Does reduced E-cadherin expression correlate with poor prognosis in patients with upper tract urothelial cell carcinoma?

A systematic review and meta-analysis

Bum Sik Tae, MD*, Chang Wook Jeong, MD, PhD*, Cheol Kwak, MD, PhD*, Hyeon Hoe Kim, MD, PhD*, Ja Hyeon Ku, MD, PhD*.

Abstract

Background: E-cadherin has emerged as a prognostic factor of urothelial cell carcinoma. In the present work we investigate the relationship between expression of E-cadherin and clinical outcomes, following radical nephroureterectomy for upper tract urothelial cell carcinoma.

Methods: We systematically searched PubMed, Embase, Cochrane Library, and Web of Science databases to identify eligible studies published until July 2017.

Result: Six studies were included in the meta-analysis, with a total of 1014 patients. The pooled hazard ratio (HR) for recurrence-free survivor was 0.69 (95% confidence interval [CI], 0.44–1.09, \(I^2 = 63\%), \(P = .04 \)). Also, reduced E-cadherin was not significantly associated with poor cancer-specific survivor (pooled HR, 1.40; 95% CI, 0.66–1.43, \(I^2 = 54\%), \(P = .11 \)). The pooled HR for overall survivor was not statistically significant (pooled HR, 0.68; 95% CI, 0.32–1.46, \(I^2 = 80\%), \(P = .007 \)). The results of the Begg and Egger tests suggested that publication bias was not evident in this meta-analysis.

Conclusions: Reduced E-cadherin expression did not appear to be significantly associated with disease prognosis after nephroureterectomy in the meta-analysis. However, further high quality, prospective studies are warranted to better address this issue.

Abbreviations: CI = confidence interval, CSS = cancer-specific survival, EMT = epithelial–mesenchymal transition, HR = hazard ratio, IHC = immunohistochemistry, OS = overall survival, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, REMARK = REporting recommendations for tumor MARKer prognostic studies, RFS = recurrence-free survival, RNU = radical nephroureterectomy, UBC = urothelial bladder cancer, UTUC = upper urinary tract urothelial carcinoma.

Keywords: e-cadherin, prognosis, survival, urinary tract, urothelial cell carcinoma

1. Introduction

Upper urinary tract urothelial carcinoma (UTUC) is a relatively rare urologic malignancy; however, UTUC has a relatively high recurrence rate and affected patients exhibit poor prognosis, especially those with advanced disease.[1–3] Many researchers have described the survival prognostic factors of UTUC as patient age, pathological factors, and comorbidities.[1] However, previously known predictive factors based on standard clinicopathology findings are insufficient for clinical decisions.[4,5] To overcome this limitation, various biomarkers for urothelial cancers, including centrosome amplification and associated proteins, have been reported.[6–10]

E-cadherin is a transmembrane glycoprotein expressed in all normal epithelia and is the prime mediator of cell–cell adhesion.[11] Reduced expression of E-cadherin has been reported as a feature of epithelial–mesenchymal transition (EMT) in epithelial malignancies.[12,13] In previous studies, it was found that transfection of transitional cells with E-cadherin complementary DNA suppresses the invasive potential of the cells; however, abnormal expression of E-cadherin in these cell lines correlates with an aggressive phenotype.[14,15] In addition, several researchers have demonstrated that reduced E-cadherin
expression may confer poor prognosis in patients with urothelial bladder cancer (UBC). Based on these results, Xie et al reported in their meta-analysis that reduced E-cadherin expression in UBC is associated with poor prognosis and advanced clinicopathological findings.

Although decreased expression of E-cadherin is correlated with poor prognosis in patients with UTUC, many studies on E-cadherin have not yet been conducted. However, the prognostic value of E-cadherin has not been clearly established in patients with UTUC because UTUC is a relatively rare disease and contradictory conclusions have been reported in previous papers. Thus, we aimed to evaluate the value of E-cadherin as a prognostic factor for UTUC after radical surgery through a systematic review of the literature and meta-analysis.

2. Materials and methods

2.1. Data sources and search strategy

This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The Embase, SCOPUS, and PubMed databases were used to identify potentially relevant published papers. The search was performed on July 30, 2017. The search terms used included “urothelial cancer,” “cancer,” and “cadherin.” We also carefully checked the references of papers to identify potential additional studies.

2.2. Study eligibility

We included papers that met the following criteria in the meta-analysis:

1. human research;
2. patients who underwent radical nephroureterectomy (RNU) for UTUC;
3. studies that assessed E-cadherin protein expression;
4. clear description of the characteristics of the study population, pathologic UTUC stage, sample size, sex, age of studied patients, cut-off value of E-cadherin expression, follow-up period, and estimated HRs of E-cadherin expression for overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS), as well as their 95% CIs.

We used the REporting recommendations for tumor MARKer prognostic studies (REMARK) guidelines and quality scales to perform quality assessment. Quality scales and the included study parameters are as follows:

1. sufficient description of the characteristics of the study and patients and tumor characteristics, including inclusion and exclusion criteria;
2. statement of the method of data acquisition, whether prospective or retrospective;
3. sufficient description of E-cadherin expression measurement;
4. clear study endpoint;
5. sufficient description of enrolled patients’ follow-up period;
6. identification of patients lost to follow-up or not available for statistical analysis. Scores ranged from 0 (studies of the lowest quality) to 8 (studies of the highest quality).

2.3. Data extraction and quality assessments

Two reviewers (BST and JHK) independently extracted and crosschecked the required information from all the eligible studies. We extracted the following relevant data: publication data, including author names and the year of publication of the study, study design, origin of the studied population, pathologic UTUC stage, sample size, sex, age of studied patients, cut-off value of E-cadherin expression, follow-up period, and estimated HRs of E-cadherin expression for overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS), as well as their 95% CIs.

We used the REporting recommendations for tumor MARKer prognostic studies (REMARK) guidelines and quality scales to perform quality assessment. Quality scales and the included study parameters are as follows:

1. sufficient description of the characteristics of the study and patients and tumor characteristics, including inclusion and exclusion criteria;
2. statement of the method of data acquisition, whether prospective or retrospective;
3. sufficient description of E-cadherin expression measurement;
4. clear study endpoint;
5. sufficient description of enrolled patients’ follow-up period;
6. identification of patients lost to follow-up or not available for statistical analysis. Scores ranged from 0 (studies of the lowest quality) to 8 (studies of the highest quality).

2.4. Statistical analysis

We performed a meta-analysis to quantitatively summarize the overall prognostic value of E-cadherin expression. Pooled HRs and 95% CIs were used to examine the effect of reduced E-cadherin expression on the prognosis and clinicopathological features of UTUC, respectively. If the 95% CIs did not overlap, an HR of greater than 1 indicated that reduced expression of E-cadherin was associated with worse prognosis. If explicit survival data were not provided, we calculated survival outcomes based on the available numerical data using methods described by Parmar et al. In addition, if there was an absence or presence of between-study heterogeneity, we used either the fixed effects or the random-effects model. Cochran Q-test and I^2, tests, which describe the percentage of total variation across studies caused by heterogeneity rather than by chance, were used to evaluate heterogeneity between studies. A Q-test with a P value of <.05 or an I^2 value of >50% indicated the presence of significant heterogeneity across the selected studies. To estimate potential publication bias, funnel plots, Begg rank correlation test, and Egger linear regression test were used, and a P value of <.05 was considered statistically significant. All statistical tests were 2-sided, and statistical significance was defined as P < .05. We used RevMan 5.0 statistical software (the Cochrane Collaboration, Copenhagen) to perform the meta-analysis. Publication bias was analyzed using R statistical software version 2.13.0 (R Development Core Team, Vienna, Austria; http://www.r-project.org).

3. Result

3.1. Literature search results

Table 1 shows individual data on the characteristics of the selected studies. Three studies were conducted in Japan, 1 study
was performed in France, and the remaining studies were multinational from Europe, the USA, and Austria. The studies were published between 2005 and 2017 and the patient recruitment periods ranged from 1981 to 2010. Figure 1 shows the PRISMA flow chart describing the literature search and selection of papers.

3.2. Study characteristics

The characteristics of the selected studies are described in Tables 1 and 2. The total number of patients from all the studies was 1014 (individual studies range, 59–678; median, 61). Among the selected studies, Favaretto et al and Abufaraj et al employed the same retrospective cohort of the international UTUC collaboration.\[30\] All the selected papers reported on retrospective observational cohort studies. For the prognostic value of reduced E-cadherin expression in UTUC, 4, 3, and 3 studies investigated RFS, CSS, and OS, respectively (Tables 3–5, respectively). All the studies evaluated E-cadherin expression using immunohistochemistry (IHC) staining. Reduced E-cadherin expression was defined using different cut-off values in each study; thus, we classified all the patients on the basis of their original studies’ results.

Author	Year	Country	Recruitment period	Total patients	Median age, range (years)	No. of gender (male/female)	Median follow-up, range (months)	Cutoff value	Reduced E-cadherin (%)	Survival analysis	HR estimated	Quality score
Fromont\[37\]	2005	France	1990–2002	62	68.5	44/18	25 (11–80)	20%	29%	OS, RFS	Multivariable	5
Kashibuchi\[22\]	2006	Japan	1981–1997	61	65 (34–83)	50/11	40 (1–180)	IHC score < 2	47.5%	CSS	Multivariable	4
Muramaki\[20\]	2011	Japan	2000–2005	59	72 (51–86)	49/10	32 (12–79)	90%	59.3%	RFS	Multivariable	4
Matsumoto\[20\]	2016	Japan	1995–2010	154	71 (14–88)	104/40	40 (3–162)	IHC score < 2	54.9%	OS, CSS, RFS	Multivariable	5
Favaretto\[23\]	2017	Multinational	1990–2008	678	69 (62–76)	386/292	37.5 (20–66)	IHC score < 2	52.1%	RFS, CSS	Multivariable	6
Abufaraj\[21\]	2017	Multinational	1990–2008	678	69 (62–76)	386/292	37.5 (20–66)	IHC score < 2	52.1%	OS, RFS, CSS	Multivariable	6

CSS = cancer-specific survival, IHC = immunohistochemistry, OS = overall survival, RFS = recurrence-free survival.

*Studies using the same retrospective cohort.

Figure 1. PRISMA statement flow diagram illustrating the search strategy used for the meta-analysis.
Table 2
Pathologic characteristics from the eligible studies.

Author	Adjuvant CTx	Tumor Grade	Pathologic T stage	Lymph node metastasis	Site of UTUC	Positive surgical margin (%)
Fromont [37]	N/A	Low: 31	Ta: 19	N/A	Ureter: 31	10%
		High: 31	T1: 15		Renal pelvis: 31	
			T2: 22			
			T3–4: 12			
Kashibuchi [22]	N/A	G2: 41	Ta: 7	N/A	N/A	N/A
		G3: 20	T1: 13			
			T2: 12			
			T3–4: 29			
Muramaki [20]	N/A	G1: 3	N/A	Negative: 46	N/A	10.2%
		G2: 30	Positive: 13			
		G3: 26				
Matsumoto [38]	N/A	Low: 76	Ta: 12	Negative: 135	N/A	N/A
		High: 68	T1: 37			
			T2: 31			
			T3–4: 64			
Favaretto [23]	68	Low: 25.7%	Ta: 121	Positive: 49	Ureter: 200	N/A
		High: 72.3%	T1: 208		Renal Pelvis: 478	
			T2: 123			
			T3–4: 226			
Abufaraj [21]	68	Low: 25.7%	Ta: 121	Positive: 49	Ureter: 200	N/A
		High: 72.3%	T1: 208		Renal Pelvis: 478	
			T2: 123			
			T3–4: 226			

CTx = Chemotherapy, N/A = Not applicable, UTUC = upper urinary tract urothelial carcinoma.

Table 3
Estimation of the hazard ratio for recurrence-free survival.

Author	HR estimation	Co-factors	Analysis result
Fromont [37]	HR, 95% CI	Age, T stage, surgical margin, Ki67, p53, p27, MSH2, survivin	Significant
Muramaki [20]	HR, 95% CI	Age, gender, multifocality, T stage, grade, lymph node metastasis, micro-venous invasion, lymphatic invasion, surgical margin, N-cadherin	Not significant
Matsumoto [38]	HR, 95% CI	T stage, grade, lymphatic invasion, snail, twist, bmi-1	Not significant
Favaretto [23]	HR, 95% CI	Tumor location, T stage, grade, lymph node metastasis, gender, age, multifocality, tumor necrosis, architecture, concomitant CIS	Not significant

CIS = carcinoma in situ, HR = hazard ratio.

Table 4
Estimation of the hazard ratio for cancer-specific survival.

Author	HR estimation	Co-factors	Analysis result
Kashibuchi [22]	HR, 95% CI	Alpha-catenin, beta-catenin, gamma-catenin, T stage, grade	Significant
Matsumoto [38]	HR, 95% CI	T stage, grade, lymphatic invasion, snail, twist, bmi-1	Not significant
Favaretto [23]	HR, 95% CI	Tumor location, T stage, grade, lymph node metastasis, gender, age, multifocality, tumor necrosis, architecture, concomitant CIS	Not significant

CIS = carcinoma in situ, HR = hazard ratio.

Table 5
Estimation of the hazard ratio for overall survival.

Author	HR estimation	Co-factors	Analysis result
Fromont [37]	HR, 95% CI	Age, T stage, Surgical margin, Ki67, p53, p27, MSH2, Survivin	Significant
Matsumoto [38]	HR, 95% CI	T stage, Grade, Lymphatic invasion, Snail, Twist, Bmi-1	Not significant
Abufaraj [21]	HR, 95% CI	Tumor location, T stage, Grade, Lymph node metastasis, Gender, Age, Multifocality, Tumor necrosis, Architecture, Concomitant CIS	Not significant

CIS = carcinoma in situ, HR = hazard ratio.
3.3. Outcomes from eligible studies

The results of the meta-analysis are presented in Figures 2–4. Overall, the pooled HR for RFS was 0.69 (95% CI, 0.44–1.09), suggesting that reduced E-cadherin expression does not correlate with poor prognosis for UTUC and there was significant heterogeneity between the studies ($I^2 = 63\%$, $P = .04$). In addition, there was no statistically significant association between reduced E-cadherin expression and CSS in patients with UTUC (pooled HR 1.40; 95% CI, 0.66–2.96, $I^2 = 54\%$, $P = .11$) (Fig. 3). In addition, a meta-analysis of the 3 studies evaluating the association of reduced E-cadherin expression and OS found that reduced E-cadherin expression was not significantly associated with worse outcomes, with a pooled HR of 0.68 (95% CI, 0.32–1.16) with significant heterogeneity ($I^2 = 80\%$, $P = .007$) (Fig. 4).

3.4. Publication bias

Obvious asymmetry was not evident in the funnel plots of any contrast (Figs. 2–4). Begg test (P value) and Egger tests (P value, intercept with corresponding 95% CI), as well as funnel plots, were used to assess publication bias in this meta-analysis. All the P values for Begg test and Egger test for RFS, CSS, and OS were $>.05$, presenting statistical evidence of the funnel plots’ symmetry. These results suggested that publication bias was not detected in this meta-analysis.

4. Discussion

E-cadherin is a known tumor suppressor that plays a central role in suppressing the invasive phenotype of cancer cells, and many researchers have demonstrated that reduced E-cadherin expression is emerging as a factor of poor prognosis in various types of carcinomas. Nevertheless, the biological and clinical roles of the E-cadherin-related pathways in urothelial carcinomas are not yet clearly established. Recently, numerous researchers presented that reduced E-cadherin expression in cancer cells is associated with advanced clinicopathological features and poor outcomes in UBC and UTUC. These associations can be explained based on the biological role played by E-cadherin as a
A calcium-dependent glycoprotein that is essential for epithelial tissue integrity.[23] Loss of cell–cell adhesion can result in the detachment of cancer cells with eventual loss of the preventive ability against the invasiveness of human carcinoma cells.[33] In addition, reduced E-cadherin expression is considered as an important hallmark of EMT, through which epithelial cells undergo series of changes in morphology, adhesion, and migratory capacity and transform into cells with mesenchymal characteristics.[36]

Consequently, E-cadherin has emerged as a valuable prognostic indicator and potential therapeutic target for urothelial carcinoma. Indeed, a recent meta-analysis presented that reduced E-cadherin expression is associated with poor prognosis and advanced clinicopathological characteristics in UBC.[19] However, the prognostic value of reduced E-cadherin expression in UTUC has not yet been established. Therefore, we performed the current meta-analysis to provide valuable evidence on the association between E-cadherin expression and UTUC prognosis.

To avoid bias caused by the different methods used to evaluate E-cadherin expression, we only included papers that reported on IHC-based evaluation methods in our meta-analysis. Our final analysis included clinical outcomes from 6 eligible studies including a total of 1014 patients with UTUC. Among the eligible studies, studies by Favaretto et al and Abufaraj et al employed the same multicenter retrospective cohort; however, there were differences in the primary endpoints between the 2 studies. Thus, we used the results acquired by Favaretto et al to analyze CSS and RFS and the results acquired by Abufaraj et al to analyze OS. Our findings showed that there was no association between reduced expression of E-cadherin and UTUC prognosis. These findings do not correspond with the results of previous meta-analyses on UBC, which demonstrate that reduction of E-cadherin expression is a prognostic factor.[19]

Many researchers have shown their interest in studying the effect of E-cadherin expression on the prognosis of patients with UTUC. Nakaniishi et al first presented that reduced E-cadherin expression is associated with higher tumor stage and grade in UTUC.[34] In addition, some study results suggested that reduced E-cadherin expression may be a prognosis factor in UTUC. Fromont et al reported that reduced E-cadherin expression was associated with poor OS and RFS.[37] Kashibuchi et al also demonstrated that reduced E-cadherin expression was an
independent predictor of CSS in their multivariate analysis.\cite{22} However, after adjusting for the effects of established prognostic factors in multivariable analyses, more clinical results indicated that E-cadherin expression failed to present any independent prognostic value in patients with UTUC.\cite{20,21,23,38} In addition, even in the study by Fromont et al, reduced E-cadherin expression was not related to higher tumor stage and grade in their multivariate analysis.\cite{37}

Although many studies have reported that reduced expression of E-cadherin is associated with adverse clinicopathological features, the reason for the lack of independent prognostic value is presumed to be as follows. First, there was no standardization of the E-cadherin IHC method in each study. The use of different primary antibody sources and different antibody dilution ratios in each study could have resulted in different conclusions. If tissue microarrays with standardized staining protocols and automated scoring systems based on bright-field microscopy imaging coupled with advanced color detection software are developed, they might be of aid to overcome the above limitations.\cite{23} Second, the criteria to define reduced expression of E-cadherin were not standardized among the different studies, which could be a potential cause of heterogeneity. Among the eligible studies, Fromont et al suggested a strict cut-off value, and they suggested that a reduction in E-cadherin expression is associated with OS and RFS in their multivariate study. On the other hand, Muramaki et al used scores according to a classification system derived from the work of Shiozaki et al, in which immunostaining was distinguished as normal or abnormal. Shiozaki et al defined the abnormal staining of E-cadherin as including both negative staining (below 10% of the cells with membranous staining) and heterogeneous staining (between 10% and 90% of the cells with membranous staining).\cite{39} It is hypothesized that the above differences in individual studies might have led to variances in HR estimation leading to significant heterogeneity among studies. In addition, these results suggest that the value of E-cadherin expression as a prognostic factor has been greatly diminished because of the relatively broad standard.

Figure 4. Forest plots of overall survival (OS) by reduced E-cadherin. A: The horizontal lines correspond to the study-specific hazard ratios (HRs) and 95% confidence intervals (CIs), respectively. The area of the squares reflects the study-specific weights. The diamond represents the pooled results of HRs and 95% CIs. B: The Beggs test funnel plots for publication bias. Each point represents a separate study of the indicated association. The vertical line represents the mean effects size.
As mentioned above, E-cadherin was first revealed to be an independent marker in a subsequent multivariate analysis in 2005.[13] Conversely, most of the studies published thereafter with larger cohorts failed to demonstrate an independent association between E-cadherin expression and UTUC prognosis after surgery.[10,34,38,40] Although the patients with UTUC had pathophysiology similar to that in patients with UBC, the reason for the current meta-analysis results is presumed as follows. First, UTUC has a relatively low incidence rate, but it is aggressive and affected patients have a relatively poor prognosis.[41] It is possible that E-cadherin may not stand out because patients with UTUC have a poor prognosis due to the strong aggressiveness of the carcinoma. Second, distinct genetic profiles or molecular biology between upper and lower urinary tract tumors may affect the results. For example, Roupert et al reported that microsatellite instability was rarely encountered in UBC, whereas it occurred in more than 15% of sporadic UTUC cases.[42] In addition, single-nucleotide polymorphism variabilities in the rs9642880[T] allele on 8q24 and rs798766[T] allele on 4p16 were associated with disease aggressiveness of UTUC; however, these associations were not found in UBC.[43]

Although there is no correlation between E-cadherin expression and UTUC prognosis in this analysis, the contributions of our study are as follows. To the best of our knowledge, our study is the first systematic review and meta-analysis to evaluate the prognostic value of E-cadherin expression with a focus on survival benefits in patients with UTUC, which may help clinicians plan subsequent treatments after radical surgery. Second, in the present meta-analysis, studies reporting HRs of cumulative survival rates were qualitatively summarized using standard meta-analysis techniques. In addition, our study is mainly based on adjusted estimates, but no statistical significance was found for all three endpoints: RFS, CSS, and OS. Despite the highlights mentioned above, there are still some limitations in our meta-analysis that should be pointed out. First, most of the included studies were of a retrospective design. Second, as mentioned above, the criteria to define normal and reduced expression of E-cadherin were not standardized across different studies, which might be the potential cause of heterogeneity. Thus, a more unified scoring criterion based on IHC methods should be defined in the future.[19] Finally, the pathologic stage of UTUC was not homogenous across different studies included in this analysis, which might be a potential cause of heterogeneity. In addition, with more large-scale prospective studies published in the future, an update is necessary to render more persuasive results.

5. Conclusions

Our meta-analysis reveals that reduced E-cadherin expression in UTUC may not correlate with disease prognosis. However, to avoid bias in future studies, we recommend standardization of E-cadherin expression cut-off values and providing HR values with their 95% CIs. Our results should be validated by more comprehensive investigations with prospective, large-population studies.

Author contributions

Conceptualization: Ja Hyeon Ku.
Data curation: Bum Sik Tae, Chang Wook Jeong, Hyeon Hoe Kim, Ja Hyeon Ku.
Formal analysis: Cheol Kwak, Hyeon Hoe Kim, Ja Hyeon Ku.
Funding acquisition: Ja Hyeon Ku.
Investigation: Bum Sik Tae, Cheol Kwak, Ja Hyeon Ku.
Methodology: Hyeon Hoe Kim, Ja Hyeon Ku.
Project administration: Cheol Kwak.
Supervision: Bum Sik Tae, Chang Wook Jeong, Cheol Kwak, Hyeon Hoe Kim, Ja Hyeon Ku.
Validation: Ja Hyeon Ku.
Writing – original draft: Bum Sik Tae.
Writing – review & editing: Cheol Kwak, Hyeon Hoe Kim, Ja Hyeon Ku.

Bum Sik Tae orcid: 0000-0003-2963-7366.

References

[1] Roupert M, Babjuk M, Comperat E, et al. European association of urology guidelines on upper urinary tract urothelial carcinoma: 2017 update. Eur Urol 2017;73:111–22.
[2] Hall MC, Womack S, Sagalowsky AI, et al. Prognostic factors, recurrence, and survival in transitional cell carcinoma of the upper urinary tract: a 30-year experience in 252 patients. Urology 1998;52:594–601.
[3] Plassard G, Xylina E, Lotan Y, et al. Conditional survival after radical nephroureterectomy for upper tract carcinoma. Eur Urol 2015;67:803–12.
[4] Luehezzani G, Burger M, Margulis V, et al. Prognostic factors in upper urinary tract urothelial carcinomas: a comprehensive review of the current literature. Eur Urol 2012;62:100–14.
[5] Chromecki TF, Cha EK, Fajkovic H, et al. The impact of tumor multifocality on outcomes in patients treated with radical nephroureterectomy. Eur Urol 2012;61:245–53.
[6] Yamamoto Y, Matsuyama H, Kawauchi S, et al. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 2006;70:231–7.
[7] Yamamoto Y, Matsuyama H, Kawauchi S, et al. Biological characteristics in bladder cancer depend on the type of genetic instability. Clin Cancer Res 2006;12:2752–8.
[8] Wallerand H, Robert G, Pasticiar G, et al. The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urol Oncol 2010;28:473–9.
[9] van der Horst G, Bos L, van der Pluijm G. Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res 2012;10:995–1009.
[10] Kosaka T, Kikuchi E, Mikami S, et al. Expression of sialin in upper urinary tract urothelial carcinoma: prognostic significance and implications for tumor invasion. Clin Cancer Res 2010;16:5814–23.
[11] Smith ME, Pignatelli M. The molecular histology of neoplasia: the role of the cadherin/catenin complex. Histopathology 1997;31:107–11.
[12] van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 2006;63:3756–88.
[13] Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–15.
[14] Fujisawa M, Miyazaki J, Takechi Y, et al. The significance of E-cadherin in transitional-cell carcinoma of the human urinary bladder. World J Urol 1996;14(Suppl 1):S12–15.
[15] Popov Z, Gil-Diez de Medina S, Leitner-Belda MA, et al. Low E-cadherin expression in bladder cancer at the transcriptional and protein level provides prognostic information. Br J Cancer 2000;83:209–14.
[16] Raspolli MR, Luque RJ, Menendez CL, et al. T1 high-grade bladder carcinoma outcome: the role of p16, topoisomerase-IIalpha, survivin, and E-cadherin. Hum Pathol 2016;47:78–84.
[17] Breyer J, Geith M, Shalkeenov S, et al. Epithelial-mesenchymal transformation markers E-cadherin and survivin predict progression of stage pTa urothelial bladder carcinoma. World J Urol 2016;34:709–16.
[18] Mitra AP, Castelao JE, Hayes D, et al. Combination of molecular alterations and smoking intensity predicts bladder cancer outcome: a report from the Los Angeles Cancer Surveillance Program. Cancer 2013;119:756–65.
[19] Xie Y, Li P, Gao Y, et al. Reduced E-cadherin expression is correlated with poor prognosis in patients with bladder cancer: a systematic review and meta-analysis. Oncotarget 2017;8:62489–99.
[20] Muramaki M, Miyake H, Terakawa T, et al. Expression profile of E-cadherin and N-cadherin in urothelial carcinoma of the upper urinary tract is associated with disease recurrence in patients undergoing nephroureterectomy. Urolology 2011;78:1443e1447-1412.
[21] Abufaraj M, Moschini M, Soria F, et al. Prognostic role of expression of N-cadherin in patients with upper tract urothelial carcinoma: a multi-institutional study. World J Urol 2017;35:1073–80.
[22] Kashibuchi K, Tomita K, Schalken JA, et al. The prognostic value of E-cadherin, alpha-, beta-, and gamma-catenin in urothelial cancer of the upper urinary tract. Eur Urol 2006;49:839–45. discussion 845.
[23] Favaretto RL, Bahadori A, Mathieu R, et al. Prognostic role of decreased E-cadherin expression in patients with upper tract urothelial carcinoma: a multi-institutional study. World J Urol 2017;35:113–20.
[24] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9. w264.
[25] McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005;97:1180–4.
[26] Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998;17:2815–34.
[27] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
[28] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.
[29] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
[30] Mathieu R, Klatte T, Margulis V, et al. Survivin is not an independent prognostic factor for patients with upper tract urothelial carcinoma: a multi-institutional study. Urol Oncol 2015;33:495e415-422.
[31] Li Z, Yin S, Zhang L, et al. Prognostic value of reduced E-cadherin expression in breast cancer: a meta-analysis. Oncotarget 2014;5:5533–7.
[32] Luo SL, Xie YG, Li Z, et al. E-cadherin expression and prognosis of oral cancer: a meta-analysis. Tumour Biol 2014;35:5533–7.
[33] Ren X, Wang J, Lin X, et al. E-cadherin expression and prognosis of head and neck squamous cell carcinoma: evidence from 19 published investigations. Onco Targets Ther 2016;9:2447–53.
[34] Nakanishi K, Kawai T, Torikata C, et al. E-cadherin expression in upper-urinary-tract carcinoma. Int J Cancer 1997;74:446–9.
[35] Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991;113:173–85.
[36] Bryan RT, Tselepis C. Cadherin switching and bladder cancer. J Urol 2010;184:423–31.
[37] Fromont G, Roupret M, Amira N, et al. Tissue microarray analysis of the prognostic value of E-cadherin, Ki67, p53, p27, survivin and MSH2 expression in upper urinary tract transitional cell carcinoma. Eur Urol 2005;48:764–70.
[38] Matsumoto H, Munemori M, Shimizu K, et al. Risk stratification using Bmi-1 and Snail expression is a useful prognostic tool for patients with upper tract urothelial carcinoma. Int J Urol 2016;23:1030–7.
[39] Shozaki T, Tahara H, Oka H, et al. Expression of immunoreactive E-cadherin adhesion molecules in human cancers. Am J Pathol 1991;139:17–23.
[40] Jeon HG, Jeong JG, Bae J, et al. Expression of Ki-67 and COX-2 in patients with upper urinary tract urothelial carcinoma. Urology 2010;76:513e517-512.
[41] Woodford R, Ranasinghe W, Aw HC, et al. Trends in incidence and survival for upper tract urothelial cancer (UTUC) in the state of Victoria—Australia. BJU Int 2016;117(Suppl 4):45–9.
[42] Roupret M, Azzouzi AR, Cussenot O. Microsatellite instability and transitional cell carcinoma of the upper urinary tract. BJU Int 2005;96:489–92.
[43] Yates DR, Roupret M, Drouin SJ, et al. Genetic polymorphisms on 8q24.1 and 4p16.3 are not linked with urothelial carcinoma of the bladder in contrast to their association with aggressive upper urinary tract tumours. J Urol 2013;31:53–9.