Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

Sangang Guo
School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, P.R. China
E-mail: guosangang@sina.com

Abstract. There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

1. Nomenclatures
For the convenience of presentation, some notations are defined as follows.
- \(T \) commitment horizon in hours;
- \(I \) number of units;
- \(K \) number of buses with loads;
- \(L \) number of transmission lines;
- \(P(t) \) power generation by unit \(i \) at time \(t \);
- \(u_i(t) \) binary variable: \(u_i(t) = 1 \) if unit \(i \) is turned on or kept on at time \(t+1 \), else \(u_i(t) = -1 \);
- \(x_i(t) \) the number of hours that unit \(i \) has been up \((x_i(t) \geq 1) \) or down \((x_i(t) \leq -1) \);
- \(r_i \) the minimum number of hours that the unit \(i \) must be up;
- \(s_i \) the minimum number of hours that the unit \(i \) must be down;
- \(C(P(t)) \) fuel cost for producing power \(P(t) \) of the unit \(i \); \(C(P(t)) = 0 \) if \(P(t) \);
- \(S_i(x_i(t-1), u_i(t-1)) \) startup/shutdown cost of the unit \(i \);
- \(D_k(t) \) load at bus \(k \) at time \(t \);
- \(D(t) \) system demand or load at time \(t \);
- \(r_i(t) \) the spinning reserve requirement at time \(t \);
- \(r_i(t) \) the spinning reserve contribution at time \(t \) of unit \(i \);
2. Introduction

Unit commitment (UC) is still one of the most significant for independent system operators (ISOs) to clear the electric power market and for generation companies (GENCOMs) to analyze generating costs and determine the bidding strategies [1-6]. The security-constrained unit commitment (SCUC) by incorporating security-related transmission constraints into the UC becomes crucial due to more and more transactions being driven to be taken in open-access electric power market.

Since the unit commitment problem belongs to NP-hard mixed integer programming problems [7], it is very difficult to obtain the optimal feasible solution within acceptable shorter time. Many optimization methods have been applied to solve UC or SCUC problem such as Lagrangian relaxation (LR) and mixed integer linear programming [6-13]. The most obvious advantage of LR is that the system constraints can always be relaxed by introducing Lagrange multipliers associated with the security, the demand and the spinning reserve constraints such that the different units can be decoupled in the dual problem and can be easily solved. However, the most disadvantage of LR is that the primal feasible solution is very difficult to construct based on the dual solution if some complex constraints such as the security constraint are added [3-4, 9, 12].

Some uncertainty optimization methods such as Genetic Algorithm [14-19], Evolutionary Programming [20], Tabu Search [21], artificial intelligence [22-23] Particle Swarm Optimization [24], etc., have also been used to solve UC or SCUC or the economic dispatch problem.

Fuel cost of thermal units has long been considered to be convex quadratic or convex piecewise linear functions [8-12]. Recently, non-convex fuel cost function with valve-point has been put into use due to its more precise formulation for the generating cost of a thermal unit [16, 20, 22]. The different methods for solving UC or SCUC problem with different forms of fuel cost of thermal units should be researched.

The processes of obtaining a feasible solution to UC or SCUC problem can be partitioned into two stages within the LR framework: one is to obtain feasible unit commitment states (UC); the other is to dispatch power generation economically (ED). For fixed feasible unit states, the efficiency of solving economic dispatch with different forms of fuel cost of thermal units is very difficult but very important for enhancing the precision of solution and for analyzing generating costs and determining the bidding strategies in power systems.

Two novel methods based on linear programming for simplifying the formulation of the economic dispatch with convex or convex piecewise linear fuel cost functions are proposed in this paper, which are named after the convex combinatorial coefficient method and power increment method. An implementation of power increment method is given. Testing example shows that the methods proposed in this paper are very efficient and effective.

The rest of this paper is organized as follows. Section II gives the statement of economic dispatch for SCUC problem. The two methods for approximate linearization to economic dispatch for SCUC problem are proposed and verified is in section III. Section IV demonstrated the testing example. Section V concludes the whole paper.

3. Formulation of Economic Dispatch Problem

After a feasible SCUC solution is obtained by solving the corresponding dual problem using Lagrangian Relaxation method, the power generation level of each unit within the commitment
horizon T must be given, which is called economic dispatch (ED). ED of the SCUC problem is to minimize the total power generating cost of the following continuous programming problem for fixed feasible states of units $u_i(t), t = 1, 2, \cdots T; i = 1, 2, \cdots, I$:

$$\min \{ \sum_{t=1}^{T} \sum_{i \in I_u^t} \hat{C}_i(P_i(t)) \}$$

(1)

where I_u^t is the set of all units with $u_i(t) = 1$ at period time t, and $\hat{C}_i(P_i(t))$ is in generically denoted as the linear approximation to the quadratic function

$$C_i(P_i(t)) = a_i [P_i(t)]^2 + b_i P_i(t) + c_i, P_i(t) \in [\underline{P}_i, \bar{P}_i]$$

(2)

subject to

(A) System level constraints:

(a) system demand

$$\sum_{i \in I_u^t} P_i(t) = D(t) = \sum_{k=1}^{K} D_k(t)$$

(3)

(b) spinning reserve

$$\sum_{i \in I_u^t} r_i(t) \geq P_i(t);$$

(4)

where

$$r_i(t) = \min \{ \bar{r}_i, \bar{P}_i - P_i(t) \}$$

(5)

(c) DC transmission constraints

$$-\bar{F}_l \leq \bar{F}_l(t) = \sum_{i \in I_l^t} \Gamma_{i,l} P_i(t) - \sum_{k=1}^{K} \Gamma_{l,k} D_k(t) \leq \bar{F}_l,$$

(6)

$l = 1, 2, \cdots, L$

(B) Generation level Constraints

$$\underline{P}_i \leq P_i(t) \leq \bar{P}_i$$

(7)

It is obviously that the solution of ED problem (1) is separately done at each schedule time t. It should be noted that for the unit i with ramp rate constraint with ramp rate Δ_i

$$|P_i(t) - P_i(t-1)| \leq \Delta_i$$

(8)

and the corresponding maximal power generation \bar{P}_i and minimal generation \underline{P}_i can be replaced by \bar{P}_u and \underline{P}_u, respectively, i.e., $P_i(t)$ satisfies

$$\underline{P}_u = \max \{ P_i \cdot P_i(t-1) - \Delta_i \} \leq P_i(t) \leq \min \{ P_i(t-1) + \Delta_i \} = \bar{P}_u.$$

(9)

Thus, by the above preparations, the solution of (1) with constraints (3)-(7 or 9) can be done by solving T quadratic programming problems:

$$(\text{LP0}) \quad J_0^* = \min_{\hat{P}_i(t)} \left\{ \sum_{i \in I_u^t} \hat{C}_i(P_i(t)) \right\}$$

(10)

Subject to (3)-(7 or 9).

For the simplicity of statement, (9) is still replaced by (7) unless otherwise specified.

4. Linearization of Economic Dispatch Problem

The model (10) subject to (3)-(7) is a programming problem with linear and nonlinear constraints, which is rather difficult to be solved. An approximate linear programming problem to model (10) will be constructed by exerting the convexity of fuel cost functions and the concavity of individual unit
spinning reserve functions (5) (Fig.1). The detailed process is as follows.

Firstly, \(M \) points of division on the fuel cost curve of the unit \(i \) are interpolated, they are

\[
(P_{i,1}, C_{i,1}), (P_{i,2}, C_{i,2}), \ldots, (P_{i,M}, C_{i,M})
\]

(11)

Without loss of generality, we let \(\bar{P}_i - \bar{R}_i \) be one of points of division in the interval \([P_i, \bar{P}_i] \): \(P_{i,1}, \ldots, P_{i,M} \), denoted by \(P_{i,m} \) (otherwise, adding it to the set of points of division).

Assume that the points of division on the spinning reserve curve and on are

\[
(P_{i,1}, r_{i,1}), (P_{i,2}, r_{i,2}), \ldots, (P_{i,M}, r_{i,M})
\]

(12)

and it is clear that the following relation holds

\[
\begin{cases}
 r_{i,n} = \bar{R}_i, & \text{if } 1 \leq n \leq m_i \\
 r_{i,n} = \bar{P}_i - P_{i,m_i} & \text{if } m_i \leq n \leq M
\end{cases}
\]

(13)

For the sake of convenience, we allow all the numbers of internal points of division of power interval \([P_i, \bar{P}_i] \), i.e., \(M \). However, the results in this paper hold for different number of internal points of division.

Since \(r_i(t) \) is a function in single variable \(P_i(t) \), the feasibility of a solution to (10) subject to (3)-(7) is completely determined by \(P_i(t) \). Hence, \(r_i(t) \) is not considered as a decision variable.

\[\text{Fig.1 Spinning Reserve Contribution } r_i(t) \text{ of Unit } i\]

\[\text{Fig. 2 Fuel Cost Curve } C_i(P_i(t)) \text{ of Unit } i\]

The main idea of the first method proposed in this paper for solving economic dispatch-convex coefficient method, is to formulate a linear programming problem by exerting the convexity of fuel cost functions and concavity of individual spinning reserve functions to solve the problem approximately. In order to attain the expected goal, a lemma is given firstly.

Lemma 1: If \(P^*_i(t) (i \in I^*_i) \) is a feasible solution to the problem (LP0), then there must exists a group of real numbers \(\alpha^i_{1,1}, \ldots, \alpha^i_{1,M} \) such that

\[
P^*_i(t) = \sum_{m=1}^{M} \alpha^i_{1,m} P_{i,m}
\]

(14)

\[
\sum_{m=1}^{M} \alpha^i_{1,m} = 1, i \in I^*_i; 0 \leq \alpha^i_{1,m} \leq 1
\]

(15)
\[
\sum_{i \in I^+_t} \sum_{m=1}^M \alpha^i_{t,m} P_{t,m} = D(t) \quad (16)
\]
\[
\sum_{i \in I^+_t} \sum_{m=1}^M \alpha^i_{t,m} r_{t,m} \geq P_i(t) \quad (17)
\]
\[
\sum_{i \in I^+_t} \Gamma_{i,j} \sum_{m=1}^M \alpha^i_{t,m} P_{t,m} \geq \sum_{k=1}^K \Gamma_{i,k} D_k(t) - \bar{F}_i \quad (18)
\]
\[
\sum_{i \in I^+_t} \Gamma_{i,j} \sum_{m=1}^M \alpha^i_{t,m} P_{t,m} \leq \bar{F}_i + \sum_{k=1}^K \Gamma_{i,k} D_k(t) \quad (19)
\]

On the contrary, if there exists a group of real numbers such that (15)-(19) are satisfied, then \(\{P_i(t)\}_{i \in I^+_t} \) determined by (14) \((i = 1,2,\cdots,I)\) must be a feasible solution to the problem (LP0).

Proof. Firstly, if \(P_i(t) \) \((i = 1,2,\cdots,I)\) is a feasible solution to the problem (LP0), then \(P_i(t) \) must be between some two points of division, say, \(P_{i,m[i-1]} \leq P_i(t) \leq P_{i,m[i]} \). Therefore, there exists a real number \(\lambda^i_j : 0 \leq \lambda^i_j \leq 1 \) such that
\[
P_i(t) = \lambda^i_j P_{i,m[i-1]} + (1 - \lambda^i_j) P_{i,m[i]} \quad (20)
\]
\[
r_i(t) = \lambda^i_j r_{i,m[i-1]} + (1 - \lambda^i_j) r_{i,m[i]} \quad (21)
\]

The reason for (20) to hold is that the point \(\left(P_{i,m[i]}, r_{i,m[i]} \right) \) is always a division point. Hence, the real numbers
\[
\alpha^i_{t,m} = \begin{cases}
0, & \text{if } m \neq m[i], m[i] - 1 \\
\lambda^i_j, & \text{if } m = m[i] - 1 \\
1 - \lambda^i_j, & \text{if } m = m[i]
\end{cases} \quad (22)
\]

\((i \in I^+_t, m = 1,2,\cdots,M)\) are the desired numbers such that the constraints (15)-(19) are all satisfied.

On the contrary, assume that there are a group numbers \(\alpha^i_{t,m} \) \((i \in I^+_t, m = 1,2,\cdots,M)\) such that (15)-(19) hold. Then, \(\alpha^i_{t,m} \) \((i \in I^+_t, m = 1,2,\cdots,M)\) are combinatorial coefficients, and power values \(P_i(t) \) \((i \in I^+_t)\) defined by (15) satisfies (3), (6) and (7). Since the individual unit spinning reserve contribution \(r_i(t) \) defined by (5) is concave function in \(P_i(t) \) on the closed interval \([\bar{P}_i, \bar{P}_i]\), we have
\[
r_i(t) \geq \sum_{m=1}^M \alpha^i_{t,m} r_{i,m} \quad (23)
\]

Hence
\[
\sum_{i \in I^+_t} r_i(t) \geq \sum_{i \in I^+_t} \sum_{m=1}^M \alpha^i_{t,m} r_{i,m} \geq P_i(t) \quad (24)
\]
i.e., the system spinning reserve constraint (4) holds. Thus, the lemma is proved. Q.E.D

Notes: Lemma 1 manifests that one solution to economic dispatch problem (LP0) can be defined by a group of proper combinatorial coefficients, but is not unique. Such non-uniqueness cause a difficulty in calculating the fuel cost, since only two real numbers are not zeros while all others must be zeros when the combinatorial coefficient method is used to calculate the fuel cost (14).

The difficulty is solved by the following theorem.
Theorem 1 (Convex Combinatorial Coefficient Method): Considering the following linear programming problem

\[\text{(LP1)} \quad J^*_1 = \sum_{i=1}^{M} \sum_{m=1}^{I^*_{i,m}} \alpha_{i,m}^* P_{i,m} \quad (25) \]

subject to the constraints (15)-(19). \(J^*_1 \) is the optimal value of (LP1), \(\alpha_{i,m}^* \) \((i \in I^*, m = 1,2,\cdots,M)\) denotes a optimal solution to (LP1). Then, the power value \(\{ \hat{P}_i^*(t) \}_{i \in I^*_t} \) defined by (26)

\[\hat{P}_i^*(t) = \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \quad (26) \]

is an optimal solution to the problem (LP0).

Proof. Firstly, we will show that the two numbers \(J^*_0 \) and \(J^*_1 \) equals.

As a matter of fact, for any feasible solution to (LP1), say, \(\alpha_{i,m}^* \) \((i \in I^*_t, m = 1,2,\cdots,M)\),

\[P_i(t) = \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \quad \text{defined by (26)} \]

is a feasible solution to (LP0) by Lemma 1. By the convexity of fuel cost functions of units, we have

\[\hat{C}_i(P_i(t)) \leq \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \quad (27) \]

and

\[J^*_0 \leq \sum_{i \in I^*_t} \hat{C}_i(P_i(t)) \leq \sum_{i \in I^*_t} \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \quad (28) \]

Therefore,

\[J^*_0 \leq J^*_1 \quad (29) \]

On the contrary, for an optimal solution \(\{ P_i(t) \}_{i \in I^*_t} \) to (LP0), by Lemma 1, there must exist a group of combinatorial coefficients \(\alpha_{i,m}^* \) \((i \in I^*_t, m = 1,2,\cdots,M)\), which is a feasible solution to (LP1) such that

\[P_i(t) = \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \quad \text{is defined by (22)}, \quad \text{we have} \]

\[\hat{C}_i(P_i(t)) = \sum_{m=1}^{M} \alpha_{i,m}^* C_{i,m} \quad (30) \]

Thus,

\[J^*_0 = \sum_{i \in I^*_t} \hat{C}_i(P_i(t)) = \sum_{i \in I^*_t} \sum_{m=1}^{M} \alpha_{i,m}^* P_{i,m} \geq J^*_1 \quad (31) \]

By (29) and (31), we have shown

\[J^*_0 = J^*_1 \quad (32) \]

Secondly, we will show that if \(\alpha_{i,m}^{**} \) \((i \in I^*, m = 1,2,\cdots,M)\) is the optimal solution to (LP1), then \(\{ P_i^*(t) \}_{i \in I^*_t} \) defined by (26) is an optimal solution to (LP0).

In fact, \(\{ P_i^*(t) \}_{i \in I^*_t} \) defined by (26) is a feasible solution to (LP0) due to \(\{ \alpha_{i,m}^{**} \}_{i \in I^*_t, m = 1,2,\cdots,M} \)

is a feasible solution to (LP1) by Lemma1. Thus, combining the convexity of \(\hat{C}_i(P_i(t)) \) \((i \in I^*_t)\), we have
\[J_0' \leq \sum_{i \in I^u} \hat{C}_i(P_i(t)) \leq \sum_{i \in I^u} \sum_{m=1}^{M} \alpha_{i,m}^u P_{i,m} = J_1' \]

(33)

Since \(\{P_i(t')\}_{i \in I^u} \) is a feasible solution to (LP0), and the proved result (32), we know that \(\{P_i(t')\}_{i \in I^u} \) is the optimal solution to (LP0).

Theorem 1 shows that we can solve the approximation economic dispatch by solving a linear programming problem (LP1) with constraints (15)-(19).

The linear problem has \(M \cdot |I^u| \) decision variables, and \(|I^u| + 2M |I^u| + 2L + 2 \) linear constraints (2M |I^u| of which, are boundary constraints), where \(|I^u| \) is the size of the set \(I^u \). The problem (LP1) can be changed into another linear programming problem by exerting Theorem 1 and the convexity of fuel cost functions of units.

Let \(\rho_{i,n} \) denote the slope of the secant connected \((P_{i,n}, C_{i,n}) \) and \((P_{i,n+1}, C_{i,n+1}) \) on the fuel cost curve, i.e.,

\[
\rho_{i,n} = \frac{C_{i,n+1} - C_{i,n}}{P_{i,n+1} - P_{i,n}}, \quad n = 1, 2, \ldots, M - 1
\]

(34)

Any feasible solution \(\{P_i(t')\}_{i \in I^u} \) to economic dispatch problem (LP0) must be between two points of division. If for some integer \(m \in \{1, 2, \ldots, M\} \) (35) holds,

\[P_{i,m} \leq P_i(t') \leq P_{i,m+1} \quad (35) \]

then a group of variables \(\Delta P_{i,n} \), which is called power increment, satisfies (36).

\[
\begin{align*}
\Delta P_{i,n} &= P_{i,n+1} - P_{i,n}, \quad if \quad 1 \leq n < m \\
\Delta P_{i,n} &= P_i(t') - P_{i,n}, \quad if \quad n = m \\
\Delta P_{i,n} &= 0, \quad if \quad m < n \leq M - 1
\end{align*}
\]

(36)

Adding all power increments, we have

\[P_i(t') = P_{i,1} + \sum_{n=1}^{M-1} \Delta P_{i,n} = P_{i,1} + \sum_{n=1}^{M-1} \Delta P_{i,n} \quad (37) \]

Since the power value \(P_i(t') \) and power increments can be expressed each other due to (36) and (37), the second method (called the power increment method) changing economic dispatch (LP0) into a linear programming proposed in this paper directly considers power increments as the decision variables. Thus, the following theorem is obtained.

Theorem 2 (Power Increment Method): Consider the following linear program

\[(LP2) \quad J_2^* = \min \sum_{i \in I^u} \sum_{n=1}^{M} \rho_{i,n} \Delta P_{i,n} \quad (38) \]

subject to

\[0 \leq \Delta P_{i,n} \leq P_{i,n+1} - P_{i,n} \quad (39) \]

\[\sum_{i \in I^u} \Delta P_{i,n} = D(t) - \sum_{i \in I^u} P_i \quad (40) \]

\[\sum_{i \in I^u} \sum_{n=1}^{M-1} \Delta P_{i,n} \leq \sum_{i \in I^u} \bar{P}_i - P_i(t) \quad (41) \]
Then there is a relation between problem (LP0) and (LP2):

If \(\{P_i(t)\}_{i \in I_i'} \) is an optimal solution to (LP0), then power increments \(\{\Delta P_{i,n}\}_{i \in I_i', n=1,2,\ldots,M-1} \) defined by (36) using \(\{P_i(t)\}_{i \in I_i'} \) constructs an optimal solution to (LP2);

On the contrary, if \(\{\Delta P_{i,n}\}_{i \in I_i', n=1,2,\ldots,M-1} \) is an optimal solution to (LP2), then \(\{P_i(t)\}_{i \in I_i'} \) defined by (37) is an optimal solution to (LP0).

Proof. The theorem will be shown by three parts.

Part 1: we will prove the fact: If \(\{P_i(t)\}_{i \in I_i'} \) is an optimal solution to (LP0), then the vector of power increments \(\{\Delta P_{i,n}\}_{i \in I_i', n=1,2,\ldots,M-1} \) defined by (36) will be used to construct one feasible solution to (LP2).

In fact, if \(\{\Delta P_{i,n}\}_{i \in I_i', n=1,2,\ldots,M-1} \) is an optimal solution to (LP0), then by comparing, (35), (36) and (39), \(\{P_i(t)\}_{i \in I_i'} \) defined by (36) satisfies (39), while (37) can be obtained from (36). The constraints (40), (42) and (43) are the results by substituting (37) into (3) and (6). We will show that (41) is also satisfied by such power increments \(\{\Delta P_{i,n}\}_{i \in I_i', n=1,2,\ldots,M-1} \). In fact, according to the (5) and the definition of \(m_i \), we have

\[
r_i(t) = \begin{cases}
\bar{r}_i, & \text{if } P_i(t) \leq P_{i,m_i} \\
\bar{P} - P_i(t), & \text{if } P_i(t) > P_{i,m_i}
\end{cases}
\]

(44)

\[
\bar{P}_i = \bar{r}_i + P_{i,m_i}
\]

(45)

By (36), we have

\[
\sum_{n=m_i}^{M-1} \Delta P_{i,n} = \begin{cases}
0, & \text{if } P_i(t) \leq P_{i,m_i} \\
P_i(t) - P_{i,m_i}, & \text{if } P_i(t) > P_{i,m_i}
\end{cases}
\]

(46)

Substituting (45) and (46) into (44), we have

\[
r_i(t) = \bar{r}_i - \sum_{n=m_i}^{M-1} \Delta P_{i,n}
\]

(47)

Therefore, (41) can be obtained from (4) and (47).

We also have the result (48)
\[J_0^* = \sum_{i \in I'_2} \hat{C}_i(P(t)) \]
\[= \sum_{i \in I'_2} C_i(P) + \sum_{i \in I'_2} \sum_{n=1}^{M-1} \rho_{i,n} \Delta P_{i,n} \]
\[= \sum_{i \in I'_2} C_i(P) + J_2 \]
\[\geq \sum_{i \in I'_2} C_i(P) + J_2^* \] (48)

Part 2: We will show that the fact: if the vector of power increments \(\{ \Delta P_{i,n} \}_{i \in I'_2, n=1,2,\ldots,M-1} \) is an optimal solution to (LP2), then the vector of corresponding power values \(\{ P_i(t) \}_{i \in I'_2} \) defined by (37) is a feasible solution to (LP0).

Firstly, the following phenomenon does not exist: there exist some unit \(i_0 \in I'_2 \) and two integers \(n_1, n_2 \in \{ 1,2,\ldots,M-1 \} \) such that \(n_1 < n_2 \), but
\[0 \leq \Delta P_{i_0,n_1} < P_{i_0,n_1} - P_{i_0,n_2} \quad \text{and} \quad \Delta P_{i_0,n_2} > 0 \] (49)

If (9) holds, we let
\[\Delta P_{i,n} = \Delta P_{i,n_1} + \delta_{i,n_1}, \Delta P_{i,n_2} = \Delta P_{i,n_1} - \delta_{i,n_1} \] (50)

Where
\[0 < \delta_{i,n_1} \leq \min \{ P_{i_0,n_1+1}, P_{i_0,n_1} + \Delta P_{i_0,n_1}, \Delta P_{i_0,n_2} \} \] (51)

and \(n = 1,2,\ldots,M-1, n \neq n_1, n \neq n_2 \), let
\[\Delta P_{i,n} = \Delta P_{i,n}, \quad n = 1,2,\ldots,M-1, n \neq n_1, n \neq n_2 \] (52)

It is obviously that \(\{ \Delta P_{i,n} \}_{i \in I'_2, n=1,2,\ldots,M-1} \) is still a feasible solution to (LP2) defined by (49)-(52).

However, since \(\rho_{i,n_1} < \rho_{i,n_2} \), we have
\[J_2^* = \sum_{i \in I'_2} \sum_{n=1}^{M} \rho_{i,n} \Delta P_{i,n} \]
\[= \left(\sum_{i \in I'_2} \sum_{n=1}^{M} \rho_{i,n} \Delta P_{i,n} \right) + \left(\rho_{i_0,n_1} \Delta P_{i_0,n_1} + \rho_{i_0,n_2} \Delta P_{i_0,n_2} \right) \]
\[= \sum_{i \in I'_2} \rho_{i,n} \Delta P_{i,n} + \left(\rho_{i_0,n_1} - \rho_{i_0,n_2} \right) \delta_{i_0,n_1} < J_2^* \] (53)

This contradicts that \(\{ \Delta P_{i,n} \}_{i \in I'_2, n=1,2,\ldots,M-1} \) is an optimal solution to (LP2). Thus, (49) does not hold, i.e., \(\{ \Delta P_{i,n} \}_{i \in I'_2, n=1,2,\ldots,M-1} \) satisfies (36).

Therefore, the optimal solution \(\{ \Delta P_{i,n} \}_{i \in I'_2, n=1,2,\ldots,M-1} \) to (LP2) satisfies (36), the corresponding
\[\{ P_i(t) \}_{i \in \mathcal{I}} \text{ defined by (37) satisfies (3) and (6). According to (44), (45) and (36) we have} \]
\[r_i(t) = \bar{r}_i - \sum_{n=m}^{M-1} \Delta P_{i,n} \]
(54)

Comparing (41) with (53), (4) holds.

Hence, \(\{ P_i(t) \}_{i \in \mathcal{I}} \) defined by (37) is a feasible solution to (LP0) and,

\[J_0^* \leq J_0 = \sum_{i \in \mathcal{I}} \sum_{n=1}^{M-1} \tilde{C}_i(P_i(t)) \]
\[= \sum_{i \in \mathcal{I}} C_i(P_i) + \sum_{i \in \mathcal{I}} \sum_{n=1}^{M-1} \Delta P_{i,n} \]
(55)

\[\leq \sum_{i \in \mathcal{I}} C_i(P_i) + J_2^* \]

Part 3: By (48) and (55), we have

\[J_2^* = J_2, J_0^* = J_0 \]
(56)

Combining part 1, part 2 and (55), Theorem 2 is proved.

5. Implementation of Power Incremental Method

In order to implement the two methods proposed in this paper, the set \(\mathcal{I}_i^n \) of units in the SCUC problem will be classified into three categories at time \(t \): \(E_{1t} \) is the set of units in normal generating state without ramp rate constraints; \(E_{2t} \) the set of units at the first/last generating hour with minimum generation; \(E_{3t} \) the set of units with fixed generating levels at time \(t \). The generation levels of the units in \(E_{2t} \) are constrained to their minimums and those associated with \(E_{3t} \) are required to be fixed or very difficult to be adjusted. In order to obtain better economic dispatch of power generation of units, \(E_{3t} \) can be further divided into four categories as follows

\[E_{3t} = \{ i \mid i \in E_{3t}, i \in E_{3t} \land i \in E_{2t} \} \]
\[E_{1t} = \{ i \mid i \in E_{3t}, \bar{P}_m \leq \bar{P}_i \leq \bar{P}_i - \bar{r} \} \]
\[E_{2t} = \{ i \mid i \in E_{3t}, \bar{P}_i - \bar{r} < P_a \} \]
\[E_{3t} = \{ i \mid i \in E_{3t}, P_a < \bar{P}_i - \bar{r} < P_a \} \]
(57)

According to Theorem 2, we have the following theorem 3:

Theorem 3 (Implementation of Power Increment Method): The economic dispatch problem (LP2) can be solved approximately by dealing with the following simplified form, i.e., (LP3), of (LP2)

\[\text{(LP3): } J_3^* = \min_{\Delta P^{k_{i,m}}, \Delta P^{k_{i,j}}} \left[\sum_{i \in \mathcal{I}_{E_{1}}} \sum_{m=1}^{M_i} \omega_i^{m} \Delta P_{i,m} + \sum_{k=1}^{3} \sum_{i \in \mathcal{I}_{E_{1}}} \sum_{j=1}^{M_i} \rho_{i,j}^{k} \Delta P_{i,j}^{k} \right] \]
(58)

subject to

\[\sum_{i \in \mathcal{I}_{E_{1}}} \sum_{m=1}^{M_i} \Delta P_{i,m} + \sum_{k=1}^{3} \sum_{i \in \mathcal{I}_{E_{1}}} \sum_{j=1}^{M_i} \Delta P_{i,j}^{k} = S_{d}(t) \]
(59)

\[\sum_{i \in \mathcal{I}_{E_{1}}} \sum_{m=1}^{M_i} \Delta P_{i,m} + \sum_{k=1}^{3} \sum_{i \in \mathcal{I}_{E_{1}}} \sum_{j=1}^{M_i} \Delta P_{i,j} + \sum_{i \in \mathcal{I}_{E_{1}}} \sum_{j=1}^{M_i} \Delta P_{i,j} \leq S_{r}(t) \]
(60)
\[\sum_{i \in E_{m}} \sum_{m=1}^{M} \Gamma_{i} \Delta P_{i,m} + \sum_{k=1}^{3} \sum_{i \in E_{m}} \sum_{j=1}^{M-1} \Gamma_{i} \Delta P_{i,j} \geq S_{D}^{i} \] \hspace{1cm} (61) \\
\[\sum_{i \in E_{m}} \sum_{m=1}^{M} \Gamma_{i} \Delta P_{i,m} + \sum_{k=1}^{3} \sum_{i \in E_{m}} \sum_{j=1}^{M-1} \Gamma_{i} \Delta P_{i,j} \leq S_{i}^{2} \] \hspace{1cm} (62) \\
\[0 \leq \Delta P_{i,m} \leq P_{i,m+1} - P_{i,m}, m = 1, 2, \ldots, M - 1, i \in E_{m} \] \hspace{1cm} (63)

\[0 \leq \Delta P_{i,j}^{k} \leq P_{i,j+1}^{k} - P_{i,j}^{k}, j = 1, \ldots, M_{i,3}^{k} - 1, i \in E_{3}, k = 1, 2, 3 \] \hspace{1cm} (64)

If the optimal solution to (LP3) is \[\{ \Delta P_{i,j}^{k} \} \}_{i \in E_{m}, m=1,2, \ldots, M-1}, \{ \Delta P_{i,j}^{k*} \} \}_{i \in E_{m}^{k*}, j=1, \ldots, M_{m}^{k*}, k=1,2,3} \] \hspace{1cm} (65)

Then the power and individual spinning reserve of each unit \(i \in E_{1} \cup E_{3}^{1} \cup E_{3}^{2} \cup E_{3}^{3} \) is

\[P_{i}^{r} (t) = P_{i} + \sum_{m=1}^{M-1} \Delta P_{i,m}^{*}, i \in E_{3}^{1} \] \hspace{1cm} (66)

\[P_{i}^{*} (t) = P_{i} + \sum_{m=1}^{M-1} \Delta P_{i,m}^{*}, i \in E_{3}^{2}, k=1,2,3 \] \hspace{1cm} (67)

\[\bar{r}_{i}^{*} (t) = \bar{r}_{i}, i \in E_{3}^{1} \] \hspace{1cm} (68)

\[\bar{r}_{i}^{*} (t) = \bar{P}_{i} - P_{i} - \sum_{j=1}^{M_{i,3}^{k*} - 1} \Delta P_{i,j}^{k*}, i \in E_{3}^{2}, k=1,2,3 \] \hspace{1cm} (69)

\[\bar{r}_{i}^{*} (t) = \bar{P}_{i} - P_{i} - \sum_{j=1}^{M_{i,3}^{k*} - 1} \Delta P_{i,j}^{k*}, i \in E_{3}^{3} \] \hspace{1cm} (70)

where

\[S_{D}^{i} = D(t) - \sum_{i \in E_{1}} P_{i} - \sum_{i \in E_{2}} P_{i} - \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} P_{i} - \sum_{k=1}^{3} \sum_{i \in E_{m}^{k*}} P_{i} \] \\
\[S_{i}^{j} = \sum_{i \in E_{1}} \bar{r}_{i} + \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} \bar{r}_{i} + \sum_{i \in E_{m}^{k*}} (\bar{P}_{i} - P_{i}) - P_{i} (t) \] \\
\[S_{j}^{l} = \bar{F}_{i} + \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} D_{i} (t) + \sum_{i \in E_{m}^{k*}} \Gamma_{i} P_{i} + \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} \Gamma_{i} P_{i} \] \\
\[S_{j}^{l} = \bar{F}_{i} + \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} D_{i} (t) + \sum_{i \in E_{m}^{k*}} \Gamma_{i} P_{i} + \sum_{k=1}^{3} \sum_{i \in E_{m}^{k}} \Gamma_{i} P_{i} \] \\
\[\rho_{i,m}^{j} = \frac{C_{i} (P_{i,m+1}) - C_{i} (P_{i,m})}{P_{i,m+1} - P_{i,m}}, m = 1, \ldots, M - 1, i \in E_{1} \] \\
\[\rho_{i,j}^{k} = \frac{C_{i} (P_{i,j+1}^{k}) - C_{i} (P_{i,j}^{k})}{P_{i,j+1}^{k} - P_{i,j}^{k}}, j = 1, \ldots, M_{i,3}^{k} - 1, k = 1,2,3 \]

and \(m, n \) are the indexing number of point of division of each fuel cost curve, \(M \) is the corresponding total number of points of division; \(M_{i,3}^{k} (k = 1,2,3) \) is indexing number of point of division of each fuel cost curve of the \(k \)-th type of units \(E_{3}^{k} \) with ramping constraint; \(m_{r} (i \in E_{m}) \) and \(j_{r}^{*} (i \in E_{3}^{3}) \) are the indexing number of point of division \(\bar{P}_{i} - \bar{r}_{i} \), respectively.
6. Numerical Testing

Example: This example is originated from [5]. The system parameters are summarized in Table 1-4. The percentage of system load drawn by each load bus is given in Table 2 with $D_k(t) = D(t)\sigma_k$, where k is the index of load bus and the system loads are listed in Table 3. The reserve requirements are defined as 10% of the system load at each hour. The basic unit parameters are shown in Table 4 with Units 1-5 having minimum generation constraints at the first/last up hour and ramping constraints. The ramp rates of units’ 1-unit 5 are 100MW, 120MW, 120MW, 190MW and 190MW, respectively. The power grid is illustrated in Fig. 3.

Fig. 3 The power grid with 31 buses, 16 units, 43 transmission lines and 11 load centers

A feasible unit commitment is listed in Table 5 obtained from modifying the corresponding infeasible unit states after 50 dual iterations using Standard Lagrangian Relaxation method. Then the economic dispatch of power of all generating units by solving economic dispatch problem (LP3) is obtained, the total generating costs is 1114010, the dual lower bound is 1111701.8, the duality gap is 0.21%. Smaller duality gap presented the better effectiveness and efficiency of the proposed methods in this paper.

Line: from -> to	Capacity (MW)	Line: from -> to	Capacity (MW)
1-2	1000	16-18	1200
1-12	1000	16-19	800
2-13	1000	17-21	1200
3-14	2000	18-25	2500
3-15	2000	19-26	250
4-6	1500	19-31	200
5-6	1500	20-24	1000
6-7	1200	20-28	1000
6-18	1200	20-30	1000
7-16	1200	21-26	900
7-17	1200	22-26	1250
8-22	1000	23-27	1250
9-23	1000	24-25	1000
10-14	1000	25-31	250
11-15	1000	26-27	1200
12-20	1000	26-29	800
13-18	1000	26-31	600
13-20	1000	28-30	1000
14-18	1780	30-31	700
15-18	1780		
Table 2 Percentage of system load drawn by each load bus

Bus	Percentage (σ_k)	Bus	Percent (σ_k)
1	0.024	7	0.265
2	0.024	8	0.062
3	0.361	9	0.024
4	0.036	10	0.048
5	0.012	11	0.12
6	0.024		

Table 3 System load by hours

Hour	Loads (MW)	Hour	Loads (MW)
1	2502	13	7995
2	2441	14	7201
3	2197	15	6591
4	2075	16	6225
5	2502	17	6652
6	3418	18	7812
7	4809	19	8056
8	5859	20	7079
9	6957	21	5188
10	7690	22	4028
11	8056	23	3174
12	8300	24	2807

Table 4 Basic generator parameters

Unit	\(\bar{r}_i (MW) \)	\(P_i (MW) \)	\(\bar{P}_i (MW) \)
1	100	300	1315
2	120	360	1578
3	120	360	1578
4	190	360	1578
5	190	100	1815
6	1500	300	1815
7	800	240	1052
8	500	150	657.5
9	500	100	605
10	150	45	197.3
11	300	90	394.5
12	600	120	726
13	750	150	907.5
14	175	52	229.6
15	200	60	263
16	600	120	726

Table 5 Feasible unit commitment states

Units	Unit commitment states at each hour
Hour 1	
1	1 0 0 0 0 0 1 1 1 1 1 1 1 1 1
2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hour 24	
7. Conclusions
By using the convexity of the generating cost function and the concavity of spinning reserve contribution of each individual unit, and the linearity of systems constraints such as load balance, system spinning requirement and security constraints, the ED problem is then skillfully transformed into a linear program. Several theorems guarantee the proposed methods to be reasonable. Numerical testing result shows that the methods are effective and efficient.

Acknowledgements
The paper is supported by Shaanxi Educational Bureau Natural Science Foundation (11JK0498, 16JK1163).

References
[1] S. Torre, J.M. Arroyo, A.J. Conejo, J. Contreras, “Price-maker self-scheduling in a pool-based electricity market: a mixed-integer LP approach, IEEE Transactions on Power Systems 17(4) (2002)1037-1042.
[2] A.Renaud, Daily generation management at electricite de France: from planning towards real time, IEEE Transactions on Automatic Control 38(7) (1999) 1080-1093.
[3] Y. Fu, M. Shahidehpour, Fast SCUC for large-scale power systems, IEEE Transactions on Power Systems 22(4) (2007) 2144-2151.
[4] X. Guan, S. Guo, Q. Zhai, The conditions for obtaining feasible solutions to security-constrained unit commitment problems, IEEE Transactions on Power Systems 20(4) (2005) 1746-1756.
[5] E. Ni, P.B. Luh, S. Rourke, Optimal integrated generation bidding and scheduling with risk management under a deregulated power market, IEEE Transactions on Power Systems 19(1) (2004) 600-609.
[6] A.J. Conejo, J.M. Arroyo, J. Contreras, F.A. Villamor, Self-scheduling of a hydro producer in a pool-based electricity market, IEEE Transactions on Power Systems 17(4) (2002) 1265-1272.
[7] X. Guan, Q. Zhai, A. Papalexopoulos, Optimization Based Methods for Unit Commitment: Lagrangian Relaxation versus General Mixed Integer Programming, 2003 IEEE Power Engineering Society General Meeting, July 2003, Toronto, Ontario Canada, PES2003-000779, 2003.
[8] Fulin Zhubang and F. D. Galiana, Senior Member, “Towards a More Rigorous and Practical Unit commitment By Lagrangian Relaxation,” IEEE Transactions on Power Systems, vol. 3, no. 2, May 1988.
[9] J. J. Shaw, “A direct method for security-constrained unit commitment,” IEEE Transactions on Power Systems, vol. 10, no. 3, 1995, pp. 1329–1342.
[10] X. Guan, P. B. Luh, and H. Yan, “An optimization-based method for unit commitment,” Electrical Power & Energy Systems, vol. 14, no. 1, pp. 9-17, 1992.
[11] C. A. Li, R. B. Johnson and A. J. Svoboda, “ A New Unit commitment Method,” IEEE Trans. on Power Systems, vol. 12, no. 1, 1997.
[12] S.J. Wang, S.M. Shahidehpour, D.S. Kirschen, S. Mokhtari, G.D. Irisarri, Short term generation scheduling with transmission constraints using augmented Lagrangian relaxation, IEEE Transactions on Power Systems 10(3) (1995) 1294-1301.

[13] B.F. Hobbs, M.H. Rothhopf, R.P. Oneill, H. Chao, The Next Generation of Electric Power Unit Commitment Models, Kluwer Academic Publishers, 1999.

[14] I.G. Damousis, A.G. Bakirtzis, P.S. Dokopoulos, Network-constrained economic dispatch using real-coded genetic algorithm, IEEE Transactions on Power Systems 18 (1) (2003) 198–205.

[15] K.S. Swarup, S. Yamashiro, A genetic algorithm approach to generator unit commitment, Electrical Power and Energy Systems 25 (2003) 679–687.

[16] Chao-Lung Chiang, improved Genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on Power Systems, 20, 20(4) (2005) 1690-1699.

[17] S.A. Kazarlis, A.G. Bakirtzis, V. Petridis, A genetic algorithm solution to the unit commitment problem, IEEE Transactions on Power Systems 11 (1) (1996) 83-91.

[18] J.M. Arroyo, A.J. Conejo, A parallel repair genetic algorithm to solve the unit commitment problem, IEEE Transactions on Power Systems 17 (4) (2002) 1216–1224.

[19] H. K. Youssef, K. M. El-Naggar, Genetic based algorithm for security constrained power system economic dispatch, 53(1) (2000) 47-51.

[20] P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function, IEEE Transactions on Power Systems 17 (2) (2002) 411-416.

[21] X. Bai, S.M. Shaidehpour, Extended neighborhood search algorithm for constrained unit commitment, Electrical Power and Energy Systems 19 (1997) 675 349–356.

[22] W. Lin, F. Cheng, M. Tsay, Nonconvex economic dispatch by integrated artificial intelligence, IEEE Transactions on Power Systems 16 (2) (2001) 307–311.

[23] N.P. Padhy, Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms, Electrical Power and Energy Systems 23 (2000) 827–836.

[24] B. Yu, X. Yuan, J. Wang, Short-term hydro-thermal scheduling using particle swarm optimization method, Energy Conversion and Management 48 (2007) 1902-1908.