The strong coupling constant at large distances

A. Deur

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

Abstract. In this paper we discuss effective strong coupling constants. Those are well behaved in the low-Q^2 domain, contrarily to α_s from pQCD. We present an extraction of an effective strong coupling constant from Jefferson Lab polarized data at intermediate and low Q^2. We also show how these data, together with spin sum rules, allow us to obtain the effective coupling constant over the entire Q^2 range. We then discuss the relation between the experimentally extracted coupling constant and theoretical calculations at low Q^2. We conclude on the importance of such study for the application of the AdS/CFT correspondence to QCD.

Keywords: Strong coupling constant, QCD sum rules, non-perturbative, commensurate scale relations, Schwinger-Dyson, Lattice QCD, AdS/CFT

PACS: 12.38Qk,11.55Hx

In QCD, the magnitude of the strong force is given by the running coupling constant α_s. At large Q^2, in the pQCD domain, α_s is well defined and is given by the series:

$$\mu \frac{\partial \alpha_s}{\partial \mu} = 2\beta(\alpha_s) = -\frac{\beta_0}{2\pi} \alpha_s^2 - \frac{\beta_1}{4\pi^2} \alpha_s^3 - \frac{\beta_2}{64\pi^3} \alpha_s^4 - \ldots \quad (1)$$

Where μ is the energy scale, to be identified to Q. The first terms of the β series are: $\beta_0 = 11 - \frac{2}{3} n$ with n the number of active quark flavors, $\beta_1 = 51 - \frac{19}{7} n$ and $\beta_2 = 2857 - \frac{5033}{7} n + \frac{325}{7} n^2$. The solution of the differential equation 1 is:

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln(\mu^2/\Lambda_{QCD}^2)} \times$$

$$\left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln[\ln(\mu^2/\Lambda_{QCD}^2)]}{\ln(\mu^2/\Lambda_{QCD}^2)} \right] + \frac{4\beta_1^2}{\beta_0^3} \frac{\ln[\ln(\mu^2/\Lambda_{QCD}^2)]}{\ln(\mu^2/\Lambda_{QCD}^2)} \left(\frac{1}{2} - \frac{1}{2} \ln[\ln(\mu^2/\Lambda_{QCD}^2)] + \frac{\beta_2}{8\beta_0^2} - \frac{5}{4} \right) \quad (2)$$

Eq. 2 allows us to evolve the different experimental determinations of α_s to a conventional scale, typically $M_{z_0}^2$. The agreement between the α_s obtained from different observables demonstrates its universality and the validity of Eq. 1. One can obtain $\alpha_s(M_{z_0}^2)$ with doubly polarized DIS data and assuming the validity of the Bjorken sum rule [1]:

$$\Gamma_{1}^{p-n} = \int_0^1 (g_1^p - g_1^n) dx = \frac{g_A}{6} \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi}\right)^2 - 20.21 \left(\frac{\alpha_s}{\pi}\right)^3 + \ldots\right] + O(\frac{1}{Q^2}) \quad (3)$$

where g_A is the well measured nucleon axial charge. Solving Eq. 3 using the experimental value of Γ_{1}^{p-n}, and then using Eq. 2 provides $\alpha_s(M_{z_0}^2)$.

Eq. 2 leads to an infinite coupling at large distances, when Q^2 approaches Λ_{QCD}^2. This is not a conceptual problem since we are out of the validity domain of pQCD on which
Eq. 2 is based. But since data show no sign of discontinuity or phase transition when crossing the intermediate Q^2 domain, one should be able to define an effective coupling α_s^{eff} at any Q^2 that matches α_s at large Q^2 but stays finite at small Q^2.

The Bjorken Sum Rule can be used again to define α_s^{eff} at low Q^2. Defining α_s^{eff} from Eq. (3) truncated to first order: $\Gamma_{\text{BP}}(1 - \alpha_s^{g_1}/\pi)$, offers many advantages. In particular, α_s^{eff} does not diverge near Λ_{QCD} and is renormalization scheme independent since the first term in a pQCD series is the same, regardless to the choice of renormalization scheme. However, α_s^{eff} becomes dependent on the choice of observable employed to define it. If $\Gamma_{\text{BP}}(1 - \alpha_s^{g_1}/\pi)$ is used as the defining observable, the effective coupling is noted $\alpha_s^{g_1}$. Relations, called commensurate scale relations [2], link the different effective couplings so in principle one effective coupling is enough to describe the strong force and the theory retains its predictive power.

The effective coupling definition in term of pQCD evolution equations truncated to first order was proposed by Grunberg [3]. Following this definition, effective couplings have been extracted from different observables and have been compared to each other using the commensurate scale relations [7], see Fig. 1. There is good agreement between the effective couplings $\alpha_s^{g_1}$, $\alpha_s^{F_3}$ and α_s^{τ}. The GDH and Bjorken sum rules can be used to extract $\alpha_s^{g_1}$ at small and large Q^2 respectively [7]. This, together with the JLab data at intermediate Q^2, provides for the first time a coupling at any Q^2. A striking feature of Fig. 1 is that $\alpha_s^{g_1}$ becomes scale invariant at small Q^2. This was predicted by a number of calculations but it is the first time it is seen experimentally.
The effective coupling α_s extracted from JLab data, its fit, and its extraction using the Burkert and Ioffe [11] model to obtain $\Gamma_{\pi}^{p,n}$. The α_s calculations are: Top left: Schwinger-Dyson equations (Cornwall [10]); Top right: Schwinger-Dyson equations (Bloch) [12] and α_s used in a quark constituent model [13]; Bottom left: Schwinger-Dyson equations (Maris-Tandy [14]), Fischer, Alkofer, Reinhardt and Von Smekal [15] and Bhagwat et al. [16]; Bottom right: Lattice QCD [17].

A fit of the α_{s,g_1} data and sum rule constraints has been performed with a form based on Eq. 2 at first order:

$$\alpha_{s,g_1}^{fit} = \frac{\gamma n(Q)}{\Lambda^2} \log\left(\frac{Q^2 + m_g^2(Q)}{\Lambda^2}\right)$$

(4)

where $\gamma = 4/\beta_0 = 12/(33 - 8)$, $n = \pi (1 + \frac{1}{\log(m^2/\Lambda^2)} + (bQ)^c - 1)$ and $m_g = m/(1 + (aQ)^d)$. The values of the parameters are: $\Lambda = 0.349 \pm 0.009$ GeV, $a = 3.008 \pm 0.081$ GeV$^{-1}$, $b = 1.425 \pm 0.032$ GeV$^{-1}$, $c = 0.908 \pm 0.025$, $m = 1.204 \pm 0.018$ GeV, $d = 0.840 \pm 0.051$. m_g has been interpreted as an effective gluon mass [10]. The fit is shown on Fig. 2 (continuous black line). Eq. 4, used in $\Gamma_{\pi}^{p,n} = \frac{1}{6}(1 - \alpha_{s,g_1}/\pi)$, can also be employed to parametrize the generalized Bjorken and GDH sums.

On Fig. 2, α_{s,g_1} is compared to theoretical results. There are several techniques used to predict α_s at small Q^2, e.g. lattice QCD, solving the Schwinger-Dyson equations, or choosing the coupling in a constituent quark model so that it reproduces hadron spectroscopy. However, the connection between these α_s is unclear, in part because of the different approximations used. In addition, the precise relation between α_{s,g_1} (or any effective coupling defined using [3] or [2]) and these computations is unknown. Nevertheless, one can still compare them to see if they share common features. The calculations and α_{s,g_1} present a similar behavior. Some calculations, in particular the lattice one, are in excellent agreement with α_{s,g_1}.

These works show that α_s is scale invariant (conformal behavior) at small and large Q^2 (but not in the transition region between the fundamental description of QCD in terms of quarks and gluons degrees of freedom and its effective one in terms of baryons.
and mesons). The scale invariance at large Q^2 is the well known asymptotic freedom. The conformal behavior at small Q^2 is essential to apply a property of conformal field theories (CFT) to the study of hadrons: the Anti-de-Sitter space/Conformal Field Theory (AdS/CFT) correspondence of Maldacena [18], that links a strongly coupled gauge field to weakly coupled superstrings states. Perturbative calculations are feasible in the weak coupling AdS theory. They are then projected on the AdS boundary, where they correspond to the calculations that would have been obtained with the strongly coupled CFT. This opens the possibility of analytic non-perturbative QCD calculations [19].

To sum up, thanks to the data on nucleon spin structure and to spin sum rules, an effective strong coupling can be extracted in any regime of QCD. The question of comparing it with theoretical calculations of α_s at low Q^2 is open, but such comparison exposes a similarity between these couplings. Apart for the parton-hadron transition region, the coupling shows that QCD is approximately a conformal theory. This is a necessary ingredient to the application of the AdS/CFT correspondence that may make analytical calculations possible in the non-perturbative domain of QCD.

Acknowledgments This work was done in collaboration with V. Burkert, J-P. Chen and W. Korsch. It is supported by the U.S. Department of Energy (DOE). The Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the DOE under contract DE-AC05-84ER40150.

REFERENCES

1. J. D. Bjorken, Phys. Rev. 148, 1467 (1966)
2. S. J. Brodsky and H. J. Lu, Phys. Rev. D 51 3652 (1995); S. J. Brodsky, G. T. Gabadadze, A. L. Kataev and H. J. Lu, Phys Lett B372 133 (1996); See also S. J. Brodsky, hep-ph/0310289, S. J. Brodsky, S. Menke, C. Merino and J. Rathman, Phys Rev D67 055008 (2003)
3. G. Grunberg, Phys. Lett. B 95 70 (1980); Phys. Rev. D 29 2315 (1984); Phys. Rev. D 40, 680 (1989)
4. K. Abe et al., Phys. Rev. Lett. 79 26 (1997); P.L. Anthony et al., Phys. Lett. B493 19 (2000)
5. R. Fatemi et al., Phys. Rev. Lett. 91, 222002 (2003); J. Yun et al., Phys. Rev. C 67, 055204 (2003); V. Dharmawardane et al., Phys. Lett. B 641, 11 (2006); Y. Prok et al., To be published in Phys. Lett. B, arXiv:0802.2232; M. Amarian et al., Phys. Rev. Lett. 89, 242301 (2002); M. Amarian et al., Phys. Rev. Lett. 92, 022301 (2004)
6. A. Deur et al., Phys. Rev. Lett. 93 212001 (2004); A. Deur et al., Phys.Rev.D78 032001 (2008)
7. A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Phys. Lett. B 650 4 244 (2007); A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Phys. Lett. B665 349 (2008)
8. D. J. Gross and C. H. Llewellyn Smith, Nucl. Phys B14 337 (1969)
9. J. H. Kim et al., Phys. Rev. Lett. 81 3595 (1998)
10. J. M. Cornwall, Phys. Rev. D26 1453 (1982)
11. V. D. Burkert, B. L. Ioffe, Phys. Lett. B296 223 (1992); J. Exp. Theor. Phys. 78 619 (1994)
12. J. C. R. Bloch, Phys. Rev. D66 034032 (2002)
13. S. Godfrey and N. Isgur, Phys. Rev. D32 189 (1985)
14. P. Maris and P. C. Tandy, Phys. Rev. C60 055214 (1999)
15. C.S. Fischer, R. Alkofer, Phys. Lett. B536 177 (2002); C.S. Fischer, R. Alkofer, H. Reinhardt, Phys. Rev. D65 125006 (2002); R. Alkofer, C.S. Fischer, L. Von Smekal, Acta Phys. Slov. 52 191 (2002)
16. M.S. Bhagwat et al., Phys. Rev. C68 015203 (2003) 189 (1985)
17. S. Furui and H. Nakajima, Phys. Rev. D70 094504 (2004)
18. J. M. Maldacena, Adv. Theor. Math. Phys. 2 252 (1998); Int. J. Theor. Phys. 38 1113 (1999)
19. See for ex. J. Polchinski and M. J. Strassler, Phys. Rev. Lett 88 031601 (2002); JHEP 0305 012 (2003); S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett 94 201601 (2005); Phys. Rev. Lett. 96 201601 (2006). A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D74 015005 (2006)