Fast identification of the pull-in voltage of a nano/micro-electromechanical system

Ji-Huan He1,2,3, Na Qie1, Chun-Hui He1 and Khaled Gepreel4

Abstract
The pull-in voltage is crucial in designing an optimal nano/micro-electromechanical system (N/MEMS). It is vital to have a simple formulation to calculate the pull-in voltage with relatively high accuracy. Two simple and effective methods are suggested for this purpose; one is an ancient Chinese algorithm and the other is an extension of He’s frequency formulation.

Keywords
Nano/micro-electromechanical system oscillator, pull-in instability, periodic solution, ancient Chinese mathematics

Introduction
The pull-in instability1–6 is an inherent property of a nano/micro-electromechanical system (N/MEMS) when the applied voltage reaches a threshold (see Figure 1), and it plays a significant role in electrostatically actuated sensors for their effective and reliable operation. The MEMS system opens a broad road for microfluidics,7 energy harvester,8 drug delivery device,9 timing and frequency control,10 and portable devices.11 The pull-in voltage can be easily obtained for the linear case; however, it is highly intricate and challenging for the nonlinear case.

Since the problem of static pull-in (as a consequence of a saddle-node bifurcation)12–16 and dynamic pull-in (as a consequence of a homoclinic bifurcation)17–20 in the MEMS structure is a highly decisive factor, fast estimation of the pull-in voltage is much needed in practical applications.

We consider the following dynamical pull-in problem21

\[
x'' + x - \frac{\lambda}{1 - x} = 0, x'(0) = 0, x(0) = 0, \lambda > 0
\]

where \(x \) is the dimensionless distance as shown in Figure 1 and \(\lambda \) is a voltage-related parameter.

The pull-in behavior occurs when \(\lambda > \lambda^* \), where \(\lambda^* = 0.203632188 \); it is the solution of the following transcendental equation21

\[
\left(\frac{1 + \sqrt{1 - 4\lambda}}{4}\right)^2 + 2\lambda \ln\left(1 - \frac{1 + \sqrt{1 - 4\lambda}}{2}\right) = 0
\]

This implicit function cannot clearly see the effect of the system’s parameters on the pull-in voltage. An analytical closed-form solution is much needed for MEMS applications.16 There are many experimental, numerical, and analytical...
methods for this purpose; for example, the finite-difference method,22 the finite element method,23 the modal expansion method,24 the generalized differential quadrature method,25 the Ritz method,26,27 and the variational iteration method.28,29

To solve \(\lambda \) simply and effectively, we suggest two methods, one is the ancient Chinese method30,31 and the other is He’s frequency formulation.32,33

Ancient Chinese Algorithm

We begin with the well-known Newton iteration method. If we choose the initial guess as \(\lambda_0 = 0.25 \), the method becomes invalid entirely. The convergence depends strongly upon the initial guess; a good one always leads to an ideal result, while an inappropriate one might result in a divergent outcome.

Consider a simple example

\[
f(x) = \sin x = 0
\]

We want to find a solution between 0 and \(2\pi \), so we begin with \(x_0 = 3.14/2 \) and \(3 \times 3.15/2 \), respectively; the Newton iteration processes are shown in Tables 1 and 2. Both cases cannot lead to the needed result.

To solve the transcendental equation given in equation (2), we introduce the ancient Chinese method.30,31 Consider an algebraic equation in the form

\[
f(x) = 0
\]

The ancient Chinese algorithm begins with two trials,30 \(x_1 \) and \(x_2 \), which lead to two residuals \(f(x_1) \) and \(f(x_2) \). The approximate solution of equation (4) is30

\[
x = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)}
\]

The iteration process of the ancient Chinese algorithm is illustrated in Figure 2. For the above example, the two residuals are

\[
f(x_1 = 3.14/2) = 0.999999683 \text{ and } f(x_2 = 3 \times 3.15/2) = -0.9999205;
\]

according to equation (5), we estimate that \(x = 3.14756246 \). This is an approximate solution with a relative error of 0.19%.

To solve equation (2), we introduce a residual function

\[
R(\lambda) = \left(\frac{1 + \sqrt{1 - 4\lambda}}{2} \right)^2 + 2\lambda \ln \left(\frac{1 + \sqrt{1 - 4\lambda}}{2} \right)
\]

Figure 1. The MEMS system.
We choose two trials $\lambda_1 = 0.25$ and $\lambda_2 = 0.17$, the residuals are $R_1 = -0.096574$ and $R_2 = 0.0936174$, respectively, so the pull-in voltage can be calculated as

$$\lambda^* = \frac{R_2 \lambda_1 - R_1 \lambda_2}{R_2 - R_1} = \frac{0.0936174 \times 0.25 + 0.096574 \times 0.17}{0.0936174 + 0.096574} = 0.209378$$

This has a relative error of 2.82%. The accuracy can be improved using the other two trials $\lambda_1 = 0.25$ and $\lambda_2 = 0.209378$; and the two residuals are $R_1 = -0.096574$ and $R_2 = -0.014168$, respectively, using the ancient Chinese algorithm, we have $\lambda^* = 0.202394$ with a relative error of 0.60%. Alternatively, we use the two trials $\lambda_1 = 0.209378$ and $\lambda_2 = 0.17$, we have two residuals $R_1 = -0.014168$ and $R_2 = 0.093617$, and the pull-in voltage is $\lambda^* = 0.204202$ with a relative error of 0.27%. A modification of the ancient Chinese algorithm was given in Ref. 30, and it is called Chun-Hui He algorithm in the literature.31

He’s frequency formulation

He’s frequency formulation32,33 is to calculate the frequency of a nonlinear oscillator in the form

$$x'' + q(x) = 0$$

where $q(x)$ is the nonlinear function of x. The formulation is32,33
\[\omega^2 = \frac{q(x_0)}{x_0} \]

where \(\omega \) is the frequency and \(x_0 \) is a location point; generally, we recommend \(x_0 = 0.8 \) for fast estimation, where \(A \) is the amplitude. Equation (9) and its modifications were widely used in the literature to find a periodic solution of a nonlinear oscillator.34,35

For equation (1), we have

\[\omega^2 = 1 - \frac{\dot{\lambda}}{x_0(1 - x_0)} \]

The pull-in threshold is to change the periodic solution (\(\omega^2 > 0 \)) to the non-periodic one (\(\omega^2 < 0 \)), so the pull-in voltage can be determined from the condition

\[\omega^2 = 0 \]

That is

\[\lambda^* = x_0(1 - x_0) \]

We have a maximum \(\lambda^*_{\text{max}} = 1/4 \) when \(x_0 = 1/2 \), this leads to a relative error of 22.78%, too high to be used in practical applications. We choose multiple points to calculate \(\lambda^* \); then, an average is used. We choose \(x_0 = 1/2, 1/3, 1/4, \) and \(1/5 \), and we can determine \(\lambda^* = 1/4, 2/9, 3/16, \) and \(4/25 \), respectively. Its average value is

\[\lambda^* = 0.2049 \]

Now, the relative error reduces to 0.62%.

Discussion and Conclusion

Newton’s iteration method is sensitive to the initial guess. A good guess always leads to a good result, while a not-good guess results in a non-convergent solution, or the convergent solution is a wrong one. To overcome the shortcoming of the Newton’s iteration method, we suggest two simple but effective methods in this paper to determine the pull-in voltage. A simple method with relatively high accuracy is welcome in many practical applications.

Acknowledgments

The authors thank Taif University Researcher for Supporting project number (TURSP-2020/16), Taif University, Taif, Saudi Arabia.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Ji-Huan He
https://orcid.org/0000-0002-1636-0559

Chun-Hui He
https://orcid.org/0000-0003-0810-5248

References

1. Zhang W-M, Yan H, Peng Z-K, et al. Electrostatic pull-in instability in MEMS/NEMS: A review, *Sensors Actuators A: Phys* 2014; 214: 187–218

2. Sedighi HM and Daneshmand F. Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term, *J Appl Comput Mech* 2015; 1(1): 1–9.

3. Sedighi HM, Shirazi KH, and Attarzadeh MA. A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches, *Acta Astronautica* 2013; 91: 245–250.
4. Khatami I, Zahedi E, and Zahedi M. Efficient solution of nonlinear duffing oscillator. *J Appl Comput Mech* 2020; 6(2): 219–234.
5. El-Dib YO, Moatimid GM, and Elgazery NS. Stability analysis of a damped nonlinear wave equation. *J Appl Comput Mechanics* 2020; 6: 1394–1403.
6. Ho C-M and Tai Y-C. Micro-electro-mechanical-systems (MEMS) and fluid flows. *Annu Rev Fluid Mech* 1998; 30: 579–612.
7. Whitesides GM. The origins and the future of microfluidics. *Nature* 2006; 442(7101): 368–373.
8. Saadon S and Sidek O. A review of vibration-based MEMS piezoelectric energy harvesters. *Energ Convers Manag* 2011; 52(1): 500–504.
9. Voskerician G, Shive MS, Shawgo RS, et al. Biocompatibility and biofouling of MEMS drug delivery devices. *Biomaterials* 2003; 24(11): 1959–1967.
10. Nguyen C. MEMS technology for timing and frequency control. *IEEE Trans Utrason Ferroelectrics Frequency Control* 2007; 54(2): 251–270.
11. Cook-Chennault KA, Thambi N, and Sastry AM. Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. *Smart Mater Structures* 2008; 17(4): 043001.
12. Sedighi HM and Daneshmand F. Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He’s iteration perturbation method. *J Mech Sci Tech* 2014; 28: 3459–3469.
13. Lao X, Pan H, and Xing R. Global bifurcation curves of a regularized MEMS model. *Appl Math Lett* 2021; 111: 106688.
14. Rahaeifard M, Kahrobaiyan MH, Asghari M, et al. Static pull-in analysis of microcantilevers based on the modified couple stress theory. *Sensors Actuators A: Phys* 2011; 171(2): 370–374.
15. Baghani M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. *Int J Eng Sci* 2012; 54: 99–105.
16. Rokni H, Seethaler RJ, Milani AS, et al. Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. *Sensors Actuators A: Phys* 2013; 190: 32–43.
17. Sedighi HM. Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. *Acta Astronautica* 2014; 95: 111–123.
18. Askari AR and Tahani M. Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. *Appl Math Model* 2015; 39(2): 934–946.
19. Skrzypacz P, Kadyrov S, Nurakhmetov D, et al. Analysis of dynamic pull-in voltage of a graphene MEMS model. *Nonlinear Anal Real World Appl* 2019; 45: 581–589.
20. Ma Z, Jin X, Guo Y, et al. Pull-In Dynamics of Two MEMS Parallel-Plate Structures for Acceleration Measurement. *IEEE Sensors J* 2021; 21(16): 17686–17694.
21. Nayfeh AH and Mook DT. *Nonlinear Oscillations*. New York, NY: John Wiley, 1995.
22. Osterberg PM and Senturia SD. M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. *J Micromechanical Syst* 1997; 6: 107–118.
23. O’Mahony C, Hill M, Duane R, et al. Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams. *J Micromechanics Microengineering* 2003; 13: 75–80.
24. Hu YC, Chang CM, and Huang SC. Some design considerations on the electrostatically actuated microstructures. *Sensors Actuators A: Phys* 2004; 112: 155–161.
25. Sadeghian H, Reazazadeh G, and Osterberg PM. Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. *J Micromechanical Syst* 2007; 16: 1334–1340.
26. Joglekar MM and Pawaskar DN. Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. *Microsystem Tech* 2011; 17: 35–45.
27. Liu XY, Liu YP, and Wu ZW. Computer simulation of Pantograph delay differential equation. *Therm Sci* 2021; 25(No.2): 1381–1385.
28. Baghani M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. *Int J Eng Sci* 2012; 54: 99–105.
29. Yang YJ. The extended variational iteration method for local fractional differential equation. *Therm Sci* 2021; 25(2): 1509–1516.
30. He CH. An introduction to an ancient Chinese algorithm and its modification, *Int J Numer Methods Heat Fluid Flow* 2016; 26(8): 2486–2491.
31. Khan WA. Numerical simulation of Chun-Hui He’s iteration method with applications in engineering. *Int J Numer Methods Heat Fluid Flow* 2021. DOI: DOI10.1108/HFF-04-2021-0245. ahead-of-print.
32. He J-H. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.
33. Qie N, Hou W-F, and He J-H. The fastest insight into the large amplitude vibration of a string. *Rep Mech Eng* 2020; 2(1): 1–5, DOI: 10.31181/rme200102001q.
34. Liu CX. Periodic solution of fractal phi-4 equation. *Therm Sci* 2021; 25(2): 1345–1350.
35. Elías-Zúñiga A, Palacios-Pineda LM, Jiménez-Cedeño IH, et al. Enhanced He’s frequency-amplitude formulation for nonlinear oscillators. *Results Phys* 2020; 19: 103626.