Decapod crustaceans associated with macroinvertebrates in Pacific Costa Rica

Carolina Salas-Moya1,2*, Rita Vargas-Castillo1, Juan José Alvarado1,2,3, Juan Carlos Azofeifa-Solano1 and Jorge Cortés1,2,3*

Abstract

Decapod crustaceans are a diverse group that exploits various types of habitats in Costa Rica, where they represent 8.1% of the marine diversity of the country. This group includes families containing species with strictly symbiotic behavior, e.g., the Palaemonidae and Pinnotheridae. Despite the high diversity of decapods and the importance of symbionts in marine ecosystems, very little research has been done regarding symbiosis in Costa Rica and the Central American region. The objective of the present study is to present a check list of the species of decapods that are associated with macroinvertebrates in Pacific Costa Rica. The research was carried out using different sources, including a literature review, the Crustaceans Collection of the Zoology Museum of the University of Costa Rica, and field surveys between 1970 and 2019 along the Pacific coast of Costa Rica, and Isla del Coco, 500 km offshore. One-hundred associations are reported, of 74 species of symbiotic decapods with six host phyla. Seventy-four associated with Cnidaria, 15 with Echinodermata, four each with Annelida and Mollusca, two with Chordata, and one with Porifera. In total, there were 14 new reports of decapods occurring on Isla del Coco and four new reports of decapods for Costa Rica: Pseudocoutierea elegans, Raytheres clavapedatus, Tuleariocaris holthuisi, and Calyptraeotheres pepeluisi. These results highlight the need to conduct more detailed studies to determine the real diversity and ecological importance of the associations between marine organisms.

Keywords: Isla del Coco, Coral reefs, Biodiversity, Palaemonidae, Pinnotheridae, Symbiosis

Introduction

The diversity of decapod crustaceans is directly correlated with the abundance of habitats exploited by these organisms, including continental waters, intertidal zones, coral reefs, the deep sea and even the body cavities of other marine organisms (Bruce 1976; Martin and Davis 2001; Macedo et al. 2012; Sal Moyano et al. 2012; Baeza 2015). The different species expend a great deal of energy in habitat selection because the location that they choose should not only allow them to survive, but also to reproduce (Anthony and Cannolly 2004). In their search for shelter, many of these animals are exposed to the presence of spatially and temporally limited resources. Some of these resources include aggregations of seastars, sea urchins, mussels, algal mats, and kelp forests, among others (Baeza et al. 2002; Ory et al. 2013). The characteristics of the habitat, predation and interspecific competition encourage great specificity of habitat selection and are even considered to be drivers of symbiotic relationships (Montfrans et al. 2003; Baeza 2007; Ory et al. 2013). Symbiosis is a very common type of interaction in marine ecosystems (Thiel and Baeza 2001; Sotka 2005; Baeza 2007; Glynn 2013). It has been defined as “the living together of unlike organisms” (De Bary 1879). Other definitions include the factor of time, since these associations can extend through a part or the entirety of the lifecycle of one or both organisms (Starr et al. 2009).

In Costa Rica, there are 591 species of decapods, 8.1% of the known marine biodiversity of the country.
in both oceans (Vargas and Wehrtmann 2009; Wehrtmann et al. 2009). The families in this group with the greatest species richness in Pacific Costa Rica are Xanthidae (45 spp.), Porcellanidae (44 spp.), Majidae (43 spp.), Alpheidae (34 spp.), Ocypodidae (28 spp.) and Palaemonidae (23 spp.) (Vargas and Wehrtmann 2009). Similarly, of the 1688 marine species reported for Isla del Coco, 8.2% are decapods (Cortés 2012). Some decapod species are adapted for symbiotic behavior. Among the most well-known groups for establishing associations with other species are the families Palaemonidae, Alpheidae, Pinnotheridae and Porcellanidae (Baeza 2007). The decapods that live in association with other animals in Costa Rica have been scarcely studied and in most publications they are only mentioned in species lists with no indication of their association with other organisms. The objective of the present study is to present a compilation of species of decapod crustaceans associated with macroinvertebrates in the Pacific of Costa Rica.

Materials and methods

Study sites

This study includes specimens collected in different locations, associated with different biological substrates, along the Pacific coast of Costa Rica, including from the north, Bahía Salinas and Gulf of Papagayo; to the Central Pacific coast: Gulf of Nicoya; and to the south: Golfo Dulce; as well as different sites around Isla del Coco National Park (Fig. 1, Table 1). These sites have different levels of protection and the health status of their ecosystems differs considerably (Cortés 2016a, b).

Locations along the northern coast (Bahía Salinas, Bahía Cuajiniquil, Islas Murciélago and Bahía Culebra) are under the influence of a seasonal coastal upwelling (McCreary et al. 1989; Alfaro et al. 2012). The coral ecosystems in Bahía Cuajiniquil in the Gulf of Santa Elena are dominated by the genus Pocillopora, and the species Porites panamensis and Pavona gigantea, while the reefs in Bahía Salinas are basically made up of P. gigantea (Cortés et al. 2010). In the reefs of Bahía Culebra, coral cover is under 1%; this ecosys-
Host Phylum	Host Group	Host Species	Associated species	Site	Abundance	Depth (m)	Year
Porifera	Demospongidae	Halichondria sp.	Panopeus chilensis	Punta Morales, Golfo de Nicoya, Puntarenas	Abundant	Intertidal	2014
Cnidaria	Scleractinia	Pavona gigantea	Opecarcinus crescentus	Islas Pelones, Bahía Culebra, Guanacaste	Abundant	6	1992
		Pavona gigantea	Opecarcinus crescentus	Playa Pochote, Guanacaste	Abundant	NI	1994
		Pocillopora damicornis	Aa coromuta	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora damicornis	Alpheus lottini	Islas Palmitas, Bahía Huevo, Guanacaste	Abundant	6–10	1997
		Pocillopora damicornis	Alpheus lottini	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Amphithrix tuberculatus	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora damicornis	Cyclaxonthops vitratus	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora damicornis	Femera chacei	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Hapalocarcinus manusiplai	Islas Palmitas, Bahía Huevo, Guanacaste	Rare	6	1991
		Pocillopora damicornis	Horpilopsis depressa	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Heteractaea lunata	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Pachychele biocellatus	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Pagurus lepidus	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora damicornis	Petroelites haigae	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Teleophys cristulipes	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Tropezia bidentata	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Tropezia cornallina	Playa Blanca, Bahía Culebra, Guanacaste	Abundant	3	2003–2004
		Pocillopora damicornis	Trizopagus magnificus	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora damicornis	Williamsstimpsonia stimpsoni	Playa Blanca, Bahía Culebra, Guanacaste	Rare	3	2003–2004
		Pocillopora sp.	Alpheus lottini	Bahía Thomas, Cuajiniquil, Guanacaste	Abundant	2	2016
		Pocillopora sp.	Brachycarps bungulaculatus	Bahía Thomas, Cuajiniquil, Guanacaste	Abundant	2	2016
		Pocillopora sp.	Domencia hispida	Bahía Santa Elena, Guanacaste	Rare	NI	1994
		Pocillopora sp.	Hapalocarcinus manusiplai	Isla del Caño, Puntarenas	Rare	8–10	1986
		Pocillopora sp.	Horpilopsis depressa	Bahía Santa Elena, Guanacaste	Abundant	NI	1994
		Pocillopora sp.	Hemus finneganae	Playa Matapalo, Guanacaste	Very abundant	6–14	2008
		Pocillopora sp.	Lepethesites leersus	Playa Matapalo, Guanacaste	Rare	6–14	2008
		Pocillopora sp.	Stenorhynchus debilis	Playa Matapalo, Guanacaste	Very abundant	6–14	2008
		Pocillopora sp.	Tropezia bidentata	Bahía Thomas, Cuajiniquil, Guanacaste	Abundant	2	2016
		Pocillopora sp.	Tropezia cymodoce	Bahía Santa Elena, Guanacaste	Abundant	NI	1994
Porites		Aphides floridanus		Parque Nacional Isla del Coco	Rare	NI	2004
Lobata		Pachygraps transversus		Parque Nacional Isla del Coco	Very abundant	NI	2004
Table 1 Hosts, associated decapods, sites, depth and year of collections (Continued)

Host Phylum	Host Group	Host Species	Associated species	Site	Abundance	Depth (m)	Year
		Porites lobata Paracallianidea laevicauda	Parque Nacional Isla del Coco	Rare	NI	2004	
		Porites lobata Parapinnixa cortesi	Chatham Bay, Parque Nacional Isla del Coco	Rare	NI	2004	
		Porites lobata Petrosthes antifons	Parque Nacional Isla del Coco	Rare	NI	2004	
		Porites lobata Uca (Petruca) panamensis	Parque Nacional Isla del Coco	Rare	NI	2004	
		Porites lobata Pomatogebia rugosa	Parque Nacional Isla del Coco	Abundant	NI	1988–1989	
	Tubastrea coccinea Patrypodella rotundata	Isla San José, Islas Murieléago, Guanacaste	Abundant	30	2010		
	Antipatharia Antipathes sp.	Penicillines murcielagensis	San Pedrito, Islas Murieléago, Guanacaste	Rare	25	1996	
		Waldola schmitti	San Pedrito, Islas Murieléago, Guanacaste	Rare	25	1996	
		Corallaxius galapagensis	Parrita, Puntarenas	Rare	1000	2009	
		Euplikumum xantuarii	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Gnathophyllum panamensis	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Irriapusurus occidentalis	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Lipkenemaus spinulifer	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Pachycheles velanea	Everest, Parque Nacional Isla del Coco	Abundant	70–80	2009	
		Penicillines murcielagensis	Peñon Abrazo de la Muerte, Islas Murieléago, Guanacaste	Rare	30	1999	
		Plluminus stimpsonii	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Quadrella nitida	Peñon Abrazo de la Muerte, Islas Murieléago, Guanacaste	Rare	30	1999	
		Stenorhynchus debilis	Everest, Parque Nacional Isla del Coco	Abundant	70–80	2009	
		Synalpheus sp.	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Veleronia sympathec	Everest, Parque Nacional Isla del Coco	Abundant	70–80	2009	
		Waldola schmitti	Peñon Abrazo de la Muerte, Islas Murieléago, Guanacaste	Rare	30	1999	
	Octocorallia Eugorgia mutabilis	Megalobrachium tuberculipes	Los Poteros, Puerto Jiménez, Puntarenas	Abundant	Intertidal	2013	
		Neoprontonisides hennyonprahli	Los Poteros, Puerto Jiménez, Puntarenas	Rare	11	2013	
		Orthocelia purnilla	Los Poteros, Puerto Jiménez, Puntarenas	Rare	Intertidal	2013	
		Pseudotolmerina kawaiifrons	Los Poteros, Puerto Jiménez, Puntarenas	Rare	Intertidal	2013	
		Typton sp.	Los Poteros, Puerto Jiménez, Puntarenas	Rare	11	2013	
		Hippolyte sp.	Punta Islotes, Golfo Dulce, Puntarenas	Rare	NI	1997	
		Penicillines infrasinis	Punta Islotes, Golfo Dulce, Puntarenas	Rare	NI	1997	
		Penicillines sp.	Punta Islotes, Golfo Dulce, Puntarenas	Rare	NI	1997	
		Raytheres clavapedathus	San Pedrito, Islas Murieléago, Guanacaste	Rare	NI	1994	
		Pseudocteniaria elegans	Everest, Parque Nacional Isla del Coco	Abundant	70–80	2009	
		Quadrella noida	Everest, Parque Nacional Isla del Coco	Rare	70–80	2009	
		Quadrella nitida	Rodolitos, Parque Nacional Isla del Coco	Rare	50	2009	
		Megalobrachium	Playa Matapalo, Península de Osa, Puntarenas	Rare	11	2013	

Salas-Moya et al. Marine Biodiversity Records (2021) 14:6 Page 4 of 13
Table 1 Hosts, associated decapods, sites, depth and year of collections (Continued)

Host Phylum	Host Group	Host Species	Associated species	Site	Abundance	Depth (m)	Year
		tberculipes		Playa Matapalo, Península de Osa, Puntarenas	Rare	11	2013
		Pacifigorgia irene	Neopontonides henryvongrahi	Playa Matapalo, Península de Osa, Puntarenas	Rare	11	2013
		Pacifigorgia irene	Orthochela purnilla	Playa Matapalo, Península de Osa, Puntarenas	Rare	11	2013
		Pennatulacea	Euceramus transversilineatus	Punta Sortija, Bahía Santa Elena, Guanacaste	Rare	NI	2013
Hydrozoa	Stylaster	Munida sp.		Everest, Parque Nacional Isla del Coco	Rare	86	2014
Mollusca	Gastrozoa	Crepidula sp.	Calyptraeotheres pelopis	Punta Morales, Golfo de Nicoya, Puntarenas	Rare	Intertidal	2014–2016
	Bivalvia	Pinctada mazatamica	Pontonia marganta	Isla Tortuga, Golfo de Nicoya, Puntarenas	Rare	2–18	1993–2018
		Pinctada mazatamica	Pontonia marganta	Parque Nacional Isla del Coco	Rare	8	2014
		Pinna rugosa	Pontonia simplex	Playa Iguanita, Bahía Culebra, Guanacaste	Very rare	NI	1995
		Sacostrea palmula	Austerotheres angelicus	Punta Morales, Golfo de Nicoya, Puntarenas	Very abundant	Intertidal	2012–2014
	Polychaeta	Lanicola sp.	Glossella costaricana	Punta Morales, Golfo de Nicoya, Puntarenas	Abundant	Intertidal	1992
		Ni	Tetras scabripes	Bajo Manuela, Parque Nacional Isla del Coco	Rare	66	2009
		Onuphidae	Pinxia longipes	Punta Isletos, Golfo Dulce, Puntarenas	Rare	10	2014
		Onuphidae	Polyonyx nitidus	Punta Isletos, Golfo Dulce, Puntarenas	Rare	10	2014
Echinodermata	Asteroidea	Asteropsis carinifera	Calyptraeotheres sp.	Bahía Culebra, Guanacaste	Rare	12	2014–2016
		Asteropsis carinifera	Pachycheles biocellatus	Bahía Culebra, Guanacaste	Abundant	12	2014–2016
		Asteropsis carinifera	Zenopontonia soror	Bahía Culebra, Guanacaste	Absent	12	2014–2016
		Astropecten regalis	Myriococcus kiki	Manglar de Térraba-Sierpe, Puntarenas	Rare	8	2013
		Nidorella armata	Zenopontonia soror	Bahía Salinas, Guanacaste	Absent	3–8	2014–2016
		Nidorella armata	Zenopontonia soror	Bahía Culebra, Guanacaste	Absent	3	2014–2018
		Pentaceraster cumingi	Zenopontonia soror	Isla Tortuga, Golfo de Nicoya, Puntarenas	Absent	6	2013
		Pentaceraster cumingi	Zenopontonia soror	Golfo Dulce, Puntarenas	Absent	2–16	2014
		Pentaceraster cumingi	Zenopontonia soror	Bahía Culebra, Guanacaste	Abundant	25	2014–2016
		Pentaceraster cumingi	Zenopontonia soror	Bahía Cuajiniquil, Golfo de Santa Elena	Abundant	2–12	2014–2018
		Astropyga pulvinata	Tuleariocaris halithusi	Bahía Culebra, Guanacaste	Abundant*	6–8	2013–2014
		Centroidea	Pseudocoutierea elegans	Parque Nacional Isla del Coco	Abundant	85–103	2009, 2013,
tem is in a phase shift, where some macroalgae have increased their abundance and become dominant, e.g., *Caulerpa sertularioides* (Fernández-García et al. 2012; Arias-Godínez et al. 2019). Several collections were done at the Islas Murciélago, an archipelago in Área de Conservación Guanacaste (Cortés 2017). In the Gulf of Nicoya, specimens were obtained from the coral communities of Isla Tortuga, where coral cover is below 5% and of low diversity (Alvarado et al. 2018), as well as from the intertidal mudflat of Punta Morales, where polychaete worms and ostracods predominate (Vargas 1987). Punta Nicuesa is a coral community with one of the highest covers of live coral along the southern Pacific coast (up to 83.4%) (Alvarado et al. 2015). Isla del Coco is the site with the greatest protection in Pacific Costa Rica; coral cover there is reported to be 18.64 ± 3.55% (Alvarado et al. 2016a; Cortés 2016b).

Collection

Collection of specimens was carried out in a targeted way. The available environments of most sites were explored from the intertidal zone to ~ 30 m deep, including mudflats, sandy beaches and rocky shores, coral and rocky reefs, rhodolith beds and subtidal soft bottoms. Different organisms that are known to be decapod hosts were collected and accommodated in separate plastic bags. Each of the collected specimens underwent a detailed visual inspection and the water was filtered to separate possible decapod symbionts. In general, echinoids, asteroids, holothuroids, octocorals and scleractinian corals were collected and externally inspected, while the interiors of the bivalves were inspected. Occasionally, sponges and annelids were collected. Most of the samples were collected manually in the intertidal zone and by scuba diving in the subtidal environments (Table 1). In the case of Isla del Coco, samples from two dives in the submarine *DeepSee* (Cortés and Blum 2008; Cortés 2019) that explored rocks in deep locations (between 60 and 280 m) were inspected. The sampling was opportunistic, which means that search efforts were not the same to all sites.

Our results include a species list of collected decapods associated with other organisms along the Pacific of Costa Rica, and their relative abundance. In addition, information is included from specimens collected in the Costa Rican Pacific, both on the coast and in Isla del Coco, which were in the collection of the Zoology Museum, University of Costa Rica (MZUCR, for its abbreviation in Spanish). These collections were carried out between 1970 and 2019; they included the intertidal zone, scuba diving to 40 m, dives of the submarine *DeepSee* to depths between 60 and 280 m and a dive of the submarine *ALVIN* to 1000 m deep (Tables 1 and 2). The list that is presented also includes the decapod associations that have previously been reported in the literature for Pacific Costa Rica. Species identification were done using Rathbun (1918, 1930, 1931), Holthuis (1951), Haig (1960), Williams (1986), Kim and Abele (1988), Kropp (1989), Ramos (1995), Castro (1996), Hendrickx (1999), Vargas (2000), Thoma et al. (2005), Marín and Anker (2009), Campos and Hernández-Ávila (2010). All names are according to WoRMS (http://www.marinespecies.org, last accessed 14 December 2020).

Results

One-hundred associations are reported, which include 74 species of decapods are guests of six phyla of hosts (Table 1). The phylum with the most associated decapods was Cnidaria, with 74 species i.e., 74% of the total), followed by Echinodermata with 15 species, and four each with Annelida and Mollusca, two with Chordata.

Table 1 Hosts, associated decapods, sites, depth and year of collections (Continued)

Host Phylum	Host Group	Host Species	Associated species	Site	Abundance	Depth (m)	Year
doederleini	*Diadema mexicanum*	Stenorhynchus debilis	Isla Tortuga, Golfo de Nicoya, Puntarenas	Abundant	2–15	2014–2019	
Diadema mexicanum	*Tulacoriocaris holthuvi*	Bahía Culebra, Guanacaste	Abundant*	2–8	2014		
Encope micropora	*Dissodactylus nitidus*	Bahía Salinas, Guanacaste	Rare	NI	2005		
Lanthonia longifissa	*Dissodactylus nitidus*	Playa Costa de Oro, Coyote, Guanacaste	Rare	NI	2010		
Tripneustes depressus	*Gnathophylloides mineri*	Bahía Wafer, Parque Nacional Isla del Coco	Rare	15	2016		
Chordata	Asciidea	*Rhopaloeola birkelandi*	Ascidia pusilla	Playas del Coco, Bahía Culebra, Guanacaste	Rare	Shallow	1970
		Ascidaia pusilla	Isla Bolaños, Bahía Salinas, Guanacaste	Rare	NI	2012	

NI No information
Seasonally abundant, otherwise rare
#	Species	Infraorder	Family	MZUCR
1	*Trizopagurus magnificus* (Bouvier, 1898)	Anomura	Diogenidae	NC
2	*Munida* sp. Leach, 1820	Munididae		3521
3	*Iridopagurus occidentalis* (Faxon, 1893)	Paguridae		2483
4	*Pagurus kepidus* (Bouvier, 1898)	Paguridae		NC
5	*Euceramus transversilineatus* (Lockington, 1878)	Porcellanidae		3266
6	*Megalobrachium tuberculipes* (Lockington, 1878)	Porcellanidae		3312, 3408
7	*Minyocerus kirki* Glassell, 1938	Porcellanidae		3327
8	*Orthochela pumila* Glassell, 1936	Porcellanidae		3312
9	*Pachycheles veleae* Haig, 1960	Porcellanidae		2746
10	*Pachycheles biocellatus* (Lockington, 1878)	Porcellanidae		3709–03
11	*Petrolithes antifrons* a Haig, 1960	Porcellanidae		2552
12	*Petrolithes haigae* Chace, 1962	Porcellanidae		NC
13	*Polyonyx nitidus* Lockington, 1878	Porcellanidae		3413
14	*Coralaxius galapagensis* Kensley, 1994	Axiidea		2733, 2738
15	*Paracallianidea laevicauda* (Gill, 1859)	Callianideida		2552
16	*Hapalocarcinus marsupialis* Stimpson, 1859	Brachyura	Criptochiroidae	1652, 1924
17	*Opecarcinus crescentus* (Edmondson, 1925)	Criptochiroidae		1646, 1801, 1957
18	*Domecia hilda* Eydoux & Souleyet, 1842	Domeciidae		1929
19	*Pachygrapsus transversus* (Gibbes, 1850)	Grapsidae		2552
20	*Stenorhynchus debilis* (Smith, 1871)	Inachidiidae		3461
21	*Ala cornuta* (Stimpson, 1860)	Mithracidae		NC
22	*Amphithrax tuberculatus* (Stimpson, 1860)	Mithracidae		2364
23	*Hemus finneganeae* Garth, 1958	Mithracidae		2607
24	*Nemausa sinensis* a (Rathbun, 1892)	Mithracidae		2413
25	*Teleophys cristipes* Stimpson, 1860	Mithracidae		NC
26	*Uca (Petruca) panamensis* (Stimpson, 1859)	Ocypodiidae		2552
27	*Eupilumnus xantusi* a (Stimpson, 1860)	Oziidae		2744
28	*Panopeus chilensis* H. Milne Edwards & Lucas, 1843	Panopeidae		3272
29	*Plumrus stimpsoni* b Miers, 1886	Plumriniidae		3466
30	*Austinotheres angelicus* (Lockington, 1877)	Pinnotheridae		1627, 2831, 2832, 2833, 3068, 3069
31	*Calyptraeotheres pepeluisi* b E. Campos and Hernández-Avila, 2010	Pinnotheridae		3279
32	*Calyptraeotheres* sp. b E. Campos, 1990	Pinnotheridae		3709–01
33	*Dissodactylus nitidus* Smith, 1870	Pinnotheridae		2859, 3052
34	*Glassella costaricana* (Wicksten, 1982)	Pinnotheridae		1883, 2564, 2605, 2606, 2685, 2911, 3107, 3115, 3194, 3271, 3311, 3452, 3453, 3506, 3530
35	*Parapinnixa cortesi* B. P Thoma, Heard & Vargas, 2005	Pinnotheridae		2552
36	*Pinnixa longipes* (Lockington, 1876)	Pinnotheridae		3413
37	*Raytheres clavapedatus* b (Glassell, 1935)	Pinnotheridae		2604
38	*Tetrias scabripes* Rathburn, 1898	Pinnotheridae		2821
39	*Quadrella nitida* Smith, 1869	Trapezidae		1963, 2309, 2730, 2737
40	*Trapezia bidentata* (Forskål, 1775)	Trapezidae		2294, 2852, 3565
41	*Trapezia corallina* Gerstaecker, 1856	Trapezidae		2851
42	*Trapezia cymodoce* (Herbst, 1801)	Trapezidae		1929
43	*Trapezia digitalis* Latreille, 1828	Trapezidae		1010
and one with Porifera. The host order with the greatest diversity of associated decapods was Scleractinia (Table 1). The species that showed the most associations with different hosts was *Zenopontonia soror*, which was found in five species of seastars (Table 1). This species was recently reported new to Costa Rica by Vargas-Castillo and Cortés (2019). The shrimp *Pseudocoutierea elegans* was found in hosts from three groups (Octocorallia, Hydrozoa, and Echinoidea). On the other hand, *Tetrias scabripes* was found associated solely with polychaetes (Table 1).

Of the associations recorded 59% were rare, that is, we observed them in a few occasions or with few individuals. While 36% of the associations were observed many times and with several members of the symbiont species on the host. Four relations were very abundant, three of them, *Hemus finneganae*, *Stenorhynchus debilis* and *Pachygrapsus transversus* with hard corals, and *Austinotheres angelicus* with a bivalve. On the other extreme was *Pontonia simplex* of which we found only one specimen in a bivalve.

Table 2: Decapods associated with other invertebrates on Pacific Costa Rica (Continued)

#	Species	Infraorder	Family	MZUCR
44	*Cycloxanthops vittatus* (Stimpson, 1860)	Xanthidae	NC	
45	*Heteractaea lunata* (Lucas in H. Milne Edwards & Lucas, 1844)	Xanthidae	NC	
46	*Lipaesthes luminarius* Rathbun, 1898	Xanthidae	2607	
47	*Lipkemedaes spinulifer* (Rathbun, 1898)	Xanthidae	3461	
48	*Platypodia ratundata* (Stimpson, 1860)	Xanthidae	2813	
49	*Williamstimpsonia stimpsoni* (A. Milne-Edwards, 1879)	Xanthidae	2853–05	
50	*Alpheus floridanus* a Kingsley, 1878	Caridea	2552	
51	*Alpheus lottini* Guérin-Méneville, 1838 (in Guérin-Méneville, 1829–1838)	Alpheidae	2364, 3565	
52	*Synalpheus* sp. Spence Bate, 1888	Alpheidae	3466	
53	*Hippolyte* sp. Leach, 1814 [in Leach, 1813–1815]	Hippolytidae	3187	
54	*Ascidonia pusilla* Holthuis, 1951	Palaemonidae	3302	
55	*Brachycarpus biunguiculatus* (H. Lucas, 1846)	Palaemonidae	3565	
56	*Fennera chacei* Holthuis, 1951	Palaemonidae	2851, 2852	
57	*Harpiliopsis depressa* (Stimpson, 1860)	Palaemonidae	1929	
58	*Gnathophylloides mineri* Schmitt, 1933	Palaemonidae	2744	
59	*Gnathophyllum panamense* a Faxon, 1893	Palaemonidae	2234, 3312, 3408, 3434	
60	*Neopontonides hervynorprihli* Ramos, 1995	Palaemonidae	3187	
61	*Periclimenes infrasinus* (Rathbun, 1902)	Palaemonidae	2247, 2308, 2309, 3526	
62	*Periclimenes muciagensis* Vargas, 2000	Palaemonidae	3187	
63	*Periclimenes* sp. O.G. Costa, 1844	Palaemonidae	1572, 1682, 3186, 3188	
64	*Pontonia margarita* a Smith in Verrill, 1869	Palaemonidae	2202	
65	*Pontonia simplex* Holthuis, 1951	Palaemonidae	2731, 3521, 3350	
66	*Pseudocoutierea elegans* a Holthuis, 1951	Palaemonidae	2233, 2413, 3312, 3408, 3434	
67	*Pseudoveleronia laevifrons* a Holthuis, 1951	Palaemonidae	3443, 3444, 3446	
68	*Tuleariocaris holthuisi* b Hipeau-Jacquotte, 1965	Palaemonidae	3443	
69	*Typton* sp. O.G. Costa, 1844	Palaemonidae	2233	
70	*Veleronia serratifrons* Holthuis, 1951	Palaemonidae	2727	
71	*Veleronia sympathes* a (De Ridder & Holthuis, 1979)	Palaemonidae	2247, 2309	
72	*Waldola schmitti* Holthuis, 1951	Palaemonidae	3445, 3449, 3709–02	
73	*Zenopontonia soror* Nobili, 1904	Palaemonidae	1770, 1925	
74	*Pomatogebia rugosa* a (Lockington, 1878)	Gebiidea	Upogebiidae	1770, 1925

MZUCR Catalogue number of the Zoology Museum, University of Costa Rica, NC Not catalogued

a New reports for Isla del Coco = 14

b New reports for Costa Rica = 4

Note: The table continues on the next page.
sea urchins, was seasonally abundant but rare at other times. A species that was abundant was always abundant, with very few exceptions, *Megalobrachium tuberculipes* and *Pseudoveleronia laevifrons* were abundant in one species of octocoral, *Eugorgia mutabilis*, but not in other octocorals. Symbiotic species were usually associated to the same species or group of related species, being an exception *P. elegans* that was abundant in an octocoral, a calcareous hydroid and a sea urchin (Table 1).

In total, 74 species of symbiotic decapods have been discovered in Pacific Costa Rica, 13 anomurans, two xiiids, 34 brachyurans, 24 carideans, and one gebiodid (Table 2). The family with the most symbiotic species was Palaemonidae (20 spp.), followed by the families Pinnotheridae and Porcellanidae, with nine species each. The genus with the most species was *Trapezia* with four, followed by *Periclimenes* with three. Fourteen new reports of decapods were recorded for Isla del Coco along with the occurrence of four new decapod records for Pacific Costa Rica, *Calyptraeotheres pepeluissi* Campos and Hernández-Ávila 2010, *Raytheres clavapedatus* (Glassell, 1935), *Tuleariocaris holthuisi* Hipeau-Jacquotte 1965 and *Pseudocoutierea elegans* Holthuis 1951. This is the first time that the genus *Calyptraeotheres* is reported in Costa Rica (Table 2).

In the following section, the associations are detailed according to the type of host (Table 1).

Porifera

In this study, only the species *Panopecus chilensis* is reported to be associated with an intertidal sponge, genus *Halichondria*. However, this is probably because the few studies on sponges have not focus on documenting the associated organisms.

Cnidaria

Fifty-six species of decapods, distributed in five orders, 23 families and 50 genera, were found associated with 21 species of cnidarians. *Opecarcinus crescentus* has only been found in *Pavona gigantea*, while Alvarado and Vargas-Castillo (2012) reported 16 species of decapods associated with *Pocillopora damicornis*, all of which are typically found with this host. Six additional species are reported associated to *Pocillopora* sp. Seven species were found living on *Porites lobata* and one, *PlatypodIella rotundata*, exclusively on *Tubastrea coccinea*. Fifteen species were found associated with Antipatharia. The two species associated with *Antipathes* sp. were also found in *Myriopathes panamensis*. Only one additional deep-water decapod, *Coralaxius galapagensis*, was found on *Lillipathes rita-mariae*. In Octocorallia, 22 associated species were found. *Eugorgia mutabilis* was the host with the greatest diversity of decapods, six. The two most common decapods in octocorals were *Neopontonides henyvonprahl* and *Pseudoveleronia laevifrons*; four crustaceans could not be identified to species. In the hydrozoans, symbionts have only been collected from *Stylaster marenzelleri*, where *Munida* sp. and *Pseudocoutierea elegans* were found.

Mollusca

Four species of decapods, distributed in two orders, two families and three genera, were found associated with four species of molluks. Symbionts have been found primarily in bivalves. In specimens of the pearl oyster *Pinctada margarita*, pairs of the shrimp *Pontonia* have been found living inside the oyster on numerous occasions; *P. simplex* was found in *Pinna rugose*. In the oyster, *Saccostrea palmula*, the pinnotherid crab *Austinotheres angelicus* has been reported as a guest with a prevalence of 38% (Mena et al. 2014). Only pairs of *Calyptraeotheres pepeluisi* were found living in the interior of the gastropod *Crepidula* sp. on the mangrove roots at Punta Morales.

Annelida

Four species of decapods, distributed two orders, two families and four genera, were found associated with three species of polychaetes. The tubes of one species of Onuphidae, one species of Terebellidae and the tube of an unidentified family were inspected in the intertidal zone of Punta Morales, Gulf of Nicoya. The Pinnotheridae crab, *Glassella costaricana* was found associated with the polychaete *Lanciola* sp. The species *Pinnixa longipes* and *Polyonyx quadriungulatus* were found in the tube of the onuphids.

Echinodermata

Nine species of decapods, distributed in two orders, four families and nine genera, were found associated with 12 species of echinoderms. These species were observed living as epibionts in four species of echinoids and five species of asteroids (Table 1). On the sea star *Asteropsis carinifera*, three species were found: *Pachyteles biocellatus*, *Zenopontonia soror* and *Calyptraeotheres* sp., while in the sea star *Pentaceraster cuningi* and the sea urchin *Diadema mexicanum*, several individual symbionts of both sexes and in different stages of development were found in a single host individual. Symbiotic decapods were found both in solitary and in aggregated echinoderms, such as *Astropyga pulvinata* and *D. mexicanum* in reef sites in Bahía Culebra, the sea star *NidorEllia armata* in rocky reefs close to Playa Rajada, Bahía Salinas, the sea star *Pentaceraster cuningi* on soft bottoms near reefs in Golfo Dulce. Aggregates of *P. cuningi* are common in the rhodolith beds of Isla del Coco, however, no decapods were found associated.
The shrimp *Z. soror* was found in the five sea star species collected, which belong to the families Oreasteridae (*N. armata* and *P. cumingi*), Ophidiasteridae (*Pharia pyramidata* and *Phataria unifascialis*) and Asteropsidea (*A. carinifera*). The shrimp *Tuleariocaris holthuisi* was found associated with two species of sea urchins of the family Diadematidae (*A. pulvinata* and *D. mexicanum*) in Bahía Culebra. Finally, a female of *Gnathophylloides mineri* was found associated with *Tripneustes depressus* in Bahía Wafer, Isla del Coco, at a depth of 8 m.

Chordata

Only one species of decapod, *A. pusilla*, was found associated with two species of ascideans. In 1970, *Ascidonia pusilla* was collected from specimens of the recently described ascidian *Rhopalaea birkelandi* from Playas del Coco, Bahía Culebra (Fujino 1972), and was described as *Pontonia spigoti*. A specimen of *A. pusilla* was found in association with an unidentified sea squirt (*Ascidacea*) from Isla Bolaños, northern Pacific Costa Rica.

Symbiotic decapods in Isla del Coco

In total, 28 associations of 24 species of decapods, in five orders and 17 families, were found at Isla del Coco. Of the species found, 10 belong to the infraorder Brachyura and 10 to the infraorder Caridea, associated with nine orders distributed among four phyla (Tables 1 and 2).

Discussion

In Costa Rica, few studies have focused on symbiotic decapods, with the majority carried out in the Pacific and only one in the Caribbean (Azofeifa-Solano et al. 2014). Most of these studies were focused on reproductive aspects of decapod guests. Fifty percent of the studies deal with pea crabs (*Pinnotheridae*), 35% are about the shrimp family *Palaemonidae*, and the remaining 15% are derived from studies of the diversity of organisms associated with the coral *P. damicornis* (Cabrera-Peña and Solano-López 1996; Cabrera-Peña et al. 2001; Alvarado and Vargas-Castillo 2012; Azofeifa-Solano et al. 2014; Mena et al. 2014; Salas-Moya et al. 2014). There is a need for more detailed studies of decapod crustaceans associated with macroinvertebrates.

In this study, *T. holthuisi* is reported from Bahía Culebra, where 24 individuals (juvenile, adult, egg bearing females, females without eggs and males) were associated with *D. mexicanum* and *A. pulvinata* collected in 2013 and 2014. This species is distributed from the east coast of Africa (Hipeau-Jacquotte 1965; Bruce 1982), the north east of Australia (Bruce 1990) and in Tahiti (J. Poupin pers. comm, in Marín and Anker 2009). It has also been found in Baja California, Mexico, where two individuals were collected (Wicksten and Hernández 2000) and in Isla Coiba, Panama, where an egg-bearing female was captured (Marín and Anker 2009). Bruce (1982) reported that *T. holthuisi* was found in different species of sea urchins in the Indo-Pacific, for example *Astrophyga radiata*, *Echinothrix diadema*, *Stomopneustes variolarius* and *Echinometra mathaei*. However, in the eastern tropical Pacific, *T. holthuisi* has only been found associated with the black sea urchin, *D. mexicanum* (Wicksten and Hernández 2000; Marín and Anker 2009). We have continued surveying and collecting the sea urchins *D. mexicanum* and *A. pulvinata*, but *T. holthuisi* has not been observed again. These results may be due to the fact that the sea urchins in Bahía Culebra displayed the highest population density levels of the eastern tropical Pacific after serious degradation of the reefs and a series of harmful algal proliferations of phytoplankton between 2005 and 2006 (Alvarado et al. 2012, 2016b). But in recent years the populations of sea urchins have declined, possibly due to the continual degradation of the reefs (Alvarado et al. 2018), which might explain the absence of *T. holthuisi*.

Knowledge on *Pseudocoulliera elegans* in the region is scarce. It has been reported for the Gulf of California and in the Galapagos Islands (Holthuis 1951). Because the collection method in this case was with the submarine *DeepSee*, which uses an arm and single specimen container that does not permit the separation of collection events, the authors consider that it is possibly associated with the sea urchin *Centroechidaris doederleini*, since it has been found associated with this species on three occasions (2009, 2013, 2016). New collection surveys of *C. doederleini* are recommended to confirm this association at Isla del Coco. It could be assumed that *P. elegans* tends to be more of a generalist in its host selection due to the low availability of hosts in the deep locations where it has been found (greater than 60 m).

The shrimp *Gnathophylloides mineri* is the decapod that is most frequently found associated with the sea urchin *T. depressus*, but we found only one female. It has been reported to represent up to 94% of the decapods associated with *Tripneustes ventricosus* in Isla Borracha, Venezuela (Vera-Caripe et al. 2017). In Australia, the association of *G. mineri* with sea urchins of the genus *Tripneustes* has also been reported (Bruce 1988).

The anomuran (false crab or porcelain crab) *Pachycheles biocellatus* was found to be associated with the seastar *A. carinifera*. However, it is known that this crab associates primarily with corals (García-Madrigal 1999), and there are reports of the species in rocky reefs or in sites near small coral colonies (García-Madrigal 2009). Another species that was found associated with *A. carinifera* is the pea crab from the family Pinnotheridae, *Calyptraeotheres* sp. This genus has already been reported by Campos (1990) to be associated with seastars, but it is more common to find it associated with
mollusks of the genus *Crepidula* (Campos and Hernández-Ávila 2010).

The cnidarians were the group where the most symbiotic organisms were found. This result was influenced by the study done by Alvarado and Vargas-Castillo (2012), which focused on symbionts of the coral *P. damicornis*. Additionally, in the case of soft corals, collection of associated organisms has been carried out for many years, although not systematically. Possibly, a greater diversity of associated decapod species may be found by increasing research efforts in a systematic way.

Of the 21 species found, 14 are new reports for Isla del Coco, according to the compilation done by Cortés (2012). The host in which the greatest number of symbiotic species at Isla del Coco was the black coral, *Myriopathes panamensis*. Host information was recorded for some of the decapod specimens of Isla del Coco in the collection of the MZUCR but not for others, as they were not collected in targeted surveys.

A small fraction of Pacific Costa Rica was surveyed. Even so, 14 new records of decapods associated with macroinvertebrates were found in the very well-studied Isla del Coco and four new records were discovered for Costa Rica. These results highlight the need to conduct more detailed studies in which time of year, depth, physico-chemical characteristics of the water, type of environment, the abundance of symbionts and hosts, and location in the hosts. This information will help to determine the real diversity and ecological importance of the associations between marine organisms.

Acknowledgements
The authors are grateful for the logistical support of the Centro de Investigación en Ciencias del Mar y Limnología (Research Center in Marine Science and Limnology, CIMAR) and Museo de Zoología (Zoology Museum, MZUCR) of the Universidad de Costa Rica (University of Costa Rica). The authors also thank Conservation International for financing some of the trips, as well as Undersea Hunter Group and its crew for trips to Isla del Coco and for the use of the submarine DeepSee. The authors wish to acknowledge Jaime Nivia, Odalissa Breedey, Cindy Fernández, Sebastián Mena, Kimberly García, Andrés Beita, Cristobal Salamé, Yolanda Camacho, Fiorella Vázquez and Benjamin Chomitz for their support with collecting samples. Samples were collected under the following resolutions of the Ministry of the Environment of Costa Rica: 015-2013, 065-2013-SINAC, 2016-1-ACMIC-022, ACMIC-1-2016-012, ACMIC-1-2017-06, R-SINAC-PNI-SE-002-2018, ACT-DR-DE-024-18, R-SINAC-ACCG-PL-041-2019, R-SINAC-PNI-ACLAP-035-2019, 04-2019-I-ACMC. The detailed review of the manuscript by Marjorie Reaka and of an anonymous reviewer is greatly appreciated.

Authors’ contributions
All authors contributed to the study conception and design. Material collection, preparation, data collection and analysis were performed by all authors, especially CSM and RVC. The first draft of the manuscript was written by CSM and checked by all authors. JC prepared the English version and final manuscript that was submitted and the revised draft. JCAS prepared the map. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported with personal funds from CSM and JCAS; a grant from Conservation International to JIA; grants from the Vicerrectoría de Investigación, Universidad de Costa Rica (UCR) [Grants numbers 808–98-013, 808-A5–037] to JC; [Grants numbers 808-B3–503, 808-B6–520] to JJA; salaries from UCR to RVC, JIA, JCN; and donated space in the vessel and submarine by Undersea Hunter.

Availability of data and materials
Museo de Zoología (Zoology Museum), Universidad de Costa Rica database.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José 11051-2060, Costa Rica. 2Escuela de Biología, Universidad de Costa Rica, San Pedro, San José 11051-2060, Costa Rica. 3CIBET-Museo de Zoología, Universidad de Costa Rica, San Pedro, San José 11051-2060, Costa Rica.

Received: 4 June 2020 Accepted: 22 December 2020

Reference
Alvarado JJ, Beita-Jiménez A, Mena S, Fernández-García C, Guzmán-Mora A, Cortés J. Ecosistemas coralinos del Parque Nacional Isla del Coco, Costa Rica: estructura y comparación 1987–2014. Rev Biol Trop. 2016a(4)(Suppl 1):515–75. https://doi.org/10.15517/rbt.v64i1.23423.

Alvarado JJ, Beita-Jiménez A, Mena S, Fernández-García C, Guzmán-Mora AG. Osa conservation area (Costa Rica) coral ecosystems: structure and conservation needs. Rev Biol Trop. 2015;63(Suppl 1):219–59.

Alvarado JJ, Beita-Jiménez A, Mena S, Fernández-Gracía C, Cortés J, Sánchez-Noguera C, Jiménez C, Guzmán-Mora AG. Cuando la conservación no puede seguir el ritmo del desarrollo: Estado de salud de los ecosistemas coralinos del Pacifico Norte de Costa Rica. Rev Biol Trop. 2018;66(Suppl 1):5280–308. https://doi.org/10.15517/rbt.v66i1.23423.

Alvarado JJ, Cortés J, Guzmán HM, Reyes-Bonilla H. Diversity, size and biomass of *Diodisma mexicanum* (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquat Biol. 2016;24:151–61. https://doi.org/10.3354/ab00645.

Alvarado JJ, Cortés J, Reyes-Bonilla H. Reconstruction of *Diodisma mexicanum* bioerosion impact on three Costa Rican Pacific coral reefs. Rev Biol Trop. 2012;60(Suppl 2):121–32. https://doi.org/10.15517/rbt.v60i2.19975.

Alvarado JJ, Vargas-Castillo R. Invertebrates asociados al coral constructor de arrecifes *Pocillopora damicornis* en Playa Blanca, Bahía Culebra, Costa Rica. Rev Biol Trop. 2012;60(Suppl 2):77–92. https://doi.org/10.15517/rbt.v60i2.19965.

Anthony KRN, Cannolly SR. Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients. Oecologia. 2004;141:373–84. https://doi.org/10.1007/s00442-004-1647-7.

Arias-Goedide G, Jiménez C, Gamboa C, Cortés J, Espinoza M, Alvarado JJ. Spatial and temporal changes in reef fish assemblages on disturbed coral reefs, north Pacific coast of Costa Rica. Mar Ecol. 2019;e12532. https://doi.org/10.1111/mee.12532.

Azofeifa-Solano JC, Elizondo-Coto M, Wehrtmann IS. Reproductive biology of the sea anemone shrimp *Penicillenes rathbunae* (Caridei, Palaemonidae, Pontoniinae), from the Caribbean coast of Costa Rica. ZooKeys. 2014;457:211–25. https://doi.org/10.3897/zookeys.457.3780.

Baeta JA. The origins of symbiosis as a lifestyle in marine crabs (genus *Petrolisthes*) from the eastern Pacific: does interspecific competition play a role? Rev Biol Mar Oceanogr. 2007;42:7–21. https://doi.org/10.4067/S0717-19572007000100002.

Baeta JA. Crustaceans as symbionts: an overview of their diversity, host use and life styles. In: Watling L, Thiel M, editors. The life styles and feeding biology of the Crustacea. Oxford: Oxford University Press; 2015. p. 163–89.
Vargas-Castillo R, Cortés J. New records of marine decapods and stomatopods in Área de Conservación Guanacaste (ACG): four years of marine biodiversity inventorying. Mar Biodiv Rec. 2019;12:21. https://doi.org/10.1186/s41200-019-0181-6.

Vera-Caripe J, Díaz O, Lina C, Bolaños J. Crustáceos decápodos asociados a Tripneustes ventricosus (Lamarck, 1816) (Echinodermata; Echinoidea) de la isla La Borracha, Parque Nacional Mochima, Venezuela. Publ Esp Bol Inst Oceanogr Venezuela. 2017;56:61–8.

Wehrtmann IS, Cortés J, Echeverría-Sáenz S. Marine biodiversity of Costa Rica: perspectives and conclusions. In: Wehrtmann IS, Cortés J, editors. Marine biodiversity of Costa Rica, Central America. Dordrecht: Springer and Business Media B.V.; 2009. p. 521–33. https://doi.org/10.1007/978-1-4020-8278-8_4998.

Wicksten MK, Hernández L. Range extensions, taxonomic notes and zoogeography of symbiotic caridean shrimp of the tropical eastern Pacific (Crustacea: Decapoda: Caridea). Bull South Calif Acad Sci. 2000;99:91–100.

Williams A. Mud shrimps, Upogebia, from the eastern Pacific (Thalassinoidea: Upogebiidae). San Diego Soc Nat Hist Mem. 1986;14:1–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.