Ovarian function and ovarian blood supply following premenopausal abdominal hysterectomy

Ibrahim A. Abdelazim1,2, Khaled M. Abdelrazak1, Assem A.M. Elbiaa1,3, Mohamed M. Farghali1, Amr Essam1, Gulmira Zhurabekova4

1Ain Shams University, Cairo, Egypt
2Ahmadi Kuwait Oil (KOC) Company Hospital, Kuwait
3Sabah Maternity Hospital, Kuwait
4Department of Normal and Topographical Anatomy, Marat Ospanov, West Kazakhstan State Medical University, Kazakhstan

Abstract

Introduction: The issue of conserving the ovaries at hysterectomy in premenopausal women with benign gynecologic disease has been the subject of considerable controversy. Some clinicians prefer prophylactic oophorectomy in premenopausal women during hysterectomy to prevent future development of malignant changes in conserved ovaries. Other clinicians prefer to conserve apparently normal ovaries, because bilateral oophorectomy in premenopausal women results in an abrupt imbalance, sudden onset of menopausal symptoms, decreased libido, increased cardiovascular risk and osteoporosis.

Material and methods: Two hundred and twenty multipara women (who had completed their families), with benign uterine pathology were included in this prospective study for abdominal hysterectomy with bilateral ovarian preservation. Pre-operative vaginal ultrasound, Doppler studies, diagnostic hysteroscopy and endometrial biopsy were done followed by laboratory studies including Anti-mullerian hormone (AMH), follicle stimulating hormone (FSH) and estradiol for all studied women. Doppler studies, AMH, FSH and estradiol were repeated 6 and 12 months post-operative for assessment of the ovarian function and ovarian blood supply after hysterectomy.

Results: Pre-operative AMH, FSH and estradiol of the studied women were statistically insignificant compared to AMH, FSH and estradiol 6 and 12 months post-operative. Twelve months post-operative right and left ovarian volumes (6.92 ± 0.18 and 6.85 ± 0.19 cm³, respectively) were significantly larger than pre-operative right and left ovarian volumes (6.19 ± 0.22 and 5.86 ± 0.23 cm³, respectively), and, 12 months post-operative right and left ovarian pulsatility indices (2.92 ± 0.15 and 2.96 ± 0.16 cm/s, respectively) were significantly lower than pre-operative right and left ovarian pulsatility indices (3.45 ± 0.19 and 3.36 ± 0.2 cm/s, respectively). Eight (3.6%) cases of the studied women developed an ovarian cyst 6 months after hysterectomy, 3 were spontaneously resolved and the remaining 5 (2.27%) cases underwent exploratory laparotomy.

Conclusions: There is no evidence of ovarian dysfunction affecting conserved ovaries one year after hysterectomy in premenopausal women as evident by AMH, FSH and estradiol. Furthermore, an increased ovarian volume and reduced ovarian pulsatility indices indicate a possible increase in ovarian blood supply, and preserved non-compromised ovarian function.

Key words: ovarian, function, blood supply, premenopausal, abdominal hysterectomy.

Introduction

The issue of conserving the ovaries at hysterectomy in premenopausal women with benign gynecologic disease has been the subject of considerable controversy [1-5]. Some clinicians prefer prophylactic oophorectomy in premenopausal women during hysterectomy to prevent future development of malignant changes in conserved ovaries [6-16].

Other clinicians prefer to conserve apparently normal ovaries, because bilateral oophorectomy in premenopausal women results in an abrupt imbalance, sudden onset of menopausal symptoms, decreased libido, increased cardiovascular risk and osteoporosis [17-23].

There is conflicting evidence regarding the effect of premenopausal hysterectomy on the conserved ovarian function. Some research indicates an increase in incidence and severity of menopausal symptoms following removal of the uterus despite the ovaries remaining in place, which may be due to reduction in ovarian blood flow and follicular atresia [6]. Animal studies (rat models) concluded that hysterectomy with ovarian conser-
transvaginal ultrasound and Doppler studies were done using Philips HD9 (Philips International; Amsterdam; Netherlands) with a two-dimensional endo-vaginal convex probe 4-9 MHz by a sonographer who was blinded to the patients’ criteria.

Baseline measures included transverse (T), anteroposterior (AP), and longitudinal (L) diameters of both ovaries and ovarian volume (V), was estimated using the formula $V (\text{cm}^3) = T \times AP \times L \times 0.52$. Left and right ovarian artery flow in the pelvic infundibulum was visualized with the color Doppler technique and the typical velocity spectrum of this vessel was determined. Blood flow impedance was expressed as the PI (cm/s). The PI values were calculated electronically according to the formula $\text{PI} = \text{peak systolic velocity} – \text{minimum diastolic velocity}/\text{mean flow velocity}$.

Sample size justification

The required sample size was calculated using G*Power software version 3.17 for sample size calculation (*Heinrich Heine Universität, Düsseldorf, Germany), setting α-error probability at 0.05, power (1 – β error probability) at 0.95 and effective sample size (w) at 0.3. The effective size (w) was calculated as follows: $w = \chi^2/N$, where χ^2 is the chi-square test and N is the total sample size. The number of participants needed to produce a statistically acceptable figure was 220 women.

Statistical analysis

Data were collected, tabulated, then statistically analyzed using the Statistical Package for Social Sciences (SPSS) computer software version 18. Numerical variables were presented as mean and standard deviation (± SD), while categorical variables were presented as a number and percentage. Student t-test was used for comparison between groups as regards quantitative variables. A difference with a p value < 0.05 was considered statistically significant.

Results

Mean age of premenopausal women included in this study for hysterectomy was 42.3 ± 8.7 years, parity was 4.9 ± 1.6 and body mass index (BMI) was 32.1 ± 2.07 kg/m². Hysterectomy was indicated for studied women due to fibroid uterus 131 (59.6%) cases (causing pelvic-abdominal mass 51 [23.2%] cases, menorrhagia 47 [21.4%] cases, pelvic pain or pressure 33 [15%] cases), heavy menstrual bleeding (HMB) with failed medical and hormonal treatment 52 (23.6%) cases and poly-menorrhrea 37 (16.8%) cases. The pre-operative histology of endometrium samples showed secretory endometrium in 87 (39.5%) cases, proliferative endometrium in
69 (31.4%) cases, simple endometrial hyperplasia in 36 (16.4%) cases and complex hyperplasia without atypia in 28 (12.7%) cases (Table I).

Pre-operative AMH (1.75 ± 4.61 ng/ml) of the studied women was statistically insignificant compared to AMH 6 and 12 months post-operative (1.78 ± 2.45 and 1.81 ± 2.19 ng/ml, respectively) and pre-operative FSH (7.98 ± 5.7 IU/ml) was statistically insignificant compared to FSH 6 and 12 months post-operative (8.26 ± 5.4 and 8.55 ± 6.2 IU/ml, respectively), also, pre-operative estradiol (129 ± 57.3 pg/ml) was statistically insignificant compared to estradiol 6 and 12 months post-operative (134.5 ± 66.2 and 139.3 ± 77.1 pg/ml, respectively) (Table II).

Pre-operative right and left ovarian volumes (6.19 ± 0.22 and 5.86 ± 0.23 cm³, respectively) were statistically insignificant compared to 6 months post-operative right and left ovarian volumes (6.75 ± 0.25 and 6.57 ± 1.12 cm³, respectively), and were significantly smaller compared to 12 months post-operative right and left ovarian volumes (6.92 ± 0.18 and 6.85 ± 0.19 cm³, respectively) (Table II).

Pre-operative right and left ovarian pulsatility indices (3.45 ± 0.19 and 3.36 ± 0.2 cm/s, respectively) were statistically insignificant compared to 6 months post-operative right and left ovarian pulsatility indices (3.12 ± 0.21 and 3.07 ± 0.21 cm/s, respectively), and were significantly higher compared to 12 months post-operative right and left ovarian pulsatility indices (2.92 ± 0.15 and 2.96 ± 0.16 cm/s, respectively) (Table II).

Eight (3.6%) cases of the studied women developed an ovarian cyst 6 months after hysterectomy, 3 were spontaneously resolved and the remaining 5 (2.27%) cases underwent exploratory laparotomy which revealed 3 cases of serous cystadenoma and 2 cases of a paraovarian cyst.

Discussion

In this study, there is no evidence of ovarian dysfunction affecting conserved ovaries one year after abdominal hysterectomy in premenopausal women as evident by AMH, FSH and estradiol.

There is conflicting evidence regarding the effect of premenopausal hysterectomy on the ovarian function. Some research indicates an increase in incidence and severity of menopausal symptoms and ovarian failure following removal of the uterus, despite the ovaries

Tab. I. Indications of hysterectomy for the studied population and preoperative histology of endometrial samples

Variables	Number (%)
Indication of hysterectomy	
Fibroid uterus	131 (59.6%)
Pelvic-abdominal mass	51 (23.2%)
Menorrhagia	47 (21.4%)
Pelvic pain or pressure symptoms	33 (15%)
Heavy menstrual bleeding (HMB)	52 (23.6%)
Polymenorrhea	37 (16.8%)
Pre-operative histology of endometrium samples	
Secretary endometrium	87 (39.5%)
Proliferative endometrium	69 (31.4%)
Simple hyperplasia	36 (16.4%)
Complex hyperplasia without atypia	28 (12.7%)

Tab. II. Preoperative and postoperative Anti-mullerian hormone (AMH), follicle stimulating hormone (FSH), estradiol, ovarian volume, ovarian Pulsatility Index (P) of the studied population

Variables	Preoperative	6 months postoperative	12 months postoperative	P value (95% CI) test used
AMH (ng/ml), mean ± SD	1.75 ± 4.61	1.78 ± 2.45	1.81 ± 2.19	P1 = 0** (Cl: –0.71; –0.03; 0.65), t test P2 = 0** (Cl: –0.73; –0.06; 0.61), t test
FSH (IU/ml), mean ± SD	7.98 ± 5.7	8.26 ± 5.4	8.55 ± 6.2	P1 = 0.21** (Cl: –1.31; –0.28; 0.75), t test P2 = 0.89** (Cl: –1.68; –0.57; 0.54), t test
Estradiol (pg/ml), mean ± SD	129.0 ± 57.3	134.5 ± 66.2	139.3 ± 77.1	P1 = 0.98** (Cl: –17.0; –5.5; 0.06), t test P2 = 0.99** (Cl: –22.9; –10.3; 2.39), t test
Right ovarian volume (cm³), mean ± SD	6.19 ± 0.22	6.75 ± 0.25	6.92 ± 0.18	P1 = 0.97** (Cl: –0.66; –0.56; –0.51), t test P2 = 0.001* (Cl: –0.82; –0.79; –0.75), t test
Left ovarian volume (cm³), mean ± SD	5.86 ± 0.23	6.57 ± 1.12	6.85 ± 0.19	P1 = 1** (Cl: –0.86; –0.71; –0.53), t test P2 = 0.002* (Cl: –1.02; –0.99; 0.95), t test
Right ovary Pulsatility Index (cm/s), mean ± SD	3.45 ± 0.19	3.12 ± 0.21	2.92 ± 0.15	P1 = 0.9** (Cl: 0.29; 0.33; 0.36), t test P2 = 0.002* (Cl: 0.48; 0.51; 0.56), t test
Left ovary Pulsatility Index (cm/s), mean ± SD	3.36 ± 0.2	3.07 ± 0.21	2.96 ± 0.16	P1 = 0.9** (Cl: 0.25; 0.2; 0.32), t test P2 = 0.0005* (Cl: 0.36; 0.4; 0.43), t test

**Non-significant, *Significant
P1 – p for preoperative values compared to 6 months postoperative values, P2 – p for preoperative values compared to 12 months postoperative values, t test – Student t-test, cm/s – cm/second
remaining in place [26], whereas others report no decrease in ovarian function [26].

The advance of menopause age after hysterectomy is related to an increased rate of follicular atresia (surgical removal of uterus will increase follicular atresia in conserved ovaries) [27]. The presence of uterus would inhibit follicle depletion or atresia and its surgical removal at reproductive age would accelerate follicular loss, atresia and subsequent accelerated menopause [27].

Other hypothesis, the increased prevalence of ovarian failure after hysterecmy, is due to stretch and thrombosis of ovarian blood vessels with a subsequent reduction in ovarian blood supply [17, 27, 28].

Deng et al. concluded that hysterecmy with the conservation of bilateral/unilateral ovaries may have some influence on the ovarian function [17], also, Ahn et al. concluded that total abdominal hysterecmy accelerates ovarian dysfunction and women treated with total abdominal hysterectomy are at risk of early menopause [6].

On the contrary, Ylikorkala and Viinikka studied pituitary-ovarian function in 2 women with congenital absence of the uterus and vagina (Mayer-Rokitansky-Kuster-Hauser syndrome) and concluded that presence or absence of the uterus does not affect the ovarian function [29].

In this study, pre-operative AMH, FSH and estradiol were statistically insignificant compared to AMH, FSH and estradiol 6 and 12 months after abdominal hysterecmy, also, Chalmers et al., concluded that there is no evidence of compromise of the ovarian function, as reflected in FSH levels, within 2 years of hysterecmy [19].

Findley et al. concluded that laparoscopic hysterecmy ± salpingectomy with ovarian preservation does not appear to have any short-term deleterious effects on ovarian reserve, as measured by the AMH level [30].

Morelli et al. compared women treated with total laparoscopic hysterecmy (TLH) plus bilateral salpingectomy, with women treated by TLH without adnexectomy and they found no significant difference between two groups regarding AMH, FSH, antral follicle count (AFC), mean ovarian diameters and peak systolic velocity [31].

Recently, Venturella et al. has concluded that OvAge is one of the first reliable attempts to create a new method able to identify ovarian reserve [32, 33].

Although, Ishii et al. found that fifteen of 33 patients became climacteric after premenopausal radical hysterectomy for stage IB and II cervical cancer with ovarian preservation, they also found a significant correlation between ovarian dysfunction after radical hysterecmy and age [34]. Petri Naháš et al. found that ovarian volumes were greater 6 and 12 months after total abdominal hysterecmy compared to controls and they found reduced PI of ovarian vessels of hysterectomized women compared to controls [18].

They concluded that the reduced PI of ovarian vessels of hysterectomized women indicates decreased resistance with a subsequent increased ovarian blood flow in hysterectomized women compared to controls, also, in this study, 12 months post-operative right and left ovarian volumes (6.92 ± 0.18 and 6.85 ± 0.19 cm³, respectively) were significantly larger than pre-operative right and left ovarian volumes (6.19 ± 0.22 and 5.86 ± 0.23 cm³, respectively), and, 12 months post-operative right and left ovary pulsatility indices (2.92 ± 0.15 and 2.96 ± 0.16 cm/s, respectively) were significantly lower than pre-operative right and left ovarian pulsatility indices (3.45 ± 0.19 and 3.36 ± 0.2 cm/s, respectively) [18].

Five to eight percent of hysterectomized women require subsequent surgeries for benign ovarian diseases [5]. The post-hysterecmy ovarian cysts appear within the first post-operative year and spontaneously resolved in more than 50% of cases, and most of these cysts are functional cysts [35]. Zalel et al. found ovarian cysts in 50.7% of hysterectomized women (37/73) and Pete et al. found ovarian cysts in 9.2% of hysterectomized women (6/65) [36, 37].

Four women were lost during follow up (excluded from the study) and short duration of post-operative follow up (one year) were the two limitations faced during this study.

Conclusions

There is no evidence of ovarian dysfunction affecting conserved ovaries one year after hysterecmy in premenopausal women as evident by AMH, FSH and estradiol. Furthermore, an increased ovarian volume and reduced ovarian PI indicates a possible increase in ovarian blood supply, and preserved, non-compromised ovarian function.

Acknowledgement

Authors are very grateful to women who agreed to participate in this study.

Disclosure

Authors declare no conflict of interest.

References

1. Yavuzcan A, Yıldız G, Çağlar M, et al. Which one is safer – performing a laparoscopic hysterecmy with a tissue fusion device involving diagnostic cystoscopy or traditional abdominal hysterecmy with ureteral dissection? Videosurgery Miniinv 2013; 8: 280-288.
2. Grabowski A, Korlacki W, Pasierbek M. Laparoscopy in elective and emergency management of ovarian pathology in children and adolescents. Videosurgery Miniinv 2014; 9: 164-169.
3. Wilczyński M, Cieślak J, Malinowski A. Supracervical hysterectomy – the vaginal route. Videosurgery Miniinv 2014; 9: 207-212.
4. Ceccaroni M, Roviogione G, Pesce A, et al. Total laparoscopic hysterectomy of very enlarged uterus (3030 g): case report and review of the literature. VideoSurgery Minim 2014; 9: 302-307.
5. Reic H Issues surrounding surgical menopause. Indications and procedures. J Reprod Med 2001; 46 (3 Suppl): 297-306.
6. Ahn EH, Bai SW, Song CH, et al. Effect of premenopausal hysterectomy on ovarian function. Yonsei Med J 2002; 43: 53-58.
7. Rogala E, Nowicka A, Bednarak W, et al. Evaluation of the expression of the immunosuppressive enzyme – indoleamine 2,3-dioxygenase in ovarian cancer tissue. Prz Menopauzalny 2013; 17: 223-227.
8. Gottwald L, Danelicz M, Fendler W, et al. The AgNORs count in predicting long-term survival in serous ovarian cancer. Arch Med Sci 2014; 10: 84-90.
9. Moulla A, Miliaras D, Sioga A, et al. The immunohistochemical expression of CD24 and CD171 adhesion molecules in borderline ovarian tumors. Pol J Pathol 2013; 64: 180-184.
10. Denel M, Marczak A. Panels of protein biomarkers and non-protein markers in the diagnosis of the ovarian cancer. Prz Menopauzalny 2013; 17: 444-408.
11. Tkaczuk-Whac J, Sobstyla M, Jakiel G. Biochemical markers for screening of ovarian cancer. Prz Menopauzalny 2013; 17: 442-445.
12. Smolarz B, Makowska M, Samulak D, et al. Association between polymorphisms of the DNA repair gene. RAD51 and ovarian cancer. Pol J Pathol 2013; 64: 290-295.
13. Lipińska N, Rubiś B. Telomerase as a target in diagnosis and treatment of cancer in postmenopausal women. Prz Menopauzalny 2013; 17: 478-483.
14. Marczak A, Bukowska B. New trends in the ovarian cancer treatment. Prz Menopauzalny 2013; 17: 489-492.
15. Dębcka-Szmich S, Czernecki U, Krakowska M, et al. Synchronous primary ovarian and endometrial cancers: a series of cases and a review of literature. Prz Menopauzalny 2014; 13: 64-69.
16. Marczak A, Denel M. Trабectome as a single agent and in combination with pegylated liposomal doxorubicin – activity against ovarian cancer cells. Contemp Oncol (Pol) 2014, 18: 149-152.
17. Deng CY, Tang DM, Yu Q, He FF. Effect of premenopausal hysterectomy on ovarian function. Zhongguo Yi Xue Ke Xue Bao 2002; 24: 639-642 [Article in Chinese].
18. Petri Nahas EA, Pontes A, Nahas-Neto J, et al. Effect of total abdominal hysterectomy on ovarian blood supply in women of reproductive age. J Ultrasound Med 2005; 24: 169-174.
19. Chalmers C, Lindsay M, Usher D, et al. Hysterectomy and ovarian function: levels of follicle stimulating hormone and incidence of menopausal symptoms are not affected by hysterectomy in women under age 45 years. Climacteric 2002; 5: 366-373.
20. Olendrave A, Jaszman LJ, Everaert WF, Haspelis A. Hysterectomized women with ovarian conservation report, more severe climacteric complaints than do normal climacteric women of the same age. Am J Gynecol 1993; 168 (3 Pt 1): 765-771.
21. Lemm MA, Skalba P. Biology of ovarian aging. Prz Menopauzalny 2013; 17: 231-234.
22. Böjar I, Witzczak M, Stegnaik A, et al. Cognitive functions measured with a battery of CNS VS tests and the subjective assessment of memory, concentration impairment and reduction in the quality of life in women after menopause. Prz Menopauzalny 2013; 17: 371-377.
23. Stegnaik A, Kot K, Witzczak M, et al. Impact of consumption of B-group vitamins on cognitive functions of women after menopause. Prz Menopauzalny 2013; 17: 464-471.
24. Ozdamar S, Ulger H, Sokun KH, Müderis I. Effects of hysterectomy on ovarian morphology and serum FSH level in rats. Maturitas 2005; 52: 60-64.
25. Tapisz OS, Gungor T, Ayta&, H, et al. Does hysterectomy affect ovarian function? Histopathological evaluation and serum FSH, inhibin A, and inhibin B levels in an experimental rat model. Eur J Obstet Gynecol Reprod Biol 2008; 140: 61-66.
26. Bhattacharya S, Möllison J, Pinson S, et al. A comparison of bladder and ovarian function two years following hysterectomy or endometrial ablation. Br J Obstet Gynaecol 1996; 103: 898-903.
27. Derksen JG, Bröllmann HA, Wiegerink MA, et al. The effect of hysterectomy and endometrial ablation on follicle stimulating hormone (FSH) levels up to 1 year after surgery. Maturitas 1998; 29: 133-138.
28. Korabel J, Kryszek J. Assessment of the ovarian reserve in a group of perimenopausal women. Prz Menopauzalny 2013; 17: 333-338.
29. Ylikorkala O, Viinikka L. Pituitary and ovarian function in women with congenitally absent uterus. Obstet Gynecol 1979; 53: 137-139.
30. Findley AJ, Siedhoff MT, Hobbs KA, et al. Short-term effects of salpingectomy during laparoscopic hysterectomy on ovarian reserve: a pilot randomized controlled trial. Fertil Steril 2003; 100: 1704-1708.
31. Morelli M, Venturella R, Mocciaro R, et al. Prophylactic salpingectomy in premenopausal low-risk women for ovarian cancer. Primum non nocere. Gynecol Oncol 2013; 129: 448-451.
32. Venturella R, Lico D, Sarica A, et al. Ovxage: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters. J Ovarian Res 2015; 8: 21.
33. Abdellazim IA, Belal MM, Makhlouf HH. Antimullerian hormone and antral follicle count as predictors of ovarian reserve and successful IVF. Asian Pacific Journal of Reproduction (APJR) 2012; 1: 89-92.
34. Ishii K, AskI Y, Takakwuka K, Taniaka K. Ovarian function after radical hysterec- tomy with ovarian preservation for cervical cancer. J Reprod Med 2001, 46: 347-352.
35. Richlin SS, Rock JA. Ovarian remnant syndrome. Gynaecol Endosc 2001:
36. Bhattacharya S, Möllison J, Pinson S, et al. A comparison of bladder and ovarian function two years following hysterectomy or endometrial ablation. Br J Obstet Gynaecol 1996; 103: 898-903.
37. Pete I, Bõsze P. The fate of the retained ovaries following radical hysterectomy of very enlarged uterus (3030 g): case report and review of the literature. VideoSurgery Minim 2014; 9: 302-307.
38. Böjar I, Witzczak M, Stegnaik A, et al. Cognitive functions measured with a battery of CNS VS tests and the subjective assessment of memory, concentration impairment and reduction in the quality of life in women after menopause. Prz Menopauzalny 2013; 17: 371-377.
39. Stegnaik A, Kot K, Witzczak M, et al. Impact of consumption of B-group vitamins on cognitive functions of women after menopause. Prz Menopauzalny 2013; 17: 464-471.
40. Ozdamar S, Ulger H, Sokun KH, Müderis I. Effects of hysterectomy on ovarian morphology and serum FSH level in rats. Maturitas 2005; 52:
41. Tapisz OS, Gungor T, Ayta&, H, et al. Does hysterectomy affect ovarian function? Histopathological evaluation and serum FSH, inhibin A, and inhibin B levels in an experimental rat model. Eur J Obstet Gynecol Reprod Biol 2008; 140: 61-66.
42. Bhattacharya S, Möllison J, Pinson S, et al. A comparison of bladder and ovarian function two years following hysterectomy or endometrial ablation. Br J Obstet Gynaecol 1996; 103: 898-903.