How long, and why, do Photoexcited Electrons in a Metal Remain Hot?

Richard Wilson, Sinisa Coh

Materials Science and Engineering, University of California - Riverside, CA 92521, USA

Mechanical Engineering, University of California - Riverside, CA 92521, USA

E-mail: rwilson@ucr.edu

Abstract. Calculations are presented to show how dynamics of photoexcited electrons depend on electron-electron (e-e) and electron-phonon (e-p) interaction strengths. The observed dependence is universal to most metals, and is also somewhat counterintuitive. For example, the time that high energy electron states remain occupied depends only on the strength of e-e interactions, even if e-p interactions are much stronger. Furthermore, even though only e-p interactions can reduce the total energy stored by hot electrons, the time it takes for energy to leave the electronic subsystem is governed by both e-e and e-p interactions. Finally, the effect of e-e interactions on energy-relaxation is largest in metals where e-p interactions are strongest. We report simple expressions that accurately capture the interplay of e-e and e-p interactions on relaxation rates of the hot electron distribution. These findings are important for understanding ultrafast electron dynamics in a diverse range of fields, e.g. ultrafast magnetism, photocatalysis, plasmonics, and others.
Absorption of light by a metal generates a nonthermal distribution of electrons and holes [1-3]. In the femtoseconds to picoseconds after absorption, a complex cascade process emerges from individual electron-electron (e-e) and electron-phonon (e-p) scattering events [4-6]. This cascade process drives the system into a new equilibrium state. We characterize the emergent hot electron cascade process with two time-scales, τ_H and τ_E. Time τ_H measures how long the metal contains highly excited electrons with energy comparable to that of the incoming photons, $h\nu$. Somewhat arbitrarily, we define τ_H as the time for the number of highly excited electrons with energy greater than or equal to $h\nu/2$ to drop by a factor of $1/e$, see Figure 1. Another emergent time scale shown in Figure 1 is τ_E. Time τ_E is the time required for the total energy stored by all hot electrons to drop by a factor of $1/e$.

Time-scales τ_E and τ_H are critical, and distinct, figures of merit for a variety of scientific and engineering endeavors, such as photocatalysis, ultrafast magnetism, and others. Photocatalytic performance of plasmonic metal nanoparticles is often governed by τ_H, as high energy electrons drive chemical reactions [7-10]. On the other hand, ultrafast magnetic phenomena are commonly driven by τ_E because they depend on how quickly spatial gradients in internal energy are relaxed [11-17]. On time-scales shorter than τ_E, hot electrons transport energy at rates that are 2-3 orders of magnitude faster than is possible after electrons and phonons thermalize [15, 18-21].

Despite the fundamental importance of τ_H and τ_E, confusion persists over how they depend on the strength of the e-e versus e-p interactions. For example, the time scale, τ_H, is often incorrectly estimated from a simplified Boltzmann rate equation with a Matthiessen’s-like rule [22-25], resulting in $\tau_H^{-1} = \tau_{ee}^{-1} + \tau_{ep}^{-1}$. Here τ_{ep} is the electron-phonon quasi-particle scattering time. This
treatment leads to the incorrect conclusion that, since e-p scattering rates are stronger than e-e scattering rates, τ_H depends on the strength of e-p interactions. However, we find that, due to differences in the nature of e-e vs. e-p interactions, τ_H depends solely on e-e interactions. For photoexcitation with visible light, this is true even if τ_{ep} is hundreds of times shorter than τ_{ee}. Our finding reconciles the fact that first-principles calculations find similarly strong e-e and e-p interactions in simple metals [22] despite experimental and theoretical studies suggesting that τ_H is determined by e-e interactions [1, 26].

Unlike for τ_H, the role of e-e interactions is generally ignored when estimating τ_E and e-p is assumed to dominate [27]. The most common method for determining τ_E is the two-temperature model [27-29], which neglects the effects of a nonthermal distribution, and therefore e-e interactions. We find that, because of nonthermal effects, for most metals $\tau_E \approx 2.5 \gamma_{ep}^{-0.75} \beta_{ee}^{-0.25}$ instead of simply $\tau_E \approx \gamma_{ep}^{-1}$ as in the two-temperature model. Here γ_{ep} and β_{ee} are measures of e-p and e-e interaction strength: γ_{ep} is the two-temperature model prediction for the energy relaxation rate [28], and β_{ee} is the electron-electron relaxation rate for an electron/hole 0.5 eV above/below the Fermi level. The energy relaxation rate remains sensitive to e-e scattering until τ_E is at least 2 orders of magnitude larger than τ_H.

The outline of the rest of the paper is as follows. First, we summarize our numerical calculation for the hot electron dynamics following the photoexcitation of a broad distribution of electrons and holes. Second, we detail how relaxation times for the photoexcited electrons depend on e-e vs.
e-p interactions. Finally, we conclude by discussing how our results compare to experiment, and how experimental parameters such as laser fluence and ambient temperature will affect dynamics.

Results

To accurately capture the interplaying effects of electron-electron and electron-phonon scattering on the hot electron dynamics, we solve the equation of motion for the electron distribution function in a simple metal

$$\frac{df(\varepsilon,t)}{dt} = \Gamma_{ee}(f(\varepsilon,t)) + \Gamma_{ep}(f(\varepsilon,t))$$

(1)

Here ε is electron’s energy, Γ_{ee} is the e-e collision integral [30], and Γ_{ep} is the e-p collision integral [28]. Unlike the commonly used relaxation-time approximation, Eq. (1) accounts for both increases and decreases in $f(\varepsilon,t)$ due to scattering events. Since we are interested in the time-evolution of the hot electrons, we linearize Eq. (1) by defining the hot electron distribution as $\phi(\varepsilon,t) = f(\varepsilon,t) - f_0(\varepsilon)$. Here f_0 is the thermal Fermi-Dirac distribution prior to photoexcitation at 300 K. Further details of our calculation are presented in Supplementary Information.

We evaluate $\phi(\varepsilon,t)$ as a function of e-e and e-p interactions strengths, β_{ee} and γ_{ep}. As a measure of the e-p interaction strength, we use $\gamma_{ep}^{-1} = 3\hbar\lambda\langle\omega^2\rangle/\left(\pi k_B T\right)$. This is the energy relaxation rate that results from Eq. (1) with the assumption that f is a Fermi-Dirac distribution at a temperature above ambient. In other words γ_{ep}^{-1} is the τ_E predicted by the two-temperature model [28]. Here, $\lambda\langle\omega^2\rangle$ is the 2nd frequency moment of the e-p spectral function [28]. To measure the e-e interaction strength, we choose the e-e relaxation time for 0.5 eV excitations. This is the lowest
energy where experimental two-photon emission data for electron lifetimes in metals are commonly available [26]. We want the e-e scattering time to be realistic at low excitation energies because τ_E is most sensitive to e-e scattering at low energies.

Solving Eq. (1) requires initial conditions. We assume photons with energy hv will excite a flat distribution of electrons and holes with concentration $\phi_0 << 1$ that extends to an energy hv above and below the Fermi level. Our conclusions do not rely on the assumption that a flat distribution is excited; we obtain similar results if we assume photons with energy hv only excite electrons and holes at energy $hv/2$ above and below the Fermi level. We limit our focus to photons in the visible spectrum. Our solution of Eq. (1) for $\phi(e,t)$ yields dynamics that are broadly consistent with prior studies that solved similar rate equations to understand hot electron dynamics in specific metals, e.g. Al, Au, Cu [5, 6, 8, 31-34]. New to our study is explicit consideration of how dynamics evolve across a wide range of e-e and e-p scattering strengths.

The rate equation for hot electron dynamics (Eq. 1) predicts a cascade process. We summarize the dynamics in Figure 2 by plotting the predictions of Eq. 1 for the total number of hot electrons vs. time. For realistic values of e-e scattering and e-p scattering strengths, e.g. $\gamma_{ep} / \beta_{ee} \approx 0.25$, e-e scattering increases the number of hot electrons by about a factor of 5 on a τ_E time-scale. Alternatively, if e-e scattering were infinitely strong, the energy stored in the initial nonthermal distribution would instantly redistribute into a thermal distribution. A thermal hot electron distribution has $\sim 16x$ as many hot electrons as are initially excited.

From $\phi(e,t)$ predicted by Eq. (1), we determine relaxation times for the dynamics as a function of e-p and e-e scattering strengths. Figure 3 shows how τ_H (time for high energy electrons to
decay into lower energy electrons) and \(\tau_E \) (time for energy of the hot electrons to be transferred to the lattice) depend on \(\gamma_{ep} / \beta_{ee} \). As can be seen from Figure 3, in nearly all metals, \(\gamma_{ep} / \beta_{ee} \) is such that \(\tau_H \) depends only on e-e, while \(\tau_E \) is determined by both e-e and e-p.

We now discuss the origins for the dependence of \(\tau_E \) and \(\tau_H \) on \(\beta_{ee} \) and \(\gamma_{ep} \). For most metals, high energy electrons decay with \(\tau_H \approx C \beta_{ee}^{-1} \), where \(C \approx 0.8 \text{ eV}^2 / (h \nu)^2 \) with our model assumptions. In general, \(C \) will depend on \(\phi(\varepsilon, t = 0) \) and the energy dependence of the e-e scattering times. The dependence of \(\tau_H \) on only e-e interactions can be rationalized as follows. A single electron-phonon interaction will, on average, change the electron’s energy by \(\hbar \langle \omega \rangle \). Here, \(\hbar \langle \omega \rangle \) is the average phonon energy of the metal, which is much smaller than photon energies in the visible range. If all electron-phonon scattering events could move hot electrons towards equilibrium, we would expect energy transfer to the lattice at a rate of \(\hbar \langle \omega \rangle \tau_{ep}^{-1} \) per hot electron, and the quasiparticle e-p scattering time \(\tau_{ep} \) would need to be 50-100x smaller than \(\beta_{ee}^{-1} \) to govern \(\tau_H \). However, this simple analysis overestimates the effect of e-p interactions on \(\tau_H \). Not all phonon scattering events relax the nonthermal hot electron distribution towards equilibrium. Phonon emission decreases the average energy per electron, while phonon absorption increases it. Eq. 1 predicts that the net effect of electron-phonon interactions on dynamics is a decrease in energy per electron at a rate of \(\pi^2 k_B T \gamma_{ep} / (3h) \), which is less than \(\hbar \langle \omega \rangle \tau_{ep}^{-1} \).

The approximation \(\tau_H \approx C \beta_{ee}^{-1} \) breaks down in the limit of strong e-p interactions, e.g. \(\gamma_{ep} / \beta_{ee} \gg 1 \). For metals where literature data is available for both \(\gamma_{ep} \) and \(\beta_{ee} \), we could find
no examples where $\gamma_{ep}/\beta_{ee} \gg 1$. However, metallic compounds with exceptionally strong e-p interactions, such as Be, VN and MgB$_2$ with $\lambda \langle \omega^2 \rangle \approx 2000$ meV2, do not have data available for e-e lifetimes. If these metals possessed weak e-e interaction strengths, e.g. $\beta_{ee}^{-1} > 50$ fs, then τ_H would be sensitive to the e-p interaction strength.

In contrast to τ_H, τ_E is sensitive to both e-e and e-p scattering so long as $\gamma_{ep}/\beta_{ee} > 0.05$. While it is obvious the time-scale for energy transfer from electrons to phonons should depend on e-p scattering strength, the importance of e-e scattering is less straightforward. Unlike e-p scattering, e-e interactions do not change the total energy in the electronic subsystem. Instead, e-e interactions alter how energy is distributed across the electronic subsystem. Electron-electron scattering events turn a single electron into three electrons, see Fig. 2. Three electrons transfer energy to the phonons three times as fast as one electron because they will spontaneously emit phonons three times as often. As a result, both e-e and e-p interactions determine τ_E if electronic interactions don’t rapidly thermalize the electronic subsystem.

The energy relaxation times in Figure 3 are well approximated as $\tau_E \approx 2.5 \cdot \beta_{ee}^{-0.25} \gamma_{ep}^{-0.75}$ provided $0.05 < \gamma_{ep}/\beta_{ee} < 2$. Alternatively, $\tau_E \approx \gamma_{ep}^{-1} + 1.8 \gamma_{ep}^{-1} \left[1 - \tanh \left(-0.35 \ln \left[0.6 \gamma_{ep}/\beta_{ee} \right] \right) \right]$ is a good approximation for all $\gamma_{ep}/\beta_{ee} < 2$. A survey of literature values for e-e and e-p interaction strength suggest nearly all metals fall in the range of $0.05 < \gamma_{ep}/\beta_{ee} < 2$, see Fig 3. For these metals, the two-temperature model estimate of τ_E is off by a factor ranging from 1.3 to 3, depending on the ratio γ_{ep}/β_{ee}.
In the limit of strong e-e scattering, \(\gamma_{ep} / \beta_{ee} < 0.05 \), the predictions of Eq. 1 converge to the two-temperature model prediction, \(\tau_E \approx \gamma_{ep}^{-1} \). In this limit, hot electron relaxation occurs in a two-step process. The first step is e-e scattering drives electrons into a distribution that is nearly thermal. The second step is the near-thermal distribution of hot electrons transferring energy to the lattice on a \(\gamma_{ep}^{-1} \) time-scale. Of the metals where literature values were available for both \(\gamma_{ee} \) and \(\beta_{ee} \), only Rb and Cs had sufficiently weak e-p interactions for the two-temperature model to be valid. Alternatively, due to strong e-e interactions, Pd and Pt are close to meeting the \(\gamma_{ep} / \beta_{ee} < 0.05 \) criteria for two-temperature model validity.

While the two-temperature model will lack predictive power in most systems made up of only one metal, \(\gamma_{ep} / \beta_{ee} < 0.05 \) is easier to satisfy in bilayer systems composed of different types of metals. In a bilayer, if one metal has strong e-e interactions, while the other has weak e-p interactions, e.g. Pt with Au [19, 35], then photoexcited electrons in these systems will relax via a two-step process similar to the one described above for two-temperature behavior [19, 21]. First hot electrons will thermalize in the layer with strong e-e scattering. Second, a now thermalized distribution of hot electrons will exchange energy with phonons in the metal layer with weak e-p interactions. Several recent experimental studies have observed two-step dynamics in metal bilayer systems [19, 21, 35].

Now we compare our model predictions for \(\tau_E \) for Au and Al with the available experimental values. While a variety of experimental studies are sensitive to the cooling rates of photoexcited electrons [29], interpretation of such experiments is not straightforward [8, 36, 37]. Time-resolved measurements of changes in optical properties, e.g. time-domain thermoreflectance or time-
domain transient absorption, are common methods for studying hot electron dynamics [1, 27, 29, 38-40]. However, optical properties depend on the excited electron distribution in a complex way. Therefore, deducing τ_E from decay-rates of thermoreflectance or transient absorption signals is not trivial [8]. Two recent experimental studies on hot electron dynamics in Au account for this complexity by modeling of how the hot electron distribution correlates to changes in the dielectric function of Au. Both studies conclude hot electrons transfer energy to phonons on a 2-3 ps time-scale. This time-scale is reasonably consistent with time-resolved measurements of thermal diffuse electron scattering of photoexcited Au films [41]. The scattering experiments suggest energy transfer between hot electrons and zone-edge phonon modes occurs in 2 to 3 ps. We conclude our model’s prediction for Au of $\tau_E \sim 2$ ps is in good agreement with experiment. Alternatively, our model prediction for Al of $\tau_E \sim 0.14$ ps agrees less well with the best experimental values available. Tas and Maris estimate $\tau_E \sim 0.23$ ps in Al based on picosecond acoustic measurements that are sensitive to hot-electron diffusion [5]. Time-resolved electron-diffraction measurements of Bragg peaks in Al thin films suggest phonons take ~ 0.3 ps to heat up after photoexcitation of the electrons [36].

While the present study considers the regime of low laser fluence, we expect that at larger fluence the type of dynamics, and relaxation times, will be different. At higher fluence, the dynamics will be closer to the two-step process described by the two-temperature model. This change occurs because a higher laser fluence requires fewer e-e scattering events to relax photoexcited electrons to a Fermi-Dirac thermal distribution. To understand why, consider an absorbed fluence of 10 mJ m$^{-2}$ in a 10 nm thick Au film. This energy density spread across a thermal distribution of electrons corresponds to 60 meV per hot electron, much less than eV scale energies of photoexcited
electrons. Alternatively, an absorbed fluence of 10 J m$^{-2}$ spread across a thermal distribution of electrons corresponds to ~0.5 eV per hot electron, which is comparable to the energy of photoexcited electrons. Therefore, a distribution excited by a high fluence laser pulse requires fewer e-e scattering events to evolve to a Fermi-Dirac distribution.

Our calculations were carried out at 300 K, but the results are similar at other temperatures provided $T \ll T_D$, where T_D is the metals Debye temperature. The rate of energy relaxation will increase at lower temperatures because of decreases in electronic heat capacity, i.e. changes in $f_0(\varepsilon,T)$. Changes to e-p scattering rates due to changes in ambient temperature are relatively unimportant. This is because the rate of energy transfer from hot electrons to phonons depends primarily on stimulated phonon emission, which is temperature independent. The effect of temperature is included in our simple approximation for τ_E via the γ_{ep} term.

In conclusion, we have numerically solved the Boltzmann rate equation to quantify how hot electron relaxation rates depend on e-e and e-p interactions. For most simple metals, the rate of energy transfer is sensitive to both e-e scattering and e-p scattering due to cascade dynamics. The energy relaxation time is well approximated as $\tau_E \approx 2.5 \cdot \beta_{ee}^{-0.25} \gamma_{ep}^{-0.75}$, where γ_{ep} is the electron-phonon energy relaxation rate predicted for a thermal electron distribution, and β_{ee} is e-e scattering rate of an electron or hole 0.5 eV away from the Fermi level. In the limit that $\gamma_{ep} / \beta_{ee} < 0.05$, e-e scattering is effective at establishing a thermal distribution of electrons before significant energy transfer to lattice. In this limit, the two-temperature model is a valid approximation. We can identify only a few metals that meet this
criterion: Rb and Cs. These findings are important for understanding ultrafast electron dynamics in a diverse range of fields, e.g. ultrafast magnetism, photocatalysis, plasmonics, and others.

Figures

Figure 1. Time-scales for relaxation of photoexcited distribution of electrons in Au. (a) After excitation with energy hv, the occupation states where $|\varepsilon - \varepsilon_f| \geq hv/2$ decays with time τ_H due to e-e interactions. (b) The photon energy absorbed by the electrons remains in the electronic subsystem for time τ_E, which is 35 times greater than τ_H.
Figure 2. Time-evolution of the number of hot electrons after excitation with photons of energy $h\nu = 2\, \text{eV}$. Curves are shown for three different values of e-e scattering strengths, $\gamma_{ep}/\beta_{ee} \approx 0.25$ (realistic e-e), 0.05 (strong e-e), and 0 (infinite e-e). For the case of infinitely strong e-e scattering, the initial distribution evolves instantaneously into a thermal distribution, which increases the number of hot electrons by a factor of ~16.

Figure 3. Dependence of relaxation times τ_H and τ_E on e-e and e-p interaction strengths. For realistic values of e-e vs. e-p scattering strength, τ_H depends only on β_{ee}, while τ_E depends on both.
References

1. Fann, W., R. Storz, H. Tom, and J. Bokor, Electron thermalization in gold. Physical Review B, 1992. 46(20): p. 13592.
2. Fann, W., R. Storz, H. Tom, and J. Bokor, Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Physical review letters, 1992. 68(18): p. 2834.
3. Christopher, P. and M. Moskovits, Hot charge carrier transmission from plasmonic nanostructures. Annual review of physical chemistry, 2017. 68: p. 379-398.
4. Ritchie, R.H., Coupled Electron - Hole Cascade in a Free Electron Gas. Journal of Applied Physics, 1966. 37(6): p. 2276-2278.
5. Tas, G. and H.J. Maris, Electron diffusion in metals studied by picosecond ultrasonics. Physical Review B, 1994. 49(21): p. 045105.
6. Wilson, R.B., Y. Yang, J. Gorchon, C.-H. Lambert, S. Salahuddin, and J. Bokor, Electric current induced ultrafast demagnetization. Physical Review B, 2017. 96(4): p. 045105.
7. Brown, A.M., R. Sundararaman, P. Narang, W.A. Goddard, and H.A. Atwater, Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B, 2016. 94(7): p. 075120.
8. Kleyn, S., U. Aslam, C. Boerigter, and M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nature materials, 2015. 14(6): p. 567.
9. Wilson, R.B., J. Gorchon, Y. Yang, C.-H. Lambert, S. Salahuddin, and J. Bokor, Ultrafast magnetic switching of GdFeCo with electronic heat currents. Physical Review B, 2017. 95(18): p. 180409.
10. Yang, Y., R.B. Wilson, J. Gorchon, C.-H. Lambert, S. Salahuddin, and J. Bokor, Ultrafast magnetization reversal by picosecond electrical pulses. Science Advances, 2017. 3(11).
11. Battisti, M., K. Carva, and P.M. Oppeneer, Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Physical review letters, 2010. 105(2): p. 027203.
12. Schellekens, A., K. Kuiper, R. De Wit, and B. Koopmans, Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nature communications, 2014. 5: p. 4333.
13. Choi, G.-M., C.-H. Moon, B.-C. Min, K.-J. Lee, and D.G. Cahill, Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nature physics, 2015. 11(7): p. 576.
14. Seifert, T.S., S. Jaiswal, J. Barker, S.T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S.F. Maehrlein, L. Nadvornik, and S. Watanabe, Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nature communications, 2018. 9(1): p. 2899.
15. Alekhin, A., I. Razdolski, N. Ilin, J.P. Meyburg, D. Diesing, V. Roddatis, I. Rungger, M. Stamenova, S. Sanvito, and U. Bovensiepen, Femtosecond spin current pulses generated by the nonthermal spin-dependent Seebeck effect and interacting with ferromagnets in spin valves. Physical review letters, 2017. 119(1): p. 017202.
18. Wilson, R., J. Gorchon, Y. Yang, C.-H. Lambert, S. Salahuddin, and J. Bokor, *Ultrafast magnetic switching of GdFeCo with electronic heat currents*. Physical Review B, 2017. 95(18): p. 180409.

19. Choi, G.-M., R. Wilson, and D.G. Cahill, *Indirect heating of Pt by short-pulse laser irradiation of Au in a nanoscale Pt/Au bilayer*. Physical Review B, 2014. 89(6): p. 064307.

20. Battiato, M., K. Carva, and P.M. Oppeneer, *Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures*. Physical Review B, 2012. 86(2): p. 024404.

21. Pudell, J., A. Maznev, M. Herzog, M. Kronseder, C. Back, G. Malinowski, A. Von Reppert, and M. Bargheer, *Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction*. Nature communications, 2018. 9(1): p. 3335.

22. Bernardi, M., J. Mustafa, J.B. Neaton, and S.G. Louie, *Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals*. Nature communications, 2015. 6.

23. Avanesian, T. and P. Christopher, *Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces*. The Journal of Physical Chemistry C, 2014. 118(48): p. 28017-28031.

24. Bernardi, M., D. Vigil-Fowler, J. Lischner, J.B. Neaton, and S.G. Louie, *Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon*. Physical Review Letters, 2014. 112(25): p. 257402.

25. Carpene, E., *Ultrafast laser irradiation of metals: Beyond the two-temperature model*. Physical Review B, 2006. 74(2): p. 024301.

26. Bauer, M., A. Marienfeld, and M. Aeschlimann, *Hot electron lifetimes in metals probed by time-resolved two-photon photoemission*. Progress in Surface Science, 2015. 90(3): p. 319-376.

27. Lin, Z., L.V. Zhigilei, and V. Celli, *Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium*. Physical Review B, 2008. 77(7): p. 075133.

28. Allen, P.B., *Theory of thermal relaxation of electrons in metals*. Physical review letters, 1987. 59(13): p. 1460.

29. Brorson, S., A. Kazeroonian, J. Moodera, D. Face, T. Cheng, E. Ippen, M. Dresselhaus, and G. Dresselhaus, *Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors*. Physical Review Letters, 1990. 64(18): p. 2172.

30. Kabanov, V.V. and A. Alexandrov, *Electron relaxation in metals: Theory and exact analytical solutions*. Physical Review B, 2008. 78(17): p. 174514.

31. Mueller, B. and B. Rethfeld, *Relaxation dynamics in laser-excited metals under nonequilibrium conditions*. Physical Review B, 2013. 87(3): p. 035139.

32. Groeneveld, R.H.M., R. Sprik, and A. Lagendijk, *Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au*. Physical Review B, 1995. 51(17): p. 11433-11445.

33. Gusev, V.E. and O.B. Wright, *Ultrafast nonequilibrium dynamics of electrons in metals*. Physical Review B, 1998. 57(5): p. 2878-2888.
34. Del Fatti, N., C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, *Nonequilibrium electron dynamics in noble metals*. Physical Review B, 2000. 61(24): p. 16956-16966.

35. Wang, W. and D.G. Cahill, *Limits to Thermal Transport in Nanoscale Metal Bilayers due to Weak Electron-Phonon Coupling in Au and Cu*. Physical Review Letters, 2012. 109(17): p. 175503.

36. Waldecker, L., R. Bertoni, R. Ernstorfer, and J. Vorberger, *Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation*. Physical Review X, 2016. 6(2): p. 021003.

37. Heilpern, T., M. Manjare, A.O. Govorov, G.P. Wiederrecht, S.K. Gray, and H. Harutyunyan, *Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements*. Nature communications, 2018. 9(1): p. 1853.

38. Wellstood, F.C., C. Urbina, and J. Clarke, *Hot-electron effects in metals*. Physical Review B, 1994. 49(9): p. 5942-5955.

39. Hohlfeld, J., S.-S. Wellershoff, J. Gündde, U. Conrad, V. Jähnke, and E. Matthias, *Electron and lattice dynamics following optical excitation of metals*. Chemical Physics, 2000. 251(1-3): p. 237-258.

40. Hopkins, P.E., J.L. Kassebaum, and P.M. Norris, *Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films*. Journal of Applied Physics, 2009. 105(2): p. 023710.

41. Chase, T., M. Trigo, A. Reid, R. Li, T. Vecchione, X. Shen, S. Weathersby, R. Coffee, N. Hartmann, and D. Reis, *Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films*. Applied Physics Letters, 2016. 108(4): p. 041909.
Supplementary Information

Model Details

The numerical calculations are based on the rate equation

\[
\frac{df(\varepsilon,t)}{dt} = \Gamma_{ee}(f(\varepsilon,t)) + \Gamma_{ep}(f(\varepsilon,t)),
\]

(S1)

The electron-phonon collision integral can is approximated as

\[
\Gamma_{ep}(\phi(\varepsilon,t)) \approx \pi h \lambda \langle \omega^2 \rangle \left[-2 \frac{df_0(\varepsilon)}{d\varepsilon} \phi(\varepsilon) + \left[1 - 2f_0(\varepsilon) \right] \frac{\partial \phi(\varepsilon)}{\partial \varepsilon} + k_B T \frac{\partial^2 \phi(\varepsilon)}{\partial \varepsilon^2} \right].
\]

(S2)

Here, \(\lambda \langle \omega^2 \rangle \) is the second frequency moment of the Eliashberg function \(\alpha^2 F(\omega)\omega^{-1} \),

\[
\lambda \langle \omega^2 \rangle = 2 \int d\omega \alpha^2 F(\omega)\omega.
\]

(S3)

We use the analytic solution for the electron-electron collision integral derived in Ref. [S1] for Fermi liquids

\[
\frac{d\phi}{dt} = -\phi(\varepsilon) + \frac{2\beta_{ee}}{\tau_{ee}(\varepsilon)} \left(\frac{1}{(0.5 \text{ eV})^2} \right) \int_{-\infty}^{\infty} d\varepsilon' \phi(\varepsilon') \cosh \left(\frac{\varepsilon'}{2k_B T} \right) \times \left[\left(\frac{\varepsilon - \varepsilon'}{2k_B T} \right) - \left(\frac{\varepsilon + \varepsilon'}{2k_B T} \right) \right]
\]

(S4)

where
Here, ε_f is the Fermi energy, and T is the temperature. We show examples of the time-evolution of the occupation vs. energy, $\phi(\varepsilon)$, and energy-distribution vs. energy, $\varepsilon\phi(\varepsilon)$, in Supplemental Figure 1. We show dynamics for Cs, Au, and Li, because the metals represent the whole range of dynamics metals will display. The ratio of interaction strengths, γ_{ep}/β_{ee}, is small, normal, and large in Cs, Au, and Li, respectively.

We have made the following assumptions in our modelling of hot electron dynamics. Eq. 1 assumes the distribution function depends only on energy and time, thereby neglecting variation in angles of the wavevector. When solving Eq. 1 we neglect any rise in internal energy of the lattice, i.e. we assume the heat-capacity of the phonons is infinite. We linearize Eq. (1) by assuming a low fluence for the photoexcitation, $\phi(\varepsilon,t) = f(\varepsilon,t) - f_0(\varepsilon) << 1$, and keeping only terms linear in $\phi(\varepsilon,t)$. We neglect the dependence of the e-p spectral function on electron energy. We neglect the energy dependence of the electronic density of states and the energy dependence of the electron-electron scattering matrix element. By setting the initial distribution to $\phi(\varepsilon,t = 0) = \phi_0$ at all energies within $\hbar\nu$ of the Fermi-level, we are assuming an energy independent joint-density of states. These latter three assumptions are all related to the energy dependence of the electronic density of states. We discuss these latter three assumptions in more detail below.

First-principles calculations suggest the strength of e-p interactions vary can vary by as much as a factor of five within 2-3 eV of the Fermi-level [S2]. We neglect this energy-dependence in our
calculation. This assumption is reasonable for the following reasons. First, electron-phonon interactions don’t have a significant influence on τ_H in most metals, even if the e-p interaction strength is multiplied by a factor of 5. Therefore, this assumption will not influence our conclusion that τ_H is determined by e-e interactions. Second, the value of τ_E is sensitive to the strength of e-p interactions at electron energies that are occupied on τ_E time-scales. On τ_E time scales, most hot electrons and holes are within a few hundred meV of the Fermi level. Assuming a constant e-p interaction across energy scales of a few hundred meV is more reasonable than a few eV. We expect our assumption to introduce the most error in metals with peaks in the density of states near the Fermi level, e.g. Pt, and Pd. For example, in Pt, the value of $\lambda \left< \omega^2 \right>$ at the Fermi-level vs. 0.5 eV above the Fermi-level varies by a factor of two from ~120 to 60 meV2. Therefore we expect our model to underestimate τ_E for metals such as Pt and Pd with an error on the order of 50%.

Equations (4) and (5) are an overly simplistic description of the energy dependence of e-e scattering. By assuming an ϵ^2 dependent e-e scattering time, and setting the curvature based on the lifetime of 0.5 eV excitations, we are overestimating the electron-electron scattering rate for higher energy excitations in most transition metals. Transistion metals do not display an ϵ^2 energy dependence away from the Fermi-level. This oversimplification will cause a small error for τ_E, because the sensitivity to e-e interactions is small. For example, a factor of two error in e-e scattering time at all energies will cause only a 20% error in τ_E. Alternatively, τ_H is entirely determined by the e-e scattering time of high energy excitations, and therefore the error will be larger.

We assumed the photoexcitation of a metal with photons of energy hv results in an intial
occupation of electrons and holes that is independent of energy within $h\nu$ of the Fermi level. This assumption will effect τ_H, but not τ_E. τ_H is a weighted average of the electron-electron scattering times for high energy excitations. If different states are excited, the weighted average will be different. Alternatively, τ_E is not sensitive to whether the initial distribution is broad or narrow because e-e scattering quickly relaxes the initial distribution into a nonthermal distribution with states occupied closer to the Fermi level.

Approximate Expressions for Time-Scales of the Dynamics

In the main text we provided simple expressions that work for the e-e and e-p interaction strengths observed for most metal systems. Here we present more complicated expressions that work across the entire range of e-e and e-p scattering strengths provided $h\nu$ is greater than 0.5 eV.

The energy relaxation time for $\gamma_{ep}/\beta_{ee} < 10^5$ is

$$\tau_{E/\gamma_{ep}} = 1 + A \left(1 - \tanh \left[B \left(\frac{\gamma_{ep}}{\beta_{ee}} \right)^{-0.42} \right] \right) + C \left(\sech \ln \left[D \left(\frac{\gamma_{ep}}{\beta_{ee}} \right)^{-0.42} \right] \right)^2,$$

With $A = -0.34 + 2.3h\nu$, $B = 1.5(h\nu)^{1.2}$, $C = -0.25 + 0.53(h\nu)^{1.1}$, and $D = 0.63h\nu$. Alternatively, the lifetime of high energy electrons is well approximated as

$$\tau_{H/\beta_{ee}}(h\nu)^2 = E \left(1 + \tanh \left[F \left(\frac{\gamma_{ep}}{\beta_{ee}} \right)^{-0.47} \right] \right),$$

with $E = 0.39$, and $F = 0.11 + 1.9(h\nu)^{1.4}$.

Literature Values for Interaction Strengths

The values of e-e and e-p interaction strengths we found in the literature for various metals are reported in Supplemental Table 1. The values for $\lambda \left(h^2\omega^2\right)$ were taken from a compilation of
values reported by Phil Allen in Ref. [S3]. While it is not an input into our model calculations, we include values for τ_{ep} in Supplemental Table 1 for comparison. We estimate these using the formula $\tau_{ep} \approx \hbar / \left(2\pi \lambda k_B T\right)$. The values for the e-e scattering time of the alkali metals was taken from a theory calculation by MacDonald in Ref. [S4]. With the exception of Pt and Tb, the remaining values of e-e scattering times were taken from experimental two-photoemission measurements of electron lifetimes [S5]. The e-e scattering times for Pt and Tb were assumed to be equivalent to Pd and Gd, respectively. We don’t list values for τ_H for the transition and rare-earth metals in Supplemental Table 1, because we expect τ_H in these metals to be different than what our model predicts due to our model assumptions described above.

Supplemental References

[S1] V. V. Kabanov, A. Alexandrov, PRB 2008, 78, 174514.
[S2] M. Bernardi, J. Mustafa, J. B. Neaton, S. G. Louie, Nat. Comm. 2015, 6.
[S3] P. B. Allen, PRB 1987, 36, 2920.
[S4] A. H. MacDonald, R. Taylor, D. Geldart, PRB 1981, 23, 2718.
[S5] M. Bauer, A. Marienfeld, M. Aeschlimann, Progress in Surface Science 2015, 90, 319.
Table S1. Literature values for the electron-electron and electron-phonon interaction strengths of various metals. We also include the predictions of Equations S1-S5 for τ_E of each metal, and τ_H of the free-electron like metals.

Metal	$\lambda \langle h^2 \omega^2 \rangle$ (meV²)	τ_{ep} (fs)	γ_{ep}^{-1} (fs)	β_{ee}^{-1} (fs)	γ_{ep}/β_{ee}	τ_E (fs)	τ_H (fs)
Li	160	12	110	230	2	330	42
Na	13	29	1400	350	0.25	2500	68
K	3.4	37	5200	550	0.1	7400	110
Rb	1.8	27	9900	330	0.03	10600	64
Cs	0.85	25	$2.1 \cdot 10^4$	240	0.01	3050	47
Ta	190	4.6	93	17	0.2	150	
Mo	240	13	74	57	0.8	173	
Fe	280	12	63	7.5	0.11	92	
Rh	420	10	42	12	0.3	77	
Ni	230	13	77	14	0.2	130	
Pd	160	8.6	110	8	0.07	140	
Pt	170	6.1	100	8	0.08	130	
Cu	57	31	310	160	0.5	660	31
Ag	26	34	680	300	4.4	920	51
Au	15	27	1200	300	0.25	2100	58
Al	300	9.4	59	40	0.7	140	8
Gd	90	6	200	28	0.14	306	
Tb	90	6	200	18	0.1	270	
Figure S1. Hot electron distribution (top row) and hot electron energy distribution (bottom row) of cesium at selected times. \(E\)-\(p\) interactions in Cs are much weaker than \(e\)-\(e\) interactions.

Figure S2. Hot electron distribution (top row) and hot electron energy distribution (bottom row) of gold at selected times. The ratio of \(e\)-\(p\) to \(e\)-\(e\) interaction strength in Au is typical of most metals.
Figure S3. Hot electron distribution (top row) and hot electron energy distribution (bottom row) of lithium at selected times. The ratio of e-p to e-e interaction strength in Li is higher than most metals.