Magneto-transport characteristics of a 2D electron system driven to negative magneto-conductivity by microwave photoexcitation

R. G. Mani & A. Kriisa

Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA 30322.

Negative diagonal magneto-conductivity/resistivity is a spectacular and thought provoking property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance, with a concomitant sign reversal in the Hall voltage.

Negative magneto-conductivity/resistivity is a spectacular and thought provoking theoretical property of microwave photoexcited, far-from-equilibrium, two-dimensional electronic systems. This property has been utilized to understand the experimental observation of the microwave-radiation-induced zero-resistance states in the GaAs/AlGaAs system. Yet, the negative conductivity/resistivity state remains an enigmatic and open topic for investigation, although, over the past decade, photo-excited transport has been the subject of a broad and intense experimental and theoretical study in the 2D electron system (2DES).

In experiment, the microwave-induced zero-resistance states arise from “1/4-cycle-shifted” microwave radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs system as these oscillations become larger in amplitude with the reduction of the temperature, \(T \), at a fixed microwave intensity. At sufficiently low \(T \) under optimal microwave intensity, the amplitude of the microwave-induced magnetoresistance oscillations becomes large enough that the deepest oscillatory minima approach zero-resistance. Further reduction in \(T \) then leads to the saturation of the resistance at zero, leading to the zero-resistance states that are similar to the zero-resistance states observed under quantized Hall effect conditions. Similar to the situation in the quantized Hall effect, these radiation-induced zero resistance states exhibit activated transport. A difference with respect to the quantized Hall situation, however, is that the Hall resistance, \(R_{xy} \), does not exhibit plateaus or quantization in this instance where the zero-resistance state is obtained by photo-excitation.

Some theories have utilized a two step approach to explain the microwave-radiation-induced zero-resistance states. In the first step, theory identifies a mechanism that helps to realize oscillations in the diagonal magneto-photo-conductivity/resistivity, and provides for the possibility that the minima of the oscillatory diagonal conductance/resistivity can even take on negative values. The next step in the two step approach invokes the theory of Andreev et al., who suggest that the zero-current-state at negative resistivity (and conductivity) is unstable, and that this favors the appearance of current domains with a non-vanishing current density, followed by the experimentally observed zero-resistance states.

There exist alternate approaches which directly realize zero-resistance states with-out a detour through negative conductivity/resistivity states. Such theories include the radiation-driven electron-orbit model, the radiation-induced-contact-carrier-accumulation/depletion model, and the synchronization model. Thus far,
however, experiment has been unable to clarify the underlying mechanism(s), so far as the zero-resistance states are concerned. The negative magneto-conductivity/resistivity state suggested theoretically in this problem\(^3\) has been a puzzle for experiment since it had not been encountered before in magneto-transport. Naively, one believes that negative magneto-resistivity/conductivity should lead to observable negative magneto-resistance/conductance, based on expectations for the zero-magnetic-field situation. At the same time, one feels that the existence of the magnetic field is an important additional feature, and this raises several questions: Could the existence of the magnetic field be sufficiently significant to overcome nominal expectations, based on the zero-magnetic-field analogy, for an instability in a negative magneto-conductivity/resistivity state? If an instability does occur for the negative magneto-conductivity/resistivity state, what is the reason for the instability? Could negative conductivity/resistivity lead to observable negative conductance/resistance at least in some short time-scale transient situation where current domains have not yet formed? Indeed, one might ask: what are the magneto-transport characteristics of a bare negative conductivity/resistivity state? Remarkably, it turns out that an answer has not yet been formulated for this last question.

To address this last question, we examine here the transport characteristics of the photo-excited 2DES at negative diagonal conductivity/resistivity through a numerical solution of the associated boundary value problem. The results suggest, rather surprisingly, that negative conductivity/resistivity in the 2DES under photo-excitation should generally yield a positive diagonal resistance, i.e., \(R_{xx} > 0 \), except at singular points where \(R_{xx} = 0 \) when the diagonal conductivity \(\sigma_{xx} = 0 \). The simulations also identify an associated, unexpected sign reversal in the Hall voltage under these conditions. These features suggest that nominal expectations, based on the zero-magnetic-field analogy, for a negative conductivity/resistivity state in a non-zero magnetic field, need not necessarily follow, and that experimental observations of zero-resistance and a linear Hall effect in the photo-excited GaAs/AlGaAs system could be signatures of vanishing conductivity/resistivity.

Results

Experiment. Figure 1(a) exhibits measurements of \(R_{xx} \) and \(R_{yy} \) over the magnetic field span \(-0.15 \leq B \leq 0.15 \) Tesla at \(T = 0.5 \) K. The blue curve, which exhibits Shubnikov-de Haas oscillations at \(|B| \approx 0.1 \) Tesla, represents the \(R_{xx} \) in the absence of photo-excitation (w/o radiation). Microwave photo-excitation of this GaAs/AlGaAs specimen at 50 GHz, see red traces in Fig. 1, produces radiation-induced magnetoresistance oscillations in \(R_{xx} \) and \(R_{xy} \) that grow in amplitude with increasing \(|B| \). At the deepest minimum, near \(|B| \approx (4/5)B_0 \), where \(B_0 = 2\pi fm^*/e \), the \(R_{xx} \) saturates at zero-resistance. Note also the close approach to zero-resistance and a linear Hall effect in the dark (blue trace) at \(|B| \approx 0.1 \) Tesla. Under photo-excitation at \(f = 50 \) GHz (red traces), \(R_{xx} \) exhibits large magnetoresistance oscillations with vanishing resistance in the vicinity of \(\pm (4/5)B_0 \), where \(B_0 = 2\pi fm^*/e \). Note the absence of a coincidental plateau in \(R_{xx} \). Theory predicts negative diagonal resistivity, i.e., \(\rho_{xx} < 0 \), under intense photoexcitation at the oscillatory minima, observable here in the vicinity of \(B = 0.19 \) Tesla and \(B = 0.105 \) Tesla. (c) Theory asserts that negative resistivity states are unstable to current domain formation and zero-resistance. Consequently, the \(B \)-span of negative resistivity in panel (b) corresponds to the domain of zero-resistance states \((ZRS)\), per theory.

![Figure 1](www.nature.com/scientificreports/)

The dark resistivity which reflects typical material characteristics for the high mobility GaAs/AlGaAs 2DES. This figure shows that the deepest \(\rho_{xx} \) minima at \(B \approx 0.19 \) Tesla and \(B \approx 0.105 \) Tesla exhibit negative resistivity, similar to theoretical predictions\(^3\) for the zero-magnetic-field situation. The simulations also identify an associated, unexpected sign reversal in the Hall voltage under these conditions.

Device configuration. As mentioned, a question of interest is: what are the transport characteristics of a bare negative magneto-conductivity/resistivity state? To address this issue, we reexamine
the experimental measurement configuration in Fig. 2. Transport measurements are often carried out in the Hall bar geometry which includes finite size current contacts at the ends of the device. Here, a constant current is injected via the ends of the device, and “voltmeters” measure the diagonal \(V_{xy}\) and Hall \(V_{xy}\) voltages between probe points as a function of a transverse magnetic field, as indicated in Fig. 2. Operationally, the resistances relate to the measured voltages by \(R_{xx} = V_{xx}/I\) and \(R_{xy} = V_{xy}/I\).

Simulations. Hall effect devices can be numerically simulated on a grid/mesh\(^{67-69}\), see Fig. 2, by solving the boundary value problem corresponding to enforcing the local requirement \(\nabla \cdot \mathbf{j} = 0\), where \(\mathbf{j}\) is the 2D current density with components \(j_x\) and \(j_y\), \(\mathbf{j} = \nabla \mathbf{E}\), and \(\mathbf{E}\) is the conductivity tensor\(^{67,68}\). Enforcing \(\nabla \cdot \mathbf{j} = 0\) within the homogeneous device is equivalent to solving the Laplace equation \(\nabla^2 V = 0\), which may be carried out in finite difference form using a relaxation method, subject to the boundary conditions that current injected via current contacts is confined to flow within the conductor. That is, current perpendicular to edges must vanish everywhere along the boundary except at the current contacts. We have carried out simulations using a 101 \(\times\) 21 point grid with current contacts at the ends that were 6 points wide. For the sake of simplicity, the negative current contact is set to ground potential, i.e., \(V = 0\), while the positive current contact is set to \(V = 1\). In the actual Hall bar device used in experiment, the potential at the positive current contact will vary with the magnetic field but one can always normalize this value to 1 to compare with these simulations.

Figure 3 summarizes the potential profile within the Hall device at three values of the Hall angle, \(\theta_H\), where \(\theta_H = \tan^{-1}(\sigma_{xy}/\sigma_{xx})\). Fig. 3(a) shows a color plot of the potential profile with equipotential contours within the device at \(\theta_H = 0^\circ\), which corresponds to the \(B = 0\) situation. This panel, in conjunction with Fig. 3(b), shows that the potential drops uniformly within the device from the left- to the right- ends of the Hall bar. Fig. 3(c) shows the absence of a potential difference between the top- and bottom- edges along the indicated yellow line at \(x = 50\). This feature indicates that there is no Hall effect in this device at \(B = 0\), as expected.

Figure 3(d) shows the potential profile at \(\theta_H = 60^\circ\), which corresponds to the situation where \(\sigma_{xx} = 0.577\sigma_{xy}\). Note that, here, the equipotential contours develop a tilt with respect to the same in

![Figure 2](image-url)
Figure 2 | This dual purpose figure illustrates an idealized measurement configuration and the simulation mesh. A Hall bar (blue outline) is connected via its current contacts (thick black rectangles at the ends) to a constant current source, which may be modelled as a battery with a resistor in series. For convenience, the negative pole of the battery has been grounded to set the potential of this terminal to zero. A pair of “voltmeters” are used to measure the diagonal \(V_{xx}\) and Hall \(V_{xy}\) voltages. For the numerical simulations reported in this work, the Hall bar is represented by a mesh of points \((i,j)\), where the potential is evaluated by a relaxation method. Here, \(0 \leq i \leq 100\) and \(0 \leq j \leq 20\). The long (short) axis of the Hall bar corresponds the \(x\) \((y)\)-direction.

![Figure 3](image-url)
Figure 3 | This figure summarizes the potential profiles within a Hall bar device that is 100 units long and 20 units wide at three values of the Hall angle, \(\theta_H\), where \(\theta_H = \tan^{-1}(\sigma_{xy}/\sigma_{xx})\). (a) This panel shows the potential profile at \(\theta_H = 0^\circ\), which corresponds to the \(B = 0\) situation. Current contacts are indicated by black rectangles at the left- and right- ends, midway between the top and the bottom edges. The left end of the Hall bar is at \(V = 1\) and the right end is at \(V = 0\). Potential \(V\) is indicated in normalized arbitrary units. Panel (b) shows that the potential decreases linearly along the indicated yellow line at \(y = 10\) from the left end to the right end of the device. Panel (c) shows the absence of a potential difference between the top- and bottom- edges along the indicated yellow line at \(x = 50\). That is, there is no Hall effect at \(B = 0\). Panel (d) shows the potential profile at \(\theta_H = 60^\circ\), which corresponds to \(\sigma_{xy} = 0.577\sigma_{xx}\). Note that the equipotential contours develop a tilt with respect to the same in panel (a). Panel (e) shows the potential drop from the left to the right edge along the line at \(y = 10\). Panel (f) shows a decrease in the potential from the bottom to the top edge. This potential difference is the Hall voltage at \(\theta_H = 60^\circ\). Panel (g) shows the potential profile at \(\theta_H = 88.5^\circ\), which corresponds to \(\sigma_{xy} = 0.026\sigma_{xx}\). Note that in the interior of the device, the equipotential contours are nearly parallel to the long axis of the Hall bar, in sharp contrast to (a). Panel (h) shows the potential variation from the left to the right end of the device along the line at \(y = 10\). The reduced potential variation here between the \(V_{xx}\) voltage probes (red and black triangles) is indicative of a reduced diagonal resistance. Panel (i) shows a large variation in the potential along the line at \(x = 50\) between the bottom and top edges.
Fig. 3(a). Fig. 3(e) shows a mostly uniform potential drop from the left to the right edge along the line at \(y = 10 \), as Fig. 3(f) shows a decrease in the potential from the bottom to the top edge. This potential difference represents the Hall voltage under these conditions.

Figure 3(g) shows the potential profile at \(\theta_H = 88.5^\circ \), which corresponds to the situation where \(\sigma_{xx} = 0.026 \sigma_{xy} \). Note that in the interior of the device, the equipotential contours are nearly parallel to the long axis of the Hall bar, in sharp contrast to Fig. 3(a). Fig. 3(h) shows the potential variation from the left to the right end of the device. The reduced change in potential between the Voltage probes (red and black inverted triangles), in comparison to Fig. 3(b) and Fig. 3(e) is indicative of a reduced diagonal voltage and resistance. Fig. 3(i) shows a large potential difference between the bottom and top edges, indicative of a large Hall voltage.

The results presented in Fig. 3 display the normal expected behavior for a 2D Hall effect device with increasing Hall angle. Such simulations can also be utilized to examine the influence of microwave excitation since microwaves modify the diagonal conductivity, \(\sigma_{xx} \), or resistivity, \(\rho_{xx} \), and this sets \(\theta_H \) via \(\theta_H = \tan^{-1}(\sigma_{xy}/\sigma_{xx}) \). In the next figure, we examine the results of such simulations when the diagonal conductivity, \(\sigma_{xx} \), reverses signs and takes on negative values, as per theory, under microwave excitation. Thus, figure 4 compares the potential profile within the Hall bar device for positive (\(\sigma_{xx} = +0.026 \sigma_{xy} \)) and negative (\(\sigma_{xx} = -0.026 \sigma_{xy} \)) values of the conductivity.

Fig. 4(a) shows the potential profile at \(\sigma_{xx} = +0.026 \sigma_{xy} \). This figure is identical to Fig. 3(g). The essential features are that the equipotential contours are nearly parallel to the long axis of the Hall bar, see Fig. 4(b), signifying a reduced diagonal resistance. Concurrently, Fig. 4(c) suggests the development of a large Hall voltage between the bottom and top edges. Here the Hall voltage decreases from the bottom- to the top- edge.

Fig. 4(d) shows the potential profile at \(\sigma_{xx} = -0.026 \sigma_{xy} \) i.e., the negative conductivity case. The important feature here is the reflection of the potential profile with respect Fig. 4(a) about the line at \(y = 10 \) when the \(\sigma_{xx} \) shifts from a positive (\(\sigma_{xx} = +0.026 \sigma_{xy} \)) to a negative (\(\sigma_{xx} = -0.026 \sigma_{xy} \)) value. Fig. 4(e) shows, remarkably, that in the negative \(\sigma_{xx} \) condition, the potential still decreases from left to right, implying \(V_{xx} > 0 \) and \(R_{xx} > 0 \) even in this \(\sigma_{xx} \leq 0 \) condition. Fig. 4(f) shows that for \(\sigma_{xx} = -0.026 \sigma_{xy} \), the potential increases from the bottom edge to the top edge, in sharp contrast to Fig. 4(c). Thus, these simulations clearly show that the Hall voltage undergoes sign reversal when \(\sigma_{xx} < 0 \), although the diagonal voltage (and resistance) exhibits positive values.

Discussion

Existing theory indicates that photo-excitation of the high mobility 2D electron system can drive the \(\rho_{xx} \) and \(\sigma_{xx} \) to negative values at the minima of the radiation-induced oscillatory magneto-resistivity\(^{37,39,41,45,48,59} \). Andreev et al.\(^{38} \), have argued that \(\sigma_{xx} < 0 \) by itself suffices to explain the zero-dc resistance state" because "negative linear response conductance implies that the zero-current state is intrinsically unstable." Since our simulations (Fig. 4) show clearly that negative magneto conductivity/resistivity leads to positive, not negative, conductance/resistance, it looks like one cannot argue for an instability in the zero-current state based on presumed "negative linear response conductance.

For illustrative purposes, using the understanding obtained from the simulation results shown in Fig. 4, we sketch in Fig. 5 the straightforward expectations, for the behavior of the diagonal (\(R_{xx} \)) and Hall (\(R_{xy} \)) resistances in a 2D system driven positively to negative diagonal conductivity by photo-excitation. Fig. 5(a) shows that the microwave-induced magnetoresistance oscillations in \(R_{xx} \) grow in amplitude with increasing \(B \). When the oscillations in the magneto-resistivity/conductivity are so large that the oscillatory minima would be expected to cross into the regime of \(\sigma_{xx} < 0 \) at the oscillatory minima, the \(R_{xx} \) exhibits positive values. Here, vanishing \(R_{xx} \) occurs only at singular values of the magnetic field where \(\sigma_{xx} = 0 \). Fig. 5(b) shows that the Hall resistance \(R_{xy} \) shows sign reversal over the same span of \(B \) where \(\sigma_{xx} < 0 \).

It appears that if there were an instability, it should be related to the sign-reversal in the Hall effect. Yet, note that sign reversal in the Hall effect is not a manifestly un-physical effect since it is possible to realize Hall effect sign reversal in experiment even with a fixed external bias on the sample, as in the simulations, simply by reversing the direction of the magnetic field or by changing the sign of the charge carriers. The unusual characteristic indicated by these
unlike the expectations exhibited in Fig. 5. Experiment shows simulations. Figure 5 | This figure illustrates expectations, based on the results illustrated in Fig. 3 and 4, for the behavior of the diagonal (R_{xx}) and Hall (R_{xy}) resistances in a 2D system driven periodically to negative conductivity/resistivity by photo-excitation. (a) The diagonal resistance R_{xx} exhibits microwave-induced magnetoresistance oscillations that grow in amplitude with increasing B. In the regime of negative conductivity at the oscillatory minima, the R_{xx} exhibits positive values. (b) Over the same span of B, the Hall resistance R_{xy} shows sign reversal. simulations is Hall effect sign reversal even without changing the direction of the magnetic field or changing the sign of the charge carriers. This feature can be explained, however, by noting that the numerical solution of the boundary value problem depends on a single parameter, the Hall angle, \theta_H, where \tan(\theta_H) = \sigma_{xy}/\sigma_{xx}. Since this single parameter depends on the ratio of the off-diagonal and diagonal conductivities, sign change in \sigma_{xx} produces the same physical effect as sign reversal in \sigma_{xy} so far as the solution to the boundary value problem is concerned. That is, one might change the sign of \sigma_{xy} or one might change the sign of \sigma_{xx}, the end physical result is the same: a sign reversal in the Hall effect.

One might also ask: why do the simulations indicate a positive diagonal resistances for the negative diagonal conductivity/resistivity scenario? The experimental setup shown in Fig. 2 offers an answer to this question: In the experimental setup, the Hall bar is connected to an external battery which enforces the direction of the potential drop in the boundary value problem. As a consequence, the red potential probe in Fig. 2, 3 or 4 would prefer to be immersed in pumped liquid Helium, and irradiated with microwaves, at a source power 0.1 ≤ P ≤ 10 mW, as in the usual microwave-irradiated transport experiment! The applied external magnetic field was oriented along the solenoid and waveguide axis.

Figure 5

Methods

Samples. The GaAs/AlGaAs material utilized in our experiments exhibit electron mobility \(\mu = 10^5 \text{cm}^2/\text{V} \cdot \text{s} \) and electron density in the range 2.4 \times 10^{10} \leq n \leq 3 \times 10^{11} \text{ cm}^{-3}. Utilized devices include cleaved specimens with alloyed indium contacts and Hall bars fabricated by optical lithography with alloyed Au-Ge/Ni contacts. Standard low frequency lock-in techniques yield the electrical measurements of R_{xx} and R_{xy}.

Microwave transport measurements. Typically, a Hall bar specimen was mounted at the end of a long straight section of a rectangular microwave waveguide. The waveguide with sample was inserted into the bore of a superconducting solenoid, immersed in pumped liquid Helium, and irradiated with microwaves, at a source power 0.1 ≤ P ≤ 10 mW, as in the usual microwave-irradiated transport experiment! The applied external magnetic field was oriented along the solenoid and waveguide axis.

1. Mani, R. G. et al. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature (London) 420, 646 (2002).
2. Zudov, M. A., Du, R. R., Pfeiffer, L. N. & West, K. W. Evidence for a new dissipationless effect in 2D electronic transport. Phys. Rev. Lett. 90, 046807 (2003).
3. Mani, R. G. et al. Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices. Phys. Rev. B 69, 161306 (2004).
4. Mani, R. G. et al. Demonstration of a 1/4 cycle phase shift in the radiation-induced oscillatory-magneto-resistance in GaAs/AlGaAs devices. Phys. Rev. Lett. 92, 146801 (2004).
5. Mani, R. G. et al. Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima. Phys. Rev. B 70, 155310 (2004).
6. Mani, R. G. et al. Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high-mobility GaAs/AlGaAs devices. Phys. Rev. B 69, 193304 (2004).
7. Mani, R. G. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Physica E (Amsterdam) 22, 1–8 (2004).
8. Studenikin, S. A., Potemski, M., Coleridge, P. T., Sachrajda, A. S. & Wasilewski, Z. R. Microwave radiation induced magneto-oscillations in the longitudinal and transverse resistance of a two-dimensional electron gas. Sol. St. Comm. 129, 341–345 (2004).
9. Kovalev, A. E., Zvyagin, S. A., Bowers, C. R., Reno, J. L. & Simmons, J. A. Observation of a node in the quantum oscillations induced by microwave radiation. Sol. St. Comm. 130, 379–381 (2004).
10. Willett, R. L., Pfeiffer, L. N. & West, K. W. Evidence for current flow anomalies in the irradiated 2D electron system at small magnetic fields. Phys. Rev. Lett. 93, 026804 (2004).
11. Du, R. R. et al., Dissipationless 2D electronic transport effect induced by microwaves. Physica E (Amsterdam) 22, 7–12 (2004).
12. Mani, R. G. Novel zero-resistance states induced by photoexcitation in the high mobility GaAs/AlGaAs two-dimensional electron system. Physica E (Amsterdam) 25, 189–197 (2004).
13. Mani, R. G. Radiation-induced zero-resistance states with resolved Landau levels. Appl. Phys. Lett. 85, 4962–4964 (2004).
14. Mani, R. G. Radiation-induced oscillatory magnetoresistance in a tilted magnetic field in GaAs/AlGaAs devices. Phys. Rev. B 72, 075327 (2005).
15. Simovic, B., Ellenberger, C., Ensslin, K. & Wegscheider, W. Density dependence of microwave induced magnetoresistance oscillations in a two-dimensional electron gas. Phys. Rev. B 71, 233303 (2005).
16. Smet, J. H. et al. Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system. Phys. Rev. Lett. 95, 116804 (2005).
17. Yuan, Z. Q., Yang, C. L., Du, R. R., Pfeiffer, L. N. & West, K. W. Microwave photoresistance of a high mobility two-dimensional electron gas in a triangular antidot lattice. Phys. Rev. B 74, 075313 (2006).
18. Mani, R. G. Radiation-induced decay of Shubnikov-de Haas oscillations in the regime of the radiation-induced zero-resistance states. Appl. Phys. Lett. 91, 132103 (2007).
19. Studenikin, S. A. et al. Frequency quenching of microwave-induced resistance oscillations in a high mobility two-dimensional electron gas. Phys. Rev. B 76, 165321 (2007).
20. Wirthmann, A. et al. Far-infrared induced magnetoresistance oscillations in GaAs/AlGaAs-based two-dimensional electron systems. Phys. Rev. B 76, 195315 (2007).
21. Wiedmann, S. et al. Interference oscillations of microwave photoresistance in double quantum wells. Phys. Rev. B 78, 121301(R) (2008).
22. Mani, R. G. Narrow-band radiation-sensing in the Terahertz and microwave bands using the radiation-induced magnetoresistance oscillations. Appl. Phys. Lett. 92, 102107 (2008).
23. Mani, R. G. Evolution of Shubnikov-de Haas oscillations under photoexcitation in the regime of the radiation-induced zero-resistance states. Physica E 40, 1178–1181 (2008).
24. Mani, R. G., Johnson, W. B., Umansky, V., Narayanamurti, V. & Ploog, K. Phase study of oscillatory resistances in microwave irradiated and dark GaAs/AlGaAs devices: Indications of an unfamiliar class of integral quantum Hall effect. Phys. Rev. B 79, 205320 (2009).
25. Wiedmann, S. et al. Magnetoresistance oscillations in multilayer systems: Triple quantum wells. Phys. Rev. B 80, 245306 (2009).
26. Konstantinov, D. & Kono, K. Photon-induced vanishing of magnetoconductance in 2D electrons on liquid helium. Phys. Rev. Lett. 105, 226801 (2010).
27. Mani, R. G., Gerl, C., Schmidt, S., Wegscheider, U. & Umansky, V. Nonlinear growth with the microwave intensity to the radiation-induced magnetoresistance oscillations. Phys. Rev. B 81, 125320 (2010).
28. Fedorych, O. M. et al. Quantum oscillations in the microwave magnetooabsorption of a two-dimensional electron gas. Phys. Rev. B 81, 201302 (2010).
29. Ramanayaka, A. N., Mani, R. G. & Wegscheider, W. Microwave induced electron heating in the regime of the radiation-induced magnetoresistance oscillations. Phys. Rev. B 83, 165303 (2011).
30. Wiedmann, S. et al. Microwave-induced Hall resistance in bilayer electron systems. Phys. Rev. B 83, 195317 (2011).
31. Mani, R. G., Ramanayaka, A. N. & Wegscheider, W. Observation of linear-polarization-sensitive microwave-radiation-induced magnetoresistance oscillations. Phys. Rev. B 84, 085308 (2011).
32. Ramanayaka, A. N., Mani, R. G., Inarrea, J. & Wegscheider, W. Effect of rotation of the polarization of linearly polarized microwaves on the radiation-induced magnetoresistance oscillations. Phys. Rev. B 85, 205315 (2012).
33. Bogan, A. et al. Microwave-induced resistance oscillations in tilted magnetic fields. Phys. Rev. B 86, 235305 (2012).
34. Mani, R. G., Hankinson, J., Berger, C. & de Heer, W. A. Observation of resistively detected hole spin resonance and zero-field pseudo-spin splitting in graphene. Nature Commun. 3, 996 doi: 10.1038/ncomms1986 (2012).
35. Ye, T., Mani, R. G. & Wegscheider, W. Remotely sensed transport in microwave photoexcited GaAs/AlGaAs two-dimensional electron system. Appl. Phys. Lett. 102, 242113 (2013).
36. Mani, R. G. et al. Terahertz photovoltaic detection of cyclotron resonance in the regime of the radiation-induced magnetoresistance oscillations. Phys. Rev. B 87, 245308 (2013).
37. Durst, A. C., Sachdev, S., Read, N. & Girvin, S. M. Radiation-induced magnetoresistance oscillations in a 2D electron gas. Phys. Rev. Lett. 91, 086803 (2003).
38. Andreew, A. V., Aleiner, I. L. & Millis, A. J. Dynamical symmetry breaking as the origin of the zero-dc-resistance state in an ac-driven system. Phys. Rev. Lett. 91, 056803 (2003).
39. Ryzhii, V. & Suris, R. Nonlinear effects in microwave photoconductivity of two-dimensional electron systems. J. Phys.: Cond. Matt. 15, 6855–6869 (2003).
40. Koulakov, A. A. & Raikh, M. E. Classical model for the negative dc conductivity of ac-driven two-dimensional electron systems near the cyclotron resonance. Phys. Rev. B 68, 115324 (2003).
41. Lei, X. L. & Liu, S. Y. Radiation-induced magnetoresistance oscillation in a two-dimensional electron gas in Faraday geometry. Phys. Rev. Lett. 91, 226805 (2003).
42. Rivera, P. H. & Schulz, P. A. Radiation-induced zero-resistance states: Possible dressed electronic effects. Phys. Rev. B 70, 075314 (2004).
43. Lei, X. L. Theoretical analysis of radiation-induced magnetoresistance oscillations in high mobility two-dimensional electron systems. J. Phys.: Condens. Matter 16, 4045–4050 (2004).
44. Mikhailov, S. A. Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamics effects. Phys. Rev. B 70, 165311 (2004).
45. Torres, M. & Kunold, A. Kubo formula for Floquet states and photoconductivity oscillations in a two-dimensional electron gas. Phys. Rev. B 71, 115313 (2005).
46. Inarrea, J. & Platero, G. Temperature effects on microwave-induced resistivity oscillations and zero-resistance states in two-dimensional electron systems. Phys. Rev. B 72, 193414 (2005).
47. Lei, X. L. & Liu, S. Y. Radiation-induced magnetotransport in high mobility two-dimensional systems: Role of electron heating. Phys. Rev. B 72, 075345 (2005).