An overview of treatment options for patients with relapsed/refractory multiple myeloma and renal impairment

Meletios A. Dimopoulos, Joseph Mikhael, Evangelos Terpos, Xavier Leleu, Philippe Moreau, Joan Bladé, Jin Seok Kim, Keith Stockert-Goldstein and Paul G. Richardson

Abstract: Renal impairment (RI) is a relatively common complication of multiple myeloma, which increases in frequency as disease becomes more advanced and recovery of renal function becomes less likely as patients progress through lines of therapy. Clinical trials in the relapsed/refractory multiple myeloma (RRMM) setting have not uniformly included patients with RI or robustly reported their outcomes. Here, we review existing data among patients with RI and RRMM across drug classes (including immunomodulatory agents, proteasome inhibitors, monoclonal antibodies, antibody-drug conjugates, chimeric antigen receptor T-cell therapies, and exportin-1 inhibitor) to provide an improved understanding of available treatment options for this important population. We highlight data from pivotal clinical trials, including data relating to renal response (as defined by the International Myeloma Working Group) and discuss real-world experiences in patients with RI, where applicable. Despite substantial advances in RRMM treatment, the presence of RI remains associated with reduced overall survival. Consistent inclusion of patients with RI, and uniform reporting of their outcomes, should be encouraged in future prospective trials of treatments for RRMM.

Keywords: multiple myeloma, refractory, relapsed, renal impairment, renal response

Introduction

Renal impairment (RI) is present in up to 50% of patients with multiple myeloma (MM) at diagnosis,1–3 and 2%–4% of patients with MM who present with RI require dialysis.4 As patients progress through lines of therapy for MM, existing RI often worsens.5 Of patients without RI at diagnosis, roughly 25% will develop RI during later stages of disease.4 Recovery of renal function is less likely in patients with relapsed/refractory MM (RRMM) compared to those with newly diagnosed MM (NDMM).4

Renal damage in MM is primarily caused by the toxic effects of monoclonal free light chains (FLCs), which lead to a host of renal pathologies including monoclonal cast nephropathy (MCN).1,3,4,6 The International Myeloma Working Group (IMWG) defines RI in MM as serum creatinine greater than 2mg/dL or reduced creatinine clearance (CrCl < 40 mL/min), either (or both) of which is found to be the result of myeloma.1 For evaluation of CrCl, estimated glomerular filtration rate (eGFR) can be assessed via either the Modification of Diet in Renal Disease (MDRD)7 or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)8,9 equation.

Studies have shown that RI is associated with reduced overall survival (OS) and increased risk of early mortality in MM,5,10,11 with some suggesting a correlation between outcomes and degree of estimated glomerular filtration rate (eGFR) decline.4,10 A recent meta-analysis12 of six randomized controlled trials conducted through 2019 found that RI conferred a higher
relative risk of disease progression or death among participants. Improvements in both OS and renal function have been reported with novel treatments for RRMM, particularly when compared to conventional chemotherapy.10 Although improvement in renal function is associated with improved survival, OS remains inferior among patients with baseline RI compared to those with no RI at MM diagnosis.10,11

Several issues confound the evaluation of outcomes in patients with RI and MM: (1) lack of a standardized definition of RI and renal recovery across clinical trials, (2) exclusion of patients with RI from trials or lack of clear reporting of enrollment criteria pertaining to renal dysfunction, (3) the inherent shortfall of measuring renal function in patients with acute kidney injury (AKI) using equations developed for renal function estimation in chronic kidney disease (CKD), and (4) establishing the correct cause of RI since the age group of patients with MM commonly present with vascular and metabolic disorders.3,12

The aim of this review is to provide available efficacy and safety data for RRMM treatments among patients with RI, with a focus on pivotal clinical trials and real-world experience. Recent advances seen with approved novel therapies such as immunomodulatory drugs, proteasome inhibitors (PIs), monoclonal antibodies, small molecule inhibitors and antibody-drug conjugates (ADCs) will be highlighted, as well as emerging data with cellular therapies. Special attention will be given to analyses that detail renal response to therapy, particularly as defined by the IMWG1 (Table 1).

Mechanisms of renal damage in MM

When present in normal amounts, monoclonal FLCs are freely filtered at the glomerulus, endocytosed by proximal tubule cells, and catabolized. In plasma cell dyscrasias such as MM, monoclonal FLCs can reach concentrations that exceed the absorptive and catabolic capacities of the proximal tubule cells.4,6 Monoclonal FLCs that remain in the proximal tubules can activate apoptotic pathways and cause intense inflammation that leads to fibrosis, whereas those that reach the distal nephron can interact with Tamm-Horsfall protein (urothelin) to form aggregates that precipitate and lead to cast formation and nephronal occlusion (Figure 1).4 Roughly 90% of patients with MM who present with AKI have the hallmark pathologic feature of MCN.13 Other monoclonal FLC-mediated pathologies can co-exist with proximal tubule fibrosis and MCN, including light-chain amyloidosis, monoclonal immunoglobulin deposition disease, acquired Fanconi syndrome, and acute tubular necrosis.5,4 Additional factors that contribute to RI include dehydration, hypercalcemia, and the use of nephrotoxic drugs (e.g. non-steroidal anti-inflammatory drugs, contrast media, particular antibiotics, and certain anticancer treatments).4,14 The median age at diagnosis of MM is approximately 70 years;15 as such, normal age-related decline in renal function and the presence of comorbidities that often increase with age (e.g. Type II diabetes, heart failure, and atherosclerotic

Table 1. IMWG criteria for the definition of renal response to antimyeloma therapy.1.

Baseline eGFRa, mL/min/1.73 m²	Best CrCl responseb
Complete response	<50
	≥ 60 mL/min
Partial response	<15
	30-59 mL/min
Minor response	<15
	15-29 mL/min
15-29	30-59 mL/min

CrCl, creatinine clearance; eGFR, estimated glomerular filtration rate; IMWG, International Myeloma Working Group. aEgFR is based on the Modification of Diet in Renal Disease formula or the Chronic Kidney Disease Epidemiology Collaboration equation. bRenal overall response defined as a best response of minor response or better.
vascular disease) could exacerbate RI among patients with MM.

Early advances in the treatment of patients with MM and RI

In the era of conventional chemotherapy for MM, RI was present in roughly twice as many early-death patients compared with those who survived longer than 60 days. A single-institution study of 423 patients with MM treated with conventional chemotherapy showed that baseline RI was associated with a significantly lower response to chemotherapy. Both response to chemotherapy and severity of RI were independent factors associated with survival.

Major improvements in survival of patients with MM and RI resulted from the introduction of novel agents such as early immunomodulatory drugs (thalidomide, lenalidomide), the first PI (bortezomib), and monoclonal antibodies (e.g. isatuximab, daratumumab). A retrospective analysis of over 1700 patients with symptomatic MM (roughly 50% of which had an eGFR < 60 mL/min/1.73 m²) treated between 1990 and 2011 found that upfront use of novel agents (mostly thalidomide and bortezomib) was independently associated with a reduced risk of early death (hazard ratio (HR) 0.446; 95% confidence interval (CI): 0.24–0.83; \(p = 0.009 \)).

Another retrospective analysis of 1538 patients with MM treated between 2000 and 2011, including 680 with RI at diagnosis, found that the use of novel agents (i.e. thalidomide, lenalidomide, and bortezomib) as first-line therapy significantly improved median OS compared with conventional chemotherapy (60 versus 21 months, respectively; log-rank \(p < 0.001 \)).

Novel RRMM treatments for patients with RI

Although the aforementioned investigations were conducted in the setting of front-line therapy for
NDMM, the profound impact of novel agents on patients with RI extends to the RRMM setting. Adjunctive treatment with high cut-off hemodialysis (HCO-HD), which utilizes membranes with larger pore size than conventional HD membranes and facilitates the removal of monoclonal FLCs, has been suggested as a means to induce renal recovery and independence from dialysis in patients with RI and MM. Independent phase II and phase III randomized controlled trials confirmed greater reduction of monoclonal FLCs with HCO-HD compared with standard high-flux HD, though neither showed a significant difference in the primary outcome of HD independence at 90 days. A recent meta-analysis, which included data from these two randomized trials as well as from three observational studies, noted heterogeneity between study populations but found no difference in survival or renal benefits with HCO-HD versus conventional HD, though a trend toward higher dialysis independence was seen in the HCO-HD group. Hemodiafiltration with ultrafiltrate regeneration offers an alternative approach to removing monoclonal FLCs and has been associated with less albumin loss than HCO-HD. A small observational study suggested that hemodiafiltration with ultrafiltrate regeneration may result in sustained FLC reduction with potential for renal recovery in patients with RI and MM. Large-scale, randomized studies will be needed to better characterize the adjunctive impact of HCO-HD and hemodiafiltration with ultrafiltrate regeneration on clinical outcomes in patients with RI and MM.

The remainder of this section will review existing and emerging evidence for the efficacy and safety of novel systemic agents in patients with RRMM and RI, with a focus on subgroup analyses from pivotal phase III randomized clinical trials (Table 2). Renal response data, particularly those in conformity with IMWG criteria for renal response, are summarized in Table 3. Real-world experience in patients with RRMM and RI will be discussed throughout.

Immunomodulatory drug-based regimens

Thalidomide and later-generation immunomodulatory drugs (i.e. lenalidomide and pomalidomide) have anti-angiogenic, immunomodulatory, and direct cytotoxic effects on myeloma cells. Lenalidomide is largely excreted unchanged in the urine and requires dose adjustment for different levels of renal function. The approval of lenalidomide + dexamethasone (Rd) for patients with RRMM was based on two pivotal phase III trials, MM-009 and MM-010. A retrospective analysis of the 353 patients randomized to Rd during these two trials was conducted to investigate the efficacy and safety of the combination in patients with RRMM and various degrees of RI. Of the 353 patients, 82 (24%) had moderate RI (CrCl ≥ 30 to < 60 mL/min) and 16 (5%) had severe RI (CrCl < 30 mL/min). After a median follow-up of 31.3 months, OS for patients with moderate or severe RI was significantly shorter than for patients with mild or no RI (29.0 and 18.4 months, respectively, compared with 38.9 months; p = 0.006 for both comparisons). The majority (72%) of patients with moderate-to-severe RI experienced at least one level of improvement in CrCl (i.e. from severe to moderate or from moderate to mild or no RI). Higher levels of RI were associated with greater risk of grade 3 or 4 adverse events (AEs) including thrombocytopenia, neutropenia, anemia, and pneumonia.

Phase II trials and several small real-world studies of patients with RRMM and RI have reported similar efficacy and safety data for Rd. One real-world study examined the efficacy of Rd in patients with RI and its impact on RI reversal (according to IMWG criteria, Table 1). Twelve of 50 patients studied had RI (defined as CrCl < 50 mL/min). Partial response (PR) or better was documented in 58% of patients with RI (similar to the 60% ≥ PR rate in patients without RI); median progression-free survival (PFS) and median OS were also similar between patients with and without RI (9 versus 8 months and 14 versus 16 months, respectively). Five of the 12 patients (42%) with RI achieved a renal response to Rd (three achieved a complete renal response (CRR) and two achieved a minor renal response).

Unlike lenalidomide, pomalidomide is extensively metabolized by the liver, with limited renal clearance of active drug. Pomalidomide + low-dose dexamethasone (Pd) was approved for RRMM based on results from the pivotal, phase III MM-003 trial, which compared the combination to high-dose dexamethasone alone. A post hoc analysis of 447 patients from MM-003 examined the impact of baseline renal function (CrCl ≥ 30 to < 60 mL/min versus CrCl ≥ 60 mL/min) on efficacy and safety. Median PFS was similar between study arms regardless of baseline renal function.
Table 2. Subgroup analyses of patients with RRMM and RI from select pivotal phase III trials (darker shading: data for subgroup analysis; no shading: data for the overall population).

Trial	Treatment (number of patients in RI subgroup)	Cut-off for RI	Median PFS	ORR, %	MRD– rate (10⁻⁵ sensitivity), %	Safety
MM-003	Pd* (n = 93)	CrCl > 30 to < 60 mL/min	5 (2–12)	4.0	0.48 (0.33; 0.70)	NA
	d+ (n = 56)		5 (2–17)	1.9	0.49 (0.33; 0.70)	NA
OPTIMIS MM	PdV (n = 35)	CrCl > 30 to < 60 mL/min	2 (1–2)	15.1	0.67 (0.34; 1.34)	NA
Vd (n = 28)			2 (1–2)	9.5	NA	NA
ASPIRE	KRd (n = 79)	CrCl > 30 to < 60 mL/min	2 (1–3)	26.3	0.69 (0.57; 0.83)	NA
Rd (n = 82)			2 (1–3)	17.6	NA	NA
ENDEAVOR	Kd (n = 85)	CrCl > 15 to < 50 mL/min	[1–3]	14.9	0.49 (0.32; 0.76)	NA
Vd (n = 99)				23.7	0.49 (0.32; 0.76)	NA
POLLUX	Dara-Rd (n = 80)	CrCl > 30 to < 60 mL/min	1 (1–11)	33.6	0.41 (0.26; 0.65)	NR
Rd (n = 65)			1 (1–8)	11.3	NR	NR
APOLLO	Dara-Pd (n = 40)	CrCl > 30 to ≤ 60 mL/min	2 (1–5)	12.1	0.59 (0.35; 0.99)	NA
Pd (n = 47)			2 (1–5)	6.1	NA	NA
CASTOR	Dara-Vd (n = 57)	CrCl > 20 to ≤ 60 mL/min	2 (1–9)	NR	0.55 (0.30; 1.02)	NA
Vd (n = 70)			2 (1–10)	6.5	NA	NA
CANDOR	Dara-Kd (n = 38)	CrCl > 15 to < 50 mL/min	2 (1–2)	NA	0.44 (0.19; 1.00)	NE
Kd (n = 27)			2 (1–2)	NA	0.44 (0.19; 1.00)	NE
ICARIA-MM	Isa-Pd (n = 55)	eGFR ≥ 30 to < 60 mL/min/1.73 m²	3 (2–11)	9.5	0.50 (0.30; 0.85)	NR
Pd (n = 49)			3 (2–10)	3.7	0.50 (0.30; 0.85)	NR
IKEMA	Isa-Kd (n = 43)	eGFR ≥ 15 to < 60 mL/min/1.73 m²	2 (1–4)	NR	0.27 (0.11; 0.66)	NA
Kd (n = 18)			2 (1–4)	13.4	NA	NA

AE, adverse event; CI, confidence interval; CrCl, creatinine clearance; d, dexamethasone; Dara, daratumumab; HR, hazard ratio; Isa, isatuximab; K, carfilzomib; MRD–, minimal residual disease-negative; NA, not available; NE, not estimable; NR, not reached; ORR, overall response rate; OS, overall survival; P, pomalidomide; PFS, progression-free survival; R, lenalidomide; RI, renal impairment.

*MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone monotherapy.

bData from extended follow-up analysis of POLLUX; similar to data from the first interim analysis (median PFS NR versus 11.4 months; HR 0.36; 95% CI: 0.22–0.60).
function, and OS benefit versus high-dose dexamethasone was sustained in patients with baseline CrCl ≥ 30 to < 60 mL/min (Table 2). Renal response, based on IMWG criteria, was similar between groups (Table 3). Rates of grade 3/4 AEs were similar across renal function subgroups.

Similar results were seen in a pooled analysis\(^{54}\) of patients with RRMM and moderate RI (CrCl ≥ 30 mL/min to < 60 mL/min) from MM-003 and two other trials of Pd (MM-002 (phase I/II) and MM-010 (phase III)). In this analysis, median OS was shorter for patients with moderate RI versus those without RI (10.5 versus 14.0 months; \(p = 0.004\)). Though not designed to be comparative in nature, the phase II MM-013 trial\(^{55}\) is unique in that it prospectively investigated Pd in 81 patients with RRMM and moderate RI (eGFR ≥ 30 to < 45 mL/min/1.73 m\(^2\)), severe RI (eGFR < 30 mL/min/1.73 m\(^2\)), or severe RI requiring hemodialysis. Median OS was 16.4 months, 11.8 months, and 5.2 months in the three groups, respectively, and renal response (as defined by IMWG)\(^{1}\) was achieved by 18.2%, 35.3%, and 7.1% of patients. A small real-world study\(^{56}\) examined efficacy and safety of Pd in 70 patients, of which 12 (17.1%) had an eGFR < 45 mL/min/1.73 m\(^2\). Median PFS and OS for the eGFR < 45 versus ≥ 45 mL/min/1.73 m\(^2\) groups were 3.7 versus 5.2 months and 7.4 versus 14.1 months, respectively; neither difference reached statistical significance and AE rates were similar between the groups.

Table 3. Renal response data from subgroup analyses of patients with RI in pivotal phase III clinical trials.

Trial	Definition of RI	n\(^{a}\)	Treatment arms experimental vs comparator	Complete renal response (%; reversal of renal impairment)\(^{b}\)	Median time to complete renal response (weeks)	
MM-003\(^{40}\)	CrCl < 60 mL/min (RI) vs CrCl ≥ 60 mL/min (normal renal function)	298	Pd vs d\(^{c}\)	32 vs 43	NA	NA
OPTIMISMM\(^{42}\)	CrCl < 60 mL/min (RI) vs CrCl ≥ 60 mL/min (normal renal function)	163	PVd vs Vd	NA	1.1 vs 4.9\(^{d}\)	3.1 vs 3.6\(^{d}\)
ENDEAVOR\(^{45}\)	CrCl < 50 mL/min\(^{e}\)	NA\(^{e}\)	Kd vs Vd	15.3 vs 14.1	–	8.1 vs 6.4
ICARIA-MM\(^{52}\)	eGFR < 60 mL/min/1.73 m\(^2\) (RI) vs eGFR ≥ 60 mL/min/1.73 m\(^2\) (normal renal function)	183	Isa-Pd vs Pd	71.9 vs 38.1	–	3.4 vs 7.3
IKEMA\(^{53}\)	eGFR < 60 mL/min/1.73 m\(^2\) (RI) vs eGFR ≥ 60 mL/min/1.73 m\(^2\) (normal renal function)	215	Isa-Kd vs Kd	52.0 vs 30.8	–	7.8 vs NC

CrCl, creatinine clearance; d, dexamethasone; eGFR, estimated glomerular filtration rate; IMWG, International Myeloma Working Group; Isa, isatuximab; K, carfilzomib; NA, not available; NC, not calculable; P, pomalidomide; RI, renal impairment; V, bortezomib.

\(^{a}\)Number of patients with known CrCl levels.

\(^{b}\)Complete renal response defined as improvement in eGFR from < 50 mL/min/1.73 m\(^2\) at baseline to ≥ 60 mL/min/1.73 m\(^2\) (no renal impairment) in at least one post-baseline assessment, per IMWG recommendations.

\(^{c}\)MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone monotherapy.

\(^{d}\)Time to first improvement in renal function.

\(^{e}\)Patients were divided into renal subgroups by CrCl ≥ 15 to < 50, ≥ 50 to < 80, and ≥ 80 mL/min, but a formal definition of RI was not made; 184 patients had CrCl ≥ 15 to < 50 mL/min.
In total, available data show that patients with RI and RRMM achieve survival benefit from the addition of lenalidomide or pomalidomide to dexamethasone, though generally to a lesser extent than patients without RI. Prospective, late-phase renal response data for the immunomodulatory drugs are limited, but retrospective and real-world data for Rd and phase II data for Pd show that improvement in renal function is possible when these agents are added to dexamethasone.

Proteasome inhibitor-based regimens

Proteasome inhibitors (i.e. bortezomib, carfilzomib, and ixazomib) exert their effects on myeloma cells through a variety of mechanisms including activation of apoptotic pathways, inhibition of angiogenesis, and alteration of cell adhesion. Regimens containing bortezomib, the first-in-class proteasome inhibitor, have long been considered the standard of care for patients with MM and RI, owing largely to its nonrenal metabolism and the breadth of evidence supporting its efficacy in this patient population. Following its initial FDA approval for MM in 2003, multiple studies have demonstrated the ability of bortezomib-based regimens to induce rapid and significant response, with potential RI reversal, in patients with RRMM. The randomized phase III ENDEAVOR trial compared carfilzomib + dexamethasone (Kd) with bortezomib + dexamethasone (Vd) for patients with RRMM, revealing improvement in the primary outcome of PFS with Kd. A post hoc exploratory subgroup analysis evaluated the efficacy and safety of both treatment regimens in patients with various degrees of RI at baseline (grouped by CrCl > 15 to < 50 (n = 184), CrCl > 50 to < 80 (n = 363), and CrCl > 80 mL/min (n = 382)). Improvements in PFS, OS, and ORR were observed in the Kd arm across renal subgroups; results for patients with CrCl < 50 mL/min are highlighted in Table 2. In patients with CrCl > 15 to < 50 mL/min, roughly 15% achieved CRR and time to complete renal response was similar across treatment arms (Table 3).

A large real-world study utilized electronic medical record data from US oncology clinics to compare renal response rates (as defined by IMWG; Table 1) among patients with RRMM and RI (defined as baseline eGFR < 50 mL/min/1.73 m²) who were treated with Kd (n = 543) or Vd (n = 1005) in the second through fourth line of treatment. For patients receiving second-line treatment, those who received Kd versus Vd demonstrated significantly better renal overall response rates (51.4% versus 39.6%; log-rank p < 0.0001) and renal complete response rates (26.6% versus 22.2%; log-rank p = 0.0229). Consistent results were observed among patients in the third- and fourth-line settings and among patients in the second-line setting with eGFR < 15 mL/min/1.73 m². A combined analysis of patients from both treatment groups (and across second through fourth lines of treatment) found that patients who achieved renal response had longer OS and time to next treatment (TTNT) than renal nonresponders.

The phase III ASPIRE trial led to the approval of carfilzomib (with lenalidomide + dexamethasone; KRd) in patients with RRMM. At a median follow-up of 67.1 months, the final analysis of ASPIRE reported OS for the prespecified subgroups of patients with CrCl ≥ 30 to < 60 mL/min (n = 161) and ≥ 60 mL/min (n = 624). OS HRs favored KRd for both subgroups and were similar to results for the overall study population (Table 2).

A prespecified subgroup analysis of the phase III A.R.R.O.W. study (once- versus twice-weekly carfilzomib) revealed improvement in the primary outcome of PFS with Kd. A post hoc exploratory subgroup analysis evaluated the efficacy and safety of both treatment regimens in patients with various degrees of RI at baseline (grouped by CrCl ≥ 15 to < 50 (n = 184), CrCl ≥ 50 to < 80 (n = 363), and CrCl ≥ 80 mL/min (n = 382)). Improvements in PFS, OS, and ORR were observed in the Kd arm across renal subgroups; results for patients with CrCl < 50 mL/min are highlighted in Table 2. In patients with CrCl ≥ 15 to < 50 mL/min, roughly 15% achieved CRR and time to complete renal response was similar across treatment arms (Table 3).
Ixazomib, an oral proteasome inhibitor approved for use in RRMM, was approved in combination with Rd based on results of the phase III TOURMALINE-MM1 trial. Patients with mild-to-moderate RI (CrCl ≥ 30 to 60 mL/min) comprised 25% of the 722 patients in the trial. Though no prespecified or post hoc subgroup analyses have been performed for patients with RI, the relatively large contribution of these patients to overall trial results suggests that ixazomib benefits can safely extended to patients with CrCl ≥ 30 mL/min.

Overall, substantial evidence for the benefit of bortezomib and carfilzomib exists for patients with RI and RRMM, though analyses of renal subgroups within phase III trials were largely post hoc in nature. The phase III ENDEAVOR trial revealed superior efficacy with Kd versus Vd in patients with RI and RRMM, with similar renal response rates and time to renal response between arms. A large real-world study showed improved overall and complete renal response rates with Kd versus Vd, and renal response was associated with improved OS. Phase III data specific to patients with RI has not been reported for ixazomib.

Real-world benefit of combining immunomodulatory drugs and proteasome inhibitors. Building on experiences from the OPTIMISMM trial, researchers utilized the Flatiron Health database to assess outcomes and renal response by first- and second-line drug class (i.e. PIs, immunomodulatory drugs, and monoclonal antibodies) among patients with MM and RI (defined as eGFR < 50 mL/min/1.73 m²). Though patients who received monoclonal antibodies were included in the analysis, low treatment rates with these therapeutics during the study period (2011–2019) precluded robust analyses of outcomes with this drug class. After adjustment for multiple factors, patients with RI at the start of second-line treatment had worse OS compared with non-RI patients (median 2.67 years, respectively; adjusted HR 1.49; 95% CI: 1.33–1.68). Among 920 patients with RI at the start of second-line therapy who received at least one eGFR measurement during treatment, 19% achieved a CRR. Patients who received a PI + immunomodulatory drug combination were significantly more likely to have a CRR than those without use of either treatment class (adjusted OR: 3.89; 95% CI: 1.71–8.86), and those who achieved a CRR with the combination had significantly improved OS compared to those not receiving either treatment who did not achieve CRR (adjusted HR: 0.53; 95% CI: 0.32–0.88). Results from this study confirmed the association of RI with inferior OS in patients with RRMM and highlighted both the benefit of combining PIs with immunomodulatory drugs in early lines of therapy and the significance of achieving CRR.

Monoclonal antibody-based regimens

Monoclonal antibodies (i.e. daratumumab, isatuximab, and elotuzumab) exert their antitumor activity via immune-mediated mechanisms that selectively target myeloma cells with minimal impact on normal tissue. Daratumumab is a CD38 monoclonal antibody approved as monotherapy and in multiple combinations for the treatment of patients with relapsed/refractory disease. A pooled analysis of the two noncomparative studies (phase I/II GEN501 and phase II SIRIUS) that led to the approval of daratumumab monotherapy in patients with RRMM revealed that 37% of patients had a baseline CrCl of ≥ 30 to < 60 mL/min. The ORR (27.8%) in that subgroup was consistent with that observed in the overall combined population (31.1%).

In the pivotal phase III POLLUX trial, which compared daratumumab + lenalidomide + dexamethasone (Dara-Rd) to Rd in patients with RRMM, the primary end point of PFS was significantly lengthened with the addition of daratumumab. Patients with CrCl ≥ 30 mL/min were allowed to enroll in POLLUX, and a post hoc subgroup analysis at the time of the first interim analysis found that the PFS benefit seen in the overall study population was maintained in patients with moderately impaired renal function (defined as CrCl ≥ 30 to < 60 mL/min). The PFS benefit was maintained after an extended follow-up period and the ORR was also higher in patients with RI who received daratumumab (Table 2). The phase Ib trial of daratumumab + pomalidomide + dexamethasone (Dara-Pd) versus Pd (EQUULEUS, n = 103) included 31 patients with a baseline CrCl of < 60 mL/min (those with CrCl of ≥ 45 mL/min were eligible for enrollment). The ORR in this prespecified subgroup of patients was 58.1%, similar to that for the overall study population (60.2%). The phase III trial of Dara-Pd versus Pd (APOLLO, N = 304) allowed patients with CrCl ≥ 30 mL/min to enroll. Patients in the...
prespecified subgroup of CrCl ≤ 60 mL/min comprised 26% (40 of 151) and 31% (47 of 153) of patients in the Dara-Pd and Pd groups, respectively. Median PFS benefit in these patients (Table 2) was similar to that for the overall study population.

The pivotal phase III CASTOR trial provided the basis for the approval of daratumumab + bortezomib + dexamethasone (Dara-Vd) for the treatment of RRMM. CASTOR, which compared Dara-Vd to Vd alone, allowed patients with CrCl >20 mL/min at screening to enroll. Patients in the prespecified subgroup of CrCl ≤ 60 mL/min comprised 23% (57 of 243) and 30% (70 of 233) of patients with evaluable CrCl at baseline in the Dara-Vd and Vd groups, respectively. Median PFS benefit in these patients (Table 2) was similar to that for the overall study population.

CANDOR, the phase III trial of daratumumab + carfilzomib + dexamethasone (Dara-Kd) versus Kd, allowed enrollment of patients with CrCl >20 mL/min at screening. A prespecified subgroup analysis of PFS by level of baseline renal function (≥ 15 to <50, ≥ 50 to <80, and ≥ 80 mL/min) was performed. Patients with CrCl ≥ 15 to <50 mL/min comprised 12% of patients (38 of 311) in the Dara-Kd group and 18% of patients (27 of 154) in the Kd group with evaluable CrCl at baseline. The PFS benefit seen with Dara-Kd in the overall population was extended to patients with CrCl ≥ 15 to <50 mL/min (Table 2).

Real-world experience of daratumumab in patients with RI is also available. Case reports and a small case series of dialysis-dependent patients with RRMM who received daratumumab-based therapy have consistently reported benefit, in some instances with reduction of dialysis frequency or full dialysis independence.

Table 4. Phase II studies in patients with RRMM and RI.

Trial	Treatment (number of patients with RI)	Median (range)	eGFR <30 mL/min/1.73 m²	Median PFS, months	Median OS, months	ORR,	Renal response rate,
MM-01355 Pda	(n=34)	4 (1–10)	9.8 (1.7–3.7)	4.2 (2.7–6.5)	11.8 (6.8–13.4)	32.4	17.1
DARE	(N=35)	3 (3–6)	6 (1–9)	13 (7–21)	3.7 (1.0–NR)	33	17
DREAMM-2	(n=24)	6 (3–21)	4 (1–6)	6 (6–21)	3.4 (0.8–6.4)	27	25

AE, adverse event; Belamaf, belantamab mafodotin; CI, confidence interval; CrCl, creatinine clearance; D, dexamethasone; Dara, daratumumab; eGFR, estimated glomerular filtration rate; NA, not available; NR, not reached; P, pomalidomide; PFS, progression-free survival; RI, renal impairment.
A retrospective, single-center study \(^8^0\) analyzed 91 patients with RRMM who received daratumumab as monotherapy or in combination with novel agents. Patients were grouped by renal function (eGFR \(< 30\) \((n = 11)\), \(\geq 30\) to 60 \((n = 27)\), and \(\geq 60\) mL/min/1.73 m\(^2\) \((n = 53)\)). Median PFS was similar across groups (17.5, 22.4, and 17.3 months, respectively), and 11 patients in the eGFR \(\geq 30\) to \(< 60\) mL/min/1.73 m\(^2\) group achieved a renal response (defined as eGFR \(> 60\) mL/min/1.73 m\(^2\) in two consecutive visits for patients with baseline RI).

Isatuximab is a monoclonal antibody that binds to a specific epitope of the CD38 receptor and possesses the unique ability to induce direct apoptosis of myeloma cells. \(^8^1\) The first approval of isatuximab resulted from the pivotal phase III ICARIA-MM trial, \(^8^2\) which compared isatuximab + pomalidomide + dexamethasone (Isa-Pd) to Pd in patients \((N = 307)\) with RRMM. ICARIA-MM enrolled patients with eGFR \(\geq 30\) mL/min/1.73 m\(^2\), \(^8^2\) and efficacy and safety outcomes were examined in a prespecified subgroup analysis \(^5^2\) of patients with RI (defined as eGFR \(< 60\) mL/min/1.73 m\(^2\)). Of 287 patients with evaluable eGFR at start of therapy, 55 (38.7%) in the Isa-Pd group and 49 (33.8%) in the Pd group had RI; each arm included one patient with eGFR \(< 30\) mL/min/1.73 m\(^2\). The PFS benefit of Isa-Pd versus Pd was consistent with that seen for the full study population, and ORR and minimal residual disease (MRD) negativity rates were higher with the addition of isatuximab in patients with RI (Table 2). Unique among phase III trials of anti-CD38 monoclonal antibodies, the ICARIA-MM RI subgroup analysis also evaluated renal response rates and AE rates to therapy among patients with RI at baseline. Complete renal response rates were 71.9% with Isa-Pd and 38.1% with Pd, respectively. Median time to renal response also improved in the Isa-Pd arm (Table 3). Among patients with RI, grade \(\geq 3\) and treatment-emergent adverse events (TEAEs) were more common in the Isa-Pd group. However, when adjusted for increased treatment exposure in the Isa-Pd arm, the event rate of serious TEAEs per patient year for patients with RI was similar across groups. \(^5^2\)

Isatuximab is also approved in combination with carfilzomib + dexamethasone for the treatment of patients with RRMM, based on results from the pivotal phase III IKEMA trial \((N = 302)\). \(^8^3\)

IKEMA allowed enrollment of patients with eGFR as low as 15 mL/min/1.73 m\(^2\), \(^8^3\) and a prespecified subgroup analysis \(^5^3\) examined efficacy, renal response, and safety in patients with RI (defined as eGFR \(< 60\) mL/min/1.73 m\(^2\)) at the time of the interim analysis. Patients with RI \((n = 43)\) in the isatuximab + carfilzomib + dexamethasone (Isa-Kd) group and \(n = 18\) in the Kd group comprised 26.1% and 16.2% of patients in their respective study arms with evaluable eGFR at baseline. Roughly 2.5% of patients in each study arm had an eGFR of \(\geq 15\) to \(< 30\) mL/min/1.73 m\(^2\). For patients with RI, PFS benefit with the addition of isatuximab was consistent with that seen for the overall study population; overall response and MRD negativity rates among patients with RI were higher in the Isa-Kd arm (Table 2). Complete renal response rates improved with Isa-Kd (52.0%) versus Kd (30.8%), as did time to first renal response (Table 3). Patients with eGFR \(< 30\) mL/min/1.73 m\(^2\) at baseline were more likely to achieve minor renal response with the addition of isatuximab. Isa-Kd was associated with a manageable safety profile in patients with and without RI. Notably, the presence of RI was not associated with higher rates of grade 3 or higher cardiac failure, which is a known toxicity of carfilzomib. \(^5^3\)

Real-world experience of isatuximab in patients with RI is also available. A case report \(^8^4\) of a dialysis-dependent patient with RRMM who received therapy with Isa-Pd was recently published. Following seven prior lines of therapy, the patient’s free light chain \(\lambda\) level dropped from 2,070 mg/L to 412 mg/L 12 days after starting Isa-Pd. The patient experienced no infusion reactions or clinically meaningful drops in white blood cell count during treatment with Isa-Pd, and his disease remained well controlled after seven cycles of treatment.

Elotuzumab is a humanized monoclonal antibody targeted against signaling lymphocyte activation molecule-7 (SLAMF7). Two phase III randomized trials, ELOQUENT-2 \(^8^5\) and ELOQUENT-3, \(^8^6\) led to the approval of elotuzumab with Rd and Pd, respectively. Enrollment was allowed for patients with \(\text{CrCl} \geq 30\) mL/min (ELOQUENT-2) and \(\geq 45\) mL/min (ELOQUENT-3), but neither trial reported on safety or efficacy outcomes stratified by renal function. A small phase Ib study \(^7^0\) found elotuzumab to be both tolerable and effective for treatment of patients with MM and RI, including
those with end-stage renal disease. Enrollment was allowed for patients with three levels of renal function: normal (CrCl ≥ 90 mL/min (n = 8)), severely impaired (CrCl < 30 mL/min, not requiring dialysis (n = 9)), and end-stage (requiring dialysis (n = 9)). Overall responses occurred in 75%, 67%, and 56% of patients in the three renal function groups, respectively, and two patients in the severe RI group (including one with RRMM) achieved a minor renal response (as defined by the IMWG; Table 1). No difference in grade 3/4 AEs was observed between renal function groups. The efficacy and safety observed in patients with RI during this small phase Ib trial has not been confirmed in late-phase clinical trials.

In total, the dramatic efficacy benefits seen in phase III trials of daratumumab and isatuximab in RRM extend to subgroups of patients with RI. Phase II data and numerous real-world experiences have indicated that improvement of renal function is possible with daratumumab; however, phase III trials of daratumumab-based regimens have not reported on renal response rates. Phase III trials of isatuximab-based regimens have provided robust analyses of efficacy, safety, and renal response data for patients with RI. Late-phase data for elotuzumab have not been reported separately for the population of patients with RI.

Antibody-drug conjugates
Belantamab mafodotin is a first-in-class ADC that delivers a microtubule-disrupting agent, monomethyl auristatin F, to B-cell maturation antigen (BCMA)-expressing myeloma cells. Belantamab mafodotin received FDA approval in patients with RRMM based on the phase II DREAMM-2 study. Patients with eGFR ≥ 30 mL/min/1.73 m² at screening were allowed to enroll in DREAMM-2. A post hoc analysis was conducted to explore efficacy and outcomes across patients with varying levels of renal function at enrollment: normal (eGFR ≥ 90 mL/min/1.73 m²), mildly impaired (≥60 to < 90 mL/min/1.73 m²), and moderately impaired (≥30 to < 60 mL/min/1.73 m²). Patients with moderate RI comprised roughly 25% of patients in each dosing cohort. Overall response rates were similar across renal function groups and consistent with results for the overall DREAMM-2 study population. Median PFS was similar among patients with and without any degree of RI, as were rates of keratopathy and grade 3/4 AEs. Results for the moderate RI group are detailed in Table 4.

CAR T-cell therapies
Based on results from the phase II KarMMA trial, idecabtagene vicelucel became the first FDA-approved, BCMA-directed chimeric antigen receptor (CAR) T-cell therapy. Though patients with inadequate renal function (defined as CrCl ≤ 45 mL/min) were excluded from the KarMMA trial, two small studies offer some insight into outcomes and safety of CAR T-cell therapies among patients with RI. A post hoc analysis of combined data from two phase I trials of different anti-BCMA CAR T-cell therapies stratified patients (combined n = 59) according to impaired renal function (IRF; defined as eGFR < 90 mL/min/1.73 m²) and normal renal function (NRF, eGFR ≥ 90 mL/min/1.73 m²). Patients with eGFR < 30 mL/min/1.73 m² were excluded from the analysis. Patients with IRF and NRF had median PFS of 181 days versus 266 days and median OS of 238 days versus 877 days (log-rank p < 0.05 for each comparison), and eGFR significantly improved in the IRF group over the first 6 months of therapy. A small study of 7 patients with RRMM and RI (median stage 4 CKD; patients requiring dialysis excluded) explored outcomes with CAR T-cell therapies directed at either BCMA alone or the combination of BCMA and CD19. All patients achieved response to treatment, with 4 (57%) achieving stringent complete response. All patients also achieved renal response, with 5 (71%) achieving renal complete response. The median time to first renal response was 9 days and median time to best renal response was 32 days.

Selinexor
Selinexor is a first-in-class, oral selective inhibitor of exportin-1 (XP01), a protein involved in the exportation of tumor suppressor proteins from the nucleus. Based on the phase IIb STORM trial, selinexor (in combination with low-dose dexamethasone) is FDA-approved for the treatment of adult patients with RRMM who have received at least four prior therapies (including PIs, immunomodulatory drugs, and an anti-CD38 monoclonal antibody). STORM enrolled 122 patients with CrCl ≥ 20 mL/min; CrCl was < 60 mL/min in 39 patients (32%) and < 40 mL/min in 14 patients.
Per the FDA’s 2020 Guidance Document,98 therapy for the treatment of RRMM dose modifications for RI among novel agents for patients with renal impairment.

Dose modifications for RI among novel agents for the treatment of RRMM

Per the FDA’s 2020 Guidance Document,98 therapeutic proteins require a dedicated renal impairment study, with exception of proteins with a molecular weight greater than 69 kDa. In the case of treatments for RRMM, this exclusion applies to monoclonal antibodies, ADCs, and CAR T-cell therapies. Of the novel small molecules currently used for the treatment of RRMM, ixazomib and lenalidomide require dose adjustment for RI. Though renal clearance of ixazomib is minimal,99 a reduced starting dose (3 mg versus 4 mg) is recommended for patients with CrCl < 30 mL/min.100

Chen et al.28 reported that lenalidomide is predominantly excreted unchanged via the kidneys and recommended dose adjustments based on renal function. According to prescribing information29 for lenalidomide, on days 1–21 of 28-day cycles, a daily dose of 25 mg is recommended for patients with normal renal function (CrCl > 60 mL/min). In patients with IRF, 10 mg daily is recommended for patients with CrCl ≥ 30 to < 60 mL/min, 15 mg every-other-day for patients with CrCl < 30 mL/min not requiring dialysis, and 5 mg daily for patients with CrCl < 30 mL/min requiring dialysis (dose should be administered after dialysis). To better understand appropriate dosing of lenalidomide, and to prevent under- or over-dosing among patients with RI, the phase I/II PrECOG study101 analyzed the maximum tolerated dose of lenalidomide in patients with relapsed MM and RI, as well as the efficacy and safety of lenalidomide + dexamethasone in these patients. Based on the absence of dose-limiting toxicities during phase I, and on the lack of difference in AEs and response rates between daily and less frequent dosing in phase II, the authors concluded that lenalidomide can be given at full dose (25 mg daily) in patients with a CrCl ≥ 30 mL/min or at doses of at least 15 mg daily to those with CrCl < 30 mL/min, even when on dialysis, without the need to decrease the dose frequency.

Conclusion

Renal impairment is a frequent complication of MM that negatively impacts survival. Historically, many trials have either excluded patients with RI or failed to report outcomes in this important subset of patients. Phase III trials reporting efficacy and safety data in patients with RRMM and RI are summarized in Table 2. Though a key therapeutic goal in patients with MM and RI, improvement in renal function has not been uniformly evaluated in late-phase clinical trials of novel therapies for RRMM (Table 3). Furthermore, the majority of these studies are not powered to detect differences between the treatment arms for patients with RI. Real-world experiences supporting safety and efficacy, including renal response and reversal of dialysis, have surfaced for various novel RRMM regimens, adding to the evidence base for selected treatments.

Treatment options for patients with RRMM are rapidly expanding and improving outcomes, yet the ideal treatment for patients with RI remains unknown. Optimizing treatment of the underlying myeloma is critical in patients with RI, and better MM therapies will be required to correct the prognostic imbalance between patients with RI and the general RRMM population. Despite growing awareness of the negative impact of RI on survival in patients with MM, the consistency with which randomized controlled trials reported enrollment criteria related to renal dysfunction, prevalence of RI in enrolled patients, and outcomes among patients with RI did not significantly improve between 2005 and 2019.12 Available data for patients with RI and RRMM stem largely from subgroup analyses of phase III studies, comparisons among which are inherently
limited by differences in eligibility criteria between trials (e.g. different CrCl cutoffs and exclusion of patients with severe RI in some trials). These data support the combination of monoclonal antibodies in combination with PIs or immunomodulatory drugs to be efficacious and safe in patients with RI and RRMM. Reliable and consistent reporting of efficacy and safety data for subgroups of patients with RI, including data on renal response and preferentially as part of prespecified analyses, should be encouraged in future trials. In addition, trials designed to prospectively evaluate outcomes in large populations of patients with RI (including those on dialysis) are essential to provide optimal myeloma therapy to this population. Real-world data collected from robust databases may supplement information provided from clinical trials and further support the translation of study findings to real-world practice.102

Acknowledgements

Medical writing support was provided by Camile Semighini Grubor, PhD, and Lindsay Gasch, PharmD, of Elevate Medical Affairs, contracted by Sanofi Genzyme for publication support services. Authors were not reimbursed for authorship and had full control over content.

Author contributions

Meletios A. Dimopoulos: Writing- Reviewing and Editing.

Joseph Mikhael: Writing- Reviewing and Editing.

Evangelos Terpos: Writing- Reviewing and Editing.

Xavier Leleu: Writing- Reviewing and Editing.

Philippe Moreau: Writing- Reviewing and Editing.

Joan Bladé: Writing- Reviewing and Editing.

Jin Seok Kim: Writing- Reviewing and Editing.

Keith Storckel-Goldstein: Writing- Reviewing and Editing.

Paul G. Richardson: Writing- Reviewing and Editing.

Conflict of interest statement

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: MAD reports honoraria from participation in Advisory Boards from Amgen, Beigene, Bristol Myers Squibb, Janssen, and Takeda. JM reports consulting fees from Amgen, Bristol Myers Squibb, Glaxo Smith Kline, Janssen, Sanofi, and Takeda; and honoraria from Amgen, Bristol Myers Squibb, Celgene, Celgene, Glaxo Smith Kline, Janssen, Karyopharm, and Sanofi and a leadership or fiduciary role in other board, society, committee, or advocacy group, paid or unpaid for the American Society of Hematology. ET reports research funding from Amgen, Celgene, Genesis, Glaxo Smith Kline, Janssen, Sanofi, and Takeda; and honoraria from Amgen, Bristol Myers Squibb, Celgene, Genesis, Glaxo Smith Kline, Janssen, Novartis, Sanofi, and Takeda. PM reports honoraria for Abbvie, Amgen, Celgene, Janssen, Sanofi, and Oncopetides. JB reports honoraria from Amgen, Celgene, Janssen, Takeda, and Oncopetides; and participation in other board, society, committee, or advocacy group, paid or unpaid for Karyopharm and Sanofi. KSG reports research funding from Caelum Biosciences, Ionis, Janssen, Sanofi and Takeda; and honoraria from GSK and Janssen. PGR reports research funding from Bristol Myers Squibb, Celgene, Karyopharm, Oncopetides and Takeda; Participation on a Data Safety Monitoring Board or Advisory Board for AstraZeneca, Bristol Myers Squibb/Celgene, Glaxo Smith Kline, Janssen, Karyopharm, Oncopetides, Protocol Intelligence, Regeneron, Sanofi, Secura Bio, and Takeda. XL and JSK have nothing to disclose.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This review article was funded by Sanofi.

ORCID iDs

Meletios A. Dimopoulos https://orcid.org/0000-0001-8990-3254

Paul G. Richardson https://orcid.org/0000-0002-7426-8865

References

1. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol 2016; 34: 1544–1557.

2. Eleutherakis-Papaiakovou V, Bamias A, Gika D, et al. Renal failure in multiple myeloma:
incidence, correlations, and prognostic significance. *Leuk Lymphoma* 2007; 48: 337–341.

3. Yadav P, Cook M and Cockwell P. Current trends of renal impairment in multiple myeloma. *Kidney Dis (Basel)* 2016; 1: 241–257.

4. Fotiou D, Dimopoulos MA and Kastritis E. Managing renal complications in multiple myeloma. *Expert Rev Hematol* 2016; 9: 839–850.

5. Hari P, Romanus D, Luptakova K, et al. The impact of age and comorbidities on practice patterns and outcomes in patients with relapsed/refractory multiple myeloma in the era of novel therapies. *J Geriatr Oncol* 2018; 9: 138–144.

6. Hutchison CA, Batuman V, Behrens J, et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. *Nat Rev Nephrol* 2011; 8: 43–51.

7. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* 2006; 145: 247–254.

8. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. *N Engl J Med* 2012; 367: 20–29.

9. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med* 2009; 150: 604–612.

10. Chen X, Luo X, Zu Y, et al. Severe renal impairment as an adverse prognostic factor for survival in newly diagnosed multiple myeloma patients. *J Clin Lab Anal* 2020; 34: e23416.

11. Gonsalves WI, Leung N, Rajkumar SV, et al. Improvement in renal function and its impact on survival in patients with newly diagnosed multiple myeloma. *Blood Cancer J* 2015; 5: e296.

12. Mohyuddin GR, Koehn K, Shune L, et al. Renal insufficiency in multiple myeloma: a systematic review and meta-analysis of all randomized trials from 2005–2019. *Leuk Lymphoma* 2021; 62: 1386–1395.

13. Hutchison CA, Bradwell AR, Cook M, et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off haemodialysis. *Clin J Am Soc Nephrol* 2009; 4: 745–754.

14. Dimopoulos MA, Terpos E, Chanan-Khan A, et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. *J Clin Oncol* 2010; 28: 4976–4984.

15. Zhou L, Yu Q, Wei G, et al. Measuring the global, regional, and national burden of multiple myeloma from 1990 to 2019. *BMC Cancer* 2021; 21: 606.

16. Augustsson BM, Begum G, Dunn JA, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. *J Clin Oncol* 2005; 23: 9219–9226.

17. Bladé J, Fernández-Llama P, Bosch F, et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. *Arch Intern Med* 1998; 158: 1889–1893.

18. Dimopoulos MA, Delimpasi S, Katodritou E, et al. Significant improvement in the survival of patients with multiple myeloma presenting with severe renal impairment after the introduction of novel agents. *Ann Oncol* 2014; 25: 195–200.

19. Uttervall K, Duru AD, Lund J, et al. The use of novel drugs can effectively improve response, delay relapse and enhance overall survival in multiple myeloma patients with renal impairment. *PLoS ONE* 2014; 9: e101819.

20. van de Donk N, Richardson PG and Malavasi F. CD38 antibodies in multiple myeloma: back to the future. *Blood* 2018; 131: 13–29.

21. Gondouin B and Hutchison CA. High cut-off dialysis membranes: current uses and future potential. *Adv Chronic Kidney Dis* 2011; 18: 180–187.

22. Hutchison CA, Cockwell P, Moroz V, et al. High cutoff versus high-flux haemodialysis for myeloma cast nephropathy in patients receiving bortezomib-based chemotherapy (EuLITE): a phase 2 randomised controlled trial. *Lancet Haematol* 2019; 6: e217–e228.

23. Bridoux F, Carron PL, Pegourie B, et al. Effect of high-cut-off hemodialysis vs conventional hemodialysis on hemodialysis independence among patients with myeloma cast nephropathy: a randomized clinical trial. *JAMA* 2017; 318: 2099–2110.

24. Tarragón B, Ye N, Gallagher M, et al. Effect of high cut-off dialysis for acute kidney injury secondary to cast nephropathy in patients with multiple myeloma: a systematic review and meta-analysis. *Clin Kidney J* 2021; 14: 1894–1900.

25. Pendón-Ruiz de Mier MV, Alvarez-Lara MA, Ojeda-López R, et al. Effectiveness of haemodiafiltration with ultrafiltrate regeneration
in the reduction of light chains in multiple myeloma with renal failure. Nefrologia 2013; 33: 788–796.

26. Pendón-Ruiz de Mier MV, Ojeda R, Álvarez-Lara MA, et al. Hemodialfiltration with ultrafiltrate regeneration reduces free light chains without albumin loss in multiple myeloma patients. BMC Nephrol 2020; 21: 227.

27. Holstein SA and McCarthy PL. Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience. Drugs 2017; 77: 505–520.

28. Chen N, Lau H, Kong L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 2007; 47: 1466–1475.

29. Celgene Corporation. Revlimid (prescribing information). Summit, NJ: Celgene Corporation, 2021.

30. Weber DM, Chen C, Niesvizky R, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2123–2142.

31. Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

32. Dimopoulos M, Alegre A, Stadtmauer EA, et al. The efficacy and safety of lenalidomide plus dexamethasone in relapsed and/or refractory multiple myeloma patients with impaired renal function. Cancer 2010; 116: 3807–3814.

33. Ludwig H, Rauch E, Kuehr T, et al. Lenalidomide and dexamethasone for acute light chain-induced renal failure: a phase II study. Haematologica 2015; 100: 385–391.

34. Zhou DB, Yu L, Du X, et al. Lenalidomide plus low-dose dexamethasone in Chinese patients with relapsed or refractory multiple myeloma and renal impairment. Int J Hematol 2015; 101: 569–577.

35. de la, Rubia J, Roig M, Ibáñez A, et al. Activity and safety of lenalidomide and dexamethasone in patients with multiple myeloma requiring dialysis: a Spanish multicenter retrospective study. Eur J Haematol 2010; 85: 363–365.

36. Dimopoulos MA, Christoulas D, Roussou M, et al. Lenalidomide and dexamethasone for the treatment of refractory/relapsed multiple myeloma: dosing of lenalidomide according to renal function and effect on renal impairment. Eur J Haematol 2010; 85: 1–5.

37. Klein U, Neben K, Hielscher T, et al. Lenalidomide in combination with dexamethasone: effective regimen in patients with relapsed or refractory multiple myeloma complicated by renal impairment. Ann Hematol 2011; 90: 429–439.

38. Hoffmann M, Kasserra C, Reyes J, et al. Absorption, metabolism and excretion of [14C]pomalidomide in humans following oral administration. Cancer Chemother Pharmacol 2013; 71: 489–501.

39. Miguel JS, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14: 1055–1066.

40. Weisel KC, Dimopoulos MA, Moreau P, et al. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low-dose dexamethasone versus high-dose dexamethasone in refractory or relapsed and refractory multiple myeloma. Haematologica 2016; 101: 872–878.

41. Richardson PG, Oriol A, Beksc M, et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncol 2019; 20: 781–794.

42. Schjesvold F, Dimopoulos MA, Beksc M, et al. Pomalidomide, bortezomib, and dexamethasone (PVD) in lenalidomide (LEN)-pretreated relapsed refractory multiple myeloma: subanalysis of patients with renal impairment in OPTIMISMM. J Clin Oncol 2020; 38: e20562.

43. Siegel DS, Dimopoulos MA, Ludwig H, et al. Improvement in overall survival with carfilzomib, lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma. J Clin Oncol 2018; 36: 728–734.

44. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for patients with relapsed or refractory multiple myeloma. N Engl J Med 2015; 372: 142–152.

45. Dimopoulos M, Siegel D, White DJ, et al. Carfilzomib vs bortezomib in patients with multiple myeloma and renal failure: a subgroup analysis of ENDEAVOR. Blood 2019; 133: 147–155.

46. Bahlis NJ, Dimopoulos MA, White DJ, et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia 2020; 34: 1875–1884.
47. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. *N Engl J Med* 2016; 375: 1319–1331.

48. Moreau P, Oriol A, Kaufman JL, et al. Daratumumab, lenalidomide, and dexamethasone (DRd) versus lenalidomide and dexamethasone (Rd) in relapsed or refractory multiple myeloma (RRMM) based on prior treatment history, renal function, and cytogenetic risk: subgroup analyses of Pollux. *Blood* 2017; 130: 1883.

49. Dimopoulos MA, Terpos E, Boccadoro M, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. *Lancet Oncol* 2021; 22: 801–812.

50. Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. *N Engl J Med* 2016; 375: 754–766.

51. Dimopoulos M, Quach H, Mateos MV, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. *Lancet* 2020; 396: 186–197.

52. Dimopoulos MA, Leleu X, Moreau P, et al. Isatuximab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma patients with renal impairment: ICARIA-MM subgroup analysis. *Leukemia* 2021; 35: 562–572.

53. Capra M, Martin T, Moreau P, et al. Isatuximab plus carfilzomib and dexamethasone versus carfilzomib and dexamethasone in relapsed multiple myeloma patients with renal impairment: IKEMA subgroup analysis. *Haematologica*. Epub ahead of print 14 October 2021. DOI: 10.3324/haematol.2021.279229

54. Siegel DS, Weisel KC, Dimopoulos MA, et al. Pomalidomide plus low-dose dexamethasone in patients with relapsed/refractory multiple myeloma and moderate renal impairment: a pooled analysis of three clinical trials. *Leuk Lymphoma* 2016; 57: 2833–2838.

55. Dimopoulos M, Weisel K, van de Donk N, et al. Pomalidomide plus low-dose dexamethasone in patients with relapsed/refractory multiple myeloma and renal impairment: results from a phase II trial. *J Clin Oncol* 2018; 36: 2035–2043.

56. Maciocia N, Melville A, Cheesman S, et al. Real-world use of pomalidomide and dexamethasone in double refractory multiple myeloma suggests benefit in renal impairment and adverse genetics: a multi-centre UK experience. *Br J Haematol* 2017; 176: 908–917.

57. Ito S. Proteasome inhibitors for the treatment of multiple myeloma. *Cancers (Basel)* 2020; 12: 265.

58. Bladé J, Sonneveld P, San Miguel JF, et al. Pegylated liposomal doxorubicin plus bortezomib in relapsed or refractory multiple myeloma: efficacy and safety in patients with renal function impairment. *Clin Lymphoma Myeloma* 2008; 8: 352–355.

59. Dimopoulos MA, Roussou M, Gavriatopoulou M, et al. Reversibility of renal impairment in patients with multiple myeloma treated with bortezomib-based regimens: identification of predictive factors. *Clin Lymphoma Myeloma* 2009; 9: 302–306.

60. Jagannath S, Barlogie B, Berenson JR, et al. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. *Cancer* 2005; 103: 1195–1200.

61. Ludwig H, Adam Z, Hajek R, et al. Light chain-induced acute renal failure can be reversed by bortezomib-doxorubicin-dexamethasone in multiple myeloma: results of a phase II study. *J Clin Oncol* 2010; 28: 4635–4641.

62. Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous bortezomib in patients with relapsed multiple myeloma: subanalysis of patients with renal impairment in the phase III MMY-3021 study. *Haematologica* 2015; 100: e207–10.

63. Pönisch W, Moll B, Bourgeois M, et al. Bendamustine and prednisone in combination with bortezomib (BPV) in the treatment of patients with relapsed or refractory multiple myeloma and light chain-induced renal failure. *J Cancer Res Clin Oncol* 2013; 139: 1937–1946.

64. San-Miguel JF, Richardson PG, Sonneveld P, et al. Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. *Leukemia* 2008; 22: 842–849.

65. Dimopoulos MA, Niesvizky R, Weisel K, et al. Once- versus twice-weekly carfilzomib in relapsed and refractory multiple myeloma by select patient characteristics: phase 3 A.R.R.O.W. Study subgroup analysis. *Blood Cancer J* 2020; 10: 35.

66. Dimopoulos MA, Moreau P, Palumbo A, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma.
(ENDEAVOR): a randomised, phase 3, open-label, multicentre study. *Lancet Oncol* 2016; 17: 27–38.

67. Kumar S, Fu A, Niewizky R, et al. Renal response in real-world carfilzomib- vs bortezomib-treated patients with relapsed or refractory multiple myeloma. *Blood Adv* 2021; 5: 367–376.

68. Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. *N Engl J Med* 2016; 374: 1621–1634.

69. Mikhail J, Singh E and Rice MS. Real-world renal function among patients with multiple myeloma in the United States. *Blood Cancer J* 2021; 11: 99.

70. Berdeja J, Jagannath S, Zonder J, et al. Pharmacokinetics and safety of elotuzumab combined with lenalidomide and dexamethasone in patients with multiple myeloma and various levels of renal impairment: results of a phase Ib study. *Clin Lymphoma Myeloma Leuk* 2016; 16: 129–138.

71. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. *Blood* 2016; 128: 37–44.

72. Chari A, Suvannasankha A, Fay JW, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. *Blood* 2017; 130: 974–981.

73. Kastritis E, Terpos E, Symeonidis A, et al. Daratumumab with dexamethasone in patients with relapsed/refractory multiple myeloma and severe renal impairment: results on efficacy and safety of the Phase 2 Dare study. *Blood* 2020; 136: 48–49.

74. Jeyaraman P, Bhasin A, Dayal N, et al. Daratumumab in dialysis-dependent multiple myeloma. *Blood Rev* 2020; 55: 65–67.

75. Mizuno S, Kitayama C, Yamaguchi K, et al. Successful management of hemodialysis-dependent refractory myeloma with modified daratumumab, bortezomib and dexamethasone regimen. *Int J Hematol* 2020; 112: 860–863.

76. Rocchi S, Tacchetti P, Pantani L, et al. Safety and efficacy of daratumumab in dialysis-dependent renal failure secondary to multiple myeloma. *Haematologica* 2018; 103: e277–e278.

77. Smyth E, Glavey S, Melotti D, et al. Dialysis independence following single-agent daratumumab in refractory myeloma with renal failure. *Ir J Med Sci* 2019; 188: 1079–1080.

78. Cejalvo MJ, Legarda M, Abella E, et al. Single-agent daratumumab in patients with relapsed and refractory multiple myeloma requiring dialysis: results of a Spanish retrospective, multicentre study. *Br J Haematol* 2020; 190: e289–e292.

79. Lee HC, Cohen AD, Chari A, et al. DREAMM-2: single-agent belantamab mafodotin (GSK2857916) in patients with relapsed/refractory multiple myeloma (RRMM) and renal impairment. *J Clin Oncol* 2020; 38: 8519.

80. Monge J, Solomon RS, Flicker K, et al. Daratumumab in patients with multiple myeloma and renal impairment – real-world data from a single-center institution. *Blood* 2019; 134: 5563.

81. Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. *Clin Cancer Res* 2014; 20: 4574–4583.

82. Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. *Lancet* 2019; 394: 2096–2107.

83. Moreau P, Dimopoulos MA, Mikhail J, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. *Lancet* 2021; 397: 2361–2371.

84. Takakuwa T, Ohta K, Sagabe N, et al. Isatuximab plus pomalidomide and dexamethasone in a patient with dialysis-dependent multiple myeloma. *Chemotherapy* 2021; 66: 192–195.

85. Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. *N Engl J Med* 2015; 373: 621–631.

86. Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. *N Engl J Med* 2018; 379: 1811–1822.

87. Tai YT, Mayes PA, Acharya C, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. *Blood* 2014; 123: 3128–3138.

88. Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm,
randomised, open-label, phase 2 study. *Lancet Oncol* 2020; 21: 207–221.

89. Munshi NC, Anderson LD Jr, Shah N, *et al.* Idecabtagene vicleucel in relapsed and refractory multiple myeloma. *N Engl J Med* 2021; 384: 705–716.

90. He SL, Cheng YH, Wang D, *et al.* Anti-BCMA CAR-T cell therapy in relapsed or refractory multiple myeloma patients with impaired renal function. *Curr Med Sci* 2020; 41: 474–481.

91. Li H, Yin L, Wang Y, *et al.* Safety and efficacy of chimeric antigen receptor T-cell therapy in relapsed/refractory multiple myeloma with renal impairment. *Bone Marrow Transplant* 2020; 55: 2215–2218.

92. Levey AS, Eckardt KU, Tsukamoto Y, *et al.* Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). *Kidney Int* 2005; 67: 2089–2100.

93. Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, *et al.* Clinical utility of selinexor/dexamethasone in patients with relapsed or refractory multiple myeloma: a review of current evidence and patient selection. *Onco Targets Ther* 2020; 13: 6405–6416.

94. Chari A, Vogl DT, Gavriatopoulou M, *et al.* Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. *N Engl J Med* 2019; 381: 727–738.

95. Jagannath S, Vogl DT, Dimopoulos MA, *et al.* Phase 2b results of the STORM study: oral selinexor plus low dose dexamethasone (Sd) in patients with penta-refractory myeloma (penta-MM). *Clin Lymphoma Myeloma Leuk* 2018; 18: S249–S250.

96. Grosicki S, Simonova M, Spicka I, *et al.* Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial. *Lancet* 2020; 396: 1563–1573.

97. Delimpasi S, Mateos MV, Auner HW, *et al.* Efficacy and tolerability of once-weekly selinexor, bortezomib, and dexamethasone in comparison with standard twice-weekly bortezomib and dexamethasone in previously treated multiple myeloma with renal impairment: subgroup analysis from the BOSTON study. *Am J Hematol* 2022; 97: E83–E86.

98. US Food Drug Administration. Guidance for industry: pharmacokinetics in patients with impaired renal function – study design, data analysis, and impact on dosing and labeling, 2020, https://www.fda.gov/media/78573/download

99. Gupta N, Zhang S, Pusalkar S, *et al.* A phase I study to assess the mass balance, excretion, and pharmacokinetics of [14C]-ixazomib, an oral proteasome inhibitor, in patients with advanced solid tumors. *Invest New Drugs* 2018; 36: 407–415.

100. Gupta N, Hanley MJ, Harvey RD, *et al.* A pharmacokinetics and safety phase 1/1b study of oral ixazomib in patients with multiple myeloma and severe renal impairment or end-stage renal disease requiring haemodialysis. *Br J Haematol* 2016; 174: 748–759.

101. Mikhail J, Manola J, Dueck AC, *et al.* Lenalidomide and dexamethasone in patients with relapsed multiple myeloma and impaired renal function: PrE1003, a PrECOG study. *Blood Cancer J* 2018; 8: 86.

102. Richardson PG, San Miguel JF, Moreau P, *et al.* Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting. *Blood Cancer J* 2018; 8: 109.