MALAT1-related signaling pathways in colorectal cancer

Wen-Wen Xu†, Jin Jin†, Xiao-yu Wu*, Qing-Ling Ren* and Maryam Farzaneh†

Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.

Keywords: Colorectal cancer, Long non-coding RNAs, MALAT1, Signaling pathways, miRNAs

Introduction
Colorectal cancer (CRC) or colorectal adenocarcinoma is a complex and the third cause of malignancies in the world [1, 2]. CRC usually arises from the hyper-proliferative glandular and epithelial cells in the large intestine [3]. Several environmental and genetic factors can stimulate the accumulation of mutations and oncogenes, and inhibit tumor suppressor genes in colon epithelial cells [4]. Currently, surgical resection [5], chemotherapy [6], and radiotherapy [7] are the common types of treatments for CRC [8]. Recently, molecular targeted therapy has emerged as a novel treatment option for targeting CRC cells [9, 10]. Some studies provided evidence that cancer-specific long non-coding RNAs (lncRNAs) can be utilized for anti-CRC drugs [11, 12]. LncRNA (> 200 nucleotides in length) are transcribed RNA molecules that directly or indirectly regulate a variety of biological functions [13]. It has been shown that many lncRNAs are involved in human diseases and cancers through the induction of cell cycle progression, invasion, and metastasis [14]. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a conserved and well-characterized lncRNA that plays an important role in various biological processes through diverse mechanisms [15]. Under hypoxia conditions, MALAT1 plays an important role in inflammation, angiogenesis, and metastasis [16]. The expression of MALAT1 was first detected in patients with non-small cell lung cancer (NSCLC) [17, 18]. The expression of MALAT1 has been upregulated in multiple cancer types include liver [19], cervix [20], breast [21], colorectal [22], renal [23], prostate [24], gastric [25] and other cancers [26, 27]. In tumor cells, MALAT1 by targeting several transcription factors, growth factors, hormones, and epigenetic histone modifications can mediate cancer cell proliferation, tumorigenicity, autophagy, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance phenotypes [28–31]. Recent studies elucidated the role of MALAT1 in...
CRC cell growth, migration, invasion, and metastasis [32, 33]. MALAT1 was reported to target several CRC-related pathways such as Wnt/β-catenin, YAP, SOX9, RUNX2, Snail, EGF, PI3K/AKT/mTOR, P53, and VEGF [34, 35]. Besides, MALAT1 by suppressing multiple microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis [36, 37]. miRNAs are epigenetic modulators that target mRNAs and function in various biological and pathological processes [38].

Therefore, MALAT1 can be a potent biomarker for CRC prediction and diagnosis [39, 40]. In this review, we summarized MALAT1-related signaling pathways in CRC.

Biogenesis of MALAT1

MALAT1 (known as nuclear-enriched abundant transcript 2 (NEAT2) or hepcarcin (HCN)) is the most widely investigated IncRNA and RNA polymerase II transcripts that localizes to nuclear speckles [41, 42]. MALAT1 coding gene is located on human chromosome 11q13.1 (>8000 nucleotides) [28] and functions in alternative splicing [26]. The MALAT1 precursor contains a highly conserved triple-helix element at the 3' end named MALAT1-associated small cytoplasmic RNA (mascRNA) that protects the 3' end from degradation and facilitates the localization of MALAT1. MascRNA is a tRNA-like structure that is separated from MALAT precursor by tRNA endonucleases RNase P to generate pre-mature MALAT1 [45, 46]. RNase P can also generate a 61-nt tRNA-like small RNA at the 5' end of the abundant MALAT1 transcript which is exported to the cytoplasm [47]. Pre-mature MALAT1 with a short poly(A) tail-like moiety is cleaved by tRNA endonucleases RNase Z in the nucleus, prior to addition of the CCA motif. After processing, mascRNA with CCA trinucleotide tail exported to the cytoplasm, while the stable MALAT1 transcript accumulates in the nucleus [48] (Fig. 1).

MALAT1 interacts with multiple miRNAs and small nuclear RNAs (snRNAs) to regulate various biological processes in human tissues [46]. MALAT1 is able to increase oxymatrine resistance and metastasis, migration, and angiogenesis (Table 1). MALAT1 can target polycomb repressive complex 2 (PRC2) components (enhancer of Zeste 2 (EZH2), SUZ12, and EED), increase trimethylation of histone H3 at lysine 27 (H3K27me3), and decrease target gene or miRNA expression [50]. Down-regulation of MALAT1 influenced the distribution of SR proteins and changed splicing of pre-mRNA [51]. Nowadays, various specific gene manipulation methods using siRNAs, miRNAs, and shRNA mediated the knockdown of MALAT1 have been introduced for diagnostic, prognostic, and therapeutic values of MALAT1 and its downstream targets [17, 52]. Although the exact mechanism of MALAT1 is unclear, its expression is misregulated in numerous human malignancies. MALAT1 as a competing endogenous RNA (ceRNA) can sponge miRNAs to inhibit their expression and stimulate their downstream targets.

MALAT1 was suggested to be a prognostic marker in multiple cancerous tissues. Below, we summarized the overview function of MALAT1 in colorectal cancer.

The role of MALAT1 in colorectal cancer

The MALAT1 fragment at the 3’ end is known to be associated with CRC cell metastasis [47, 53]. However, the exact mechanisms of MALAT1 in CRC are not fully understood. Previous studies have established that MALAT1 promotes CRC cell proliferation, apoptosis, migration, metastasis, and angiogenesis (Table 1). MALAT1 by targeting several signaling pathways and miRNAs plays a pivotal role in CRC pathogenesis (Fig. 2).

Based on a previous study, MALAT1 as a prognostic risk factor decreased the survival outcomes of patients with CRC [54]. In advanced CRC patients, overexpression of MALAT1 is associated with drug resistance [22]. MALAT1 is able to increase oxymatrine resistance and the invasion ability of CRC cells [55]. MALAT1 by targeting at least 243 genes stimulates tumor development and enhances CRC cell invasion. The expression of PRKA kinase anchor protein 9 (AKAP-9) has been recognized that was increased in CRC tissues with lymph node metastasis [35].

A study reported that tumor-associated dendritic cells (TADCs) promoted migration and EMT in CRC [56]. C–C motif ligand 5 (CCL5) is a chemokine that mimics the impact of TADCs on CRC cells. Therefore, the inhibition of CCL5 expression via neutralizing antibodies or siRNA reduced cancer progression by TADCs. It has been suggested that Snail as the...
Fig. 1 (See legend on previous page.)
downstream target of MALAT1 participates in TADC-mediated CRC progression [56].

Further studies have found that MALAT1 can target miR-619-5p and increase the clinicopathological features of patients with CRC [57]. In CRC, MALAT1 through interaction with EZH2 can inhibit the expression of E-cadherin and induce Oxaliplatin (Ox) resistance. Also, MALAT1 interacts with miR-218 to enhance EMT, metastasis, and FOLFOX resistance [22]. MALAT1 by targeting miR-363-3p can enhance EZH2 expression levels and promote CRC cell proliferation [58].

PTBP2 or PTB (polypyrimidine-tract-binding protein) is a proto-oncogene that promotes the growth of CRC cells [59]. SFPQ or PSF is a PTB-associated splicing factor and a tumor suppressor gene that binds to PTBP2 [60]. MALAT1 has been observed to interact with SFPQ, releases PTBP2 from the SFPQ/PTBP2 complex (SFPQ-detached PTBP2), and accelerates tumor growth and metastasis [61, 62].

Sex-determining region Y (SRY)-box 9 (SOX9) is a transcription factor that participates in CRC oncogenesis and metastasis [63]. MALAT1 by suppressing miR-145

Table 1 MALAT1-related signaling pathways in colorectal cancer (CRC)

MALAT1	Results	Refs.
WNT/ß-catenin	Stimulate CRC cell invasion and metastasis	[69]
SOX9	Promote CRC cell proliferation and migration	[64]
DCP1A	Enhance CRC cell proliferation and invasion	[65]
ABC, BCRP, MDR1, MR1	Enhance CRC cell proliferation and reduce apoptosis and the sensitivity to drug	[70]
YAP1, VEGFA, SLUG, TWIST	Stimulate EMT and angiogenesis in CRC cells	[72]
LRPa/ß-catenin, RUNX2	Enhance CRC cell proliferation and reduce apoptosis	[68]
Wnt/ß catenin, Bcl-2	Enhance CRC cell proliferation and invasion	[56]
ADAM17	Reduce the Ox-sensitivity in CRC cells	[82]
RAB14	Decrease the PFS rate	[83]
IRE1/XBP1 and PERK/ATF4	Promote CRC cell migration and metastasis	[91]
FLUT4	Promote CRC cell invasion and tumorigenesis	[94]
lincRNA-ROR, lincRNA-p21, p53	Increase CRC cell tumorigenesis	[95]
DANCR	Suppress apoptosis in CRC	[96]

MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; AKAP-9: PRKA kinase anchor protein 9; CRC: Colorectal cancer; ABC: ATP-binding cassette transporters; BCRP: Breast cancer resistance protein; MDR: Multi-drug resistance proteins; YAP1: Yes-associated protein 1; DCP1A: mRNA-decapping enzymes 1a; EZH2: Enhancer of Zeste 2; LC3-II: Microtubule-associated protein 1A/1B-light chain 3; SQSTM1: Sequestosome-1; ADAM17: A disintegrin and metalloproteinase metallopeptidase domain 17; Ox: Oxaliplatin; PFS: Progression-free survival; PERK: Protein kinase R (PKR)-like ER kinase; IRE1: Inositol-requiring enzyme 1; ATF4: Transcription factor 4; XBP1: X-box-binding protein 1; QK: QUAKING; HMGB1: High motility group box protein 1; FUT4: Fucosyltransferase 4
could accelerate SOX9 mediated CRC cell proliferation, migration, and tumorigenesis (MALAT1/miR-145/SOX9 axis) [64].

MALAT1 has been proved that directly stimulates the expression of the mRNA-decapping enzymes 1a (DCP1A), down-regulates miR-203, and enhances CRC
cell proliferation and invasion (MALAT/miR-203/DCP1A axis) [65].

High mobility group box protein 1 (HMGB1) is a nuclear protein that enhances CRC cell development [66]. MALAT1 by targeting miR-129-5p increased the expression of HMGB1 (MALAT1/miR-129-5p/HMGB1 axis) and enhanced the proliferation of CRC cells [67].

Moreover, MALAT1 through the activation of Wnt/β-catenin signaling enhances CRC cell proliferation and reduces apoptosis (caspase-3 and Bax reduced, Bcl-2 increased) [68]. Resveratrol has been shown that down-regulates MALAT1 mediated the Wnt/β-catenin signal pathway and reduces CRC cell invasion and metastasis [69]. Therefore, the knockout of MALAT1 suppressed CRC cell migration and proliferation [54, 68].

MALAT1 by targeting key molecules participating in drug resistance, including breast cancer resistance protein (BCRP), ATP-binding cassette transporters (ABC), and multi-drug resistance proteins (MDR1 and MRP1) can increase the metastasis and invasion of CRC cells. Also, MALAT1 blocks the expression of miR-20b-5p and enhances CRC cell tumorigenesis. Hence, inhibition of MALAT1 reduced cell migration and promoted the sensitivity of CRC cells to 5-FU [70].

Yes-associated protein 1 (YAP1) has been reported that increases proliferation and migration of CRC cells [71]. YAP1 by targeting the MALAT1/miR-126-5p axis can stimulate vascular endothelial growth factor (VEGFA), SLUG, and TWIST as metastasis-associated molecules and control EMT and angiogenesis in CRC cells. miR-126-5p by blocking SLUG, TWIST, and VEGFA has a tumor suppressor role in CRC [72].

RUNX2 (Runt-related transcription factor 2) is a key transcription factor and proto-oncogene that plays an important role in various tumors. miR-15a by suppressing IRES domain in the 5′UTR of the RUNX2 mRNAs and increases translational levels of RUNX2. MALAT1 also via miR-15a/LRP6/β-catenin signaling positively regulates RUNX2 expression and enhances CRC cell metastasis [73].

MALAT1 was recently investigated that suppressed miR-194-5p and enhanced the migration and invasion of CRC cells [74]. In CRC tissues and cell lines, microtubule-associated protein 1A/1B-light chain 3 (LC3-II/I) reflects autophagosome formation [75]. There is a positive correlation between MALAT1 and LC3-II mRNA levels in CRC cells. MALAT1 by binding to miR-101 can stimulate CRC cell proliferation and LC3-II-induced autophagy, and suppress the expression of Sequestosome-1 (p62/SQSTM1) as an autophagosome cargo protein [76].

miR-101-3p was also reported to play as a tumor suppressor in various neoplasms [77]. A recent study confirmed that MALAT1 targeted miR-101-3p in radio-resistance cells and promoted CRC cell viability [78].

It has been found that high-dose Vitamin C administration has an inhibitory effect on MALAT1 and CRC metastasis [79].

A disintegrin and metalloprotease metallopeptidase domain 17 (ADAM17) is a protease for epidermal growth factor receptor (EGF-R) ligand processing [80]. It has been recently shown that ADAM17 can accelerate the tumorigenesis of CRC [81]. MALAT1 through suppression of miR-324-3p and stimulation of ADAM17 (as a target of miR-324-3p) could reduce the Ox-sensitivity of CRC cells in xenograft tumor mice treated with Ox [82]. Besides, MALAT1 was identified to inhibit the expression of the hsa-miR-194-5p and decrease the progression-free survival in patients with CRC [83].

RAB14 is a small GTPase member of the RAS oncogene family that enhances CRC cell proliferation [84]. MALAT1 as a ceRNA can target miR-508-5p and RAB14 (as a target of miR-508-5p) promote CRC progression [85].

Based on previous studies, endoplasmic reticulum (ER) stress through the unfolded protein response (UPR) pathway is contributed to CRC metastasis [86, 87]. It has been found that the protein kinase R (PKR)-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and transcription factor 6 (ATF6) activate signaling pathways involved in the UPR [88]. ER stress by suppressing cyclin D1 (cell cycle machinery) and inducing apoptosis plays an important role in CRC metastasis [89]. Thapsigargin (TG) is an ER stress inducer that stimulates cell migration [90]. TG-induced MALAT1 is associated with the expression of the PERK and IRE1 pathways. Moreover, in CRC tissue samples, MALAT1 is positively regulated with the X-box-binding protein 1 (XBP1) and ATF4 binding sites. Therefore, the IRE1/XBP1 and PERK/ATF4 signaling pathways are involved in MALAT1-induced CRC progression [91].

Exosomes also play critical roles in the progression of CRC [92, 93]. A previous study showed that highly metastatic CRC-derived exosomes could accelerate the fucosyltransferase 4 (FUT4) levels (a key enzyme of fucosylation), invasion, and metastasis in primary CRC cells. They indicated that MALAT1 by targeting miR-26a/26b promoted FUT4-associated fucosylation, stimulated the PI3K/AKT/mTOR pathway, and increased CRC cell proliferation and tumorigenesis (MALAT1/miR-26a/26b/FUT4 axis) [94].

A study identified that MALAT1 can interact with lncRNA-ROR, IncRNA-p21, p53 and increase the tumorigenesis of CRC cells [95].
The RNA-binding protein QUAKING (QK) is involved in apoptosis and the RNA stability of MALAT1. Recently, DANCR (IncRNA) was found to mediate the interaction between QK and MALAT1 (DANCR/QK/MALAT1 axis), increase the anti-apoptotic function of MALAT1, and reduce Doxorubicin (Dox)-induced apoptosis in CRC cells [96].

Therefore, compared to traditional methods, MALAT1 can be a novel biomarker for the early diagnosis and prognosis of CRC.

Conclusion

In this review, we highlighted the recently reported mechanism of MALAT1 in CRC. MALAT1 targets several signaling pathways such as Wnt/β-catenin, YAP, SOX9, RUNX2, Snail, EGF, PI3K/AKT/mTOR, and VEGF. Besides, MALAT1 has been found to modify miRNAs-associated drug sensitivity in CRC. Although these studies showed that MALAT1 plays a pivotal role in CRC tumorigenesis, the exact mechanisms whereby MALAT1 stimulates CRC development or invasion remains largely unclear. Taken together, the MALAT1-mediated treatment can be a critical therapeutic target for chemotherapy and radiotherapy sensitization.

Abbreviations

ABC: ATP-binding cassette transporters; ADAM17: A disintegrin and metalloprotease metalloepptidase domain 17; AKAP-9: PRKA kinase anchor protein 9; ATF6: Transcription factor 6; BCRP: Breast cancer resistance protein; CCL5: C–C motif ligand 5; cERNA: Competing endogenous RNA; CRC: Colorectal cancer; DCPIA: Decapping enzymes 1a; EMT: Epithelial-mesenchymal transition; ER: Endoplasmic reticulum; EZH2: Enhancer of Zeste 2; FUT4: Fucosyltransferase 4; HCN: Hepc161; HMG1: High mobility group box protein 1; IRE1: Inositol-requiring enzyme 1; LC3-II/I: Microtubule-associated protein 1A/1B-light chain 3; LncRNA: Long non-coding RNAs; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; mRNAs: MicroRNAs; NSCLC: Non-small cell lung cancer; NEAT2: Nuclear-enriched abundant transcript 2; PTB: Polypyrimidine-Ox: Oxaliplatin; PERK: Protein kinase R (PKR)-like ER kinase; PFS: Progression-free survival; PRC2: Polycomb repressive complex 2; SRm160: Serine/arginine-related protein; SRSF: SR splicing factor; SOX9, RUNX2, Snail, EGF, PI3K/AKT/mTOR, and VEGF.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that there is no competing interests.

Author details

1 Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China. 2 Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China. 3 Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Received: 14 August 2021 accepted: 5 March 2022

Published online: 19 March 2022

References

1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Praz Gastroenterol. 2019;14:89–103.
2. Sayhan S, Kahraman OS. Pathologic features of colorectal carcinomas. In: Colon polypos and colorectal cancer. Springer, 2020, pp. 455–480.
3. Sekar V. Role of cancer stem cells in colitis-associated colorectal cancer. In: Diagnostic and treatment methods for ulcerative colitis and colitis-associated cancer. IGI Global, 2021, pp. 201–219.
4. Kuipier EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJH, Watanebe T. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065–15065.
5. Colov EP, Degett TH, Raskov H, Gøgenur I. The impact of the gut microbiota on prognosis after surgery for colorectal cancer—a systematic review and meta-analysis. APMS. 2020;128:162–76.
6. Mo X, Huang X, Feng Y, Wei C, Liu H, Ru H, Qin H, Lai H, Wu G, Xie W. Immune infiltration and immune gene signature predict the response to fluoropyrimidine-based chemotherapy in colorectal cancer patients. Oncoimmunology. 2020;9:1832347.
7. Häfner MF, Debux J. Radiotherapy for colorectal cancer: current standards and future perspectives. Visc Med. 2016;32:172–7.
8. Ghani S, Bahrami S, Rafiee B, Eyvazi S, Yarian F, Ahangarzadeh S, Khalili S, Shahzamani K, Jafarisani M, Bandehpour M, Kazemi B. Recent developments in antibody derivatives against colorectal cancer: a review. Life Sci. 2021;265:118791.
9. Barani M, Bilal M, Rahdar A, Arshad R, Kumar A, Hamishekar H, Kyzas GZ. Nanodiagnosis and nanotreatment of colorectal cancer: an overview. J Nanopart Res. 2021;23:1–25.
10. Ali O, Tolaymat M, Hu S, Xie G, Raufman J-P. Overcoming obstacles to targeting muscarinic receptor signaling in colorectal cancer. Int J Mol Sci. 2021;22:716.

Acknowledgements

This work was supported by the National Science Foundation of China (82074478 to QL), the Project of six “1” Project of Jiangsu Province (LG2016012 to XWW), Social Development Project of Jiangsu Province (BE2019768 to WX), and Maternal and Child Health Research Project of Jiangsu Province (F201763 to XWW). The funding institutions did not have any roles in the study design, data collection, or analysis.

Authors’ contributions

WX and JJ have been involved in drafting the manuscript. XW, QR, and MF have made substantial contributions to the revising of the manuscript and the design of the Figures. All authors read and approved the final manuscript.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
14. Do H, Kim W. Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform. 2018;16:e18–e18.

15. Sun L, Zhang P, Lu W. IncRNA MALAT1 regulates mouse granulosa cell apoptosis and 17β-estradiol synthesis via regulating miR-205/CREB1 Axis. BioMed Res Int. 2021;2021:6671814.

16. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:204.

17. Arun G, Aagarwal D, Spector DL. MALAT1 long non-coding RNA functional implications. Non-coding RNA. 2020:26.22.

18. Wei Y, Niu B. Role of MALAT1 as a prognostic factor for survival in various cancers: a systematic review of the literature with meta-analysis. Dis Markers. 2015;2015:164635.

19. Ji D-G, Guan L-Y, Luo X, Ma F, Yang B, Liu H-Y. Inhibition of MALAT1 sensitizes liver cancer cells to 5-fluorouracil by regulating apoptosis through IKBα/IKK-β pathway. Biochem Biophys Res Commun. 2018;501:13–40.

20. Sun R, Qin C, Jiang B, Fang S, Pan X, Peng L. LncRNA MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 2017;16:739–51.

21. Zhang H, Li W, Gu W, Yan Y, Yao X, Zheng J. MALAT1 accelerates the development and progression of renal cell carcinoma by decreasing the expression of miR-203 and promoting the expression of BIRC5. Cell Prolif. 2019;52:e16240.

22. Lu X, Chen D, Yang F, Xing N. Quercetin inhibits epithelial-to-mesenchymal transition (EMT) process and promotes apoptosis in prostate cancer via downregulating IncRNA MALAT1. Cancer Manag Res. 2020;12:1741.

23. Dai Q, Zhang T, Li C. LncRNA MALAT1 regulates the cell proliferation and cisplatin resistance in gastric cancer via PI3K/AKT pathway. Cancer Manag Res. 2020;12:1929.

24. Li P, Zhang X, Wang H, Wang L, Liu T, Du L, Yang Y, Wang C. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 2017;16:739–51.

25. Dai Q, Zhang T, Li C. LncRNA MALAT1 regulates the cell proliferation and cisplatin resistance in gastric cancer via PI3K/AKT pathway. Cancer Manag Res. 2020;12:1929.

26. Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory networks of LncRNA MALAT1 in cancer. Cancer Manag Res. 2020;12:10181.

27. Li Q, Dai Y, Wang F, Hou S. Differentially expressed long non-coding RNAs and the prognostic potential in colorectal cancer. Neoplasma. 2016;63:977–83.

28. Amodio N, Raimondi L, Juli G, Stamatou MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:1–19.

29. Amodio N, Raimondi L, Juli G, Stamatou MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63–63.

30. Zhang X-Z, Liu H, Chen S-R. Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers. 2020;12:1245.

31. Zhao K, Jin S, Wei B, Cao S, Xiong Z. Association study of genetic variation of IncRNA MALAT1 with carcinogenesis of colorectal cancer. Cancer Manag Res. 2018;10:6257–61.

32. Chen Q, Zhu C, Jin Y. The oncogenic and tumor suppressive functions of the long noncoding RNA MALAT1: an emerging controversy. Front Genet. 2020;11:93.

33. Syllaos A, Morris D, Karachalio GS, Sakellarious S, Karavekyros I, Gazozi M, Schizas D. Pathways and role of MALAT1 in esophageal and gastric cancer. Oncol Lett. 2021;21:1–7.

34. Li Y, Z, Zhu Q-N, Zhang H-B, Hu Y, Wang G, Zhu Y-S. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–68.

35. Zhang MH, Hu ZY, Xu C, Xie LW, Yang YX, Chen SY, Li ZG. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PKRα kinase anchor protein 9. Biochem Biophys Acta. 2015;1852:166–74.

36. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long non-coding RNA (IncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20:5758.

37. Su K, Wang N, Shao Q, Liu H, Zhao B, Ma S. The role of a cell regulatory network based on IncRNA MALAT1 in cancer progression. Biomed Pharmacother. 2021;137:111389.

38. Farzaneh M, Alishahi M, Denakhsh Z, Sarani NH, Attari F, Khostam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Curr Stem Cell Res Ther. 2019;14:278–89.

39. Chen M, Wu D, Tu S, Yang C, Chen D, Xue Y. A novel biosensor for the ultra-sensitive detection of the IncRNA biomarker MALAT1 in non-small cell lung cancer. Sci Rep. 2021;11:3666.

40. Li Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Wang Y, Liu N. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFQ and releasing oncogene PTBP2 from SFQ/PTBP2 complex. Biochem Biophys Acta. 2014;11:736–48.

41. Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA MALAT1: its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–14.

42. Wilusz JE, Spector DL. An unexpected ending: noncanonical 3' end processing mechanisms. RNA. 2016;22:259.

43. Donlic A, Zaffarian M, Padroni G, Puri M, Hargrove AE. Regulation of MALAT1 triple helix stability and in vitro degradation by diphynylfurans. Nucleic Acids Res. 2020;48:7653–64.
60. He Q, Long J, Yin Y, Li Y, Lei X, Li Z, Zhu W. Emerging roles of IncRNAs in the formation and progression of colorectal cancer. Front Oncol. 2020;9:1542.

61. Amirkhah R, Naden-Meshkin H, Shah J, Dunne PD, Schmitz U. The intricate interplay between epigenetic events, alternative splicing and noncoding RNA deregulation in colorectal cancer. Cells. 2019;8:292.

62. Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Yang Y, Liu N, Ren J, Hou F, Li Q. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to sFPP and releasing oncogene PTBP2 from sFPP/PTBP2 complex. Br J Cancer. 2014;111:736–48.

63. Prévost-C Blache P. The dose-dependent effect of sOX9 and its incidence in colorectal cancer. Eur J Cancer. 2017;86:150–7.

64. Xu Y, Zhang X, Hu X, Zhou W, Zhang P, Zhang J, Yang S, Liu Y. The effects of IncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating sOX9. Mol Med. 2018;24:52.

65. Wu C, Zhu X, Tao K, Liu W, Ruan T, Wan W, Zhang C, Zhang W. MALAT1 promotes the colorectal cancer malignancy by increasing DCP1A expression and miR203 downregulation. Mol Carcinog. 2018;57:1421–31.

66. Süren D, Yıldırım M, Demirpençe Ö, Kaya V, Alikanoğlu AS, Bülbüller N, Xu Y, Zhang X, Hu X, Zhou W, Zhang P, Zhang J, Yang S, Liu Y. The effects of IncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating sOX9. Mol Med. 2018;24:52.

67. Wu Q, Meng WY, Jie Y, Zhao H. lncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGBl axis. J Cell Physiol. 2018;233:6750–7.

68. Zhang J, Li Q, Xue B, He R. MALAT1 inhibits the Wnt/β-catenin signaling pathway in colon cancer cells and affects cell proliferation and apoptosis. Bosn J Basic Med Sci. 2020;20:350–64.

69. Ji Q, Liu X, Fu X, Zhang L, Su H, Zhou L, Sun J, Cai J, Qin J, Ren J, Li Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signaling pathway. PLOS ONE. 2013;8:e78700.

70. Tang D, Yang Z, Long F, Luo L, Yang B, Zhu R, Sang X, Cao G. Inhibition of MALAT1 reduces tumor growth and metastasis and promotes drug sensitivity in colorectal cancer. Cell Signal. 2019;57:21–8.

71. Dehghanian F, Ashir Z, Akbari A, Hojati Z. New insights into the roles of yes-associated protein (YAP1) in colorectal cancer development and progression. Ann Colorectal Res. 2019;7:1–7.

72. Sun Z, Ou C, Liu J, Chen J, Zhou Q, Yang S, Li G, Wang G, Song J, Li Z, Zhang Z, Yuan W. LIX. YAP1-induced MALAT1 promotes epithelial–mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer. Oncogene. 2019;38:2627–44.

73. Ji Q, Cai G, Liu X, Zhang Y, Wang Y, Zhou L, Sui H, Li Q, MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 2019;10:378.

74. Wu S, Sun H, Wang Y, Yang X, Meng Q, Yang H, Zhu T, Wang W, Li X, Aschner M. MALAT1 rs664589 polymorphism inhibits binding to miR-194-5p, contributing to colorectal cancer risk, growth, and metastasis. Can Res. 2019;7:9:5432–41.

75. Liu M, Zhao G, Zhang D, An W, Li H, Li X, Cao S, Lin X. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol. 2018;53:1363–73.

76. Si Y, Yang Z, Ge Q, Yu L, Yao M, Sun X, Ren Z, Ding C. Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer. Cell Mol Biol Lett. 2019;24:52.

77. Wang C-Z, Deng F, Li H, Wang D-D, Zhang W, Ding L, Tang J-H. MiR-101: a potential therapeutic target of cancers. Am J Transl Res. 2018;10:3310–21.

78. Guo J, Ding Y, Yang H, Guo H, Zhou X, Chen X. Aberrant expression of IncRNA MALAT1 modulates radioresistance in colorectal cancer in vitro via miR-101-3p sponging. Exp Mol Pathol. 2020;115:104448.

79. Chen J, Qin F, Li Y, Mo S, Deng K, Huang Y, Liang W. High-dose vitamin C tends to kill colorectal cancer with high MALAT1 expression. J Oncol. 2020;2020:2621308.

80. Soto-Gamez A, Chen D, Nabuurs AG, Quax WJ, Demaria M, Boersma YL. A bispecific inhibitor of the EGF/EGFR/ADM17 axis decreases cell proliferation and migration of EGFR-dependent cancer cells. Cancers. 2020;12:411.

81. Schumacher N, Rose-John S. ADAM17 activity and IL-6 trans-signaling in inflammation and cancer. Cancers. 2019;11:1736.