Dietary Risk Factors of Metabolic Syndrome in Dibrugarh District of Assam

Tulika Goswami Mahanta1, Rajnish Joshi2, Bhupendra Narayan Mahanta3, Pronab Gogoi4

1Associate Professor, Department of Community Medicine, Assam Medical College, Dibrugarh.
2Assistant Professor, Department of Medicine, AIIMS, Bhuban.
3Associate Professor, Department of Medicine, Assam Medical College, Dibrugarh.
4Research Assistant, Department of Community Medicine, Assam Medical College, Dibrugarh.

Abstract

Background
As India is considered as the diabetic capital of the world, a huge burden of undiagnosed Metabolic Syndrome (MetS) is a possibility. Early intervention can be planned if MetS can be detected early along with risk factor assessment to avert cardiovascular morbidity.

The aim of this study was to assess the dietary risk factor of metabolic syndrome.

Materials and Methods
Community based cross-sectional study was conducted in Dibrugarh District of Assam with multistep sampling. Study area, i.e. four rural sub-centres and two urban electoral blocks were selected randomly. From the list of population of selected area, the consenting eligible were included. Sample size was 1700 population with MetS. Socio-demographic information, World Health Organisation’s STEPS questionnaire for behavioural risk factors along with dietary history, anthropometric assessment and laboratory investigations were conducted in three stages. Food frequency questionnaire was used for dietary assessment. Statistical analysis was done using rates, ratio, proportion, univariate and multivariate analysis.

Results
MetS was 47.6% (1606 of 3372 screened). Mean age of study population was 47.1 ± 10.9 years. Behavioural risk factors like tobacco, alcohol consumption was high and significantly associated with metabolic syndrome (p=0.000). Similarly dietary stress, feeling stressed in last one year (p=0.034), lower physical activity level were also significantly associated with metS (p=0.000). Consumption of meat (p=0.000), egg (p=0.000), fast food (p=0.000), pickled vegetable (p=0.000) and sweet snacks (p=0.000) was found significantly higher amongst those with metabolic syndrome. Significant association was also seen with number of meals served per day and metS (p=0.000).

Conclusion
Dietary risk factors of cardiovascular diseases were rampant amongst persons with MetS. Dietary risk factor survey and counselling on healthy diet can be implemented in this population to give opportunity for early intervention.

Keywords
Metabolic Syndrome (MetS), Dietary Risk Factor, Food Frequency Questionnaire (FFQ), Cardiovascular Disease (CVD), Assam.

How to Cite This Article: Mahanta TG, Joshi R, Mahanta BN, et al. Dietary risk factors of metabolic syndrome in Dibrugarh district of Assam. J. Evid. Based Med. Healthc. 2017; 4(61), 3680-3687. DOI: 10.18410/jebmh/2017/734

Background
Atherosclerotic Cardiovascular Disease (CVD) is the leading cause of death and a major contributor to disability globally. The same group of diseases also resulted in the maximum number of years of life lost 1 (YLL) to premature mortality in 2010.1 Globally, deaths from non-communnicable diseases are expected to climb to 49.7 million in 2020, an increase of 77% in absolute numbers and increase in their share of the total from 55% in 1990 to 73% in 2020.2 Risk factors like high BP, obesity, smoking, alcohol consumption, low physical activity, etc. contributing to the development of non-communicable diseases were more prevalent in the developed countries.3 However, the "World Health Report 2002: reducing risks, promoting healthy life," indicates a rise in their prevalence even in the developing countries. A disturbing increase in the prevalence of overweight among children has taken place over the past twenty years in developing countries as diverse as India, Mexico, Nigeria and Tunisia.3 Non-communicable diseases like Obesity, Diabetes mellitus, Hypertension, Coronary artery disease and Stroke in adults have been related to the prevalence of risk factors in childhood.4 The increased risk for developing CVD and diabetes associated with a cluster of metabolic abnormalities is referred to as Metabolic Syndrome (MetS). MetS includes hypertension, glucose intolerance, high TG, low HDL-C and abdominal obesity.5 Strong association of abdominal obesity with metabolic abnormalities has prompted the National Institute of Health (NIH) of the United States of America and...
the World Health Organisation (WHO) to issue guidelines for use of gender-specific, Waist Circumference (WC) cut points to identify abdominal obesity. MetS was diagnosed based on modified ATP III guidelines if any three of the following abnormalities were present: abdominal obesity (defined as WC ≥ 90 cm for men and ≥ 80 cm for women according to modified Asia Pacific World Health Organisation guidelines), high blood pressure (systolic blood pressure (sBP) ≥ 130 mmHg, diastolic blood pressure (dBP) ≥ 85 mmHg or who self-reported hypertension and on anti-hypertensives), hypertriglyceridaemia or low HDL cholesterol. Obesity was defined as Body Mass Index (BMI) ≥ 25 kg/m2 according to modified Asia Pacific World Health Organisation guidelines. Previous study done in similar population to assess behavioural risk factors with hypertension and prehypertension showed significant association of behavioural risk factors like stress, high energy food, tobacco use, alcohol, overweight/obesity and diabetes with prehypertension, physical inactivity, high energy food, tobacco use, alcohol, extra salt and diabetes with hypertension. Hence, there is a definite need to monitor the prevalence of metabolic syndrome and its association with dietary risk factors in this population.

MATERIALS AND METHODS

Dibrugarh District of Assam is at the northern-most tip of the state, situated on the banks of River Brahmaputra, spread over 3000 km2, and is populated by about 1.2 million individuals (0.9 million rural, 0.3 million urban). There are 1362 villages under 231 health sub-centres. In urban areas, there were 96 electoral blocks.

Institutional Ethics Committee approval from Assam Medical College and necessary permissions were obtained from Joint Director of Health Services and the Assam Branch of the Indian Tea Association. Written informed consent, sought from all eligible and those consenting included. If a participant could not read or write, verbal information was provided and consent was recorded as thumb impression in presence of two impartial witnesses. Surveys were preceded by meetings with community leaders.

For detecting MetS after overnight fast (10 - 12 h), blood samples was obtained for determination of plasma glucose, plasma HDL-C and plasma TG levels. Modified ATP III guidelines was used for identification of persons with MetS. A screening log was prepared by house to house survey and all eligible individuals were enrolled. Laboratory investigation was done for all eligible and those fulfilling criteria of MetS were included till the required sample size was achieved.

The sample size was 1546, calculated by taking prevalence of MetS as 19.9 and 95% CI and relative precision 10%. Taking 10% non-response rate and rounding up, sample size inflated to 1700.

Cross-sectional study with multistep sampling was undertaken in the district including a representative population. Initially, sub-centres were enlisted from which four rural and two urban electoral block were selected using computerised random numbers. From the list of eligible population of selected sub-centre area the required sample of population was enrolled (1700; 1400 rural, 300 urban). Then, household survey was done to enlist all eligible consenting individual aged 20 - 60 years. Socio-demographic, behavioural risk factors, medical history and family history of diabetes were assessed using WHO STEPS questionnaire. Dietary history was taken using food frequency questionnaire and 24-hour recall. Anthropometric assessment and laboratory investigations were conducted. All consenting adults of selected areas were considered eligible for inclusion. Measurement of height, weight and WC was done. Height and weight was measured to nearest 0.5 cm and 0.1 kg, respectively. BMI was calculated as weight (kg) divided by height (m) squared. WC, determined at umbilical level (cm) to nearest 0.1 cm using a measuring tape positioned at midpoint between lowest rib and iliac crest. Similarly hip circumference was taken around widest portion of buttocks as recommended by WHO stepwise approach to surveillance (STEPS).

MetS was defined by modified NCEP ATP III and IDF groups. Presence of any three of five factors is required for diagnosis of MetS: abdominal obesity, hypertriglyceridaemia (TG ≥ 1.7 mmol/L); low HDL cholesterol (HDL cholesterol ≤ 1.03 mmol/L for men and ≤ 1.29 mmol/L for women); elevated blood pressure (sBP ≥ 130 mmHg or dBP ≥ 85 mmHg or current use of antihypertensive drugs); impaired fasting glucose (fasting plasma glucose ≥5.6 mmol/L). Modified NCEP ATP III criteria suggested cut-off points of WC should be ethnic specific where individuals of Asian origin should use cut-off of 90 cm in men and 80 cm in women. Measurement of plasma glucose was carried out by glucose oxidase method using a commercial enzymatic reagent (Ozone biochemical Kit). Plasma TG and cholesterol concentrations were measured by enzymatic methods (Lifescan Kit).

Dietary risk factors were assessed by food frequency questionnaire. Most variables, collected as continuous measures and standard definitions were used for categorical classifications. Information about each risk factor was described for the entire population. Student's t-test was used for continuous variables, and chi-square test for dichotomous variables. Univariate and multivariate analysis was done for dietary risk factors. Statistical analysis was done using SPSS software.
RESULTS
A total of 3372 individuals were screened in the community by house to house survey, of which 1606 were found to be having metabolic syndrome. Therefore, the prevalence of metabolic syndrome was 47.6% (1606 out of 3372). The average age of study population was 47 years (47.1 ± 10.9 years), which ranges from 20 - 95 years (Figure 1).

Significant difference was observed between age (p=0.000), religion (p=0.000), educational status (p=0.000), marital status (p=0.000) and occupation (p=0.000), while gender was not a significant determinant of metabolic syndrome (p=0.178) (Table 1).

Prevalence of behavioural risk factors was high amongst the studied population. Tobacco consumption (any form) was 64.9% (56.5% current user, while 6.4% former user). Metabolic syndrome was significantly associated with tobacco use (p=0.000). Alcohol consumption was prevalent amongst 44.5% (1501) population, which is also significantly associated with metabolic syndrome (p=0.000). Similarly, financial stress of moderate-to-severe level amongst 49.9% (1638) population was significantly associated with metabolic syndrome (p=0.000). When asked about feeling of stress in last one year 24.1% (812) informed about having several episodes or permanent episodes, which is also significantly high amongst those having metabolic syndrome (p=0.034). Only 17.9% (604) do heavy physical work, while 37.1% (1251) do moderate work and 45% (1517) subjects were mainly sedentary at workplace. There is significantly lower physical activity level of persons with metabolic syndrome (p=0.000). During leisure time 20.3% (684) were mainly sedentary, while 22% (742) do mild exercise and only 1.9% (64) do strenuous exercise with a significant higher rates amongst those having metabolic syndrome (p=0.000) (Table 2).

Dietary risk factors for cardiovascular disease were more common amongst those with metabolic syndrome. Food frequency questionnaire was used for dietary assessment. Most of the population consume meat once weekly (64.1%, 2163) and the frequency of consumption was significantly more amongst those having metabolic syndrome (p=0.000). Similarly most of the people consume fish on a weekly basis (84.8%, 2859); not significantly different amongst those with or without metabolic syndrome (p=0.149). Consumption of egg less than once in a month or never was found in 38.1% (1284) and weekly in 64.1% (2163) population, which is again significantly higher amongst those having metabolic syndrome (p=0.000). Consumption of milk and other dairy product was very rare, as majority 65.1% (2194) consumed less than once per month, but significantly higher amongst persons with metabolic syndrome (p=0.000). Overall fast food consumption was also less amongst the population as majority 69.4% (2341) consumed less than once in a month, but consumption was significantly higher amongst those with metabolic syndrome (p=0.000). Similarly consumption of different types of sauce though rare (78.1% consume less than once in a month), but significantly high amongst those having metabolic syndrome (p=0.000). Consumption of pickled vegetables was also significantly higher (p=0.000) amongst those with metabolic syndrome. Consumption of sweet snacks was less than once per month or never in 44% (1483), while 36.2% (1222) consumed it weekly, while 37% persons with metabolic syndrome consumed it daily. Statistically significant difference was observed in this category of food item intake also (p=0.000). Only 20.6% population consumes nuts daily, while it was found significantly higher amongst those with metabolic syndrome (p=0.000).

Number of meals consumed was four times or more in 19.8% (666), while majority 60.9% (2054) consumed 3 times and 19.3% (652) consumed meal twice a day. Amongst more than four times consumer of meal 57.5% were having metabolic syndrome. There was significant association of number of meals served per day with metabolic syndrome (p=0.000). Vegetable consumption was high in frequency amongst the overall population, as majority (78.9%, 2660) consumed vegetables daily. Though daily consumption of vegetables was less amongst those with metabolic syndrome, but overall there is higher intake of cooked vegetable amongst those with metS (p=0.000) (Table 3).

Univariate and multivariate analysis of dietary risk factors of metabolic syndrome Odds ratio was significantly high for daily consumption of egg (OR 10.58 (3.681 - 30.429) p=0.000, AOR 4.43 (1.463 - 13.460) p=0.008), dairy product (OR 6.64 (4.360 - 10.125) p=0.000; AOR 3.81 (2.326 - 6.255) p=0.000), fast food (OR 4.48 (2.143 - 9.398), p=0.000; AOR 4.82 (1.891 - 12.334), p=0.001), pickled vegetables (OR 2.24 (1.389 - 3.639), p=0.001, AOR 1.54 (0.889 - 2.674), p=0.124), Sweet snacks (OR 2.80 (1.609 - 4.872) p=0.000, AOR 1.56 (0.804 - 3.036), p=0.188), nuts and oilseeds vegetables (OR 0.58 (0.480 - 0.701), p=0.000, AOR 0.54 (0.755 - 1.291), p=0.000) (Table 4).

![Figure 1. Prevalence of Metabolic Syndrome amongst Studied Population](image)

J. Evid. Based Med. Healthc., pISSN- 2349-2562, eISSN- 2349-2570/ Vol. 4/Issue 61/July 31, 2017
Table 1. Socio-Demographic Determinant of Metabolic Syndrome

Behavioural Profile	Total n (%)	Metabolic Syndrome	Chi-square	P-value	
		No, n (%)	Yes, n (%)		
Tobacco user					
Formerly used	216 (6.4)	114 (52.8)	102 (47.2)	95.108	0.000
Currently user	1905 (56.5)	1131 (59.4)	774 (40.6)	123.902	0.000
Never used	1251 (37.1)	521 (41.6)	730 (58.4)	98.281	0.000
Consumed alcohol					
Yes	1501 (44.5)	929 (61.9)	572 (38.1)	98.281	0.000
No	1871 (55.5)	837 (44.7)	1034 (55.3)		
Financial stress					
Little or none	1689 (50.1)	831 (49.2)	858 (50.8)	13.648	0.000
Moderate or severe	1638 (49.9)	935 (55.6)	743 (44.4)		
Felt stress in last year					
Never or some periods	2560 (75.9)	1367 (53.4)	1193 (46.6)	4.486	0.034
Several periods or permanent stress	812 (24.1)	399 (49.1)	413 (50.9)		
Active at work					
Heavy physical labour	604 (17.9)	376 (62.3)	228 (37.7)	32.099	0.000
Moderate work	1251 (37.1)	652 (52.1)	599 (47.9)		
Subject does not work	1517 (45.0)	738 (48.6)	779 (51.4)		
During leisure time					
Mainly sedentary	684 (20.3)	259 (37.9)	425 (62.1)	138.970	0.000
Mild exercise	742 (22.0)	398 (53.6)	344 (46.4)		
Moderate exercise	1882 (55.8)	1104 (58.7)	778 (41.3)		
Strenuous exercise	64 (1.9)	5 (7.8)	59 (92.2)		

Table 2. Prevalence of Behavioural Risk Factors amongst Studied Population and Difference in Proportion amongst those with Metabolic Syndrome in Comparison with those without Metabolic Syndrome

Diet Profile	Total n (%)	Metabolic Syndrome	Chi-square	P-value	
		No, n (%)	Yes, n (%)		
Meat					
< per month - never	189 (5.6)	93 (49.2)	96 (50.8)	58.293	0.000
Monthly	986 (29.2)	614 (62.3)	372 (37.7)		
Weekly	2163 (64.1)	1048 (48.5)	1115 (51.5)		
Daily	34 (1.0)	11 (32.4)	23 (67.6)		
Fish					
< per month - never	111 (3.3)	54 (48.6)	57 (51.4)	5.328	0.149
Monthly	265 (7.9)	148 (55.8)	117 (44.2)		
Weekly	2859 (84.8)	1503 (52.6)	1356 (47.4)		
Daily	137 (4.1)	61 (44.5)	76 (55.5)		
Table 3. Dietary Risk Factor Distribution amongst Studied Population and Difference in Prevalence amongst those with Metabolic Syndrome in Comparison with those without Metabolic Syndrome

Variables	OR (95% CI)	P-value	AOR (95% CI)	P-value
Meat				
< per month - never	0.58 (0.429 - 0.803)	0.001	0.73 (0.499 - 1.085)	0.121
Monthly				
Weekly	1.03 (0.766 - 1.388)	0.842	1.31 (0.906 - 1.918)	0.149
Daily	2.02 (0.930 - 4.388)	0.074	1.41 (0.586 - 3.426)	0.439
Fish				
< per month - never	0.74 (0.480 - 1.168)	0.202	1.12 (0.664 - 1.912)	0.658
Monthly				
Weekly	0.85 (0.585 - 1.249)	0.417	1.01 (0.636 - 1.632)	0.937
Daily	1.18 (0.714 - 1.950)	0.517	0.81 (0.444 - 1.478)	0.493
Egg				
< per month - never	1.53 (1.28 - 1.824)	0.000	1.29 (1.064 - 1.576)	0.010
Monthly				
Weekly	1.89 (1.610 - 2.217)	0.000	1.66 (1.315 - 2.111)	0.000
Daily	10.58 (3.681 - 30.429)	0.000	4.43 (1.463 - 13.460)	0.008
Dairy Products				
< per month - never	2.12 (1.729 - 2.617)	0.000	1.30 (1.024 - 1.668)	0.031
DISCUSSION

Prevalence of metabolic syndrome and associated dietary and behavioural risk factors like tobacco, alcohol consumption, financial stress, feeling of stress in last one year and physical inactivity are common in the studied population. Consumption of meat, egg, fast food, pickled vegetable and sweet snacks was found significantly higher amongst those with metabolic syndrome. Similarly, there is significant association of number of meals served per day with metabolic syndrome.

A study done on the same district covering tea garden population also reported high prevalence of tobacco (85.2%) and alcohol consumption (69.7%). The same study also reported that 61.6% of the tea garden populations were taking extra salt and there was significant association between salt intake and hypertension. Similar findings have been reported in studies across the globe. It is generally agreed that stress aggravates blood pressure and pre-disposes the individual to develop hypertension. In our study also stress was found to be associated with metabolic syndrome, which is an important risk factor of hypertension and cardiovascular disease.

A higher prevalence of Mets, low physical activity levels, higher stress are all interrelated and were more prevalent in this population. Multifactorial risks will need multiple strategies for risk mitigation. Promotion of physical activity and the simultaneous reduction in sedentary occupations remain important strategies in population subgroups along with dietary modification. Metabolic syndrome was found to be lower in another population based study covering the industrial population of same district reported in 2006 compared to our study results (26.6% vs. 47.6%) indicating increasing trend of metabolic syndrome in the population.

Table 4. Univariate and Multivariate Analysis of Dietary Risk Factors of Metabolic Syndrome

	Weekly	Daily	Monthly	Weekly	Daily	Monthly	Weekly	Daily
Fast Food								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	2.51 (1.991 - 3.187)	0.000	0.89 (0.652 - 1.237)	0.510				
Weekly	0.82 (0.687 - 0.983)	0.032	0.64 (0.462 - 0.892)	0.008				
Daily	4.48 (2.143 - 9.398)	0.000	4.82 (1.891 - 12.334)	0.001				
Fish/Soya Sauce								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	4.12 (3.005 - 5.658)	0.000	1.69 (1.108 - 2.593)	0.015				
Weekly	0.65 (0.538 - 0.805)	0.000	0.50 (0.317 - 0.790)	0.003				
Daily	0.72 (0.315 - 1.691)	0.462	0.14 (0.045 - 0.466)	0.001				
Pickled Vegetables								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	1.96 (1.571 - 2.453)	0.000	1.90 (1.469 - 2.463)	0.000				
Weekly	1.28 (1.096 - 1.502)	0.002	1.60 (1.237 - 2.082)	0.000				
Daily	2.24 (1.389 - 3.639)	0.001	1.54 (0.889 - 2.674)	0.124				
Sweet Snacks								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	1.80 (1.494 - 2.186)	0.000	1.29 (1.019 - 1.633)	0.034				
Weekly	1.70 (1.462 - 1.985)	0.000	1.42 (1.117 - 1.805)	0.004				
Daily	2.80 (1.609 - 4.872)	0.000	1.56 (0.804 - 3.036)	0.188				
Desserts/Sweet								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	0.89 (0.720 - 1.106)	0.300	0.86 (0.685 - 1.090)	0.218				
Weekly	1.71 (1.377 - 2.124)	0.000	0.90 (0.701 - 1.163)	0.429				
Daily	1.10 (0.926 - 1.329)	0.260	0.99 (0.778 - 1.279)	0.984				
Nuts/Seeds								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	2.37 (1.925 - 2.918)	0.000	1.49 (1.169 - 1.899)	0.001				
Weekly	1.67 (1.390 - 2.018)	0.000	1.32 (1.054 - 1.658)	0.016				
Daily	0.58 (0.480 - 0.701)	0.000	0.54 (0.755 - 1.291)	0.000				
Number of Meals								
served per day								
2 times	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
3 times	0.93 (0.783 - 1.115)	0.452	0.86 (0.713 - 1.046)	0.133				
4 times and more	1.55 (1.254 - 1.937)	0.000	0.98 (0.755 - 1.291)	0.924				
Vegetables								
Cooked								
< per month - never	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
Monthly	0.36 (0.142 - 0.946)	0.038	0.25 (0.089 - 0.729)	0.011				
Weekly	0.13 (0.070 - 0.258)	0.000	0.29 (0.138 - 0.620)	0.001				
Daily	0.13 (0.071 - 0.254)	0.000	0.26 (0.133 - 0.528)	0.000				
Globally tobacco was the leading cause of morbidity and mortality responsible for 18% deaths in high-income countries, 11% in middle-income countries and 4% in low-income countries.14

Indian Government launched National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCCDS) to address high prevalence of Non-Communicable Diseases (NCDs).15 Risk factor control requires multidisciplinary approach which includes approaching social determinants of health, health-care financing, improving medical education and health system strengthening.16 Dietary promotion needs to be tried as a community based intervention to address such high prevalence of metabolic syndrome.

Fruit and vegetable intake though beneficial for overall cardiovascular health, declines age advances from childhood to adolescence. In addition, there is a steady increase in consumption of Sugar Sweetened Beverages (SSB) among children and adolescents over the last few decades.17 On the other hand, health enhancing as well as health compromising physical activity patterns are known to cluster with dietary choices and smoking behaviour.18 In contrast, a “health-conscious” low fat diet that included high consumption of vegetables, legumes and nuts, rye, cheese and other dairy products was inversely associated with the same cardiovascular risk factors.19 A diet low in saturated and trans fats with moderate-to-high consumption of items like whole grain cereals, low fat dairy items, fruits, vegetables and fibre rich food types appear to be beneficial for overall cardiovascular health.20 Several studies have shown that primary prevention of these disorders by risk factor education in the community has better benefits compared to secondary prevention for cardiovascular mortality as well as morbidity.21-23 Intervention of dietary modification can be carried out in such population as a population based measures for better documentation of effects.

Limitation of our study may be recall bias expected in dietary assessment. Second limitation may be in our assessment of depression and anxiety symptoms was based on self-report of symptoms using validated questionnaire and not on the Diagnosis and Statistical Manual (DSM) criteria based on clinical diagnosis interview.

CONCLUSION
Metabolic syndrome was very much prevalent along with its behavioural and dietary risk factors. Health promotion and early intervention targeting the risk factor approach needs to be carried out as a community based intervention in such population.

REFERENCES
[1] Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 2012;380(9859):2095-2128.

[2] The executive summary of the Global Burden of Disease Study, Harvard University Press. www.hsph.harvard.edu/organizations/bdu/GBDSeries.html (verified on 30/05/06)

[3] de Onis M, Blossner M. Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr 2000;72(4):1032-1039.

[4] Freedman DS, Dietz WH, Srinivasan SR, et al. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 1999;103(6 Pt 1):1175-1182.

[5] Bjorntorp P. Abdominal obesity and the metabolic syndrome. Ann Med 1992;24(6):465-468.

[6] Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001;285(19):2486-2497.

[7] World Health Organization. International association for the study of obesity and international obesity task force: the Asia Pacific perspective. Redefining obesity and its treatment. Health Communications Australia Pty Limited, Sydney 2000:17-21.

[8] Mahanta TG, Mahanta BN, Rajnish Jet al. Behavioural risk factors distribution of cardiovascular diseases and its association with normotension, prehypertension and hypertension amongst tea garden population in Dibrugarh district of Assam. Clin Epidemiol Glob Health 2016;4(1):45-50.

[9] District Health Action Plan Dibrugarh district of Assam, 2014:11-12.

[10] Sacks FM, Svetkey LP, Vollmer WM, et al. Effects of blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet: dash-sodium collaborative research group. N Engl J Med 2001;341(13):377-88.

[11] He FJ, Marrero NM, Macgregor GA. Salt and blood pressure in children and adolescents. J Hum Hypertens 2008;22(1):4-11.

[12] Mustacchi P. Stress and hypertension. West J Med 1999;160(2):180-185.

[13] Reddy KS, Prabhakaran D, Chaturvedi V, et al. Methods of establishment of a surveillance system for cardiovascular diseases in Indian industrial populations. Bull WHO 2006;86(6):461-499.

[14] Pierce JP, Choi WS, Gilpin EA, et al. Tobacco industry promotion of cigarettes and adolescent smoking. JAMA 1998:279(7):511-515.

[15] Gupta R, Guptha S, Joshi R, et al. Translating evidence into policy for cardiovascular disease control in India. Health Res Policy Syst 2011;9:8.

[16] Subramanian SV, Corsi DJ, Subramanyam MA, et al. Jumping the gun: the problematic discourse on socioeconomic status and cardiovascular health in India. Int J Epidemiol 2013;42(5):1410-1426.

[17] Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents in
children and adolescents: summary report. Pediatrics 2011;128(Suppl 5):213-256.

[18] Marshall SJ, Biddle SJ, Gorely T, et al. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes Relat Metab Disord 2004;28(10):1238-1246.

[19] Mikkilä V, Räsänen L, Raitakari OT, et al. Major dietary patterns and cardiovascular risk factors from childhood to adulthood. The cardiovascular risk in young finns study. Br J Nutr 2007;98(1):218-225.

[20] Manu R. Cardiovascular health in children and adolescents. Kerala Heart J 2014;4(2):22-28.

[21] Beaglehole R. Medical management and the decline in mortality from coronary heart disease. BMJ 1986;292(6512):33-35.

[22] Capewell S, Morrison CE, McMurray JJ. Contribution of modern cardiovascular treatment and risk factor changes to the decline in coronary heart disease mortality in Scotland between 1975 and 1994. Heart 1999;81(4):380-386.

[23] Unal B, Critchley JA, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales between 1981 and 2000. Circulation 2004;109(9):1101-1107.