Search for CP violation in $D^0 \rightarrow K_S^0 \pi^0$, $D^0 \rightarrow \pi^0 \pi^0$ and $D^0 \rightarrow K_S^0 K_S^0$ decays

CLEO Collaboration
(March 24, 2022)

Abstract

We have searched for CP-violating asymmetries in neutral charm meson decays in 13.7 fb$^{-1}$ of e^+e^- collision data at $\sqrt{s} \approx 10.6$ GeV with the CLEO detector. The measured asymmetries in the rate of D^0 and \bar{D}^0 decays to $K_S^0 \pi^0$, $\pi^0 \pi^0$ and $K_S^0 K_S^0$ final states are $(+0.1 \pm 1.3)\%$, $(+0.1 \pm 4.8)\%$ and $(-23 \pm 19)\%$, respectively.
11 Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Canada
12 McGill University, Montréal, Québec, Canada H3A 2T8 and the Institute of Particle Physics, Canada
13 Ithaca College, Ithaca, New York 14850
14 University of Kansas, Lawrence, Kansas 66045
15 University of Minnesota, Minneapolis, Minnesota 55455
16 State University of New York at Albany, Albany, New York 12222
17 Ohio State University, Columbus, Ohio 43210
18 University of Oklahoma, Norman, Oklahoma 73019
19 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
20 Purdue University, West Lafayette, Indiana 47907
21 University of Rochester, Rochester, New York 14627
22 Southern Methodist University, Dallas, Texas 75275
23 Syracuse University, Syracuse, New York 13244
24 University of Texas, Austin, Texas 78712
25 University of Texas - Pan American, Edinburg, Texas 78539
26 Vanderbilt University, Nashville, Tennessee 37235
27 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Measurable CP violating phenomena in strange and beauty mesons are the impetus for numerous current and future experiments that are expected to challenge the standard model (SM) description of the weak interaction. In contrast the SM predictions for CP violation in the charm meson system of $\mathcal{O}(0.1\%)$ are probably not attainable by current experiments, although recent conjectures indicate that direct CP violating effects may be as large as $\mathcal{O}(1\%)$. Thus an observation of CP violation in charm decays exceeding the percent level would be strong evidence for non-SM processes.

Previous searches for mixing-induced or direct CP violation in the neutral charm meson system have set limits of $\sim 30\%$ or a few percent, respectively. We present results of searches for direct CP violation in neutral charm meson decays to pairs of light pseudoscalar mesons: $K^0_S\pi^0$, $\pi^0\pi^0$ and $K^0_SK^0_S$. Decays to the latter two final states are Cabibbo-suppressed, thus enhancing the possibility that interference with non-SM amplitudes could produce direct CP violation. A previous search by CLEO for direct CP violation in D^0 and $\overline{D^0}$ decays to $K^0_S\pi^0$ in 2.7 fb$^{-1}$ of e^+e^- collision data established $A(K^0_S\pi^0) = (-1.8 \pm 3.0\%)$ with the definition

$$A(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to f)}$$

where f is the final state.

The current results are based upon 13.7 fb$^{-1}$ of e^+e^- collision data at $\sqrt{s} \sim 10.6$ GeV accumulated with two configurations of the CLEO experiment at the Cornell Electron Storage Ring (CESR). Approximately one-third of the data were accumulated with the CLEO II configuration that consists of 3 nested cylindrical wire chambers surrounded by a CsI(Tl) electromagnetic calorimeter immersed in a 1.5T solenoidal magnetic field. The 3.5 cm radius beam pipe and innermost wire chamber were replaced by a 2 cm radius beam pipe and a three-layer double-sided silicon vertex detector in CLEO II.V. In addition the gas mixture in the main drift chamber was changed from an argon:ethane to helium:propane mixture for improved charged particle momentum resolution and efficiency.

The Monte Carlo simulation of the CLEO II and CLEO II.V detector configurations was based upon GEANT. Simulated events were processed in the same manner as the data. We used a simulated sample of $e^+e^- \to q\bar{q}$ ($q = u, c, s, d$) events representing a luminosity comparable to that of the data to determine selection criteria and investigate some systematic effects. Systematic uncertainties in the asymmetry measurements are determined from the data when possible.

The charge of the slow pion produced in the decay $D^{*+} \to D^0\pi^+_{slow}$ identifies the flavor of the neutral charm meson at production (charge conjugation is implied throughout unless explicitly stated otherwise). Candidate π^+_{slow} must be well-reconstructed tracks originating from a cylinder of radius 3 mm and half-length 5 cm centered on the e^+e^- interaction point. A minimum momentum requirement on D^0 candidates of 2 GeV/c sets a lower limit on the π^+_{slow} momentum of approximately 95 MeV/c.

Candidates for the decay $K^0_S \to \pi^+\pi^-$ are formed from opposite-sign pairs of charged particles within 8 (9) MeV of the known K^0_S mass for the $K^0_SK^0_S$ ($K^0_S\pi^0$) final state. The reconstructed K^0_S decay vertex must be separated from the interaction point by at least 3 standard deviations (σ) where σ is calculated from the track covariance matrices. In addition the χ^2 for each K^0_S daughter track to originate from the interaction point is required to be
larger than 2.5. The latter two requirements not only suppress combinatorial background arising from random combinations of $\pi^+ \pi^-$ candidates but also diminishes the contribution of $D^0 \to h^+ h^- K_S^0$ and $D^0 \to h^+ h^- \pi^0$ ($h = \pi, K$) backgrounds to the $K_S^0 K_S^0$ and $K_S^0 \pi^0$ final states, respectively.

Neutral pion candidates are formed from pairs of electromagnetic showers in the CsI(Tl) calorimeter unassociated with a charged track. Showers in the barrel (end cap) region of the calorimeter must exceed 30 (50) MeV to be considered as a π^0 daughter candidate where the barrel is the region of the calorimeter at least 45° from the e^+e^- collision axis. The invariant mass of π^0 candidates must lie within 20 (18) MeV of the known π^0 mass [14] for the $\pi^0 \pi^0$ ($K_S^0 \pi^0$) final state.

Neutral pion and K_S^0 candidates are kinematically constrained to the π^0 and K_S^0 mass [14] and combined to form D^0 candidates. The mass constraints on the D^0 daughter candidates improves the D^0 mass resolution by 8%, 5% and 17% for the $K_S^0 \pi^0$, $\pi^0 \pi^0$ and $K_S^0 K_S^0$ final state, respectively. A final requirement is placed on $\cos \theta_d$ where θ_d is the angle in the D^0 rest frame between the π^0 (K_S^0) direction and the D^0 flight direction for $\pi^0 \pi^0$ ($K_S^0 \pi^0$ and $K_S^0 K_S^0$) decays. Combinatorial background due to low momentum π^0 and K_S^0 candidates is peaked towards $|\cos \theta_d| = 1$ and the two-body decays of the spinless D^0 have a flat distribution in $\cos \theta_d$. We require $\cos \theta_d$ to be in the range $[-1.00, +0.95]$, $[-0.875, +0.875]$ and $[-0.96, +0.96]$ for $K_S^0 \pi^0$, $\pi^0 \pi^0$ and $K_S^0 K_S^0$ final states, respectively.

D^0 candidates are selected by requiring M, the reconstructed D^0 candidate mass, to be within 50, 65, and 18 MeV of the known D^0 mass [14] for $K_S^0 \pi^0$, $\pi^0 \pi^0$ and $K_S^0 K_S^0$ final states, respectively. The Q distributions of the candidates in the three decay modes are shown in Figures 1, 2 and 3 respectively, where Q is the energy release, $Q \equiv M(D^0 \pi^0_{\text{slow}}) - M - M_{\pi^0}$, $M(D^0 \pi^0_{\text{slow}})$ is the $D^0 \pi^0_{\text{slow}}$ invariant mass and M_{π^0} is the charged pion mass [14]. A prominent peak indicative of $D^{*+} \to D^0 \pi^0_{\text{slow}}$ decays is observed in all three distributions.

The sum S of the number of D^0 and D^\ast candidates to a given final state (the denominator in Eqn (1)) is determined by fitting the background in the Q distribution. The background shape is approximated as a non-relativistic threshold function with first and second order relativistic corrections $B(Q) = aQ^{1/2} + bQ^{3/2} + cQ^{5/2}$ and the signal region $Q \in [3.3, 8.3]$ MeV is excluded from the fit. The interpolated background in the signal region is determined from the fit and subtracted from the total number of D^0 and D^\ast candidates to determine S. For the three decay modes under investigation, we obtain $S(K_S^0 \pi^0) = 9099 \pm 151$, $S(\pi^0 \pi^0) = 810 \pm 89$ and $S(K_S^0 K_S^0) = 65 \pm 14$ where the quoted uncertainty includes the uncertainty due to the background interpolation. The numerator in Eqn. 1 is determined from the difference in the number of D^0 and D^\ast candidates in the region $Q \in [3.3, 8.3]$ MeV. The measured raw asymmetries are $(+0.0 \pm 1.1)\%$, $(+0.1 \pm 4.8)\%$ and $(-14 \pm 14)\%$ for the $K_S^0 \pi^0$, $\pi^0 \pi^0$ and $K_S^0 K_S^0$ final states, respectively. This method of determining the asymmetry implicitly assumes that the background is symmetric. As shown in Figures 1, 2 and 3, the Q distributions are indeed symmetric outside the region $Q \in [3.3, 8.3]$ MeV to the statistical precision available.

We have measured the momentum-dependent detector- or reconstruction-induced slow pion asymmetry by selecting charged pions from K_S^0 decays using the same selection criteria used to select D^{*+} daughters. Since the inner detector material differs for the two configurations, we take the measured asymmetry as a function of momentum for each configuration and weight it by the π^0_{slow} spectrum from D^{*+} decays. The asymmetry measured for CLEO II and CLEO II.V is $(-0.20 \pm 0.34)\%$ and $(+0.18 \pm 0.23)\%$, respectively, where the uncer-
FIG. 1. (a) Fitted Q distribution for $D^0 \to K_S^0 \pi^0$. The points with error bars are the data, the (barely visible) solid line represents the fitted background and the dashed line shows the interpolation into the Q signal region. (b) The Q distributions for $D^0 \to K_S^0 \pi^0$ (points) and $\bar{D}^0 \to K_S^0 \pi^0$ (histogram) candidates.
FIG. 2. (a) Fitted Q distribution for $D^0 \rightarrow \pi^0\pi^0$. The points with error bars are the data, the solid line represents the fitted background and the dashed line shows the interpolation into the Q signal region. (b) The Q distributions for $D^0 \rightarrow \pi^0\pi^0$ (points) and $\bar{D}^0 \rightarrow \pi^0\pi^0$ (histogram) candidates.
FIG. 3. (a) Fitted Q distribution for $D^0 \rightarrow K^0_S K^0_S$. The points with error bars are the data, the solid line represents the fitted background and the dashed line shows the interpolation into the Q signal region. (b) The Q distributions for $D^0 \rightarrow K^0_S K^0_S$ (points) and $\overline{D}^0 \rightarrow K^0_S K^0_S$ (histogram) candidates.
improvement over the previous CLEO measurement [13] and supersedes it. This is the first measurement of the asymmetry in $D^0(\pm 0^+ C P)$ indication of significant future higher luminosity samples. All measured asymmetries are consistent with zero and no possible bias in the fitting method, are determined from the data and would be reduced in any asymmetric D^0 modes contributing to the $K^0\pi^0\pi^0$. Background from $D^0\to K^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, $\pi^0\pi^0\pi^0$ or $K^0_S K^0_S\pi^0$ can not contribute because their reconstructed mass is approximately one pion mass below the D^0 mass and well outside the allowed range for M. Background from $D^0\to h^+h^-\pi^0$ ($D^0\to h^+h^-K^0_S$ and $D^0\to h^+h^-h^+h^-$) can contribute to the reconstructed $K^0_S\pi^0$ ($K^0_S K^0_S$) yield when the h^+h^- mass is near the K^0_S mass. There are no backgrounds of this sort that can contribute to the $\pi^0\pi^0$ yield. The magnitude and asymmetry of this background can be directly measured using $K^0_S\to\pi^+\pi^-$ candidates with $M(\pi^+\pi^-)$ in sidebands either just below or above the $M(\pi^+\pi^-)$ mass range for standard K^0_S candidate selection. Using the same analysis procedure for these sideband candidates, we measure $r(K^0_S K^0_S) = 0.16\pm 0.11$ and $A_b(K^0_S K^0_S) = (\pm 40\pm 42)\%$ and $r(K^0_S\pi^0) = 0.03\pm 0.02$ and $A_b(K^0_S\pi^0) = (-5.5\pm 5.1)\%$ where the uncertainties are statistical only. The relative background rate for $K^0_S K^0_S$ is substantially higher than that for $K^0_S\pi^0$ because the primary decay mode contributing to the $K^0_S K^0_S$ background is the Cabibbo-favored $D^0\to K^0_S\pi^+\pi^-$ while the main contributors to $K^0_S\pi^0$ are the Cabibbo-suppressed $D^0\to \pi^+\pi^-\pi^0$ and kinematically asymmetric $D^0\to K^-\pi^+\pi^0$ decays.

Correcting the measured raw asymmetries for the slow pion reconstruction bias and the rate and asymmetry of the background, we obtain $A(K^0_S\pi^0) = (+0.1\pm 1.3)\%$, $A(\pi^0\pi^0) = (+0.1\pm 4.8)\%$ and $A(K^0_S K^0_S) = (-23\pm 19)\%$ where the uncertainties contain the combined statistical and systematic uncertainties. All systematic uncertainties, except for that assigned for possible bias in the fitting method, are determined from the data and would be reduced in future higher luminosity samples. All measured asymmetries are consistent with zero and no indication of significant CP violation is observed. The former measurement is a substantial improvement over the previous CLEO measurement [13] and supersedes it. This is the first measurement of the asymmetry in D^0 decays to the Cabibbo-suppressed final states $K^0_S K^0_S$ and $\pi^0\pi^0$.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
luminosity and running conditions. M. Gramaglia and L.D. Borum II thank the REU pro-
gram of the National Science Foundation. M. Selen thanks the PFF program of the NSF
and the Research Corporation, A.H. Mahmood thanks the Texas Advanced Research Pro-
gram, F. Blanc thanks the Swiss National Science Foundation, and E. von Toerne thanks
the Alexander von Humboldt Stiftung for support. This work was supported by the Na-
tional Science Foundation, the U.S. Department of Energy, and the Natural Sciences and
Engineering Research Council of Canada.
REFERENCES

[1] KTeV Collaboration, A. Alavi-Harati et al., Phys. Rev. Lett 83, 22 (1999).
[2] NA48 Collaboration, V. Fanti et al., Phys. Lett. B 465, 335 (1999).
[3] BaBar Collaboration, B. Aubert et al., “A study of time-dependent CP-asymmetries in \(B^0_d \rightarrow J/ψK_S^0 \) and \(B^0_d \rightarrow ψ(2S)K_S^0 \) decays”, BABAR-CONF-00/01, SLAC-PUB-8540, hep-ex/0008043.
[4] Belle Collaboration, H. Aihara, “A measurement of CP violation in \(B^0_d \) meson decays with Belle”, To be published in the proceedings of 30th International Conference on High-Energy Physics (ICHEP 2000), Osaka, Japan, 27Jul - 2 Aug 2000, hep-ex/0010008.
[5] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 5513 (1998); CDF Collaboration, T. Affolder et al., Phys. Rev. D 61, 072005 (2000), hep-ex/9909003.
[6] I.-H. Chiang et al., AGS Experiment Proposal 926 (1996).
[7] KAMI Collaboration, E. Cheu et al., “An expression of interest to detect and measure the direct CP violating decay \(K_L \rightarrow π^0ν\bar{ν} \) and other rare decays at Fermilab using the Main Injector”, 22 September 1997, hep-ex/9709026.
[8] “Proposal for an Experiment to Measure Mixing, CP Violation and Rare Decays in Charm and Beauty Particle Decays at the Fermilab Collider - BTeV”, 15 May 2000, http://www-btev.fnal.gov/public_documents/btev_proposal/.
[9] LHCB Collaboration, “Technical Proposal: A Large Hadron Collider Beauty Experiment for Precision Measurements of CP Violation and Rare Decays” Printed at CERN, Geneva, 1998, ISBN 92-9083-123-5.
[10] F. Bucella et al., Phys.Rev. D 51, 3478 (1995).
[11] I. I. Bigi, “Flavour dynamics - central mysteries of the standard model”, To be published in the Proceedings of 30th International Conference on High-Energy Physics (ICHEP 2000), Osaka, Japan, 27 Jul - 2 Aug 2000, hep-ph/0009021.
[12] CLEO Collaboration, R. Godang et al., Phys. Rev. Lett. 84, 5038 (2000).
[13] CLEO Collaboration, J. Bartelt et al., Phys. Rev. D 52, 4860 (1995).
[14] Particle Data Group, D. E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
[15] CLEO Collaboration, Y. Kubota et al., Nucl. Instrum. Methods Phys. Res., Sect A 320, 66 (1992).
[16] T.S. Hill, Nucl. Instrum. Methods Phys. Res., Sect A 418, 32 (1998).
[17] D. Peterson, Nucl. Phys. B (Proc. Suppl.) 54B, 31 (1997).
[18] R. Brun et al., GEANT3 Users Guide, CERN DD/EE/84-1.