Applying Bayesian Inference to Galileon Solutions of the Muon Problem

Henry Lamm
Physics Department, Arizona State University, Tempe, Arizona 85287, USA
(Dated: September 27, 2016)

We derive corrections to atomic energy levels from disformal couplings in Galileon theories. Through Bayesian inference, we constrain the cut-off radii and Galileon scale via these corrections. To connect different atomic systems, we assume the various cut-off radii related by a 1-parameter family of solutions. This introduces a new parameter α which is also constrained. In this model, we predict shifts to muonic helium of $\delta E_{He^3} = 1.97^{+0.28}_{-1.82}$ meV and $\delta E_{He^4} = 1.69^{+0.25}_{-1.61}$ meV.

I. INTRODUCTION

Measurements in muon physics[1–4] have shown discrepancies with theoretical calculations. This “muon problem” could signal lepton universality violation from beyond standard model (BSM) physics. A stronger muon coupling to new physics is sensible from effective field theory (EFT). Suppose the EFT has a cutoff scale Λ. Then, observables should scale as powers of m_i/Λ. This is analogous to the enhancement of weak interactions in muonic helium. We conclude in VII with a short discussion of future work.

Disformal scalar couplings can arise in Galileon theories currently being investigated in modified gravity scenarios [6, 7]. The disformal coupling to matter allow for quantum loop corrections to atomic energy levels. This opens up the tantalizing possibility gravitational effects resolve the radii discrepancies [2, 4]. It is necessary to include chameleon interactions to avoid constraints from astrophysical and colliders [8]. These, though, have no effect on the low energy constraints considered here.

Due to the highly-singular nature of the disformal scalar interaction, a particle-dependent cut-off radius r_i for the Galileon interaction had to be introduced to render the $2s - 2p$ Lamb shift finite. Brax and Burgess assumed r_i was equal to the particle charge radius $\sqrt{r_{ch}^2}$ [8], but only considered bound states with nuclei. In [9], this assumption was applied to purely leptonic bound states (e.g. e^+e^-, $e^-\mu^+$). The leptonic r_i consistent with the muonic hydrogen discrepancy was found to be experimentally ruled out. Therefore $r_i = \sqrt{r_{ch}^2}$ is inconsistent with data.

Removing this constraint, the relation between r_i of different particles is must be specified some other way. The nonperturbative nature of the Galileon field makes computing r_i from first principles difficult. In this work, we instead introduce a phenomenological 1-parameter relationship between r_i of different particles. In [9], it was seen that using the Lamb shift of multiple atoms is unable to break the degeneracy between r_i and M in parameter space. To resolve this issue we compute the Galileon correction to the 1s Lamb shift, 1s − 2s interval, and the circular transitions between states $n \leq 5$. These new constraints are found to partially break the degeneracy in regions of parameter space where sufficiently strong experimental bounds exist.

We begin in Sec. II with a short review of how disformal couplings arise and what the leading order corrections to the transitions are found. Sec. III is devoted to introducing and motivating the model for r_i used in this paper. Following this is a short discussion of the transitions used in our study in Sec. IV. In Sec. V are found the results from considering all the experimental values in a Bayesian analysis. Using the results, Sec. VI presents prediction for the Galileon correction to muonic helium. We conclude in VII with a short discussion of future work.

II. CORRECTIONS FROM GALILEONS

Bekenstein has shown that the most general metric formed from only $g_{\mu\nu}$ and a scalar field ϕ respecting causality and weak equivalence is [10]:

$$g_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi,$$

where $X = \frac{1}{2}g_{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$. The first term leads to conformal scalars, whose couplings to matter are heavily constrained by various fifth-force experiments. For us, only the second term, which yields the disformal coupling, matters. This Lagrangian interaction is

$$L_{dis} = \frac{B(\phi, X)}{2}\partial_{\mu}\phi\partial_{\nu}\phi T_{\mu\nu}^{\phi},$$

where $T_{\mu\nu}^{\phi}$ is the energy-momentum tensor of matter given in the Jordan frame.

The leading disformal coupling in nonrelativistic systems is a one-loop quantum effect that results in a correction to the energy-level of an atomic system given by [7, 11, 12]:

$$\delta E = -\frac{3m_i m_j}{32\pi^3 M^8} \left< E \frac{1}{r_i^7} | E \right>,$$

where $m_i \geq m_j$ are the masses of the constituent particles and M is the Galileon coupling scale.

From this we can derive the correction to each energy level. For the $n = 1, 2$ states, the correction diverges like...
1/\rho^4$ and therefore must be cut-off at some radius for each mass m_i, r_i. For the $n = 3$, the correction has a milder singularity of $\log(r)$. For states $n \geq 4$, the correction is finite in the limit of $r \to 0$, and therefore these higher transitions can give limits on M that are less dependent on r_i.

Our results for the corrections to the transition energies are listed in Tab. I. We note that these are the exact relations obtained from using the full hydrogenic wave functions, in contrast to previous works\cite{7–9}. Using the full wave functions was found to be necessary when re-deriving the $2s-2p$ Lamb shift correction. There, the next-to-leading order term in the $2s$ state is larger than the leading order $2p$ term, and therefore the energy correction used in \cite{7–9} is inconsistent. Due to the small size of these corrections in comparison to the leading-order $2s$ term, previous results are unaffected except for very large r_i.

III. PARAMETERIZING WITH r_G

As seen in \cite{9}, the combination of multiple bound states can restrict the (r_i, M) parameter space if an assumption about the relationship between the cut-off radii is known. In this work, we investigate the viability of using the 1-parameter family

$$r_i = \left(\frac{m_i}{m_p}\right)^\alpha r_G, \quad (4)$$

where m_p is the proton mass, $r_G = r_p$ is the Galileon cut-off radius for the proton (which is unrelated to the charge radius, and to be determined), and α is a free parameter that will be fit by the data that relates different radii.

We motivate this choice on the grounds that the Galileon couples to the stress-energy tensor of a particle. With this, the radii might reasonably be a function of only the mass. Another argument in favor of this relationships is that various radii of nuclei to first order can be estimated in this fashion. A particular case of note is the case of $\alpha = \frac{1}{3}$, which corresponds to each particle have the same density

$$\frac{m_i}{\frac{4}{3}\pi r_i^3} = \frac{m_j}{\frac{4}{3}\pi r_j^3}. \quad (5)$$

This is a good approximation for nuclear charge radii which neglects nuclear shell effects and is the origin of the relation $\sqrt{\langle r_i^2 \rangle} \propto A^{1/3}$. Another case is that of $\alpha = 0$, which corresponds to limit where all particles have the same r_G. With Eq. 4, corrections to transition energies from any bound state are determined by (r_G, M, α).

IV. TRANSITIONS

Previous work on disformal scalars have focused almost exclusively on the discrepancies found in the $2s-2p$ Lamb shifts in muonic hydrogen and muonic deuterium. In order to break the degeneracy between r_G and M, it is useful to study the corrections to other atomic transitions where there isn’t an existing discrepancy. We discuss the various experimental values that are used in our analysis in this section. Throughout this work, we consider the energy difference $\Delta E_{\text{exp-theor}}$ which is the difference between the experimental and theoretical values.

The muonic hydrogen and muonic deuterium discrepancies\cite{2, 4} we use are discrepancy between experimental values and theoretical calculations using the CODATA values of the charge radii\cite{13} and are found in Tab. II. Along with these, we use the analogous constraints for muonium $(e^-\mu^+)$ and positronium (e^-e^+)\cite{14–19}. Since the Galileon correction is proportional to the mass of the two particles in the atom, leptonic system bounds are much weaker for $\alpha = 0$ since $m_e, m_\mu \ll m_p, m_D$. For $\alpha < 1$, these limits move upward and becoming more constraining. Leptonic systems then rule out small or negative α for all values of r_G, and M.

The muonium Lamb shift was only measured to 0.5% in 1990, and a renewed experimental effort reducing this to match the 0.02% theoretical uncertainty could significantly improve limits on new physics. For positronium, the Lamb shift is also limited by experimental precision that is two orders of magnitude larger than the theoretical values.

For muonium and positronium, it is also possible to use the $1s-2s$ interval to constrain the Galileon corrections. The values adopted in this work are found in Tab. III. While the $1s-2s$ intervals are also measured in hydrogen and deuterium, we neglect them due to their use in deriving the Rydberg constant and their theoretical uncertainty associated with QCD. Compared to the $2s-2p$ Lamb shifts, the $1s-2s$ interval’s experimental errors are only one order of magnitude larger than theory, so smaller gains are possible without theory improvements.

We also apply constraints from heavy hydrogen-like ions to restrict $\alpha > 1$ since any limit in these systems becomes even more restrictive. In the ions we investigated, the $1s$ Lamb shift has been measured to the 1% level or less. The results we utilize are found in Tab. IV. The error in these results is dominated by experimental error, which is two orders of magnitude larger than the theoretical values, although on-going work may improve these soon.

Higher Z muonic atoms have been studied extensively, and their transitions can also be leveraged to constrain r_G and M. We note that the potential of Eq. 3 isn’t sensitive to spin, so the fine structure of the x-ray transitions aren’t effected. It would be interesting to compute Galileon corrections from the annihilation channel. This would open up both the fine structure and precision hyperfine splitting measurements to study.

The most precisely measured transitions occur in $^{24}_{\text{12}}$Mg and $^{28}_{\text{14}}$Si, and these results have a large influence on the viable parameter space. In the limit of $\alpha \to 0$, they rule out Galileon corrections to muonic hydrogen
TABLE I. $\delta E_n = \kappa_n(x) F_n(x), \eta = \frac{m_e m_n}{2 \pi m_n^2}, x = r_i/a$, where $a = (Z\alpha m_e)^{-1}$ is the Bohr radius of the system, m_e is the reduced mass, and we have defined a function, where $E_i(x)$ is the exponential integral function.

n	$\kappa_n(x)$	$F_n(x)$
1s Lamb	$-\frac{n}{2^{3/2}}$	$e^{-2x}(3 - 2x + 2x^2 - 4x^3) - 8x^4 E_i(-2x)$
1s-2s	$\frac{n}{2^{3/2}}$	$8e^{-2x}(3 - 2x + 2x^2 - 4x^3) - e^{-x}(3 - 5x + 4x^2 - 4x^3) - 4x^4[16E_i(-2x) + E_i(-x)]$
2s-2p Lamb	$\frac{n}{2^{3/2}}$	$e^{-2x}(6 - 10x + 7x^2 - 7x^3) - 7x^2 E_i(-x)$
2p-1s	$\frac{n}{2^{3/2}}$	$2^4 e^{-2x}(3 - 2x + 2x^2 - 4x^3) - x^2 e^{-x}(1 - x) - x^4[2 E_i(-2x) - E_i(-x)]$
3d-2p	$-\frac{n}{2^{3/2}}$	$e^{-x}(-3 + 5x - 4x^2 + 3x^3) + 4x^4\left[E_i(-x) - \frac{2}{3}x E_i(-\frac{2}{3}x)\right]$
4f-3d	$-\frac{n}{2^{3/2}}$	$e^{-x}(2 + x) + \frac{3^2}{4} E_i(-\frac{2}{3}x)$
5g-4f	$\frac{n}{2^{3/2}}$	$e^{-\frac{x}{2}}(3 + 7x - 2x^2 - 3x^3 + 150x + 30x^2 + 4x^3)$

TABLE II. Difference between experiment and theory for 2s – 2p Lamb shift in bound systems considered in this work.

Atom	$\Delta E_{exp-theor}[meV]$	Ref.
μ^2D	0.438(59)	[4]
μ^-p	0.329(47)	[2]
$e^-\mu^+$	-2.3(9.6) $\times 10^{-5}$	[14–17]
$e^-\mu^+$	4(695) $\times 10^{-8}$	[18, 19]

TABLE III. Difference between experiment and theory for the 1s – 2s interval in leptonic systems considered in this work.

Atom	$\Delta E_{exp-theor}[meV]$	Ref.
$e^-\mu^+$	2.3(4.1) $\times 10^{-5}$	[20–23]
$e^-\mu^+$	2.4(3.5) $\times 10^{-5}$	[19, 24]

TABLE IV. Difference between experiment and theory for the 1s Lamb shift in heavy hydrogen-like ions considered in this work.

Atom	$\Delta E_{exp-theor}[eV]$	Ref.
e^-Pb^+	15.4(22.0)	[25]
e^-Au^+	2.8(13.0)	[25]
e^-Au^+	-3.2(8.0)	[26]
e^-U^+	-3.4(4.7)	[27, 28]

and deuterium at a level far below those observed for $r_G < 5 \times 10^{-13}$ m for most (r_G, M) and therefore drive α to positive values and r_G to larger values (with the associated M being driven lower). The large set of muonic transitions used in this study are found in Tab. V.

For most of the muonic transitions, the error from experiment and theory are roughly equally, and therefore reducing either could greatly improve these limits. These experiments were all done during the 1970s and 1980s, therefore dramatic improvement in their measurement are possible. On the theory side, 66% of the error is from only two sources: electron screening and nuclear polarization [42] which can also potentially be reduced.

To get a sense for the functional dependence of each transition on r_G, and M, in Fig. 1 we have plotted a few example limits for the case $\alpha = 0$. The kinks appearing in the limits can be traced to the fact that the corrections in Tab. I are positive-semidefinite and negative-semidefinite in different regions of (r_G, M) space. When $0 < \alpha < 1$, atoms with $m_i < m_p$ see their limits move higher, while for $m_i > m_p$ limits are weakened. In this situation for example, the parameter space from μp are reduced while the positronium, Ps, start ruling out more space. The tension between limits like this are responsible for a good deal of parameter space being unacceptable. As will be seen, insisting that the μp and μD Lamb shifts are consistent place strong bounds on α.

V. ANALYSIS

We use the Bayesian inference tool MultiNest which calculates the evidence and explores parameter spaces with complex posteriors and pronounced degeneracies in high dimensions [43–45]. In addition to computing the evidence from the data, MultiNest derives the posterior probability distribution functions (PDF) through application of Bayes’ theorem. As constraints, we take all the results in Tabs. II, IV, III, V. We assume that the prior probability distribution function of each observable is given by a Gaussian with its standard deviation given by the uncertainty. We have taken uniform logarithmic priors in $M = [10^{-5}, 10^{5}]$ MeV and $r_G = [10^{-18}, 10^{-10}]$ m and a uniform prior in $\alpha = [-3, 3]$.

While the full results of our calculation are found in Fig. 2, the mean values and 1σ credible intervals are $r_G = 3.7^{+3.0}_{-3.0} \times 10^{-13}$ m, $M = 13^{+18}_{-7}$ MeV, and $\alpha = 0.21^{+0.21}_{-0.12}$. The mean value of r_G found corresponds to a radius ≈ 425 times larger than $r_p = 0.8758(77) \times 10^{-15}$ m. This large value of r_G is the same order of magni-
TABLE V. Difference between experiment and theory for muonic X-ray transitions considered in this work.

Element	Transition	$\Delta E_{\text{exp-theo}}$ [eV]	Ref.
^{12}C	$2p_{3/2} - 1s_{1/2}$	$-3.8(1.6)$	[29]
^{13}C	$2p_{3/2} - 1s_{1/2}$	$-1.8(7.2)$	[30]
^{7}N	$2p - 1s^a$	$-2(11)$	[31, 32]
^{8}O	$2p - 1s^a$	$1(22)$	[31]
^{24}Mg	$3d_{3/2} - 2p_{1/2}$	$0.7(1.1)$	[33, 34]
		$0.08(0.23)$	[35]
^{28}Si	$3d_{3/2} - 2p_{1/2}$	$0.6(2.0)$	[33, 34]
		$-0.18(0.33)$	[35]
		$-0.4(1.2)$	[33, 34]
		$0.10(82)$	[36]
		$0.12(23)$	[36]
^{31}P	$3d_{3/2} - 2p_{1/2}$	$-17.7(7.6)$	[33, 34]
		$0.4(2.6)$	[33, 34]
^{40}Ca	$3d_{3/2} - 2p_{1/2}$	$-10(8)$	[37, 38]
		$-3(6)$	[37, 38]
^{103}Rh	$4f_{5/2} - 3d_{5/2}$	$-3(28)$	[38, 39]
		$18(27)$	[38, 39]
^{50}Sn	$4f_{5/2} - 3d_{5/2}$	$-6(7)$	[37, 38]
	$4f_{7/2} - 3d_{5/2}$	$-3(9)$	[37, 38]
		$0(7)$	[37]
^{50}Ba	$4f_{7/2} - 3d_{5/2}$	$12(10)$	[40]
		$-4(9)$	[41]
		$-4(11)$	[37]
		$17(9)$	[40]
		$-12(9)$	[41]
^{58}Ce	$5g_{7/2} - 4f_{5/2}$	$1(8)$	[37]
		$10(6)$	[37]
^{80}Hg	$5g_{7/2} - 4f_{5/2}$	$32(29)$	[39]
	$5g_{9/2} - 4f_{7/2}$	$-39(29)$	[39]
^{203}Tl	$5g_{7/2} - 4f_{5/2}$	$-17(30)$	[39]
		$-3(10)$	[41]
		$-27(30)$	[39]
	$5g_{9/2} - 4f_{7/2}$	$-4(10)$	[41]
		$-10(7)$	[37]
^{82}Pb	$5g_{7/2} - 4f_{5/2}$	$1(15)$	[37, 38]
		$0(13)$	[38, 40]
		$1(10)$	[38, 41]
		$-9(7)$	[37, 38]
		$23(12)$	[38, 40]
		$-6(10)$	[38, 41]

a Unresolved fine structure

FIG. 1. Selected limits for M as a function of r_G with $\alpha = 0$. The solid lines correspond to 1σ lower bounds, while the dashed lines are the mean values of the discrepancies in muonic hydrogen and muonic deuterium.

tude as the muonic hydrogen Bohr radius, implying that the orbitals themselves may be strongly modified. The mean value of M is excluded by LHC and astrophysical constraints, but these can be avoided by introducing chameleon interactions as stated above. Our result for M represents a limit, albeit model-dependent, of $M > 7$ MeV at the 1σ level.

From the marginal PDFs, we see that a degeneracy exists between r_G and M. In contrast to [9] though the 2σ confidence region is finite and bounded. In contrast, the value of α is restricted to a small range $\alpha \approx [0, 0.6]$ because of heavy ions and leptonic systems. The peak in α can be understood by considering the ratio of the energy correction to the $m \leq 3$ transitions in two muonic atoms. The ratio between two muonic systems $m_i > m_j$ is

$$\frac{\delta E_i}{\delta E_j} \approx \left(\frac{m_i}{m_j} \right)^{1-4\alpha} \left(\frac{Z_i}{Z_j} \right)^3.$$ \hspace{1cm} (6)

Since increasing charge is related to increasing mass, the smallness of α prevents the mass-dependent term from dominating over the charge term except for very neutron-rich atoms, generically implying massive atoms have larger corrections. In contrast, in the case of two isotopes, the charge term cancels. The ratio is then is

$$\frac{\delta E_i}{\delta E_j} \approx \left(\frac{m_i}{m_j} \right)^{1-4\alpha}.$$ \hspace{1cm} (7)

Using this relation, we can see that for $\alpha > \frac{1}{2}$ heavier isotopes will have smaller corrections than lighter ones, and have larger corrections for $\alpha < \frac{1}{2}$. If we insert the results from μ^-D and μ^-p into this relation, we see that
\[
\log(M) = 1.13^{+0.37}_{-0.23}
\]

\[
\log(r_G) = -12.43^{+0.56}_{-0.73}
\]

\[
\alpha = 0.21^{+0.21}_{-0.12}
\]

\[
\delta E_{\Delta\mu}[^{\text{meV}}] = 1.97^{+0.35}_{-0.61}
\]

\[
\delta E_{\Delta\mu}[^{\text{meV}}] = 1.69^{+0.25}_{-0.57}
\]

FIG. 2. 1D and 2D marginal PDFs for \(\log(M)\), \(\log(r_G)\), and \(\alpha\) produced using the Galileon contributions from Tab. I to the transitions found in Tabs. II, IV, III, V. \(M\) is in units of MeV and \(r_G\) is in units of meters. Additionally plotted are the predictions for the \(2s - 2p\) Lamb shifts in \(\mu^{-}He^3\) and \(\mu^{-}He^4\). In the 1D plots, the dashed lines correspond to the mean, 1\(\sigma\) credible regions. In the 2D plots, the contour regions are the 1\(\sigma\) and 2\(\sigma\) credible regions.

they prefer a value of \(\alpha = 0.16\), which is near the peak of the 1D PDF of \(\alpha\). This indicates that the muonic Lamb shifts dominate the determination of \(\alpha\).

VI. PREDICTIONS FOR HELIUM

Using the PDFs, it is possible to make predictions for the \(2s - 2p\) Lamb shift in \(\mu^{-}He^3\) and \(\mu^{-}He^4\) that will soon be presented by the CREMA collaboration. In Fig. 2, we present the PDFs for these two mea-
measurements and their relation to the model parameters. We find the shifts to be $\delta E_{H,e} = 1.97^{+0.28}_{-1.87}$ meV and $\delta E_{H,e} = 1.69^{+2.25}_{-1.61}$ meV. The mean value of these corrections are more than a factor of four larger than the discrepancies in muonic hydrogen and muonic deuterium, and are 0.1% corrections to the theory values. This would be easily measured by the CREMA collaboration. If a smaller value of $\Delta E_{H,e}$ is found, it has the ability to greatly restrict (r_G, M, α) space.

As can be observed in Fig. 2, although the uncertainty on both predictions is large, they are strongly correlated. The strong correlation between each muonic helium corrections and the model parameters show the upcoming measurements will have a large effect on restricting the entire (r_G, M, α) parameter space. From the insensitivity of Eq. 7 to (r_G, M), combining both muonic helium measurements is greater than merely the sum of their parts.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have shown that Galileon corrections to muonic hydrogen and muonic deuterium can be consistently explained by introducing a 1-parameter family of relationships between the cut-off radii of different systems. Furthermore, predictions for the corrections to upcoming muonic helium experiments have been made. These corrections are can be quite large and the CREMA collaboration’s upcoming results will dramatically reduce the parameter space.

In the future, other than improving the experimental and theoretical errors of the current measurements, another important direction to investigate would be computing the corrections to other observables. Computing the fine and hyperfine splittings due to the Galileon couplings would be useful given there are no discrepancies in these measurements. A very fruitful direction of study would be in the calculation of the corrections to the anomalous magnetic moment of leptons, (a_e). Combining the high precision measurement of a_e with the persisting anomaly in a_{μ} would be useful in restricting the parameter space of (r_G, M, α).

ACKNOWLEDGMENTS

HL would like to express his gratitude to Jayden Newstead for his insightful comments. This work was supported by the National Science Foundation under Grants No. PHY-1068286 and PHY-1403891.

[1] G. Bennett et al. (Muon G-2 Collaboration), Phys. Rev. D73, 072003 (2006), arXiv:hep-ex/0602035 [hep-ex].

[2] A. Antognini et al., Science 339, 417 (2013).

[3] R. Aaij et al. (LHCb collaboration), Phys. Rev. Lett. 113, 151601 (2014), arXiv:1406.6482 [hep-ex].

[4] P. Pohl et al. (CREMA), Science 353, 669 (2016).

[5] H. Lamm, Phys. Rev. D 91, 073008 (2015).

[6] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys.Rev. D79, 064036 (2009).

[7] P. Brax and C. Burrage, Phys.Rev. D90, 104009 (2014).

[8] P. Brax and C. Burrage, Phys.Rev. D91, 045015 (2015).

[9] H. Lamm, Phys. Rev. D92, 055007 (2015), arXiv:1505.00057 [hep-ph].

[10] J. D. Bekenstein, Phys.Rev. D48, 3641 (1993).

[11] T. Kugo and K. Yoshioka, Nucl.Phys. B594, 301 (2001).

[12] N. Kaloper, Phys.Lett. B583, 1 (2004).

[13] P. J. Mohr, D. B. Newell, and B. N. Taylor, (2015), arXiv:1507.07956.

[14] K. Woodle, A. Badertscher, V. Hughes, D. Lu, M. Ritter, et al., Phys.Rev. A41, 93 (1990).

[15] G. Bhatt and H. Grotch, Phys.Rev.Lett. 58, 471 (1987).

[16] G. W. Erickson and H. Grotch, Phys.Rev.Lett. 60, 2611 (1988).

[17] B. Lautrup, A. Peterman, and E. de Rafael, Phys.Rept. 3, 193 (1972).

[18] D. Hagen, R. Ley, D. Weil, G. Werth, W. Arnold, and H. Schneider, Phys. Rev. Lett. 71, 2887 (1993).

[19] K. Pachucki and S. G. Karshenboim, Phys. Rev. A 60, 2792 (1999).

[20] V. Meyer, S. Bagaev, P. Baird, P. Bakule, M. Boshier, et al., Phys.Rev.Lett. 84, 1136 (2000).

[21] S. G. Karshenboim, Z.Phys. D39, 109 (1997).

[22] K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Konig, et al., J.Phys. B29, 177 (1996).

[23] S. G. Karshenboim, Can.J.Phys. 77, 241 (1999).

[24] M. S. Fee, A. P. Mills, S. Chu, E. D. Shaw, K. Danzmann, R. J. Chichester, and D. M. Zuckerman, Phys. Rev. Lett. 70, 1397 (1993).

[25] S. Kraft-Bernuth, V. Andrianov, A. Bleile, A. Eichler, P. Egelhof, P. Grabitz, S. Ilieva, O. Kiselev, C. Kilbourne, D. McCammon, et al., arXiv preprint arXiv:1608.01479 (2016).

[26] H. F. Beyer, G. Menzel, D. Liesen, A. Gallus, F. Bosch, R. Deslattes, P. Indelicato, T. Stöhler, O. Klepper, R. Moshammer, F. Nolden, H. Eichkoff, B. Franzke, and M. Steck, Zeitschrift für Physik D Atoms, Molecules and Clusters 35, 169 (1995).

[27] A. Gumbrizde, T. Stöhler, D. Banaá, K. Beckert, P. Beller, H. F. Beyer, F. Bosch, S. Hagmann, C. Kozhuharov, D. Liesen, F. Nolden, X. Ma, P. H. Mokler, M. Steck, D. Sierpowski, and S. Tashenov, Phys. Rev. Lett. 94, 223001 (2005).

[28] V. A. Yerokhin and V. M. Shabaev, Journal of Physical and Chemical Reference Data 44, 033103 (2015), http://dx.doi.org/10.1063/1.4927487.

[29] W. Ruckstuhl et al., Nucl. Phys. A430, 685 (1984).

[30] F. W. N. De Boer et al., Nucl. Phys. A444, 589 (1985).

[31] T. Dahler, L. Schellenberg, H. Schneuwly, R. Engfer, J. L. Vuilleumier, H. K. Walter, A. Zehnder, and B. Fricke, Nucl. Phys. A219, 29 (1974).

[32] L. A. Schaller, L. Schellenberg, A. Ruetschi, and H. Schneuwly, Nucl. Phys. A343, 333 (1980).
[33] B. Aas, R. Eichler, and H. J. Leisi, Nucl. Phys. A375, 439 (1982).
[34] B. Aas et al., Nucl. Phys. A375, 405 (1982).
[35] I. Beltrami et al., Nucl. Phys. A451, 679 (1986).
[36] I. Beltrami et al., Nucl. Phys. A429, 381 (1984).
[37] C. K. Hargrove, E. P. Hincks, R. J. Mcgee, H. Mes, A. L. Carter, M. S. Dixit, D. Kessler, J. S. Wadden, H. L. Anderson, and A. Zehnder, Phys. Rev. Lett. 39, 307 (1977).
[38] J. M. Schmidt, G. Soff, and P. J. Mohr, Phys. Rev. A 40, 2176 (1989).
[39] J. L. Vuilleumier, W. Dey, R. Engfer, H. Schneuwly, H. K. Walter, and A. Zehnder, Z. Phys. A278, 109 (1976).
[40] L. Tauscher, G. Backenstoss, K. Fransson, H. Koch, A. Nilsson, and J. De Raedt, Z. Phys. A285, 139 (1978).
[41] T. Dubler, K. KAESER, B. Robert-Tissot, L. A. Schaller, L. Schellenberg, and H. Schneuwly, Nucl. Phys. A294, 397 (1978).
[42] E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982).
[43] F. Feroz and M. P. Hobson, Mon. Not. Roy. Astron. Soc. 384, 449 (2008), arXiv:0704.3704 [astro-ph].
[44] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy. Astron. Soc. 398, 1601 (2009), arXiv:0809.3437 [astro-ph].
[45] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, ArXiv e-prints (2013), arXiv:1306.2144 [astro-ph.IM].