Baryon Cycling in the Low-Redshift Circumgalactic Medium: A Comparison of Simulations to the COS-Halos Survey

Amanda Brady Ford, Jessica K. Werk, Romeel Dave, Jason Tumlinson, Rongmon Bordoloi, Neal Katz, Jun A. Kollmeier, Benjamin D. Oppenheimer, Molly S. Peeples, Jason X. Prochaska, David H. Weinberg

1 Max Planck Institute for Astrophysics, D-85741, Garching, Germany
2 UCO/Lick, University of California Santa Cruz, Santa Cruz, CA, 95064
3 University of the Western Cape, Bellville, Cape Town 7535, South Africa
4 South African Astronomical Observatories, Observatory, Cape Town 7925, South Africa
5 African Institute for Mathematical Sciences, Muizenberg, Cape Town 7945, South Africa
6 Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218
7 Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA
8 Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101, USA
9 CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA
10 Astronomy Department and CCAPP, Ohio State University, Columbus, OH 43210, USA

ABSTRACT
We analyze the low-redshift (z≈0.2) circumgalactic medium by comparing absorption-line data from the COS-Halos Survey to absorption around a matched galaxy sample from two cosmological hydrodynamic simulations. The models include different prescriptions for galactic outflows, namely hybrid energy/momentum driven wind (ezw), and constant winds (cw). We extract for comparison direct observables including equivalent widths, covering factors, ion ratios, and kinematics. Both wind models are generally in good agreement with these observations for H\textsc{i} and certain low ionization metal lines, but show poorer agreement with higher ionization metal lines including Si\textsc{iii} and O\textsc{vi} that are well-observed by COS-Halos. These discrepancies suggest that both wind models predict too much cool, metal-enriched gas and not enough hot gas, and/or that the metals are not sufficiently well-mixed. This may reflect our model assumption of ejecting outflows as cool and unmixed gas. Our ezw simulation includes a heuristic prescription to quench massive galaxies by super-heating its ISM gas, which we show yields sufficient low ionisation absorption to be broadly consistent with observations, but also substantial O\textsc{vi} absorption that is inconsistent with data, suggesting that gas around quenched galaxies in the real Universe does not cool. At impact parameters of ≲ 50 kpc, recycling winds dominate the absorption of low ions and even H\textsc{i}, while O\textsc{vi} almost always arises from metals ejected longer than 1 Gyr ago. The similarity between the wind models is surprising, since we show that they differ substantially in their predicted amount and phase distribution of halo gas. We show that this similarity owes mainly to our comparison here at fixed stellar mass rather than at fixed halo mass in our previous works, which suggests that CGM properties are more closely tied to the stellar mass of galaxies rather than halo mass.

1 INTRODUCTION
Studying the circumgalactic medium (CGM) is an emerging frontier of galaxy evolution that connects galaxies to the intergalactic medium. In this tenuous multi-phase gas that surrounds galaxies lie clues to the processes that drive galaxy evolution such as gaseous inflows and outflows (e.g. Kereš et al. 2005, Dekel et al. 2009, Davé et al. 2012, Lilly et al. 2013). Recent observations with Hubble’s Cosmic Origin Spectrograph (COS) have characterised the CGM in unprecedented detail. They have shown that there is probably more oxygen in the halos around star-forming galaxies than within them (Tumlinson et al. 2011), that the CGM may contain the missing baryons and missing metals within galaxy halos (Peeples et al. 2014, Shull et al. 2014, Werk et al. 2014), and that star-forming and passive galaxies have different O\textsc{vi} signatures (Tumlinson et al. 2011) but similar cool gas content (Thom et al. 2013, Werk et al. 2014). Recent work by Stocke et al. (2013) and Tripp & Song (2012) has also used COS to probe the CGM out to several hundred kiloparsecs, and observations by...
Prochaska et al. (2011) and Rudie et al. (2013) have established a characteristic extent of the metal-enriched CGM to be roughly \(\sim 300 \) proper kpc, regardless of redshift. In addition to these observations that characterise the CGM, there is a wealth of observational data detecting outflows at a variety of redshifts (Martin 2005; Rupke et al. 2003; Tremonti et al. 2007; Weiner 2009; Rubin et al. 2012; Pettini et al. 2001; Steidel 2001; Veilleux et al. 2005), indicating that most if not all galaxies drive winds at some point in their evolution, presumably enriching the CGM and IGM with mass and metals in the process.

The physical mechanisms that drive these outflows are not well characterised. While observations can now probe individual sight lines around individual galaxies, there is not yet a robust understanding of the metallicity, covering factor, and thermodynamic phase of the outflowing material. The specifics of how these quantities vary with the galaxy’s mass, star formation rate, environment, and redshift are poorly characterised. The fate of the ejected material after it leaves the galaxy is even less well constrained. Simulations suggest the presence of “halo fountains”, where baryons are ejected from the galactic disk only to rain back down again at later times (Oppenheimer & Davé 2008). The contribution of this so-called recycled accretion relative to pristine inflows from the IGM depends at minimum on galaxy mass (Oppenheimer et al. 2010) and impact parameter (Ford et al. 2014), and plausibly also on star formation rate (SFR), SFR surface density, and environment. Simulations by Oppenheimer et al. (2012) suggested that the IGM is enriched “outside-in”, where winds propagate further from galaxies at earlier epochs and metals re-collect towards halos at late times, but this conclusion may depend on the poorly-understood mechanisms by which winds are launched.

Hydrodynamic simulations that directly model inflows and outflows provide a crucial complement to emerging CGM observations by plausibly elucidating how the physical conditions and dynamical state of the CGM gas can be manifest in absorption line data. Ford et al. (2014) showed that metal ions with low ionisation potential (e.g., Mg II) trace dense gas close to galaxies, while metals with high ionisation potentials (e.g., O VI) trace more diffuse gas. This work also showed how different prescriptions for outflows can result in significant differences in the temperature, density, and metallicity of the CGM gas. Ford et al. (2014) followed and showed, in detail, how the baryon cycle operates in a plausible wind model. At low redshift, inflowing material is dominated by recycled gas that was previously ejected in an outflow; hence inflows are enriched and can be traced by metal lines. In general, low metal ions like Mg II trace this recycled accretion, while O VI traces hotter, less dense material built up by prior epochs of outflows.

While these simulations have provided some general guidelines for interpreting CGM observations, they have yet to be tested in detail against existing CGM data. The best existing absorption line data set that targets a range of impact parameters close to galaxies in the CGM is currently from the COS-Halos survey (Tumlinson et al. 2011, 2013; Werk et al. 2012, 2013). This survey targets 39 quasars around 44 0.1L* – \(3 \) L* galaxies with a carefully-selected sampling of colour and stellar mass, and constitutes the first galaxy-selected absorption line survey of low-redshift CGM gas. These galaxies have stellar masses ranging from \(10^{9.5} \sim 11.5 \), with spectroscopic redshifts \(z_{\text{phot}} \sim 0.14 \sim 0.34 \), and are located 15 – 160 kpc (projected) from a background UV-bright quasar. While COS-Halos covers a wide range of ions, for this work we focus on H i, Si ii, C ii, Si iii, Si iv, Ni iv, Si iv, and O i, since they span a representative range of ionisation energies (see Table 1). Typical COS-Halos detection thresholds for the various ions are given in Table 1 and are generally around rest equivalent widths of 0.1 A. The COS-Halos sight lines are supplemented by Keck/HIRES echelle spectra for 35 quasars to include coverage for Mg ii (2796, 2803\AA). These observations represent the largest sample of CGM absorption line data at these impact parameters, and hence provide a stringent test for models of CGM gas and their relationship to galaxies.

In this paper we build on our previous works using hydrodynamic simulations to (i) determine if our hydrodynamic simulations quantitatively reproduce the COS-Halos absorption line observations; (ii) test whether such observations can distinguish between plausible but substantively different models for galactic outflows; and (iii) constrain the physical and dynamical state of CGM gas around \(\sim L^* \) galaxies as probed by COS-Halos data. As observations improve with ongoing surveys such as COS-Dwarfs (Bordoloi et al. 2014), the COS-GTO survey (Danforth et al. 2010, 2011, 2014; Stocke et al. 2013), and other efforts (e.g. Heckman 2013) to study the CGM of selected galaxy samples, this work aims to serve as a template for how CGM absorption line observations can constrain the physical processes driving the baryon cycle.

Our paper is organised as follows: in §2 we describe our simulations, in §3 we compare to direct observables, in §4 we describe variations with wind model including variations in baryon cycling, and in §5 we summarise our conclusions.

2 SIMULATIONS AND ARTIFICIAL SPECTRA

2.1 The code and input physics

For this paper we use our modified version of the N-body+entropy-conserving smooth particle hydrodynamic (EC-SPH) code GADGET-2 (Springel 2005), fully described in Oppenheimer & Davé (2008). Our main simulation is identical to that used in Davé et al. (2013); Ford et al. (2014), and further details can be found there. Briefly, we assume a WMAP-9 concordant ΛCDM cosmology (Hinshaw et al. 2009): \(\Omega_M = 0.28 \), \(\Omega_{\Lambda} = 0.72 \), \(h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.7 \), a primordial power spectrum index \(n = -0.96 \), an amplitude of the mass fluctuations scaled to \(\sigma_8 = 0.82 \), and \(\Omega_b = 0.046 \). The volume is \(32 h^{-1} \text{ Mpc} \) on a side with 512\(^3 \) gas particles and 512\(^3 \) dark matter particles. This results in a gas particle mass of \(4.5 \times 10^5 M_\odot \) and a dark matter particle mass of \(2.3 \times 10^7 M_\odot \), allowing us to resolve galaxies down to stellar masses approaching \(10^8 M_\odot \). The main simulation output we use for this work is at \(z = 0.25 \), which is the closest snapshot we have to the typical redshift of COS-Halos.

This simulation includes galactic outflows, which are implemented using a Monte Carlo approach and tied to the star formation rate (SFR) via \(M_{\text{wind}} = \eta \times \text{SFR} \), where \(\eta \) is the mass loading factor. For this work we select two wind models to study in detail. The first is our hybrid energy/momentum driven winds or “ezw” model. This model
is our favoured wind model because it most accurately represents the relevant small-scale physics associated with the transition from momentum-driven winds to energy-driven winds at low masses (Hopkins 2013, Muratov et al. 2013), as well as reproducing observations of the stellar and H I mass function (Dave et al. 2013). In the ezw model, the wind speed v_w and mass loading factor η depend on the galaxy velocity dispersion σ:

$$v_w = 4.29\sigma \sqrt{f_L - 1} + 2.0\sigma$$ \hspace{1cm} (1)

$$\eta = \frac{\sigma_0}{\sigma}, \text{ if } \sigma > 75 \text{ km s}^{-1}$$ \hspace{1cm} (2)

$$\eta = \left(\frac{\sigma_0}{\sigma}\right)^2, \text{ if } \sigma < 75 \text{ km s}^{-1}$$ \hspace{1cm} (3)

Here, $f_L = [1.05, 2]$ is the luminosity in units of the Eddington luminosity required to expel gas from a galaxy potential, $\sigma_0 = 150$ km s$^{-1}$, and σ is the galaxy’s internal velocity dispersion, broadly constrained to match IGM enrichment at high redshift (Oppenheimer & Dave 2008). Particles are ejected individually, with velocities chosen to lie within the range determined by this range of f_L. The range of f_L values is taken from observations of local starburst galaxies by (Rupke et al. 2005), and is also consistent with observations by (Martin 2005) that find $f_L \approx 2$. In this model, as in its earlier cousin vzw which did not include the steeper η scaling at low σ, we add an extra kick of 2.9σ to simulate continuous pumping of gas from radiation pressure, as described in Oppenheimer & Dave (2008). This simulation also includes a prescription for quenching massive galaxies, which involves super-heating particles with increasing probability above a threshold preventing the gas around galaxies, and how such processes are manifested in CGM observations.

2.2 Generating spectra with specexbin

Once we run our simulations, we use SPECEXBIN to calculate physical properties of the gas along lines of sight (Oppenheimer & Dave 2006). Briefly, SPECEXBIN averages physical properties of the gas along a given sight line and then uses look-up tables calculated with CLOUDY (Ferland et al. 1998, version 08.00) to find the ionisation fraction for the relevant ion species. We use the same version of SPECEXBIN as in (Ford et al. 2013, 2014). See Figure 1 of Ford et al. (2013) for an example of a simulated spectrum. This version of SPECEXBIN includes a prescription for self-shielding from the ionisation background, which uses a density threshold of $n_0 = 0.01\text{cm}^{-3}$. Above this density threshold we assume that all the hydrogen is fully neutral, i.e. it is all H I, and that all the magnesium is in Mg II. An H I column density above 10^{17} cm^{-2} shields against most of the 15eV photons that could ionize Mg II to Mg III, but it does not shield the 7eV photons that ionize Mg I to Mg II.

We choose a signal-to-noise (S/N) value of 30, for comparison with our earlier work (Ford et al. 2013, 2014). This is higher than the S/N value of the observations, which averages roughly 12. However, since we will use the same equivalent width detection thresholds as observations, as listed in Table 1 our results are not very sensitive to our exact choice of S/N. Once the model lines of sight are selected (see the next section) and the artificial spectra are generated using SPECEXBIN, then we use the Voigt profile fitter AUTOVP (Dave et al. 1997) to identify the absorption lines (see Ford et al. 2013 for an example) and to fit column densities and equivalent widths.

We choose a large suite of ions to examine for this work to get the fullest possible information on the physical conditions of the CGM. As found in earlier work (Werk et al. 2012, Ford et al. 2013, 2014), a range of ionisation potentials are necessary to probe different phases of the CGM. Generally, low ionisation potential metal lines probe high density, low temperature regions close to galaxies, while high ionisation potential metal lines probe warmer, more diffuse gas that can be detected further from galaxies. In addition to H I, we generate spectra for Mg II, Si II, Si III, C III, C IV, and O VI.

Ion	Ionisation Energy (eV)	Detection Threshold (Å)
H I	13.6	0.2
Mg II	15.04	0.1
Si II	16.35	0.15
C II	24.38	0.08
Si III	33.49	0.1
Si IV	45.14	0.1
C III	47.89	0.25
O VI	138.1	0.1

1 Our previous paper listed an incorrect formula for v_w; the one shown here is verified to be the one used in our code.
We choose our lines of sight (LOS) in our simulations to best mimic the LOS in the COS-Halos survey. In COS-Halos, galaxies were selected first and the impact parameter to the galaxy is the projected distance to the observed quasar. As a result, each COS-Halos LOS corresponds to a specific impact parameter b around a galaxy of a known stellar mass M_*, as shown in Figure 1. Moreover, COS-Halos galaxies were generally selected to be isolated systems (preferring galaxies without photometric coincidences within 1 Mpc, with some exceptions), and hence are likely to be central galaxies in their halos (Tumlinson et al. 2013, Section 2.5).

To mimic this process in the simulations, we select all the central galaxies in our simulations that are within ± 0.125 dex in stellar mass of the COS-Halos survey galaxies, and we generate four LOS at the particular impact parameter for the selected COS-Halos galaxy, $x+b$, $x-b$, $y+b$, and $y-b$. In this way we produce a suite of model LOS for each COS-Halos LOS that matches its unique (b, M_*) value. For example, for the COS-Halos LOS corresponding to $M_*=10^{10.2}M_\odot$ and $b=18.26$ kpc, we select all galaxies in our simulation with $M_*=10^{10.075-10.325}$, and produce four LOS around each at $b=\pm18.26$ kpc in x and y. In the end, for each of the 44 COS-Halos (b, M_*) LOS, we have between 50-200 simulated LOS. The smaller mass galaxies tend to have larger numbers of LOS since there are more galaxies within ± 0.125 dex in M_*.

For consistency with the COS-Halos analysis, we consider all absorption components within ± 600 km s$^{-1}$ to be associated with the galaxy, and sum them for a total equivalent width, unless otherwise stated. We note that this differs from our approach in earlier work (Ford et al. 2013) where we only considered components within ± 300 km s$^{-1}$ to be associated with a galaxy. However, as shown in Figures 8 and 15 of that work, the absorption drops off substantially after ± 300 km s$^{-1}$, so there is little difference between these two limits. This same drop-off in absorption after ± 300 km s$^{-1}$ is seen in the COS-Halos data themselves (Tumlinson et al. 2013).

We note that our simulation naturally produces many satellite galaxies around the chosen central galaxy, so in some cases our LOS will impact closer to satellites. This will presumably contribute to the variance of absorption properties around a particular galaxy. In this paper, we will focus on mean and median absorption statistics without examining the origin of the scatter, which we leave for future work.

We also subdivide our sample into passive and star-forming galaxies (SFGs), using a specific star formation rate (sSFR=Σ_{SFR}/M_*) criterion of $10^{-11}M_\odot$/yr, as done for COS-Halos (see Figure 1). Figure 2 shows sSFR vs. M_* for ezw (blue crosses) and cw (red triangles) models, only showing those galaxies selected to mimic the COS-Halos LOS. We show as the black line the median trend from a compilation of observations of star-forming galaxies by Speagle et al. (2014). The observed COS-Halos galaxies are generally actively star forming for the lower-mass galaxies, but are more likely to be passive with increasing stellar mass. Many of the massive galaxies in ezw have zero SFR, and those quenched galaxies are plotted at the bottom as downward facing arrows. Of the 48 $M_* > 10^{11}M_\odot$ galaxies in the ezw sample, all but 9 are quenched, with sSFR=0. Unlike the ezw model, cw does not include a quenching prescription, so produces no quenched galaxies at high masses. The simulated galaxies broadly cover the range of sSFRs seen in COS-Halos, albeit that our quenched galaxies have zero SFR by construction.

Figure 2 only shows galaxies identified as central galaxies within their halos, but at low masses, many of the quenched galaxies shown here are likely former satellites that have been ejected from halos (Gabor & Davé 2014); our quenching prescription is not applied to such small systems, but they have been quenched as a satellite likely by gas stripping processes (e.g. Rafieferantsoa et al. 2014). Such satel-
lite quenching processes are self-consistently handled in the simulations, albeit the version of SPH we use here does not necessarily handle them optimally (e.g. [Agertz et al. 2007; Hopkins 2013]). Importantly, we note that the ezw model better matches the observed distribution of sSFR vs. M_* at low masses. This is one reason why we favour our ezw model relative to cw, in addition to those arguments discussed in § 2.1. We also favour the ezw model because it more accurately encapsulates the scalings for outflows predicted from recent high-resolution individual galaxy simulations [Muratov et al. 2015], and matches many other observations better than cw [Dave et al. 2013].

3 COMPARISON TO COS-HALOS OBSERVABLES

We now show a direct comparison between our simulations and the COS-Halos survey. This work represents the first direct comparison of our simulations against observations of absorption lines in targeted LOS at low redshift. Each of the following subsections represents a different way of comparing models to observations; all must agree before one can claim agreement. We begin by focusing on the strength of detected lines, to see if the models match the observed sample. Then we examine the total absorption along all LOS, as well as the incidence rate of all our ions along all LOS. We then provide a preliminary glimpse into how ion ratios can constrain models, and examine the kinematics of absorbers relative to their host galaxies. Matches and mismatches between all these statistics provide insights into exactly how our simulations are succeeding and failing in reproducing the COS-Halos data, and they points toward required improvements in CGM modelling.

3.1 Equivalent widths vs. impact parameter

The most direct absorption line observable is the equivalent width. Figure 3 shows the rest equivalent width versus impact parameter for the COS-Halos survey compared to our simulations, for our set of probed ions. For this figure we focus on detected lines only, and ask if models reproduce the same absorption strength as the detected observations. Note that the detection thresholds for each ion are given in Table 1 and shown as solid black horizontal lines to guide the eye. We note that for the observations, the detection limits quoted are a rough guide, as they can vary vary for individual LOS. For the larger sample of LOS in the models, however, we use the detection limits quoted in Table 1 for all model LOS. Observed points below the detection limits are included in this figure for completeness, however in this work we only compare observed and model points above the detection limits.

Here we have placed the ions in order of increasing ionisation potential from low to high. The black points are from the COS-Halos survey. The circles represent detected values while the up and down facing arrows are lower and upper limits, respectively. Error bars are included in black for detected values only, errors on limits are not included. In many cases the errors are smaller than the size of the symbols.

The blue crosses and red triangles show the results for the ezw and cw models, respectively. These points represent the median equivalent width of all LOS with detections above the threshold listed in Table 1 at a given impact parameter. The bars on the model points span the 16-84% range of EW values at that impact parameter, to illustrate the scatter in EW at a given impact parameter. To avoid clutter, we only show the model range bars for points \approx every 25 kpc. The impact of non-detections will be better illustrated by the statistics shown in Figures 1 and 2.

Both models and observations show a weak trend of decreasing equivalent widths with impact parameter. As discussed in [Ford et al. 2013], the basic driver of this is that gas is denser near galaxies. However, the trend is weaker for higher ions, and is essentially absent for O vi, because the density gradient is counteracted by the tendency for high ions to have increasing ionisation fractions in lower-density gas. In [Ford et al. 2013] we found that the ion strength dropped with both halo mass (and thus stellar mass) and impact parameter. But it is important to note that Figure 3 conflates these two trends, owing to the way that we have done our LOS selection ([2.3]), by matching the observed galaxy sample in both stellar mass and impact parameter. As shown in Figure 1 LOS at either low or high impact parameters can be from either low or high mass galaxies. As such, the model points do not decrease as strongly or smoothly with impact parameter, as was seen in [Ford et al. 2013] where we selected narrow bins in halo mass. Additionally, this degeneracy washes away some trends with ionisation potential: the equivalent widths of the low ionisation species do not drop off as steeply as found in [Ford et al. 2013; 2014]. This will similarly impact Figure 2. The scatter owing to the confusion of these trends is exacerbated for the observed points, since the simulation points are averages from a larger sample.

For H1, both simulations are in general agreement with the observations across the 0-150 kpc range, showing strong absorption in every line of sight. The typical EW is much higher than seen in random lines of sight through the IGM [Dave et al. 2010; Ford et al. 2013], showing that there is substantial cool gas within these halos. There is little sensitivity to winds, at least as can be discriminated from the COS-Halos survey, which is reminiscent of the lack of sensitivity to winds in the Ly-α forest [Dave et al. 2010]. There are, however, a few very strong absorbers with equivalent widths above 2Å that lie above all the simulation median points. These potentially provide an interesting challenge to models, hinting at a larger covering fraction of very strong H1 than predicted. However, current uncertainties prevent any robust constraints emerging from these few systems.

The metal lines provide a more direct test of pollution from galactic outflows. For the low and mid ions, when detections are made, they are generally in the EW range expected from the models, with a few observed points being much higher than the model points (as with H1). O vi is also commonly detected, but the typical equivalent widths are generally $\times 2 - 3$ higher than predicted; we discuss this below. Nonetheless, the broad agreement is a non-trivial success of these galactic outflow models in enriching the CGM to roughly the observed levels. Though we do not show it, a model without winds dramatically fails this basic test since it does not yield appreciable metal absorption beyond the smallest impact parameters, as discussed in [Ford et al. 2013].
Figure 3. Equivalent width (Å) vs. impact parameter for observed points (black — circles for measured values, up and down facing arrows for lower and upper limits respectively); as well as ezw (blue crosses) and cw (red triangles) models. Model points are the median values over LOS with detections above the thresholds given in Table 1, range bars show the 16-84% values of those LOS with detections. Ions are ordered according to increasing ionisation energy (right to left, top to bottom). Model points do not smoothly decrease, owing to conflation between stellar mass and impact parameter (see Figure 1). Errors on observed points are given for detections only (not limits) and represent the 2σ limits.

For the low ions (Mg II, Si II, C II, and Si III), the model points tend to lie generally in the middle of the observed points. In many cases the scatter in the observed points is larger than the 16-84% range bars that the models would predict. This could reflect variations in the ionisation conditions or metallicities that are not properly captured within our simulations. Recall that we assume a spatially-uniform metagalactic ionising background with no local contribution from the nearby galaxy and a simple density criterion for self-shielding. These assumptions may need to be relaxed if we wish to capture detailed variations properly. Doing so would require full radiative transfer simulations with much higher resolution to capture small, dense condensations. As discussed in Crichton et al. [2013], if such clouds are indeed the dominant contribution to low-ionisation CGM absorption, they are far from being resolved in any current cosmologically-based simulation.

The mid and high ions tend to show a smaller observed scatter than the low ions, more comparable to that seen in the simulations. Since low ions tend to arise closer to galaxies and in denser gas (Ford et al. [2013]), this suggests that locally-varying density and ionisation conditions, and not locally-varying metallicity, is responsible for the larger scatter in the low ions. Alternatively, local variations in metallicity could be much stronger closer to galaxies, which may be reasonable if the absorbing gas arises from recent outflows.

Returning to the discrepancy for O VI, this is tricky to interpret because O VI can arise in both photo-ionised and collisionally-ionised gas (Oppenheimer & Davé 2009). As shown in Ford et al. [2013, Figure 6], the median temperature for O VI absorption is ~ $10^4.5$ K, which is dominated by photo-ionisation, and indeed the phase space diagram in their Figure 5 does not suggest a distinct peak of collisionally-ionised O VI absorption at $T \sim 10^5.5$ K. One
way to explain the predicted deficit is thus to invoke a more significant hot halo of gas. However, since the typical virial temperature of a COS-Halos galaxy is a few times 10^7 K, this means that such collisionally-ionised O vi would have to be a transient phase through which the gas is cooling. Modelling such non-equilibrium processes is a substantial challenge for simulations, and may need to be improved if more robust and accurate predictions are desired. Alternatively, a significantly higher photo-ionising background around 114 eV than what we have assumed could also result in substantially more O vi; the metagalactic flux at these energies is currently poorly known.

The details of the wind implementation can strongly impact the phase of CGM gas. For instance, the models of Hummels et al. (2013) evolved using the adaptive mesh refinement hydrodynamic code Enzo show substantially hotter CGM gas, since their models drive winds by super-heating the ISM. They tended to find that the resulting CGM was too hot, and thus also a poor match to O vi observations, at least for the most plausible assumptions about the energetic input into winds. This highlights that the proper treatment of wind propagation, heating, and mixing is a challenging problem in current simulations, and shows that detailed comparisons to observations can provide interesting constraints on these processes.

In light of this, it is somewhat surprising that the two wind models we consider here are in such good agreement with each other, and that these COS-Halos observations cannot discriminate between them. Ford et al. (2013) showed large differences in absorption line profiles in every ion between a cw and a momentum-driven wind model that is similar to ezw. Moreover, ezw and cw are well-discriminated by other diagnostics generally related to galaxy properties (Davé et al. 2013). The differences between wind models will be slightly more prominent in other CGM statistics that we explore later, but for the equivalent widths they are small. We will discuss potential reasons for this in §4.

3.2 Equivalent width per unit redshift

In the previous section we compared individual absorber equivalent widths between the models and the observations where detections occurred, and found broad agreement in some ions but notable differences in others. That comparison, however, does not characterise the total absorption strength; for instance, it may be that absorbers are far more or less common in the models compared to the observations, so that while individual equivalent widths are comparable when detected, the overall absorption is discrepant. To examine the overall absorption, here we present equivalent widths per unit redshift close to galaxies, including all LOS, both detections and non-detections.

Figure 4 shows the equivalent width per unit redshift, dEW/dz, versus impact parameter. We calculate dEW/dz by summing the equivalent width (above the detection limits given in Table 1) in all LOS probed in that impact parameter bin, and dividing by the total redshift path length within ±600 km/s, for all LOS with that impact parameter. We bin both observed and model points in 25 kpc bins. The observed COS-Halos points are shown in black. For the purposes of this plot, observed points that are upper or lower limits are assumed to be at their limit values; the results do not change significantly if all upper limits were assumed to be zero. The model values are plotted as dotted blue lines for the ezw model and as dashed red lines for the cw model. The bars on the model points are range bars, showing 16%-84% of the model values for all LOS in that impact parameter bin (and is likely an overestimate of the actual range at any given impact parameter in that bin). The errors on the observed points represent the average errors on all constrained detections in the 25 kpc bins. These errors do not include errors on LOS that are upper limits, lower limits, or non-detections; hence the errors shown here are a lower limit on the actual error. The errors on the model points have been slightly offset horizontally for ease of viewing.

dEW/dz serves to diagnose whether our simulations are reproducing the observed amount of H i and metal ion absorption in the CGM around these galaxies. The H i absorption is in excellent agreement at all impact parameters. For comparison, a random LOS through the universe would typically yield dEW/dz≈1.24, which is much lower than the CGM typical value of several hundreds. Hence the agreement with H i is non-trivial, and shows that there is both the correct amount and the correct radial distribution of neutral gas in the simulations.

Turning to the metals, Mg ii and C ii are well-reproduced in the model, with the observed points being within the 16 − 84% range of the simulation predictions. The models produce drastically too little Si ii and Si iii; the models are off by as much as an order or magnitude. Conversely, the models produce too much Si iv at low impact parameters, even outside the model ranges. The simplest interpretation is that the models do not have as much cold, dense gas in the CGM as observed, while having an over-abundance of warmer gas. A physical interpretation might be that our assumption of optically-thin gas fails to capture the dense gas phase structure in the CGM. Qualitatively, self-shielding would be expected to increase Si ii and reduce Si iv. However, we note that substantial self-shielding would greatly increase the amount of H i and C ii, which at present are in good agreement with the observations. Clearly there is some disagreement in the phase structure predicted in the models compared to that observed, but the nature of this remains difficult to ascertain. Small features in the CGM which may give rise to absorption, such as interface regions and small, possible multi-phase substructures, may be below the resolution limit of the models presented here.

For the mid-ion C iii, the models produce slightly too little absorption but generally the observed points are within the model range values. For O vi, however, the disagreement is much more stark. While the difference in the strength of detected lines (as shown in Figure 3) between the models and the observations is roughly a factor of 2, the difference in the total absorption over all LOS is more like a factor of 5. This difficulty in producing enough O vi to match the Tumlinson et al. (2011) observations was also found in the Enzo simulations of Hummels et al. (2013).

The agreement between the models and the observations for H i, Mg ii, C ii, and to a lesser extent C iii is generally quite good given that the models have not been tuned in any way to reproduce these data, and suggests that the amount of CGM enrichment in both these simulations is roughly in accord with observations. However, the mismatch in the silicon ions, as well as O vi, is quite large. This is a
significant failure, given both the degree of the mismatch, and the high quality of the observed Si\textsc{iii} and O\textsc{vi} data. The similarity in the predictions of the two wind models is striking, particularly since the amount of CGM metals and the phase space distribution of the gas in these two models is rather different (Ford et al. 2014), as we will discuss later.

The trend in H\textsc{i} is quite flat with impact parameter. As we discussed in the previous section, this partly owes to the fact that a given impact parameter bin has a substantial range of stellar masses. Some of this likely owes to saturation, as H\textsc{i} at these equivalent widths are very much on the linear part of the curve of growth and hence fairly insensitive to variations in column density. Nonetheless, the trend in H\textsc{i} with b is even much flatter than in any of the low-ionisation metals. At face value, this suggests that the dropoff in metal ions at large radii owes either to gas becoming more ionised at higher impact parameter or to a dropoff in metallicity, rather than a dropoff in the amount of neutral gas.

In summary, the predicted total equivalent width per unit redshift shows broad agreement with the observations, but with various interesting discrepancies. H\textsc{i}, Mg\textsc{ii}, C\textsc{ii}, and C\textsc{iii} are in fair agreement with the observations, and Si\textsc{ii}, Si\textsc{iii}, and O\textsc{vi} are significantly underproduced. It is difficult to identify a single physical variation that could even qualitatively reconcile all these discrepancies while preserving the good agreements, suggesting that further work is needed to discern their detailed cause. Radial dependencies are stronger for lower ions, except for H\textsc{i} that shows almost no decline with radius possibly owing to saturation.

3.3 Covering Fractions

The covering fraction quantifies how patchy the CGM absorption is in a particular ion. Observations and simulations suggest that the CGM has a complex, multi-phase structure, potentially with small clouds embedded in warmer gas (Tripp et al. 2008; Kacprzak et al. 2012; Ford et al. 2014; Crighton et al. 2015). The size and fraction of material in these various phases remains poorly constrained.

Churchill et al. (2003), based on observed Mg\textsc{ii} absorption around galaxies, finds that this absorption generally arises in small clouds, i.e. $2 \lesssim n_\text{H} \lesssim 20 \text{ cm}^{-3}$, line-of-sight sizes $1 \lesssim D \lesssim 25 \text{ pc}$, and masses between 10 and $1000 M_\odot$. In contrast, Werk et al. (2014), from low-ionisation absorbers in COS-Halos, find a median cloud mass of $10^7 M_\odot$. Covering fractions thus provide another test of models, and potentially a very stringent one if the cloud sizes are well below what can be resolved in our (or most) simulations (Crighton et al. 2015).

Figure 5 shows the covering fraction as a function of
impact parameter for our set of ions. As in Figure 3 we plot ions from low to high ionisation potential. We define a covering fraction as the fraction of LOS with a detection above a given ion-specific EW threshold, corresponding approximately to the COS-Halos survey detection limits, as listed in Table 1. The observed points are binned from 0-50 kpc, 50-100 kpc, and 100-160 kpc. The solid black line represents the median covering fraction, and the dotted black lines represent the uncertainties (Wilson intervals). The models are plotted as individual points (crosses for ezw, triangles for cw, as before), because in the simulations we have multiple LOS at each impact parameter and are able to define a unique covering fraction at each impact parameter. In this manner one can get a sense of the variability in covering fraction as a function of impact parameter, albeit with the same degeneracy in stellar mass noted earlier.

For H_i, the simulations almost always have unity covering fraction above its detection threshold of 0.2 Å. The covering fraction in the COS-Halos survey is also very close to unity, but formally slightly below. This high H_i fraction was also emphasised in Prochaska et al. (2011), and is independent of both galaxy stellar mass and galactic star formation rate (not shown here), for the range of these values covered by the COS-Halos survey. In fact for all ions shown here, the covering fraction depends more strongly on the impact parameter than either the star formation rate or the stellar mass. The high covering fraction of H_i is noted in the COS-Halos survey for both star-forming and passive galaxies (Thom et al. 2012). We note that we are able to reproduce these high H_i covering fractions in passive systems with our heuristic quenching prescription (present in the ezw model but not the cw model).

Further exploring Figure 4 we see that for low ions (Mg ii, Si ii, C ii, and Si iii) the models generally are either at, or slightly above, the observations at impact parameters of 0-50 kpc but drop below the observations at larger impact parameters. For the mid ion Si iv, the model values are below the observed values in the 0-50 kpc bin, but within the errors. At higher impact parameters the model covering fractions drop below the observed errors. For C iii, there are model points below the observed errors at all impact parameters. For the high ion O vi however, the model covering fractions are already too low at all impact parameters, with the match worsening at higher impact parameters. We note that the covering fraction of the high ion O vi does not decline as steeply with impact parameter as the lower ionisation species, either in the observations or in the models. We also emphasise the similarity of the ezw and cw model points. While there is scatter in the model points, there is not a single impact parameter bin in a single ion where one model is consistently different from the other. Rather, both models match (or mismatch) the observations in similar ways.

The mismatch between the models and the observations has three possible origins: there could be not enough metals
in the simulation, the metals could be in other ionisation states not shown here, or the metals could be in the wrong spatial distribution, which could happen if the metals were not mixed properly. We note that in both Figure 4 and 5 the radial gradients of Si II, Si III, C III, and O VI are steeper in the models than in the observations. This suggests the models do not produce enough metals in the outskirts of halos to match the COS-Halo observations. It is also possible that some of the metals are not in the correct ionisation states: note our overproduction of Si IV at small impact parameter but an underprediction of Si II and Si III. We also slightly overpredict C II but underpredict C III at low impact parameters, although the discrepancies are generally within the error bars of the observations. It is likely a combination of these factors that account for the mismatch, as we discuss in further detail in §3.5 and §4.2.

In our simulations, we do not mix metals into CGM gas from the particles that are ejected from the ISM, and hence it is perhaps not surprising that there is too little metal mixing in our models. It is not obvious how much mixing should occur; again, it is challenging to model mixing of outflowing gas properly. Nonetheless, it is interesting that the covering fraction can potentially provide a good constraint on this crucial physical process affecting how the outflows and the CGM interact.

3.4 Dependence on the Specific Star Formation Rate

A key feature of COS-Halos is that it includes a significant sample of passive galaxies, and hence can examine trends of CGM absorption with star formation rate. Current models broadly suggest that passive galaxies are surrounded by hot gaseous halos (e.g. Gabor & Davé 2014), unlike star-forming galaxies that are located in “cold mode” halos (e.g. Keres et al. 2005). Hence one might expect trends in the strength of various ions as a function of specific star formation rate.

We examine the dependencies on sSFR by investigating equivalent widths versus impact parameter, separated by sSFR. As noted earlier, Tumlinson et al. (2011) found that blue galaxies generally have higher equivalent widths of O VI than red galaxies, regardless of impact parameter or galaxy mass. In contrast, Thom et al. (2012) found that the HI properties in the CGM of red and blue galaxies are only marginally different, and Werk et al. (2014) similarly found that low-ionisation absorption is also not greatly dissimilar. We use our ezw model, which includes our heuristic quenching prescription, to examine how well our simulation reproduces these observations.

In Figure 6 we divide our model LOS — which are initially selected based only on impact parameter and stellar mass — into LOS around high- and low-sSFR galaxies (above and below $10^{-11} M_\odot$/yr). To focus the discussion, we examine only HI, our lowest metal ion Mg II, and our highest ion O VI; the trends for intermediate ions are interpolatable from these.

We are able to reproduce the observed high HI covering fractions in passive systems (Thom et al. 2012) despite our heuristic quenching prescription. In fact there is little difference in the equivalent width of H I in model red and blue galaxies (top panel), which is consistent with what is seen in the observations (blue stars and red crosses). Hence our quenching model does not remove HI from halo gas, even though it adds substantial energy to the halo by heating the ISM gas to temperatures that are well in excess of the virial temperature. We are not claiming that this lends physical validity to our simple quenching model, but rather that such observations could provide interesting constraints on physically-motivated models of quenching (e.g. Gabor et al. 2013). A similar trend is seen in Mg II (middle panel), where our simulated red and blue galaxies have similar absorption strengths. In the observations, if anything there seems to be more Mg II around red galaxies. Our results suggest that whatever quenches the central galaxy in more massive halos should have a minimal effect on the cool CGM gas that gives rise to HI and Mg II.

For O VI, the situation is different. The observed strength around blue galaxies is higher than around red galaxies (Tumlinson et al. 2011), three of which are upper limits off the bottom of the plot. In contrast, this difference is not present in the simulations: there is no clear difference between the equivalent widths of O VI in red and blue galaxies. Hence, the underprediction of O VI in the models seen earlier is specific to blue galaxies, while the models greatly overpredict O VI for passive galaxies.

This shows that, despite ejecting gas at high temperatures from the ISM, our quenching model probably does not properly heat the surrounding CGM gas to prevent cooling through the O VI temperature regime. Our implemented quenching model does not prevent accretion by keeping surrounding gas hot, but only ejects the gas once it gets in the galaxy. Gabor & Davé (2011) argued that keeping the hot halo gas near the virial temperature, well above where it would be in the O VI phase, provides a successful model to produce the quenched galaxy population as observed. Implementing such a model into our simulations would likely have quite a different impact on O VI absorption, as it would explicitly prevent gas from cooling. It remains to be seen whether such a model would concurrently over-suppress H I and low metal absorption; we leave this investigation for future work. For now, we conclude that our implemented form of quenching is inconsistent with CGM metal observations. Clearly, matching both the low ions and O VI in the CGM of passive galaxies represents an important constraint on the thermodynamics of quenching. Although passive galaxies in our simulations are not currently ejecting winds, we show in §4.3 that the CGM absorption in our models is dominated by gas that was ejected well before the epoch of observation, largely decoupling the CGM predictions from the current star formation rate.

3.5 Ion Ratios

Ion ratios provide a complementary test for the physical conditions of the absorbing gas. Ratios between metal ions and hydrogen provide an estimate of the metallicity in the gas traced by that ion, while ratios between ions of the same element provide a constraint on the ionisation conditions of the gas. Given our current analysis, we can only study ratios of ion equivalent widths summed over 600 km/s intervals, which likely erases some of the detailed information about physical conditions through the CGM; trying to subdivide these into components introduces great sensitivity to the
Figure 6. Equivalent width vs. impact parameter of H\textsc{i}, Mg\textsc{ii}, and O\textsc{vi} in the ezw model. Red model galaxies are shown as red diamonds, blue model galaxies as blue squares, red observed galaxies as red x’s, and blue observed galaxies as blue asterisks. Red and blue are separated by a sSFR = 10^{-11} M_\odot/yr. Range bars show the 16-84% values of the model sightlines at fixed impact parameter, as in Figure 3, but are larger here because the sample has been divided.

Selected ion ratios are shown in Figure 7. As before, COS-Halos survey data is plotted in black, and model points (ezw: blue crosses, cw: red triangles) represent the median value of the ratio at each impact parameter. For the observed points, downward facing arrows indicate that the ratio is an upper limit (meaning an upper limit divided by an actual value, or an actual value divided by a lower limit), upward facing arrows indicate the ratio is a lower limit, and circles indicate an actual value. We do not plot values that are poorly constrained, such as a limit divided by a limit. For the model points, coloured downward arrows show where the ratio is zero, as little or none of the top ion is present. In the left panels, we plot the log of the ratio of equivalent widths of a low and high ion relative to H\textsc{i}, as a probe of the metallicity of the gas traced by that range of ionisation potentials. In the right panels, we show the ratio of two Si lines, as well as a ratio of a low (Mg\textsc{ii}) to high (O\textsc{vi}) line.

The low ion ratio (Mg\textsc{ii}/H\textsc{i}) shows generally good agreement with the observations, albeit with a scatter in the observations that is much larger than in the models. The scatter might arise owing to local variations in ionisation conditions. There is a slight hint that the models produce slightly too high a ratio, particularly at large impact parameter, indicating that the metallicity in the low ionisation gas might be a bit too high. There is also a non-trivial offset between the wind models, ezw is slightly higher than cw, although the scatter in the observations is far too large to discriminate between the models. Still, this is one of the few aspects in which any statistically significant difference can be seen between the ezw and the cw models.

The predicted O\textsc{vi}/H\textsc{i} is considerably lower than most of the observed points. The discrepancy is comparable to that seen in the individual EW measurements of O\textsc{vi} vs. impact parameter in Figure 3. These discrepancies suggest that the hot diffuse phase in our models is either insufficiently enriched with metals or has an incorrect temperature structure that shifts oxygen to higher or lower ionisation states. These trends hold true for both wind models (though ezw produces slightly higher ratios than cw), indicating that it is not specific to which wind model we use, but rather may be indicative of an overall failure in the way we implement winds, namely by ejecting cool, unmixed ISM particles. Ejecting hotter or over-enriched gas that mixes would qualitatively be expected to move towards better agreement with the observations. Nonetheless, we emphasise that the results are within a factor of ≈ 3 of the observed ratios, which is already a non-trivial success. These ion ratio comparisons further refine and highlight issues with our models, and demonstrate
the ability of the COS-Halos survey to provide important insights into galactic outflow and ionisation processes in the CGM.

The right panels of Figure 7 plot different metal ions against each other, mitigating the dependence on metallicity and allowing us to test physical conditions of the gas more directly. However, the observational data are more limited, as it is not common to find absorbers with multiple ions detected. The ratio of Si\textsc{ii}/Si\textsc{iii} at low impact parameters shows an overall trend of increasing ratio with impact parameter, and both models and are in good agreement with the observations from \(\approx 0\)-50 kpc. Beyond 100 kpc, the ezw model has a higher ratio than the observations, indicating cooler gas than observed. Meanwhile, the cw model shows a very low Si\textsc{ii}/Si\textsc{iii} ratios, typically having essentially no Si\textsc{ii} and hence dropping off this plot at these large impact parameters (shown as coloured downward arrows). The scatter is less than in the ratios versus H\textsc{i}, suggesting that the ionisation conditions giving rise to particular ions are more uniform in the CGM.

The Mg\textsc{ii}/O\textsc{vi} ratio shows a large scatter in the observations, indicating that these two ions arise in different phases that do not trace each other well. There is, perhaps surprisingly, no clear trend with impact parameter, as one might expect for a simple model in which the low ion arises only near the central galaxy and the high ion arises throughout the halo [Ford et al. 2013]. This suggests that the Mg\textsc{ii} is occurring throughout the halo, perhaps in satellite galaxies or cold dense clouds interspersed with warmer diffuse gas. Meanwhile, the models show a rising trend at small impact parameter that flattens at larger impact parameter. The median ratio does not show a large scatter, suggesting that Mg\textsc{ii} and O\textsc{vi} are appearing together more often in these models than in observations.

In summary, by examining ion ratios we can isolate trends with metallicity and ionisation state in the CGM as traced by various ions. While there is broad agreement between the models and the observations for H\textsc{i} and some low ionisation metal species, there is also significant disagreement for higher potential ions, particularly Si\textsc{iii} and O\textsc{vi}. Clear trends emerge that suggest that the metallicity within certain phases may be too high (for warm diffuse gas traced by mid ions) or too low (for hotter diffuse gas traced by high ions). Ion ratios generally show moderate agreement with the observations, albeit with smaller scatter and perhaps some discrepancies at large impact parameter (\(\gtrsim 100\) kpc) where the low ions disappear in the observations. The differences between our two wind models are small compared to the differences between the models and the observations, which may owe to the similarly kinetic and cool ejection of material. Nonetheless, the differences between wind models seen here are not seen in most of the other statistics we
have considered so far. Ion ratios thus provide new and interesting challenges to models of CGM gas, and obtaining a larger and higher-S/N sample could potentially provide the best constraints on the physical conditions in the CGM.

3.6 Kinematics

With spectroscopic redshifts for all its galaxies, the COS-Halos survey provides complementary information on the kinematics of absorbing gas relative to the systemic velocity of the host galaxy. In principle, kinematics could distinguish outflowing gas from inflowing, but in practice this division is not so clean (Ford et al. 2014). Nonetheless, the kinematics provide an additional constraint on CGM models. In this analysis we will no longer sum absorption within ±600 km/s of the galaxy, but instead consider individual components to elucidate the kinematics. We note that this introduces additional sensitivity to how our profile fitter decomposes the absorption into components, but here we really focus only on kinematics and not line strengths, hence such a sensitivity should not greatly impact our results.

In Figure 8 we quantify from where in velocity space the absorption originates in the observed data, and how this compares to the model predictions. We focus on the zw model; the cw model gives very similar results. To do so, we lay out a coloured “chequerboard”, where we bin our model data into 25 kpc spatial bins and 100 km s$^{-1}$ velocity bins. For each of those bins, we calculate the total column density for all LOS with impact parameters in that bin, for all absorption within ±600 km s$^{-1}$.

We shade each block by the fraction of the column density in that impact parameter range that comes from a given velocity interval. Dark blue blocks indicate that more than 30% of the total column between ±600 km s$^{-1}$ comes from that given velocity interval at a particular parameter, light blue blocks indicate 20-30%, green 10-20%, and orange that less than 10% comes from that velocity interval. We note that these percentages are for that specific impact parameter bin only, and not for the entire 0-150 kpc range, so each vertical column of shaded blocks is independent. We also plot the location of each individual observed absorber (not summed over velocity, as elsewhere in this work) as open circles whose sizes indicate the strength of the absorption. For the metals, the large circles indicate log(N) > 14.5, the medium circles log(N) = 14.0 – 14.5, and the small circles log(N) < 14.0. For H1, the scale is shifted up by one in the log.

Generally, all the observed absorbers lie in the range where the models predict a significant fraction of the absorption should lie. The observed absorption also clusters strongly around the systemic velocities of the host galaxies, which is in line with the model predictions. The exception to this is that at very low impact parameters there is an excess of absorbers with positive velocities, and for H1 and C III that absorption is stronger than what is expected from the models. This owes to a single sightline that happens to have strong absorption in multiple ions and lies at a positive velocity with respect to its host galaxy.

Overall, both the simulations and the observations suggest that most of the absorption occurs roughly within the virial velocity of the galaxy’s halo. Only absorbers with the smallest impact parameters show any sign of an outflow, and it is difficult to assess its significance because it only occurs in one system (with several absorbers within it), and there could be systematic uncertainties identifying the kinematic centre of any given system. Otherwise, the simulations broadly match the observed kinematics, and do not indicate an abundance of strongly outflowing gas at the present epoch, in general agreement with the outside-in enrichment scenario of Oppenheimer et al. (2012).

4 COMPARING THE CGM IN WIND MODELS

In general, we have found rather modest differences in observational tracers of absorption as probed by COS-Halos between our two wind models. Both models give similar predictions for the equivalent width of detected lines, total equivalent width, and covering fraction of H1 and some of the low ionisation metal lines, which broadly match data. Both models fail, most notably, to reproduce the total equivalent widths of Si III and O VI, and do so in similar ways. While we favour the ewz model for independent reasons, in the CGM observations presented here it typically does no better or worse than the constant wind model in matching the observations. This is somewhat curious, since earlier work (e.g. Oppenheimer & Davé 2008; Ford et al. 2012; 2014) showed significant observable differences between these wind models in the physical conditions and enrichment of CGM gas. We examine the reasons and implications of this surprising agreement here.

4.1 Halo Mass-Stellar Mass Relationship

A key difference relative to our previous works is that here we are obtaining a galaxy sample that is matched in stellar mass, not halo mass. In our previous work we chose to match ewz and cw in halo mass since we reasoned that the CGM is more tied to the halo, e.g. the chance of metals escaping the CGM is tied to the full halo potential not just that of the galaxy, and the total amount of CGM baryons should scale more with the halo than with the galaxy. However, COS-Halos has chosen galaxies based on their stellar masses, and hence in this observational comparison we have focused on matching this quantity. As we argue here, it turns out that the “better than expected” agreement between the two models presented here owes primarily to this choice, which has interesting implications.

Figure 9 shows the stellar mass–halo mass (SMHM) relation for our two wind models, with a running median for each (blue dotted for ewz, red dashed for cw). We include galaxies down to our stellar mass resolution limit of 1.4 × 10$^8 M_\odot$ (32 gas particle masses). Solid black lines delineate the stellar mass range of COS-Halos. The broken coloured lines show results from abundance matching analyses for the closest available redshift: Behroozi et al. (2013) as the green dash-dot line, and Moster et al. (2013) as the purple dash-dot-dot line. The ewz model clearly a better match. This simply reflects the fact that ewz (or its cousin, vzw that does not have the energy-driven scalings at low masses or quenching prescription at high masses) provides a better match to the galaxy stellar mass function than cw (Oppenheimer et al. 2010; Davé et al. 2011).

The stellar mass range relevant to this work is 10$^{10.5-11.5}$ M_\odot (see Figure 9), which from Behroozi et al.
Figure 8. Distribution of column density along the line of sight. Ezw model data has been binned both in impact parameter and in velocity space (cw, not shown here, is similar). Dark purple blocks show that 30% or more of the column density between -600 and +600 is concentrated in that velocity bin. Blue shows 20-30%, green between 10-20%, and orange less than 10%. Overplotted as black circles are the COS-Halos observed points, scaled by the absorber strength. For the metals, large circles show log(N) < 14.0 - 14.5, medium circles show log(N) > 14.5, and small circles show log(N) < 14.0. For H1, the scale is increased by 1: large circles show log(N) > 15.5, medium circles show log(N) = 15.0 - 15.5, and small circles show log(N) < 15.0.

In much of this range, the cw model’s SMHM relation is lower than ezw’s. This mainly occurs because the cw model ejects material at higher velocities in this mass range, which reduces the amount of wind recycling that dominates the inflow at these masses (Oppenheimer et al. 2010).

In the present work, we compare the wind models at fixed stellar mass. Hence for a given M_\star, the cw model will predict a higher M_{halo}. We can use this to qualitatively reconcile why Ford et al. (2013) found large differences between the two wind models. For example, Figure 9 of Ford et al. (2013) shows that for a momentum-driven wind model (similar to the cw model used here), higher mass halos have higher column density and hence EWs at a fixed impact parameter. Figure 14 of that same work shows that for a fixed halo mass, the constant wind model has a lower column density at fixed impact parameter. Therefore, at fixed stellar mass, given that the constant wind model has higher halo masses than ezw, this would result in a higher column density at fixed impact parameter. The differences in absorption strength owing to the wind model are thus offset by variations owing to halo mass. As a result, for the observables presented above, the two wind models match much better at fixed stellar mass than at fixed halo mass. This then propagates into all the various other statistics, such as covering fractions and dEW/dz.

The interesting physical implication of this is that our models predict the CGM metal absorption properties are more tied to the stellar mass than to the halo mass. On the one hand, this is surprising since the CGM represents halo gas, which one might think would be more closely tied to the halo mass. That being said, the metals in the CGM are formed by the stars in the galaxies and then ejected, so the closer relationship is perhaps not unexpected. In Finlator et al. (2008) and Davé et al. (2011b) it was argued that the metals retained within the ISM, as traced by the mass-metallicity relation, are strongly governed by outflows, whose properties must be tied most closely to stellar mass in order to give rise to a tight stellar mass-metallicity relation (e.g. Finlator et al. 2008 Davé et al. 2011b Peeples & Shankar 2011). Evidently, in these simulations, the metals deposited into the CGM are likewise strongly governed by outflows that are more closely tied to the stellar mass.

We emphasise that this similarity in predictions for ezw and cw does not imply that current CGM observations are unable to rule out any outflow models. While we have varied the free parameters in our particular implementation of out-
flows, there are many other implementations of outflows in simulations that may result in quite different CGM properties. These include models that overpressurise the ISM by local supernova heating (Hummels et al. 2013; Shen et al. 2013; Roskar et al. 2014), drive winds through a combination of radiation pressure and supernovae (Hopkins 2013), and include early stellar feedback driven by stellar winds and radiation (Stinson et al. 2013). Compared to these, our simulations make some rather extreme assumptions, namely that the ejected particles are not initially heated (though they can be shock heated by interactions with the ambient halo gas), and that our metals do not mix with the ambient gas. It appears that these assumptions may be more critical to setting the CGM enrichment and phase structure than the details of the assumed wind speed and mass loading factor. For instance, Hummels et al. (2013) found that their AMR-based models did not fare well against CGM observations, except with rather extreme assumptions about outflow energetics. We look forward to detailed comparisons of other simulations, similar to what we have done here, in order to better assess how the physics driving outflows manifests in CGM absorption line data.

4.2 Baryonic Fractions within Halos

The two wind models considered here predict similar CGM absorption line properties, despite differences in the amount and physical state of CGM gas. We examine those differences here.

Figure 10 shows the cumulative enclosed baryonic fraction (top panel) and metal fraction (lower panel) within halos as a function of radius, for our COS-Halos matched sample of galaxies. The upper panel shows the total baryonic mass fraction divided by the cosmic baryon fraction (i.e. Ω_b/Ω_m). Unity indicates a cosmic mean baryon fraction, and shows approximately what models would predict in the absence of outflows (in detail, it would be slightly higher than unity at these masses; see e.g. Dave 2009). The solid black line shows the total fraction of baryons (stars+gas) in halos for the ezw model, as a function of enclosed radius from the galaxy. Even at the virial radius, this is less than unity, showing the efficiency of outflows in driving out baryons. The dotted black line shows the baryon fraction for the cw model, which is substantially lower than that of the ezw model. Owing to higher wind speeds in this halo mass range, the constant wind model carries more of its baryons out of halos into the IGM than ezw. Both models push baryons out preferentially from the central regions, where most of the star formation (and hence outflow generation) occurs. This leaves a large component of gas-phase baryons in the CGM.

For the ezw model, CGM gas (hot+cool phases) makes up 65% of all baryons inside the halo. This is broadly consistent with estimates of baryonic mass derived from observations (Werk et al. 2014). The cw model predicts many fewer baryons, particularly in the cool phase. However, it is important to note that in converting observable quantities into estimates of mass, assumptions must be made about the physical conditions in order to obtain ionisation corrections. The consistency of ezw here, then, may simply reflect the similarity in physical conditions in the ezw model to those assumed in (Werk et al. 2014). An assumption of a higher proportion of hot gas, as present in the cw model, would alter the conversion of observable quantities to mass. Hence this should not be regarded as a success of ezw relative to cw, but may provide guidance on what assumptions should
be made in order to obtain CGM mass estimates from absorption line data.

The ISM of galaxies in the cw model contains an order of magnitude less baryons than in the ezw model, and about one-third as many stars. The reasons for this are two-fold: more gas is driven out of the ISM, making less available for star formation and strong outflows can actually heat the surrounding region thereby preventing the accretion of fresh gas that would otherwise replenish the loss (Oppenheimer et al. 2010; van de Voort et al. 2011). The radial profile of the ISM and stellar fractions are both quite flat, since these phases are concentrated in the galaxy’s central regions.

More directly relevant to CGM absorption lines is the cool CGM baryon fraction, which is about three times higher in the ezw model than in the cw model and shows a modest increase with radius. In contrast, the hot ($T > 10^5$ K) baryon fraction is not very different in the two models, and increases strongly with radius. The fact that the HI equivalent widths...
are much less than a factor of three different in these two models (see Figure 3) is, therefore, curious and suggests that the global CGM cool gas content is not straightforwardly traced by HI absorption. However, this again may owe largely to saturation effects in HI.

The lower panel of Figure 10 shows the metal fraction in various halo gas phases. Here we have plotted the metal mass fraction enclosed within a radius R/R_{vir}, divided by the cosmic baryon fraction (i.e. Ω_b/Ω_m) for ease of comparison with the upper panel. The constant wind model has a lower enclosed metal fraction, since more of the metals have been driven out of the halo by outflows and since it made less stars. Of the metals that are present in the cw model, more are hot. For a sense of the metal content derived from observations of COS-Halos galaxies, we refer the reader to Peeples et al. (2014), but again we note that conversions between observables and metal mass require an assumption of physical conditions. Hence it is not straightforward to use such inferred measures to discriminate between wind models.

In summary, we see that our two wind models distribute baryons and metals differently, even though they generally give similar observational absorption line properties. This suggests that the total amount of CGM gas and metals is not sufficiently constrained by the current observations to distinguish between competing outflow models.

4.3 The dynamical state

A key goal of CGM absorption line work is to be able to distinguish whether a given absorber arises from inflowing, outflowing, or ambient material (e.g., Burchett et al. 2013). In Ford et al. (2014), we studied general observational diagnostics of the dynamical state of the gas in the ezw model and found, for example, that low metal ions tended to trace recycled accretion while high metal ions traced ancient outflows (both defined below). Here, we expand on this past study by examining and contrasting the ezw and cw wind models, while focusing on our simulated LOS that mimic the COS-Halos data set. In this way we aim to develop intuition about how COS-Halos and similar CGM absorption line data sets are able to trace the baryon cycle.

The first step is to characterise inflowing and outflowing gas in the simulations, for which we follow Ford et al. (2014). Briefly, we separate CGM gas particles into five different kinematic categories, utilising the past and future information we have within the simulations. Since we are interested in CGM and not ISM, each of these categories excludes gas that is in the ISM at $z = 0.25$. The categories are:

(i) **Pristine Accretion.** This is gas that is accreting, meaning it is not in the ISM of a galaxy at $z = 0.25$ but will either end up in the galaxy (as an ISM particle or star particle) or pass through a galaxy and be ejected as a wind particle by $z = 0$. Pristine accretion is accreting gas that has not previously been in a wind.

(ii) **Recycled Accretion.** This is gas that is accreting, as defined above, but has been in a wind prior to $z = 0.25$.

(iii) **Young Outflows.** This is gas that was ejected in a wind “recently”, relative to $z = 0.25$. We define recently as 1 Gyr prior to $z = 0.25$ ($z = 0.36$ for our cosmology), as this is roughly the time a particle would take to leave the halo if it were simply launched in a wind, and was not slowed down by hydrodynamic interactions.

(iv) **Ancient Outflows.** This is gas that was ejected in a wind longer than 1 Gyr ago (before $z = 0.36$).

(v) **Ambient.** This is gas that will not accrete onto a galaxy by $z = 0$, and has never been in a wind by $z = 0.25$. One can think of ambient material as gas that is neither inflowing nor outflowing, and hence not participating in the baryon cycle.

In Figure 11 we plot the EW versus impact parameter, similar to Figure 3, except now we decompose the simulated equivalent widths into contributions from the five dynamical categories above. We calculate these in the manner described in Ford et al. (2014), by making new simulation outputs containing only those gas particles that fit the definition of the various categories, rerunning LOS through them, generating spectra, and fitting column densities. The ions are ordered from low to high ionisation energies, as in earlier figures. We also plot as solid black lines results obtained including particles from all categories and the ISM. The contributions from all the categories (coloured lines) do not necessarily exactly add to the total (black line), as they have been fitted separately. We also show the COS-Halos data for reference, as in Figure 3, including detections and limits. To avoid clutter we do not include the observed error bars, which are the same as in Figure 3. Finally, we bin both the model and the observed points in 25 kpc bins.

Each of these new simulation snapshots is by definition sparser than the complete simulation, so it is no longer appropriate to use the medians of LOS with detections above a certain limit, as in Figure 3. To account for the sparser simulation boxes, in Figure 11 we now plot the mean of all the model LOS at a given impact parameter. As it is not appropriate to compare the mean of all LOS (as plotted here) to only detections (as in the observations), we caution against comparing the solid black line to the observed black points. The observed points are shown here to simply guide the eye and provide a rough comparison. For a more detailed, fair comparison, see Figures 3 and 4. We will now examine the behaviour of these ions in the models, with the understanding that these models can have significant discrepancies with the observed values, particularly for silicon and O vi.

The top panels show HI, in ezw (left) and cw (right). The general trend is the same as that identified in Ford et al. (2014): at low impact parameters, HI predominantly arises from recycled accretion, tracing dense gas that is about to re-accrete within several Gyr, while at high impact parameters it arises mostly in pristine ambient gas. At all impact parameters there is a non-trivial contribution from ancient outflows, which follows the ambient curve at a level that is set predominantly by the ratio of the masses in the ambient and ancient outflow categories. These trends are qualitatively true in both wind models.

There are, however, non-trivial differences between these wind models. Relative to the ezw model, in the cw model the recycled accretion only dominates at the very smallest impact parameters. Also at smaller impact parameters in the cw model, the contribution from ambient gas is 2-3 times more than that from ancient outflows, whereas in the ezw model it is comparable. Despite these variations, the total (black) line is very similar in both cases,
Figure 11. Equivalent width (Å) versus impact parameter for the COS-Halos data set (black symbols both panels), as well as for the ezw (left) and cw (right) models, for various ions ordered from low to high ionisation energy. The model points represent the mean value of all LOS in 25 kpc impact parameter bins. Broken coloured lines correspond to pristine accretion (PA; dotted light blue), recycled accretion (RA; dashed purple), young outflows (YO; dash-dot green), ancient outflows (AO; dash-dot-dot orange) and ambient (AMB; long dash red). Solid black lines include all particles that lie along the LOS, regardless of category, and in contrast to Figure 3 they include LOS below the detection threshold.

showing that the HI equivalent width is not able to, on its own, discriminate the dynamical state of the CGM gas.

Our lowest ionisation ion is Mg II and, again in accord with Ford et al. (2014), we find that recycled accretion is the dominant contributor at all impact parameters. Beyond 100 kpc, there is an increasing fractional contribution from ancient outflows, but this is still sub-dominant. This is likely because Mg II absorption (and low ions generally) drops off very quickly with impact parameter (Ford et al. 2013); at large impact parameters the absorption is likely coming from satellites, not the central galaxy. This trend is true in both wind models, though cw at small impact parameters shows a small contribution from ambient gas and young outflows.

The trends for Mg II are mimicked by the mid-ion Si IV; this ion is still predominantly tracing halo gas that will accrete onto the galaxy. In contrast, O VI shows a dominant contribution from ancient outflows at all but the smallest impact parameters. As argued in Ford et al. (2014), this is consistent with the idea that O VI comes from a diffuse halo around the galaxy, enriched over long periods of star formation (Tumlinson et al. 2011; Oppenheimer et al. 2012). These trends are also fairly similar in the cw versus the ezw models, which indicates that these interpretations are robust at least to the range of wind models that we probe here. Note that, as discussed earlier, ours are not representative of all possible outflow mechanisms in current CGM simulations.

In summary, the most clear trend is that at small impact parameters, recycled accretion dominates the absorption of low ions (including HI), and that ancient outflows dominates O VI absorption. Most HI, meanwhile, arises from ambient gas at larger impact parameters. These trends mimic the expectations from Ford et al. (2014). Hence the broad intuition developed in our previous work can be used to roughly interpret absorption line observations from COS-Halos and similar studies, even though they may be less clear owing to a conflation of impact parameter and halo mass trends. Our two wind models show qualitatively similar behaviour,
indicating that at least within the class of outflow models considered here these results are robust. The dominance of recycled accretion for low ions and ancient outflows for O\text{VI} explains why our model predictions for star-forming and passive galaxies can be so similar: the absorbing metals are predominantly ones that were ejected long ago, and they are not coupled to the current star formation rate of the central galaxy. Thus, a quenching scheme that shuts off star formation but does not directly influence gas already in the halo has relatively little impact on CGM observables. Similarly, since the ambient gas dominates the HI absorption, one expects little difference between star forming and passive galaxies, except perhaps at small impact parameters where recycled accretion becomes important.

5 SUMMARY

We have compared our cosmological hydrodynamic simulations including two galactic outflow prescriptions with HI and metal absorption line observations in the CGM from the COS-Halos survey, to (i) assess how well current models that self-consistently enrich the CGM and IGM fare against state of the art CGM observations; (ii) determine if available observations are able to distinguish between outflow models; and (iii) provide interpretations about the physical and dynamical state of CGM gas as observed by COS-Halos. To accomplish this, we extracted LOS around simulated galaxies that match the COS-Halos sample closely in stellar mass and impact parameter, analysed them in a manner consistent with the observations, and made comparisons to direct observables, namely covering fractions and equivalent widths as a function of impact parameter and specific star formation rate and the kinematics of the absorbers relative to the host galaxy. In particular, we compared to COS-Halos data tracing H\text{I}, Mg\text{II}, C\text{II}, Si\text{III}, Si\text{IV}, C\text{III}, and O\text{VI} in 44 sightlines out to an impact parameter of 160 kpc around galaxies with stellar masses between $10^{9.5} \lesssim M_\ast \lesssim 10^{11.5} M_\odot$ at $z = 0.25$.

Our main conclusions are as follows:

(i) Our favoured wind model, ezw, is in broad agreement with key absorption line observables from COS-Halos for H\text{I} and some low ionisation metal lines. In particular, for these ions we find good agreement in the observed equivalent widths versus impact parameter, the total equivalent width per unit path length, and ion covering fractions above the COS-Halos detection limit. This model is also in broad agreement with ion ratios and absorber kinematics relative to the host galaxy.

(ii) However, there are numerous discrepancies that hint at missing or poorly represented physics in the simulations. These include:

- Both wind models underpredict the two most commonly observed ions from COS-Halos, namely the mid-ion Si\text{III} and high-ion O\text{VI}. For O\text{VI}, the mismatch occurs at all impact parameters, while for Si\text{III} the match is increasingly poor towards larger impact parameters. This mismatch occurs in both equivalent width per unit redshift and the covering fraction. In general, all the ions but O\text{VI} have a steeper gradient of absorption versus impact parameter in the models than what is observed, likely suggesting that there are not enough metals in the outskirts of halos in the models. We also note that both wind model simulations have the same resolution, and hence fail equally to reproduce any CGM structure below the resolution limit.

- The total amount of absorption in Si\text{IV}, a mid ion, is generally too high compared to observations, while the amount in high ion O\text{VI} is too low. The ion ratios Si\text{IV}/H\text{I} and O\text{VI}/H\text{I} echo these trends. This is likely to be an issue related to how much metals are deposited into different phases of the CGM, in the sense that our model puts too many metals in $\sim 10^4$K gas and not enough in $\sim 10^5$K gas. This occurs in both wind models, hinting that the underlying cause may be the way in which we eject winds as cold, unmixing gas from the ISM.

- The large scatter in the equivalent widths at a given impact parameter for low ionisation lines is not well reproduced in the simulations. This suggests that local effects perhaps owing to local ionisation sources and self-shielding might be necessary to fully explain the distribution of these low ions.

- While observations show a substantial difference in the incidence of O\text{VI} absorption around star-forming and passive galaxies, our simulations predict similar levels of absorption. This discrepancy may arise because our phenomenological quenching scheme suppresses star formation in massive galaxies but does not directly affect halo gas. Conversely, our models successfully explain the observed similarity of low-ion absorption around star-forming and passive galaxies.

(iii) The constant wind model produces CGM absorption in all ions that is surprisingly similar to that from the ezw model, despite substantially different input wind scalings, which results in higher halo gas temperatures and fewer cool baryons and metals. It is not possible to distinguish the cw model from the ezw model using the available equivalent width, covering fraction, or kinematic data, although ion ratios do reveal some differences. The lack of discrimination between the ezw and the cw models is also surprising given our previous results in Ford et al. (2013, 2014) that showed larger differences between similar models. We show that this owes largely to the fact that previously we compared models at a fixed halo mass, whereas here we compare at a fixed stellar mass. The CGM metal absorption properties in these models are thus more closely correlated with stellar mass than halo mass.

(iv) Both the ezw and cw models show large contribution from recycled accretion at low impact parameters ($\lesssim 50$ kpc) in low ions including H\text{I}, and from ancient outflows in O\text{VI} at most impact parameters, in agreement with our previous results (Ford et al. 2014). These trends are robust for our simulations, suggesting that they can be used to roughly infer the dynamical state of CGM absorbing gas at least within the context of the probed outflow models.

The agreement in H\text{I}, Mg\text{II}, and C\text{II} between hydrodynamic simulations including galactic outflows and the most recent observations of CGM gas offers encouraging support for the baryon cycling paradigm. The disagreement between both wind models and observations in Si\text{III} and O\text{VI} suggests further work is necessary in the simulations to get
outflows to place metals in the proper location and phase in the CGM.

While the COS-Halos observations of equivalent widths and covering fractions cannot discriminate between the two wind models we consider here, it is important to recognize that these span a relatively narrow range of possible outflow models. The ezw and cw models have different mass loading factors and ejection velocities, but in both cases our implementation ejects gas at the ISM temperature (usually $\sim 10^4$ K) and does not mix metals from SPH wind particles into the surrounding CGM. These assumptions are a limiting case, since some mixing must certainly occur, and if supernovae are involved in driving outflows it is likely that the ejected gas will be at least somewhat heated. Other groups have utilised fundamentally different algorithms for ejecting outflows, for example by super-heating the ISM gas, which may give much larger variations in CGM properties than either of the models we consider here. We plan to consider a wider range of outflow driving mechanisms in the future, so this work should be regarded as an initial investigation that we hope will set the stage for a more comprehensive comparison amongst all the groups working on models of the CGM and the baryon cycle. The discrepancies between our models and current observations already suggest that we must improve our models of outflow ejection, propagation, and mixing.

Within the context of the models we consider here, our interpretations of the COS-Halos observations are relatively insensitive to the details of how we implement winds. For instance, the conclusion that low ion absorption is dominated by enriched gas that will shortly fall into the galaxy, while high ions arise in gas that was enriched at earlier times and is stably located in hot gaseous halos, is quite generic for our models. Of course, these interpretations may be different if we fundamentally changed our wind driving mechanisms, as discussed above. Nonetheless, the overall consistency of our models provides at least a plausible interpretation of how to connect the baryon cycle to CGM absorption line observations, which will help develop intuition and testable predictions for future observational probes of CGM gas.

6 ACKNOWLEDGEMENTS

Support for program GO 11598 was provided by NASA through a grant from the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Much of the data presented herein were obtained at the W.M. Keck Observatory, which operates as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

Additionally, partial support for this work came from NASA ATP NNX12AH86G, HST grants HST-GO-11598 and HST-GO-12248, NASA ADP grant NNX08AJ44G, NSF grants AST-0847667 and AST-133514, and the South African National Research Foundation’s Research Chairs program. The simulations used here were run on computing facilities owned by the Carnegie Observatories. Computing resources used for this work were made possible by a grant from the the Ahmanson foundation, and through grant DMS-0619881 from the National Science Foundation.

Facilities: Keck: I (HIRES), Hubble (COS)

REFERENCES

Agertz, O., Moore, B., Stadel, J., et al. 2007, MNRAS, 380, 963
Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57
Bordoloi, R., Tumlinson, J., Werk, J. K., et al. 2014, ApJ, 796, 136
Burchett, J. N., Tripp, T. M., Werk, J. K., et al. 2013, ApJL 779, L17
Churchill, C. W., Mellon, R. R., Charlton, J. C., & Vogt, S. S. 2003, ApJ, 593, 203
Crighton, N. H. M., Hennawi, J. F., Simcoe, R. A., et al. 2015, MNRAS, 446, 18
Danforth, C. W., Keeney, B. A., Stocke, J. T., Shull, J. M., & Yao, Y. 2010, ApJ, 720, 976
Danforth, C. W., Stocke, J. T., Keeney, B. A., et al. 2011, ApJ, 743, 18
Danforth, C. W., Tilton, E. M., Shull, J. M., et al. 2014, ArXiv e-prints
Davé, R., Hernquist, L., Weinberg, D. H., & Katz, N. 1997, ApJ, 477, 21
Davé, R. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 419, Galaxy Evolution: Emerging Insights and Future Challenges, ed. S. Jogee, I. Marinova, L. Hao, & G. A. Blanc, 347
Davé, R., Oppenheimer, B. D., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2010, MNRAS, 408, 2051
Davé, R., Oppenheimer, B. D., & Finlator, K. 2011a, MNRAS, 415, 11
Davé, R., Oppenheimer, B. D., & Finlator, K. 2011b, MNRAS, 416, 1354
Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98
Davé, R., Katz, N., Oppenheimer, B. D., Kollmeier, J. A., & Weinberg, D. H. 2013, astro-ph 1302.3631
Dekel, A., Birnboim, Y., Engel, G., et al. 2009, Nature, 457, 451
Ferland, G., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., Verner, E. M. 1998, PASP, 110, 761
Finlator, K., & Davé, R. 2008, MNRAS, 385, 2181
Ford, A. B., Oppenheimer, B. D., Davé, R., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2013, MNRAS, 432, 89
Ford, A. B., Davé, R., Oppenheimer, B. D., Katz, N., Kollmeier, J. A., Thompson, R. & Weinberg, D. H. 2014, MNRAS, 444, 1260
Gabor, J. M., & Davé, R. 2014, ArXiv e-prints
Gabor, J. 2013, in IAU Symposium, Vol. 295, IAU Symposium, ed. D. Thomas, A. Pasquali, & I. Ferreras, 350–353
Green, J. C., Frongia, C. S., Osterman, S., et al. 2012, ApJ, 744, 60
Cycling in Low-Z CGM

Heckman, T. 2013, On the Nature of Highly Ionized Gas in the Halos of Normal Star-Forming Galaxies, HST Proposal

Hinshaw, G., Weiland, J. L., Hill, R. S., et al. 2009, ApJS, 180, 225

Hopkins, P. F. 2013, MNRAS, 428, 2840

Hummels, C. B., Bryan, G. L., Smith, B. D., & Turk, M. J. 2013, MNRAS, 430, 1548

Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJL, 760, L7

Kereš, D., Katz, N., Weinberg, D. H., & Davé, R. 2005, MNRAS, 363, 2

Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ApJ, 772, 119

Martin, C. L. 2005, ApJ, 621, 227

Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121

Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., et al. 2015, ArXiv e-prints

Oppenheimer, B. D., & Davé, R. 2006, MNRAS, 373, 1265

Oppenheimer, B. D., & Davé, R. 2008, MNRAS, 387, 577

Oppenheimer, B. D., & Davé, R. 2009, MNRAS, 395, 1875

Oppenheimer, B. D., Davé, R., Kereš, D., et al. 2010, MNRAS, 406, 2325

Oppenheimer, B. D., Davé, R., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2012, MNRAS, 420, 829

Peeples, M. S., & Shankar, F. 2011, MNRAS, 417, 2962

Peeples, M. S., Werk, J. K., Tumlinson, J., et al. 2014, ApJ, 786, 54

Pettini, M., Shapley, A. E., Steidel, C. C., et al. 2001, ApJ, 554, 981

Prochaska, J. X., Weiner, B., Chen, H.-W., Mulchaey, J., & Cooke, K. 2011, ApJ, 740, 91

Rafieferantsoa, M., Davé, R., Anglés-Alcazar, D., et al. 2014, ArXiv e-prints

Roskar, R., Teyssier, R., Agertz, O., Wetzstein, M., & Moore, B. 2014, MNRAS, 444, 2837

Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, ApJL, 747, L26

Rudie, G. C., Steidel, C. C., Shapley, A. E., & Pettini, M. 2013, ApJ, 769, 146

Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005, ApJ, 632, 751

Schaye, J., Dalla Vecchia, C., Booth, C. M., et al. 2010, MNRAS, 402, 1536

Shen, S., Madau, P., Conroy, C., Governato, F., & Mayer, L. 2013, ArXiv e-prints

Shull, J. M., Danforth, C. W., & Tilton, E. M. 2014, ApJ, 796, 49

Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS, 214, 15

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

Springel, V. 2005, MNRAS, 364, 1105

Steidel, C. C. 2001, in Bulletin of the American Astronomical Society, Vol. 33, American Astronomical Society Meeting Abstracts #108, 863

Stinson, G. S., Brook, C., Macciò, A. V., et al. 2013, MNRAS, 428, 129

Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, ApJ, 763, 148

Thom, C., Tumlinson, J., Werk, J. K., et al. 2012, ApJL, 758, L41

Tripp, T. M., Sembach, K. R., Bowen, D. V., et al. 2008, ApJS, 177, 39

Tripp, T. M., & Song, L. 2012, ApJ, 746, 173

Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJL, 663, L77

Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948

Tumlinson, J., Thom, C., Werk, J. K., et al. 2013, ApJ, accepted

van de Voort, F., Schaye, J., Booth, C. M., Haas, M. R., & Dalla Vecchia, C. 2011, MNRAS, 414, 2458

Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769

Weiner, B. J. 2009, in American Institute of Physics Conference Series, Vol. 1201, American Institute of Physics Conference Series, ed. S. Heinz & E. Wilcots, 142–145

Werk, J. K., Prochaska, J. X., Thom, C., et al. 2012, ApJS, 198, 3

Werk, J. K., Prochaska, J. X., Thom, C., et al. 2013, ApJS, 204, 17

Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ArXiv e-prints

Wiersma, R. P. C., Schaye, J., & Smith, B. D. 2009a, MNRAS, 393, 99