Supplementary information

Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications

Yan Zhang a, Mengying Xie a, James Roscow a, Kechao Zhou b, Yinxiang Bao b, Dou Zhang b,*

Chris R. Bowen a,*

a Department of Mechanical Engineering, University of Bath, BA2 7AY, United Kingdom
b State Key Laboratory of Powder Metallurgy, Central South University, 410083, China

a. Department of Mechanical Engineering, University of Bath, BA2 7AY, UK. E-mail: C.R.Bowen@bath.ac.uk
b. State Key Laboratory of Powder Metallurgy, Central South University, 410083, China. E-mail: dzhang@csu.edu.cn
Figure S1 Compressive strengths of both parallel-connected and series-connected freeze-cast porous PZT. Data for conventional porous PZT with uniformly distributed porosity and dense PZT ceramics also shown.
Figure S2 Polarisation (P) - electric field (E) hysteresis loops of the dense PZT.
3.3 Piezoelectric and dielectric properties

Piezoelectric coefficients for the series and parallel connection can be calculated by the following equations:

For series connection by Equations S1 and S2:

\[
\begin{align*}
\frac{d_{33}}{V_{PT}^{PZT}d_{33}^{pc}\varepsilon_{33}^{pc} + V_{PC}d_{33}^{PC}\varepsilon_{33}^{PZT}} &= \frac{V_{PT}^{PZT}d_{31}^{pc}\varepsilon_{33}^{PC} + V_{PC}d_{31}^{PC}\varepsilon_{33}^{PZT}}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} \quad (S1) \\
\frac{d_{31}}{V_{PT}^{PZT}d_{31}^{pc}\varepsilon_{33}^{PC} + V_{PC}d_{31}^{PC}\varepsilon_{33}^{PZT}} &= \frac{V_{PT}^{PZT}s_{11}^{pc} + V_{PC}s_{11}^{PC}}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} \quad (S2)
\end{align*}
\]

For parallel connection by Equations S3 and S4:

\[
\begin{align*}
\frac{d_{33}}{V_{PT}^{PZT}d_{33}^{pc}\varepsilon_{33}^{PC} + V_{PC}d_{33}^{PC}\varepsilon_{33}^{PZT}} &= \frac{V_{PT}^{PZT}s_{33}^{pc} + V_{PC}s_{33}^{PC}}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} \quad (S3) \\
\frac{d_{31}}{V_{PT}^{PZT}d_{31}^{pc}\varepsilon_{33}^{PC} + V_{PC}d_{31}^{PC}\varepsilon_{33}^{PZT}} &= \frac{2V_{PT}^{PZT}V_{PC}(d_{33}^{PC} - d_{33}^{PZT})}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} + \frac{V_{PT}^{PZT}(s_{11}^{PC} + s_{12}^{PC})}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} \quad (S4)
\end{align*}
\]

3.4 Pyroelectric properties

Theoretical pyroelectric formulations for the series and parallel connections are given by Equations (S5) and (S6) respectively.

For series connection:

\[
p = \frac{V_{PT}^{PZT}d_{33}^{PC}\varepsilon_{33}^{PC} + V_{PC}d_{33}^{PC}\varepsilon_{33}^{PZT}}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} + \frac{2V_{PT}^{PZT}V_{PC}(d_{33}^{PC} - d_{33}^{PZT})}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} + \frac{V_{PT}^{PZT}(s_{11}^{PC} + s_{12}^{PC})}{V_{PT}^{PZT}\varepsilon_{33}^{PC} + V_{PC}\varepsilon_{33}^{PZT}} \quad (S5)
\]

For parallel connection:
\[p = V^{PZT} p^{PZT} + V^{pc} p^{pc} + \frac{V^{PZT} V^{pc} p^{PZT} (\alpha^{pc} - \alpha^{PZT}) (d_{33}^{PZT} - d_{33}^{pc})}{V^{PZT} s_{33}^{pc} + V^{pc} s_{33}^{PZT}} \]

(S6)

where \(\alpha \) is thermal expansion coefficient.

Figure S3 Dielectric loss of the aligned porous PZT with (A) Parallel-connected and (B) Series-connected.
B) Series-connected modes.

Table S1 Model fitting parameters of the piezoelectric coefficients of the freeze-cast porous PZT with both series and parallel connectivities.

Porosity (%)	d_{33}	d_{31}		
	Series-connected	Parallel-connected	Series-modelled	Parallel-connected
	m	n	m, n	N/A
20	6.012	0.781	m=6.012, n=0.781	-
30	6.019	0.762	m=6.019, n=0.762	-
40	6.021	0.759	m=6.021, n=0.759	-
50	6.032	0.757	m=6.032, n=0.757	-
60	6.089	0.755	m=6.089, n=0.755	-