About Stability of Irreducibility for Germs of Holomorphic Functions

Huayi Zeng
State University of New York at Stony Brook
(hzeng@math.sunysb.edu)
April 11, 2005

Abstract

This survey is about irreducibility for germs of a holomorphic function f. I will show that when the dimension of the domain U of this holomorphic function f is greater than 2, the irreducibility of germs are not necessary to be stable. That means, if the germ of f at point p is irreducible in the stalk of holomorphic functions at p, this does NOT means there exists an open neighborhood $V \subset U$ of this point p, such that for any point $q \in V$, the germ of f at q is irreducible at the stalk of holomorphic functions at q

1 Introduction

Let U be an open set in \mathbb{C}^n which contains 0, f be a holomorphic function defined on U, f_p is the germ of f at point $p \in U$.

For any two holomorphic functions g, h defined on U, if g_0, h_0 are relatively prime with each other, then with the help of resultants, we know that g, h are relatively prime with each other nearby. Precisely to say, that means their exists an open neighborhood $V \subset U$ of 0, such that for any point $q \in V$, g_q and h_q are relatively prime with each other. In this sense, we can say that Being co-prime is a stable property.

Can we say Irreducibility is a stable property? In the case of dimension 2, the answer is positive, and the proof is easy. But in the case of dimension 3, I will present a polynomial as counter-example.

*Thanks for helpful discussion with Sorin Popescu, Yusuf Mustopa, and Luis E. Lopez
2 Proof for the Case of Dimension 2

Statement: For any holomorphic function \(f = f(z_1, z_2) \) on \(U \subset \mathbb{C}^2(0 \in U) \), and the germ of \(f \) at origin is irreducible, then there exists an open neighborhood \(V \subset U \) of 0, such that for any point \(q \in V, f_q \) is irreducible. (**Remark**: If \(f(p) \neq 0 \), the \(f \) is irreducible at \(p \). So we only need to care about zero points of \(f \).)

Proof: Without the loss of generality, we can assume \(f(0, z_2) \) is not identically 0 near the origin, and \(f(0, 0) = 0 \).

let \(w = z_2^d + e_1(z_1)z_2^{d-1} + \cdots + e_{d-1}(z_1) + e_d(z_1) \) be a Weierstrass polynomial of \(f \) near 0.

Because \(w \) is irreducible at 0, so \(w \) and \(\frac{\partial w}{\partial z_2} \) are relatively prime near 0. Then the resultant of \(w \) and \(\frac{\partial w}{\partial z_2} \) is not zero. Then the common zero loci of \(w \) and \(\frac{\partial w}{\partial z_2} \) are discrete near 0.

From above, we know that there exists an open set \(V(0 \in V \subset U) \), such that in \(U \), \((0,0)\) is the only zero point of \(w \) which is POSSIBLE to be singular. (since for other points in \(q \in U, \frac{\partial w}{\partial z_2}(p) \neq 0 \). We can conclude that at any zero point \(p(p \neq 0) \) of \(w \) in \(V, w \) is a local complex parameter near \(p \). Since \(w \) is a local complex parameter near \(p \), then the germ of \(w \) at \(p \) is irreducible.

Finally, because \(w \) is a Weierstrass polynomial of \(f \) at 0, then we know that in \(V \), the irreducibility of \(f \) is as the same as that of \(w \). □

3 A Counter Example in Dimension 3

In the case of dimension 3, the statement should be:

Statement: For any holomorphic function \(f = f(z_1, z_2, z_3) \) on \(U \subset \mathbb{C}^3(0 \in U) \), and the germ of \(f \) at origin is irreducible, then there exists an open neighborhood \(V \subset U \) of 0, such that for any point \(q \in V, f_q \) is irreducible.

But unfortunately, this statement is not true. In this section, I will present, a polynomial of three variables, as a counter example.

This polynomial is \(f = z_3^2 - z_1z_2^2 \).
3.1 Irreducibility of f at origin

Obviously, near 0, f is a Weierstrass polynomial of itself (we choose z_3 as the polynomial variable). Now, we will show the irreducibility at origin by means of contradiction.

If f is not irreducible at origin, then its Weierstrass polynomial is decomposable at origin as a Weierstrass Polynomial. Assume that, near origin, $f = (z_3 - g(z_1, z_2))(z_3 - h(z_1, z_2))$, here g, h are holomorphic functions of variable z_1, z_2 near 0, and $g(0,0)=h(0,0)=0$.

From the factorization $f = (z_3 - g(z_1, z_2))(z_3 - h(z_1, z_2))$, we know that $g + h = 0, gh = -z_1z_2^2$, which implies $g^2 = z_1z_2^2$ near 0.

But if $g^2 = z_1z_2^2$ near 0. Then for some $\varepsilon \in \mathbb{C}$ whose norm is small enough, $g^2(z_1, \varepsilon) = \varepsilon^2 z_1$ near 0. But just from elementary knowledge of functions of one complex variable, we know this is not possible.

From argument above, we know f is irreducible at origin.

3.2 Further Argument

At point $p = (z, 0, 0)(z \neq 0)$, we know that $f(p) = 0$, and easily we can factorize f as $f = (z_3 + z_2r)(z_3 - z_2r)$ near p, here r is a one-variable holomorphic function such that $r^2 = z_1$ near $(z, 0, 0)$(Because z is not 0, so we can take square-root of z_1 near by.).

From the argument in 3.2, we know that, in any neighborhood U of origin, there EXISTS some point p such that f is not irreducible at p. This fact can destroy our statement at the beginning of this section.