Coatings, 11, 417. https://doi.org/10.3390/coatings11040417

Heat Transfer in Nanomaterial Suspension (CuO and Al$_2$O$_3$) Using KKL Model

Muhammad Awais 1,*, Saeed Ehsan Awan 2*, Muhammad Asif Zahoor Raja 3*, Muhammad Nawaz 4*, Wasim Ullah Khan 5,*, Muhammad Yousaf Malik 6 and Yigang He 5,*

Abstract: Novel nonlinear power-law flux models were utilized to model the heat transport phenomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL correlations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano-polymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parameters. Shear stresses at the wall for nanoparticles (CuO and Al$_2$O$_3$) were recorded and displayed in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.

Keywords: KKL model; effective diffusion coefficients; n-diffusion theory; micro-rotation; flux models; shear-thinning; shear-thickening

1. Introduction

Polymer liquids like suspensions are non-Newtonian liquids containing solid-like microstructure. The rheology of such suspensions is characterized by two types of stress-strain correlations (i) the stress-strain correlations associated with macromotion caused by the body and surface forces and (ii) couple stress-strain constitutive equations based on micro-rotations of solid structures immersed in the suspension. Eringen [1] was the first to introduce the theory of such fluids and named them “micropolar fluids” (MF). After Eringen, many investigations were carried out to analyze several phenomena like heat transfer [2,3], mass transfer [4,5], viscous dissipation [6,7], Joule heating [8], Hall and ion slip effects [9], the effect of dispersion of nanoparticles [10,11], Soret and Dufour effects [12], using MF theory. The studies mentioned in refs. [13,14] are based on classical linear flux models, which assume that the diffusion coefficients are constant. However, Peter et al. [15] showed that the spinning of solid particles immersed in base liquid has a significant effect on viscosity effectiveness. This development motivated the researchers to establish novel nonlinear constitutive models for MF and, in view of suggestions by Peter et al. [15] and Sui et al. [16], proposed a novel similar nonlinear fluidic system. The generalized n-diffusion theory [17] is utilized by Sui et al. [16] to capture shear-thinning...
and shear-thickening performances. For more clarity, the following Table 1 is given for the comparison between classical and novel flux models.

Table 1. Comparison between classical and novel models.

Classical Models	Novel Models				
classical Fourier law of heat flux	novel Fourier law of heat flux				
\(q_{\text{heat}} = -k \nabla T \)	\(q_{\text{heat}} = -k	N	^{n-1} \nabla T \)		
classical stress–strain model	novel stress–strain model				
\(\tau_{yx} = \mu_0 \frac{\partial u}{\partial y} \)	\(\tau_{yx} = \mu	N	^{n-1} \frac{\partial u}{\partial y} + k_0	N	^{n-1} N \)

The expression \(k|N|^{n-1}, \mu|N|^{n-1} \) and \(k_0|N|^{n-1} \) are termed apparent thermal conductivity, apparent dynamic viscosity \& apparent vortex viscosity, respectively. Further, for \(n < 1 \) is the case of the shear-thinning nature of the liquid. It is noted that for the power index, \(n = 1 \), the novel flux models reduce to the classical Fourier law of heat conduction and classical stress–strain relations for MF. Moreover \(n > 1 \), the novel models capture shear-thickening behavior. Theoretical and experimental works on an enhancement of heat transfer through the dispersion of nanosolid particles in liquids motivated researchers and to invent several correlations for effective (viscosity, thermal properties and thermal conductivity etc.,) Among them example, the latest model is by Koo, Kleinstreuer and Li (KKL). Researchers have studied this model in recent years to present and analyze several applications in the field of science and technology. For instance, Kandelousi [18] and Haq et.al. [19] presented applications of KKL model in different geometries, while Alsagri and Moradi [20] presented some applications of the KKL nanoliquid model. They discussed some applications of nanofluid in heat transfer problems between rotary tubes. Rana and Nawaz [21] investigated the enhancement of heat transfer in Sutterby nanoliquid by analyzing the Koo–Kleinstreuer and Li (KKL) correlations. They also studied the generalized heat fluxes via Cattaneo–Christov heat flux model. An optimization via a numerical approach of microchannel heat sink (MCHS) performance utilizing the KKL theory has been analyzed by Pourmehran et al. [22]. Vijaybabu [23] computed the entropy generation for MF. Moreover

\[
\rho_{nf} = (1 - \phi)\rho_f + \phi \rho_s, \quad (\rho Cp)_nf = (1 - \phi)(\rho Cp)_f + \phi (\rho Cp)_s, \quad (1)
\]

\[
\sigma_{nf} = \sigma_f (1 + \frac{3(\sigma - 1)\phi}{\sigma + 2 - (\sigma - 1)\phi}), \quad \sigma = \sigma_s / \sigma_f, \quad (2)
\]

\[
\frac{k_{static}}{k_f} = 1 + \frac{3\phi(\frac{k_s}{k_f}) - 1}{(\frac{k_s}{k_f} + 2) - (\frac{k_s}{k_f} - 1)\phi}, \quad \frac{k_{eff}}{k_{static}} = k_{static} + k_{Brownian}, \quad (3)
\]

\[
k_{eff} = 1 + \frac{3\phi(\frac{k_s}{k_f}) - 1}{(\frac{k_s}{k_f} + 2) - (\frac{k_s}{k_f} - 1)\phi} + 5 \times 10^4 s' (\phi, T, d_p) \rho_f \sigma_f (\sigma_f - 1) \frac{k_s T}{d_p \rho_p} \quad (4)
\]
\[R_f = 4 \times 10^{-8} \text{km}^2/\text{W}, \quad R_f = -d_p (1/k_p - 1/k_{p, \text{eff}}), \quad (5) \]

\[
g'(\phi, T, d_p) = \begin{pmatrix} a_1 + a_3 \ln(\phi) + a_2 \ln(d_p) + a_5 \ln(d_p)^2 \\ + a_4 \ln(d_p) \ln(\phi) \\ + a_6 + a_8 \ln(\phi) + a_7 \ln(d_p) + a_{10} \ln(d_p)^2 \\ + a_9 \ln(\phi) \ln(d_p) \end{pmatrix}, \quad (6) \]

\[k_{\text{Brownian}} = 5 \times 10^4 g'(\phi, T, d_p) \phi p_f (c_p) f \sqrt{\frac{k_p T d_p}{d_p p_f}} \quad 300K < T < 325K, \quad (7) \]

\[
\mu_{nf} = \frac{\mu_f}{(1 - \phi)\kappa^2} + \frac{k_{\text{Brownian}}}{k_f} \times \frac{\mu_f}{Pr_f}. \quad (8) \]

Thermophysical properties of water and two types of metallic nanoparticles, which are used by Sheikholeslami [30], are given in Table 2.

Physical Property	Water/Base Fluid	CuO	Al₂O₃
\(\rho \) (kg.m\(^{-3}\))	997.1	8933	3970
\(C_p \) (J.kg\(^{-1}\).K\(^{-1}\))	4179	385	765
\(k \) (W.m\(^{-1}\).K\(^{-1}\))	0.613	401	25
\(d_p \) (nm)	-	40	47
\(v \) (S.m\(^{-1}\))	0.05	5.96 \times 10^{07}	3.69 \times 10^{07}

2. Physical Situation

We investigated the effects of dispersion of nanoparticles (CuO and Al₂O₃) on the performance of thermal conductivity and viscosity using the KKL model. Mass, linear momentum, angular momentum and thermal diffusion, and boundary layers models are:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (9)\]

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \left(\frac{\mu_{nf} - k_0}{\rho_{nf}} \right) \frac{\partial}{\partial y} \left(|N|^{n-1} \frac{\partial u}{\partial y} \right) + \frac{k_T}{\rho_{nf}} \frac{\partial}{\partial y} \left(|N|^{n-1} N \right), \quad (10)\]

\[
\rho_{nf} \left(\frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} \right) = \frac{\partial}{\partial y} \left(\gamma \frac{\partial N}{\partial y} \right) - k_0 |N|^{n-1} \left(2N + \frac{\partial u}{\partial y} \right), \quad (11)\]

\[
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\lambda_0}{\rho p_{nf}} \frac{\partial}{\partial y} \left(|N|^{n-1} \frac{\partial T}{\partial y} \right), \quad (12)\]

where \([u, v, 0]\) is for the velocity of the fluid, \([0, N, 0]\) is for the microrotations or angular velocity in the \(xy\) plane, and \(T\) is for the temperature of the fluid. The other physical quantities \(\rho_{nf}\) and \(\lambda_0\) are the density and thermal conductivity, respectively. In this study, the Spin gradient viscosity \(\gamma\) is defined as \(\gamma = \left(\mu_{nf} - k_0/2 \right) |N|^{n-1} = \mu_{nf} |N|^{n-1} (1 + K/2) j\)

such that \(j = \left(U_w^2 + \mu_{nf} / \rho_{nf} \right)^{2/3}\), where \(K = k_0/\mu_{nf}\).

The following boundary conditions:

\[
\begin{align*}
& u = U_w, \ v = 0, \ N = -m \frac{\partial u}{\partial y}, \ T = T_w \text{ at } y = 0 \\
& u = v = N \rightarrow 0, \ T \rightarrow T_\infty \text{ as } y \rightarrow \infty.
\end{align*} \quad (13)\]

are implemented for the solution of modeled boundary problems.
Normalization of equations: Diffusion Equations (9)–(12) and initial and boundary conditions (8a) are made dimensionless using the following transformations:

\[
\begin{align*}
\bar{u} = \frac{\bar{u}}{\bar{u}_{nf}}, \quad \bar{v} = -\frac{\bar{v}}{\bar{u}_{nf}}, \quad \bar{\psi}(x, y) &= \left(\frac{\bar{u}_{nf}^{2-n} \bar{\psi}_{nf}}{\bar{u}_{nf}}\right) \frac{1}{1-n} \bar{f}(\eta), \\
N &= \left(\frac{\bar{u}_{nf}^{2-n} \bar{\psi}_{nf}}{\bar{u}_{nf}}\right) \frac{1}{1-n} \bar{R}(\eta), \quad \bar{\theta}(\eta) = \frac{T - T_{\infty}}{T_{w} - T_{\infty}}, \quad \bar{\eta} = \left(\frac{\bar{u}_{nf}^{2-n} \bar{\psi}_{nf}}{\bar{u}_{nf}}\right) \frac{1}{1-n} \bar{y},
\end{align*}
\]

and hence we get the following boundary value problems:

\[
\begin{align*}
(1 + K)(|R|^n R'') + K(|R|^{n-1} R') + \frac{A_1}{\alpha_5} \frac{1}{1-n} ff'' &= 0, \\
\left\{ \begin{array}{l}
f''(0) = 1, \quad f(0) = 0 \\
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
(1 + \frac{K}{2})(|R|^{n-1} R') - K(|R|^{n-1} [2R + f'R]) + \frac{A_1}{\alpha_5} (Rf'' + f'R') &= 0, \\
R(0) &= -\frac{1}{2} f''(0), \quad R(\infty) = 0
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{l}
(1 + \frac{K}{2})(|R|^{n-1} \theta'') + A_2 \text{Pr} \frac{1}{1-n} f \theta' &= 0, \\
\theta(0) = 1, \quad \theta \rightarrow 0 \text{ as } \eta \rightarrow \infty
\end{array} \right.
\end{align*}
\]

where:

\[
A_1 = \frac{\rho_{nf}}{\rho_f}, \quad A_2 = \frac{(\rho_c)_{nf}}{(\rho_c)f}, \quad A_3 = \frac{\mu_{nf}}{\mu_f}, \quad A_4 = \frac{k_{nf}}{k_f}, \quad A_5 = \frac{\sigma_{nf}}{\sigma_f}, \quad \text{Pr} = \frac{\mu_f (\gamma_f)}{k_f}.
\]

Expressions for the wall skin friction and Nusselt number are given below:

\[
C_{fx} = -\frac{2 \tau_w}{\rho_{nf} \bar{u}_{nf}^2} = 2^{n-2} (1 + \frac{K}{2}) |f''(0)|^{n-1} f''(0),
\]

where:

\[
\tau_w = \left[(\mu_{nf} + k_0) |N|^{n-1} \frac{\partial u}{\partial y} + k_0 |N|^{n-1} N \right]_{y=0}
\]

\[
\text{Re} \frac{1}{2} Nt = \frac{\lambda_0 (T_w - T_{\infty})}{\lambda_0 (T_w - T_{\infty})} = -\theta'(0),
\]

\[
q_w = -\lambda_0 \left[|N|^{n-1} \frac{\partial T}{\partial y} \right]_{y=0}
\]

3. Numerical Procedure

Here, a brief and complete description of the numerical approaches Adams and explicit Runge–Kutta (RK) methods to solve heat transport phenomenon in nano-micropolar polymer over a flexible surface (15)–(17) is presented.

Adam Predictor—Corrector Solver

The heat transport phenomenon in nano-micropolar polymer over a flexible surface is represented in Equations (15)–(17) and is transformed into equivalent first-order differential system along with boundary conditions in terms of the velocity field \(f(\eta)\), \(R(\eta)\), temperature profile \(\theta(\eta)\).

Generic representations of a derived first-order system for \(f(\eta)\), \(R(\eta)\) and \(\theta(\eta)\) are given, respectively, as follows:

\[
\frac{df}{d\eta} = b(\eta, f), \quad f(\eta_0) = f_0,
\]

\[
\frac{dR}{d\eta} = b(\eta, R), \quad R(\eta_0) = R_0,
\]

\[
\frac{d\theta}{d\eta} = b(\eta, \theta), \quad \theta(\eta_0) = \theta_0.
\]
\[
\frac{d\theta}{d\eta} = b(\eta, \theta), \quad \theta(\eta_0) = \theta_0, \quad (25)
\]

The generalized expressions for two-stage Adams predictor-corrector technique [31–36] for \(f(\eta), R(\eta)\) and \(\theta(\eta)\) are given, respectively, as follows:

\[
f_{k+1} = f_k + \frac{h}{2}(3w(\eta_k, f_k) - w(\eta_{k-1}, f_{k-1})), \quad (26)
\]

\[
R_{k+1} = R_k + \frac{h}{2}(3w(\eta_k, R_k) - w(\eta_{k-1}, R_{k-1})), \quad (27)
\]

\[
\theta_{k+1} = \theta_k + \frac{h}{2}(3w(\eta_k, \theta_k) - w(\eta_{k-1}, \theta_{k-1})), \quad (28)
\]

where \(h\) is a step size parameter. Accordingly, standard multi-stage Adams predictor-corrector expressions for \(f(\eta), R(\eta)\) and \(\theta(\eta)\) are illustrated, respectively, as follows:

\[
f_{k+1} = f_k + \frac{h}{2}(w(\eta_k + 1, f_{k+1}) - w(\eta_k, f_k)), \quad (29)
\]

\[
R_{k+1} = R_k + \frac{h}{2}(w(\eta_k + 1, R_{k+1}) - w(\eta_k, R_k)), \quad (30)
\]

\[
\theta_{k+1} = \theta_k + \frac{h}{2}(w(\eta_k + 1, \theta_{k+1}) - w(\eta_k, \theta_k)), \quad (31)
\]

4. Results and Discussion

In this section, we present and discuss the behavior of several involved physical quantities on the flow field by utilizing the numerical values given in Table 3. Several graphs were prepared to analyze the absolute error in computation. Moreover, a comparison of obtained solutions via the Adams method and explicit Runge–Kutta method is also presented. A good agreement between the solutions is noted, which validates the precision of obtained results. The graphical and tabular results are presented to show the effects of physical parameters. In this regard, Figures 1–14 were plotted to analyze the effects of the involved physical parameter when CuO nanoparticles are suspended in the base fluid. Figure 1 presents the effects of \(k_0\) on the velocity profile \(f'\). It is noted that velocity field retard for positive values of \(k_0\). The momentum boundary layer also decreases with an increase in \(k_0\). The solid curves present the solutions via the Adams method, whereas bullets represent the results for the explicit Runge–Kutta method. Both solutions were found to be in good agreement.

Table 3. The coefficient values of CuO and Al₂O₃ nanofluids.

Coefficient Values	CuO-Water [37]	Al₂O₃-Water
\(a_1\)	-26.593310846	52.813488759
\(a_2\)	-0.403818333	6.115637295
\(a_3\)	-33.3516805	0.6955715084
\(a_4\)	-1.915825591	4.1745552786 × 10⁻²
\(a_5\)	6.42185846658 × 10⁻²	0.17691930241
\(a_6\)	48.40336955	-298.19819084
\(a_7\)	-9.787756683	-34.532716906
\(a_8\)	190.245610009	-3.9225289283
\(a_9\)	10.9285386565	-0.2354329626
\(a_{10}\)	-0.72009983664	-0.999063481
Figure 2 presents the absolute error $f'(\eta)$ for different values of k_0. It is noted that the error in computations is approximately 10^{-8}. Figure 3 portrays the effects of k_0 on R. It is noted the profile R decreases near the boundary but demonstrates the opposite trend away from the wall. This is obvious to obey the mass conservation constraint. The absolute error in profile R is presented in Figure 4, which confirmations that the error is minimum to the tolerance level.

Figures 5 and 6 present the effects of k_0 on temperature profile θ and the absolute error in computations. It is observed that the temperature profile was found to decrease with an increase in k_0. Moreover, solutions obtained via the Adams method and explicit Runge–Kutta is also in good agreement, and the absolute error is also found to be negligible.

Figure 7 portrays the effects of shear-thinning/thickening parameter “n” on the velocity profile f'. The case ($n < 1.0$) represents the reduction in viscosity with the shear rate or shear-thinning effects, whereas the case ($n > 1.0$) shows the increase in viscosity with the shear rate or shear-thickening effect. The plot elucidates that the velocity field f'
increases for the case when \(n \) decreases from numerical value 1.0, whereas \(f' \) it decreases for the case when \(n \) increases from numerical value 1.0.

Figure 3. Effects of \(k_0 \) on \(R(\eta) \).

Such outcomes illustrate that the more shear-thinning/thickening effects will be observed when the values different from \(n = 1.0 \) are considered. From a physical point of view, it is clear that an apparent decrease/increase in viscosity of the suspended micropolar material is accredited to the rotation of particles and for increasing/decreasing values of “\(n \)”, the shear-thinning/thickening effects due to the microparticle rotation represents the layer-by-layer fluid separation, which results in the momentum boundary layer thinned/thickened for different \(n \). The solutions via Adam and explicit RK are also in good agreement, and the absolute error (Figure 8) is also negligible.

Figure 4. Absolute error in \(R(\eta) \) on different \(k_0 \).
Figure 5. Effects of k_0 on $\theta(\eta)$.

Figure 6. Absolute error in $\theta(\eta)$ for different k_0.

Figure 9 presents the effects of “n” on profile micro-rotation velocity field R via Adams and explicit RK since the particle angular velocity distribution profiles is a significant factor in micropolar fluid rheology. This plot signifies the exclusive micro-rotation velocity profiles for the shear-thinning/thickening phenomenon portrayed by “n”. It is also observed that the microrotation velocity field retards at the boundary and reaches the numerical values of 0.0 at the boundary layer. The profiles consequently overlap each other, as noted in the figure. The granular velocity decreasing rate is minor near the wall and signifies the boundary layer. The absolute error plot (Figure 10) also shows negligible error up to the tolerance level.
Figure 7. Effects of n on $f'(\eta)$.

Figure 8. Absolute error in $f'(\eta)$ for different n.
Figure 9. Effects of n on $R(\eta)$.

Figure 10. Absolute error in $R(\eta)$ for different n.
Figure 11. Influence of n on $\theta(\eta)$.

Figure 12. Absolute error in $\theta(\eta)$ for different n.
Figure 11 presents the effects of \(n \) on the temperature profile \(\theta \). This plot shows that the temperature profile decays with an increase in \(n \). The temperature field thickens for smaller values of “\(n \)”, which not only be contingent on heat conduction performance of micropolar fluid demonstrated by reformed thermal conductivity properties but also to a great magnitude on the shear-thinning consequence as a dynamical property in shear flow. Moreover, solutions via Adams and explicit RK are also in good agreement. Figure 12 portrays the absolute error is computed results for different values and noted that error is negligible. Figure 13 is prepared to interpret the effects of the Prandtl number \(Pr \) on
the temperature profile. This graph shows that temperature retards for positive values of Pr. Moreover, absolute error (Figure 14) is also found to be negligible. Table 4 is prepared to analyze the values for skin friction and the local Nusselt number for different physical quantities.

Table 4. Behavior of skin friction and Nusselt number when $\phi = 0.04$, Pr = 2.73 and $K = 0.1$.

Index	Case	CuO	Al₂O₃		
		$-(Re)^{1/2}C_f$	$(Re)^{1/2}Nu$	$-(Re)^{1/2}C_f$	$(Re)^{1/2}Nu$
K	0	2.6727	1.7826	2.6976	1.7774
	0.1	3.3973	1.7291	3.4293	1.7233
	0.2	4.2556	1.6664	4.2897	1.6604
	0.3	5.2086	1.5909	5.2426	1.5847
	1.5	7.2436	1.1847	7.3631	1.1700
Pr	2.73	7.3249	1.3146	7.3596	1.3038
	3.2	7.3394	1.3587	7.3590	1.3502
	4.0	7.3562	1.4205	7.3583	1.4179
ϕ	0.01	3.4186	1.7298	7.3515	1.3084
	0.04	3.3973	1.7291	7.3596	1.3038
	0.10	3.2506	1.7377	7.3582	1.2996
	0.15	2.9983	1.7575	7.3419	1.3001

Figure 15 presents the effects of k_0 on the velocity profile for the suspension of alumina nanoparticles. It is observed that velocity profiles accelerate for the positive values of k_0. Moreover, thermal boundary layers also increase with an increase in k_0. The solutions obtained via the Adams method are in good agreement with the results of ERK. The effects of k_0 on R are portrayed in Figure 16. It is noted that jump effects were noted at the wall for positive values of k_0, whereas an opposite trend is noted after the region $\eta > 1$.

Figure 15. Effects of k_0 on $f'(\eta)$.
The effects of k_0 on temperature profile θ are elucidated in Figure 17. It is observed that temperature and thermal boundary layer reduced with an increase in k_0. The micro-rotation parameter “n” retards the flow and boundary layer, as noted in Figure 18. The results for CuO and Al$_2$O$_3$ are qualitatively similar.
Effects of n on profiles R and θ are portrayed in Figures 19 and 20. From these plots, one can see the jump effects are noted for larger values of n against R and the opposite trend is noted far from the surface, whereas temperature and thermal boundary layer retards for positive values of n. The effects of the Prandtl number Pr on temperature are presented in Figure 21. It is noted that the temperature and thermal boundary layer decrease with an increase in Pr. From the plotted graphs, it is noted that the results of CuO suspension are qualitatively similar to those of Al_2O_3.

![Figure 18. Effects of n on $f'(\eta)$.](image1)

![Figure 19. Effects of n on $R(\eta)$.](image2)
We further analyzed the comparative study of different numerical methods, including Adam method, backward difference method (BDF), explicit Runge–Kutta (ERK), implicit Runge–Kutta (IRK) and extrapolation (ET) for CuO and Al₂O₃-based metallic nano polymeric suspension in the KKL fluidic model. Results for Adam, BDF, ERK, IRK and ET both types of suspension are presented in Table 5 in terms of computational time consumed, number of steps, ODE evaluations and different accuracy goals. Time and space accuracy for proposed numerical approaches were validated through numerical data provided in Table 5. Furthermore, one may see that accuracy convergence, stability of all numerical approaches was validated for all four different levels of accuracy goals, i.e., 10⁻⁷, 10⁻¹⁵, 10⁻²² and 10⁻³⁰. However, the complexity of all algorithms increased for more stiff levels of accuracy goals. The performance of computational time complexity, as well as numbers

Figure 20. Effects of n on θ(η).

Figure 21. Effects of Pr on θ(η).
of evaluation, were generally found best for Adam numerical method in the case of CuO and Al₂O₃ based metallic nano polymeric suspension in the KKL fluidic model for a scenario based on k₀ = 0.6. The results were omitted for other scenarios due to similar trends inferences of accuracy, convergence, stability and complexity for all other cases of the KKL fluidic model.

Table 5. Convergence and complexity test for k₀ = 0.6.

Method	Accuracy Goal	CuO	Al₂O₃				
	Time	Steps	Evaluation	Time	Steps	Evaluation	
Adams	10⁻³⁰	0.92875	177	395	1.675	184	398
	10⁻²²	0.765625	162	374	1.37	172	384
	10⁻¹⁵	0.8125	149	360	1.25	158	342
	10⁻⁰⁷	0.296875	64	145	0.39062	62	135
BDF	10⁻³⁰	1.6875	243	657	1.95313	284	724
	10⁻²²	1.60938	237	633	1.70313	249	681
	10⁻¹⁵	1.32813	227	600	1.23438	219	575
	10⁻⁰⁷	0.4375	108	291	0.671875	105	291
ERK	10⁻³⁰	3.45313	115	1837	3.9875	116	1853
	10⁻²²	2.6875	84	1341	3.84375	84	1341
	10⁻¹⁵	0.359375	67	675	0.359375	34	649
	10⁻⁰⁷	0.28125	21	212	0.28125	19	193
IRK	10⁻³⁰	7.51563	145	2041	53.5	141	1968
	10⁻²²	4.32813	113	1716	46.9375	97	1456
	10⁻¹⁵	3.45313	96	1563	14.4688	89	1622
	10⁻⁰⁷	0.21875	39	641	12.5	41	670
ET	10⁻³⁰	0.984375	199	420	1.88125	203	428
	10⁻²²	0.87375	171	388	1.84375	183	387
	10⁻¹⁵	0.828125	152	367	1.38264	174	363
	10⁻⁰⁷	0.467835	92	205	0.884375	98	183

5. Conclusions

In this communication, a novel flux model is incorporated to demonstrate the effects of nanofluidics and an enhancement of heat transfer in micropolar fluids suspension. Numerical simulations were performed using the KKL model for effective viscosity and thermal conductivity and heat-thinning/thickening performances under the influence of microrotations. The key observations of this investigation include the decay of velocity and temperature profile for positive values of k₀, whereas profile R elucidates the jump effect near the surface. The ratio of momentum diffusivity to thermal diffusivity showed an inverse relation with the temperature profile. Error analysis is presented for different parameters, and it is noted that the error in computations was negligible. Moreover, the comparison of solutions computed via the Adams predictor–corrector method and explicit Runge–Kutta (RK) method have a reasonable agreement with each other. From the plotted graphs, it is noted that the results of CuO suspension are qualitatively similar to those of Al₂O₃.

In the future, one may implement intelligent computing solvers [38–42] for heat transfer in nanopolymeric suspension (CuO and Al₂O₃) using novel flux models as well as other nonlinear stiff fluidic systems [43–47]. Moreover, the presented study can be utilized in the future with the availability of real-time data for computational fluid dynamics problems.
Author Contributions: Conceptualisation, M.A. and S.E.A.; Methodology, M.A. and M.N.; Software, M.A. and M.A.Z.R.; Validation, M.Y.M. and Y.H.; Formal Analysis, M.A. and S.E.A.; Investigation, M.N. and W.U.K.; Resources, M.A., W.U.K. and Y.H.; Data Curation, M.A. and M.N.; Writing Original Draft, M.A. and M.N.; Review and Editing, M.A. and M.N.; Visualisation, M.A. and M.N.; Supervision, M.Y.M. and Y.H.; Project admin., M.Y.M. and Y.H.; Funding, W.U.K. and Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under Grant No. 51977153, 51977161, 51577046, State Key Program of National Natural Science Foundation of China under Grant No. 51637004, National Key Research and Development Plan (China) “important scientific instruments and equipment development” Grant No. 2016YFF010220, an Equipment research project in advance (China) Grant No. 41402040301.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: All authors thank the editor and referees for their constructive comments regarding improvement of this work. M.Y. Malik extends his appreciation to the Deans of Scientific Research at King Khalid University, Abha, 61413, Saudi Arabia for their support through GRP–18/42.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–18. [CrossRef]
2. Mehmood, A.; Alsar, K.; Zameer, A.; Awan, S.E.; Raja, M.A.Z. Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl. Soft Comput. 2019, 79, 139–162. [CrossRef]
3. Souayeh, B.; Alfannakh, H. Radiative melting heat transfer through a micropolar nanoliquid by using Koo and Kleinstreuer model. Eur. Phys. J. Plus 2021, 136, 1–15. [CrossRef]
4. Baharifard, F.; Parand, K.; Rashidi, M.M. Novel solution for heat and mass transfer of a MHD micropolar fluid flow on a moving plate with suction and injection. Eng. Comput. 2020, 1–18. [CrossRef]
5. Yasmin, A.; Ali, K.; Ashraf, M. Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]
6. Kumar, K.A.; Sugunamma, V.; Sandeep, N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. J. Therm. Anal. Calorim. 2020, 139, 3661–3674. [CrossRef]
7. Lund, L.A.; Omar, Z.; Khan, I.; Raza, J.; Sherif, E.-S.M.; Seikh, A.H. Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and Joule heating over an exponential shrinking sheet: Triple solutions and stability analysis. Symmetry 2020, 12, 142. [CrossRef]
8. Ghadikolaei, S.; Hosseinzadeh, K.; Ganji, D. Numerical study on magnetohydrodynamic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and Joule heating effect. Powder Technol. 2018, 340, 389–399. [CrossRef]
9. Singh, K.; Pandey, A.K.; Kumar, M. Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: An analytic approach. Propuls. Power Res. 2020, 9, 289–303. [CrossRef]
10. Rana, S.; Nawaz, M.; Saleem, S.; Alharbi, S.O. Numerical study on enhancement of heat transfer in hybrid nano-micropolar fluid. Phys. Scr. 2019, 95, 045201. [CrossRef]
11. Ali, L.; Liu, X.; Ali, B.; Muejee, S.; Abdal, S.; Khan, S.A. Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet. Coatings 2020, 10, 170. [CrossRef]
12. Usman, A.H.; Shah, Z.; Humphries, U.W.; Kumam, P.; Thounthong, P.; Soret, Dufour, and activation energy effects on double diffusive convective couple stress micropolar nanofluid flow in a Hall MHD generator system. AIP Adv. 2020, 10, 075010. [CrossRef]
13. Tiwari, A.; Shah, P.D.; Chauhan, S.S. Analytical study of micropolar fluid flow through porous layered microvessels with heat transfer approach. Eur. Phys. J. Plus 2020, 135, 209. [CrossRef]
14. Bhat, A.; Katagi, N.N. Micropolar fluid flow between a non-porous disk and a porous disk with slip: Keller-box solution. Ain Shams Eng. J. 2020, 11, 149–159. [CrossRef]
15. Peters, F.; Lobry, L.; Lemaire, E. Pressure-driven flow of a micro-polar fluid: Measurement of the velocity profile. J. Rheol. 2010, 54, 311–325. [CrossRef]
16. Sui, J.; Zheng, L.; Zhang, X.; Chen, G. Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int. J. Heat Mass Transf. 2015, 85, 1023–1033. [CrossRef]
17. Zheng, L.; Zhang, X.; He, J. Transfer behavior of a class of generalized N-diffusion equations in a semi-infinite medium. Int. J. Therm. Sci. 2003, 42, 687–690. [CrossRef]
18. Kandelousi, M.S. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. *Phys. Lett. A* 2014, 378, 3331–3339. [CrossRef]

19. Haq, R.U.; Usman, M.; Algehyne, E.A. Natural convection of CuO–water nanofluid filled in a partially heated corrugated cavity: KKL model approach. *Commun. Theor. Phys.* 2020, 72, 085003. [CrossRef]

20. AlSaigri, A.S.; Moradi, R. Application of KKL model in studying of nanofluid heat transfer between two rotary tubes. *Case Stud. Therm. Eng.* 2019, 14, 100478. [CrossRef]

21. Rana, S.; Nawaz, M. Investigation of enhancement of heat transfer in Sutterby nanofluid using Koo–Kleinstreuer and Li (KKL) correlations and Cattaneo–Christov heat flux model. *Phys. Scr.* 2019, 94, 115213. [CrossRef]

22. Pourmehrani, O.; Rahimi-Gorji, M.; Hatami, M.; Sahebi, S.; Domainry, G. Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nanofluids in saturated porous medium. *J. Taiwan Inst. Chem. Eng.* 2015, 55, 49–68. [CrossRef]

23. Vijaybabu, T. Influence of permeable circular body and CuO-H2O nanofluid on buoyancy-driven flow and entropy generation. *Int. J. Mech. Sci.* 2020, 166, 105240. [CrossRef]

24. Haq, R.U.; Aman, S. Water functionalized CuO nanoparticles filled in a partially heated trapezoidal cavity with inner heated obstacle: FEM approach. *Int. J. Heat Mass Transf.* 2019, 128, 401–417. [CrossRef]

25. Rana, P.; Shukla, N.; Gupta, Y.; Pop, I. Analytical prediction of multiple solutions for MHD Jeffery–Hamel flow and heat transfer utilizing KKL nanofluid model. *Phys. Lett. A* 2019, 383, 176–185. [CrossRef]

26. Sheikholeslami, M.; Mahian, O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. *J. Clean. Prod.* 2019, 215, 963–977. [CrossRef]

27. Mehmoood, K.; Hussain, S.; Sagheer, M. Numerical simulation of MHD mixed convection in alumina–water nanofluid filled square porous cavity using KKL model: Effects of non-linear thermal radiation and inclined magnetic field. *J. Mol. Liq.* 2017, 238, 485–498. [CrossRef]

28. Li, Z.; Shehzad, S.; Sheikholeslami, M. An application of CVFEM for nanofluid heat transfer intensification in a porous sinusoidal cavity considering thermal non-equilibrium model. *Comput. Methods Appl. Mech. Eng.* 2018, 339, 663–680. [CrossRef]

29. Gowda, R.P.; Munadel, S.A.; Algehyne, E.A.; Issakhov, A.; Gorji, M.R.; Turki, Y.A.A. Computational modelling of nanofluid flow over a curved stretching sheet using Koo–Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model. *Chaos Solitons Fractals* 2021, 145, 110774. [CrossRef]

30. Sheikholeslami, M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. *J. Mol. Liq.* 2018, 263, 303–315. [CrossRef]

31. Awais, S.E.; Khan, Z.A.; Awais, M.; Rehman, S.U.; Raja, M.A.Z. Numerical treatment for hydro-magnetic unsteady channel flow of nanofluid with heat transfer. *Results Phys.* 2018, 9, 1543–1554. [CrossRef]

32. Awais, S.E.; Awais, M.; Qayyum, A.; Rehman, S.U.; Khan, A.; Ali, H.; Raja, M.A.Z. Numerical computing paradigms for the dynamics of squeezing rheology of third grade fluid. *Therm. Sci.* 2020, 24, 4173–4182. [CrossRef]

33. Awais, M.; Aqsa; Malik, M.; Awais, S.E. Generalized magnetic effects in a Sakiadis flow of polymeric nano-liquids: Analytic and numerical solutions. *J. Mol. Liq.* 2017, 241, 570–576. [CrossRef]

34. Awais, S.E.; Raja, M.A.Z.; Mehmoood, A.; Niazi, S.A.; Siddiqua, S. Numerical Treatments to Analyze the Nonlinear Radiative Heat Transfer in MHD Nanofluid Flow with Solar Energy. *Arab. J. Sci. Eng.* 2020, 45, 4975–4994. [CrossRef]

35. Awais, S.E.; Raja, M.A.Z.; Gul, F.; Khan, Z.A.; Mehmoood, A.; Shoaiib, M. Numerical Computing Paradigm for Investigation of Micropolar Nanofluid Flow Between Parallel Plates System with Impact of Electrical MHD and Hall Current. *Arab. J. Sci. Eng.* 2021, 46, 645–662. [CrossRef]

36. Awais, M.; Awais, S.E.; Raja, M.A.Z.; Parveen, N.; Khan, W.U.; Malik, M.Y.; He, Y. Effects of Variable Transport Properties on Heat and Mass Transfer in MHD Bioconvective Nanofluid Rheology with Gyrotactic Microorganisms: Numerical Approach. *Coatings* 2021, 11, 231. [CrossRef]

37. Radhika, M.; Mahanthesh, B.; Thriveni, K. Solar radiative heat-driven Sakiadis flow of a dusty nanoliquid with Brownian motion and an exponential space-based heat source: Koo–Kleinstreuer–Li (KKL) model. *Heat Transfer 2021*, 50, 1232–1251. [CrossRef]

38. Khan, J.A.; Raja, M.A.Z.; Syam, M.I.; Tanoli, S.A.K.; Awais, S.E. Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. *Neural Comput. Appl.* 2015, 26, 1763–1780. [CrossRef]

39. Cheema, T.N.; Raja, M.A.Z.; Ahmad, I.; Naz, S.; Ilyas, H.; Shoaiib, M. Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. *Int. J. Hydrogen Energy* 2021, 46, 4947–4980. [CrossRef]

40. Parveen, N.; Awais, M.; Mumraz, S.; Ali, A.; Malik, M.Y. An estimation of pressure rise and heat transfer rate for hybrid nanofluid with endoscopic effects and induced magnetic field: Computational intelligence application. *Eur. Phys. J. Plus* 2020, 135, 1–35. [CrossRef]

41. Ilyas, H.; Ahmad, I.; Raja, M.A.Z.; Tahir, M.B.; Shoaiib, M. Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. *Int. J. Hydrogen Energy* 2021, 46, 4947–4980. [CrossRef]

42. Sabir, Z.; Raja, M.A.Z.; Arbi, A.; Altamirano, G.C.; Cao, J. Neuro-swarms intelligent computing using Gu德mannian kernel for solving a class of second order Lane-Emden singular nonlinear model. *AIMS Math.* 2021, 6, 2468–2485. [CrossRef]
43. Awais, M.; Awan, S.E.; Iqbal, K.; Khan, Z.A.; Raja, M.A.Z. Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo-Christov heat flux model: OHAM analysis. *Results Phys.* **2018**, *8*, 621–627. [CrossRef]

44. Awais, M.; Awan, S.E.; Raja, M.A.Z.; Shoaib, M. Effects of Gyro-Tactic Organisms in Bio-convective Nano-material with Heat Immersion, Stratification, and Viscous Dissipation. *Arab. J. Sci. Eng.* **2020**, *1*–*14*. [CrossRef]

45. Siddiqa, S.; Naqvi, S.; Begum, N.; Awan, S.; Hussain, M. Thermal radiation therapy of biomagnetic fluid flow in the presence of localized magnetic field. *Int. J. Therm. Sci.* **2018**, *132*, 457–465. [CrossRef]

46. Awan, S.E.; Awais, M.; Rehman, S.U.; Niazi, S.A.; Raja, M.A.Z. Dynamical analysis for nanofluid slip rheology with thermal radiation, heat generation/absorption and convective wall properties. *AIP Adv.* **2018**, *8*, 075122. [CrossRef]

47. Awais, M.; Raja, M.A.Z.; Awan, S.E.; Shoaib, M.; Ali, H.M. Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink. *Alex. Eng. J.* **2021**, *60*, 1355–1363. [CrossRef]