RAD-SUPPLEMENTING MODULES

Salahattin Özdemir

Abstract. Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(R^R)^{(0)}$ is ample Rad-supplementing.

1. Introduction

All rings consider in this paper will be associative with an identity element. Unless otherwise stated, R denotes an arbitrary ring and all modules will be left unitary R-modules. For a module M, by $X \subseteq M$, we mean X is a submodule of M or M is an extension of X. As usual, $\text{Rad} M$ denotes the radical of M and J denotes the Jacobson radical of the ring R. $E(M)$ will be the injective envelope of M. For an index set I, $M^{(I)}$ denotes the direct sum $\oplus_I M$. By \mathbb{N}, \mathbb{Z} and \mathbb{Q} we denote as usual the set of natural numbers, the ring of integers and the field of rational numbers, respectively. A submodule $K \subseteq M$ is called small in M (denoted by $K \ll M$) if $M \neq K + T$ for every proper submodule T of M. Dually, a submodule $L \subseteq M$ is called essential in M (denoted by $L \unlhd M$) if $L \cap X \neq 0$ for every nonzero submodule X of M.

The notion of a supplement submodule was introduced in [12] in order to characterize semiperfect modules, that is projective modules whose factor modules have projective cover. For submodules U and V of a module M, V is said to be a supplement of U in M or U is said to have a supplement V in M if $U + V = M$ and $U \cap V \ll V$. The module M is called supplemented if every...
submodule of M has a supplement in M. See [19, §41] and [9] for results and the definitions related to supplements and supplemented modules. Recently, several authors have studied different generalizations of supplemented modules. In [1], τ-supplemented modules were defined for an arbitrary preradical τ for the category of left R-modules. For submodules U and V of a module M, V is said to be a τ-supplement of U in M or U is said to have a τ-supplement V in M if $U + V = M$ and $U \cap V \subseteq \tau(V)$. M is called a τ-supplemented module if every submodule of M has a τ-supplement in M. For the particular case $\tau = \text{Rad}$, Rad-supplemented modules have been studied in [6]; rings over which all modules are Rad-supplemented were characterized. Also, in the recent paper [7], the relation between Rad-supplemented modules and local modules have been investigated. See [18]; these modules are called generalized supplemented modules. Note that Rad-supplements V of a module M are also called coneat submodules which can be characterized by the fact that each module with zero radical is injective with respect to the inclusion $V \subseteq M$; see [1], [9, §10] and [15]. On the other hand, modules that have supplements in every module in which it is contained as a submodule have been studied in [22]; the structure of these modules, which are called modules with the property (E), has been completely determined over Dedekind domains. Such modules are also called Moduln mit Ergänzungseigenschaft in [3] and supplementing modules in [9, p. 255]. We follow the terminology and notation as in [9]. We call a module M supplementing if it has a supplement in each module in which it is contained as a submodule. By considering these modules we define and study (ample) Rad-supplementing modules as a proper generalization of supplementing modules. A module M is called (ample) Rad-supplementing if it has a (an ample) Rad-supplement in each module in which it is contained as a submodule, where a submodule $U \subseteq M$ has ample Rad-supplements in M if for every $L \subseteq M$ with $U + L = M$, there is a Rad-supplement L' of U with $L' \subseteq L$.

In Section 2, we investigate some properties of Rad-supplementing modules. It is clear that every supplementing module is Rad-supplementing, but the converse implication fails to be true; Example 2.3. If a module M has a Rad-supplement in its injective envelope, M need not be Rad-supplementing. However, we prove that M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension; Proposition 2.5. We prove that for modules $A \subseteq B$, if A and B/A are Rad-supplementing, then so is B. Using this fact we also prove that every module with composition series is Rad-supplementing; Theorem 2.12. A factor module of a Rad-supplementing module need not be Rad-supplementing; Example 2.15. For modules $A \subseteq B \subseteq C$ with C/A injective, we prove that if B is Rad-supplementing, then so is B/A. As one of the main results, we prove that R is left perfect if and only if R is semilocal, R is reduced and $(R_R)^{(N)}$ is Rad-supplementing; Theorem 2.20. Finally, using a result of [22], we show that
over a commutative ring R, a semisimple R-module M is Rad-supplementing if and only if it is supplementing and that is equivalent the fact that M is pure-injective; Theorem 2.21.

Section 3 contains some properties of ample Rad-supplementing modules. It starts by proving a useful property that a module M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing; Proposition 3.1. One of the main results of this part is that R is left perfect if and only if $R R$ is reduced and the free left R-module $(R R)^{(3)}$ is ample Rad-supplementing; Theorem 3.3. In the proof of this result, Rad-supplemented modules plays an important role as, of course, every ample Rad-supplementing module is Rad-supplemented. Finally, using the characterization of Rad-supplemented modules given in [6], we characterize the rings over which every module is (ample) Rad-supplementing. We prove that every left R-module is (ample) Rad-supplementing if and only if every reduced left R-module is Rad-supplementing if and only if $R/P(R)$ is left perfect; Theorem 3.4.

2. Rad-supplementing modules

A module M is called radical if $\text{Rad} M = M$, and M is called reduced if it has no nonzero radical submodule. See [21, p. 47] for details for the notion of reduced and radical modules.

Proposition 2.1. Supplementing modules and radical modules are Rad-supplementing.

Proof. Let M be a module and N be any extension of M. If M is supplementing, then it has a supplement, and so a Rad-supplement in N. Thus M is Rad-supplementing. Now, if $\text{Rad} M = M$, then N is a Rad-supplement of M in N. □

By $P(M)$ we denote the sum of all radical submodules of the module M, that is,

$$P(M) = \sum \{U \subseteq M \mid \text{Rad} U = U\}.$$

Clearly M is reduced if $P(M) = 0$.

Since $P(M)$ is a radical submodule of M we have the following corollary.

Corollary 2.2. For a module M, $P(M)$ is Rad-supplementing.

A subset I of a ring R is said to be left T-nilpotent in case, for every sequence $\{a_k\}_{k=1}^{\infty}$ in I, there is a positive integer n such that $a_1 \cdot \ldots \cdot a_n = 0$.

In general, Rad-supplementing modules need not be supplementing as the following example shows.

Example 2.3. Let k be a field. In the polynomial ring $k[x_1, x_2, \ldots]$ with countably many indeterminates x_n, $n \in \mathbb{N}$, consider the ideal $I = (x_1^2, x_2^2 - x_1, x_3^2 - x_2, \ldots)$ generated by x_1^2 and $x_{n+1}^2 - x_n$ for each $n \in \mathbb{N}$. Then the quotient ring $R = k[x_1, x_2, \ldots]/I$ is a local ring with the unique maximal ideal
$J = J^2$ (see [6, Example 6.2] for details). Now let $M = J^{(3)}$. Then we have $\text{Rad } M = M$, and so M is Rad-supplementing by Proposition 2.1. However, M does not have a supplement in $R^{(3)}$. Because, otherwise, by [5, Theorem 1], J would be a left T-nilpotent as R is semilocal, but this is impossible. Thus M is not supplementing.

For instance, over a left max ring, supplementing modules and Rad-supplementing modules coincide, where R is called a left max ring if every left R-module has a maximal submodule or equivalently, $\text{Rad } M \ll M$ for every left R-module M.

Proposition 2.4. Every direct summand of a Rad-supplementing module is Rad-supplementing.

Proof. Let U be a direct summand of a Rad-supplementing module M, and let N be any extension of U. Then $M = A \oplus U$ for some submodule $A \subseteq M$. By hypothesis M has a Rad-supplement in the module $A \oplus N$ containing M, that is, there exists a submodule V of $A \oplus N$ such that $$(A \oplus U) + V = A \oplus N \quad \text{and} \quad (A \oplus U) \cap V \subseteq \text{Rad } V.$$ Now, let $g : A \oplus N \to N$ be the projection onto N. Then

$$U + g(V) = g(A \oplus U) + g(V) = g((A \oplus U) + V) = g(A \oplus N) = N; \quad \text{and}$$

$$U \cap g(V) = g((A \oplus U) \cap V) \subseteq g(\text{Rad } V) \subseteq \text{Rad}(g(V)).$$

Hence $g(V)$ is a Rad-supplement of U in N. □

If a module M has a Rad-supplement in its injective envelope $E(M)$, M need not be Rad-supplementing. For example, for $R = \mathbb{Z}$, the R-module $M = 2\mathbb{Z}$ has a Rad-supplement in $E(M) = \mathbb{Q}$ since $\text{Rad } \mathbb{Q} = \mathbb{Q}$ (and so \mathbb{Q} is Rad-supplemented). But, M does not have a Rad-supplement in \mathbb{Z}, and thus M is not Rad-supplementing. However, we have the following result.

Proposition 2.5. Let M be a module. Then the following are equivalent.

(i) M has a Rad-supplement in every essential extension;

(ii) M has a Rad-supplement in its injective envelope $E(M)$.

Proof. (i)⇒(ii) is clear.

(ii)⇒(i) Let $M \subseteq N$ with $M \cong N$, and let $f : M \to N$ and $g : M \to E(M)$ be inclusion maps. Then we have the following commutative diagram with h necessarily monic:

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow{g} & & \downarrow{h} \\
E(M) & & \\
\end{array}
\]

By hypothesis, M has a Rad-supplement in $E(M)$, say K. That is, $M + K = E(M)$ and $M \cap K \subseteq \text{Rad } K$. Since $M \subseteq h(N)$, we obtain that $h(N) = \ldots$
\[h(N) \cap E(M) = h(N) \cap (M + K) = M + h(N) \cap K. \] Now, taking any \(n \in N \), we have \(h(n) = m + h(n_1) = h(m + n_1) \) where \(m \in M \) and \(h(n_1) \in h(N) \cap K \). So, \(n = m + n_1 \in M + h^{-1}(K) \) since \(h \) is monic, and so \(M + h^{-1}(K) = N \). Moreover, \(M \cap h^{-1}(K) = h^{-1}(M) \cap K \subseteq h^{-1}(\text{Rad} K) \subseteq h^{-1}(h^{-1}(K)) \) since \(h^{-1}(M) = M \) as \(h \) is monic. Hence \(h^{-1}(K) \) is a Rad-supplement of \(M \) in \(N \).

Proposition 2.6. Let \(B \) be a module, and let \(A \) be a submodule of \(B \). If \(A \) and \(B/A \) are Rad-supplementing, then so is \(B \).

Proof. Let \(B \subseteq N \) be any extension of \(B \). By hypothesis, there is a Rad-supplement \(V/A \) of \(B/A \) in \(N/A \) and a Rad-supplement \(W \) of \(A \) in \(V \). We claim that \(W \) is a Rad-supplement of \(B \) in \(N \). We have epimorphisms \(f : W \rightarrow V/A \) and \(g : V/A \rightarrow N/B \) such that \(\ker f = W \cap A \subseteq \text{Rad } W \) and \(\ker g = V/A \cap B/A \subseteq \text{Rad } (V/A) \). Then \(g \circ f : W \rightarrow N/B \) is an epimorphism such that \(W \cap B = \ker (g \circ f) \subseteq \text{Rad } W \) by [20, Lemma 1.1]. Finally, \(N = V + B = (W + A) + B = W + B \).

Remark 2.7. The previous result holds for supplementing modules; see [22, Lemma 1.3-(c)].

Corollary 2.8. If \(M_1 \) and \(M_2 \) are Rad-supplementing modules, then so is \(M_1 \oplus M_2 \).

Proof. Consider the short exact sequence

\[0 \rightarrow M_1 \rightarrow M_1 \oplus M_2 \rightarrow M_2 \rightarrow 0. \]

Thus the result follows by Proposition 2.6.

\(R \) is said to be a left hereditary ring if every left ideal of \(R \) is projective.

Corollary 2.9. If \(M/P(M) \) is Rad-supplementing, then \(M \) is Rad-supplementing. For left hereditary rings, the converse is also true.

Proof. Since \(P(M) \) is Rad-supplementing by Corollary 2.2, the result follows by Proposition 2.6. Over left hereditary rings, any factor module of a Rad-supplementing module is Rad-supplementing (see Corollary 2.18).

We give the proof of the following known fact for completeness.

Lemma 2.10. Every simple submodule \(S \) of a module \(M \) is either a direct summand of \(M \) or small in \(M \).

Proof. Suppose that \(S \) is not small in \(M \), then there exists a proper submodule \(K \) of \(M \) such that \(S + K = M \). Since \(S \) is simple and \(K \neq M \), \(S \cap K = 0 \). Thus \(M = S \oplus K \).

Proposition 2.11. Every simple module is \((\text{Rad})\)-supplementing.
Proof. Let S be a simple module and N any extension of S. Then by Lemma 2.10, $S \ll N$ or $S \oplus S' = N$ for a submodule $S' \subseteq N$. In the first case, N is a (Rad-)supplement of S in N, and in the second case, S' is a (Rad-)supplement of S in N. So, in each case S has a (Rad-)supplement in N, that is, S is (Rad-)supplementing. □

Theorem 2.12. Every module with composition series is (Rad-)supplementing.

Proof. Let $0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n = M$ be a composition series of a module M. The proof is by induction on $n \in \mathbb{N}$. If $n = 1$, then $M = M_1$ is simple, and so M is (Rad-)supplementing by Proposition 2.11. Suppose that this is true for each $k \leq n - 1$. Then M_{n-1} is (Rad-)supplementing. Since M_n/M_{n-1} is also (Rad-)supplementing as a simple module, we obtain by Proposition 2.6 that $M = M_n$ is (Rad-)supplementing. □

Corollary 2.13. A finitely generated semisimple module is (Rad-)supplementing.

In general, a factor module of a Rad-supplementing module need not be Rad-supplementing. To give such a counterexample we need the following result.

R is called Von Neumann regular if every element $a \in R$ can be written in the form axa, for some $x \in R$.

Proposition 2.14. Let R be a commutative Von Neumann regular ring. Then an R-module M is Rad-supplementing if and only if M is injective.

Proof. Suppose that M is a Rad-supplementing module. Let $M \subseteq N$ be any extension of M. Then there is a Rad-supplement V of M in N, that is, $V + M = N$ and $V \cap M \subseteq \text{Rad} V$. Since all R-modules have zero radical by [13, 3.73 and 3.75], we have $\text{Rad} V = 0$, and so $N = V \oplus M$. Conversely, if M is injective and $M \subseteq N$ is any extension of M, then $N = M \oplus K$ for some submodule $K \subseteq N$. Thus K is a Rad-supplement of M in N. □

It is known that a ring R is lefty hereditary if and only if every quotient of an injective R-module is injective (see [8, Ch.I, Theorem 5.4]).

Example 2.15. Let $R = \prod_{i \in I} F_i$ be a ring, where each F_i is a field for an infinite index set I. Then R is a commutative Von Neumann regular ring. Indeed, let $a = (a_i)_{i \in I} \in R$ where $a_i \in F_i$ for all $i \in I$. Taking $b = (b_i)_{i \in I} \in R$ where $b_i \in F_i$ such that

$$b_i = \begin{cases} a_i^{-1} & \text{if } a_i \neq 0, \\ 0 & \text{if } a_i = 0. \end{cases}$$

Then we obtain that

$$ab = (a_i)b_i(a_i) = (a_ib_i)_{i \in I} = (a_i)_{i \in I} = a.$$

Now, by Proposition 2.14, R is a Rad-supplementing module over itself since it is injective (see [13, Corollary 3.11B]). Since R is not noetherian, it cannot be
semisimple (by [14, Corollary 2.6]). Thus R is not hereditary by [16, Corollary]. Hence, there is a factor module of R which is not injective.

The following technical lemma will be useful to show that Rad-supplementing modules are closed under factor modules, under a special condition.

Lemma 2.16. Let $A \subseteq B \subseteq C$ be modules with C/A injective. Let N be a module containing B/A. Then there exists a commutative diagram with exact rows:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & A & \rightarrow & B & \rightarrow & B/A & \rightarrow & 0 \\
\downarrow{id} & & \downarrow{\varphi} & & \downarrow{\beta} & & \downarrow{\sigma} & & 0 \\
0 & \rightarrow & A & \rightarrow & P & \rightarrow & N & \rightarrow & 0
\end{array}
$$

Proof. By pushout we have the following commutative diagram, where φ exists since C/A is injective:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & B/A & \rightarrow & N & \rightarrow & N/(B/A) & \rightarrow & 0 \\
\downarrow{\varphi} & & \downarrow{\alpha} & & \downarrow{id} & & \downarrow{g} & & 0 \\
0 & \rightarrow & C/A & \rightarrow & N' & \rightarrow & N/(B/A) & \rightarrow & 0
\end{array}
$$

In the diagram, since the triangle-(1) is commutative, there exists a homomorphism $\alpha : N/(B/A) \rightarrow N'$ making the triangle-(2) is commutative by [11, Lemma I.8.4]. So, the second row splits. Then we can take $N' = (C/A) \oplus (N/(B/A))$, and so we may assume that $\beta : C/A \rightarrow N'$ is an inclusion. Therefore, we have the following commutative diagram since $B/A = \beta(B/A) = g(B/A) \subseteq N'$:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & A & \rightarrow & B & \rightarrow & B/A & \rightarrow & 0 \\
\downarrow{id} & & \downarrow{\phi} & & \downarrow{\gamma} & & \downarrow{\sigma} & & 0 \\
0 & \rightarrow & A & \rightarrow & C \oplus (N/(B/A)) & \rightarrow & N' & \rightarrow & 0
\end{array}
$$

where $\gamma(a) = (a, 0)$ for every $a \in A$, $\phi(b) = (b, 0)$ for every $b \in B$, and $\sigma(c, \overline{\tau}) = (c + A, \overline{\tau})$ for every $c \in C$ and $\overline{\tau} \in N/(B/A)$. Finally, taking $P = \sigma^{-1}(g(N))$ and defining a homomorphism $\tilde{\sigma} : P \rightarrow g(N)$ by $\tilde{\sigma}(x) = \sigma(x)$ for every $x \in P$ (in fact, $\tilde{\sigma}$ is an epimorphism as so is σ), we obtain the following desired commutative diagram:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & A & \rightarrow & B & \rightarrow & B/A & \rightarrow & 0 \\
\downarrow{id} & & \downarrow{\varphi} & & \downarrow{\beta} & & \downarrow{\tilde{\sigma}} & & 0 \\
0 & \rightarrow & A & \rightarrow & P & \rightarrow & g(N) \cong N & \rightarrow & 0
\end{array}
$$

Proposition 2.17. Let $A \subseteq B \subseteq C$ with C/A injective. If B is Rad-supplementing, then so is B/A.

\[\square\]
Proof. Let \(B/A \subseteq N \) be any extension of \(B/A \). By Lemma 2.16, we have the following commutative diagram with exact rows since \(C/A \) is injective:

\[
\begin{array}{c}
0 \longrightarrow A \longrightarrow B \xrightarrow{\sigma} B/A \longrightarrow 0 \\
\downarrow{id} & \downarrow{h} & \downarrow{f} \\
0 \longrightarrow A \longrightarrow P \xrightarrow{g} N \longrightarrow 0
\end{array}
\]

Since \(h \) is monic and \(B \) is Rad-supplementing, \(B \cong \text{Im} \ h \) has a Rad-supplement in \(P \), say \(V \). That is, \(\text{Im} \ h + V = P \) and \(\text{Im} \ h \cap V \subseteq \text{Rad} \ V \). We claim that \(g(V) \) is a Rad-supplement of \(B/A \) in \(N \).

\[
N = g(P) = g(h(B)) + g(V) = (f \sigma)(B) + g(V) = (B/A) + g(V), \quad \text{and}
\]

\[
(B/A) \cap g(V) = f(\sigma(B)) \cap g(V) = g[h(B) \cap V] \subseteq g(\text{Rad} \ V) \subseteq \text{Rad} \ g(V). \quad \square
\]

Corollary 2.18. If \(R \) is a left hereditary ring, then every factor module of Rad-supplementing module is Rad-supplementing.

Proposition 2.19. If \(M \) is a reduced, projective and Rad-supplementing module, then \(\text{Rad} M \ll M \).

Proof. Suppose \(X + \text{Rad} M = M \) for a submodule \(X \) of \(M \). Then since \(M \) is projective, there exists \(f \in \text{End} (M) \) such that \(\text{Im} \ f \subseteq X \) and \(\text{Im} (1 - f) \subseteq \text{Rad} M = JM \) where \(J \) is a Jacobson radical of \(R \). Therefore \(f \) is a monomorphism by [4, Theorem 3]. Since \(M \) is Rad-supplementing and \(\text{Im} f \cong M \), \(\text{Im} f \) has a Rad-supplement \(V \) in \(M \), that is, \(\text{Im} f + V = M \) and \(\text{Im} f \cap V \subseteq \text{Rad} V \). Now we have an epimorphism \(g : V \to M/\text{Im} f \) such that \(\text{Ker} g = V \cap \text{Im} f \subseteq \text{Rad} V \). Moreover, since \(M = \text{Im} f + \text{Im} (1 - f) = \text{Im} f + \text{Rad} M \) we have \(\text{Rad}(M/\text{Im} f) = M/\text{Im} f \). Thus \(\text{Rad} V = V \), and so \(V = 0 \) since \(M \) is reduced. Hence \(M = \text{Im} f \ll X \) implies that \(X = M \) as required. \(\square \)

\(R \) is said to be a semilocal ring if \(R/J \) is a semisimple ring, that is a left (and right) semisimple \(R \)-module (see [14, §20]).

Theorem 2.20. A ring \(R \) is left perfect if and only if \(R \) is semilocal, \(rR \) is reduced and the free left \(R \)-module \(F = (rR)^{\infty} \) is Rad-supplementing.

Proof. If \(R \) is left perfect, then \(R \) is semilocal by [2, 28.4], and clearly \(rR \) is reduced. Since all left \(R \)-modules are supplemented and so Rad-supplemented, \(F \) is Rad-supplementing. Conversely, since \(P(rR) = 0 \) we have \(P(F) = (P(rR))^{(\infty)} = 0 \), that is, \(F \) is reduced. Thus by Proposition 2.19, \(JF = \text{Rad} F \ll F \), that is, \(J \) is left \(T \)-nilpotent by, for example, [2, 28.3]. Hence \(R \) is left perfect by [2, 28.4] since it is moreover semilocal. \(\square \)

Supplementing modules over commutative noetherian rings have been studied in [3]; the author showed that if a module \(M \) is supplementing, then it is cotorsion, that is, \(\text{Ext}^1_{\text{fd}}(F, M) = 0 \) for every flat module \(F \) (see [10] for cotor-sion modules). So the question was raised When Rad-supplementing modules
are cotorsion? Since any pure-injective module is cotorsion, the following result gives an answer of the question for a semisimple module over a commutative ring. The relation between (Rad-)supplementing modules and cotorsion modules needs to be further investigated.

The part (iii)⇒(i) of the proof of the following theorem follows from [22, Theorem 1.6-(ii)⇒(i)], but we give it by explanation for completeness.

Theorem 2.21. Let R be a commutative ring. Then the following are equivalent for a semisimple R-module M.

(i) M is supplementing;

(ii) M is Rad-supplementing;

(iii) M is pure-injective.

Proof. (i)⇒(ii) is clear.

(ii)⇒(iii) Let $M \subseteq N$ be a pure extension of M. By hypothesis M has a Rad-supplement V in N, that is, $M + V = N$ and $M \cap V \subseteq \text{Rad} V$. Since M is pure in N, we have $\text{Rad} M = M \cap \text{Rad} N$ (as R is commutative). Thus $M \cap V \subseteq M \cap \text{Rad} N = \text{Rad} M = 0$ as M is semisimple. Hence $N = M \oplus V$ as required.

(iii)⇒(i) Let $M \subseteq N$ be any extension of M. Then the factor module $X = (M + \text{Rad} N)/\text{Rad} N$ of M is again semisimple and pure-injective. Since semisimple submodules are pure in every module with zero radical and $\text{Rad}(N/\text{Rad} N) = 0$, it follows that X is a direct summand of $N/\text{Rad} N$. Now let $X = (V/\text{Rad} N) \oplus X = N/\text{Rad} N$

for a submodule $V \subseteq N$ such that $\text{Rad} N \subseteq V$. So we have $V + M = N$ with V minimal, and thus V is a supplement of M in N. This is because, if $T + M = N$ for a submodule T of N with $T \subseteq V$, then from $\text{Rad}(N/T) = \text{Rad}((M + T)/T) = \text{Rad}(M/M \cap T) = 0$ as $M/M \cap T$ is semisimple, we obtain that $\text{Rad} N \subseteq T$. Moreover, since $\text{Rad} N = V \cap (M + \text{Rad} N) = V \cap M + \text{Rad} N$, we have $V \cap M \subseteq \text{Rad} N$ and $V = T + V \cap M \subseteq T + \text{Rad} N = T$, thus $T = V$. □

3. Ample Rad-supplementing modules

The following useful result gives a relation between Rad-supplementing modules and ample Rad-supplementing modules.

Proposition 3.1. A module M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing.

Proof. (\Leftarrow) Let M be a module and N be any extension of M. Suppose that for a submodule $X \subseteq N$, $X + M = N$. By hypothesis the submodule $X \cap M$ of M has a Rad-supplement V in X containing $X \cap M$, that is, $(X \cap M) + V = X$ and...
(X ∩ M) ∩ V ⊆ \text{Rad} V. Then N = M + X = M + (X ∩ M) + V = M + V and,
M ∩ V = M ∩ (V ∩ X) = (X ∩ M) ∩ V ⊆ \text{Rad} V. Hence V is a Rad-supplement
of M in N such that V ⊆ X.

(⇒) Let U be a submodule of M and N be any module containing U. Thus
we can draw the pushout for the inclusion homomorphisms \(i_1 : U \hookrightarrow N \) and
\(i_2 : U \hookrightarrow M \):

\[
\begin{array}{c}
\xymatrix{
M \ar[r]^\alpha & F \\
U \ar[u]_{i_2} \ar[r]_\beta & N \ar[u]_{i_1}
}
\end{array}
\]

In the diagram, \(\alpha \) and \(\beta \) are also monomorphisms by the properties of pushout
(see, for example, [17, Exercise 5.10]). Let \(M' = \text{Im} \alpha \) and \(N' = \text{Im} \beta \). Then
\(F = M' + N' \) by the properties of pushout. So by hypothesis, \(M' \cong M \)
has a Rad-supplement \(V \) in \(F \) such that \(V \subseteq N' \), that is, \(M' + V = F \) and
\(M' \cap V \subseteq \text{Rad} V \). Therefore \(V \) is a Rad-supplement of \(M' \cap N' \) in \(N' \), because
\(N' = N' \cap F = N' \cap (M' + V) = (M' \cap N') + V \) and \((M' \cap N') \cap V = \)
\(M' \cap V \subseteq \text{Rad} V \). Now, we claim that \(\beta^{-1}(V) \) is a Rad-supplement of \(U \) in \(N \).

Since \(\beta : N \rightarrow F \) is a monomorphism with \(N' = \text{Im} \beta \), we have an isomorphism
\(\tilde{\beta} : N \rightarrow N' \) defined as \(\tilde{\beta}(x) = \beta(x) \) for all \(x \in N \). By this isomorphism, since \(V \)
is a Rad-supplement of \(M' \cap N' \) in \(N' \), we obtain \(\tilde{\beta}^{-1}(V) \) is a Rad-supplement of
\(\tilde{\beta}^{-1}(M' \cap N') \) in \(\tilde{\beta}^{-1}(N') \). Since it can be easily shown that
\(\tilde{\beta}^{-1}(V) = \beta^{-1}(V) \),
\(\tilde{\beta}^{-1}(N') = N \), and \(\tilde{\beta}^{-1}(M' \cap N') = U \) the result follows. \(\square \)

Corollary 3.2. Every ample Rad-supplementing module is both Rad-supplementing
and Rad-supplemented.

Theorem 3.3. A ring \(R \) is left perfect if and only if \(_RR \) is reduced and the free left \(R \)-module \(F = (_RR)^{[R]} \) is ample Rad-supplementing.

Proof. If \(R \) is left perfect, then \(_RR \) is reduced and all left \(R \)-modules are
supplemented, and so Rad-supplemented. Thus every submodule of \(F \) is Rad-supplementing.
Hence \(F \) is ample Rad-supplementing by Proposition 3.1. Conversely, if \(F \) is ample Rad-supplementing, then it is Rad-supplemented by
Corollary 3.2, and so \(R \) is left perfect by [6, Theorem 5.3]. \(\square \)

Finally, we give the characterization of the rings over which every module is
(ample) Rad-supplementing.

Theorem 3.4. For a ring \(R \), the following are equivalent:

(i) Every left \(R \)-module is Rad-supplementing;
(ii) Every reduced left \(R \)-module is Rad-supplementing;
(iii) Every left \(R \)-module is ample Rad-supplementing;
(iv) Every left \(R \)-module is Rad-supplemented;
(v) \(R/P(R) \) is left perfect.
Proof. Let M be a module. (i)⇒(ii) is clear.
(ii)⇒(i) Since $M/P(M)$ is reduced, it is Rad-supplementing by hypothesis. So M is Rad-supplementing by Corollary 2.9.
(i)⇒(iii) Since every submodule of M is Rad-supplementing, M is ample Rad-supplementing by Proposition 3.1.
(iii)⇒(iv) by Corollary 3.2.
(iv)⇒(i) Let $M \subseteq N$ be any extension of M. By hypothesis, N is Rad-supplemented, and so M has a Rad-supplement in N.
(iv)⇔(v) by [6, Theorem 6.1].

Acknowledgements. The author would like to thank Engin Büyükaşık for making valuable suggestions about this work and the referee for carefully reading the paper.

References

[1] K. Al-Takhman, C. Lomp, and R. Wisbauer, τ-complemented and τ-supplemented modules, Algebra Discrete Math. (2006), no. 3, 1–16.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New-York, Springer, 1992.
[3] J. Averdunk, Module mit Ergänzungseigenschaft, Dissertation, Ludwig-Maximilians-Universität München, Fakultät für Mathematik, 1996.
[4] I. Beck, Projective and free modules, Math. Z. 129 (1972), 231–234.
[5] E. Büyükaşık and C. Lomp, Rings whose modules are weakly supplemented are perfect: Applications to certain ring extensions, Math. Scand. 105 (2009), no. 1, 25–30.
[6] E. Büyükaşık, E. Mermut, and S. Özdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova 124 (2010), 157–177.
[7] E. Büyükaşık, R. Tribak, On w-local modules and Rad-supplemented modules, J. Korean Math. Soc. 51 (2014), no. 5, 971–985.
[8] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Landmarks in Mathematics and Physics series, New Jersey: Princeton Univesity, 1956.
[9] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Frontiers in Mathematics, Basel: Birkhäuser Verlag, Supplements and projectivity in module theory, 2006.
[10] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, vol. 30 of de Gruyter Expositions in Mathematics, Berlin: Walter de Gruyter & Co., 2000.
[11] L. Fuchs and L. Salce, Modules over non-Noetherian domains, vol. 84 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2001.
[12] F. Kasch and E. A. Mares, Eine Kennzeichnung semi-perfekter Module, Nagoya Math. J. 27 (1966), 525–529.
[13] T. Y. Lam, Lectures on modules and rings, vol. 189 of Graduate Texts in Mathematics, New York: Springer-Verlag, 1999.
[14] , A first course in noncommutative rings, vol. 131 of Graduate Texts in Mathematics, New York: Springer-Verlag, 2001.
[15] E. Mermut, Homological Approach to Complements and Supplements, Ph.D. thesis, Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, İzmir-Turkey, 2004.
[16] B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650.
[17] J. J. Rotman, An Introduction to Homological Algebra, Universitext, New York: Springer, 2009.
[18] Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math. 10 (2006), no. 6, 1589–1601.
[19] R. Wisbauer, Foundations of Module and Ring Theory, Reading: Gordon and Breach, 1991.
[20] W. Xue, Characterization of semiperfect and perfect rings, Publ. Mat. 40 (1996), no. 1, 115–125.
[21] H. Zöschinger, Komplementierte Moduln über Dedekindringen, J. Algebra 29 (1974), 42–56.
[22] , Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand. 35 (1974), 267–287.

Department of Mathematics
Faculty of Sciences
Dokuz Eylül University
Buca, İzmir, 35390, Turkey
E-mail address: salahattin.ozdemir@deu.edu.tr