FPT is Characterized by Useful Obstruction Sets

Bart M. P. Jansen

Joint work with Michael R. Fellows, Charles Darwin Univ.
A NEW CHARACTERIZATION OF FPT
Well-Quasi-Orders

- A **quasi-order** is a transitive, reflexive, binary relation \(\leq \) on a (usually infinite) set \(S \).
 - If \(x \leq y \), then \(x \) **precedes** \(y \).
Well-Quasi-Orders

• A **quasi-order** is a transitive, reflexive, binary relation \(\leq \) on a (usually infinite) set \(S \).
 – If \(x \leq y \), then \(x \) precedes \(y \).

• A quasi-order \(\leq \) is a **well-quasi-order** on \(S \) if
 – for every infinite sequence \(x_1, x_2, ... \) over \(S \),
 – there are indices \(i<j \) such that \(x_i \leq x_j \).
Well-Quasi-Orders

• A **quasi-order** is a transitive, reflexive, binary relation \(\leq \) on a (usually infinite) set \(S \).
 – If \(x \leq y \), then \(x \) **precedes** \(y \).

• A quasi-order \(\leq \) is a **well-quasi-order** on \(S \) if
 – for every infinite sequence \(x_1, x_2, \ldots \) over \(S \),
 – there are indices \(i < j \) such that \(x_i \leq x_j \).

• Set \(L \subseteq S \) is a **lower ideal** of \(S \) under \(\leq \) if
 – \(\forall x, y \in S \): if \(x \in L \) and \(y \leq x \), then \(y \in L \).
Well-Quasi-Orders

• A \textbf{quasi-order} is a transitive, reflexive, binary relation \(\leq \) on a (usually infinite) set \(S \).
 – If \(x \leq y \), then \(x \) \textbf{precedes} \(y \).

• A quasi-order \(\leq \) is a \textbf{well-quasi-order} on \(S \) if
 – for every infinite sequence \(x_1, x_2, \ldots \) over \(S \),
 – there are indices \(i<j \) such that \(x_i \leq x_j \).

• Set \(L \subseteq S \) is a \textbf{lower ideal} of \(S \) under \(\leq \) if
 – \(\forall x, y \in S \): if \(x \in L \) and \(y \leq x \), then \(y \in L \).

• A quasi-order is \textbf{polynomial} if \(x \leq y \) can be tested in \(\text{poly}(|x|+|y|) \) time.
The Obstruction Principle

If \leq is a WQO on S, and $L \subseteq S$ is a lower ideal, then there is a finite obstruction set $\text{Obs}(L) \subseteq S$, such that for all $x \in S$:

$x \in L$ iff no element in $\text{Obs}(L)$ precedes x.
The Obstruction Principle

If \(\leq \) is a WQO on \(S \), and \(L \subseteq S \) is a lower ideal, then there is a finite obstruction set \(\text{Obs}(L) \subseteq S \), such that for all \(x \in S \):

\[
x \in L \text{ iff no element in } \text{Obs}(L) \text{ precedes } x.
\]

- Decide membership in a lower ideal by testing containment of an obstruction.
The Obstruction Principle

If \leq is a WQO on S, and $L \subseteq S$ is a lower ideal, then there is a finite obstruction set $\text{Obs}(L) \subseteq S$, such that for all $x \in S$:

$x \in L$ iff no element in $\text{Obs}(L)$ precedes x.

- Decide membership in a lower ideal by testing containment of an obstruction.

- Any element $y \in S \setminus L$ is an obstruction.
The Obstruction Principle

If \preceq is a WQO on S, and $L \subseteq S$ is a lower ideal, then there is a finite obstruction set $\text{Obs}(L) \subseteq S$, such that for all $x \in S$: $x \in L$ iff no element in $\text{Obs}(L)$ precedes x.

- Decide membership in a lower ideal by testing containment of an obstruction.
- Any element $y \in S \setminus L$ is an obstruction.
- An obstruction is minimal if all elements strictly preceding it belong to L.
Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:
 – k-PATH,
 – k-VERTEX COVER,
 – k-FEEDBACK VERTEX SET,
 can be solved in $O(n^3)$ time, for each fixed k.
Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:
 – k-PATH,
 – k-VERTEX COVER,
 – k-FEEDBACK VERTEX SET,
 can be solved in $O(n^3)$ time, for each fixed k.

Obstruction principle	Lower ideals	Efficient order testing
• Graphs are well-quasi-ordered by the minor relation.	• YES or NO instances are closed under taking minors.	• $f(H)n^3$ time for each fixed graph H.
Algorithmic Applications of WQO’s

• Fellows & Langston, JACM 1988:
 – k-PATH,
 – k-VERTEX COVER,
 – k-FEEDBACK VERTEX SET,
 can be solved in $O(n^3)$ time, for each fixed k.

• Results led to the development of parameterized complexity.

Obstruction principle
• Graphs are well-quasi-ordered by the minor relation.

Lower ideals
• YES or NO instances are closed under taking minors.

Efficient order testing
• $f(H)n^3$ time for each fixed graph H.
The class FPT
The class FPT

- A parameterized problem is a set $Q \subseteq \Sigma^* \times \mathbb{N}$
 - Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a parameter k.
 - The size of an instance (x,k) is $|x| + k$.

The class FPT

• A **parameterized problem** is a set $Q \subseteq \Sigma^* \times \mathbb{N}$
 – Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a *parameter* k.
 – The **size** of an instance (x,k) is $|x| + k$.

Strongly Uniform FPT (Fixed-Parameter Tractable)
A parameterized problem Q is strongly uniform FPT if there is an algorithm that decides whether $(x,k) \in Q$ in $f(k)|x|^c$ time.
(for a computable function f and constant c)
The class FPT

- A **parameterized problem** is a set $Q \subseteq \Sigma^* \times \mathbb{N}$
 - Each instance $(x,k) \in \Sigma^* \times \mathbb{N}$ has a **parameter** k.
 - The **size** of an instance (x,k) is $|x| + k$.

Strongly Uniform FPT (Fixed-Parameter Tractable)

A parameterized problem Q is strongly uniform FPT if there is an algorithm that decides whether $(x,k) \in Q$ in $f(k)|x|^c$ time.
(for a computable function f and constant c)

- There are weaker notions. (non-uniform, non-computable f)
Kernelization

• A **kernel of size** $f(k)$ **for a parameterized problem Q** is a polynomial-time algorithm that transforms (x,k) into (x',k'),.
Kernelization

• A **kernel of size** $f(k)$ **for a parameterized problem** Q **is a polynomial-time algorithm** that transforms (x,k) into (x',k').

\[(x, k) \quad \xrightarrow{\text{Poly-time}} \quad (x', k') \]
Kernelization

- A **kernel of size** $f(k)$ **for a parameterized problem** Q **is a polynomial-time algorithm** that transforms (x,k) into (x',k'), such that (x,k) in Q iff (x',k') in Q, Poly-time.
Kernelization

- A **kernel of size** $f(k)$ **for** a parameterized problem Q **is** a polynomial-time algorithm that transforms (x,k) into (x',k'),
 - such that (x,k) in Q iff (x',k') in Q,
 - and $|x'|+k'$ is bounded by $f(k)$.

$\leq f(k)$
New characterization of FPT

• For any parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:
New characterization of FPT

• For any parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:

1. Problem Q is contained in strongly uniform \mathbf{FPT}.

New characterization of FPT

• For any parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.
2. Problem Q is decidable and admits a \textbf{kernel} of computable size.
For any parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, the following statements are equivalent:

1. Problem Q is contained in strongly uniform FPT.
2. Problem Q is decidable and admits a kernel of computable size.
3. Problem Q is decidable and there is a polynomial-time quasi-order \preceq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \to \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \preceq.
 - For every $(x,k) \notin Q$, there is an obstruction $(x',k') \notin Q$ of size at most $f(k)$ with $(x',k') \preceq (x,k)$.
New characterization of FPT

• For any parameterized problem \(Q \subseteq \Sigma^* \times \mathbb{N} \), the following statements are equivalent:

1. Problem \(Q \) is contained in strongly uniform \(\text{FPT} \).
2. Problem \(Q \) is decidable and admits a kernel of computable size.
3. Problem \(Q \) is decidable and there is a polynomial-time quasi-order \(\preceq \) on \(\Sigma^* \times \mathbb{N} \) and a computable function \(f: \mathbb{N} \to \mathbb{N} \) such that:
 • The set \(Q \) is a lower ideal of \(\Sigma^* \times \mathbb{N} \) under \(\preceq \).
 • For every \((x,k) \not\in Q\), there is an obstruction \((x',k') \not\in Q\) of size at most \(f(k) \) with \((x',k') \preceq (x,k)\).
3. Problem \mathcal{Q} is decidable and there is a polynomial-time quasi-order \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:

- The set \mathcal{Q} is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq.
- For every $(x,k) \notin \mathcal{Q}$, there is an obstruction $(x',k') \notin \mathcal{Q}$ of size at most $f(k)$ with $(x',k') \leq (x,k)$.
New characterization of FPT

• Implies that for every k, there is a **finite** obstruction set $\text{OBS}(k)$ containing instances of size $\leq f(k)$:
 • (x,k) in Q iff no element of $\text{OBS}(k)$ precedes it.

3. Problem Q is decidable and there is a polynomial-time **quasi-order** \leq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:
 • The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq.
 • For every $(x,k) \notin Q$, there is an **obstruction** $(x',k') \notin Q$ of size at most $f(k)$ with $(x',k') \leq (x,k)$.
New characterization of FPT

• Implies that for every k, there is a finite obstruction set $\text{Obs}(k)$ containing instances of size $\leq f(k)$:
 • (x,k) in Q iff no element of $\text{Obs}(k)$ precedes it.
• The obstruction-testing method that lies at the origins of FPT is not just one way of obtaining FPT algorithms:
 • all of FPT can be obtained this way.

3. Problem Q is decidable and there is a polynomial-time quasi-order \preceq on $\Sigma^* \times \mathbb{N}$ and a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:
 • The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \preceq.
 • For every $(x,k) \notin Q$, there is an obstruction $(x',k') \notin Q$ of size at most $f(k)$ with $(x',k') \preceq (x,k)$.
Small kernels yield small obstructions

- Problem \mathcal{Q} is decidable and admits a kernel of size $\mathcal{O}(f(k))$
Small kernels yield small obstructions

- Problem Q is decidable and admits a kernel of size $O(f(k))$ implies
Small kernels yield small obstructions

- Problem Q is decidable and admits a kernel of size $\mathcal{O}(f(k))$

 \textit{implies}

- Problem Q is decidable and there is a polynomial-time quasi-order \preceq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \preceq.
 - For every $(x,k) \notin Q$, there is an obstruction $(x',k') \notin Q$ of size $\mathcal{O}(f(k))$ with $(x',k') \preceq (x,k)$.
Small kernels yield small obstructions

- Problem Q is decidable and admits a kernel of size $O(f(k))$

implies

- Problem Q is decidable and there is a polynomial-time quasi-order \leq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \leq.
 - For every $(x,k) \notin Q$, there is an obstruction $(x',k') \notin Q$ of size $O(f(k))$ with $(x',k') \leq (x,k)$.

Parameterized problems with polynomial kernels are characterized by obstructions of polynomial size.
Small kernels yield small obstructions

- Problem Q is decidable and admits a kernel of size $O(f(k))$ implies

- Problem Q is decidable and there is a polynomial-time quasi-order \preceq on $\Sigma^* \times \mathbb{N}$ such that:
 - The set Q is a lower ideal of $\Sigma^* \times \mathbb{N}$ under \preceq.
 - For every $(x,k) \notin Q$, there is an obstruction $(x',k') \notin Q$ of size $O(f(k))$ with $(x',k') \preceq (x,k)$.

Parameterized problems with polynomial kernels are characterized by obstructions of polynomial size.

Reverse is false, assuming NP $\not\subset$ coNP/poly. (Kratsch & Walhström, 2011)
Obstruction size vs. kernel size

Polynomial bounds
Obstruction size vs. kernel size

Polynomial bounds

- Best known kernel has $2k - o(k)$ vertices [Lampis’11]
- Largest graph that is minor-minimal with vertex cover size k has $2k$ vertices
- Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]
Obstruction size vs. kernel size
Polynomial bounds

k-Vertex Cover
- Best known kernel has $2k - o(k)$ vertices [Lampis’11]
- Largest graph that is minor-minimal with vertex cover size k has $2k$ vertices
 - Vertex Cover obstructions have been studied since 1964 $[\alpha$-critical graphs: Erdős, Hajnal & Moon]

k-\mathcal{F}-Minor-Free Deletion (when \mathcal{F} contains a planar graph)
- Polynomial kernel [Fomin et al.’12]
- Minor-minimal obstructions have polynomial size
Obstruction size vs. kernel size

Polynomial bounds

\(k\text{-}\text{VERTEX COVER} \)

- Best known kernel has \(2k - o(k) \) vertices [Lampis’11]
- Largest graph that is minor-minimal with vertex cover size \(k \) has \(2k \) vertices
 - Vertex Cover obstructions have been studied since 1964 [\(\alpha \)-critical graphs: Erdős, Hajnal & Moon]

\(k\text{-}F\text{-MINOR-FREE DELETION} \) (when \(F \) contains a planar graph)

- Polynomial kernel [Fomin et al.’12]
- Minor-minimal obstructions have polynomial size

\(\text{TREewidth parameterized by Vertex Cover} \)

- \(O(vc^3) \)-vertex kernel [Bodlaender et al.’11]
- Minor-minimal obstructions have \(|V| \leq O(vc^3) \).
Obstruction size vs. kernel size

Polynomial bounds

k-VERTEX COVER
- Best known kernel has $2k - o(k)$ vertices [Lampis’11]
- Largest graph that is minor-minimal with vertex cover size k has $2k$ vertices
 - Vertex Cover obstructions have been studied since 1964 [α-critical graphs: Erdős, Hajnal & Moon]

k-\mathcal{F}-MINOR-FREE DELETION (when \mathcal{F} contains a planar graph)
- Polynomial kernel [Fomin et al.’12]
- Minor-minimal obstructions have polynomial size

TREewidth parameterized by Vertex Cover
- $O(vc^3)$-vertex kernel [Bodlaender et al.’11]
- Minor-minimal obstructions have $|V| \leq O(vc^3)$.

q-COLORING parameterized by Vertex Cover
- $O(vc^q)$-vertex kernel [J+Kratsch’11]
- Vertex-minimal NO-instances have $vc^{0(q)}$ vertices.
Obstruction size vs. kernel size

Superpolynomial bounds
Obstruction size vs. kernel size
Superpolynomial bounds

3-COLORING parameterized by Feedback Vertex Set

- No polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$. [J+Kratsch’11]
- Size of vertex-minimal NO-instances is unbounded in FVS number.
Obstruction size vs. kernel size

Superpolynomial bounds

3-COLORING parameterized by Feedback Vertex Set

- No polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$. [J+Kratsch’11]
- Size of vertex-minimal NO-instances is unbounded in FVS number.

k-RAMSEY

- No polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$. [Kratsch’12]
- Lower bound construction is based on a Turán-like host graph whose size is superpolynomial in its parameter.
Obstruction size vs. kernel size
Superpolynomial bounds

3-COLORING parameterized by Feedback Vertex Set

• No polynomial kernel unless NP ⊆ coNP/poly. [J+Kratsch’11]
• Size of vertex-minimal NO-instances is unbounded in FVS number.

k-RAMSEY

• No polynomial kernel unless NP ⊆ coNP/poly. [Kratsch’12]
• Lower bound construction is based on a Turán-like host graph whose size is superpolynomial in its parameter.

k-PATHWIDTH

• No polynomial kernel unless NP ⊆ coNP/poly. [BodlaenderDFH’09]
• Minor-minimal obstructions with \(\Omega(3^k) \) vertices.
EXPLOITING OBSTRUCTIONS FOR LOWER-BOUNDS ON KERNEL SIZES
Composition algorithms
Composition algorithms

NP-hard inputs

X_1 X_2 $X_..$ X_t
Composition algorithms

NP-hard inputs

\[X_1 \rightarrow X_2 \rightarrow \ldots \rightarrow X_n \rightarrow X_{1t} \]
Composition algorithms

NP-hard inputs

\[\text{poly}(n \cdot t) \text{-time composition} \]
Composition algorithms

NP-hard inputs

\[\text{poly}(n \cdot t) \text{-time composition} \]

Q-instance

\[X^* \]

\[k^* \]
Composition algorithms

NP-hard inputs

\[\text{poly}(n \cdot t) \]-time composition

Q-instance

\[k^* \]

poly(n \cdot \log t)
Composition algorithms

NP-hard inputs

poly(n · t)-time composition

Q-instance

AND-Cross-composition: \((x^*, k^*) \in Q \) iff all inputs are YES

OR-Cross-composition: \((x^*, k^*) \in Q \) iff some input is YES
Composition algorithms

NP-hard inputs

poly(n \cdot t)-time composition

Q-instance

poly(n \cdot \log t)
Composition algorithms

- NP-hard inputs
- X_1, X_2, ..., X_t with poly(n · t)-time composition
- x^* with poly-time poly(k)-size kernel
- k^* with poly(n · log t)
Composition algorithms

NP-hard inputs

\[x_1 \quad x_2 \quad n \quad x_{..} \quad x_t \]

poly(n \cdot t)-time composition

poly-time poly(k)-size kernel

\[x^* \quad k^* \quad x' \quad k' \]

poly(n \cdot \log t)
Composition algorithms

NP-hard inputs

\[x_1 \rightarrow x_2 \rightarrow n \rightarrow x_\ldots \rightarrow x_t \]

poly(n \cdot t)-time composition

poly-time poly(k)-size kernel

\[x^* \rightarrow k^* \rightarrow x' \rightarrow k' \]

\[Q\text{-instance} \]

\[\text{poly}(n \cdot \log t) \]
The \(k \)-Pathwidth problem

- The pathwidth of a graph measures how “path-like” it is
 - Pathwidth does not increase when taking minors
The k-Pathwidth problem

- The pathwidth of a graph measures how “path-like” it is
 - Pathwidth does not increase when taking minors

- k-PATHWIDTH

 Input: A graph G, an integer k.

 Parameter: k.

 Question: Is the pathwidth of G at most k?
The k-Pathwidth problem

- The pathwidth of a graph measures how “path-like” it is
 - Pathwidth does not increase when taking minors

- k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

- Disjoint union acts as AND for question of “pathwidth ≤ k?”:
 - $\text{PW}(G_1 \cup G_2 \cup \ldots \cup G_t) \leq k \iff \forall i: \text{PW}(G_i) \leq k$.
The \textit{k-Pathwidth} problem

- The pathwidth of a graph measures how “path-like” it is
 - Pathwidth does not increase when taking minors

\textit{k-Pathwidth}

\textbf{Input:} A graph \(G\), an integer \(k\).
\textbf{Parameter:} \(k\).
\textbf{Question:} Is the pathwidth of \(G\) at most \(k\)?

- Disjoint union acts as AND for question of “pathwidth \(\leq k\)”:
 - \(\text{PW}(G_1 \cup G_2 \cup ... \cup G_t) \leq k \iff \forall i: \text{PW}(G_i) \leq k\).

- Trivial AND-composition for \textit{k-Pathwidth}:
 - Take disjoint union of \(t\) \textit{Pathwidth}-instances.
 - Ensure same value of \(k\) by padding.
 - Output parameter value is \(k \leq n\).
The k-Pathwidth problem

• The pathwidth of a graph measures how “path-like” it is
 – Pathwidth does not increase when taking minors

• k-PATHWIDTH
 Input: A graph G, an integer k.
 Parameter: k.
 Question: Is the pathwidth of G at most k?

• Disjoint union acts as AND for question of “pathwidth $\leq k$?”:
 – $\text{PW}(G_1 \cup G_2 \cup \ldots \cup G_t) \leq k \iff \forall i: \text{PW}(G_i) \leq k$.

• Trivial AND-composition for k-PATHWIDTH:
 – Take disjoint union of t PATHWIDTH-instances.
 • Ensure same value of k by padding.
 – Output parameter value is $k \leq n$.

k-PATHWIDTH is AND-compositional and does not admit a polynomial kernel unless $\text{NP} \subseteq \text{coNP/poly}$. [BodlaenderDFH’09,Drucker’12]
OR-Cross-composition
OR-Cross-composition

- The pathwidth measure naturally behaves like an **AND**-gate
OR-Cross-composition

- The pathwidth measure naturally behaves like an **AND-gate**
- By exploiting minimal obstructions to $P_{\leq k}$ with $\Omega(3^k)$ vertices, we create an **OR-Cross-composition** of:
 - $t=3^s$ instances of $P_{\text{W-IMPROVEMENT}}(G_1,k), \ldots, (G_t,k)$
 - into one k-P_{ATHWIDTH} instance (G^*,k^*) with $k^* \leq O(n \cdot \log t)$,
 - such that $P_{\text{W}}(G^*) \leq k^*$ iff **some** input i is **YES**.
OR-Cross-composition

• The pathwidth measure naturally behaves like an **AND**-gate

• By exploiting minimal obstructions to \(Pw \leq k \) with \(\Omega(3^k) \) vertices, we create an **OR**-Cross-composition of:
 – \(t=3^s \) instances of \(PW\text{-IMPROVEMENT} \) \((G_1,k), \ldots, (G_t,k)\)
 – into one \(k\text{-PATHWIDTH} \) instance \((G^*,k^*)\) with \(k^* \leq O(n \cdot \log t) \),
 – such that \(PW(G^*) \leq k^* \) iff some input \(i \) is **YES**.

• **PATHWIDTH IMPROVEMENT**

 Input: An integer \(k \), and a graph \(G \) of pathwidth \(\leq k-1 \).
 Question: Is the pathwidth of \(G \) at most \(k-2 \)?
OR-Cross-composition

- The pathwidth measure naturally behaves like an **AND**-gate

- By exploiting minimal obstructions to $Pw\leq k$ with $\Omega(3^k)$ vertices, we create an **OR**-Cross-composition of:
 - $t=3^s$ instances of Pw-**Improvement** $(G_1,k), \ldots, (G_t,k)$
 - into one k-**Pathwidth** instance (G^*,k^*) with $k^* \leq O(n \cdot \log t)$,
 - such that $Pw(G^*) \leq k^*$ iff some input i is YES.

- **Pathwidth Improvement**

 Input: An integer k, and a graph G of pathwidth $\leq k-1$.

 Question: Is the pathwidth of G at most $k-2$?

NP-hard.
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:

K_2 is the unique minimal obstruction to $\text{PW}=0$
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:

Joining 3 minimal tree-obstructions to $\text{PW}=k$, gives minimal obstruction to $\text{PW}=k+1$
Tree obstructions to Pathwidth

• Kinnersley’92 and TakahashiUK’94 independently proved: Joining 3 minimal tree-obstructions to \(PW=k \), gives minimal obstruction to \(PW=k+1 \)
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:
Tree obstructions to Pathwidth

- Kinnersley’92 and TakahashiUK’94 independently proved:

Ternary tree of height k, with 1 extra layer of leaves, is minor-minimal obstruction to $PW=k$
Construction
Construction

t=3^s instances of PW-IMPROVEMENT with $k=3$
(each asking if $pw(G_i) \leq k - 2$)
Construction

Obstruction with 3^s leaves, inflated by factor k

Pathwidth is $\mathcal{O}(k \cdot s) \leq \mathcal{O}(n \cdot \log t)$
Construction
Construction
Construction

Output G^* asking for pathwidth k^*
1 less than inflated obstruction
Correctness sketch
Correctness sketch

Claim: some input i has $\text{PW}(G_i) \leq k-2 \implies \text{PW}(G^*) < \text{PW}(T^s \diamond k)$
Correctness sketch

Claim: some input i has $PW(G_i) \leq k - 2 \Rightarrow PW(G^*) < PW(T^s \diamond k)$
Correctness sketch
Correctness sketch

Claim: all inputs have $\text{PW}(G_i) > k-2 \implies \text{PW}(G^*) \geq \text{PW}(T^s \diamond k)$
Conclusion
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each NO-instance \((x,k)\) is preceded by an \(f(k)\)-size obstruction
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each \texttt{NO}-instance \((x,k)\) is preceded by an \(f(k)\)-size obstruction
• Characterization suggests a connection between kernel sizes and obstruction sizes
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each NO-instance \((x,k)\) is preceded by an \(f(k)\)-size obstruction
• Characterization suggests a connection between kernel sizes and obstruction sizes
• Large obstructions form the crucial ingredient for OR-cross-composition into \(k\)-PATHWIDTH
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each NO-instance \((x,k)\) is preceded by an \(f(k)\)-size obstruction

• Characterization suggests a connection between kernel sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-composition into \(k\)-PATHWIDTH

• Open problems:
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each NO-instance (x,k) is preceded by an f(k)-size obstruction
• Characterization suggests a connection between kernel sizes and obstruction sizes
• Large obstructions form the crucial ingredient for OR-cross-composition into k-PATHWIDTH

• Open problems:
 1. OR-Cross-composition into k-TREEWIDTH?
 2. Further relations between kernel and obstruction sizes?
Conclusion

• For each problem in FPT, there is a polynomial-time quasi-order under which each NO-instance \((x,k)\) is preceded by an \(f(k)\)-size obstruction

• Characterization suggests a connection between kernel sizes and obstruction sizes

• Large obstructions form the crucial ingredient for OR-cross-composition into \(k\)-PATHWIDTH

• Open problems:
 - OR-Cross-composition into \(k\)-TREEWIDTH?
 - Further relations between kernel and obstruction sizes?