Learning and memory . . . and the immune system

Ioana Marin and Jonathan Kipnis

Center for Brain Immunology and Glia (BIG), Department of Neuroscience, Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA

The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS), microglia constantly monitor synapses and participate in their pruning during development and possibly also throughout life. Classical inflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor (TNF), are released during neuronal activity and play a crucial role in regulating the strength of synaptic transmission. Systemically, proper functioning of the immune system is critical for maintaining normal nervous system function. Disruption of the immune system functioning leads to impairments in cognition and in neurogenesis. In this review we provide examples of the communication between the nervous and the immune systems in the interest of normal CNS development and function.

The nervous system is universally perceived as the command center of the body. Sensory organs and peripheral nerve fibers monitor the external environment, while chemical changes in the internal environment are monitored by their receptors in the brain. The nervous system can therefore be viewed as the master regulator of homeostasis. In this role, however, it does not act alone. The immune system, through its tissue-resident and patrolling immune cells, also operates constantly to monitor the internal environment and maintain overall balance in the body. Immune cells respond not only to infection, but also to tissue damage and stress, and in addition they clear cellular debris that results from physiological cell death.

Although collaboration between the two systems was long regarded as unlikely because of their separation by the blood–brain barrier (BBB), it is now known that such collaboration does occur, and moreover that it is essential for the body’s normal functioning. It could be argued that the BBB evolved to protect the nervous system from toxins and pathogens, not to isolate the brain from other systems. Not only are the immune and the nervous systems physically connected—there are resident immune cells in the central nervous system (CNS) and peripheral nerve terminals in immune organs—they also share each other’s “languages” for their communication. Thus, cells of the nervous system can use signaling by immune components, such as cytokines and chemokines, to communicate with each other (Steinman 2004; McAllister and van de Water 2009; Ben Menachem-Zidon et al. 2011; Díaz Heijtz et al. 2011; Gábay et al. 2011; Yirmiya and Goshen 2011), while immune cells possess neurotransmitter receptors and can synthesize neurotransmitter molecules including acetylcholine, glutamate, dopamine, and serotonin (Koval et al. 1997; Steinman 2004; Ganea et al. 2006; Pocock and Kettenmann 2007; Levite 2008; Kong et al. 2010; Patterson 2012).

Despite increasing evidence for amicable relations between the nervous system and immune cells, most of our knowledge about neuroimmune interactions comes, not surprisingly, from studies using models of infection, injury, or autoimmunity (Dantzer et al. 2000, 2008; Steinman 2004; Aaltosen et al. 2005; Huang et al. 2008; O’Connor et al. 2009; Yirmiya and Goshen 2011; Shechter et al. 2013a). In many of these models, inflammation is associated with sickness behavior and infiltration of peripheral immune cells into the CNS with pathological results. Over the past two decades, however, an accumulating body of research has pointed to neuroimmune interactions as primarily beneficial, in that they promote homeostasis of the nervous system (Kipnis et al. 2004, 2008, 2012; Cohen et al. 2006; Ziv et al. 2006; Brynshik et al. 2008; Derecki et al. 2010).

Here we present a neurocentric review of the roles played by immune cells and molecules in supporting the development and function of the nervous system under normal physiological conditions.

Brain-resident immune cells—the microglia

When considering brain/immune interactions, one must recognize that the microglia, although a type of immune cell, are a constitutive part of the nervous system (Ransohoff and Cardona 2010). Microglia originate from primordial macrophages in the yolk sac, which in mice migrate out around E7.5 and invade the neural tube on E10.5 (Ginhoux et al. 2010; Hooper et al. 2012), before the BBB is formed.

Microglia serve important functions during embryonic development—not only in clearing the apoptotic debris resulting from the intensive cell turnover, but also in promoting neuronal apoptosis (Marin-Teva et al. 2004; Sierra et al. 2010; Wang et al. 2012). A more subtle yet equally important function of the microglia in shaping neuronal circuitry is the pruning of synaptic spines. Microglia engulf presynaptic termini, contributing to the adult cortical architecture (Paolicelli et al. 2011; Schafer et al. 2012). This synaptic pruning is dependent on components of the complement system, which is one of the immune system’s activating pathways. Synaptic pruning by microglia was first demonstrated in the developing lateral geniculate nucleus (LGN) (Stevens et al. 2007). Barres, Stevens, and colleagues (Stevens et al. 2007) showed that the entire classical complement cascade is up-regulated when ocular input segregation occurs during early postnatal development. Neuronal-derived C1q activates a signaling cascade that ultimately culminates in activation of the C3R complement receptor on microglia, and these cells then preferentially engulf inactive synapses (Schafer et al. 2012). Genetic deletion of any of the components of this complement cascade leads to deficits in ocular dominance territories in the LGN.
Immune molecules provide a service to the brain

Neuronal expression of the major histocompatibility complex class I (MHCI) was first shown by the group led by Carla Shatz in 1998 (Corriveau et al. 1998). Prior to that, the prevailing view was that neurons were among the few cell types in the body that do not express MHCI, a complex molecule responsible for the cell-specific signature of its expressed proteins and thus crucial for the immune system to separate self from nonself. Several isoforms of this molecular complex are now known to be expressed by neurons in the thalamus, hippocampus, cortex, and cerebellum, along with the accessory molecules CD3ζ and β2-microglobulin. MHCI staining appears as puncta at synapses and colocalizes with postsynaptic density protein 95 (PSD95) (Goddard et al. 2007; Datwani et al. 2009). Knockout MHCI (KbDb^-/-) mice exhibit a phenotype similar to that of the C14-deficient mice, showing reduced segregation of ocular inputs in the LGN (Datwani et al. 2009). Compared to wild-type controls, MHCI knockout mice also show enhanced synaptic plasticity and increased excitability, and exhibit higher frequency of miniature excitatory postsynaptic currents (mEPSCs) in the hippocampus, as well as heightened LTP and decreased long-term depression (LTD) (Huh et al. 2000; Goddard et al. 2007). All of these findings point to an important role for the molecules originally defined as "immune" in higher brain function. In vivo, KbDb^-/- mice show superior motor learning, probably as a result of decreased threshold for LTD at the inhibitory synapses of parallel fibers (McConnell et al. 2009). An interesting finding was that PirB, a known receptor for MHCI in the brain, is also expressed on neurons, and that PirB-deficient mice show increased plasticity in the visual cortex, raising speculation about neuron–neuron signaling through MHCI/PirB-modulating neuronal activity (Syken et al. 2006).

Another class of immune molecules involved in the proper functioning of the nervous system is represented by cytokines. The source of cytokine secretion was originally traced to immune cells, which employ these molecules as messengers, triggers, and effectors of immune responses. Despite their great functional diversity, cytokines in the nervous system have earned an unfortunate reputation through their observed association with inflammation or sickness behavior (Kelley et al. 2003; Dantzer et al. 2008; Godbout et al. 2008; Huang et al. 2008). Studies investigating the role of inflammation in aging or pathology—e.g., inflammation/infection, neurodegeneration, depression—are numerous and have been reviewed extensively by others (Lucin and Wyss-Coray 2009; von Bernhardi et al. 2010; Kohman and Rhodes 2013; McCusker and Kelley 2013). On the other hand, the literature regarding the role of cytokines in homeostatic brain function is slower to accumulate. Several studies have shown, however, that cytokines such as tumor necrosis factor (TNF) and IL-1β, once considered to be purely inflammatory, are produced in the brain under normal conditions and are crucial for normal synaptic functioning (Wolf et al. 2008; Goshen and Yirmiya 2009; Ben Menachem-Zidon et al. 2011; Yirmiya and Goshen 2011).

TNF signaling through the TNF receptor TNFR1 (but not through TNFR2) modulates synaptic strength by changing the expression of AMPA receptors (AMPA) in the postsynaptic compartment (Dummer et al. 2002). TNFR1-knockout neurons exhibit decreased expression of AMPAR and correspondingly decreased postsynaptic transmission. On the other hand, exogenous application of TNF was found to increase AMPAR expression, as well as the frequency and amplitude of mEPSCs (Beattie et al. 2002; Stellwagen and Malenka 2006). Following the blockade of neuronal activity by application of the neurotoxin tetrodotoxin, postsynaptic compartments become more sensitive and the frequencies of mEPSCs are increased. In neurons cultured with TNF-knockout astrocytes, however, this effect is not observed (Stellwagen and Malenka 2006). Moreover, in monocular deprivation (an in-vivo model of visual plasticity), TNF-knockout mice display the expected diminished responses to the deprived eye, but not the correspondingly increased responses to the open eye (Kaneko et al. 2008). TNF also seems to play a role in adult hippocampal neurogenesis. Iosif and colleagues (2006) showed that progenitors in the subgranular zone express both TNF and its receptors TNFR1 and TNFR2, and that their genetic knockout differentially affects adult neurogenesis: signaling through TNFR1 seems to act as a negative regulator of neurogenesis, as its deletion results in an increase in the number of newly produced neurons, whereas TNFR2 signaling is a positive regulator, as indicated by the drop in neurogenesis following its deletion.

IL-1β, another proinflammatory cytokine, is up-regulated during LTP induction in hippocampal slices and is evidently necessary for the maintenance of this potentiation, since application of the IL-1β receptor antagonist, IL-1Ra, leads to unsustained LTP.
Brain support by the peripheral immune system

As indicated by the phenotypes of Rag1- and Rag2-knockout mice, as well as by the plethora of studies of cognitive performance during infection, the state of the peripheral immune system can greatly influence nervous system functioning.

Adult neurogenesis is a process that has been investigated in the context of numerous types of immune system disruptions. The regulatory presence of an adaptive immune system is necessary for maintenance of adult neurogenesis. Mice with severe combined immunodeficiency (SCID) and nude mice, which are deprived, respectively, of all lymphocytes and of T cells, show impairments in neurogenesis, and T-cell replenishment in these mice rescues their phenotype (Ziv et al. 2006). Interestingly, transgenic mice with T cells specific for the auto-antigen myelin basic protein exhibit increased neurogenesis, whereas neurogenesis in transgenic mice with T cells specific for an irrelevant antigen (ovalbumin) is decreased (Ziv et al. 2006). These observations suggest that specific interactions between the nervous and immune systems contribute to normal brain function. Mast cells, an immune cell classically associated with allergic responses, are also important for supporting adult neurogenesis (Nautiyal et al. 2008, 2012). Mast cells are resident in and around the hippocampus and secrete serotonin. From this location they appear to play a role in maintaining the neurogenic niche, since treatment with fluoxetine, a selective inhibitor of serotonin reuptake, abolishes the differences in neurogenesis between mice deficient in mast cells and their heterozygotic littermates (Nautiyal et al. 2008).

Immune deficiency in mice is often accompanied by cognitive impairment (Kipnis et al. 2004, 2012; Cohen et al. 2006; Ziv et al. 2006; Brynskikh et al. 2008; Lewitus and Schwartz 2009; Derecki et al. 2010; Bailey et al. 2011; Gadani et al. 2012; Nautiyal et al. 2012; Baruch et al. 2013; Radjabi et al. 2013). As with neurogenesis, replenishment of the immune system by adoptive transfer of wild-type splenocytes or by bone marrow reconstitution also improves the learning ability of SCID and nude mice in MWM, Barnes maze and radial arm water maze (Brynskikh et al. 2008; Ron-Harel et al. 2008; Derecki et al. 2010; Bailey et al. 2011). We have recently identified the meningeal membranes surrounding the brain as an important site of the immune response that occurs during learning (Derecki et al. 2010). When mice are exposed to a learning task, T cells migrate to the meninges and become activated there. In wild-type mice these T cells acquire a “Th2-like” phenotype (regarded as anti-inflammatory) and express high levels of IL-4. Moreover, the myeloid cells in the meninges become skewed toward an M2 (or alternatively activated, also regarded as tissue building and anti-inflammatory) phenotype. Interference with the migration of T cells, or genetic deletion of IL-4, results in a proinflammatory M1 (classically activated and inflammatory [Yirmiya and Goshen 2011]) skew of the myeloid cells in the meninges (Belmaker and Agam 2008; Derecki et al. 2010). In view of these findings, it is tempting to speculate that the adaptive immune system supports cognition by keeping the meningeal innate system in check and preventing inflammation in response to learning-associated stress (Fig. 1). Schwartz and colleagues have also identified the choroid plexus as an important site of neuroimmune interactions (Baruch et al. 2013; Shechter et al. 2013b). Interestingly, the T cell repertoire in the choroid plexus seems to be enriched in CNS-reactive cells (Baruch and Schwartz 2013), leading to the idea that autoimmune cells are important in modulating the nervous system milieu to support homeostasis (Kipnis et al. 2012; Shechter et al. 2013a). This argument is also supported by the fact that transgenic mice with CNS-antigen specific T cells also show enhanced cognition, in addition to neurogenesis in subgranular and subventricular zones (Ziv et al. 2006).
obtained from in vitro studies is questionable. The relevance of conclusions drawn about phenomena in vivo is often questionable. It is often necessary to conduct whole-body knockout of certain molecules, and the conditions under which processes are modeled in vitro are so extreme that the physiological concentrations of tested molecules may not be achievable. More research needs to be devoted to maintenance of homeostasis.

Concluding remarks

This review presents evidence for the numerous points of communication between the nervous and the immune systems, and focuses on the consequent implication that a normal functioning immune system is critical in supporting cognitive function. The relationship between these systems, however, is a mutual one. All of the body’s immune organs are innervated to some degree, and unimpaired neurotransmission is essential for both initiation and termination of immune responses. For example, sympathetic innervation of the bone marrow is required for recruitment of immune cells from the hematopoietic reservoir during infection. On the other hand, neuronal control through the vagus nerve serves to suppress inflammation in response to endotoxin. Therefore even when it appears that the nervous system is merely a victim of a flared immune system, the two systems maintain a constant dialogue in the attempt to restore homeostasis.

Although numerous studies now support connections between the nervous and immune systems in models of infection and injury, most of the evidence for immune support in learning is obtained from whole-body knockout of certain molecules, as well as circulating white blood cells including monocytes and T cells. During an acute cognitive task performance, such as Morris water maze, circulating immune cells can be activated by peripheral danger signals (the identity of which is yet to be determined, but potentially corticosterone and catecholamines), which are released in response to the stress that the task involves. In a wild-type mouse, activated T cells and monocytes infiltrate the meninges and mount a homeostatic type-2 immune response, releasing tissue-building cytokines such as IL-4 and IL-10. In SCID mice that lack the adaptive branch of the immune system (no mature T and B cells), nonregulated inflammatory monocytes initiate a type 1 inflammatory response, with the release of inflammatory cytokines such as TNFα. Although the cellular and molecular pathways are yet to be elucidated, the inflammatory type-1 response contributes to impaired cognition, whereas an alternative type-2 immune response is more “procognitive.”

Acknowledgments

We thank Shirley Smith for editing the manuscript. We thank the members of the Kipnis lab for their valuable comments during multiple discussions of this work. This work was primarily supported by a grant from the National Institute on Aging, NIH (AG034113 award to J.K.).

References

Aaltonen R, Heikkinen T, Hakala K, Laine K, Alanen A. 2005. Transfer of proinflammatory cytokines across term placenta. Obstet Gynecol 106: 802–807.

Aarum J, Sandberg K, Haebelerin SL, Persson MA. 2003. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci 100: 15983–15988.

Avital A, Goshen J, Kansler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R. 2003. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13: 826–834.

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 25: 397–407.

Baruch K, Schwartz M. 2013. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun doi:10.1016/j.bbi.2013.04.002.

Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndlifon W, Mirlas-Netisberg N, Cardon M, Vaknin I, Cahalon I, et al. 2013. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci 110: 2264–2269.

Beattie EC, Stellwagen D, Morišita W, Brenahan JC, Ha BK, Von Zastrow M, Beattle MS, Malenka RC. 2002. Control of synaptic strength by glial TNFs. Science 295: 2282–2285.

Belmaker R, Agam G. 2008. Major depressive disorder. N Engl J Med 358: 55–68.

Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shмуeli EM, Segal M, Ben Hur T, Yirmiya R. 2011. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 25: 1008–1016.

Benach J, Li E, McGovern M. 2012. A microbial association with autism. mBio 3: doi: 10.1128/mBio.00019-12.
Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318.

O’Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R. 2009. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guérin. J Neurosci 29: 4200–4209.

Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, et al. 2010. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci 107: 15625–15630.

Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333: 1456–1458.

Patterson PH. 2012. Maternal infection and autism. Brain Behav Immun 26: 393–393.

Pavlov VA, Tracey KJ. 2012. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 8: 743–754.

Pecock JM, Kettenmann H. 2007. Neurotransmitter receptors on microglia. Trends Neurosci 30: 527–535.

Radjavi A, Smirnov L, Derecki N, Kipnis J. 2013. Dynamics of the meningeal CD4 T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry doi: 10.1038/mp.2013.79.

Ransohoff RM, Cardona AE. 2010. The myeloid cells of the central nervous system parenchyma. Nature 468: 253–262.

Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C. 2011. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31: 16241–16250.

Ross FM, Allan SM, Rothwell NJ, Varkhatsky A. 2003. A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol 144: 61–67.

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinally AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74: 691–705.

Received March 25, 2013; accepted in revised form July 19, 2013.