Persistent immune activation in CVID and the role of IVIg in its suppression

Dominic Paquin-Proulx and Johan K. Sandberg*

Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

INTRODUCTION

Diagnosis of common variable immunodeficiency (CVID) is based on low levels of IgG and IgA and lack of specific IgG response following vaccination (1). Several genetic mutations associated with CVID have been identified but for a significant proportion of patients the exact cause is unknown (2). CVID patients, thus, are a heterogeneous group characterized by poor humoral immunity, resulting in recurrent infection of the gastrointestinal and upper respiratory tracts. CVID is also associated with non-infection related complications including cancers, mainly non-Hodgkin’s lymphoma, and autoimmune diseases such as idiopathic thrombocytopenia purpura and autoimmune hemolytic anemia, contributing to a significantly shorter life expectancy (3, 4). It has become clear that defects in the immune system in CVID go beyond humoral immunity with significant changes and persistent activation of the cellular immune system, involving dendritic cells (DCs), CD8 T cells, CD4 T cells, invariant natural killer T (iNKT) cells, and regulatory T cells (Tregs). The treatment for CVID is IgG replacement, often given as intravenous immunoglobulins (IVIg). IVIg consists of monomeric IgG purified from pooled plasma from healthy donors and it is used to treat an increasing number of conditions including autoimmunity diseases. The treatment for CVID is IgG replacement, often given as intravenous immunoglobulins (IVIg). IVIg consists of monomeric IgG purified from pooled plasma from healthy donors and is used to treat an increasing number of conditions including autoimmunity diseases. The treatment for CVID, IVIg has mainly been seen as reconstitution therapy, providing patients with pathogen-specific antibodies. Recent evidence shows that IVIg has diverse effects on the immune system of CVID patients, and one important component is that IVIg alleviates the state of chronic immune activation. In this review, we will discuss causes and consequences of persistent immune activation in CVID, possible underlying mechanisms for how IVIg treatment reduces immune activation, and implications for our understanding of primary as well as acquired immune deficiencies.

Keywords: CVID, IVIg, iNKT cells, CD8 T cells, CD4 T cells, dendritic cells, immune activation, IgG replacement therapy

Common variable immunodeficiency (CVID) is one of the most common and clinically important primary immune deficiencies. CVID patients have poor humoral immunity, resulting in recurrent infections of the gastrointestinal and upper respiratory tracts, as well as increased incidence of some forms of cancers and autoimmunity diseases. The treatment for CVID is IgG replacement, often given as intravenous immunoglobulins (IVIg). IVIg consists of monomeric IgG purified from pooled plasma from healthy donors and is used to treat an increasing number of conditions including autoimmunity diseases. The treatment for CVID, IVIg has mainly been seen as reconstitution therapy, providing patients with pathogen-specific antibodies. Recent evidence shows that IVIg has diverse effects on the immune system of CVID patients, and one important component is that IVIg alleviates the state of chronic immune activation. In this review, we will discuss causes and consequences of persistent immune activation in CVID, possible underlying mechanisms for how IVIg treatment reduces immune activation, and implications for our understanding of primary as well as acquired immune deficiencies.

INNATE IMMUNE ACTIVATION

Common variable immunodeficiency patients present defects in several arms of the innate immune system. Natural killer (NK) cells express a wide repertoire of activating and inhibitory receptors and are part of the innate defenses against viral infections and tumors (9). NK cells were first recognized for their cytotoxic capacity but they can also produce cytokines and have regulatory properties (10). The frequency of NK cells has been reported to be lower in CVID (11). Detailed studies of NK cells in CVID are lacking, and the effects IVIg treatment may have on NK cell frequency, phenotype, and functions are unknown. Because of their antitumor function, decline of NK cells could contribute to the increased risk of cancer in CVID patients.

Polymorphonuclear neutrophils (PMNs) are an important component of the innate immune system. In response to pathogens, PMNs can rapidly migrate to the site of inflammation and have microbicidal activity by the release of proteolytic enzymes and antimicrobial peptides as well as production of reactive oxygen species (ROS) (12). In CVID, PMNs have been reported to express lower levels of CD11b, CD16b, and CD15, suggesting a maturation defect (13). The same study also reported impaired phagocytosis of E. coli and reduced ROS production after TLR stimulation by PMN from CVID patients. The patients in this study were all under IVIg treatment, and the effects of IVIg on PMN phenotype and function therefore remain undetermined.
Another study showed that IVIg temporarily reduced the frequencies of CD1 molecules with the expression levels of CD1a and CD1b, while CD1d expression therapy, the CD1c subset frequency is normalized together with CD4+ cells. Following the increase in IgG level after initiation of replacement therapy, the CD1c subset frequency is normalized together with CD4+ cells. The mechanisms by which IVIg can normalize CD4 counts remain elusive, but Dolcino et al. reported that lower expression of LEPR, a gene important for CD4 proliferation, was normalized after IVIg treatment in CVID patients (31). CD8 T cell counts in CVID patients are in general not different from healthy controls but some patients have an expansion of this population. Therefore, the inverted CD4:CD8 ratio seen in CVID is mostly due to their low-CD4 count. CD4 T cells in CVID have elevated levels of the activation markers Ki67, CD38, and HLA-DR, indicating that IgG replacement therapy may help control infections or infection-associated factors that are implicated in chronic activation of the CD8 T cells. Expression of some activation markers on CD8 T cells and exhaustion markers remained elevated for up to 1 year on IVIg treatment (22). Interestingly, another study found that IVIg treatment could reduce PD-1 expression on CD4 T cells and restore their response to bacteria (34).

Similar to the CD4 T cell compartment, CD8 T cells in treatment-naive CVID have elevated expression of activation markers Ki67 and co-expression of CD38 and HLA-DR. IgG replacement therapy leads to reduced expression of Ki67, CD38, and HLA-DR on CD8 T cells (22), indicating that IgG replacement may help control infections or infection-associated factors that are implicated in chronic activation of the CD8 T cells. Expression of some activation markers on CD8 T cells and exhaustion markers on CD4 T cells correlate positively with age in IVIg-naive CVID patients (22), suggesting that immune activation and exhaustion are developing progressively over time. Furthermore, the ratio of activated T cells to Tregs was found to be higher in CVID patients with auto-immunity compared to patients without auto-immunity (35). Therefore, early initiation of IgG replacement therapy could be beneficial in immune surveillance against cancer and to have the capacity to regulate auto-immunity (26). iNKT cells are numerically reduced in CVID (27) and present elevated expression of HLA-DR, CD161, and PD-1 (22), signs of activation and exhaustion. In addition, the distribution of iNKT cell subsets defined by CD4 and CD8 is skewed in CVID, with an increase in the CD4+ subset and a decrease in the CD8+ subset reported in one cohort (28). The function of iNKT seems to be relatively preserved in treatment-naive CVID patients, as only a trend for reduced IFNγ production was seen after stimulation with the model antigen α-Gal–Cer (29). Increased IFNγ production by iNKT cells was reported for a small number of CVID patients on going IVIg after in vitro expansion (30). The frequency of iNKT cells does not improve by reconstitution therapy, and HLA-DR remains elevated. However, expression of CD161 and PD-1 is reduced when CVID patients are under IVIg treatment (22), indicating that IVIg can alleviate iNKT cell activation and exhaustion in patients. Because of the important role of iNKT cells in tumor surveillance and immune regulation, it is possible that the loss of these cells is contributing to the increased risks of cancer and auto-immunity in CVID patients.

ADAPTIVE IMMUNE ACTIVATION

Treatment-naive CVID patients present low-CD4 T cell counts, in some cases down to numbers that would be considered AIDS-defining in HIV-1 infected patients. Following IVIg initiation, CD4 counts increase in the majority of CVID patients and can reach normal levels in some cases (22, 31). It is noteworthy that a similar effect has been reported in HIV-1 patients treated with IV Ig (32, 33). The mechanisms by which IVIg can normalize CD4 counts remain elusive, but Dolcino et al. reported that lower expression of LEPR, a gene important for CD4 proliferation, was normalized after IVIg treatment in CVID patients (31). CD8 T cell counts in CVID patients are in general not different from healthy controls but some patients have an expansion of this population. Therefore, the inverted CD4:CD8 ratio seen in CVID is mostly due to their low-CD4 count. CD4 T cells in CVID have elevated levels of the activation markers Ki67, CD38, and HLA-DR, indicating that IgG replacement therapy may help control infections or infection-associated factors that are implicated in chronic activation of the CD8 T cells. Expression of some activation markers on CD8 T cells and exhaustion markers on CD4 T cells correlate positively with age in IVIg-naive CVID patients (22), suggesting that immune activation and exhaustion are developing progressively over time. Furthermore, the ratio of activated T cells to Tregs was found to be higher in CVID patients with auto-immunity compared to patients without auto-immunity (35). Therefore, early initiation of IgG replacement therapy could be beneficial in immune surveillance against cancer and to have the capacity to regulate auto-immunity (26).
therapy in CVID patients may be beneficial by preventing further increase in T cell activation. However, diagnosis of CVID is frequently delayed by 6–8 years after the onset of symptoms (1).

Regulatory T cells are key regulators of immune responses and they play a crucial role in limiting unwanted and persistent immune activation. Several studies demonstrated that Tregs are reduced in CVID patients (22, 36–38) and that residual Tregs appear to have reduced suppressive capacity (39). An increase in Tregs was reported 30 min after IVIg infusion in CVID patients (38). This increase seems to be only transient as no sustained effect on Treg frequency was observed between samples obtained at baseline and up to 1 year after initiation of IVIg treatment (22). The inability of IVIg to restore normal frequency and function of Tregs may contribute to the increased risk of auto-immunity in CVID patients (36).

WHAT IS DRIVING IMMUNE ACTIVATION IN CVID?

Signs of activation in both monocytes and DCs are associated with T cell activation (16, 22, 40), suggesting that persistent innate activation contribute to chronic activation of the adaptive immune system. We propose a model where recurrent and chronic infections at mucosal surfaces in treatment-naïve CVID patients result in sustained activation of monocytes and DCs, and that these cells in turn promote T cell activation (Figure 1). In this model, one possible mechanism by which IVIg reduces activation of T cells is by acting at the level of the APCs. In vivo and in vitro studies support the notion that IVIg reduces T cells activation indirectly by acting on APCs rather than on the T cells themselves (41–45). IVIg may act directly on APCs via Fc-receptors, or have indirect effects on APCs activation by reducing the infection burden. However, persistent activation of monocytes and DCs is seen in CVID patients even after IVIg therapy and the causes are largely unknown.

CMV infection has been associated with complications in CVID patients (46, 47) and thus CMV is a possible candidate as a cause for chronic immune activation in CVID. Resurgence of endogenous retroviruses (ERVs) in the absence of LPS-specific antibodies has been reported in a mouse model (48). IVIg preparations contain antibodies specific for both CMV (49) and LPS (50), and may therefore help reduce the pressure on the immune system by supporting immune control of CMV and by preventing activation of ERVs. Enteric virus infections were found in 25% of CVID and CVID-like patients compared to 9% in controls, and these infections were associated with increased levels of calprotectin, a marker of inflammation, and low levels of IgA (51). Therefore, enteric viruses may also contribute to increased immune activation in CVID patients. However, only few CVID patients present the CD8 T cell expansion typically associated with chronic viral infections, suggesting that other causes may be involved. Soluble CD14 (sCD14), a marker associated with monocyte activation and possibly microbial translocation, is elevated in CVID (16, 22, 52). LPS levels were found to be elevated in one cohort of treatment-naïve CVID patients and were reduced following replacement therapy (34). However, we and others were unable to detect elevated LPS levels in the circulation of CVID patients [our unpublished data and Ref. (16, 52)]. Therefore, more investigations are needed to clarify the role of microbial translocation in CVID patients. The loss of Tregs as well as iNKT cells with regulatory capacities may contribute to the persistent immune action seen in CVID. These two populations appear to not recover after initiation of IVIg.

![Figure 1](link)
therapy (22), possibly providing an explanation as to why immune activation remains elevated.

SIMILARITIES BETWEEN PRIMARY AND SECONDARY IMMUNE DEFICIENCIES

Some of the immunological perturbations observed in treatment-naive CVID patients are strikingly similar to those seen in untreated HIV-1 infection. HIV-1 infection leads to chronic immune activation characterized by increased T cell activation and exhaustion, elevated levels of sCD14 and a partial loss of CD4 T cells, DCs, iNKT cells, and Tregs. These features are also found in CVID patients. T cell activation is closely associated with HIV-1 disease progression (53) but it is unknown if similar associations exist in CVID. IL-6 is a predictor of all-cause mortality (54) and disease progression (55) in HIV-1 infection, and has been associated with opportunistic infections (56) and increased risk of cancer (57). Interestingly, several studies reported an increase in IL-6 in CVID (58); however, it has not been studied as a biomarker of disease progression or complications. CVID and HIV-1 also present a similar signature in gene expression in the intestinal epithelium with up-regulation of innate immune gene and down-regulation of lipid and carbohydrate metabolism genes and transport of micronutrients genes (59), suggesting that events at the mucosal barrier may be involved in the similarities between the two diseases. Moreover, sCD14 levels have been found to associate with immune activation in both CVID (52) and HIV-1 (60), suggesting that monocyte activation is common to both conditions. IL-2 administration in combination with antiretroviral treatment results in increased CD4 counts (61), and expansion of iNKT cells (62) and NK cells (63) in HIV-1 infected patients. IL-2 has also been studied as a complementary therapy in CVID, resulting in increased T cell responses to mitogens and soluble antigens in the absence of changes in CD4 count and NK cell frequency (64-66) while iNKT cell frequency was not evaluated. Because of the similarities between CVID and HIV-1 disease, it is not unexpected that IVlg treatment can have modest effects on T cell activation and CD4 count in HIV-1 infection (32, 33). Therefore, it is possible that IVlg could be beneficial as a complement therapy for patients that have residual immune activation despite successful viral control on ART.

CONCLUDING REMARKS

Intravenous immunoglobulin provides CVID patients with a partial replacement for their defective humoral immunity. However, CVID patients also present abnormalities in cellular immunity in a way similar to what is often seen in other conditions associated with chronic immune activation such as HIV-1 infection. Some of these changes are normalized by IVlg treatment, suggesting that IVlg may also be beneficial in other immune deficiencies characterized by persistent immune activation. IVlg seems to have short-lived effects on the monocyte and Treg populations, whereas the reduction of activation in DCs, iNKT cells, and T cells appear to be sustained. However, the vast majority of immunological studies of CVID have been performed on patients who are already on IVlg replacement, therefore, missing or underestimating some of the abnormalities in CVID that are corrected by IVlg. More studies of treatment-naive CVID patients are needed to better understand what is driving immune activation in CVID and how IVlg is helping to improve cellular immunity. Furthermore, it will be important to investigate how we can restore the compartments that are not recovering after initiation of IVlg, such as Tregs and iNKT cells. Persistent loss of these cells may help explain why some CVID patients still suffer from severe inflammatory complications, such as interstitial lung disease and autoimmune enteropathy, even when on replacement therapy. Cellular therapy has been safely and successfully used to treat two CVID patients suffering from CMV intestinal disease by injection of autologous specific cytotoxic T cell lines expanded ex vivo (65). Thus, cellular therapy may represent a good complement to IVlg treatment to help restore a functional immune system in CVID patients.

REFERENCES

1. Cunningham-Rundles C. How I treat common variable immune deficiency. Blood (2010) 116(1):7–15. doi:10.1182/blood-2010-01-254417
2. Salter U, Unger S, Warnatz K. Common variable immunodeficiency (CVID): exploring the multiple dimensions of a heterogeneous disease. Ann NY Acad Sci (2012) 1250:41–9. doi:10.1111/j.1749-6632.2011.06377.x
3. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol (1999) 92(1):34–48. doi:10.1006/clim.1999.4725
4. Resnick ES, Mosher EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood (2012) 119(7):e1650–7. doi:10.1182/blood-2011-09-377945
5. Hartung HP, Mouton H, Ahmed R, Jordan S, Laupland KB, Jolles S. Clinical applications of intravenous immunoglobulins (IVlg) – beyond immunodeficiencies and neurology. Clin Exp Immunol (2009) 158(Suppl 1):23–33. doi:10.1111/j.1365-2249.2009.04024.x
6. Schwaib J, Lux A, Nimmerjahn F. Reply to – IVlg pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol (2014) 14(5):349. doi:10.1038/nri3401-c1
7. von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassile T, Kasermann F et al. IVlg pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol (2014) 14(5):349. doi:10.1038/nri3401-c2
8. Kaveri SV, Maddur MS, Hegde P, Laceyis-Desmarres S, Bay J. Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol (2011) 164(Suppl 2):2–5. doi:10.1111/j.1365-2249.2011.04387.x
9. Bjorkstrom NK, Kekalainen I, Mjoberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology (2013) 139(4):416–27. doi:10.1111/imm.12098
10. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J Allergy Clin Immunol (2013) 132(3):536–44. doi:10.1016/j.jaci.2013.07.006
11. Aspalter RM, Sewell WA, Dolman K, Farrant J, Webster AD. Deficiency in circulating natural killer (NK) cell subsets in common variable immunodeficiency and X-linked agammaglobulinemia. Clin Exp Immunol (2000) 121(3):506–14. doi:10.1046/j.1365-2249.2000.01317.x
12. Borregaard N. Neutrophils, from marrow to microbes. Immunity (2010) 33(5):657–70. doi:10.1016/j.immuni.2010.11.011
13. Cassilly S, Coignard-Biehler H, Amazzough K, Shoai-Tehrani M, Bayry J, Mahlaoui N, et al. Defective functions of polymorphonuclear neutrophils in patients with common variable immunodeficiency. Immunol Res (2014) 60(1):69–76. doi:10.1007/s12026-014-8555-7
14. Cassilly S, Topcu S, Factoum L, von Gunten S, Simon HU, Telllaud JL, et al. A differential concentration-dependent effect of IVlg on neutrophil functions: relevance for anti-microbial and anti-inflammatory mechanisms. PLoS One (2011) 6(10):e26469. doi:10.1371/journal.pone.0026469
15. Spahu JH, Kreisel D. Monocytes in sterile inflammation: recruitment and functional consequences. Arch Immunol Ther Exp (Warsz) (2014) 62(1):187–94. doi:10.1007/s00005-013-0267-5
16. Barbosa RR, Silva SP, Silva SL, Tendeiro R, Melo AG, Pedro E, et al. Monocyte activation is a feature of common variable immunodeficiency irrespective
of plasma lipopolysaccharide levels. Clin Exp Immunol (2012) 169(3):263–72. doi:10.1111/j.1365-2249.2012.04620.x.

27. Siddar M, Strach M, Bukowska–Strakova K, Lenart M, Szałarska A, Weglarczyk K, et al. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clin Immunol (2011) 139(2):122–32. doi:10.1016/j.clim.2011.01.002.

28. Aukrust P, Muller F, Froiland SS. Enhanced generation of reactive oxygen species in monocytes from patients with common variable immunodeficiency. Clin Exp Immunol (1994) 97(2):232–8. doi:10.1111/j.1365-2249.1994.tb06073.x.

29. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Galicier L, Lepelletier Y, Webster AD, et al. Common variable immunodeficiency is associated with defective functions of dendritic cells. Blood (2004) 104(8):2441–3. doi:10.1182/blood-2004-04-1225.

30. Bayry J, Lacroix-Desmazes S, Donkova-Petrini V, Szałarska A, Weglarczyk K, et al. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clin Immunol (2011) 139(2):122–32. doi:10.1016/j.clim.2011.01.002.

31. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Galicier L, Lepelletier Y, Webster AD, et al. Common variable immunodeficiency is associated with defective functions of dendritic cells. Blood (2004) 104(8):2441–3. doi:10.1182/blood-2004-04-1225.

32. Aukrust P, Hestdal K, Lien E, Bjerkeli V, Nordoy I, Espevik T, et al. Effects of intravenous immunoglobulin treatment on the CD1a+CD14+CD16+ monocyte subset in common variable immunodeficiency. Clin Immunol (2013) 146(1):27–33. doi:10.1016/j.clim.2013.03.003.

33. Vermeulen JN, Prins JM, Bunnik E, de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. CD1a+CD14+CD16++ monocytes from patients with common variable immunodeficiency. Blood (2013) 121(24):4963–4. doi:10.1182/blood-2013-04-499442.

34. Smed-Sorensen A, Moll M, Cheng TY, Lore K, Norlin AG, Perbeck L, et al. IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via FcgammaRIIa. Blood (2008) 111(5):5037–46. doi:10.1182/blood-2007-07-099549.

35. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat Immunol (2010) 11(12):1102–9. doi:10.1038/ni.1956.

36. Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol (2013) 34(2):50–8. doi:10.1016/j.it.2012.08.009.

37. Fulcher DA, Avery DT, Fewings NL, Berglund LJ, Wong S, Riminton DS, et al. Human dendritic cells. Blood (2013) 121(24):4963–4. doi:10.1182/blood-2013-04-499442.

38. Ciebiada M, Cebula Obrzut B, Mizyńczuk-Perera M, Kupa M, Grzesiak P, Szymańska-Kulszewska A, et al. CD1 expression in human plasma into therapeutic intravenous immunoglobulins. Clin Exp Immunol (2009) 157(3):365–9. doi:10.1111/j.1365-2249.2009.03973.x.

39. Carvalho BT, et al. Invariant natural killer (iNK) T cell deficiency in patients with common variable immunodeficiency. J Allergy Clin Immunol (2013) 128(1):129–33. doi:10.1016/j.jaci.2013.03.003.

40. Hel Z, Huijbregts RP, Xu I, Nehawalova L, Iwakura A, Ichinose Y, et al. Elevated serum cytokine signature in common variable immunodeficiency. J Clin Immunol (2014) 34(4):971–8. doi:10.1007/s10875-014-0099-z.

41. Aubin E, Lemieux R, Bazin R. Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood (2010) 115(9):3727–34. doi:10.1182/blood-2009-06-225417.

42. Paquin-Proulx D, Aubin E, Lemieux R, Bazin R. Inhibition of B cell–mediated antigen presentation by intravenous immunoglobulins (IVIg). Clin Immunol (2010) 135(3):422–9. doi:10.1016/j.clim.2010.01.001.

43. Aubin E, Proulx DP, Trepanier P, Lemieux R, Bazin R. Prevention of T cell activation by interference of internalized intravenous immunoglobulin (IVig) with MHC II-dependent native antigen presentation. Clin Immunol (2011) 141(3):273–83. doi:10.1016/j.clim.2011.06.009.

44. Pedat L, St-Amour I, Aubin E, Bazin R. Neutralization of mitogenic lectins by intravenous immunoglobulin (IVIg) prevents T cell activation: does IVIg really have a direct effect on T cells’? Clin Immunol (2011) 139(3):352–60. doi:10.1016/j.clim.2011.06.005.

45. Pedat L, Bazin R, IVIg prevents the in vitro activation of T cells by neutralizing the T cell activators. Immunol Lett (2013) 150(1–2):54–60. doi:10.1016/j.imlet.2012.12.011.

46. Marashi SM, Raeeszadeh M, Workman S, Rahbar A, Soederberg-Nauer C, Klenerman P, et al. Inflammation in common variable immunodeficiency is associated with a distinct CD8+ response to cytomegalovirus. J Allergy Clin Immunol (2011) 127(6):1385–93. doi:10.1016/j.jaci.2011.04.001.

47. Marashi SM, Raeeszadeh M, Enright V, Tahami F, Workman S, Choe R, et al. Influence of cytomegalovirus infection on immune cell phenotypes in patients with common variable immunodeficiency. J Allergy Clin Immunol (2012) 129(5):1349–56. doi:10.1067/j.jaci.2012.02.011.

48. Young GR, Ekstrand U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G, Rescine of endogenous retroviruses in antibody-deficient mice. Nature (2012) 491(7426):774–8. doi:10.1038/nature11599.

49. Planitzer CB, Saemund MD, Gajek H, Farct MR, Krell TR. Cytomegalovirus neutralization by hyperimmune and standard intravenous immunoglobulin preparations. Transplantation (2011) 92(3):267–70. doi:10.1097/TP.0b013e31822a115e.

50. St-Amour I, Laroche A, Bazin R, Lemieux R. Activation of cryptic IgG reactive with BAFF, amyloid beta peptide and GM-CSF during the fractional activation of human plasma into therapeutic intravenous immunoglobulins. Clin Immunol (2009) 133(1):52–60. doi:10.1016/j.clim.2009.06.005.

51. van de Ven AA, Jansen W, Schults LS, van Loon AM, Voorwerk K, Sanders EA, et al. Increased prevalence of gastrointestinal viruses and diminished secretory
immunoglobulin a levels in antibody deficiencies. J Clin Immunol (2014) 34(8):962–70. doi:10.1007/s10875-014-0087-3

52. Litzman J, Nechvatalska J, Xu J, Ticha O, Vlkova M, Hel Z. Chronic immune activation in common variable immunodeficiency (CVID) is associated with elevated serum levels of soluble CD14 and CD25 but not endotoxaemia. Clin Exp Immunol (2012) 170(3):321–32. doi:10.1111/j.1365-2249.2012.04655.x

53. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis (1999) 179(4):859–70. doi:10.1086/314660

54. Fuller S, Cooper DA, Tambussi G, Schechter M, et al. The role of IVIg in suppressing immune activation in CVID and the role of IVIg in its suppression. Front Immunol. 2014.

55. Moll M, Snyder-Cappione J, Spotts G, Hecht FM, Sandberg JK, Nixon DF. Expansion of CD1d-restricted NKT cells in patients with primary HIV-1 infection treated with interleukin-2. Blood (2006) 107(8):3081–3. doi:10.1182/blood-2005-09-3636

56. Hamlyn E, Fidler S, Stohr W, Cooper DA, Tambussi G, Schechter M, et al. Interleukin-6 and D-dimer levels at seroconversion as predictors of HIV-1 disease progression. AIDS (2014) 28(6):869–74. doi:10.1097/QAD.0000000000001355

57. Eller MA, Blom KG, Gonzalez VD, Eller LA, Naluyima P, Laeyendecker O, et al. Short-term low-dose IL-2 enhances immune function in common variable immunodeficiency. Clin Immunol (2001) 100(2):181–90. doi:10.1006/clim.2001.5052

58. Kovacs JA, Vogel S, Albert JM, Falloon J, Davey RT Jr., Walker RE, et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med (1996) 335(18):1550–6. doi:10.1056/NEJM199610313351803

59. Cunningham-Rundles C, Bodian C, Ochs HD, Martin S, Reiter-Wong M, Zhuo Z. Long-term low-dose IL-2 enhances immune function in common variable immunodeficiency. Clin Immunol (2001) 100(2):141–6. doi:10.1006/clim.2001.5052

60. Varzaneh FN, Keller B, Unger S, Aghamohammadi A, Warnatz K, Rezaei N. Cytokines in common variable immunodeficiency as signs of immune dysregulation and potential therapeutic targets – a review of the current knowledge. J Clin Immunol (2014) 34(5):524–43. doi:10.1007/s10875-014-0053-0

61. Ciccocioppo R, Comoli P, Gallia A, Basso S, Baldanti F, Corazza GR. Autologous human cytomegalovirus-specific cytotoxic T cells as rescue therapy for ulcerative enteritis in primary immunodeficiency. J Clin Immunol (2014) 34(6):681–5. doi:10.1007/s10875-014-0060-1

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 October 2014; accepted: 28 November 2014; published online: 16 December 2014.

Citation: Paquin-Proulx D and Sandberg JK (2014) Persistent immune activation in CVID and the role of IVIg in its suppression. Front. Immunol. 5:637. doi: 10.3389/fimmu.2014.00637

This article was submitted to Primary Immunodeficiencies, a section of the journal Frontiers in Immunology.

Copyright © 2014 Paquin-Proulx and Sandberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.