Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)

Jakob Naranda Corresp. 1, Lidija Gradišnik 2, Mario Gorenjak 3, Matjaž Vogrin 1, Uroš Maver Corresp. 2

1 Department of Orthopaedics, University Medical Centre Maribor, Maribor, Slovenia
2 Institute of Biomedical Sciences, University of Maribor, Faculty of Medicine, Maribor, Slovenia
3 Center of Human Molecular Genetics and Pharmacogenomics, University of Maribor, Faculty of Medicine, Maribor, Slovenia

Corresponding Authors: Jakob Naranda, Uroš Maver
Email address: jakob.naranda@gmail.com, uros.maver@um.si

Background. Cartilage tissue engineering is a fast evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous cartilage implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue.

Methods. Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production.

Results. Cartilage specific gene expression of COL2 and ACAN have shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well.

Discussion. In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very frequently performed orthopaedic surgery during which both femoral condyles are removed. The latter present the ideal source for a simple and relatively cheap isolation of chondrocytes as was confirmed in our study.
Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)

Short title: Alternative human chondrocyte isolation

Jakob Narandaa,*, Lidija Gradišnikb, Mario Gorenjakc, Matjaž Vogrina, Uroš Maverb,*

a University Medical Centre Maribor, Department of Orthopaedics, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia

b University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, SI-2000 Maribor, Slovenia

c University of Maribor, Faculty of Medicine, Center of Human Molecular Genetics and Pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia

\textbf{*Corresponding authors:}

Jakob Naranda, MD
University Medical Centre Maribor, Department of Orthopedics
Ljubljanska ulica 5, SI-2000 Maribor, Slovenia
e-mail: jakob.naranda@gmail.com

prof. Uroš Maver, PhD, head of Institute of Biomedical Sciences
University of Maribor, Faculty of Medicine
Institute of Biomedical Sciences
Taborska ulica 8, SI-2000 Maribor, Slovenia
e-mail: uros.maver@um.si
ABSTRACT

Background. Cartilage tissue engineering is a fast evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue.

Methods. Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production.

Results. Cartilage specific gene expression of COL2 and ACAN have shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well.

Discussion. In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very frequently performed orthopaedic surgery during which both femoral condyles are removed. The latter present the ideal source for a simple and relatively cheap isolation of chondrocytes as was confirmed in our study.
1 INTRODUCTION

Damage to articular cartilage has important clinical implications since the cartilage tissue possesses a limited intrinsic healing potential and tends to an incomplete regeneration by local chondrocytes, accompanied with an inferior fibrocartilage formation (Camp et al. 2014; McNickle et al. 2008; Richter et al. 2016). Surgical intervention is often the only option, although the repair of damaged cartilage is often less than satisfactory, and rarely restores full function or returns the tissue to its native state (Kerker et al. 2008; Kock et al. 2012; Tuli et al. 2003). Over the past decade a number of viable options of cartilage regeneration have been introduced into clinical practice (Camarero-Espinosa et al. 2016; Hettrich et al. 2008; Schrobback et al. 2011). Among these, autologous chondrocyte implantation (ACI) seems the most promising since it relies on the use of biodegradable materials that serve as temporary cell-carriers, enabling in vitro cell growth and subsequent implantation into the defective cartilage (Bomer et al. 2016; Niemeyer et al. 2016; Robb et al. 2012).

Tissue engineering of articular cartilage remains challenging due to the specific structure of cartilage tissue, i.e. its multiphasic cellular architecture together with remarkable weight-bearing characteristics (e.g. resistance to mechanical stress and wear) (Kim et al. 2012; Su et al. 2012). Good understanding of the cartilage structure, physiology, and the molecular basis of chondrogenesis is key to in vitro cartilage production, either for use in tissue engineering or clinics (Bhat et al. 2011; Lee et al. 2013; Li et al. 2012). The state-of-the-art concept of in vitro cartilage tissue development combines the use of biocompatible and biodegradable carrier materials, the application of growth factors, the use of different cell types (stem or already differentiated) and different approaches to simulate the native mechanical stimulation (Gardner et al. 2013; Hildner et al. 2011; Khan et al. 2013; Naranda et al. 2016).

More specific challenges of articular cartilage tissue engineering remain the high consumption of cells and related costs, as well as the preparation of an ideal host scaffold. Although solutions to both mentioned challenges have been introduced in recent years (Bassleer et al. 1998; Stellavato et al. 2016), is the cell part gaining far less research momentum. Therefore, it comes to no surprise that novel approaches for chondrocyte isolation are highly desired, especially considering the high prices of ordered cells. Optimisation of isolation yields, abundant cell sources and efficient culturing procedures that lead to preparation of desired, reproducible and relatively affordable cell cultures or/and material-cell constructs with good durability, are therefore highly rated novelties in recent research (Dehne et al. 2009; Naranda et al. 2016; Otero et al. 2012).

Several methods for chondrocyte isolation from various tissue parts and organisms were introduced over the last decades (Hu et al. 2002; Li et al. 2015; Mirando et al. 2014; Shortkroff & Spector 1999; Strzaleczyk et al. 2001; Xu & Zhang 2014). Although their cell source varies, the crucial steps of these reported isolation protocols have a lot of common ground. One of the main similarities to digest the harvested tissue during the preparation of the primary culture is the use of the enzyme type 2 collagenase (Hayman et al. 2006; Lagana et al. 2014). Variations in the time of the tissue exposure to the enzyme (Hayman et al. 2006), as well as combining it with other enzymes (trypsin, pronase, hyaluronidase etc.) is not unusual (Jakob et al. 2001). Several
examples of effective chondrocyte isolation procedures including the source tissue and organism, the digestion enzyme, time of tissue exposure and the cell yield, were summarized by Oseni et al (Oseni et al. 2013). In their study, Oseni et al. evaluated the necessary isolation and characterization procedures that would give a maximum yield with optimal cell viability for the engineering of large cartilaginous constructs such as the human nose and ear (Oseni et al. 2013). At this point it is important to mention that the state of the source tissue has also to be accounted for (Lagana et al. 2014). In this context, Lagana et al. performed characterization of basic parameters of articular chondrocytes isolated from 211 osteoarthritic patients. They concluded that a systematic characterization of the cellular yield and chondrocyte proliferation rates is very useful in view of a possible autologous cell therapy (Lagana et al. 2014). Therefore, it is very important to determine the quality of the cell source, which is known to greatly influence the outcome of engineered tissue (Lagana et al. 2014).

The most demanding part in the process of in vitro culturing still presents the preservation of the desired phenotype to a high enough passage to yield sufficient cells to perform planned experiments (Pei & He 2012; Rosenzweig et al. 2012; Schnabel et al. 2002a; Wu et al. 2014). Since the latter depends on numerous factors and can therefore be confirmed only by a combination of (often) expensive techniques (different microscopies, molecular analysis, immunocytochemistry etc.), it is important to prepare protocols for an easier and cheaper preliminary phenotype confirmation by means of methods, available in most cell laboratories around the world. Since the desired phenotype can be identified by chondrocyte specific production (Chen et al. 2014; Han et al. 2010), we believe that the easiest and safest preliminary method to prove phenotype preservation could be the analysis of gene expression. More specifically, this analysis should include the evaluation expression of genes related to cartilage specific markers (e.g. collagen type 2 and aggrecan). To follow-up possible dedifferentiation towards the fibroblastic phenotype (Duan et al. 2015; Goldring et al. 2006; Haudenschild et al. 2001; Makris et al. 2015; Otero et al. 2012), we propose simultaneous measurement of up-regulation of collagen type 1.

Based on all mentioned it is clear that chondrocyte isolation from an abundant source with a high yield, together with an effective and cheap preliminary phenotype confirmation method, would be greatly beneficial to boost the development of cartilage tissue engineering (Cetinkaya et al. 2011; Goepfert et al. 2010; Schrobback et al. 2011). This study was therefore designed to provide a relatively simple, yet effective procedure for isolation and culturing of human tissue derived primary chondrocytes up to the second passage. As the preliminary method of phenotype confirmation, we chose the evaluation of chondrocyte specific gene expression, together with morphological evaluation of cells. Such an approach provides a cheap and effective protocol to be considered an alternative to other available methods (Hu et al. 2002; Li et al. 2015; Strzelczyk et al. 2001; Xu & Zhang 2014), especially suitable for other laboratories to boost their respective entry level cartilage tissue engineering studies. To confirm our claims and the overall effectiveness of the used approach, immunocytochemical analysis of the most important chondrocyte specific extracellular matrix products (aggrecan and collagen type 2) were evaluated after one week of cell growth (for the second passage). To observe the tendency of the
chondrocyte cells towards differentiation into fibroblast like cells, collagen type 1 was also evaluated using the same approach.

2 MATERIALS AND METHODS

2.1 Materials

All used materials and chemicals were of laboratory grade and purchased from Sigma-Aldrich, Germany, if not stated otherwise. For specific parts of the isolation process and cultivation, all used labware and chemicals were additionally sterilized using the standard autoclavage procedure (Avtoklav A-21, Kambič, Slovenia).

2.2 Isolation of primary chondrocytes

Full-thickness cartilage was surgically removed from the femoral condyle of arthritic knee of a 50 years old patient who underwent total knee arthroplasty (TKA) performed at the University Medical Centre Maribor, Slovenia (application reference: 123/05/14). Prior to surgery, no systemic disease or any treatment was reported for the donor patient. The study was conducted in accordance with the Declaration of Helsinki and its subsequent amendments and was approved by the Republic of Slovenia National Medical Ethics Committee (Ljubljana, Slovenia). The patients’ written consent was obtained.

The cartilage tissue was surgically removed under sterile conditions during TKA procedure. The standard cutting blocs for femoral resection were used and resection was performed in the usual manner. Distal and/or posterior femoral condyles were used for chondrocyte isolation depending on the macroscopic condition of the cartilage tissue (due to e.g. osteoarthritis). Immediately after the removal, the bone cuts were transferred into a previously sterilized 250 ml glass bottle filled with phosphate buffered saline (PBS, Sigma-Aldrich, Germany) and immediately brought to the cell isolation laboratory.

The cartilage tissue was transferred to a petri dish filled with PBS to prevent drying of the tissue. In the cell isolation laboratory, the cartilage tissue was carefully removed from the bone cuts surface using a No 11 blade to obtain approximately 2 x 2 mm pieces of cartilage tissue. PBS was carefully removed by a pipette and the petri dish was immediately filled with 10 mL solution of 0.25 wt.% Trypsin/EDTA (Sigma, France). The as-prepared cartilage pieces were incubated for 3 hours at 37°C and 5 wt.% CO₂ (CO₂ Incubator MCO-19AICUVH-PE, Panasonic, Japan), followed by addition of 20 mL of Advanced Dulbecco’s modified Eagle’s medium (Advanced DMEM, Gibco, Grand Island, NY, USA) to the cell suspension. The suspension was transferred to a 50 mL falcon tube and centrifuged at 300 x g for 10 minutes (Centrifuge 5804 R, Eppendorf, USA). The supernatant was carefully discarded and the cell pellet was re-suspended in 20 mL of Advanced DMEM and centrifuged at 200 x g for 5 minutes (Centrifuge 5804 R, Eppendorf, USA). The supernatant was again carefully discarded and the cell pellet re-suspended in 10 mL Advanced DMEM supplemented with 100 IU/ml Penicillin, 1 mg/ml Streptomycin, 2mM L-glutamine and 5 wt.% foetal bovine serum (FBS, Gibco, Grand Island, NY, USA) and plated on 25 cm² flasks (in triplicates). In the cell pellet, very small fragments of cartilage were also present. Besides primary chondrocytes, these fragments were
also seeded and after a week of incubation, the cells were observed crawling from the tissue fragments. Together with the primary chondrocytes these were then left until confluence was reached.

Growing cells were regularly observed with an Axiovert 40 inverted optical microscope (Zeiss, Germany) at several magnifications. The culturing medium was changed every three days. The general steps of the procedure are schematically depicted in Fig. 1.

Fig. 1: Chondrocyte isolation from cartilage in a short overview of the most important preparation steps.

2.3 Gene expression analysis

Gene expression analysis of cartilage specific markers collagen type 2 (COL2) and aggrecan (ACAN) was performed in order to determine the primary chondrogenic phenotype. Possible dedifferentiation to a more fibroblast like cell type was evaluated by monitoring the expression of collagen type 1 (COL1). After confluence was reached in all respective samples (triplicates) (see above section 2.2. for details), the cell suspension was transferred to micro-centrifuge tubes, and 1.4 mL of TRI reagent (Sigma-Aldrich, Germany) was added. The tubes were vortexed for 30 min at room temperature. Afterwards, 280 µL of chloroform (Sigma-Aldrich, Germany) was added and the tubes were further vortexed for 15 min and centrifuged at 12,000 rpm and 4°C. RNA extraction was carried out according to the manufacturer's instructions (Chomczynski 1993; Louveau et al. 1991). Concentration and purity of the extracted cellular RNA was determined using NanoDrop 2000c (Thermo Scientific, Delaware, USA) through optical density readings at 260 nm and a 260/280 nm ratio. cDNA was obtained by using a cDNA reverse transcription kit (Applied Biosystems, California, USA). Primer sequences for cartilage target genes ACAN and COL2 were obtained from Caterson et al. (Caterson et al. 2001), while the corresponding mRNA sequences were retrieved from PubMed Nucleotide database (www.ncbi.nlm.nih.gov/nuccore/) and the AceView database (Thierry-Mieg & Thierry-Mieg 2006). Primers for the target gene COL1 were designed using IDT oligo analyser (eu.idtdna.com/calc/analyzer). The primer sequences with the corresponding mRNA sequences and the corresponding NCBI accession numbers, are given in Table 1. 2 µL of each cDNA
sample with concentration of 15 ng/µL was used for quantitative real time PCR (qPCR) analysis performed using LightCycler 480 thermocycler (Roche, Switzerland) and with 2× Maxima SYBR Green qPCR master mix (Life Technologies, California, USA) according to the manufacturer's instructions. The quality and specificity of PCR amplicons were checked using melting curve analyses and agarose gel electrophoresis. All shown results are presented as average values with the standard errors.

Table 1: Primer sequences with the corresponding mRNA sequence and the corresponding NCBI accession numbers.

Gene	Gene name	Accession number	Primer sequence 5'→3'
ACAN	Aggrecan	NM_003227.3	TGAGGAAGGGCTGGAACAAGTACC
		NM_001135.3	GGAGGTGGAATTGCAGGGAACA
COL1	Collagen type 1, alpha 1	NM_000088.3	CGGCTTCTGCCTCTCTCTAG
COL2	Collagen type 2, alpha 1	NM_002046.5	GGGCTGCTTTTTAACTCTG
	Glyceraldehyde-3-phosphate		
	dehydrogenase	NM_001844.4	TTTCCCGAGGTCAGATG
		NM_033150.2	CTGCACGACCTGTCACCA
		NM_001289745.1	
		NM_001256799.2	

2.4 Immunocytochemistry

We characterized cells according to the expression of specific surface proteins (COL1, COL2, ACAN). Additional staining was performed in order to analyse the cells’ general morphology (cytoskeleton (actin) – using Phalloidin – iFluor 555 Reagent (Abcam, UK); nucleus – using mounting medium with 4',6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, Germany)). Some more details about respective methods are described below. All micrographs were taken using either Floid Cell Imaging Station (Thermo Fisher Scientific, USA) or EVOS FL Cell Imaging System (Thermo Fisher Scientific, USA).

2.4.1 General protocol for immunocytochemistry

Round glass slides (2r =12 mm) were placed on the bottom of wells in a P24 plate (in triplicate for each used dye) similar to the procedure used by Oseni et al. (Oseni et al. 2013). Isolated cells (from the second passage) at a density of 50,000 cells / well were placed on each of the glass slides and incubated at 37 ºC, 5 wt.% CO₂ for 7 days. The medium (Advanced DMEM, supplemented with foetal bovine serum (FBS, Gibco, Grand Island, NY, USA)) was removed and the cells were washed with phosphate buffered saline (PBS, Sigma-Aldrich, Germany) once. Fixation of cells was performed using the Fixation Solution (Millipore, USA) for 10 minutes at room temperature, followed by washing of the cells three times with cold PBS (~4 ºC).

Further sample handling differed for respective staining procedures. Namely, ACAN, COL1 and COL2 were stained using primary and secondary antibodies (the manufacturers protocols were followed for this purpose), whereas actin was stained in a single step (again, according to the manufacturers protocol).
2.4.2 Actin staining

Following the general protocol for immunocytochemistry, the working solution of the conjugated Phalloidin (1000x Phalloidin stock solution in dimethyl sulfoxide DMSO (Abcam, UK), 1/1000 dilution in PBS with 1 wt.% bovine serum albumin (BSA, Sigma-Aldrich, Germany) and 0.1 wt.% Tween 20 (Sigma-Aldrich, Germany)) was added. Incubation was performed for 90 minutes at room temperature and in a dark room. Rinsing was performed with PBS and was repeated three times. The final step was the addition of the Fluoroshield Mounting Medium with DAPI. Micrographs were taken at the suitable wavelengths for respective used dyes (excitation/emission: DAPI=306/460 nm and Phalloidin=556/574 nm).

2.4.3 Staining of COL1, COL2 and ACAN

Following the general protocol for immunocytochemistry described above, the cells were incubated for 30 minutes with PBS, supplemented with 1 wt.% BSA and 0.1 wt.% solution of Tween 20 to block nonspecific binding of antibodies. All incubations with the primary antibodies was performed overnight at 4 °C. Respective dilutions (in PBS with 1 wt.% BSA and 0.1 wt.% solution of Tween 20) of the primary antibodies were as follows:

1. ACAN: Anti-AggreCan antibody [6-B-4] (Abcam, UK), 1:50,
2. COL2: Anti-Collagen 2 antibody (Abcam, UK), 1: 200,
3. COL1: Anti-Collagen 1 antibody (Abcam, UK), 1: 500.

After incubation, the cells were washed three times with PBS for 5 minutes. Incubation of cells with the secondary antibodies was performed in a dark at room temperature for 1 hour (the same procedure was used also as the control for the attachment of respective secondary antibodies). The dilutions of the secondary antibodies (in PBS with 1 wt.% BSA and 0.1 wt.% solution of Tween 20) were as follows:

1. ACAN: Rabbit Anti-Mouse IgG H & L (Alexa Fluor 488) preabsorbed (Abcam, UK), 1: 1000,
2. COL2 and COL1: Goat anti-rabbit IgG H & L (Alexa Fluor 594) (Abcam, UK), 1: 1000.

After incubation, the cells were washed three times with PBS for 5 minutes. Finally, three drops of the Mounting Medium Fluoroshield with DAPI were added and the solution was left on the cells for 5 minutes. Micrographs were taken at the suitable wavelengths for respective used dyes (excitation/emission: ACAN=495/519 nm and COL2/COL1=590/617 nm).

3 RESULTS

3.1 Isolation of primary chondrocytes

As mentioned in the Materials and methods section, the full-thickness cartilage was obtained from the femoral condyle of an arthritic knee during knee arthroplasty (TKA) performed at the University Medical Centre Maribor, Slovenia. TKA is a common procedure at the mentioned hospital, considering that approximately 700 such surgeries are performed each year.
Since the removed cartilage tissue is considered surgical waste, this presents a reliable and continuous source for isolation of primary chondrocytes. The primary chondrocytes were isolated as described in the Materials and methods section. During their cultivation, their morphology and proliferation were regularly observed using inverted optical microscopy (Fig. 2). Fig. 2A shows the thin slice of cartilage that was used for their cultivation, while Fig. 2B-D present the primary human chondrocytes in a monolayer culture at different cultivation times. This initial examination was performed to follow possible morphological changes in the cell shapes, which would indicate possible dedifferentiation.

Fig. 2: A) Thin slice of cartilage for primary chondrocyte isolation; B-D) the primary human chondrocyte culture in a monolayer after 3, 6 and 9 days, respectively. The magnification of all shown images is 50x.

The full confluence of the isolated cells for the first and second passage was reached after two (14 days) and after one (7 days) week, respectively. Cell growth stopped presumably due to contact inhibition (Lackie 2013). A comparison between the primary chondrocyte culture and the obtained chondrocyte cultures after the first and second passages, is shown in Fig. 3. The cells formed confluent monolayers (after the above mentioned cultivation times) and appeared polygonal in shape (Fig. 3A-C). It can be observed that the chondrocyte morphology became more spindle-like in the second passage (Fig. 3C), showing their tendency for dedifferentiation, most likely towards fibroblast like cells (Hong & Reddi 2013). Observing the mentioned changes
was an indication that the third passage will not yield a high percentage of chondrocytes only, using the proposed cultivation conditions.

![Image](image_url)

Fig. 3: Human chondrocyte culture: A) the explant culture of chondrocytes (“primary culture”), B) monolayer of chondrocytes after first passage, and C) monolayer of chondrocytes after the second passage. The magnification of all shown images is 50x (the inlay images were taken with a magnification of 100x).

3.2 Gene expression analysis of the isolated chondrocytes

Now that we determined the suitable number of passages presumably yielding a high percentage of chondrocyte cells, we performed additional characterization to confirm the chondrocytes’ desired phenotype. Analysis of gene expression was chosen due to its affordability and availability. The isolated cells from the human articular cartilage were characterized in regard of the genes related to specific chondrogenic production, namely collagen type 2 (COL2) and aggregan (ACAN). To detect possible dedifferentiation towards fibroblast like cells, expression of collagen type 1 (COL1) was also determined. Expression of all three mentioned genes was performed after the confluence was reached for the second passage (after 7 days). As shown in **Fig. 4 and Fig. 5**, both cartilage specific genes (COL2 and ACAN) and also the marker of fibrocartilage (COL1) were expressed in the isolated chondrocytes in both passages. qPCR results are presented as absolute Ct values. Reference gene GAPDH was used as an internal control (Chen et al. 2016).
Fig. 4: cDNA products of analysed genes (GAPDH, collagen type 1, collagen type 2 and aggrecan) at the end-point of qPCR on agarose gel electrophoresis. **Analyzed genes:** GAPDH (702 bp), COL2 (377 bp), COL1 (137 bp), ACAN (350 bp) and DNA markers (433 bp, 245 bp, 203 bp, 114 bp).

![Image of agarose gel electrophoresis](image)

Fig. 5: Results of qPCR analysis presented as absolute Ct values of target genes expression (ACAN, COL1, COL2 and GADPH). The results are presented as average values with the standard errors of a triplicate.

![Graph showing Ct values](image)

3.3 Immunocytochemistry

We performed immunocytochemistry on the isolated cells to investigate chondrocyte phenotype alterations (ACAN, COL1 and COL2). Additionally, the cytoskeleton (actin) and cell nucleus were stained to show the overall healthy morphology of the cells. All staining was performed in three repetitions. As the negative control, staining only with the respective secondary antibodies, as well as with the Mounting medium with DAPI (after one day and after two days), were used. Production of all three proteins was confirmed (Fig. 6 A-C), which is in agreement with the
results from the molecular analysis. All negative controls have shown no fluorescence, confirming the effectiveness and specificity of the used protocols. Staining of actin (Fig. 6 D) confirmed the expected morphology of healthy cells, which is in agreement with the micrographs using optical microscopy.

Fig. 6: Micrographs of the stained samples: A) for ACAN, B) for COL2 and C) COL1. Additionally, D) shows the cells with a stained cytoskeleton (actin). For all samples a mounting medium with DAPI was used to stain the nuclei. The magnification of all shown images is 460x (according to the manufacturers microscope specifications).

4 DISCUSSION

The development of novel solutions related to any tissue engineering application consumes a huge number of cells to prove safety and efficiency (Groeb et al. 2012; Maver et al. 2015; Mohd Hilmi & Halim 2015; Rodriguez-Vazquez et al. 2015). Cartilage tissue engineering is no exception, and hence large scale expansion of chondrocytes is required either for novel scaffold testing, determination of potential cytotoxic effects of medical devices and implants for orthopaedic use (Bomer et al. 2016; Camarero-Espinosa et al. 2016; Makris et al. 2015). Cultivation of such high cell counts is a demanding task, especially considering the low number of obtained cells in the primary culture, and an often limited amount of available tissue. Consequently, further expansion and consecutive passages are needed, which on the other hand can lead to dedifferentiation (Mirando et al. 2014; Shortkroff & Spector 1999; Thirion &
Berenbaum 2004). The latter is evident by morphological changes of the cells from polygonal to more elongated, as well as through a reduction in the growth rate (Cetinkaya et al. 2011; Haudenschild et al. 2001; Otero et al. 2012). For example, development of novel scaffolds for cartilage tissue engineering often requires a million cells per sample scaffold (the number depends on the size of the scaffold to be tested), exposing the high demand for cells and at the same time one of the major bottlenecks in development of novel tissue engineering solutions. At later passages, the quality of chondrocytes gradually decreases and is characterized with many of the phenotypic traits of fibroblast like cells and an increased synthesis of collagen type 1, rather than type 2 (Bonaventure et al. 1994; Diekman et al. 2009; Schnabel et al. 2002b).

A sufficient number of cells can be ensured either through significant expenses (purchase of cells from different cell banks) or isolation of desired cells from tissues. While the first scenario requires sufficient funds, the latter requires appropriate tissue sources, an approval of respective Committees of Medical Ethics, and a rigorous final analysis to confirm the isolation of the desired cell type only. Since we work in the close proximity and in tight collaboration with the local University Medical Centre, the second scenario was more convenient. Our goal was to prepare a simpler and generally available protocol, which would include the isolation of primary chondrocytes from full-thickness cartilage that is surgically removed from the femoral condyle of an arthritic knee during total knee arthroplasty (TKA). As a preliminary prove of the protocols’ efficiency, we considered gene expression analysis as the best option, since it is affordable and the required instrumentation (PCR, inverted optical microscope) is most likely available in most cell biology laboratories. The set of analysed genes was carefully chosen considering the available literature to monitor cartilage phenotype alterations (Caterson et al. 2001; Diekman et al. 2010; Grogan et al. 2014; Jonitz et al. 2012; Seda Tigli et al. 2009; Shi et al. 2014). Based on the mentioned, the correlation between COL2 and COL1 in addition to ACAN, seemed to be the most suitable. For confirmation of the effectiveness of the proposed approach in terms of chondrocyte specific production besides the gene expression, immunocytochemical staining of COL2, COL1 and ACAN was used as well. The latter confirmed the chondrocyte specific productions (ACAN and COL2), as well as the presence of COL1, which could be an indication of ongoing dedifferentiation to more fibroblast like cells.

In general, the chondrocyte isolation protocol can be divided into different stages: isolation, seeding and chondrocytes grow in culture, although description and number of steps can vary (Gosset et al. 2008; Thirion & Berenbaum 2004). After initial plating of the primary cultures, the chondrocytes spread out after 2-3 days and after 4–7 days the sufficient amounts of total RNA may be extracted. Primary cartilage phenotype (often confirmed by evaluating the presence of COL2 and ACAN mRNAs) may be initially preserved, but the expression of nonspecific collagens (e.g. COL1) begins to appear already 7 days after isolation (Otero et al. 2005). Moreover, adult articular chondrocytes are strongly contact-inhibited and undergo a rapid change in phenotype and gene expression, termed “dedifferentiation”, when isolated from cartilage tissue and cultured on culturing plastics (Haudenschild et al. 2001). Therefore, primary chondrocyte cultures should be used for experimental analyses immediately before or just after confluence is reached to assure optimal matrix synthesis and cellular responsiveness (Schneevoigt et al. 2016).
In the last two decades, several chondrocyte isolation protocols were developed and reported on (Hayman et al. 2006; Hu et al. 2002; Jakob et al. 2001; Lagana et al. 2014; Oseni et al. 2013; Strzelczyk et al. 2001). For example, an important recent study was conducted by Lagana et al. (Lagana et al. 2014), who isolated chondrocytes from 211 osteoarthritic (OA) patients undergoing total joint replacement. The authors of this study analysed specific features of chondrocytes such as cellular yield, cell doubling rate and the dependence between these parameters and patient-related data (e.g. joint type, age and gender). They concluded that such a systematic characterization of important cell source parameters could be useful in view of a possible autologous cell therapy for osteoarthritis, since the cell source quality is known to greatly influence the outcome of engineered tissue (Lagana et al. 2014). Another crucial study that we studied in details prior to our experimental design, was performed by Oseni et al. (Oseni et al. 2013). In this study, the authors focused on a very important factor related to possible clinical use of cartilage tissue engineered products, namely the optimization of the isolation protocol to allow for a large-scale production. The result of their study was an optimized protocol with exactly defined isolation parameters (e.g. enzyme and concentration to be used, time of digestion and the seeding density for tissue culturing). Two other studies have to be mentioned in this context as well. Namely, the studies from Jakob et al. (Jakob et al. 2001) and Hayman (Hayman et al. 2006), respectively. Jakob et al. focused on the research of possible chondrocyte isolation yield improvement by using various combinations of enzymes and reagents. Their results indicated that chondrocyte yields and capacity to attach and proliferate are not highly sensitive to the specific isolation protocol used (Jakob et al. 2001). Finally, Hayman et al. conducted a study, in which they tested combinations of 3 different enzymes and variable incubation/digestion times. A very important discussion point raised by the authors of this study was that different isolation protocols are to be used, if the focus is only on the yield or the goal is to produce preferentially “native” chondrocytes (Hayman et al. 2006).

The protocol of chondrocyte isolation described in this article led to successful growth and proliferation of cells with a proven chondrogenic potential up to the second passage as shown using molecular and immunocytochemical analysis. The characterization of primary human chondrocytes by molecular analysis showed the expression of cartilage specific genes (COL2 and ACAN), as well as a sign of dedifferentiation towards fibrocartilage for the second passage (indicated by the expression of COL1). In comparison with other available chondrocyte isolation protocols, we introduced some changes to the general protocol. As mentioned before, our target was a simple protocol with a high enough yield to conduct preliminary cartilage tissue engineering experiment, like testing of suitability of novel materials (Naranda et al. 2016). According to previous studies, the most commonly used enzyme in chondrocyte isolation, is type 2 collagenase (Hayman et al. 2006; Lagana et al. 2014; Oseni et al. 2013). Various incubation times are used to allow for tissue digestion, but in our experience, longer enzyme exposure times of tissues (and with longer exposures, an increasing number of cells as well) often lead to an increased number of dead cells and/or a lower yield of the cells with a desired phenotype. Considering all mentioned, we used a Trypsin/EDTA combination and an incubation time of 3h. Although this is not the first research study reporting the use of trypsin for chondrocyte isolation (Hidvegi et al. 2006; Jakob et al. 2001), it is the only one to the best of our knowledge, to use only this enzyme during the isolation protocol. Also, the reported incubation time is different to
the mentioned studies. In addition, our protocol does not include the use of any growth factors like reported in some studies (Lagana et al. 2014), again with the focus to simplify the overall protocol. Moreover, no enzyme predigestion step was introduced in our protocol, like in some studies (Oseni et al. 2013).

The purpose of our study was not to revolutionize the chondrocyte isolation procedures, but rather to push the evolution of cartilage tissue engineering. As such, our desire was to present an alternative, affordable and relatively simple approach of chondrocyte isolation, especially suitable for laboratories working closely together with orthopaedic clinics. Such laboratories have the unique opportunity to use surgical waste materials, occurring during TKA. Since TKA is a very common surgery (considering the present demographics, the incidence will only increase (Peterson et al. 2015)), this approach could make cartilage related studies far more available also for laboratories with limited resources, and hence push the overall development of this field towards novel and cheaper therapeutic solutions. Based on our results, we can claim that the combination of the use of surgical waste tissue occurring during TKA, and analysis by inverted optical microscopy and chondrocyte specific gene expression, as well confirmation of chondrocyte specific production, indeed results in an alternative and affordable means to boost cartilage related research in the future.

5 CONCLUSION

In this study, we describe a simple and affordable procedure of isolation and cultivation of human articular chondrocytes demonstrated a high chondrogenic potential to the second passage. As the source material, we propose the surgical waste tissue occurring during total knee arthroplasty (TKA). Chondrocyte cells are crucial not only for development of therapeutic approaches in cartilage repair (e.g. autologous chondrocyte implantation – ACI), but are necessary in cartilage tissue engineering to allow the development of functional cell models and novel scaffolds. For this purpose, chondrocytes have to be isolated in sufficient quantities and their phenotype should be preserved. Since all mentioned is related to very high costs, we propose alternative isolation and testing protocols that are cheaper and could especially boost the preliminary studies related to cartilage research.
REFERENCES

Bassleer C, Rovati L, and Franchimont P. 1998. Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro. *Osteoarthritis Cartilage* 6:427-434. 10.1053/joca.1998.0146

Bhat S, Tripathi A, and Kumar A. 2011. Supramacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. *J R Soc Interface* 8:540-554. 10.1098/rsif.2010.0455

Bomer N, Hollander Wd, Suchiman H, Houltman E, Slicker RC, Heijmans BT, Slagboom PE, Nelissen RGHH, Ramos YFM, and Meulens RGHH, Ramos YFM, and Meulenbelt I. 2016. Neo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. *Osteoarthritis Cartilage*. 10.1016/j.joca.2016.03.009

Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, and Freisinger P. 1994. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. *Exp Cell Res* 212:97-104. 10.1006/excr.1994.1123

Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, and Weder C. 2016. Articular cartilage: from formation to tissue engineering. *Biomaterials science*. 10.1039/c6bm00068a

Chomczynski P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. *Biotechniques* 15:532-534, 536-537.

Goepfert C, Lutz V, Lünse S, Kittel S, Wiegandt K, Kammal M, Püschel K, and Pörtner R. 2010. Evaluation of cartilage specific matrix synthesis of human articular chondrocytes after extended propagation on microcarriers by image analysis. *The International Journal of Artificial Organs* 33:204-218.

Chen JL, Duan L, Zhu W, Xiong J, and Wang D. 2014. Extracellular matrix production in vitro in cartilage tissue engineering. *J Transl Med* 12:88. 10.1186/1479-5876-12-88

Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, and Chen F. 2016. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. *Stem Cell Res Ther* 7:70. 10.1186/s13287-016-0328-x

Chomczynski, P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. *Biotechniques* 15:532-534, 536-537.

Dehne T, Karlsson C, Ringe J, Sittinger M, and Lindahl A. 2009. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous cartilage transplantation. *Arthritis Res Ther* 11:R133. 10.1186/ar2800

Diekmann BO, Rowland CR, Lennon DP, Caplan AI, and Guilak F. 2009. Chondrogenesis of Adult Stem Cells from Adipose Tissue and Bone Marrow: Induction by Growth Factors and Cartilage-Derived Matrix. *Tissue Engineering Part A* 16:523-533. 10.1089/ten.TEA.2009.0398

Diekmann BO, Rowland CR, Lennon DP, Caplan AI, and Guilak F. 2010. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. *Tissue Eng Part A* 16:523-533. 10.1089/ten.TEA.2009.0398

Duan L, Liang Y, Ma B, Zhu W, and Wang D. 2015. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair. *Am J Transl Res* 7:2127-2140.

Gardner OF, Archer CW, Alimi M, and Stoddart MJ. 2013. Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. *Histol Histopathol* 28:23-42.

Goepfert C, Lutz V, Lünse S, Kittel S, Wiegandt K, Kammal M, Püschel K, and Pörtner R. 2010. Evaluation of cartilage specific matrix synthesis of human articular chondrocytes after extended propagation on microcarriers by image analysis. *The International Journal of Artificial Organs* 33:204-218.
Goldring MB, Tsuchimochi K, and Ijiri K. 2006. The control of chondrogenesis. *Journal of Cellular Biochemistry* 97:33-44. 10.1002/jcb.20652

Gosset M, Berenbaum F, Thirion S, and Jacques C. 2008. Primary culture and phenotyping of murine chondrocytes. *Nat Protoc* 3:1253-1260. 10.1038/nprot.2008.95

Groeb F, Holeiter M, Hampel M, Hinderer S, and Schenke-Layland K. 2012. Skin tissue engineering--in vivo and in vitro applications. *Clin Plast Surg* 39:33-58. 10.1016/j.cps.2011.09.007

Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW, Jr., Lotz MK, and D'Lima DD. 2014. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. *Tissue Eng Part A* 20:264-274. 10.1089/ten.TEA.2012.0618

Han HS, Lee S, Kim JH, Seong SC, and Lee MC. 2010. Changes in chondrogenic phenotype and gene expression profiles associated with the in vitro expansion of human synovium-derived cells. *J Orthop Res* 28:1283-1291. 10.1002/jor.21129

Haudenschild DR, McPherson JM, Tubo R, and Binette F. 2001. Differential expression of multiple genes during articular chondrocyte redifferentiation. *The Anatomical Record* 263:91-98.

Hayman DM, Blumberg TJ, Scott CC, and Athanasiou KA. 2006. The effects of isolation on chondrocyte gene expression. *Tissue Eng* 12:2573-2581. 10.1089/ten.2006.12.2573

Hettrich CM, Crawford D, and Rodeo SA. 2008. Cartilage repair: third-generation cell-based technologies--basic science, surgical techniques, clinical outcomes. *Sports Medicine and Arthroscopy Review* 16:230-235. 10.1097/JSA.0b013e31818cde98

Hidvegi NC, Sales KM, Izadi D, Ong J, Kellam P, Eastwood D, and Butler PE. 2006. A low temperature method of isolating normal human articular chondrocytes. *Osteoarthritis Cartilage* 14:89-93. 10.1016/j.joca.2005.08.007

Hildner F, Albrecht C, Gabriel C, Redl H, and van Griensven M. 2011. State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. *Journal of Tissue Engineering and Regenerative Medicine* 5:e36-e51. 10.1002/term.386

Hong E, and Reddi AH. 2013. Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222, -140, and -143/145 expression. *Tissue Eng Part A* 19:1015-1022. 10.1089/ten.TEA.2012.0055

Hu DN, Yang PY, Ku MC, Chu CH, Lim AY, and Hwang MH. 2002. Isolation and cultivation of human articular chondrocytes. *Kaohsiung J Med Sci* 18:113-120.

Jakob M, Démardeau O, Schäfer D, Hintermann B, Dick W, Heberer M, and Martin I. 2001. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. *Journal of Cellular Biochemistry* 81:368-377.

Jonitz, Lochner, Tischer, Hansmann, and Bader. 2012. TGF-β1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations. *Int J Mol Med* 30:666-672. 10.3892/ijmm.2012.1042

Kerker JT, Leo AJ, and Sgaglione NA. 2008. Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes. *Sports Med Arthrosc* 16:208-216. 10.1097/JSA.0b013e31818cdbaa

Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, Conlan RS, and Archer CW. 2013. In vitro growth factor-induced bio engineering of mature articular cartilage. *Biomaterials* 34:1478-1487. 10.1016/j.biomaterials.2012.09.076

Kim TG, Shin H, and Lim DW. 2012. Biomimetic Scaffolds for Tissue Engineering. *Advanced Functional Materials* 22:2446-2468. 10.1002/adfm.201103083

Kock L, van Donkelaar CC, and Ito K. 2012. Tissue engineering of functional articular cartilage: the current status. *Cell Tissue Res* 347:613-627. 10.1007/s00441-011-1243-1

Lackie JM. 2013. *The dictionary of cell and molecular biology*. Amsterdam: Academic Press/Elsevier.
Lagana M, Arrigoni C, Lopa S, Sansone V, Zagra L, Moretti M, and Raimondi MT. 2014. Characterization of articular chondrocytes isolated from 211 osteoarthritic patients. Cell Tissue Bank 15:59-66. 10.1007/s10561-013-9371-3

Lee SY, Wee AS, Lim CK, Abbas AA, Selvaratnam L, Merican AM, Ahmad TS, and Kamarul T. 2013. Supermacroporous poly(vinyl alcohol)-carboxymethyl chitosan-poly(ethylene glycol) scaffold: an in vitro and in vivo pre-assessments for cartilage tissue engineering. J Mater Sci Mater Med 24:1561-1570. 10.1007/s10856-013-4907-4

Li C, Wang L, Yang Z, Kim G, Chen H, and Ge Z. 2012. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 23:405-424. 10.1163/092050610X551970

Li L, Ma Y, Li X, Li X, Bai C, Ji M, Zhang S, Guan W, and Li J. 2015. Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells. Biomed Res Int 2015:586290. 10.1155/2015/586290

Louveau I, Chaudhuri S, and Etherton TD. 1991. An improved method for isolating RNA from porcine adipose tissue. Anal Biochem 196:308-310.

Makris EA, Gomoll AH, Malizos KN, Hu JC, and Athanasiou KA. 2015. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11:21-34. 10.1038/nrrheum.2014.157

Maver T, Maver U, Kleinschek SK, Raščan MI, and Smrke MD. 2015. Advanced therapies of skin injuries. Wiener klinische Wochenschrift 127:187-198. 10.1007/s00508-015-0859-7

McNickle AG, Provencher MT, and Cole BJ. 2008. Overview of existing cartilage repair technology. Sports Medicine and Arthroscopy Review 16:196-201. 10.1097/JSA.0b013e31818cdb82

Mirando AJ, Dong Y, Kim J, and Hilton MJ. 2014. Isolation and culture of murine primary chondrocytes. Methods Mol Biol 1130:267-277. 10.1007/978-1-62703-989-5_20

Mohd Hilmi AB, and Halim AS. 2015. Vital roles of stem cells and biomaterials in skin tissue engineering. World J Stem Cells 7:428-436. 10.4252/wjsc.v7.i2.428

Oseni AO, Butler PE, and Seifalian AM. 2013. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. Journal of Surgical Research 181:41-48. http://dx.doi.org/10.1016/j.jss.2012.05.087

Otero M, Favero M, Dragomir C, El Hachem K, Hashimoto K, Plumb DA, and Goldring MB. 2005. Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. Methods in molecular medicine 107:69-95.

Otero M, Favero M, Dragomir C, Hachem KE, Hashimoto K, Plumb DA, and Goldring MB. 2012. Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. In: Mitry RR, and Hughes RD, eds. Human Cell Culture Protocols. Totowa, NJ: Humana Press, 301-336.

Pei M, and He F. 2012. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol 227:2163-2174. 10.1002/jcp.22950

Peterson BE, Jiwanlal A, Della Rocca GJ, and Crist BD. 2015. Orthopedic Trauma and Aging: It Isn't Just About Mortality. Geriatr Orthop Surg Rehabil 6:33-36. 10.1177/2151458514565663
Richter DL, Schenck RC, Wascher DC, and Treme G. 2016. Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature. *Sports Health* 8:153-160. 10.1177/1941738115611350

Robb CA, El-Sayed C, Matharu GS, Baloch K, and Pynsent P. 2012. Survival of autologous osteochondral grafts in the knee and factors influencing outcome. *Acta Orthop Belg* 78:643-651.

Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R, Saldana-Koppel DA, and Quinones-Olvera LF. 2015. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. *Biomed Res Int* 2015:821279. 10.1155/2015/821279

Rosenzweig DH, Solar-Cafaggi S, and Quinn TM. 2012. Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. *Acta Biomaterialia* 8:3333-3341. 10.1016/j.actbio.2012.05.032

Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, and Schlegel J. 2002a. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. *Osteoarthritis Cartilage* 10:62-70. 10.1053/joca.2001.0482

Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, and Schlegel J. 2002b. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. *Osteoarthritis and Cartilage* 10:62-70. 10.1053/joca.2001.0482

Schneevoigt J, Fabian C, Leovsky C, Seeger J, and Bahramsoltani M. 2016. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes. *Anatomia, Histologia, Embryologia*. 10.1111/ahe.12230

Schrobback K, Klein TJ, Schuetz M, Upton Z, Leavesley DI, and Malda J. 2011. Adult human articular chondrocytes in a microcarrier-based culture system: expansion and redifferentiation. *Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society* 29:539-546. 10.1002/jor.21264

Seda Tigli R, Ghosh S, Laha MM, Shevde NK, Daherent L, Gimble J, Gumusderelioglu M, and Kaplan DL. 2009. Comparative chondrogenesis of human cell sources in 3D scaffolds. *J Tissue Eng Regen Med* 3:348-360. 10.1002term.169

Shi S, Chan AG, Mercer S, Eckert GJ, and Trippel SB. 2014. Endogenous versus exogenous growth factor regulation of articular chondrocytes. *J Orthop Res* 32:54-60. 10.1002/jor.22444

Shortkroff S, and Spector M. 1999. Isolation and in vitro proliferation of chondrocytes, tenocytes, and ligament cells. *Methods Mol Med* 18:195-203. 10.1385/0-89603-516-6:195

Stellavato A, Tirino V, de Novellis F, Della Vecchia A, Cinquegrani F, De Rosa M, Papaccio G, and Schiraldi C. 2016. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes. *J Cell Biochem* 117:2158-2169. 10.1002/jcb.25556

Strzeczyk P, Benke G, and Gorecki A. 2001. Methods for the isolation and culture of human articular chondrocytes. *Ortop Traumatol Rehabil* 3:213-215.

Su K, Lau TT, Leong W, Gong Y, and Wang D-A. 2012. Creating a Living Hyaline Cartilage Graft Free from Non-Cartilaginous Constituents: An Intermediate Role of a Biomaterial Scaffold. *Advanced Functional Materials* 22:972-978. 10.1002/adfm.201102884

Thierry-Mieg D, and Thierry-Mieg J. 2006. AceView: a comprehensive cDNA-supported gene and transcripts annotation. *Genome Biol* 7 Suppl 1:S12 11-14. 10.1186/gb-2006-7-s1-s12

Thirion S, and Berenbaum F. 2004. Culture and phenotyping of chondrocytes in primary culture. *Methods Mol Med* 100:1-14. 10.1385/1-59259-810-2:001

Tuli R, Li W-J, and Tuan RS. 2003. Current state of cartilage tissue engineering. *Arthritis Res Ther* 5:235-238.

Univerzitetni klinični center M. 2014. *Letno poročilo 2013*. Maribor: Univerzitetni klinični center.

Wu L, Gonzalez S, Shah S, Kyupelyan L, Petrigliano FA, McAllister DR, Adams JS, Karperien M, Tuan TL, Benya PD, and Evseenko D. 2014. Extracellular matrix domain formation as an indicator of
chondrocyte dedifferentiation and hypertrophy. *Tissue Eng Part C Methods* 20:160-168.

Xu J, and Zhang C. 2014. In vitro isolation and cultivation of human chondrocytes for osteoarthritis renovation. *In Vitro Cell Dev Biol Anim* 50:623-629. 10.1007/s11626-014-9742-5