Microsomal Oxidation of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Results in Species-Dependent Chiral Signatures of the Hydroxylated Metabolites

Xianai Wu, Austin Kammerer, and Hans-Joachim Lehmler*

Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, United States

ABSTRACT: Chiral polychlorinated biphenyls (PCBs) display variable atropisomeric enrichment in wildlife and animal models, especially at higher trophic levels. These differences in PCBs’ chiral signatures are, at least in part, due to species-dependent oxidation of PCBs to hydroxylated PCB metabolites (OH-PCBs). Here, we investigate the hypothesis that the cytochrome P450 (P450) enzyme-mediated oxidation of chiral PCBs results in species-dependent differences in the chiral signatures of OH-PCBs (i.e., the direction and extent of OH-PCBs’ atropisomeric enrichment). To investigate this hypothesis, we incubated PCB 136, a representative chiral PCB, with pooled human liver microsomes (HLMs) or liver microsomes from male guinea pig, hamster, monkey, mouse, and rabbit or female dog and determined average profiles and chiral signatures of the OH-PCBs. 2,2′,3,3′,6,6′-Hexachlorobiphenyl-4-ol (4′-136) was the major metabolite in incubations with HLMs and monkey and rabbit microsomes. 2,2′,3,3′,6,6′-Hexachlorobiphenyl-5-ol (5′-136) was the major metabolite formed by microsomes from all other species. Both 4′−136 and 5′−136 were formed atropselectively in all microsomal incubations; however, the direction and extent of the atropisomeric enrichment of both OH-PCB metabolites showed considerable differences across microsomal preparations obtained from different species. These differences in OH-PCBs’ atropisomeric enrichment may not only be toxicologically relevant but may also be useful to study sources and transport of OH-PCBs in the environment.

INTRODUCTION

Polychlorinated biphenyls (PCBs) are a class of industrial chemicals and unintentional byproducts of industrial processes banned under the Stockholm Convention on Persistent Organic Pollutants. PCBs remain an environmental and human health concern because of their ongoing, inadvertent production, their environmental persistence, and the presence of PCBs in the environment, diet, and in human serum and tissues.1−4 Nineteen PCB congeners and various hydroxylated (and other) metabolites with three or four ortho chlorine substituents and an unsymmetrical substitution pattern in both phenyl rings are chiral.5 These PCB derivatives exist as nonsuperimposable rotational isomers, called atropisomers, which are mirror images of each other. Chiral PCB congeners, in particular congeners with a 2,3,6 substitution pattern in one phenyl ring, have been linked to neurodevelopmental toxicity in humans and laboratory animals and shown to cause effects on neurotransmitter functions in the central nervous system and alter cellular processes related to calcium signaling.6,7

Chiral PCBs are present in commercial PCB mixtures as racemates (i.e., a 1:1 mixture of atropisomers) and, due to PCBs chemical and thermal stability, are released into the environment as racemates. Studies of the atropisomeric enrichment of chiral PCBs reveal near racemic signatures in diet, house dust, and air, but highly variable atropisomeric enrichment in wildlife, especially at higher trophic levels, and humans (reviewed in ref 5). Because physical and chemical transport (e.g., passive diffusion) and transformation processes (e.g., photodegradation) are not atropselective, the variable atropisomeric enrichment of PCBs in environmental samples is due to atropselective biotransformation and/or biological transport processes. PCBs can undergo atropselective bacterial biodegradation,8,9 and are atropselectively metabolized in plant10 and animal models (reviewed in ref 5). Laboratory studies have shown that cytochrome P450 enzymes, such as different CYP2B isoforms,11,12 can atropselectively metabolize PCBs to OH-PCBs and, thus, contribute to nonracemic signatures of PCBs at higher trophic levels.

OH-PCBs are found in many species,13−19 including humans,2,3 and represent an environmental and human health concern. In mammals, OH-PCBs can adversely affect neurodevelopment by altering processes related to calcium signaling20,21 or thyroid function.22 Structure–activity relationship
studies show that the OH-PCB metabolites of chiral PCBs are ryanodine receptor- (RyR)-active and display different modes of action depending on the position of the hydroxyl group on the biphenyl moiety in vitro.24 OH-PCB profiles are highly species dependent3,24 and can display interindividually variability.25 These differences in OH-PCB profiles are due to differences in the isoform composition, expression, and activities of PCB and OH-PCB metabolizing enzymes (e.g., P450 enzymes, sulphotransferases, glucuronosyl transferases, and others). Furthermore, differences in the composition and OH-PCB binding affinity of various transport proteins (e.g., transthyretin) may contribute to species and interindividual differences in OH-PCB profiles in vivo. Since PCBs are atroposelectively metabolized by P450 enzymes to OH-PCBs, it is likely that, similar to the parent PCBs,5 P450 enzyme-mediated metabolism contributes to differences in the atropisomeric enrichment of chiral OH-PCBs in wildlife and humans. Consistent with this hypothesis, we have recently reported differences in the atroposelective formation of OH-PCBs in rats and mice in in vitro metabolism studies,26 however, systematic laboratory and environmental studies of the atroposelective formation of OH-PCBs by P450 enzymes from different species have not been reported to date.

The present study investigates the atroposelective formation of OH-PCB from 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) by liver microsomes from humans and several other mammalian species. Pooled liver microsomes from naïve animals were used to assess representative OH-PCB profiles and chiral signatures in the species investigated. PCB 136 was selected for this study as a prototypical chiral PCB congener of environmental relevance.

EXPERIMENTAL SECTION

Liver Microsomes. Untreated beagle dog (female), Cynomolagus monkey (male), New Zealand rabbit (male), golden Syrian hamster (male), Hartley albino guinea pig (male), and human liver microsomes pooled from 50 donors with mixed age, sex, and race (HLMs) were purchased from Xenotech (Lenexa, KS, USA). Microsomes obtained from female instead of male beagle dogs were used because of the higher enzymatic activity of the respective microsomal preparations. Mouse liver microsomes were prepared by pooling livers from saline and corn oil treated male C57BI/6 mice and characterized as described previously.27 The microsomal cytochrome P450 content is described in the Supporting Information (Tables S1 and S2).

Chemicals. Dimethyl sulfoxide (DMSO), sodium phosphate dibasic (Na2HPO4), sodium phosphate monobasic (NaH2PO4), magnesium chloride (MgCl2), tetrabutylammonium sulfate, sodium sulfate, and pesticide grade solvents were obtained from Fisher Scientific (Pittsburgh, PA, USA). Nicotinamide adenine dinucleotide phosphate reduced (NADPH) was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Racemic PCB 136 was synthesized by the Ullmann method of 2,3,6-trichloro-1-iodobenzene,28 and the atropisomers of PCB 136 were separated using two serially pooled liver microsomes were prepared as described elsewhere.29 Recovery standards (2,3,4′,5,6-hexachlorobiphenyl, PCB 166; 2,3,4′,5,6-penta-chlorobiphenyl, PCB 117; 2,3′,4,5,5′-hexachlorobiphenyl-4-ol, 4′-159) and the internal standard (2,2′,3,3′,5,5′-octachlorobiphenyl, PCB 204) were purchased from Accustandard (New Haven, CT).

Metabolism Experiments. Incubation conditions were initially optimized for microsomal protein content and NADPH concentration using human and dog liver microsomes as described previously.30 Subsequently, time-course experiments were performed in triplicate with the optimized experimental condition. Briefly, an incubation mixture (12 mL) consisting of phosphate buffer (0.1 M, pH 7.4), NADPH (0.5 mM in HLMs or 1.5 mM in all animal microsomes), magnesium chloride (3 mM), and hepatic microsomal protein (1.0 mg/mL for all animal microsomes or 0.5 mg/mL for human microsomes) was preincubated for 5 min at 37 ± 1 °C in a shaking water bath. PCB 136 in DMSO (0.5%) was added with a final concentration of 50 μM. These incubation conditions, including the high PCB 136 concentrations, were selected to ensure the formation of sufficient OH-PCB quantities for atroposelective analyses. Experiments with HLMs used (+)-, (−)-, or (+)-PCB 136. (±)-PCB 136 was used in incubations with microsomes from all animal species. An aliquot (2 mL) of the incubation mixture was removed after 5, 10, 15, 20, 25, and 30 min. A total of 2 mL of ice cold sodium hydroxide (0.5 M) was added to each aliquot to stop the reaction. For the 0 min time point, a separate sample (1990 μL) was preincubated for 5 min as described above, followed by sequential addition of the sodium hydroxide (2 mL) and PCB 136 solution (10 μL). Control incubations without microsomes or NADPH or containing heat-inactivated microsomes were performed in parallel.

Extraction of PCB 136 and Its Hydroxylated Metabolites. Extraction of PCB 136 and its hydroxylated metabolites was performed using a published method.30 In short, surrogate standards (500 ng of PCB 117 in animal microsomes or PCB 166 in human microsomes; 274 ng of 4′-159) were added to each sample, followed by hydrochloric acid (6 M, 1 mL) and 2-propanol (3 mL). The samples were extracted with hexane-MTBE (1:1 v/v, 5 mL) and hexane (3 mL). The combined organic extracts were washed with an aqueous KCl solution (1%, 3 mL). After removal of the organic phase, the KCl phase was re-extracted with hexane (3 mL), and the combined extracts were reduced under a gentle stream of nitrogen to ∼1 mL. The hydroxylated metabolites were derivatized with diazomethane and subjected to a sulfur cleanup as described previously.31 PCB 204 (200 ng) was added as an internal standard prior to analysis.

Gas Chromatographic Determinations. Levels of OH-PCB 136 metabolites were determined using an Agilent 6890N gas chromatograph with a 63Ni-flare EC detector and a DB-5 MS capillary column (60 m × 0.25 mm ID × 0.25 μm film thickness; Agilent, Santa Clara, CA, USA).30 OH-PCB levels were adjusted for milligram microsomal protein. Relative rates of OH-PCB formation were determined in the linear range of metabolite formation (i.e., 5 min) by adjusting the amount of OH-PCB by the total P450 content.28 The limits of detection and background PCBs levels are listed in Table S3.

To further verify the formation of specific metabolites, samples from 30 min incubations were analyzed on an Agilent 7890A gas chromatograph with a 5975 C mass selective detector in both total and selective ion monitoring modes with...
an HP-5 MS column (30 m × 0.32 mm I.D., 0.25 μm film thickness; Agilent) following a published method.26,33

Atropselective analysis of the derivatized hydroxylated PCB 136 atropisomers was performed using an Agilent 7890A gas chromatograph with a 63Ni μECD detector. The atropisomers of 5−136 and 4−136 were separated on Chirasil-Dex (CD column, 25 m × 0.25 mm ID × 0.25 μm film thickness; Varian, Palo Alto, CA, US) and Cyclosil-B columns (CB column, 30 m × 0.25 mm ID × 0.25 μm film thickness; Agilent, Santa Clara, CA, US), respectively, following a published method.30,34

Enantiomeric fractions (EFs) were determined as EF = \(\frac{A_2}{A_1 + A_2}\), where \(A_1\) and \(A_2\) are the peak areas of the first and second eluting atropisomers, respectively. The resolution of 5−136 and 4−136 atropisomers were 0.69 and 0.74, respectively.

Statistical Analysis. The species dependent formation of metabolites was studied using one way ANOVA and PROC in the statistical analysis package SAS (version 9.3, SAS Institute, Cary, NC, USA). Metabolites formation and EF values were compared by Tukey’s Studentized Range (HSD) Test. A paired \(t\) test was used to compare the EF values of 5−136 and 4−136 to racemic standards and the formation rates of 4−136 and 5−136 between each species. A \(p\) value < 0.05 was used to indicate a significant difference between species.

RESULTS

PCB 136 Metabolism by HLMs. Racemic PCB 136 or its atropisomers were incubated with HLMs to investigate if potentially neurotoxic OH-PCBs are formed atropselectively in humans. Only a small percentage (<1%) of the total PCB 136 was converted to OH-PCBs under the incubation conditions (Table S4). 4−136 and 5−136 were the major metabolites for racemic PCB 136 and pure PCB 136 atropisomers, with more 4−136 being formed (5−136/4−136 ratio = 0.39 after 5 min, Table S5). 4,5−136 and the 1,2-shift product of PCB 136 (3−150) were minor metabolites. One unknown metabolite peak \((m/z = 420.0)\) was observed at a later retention time, indicating the formation of a second dihydroxylated metabolite (Figure S1). The amounts of 3−150, 4−136, 5−136, and 4,5−136 increased with time in all HLM incubations and depended on the PCB atropisomer composition (Figure 1). For all metabolites, the rate of formation followed the order (+)-PCB 136 > racemic PCB 136 > (−)-PCB 136 (Figure 1 and Table S4).

PCB 136 Metabolism by Animal Microsomes. Racemic PCB 136 was incubated with liver microsomes obtained from different species (i.e., male monkey, guinea pig, mouse, hamster, and rabbit; female dog) to explore differences in
typical metabolite profiles and chiral signatures between humans and toxicologically relevant mammalian species. Only a small percentage of PCB 136 (<3%) was converted to OH-PCBs (Table S4). Similar to experiments with HLMs, 4−136 was the major metabolite formed in incubations with microsomes obtained from male monkeys and rabbits (Figure 2), with 5−136/4−136 ratios of 0.17 and 0.64 at 5 min, respectively (Table S5). In contrast, 5−136 was the major metabolite in incubations using dog, guinea pig, mouse, and hamster liver microsomes. The 1,2-shift metabolite, 3−150, was only observed in incubations using human and monkey liver microsomes. The values are mean ± standard deviation (n = 3).

Relative Rates of OH-PCB Formation. The relative rates of formation of 5−136 and 4−136 were determined for the 5 min incubation time by expressing OH-PCB levels per nanomole of total P450 content. This adjustment accounts for the differences in total P450 content between different microsomal preparation and allows a comparison across species (Figure 3). The rates of formation of 5−136 followed the order rat (estimated based on published data, see ref 30) > dog ~
guinea pig ∼ hamster > human > monkey ∼ mouse ∼ rabbit. However, the rate of 5−136 formation by HLMs was only significantly different compared to incubations using microsomes obtained from dogs and guinea pigs. The rate of 5−136 formation by HLMs was similar compared to the rate observed in incubations with microsomes from hamster, monkey, mouse, and rabbit. The rate of 4−136 formation by HLMs was significantly faster compared to experiments using microsomes from other species and followed the order human ∼ monkey > guinea pig ∼ hamster ∼ rabbit > dog. In contrast, the first eluting atropisomer of 4−136 (E₁−4−136), which is formed from (−)-PCB 136, was enriched in experiments with mouse microsomes. The EF values of 4−136 were significantly different from racemic standards, with incubation using dog microsomes displaying only a trend of E₂−4−136 enrichment (p = 0.054; Figure 4D).

Figure 3. Comparison of the formation rates of (A) 5−136 and (B) 4−136 in incubations with liver microsomes obtained from different species. The rat data were taken from ref 30. Metabolites formation rates are adjusted by total P450 content. Different letters indicate statistically significant differences in the OH-PCB formation rates (p < 0.05) as determined by a Tukey student range test using SAS. The values are mean ± standard deviation (n = 3). The formation rate of 4−136 was significantly different from that of 5−136 within each species (p < 0.05; paired t test).

Atropisomeric Enrichment of OH-PCB 136. The atropisomeric enrichment of OH-PCB 136 metabolites was determined in microsomal incubations with racemic PCB 136 using atropselective gas chromatography. The objective was to determine if OH-PCBs are formed atropselectively in incubations with HLM and how this enrichment differs compared to toxicologically relevant species. The second eluting atropisomers of 5−136 (E₂−5−136), which is formed from (−)-PCB 136, was enriched in incubations using human, dog, monkey, guinea pig, and rabbit microsomes (Figure 4A). The atropselective formation of the 5−136 resulted in near constant EF values with time (data not shown). Therefore, EF values at 5 min were statistically analyzed and presented in Figure 4C.

The extent of the atropisomeric enrichment of 5−136 in microsomal incubations followed the order dog ∼ guinea pig ∼ monkey ∼ human ∼ rabbit (Figure 4C). Interestingly, the first eluting atropisomer of 5−136 (E₁−5−136), the 5−136 metabolite formed from (−)-PCB 136, displayed atropisomeric enrichment in experiments with mouse and, to a lesser extent, hamster microsomes. The EF values of 5−136 were significantly different from the racemic standard, with the exception of incubations using hamster microsomes. Similar to 5−136, the second eluting atropisomers of 4−136 (E₂−4−136), a metabolite formed from (+)

DISCUSSION

The present study uses hepatic microsomes to gain insights into typical OH-PCB 136 metabolite profiles and chiral signatures formed by P450 enzymes in different mammalian species, including humans. 4−136 and 5−136 were the two major monohydroxylated PCB 136 metabolites formed atropselectively by HLMs, which is consistent with an earlier study by Schnellmann and co-workers. In addition, a few other mono- and dihydroxylated PCB metabolites were observed as minor metabolites. This includes 3−150, a 1,2-shift product of PCB 136 formed via an aren oxidation intermediate. The formation of such a 1,2-shift metabolite by HLMs has not been reported previously. The 5−136/4−136 ratios in our study ranged from 0.4 to 0.8:1 (for incubation times from 5 to 30 min). On the basis of our re-evaluation of the published mass spectra, a metabolite ratio of 1.3:1 was observed by Schnellmann and co-workers. This difference in the metabolite profile is most likely due to differences in the P450 enzyme composition of the respective HLMs. The relative rate of formation of all OH-PCBs was different for incubations using (−)-PCB 136, (−)-PCB 136, and racemic PCB 136, with (−)-PCB 136 being more rapidly oxidized compared to (−)-PCB 136. These atropisomer-specific differences in the OH-PCB formation rates explain the atropisomeric enrichment of PCBs observed in vitro studies and are consistent with a role of P450 enzymes in their atropisomeric enrichment observed human samples.

Analogous to HLMs, 5−136, 4−136, and 4,5−136 were formed by most animal microsomal preparations studied. There is considerable evidence that CYP2B enzymes are involved in the oxidation of PCB 136 and structurally related PCB congeners in the meta position. Studies with recombinant enzymes demonstrate that CYP2B11,12,29 and dog CYP2B11 selectivity oxidize PCB 136 to 5−136. CYP2B1 also metabolizes 4-OH-PCBs and 5-OH-PCBs to the corresponding 4,5-dihydroxylated metabolites, such as 4,5−136.11,29 Warner and co-workers demonstrated that PCB 136 is oxidized by human CYP2B6 to a single, unidentified OH-PCB. This OH-PCB metabolite is most likely 5−136 because CYP2B6 oxidizes other PCBs in the meta position. In contrast, rabbit CYP2B4 and CYP2B5 do not metabolize PCB 136. The P450 isoforms responsible for the formation of 4−136 remain elusive, as CYP3A enzymes are probably not involved in its formation in rats or mice. We also observed no change in 4−136 levels in liver microsomes after induction of CYP1A enzymes in rats pretreated with PCB 126,
which suggests that 4−136 is not formed by CYP1A enzymes (Wu and Lehmler, unpublished data).

While essentially the same metabolites were formed by liver microsomes from different species, the ratios, relative formation rates, and chiral signatures of the OH-PCBs differed considerably depending on the species. Experiments with HLMs displayed the fastest formation rate for 4−136 and one of the lowest formation rates for 5−136 of all microsomal preparations investigated. As a result, 4−136 was the major metabolite formed in HLM incubations. It is important to emphasize that our result represents an average OH-PCB profile formed by a pool of liver microsomes from 50 individual donors; however, there can be considerable interindividual variability in humans due to genetic polymorphisms, diseases, and exposure to other xenobiotics. For example, a recent PCB 146 metabolism experiment with HLMs from individual donors revealed considerable interindividual metabolism of PCB in humans associated with CYP2B6 activity.25

4−136 was also the major metabolite in incubations using microsomes from monkeys and rabbits. In contrast, 5−136 was the major metabolite in experiments with microsomes from dogs, guinea pigs, mice, hamsters, and, as reported previously, rats.30 The faster formation of 5−136 in rat compared to dog microsomes in the current study is consistent with the differences in the oxidation of PCB 136 reported by Waller et al. for recombinant rat CYP2B1 and dog CYP2B11.29 5−136 and 4−136 are also the major PCB 136 metabolites formed in rats after intraperitoneal administration of PCB 136,37 with a

Figure 4. The atropisomeric enrichment of 5−136 and 4−136 formed from liver microsomes is species-dependent. (A) Representative chromatograms showing an enrichment of the second eluting 5−136 atropisomer in incubations with human (pooled), dog, monkey, guinea pig, and rabbit liver microsomes and an enrichment of the first eluting 5−136 atropisomer in experiments with mouse and hamster liver microsomes. (B) Representative chromatograms showing an enrichment of the second eluting 4−136 atropisomer in incubations with human (pooled), dog, monkey, guinea pig, hamster, and rabbit liver microsomes and an enrichment of the first eluting 4−136 atropisomer in experiments with mouse liver microsomes. Enantiomeric fractions of (C) 5−136 and (D) 4−136. Different letters indicate statistically significant differences in the EF values (p < 0.05) as determined by a Tukey student range test using SAS. *EF values significantly different from control (p < 0.05, paired t test). #EF values of 4−136 in incubations with dog microsomes showed a trend to significance from control (p = 0.054). The values are mean ± standard deviation (n = 3).
The toxicological relevance of the atropisomeric enrichment of OH-PCB metabolites of PCB 136 and other chiral PCBs is currently unknown and warrants further investigation. Like the parent PCBs, pure OH-PCB atropisomers may display atropselectivity toward cellular targets and, thus, cause atropselective toxicity in wildlife and humans. Developmental neurotoxicity is a particular concern in humans because OH-PCBs cross the placenta and accumulate in fetal target tissues. OH-PCBs have several modes of action and, for example, disrupt cellular calcium homeostasis by mechanisms involving RyRs or cause thyroid dysfunction. OH-PCB metabolites and structurally related, chiral OH-PCBs have not been detected in humans, partly because suitable analytical standards are not readily available; however, their parent compounds can be present at high levels in indoor air, including in school buildings in the United States. It is therefore likely that potentially neurotoxic, chiral OH-PCBs are present in humans, especially in school children and other susceptible human populations.

Similar to the parent PCBs, our observation that the atropisomeric enrichment of OH-PCBs is highly species-dependent will be useful for source apportionment studies of OH-PCB. OH-PCBs have not only been detected in laboratory animals and humans, but also in species at different trophic levels, such as fish, sea birds, marine mammals, and plants. Although studies with liver microsomes demonstrate that P450 enzymes are involved in the formation of OH-PCBs in many species, several studies demonstrate the presence of OH-PCBs in abiotic samples. For example, OH-PCBs are also formed by the reaction of OH radicals with PCBs and have been detected in surface water and precipitation. As with PCBs, chiral OH-PCB formed by abiotic processes will be racemic, whereas OH-PCBs in biological samples will be nonracemic due to atropselective biological transport and biotransformation processes. Consequently, chiral signatures can be used to distinguish abiotic from biotic OH-PCB sources. Furthermore, species-dependent differences on chiral signatures may be useful to study how OH-PCBs move through aquatic and terrestrial food webs. Similarly, chiral signatures are a powerful tool to study the movement of chiral PCBs through aquatic and terrestrial food webs.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information includes characteristics of the human and animal liver mixed function oxidase system, limits of detection, atropisomer resolution and background levels of PCB 136 and metabolites, percent of PCB 136 converted to OH-PCB 136, summary of 5–136 to OH-PCB ratios and formation rates in these species. These species differences in the metabolism of PCB 136 are formed from (-)-PCB 136. Consequently, most mammalian species, including invertebrates and vertebrates, metabolize and eliminate the (-)-PCB 136 from their tissues. OH-PCBs have several modes of action and, for example, disrupt cellular calcium homeostasis by mechanisms involving RyRs or cause thyroid dysfunction. OH-PCB 136 metabolites and structurally related, chiral OH-PCBs have not been detected in humans, partly because suitable analytical standards are not readily available; however, their parent compounds can be present at high levels in indoor air, including in school buildings in the United States. It is therefore likely that potentially neurotoxic, chiral OH-PCBs are present in humans, especially in school children and other susceptible human populations.

Similar to the parent PCBs, our observation that the atropisomeric enrichment of OH-PCBs is highly species-dependent will be useful for source apportionment studies of OH-PCB. OH-PCBs have not only been detected in laboratory animals and humans, but also in species at different trophic levels, such as fish, sea birds, marine mammals, and plants. Although studies with liver microsomes demonstrate that P450 enzymes are involved in the formation of OH-PCBs in many species, several studies demonstrate the presence of OH-PCBs in abiotic samples. For example, OH-PCBs are also formed by the reaction of OH radicals with PCBs and have been detected in surface water and precipitation. As with PCBs, chiral OH-PCB formed by abiotic processes will be racemic, whereas OH-PCBs in biological samples will be nonracemic due to atropselective biological transport and biotransformation processes. Consequently, chiral signatures can be used to distinguish abiotic from biotic OH-PCB sources. Furthermore, species-dependent differences on chiral signatures may be useful to study how OH-PCBs move through aquatic and terrestrial food webs. Similarly, chiral signatures are a powerful tool to study the movement of chiral PCBs through aquatic and terrestrial food webs.
(12) Warner, N. A.; Martin, J. W.; Wong, C. S. Chiral polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. *Environ. Mol. Mutagen.* 2011, 52 (6), 361-2883.

(13) Buckman, A. H.; Wong, C. S.; Chow, E. A.; Brown, S. B.; Solomon, K. R.; Fisk, A. T. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in whole poplar plants. *Environ. Sci. Technol.* 2011, 45 (6), 2308-2316.

(11) Lu, Z.; Kania-Korwel, I.; Lehmler, H.-J.; Wong, C. S. Stereoselective formation of mono- and di-hydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. *Environ. Sci. Technol.* 2013, 47 (21), 12184-12192.

(22) Meerts, I. A.; Assink, Y.; Cnijin, P. H.; Van Den Berg, J. H.; Weijers, B. M.; Bergman, A.; Koeneman, J. H.; Brouwer, A. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. *Toxicol. Sci.* 2002, 68 (2), 361-371.

(23) Kunisue, T.; Tanabe, S. Hydroxylated polychlorinated biphenyls (OH-PCBs) in the blood of mammals and birds from Japan: Lower chlorinated OH-PCBs and profiles. *Chemosphere* 2009, 74 (7), 950-961.

(27) Kania-Korwel, I.; Hrycay, E. G.; Bandiera, S. M.; Lehmler, H. J. 2,2′,3,4′,5,5′-Hexachlorobiphenyl (PCB146) for noncoplanar polychlorinated biphenyl congeners toward the metabolism of 4-monochlorobiphenyl and its metabolic pathway in whole poplar plants. *Environ. Sci. Technol.* 2010, 44 (10), 3901-3907.

(20) Pessah, I. N.; Hansen, L. G.; Albertson, T. E.; Garney, C. E.; Ta, T. A.; Do, Z.; Kim, K. H.; Wong, P. W. Structure-activity relationship for noncoplanar polychlorinated biphenyl congeners toward the cytochrome P450 2B1 catalysed metabolism of 2,2′-hexachlorobiphenyl (PCB 136) atropisomers in rats. *Chem. Res. Toxicol.* 2006, 19 (1), 92-101.

(21) Niknam, Y.; Feng, W.; Cherdenichnjen, G.; Dong, Y.; Joshi, S. N.; Vyas, S. M.; Lehmler, H.-J.; Pessah, I. N. Structure-activity relationship of select meta- and para-hydroxylated non-dioxin-like polychlorinated biphenyls: From single RyR1 channels to muscle dysfunction. *Toxicol. Sci.* 2013, 136 (2), 500-513.

(24) Bergman, A.; Klasson-Wehler, E.; Kuroki, H. Selective retention of hydroxylated PCB metabolites in blood. *Environ. Health Perspect.* 1994, 102 (5), 464-469.

(50) Ohta, C.; Haraguchi, K.; Kato, Y.; Endo, T.; Koga, N. Species difference in the metabolism of 2,2′,3,4′,5,5′-hexachlorobiphenyl (CB146) by animal and human liver microsomes. *Fukuoika Igaku Zasshi* 2013, 104 (4), 161-169.

(26) Wu, X.; Duffel, M. W.; Lehmler, H.-J. Oxidation of polychlorinated biphenyls by liver tissue slices from phenobarbital-pretreated mice is congener-specific and atropelective. *Chem. Res. Toxicol.* 2013, 26 (11), 1642-1651.

(25) Kodavanti, P. R. S.; Curras-Collazo, M. C. Neuroendocrine mechanisms and maternal thyroid hormone homeostasis in the rat. *Xenobiotica* 2013, 43 (11), 933-947.
(35) Schnellmann, R.; Putnam, C.; Sipes, I. Metabolism of 2,2','3,3',6,6'-hexachlorobiphenyl and 2,2',4,4',5,5'-hexachlorobiphenyl by human hepatic microsomes. *Biochem. Pharmacol.* 1983, 32 (21), 3233–3239.

(36) Ariyoshi, N.; Oguri, K.; Koga, N.; Yoshimura, H.; Funae, Y. Metabolism of highly persistent PCB congener, 2,2',4,4',5,5'-hexachlorobiphenyl, by human CYP2B6. *Biochem. Biophys. Res. Commun.* 1995, 212 (2), 455–460.

(37) Kania-Korwel, I.; Vyas, S.; Song, Y.; Lehmler, H. J. Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers. *J. Chromatogr. A* 2008, 1207 (1–2), 146–154.

(38) Lewis, D. F.; Loannides, C.; Parke, D. V. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen. *Environ. Health Perspect.* 1998, 106 (10), 633–641.

(39) Yang, D.; Kania-Korwel, I.; Ghogha, A.; Chen, H.; Stamou, M.; Bose, D. D.; Pessah, I. N.; Lehmler, H. J.; Lein, P. J. PCB 136 Atroposelectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms *Toxicol. Sci.* 2014, doi: 10.1093/toxsci/kft334.

(40) Lehmler, H. J.; Robertson, L. W.; Garrison, A. W.; Kodavanti, P. R. S. Effects of PCB 84 enantiomers on [3H] phorbol ester binding in rat cerebellar granule cells and 45Ca²⁺-uptake in rat cerebellum. *Toxicol. Lett.* 2005, 156 (3), 391–400.

(41) Lucier, G. W.; McDaniel, O. S.; Schiller, C. M.; Matthews, H. B. Structural requirements for the accumulation of chlorinated biphenyl metabolites in the fetal rat intestine. *Drug Metab. Dispos.* 1978, 6 (5), 584–590.

(42) Harrad, S.; Ren, J.; Hazrati, S.; Robson, M. Chiral signatures of PCB#s 95 and 149 in indoor air, grass, duplicate diets and human faeces. *Chemosphere* 2006, 63 (8), 1368–1376.

(43) Jamshidi, A.; Hunter, S.; Hazrati, S.; Harrad, S. Concentrations and chiral signatures of polychlorinated biphenyls in indoor and outdoor air and soil in a major UK conurbation. *Environ. Sci. Technol.* 2007, 41 (7), 2153–2158.

(44) Thomas, K.; Xue, J.; Williams, R.; Jones, P.; Whitaker, D. Polychlorinated biphenyls (PCBs) in school buildings: Sources, environmental levels, and exposures; United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory: Washington, DC, 2012. http://www.epa.gov/wastes/hazard/tsd/pcbs/pubs/caulk/pdf/pcb_EPA600R12051_final.pdf.

(45) Richardson, K. L.; Schlenk, D. Biotransformation of 2,2',5,5'-tetrachlorobiphenyl (PCB 52) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) by liver microsomes from four species of sea turtles. *Chem. Res. Toxicol.* 2011, 24 (5), 718–725.

(46) McKinney, M. A.; De Guise, S.; Martineau, D.; Béland, P.; Arulog, A.; Letcher, R. J. Biotransformation of polychlorinated diphenyl ethers and polychlorinated biphenyls in beluga whale (*Delphinapterus leucas*) and rat mammalian model using an in vitro hepatic microsomal assay. *Aquat. Toxicol.* 2006, 77 (1), 87–97.

(47) Marek, R. F.; Martinez, A.; Hornbuckle, K. C. Discovery of hydroxylated polychlorinated biphenyls (OH-PCBs) in sediment from a lake Michigan waterway and original commercial Aroclors. *Environ. Sci. Technol.* 2013, 47 (15), 8204–8210.

(48) Ueno, D.; Darling, C.; Alae, M.; Campbell, L.; Pacepavicius, G.; Teixeira, C.; Muir, D. Detection of hydroxylated polychlorinated biphenyls (OH-PCBs) in the abiotic environment: Surface water and precipitation from Ontario, Canada. *Environ. Sci. Technol.* 2007, 41 (6), 1841–1848.