Watson, S. M., Westaway, R. and Burnside, N. M. (2019) Digging deeper: the influence of historic mining on Glasgow’s subsurface thermal state to inform geothermal research. *Scottish Journal of Geology*, (doi:10.1144/sjg2019-012)

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/197636/

Deposited on: 02 October 2019
Digging Deeper: The influence of historic mining on Glasgow's subsurface thermal state to inform geothermal research

Sean M. Watson, Rob Westaway & Neil M. Burnside

DOI: https://doi.org/10.1144/sjg2019-012

This article is part of the 'Early Career Research' available at https://www.lyellcollection.org/cc/SJG-early-career-research

Received 15 March 2019
Revised 26 August 2019
Accepted 26 September 2019

© 2019 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London for EGS and GSG. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

Supplementary material at https://doi.org/10.6084/m9.figshare.c.4681100

To cite this article, please follow the guidance at http://www.geolsoc.org.uk/onlinefirst#cit_journal

Manuscript version: Accepted Manuscript
This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required.
Digging Deeper: The influence of historic mining on Glasgow's subsurface thermal state to inform geothermal research

Sean M. Watson¹, Rob Westaway¹ & Neil M. Burnside¹

¹School of Engineering, University of Glasgow, James Watt (South) Building, Glasgow G12 8QQ

*Corresponding author (email: s.watson.3@research.gla.ac.uk)

Abstract: Studies of the former northeast England coalfield in Tyneside demonstrated heat flow perturbations in boreholes to be due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historic mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m⁻² and after correction for palaeoclimate is estimated as ~80 mW m⁻². An example of reduced heat flow above mine workings is observed at Hallside (~10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is ~14 mW m⁻². Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is ~44 mW m⁻². The differences between these values and the expected regional heat flow suggests a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historic mining on heat flow when temperature datasets such as these are used in the design of geothermal developments.
Supplementary material: Background information on the chronology of historic mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow is available at:
https://doi.org/10.6084/m9.figshare.c.4681100

The catalyst for geothermal exploration worldwide is the need to produce low carbon renewable energy (e.g. Younger 2015). Following the global oil crisis in the 1970’s and in an attempt to guarantee the future supply of energy, geothermal resources in Britain were assessed as a potential alternative for the production of heat and generation of electricity. The hot sedimentary aquifers (HSAs) of the Lower Carboniferous and Upper Devonian sandstones of the Midland Valley of Scotland (MVS) were identified as a potential target resource (Browne et al. 1985, 1987; Downing & Gray 1986; Brereton et al. 1988). Despite concluding that a likely exploitable temperature in excess of 60 °C could be accessed at a depth of 2.5 km (Browne et al. 1987), the drilling risks and associated expenditure meant that the resource has hitherto remained unexploited.

Renewed interest in the geothermal potential of the MVS has recently emerged and can be attributed to two developments: (1) a focus on renewable heat, instead of electricity, generation and resulting re-assessment of the lower temperature resource; and (2) a rigorous re-assessment of UK heat flow data to account for the effects of palaeoclimate and topography. Efforts to address the latter have suggested that the UK’s potential geothermal resource has been underestimated and that higher temperatures may be found at shallower depths than previously
thought (Westaway & Younger 2013; Busby et al. 2015; Westaway & Younger 2016). Both developments are of particular relevance to Scotland, which is the focus of the current study.

In Scotland, heat accounts for 51% of energy demand (Scottish Government 2018). The Scottish Government has set a target of producing 11% of heat supply from renewables by 2020. In 2017, only 5.9% of heat demand in Scotland was met from renewable resources (Scottish Government, 2019). Furthermore, in 2016, 24.9% of households in Scotland were considered to be fuel poor and 7.5% were living in extreme fuel poverty (Scottish House Conditions Survey 2018). The simultaneous pursuit of energy decarbonization and fuel poverty alleviation poses a considerable challenge, given that pursuing a low carbon energy strategy is more expensive than retaining the status quo where most domestic heating in the UK is achieved through the burning of natural gas (BEIS, 2019). Geothermal energy represents a significant supply, as yet unused, of large-scale renewable heat. As discussed by Gluyas et al. (2018), as part of an integrated low carbon energy supply network, geothermal energy could provide a significant contribution to realizing a holistic solution for this important dilemma.

The MVS is host to two potentially significant geothermal resources: insulated groundwater in flooded abandoned mine workings; and HSAs within the Kinnesswood Formation, Knox Pulpit Formation, and laterally equivalent sandstones (Browne et al. 1985; 1987; Gillespie et al. 2013). The areas of the MVS where the resource is present encompass the largest cities in Scotland, Glasgow and Edinburgh. The urban development in the MVS has been a legacy of its economic
development, mainly fuelled from local coalfields, exploiting the same sedimentary sequence that contains the geothermal resource. This presents the opportunity of providing geothermal heating to areas of dense urban population and high heat demand.

Within the past decade, significant research has been conducted on the potential geothermal resource in Scotland (Gillespie et al. 2013; Scottish Government 2015; Monaghan et al. 2017; 2018). Despite the long tradition of coal exploration, and minor oil and gas exploration in the MVS, there is a scarcity of deep onshore boreholes. The hydraulic properties of both the flooded abandoned mine workings and the deeper HSAs remain poorly understood (Ó Dochartaigh et al. 2018), and uncertainty still exists regarding the likely temperature that will be accessible.

However, recent work has demonstrated that understanding the flow of heat in the subsurface provides insight to the quantification of the potential geothermal resource in flooded abandoned mine workings and deeper HSAs. Westaway & Younger (2016) assessed various factors which contribute to the behaviour of subsurface thermal energy flows. One such factor, prevalent in Tyneside, is likewise possible beneath the Glasgow area and that is the entrainment and lateral dispersion of heat through abandoned mine workings. There is also the possibility that upward or downward groundwater flow influences subsurface heat flow. Either of these mechanisms may mean that subsurface temperature measurements may not be representative of the conductive heat flow in the locality.
When assessing the geothermal potential of the MVS, an effort was made to conduct temperature and heat flow measurements in boreholes that were sited in locations free from mine workings (Monro 1983). However, this is not so for all the borehole datasets. For example, in the 19th century, Sir William Thomson (Lord Kelvin), measured temperature in boreholes sunk precisely in order to prospect for coal and ironstone (Thomson 1868; Thomson et al. 1868, 1869). While these boreholes were not developed into mine shafts, the locality in which they were drilled may have been extensively mined at the time.

An examination of the ‘true’ geothermal resource beneath the city of Glasgow is therefore reliant on an understanding of heat transport mechanisms in the subsurface. As a first step, this work investigates the presence and influence of mine workings on borehole temperature measurements in Glasgow.

Westaway & Younger (2016) also assessed the effect of downward propagation of heat from the surface due to global warming, Urban Heat Island (UHI) development and industrial processes. These factors, prevalent in Tyneside, due to the area’s industrial heritage, are likewise potentially influential beneath Glasgow. If present, this warming effect would increase the temperature in the subsurface beneath the particular locality. Where relevant, this factor has been noted within this study, although quantitative analysis is outside the scope of this work.

A chronology of mining activity in the vicinity of each of the boreholes was established using material from the Glasgow Archives in the Mitchell Library of the City of Glasgow, the Renfrewshire Archives and the National Records of Scotland.
The material examined included: mine entry data obtained from the Coal Authority’s Online Interactive Map; borehole records held by the British Geological Survey (BGS); geological and mining memoirs; and historical maps.

By unravelling the effect of mine workings on the subsurface thermal state, an appraisal of existing geothermal measurements across the city of Glasgow can be made. This enables: (1) a quantification of the potential geothermal resource in the abandoned, flooded mine workings; (2) an assessment of the accuracy of existing subsurface temperature measurements, for example as a precursor to applying corrections to heat flow measurements to account for palaeoclimate and topography (Westaway and Younger, 2013); and (3) a more accurate extrapolation of subsurface temperature measurements to greater depths enabling a quantification of the potential geothermal resource in the underlying HSAs.

This paper is organized as follows. A summary of the bedrock geology of the Glasgow area is presented. Boreholes included in the study area, with available temperature and heat flow data, which may be sensitive to the presence of mine workings, are then detailed. An overview of the extent of mineral extraction in the Lanarkshire and Renfrewshire Coalfields, prior to the temperature measurements being made in each borehole, is then presented. A first order quantification of the geothermal resource in the mine workings at candidate borehole locations is then conducted.
Geological setting

Underlying central Scotland is the MVS, a WSW–ENE-oriented graben of Devonian-Carboniferous age. The basin is bounded to the north by the Highland Boundary fault and in the south by the Southern Upland fault. It contains an internally complex arrangement of several sedimentary basins and small Lower Palaeozoic inliers; which occur in the Lesmahagow area, the Pentland Hills and south Ayrshire (Cameron & Stephenson 1985; Trewin et al. 2002). The primary focus of this study is Glasgow and the western MVS (Fig. 1). The greater part of this area is occupied by a wide, gently undulating plain where the city of Glasgow and surrounding conurbation, with large population density and urban development, are located. To the north, the topography rises in the Campsie Fells, Kilpatrick Hills and Gargunnock Hills (Fig. 1). To the south, the Beith-Barrhead Hills and Cathkin Braes form analogous high topography, these uplands being in the footwalls of major normal faults of Carboniferous age (Fig. 1).

The lower ground between these major faults is largely underlain by sedimentary and igneous rocks of Carboniferous age, dissected by a complex network of lesser faults (Fig. 1) (Forsyth et al. 1996; Hall et al. 1998). Detailed in Table 1, this bedrock geology is dominated by cyclic successions of sedimentary rocks, namely the Clackmannan and Scottish Coal Measures groups. These strata consist of sandstones and mudstones, with limestones, coals, ironstones and seatrocks, which were laid down in fluvial and fluviodeltaic environments that were established after the submergence of the underlying Clyde Plateau Volcanic Formation (CPV) basalts produced during large scale Lower Carboniferous volcanism (Forsyth et al. 1996; Hall et al. 1998). Most of the elevated terrain north and the south of the city is formed
by these erosion resistant basaltic lava flows, which occur in largely fault bounded
blocks within the sedimentary sequence.

Stratigraphically below the lavas, the oldest lithologies in the study area range in age
from Devonian to Lower Carboniferous and crop out to the north west of the
Kilpatrick Hills and Campsie Fells (Fig. 1). They consist of the Stockiemuir
Sandstone of the Stratheden Group, a lateral equivalent of the Knox Pulpit
Formation in Fife, and the Kinnesswood, Ballagan and Clyde Sandstone Formations
of the Inverclyde Group (Forsyth et al. 1996; Hall et al. 1998). Intrusive igneous
rocks of latest Carboniferous and/or Early Permian age also crop out, mostly as
doleritic sills and dykes (Hall et al. 1998; Browne et al. 1999).

Boreholes and geothermal measurements

An understanding of the regional heat flow pattern is fundamental to any assessment
of geothermal resource potential. Shallow temperature data alone are of little value
for the prediction of temperatures at greater depth because the temperature gradient
at any site is a function of the local heat flow and thermal conductivity (Equation 1),
both of which can vary with depth. The investigation of the geothermal potential of
the MVS by Browne et al. (1985, 1987) discussed heat flow, thermal conductivity and
temperature gradient measurements taken from a variety of boreholes.

For the calculation of one-dimensional vertical heat flow, Fourier’s Law takes the
form:
\[q = -k \frac{dT}{dz} \]

where \(q \) is heat flow, \(T \) is temperature, \(k \) is thermal conductivity and \(z \) is depth.

For horizontally layered stratigraphy, perpendicular to heat flow, a representative thermal conductivity can be determined as the harmonic mean, accounting for the percentage of each lithology present, after, for example, Bott et al. (1972) and Westaway & Younger (2016).

The average temperature gradient for boreholes in the MVS is reported as 22.5 °C km\(^{-1}\) (Browne et al. 1987). An anomalous region of higher heat flow has been reported in the west of the Midland Valley, including the Greater Glasgow area (Browne et al. 1987; Busby et al. 2011). This could be due to east-west crustal thinning, a higher radioactive granitic crustal composition, upward flow of groundwater in the area south of Glasgow, residual heat production from former Tertiary igneous activity, or a combination of two or more of these factors (Browne et al. 1987; Robins 1990).

Eight borehole datasets are assessed in this study (Fig. 2; Fig. 3; Table 2). The estimated raw heat flow for Glasgow, based on four of these boreholes, is 60 mW m\(^{-2}\) (Browne et al. 1987; Busby et al. 2011). This section summarizes the available data in each of the boreholes included in this study, details the purpose for which they were drilled, and clarifies outstanding data inaccuracies. Borehole summaries are presented in chronological order of drilling.
As was discussed by Thomson (1868) and Thomson et al. (1868, 1869), prospecting boreholes for mineral extraction, which had not been developed into a mine shaft, were ideally suited for subsurface temperature measurements. This, in addition to temperature measurements made in boreholes drilled for a variety of purposes, has led to a diverse dataset of temperature measurements for the Glasgow area (Fig. 3; Table 2). This includes measurements made in mineral prospecting boreholes, a National Coal Board (NCB) borehole, British Geological Survey (BGS) boreholes for geothermal and geological mapping research, a commercial borehole for hydrocarbon prospecting, and, most recently, a UK Geoenergy Observatories (UKGEOS) geothermal research borehole from the Glasgow Geothermal Energy Research Field Site (GGERFS).

The Blythswood - 1 borehole was drilled in 1863 for prospecting for coal and ironstone on the estate of Archibald Campbell, first Baron of Blythswood (Fig. 5; Fig. 6). Temperature measurements were made by Lord Kelvin between December 1867 and January 1868 (Thomson et al. 1868, 1869). This dataset and that for South Balgray were later assessed by workers determining terrestrial heat flow (Benfield 1939; Anderson 1940).

The South Balgray borehole was drilled in 1864, temperature measurements being conducted by Lord Kelvin in 1869 (Thomson et al. 1869). This borehole was drilled to prospect for coal and ironstone in the Balgray-Gartnavel area (Fig. 7; Fig. 8). Previously published reports (Burley et al. 1984; Monaghan et al. 2017; Busby 2019) have stated the location of the South Balgray borehole as NS 50 75 (Fig. 1), placing it within the Kilpatrick Hills. According to historical maps (Ordnance Survey, 1864),
South Balgray farm existed in the present-day location of Hyndland, western
Glasgow. The No. 3 Gartnavel borehole is located at the site of South Balgray farm
at NS 55780 67810 (BGS Reference NS56NE369). The depth and stratigraphy of
the No. 3 Gartnavel borehole is consistent with that reported by Thomson et al.
(1868, 1869) for the South Balgray borehole. It can be reasonably assumed that the
No. 3 Gartnavel borehole is that referred to as South Balgray by Thomson et al.
(1868, 1869) and all subsequent publications.

The Queenslie - 4 borehole was drilled in 1952-1953 as one of a series of NCB
boreholes in the northeast of the city (Fig. 9). Three of the boreholes were cored
throughout (Nos. 1, 2, and 6) and have since provided valuable sections through the
Lower Coal Measures (Forsyth 1979). The Queenslie - 4 borehole is “open” hole to a
depth of 441 m meaning that this section of the borehole was not cored.

The Hallside borehole was drilled in 1976 for to investigate the Carboniferous
stratigraphy in this locality during a resurvey of the North Lowlands District (IGS
1978; Forsyth & Brand 1986). The borehole was logged, and temperature was
measured 60 hours post-circulation of drilling mud in the borehole (Burley et al.
1984). The measured temperature data from the log were digitised in this present
study (Fig. 3).

The Hurlet House borehole (hereafter Hurlet borehole), located on the lands of the
former West Hurlet House in southwest Glasgow (Fig. 4), was drilled as part of
research on the Lower Carboniferous of the MVS (IGS 1980). In 1979, the Oxford
University Heat Flow Group conducted measurements of thermal conductivity,
temperature gradient and heat flow (Oxburgh 1982; Burley et al. 1984). These data, unpublished at the time, were kindly provided for this study by Jon Busby of BGS; and have since been published (Busby 2019). The upper 250 m of the Hurlet borehole consists of thin beds of sandstone, siltstone, mudstone, seatearth and coal. Oxburgh (1982) made measurements of temperature gradient and thermal conductivity over 5 m intervals. Thermal conductivity was measured using the divided bar method however a number of samples obtained between 0-95 m depth disintegrated limiting those available for analysis. The rapid variation of lithology meant that the value of thermal conductivity measured for any one interval was not necessarily representative of rocks within that interval. Oxburgh (1982) therefore only reported values of temperature gradient and thermal conductivity from intervals in the depth range of 95-295 m, as these consisted of rocks for which thermal conductivities were known (Table 3). Based upon these values of thermal conductivity and temperature gradient, using Equation (1), Oxburgh (1982) calculated the heat flow at each interval and the average heat flow across 95-295 m as 60 m W/m$^{-2}$. Temperature measurements were not included in the Oxburgh (1982) dataset; however, have been calculated for the present study (Fig. 3) using the following procedure. The annual mean surface air temperature for the Hurlet borehole is calculated as 9.15 °C from the monthly maximum and minimum temperature observations from 1979 at the Paisley weather station (Met Office 2019). We calculated a harmonic mean thermal conductivity of 2.86 W m$^{-1}$ °C$^{-1}$ by applying values of thermal conductivity (Table 3) to each lithology present in the borehole log across the 95-295 m depth range. With a harmonic mean thermal conductivity of 2.86 W m$^{-1}$ °C$^{-1}$ and heat flow of 60 m W/m$^{-2}$, Equation (1) gives a temperature gradient of ~21 °C km$^{-1}$. Using this temperature gradient and the 9.15
°C surface temperature, a temperature of 11.15 °C is estimated at a depth of 95 m. Finally, using this starting value, temperature values were reconstructed across 95-295 m depth based upon the values of temperature gradient for each 5 m interval from Oxburgh (1982).

The Maryhill borehole was drilled by BGS in 1983 as a first step towards assessing the geothermal resource base within Glasgow (Wheildon et al. 1985). This borehole was sited to give a 300 m sequence of rock, free of old mine workings, with a minimum thickness of porous sandstones, the objective being to obtain accurate measurements of the temperature gradient, undisturbed by moving groundwater (Monro 1983). Temperature was measured at 99 depths between 100 and 303 m depth (Fig. 3), together with 82 thermal conductivity measurements on core (Browne et al. 1987). Burley et al. (1984) and subsequent publications (e.g. Monaghan et al. 2017) recorded the ground surface elevation of the site of this borehole as 55 m above sea level. From a site visit to the location it has been ascertained that the ground surface is 40 m above sea level. The borehole is located on a former railway siding, connecting a branch of the Lanarkshire and Dunbartonshire railway from Maryhill Central station to the former Maryhill Ironworks (Ordnance Survey, 1914a). Construction of the railway siding and adjacent, deeper, railway cutting (now infilled) altered the terrain at the site.

The Bargeddie - 1 borehole was drilled in 1989 to test for hydrocarbons in the Houston Sandstone in the Upper Oil Shale Group, a lateral equivalent of the Lawmuir Formation (Fig. 2; Table 1).
The GGC01 borehole was drilled between the 19 November and 12 December 2018 as one of twelve boreholes at the UKGEOS GGERFS in the Clyde Gateway Redevelopment area in Dalmarnock, in the east end of Glasgow. The borehole was wireline logged in December 2018, providing temperature measurements to a depth of 196.8 m (Starcher et al. 2019). This temperature record has been digitised for the present study (Fig. 3).

Legacy of mineral extraction

Scottish coal production, almost entirely in the Central Belt of Scotland, peaked in 1913 at ~44 million tonnes per year (Younger 2001). When the coal industry was nationalised in 1947, there were 225 collieries in Scotland; now there are none. The last pits to close were Monktonhall (1998) near Edinburgh and Longannet (2002) in Fife (Northern Mine Research Society 2018). The Limestone Coal Formation was the principal source of coal in Glasgow, but coal seams in other formations have also been extensively mined, particularly the Middle and Lower Coal Measures and the Upper Limestone Formation (Table 1) (Hall et al. 1998). Extensive mining and quarrying of ironstone, alum, shale and building stone also took place. Two historical mining basins encompass the borehole locations in this study: the Lanarkshire and Renfrewshire basins (Fig. 1); these collectively form the Scottish Central Coalfield. Mine shafts and collieries near each borehole location are detailed in Tables 4 and 5.

In the early 20th century, the Lanarkshire Basin was the most important mining area in Scotland and one of the most significant in the UK, with a full thickness of the Coal Measures containing valuable seams of coal and Blackband Ironstone (Scottish Mining 2018). Situated south and east of Glasgow, and including much of the city
itself, the Lanarkshire Basin (Fig. 1) was host to major technological advances in coal mining. The huge market for coal and ironstone in the Glasgow conurbation, in particular from the iron and steel industry, was pivotal in the development of the mining industry (Oglethorpe 2006). The South Balgray, Queenslie - 4, Hallside, Maryhill and Bargeddie - 1 boreholes lie within this region (Fig. 1).

The Blythswood - 1 and Hurlet boreholes lie south west of Glasgow in Renfrewshire (Fig. 1). Skillen (1990) provides a thorough overview of mineral exploration and the industrial development of Renfrewshire. One of the only coal seams of economic value in the Lower Limestone Group is the Hurlet Coal (MacGregor et al. 1920). The exploitation of coal in this locality was longstanding. A lease dated 1634 said that five miners were employed at Hurlet Colliery (Skillen 1990) and in 1812 it was stated that coal had been wrought here for at least 300 years (Smart 1996). By 1790, ten thousand tons of coal were being mined every year by more than two hundred colliers (Watt 1969). As well as being rich in coal, the Hurlet Coal seam contained minerals which were used to produce iron (II) sulphate and alum, used in the dyeing process by the numerous cotton printing works in the Hurlet area (Skillen 1989; Smart 1996). In addition, the Hurlet area was extensively worked for limestone, it being the type locality for the Hurlet Limestone.

Robins (1990) suggested that Glasgow is the focal point for much of the groundwater discharge from the Central Coalfield, with prevailing groundwater flow paths from the east, north-east and south-east. However, the hydrogeology of Glasgow and the Lanarkshire Coalfield is not well understood (Ó Dochartaigh et al. 2018). If it behaves like the better-studied hydrogeological systems of northeast England, (e.g.}
Younger 1993, 1995; Younger & Harbourne 1995; Younger et al. 2015; Westaway & Younger 2016), horizontal components of heat flow can be expected, carried by groundwater flow, from the workings in the vicinity of the aforementioned boreholes to increase temperatures in the mines below other areas of Glasgow. Despite the extensive mining heritage of Glasgow and the surrounding conurbation, limited information is currently available on the connectivity of the mine workings or the hydraulic properties of the coal and ironstone bearing strata in the MVS (Ó Dochartaigh et al. 2018).

Chronology of mining

This section details the timing, duration and proximity of mineral prospecting and extraction at each of the borehole locations to investigate the influence of the presence of mine workings on existing borehole temperature and heat flow measurements in Glasgow.

Blythswood - 1

Blackband Ironstone and Clayband Ironstone were extensively mined on the Blythswood Estate in the mid to late 19th century. Shown in Fig. 5, east of the Black Cart Water, it was mined over a small area from the chief pit, No. 4 Pit Blythswood. This pit, 148 m deep, was situated in the grounds of Blythswood House (Hinxman et al. 1920; MacGregor et al. 1920), in close proximity to the Blythswood - 1 Bore (Fig. 5).

Based upon Item TD234/54/3 of the Glasgow Archive, Fig. 6 illustrates the timing and extent of mining on the Blythswood Estate east of the Black Cart Water. The No.
4 Pit and related workings are dated; 09/12/1868, 12/05/1869, and 30/12/1869. The Blythswood - 1 bore is also noted on the plan, with workings dated from 30/12/1869 extending to this location. Table 5 shows that the Blythswood mine was abandoned on the 26th of April 1875 (Home Department 1889; Mines Department 1931).

From this information the chronology of mining on the Blythswood Estate can be established. From the early to mid-1860’s exploratory boreholes, such as the Blythswood - 1 bore, were sunk to prospect for Blackband and Clayband Ironstone. Lord Kelvin conducted subsurface temperature observations at Blythswood - 1 bore from December 1867 to January 1868 (Thomson et al. 1869). From December 1868 to December 1869, workings were developed from No. 4 Pit, extending close to the Blythswood - 1 Bore. On 26 April 1875 the Blythswood ironstone workings were abandoned. Based upon this, the measurements made by Lord Kelvin would not have been influenced by the effect of mine workings close to the Blythswood - 1 borehole and are therefore a good approximation for the undisturbed thermal state.

South Balgray

As already noted, the South Balgray borehole is located to the south of the Gartnavel-Balgray mineral field. There are numerous pits within the Gartnavel-Balgray field sunk to Gas Coal, Blackband Ironstone and Clayband Ironstone (Fig. 7; Table 5). Extensive mining north of the South Balgray borehole took place prior to the date on which temperature measurements were made by Lord Kelvin (Table 5; Fig. 8). At various pits at Gartnavel, coal and ironstone were worked until abandonment in 1874. Of particular relevance is the entry for Gartnavel No.5 and No. 6 which states that Garibaldi and Blackband Ironstone were worked in 1869. The
entry for Balgray states that Blackband Ironstone was worked in 1866. For Balgray and Gartnavel Pits, seams of coal and ironstone were worked till abandonment in 1880.

National Records of Scotland Item RHP145001/36/23326 is a plan of the various mine workings in the Gartnavel-Balgray field. The locations of the key pits shown in this item are summarised in Fig. 8. The workings closest to South Balgray borehole at North Balgray Farm are Clayband Ironstone workings. Garibaldi Clayband, or Upper and Lower Garscadden Blackband Ironstone are the most likely seams to have been worked here (Hinxman et al. 1920). The workings extending from Gartnavel No. 6 are dated 25th July 1865 and 14th December 1869. The earliest workings in this area between Balgray Farm and West Balgray House are Gas Coal workings dated 22nd March 1864. The Blackband Ironstone workings are dated 1866.

From Fig. 2, the South Balgray borehole encountered the Lower Garscadden Ironstone at a depth of ~18 m and the Garibaldi Clayband Ironstone at a depth of ~22 m. The Upper Garscadden Ironstone and California Ironstone were not encountered in the South Balgray borehole, lying stratigraphically above the surface geology at the site.

The temperature observations in the South Balgray borehole were recorded by Lord Kelvin at the same time as mining activity took place in the Gartnavel-Balgray mineral field. However, based upon the plan of workings in the Gartnavel-Balgray field, the South Balgray borehole lies out with the extent of the workings. Further,
those seams worked in the Gartnavel-Balgray field lie at relatively shallow depth within the South Balgray borehole. It may therefore be reasonably concluded that the temperature measurements were not influenced by mining and are a good approximation for the undisturbed thermal state.

Queenslie - 4
Extensive coal mining activity took place at Queenslie and the surrounding areas of Shettleston and Garthamlock in the East End of Glasgow through the 19th century and into the early 20th century. Illustrated in Fig. 9, the two prominent collieries and associated mine shafts in the area of the Queenslie - 4 borehole are Queenslie Colliery and Garthamlock Colliery. Detailed in Table 4, both collieries ceased operation in 1935, around two decades prior to the drilling of the Queenslie - 4 borehole. This was drilled to a depth of 732.58 m and the temperature was measured at 691 m below ground level (Table 2). The first 441 m of the borehole was not cored and is described in the borehole log as “open hole”. This section of the borehole contains coal seams mined in the locality. Table 5 shows that at Queenslie Colliery, Virgin and Virtuewell Coal were worked. The Queenslie - 4 borehole encounters the Virgin Coal seam at a depth of ~64 m, and while there is no note within the log of the Virtuewell seam, this would lie between 64 m and the Kiltongue Coal at ~134 m depth (Fig. 2). This borehole is located on the site of former Cranhill Quarry [NS 64900 65930] and in close proximity to Cranhill Fireclay works [NS 65060 65920]. The associated industrial processes at these works may have caused additional warming of the shallow subsurface. This shall be studied in future work.
The Queenslie - 4 borehole is located in an area of Glasgow with an extensive history of mining which took place prior to the date at which the borehole was drilled, and the temperature measured. While the extent of the mine workings associated to the pits at Garthamlock and Queenslie are unknown, examination of historical maps places the borehole some distance from former shafts. The seams of coal worked in this area lay between ~64 and ~134 m in the Queenslie - 4 borehole. Given that only one temperature measurement was recorded in the borehole at 691 m depth, no conclusion can be drawn on whether the temperature gradient in the top ~134 m of the borehole is perturbed by mine workings. However, the temperature measurement at 691 m can be considered a good approximation for the undisturbed thermal state at this depth.

Hallside

Hallside Village was originally built to serve the nearby Hallside Colliery and expanded when the Hallside Steelworks opened in 1872 (Hall 2012). The Hallside Steelworks was one of the major steel producing centres in Scotland until its closure in 1979 (Shephard 1996). Hallside Colliery opened in 1873 and closed in 1921 (Mines Department 1931). The Hallside borehole is located on the site of the former Hallside Colliery (Fig. 10). From Table 5, pits at Hallside Colliery worked seams of Upper Coal, Ell Coal, Pyotshaw Coal, Main Coal, Splint Coal and Virgin Coal.

By consulting archive records of the National Coal Board at the National Records of Scotland (Item CB 475) there were various pits active in the 1960’s at Hallside. Those pits which remained active at this time were Blantyreferme 1 & 2, and Blantyreferme 3. It’s stated that these pits were working the Virtuewell, Lower
Drumgray and Blackband seams. Blantyreferme 1 & 2 closed in 1962 and Blantyreferme 3 in 1964 (Oglethorpe 2006).

National Records of Scotland item CB 475/50/8, shows the extent and timescale in which each seam of coal was worked at the Hallside and Blantyreferme pits. The plans show; Main Coal workings dated 01/1890 and 01/1892, Virgin Coal workings dated 04/10/1910, Pyotshaw Coal workings dated 18/01/1915, Humph Coal workings dated 04/1920, Upper Coal workings dated 17/06/1932 and Ell Coal workings dated 21/03/1944. The depths of the worked seams are shown in Fig. 11. All but a few of the plans show worked seams which are either in close proximity to or lie directly beneath the location of the Hallside borehole.

In the Hallside Borehole, the base of the Upper Coal Measures was encountered at ~279 m depth, with the borehole terminating at a depth of ~352 m (Fig. 2; Fig. 11). Another borehole, named the “Hallside Colliery” borehole, was sunk from within the mine workings at ~265 m depth to a depth of ~451 m to give a section of the stratigraphy at the colliery. It is assumed that the depth of each seam is the same in the “Hallside Colliery” borehole as in the Hallside borehole (Fig. 11). Clough et al. (1920) state that at Hallside Colliery, the Middle Coal Measures were overlain by around 293 m of Upper Coal Measures. This aligns relatively well with the boundary of the Upper Coal and Middle Coal Measures observed in the Hallside borehole (Fig. 11), indicating that there is indeed close alignment between the depths of seams in the Hallside borehole and those worked in the Hallside Colliery.
Given the proximity of the Hallside borehole to steelworks (Ordnance Survey, 1914b), related industrial processes may have an influence on the downward propagation of heat conduction from the surface to the shallow subsurface (cf. Westaway & Younger, 2016). Assessment of this effect is beyond the scope of the current study, but will it be explored in future work.

In summary, the Hallside borehole is located on the site of the former Hallside colliery and within the extent of mine workings associated with the steelworks. Extensive mining activity had taken place at this site prior to the drilling of the borehole and the measurement of temperature therein. The seams worked were deeper than the base of the borehole and of the deepest temperature measurement. This evidence suggests that there may be a potential influence from this legacy of mining on the flow of heat in the subsurface and is perhaps a contributing factor as to why a low bottom hole temperature, and associated heat flow, was observed in the Hallside borehole.

Hurlet

By the 1830's limestone was mined at Hurlet from pits up to 70 m deep (Dron 1902; Nisbet 2005). Hinxman et al. (1920) state that Hurlet Limestone can be seen at the mouth of an old mine south of West Hurlet House. The Hurlet Coal seam extended over ~500 acres of land and was worked from various pits either side of the village (Fig. 4) (Hinxman et al. 1920).

The extent of the mining activity is shown on Fig. 4, with numerous pits dotted throughout the area south west of the outcrop of the Hurlet Coal seam. The lands of
West Hurlet House, and the location of the Hurlet borehole, lie north east of the outcrop of the Hurlet Coal, and out with the area in which the coal was wrought. As shown in Fig. 2, the Hurlet borehole is drilled through a sequence of the Lawmuir Formation, stratigraphically below the Hurlet Coal seam and other worked minerals in the Lower Limestone Group.

It is therefore unlikely that coal, ironstone or limestone were worked at significant depths in the vicinity of the Hurlet borehole on the grounds of West Hurlet House. However, surface and/or shallow mining for Hurlet Coal or Hurlet Limestone, may have taken place close to the location of the Hurlet borehole. Data available from Oxburgh (1982) are limited to a depth range of 95-295 m and the influence of potential surface/shallow workings cannot be observed. These data can be considered a good approximation for the undisturbed thermal state across the measured depth range.

Maryhill

As already noted, the Maryhill borehole is located to the east of the Gartnavel-Balgray mineral field, separated by the River Kelvin and the Forth and Clyde Canal (Fig. 12). The Maryhill borehole is situated ~100 m from the site of the former Maryhill Ironworks (Ordnance Survey, 1914a). From historic Ordnance Survey maps of the area, the ironworks operated from 1877 until the mid-1900’s. As at Hallside, heat produced from the Maryhill Ironworks may have propagated into the shallow subsurface and influenced local heat flow.
Table 5 details mining activity around the area of Maryhill. The Garibaldi and California Clayband ironstones were worked at Ruchill No. 4 and 6 pits, east of the Maryhill borehole (Fig. 12). South of the Maryhill borehole and east of Balgray-Gartnavel field, the Garibaldi Clayband Ironstone was raised from several pits in the Eastpark district of Maryhill (MacGregor et al. 1920). The Garibaldi Clayband Ironstone seam was encountered at a depth of ~16 m in the Maryhill borehole (Fig. 2). The California Ironstone lies above the Garibaldi Clayband Ironstone in the stratigraphy of this area. It would therefore appear that the California Clayband Ironstone seam was not encountered in the Maryhill borehole.

The Kilsyth Coking Coal was encountered at ~26 m depth in the Maryhill borehole (Fig. 2). Hinxman et al. (1920) stated that this was the lowest workable seam in the Limestone Coal Formation. The Maryhill borehole is located in an area of Glasgow with a history of mining prior to the drilling of the borehole. While the extent of the mine workings at Eastpark are unknown, the seams of coal worked in this area of Glasgow lay at shallow depth relative to the borehole. From examination of the temperature gradient in the shallow ~30 m of the borehole, it is unclear as to whether shallow mine workings have disturbed the thermal state. Additional factors such as the downward propagation of heat from the Maryhill Ironworks may counteract the dispersion of heat flow locally into mine workings. However, the temperature measurements made below 30 m depth, appear to be a good approximation for the undisturbed thermal state at this site.
Bargeddie - 1

The Bargeddie - 1 borehole is drilled in an area known to have been extensively mined for coal throughout the 19th century (Table 5). This borehole is located close to a number of mine shafts related to the Bargeddie and Bartonshill collieries (Fig. 13). From the drilling report, a relatively complete section of Middle and Lower Coal Measures was encountered. Within the Middle and Lower Coal Measures, to a depth of 293 m, four coals are known to have been worked at the site, the Upper, Main, Splint and Kiltongue seams (IHS Energy Group No Date). This is consistent with Table 5.

The Cuilhill borehole (Fig. 13), drilled to a depth of ~757 m (BGS Reference: NS76NW345), was used to exert control on the understanding of the subsurface prior to drilling the Bargeddie - 1 bore. If this borehole is to be used as analogous to Bargeddie - 1, then the position of the seams stated in the Cuilhill borehole can be used to assess the depth of workings close to the Bargeddie - 1 borehole. The Cuilhill bore encountered the Main Coal at 50 m, the Splint Coal at 70 m, the Virgin Coal at 72 m and the Kiltongue Coal at 150 m. Shallower seams of Glasgow Upper and Pyotshaw Coal were not encountered, the shallowest seam encountered being the Glasgow Ell Coal. As shown in Fig. 13, numerous shafts surround the location of the Bargeddie - 1 borehole. It may thus be expected that the temperature gradient may be perturbed in the borehole by the presence of these mine workings. However, given the lack of temperature data across this depth range, no conclusion can be drawn on the potential influence of mining at Bargeddie. The bottom hole temperature measurement made in the Bargeddie - 1 borehole of 39 °C at 1043.6 m
is well below the potential influence of mine workings and can be considered a good approximation for the undisturbed thermal state at this depth.

GGC01

Work at the GGERFS aims to investigate the abandoned, flooded mine workings beneath the Clyde Gateway Regeneration area of Glasgow. The GGC01 borehole is the deepest of twelve boreholes drilled in the Clyde Gateway area of Dalmarnock, Glasgow as part of the GGERFS project. Its main purpose is to host seismometers for monitoring earthquake activity including the possibility of earthquakes caused by activity at the GGERFS site.

The extent of mining in this locality has been summarised by Monaghan *et al.* (2017) and Monaghan *et al.* (2018). There are seven worked coal seams, with related shafts and interconnecting underground roadways, beneath the area within which the 12 GGERFS boreholes are located (Monaghan *et al.* 2017; Monaghan *et al.* 2018). The deepest worked seam beneath this area is the Kiltongue Coal seam, however the depth of this seam varies laterally throughout the area. At its deepest it is encountered at 268.5 m depth (Monaghan *et al.* 2017). At the site of the GGC01 borehole it is predicted to be shallower than this, at around 225 m depth (Monaghan *et al.* 2017).

There are no recorded mine workings on abandonment plans at the site of the GGC01 borehole. After drilling the borehole, it was confirmed that no evidence of mining was encountered in the borehole and several thick intact coals were cored (Starcher *et al.* 2019). However, to the east of the GGC01 borehole there is
extensive coverage of mine workings beneath the GGERFS area. Mining activity in this area of Glasgow took place prior to the 1872 Regulation of Coal Mines Act which legislated that accurate mine abandonment plans must be recorded in compliance with the act. It is therefore possible that unrecorded mine workings exist beneath the site of the GGC01 borehole.

From the preliminary driller’s log, the deepest coal seam in the GGC01 borehole is thought to be the Airdrie Virtuewell Coal at 197 m depth (Barron & Burkin 2019). However, the mined Kiltongue Coal seam is deeper; Kearsey et al. (2018) estimate it to lie 31 m below the Virtuewell seam, on which basis we estimate its depth as 228 m (Fig. 14).

From wireline logging of the borehole, a temperature of 14 °C was observed at a depth of ~197 m (Starcher et al. 2019). If, as seems likely, the Kiltongue Coal seam was mined beneath the location of this borehole then this legacy of mining may have an influence on the flow of heat in the subsurface and is perhaps a contributing factor as to why the bottom hole temperature, and associated heat flow, is low in comparison to the regional average.

Discussion
By determining the chronology of historical mining in each borehole locality, the influence of mine workings on subsurface temperature and heat flow has been assessed. While extensive mining was undertaken across much of Glasgow and the surrounding conurbation, the temperature datasets measured at the Blythswood - 1, South Balgray, Queenslie - 4, Hurlet, Maryhill and Bargeddie - 1 boreholes are
shown to not be significantly affected by the presence of mine workings. For the Maryhill borehole, the potential influence of mine workings on perturbing the temperature gradient may be counteracted by the influence of surface warming from the Maryhill Ironworks. For the Queenslie - 4, Hurlet and Bargeddie - 1 boreholes there are no temperature data in the depth range that mine workings may have existed, therefore the potential influence of the workings on the subsurface thermal state is inconclusive. However, the temperature measurements made below the depth of the mine workings are reliable, and alongside the datasets from Blythswood - 1, South Balgray and Maryhill can be considered good approximations for the undisturbed thermal state beneath Glasgow.

These measurements are therefore suitable for further analysis and can be used when estimating the potential geothermal resource within the deeper, potential, HSAs of the Kinnesswood Formation, Knox Pulpit Formation and laterally equivalent sandstones. For example, the temperature gradient can be extrapolated to greater depths, accounting for the changes in thermal conductivity through the stratigraphic sequence, in order to estimate the likely temperature at depth within the HSAs. This is necessary to obtain realistic estimates of aspects such as thermal performance and drilling costs when appraising future projects. In addition, borehole data can be used when determining the necessary corrections to heat flow to account for the influence of palaeoclimatic and topography. This is significant when quantifying the geothermal potential of the HSA resource. As Westaway and Younger (2013) discussed, previous studies of the geothermal potential of the UK have neglected, or underplayed, the correction to heat flow measurements for the cooling effects from periods of lower temperatures during the Pleistocene. This effect is expected to be
particularly acute in the UK, due to the large temperature differential between modern times and past ice ages largely a result of the current warming effect of the Gulf Stream. Work on correcting measurements of heat flow in boreholes across the UK, accounting for warming since the last glaciation, has resulted in positive corrections to heat flow (Westaway & Younger 2013; Westaway & Younger 2016; Busby et al. 2015; Busby & Terrington 2017). A lack of consideration of palaeoclimate corrections has thus resulted in a significant typical underestimate of the heat flow, and therefore, the geothermal potential across the UK. However, definitive correction for palaeoclimate is outside the scope of this work.

At Hallside, the observed temperature dataset appears to be influenced by the legacy of mining at Hallside and Blantyreferme Collieries. We propose two potential hypotheses: (A) upward conductive heat flow is greatly reduced above the mine voids as heat is dispersed laterally through the workings (Fig. 11); and/or (B) downward flow of groundwater through the connected workings is partly cancelling the upward flow of heat. In both cases, the result is a reduced bottom hole temperature in comparison to the regional average temperature gradient. An effect of historical mining may also be present in the GGC01 borehole temperature record, with flow in mine workings in the Kiltongue Coal seam at depths greater than the base of the borehole providing a natural explanation for the low heat flow and temperature gradient observed in this borehole (Fig. 14).

As a first order calculation, we have quantified the heat flow passing into the mine workings beneath the Hallside borehole. Applying the thermal conductivities detailed in Table 6 to each lithology in the Hallside borehole, the harmonic mean value is
calculated as 2.11 W m$^{-1} \cdot ^\circ$C$^{-1}$. Based upon meteorological data from the Paisley Coats Observatory (at NS 47395 64223 and 32 m amsl) the annual mean surface air temperature for 1976 was 9.6 $^\circ$C (Met Office 2019); accounting for lapse rate this reduces the surface temperature to 9.45 $^\circ$C at Hallside. Combining this value with the bottom hole temperature at Hallside, the temperature gradient is calculated as 6.68 $^\circ$C km$^{-1}$. From Equation (1) this gives a heat flow of \sim14 mW m$^{-2}$. If the regional heat flow for Glasgow is taken as 60 mW m$^{-2}$ (Browne et al. 1987; Busby et al. 2011) then \sim46 mW m$^{-2}$ of heat flow is escaping laterally into the workings below the base of this borehole. As discussed by Westaway & Younger (2013) and Busby & Terrington (2017), if the effect of palaeoclimate is accounted for then the regional surface heat flow for Glasgow may increase to \sim80 mW m$^{-2}$, implying that \sim66 mW m$^{-2}$ is entering the mine workings at Hallside.

The same approach can be applied to the GGC01 dataset. Busby (2019) reports the thermal conductivity for the Scottish Middle Coal Measures at the GGERFS as 2.02 W m$^{-1} \cdot ^\circ$C$^{-1}$. The annual mean surface air temperature for 2018 is 9.58 $^\circ$C at Paisley (Met Office 2019); and accounting for lapse rate this increases to 9.75 $^\circ$C. Combining this value with the bottom hole temperature at the GGC01 borehole, gives a temperature gradient of 21.57 $^\circ$C km$^{-1}$ which, from Equation (1), gives a heat flow of \sim44 mW m$^{-2}$. In accordance with previous discussion, the heat flow escaping laterally into the workings can thus be estimated as between \sim16 and \sim36 mW m$^{-2}$ depending on whether the effect of palaeoclimate is taken into account or not. On the basis of this simple analysis, the effect of mine workings beneath the GGC01 borehole is less significant than at Hallside.
The Hallside case study provides strong evidence that the conductive heat flow at depths overlying flooded mine workings in the study area has been altered by the existence of these workings and is therefore unrepresentative of the heat flux from the Earth’s interior. As observed at Hallside, while the conductive heat flow and associated temperature gradient have been significantly reduced, it may be the case that heat is moving horizontally, carried by groundwater flow, from the workings beneath the borehole to increase temperatures in the mines below other areas of Glasgow. Care must therefore be taken to consider such an effect as this when attempting to quantify the potential geothermal resource in abandoned, flooded mine workings in the future. The entrainment of heat flow into mine workings also affects the quantification of deeper geothermal resources, like the potential HSAs beneath Glasgow. In localities where this effect is present then the extrapolation of the shallow temperature gradient above mine workings would underestimate the temperature at depth and in a deeper geothermal resource. It is important, therefore, that future projects should consider the influence of historic mining on heat flow when measurements such as this are used as a basis for selecting optimum locations to site a geothermal development.

This present study is therefore particularly timely given the recent development of the UKGEOS GGERFS project in Glasgow and the media attention afforded to the potential geothermal resource in abandoned mine workings in the MVS and across former coalfields in the UK. The potential geothermal resource that exists in flooded mine workings has been recognised by many studies (e.g. Leoni 1985; Harrison et al. 1989; Hall et al. 2011; Ramos & Falcone 2013; Burnside et al. 2016a; 2016b; Banks et al. 2019), and indeed specifically the potential resource throughout the
MVS (e.g. Banks et al. 2003; Banks et al. 2009; Gillespie et al. 2013; Harnmeijer & Schlicke 2016; Harnmeijer et al. 2017).

The potential magnitude of the geothermal resource in flooded mine workings in the MVS and across the UK has yet to be fully clarified however recent publications have ventured to provide initial estimates of the extractable heat. In the MVS, it is estimated that 12 MW (379 TJ) of heat may be provided from the former Scottish Coalfield (Gillespie et al. 2013). More recently Adams & Gluyas (2017) found that across the UK, a conservative estimate of the resource in the flooded mine workings is around 38,500 TJ of heat. This would be enough to heat around 650,000 homes.

Conclusion

The MVS is host to two potentially significant geothermal resources: insulated groundwater in flooded abandoned mine workings and HSAs within Kinnesswood Formation, Knox Pulpit Formation and laterally equivalent, sandstones. To assess the potential of these resources it is crucial to understand the flow of heat in the subsurface. Studies from the former northeast England coalfield in Tyneside have demonstrated heat flow perturbations in boreholes to be the result of lateral dispersion of geothermally-radiating heat through flooded mine workings. If this phenomenon is common across flooded mine systems, then data obtained from mine-associated boreholes would not be representative of the actual heat flow in the locality. In this work we have investigated the impact of historic mining on geothermal observations across Greater Glasgow by assessing temperature and
heat flow records of eight boreholes which are located in areas known to have extensive histories of coal and ironstone mining.

By determining the chronology of historic mining in each borehole locality through an archive study, we have appraised these existing datasets of geothermal measurements. This enables: (1) a quantification of the potential geothermal resource in the abandoned, flooded mine workings; (2) an assessment of the accuracy of existing subsurface temperature measurements, for example as a precursor to applying corrections to heat flow measurements to account for palaeoclimate and topography; and (3) a more accurate extrapolation of subsurface temperature measurements to greater depths. While extensive mining was undertaken across much of Glasgow and the surrounding conurbation, the temperature datasets measured at the Blythswood - 1, South Balgray, Queenslie - 4, Hurlet, Maryhill and Bargeddie - 1 boreholes are largely unaffected by the presence of mine workings. The measurements in these boreholes are reliable and therefore suitable for further analysis as described in (2) and (3).

At the GGC01 borehole at the GGERFS, the observed temperature dataset may be influenced by the legacy of mining in the Dalmarnock area of Glasgow. A bottom hole temperature of 14 °C was recorded at 196.8 m in the GGC01 borehole, resulting in a calculated heat flow of ~44 mWm⁻². The heat flow escaping laterally into the workings can thus be estimated as between ~16 and ~36 mW m⁻² depending on whether the effect of palaeoclimate is considered or not. At Hallside, the observed temperature dataset appears to be influenced by the legacy of mining at Hallside Colliery. A bottom hole temperature of 11.8 °C was recorded at 352 m in the Hallside
borehole, resulting in a calculated heat flow of ~14 mW m$^{-2}$. The heat flow escaping laterally into the workings can thus be estimated as between ~46 and ~66 mW m$^{-2}$ depending on whether the effect of palaeoclimate is considered or not. The differences relative to the expected regional heat flow, suggests a significant component of horizontal heat flow into surrounding flooded mine workings. An examination of the ‘true’ geothermal resource beneath the city of Glasgow is therefore reliant on an understanding of heat transport mechanisms in the subsurface and care must therefore be taken to consider such an effect as this when attempting to quantify the potential geothermal resource in both abandoned, flooded mine workings and HSAs in the future. Given that the areas of the MVS where the potential geothermal resource is present encompasses two of the largest cities in the UK, Glasgow and Edinburgh, there is a significant potential opportunity of providing low-carbon geothermal heating to areas of dense urban population and high heat demand.

Acknowledgements

This work was gratefully funded by EPSRC Ph.D. scholarship, grant number EP/M508056/1 and EP/M506539/1 (S.M.W.). We would like to thank Jon Busby of BGS for kindly providing temperature and heat flow data for each of the boreholes studied in this work, which were made available through the BritGeothermal partnership. We would like to thank staff at the Glasgow City Archives at the Mitchell Library, National Records of Scotland and Renfrewshire Heritage Centre for their advice and allowing access to archive material. S.M.W. would like to thank Fiona Bradley, his primary PhD supervisor, for her support and encouragement to conduct this work.
Figure 6 is reproduced from Item TD 234/54/3 of the Glasgow Archives with permission. The historical and geological maps are reproduced with permission from Digimap, where figures contain this data it is stated in the figure caption. Where borehole locations are denoted on figures, this is based upon information from borehole logs available from BGS online borehole viewer. These figures contain British Geological Survey Materials © NERC (2019) available under the Open Government Licence: Open Government Licence v3.0. Figures 4, 5, 7, 9, 10, 12 and 13 use OS VectorMap® District data. Contains OS data © Crown copyright and database right (2019). OS Open Data is free to use under the Open Government License: Open Government Licence v3.0. Figure 14 contains data from the GGC01 borehole within the UKGEOS GGERFS project. This figure contains NERC materials ©NERC (2019), available under the Open Government Licence: Open Government Licence v3.0

This work is dedicated to the memory of Paul Younger (1 November 1962 – 21 April 2018). “Union miners, stand together, do not heed the owners’ tale, keep your hands upon your wages, and your eyes upon the scale.”
References

Adams, C., and Gluyas, J. 2017. We could use old coal mines to decarbonize heat – here’s how. The Conversation, 27 November 2017. [Online]. Available at: http://theconversation.com/we-could-use-old-coal-mines-to-decarbonise-heat-heres-how-83848 (last accessed 06/12/2018)

Addie, R. 1874. Item: TD 234/85, no title. Blythswood mineral papers: journals of bores and sundry papers, 1863-70; correspondence with Langloan Ironworks, Coatbridge, 1875; sectional diagrams of bores, 1846-66. [Letter]. At: Glasgow Archives, Mitchell Library.

Addie, R. 1875. Item: TD 234/85, no title. Blythswood mineral papers: journals of bores and sundry papers, 1863-70; correspondence with Langloan Ironworks, Coatbridge, 1875; sectional diagrams of bores, 1846-66. [Letter]. At: Glasgow Archives, Mitchell Library.

Almond Valley Heritage Trust. 2017. The Renfrewshire coal oil industry. [Online]. Available at: https://www.scottishshale.co.uk/GazMines/MinesRenfrewshire/OverviewRenfrewshire.html (last accessed 06/12/2018)

Anderson, E. M. 1940. XVI. - The loss of heat by conduction from the Earth’s crust in Britain. Proceedings of the Royal Society of Edinburgh. Royal Society of Edinburgh, 60, 192-209.
Banks, D., Skarphagen, H., Wiltshire, R., and Jessop, C. 2003. Mine water as a resource: space heating and cooling via use of heat pumps. *Land Contamination & Reclamation*, **11** (2), 191–198. doi: 10.2462/09670513.814

Banks, D., Fraga Pumar, A., Watson, I. 2009. The operational performance of Scottish minewater based ground source heat pump systems. *Quarterly Journal of Engineering Geology and Hydrogeology*, **42**, 347–357. doi: 10.1144/1470-9236/08-081

Banks, D., Athresh, A., Al-Habaibeh, A., and Burnside, N. 2019. Water from abandoned mines as a heat source: practical experiences of open and closed loop strategies, United Kingdom. *Sustainable Water Resources Management*, **5** (1), 29-50. doi: 10.1007/s40899-017-0094-7

Barron, H., and Burkin, J. 2019. GGERFS10 Preliminary Driller’s Log. In: *GGC01 Borehole Information Pack*. [Online]. Available at: https://www.ukgeos.ac.uk/data-downloads/glasgow/seismic-borehole-information-pack (last accessed 05/09/2019)

Benfield, A. E. 1939. Terrestrial heat flow in Great Britain. *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*. The Royal Society, **173**, 428-450.

Blythswood Estate. 1863. Item: TD 234/85, Blythswood No. 1 bore section of strata. *Blythswood mineral papers: journals of bores and sundry papers, 1863-70*;
correspondence with Langloan Ironworks, Coatbridge, 1875; sectional diagrams of bores, 1846-66. [Borehole Log]. At: Glasgow Archives, Mitchell Library.

Blythswood Estate. 1871. TD 234/54/3, Blythswood ironstone workings between Portnauld and Town of Inchinnan, 1866-1871. [Map]. At: Glasgow Archives, Mitchell Library.

Brereton, R., Browne, M. A. E., Cripps, A. C., Gebski, J. S., Bird, M., Halley, D. N., and McMillan, A. A. 1988. Glenrothes Borehole: Geological Well Completion Report. Investigation of the Geothermal Potential of the UK. British Geological Survey, HMSO, Keyworth.

Browne, M. A. E., Hargreaves, R. L. and Smith, I. F. 1985. The Upper Palaeozoic Basins of the Midland Valley of Scotland. Investigation of the geothermal potential of the UK. British Geological Survey, British Geological Survey, HMSO, Keyworth.

Browne, M.A.E., Robins, N.S., Evans, R.B., Monro, S.K. and Robson, P.G. 1987. The Upper Devonian and Carboniferous sandstones of the Midland Valley of Scotland. Investigation of the geothermal potential of the UK. British Geological Survey, HMSO, Keyworth.

Browne, M. A. E., Dean, M. T., Hall, H. I. S., McAdam, A. D., Monro, S. K. & Chisholm, J. I. 1999. A lithostratigraphical framework for the Carboniferous rocks of the Midland Valley of Scotland, Version 2. Research Report RR/88/07. British Geological Survey, HMSO, Keyworth. http://nora.nerc.ac.uk/id/eprint/3229/
Bullard, E.C., and Niblett, E.R. 1951. Terrestrial heat flow in England. Monthly Notes of the Royal Astronomical Society. *Geophysical Supplement*, 6, 222–238.

Burley, A.J., Edmunds, W.M., and Gale, I.N. 1984. Catalogue of geothermal data for the land area of the United Kingdom. *Investigation of the geothermal potential of the UK*. British Geological Survey, HMSO, Keyworth.

Burnside, N. M., Banks, D., and Boyce, A. J. 2016a. Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom. *International Journal of Coal Geology*, 164, 85-91.
https://doi.org/10.1016/j.coal.2016.03.006

Burnside, N.M., Banks, D., Boyce, A.J. and Athresh, A. 2016b. Hydrochemistry and stable isotopes as tools for understanding the sustainability of minewater geothermal energy production from a ‘standing column’ heat pump system: Markham Colliery, Bolsover, Derbyshire, UK. *International Journal of Coal Geology*, 165, 223-230.
https://doi:10.1016/j.coal.2016.08.021

Busby, J. P. 2019. Thermal conductivity and subsurface temperature data pertaining to the Glasgow Geothermal Energy Research Field Site (GGERFS). *British Geological Survey Open Report*, OR/19/015.

Busby, J., and Terrington, R. 2017. Assessment of the resource base for engineered geothermal systems in Great Britain. *Geothermal Energy*, 5 (1)
https://doi.org/10.1186/s40517-017-0066-z

Busby, J., Kingdon, A., and Williams, J. 2011. The measured shallow temperature field in Britain. *Quarterly Journal of Engineering Geology and Hydrogeology*, 44, 373-387. https://doi.org/10.1144/1470-9236/10-049

Busby, J., Gillespie, M., and Kender, S. 2015. How hot are the Cairngorms? *Scottish Journal of Geology*, 51 (2), 105-115, http://dx.doi.org/10.1144/sjg2014-027

Cameron, I. B., and Stephenson, D. 1985. *British Regional Geology: the Midland Valley of Scotland*. British Geological Survey, HMSO, London.

Clough, C. T., Wilson, J. S. G., Anderson, E. M., MacGregor, M. 1920. The economic geology of the Central Coalfield of Scotland. Area VII. Rutherglen, Hamilton and Wishaw. *Memoir of the Geological Survey, Scotland*. HMSO, Edinburgh.

Coal Authority. 2018. The Coal Authority: interactive map viewer. [Online]. Available at: http://mapapps2.bgs.ac.uk/coalauthority/home.html (last accessed 27/02/2019)

Denny, F. 1864. Item: TD 234/85, no title. *Blythswood mineral papers: journals of bores and sundry papers, 1863-70; correspondence with Langloan Ironworks, Coatbridge, 1875; sectional diagrams of bores, 1846-66*. [Letter]. At: Glasgow Archives, Mitchell Library.
Department for Business, Energy and Industrial Strategy (BEIS). 2019. Energy Consumption in the UK (ECUK). [Online]. Available at: https://www.gov.uk/government/statistics/energy-consumption-in-the-uk (last accessed: 05/08/2019)

Downing, R.A. & Gray, D.A. 1986. Geothermal Energy – the potential in the United Kingdom. British Geological Survey, HMSO, London.

Dron, R, W. 1902. The Coalfields of Scotland. London: Blackie and Son Ltd.

England, P.C., Oxburgh, E.R., and Richardson, S.W. 1980. Heat refraction and heat production in and around granite plutons in north–east England. Geophysical Journal. 62 (2), 439–455.

Forsyth, I. H. 1979. The Lower Coal Measures of central Glasgow. Report of the Institute of Geological Sciences. No. 79/4.

Forsyth, I. H. and Brand, P. J. 1986. Stratigraphy and stratigraphical palaeontology of Westphalian B and C in the Central Coalfield of Scotland. Report of the British Geological Survey. 18 (4).

Forsyth, I.H., Hall, I.H.S., and McMillan, A.A. 1996. Geology of the Airdrie district. Memoir of the British Geological Survey, Sheet 31W (Scotland). Keyworth: British Geological Survey.
Gale, I. 2004. GSHP Site Characterisation. *Carbon Trust research, development and demonstration projects*, 2002- 08-026-4-3, final project report.

Gillespie, M.R., Crane, E.J. and Barron, H.F. 2013. *Deep geothermal energy potential in Scotland*. British Geological Survey Commissioned Report, CR/12/131.

Gluyas, J. G., *et al.* 2018. Keeping warm; a review of deep geothermal potential of the UK. *Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy*, 232, 115-126. https://doi.org/10.1177/0957650917749693

Hall, A., Scott, J.A., Shang, H., 2011. Geothermal energy recovery from underground mines. *Renewable and Sustainable Energy Reviews*, 15, 916–924. https://doi.org/10.1016/j.rser.2010.11.007

Hall, D. 2012. Working Lives: *The forgotten voices of Britain’s post-war working class*. Bantam Press. London.

Hall, I.H.S., Browne, M.A.E., and Forsyth, I.H. 1998. Geology of the Glasgow district. *Memoir of the British Geological Survey, Sheet 30E* (Scotland). Keyworth: British Geological Survey.

Harnmeijer, J. and Schlicke, A. 2016. Feasibility Report of Fortissat Community Minewater Geothermal Energy District Heating Network. Available at https://www2.gov.scot/Resource/0049/00497924.pdf (last accessed 14/03/2019)
Harnmeijer, J., Schlicke, A., Barron, H., Banks, D., Townsend, D., Steen, P., Nikolakopoulou, V., Lu, H. and Zhengao, C. 2017. Fortissat minewater geothermal district heating project: case study. *Engineering and Technology Reference*, 1-8.

Harrison, R., Scott, W.B., Smith, T., 1989. A note on the distribution, levels and temperatures of minewaters in the Northumberland and Durham coalfield. *Quarterly Journal of Engineering Geology*, **22**, 355-358.

Herrin, J.M., and Deming, D. 1996. Thermal conductivity of U.S. coals. *Journal of Geophysical Research: Solid Earth, 101*, 25381–25386.

Hinxman, L. W., Anderson, E. M., Carruthers, R. G. 1920. The economic geology of the Central Coalfield of Scotland. Area IV. Paisley, Barrhead, Renfrew and the western suburbs of Glasgow north and south of the Clyde. *Memoir of the Geological Survey, Scotland*. HMSO, Edinburgh.

Home Department. 1889. List of the plans of abandoned mines deposited in the Home Office under the Coal and Metalliferous Mines Regulation Acts, corrected to the 30th of June 1889. HMSO, London.

IHS Energy Group. No date. Bargeddie 1 End of Well Report. United Kingdom Continental Shelf Well Records. Crown Copyright 2000. Obtained with Permission from British Geological Survey.
Institute of Geological Sciences. 1976. IGS Boreholes 1975. *Report of the Institute of Geological Sciences*. No.76/10.

Institute of Geological Sciences. 1977. IGS Boreholes 1976. *Report of the Institute of Geological Sciences*. No.77/10.

Institute of Geological Sciences. 1978. IGS Boreholes 1977. *Report of the Institute of Geological Sciences*. No.78/21

Institute of Geological Sciences. 1980. IGS Boreholes 1978. *Report of the Institute of Geological Sciences*. No.79/12.

Institute of Geological Sciences. 1982. IGS Boreholes 1980. *Report of the Institute of Geological Sciences*. No. 81/1e

Kearsey, T., Greenhalgh, E., Arkley, S., Monaghan, A., and Burkin, J. 2018. Borehole GGC01 Pre-Drill Prognosis. In: *GGC01 Borehole Information Pack*. [Online]. Available at: https://www.ukgeos.ac.uk/data-downloads/glasgow/seismic-borehole-information-pack (last accessed 05/09/2019)

Kearsey, T. I. *et al*. 2019. Creation and delivery of a complex 3D geological survey for the Glasgow area and its application to urban geology. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*, **108** (2-3), 123-140.

https://doi.org/10.1017/S1755691018000270
Leoni, L. 1985. Water filled abandoned mines as a heat source for district heating. *Underground Space, 9*, 23-27.

MacGregor, M., Lee, G. W., Wilson, G. V., Robertson, T., and Fleet J. S. 1920. The iron ores of Scotland. *Memoirs of the Geological Survey, Scotland*. Special Reports On The Mineral Resources of Great Britain. Vol. XI Iron Ores. HMSO.

McCay, A. T., and Younger, P. L. 2017. Ranking the geothermal potential of radiothermal granites in Scotland: are any others as hot as the Cairngorms? *Scottish Journal of Geology, 53*, pp 1-11. https://doi.org/10.1144/sjg2016-008

Met Office. 2019. Historic station data: Paisley. [Online]. Available at: https://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/paisleydata.txt (last accessed 12/08/19)

Mines Department. 1931. Catalogue of Plans of Abandoned Mines, Scotland: Volume V. HMSO, London.

Monaghan, A. A. 2014. *The Carboniferous shales of the Midland Valley of Scotland: geology and resource estimation*. British Geological Survey for Department of Energy and Climate Change, London, UK.

Monaghan, A. A. *et al*. 2017. UKGEOS – Glasgow Geothermal Energy Research Field Site (GGERFS): initial summary of the geological platform. *British Geological Survey Open Report*, OR/17/006.
Monaghan, A. A. et al. 2018. UK Geoenergy Observatories: Glasgow Geothermal Energy Research Field Site Science Infrastructure. *British Geological Survey Open Report*, OR/18/037.

Monro, S. K. 1983. The stratigraphy of the Maryhill borehole. *Institute of Geological Sciences. Report of the Institute of Geological Sciences*. No.83/02.

National Records of Scotland. 1961. Item: CB 475, records of Hallside colliery. [Collection of maps, letters, NCB documents]. At: National Records of Scotland, Edinburgh.

National Records of Scotland. 1961. Item: CB 475/50/8. Coal workings in the vicinity of the Hallside steel works. [Collection of maps]. At: National Records of Scotland, Edinburgh.

National Records of Scotland. 1872. RHP 142990/1, plan of collieries in area between Drumchapel and Maryhill. [Map]. At: National Records of Scotland, Edinburgh.

National Records of Scotland. No date. Item: RHP145001/36/23326, primary colliery: Gartnavel; primary seam: Blackband; subject: workings. Originated from Coal Board. [Map]. At: National Records of Scotland, Edinburgh.
National Records of Scotland. No date. Item: RHP145001/1161/04808, primary colliery: Gartnavel; primary seam: Gas Coal; subject: workings. Originated from Coal Board. [Map]. At: National Records of Scotland, Edinburgh.

Nisbet, S. 2006. The archaeology of the lime industry in Renfrewshire. *Renfrewshire Local History Forum Journal, 13*, 1-17. [Online]. Available at: http://rlhf.info/wp-content/uploads/13.6-Renfrewshire-Lime-Nisbet.pdf (last accessed 06/12/2018)

Northern Mine Research Society. 2018. Northern Mine Research Society Online Mines Map. [Online]. Available at: http://www.nmrs.org.uk/mines-map/coal-mining-in-the-british-isles/collieries-of-the-british-isles/coal-mines-scotland/ (last accessed 06/12/2018)

- Ó Dochartaigh, B. É., Bonsor, H., Bricker, S. 2018. Improving understanding of shallow urban groundwater: the Quaternary groundwater system in Glasgow, UK. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh.* https://doi.org/10.1017/S1755691018000385

- Ó Dochartaigh, B. É., Graham, M. T. & MacDonald, A. M. 2007. *A summary of groundwater work within the Clyde Basin project, 2005-06.* Internal Report IR/07/042. Keyworth: British Geological Survey. http://nora.nerc.ac.uk/7568/

- Ó Dochartaigh, B. É., Smedley, P. L., MacDonald, A. M., Darling, W. G. & Homoncik, S. 2011. *Baseline Scotland: groundwater chemistry of the Carboniferous*
sedimentary aquifers of the Midland Valley. Open Report OR/11/021. Keyworth: British Geological Survey. http://nora.nerc.ac.uk/14314/

Ó Dochartaigh, B. É., MacDonald, A. M., FitzSimons, V. & Ward, R. 2015. Scotland’s aquifers and groundwater bodies. Open Report OR/015/028. Keyworth: British Geological Survey. http://nora.nerc.ac.uk/511413/

Oglethorpe, M. K. 2006. Scottish Collieries: An inventory of the Scottish coal industry in the nationalised era. The Royal Comission on the Ancient and Historical Monuments of Scotland. Edinburgh.

Ordnance Survey. 1864. 1:10 560 County Series 1st Edition [TIFF geospatial data], Scale 1:10560, Tiles: dumb-02800-1,dumb-02900-1,lana-00500-1,lana-00600-1,renf-00800-1,renf-00900-1, Updated: 30 November 2010, Historic, Using: EDINA Historic Digimap Service, <http://digimap.edina.ac.uk>, Downloaded: 2017-08-17 19:07:15.281

Ordnance Survey. 1914a. 1:2 500 County Series 2nd Revision [TIFF geospatial data], Scale 1:2500, Tiles: dumb-02413-3,lana-00113-3,lana-00114-3,lana-00115-3,lana-00601-3,lana-00602-3,lana-00603-3,lana-00606-3,lana-00607-3, Updated: 30 November 2010, Historic, Using: EDINA Historic Digimap Service, <http://digimap.edina.ac.uk>, Downloaded: 2017-08-17 19:12:32.347

Ordnance Survey. 1914b. 1:2 500 County Series 2nd Revision [TIFF geospatial data], Scale 1:2500, Tiles: lana-01101-3,lana-01102-3,lana-01103-3,lana-01105-
Oxburgh, E. R. 1982. Compilation of heat flow data measured by the Oxford University Heat Flow Group under contract to the Department of Energy. Unpublished document provided by Jon Busby.

Paisley Herald and Renfrewshire Advertiser. 1866. ‘Serious Pit Accident’. Paisley Herald and Renfrewshire Advertiser, 28 July, p. 4. British Newspaper Archive. [Online]. Available at: http://www.britishnewspaperarchive.co.uk/viewer/bl/0000464/18660728/042/0004 (last accessed 03/08/2017)

Ramos, E.P., Falcone, G., 2013. Recovery of the geothermal energy stored in abandoned mines. In: Hou, M.Z., Xie, H.P., Were, P. (Eds.), Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Proceedings of the 3rd Sino-German Conference on Underground Storage of CO2 and Energy, Goslar, Germany, 21–23 May 2013. Springer, Berlin, 143-155.
Robins, N. S. 1990. *Hydrogeology of Scotland*. British Geological Survey, HMSO, London.

Scottish Government. (2015). Geothermal Energy Projects Awarded Quarter-Million. [Online]. Available: https://news.gov.scot/news/geothermal-energy-projects-awarded-quarter-million (last accessed 06/12/2018)

Scottish Government. 2018. Energy in Scotland 2018. [Online]. Available: https://www2.gov.scot/Resource/0053/00531701.pdf (last accessed 06/12/2018)

Scottish Government. 2019. Energy Statistics for Scotland Q1 2019 Figures. [Online]. Available at: https://www2.gov.scot/Resource/0054/00547704.pdf (last accessed 05/08/2019)

Scottish House Conditions Survey. 2018. Scottish House Condition Survey: Key Findings 2017. [Online]. Available at: https://www.gov.scot/publications/scottish-house-condition-survey-2017-key-findings/ (last accessed 27/02/2019)

Shepherd, D. 1996. *Halfway to Hallside – A Picture History*. Clydeside Press Limited, Glasgow.

Skillen, B. S. 1987. The Development of Mining in the Glasgow Area, 1700-1830. University of Glasgow, thesis.
Skillen, B.S. 1989. Aspects of the Alum Mining Industry about Glasgow. *British Mining* N39. Northern Mine Research Society, 53-60

Skillen, B.S. 1990. Old Mines and Miners of Renfrewshire: Glimpses of the Past. *British Mining* No.41. Northern Mine Research Society, 76-98.

Smart, A. 1996. *Villages of Glasgow Volume 2*. John Donald Publishers Ltd, Edinburgh

Starcher, V., Shorter, K., Barron, H., Burkin, J., Elsome, J., Fellget, M., Kingdon, A., Barnett, M., and Monaghan, A. 2019. GGC01 Cored, seismic monitoring borehole – initial data release. *UK Geoenergy Observatory Programme Open Report OR/19/021*. British Geological Survey, Keyworth.

Thomson, W (Lord Kelvin). 1868. “On Geological Time”. Address delivered before the Geological Society of Glasgow, February 27, 1868. *Popular Lectures and Addresses. Geological Society of Glasgow*, 2, p. 10.

Thomson, W (Lord Kelvin) *et al*. 1868. Report of the Committee for the purpose of investigating the rate of increase of underground temperature downwards in various localities of dry land and under water. *In: Report of the British Association for the Advancement of Science* 1868, 510-514.

Thomson, W (Lord Kelvin) *et al*. 1869. Report of the Committee for the purpose of investigating the rate of increase of underground temperature downwards in various
localities of dry land and under water. *In: Report of the British Association for the Advancement of Science 1869*, 176-189.

Trewin, N. H., and Rollin, K. E. 2002. Geological history and structure of Scotland. *In: Trewin, N. H. (ed.). 2002. The Geology of Scotland*. The Geological Society, London, 1-25.

Westaway, R., and Younger, P.L. 2013. Accounting for palaeoclimate and topography: a rigorous approach to correction of the British geothermal dataset. *Geothermics, 48*, 31-51. https://doi.org/10.1016/j.geothermics.2013.03.009

Westaway, R., and Younger, P.L. 2016. Unravelling the relative contributions of climate change and ground disturbance to subsurface temperature perturbations: Case studies from Tyneside, UK. *Geothermics, 64*, 490-515. https://doi.org/10.1016/j.geothermics.2016.06.009

Wheildon, J., Gebski, J. S., and Thomas – Betts, A. 1985. Investigation of the UK heat flow field. *Investigation of the geothermal potential of the UK*. British Geological Survey, HMSO, Keyworth.

Younger, P. L. 1993. Possible environmental impact of the closure of two collieries in County Durham. *Journal of Chartered Institution of Water and Environmental Management, 7*, 521-531. https://doi.org/10.1111/j.1747-6593.1993.tb00881.x
Younger, P. L. 1995. Hydrogeochemistry of minewaters flowing from abandoned coal workings in County Durham. *Quarterly Journal of Engineering Geology and Hydrogeology*, 28, 101-113. https://doi.org/10.1144/GSL.QJEGH.1995.028.S2.02

Younger, P. L. 2001. Mine water pollution in Scotland: nature, extent and preventative strategies. *The Science of the Total Environment*, 265, 309–26. https://doi.org/10.1016/S0048-9697(00)00673-2

Younger, P.L. 2015. Geothermal Energy: Delivering on the Global Potential. *Energies*, 8 (10), 11737-11754. https://doi.org/10.3390/en81011737

Younger, P. L., Boyce, A. J., and Waring, A. J. 2015. Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. *Proceedings of the Geologists’ Association*, 126, 453-465. https://doi.org/10.1016/j.pgeola.2015.04.001

Younger, P.L. et al. 2015. Renewing the exploration approach for mid-enthalpy systems: Examples from northern England and Scotland. In *Proceedings of the World Geothermal Congress 2015*, Melbourne, Australia, 19–25 April 2015; p. 7.

Younger, P.L., Gluyas, J.G. and Stephens, W.E. 2012. Development of deep geothermal energy resources in the UK. *Institute of Civil Engineers Proceedings*, 165, 19-32. https://doi.org/10.1680/ener.11.00009
Younger, P. L., and Harbourne, K. J. 1995. ‘To Pump or Not to Pump’ cost-benefit analysis of future environmental management options for the abandoned Durham Coalfield. *Journal of Chartered Institution of Water and Environmental Management*, **9**, 405-415. https://doi.org/10.1111/j.1747-6593.1995.tb00958.x
Figure Captions

Fig. 1. Simplified solid geology, structure and locations of studied boreholes in Glasgow and the surrounding conurbation, with inset showing location within the Midland Valley of Scotland. Abbreviated stratigraphic units depicted here include: CPV, Clyde Plateau Volcanic Formation of the Strathclyde Group; and WMVAS, Western Midland Valley Westphalian to Early Permian Sills, further information being shown in Table 1. Normal faults, with hanging-wall ticks, are denoted thus: BF, Blythswood Fault; CF, Campsie Fault; CK, Crookston Fault; CMF, Comedie Fault; DF, Dechmont Fault; GL, Glennifer Fault; MKF, Milngavie-Kilsyth Fault; PRFZ, Paisley Ruck Fault Zone; and SF, Shettleston Fault. The co-ordinates (north and east) are in kilometres within British National Grid 100 km quadrangle NS.

Fig. 2. Borehole stratigraphy for each borehole in Table 2. Arranged west to east (left to right) across study area and correlated stratigraphically. BGS lexicon codes for each formation given in Table 1. Abbreviations of noted coal and ironstone seams and limestone bands: AV, Airdrie Virtuewell Coal; BDK, Baldernock Limestone; BK, Blackhall Limestone; CM, Calmy Limestone; DB, Dykebar Limestone; EC, Ell Coal; GCI, Garibaldi Clayband Ironstone; HB, Hollybush Limestone; HC, Humph Coal; HUR C, Hurlet Coal; I, Index Limestone; JCB, Johnstone Clayband Ironstone; KC, Kiltongue Coal; KCC, Kilsyth Coking Coal; Knott, Knott Coal; LD, Lower Drumgray Coal; LGI, Lower Garscadden Ironstone; LIL, Lillie’s Shale Coal; LY, Lyoncross Limestone; MC, Main Coal; MMC, Meiklehill Main Coal; MNHO, Main Hosie Limestone; O, Orchard Limestone; SC, Splint Coal; TH, Top Hosie Limestone; UC, Upper Coal and VC, Virgin Coal. Queenslie - 4 shows the stratigraphy of the first 441
m of the borehole which was “open hole” and not cored. Yellow ornament denotes Quaternary deposits. Data from: IGS (1978, 1980), Monro (1983), Barron and Burkin (2019), BGS online borehole viewer, UKOGL online interactive map.

Fig. 3. Borehole temperature measurements for the eight boreholes included in this study. Depth axis limited at 350 m to show datasets (Blythswood - 1, GGC01, Hallside, Hurlet, Maryhill, and South Balgray) with greater resolution. Bargeddie - 1 and Queenslie - 4 extend to respective bottom hole temperatures shown in Table 2. Data summarised in Table 2.

Fig. 4. Map of present-day land use at the locality of the Hurlet borehole. Location of historic mine entries obtained from Northern Mine Research Society and The Coal Authority shown. Borehole data shown in Table 2 and mine entry data in Table 3. Abbreviations: HUR C, Hurlet Coal; and LGI, Lower Garscadden Blackband Ironstone. The co-ordinates (north and east) are in five hundred metre intervals within British National Grid 100 km quadrangle NS.

Fig. 5. Map of present-day land use of the former Blythswood Estate in the vicinity of the Blythswood - 1 borehole, showing locations discussed in the text. LGI and UGI denote the Lower and Upper Garscadden Blackband Ironstone beds, respectively; BC, Black Cart Water and RC, River Clyde. The co-ordinates are in kilometres within British National Grid 100 km quadrangle NS.

Fig. 6. Blythswood No. 4 Pit, workings and location of Blythswood - 1 borehole (Blythswood Estate, 1871), [TD 234/54/3]. Workings digitised from Item TD 234/54/3.
of the Glasgow Archives at the Mitchell Library, Glasgow. The co-ordinates (north and east) are in one hundred metre intervals within British National Grid 100 km quadrangle NS.

Fig. 7. Map of present-day land use at the locality of the South Balgray borehole. Location of historic mine entries obtained from The Northern Mine Research Society and The Coal Authority are shown. Mineral fields mentioned in text are annotated. Borehole data shown in Table 2 and mine entry data in Table 3. Abbreviations: CSC, Cowglen Sclutty Coal; FCC, Forth and Clyde Canal; GBI, Garscadden Blackband Ironstone; GSC, Glasgow Shale Coal; KGC, Knightswood Gas Coal; LSC, Limestone Coal Formation; PMC, Possil Main Coal and RK, River Kelvin. The co-ordinates are in kilometres within British National Grid 100 km quadrangle NS.

Fig. 8. Summary historic map of South Balgray and surrounding area. Road and building features shown on map obtained from 1:10,560 County Series 1st Edition Ordnance Survey Map. Location of historic mine entries obtained from The Coal Authority shown. Borehole data shown in Table 2 and mine entry data in Table 3. Abbreviations: G1, Gartnavel No. 1 Pit; G2, Gartnavel No. 2 Pit; G5, Gartnavel No. 5 Pit; G6, Gartnavel No. 6 Pit; KGC, Knightswood Gas Coal; LGC, Lower Garscadden Coal; NB, North Balgray Old Coal Shaft; PMC, Possil Main Coal; and UGI, Upper Garscadden Ironstone. The co-ordinates (north and east) are in one hundred metre intervals within British National Grid 100 km quadrangle NS. Historic map data: © Crown Copyright and Landmark Information Group Limited (2019). All rights reserved. (1864, 1865).
Fig. 9. Map of present-day land use at the locality of the Queenslie - 4 borehole. Location of historic mine entries obtained from Northern Mine Research Society and The Coal Authority shown. Borehole data shown in Table 2 and mine entry data in Table 3. Location and extent of Queenslie and Garthamlock Collieries obtained from 1:10,560 County Series 3rd Revision Ordnance Survey Map. The co-ordinates (north and east) are in five hundred metre intervals within British National Grid 100 km quadrangle NS. Historic map data: © Crown Copyright and Landmark Information Group Limited (2019). All rights reserved. (1935, 1937, 1946, 1947).

Fig. 10. Historic map and present-day land use map at the locality of the Hallside BGS borehole, showing proximity of the former Hallside Colliery (closed in 1921). The co-ordinates are in one hundred metre intervals within British National Grid 100 km quadrangle NS. Historic data: © Crown Copyright and Landmark Information Group Limited (2019). All rights reserved. (1914).

Fig. 11. Schematic log of the Hallside Borehole [NS 66930 59740] showing summary stratigraphy including seams worked at the Hallside Colliery (depths from the log of the Hallside Colliery bore [NS 66960 59680]): Abbreviations: BH, Bottom Hole; EC, Ell Coal; HC, Humph Coal; MC, Main Coal; PC, Pyotshaw Coal; SC, Splint Coal; UC, Upper Coal and VC, Virgin Coal. Yellow ornament denotes Quaternary deposits. Q0 denotes the heat flow below mine workings, Q1 denotes the heat flow above mine workings, T1 denotes the deepest temperature measurement in the borehole and T0 denotes the surface air temperature.
Fig. 12. Map of present-day land use at the locality of the Maryhill borehole. Location of historic mine entries obtained from The Coal Authority shown. Borehole data shown in Table 2 and mine entry data in Table 3. Abbreviations: CSC, Cowglen Sclutty Coal; EP, Eastpark; FCC: Forth and Clyde Canal; G-B, Gartnavel-Balgray; GSC, Glasgow Shale Coal; KGC, Knightswood Gas Coal; LGC, Lower Garscadden Clayband Ironstone; LSC, Limestone Coal Formation; PMC, Possil Main Coal; R4, Ruchill No. 4; R6, Ruchill No. 6. and RK, River Kelvin. The co-ordinates (north and east) are in five hundred metre intervals within British National Grid 100 km quadrangle NS.

Fig. 13. Map of present-day land use at the locality of the Bargeddie - 1 borehole. Location of historic mine entries obtained from Northern Mine Research Society and The Coal Authority shown. Borehole data shown in Table 2 and mine entry data in Table 3. The co-ordinates (north and east) are in five hundred metre intervals within British National Grid 100 km quadrangle NS.

Fig. 14. Schematic log of the GGC01 Borehole [NS 60915 63109] showing summary stratigraphy including seams worked in the GGERFS area. Abbreviations: AV, Airdrie Virtuewell Coal; BH, Bottom Hole; EC, Eli Coal; HC, Humph Coal; KC, Kiltongue Coal; MC, Main Coal; SC, Splint Coal and UC, Upper Coal. Yellow ornament denotes Quaternary deposits. Q0 denotes the heat flow below mine workings, Q1 denotes the heat flow above mine workings, T1 denotes the deepest temperature measurement in the borehole and T0 denotes the surface air temperature.
Table 1. Generalized stratigraphic column

Formation	Code	Age	Description	Thickness (m)	Glasgow	Airdrie
Scottish Coal Measures Group (CMSC; Carboniferous; Westphalian)						
Upper Coal Measures Fm	UCMS	Bolsovian – Westphalian D	Sst, Slst, Mdst, Strk and C’s, mostly reddened	85-100		270
Middle Coal Measures Fm	MCMS	Duckmantian	Sst, Slst, Mdst, Lst, C’s and Strk’s	160	160-200	
Lower Coal Measures Fm	LCMS	Langsettian	Sst, Slst, Mdst, Strk and C’s	100	100-160	
Clackmannan Group (CKN; Carboniferous; latest Visean and Namurian)						
Passage Fm	PGP	Arnsbergian – Langsettian	Mainly Sst and fireclays	85	75-200	5
Upper Limestone Fm	ULGS	Pendleian – Arnsbergian	Sst, Dlst, Mdst, marine Lst, C’s and Strk’s	250-285	120-300	5
Limestone Coal Fm	LSC	Pendleian	Sst, Slst, Mdst, Lst, C’s and Strk’s	270-340	300-360	
Lower Limestone Fm	LLGS	Brigantian – Pendleian	Sst, Slst, Mdst, marine Lst, with thin C’s	60-180	100-210	
Strathclyde Group (SYG; Carboniferous; Visean)						
Lawmuir Fm	LWM	Brigantian	Mainly Sst, with Slst, Mdst, Lst, C’s and Strk’s	0-330	0-200	5
Kirkwood Fm	KRW	Asbian – Brigantian	Tuffaceous Mdst and tuffs	0-35	0-35	5
Clyde Plateau Volcanic Fm	CPV	Chadian – Asbian	Basalt, with tuffs and volcanoclastic sediments	300-500	400-900	7
Inverclyde Group (INV; Carboniferous; Tournaisian and earliest Visean)						
Clyde Sandstone Fm	CYD	Chadian	White Sst, part pebby, part concretionary	0-60	0-100	5
Ballagan Fm	BGN	Courceyan – Chadian	Mdst and thin dolomitic Lst (cementstones)	130-245	20-170	5
Kinnesswood Fm	KNW	Courceyan	Red and white Sst, and pedogenic Lst (cornstones)	75-250	150	
Stratheden Group (SAG; Upper Devonian)						
Stockiemuir Sandstone Fm	SCK	Upper Devonian	Red and grey-purple cross-bedded Sst	400		35

This table, based on information from Forsyth et al. (1996) and Hall et al. (1998), lists the modern BGS stratigraphic terminology for the study area, which supersedes earlier versions. The basal part of the Kinnesswood Formation might date from the uppermost Devonian (Frasnian stage). (1) Forsyth & Brand (1986); (2) Forsyth (1979); (3) Hall et al. (1998); (4) Barnhill borehole, IGS (1978); (5) Forsyth et al. (1996); (6) Forsyth (1982); (7) Monaghan (2014). Abbreviations: C, Coal; Ist, Ironstone; Lst, Limestone; Mdst, Mudstone; Sst, Siltstone; Sst, Sandstone; Strk, Seatrock.
Table 2. Borehole data

Name	NGR	BGS REF	Date₁	Height² (m)	Z₃ (m)	Z₁ (m)	Z₂ (m)	T (°C)	Q (mW m⁻²)	Type₅	Ref₆
Blythswood	NS 50030 68230	NS56NW58	1868.01	2	117.4	18	105	12	52	EQM	A,B,C
South Balgray	NS 55780 67810	NS66NW369	1869.07.13	30	320.61	0	137	15.3	64	EQM	A,B,C
Queenslie	NS 64640 65975	NS66NW326	1952	77.6	732.58	0	691	36	-	BHT	A,C
Halside	NS 66930 59740	NS65NW66	1976.04.26	54.22	351.65	0	350	11.8	-	LOG	C,D
Hurllet	NS 51110 61230	NS66NW333	1979.5.18	30.31	304.3	95	295	-	60	-	C,D
Maryhill	NS 57178 68558	NS66NE1755	1983.12.18	40	306.5	100	303	20.03	63	EQM	C,D
Bargeddie	NS 69318 64649	NS66SE415	1989.08.13	78	1043.6	0	1043.6	39	-	DST	D,E
GGC01	NS 60915 63109	NS66SW3754	2018.12.12	9.66	199	0	196.8	14	-	LOG	F

(1) Date corresponds to date of last temperature measurement. If not stated, then taken as the same as the date that drilling concluded. (2) Height (m) above sea level taken from borehole log. (3) Z is depth of well bottom taken from borehole log. (4) Z₁ to Z₂ is the depth range over which BGS have measured heat flow Q. For boreholes where Q not measured, Z₂ also corresponds to depth of deepest temperature measurement. (5) Type of measurement. BHT: bottom hole temperature measurement; DST: drill stem test; EQM: equilibrium measurement; LOG: log temperature. (6) References denote: A: BGS borehole log; B: Thomson et al. (1869); C: Burley et al. (1984); D: Previously unpublished data provided from BGS within the BritGeothermal research partnership, now published in Busby (2019); E: UK Onshore Geophysical Library; F: Starcher et al. (2019).
Table 3. Hurlet thermal conductivity values

	Mdst	Sst	Slst	Coal	Lst	Ist	Strk	Basalt	Volc. Det
k (W m\(^{-1}\) C\(^{-1}\))	1.40\(^1\)	4.71\(^2\)	3.02\(^2\)	0.4\(^3\)	2.85\(^4\)	2.85\(^4\)	2.42\(^2\)	2\(^2\)	2.35\(^2\)

(1) Bullard & Niblett (1951); (2) Oxburgh (1982); (3) Herrin & Derning (1996); (4) England et al. (1980). Abbreviations: Mdst, Mudstone; Sst, Sandstone; Slst, Siltstone; Lst, Limestone; Ist, Ironstone; Strk, Seatrock; Volc. Det, Volcanic Detritus.
Table 4. \textit{Mine entries near borehole locations}

Mine Name	BNG Ref	Mineral Worked	Open	Abandonment
Bargeddie	NS 69975 64265	Coal	1854	1920
Hallside	NS 66935 59675	Coal	1873	1921
Kelvinside	NS 57605 67705	Coal	1854	1870
Queenslie	NS 65770 65370	Coal, Fireclay	1908	1935
Garthamlock	NS 65745 66220	Coal	1854	1935
Balgray	NS 55715 68168	Coal	1873	1880

\textit{Summarised from Northern Mine Research Society (2018)}
Name	Mineral Worked	Seam Name and Working Date	Abandonment Date
Bargeddie	Coal	UC, MC, PC, SC (1860,62), VC, KC (1870, 97)	1921.10.14
Blythswood	Ironstone	BI, CI	1875.04.26
Hallside	Coal	UC, EC, PC, MC, SC, VC	1921.12.31
Hurlet	Coal	HUR C (1840)	-
Hurlet Ironstone	Worked 1849 and 1854		-
Hurlet Limestone	Worked 1865		-
Ruchill No. 4, 6	Ironstone	CCI (1864), GCI (1872)	-
Queenslie	Coal	VC	1929.05.28
Queenslie No. 1, 2	Coal	VWC	1911.07.28
Balgray	Ironstone	BI (1866)	Prior to 1880
Balgray; Gartnavel Nos. 1, 3-10	Coal	DC, MC, GC	Prior to 1880
Balgray; Gartnavel Nos. 1, 3-10	Ironstone	BI, CI	Prior to 1880
Gartnavel, No. 1	Ironstone	Worked 1872	-
Gartnavel, No. 9	Coal	WC	1874.09.18
Gartnavel, Nos. 1, 2	Ironstone	BI, GCI (1873)	-
Gartnavel, Nos. 1, 3, 4, 5, 6, 8	Coal	GC, MC (1873)	-
Gartnavel, Nos. 1, 3, 4, 5, 6, 8	Ironstone	BI, GCI (1869)	-

Summarized from *Mines Department (1931)*. Abbreviations of noted coal and ironstone seams and limestone bands: BI, Blackband Ironstone; CCI, Californian Clayband Ironstone; CI, Clayband Ironstone; DC: Davie Coal; EC, Ell Coal; GC, Gas Coal; GCI, Garibaldi Clayband Ironstone; HUR C, Hurlet Coal; KC, Kiltongue Coal; MC, Main Coal; PC, Pyotshaw Coal; SC, Splint Coal; UC, Upper Coal; VC, Virgin Coal; VWC, Virtuewell Coal; WC, Wee Coal.
Table 6.

	Mdst	Sst	Slst	Coal	Lst	Cgl	Strk	Clay	Sand
k (W m⁻¹ C⁻¹)	1.40¹	4.90²	2.22³	0.40⁴	2.85²	2.92⁵	1.83⁶	1.11⁷	0.77⁷

(1) Bullard & Niblett (1951); (2) England et al. (1980); (3) Downing & Gray (1986); (4) Herrin & Derning (1996); (5) Westaway & Younger (2016); (6) Benfield (1939); (7) Gale (2004). Abbreviations: Mdst, Mudstone; Sst, Sandstone; Slst, Siltstone; Lst, Limestone; Cgl, Conglomerate; Strk, Seatrock.
