Liver cancer is the sixth most common cancer found in cancer patients worldwide\(^1\) and 90% of liver cancer is hepatocellular carcinoma (HCC).\(^2\) Chronic liver injury from infection (hepatitis B or C viruses), chronic alcoholic intake, and fatty liver are well-known risk factors for hepatocarcinogenesis.\(^3\) The treatments for HCC are dependent...
on tumor size, tumor location, and liver function. These interventions include tumor resection, local ablation, transarterial chemoembolization, and liver transplantation which are shown to be effective for HCC treatment.\(^4^,\)\(^5\) However, some patients cannot be treated by these methods due to an advanced tumor stage and poor liver function.\(^6\) Currently, the overall 5-year survival rate for HCC patients is still low despite the availability of multiple treatment modalities.\(^7\)

Because most HCC patients are asymptomatic in the early stages, the early detection of small HCC before it progresses to the later stages is very important. Several pieces of evidence show that early detection of small HCC by screening with a liver ultrasound can significantly improve survival time.\(^8\) However, data from a meta-analysis report showed that the sensitivity of ultrasound screening for detection of an early HCC is only 45%, and the sensitivity of combined ultrasound screening with serum alpha-fetoprotein (AFP) for early HCC detection is only 63%.\(^9\) Currently, imaging such as CT and MRI are primary tools for the diagnosis of HCC in most guidelines.\(^10,\)\(^11\)

With typical arterial enhancement and contrast washout in the delayed phase, HCC can be diagnosed without the need for tissue diagnosis.\(^12\) However, since approximately 40% of HCC patients showed atypical imaging features, this group of patients still need a liver biopsy for a definitive diagnosis.\(^13\) All these findings indicate the need for improved tools to detect HCC earlier with increased sensitivity and specificity while being less invasive.

Liquid biopsy is one of the noninvasive methods for cancer diagnosis. Detection of circulating tumor DNA,\(^14\) circulating tumor cell,\(^15\) or extracellular vesicle (EV) in patients’ blood has been shown to be useful for cancer diagnosis. However, as the amount of circulating tumor cells and DNA are usually low in number with their short survival time in circulation, these factors, therefore, limit the use of these methods.\(^16\) The extracellular vesicle (EV) is a nano-sized vesicle which can be produced and secreted by all cells.\(^17\) EVs can deliver molecules such as protein, mRNA, microRNA (miRNA), circularRNA (circRNA), long noncoding RNA (lncRNA), and DNA and play an important role in cell-to-cell communication.\(^17\) These vesicles can be found in almost all body fluid types such as blood, urine, ascites, effusion, and breast milk.\(^18\) There is increasing evidence to demonstrate that certain tumor cells can secrete EVs to modify the microenvironment of tumors and have a major role in tumor progression.\(^19,\)\(^20\)

A previous study demonstrated that some liver-derived transcripts can be found in the circulation of an HCC patient.\(^21\) The lipid raft domain structure of EVs can protect these transcripts against degradation by circulating RNase, thus allowing the EV-RNA to be stable in the blood.\(^22\) As a result, these EVs have been proposed as a potential diagnostic biomarker.\(^22\)\(^–\)\(^24\) Furthermore, it has been shown that EVs could be used to stimulate an immune response as well as to carry the tumor suppressor gene, all of which could have therapeutic potential in cancer treatment.\(^25\)\(^,\)\(^26\)

In this review, the biologic roles of HCC-derived EVs obtained from in vitro and in vivo reports are comprehensively summarized. Reports on their potential roles as diagnostic biomarkers and possible therapeutic interventions are also presented and discussed.

Literature was searched on the PubMed database from its inception until August 30, 2021 using the following search terms: hepatocellular carcinoma, extracellular vesicle, and exosome. In vitro, in vivo, and clinical studies were included in this review.

## 2 | BIOLOGIC FUNCTION OF HCC CELL-DERIVED EVS: REPORTS FROM IN VITRO STUDIES

Tumor microenvironments play an essential role in HCC development and progression.\(^27\)\(^,\)\(^28\) Recent evidence showed the dysregulation of multiple signaling pathways and cell-to-cell communication in HCC.\(^29\) HCC-derived EVs are one of the major mediators of cell-to-cell communication.\(^30\) They were found to contain multiple miRNAs, lncRNA, and circRNA which regulate tumor cell proliferation,\(^31\)\(^–\)\(^37\) migration,\(^33\) and decrease tumor cell apoptosis and chemoresistance.\(^32\)\(^,\)\(^36\)\(^,\)\(^37\) Several RNAs can regulate the tumor microenvironment by increasing angiogenesis and decreasing cell adhesion.\(^31\)\(^,\)\(^33\)\(^,\)\(^34\) In addition, serum-free miRNA in cancer patients has been shown to correlate with tumor cell proliferation, metabolism, invasion, and metastasis.\(^38\) Recent evidence showed that other noncoding RNA (lncRNA and circRNA) are also related to tumorigenesis. CircRNA has been demonstrated to act as an miRNA sponge\(^39\) whereas the dysregulation of lncRNA was associated with cancer.\(^40\) High metastatic HCC cell (LM3) had increased expression of EV-circ-PTGR1 which has been shown to increase cell migration and apoptosis.\(^41\) HepG2 and HuH7 cell lines also had increased EV-Inc 544, 239, 959, 171, and 85 and were shown to increase cell proliferation.\(^42\) As these molecules in HCC-derived EVs promoted the survival of the tumor cells, they could be a target for HCC treatment. A summary of these reports from in vitro studies is shown in Table 1.

## 3 | CIRCULATING EV MIRNA IN HCC PATIENTS: REPORTS FROM CLINICAL STUDIES

In the last decades, multiple studies have reported an association between serum circulating miRNA and HCC
| HCC cell line | EV extraction method | EV molecule expression | Major findings (tumor cells) | Interpretaion | References |
|---------------|----------------------|------------------------|-----------------------------|--------------|------------|
| Hep3B         | DC, UF               | ↑ miR−584-5p           | ↑                           | ↑ Angiogenesis | 33         |
|               |                      |                        |                             | HCC cell proliferation, migration, and angiogenesis |           |
| Hep3B, HuH7   | DC, Exoquick         | ↓ circ−0051443         | ↑                           | Bak1         | 32         |
|               |                      |                        |                             | HCC cell showed decreased circ−0051443 which acts as a tumor suppressor gene |           |
| Hep3B, HepG2, | DC, DGC              | ↑ TUC−339              | ↑                           | ↓ HCC cell adhesion | 34         |
| PLC/PRF/5     |                      |                        |                             | TUC−339 increased HCC cell proliferation and might increase invasion/metastasis |           |
| Hep3B, SNU18, | DC                   | ↑ ANGPT−2              | ↑                           | ↑ Angiogenesis | 31         |
| SNU38, Li7,   |                      |                        |                             | ANGPT−2 increased HCC cell proliferation and angiogenesis |           |
| MHCC97H       |                      | ↑ miR−665              | ↑                           | miR−665 increased HCC cell proliferation | 35         |
| HUH7          | DC, UF               | ↑ miR−122              | ↓                           | ↓ (Doxorubicin) | 88         |
|               |                      |                        | ↑ cleaved PARP, Caspase 9   | HUH7 cell (less-aggressive cell line) had high miR−122 which decreased HCC cell proliferation, increased apoptosis, and decreased chemoresistance of tumor cell |           |
| HepG2         | UC                   | ↑ linc-VLDLR           | ↑                           | ↑ (Sorafenib, Doxorubicin) | 36         |
|               |                      |                        |                             | linc-VLDLR increased HCC cell proliferation and chemoresistance |           |
| HepG2, PLC-PRF5 | DC                | ↑ linc-ROR             | ↑                           | ↓ (Caspase 3/7) | 37         |
|               |                      |                        |                             | ↑ (Sorafenib, Doxorubicin, Camptothecin) | linc-ROR increased HCC cell proliferation, chemoresistance and decreased HCC cell apoptosis | |

(Continues)
**TABLE 1 (Continued)**

| HCC cell line | EV extraction method | EV molecule expression | Major findings (tumor cells) | Interpretaion | References |
|---------------|----------------------|------------------------|-----------------------------|---------------|------------|
| HepG2, HuH7   | Ribo exosome isolation reagent | ↑ lnc 544 ↑ lnc 239 ↑ lnc 959 ↑ lnc 171 ↑ lnc 85 | Proliferation: ↑, Apoptosis: ↓, Migration: ↔ | Lnc−85, −171, −959, −239, −554 increased HCC cell proliferation | 42 |
|               |                      |                        |                             | Lnc−85, −171, −544 decreased HCC cell apoptosis | 42 |
|               |                      |                        |                             | Lnc−85, −959, −239 increased HCC cell migration | 42 |
| 97hm, Huhm    | UC                   | ↑ miR−92a−3p            |                             | miR−92a−3p increased HCC cell migration and metastasis | 89 |
| LM3           | Exoquick             | ↑ circ-PTGR1            |                             | High metastatic HCC cell (LM3) had increased EV-circ-PTGR1 and was associated with increased cell migration and decreased apoptosis | 41 |

Abbreviations: ABC, ATP-binding cassette; ANGPT, angiopoietin; circ-RNA, circular RNA; DC, differential centrifugation; DGC, density-gradient separation; IGF, insulin growth factor; linc-ROR, long intergenic noncoding RNA; lnc-RNA, long noncoding RNA; omiR, oncogenic microRNA; tsmiR, tumor suppressor miRNA; TUC siRNA, ultraconserved long noncoding siRNA; TUC, tumor ultraconserved RNA; UF, ultrafiltration.
including miR-15b, miR-16, miR-19a, miR-21, miR-27b, miR-92a, miR-107p, miR-122, miR-130b, miR-183, miR-192, miR-195, miR-221, miR-222, miR-223, miR-224, and ETC. Recent evidence has also shown the superiority of EV-miRNA over serum biomarkers in accurate diagnosis. Since EVs selectively pack and carry specific cargo (i.e., protein, DNA, RNA, and tumor-specific transcripts) from their cell of origin, it is proposed that the cargos in EVs are potential diagnostic biomarkers.

EVs can be secreted by all cell types including HCC cells and can be detected in bodily fluids, especially in the blood. Unlike RNA in the serum, RNA inside the EV can be protected from RNase and other adverse conditions in circulation making EV-RNA more stable than the serum RNA. EV-RNA can also be used as a diagnostic biomarker for tumors. Moreover, EV-RNA can also be quantitated by qRT-PCR, thus making their analysis comparable with conventional proteomic methods.

Currently, there are multiple methods to extract EVs from plasma by using their physical properties including ultracentrifugation, filtration, size exclusion chromatography, and precipitation. Ultracentrifugation (UC) is the commonly used method; however, it is burdensome and is unlikely to be used in clinical practice. The filtration method uses less time compared with the UC, however, some EVs may be lost due to the jamming of EVs on the filter. Size exclusion chromatography has been shown to effectively isolate protein contaminants from EVs; however, it has relatively low throughput. Precipitation with UC is a time-saver and can be used to test multiple concurrent samples simultaneously.

However, some non-EV contaminants will also be obtained. Recently, Sun et al. had developed the novel EV purification system, EV Click chips. This method combined covalent chemistry-mediated EV capture/release, multimarker antibody cocktails, nanostructured substrates, and microfluidic chaotic mixers to selectively extract tumor-derived EV from total circulating EV. This method has been shown to overcome the limitation of prior methods for EV extraction and was proposed to increase the diagnostic power of circulating EV.

In the majority of reports included in this review, a combination of a UC method and other methods were frequently used. However, despite almost all studies used the qRT-PCR technique to measure the EV content (Table 2), one used the TLN biochip combined with TIRF microscopy to detect small fragments of mRNA. This method might be more effective than qRT-PCR which can detect only intact large fragments of mRNA.

Many clinical studies have shown alterations in circulating EV-RNA in HCC patients. Wang et al. and Sohn et al. investigated both EV-miRNA and serum-free miRNA. They proved that miRNA detection in EVs can result in increased sensitivity compared with serum-free miRNA. Seven reports found a significant difference in circulating EV-RNA in HCC patients compared with LC or CHB patients which represent real-life situations. Moreover, multiple EV-mRNA, miRNA, lncRNA, and circRNA have been shown to correlate with tumor burden. In addition, EV surface antigens (Annexin V, EpCAM, and ASGPR1) were also detected in the serum of HCC and CCA patients. Reports on these findings are summarized in Table 2.

4 EV AS A DIAGNOSTIC TEST: EVIDENCE FROM CLINICAL REPORTS

In the past decade, there are several studies which used a combination of multiple circulating EV-RNA or EV-surface antigens to develop diagnostic tests for HCC. There are five reports of high diagnostic performance model scores for diagnosing HCC in liver cirrhosis patients. Combined Z-score of 10 EV-mRNA (ALB, GPC3, AFP, AHSG, APOH, FABP1, FGB, FGG, RBP4, and TF) showed high diagnostic performance for HCC diagnosis from at-risk patients (sensitivity 93.8%, specificity 74.5%, AUC 0.87) and other primary cancer (sensitivity 95.7%, specificity 89.5%, AUC 0.95). High ability for early HCC detection from liver cirrhosis patients was also demonstrated (sensitivity 94.4%, specificity 88.5%, AUC 0.93). One report used a combination of serum EV-miR-21-5p, EV-miR-92a-3p, and AFP which showed a sensitivity of 95% with a specificity of 50%, and an AUC of 0.85. The other report used a combination of serum EV-miR-122, EV-miR-148a, and AFP which resulted in a sensitivity of 86%, specificity of 87.5%, and an AUC of 0.93. A better diagnostic performance using a combination of model scores was demonstrated compared with conventional biomarkers (AFP and GPC3) in HCC patients.

Recently, two reports using the EV-lncRNA method have demonstrated that it could provide higher diagnostic performance than serum AFP. EV-LINC00853 demonstrated the sensitivity of 93.75% with a specificity of 89.77% and AUC of 0.97 for the diagnosis of early HCC in patients at-risk group (liver cirrhosis and hepatitis B). In addition, EV-lnc85 showed a high diagnostic performance for differentiating both AFP-positive (AUC 0.90) and AFP-negative HCC (AUC 0.88) from liver cirrhosis patients.

In cirrhosis patients, in addition to serum EV-RNA, the EV surface antigen has been investigated for its diagnostic potential of HCC and CCA. Although an increase in serum EV surface antigens was found in HCC
| Subjects (N) | EV source | EV extraction method | Molecule detection method | EV biomarker expression | Clinical relevance | Interpretation | Reference |
|-------------|-----------|----------------------|--------------------------|-------------------------|-------------------|----------------|-----------|
| HCC (48) L.C (38) Healthy controls (20) | Plasma (5 ml) | TEIp kit (DC, PEG) | qRT-PCR | HCC ↑ miR−21-5p ↓ miR−92a−3p L.C ↔ miR−21-5p ↔ miR−92a−3p | HCC patients had increased exosomal miR−21-5p and decreased miR−92a−3p in comparison with the cirrhotic patient. | | 56 |
| HCC (50) CHB (40) L.C (40) Healthy controls (64) | Serum | DC, PEG | miRNeasy mini kit +qRT-PCR | HCC, CHB ↑ miR−122, −148a, −1246 L.C ↔ miR−122, −148a, −1246 | HCC and CHB patients had increased exosomal miR−122, 148a, 1246 None of these biomarkers could be used to differentiate HCC from CH | | 57 |
| HCC (86) CCA (38) L.C (54) Healthy controls (202) | Serum (7.5 ml) | DC | FACS | HCC & CCA ↑↑ AnnexinV⁺ EpCAM⁺ MV ↑↑ AnnexinV⁺ EpCAM⁺ ASGPR1⁺ MV | Circulating AnnexinV⁺ EpCAM⁺ and AnnexinV⁺ EpCAM⁺ ASGPR1⁺ MV increased in HCC patients | | 74 |
| HCC (71) Healthy controls (32) | Plasma | N/A | qRT-PCR | ↑ TST1 ↓ TST1 after curative surgery | Presence of TST1 correlated with HCC | | 60 |
| HCC (40) Healthy controls (38) | Plasma (6 ml) | DC, Exoquick | qRT-PCR vs TLN biochip +TIRF microscopy | ↑ AFP mRNA (AFP−174, MB−1096, MB−1171) ↑ GPC3 mRNA (GPC3 MB) | Increased exosomal AFP mRNA and GPC3 mRNA in HCC patients | | 55 |
| HCC (30) Healthy controls (10) | Serum | DC, Exoquick | qRT-PCR | HCC ↑ miR−665 ↑ miR−665 (>5 fold) correlate with higher stage, larger tumor size (>5 cm), and metastasis | HCC patient had significantly increased serum exosomal miR−665 and it can be a prognostic marker | | 35 |

(Continues)
| Subjects (N) | EV source | EV extraction method | Molecule detection method | EV biomarker expression | Clinical relevance | Interpretation | Reference |
|--------------|-----------|----------------------|--------------------------|-------------------------|-------------------|----------------|-----------|
| HCC (30)     | Serum exosome | DC, Isolation agent (Invitrogen) | qRT-PCR | HCC (serum exosome) † miR−21 | ↑↑↑ miR−21 in HCC patient correlate with tumor stage | Exosomes increased sensitivity of miRNA detection in serum | 68 |
| CHB (30)     | Serum exosome | DC, Isolation agent (Invitrogen) | qRT-PCR | HCC (whole serum) † miR−21 | ↑↑↑ miR−21 in HCC patient correlate with tumor stage | Exosomal miR−21 is increased in HCC and CHB patients |
| Healthy controls (30) | Serum exosome | DC, Isolation agent (Invitrogen) | qRT-PCR | CHB (whole serum) † miR−21 | ↑↑↑ miR−21 in HCC patient correlate with tumor stage | Exosomal miR−21 is increased in HCC and CHB patients |

| Subjects (N) | EV source | EV extraction method | Molecule detection method | EV biomarker expression | Clinical relevance | Interpretation | Reference |
|--------------|-----------|----------------------|--------------------------|-------------------------|-------------------|----------------|-----------|
| HCC (59)     | Serum | DC, UF | qRT-PCR | ↑ miR−1246 ↓ miR−718 (tumor > 3 cm) | miR−718 correlate with tumor size (> 3 cm) and number of tumor in HCC patients, exosomal miR−1246 was increased and miR−718 was decreased | 62 |
| HCC (20)     | Serum exosome (0.5 ml) | Exoquick | qRT-PCR | HCC (serum exosome) ↑ miR−18a, −221, −222, −224 ↔ miR−21, −93 ↓ miR−101, −106b, −122, −195 | HCC patients had increased EV-lncRNAs. LINC00853 might be used for HCC diagnosis, especially in AFP-negative HCC. It was also correlated with patients' prognosis | 69 |
| LC (20)      | Serum exosome (0.5 ml) | Exoquick | qRT-PCR | HCC (whole serum) ↔ miR−21, −101, −195, −221, −222, −224 | HCC patients had increased EV-lncRNAs. LINC00853 might be used for HCC diagnosis, especially in AFP-negative HCC. It was also correlated with patients' prognosis | 70 |
| CHB control (20) | Serum exosome (0.5 ml) | Exoquick | qRT-PCR | LC (serum exosome) ↔ miR−18a, −21, −93, −101, −106b, −122, −195, −221, −222, −224 | HCC patients had increased EV-lncRNAs. LINC00853 might be used for HCC diagnosis, especially in AFP-negative HCC. It was also correlated with patients' prognosis | 70 |

(Continues)
| Subjects (N)                  | EV source | EV extraction method | Molecule detection method | EV biomarker expression | Clinical relevance | Interpretation                                                                 | Reference |
|------------------------------|-----------|----------------------|---------------------------|-------------------------|--------------------|--------------------------------------------------------------------------------|-----------|
| HCC (46)                    | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    | EV click chips could selectively purify EV from HCC cells. These 10 EV-mRNA were increased in HCC patients, compared with CHB, LC, liver metastasis, other primary cancer, and normal control | 67        |
| CHB (25)                    | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    |                                                                                   |           |
| LC (26)                     | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    |                                                                                   |           |
| Normal (23)                 | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    |                                                                                   |           |
| Liver metastasis (12)       | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    |                                                                                   |           |
| Other primary cancer (26)   | Plasma    | EV click chips       | RT-ddPCR                  | HCC                     |                    |                                                                                   |           |
| HCC (38)                    | Plasma    | ExoEnrich           | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients | 71        |
| Chronic hepatitis (35)      | Plasma    | ExoEnrich           | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients |           |
| Liver cirrhosis (25)        | Plasma    | ExoEnrich           | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients |           |
| Normal (11)                 | Plasma    | ExoEnrich           | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients |           |
| HCC (71)                    | Plasma    | UC                   | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients | 73        |
| Normal (40)                 | Plasma    | UC                   | qRT-PCR                   | miR21-5p                | miR21-5p showed significantly increased expression in HCC compared with chronic hepatitis and LC patients |           |
| Early stage HCC (50)        | Plasma    | ExoRNeasy           | qRT-PCR                   | LDHC-mRNA               | LDHC-mRNA was associated with survival outcome | EV-LDHC-mRNA expression was increased in early stage HCC and was associated with survival outcome | 72        |
| Normal (100)                | Plasma    | ExoRNeasy           | qRT-PCR                   | LDHC-mRNA               | LDHC-mRNA was associated with survival outcome | EV-LDHC-mRNA expression was increased in early stage HCC and was associated with survival outcome |           |

Abbreviations: AUC, area under the curve; BCLC, Barcelona clinic liver cancer; CCA, cholangiocarcinoma; CHB, chronic hepatitis B; circ, circular RNA; DC, differential centrifugation; FACS, fluorescence-activated cell scanning; HCC, hepatocellular carcinoma; LC, liver cirrhosis; lnc-RNA, long noncoding RNA; MV, microvesicle; PEG, polyethylene glycol precipitation; TEIp, total exosome isolation; TIRF, total internal reflective fluorescence; TLN, tethered lipoplex nanoparticles; TST, tumor-specific transcript; UF, ultrafiltration.
and CCA patients, the results indicated that EV surface antigens could not be used to differentiate HCC from CCA patients. In HCC patients, another report using tumor-specific transcript-1 (TST-1) demonstrated its very high specificity (100%) for HCC detection but low sensitivity (28%). These reports are summarized in Table 3.

5 | EV AS A THERAPEUTIC INTERVENTION FOR HCC: EVIDENCE FROM IN VITRO REPORTS

EVs can be loaded with therapeutic cargo such as miRNA enabling transference into the target tumor cell. EVs may therefore be used as a personalized cancer treatment. There are several in vitro studies using EVs for HCC cell treatment. The sources of EVs vary, examples being hepatic stellate cells, stem cells, HCC cells, hepatocytes, and bovine fat-free milk. The majority of studies used an endogenous loading method to load miRNA or other therapeutic molecules into EVs. The endogenous loading method (preloading) is to modify the target donor cells before EV shedding. After loading therapeutic molecules to the donor cells, the donor and recipient HCC cells are cocultured enabling EV transference into the recipient HCC cell. All studies have shown that their therapeutic cargo can be transferred to target tumor cells and increase cell apoptosis, decrease chemoresistance, reduce cell proliferation, and reduce cell migration.

In another report, sodium iodide symporter (NIS) genes were transfected to donor HCC cells and cocultured with recipient HCC cells. The NIS protein increased the I-131 toxicity in recipient HCC cells, thus allowing the HCC cells to be susceptible to I-131 ablation. Most studies use EVs as a therapeutic cargo. In one study, EVs from tumor cells were used to activate bone marrow stem cells. Then, these activated bone marrow stem cells were cocultured with tumor cells. The results showed that tumor proliferation was significantly decreased. This method is known as the “Exosome-based vaccine”. All these in vitro reports are summarized in Table 4.

6 | EV AS A THERAPEUTIC INTERVENTION FOR HCC: EVIDENCE FROM IN VIVO REPORTS

In this context, most in vivo studies were done in an immunocompromised mouse model such as NOD SCID mice or nude mice in which CCA xenograft tumor was subcutaneously implanted to these mice (Table 5). Therapeutic molecules which had antitumoral effects from in vitro studies were endogenously loaded into EVs. The route for EVs treatment introduction was mainly either intratumoral injections or intravenous injections via tail veins. The therapeutic EVs resulted in decreased tumor sizes, increased tumor cell apoptosis, and increased chemoresistance.

In addition to using EVs as a therapeutic cargo, indirect use regarding the efficacy of EVs for HCC treatment has been reported. In one study, an exosome-based tumor vaccine (dendritic cells stimulated by tumor EVs) was used to treat xenograft HCC in mice. The result showed that intravenous injection of exosome-based tumor vaccine effectively decreased xenograft tumor volume. All these in vivo studies demonstrated the benefit of EVs as a potential tool for HCC treatment including the use of EVs as a therapeutic cargo or a tumor vaccine since EV could transfer therapeutic molecules into the xenograft HCC, leading to decreased tumor proliferation. These reports are summarized in Table 5.

7 | CONCLUSION AND FUTURE PROSPECTIVE

HCC is common cancer with a high mortality rate. Clinical outcomes of HCC patients have been improved in the past decade due to early tumor detection and the availability of multiple treatment modalities. Currently, although HCC surveillance using ultrasound and serum AFP, imaging-based diagnosis (CT, MRI), and the new therapeutic methods such as local ablation and transarterial chemoembolization have been shown to be beneficial in increasing survival time, recent data show that the sensitivity of HCC surveillance is still low (about 60%) and that some HCC patients had impaired liver function contradictory to undergoing TACE. Accumulating evidence shows that HCC cells can use EVs for cell-to-cell communication to promote their growth. Clinical studies have already demonstrated that HCC derived-EV containing RNA cargo can be potential serum biomarkers which may help in the diagnosis of HCC. Some of this EV-RNA is also associated with tumor burden, indicating that it might be used as a prognostic indicator. In addition, reports from in vitro and in vivo studies indicated that EVs could be used to decrease tumor growth and tumor size. A summary of potential roles of EVs is shown in Figure 1.

This increasing evidence suggests the potential translational use of EVs in HCC patients in the near future. In the case of diagnostic roles, circulating EVs might be...
| Subjects (N) | EV source | EV extraction method | Molecule Detection method | Index test | Aim of test | Diagnostic indices | Interpretation | References |
|-------------|-----------|----------------------|--------------------------|------------|------------|-------------------|----------------|-----------|
| HCC (48) | Plasma (5 ml) | TEIp kit (DC, PEG) | qRT-PCR | Model score of miR−21-5p + miR−92a−3p + AFP | Dx HCC from cirrhosis | Sensitivity (%) 95 Specificity (%) 50 AUC 0.85 | Model score of miR−21-5p + miR−92a−3p + AFP had high accuracy for diagnosis of HCC in cirrhosis | 56 |
| LC (38) | | | | | | | |
| Control (20) | | | | | | | |
| HCC (50) | Serum | DC, PEG | miRNeasy mini kit +qRT-PCR | Model score of miR−122 + 148a + AFP | Dx HCC from cirrhosis | Sensitivity (%) 86 Specificity (%) 87.5 AUC 0.93 | This test could be used in LC patients without hepatitis B infection | 57 |
| CHB (40) | | | | | | | |
| LC (40) | | | | | | | |
| Control (64) | | | | | | | |
| HCC (86) | Serum (7.5 ml) | DC | FACS | AnnexinV⁺ EpCAM⁺ ASGPR1⁺ taMP (4.2 fold rising) | Dx liver tumor from cirrhosis | Sensitivity (%) 75 Specificity (%) 47 AUC 0.7 | Index test could not distinguish between HCC and CCA | 74 |
| CCA (38) | | | | | | | |
| LC (54) | | | | | | | |
| Control (202) | | | | | | | |
| HCC (71) | Plasma | N/A | qRT-PCR | TST1 | Dx HCC vs. healthy controls | Sensitivity (%) 28 Specificity (%) 100 AUC – | Presence of TST1 had very high specificity for HCC diagnosis | 60 |
| Control (32) | | | | | | | |
| HCC (40) | Plasma (6 ml) | DC, Exoquick | qRT-PCR vs. TLN biochip +TIRF microscopy | Combined AFP mRNA +GPC3 mRNA | Dx HCC vs. healthy controls | Sensitivity (%) 95 Specificity (%) 100 AUC 0.99 | Combined AFP mRNA +GPC3 mRNA had high accuracy for diagnosis of HCC | 55 |
| Control (38) | | | | | | | |
| HCC (90) | Serum (5 ml) | Exoquick | qRT-PCR | EV-LINCO0853 | Dx early HCC from cirrhosis and chronic hepatitis B | Sensitivity (%) 93.75 Specificity (%) 89.77 AUC 0.97 | Ev-LINCO00853 level had high accuracy for HCC diagnosis in cirrhosis | 70 |
| CHB (28) | | | | | | | |
| LC (35) | | | | | | | |
| Normal (29) | | | | | | | |
| HCC (112) | Plasma | Ribo exosome isolation reagent | qRT-PCR | EV-Inc85 | Dx HCC from cirrhosis and normal | Sensitivity (%) 80.0 Specificity (%) 74.5 AUC 0.87 | EV-Inc85 level had high accuracy for HCC diagnosis in both AFP-negative and AFP-positive HCC | 42 |
| LC (43) | | | | | | | |
| Normal (52) | | | | | | | |

(Continues)
| Subjects (N) | EV source | EV extraction method | Molecule Detection method | Index test | Aim of test | Diagnostic indices |
|-------------|-----------|----------------------|--------------------------|-----------|------------|-------------------|
|             |           |                      |                          |           |            | Sensitivity (%)  |
|             |           |                      |                          | Specificity (%) | AUC       | Interpretation |
|             |           |                      |                          | References |           |                   |
| HCC (46)    | Plasma    | EV-click chips       | RT-ddPCR                 | Combined Z-score of 10 mRNA (ALB, GPC3, APOC3, APOH, AHSG, APOH, FABP1, FGB, FGG, RBP4, TF) | Dx HCC from noncancer (CHB, LC) | 93.8 | 74.5 | 0.87 | Combined Z-score of mRNA had high accuracy for differentiating HCC from noncancer, other primary cancer and liver cirrhosis patients | 67 |
| CHB (25)    |           |                      |                          |           |            |                  |
| LC (26)     |           |                      |                          |           |            |                  |
| Normal (23) |           |                      |                          |           |            |                  |
| Liver metastasis (12) | | | | | | |
| Other primary cancer (26) | | | | | | |
| HCC (38)    | Plasma    | ExoEnrich           | qRT-PCR                  | Model score of 4 mRNA (miR10b-5p, miR223-3p, mir223-3p, mir21-5p) | Dx HCC from LC and hepatitis | 58.0 | 95.0 | 0.80 | Model score of four miRNA showed high specificity for HCC diagnosis, but its sensitivity was limited | 71 |
| CHB or CHC (35) | | | | | | |
| Liver cirrhosis (25) | | | | | | |
| Normal (11) |           |                      |                          |           |            |                  |
| HCC (71)    | Plasma    | UC                   | qRT-PCR                  | Model score of 3 circRNAs (hsa_circ_0004001, 0004123, 0075792) | Dx HCC from normal control | 90.5 | 78.1 | 0.89 | Model score of three circRNAs had high diagnostic accuracy for HCC diagnosis from normal control | 73 |
| Normal (40) |           |                      |                          |           |            |                  |
| Early stage HCC (50) | | | | | | |
| Normal (100) | | | | | | |

Abbreviations: AUC, area under the curve; CCA, cholangiocarcinoma; CHB, chronic hepatitis B; CHC, chronic hepatitis C; DC, differential centrifugation; HCC, hepatocellular carcinoma; LC, liver cirrhosis; MV, Microvesicle; PEG, polyethylene glycol precipitation; TEIp, total exosome isolationTIRF, total internal reflective fluorescence; TLN, tethered lipoplex nanoparticles; TST, tumor-specific transcript.
| Molecule | Donor cell | Recipient cell | EV extraction method | TEV | TEV using method | Major Findings (Tumor cell) | Interpretation | References |
|----------|------------|----------------|----------------------|-----|-----------------|----------------------------|----------------|------------|
| miR335-5p | HSC cell (LX2) | HCC cell (MHCC97H, MHCC97L, HepG2, Huh7) | DC | HSC-EV-miR335-5p (EL) | Coculture | ↓ | ↓ | HSC-EV-miR335-5p (EL) decreased tumor cell proliferation and migration |
| miR125b | ASC cell | HCC cell (HuH7, HepG2) | Exoquick | ASC-EV-miR125b (EL) | Coculture | ↓ | | Human adipose cell might be useful as a source of therapeutic EVs |
| miR451, 223, 24, 125b, and 31 | HLSC | HCC cell (HepG2) | DC | HLSC-MV (contained miR451, 223, 24, 125b, and 31) | Coculture | ↓ | ↑ (TUNEL assay) | HLSC-MV decreased tumor cell proliferation and increased apoptosis |
| BMSC<sup>TEX, IFN-γ (exosome-based tumor vaccine)</sup> | Mouse HCC cell (H22) | Murine BMSC | DC, UF | TEX from H22 cell | Coculture HCC cell with TEX or unactivated BMSC or IFN-γ | ↔ | | Exosome-based vaccine was a potential way to treat HCC |
| miR−122 | AMSC | HCC cell (HepG2, Huh7) | Exoquick | AMSC-EV-miR−122 (EL) | Coculture | ↔ | ↔ (Annexin V, PI) | AMSC-EV-miR−122 (EL) treatment alone had no effect on HCC cell but increased the effect of chemotherapy |

(Continues)
### Table 4 (Continued)

| Molecule | Donor cell | Recipient cell | EV extraction method | TEV | TEV using method | Major Findings (Tumor cell) | Interpretation | References |
|----------|------------|----------------|----------------------|-----|-----------------|-------------------------------|----------------|------------|
| NIS protein | HCC cell (HuH7) | HCC cell (HuH7) | DC | HCC-EV - NIS gene (EL) | Coculture and give I−131 | NIS protein transferred by EV increased cytotoxicity and DNA damage of I−131 to HCC cell | 83 |
| miR150-3p | Normal fibroblast (NF) | HCC cell (HuH7, Hep3B) | Total exosome isolation reagent | NF-EV- miR150-3p (EL) | Coculture | ↓ | NF-EV- miR150-3p (EL) decreased tumor cell migration | 90 |

**Abbreviations:** ANGPT, angiopoietin; AMSC, adipose mesenchymal stem cell; ASC, human adipose stem cell; BMSC, bone marrow stem cell; CAF, cancer-associated fibroblast; DC, differential centrifugation; EL, endogenous loaded; HCC, hepatocellular carcinoma; HLSC, human liver stem cell; HSC, hepatocyte stellate cell; HUVEC, human umbilical vein endothelial cell; I−131, iodine isotope 131; IFN, interferon; Linc, long intergenic noncoding RNA; NIS, sodium iodide symporter; TDEV, tumor-derived EV; TEV, therapeutic EV; TEX, tumor-derived exosome; UF, ultrafiltration.
### TABLE 5 EV as a therapeutic intervention for HCC: Evidence from In Vivo Reports

| Model (N) | Xenograft cell line | Donor cell | Molecule | TEV | Route/Dose/Duration | Tumor volume | Apoptosis | Chemoresistance | Interpretation | References |
|-----------|---------------------|------------|----------|-----|---------------------|-------------|----------|-----------------|----------------|------------|
| Female NOD SCID gamma mice | HCC cell (MHCC97H) | HSC cell (LX2) | miR335-5p | LX2-EV-miR−335 | IT/50 μg exosome two times/week/4 weeks | ↓ | ↑ (Caspase 3) | | IT LX2-EV-miR−335 decreased tumor volume and increased apoptosis of xenograft HCC | 80 |
| Male nude mice | HCC cell (Huh7) | Hepatocyte (HL7702) | Circ−0051443 | HL7702-EV-circ−0051443 | IT/10 μg exosome OD/15 days | ↓ | ↑ (BAK1 expression) | | IT HL7702-EV-circ−0051443 decreased tumor volume and increased apoptosis of xenograft HCC | 32 |
| Friend virus B mice (21) | Induce HCC by coactivation of cMET and β-catenin mutation | Bovine fat-free milk | β-catenin siRNA | MNV-loaded siRNA β-catenin | IV/TEV 2 x 10^{12} particles/body every 3 days/5 doses | ↓ | ↓ | | Fat-free milk can be used as a source of EV MNV loaded siRNA β-catenin decreased tumor size and chemoresistance (anti-PD−1) | 84 |
| Athymic nude mice | HCC cell (LCSC, Hep3B) | Bovine fat-free milk | β-catenin siRNA | ET-MNV-loaded siRNA β-catenin | IV/MNV 5 x 10^{10} particles/body every 2 days/5 doses | ↓ | | | ET-tMNV targeted EpCAM-expression cells and decreased xenograft HCC growth | 85 |
| Male C57L/J mice (40) | Mouse HCC cell (Hepa 1–6) | Mouse macrophage cell line (raw 264.7) | miR−142-3p | TAM-EV-miR−142-3p (stimulated by propofol) | IP/propofol 20 or 50 mg/kg every day/3 weeks | ↓ | | Propofol decreased HCC growth by activating TAM to produce EV-miR−142-3p | | 86 |
| C57BL/6 wild-type mice (10), BALB/C nude mice (20) | Mouse HCC cell (Hepa 1–6) | Mouse HCC cell (Hepa 1–6) | DCCTEX (exosome-based tumor vaccine) | Use TEX to activated DCC (DCCTEX) | IV/DCCTEX 2 x 10^{6} one dose every 2 weeks/three doses | ↓ | | Tumor exosome activated DCC. The activated DCCTEX decreased tumor volume | | 87 |

(Continues)
**Table 5 (Continued)**

| Model (N) | Xenograft cell line | Donor cell | Molecule | TEV | Route/Dose/Duration | Major findings | Tumor volume | Apoptosis | Chemoresistance | Interpretation | References |
|-----------|---------------------|------------|----------|-----|----------------------|----------------|--------------|----------|----------------|----------------|------------|
| Nude mice (10) | HCC cell (HepG2) | AMSC | miR−122 | AMSC-EV-miR−122 | Single-dose IT/AMSC-EV-miR−122 50 μg with IP sorafenib (5 mg/kg) five doses/week/5 weeks | ↓ | ↑ (Caspase 3, Bax) | ↓ | ↑ (Caspase 3, Bax) | AMSC-EV-miR−122 alone had no effect on xenograft HCC, but it decreased chemoresistance | 79 |
| Male SCID mice | HCC cell (HepG2) | HLSC | miR451, 223, 24, 125b, and 31 | HLSC-MV | IT/HLSC-MV 100 μg/20 μl weekly/3 weeks | ↓ | ↑ (TUNEL assay) | ↓ | ↑ (TUNEL assay) | HLSC-MV decreased HCC growth and increased apoptosis | 78 |

**Abbreviations:** AMSC, adipose mesenchymal stem cell; CAF, cancer-associated fibroblast; circ, circular RNA; cMET, c-tyrosine-protein kinase MET; DC, differential centrifugation; DCC, dendritic cell; EpCAM, epithelium cell adhesion molecule; ET, EpCAM targeted; HCC, hepatocellular carcinoma; HLSC, human liver stem cell; HSC, hepatocyte stellate cell; IP, intraperitoneal injection; IT, intratumoral injection; IV, intravenous injection; LCSC, liver cancer stem cell; MNV, milk-derived nanovesicle; SC, subcutaneous injection; TAM, tumor-associated macrophage; TDEV, tumor-derived EV; TEV, therapeutic EV; TEX, tumor-derived exosome; tMNV, therapeutic milk-derived nanovesicle; UC, ultra centrifugation.
used as a serum biomarker for HCC or as an added value for the diagnosis of liver mass with uncertain imaging. Correlating the EVs with tumor staging, tumor size, and metastasis may help to determine tumor burden and prognosis. However, as regards the therapeutic role, there are no clinical reports available at this time. Further studies are needed to discover the best way to use EV for HCC patient care. Investigations aiming to deliver therapeutic EVs via endovascular methods such as using transarterial chemoembolization (TACE) will also provide important information and warrants further clinical investigation.

**ETHICS STATEMENT**
Not applicable.

**ACKNOWLEDGMENTS**
This work was supported by an NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC), the Senior Research Scholar grant from the National Research Council of Thailand (SCC), and the Chiang Mai University Center of Excellence Award (NC).

**CONFLICT OF INTEREST**
All authors declare that they have no conflict of interest to disclose.

**DATA AVAILABILITY STATEMENT**
All information is provided in the manuscript.

**ORCID**
Nipon Chattipakorn https://orcid.org/0000-0003-3026-718X

**REFERENCES**
1. Fitzmaurice C, Allen C, Barber RM, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years
lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. *JAMA Oncol.* 2017;3(4):524-548.

2. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

3. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. *J Clin Gastroenterol.* 2013;47(Supplement 1):S2-S6.

4. Lancer. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. 2016;388(10053):1459-1544.

5. Marrero JA. Current treatment approaches in HCC. *Clin Adv Hematol Oncol.* 2013;11(Suppl 5):15-18.

6. Blum HE. Hepatocellular carcinoma: therapy and prevention. *World J Gastroenterol.* 2005;11(47):7391-7400.

7. Wang J, He XD, Yao N, Liang WJ, Zhang YC. A meta-analysis of exosomes and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. *Gastroenterology.* 2018;154(6):1706-18.e1.

8. Liver EAFTSOT. EASL clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol.* 2018;69(1):182-236.

9. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Can J Gastroenterol.* 2013;27(6):351-363.

10. Chan ACY, Poon RTP, Ng KKC, Lo CM, Fan ST, Wong J. Changing paradigm in the management of hepatocellular carcinoma improves the survival benefit of early detection by screening. *Ann Surg.* 2008;247(4):666-673.

11. Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. *Gastroenterology.* 2018;154(6):1706-18.e1.

12. Liver EAFTSOT. EASL clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol.* 2018;69(1):182-236.

13. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology.* 2018;67(1):358-380.

14. Blum HE. Hepatocellular carcinoma: therapy and prevention. *World J Gastroenterol.* 2005;11(47):7391-7400.

15. Marrero JA. Current treatment approaches in HCC. *Clin Adv Hematol Oncol.* 2013;11(Suppl 5):15-18.

16. Blum HE. Hepatocellular carcinoma: therapy and prevention. *World J Gastroenterol.* 2005;11(47):7391-7400.

17. Wang J, He XD, Yao N, Liang WJ, Zhang YC. A meta-analysis of exosomes and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. *Gastroenterology.* 2018;154(6):1706-18.e1.

18. Liver EAFTSOT. EASL clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol.* 2018;69(1):182-236.

19. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Can J Gastroenterol.* 2013;27(6):351-363.

20. Chan ACY, Poon RTP, Ng KKC, Lo CM, Fan ST, Wong J. Changing paradigm in the management of hepatocellular carcinoma improves the survival benefit of early detection by screening. *Ann Surg.* 2008;247(4):666-673.

21. Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. *Gastroenterology.* 2018;154(6):1706-18.e1.

22. Liver EAFTSOT. EASL clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol.* 2018;69(1):182-236.

23. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology.* 2018;67(1):358-380.

24. Blum HE. Hepatocellular carcinoma: therapy and prevention. *World J Gastroenterol.* 2005;11(47):7391-7400.
40. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. *GPR*. 2016;14(1):42-54.

41. Wang G, Liu W, Zou Y, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. *EBioMedicine*. 2019;40:432-445.

42. Huang X, Sun L, Wen S, et al. RNA sequencing of plasma exosomes revealed novel functional long non-coding RNAs in hepatocellular carcinoma. *Cancer Sci*. 2020;111(9):3338-3349.

43. Liu AM, Yao TJ, Wang W, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. *BMJ Open*. 2012;2(2):e000825.

44. Qu KZ, Zhang K, Li H, Aladhil NH, Albizar M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. *J Clin Gastroenterol*. 2011;45(4):355-360.

45. Motawi TK, Shaker OG, El-Maraghy SA, Senousy MA. Serum MicroRNAs as potential biomarkers for early diagnosis of hepatitis C virus-related hepatocellular carcinoma in Egyptian patients. *PLoS One*. 2015;10(9):e0137706.

46. Tomimaru Y, Eguchi H, Nagano H, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. *J Hepatol*. 2012;56(1):167-175.

47. Xu J, Wu C, Che X, et al. Circulating microRNAs, miR-21 and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. *BMJ Open*. 2012;2(2):e000825.

48. Li J, Wang Y, Yu W, Chen J, Luo J. Expression of serum miR-221 in patients with hepatocellular carcinoma or chronic hepatitis. *Mol Carcino*. 2011;50(2):136-142.

49. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. *Gastroenterology*. 2007;133(2):647-658.

50. Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. *J Clin Oncol*. 2011;29(36):4781-4788.

51. Zhu HT, Liu RB, Liang YY, et al. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. *Liver Int*. 2017;37(6):888-896.

52. Zhang Y, Li T, Qiu Y, et al. Serum microRNA panel for early diagnosis of the onset of hepatocellular carcinoma. *Medicine (Baltimore)*. 2017;96(2):e5642.

53. Couluoarn C, Factor VM, Andersen JB, Durkin ME, Thorgerinson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. *Oncogene*. 2009;28(40):3526-3536.

54. Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. *PLoS One*. 2011;6(12):e28486.

55. Wang X, Kwak KJ, Yang Z, et al. Extracellular mRNA detected by molecular beacons in tethered lipoplex nanoparticles for diagnosis of human hepatocellular carcinoma. *PLoS One*. 2018;13(6):e0198552.

56. Sorop A, Iacob R, Iacob S, et al. Plasma small extracellular vesicles derived miR-21-5p and miR-92a-3p as potential biomarkers for hepatocellular carcinoma screening. *Front Genet*. 2020;11:712.

57. Wang Y, Zhang C, Zhang P, et al. Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma. *Cancer Med*. 2018;7(5):1670-1679.
77. Villa F, Quarto R, Tasso R. Extracellular vesicles as natural, safe and efficient drug delivery systems. *Pharmaceutics*. 2019;11(11):557.
78. Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. *Stem Cells*. 2012;30(9):1985-1998.
79. Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. *J Hematol Oncol*. 2015;8:122.
80. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. *Hepatology*. 2018;67(3):940-954.
81. Baldari S, Di Rocco G, Magenta A, Picozza M, Toietta G. Extracellular vesicles-encapsulated MicroRNA-125b produced in genetically modified mesenchymal cells inhibits hepatocellular carcinoma cell proliferation. *Cells*. 2019;8(12).
82. Ma B, Jiang H, Jia J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. *Clin Transl Oncol*. 2012;14(10):764-773.
83. Son SH, Gangadaran P, Ahn B-C. A novel strategy of transferring NIS protein to cells using extracellular vesicles leads to increase in iodine uptake and cytotoxicity. *Int J Nanomedicine*. 2019;14:1779-1787.
84. Matsuda A, Ishiguro K, Yan IK, Patel T. Extracellular vesicle-based therapeutic targeting of β-catenin to modulate anticancer immune responses in hepatocellular cancer. *Hepatol Commun*. 2019;3(4):525-541.
85. Ishiguro K, Yan IK, Lewis-Tuffin L, Patel T. Targeting liver cancer stem cells using engineered biological nanoparticles for the treatment of hepatocellular cancer. *Hepatol Commun*. 2020;4(2):298-313.
86. Zhang J, Shan WF, Jin TT, et al. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. *J Transl Med*. 2014;12(1):279.
87. Rao Q, Zuo B, Lu Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. *Hepatology*. 2016;64(2):456-472.
88. Basu S, Bhattacharyya SN. Insulin-like growth factor-1 prevents miR-122 production in neighboring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. *Nucleic Acids Res*. 2014;42(11):7170-7185.
89. Yang B, Feng X, Liu H, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. *Oncogene*. 2020;39(42):6529-6543.
90. Yugawa K, Yoshizumi T, Mano Y, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p. *Eur J Surg Oncol*. 2021;47(2):384-393.

**How to cite this article:** Nimitrungtawe N, Inmutto N, Chattipakorn SC, Chattipakorn N. Extracellular vesicles as a new hope for diagnosis and therapeutic intervention for hepatocellular carcinoma. *Cancer Med*. 2021;10:8253–8271. doi:10.1002/cam4.4370