Sequence analysis

Generating interacting protein sequences using domain-to-domain translation

Barthelemy Meynard-Piganeau1,2,*, Caterina Fabbri2, Martin Weigt1, Andrea Pagnani3,4, Christoph Feinauer4

1Computational and Quantitative Biology, LCOB UMR 7238, Institut de Biologie Paris Seine, CNRS, Sorbonne Université, Paris 75005, France
2Department of Computing Sciences, Bocconi University, Milan 20100, Italy
3Politecnico di Torino, Duca degli Abruzzi, 24, Turin 10129, Italy
4Italian Institute for Genomic Medicine, Strada Provinciale, 142, Candiolo 10060, Italy

*Corresponding author. Computational and Quantitative Biology, LCOB UMR 7238, Institut de Biologie Paris Seine, CNRS, Sorbonne Université, Paris 75005, France. E-mail: barthelemy.meynard@polytechnique.edu (B.M.-P.)

Associate Editor: Lenore Cowen

Abstract

Motivation: Being able to artificially design novel proteins of desired function is pivotal in many biological and biomedical applications. Generative statistical modeling has recently emerged as a new paradigm for designing amino acid sequences, including in particular models and embedding methods borrowed from natural language processing (NLP). However, most approaches target single proteins or protein domains, and do not take into account any functional specificity or interaction with the context. To extend beyond current computational strategies, we develop a method for generating protein domain sequences intended to interact with another protein domain. Using data from natural multidomain proteins, we cast the problem as a translation problem from a given interactor domain to the new domain to be generated, i.e. we generate artificial partner sequences conditional on an input sequence. We also show in an example that the same procedure can be applied to interactions between distinct proteins.

Results: Evaluating our model’s quality using diverse metrics, in part related to distinct biological questions, we show that our method outperforms state-of-the-art shallow autoregressive strategies. We also explore the possibility of fine-tuning pretrained large language models for the same task and of using AlphaFold 2 for assessing the quality of sampled sequences.

Availability and implementation: Data and code on https://github.com/barthelemymp/Domain2DomainProteinTranslation.

1 Introduction

Generating novel protein sequences with desired properties is one of the key challenges of computational biology. It is likely that machine learning methods will play an important role in this task, being already used for the generation of new enzymes, biological sensors, and drug molecules (Wu et al. 2021). A promising approach is to leverage deep generative models, which use neural networks for learning probability distributions from known, naturally occurring protein sequences (Alley et al. 2019, Madani et al. 2020, Hawkins-Hooker et al. 2021, Shin et al. 2021, Repecka et al. 2021). Apart from other uses, like the prediction of mutational effects (Riesselman et al. 2018), these models can be used for protein design by selecting high-probability sequences (possibly under constraints) from the learned distribution.

Naturally occurring protein sequences are often comprised of several domains, and domains can be classified into different families (Alberts 2008). Models that work on the domain level usually use as training data a single multiple sequence alignment (MSA) (Durbin et al. 1998), containing sequences from the same domain family after aligning them, and make the assumption that each sequence is constrained by the same fitness landscape. This modeling paradigm neglects the dependence of the sequence constraints on the specific context corresponding to each organism, including other proteins interacting with the sequence or other domains on the same protein. Together with the fact that most of the crystallographic structures deposited in the PDB database (Burley et al. 2017) are resolved only at the single domain level (Zhou et al. 2022), this poses interesting questions about the limitations of current approaches, e.g. when predicting the relative orientation of multidomain proteins (Wu et al. 2021). Another field where this issue arises is immunology, where monoclonal antibody experiments are typically performed on mouse models and only later tested in humans. This is related to the so-called humanization problem, i.e. how to graft a promising variable receptor region (CDR) from a murine to a human context (Clavero-Alvarez et al. 2018). For protein design, this approach may be especially relevant. When redesigning a protein in order to increase its fitness, one usually only has to redesign a specific active domain inside the protein (Cheng et al. 2014, Reimer et al. 2019, Marchand et al. 2022). Being able to condition this process on the context (like, e.g. interacting domain inside the protein, or interacting domain of another protein) could potentially improve the precision of the design.

Known families of interacting domains can be organized in a paired MSA (pMSA), where the aligned interaction partners...
are concatenated (Muscat et al. 2020). Given the evolutionary pressure for maintaining functional interactions between proteins, amino acid substitutions at interaction surfaces are not independent between the interaction partners. The interacting sequence therefore can be used as additional information when generating a novel sequence. The current work addresses the task of generating domain sequences given an interacting domain sequence. Given that this task is similar to translation tasks in natural language processing (NLP), we explore the use of Transformers in this context. While there is some recent work using Transformers for translating between protein sequences (Wu et al. 2020) for specific applications, there is, to the best of our knowledge, no systematic exploration of this idea on the level of protein domain families on a diverse dataset. We explore various architectural choices, and regularization schemes and compare our results with a recently published shallow autoregressive method (Trinquier et al. 2021), which we use as a baseline. We also compare on a smaller scale to fine-tuned large protein language models, using Rita (Hesslow et al. 2022), and explore how structural predictions from AlphaFold correlate with our results.

The general idea of this work is summarized in Fig. 1. Consider a protein with at least two interacting domains, where interaction is defined as having a pair of amino acids at a distance of less than 8 angstrom. We then search a database of proteins for other sequences where these domains co-occur in the same protein and assemble the pMSA and use it for training the Transformer to translate from one domain to the other. The decoder being a causal language model, we can efficiently calculate the probability of a target sequence given the input sequence. This probability enables us to evaluate the compatibility of domains, which can be used for matching a domain to an interacting partner among several possible partners. The model is generative in that it can be used for generating a novel target sequence given the input sequence. Given a context, we can generate a new “translation” or target sequence and evaluate the new de novo proteins. In this setting, we highlight that one model per pair of domains is trained. We intend this article to fit into the line of work of domain-specific models, like in Potts Models, Variational Autoencoders (VAEs), and Restricted Boltzmann Machines (RBMs) (Tubiana et al. 2019, Russ et al. 2020, Hawkins-Hooker et al. 2021). We intend to provide a method for the task of redesigning a specific domain/protein, e.g. to increase its specific fitness for a specific task. We also explore the possibility of training one large Transformer for all the pairs, without observing any clear transfer learning advantage cf. Supplementary Appendix Section B.4.

2 Related literature

Generative modeling for protein design has a wide range of applications and a considerable number of different models have been proposed in the literature, recently especially
3 Data and methods

3.1 Dataset

Our data consist of 27 pMSAs containing domain sequence pairs that are part of the same multidomain proteins, taken from Muscat et al. (2020). The dataset contains only domain pairs which form a structural contact in at least one resolved PDB structure, making it likely that the domains coevolve in order to maintain compatibility. We also extended our work to protein–protein interaction (PPI) by analyzing the dataset of histidine kinases and response regulators (HK-RR), which form the core of bacterial two-component signal transduction systems. In the case of PPI, we consider one protein as the context of the other, even if being on different proteins.

3.2 Performance metrics

3.2.1 Log-likelihood and perplexity

An interesting property of autoregressive models, such as the Transformer or arDCA, is that they define a tractable probability distribution over the space of sequences. Contrary to, e.g., Potts Models and other energy-based models, we do not have to evaluate a global normalizing constant over the complete space of possible sequences. We can therefore calculate the log-likelihood of a sequence A given B as

$$\log P(A|B) = \sum_{i=1}^{N_{\text{out}}} \log (P(a_i|B, a_1, \ldots, a_{i-1})).$$ \hspace{1cm} (1)

This is related to the cross-entropy, which we use as a loss during training,

$$\mathcal{L}(A, B) = -\frac{\log P(A|B)}{N_{\text{out}}},$$ \hspace{1cm} (2)

which we average over batches during training.

For assessing one aspect of the quality of our models, we use the closely related perplexity $\mathcal{P}P(A, B)$, which is a common quality metric for protein language models (Armenteros et al. 2020), and can be defined as

$$\mathcal{P}P(A, B) = \left(\prod_{i=1}^{N_{\text{out}}} P(a_i|B, a_1, \ldots, a_{i-1}) \right)^{-1/N_{\text{out}}}. \hspace{1cm} (3)$$

Below we show averages of the perplexity over the training and validation sets and use the notation $\mathcal{P}P_{\text{train}}$ and $\mathcal{P}P_{\text{val}}$ for these.
3.2.2 Accuracy
While we use the perplexity as one metric for the quality of our model, it is not always easy to interpret: A high perplexity can result from a single wrong prediction with a high level of confidence. We therefore also use the accuracy $A(A, B)$ for assessing our models. This measure takes the same input as the cross-entropy (the conditional probability for every position) and counts the fraction of times where the true amino acid is the one with the highest probability, leading to

$$A(A, B) = \frac{1}{N_{\text{seq}}} \sum_{j=1}^{N_{\text{seq}}} I\left(a_i = \text{argmax}_{a \in \mathcal{V}}[P(a|B, a_1, \ldots, a_{i-1})]\right),$$

(4)

where \mathcal{V} is the alphabet of symbols and I is an indicator function that is 1 if its argument is true, and 0 else. We define A^{train} and A^{val} as the average of the accuracy on the training and validation set.

3.2.3 Matching specificity
We expect the interaction between two domains to affect the probability distribution of the target sequence only marginally, with much of the variability in the distribution being explainable by constraints inherent to the target sequence. As a consequence, a good performance in the quality measures defined above might be due to the decoder being a good language model of the target protein, possibly ignoring the input sequence altogether. We therefore also evaluate the specificity of the predicted target sequence given the source sequence.

Specificity is also related to the task of matching pairs of protein sequences, which is an active domain of research in bioinformatics (Bibol et al. 2016, Gueudré et al. 2016, Szurmant and Weigt 2018). We implement this task by separating the source and target sequences in the validation pMSA, resulting in two separate MSAs with the same number of rows, one containing the source sequences and one the target sequences. We then shuffle the rows in the target MSA randomly and attempt to use our models to find the permutation of the target sequences that matches the original order. In order to create a matching based on a model, we calculate the log-likelihood of every combination of source and target sequences in the shuffled validation set and create a matching between source and target sequences based on the Hungarian algorithm (Kuhn 1955).

We then use the fraction of correctly matched pairs as an additional metric for the performance of our model, formally defining it as

$$M^{\text{val}} = \frac{\# \text{ of correctly matched pairs in validation set}}{M^{\text{val}}},$$

(5)

where M^{val} is the size of the validation set. Note that the difficulty of this task increases with the size of the validation set, since the expected fraction of correctly matched pairs using a random matching is $1/M^{\text{val}}$.

3.3 Transformers and baselines
We mainly used two Transformer models with different sizes, calling one the shallow and one the large model. The shallow Transformer consists of two layers with a single attention head, has an embedding dimension of $d_{\text{model}} = 55$, and a forward dimension of $d_{ff} = 2048$. The large Transformer consists of three layers and has an embedding dimension of $d_{\text{model}} = 105$ with the same forward dimension and number of heads as the shallow transformer. Further details on their architectures can be found in Supplementary Appendix Section B.1. Both models are relatively small compared with Transformers trained on large protein sequence databases (cf. e.g. Hesslow et al. 2022, Lin et al. 2022). This can be explained in two ways. Firstly, when looking at one pair, the task is simpler as we only need to model a small fraction of the protein space where sequences can be aligned. Secondly, the smaller the number of training points gives rise to a complex overfitting problem that we analyze in Section 3.4 and Supplementary Appendix Section C.1. We compare their performance to the recently introduced shallow autoregressive model called arDCA (Trinquière et al. 2021) and a fine-tuned version of Rita L (Hesslow et al. 2022). While details on these methods can be found in Supplementary Appendix Section B.2, we note here that Rita was pretrained on a large corpus of unaligned, full-length sequences, which is a different setting from the pMSAs that we use for the Transformers. We, therefore, evaluated Rita only on unaligned, full-length sequences. For arDCA, which we train from scratch on pMSAs, there is no such mismatch and we can use it on the same pMSAs as the Transformers. For the datasets used in this work, the training time of the Transformer models ranges from less than an hour to about 1.5 days for the large Transformer on the largest dataset. The training was done using a single Nvidia V100 GPU. When using entropic regularization, which we will introduce in a later section, the training time increases significantly. In addition, we also trained a larger Transformer trained on nearly all the pairs. This Transformer has five heads, four layers, and a $d_{model} = 205$. The goal was to understand whether training on the joined dataset would enable transfer learning, or if, by mixing sequences from different families and alignments, it would make the task harder for the model. To enable a fair comparison we also replaced the <SOS> token with a token indicating the domain pair it was modeling. We need to give this hint to help the model know which family it has to generate. We held out three pairs of domains in order to check whether this joined Transformer was showing some transfer learning between families. We observed a loss of performance of approximately 3% in accuracy, 7% in matching, and 0.7 in perplexity. We concluded that a specialized Transformer for each pair, smaller and trainable in a few hours, is more suitable for the protein domain redesign task of this work. Complete results of the joined Transformer can be found in Supplementary Appendix Section B.4. We provide a table with training times in Supplementary Appendix Section B.5.

3.4 Entropic regularization
When experimenting with the large Transformer, we observed strong overfitting of the perplexity, especially when trained on smaller datasets. While this could be expected, we found that the matching performance was not following the same trend: While the perplexity started to degrade at some point during training, which is indicative of overfitting, the accuracy, and the matching performance were still increasing, see Supplementary Appendix Section C.1. While the shallow Transformer is less prone to overfitting, most likely due to its limited capacity, we found it necessary to introduce regularization for the large Transformer. We experimented with dropout and weight decay with limited success. While both
schemes prevent overfitting in terms of perplexity, the matching performance and the accuracy dropped significantly. We show this effect in Supplementary Appendix Section C.1 for different training set sizes and regularization settings.

In order to find models with a good performance on perplexity, matching, and accuracy at the same time, we explored other regularization approaches.

In this section, we present an approach based on entropic regularization, where we enforce the probability of a target sequence A given a source sequence B to be similar to other sequences sampled from the model conditioned on B. This encourages the model to give similar weights to different possible interaction partners, even if there is only a single one present in the training set.

We therefore add a regularization term $\frac{1}{T} \sum_{t=1}^{T} R_{\text{ent}}(A^t, B^t)$ to the loss, where t indexes the input sequence B^t and the target sequence A^t in the batch and T is the batch size. We sample S different target sequences for B^t from the model. We denote the kth sampled sequence conditioned on B^t as $A^{t,k}$. We sample using a Gumbel-Softmax distribution (Jang et al. 2016), which enables back-propagation through the sampling step. For computational efficiency, we sample every amino acid in $A^{t,k}$ conditioning on the preceding amino acids of the true A^t. Then we evaluate the log-likelihoods $R_{\text{ent}}^{t,k}$ of the target sequence $A^{t,k}$ given B^t and the log-likelihood of the true pair R^t.

$$R_{\text{ent}}^{t,k} = \log P(A^{t,k}|B^t) \quad \forall k = 1, \ldots, S$$
$$R^t = \log P(A^t|B^t).$$

We then use these quantities as the input for a log-softmax operation, resulting in

$$R_{\text{ent}}(A^t, B^t) = \log P(A^t|B^t)$$
$$-\log \left(P(A^t|B^t) + \sum_{k=1}^{S} P(A^{t,k}|B^t) \right).$$

This term is multiplied by a factor $\alpha > 0$ to regulate its strength and added to the loss function, meaning that we aim to minimize it. This enforces similar probabilities for the true target sequence A^t and the sampled target sequences $A^{t,k}$, conditioned on B^t. A diagram summarizing the regularization approach can be found in Fig. 2. A closer look reveals that it is a form of entropic regularization, maximizing the conditional Rényi entropy of order 2, see Supplementary Appendix Section C.2.

4 Results

4.1 Performance gain from context sequence

We first tested whether the input sequences had any effect on the perplexity of the target sequence. As already mentioned before, this is not self-evident, since the Transformer decoder itself could be a good model for the target sequence distribution without taking the input into account. We, therefore, trained two shallow Transformer models, one with the normal training set and one where we randomly shuffled the pairing between input and output sequences. We then evaluated the models on the normal validation sets, without shuffling. We expect that if the model trained on the normal training set exploits the information in the inputs when predicting the output, it should show a considerably lower perplexity than the model trained on a shuffled dataset.

We show the results of these experiments in Fig. 3. As can be seen, the models trained on the normal dataset have a significantly lower perplexity than the models trained on a shuffled dataset. This corroborates and quantifies the idea that domain sequences that appear in the context of a second domain contain information that can be used for modeling the constraints on the sequence of the second domain. We note that the difference in the logarithm of the perplexity, which is equivalent to the cross entropy, can be seen as a rough estimate of the mutual information between the output and the input. When the input sequence is randomly chosen, there is no correlation between the input and the output, and the corresponding probability can be seen as the marginal probability of the output sequence. We can therefore write

$$MI = \sum_{a,b} P(a,b) \log \left(\frac{P(b|a)}{P(b)} \right)$$
$$\approx \sum_{a,b \in \mathcal{V}} \log \left(\frac{P(b|a)}{P(b)} \right),$$

where a and b are paired sequences. On the left-hand side of the equation, the sum is on the complete sequence space whereas on the right-hand side, the sum is only over the sequences in the validation set.

4.2 Results on performance metrics of the shallow Transformer

We next compared the shallow Transformer models to the arDCA baseline. Shallow Transformers outperform arDCA on nearly all datasets above a certain training set size in terms of perplexity, accuracy, and matching with a large margin, as
can be seen in Fig. 4. We note here that the Transformer models, both shallow and large, have fewer parameters than arDCA for every family size we tried: The number of parameters in the Transformer models is independent of the length of the input and target sequences, while the number of parameters in the arDCA models scales quadratically with the concatenated input length.

The best performance is achieved for the families with the largest training sets, indicating that the performance of the Transformer might further increase with increasing training set size. Comparing the fraction of correctly matched paired between pairs is not straightforward. The matching task gets harder with the size of the validation set. For each input sequence, there is only one correct partner, which has to be identified in between all other proteins in the validation set. We repeated the calculation of the matching performance on subsampled versions of the validation set in order to obtain a better understanding of the matching performance of the model, see Supplementary Appendix Section F.

We also considered the possibility of using a large language model trained on protein sequences for our task. To this end, we tested and fine-tuned Rita L (Hesslow et al. 2022), a 680-M parameters model trained for predicting the next amino acid in a sequence.

Given that Rita is trained on full-length unaligned sequences, we used RITA also on full-length unaligned sequences, comparing the metrics only on match positions as predicted by the Pfam HMM of the corresponding domain family (excluding gaps and inserts).

According to our metrics, a large language model like RITA seems to underperform our family-specific Transformer by a large margin see Fig. 5. We, therefore, fine-tuned RITA for each of the domain–domain pairs. We should also note that RITA is only able to model single, full-length, proteins, meaning that it cannot be applied to the PPI task of HK-RR.

The details of the fine-tuning can be found in Supplementary Appendix Section B.3. The results are comparable with the domain-to-domain Transformer model, see Fig. 6, with the Transformer having a slightly higher accuracy. We note that Rita models are trained on Uniref100 and we suspect that most of the sequences in our validation set are in the training set of Rita, so this comparison is likely biased in favor of Rita.

4.3 Performance of the entropic regularization

We performed a set of experiments on the 27 datasets in order to see if this type of regularization improves the performance. We retrained the large Transformer with and without the entropic regularization. We used $S = 5$ and $\alpha = 0.7$ for the experiments. The results can be seen in Fig. 7, where we plot the performance of the shallow Transformer against the performance of the large Transformer for different regularization schemes and arDCA. The details of the training, models, and of performance for every family can be found in Supplementary Appendix Section C.2.1. The large
Transformer outperforms the shallow Transformer in terms of accuracy and matching both with and without regularization, indicating that the large Transformer extracted more useful information from the training set. However, the large Transformer without regularization has a significantly higher perplexity on the validation set, indicating overfitting. Adding the entropic regularization leads to a good performance of the large Transformer in all metrics.

We also performed a systematic comparison of the entropic regularization scheme with standard weight decay, testing different weight decay values for the large Transformer. The details of the experiments and the results for every family can be found in Supplementary Appendix Section C.3.

4.4 Generalization and phylogeny

One specific characteristic of protein sequences, compared with data in NLP, is the structure of the data. The sequences in our datasets have a phylogenetic bias, visible as clusters of similar sequences in the data, that are simply explained by a close common ancestor. This bias makes a random split unsuitable since the test set will contain sequences that are very similar to some sequences in the training set. We, therefore, evaluate our model on different subsets of the test set, which are selected based on the similarity to the training set.

We show the perplexity on target sequences in the validation set in dependence of the distance from the training set in Fig. 8, where the distance of a sequence to the training set is the smallest Hamming distance from the sequence to any training sequence. Interestingly, it seems that the advantage in performance of Transformer models over arDCA is mostly
We present results for more proteins due to a decreased mutual incompatibility, reflected in the structural scores. We stress here that all domain sequences assessed here are natural sequences with presumably a high fitness, which makes it more likely that a higher cross-entropy for a pair is correlated with the cross-entropy of the resampled PF00289 domains. We found these structural metrics to be well-predicted by the shallow Transformer conditioned on PF02785, see Figure 9. We next assessed the generative power of domain-to-domain Transformer models. To this end, we again used the protein Q1H158 as a test. We sampled novel PF00289 domain sequences conditioned on the PF02785 sequence found in Q1H158 using the shallow Transformer model. We then replaced the original domain sequence in Q1H158 with the sampled sequences and compared the structures predicted with Alphafold based on the original and modified sequences. For comparison, we also sampled sequences from Rita using beam search. We note that one reason for choosing Q1H158 is that the domain we want to redesign is at the end of the sequence, enabling a causal language model like RITA to sample the domain conditioned on the rest of the protein. We show the results in Figure 10, where several sequences sampled with RITA have a significantly lower TM-score than sequences sampled from the Transformer. A closer analysis showed that some of these sequences did not contain a domain recognized by the Pfam HMM for family PF00289, indicating the fine-tuned Rita model did not always complete the sequence with the same domain as is found in the original sequence, as desired. While such alternative completions might very well correspond to a domain organization found in natural sequences, it shows that some care has to be taken when using unconditional language models for redesigning parts of a sequence, even if the model has been fine-tuned only with examples for the desired domain organization. On the other hand, the decoder of the shallow Transformer has been trained only for sampling the desired domain.

Finally, we looked at a method for unsupervised structural prediction called direct coupling analysis (DCA). We sampled for each input protein sequence of the training set eight target examples for the desired domain organization. On the other hand, the decoder of the shallow Transformer has been trained only for sampling the desired domain.
sequences from the target domain. We then attempted to extract structural contacts between the two domains using plmDCA (Ekeberg et al. 2013), a popular method for prediction contacts. While the performance in contact prediction is worse than when using the natural target sequences directly, see Supplementary Appendix Section D.2, there is a strong signal with several correctly predicted contacts among the highest scoring residue pairs.

5 Discussion
In this work, we explored the use of Transformers for generating protein domain sequences while taking into account other domain sequences that are part of the same multidomain protein. We cast the problem as a translation task, which allowed us to directly use Transformers developed for translation between natural languages. We showed that this architecture is capable of outperforming state-of-the-art shallow autoregressive models in several metrics and explored a new regularization scheme optimized for our use case. Casting the task as a translation problem allowed us to use metrics like the matching performance for assessing the quality of the generative models.

Our work is placed at the intersection of two streams of research: There is a long history of building domain-specific generative models on aligned sequences for tasks like drug design or mutational effect prediction. More recently, however, large models based on Transformer architectures trained on all or nearly all unaligned protein sequences available have shown remarkable capabilities for capturing complex patterns in the data. Our work, on the other hand, solves a very generic sequence-to-sequence prediction task using smaller Transformer architectures, specialized for a family pair and using aligned sequences, which allows for domain-specific models. One limitation of our work is that we consider only a single domain as the context when predicting the sequence of an interacting domain, disregarding additional domains that might be present in the same protein. Conceptually, it would be interesting to enrich the context to multiple other domains or other biological information such as location or phylogeny.

An interesting question for further research is if we could observe a gain in performance due to transfer learning when training one model on a very large number of pairs. Given the successful extension to HK-RR, it would be interesting to apply this approach to other PPI problems, such as TCR-epitope binding.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

References
Alberts B. Molecular Biology of the Cell, 5th edn. Wiley Online Library, 2008.
Alley EC, Khimulya G, Biswas S et al. Unified rational protein engineering with sequence-based deep representation learning, Nat Methods 2019;16:1315–22.
Anishchenko I, Ovchinnikov S, Kamisetty H et al. Origins of coevolution between residues distant in 3d structures. Proc Natl Acad Sci USA 2017;114:9122–7.
Armerentos JJ, Johansen AR, Winther O et al. Language modelling for biological sequences–curated datasets and baselines. BioRxiv, 2020.
Bitbol A-F, Dwyer RS, Colwell L et al. Inferring interaction partners from protein sequences. Proc Natl Acad Sci USA 2016;113:12180–5.
Burley SK, Berman HM, Kleywegt GJ et al. Protein data bank (pdb): the single global macromolecular structure archive. Protein Crystallogr 2017;1067:627–41.
Cheng RR, Morcos F, Levine H et al. Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information. Proc Natl Acad Sci USA 2014;111:E563–71.
Clavero-Alvarez A, Di Mambro T, Perez-Gavirio S et al. Humanization of antibodies using a statistical inference approach. Sci Rep 2018;8:1–11.
Durbín R, Eddy S, Krogh A et al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.
Ekeberg M, Lovkvist C, Lan Y et al. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys Rev E Stat Nonlin Soft Matter Phys 2013;87:012707.
Figliuzzi M, Barrat-Charlaix P, Weigt M et al. How pairwise coevolutionary models capture the collective residue variability in proteins? Mol Biol Evol 2018;35:1018–27.
Finn RD, Clements J, Eddy SR et al. Hmmer web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39:W29–37.
Grechishnikova D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci Rep 2021;11:1–13.
Gueudre T, Baldassi C, Zamparo M et al. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc Natl Acad Sci USA 2016;113:12186–91.
Hawkins-Hooker A, Depardieu F, Baur S et al. Generating functional protein variants with variational autoencoders. PLoS Comput Biol 2021;17:e1008736.
Hesslov D, Zanichelli N, Notin P et al. Rita: a study on scaling up generative protein sequence models. arXiv preprint arXiv:2205.05789, 2022.
Hsu C, Verkuil R, Liu J et al. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.
Jang E et al. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with alphafold. Nature 2021;596:583–9.
Kuhn HW. The hungarian method for the assignment problem. Nav Res Logist 1955;2:83–97.
Lin Z, Akin H, Rao R et al. Evolutionary-scale prediction of atomic level protein structure with a language model. bioRxiv 2022;239766.
Madani A et al. Progen: Language modeling for protein generation. arXiv preprint arXiv:2004.03497, 2020.
Marchand A, Van Hall-Beauvais AK, Correia BE et al. Computational design of novel protein–protein interactions—an overview on methodological approaches and applications. Curr Opin Struct Biol 2022;74:102370.
McParrton M et al. A deep SE (3)-equivariant model for learning inverse protein folding. bioRxiv, 2022.
Meier J et al. Language models enable zero-shot prediction of the effects of mutations on protein function. Adv Neural Inform Process Syst 2021;34:29287–29303.
Muscat M, Croce G, Sarti E et al. Filterdca: interpretable supervised contact prediction using inter-domain coevolution. PLoS Comput Biol 2020;16:e1007621.
Nambiar A et al. Transforming the language of life: Transformer neural networks for protein prediction tasks. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2020, 1–8.
Rao RM et al. MSA transformer. In International Conference on Machine Learning, PMLR, 2021, 844–56.
Reimer JM, Eivashkani M, Harb I et al. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 2019;366:eaaw4388.
Repecka D, Jauniskis V, Karpus L et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell 2021;3:324–33.

Riesselman AJ, Ingraham JB, Marks DS et al. Deep generative models of genetic variation capture the effects of mutations. Nat Methods 2018;15:816–22.

Rives A, Meier J, Sercu T et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci USA 2021;118:e2016239118.

Russ WP, Figliuzzi M, Stocker C et al. An evolution-based model for designing chorismate mutase enzymes. Science 2020;369:440–5.

Shin J-E, Riesselman AJ, Kollasch AW et al. Protein design and variant prediction using autoregressive generative models. Nat Commun 2021;12:1–11.

Szurmant H, Weigt M. Inter-residue, inter-protein and inter-family coevolution: bridging the scales. Curr Open Struct Biol 2018;50:26–32.

Trinquère J, Uguzzoni G, Pagnani A et al. Efficient generative modeling of protein sequences using simple autoregressive models. Nat Commun 2021;12:1–11.

Tubiana J, Cocco S, Monasson R et al. Learning protein constitutive motifs from sequence data. Elife 2019;8:e39397.

Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In: Advances in Neural Information Processing Systems, 2017. Red Hook, NY, USA: Curran Associates Inc., 5998–6008.

Wu Z, Yang KK, Liszka MJ et al. Signal peptides generated by attention-based neural networks. ACS Synth Biol 2020;9:2154–61.

Wu Z, Johnston KE, Arnold FH et al. Protein sequence design with deep generative models. Curr Opin Chem Biol 2021;65:18–27.

Zhang H, Ju F, Zhu J et al. Co-evolution transformer for protein contact prediction. Adv Neural Inform Process Syst 2021;34:14252–14263.

Zhou X, Li Y, Zhang C et al. Progressive assembly of multi-domain protein structures from cryo-em density maps. Nat Comput Sci 2022;2:265–75.