Mechanical and Post-Cracking Performance of Recycled Aggregate Concrete Incorporating Synthetic Fibers

Syed M S Kazmi*, Muhammad J Munir, Yufei Wu, and Indubhushan Patnaikuni

School of Engineering, RMIT University, 376-392 Swanston St, Melbourne, Victoria-3001, Australia.

* s3636562@student.rmit.edu.au

Abstract. Reuse of concrete waste in novel construction is becoming very important topic nowadays. This study focuses to examine the post-cracking and mechanical performance, fracture behavior, and micro-structure of fiber strengthened recycled aggregate concrete (RAC). For this purpose, crack mouth opening diameter (CMOD) tests were conducted on twenty-seven notched beam specimens (550 x 150 x 150 mm) having three replacement levels (i.e., 0, 50 and 100%) of recycled concrete aggregates (RCA) and three synthetic fiber dosages (i.e., 0, 0.5 and 1%). Different mechanical properties of all mixes were also examined following ASTM standards. Drop in the mechanical performance of RAC was noticed at higher RCA replacement levels. However, synthetic fiber reinforced RAC showed better performance as compared to plain RAC. Results also depict positive influence of synthetic fiber addition on the residual flexural tensile strength of concrete. Approximately, 129% and 380% rise in toughness index and fracture energy was also observed for 1% fiber incorporation in RAC. Moreover, scanning electron microscopic analysis also confirmed the synthetic fiber-mortar bond. Therefore, synthetic fibers enhance the post-cracking and mechanical performance of fiber reinforced RAC resulting into more ductile and energy absorbing sustainable concrete.

1. Introduction

Concrete is widely utilized in different construction projects around the globe, which is produced after using a huge quantity of natural resources. Concrete aggregates constitute around 60-75% of all the volume of concrete [1]. Annual consumption of natural coarse aggregates (NCA) in concrete production is about 20 billion tons and is predicted to double itself in the next 30 years [1]. On the other hand, huge amount of waste is produced from construction and demolition (C&D) activities worldwide. For instance, China and Australia produce 200 Mt [2] and 13.7 Mt [3] C&D waste each year. Similarly, US, Europe and Japan produce 900 Mt of construction and demolition waste per year [4]. Best possible solution of the problem is to reuse this construction and demolition waste to yield recycled concrete aggregates (RCA). Consequently, landfilling problems as well as exhaustion of natural resources may be reduced to a great volume.

A lot of studies are available in the open literature regarding the utilization of different wastes in the novel construction materials [5-15]. Recycling of C&D waste in the form of RCA to produce recycled aggregate concrete (RAC) have also been investigated by many researchers in the past [1, 4, 7, 16, 17]. Reduction in mechanical performance of recycled aggregate concrete (RAC) was reported in previous studies due to inferior properties of RCA [18, 19]. Approximately, 25%, 23% and 24% decrease in the compressive, flexural strength and split tensile strength was observed in fully RCA incorporated RAC [1, 7, 19]. Variety of RCA treatment techniques have been proposed by researchers to improve RAC

 DOI: 10.1088/1757-899X/829/1/012003
properties, including surface modification of RCA through carbonation or other techniques [20],
removing adhered mortar from RCA [17], modifying RAC mixing method [21-23], utilization of
contentious materials and incorporation of different fibers in RAC fibers [24-26]. Increase in the
mechanical properties was reported in the fiber reinforced RAC. For example, 13%, rise in the
compressive strength was observed for 0.75% steel fiber dosage [27]. Similarly, 4 and 31% surge in the
flexural strength and split tensile strength was also reported after incorporating 1% synthetic fibers [28].
Moreover, improved flexural performance and impact resistance of fiber strengthened concrete was also
reported due to utilization of synthetic fibers [29].

Nowadays different types of synthetic and steel fibers are utilized in variety of construction projects.
Synthetic fibers are used in different types of constructions for example tunnel linings and industrial
pavements due to lighter in weight, cheaper in cost, better distribution in concrete, improved impact
resistance and durability as compared to steel fibers [16, 30]. Synthetic fibers have been reported very
useful for normal concrete due to the associated better performance of resulting fiber reinforced concrete.
However, there is a scant literature available on the effect of synthetic fibers on the properties of RAC.
Consequently, more research is required to explore the mechanical and post-cracking properties of
synthetic-fiber strengthened RAC. The aim of this study is to explore the post-cracking and mechanical
properties of synthetic-fiber incorporated RAC. For this reason, nine different concrete mixes were
prepared and tested with 0, 50 and 100% RCA replacement and 0, 0.5 and 1% synthetic fiber dosage.

2. Materials and mixture proportion

NCA and RCA having maximum size 14 mm were utilized in this research. RCA was attained from
local concrete crushing plant having bulk density and water absorption 1413 kg/m3 and 7.61% respectively.
NCA comprised of crushed basalt aggregates having bulk density and water absorption 1512 kg/m3 and 2.06% respectively. The gradation of RCA and NCA is depicted in figure. 1.

![Figure 1. Gradation of NCA and RCA.](image1)

RCA used in this study had less than 1% 30% contaminants and brick pieces respectively. Therefore,
RCA can be categorized under class 1B [31-33]. Local sand from river source having specific gravity
value of 2.65 and Ordinary Portland cement (OPC) were used throughout the study. Polypropylene

![Figure 2. Polypropylene synthetic fibers.](image2)
synthetic fibers were used in this study had length, equivalent diameter, young’s modulus and density 57 mm 0.65 mm and 14 GPa and 0.91 kg/m³ respectively (figure. 2). A total of nine concrete mixes with three RCA replacement levels (0,50 and 100%) and three fiber dosages (0, 0.5, 1%) were prepared and tested to investigate the performance of synthetic fiber reinforced RAC (table 1). Oven dried aggregates were used in this study and additional amount of water was mixed to concrete mixes depending upon the water absorption capacity of the aggregates.

3. Sample preparation and test methods
Concrete mixtures were prepared using pan mixer as per ASTM C192 / C192M - 16a [34]. Three concrete prisms having size 150 x 150 x 550 mm and six 150 mm diameter cylinders having 300 mm height were prepared for all the nine mixes. To evaluate the post-cracking performance of synthetic fiber strengthened RAC, a 25 mm high notch was made in the concrete prisms and tested under three point bending test to record load and Crack mouth opening displacement (CMOD) as per EN 14651:2005 [35]. Moreover, 28 days compressive strength and split tensile strength was also determined in accordance with ASTM C39:2017 [36] and ASTM C496:2017 [37], respectively.

Residual flexural tensile strength describes the post-cracking performance of the concrete sample was calculated at different CMOD values using Equation 1.

\[R_j = \frac{3F_j}{2bh^2p} \]

Where, Fj and Rj are the and load and residual flexural tensile strength at different CMOD (i.e. 0.5, 1.5, 2.5 and 3.5 mm). Similarly, b, l and Hsp are the width of beam, span of beam and the height of beam exclusive of the depth of notch, respectively. The fracture energy (Gf) of concrete samples was determined using Equation 2 [38].

\[G_f = \frac{W_0 + mg\delta}{A} \]

Where W₀ denotes the area underneath the load-CMOD curve (N/m), mg is the beam weight among its supports (kg), δ is the peak deflection (m) and A is the area of fracture equivalent to [b(d - ao)] (m²), b, d and ao are the breadth, height of the notched beam specimen and height of notch, respectively. Toughness of all the fiber-reinforced samples were calculated using ratio of area underneath load-CMOD diagram of fiber-reinforced and plain concrete specimen [39]. Moreover, Philips XL30 scanning electron microscope (SEM) was used to investigate the micro-structure of fiber reinforced and plain concrete specimens.

4. Results and discussions

4.1 Mechanical performance of synthetic fiber reinforced concrete
Table 2 shows the average compressive and split tensile strength values of plain and synthetic-fiber strengthened normal aggregate concrete (NAC) and RAC concrete specimens. Drop in the compressive and split tensile strength values was noticed with rise in the RCA replacement percentage. For instance, 25% and 16% reduction of compressive and split tensile strength was noted for 100% RCA replacement. This reduction in mechanical performance of RAC may be attributed to the weak old mortar attached with the RCA surface [1, 40].

However, addition of synthetic fibers resulted in the improved mechanical properties of fiber-reinforced RAC. Addition of 1% synthetic fibers resulted in 5% and 30% rise in the compressive strength and split tensile strength of the RAC. Synthetic fibers improve the resistance of micro crack sliding [41] and help in transferring the stress from concrete to fibers [42] leading to improved mechanical performance of concrete. Similar improved mechanical properties of concrete due to fiber incorporation was also observed in past studies [25, 27].
Table 1. Mix proportion details.

Group ID	R0	R0P0.5	R0P1	R50	R50P0.5	R50P1	R100	R100P0.5	R100P1
Cement (kg/m³)	451.4	451.4	451.4	451.4	451.4	451.4	451.4	451.4	451.4
Sand (kg/m³)	708.6	708.6	708.6	708.6	708.6	708.6	708.6	708.6	708.6
NCA (kg/m³)	822.5	822.5	822.5	411.2	411.2	411.2	---	---	---
RCA (kg/m³)	---	---	411.2	411.2	411.2	822.5	822.5	822.5	822.5
Synthetic fibers (%)	---	0.5	1	---	0.5	1	---	0.5	1
Water (kg/m³)	185.1	185.1	185.1	185.1	185.1	185.1	185.1	185.1	185.1
w/c	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Extra Water (kg/m³)	17.0	17.0	39.8	39.8	39.8	62.5	62.5	62.5	62.5
Slump (mm)	65	45	35	55	35	30	50	35	25

Table 2. Mechanical properties.

Mechanical properties	Compressive strength (MPa)	Split tensile strength (MPa)
R0	49.65	3.19
R0P0.5	50.20	3.80
R0P1	52.26	4.53
R50	41.48	3.24
R50P0.5	43.29	4.03
R50P1	44.24	4.39
R100	38.16	2.68
R100P0.5	40.16	3.69
R100P1	41.60	4.22

4.2 Post-cracking properties

Figures 3-5 depict the load-CMOD diagrams of all the concrete samples having three different dosages of synthetic fibers. It can be noticed that rise in RCA replacement level in the concrete results into lower peak load. For instance, 18% drop in the peak load was observed for 100% RCA replacement. Lower peak load may be due to weak old adhered mortar with RCA, similar results were reported in the past studies [31]. Steep and brittle post-peak performance was noted for the plain concrete specimens as revealed in figures 3-5. However, ductile behavior was observed in the samples incorporating synthetic fibers with steeper post-peak curve of RAC samples as equated to virgin concrete samples. For plain concrete samples, the test was conducted till failure. However, all the synthetic fiber reinforced samples were tested till 4 mm CMOD value as per [43]. Increasing trend of peak load was noticed with the rise in fiber amount for all the RCA replaced specimens (figure 4). For example, 20% rise in the peak load was noticed for 50% and 100% RCA replaced synthetic fiber strengthened concrete specimens as compared to the plain concrete specimens.
Plain concrete specimens showed brittle type of failure. However, synthetic fiber reinforced specimens absorbed energy by bridging the cracks resulting in better post-peak behavior in the load-CMOD diagram. Moreover, through the descending branch of load-CMOD curve, synthetic fiber reinforced samples retrieved some of the load due to bond between concrete and fiber surface [44]. Comparable tendency was detected in past study [45]. Higher elongation potential, better bonding with the cracked concrete and medium tensile strength of synthetic fibers results into more energy absorption for large displacements leading towards better post cracking performance of concrete [46]. Therefore, synthetic fibers improve the ductility and post-peak behavior of resulting concrete specimens.
4.3 Fracture energy and toughness index

Figure 6 depicts the drop in the fracture energy of concrete samples with the rise in RCA replacement level. However, synthetic fibers improved the fracture energy of normal as well as RAC specimens. For example, around 22% drop in the fracture energy was observed by incorporating 100% RCA with the same fiber dosage (i.e. 1%). Moreover, 380 and 372% rise in the fracture energies was also noticed for NAC and RAC specimens with 1% synthetic fibers respectively. Surge in the fracture energy may be credited to de-bonding and stretching of synthetic fibers resulting in the prevention of crack propagation and higher absorption of energy [47].

Rise in the toughness value of concrete samples was noticed with the upsurge in synthetic fiber dosage (figure 7). For example, 123% rise in toughness was observed in the RAC specimens after the increase of synthetic fiber dosage from 0.5 to 1%. Moreover, RAC specimens depicted higher toughness index values as compared to normal concrete specimens. Similar increase in toughness values was also reported in past study [16].

![Fracture Energy vs RCA Replacement Level](image1)

Figure 6. Fracture energy of concrete specimens.

![Toughness Index vs Synthetic Fiber Dosage](image2)

Figure 7. Toughness of concrete specimens.
4.4 Scanning electron microscopy

Figure 8 and figure 9 depict scanning electron microscope (SEM) images of RAC showing porous old adhered mortar attached with RCA and the microstructural interface of mortar and synthetic fibers in the concrete respectively. The lower post-cracking and mechanical performance of RAC in this study may be related to the weaker porous old adhered mortar attached with RCA. Figure 9 also presents the rough surface of concrete along with smooth surface of synthetic fiber resulting in stronger fiber-matrix bond. Better fiber-matrix bond also resulted in improved post-cracking and mechanical properties of fiber-reinforced concrete as equated to plain concrete.

5. Summary and conclusions

Following conclusions were drawn based on this study:

- Drop in the mechanical properties was observed with the RCA incorporation. However, synthetic fibers improved the mechanical performance of RAC.
- Synthetic fibers increased the highest load in load-CMOD diagram for normal as well as RAC specimens. RCA incorporation in concrete reduced the peak load of concrete specimens. Moreover, plain concrete specimens showed brittle post-peak behavior as compared to fiber reinforced specimens.
- Residual-flexural tensile strength of the concrete specimens increased with upsurge in synthetic fiber dosage resulting in improved post-cracking performance of normal concrete as well as RAC.
- RAC strengthened with 1% synthetic-fibers exhibited rise in the toughness and fracture energy by 129 and 380% respectively.
- SEM examination of displayed the porous old adhered mortar attached with the RCA, which caused inferior concrete performance. Presence of synthetic fiber-concrete bond was also noticed, which enhanced the post cracking and mechanical performance of fiber-reinforced concrete.
6. References

[1] Behera M, Bhattacharyya S K, Minocha A K, Deoliya R and Maiti S 2014 Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review Constr Build Mater. 68 501-16

[2] Productivity Commission 2006 Waste management: productivity commission draft report. (Canberra, Australia: Australian Government)

[3] Xiao J, Li W and Poon C 2012 Recent studies on mechanical properties of recycled aggregate concrete in China—A review Sci. China Technol. Sci. 55 1463-80

[4] Oikonomou N D 2005 Recycled concrete aggregates Cem Concr Compos. 27 315-8

[5] Kazmi S M S, Abbas S, Saleem M A, Munir M J and Khitab A 2016 Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes Constr Build Mater. 120 29-41

[6] Syed Minhaj Saleem Kazmi M J M, Safeer Abbas, Muhammad Azhar Saleem, Anwar Khitab, Muhammad Rizwan 2017 Development of lighter and eco-friendly burnt clay bricks incorporating sugarcane bagasse ash Pakistan J Eng App Sci. 21 1-5

[7] Kazmi S M S, Munir M J, Wu Y-F and Patnaikuni I 2018 Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete Constr Build Mater. 189 857-68

[8] Munir Muhammad J, Abbas S, Nehdi Moncef L, Kazmi Syed M S and Khitab A 2018 Development of Eco-Friendly Fired Clay Bricks Incorporating Recycled Marble Powder J Mat Civil Eng. 30 04018069

[9] Munir M J, Kazmi S M S, Khitab A and Hassan M 2016 Utilization of rice husk ash to mitigate alkali silica reaction in concrete. In: 2nd International Multi-Disciplinary Conference (IMDC 2016), (University of Lahore (Gujrat Campus)

[10] Kazmi S M S, Munir M J, Wu Y-F, Hanif A and Patnaikuni I Thermal performance evaluation of eco-friendly bricks incorporating waste glass sludge J Clean Prod. 172 1867-80

[11] Munir M J, Wu Y-F, Kazmi S M S, Patnaikuni I, Zhou Y and Xing F 2019 Stress-strain behavior of spirally confined recycled aggregate concrete: An approach towards sustainable design Res, Cons Rec. 146 127-39

[12] Kazmi S Minhaj S, Abbas S, Munir M J and Khitab A 2016 Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks J Build Eng. 7 372-8

[13] Abbas S, Saleem M A, Kazmi S M S and Munir M J 2017 Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties J Build Eng. 14 7-14

[14] Munir M J, Kazmi S M S and Wu Y-F 2017 Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach Constr Build Mater. 154 590-9

[15] Kazmi S M S, Munir M J, Patnaikuni I, Wu Y-F and Fawad U 2018 Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes Energy Build. 158 1117-29

[16] Buratti N, Mazzotti C and Savoia M 2011 Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes Constr Build Mater. 25 2713-22

[17] Kim Y, Hanif A, Kazmi S M S, Munir M J and Park C 2018 Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates – Comparative assessment of assorted techniques J. Clean. Prod. 191 339-49

[18] Kisku N, Joshi H, Ansari M, Panda S K, Nayak S and Dutta S C 2017 A critical review and assessment for usage of recycled aggregate as sustainable construction material Constr Build Mater. 131 721-40

[19] Etxeberria M, Vázquez E, Marí A and Barra M 2007 Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete Cem Concr Res. 37 735-42

[20] Zhang J, Shi C, Li Y, Pan X, Poon C-S and Xie Z 2015 Performance Enhancement of Recycled Concrete Aggregates through Carbonation J Matr Civil Eng. 27 04015029

[21] Tam V W Y and Tam C M 2008 Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc Constr Build Mater. 22 2068-77
[22] Tam V W Y, Tam C M and Le K N 2007 Removal of cement mortar remains from recycled aggregate using pre-soaking approaches Resour Conserv Recycl. 50 82-101
[23] Tam V W Y, Tam C M and Wang Y 2007 Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach Constr Build Mater. 21 1928-39
[24] Dong J F, Wang Q Y and Guan Z W 2017 Material properties of basalt fibre reinforced concrete made with recycled earthquake waste Constr Build Mater. 130 241-51
[25] Gao D, Zhang L and Nokken M 2017 Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength Constr Build Mater. 141 235-44
[26] Gao D, Zhang L and Nokken M 2017 Mechanical behavior of recycled coarse aggregate concrete reinforced with steel fibers under direct shear Cem Concr Compos. 79 1-8
[27] Carneiro J A, Lima P R L, Leite M B and Toledo Filho R D 2014 Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete Cem Concr Compos. 46 65-72
[28] Akça K R, Çakır Ö and İpek M 2015 Properties of polypropylene fiber reinforced concrete using recycled aggregates Constr Build Mater. 98 620-30
[29] Behfarnia K and Behravan A 2014 Application of high performance polypropylene fibers in concrete lining of water tunnels Mater. Des. 55 274-9
[30] Banthia N and Sappakittipakorn M 2007 Toughness enhancement in steel fiber reinforced concrete through fiber hybridization Cem Concr Res. 37 1366-72
[31] Commonwealth Scientific and Industrial Research Organization 1998 Guidance on the preparation of non-structural concrete made from recycled concrete aggregate. (Australia: Commonwealth Scientific and Industrial Research Organization)
[32] Tam V W-Y, Gao X-F and Tam C M 2006 Comparing performance of modified two-stage mixing approach for producing recycled aggregate concrete Mag Con Res. 58 477-84
[33] Kazmi S M S, Munir M J, Wu Y-F, Patnaikuni I, Zhou Y and Xing F 2019 Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study Cem Concr Compos. 104 103398
[34] ASTM C192 / C192M - 16a 2016 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. (West Conshohocken, PA: American Society of Testing and Materials)
[35] EN 14651:2005 2005 Test method for metallic fibered concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual). (Brussels, Belgium: European Committee for Standardization)
[36] ASTM C39:2017 2017 Standard test method for compressive strength of cylindrical concrete specimens. (West Conshohocken, PA: American Society of Testing and Materials)
[37] ASTM C496:2017 2017 Standard test method for splitting tensile strength of cylindrical concrete specimens. (West Conshohocken, PA: American Society of Testing and Materials)
[38] Recommendation R D 1985 Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams Mater. Str. 18 285-90
[39] Gopalaratnam V S and Gettu R 1995 On the characterization of flexural toughness in fibre reinforced concretes Cem Concr Compos. 17 239-54
[40] Kazmi S M S, Munir M J, Wu Y-F, Patnaikuni I, Zhou Y and Xing F 2019 Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete Cem Concr Compos. 97 341-56
[41] Li V C 1992 A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites Cem Concr Compos. 14 131-41
[42] Mohammadhosseini H, Abdul Awal A S M and Mohd Yatim J B 2017 The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres Constr Build Mater. 143 147-57
[43] 14651:2005 E 2005 Test method for metallic fibered concrete - Measuring the flexural tensile strength (limit of proportionality (LOP), residual). In: European Committee for Standardization, (Management Centre: rue de Stassart, 36 B-1050 Brussels
[44] Alberti M G, Enfedaque A and Gálvez J C 2014 On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete Constr Build Mater. 55 274-88

[45] Alberti M, Enfedaque A and Gálvez J 2015 Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete Constr Build Mater. 85 182-94

[46] Alberti M, Enfedaque A, Gálvez J, Cáновas M and Osorio I 2014 Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions Mater. Des. 60 57-65

[47] Merta I and Tschegg E K 2013 Fracture energy of natural fibre reinforced concrete Constr Build Mater. 40 991-7