Abstract: Image morphing provides visual effects in TV and film. Image Morphing springs from the word Metamorphosis. Transition of source image to target is termed as Morphing. This is frequently used in an animation technique that morphs the initial image into the final image. The morphing strategy has 2 stages: Starting point it warps 2 pictures to possess similar form and in later step it cross dissolves ensuing pictures. This paper uses hybrid mesh-field warping methodology to make a structure of image morphing of facial animation with low simplicity. An attempt is made in morphing using hybrid mesh-KLT algorithmic rule combined with Cross Dissolving technique. During morphing method, the program can output N range of pictures. These pictures are used consecutive to develop a brief animated sequence.

Keyword: Hybrid rule, Image Morphing, Mesh warping, Feature-based.

I. INTRODUCTION

Image morphing technique is employed for digital image process and as animation tool [1]. Morphing of pictures is incessantly evolving and turning into a challenging field in information security and knowledge activity [2]. It's a special technique that easily transforms one graphical object into another object and it animates over some time. [1]. Before the image warping method was known, image morphing was through with the assistance of the cross-dissolving of pictures, wherever one image is light out and alternative image is light in. This technique wasn't therefore effective in signifying the metamorphosis.

II. PROBLEM DEFINITION

This paper presents development of a picture Morphing software application by utilising KLT rule in MATLAB that helps in morphing pictures. Morphing is the method by which one image easily transforms into another. The mathematical formulas are used to calculate intermediate pictures from the supply and target pictures. Mesh deformation technique is employed in hybrid with KLT rule is employed to implement image morphing (5).

III. METHODOLOGY

The algorithmic program is as follows:

The KLT rule can develop an easy face tracking system by dividing the tracking drawback into 3 parts:

1. Establish a face
2. Sight facial expression to trace
3. Trail the face

The translational image registration drawback is characterised as follows: Given 2 functions $P(x)$ and $Q(x)$, representing values at every location x, wherever $P(x)$ is a vector, in 2 pictures, severally, we tend to search out the inequality vector h ,that minimizes some live of the distinction between $P(x+h)$ and $Q(x)$, for x in some region of interest R.[6]
produce a cascade detector object.
faceDetector= vision.CascadeObjectDetector();
% Read a video frame and run the face detector.

videoFileReader=vision.VideoFileReader('tilted_face.avi');
videoFrame= step(videoFileReader);
bbox = step(faceDetector, videoFrame);

% Draw the returned bounding box around the detected face.
videoFrame = insertShape(videoFrame, 'Rectangle',bbox);figure;imshow (videoFrame);
title('Detected face');

bboxPoints = bbox2points(bbox(1, :));

bboxPoints = bbox2points(bbox(1, :));

IV. PRE-PROCESSING

Morphing of facial image is developed by using MATLAB package. Before morphing method some higher methods like pre-processing i.e., resizing and enhancing images are used. Image size is made fixed 256*256 yet because it is increased by using median filter.

V. FEATURE FINDING

KLT rule from Matlab is employed to sight feature points. It detects feature points like faces, noses, eyes, mouth, or facial upper body. The competitive object detection rates in real time were analysed by KLT object detection framework. This framework is trained to sight a range of object categories, however primarily it was actuated for the problem of face detection. The feature provided by the detection framework is nothing however the sums of image pixels among that rectangular space of image[7]. The options employed by KLT rule all rely upon quite one rectangular space, that are typically a lot of advanced. The worth of any given feature is up to the total of the pixels inside rectangles. Rectangular options of the facial image square measures primary in comparison to alternative filters like manageable filters. Though they're tender to vertical and horizontal options, their feedback is usually rough. However, rectangular options are calculated in constant time, with the help of a picture illustration called the integral image, which provides them speed advantage. As a result every rectangular space in a feature is generally contiguous to a minimum of one different rectangle, it shows that any two-rectangle feature is calculated in six array references,[8] where any 3 rectangle feature is stored in eight array references, and any four-rectangle is stored feature in only 9 references.

VI. RESULT AND DISCUSSION

Experimental Results are obtained with success by implementing KLT-Mesh warping rule. Image one shows original image that's supply image that we've got to morph in line with target image, before morphing it's got to do pre process like resizing image to a set price and increased image by using median filter.

REFERENCES

[1] Urvshi Bhushan, Dr. G.P.Saroha and Disha Tivari, “An implementation of image morphing through mesh morphing algorithm”, Journal of engineering science, vol. 2, issue 7, pp. 74-76, Jul. 2012.
[2] Bhumika H. Bhatt, Hita M. Joshi, “Feature based mostly Image Morphing”, International Journal of engineering science & Technology, vol. 2, issue 3, pp. 46-47, sept. 2011.
[3] Jennisa Areepinam, Pizzanu Kanongchaiyos, “Face Morphing mistreatment juncture Filters”, international joint conference on engineering science and package engineering,
[4] Mayumi Yuasa and Osamu Yamaguchi, “Real-time Face mixing by Automatic Facial Feature purpose Detection” 2008 IEEE

[5] Yongsheng Tang, Ming Xu, Zhenxiang Cai, “Research on face expression Animation supported 2nd Mesh Morphing Driven by Pseudo Muscle Model” 2010 International Conference on instructional and knowledge Technology, volume two pp. 403-407, 2010

[6] M. Kolehmainen et al. Automatic Morphing of Face Images (Eds.): ICANNGA 2009, LNCS 5495, pp. 600–608, 2009. © Springer-Verlag Berlin Heidelberg 2009

[7] S R Balaji, Late GN Sapkal, Facial Image Morphing for Animation using International Journal of Computer Applications (0975 – 8887) Volume 109 – No. 6, January 2015

[8] Sanjay Saxena, Neeraj Sharma, Shiru Sharma, “Image processing tasks using parallel computing in multi core architecture and its applications in medical imaging”, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, Issue 4, 2013

[9] E. G. Farrugia J.-P., Horain P., Y. Alusse, “Gpuvc: A framework for image processing acceleration with graphics processors,” In 2006 IEEE International Conference on Multimedia and Expo, pp. 585–588, 2006.

[10] J. Fung, S. Mann, “Using graphics devices in reverse: Gpubased image processing and computer vision,” In 2008 IEEE International Conference on Multimedia and Expo. IEEE, June 2008, pp. 9-12.

AUTHOR PROFILE

Author has 13 years of teaching experience, 9 years of research experience. She has published many journals in Scopus indexed with high impact factor. She is currently working as Head & Assistant Professor in Department of Computer Science and Application, Sir Theagaraya College, Chennai – 21.