Synaptic Plasticity and Translation Initiation

Eric Klann,1,2,3 Marcia D. Antion,2 Jessica L. Banko,1 and Lingfei Hou1

Departments of Molecular Physiology and Biophysics and 2Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA

It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is likely to be intimately involved in modulating synaptic strength. Our understanding of the translation-initiation process has expanded greatly in recent years. In this review, we discuss various aspects of translation initiation, as well as signaling pathways that might be involved in coupling neurotransmitter and neurotrophin receptors to the translation machinery during various forms of synaptic plasticity.

It is thought that the cellular changes that underlie various forms of short-term synaptic plasticity involve covalent modifications of pre-existing proteins and are protein-synthesis independent. In contrast, it is clear that long-lasting forms of synaptic plasticity require macromolecular synthesis. For example, long-lasting, late phase long-term potentiation (L-LTP) in the hippocampus requires new protein synthesis (Frey and Morris 1997; Nguyen et al. 1997), as does long-term facilitation (LTF) in Aplysia (Montarolo et al. 1986). The dependence of L-LTP and LTF on protein synthesis correlates with the necessity of new protein synthesis for long-lasting memory (Davis and Squire 1984). The classical view of how new protein synthesis impacts LTP is that proteins are synthesized in the cell body and delivered to the potentiated synapses. However, it has been shown that proteins can also be synthesized locally at or near synapses (Aakalu et al. 2001). In addition, several studies have shown that synaptic activity results in enhanced protein synthesis in synaptosomes. For example, depolarization with high concentrations of K+ was shown to increase the synthesis of the α subunit of calcium/calmodulin-dependent protein kinase II (α-CaMKII; Baggi et al. 2000), brain-derived neurotrophic factor (BDNF) was shown to increase the synthesis of Arc (Yin et al. 2002), and stimulation of group I mGluRs was shown to increase the synthesis of the fragile X mental retardation protein (Weiler et al. 1997). These data suggest that new synthesis of proteins occurs at active synapses, which is consistent with the notion that local protein synthesis might be involved in synaptic plasticity.

Evidence in support of the idea that local protein synthesis is important for synaptic plasticity was provided in studies by Kang and Schuman (1996). These authors found that, unlike electrically-induced LTP, the initiation of long-lasting potentiation in hippocampal slices induced by either BDNF or neurotrophin 3 required protein synthesis. The protein synthesis-dependence of BDNF-induced potentiation persisted, even when the cell bodies of presynaptic and postsynaptic neurons were cut off from their dendrites (Kang and Schuman 1996), a finding that strongly suggests that this form of potentiation requires dendritic protein synthesis.

An additional form of synaptic plasticity that requires rapid, local protein synthesis is mGluR-dependent LTD (Huber et al. 2000, 2001). In hippocampal area CA1, mGluR-dependent LTD can be blocked by translation inhibitors and, similar to BDNF-induced potentiation, persists even when cell bodies are excised from their dendrites (Huber et al. 2000). Thus, the protein synthetic machinery and the mRNA(s) necessary for the induction of mGluR-dependent LTD are present in postsynaptic dendrites.

The signaling pathways that are responsible for initiating new protein synthesis after the induction of the aforementioned forms of synaptic plasticity, either at the synapse or at the cell body, are poorly understood. The initiation of translation is usually divided into three steps. First, the initiator Met-tRNA_{Met} must bind to the small 40S ribosomal subunit, forming the 43S preinitiation complex. Then, the 43S complex must bind to an mRNA and locate the initiation codon to form the 48S preinitiation complex. Finally, the large 60S ribosomal subunit is added to generate a translation-competent 80S ribosome that is now able to proceed with translation elongation. All three steps in the initiation of translation involve soluble proteins, some of which are referred to as eukaryotic initiation factors (eIFs; Hershey and Merrick 2000). In this review, we will discuss how the function of several initiation factors and other translation regulatory proteins are modulated via phosphorylation by protein kinases, and we will discuss signaling pathways that might couple glutamate, serotonin, and neurotrophin receptors to initiation factors during protein synthesis-dependent forms of synaptic plasticity in mollusks and mammals.

Regulation of Translation Initiation by eIF2

The initiation factor eIF2, which consists of three heterologous subunits (α, β, and γ), binds the initiator Met-tRNA_{Met} to the small ribosomal subunit in the first step of translation initiation. eIF2 must bind GTP in order to form a stable ternary complex (eIF2-GTP-Met-tRNA_{Met}), which then binds to the ribosome. After the 43S preinitiation complex binds an mRNA, base-pair formation between an AUG codon and the anticodon of Met-tRNA_{Met} induces GTP hydrolysis by eIF2 and release of a stable eIF2-GDP binary complex. The initiation factor eIF2B catalyzes guanine nucleotide exchange on eIF2 to once again form active, GTP-bound eIF2 (Dever 1999, 2002).

The guanine nucleotide exchange reaction on eIF2 is a critical translational control point. Four eIF2 kinases are known to phosphorylate eIF2α on Ser51, which converts eIF2 from a substrate to a competitive inhibitor of the exchange factor eIF2B.
The guanine nucleotide exchange factor eIF2B catalyzes the exchange of GDP for GTP on eIF2. GTP-bound eIF2 is then able to associate with the specific initiator methionyl-tRNA and form an eIF2-GTP-tRNA complex that is necessary for the ribosome to initiate translation. After the ribosome scans the mRNA and recognizes the AUG codon, the GTP is hydrolyzed and the stable eIF2-GDP complex is released. A guanine nucleotide exchange reaction is required to form eIF2-GTP to initiate the translation of another mRNA transcript. This process is regulated by phosphorylation of eIF2, which is mediated by the four kinases HRI, PKR, GCN2, and PERK. Phosphorylated eIF2 competes with nonphosphorylated eIF2 for a binding site on eIF2B. However, phosphorylated eIF2 inhibits eIF2B activity and subsequently decreases the rate of eIF2-GTP formation and the availability of the complex for translation initiation.

Regulation of Translation Initiation by eIF4E

Most mRNAs bind to the ribosome via recognition of the 5’ mRNA cap (5’ m’GpppN, where N is any nucleotide) by the cap-binding protein complex. This complex, also known as eIF4F, is a heterotrimer consisting of the initiation factors eIF4A, eIF4E, and eIF4G. eIF4A is a DEAD-box RNA helicase that is thought to unwind the secondary structure in the 5’ untranslated region (UTR) of the mRNA to facilitate binding of the mRNA to the ribosome. eIF4G is a scaffolding protein that binds eIF4E and eIF4A, as well as the translation factor eIF3 and the poly(A)-binding protein (PABP), which binds to the poly(A) tail on the 3’ end of the mRNA (Sonenberg and Dever 2003). eIF4E is the cap-binding component of eIF4F. eIF4E binds directly to the 5’ mRNA cap via its cap-recognition pocket, which receives the m’G base, the triphosphate, and the second nucleotide (Tomoo et al. 2003). mRNA cap analogs such as m’GpppG inhibit protein synthesis by competing with endogenous capped mRNA for eIF4E. Both mGluR-dependent LTD in the hippocampus (Huber et al. 2000) and LTF at the crayfish neuromuscular junction (Beaumont et al. 2001) are blocked by m’GpppG, indicating cap-dependent translation is necessary for these forms of synaptic plasticity.

How is binding of eIF4E to the 5’ mRNA cap regulated? One way is by proteins that bind to and sequester eIF4E, thereby preventing eIF4E from binding to eIF4F (Fig. 2). Not surprisingly, these eIF4E-binding proteins (eIF4E-BPs) are regulated by phosphorylation; when 4E-BP is phosphorylated, its binding to eIF4E is disrupted and translation is stimulated. Several protein kinases have been shown to phosphorylate 4E-BP, including mammalian target of rapamycin (mTOR), whose activity is blocked by rapamycin (Beretta et al. 1996), and the mitogen-activated protein kinases ERK1 and ERK2 (Lin et al. 1994). Thus, inhibition of mTOR should inhibit protein synthesis-dependent forms of synaptic plasticity. Several studies have shown this to be the case. In Aplysia sensory neurons, rapamycin inhibits stabilization of LTF induced by serotonin (Casadio et al. 1999) and LTF at the crayfish neuromuscular junction (Beaumont et al. 2001). Moreover, it was shown that L-LTP, BDNF-induced potentiation, and mGluR-dependent depotentiation of LTP in the hippocampus are blocked by rapamycin (Tang et al. 2002; Zho et al. 2002; Cammalleri et al. 2003). Finally, it was recently shown that mTOR phosphorylation and activation is associated with and necessary for mGluR-dependent LTD (Hou and Klann 2004). Thus, mTOR appears to be critical for forms of synaptic plasticity that require protein synthesis.

The upstream signaling cascades that trigger activation of mTOR during protein synthesis-dependent forms of synaptic plasticity are not well understood, but likely involve the phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Gingras et al. 1998). Inhibitors of PI3K have been shown to block crayfish LTF (Beaumont et al. 2001) and various forms of LTP (Kelly and Lynch 2000; Sanna et al. 2002; Opazo et al. 2003). It also
was shown that BDNF-dependent phosphorylation and activation of mTOR in cultured neurons is blocked by PI3K inhibitors (Takei et al. 2001). Inhibitors of PI3K also abolish mGlur-dependent LTD, as well as the LTD-associated increases in mTOR phosphorylation (Hou and Klann 2004). The precise delineation of the signaling cascades that couple glutamate, serotonin, and neurtotrophin receptors to activation of mTOR during synaptic plasticity is an important question that remains to be addressed.

Another way that binding of eIF4E to the 5'TOP mRNA cap is regulated is via eIF4E phosphorylation (Fig. 2). Phosphorylation of serine 209 on eIF4E usually (but not always) is positively correlated with increased translation (Schepher and Proud 2002). Initial studies indicated that phosphorylated eIF4E bound to cap analogs (Minich et al. 1994). However, more recent studies indicate that phosphorylated eIF4E exhibits reduced affinity for cap analogs (Schepher et al. 2002; Zuberek et al. 2003). It has been proposed that the reduced affinity of phosphorylated eIF4E for the mRNA cap structure results in release of eIF4E, permitting reinitiation on the same mRNA or on another message (Schepher and Proud 2002), thereby resulting in increased translation activity. eIF4E has been shown to be phosphorylated by the protein kinase Mnk1 (Waskiewicz et al. 1999), which is phosphorylated and activated by the mitogen-activated protein kinases ERK and p38 (Waskiewicz et al. 1997), kinases that are known to be critical for various forms of synaptic plasticity (Bolshakov et al. 2000; Sweatt 2001; Thiels and Klann 2001; Gallagher et al. 2004). Enhanced phosphorylation of Mnk1 and eIF4E has been shown to occur in cultured neurons treated with BDNF, and the increased eIF4E phosphorylation was shown to be ERK dependent (Takei et al. 2001; Kelleher III et al. 2004). More recently, it was shown that NMDA receptor activation enhances the phosphorylation of Mnk1 and eIF4E via ERK in hippocampal area CA1 (Banko et al. 2004) and L-LTP-inducing stimulation has been shown to result in an ERK-dependent increase in eIF4E phosphorylation (Kelleher III et al. 2004). Finally, serotonin has been shown to alter eIF4E phosphorylation via activation of p38 in Aplysia neurons treated with serotonin (Dyer and Sossin 2000). Thus, phosphorylation of eIF4E by Mnk1 via activation of either ERK or p38 is another way in which translation initiation is likely to be regulated during synaptic plasticity.

**S6-Directed Translation of 5'TOP mRNAs**

As mentioned above, mTOR and ERK can both regulate various aspects of cap-dependent translation. An additional role for these protein kinases in protein synthesis is the regulation of S6-directed translation (Fig. 3). Both mTOR and ERK, as well as phosphoinositide-dependent kinase 1 (PDK-1) and the ζ isoform of protein kinase C (PKCζ), are involved in the phosphorylation and activation of p70 S6 kinase (S6K1; Dufner and Thomas 1999). S6K1 has been proposed to regulate the translation of a group of mRNAs that contain a 5'-terminal oligopyrimidine tract (5'TOP), which consists of 4 to 14 pyrimidines located at the 5' terminus of mRNAs that encode ribosomal proteins and mRNAs that encode certain other components of the translation machinery, such as elongation factor 2 (Meyhaus and Hornstein 2000). Interestingly, proteins encoded by mRNAs containing 5'TOPs have been observed in dendrites (Table 1). The precise mechanism responsible for the regulation of 5'TOP translation is not well understood. The S6K1 substrate thought to be important in regulation of 5'TOP translation is ribosomal S6 protein, whose own mRNA contains a 5'TOP (Fumagalli and Thomas 2000; Hershey and Merrick 2000); however, it was reported that regulation of 5'TOP translation was maintained in cells lacking S6K1 (Stolovich et al. 2002).

Activation of S6K1 and subsequent increases in S6 phosphorylation appears to play a role in synaptic plasticity. It was shown that L-LTP-inducing stimulation results in an mTOR-dependent increase in active S6K1 as measured by the phosphorylation of threonine 389 on S6K1 (Kammler et al. 2003). More recently, it was reported that L-LTP is associated with an ERK-dependent increase in S6 phosphorylation (Kelleher III et al. 2004). Serotonin, which induces LTP in Aplysia, has been shown to increase the activity of S6K1 and the subsequent phosphorylation of ribosomal protein S6 in synaptosome preparations (Khan et al. 2001). Interestingly, in the same study, it was observed that serotonin increased not only the phosphorylation of S6, but also the levels of S6 protein, which was blocked by rapamycin. Thus, it is possible that protein synthesis-dependent forms of synaptic plasticity require an increase in the synthesis of ribosomes and other components of the translation machinery. This possibility remains to be determined.

**Cytoplasmic Polyadenylation and CPEB**

Regulation of translation initiation also occurs via polyadenylation of the 3' end of mRNAs (Fig. 4). Polyadenylation is regulated by two sequences in the 3' untranslated region (3'UTR) of mRNAs, the cytoplasmic polyadenylation element (CPE; sequence of UUUAAU or similar) and AAUAAA. The critical regulatory protein in polyadenylation is CPE-binding protein (CPEB), which binds to CPEs (Richter 2000). CPEB is phosphorylated by

---

**Table 1.** Dendritic Proteins Encoded by mRNAs Containing 5'TOPs

| Protein | Function | Reference(s) |
|---------|----------|--------------|
| Ribosomal proteins | Initiation, scanning, translocation | Steward and Levy 1982 |
| eEF1A | Elongation of peptide chain | Asaki et al. 2003 |
| eEF2 | Elongation of peptide chain | Inamura et al. 2003 |
| PABP | mRNA stability, circularization of mRNA | Sood et al. 2002 |

*Polyribosomes have been observed near dendritic spines; however, a comprehensive study to determine the localization of all ribosomal proteins has not been conducted. S6 protein has been observed in the postsynaptic density.*
the protein kinase Aurora (Mendez et al. 2000a), which induces CPEB to interact with cleavage and polyadenylation-specificity factor (CPSF) on the AAUAAA sequence, thereby recruiting poly(A) polymerase (PAP) to lengthen the poly(A) tail of the mRNA (Mendez et al. 2000b). The process of polyadenylation is thought to increase translation by counteracting maskin, a protein that binds both CPEB and elf4E (Stebbins-Boaz et al. 1999). Maskin, similar to 4E-BP, is a repressor of translation because it prevents binding of elf4E to elf4G. Polyadenylation causes maskin to dissociate from elf4E, permitting the binding of elf4E to elf4G, and the subsequent recruitment of ribosomes to increase translation (Cao and Richter 2002).

The poly(A) tail of the mRNA and the 5′ cap interact synergistically to stimulate translation (Gallic 1991). PABP interacts with both the poly(A) tail and elf4G (Sachs 2000), which serves to circularize the mRNA (Wells et al. 1998). Although the nature of the synergism between the poly(A) tail and the 5′ cap is unknown, an intriguing possibility is that the poly(A) tail enables ribosomes to efficiently recycle on the same mRNA via the interaction of PABP with elf4G, thereby bringing the 3′ and 5′ ends into proximity with one another.

Several recent studies have demonstrated the importance of CPEB for synaptic plasticity. In Aplysia, serotonin induces an increase in CPEB levels that is both mTOR and PI3K dependent (Si et al. 2003). In the same study, the authors found that CPEB antisense nucleotides blocked LTF, indicating that CPEB is required for the stabilization of LTF (Si et al. 2003). CPEB also appears to be required for normal mammalian synaptic plasticity. Recently, it was shown that mice that have the CPEB-1 gene deleted have impaired LTP (Alarcón et al. 2004). These findings suggest that one subset of mRNAs that are likely translated during synaptic plasticity are synthetically localized mRNAs that contain CPEs.

One mRNA that appears to be regulated by polyadenylation during synaptic plasticity in Aplysia is N-actin mRNA, which contains a CPE in its 3′UTR (DesGroseillers et al. 1994). The poly(A) tail of N-actin RNA has been shown to be elongated in response to stimulation with serotonin (Liu and Schwartz 2003; Si et al. 2003). Another likely target to be regulated by polyadenylation during mammalian synaptic plasticity is the mRNA that encodes the α subunit of CaMKII. The mRNA for α-CaMKII contains two CPEs in its 3′UTR (Wu et al. 1998). These sequences are required for increased polyadenylation of α-CaMKII mRNA and subsequent synthesis of α-CaMKII that is associated with NMDA receptor-dependent synaptic plasticity in the visual cortex (Wells et al. 2001). In the hippocampus, increased α-CaMKII synthesis also has been observed with LTP induced by high-frequency stimulation (Ouyang et al. 1997) and LTP induced by pairing θ-pulse stimulation with β-adrenergic receptor activation (Giovannini et al. 2001). The increased α-CaMKII synthesis observed in the latter study was found to be ERK dependent. Thus, plasticity-induced increases in α-CaMKII synthesis may require not only polyadenylation of the 3′ end of the α-CaMKII mRNA, but also ERK-dependent changes in the phosphorylation of initiation factors such as elf4E that would regulate binding of the 5′ cap of α-CaMKII mRNA to the cap-binding complex.

### Regulation of Internal Translation Initiation

Several mRNAs are able to bind to the 40S ribosome subunit independent of the 5′ m7GpppN cap by using an internal ribosome entry site (IRES). A small number of cellular mRNAs have been reported to have IRES elements. These mRNAs appear to contain secondary structures or multiple AUG codons that normally would block the 43S ribosome from scanning the mRNA. Binding of the ribosome to an IRES element located in an internal position on the mRNA provides it access to the appropriate AUG start codon (Hellen and Sarnow 2001). Five mRNAs found in dendrites have been reported to contain IRES elements that might mediate cap-independent translation (Table 2). Although cap-independent translation during synaptic plasticity has not been reported, it was shown that electrical activity that induces a form of neuronal plasticity in Aplysia bag cell neurons results in the dephosphorylation of elf4E, triggering IRES-mediated translation (Dyer et al. 2003). Interestingly,

### Table 2. Dendritic mRNAs Containing IRESs

| mRNA                          | Protein Function                          | Reference(s)            |
|-------------------------------|-------------------------------------------|-------------------------|
| Activity-regulated cytoskeletal protein (Arc) | Actin-binding synaptic junctional protein | Pinkstaff et al. 2001   |
| αCaMKII                       | Multifunctional kinase, calcium signaling |                         |
| Dendrin                       | Unknown                                   |                         |
| Microtubule-associated protein 2 (MAP2) | Microtubule assembly and scaffolding protein |                         |
| Neurogranin (RC3)             | Calcium/calmodulin-binding protein        |                         |
α-CaMKII mRNA contains an IRES element (Pinkstaff et al. 2001) and as mentioned above, LTP-inducing stimulation stimulates the translation of α-CaMKII (Ouyang et al. 1997). It is not known whether the LTP-induced translation of α-CaMKII is via either a cap-dependent mechanism or a cap-independent, IRES-mediated mechanism. Thus, whether synaptic plasticity induces translation of mRNAs that have IRES elements such as α-CaMKII via a cap-independent initiation mechanism remains to be investigated.

**Regulation of Translation by FMRP**

Fragile X mental-retardation syndrome is caused by a trinucleotide repeat expansion mutation in the FMR1 gene (Antar and Bassell 2003). FMR1 (referred to as Fmr1 in the mouse) encodes Fragile X mental-retardation protein (FMRP), an RNA-binding protein that is thought to function as a translation repressor (Laggerbauer et al. 2001; Li et al. 2001; Zhang et al. 2001). FMRP is found predominantly in the cytoplasm, where it is thought to dimerize and form a granule complex that contains mRNAs, mRNA-binding proteins, FMRP-associated proteins, and ribosomes, tonically inhibiting the translation of the mRNAs in the granule complex (Jin and Warren 2003). Interestingly, FMRP and Fmr1 mRNA have been shown to be present in dendrites (Feng et al. 1997; Weiler et al. 1997), and stimulation of mGluRs has been shown to result in a rapid translation of FMRP in synaptosomes (Weiler et al. 1997). Huber et al. (2002) showed that Fmr1 knockout mice exhibit enhanced hippocampal mGluR-dependent LTD. These investigators proposed that mGluR-LTD might normally enhance the synthesis of FMRP, which then would serve to limit expression of LTD by inhibiting translation of other synaptic mRNAs (Fig. 5). Many of the mRNAs that bind to FMRP encode proteins important for synaptic function (Table 3). Examination of the role of these proteins in mGluR-dependent LTD should provide insight into how specific mRNAs are translated in response to synaptic stimulation that ultimately results in synaptic plasticity.

**Regulation of Translation Elongation**

Although the focus of this review has been regulation of translation initiation, translation may also be regulated during synaptic plasticity at the elongation step via phosphorylation of eukaryotic translation factor 2 (eEF2). eEF2 is a GTP-binding protein that mediates the translocation of peptidyl-tRNA from the A site to the P site on the ribosome (Moldave 1985). Phosphorylation of eEF2 by eEF2 kinase, a Ca2+/calmodulin-dependent enzyme, results in an inhibition of eEF2 activity and a general reduction of peptide elongation (Ryazanov and Davydova 1989; Carlberg et al. 1990; Redpath et al. 1993). Several studies have been reported that implicate eEF2 phosphorylation in synaptic plasticity. In intact tadpole tecta, NMDA receptor activation was shown to increase the phosphorylation of eEF2 (Scheetz et al. 1997). The same group found that stimulation of synaptoneurosomes from rat superior colliculus also results in increased eEF2 phosphorylation, which was correlated with increased synthesis of α-CaMKII (Scheetz et al. 2000). It was reported that glutamate

---

**Figure 5** Model of FMRP function during mGluR-LTD. Under basal conditions, FMRP is thought to dimerize and assemble into a granule complex with mRNAs, mRNA-binding proteins, FMRP-associated proteins, and ribosomes, tonically inhibiting the translation of specific mRNAs in the granule complex. This FMRP complex can be transported from the soma into dendrites. Stimulation of group I mGluRs results in a yet-to-be-determined modification of FMRP, permitting FMRP-bound mRNAs to be translated. The proteins translated from these mRNAs then mediate protein synthesis-dependent mGluR-LTD. Among the mRNAs targeted by FMRP is its own mRNA; this newly synthesized FMRP may then turn off further translation by once again binding its target mRNAs.

---

**Table 3. Examples of FMRP-Binding mRNAs That Encode Proteins Involved in Synaptic Function**

| mRNA                          | Protein Function                                      | Reference(s)          |
|-------------------------------|-------------------------------------------------------|-----------------------|
| Microtubule-associated protein 1B (MAP1B) | Regulate synaptic structure and morphology            | Zhang et al. 2001     |
| SAP90/PSD-95-associated protein 4 (SAPAP4) | Maintenance of postsynaptic density structure         | Zalfa et al. 2003     |
| FMRP                          | mRNA-binding protein, mRNA trafficking, translation repressor | Ashley Jr. et al. 1993; Brown et al. 1998; Zhang et al. 2001 |
| Munc 13                       | Mediate neurotransmitter release                      | Brown et al. 2001     |
enhances the phosphorylation of eEF2 via NMDA receptors in cultured cortical neurons (Marin et al. 1997). Finally, it was shown that chemically induced LTP elicits an inhibition of de novo total protein synthesis, coincident with increased phosphorylation of eEF2 and increased protein levels of Arc and Fos (Chotiner et al. 2003). Taken together, these findings suggest that phosphorylation of eEF2 during certain forms of synaptic plasticity results in a decrease in overall protein synthesis, while at the same time increasing the translation of specific mRNAs. It remains to be determined whether this type of translation regulation occurs in other forms of protein synthesis-dependent synaptic plasticity.

Concluding Remarks

It is widely accepted that protein synthesis is required for many forms of synaptic plasticity, as well as for long-term memory. To understand how the translation of novel protein occurs during various forms of synaptic plasticity, it is critical to understand how translation initiation is regulated. A gap in our current knowledge and a major challenge for investigators in this regard is the identification of the signaling cascades that couple neurotransmitter and neurotrophin receptors to the initiation factors that regulate translation initiation. Fortunately, a number of laboratories have recently taken up this challenge and have begun to identify the signaling molecules involved in regulating translation initiation during various forms of synaptic plasticity, including spatial (soma vs. dendrite) and temporal aspects of this regulation (Cushman 2003). Although these initial findings are promising, careful studies will be required to determine the similarities and differences in the biochemical sequences that link neurotransmitter and neurotrophin receptors to the translation initiation machinery during protein synthesis-dependent forms of synaptic plasticity.

ACKNOWLEDGMENTS

We thank Dr. Thomas E. Dever for helpful comments. This work was supported by NIH grant NS34007 and the FRAXA Research Foundation (E.K.)

REFERENCES

Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C., and Schuman, E.M. 2001. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30: 489–502.

Alarcon, J.M., Hodgman, R., Theis, M., Huang, Y.-S., Kandel, E.R., and Richter, J.D. 2004. Selective modulation of some forms of Schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11: 318–327.

Antar, L.N. and Bassell, G.J. 2003. Sunrise at the synapse: The mFMR1 mRNA shaping the synaptic interface. Neuron 37: 555–558.

Asakawa, S., Usada, N., Nakazawa, A., Kamekura, K., and Suzuki, T. 2003. Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res. 972: 168–176.

Ashley Jr., C.T., Wilkinson, K.D., Reines, D., and Warren, S.T. 1993. FMR1 protein: Conserved RNP family domains and selective RNA binding. Science 262: 563–566.

Bagni, C., Mannucci, L., Dotti, C.G., and Amaldi, F. 2000. Chemical stimulation of postsynaptic CA1 hippocampal neurons results in P2X4-dependent protein kinase II mRNA association to polysomes. J. Neurosci. 20: RC76.

Banko, J.L., Hou, L., and Klann, E. 2004. NMDA receptor activation results in a cap-dependent inhibition of eIF4E phosphorylation in hippocampal area CA1. J. Neurochem. (in press).

Beaumont, V., Zhong, N., Fletcher, R., Froemke, R.C., and Zucker, R.S. 2001. Phosphorylation-dependent local protein synthesis is a calcium- and calcium-modulin-dependent induction of crayfish long-term facilitation. Neuron 32: 489–501.

Beretta, L., Gingras, A.C., Svitkina, Y.V., Hall, M.N., and Sonenberg, N. 1996. Kap1 blocks the phosphorylation of eIF4E and inhibits cap-dependent translation. EMBO J. 15: 5654–5664.

Bolshakov, V.Y., Carloni, L., Cobb, M.H., Siegelbaum, S.A., and Belardetti, F. 2000. Nat. Neurosci. 3: 1107–1112.

Brown, V., Small, K., Lakkis, L., Yeng, Y., Gunter, C., Wilkinson, K.D., and Warren, S.T. 1998. Purified recombinant FMRP exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J. Biol. Chem. 273: 15521–15527.

Brody, V., Jin, P., Ceman, S., Connor, J.C., O'Donnell, W.T., Tenebaum, S.A., Jin, X., Feng, Y., Wilkinson, K.D., Keene, J.D., et al. 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107: 477–487.

Cammalleri, M., Lutjens, R., Berton, F., Fing, A.P., Simpson, C., Francesconi, W., and Sanna, P.P. 2003. Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. USA 100: 14368–14373.

Cao, Q. and Richter, J.D. 2002. Dissolution of the mRNAs-eIF4E complex by cytoplasmic polyadenylation and poly(A) binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21: 3852–3862.

Carleberg, U., Nilsson, A., and Nygaard, O. 1990. Functional properties of phosphorylated elongation factor 2. Eur. J. Biochem. 191: 659–645.

Casado, A., Martinez, K.C., Giustetto, M., Zhu, H., Chen, M., Rartsch, D., Bailey, C.H., and Kandel, E.R. 1999. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99: 223–237.

Chotiner, J.K., Khorasani, H., Labue, A.C., O’Dell, T.J., and Watson, J.B. 2003. Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience 116: 743–752.

Cushman, S. 2003. Protein processing and plasticity. Learn. Mem. 10: 305. Davis, H.P. and Squire, L.R. 1984. Protein synthesis and memory: A review. Psychol. Bull. 96: 518–559.

DeGracia, D.J., Adamczyk, S., Folbe, A.J., Konkoly, L.L., Pittman, J.E., Neuman, R.W., Sullivan, J.M., Scheuner, D., Kaufman, R.J., White, B.C., et al. 1999. Eukaryotic initiation factor 2a kinase and phosphatase activity during postischemic brain reperfusion. Exp. Neurol. 155: 221–227.

DesGroseillers, L., Auclair, D., Wickham, L., and Maalouf, M. 1994. A novel actin cDNA is expressed in the neurons of Aplysia californica. Biochem. Biophys. Acta 1217: 322–324.

Dever, T.E. 1999. Translation initiation: Adept at adapting. Trends. Biochem. Sci. 24: 398–403.

Dufner, A. and Thomas, G. 1999. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253: 100–109.

Dyer, J.R. and Sosin, W.S. 2000. Regulation of eukaryotic initiation factor 4F phosphorylation in the nervous system of Aplysia californica. J. Neurochem. 75: 872–881.

Dyer, J.R., Michel, S., Lee, W., Castelucci, V.F., Wayne, N.L., and Sosin, W.S. 2003. An activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation, Nat. Neurosci. 6: 219–220.

Feng, Y., Gutekunst, C.A., Ebner, D.E., Yi, H., Warren, S.T., and Hirsch, S.M. 1997. Fragile X mental retardation protein: Nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 17: 1399–1457.

Frey, U. and Morris, R.G. 1997. Synaptic tagging and long-term potentiation. Nature 385: 533–536.

Furumizu, F., and Thomas, G. 2000. S6 phosphorylation and signal transduction. In Translational control of gene expression (eds. N. Sonenberg, J.W.B. Hershley, and M.B. Matthews), pp. 695–718. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Gallagher, S.M., Daly, C.A., Bear, M.F., and Huber, K.M. 2004. Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J. Neurosci. 24: 4859–4864.

Gallie, D.R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes & Dev. 5: 2108–2116.

Gingras, A.C., Kennedy, S.G., O’Leary, M.A., Sonenberg, N., and Hay, N. 1998. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes & Dev. 12: 502–513.

Giovannini, M.G., Blitzer, R.D., Wong, T., Asoma, K., Tsokas, P., Morrison, J.H., Iyengar, R., and Landau, E.M. 2001. Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation. J. Neurosci. 21: 7053–7062.
Hellen, C.U. and Sarnow, P. 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. *Genes & Dev.* **15**:1593–1612.

Hershey, J.W.B. and Merrick, W.C. 2000. Pathway and mechanism of initiation of protein synthesis. In *Translational control of gene expression* (eds. N. Sonenberg et al.), pp. 33–38. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Hou, L. and Klann, E. 2004. Activation of the phosphoinositide 3-kinase–Akt signaling pathway in long-term depression in hippocampal area CA1. *J. Neurosci.* **24**:6352–6361.

Huber, K.M., Roder, J.C., and Bear, M.F. 2000. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. *Science* **288**:1254–1257.

Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. 2002. Altered synaptic plasticity in a mouse model of fragile X mental retardation. *Proc. Natl. Acad. Sci.* **99**:7746–7750.

Inamura, N., Hoshino, S., Uchiumi, T., Nawa, H., and Také, N. 2003. Cellular and subcellular distributions of translation initiation, elongation and release factors in rat hippocampus. *Mol. Brain Res.* **111**:165–174.

Jin, P. and Warren, S.T. 2003. New insights into fragile X syndrome: From molecules to neurobehaviors. *Trends Biochem. Sci.* **28**:152–158.

Kang, H. and Schuman, E.M. 1996. A requirement for local protein synthesis in metabotropic glutamate receptor-dependent long-term depression. *Cell,* **86**:81–92.

Kelleher III, R.J., Govindarajan, A., Jung, H.-Y., Kang, H., and Tonegawa, S. 2003. Extracellular signal-regulated kinase, phosphatidylinositol 3-kinase and Akt contribute to long-term synaptic plasticity in the hippocampus. *J. Neurosci.* **23**:10201–10204.

Keller, A. and Lynch, M.A. 2000. Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor wortmannin. *Proc. Natl. Acad. Sci. U.S.A.* **97**:13937–13942.

Kwon, S.J., Reischauer, J., Barnekow, A., and Lüttner, P. 2002. Knockdown of the eukaryotic translation initiation factor eIF-4E: Increased cap affinity of eIF-4E, effects on cap-dependent translation and characterization of eIF-4E interacting with mRNA. *Mol. Cell* **10**:325–336.

Liu, J. and Schwartz, J.H. 2003. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNAs in Aplysia neurons. *Brain Res.* **959**:68–76.

Luger, A. and Richter, J.D. 2000a. Phosphorylation of CPEB by Eg2 regulates synaptic protein expression in Aplysia neurons. *J. Neurosci.* **20**:467–472.

Mendez, R., Hake, L.E., Andresson, T., Littlepage, L.E., Ruderman, J.V., and Richter, J.D. 2002. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the mammalian homologue of GCN2 protein kinase important for cap-dependent translation initiation factor 2-EF-2 inactivation upon phosphorylation. *Phosphorylation* **39**:643–651.

Moldave, K. 1985. Eukaryotic protein synthesis. *Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.*

Opazo, P., Watabe, A.M., Grant, S.G., and O’Dell, T.J. 2003. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-regulated kinase-independent mechanisms. *J. Neurosci.* **23**:3679–3688.

Ouyang, Y., Kantor, D.R., Harkey, M.R. and Monk, M.B. 1997. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. *J. Neurosci.* **17**:5416–5427.

Pinto-Kocher, I., Chappell, S.A., Young, N. and Rodiuk, P. 2001. Internal initiation of translation of five dendritically localized neural mRNAs. *Proc. Natl. Acad. Sci. U.S.A.* **98**:2770–2775.

Reddy, N.T., Price, N.T., and Proud, C.G. 1993. Regulation of elongation factor-2 by multisite phosphorylation. *Eur. J. Biochem.* **213**:689–699.

Richter, J.D. 2000. Influence of polyadenylation-induced translation on neuronal development and neuronal synaptic function. In *Translational control of gene expression* (eds. N. Sonenberg et al.), pp. 785–805. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Ryazanov, A.G. and Davydova, E.K. 1989. Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation. Phosphorylated EF-2 is unable to catalyze translocation. *FEBS Lett.* **251**:187–190.

Sachs, A. 2000. Physical and functional interactions between the mRNA cap and the polyadenylate tail. *Translational control of gene expression* (eds. N. Sonenberg et al.), pp. 447–466. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Sanna, P.P., Cammalleri, M., Berton, F., Simpson, C., Lutjen, R., Bloom, F.E. and Francesconi, W.G. 2002. Phosphorylation of eIF4G is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. *J. Neurosci.* **22**:3359–3365.

Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. 1997. N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: A role for N-methyl-D-aspartate receptor-mediated control of protein synthesis. *Proc. Natl. Acad. Sci. U.S.A.* **94**:14770–14775.

Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. 2000. NMDA receptor-mediated control of protein synthesis at developing synapses. *Nat. Neurosci.* **3**:511–516.

Scheper, G.C. and Proud, C.G. 2002. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? *Eur. J. Biochem.* **269**:5350–5355.

Scheper, G.C. van Kollenburg, B., Hu, J., Luo, Y., Goss, D.J., and Proud, C.G. 2002. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. *J. Biol. Chem.* **277**:3303–3309.

Shi, Y., Vattem, K.M., Sood, B., Liang, J., Stramm, L., and Wek, R.C. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2α-subunit kinase, PEF, involved in translational control. *Mol. Cell Biol.* **18**:7499–7509.

Si, K., Giustetto, M., Enikő, A., Hsu, R., Janisiewicz, A.M., Miniaci, M.C., Kim, J.-H., Zhu, H., and Kandel, E.R. 2003. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. *Cell,* **115**:893–904.

Sonenberg, N. and Dever, T.E. 2005. Eukaryotic translation initiation factors and regulators. *Curr. Opin. Struct. Biol.* **15**:56–63.

Sood, K., Porter, A.C., Olsen, D.A., Cavener, D.R., and Wek, R.C. 2000. A mammalian homologue of GCN2 protein kinase important for translational control by phospho-p58 and phosphorylation of eukaryotic initiation factor 2-α. *Genetics* **154**:787–801.

Stebbins-Boaz, B., Cao, Q., de Moor, C.H., Mendez, R., and Richter, J.D. 1999. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. *Mol. Cell* **4**:1017–1027.

Steward, O. and Levy, W.B. 1982. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. *J. Neurosci.* **2**:284–291.

Stolovich, M., Tang, H., Horstein, E., Levy, G., Cohen, R., Rae, S.S., Birnbaum, M.J., and Meyhaus, O. 2002. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor p70 S6K phosphorylation. *Mol. Cell Biol.* **22**:8101–8113.

Swart, J.D. 2001. The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. *J. Neurochem.* **76**:1–10.

Takei, N., Kawamura, M., Hara, K., Yonezawa, K., and Nawa, H. 2001. Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes. *Comparison with the effects of insulin.* *J. Biol. Chem.* **276**:42818–42825.

Tang, S.J., Reis, G., Kang, H., Jingras, A.-C., Sonenberg, N., and Schuman, E.M. 2002. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. *Proc. Natl. Acad. Sci. U.S.A.* **99**:467–472.

Thiels, E. and Klann, E. 2001. Extracellular signal-regulated kinase, synaptic plasticity, and memory. *Rev. Neurosci.* **12**:327–345.

Tomokou, K., Shen, X., Okabe, K., Nnoze, Y., Fukahara, S., Morino, S., Sasaki,
M., Taniguchi, T., Miyagawa, H., Kitamura, K., et al. 2003. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J. Mol. Biol. 328: 365–383.

Waskiewicz, A.J., Flynn, A., Proud, C.G., and Cooper, J.A. 1999. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell Biol. 19: 1871–1880.

Weller, I.J., Irwin, S.A., Klintsova, A.Y., Spencer, C.M., Brazelton, A.D., Miyashiro, K., Comery, T.A., Patel, B., Eberwine, J., and Greenough, W.T. 1997. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. 94: 5395–5400.

Wells, S.E., Hillner, P.E., Vale, R.D., and Sachs, A.B. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135–140.

Wells, D.G., Dong, X., Quinlan, E.M., Huan, Y.S., Bear, M.F., Richter, J.D., and Fallon, J.R. 2001. A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. J. Neurosci. 21: 9541–9548.

Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M.A., Barnitt, A., Quinlan, E., Heynen, A., Fallon, J.R., and Richter, J.D. 1998. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of a-CaMKII mRNA at synapses. Neuron 21: 1129–1139.

Yin, Y., Edelman, G.M., and Vanderklish, P.W. 2002. The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. 99: 2368–2373.

Zalla, F., Giorgi, M., Primerano, B., Moro, A., DiPenta, A., Reis, S., Oostra, B., and Bagni, C. 2003. The fragile X syndrome protein FMRP associates with BCI RNA and regulates the translation of specific mRNAs at synapses. Cell 112: 317–327.

Zhang, Y.Q., Bailey, A., Mathies, H.J., Renden, R.B., Smith, M.A., Speese, S.D., Rubin, G.M., and Broadie, K. 2001. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107: 591–603.

Zhu, W.M., You, J.L., Huang, C.C., and Hsu, K.S. 2002. The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenyl-glycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci. 22: 8838–8849.

Zuberek, J., Jemielity, J., Niedzwiecka, A., Stepinski, J., Wyslouch-Cieszynska, A., Stolarski, R., and Darzynkiewicz, E. 2003. Influence of the length of the phosphate chain in mRNA 5’ cap analogues on their interaction with eukaryotic initiation factor 4E. Nucleosides Nucleotides Nucleic Acids. 22: 1707–1710.
Synaptic Plasticity and Translation Initiation

Eric Klann, Marcia D. Antion, Jessica L. Banko, et al.

*Learn. Mem.* 2004 11: 365-372
Access the most recent version at doi:10.1101/lm.79004

References
This article cites 87 articles, 42 of which can be accessed free at:
http://learnmem.cshlp.org/content/11/4/365.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *Learning & Memory* go to:
http://learnmem.cshlp.org/subscriptions

Cold Spring Harbor Laboratory Press