Conservation and rational use of natural resources: methods of circular economy assessment

Maria Andreevna Gureva
FSBEI HE «Industrial University of Tyumen»
E-mail: gurevama@tyuiu.ru

Abstract. Issues of resource conservation in terms of inclusion of raw materials and advanced technologies of environmental management are indisputably important in modern production and consumption development. The scientific community focuses on the development of technological methods for cyclic use of raw materials, construction of logistics supply chains, introduction and modernization of circular processes in production. The next logical stage of the study is to analyse various tools for assessment of circular economy development, promoting conservation and sustainable use of various natural resources; the article defines the main differences and results of the analysis. Carried out with the financial support of the Grant of the President of the Russian Federation to support young scientists Candidates of Sciences in the study MK-587.2019.6 "Development of theoretical and methodological foundations of the concept of circular economy as a new trend in the formation of sustainable socio-economic space."

1. Introduction.
The circularity concept has undeniable relevance, it is considered as an oriented process of modernization for the linear model of the economy to achieve qualitative development of various socio-economic phenomena. A historical review was previously presented, it covers circular economy emergence and formation and its relationship with new industrialization phenomenon; a variety of interpretations of "circular economy" concept was studied and main approaches to its formation were determined [5]. The authors described in detail using the circular economy model by countries on specific examples of enterprises characterizing introduction of main business models of the circular economy [2, 3]. The next logical stage is to study methodological aspects of assessing circular economy development.

The purpose of the article is to analyse various methodological approaches to the assessment of circular economy development in the socio-economic space, necessary for further development and testing a new assessment tool. Poor and insufficient elaboration of a methodological approach to the concept of circularity in Russian-language sources is indisputable fact testifying to scientific novelty.

Statistical information accumulated in various areas of socio-economic development, as a rule, is not informative and requires a thorough competent analysis. Indication is applied for quantitative and qualitative analysis of various indicators. This methodological approach has gained wide relevance in natural sciences, providing further insight into the causal relationship between the studied phenomena. The indicators used during the assessment offer a clearer view of the system state under study, which is influenced by a set of internal and external factors. The basic principles of indicators construction...
include aggregation and creation of indicator systems; at the same time, classical formation of an indicator is focused on presentation of the degree of achieving the reference value [4].

2. Main part.
In 2019, a group of scientists, after studying more than fifty-five different approaches to circular economy assessment "... that are developed and used by scientists, companies, environmental organizations, government agencies, created their taxonomy based on the needs arising from application of such indicators, including ten categories for differentiation and definition of C-indicators driven by the principles of the circular economy..." [25].

The categories/criteria identified by authors for proposed taxonomy of C-indicators include:
1) level (micro, meso, macro);
2) cycle (conservation, reuse / recovery, recycling);
3) performance (internal, impact);
4) perspective (actual, potential);
5) usage (for example: improvement, comparison, communication);
6) transversality (general, branch);
7) size (one, several);
8) units of measurement (quantitative, qualitative);
9) format (for example: a web-based tool, Excel-formula);
10) sources (scientists, companies, agencies) [25].

C-indicators can be considered as extraordinary incentives to move to a more advanced level of circularity.

A detailed analysis of methods for assessing circular economy development is beyond the scope of this article, so it briefly presents only a few.

In 2007, in China the scientific literature gives the earliest references to the indicators of circular economy evaluation. The first system of indicators "... is based on the 3R principles and is designed to promote the application of circular economy, assess the overall effectiveness of practices and support processes..." [17]. In 2011, the Regional Circular Economy Index System was introduced, based on three indicators, according to the 3R imperatives: pollution reduction, waste recycling and recycling of materials [22].

In 2011, researcher J. Guo-gang presented an index system for assessing the level of circular economy development, consisting of 16 indicators grouped into four groups:
1) consumption (water consumption per million GDP, water consumption per capita, elasticity in water use, energy consumption per million GDP);
2) environmental violations (norms of industrial wastewater discharge, level of harmlessness of household garbage, application of chemical fertilizers per unit of acreage);
3) waste management (urban wastewater treatment per capita, integrated solid industrial waste utilization rate, resource utilization network coverage, "three waste" utilization rate);
4) social development (GDP per capita, urbanization rate, unemployment rate, Engel coefficient, GDP growth) [19].

In 2012, a group of scientists led by Yu. Geng suggested a system of indicators structured into two groups for evaluation:
- macro-level (22 indicators);
- industrial park (12 indicators).

This system is designed to facilitate methodological processes of introduction of circular economy and increase attention to environmental problems (Geng Y., Fu J., Sarkis J., Xue B., 2012) [17].

In 2013, in China, the Ministry of Environmental Protection (MEP) drafted indicators system for circular economy assessment at the meso-level based on 21 indicators divided into four groups: economic development, waste management, pollution control, administration and management [20].

In 2015, C. Ruiter (2015) proposed "the Circular Economy Performance Index", acting as a useful tool for assessing the level of business circularity. The system consists of 25 key performance
indicators (KPI) of the circular economy, classified into three levels according to impact degree: high (red), medium (orange) and low (green). According to the obtained calculated values the analyzed object can be assigned to one of five categories: "non-compliance", "compliance", "beyond compliance", "integrated strategy", "goal/mission", providing an opportunity to quickly realize shortcomings in the circular economy concept implementation [23].

In 2015, "EU Resource Efficiency Scoreboard 2015" presents "... a system for assessing the circularity of economy on 32 indicators formed into a three-level system: a common leading indicator of "resource productivity"; a second-level dashboard of additional macro indicators for materials, land, water and carbon; and a third-level of thematic indicators to measure progress towards key thematic goals, as well as actions and milestones set out in the road map..." [16, 28]. They are grouped into main topics and sub-topics:

- resource productivity (main indicator);
- dashboard indicators (materials, earth, water, carbon);
- transforming the economy (turning waste into resources, supporting research and innovation; pricing correctly);
- nature and ecosystems (biodiversity; clean air; land and soil);
- key areas (solving the food problem; improving buildings; ensuring effective mobility) [16, 28].

Resource productivity is the main indicator of the evaluation system under consideration. It is used as a measure of resource efficiency, i.e. how effectively an economy uses material resources to produce products and services available in the market. It is an absolute indicator, measured in euros per kg and monitors the dynamics of changes (2000 is considered as a base year). The efficiency of resources use by the state largely depends on the structure of national economy, the size and structure of international trade, while the economy is able to create more wealth without a proportional increase in resource consumption [16, 28].

In 2015, Ellen MacArthur Foundation, GRANTA Design and LIFE, developed an indicator “The Material Circularity Indicator” (MCI) presented in “Circularity Indicators: An Approach to Measuring Circularity. Methodology” [14].

Along with the MCI indicator in the Circular Metrics Landscape Analysis report 2018, The World Business Council for Sustainable Development (WBSCD) identifies three other important tools for assessing the circular economy:

1) the Life Cycle Assessment (LCA) is a method of assessing the environmental impact associated with all stages of the product life cycle from extraction of raw materials to disposal; it is an indirect tool used in the circular economy, but, nevertheless, so-called "life cycle analysis" (or "ecobalance") is extremely important;

2) the Circular Economy Toolkit (CET) is an assessment method that identifies and evaluates the potential improvement in circularity of products, i.e. it is also associated with life cycle analysis. This is an online test without score points, which includes 33 questions, developed at the University of Cambridge. Questions are divided into 7 subcategories according to the stages of product/service life cycle. It is presented as a web page and gives a qualitative assessment, structured into three categories (low, medium, high);

3) circular economy Indicator (the Circular Economy Indicator Prototype, CEIP) evaluates the performance of cyclic products. Developed on the basis of calculation functions of MS Office Excel, using a questionnaire with a score system of assessment, consisting of fifteen questions divided into 5 stages of a life cycle, namely: design or redesign; manufacture; commercialization; use and end of life. Presented as a spreadsheet in an Excel file, gives a quantitative estimate, measured in % [12, 18, 23, 24, 27].

In 2019, a group of researchers (Z. Steinmann Z. J. N., Huijbregtsa M. A. J., Reijndersbb L., 2019) proposed the material quality circularity index (Qc), where the numerator expresses the net energy savings due to processing of primary material (MJ / kg) and the denominator is the embodied
energy of 1 kg of primary material (MJ/kg), which can be attributed to the evaluation indicators of the circular economy at the micro-level [26].

In 2019, A. Avdiushchenko A., Zając P. proposed a system of evaluation "Circular Economy Indicators" which includes 25 indicators divided into 7 groups:

- **economic development** (GDP per capita, average life expectancy at birth for men, registered unemployment rate, poverty risk level);
- **zero economy** (municipal waste collected selectively in relation to the total amount of municipal waste collected; municipal waste collected per inhabitant; industrial and municipal waste water requiring treatment; expenditures on fixed assets serving environmental protection and water resources management related to waste processing and disposal);
- **innovation economy** (research and development expenditures per capita, fixed prices; average share of innovative enterprises in the total number of enterprises; adults involved in education and training; patent applications per 1 million inhabitants);
- **energy efficiency and renewable energy** (share of renewable energy sources in total electricity production; expenditures on fixed assets serving environmental protection and water resources management related to energy saving per capita; electricity consumption);
- **low-carbon economy** (emissions of carbon dioxide from plants particularly harmful to air purity; emissions of particles; cars; pollutants remaining or neutralized in pollutant reduction systems in common pollutants produced from plants particularly harmful to air purity; costs of fixed assets serving environmental protection and water management related to air and climate protection);
- **smart economy** (households with a personal computer with broadband Internet connection; businesses with broadband Internet access);
- **spatially efficient economy** (forest cover indicator; urban greenery and the share of parks, lawns and green areas in residential areas in the total area; urbanization coefficient) [9].

The table provides a comparative analysis of the considered tools for assessing the circular economy.

Year of development	Title**	Authorship / country	Quantity assessment subgroups	Graphical shell	Level of assessment		
2006	The Life Cycle Assessment	LCA	-	-	Micro		
2007	The Regional Circular Economy Index System	RCI	China	2	3	-	Macro
2011	Regional Circular Economy Development index	-	J. Guo-gang / China	4	16	-	Macro
2012	Material flow analysis to evaluate Circular economy	MFA	Geng Y., Fu J., Sarkis J., Xue B.	2	34	-	Macro
2013	Ministry of Environmental Protection CE	MEP	Su B. W. et al. / China	4	21	-	Meso
Year of development	Title**	Authorship / country	Quantity assessment subgroups	Graphical shell	Level of assessment		
---------------------	---------	----------------------	------------------------------	-----------------	---------------------		
2015	Indicator system for assessing the circular economy	Ruiter C.	25	+	Micro, Meso		
2015	The Resource Efficiency Scoreboard	Eurostat European Commission	32	-	Macro		
2015	The Material Circularity Indicator	Ellen MacArthur Foundation, Granta Design и LIFE L.H. Verbeek	2	+	Macro		
2016	Circular Economy Index for the consumer goods sector		25	+	Micro		
2016***	The Circular Economy Toolkit	CET Cambridge University	33	+	Micro		
2016	The Circular Economy Indicator Prototype	Griffiths, P. Cayzer, S.	15	+	Micro, Meso		
2018	Raw Materials Scoreboard 2018	EIP	26	-	Macro		
2018	Monitoring framework for the circular economy	European Commission and Eurostat	10	-	Macro		
2018	Adaptation of Monitoring framework for the circular economy for practice in the Republic of Belarus	BEROC / the Republic of Belarus	14	-	Macro		
2018	Indicators for a Circular Economy	Vercalsteren A., Christis M., Van Hoof V.	18	-	Micro, Meso, Macro		
2018	Circularity Rating Indicator	O. I. Sergienko, E. S. Smaznova, D. V. Razumova	1	-	Micro, Macro		
2018	Indicators for evaluation of clusters’ competitiveness through circular economy	K. Razminiene M. Tvaronaviciene	15	+	Meso, Macro		
2018	Circular Economy Development Index	Vetrova M. A., Pakhomova N. V., Richter K. K.	1	-	Meso		
### Year of development	Title**	Authorship / country	Quantity	Graphical shell	Level of assessment
2019	Indicator for the circularity of material quality	Steinmann Z.J.N., Huijbregtsa M.A.J., Reijndersb L.	1 1	-	Micro
2019	Circular Economy Indicators	Avdiushchenko A., Zajac P.	7 25	-	Macro

* the table is compiled by the author using the cited sources in the bibliography list [1-30].
** there are more evaluation tools than are presented in this table.
*** the reliability of this data is in doubt, as the official data source has no date [27].

3. Conclusion

The bibliometric method of literature analysis showed that the assessment of circular economy development takes place at three levels: micro, meso and macro. Macro-level indicators are needed for evaluation and monitoring in order to improve various programs at the state level. Micro-level indicators tend to cover 3R imperatives without reflecting the full range of distinctive features of the circular economy, analyzing the environmental friendliness and waste-free production and consumption. At the same time, there is no clear distinction in the set of indicators, in this regard, they can be repeatedly used at the same time. Most of the studied indicators are focused only on one and/or several specific environmental problems than contribute to the estimated subjectivity.

The research carried out in this article has identified several problem areas regarding the methodological approach to the concept of circularity: insufficient statistical coverage of baseline data; lack of in-depth justification of metrics and evaluation systems; lack of a uniform tool for assessing circular economy development. Therefore, it is necessary to develop methodological assessment tools with wider coverage of the spectrum of circular economy paradigm than existing tools, providing relevant integration with real business practices.

An extremely important condition for activating the intensification of transition to the circular economy model is creation of a comprehensive methodological tool for assessing its development, which is required for effective strategic and program planning at the state level.

The continuation of the study, based on the conceptual, theoretical and methodological provisions of the circular economy, should be aimed at improving the assessment tools, which will contribute to the qualitative achievement of the goals of society sustainable development.

References

[1] Vetrova M A 2018 Justification of strategic and operational decisions of enterprises in the transition to a circular economy : 08.00.05 25.00.17: Dis. ... Candidate of Economic Sciences (St. Petersburg State University) 432 p. URL: https://disser.spbu.ru/files/phd_spsu/vetrova_disser.pdf
[2] Guryeva M A 2019 Questions of innovative economy 9 (4). DOI: 10.18334/vinec.9.4.41236
[3] Guryeva M A and Butko V V 2019 Economic relations 9 (4). DOI: 10.18334/eco.9.4.40991
[4] Guryeva M A and Simarova I S 2016 Global scientific potential 10 (67) 78-86
[5] Guryeva M A 2019 Economic relations 9 (3). DOI: 10.18334/eco.9.3.40990
[6] Razmiene K and Tvaronaviciene M 2018 TERRA ECONOMICUS 16 (4) 50-65. DOI: 10.23683/2073-6606-2018-16-4-50-65
[7] Sergienko O I, Smaznova E S and Razumova D V 2018 Bulletin of PNRPU. Applied ecology. Urban studies 4 80-92
[8] Shershunovich E and Tochitskaya I 2018 BEROC Green Economy Policy Paper Series, PP GE3. URL: http://www.beroc.by/webroot/delivery/files/PP_GE_3.pdf
[9] Avdiushchenko Anna and Zając Paweł 2019 Sustainability 11(11) 3025. DOI: https://doi.org/10.3390/su11113025
[10] Banaitė D and Tamošiūnienė R 2016 Journal of Security and Sustainability Issues 6(2) 315–323. DOI: http://dx.doi.org/10.9770/jssi.2016.6.2(10)
[11] Banaitė D 2016 Social Transformations in Contemporary Society 4 142-150. URL: http://stics.mruni.eu/wp-content/uploads/2016/07/STICS_2016_4_142-150.pdf
[12] Cayzer Steve 2016 Sustainable Design and Manufacturing. DOI: 10.1007/978-3-319-32098-4_27
[13] Circular Metrics Landscape Analysis. A joint report on the current landscape of circular metrics use and recommendations for a common measurement framework May 2018. URL: https://docs.wbcsd.org/2018/06/Circular_Metrics-Landscape_analysis.pdf
[14] Circularity Indicators: An Approach to Measuring Circularity. Methodology. URL: https://www.ellenmacarthurfoundation.org/assets/downloads/insight/Circularity-Indicators_Project-Overview_May2015.pdf
[15] Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on a monitoring framework for the circular economy. URL: http://ec.europa.eu/environment/circular-economy/pdf/monitoring-framework.pdf.
[16] EU Resource Efficiency Scoreboard 2015. URL: https://ec.europa.eu/environment/resource_efficiency/targets_indicators/scoreboard/pdf/EU%20Resource%20Efficiency%20Scoreboard%202015.pdf
[17] Geng Y, Fu J, Sarkis J and Xue B 2012 Journal of Cleaner Production 23 216-224
[18] Griffiths P and Cayzer S 2016 3rd International Conference on Sustainable Design and Manufacturing, SDM 2016; Springer Science and Business Media Deutschland (Gmbh: Berlin, Germany) pp. 307–321
[19] Guo-gang J 2011 Energy Procedia 5 125–129
[20] Heshmati Almas 2015 A Review of the Circular Economy and its Implementation URL: http://ftp.iza.org/dp9611.pdf
[21] Indicators for a circular economy. EASAC. 2016. URL: https://www.easac.eu/fileadmin/PDF_s/reports_statements/Circular_Economy/EASAC_Indicators_web_complete.pdf
[22] Jia C and Zhang J 2011 Procedia Environmental Sciences 11 637–64.
[23] Ruiter C 2015 VU University Amsterdam. URL: http://dspace.library.uu.nl/handle/1874/337188/
[24] Saidani Michael, Yannou Bernard, Leroy Yann and Cluzel François 2017 How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework Recycling 2 6. DOI: 10.3390/recycling2010006
[25] Saidani Michael, Yannou Bernard, Leroy Yann, Cluzel François and Kendall Alissa 2019 Journal of Cleaner Production (Elsevier) 207 542-559.
[26] Steinmanna Z J N, Huijbregtsa M A J and Reijndersb L 2019 Resources, Conservation and Recycling 141 362-363. DOI: https://doi.org/10.1016/j.resconrec.2018.10.040
[27] The Circular Economy Toolkit. URL: http://circularconomytoolkit.org/Toolkit.html
[28] The Raw Materials Scoreboard is part of the monitoring and evaluation strategy for the European Innovation Partnership (EIP) on Raw Materials. URL: https://op.europa.eu/en/publication-detail/-/publication/117c8d9b-c3d3-11e8-b690-01a75efd71a1
[29] Verbeek L H 2016 A Circular Economy Index for the consumer goods sector. URL: https://dspace.library.uu.nl
[30] Vercalsteren An, Christis Maarten and Van Hoof 2018 Veronique Indicators for a Circular Economy. URL: https://vlaanderen-circulair.be/en/summa-cc-centre/publications/indicators-for-a-circular-economy