Original article

Association between ABCB1, ABCG2 carrier protein and COX-2 enzyme gene polymorphisms and breast cancer risk in a Turkish population

Kara Pala Zeliha a, Ozturk Dilek b, Oztas Ezgi c, Kara Halil d, Uras Cihan d, Ozhan Gul c,*

a Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
b Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
c Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
d Department of General Surgery, Faculty of Medicine, Acibadem University, Istanbul, Turkey

A R T I C L E I N F O

Article history:
Received 8 April 2019
Accepted 29 November 2019
Available online 7 December 2019

Keywords:
MDR1
BCRP
COX-2
Breast cancer
Genetic susceptibility
Genotype analysis

A B S T R A C T

Aim: Breast cancer is the most common cancer and the second leading cause of cancer-related deaths among women. Several genetic and environmental factors are known to be involved in breast cancer pathogenesis, but the exact etiology of this disease is complicated and not completely understood. We aimed to investigate whether the gene polymorphisms of ABCB1 and ABCG2 carrier proteins and COX-2 enzyme affect breast cancer risk.

Method: ABCG2 C421A (rs2231142), ABCB1 C3435T (rs1045642), COX-2 T8473C (rs5275) and COX-2 G306C (rs5277) were genotyped 104 breast cancer patients and 90 healthy controls using a real-time PCR for breast cancer susceptibility.

Results: Patients carrying ABCG2 C421A, the CC genotype, had a higher risk of disease compared with patients carrying any A allele (OR = 3.06; 95% CI = 1.49–6.25, p = 0.0019). The other variants showed no association with breast cancer (p > 0.05). Comparing the pathological parameters with the variants, only, the frequency of C allele of ABCB1 C3435T was significantly lower in the estrogen receptor-α (ERα) (OR = 2.25; 95% CI: 0.75–6.76; p = 0.041) and progesterone receptor (PgR) (OR = 3.67; 95% CI: 1.34–10.03; p = 0.008) positive breast cancer patients. Conclusion: ABCB1 C3435T and ABCG2 C421A might represent a potential risk factor for breast cancer for Turkish women.

1. Introduction

Breast cancer is the most frequent cancer, 30% of all new cancer diagnoses, in women, and is responsible for roughly half a million total deaths each year worldwide (Siegel et al., 2019). According to latest cancer report of Turkey Ministry of Health (2017), the rate of breast cancer is 24.9% in adult Turkish women. Some risk factors influence of developing breast cancer are menstrual history, reproductive factors, hormone use, genetics, family history, diet and exercise (Torre et al., 2017). The loss or inhibition of various ATP-binding cassette (ABC) transporters has been observed to influence tumor cell phenotypes closely associated with malignant potential, including proliferation, differentiation, migration and invasion; these observations have been made across multiple cancer types (Fletcher et al., 2016).

Multi Drug Resistance (P-glycoprotein, P-gp, ABCB1, MDR1) and Breast Cancer Resistance (BCRP, ABCG2, MXR, ABCP) ABC transporter proteins limit the intracellular concentration of the substrates via energy-dependent (active) pumping out of the cell. ABCB1 and ABCG2 protect the body against endogenous and exogenous xenobiotics with their important roles in intestinal absorption and secretion, hepato- and urinary elimination, and barrier through the placenta, testis and brain (DeGorter et al., 2012; Klaassen and Aleksunes, 2010; Robey et al., 2009). The single nucleotide polymorphism (SNP) of ABCB1, C3435T (rs1045642), occurs in exon 26, and the T allele appears to be associated with markedly lower P-gp expression compared with the C allele (Hoffmeyer et al., 2000). The SNP has been shown to be correlated with the development of various type of cancer such as colorectal...
acute lymphoblastic leukemia (Yaya et al., 2014), glioma (Miller et al., 2005) and renal epithelial tumors (Haensch et al., 2007). ABCB1 C3435T might reduce protection for cells and potentially contribute to the development of breast cancer (George et al., 2009; Wang et al., 2013). However, the results have been contradictory (Wang et al., 2012). The ABCG2 C421A (rs2231142) in exon 5 is one of the most important genetic variations and results in lower expression levels in the cellular membrane compared with the wild-type protein (Hira and Terada, 2018). BCRP is also expressed from the apical membrane of alveolar epithelial cells in breast tissue at during pregnancy and lactation and plays a role in the expulsion of accumulated toxins and carcinogens to a woman’s milk (DeGorter et al., 2012; Klaassen and Aleksunes, 2010; van Herwaarden and Schinkel, 2006).

To date, studies have investigated the association between ABCG2 gene polymorphisms and susceptibility to carcinoma such as non-papillary renal cell carcinoma (Korenaga et al., 2005), B cell lymphoma (Campa et al., 2012) and prostate cancer (Hahn et al., 2006). However, the association between ABCG2 gene polymorphisms and breast carcinoma risk has been evaluated in only a few studies (Wu et al., 2015; Ghafoori et al., 2016; Li et al., 2017).

Prostaglandins play a role in carcinogenesis via the suppression of immune responses, and the inhibition of apoptosis, angiogenesis, tumor cell invasion and metastasis pathways (Brasky et al., 2011; Lala et al., 2018). Prostaglandin-endoperoxide synthase 2 (COX-2) is an inducible enzyme that plays a major role in the inflammatory response by converting arachidonic acid to prostaglandins. Overexpression of COX-2 has been found in a variety of cancers; thyroid (Ucan et al., 2017); colorectal (Eberhart et al., 1994), gastric (Ristikimaki et al., 1997) and breast (Liu and Rose, 1996). In recent studies, COX-2 T8473C (rs5275), G898C (rs20417) and G306C (rs5277) have been shown to cause an increase in the level of COX-2 expression (Abraham et al., 2009; Brasky et al., 2011; Yu et al., 2010; Li et al., 2009). The variants have also been investigated for their role in contributing to breast cancer risk (Li et al., 2015). However, the results have been inconclusive.

Overexpression of COX-2 can result the over-production of prostaglandins, which are substrates for P-gp and BCRP. The dysfunction or reduced function of P-gp and BCRP proteins can cause carcinogenesis via xenobiotics and the accumulation of inflammatory agents in cells (Andersen et al., 2015). Knowledge of ethnic and individual genetic differences is very important for understanding personal reactions in the case of exposure to xenobiotics/drugs (Ishikawa et al., 2012; DeGorter et al., 2012). We accordingly investigated whether the single nucleotide polymorphisms (SNPs) of ABCB1 and ABCG2 carrier proteins and COX-2 enzyme affect breast cancer risk since these genetic differences have not been clarified in Turkish population. We believe that the preliminary study could enrich the scarce literature about the polymorphisms in breast cancer susceptibility.

2. Materials and methods

2.1. Subjects

We evaluated the influence of ABCG2, ABCB1 and COX-2 gene polymorphisms on susceptibility to breast cancer in 104 Turkish female patients and 90 ethnic- and age-matched healthy controls between 2012 and 2015. These 104 patients had a mean age of 52 ± 12 years were operated upon at the Acibadem Maslak Hospital Breast Health Centre (Istanbul, Turkey) or admitted for follow-up after breast cancer surgery. Healthy control volunteers with a mean age of 49 ± 14 years who never had any type of cancer were selected.

2.2. Genotyping

Genomic DNA was extracted from whole blood using standard phenol chloroform extraction protocol and further purification was done by using High Pure PCR Product Purification Kit (Roche, Mannheim, Germany). SNP analysis was performed using a LightCycler FastStart DNA Master HybProbe (Roche, Mannheim, Germany) and custom-designed LightSNiP assay probes (Roche, Mannheim, Germany) according to the manufacturer’s instructions. ABCG2 C421A, ABCB1 C3435T, COX-2 T8473C and COX-2 G306C were genotyped using a Roche Light Cycler 480 (Roche, Mannheim, Germany) real-time PCR platform and melting curve analyses were performed by the carousel-based system PCR program. In a final volume of 20 ml reaction mix per sample, the following mixtures were added: 1X FastStart DNA Master Mix, 2 mM MgCl₂, 0.2 mM LightSNP HybProbe, appropriate amount of PCR grade water and 500 ng DNA sample. The plates were sealed and centrifuged at 3000 rpm for a minute. Details of custom-designed LightSNiP assay probes were summarized in Table 1 and carousel-based system PCR program setup was given in Table 2.

Genotyping was performed by scientists blinded to the patients’ case control status. A 10% random sample was genotyped twice for quality assurance. Also, to confirm the genotyping results of the variants, the selected PCR amplified DNA samples (n = 2, for each genotype in the cases and controls) were examined with DNA sequencing. The results were 100% concordant.

2.3. Statistical analysis

The sample size was calculated by an online sample size estimator (http://osse.bii.a-star.edu.sg). Hardy-Weinberg equilibrium (HWE) analysis was performed using the Chi-square (χ^2) test. For the analysis of genotype frequencies, the wild-type category (chosen either as the most common wild-type frequency or

Table 1

Reference sequences of custom-designed LightSNiP assay probes.

LightSNP	Reference Sequence	Melting temperature
ABCG2 C421A (rs2231142)	GCAACTCGAGGTTAGAGAAACTTA [A/C] AgTTCTCAGACCTCTTGGCTGC	57.74 °C for allele [C] 61.92 °C for allele [A]
ABCB1 C3435T (rs1045642)	AGCAAGACTGGTCTAGAAGAT [C/T] TGTAGAAGGTAAGTTGAAACA	55.76 °C for allele [C] 63.05 °C for allele [T]
COX-2 G306C (rs5277)	TCGAATTTAGTCTAGTTATG [C/T] TTGACATGATACTCAGCTGT	53.64 °C for allele [C] 62.30 °C for allele [T]
COX-2 T8473C (rs5275)	ATTGATTCTATTACCTCTGG [T/C] ATTTTCTACCATACCAAAACAAA	52.94 °C for allele [T] 61.12 °C for allele [C]

rs: reference SNP number; alleles in the square brackets indicates the polymorphisms.
Genotype distributions and features of the studied SNPs.

Table 2
Carousel-based system PCR program setup.

Program Name	Cycles	Analysis Mode	Target (°C)	Acquisition Mode	Hold (sec)
Pre-Incubation	1	None	95	None	600
Amplification	45	Quantification	95	None	10
Melting Curve	1	Melting Curve	95	None	30
Cooling	1	None	40	None	30

Genotypes

SNPs	Amino acid change	Variant allele	Genotypes	Frequencies	OR (95% CI)	p value
ABCG2 C421A (rs2231142)	Q141K	C	CC	90 (86.5)	CC vs. any A	0.002*
		CA	AA	14 (13.5)	3.06 (1.49–6.25)	
MAF				0.072	0.183	
ABCB1 C3435T (rs10455642)	I1145I	C	CC	25 (24.2)	CC vs. any T	0.361
		CT	TT	37 (35.9)	1.24 (0.61–2.53)	
MAF				0.422	0.418	
COX-2 G306C (rs5277)	V102V	G	GG	46 (44.6)	GG vs. any C	0.853
		GC	CC	47 (45.6)	1.06 (0.59–1.86)	
MAF				0.325	0.366	
COX-2 T8473C (rs5275)		T	TT	72 (69.2)	TT vs. any C	0.479
		TC	CC	28 (26.9)	1.24 (0.68–2.26)	
MAF				0.173	0.200	

Snps, single nucleotide polymorphisms; rs, reference SNP number; MAF, minor allele frequency; OR, odds ratio; 95% CI, 95% confidence intervals. *p < 0.05 indicates statistical significance.

3. Results and discussion

Although the correlation between the SNPs of the ABCG2, ABCB1 and COX-2 genes with breast cancer risk has been reported in some studies, no meaningful relationship has been demonstrated thus far. The substrate specificities of ABCG2 and ABCB1 are quite similar, and ABCG2 and ABCB1 are involved in the transport of COX-2 mediated inflammatory agents (Klaassen and Aleksunes, 2010; Yu et al., 2010). Therefore, we evaluated the association between functional and common variants (ABCG2 C421A, ABCB1 C3435T, COX-2 T8473C and COX-2 G306C), and susceptibility to breast cancer in a cohort of Turkish women.

Firstly, we determined that no significant differences in age (52.4 ± 12.5 vs. 49.4 ± 14.2 years) or BMI (27.9 ± 5.3 vs. 24.5 ± 4.5 kg/cm²) between the breast cancer and control groups, respectively. However, the patients carrying the AA genotype of COX-2 G306C variant have been shown to have significantly higher BMI than patients carrying the wild-type variant (Mizuarai et al., 2004). While the incidence of the ABCG2 C421A polymorphism is 30% in Far Easterners, it has been reported to be approximately 10% and 13% in Caucasians and Middle Easterners, respectively (Kim et al., 2010). Ghafari et al. (2016) found that the most frequent genotype in patient groups was the AA genotype; its frequency was significantly different from that of the control subjects (p = 0.04). In the present study, CC genotype was the most frequent genotype in both our case and control groups, unlike to Kurdish populations in Sanadaj-Iran in comparison with Ghafari et al., 2016. Wu et al. (2015) investigated the correlation between the ABCG2 C421A polymorphism and breast cancer susceptibility in 1169 patients with breast cancer and 1244 healthy controls. The authors showed that the ABCG2 C421A AA genotype was significantly associated with an increased risk for developing breast carcinoma (p = 0.033). According to our results, ABCG2 C421A was significantly associated with an increased risk of breast cancer (p = 0.0019). However, the patients carrying the CC
Relations between polymorphisms and clinicopathological characteristics.

- **ER**: Estrogen receptor; **PgR**: Progesterone receptor; **HER2**: Human epidermal growth factor receptor 2.

Table 3

Polymorphism	No. of patients (%)	p value	p value	p value	p value
	IDC				
	ILD				
	DCIS				
	unknown				
	ER status				
	positive				
	negative				
	unknown				
	PgR status				
	positive				
	negative				
	unknown				
	HER2 status				
	positive				
	negative				
	unknown				
	Triple negative				

Table 4

Variables	No. of patients (%)	ABC2 C421A (rs2231142)	p value	ABC2 C4345T (rs1045642)	p value	COX-2 C306C (rs2231142)	p value	COX-2 T8473C (rs5277)	p value
Pathological type	IDC								
	ILD								
	DCIS								
	unknown								
	ER status								
	positive								
	negative								
	unknown								
	PgR status								
	positive								
	negative								
	unknown								
	HER2 status								
	positive								
	negative								
	unknown								
	Triple negative								
	yes								
	no								

Table 4

Variables	No. of patients (%)	ABC2 C421A (rs2231142)	p value	ABC2 C4345T (rs1045642)	p value	COX-2 C306C (rs2231142)	p value	COX-2 T8473C (rs5277)	p value
Pathological type	IDC								
	ILD								
	DCIS								
	unknown								
	ER status								
	positive								
	negative								
	unknown								
	PgR status								
	positive								
	negative								
	unknown								
	HER2 status								
	positive								
	negative								
	unknown								
	Triple negative								
	yes								
	no								
breast cancer in our population of Turkish women. ABCB1 C3435T might be associated with a potential risk for breast cancer in Turkish women. These data might be useful for identifying individuals at risk of developing breast cancer. However, our results were obtained with a limited sample size; we were accordingly only able to draw preliminary conclusions at this time. Future studies based on larger, stratified case-control populations are still necessary to clarify the different effects of the ABCB1, ABCG2 and COX-2 polymorphisms on cancer risk. Larger sample sizes and functional assays will be required to confirm our findings.

Acknowledgements

This work was supported by the Research Fund of Istanbul University. Project Number: 25158.

Author Disclosure Statement

The authors declare that there are no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Abraham, J.E., Harrington, P., Driver, K.E., et al., 2009. Common polymorphisms in the progestational pathway genes and their association with breast cancer susceptibility and survival. Clin. Cancer Res. 15 (6), 2181–2191.
Abulhaila, A.M., Yousef, A.M., Elmadany, N.N., et al., 2016. Influence of Genotype and Haplotype of MDR1 (C3435T, G2677A/T, C12367T) on the Incidence of Breast Cancer—a Case-Control Study in Jordan. Asian J. Cancer Prev. 17 (1), 261–266.
Andersen, V., Svenningsen, K., Knudsen, L.A., et al., 2015. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCG2/BCRP in colorectal pathophysiology. World J. Gastroenterol. 21 (41), 11862–11870.
Brasky, T.M., Bonner, M.R., Mysich, K.B., et al., 2011. Genetic variants in COX-2, nonsteroidal anti-inflammatory drugs, and breast cancer risk: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res. Treat. 126, 157–165.
Campa, D., Butterbach, K., Slager, S.L., et al., 2012. A comprehensive study of polymorphisms in the ABCB1, ABCG2, ABCG2, NR112 genes and lymphoma risk. Int. J. Cancer 131 (4), 803–812.
Dai, Z.J., Shao, Y.P., Ma, X.B., et al., 2014. Association of the three common SNPs of cyclooxygenase-2 gene (rs20417, rs898466, and rs5275) with the susceptibility of breast cancer: an updated meta-analysis involving 34,590 subjects. Dis. Markers 2014, 484729.
DeGorter, M.K., Xia, C.Q., Yang, J.J., et al., 2012. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol. 52, 249–273.
Dossus, L., Kaaks, R., Canzian, F., et al., 2010. PTGS2 and IL6 genetic variation and colorectal cancer risk: a meta-analysis of case-control studies. Colorectal Dis. 15 (1), 12–18.
Hoffmeyer, S., Burks, O., van Richter, O., et al., 2000. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U.S.A. 97 (7), 3473–3478.
Hua, H., Zhang, H., Kong, Q., et al., 2018. Mechanisms for estrogen receptor expression in human cancer. Exp. Hematol. Oncol. 7, 24.
Ishikawa, T., Shimizu, D., Yamada, A., et al., 2012. Impacts and predictors of cytotoxic anticancer agents in different breast cancer subtypes. Oncol. Res. 20 (2–3), 71–79.
Jiang, J., Quan, X.F., Zhang, L., et al., 2014. Lack of association between COX2-847T>C polymorphism and breast cancer risk: a meta-analysis. Contemp. Oncol. (Poln) 18 (3), 177–181.
Klaassen, C.D., Aleksunes, L.M., 2010. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62 (1), 1–96.
Kim, K.J., Joo, I.H., Park, J.Y., 2010. ABCG2 and C223rs141713A in a Korean population: analysis and a comprehensive comparison with other populations. J. Clin. Pharm. Ther. 35, 705–712.
Korenaga, Y., Naito, K., Okaya, N., et al., 2005. Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma. Int. J. Cancer 117 (3), 431–434.
Lala, P.K., Nandi, P., Majumder, M., 2018. Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis. Rev. 37 (2–3), 309–384.
Leo, C., Faber, S., Hentschel, B., et al., 2006. The status of cyclooxygenase-2 expression in ductal carcinoma in situ lesions and invasive breast cancer correlates to cyclooxygenase-2 expression in normal breast tissue. Ann. Diagn. Pathol. 10 (6), 327–332.
Li, F., Ren, G.S., Li, H.Y., et al., 2009. A novel single nucleotide polymorphism of the cyclooxygenase-2 gene associated with breast cancer. Clin. Oncol. 21, 302–305.
Li, Q., Liu, L., Liu, Y., et al., 2015. Five COX-2 gene polymorphisms and risk of breast cancer: an updated meta-analysis based on 19 case-control studies. Med. Oncol. 32 (1), 397.
Li, W., Zhang, D., Du, F., et al., 2017. ABCB1 C3453T and ABCG2 4211CC genotypes were significantly associated with longer progression-free survival in Chinese breast cancer patients. Oncotarget 8 (67), 111041–111052.
Liu, X.H., Rose, D.P., 1996. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res. 56 (22), 5125–5127.
Maclas-Gómez, N.M., Gutiérrez-Angulo, M., Leal-Ugarte, E., et al., 2014. MDR1 C3435T polymorphism in Mexican patients with breast cancer. Genet. Mol. Res. 13 (3), 5018–5024.
Miller, K.L., Kelsey, K.T., Wiencek, J.K., et al., 2005. The C3435T polymorphism of MDR1 and susceptibility, adult glioma, and colorectal cancer. Cancer Epidemiol. Biomark. Prev. 14 (6), 1575–1580.
Mizuara, S., Aozasa, N., Kotani, H., 2004. Single nucleotide polymorphisms result in impaired membrane localizing and reduced apatase activity in multidrug transporter ABC2BC. Int. J. Oncol. 10 (2), 238–246.
Mutoh, K., Tsukahara, S., Mitsuhashi, J., et al., 2006. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci. 97 (11), 1198–1204.
Ranger, G.S., Jewell, A., Thomas, V., et al., 2004. Elevated expression of cyclooxygenase-2 in breast cancer and ductal carcinoma in situ has no correlation with established prognostic markers. J. Surg. Oncol. 88 (2), 100–103.
Ristimäki, A., Honkanen, N., Jänkälä, H., et al., 1997. Expression of cyclooxygenase-2 in human colorectal adenomas and adenocarcinomas. Gastroenterology 107 (4), 1183–1188.
Ritchie, K., Hornfield, R.T., Henderson, M.J., et al., 2016. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9.
Siegel, R.L., Miller, K.D., Jemal, A., 2019. Cancer statistics, 2019. CA A Cancer J. Clin. 69 (1), 539–544.
 Turkey: Ministry of Health, Public Health Association. (2017) Cancer statistics of Turkey. https://hsmg.saglik.gov.tr/depo/birlerim/kanser-db/istatistik2014 RAPOR_zuuzz.pdf [accessed: 20.03.2019].