Alarmin S100A11 initiates a chemokine response to the human pathogen *Toxoplasma gondii*

Alexandra Safronova, Alessandra Araujo, Ellie T. Camanzo, Taylor J. Moon, Michael R. Elliott, Daniel P. Beiting, and Felix Yarovinsky

}*NATURE IMMUNOLOGY* | VOL 20 | JANUARY 2019 | 64–72 | www.nature.com/natureimmunology

Toxoplasma gondii is a common protozoan parasite that infects up to one third of the world’s population. Notably, very little is known about innate immune sensing mechanisms for this obligate intracellular parasite by human cells. Here, by applying an unbiased biochemical screening approach, we show that human monocytes recognized the presence of *T. gondii* infection by detecting the alarmin S100A11 protein, which is released from parasite-infected cells via caspase-1-dependent mechanisms. S100A11 induced a potent chemokine response to *T. gondii* by engaging its receptor RAGE, and regulated monocyte recruitment in vivo by inducing expression of the chemokine CCL2. Our experiments reveal a sensing system for *T. gondii* by human cells that is based on the detection of infection-mediated release of S100A11 and RAGE-dependent induction of CCL2, a crucial chemokine required for host resistance to the parasite.

Innate sensing of infection is important for triggering host defenses against invading pathogens, including protozoan parasites. Among various classes of innate immune sensors, Toll-like receptors (TLRs) have a central role in initiating interleukin 12 (IL-12)-dependent immune responses to pathogens. Both humans and mice share similar TLRs required for the recognition of conserved and essential bacterial and viral molecules, including the structural components of bacterial cell walls, RNA and DNA. However, the initial steps involved in recognition of the common protozoan parasite *Toxoplasma gondii* are vastly different in mice than in humans. In mice, recognition of the parasite is mediated by TLR11, which directly interacts with *T. gondii* profilin, a key molecule required for invasion of host cells by the parasite. *T. gondii* profilin is a classical pathogen-associated molecular pattern protein that is unique for *T. gondii* and other phylogenetically related apicomplexan parasites, including malaria and cryptosporidium. Profilin is essential for *T. gondii* survival due to its nonredundant and essential role in regulating actin polymerization during obligate intracellular parasite entry into host cells. Direct interactions between *T. gondii* profilin and the TLR11–TLR12 heterodimer complex lead to the induction of IL-12 and CCL2 via the adaptor MyD88 (myeloid differentiation primary response 88)—dependent signaling pathway. Both IL-12 and CCL2 are essential for host resistance to *T. gondii* in mice, and the lack of this cytokine and chemokine, respectively, leads to acute susceptibility to the infection. In marked contrast to the murine system, the initial steps for *T. gondii* recognition by human cells remain largely unknown due to a lack of functional genes encoding the key innate sensors TLR11 and TLR12 in the human genome. *T. gondii* is a pseudogene, and the gene encoding TLR12, which can form a heterodimer with TLR11 (ref. 7), is not present in the human genome. It is also unknown whether *T. gondii* profilin can be recognized by human cells. Although additional innate immune sensors, including TLR2, TLR4, NLRP1 (NOD-, LRR- and pyrin domain-containing 1) and NLRP3, can be activated by the parasite, they all have largely dispensable roles in the regulation of host defense and cytokine production. Thus, although up to one third of the world’s population is infected with *T. gondii* and has established a long-lasting immunity to the parasite, how human innate immune cells recognize the parasite remains largely unknown.

RESULTS

Toxoplasma gondii triggers human CCL2 response. Myeloid cells are sentinels of the immune system and are present in the blood and lymphoid organs and across many tissues. These cells are involved in early interactions with *T. gondii*, and we hypothesized that they can recognize the parasite and induce protective innate immune responses. Lack of knowledge about the human cell types involved in *T. gondii* recognition prompted us to apply a systems biology approach with peripheral human blood cells comprising multiple hematopoietic cells. We aimed to decipher the human innate immune defense program by identifying the mediator of host defense triggered by the parasite.

An unbiased RNA-sequencing (RNA-seq) analysis of human peripheral blood cells revealed that innate responses to *T. gondii* were primarily characterized by the induction of chemokine expression, including that of CCL2, rather than by the induction of IL-12; this was evident from the low induction of *IL12B* and *IL12A* (Fig. 1a,b and Supplementary Fig. 1). These results were observed irrespective of which common laboratory *T. gondii* strain was used for experimental infection (RH88 or Pru).

Quantitative real-time PCR (qRT-PCR) analysis of *CCL2* and *IL12B* expression confirmed the screening results and established that *T. gondii* infection of human blood cells leads to much greater induction of CCL2 than of IL12B (Fig. 1c).

Although our results indicate that induction of CCL2 expression is a common effector mechanism downstream of innate parasite recognition by human cells, we also observed that there were differences in Pru and RH88 strain–mediated induction of chemokine responses (Fig. 1 and Supplementary Fig. 1). This observation is most likely due to the differences in virulence factors capable of regulating chemokine response in the infected cells and the pathogenicity of the *T. gondii* strains.
Figure 1 | Transcriptional analysis identifies CCL2 as a signature response to T. gondii infection. a, Global gene transcriptome analysis of human PBMCs (n=5) infected with Pru tachyzoites (MOI, 3:1) for 12 h. RNA samples were collected and analyzed by RNA-seq. b, Analysis of chemokine expression in PBMCs (n=5) exposed to Pru (blue bars) and RH88 (RH, yellow bars) strains of T. gondii by RNA-seq. c, Quantitative rtPCR analysis for CCL2 and IL12B expression in human PBMCs (n=4) infected with Pru and RH88 strains of T. gondii. d, Production of CCL2, IL-12p40, IL-12p70, CCL22, IL-8 and IL-1β by human PBMCs (n=4) infected with Pru and RH88 strains of T. gondii. M, media only (control). e–f, Analysis of CCL2 and IL12B expression (e) and CCL2, IL-12p40, IL-12p70, CCL22, IL-8 and IL-1β secretion (f) in purified human CD14+ monocytes infected with Pru or RH88 strains of T. gondii. g, Expression of CCL2 and IL12B in T. gondii-infected THP-1 cells. h, Secretion of CCL2, IL-12p40, IL-12p70, CCL22, IL-8 and IL-1β by THP-1 cells infected with Pru and RH88 strains of T. gondii. The data shown are representative of three (a,b), five (c,d,g,h) and four (e,f) independent experiments; error bars represent mean ± s.d. Each symbol represents an individual PBMC sample (c,d). CD14+ monocytes isolated from an individual donor (e,f) or an individual cell culture well with THP-1 cells (g,h). Unpaired two-tailed Student’s t-test was used for statistical analysis; NS, not significant; ND, not detected.

Human peripheral blood mononuclear cells (PBMCs) secreted large amounts of CCL2, CCL22 and IL-8 protein, but not IL-12 or IL-1β (Fig. 1d). Furthermore, we observed that the human monocytic cell line THP-1 induced high expression of CCL2 (Fig. 1g) and production of CCL2 protein in response to T. gondii, similarly to PBMCs and primary monocytes (Fig. 1e–h). This observation suggests that the human recognition system for the parasite is distinct from the mouse recognition system, which leads to IL-12 production...
in response to *T. gondii* profilin. This notion was further supported by the lack of expression or secretion of CCL2 or IL12B expression by human monocytes directly exposed to *T. gondii* profilin (Fig. 2a,b). Overall, this systems approach with human PBMCs, monocytes and an experimental THP-1 cell line infected with *T. gondii* reveals that the parasites triggered a potent chemokine response rather than inducing IL-12, a key signature of the mouse innate immune response to *T. gondii*. When combined with the lack of functional genes encoding TLR11 or TLR12 in the human genome, our results establish that innate recognition of *T. gondii* is mediated by distinct mechanisms in human and mouse myeloid cells.

Soluble mediator triggers human CCL2 response. *Toxoplasma gondii* is an obligate intracellular parasite, and the growing numbers of intracellular innate immune sensors prompted us to examine whether the infection of monocytes triggers CCL2 production in a cell-intrinsic manner. THP-1 cells were infected with mCherry-expressing parasites24, and 12 h later the monocytes were sorted and purified as either infected (mCherry⁺) cells or uninfected (mCherry[−]) cells based on the presence of the fluorescent parasite. The following quantitative rtPCR analysis of CCL2 expression showed that both infected and uninfected monocytes produced similar amounts of CCL2 (Fig. 2c,d). In the infected mCherry⁺ cells specifically, a small but detectable induction of IL12B expression, but not secretion of IL-12p40, was observed (Fig. 2d), as previously reported25. Taken together, these results suggest that the intracellular presence of *T. gondii* is dispensable for the induction of CCL2 by monocytes.

Host–parasite interactions lead to the presence of a third population of cells that, although not actively infected with the parasite, are exposed to parasitic molecules via contact-dependent injection of virulence factors (uninfected-injected cells)39,42,43,47. To examine whether monocytic production of CCL2 requires cell contact with *T. gondii*, we monitored CCL2 expression in primary monocytes and THP-1 cells that were separated from the parasite in a transwell system. We observed that lack of direct contact between *T. gondii*
and monocytes did not prevent induction of CCL2 expression (Fig. 2e,f). Taken together, these results suggest that soluble mediators were responsible for CCL2 induction in response to parasite infection. This hypothesis was confirmed by induction of CCL2 expression by cell culture supernatants collected from monocytes (Fig. 2e,f). Moreover, supernatants from nonimmune fibroblasts...
induced CCL2 expression in THP-1 cells and primary monocytes in the transwell system; the monocytes and THP-1 cells also underwent direct activation by cell culture supernatants collected from T. gondii–infected cells (Fig. 2e,f). Neither control supernatants collected from uninfected cells nor recombinant T. gondii profilin induced CCL2 expression in human monocytes (Fig. 2e,f and data not shown). These results strongly suggest that a soluble mediator elicits CCL2 production in response to T. gondii infection.

Human alarmin S100A11 induces CCL2. Next, we biochemically purified a soluble mediator of CCL2 induction from cell culture supernatants of human fibroblasts infected with T. gondii. Anion-exchange purification showed that CCL2-inducing fractions were rapidly separated from those inducing IL-12 production from mouse splenocytes via the TLR11-mediated signaling pathway (Fig. 3a,b). These results were obtained by analysis of CCL2 expression in THP-1 cells. The IL12B-inducing fractions in mouse splenocytes contained T. gondii profilin that was released during infection and that stimulated cells via TLR11 (Fig. 3b and data not shown). These experiments establish that CCL2-inducing molecules in human cells have distinct biochemical properties from T. gondii profilin–initiated, TLR11-dependent induction of IL-12 by mouse cells (Fig. 3b). An additional purification step produced a relatively pure fraction, A4, that could induce potent CCL2 expression in THP-1 cells but not expression of IL-12p40 from mouse splenocytes (Fig. 3c). Combined with the pilot experiments suggesting a low-molecular-mass protein as the CCL2-inducing molecule (data not shown), mass spectrometry of the detectable low-molecular-mass protein band was subsequently performed, leading to identification of the human S100A11 protein (Fig. 3c and Supplementary Fig. 2a). This protein belongs to a large family of small Ca\(^{2+}\)-binding proteins containing two conserved EF-hand motifs that serve pleotropic cellular functions and can also function as a group of damage-associated mediators of inflammation\(^{28–31}\). Sequence detection by mass spectrometry showed that S100A11 is distinct from the other S100 proteins (Supplementary Fig. 2a and data not shown).

We next directly examined whether S100A11 was sufficient for induction of CCL2. We observed that highly purified recombinant S100A11 caused potent induction of CCL2 expression in THP-1 cells (Fig. 4a). When several other S100 proteins were used in similar assays, we observed that only the S100A8–S100A9 complex could induce substantial CCL2 expression in the stimulated cells, albeit at a lower level when compared to S100A11 (Fig. 4a). In addition, we compared S100A11-induced CCL2 production with lipopolysaccharide-mediated activation of the same chemokine because recombinant S100A11 was expressed in *Escherichia coli*. We observed that large amounts of lipopolysaccharide induced relatively low amounts of CCL2 compared to those induced by S100A11 (Fig. 4a).

Furthermore, an antibody to S100A11 completely prevented CCL2 induction mediated by S100A11, but not

Fig. 4 | Role of RAGE in S100A11-induced CCL2. a, THP-1 cells were stimulated with purified recombinant S100A11, S100A12, S100A13, S100B, S100A4, S100A7 or a mixture of S100A8 and S100A9 (S100A8/9) (all at 10 ng ml\(^{-1}\)) or with lipopolysaccharide (1 μg ml\(^{-1}\)), and CCL2 expression was analyzed by qRT-PCR 12 h after stimulation. In several experiments, antibody to S100A11 was added to S100A11 protein (S100A11 + anti-S100A11) or to lipopolysaccharide (LPS + anti-S100A11) for 30 min before stimulation. b, Cell culture supernatants were collected from uninfected (control), Pru- or RH88-infected human cells (Fig. 2e,f and data not shown). These experiments establish that CCL2-inducing molecules in T. gondii–infected cells contained S100A11, and that stimulated cells via TLR11 (Fig. 3b and data not shown). c, Knockdown of S100A11 in THP-1 cells (THP-1 CRISPR_44) was revealed by immunoblot analysis of S100A11 protein (S100A11 + anti-S100A11) for 30 min before stimulation. d, THP-1 cells were stimulated with purified recombinant S100A11, S100A12, S100A13, S100B, S100A4, S100A7 or a mixture of S100A8 and S100A9 (S100A8/9) (all at 10 ng ml\(^{-1}\)) or with lipopolysaccharide (1 μg ml\(^{-1}\)), and CCL2 expression was analyzed by qRT-PCR 12 h after stimulation. In several experiments, antibody to S100A11 was added to S100A11 protein (S100A11 + anti-S100A11) or to lipopolysaccharide (LPS + anti-S100A11) for 30 min before stimulation. b, Cell culture supernatants were collected from uninfected (control), Pru- or RH88-infected human fibroblasts and were used to stimulate monocytes directly or in the presence of increasing amounts of antibody to S100A11 or the isotype-matched control antibody (IC). CCL2 expression was analyzed by qRT-PCR. c-g, Knockdown of S100A11 in THP-1 cells (THP-1 CRISPR_44) was revealed by immunoblot and quantitative qRT-PCR (c) and resulted in loss of S100A11 release and induction of CCL2 in response to RH88 (d,e) and Pru (f,g) infections. rS100A11, recombinant S100A11. h, Induction of CCL2 by S100A11 or cell culture supernatants collected from T. gondii–infected cells was prevented by adding an antibody to RAGE but not the isotype control (IC). Induction of CCL2 by S100A11 was partially blocked by tranilast. Data represent mean ± s.d. of assays performed in triplicate and are representative of four independent experiments.
the induction induced by lipopolysaccharide (Fig. 4a). Taken together, these results establish that S100A11 alone can induce CCL2 expression in human monocytes. To further examine if soluble S100A11 mediated the CCL2 response, cell culture supernatants were collected from RH88- or Pru-infected fibroblasts and incubated with control antibodies or antibodies to S100A11 before stimulation of human monocytes. We observed that blocking S100A11 prevented CCL2 induction by cell culture supernatants collected from T. gondii–infected fibroblasts (Fig. 4b).

To examine whether S100A11 is required for CCL2 induction in response to T. gondii infection, we generated S100A11-deficient THP-1 cell lines using the CRISPR/Cas9 genome editing method. Stable S100A11 knockout THP-1-CRISP_44 cells did not express S100A11, as measured by immunoblot, rtPCR and enzyme-linked immunosorbent assay (ELISA), whereas wild-type THP-1 cells did express the protein (Fig. 4c,d,f and Supplementary Fig. 2b). The S100A11-deficient THP-1 cells did not produce significant amounts of CCL2 when infected with RH88 or Pru strains of T. gondii. CCL2 expression in THP-1 cells stimulated with cell culture supernatants collected from human Hs27 fibroblasts infected with RH88 alone or in the presence of zVAD (10 μM) or zWEHD (10 μM) for 72 h was measured by quantitative rtPCR. d, Analysis of caspase-1 activity in Hs27 and THP-1 cells infected with RH88 and Pru strains of T. gondii. CCL2 expression in THP-1 cells stimulated with cell culture supernatants collected from human Hs27 fibroblasts infected with RH88 alone or in the presence of zVAD (10 μM) or zWEHD (10 μM) for 72 h was measured by quantitative rtPCR. e, Detection of S100A11 protein levels in Pru- or RH88-infected fibroblasts by immunofluorescent detection (Fig. 5). f, Analysis of S100A11 protein levels in Pru- or RH88-infected fibroblasts by immunofluorescent detection (Fig. 5).

This prompted us to directly examine the requirement for RAGE in S100A11-mediated induction of CCL2. We found that stimulation of THP-1 cells with purified S100A11 in the presence of an antibody to RAGE, but not the isotype-matched control antibody, prevented induction of CCL2 expression (Fig. 4b). Similar results were obtained when monocytes were stimulated with cell culture supernatants collected from T. gondii–infected, but not control, human fibroblasts (Fig. 4b). The presence of antibodies to RAGE abrogated induction of CCL2 by cell culture supernatants produced from infected cells (Fig. 4b). In addition, CCL2 induction was diminished when monocytes were stimulated with S100A11 in the presence of transfalst, a small-molecule inhibitor of the V domain in RAGE, which is involved in interactions with S100 proteins35 (Fig. 4i). These results reveal that RAGE is a key receptor that mediates S100A11-induced CCL2 production by monocytes.

Caspase-1 mediates S100A11 release. Identification of the human intracellular protein S100A11 as a mediator of the paracrine CCL2 response in T. gondii–infected cells raised questions regarding mechanisms regulating S100A11 release from infected cells. We first examined whether parasite invasion was required for the S100A11-mediated induction of CCL2. We observed that when T. gondii was rendered incapable of invasion due to profilin deficiency6, it did not induce S100A11-dependent induction of CCL2 expression (Supplementary Fig. 6a). Similarly, blocking parasite invasion with mycalolide B36,37 prevented T. gondii–induced induction of CCL2 in human monocytes (Supplementary Fig. 6b). These results prompted us to examine whether the cellular lysis ultimately caused by the parasite causes S100A11 release and induction of CCL2. Our experiments showed that whereas T. gondii infection did not change

Fig. 5 | Role of caspase-1 in S100A11 release. a, b, Analysis of S100A11 protein levels in Pru- or RH88-infected fibroblasts by immunofluorescent detection (a) and by expression analysis (b). Scale bars, 50 μm. Error bars represent mean ± s.d. c, CCL2 expression by THP-1 cells stimulated with cell culture supernatants collected from frozen cells in comparison with RH88-infected cells. d, Analysis of caspase-1 activity in Hs27 and THP-1 cells infected with RH88 and Pru strains of T. gondii. CCL2 expression in THP-1 cells stimulated with cell culture supernatants collected from human Hs27 fibroblasts infected with RH88 alone or in the presence of zVAD (10 μM) or zWEHD (10 μM) for 72 h was measured by quantitative rtPCR. e, Detection of S100A11 protein levels in Pru- or RH88-infected fibroblasts by immunofluorescent detection (Fig. 5).
Articles NAtuRE ImmuNOLOGy

The expression or abundance of S100A11 in infected or surrounding cells (Fig. 5a, b), parasite-mediated cellular damage was required for S100A11 release. Cellular death caused by rapid freezing was not sufficient for the liberation of enough S100A11 for the induction of CCL2 (Fig. 5c and Supplementary Fig. 2c). In addition, we observed not only that T. gondii infection led to activation of caspase-1 (Fig. 5d), but also that the pan-caspase inhibitor zVAD and the caspase-1 inhibitor zWEHD reduced S100A11 release and abolished CCL2 induction by supernatants collected from T. gondii–infected cells (Fig. 5d,e and Supplementary Fig. 2c). Caspase-1–deficient THP-1 cells also showed reduced production of CCL2 in response to T. gondii infection (data not shown). As we expected, CCL2 production by caspase-1–deficient cells was not compromised when THP-1 cells were stimulated with S100A11-containing supernatants (data not shown). Overall, these results indicate that an active cellular response to T. gondii infection by an unknown intracellular receptor leads to the caspase-1–dependent release of S100A11, which is required and sufficient for the induction of CCL2.

Fig. 6 | S100A11 regulates monocyte recruitment in vivo. a, Wild-type (WT) and S100a11 knockout (KO) mice were infected intraperitoneally with T. gondii, and the presence of inflammatory monocytes and neutrophils at the site of infection was analyzed by flow cytometry on day 5 after infection. b, Average frequency and absolute numbers of monocytes in T. gondii–infected wild-type and S100a11 knockout mice on day 5 after infection. Data are representative of four independent experiments, each involving six to eight age- and sex-matched mice. c, CCL2, IL-12p40 and IFN-γ production were measured in sera on day 5 after infection by ELISA. Each symbol represents an individual experimental mouse. d, Survival of wild-type (filled circles) and S100a11 knockout (open circles) mice infected with T. gondii (20 cysts per mouse). Data shown are representative of four independent experiments each involving six to eight age- and sex-matched mice. Unpaired two-tailed Student’s t-test (b–e) and Mantel-Cox tests (f) were used for statistical analysis, NS, not significant.

S100A11 regulates monocyte recruitment in vivo. To examine the importance of S100A11 in the regulation of immunity to T. gondii in vivo, S100A11–deficient mice were generated (Supplementary Fig. 7) and infected intraperitoneally with T. gondii. We observed that a lack of S100a11 led to compromised monocyte recruitment to the site of infection (Fig. 6a,b); this was correlated with lower concentrations of CCL2 in infected mice than in wild type mice (Fig. 6c). Concurrently, the lack of S100a11 had no effect on the induction of the IL-12 and interferon-γ (IFN-γ) responses in vivo (Fig. 6d). The high concentrations of these cytokines may explain the partial role of S100A11 in host survival during intraperitoneal T. gondii
infection (Fig. 6f). We also observed lower concentrations of S100A11 in T. gondii–infected caspase-1- and caspase-11-deficient mice than in wild type mice, confirming that caspase-1 has a role in S100A11 release in vivo (Fig. 6e).

Oral infection with T. gondii showed that S100A11 contributes to induction of CCL2 and migration of monocytes to the site of infection, but not to the IFN-γ-mediated response to the parasite (Supplementary Fig. 8). Nevertheless, S100A11 deficiency led to less intestinal pathology caused by the parasitic infection (Supplementary Fig. 8e,f), indicating that in addition to the protective immunity, the release of S100A11 may lead to the enhanced immunopathological response caused by T. gondii.

DISCUSSION

Herein, we establish a biochemical basis for the induction of the chemokine response to T. gondii infection by human cells. Our results show that infection with T. gondii leads to the release of S100A11 from infected cells. This soluble mediator is both necessary and sufficient for RAGE-dependent induction of CCL2, a major chemokine required for monocyte-mediated immunity to pathogens.

The previously defined mechanisms of innate immunity to T. gondii and closely related apicomplexan parasites are chiefly mediated by TLR11-mediated recognition of profilin, an essential molecule for the parasite invasion of host cells. TLR11-dependent innate recognition leads to rapid and selective induction of IL-12, which is required for the highly polarized T helper type 1 immunity. The additional results from our and other laboratories show that TLR11 forms a heterodimer with TLR12 and detects profilin released from T. gondii within the endolysosomal compartment. Despite clarification of the molecular events required for the TLR11-dependent activation of MyD88, a major question about TLR11-dependent sensing of the parasite still remained. This gap in knowledge needed to be filled, because TLR11 and TLR12 immunity to T. gondii is not functional in human cells. TLR11 is encoded by a pseudogene and the gene encoding TLR12 is missing in the human genome.

Additional TLRs, in particular TLR2 and TLR9, as well as the NLRP1 and NLRP3 inflammasomes, are engaged by the parasite, but have a minor role in defense against T. gondii. Given the global distribution of T. gondii in the human population and the clinical importance of this parasite, we aimed to define innate immune sensors that could be involved in human defense against T. gondii.

A systems biology approach to define innate immune pathways based on the analysis of the effector molecules triggered by T. gondii infection, combined with biochemical screening, reveals that the human recognition system for this parasite is based on detection of the damage-associated molecule S100A11, which is released from infected cells. The human recognition system is distinct from the previously identified TLR11-mediated immune response to the parasite in mice, which depends on direct sensing of the essential T. gondii protein. A major downstream effector of S100A11-mediated activation of human monocytes is CCL2, a chemokine regulating monocyte recruitment to the site of infection. This contrasts with the soluble effector mediators released by mouse and human cells in response to T. gondii. Mouse dendritic cells produce large amounts of IL-12, whereas the human response to T. gondii is predominantly characterized by expression of CCL2. Despite biochemical differences between mice and humans in the recognition systems for T. gondii, both human and murine immunity to T. gondii rely on sensing active infection rather than the pathogen itself. This is because TLR11 detects profilin released from infected cells but not the parasite itself. Moreover, activation of TLR11 by T. gondii profilin is predominantly seen in uninfected cells. Similarly, human monocytes sense S100A11 released from surrounding cells infected with the parasite. This finding may represent an innate immune mechanism insensitive to an array of T. gondii virulence factors that can interfere with host defense pathways and determine the outcome of infection in vivo.

Consistent with this notion, the expression of S100A11 was not affected by parasite infection, suggesting that S100A11 is a pre-made alarmin that initiates rapid CCL2-mediated immune responses to the common intracellular parasite T. gondii.

Our in vivo results in mice suggest that the release of S100A11 from infected cells has a role in both host protection against T. gondii and immunopathology mediated by CCL2-dependent defense mechanisms. Additional studies are needed to determine whether S100A11-mediated immunity to T. gondii in humans is also primarily regulated by recruitment of monocytes to the site of infection.

Overall, our experiments reveal that human cells sense T. gondii by detecting infection-mediated release of S100A11. This alarmin engages RAGE and initiates signaling pathways leading to the induction of CCL2, a crucial chemokine required for host resistance to the parasite.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41590-018-0250-8.
20. Hakimi, M. A., Olias, P. & Sibley, L. D. *Toxoplasma* effectors targeting host signaling and transcription. *Clin. Microbiol. Rev.* **30**, 615–645 (2017).

21. Gay, G. et al. *Toxoplasma gondii* TgSTF co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. *J. Exp. Med.* **213**, 1779–1798 (2016).

22. Olias, P., Etheridge, R. D., Zhang, Y., Holtzman, M. J. & Sibley, L. D. *Toxoplasma* effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. *Cell Host Microbe* **20**, 72–82 (2016).

23. Naor, A. et al. MYR1-dependent effectors are the major drivers of a host cell's early response to *Toxoplasma*, including counteracting MYR1-independent effects. *MBio* **9**, e02401-17 (2018).

24. Koshy, A. A. et al. *Toxoplasma* co-opts host cells it does not invade. *PLoS Pathog.* **8**, e1002825 (2012).

25. Tosh, K. W. et al. The IL-12 response of primary human dendritic cells and newborn infants from sepsis. *Nat. Immunol.* **9**, 622–632 (2017).

26. Christian, D. A. et al. Use of transgenic parasites and host reporters to dissect events that promote interleukin-12 production during toxoplasmosis. *Infect. Immun.* **82**, 4056–4067 (2014).

27. Melo, M. B., Jensen, K. D. & Saeij, J. P. *Toxoplasma gondii* effector recruitment and signaling in inflammation and beyond. *J. Leukoc. Biol.* **94**, 1551–1579 (2014).

28. Donato, R. *S100*: a multigenic family of calcium-modulated proteins of the EF hand type with intracellular and extracellular functional roles. *Int. J. Biochem. Cell. Biol.* **33**, 637–668 (2001).

29. Donato, R. et al. Functions of S100 proteins. *Curr. Mol. Med.* **13**, 24–57 (2013).

30. Ulas, T. et al. S100-alarmin-induced innate immune programming protects newborn infants from sepsis. *Nat. Immunol.* **18**, 622–632 (2017).

31. Gross, S. R., Sin, C. G., Barracough, R. & Rudland, P. S. Joining S100 proteins and migration: for better or for worse, in sickness and in health. *Cell. Mol. Life Sci.* **71**, 1551–1579 (2014).

32. Kierdorf, K. & Fritz, G. RAGE regulation and signaling in inflammation and beyond. *J. Leukoc. Biol.* **94**, 55–68 (2013).

33. Leclerc, E., Fritz, G., Vetter, S. W. & Heizmann, C. W. Binding of S100 proteins to RAGE: an update. *Biochim. Biophys. Acta* **1793**, 993–1007 (2009).

34. Koch, M. et al. Structural basis for ligand recognition and activation of RAGE. *Structure* **18**, 1342–1352 (2010).

35. Penumutchu, S. R., Chou, R. H. & Yu, C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. *PLoS One* **9**, e103947 (2014).

36. Hori, M. et al. Mycalolide-B, a novel and specific inhibitor of actomyosin ATPase isolated from marine sponge. *FEBS Lett.* **322**, 151–154 (1993).

37. Lavine, M. D. & Arrizabalaga, G. Exit from host cells by the pathogenic parasite *Toxoplasma gondii* does not require motility. *Eukaryot. Cell* **7**, 131–140 (2008).

38. Dunay, I. R. et al. Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen *Toxoplasma gondii*. *Immunity* **29**, 306–317 (2008).

39. Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. *Annu. Rev. Immunol.* **26**, 421–452 (2008).

40. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. *Nat. Rev. Immunol.* **11**, 762–774 (2011).

41. Kim, Y. G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. *Immunity* **34**, 769–780 (2011).

42. Gov, L., Schneider, C. A., Lima, T. S., Pandori, W. & Lodoen, M. B. NLRP3 and potassium efflux drive rapid IL-1β release from primary human monocytes during *Toxoplasma gondii* infection. *J. Immunol.* **199**, 2855–2864 (2017).

43. Robben, P. M., LaRegina, M., Kuziel, W. A. & Sibley, L. D. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. *J. Exp. Med.* **201**, 1761–1769 (2005).

44. Pifer, R., Benson, A., Sturge, C. R. & Yarovsky, S. UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to *Toxoplasma gondii*. *J. Biol. Chem.* **286**, 3307–3314 (2011).

45. Saeij, J. P. et al. *Toxoplasma gondii* co-opts host gene expression by injection of a polymorphic kinase homologue. *Nature* **445**, 324–327 (2007).

46. Reese, M. L., Zeiner, G. M., Saeij, J. P., Boothroyd, J. C. & Boyle, J. P. Polymorphic family of injected pseudokinases is paramount in *Toxoplasma* virulence. *Proc. Natl Acad. Sci. USA* **108**, 9625–9630 (2011).

47. Butcher, B. A. et al. *Toxoplasma gondii* rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginine-1-dependent growth control. *PLoS Pathog.* **7**, e1002236 (2011).

Acknowledgements
This work was supported by National Institute of Allergy and Infectious Diseases grants R01AI136538 and R01AI121090 and by the Burroughs Wellcome Foundation.

Author contributions
A.S. and F.Y. conceived of the study, interpreted data and wrote the manuscript; A.S. performed and analyzed all experiments, except those in Fig. 6 and Supplementary Fig. 8 (performed by A.A. and E.T.C.). E.T.C. contributed to Supplementary Fig. 7, T.I.M. and M.R.E. contributed to Supplementary Fig. 3. D.P.B. contributed to Fig. 1a,b and Supplementary Fig. 1.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41590-018-0250-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to F.Y.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
Methods

Mice. To generate S100a11−/− mice, exons 2 and 3 of the S100A11 gene were targeted by two single-guide RNAs (sgRNAs) using CRISPR/Cas9 technology (Supplementary Fig. 7) at the Mouse Genome Editing Resource at the University of Rochester Medical Center. For genotyping, targeted alleles were detected by PCR amplification with a set of primers, S100A11 wtF (5′-GAGGCGACTGGCGCTCTTGCAGGCACT-3′) and S100A11 wtR (5′-CTCTGGTACCGGCTTCATGTCAC-3′), resulting in PCR products of 2.7 kb for wild-type mice and 557 bp for the S100A11 knockout allele, owing to deletion of exons 2 and 3. S100A11 knockout mice were generated on a C57BL/6J background. S100A11 knockout mice of both sexes were born in Mendelian ratios and gained weight normally throughout development. Sex- and age-matched 6- to 12-week-old mice were used for experiments. All mice were maintained in the pathogen-free animal facility at the University of Rochester School of Medicine and Dentistry. All animal experimentation was conducted in accordance with the guidelines of the University Committee on Animal Resources (UCAR) and the Institutional Animal Care and Use Committee (IACUC). All animal experimentation in this study was reviewed and approved by the University of Rochester UCAR and IACUC.

Human blood samples. PBMCs were isolated by Ficoll–plaque density-gradient centrifugation from heparinized peripheral blood of 20 healthy volunteers. All donors consented to sample donation consistent with the University of Rochester Institutional Review Board’s recommendations. Both freshly purified PBMCs and those cryopreserved in liquid nitrogen were used for the study. Cryopreserved PBMCs were thawed in warm complete media (RPMI 1640, 10% FBS, penicillin-streptomycin, L-glutamine) in preparation for in vitro stimulation. All assays were performed in triplicate.

Human primary monocytes were isolated from PBMCs using CD14 MACS microbeads (Miltenyi) or purified as CD14+ cells from freshly prepared PBMCs.

Cell lines. THP-1 cells (TIB-202) and Hs27 fibroblasts (RL-1634) were purchased from American Type Culture Collection. THP-1 cells were infected with RH88 or Pru-infected HS27 cells cultured in complete medium (RPMI 1640, 10% FBS, penicillin-streptomycin, and L-glutamine). The cell culture supernatants were first filtered through a 0.22 μm filter and then separated by a HiPreQ chromatography column by applying a linear gradient of 0–1 M NaCl in 20 mM Tris, pH 8.0. The collected fractions were analyzed on 12% SDS–polyacrylamide gel electrophoresis (SDS–PAGE) gels (Bio-Rad) and tested for their ability to trigger CCL2 expression in THP-1 cells. The active fractions A1–A4 were pooled and subjected to cation-exchange chromatography on a Mono S column. The active fast protein liquid chromatography fractions were analyzed by SDS–PAGE and subjected to mass spectrometry–mass spectrometry analysis. The identified S100A11 peptides are shown in Supplementary Fig. 2a.

For protein expression, the synthetic S100A11 gene (NM_005620) was cloned into pCMV6-XL4 (Novagen) using its NdeI and XhoI restriction sites and then expressed in E. coli strain BL21(DE3) pLYsS cells. The resulting recombinant protein was purified to homogeneity (as judged by SDS–PAGE) by a combination of anion-exchange and gel filtration chromatography, and the purity was confirmed by Coomassie blue staining. The identified S100A11 peptides are shown in Supplementary Fig. 2a.

Quantitative real-time PCR. Total RNA was isolated from experimental cells using a PureLink RNA mini kit (Life Technologies) and subjected to first-strand cDNA synthesis using an iScript Reverse Transcription Supermix for quantitative rtPCR (Bio-Rad). Real-time PCR was performed using Supermix SYBR Green Supermix (Bio-Rad). The relative expression of each sample was determined by the 2−ΔΔCT method

Toxoplasma gondii infections. For in vitro experiments, PBMCs, CD14+ monocytes, THP-1 or Hs27 cells were infected with RH88 and Pru T. gondii strains at a multiplicity of infection (MOI) of 3:1 for the indicated times. In several experiments, either a pan-caspase inhibitor or a caspase-1 inhibitor was added on day 1 after infection. We observed no effect of the inhibitors on the growth of T. gondii in vitro in Hs27 cells by plaque assay.

In vivo experiments, age- and sex-matched 6- to 12-week-old wild-type and S100a11−/− mice were infected intraperitoneally with 20 T. gondii brain cysts (ME49 strain) for the duration of the experiments. The severity of intestinal pathology was analyzed based on the following additive scoring system (1–5). For crypt and villi integrity: 0, normal; 1, irregular villi and crypts; 2, mildly inflamed; 3, severe villi and crypt loss; 4, complete villi and crypt loss with an intact epithelial cell layer; and 5, complete loss of villi and crypts and surface epithelium. For infiltration of inflammatory cells into the mucosa: 0, normal; 1, mild; 2, moderate; and 3, severe. For infiltration of the submucosa: 0, normal; 1, mild; 2, moderate; and 3, severe. For infiltration of the muscularis: 0, normal; 1, mild; 2, moderate; and 3, severe. These scores were added, resulting in a total scoring range of 0–14.

Cytokine measurements. Cytokines CCL2, IL-12p40 and IFN-γ were measured with ELISA kits (eBioscience) and by Milliplex MAP Human Cytokine/Chemokine Magnetic Bead Panel (IL-12p70, IL-6, IL-1β, IL-8/CXCL1, MCP-1/CCL2, MIP-1α/CCL3, MDC/CCL22 and MCP3/CCL7).

S100A11 isolation, purification and in vitro assays. Cell culture supernatants were collected from RH88- and Pru-infected Hs27 cells cultured in complete medium (RPMI 1640, 10% FBS, penicillin-streptomycin and L-glutamine). The cell culture supernatants were first filtered through a 0.22 μm filter and then separated by a HiPreQ chromatography column by applying a linear gradient of 0–1 M NaCl in 20 mM Tris, pH 8.0. The collected fractions were analyzed on 12% SDS–polyacrylamide gel electrophoresis (SDS–PAGE) gels (Bio-Rad) and tested for their ability to trigger CCL2 expression in THP-1 cells. The active fractions A1–A4 were pooled and subjected to cation-exchange chromatography on a Mono S column. The active fast protein liquid chromatography fractions were analyzed by SDS–PAGE and subjected to mass spectrometry–mass spectrometry analysis. The identified S100A11 peptides are shown in Supplementary Fig. 2a.

For protein expression, the synthetic S100A11 gene (NM_005620) was cloned into pCMV6-XL4 (Novagen) using its NdeI and XhoI restriction sites and then expressed in E. coli strain BL21(DE3) pLYsS cells. The resulting recombinant protein was purified to homogeneity (as judged by SDS–PAGE) by a combination of anion-exchange and gel filtration chromatography, and the purity was confirmed by Coomassie blue staining. The identified S100A11 peptides are shown in Supplementary Fig. 2a.

Quantitative real-time PCR. Total RNA was isolated from experimental cells using a PureLink RNA mini kit (Life Technologies) and subjected to first-strand cDNA synthesis using an iScript Reverse Transcription Supermix for quantitative rtPCR (Bio-Rad). Real-time PCR was performed using Supermix SYBR Green Supermix (Bio-Rad). The relative expression of each sample was determined by the 2−ΔΔCT method

RNA-seq data and signaling pathway analyses. Five randomly chosen human PBMC samples (out of n = 20) were prepared for RNA-seq experiments. For each sample, PBMCs were divided into three aliquots (0.5 × 10^6 cells per sample) and were (1) left untreated, (2) infected with T. gondii Pru strain at MOI of 3, or (3) infected with T. gondii RH strain at MOI of 3. After 12 h after infection, 15 samples were subjected to RNA sequencing. Total RNA was extracted and used for library preparation according to the manufacturer’s protocols. Samples were sequenced in triplicate on the Illumina HiSeq 1000 with 20 × 100 bp single-end read per sample. Raw reads were analyzed within the Galaxy platform, trimmed for adapter sequence, masked for low-complexity or low-quality sequences, then mapped to the hg38 assembly of the whole human genome using TopHat v2.1.0 (default parameters) and analyzed by Cufflinks v2.2.1 (default parameters) for differential gene expression between T. gondii–infected and uninfected samples. The results of the RNA-seq data analysis pipeline were uploaded to Ingenuity Pathway Analysis software to identify signaling pathways shown in Supplementary Figs. 4 and 5. The qheatmap R package was used to build heatmaps where the genes were filtered to...
satisfy the following conditions: (1) for at least one sample, expression values in units of fragments per kilobase of transcript per million mapped reads were >200 in one or more conditions (infected or uninfected), and (2) fold change ≥ 4. Only genes with logarithmic fold differences >2 were used for heatmaps. Accession code: RNA-seq data, GSE119835.

Statistical analysis. All data were analyzed with Prism (version 6; Graphpad). These data were considered statistically significant for P < 0.05 by two-tailed t-test.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The materials, data, and any associated protocols that support the findings of this study are available from the authors upon reasonable request. All RNA-seq data generated in this study have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE119835.

References
48. Burger, E. et al. Loss of Paneth cell autophagy causes acute susceptibility to *Toxoplasma gondii*-mediated inflammation. *Cell Host Microbe* **23**, 177–190.e4 (2018).
49. Lopez-Yglesias, A. H., Burger, E., Araujo, A., Martin, A. T. & Yarovinsky, F. T-bet-independent Th1 response induces intestinal immunopathology during *Toxoplasma gondii* infection. *Mucosal Immunol.* **11**, 921–931 (2018).
50. Raetz, M. et al. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells. *Nat. Immunol.* **14**, 136–142 (2013).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- [] n/a
- [x] Confirmed
- [] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [] An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [] The statistical test(s) used AND whether they are one- or two-sided
- [x] Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [] A description of all covariates tested
- [] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [] A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.
- [] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
- [] Clearly defined error bars
- [] State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection

| FPLC: UNICORN 7 (GE Healthcare Life Sciences). Flow cytometry: BD FACS Diva 8.0.1 |

Data analysis

- RNA Seq: Reads were trimmed by a Trimmomatic program after quality control checks on raw sequence data by FastQC. The alignment of reads to the human genome was performed by the TopHat program followed by Cuffdiff execution to find significant changes in transcript expression between treated and untreated samples. The results of the RNAseq data analysis pipeline were uploaded to IPA software to identify signaling pathways.
- Graphs and statistical analysis: Graph Prism
- Flow cytometry: BD FACS Diva 8.0.1, FlowJo v.10

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The materials, data, and any associated protocols that support the findings of this study are available from the corresponding authors upon request.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size	No sample size calculation was performed. The exact n values used to calculate the statistics are provided and a reasonable sample size was chosen to ensure adequate reproducibility of results.
Data exclusions	No data were excluded from the analysis. For RNAseq data, only genes with the expression values in FPKM>200 were shown. We did not show genes with the lower FPLM values due to their low levels of expression, but all data will be available and are not excluded.
Replication	Experiments were replicated several times (3-5) with reproducible results, as indicated in each figure legend.
Randomization	Figure 1: Random anonymous donors (n=5)
Figure 2: Not applicable, we tested the defined chemical compounds	
Figure 3: Not applicable, we tested the defined biochemical fractions	
Figure 4: Not applicable, we tested the defined chemical compounds	
Figure 5: Not applicable.	
Figure 6: Age- and sex-matched mice were separated as WT and S100a11 KO. Mice were co-housed to minimize the microbiota effects.	
Blinding	Figures 1-5: not blinded
Figure 6: The investigator was blinded (the genotypes were not revealed prior T. gondii infection). |

Reporting for specific materials, systems and methods

Materials & experimental systems	Methods		
n/a	Involved in the study	Involved in the study	
			n/a
			ChIP-seq
			Flow cytometry
			MRI-based neuroimaging

Antibodies

Antibodies used
S100A11 Abs: generated against highly purified recombinant S100A11 protein. hCCL2 (Cat #14-7099-68, lot E05354_1635) and IL-12p40 (cat #14-7125-68, lot E05380-1635) ELISA kit antibodies were purchased from eBiosciences. anti-RAGE antibody (Cat #AF1179, lot GWZ0416081) and rh-RAGE/Fc reagent (Cat #1145-RG, lot #FAU0714061) were purchased from R&D Systems.
CD11b antibodies (clone M1/70, cat # 557872, lot 5009911) were purchased from BD Bioscience. CD45 antibodies (clone 30-F11, cat # 565967, lot 8037968) were purchased from BD Bioscience; Ly6C antibodies (clone HK1.4, cat# 45-5932-82, lot E10161-1634) were purchased from eBioscience. Ly6G antibodies (clone 1A8, cat # 17-9668-82, lot 4286053) were purchased from eBioscience (ThermoFisher).

Validation

S100A11 Abs validated for specificity against the following control proteins: A100A1, A12, A13, A4, A7, A8, A9 proteins (no reactivity).

CCL2 and IL-12p40 Abs (eBiosciences) were validated by the vendor and extensively characterized in the past by our lab.

RAGE Abs: these Abs blocked RAGE-induced activation caused by a previously described unrelated RAGE-ligand (HMGB1)

All the flow cytometry antibodies used are from commercial sources and have been validated by the vendors. Validation data are available on the manufacturer’s website.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

THP-1 cells (TIB-202) and Hs27 fibroblasts (RL-1634) were purchased from ATCC.

Authentication

THP-1 and Hs27 cells were authenticated by morphology.

Mycoplasma contamination

THP-1 cells (TIB-202) and Hs27 fibroblasts (RL-1634) were routinely tested for mycoplasma (every 4 weeks). All results were negative.

Commonly misidentified lines

No misidentified cells were involved in the experiments.

Palaeontology

Specimen provenance

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information).

Specimen deposition

Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

All mice used for experiments were on a C57BL/6j genetic background and 6-12 weeks-old.

To generate S100a11-/- mice, exons 2 and 3 of the S100a11 gene were targeted by two sgRNAs using CRISPR–Cas9 technology (Supplementary Fig. 7) at the Mouse Genome Editing (MGE) Resource at the University of Rochester Medical Center. Genotyping of S100a11-/- mice was performed using primers S100a11 wtF (5’-gaggcactgcgctcctctgcacact-3’) and S100a11 wtR (5’-ctcctgctaccagcttccatgtcac-3’) that result in PCR products of 2.7 kb for WT mice and 557 bp for the S100a11 KO allele, as a result of deletion of exons 2 and 3.

C57BL/6 mice were initially purchased from the Jackson Labs and were bred at the University of Rochester.

Wild animals

The study did not involve wild animals

Field-collected samples

The study did not involve samples collected from the field.
Flow Cytometry

Plots

Confirm that:
- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Isolation of lamina propria cells was performed as follows. The small intestine was removed on day 7 post infection and carefully cleaned of the mesentery and Peyer patches. The intestine was then opened longitudinally, washed of fecal contents, cut into smaller sections and subjected to 2 sequential incubations in PBS with 5 mM EDTA and 1mM DTT at 37°C with agitation to remove epithelial cells. The solution was discarded between incubation steps and replaced. The remaining tissue was agitated in PBS and then filtered through a 100-μm strainer. The tissue was then incubated for 30 min with gentle agitation in 0.4 mg/ml of Collagenase D and 50 mg/ml of DNase I at 37 °C. The samples were then washed through a strainer (100 μm).
Peritoneal exudate cells were collected on day 5 post infection.

Instrument
BD LSRII

Software
BD FACS Diva 8.0.1 software was used for data collection and FlowJo v.10 was used for data analysis.

Cell population abundance
Post-sort cells were analyzed on BD LSRII and the purity of CD14+ cells was at least 98.5%

Gating strategy
Among live, single, CD45+ cells,
- Neutrophils were gated as: CD11b+Ly6G+Ly6C-
- Monocytes were gated as CD11b+Ly6C+Ly6G-

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.