficients must be defined in a slightly different manner:

$$\hat{f}(i) := \lim_{k \to \infty} \int_{G_m} f^{(k)} \overline{\psi_i} d\mu.$$

A bounded measurable function a is called a p-atom, if there exists an interval I, such that

$$\int_I a d\mu = 0, \quad \|a\|_\infty \leq \mu(I)^{-1/p}, \quad \text{supp}(a) \subset I.$$

We need the following auxiliary Lemmas:

Proposition 1 (see e.g. [54]). A martingale $f = (f^{(n)}, n \in \mathbb{N})$ is in $H_p (0 < p \leq 1)$ if and only if there exists a sequence $(\mu_k, k \in \mathbb{N})$ of p-atoms and a sequence $(\mu_k, k \in \mathbb{N})$ of real numbers such that, for every $n \in \mathbb{N},$

$$\sum_{k=0}^{\infty} \mu_k S_M_a f = f^{(n)}, \quad \text{a.e.}, \quad \text{where} \quad \sum_{k=0}^{\infty} |\mu_k|^p < \infty.$$

Moreover,

$$\|f\|_{H_p} \sim \inf \left(\sum_{k=0}^{\infty} |\mu_k|^p \right)^{1/p},$$

where the infimum is taken over all decompositions of f of the form (6).
Our first main result reads:

Theorem 1. a) Let sequence \(\{q_k : k \geq 0\} \) is nondecreasing, satisfying condition

\[
\frac{q_0}{Q_{M_{2n_k}+2}} \geq \frac{c}{M_{2n_k}}, \quad \text{for some constant } c \text{ and } n \in \mathbb{N}.
\]

or let sequence \(\{q_k : k \geq 0\} \) is nonincreasing, satisfying condition

\[
\frac{q_{M_{2n_k}+1}}{Q_{M_{2n_k}+2}} \geq \frac{c}{M_{2n_k}}, \quad \text{for some constant } c \text{ and } n \in \mathbb{N}.
\]

Then for any increasing function \(\varphi : \mathbb{N}_+ \to [1, \infty) \) satisfying the conditions

\[
\lim_{n \to \infty} \varphi(n) = \infty
\]

and

\[
\lim_{n \to \infty} \frac{\log^2 (n + 1)}{\varphi (n + 1)} = +\infty.
\]

Then there exists a martingale \(f \in H_{1/2} \), such that

\[
\left\| \sup_{n \in \mathbb{N}} \left| T_n f \right| \varphi (n) \right\|_{1/2} = \infty.
\]

b) Let \(0 < p < 1/2 \) and sequence \(\{q_k : k \geq 0\} \) is nondecreasing, or let sequence \(q_k \) is nonincreasing, satisfying condition \(\text{n.4} \). Then for any increasing function \(\varphi : \mathbb{N}_+ \to [1, \infty) \) satisfying the condition

\[
\lim_{n \to \infty} \frac{(n + 1)^{1/p-2}}{\varphi (n + 1)} = +\infty,
\]

there exists a martingale \(f \in H_p \), such that

\[
\left\| \sup_{n \in \mathbb{N}} \left| T_n f \right| \varphi (n) \right\|_{\text{weak-}L_p} = \infty.
\]

Proof. According to condition \(\text{(9)} \) in case a) we conclude that there exists an increasing sequence \(\{n_k : k \in \mathbb{N}\} \) of positive integers such that

\[
\lim_{k \to \infty} \frac{\log^2 (M_{2n_k+1})}{\varphi (M_{2n_k+1})} = +\infty.
\]

According to condition \(\text{(10)} \) we conclude that there exists an increasing sequence \(\{n_k : k \in \mathbb{N}\} \) of positive integers such that (Here we use same indexes \(n_k \), but it could be different)

\[
\lim_{k \to \infty} \frac{(M_{2n_k}+2)^{1/p-2}}{\varphi (M_{2n_k}+2)} = +\infty, \quad \text{for } 0 < p < 1/2.
\]

Let

\[
f_{n_k}(x) := D_{M_{2n_k+1}}(x) - D_{M_{2n_k}}(x).
\]

It is evident that
\(\hat{f}_{n_k}(i) = \begin{cases}
1, & \text{if } i = M_{2n_k}, \ldots, M_{2n_k+1} - 1, \\
0, & \text{otherwise.}
\end{cases} \)

and

\[S_i f_{n_k}(x) = \begin{cases}
D_i(x) - D_{2n_k}(x), & i = 2n_k + 1, \ldots, 2n_k+1 - 1, \\
f_{n_k}(x), & i \geq 2n_k+1, \\
0, & \text{otherwise.}
\end{cases} \]

(11)

Since

\[f_{n_k}^*(x) = \sup_{n \in \mathbb{N}} |S_M(f_{n_k};x)| = |f_{n_k}(x)|, \]

we get

\[\|f_{n_k}\|_p = \|f_{n_k}^*\|_p = \|D_{2n_k}\|_p = M_{2n_k}^{1 - 1/p}. \]

First, for case a) we consider \(p = 1/2 \). By using (11) and equality (see 1)

\[D_n(x) = D_{n_1}(x) + r_{[n]}(x) D_{n - n_1}(x) \]

for \(1 \leq s \leq n_k \) we get that

\[
\frac{|T_{M_{2n_k} + M_{2s}} f_{n_k}|}{\varphi(M_{2n_{k}} + M_{2s})} = \begin{cases}
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=0}^{M_{2n_k} + M_{2s} - 1} q_j S_j f_{n_k} \\
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=M_{2n_k}}^{M_{2n_k} + M_{2s} - 1} q_j S_j f_{n_k} \\
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=M_{2n_k}}^{M_{2n_k} + M_{2s} - 1} q_j (D_j - D_{M_{2n_k}}) \\
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=M_{2n_k}}^{M_{2n_k} - 1} q_j + M_{2n_k} (D_{j + M_{2n_k} - D_{M_{2n_k}}}) \\
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=0}^{M_{2n_k} - 1} q_j + M_{2n_k} D_j
\end{cases} \]

Let \(x \in I_{2s} \setminus I_{2s+1} \). Then

\[
\frac{|T_{M_{2n_k} + M_{2s}} f_{n_k}(x)|}{\varphi(M_{2n_k} + M_{2s})} = \begin{cases}
\frac{1}{\varphi(M_{2n_k} + M_{2s}) Q_{M_{2n_k} + M_{2s}}} \sum_{j=0}^{M_{2n_k} - 1} q_j + M_{2n_k} D_j
\end{cases} \]

Let sequence \(\{q_k : k \geq 0\} \) is nondecreasing. Then according to condition (7) we find that

\[
\frac{|T_{M_{2n_k} + M_{2s}} f_{n_k}(x)|}{\varphi(M_{2n_k} + M_{2s})} \geq \frac{1}{\varphi(M_{2n_{k+1}}) Q_{M_{2n_{k+1}} + M_{2s}}} \sum_{j=0}^{M_{2s} - 1} j \geq \frac{c M_{2s}^2}{M_{2n_k} \varphi(M_{2n_{k+1}})}.
\]
Let sequence \(\{ q_k : k \geq 0 \} \) is nonincreasing. Since \(\varphi : \mathbb{N} \to [1, \infty) \) is increasing sequence, by using condition (8) we get that

\[
\left| \frac{T_{M_{2n_k} + M_{2s}} f_{n_k}(x)}{\varphi(M_{2n_k} + M_{2s})} \right| \geq \frac{1}{\varphi(M_{2n_k} + M_{2s})} \frac{q_{M_{2n_k} + M_{2s} - 1}}{Q_{M_{2n_k} + M_{2s}}} \sum_{j=0}^{M_{2s} - 1} j \geq \frac{cM_{2s}^2}{M_{2n_k} \varphi(M_{2n_k + 1})}.
\]

Hence,

\[
\frac{\left(\sup_{n \in \mathbb{N}} \frac{|T_n f_{n_k}|}{\varphi(n)} \right)^{1/2}}{\|f_{n_k}\|_{H^{1/2}}} \geq \frac{c n_k}{(M_{2n_k} \varphi(M_{2n_k + 1}))^{1/2}} \geq \frac{c n_k}{(M_{2n_k} \varphi(M_{2n_k + 1}))^{1/2}}.
\]

From (12) we get that

\[
\left(\frac{\left(\sup_{n \in \mathbb{N}} \frac{|T_n f_{n_k}|}{\varphi(n)} \right)^{1/2}}{\|f_{n_k}\|_{H^{1/2}}} \right)^2 \geq \frac{cn_k^2 M_{2n_k}}{(M_{2n_k} \varphi(M_{2n_k + 1}))^{1/2}} \geq \frac{cn_k^2}{\varphi(M_{2n_k + 1})} \geq \frac{c}{\varphi(M_{2n_k + 1})} \rightarrow \infty, \text{ as } k \to \infty.
\]

This complete proof of part a).

Next, we consider case \(0 < p < 1/2 \). In the view of identities (11) of Fourier coefficients we find that

\[
\left| \frac{T_{M_{2n_k} + 2} f_{n_k}}{\varphi(M_{2n_k} + 2)} \right| = \frac{1}{\varphi(M_{2n_k} + 2)} \frac{1}{Q_{M_{2n_k} + 2}} \sum_{j=0}^{M_{2n_k} + 1} j \psi_j S_j f_{n_k} = \frac{1}{\varphi(M_{2n_k} + 2)} \frac{1}{Q_{M_{2n_k} + 2}} q_{M_{2n_k} + 1} \left(D_{M_{2n_k} + 1} - D_{M_{2n_k}} \right) = \frac{1}{\varphi(M_{2n_k} + 2)} \frac{1}{Q_{M_{2n_k} + 2}} q_{M_{2n_k} + 1} \psi_{M_{2n_k}}
\]

Let sequence \(\{ q_k : k \geq 0 \} \) is nondecreasing. Then

\[
\left| \frac{T_{M_{2n_k} + 2} f(x)}{\varphi(M_{2n_k} + 2)} \right| \geq \frac{1}{\varphi(M_{2n_k} + 2)} \frac{q_{M_{2n_k} + 1}}{q_{M_{2n_k} + 1} (M_{2n_k} + 2)} \geq \frac{c}{M_{2n_k} \varphi(M_{2n_k} + 2)}.
\]

Let sequence \(\{ q_k : k \geq 0 \} \) is nonincreasing. Then, according condition (8) we find that

\[
\left| \frac{T_{M_{2n_k} + 2} f(x)}{\varphi(M_{2n_k} + 2)} \right| = \frac{1}{\varphi(M_{2n_k} + 2)} \frac{q_{M_{2n_k} + 1}}{Q_{M_{2n_k} + 2}} \geq \frac{c}{M_{2n_k} \varphi(M_{2n_k} + 2)}
\]
Hence,
\[
\mu \left\{ x \in G_m : \frac{T_{M_{2n_k}^2} f(x)}{\varphi(M_{2n_k} + 2)} \geq \frac{c}{M_{2n_k} \varphi(M_{2n_k} + 2)} \right\} = |G_m| = 1.
\]

Then from (12) we get that
\[
\frac{c}{M_{2n_k} \varphi(M_{2n_k} + 2)} \left\{ \mu \left\{ x \in G_m : \frac{T_{M_{2n_k}^2} f(x)}{\varphi(M_{2n_k} + 2)} \geq \frac{c}{M_{2n_k} \varphi(M_{2n_k} + 2)} \right\} \right\}^{1/p} \geq \frac{\| f_{n_k} \|_{H_p}}{c M_{2n_k}^{1/p - 2} \varphi(M_{2n_k} + 2)} \geq \frac{c (M_{2n_k} + 2)^{1/p - 2}}{\varphi(M_{2n_k} + 2)} \to \infty, \quad \text{as} \quad k \to \infty.
\]

The proof is complete. □

As application we get well-known result for the weighted maximal operator of Fejér means which was considered in Tephnadze [39, 40]:

Corollary 1. Let \(\varphi : \mathbb{N}_+ \to [1, \infty) \) be any increasing function satisfying the conditions
\[
\lim_{n \to \infty} \varphi(n) = \infty
\]
and
\[
\lim_{n \to \infty} \frac{(n + 1)^{1/p - 2} \log^{2[1/2+p]} (n + 1)}{\varphi(n)} = +\infty.
\]
Then
\[
\left\| \sup_{n \in \mathbb{N}} \frac{|\sigma_n f|}{\varphi(n)} \right\|_{H_{1/2}}^{1/2} = \infty
\]
and
\[
\left\| \sup_{n \in \mathbb{N}} \frac{|\sigma_n f|}{\varphi(n)} \right\|_{weak-L_p} = \infty.
\]

We also present some new results on \(T \) means with respect to Vilenkin systems which follows Theorem 1:

Corollary 2. Theorem 1 holds true for \(U_{n_k}^\alpha f, V_n^\alpha f \) and \(B_n f \) means with respect to Vilenkin systems.

References

[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhabary and A. I. Rubinshtein, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehim, 1981 (in Russian).

[2] L. Baramidze, L. E. Persson, G. Tephnadze and P. Wall, Sharp \(H_p - L_p \) type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications, J. Inequal. Appl., 2016, DOI: 10.1186/s13660-016-1182-1.
[3] I. Blahota, On a norm inequality with respect to Vilenkin-like systems, Acta Math. Hungar., 89, 1-2, (2000), 15–27.

[4] I. Blahota, K. Nagy, Approximation by Θ-means of Walsh-Fourier series, Anal. Math. 44 (1) (2018) 57–71.

[5] I. Blahota, K. Nagy, G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series, Math. Inequal. Appl., 22, 3 (2019) 837–853.

[6] I. Blahota, G. Tephnadze, Strong convergence theorem for Vilenkin-Fejér means, Publ. Math. Debrecen, 85, 1-2, (2014), 181-196.

[7] I. Blahota, G. Tephnadze, A note on maximal operators of Vilenkin-Nörlund means, Acta Math. Acad. Paed. Nyíreg., 32 (2016), 203-213.

[8] G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hung., 61 (1993), 131-149.

[9] G. Gát, Cesàro means of integrable functions with respect to unbounded Vilenkin systems. J. Approx. Theory 124 (2003), no. 1, 25-43.

[10] U. Goginava, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, (English summary) East J. Approx., 12 (2006), no. 3, 295-302.

[11] U. Goginava and K. Nagy, On the maximal operator of Walsh-Kaczmarz-Fejér means, Czechoslovak Math. J., 61, (3), (2011), 673-686.

[12] N. Gogolashvili, K. Nagy, G. Tephnadze, Strong convergence theorem for Walsh-Kaczmarz-Fejér means, Mediterr. J. Math., 2021, 18 (2), 37.

[13] N. Gogolashvili, G. Tephnadze, On the maximal operators of T means with respect to Walsh-Kaczmarz system, Stud. Sci. Math. Hung., 2021, 58 (1), 119-135.

[14] N. Gogolashvili, G. Tephnadze, Maximal operators of T means with respect to Walsh-Kaczmarz system, Math. Inequal. Appl., (to appear).

[15] N. Fujii, A maximal inequality for H1-functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), no. 1, 111-116.

[16] D. Lukkassen, L.E. Persson, G. Tephnadze and G. Tuteberidze, Some inequalities related to strong convergence of Riesz logarithmic means of Vilenkin-Fourier series, J. Inequal. Appl., 2020, DOI: https://doi.org/10.1186/s13660-020-02342-8.

[17] N. Memić, L. E. Persson, G. Tephnadze, A note on the maximal operators of Vilenkin-Nörlund means with non-increasing coefficients, Stud. Sci. Math. Hung., 53, 4, (2016) 545-556.

[18] N. Memić, I. Simon, G. Tephnadze, Strong convergence of two-dimensional Vilenkin-Fourier series, Math. Nachr., 289, 4 (2016) 485-500.

[19] C. N. Moore, Summable series and convergence factors, Summable series and convergence factors. Dover Publications, Inc., New York, 1966.

[20] F. Móricz and A. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, (English summary) J. Approx. Theory, 70 (1992), no. 3, 375-389.

[21] K. Nagy, Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series. Georgian Math. J. 18 (2011), no. 1, 147-162.

[22] K. Nagy, Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series, Anal. Math., 36 (2010), no. 4, 299-319.

[23] K. Nagy, Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Inequal. Appl., 15 (2012), no. 2, 301-322.

[24] K. Nagy, G. Tephnadze, Strong convergence theorem for walsh-marcinkiewicz means, Math. Inequal. Appl., 19, 1 (2016), 185-195.

[25] K. Nagy, G. Tephnadze, Walsh-Marcinkiewicz means and Hardy spaces, Cent. Eur. J. Math., 12, 8 (2014), 1214-1228.

[26] K. Nagy, G. Tephnadze, Approximation by Walsh-Marcinkiewicz means on the Hardy space H2/3, Kyoto J. Math., 54, 3 (2014), 641-652.

[27] K. Nagy, G. Tephnadze, The Walsh?Kaczmarz?Marcinkiewicz means and Hardy spaces, Acta math. Hung., 149, 2 (2016), 346-374.

[28] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar, 29 (1977), no. 1-2, 155-164.

[29] L. E. Persson, G. Tephnadze and P. Wall, Maximal operators of Vilenkin-Nörlund means, J. Fourier Anal. Appl., 21, 1 (2015), 76-94.
[30] L. E. Persson, G. Tephnadze and P. Wall, On an approximation of 2-dimensional Walsh-Fourier series in the martingale Hardy spaces, Ann. Funct. Anal., 9, 1 (2018), 137-150.

[31] L. E. Persson, G. Tephnadze and P. Wall, Some new (H_p, L_p) type inequalities of maximal operators of Vilenkin-Nörlund means with non-decreasing coefficients, J. Math. Inequal., 9, 4 (2015), 1055-1069.

[32] L. E. Persson, G. Tephnadze and G. Tutberidze, On the boundedness of subsequences of Vilenkin-Fejér means on the martingale Hardy spaces, operators and matrices, 14, 1 (2020), 283-294.

[33] L. E. Persson, G. Tephnadze, G. Tutberidze and P. Wall, Strong summability result of Vilenkin-Fejér means on bounded Vilenkin groups, Ukr. Math. J., 73 (4), (2021), 544-555.

[34] F. Schipp, F. Certain rearrangements of series in the Walsh system, (Russian) Mat. Zametki, 18 (1975), no. 2, 193-201.

[35] P. Simon, Cesáro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), no. 4, 321-334.

[36] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 27 (1984), 87-101.

[37] P. Simon, Strong convergence theorem for Vilenkin-Fourier series, J. Math. Anal. Appl., 245, (2000), 52-68.

[38] G. Tephnadze, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hung., 49 (2012), no. 1, 79-90.

[39] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means, Turkish J. Math., 37 (2013), no. 2, 308-318.

[40] G. Tephnadze, On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl., 16, (2013), no. 2, 301-312.

[41] G. Tephnadze, On the maximal operators of Walsh-Kaczmarz-Fejér means, Period. Math. Hung., 67, (1), 2013, 33-45.

[42] G. Tephnadze, Approximation by Walsh-Kaczmarz-Fejér means on the Hardy space, Acta Math. Sci., 34, 5 (2014), 1593-1602.

[43] G. Tephnadze, On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series, Stud. Sci. Math. Hung., 51, 1 (2014), 105-120.

[44] G. Tephnadze, Strong convergence of two-dimensional Walsh-Fourier series, Ukr. Math. J., 65, 6 (2013), 822-834.

[45] G. Tephnadze, On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal., 49 (2014) 1, 23-32.

[46] G. Tephnadze, On the partial sums of Walsh-Fourier series, Colloq. Math., 141, 2 (2015), 227-242.

[47] G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system, Journal of Cont. Math. Anal. 54, 6, (2019), 319-324.

[48] G. Tutberidze, Maximal operators of T means with respect to the Vilenkin system, Nonlinear Studies, 27, 4, (2020), 1-11.

[49] G. Tutberidze, Modulus of continuity and boundedness of subsequences of Vilenkin-Fejér means in the martingale Hardy spaces, Georgian Math. J., 2022, 29 (2), 309-315.

[50] G. Tutberidze, Sharp (H_p, L_p) type inequalities of maximal operators of T means with respect to Vilenkin systems, Mediterr.. J. Math., 2022, 19(2), 81.

[51] N. Ya. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl., (2) 28 1963 1-35.

[52] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.

[53] F. Weisz, Cesáro summability of one and two-dimensional Fourier series, Anal. Math. Studies, 5 (1996), 353-367.

[54] F. Weisz, Hardy spaces and Cesáro means of two-dimensional Fourier series, Approx. Theory and Function Series, (Budapest, 1995), 353-367.

[55] F. Weisz, Q-summability of Fourier series, Acta Math. Hungar., 103 (2004), no. 1-2, 139-175.

D. Baramidze, THE UNIVERSITY OF GEORGIA, SCHOOL OF SCIENCE AND TECHNOLOGY, 77A MERAB KOSTAVA ST, TBILISI 0128, GEORGIA AND DEPARTMENT OF COMPUTER SCIENCE AND COMPUTATIONAL ENGINEERING, UiT - THE ARCTIC UNIVERSITY OF NORWAY, P.O. Box 385, N-8505, Narvik, Norway.

Email address: davit.baramidze@ug.edu.ge