Molecular phylogenomics of the tribe Shoreeae (Dipterocarpaceae) using whole plastid genomes

Jacqueline Heckenhauer1,2,*, Ovidiu Paun1, Mark W. Chase3,4, Peter S. Ashton5, A.S. Kamariah6 and Rosabelle Samuel1

1University of Vienna, Department of Botany and Biodiversity Research, Rennweg 14, 1030 Vienna, Austria, 2Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany, 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK, 4Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102 Australia, 5Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford St, Cambridge, MA 02138, USA and 6University of Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Tunghku Link Road, Gadong 1410, Brunei Darussalam

* For correspondence. E-mail jacqueline.heckenhauer@senckenberg.de

INTRODUCTION

Tribe Shoreeae of subfamily Dipterocarpoideae (Dipterocarpaceae, Malvales) is distributed in Southeast Asia, with its greatest diversity on Borneo (Ashton, 1988). Members of this ecologically important tribe often dominate the canopy of lowland forests. In addition to being major sources of commercial hard-wood (Ashton, 2004), several species are valuable for non-timber products, such as their resins, nuts (butter fats) and tannins (Shiva wood (Ashton, 2004), several species are valuable for non-timber forests. In addition to being major sources of commercial hardwood (Ashton, 2004), several species are valuable for non-timber products, such as their resins, nuts (butter fats) and tannins (Shiva wood (Ashton, 2004), several species are valuable for non-timber products, such as their resins, nuts (butter fats) and tannins (Shiva wood (Ashton, 2004), several species are valuable for non-timber products, such as their resins, nuts (butter fats) and tannins (Shiva wood (Ashton, 2004)

© The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
subtribe Shoreinae, and *Doona* Thwaites, *Pentacme* (DC.) P.S. Ashton and *Anthoshorea* Pierre (= white meranti) in subtribe Anthoshoreinae. Ashton (1982) maintained a single genus *Shorea sensu lato* (s.l.) solely based on sepal length in fruits. Mainly based on andrococemium, but also considering bark and wood anatomy, he recognized infrageneric taxa, i.e. 11 sections and eight subsections (Table 1).

Previous molecular phylogenetic studies using only a few plastid markers (e.g. Gamage et al., 2006; Heckenhauer et al., 2017) or the nuclear PgiC gene (Kamiya et al., 2005) indicated that *Shorea* groups *Anthoshorea* and *Doona* are more closely related to *Hopea* and *Neobalanocarpus* than to *Shorea* groups *Rubroshorea, Richetta* and *Shorea* (selangan batu/balau). The last form a clade with *Parashorea*, resulting in paraphyly of *Shorea sensu Ashton* (1982). The position of *Parashorea* and relationships within the genera of Shoreeae remain poorly to moderately supported in earlier studies (Gamage et al., 2006; Heckenhauer et al., 2017).

Facilitated by next-generation sequencing (NGS) techniques, genomic data are increasingly incorporated to investigate phylogenetic relationships, and restriction site-associated DNA sequencing (RADseq; Miller et al., 2007; Baird et al., 2008; Rowe et al., 2011) has been successfully used to resolve taxonomic uncertainties within Shoreeae (Heckenhauer et al., 2018). Besides RADseq, sequencing whole plastomes using NGS-based genome skimming has been employed in phylogenetic studies on plant families (Straub et al., 2012). Because of its low mutation rates, high copy numbers and uniparental inheritance (in most seed plants, Birky, 1995), the gene-rich plastid genome has been widely used for inferring phylogenetic relationships among the major clades of green plants (Ruhfel et al., 2014), angiosperms (Jansen et al., 2007; Yang et al., 2014), monocots (Barret et al., 2016) and eudicots (Moore et al., 2010) as well as at the level of closely related species (e.g. Ku et al., 2013; Ma et al., 2014; Malé et al., 2014; Turner et al., 2016; Bernhardt et al., 2017; Fu et al., 2017; S. D. Zhang et al., 2017). Two complete plastid genomes have previously been assembled and annotated for *Vatica L.* of tribe Dipterocarpaceae [Vatica odorata (Griff.) Symington (Cvetkovic et al., 2016), GenBank accession no. KX966283; and *Vatica mangachapoi* Blanco (Wang et al., 2018), GenBank accession no. MH716496]. So far, no attempt has been made to use phylogenomic studies based on whole plastid genomes for the family Dipterocarpaceae.

Here, we explore with phylogenomic analyses information from 48 plastid genomes of 37 species representing four genera of Shoreeae *sensu Ashton*. We evaluate if phylogenetic inferences from plastome data are congruent to those obtained in previous studies using fewer plastid markers as well as RADseq-derived nuclear single nucleotide polymorphisms (SNPs). Our study provides genetic estimates of resources available for future research on this economically important family.

MATERIALS AND METHODS

Plant material and DNA isolation

Leaf material was collected, cleaned with a sponge of phylosphere contaminants and stored in silica gel in the tropical forests of Brunei Darussalam and Sri Lanka (Supplementary Data Table S1). We included here 48 accessions, corresponding to 37 species: *Parashorea* (two species), *Hopea* (nine species), *Shorea sensu Ashton* (25 species) and *Dryobalanops* (one species). Of the 11 sections and eight subsections in the species-rich genus *Shorea* reported by Ashton (1982), nine sections and seven subsections are included in this study. The accessions included here represent five of the six genera (*Doona, Anthoshorea, Shorea, Richetta* and *Rubroshorea*) sensu Maury (1978).

Total genomic DNA was extracted using a modified sorbitol/high-salt cetyltrimethylammonium bromide (CTAB) protocol (Barfuss et al., 2016) from approx. 40 mg of silica gel-dried tissue (Chase and Hills, 1991). The DNA content was quantified using the Qubit 3.0 Fluorometer with the dsDNA HS Assay Kit (Thermofisher).

Library preparation

Two NGS libraries with 24 individuals each were prepared. Targeting an average fragment size of 350 bp, 500 ng of DNA was sheared by sonication using a Bioruptor Pico (Diagenode,
Belgium) with seven cycles of 15 s ‘on’ and 90 s ‘off’ at 6 °C. Aiming for an even coverage across the length of the plastomes, library preparation was performed using the TruSeq DNA PCR-Free Low Throughput Library Prep Kit (Illumina, USA), including indexed adapters from the TruSeq DNA CD Indexes (Illumina) according to the manufacturer’s protocol. Individual libraries were pooled, targeting an equal representation of each individual in the final libraries. Both libraries were sequenced on an Illumina HiSeq 2500 at VBCF Vienna NGS Unit (http://vbcf.ac.at/ngs/) as 125 bp paired-end reads. All generated genomic data are deposited as a BioProject at the NCBI Sequence Read Archive (BioProject ID PRJNA419625, SRA Study ID SRP142704; SRA accessions for each sample are given in Supplementary Data Table S1).

Plastid genome assembly and annotation

Demultiplexing of the raw data was performed based on index reads, allowing for a maximum of one mismatch using the Picard BamIndexDecoder (included in the Picard Illumina2bam package; available online at: https://github.com/wtsi-npg/illumina2bam). The number and quality of raw reads obtained from each individual were evaluated with FASTQC version 0.11.5 (Andrews, 2010). The plastid genome of *Hopea dryobalanoides* Miq. (accession: 12-4150) was assembled with the assembly pipeline FAST-PLAST version 1.2.7 (available online at: https://github.com/mrmmckain/Fast-Plast) using Malvales in the -bowtie_index option. The assembled plastome was validated by mapping back the reads of the same accession using the CLC GENOMICS WORKBENCH version 8.0 (Qiagen, Germany) with default settings. An even coverage was expected as PCR-free kits have been used for library preparation (see above). However, the junctions between the single copy regions and the inverted repeats presented drops in coverage. Based on the mappings, the assembly was manually corrected, and mapping was repeated until coverage remained uniform across the entire plastid genome. We attempted to assemble the plastid genomes of several individuals with the same pipeline.

Plastome annotations of representative species, i.e. *Hopea dryobalanoides* (GenBank accession no. MH791329), *Parashorea tomentella* (GenBank accession no. MH791330), *Shorea pachyphylla* (GenBank accession no. MH841940) and *Shorea zeylanica* (GenBank accession no. MH841939), were performed online using GeSeq (Tillich et al., 2017) under activation of the ‘MPI-MP chloroplast reference set’ which includes annotation of ‘CDS’ (protein-coding regions) and rRNAs. ARAGORN version 1.2.38 (Laslett and Canback, 2004) was used to annotate tRNAs. GenBank files of the order Malvales were then selected from the ‘Server Reference’ menu. Resulting sequence features, the sequence itself and its six-frame translation were visualized with the annotation tool ARTEMIS (Rutherford et al., 2000) and annotations were edited manually. Circular plastid genome maps (Fig. 1) were visualized with OGDRAW version 1.2 (Lohse et al., 2007).

For some individuals, the number of reads appeared insufficient for a complete *de novo* assembly of the whole plastid genome, and the assemblies obtained were fragmented. Therefore, we developed a mapping-based pipeline to extract whole plastid genome sequence information across all accessions. First, the demultiplexed reads were quality-filtered using the program TRIMMOMATIC v.0.33 (Bolger et al., 2014). Illumina adapter sequences were removed with the ILLUMINACLIP option allowing for a maximum of two mismatches, a palindrome clip threshold of 30 and a ten simple clip threshold. Simultaneously, bases with a quality lower than 13 were removed from the beginning and end of reads. The reads were also scanned with a four base wide sliding window, removing them when average quality per base dropped below 15. Finally, reads shorter than 36 bases long were excluded.

A BWA (Li and Durbin, 2010) index for the *de novo* assembled plastome of *H. dryobalanoides* (accession 12-4150) was created using the linear-time (ls) algorithm for constructing the suffix array recommended for small genomes. After generating a fasta file index using the faidx option of SAMtools v. 1.4 (Li et al., 2009), a sequence dictionary for the reference was built using Picard tools v.2.9.0 (Wysoker et al., 2013). The filtered reads of each accession were then mapped to the reference with BWA-MEM. The option -M was applied to flag as secondary shorter split hits. The resulting aligned SAM files were sorted by co-ordinate, and read groups were added to resulting bam files using Picard tools. Realignments around indels were performed with the Genome Analysis Toolkit (GATK; McKenna et al., 2010) version 3.7.0, thinning data to a maximum of 100 000 reads per interval. Calling of SNPs and indels was conducted via local *de novo* assembly of haplotypes using the GATK HaplotypeCaller in the ERC GVCF mode with a sample ploidy of 1 without application of a specialized PCR error model. Joint genotyping was performed on the resulting gVCF files with the GenotypeGVCFs tool of GATK. To avoid complications related to aligning indel-rich regions, and as indels themselves are usually not used in phylogenetic reconstruction (e.g. Turner et al., 2016; M. Y. Zhang et al., 2017; Lu et al., 2018; Tosso et al., 2018), only substitution information has been retained in the final vcf file using the -selectType SNP option in GATK following Balao et al. (2017). Finally, the FastaAlternateReferenceMaker tool in GATK was used to replace the SNP information in the reference, resulting in a fasta file for a synthetic sequence of the plastid genome of each accession. The fasta files of each individual were further concatenated into a single data matrix, which resulted in a fully aligned fasta file.

Alignment and phylogenetic analyses

Based on a previous study (Heckenhauer et al., 2017), the plastid genome sequence of *V. odorata* of the sister tribe Dipterocarpeae was used as outgroup. The sequence was downloaded from GenBank (accession no. KX966283). Because the single-copy region (SSC) of *V. odorata* KX966283 was found to be a reverse complement of that in the species included in our study and in most other angiosperms (see, for example, Palmer, 1983; Liu et al., 2013; Cai et al., 2015, Lu et al., 2018), it was complemented and inverted using Geneious version 8.0.5 (Kearse et al., 2012), before aligning it to the ingroup sequences with default settings in MAFFT version 7.22 (available online at: http://mafft.cbrc.jp/alignment/server/). The alignment
was inspected in BIOEDIT version 7.0.4 (Hall, 1999). For the phylogenetic analyses, only one copy of the inverted repeat was included in the final alignment, leading to a matrix of 130 649 characters.

A maximum parsimony (MP) analysis was performed in PAUP version 4.0a149 (Swofford, 2016) via heuristic search with stepwise addition, 1000 replicates of random addition sequence and tree bisection–reconnection (TBR) branch swapping. Clade support was estimated by bootstrapping (Felsenstein, 1985) with 1000 replicates of heuristic search (as above).

A maximum likelihood (ML) analysis was conducted using RAxML version 8.2.4 (Stamatakis, 2014). Rapid bootstrap analyses (1000 replicates) with a subsequent ML search for the best scoring tree were conducted in a single program run. A fast inference under the general time-reversible (GTR) model of nucleotide substitution with optimization of substitution rates and GAMMA model of rate heterogeneity (i.e. the GTRGAMMA model) was executed as recommended for <50 taxa. GTR rate parameters were optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

In addition, we conducted Bayesian inference (BI) using Mr. Bayes version 3.2.6 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). The most complex substitution model, general-time reversible (GTR + I + GAMMA) model with six substitution types (one for each pair of nucleotides) and gamma-distributed rate variation across sites and a proportion of invariable sites was employed. Two independent Metropolis-coupled Markov chain Monte Carlo (MCMC) analyses each with 20 million generations, sampling each 1000th generation, were run. The initial 25% of trees obtained from each MCMC run was removed as burn-in; the remaining trees of both runs were used to calculate the maximum clade credibility tree. The resulting trees were rooted with Vatica according

Fig. 1. Graphic representation of the annotated plastid genomes of selected species of tribe Shoreae.
to earlier results (Heckenhauer et al., 2017, 2018) and visualized with FigTree version 1.4 (available online at: http://tree.bio.ed.ac.uk/software/figtree/).

A phylogenetic network based on already available nuclear RADseq data (Heckenhauer et al. 2018) was produced in SPLITSTREE4.10 (Huson and Bryant, 2006) to detect patterns of reticulation caused by hybridization. Splits trees were drawn using the uncorrected p method, and only individuals comprising the present study were included.

RESULTS

The number of raw Illumina paired-end reads per individual after demultiplexing ranged from 2.2 to 24 million, with an average of 9.8 million (s.d. 4 million). However, only between 29 000 and 470 000 of these pairs of reads originated from the plastid genome (average 191 000 ± 118 000 s.d.) as indicated by mapping to the reference genome assembled in the next step.

Characteristics of the plastid genomes

A total of 119 708 reads were mapped to the reference plastid genome of Hopea dryobalanoioides (accession: 12-4150). The size of the plastid genome ranges from 150 669 bp in Shorea albida Symington ex A.V.Thomas to 152 479 bp in Dryobalanops lanceolata Burck. There were 131 genes, comprising 85 coding genes, 38 tRNA genes and eight rRNA genes (Fig. 1). In total, 114 of the 131 genes are single copy and 17 are duplicated in the inverted repeats. Specifically, all four rRNA genes, seven of the tRNA genes and six other coding genes are duplicated within the inverted repeats. The GC content averages 37%.

Phylogenetic analyses of the plastid genomes

Mapping the reads to the reference plastid genome resulted in a coverage that ranged from 20.2- to 369-fold (average 144 ± 93-fold) for each accession. Of the 130 649 characters included in the final matrix, 4979 characters were potentially parsimony informative. The MP analysis resulted in a single most parsimonious tree of 15 457 steps (results not shown), having a retention index of 0.89 and a consistency index of 0.78.

The best-scoring ML tree with bootstrap percentages (BPs) from the MP (BPMP) and ML (BPML) analyses and posterior probabilities from the BI (PP) is shown (Fig. 2A). The topologies of the trees resulting from MP, ML and BI analyses were congruent. There are two highly supported major clades in the ingroup (Fig. 2A: I and II). The first main clade (Fig. 2A: I: BPMP 100, BPML 99, PP 1.00; this order of support will be used throughout) contains Doona (1), Anthosmoria (2) and monophyletic Hopea (3). The second main clade (Fig. 2A: II: 100, 100, 1.00) has four monophyletic groups that correspond to Richetta (4), Parasoreia (5), Shorea (selangan batu/balau; 6) and Rubroshorea (7). Here, Rubroshorea is sister to Shorea (selangan batu/balau, Fig. 2A: 100, 100, 1.00) followed by Parasoreia (Fig. 2A: 100, 98, 1), and Richetta is sister to all three (Fig. 2A: 100, 100, 1.00). Regarding relationships within Hopea and Shorea, some sections of Ashton (1982) are not monophyletic (e.g. section Mutica of Rubroshorea, Fig. 2A). However, several terminal relationships between species within Richetta, Shorea/Shorea (selangan batu/balau) and Rubroshorea are weakly supported. The phylogenetic patterns obtained from a RADseq-derived SNP data set (Heckenhauer et al., 2018) show differences in topology from those of the plastid data (Fig. 2A, B), with the main incongruence being the position of Parasoreia. However, a SplitsTree phylogenetic networks based on the nuclear RADseq data from a previous study did not reveal any significant reticulation pattern (potentially caused by hybridization) involving Parasoreia (Supplementary Data Fig. S2).

DISCUSSION

Phylogenetic analyses of the plastid genomes

The plastid genomes presented in this study are the first fully sequenced plastid genomes of Shoreeae reported in the literature, providing insights into the characteristics of plastid genomes of members of this tribe. Having a size range of 150 669–152 479 bp, the genome size in Shoreeae is relatively small. Although a similar size has been reported for Vatica odorata (151 465 bp; Cvetkovic et al., 2016) and Vatica mangachlapoi (151 538 bp; Wang et al., 2018), other species in the order Malvales have slightly larger plastomes ranging from 159 039 bp in Gossypium stocksii Mast. (GenBank accession no. JF317355, Malvaceae) to 174 885 bp in Aquilaria yunnanensis S.C.Huang (Thymelaeaceae, Zhang et al., 2018). The gene content and order of the studied plastidomes are comparable with those of other members of Malvales. The GC content of 37% is consistent with those observed in other Malvales [e.g. Durio zibethinus L. (Cheon et al., 2017), Gossypium L. (Lee et al., 2006), Theobroma cacao L. (Kane et al., 2012) and V. odorata (Cvetkovic et al., 2016)].
Fig. 2. Phylogenetic trees resulting from the maximum likelihood analysis of (A) the plastome data set of the present study and (B) the SNP data set derived from RADseq in a previous study (Heckenhauer et al., 2018). (A) Bootstrap percentages (≥ 90%) from maximum parsimony and maximum likelihood analyses and posterior probabilities (BI > 0.90) are given in this order. The two major clades (I and II) according to Ashton are given: A, section Brachypterae; B, section Anthoshorea; C, section Mutica; C1, subsection Mutica; C2, subsection Auriculateae; D, section Pachycarpae; E, section Brachypterae; E1, subsection Richetiodae; E2, subsection Smithiana; F, section Rubella; G, section Ovalis; H, section Shorea; H1, subsection Barbata; H2, subsection Shorea; I, section Richetiodae; I1, subsection Richetiodae; I2, subsection Dryobalanoidae; J, section Dryobalanoidae; J1, subsection Sphaenoaccae; J2, Dryobalanoidae; K, section Hopea; subsection Hopea.
Therefore, we did not attempt to assemble either mitochondrial genomes or nuclear rDNA, but instead focused on the usefulness of complete plastid genomes to resolve phylogenetic relationships in these non-model organisms (Dipterocarpaceae) across a relatively wide taxonomic scale (tribal level).

Systematics of Dipterocarpaceae have been widely discussed, and several molecular studies, mostly of single molecular markers, have been carried out in the past (e.g. Kamiya et al., 1998; Dayanandan et al., 1999; Gamage et al., 2003, 2006).

The topologies of the phylogenetic trees obtained based on the whole plastid genomes (130 649 bp) are similar to those revealed in a previous study based on three plastid regions (5911 bp; Supplementary Data Fig. S1; Heckenhauer et al., 2017). However, analysing whole plastid genomes provided stronger support for the main clades of genera and groups of Shorea. The two monophyletic genera Hopea (Fig. 2A; 3) and Parashorea (Fig. 2A; 5) appear to be nested within the genus Shorea sensu Ashton. Thus, genus Shorea sensu Ashton is not monophyletic and is divided into five major groups. These correspond to earlier morphological classifications of Maury (1978): Anthoshorea (1), Doona (2), Richetia (4) Shorea (6) and Rubroshorea (7; Fig. 2A). Results of this study clearly show that using the whole plastid genome is useful for resolving phylogenetic relationships among the major groups within Shoreeae: Hopea, Parashorea and the five groups of Shorea sensu Ashton, Doona, Anthoshorea, Richetia, Shorea (selangan batu/balau) and Rubroshorea. The position of Parashorea had been unclear in previous investigations (Supplementary Data Fig. S1; Heckenhauer et al., 2017), but its position as sister to Rubroshorea and Shorea (selangan batu/balau) is highly supported here (Fig. 2A). Species relationships within these main clades still remain unresolved and weakly supported due to low levels of variation (Fig. 2A; in Rubroshorea, Shorea and Richetia). Similar results have been observed in Diospyros, Ebenaceae (Turner et al., 2016). Higher support and better resolution for the terminal branches were obtained in RADseq-derived phylogenetic trees (Fig. 2B; Heckenhauer et al., 2018).

In this study, we also compared phylogenetic relationships from plastome data with those obtained from nuclear RADseq-derived SNPs (Heckenhauer et al., 2018). Phylogenetic trees obtained from RADseq-derived SNP data sets not only exhibit higher support and better resolution in the terminal branches but also highlight some differences in topologies (Fig. 2A, B). The main incongruence between the two phylogenetic trees is the position of Parashorea. In the plastome trees, Parashorea is sister to Rubroshorea and Shorea (selangan batu/balau), whereas in the RADseq trees Parashorea forms a clade with Richetia. These incongruent positions of Parashorea are highly supported in phylogenetic trees obtained from both plastome and RADseq data. In a previous investigation of genetic differentiation of Indonesian Dipterocarpaceae using amplified fragment length polymorphism (AFLP) markers, Parashorea clustered together with Hopea (Cao et al., 2006). The observed discrepancy of Parashorea in the plastome and RADseq-derived tree suggests that the origin of this genus may be associated with ancient hybridization. Hybridization plays a major part in speciation and evolution of angiosperms (Stebbins, 1959; Rieseberg, 1997), and it has been reported in Dipterocarpaceae in the past (Bawa, 1998; Kamiya et al., 2011). Using the RADseq-derived SNP data set (Heckenhauer et al., 2018), we attempted to detect patterns of reticulation in Parashorea that could provide evidence of hybridization. Therefore, splits were drawn using the uncorrected p method in SPLITSTREE 4.10 (Huson and Bryant, 2006). However, there is no evidence for hybridization in the split tree (Supplementary Data Fig. S2). Another explanation for the phylogenetic incongruence in the position of Parashorea between different data sets could be incomplete lineage sorting. At this point, our results do not allow us to discuss these possible scenarios in detail since a more comprehensive taxon sampling within Parashorea would be required. It is also important to consider that plastid trees may not reflect the species tree (Rosenberg, 2002; Degnan and Rosenberg 2006). Including many independent markers from the whole genome, the RADseq-derived SNP data set (Heckenhauer et al., 2018) represents more of the history recorded in these genomes and is thus considered as a much better estimation of the species tree in tribe Shoreeae. Nevertheless, our study provides important genetic resources for further studies of Dipterocarpaceae.

Taxonomic implications

Because classifications within the tribe Shoreeae have been widely discussed, the results obtained in this study also provide important insights for morphology-based systematists. In this paragraph, we discuss the extent to which our results point towards revision of current (Ashton, 1982) and proposed (Maury, 1978) taxonomy. The following potential taxonomic revisions are supported from this investigation: first, exclude published infrageneric categories (sections and subsections) in Shorea (selangan batu/balau) and Rubroshorea since most of these are not monophyletic in the molecular studies (Heckenhauer et al., 2017, 2018). Secondly, either expand Shorea to include all of these (Shorea s.l.) or recognize Doona, Anthoshorea, Richetioides and Rubroshorea as genera, reducing Shorea (selangan batu/balau) to just Shorea sensu stricto. However, to use these molecular groupings to develop a new taxonomic scheme, diagnostic morphological or anatomical characters need to be recognized. This will be difficult due to many aspects: the single character of the number of sepals in fruit (long vs. short) used in Ashton’s circumscription of the genus Shorea is not suitable given the fact that several Shorea species exhibit only short subequal sepals. Defining adequate characters is especially challenging for Rubroshorea. Even though Symington (1943) and later authors (Maury, 1978; Ashton, 1982) recognized infragenic taxa based on characters of androecium and bark morphology, supported by anatomy, there is no single diagnostic character for Rubroshorea. It is consistently held together by its red colour wood, a character that also occurs in other taxa, e.g. Shorea guiso (Blco) Bl. of Ashton’s section and subsection Shorea. The clear and consistent distinctions on the independent diagnostic characters of androecium and bark must eventually be shown to have a genetic base. Given the economic and ecological importance of tribe Shoreeae, the molecular phylogenetic studies must now prompt a search for diagnostic characters, a necessary prerequisite for any systematic and taxonomic revision.
SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.com/aob and consist of the following. Figure S1: best scoring maximum likelihood tree obtained from six plastid DNA regions in a previous study. Figure S2: SplitsTreeNetwork (NeighborNet) based on uncorrected p distance derived from a RADseq-derived data set obtained in a previous study. Table S1: samples used in this study.

ACKNOWLEDGEMENTS

The Kuala Belalong Field Studies Center (KBFSC) and the University of Brunei Darussalam are acknowledged for supporting field work in the Temburong National Park of the Batu Apoi Forest Reserve. We thank both Brunei Heart of Borneo Secretariat and the Forest Department of Sri Lanka for granting permission to export material for research purposes. Michael H. J. Barfuss is acknowledged for help in sampling material. Alexander Athanasiadis helped setting up the first Fast-Plast assembly. This work was supported by the Austrian Science Fund (FWF [P26548-B22 to R.S.]).

LITERATURE CITED

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85: 531–553.

Angiosperm Phylogeny Group II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399–436.

Angiosperm Phylogeny Group III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121.

Angiosperm Phylogeny Group IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

Ashston PS. 1982. Dipterocarpaceae. In: Van Steenis CCGJ, ed. Flora Malesiana, series 1, Spermatophyta, vol. 9. The Hague: Nijhoff, 237–552.

Ashston PS. 2004. Dipterocarpaceae. In: Soepadmo E, Saw LG, RCK, eds. Trees of Sabah and Sarawak. Kuala Lumpur, Malaysia: Government of Malaysia, 63–388.

Ashston PS, Givnish TJ, Appanah S. 1988. Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. American Naturalist 132: 44–66.

Baird N, Etter P, Atwood T, Currey M, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3: e3376. doi:10.1371/journal.pone.003376.

Balao E, Trucchi E, Wolfe TM, et al. 2017. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Molecular Ecology 26: 3649–3662.

Barfuss MHJ, Till W, Leme EMC, et al. 2016. A taxonomic revision of Bromeliaceae subfamily. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology. Phyto-taxa 279: 1–97.

Barrett CF, Baker WJ, Comer JR, et al. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytologist 209: 855–870.

Bawa KS. 1998. Conservation of genetic resources in the Dipterocarpaceae. In: Appanah S, Turnbull JM, eds. A review of dipterocarps, taxonomy, ecology and silviculture. Bogor: Center for Forest Research Institute, 45–56.

Bernhardt N, Brassac J, Kilian B, Blattner FR. 2017. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evolutionary Biology 17: 141. doi: 10.1186/s12862-017-0989-9.

Birky CW. 1995. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proceedings of the National Academy of Sciences, USA 92: 11331–11338.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimming tool for Illumina sequence data. Bioinformatics 30: 214–2120.

Cai J, Ma PF, Li HT, Li DZ. 2015. Complete plastid genome sequencing of four Titia species (Malvaceae): a comparative analysis and phylogenetic implications. PLoS One 10: e0142705. doi: 10.1371/journal.pone.0142705.

Cao CP, Gailing O, Siregar I, Indrioko S, Frankelby R. 2006. Genetic variation at AFLPs for the Dipterocarpaceae and its relation to molecular phytogenies and taxonomic subdivisions. Journal of Plant Research 119: 553–558.

Chase MW, Hills HH. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215–220.

Cheen SW, Jo S, Kim HW, Kim YK, Sohn JY, Kim KJ. 2017. The complete plastome sequence of durian, Durio zibethinus L. (Malvaceae). Mitochondrial DNA Part B 2: 763–764.

Cvetkovic T, Hinsinger DD, Strijk JS. 2016. The first complete chloroplast sequence of a major tropical timber tree in the meranti family: Vatica odorata (Dipterocarpaceae). Mitochondrial DNA Part B 21: 52–53.

Dayanandan S, Ashton PS, Williams SM, Primack RB. 1999. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. American Journal of Botany 86: 1182–1190.

Degnan JH, Rosenberg NA. 2006. Discordance of species trees with their most likely gene trees. PLoS Genetics 2: e68. doi: 10.1371/journal.pgen.0020068.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

Fu CN, Li HT, Milne R, et al. 2017. Comparative analyses of plastid genomes from fourteen Coromales species: inferences for phylogenetic relationships and genome evolution. BMC Genomics 18: 956. doi: 10.1186/s12864-017-4319-9.

Gamage DT, de Silva MP, Yoshida A, Smitid AE, Yamazaki T. 2003. Molecular phylogeny of Sri Lankan Dipterocarpaceae in relation to other Asian Dipterocarpaceae based on chloroplast DNA sequences. Tropics 13: 79–87.

Gamage DT, de Silva MP, Inomata N, Yamazaki T, Smitid AE. 2006. Comprehensive molecular phylogeny of the subfamily Dipterocarpoideae (Dipterocarpaceae) based on chloroplast DNA sequences. Genes & Genetic Systems 81: 1–12.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Heckenhauer J, Samuel R, Ashton PS, et al. 2017. Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Botanical Journal of the Linnean Society 185: 1–26.

Heckenhauer J, Samuel R, Ashton PS, Abu Salim K, Paun O. 2018. Phytogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae (Dipterocarpaceae). Molecular Phylogenetics and Evolution 127: 1–13.

Heim F. 1892. Recherches sur les Dipterocarpacées. PhD Dissertation, Faculté des Sciences de Paris, France.

Huelsenbeck JP, Ronquist F. 2001. MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267.

Jansen RK, Cai Z, Raubeson LA, et al. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences, USA 104: 19369–19374.

Kamiya K, Harada K, Ogino K, et al. 1998. Molecular phylogeny of dip- terocarp species using nucleotide sequences of two non-coding regions in chloroplast DNA. Tropics 7: 195–207.

Kamiya K, Harada K, Tachida H, Ashton PS. 2005. Phylogeny of PyCgC gene in Shorea and its closely related genera (Dipterocarpaceae), the dominant trees in Southeast Asian tropical rain forests. American Journal of Botany 92: 775–78.

Kamiya K, Gan YY, Lum SKY, Khoo MS, Chua SC, Faizu NH. 2011. Morphological and molecular evidence of natural hybridization in Shorea (Dipterocarpaceae). Tree Genetics & Genomes 7: 297–306.
