Analysis of productivity of spring soft wheat varieties in the conditions of the Volga-Vyatka region

I Ivanova*, S Ilina and A Fadeev

Federal Agricultural Research Center of the North-East named N. V. Rudnitskogo, Kirov, 610007, Russia

*E-mail: m35y24@yandex.ru

Abstract. The paper presents research on the study of spring soft wheat cultivars from the genetic fund of the Federal Research Center of the All-Russian Institute of Plant Genetic Resources named after N. I. Vavilov (VIR). In the course of the research work, the influence of agroclimatic conditions on the yield of different varieties with different genotypic characteristics was studied. Two varieties with the highest yield were selected: Arhat by 18.2 % and Icarus by 17.82 %. Studies have shown low plasticity of the studied varieties due to the strong variability of yield. According to the analysis of the research results, it was found that the spring soft wheat variety Liza (Russia) had the lowest degree of variability (V=5.68 %). It was revealed that as a result of four years of research, all the samples studied in the experiment have a complete correlation between the yield and the weather conditions of the growing season.

1. Introduction

Wheat remains one of the three most important crops in the world. It has no equal in the area of cultivation and the ability to adapt to different soil and climatic conditions [1]. During the growing season, the growth, development of plants, the yield and its quality are more or less affected by the whole complex of environmental factors [2]. Spring wheat is one of the most important grain crops on the gray forest soils of the Volga-Vyatka region. In the last decade, there is a tendency to increase its share among spring grain crops. The formation of highly productive crops that can maximize the use of natural and agrotechnical factors depends more on the variety. The variety is one of the cheapest and most affordable means of increasing productivity. Without it, it is impossible to realize the achievements of scientific and technological progress in agriculture. The variety serves as the biological foundation on which all other elements of the technology are built. Therefore, the study of the variety in specific zonal conditions for its productivity, resistance to adverse environmental factors is an important task [3, 4].

The evaluation of varieties in ecological variety testing on the plasticity and stability of the crop, resistance to unfavorable growing conditions allows us to distinguish from a large number of newly created varieties with high potential productivity varieties with the highest degree of adaptation to the conditions of a particular region for use in the breeding process. One of the most important points of selection work is the identification of the degree of variability of individual economically valuable traits. Breeding for productivity is one of the most difficult areas of crop breeding, since it is a multi-component trait. When creating new varieties, it is necessary to take into account the full range of requirements that agricultural producers impose on them. They must successfully resist external factors,
use favorable environmental conditions with maximum efficiency, have high potential productivity and maintain it in production crops. Therefore, the most interesting varieties are those whose yield is least affected by the prevailing weather conditions and other factors. In the light of the above, the role of the source material involved in breeding programs increases dramatically. Therefore, a preliminary comprehensive assessment of the collection samples can significantly increase the yield of promising forms from newly created hybrid populations [5].

The ecological feature of many regions of Russia is a sharp continental climate, severe aridity and variability of weather conditions over the years, the random nature of precipitation during the growing season. Under these conditions, there is a high dependence of grain production on unfavorable climatic factors. The main indicators used in agrometeorology to assess the prevailing weather conditions are the amount of precipitation and the sum of active temperatures, and the integral indicator that simultaneously takes into account both of these indicators can be considered hydrothermal coefficients (GTC). The most well-known of them is the Selyaninov hydrothermal coefficient, which is used to characterize humidity conditions and is defined as the ratio of the sum of precipitation (∑R) in mm for a period with average daily air temperatures above 10°C to the sum of temperatures (∑t) for the same time, reduced by 10 times [6].

2. Materials and methods
The source material for research in 2016-2019 was varieties and varietals of spring soft wheat obtained from the VIR collection. The study of varietal samples took place in the nursery of the source material according to the generally accepted method [7]. As a grade-control used national variety Simbircit. The research was carried out on the experimental field of the Chuvash research Institute, the soil is gray forest heavy loam with a humus content of 4.6, a neutral reaction of the soil solution-6.1, and an increased content of mobile phosphorus and exchange potassium [8]. The predecessor is black steam. Sowing was carried out in the optimal time, the area of the plot is 20 m² and the repeatability is three times. Phenological observations and accounting for disease damage [9].

In terms of moisture availability: long-term conditions (Selyaninov hydrothermal moisture coefficient – SCC = 1.11), the dry ones were 2016 and 2018 - SCC = 0.86 and 0.68; the climate norm was higher in 2017, where the SCC was 1.47 [10]. The sum of active temperatures (∑t> 10°C) in 2016 was 2402°C, in 2017 – 1825°C and in 2018 – 1782°C. 2019 was a moderately warm year with a lack of moisture at the beginning of the growing season and high moisture content in the maturation phase of the culture of the SCC of the growing season was 1.09.

3. Results
In the nursery of the initial test, among the studied 72 varieties, 20 varieties were distinguished by yield (figure 1) that have this indicator on average over the 2016-2019 exceeded the grade standard Simbircit (Russia). According to the literature, the most productive varieties have the most adapted to local soil and climate conditions [11]. Our research shows that the average varietal yield of spring wheat in the southern part of the Volga-Vyatka region over the years of study was on average 37 C / ha of grain. The highest yield on average for the years of study was noted in the Arhat variety-44.1 C / ha (Russia) and in the Icarus variety – 44.0 C/ha (Kazakhstan, Russia), which is 18.15 and 17.82% higher than the standard, respectively. These varieties in the studied conditions are able to make the most of natural and agrotechnical factors to realize potential productivity.

Crop production is interested in the level and stability of the yield of cultivated varieties. The main requirement for modern varieties is resistance to environmental factors that limit yield. Instability of the variety, even at a high level of yield, can cause some damage to the production economy.
High grain yields in some years cause difficulties with transport for harvesting and transportation, with primary processing and drying of grain, and storage facilities for storing grain. In years with low yields, production does not receive enough products for sale to the state or for its own needs, and the equipment is not fully loaded. High environmental stability with a low average yield of the variety also gives an insufficiently high level of profitability of production. Therefore, it is necessary to choose such varieties that will give high and stable yields for several years.

Mismatch of grain yield indicators for varieties in different years gives an index that reflects the interaction of the studied factors. The more the yield level of varieties varies and does not match, the higher the share of variability due to the interaction of "genotype × environment". In the current weather and climate conditions of 2016-2019, all varieties that showed high yields relative to the standard variety were more variable (figure 2) compared with grade Simbircit (V=11.87 per cent). The exception was in the Lisa variety (Russia), where V=5.68 %.

Figure 1. Productivity of spring soft wheat for 2016-2019.

Figure 2. Variability of varietal yield for 2016-2019.
The correlation of yields in the studied varieties of spring soft wheat with meteorological indicators for the four years of study is presented in the table.

№	Spring wheat varieties	Precipitation, mm	∑t > 10°C	Hydrothermal coefficient
1	Simbircit standard	-0.79	0.72	0.51
2	Margarita	-0.91	0.52	0.36
3	Arhat	-0.87	0.28	0.00
4	Ekada 113	-0.03	0.82	0.99
5	Omskaya 41	-0.08	0.08	-0.43
6	Ekaterina	-0.85	0.32	0.52
7	Kontesa	0.05	0.96	0.91
8	Moskovskaya 35	-0.79	-0.39	-0.48
9	Joldyz	-0.27	-0.21	-0.64
10	Mercana	0.92	-0.07	0.14
11	Leningradka	-0.25	0.82	0.43
12	Mutant ostistyj	-0.41	0.90	0.60
13	Marbl	0.51	0.10	-0.33
14	Ikar	-0.55	0.45	0.00
15	Binnu	-0.44	0.27	0.67
16	Mis	-0.95	0.19	0.00
17	Tajna	-0.69	-0.54	-0.35
18	Yuliya	-0.37	-0.79	-0.85
19	Liza	-0.61	-0.19	-0.54
20	Raduga	-0.60	0.81	0.52
21	Agata	-0.76	0.23	0.52

When calculating the correlation coefficient between yield and weather conditions of the growing season for 2016-2019, a complete correlation was found from moisture availability, which showed low plasticity of the studied varieties to drought conditions. In addition to varieties Ekada 113 (Russia), Omsk 41 (Russia), Kontesa (Poland), Yoldyz (Russia) and Leningradka (Russia), which have a weak correlation (R<0.3).

According to the results of the analysis, nine varieties (Arhat, Omsk 41, Yoldyz, Merzana, Marble, MIS, Lisa, Agata – Russia; Binni – Australia) showed a weak correlation of yield from the sum of active temperatures during the growing season. This circumstance induced by the fact that security with heat is not a limiting factor for this crop.

The relationship between the yield and the value of the SCC of the growing season in Arhat, Icarus and MIS varieties is completely absent.
4. Conclusions
Long-term environmental tests of varietal samples of the VIR genetic collection in the southern part of the Volga-Vyatka region allowed us to select varieties that exceed the yield of the variety standard when grown in different climatic conditions in years. This approach to the study of yield variability of the studied varieties allows us to select promising wheat genotypes for use as donors in the selection process.

Acknowledgement
The work was performed under State assignment of Federal Agricultural Research Center of the North-East (subject № 0767-2019-0093).

References
[1] Bespalova L A 2015 Development of a gene pool as the main factor of the third green revolution in wheat breeding Bulletin of the Russian Academy of Sciences 1(85) 9-11
[2] Nazarenko L V 2013 Factors of the external environment, their influence on the growth and development of long-day agricultural crops on the example of wheat Polythematic network electronic scientific journal of the Kuban state agrarian University 93 1-25
[3] Nikitina V I and Kolichenko A A 2019 Assessment of the ecological stability of spring soft wheat varieties at the variety sites of the Krasnoyarsk territory Bulletin of the Krasnoyarsk state agrarian University 3(144) 58-64
[4] Duktova N A and Kuznetsova N A 2019 Evaluation of the source material of spring durum wheat on the complex of economically useful features and selection of sources for selection Bulletin of the Belarusian state agricultural Academy 2 142-7
[5] Samofalov A P and Podgorny S V 2014 Source material in the selection of winter wheat for productivity Agrarian Bulletin of the Urals 5 (123) 13-6
[6] Lysenko A A and Korobova N A 2019 Evaluation of collection samples of peas by productivity elements International journal of Humanities and natural Sciences 7(1) 107-12
[7] Rudenko M I, Shitova I P, Korneychuk V A and Malkina R M 1978 VIR Guidelines for the study of the world wheat collection p 33
[8] Ivanova I and Volkova L V 2019 Variability of economically valuable traits of spring wheat and their contribution to the stabilization of yield Agrarian science of the Euro-North-East 6(20) 567-74
[9] Ivanova I, Ivanova A O and Ilina S V 2019 Correlation dependence of the yield of soft spring wheat on the elements of productivity Leguminous and cereal crops 4 (32) 119-25
[10] Taranukho G I 2009 Selection and seed production of agricultural crops 420
[11] Ivanova I. and Ilina S 2020 Variability of morphological features of spring soft wheat Moskovskaya 35 IOP Conference Series: Earth and Environmental Science 433 012016