AmpC Beta Lactamase Detection in *Escherichia coli* and Comparison of Two Phenotypic Methods

R. Manasi¹* and K. B. Anitha²

¹Department of Microbiology, Pariyaram Medical College, Pariyaram, India
²Department of Microbiology, A.J. Institute of Medical Sciences, Mangalore, India
*Corresponding author

Abstract

Increasing drug resistance due to the production of AmpC β-lactamases and Extended spectrum β-lactamases (ESBLs) is an increasing cause of concern as it has left the clinicians with limited therapeutic options. Aims were detection of AmpC β lactamase in *E. coli* an comparison of the two phenotypic tests- AmpC disk test and Inhibitor based test using phenyl boronic acid. A total of 156 *E. coli* isolates from various clinical samples were collected for the study. These isolates were further subjected to ESBL detection by disc diffusion test, screening for AmpC β-lactamases by cefoxitin disc and confirmation of AmpC β-lactamases by AmpC disc test and Inhibitor based test using phenyl boronic acid. Statistical analysis done by Chi-Square test and Fisher’s Exact test. AmpC screening detected 68 isolates as presumptive AmpC producers, of which 82.4% were confirmed to be true AmpC producers by confirmatory tests. Phenotypic confirmation by AmpC disc test and Inhibitor based test detected 20.5% and 35.9% isolates respectively as AmpC producers. Coexistence of AmpC with ESBL was seen among 32(20.5%) isolates. Pure AmpC producers were 15.4%. Pure AmpC producers as well as co-producers of ESBL and AmpC showed multidrug resistance. Pure AmpC producers showed 100% sensitivity to cefepime and imipenem while co-producers showed only 25% sensitivity to cefepime and 87.5% sensitivity to imipenem. The prevalence of AmpC producers among *E. coli* in our study was 35.9%. Pure AmpC producers are 100% susceptible to cefepime and imipenem. The Inhibitor based test is a simple, efficient and better test for the detection of AmpC production.

Keywords

AmpC β lactamase, Inhibitor based test, AmpC disc test.

Introduction

The increasing use of broad spectrum antibiotics has resulted in the development of bacterial resistance. The favourable outcome of common infections in community and hospital settings is threatened by emerging resistant bacteria. The most important single mechanism of resistance to penicillin and cephalosporins in gram positive and gram negative organisms is the production of β lactamase enzymes (Chaudhary et al., 2004). Extended spectrum β lactamases and AmpC β lactamase production by bacteria are also emerging as the current cause of concern (Singhal et al., 2005). AmpC β lactamases are cephalosporinases that are poorly inhibited by clavulanic acid (Singhal et al., 2005; Sinha et al., 2008). Differentiated from ESBL by their ability to hydrolyse cephamycins as well as other extended spectrum cephalosporins.
Major risk factors for colonization or infection with ESBL, AmpC producing organisms are long term antibiotic exposure, prolonged hospital or ICU stay, nursing home residency, severe illness, residence in institution with high rates of ceftazidime and other 3GC use and instrumentation or catheterization.

For clinical microbiologists detection of AmpC mediated resistance in gram negative organisms poses a challenge as there are no standard guidelines for the detection of this resistance mechanism. Clinical labs need to address this issue as much as detection of ESBL, since they may co-exist and mask each other (Hemalatha et al., 2007). Screening with cefoxitin disc recommended for initial detection (Akujobi et al., 2012). Some phenotypic tests include three dimensional test, AmpC disc test, E test strips (Getzlaff et al., 2011), inhibitor based tests using boronic acid.

However, phenotypic tests cannot distinguish among various families of plasmid mediated AmpC β lactamases with an extended spectrum. For these purposes, the current gold standard for plasmid mediated AmpC β lactamase detection is multiplex PCR (Jacoby, 2009).

This study is undertaken to detect AmpC β lactamase in Escherichia coli based on two phenotypic tests, the AmpC disk test and inhibitor based method using boronic acid and the comparison of these two methods.

Materials and Methods

It was a prospective study of all E. coli isolates from the relevant clinical samples of in-patients received in the department of Microbiology over a period of one year from January 2012 to December 2012. A total of 156 consecutive, non-repetitive samples of E.coli were collected for the study.

All samples were processed as per standard procedure (Winn et al., 2006; Crichton, 2006). Gram staining was done to observe for pus cells and gram negative bacilli. Culture was done on MacConkey agar and blood agar. All cultures were incubated at 37°C for 24 hours.

Next day, the organism was identified by colony morphology, Gram stain, motility test and basic routine biochemical reactions using standard laboratory procedures.

Antimicrobial susceptibility test was carried out by modified Kirby-Bauer disk diffusion method as per current CLSI guidelines. The antibiotic susceptibility profiles against gentamicin, co-trimoxazole, cefoxitin, ceftazidime, ceftriaxone, cefepime, imipenem were studied (Clinical and laboratory standard institute, 2007).

AmpC screening was done using cefoxitin disc. A zone of inhibition of >18mm was taken as susceptible. Cefoxitin resistant E. coli were considered as probable AmpC producers. Confirmation of AmpC production was by the confirmatory tests, the AmpC disc test and inhibitor based test with phenyl boronic acid (Coudron et al., 2000).

Phenyl boronic acid (PBA) solution was prepared by dissolving 120g of phenyl boronic acid in 3ml dimethyl sulfoxide and 3ml of sterile distilled water. 20μL of this solution was added on to a cefoxitin disc and kept for drying for 30 minutes. Mueller Hinton Agar was inoculated with a 0.5 McFarland turbidity suspension of test strain. Disc containing cefoxitin (30μg) and cefoxitin with PBA discs was placed on the agar. After overnight incubation in air at 37°C, the zone of inhibition was measured. A difference in zone size of >5 mm between the disc containing cefoxitin with PBA compared to the disc containing cefoxitin alone was
considered indicative of AmpC production (Philippon et al., 2002; Yagi et al., 2005; Pitout et al., 2010).

AmpC disk test is based on the use of Tris-EDTA which permeabilises the cell to release beta lactamases. Tris-EDTA discs were prepared by adding 20 μL of a 1:1 mixture of saline and 100X Tris-EDTA solution. The Mueller-Hinton agar plate was inoculated with a lawn culture of cefoxitin - susceptible E. coli ATCC 25922. A cefoxitin disc was placed on the agar. Tris-EDTA disc inoculated with several colonies of test organism was placed almost touching the cefoxitin disk. The plate was then incubated overnight at 37°C. An indentation or flattening of zone of inhibition indicated inactivation of cefoxitin. Absence of a distortion indicated no significant inactivation of cefoxitin.

Results and Discussion

Among the 156 isolates of E. coli, AmpC β-lactamase production was seen in 56(35.9%) isolates.

AmpC screening test for 156 isolates, 68(43.6%) showed reduced susceptibility to cefoxitin with zone size <18mm. Therefore, 68(43.6%) isolates were considered as presumptive AmpC producers.

AmpC screen test showed 68(43.6%) isolates to be positive for AmpC production. Confirmatory tests done on these showed 56(82.4%) to be AmpC producers.

The confirmatory tests done were the AmpC disc test and the inhibitor based test. AmpC disc test showed 32 of the screen positive isolates to be AmpC producers whereas inhibitor test showed 56 of 68 to be AmpC producers. All the 156 isolates were also subjected to confirmatory tests of which AmpC disc test detected 20.5% and inhibitor test detected 35.9% of the AmpC producers.

Comparison of the confirmatory tests for AmpC detection was done by two methods. This showed that all isolates that were positive by AmpC disc method were also positive by inhibitor method whereas inhibitor based method showed 56 isolates to be AmpC producers.

All AmpC producers were showing multiple drug resistance, 100% resistance was seen with amoxicillin-clavulanic acid, ceftazidime, ceftriaxone and piperacillin. Susceptibility was high with ceftazidim and imipenem, 48(85.7%) sensitivity was seen to ceftazidim and 44(78.6%) to imipenem (Figure 1).

Despite the discovery of ESBL and AmpC β-lactamases atleast a decade ago, there remains a low level of awareness of their importance. Many clinical labs have problems in detecting ESBLs and AmpC β-lactamases.

Confusion exists about the importance of these resistance mechanisms, optimal test methods, and appropriate reporting conventions. Inappropriate use of cephalosporins in clinical practice has lead to the increased prevalence of ESBL and AmpC enzymes among gram negative bacteria (Shoorashetty et al., 2011).

In this study of 156 isolates of E. coli, 56(35.9%) were detected as AmpC producers (Figure 1). Similar results were reported in studies by Shubha (37.5%), Sinha et al., (37.5%) and Peter Getzlaff et al., (41%) among E. coli isolates.

Varying results in other studies, 7% by Singhal et al., 52.2% by Rudresh (2011), 76% by Shanti (2012), showed the prevalence of AmpC production among E. coli isolates.
Based on screening test with cefoxitin disc, we identified 68 (43.6%) isolates as possible AmpC producers. These 68 isolates were further subjected to confirmatory tests for AmpC production. Fifty six (82.4%) were confirmed to be AmpC producers by confirmatory tests (Table 1 and 2). This indicates that the screening test has good specificity.

In a study by Rajini and others (2008) 226 (80%) isolates were found to be cefoxitin screen positive but only 165 (58.5%) isolates were confirmed to harbour AmpC enzyme. Maximal incidence of AmpC production was found among *E. coli* (70%) followed by *K. pneumoniae* (56.7%).

Table.1 Results of AmpC screening test

AmpC Screen	Frequency (%)
Positive	68 (43.6)
Negative	88 (56.4)
Total	156 (100)

Table.2 AmpC detected by AmpC screen

AmpC screen results	No.
AmpC screen positives	68
Confirmed AmpC producers	56
AmpC negatives	12

Figure.1 Bar diagram for antibiotic susceptibility among 56 AmpC producers

Study done by Rudresh (2011) 80 (93.02%) isolates with cefoxitin resistance were AmpC producers.

Sometimes cefoxitin screen negative organisms also harbour AmpC β-lactamase. Manchanda *et al.*, (2003) reported 39% as...
AmpC producers which were screen negative. Sowe subjected all 156 isolates to the confirmatory tests irrespective of the results of the screening tests.

Increasing incidence of drug resistance highlights the need to establish newer simple and effective methods for its detection like the inhibitor based test for the detection of AmpC beta lactamase production.

References

Akujobi, C.O., Odu, N.N. and Okorondu, S.I. 2012. Detection of AmpC beta lactamases in clinical isolates of Escherichia coli and Klebsiella. Afr. J. Clin. Exper. Microbiol., 13(1): 51-55.

Black, J.A., Moland, E.S., Thomson, K.S. 2005. AmpC Disk Test for Detection of Plasmid Mediated AmpC Beta- Lactamases in Enterobacteriaceae Lacking Chromosomal AmpC Beta- Lactamases, J. Clin. Microbiol., 43(7): 3110-3113.

Chaudhary, U., Aggarwal, R. 2004. Extended spectrum beta-lactamases(ESBL)- An Emerging Threat to Clinical Therapeutics. Indian J. Med. Microbiol., 22(2): 75-80.

Clinical and laboratory standard institute, Performance standards for antimicrobial susceptibility testing; 17th informational supplement, CLSI M100 – S17. Vol.27 no.1. Wayne, PA, USA: Clinical and Laboratory Standard Institute, 46-114.

Coudron, P.E. 2005. Inhibitor-based methods for detection of plasmid mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J. Clin. Microbiol., 43: 4163-7.

Coudron, P.E., Moland, E.S., Thomson, K.S. 2000. Occurrence and detection of AmpC beta-lactamase in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis isolates at a veteran medical centre. J. Clin. Microbiol., 38(5): 1791-1796.

Crichton, P.B. 2006. Enterobacteriaceae: Escherichia, Klebsiella, Proteus and other genera. In: Collee J G, Marmion B P, Fraser A G, Simmons A, editors. Mackie and McCartney Practical medical microbiology. 14th ed. New Delhi: Churchill Livingstone; p.361-384.

Forbes, B.A., Sahm, D.F., Weissfeld, A.S. editors. 2007. Enterobacteriaceae. In:Bailey and Scott’s Diagnostic Microbiology. 12th ed. St. Louis (USA): Mosby Elsvier, p. 323-333.

Getzloff, P.S., Polsfuss, S., Poledica, M., Hombach, M., Giger, J., Bottger, E.C., Zbinden, R., and Bloemberg, G.V. 2011. Detection of AmpC Beta-Lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. J. Clin. Microbiol., 49(8): 2924–2932.

Hemalatha, V., Padma, M., Sekar, U., Vinodh, T.M., Arunkumar, A. 2007. Detection of AmpC beta lactamases production in Escherichia coli and Klebsiella spp.by an inhibitor based method. Indian J. Med. Res., 126: 220-223.

Jacoby, G.A. 2009. AmpC Beta-Lactamases, Microbiol. Rev., 22: 161-182.

Leslie, J.S., Anoop, S., Lal, Y.B., Sumangalabai, M. 2008. Occurrence of extended spectrum and AmpC beta lactamases in a tertiary care hospital in south Kerala: implications for antimicrobial therapy. J. Academy Clin. Microbiologists, 10(2): 61-69.

Manchanda, V., Singh, N.P. 2003. Occurrence and detection of AmpC beta-lactamases among Gram negative clinical isolates using modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J. Antimicrob. Chemother., 51: 415-8.

Paterson, D.L., Bonomo, R.A. 2005. Extended spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev., 18(4): 657–686.

Philippon, A., Arlet, G., Jacoby, G.A. 2002. Pasmid determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother., 46: 1-11.

Pitout, J.D.D., Le, P.G., Moore, K.L., Church, D.L. and Gregson, D.B. 2010. Detection
of AmpC β-lactamases in *Escherichia coli*, *Klebsiella* spp., *Salmonella* spp. and *Proteus mirabilis* in a regional clinical microbiology laboratory. *Clin. Microbiol. Infect.*, 16: 165–170.

Rajini, E., Sherwal, B.L., Anuradha. 2008. Detection of Extended Spectrum Beta Lactamases in AmpC beta lactamase producing Nosocomial Gram Negative Clinical Isolates from a Tertiary care Hospital in Delhi. *Indian J. Practicing Doctor*, 4(6)(2008-01 – 2008-02)

Rudresh, S.M., Nagarathnamma, T. 2011. Two simple modifications of modified three-dimensional extract test for detection of AmpC β-lactamases among the members of family *Enterobacteriaceae*. *Chron Young Sci.*, 2(1): 42-6.

Shanthi, M., Sekar, U., Arunagiri, K., Sekar, B. 2012. Detection of Amp C genes encoding for beta-lactamases in *Escherichia coli* and *Klebsiella pneumoniae*. *Indian J. Med. Microbiol.*, 30: 290-5.

Shoorashetty, R.M., Nagarathnamma, T., Prathibha, J. 2011. Comparison of the Boronic acid Disk potentiation test and cefepime-clavulanic acid method for detection of ESBL among AmpC-producing Enterobacteriaceae. *Indian J. Med. Microbiol.*, 29(3): 297-301.

Singhal, S., Mathur, T., Khan, S., Upadhyay, D.J., Chugh, S., Gaind, R., Rattan, A. 2005. Evaluation of Methods for AmpC beta lactamase in Gram negative clinical isolates from Tertiary Care Hospitals. *Indian J. Med. Microbiol.*, 23(2): 120-124.

Sinha, P., Sharma, R., Rishi, S., Sharma, R., Sood, S., Pathak, D. 2008. Prevalence of extended spectrum beta lactamase producers among *Escherichia coli* isolates in a Tertiary Care Hospital in Jaipur. *Indian J. Pathol. Microbiol.*, 51(3): 367 - 369.

Subha, A., Renuka Devi, V., Ananthan, S. 2003. AmpC β-lactamase producing multidrug resistant strains of *Klebsiella* spp. And *Escherichia coli* isolated from children under five in Chennai. *Indian J. Med. Res.*, 117: 13-18.

Taneja, N., Rao, P., Arora, J. and Dogra, A. 2008. Occurrence of ESBL and Amp-C b-lactamases and susceptibility to newer antimicrobial agents in complicated UTI. *Indian J. Med. Res.*, 127: 85-88.

Thomson, K.S. 2001. Controversies about Extended –Spectrum and AmpC Beta-Lactamases, *Emerg. Infect. Dis.*, 7(2): 333-336.

Winn, W., Jr, Allen, S., Janda, W., Koneman, E., Procop, G., Schreckenberger, P. and Woods, G. 2006. Color atlas and textbook of diagnostic microbiology. 6th edition, Lippincott Williams and Wilkins, 946-1014.

Yagi, T., Wachino, J., Kurokawa, H., Suzuki, S., Yamane, K., Doi, Y., Shibata, N., Kato, H., Shibayama, K., Arakawa, Y. 2005. Practical Methods using Boronic Acid Compounds for Identification of Class C beta lactamases producing *Klebsiella pneumoniae* and *Escherichia coli*. *J. Clin. Microbiol.*, 43(6): 2551-58.

How to cite this article:

Manasi, R., and Anitha, K.B. 2017. AmpC Beta Lactamase Detection in Escherichia coli and Comparison of Two Phenotypic Methods. *Int.J.Curr.Microbiol.App.Sci.* 6(2): 1123-1128.
doi: http://dx.doi.org/10.20546/ijcemas.2017.602.126