Experimental investigation of fiber reinforced concrete using septage ash

A Siva Krishna, E Vamshi Krishna, S Yeshwanth Kumar, T Sony, G Shiva Narayana

Department of Civil Engineering, SR Engineering College Warangal, India

E-mail: shiva_krishna_a@srecwarangal.ac.in

Abstract: In this experimental investigation, the concrete has replaced with septage ash in place of cement and banana fiber is added as a percentage of the weight of cement. Concrete is one of the materials which use a maximum number of non-renewable resources. Due to the high demand for non-renewable resources in the construction industry, recent investigations are carried out to find alternative construction materials which are eco-friendly and cause some impact in reducing pollution in the environment. Septage ash or septic tank sludge is the by-product from the faecal sludge sewage treatment plant of household septic tanks. Banana fiber is the natural fiber which is obtained from the stem of the banana tree, banana fiber is mainly used in the textile industry, but a huge quantity of fiber which can't be used in the textile manufacturing is as waste. So, in this experimental investigation authors have used these two materials to find the optimum percentage that can be replaced in concrete. In this research septage ash is put back by 10%, 20%, 30%, and 40% instead of cement without and with banana fiber added 1% of the weight of cement. Compressive, tensile along with flexural strength test is conducted for 7days and 28 days and results are compared to finding the optimum percentage of septage ash with banana fiber that can be replaced instead of cement.

Key words: Banana fiber, Septage ash, Non-renewable resources, Fauclal sludge, Construction industry, Investigations, Impact.

1. INTRODUCTION

The increases in the human population and the development of new technologies, materials and processes have caused an increase in the demand for resources [2]. The mismanagement and extensive use of these natural resources cause detrimental environmental problems. The word "sustainable" is becoming a very big issue in the present world. Sustainable development is the growing demand for the construction industry. Concrete is the most broadly used construction material all over the world with innovations combination of binder material such as fine aggregate, coarse aggregate, water and Cement. Cement is the main ingredient in the production of concrete [6]; woefully production of cement involves the emission of a large amount of carbon-dioxide gas into the atmosphere, a major contributor to the greenhouse effect and global warming. Form in recent years, Construction Technology has advanced through several investigations and experiments to enhance sustainable construction activities. To study the impact of the use of some pozzolanic materials as cement replacement Sewage sludge ash is the outgrowth produced from faecal sludge treatment plant (FSTP). An alternative solution for sewage sludge disposal is incineration which makes sewage sludge to SSA (sewage sludge ash). In this process, main components are sewage sludge in the presence of high temperature (500 to 700 degree Celsius) such as SiO2, CaO, Al2O3, these pozzolanic materials can used in concrete as partial replacement of cement, which undergoes pozzolanic reaction between pozzolanic materials (SiO2, CaO, Al2O3) and cement (OPC)[3].
on the report released by the government of India in December 2015, Urban areas all around the country nearly 62,000 million litres per day (MLD) sewage is generated, but only 23,277 or 37% of total generated municipal sewage million litres per day (MLD) can be treated across India. this implies nearly 70% of sewage generated in urban India untreated. Untreated sewage just connected to open drains which cause severe water and land pollution. As well as treated sewage is not reused fully, SSA used as organic fertilizer, landfill, backfill of trenches and used for manufacturing of bricks etc. In this investigation, SSA is brought from faecal sludge treatment plant (FSTP) located in ammavaripet village, Warangal urban Telangana state.

Fibres used in concrete are mainly categorized into natural and artificial fibres. The sources of natural fibres are vegetables, animal and mineral sources. On the other hand, artificial fibres are produced from synthetic materials, steel and natural polymers [5]. Fibres exist in various forms such as Cocos Nucifera (coconut) fibre, Musa acuminate (banana) fibre, Musa sapientum which is commonly known as banana is a herbaceous plant of the family Musaceae. The plant is produced from its fruits and mainly cultivated for the production of fiber. The Musa sapientum can grow up to a height of about 2-8m and the length of leaves are of about 3.5m. In our country, we are producing 70 million of metric of banana every year. The availability of banana fibres is large in amount [4]. The banana fiber used in the textile industry. Some amount of fiber has remained as waste, which can’t be used in textiles. In this investigation, fiber is brought from Women Technology Park located in SR Engineering College, Warangal urban Telangana state.

So, in this experimental investigation authors have used these two materials to find the optimum percentage that can be replaced in concrete [1]. In this research septage ash is put back by 10%, 20%, 30%, and 40% instead of cement without and with banana fiber added 1% of the weight of cement. Compressive, tensile along with flexural strength test is conducted [5] for 7 days and 28 days and results are compared to finding the optimum percentage of septage ash with mineral admixture as banana fiber that can be replaced instead of cement.

2. MATERIALS AND METHODS

2.1. Materials

2.1.1. Cement. OPC (ordinary Portland cement) of 53 grade was used for the investigation. All the test on cement are conducted as per IS 1489-1(1991). Cement was taken Same band and source Cement throughout the research work and stored in moisture free place.

2.1.2. Fine aggregate. In this investigation locally available sand passing through 4.75mm sieve is used as fine aggregate. Specific gravity and fineness modulus of used fine aggregate is 2.65 (range of specific gravity should be between 2.65 to 2.75) and 2.46 respectively.

2.1.3. Coarse aggregates. Coarse aggregate was collected from a local quarry and it was tested in the laboratory. The specific gravity of coarse aggregate is found as 2.75 (range of specific gravity should be between 2.70 to 3.00).

2.1.4. Septage ash. SSA is tested in the laboratory, ph vale is 10.27, Electric Conductivity 4.66, Total dissolved Solids 2.66. In this investigation, SSA is brought from faecal sludge treatment plant (FSTP) located in ammavaripet village, Warangal urban Telangana state. It was added as 10, 20, 30, and 40% replacement of cement.

2.1.5. Banana fiber. The banana fiber was cut into 2.5 mm length pieces and 1% of the weight of cement, fiber is added into concrete during mixing. For this investigation, fiber is brought from Women Technology Park located in SR Engineering College, Warangal urban Telangana state.
2.2 Methods

2.2.1. Compressive strength test. The compression test is one of the important and common tests conducted for different kind of materials. Compression strength is the resistance offered by the material due to the compression load on it. This test down mainly to concrete because it should with stand loads as per designed amount. By the experimental investigation, it is clear that the strength of concrete is increased with increase in age of concrete. This experiment is down as per IS 516:1959. Size of the specimen 150×150×150mm

\[
\text{Compression strength} = \frac{\text{load}}{\text{area}}
\]

2.2.2. Split tensile strength. Concrete is strong in compression and weak in tension, so the concrete will fail in tension as compared with Compression. This test is conducted as per IS 5816 – 1970. Size of the specimen is 150mm length and 100mm diameter. Specimen placed horizontal along the length and load is applied in vertical direction. Below mentioned Formula is used to calculate the tensile strength.

\[
\text{Split tensile strength} = \frac{2P}{\pi LD}
\]

Where
\[P = \text{load}, \ D = \text{diameter of specimen (100mm)}, \ L = \text{length of specimen (150mm)}\]

2.2.3. Flexural strength. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. Beams of 10×10×50cm are cast and tested under single point load for 7,28 days.

\[
\text{Flexural strength} = \frac{3PL}{2BD}
\]

Where
\[P = \text{load}, \ L = \text{length of specimen}, \ B = \text{breadth of specimen}, \ D = \text{depth of specimen}\]

3. METHODOLOGY

Cement, fine aggregate and coarse aggregate are tested and concrete is prepared with mix proportion of 1:1.5:3 (i.e M20). In this mix proportion, three different types of concretes are prepared i.e control concrete, fiber reinforced concrete and fiber reinforced concrete with partial replacement of septage as 10, 20, 30, 40% in place of cement, additional to theses paver blocks are cast. Then all the specimens are put in a curing tank and tested for 7 and 28 days. Compression strength test, tensile strength, and flexural strength test are conducted and results are compared.

4. RESULTS AND DISCUSSION

Type of concrete	without fiber 7 days(N/mm²)	without fiber 28 days(N/mm²)	with fiber 7 days(N/mm²)	with fiber 28 days(N/mm²)
C,C	14.70	25.53	14.90	26.35
10% SSA	14.36	25.82	14.45	27.86
20% SSA	13.48	24.12	13.95	27.29
30% SSA	12.20	23.49	11.89	24.45
40% SSA	9.92	22.76	10.20	22.46
From the above (Table 1) compressive strength of concrete, it is clear that target mean strength i.e. 20\(N/mm^2\) is obtained from C.C to 40% SSA and C.C+ fiber to 40% SSA + Fiber. As the SSA content up to 20% compressive strength increasing (Figure 1).

Figure 1. Graphical representation of compressive strength of concrete

Type of concrete	without fiber 7 days\((N/mm^2)\)	without fiber 28 days\((N/mm^2)\)	with fiber 7 days\((N/mm^2)\)	with fiber 28 days\((N/mm^2)\)
C.C	1.52	2.97	1.63	3.28
10% SSA	1.62	3.20	1.73	3.87
20% SSA	1.60	2.90	1.70	3.54
30% SSA	1.35	2.67	1.55	3.12
40% SSA	1.12	2.24	1.27	2.98

From the above (Table 2) split tensile strength of concrete, it is clear that minimum tensile strength i.e. 2N/mm² (generally tensile strength will be 7-10% of compressive strength of concrete) is obtained from C.C to 40% SSA and C.C+ fiber to 40% SSA + Fiber. Comparing the above results 10% SSA and 10% SSA + fiber both are having the highest values (Figure 2).
Figure 2. Graphical representation of split tensile strength of concrete

Table 3. Flexural strength of concrete

Type of concrete	without fiber 7 days(N/mm²)	without fiber 28 days(N/mm²)	with fiber 7 days(N/mm²)	with fiber 28 days(N/mm²)
C.C	2.30	3.20	2.48	3.60
10% SSA	2.56	3.12	2.86	3.76
20% SSA	2.39	3.00	2.64	3.75
30% SSA	1.96	2.92	2.54	3.40
40% SSA	1.44	2.56	1.68	2.80

From the above (Table 3) flexural strength of concrete, it is clear that minimum flexural strength i.e. 2.4N/mm² (generally flexural strength will be 10-15% of compressive strength of concrete) is obtained from C.C to 40% SSA and C.C+ fiber to 40% SSA + Fiber. Comparing the above results C.C+ SSA to C.C+20% SSA and C.C + fiber to C.C+20% SSA are having the highest values (Figure 3).
5. CONCLUSION

1. From the above results, it is very clear that SSA+FIBER concrete gained more strength compared with SSA concrete.
2. Compressive strength value satisfying up to 20% SSA+FIBER concrete.
3. Tensile strength values of 10% SSA+FIBER concrete are high compared to SSA concrete.
4. Flexural strength values of SSA+FIBER concrete are increased compared with SSA concrete. 20% SSA+FIBER have the highest value compared to other values.
5. From the overall observation it is clear that, max 10% to 20% of septage ash can be replaced with 1% of banana fiber.

6. SCOPE

- In the future experimental investigations different percentages of banana fiber can be added and 56 days strength can also be checked.
ACKNOWLEDGMENTS

Authors wishing to acknowledge Dr R Gobinath, HOD, department of civil engineering and faculty for helping to complete this research successfully

REFERENCES

[1] Yadav G, Prabhanjan N, Sahithi G, Sangeetha G, Srinivas A, and Siva Krishna A. (2020) Strength Investigation of Fly Ash Based Concrete Waste Steel Fibre and Polypropylene Fibre as Reinforcing Materials. In: Satapathy S, Raju K, Molugaram K, Krishnaiah A, Tsihrintzis G. (eds) International Conference on Emerging Trends in Engineering (ICETE). Learning and Analytics in Intelligent Systems, vol 2. Springer, Cham

[2] Venkatreddy, Professor, et al. “Experimental Investigation on Rcc by Using Multiple Admixtures.” International Journal of Engineering & Technology, vol 7, no. 3.3, June 2018, p. 14. DOI.org (Crossref), doi:10.14419/ijet.v7i3.3.14472.

[3] Yadav, G Swamy, et al. A Study on Characteristics of Concrete Using Pond Ash as a Partial Replacement of Sand. 25 Oct. 2018, www.ingentaconnect.com /content/sbit/icrtemm/2018/00002018/00000001/art00003.

[4] Gobinath R, Nwankwo C, Murthi P, and Sivakrishna A. (2020) Computing Redistribution Moments of Concrete Members in the Plastic Stage Using Linear Analysis: Short Review. In: Satapathy S., Raju K., Molugaram K., Krishnaiah A., Tsihrintzis G. (eds) International Conference on Emerging Trends in Engineering (ICETE). Learning and Analytics in Intelligent Systems, vol 2. Springer, Cham

[5] Ikramullah Khan, M Sravanthi, and E Laxmi Prasanna (2018) An Experimental Study of The Mechanical Properties of S Glass Fiber Reinforced High Strength Concrete Partially Replacing Cement with Nano Silica. International Journal of Civil Engineering and Technology (IJCIET), 9(4), 1398-1409.

[6] Siva Krishna et al., (2017) Design and Testing of Fly-Ash Based Geo Polymer Concrete. International Journal of Civil Engineering & Technology (IJCIET), 8(5), 480–491.

[7] Praveen. G. V (2012) Laboratory Study of Interaction Behaviour of Reinforcing Strips Embedded in Cement Modified Marginal Backfill. 'National Conference on Recent Advances in Geosciences, Engineering & Technology' Organized by JNTU, Kakinada, India.

[8] Jordi paya et al., (2019) ‘sewage sludge ash’, chemistry in building materials research group (giquima), concrete science and technology institute (icitech), university atpolitecnica de valència, valencia, spain

[9] Elie awwad et al., (2011) ‘preliminary studies on the use of natural fibers in sustainable concrete’ lebanese science journal, vol12, no. 1, 2011

[10] Mohammad zakaria et al.,(2016) ‘scope of using jute fiber for the reinforcement of concrete material’, textiles and clothing sustainability, doi 10.1186/s40689-016-0022-5

[11] Chandramouli et al.,(2019) ‘experimental investigation on banana fibre reinforced concrete with conventional concrete’, international journal of recent technology and engineering (ijrte) issn: 2277-3878, volume7, issue-6s.

[12] Saranyaet al.,(2018) ‘strengthening the properties of concrete using banana fiber and coconut fiber’, international research journal in advanced engineering and technology (irjaet) e - issn: 2454-4752 p - issn : 2454-4744 vol 4 issue 3 (2018) pages 3909 – 3915

[13] Suresh kumar et al.,(2019) ‘an experimental study and behaviour of banana fiber in concrete’, international journal of scientific & engineering research volume 10, issue 3, issn 2229-5518.

[14] Chandramouli et al.,(2018)‘comparative study of banana fibre reinforced concrete with normalconcrete’, international journal of civil engineering, http://www.internationaljournalssrg.org

[15] Aiswarya gopinath et al.,(2017) ‘fibre reinforced pervious concrete using banana fibre’,
international journal of engineering and management research, volume 7, issue 2, page number: 127-132

[16] Rajesh et al.,(2018) ‘experimental investigation of self compacting concrete (scc) with confinement by partial replacement of cement with ggbs, lime stone and fine aggregate with pond ash’, international journal of civil engineering and technology (ijciet), volume 9, issue 3, march 2018, pp. 489–501, article id: ijciet_09_03_048.

[17] Gorav gupta et al.,(2017) ‘experimental study on the effect of ggbs and silica fume on the strength of concrete’, international journal of engineering research & technology (ijert) issn:2278-0181, volume6, issue 12.

[18] Suhaspawar et al.,(2018) ‘enhancing the properties of concrete by using banana fiber’, international journal of advance engineering and research development, volume 5, issue 06, e-issn (o): 2348-4470 p-issn (p): 2348-6406

[19] Dengling jiang et al.,(2010) ‘reuse of municipal wastewater sludge for construction material’, advanced materials research vol 156-157 (2011) pp 939-942 online:2010-10-27 © (2011) trans tech publications, switzerland doi:10.4028/www.scientific.net/amr.156-157.939

[20] Neha tirkey et al.,(2018) ‘experimental study on the banana fiber reinforced concrete’, international journal of pure and applied mathematics, volume 119 no. 18 2018, 2053-2056

[21] Ramachandran et al.,(2019) ‘effect of metakaolin and banana fibre in high strength concrete’, international journal of scientific research in engineering – ijser, vol11, issue5, www.ijser.in

[22] Solomon ikechukwu anowai et al.,(2017) ‘properties of banana fibre reinforced fly ash concrete’, international journal of modern trends in engineering and research, doi:10.21884/ijmter.2017.4331.rifcq, volume 04, issue 10

[23] Prakash chandar., et al.,(2018), ‘experimental investigation on the mechanical properties of concrete mixed with banana stem fiber as well as hybrid steel fiber’, rasayan jchem (rjc), vol11, no. 2,640 – 646, issn: 0974-1496, e-issn: 0976-0083, coden: rjcabp

[24] Thejaswini dade et al.,(2019) ‘fresh and hardened state properties of fiber reinforced self compacting concrete’, international journal of advance research, ideas and innovations in technology, issn: 2454-132x impact factor: 4.295 (volume 5, issue 3) available online at: www.ijarit.com

[25] Sirajuddin et al.,(2019) ‘experimental investigation on properties of concrete by partial replacement of cement with ggbs and fine aggregate with quarry dust’, international journal of recent technology and engineering (ijrte) issn: 2277-3878, volume7, issue-6c2.

[26] Sanjay salla et al.,(2018) ‘comparative study on jute fibre and banana fibre in fly ash bricks’, ijettjournal, issn: 2231-5381http://www.ijettjournal.org

[27] Malarvizhi et al.,(2017) ‘investigating the impact of plant fibres in increasing the strength of concrete’, international journal of applied environmental sciences issn 0973-6077 volume 12, pp. 1757-1767

[28] Vijaya prathima et al.,(2017) ‘comparative study of conventional concrete with banana fiber modified concrete’, ijsart, volume 3, issue 9, page 450

[29] Doh shu ing., et al.,(2016), ‘the use of sewage sludge ash (ssa) as partial replacement of cement in concrete’, arpn journal of engineering and applied sciences, vol 11, no. 6,

[30] Ms Shetty “concrete technology theory and practice”.

[31] IS 10262:2019 Concrete Mix Proportioning – Guidelines, © BIS 2019 bureau of Indian standards New Delhi 110002.