Co-complex protein membership evaluation using Maximum Entropy on GO ontology and InterPro annotation

Irina M. Armean¹, Kathryn S. Lilley¹, Matthew W. B. Trotter²,
Nicholas C. V. Pilkington³ and Sean B. Holden³,*

¹Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1GA, UK,
²Celegene Institute for Translational Research Europe (CITRE), Sevilla 41092, Spain and ³Department of Computer
Science, Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK

*To whom correspondence should be addressed.
Associate Editor: Alfonso Valencia

1 Introduction
Despite their structural diversity, proteins only achieve full potential by direct interaction in multi-protein complexes involved in fundamental biological processes such as gene expression, cell differentiation and cell–cell communication (Alberts, 1998; Bonetta, 2010; Vidal et al., 2011).

Protein interactions have been studied by low-throughput assays and associated analytical methods, including x-ray crystallography (Scott et al., 2009), nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET) and isothermal titration calorimetry (ITC). Such methods are reviewed in (Collins and Choudhary, 2008; Shoemaker and Panchenko, 2007). Additionally, several mass spectrometry methods have more recently been used to interrogate protein interactions in multi protein complexes (Smits and Vermeulen, 2016). These structural proteomics approaches, including native mass spectrometry (Mehmood et al., 2015), and crosslinking mass spectrometry (Liu et al., 2015), nicely complement high-resolution cryo-electron microscopy (Huis In ‘t Veld et al., 2014).
The development of high-throughput approaches has generated large datasets, with the largest fraction being generated by yeast two-hybrid (Y2H) and affinity purification coupled with mass spectrometric identification (AP-MS) (Supplementary Note 1). These methods are not without limitations and false discoveries (Armean et al., 2013; Deane et al., 2002; Sprinzak et al., 2003), despite experimental pipelines intended to reduce false interactions (Rees et al., 2011, 2015).

1.1 Annotation ontologies

Computational methods to identify and filter false discovery from empirical output represent an alternative to assiduous and time-consuming experimental validation or use of simple subtraction of proteins from datasets based on their likelihood to be co-contaminants (Mellacheruvu et al., 2013). An appropriate mapping between known properties of candidate proteins and their likelihood of interaction is key to the success of computational approaches.

In this context, many contemporary PPI prediction and evaluation algorithms use a range of associated information to describe likely binding partners, including co-expression and co-localization data, known involvement in biological processes, computational predictions of protein structure (Mosca et al., 2013; Zhang et al., 2012), and focused interaction data acquired using empirical approaches such as AP-MS (Armean et al., 2013; Teo et al., 2014).

Annotations that relate gene products to biological process, molecular function and sub-cellular localization have been curated for over a decade via the Gene Ontology (GO) (Ashburner et al., 2000). Associated evidence codes describe whether annotations are derived from experimentation, computational analysis, author statements, during curation or by automated assignment (Rogers and Ben-Hur, 2009; Škunca et al., 2012; Yon Rhee et al., 2008). Each of the three ontology branches are hierarchically structured, with generic annotation terms, or nodes, forming roots for branches of more specific terms.

InterPro is a comprehensive database of protein domain annotations from more than a dozen databases (Mitchell et al., 2015). The domain annotation is organized in a hierarchical structure, with domains that share higher-level structure and/or function at the top and those describing more specific functional subfamilies or structural/functional subclasses of domains at the bottom. Protein domains have been used in computational methods to identify PPIs either by single domain association (Sprinzak and Margalit, 2001), by frequency of domain co-occurrence or domain combinations (Han et al., 2003). These methods are extensively reviewed by Ta et al. (Ta and Holm, 2009). Domain–domain interactions have been identified using 3D structures in PDB (Rose et al., 2017), 3did (Mosca et al., 2014) or predicted based on orthogonal information as PPIs with DOMINE v2.0 containing more than 20 513 known or predicted domains–domain interactions (Yellaboina et al., 2011).

1.2 Prediction of protein interactions from annotation

Aside from the choice of classification algorithm, the availability of a realistic known or ‘training’ scenario that incorporates an appropriate annotation space within which to represent pairs of proteins is fundamental to such approaches. For a brief review of the training set design and GO based annotation space used in supervised machine learning applications to predict protein-protein interactions see Supplementary Note 2.

Most GO term similarity measures are restricted to descriptive probabilities of one shared GO term. There are multiple ways to select the most informative GO terms to compare: Jain and Bader used the first common ancestor (Jain and Bader 2010); Maetschke et al. (2012) compared an extensive list of approaches for selecting the parents concluding that the set of parents up to the first common ancestor is the most suitable (Maetschke et al., 2012), while Yang et al. (2012) used parents and descendants of the given GO terms to improve GO semantic similarity performance (Yang et al., 2012).

Many supervised machine learning approaches ignore some of the term relationships, therefore Maetschke et al. (2012) used similarity scores on all GO term parents up to the lowest common ancestor (ULCA), including both relationships (‘is_a’ and ‘part_of’) in a single random forest classifier. This approach was observed to perform better than (i) similarity scores applied to the most specific GO terms, (ii) similarity scores applied only to the lowest common ancestors (OLCA) or (iii) similarity scores applied to parent terms up to the lowest common ancestor (ULCA) excluding the lowest common ancestor itself (Maetschke et al., 2012).

Boyanova et al. used the GO similarity of the Most Informative Common Ancestor (MICA) as implemented in the GOsim package (Fröhlich et al., 2007) to build edge weights (Boyanova et al., 2014). These edge weights in addition to node weights, based on presence/absence of proteins from reference networks, were grouped into specific functional modules by heinz, (heavy induced subgraph algorithm) (Dittrich et al., 2008).

Methods to compute similarity scores between GO annotations have been grouped into node-based (GO terms), edge-based (GO term relationships) and hybrid methods, each with their own limitations (Pesquita et al., 2009). Information Content (IC) sequence similarity is computed using the most informative node and the node’s use frequency, however the choice of node and the frequency can bias the results towards less studied species as their annotation frequency is lower than for more researched organisms. Edge-based methods, for example shortest path, are sensitive to terms with the same depth but different precision. Hybrid methods offer an alternative by defining the semantic similarity of one term as the sum of a chosen parent’s set (Pesquita et al., 2009). A significant improvement to estimating semantic similarity using only child nodes or only parent nodes is to use both sets to infer similarity. The combination of both sets raises the question of how to best use the ontology structure to maximize inference (Bettenburg et al., 2014; Mazandu and Mulder, 2013).

Co-evolution of proteins, the presence/absence of protein pairs across taxa, has been used in several similarity scores and made available through STRING (Szklarczyk et al., 2015), Prolinks (Bowers et al., 2004) or ECID (Andres Leon et al., 2009). These methods range from using binary representation to a mix of similarity metrics and taxonomy. A recent development is an automated approach, sub-setting the taxa to the most informative set of species for the specific organism PPI prediction problem (de Juan et al., 2013; Ochoa and Pazos, 2014; Simonsen et al., 2012; Škunca and Dessizmoz, 2015).

The combination of protein phylogenetic profiling, phyloprof (Simonsen et al., 2012) and go2ppi (Maetschke et al., 2012) resulted in an improvement from 0.61 to 0.7 AUC (area under the ROC curve) when trained and tested on yeast PPI published data (Yao et al., 2015). More recently the information content of a GO term for a specific protein has been adjusted based on all the other GO terms, including ancestors terms, assigned to the protein (Bandyopadhyay and Mallick, 2017). All GO ancestor terms have been recently used as part of a new Weighted Inherited Semantic (WIS) measure (Tian et al., 2016).

1.3 Maximum Entropy

Maximum Entropy modelling is considered to be among the simplest predictive models, as its only constraint is to train a model that
maximizes expected disorder in the system as quantified by the entropy. Information theory and Maximum Entropy were successfully used by Alterovitz et al. (2010) to evaluate and suggest improvements to the GO ontology structure based on terms at the same depth level having varying information content, inter-level variability (one parent-child relationship might encode a higher information content increase than another) and topological variability (Alterovitz et al., 2010). The knowledge gained in respect of the GO ontology was used to create an improved GO: single-level changes were introduced, 1001 relationships and 11% of GO terms modified. The modifications lead to a significant change in functional interpretation for 97.5% of genes and on average 14.6% of GO categories.

Here, we introduce a novel approach that uses Maximum Entropy to capture and take advantage of the entire ontology structure—all relationships and ancestor terms—that offers an efficient method for protein co-complex evaluation with insight into the individual weights for each annotation. We apply a Maximum Entropy model, GIS-MaxEnt [Generalized Iterative Scaling Maximum Entropy (Darroch and Ratcliff, 1972; Jain et al., 2005)] to the interaction prediction scenario described above and assess its predictive power.

2 Materials and methods
2.1 Problem formulation and dataset
The manually curated S.cerevisiae CYC2008v2.0 (Pu et al., 2009) dataset was selected as a starting point when building a set of high confidence protein interactions (true positives). The CYC2008v2.0 dataset comprises 408 manually curated protein complexes obtained from consolidation of two genome-wide affinity purification mass spectrometry (AP-MS) studies. The number of complex members ranges from 2 to 81 (cytoplasmic ribosomal large subunit) with a median of 3 complex members (Fig. 1). This dataset has been used as a validation set for the study of conservation of multiprotein complexes among metazoans (Wan et al., 2015) and in the identification of essential proteins based on PPI networks and complexes (Qin et al., 2016).

Matrix expansion—a method that assumes binary interaction between any bait–prey or prey–prey proteins identified in the same experiment—was used to expand the 408 high-confidence overlapping complexes to 11 923 S.cerevisiae binary interactions among 1627 genes, of which 211 belonged to more than one complex. An alternative to matrix expansion, that we chose not to employ, is the more conservative spoke expansion whereby bait proteins are assumed to interact only with prey proteins (Hakes et al., 2007).

Fig. 1. Barplot distribution of the number of members per complex in the CYC2008 dataset of 408 complexes. The four largest complexes are: the cytoplasmic ribosomal large subunit with 81 members, the cytoplasmic ribosomal small subunit with 57 members, the mitochondrial ribosomal large subunit with 44 members and mitochondrial ribosomal small subunit with 32 members. Most complexes 171/408 (42%) have 2 members

Considering the rate at which proteins are annotated [estimated 300–500 proteins in 6 months (Radivojac et al., 2013)] it is sensible to expect that annotations were assigned based on the publication of this dataset. Using annotations created due to the publication of a dataset when evaluating the same dataset would result in circularity and bias in the model. To avoid this bias, the 11 923 S.cerevisiae interactions were transferred by homology to D.melanogaster interactions. The mapping was performed by identification of interologs of yeast (Wallout, 2000) in Drosophila. The gene homologs were extracted using FlyMine v. 33 (Lyne et al., 2007) which includes TreeFam v7.0 (Ruan et al., 2008). The 11 923 S.cerevisiae interactions were transferred to 9593 binary interactions among 1077 genes in D.melanogaster. These 9593 binary interactions are considered to have high confidence, and hence form the positive set.

In order to create a negative training set counterpart, 9593 pairs of genes were randomly sampled from the set of 1077 genes, ignoring pairs of genes already present in the positive set or published as interacting based on FlyMine v33, which imports BioGRID (Stark et al., 2011), IntAct (Kerrien et al., 2012) and FlyBase (McQuilton et al., 2012). This approach ensured the same level of protein annotation in both training classes. Additional filters including different subcellular locations (Jansen et al., 2003) were later assessed as introducing significant bias into the training problem (Ben-Hur and Noble, 2006). Depending on organism and model, GRIP (Brown et al., 2009) and Negatome (Smialowski et al., 2010) offer alternative approaches for training set construction.

The gene pairs present in the positive and negative set will be referred to as protein interactions in the remainder of this work.

2.2 Annotation
GO and InterPro annotations including all parent terms were extracted for each gene using FlyMine v33. GO terms with evidence codes NAS (Non-traceable Author Statement), ND (No biological Data available), IEA (Inferred from Electronic Annotation) and NR (Not Recorded), or, those labelled with the ‘Not’ qualifier, were excluded. Given individual GO branch depths, most unique annotation pairs originated from the biological process branch (Supplementary Table S1). 841 of the 1077 genes had at least one GO or InterPro annotation (Supplementary Table S2 for gene annotation coverage).

The distribution of the shortest paths from each GO term to its corresponding root is slightly skewed towards shorter distances (Supplementary Fig. S1). For biological process (BP) and molecular function (MF) most of the terms are centered half way down the ontology tree.

2.3 Annotation representation
Protein annotation was transferred at the interaction level by pairing all annotation terms \(\{ P_{1} = \{ \text{GO}_{x|x = 1..n} \} \} \), including all parents, from one protein with all annotation terms \(\{ P_{2} = \{ \text{GO}_{y|y = 1..m} \} \} \) from the other protein such that \(P_{1}P_{2} = \{ \text{GO}_{x|y, y = 1..m} \} \).

The three GO branches were treated separately.

The above approach resulted in the annotation coverage of the protein interactions being 54.25% (5204/9593) for the positive set (A) and 57.42% (5308/9593) for the negative set (B) (Fig. 2 and Supplementary Table S3).

By using all GO parent terms in our annotation preparation, we ensure that the root terms will most often form pairs leading to high frequency in observance, and a low information content evaluation by the Maximum Entropy model, as well as ensuring that any relation between the child and parent terms is maintained.
Generalized iterative scaling—maximum entropy (GIS-MaxEnt) (Darroch and Ratcliff, 1972) and support vector machines (SVMs) (Shawe-Taylor and Cristianini, 2004) are standalone methods. The other two methods—GIS-MaxEnt Ensemble and Multiple Kernel Learning (MKL)—are combinations of classifiers. A brief introduction to the underlying algorithms is given in the Supplementary Data, along with details of the specific software used. This section provides information that is specific to our own experiments.

For the two standalone classifiers we trained on each individual annotation source GO-BP, GO-CC, GO-MF and IP. We also used two combined sources: GO, which combines the GO-BP, GO-CC and GO-MF sources, and GO-IP which includes all the sources combined. The GIS-MaxEnt Ensemble and MKL methods were allowed to combine GO-BP, GO-CC, GO-MF and IP as part of the training process.

2.4.1 Generalized iterative scaling—maximum entropy

Internally the GIS-MaxEnt method specifies the feature functions $f_i(x, y) = 1$, if GO term pair i is in (x, y)
$= 0$, otherwise.

The implementation of GIS-MaxEnt used (Supplementary Note 3) was modified to use the mean number of annotations per interaction as internal correction constant in the training step, as opposed to the maximum number of annotations. Subsequent to this we employed the default settings with a maximum of 100 iterations.

2.4.2 Support vector machine (SVM)

We employed a kernel K derived from the polynomial kernel (Shawe-Taylor and Cristianini, 2004)

$$K(x, x') = \langle x, x' \rangle + c \delta$$

where $\langle x, x' \rangle$ denotes the inner product of x and x'. Specifically we set $c = 0$ and $d = 1$ and refer to the kernel $K(x, x') = \langle x, x' \rangle$ as the linear kernel.

A common preprocessing step when applying machine learning methods is to normalize the datasets such that features have a mean of zero and a standard deviation of one. However, the datasets described above are both large and sparse, and normalizing the features would make them dense. Instead of doing this we implemented a kernel normalizer to normalize by the Tanimoto coefficient (Tanimoto, 1958). This operates directly on the kernel matrix, which is significantly smaller than the feature matrices. It computes the Jaccard similarity as

$$K'(x, x') = \frac{K(x, x')}{K(x, x) + K(x', x') - K(x, x')},$$

where K' is the normalized kernel, K is the original kernel—the linear kernel in our experiments—and x and x' are feature vectors.

2.4.3 GIS-MaxEnt ensemble

Individual GIS-MaxEnt models were trained on the four data subsets and their resulting predictions on the training data used as input to a linear SVM decision layer (Supplementary Fig. S3).

2.4.4 Multiple kernel learning

A kernel K' was constructed for each of the data subsets, based on the Jaccard similarity and linear kernel as was the case for the SVM. The multiple kernel was then

$$K''(x, x') = \sum_{i=1}^{4} \beta_i K'_i(x, x'),$$

We used the ℓ_2-norm on the values β_i (Supplementary Note 4).

2.5 Model selection and estimated generalization

Estimated generalization performance was assessed by repeated stratified (Stratification in this context refers to the preservation of the original class proportions in each partition,) partitioning of all labelled data examples into training (90%) and test (10%) partitions. Models were created on the training partition and their predictions assessed on the test partition. We used 50 divisions of the data to assess each method (more details in Supplementary Note 5 and Fig. S7).

2.6 go2ppi system

Maetschke et al. compared 10 different approaches of generating a set S of GO terms based on two sets of GO terms S_1 and S_2, each corresponding to different proteins. The ULCA approach outperformed the others and was selected to be implemented in the go2ppi system. The GO term set S for each protein interaction was transformed to a binary feature vector v where each unique GO term corresponded to a unique index i and the corresponding position in the

![Feature Coverage](image-url)
vector was set to 1 if the GO term was present or 0 otherwise. Using this configuration, a sparse high-dimensional matrix was built and used as input to a machine learning algorithm. The go2ppi software offers two algorithm implementations: Naïve Bayes (NB) and Random Forest (RF) (Maetschke et al., 2012).

The go2ppi system is an appropriate system for comparing against the proposed ontology-based models. First, there is an extensive list of approaches for extracting PPI relevant GO terms explored by the go2ppi authors with the one performing best being implemented in go2ppi. Secondly, the go2ppi pipeline is freely available.

The labelled examples were used to create two input files as required by go2ppi: a binary protein—protein interaction file and a protein annotation file. The annotation file containing only the most specific GO terms. go2ppi (version 1.06) was set to be evaluated with 10-fold cross validation, 90%/10% split and 50 runs to replicate the training and testing of our own methods. The same GO obo (open biomedical ontologies format) version was used as in FlyMine v33, and both Random Forest (RF) and Naïve Bayes (NB) implementations were tested. go2ppi reports the AUC in the training phase and testing phase.

3 Results

3.1 Performance comparison: GIS-MaxEnt versus SVM

The GIS-MaxEnt and SVM models’ performance was assessed on a D. melanogaster training set composed of 500 positive examples and 500 negative examples described by 224,629 annotations based on InterPro and GO annotation terms (see Supplementary Table S4 and Section 2).

3.1.1 GIS-MaxEnt applied on different annotation sets

The GIS-MaxEnt based model trained on the four individual data sources (three GO branches and one InterPro) performed best when trained on the GO cellular component having a Matthews correlation coefficient (MCC) of 0.83 with the lowest performance being present for the one trained on biological process with a MCC of 0.56 (Fig. 3 and Supplementary Table S6). A reduced number of annotations does not correlate directly to a lower MCC, for example there were 8632 InterPro based terms and 8875 GO molecular function terms (Supplementary Table S4) resulting in 0.64 MCC for InterPro and 0.80 for the GO branch. The observed difference is likely due to the underlying ontology structure with the biological process GO branch having the most terms and the maximum number of levels. The InterPro structure is shorter in depth (maximum 8 levels deep) and very wide (1926 distinct terms on the first level) reflecting the diversity in protein families. The difference between the individual datasets is also highlighted when plotting the ROC curves (Supplementary Fig. S4).

Varying accuracies were obtained on the individual datasets, with the combination of all four leading to the highest accuracy of 0.93 and the highest AUC of 0.979 (Fig. 3).

The GIS-MaxEnt model trained on all three GO branches also has a very good performance and is not significantly different to the performance on the GO-IP dataset [Wilcoxon unpaired two sample test, P-value < 0.05 (Supplementary Table S7)]. We observe the difference between the performance of GO-CC and GO-MF to be less significant than the one between GO-CC and GO-BP or GO-CC and GO-IP. Regardless of its low number of annotations (Supplementary Tables S1, S2) the GO-CC branch is the second dataset in respect of performance contribution to the GIS-MaxEnt GO-IP dataset.

3.1.2 SVM applied on different annotation sets

The SVM has a high performance (AUC above 0.8) on all of the training sets, with the GO-IP dataset having the highest AUC 0.984 (Supplementary Fig. S5). Based on MCC, SVM-IP is the least successful combination, with SVM-BP and SVM-GO-MF being relatively comparable and SVM-GO-CC having a higher MCC of 0.83 (Fig. 3 and Supplementary Table S6).

The slight increase of SVM-GO-MF MCC over SVM-GO-BP is overturned when the AUC is taken into consideration, however the performance difference is not significant (Supplementary Table S8). Any of the trained SVM models display a significant performance difference against SVM-GO-IP except SVM-GO which has P-value = 0.68 (Wilcoxon test on MCC values).

3.1.3 GIS-MaxEnt compared to SVM

GIS-MaxEnt and SVM perform well on the different training sets. There are some notable differences. If the MCC performance ranking of the four primary datasets (GO-MF, GO-BP, GO-CC, IP) for each method is compared then the only datasets that do not change position are GO-CC and GO-MF, being ranked first and second. Only GO-CC maintains its rank when also taking the AUC into consideration.

GIS-MaxEnt maintains the performance rank between MCC or AUC, while SVM has an inversion of the rank for GO-BP and GO-MF, which is not surprising given the relatively small difference in MCC performance.

Comparing the two trained models GIS-MaxEnt and SVM to each other on the same datasets, they have a significantly different performance for GO-BP set (P-value 9.29E-11), GO biological process ontology being the one with the highest number of terms. If the P-value is taken as a measure of similarity, then the models trained on IP are most similar, followed by GO-CC, suggesting that the InterPro and cellular component annotations are able to clearly separate the positive from the negative examples and therefore represent good quality annotation.

The significantly different performances between the models on the other datasets suggests that each model has learned different separation rules from the same training set, despite similar performance (Supplementary Table S9).
obtained when using all the parents (Supplementary Table S4). This is also reflected in the very large number of annotations ancestry having to deal with a lot more terms from the dense structure.

term-only is overfitting and GO-BP all-parents has a lower perform-

ances having to deal with a lot more terms from the dense structure. This is also reflected in the very large number of annotations ancestry having to deal with a lot more terms from the dense structure.

3.2 Ensemble classifiers

3.2.1 GIS-MaxEnt compared to GIS-MaxEnt ensemble

The ensemble version of GIS-MaxEnt has a slight improvement over GIS-MaxEnt trained on GO-IP in respect of AUC, from 0.979 to 0.981 (Fig. 3, Supplementary Fig. S6) although the difference when compared on MCC is not significant (Wilcoxon test, P-value < 0.05, see Supplementary Table S10).

GIS-MaxEnt trained on InterPro compared to the GO based sets continues to have the lowest P-values (P-value 1.34E-17 see Supplementary Table S8, P-value 1.49E-17 see Supplementary Table S11). This reflects the significantly different annotation structure of the InterPro annotation vocabulary compared to the GO.

3.2.2 GIS-MaxEnt ensemble compared to MKL

Analysis presented in Table 1 show that MKL is in agreement with GIS-MaxEnt when trained on individual sources, in evaluating GO-BP as having the lowest contribution to the overall evaluation and GO-MF the second highest. However they disagree regarding the top-ranked contributor: InterPro or cellular compartment (Table 1, Supplementary Table S6).

In both the GIS-MaxEnt and kernel-based systems, the algorithms trained on all the data sources outperform models trained on individual sources alone. The ensemble models outperform the models trained on all data at once (Supplementary Table S7). The MKL and GIS-MaxEnt Ensemble had almost identical performance with MKL having a slightly improved MCC (Supplementary Table S6) although the difference was not significant (Wilcoxon test P-value < 0.05).

3.3 Performance in the context of published systems

Compared to go2ppi, GIS-MaxEnt had higher AUC performance both when using only the most specific terms and when including the GO parent terms, outperforming both go2ppi configurations using either Naïve Bayes or Random Forest (Table 2).

The performance of GIS-MaxEnt is highest when all the GO branches are used, with a slight improvement when the parent terms are used as opposed to term-only (Table 2). The ranked order based on performance is maintained with GO-CC having the highest performance followed by GO-MF and GO-BP. The ontology branch GO-BP has more than twice as many terms as GO-MF distributed over the same number of levels (Supplementary Table S1). This has an impact on the performance of GO-MF and GO-BP in the two modes: term-only and all-parents. The model trained on GO-BP term-only is overfitting and GO-BP all-parents has a lower performance having to deal with a lot more terms from the dense structure. This is also reflected in the very large number of annotations obtained when using all the parents (Supplementary Table S4). This property of the GO-BP branch leads to parent term-based annotation having a higher overlap between leaf terms belonging to a positive example of PPI and a negative example of PPI, making the separation between positive and negative examples harder, although at the same time one could expect that this property could give the evaluation a better resolution. Based on the difference of 0.78 versus 0.95 for GIS-MaxEnt and GO-BP it is expected that the

3.4 GO term frequencies

Both GIS-MaxEnt and MKL performed well on the training set. To check that the problem setting and training set did not represent a trivial question for the algorithms, we looked for the presence of GO terms representing protein complexes in our training set. 1679 GO terms were extracted from the GO (v1.1.2412) containing the word ‘complex’ in the name. Out of these 180 were present in the training set, and the counts in the positive set were not significantly different from those in the negative set (Wilcoxon test P-value = 0.28). The frequencies of all single GO terms in the positive and negative set are however significantly different at P-value < 0.05 (Fig. 4).

As an independent validation we evaluated the 359 positive PPIs excluded from the training set by random selection (Section 2.1) using GIS-MaxEnt trained on GO-IP. 95.8% (344 out of 359) were correctly evaluated with a score above 0.5.

In addition to an efficient classification GIS-MaxEnt offers the insight into the individual weights assigned to term pairs present in the positive and negative training set (Supplementary Fig. S8).

To further assess the performance of the GIS-MaxEnt based system, we assessed it using a recently published dataset containing 1379 binary interactions in *S. cerevisiae* (Celaj et al., 2017). Unlike the Drosophila dataset where interactions were determined using affinity purification coupled with mass spectrometry, this yeast interaction dataset was created using a murine dihydrofolate reductase protein complementation assay (mDHFR PCA). The resulting binary yeast protein interactions were detected in at least one out of 14 different biochemical conditions with many being condition dependent (55%). Using the 1379 interactions as a positive training set, we created a corresponding negative set and annotated it with GO annotations as described in the methods section (section 2, Supplementary Note 6). Based on 10-fold cross-validation the highest accuracy was obtained when all three ontology branches in GO were used, giving an accuracy value of 0.84 with a recall of 0.87 and precision of 0.82 (Supplementary Table S12).

Table 1. The individual weights on each dataset used by the MKL algorithm

Dataset	GO-CC	GO-BP	GO-MF	IP
	0.428±5E-05	0.422±3E-05	0.538±7E-05	0.590±1E-05

Table 2. AUC for go2ppi and GIS-MaxEnt in different configurations

Model	GO-CC	GO-BP	GO-MF	GO
go2ppi-NB	0.765/0.730	0.731/0.700	0.729/0.697	0.761/0.723
go2ppi-RF	0.991/0.719	0.985/0.697	0.957/0.695	0.997/0.708
GIS-MaxEnt	0.963	0.959	0.950	0.972
—term-only				
GIS-MaxEnt	0.965	0.787	0.956	0.978
—all-parents				

Note: The go2ppi algorithm reports two results, displayed as Train/Test. ‘Train’ is the self-test AUC in the training phase (for example 0.731 for go2ppi-NB and GO-BP). ‘Test’ is the 10-fold cross-validation AUC in the testing phase over 50 runs (for example 0.70 for go2ppi-NB and GO-BP).
Comparing the results from the two datasets shows the GIS-MaxEnt performance is better on the more highly curated, Drosophila dataset. Nevertheless, the good performance on the *S.cerevisiae* set showcases the direct applicability of our system to protein interaction sets obtained with different experimental methods beyond AP-MS in spite of differences in curation.

4 Discussion

In this work we set out to design and test a novel PPI evaluation system. We created a novel training set for *D.melanogaster* based on published curated *S.cerevisiae* protein complexes from the CYC2008 dataset, revisiting data representation and training set design. We have evaluated the combination of an information theoretic algorithm with protein annotation databases to assess experimentally derived protein interactions. The training set was complemented by a novel way of using controlled vocabulary annotation stored in ontology structures. We tested the performance of several algorithms on the novel training set and annotation representation and obtained good estimated generalization performance and good performance when applied to a larger test set.

The GIS-MaxEnt and SVM models trained on the merged dataset containing all individual sources outperform GIS-MaxEnt trained on any of the individual sources. The GIS-MaxEnt Ensemble and MKL outperform their counterparts trained on GO-IP, with MKL having a slightly improved MCC compared to the GIS-MaxEnt Ensemble, however the performance comparison did not pass the significant threshold. To conclude, both algorithm types performed well, but by learning different rules had occasionally significantly different performance.

The GIS-MaxEnt based system was also compared against the publicly available go2ppi system, which made use of its own approach to building the parent GO terms set (Up to Lowest Common Ancestor ULCA). This approach of selecting the GO parents outperformed an extensive variation of methods of obtaining GO parents. The GIS-MaxEnt system outperformed both the go2ppi implemented algorithms—Naïve Bayes and Random Forest—when trained either on GO specific terms only or GO including all parent terms.

The model using all GO parent terms offers an improved discrimination of PPIs compared to using only the most specific GO terms, this being due to the higher number of GO based annotations that the model was trained upon. A similar trend can be observed, based on the GIS-MaxEnt AUC performance, for the GO term-only model versus the GO all-parent-terms model. However, despite the lower AUC value when using GO all-parents, this model highlights a central property of the underlying ontology: that the GO-BP ontology has a very dense branching system, with the result that positive and negative PPIs share many of the GO parent terms. A high number of shared GO parents between the positive and negative PPIs will lead a model to assign less extreme weights to the shared GO term based annotations. However, the GIS-MaxEnt based system outperformed one of the latest developments in GO based PPI evaluation (Maetschke et al., 2012) even when used only on GO specific terms.

The proposed approach is limited to the annotation terms observed in the training set. The use of only the most specific annotated GO terms is likely to lead to overfitting and poor performance on unseen annotation. The use of species-specific training sets ensures that only the species relevant ontology space will be trained and therefore reduce the likelihood of missing important unseen annotation. The proposed system however performs well in the context of increased usage of ontologies and standardized controlled vocabularies.

Here we showcased the application of GIS-MaxEnt on categorical annotations. Continuous numerical annotation, such as interaction weights, could be readily usable by representing them into a categorical system.

To conclude, we introduce a novel approach to the computational quality assessment of protein interaction screens and a novel training set for evaluating protein complex data in *D.melanogaster*. This system has been trained and applied on a large dataset, which is part of the FlyTrap project (Lowe et al., 2014) and accessible through FlAnnotator (Ryder et al., 2009). Transparent evaluation of PPIs and the individual weights for the annotation term pairs will support further ontology refinement and PPI analysis as part of powerful aggregate systems such as STRING (Szklarczyk et al., 2015).

Acknowledgements

We would like to thank Iain Bancarz for constructive discussions before the start of this project while at EMBL-EBI.

Funding

I.M.A. was funded by the Biotechnology and Biological Sciences Research Council [BB/SRC grant BB/F017464/1].

Conflict of Interest: Since direct involvement in this work, MWBT has become an employee of Celgene Research SL, part of Celgene Corporation and declares no conflict of interest.

References

Alterovitz, G. et al. (2010) Ontology engineering. Nat. Biotechnol., 28, 128–130.

Arnesan, A. et al. (2009) Prioritizing genes for drug target discovery and disease biomarker research. Nat. Rev. Drug Discov., 8, 907–918.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, E., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., Sherlock, G. (2000) Gene ontology: tool for the unification of biology. Nature, 407, 147–150.

Ashburner, M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.

Ceeris, C. et al. (2012) Evaluating protein interaction networks in yeast datasets. Nat. Genet., 44, 1131–1135.

Cooper, G. M., Marchler-Bauer, A., Bryant, S. H., Li, L., Zheng, M., Sone, J., Wu, Y., Pellegrini, M. (2009) A protein interaction network for *Drosophila melanogaster*. Nat. Genet., 41, 1035–1040.

Dennis, G. et al. (2003) DAVID:Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 4, R60.

Finn, R. D., Mistry, J., Tate, J., Coggill, P., Eberhardt, R. Y., Heger, A., Holm, L., Lunt, O., Samavedam, S., Thorne, C., et al. (2010) The Pfam protein families database. Nucleic Acids Res., 38, D211–D215.

Glotzer,Y. and Margolin, A. A. (2004) Net-MAP: a network-based approach to prioritize mammalian protein interaction candidates. Mol. Cell, 16, 219–228.

Hartenstein, V., Haas, B. H., Schartl, M. (1998) The Drosophila melanogaster genome: a model for mammalian genetics. Trends Genet., 14, 234–243.

Hartemink, A. J., Giat, G., R head, S., et al. (2001) Tools for functional genomics using whole-genome expression data. Nat. Biotechnol., 19, 291–294.

Hill, D. P., Botstein, D., Schonbohm, A. G., Doerfler, W., Ashburner, M. (1989) Enhancer-screening system for *Drosophila* with application to the study of homeotic gene regulation. Proc. Natl. Acad. Sci. USA, 86, 1614–1618.

Iwamoto, T. and Takahashi, K. (2006) Heterochromatin and transcriptional regulation in vertebrates. Nat. Rev. Genet., 7, 618–632.

Jensen, J. L., Poulsen, M. H., Rasmussen, R. H., Berg, S. L., Helmer-Citterich, M., Krogh, A. (2003) A gene expression signature associated with breast cancer outcome and prognosis. Nat. Genet., 33, 537–543.

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012) KEGG for integration and analysis of general biological knowledge. Nucleic Acids Res., 40, D100–D105.

Kwon, S.-Y., Wang, Z., Kim, H.-J., Park, J.-W., Chung, B.-H. (2007) GOmap: a GO annotation map and its application to drug discovery. Mol. Cell. Proteomics, 6, 2414–2425.

Lowe, C. A., Ryder, P. J., Law, J. J., et al. (2014) FlAnnotator: a system for the comprehensive analysis of protein-protein interaction networks. Bioinformatics, 30, 24, 3023–3025.

McKee, T. D. and Zbinden, A. (2009) Combining multiple interaction networks for the functional annotation of the human protein interactome. Nat. Biotechnol., 27, 1061–1065.

Milo, R., Shen-Orr, S. S., Itzkovitz, S., Kashtan, C., Chklovskii, D., Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science, 298, 824–827.

Moore, T. A., Zhang, Z., Xiong, H., et al. (2006) A comprehensive analysis of human chromosome 19 interactions using protein fragment complementation assay. Mol. Cell. Proteomics, 5, 213–224.

Morris, A. J., Knight, J. G., Smith, C. D., et al. (2002) The CYC2000 database of curated genome-wide expression results from *Saccharomyces cerevisiae*. Bioinformatics, 18, 1229–1235.

Nishino, K., Nakamura, Y., Hanada, K., et al. (2006) A comprehensive database of yeast protein complexes constructed from two-hybrid analysis. J. Bioinform. Comput. Biol., 4, 1035–1050.

Pellegrini, M. et al. (2000) InterProScan–an integra- tion of protein domain databases. Nucleic Acids Res., 28, 299–301.

Sharan, R., Ulitsky, I., Shamir, R. (2007) Network features that facilitate protein function prediction. Bioinformatics, 23, 2411–2417.

Szklarczyk, D., Franceschini, A., Kuhn, M., et al. (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 43, D448–D452.

Wissenbach, K. et al. (2009) ChIP of the next generation: highthroughput ChIP-seq for quantitative transcription factor–DNA binding analysis. Nat. Methods, 6, 1187–1196.

Xiao, X., Zhou, H., Zhang, S., et al. (2008) A systematic analysis of the comprehensive genome-wide protein–protein interaction network in *Drosophila melanogaster*. Genome Res., 18, 1317–1325.
Mazandu, G.K. and Mulder, N.J. (2013) Information content-based gene set analysis. *Mol. Cell. Proteomics*, 13, 1877–1889.

Browne, F. et al. (2009) GRiP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction. *Source Code Biol. Med.*, 4, 2.

Deane, C.M. et al. (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. *Mol. Cell. Proteomics*, 1, 349–356.

Dittrich, M.T. et al. (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. *Bioinformatics*, 24, i223–i231.

Frohlich, H. et al. (2007) GOsIm—an R-package for computation of information theoretic GO similarities between terms and gene products. *BMC Bioinformatics*, 8, 166.

Hakes, L. et al. (2007) Protein interactions from complexes: a structural perspective. *Comp. Funct. Genomics*, 2007, 1–5.

Han, D. et al. (2003) A domain combination based probabilistic framework for protein–protein interaction prediction. *Genome Inform.*, 14, 250–259.

Hu, N. In T Veld, P.J. et al. (2014) Characterization of a DNA exit gate in the human cohesin ring. *Science*, 346, 968–972.

Jain, S. et al. (2005) Algorithmic Learning Theory: 16th International Conference, ALT 2005, Singapore, October 8–11, 2005, Proceedings 1st ed. *Springer*.

Jain, S. and Badger, G.D. (2010) An improved method for scoring protein–protein interactions using semantic similarity within the gene ontology. *BMC Bioinformatics*, 11, 562.

Jansen, R. et al. (2003) A Bayesian Networks Approach for predicting protein–protein interactions from genomic data. *Science*, 302, 449–453.

de Juan, D. et al. (2013) Emerging methods in protein co-evolution. *Nat. Rev. Genet.*, 14, 249–261.

Kerrien, S. et al. (2012) The IntAct molecular interaction database in 2012. *Nucleic Acids Res.*, 40, D841–D846.

Liu, F. et al. (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. *Nat. Methods*, 12, 1179–1184.

Lowe, N. et al. (2014) Analysis of the expression patterns, subcellular localisation and interaction partners of Drosophila proteins using a pSigP protein trap library. *Development*, 141, 3994–4005.

Lyne, R. et al. (2007) FlyMine: an integrated database for Drosophila and Anopheles genomics. *Genome Biol.*, 8, R129.

Maetschke, S.R. et al. (2012) Gene Ontology-driven inference of protein–protein interactions using inducers. *Bioinformatics*, 28, 69–75.

Mazandu, G.K. and Mulder, N.J. (2013) Information content-based gene ontology semantic similarity approaches: toward a unified framework theory. *Biomed Res. Int.*, 2013, 292063.

McQuilton, P. et al. (2012) FlyBase 101—the basics of navigating FlyBase. *Nucleic Acids Res.*, 40, D706–D714.

Mehmood, S. et al. (2015) Mass spectrometry of protein complexes: from origins to applications. *Annu. Rev. Phys. Chem.*, 66, 453–474.
Vidal, M. et al. (2011) Interactome networks and human disease. *Cell*, 144, 986–998.

Walhout, A. J. (2000) Protein interaction mapping in *C. elegans* using proteins involved in vulval development. *Science*, 287, 116–122.

Wan, C. et al. (2015) Panorama of ancient metazoan macromolecular complexes. *Nature*, 525, 339–344.

Yang, H. et al. (2012) Improving GO semantic similarity measures by exploring the ontology beneath the terms and modelling uncertainty. *Bioinformatics*, 28, 1383–1389.

Yao, J. et al. (2015) PPCM: combing multiple classifiers to improve protein–protein interaction prediction. *Int. J. Genomics*, 2015, 608042.

Yellaboina, S. et al. (2011) DOMINE: a comprehensive collection of known and predicted domain-domain interactions. *Nucleic Acids Res.*, 39, D730–D735.

Yoon Rhee, S. et al. (2008) Use and misuse of the gene ontology annotations. *Nat. Rev. Genet.*, 9, 509–515.

Zhang, Q. C. et al. (2012) Structure-based prediction of protein–protein interactions on a genome-wide scale. *Nature*, 490, 556–560.