RESEARCH PAPER

Improvement of wheat quality and soil fertility by integrates chemical fertilizer with rhizobial bacteria

Trifa Dhahir Saber¹ and Mohammed Qader Khursheed²

¹,² Department of biology, College of education, Salahaddin University-Erbil, Kurdistan Region, Iraq

ABSTRACT:

A field experiment was carried out in Erbil city at Agricultural Research Center, during winter season 2017 - 2018, to study the effect of three levels (120, 240, 360 kg.ha⁻¹) of NPK (20:20:20) fertilizer, five species of Rhizobial inoculation (Control, Bradyrhizobium sp. (Vigna) (B1), Rhizobium leguminosarum bv. Viciae (B2), Bradyrhizobium Mungbean (B3), Mesorhizobium ciceri (B4) and Rhizobium leguminosarum bv phaseoli (B5)) and two wheat cultivar soft (Triticum aestivum L.) Hawler2 and hard (Triticum durum L.) Seminto and their combination on leaf (Nitrogen, Phosphor, Potassium, Calcium and Iron) contents, soil nutrient (Total Nitrogen, available Phosphor, Potassium and Iron contents, leaf (Auxin IAA, Gibberellin GA and Cytokinin CK) contents, grain number.plot⁻¹, weight of 1000 grain(g), grain yield kg.hac⁻¹, biological yield kg.hac⁻¹ and harvest index% by utilizing complete randomized block design (CRBD) with three replication. Rhizobial inoculation individually increased significantly all tested parameters of growth. Generally, Seminto significantly surpassed Hawler2 in most traits under study. Interaction between of chemical fertilizer with rhizobial bacteria was more evident than that of chemical fertilizer alone for all mentioned traits. The combination of chemical fertilizer, rhizobial bacteria and wheat cultivars had a synergistic effect and improved leaf (N,P,K,Ca and Fe) contents, fertility of soil, phytohormone concentration in leaves and yield components. The finding indicated that the combination between the lower levels of NPK fertilizer with Rhizobium leguminosarum bv phaseoli inoculation for Triticum aestivum increased grain yield by 114.39% over the control. We recommend using rhizobial bacteria in combination with lower levels of NPK to reduce chemical fertilizer dose and improving yield production and soil fertility because combination between mentioned factors gave the highest values of most traits under study.

KEY WORDS: Chemical fertilizer, Rhizobial bacteria, Wheat cultivars Hawler2 and Seminto.

DOI: http://dx.doi.org/10.21271/zjpas.32.2.19
ZJPAS (2020), 32(2):178-191.

1.INTRODUCTION

Nutritional value of Triticum sp. is extremely important as it takes a significant place among the few crop species that are extensively grown as staple food sources, its grain can be ground into flour, semolina, etc., which constitute the fundamental components of bread and other bakery products, as well as pastas, and is thus the major source of nutrients for the majority of the world's population (Šramková et al., 2009). It is common food that contributes more calories and proteins to the world diet than any other cereal crop (Biesaga-Kościelniak et al., 2014). Improving yield is satisfied by either increasing the area under cultivation or improving the yield per unit area; the first option is very limited and has helped to increase the yield per unit area (Moradi et al., 2015). The UN predicts that the world population will grow over the next decades. For this reason, the world needs to increase crop yields through better use of water and fertilizer in order to guarantee food security and environmental protection (Foulkes et al., 2010). The total biomass is a result of the integration of metabolic reaction in the plants. Consequently, any factor
influencing the metabolic activity of the plant at any period of its growth can affect the yield. Metabolic processes in wheat plants are greatly governed by both internal i.e. genetic makeup of the plant and external conditions which namely climatic and edaphically environmental factors. Thus, increasing wheat production per unit area can be achieved by breeding and cultivating the promising wheat cultivars and applying the optimum cultural practices such as suitable fertilizer(Zaki et al., 2012).

Nutrients availability is the most limiting factor for crop growth. Nutrients removal from the field, besides their uptake by crops, was also caused by wind and water erosion, leaching to deeper soil layers and for nitrogen by ammonia volatilization and denitrification. Consequently, to avoid crop yield reduction, replenishment of nutrients through chemical and natural fertilizers is necessary. The excessive uses of mineral fertilizers have generated several environmental problems: potential pollution to soil, water and air (Stajković-Srbinović et al., 2014). One potential way to decrease negative environmental impacts resulting from continued use of chemical fertilizers is inoculation with plant growth-promoting rhizobacteria (PGPR). These bacteria exert beneficial Effect on plant growth and development, and many different genera have been commercialized for use in agriculture(Adesemoye and Kloeper, 2009). Plant growth promoting rhizobacteria (PGPR) is free-living bacterial group colonizing the rhizosphere and exert a positive effect on plant health and fertility of soil (Zahir et al., 2010). Improving yield of wheat plants by interactive influence of chemical, organic fertilizer and biofertilizer is a promising purpose in wheat production for lowering high doses of inorganic fertilizer also, get more clean yield with low undesirable high doses of heavy metals and other pollutants(Jala-Abadi et al., 2012). Rhizobium is an important symbiotic for legumes but it plays an important role with non-legumes by producing growth hormones. The first important step for producing growth hormone is root colonization of beneficial bacteria with plants(Akhtar et al., 2013). This experiment was planned to determine the best levels of NPK to be integrated with rhizobial bacteria for obtaining more economical, environment friendly and wheat production improvement.

2. MATERIALS AND METHODS

2.1 Describing of experiment: The experiment was performed under field condition at Agricultural Research Center in Erbil, during winter season 2017 - 2018. The experimental plants used in this investigation were soft wheat (*Triticum aestivum* L.) cultivar Hawler2 and hard wheat (*Triticum durum* Desf.) cultivar Seminto obtained from the Agricultural Research Center in Erbil. Some chemical and physical properties of the soil before treatments are shown in Table (1).

Table 1 some physical and chemical properties of soil
Physical properties
Particle size distribution (%)
Sand
Silt
Clay
Soil texture
Chemical properties
pH
Electrical Conductivity (dS.m⁻¹)
Total nitrogen mg.g⁻¹
Available Phosphorous mg.kg⁻¹
Available Potassium mg.kg⁻¹
Available Iron ppm

2.2 Treatment and experimental design: The experiment was comprised of six levels of rhizobial inoculums (Control, *Bradyrhizobium sp.* (Vigna), *Rhizobium leguminosarum* bv. *viciae*, *Bradyrhizobium Mungbean*, *Mesorhizobium ciceri*).
and *Rhizobium leguminosarum bv phaseoli*) and three levels of NPK (20:20:20) fertilizers (120, 240 and 360) kg.ha^{-1}. Fifty grains were planting in each plot. Thirty six treatments were tested in randomized block design with three replications. The comparisons between means were made using Tukey’s’s test at significant level of 5% for field experiment parameters and 1% for laboratory parameters. SPSS version 16 was used for data analysis.

2.3 Isolation of Rhizobial sp.: Five strains of rhizobia were isolated from the root nodules of (*Vigna unguiculata*), (*Vicia faba*), (*Vigna radiata* L.), (*Cicer arietinum* L) and (*Phaseoulus vulgaris*), respectively which were growing for 2-3 months under field conditions at a different area of Erbil city. With some non-rhizospheric soil, host plants were uprooted from the field and carried to the laboratory in polythene containers. Then estimated according to (Mehboob et al., 2011).

2.4 Preparation of inoculums: Preparation of inoculum was performed by (Mehboob, 2010).

2.5 Experimental parameters:
1- Biochemical contents: dried leaves were grinded by an electrical grinder for each replicate of the experiment; 0.3g of ground samples were digested, then total nitrogen determined by Kjeldahl method, total phosphorus and available phosphorus estimated using spectrophotometer method, total calcium, available calcium, total iron and available iron estimated by atomic absorption method, Total potassium and available potassium determined, using Flame –photometer method as described by (Ryan et al., 2001). The total protein was calculated by multiplying the value of total nitrogen by (5.75) (Dalaly and Al-Hakim, 1987). And total soluble carbohydrate was determined by the Anthron methods (Sadasivam, 1996).

2- Determination of plant hormones: Endogenous hormones, namely auxins (IAA), gibberellic acid (GA) and cytokinins (CK) were extracted according to (Jogi et al., 2017), then plant hormones determined by HPLC. The endogenous concentration of (IAA, GA and CK) in samples was calculated from the spectra obtained using the following equation:

\[
\text{Sample concentration (ppm)} = \frac{\text{Concentration of standard} \times \text{Area of sample}}{\text{Area of standard}} \times \frac{\text{Volume of sample}}{\text{Weight of sample}} \times 100
\]

3- Yield components: At harvest; number of grains.plant^{-1}, weight of 1000 grains (g), grain yield (kg.hac.^{-1}), biological yield (kg.hac.^{-1}), Harvest index(HI%) and increase grain yield (%) were estimated. Improving grain yield was estimated as described by (Ye et al., 2005)

\[
\text{Increase grain yield} \% = \left(\frac{\text{Grain yield of fertilized pot} - \text{Grain yield of control}}{\text{Grain yield of control}} \right) \times 100
\]

3. RESULTS

3.1 Nutrient content of leaves and soil

Table (2) showed progressive increases of leaf nutrient contents in response to different species of rhizobial bacteria. The highest value of total nitrogen (20395.33mg.kg^{-1}) and protein (117.27mg.g^{-1}) were recorded with B3 treatments, while maximum phosphorus (3902.50mg.kg^{-1}) content was recorded by using B5 treatment. Otherwise, the highest value of potassium (9555.00mg.kg^{-1}) and iron content (376.67mg.kg^{-1}) were obtained by B2 treatments. In contrast, the same treatments did not affect calcium and carbohydrate contents. The same table indicated that the highest value of soil total N (1.62g.kg^{-1}) and available K (462.41mg.kg^{-1}) was recorded by using B1 and B2 respectively. While B3 treatment gave highest available (P: 10.31mg.kg^{-1} and Fe: 4.25mg.kg^{-1}).

Data presented in table (3) shows that carbohydrate content of leaves significantly increased by different levels of NPK fertilizer and
significant difference was observed on protein, nitrogen and phosphorus contents of leaves. The greatest value of N, P, K, protein and carbohydrate content were obtained by adding 240kg.ha⁻¹, while calcium and iron content were obtained by adding NPK1. Also table (3) detected that the greatest value of total N (1.52g.kg⁻¹), available P (9.25mg.kg⁻¹), available K (434.51mg.kg⁻¹) and available Fe (3.94mg.kg⁻¹) was gained by adding 240kg.ha⁻¹ NPK.

Data in table (4) indicated that Seminto significantly exceeded Hawler2 in all leaf composition contents under study except potassium and iron, which not affected by wheat cultivars. Data present in same table clearly showed that, wheat cultivars did not cause any significant effect on soil nutrient status.

Table (5) revealed that, the interaction among different wheat of rhizobial bacteria with different levels of NPK affected significantly some leaf nutrient contents for both wheat cultivars under study while affected non-significantly on potassium, calcium and carbohydrate leaf contents. The highest value of nitrogen (28253mg.kg⁻¹), phosphorus (5160mg.kg⁻¹) and protein content (162.55mg.kg⁻¹) were achieved by combining (B3 with 120kg.ha⁻¹ NPK of Triticum durum), while greatest value of iron content (505.00mg.kg⁻¹) was recorded by integrating (B1 with 120kg.ha⁻¹ NPK of Triticum durum). Data present in same table shows that, combination between chemical fertilizers with rhizobial bacteria for both wheat cultivars significantly increased soil total nitrogen and available phosphorus. The highest value of total N (1.86g.kg⁻¹) was recorded by both (B1NPK1) and (B3NPK2) of Triticum durum respectively. While, the maximum value of available phosphorus concentration: 13.29mg.kg⁻¹ was recorded by both (B3NPK1 of Triticum aestivum) and (B3NPK1 of Triticum durum) respectively. In contrast, available (K and Fe) contents of soil did not affected by combining mentioned factors.

3.2 Plant hormone contents

Figure (1) revealed that rhizobium inoculation individually enhanced the phytohormone content of leaves significantly. The maximum value of CK: 21.42ppm, IAA: 29.00ppm and GA: 159.56ppm was obtained by B5 inoculation. On the other hand, figure (2) showed that the treated plants with NPK fertilizers had a significant effect on leaf phytohormone contents. The greatest value of CK: 20.56ppm, IAA: 23.77ppm and GA: 99.24ppm was achieved by applying 240kg.ha⁻¹ of NPK. Data in figure (3) demonstrated that Seminto significantly surpassed Hawler2 in CK and IAA content of leaves, except GA content, where, Hawler2 overcame Seminto in this character.

Results given in table (6) generally clear that all phytohormones under this study were significantly affected by combination between wheat cultivars, chemical fertilizers and rhizobial bacteria. The maximum value of CK (31.45ppm) and IAA (69.49ppm) was obtained by using (B1 with 240kg.ha⁻¹ NPK of Triticum durum) and (B5 with 120kg.ha⁻¹ NPK of Triticum durum) respectively. However, the maximum value of GA (292.65ppm) was recorded by using (B5 with 120kg.ha⁻¹ NPK of Triticum aestivum).

Table 2 Effect of different species of rhizobial bacteria on leaf composition contents and soil nutrient status at harvesting

Rhizobial species	Prote in mg.g⁻¹	Carbohydrate mg.g⁻¹	N mg.kg⁻¹	P mg.kg⁻¹	K mg.kg⁻¹	Ca mg.kg⁻¹	Fe mg.kg⁻¹	Tot al (N) mg. g⁻¹	Avai. (P)mg. kg⁻¹	Avai. (K) mg.kg⁻¹	Avai. (Fe) mg.kg⁻¹
Control	79.75	202.55	13869.	2284.	8065.	8675.8	263.	0.86	4.31	312.	1.76
B1	114.0	220.75	19825.	3397.	9172.	10121.	348.	1.62	7.70	402.	3.65
B2	108.6	220.78	18889.	3408.	9555.	10417.	376.	1.44	7.87	462.	3.90

ZANCO Journal of Pure and Applied Sciences 2020
Table 3 Effect of different levels of chemical fertilizer on leaf composition contents and soil nutrient status at harvesting

Chemical fertilizer kg.ha⁻¹	Prote in mg.g⁻¹	Carbohydrate mg.g⁻¹	N mg.kg⁻¹	P mg.kg⁻¹	K mg.kg⁻¹	Ca mg.kg⁻¹	Fe mg.kg⁻¹	Total (N) mg.g⁻¹	Avai. (P) mg.kg⁻¹	Avai. (K) mg.kg⁻¹	Avai. (Fe) mg.kg⁻¹
NPK1	114.4	235.95	19898	3545	9186	11172	375	1.21	8.08	406.0	3.59
NPK2	116.5	238.00	20265	3750	9290	9627.5	332	1.52	9.25	434.0	3.94
NPK3	92.31	198.47	16054	2705	8558	8863.7	322	1.24	6.39	376.0	2.88
Tukey’s0.	11.12	38.99	1933.1	378.4	719.5	1726.0	30.1	0.20	1.38	44.8	0.71

NPK1= 120kg.ha⁻¹, NPK2= 240kg.ha⁻¹, NPK3= 360kg.ha⁻¹

Table 4 Effect of wheat cultivars on leaf composition contents and soil nutrient status at harvesting

Wheat cultivars	Prote in mg.g⁻¹	Carbohydrate mg.g⁻¹	N mg.kg⁻¹	P mg.kg⁻¹	K mg.kg⁻¹	Ca mg.kg⁻¹	Fe mg.kg⁻¹	Total (N) mg.g⁻¹	Avai. (P) mg.kg⁻¹	Avai. (K) mg.kg⁻¹	Avai. (Fe) mg.kg⁻¹
Hawle2	97.03	188.28	16874	3125	8910	8910	350	1.29	7.68	403.0	3.51
Seminto	118.4	260.00	20603	3542	9113	10246	335	1.36	8.14	408.0	3.43
Tukey’s0.	7.94	27.85	1380.5	270.2	55	8	n.s.	n.s	n.s	n.s	n.s

ZANCO Journal of Pure and Applied Sciences 2020
Table 5 Interaction effect of wheat cultivars, chemical fertilizer and rhizobial bacteria on leaf composition contents and soil nutrient status at harvesting

Wheat Cultivars	Chemical fertilizer	Rhizobial species	Plant leaf	Soil									
			Protein	Carb	N	P	K	Ca	Fe	Total N	Ava i.(P)	Anai(K)	Ava i.(Fe)
			mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1	mg.kg^-1
Control B1	72.4	151.	12608	2485	778	5	8185	230	0.7	4.0	301.0	1.57	
NPK1	109.	184.	18998	3460	964	5	1342	415	1.5	5.7	406.5	3.73	
B2	99.4	198.	17300	3280	991	4	9410	400	1.2	7.1	529.6	3.68	
Hawler 2	120.	225.	21003	3295	902	0	9910	395	1.4	13.	341.1	5.11	
B3	119.	201.	20755	3450	904	5	1212	415	1.2	7.2	413.3	3.9	
B4	99.0	205.	17230	4070	905	5	1056	390	1.0	7.7	413.3	3.54	
B5	82.4	172.	14335	2900	968	0	9080	265	0.9	4.4	324.8	1.98	
NPK2	114.	219.	19843	3255	968	0	9090	340	1.4	10.	415.9	4.84	
B1	107.	178.	18643	3835	969	5	9380	375	1.4	9.7	425.7	4.78	
B2	113.	183.	19753	3435	907	5	9770	300	1.5	8.8	491.1	4.72	
B3	115.	212.	20125	3375	915	0	1037	340	1.7	9.6	436.7	3.29	
B4	101.	198.	17638	3630	968	0	8450	400	1.4	12.	502.8	4.79	
NPK3	74.5	169.	12958	2490	802	0	8295	315	0.9	4.1	368.7	2.01	
B1	91.2	177.	15868	3120	820	0	8870	375	1.5	5.8	332.6	2.89	
B2	76.8	178.	13363	2420	845	5	8570	320	1.5	6.8	407.7	3.13	
B3	78.6	169.	13670	2415	870	0	8410	330	1.1	6.9	324.4	2.9	
B4	85.3	178.	14835	2935	874	5	9010	325	1.1	7.0	418.2	3.11	
B5	85.2	182.	14823	2405	872	5	8620	380	1.1	7.0	405.0	3.18	
NPK1	73.2	194.	12745	1680	810	5	9145	225	0.7	3.7	297.1	1.93	
B1	120.	261.	21000	3455	946	5	1147	360	1.8	7.5	420.0	3.5	
B2	140.	261.	24450	3660	104	5	1576	505	1.2	7.8	513.8	3.94	
Table 6 Interaction effect of wheat cultivars, chemical fertilizer and rhizobial bacteria on leaf phytohormone

Wheat cultivars	Chemical fertilizer kg.ha\(^{-1}\)	Rhizobial species	CK (ppm)	IAA (ppm)	GA (ppm)
Hawler2	NPK1				
	Control		6.22	4.37	12.49
	B1		12.73	13.17	51.87
	B2		8.11	11.03	45.83
	B3		11.72	12.14	159.05
	B4		8.97	11.84	66.19
	B5		20.12	17.42	292.65
	Control		6.35	4.54	12.95
	B1		7.56	14.70	56.19
	B2		10.89	12.77	102.17
	B1	B2	B3	B4	B5
----------------	----------	----------	----------	----------	----------
NPK2	B3	15.56	12.64	197.78	
	B4	16.61	13.60	51.02	
	B5	18.78	13.19	210.68	
Control	B1	7.15	5.13	14.08	
	B2	6.82	11.44	26.56	
NPK3	B2	6.79	10.88	28.85	
	B3	6.99	9.06	33.30	
	B4	9.40	9.00	39.15	
	B5	9.11	6.99	41.17	
Control	B1	19.14	7.93	14.33	
	B2	28.82	25.87	56.68	
Semimoto	B2	29.73	25.19	52.37	
	B3	28.20	38.53	53.31	
	B4	28.69	40.00	112.83	
	B5	30.08	69.49	180.17	
Control	B1	21.06	8.60	17.05	
	B2	31.45	58.57	44.74	
NPK2	B2	30.06	33.77	181.98	
	B3	29.64	29.82	53.51	
	B4	30.59	28.53	70.44	
	B5	28.17	54.53	192.39	
Control	B1	21.13	10.22	15.11	
	B2	23.07	23.42	42.77	
NPK3	B2	23.84	20.56	44.02	
	B3	27.74	25.87	46.43	
	B4	27.98	22.92	42.40	
	B5	22.25	12.35	40.30	

Tukey’s 0.01

	B1	B2	B3	B4	B5
Semimoto	B1	23.07	23.42	42.77	
NPK1	B2	31.45	58.57	44.74	
Control	B1	21.06	8.60	17.05	
NPK2	B2	30.06	33.77	181.98	
	B3	29.64	29.82	53.51	
Control	B1	21.13	10.22	15.11	
NPK3	B2	23.84	20.56	44.02	
	B3	27.74	25.87	46.43	
Control	B1	23.07	23.42	42.77	
Phytohormone content (ppm)					

Figure (1): Effect of different species of rhizobial bacteria on leaf phytohormone contents

B1: *Bradyrhizobium sp.* (Vigna), B2: *Rhizobium leguminosarum* bv. *viciae*, B3: *Bradyrhizobium* Mungbean, B4: *Mesorhizobium ciceri* and B5: *Rhizobium leguminosarum* bv. *phaseoli*. NPK1= 120 kg.ha⁻¹, NPK2= 240 kg.ha⁻¹, NPK3= 360 kg.ha⁻¹
3.3 Yield components

Table (7) showed the positive influence of rhizobial inoculation on yield components, highest grain number was 3692.22.plot\(^{-1}\), grain yield: 854.09kg.ha\(^{-1}\) and harvest index: 29.82% were recorded by B5 inoculation. The maximum weight of 1000 grain: 50.45g and biological yield: 3009.17kg.ha\(^{-1}\) was recorded by using B1 and B2 inoculation respectively.

Data presented in table (8) indicated that, application of different levels of NPK significantly improved yield components. The maximum weight of 1000 grain (48.44g) and biological yield (2984.45kg.ha\(^{-1}\)) were recorded by applying 240kg.ha\(^{-1}\) of NPK fertilizer. While, adding 120kg.ha\(^{-1}\) of NPK produced significantly higher grain number (3517.22) and harvest index (27.88%)

Table (9) showed that the effect of wheat cultivars on yield components was significant. Seminto surpassed Hawler2 for weight of 1000 grain, grain yield and biological yield, and opposite is true in case of grain number and harvest index.

Results given in table (10) showed that, interaction between wheat cultivars, chemical fertilizer and rhizobial bacteria significantly improved grain yield. As observed, application of (B5 with NPK2 in Triticum aestivum), (B1 with NPK2 in Triticum durum), (B5 with NPK1 in Triticum aestivum), (B4 with NPK1 in Triticum durum) and (B1 with NPK1 in Triticum aestivum) gave highest grain number 4746.67.plot\(^{-1}\), weight of 1000 grain: 68.64g, grain yield: 991.41kg.ha\(^{-1}\), biological yield: 3730.00kg.ha\(^{-1}\) and HI: 35.05% respectively. However figure (4) showed that NPK1 with B5 inoculation of Triticum aestivum enhanced grain yield by 114.39% over the control.
Table 7 Effect of different species of rhizobial bacteria on yield components

Rhizobial species	Grain number.plot⁻¹	Weight of 1000 grain (g)	Grain yield kg.hac⁻¹	Biological yield kg.hac⁻¹	Harvest index%
Control	2670.17	40.99	513.74	2231.39	23.39
B1	3345.61	50.45	793.99	2836.39	28.34
B2	3394.39	48.79	789.56	3009.17	26.22
B3	3511.56	49.24	831.43	2973.39	28.03
B4	3153.28	48.86	734.64	2850.00	26.27
B5	3692.22	48.06	854.09	2889.17	29.82
Tukey's0.05	248.42	3.19	53.37	217.58	1.84

B1: *Bradyrhizobium* sp. (Vigna), B2: *Rhizobium leguminosarum* bv. *viciae*, B3: *Bradyrhizobium* Mungbean, B4: *Mesorhizobium ciceri* and B5: *Rhizobium leguminosarum* bv. *phaseoli*

Table 8 Effect of different levels of NPK on yield components

Chemical fertilizer	Grain number.plot⁻¹	Weight of 1000 grain (g)	Grain yield kg.hac⁻¹	Biological yield kg.hac⁻¹	Harvest index%
NPK1	3517.22	46.72	801.26	2904.17	27.88
NPK2	3454.39	48.44	806.47	2984.45	27.03
NPK3	2912.00	48.02	651.00	2506.14	26.12
Tukey's0.05	143.55	1.84	30.84	125.72	1.06

NPK1= 120kg.hac⁻¹, NPK2= 240kg.hac⁻¹, NPK3= 360kg.hac⁻¹

Table 9 Effect of wheat cultivars on yield components

Wheat cultivars	Grain number.plot⁻¹	Weight of 1000 grain (g)	Grain yield kg.hac⁻¹	Biological yield kg.hac⁻¹	Harvest index%
Hawler2	3891.35	36.63	719.44	2523.70	28.52
Seminto	2697.72	58.83	786.37	3072.80	25.50
Tukey's0.05	97.62	1.25	20.97	85.50	0.72

Table 10 Interaction effect of wheat cultivars, chemical fertilizer and rhizobial bacteria on yield components

Wheat cultivars	Chemical fertilizer kg.ha⁻¹	Rhizobial species	Grain number.plot⁻¹	Weight of 1000 grain (g)	Grain yield kg.hac⁻¹	Biological yield kg.hac⁻¹	Harvest index%
Hawler2	NPK1	Control	3316.67	27.89	462.43	1745.00	26.50
		B1	3953.33	44.32	876.13	2500.00	35.05
		B2	4053.00	38.40	778.27	3216.67	24.19
		B3	4510.00	37.23	839.55	3033.33	27.68
		B4	3810.00	37.89	721.73	2216.67	32.56
		B5	4633.33	42.79	991.41	2911.67	34.05
		Control	3206.67	30.54	489.73	1898.33	25.80
		B1	4293.00	40.03	859.30	3045.00	28.22
		B2	4016.67	40.48	813.06	2955.00	27.51
		B3	4090.00	42.27	864.39	3093.33	27.94
B1: *Bradyrhizobium sp.* (Vigna), B2: *Rhizobium leguminosarum* bv. *viciae*, B3: *Bradyrhizobium Mungbean*, B4: *Mesorhizobium ciceri* and B5: *Rhizobium leguminosarum* bv *phaseoli*. NPK1= 120kg.ha⁻¹, NPK2= 240kg.ha⁻¹, NPK3= 360kg.ha⁻¹

4. DISCUSSION

Figure (4): interaction effect of wheat cultivars, chemical fertilizers and rhizobial bacteria on percentage increase of grain yield
Nutrient deficiency cause significant impact on agriculture, resulting in reduced crop yield or plant quality reduction (Morgan and Connolly, 2013). (Kumar, 2015) suggested that, to overcome the problem of nutrient deficiency and to increase wheat yield, the farmers are applying chemical fertilizers. Chemical fertilizer has its benefits and disadvantages in terms of nutrient supply, quality of the soil and crop growth (Chen, 2006). Less or more plant population and insufficient crop nutrition are the primary factors responsible for low yield (Khursheed and Mahammad, 2015). Chemical fertilizers improve crop yields by providing essential plant nutrients which are easily available to plants; however, their abuse can be harmful for the environment and their use implies increased production costs which reduce the economic viability of agricultural products(Kholssi et al., 2018). Application of biofertilizers became of great necessity to get a yield of high quality and to avoid the environmental pollution(Das et al., 2008). Plant growth promoting rhizobacteria are able to increase mineral and nitrogen availability in the soil as a way to augment growth(Saharan and Nehra, 2011). Increasing of leaf nutrient contents by rhizobial inoculation primarily related to the bacterial production of phytohormone, which caused changes in root morphology and physiology that resulted in increased nutrient and water uptake from the soil(Mia and Shamsuddin, 2010). However, increasing of leaf nutrient contents may be due to the role of Rhizobial bacteria in an increasing the availability of insoluble phosphorus through phosphate-solubilization (Data presented in table (5) supported this results) and siderophore production (which are compounds having low molecular weight and high affinity for iron) (Mehboob, 2010). The positive effect of rhizobial bacteria on soil fertility may be due to the fact that soil microbes are active drivers of soil nutrient cycling, being associated with the decomposition of organic matter, and the transformation and cycling of nutrients, which help to maintain crop productivity and the physical and chemical quality of the soil(Anik et al., 2017). Increasing of leaf phytohormone contents in wheat plants may be correlated to the role of rhizobial bacteria in biosynthesis of plant growth regulators, including auxins, gibberellins, cytokinins, and ABA . The microbial regulators modulate plant hormone levels in plant tissue, and they have been found to have effect that are similar to exogenous phytohormone application(Egamberdieva et al., 2017), the results achieved in the figure (1) largely confirm the positive effect of rhizobial bacteria on plant hormones. Production of phytohormones by inoculation has been suggested as one of the most plausible mechanisms of action affecting plant growth. Soil microbes are potential sources of these phytohormones(Shahawat, 2007). Enhancing yield components by using rhizobial bacteria may be because of one or more growth promoting mechanisms which may imply that the ability of rhizobia to produce different metabolites like organic acids, vitamins, enzymes and exopolysaccharides in the rhizosphere could be responsible for improve yield production(Mehboob et al., 2011). (Etesami et al., 2009) revealed that inoculation of wheat with beneficial bacteria has the potential to increase the yield of wheat and improve the higher plant growth. (Adnan et al., 2014) suggested that rhizobial bacteria could be used as PGPR for wheat crop in prevailing soil and climatic conditions. This results partially agreed with those obtained by(Mohamed, 2000) concerning wheat plants. In general, the capacity of plant species and their genotypes to absorb and metabolize components differs genetically.

1. CONCLUSION
From the study, it might be concluded that the combination between the lower levels of NPK fertilizer with different species of rhizobial bacteria had positive effect on wheat production and soil fertility.

ACKNOWLEDGEMENT: We are thankful to staff of Agricultural Research Center in Erbil for support in doing this research. We appreciate the reviewers and editors for their exceptionally helpful comments about the manuscript.

REFERENCES
ADESEMOYE, A. O. & KLOEPPER, J. W. 2009. Plant—microbes interactions in enhanced fertilizer-use efficiency. Applied microbiology and biotechnology, 85, 1-12.
ADNAN, M., SHAH, Z., KHAN, A., KHAN, G. A., ALI, A., KHAN, N. A., SALEEM, N., NAWAZ, S., AKBAR, S. & SAMREEN, S. 2014. Integrated Effect of Rhizobial inoculum and inorganic fertilizers on wheat yield and yield components. American Journal of Plant Sciences, 5, 2066.
AKHTAR, N., ARSHAD, I., SHAKIR, M., QURESHI, M., SEHRISH, J. & ALI, L. 2013. Co-inoculation with Rhizobium and Bacillus sp. to improve the phosphorus availability and yield of wheat (Triticum aestivum L.). JAPS, Journal of Animal and Plant Sciences, 23, 190-197.

ANIK, M. F. A., RAHMAN, M. M., RAHMAN, G. M., ALAM, M. K., ISLAM, M. S. & KHATUN, M. F. 2017. Organic amendments with chemical fertilizers improve soil fertility and microbial biomass in Rice-Rice-Rice triple crops cropping systems. Open Journal of Soil Science, 7, 87.

BIESAGA-KOŚCIELNIAK, J., OSTROWSKA, A., FILEK, M., DZIURKA, M., WALIGÓRSKI, P., MIREK, M. & KOŚCSIENLIAK, J. 2014. Evaluation of spring wheat (20 varieties) adaptation to soil drought during seedlings growth stage. Agriculture, 4, 96-112.

CHEN, J.-H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, 16-20. Citeseer, 20.

DALALY, B. & AL-HAKIM, S. 1987. Food analysis. Printed in Mosul University.

DAS, K., DANG, R. & SHIVANANDA, T. 2008. Influence of bio-fertilizers on the availability of nutrients (N, P and K) in soil in relation to growth and yield of Stevia rebaudiana grown in South India. International Journal of Applied Research in Natural Products, 1, 20-24.

EGAMBERDIEVA, D., WIRTH, S. J., ALQARAWI, A. A., ABD-ALLAH, E. F. & HASHEM, A. 2017. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in microbiology, 8, 2104.

ETESAMI, H., ALIKHANI, H. A., JADIDI, M. & ALIAKBARI, A. 2009. Effect of superior IAA producing rhizobia on N, P, K uptake by wheat grown under greenhouse condition. World Appl. Sci. J., 6, 1629-1633.

FOULKES, M. J., SLAGER, G. A., DAVIES, W. J., BERRY, P. M., SYLVESTER-BRADLEY, R., MARTRE, P., CALDERINI, D. F., GRIFFITHS, S. & REYNOLDS, M. P. 2010. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of experimental botany, 62, 469-486.

JALA-ABADI, A. L., SIADAT, S., BAKHSANDEH, A., FATHI, G. & SAIED, K. A. 2012. Effect of organic and inorganic fertilizers on yield and yield components in wheat (T. aestivum and T. durum) genotypes. Advances in Environmental Biology, 6(2), 756-763.

JOGI, Q., KANDHRO, M. N., QURESHI, A. A. & SOLANGI, M. 2017. EFFECT OF BALANCED FERTILIZER FOR ENHANCING WHEAT GROWTH AND YIELD. Science International (Lahore), 29, 981-984.

KHOLOOSI, R., MARKS, E. A., MIÑÓN, J., MONTERO, O., DEBDOUBI, A. & RAD, C. 2018. Biofertilizing Effect of Chlorella sorokiniana Suspensions on Wheat Growth. Journal of Plant Growth Regulation, 38(644),1-6.

KHURSEHED, M. Q. & MAHAMMAD, M. Q. 2015. Effect of different nitrogen fertilizers on growth and yield of wheat. ZANCO Journal of Pure and Applied Sciences, 27, 19-28.

KUMAR, M. 2015. Effect of NPK levels and vermicompost on growth and yield of wheat (Triticum aestivum L.) under normal practice and system of wheat intensification. Msc. thesis, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi.

MEHBOOB, I. 2010. Plant growth promoting activities of rhizobium with non-legumes. Msc. thesis, University of Faisalabad, Pakistan.

MEHBOOB, I., ZAHIR, Z. A., ARSHAD, M., TANVEER, A. & AZAM, F. 2011. Growth promoting activities of different Rhizobium spp. in wheat. Pak. J. Bot, 43, 1643-1650.

MIA, M. B. & SHAMSUDDIN, Z. 2010. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African journal of Biotechnology, 9, 6001-6009.

MOHAMED, S. 2000. Effect of mineral and biofertilization on growth, yield, chemical constituents and anatomical structure of wheat (Triticum aestivum L.) and broad bean (Vicia faba L.) plants grown under reclaimed soil conditions. Annals of Agricultural Science, Mooshtohor, 38, 2039-2063.

MORADI, A., KORDLAGHARI, K. P. & KESHAVARZ, K. (2015). Influence of Zinc and Seed Inoculation with Rhizobium Bacteria on Yield and Yield Components of Triticum aestivum (Case study: Nurabad, Iran). Biological Forum. Citeseer, 7 (1): 185-189.

MORGAN, J. & CONNOLLY, E. 2013. Plant-soil interactions: nutrient uptake. Nature Education Knowledge, 4, 2.

RYAN, J., ESTEFON, G. & RASHID, A. 2001. Soil and Plant Analysis Laboratory Manual, 2nd edn. National Agriculture Research Center (NARC) Islamabad, Pakistan. Bull. Fac. Sci., 31, 395-303.

SADASIVAM, S. 1996. Biochemical methods, New age international.

SAHARAN, B. & NEHRA, V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, 21, 30.

SHAKHAWAT, H. M. 2007. Potential use of Rhizobium spp. to improve growth of non-nitrogen fixing plants. Msc. thesis, Department of soil science, swedish university, of agricultural science

ŠRAMKOVÁ, Z., GREGOVÁ, E. & ŠTURDÍK, E. 2009. Effects of different Rhizobium spp. in wheat. Acta Chimica Slovaca, 6(2), 115-138.

STAJKOVIC-SRIBNOVIC, O., DELIC, D., KUZMANOVIC, D., PROTIĆ, N., RASULIĆ, N. & KNEŽEVIĆ-VUKČEVIĆ, J. 2014. Growth and nutrient uptake in oat and barley plants as affected by rhizobacteria. Rom. Biotechnol. Lett, 19, 9429-9436.

YE, Q., ZHANG, H., WEI, H., ZHANG, Y., WANG, B.-F., XIA, K., HUO, Z.-Y., DAI, Q.-G. & XU, K. 2005. Effect of nitrogen fertilizer on nitrogen use...
efficiency and yield of rice under different soil conditions. *Acta Agronomica Sinica*, 31, 1422.

ZAHIR, Z. A., YASIN, H., NAVEED, M., ANJUM, M. & KHALID, M. 2010. L-tryptophan application enhances the effectiveness of rhizobium inoculation for improving growth and yield of mungbean (Vigna radiata (L.) Wilczek). *Pak J Bot*, 42, 1771-1780.

ZAKI, N., GOMAA, M., RADWAN, F., HASSANEIN, M. & WALI, A. 2012. Effect of mineral, organic and bio-fertilizers on yield, yield components and chemical composition of some wheat cultivars. *Journal of Applied Sciences Research*, 8, 174-191.