A NOTE ON THE GUTMAN INDEX OF JACO GRAPHS

Johan Kok1§, C. Susanth2, Sunny Joseph Kalayathankal3

1Tshwane Metropolitan Police Department
City of Tshwane, REPUBLIC OF SOUTH AFRICA
2Department of Mathematics
Vidya Academy of Science and Technology
Thalakkottukara, Thrissur-680501, INDIA
3Department of Mathematics
Kuriakose Elias College
Mannaman, Kottayam-686561, INDIA

Abstract: The concept of the Gutman index, denoted $Gut(G)$ was introduced for a connected undirected graph G. In this note we apply the concept to the underlying graphs of the family of Jaco graphs, (directed graphs by definition), and describe a recursive formula for the Gutman index $Gut(J_{n+1}^+(x))$. We also determine the Gutman index for the trivial edge-joint between Jaco graphs.

AMS Subject Classification: 05C12, 05C20, 05C38, 05C40, 05C75
Key Words: Gutman index, Jaco graph, edge-joint

1. Introduction

For general reference to notation and concepts of graph theory see [2]. Unless mentioned otherwise, a graph $G = G(V,E)$ on $\nu(G)$ vertices (order of G) with $\epsilon(G)$ edges (size of G) will be a finite undirected and connected simple graph. The degree of a vertex in G is denoted $d_G(v)$ and if the context of G is clear the degree is denoted $d(v)$ for brevity. Also in a directed graph $G\rightarrow$ the degree is $d_{G\rightarrow}(v) = d_{G\rightarrow}^+(v) + d_{G\rightarrow}^-(v)$ or for brevity, $d(v) = d^+(v) + d^-(v)$ if G is clear.
The concept of the Gutman index $Gut(G)$ of a connected undirected graph G was introduced in 1994 by Gutman [4]. It is defined to be $Gut(G) = \sum_{\{v,u\} \subseteq V(G)} d_G(v)d_G(u)d_G(v,u)$, where $d_G(v)$ and $d_G(u)$ are the degree of v and u in G respectively, and $d_G(v,u)$ is the distance between v and u in G. Clearly, if the vertices of G of order n are randomly labeled $v_1, v_2, v_3, \ldots, v_n$ the definition states that $Gut(G) = \sum_{\ell=1}^{n-1} \sum_{j=\ell+1}^{n} d_G(v_\ell)d_G(v_j)d_G(v_\ell, v_j)$. Worthy results are reported in Andova et al. [1] and Dankelmann et al. [3].

2. The Gutman Index of the Underlying Graph of a Jaco Graph

Despite earlier definitions in respect of the family of Jaco graphs [5, 6], the definitions found in [7] serve as the unifying definitions. For ease of reference some of the important definitions are repeated here.

Definition 2.1. [7] Let $f(x) = mx + c; x \in \mathbb{N}$, $m, c \in \mathbb{N}_0$. The family of infinite linear Jaco graphs denoted by $\{J_\infty(f(x)) : f(x) = mx + c; x \in \mathbb{N} \text{ and } m, c \in \mathbb{N}_0\}$ is defined by $V(J_\infty(f(x))) = \{v_i : i \in \mathbb{N}\}, A(J_\infty(f(x))) \subseteq \{(v_i, v_j) : i, j \in \mathbb{N}, i < j\}$ and $(v_i, v_j) \in A(J_\infty(f(x)))$ if and only if $(f(i) + i) - d^-(v_i) \geq j$.

Definition 2.2. [7] The family of finite linear Jaco graphs denoted by $\{J_n(f(x)) : f(x) = mx + c; x \in \mathbb{N} \text{ and } m, c \in \mathbb{N}_0\}$ is defined by $V(J_n(f(x))) = \{v_i : i \in \mathbb{N}, i \leq n\}, A(J_n(f(x))) \subseteq \{(v_i, v_j) : i, j \in \mathbb{N}, i < j \leq n\}$ and $(v_i, v_j) \in A(J_n(f(x)))$ if and only if $(f(i) + i) - d^-(v_i) \geq j$.

The reader is referred to [7] for the definition of the prime Jacoian vertex and the Hope graph. The graph has four fundamental properties which are:

(i) $V(J_\infty(f(x))) = \{v_i : i \in \mathbb{N}\}$ and,

(ii) if v_j is the head of an arc then the tail is always a vertex v_i, $i < j$ and,

(iii) if v_k, for smallest $k \in \mathbb{N}$ is a tail vertex then all vertices v_ℓ, $k < \ell < j$ are tails of arcs to v_j and finally,

(iv) the degree of vertex k is $d(v_k) = f(k)$.

The family of finite directed graphs are those limited to $n \in \mathbb{N}$ vertices by lobbing off all vertices (and arcs to vertices) $v_1, t > n$. Hence, trivially $d(v_i) \leq i$ for $i \in \mathbb{N}$. For $m = 0$ and $c \geq 0$ two special classes of disconnected linear Jaco graphs exist. For $c = 0$ the Jaco graph $J_n(0)$ is a null graph (edgeless graph) on n vertices. For $c > 0$, the Jaco graph $J_n(c) = \bigcup_{[n/c+1]} K_{c+1}^{\rightarrow} \bigcup_{[n-(c+1)/c+1]} K_{c+1}^{\rightarrow}$.

since the Gutman index is defined for connected graphs the bound \(m \geq 1 \) will apply.

In this note we only consider the case \(m = 1 \), \(c = 0 \). The generalisation for \(f(x) = mx + c \) in general remains open. Denote the underlying Jaco graph by \(J^*_n(f(x)) \). A recursive formula of the Gutman index \(\text{Gut}(J^*_n(x)) \) in terms of \(\text{Gut}(J^*_n(x)) \) is given in the next theorem.

Theorem 2.1. For the underlying graph \(J^*_n(x) \) of a finite Jaco Graph \(J_n(x), n \in \mathbb{N}, n \geq 2 \) with Jacoian vertex \(v_i \) we have that recursively:

\[
\text{Gut}(J^*_n(x)) = \text{Gut}(J^*_n(x)) + \sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_k, v_t)
+ \sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} (d_{J^*_n(x)}(v_t) + d_{J^*_n(x)}(v_q)) + (n-i) \sum_{k=1}^{i} d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_k, v_n)
+ \sum_{t=i+1}^{n} d_{J^*_n(x)}(v_t)) + (n-i-1) + i(n-i).
\]

Proof. Consider the underlying Jaco graph, \(J^*_n(x), n \in \mathbb{N}, n \geq 2 \) with prime Jacoian vertex \(v_i \). Now consider \(J^*_n+1(x) \). From the definition of a Jaco graph the extension from \(J^*_n(x) \) to \(J^*_n+1(x) \) adds the vertex \(v_{n+1} \) and the edges \(v_{i+1}v_{n+1}, v_{i+2}v_{n+1}, \ldots, v_{n}v_{n+1} \).

Step 1: Consider any ordered pair of vertices \((v_k, v_q)_{k<q}, 1 \leq k \leq i-1, k + 1 \leq q \leq i\). By applying the definition of the Gutman index to this pair of vertices we have the term:

\[
d_{J^*_n+1(x)}(v_k)d_{J^*_n+1(x)}(v_q) = d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_q) + d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_k, v_q).
\]

By applying this step \(\forall v_k, 1 \leq k \leq i-1 \), and \(\forall v_q, k+1 \leq q \leq i \) with \(k < q \) we obtain:

\[
\sum_{k=1}^{i-1} \sum_{q=k+1}^{i} d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_q)d_{J^*_n(x)}(v_k, v_q).
\]

Step 2: Consider any vertex \(v_k, 1 \leq k \leq i \) and any other vertex \(v_t, i+1 \leq t \leq n \). By applying the definition of the Gutman index to this pair of vertices we have the term:

\[
d_{J^*_n+1(x)}(v_k)d_{J^*_n+1(x)}(v_t) = d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_t) + d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_k, v_t)
= d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_t) + d_{J^*_n(x)}(v_k)d_{J^*_n(x)}(v_k, v_t).
\]
By applying this step $\forall v_k, 1 \leq k \leq i$ and $\forall v_t, i + 1 \leq t \leq n$, we obtain:

$$\sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_n^*}(v_k) d_{J_n^*}(v_t) d_{J_n^*}(v_k, v_t) + \sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_n^*}(v_k) d_{J_n^*}(v_k, v_t).$$

Step 3: Consider any two distinct vertices $v_t, v_q, i + 1 \leq t \leq n - 1$, and $t + 1 \leq q \leq n$. By applying the definition of the Gutman index to this pair of vertices we have the term:

$$d_{J_{n+1}^*}(v_t) d_{J_{n+1}^*}(v_q) d_{J_{n+1}^*}(v_t, v_q) = (d_{J_n^*}(v_t) + 1)(d_{J_n^*}(v_q) + 1)d_{J_n^*}(v_t, v_q) = d_{J_n^*}(v_t) d_{J_n^*}(v_q) + d_{J_n^*}(v_t) + d_{J_n^*}(v_q) + 1.$$

By applying this step $\forall v_t, i + 1 \leq t \leq n - 1$ and $\forall v_q, t + 1 \leq q \leq n$, we obtain:

$$\sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} d_{J_n^*}(v_t) d_{J_n^*}(v_q) + \sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} (d_{J_n^*}(v_t) + d_{J_n^*}(v_q)) + (n - i - 1).$$

Step 4: Consider any vertex $v_k, 1 \leq k \leq i$ and the vertex v_{n+1}. By applying the definition of the Gutman index to this pair of vertices we have the term:

$$d_{J_{n+1}^*}(v_k) d_{J_{n+1}^*}(v_{n+1}) d_{J_{n+1}^*}(v_k, v_{n+1}) = d_{J_n^*}(v_k)(n-i)(d_{J_n^*}(v_k, v_{n+1}).$$

By applying this step $\forall v_k, 1 \leq k \leq i$ we obtain:

$$\sum_{k=1}^{i} d_{J_n^*}(v_k)(n-i)(d_{J_n^*}(v_k, v_{n+1}) + 1) = (n-i) \sum_{k=1}^{i} d_{J_n^*}(v_k)d_{J_n^*}(v_k, v_{n}) + i(n-i).$$

Step 5: Consider any vertex $v_t, i + 1 \leq t \leq n$ and the vertex v_{n+1}. By applying the definition of the Gutman index to this pair of vertices we have the term:

$$d_{J_{n+1}^*}(v_t) d_{J_{n+1}^*}(v_{n+1}) d_{J_{n+1}^*}(v_t, v_{n+1}) = d_{J_n^*}(v_t)(n-i)d_{J_n^*}(v_t, v_{n}).$$
By applying this step \(\forall v_t, i+1 \leq t \leq n \) we obtain:

\[
\sum_{t=i+1}^{n} d_{J_n^*(x)}(v_t)(n-i) = (n-i) \sum_{t=i+1}^{n} d_{J_n^*(x)}(v_t).
\]

Final Summation Step: Adding Steps 1 to 5 and noting that:

\[
Gut(J_n^*(x)) = \sum_{k=1}^{i-1} \sum_{q=k+1}^{i} d_{J_n^*(x)}(v_k)d_{J_n^*(x)}(v_q)d_{J_n^*(x)}(v_k, v_q)
\]

\[
+ \sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_n^*(x)}(v_k)d_{J_n^*(x)}(v_t)d_{J_n^*(x)}(v_k, v_t)
\]

\[
+ \sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} d_{J_n^*(x)}(v_t)d_{J_n^*(x)}(v_q),
\]

provides the result:

\[
Gut(J_{n+1}^*(x)) = Gut(J_n^*(x)) + \sum_{k=1}^{i} \sum_{t=i+1}^{n} d_{J_n^*(x)}(v_k)d_{J_n^*(x)}(v_k, v_t)
\]

\[
+ \sum_{t=i+1}^{n-1} \sum_{q=t+1}^{n} (d_{J_n^*(x)}(v_t) + d_{J_n^*(x)}(v_q)) + (n-i)(\sum_{k=1}^{i} d_{J_n^*(x)}(v_k)d_{J_n^*(x)}(v_k, v_n)
\]

\[
+ \sum_{t=i+1}^{n} d_{J_n^*(x)}(v_t)) + (n-i-1) + i(n-i).
\]

3. The Gutman Index of the Edge-Joint between

\(J_n^*(x), n \in \mathbb{N} \) and \(J_m^*(x), m \in \mathbb{N} \)

The concept of an *edge-joint* between two simple undirected graphs \(G \) and \(H \) is defined below.

Definition 3.1. The edge-joint of two simple undirected graphs \(G \) and \(H \) is the graph obtained by linking the edge \(vu, v \in V(G), u \in V(H) \) and denoted, \(G \rightsquigarrow vu H \).
Note. $G \sim_{vu} H = G \cup H + vu, v \in V(G), u \in V(H)$.

The next theorem provides $Gut(J^*_n(x) \sim_{v_1u_1} J^*_m(x))$ in terms of $Gut(J^*_n(x))$ and $Gut(J^*_m(x))$. The edge-joint $J^*_n(x) \sim_{v_1u_1} J^*_m(x)$ is called trivial. Edge-joints $J^*_n(x) \sim_{v_1u_j} J^*_m(x), i \neq j$ or $j \neq i$ are called non-trivial. For families (classes) of graphs such as paths P_n, cycles C_n, complete graphs K_n, Jaco graphs $J_n(f(x))$, etc., the notation is abbreviated as $P_n \sim_{vu} P_m = P_{n,m}^\sim$ and $J_n^*(f(x)) \sim_{v_1u_j} J_m^*(f(x)) = J_{n,m}^{\sim,v_1u_j}$, etc.

Theorem 3.1. For the underlying graphs $J^*_n(x)$ and $J^*_m(x)$ of the finite Jaco Graphs $J_n(x), J_m(x), n, m \in \mathbb{N}$ and $n \geq m \geq 2$:

$Gut(J^*_n(x) \sim_{v_1u_1} J^*_m(x)) = Gut(J^*_{n,m}^{v_1u_1}) = Gut(J^*_n(x)) + Gut(J^*_m(x))$

$$+ \sum_{t=2}^n d_{J^*_n(x)}(v_t) d_{J^*_n(x)}(v_1, v_t) + \sum_{s=2}^m d_{J^*_m(x)}(u_s) d_{J^*_m(x)}(u_1, u_s)$$

$$+ \sum_{t=2}^m (d_{J^*_m(x)}(v_1) + 1) d_{J^*_m(x)}(u_t)(d_{J^*_m(x)}(u_1, u_t) + 1)$$

$$+ \sum_{k=2}^n \sum_{t=2}^m d_{J^*_n(x)}(v_k) d_{J^*_m(x)}(u_t)(d_{J^*_n(x)}(v_1, v_k) + d_{J^*_m(x)}(u_1, u_t) + 1) + 4.$$

Proof. Consider the underlying Jaco graphs, $J^*_n(x), J^*_m(x)$, with $n, m \in \mathbb{N}$ and $n \geq m \geq 2$ with $J_m(x)$ having prime Jacoian vertex u_i. Also label the vertices of $J^*_n(x)$ and $J^*_m(x)$; $v_1, v_2, v_3, ..., v_n$ and $u_1, u_2, u_3, ..., u_m$, respectively. Consider $J^*_{n,m}^{v_1u_1} = J^*_n(x) \cup J^*_m(x) + v_1u_1$. Without loss of generality apply the piecewise definition:

$$Gut(J^*_{n,m}^{v_1u_1}) = \sum_{k=1}^{n-1} \sum_{\ell=k+1}^n d_{J^*_{n,m}^{v_1u_1}}(v_k) d_{J^*_{n,m}^{v_1u_1}}(v_\ell) d_{J^*_{n,m}^{v_1u_1}}(v_k, v_\ell)$$

$$+ \sum_{t=1}^{m-1} \sum_{s=t+1}^m d_{J^*_{n,m}^{v_1u_1}}(u_t) d_{J^*_{n,m}^{v_1u_1}}(u_s) d_{J^*_{n,m}^{v_1u_1}}(u_t, u_s)$$

$$+ \sum_{k=1}^n \sum_{t=2}^m d_{J^*_{n,m}^{v_1u_1}}(v_k) d_{J^*_{n,m}^{v_1u_1}}(u_t) d_{J^*_{n,m}^{v_1u_1}}(v_k, u_t) + d_{J^*_{n,m}^{v_1u_1}}(v_1) d_{J^*_{n,m}^{v_1u_1}}(u_1, v_1).$$

Step 1(a): Consider vertex v_1 and vertex $v_\ell, 2 \leq \ell \leq n$. By applying the definition of the Gutman index to this pair of vertices we have the term:
\[d_{J_{n,m}^{-v_1u_1}}(v_1)d_{J_{n,m}^{-v_1u_1}}(v_\ell)d_{J_{n,m}^{-v_1u_1}}(v_1, v_\ell) = (d_{J_n^+(x)}(v_1)+1)d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell) \]
\[= d_{J_n^+(x)}(v_1)d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell) + d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell). \]

By applying this step \(\forall v_\ell, 2 \leq \ell \leq n \) we obtain:
\[
\sum_{\ell=2}^{n} d_{J_n^+(x)}(v_1)d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell) + \sum_{\ell=2}^{n} d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell).
\]

Step 1(b): For all ordered pairs of vertices \((v_k, v_\ell)_{k<\ell}\) with \(2 \leq k \leq n-1\) and \(3 \leq \ell \leq n\) we have that:
\[
\sum_{k=2}^{n-1} \sum_{\ell=k+1}^{n} d_{J_{n,m}^{-v_1u_1}}(v_k)d_{J_{n,m}^{-v_1u_1}}(v_\ell)d_{J_{n,m}^{-v_1u_1}}(v_k, v_\ell)\]
\[= \sum_{k=2}^{n-1} \sum_{\ell=k+1}^{n} d_{J_n^+(x)}(v_k)d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_k, v_\ell). \]

By applying this step \(\forall (v_k, v_\ell)_{k<\ell}, 1 \leq k \leq n-1 \) and \(2 \leq \ell \leq n \), we obtain:
\[
\sum_{k=1}^{n-1} \sum_{\ell=k+1}^{n} d_{J_n^+(x)}(v_k)d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_k, v_\ell) + \sum_{\ell=2}^{n} d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell)\]
\[= \text{Gut}(J_n^+(x)) + \sum_{\ell=2}^{n} d_{J_n^+(x)}(v_\ell)d_{J_n^+(x)}(v_1, v_\ell). \]

Step 2: Similar to Step 1 we have that:
\[
\sum_{t=1}^{m-1} \sum_{s=t+1}^{m} d_{J_{n,m}^{-v_1u_1}}(u_t)d_{J_{n,m}^{-v_1u_1}}(u_s)d_{J_{n,m}^{-v_1u_1}}(u_t, u_s)\]
\[= \sum_{t=1}^{m-1} \sum_{s=t+1}^{m} d_{J_m^+(x)}(u_t)d_{J_m^+(x)}(u_s)d_{J_m^+(x)}(u_t, u_s) + \sum_{s=2}^{m} d_{J_m^+(x)}(u_s)d_{J_m^+(x)}(u_1, u_s)\]
\[= \text{Gut}(J_m^+(x)) + \sum_{s=2}^{m} d_{J_m^+(x)}(u_s)d_{J_m^+(x)}(u_1, u_s). \]

Step 3: To conclude this step we will provide the next partial summation as a piecewise summation, to be:
By applying the step \(\forall \) term:

By applying this step \(\forall \) term:

\[
\sum_{k=1}^{n} \sum_{t=2}^{m} d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_t) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k, u_t)
\]

\[
= \sum_{t=2}^{m} d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_t) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1, u_t)
\]

\[
+ \sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_t) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k, u_t).
\]

Step 3(a): Consider vertex \(v_1 \) and vertex \(u_t, 2 \leq t \leq m \). By applying the definition of the Gutman index to this pair of vertices we have the term:

\[
d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_t) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1, u_t)
\]

\[
= (d_{J_{n}^{*}(x)}(v_1) + 1) d_{J_{m}^{*}(x)}(u_t) (d_{J_{n}^{*}(x)}(u_1, u_t) + 1).
\]

By applying this step \(\forall u_t, 2 \leq t \leq m \) we obtain:

\[
\sum_{t=2}^{m} (d_{J_{n}^{*}(x)}(v_1) + 1) d_{J_{m}^{*}(x)}(u_t) (d_{J_{n}^{*}(x)}(u_1, u_t) + 1).
\]

Step 3(b): Consider vertex \(v_k, 2 \leq k \leq n \) and vertex \(u_t, 2 \leq t \leq m \). By applying the definition of the Gutman index to this pair of vertices we have the term:

\[
d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_t) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_k, u_t)
\]

\[
= d_{J_{n}^{*}(x)}(v_k) d_{J_{m}^{*}(x)}(u_t) (d_{J_{n}^{*}(x)}(v_1, v_k) + d_{J_{m}^{*}(x)}(u_1, u_t) + 1).
\]

By applying the step \(\forall v_k, 2 \leq k \leq n \) and \(\forall u_t, 2 \leq t \leq m \), we obtain:

\[
\sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{n}^{*}(x)}(v_k) d_{J_{m}^{*}(x)}(u_t) (d_{J_{n}^{*}(x)}(v_1, v_k) + d_{J_{m}^{*}(x)}(u_1, u_t) + 1).
\]

Step 4: It is easy to see that:

\[
d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1) d_{J_{n,m}^{\rightarrow u_1 v_1}}(u_1) d_{J_{n,m}^{\rightarrow u_1 v_1}}(v_1, u_1) = 4.
\]

Final Summation Step: Adding Steps 1 to 4 provides the result:

\[
Gut(J_{n,m}^{\rightarrow u_1 v_1}) = Gut(J_{n}^{*}(x)) + Gut(J_{m}^{*}(x)) + \sum_{\ell=2}^{n} d_{J_{n}^{*}(x)}(v_\ell) d_{J_{m}^{*}(x)}(v_1, v_\ell)
\]
A NOTE ON THE GUTMAN INDEX OF JACO GRAPHS

\[+ \sum_{s=2}^{m} d_{J_{s}^{*}}(x)(u_{s})d_{J_{s}^{*}}(x)(u_{1}, u_{s}) + \sum_{t=2}^{m} (d_{J_{t}^{*}}(x)(v_{1}) + 1)d_{J_{t}^{*}}(x)(u_{t})(d_{J_{m}^{*}}(x)(u_{1}, u_{t}) + 1) \]

\[+ \sum_{k=2}^{n} \sum_{t=2}^{m} d_{J_{k}^{*}}(x)(v_{k})d_{J_{m}^{*}}(x)(u_{t})(d_{J_{k}^{*}}(x)(v_{1}, v_{k}) + d_{J_{m}^{*}}(x)(u_{1}, u_{t}) + 1) + 4. \]

4. Conclusion

For the simple case \(f(x) = x \) the calculation of the Gutman index for Jaco graph and the edge-joint between them is immediately complicated. Finding a result similar to Theorem 3.1 for \(J_{n}^{*}(x) \sim_{v_{i}, u_{j}} J_{m}^{*}(x), i \neq 1 \) or \(j \neq 1 \) (non-trivial edge-joints) remains open. The single most important challenge is to find a closed formula for the number of edges in \(J_{n}(x) \). Such closed formula will enable finding a closed formula for distances between given vertices and a simplified formula for many invariants of Jaco graphs might result from such finding. Hence, important open questions remain such as: Is there a closed formula for the number of edges of \(J_{n}(x), n \in \mathbb{N} \)? Is there a closed formula for the cardinality of the Jaconian set \(\mathcal{J}(J_{n}(x)) \) of \(J_{n}(x), n \in \mathbb{N} \)? Is there a closed formula for \(d_{J_{n}^{*}}(x)(v_{1}, v_{n}) \) in \(J_{n}^{*}(x), n \in \mathbb{N} \)? Refer to [7] for further reading.

References

[1] V. Andova, D. Dimitrov, J. Fink, R. Škrekovski, Bounds on Gutman Index, MATCH Communications in Mathematical and in Computer Chemistry, Vol 67 (2012), pp 515-524.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
[3] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, The edge-Wiener index of a graph, Discrete Mathematics, Vol 309 (2009), pp 3452-3457.
[4] I. Gutman, Selected properties of the Schultz molecular topological index, Journal of Chemical Information and Computer Sciences, Vol 34, (1994) pp 1087-1089.
[5] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics of Finite Jaco Graphs, \(J_{n}(1), n \in \mathbb{N} \), arXiv: 1404.0484v1 [math.CO], 2 April 2014.
[6] J. Kok, P. Fisher, B. Wilkens, M. Mabula, V. Mukungunugwa, Characteristics of Jaco Graphs, \(J_{\infty}(a), a \in \mathbb{N} \), arXiv: 1404.1714v1 [math.CO], 7 April 2014.
[7] J. Kok, C. Susanth, S.J. Kalayathankal, A Study on Linear Jaco Graphs, Journal of Informatics and Mathematical Sciences, Vol 7(2), (2015), 69-80.
