SIns: A Novel Insertion Detection Approach Based on Soft-Clipped Reads

Chaokun Yan1, Junyi He1, Junwei Luo2*, Jianlin Wang1, Ge Zhang1 and Huimin Luo1*

1 School of Computer and Information Engineering, Henan University, Kaifeng, China, 2 College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China

As a common type of structural variation, an insertion refers to the addition of a DNA sequence into an individual genome and is usually associated with some inherited diseases. In recent years, many methods have been proposed for detecting insertions. However, the accurate calling of insertions is also a challenging task. In this study, we propose a novel insertion detection approach based on soft-clipped reads, which is called SIns. First, based on the alignments between paired reads and the reference genome, SIns extracts breakpoints from soft-clipped reads and determines insertion locations. The insert size information about paired reads is then further clustered to determine the genotype, and SIns subsequently adopts Minia to assemble the insertion sequences. Experimental results show that SIns can achieve better performance than other methods in terms of the F-score value for simulated and true datasets.

Keywords: structural variation, alignment, short read, the next generation sequencing technology, soft-clipped read

INTRODUCTION

Although single-nucleotide polymorphisms (SNPs) represent the most frequent genomic variation, it is generally acknowledged that human genomes show more differences as a consequence of structural variations (SVs) (Gusnanto et al., 2012). SVs generally refer to genome sequence changes greater than 50 bp and can be further categorized as insertions, deletions, duplications, inversions, and translocations, among others, as well as combinations of these categories (Feuk et al., 2006; Alkan et al., 2011; Baker, 2012). Some studies have shown that phenotypic changes and some diseases are caused by SVs, e.g., autism, Parkinson’s disease, and schizophrenia (Suzuki et al., 2011). Therefore, the accurate detection of SVs is of great significance for gene expression analysis and related disease research (MacConaill and Garraway, 2010). However, until a few years ago, there were no efficient methods for the detection of SVs with high precision. The development of next-generation sequencing (NGS) technology has allowed researchers to obtain a large amount of sequence data, which has improved research on SV detection (The 1000 Genomes Project Consortium, 2010; Zhang et al., 2010; Guan and Sung, 2016; Kosugi et al., 2019).

As one type of SV, an insertion refers to the addition of a DNA sequence to the genome. This sequence might be novel or could exist in the original genome, which would be equivalent to translocation or duplication. In general, insertions can be divided into two types: (i) novel insertions refer to the insertion of a sequence that cannot be found or mapped to the reference genome, and (ii) mobile element insertions or duplications constitute insertions in which the sequence comes from the original sequence. The sequence of this second type of insertion can be obtained
sequences. We conducted experiments using simulated data and abnormal reads and used Minia to recover the insertion genotype. For sequence assembly, SIns directly extracts all clipped reads and clusters the insert size to determine the breakpoints from a previous analysis of soft-clipped reads. These soft-clipped reads can provide similar information, and thus cannot yield accurate detection results for insertions with variable sizes.

Some hybrid methods have been proposed for the detection of insertions with variable sizes in recent years. For example, Pindel, as a classical method, is mainly designed for deletions and small insertions and uses PEM and SR signatures to locate the breakpoints (Ye et al., 2009). However, for large insertions over 50 bp, Pindel does not perform well and yields many false positive results. MindTheGap uses a k-mer-based method to detect the insertion site and recovers insertion sequences through an assembly of k-mers (Rizk et al., 2014). This method enables the detection of small and large insertions, but the methods find it difficult to locate a breakpoint when other polymorphisms occur near the insertion site, which leads to a high number of false negative results. As an insertion detection approach based on breakoints, BreakSeek applies a Bayesian model for the PEM and SR signatures to find the accurate position of an insertion (Zhao and Zhao, 2015). The BreakSeek method can obtain accurate breakpoint results and genotypes without assembly, but the coverage depth of the dataset has some impact on the performance. In addition, although some insertion detection methods, such as PopIns (Kehr et al., 2016) and Pamir (Kavak et al., 2017), perform well, they may require a large number of data points.

In this paper, we propose an insertion detection approach named SIns for the detection of insertions based on soft-clipped reads. In general, SIns performs the following three steps: (i) breakpoint detection, determining the location of insertions based on comprehensive information; (ii) genotyping, identifying the genotype of the insertion based on clustering results; and (iii) assembly of insertion sequences. The overall pipeline of SIns is shown (Figure 1).

Breakpoint Detection

Breakpoint detection is an important step in SIns. In this study, the breakpoints can be obtained through the following steps.

Step 1 Selection of Soft-Clipped Reads

For each soft-clipped read, SIns first obtains its clipped part, S_c, and then extracts a sequence S_l from the reference genome, which corresponds to S_c. Note that the length of S_l equals that of S_c.

Based on the Smith-Waterman algorithm, a score matrix between S_c and S_l can then be constructed to reflect their detailed matching degree. Moreover, SIns can obtain the maximum score from the matrix, which refers to the length of the longest successive sequence. To identify and screen out real soft-clipped reads, a threshold parameter c is then set to select those reads whose S_c and S_l exhibit higher similarity. This parameter c can be computed using the following equation:

$$ c = \begin{cases}
1, & \text{max score} < \text{cliplength} \times m \\
0, & \text{max score} \geq \text{cliplength} \times m
\end{cases} $$

where m represents the mappability ($m \in [0,1]$). If c equals 1, SIns selects it for the following steps; otherwise, SIns abandons it. A larger m indicates greater similarity between S_c and S_l. The default value for the parameter m is 0.5.

Step 2 Determination of Candidate Breakpoints

In our study, the soft-clipped reads were further divided into four types, namely, LL, LR, RL, and RR, which are shown in Figure 2. Taking "LL" as an example, the first L means that the left mate read is soft-clipped, and the second "L" specifies that this read is clipped on its head, whereas "RR" indicates that the right mate read is soft-clipped on its tail.

A true insertion might be related to the four types of soft-clipped reads. These soft-clipped reads can provide similar breakpoint information. In general, an insertion breakpoint is regarded strongly as true if the four types of soft-clipped reads mentioned above exist. However, it is difficult to find all types of soft-clipped reads for a true insertion, particularly if the DoC is low. In this paper, SIns defines four types of breakpoints, which are represented as [LL, LR], [LL, RL], [RL, LR], and [RL, RR]. For a breakpoint, SIns collects all related soft-clipped reads that are
kept to PSD and determines their types, and SIns then uses the following equation to determine whether a breakpoint is true:

$$J = (LL \lor RL) \land (LR \lor RR)$$

(2)

where $LL \land LR$ indicates that the PSD of a breakpoint contains LL and LR, and $LL \lor RL$ indicates that it contains LL or RL. Subsequently, SIns obtains a list of breakpoints using the above-described method. However, the method yields some false positive breakpoints, which can be due to a high GC content, sequencing error or SNPs. Therefore, even though their proportion is small, these breakpoints should be checked and filtered.

Step 3 Filtering of the Breakpoints

Through the above-described steps, SIns can obtain candidate breakpoints, which might include some false breakpoints. SIns then uses a filter method based on the insertion size to further
FIGURE 3 | For a breakpoint, SIns only consider reads aligned in the region \([p - (\mu+3\sigma), p + (\mu+3\sigma)]\), where \(p\) is the position of the breakpoint.

Yan et al. SIns

improve the precision of these breakpoints. An insertion usually causes a series of abnormal reads with an anomalous insert size distribution.

For a candidate breakpoint, SIns first finds the paired reads that span this breakpoint and OEA reads (one-end-anchored reads). Note that these reads should be aligned in the region \([p - (\mu+3\sigma), p + (\mu+3\sigma)]\), where \(p\) is the position of the breakpoint, \(\mu\) is the insert size of the read library, and \(\sigma\) is the standard deviation of \(\mu\) as shown in Figure 3. If the sum of paired reads and OEA reads is larger than \(\text{Cov}/2\), SIns treats this breakpoint as true, otherwise, the method considers the breakpoint to be false. \(\text{Cov}\) is the coverage of the read library.

Genotyping

Genotyping is a necessary step of SIns. In a polyploid, the genotype is divided into heterozygous and homozygous genotypes. Taking diploid as an example, a heterozygous variation is only included in one chromosome and not the other one contains. In contrast, homozygosity indicates that the same variation is found in both chromosomes.

Genotyping can provide great convenience for subsequent studies, and many approaches, particularly assembly-based methods, are available for genotyping; however, all the assembly-based methods usually require considerable time and memory. Here, SIns adopts a cluster-based method, which can save as much time as possible.

If an insertion occurs, it will inevitably cause a change in the insert size for paired reads around the breakpoint, such as OEA reads, and a decrease in the normal insert size. For a heterozygous insertion, the insert size is difficult to determine because the paired reads might originate from two different chromosomes. Some paired reads contain insertions, whereas others do not. We defined \(P\) (\(P_l\), \(P_r\), and \(i\)) for a paired read spanning the breakpoint, where \(P_l\) is the aligning position of the left mate read, \(P_r\) is the aligning position of the right mate read and \(i\) is the insert size value around this paired read. After obtaining \(P\) for all paired reads spanning the breakpoint, SIns applies the DBSCAN for clustering. In DBSCAN, the parameter \(\text{eps} = 50\), \(\text{min}_\text{samples} = 2\) in default, and these parameters can be adjusted. And, SIns determines a breakpoint as heterozygote if there is one cluster in the clustering result, otherwise, the breakpoint is deemed as homozygous. Two types of insert size distributions are shown in Figure 4.

Assembly Insertion Sequences

In the assembly stage, SIns extracts OEA, soft-clipped and unmapped reads for a breakpoint to recover all possible insertion sequences. After applying the Minia (Boeva et al., 2012) algorithm to these abnormal reads, SIns generate a series of sequences with overlap, which contain insertion sequences. SIns then maps these sequences to the reference genome and obtains the insertion sequence results. For example, if the CIGAR value of a candidate sequence is 132M186I130M, the algorithm finds the length of this insertion, i.e., 186 bp, and determines that the sequence content is 133–318 bases.

EXPERIMENTS AND ANALYSIS

To verify the performance of SIns, we used SURVIVOR (Jeffares et al., 2017) and ART (Huang et al., 2012) to simulate a large number of insertions on human chromosome 22 ranging in size from 50 to 1,500 bp and in coverage from 5X to 50X. The recent popular detection methods MindTheGap and BreakSeek were compared with the proposed SIns method. In addition, the real human dataset NA12878 was selected to test the performance of SIns.

Experimental Settings

Simulation Datasets and Parameter Setting

The simulation dataset was based on human chromosome 22, and the error rate of the dataset was set to 0.1%. SURVIVOR was used
to simulate the structural variation. Here, we selected insertions for the simulation, and other types of structural variations were set to 0. ART was used to simulate different read sets from the simulated chromosome 22 containing insertions. We first generated some simulations of chromosome 22 containing insertions of different sizes, namely, 50–300 bp, 301–600 bp, 601–1,000 bp, and 1,001–1,500 bp, and ART was then used to simulate read sets with different coverages, i.e., 5X, 10X, 20X, 30X, 40X, and 50X. The read length was uniformly set to 150 bp, the inset size was 500 bp, and the standard deviation was 50. Using the above parameters, we can understand the detection ability of SIns under various conditions.

Evaluation Metrics

If the difference between the detected breakpoint and the simulated breakpoint does not exceed 10 bp, we consider it a positive result, which is represented by TP; otherwise, the result is represented by FP. True breakpoints that were not detected are indicated by FN. To clearly show the detection performance of various methods, we used the metrics precision (Pr), recall (Rc) and F-score as follows:

\[
Pr = \frac{TP}{TP + FP} \times 100\% \quad (3)
\]

\[
Rc = \frac{TP}{TP + FN} \times 100\% \quad (4)
\]

The F-score was defined as the harmonic average of precision and recall:

\[
F_{score} = \frac{2Pr \times Rc}{Pr + Rc} \times 100\% \quad (5)
\]

Simulation Dataset

Results on Homozygous Dataset

We compared SIns with MindTheGap and BreakSeek, selected chromosome 22 as the reference and simulated a chromosome containing 1,051 insertions of 50–300 bp, a chromosome containing 597 insertions of 301–600 bp, a chromosome containing 597 insertions of 601–1,000 bp and a chromosome containing 790 insertions of 1,001–1,500 bp. Based on different coverages, we simulated six read sets for each simulated chromosome. The experimental results are shown in Table 1.

As shown in Table 1, the performances of SIns and BreakSeek in detecting insertions of 50–300 bp were better. Although the precision of BreakSeek was generally higher than that of SIns, its F-score was only better than that of SIns when the coverages of the read set were 40X and 50X. We also found that SIns has a higher recall, which means that SIns can detect more true insertions. SIns exhibited higher precision and recall regardless of the coverage and the length of insertions. In addition, none of the methods worked well with low DoCs. However, for the case with a low coverage (DoC ≤ 10X), SIns showed better performance than the other methods.

Results on Heterozygous Dataset

To verify the performance of SIns in detecting heterozygous insertions, we simulated read sets of chromosome 22. Simulations of chromosome 22 containing insertions of 50–300 bp were used to produce these read sets, and other simulations of chromosome 22 containing an insertion of 301–600 bp were also used to generate other read sets. We then combine the read sets from the normal chromosome 22 and the simulations of chromosome 22. Note that the read sets were simulated with different coverages: 10X, 20X, 40X, 60X, and 80X. The experimental results are shown in Table 2.

As illustrated in Table 2, the detection results obtained with MindTheGap were less effective than those obtained with homozygous detection because MindTheGap has more sequences to choose from when selecting k-mers, which will yield some conflicting issues. The performance of BreakSeek on these two datasets was not as good as the results obtained with homozygotes, and a reason for this finding might be that normal reads extracted from the reference genome, which contained many contradictory PEM and SR information, were added. When BreakSeek iteratively analyses the PEM signature, there is too much contradictory information that can be used, and thus, the result cannot show the most authentic SV information. In contrast, when SIns extracts breakpoint information at the initial stage, the method relies more on SR information and thus experiences less interference from contradictory information. At the subsequent filtering stage, due to the addition of normal...
TABLE 1 | Comparison of three tools for four ranges.

Tool	50-300	301-600	601-1,000	1,001-1,500					
Pr	Rc	F-score	Pr	Rc	F-score	Pr	Rc	F-score	
10X SIns	99.412	96.48	97.924	99.815	90.62	94.966	100	89.615	94.523
BreakSeek	99.892	88.761	93.368	100	81.50	97.519	100	93.802	96.802
MindTheGap	30.356	64.996	41.381	20.918	65.662	31.729	21.315	67.337	32.382
20X SIns	99.037	97.812	98.42	99.65	95.477	97.519	100	93.802	96.802
BreakSeek	99.603	95.433	97.473	99.27	91.122	95.022	99.259	89.782	94.283
MindTheGap	85.845	80.209	82.932	75.955	79.899	77.878	73.242	80.235	76.579
30X SIns	98.848	98.002	96.423	99.308	96.147	97.702	100	94.807	97.334
BreakSeek	99.509	96.384	97.922	99.298	94.807	97.001	99.284	92.965	96.021
MindTheGap	86.829	81.541	84.102	77.564	81.072	79.279	75.425	81.742	78.457
40X SIns	98.102	98.382	98.242	100	96.482	98.21	99.825	95.477	97.603
BreakSeek	99.708	97.431	98.556	99.123	94.64	96.829	99.295	93.405	96.735
MindTheGap	86.917	81.541	84.143	77.404	80.905	79.115	75.889	82.245	78.939
50X SIns	98.57	98.382	98.476	99.696	96.482	97.71	100	95.477	97.686
BreakSeek	99.708	97.431	98.556	98.614	95.31	96.934	99.118	94.137	96.564
MindTheGap	87.018	81.637	84.242	77.28	80.905	79.051	75.153	82.077	78.463

The bold values represent the highest value of each data set in different depth.

TABLE 2 | Result of 50–300 and 301–600 bp heterozygous insertions.

Tool	50-300	301-600	
Pr	Rc	F-score	
10X SIns	100	92.959	96.351
BreakSeek	100	33.111	49.75
MindTheGap	11.275	21.789	14.86
20X SIns	99.903	97.907	98.895
BreakSeek	99.707	64.7	78.477
MindTheGap	88.596	75.679	69.856
40X SIns	99.807	98.573	99.186
BreakSeek	98.847	65.275	78.625
MindTheGap	98.809	67.466	80.113
60X SIns	99.425	96.763	99.093
BreakSeek	98.389	63.939	77.509
MindTheGap	99.349	72.598	83.982
80X SIns	99.616	98.858	99.236
BreakSeek	98.503	62.607	76.556
MindTheGap	98.84	72.978	83.963

The bold values represent the highest value of each data set in different depth.

TABLE 3 | Results obtained with NA12878.

SIns	MindTheGap	BreakSeek
chr1	123	90
chr2	180	74
chr3	107	57
chr4	105	37
chr5	94	44
chr6	117	43
chr7	134	44
chr8	73	43
chr9	77	48
chr10	101	42
chr11	88	41
chr12	99	46
chr13	66	36
chr14	51	29
chr15	42	29
chr16	88	63
chr17	67	46
chr18	72	42
chr19	67	46
chr20	38	50
chr21	57	16
chr22	28	27

BreakSeek methods. We extracted the reads with a probability of 0.1 because the coverage was too high. The generally recognized VCF file of this sample contains 50,016 insertion reports larger than 50 bp. The corresponding vcf file can be downloaded from NCBI. We only selected the detected results in the file records as true values. The test results are shown in Table 3.

We have filtered out the SNPs and Indels of this data set. The above results show that SIns has good performance on reads, the filtering conditions were more rigorous and precise, which explains why the precision of SIns increased, whereas the recall value decreased.

Experiments Based on Real Dataset

NA12878 is the gold standard dataset commonly used in genomics. Experiments with NA12878 (ERR194147 50X1) samples were conducted using the SIns, MindTheGap and

1 http://www.ebi.ac.uk/ena
TABLE 4 | Homozygote results obtained with four ranges.

	50–300	301–600	601–1,000	1,001–1,500																
Doc	Mind	TheGap	Break	Seek	SIns	Mind	TheGap	Break	Seek	SIns	Mind	TheGap	Break	Seek	SIns	Mind	TheGap	Break	Seek	SIns
5X	176s	1868s	20s	174s	1842s	35s	178s	2130s	29s	177s	2127s	31s								
10X	217s	1868s	40s	216s	2250s	68s	227s	2156s	65s	212s	2089s	61s								
20X	243s	2177s	77s	242s	2178s	119s	242s	2054s	142s	235s	4349s	123s								
30X	264s	2249s	116s	264s	2100s	180s	257s	3723s	191s	203s	5281s	184s								
40X	284s	2415s	154s	286s	2589s	250s	282s	4948s	240s	204s	2736s	245s								
50X	304s	2577s	193s	310s	2943s	343s	310s	3207s	319s	211s	2539s	307s								

TABLE 5 | Heterozygous results obtained with four ranges.

	50–300	301–600								
Doc	Mind	TheGap	Break	Seek	SIns	Mind	TheGap	Break	Seek	SIns
10X	140s	1997s	38s	139s	2020s	19s				
20X	152s	2041s	76s	154s	1990s	47s				
40X	171s	2224s	150s	180s	2496s	84s				
60X	190s	2779s	227s	193s	2869s	122s				
80X	212s	2703s	305s	215s	3294s	204s				
100X	227s	3634s	425s	254s	3719s	259s				

most chromosomes compared with MindTheGap and BreakSeek. Although the detection number of insertions on chromosome 15 and 20 are lower than that of MindTheGap, we can find the result on the rest of chromosomes are better than other two methods. And the average of F-score on all 22 chromosomes is 5.46% for SIns. MindTheGap is 2.42%, and BreakSeek is 2.85%. The average of F-score shows the same conclusion.

Running Time Comparison

Here we list the time comparison results of homozygote and heterozygous experiments.

Although clustering is useful in the SIns process, it does not require as many iterations as in BreakSeek, MindTheGap and other methods; thus, SIns exhibits a relatively obvious advantage in terms of running time. As shown in Tables 4, 5, all the methods were run in the same machine and a single thread by default. As a result, SIns exhibited better performance than the other two methods in most cases. The main time-consuming step of SIns is the third step: the reads used for assembly are extracted from the original read collection, which is the most work-intensive step. If the assembly is not considered and the method aims to just detect breakpoints and judge genotypes, SIns can complete the task within a short time.

DISCUSSION

In this article, we propose an insertion detection method named SIns based on the comprehensive processing of soft-clipped read information. SIns can provide more precise detection of breakpoints and can perform relatively accurate genotyping. In addition, SIns uses the Minia algorithm for assembly of the insertion sequence, and the successfully assembled sequence is then filtered and tailored according to the breakpoint information. After these steps, the complete insertion sequence is provided.

Most of the existing methods show effectiveness in detecting small insertions but show poor performance in cases of low coverage. These methods usually are difficult to detect all types of SVs of all sizes. SIns focuses on the detection of insertions of different sizes. We tested the detection performance of SIns using various simulated datasets and compared it with MindTheGap and BreakSeek. In most cases, the performance of SIns was better than those of the other two methods. Comparing with the other two methods, SIns performs well both on low and high coverage data sets and different size insertions. The experimental results using a real dataset show that SIns exhibits good detection capability.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: http://www.ebi.ac.uk/ena.

AUTHOR CONTRIBUTIONS

CY and JL conceived and designed the approach. JH performed the experiments. JW and GZ analyzed the data. JH and JL wrote the manuscript. JL and HL supervised the whole study process and revised the manuscript. All authors have read and approved the final version of manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (Nos. 61972134, 61802113, and 61802114). Science and Technology Development Plan Project of Henan Province, (Nos. 202102210173 and 212102210091). China Postdoctoral Science Foundation (No. 2020M672212). Henan Province Postdoctoral Research Project Founding.

ACKNOWLEDGMENTS

This paper is recommended by the 5th Computational Bioinformatics Conference.
REFERENCES

Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M. (2011). CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984. doi: 10.1101/gr.114876.110

Alkan, C., Coe, B. P., and Eichler, E. E. (2011). Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376. doi: 10.1038/nrg2958

Baker, M. (2012). Structural variation: the genome’s hidden architecture. Nat. Methods 9, 133–137. doi: 10.1038/nmeth.1858

Boeva, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G., et al. (2012). Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425. doi: 10.1093/bioinformatics/bts670

Chen, K., Wallasch, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., et al. (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681. doi: 10.1038/nmeth.1363

Chiang, D. Y., Getz, G., Jaffe, D. B., O’kelly, M. J., Zhao, X., Carter, S. L., et al. (2016). Structural variation detection using next-generation sequencing data. Nat. Methods 13, 670–674. doi: 10.1038/nmeth.4360

Feuk, L., Carson, A. R., and Scherer, S. W. (2006). Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97.

Guan, P., and Sung, W.-K. (2016). Structural variation detection using next-generation sequencing data: a comparative technical review. Methods 102, 36–49. doi: 10.1016/j.ymeth.2016.01.020

Gunananto, A., Wood, H. M., Pawitan, Y., Rabitts, P., and Berri, S. (2012). Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 28, 40–47. doi: 10.1093/bioinformatics/btr593

Hollgrew, M., Kuchenbecker, L., and Reinert, K. (2015). Methods for the detection and assembly of novel sequence in high-throughput sequencing data. Bioinformatics 31, 1904–1912. doi: 10.1093/bioinformatics/btv051

Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D., Alkan, C., et al. (2010). Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics 26, 1350–1357.

Huang, W., Li, L., Myers, S. R., and Marth, G. T. (2012). ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594. doi: 10.1093/bioinformatics/btr708

Jeffares, D. C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., et al. (2017). Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8:14061.

Kavak, P., Lin, Y.-W., Numanagiæ, I., Asghari, H., Güngör, T., Alkan, C., et al. (2017). Discovery and genotyping of novel sequence insertions in many sequenced individuals. Bioinformatics 33, i161–i169.

Kehr, B., Melsted, P., and Hallldórsson, B. V. (2016). Poptins: population-scale detection of novel sequence insertions. Bioinformatics 32, 961–967. doi: 10.1093/bioinformatics/btw273

Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Catyting, P., Zhang, Z., et al. (2009). PEmer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10:R23.

Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M., and Kamatani, Y. (2019). Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 20:117.

Lee, S., Hormozdiari, F., Alkan, C., and Brudno, M. (2009). MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nat. Methods 6, 473–474. doi: 10.1038/nmeth.f.256

Luo, J., Wang, J., Li, W., Zhang, Z., Wu, F.-X., Li, M., et al. (2015a). EPGA2: memory-efficient de novo assembler. Bioinformatics 31, 3988–3990.

Luo, J., Wang, J., Zhang, Z., Wu, F.-X., Li, M., and Pan, Y. (2015b). EPGA: de novo assembly using the distributions of reads and insert size. Bioinformatics 31, 825–833. doi: 10.1093/bioinformatics/btu762

MacCannal, L. E., and Garraway, L. A. (2010). Clinical implications of the cancer genome. J. Clin. Oncol. 28:5219. doi: 10.1200/jco.2009.27.4944

Rizk, G., Gouin, A., Chikhi, R., and Lemaître, C. (2014). MindTheGap: integrated detection and assembly of short and long insertions. Bioinformatics 30, 3451–3457. doi: 10.1093/bioinformatics/btu545

Sindi, S., Helman, E., Bashir, A., and Raphael, B. J. (2009). A geometric approach for classification and comparison of structural variants. Bioinformatics 25, i222–i230.

Suzuki, S., Yasuda, T., Shiraiishi, Y., Miyano, S., and Nagasaki, M. (2011). ClipCrop: a tool for detecting structural variations with single-base resolution using soft-clipping information. BMC Bioinformatics 12(Suppl 14):S7. doi: 10.1186/1471-2105-12-S14-S7

The 1000 Genomes Project Consortium (2010). A map of human genome variation from population-scale sequencing. Nature 467:1061. doi: 10.1038/nature09534

Wala, J. A., Bandopadhayay, P., Greenwald, N. F., O’Rourke, R., Sharpe, T., Stewart, C., et al. (2018). SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591. doi: 10.1101/gr.221028.117

Wang, J., Mullighan, C. G., Easton, J., Roberts, S., Healey, S. L., Ma, J., et al. (2011). CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654. doi: 10.1038/nmeth.1628

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871. doi: 10.1093/bioinformatics/btp394

Yoon, S., Xuan, Z., Makarov, V., Ye, K., and Sebat, J. (2009). Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 19, 1586–1592. doi: 10.1101/gr.092981.109

Zhang, Q., Ding, L., Larson, D. E., Koboldt, D. C., McLellan, M. D., Chen, K., et al. (2010). CMDS: a population-based method for identifying recurrent DNA copy number aberrations in cancer from high-resolution data. Bioinformatics 26, 464–469. doi: 10.1093/bioinformatics/btp708

Zhao, H., and Zhao, F. (2015). BreakSeak: a breakpoint-based algorithm for full spectral range INDEL detection. Nucleic Acids Res. 43, 6701–6713. doi: 10.1093/nar/gkv605

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yan, He, Luo, Wang, Zhang and Luo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.