Association of differential meat quality traits with gut microbiota in Angus cattle and Xinjiang Brown cattle

Z. Chen1,2, L. Chen2, Y. Sun2, N. Li2, R. Chen1, Y. Ma2, W. Song2, H. Shi2,*, L. Xia2,* and G. Yao1,2,*

1 Xinjiang Agricultural University, College of Animal Science, Department of Animal Production, Urumqi 830052, China
2 Xinjiang Agricultural University, College of Veterinary Medicine, Department of Animal Physiology, Urumqi 830052, China
3 Xinjiang Tianlai Livestock Group Co., Ltd, Bole 833407, China

KEY WORDS: Angus cattle, gut microbiota, meat quality traits, Xinjiang brown cattle

Introduction

Nowadays, consumers are paying increasing attention to meat quality. Although a large number of studies concerning meat quality traits (MQTs) have been conducted in Angus cattle (AG), few studies have systematically compared MQTs in AG and Xinjiang brown cattle (XBC), an indigenous dual-purpose beef and dairy cattle breed with excellent adaptability, strong disease resistance, good grazing and tolerance to extreme weather conditions in China (Zhou et al., 2017).

Most MQTs, such as backfat thickness, eye muscle area, intramuscular fat (IMF) content, marbling, shear force, muscle fibre sectional area, etc., are related to body fat metabolism/deposition (Schumacher et al., 2022). The gut microbiota has been dubbed the second set of the host genome, closely associated with host metabolism and health (Noel et al., 2019). Studies have shown that there is a close relationship between the gut microbiota and fat metabolism (Zierer et al., 2018; Kuno et al., 2018). Tang et al. (2020) sequenced the 16S rRNA gene in the intestinal microbiota from separate gut segments of pigs and analysed the correlation with MQTs showing that the ceacal, colon and jejunal microbiota played more important roles in determining traits associated with fat deposition in pigs.
Whon et al. (2021) compared the gut microbiota and MQTs of males and castrated Holstein cattle and found that castrated Holstein cattle had a higher relative abundance of the family Gastrostrepococcus and increased extra- and IMF storage. Another study compared the gut microbiota between grazing and feedlot Angus cattle and the authors speculated that the significant difference in gut microbiota composition in Angus cattle could affect the meat quality of Angus beef (Zhang et al., 2021). Zheng et al. (2022) studied the association of the gut microbiota with differentially expressed intramuscular genes of the hosts and metabolites in Angus and Chinese Simmental cattle, and revealed different relationships of the gut microbiota and meat quality in these two breeds. However, the relationship between the gut microbiota and MQTs related to lipid metabolism/fat deposition in cattle has not been fully elucidated. Therefore, backfat thickness, muscle fibre sectional area, muscle fibre number, muscle shear force, intramuscular fat content, moisture content and ash content were assessed in 24-month-old XBC and AG cattle. The composition and structure of the gut microbiota were determined by sequencing the 16S rRNA gene, and correlation analysis was carried out to explore the possible associations of differential MQTs with the gut microbiota in AG and XBC to improve XBC meat quality.

Material and methods

Animals, housing, and feeding

A total of 14 24-month-old uncastrated AG (n = 7) and XBC males (n = 7) reared under identical feeding regime, management and conditions were selected from a beef cattle breeding farm in Xinjiang (Table 1). The study protocol was approved by the Animal Ethics Committee of the Xinjiang Agricultural University (2017015).

Table 1. Diet composition and nutrient levels

Feed ingredients	Weight, kg	Content (%)	Nutritional ingredient	Content
Straws	1.30	5.78	Metabolic energy, MJ/kg	5.82
Alfaffas	0.50	2.22	Crude protein, %	16.2
Cossettes	2.00	8.89	Crude fat, %	2.32
Wheat straws	1.50	6.67	Calcium, %	0.54
Enslings	10.00	44.46	Phosphorus, %	0.49
Molasses	0.70	3.11	Acid detergent fibre, %	5.9
Concentrates*	6.49	28.86	Neutral detergent fibre,	12.98
Total	22.49	100.00	Total digestible nutrient, %	61.57

*Concentrate: %: corn 53.16, cotton meal 11.56, bran 7.40, magnesium oxide 3.08, concentrate 24.81

Sample collection

AG and XBC animals were fasted for 24 h and water drinker was removed 12 h before slaughter, and body weight was determined just before slaughter. Backfat thickness and eye muscle area were measured in vivo using veterinary B-ultrasound (Pyle Co. LTD, Aquila Vet, Maastricht, the Netherlands). Fresh faeces were collected from the rectum of the animals with aseptic gloves 6 h prior to slaughter; the samples were immediately transferred into cryopreservation tubes and stored in liquid nitrogen until gut microbiota analysis. After slaughter, half a kilogram of longissimus dorsi muscle was collected from each animal, of which approximately 1 cm³ of the sample was cut out and fixed in picric acid solution, with the remainder stored at 4 °C for further muscle shear force and other MQT analyses.

MQT detection

Muscle shear force was measured using a computer-coupled muscle tenderness tester (Brad Technology Development Co. LTD, c-Im4, Beijing, China), as previously reported (Bai et al., 2022). Muscle moisture content was measured by drying at 101–105 °C for 24 h (Luo et al., 2019). Ash content was measured after high temperature burning of the sample for 6 h (Luo et al., 2019). Intramuscular fat content was measured using the Soxhlet extraction method (Chen et al., 2021). Fixed muscle tissue was dehydrated and embedded in paraffin; paraffin sections were stained with hematoxylin-eosin (H&E) stain, and observed under an optical microscope (Nikon Instruments Co. LTD, 551-1000, Shanghai, China). Muscle fibre cross-sectional area was measured using a microscopic imaging system (Motic Advanced 3.5, Hong Kong, China). Three non-consecutive muscle sections from each muscle sample were used to measure muscle fibre cross-sectional area, the diameter of muscle fibre was measured in each section, and the number of muscle fibres was counted in 3 separate fields of view. The muscle fibre cross-sectional area was calculated according the method published elsewhere (Ding et al., 2021).

Bacterial diversity assessment

Sequencing of the 16S rRNA gene was performed as previously described by Zhang et al. (2021). Briefly, total DNA was extracted from faecal samples using the OMEGA Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA), DNA was quantified with Nanodrop (Thermo Fisher Scientific, Wilmington, DE, USA), and its extraction quality was analysed by running a 1.2% agarose gel electrophoresis.
PCR amplification was carried out using universal primers for the V3-V4 region (5'-ACTCTACGGGAGGCAGCAG-3' and 5'-GGACTACHVGGGTWCTAAAT-3') of 16S rRNA (Sangon Biotech, Shanghai, China). The amplified products were purified and subsequently detected by agarose gel electrophoresis and fluorescence quantitative detection. DNA fragments were sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA, USA), and original sequencing data were acquired. QIIME2 software was used to control the original data, operational taxonomic units (OTUs), classification statistics, diversity analysis, microbiota structure and abundance analysis.

Statistical analysis

GraphPad Prism software (GraphPad Software v 9.0, San Diego, CA, USA) was applied to perform statistical analysis; the data were expressed as mean ± standard error (mean ± SE). \(P < 0.05 \) indicated a significant difference, and \(P < 0.01 \) indicated an extremely significant difference. Measured indices were analysed by unpaired Student’s t-test, and a Spearman’s correlation analysis was performed to correlate MQTs with the gut microbiota of AG and XBC.

Results and discussion

Meat quality detection

The results presented in Table 2 and Figure 1 indicated that backfat thickness was significantly higher \((P < 0.05 \)\), while muscle fibre cross-sectional area was significantly smaller \((P < 0.05 \)\) in AG compared to XBC. Fu et al. (2018) compared the biceps femoris of 12-month-old Angus cattle with that of Japanese black cattle, and found that muscle satellite cell density in Angus cattle was markedly higher than that of Japanese black cattle; however, the adipogenic capacity of Angus cattle was higher in comparison to Japanese black cattle. The average muscle fibre diameter of Japanese black cattle was larger, but the muscle mass was smaller. In our present study, the results showed that the muscle fibre area of longissimus dorsi in Xinjiang brown cattle was significantly higher compared to Angus cattle, which might be one of the factors affecting meat tenderness in this breed. Subcutaneous fat deposition is a necessary stage in the fattening process of cattle (Du et al., 2010), thus backfat thickness is another important biomarker of MQTs (Taniguchi et al., 2008). In our study, Xinjiang brown cattle and Angus cattle fed under identical conditions showed that backfat thickness of Xinjiang brown cattle was significantly smaller compared to Angus cattle, suggesting that the fat deposition capacity of Angus cattle was better than that of Xinjiang brown cattle.

Structure of gut microbiota

There were no significant differences in the Chao1, Shannon, Faith, pd, and \(\alpha\)-diversity indices, as well as observed operational taxonomic units (OTUs) of the gut microbiota between AG and XBC (Table 3). Principal co-ordinates analysis (PCoA), visualized using PERMANOVA test, showed that \(\beta\)-diversity of the gut microbiota between AG and XBC was not significantly different, but tended to differ \((q = 0.08)\) (Figure 2).
Association of meat quality and microbiota in cattle

Composition of gut microbiota

The top 20 phyla and genera in the gut microbiota of XBC and AG are presented in Figure 3, including 7 phyla and 20 genera (Table 5) with a relative abundance above 0.1% (RA > 0.1%). The most abundant phyla with RA > 1% were Firmicutes, Bacteroidetes and Spirochaetes (Table 4), whereas the most abundant genera with RA > 1% included CF231, Oscillospira, 5_7N15, Treponema, Phascolarctobacterium and Clostridium. The relative

Table 3. Comparison of α-diversity in the gut microbiota

Taxonomy	AG	XBC
Chao1	149.1 ± 12.28	144.8 ± 7.80
Shannon	6.54 ± 0.17	6.54 ± 0.11
Observed OTUs	149.1 ± 12.28	144.8 ± 7.80
Faith_pd	12.64 ± 0.83	12.49 ± 0.45
P-value	0.78	0.99

OTUs – operational taxonomic units. AG – Angus cattle, XBC – Xinjiang brown cattle; data are presented as mean ± SEM (standard error of the mean); P > 0.05

Table 4. The relative abundance of differential phyla in gut microbiota

Taxonomy	AG	XBC	P-value
Firmicutes	52.99 ± 3.46	58.19 ± 2.41	0.258
Bacteroidetes	39.98 ± 2.93	35.98 ± 2.21	0.313
Spirochaetes	2.39 ± 0.88	3.91 ± 0.76	0.226
Verrucomicrobia	1.65 ± 1.13	0.45 ± 0.19	0.357
Tenericutes	1.06 ± 0.46	0.41 ± 0.14	0.229
Proteobacteria	0.92 ± 0.22	0.37 ± 0.11	0.068
TM7	0.31 ± 0.11	0.39 ± 0.23	0.742

AG – Angus cattle, XBC – Xinjiang brown cattle; data are presented as mean ± SEM (standard error of the mean); P > 0.05

Table 5. The relative abundance of differential genera in gut microbiota (RA > 0.1%*)

Taxonomy	AG	XBC	P-value
CF231	10.59 ± 3.33	5.86 ± 1.51	0.248
Oscillospira	4.25 ± 0.68	3.44 ± 0.45	0.359
5_7N15	4.33 ± 0.82	2.56 ± 0.57	0.116
Treponema	2.32 ± 0.87	3.91 ± 0.76	0.203
Phascolarctobacterium	2.11 ± 0.47	1.23 ± 0.45	0.208
Clostridium	1.66 ± 0.35	1.49 ± 0.51	0.789
Anaerovibrio	0.77 ± 0.16	2.75 ± 1.13	0.087
Roseburia	0.45 ± 0.31	1.39 ± 0.32	0.059
Ruminococcus	0.72 ± 0.22	1.21 ± 0.36	0.271
Prevotella	0.81 ± 0.17	0.87 ± 0.36	0.881
Euploiscium	0.15 ± 0.11	0.73 ± 0.63	0.348
YRC22	0.84 ± 0.39	0.68 ± 0.14	0.719
Dorea	0.45 ± 0.29	0.61 ± 0.35	0.736
Coprococcus	0.81 ± 0.51	0.55 ± 0.14	0.661
Paludibacter	0.73 ± 0.16	0.52 ± 0.19	0.412
Turicibacter	0.34 ± 0.07	0.51 ± 0.14	0.282
Akkermansia	0.41 ± 0.11	0.37 ± 0.14	0.845
rc4_4	0.61 ± 0.09	0.35 ± 0.07	0.049
Succinivibrio	0.37 ± 0.11	0.18 ± 0.11	0.257
Bacteroides	0.36 ± 0.18	0.09 ± 0.03	0.219

* RA > 0.1% – relative abundance > 0.1%, AG – Angus cattle, XBC – Xinjiang brown cattle; data are presented as mean ± SEM (standard error of the mean); P < 0.05 indicates significant difference

Figure 2. Principal co-ordinates analysis

Figure 3. Composition of microbiota at phylum and genus levels (Top 20)
abundance of Proteobacteria in AG tended to be higher than in XBC ($P = 0.068$). The relative abundance of the genus rc4_4 was significantly higher in AG compared to XBC ($P < 0.05$), and the relative abundance of Anaerovibrio ($P = 0.087$) and Roseburia ($P = 0.059$) tended to be lower in AG compared to XBC. Proteobacteria have been shown to be associated with several chronic diseases, such as obesity and metabolic syndrome in both human and animal studies (Crovesy et al., 2020; Saiyasit et al., 2020).

Ziętak et al. (2016) found that low temperature environment could improve diet-induced obesity, reduce the abundance of rc4_4 in the gut microbiota, and proved that rc4_4 was associated with obesity. Anaerovibrio are typical fat decomposers that can hydrolyse triglycerides to glycerol and fatty acids, and play a key role in lipolysis, a fundamental requirement in the subsequent steps of lipid metabolism in rumen liquor, bacterial membrane structure formation and cell replication (Mannelli et al., 2018). Roseburia were reported to produce butyric acid (Kim et al., 2018) and the abundance of Roseburia in the gut microbiota in obese individuals was lower than in lean subjects (Tamanai-Shacoori et al., 2017). In the present experiment, there were no significant differences in the structure of the gut microbiota between AG and BC detected, but the relative abundance in the gut microbiota of some phyla and genera involved in fat deposition/lipid metabolism differed between these two cattle breeds, suggesting that the gut microbiota could be associated with different MQT values in AG and XBC related to the aforementioned parameters.

The results of the linear discriminant analysis effect size (LefSe) showed that species of the family Peptostreptococcaceae were the characteristic microorganisms of the XBC microbiota (Figure 4). Peptostreptococcaceae belonging to the order Clostridiales are a group of bacteria characterized by short chain fatty acid production in the process of degradation of plant-derived cellulose and hemicellulose components (Bernad-Roche et al., 2021). Previous studies demonstrated that the abundance of the family Peptostreptococcaceae in the gut microbiota of castrated bulls was higher than in uncastrated bulls, and they exhibited distinct serum and muscle amino acid profiles, with increased muscular fat storage (Whon et al., 2021).

Correlation analysis

Spearman’s correlation analysis was performed between MQTs and 22 genera with RA > 0.1% in the gut microbiota. The results showed that 4 genera in the gut microbiota of AG were significantly correlated with MQTs, i.e. eye muscle area was negatively correlated with Roseburia; IMF content was positively correlated with YRC22; moisture content was positively correlated with Phascolarctobacterium; ash content was positively correlated with Akkermansia and negatively correlated with Roseburia (Figure 5A). Eight genera in the gut microbiota of XBC were significantly correlated with MQTs, i.e. backfat thickness was positively correlated with Clostridium, Roseburia and Turicibacter; eye muscle area was positively correlated with CF231, 5_7N15, Phascolarctobacterium, and negatively correlated with Turicibacter; moisture content was positively correlated with Prevotella; ash content was positively correlated with Clostridium and negatively correlated with Oscillospira (Figure 5B). Furthermore, when the data between AG and XBC were pooled to conduct the correlation analysis to reveal the general rule of gut microbiota association with MQTs, the results showed that 13 genera were significantly correlated with MQTs, where backfat thickness positively correlated with Succinivibrio. Eye muscle area was positively correlated with CF231, Phascolarctobacterium and Akkermansia, while negatively correlated with Roseburia. Eye muscle area was negatively correlated with Oscillospira and Bacteroides, while IMF content was positively correlated with YRC22; moisture content was positively correlated with Ruminococcus and negatively with Prevotella and Succinivibrio; ash content was negatively correlated with Oscillospira (Figure 5C). Khan et al. (2018) found that Oscillospira, Ruminococcus and YRC22 were all associated with changes in cholesterol levels in rats, and cholesterol was present in blood lipoproteins. In our present experiment, it was also found that YRC22 was positively correlated with IMF, indicating that YRC22 could increase intramuscular fat deposition by regulating cholesterol.
metabolism in cattle. Studies by Tun et al. (2017) found that Oscillospira was associated with a reduced risk of obesity. Oscillospira, Ruminococcus, Phascolarctobacterium, Clostridium and Roseburia all belong to the order Clostridiales. Magnusson et al. (2015) found that the count of Clostridiales in the gut microbiota of mice fed a high-fat, high-sugar and high-calorie diet increased significantly, which could lead to metabolic disorders and obesity. YRC22, Bacteroides, CF231 and Prevotella belong to the order Bacteroidales. Prevotella are one of the most abundant bacteria in the rumen, they decompose cellulose and use cellulose degradation products as energy sources in cattle (Delgado et al., 2019). Zheng et al. (2022) compared the gut microbiota and intramuscular differentially expressed genes between Angus cattle and Chinese Simmental cattle, and the results showed that the relative abundance of Prevotella in the gut microbiota of Simmental cattle was significantly lower. Hakkak et al. (2017) showed that the count of Bacteroides in the gut microbiota of obese rats was higher, and the abundance of Akkermansia was significantly higher compared to lean mice. Studies proved that Akkermansia was associated with lipid metabolism and regulation of the brown fat to white fat ratio (Deng et al., 2020). Bergamaschi et al. (2020) analysed the correlation between the gut microbiota and carcass traits of pigs, and found that there was a significant correlation between Succinivibrio and backfat thickness, which was consistent with the results of this experiment.

Conclusions

There are differences in MQTs between Angus cattle and Xinjiang brown cattle related to fat metabolism/deposition that are associated with a relative abundance of certain gut microbial genera. They may serve as potential gut microbial...
biomarkers, assisting in the improvement of meat quality in Xinjiang brown cattle. Further confirmation of these associations and the mechanism behind them is expected.

Funding source

This work was financially supported by grant (2019DQ10A58) from Autonomous Region Natural Science Foundation of Xinjiang, grant (31460647) from National Natural Science Foundation of China, and grant (2017B01001-2) from Key Project of Science and Technology Research of Education Department of Xinjiang.

Conflict of interest

The Authors declare that there is no conflict of interest.

References

Bai H., Yang B., Dong Z., Li X., Song Q., Jiayang Y., Chang G., Chen G., 2022. Research Note: effects of cage and floor rearing systems on growth performance, carcass traits, and meat quality in small-sized meat ducks. Poult. Sci. 101, 101520, https://doi.org/10.1016/j.psj.2021.101520

Bergamaschi M., Maltecca C., Schillebeeck C., McNulty N.P., Schwab C., Shull C., Fix J., Tizzi F., 2020. Heritability and genome-wide association of swine gut microbiome features with growth and fatness parameters. Sci. Rep. 10, 10134, https://doi.org/10.1038/s41598-020-06791-3

Bemad-Roche M., Bellés A., Grasa L., Casanova-Higes A., Mainar-Jaime R.C., 2021. Effects of dietary supplementation with protected sodium butyrate on gut microbiota in growing-finish ing pigs. Animals 11, 2137, https://doi.org/10.3390/ani11072137

Chen G., Cai Y., Su Y., Wang D., Pan X., Zhi X., 2021. Study of meat quality and flavour in different cuts of Duroc-Bamei binary hybrid pigs. Vet. Med. Sci. 7, 724–734, https://doi.org/10.1002/vms3.409

Crovesy L., Masterson D., Rosado E.L., 2020. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262, https://doi.org/10.1038/s41430-020-06076-0

Delgado B., Bach A., Guasch I., González C., Elcso G., Pryce J.E., Gonzalez-Recio O., 2019. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci. Rep. 9, 11, https://doi.org/10.1038/s41598-018-36873-w

Deng L., Ou Z., Huang D., Li C., Lu Z., Liu W., Wu F., Nong C., Gao J., Peng Y., 2020. Diverse effects of different Akkermansia muciniphila genotypes on Brown adipose tissue inflammation and whitening in a high-fat-diet murine model. Microb. Pathog. 147, 104353, https://doi.org/10.1016/j.micpath.2020.104353

Ding S.R., Li G.S., Chen S.R., Zhu F., Hao J.P., Yang F.X., Hou Z.C., 2021. Comparison of carcass and meat quality traits between lean and fat Pekin ducks. Anim. Bioci. 34, 1193–1201, https://doi.org/10.5713/ajas.19.0612

Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P., Nathanielsz P.W., 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, E51–E60, https://doi.org/10.2527/jas.2009-2311

Fu X., Yang Q., Wang B., Zhao J., Zhu M., Parish S.M., Du M., 2018. Reduced satellite cell density and myogenesis in Wagyu compared with Angus cattle as a possible explanation of its high marbling. Animal 12, 990–997, https://doi.org/10.1017/S1751731117002403

Haakk R., Korourian S., Foley S.L., Erickson B.D., 2017. Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE 12, e0181451, https://doi.org/10.1371/journal. pone.0181451

Khan T.J., Ahmed Y.M., Zamzami M.A., Mohamed S.A., Khan I., Baothman O., Mehanna M.G., Yasir M., 2018. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci. Rep. 8, 682, https://doi.org/10.1038/s41598-018-00023

Kim J.Y., Kwon YM., Kim I.S., Kim J.A., Yu D.Y., Adhikari B., 2018. Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Front. Nutr. 5, https://doi.org/10.3389/fnut.2018.00023

Kuno T., Hirayama-Kurogi M., Ito S., Ohtsuki S., 2018. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 8, 1253, https://doi.org/10.1038/s41598-018-19545-1

Luo Y., Wang B., Liu C., Su R., Hou Y., Yao D., Zhao L., Su L., Jin Y., 2019. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 7, 2796–2805, https://doi.org/10.1002/fsn3.1039

Magnusson K.R., Hauck L., Jeffrey B.M., Elias V., Humphrey A., Nath R., Perrone A., Bermudez L.E., 2015. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 125–140, https://doi.org/10.1016/j.neuroscience.2015.05.016

Mannelli F, Cappucci A., Pini F. et al., 2018. Effect of different types of olive oil pomace dietary supplementation on the rumen microbial community profile in Comisana ewes. Sci. Rep. 8, 8455, https://doi.org/10.1038/s41598-018-26713-w

Noel S.J., Olrijhoek D.W., Mlecan F., Lavendahl P., Lund P., Højberg O., 2019. Rumen and fecal microbial community structure of Holstein and Jersey dairy cows as affected by breed, diet, and residual feed intake. Animals 9, 498, https://doi.org/10.3390/ani9080498

Saiyatis N., Chunchai T., Prus D. Suparan K., Pittayapong P., Apajai N., Pratchayasakul W., Sripetchwanee J., Chatti-pakorn N., Chatti-pakorn S.C., 2020. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition 69, 110576, https://doi.org/10.1016/j.nut.2019.110576

Schumacher M., DelCurto-Wyffels H., Thomson J., Boles J., 2018. Fat deposition and diet effects on meat quality- a review. Animals 9, 1255, https://doi.org/10.3390/ani9051255

Tamanai-Shacoori Z., Smida I., Bousarghin L., Loreal O., Meuric V., 2016. Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Front. Nutr. 5, https://doi.org/10.3389/fnut.2018.00023

Z. Chen et al.
Taniguchi M., Guan L.L., Basarab J.A., Dodson M.V., Moore S.S., 2008. Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp. Biochem. Physiol. Part D Genomics Proteomics 3, 251–256, https://doi.org/10.1016/j.cbd.2008.06.002

Tun H.M., Konya T., Takaro T.K. et al., 2017. Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios. Microbiome 5, 40, https://doi.org/10.1186/s40168-017-0254-x

Whon T.W., Kim H.S., Shin N.R. et al., 2021. Male castration increases adiposity via small intestinal microbial alterations. EMBO Rep. 22, e50663, https://doi.org/10.15252/embr.202050663

Zhang Z., Yang L., He Y., Luo X., Zhao S., Jia X., 2021. Composition of fecal microbiota in grazing and feedlot Angus beef cattle. Animals 11, 3167, https://doi.org/10.3390/ani11113167

Zheng Y., Chen J., Wang X., Han L., Yang Y., Wang Q., Yu Q., 2022. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in angus and Chinese Simmental cattle. Front. Microbiol. 13, 815915, https://doi.org/10.3389/fmicb.2022.815915

Zhou J.H., Li P., Liu L.Y., Zhao G.L., Huang X.X., 2017. Present situation of Xinjiang brown cattle germplasm resources and suggestions on population genetic improvement. Chin. J. Anim. Sci. 53, 38–43

Zierer J., Jackson M.A., Kastenmüller G. et al., 2018. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795, https://doi.org/10.1038/s41588-018-0135-7

Ziętak M., Kovatcheva-Datchary P., Markiewicz L.H., Ståhlman M., Kozak L.P., Bäckhed F., 2016. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223, https://doi.org/10.1016/j.cmet.2016.05.001