Closed-loop insulin delivery: update on the state of the field and emerging technologies

Julia Ware and Roman Hovorka

Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK; Department of Pediatrics, University of Cambridge, Cambridge, UK

ABSTRACT

Introduction: Over the last five years, closed-loop insulin delivery systems have transitioned from research-only to real-life use. A number of systems have been commercialized and are increasingly used in clinical practice. Given the rapidity of new developments in the field, understanding the capabilities and key similarities and differences of current systems can be challenging. This review aims to provide an update on the state of the field of closed-loop insulin delivery systems, including emerging technologies.

Areas covered: We summarize key clinical safety and efficacy evidence of commercial and emerging insulin-only hybrid closed-loop systems for type 1 diabetes. A literature search was conducted and clinical trials using closed-loop systems during free-living conditions were identified to report on safety and efficacy data. We comment on emerging technologies and adjuncts for closed-loop systems, as well as non-technological priorities in closed-loop insulin delivery.

Expert opinion: Commercial hybrid closed-loop insulin delivery systems are efficacious, consistently improving glycemic control when compared to standard therapy. Challenges remain in widespread adoption due to clinical inertia and the lack of resources to embrace technological developments by health care professionals.

1. Introduction

1.1. Type 1 diabetes and the need for automated insulin delivery

Type 1 diabetes is an immune-mediated, chronic, incurable condition characterized by insulin deficiency and resultant hyperglycemia, necessitating lifelong insulin replacement [1]. More than 9 million people, including children, are living with the condition worldwide [2]. Whilst treatable, it is associated with significant short- and long-term complications as well as reduced life expectancy [3,4]. Additionally, the high management burden associated with type 1 diabetes increases the risk of developing psychological problems, in turn impacting glycemic control and quality of life [5]. Maintaining tight glycemic control reduces the risk of developing complications [3], but is challenging to achieve, mainly due to the risk of low blood glucose levels (hypoglycemia) with intensive insulin therapy. Thus, the majority of people with type 1 diabetes struggle to meet glycemic targets, or only achieve targets at the expense of high management burden [6–8].

Over the last decade, significant therapeutic advances have been made in the form of rapid and ultra-rapid insulin analogues [9], as well as in the form of diabetes technology including insulin pumps and continuous glucose monitoring (CGM) devices. Both insulin pumps and CGM devices have been shown to improve glycemic control [10] and reduce the risk of dangerously high and low blood glucose levels [11]. However, these devices require significant user-input and frequent insulin dosing adjustments for optimal glucose control. This is challenging as glucose levels are influenced by many different factors causing significant day-to-day variability in insulin requirements [12]. Combining CGM and insulin pump use, i.e. sensor-augmented pump therapy, affects modest improvements in HbA1c in those with high sensor wear time [13–16], but does not reduce management burden [17]. To address these issues, the notion of glucose-responsive automated insulin delivery, where CGM data informs insulin delivery via an algorithm, was proposed. Initial systems addressed the risk of hypoglycemia by automatically suspending insulin delivery when glucose levels fell below a pre-specified threshold but did not address high glucose levels [18–20]. Following on from this, algorithms progressed to addressing high glucose levels by delivering small correction boluses, but these systems did not modulate insulin delivery continuously [21]. Finally, more complex algorithms adjusting insulin delivery up and down automatically in response to real-time sensor glucose levels were developed, more closely replicating normal physiology.

1.2. The arrival of closed-loop systems and effect on clinical practice

In all hybrid closed-loop systems a computer algorithm uses real-time sensor glucose levels to calculate the dose of insulin...
required to bring glucose levels to a pre-specified target, and automatically directs delivery from the insulin pump. Users are required to manually administer insulin boluses at mealtimes, but the majority of management decisions become automated. Since the approval of the first hybrid closed-loop system in 2016 [22], the pace of new developments and release of new systems has been unprecedented. Between North America and Europe, six systems are currently licensed [23,24]. Clinical trial data universally shows improvements in glycemic control and quality of life across different systems in a wide range of age-groups [25–32],[33] Over the last five years, more people with type 1 diabetes have started using hybrid closed-loop therapy, and available real-world data appears promising in terms of its positive impact on glycemic control and quality of life, particularly with newer and second-generation systems [34,35]. In view of these fast-paced developments, navigating different systems can be challenging for people with type 1 diabetes, their families and healthcare professionals alike. Developments are at risk of outpacing healthcare professionals’ capacity to educate themselves and their patients, and providing sufficient and easily accessible educational resources has become key in enabling access to this novel therapy. To this end, educational tools such as the CARES paradigm have been developed, providing a practical framework to identify key similarities and differences between closed-loop systems [36]. Additionally, experts in the field have published practical advice in terms of patient selection, expectation setting and basic closed-loop education requirements to further support and guide healthcare professionals [37].

1.3. Scope of this review

In this review article, we aim to provide an update on safety and efficacy of commercialized and emerging insulin-only closed-loop systems for people with type 1 diabetes, following on from our 2020 review [38]. We comment on emerging technologies and adjuncts to improve closed-loop system performance, as well as non-technological priorities in closed-loop insulin delivery. A search of the existing literature was conducted via PubMed and Google Scholar. Keywords included were ‘type 1 diabetes,’ ‘closed-loop,’ ‘artificial pancreas,’ ‘insulin’ and ‘clinical trial.’ Further studies were identified from cited articles. Our search was restricted to reports published in English in the last 10 years. Only clinical trials assessing at-home use of closed-loop therapy were used to report on safety and efficacy data.

2. The devices behind closed-loop

All closed-loop systems consist of three components: (1) a continuous glucose monitoring system measuring interstitial glucose at regular intervals, (2) a control algorithm, which can be integrated into an insulin pump or reside on a handheld device or smartphone application, and (3) an insulin pump with the ability to continuously deliver insulin (Figure 1). At present, all commercialized systems for type 1 diabetes are ‘hybrid’ systems, meaning they require users to count carbohydrates and administer an insulin bolus at mealtimes to achieve optimal outcomes.

2.1. Continuous subcutaneous insulin infusion pumps

Continuous subcutaneous insulin infusion (CSII) therapy is administered via insulin pumps, which are programmable, battery-operated devices with the ability to deliver rapid or ultra-rapid acting insulin into the subcutaneous tissue via teflon or steel catheters at pre-programmed rates with user-initiated meal-time boluses [39]. Insulin pumps are able to deliver very small amounts of insulin (as little as 0.01 units), enabling the user to give a bolus for small snacks without the need for additional injections, and allowing for greater dosing flexibility in the event of changing insulin sensitivity seen with exercise, illness or early morning insulin resistance [39]. A wide variety of pumps are commercially available, with tethered pumps using a separate cannula and tubing for insulin infusion in contrast to patch pumps, where infusion sets are embedded in the pump itself. Since the early 2000s insulin delivery.
pump use has increased exponentially, and roughly 50% of people with type 1 diabetes in Germany and Austria and just over 60% in the USA are using pump therapy, with even higher numbers in the youngest age-groups [40]. Insulin pump use is associated with improvements in glycemic control compared to multiple daily injections [41], however management burden remains high.

2.2. Continuous glucose monitoring devices

The first continuous glucose monitoring (CGM) devices became commercially available in the early 2000s [42]. CGM systems consist of a subcutaneously placed, disposable sensor measuring glucose concentration in the interstitial fluid approximately every 5 minutes, and a transmitter that sends values to a receiver or mobile device. This provides near real-time glucose measurements, including data on direction and rate of change of glucose levels via pictorial arrows, aiding therapeutic decision making. CGM performance is measured as the mean absolute relative difference (MARD) compared to YSI (Yellow Springs Instrument, OH, USA) reference values. Commercially available CGMs have a MARD of 10% or lower, which is comparable to the majority of blood glucose meters [21,43]. There are two main types of continuous glucose monitoring devices: intermittently viewed CGM (iCGM), also known as ‘flash glucose monitoring,’ and real-time CGM (rtCGM) [43]. Closed-loop systems require use of real-time CGM, some of which require regular fingerprick calibrations, whereas others are factory-calibrated [42]. Currently only one CGM system is licensed to be inter-operable with multiple closed-loop systems [44]. The use of any type of CGM has increased in recent years, but remains lower than insulin pump use [40]. Real-time CGM use has been associated with improvements in glycemic control in all but the youngest age-groups [45–48], and additionally has been shown to reduce the risk of severe hypoglycemia and diabetic ketoacidosis [11,49].

2.3. Closed-loop control algorithms

There are three main types of closed-loop algorithms used in commercialized systems: proportional-integral-derivative (PID) controllers, model predictive control (MPC) controllers and fuzzy logic controllers. PID controllers direct insulin doses based on the difference from target glucose at the current time point (proportional component), the rate of change in sensor glucose over time (derivative component) and the area under the curve between measured and target glucose levels including memory of prior controller-induced changes (integral component) [21]. All three components are weighted with a multiplier, which may be pre-determined or adjusted over time, and subsequently added together to inform modification of insulin delivery. MPC algorithms predict future glucose levels and make adjustments to insulin delivery at regular time intervals based on sensor glucose levels, boluses given, carbohydrate and exercise data, simultaneously taking into account insulin absorption delays, active insulin, and diurnal and post-prandial variability in glucose levels [21]. The fuzzy logic approach uses rules imitating diabetes practitioners’ reasoning to regularly adjust insulin delivery based on the rate of change and acceleration of sensor glucose levels [50]. Similar to PID and MPC controllers it uses safety modules to limit insulin delivery to avoid hypo- and hyperglycemia.

3. Clinical and real-world efficacy of commercial and emerging insulin-only closed-loop systems

After more than a decade of development and clinical trials, with initial safety studies in the inpatient setting [51–55], followed by supervised camp studies and progressing to overnight and 24-hour outpatient studies in children and adults [21,56–65], hybrid closed-loop therapy has become a clinical reality and is gradually changing clinical practice. All available systems are similar in basic principle, but differ in terms of algorithm, hardware components and functionality (Table 1). Here, we review both clinical trial and where available real-world safety and efficacy data of commercially available hybrid closed-loop systems, as well as those systems that have published clinical trial evidence, but are awaiting regulatory approval (Tables 2 and 3). Closed-loop related glycemic outcomes are primarily measured as time with sensor glucose in the target range 3.9 to 10.0 mmol/L (70 to 180 mg/dL), time in hypoglycemia (sensor glucose <3.9 mmol/L or <70 mg/dL) and HbA1c [66]. It is important to note that comparisons between different closed-loop systems are hampered by differences in study design, frequency of visits and baseline characteristics, and should therefore be interpreted cautiously.

3.1. Medtronic 670 G HCL and 780 G AHCL systems

The first commercially available hybrid closed-loop system in both the USA and Europe was Medtronic’s 670G Hybrid Closed-Loop (HCL) system in 2016 (Medtronic, Northridge, CA, USA) [67]. It is licensed from age 2 years and over in the USA (updated 770G HCL system), and age 7 years and over in Europe. The system includes the 670G insulin pump with integrated PID algorithm including insulin feedback with adaptive insulin limits, which receives glucose sensor data from the Guardian 3 sensor. When the closed-loop algorithm is active, this is referred to as ‘Auto Mode.’ The Guardian 3 sensor requires a minimum of 2 fingerprick calibrations per day to remain in Auto Mode. In Auto Mode basal insulin delivery is automatically adjusted every 5 minutes based on sensor glucose values, irrespective of pre-set basal rates. The algorithm ‘learns’ based on the total daily insulin requirements of the preceding 5–7 days as well as estimating fasting glucose and the plasma insulin concentration at the time of fasting. The treat-to-target algorithm has a non-adjustable glucose target of 6.7 mmol/L and includes an optional activity mode called ‘Temp target,’ which raises the target to 8.3 mmol/L. In the USA, the 770G system connects to a mobile app with remote glucose data viewing capability and automatic cloud upload. Remote data viewing is not available for the 670G HCL system.

Two large randomized controlled studies comparing 670 G HCL to usual care (either multiple daily injections or pump therapy) over 6 months have been conducted in 135 adolescents and 120 adults [32,68]. Adults using the 670G HCL system had a greater improvement in time in target range of
15 percentage points, compared to 7 percentage points in adolescents and young adults using the system, but both groups had a significant reduction in hypoglycemia compared to control. The greater improvement in time in range seen in the adult study may be related to higher closed-loop usage of 89%. There were 15 severe hypoglycemia events in the adult study (8 in closed-loop and 7 in control group), with no severe hypoglycemia or DKA events in the adolescents. A 4-month crossover study in 30 older adults (60+ years) comparing 670G HCL with sensor-augmented pump therapy showed a modest improvement in time in range of 6 percentage points with a significant reduction in time in hypoglycemia [69]. Five severe hypoglycemia events (3 in closed-loop and 2 in control group) and one DKA event in the control group were reported. Improved glycemic outcomes were also seen with the 670G HCL system for 38 children aged 2–6 years and 7–14 years compared to sensor-augmented pump therapy over 8 weeks [70]. Time in range improved significantly in both age-groups, although the mean difference was smaller at 6% in the youngest age-group (vs 14% in older children), with no difference in HbA1c outcomes for the very young children. No severe hypoglycemia or DKA events occurred in this study.

Real-world data from the 670G HCL system has shown that Auto Mode use declines significantly over time with a high rate of closed-loop therapy discontinuation. Two prospective observational studies, one over 12 months in children and
adults and another over 6 months in children and young adults (age 2–25 years) [71,72], showed a significant correlation between higher Auto Mode use and lower HbA1c. Auto Mode use declined steadily over time throughout both studies, and around one-third of participants discontinued closed-loop, with children and adolescents most likely to stop using Auto Mode. High frequency of required sensor calibrations and frequent Auto Mode exits were the main reasons for discontinuing closed-loop therapy.

The development of the 780G Advanced Hybrid Closed-Loop (AHCL) system addressed some of these important usability issues. The PID algorithm including insulin feedback with adaptive insulin limits remains embedded on the 780G pump, and includes added model-based autocorrections. The AHCL system can be used with the Guardian 3 sensor, but fewer fingerprick calibrations are required, or with the Guardian 4 sensor, which is self-calibrated and does not require any further routine calibrations. The AHCL system administers automatic correction boluses and glucose targets are customizable (5.1 mmol/L, 5.6 mmol/L or 6.7 mmol/L for the 24-hour period). Remote glucose data viewing and automatic cloud upload are available.

Two randomized crossover studies have evaluated the 780G AHCL system, one 3-month study comparing it to the
Table 3. Key real-world and qualitative studies of closed-loop insulin delivery using commercialized systems.

Type of study	Population	Study duration	CL system	Main findings	Key reference
Real-world studies					
Prospective observational	N = 79	12 months	670G HCL	• CL use declined from median 82% at 1 week to 17% at 12 months	
• 46% of participants stopped using CL by 12 months					
• Utilization of CL correlated with improved glycemic control	Lal 2019 [72]				
Retrospective observational	N = 7813	12 months	Control IQ	• CL use was high at median 94% over the entire 12-month period	
• TIR was 74%, TBR was 1% and GMI 6.9% at 12 months					
• TIR was lower in children and adolescents (65%) compared with adults (≥73%)					
• Those with sub-optimal baseline glycemic control had larger increases in TIR at 12 months	Breton 2021				
Prospective observational	N = 1425	2 months	Control IQ	• CL use was high at median 96% at 2 months	
• TIR was 77% and TBR 1.2% at 2 months					
• Sleep activity was used 33% of the time	Pinsker 2021				
Prospective observational	N = 558	6 months	Loop DIY	• CL use was median 83%	
• TIR consistent at 73% and TBR at 3%, mean HbA1c 6.5%					
• 14% stopped providing data, of which 3% officially discontinued					
• 51 severe hypoglycemia events [18.7 per 100 person years]	Lum 2021				
Retrospective observational	N = 12,870	6 months	780G AHCL	• CL use was high at median 92% across age-groups	
• TIR was sustained at 74% in children (n = 790) and at 78% in adults (n = 1642) over 6 months	Arrieta 2022				
Qualitative studies					
Interviews	N = 16	Part of 4-week RCT	CamAPS FX	• Improved glucose control giving peace of mind with CL	
• More flexible lifestyle and better sleep with CL					
• Device problems, particularly connectivity issues, were seen as burdensome	Farrington 2018 [128]				
Interviews	N = 39	Part of 4-year RCT: after first 12 months of CL use	CamAPS FX	• Little family conflict about food/checking glucose levels with CL	
• Leading a ‘normal’ life and fitting in with peers with CL					
• Increased independence incl time away from home with CL					
• Concerns about visibility of devices on body and alarms in public	Rankin 2021 [125]				
Questionnaires	N = 135	Part of 6-month RCT	670G HCL	• Improved diabetes-specific quality of life with CL	
• No difference in diabetes distress or hypoglycemia fear between CL and usual care	Abraham 2021 [32]				
Questionnaires	N = 113	Part of 3-month RCT	780G AHCL	• No significant differences across any PROs	
• Reduction in emotional and behavioral burden subscales of the diabetes distress questionnaire with AHCL	Hood 2021 [133]				
Questionnaires	N = 101	Part of 4-month RCT + 3-month extension	Control IQ	• No significant differences across any PROs at the end of 4 months or the end of the extension phase	Cobry 2021 [130]
Questionnaires	N = 168	Part of 6-month RCT	Control IQ	• Reduction in hypoglycemia fear with CL at 6 months	
• Improved confidence in managing hypoglycemia with CL					
• High system usability scores with high perceived benefit with CL	Kudva 2021 [134]				
Interviews	N = 33	Part of 4-month RCT	CamAPS FX	• Parents reported initial apprehension about using CL and required a period of time to adjust to and trust the CL system	
• CL reduced management burden with more ‘normality’
• Better sleep, less distress for child, more time for siblings, and more able to outsource care with CL
• Particular benefit to bolusing from a smartphone
• Device size and connectivity issues can be problematic | Kimbell 2022 [106]|

[CL – closed-loop. HCL – hybrid closed-loop. TIR – time in range (3.9–10.0 mmol/L). TBR – time below range (<3.9 mmol/L). GMI – glucose management indicator (estimated HbA1c). HbA1c – glycated hemoglobin. AHCL – advanced hybrid closed-loop. RCT – randomized controlled trial.]
670G HCL system in 113 adolescents and young adults, and a shorter 4-week study comparing it to the 670G with predictive low glucose management (PLGM) in 60 children and adults [31,73]. In both studies glycemic outcomes favored the AHCL system. There were fewer Auto Mode exits with the AHCL system, and in accordance with this median closed-loop usage was higher than with the 670G HCL system. One severe hypoglycemia event occurred in the AHCL period in the 3-month study, and one DKA event occurred in the control arm of the 4-week study. Real-life retrospective observational data from more than 4,000 users of 780G AHCL showed that over a mean follow-up duration of 54 days, mean time in range was 76% and closed-loop usage 94%, with 1 Auto Mode exit per week and 3.4 fingerpricks performed per day, suggesting improved usability of this next-generation system [35]. A longer retrospective analysis of real-world data of more than 12,000 pediatric and adult users over 6 months showed similar outcomes sustained over the 6-month period [74].

3.2. Tandem Control-IQ

The Control-IQ System (Tandem Diabetes Care, San Diego, CA, USA), is licensed from age 6 years and up in both Europe and the USA. The MPC algorithm is embedded in the t:slim X2 insulin pump and pairs with the factory-calibrated Dexcom G6 (Dexcom, San Diego, CA, USA) glucose sensor. When closed-loop is active, the algorithm adjusts insulin delivery by increasing, decreasing or suspending pre-set basal rates and administering automated correction boluses when glucose is >10.0 mmol/L, using total daily insulin requirements to scale these adjustments. There is no ‘learning’ component within the algorithm at present. The algorithm is treat-to-range (6.2 to 8.9 mmol/L, non-adjustable) with optional ‘sleep mode’ (lowers target range to 6.2 to 6.7 mmol/L and prevents automated corrections) and ‘activity mode’ (raises target range to 7.8 to 8.9 mmol/L). Glucose data can be viewed remotely via the Dexcom Follow app, but remote viewing is not yet available for any insulin data. In the USA, the t:connect app now allows automatic data upload into the cloud and allows users to view pump data and deliver boluses from their smartphone.

There have been two large parallel randomized controlled trials in the USA comparing closed-loop therapy using Control-IQ with sensor-augmented pump therapy, a 4-month study in 101 children aged 6 to 13 years and a 6-month study in 168 adolescents and adults (age 14+ years) [27,30]. Both studies showed improvements in time in target range of 11 percentage points with closed-loop, with additional significant reductions in HbA1c and time in hypoglycemia in the 6-month study. Median closed-loop usage was 90% or higher in both studies, suggesting good longer-term usability of this system. There were no severe hypoglycemia or DKA events in the pediatric study, and one DKA event in the closed-loop group in the 6-month study. The children’s study included a 12-week extension phase where all participants used closed-loop, and showed that improvements in time in range were sustained over the full 28-week study period [75]. A European study comparing 24/7 to overnight-only use of Control-IQ in 120 prepubertal children aged 6 to 12 years showed higher time in target range and lower mean glucose levels with 24/7 closed-loop therapy, but there was no significant difference in HbA1c or time in hypoglycemia between 24/7 and overnight-only closed-loop use [76]. This supports the idea that, particularly in children, the benefits of closed-loop therapy are most pronounced overnight. Importantly, the improvements in time in range were maintained during the 18-week extension phase. One severe hypoglycemia and one DKA event occurred during the study, both while closed-loop was not activated. A 13-week study with optional extension phase comparing Control-IQ with sensor-augmented pump therapy is under way in very young children aged 2–5 years (NCT04796779).

A retrospective analysis of 12 months of data from real-world users (age 6 years+) of the system included more than 9,000 users, 80% of which had type 1 diabetes [34]. Median closed-loop use was sustained at 94% with mean time in range of 74% and time in hypoglycemia of 1%, all of which remained stable over the 12-month period. Closed-loop use was similarly high at 96% with mean time in range of 79% in a shorter 2-month prospective study of 1,435 users aged 14 years and older [77]. These data are promising in terms of the feasibility and benefits of longer-term clinical use of hybrid closed-loop therapy.

3.3. CamAPS FX

CamAPS FX (CamDiab, Cambridge, UK) is an inter-operative hybrid closed-loop app with an embedded MPC algorithm developed at the University of Cambridge. Unlike other systems, the algorithm resides on a smartphone Application (presently Android only) and has the potential to be used with any insulin pump and CGM. It is licensed from age 1 year and in pregnancy in Europe. At present, CamAPS FX links to the following pumps: Dana RS and Dana-i (Sool Development, Seoul, Korea), and YpsOmp (Ypsomed Holding, Burgdorf, Switzerland). The app pairs with the factory-calibrated Dexcom G6 CGM. The algorithm is treat-to-target, which is adjustable in 0.1 mmol/L increments from 4.4 to 11.0 mmol/L in up to 48 timeblocks throughout the 24-hour period. When closed-loop is active in ‘Auto mode,’ the algorithm automatically adjusts insulin delivery every 8–12 minutes based on CGM values, irrespective of pre-programmed basal rates. The algorithm is highly adaptive and incorporates information on total daily insulin requirements, as well as diurnal and post-prandial insulin requirements, into its calculations. The app includes the optional ‘Ease-off’ mode (raises personal glucose target and reduces insulin delivery) and ‘Boost’ mode (intensifies insulin delivery with automatic cessation if glucose drops below target). Glucose and insulin data can be viewed remotely using the Diasend app (Glooko, Mountain View, CA, USA), with optional text alerts and automatic data upload to the cloud. The app allows bolusing directly from the smartphone.

Several longer-term randomized controlled trials show the CamAPS FX algorithm to be safe and effective across a wide range of populations. Two studies have evaluated the system in those with suboptimal glycemic control, one 12-week study in 86 children, adolescents and adults (6 years+; baseline HbA1c >58 mmol/mol) comparing closed-loop to sensor-
augmented pump therapy and one 6-month study in 133 children and adolescents aged 6–18 years (baseline HbA1c >53 mmol/mol) comparing closed-loop to standard pump therapy [33,78]. In both studies, outcomes favored closed-loop across all glycemic metrics with an increase in time in range of 11 percentage points in the 12-week study, and 15 percentage points in the 6-month study for those participants using CamAPS FX with the Dana pump and Dexcom G6 hardware. There was one DKA event in the 12-week study in the closed-loop group secondary to infusion set failure, and no severe hypoglycemia events. In the 6-month study there were a higher number of severe hypoglycemia events (4 in closed-loop, 3 in control). There were two DKA events in the closed-loop group, Auto mode was not activated at the time of the events.

CamAPS FX has also been trialed in vulnerable cohorts, including in pregnancy, in very young children and in older adults. A feasibility study in pregnancy including 16 participants evaluated overnight closed-loop compared to sensor-augmented pump therapy over 4 weeks with an extension phase using 24/7 closed-loop up to 16 weeks [79]. Time in the tighter target range of 3.5 to 7.8 mmol/L was significantly higher during closed-loop use, both overnight only and during the extension phase. One severe hypoglycemia event occurred during sensor-augmented pump use. A larger parallel randomized study in pregnancy comparing CamAPS FX with standard therapy is under way (NCT04938557). Hybrid closed-loop therapy also led to significant improvements in glycemic control compared to sensor-augmented pump therapy over 4 months in 74 very young children aged 1 to 7 years and 37 older adults aged 60+ years, with time in range 9 percentage points higher with closed-loop in both studies [25,26]. Closed-loop usage was high at ≥95%. One severe hypoglycemia event occurred during closed-loop use in the very young children, where parents failed to respond to overnight alarms, and two severe hypoglycemia events occurred during sensor-augmented pump use in the older adults. No DKA events occurred in either study.

Little real-world data for CamAPS FX is available at present. A case report of two young children using the system from onset of type 1 diabetes, one with diluted insulin, showed promising outcomes in this particularly challenging age-group [80]. In a 3-month prospective observational study of 39 children and young people (age 2 to 18 years), where 9% used CamAPS FX, closed-loop use was associated with improvements in glycemic and quality of life measures [148].

3.4. Diabeloop DBLG1 system

The Diabeloop hybrid closed-loop system (Diabeloop, Grenoble, France) consists of the inter-operable DBLG1 MPC algorithm residing on a locked handset. The algorithm is commercially available in Europe with two pumps: The Accu-Check Insight insulin pump (Roche Diabetes Care, Basel, Switzerland), or the Kaleido insulin patch-pump (ViCentra, Utrecht, Netherlands); both working with the Dexcom G6 CGM. It is licensed for use in adults only. When closed-loop is active, the algorithm automatically adjusts insulin delivery every 5 minutes based on CGM values, irrespective of pre-programmed basal rates, and additionally delivers an automated correction bolus if glucose is >10 mmol/L. The algorithm is adaptive in terms of total daily insulin requirements and post-prandial and exercise-related insulin needs. There are five user-adjustable settings: the personal glucose target (preset at 6.1 mmol/L, adjustable between 5.6 and 7.2 mmol/L), the hypoglycemia threshold for suspension (preset at 3.9 mmol/L, adjustable between 3.3 and 4.7 mmol/L), reactivity in the hyperglycemic range (43–186%), reactivity in the normoglycemic range (59–147%) and reactivity following a prandial bolus (50–200%). Additionally, there is an optional activity mode, which temporarily increases the glucose target by 3.9 mmol/L, reduces algorithm-driven insulin delivery and increases insulin sensitivity for 14 hours, and a ‘Zen mode,’ which raises the glucose target by 0.6–2.2 mmol/L (user-adjustable). Data is automatically uploaded to the cloud, but live remote data viewing is not yet available.

Two randomized trials have evaluated the Diabeloop system compared to sensor-augmented pump therapy over 12 weeks in 68 adults and 6 weeks in 17 children aged 6 to 12 years [29,81]. Both studies included 24/7 remote monitoring by healthcare professionals. Time in range was 9 percentage points higher with closed-loop in the adult study, and also improved in the children’s study (66% with closed-loop vs 59% with control). No DKA events occurred in either study, but 8 severe hypoglycemia events (5 in closed-loop, 3 in control) occurred in the adult study. Three of the events in the closed-loop arm were secondary to pump malfunctions, necessitating change of insulin pump used in the study. Closed-loop usage was fairly low at 84% in the adult study, but higher at 99% in the pediatric cohort.

Data from 25 adults using the system for 6 months at home without remote monitoring provides real-world insights for the Diabeloop system [82]. Closed-loop usage was 85%, with one participant ceasing closed-loop after 2 months due to repeated system disconnections. Glycemic outcomes were promising with mean time in range of 70% and low hypoglycemia burden of 1.3%. Additionally, a 6-month observational study without remote monitoring in 7 participants with highly unstable type 1 diabetes using the Diabeloop system showed improvements in glycemic control compared to sensor-augmented pump therapy and a reduction in severe hypoglycemia events [83].

3.5. OmnipoD 5 HCL system

The OmnipoD 5 HCL system (Insulet, Acton, MA, USA) incorporates an MPC algorithm embedded in each individual patch pump (pod), receiving glucose sensor data from the factory-calibrated Dexcom G6 CGM and managed via a handheld receiver or a dedicated smartphone app (Android only). The system is licensed from age 6 years in the USA, and from age 2 years in Europe. When closed-loop is active the algorithm automatically adjusts insulin delivery every 5 minutes based on sensor glucose levels and on the total daily dose, which is updated with each pod change (roughly every 3 days), and is independent of pre-programmed basal rates. The algorithm is treat-to-target, adjustable in 0.5 mmol/L increments between 6.1 and 8.3 mmol/L in up to 8 time-blocks per day, and is
adaptive. It includes an ‘Activity feature,’ which raises the target to 8.3 mmol/L and reduces automated insulin delivery. The bolus calculator includes the current CGM value automatically, similar to other systems, but additionally uses the CGM trend when calculating bolus doses. Data upload to the cloud is automatic and glucose data can be viewed remotely via the Dexcom Follow app.

There are no available randomized controlled trial data for the Omnipod 5 HCL system. A 3-month single-arm study in 235 participants (124 adults and 111 children aged 6 to 18 years) showed high closed-loop usage at 96% [84]. There were 3 severe hypoglycemia events, two in adults following user-initiated boluses, and 1 in a child following delayed eating after a pre-prandial bolus. One DKA event occurred in a child due to an infusion site failure. Glycemic data were promising with mean time in range of 68% in the pediatric age-group and 74% in adults, coupled with a low hypoglycemia burden of 1.8% and 1.3% respectively. Similarly, a 3-month single-arm study in 80 very young children (age 2 to 5 years) showed the system to be safe with no severe hypoglycemia or DKA events [85]. As the Omnipod 5 HCL system was only licensed for commercial use in early 2022, real-world data are not yet available.

4. iLet Bionic Pancreas (insulin only)

The iLet Bionic Pancreas hybrid closed-loop system (Beta Bionics, Boston, MA, USA) comprises an MPC algorithm, the iLet insulin pump (Beta Bionics) and the Dexcom G6 CGM. The algorithm is adaptive when closed-loop mode is active, and meals are entered semi-quantitatively in terms of size. The glucose target is adjustable between 6.1 and 7.3 mmol/L in 0.6 mmol/L increments at different times of day. Unlike other hybrid closed-loop systems, the iLet does not require pre-programmed basal rates for when closed-loop is inactive, but instead imputes its own basal rate based on recent data. This system does not have regulatory approval at present. It was originally designed to be a fully closed-loop system using the bihormonal approach, and previous studies have focused on this [86–88]. More recently, focus has shifted to an insulin-only version. No randomized controlled trial data on the insulin-only version of the system are available at present, but the pivotal 3-month randomized trial in children and adults has completed, and publication is awaited (NCT04200313).

4.1. Tidepool – Loop

Loop is an open-source iOS app developed by the Do-It-Yourself (DIY) community, incorporating an MPC algorithm that modulates insulin delivery continuously based on sensor glucose levels by altering pre-set basal rates. It is an interoperable algorithm, which can pair with any alternate controller-enabled insulin pump and inter-operable CGM. There have been no randomized controlled studies of the Loop algorithm. There are real-world data from a 6-month prospective observational study of 558 children (age 1 year+) and adults [89]. Within the study, Medtronic and Insulet pumps were used, with a RileyLink bridging the iPhone’s Bluetooth and the sub-gigahertz radio frequency used by these pumps. Both Dexcom and Medtronic CGMs were used. Closed-loop was used a median 83% of the time, and glycemic outcomes were promising with time in range of 73% and HbA1c of 6.5%, although participants had fairly tight glycemic control at baseline. The not-for-profit company Tidepool (Palo Alto, CA, USA) are developing a commercial version of Loop (Tidepool Loop) and FDA approval is awaited.

4.2. DIY systems

Prior to the availability of commercial hybrid closed-loop systems, a community of people with type 1 diabetes and their families developed open source artificial pancreas systems, or ‘Do-It-Yourself’ (DIY) systems. The three main systems, OpenAPS, AndroidAPS and Loop were used by around 1,500 people with type 1 diabetes in 2019 worldwide [90]. Even now that commercial hybrid closed-loop therapy is available, these low-cost systems remain an attractive option for those who have the know-how and skills to build and maintain them with little assistance from healthcare professionals, who are not able to support unregulated systems. Observational studies show improvements in glycemic control with all systems, but no randomized clinical trial data exists at present [91]. The results of a 6-month randomized controlled parallel design study using a locked version of OpenAPS are awaited [92].

5. Emerging technologies and adjuncts for closed-loop systems

5.1. Advances in closed-loop hardware components

Hybrid closed-loop systems are being continually improved, both in terms of algorithm settings and user features. However, efficacy relies on ‘getting the basics right,’ meaning reliable infusion of insulin and accurate CGM measurements [37]. Accurate insulin delivery relies on the user performing regular cannula changes (every 2–3 days with current steel or teflon cannulas), regular changes of infusion sets to ensure patency, and careful filling of the insulin reservoir, avoiding air bubbles. Insufficient insulin administration can lead to hyperglycemia and ketosis [93]. Malfunctions or blockages of cannulas and infusion sets are commonly reported by users [94,95], and extended wear infusion sets have been in development for some time. The Medtronic extended wear 7-day infusion set was shown to be safe and associated with high user satisfaction in 259 adults, without negatively affecting glycemic control when used with the 670G HCL system, and has received regulatory approval in the USA and Europe [96]. ConvaTec and Capillary Biomedical are working on further long-wear sets [97,98]. Combining these extended-wear infusion sets with CGM sensors, which have a wear-time of 7 to 14 days, into a single device has the potential to significantly reduce device burden for people with type 1 diabetes. An early feasibility study using a combined infusion set with integrated CGM with a 7-day wear-time is underway using the 670G HCL system (NCT04823312).

Additionally, CGM sensors are decreasing in size and moving toward being universally factory-calibrated. Medtronic's
Guardian 4 sensor is now in line with the Dexcom G6 in terms of not requiring fingerplick calibrations and being utilisable for dosing decisions, although continues to have a relatively short 7-day wear-time [99]. The Dexcom G7 sensor is significantly smaller than previous Dexcom sensors, with a shorter 30-minute warmup and 12-hour grace period at the end of its 10-day sensor life [100]. Integration of the G7 sensor with compatible hybrid closed-loop systems is awaited. Lastly, the even smaller FreeStyle Libre 3 sensor is now approved as a CGM device with a 14-day wear-time, allowing for closed-loop integration [101].

5.2. Advances in remote device management and data review
Remote data viewing and wireless data upload are highly important to people with type 1 diabetes using advanced technologies [102,103] and also have significant benefits for clinicians in terms of facilitating remote consultations and timely diabetes support [104,105]. Many hybrid closed-loop systems now include automatic, wireless data upload to the cloud. Healthcare professionals are thus able to see glucose and insulin data in near real-time, including system settings such as glucose targets, enabling them to give targeted advice. Being able to remotely view both glucose and insulin data is even more important for parents of children with type 1 diabetes. Remote monitoring increases independence, promotes parental confidence in allowing others to care for a child, and facilitates uninterrupted sleep and playtime [103]. Increasingly, people with type 1 diabetes expect to be able to manage their diabetes devices remotely [106,107]. App-based systems already allow users to bolus and view data from their smartphone, while pump-integrated systems are working to provide this vital feature.

5.3. Dual hormone systems
In addition to insulin, secretion of the hormones glucagon and amylin is impaired in people with type 1 diabetes. Glucagon is secreted in response to falling glucose levels and triggers release of glucose stored as glycogen from the liver. Amylin delays gastric emptying and reduces post-prandial hyperglycemic excursions. Dual-hormone systems aim to deliver one of these two hormones in addition to insulin, to further improve glucose control by allowing for more aggressive insulin delivery [108]. Barriers to dual-hormone systems include the need for a second or dual chamber pump, and the risk of gastrointestinal side-effects. Newer glucagon analogues are more stable at room temperature than previously available formulations, enabling continuous infusion without the need for daily set changes [109]. A 7-day study of 10 participants in the home setting using the iLet dual-hormone using dasiglucagon vs insulin-only showed higher time in range with dual-hormone (79% vs 72%), and lower time in hypoglycemia [110]. Amylin’s synthetic analogue pramlintide has been trialed in adult inpatient dual-hormone closed-loop studies, and results showed improvements in time in range compared to insulin-only systems [111]. Larger, pivotal trials of dual-hormone systems are in the pipeline.

5.4. Other adjunctive therapies
Other adjunctive therapies have been introduced to optimize glycemic control. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases satiety, slows gastric emptying and suppresses glucagon release. Initial small inpatient studies of GLP-1 use with fully closed-loop therapy seemed promising, but there have been no recent larger studies to evaluate outpatient efficacy [112]. Sodium-glucose co-transporter (SGLT2) inhibitors lower plasma glucose by blocking renal reabsorption and increasing renal excretion of glucose in an insulin-independent manner. Data on SGLT2 as an adjuvant in closed-loop therapy is limited, but results from a recent inpatient study in young adults using fully closed-loop with dapagliflozin were promising with no signs of hypoglycemia or ketosis [113]. Hybrid closed-loop with empagliflozin and simple meal announcement was non-inferior to hybrid closed-loop with carbohydrate counting (and no empagliflozin) in 30 adults on two days in another recent study [114]. Unfortunately, SGLT2s are no longer authorized for treatment of type 1 diabetes [115].

5.5. Fully closed-loop systems
Currently available hybrid closed-loop systems confer significant glycemic and quality-of-life benefits, but continue to require regular user-input around meals times and exercise to achieve optimal outcomes. One of the main barriers to a fully closed-loop approach (without the need for mealtime boluses) is the relatively slow absorption of subcutaneously administered rapid-acting insulin analogues [116]. Recently, ultra-rapid insulins have been licensed for use in type 1 diabetes, making a fully closed-loop approach more feasible. In an 8-week double-blind crossover study comparing hybrid closed-loop with Fiasp versus standard insulin aspart in adults, there was a significant reduction in hypoglycemia with use of Fiasp [117]. A similar 6-week open-label crossover study showed improvement in time in range with Fiasp compared to standard aspart, particularly after a missed meal bolus [118]. However, studies of fully closed-loop insulin-only systems have shown that time in target range is lower compared to outcomes of hybrid closed-loop studies, even with ultra-rapid acting insulin analogues [119]. With currently available ultra-rapid insulins, the fully closed-loop approach may be most suited to those with higher HbA1cs who have a high frequency of missed meal boluses. A randomized study in adults with suboptimal glycemic control comparing fully closed-loop using Lyumjev with standard pump therapy with CGM is under way (NCT04977908). While addressing insulin time-action profiles remains paramount, modified control algorithms that are able to utilize additional inputs may be useful in facilitating a fully closed-loop approach. These could include motion sensing both for exercise and meal detection, heart rate input to detect exercise via smartwatch, as well as sensors that measure ketones,
lactate and active insulin. These features could help to better address post-prandial glycemic excursions and help prevent exercise-induced hypoglycemia.

6. Non-technological priorities in closed-loop insulin delivery

6.1. Healthcare provider education and training

People with type 1 diabetes are only able to access advanced technologies if their healthcare providers (HCPs) are able to provide education and support for use. Diabetes technologies are evolving extremely rapidly and, coupled with the amount of time required to undertake adequate training, makes it challenging for HCPs to remain up to date. Increasingly, companies are providing online training material and workshops for both HCPs and users, to facilitate quicker onboarding. Additionally, tools using frameworks that identify key concepts for each closed-loop system, such as the CARES paradigm [36], have been developed and are shared via online platforms to facilitate targeted data review and setting optimization during clinic appointments. Following an initial adjustment period, closed-loop users require less healthcare professional input than those on standard therapy, and this coupled with remote data viewing has the potential to reduce burden for HCPs significantly [104,120].

Additionally, HCPs should be encouraged and supported in continuing hybrid closed-loop therapy when patients are hospitalized, wherever possible. Evidence of closed-loop therapy in the inpatient setting for type 1 diabetes is limited, but studies of inpatient fully closed-loop in adults with type 2 diabetes or other causes of hyperglycemia showed significant improvements in glycemic control compared to standard therapy and blood glucose monitoring as well as in type 1 diabetes during labor and in the postpartum period [121–123]. Diabetes outreach teams should be in place to support use of closed-loop systems in the hospital settings, as long as the patient is able to participate in self-care and an alternative plan for diabetes management is in place in case continuation of closed-loop therapy becomes inappropriate (e.g. critically ill patients or prolonged surgery) [124]. This may help to reduce overall workload if fewer fingerprick glucose measurements are required and fewer episodes of hypo- and hyperglycemia requiring treatment occur. Studies are urgently needed to provide data on hospital outcomes when using closed-loop in the inpatient setting.

6.2. Quality of life

Whilst the improvements in glycemic control seen with closed-loop use are highly important in terms of short- and long-term health outcomes, associated improvements in quality-of-life are equally important to people with type 1 diabetes using these systems. Questionnaire-based and interview-based qualitative studies have shown that the impact of closed-loop therapy on quality-of-life is significant across all age-groups, particularly in terms of decreasing diabetes burden (Table 3) [32,106,125–130]. In two studies of very young children, closed-loop experience questionnaires showed improved sleep, as well as reduced burden with hybrid closed-loop therapy [129], while interviews highlighted the perceived clinical benefits of the technology, improved confidence and reduced reliance on healthcare professional support, as well as allowing outsourcing of care [106]. In a focus group of adolescents and adults using the first commercialized system, 670G HCL, users reported significant benefits including improved sleep and more freedom and time for everyday tasks [131]. However, users also expressed disappointment at the fact that systems continued to require significant user input for optimal performance, including upkeep of different technological components, and were not truly ‘closed-loop.’

Across all age-groups and closed-loop systems, users and their families emphasized the need for appropriate expectation-setting prior to starting closed-loop therapy, and the fact that it takes time to trust the algorithm [106,125,132]. Reported limitations of current closed-loop systems were device size and upkeep, connectivity problems, alarm burden, and lack of inter-operability of some systems. Differences in patient-reported outcomes were more difficult to detect in questionnaire-based outcome reporting, with smaller differences in glucose monitoring distress subscales and hypoglycemia fear in some studies [130,133,134]. This possibly reflects the limitations of available validated questionnaires to capture closed-loop specific treatment effects, given the rapid evolution of diabetes technology. Additionally, it may reflect users’ high expectations in terms of hybrid closed-loop therapy in the context of a research study comparing closed-loop to other advanced technologies such as sensor-augmented pump therapy.

6.3. Cost-effectiveness and equitable access

Lack of access to advanced diabetes technologies is contributing to increasing disparities in diabetes treatment, disproportionately affecting those from lower socio-economic backgrounds and minority ethnic groups, who are more likely to have suboptimal glycemic control [135,136]. Healthcare provider bias further contributes to this issue, with providers more likely to select people who they perceive as educated and technologically competent [137] and/or have private insurance coverage [138]. This is particularly problematic in light of the emerging evidence that improvements in glycemic control with closed-loop are greatest in those with higher baseline HbA1c [139]. In addition to patient selection bias in terms of eligibility for closed-loop therapy, healthcare provider inertia is a significant barrier to accessing advanced diabetes technologies [140]. Diabetes services are frequently understaffed, and healthcare professionals may feel they lack the education and resources to offer and support advanced technologies, despite clear updated guidelines recommending their use. The COVID-19 pandemic has compounded this issue, with deleterious effects on training provision and technology upgrades [141]. Services are struggling to adopt new technologies in a timely manner, an area of particular concern given the mounting evidence that access to advanced technologies not only improves glycemic control but facilitates remote healthcare and was associated with fewer adverse
COVID-19 outcomes in users with type 1 diabetes during the pandemic [142].

Closed-loop therapy is associated with significant upfront and ongoing costs, due to the number of technological devices required for operation. In addition, this therapy is still fairly novel and little long-term data is available to support extended use. Therefore, access to closed-loop therapy remains patchy, as insurers may be reluctant to fund closed-loop therapy. Recently, several robust health economic analyses of a variety of closed-loop systems for both children and adults have been published [143,144–147,149,150]. Results show hybrid closed-loop therapy to be cost-effective compared to both multiple daily injections and pump therapy combined with intermittently scanned CGM in several European countries. As closed-loop therapy becomes more ubiquitous in clinical practice, longer-term repository data will help to inform increasingly accurate models, further aiding reimbursement strategies.

7. Conclusion

Following more than a decade of research and promising safety and efficacy data, closed-loop systems are being integrated into routine clinical practice. Given their glycemic and quality-of-life benefits, it is likely that closed-loop therapy will superecede current treatment options for many people with type 1 diabetes in the near future. At present, the main priorities are ensuring adequate healthcare provider knowledge and training and appropriate reimbursement strategies to support closed-loop use in the real world. Improving access and reducing disparities remains a vital goal, with particular focus on optimizing current systems to further reduce diabetes burden whilst continuing to improve glycemic control. As with many new therapeutic approaches, the main barrier to rapid widespread adoption is clinical inertia and the lack of resources to embrace ever-evolving technological developments.

8. Expert opinion

Hybrid closed-loop systems are transforming diabetes care and are increasingly integrated into routine clinical practice. People with type 1 diabetes now have a range of systems to choose from, allowing selection to match individual preferences. Available real-world data corroborate findings from clinical trials, showing improvements in glucose control and reductions in diabetes management burden across different closed-loop systems and age-groups. Health economic analyses are now available from a variety of countries and provide evidence that hybrid closed-loop therapy is cost-effective compared with multiple daily injections and insulin pump therapy with CGM. National and international guidance and consensus statements are being updated to reflect this, with agencies increasingly recommending continuous glucose monitoring for all people with type 1 diabetes, in part to help facilitate access to closed-loop therapy. Specific recommendations for hybrid closed-loop therapy are expected in the near future. Educational resources for healthcare professionals and people with type 1 diabetes and their families are increasingly accessible and streamlined. This aids treatment initiation and optimization, and helps to facilitate remote healthcare and healthcare professional confidence in supporting people with type 1 diabetes gain the maximum benefit from this new technology.

The main challenge affecting widespread closed-loop adoption is clinical inertia. The causes for this are threefold: barriers related to healthcare professionals, patient-related factors, and factors related to healthcare systems. Healthcare professionals may lack awareness of updated guidelines and available treatments, and may lack time and resources to complete relevant training courses. This has been compounded by the COVID-19 pandemic, where clinical staff are stretched more than ever, directly impacting non-urgent service provision. Healthcare professional misconceptions about who may benefit from closed-loop therapy and fear of users requiring significant amounts of clinical support may also stop them from embracing new technological developments. This needs to be urgently addressed with improved funding and support for clinical staff, as well as easily accessible training courses and online resources and increased dissemination efforts from researchers and diabetes charities. Patient-related factors are less of a barrier to closed-loop therapy, as many people with type 1 diabetes feel positive about advanced technologies. However, reducing device burden is a priority, particularly in the pediatric age-group. Devices that can be worn for longer, are smaller in size, truly inter-operable and include automatic remote data upload and viewing are needed to allow true personalization of treatment. Fully closed-loop systems, where prandial bolusing is not required, remain an important goal to further reduce diabetes management burden. Lastly, healthcare system related factors contribute to slow closed-loop adoption due to lack of reimbursement. While real-world use of hybrid closed-loop therapy is becoming more routine, insurance reimbursement remains varied and patchy worldwide. It is vital that existing policies are updated in line with emerging evidence, including favorable health economic data, to allow broader access across all age-groups, ethnic backgrounds and countries. While not all people with type 1 diabetes may want to try a closed-loop system for a variety of reasons, everyone should have the opportunity to use this novel therapy, irrespective of socio-economic background or geographical location.

Acknowledgments

The views expressed are those of the authors and not necessarily those of the funders. No sponsor had any role in the study design, data collection, data analysis, data interpretation, or writing of the manuscript.

Funding

Supported by the National Institute of Health Research Cambridge Biomedical Research Centre; Efficacy and Mechanism Evaluation National Institute for Health Research (14/23/09); National Institute of Diabetes and Digestive and Kidney Diseases (UC4DK108520); JDRF; The Leona M. & Harry B. Helmsley Trust (#2016PG-T1D046); National Institute for Health Research Cambridge Biomedical Research Centre; and European Union Horizon 2020 research and innovation program (grant agreement no. 731560).
Declaration of Interest

JW reports having received speaker honoraria from Ypsomed. RH reports having received speaker honoraria from Eli Lilly and Novo Nordisk; serving on advisory panel for Eli Lilly and Novo Nordisk; receiving personal fees from BBraun and Abbott Diabetes Care; patents related to closed-loop insulin delivery, shareholder and director at CamDiaB. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author contributions

JW wrote the manuscript. RH edited, critically reviewed and approved the final submitted version of the manuscript.

Reviewers Disclosure

One of the reviewers declares being an employee for Medtronic and also a shareholder. Peer reviewers on this manuscript have no other relevant financial relationships or otherwise to disclose.

ORCID

Julia Ware @ http://orcid.org/0000-0002-4497-0979
Roman Hovorka @ http://orcid.org/0000-0003-2901-461X

References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

1. Todd JA. Etiology of type 1 diabetes. Immunity. 2010 Apr 23; 32 (4):457–467.
2. Patterson CC, Karuranga S, Salpea P, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019 Nov;157:107842.
3. Nathan DM, Genuith S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. [1993 Sep 30;329(14):977–986.
4. Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Mortality in type 1 diabetes in the DCCT/EDIC versus the general population. Diabetes Care. 2016 Aug;39(8):1378–1383.
5. Kiriella DA, Islam S, Oridota O, et al. Unraveling the concepts of distress, burnout, and depression in type 1 diabetes: a scoping review. EClinicalMedicine. 2021 Oct;40:101118.
6. Foster NC, Beck RW, Miller KM, et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol Ther. 2019 Feb;21(2):66–72.
7. Mair C, Wulaningsih W, Jeyam A, et al. Glycaemic control trends in people with type 1 diabetes in Scotland 2004–2016. Diabetologia. 2019 Aug;62(8):1375–1384.
8. Fuchs J, Hovorka R. Benefits and challenges of current closed-loop technologies in children and young people with type 1 diabetes. Front Pediatr. 2021;9:679484.
9. Drucker DJ. Transforming type 1 diabetes: the next wave of innovation. Diabetologia. 2021 May;64(5):1059–1065.
10. Thabtit H, Prabhu JN, Mubita W, et al. Use of factory-calibrated real-time continuous glucose monitoring improves time in target and HbA1c in a multiethnic cohort of adolescents and young adults with type 1 diabetes: the MILLENNIALS study. Diabetes Care. 2020 Oct;43(10):2537–2543.
11. Tauschmann M, Hermann JM, Freiberg C, et al. Reduction in diabetic ketoacidosis and severe hypoglycemia in pediatric type 1 diabetes during the first year of continuous glucose monitoring: a multicenter analysis of 3,553 subjects from the DPV registry. Diabetes Care. 2020 Mar;43(3):e40–e42.
12. Dovc K, Boughton C, Tauchmann M, et al. Young children have higher variability of insulin requirements: observations during hybrid closed-loop insulin delivery. Diabetes Care. 2019 Jul;42 (7):1344–1347.
13. Slover RH, Welsh JB, Criegio A, et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study. Pediatr Diabetes. 2012 Feb;13(1):6–11.
14. Hirsch IB, Abelson J, Bode BW, et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study. Diabetes Technol Ther. 2008 Oct;10(5):377–383.
15. Raccach D, Sulmont V, Reznik Y, et al. Incremental value of continuous glucose monitoring when starting pump therapy in patients with poorly controlled type 1 diabetes: the realtrend study. Diabetes Care. 2009 Dec;32(12):2245–2250.
16. Kordonouri O, Pankowska E, Rami B, et al. Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the paediatric onset study (ONSET) after 12 months of treatment. Diabetologia. 2010 Dec;53(12):2487–2495.
17. Kamble S, Weinfurt KP, Schulman KA, et al. Patient time costs associated with sensor-augmented insulin pump therapy for type 1 diabetes: results from the STAR 3 randomized trial. Med Decis Making. 2013 Feb;33(2):215–224.
18. Tauchmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus - current status and future prospects. Nat Rev Endocrinol. 2018 Aug;14(8):464–475.
19. Forlenza GP, Li Z, Buckingham BA, et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care. 2018 Oct;41(10):2155–2161.
20. Bergenstal RM, Klonoff DC, Garg SK, et al. Threshold-based insulin-pump intervention for reduction of hypoglycemia. N Engl J Med. 2013 Jul 18 369(3):224–232.
21. Lal RA, Ekklaspour L, Hood K, et al. Realizing a closed-loop (artificial pancreas) system for the treatment of type 1 diabetes. Endocr Rev. 2019 Dec 1 40(6):1521–1546.
22. Boughton CK, Hovorka R. New closed-loop insulin systems. Diabetologia. 2021 May;64(5):1007–1015.
23. Ware J, Hovorka R. Recent advances in closed-loop insulin delivery. Metabolism. 2022 Feb;127:154953.
24. US Food and Drug Administration. Approval for SmartAdjust technology 2022 [cited 2022 July 13]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf20/K203774.pdf
25. Ware J, Allen JM, Boughton CK, et al. Randomized trial of closed-loop control in very young children with type 1 diabetes. N Engl J Med. 2022 Jan 20;386(3):209–219.
•• First longer multinational trial comparing HCL with CamAPS FX to sensor-augmented pump in very young children
26. Boughton CK, Hartnell S, Thabit H, et al. Hybrid closed-loop glucose control compared with sensor augmented pump therapy in older adults with type 1 diabetes: an open-label multicentre, multinational, randomised, crossover study. The Lancet Healthy Longevity. 2022; 3(3) e135–e142.
• Multicentre trial comparing HCL with CamAPS FX to sensor-augmented pump in older adults
27. Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019 Oct 31;381(18):1707–1717.
•• Pivotal multicentre trial comparing HCL with Control IQ to sensor-augmented pump in adolescents and adults over 6 months.
28. Stewart ZA, Wilinska ME, Hartnell S, et al. Closed-loop insulin delivery during pregnancy in women with type 1 diabetes. N Engl J Med. 2016 Aug 18 375(7):644–654.
29. Benhamou PY, Franc S, Reznik Y, et al. Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial.
Pivotal trial comparing HCL with DBLG1 to sensor-augmented pump in adults over 3 months.

30. Breton MD, Kanapka LG, Beck RW, et al. A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med. 2020 Aug 27;383(9):836–845.

First longer multicentre trial comparing HCL with Control IQ to sensor-augmented pump in children

31. Bergenstal RM, Nimri R, Beck RW, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet. 2021 Jan 16;397(10270):208–219.

Large randomized trial comparing 780G AHCL to 670G HCL in adolescents and young adults over 3 months

32. Abraham MB, de Bock M, Smith GJ, et al. Effect of a hybrid closed-loop system on glycemic and psychosocial outcomes in children and adolescents with type 1 diabetes: a randomized clinical trial. JAMA Pediatr. 2021 Dec 1;175(12):1227–1235.

First large randomized trial comparing 670G HCL to standard therapy in adults

33. Ware J, Boughton CK, Allen JM, et al. Cambridge hybrid closed-loop algorithm in children and adolescents with type 1 diabetes: a multicentre 6-month randomised controlled trial. Lancet Digital Health. 2022; 4(4):e245–e255.

Multinational trial comparing HCL with Cambridge algorithm to standard pump therapy in children and adolescents

34. Breton MD, Kovatchev BP. One year real-world use of the Control-IQ advanced hybrid closed-loop technology. Diabetes Technol Ther. 2021 Apr 21; 23(9):601–608.

Silva JD, Lepore G, Battelino T, et al. Real-world performance of the mimined 780G system: first report of outcomes from 4120 users. Diabetes Technol Ther. 2022 Feb;24(2):113–119.

Messer LH, Berget C, Forlenza GP. A clinical guide to advanced devices and closed-loop systems using the CARES paradigm. Diabetes Technol Ther. 2019 Aug;21(8):462–469.

Hartnell S, Fuchs J, Boughton CK, et al. Closed-loop technology: a practical guide. Pract Diabetes. 2021;38(4):33–39.

Fuchs J, Hovorka R. Closed-loop control in insulin pumps for type-1 diabetes mellitus: safety and efficacy. Expert Rev Med Devices. 2020;17(7):707–720.

Pickup JC. Is insulin pump therapy effective in type 1 diabetes? Diabet Med. 2019 Mar;36(3):269–278.

Hermann JM, Miller KM, Hofer SE, et al. The transatlantic HbA1c gap: differences in glycaemic control across the lifespan between people included in the US T1D exchange registry and those included in the German/Austrian DPV registry. Diabet Med. 2020 May;37(5):848–855.

Missi ML, Egberts KJ, Page M, et al. Continuous subcutaneous insulin infusion (CSI) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2010 Jan(1):CD005103.

Dove K, Battelino T. Evolution of diabetes technology. Endocrinol Metab Clin North Am. 2002 Mar;41(1):1–18.

Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017 Dec;40(12):1631–1640.

FDA authorizes first fully interoperable continuous glucose monitoring system, streamlines review pathway for similar devices 2018 [4 January 2020]. Available from: https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-fully-interoperable-continuous-glucose-monitoring-system-streamlines-review

Lind M, Polonsky W, Hirsch IB, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLI randomized clinical trial. JAMA. 2017 Jan 24;317(4):379–387.

Beck RW, Riddellsworth T, Ruedy K, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017 Jan 24;317(4):371–378.

Laffel LM, Kanapka LG, Beck RW, et al. Effect of continuous glucose monitoring on glycemic control in adolescents and young adults with type 1 diabetes: a randomized clinical trial. JAMA. 2020 Jun 16;323(23):2388–2396.

Strategies to Enhance New C. G. M Use in Early Childhood Study Group. A randomized clinical trial assessing continuous glucose monitoring (CGM) use with standardized education with or without a family behavioral intervention compared with fingerstick blood glucose monitoring in very young children with type 1 diabetes. Diabetes Care. 2021 Feb;44(2):464–472.

Lanzerger S, Best F, Bergmann T, et al. Dynamics of hemoglobin A1c, body mass index, and rates of severe hypoglycemia in 4434 adults with type 1 or type 2 diabetes after initiation of continuous glucose monitoring. Diabetes Technol Ther. 2022 Jul 8 24(10):763–769.

Atlas E, Nimri R, Miller S, et al. MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care. 2010 May;33(5):1072–1076.

Weinzimer SA, Steil GM, Swan KL, et al. Fully automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial insulin pancreas. Diabetes Care. 2008 May;31(5):934–939.

Hovorka R, Allen JM, Elleri D, et al. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet. 2010 Feb;375(9716):743–751.

Elliott D, Allen JM, Kumaareswaran K, et al. Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: randomised clinical trial. Diabetes Care. 2013 Apr;36(4):838–844.

Nimri R, Danne T, Kondonouri O, et al. The “Glucositter” overnight automated closed loop system for type 1 diabetes: a randomized crossover trial. Pediatr Diabetes. 2013 May;14(3):159–167.

Sher JI, Cengiz E, Palemi CC, et al. Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes. Diabetes Care. 2013 Oct;36(10):2909–2914.

Hovorka R, Kumaareswaran K, Harris J, et al. Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ. 2011 Apr 13;342:d1855–d1855.

Hovorka R, Elleri D, Thabit H, et al. Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care. 2014;37(5):1204–1211.

Clarke WL, Anderson S, Breton M, et al. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the Virginia experience. J Diabetes Sci Technol. 2009 Sep 1 3(5):1031–1038.

Nimri R, Muller I, Atlas E, et al. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care. 2014 Nov;37(11):3025–3032.

Phillip M, Battelino T, Atlas E, et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med. 2013 Feb 28;368(9):824–833.

Kropp J, Del Favero S, Place J, et al. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015 Dec;3(12):939–947.

*Ekhlaspour L, Nally LM, El-Khatib FH, et al. Feasibility studies of an insulin-only bionic pancreas in a home-use setting. J Diabetes Sci Technol. 2019 Nov;13(6):1001–1007.

Breton MD, Chernavsky DR, Forlenza GP, et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes Care. 2017 Dec;40(12):1644–1650.

Bekkeri E, Kitislos K, Thabit H, et al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ. 2018 Apr 18;361:k1310.

Weisman A, Bai JW, Cardinez M, et al. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes:
66. Maahs DM, Buckingham BA, Castle JR, et al. Outcome measures for artificial pancreas clinical trials: a consensus report. Diabetes Care. 2016 Jul;39(7):1175–1179.

67. Knebel T, Neumiller JJ. Medtronic minimed 670G hybrid closed-loop system. Clin Diabetes. 2019 Jan;37(1):94–95.

68. McAuley SA, Lee MH, Paldus B, et al. Six months of hybrid closed-loop versus manual insulin delivery with fingerstick blood glucose monitoring in adults with type 1 diabetes: a randomized, controlled trial. Diabetes Care. 2020 Dec;43(12):3024–3033.

- Large multicentre study comparing 670G HCL to standard therapy in adolescents and young adults over 6 months

69. McAuley SA, Trawley S, Vognin S, et al. Closed-loop insulin delivery versus sensor-augmented pump therapy in older adults with type 1 diabetes (ORACLI): a randomized, crossover trial. Diabetes Care. 2022 Feb 1;45(2):381–390.

- Comparison of 670G HCL with sensor-augmented pump therapy in older adults

70. von Dem Berge T, Remus K, Bister S, et al. In-home use of a hybrid closed loop achieves time-in-range targets in preschoolers and school children: results from a randomized, controlled, crossover trial. Diabetes Obes Metab. 2022 Jul;24(7):1319–1327.

71. Berget C, Messer LH, Vigers T, et al. Six months of hybrid closed loop in the real-world: an evaluation of children and young adults using the 670G system. Pediatr Diabetes. 2020 Mar;21(2):310–318.

72. Lal RA, Basina M, Maahs DM, et al. One year clinical experience of the first commercial hybrid closed-loop system. Diabetes Care. 2019 Dec;42(12):2190–2196.

73. Collyns OJ, Meier RA, Betts ZL, et al. Improved glycemic outcomes with medtronic minimed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care. 2021 Feb 12 44(4):969–975.

74. Arrieta A, Battelino T, Scaramuzza AE, et al. Comparison of minimed 780G system performance in users aged younger and older than 15 years: evidence from 12 870 real-world users. Diabetes Obes Metab. 2022 Jul;24(7):1370–1379.

75. Kanapka LG, Wadwa RP, Breton MD, et al. Extended use of the Control-IQ closed-loop control system in children with type 1 diabetes. Diabetes Care. 2021 Feb;44(2):473–478.

76. Renard E, Tubiana-Ruff N, Bonnemaison E, et al. Outcomes of hybrid closed-loop insulin delivery activated 24/7 versus evening and night in free-living prepubertal children with type 1 diabetes: a multicentre, randomized clinical trial. Diabetes Obes Metab. 2022 Mar;24(3):511–521.

77. Pinsker JE, Muller L, Constantin A, et al. Real-world patient-reported outcomes and glycemic results with initiation of Control-IQ technology. Diabetes Technol Ther. 2021 Feb;23(2):120–127.

78. Tauchmann M, Thabit H, Bally L, et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet. 2018 Oct 13:392(10155):1321–1329.

- Pivotal trial comparing HCL with CamAPS FX to sensor-augmented pump in children and adults with suboptimal glycemic control

79. Stewart ZA, Wilinska ME, Hartnell S, et al. Day-and-night closed-loop insulin delivery in a broad population of pregnant women with type 1 diabetes: a randomized controlled crossover trial. Diabetes Care. 2018 Jul;41(7):1391–1399.

80. Tsertopoulou X, Viswanath V, Hartnell S, et al. Safe and effective use of a hybrid closed-loop system from diagnosis in children under 18 months with type 1 diabetes. Pediatr Diabetes. 2021;23(1):90–97.

81. Kariyawasam D, Morin C, Casteels K, et al. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6-12 years: a randomised, controlled, cross-over, non-inferiority trial. Lancet Digit Health. 2022 Mar;4(3):e158–e168.

82. Amadou C, Franc S, Benhamou PY, et al. Diabeloop DBLG1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemcic control in real-life situations without serious adverse events: 6-month follow-up. Diabetes Care. 2021 Mar;44(3):844–846.

83. Benhamou PY, Lablanche S, Vambergue A, et al. The beneficial effects of closed-loop insulin delivery in patients with highly unstable type 1 diabetes eligible for islet transplantation are maintained over 6 months: an extension study of the DBLLHU-WP10 trial. Diabetes Obes Metab. 2022 May;24(5):956–961.

84. Brown SA, Forlenza GP, Bode BW, et al. Multicenter trial of a tubeless, on-body automated insulin delivery system with customizable glycemic targets in pediatric and adult participants with type 1 diabetes. Diabetes Care. 2021 Jun 7 44(7):1630–1640.

85. Sherr JL, Bode BW, Forlenza GP, et al. Safety and glycemic outcomes with a tubeless automated insulin delivery system in very young children with type 1 diabetes: a single-arm multicenter clinical trial. Diabetes Care. 2022 Jun 9 45(8):1907–1910.

86. El-Khatib FH, Balliro C, Hillard MA, et al. Home use of a bionicoronal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet. 2017;389(10067):369–380.

87. Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014 Jul 24 371(4):313–325.

88. Russell SJ, Hillard MA, Balliro C, et al. Day and night glycemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016 Mar;4(3):233–243.

89. Lum JW, Bailey RJ, Barnes-Lomen V, et al. A real-world prospective study of the safety and effectiveness of the Loop open source automated insulin delivery system. Diabetes Technol Ther. 2021 May;23(5):367–375.

90. Jennings P, Hussain S. Do-it-yourself artificial pancreas systems: a review of the emerging evidence and insights for healthcare professionals. J Diabetes Sci Technol. 2019 Dec 17;14(5):868–877.

91. Knoll C, Peacock S, Waldchen M, et al. Real-world evidence on clinical outcomes of people with type 1 diabetes using open-source and commercial automated insulin dosing systems: a systematic review. Diabet Med. 2022 May;39(5):e14741.

92. Burnside M, Lewis D, Crocket H, et al. CREATE (Community deRivEd AutomataTed insulin delivery) trial. Randomised parallel arm open label clinical trial comparing automated insulin delivery using a mobile controller (AnyDANA-loop) with an open-source algorithm with sensor augmented pump therapy in type 1 diabetes. J Diabetes Metab Disord. 2020;30:1–15.

93. Heinemann L, Fleming GA, Petrie JR, et al. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care. 2015 Apr;38(4):716–722.

94. Ross P, Gray AR, Milburn J, et al. Insulin pump-associated adverse events are common, but not associated with glycemic control, socio-economic status, or pump/infusion set type. Acta Diabetol. 2016 Dec;53(6):991–998.

95. Pickup JC, Yemane N, Brackenridge A, et al. Nonmetabolic complications of continuous subcutaneous insulin infusion: a patient survey. Diabetes Technol Ther. 2014 Mar;16(3):145–149.

96. Braza R, Garg SK, Bhargava A, et al. Evaluation of extended infusion set performance in adults with type 1 diabetes: infusion set survival rate and glycemic outcomes from a pivotal trial. Diabetes Technol Ther. 2022 Mar 24 24(8):535–543.

97. Lal RA, Hsu L, Zhang J, et al. Longevity of the novel ConvaTec infusion set with Lantern technology. Diabetes Obes Metab. 2021 Aug;23(8):1973–1977.

98. Kastner JR, Venkatesh N, Brown K, et al. Feasibility study of a prototype extended-wear insulin infusion set in adults with type 1 diabetes. Diabetes Obes Metab. 2022 Jun;24(6):1143–1149.

99. Medtronic. Medtronic secures two CE mark approvals for Guardian 4 Sensor & for InPen MDI Smart Insulin Pen 2021 [25 July 2022]. Available from: https://news.medtronic.com/2021-05-26-Medtronic
-Secures-Two-CE-Mark-Approvals-for-Guardian-4-Sensor-for-InPen-MDI-Smart-Insulin-Pen

100. Dexcom. Dexcom G7 receives CE mark 2022 [25 July 2022]. Available from: https://www.dexcom.com/g7-ce-mark

101. Abbott Diabetes Care. FreeStyle libre 3: world’s smallest sensor is here 2022 [26 Feb 2022]. Available from: https://www.abbott.com/corpusnewroom/strategy-and-strength/FreeStyle-libre-3-worlds-smallest-sensor-is-here.html

102. Lawton J, Hart RI, Kimbell B, et al. Data sharing while using a closed-loop system: qualitative study of adolescents’ and parents’ experiences and views. Diabetes Technol The. 2021;23(7):500–507.

103. Hart RI, Kimbell B, Rankin D, et al. Parents’ experiences of using remote monitoring technology to manage type 1 diabetes in very young children during a clinical trial: qualitative study. Diabet Med. 2022 Jul;39(7):e14828.

104. Kimbell B, Rankin D, Hart RI, et al. Parents’ views about healthcare professionals having real-time remote access to their young child’s diabetes data: qualitative study. Pediatr Diabetes. 2022 May 13 23 (6):799–808.

105. Fuchs J, Hovorka R. COVID-19 and diabetes: could diabetes technol-ogy research help pave the way for remote healthcare? J Diabetes Sci Technol. 2020 Jul;14(4):735–736.

106. Kimbell B, Rankin D, Hart RI, et al. Parents’ experiences of using a hybrid closed-loop system (CamAPS FX) to care for a very young child with type 1 diabetes: qualitative study. Diabetes Res Clin Pract. 2022 May;187:109877.

107. Rankin D, Kimbell B, Besser R, et al. Adolescents’ experiences of using a smartphone application hosting a closed-loop algorithm to manage type 1 diabetes in everyday life: qualitative study. J Diabetes Sci Technol. 2021 Sep;15(5):1042–1051.

108. Peters TM, Haidar A. Dual-hormone artificial pancreas: benefits and limitations compared with single-hormone systems. Diabet Med. 2018 Apr;35(4):450–459.

109. Battelino T, Tehranchi R, Bailey T, et al. Dasiglucagon, a next-generation ready-to-use glucagon analog, for treatment of severe hypoglycemia in children and adolescents with type 1 diabetes: results of a phase 3, randomized controlled trial. Pediatr Diabetes. 2021 Aug;22(5):734–741.

110. Castellanos LE, Balliro CA, Sherwood JS, et al. Performance of the insulin-only iLet Bionic Pancreas and the bihormonal iLet using Dasiglucagon in adults with type 1 diabetes in a home-use setting. Diabetes Care. 2021 Apr 27 44(6):e118–e120.

111. Haidar A, Tsoukas MA, Bernier-Twardy S, et al. A novel dual-hormone insulin-and-pramlintide artificial pancreas for type 1 diabetes: a randomized controlled crossover trial. Diabetes Care. 2020 Jan 23 43(3):597–606.

112. Kobayati A, Haidar A, Tsoukas MA. Glucagon-like peptide-1 recep-tor agonists as adjunctive treatment for type 1 diabetes: renewed opportunities through tailored approaches? Diabetes Obes Metab. 2022 Jan 6; 24(5):769–787.

113. Bister T, Muller I, von Dem BERGE T, et al. Add-on therapy with dapagliflozin under full closed loop control improves time in range in adolescents and young adults with type 1 diabetes: the DAPADream study. Diabetes Obes Metab. 2021 Feb;23(2):599–608.

114. Haidar A, Yale JF, Lovblom LE, et al. Reducing the need for carbo-hydrate counting in type 1 diabetes using closed-loop automated insulin delivery (artificial pancreas) and empagliflozin: a randomized, controlled, non-inferiority, crossover pilot trial. Diabetes Obes Metab. 2021 Jun;23(6):1272–1281.

115. Medicines and Healthcare products Regulatory Agency. Dapagliflozin (Forxiga): no longer authorised for treatment of type 1 diabetes mellitus 2021 [27 June 2022]. Available from: https://www.gov.uk/drug-safety-update/dapagliflozin-forxiga-no-longer-authorised-for-treatment-of-type-1-diabetes-mellitus

116. Ruan Y, Thabit H, Leelarahtha L, et al. Faster insulin action is associated with improved glycaemic outcomes during closed-loop insulin delivery and sensor-augmented pump therapy in adults with type 1 diabetes. Diabetes Obes Metab. 2017 Oct;19 (10):1485–1489.

117. Boughton CK, Hartnell S, Thabit H, et al. Hybrid closed-loop glucose control with faster insulin aspart compared with standard insulin aspart in adults with type 1 diabetes: a double-blind, multicentre, multinational, randomized, crossover study. Diabetes Obes Metab. 2021 Jun;23(6):1389–1396.

118. Lee MH, Paldus B, Vojrin S, et al. Fast-acting insulin aspart versus insulin aspart using a second-generation hybrid closed-loop system in adults with type 1 diabetes: a randomized, open-label, crossover trial. Diabetes Care. 2021 Aug 6 44(10):2371–2378.

119. Dovc K, Piona C, Yesiltepe Mutlu G, et al. Faster compared with standard insulin aspart during day-and-night fully closed-loop insu-lin therapy in type 1 diabetes: a double-blind randomized cross-over trial. Diabetes Care. 2020 Jan;43(1):29–36.

120. Kimbell B, Rankin D, Ashcroft NL, et al. What training, support, and resourcing do health professionals need to support people using a closed-loop system? A qualitative interview study with health professionals involved in the Closed Loop from Onset in type 1 Diabetes (CLOuD) trial. Diabetes Technol Ther. 2020 Mar 6 22 (6):468–475.

121. Bally L, Gubler P, Thabit H, et al. Fully closed-loop insulin delivery improves glucose control of inpatients with type 2 diabetes receiv-ing hemodialysis. Kidney Int. 2019 Sep;96(3):593–596.

122. Boughton CK, Bally L, Martignoni F, et al. Fully closed-loop insulin delivery in inpatients receiving nutritional support: a two-centre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(5):368–377.

123. Stewart ZA, Yamamoto JM, Wilinska ME, et al. Adaptability of closed loop during labor, delivery, and postpartum: a secondary analysis of data from two randomized crossover trials in type 1 diabetes pregnancy. Diabetes Technol Ther. 2018 Jul;20(7):501–505.

124. Galindo RJ, Umpleyeez GE, Rushakoff RJ, et al. Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline. J Diabetes Sci Technol. 2020 Nov;14 (6):1025–1064.

125. Rankin D, Kimbell B, Hovorka R, et al. Adolescents’ and their parents’ experiences of using a closed-loop system to manage type 1 diabetes in everyday life: qualitative study. Chronic Illn. 2021 Jan 20:1742395320985924. DOI: 10.1177/1742395320985924.

126. Hood KK, Garcia-Willingham N, Hanes S, et al. Lived experience of camps FX closed loop system in youth with type 1 diabetes and their parents. Diabetes Obes Metab. 2022 Jul 15 24(12):2309–2318.

127. Barnard KD, Wysocki T, Ully V, et al. Closing the loop in adults, children and adolescents with suboptimally controlled type 1 dia-betes under free living conditions: a psychosocial study. J Diabetes Sci Technol. 2017 Nov;11(6):1080–1088.

128. Farrington C, Stewart Z, Hovorka R, et al. Women’s experiences of day-and-night closed-loop insulin delivery during type 1 diabetes preg-nancy. J Diabetes Sci Technol. 2018 Nov;12(6):1125–1131.

129. Musolino G, Dovc K, Boughton CK, et al. Reduced burden of diabetes and improved quality of life: experiences from unrestricted day-and-night hybrid closed-loop use in very young children with type 1 diabetes. Pediatr Diabetes. 2019 Sep;20(6):794–799.

130. Cobry EC, Kanapka LG, Cengiz E, et al. Health-related quality of life and treatment satisfaction in parents and children with type 1 diabetes using closed-loop control. Diabetes Technol Ther. 2021 Jun;23(6):401–409.

131. Itruraihle E, Tanenbaum ML, Hanes SJ, et al. Expectations and attitudes of individuals with type 1 diabetes after using a hybrid closed loop system. Diabetics Educ. 2017 Apr;43(2):223–232.

132. Tanenbaum ML, Itruraihle E, Hanes SJ, et al. Trust in hybrid closed loop among people with diabetes: perspectives of experienced system users. J Health Psychol. 2020 Mar;25(4):429–438.

133. Hood KK, Laffel LM, Danne T, et al. Lived experience of advanced hybrid closed-loop versus hybrid closed-loop: patient-reported out-comes and perspectives. Diabetes Technol Ther. 2021 Dec;23 (12):857–861.

134. Kudva YC, Laffel LM, Brown SA, et al. Patient-reported outcomes in a randomized trial of closed-loop control: the pivotal international dia-betes closed-loop trial. Diabetes Technol Ther. 2021 Oct;23(10):673–683.
135. Addala A, Auzanneau M, Miller K, et al. A decade of disparities in diabetes technology use and HbA1c in pediatric type 1 diabetes: a transatlantic comparison. Diabetes Care. 2021 Jan;44(1):133–140.
136. Majidi S, Ebekozie O, Noor N, et al. Inequities in health outcomes in children and adults with type 1 diabetes: data from the T1D exchange quality improvement collaborative. Clin Diabetes. 2021 Jul;39(3):278–283.
137. Lawton J, Kimbell B, Rankin D, et al. Health professionals’ views about who would benefit from using a closed-loop system: a qualitative study. Diabet Med. 2020 Jun;37(6):1030–1037.
138. Addala A, Hanes S, Naranjo D, et al. Provider implicit bias impacts pediatric type 1 diabetes technology recommendations in the United States: findings from the gatekeeper study. J Diabetes Sci Technol. 2021 Sep;15(5):1027–1033.
139. Berget CM, Vigers LH, Frohnert T, et al. Six months of hybrid closed loop in the real-world: an evaluation of children and young adults using the 670G system. Pediatr Diabetes. 2020;21(2):310–318.
140. Andreozzi F, Candido R, Corrao S, et al. Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: a narrative literature review. Diabetol Metab Syndr. 2020;12(1):52.
141. Forde H, Choudhary P, Lumb A, et al. Current provision and HCP experiences of remote care delivery and diabetes technology training for people with type 1 diabetes in the UK during the COVID-19 pandemic. Diabet Med. 2022 Apr;39(4):e14755.
142. Noor N, Ebekozie O, Levin L, et al. Diabetes technology use for management of type 1 diabetes is associated with fewer adverse COVID-19 outcomes: findings from the T1D exchange COVID-19 surveillance registry. Diabetes Care. 2021 Aug;44(8):e160–e162.
143. Pease A, Callander E, Zomer E, et al. The cost of control: cost-effectiveness analysis of hybrid closed-loop therapy in youth. Diabetes Care. 2022 Jul 1 45(9):1971–1980.
144. Jendle J, Buompensiere MI, Holm AL, et al. The cost-effectiveness of an advanced hybrid closed-loop system in people with type 1 diabetes: a health economic analysis in Sweden. Diabetes Ther. 2021 Nov;12(11):2977–2991.
145. Lambadari V, Ozdemir Saltik AZ, de Portu S, et al. Cost-effectiveness analysis of an advanced hybrid closed-loop insulin delivery system in people with type 1 diabetes in Greece. Diabetes Technol Ther. 2022 May;24(5):316–323.
146. Pease A, Zomer E, Liew D, et al. Cost-effectiveness analysis of a hybrid closed-loop system versus multiple daily injections and capillary glucose testing for adults with type 1 diabetes. Diabetes Technol Ther. 2020 Nov;22(11):812–821.
147. Roze S, Buompensiere MI, Ozdemir Z, et al. Cost-effectiveness of a novel hybrid closed-loop system compared with continuous subcutaneous insulin infusion in people with type 1 diabetes in the UK. J Med Econ. 2021 Jan-Dec;24(1):883–890.
148. Ng S, May, Katkat N, Day H, Hubbard R, Quinn M and Finnigan L. (2022). Real-world prospective observational single-centre study: Hybrid closed loop improves HbA1c, time-in-range and quality of life for children, young people and their carers. Diabet Med, 39(7), 10.1111/dme.14863.
149. Ng S, May, Katkat N, Day H, Hubbard R, Quinn M and Finnigan L. (2022). Real-world prospective observational single-centre study: Hybrid closed loop improves HbA1c, time-in-range and quality of life for children, young people and their carers. Diabet Med, 39(7), 10.1111/dme.14863.
150. Serne EH, Roze S, Buompensiere MI, et al. Cost-effectiveness of hybrid closed loop insulin pumps versus multiple daily injections plus intermittently scanned glucose monitoring in people with type 1 diabetes in the Netherlands. Adv Ther. 2022 Apr;39(4):1844–1856.