LETTER TO THE EDITOR

Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China

Yuankai Shi1*, Bo Jia2, Wei Xu3, Wenyu Li4, Ting Liu5, Peng Liu6, Weili Zhao7, Huihai Zhang8, Xiuhua Sun9, Haiyan Yang10, Xi Zhang11, Jie Jin12, Zhengming Jin13, Zhiming Li14, Lugui Qiu15, Mei Dong1, Xiaobing Huang16, Yi Luo17, Xiaodong Wang16, Xin Wang18, Jianqiu Wu19, Jingyan Xu20, Pingyong Yi17, Jianfeng Zhou21, Hongming He22, Lin Liu23, Jianzhen Shen24, Xiaoqiong Tang23, Jinghua Wang25, Jianmin Yang26, Qingshu Zeng27, Zhihui Zhang28, Zhen Cai12, Xiequn Chen29, Kaiyang Ding30, Ming Hou31, Huiqiang Huang34, Xiaoling Li32, Rong Liang39, Qifa Liu33, Yuqin Song3, Hang Su34, Yuhuan Gao35, Lihong Liu35, Jianmin Luo36, Lijing Su37, Zimin Sun30, Huo Tan38, Huaxing Wang39, Jingwen Wang40, Shuye Wang41, Hongyu Zhang42, Xiaohong Zhang43, Daobin Zhou44, Ou Bai45, Gang Wu46, Liling Zhang46 and Yizhuo Zhang8

Abstract

The efficacy and safety of chidamide, a new subtype-selective histone deacetylase (HDAC) inhibitor, have been demonstrated in a pivotal phase II clinical trial, and chidamide has been approved by the China Food and Drug Administration (CFDA) as a treatment for relapsed or refractory peripheral T cell lymphoma (PTCL). This study sought to further evaluate the real-world utilization of chidamide in 383 relapsed or refractory PTCL patients from April 2015 to February 2016 in mainland China. For patients receiving chidamide monotherapy (n = 256), the overall response rate (ORR) and disease control rate (DCR) were 39.06 and 64.45%, respectively. The ORR and DCR were 51.18 and 74.02%, respectively, for patients receiving chidamide combined with chemotherapy (n = 127). For patients receiving chidamide monotherapy and chidamide combined with chemotherapy, the median progression-free survival (PFS) was 129 (95% CI 82 to 194) days for the monotherapy group and 152 (95% CI 93 to 201) days for the combined therapy group (P = 0.3266). Most adverse events (AEs) were of grade 1 to 2. AEs of grade 3 or higher that occurred in ≥5% of patients receiving chidamide monotherapy included thrombocytopenia (10.2%) and neutropenia (6.2%). For patients receiving chidamide combined with chemotherapy, grade 3 to 4 AEs that occurred in ≥5% of patients included thrombocytopenia (18.1%), neutropenia (12.6%), anemia (7.1%), and fatigue (5.5%). This large real-world study demonstrates that chidamide has a favorable efficacy and an acceptable safety profile for refractory and relapsed PTCL patients. Chidamide combined with chemotherapy may be a new treatment choice for refractory and relapsed PTCL patients but requires further investigation.

Keywords: Chidamide, Peripheral T cell lymphoma, Treatment, Chemotherapy

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Letter to the editor

Peripheral T cell lymphomas (PTCLs) are a set of rare and highly heterogeneous tumors derived from mature T cells or natural killer cells and are typically characterized by poor prognosis and aggressive clinical behavior [1]. PTCL accounts for 23 to 26% of all non-Hodgkin lymphoma (NHL) in China, which is significantly higher than the rates in Western countries [2, 3]. A consensus has not been reached on standard treatments for PTCL patients, and most commonly used traditional chemotherapy regimens are associated with a poor response [1, 4]. Moreover, a majority of patients may experience disease relapse even if they receive high-dose chemotherapy and autologous stem cell transplantation (ASCT) [5, 6].

Since 2009, the US Food and Drug Administration (FDA) has approved four new drugs for the treatment of relapsed or refractory PTCL, including the histone deacetylase (HDAC) inhibitors romidepsin and belinostat, the dihydrofolate reductase inhibitor pralatrexate, and the CD30 antibody-drug conjugate brentuximab vedotin for CD30-positive anaplastic large cell lymphoma (ALCL) patients [7, 8].

Chidamide, an innovative new drug independently developed in China, is designed to selectively inhibit the activity of HDAC1, 2, 3, and 10 following oral administration and was approved in December 2014 by the China Food and Drug Administration (CFDA) for the treatment of relapsed or refractory PTCL [9].

The efficacy and safety of chidamide have been demonstrated in a pivotal phase II clinical trial [10], yet further evaluation of its real-world utility is urgently needed. Therefore, we conducted a real-world multicenter efficacy and safety monitoring study to further test the clinical practice value of chidamide in relapsed or refractory PTCL patients in mainland China.

We analyzed 383 patients from April 2015 to February 2016. The cutoff date was February 19, 2016. The methods are shown in Additional file 1. The baseline characteristics of all patients are presented in Additional file 2.

For patients receiving chidamide monotherapy (n = 256), the overall response rate (ORR) and disease control rate (DCR) were 39.06 and 64.45%, respectively. In previous phase II study, the AITL patients received chidamide have a higher ORR of 50%. Higher ORR and superior survival were also observed for AITL patients received romidepsin and belinostat. In this real world study, AITL patients also tend to have higher ORR and DCR of 49.23% and 75.38% which were comparable with previous results. It has been reported that epigenetic regulation plays an important role in AITL pathogenesis, which may be relevant to more clinical benefits by HDAC inhibitors to AITL. The ORR and DCR seem higher for ALK+ ALCL patients receiving chidamide of 66.67% and 83.33%, but only 13 ALK+ ALCL patients receiving chidamide were included in this study and ALK+ ALCL alone has a better prognosis than other subtypes. Given that HDAC inhibitors can impair DNA repair mechanisms, thereby inducing DNA damage, the effects of HDAC inhibitors may be synergistic with the effects of chemotherapy. Several studies have shown that HDAC inhibitors combined with chemotherapy constitute an efficient treatment for PTCL patients, yet the optimal combination regimen remains unknown. This study found that the ORR and DCR were 51.18 and 74.02%, respectively, for patients receiving chidamide combined with chemotherapy (n = 127). For patients with an International Prognostic Index (IPI) of 2–3, the ORR in the chidamide combined with chemotherapy group (n = 55) was 58% higher than that in the chidamide single-agent group (n = 141), with an ORR of 41% (P = 0.0031). Chidamide combined with chemotherapy also increased the ORR for patients with an IPI of 4–5 (n = 26) relative to the ORR of patients receiving chidamide alone (n = 40) with ORRs of 42 and 10%, respectively (P = 0.006). The results of a subgroup analysis showed that the ORRs for patients receiving chidamide combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP)-like regimens, platinum-containing regimens, and other regimens were 53.13, 45.83, and 55.32%, respectively, with DCRs of 81.25, 66.67, and 76.60%, respectively (Table 1).

For patients receiving chidamide monotherapy and chidamide combined with chemotherapy, the median progression-free survival (PFS) was 129 (95% CI 82 to 194) days and 152 (95% CI 93 to 201) days, respectively (P = 0.3266) (Fig. 1) and the median duration of response (DOR) was 148 (95% CI 132 to 171) days and 169 (95% CI 154 to 192) days, respectively (P = 0.3215). In the chidamide monotherapy group, the PFS for AITL and peripheral T cell lymphoma-not otherwise specified (PTCL-NOS) patients were 144.5 days and 133 days, respectively. In the combination group, the PFS for AITL and PTCL-NOS patients were 176 days and 124 days, respectively. The results of a subgroup analysis showed that the median PFS for patients receiving chidamide combined with CHOP-like regimens, platinum-containing regimens, and other regimens was 172, 119, and 160 days, respectively. The median DOR for patients receiving chidamide combined with CHOP-like regimens, platinum-containing regimens, and other regimens was 180, 165, and 172 days, respectively.

Drug-related adverse events (AEs) that occurred in ≥5% of patients receiving chidamide alone included thrombocytopenia (25.0%), neutropenia (19.1%), fatigue (18.4%), nausea/vomiting (14.1%), and anemia (11.3%). Drug-related AEs that occurred in ≥5% of patients receiving chidamide combined with chemotherapy included thrombocytopenia (28.4%), neutropenia (25.2%),
Table 1	Tumor response of different pathologic subtypes							
	AITL	ALK unknown ALCL	ALK+ ALCL	ALK− ALCL	ENKL	PTCL others	PTCL-NOS	All
Chidamide alone								
ORR n (%)	32 (49.23)	4 (44.44)	4 (66.67)	3 (37.50)	5 (15.15)	5 (55.56)	47 (37.30)	100 (39.06)
CR n (%)	6 (9.23)	1 (11.11)	4 (66.67)	2 (25.00)	2 (6.06)	1 (11.11)	11 (8.73)	27 (10.55)
PR n (%)	26 (40.00)	3 (33.33)	0 (0.00)	1 (12.50)	3 (9.09)	4 (44.44)	36 (28.57)	73 (28.52)
DCR n (%)	49 (75.38)	6 (66.67)	5 (83.33)	4 (66.67)	6 (66.67)	79 (62.70)	165 (64.45)	
Chidamide combined with chemotherapy regimens								
ORR n (%)	25 (71.43)	1 (33.33)	2 (100.00)	1 (14.29)	8 (40.00)	3 (75.00)	25 (44.64)	65 (51.18)
CR n (%)	4 (11.43)	0 (0.00)	1 (50.00)	0 (0.00)	2 (10.00)	1 (25.00)	7 (12.50)	15 (11.81)
PR n (%)	21 (60.00)	1 (33.33)	1 (50.00)	1 (14.29)	6 (30.00)	2 (50.00)	18 (32.14)	50 (39.37)
DCR n (%)	31 (88.57)	1 (33.33)	2 (100.00)	5 (71.43)	10 (50.00)	4 (100.00)	41 (73.21)	94 (74.02)
Combined with CHOP-like regimens								
ORR n (%)	7 (77.78)	1 (50.00)	0 (0.00)	0 (0.00)	1 (33.33)	2 (100.00)	6 (4000)	17 (53.13)
CR n (%)	2 (22.22)	0 (0.00)	0 (0.00)	0 (0.00)	1 (33.33)	1 (50.00)	0 (0.00)	4 (12.50)
PR n (%)	5 (55.56)	1 (50.00)	0 (0.00)	0 (0.00)	0 (0.00)	1 (50.00)	6 (4000)	13 (4063)
DCR n (%)	9 (100.00)	1 (50.00)	0 (0.00)	1 (100.00)	2 (66.67)	2 (100.00)	11 (73.33)	26 (8125)
Combined with platinum-containing regimens								
ORR n (%)	9 (75.00)	0 (0.00)	1 (100.00)	0 (0.00)	3 (42.86)	0 (0.00)	9 (3750)	22 (4583)
CR n (%)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	4 (1667)	4 (833)
PR n (%)	9 (75.00)	0 (0.00)	1 (100.00)	0 (0.00)	3 (42.86)	0 (0.00)	5 (2083)	18 (3750)
DCR n (%)	11 (91.67)	0 (0.00)	1 (100.00)	2 (66.67)	3 (42.86)	0 (0.00)	15 (6250)	32 (6667)
Combined with other regimens								
ORR n (%)	9 (64.29)	0 (0.00)	1 (100.00)	1 (33.33)	4 (40.00)	1 (50.00)	10 (5882)	26 (55.32)
CR n (%)	2 (14.29)	0 (0.00)	1 (100.00)	0 (0.00)	1 (100.00)	0 (0.00)	3 (1765)	7 (1489)
PR n (%)	7 (50.00)	0 (0.00)	0 (0.00)	1 (33.33)	3 (30.00)	1 (50.00)	7 (4118)	19 (4043)
DCR n (%)	11 (78.57)	0 (0.00)	1 (100.00)	2 (66.67)	5 (50.00)	2 (100.00)	15 (8824)	36 (7660)

PTCL-NOS peripheral T cell lymphoma—not otherwise specified, *AITL* angioimmunoblastic T cell lymphoma, *ENKL* extranodal natural killer/T cell lymphoma, *ALCL* anaplastic large cell lymphoma, *ORR* overall response rate, *DCR* disease control rate
fatigue (24.4%), anemia (17.3%), nausea/vomiting (12.7%), increased alanine aminotransferase (ALT) (9.5%), and increased aspartate aminotransferase (AST) (6.3%). Most AEs were of grade 1 to 2. AEs of grade 3 or higher that occurred in ≥5% of patients receiving chidamide alone included thrombocytopenia (10.2%) and neutropenia (6.2%). For patients receiving chidamide combined with chemotherapy, grade 3 to 4 AEs that occurred in ≥5% of patients included thrombocytopenia (18.1%), neutropenia (12.6%), anemia (7.1%), and fatigue (5.5%) (Additional file 3).

In summary, this real-world study conducted with 383 patients demonstrates that chidamide has a favorable efficacy and an acceptable safety profile for refractory and relapsed PTCL patients, confirming the pivotal phase II study in a more representative real-world population. Moreover, this study indicated the potential benefit of chidamide when combined with chemotherapy, which had not been previously examined. Chidamide combined with chemotherapy may be a new treatment choice for PTCL, especially for PTCL patients with an IPI ≥2, although further investigation is warranted.

Abbreviations
AEs: Adverse events; ALT: Alanine aminotransferase; ASCT: Autologous stem cell transplantation; AST: Aspartate aminotransferase; CFDA: China Food and Drug Administration; DCR: Disease control rate; DOR: Duration of response; FDA: Food and Drug Administration; HDAC: Histone deacetylase; IPI: International Prognostic Index; NHL: Non-Hodgkin’s lymphoma; ORR: Overall response rate; PFS: Progression-free survival; PTCL: Peripheral T cell lymphoma

Acknowledgments
The authors thank the patients, medical staff, and physicians who participated in this study. The authors thank Jun Ma, Jun Zhu, Jianyong Li, Zhixiang Shen, and Wengi Jiang for their contribution to this study. The authors also acknowledge Meta Clinical Technology Co., Ltd. for the data analysis.

Funding
This study was sponsored by Chipscreen Biosciences, Ltd., Shenzhen, China.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and additional files.

Authors’ contributions
YS contributed to the conception and design of this study. All authors contributed to the provision of the patients in this study, the collection of data, and the writing of the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Chidamide was approved in December 2014 by the China Food and Drug Administration (CFDA) for the treatment of relapsed or refractory PTCL, and the treatment choice was made by oncologists in each center. All patients
signed the chemotherapy informed consent before the treatment, and the anonymity of the patients has been maintained.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. 2Peking University Cancer Hospital and Institute, Beijing, China. 3Jiangsu Province Hospital, Nanjing, China. 4Guangdong General Hospital, Guangzhou, China. 5West China Hospital, Sichuan University, Chengdu, China. 6Zhongshan Hospital, Shanghai, China. 7Shanghai Ruijin Hospital, Shanghai, China. 8Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. 9The Second Hospital of Dalian Medical University, Dalian, China. 10Zhejiang Cancer Hospital, Hangzhou, China. 11Xinqiao Hospital, Third Military Medical University, Chongqing, China. 12The First Affiliated Hospital, Zhejiang University, Hangzhou, China. 13The First Affiliated Hospital of Soochow University, Suzhou, China. 14Sun Yat-Sen University Cancer Center, Guangzhou, China. 15Hematology Institute and Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China. 16Sichuan Provincial People’s Hospital, Chengdu, China. 17Hunan Cancer Hospital, Changsha, China. 18Shandong Provincial Hospital, Jinan, China. 19Jiangsu Cancer Hospital, Nanjing, China. 20Nanjing Drum Tower Hospital, Nanjing, China. 21Tongji Hospital, Wuhan, China. 22Fujian Provincial Cancer Hospital, Fuzhou, China. 23The First Affiliated Hospital of Fujian Medical University, Fuzhou, China. 24Union Hospital, Fujian Medical University, Fuzhou, China. 25General Hospital of Nanjing Military Region, Nanjing, China. 26Changhai Hospital, Shanghai, China. 27The First Affiliated Hospital of Anhui Medical University, Hefei, China. 28Sichuan Cancer Hospital and Institute, Chengdu, China. 29Xijing Hospital, The Fourth Military Medical University, Xi’an, China. 30Anhui Provincial Hospital, Hefei, China. 31Qilu Hospital of Shandong University, Jinan, China. 32Liaoning Cancer Hospital and Institute, Dalian, China. 33Nanfang Hospital, Southern Medical University, Guangzhou, China. 34The 307th Hospital of Chinese People’s Liberation Army, Beijing, China. 35Fourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province), Shijiazhuang, China. 36The Second Hospital of Hebei Medical University, Shijiazhuang, China. 37Shanxi Provincial Cancer Hospital, Taiyuan, China. 38The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. 39Tianjin People’s Hospital, Tianjin, China. 40Beijing Tongren Hospital, Beijing, China. 41The First Affiliated Hospital of Harbin Medical University, Harbin, China. 42Peking University Shenzhen Hospital, Shenzhen, China. 43The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China. 44Peking Union Medical College Hospital, Beijing, China. 45The First Hospital of Jilin University, Changchun, China. 46Wuhan Union Hospital of China, Wuhan, China.

Received: 16 January 2017 Accepted: 7 March 2017
Published online: 15 March 2017

References
1. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.
2. Yang QF, Zhang WY, Yu JB, Zhao S, Xu H, Wang WY, et al. Subtype distribution of lymphomas in Southwest China: analysis of 6,382 cases using WHO classification in a single institution. Diagn Pathol. 2011;6(1):77.
3. Sun J, Yang Q, Lu Z, He M, Gao L, Zhu M, et al. Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification. Am J Clin Pathol. 2012;138(3):429–34.
4. Ju B, Hu S, Yang J, Zhou S, Liu P, Qin Y, et al. Comparison of gemcitabine, cisplatin, and dexamethasone (GDP), CHOP, and CHOP plus etoposide in the first-line treatment of peripheral T-cell lymphomas. Hematology. 2016;21(9):S36–41.
5. Jung KS, Cho SH, Kim SJ, Ko YH, Kang ES, Kim WS. L-asparaginase-based regimens followed by autologous hematopoietic stem cell transplantation improve outcomes in aggressive natural killer cell leukemia. J Hematol Oncol. 2016;9(1):1–4.
6. Gui L, Shi YK, He XH, Lei YH, Zhang HZ, Han XH, et al. High-dose therapy and autologous stem cell transplantation in peripheral T-cell lymphoma: treatment outcome and prognostic factor analysis. Int J Hematol. 2014;99(1):69–78.
7. O’Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, et al. Phalatrectome in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2012;30(6):631–6.
8. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–6.
9. Lu X, Ning Z, Li Z, Cao H, Wang X. Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis Res. 2016;5(3):185–91.
10. Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26(8):1766–71.