R-spondin-1 Is a Novel β-Cell Growth Factor and Insulin Secretagogue*

Received for publication, April 5, 2010 Published, JBC Papers in Press, May 4, 2010, DOI 10.1074/jbc.M110.129874

Victor S. C. Wong‡†, Andrea Yeung‡§, William Schultz‡§, and Patricia L. Brubaker‡†‡

From the Departments of ‡‡‡Physiology and §§§Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada

R-spondin-1 (Rspo1) is an intestinal growth factor known to exert its effects through activation of the canonical Wnt (cWnt) signaling pathway and subsequent expression of cWnt target genes. We have detected Rspo1 mRNA in murine islets and the murine MIN6 and BTC β-cell lines, and Rspo1 protein in MIN6 β-cells. Rspo1 activated cWnt signaling in MIN6 β-cells by increasing nuclear β-catenin and c-myc, a cWnt target gene. Rspo1 also induced insulin mRNA expression in MIN6 cells. Analysis of MIN6 and mouse β-cell proliferation by [3H]thymidine and BrdU incorporation, respectively, revealed that Rspo1 stimulated cell growth. Incubation of MIN6 and mouse β-cells with cytokines (IL1β/TNFα/interferon-γ) significantly increased cellular apoptosis; this increase was abolished by pre-treatment with Rspo1. Rspo1 also stimulated insulin secretion in a glucose-independent fashion. We further demonstrated that the glucagon-like peptide-1 receptor agonist, exendin-4 (EX4), stimulated Rspo1 mRNA transcript levels in MIN6 cells in a glucose-, time-, dose-, and PI3-kinase-dependent fashion. This effect was not limited to this β-cell line, as similar time-dependent increases in Rspo1 were also observed in the BTC β-cell line and mouse islets in response to EX4 treatment. Together, these studies demonstrate that Rspo1 is a novel β-cell growth factor and insulin secretagogue that is regulated by EX4. These findings suggest that Rspo1 and the cWnt signaling pathway may serve as a novel target to enhance β-cell growth and function in patients with type 2 diabetes.

Type 2 diabetes mellitus (T2DM) represents a serious and growing epidemic that poses a major public health threat in the 21st century. The development of T2DM usually requires the presence of both insulin resistance and impaired β-cell function, but also involves the loss of β-cells (1). Moreover, type 1 diabetes mellitus (T1DM) is characterized by the autoimmune-mediated destruction of β-cells. Therefore, novel therapeutic approaches that enhance β-cell mass expansion, as well as β-cell function, represent an exciting arsenal against diabetes.

Wnt signaling has been demonstrated to play important roles in development as well as in the pathogenesis of a variety of diseases, including diabetes (2). Activation of this pathway requires interaction between a secreted glycoprotein, Wnt, and a seven transmembrane receptor protein, Frizzled (Frz). There are at least three distinct intracellular Wnt pathways, including, most notably, the canonical Wnt (cWnt) cascade that leads to changes in intracellular β-catenin levels and is thought to be involved in cell fate specification and proliferation. β-catenin is normally phosphorylated and targeted for proteolysis by a complex of proteins, including adenomatosis polyposis coli (APC), axin and the serine/threonine kinase glycogen synthase kinase-3 β (GSK3β) (Fig. 1A). cWnt activation of the Frz and low density lipoprotein receptor-related protein (LRP) co-receptors results in dissociation of this degradation complex, permitting entry of β-catenin into the nucleus to activate cWnt target genes in conjunction with TCF/LEF family transcription factors and, possibly, other DNA-binding partners (3). cWnt target genes have been identified in different models and these include, but are not limited to, the cell-cycling genes, c-myc, and cyclin D1.

Interestingly, mice that lack the gene encoding LRP5 show impaired glucose tolerance because of perturbed glucose-stimulated insulin secretion (GSIS) (4). Furthermore, adipocyte-secreted Wnts have been shown to stimulate insulin secretion and glucokinase gene transcription in INS1 cells in vitro through the activation of cWnt signaling (5). In contrast, transgenic mice that overexpress a dominant-negative form of mouse Frz8 under the lpf-1/Pdx-1 promoter are normoglycemic and display normal GSIS (6). However, the β-cells of these mice produce four times more and secrete twice as much insulin as those of wild-type littermates, suggesting the presence of compensatory mechanisms to achieve and maintain normoglycemia (6). Finally, Rulifson et al. (7) demonstrated that conditional pancreatic β-cell specific expression of degradation-resistant β-catenin leads to β-cell expansion, increased insulin production and serum levels, and enhanced glucose handling. This observation is further strengthened by a recent study from Liu and Habener showing that exendin-4 (EX4), a glucagon-like peptide-1 (GLP-1) receptor agonist, stimulates β-cell proliferation via activation of the cWnt signaling pathway (8).

The roof plate-specific spondin (R-spondin, Rspo) protein family consists of four structurally related members (Rspo1–4), with conserved cysteine-rich furin-like and thrombospondin domains. Several lines of evidence indicate that Rspo family members...
members function as Frz and/or LRP receptor ligands in vitro: 1) Rspo is a secreted protein (9); 2) unlike Wnt ligands that form a ternary complex with Frz and LRP receptors, Rspo proteins failed to form a ternary complex but can nonetheless bind to both receptors (10); 3) there is a positive modulation of Wnt ligand activity by Rspo via direct interaction between the two ligands (11); and 4) Rspo prevents LRP6 internalization (12). Furthermore, transgenic mice expressing human Rspo1 exhibit a profound increase in proliferation of intestinal crypt epithelial cells, which correlates with the activation of β-catenin (9). Adenoviral-mediated transfection of each isoform of Rspo into mice also induces gastrointestinal proliferation in association with β-catenin activation (13). Unexpectedly, although expressed at high levels in the gut, Rspo1 has also been detected in human pancreatic islets by immunohistochemistry (9). However, no studies to-date have examined the role of Rspo1 in β-cell physiology. Therefore, in the present study, we have determined the role of Rspo1 in the mature pancreatic β-cell, through analysis of the effects of Rspo1 on β-cell proliferation, apoptosis and insulin secretion, as well as through analysis of the effects of known β-cell regulatory factors (i.e. glucose and GLP-1) on Rspo1 expression.

EXPERIMENTAL PROCEDURES

**Cell Culture—MIN6 β-cells (mouse insulinoma cell line, a kind gift from Drs. J. Miyazaki, University of Tokyo and D. F. Steiner, University of Chicago) were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) containing 25 mM glucose and supplemented with 2 mM l-glutamine, 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 units/ml), streptomycin (100 μg/ml), and 71 μM 2-mercaptoethanol in humidified 5% CO2, 95% air at 37 °C. The βTC6 β-cell line was maintained in DMEM containing 25 mM glucose, 2 mM l-glutamine, 10% heat-inactivated FBS, penicillin (100 units/ml), and streptomycin (100 μg/ml).

Isolation and Culture of Intact and Dispersed Mouse Islets— Islets were isolated from 20–30 g of CD1 mice (Charles River, St. Constant, Quebec, Canada) by collagenase digestion, as previously described (15) and were plated on 35-mm Petri dishes (for Live-Cell Analyses, ibidi, Ingersoll, Ontario, Canada). Cells were then cultured overnight.

RNA Isolation— Animal tissues or cells grown to ~80–90% confluence were lysed for preparation of RNA using either the RNeasy or RNeasy Micro Kit according to the manufacturer’s instructions (Qiagen). RNA was quantified by spectrophotometry (absorbance at 260 nm) and stored at ~80 °C until use.

RT-PCR— Equal amounts of RNA isolated from animal tissues, cells, or islets were analyzed by RT-PCR using a One-Step kit (Qiagen). RT-PCR primers and conditions have been reported previously (16–25) and are listed in Table 1. All primers were further verified using positive control samples selected based on previous reports listed in the expression data base (Roel Nusse, the Wnt home page (Stanford, Palo Alto, CA) and data not shown). Negative control reactions were performed using RNase-free water without template.

Real-time PCR— MIN6, BTC and islets were serum-starved overnight and then incubated with medium alone (containing the appropriate vehicle, PBS or DMSO), recombinant Wnt3a (641 pm, R&D Systems, Minneapolis, MN), recombinant mouse Rspo1 (34.5 pm to 34.5 nm, R&D Systems), or EX4 (1–100 nm, Bachem, Torrance, CA) with or without high glucose (25 mM) or inhibitors (LY294002 (50 μM, Sigma-Aldrich), wortmannin (100 μM, Sigma-Aldrich), H89 (10 μM, Sigma-Aldrich), SB239063 (10 μM, Calbiochem, Mississauga), PD98059 (20 μM, Sigma-Aldrich), or U0126 (1 μM, New England Biolabs, Mississauga) for the indicated amount of time, ranging from 30 min to 24 h. 5 μg of total RNA from samples were reverse-transcribed with Superscript II Reverse Transcriptase (Invitrogen). Semi-quantitative RT-PCR (qRT-PCR) was performed in a Chromo4 Continuous Fluorescence Detection unit with Opti- mon Monor 3 software (Bio-Rad) using Taqman Gene Expression Assays for specific primers (Applied Biosystems, Foster City, CA). All reactions were performed in duplicate, and control reactions were performed without RT enzyme and/or without template. The linearity of amplification of the Taqman primer-probe sets was verified over nine orders of magnitude (data not shown). Ribosomal protein 18 S RNA (no. Hs99999901_s) was used as the endogenous control for all quantitative analyses of mRNA expression and was not found to change in response to any of the experimental treatments tested (data not shown). Relative quantification of Rspo1 (2 sets of primers used, set 1 no. Mm00507076_m1 and set 2 no. Mm00507077_m1), c-myc (no. Mm00487803_m1), cyclin D1 (no. Mm00432359_m1), and insulin2 (no. Mm00731595_gH) mRNA expression was calculated using the ΔΔCt method (26).

Protein Extraction, Cell Fractionation, and Immunoblotting— Cells and islets were lysed with radioimmune precipitation assay buffer (50 mM β-glycerol phosphate, 10 mM HEPES (pH 7.4), 1% Triton X-100, 70 mM NaCl, 2 mM EGTA, 1 mM Na2VO4, 1 mM NaF, and EDTA-protease inhibitors (Roche Laboratories)). Proteins of interest were detected with primary antibodies targeted against mouse Rspo1 (goat IgG, 1:1000, R&D Systems), cleaved caspase3 (rabbit IgG, 1:1000, New England Biolabs), or pan-actin (rabbit IgG, 1:1000, Sigma-Aldrich). Immunoblotted membranes were then probed with the appropriate secondary antibodies (horseradish peroxidase (HRP)-linked anti-rabbit (1:2000, Jackson ImmunoResearch Laboratories, West Grove, PA)) and visualized by electrochemical luminescence detection system (Amersham Biosciences, Baie d’Urfe, Quebec, Canada). Membranes were subsequently treated at 50 °C for 30 min with stripping buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, and 100 mM β-mercaptoethanol) for a second round of immunoblotting.

To determine protein levels of nuclear β-catenin, MIN6 cells were grown to 80–90% confluency in 10-cm dishes and serum-starved overnight, followed by treatment with either medium alone (control), EX4 (10 nm), LiCl (20 mM), Wnt3a (641 pm), or Rspo1 (34.5 pm to 34.5 nm) for 30 min or 8 h. Lysates were then centrifuged at 2,000 × g for 5 min. The pellets were resus-
Role of R-spondin-1 in the Pancreatic β-Cell

Target	Primer sequence	Size	Annealing temperature	Cycle #	Ref.
Wnt1	AAATCCACCCCACTCTCTGCA	599	53.2	40	16
Wnt2	GCCCTTTGGGACCTTGACCTCACT	513	55.3	40	16
Wnt2b	TGATGCCTCGCCCTCCTCTGTGCT	518	30.0	40	16
Wnt3a	ACTGGATTTGACGAGATGTTG	317	57.5	40	16
Wnt4	TGTACTGACCCACTCATCTCTCAG	344	60.0	40	16
Wnt5a	TCTATAGAGGACCACCACTCAAG	224	60.0	40	16
Wnt5b	TCTATAGAGGACCACCACTCAAG	223	65.0	40	16
Wnt6	GCACCGAGTTAAGGGCTTCTGCT	377	56.2	40	16
Wnt7a	CAGGGGATGCGAGGAGCATGGA	307	56.5	40	16
Wnt7b	ACTCAATACCTCTGGAGGAGGG	385	56.2	40	16
Wnt8b	GCCGCGCCTCTCTGAGAAAA	272	62.9	40	16
Wnt9b	GAAGGTTACCATGTGTTGACTC	160	55.0	28	17
Wnt10a	AAAGCTCCCTACGAGGCCCA	179	52.3	40	16
Wnt10b	CCCTCTCCCTCTACAACAGGG	179	59.3	40	16
Wnt11	GTCTCTGCTGACCTCACAGG	103	55.5	28	17
Wnt16	ACAAGTACCTCCATCTCCAGAC	238	55.5	28	17
Frz2	CAGCCGGCTCTCTCTGTTGTGTC	387	60.0	25	18
Frz3	TCAAGGCTGAGGCTTCCTACCC	200	55.5	28	17
Frz4	GAGGCTCTGCTTCTTGTGGACCA	230	55.5	28	17
Frz5	GCTCTGCTTCTTCTTCTACTAC	123	55.5	28	17
Frz6	TGAAGAGGAGAGGATAGTGCT	160	55.5	28	17
Frz7	GCCGACCATCTTCTCTCTCAC	196	58.5	35	19
Frz8	TGCTCTGCTTCTTCTTCTTCTT	170	55.5	28	17
Frz9	GCTGACCTTCTTCTTCTTCTTCTT	250	58.5	35	20
Frz10	TCTCCTGCTTCTTCTTCTTCTT	220	55.5	28	17
LRP5	GAGTGATGGCTGCTGATGTGCT	195	58.5	35	21
LRP6	GGGTGCTGCTGCTGCTGCTGCT	242	58.5	35	21
Dsh1	GGGTGCTGCTGCTGCTGCTGCT	237	58.5	35	21
Dsh2	GCAGGCTGCTGCTGCTGCTGCT	192	58.5	35	21
Dsh3	CAGCTGCTGCTGCTGCTGCTGCT	240	58.5	35	21
APC	TCTTACCCGGATAGTTGCTGCT	132	55.5	40	16

Target	Primer sequence	Size	Annealing temperature	Cycle #	Ref.
Axin1	CAGGTTTCCCTCTCTGAGAC	535	58.5	30	22
Axin2	CCTCTGCTGCTGCTGCTGCT	657	58.5	40	23
GSRI3β	GACCAGGACGAGGCTGCTGCT	356	58.5	30	24
Rspo1	TGGACTAGGAGGCTGCTGCT	416	58.5	32	25
Rspo2	TTGGATGAGGAGGCTGCTGCT	501	58.5	32	25
Rspo3	TCTGTAGGAGGAGGCTGCTGCT	474	58.5	32	25
Rspo4	TTGGATGAGGAGGCTGCTGCT	439	58.5	32	25

TABLE 1
RT-PCR primers
Primers and conditions used to detect multiple cWnt signaling molecules as depicted in Fig. 1A. The RT-PCR primers were designed to recognize mouse sequences.

Experiments were performed in 350 μl of Buffer A (20 mM HEPES (pH 7.5), 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithiothreitol, and protease and phosphatase inhibitors (Roche Laboratories) and incubated on ice for 15 min. Cells were further lysed by addition of 10% Nonidet P-40 (to a final concentration of 1%, Sigma-Aldrich) and vortexed for 1 min. Nuclei were pelleted by centrifugation for 10 min at 1,600 g at 4 °C. The pellets were further pelleted for 10 min at 16,000 g at 4 °C. Nuclei were solubilized by addition of one pellet volume of NE buffer (20 mM Tris, pH 8.0), 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 5% glycerol, and protease and phosphatase inhibitors). One-fourth pellet volume of 5 mM NaCl and one pellet volume of neuroblastoma culture buffer were further added to the resulting pellet. Nuclei were then homogenized by sonication for 5 s and stored at −80 °C until used (27). 50 μg of nuclear protein, as measured by Bradford protein assay (Bio-Rad), was used for immunoblotting.

Proliferation Assays—MIN6 cells were grown to 80–90% confluence in 24-well plates, serum-starved overnight, and then treated with medium alone (control), EX4 (10 nM) or various doses of recombinant Rspo1 (34.5 pm to 34.5 nm) overnight in the presence of serum-free medium with 25 mM glucose. Cell proliferation was measured as described (29). Briefly, cells were incubated with 37 kBq/ml [3H]methylthymidine (specific activity: 3000 GBq/mmol, Amersham Biosciences) for 4 h. Cells were then washed twice in cold PBS and incubated for 30 min in 1 ml of 5% trichloroacetic acid at 4 °C to precipitate the DNA. The liquid layer was removed by aspiration and 500 μl of 0.1 M sodium hydroxide was added to the cells for an additional 30 min at room temperature with gentle shaking. The solubilized material was then transferred to 4 ml of scintillant, and radio- active counts were determined by liquid scintillation counting.

For measurement of murine β-cell proliferation, dispersed islet cells were treated for 48 h with medium alone (control), EX4 (10 nM) or recombinant Rspo1 (34.5 nm) in the presence of serum-free medium with 20 mM glucose and, for the last 24 h, 5'-bromo-2'-deoxyuridine (BrdU, 10 μM). Cells were washed with PBS and fixed in 10% formalin and incubated with mouse anti-BrdU (1:200, Sigma-Aldrich) and guinea pig anti-insulin antibodies. Cells were then gently washed with PBS and incubated for 30 min with appropriate secondary antibodies (Texas-Red-conjugated anti-mouse (1:200) and Cy2-conjugated antiguinea pig (1:200), Jackson ImmunoResearch Laboratories) and then mounted with mounting medium for fluorescence con-
Role of R-spondin-1 in the Pancreatic β-Cell

Expression of Rspo1 and cWnt Signaling Molecules in Murine β-Cells—Conventional RT-PCR demonstrated that Rspo1 mRNA is expressed in whole mouse pancreas as well as in isolated murine islets (Fig. 1B). Rspo1 mRNA was also detected in the murine MIN6 and βTC β-cell lines. Moreover, the Rspo3 and Rspo4, but not Rspo2, isoforms were detected in both mouse islets and MIN6 β-cells (Fig. 1B). Examination of the relative expression levels of Rspo1 by qRT-PCR using two different Rspo1 primer sets revealed that, although expression was lower in mouse islets and βTC β-cells, Rspo1 was highly expressed in the MIN6 β-cell line (Fig. 1C). Therefore, the MIN6 β-cell line was used as our main in vitro model to study Rspo1.

RT-PCR of total RNA from MIN6 β-cells was conducted to determine the expression of essential components of the cWnt pathway, including specific isoforms of Wnt ligands, Frizzled, and LRP receptors, and intracellular cWnt signaling molecules such as Axin, dishevelled, APC, and GSK3β (Fig. 1A). As shown in Fig. 1D, MIN6 β-cells expressed mRNA transcripts for the majority of Wnt ligands (except Wnt2b, Wnt5b, and Wnt9b) and Frz receptors (except Frz9 and Frz10). Both isoforms of the LRP co-receptors and all tested intracellular cWnt signaling molecules were also detected in MIN6 β-cells. Collectively, these observations imply that MIN6 β-cells are capable of a functional cWnt signaling response.

Rspo1 Stimulates cWnt Signaling and Insulin mRNA Expression in MIN6 β-Cells—Activation of cWnt signaling involves the stabilization of β-catenin and its subsequent translocation to the nucleus where it interacts with the TCF/LEF family of transcription factors to initiate transcription of cWnt target genes. To determine whether Rspo1 induces cWnt signaling in MIN6 β-cells, cells were incubated for 30 min with medium alone or Rspo1 at 34.5 pm, 345 pm, and 3.45 nm, as well as with EX4 (10 nm) and Wnt3a (641 pm), positive controls, and nuclear lysates were used to immunoblot for β-catenin. Rspo1 at the 345 pm and 3.45 nm doses, but not Wnt3a, was found to significantly enhance nuclear β-catenin levels (p < 0.05). Although EX4 did not increase nuclear β-catenin within this time frame, we found that EX4 (and LiCl, positive control) significantly enhanced nuclear β-catenin after 8 h of incubation, by 1.5-fold (p < 0.05, data not shown).

To determine if Rspo1-induced increases in nuclear β-catenin translate to transcriptional output, two cWnt target genes, c-myc and cyclin D1, were analyzed by qRT-PCR. Rspo1, at concentrations of 345 pm and 3.45 nm, significantly increased c-myc, but not cyclin D1 mRNA, after 12 h of incubation (Fig. 2B; p < 0.05—0.01), at which time, there was no effect of Wnt3a (641 pm). However, incubation with Wnt3a for 4 h stimulated a 3.5-fold increase in c-myc and a 3-fold increase in cyclin D1 mRNA levels in the MIN6 cells (p < 0.05 for both, data not shown). Together, these findings establish that Rspo1 induces cWnt signaling in MIN6 β-cells by increasing nuclear β-catenin levels, resulting in a subsequent elevation of c-myc mRNA levels, and that the timing and effects of Rspo1 on MIN6 β-cells differ from those of both EX4 and Wnt3a. Moreover, qRT-PCR revealed that, at all concentrations tested, Rspo1 also enhanced...
insulin mRNA levels after 12 h (Fig. 2D, \(p < 0.05 - 0.01 \)). Interestingly, treatment with EX4 stimulated insulin mRNA levels only after 24 h of incubation by 2-fold (\(p < 0.01 \), data not shown), indicating that Rspo1 and EX4 may regulate insulin mRNA expression via different pathways.

Rspo1 Stimulates β-Cell Proliferation—Cell proliferation assay using \([3H]\)methylthymidine incorporation revealed that EX4 and Wnt3a (positive controls) stimulated MIN6 β-cell proliferation by nearly 2-fold compared with the control group (Fig. 3A, \(p < 0.05 - 0.01 \)), consistent with prior reports (7, 8). Treatment with recombinant mouse Rspo1 at doses of 345 pm and 3.45 nM also stimulated MIN6 β-cell proliferation, reaching a maximum of 2.2-fold (\(p < 0.01 \)) of controls. The highest dose of Rspo1 tested (34.5 nM) did not stimulate further proliferation. To assess whether Rspo1 can stimulate β-cell proliferation, dispersed mouse islet cells were incubated with EX4 (10 nm, positive control) and Rspo1 (34.5 nM) for 48 h, and BrdU was added for the last 24 h. Fig. 3B shows that Rspo1 at 34.5 nM induced a 2.5-fold increase in BrdU incorporation in insulin-positive cells (\(p < 0.01 \)), whereas EX4 enhanced β-cell proliferation by 2.8-fold (\(p < 0.01 \)).

Rspo1 Prevents Cytokine-induced Apoptosis in β-Cells—In addition to the enhancement of cell growth, inhibition of apoptosis is another important variable in the β-cell growth equation. As shown in Fig. 4A, the level of activated, cleaved caspase3 was significantly increased by 7-fold (\(p < 0.05 \)) following treatment of the MIN6 cells with a mixture of cytokines for 18 h, and this increase was completely prevented by pretreatment with EX4 (\(p < 0.05 \)) or Wnt3a (641 pm), as well as by all doses of Rspo1 (\(p < 0.01 \)). The level of activated caspase3 in the presence of cytokines was not further reduced when MIN6 cells were co-treated with both Wnt3a and Rspo1 (data not shown).
A similar observation was observed in dispersed murine H9252 cells, such that treatment with cytokines for 18 h significantly increased the number of TUNEL-positive H9252 cells by 6-fold (p < 0.01); however pretreatment with either EX4 (10 nM) or Rspo1 (34.5 nM) significantly reduced cytokine-induced apoptosis (p < 0.05, Fig. 4B).

Rspo1 Stimulates β-Cell Insulin Secretion—It is well established via knock-out of LRP5 that the manipulation of cWnt signaling induces changes in β-cell function (4). MIN6 β-cells were therefore treated for 2 h with either medium alone (control), EX4 (10 nM, positive control), Wnt3a (641 pM) or Rspo1 (34.5 pm to 34.5 nM, Fig. 5A) in the presence of high (25 mM) glucose. Not only EX4, but also Wnt3a stimulated insulin secretion under these conditions (p < 0.001). Furthermore, while no changes were seen with Rspo1 at the low doses tested (34.5 and 345 pm), insulin secretion from MIN6 β-cells treated with Rspo1 at higher doses (3.45 and 34.5 nM) was increased to 2- and 5-fold of control, respectively, in a dose-dependent fashion (Fig. 5A, p < 0.001 versus control, p < 0.001 for 34.5 nm versus 3.45 nm). Rspo1-stimulated insulin secretion in MIN6 β-cells was not glucose dependent as no difference in secretion was seen between low and high glucose in the presence of Rspo1 (Fig. 5A, inset). We next evaluated whether Rspo1 can regulate insulin secretion in mouse islets. Static incubation of islets with Rspo1 at 34.5 nM for 2 h induced a significant increase in insulin secretion, and this effect was glucose-independent (Fig. 5B).

EX4 Stimulates Rspo1 Expression in a Glucose-, Dose-, Time-, and PI3-kinase-dependent Manner—Finally, because β-cell behavior is regulated by both glucose and GLP-1, we determined whether Rspo1 is affected by these factors. Rspo1 mRNA levels were therefore examined in MIN6 cells treated for various times with either medium alone (control) or incremental doses of EX4 (1–100 nM) at either low (5 mM) or high (25 mM) glucose. Treatment with high glucose increased Rspo1 mRNA levels by 2-fold, while EX4 at 10 nM for 8 h induced a further increase in Rspo1 mRNA levels, an effect that was seen only...
under high glucose conditions (Fig. 6A, p < 0.05). A time course study demonstrated that Rspo1 mRNA levels peaked at 3-fold of control levels following 8 h of EX4 (10 nM) treatment with high glucose (Fig. 6B, p < 0.05) and returned back to basal levels at 12–24 h (Fig. 6B). Consistent with the mRNA findings, changes in Rspo1 protein levels were observed in response to EX4 treatment at 12 h but not at 8 h (Fig. 6C, p < 0.01). To determine if the observed effect of EX4 on Rspo1 mRNA is restricted to the MIN6 β-cells, the murine βTC β-cell line as well as isolated mouse islets were also tested. Treatment with EX4 at 10 nM stimulated Rspo1 mRNA by 4-fold at 8 h in the βTC cells (Fig. 6D, p < 0.05). A similar induction of Rspo1 mRNA was also observed in the isolated mouse islets (Fig. 6E, p < 0.05), albeit only at an earlier (i.e. 4 h) time point (preliminary 8 h and 12 h data not shown).

To delineate the mechanism of action whereby EX4 regulates Rspo1 mRNA expression, MIN6 cells were co-treated with EX4 and various inhibitors of the known GLP-1 receptor signaling pathway. Consistent with previous observations, EX4 treatment increased Rspo1 mRNA levels by 2-fold (Fig. 6F). Co-treatment with LY294002 (a PI3-kinase inhibitor) significantly attenuated Rspo1 mRNA expression (p < 0.01 versus EX4 alone), and a similar reduction was seen in cells cotreated with wortmannin (data not shown). In contrast, H89 (a PKA inhibitor), SB203580 (p38 MAPK inhibitor), and PD98059 and U0126 (MEK inhibitors) had no effect on EX4-induced Rspo1 mRNA levels. Treatment with each of these inhibitors alone did not alter Rspo1 mRNA levels (data not shown). These findings indicate that EX4 regulates Rspo1 mRNA expression in a PI3-kinase-dependent fashion.

DISCUSSION

Previous studies have demonstrated that the cWnt signaling pathway plays a crucial role in the maintenance of β-cell behavior. Recently, Rspo1 has been established as a novel family of secreted activators of cWnt signaling (13). Although Rspo1 has been detected in human pancreas (9), the effects of Rspo1 on the β-cell have not been explored. We now provide evidence that murine islets, MIN6 and βTC β-cells express Rspo1. We further found that Rspo1 activates cWnt signaling in the MIN6 β-cells, and that Rspo1 not only enhances β-cell growth and survival but is also an insulin secretagogue.

In the present study, we have found expression of Rspo1 in multiple β-cell models. It is interesting to note that the MIN6 and βTC β-cells as well as murine islets also expressed two other isoforms of Rspo (i.e. Rspo3 and Rspo4). However, βTC β-cells also expressed Rspo2, whereby this isoform was undetectable in the other models, raising the possibility that the βTC β-cell line may not be directly comparable to murine islets in vivo. Moreover, MIN6 β-cells were demonstrated to express...
high levels of Rspo1 mRNA, as well as Rspo1 protein, therefore serving as a useful model for the present investigation. The MIN6 β-cells were further found to express functional cWnt signaling, as indicated by expression of essential cWnt signaling molecules, as well as nuclear β-catenin translocation and cWnt target gene expression (i.e. c-myc and cyclin D1) in response to LiCl and Wnt3a respectively. In line with previous reports that Rspo1 can activate cWnt signaling (9, 11–13, 31), we also found that Rspo1 increased nuclear β-catenin as well as the cWnt target gene, c-myc in MIN6 β-cells. In contrast, we did not see any changes in expression levels of cyclin D1 after 12 h of treatment with Rspo1. This observation gives rise to the possibility of a differential responsiveness of these genes to Wnt3a and Rspo1 in the MIN6 β-cells, such as reported for their responses to other growth factors/hormones (e.g. estradiol versus insulin) (32).

β-Cell growth in vivo is determined by the rates of replication and apoptosis, as well as neogenesis (33). Several lines of evidence have established cWnt signaling as a pathway that regulates β-cell growth: 1) conditional pancreatic β-cell specific expression of degradation-resistant β-catenin leads to β-cell expansion, increased insulin production and serum levels, and enhanced glucose handling (7), and 2) endogenous Wnt3a is required for basal proliferation of INS-1 cells (8). Consistent with these findings, we found an enhancement of MIN6 β-cell proliferation in response to treatment with Wnt3a. Furthermore, Rspo1 was also found to induce significant growth of both the MIN6 cells and dispersed murine β-cells in vitro. Interestingly, the highest dose of Rspo1 tested did not stimulate any further proliferation in the MIN6 β-cells, and it remains possible that this cell line became desensitized by this recombinant protein. Further studies to examine the potential regulatory mechanisms induced by Rspo1 are crucial in understanding its role in cWnt signaling. Nevertheless, these findings are consistent with studies demonstrating that Rspo1 enhances intestinal growth through a cWnt-dependent pathway (9, 13).

Our finding that Rspo1 exerts proliferative effects on the β-cell prompted the question as to whether Rspo1 also protects the MIN6 β-cells from apoptosis. The cytotoxic effects of cytokines on β-cells have been demonstrated to include apoptosis, with caspase3 as the enzyme responsible for the features of cell death in this model (34). Consistent with previous results in INS-1E β-cells (14), we found that cytokine treatment increased cleaved caspase3 activity in the MIN6 β-cells, whereas treatment with EX4 decreased cytokine-induced caspase3 levels. However, in addition to proliferation, several downstream mediators of cWnt signaling has been found to regulate apoptosis in a variety of cell types, including β-cells (35–42). The present study shows, for the first time, that Rspo1 inhibits cytokine-induced apoptosis in the MIN6 β-cells. Consistent with this observation, we also report a parallel anti-apoptotic effect of Rspo1 in dispersed mouse β-cells treated with cytokines. Moreover, we found that the anti-apoptotic
effect of Rspo1 in MIN6 β-cells is not further enhanced by the addition of the cWnt ligand, Wnt3a. However, given the possibility that one mechanism of action of Rspo1 involves enhanced Wnt ligand activity through stabilization of the Frz and LRP5/6 receptor complex (31), this observation does not preclude a requirement for endogenously secreted Wnt ligands for the actions of Rspo1. It remains possible that the MIN6 β-cells, like INS-1E β-cells (8), secrete endogenous Wnt ligands, in which case, further addition of the Wnt ligand may not be required for the anti-apoptotic effect of Rspo1.

To further establish the functional role of Rspo1 in regulating β-cell behavior, the effect of Rspo1 on insulin secretion was investigated. Although cWnt signaling molecules have been found to enhance insulin secretion from INS-1 β-cells (4, 5), the mechanism of action is unclear. Nonetheless, Fujino et al. (4) found impaired glucose-stimulated insulin secretion in LRP5 knock-out mice, in association with decreased expression of glucokinase. In this study, we demonstrated that Rspo1 enhances insulin secretion in MIN6 and dispersed mouse β-cells under acute conditions. Interestingly, Rspo1-induced insulin secretion in both MIN6 and dispersed β-cells was independent of glucose levels. Moreover, we also found that Rspo1 up-regulates insulin mRNA expression in vitro. In line with this observation, Loder et al. reported that silencing of TCF7L2, a crucial transcription factor in the cWnt signaling pathway, results in reduced levels of insulin mRNA (43). A recent study by da Silva et al. (44) has further demonstrated that the TCF7L2 gene is required for maintenance of β-cell genes regulating secretory granule fusion. It therefore remains possible that Rspo1 and the cWnt signaling pathway can also regulate insulin secretion chronically, at the level of insulin secretory granules.

Given the importance of the TCF7L2 gene as a strong predictor for the development of T2DM (45), the regulation of insulin secretion and gene expression by Rspo1 warrants more detailed investigation.
Role of R-spondin-1 in the Pancreatic β-Cell

Acknowledgments—We thank Drs. J. Miyazaki (University of Tokyo) and D. F. Steiner (University of Chicago) for the gift of MIN6 β-cells, and Angelo Izzo (University of Toronto) for technical expertise in mouse islet preparation.

REFERENCES

1. Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., and Butler, P. C. (2003) Diabetes 52, 102–110
2. Welters, H. J., and Kulkarni, R. N. (2008) Trends Endocrinol. Metab. 19, 349–355
3. Nusse, R. (2005) Cell Res. 15, 28–32
4. Fujino, T., Asaba, H., Kang, M. J., Ikeda, Y., Sone, H., Takada, S., Kim, D. H., Ioka, R. X., Ono, M., Tomoyori, H., Okubo, M., Murase, T., Kamataki, A., Yamamoto, I., Magoroi, K., Takahashi, S., Miyamoto, Y., Oishi, H., Nose, M., Okazaki, M., Usui, S., Imai, K., Yangisawa, K., Sakai, J., and Yamamoto, T. T. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 229–234
5. Schinner, S., Fujino, T., Papewalis, C., Schott, M., Woelk, A., Vidal-Puig, A., and Scherbaum, W. A. (2008) Diabetologia 51, 147–154
6. Papadopoulou, S., and Edlund, H. (2005) Diabetes 54, 2844–2851
7. Rullison, I. C., Karnik, S. K., Heiser, P. W., ten Berge, D., Chen, G., Hu, X., Taketo, M. M., Nusse, R., Hrebek, M., and Kim, S. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 6247–6252
8. Liu, Z., and Habener, J. F. (2008) J. Biol. Chem. 283, 8723–8735
9. Kim, K. A., Kakikani, M., Zhao, J., Oshima, T., Tang, T., Binnerts, M., Liu, Y., Boyle, B., Park, E., Emtage, P., Funk, W. D., and Tomizuka, K. (2005) Science 309, 1256–1259
10. Nam, J. S., Turcotte, T. J., Smith, P. F., Choi, S., and Yoon, J. K. (2006) J. Biol. Chem. 281, 13247–13257
11. Wei, Q., Yokota, C., Semenov, M. V., Dufort, B., Woodgett, J., and He, X. (2007) J. Biol. Chem. 282, 15903–15911
12. Kim, K. A., Wagle, M., Tran, K., Zhan, X., Dixon, M. A., Liu, S., Gros, D., Korver, W., Yonkovich, S., Tomasevic, N., Binnerts, M., and Abo, A. (2008) Mol. Cell Biol. 19, 2588–2596
13. Kim, K. A., Zhao, J., Andarmani, S., Kakikani, M., Oshima, T., Binnerts, M. E., Abo, A., Tomizuka, K., and Funk, W. D. (2006) Cell Cycle 5, 23–26
14. Li, L., El-Kholy, W., Rhodes, C. J., and Brubaker, P. L. (2005) Diabetologia 48, 1339–1349
15. Gyulkhandanyan, A. V., Lee, S. C., Bikopoulos, G., Dai, F., and Wheeler, M. B. (2006) J. Biol. Chem. 281, 9361–9372
16. Mohamed, O. A., Dufort, D., and Clarke, H. J. (2004) Biol. Reprod. 71, 417–424
17. Heller, R. S., Dickmann, D. S., Jensen, J., Miller, C., Wong, G., Madsen, O. D., and Serup, P. (2002) Dev. Dyn. 225, 260–270
18. Rhee, C. S., Sen, M., Lu, D., Wu, C., Leoni, L., Rubin, J., Corr, M., and Carson, D. A. (2002) Oncogene 21, 6598–6605
19. Chen, Y., Stump, R. J., Lovicu, F. J., and McAvoy, J. W. (2004) Int. J. Dev. Biol. 48, 867–877
20. Ranheim, E. A., Kwan, H. C., Reya, T., Wang, Y. K., Weissman, I. L., and Francke, U. (2005) Blood 105, 2487–2494
21. Stump, R. J., Ang, S., Chen, Y., von Bahr, T., Lovicu, F. J., Pinson, K., de Jongh, R. U., Yamaguchi, T. P., Sassoon, D. A., and McAvoy, J. W. (2003) Dev. Biol. 259, 48–61
22. Liu, J., Costantini, F., Jho, E. H., and Joo, C. K. (2003) J. Biol. Chem. 278, 13487–13495
23. Jho, E. H., Zhang, T., Domon, C., Joo, C. K., Freund, J. N., and Costantini, F. (2002) Mol. Cell. Biol. 22, 1172–1183
24. Etheridge, S. L., Spencer, G. J., Heath, D. J., and Genever, P. G. (2004) Stem Cells 22, 849–860
25. Nam, J. S., Turcotte, T. J., and Yoon, J. K. (2007) Gene Expr. Patterns 7, 306–312
26. Pfaffl, M. W. (2001) Nucleic Acids Res. 29, e45
27. Everly, D. N., Jr., Kusano, S., and Raab-Traub, N. (2004) J. Virol. 78, 11648–11655
28. Mearns, G. P., and Jope, R. S. (2007) J. Biol. Chem. 282, 16989–17001
29. Wang, Q., Li, L., Xu, E., Wong, V., Rhodes, C., and Brubaker, P. L. (2004) Diabetologia 47, 478–487
