Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

А.Н. Плотников, М.Ю. Иванов
Чувашский государственный университет имени И.Н. Ульянова (ЧГУ им. И.Н. Ульянова); г. Чебоксары, Россия

АННОТАЦИЯ
Введение. Рассмотрены вопросы возникающие при автоматическом мониторинге высотных зданий. К одним из таких вопросов относится необходимость минимизации количества датчиков из учета закономерностей работы подобных несущих систем. Описана методика по размещению датчиков в высотных зданиях.

Материалы и методы. Различные конструктивные системы высотных зданий имеют общие зависимости деформации продольной оси от жесткости вертикальных и горизонтальных несущих элементов. Выполнен расчет деформаций от ветровой статической нагрузки, сопоставление полученных данных ручного и компьютерного расчета, а также сопоставление статической ветровой нагрузки с пульсационной составляющей ветровой нагрузки.

Результаты. Из анализа экстремумов функции деформаций вертикальной оси здания при сохранении горизонтальной плоскости перекрытий определены основные характерные точки мониторинга, необходимые для минимизации количества датчиков в высотных зданиях. Исходя из характерных точек перелома, установлено необходимое количество датчиков, расположенных через 1/4 высоты здания, и диапазон измеряемых значений для измерения деформаций, возникающих в ходе эксплуатации.

Выводы. Для проведения автоматического (постоянного) мониторинга высотных зданий целесообразно использовать комплексный, интегральный способ, измеряющий деформации вертикальных несущих конструкций, частоты и амплитуды колебаний, углы поворота. Из общей теории расчета высотных зданий и компьютерных расчетных моделей вытекает, что датчики СМИК рационально устанавливать по зданию равномерно, охватывая периметр этажей и всю высоту. Измерения должны проводиться по контуру перекрытий на этажах через каждые 1/4 высоты здания, а также на ядре жесткости для контроля целостности перекрытий и их связи с ядром жесткости.

КЛЮЧЕВЫЕ СЛОВА: мониторинг, датчик, усилия, жесткость, деформации, прогиб, частота, инклинометр, тензометр, акселерометр

ДЛЯ ЦИТИРОВАНИЯ: Плотников А.Н., Иванов М.Ю. Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов // Строительство: наука и образование. 2019. Т. 9. Вып. 4. Ст. 3. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2019.4.3

Monitoring system of high-rise buildings, determined from the nature of the curvature of the elastic line of vertical elements

Aleksey N. Plotnikov, Mikhail Ju. Ivanov
Chuvash State University named after I.N. Ulyanov (ChuvSU n.a. I.N. Ulyanov); Cheboksary, Russian Federation

ABSTRACT
Introduction. Issues arising from the automatic monitoring of high-rise buildings are considered. One of such issues is the necessity of minimizing the number of sensors when taking the operational patterns of such load-bearing systems. The method of sensor placement in high-rise buildings is described.

Materials and methods. Different structural systems of high-rise buildings have common dependencies of longitudinal axis deformation on rigidity of vertical and horizontal load-bearing elements. Calculation of deformations from static wind load, comparison of data obtained by manual and computer calculation, and also comparison of static wind load with the wind load pulsation component are performed.

Results. From the analysis of the extrema of the deformation function of the building vertical axis with the horizontal plane of the floor structure preserved, the main typical monitoring points necessary to minimize the number of sensors in high-rise buildings were determined. Based on the typical breaking points, the required number of sensors located 1/4 of the building height away from each other and the range of measured values of deformations that occur during operation were determined.

© А.Н. Плотников, М.Ю. Иванов, 2019
ВВЕДЕНИЕ

Для современного периода развития экономики характерно расширение производства строительства, которое сопровождается ростом сложности строящихся зданий и сооружений. Современное строительство большой массы самых зданий приходит лишь на малую часть поверхности, которая в свою очередь, влияет на различные деформации. Для обеспечения безопасной жизнедеятельности в процессе эксплуатации требуется постоянный автоматический мониторинг технического состояния. Особое значение приобретает проблема мониторинга состояния конструкций на этапах строительства и эксплуатации [1–5]. Однако отсутствует полный алгоритм решения этой задачи. На одних объектах реализуется охват контролем динамических параметров, сплошная установка акселерометров, определение деформаций сводится к минимуму [6]. На других объектах устанавливается цепочка инклинометров, но зачастую измерения деформаций проводятся только по наиболее жесткой вертикали — ядру жесткости. Вследствие использования большого количества датчиков и получения значительного объема данных во времени служба эксплуатации сталкивается с проблемой анализа этого объема. Вместе с тем автоматический мониторинг является дорогостоящей процедурой [7–8]. К тому же зоны удаленные от центра здания, которые влияют на его жесткость, остаются неохваченными.

Различные конструктивные системы имеют общие математические закономерности, определяющие различные деформации, в частности от статической ветровой нагрузки [9–12]. Деформации продольной оси от жесткостных параметров несущих элементов также влияют на работу здания в целом [13]. Возникает вопрос об уменьшении количества датчиков, необходимых для выполнения мониторинга за высотными зданиями, с учетом его общей зависимости [14].

Современные высотные здания представляют собой сложные пространственные системы, состоящие из различных элементов и соединений, параметры (жесткость и т.п.) которых изменяются в процессе нагружения [15]. При мониторинге следует рассматривать весь комплекс статических и динамических воздействий, приводящих к изменению характеристик состояния: изменение жесткости соединений элементов, изменение физических свойств материалов, а также возможно изменение форм и размеров. Для мониторинга высотных зданий используется методика, ориентированная на применение различных измерительных устройств — инклинометров, тензометров, акселерометров [16].

В первую очередь, для высотных зданий необходимо определение динамических параметров, которые формируются на установлении периодов и собственных колебаний [17–18]. Также необходимо учесть, что регистрация колебаний требует не только сложной предварительной обработки, но и создания более точной модели динамики сооружения [19–20]. Основной особенностью определения динамических параметров допускается то, что схемы наблюдений могут быть достаточно простыми (вплоть до одной точки). Динамические параметры не только дают возможность контролировать величины ускорений, но и выявляют совместную работу зданий и грунтов основания, а также позволяют определять неизвестные ранее явления.

Исходя из вышесказанного, задача рационального размещения датчиков измерения и анализа основных параметров представляется актуальной и требует проведения серии исследований.

В данной работе дается обоснование рационального размещения датчиков измерения в основных параметрах представляет актуальной и требует проведения серии исследований.
МАТЕРИАЛЫ И МЕТОДЫ

Основные характерные точки мониторинга, требуемые для минимизации количества датчиков в высотных зданиях, определяются исходя из анализа экстремумов функции деформаций вертикальной оси здания при сохранении горизонтальной плоскости перекрытий [21–23].

Распределение внутренних усилий в основных несущих элементах, а также их перераспределение при внешних воздействиях и нагрузках определяется на основе жесткости элементов и податливости сопряжений. Все эти параметры зависят не только от их напряженно-деформированного состояния, но и от характеристик используемых материалов и условий эксплуатации [24–25].

Жесткость перекрытий и покрытия снижается по сравнению со сплошным монолитным перекрытием из-за податливости многочисленных швов. Данное снижение допускается учитывать путем введения пониженного значения начального модуля упругости бетона при постоянном соотношении между приведенными модулями сдвига и упругости равном для сборных перекрытий при качественной заделке швов в пределах 0,15–0,25.

Изменение податливости перекрытия приводит к перераспределению усилий между вертикальными элементами. В зависимости от жесткости перекрытий и сопряжения его с вертикальными элементами зависит горизонтальное смещение [26–27].

Деформации зависят от соотношения жесткости вертикальных и горизонтальных элементов каркаса (рис. 1). Характерные точки перелома находятся через 1/4 высоты здания, которые показаны на рис. 2. Зависимости представлены в литературе по теории деформирования высотных зданий.

При несовпадении горизонтальной нагрузки с центром жесткостей здания следует учитывать дополнительно горизонтальные перемещения от неравномерных вертикальных деформаций и кручення здания вокруг центра вращения (рис. 3).

В общем случае деформации зданий происходят не только в двух плоскостях, но и в пространстве. Это связано с некоторой неоднородностью (различием в жесткости геометрически симметричных элементов), накоплением повреждений при эксплуатации и остановками строительства. В элементах системы возникают усилия кручення и повороты элементов относительно вертикальной оси здания.

Для приведенных выше схем факт деформации каркаса может быть зарегистрирован по изменению углов наклона контролируемых колонн, а конкретный вид деформации — по показателям корреляционных связей углов наклона. Может происходить деформация горизонтального сдвига каркаса в пределах одного этажа: изменяются углы наклона колонн одного этажа, колонны смежные по высоте со следующим сохраняют свое угловое положение; наклон всего каркаса здания: углы наклона смежных по высоте колонн одинаковые. На рис. 4 отображена деформация кручення каркаса в горизонтальной плоскости. Характерным для такого типа деформации является взаимная корреляция углов в ортогональных плоскостях Х и Y.

Основные формулы, необходимые для определения прогибов, выведены П.Ф. Дроздовым [26].

Горизонтальное перемещение (прогиб) в любом сечении несущей системы или конструкции в принятой системе координат:

Рис. 1. Распределение деформаций по высоте здания в зависимости от жесткости вертикальных элементов: λ — характеристика жесткости вертикальных диафрагменных элементов (ядра), при значении менее 1 — более жесткие вертикальные элементы, более 6 — более гибкие.
Рис. 2. Распределение деформаций и усилий по высоте здания. Эпюры продольных сил N, изгибающих моментов M, поперечных сил Q, прогиб v связевой системы при соотношениях приведенных жесткостных характеристиках между отдельными вертикальными элементами.

Рис. 3. Закручивание колонн вокруг оси здания: α — угол поворота колонн относительно центра вращения

Рис. 4. Усилия и углы поворота при закручивании системы с замкнутым контуром плана: 1–4 — угловые несущие элементы.
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

\[v(x) = \frac{1}{a} \int_{a}^{x} \frac{n \cdot B_{n}}{(\lambda^2 \cdot B_{n} + \sum B)} \, dx = v_{i}(x) + \frac{n \cdot B_{n}}{(\lambda^2 \cdot B_{n} + \sum B)} \]

\[q \left[\frac{ch \lambda x - ch \lambda H + \beta \left(\sin \lambda x - \sin \lambda H \right) - (a-1) \left(\frac{x}{H} - 1 \right)}{\lambda^2} \right] \times \lambda^2 + M_{s} \left(H - M_{s}(x) \right), \]

где \(v_{i}(x) \) — прогиб в сечении \(x \) несущей системы или конструкции с абсолютно жесткими перемычками или ригелями, равный для нагрузки, распределенной по закону трапеции:

\[v_{i}(x) = -\frac{q \cdot H^4}{120 \cdot B_{n}} \left[4 \cdot a + 11 + (a-1) \left(\frac{x}{H} \right) \right]^5 + 5 \left(\frac{x}{H} \right)^4 - 5 \left(3 + a \right) \frac{x}{H}; \]

\[M_{s} \] — изгибающий момент при трапециевидной эпюре горизонтальной нагрузки:

\[v_{i}(x) = -\frac{q \cdot H^4}{120 \cdot B_{n}} \left[4 \cdot a + 11 + (a-1) \left(\frac{x}{H} \right) \right]^5 + 5 \left(\frac{x}{H} \right)^4 - 5 \left(3 + a \right) \frac{x}{H}; \]

Находим первую производную линии прогибов, дифференцируя (1) и подставляя (2) и (3):

\[v'(x) = \frac{H^4 \cdot q}{120 \cdot B_{n}} \left[\frac{20 \cdot x^3}{H^4} - \frac{5 \cdot a + 15}{H^4} + \frac{5 \cdot x^3 (a-1)}{H^3} \right] - \frac{B_{n} \cdot n}{\sum B \cdot B_{n} \cdot \lambda^2}. \]

Находим координаты экстремумов линии прогибов, приравнивая функцию производной к нулю:

\[v'(x) = \frac{H^4 \cdot q}{120 \cdot B_{n}} \left[\frac{20 \cdot x^3}{H^4} - \frac{5 \cdot a + 15}{H^4} + \frac{5 \cdot x^3 (a-1)}{H^3} \right] - \frac{B_{n} \cdot n}{\sum B \cdot B_{n} \cdot \lambda^2}. \]

Находим координаты экстремумов линии прогибов, приравнивая функцию производной к нулю:

\[v'(x) = \frac{H^4 \cdot q}{120 \cdot B_{n}} \left[\frac{20 \cdot x^3}{H^4} - \frac{5 \cdot a + 15}{H^4} + \frac{5 \cdot x^3 (a-1)}{H^3} \right] - \frac{B_{n} \cdot n}{\sum B \cdot B_{n} \cdot \lambda^2}. \]

Для определения характерных точек мониторинга были рассмотрены высотные здания с различной конструктивной системой [28–30].

Здание 1 с рамно-связевым каркасом, с монолитным железобетонным ядром жесткости (высота 118,75 м, 26 этажей). Расположение: г. Москва, пр-т Вернадского, стр. 10. Из условия координат экстремумов линии прогибов датчики размещены на 1, 7, 13, 20, 26 этажах (рис. 5).

Здание 2 с перекрестно-стеновой конструктивной системой (высота 136,81 м, 44 этажа). Расположение: Московская обл., г. Красногорск, Павшино.

Рис. 5. Расчетная схема здания, общий вид, схема размещения датчиков
Рис. 6. Расчетная схема здания, общий вид, схема размещения датчиков

Рис. 7. Расчетная схема здания, общий вид, схема размещения датчиков
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Датчики размещены на 1, 11, 22, 33, 44 этажах (рис. 6).

Здание 3 коробчато-стволной конструктивной системы с аутригерными этажами (высота 103,5 м, 23 этаж). Проектируемое здание. Датчики размещены на 1, 6, 12, 18, 23 этажах (рис. 7).

Здание 4 оболочковой конструктивной системы с аутригерными этажами (высота 100 м, 25 этаж). Проектируемое здание. Датчики размещены на 1, 6, 12, 18, 25 этажах (рис. 8).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для принятых конструктивных систем высотных зданий был произведен ручной расчет перемещений конструкций по выше представленным формулам. Для каждой конструктивной системы смоделирована расчетная модель методом конечных элементов в программных комплексах Лира САПР и SCAD, а также их сопоставление при статической ветровой нагрузке и пульсационной составляющей ветровой нагрузки, показанных на рис. 9–12.

Перемещения, возникающие от ветровой статической нагрузки и от пульсационной составляющей ветровой нагрузки по осям X и Y для различных конструктивных систем, полностью соответствуют друг другу. В связи с этим можно рассматривать перемещения только при действии ветровой статической нагрузки, результаты которого представлены в табл. 1.

Сопоставление перемещений конструкций при ручном и компьютерном расчетах показало, что по некоторым схемам отличия составляют до шести раз (рис. 13). Компьютерные модели были построены по традиционным приемам — без связей конечной, переменной жесткости между перекрытиями и вертикальными конструкциями, связанное со снижением жесткости связей при эксплуатации. Деформации в свою очередь зависят от соотношения жесткости вертикальных и горизонтальных элементов каркаса. Компьютерный расчет также показывает несколько экстремумов по высоте здания, когда происходит наклон касательной к линии изгиба. По данным компьютерного расчета выявлена, что линия деформаций здания по вертикали имеет нелинейный характер, что соответствует общей теории расчета связевого типа каркаса высотных зданий, который согласуется с общей теорией связевых каркасов с ядром жесткости. Деформации, зависящие от соотношения жесткости вертикальных и горизонтальных элементов каркаса, показывают, что характерные точки перелома находятся через 1/4 высоты здания. Довольно часто инклинометры размещают по принципу «на каждом этаже». В статье [6] рассматривается алгоритм, основанный на принципе трехсплайновой интерполяции для оценки горизонтального смещения высотных зданий для вывода функции линии деформаций вертикали здания, анализируется уменьшение количества датчиков в два раза. При этом отмечается, что после математической обработки функция остается неизменной. В предлагаемом нами варианте расстановки инклинометров используются принципы дифференцирования вертикальной линии деформаций по экстремумам, что приводит к тому же принципу непрерывности. Следовательно, количество групп...
А.Н. Плотников, М.Ю. Иванов

Рис. 9. Сопоставление перемещений по осям X и Y для здания 1
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Рис. 10. Сопоставление перемещений по осям X и Y для здания 2
Рис. 11. Сопоставление перемещений по осям X и Y для здания 3
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Рис. 12. Сопоставление перемещений по осям X и Y для здания 4
датчиков может быть уменьшено до количества точек экстремумов.

В исследованиях [3, 5] рассматривается определение перемещений при помощи технологий глобальной навигационной спутниковой системы, где особое внимание уделяется контролю вертикальных элементов. Показания датчиков GPS должны корректироваться инклинометрами и учитываться показания анемометров по ветровой нагрузке. В работе [1] изучаются корреляционные связи углов наклона колонн между этажами и в пределах одного этажа. В публикации [3] акцент делается на необходимость выполнения геодезических наблюдений за деформациями земной поверхности. Приводятся результаты численного моделирования деформации грунта вблизи карьеров. В данных работах исследуются деформации зданий вокруг вертикальной оси, но не производится контроль жесткостных параметров, работающих на сдвиг перекрытий.

Высотные здания постоянно испытывают колебательные движения, которые возникают от воздействия ветровых и сейсмических нагрузок. Контроль технического состояния здания выполняется по собственной частоте колебаний и ускорению точек контроля, возникающих от динамических нагрузок при нормальной эксплуатации объекта. Акселерометры необходимо устанавливать равномерно по высоте здания. Для определения частот колебаний основных несущих систем зданий следует принимать собственную частоту, которой соответствует наиболее близкая по форме перемещений здания, возникающая от статической нагрузки (максимальные отклонения по амплитуде). Оперативный контроль состояния принято выполнять по частоте собственных колебаний нескольких высших форм.

Информацию о состоянии высотного здания предоставляет тензометрия, которая базируется на определении напряжений и деформаций. При помощи тензометрии возможно проследить процесс перераспределения усилий в вертикальных несущих элементах, которые возникают в результате неравномерной осадки здания, изгиба от ветра.

Более подробную информацию о деформациях зданий можно получить с помощью инклинометров. Они дают сведения о деформациях высотного здания в пространстве.

Инклинометры следует размещать в плане здания «центр – углы здания». При таком размещении...
возможно прослеживание корреляционных связей углов наклона колонн с максимальными значениями. Наклон всех колонн может происходить в одну сторону, что означает общий крен здания; в две стороны — деформации в пространстве; вокруг оси здания — закручивание. Необходимо сопоставление деформаций крайних колонн с деформацией центра здания (ядра жесткости), которое должно быть реализовано программно в системе СМИК для получения более точной информации.

Минимальное необходимое количество датчиков принимается по критическим точкам мониторинга из принципа измерения деформаций, возникающих в точках экстремумов линии прогибов здания, что характеризует форму вертикальной оси здания, зависящую от соотношения жесткостных параметров системы и их изменения в процессе эксплуатации. Схемы размещения основных датчиков мониторинга представлены на рис. 14–18.

Максимальный крен, возникающий от временной нагрузки, составил 379". Предельно-допустимый угол крена для высотного здания 412" по СП 20.13330.2016. Аналогично по EN 1990 при максимально возможных отклонения здания от вертикали L/500. Из полученных данных были приняты инклинометры с диапазоном измерений ±720" (угловых секунд) — двухкоординатные.

Максимальная частота собственных колебаний всех форм для всех объектов составила 1,38–1,67 Гц. Все значения находятся в пределах первой формы колебаний по СП 20.13330.2016 для разных ветровых районов. Аналогично по EN 1991-1-4. Для определения частоты собственных колебаний были приняты акселерометры с низким уровнем диапазона, от 0,1 до 40 Гц.

Рис. 14. Схема расположения инклинометров и акселерометров для рамно-связевого каркаса с монолитным железобетонным ядром жесткости на 7, 13, 20, 26 этажах
Рис. 15. Схема расположения инклинометров и акселерометров для перекрестно-стеновой конструктивной системы на 11, 22, 23, 33 этажах
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Рис. 16. Схема расположения инклинометров для коробчато-ствольной конструктивной системы с аутригерными этажами на 6, 12, 18, 23 этажах
Рис. 17. Схема расположения инклинометров и акселерометров для оболочковой конструктивной системы с аутригерными этажами на 6, 12, 18, 25 этажах
Значения предельных относительных деформаций при продолжительном действии нагрузки по СП 63.13330.2018, при относительной влажности воздуха окружающей среды 40–75 %, при сжатии для тяжелого бетона составляет 0,0034. По EN 1992 при аналогичных условиях — 0,0035. При продолжительном действии нагрузок относительные деформации в нижних ярусах колонн составили 0,00227, в ядре жесткости — 0,0003. Все полученные значения не превышали предельные. Из полученных данных были приняты тензометры с максимальным диапазоном измерений до 3000 микрострейн (мкм/м).

При установке инклинометров необходимо учитывать деформации фундаментной плиты. Действие постоянной нагрузки собственного веса, в частности ядра жесткости, может привести к его «вогнутости», датчики мониторинга устанавливаются после этой ситуации, при этом необходимо учитывать исходное состояние при определении угла поворота от временной нагрузки. Если же рассматривать только ветровую нагрузку, то фундаментная плита может «отрываться» от основания. При этом следует вводить корректировку на показания инклинометров. В физически существующем здании такой величины отрыва фундамента от основания нет, так как действует собственный вес здания. В связи с этим появляется необходимость учитывать одностороннее изменение угла поворота фундаментной плиты при действии ветровой нагрузки.
ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

Для проведения автоматического (постоянно-го) мониторинга высотных зданий целесообразно использовать комплексный, интегральный способ, измеряющий деформации вертикальных несущих конструкций, частоты и амплитуды колебаний, углы поворота.

Из общей теории расчета высотных зданий и компьютерных расчетных моделей вытекает, что датчики СМИК целесообразно устанавливать по зданию равномерно, охватывая периметр этажей и всю высоту.

Измерения должны проводиться по контуру перекрытий на этажах через каждые 1/4 высоты здания, а также на ядре жесткости для контроля целостности перекрытий и их связи с ядром жесткости. Вывод сделан по результатам определения экстремумов дифференциальной функции упругой вертикали здания.

Акселерометры рекомендуется размещать на тех же отметках, что инклинометры, на ядре жесткости, в центре здания, как более жестком элементе, определяющем общую жесткость здания.

Тензометры рекомендуется размещать в нижних этажах вертикальных несущих элементов, где возникают максимальные усилия, необходимо соотносить показания тензометров с инклинометрами.

В дальнейшем необходима разработка компьютерных программ, прослеживающих корреляцию между показаниями групп датчиков, что даст новые возможности для анализа технического состояния зданий службой эксплуатации, более полно раскроет возможности интегрального мониторинга.

ЛИТЕРАТУРА

1. Снежков Д.Ю., Леонович С.Н. Мониторинг возводимых и эксплуатируемых железобетонных конструкций неразрушающими методами. Минск : БНТУ, 2016. 330 с.
2. Li J., Hao H. A review of recent research advances on structural health monitoring in Western Australia // Structural Monitoring and Maintenance. 2016. Vol. 3. Issue 1. Pp. 33–49. DOI: 10.12989/ smm.2016.3.1.033
3. Mustafin M.G., Valkov V.A., Kazantsev A.I. Monitoring of deformation processes in buildings and structures in metropolises // Procedia Engineering. 2017. Vol. 189. Pp. 729–736. DOI: 10.1016/j.proeng.2017.05.115
4. Quesada-Olmo N., Jimenez-Martinez M.J., Fargas-Abadia M. Real-time high-rise building monitoring system using global navigation satellite system technology // Measurement. 2018. Vol. 123. Pp. 115–124. DOI: 10.1016/j.measurement.2018.03.054
5. Zhang X., Zhang Y., Li B., Qiu G. GNSS-based verticality monitoring of super-tall buildings // Applied Sciences. 2018. Vol. 8. Issue 6. P. 991. DOI: 10.3390/app08060991
6. Xiong H.-B., Cao J.-X., Zhang F.-L. Inclinometer-based method to monitor displacement of high-rise buildings // Structural Monitoring and Maintenance. 2018. Vol. 5. Issue 1. Pp. 111–127. DOI: 10.12989/smm.2018.5.1.111
7. Sirombo E., Filippi M., Catalano A., Sica A. Building monitoring system in a large social housing intervention in Northern Italy // Energy Procedia. 2017. Vol. 140. Pp. 386–397. DOI: 10.1016/j.egypro.2017.11.151
8. Сенекин Г.В., Суренов Д.Н. Использование автоматизированных систем мониторинга конструкций (АСМК) // Вестник МГСУ. 2017. № 12. Вып. 2 (101). С. 230–242. DOI: 10.22227/1997-0935.2017.2.230-242
9. Семенов А.А., Порфирьева Е.Н., Плотников А.Н. Необходимые зоны контроля параметров высотных зданий, определяемые из характера кривизны упругой линии вертикальных элементов // Сб. науч. тр. молодых ученых и специалистов. Чебоксары : Изд-во Чуваш. ун-та. 2018. С. 28–32.
10. Плотников А.Н., Иванов М.Ю., Порфирьева Е.Н. Информативность систем мониторинга высотных зданий из принципа минимизации количества датчиков // Новое в архитектуре, проектировании строительных конструкций и реконструкции : мат. IV Междунар. (X Всеросс.) конф. НАСКР-2018.
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Чебоксары : Чувашский государственный университет, 2018. С. 267–277.

15. Cheillakou E., Tsopelas N., Anastasopoulos A., Kourousis D., Rychkov D., Gerhard R. et al. Strain monitoring system for steel and concrete structures // Procedia Structural Integrity. 2018. Vol. 10. Pp. 25–32. DOI: 10.1016/j.prostr.2018.09.005

16. Castagnetti C., Bassoli E., Vincenzi L., Mancini F. Dynamic assessment of masonry towers based on terrestrial radar interferometer and accelerometers // Sensors. 2019. Vol. 19. Issue 6. Pp. 1319. DOI: 10.3390/s19061319

17. Тамразян А.Г., Мехрабалидах Б.А. Частота свободных колебаний многоэтажных зданий при расчете на прогрессирующее обрушение в нелинейной динамической постановке // Современные проблемы расчета и проектирования железобетонных конструкций многоэтажных зданий : сб. докл. Междунар. науч. конф., посвящ. 100-летию со дня рождения П.Ф. Дроздова. М. : МГСУ, 2013. С. 235–245.

18. Kashima T. Study on changes in dynamic characteristics of high-rise steel-framed buildings based on strong motion data // Procedia Engineering. 2017. Vol. 199. Pp. 194–199. DOI: 10.1016/j.proeng.2017.09.269

19. Ахмазов В.О., Климов А.Н. Сопоставление данных системы мониторинга высотных зданий с расчетом в программном комплексе // Современные проблемы расчета и проектирования железобетонных конструкций многоэтажных зданий : сб. докл. Междунар. науч. конф., посвящ. 100-летию со дня рождения П.Ф. Дроздова. М. : МГСУ, 2013. С. 38–44.

20. Sanchez Crespo R., Kaczmarczyk S., Picton P., Su H. Modelling and simulation of a stationary high-rise elevator system to predict the dynamic interactions between its components // International Journal of Mechanical Sciences. 2018. Vol. 137. Pp. 24–45. DOI: 10.1016/j.ijmecsci.2018.01.011

21. Плотников А.Н. Несущая способность железобетонных кессонных перекрытий с учетом пластических деформаций ребер // Современные проблемы расчета железобетонных конструкций, зданий и сооружений на аvariйные воздействия : сб. тр. Междунар. науч. конф., посвященной 85-летию кафедры железобетонных и каменных конструкций и 100-летию со дня рождения Н.Н. Попова. Москва, 19–20 апреля 2016 г. М. : МГСУ, 2016. С. 348–353.

22. Порфирьева Е.Н., Иванов М.Ю., Плотников А.Н. Методы предельного равновесия и главных напряжений для опорных по контуру перекрытий из конструкционного керамзитобетона // Строительство — формирование среды жизнедеятельности : XXI Междунар. науч. конф. // сб. мат. семинара «Молодежные инновации», Москва, 25–27 апреля 2018 г. М. : МГСУ, 2018. С. 276–282.

23. Иванов М.Ю., Порфирьева Е.Н., Плотников А.Н. Методы предельного равновесия и главных напряжений для опорных по контуру плит перекрытий // Инженерные кадры — будущее инновационной экономики России : мат. III Всероссийской студенческой конф., Йошкар-Ола, 21–24 ноября 2017 г., в 8 ч. Часть 5. Инновации в строительстве, природоустройстве и техносферной безопасности. Йошкар-Ола : Поволжский государственный технологический университет, 2017. С. 36–37.

24. Николаева А.Г., Яковлева О.С. Анализ влияния последовательности нагружения на напряжено-деформированное состояние элементов каркасов многоэтажных зданий // Управление ассортиментом, качеством и конкурентоспособностью в глобальной экономике : сб. статей VIII Междунар. заочной науч.-практ. конф., 30 марта 2017 г. Чебоксары : ЧКИ РУК, 2016. С. 131–134.

25. Иванова Н.В., Николаева А.Г. Влияние процента армирования на НДС элементов рамных каркасов многоэтажных зданий при расчете с учетом возведения // Современные вопросы механики сплошных сред 2017 : сб. ст. по мат. конф. (круглого стола) с междунар. участием. Чебоксары : Чувашский государственный университет, 2017. С. 38–42.

26. Дроздов П.Ф. Конструирование и расчет несущих систем многоэтажных зданий и их элементов. М. : Стройиздат, 1977. 223 с.

27. Дроздов П.Ф., Додонов М.И. и др. Проектирование и расчет многоэтажных гражданских зданий и их элементов. М. : Стройиздат, 1986. 351 с.

28. Belostotsky A.M., Akimov P.A., Negrozov O.A., Petryashev N.O., Petryashev S.O., Sherbina S.V. et al. Adaptive finite-element models in structural health monitoring systems // Magazine of Civil Engineering. 2018. Vol. 9. Issue 4 (34). DOI: 10.18720/MCE.78.14

29. Bulgakov A., Shaykhutdinov D., Gorbatenko N., Akhmedov S. Application of full-scale experiments for structural study of high-rise buildings // Procedia Engineering. 2015. Vol. 123. Pp. 94–100. DOI: 10.1016/j.proeng.2015.10.063

30. Гусакова Е.А. Информационное моделирование жизненного цикла проектов высотного строительства // Вестник МГСУ. 2018. T. 13. Вып. 1 (112). С. 14–22. DOI: 10.22227/1997-0935.2018.1.14-22
INTRODUCTION

The modern period of economic development is characterized by the expansion of construction production, which is accompanied by an increase in the complexity of buildings and structures under construction. The large masses of the buildings themselves are concentrated on a small part of the surface, which in turn affects various deformations. In order to ensure the safety of life during operation, continuous automatic monitoring of the technical condition is required. The issue of monitoring the condition of structures at the stages of construction and operation is particularly important [1–5]. However, there is no complete algorithm for solving this problem. In some projects the scope of dynamic parameters control is realized, continuous installation of accelerometers, determination of building deformations are reduced to a minimum [6]. In other projects, a chain of inclinometers is installed, although deformation measurements are often carried out only on the most rigid vertical axis — the stiffness core. Due to the use of a large number of sensors and the acquisition of a significant amount of data over time, the operations department faces the problem of analyzing this data. At the same time, automatic monitoring itself is a costly procedure [7–8]. In addition, areas distant from the center of the building that affect its rigidity remain outside the sensor range.

Different structural systems have common mathematical patterns that determine various deformations, in particular, from static wind loads [9–12]. Longitudinal axis deformations from the rigidity of the load-bearing elements also affect the building as a whole [13]. This brings up the issue of reducing the number of sensors required to monitor high-rise buildings, taking into account its overall dependencies [14].

Modern high-rise buildings are complex spatial systems consisting of various elements and connections, the parameters (stiffness, etc.) of which change in the course of loading [15]. The whole range of static and dynamic influences leading to the change of the condition characteristics should be considered during the monitoring: changes in the stiffness of structural connections, changes in the physical properties of ma-

Fig. 1. Distribution of deformations along the height of the building, depending on the stiffness of the vertical elements: \(\lambda \) — stiffness characteristic of vertical diaphragm elements (core); if value is less than 1, vertical elements are more rigid, if value is more than 6, vertical elements are more flexible

\[f(x) = \begin{cases} \lambda > 1 & \text{if more rigid}\, \text{vertical elements} \\ \lambda < 1 & \text{if more flexible}\, \text{vertical elements} \end{cases} \]
Fig. 2. Distribution of deformations and stress by height of the building. Diagrams of the longitudinal forces N, bending moments M, transverse forces Q, deflection v of the braced system with ratios of the reduced stiffness properties between individual vertical elements.

Fig. 3. Twisting of columns around the building axis: α — the angle of rotation of the columns relative to the center of rotation.

Fig. 4. Stresses and angles of rotation of the system with a closed loop layout when twisting: 1–4 — angled bearing elements.
Materials, and possible changes in shape and size. Monitoring of high-rise building requires the use of various measuring devices, such as inclinometers, strain gauges, and accelerometers [16].

First and foremost, for high-rise buildings it is necessary to determine the dynamic parameters that are formed based on the establishment of periods and buildings' natural oscillations [17–18]. It is also necessary to take into account that oscillations registration requires complex preliminary processing, as well as the creation of a more accurate model of structural dynamics [19–20]. The main feature of the dynamic parameters determination is that the observation schemes can be quite simple (up to one point). Dynamic parameters not only make it possible to control the values of acceleration, but also reveal the collaboration of buildings and foundation soils, as well as allow for identification of previously unknown phenomena.

Proceeding from the previously mentioned, the task of efficient placement of measurement sensors and analysis of main parameters appears to be relevant today and requires multiple studies.

This work presents the substantiation of efficient placement of groups of sensors necessary for monitoring high-rise buildings, which record changes of angular and surface deformations, as well as the dynamic parameters based on the differential functions of an elastic vertical of high-rise buildings.

MATERIALS AND METHODS

The main typical monitoring points required to minimize the number of sensors in high-rise buildings are determined based on the analysis of the extrema of the deformation function of the building vertical axis while maintaining the horizontal plane of the floor structures [21–23].

The distribution of stress in the main bearing elements, as well as their redistribution under external influences and loads are determined based on the stiffness of the elements and the interface yield. All these parameters depend not only on their stress-strain state, but also on the properties of materials used and on operating conditions [24–25].

Floor and roof slab stiffness is reduced compared to a solid monolithic slab due to the yield of numerous joints. This reduction is allowed to be taken into account by introducing a reduced value of the initial elasticity modulus of concrete at a constant ratio between these shear and elasticity moduli equal to that for prefabricated slabs with a proper joint seal ranging from 0.15 to 0.25.

The change in the roof slab yield leads to the redistribution of stress between the vertical elements. Horizontal displacement depends on the stiffness of the slabs and their interfacing with vertical elements [26–27].

Deformations depend on the ratio of stiffness of vertical and horizontal elements of the framework (Fig. 1). Typical fracture points are located 1/4 of the building’s height away from each other, as shown in Fig. 2. Dependencies are presented in the literature on the deformation theory of high-rise buildings.

If the horizontal load does not align with the building’s elastic center, additional horizontal movements from uneven vertical deformations and the building’s torsion around the center of rotation should also be taken into account (Fig. 3).

In general, building deformations occur not only in two planes, but also in space. It stems from limited structural heterogeneity (difference in rigidity of geometrically symmetrical elements), accumulation of damages during operation and delays during construction. The system elements generate twisting stresses and rotate relative to the vertical axis of the building.

For the diagrams above, the deformation of the framework can be detected by the changing of the controlled column angles, while the specific type of deformation can be detected by the indices of correlation between the inclination angles. Deformation of the framework horizontal displacement within one floor of the building may occur: inclination angles of columns within the same floor change, while columns that are adjacent height-wise with controlled columns keep the inclined position; inclination of the entire building framework: the inclination angles of the height-wise adjacent columns are the same. Fig. 4 shows the deformation of the horizontal plane framework twisting. Mutual correlation of angles in orthogonal planes X and Y is typical for this type of deformation.

The main formulas necessary for determining deflections were created by P.F. Drozdov [26].

Horizontal movement (deflection) in any section of the load-bearing system or structure in the coordinate system used:

\[v(x) = \frac{n}{2} \sum \frac{B}{\lambda^2} \cdot \beta \cdot \alpha \cdot \left(1 - \frac{x}{H}\right) \cdot \left(1 + \frac{H}{x}\right) \]

where \(v(x) \) is a deflection in the x-section of a load-bearing system or structure with rigid lintels or crossbeams equal to the load distributed according to the trapezoidal rule:

\[v'_x(x) = -\frac{q \cdot H^4}{120 \cdot B_n} \left[4a + 11 + (a - 1) \left(\frac{x}{H}\right)^5 + 5 \left(\frac{x}{H}\right)^4 - 5 \cdot (3 + a) \left(\frac{x}{H}\right)^3 \right] \]

(2)
Fig. 5. Building design scheme, general view, sensor layout
Fig. 6. Building design scheme, general view, sensor layout

Fig. 7. Building design scheme, general view, sensor layout
for each construction system using the Lyra CAD and SCAD software. Comparison of these models affected by static wind load and the wind load pulsation component shown on fig. 9–12 was performed.

Movements caused by wind static load and the wind load pulsation component along the X- and Y-axes for the various construction systems, are fully matched to each other. Therefore, it is possible to regard movements only under the influence of the wind static load, results of which are presented in tbl. 1.

Comparison of structure movements calculated using manual and computer calculations has shown that with some designs the difference can be up to six times (Fig. 13). Computer models were created according to traditional methods — without the connection of finite variable stiffness between floor slabs and vertical structures, related to the reduction of connection stiffness during operation. Deformations, in turn, depend on the stiffness ratio of the vertical and horizontal elements of the framework. The computer calculation also shows several extrema in the height of the building when the tangent to the bending line is inclined. According to the computer calculation data, it was revealed that the building vertical deformation line is non-linear, which corresponds to the general design theory for high-rise building braced-type frames, which is in agreement with the general theory of braced frames with a stiffness core. Deformations that depend on the ratio of vertical and horizontal element stiffness of the frame show that the typical fracture points are located 1/4 of the building’s height away from each other.

Quite often the inclinometers are placed on each floor. The article [6] considers an algorithm based on the principle of three-spline interpolation to estimate the horizontal displacement of high-rise buildings to output the function of the deformation line of the building vertical, analyzes the reduction of the number of sensors in half. It is also noted that the function remains unchanged after mathematical treatment. In the proposed variant of inclinometer arrangement, we use the principle of vertical deformation line differentiation by extrema, which results in the same principle of continuity. Consequently, the number of sensor groups can be reduced to the number of extremum points.

The studies [3, 5] consider the definition of movement by means of global navigational satellite system technologies, where special emphasis is placed on vertical element control. The GPS sensor readings must be corrected with inclinometers, while the wind load anemometer readings must be taken into account. The paper [1] studies correlation of column inclination angles between floors and within one floor. The publication [3] focuses on the need to perform geodetic observations of the ground surface deformations. The results of numerical modeling of soil deformation near quarries are given. In these works, deformations of buildings around the vertical axis are investigated, but the control of stiffness parameters affecting the displacement of floor slabs is not performed.

High-rise buildings constantly experience oscillatory movements that are caused by wind and seismic loads. The technical condition of the building is monitored by its own oscillation frequency and the acceleration of control points arising from dynamic loads during normal structure operation. Accelerometers should be installed evenly over the height of the building. To determine the oscillation frequencies of the main load-bearing systems of buildings, one should take their own
Fig. 9. Comparison of movements along the X- and Y-axes for building 1
Fig. 10. Comparison of movements along the X- and Y-axes for building 2
Fig. 11. Comparison of movements along the X- and Y-axes for building 3.
Система мониторинга высотных зданий, определяемая из характера кривизны упругой линии вертикальных элементов

Fig. 12. Comparison of movements along the X- and Y-axes for building 4
frequency, which corresponds to the closest frequency in terms of building movement shape, arising from the static load (maximum amplitude deviations). Condition operation control is usually carried out according to the frequency of natural oscillations of several higher modes.

Information on the condition of a high-rise building is provided by strain-gauging, which is based on the determination of stresses and deformations. With the help of strain-gauging, it is possible to trace the process of redistribution of stresses in the vertical bearing elements, which arise as a result of uneven building foundation yield or deflection due to the wind.

More detailed information about building deformations can be obtained using inclinometers. They provide deformation data of a high-rise building in a space.

Inclinometers should be placed in the center and the corners of the building according to the building plan. Such layout makes it possible to trace the correlation of the column inclination angles with the maximum values. Column inclination may happen in one direction, which means the overall building tilt; or in two directions, which would signify deformations in a space; while column inclination around the axis of the building would mean twisting. It is necessary to compare the deformations of the outermost columns with the deformation of the building center (stiffness core), which should be implemented in software in the ESMS system to obtain more accurate information.

The minimum required number of sensors is based on critical monitoring points from the principle of measuring deformations arising in the extremum points of the building deflection line, which defines the shape of the building vertical axis, depending on the ratio of system stiffness parameters and their changes during operation. Main monitoring sensor layout is shown in fig. 14–18.

The maximum tilt resulting from a temporary load was 379°. Maximum-allowable tilt angle for a 412" high-rise building according to RR 20.13330.2016. Likewise, refer to EN 1990 for the maximum possible building deviation from the L/500 vertical. From the data obtained, inclinometers with a measuring range of ±720" (arcseconds) were adopted – two-axis.

The maximum frequency of natural oscillations of all modes for all structures was 1.38–1.67 Hz. All values are within the limits of the first oscillation mode according to RR 20.13330.2016 for different wind regions. Similarly to EN 1991-1-4. To determine the frequency of natural oscillations, accelerometers with a low level of range from 0.1 to 40 Hz were taken.

Table 1. The results of structure horizontal displacements calculation

Section	x/H	Braced frame (1)	Cross-wall system (2)	Box-stemmed system (3)	Tube system (4)				
		v(x), m manual calculation	v(x), m computer calculation	v(x), m manual calculation	v(x), m computer calculation	v(x), m manual calculation	v(x), m computer calculation		
0	0	0.01246	0.03	0.1363	0.004	0.3236	0.044	0.25	0.017
1	1/4	0.008494	0.02	0.1052	0.003	0.2494	0.034	0.181	0.011
2	1/2	0.004695	0.02	0.0721	0.002	0.1700	0.021	0.125	0.006
3	3/4	0.001613	0.01	0.0227	0.0007	0.08353	0.009	0.065	0.002
4	1	0	0	0	0	0	0	0	0

Fig. 13. Comparison of floor slab deflection graphs
Фиг. 14. Расположение инклинометров и ускоромеров для жесткого ограждающего каркаса с монолитной бетонной жесткостью на 7-м, 13-м, 20-м и 26-м этажах
Fig. 15. Location of inclinometers and accelerometers for a cross-wall construction system on the 11th, 22nd, 23rd and 33rd floors
Fig. 16. Location of inclinometers for the box-stemmed construction system with outrigger floors on the 6th, 12th, 18th and 23rd floors.
Fig. 17. Location of inclinometers and accelerometers for tube construction system with outrigger floors on the 6th, 12th, 18th and 25th floors
Values of maximum permissible relative deformations at continuous loading action according to RR 63.13330.2018, at relative humidity of ambient air of 40–75 %, at compression for heavy concrete is 0.0034. According to EN 1992 under similar conditions the value is 0.0035. Relative deformations in the column bottom levels at continuous loading action were 0.00227, while in the stiffness core they were 0.0003. All the values obtained did not exceed the maximum values. Tensometers with a maximum measuring range of up to 3,000 microstrains (µε) were adopted according to the data obtained.

When installing inclinometers, the deformation of the foundation slab must be taken into account. The constant load of its own weight, in particular the weight of the stiffening core, can result in “concavity”, monitoring sensors are installed after this situation, and it is necessary to take into account the initial state when determining the angle of rotation from the temporary load. If considering only the wind load, the foundation slab can be “torn off” from the base. Correction based on the inclinometer readings must be applied in such cases. In a physically existing building such distance of foundation and base separation is impossible due to the building’s own weight. In this regard, there is a need to take into account the unilateral change in the angle of rotation of the foundation slab due to the action of wind loads.

Fig. 18. Location of strain gauges for various construction systems of high-rise buildings on the 1st floor
CONCLUSION AND DISCUSSION

For automatic (constant) monitoring of high-rise buildings, it is advisable to use a complex integrated method that measures deformations of vertical load-bearing structures, frequencies and amplitudes of oscillations, and rotation angles.

From the design theory of high-rise buildings and computer calculation models it follows that it is expedient to install ESMS sensors evenly along the building, spanning the perimeter of floors and the whole building height. Measurements should be taken along the floor slab contour on the floors every 1/4 of the building’s height, as well as at the stiffening core to control the integrity of the slabs and their connection to the stiffness core. The conclusion is made based on the results of determination of the differential function extrema of the elastic vertical of the building.

It is recommended to place accelerometers at the same points as inclinometers, on the stiffening core, in the center of the building, as a more stiff element that determines the overall stiffness of the building.

It is recommended to place strain gauges in the lower floors of vertical bearing elements, where the maximum forces occur, it is also necessary to correlate the readings of strain gauges with inclinometers.

In the future, it is necessary to develop computer programs that track the correlation between the readings of sensor groups, which will give new opportunities for the analysis of the building technical condition by the operations department, and will more fully develop the possibilities of integrated monitoring.

REFERENCES

1. Snezhkov D.Yu. Monitoring of constructed and operated reinforced concrete structures by non-destructive methods. Minsk, BNTU Publ., 2016; 331. (rus.).
2. Li J., Hao H. A review of recent research advances on structural health monitoring in Western Australia. Structural Monitoring and Maintenance. 2016; 3(1):33-49. DOI: 10.12989/smm.2016.3.1.033
3. Mustafin M.G., Valkov V.A., Kazantsev A.I. Monitoring of deformation processes in buildings and structures in metropolises. Procedia Engineering. 2017; 189:729-736. DOI: 10.1016/j.proeng.2017.05.115
4. Quesada-Olmo N., Jimenez-Martinez M.J., Farjas-Abadia M. Real-time high-rise building monitoring system using global navigation satellite system technology. Measurement. 2018; 123:115-124. DOI: 10.1016/j.measurement.2018.03.054
5. Zhang X., Zhang Y., Li B., Qiu G. GNSS-based verticality monitoring of super-tall buildings. Applied Sciences. 2018; 8(6):991. DOI: 10.3390/app8060991
6. Xiong H.-B., Cao J.-X., Zhang F.-L. Inclinometer-based method to monitor displacement of high-rise buildings. Structural Monitoring and Maintenance. 2018; 5(1):111-127. DOI: 10.12989/smm.2018.5.1.111
7. Sirombo E., Filippi M., Catalano A., Sica A. Building monitoring system in a large social housing intervention in Northern Italy. Energy Procedia. 2017; 140:386-397. DOI: 10.1016/j.egypro.2017.11.151
8. Sopegin G.V., Sursanov D.N. The use of automated systems for monitoring structures (AFMK). Vestnik MGU. [Proceedings of the Moscow State University of Civil Engineering]. 2017; 12(2)(101):14-22. DOI: 10.22227/1997-0935.2017.2.230-242 (rus.).
9. Semenov A.A., Poriaev I.A., Kuznetcov D.V., Nguen T.H., Saitgalina A.S., Tregubova E.S. Stress-strain state of high-rise building under wind load and progressive collapse. Construction of Unique Buildings and Structures. 2017; 8(59):7-26. (rus.).
10. Sy L.D., Yamada H., Katsuchi H. Interference effects of wind-over-top flow on high-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2019; 187:85-96. DOI: 10.1016/j.jweia.2019.02.001
11. Yuan K., Hui Y., Chen Z. Effects of facade appurtenances on the local pressure of high-rise building. Journal of Wind Engineering and Industrial Aerodynamics. 2018; 178:26-37. DOI: 10.1016/j.jweia.2018.05.004
12. Aly A.M. Pressure integration technique for predicting wind-induced response in high-rise buildings. Alexandria Engineering Journal. 2013; 52(4):717-731. DOI: 10.22227/1997-0935.2013.04.006
13. Ivanov M.Yu., Porfiryeva E.N., Plotnikov A.N. Necessary zones of control of parameters of high-rise buildings, determined from the nature of the curvature of the elastic line of vertical elements. Collection of scientific works of young scientists and specialists. Cheboksary, Chuvash. University Publ., 2018; 28-32. (rus.).
14. Plotnikov A.N., Ivanov M.Yu., Porfiryeva E.N. Informativeness of monitoring systems for high-rise buildings from the principle of minimizing the number of sensors. New in architecture, building design and reconstruction: materials of the IV International (X All-Russian) conference NACCR-2018. Cheboksary, Chuvash. University Publ., 2018; 267-277. (rus.).
15. Cheilakou E., Tselapas N., Anastasopoulos A., Kourousis D., Rychkov D., Gerhard R. et al. Strain monitoring system for steel and concrete structures. Procedia Structural Integrity. 2018; 10:25-32. DOI: 10.1016/j.prostr.2018.09.005
16. Castagnetti C., Bassoli E., Vincenzi L., Mancini F. Dynamic assessment of masonry towers based on terrestrial radar interferometer and accelerometers. Sensors. 2019; 19(6):1319. DOI: 10.3390/s19061319
17. Tamrazyan A.G., Mehralizadeh B.A. Frequency of free oscillations of multi-storey buildings when
calculating the progressive collapse in a nonlinear dynamic formulation, taking into account the time of localized damage. Modern problems of calculating and designing iron concrete structures of multi-storey buildings: a collection of reports of the International Scientific Conference dedicated to the 100-th anniversary of the birth of P.F. Drozdov. Moscow, MGSU Publ., 2013; 235-245. (rus.).

18. Kashima T. Study on changes in dynamic characteristics of high-rise steel-framed buildings based on strong motion data. Procedia Engineering. 2017; 199:194-199. DOI: 10.1016/j.proeng.2017.09.269

19. Almazov V.O., Klimov A.N. Comparison of data from the monitoring system of high-rise buildings with the calculation in the program complex. Modern problems of calculating and designing iron concrete structures of multi-storey buildings: a collection of reports of the International Scientific Conference dedicated to the 100-th anniversary of the birth of P.F. Drozdov. Moscow, MGSU Publ., 2013; 38-44. (rus.).

20. Sanchez Crespo R., Kaczmarczyk S., Picton P., Su H. Modelling and simulation of a stationary high-elevator system to predict the dynamic interactions between its components. International Journal of Mechanical Sciences. 2018; 137:24-45. DOI: 10.1016/J.IJMECS.2018.01.011

21. Plotnikov A.N. Bearing capacity of reinforced concrete covered floors, taking into account the plastic deformations of the ribs. Current problems of the calculation of reinforced concrete structures, buildings and structures for emergency effects. Collection of the International Scientific Conference dedicated to the 85th anniversary of the Department of Concrete and Stone Constructions and the 100th anniversary of the birth of N.N. Popov, Moscow, April 19–20, 2016. Moscow, MGSU Publ., 2016; 348-353. (rus.).

22. Porfiryeva E.N., Ivanov M.Yu., Plotnikov A.N. Methods of limiting equilibrium and principal stresses for supported along the contour of floors from structural ceramsite concrete floors. Construction — formation of living environment: XXI International Scientific Conference. Collection of materials from the seminar “Youth Innovations”, Moscow, April 25–27, 2018. Moscow, MGSU Publ., 2018; 276-282. (rus.).

23. Ivanov M.Yu., Porfiryeva E.N., Plotnikov A.N. Marginal equilibrium and main stress methods for floor-supported slabs. Engineering personnel — the future of the innovation economy of Russia: Proceedings of the III All-Russian Student Conference, Yoshkar-Ola, November 21–24, 2017, in 8 parts. Part 5. Innovations in construction, environmental management and technosphere safety. Yoshkar-Ola, Volga State University of Technology Publ., 2017; 36-37. (rus.).

24. Nikolaeva A.G., Yakovleva O.S. Analysis of the impact of the loading sequence on the stress-strain state of the elements of high-rise building frames. Managing the assortment, quality and competitiveness in the global economy: Collection of articles of the VIII International Correspondence Scientific and Practical Conference, March 30, 2017. Cheboksary, CHKI RUC Publ., 2016; 131-134. (rus.).

25. Ivanova N.V., Nikolaeva A.G. Influence of the percentage of reinforcement on the stress-strain state of the elements frames of multi-storey buildings when calculating with regard to the construction. Modern Issues of Continuum Mechanics 2017: Collection of articles on conference materials (round table) with international participation. Cheboksary, Chuvash. University Publ., 2017; 38-42. (rus.).

26. Drozdov P.F. Design and calculation of load-bearing systems of high-rise buildings and their elements. Moscow, Stroizdat Publ., 1977; 223. (rus.).

27. Drozdov P.F., Dodonov M.I. et al. Design and calculation of multi-storey civil buildings and their elements. Moscow, Stroizdat Publ., 1986; 351. (rus.).

28. Belostotsky A.M., Akimov P.A., Negrozov O.A., Petryashev N.O., Petryashev S.O., Sherbina S.V. et al. Adaptive finite-element models in structural health monitoring systems. Magazine of Civil Engineering. 2018; 2:169-178. DOI: 10.18720/MCE.78.14

29. Bulgakov A., Shaykhutdinov D., Gorbatenko N., Akhmedov S. Application of full-scale experiments for structural study of high-rise buildings. Procedia Engineering. 2015; 123:94-100. DOI: 10.1016/j.proeng.2015.10.063

30. Gusakova E.A. Information modeling of the life cycle of high-rise construction projects. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13:1(112):14-22. DOI: 10.22227/1997-0935.2018.1.14-22 (rus.).

Received August 1, 2019.
Adopted in a revised form on November 15, 2019.
Approved for publication November 26, 2019.

Bionotes: Aleksey N. Plotnikov — Candidate of Technical Sciences, Associate Professor, Dean of the Faculty of Civil Engineering; Chuvash State University named after I.N. Ulyanov (ChuvSU); 15 Moskovskiy avenue, Cheboksary, 428015, Russian Federation; plotnikovAN2010@yandex.ru;

Mikhail Yu. Ivanov — postgraduate student, assistant of the Department of building structures; I.N. Ulyanov Chuvash State University (Chuv SU); 15 Moskovskiy avenue, Cheboksary, 428015, Russian Federation; mischa0315@mail.ru.