POLYSYMPLECTIC HAMILTONIAN FORMALISM AND SOME QUANTUM OUTCOMES

G. Giachetta, L. Mangiarotti\(^1\) and G. Sardanashvily\(^2\)

\(^1\) Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (MC), Italy
\(^2\) Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.

1 Introduction

The Hamiltonian counterpart of first-order Lagrangian formalism on a fibre bundle \(Y \to X\) has been rigorously developed since the 1970s in the multisymplectic, polysymplectic and Hamilton – De Donder variants (see [6, 7, 9, 10, 12, 16, 17, 18] and references therein). If \(X = \mathbb{R}\), we are in the case of time-dependent mechanics [19].

The relations between multisymplectic, polysymplectic, Hamilton – De Donder and Lagrangian formalisms on \(Y \to X\) are briefly the following.

- The multisymplectic phase space is the homogeneous Legendre bundle
 \[Z_Y = T^*Y \wedge (\wedge^{n-1} T^*X), \]
 coordinated by \((x^\lambda, y^i, p^\lambda_i, p)\). It is endowed with the canonical exterior form
 \[\Xi_Y = p\omega + p^\lambda_i dy^i \wedge \omega^\lambda, \]
 whose exterior differential \(d\Xi_Y\) is the canonical multisymplectic form, which belongs to the class of multisymplectic forms in the sense of Martin [4, 20].

- The homogeneous Legendre bundle (1) is the trivial one-dimensional bundle
 \[\zeta : Z_Y \to \Pi \]
 over the Legendre bundle
 \[\Pi = \wedge^n T^*X \otimes V^*Y \otimes TX = V^*Y \wedge (\wedge^{n-1} T^*X), \]
coordinated by \((x^\lambda, y^i, p^\mu_i)\). Being provided with the canonical polysymplectic form

\[\Omega = dp^\lambda_i \wedge dy^i \wedge \omega \otimes \partial_\lambda, \]

\(5\)

the Legendre bundle \(\Pi\) is the momentum phase space of polysymplectic Hamiltonian formalism. A Hamiltonian \(\mathcal{H}\) on \(\Pi\) is defined as a section \(p = -\mathcal{H}\) of the bundle \(\zeta\) (3). The pull-back of \(\Xi_Y\) onto \(\Pi\) by a Hamiltonian \(\mathcal{H}\) is a Hamiltonian form

\[H = \mathcal{H}^* \Xi_Y = p^\lambda_i dy^i \wedge \omega^\lambda_i - \mathcal{H} \omega. \]

\(6\)

In the case of mechanics, \(Z_Y = TY\) and \(\Pi = Vy\) are the homogeneous momentum phase space and the momentum phase space of time-dependent mechanics on \(Y \rightarrow \mathbb{R}\), respectively. Accordingly, \(H\) (6) is the well-known integral invariant of Poincaré–Cartan.

From the mathematical viewpoint, an essential advantage of a multisymplectic formalism is that the multisymplectic form is an exterior form. In physical applications, one however meets an additional variable \(p\) which is the energy one in homogeneous time-dependent mechanics.

It should be emphasized that multisymplectic and polysymplectic formalisms need not be related to Lagrangian one. In contrast with them, Hamilton – De Donder formalism necessarily describes Lagrangian systems as follows.

Let us consider a first order Lagrangian

\[L = \mathcal{L} \omega : J^1 Y \rightarrow \wedge^n T^* X, \quad \omega = dx^1 \wedge \cdots \wedge dx^n, \quad n = \dim X, \]

\(7\)

on \(J^1 Y\), the Euler–Lagrange equations

\[(\partial^\lambda_i - d_\lambda \partial^\lambda_i) \mathcal{L} = 0, \]

\(8\)

and the Poincaré–Cartan form

\[H_L = L + \pi^\lambda_i \theta^i \wedge \omega_\lambda, \quad \pi^\lambda_i = \partial^\lambda_i \mathcal{L}, \quad \omega_\lambda = \partial_\lambda \omega. \]

\(9\)

The latter is both the particular Lepagean equivalent of a Lagrangian \(L\) (7) and that of the Lagrangian

\[\mathcal{T} = \hat{h}_0(H_L) = (\mathcal{L} + (\hat{y}^i_\lambda - y^i_\lambda) \pi^\lambda_i) \omega, \quad \hat{h}_0(dy^i) = \hat{y}^i_\lambda dx^\lambda, \]

\(10\)

on the repeated jet manifold \(J^1 J^1 Y\). Its Euler–Lagrange equations are the Cartan equations

\[\partial^\lambda_i \pi^\mu_j (\hat{y}^i_\mu - y^i_\mu) = 0, \quad \partial_i \mathcal{L} - d_\lambda \pi^\lambda_i + (\hat{y}^i_\lambda - y^i_\lambda) \partial_i \pi^\lambda_j = 0. \]

\(11\)

- The Poincaré–Cartan form (9) yields the Legendre morphism

\[\widehat{H}_L : J^3 Y \rightarrow Z_Y, \quad (p^\mu_i, p) \circ \widehat{H}_L = (\pi^\mu_i, \mathcal{L} - \pi^\mu_i y^i_\mu), \]
of J^1Y to the homogeneous Legendre bundle Z_Y (1). Let its image $Z_L = \widehat{H}_L(J^1Y)$ be an imbedded subbundle $i_L : Z_L \hookrightarrow Z_Y$ of $Z_Y \to Y$. Then it is provided with the pull-back De Donder form $\Xi_L = i_L^*\Xi_Y$. The Hamilton – De Donder equations for sections σ of $Z_L \to X$ are written as

$$\sigma^*(u \rfloor d\Xi_L) = 0,$$

where u is an arbitrary vertical vector field on $Z_L \to X$. Let the Legendre morphism \widehat{H}_L be a submersion. Then one can show that a section σ of $J^1Y \to X$ is a solution of the Cartan equations (11) iff $\widehat{H}_L \circ \sigma$ is a solution of the Hamilton–De Donder equations (12). In a general setting, one can consider different Lepagean forms in order to develop Hamilton – De Donder formalism [15, 16].

The relation between polysymplectic Hamiltonian and Lagrangian formalisms is based on the fact that any Lagrangian L yields the Legendre map

$$\widehat{L} : J^1Y \longrightarrow \Pi, \quad p^i_\mu \circ \widehat{L} = \partial^i_\mu L,$$

whose image $N_L = \widehat{L}(J^1Y)$ is called the Lagrangian constraint space. Conversely, any Hamiltonian \mathcal{H} defines the Hamiltonian map

$$\widehat{H} : \Pi \longrightarrow J^1Y, \quad y^i_\lambda \circ \widehat{H} = \partial^i_\lambda \mathcal{H}.$$

A Hamiltonian \mathcal{H} on Π is said to be associated to a Lagrangian L on J^1Y if it satisfies the relations

$$p^i_\mu = \partial^i_\mu L(x^\mu, y^i, \partial^j_\lambda \mathcal{H}),$$

$$p^i_\mu \partial^i_\mu \mathcal{H} - \mathcal{H} = L(x^\mu, y^i, \partial^j_\lambda \mathcal{H}).$$

If an associated Hamiltonian \mathcal{H} exists, the Lagrangian constraint space N_L is given by the coordinate relations (15) and $\widehat{L} \circ \widehat{H}$ is a projector of Π onto N_L.

Lagrangian and polysymplectic Hamiltonian formalisms are equivalent in the case of hyperregular Lagrangians. The key point is that a degenerate Lagrangian admits different associated Hamiltonians, if any. At the same time, there is a comprehensive relation between these formalisms in the case of almost-regular Lagrangians. Recall that a Lagrangian L is called almost-regular if the Lagrangian constraint space is a closed imbedded subbundle $i_N : N_L \to \Pi$ of the Legendre bundle $\Pi \to Y$ and the surjection $\widehat{L} : J^1Y \to N_L$ is a fibred manifold possessing connected fibres. In particular, the Poincaré–Cartan form (9) is the pull-back $H_L = \widehat{L}^*H$ of the Hamiltonian form H (6) for any associated Hamiltonian \mathcal{H}.

Now let us focus on polysymplectic Hamiltonian formalism [9, 10]. Bearing in mind its quantization, we formulate it as particular Lagrangian formalism on the Legendre bundle Π (4).
2 Polysymplectic Hamiltonian dynamics

For every Hamiltonian form H (6), there exists a connection

$$\gamma = dx^\lambda \otimes (\partial_\lambda + \gamma^j_\lambda \partial_i + \gamma^\mu_\lambda \partial_\mu)$$

on $\Pi \to X$ such that

$$\gamma_\lambda^i \Omega = dH, \quad \gamma^i_\lambda = \partial_i \mathcal{H}, \quad \gamma^\lambda_\lambda = -\partial_\lambda \mathcal{H}. \quad (18)$$

The connection (17), called the Hamiltonian connection, yields the first order dynamic Hamilton equations on Π given by the closed submanifold

$$y^i_\lambda = \partial_i \mathcal{H}, \quad p^\lambda_\lambda = -\partial_\lambda \mathcal{H}$$

(19)
of the jet manifold $J^1 \Pi$ of $\Pi \to X$.

A polysymplectic Hamiltonian system on Π is equivalent to the above mentioned particular Lagrangian system on Π as follows.

Proposition 1. The Hamilton equations (19) are equivalent to the Euler–Lagrange equations for the first-order Lagrangian

$$L_\mathcal{H} = h_0(H) = \mathcal{L}_\mathcal{H} \omega = (p^i_\lambda y^j_\lambda - \mathcal{H}) \omega. \quad (20)$$

Let $i_N : N \to \Pi$ be a closed imbedded subbundle of the Legendre bundle $\Pi \to Y$ which is regarded as a constraint space of a polysymplectic Hamiltonian field system with a Hamiltonian \mathcal{H}. Let $H_N = i_N^* H$ be the pull-back of the Hamiltonian form H (6) onto N. This form defines the constrained Lagrangian

$$L_N = h_0(H_N) = (J^1 i_N)^* L_\mathcal{H}$$

(21)
on the jet manifold $J^1 N_L$ of the fibre bundle $N_L \to X$. The Euler–Lagrange equations for this Lagrangian are called the constrained Hamilton equations.

In fact, the Lagrangian $L_\mathcal{H}$ (20) is the pull-back onto $J^1 \Pi$ of the horizontal form $L_\mathcal{H}$ on the bundle product $\Pi \times J^1 Y$ by the canonical map

$$J^1 \Pi \to \Pi \times J^1 Y.$$

Therefore, the constrained Lagrangian L_N (21) is simply the restriction of $L_\mathcal{H}$ to $N \times J^1 Y$.

Proposition 2. A section r of $\Pi \to X$ is a solution of the Hamilton equations (19) iff it satisfies the condition

$$r^*(u_{\Pi} | dH) = 0$$
for any vertical vector field u_Π on $\Pi \rightarrow X$.

Proposition 3. A section r of the fibre bundle $N \rightarrow X$ is a solution of constrained Hamilton equations iff it satisfies the condition $r^*(u_N|dH) = 0$ for any vertical vector field u_N on $N \rightarrow X$.

Propositions 2 and 3 result in the following.

Proposition 4. Any solution of the Hamilton equations (19) which lives in the constraint manifold N is also a solution of the constrained Hamilton equations on N.

Forthcoming Theorems 5 - 6 establish the above mentioned relation between Lagrangian and polysymplectic Hamiltonian formalisms in the case of almost-regular Lagrangians.

Theorem 5. Let L be an almost-regular Lagrangian and H an associated Hamiltonian. Let a section r of $\Pi \rightarrow X$ be a solution of the Hamilton equations (19) for H. If r lives in the Lagrangian constraint manifold N_L, then $s = \pi_Y \circ r$ satisfies the Euler–Lagrange equations (8) for L, while $\overline{s} = \hat{H} \circ r$ obeys the Cartan equations (11). Conversely, let \overline{s} be a solution of the Cartan equations (11) for L. If H satisfies the relation

$$\hat{H} \circ \hat{L} \circ \overline{s} = J^1(\pi^1_0 \circ \overline{s}),$$

the section $r = \hat{L} \circ \overline{s}$ of the Legendre bundle $\Pi \rightarrow X$ is a solution of the Hamilton equations (19) for H.

If an almost-regular Lagrangian admits associated Hamiltonians H, they define a unique constrained Lagrangian $L_N = h_0(H_N)$ (21) on the jet manifold J^1N_L of the fibre bundle $N_L \rightarrow X$. Basing on Proposition 4 and Theorem 5, one can prove the following.

Theorem 6. Let an almost-regular Lagrangian L admit associated Hamiltonians. A section \overline{s} of the jet bundle $J^1Y \rightarrow X$ is a solution of the Cartan equations for L iff $\hat{L} \circ \overline{s}$ is a solution of the constrained Hamilton equations. In particular, any solution r of the constrained Hamilton equations provides the solution $\overline{s} = \hat{H} \circ r$ of the Cartan equations.

Thus, one can associate to an almost-regular Lagrangian (7) a unique constrained Lagrangian system on the constraint Lagrangian manifold N_L (15).

3 Quadratic degenerate systems

Quadratic Lagrangians provide a most physically relevant example of degenerate Lagrangian systems.
Let us consider a quadratic Lagrangian
\[\mathcal{L} = \frac{1}{2} a_{ij}^{\lambda \mu} y_i^j y_j^\mu + b_i^\lambda y_i^\mu + c, \] (22)
where \(a, b \) and \(c \) are local functions on \(Y \). The associated Legendre map (13) reads
\[p_i^\lambda \circ \hat{L} = a_{ij}^{\lambda \mu} y_j^\mu + b_i^\lambda. \] (23)

Let a Lagrangian \(\mathcal{L} \) be almost-regular, i.e., the matrix function \(a \) is a linear bundle morphism
\[a : T^* X \otimes V Y \to \Pi, \quad p_i^\lambda = a_{ij}^{\lambda \mu} y_j^\mu, \] (24)
of constant rank, where \((x^\lambda, y^i, \overline{\gamma}_\lambda^i)\) are coordinates on \(T^* X \otimes V Y \). Then the Lagrangian constraint space \(N_L \) (23) is an affine subbundle of \(\Pi \to Y \). Hence, \(N_L \to Y \) has a global section. Let us assume that it is the canonical zero section \(\hat{0}(Y) \) of \(\Pi \to Y \). The kernel of the Legendre map (23) is also an affine subbundle of the affine jet bundle \(J^1 Y \to Y \). Therefore, it admits a global section
\[\Gamma : Y \to \text{Ker} \hat{L} \subset J^1 Y, \quad a_{ij}^{\lambda \mu} \Gamma_j^\mu + b_i^\lambda = 0, \] (25)
which is a connection on \(Y \to X \). With \(\Gamma \), the Lagrangian (22) is brought into the form
\[\mathcal{L} = \frac{1}{2} a_{ij}^{\lambda \mu} (y_i^\lambda - \Gamma_i^\lambda)(y_j^\mu - \Gamma_j^\mu) + c'. \] (26)

Theorem 7. There exists a linear bundle morphism
\[\sigma : \Pi \to T^* X \otimes V Y, \quad \overline{\gamma}_\lambda \circ \sigma = \sigma_{ij}^{ij \mu} y_j^\mu, \] (27)
\[a \circ \sigma \circ a = a, \quad a_{ij}^{\lambda \mu} \sigma_{jk}^{\mu \alpha} \sigma_{\alpha k}^{\lambda} = a_{ij}^{\lambda \nu}. \] (28)

The morphism \(\sigma \) (27) is not unique, but it falls into the sum \(\sigma = \sigma_0 + \sigma_1 \) such that
\[\sigma_0 \circ a \circ \sigma_0 = \sigma_0, \quad a \circ \sigma_1 = \sigma_1 \circ a = 0, \] (29)
where \(\sigma_0 \) is uniquely defined. The equalities (25) and (28) give the relation
\[(a \circ \sigma_0)_{ij}^{\lambda \mu} b_j^\mu = b_i^\lambda. \]

Theorem 8. There are the splittings
\[J^1 Y = \text{Ker} \hat{L} \oplus \text{Im}(\sigma_0 \circ \hat{L}), \] (30)
\[y_i^\lambda = S_i^\lambda + F_i^\lambda = [y_i^\lambda - \sigma_0 \rho_j^{ik} (a_{kj}^{\alpha \mu} y_j^\mu + b_k^\alpha)] + [\sigma_0 \rho_j^{ik} (a_{kj}^{\mu \alpha} y_j^\mu + b_k^\alpha)], \]
\[\Pi = \text{Ker} \sigma_0 \oplus N_L, \] (31)
\[p_i^\lambda = R_i^\lambda + P_i^\lambda = [p_i^\lambda - \sigma_0 \rho_j^{ik} (a_{kj}^{\mu \alpha} y_j^\mu + b_k^\alpha)] + [a_{ij}^{\lambda \mu} \sigma_0 \rho_j^{ik} (a_{kj}^{\mu \alpha} y_j^\mu + b_k^\alpha)]. \]
The relations (29) lead to the equalities

\[\sigma_{0}^{jk} \mathcal{R}_{k}^{\alpha} = 0, \quad \sigma_{1}^{jk} \mathcal{P}_{k}^{\alpha} = 0, \quad \mathcal{R}_{i}^{\lambda} \mathcal{F}_{\lambda}^{i} = 0. \] (32)

By virtue of the equalities (29) and the relation

\[\mathcal{F}_{\mu}^{i} = (\sigma_{0} \circ a)_{\mu}^{ij}(y_{\lambda}^{j} - \Gamma_{\lambda}^{j}), \] (33)

the Lagrangian (22) takes the form

\[L = L_{\omega}, \quad \mathcal{L} = \frac{1}{2} a^{\mu}_{ij} \mathcal{F}_{\lambda}^{i} \mathcal{F}_{\mu}^{j} + c'. \] (34)

It admits a set of associated Hamiltonians

\[\mathcal{H}_{\Gamma} = (\mathcal{R}_{i}^{\lambda} + \mathcal{P}_{i}^{\lambda}) \Gamma_{\lambda}^{i} + \frac{1}{2} \sigma_{0}^{ij} \mathcal{P}_{i}^{\lambda} \mathcal{P}_{j}^{\mu} + \frac{1}{2} \sigma_{1}^{ij} \mathcal{R}_{i}^{\lambda} \mathcal{R}_{j}^{\mu} - c' \] (35)

indexed by connections \(\Gamma \) (25). Accordingly, the Lagrangian constraint manifold (23) is characterized by the equalities

\[\mathcal{R}_{i}^{\lambda} = p_{i}^{\lambda} - a^{\mu}_{ij} \sigma_{0}^{jk} \mathcal{P}_{k}^{\alpha} = 0. \] (36)

Given a Hamiltonian \(\mathcal{H}_{\Gamma} \), the corresponding Lagrangian (20) on \(\Pi \times J^{1}Y \) reads

\[\mathcal{L}_{\mathcal{H}_{\Gamma}} = \mathcal{R}_{i}^{\lambda}(S_{\lambda}^{i} - \Gamma_{\lambda}^{i}) + \mathcal{P}_{i}^{\lambda} \mathcal{F}_{\lambda}^{i} - \frac{1}{2} \sigma_{0}^{ij} \mathcal{P}_{i}^{\lambda} \mathcal{P}_{j}^{\mu} - \frac{1}{2} \sigma_{1}^{ij} \mathcal{R}_{i}^{\lambda} \mathcal{R}_{j}^{\mu} + c'. \] (37)

Its restriction (21) to the constraint manifold \(N_{L} \times J^{1}Y \) is

\[L_{N} = L_{N\omega}, \quad \mathcal{L}_{N} = \mathcal{P}_{i}^{\lambda} \mathcal{F}_{\lambda}^{i} - \frac{1}{2} \sigma_{0}^{ij} \mathcal{P}_{i}^{\lambda} \mathcal{P}_{j}^{\mu} + c'. \] (38)

It is independent of the choice of a Hamiltonian (35).

The Hamiltonian \(\mathcal{H}_{\Gamma} \) yields the Hamiltonian map \(\widehat{H}_{\Gamma} \) and the projector

\[\mathcal{T} = \hat{L} \circ \widehat{H}_{\Gamma}, \quad p_{i}^{\lambda} \circ \mathcal{T} = \mathcal{T}_{ij}^{\lambda} \nu_{j}^{\mu} = a^{\lambda
u}_{ik} \sigma_{0}^{kj} \nu_{j}^{\mu} = \mathcal{P}_{i}^{\lambda}, \]

of \(\Pi \) onto its summand \(N_{L} \) in the decomposition (31). It is a linear morphism over \(\text{Id}Y \). Therefore, \(\mathcal{T} : \Pi \to N_{L} \) is a vector bundle. Let us consider the pull-back

\[L_{\Pi} = \mathcal{T}^{*} L_{N} = \mathcal{L}_{\Pi\omega}, \quad \mathcal{L}_{\Pi} = \mathcal{P}_{i}^{\lambda} \mathcal{F}_{\lambda}^{i} - \frac{1}{2} \sigma_{0}^{ij} \mathcal{P}_{i}^{\lambda} \mathcal{P}_{j}^{\mu} + c', \] (39)

of the constrained Lagrangian \(L_{N} \) (38) onto \(\Pi \times J^{1}Y \).
4 Quantization

In order to quantize covariant Hamiltonian systems, one usually attempts to construct the multisymplectic generalization of a Poisson bracket [5, 8, 13, 14]. In a different way, we suggested to quantize covariant (polysymplectic) Hamiltonian field theory in path integral terms [21]. This quantization scheme has been modified in order to quantize a polysymplectic Hamiltonian system with a Hamiltonian \(H \) on \(\Pi \) as a Lagrangian system with the Lagrangian \(L \) in the framework of familiar quantum field theory [1, 2].

If there is no constraint and the matrix
\[
\frac{\partial^2 H}{\partial p^i \partial p^j} = -\frac{\partial^2 L}{\partial p^i \partial p^j}
\]
is positive-definite and non-degenerate on an Euclidean space-time, this quantization is given by the generating functional
\[
Z = N^{-1} \int \exp \left\{ \int (L_H + \Lambda + iJ_i y^i + iJ^i_\mu p^\mu_i)\omega \right\} \prod_x [dp(x)] [dy(x)]
\]
of Euclidean Green functions, where \(\Lambda \) comes from the normalization condition
\[
\int \exp \left\{ \int \left(\frac{1}{2} \partial_i \partial_j L_H p^i \cdot p_j + \Lambda \right) dx \right\} \prod_x [dp(x)] = 1.
\]

A constrained Hamiltonian system on a constraint manifold \(N \) can be quantized as a Lagrangian system with the pull-back Lagrangian \(L_N \). Furthermore, a closed imbedded constraint submanifold \(N \) of \(\Pi \) admits an open neighbourhood \(U \) which is a fibred manifold \(U \to N \). If \(\Pi \) is a fibred manifold \(\pi_N : \Pi \to N \) over \(N \), it is often convenient to quantize a Lagrangian system on \(\Pi \) with the pull-back Lagrangian \(L_\Pi = \pi_N^* L_N \). Since this Lagrangian possesses gauge symmetries, BV (Batalin–Vilkoviski) quantization can be called into play [3, 11].

For instance, BV quantization can be applied to Hamiltonian systems associated to Lagrangian field systems with quadratic Lagrangians \(L \). If this Lagrangian is hyper-regular (i.e., the matrix function \(a \) is non-degenerate), there exists a unique associated Hamiltonian system whose Hamiltonian \(H \) is quadratic in momenta \(p^\mu_i \), and so is the Lagrangian \(L_H \). If the matrix function \(a \) is positive-definite on an Euclidean space-time, the generating functional (40) is a Gaussian integral of momenta \(p^\mu_i (x) \). Integrating \(Z \) with respect to \(p^\mu_i (x) \), one restarts the generating functional of quantum field theory with the original Lagrangian \(L \). Using the BV quantization procedure, this result is generalized to field theories with almost-regular Lagrangians \(L \), e.g., Yang–Mills gauge theory.

The Lagrangian \(L_\Pi \) possesses gauge symmetries. By gauge transformations are meant automorphisms \(\Phi \) of the composite fibre bundle \(\Pi \to Y \to X \) over bundle automorphisms \(\phi \) of \(Y \to X \) over \(\text{Id} \, X \). Such an automorphism \(\Phi \) gives rise to the automorphism
An automorphism Φ is said to be a gauge symmetry of the Lagrangian L_Π if

$$(\Phi, J^1 \phi)^* L_\Pi = L_\Pi.$$

If the Lagrangian (22) is degenerate, the group G of gauge symmetries of the Lagrangian L_Π (39) is never trivial. Indeed, any vertical automorphism of the vector bundle $\text{Ker} \sigma_0 \to Y$ in the decomposition (31) is obviously a gauge symmetry of the Lagrangian L_Π (39). The gauge group G acts on the space $\Pi(X)$ of sections of the Legendre bundle $\Pi \to X$. For the purpose of quantization, it suffices to consider a subgroup \mathcal{G} of G which acts freely on $\Pi(X)$ and satisfies the relation

$$\Pi(X)/\mathcal{G} = \Pi(X)/G.$$

Moreover, we need one-parameter subgroups of \mathcal{G}. Their infinitesimal generators are represented by projectable vector fields

$$u_\Pi = u^i(x^\mu, y^j) \partial_i + u^k(x^\mu, y^j, p^\nu_j) \partial^i_k$$

on the Legendre bundle $\Pi \to Y$ which give rise to the vector fields

$$\pi = u^i \partial_i + u^k \partial^i_k + d_\lambda u^i \partial^i_\lambda, \quad d_\lambda = \partial_\lambda + y^i_\lambda \partial_i,$$

on $\Pi \times J^1 Y$. A Lagrangian L_Π is invariant under a one-parameter group of gauge transformations iff its Lie derivative

$$L_\pi L_\Pi = \pi(\mathcal{L}_\Pi)\omega$$

along the infinitesimal generator π (42) of this group vanishes.

Any vertical vector field u on $Y \to X$ gives rise to the vector field

$$u_\Pi = u^i \partial_i - \partial_j u^i p^\lambda_j \partial^i_\lambda$$

on the Legendre bundle Π and to the vector field

$$\pi_\Pi = u^i \partial_i - \partial_j u^i p^\lambda_j \partial^i_\lambda + d_\lambda u^i \partial^i_\lambda$$

on $\Pi \times J^1 Y$.

Let us assume that the one-parameter gauge group with the infinitesimal generators u preserves the splitting (30), i.e., u obey the condition

$$u^k \partial_k (\sigma_0^i n^m a^\mu_{mj}) + \sigma_0^i n^m a^\mu_{mk} \partial_j u^k - \partial_k u^i \sigma_0^k m^\mu a^\mu_{mj} = 0.$$

Proposition 9. If the condition (45) holds, the vector field u_Π (43) is an infinitesimal gauge symmetry of the Lagrangian L_Π (39) iff u is an infinitesimal gauge symmetry of the Lagrangian L (34).
References

[1] D. Bashkirov, BV quantization of covariant (polysymplectic) Hamiltonian field theory, *Int. J. Geom. Methods Mod. Phys.* **1** (2004), 233-252; *E-print arXiv*: hep-th/0403263.

[2] D. Bashkirov and G. Sardanashvily, Covariant Hamiltonian field theory. Path integral quantization, *Int. J. Theor. Phys.* **43** (2004) N5; *E-print arXiv*: hep-th/0402057.

[3] I. Batalin and G. Vilkoviski, Closure of the gauge algebra, generalized Lie algebra equations and Feynman rules, *Nucl. Phys. B* **234** (1984), 106-124.

[4] F. Cantrijn, A. Ibort and M. de Leon, On the geometry of multisymplectic manifolds, *J. Austral. Math. Soc. Ser. A* **66** (1999) 303-330.

[5] M. Castrillón López and J. Marsden, Some remarks on Lagrangian and Poisson reduction for field theories, *Journal of Geometry and Physics* **48** (2003), 52-83.

[6] A. Echeverría-Enríquez, M. Muñoz-Lecanda and N. Roman-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, *J. Math. Phys.* **41** (2002), 7402-7444.

[7] A. Echeverría-Enríquez, G. López, J. Marin-Solano, M. Muñoz-Lecanda and N. Roman-Roy, Lagrangian-Hamiltonian unified formalism for field theories, *J. Math. Phys.* **45** (2004), 360-380.

[8] M. Forger, C. Paufler and H. Roemer, The Poisson bracket for Poisson forms in multisymplectic field theory, *Review on Mathematical Physics* **15** (2003), 705-744.

[9] G. Giachetta, L. Mangiarotti and G. Sardanashvily, *New Lagrangian and Hamiltonian Methods in Field Theory* (World Scientific, Singapore, 1997).

[10] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Covariant Hamilton equations for field theory, *J. Phys. A* **32** (1999), 6629-6642; *E-print arXiv*: hep-th/9904062.

[11] J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge-theory quantization, *Phys. Rep.* **259** (1995), 1-145.

[12] F. Hélein and J. Kouneiher, Finite-dimensional formalism for gauge and quantum field theories, *J. Math. Phys.* **43** (2002), 2306-2347.

[13] I. Kanatchikov, De Donder–Weyl theory and hypercomplex extensions of quantum mechanics to field theory, *Rep. Math. Phys.* **43** (1999), 157-170.
[14] I. Kanatchikov, Precanonical quantization of Yang–Mills fields and the functional Schrödinger representation, *Rep. Math. Phys.* 53 (2004) 181-193.

[15] O. Krupkova and D. Smetanova, Legendre transformations for regularizable Lagrangian in field theory, *Lett. Math. Phys.* 58 (2001) 189-204.

[16] O. Krupkova, Hamiltonian field theory, *J. Geom. Phys.* 43 (2002) 93-132.

[17] M. de Leon, M. McLean, L. Norris, A. Rey-Roca and M. Saldago, Geometric structures in field theory, *E-print arXiv: math-ph/0208036.*

[18] M. de Leon, D. Martín de Diego and A. Santamaría-Merini, Symmetries in classical field theory, *Int. J. Geom. Methods Mod. Phys.* 1 (2004), 651-710.

[19] L. Mangiarotti and G. Sardanashvily, *Gauge Mechanics* (World Scientific, Singapore, 1998).

[20] G. Martin, A Darboux theorem for multi-symplectic manifolds, *Lett. Math. Phys.* 16 (1988) 133-138.

[21] G. Sardanashvily, Multimomentum Hamiltonian formalism in quantum field theory, *Int. J. Theor. Phys.* 33 (1994), 2373-2387.