Crystal structure of a TbIII–CuII glycinehydroxamate 15-metallacrown-5 sulfate complex

Anna V. Pavlishchuk,a,b,* Inna V. Vasylenko,b Matthias Zellerc and Anthony W. Addisond

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 62, Kyiv, 01601, Ukraine, bL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospect Nauki 31, Kiev 03028, Ukraine, cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA, and dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA. *Correspondence e-mail: annpavlis@ukr.net

The core of the title complex, bis[hexaaquahemiaquapentakis(C$_2$H$_4$N$_2$O$_2$)glycinehydroxamato)sulfatopentacopper(II)terbium(III)] sulfate hexahydrate, [TbCu$_5$(SO$_4$)(GlyHA)$_5$(H$_2$O)$_6.5$]$_2$(SO$_4$)$_2$H$_2$O (I), which belongs to the 15-metallacrown-5 family, consists of five glycinehydroxamate dianions (GlyHA$^{2-}$/C$_2$H$_4$N$_2$O$_2$) and five copper(II) ions linked together forming a metallamacrocyclic moiety. The terbium(III) ion is connected to the centre of the metallamacrocycle through five hydroxamate oxygen atoms. The coordination environment of the Tb$^{3+}$ ion is completed to an octacoordination level by oxygen atoms of a bidentate sulfate and an apically coordinated water molecule, while the copper(II) atoms are square-planar, penta- or hexacoordinate due to the apical coordination of water molecules. Continuous shape calculations indicate that the coordination polyhedron of the Tb$^{3+}$ ion in I is best described as square antiprismatic. The positive charge of each pair of [TbCu$_5$(GlyHA)$_5$(H$_2$O)$_6.5$(SO$_4$)$_2$H$_2$O]$_2$ fragments is compensated by a non-coordinated sulfate anion, which is located on an inversion center with 1:1 disordered oxygen atoms. Complex I is isomorphous with the previously reported compounds [LnCu$_5$(GlyHA)$_5$(SO$_4$)(H$_2$O)$_6.5$]$_2$(SO$_4$), where LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho.

1. Chemical context

Numerous research studies devoted to polynuclear 3d–4f assemblies have been stimulated by their non-trivial luminescence properties (Jankolovits et al., 2011; Maity et al., 2015), single-molecule magnet (SMM) behaviour (Dhers et al., 2016; Zangana et al., 2014) and their significant magnetocaloric effect (Pavlishchuk & Pavlishchuk, 2020; Zheng et al., 2014). The 15-metallacrown-5 complexes are 3d–4f metallamacrocyclic assemblies, which can be easily obtained from one-step reactions between an α-substituted hydroxamic acid and the corresponding salts of transition metals and lanthanides (Stemmler et al., 1999; Pavlishchuk et al., 2011, 2019). Compounds bearing 15-metallacrown-5 [LnCu$_5$]$^{3+}$ units have demonstrated the ability to serve as sensors (Zabrodina et al., 2018), can absorb and adsorb various small molecules (Lim et al., 2010; Pavlishchuk et al., 2014; Ostrowska et al., 2016) and display SMM behaviour (Wang et al., 2019, 2021; Zaleski et al., 2006; Wu et al., 2021). Taking into account the fact that 15-metallacrowns-5 are also suitable building blocks for the generation of porous coordination polymers and discrete assemblies (Pavlishchuk et al., 2017a,b, 2018), the synthesis of...
new examples of this class of metallamacrocyclic assemblies and studies of their structural features are of particular interest. Herein we report the crystal structure of the new 15-metallacrown-5 complex \([\text{TbCu}_5(\text{GlyHA})_5(\text{H}_2\text{O})_{6.5}(\text{SO}_4)]_2\) \((\text{SO}_4)\cdot 13(\text{H}_2\text{O})\) (1), which complements the previously reported series of isomorphous metallamacrocycles with Pr, Nd, Sm, Eu, Gd, Dy and Ho ions at their centres.

2. Structural commentary

Complex 1 crystallizes in the space group \(P\overline{1}\) and is isostructural with the previously reported complexes

\([\text{LnCu}_4(\text{GlyHA})_4(\text{SO}_4)(\text{H}_2\text{O})_{6.5}]_2(\text{SO}_4)\), where GlyHA\(^{2-}\) is the dianion of glycinehydroxamic acid and \(\text{Ln}^{III} = \text{Pr}, \text{Nd}, \text{Sm}, \text{Eu}, \text{Gd}, \text{Dy} \) and \(\text{Ho}\) (Pavlishchuk et al., 2011). Each unit cell in 1 contains two \([\text{TbCu}_5(\text{GlyHA})_5(\text{SO}_4)(\text{H}_2\text{O})_{6.5}]^+\) 15-metallacrown-5 cations related by an inversion center, one non-coordinated sulfate anion for charge-balance and non-coordinated water molecules (Figs. 1 and 2).

The core of the \([\text{TbCu}_5(\text{GlyHA})_5(\text{SO}_4)(\text{H}_2\text{O})_{6.5}]^+\) complex cation in 1 is constructed from five copper(II) ions linked by five bridging glycinehydroxamate dianions (GlyHA\(^{2-}\)) and a terbium(III) ion bound at the centre of the metallocycle (Fig. 1). The copper(II) equatorial coordination environment in 1 is formed by two oxygen atoms (from a carboxylate and a deprotonated hydroxamate group) and two nitrogen atoms (from an amine and a deprotonated hydroxamate). The equatorial \(\text{Cu}—\text{O}_{\text{eq}}\) and \(\text{Cu}—\text{N}_{\text{eq}}\) distances range from 1.928 (3) to 1.969 (3) Å and 1.890 (4) to 2.018 (4) Å (Table 1), respectively, which is typical of aminohydroxamate 15-metallacrown-5 complexes (Stemmler et al., 1999; Pavlishchuk et al., 2011; Katkova et al., 2015; Meng et al., 2016). As a result of the apical coordination of water molecules to copper(II) ions, Cu1 has distorted square-bipyramidal coordination \([\text{Cu}1—\text{O}_{20} = 2.601 (4) \ \text{Å} \text{and Cu}1—\text{O}_{21} = 2.736 (4) \ \text{Å}](1)\), while Cu3, Cu4 and Cu5 are in square-pyramidal environments \([\text{Cu}3—\text{O}_{16} = 2.508 (4) \ \text{Å} \text{and Cu}3—\text{O}_{11} = 2.436 (3) \ \text{Å}](1)\).

Table 1

| Bond Lengths (Å) |
|-----------------|-----------------|-----------------|-----------------|
| Cu1—N3 | 1.915 (4) | Cu4—O8 | 1.940 (3) |
| Cu1—O1 | 1.928 (3) | Cu4—O7 | 1.947 (3) |
| Cu1—O2 | 1.969 (3) | Cu4—N10 | 2.012 (4) |
| Cu1—N4 | 1.991 (4) | Cu4—O17 | 2.481 (4) |
| Cu1—O20 | 2.601 (4) | Cu5—N1 | 1.890 (4) |
| Cu1—O21 | 2.736 (4) | Cu5—O9 | 1.943 (3) |
| Cu2—N5 | 1.900 (4) | Cu5—O10 | 1.946 (3) |
| Cu2—O3 | 1.928 (3) | Cu5—N2 | 2.003 (4) |
| Cu2—O4 | 1.936 (3) | Cu5—O18 | 2.379 (4) |
| Cu2—N6 | 2.018 (4) | Tb1—O9 | 2.370 (3) |
| Cu2—O19 | 2.409 (10) | Tb1—O1 | 2.372 (3) |
| Cu3—N7 | 1.904 (4) | Tb1—O15 | 2.383 (3) |
| Cu3—O6 | 1.944 (3) | Tb1—O3 | 2.386 (3) |
| Cu3—O5 | 1.949 (3) | Tb1—O7 | 2.411 (3) |
| Cu3—N8 | 2.014 (4) | Tb1—O5 | 2.430 (3) |
| Cu3—O16 | 2.508 (4) | Tb1—O12 | 2.436 (3) |
| Cu4—N9 | 1.894 (4) | Tb1—O11 | 2.451 (3) |

Figure 1

The unit cell of complex 1 containing two \([\text{TbCu}_5(\text{GlyHA})_5(\text{SO}_4)(\text{H}_2\text{O})_{6.5}]^+\) metallacrown cations and non-coordinated sulfate anions (located on a inversion center with O atoms 1:1 disordered). Non-coordinated water molecules are omitted for clarity of presentation.

Figure 2

Structure of the \([\text{TbCu}_5(\text{GlyHA})_5(\text{SO}_4)(\text{H}_2\text{O})_{6.5}]^+\) metallacrown cations in 1. The dashed lines indicate the disorder of the non-coordinated sulfate anion. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) \(x, y, z + 1\).]
The coordination environment of the TbIII ion is completed to an octacoordination level via the two oxygen atoms O11 [Tb1—O11 = 2.451 (3) Å] and O12 [Tb1—O12 = 2.436 (3) Å] from the bidentate sulfate anions and O15 [Tb1—O15 = 2.383 (3) Å] from a water molecule coordinated in the trans-position opposite to the SO$_4^{2-}$ ion. An analysis of selected structural parameters for complex 1 and those of isomorphous compounds with other LnIII ions (Table 2) reveals the influence of the lanthanide contraction. Similar behaviour was found in other series of lanthanide(III) containing metallamacrocycles (Pavlishchuk et al., 2011; Zaleski et al., 2011). According to Shape 2.1 (Casanova et al., 2005) calculations (Fig. 3, Table 3), the coordination geometry of the TbIII ion in 1 is a square antiprism (D_{4d}), which is of particular interest with respect to potential generation of lanthanide(III)-containing SMMs (Liu et al., 2018). The deviations from an idealized square-antiprismatic geometry in the [LnCu$_5$(GlyHA)$_5$(SO$_4$)(H$_2$O)$_{6.5}$](SO$_4$) complexes decrease with reduction of the deviation of the LnIII ion from the mean plane of the metallacrown core, which parallels the ionic radii of the LnIII ions (Table 3). It may be noted that, in the case of a series of related 15-metallacrown-5 complexes with octacoordinate LnIII ions containing bidentate carbonates or acetates instead of sulfates, the coordination of the lanthanide ions is triangular dodecahedral (D_{2d}) (Table 3).

The Cu···O and Ln···Cu separations for complex 1 range from 4.501 (1) to 4.577 (1) Å and 3.8398 (8) to 3.8944 (8) Å, respectively, and are typical for [LnCu$_5$]$^{3+}$ metallacrowns (Stemmler et al., 1999; Pavlishchuk et al., 2011; Katkova et al., 2015a; Meng et al., 2016). The Cu···O, Cu···N and Cu···Cu distances do not vary significantly amongst metallamacrocycles with different bidentate counter-anions (Table 2). The metallacrown moiety in 1 is close to planar, the deviation of...
Table 3
Continuous shape calculations for octacoordinated LnIII ions in I obtained with Shape 2.1 software (Casanova et al., 2005).

	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8
Pr–SO4	30.846	22.755	15.952	11.561	2.215	2.397	13.029	25.482
Nd–SO4	30.677	22.888	15.968	11.587	2.141	2.364	13.033	25.516
Sm–SO4	30.387	22.903	15.951	11.630	2.020	2.311	13.013	25.752
Eu–SO4	30.516	23.164	16.270	11.783	1.952	2.363	13.190	25.864
Gd–SO4	30.465	23.110	16.032	11.570	1.907	2.269	13.151	26.121
Tb–SO4	30.381	23.117	16.159	11.666	1.854	2.322	13.140	26.276
Dy–SO4	30.357	23.195	16.112	11.613	1.799	2.254	13.168	26.433
Ho–SO4	30.272	23.212	16.095	11.588	1.761	2.247	13.186	26.496

Octacoordinated ions: OP-8 = octagon (D8h); HPY-8 = heptagonal pyramid (C7v); HBPY-8 = hexagonal bipyramid (D4h); CU-8 = cube (Oh); SAPR-8 = square antiprism (D2d); TDD-8 = triangular dodecahedron (D3d); JGBF-8 = Johnson gyrobirotundig 126 (D3d); JETBPY-8 = Johnson elongated triangular bipyramid J4 (D3d).

3. Supramolecular features
The [LnCu5(GlyHA)3]3+ cations in complex I are non-oligomerized, which is typical for 15-metallacrown-5 complexes. The water apical to TbIII in I (O15) is involved in the formation of intramolecular hydrogen bonds (O15—H15A···O21 and O15—H15B···O16) with apically coordinated water molecules O16 and O21 on copper(II) ions Cu3 and Cu4, respectively. Intramolecular hydrogen bonds in I are also formed between the bidentate sulfate and apically coordinated water molecules O17, O18 and O20 (O17—H17A···O12, O18—H18B···O14 and O20—H20B···O11) on copper(II) ions Cu4, Cu5 and Cu1. An extended system of intermolecular hydrogen bonds [N2—H2A···O15iii, N8—H8B···O12iv, N10—H10A···O20v, O10viii···H21B—O21, O6vii···H17B—O17, O21—H21A···O18ix, O16—H16A···O17x] links adjacent [TbCu5(GlyHA)3(H2O)6.5(SO4)]3+ cations and non-coordinated sulfate anions [N4—H4A···O27ix(SO4), O18—H18B···O27(SO4), N4—H4A···O25(SO4) and O20—H20A···O25(SO4)]. Non-coordinated water molecules in I are linked by hydrogen bonds with carbonyl oxygen and amine nitrogen atoms in the glycine-hydroxamate unit from the metallacrown core (O4v···H23A—O23, O8···H24B—O24, N6—H6B···O24vii, N8—H8A···O23, N10—H10B···O22viii) and coordinated water molecules (O16—H16B···O22, O19—H19A···O24ix, O19—H19B···O24viii) or bidentate sulfate (O11ix···H24A···O24 and O13h···H23B···O23). Hydrogen-bond parameters and symmetry codes are given in Table 4.

4. Database survey
Comounds most closely related to I are its isomorphous counterparts [LnCu5(GlyHA)3(SO4)(H2O)6.5(SO4)]SO4, where GlyHA3− is the dianion of glycinehydroxyacidic acid and LnIII = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2001). A search of the Cambridge Structural Database (Version 5.41, 2021; Groom et al., 2016) reveals other compounds that also feature an LnCu5(GlyHA)3 core, with counter-anions such as nitrate, acetate, chloride, lactate, carbonate, sulfate, isophthalate, terephthalate and all lanthanide ions other than radioactive Pm (Katzka et al., 2015a,b; Pavlishchuk et al., 2011, 2017a, Pavlishchuk et al., 2018, 2019; Stemmler et al., 1999; Muravyeva et al., 2016; Kreml et al., 2016). Most of
these complexes feature, similar to I, individual molecular complex cations (Katkova et al., 2015a,b; Pavlishchuk et al., 2011, 2017a, 2018, 2019; Stemmler et al., 1999; Muravyeva et al., 2016; Kremlev et al., 2016), but a small number of oligomerized examples have also been reported (Pavlishchuk et al., 2017a, 2018).

5. Synthesis and crystallization

Complex 1 was synthesized and crystallized according a general procedure described previously (Pavlishchuk et al., 2011). Single crystals were obtained by slow evaporation from an aqueous solution of 1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The structure is isomorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (Pavlishchuk et al., 2011) and was solved by isomorphous replacement. The O19 water molecule is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied.

The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.

C—H bond distances were constrained to 0.99 for aliphatic CH2 moieties. N—H bond distances were constrained to 0.91 Å for pyramidal (sp3-hybridized) ammonium NH+ groups. Water H-atom positions were refined, and O—H distances were restrained to 0.84 (2) Å. The H···H distances within the O23 and O24 water molecules were further restrained to 1.35 (2) Å. Uiso(H) values were set to kUeq(C/N/O) with k =1.5 for OH, and 1.2 for CH2 and NH2 units, respectively.

Acknowledgements

This work was supported partly by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv. This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). AWA thanks Drexel University for support.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Materials Research (grant No. CHE 1625543 to M. Zeller); National Research Foundation of Ukraine (grant No. 2020.02/0202 to A. V. Pavlishchuk).

References

Addison, A. W., Rao, T. N., Reediik, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Casanova, D., Lunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.
Dhers, S., Feltham, H. L. C., Rouzieres, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089–18093.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834–9838.
Katkova, M. A., Zaborodina, G. S., Muravyeva, M. S., Khрапичев, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31–33.
Katkova, M. A., Zaborodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khрапичев, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202–5208.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Kremlev, K. V., Samsonov, M. A., Zaborodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96–100.
Lim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46–49.
Crystal structure of a TbIII–CuII glycinehydroxamate 15-metallacrown-5 sulfate complex

Anna V. Pavlishchuk, Inna V. Vasylenko, Matthias Zeller and Anthony W. Addison

Computing details

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[hexaaquahemiaquapentakis(µ\textsubscript{3}-glycinehydroxamato)sulfatopentacopper(II)terbium(III)] sulfate hexahydrate

Crystal data

[Tb\textsubscript{2}Cu\textsubscript{5}(H\textsubscript{2}O\textsubscript{6})\textsubscript{5}(SO\textsubscript{4})\textsubscript{5}(SO\textsubscript{4})\textsubscript{6}H\textsubscript{2}O] \textsubscript{2} \textsubscript{2}(SO\textsubscript{4})\textsubscript{6}H\textsubscript{2}O

$M_r = 2464.44$

Triclinic, $P\overline{1}$

$\alpha = 9.6370$ (4) Å

$\beta = 11.5888$ (5) Å

$\gamma = 16.2367$ (6) Å

$\alpha = 99.6716$ (13)$^{\circ}$

$\beta = 91.3031$ (12)$^{\circ}$

$\gamma = 105.3123$ (12)$^{\circ}$

$V = 1719.80$ (12) Å3

$Z = 1$

$F(000) = 1214$

$D_x = 2.380$ Mg m-3

Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å

Cell parameters from 9965 reflections

$\theta = 4.0–79.9^{\circ}$

$\mu = 15.11$ mm-1

$T = 150$ K

Plate, blue

$0.20 \times 0.20 \times 0.08$ mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD)

Radiation source: I-mu-S microsource X-ray tube

Laterally graded multilayer (Goebel) mirror monochromator

Detector resolution: 7.4074 pixels mm-1

ω and phi scans

Absorption correction: multi-scan (SADABS; Krause et al., 2015)

$T_{\text{min}} = 0.454$, $T_{\text{max}} = 0.754$

16278 measured reflections

7029 independent reflections

6786 reflections with $I > 2\sigma(I)$

$R_{\text{int}} = 0.050$

$\theta_{\text{max}} = 80.3^{\circ}$, $\theta_{\text{min}} = 2.8^{\circ}$

$h = -12\rightarrow 12$

$k = -14\rightarrow 14$

$l = -19\rightarrow 15$

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.041$

$wR(F^2) = 0.118$

$S = 1.10$

562 parameters

22 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Acta Cryst. (2021). E77, 1197-1202
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement

\[w = 1/\left(\sigma^2(F_o^2) + (0.0656P)^2 + 1.8351P\right) \]
where \(P = (F_o^2 + 2F_c^2)/3 \)
\((\Delta/\sigma)_{\text{max}} < 0.001 \)
\[\Delta \rho_{\text{max}} = 1.59 \text{ e Å}^{-3} \]
\[\Delta \rho_{\text{min}} = -1.34 \text{ e Å}^{-3} \]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure is isomorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (AVP85_10mz121, AVP355_10mz172, AVP621_09mz411 and AVP629_10mz194, AVP65_10mz125 and AVP651_10mz191, AVP70_10mz147, AVP75_10mz148 and AVP754_10mz650), and was solved by isomorphous replacement.
The water molecule of O19 is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.
Water H atom positions were refined and O-H distances were restrained to 0.84 (2) Angstrom, respectively. Some H···H distances were further restrained to 1.35 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)	Occ. (<1)				
C1	0.4433 (5)	0.2625 (4)	0.5042 (3)	0.0167 (8)					
C2	0.3610 (5)	0.2938 (4)	0.5788 (3)	0.0195 (9)					
H2C	0.320220	0.220082	0.602893	0.023*					
H2D	0.427084	0.354919	0.622292	0.023*					
C3	0.6783 (5)	0.0423 (4)	0.2493 (3)	0.0158 (8)					
C4	0.6931 (6)	-0.0360 (5)	0.3110 (3)	0.0235 (10)					
H4C	0.794720	-0.038433	0.316648	0.028*					
H4D	0.632740	-0.119964	0.290399	0.028*					
C5	0.7890 (5)	0.3483 (4)	0.0317 (3)	0.0175 (9)					
C6	0.8858 (5)	0.2707 (4)	-0.0019 (3)	0.0221 (10)					
H6C	0.874472	0.253424	-0.063895	0.027*					
H6D	0.987712	0.315424	0.015213	0.027*					
C7	0.5254 (5)	0.6985 (4)	0.1304 (3)	0.0159 (8)					
C8	0.6022 (5)	0.7507 (4)	0.0594 (3)	0.0179 (9)					
H8C	0.532673	0.736705	0.010561	0.022*					
H8D	0.643978	0.839491	0.076935	0.022*					
C9	0.2149 (5)	0.5808 (4)	0.3895 (3)	0.0163 (9)					
C10	0.1644 (5)	0.6898 (4)	0.3802 (3)	0.0222 (10)					
H10C	0.058903	0.664428	0.366493	0.027*					
H10D	0.184336	0.748022	0.434014	0.027*					
Cu1	0.57451 (7)	0.15475 (6)	0.38923 (4)	0.01792 (16)					
Cu2	0.71639 (7)	0.16393 (6)	0.12404 (4)	0.01884 (16)					
Cu3	0.68477 (7)	0.53540 (6)	0.08031 (4)	0.01553 (15)					
Cu4	0.34975 (7)	0.64627 (6)	0.24858 (4)	0.01548 (15)					
Cu5	0.28203 (7)	0.39948 (6)	0.44370 (4)	0.01615 (15)					
Tb1	0.48345 (2)	0.35681 (2)	0.24306 (2)	0.01322 (9)					
N1	0.4245 (4)	0.3141 (3)	0.4416 (2)	0.0171 (7)					
Atom	X	Y	Z	U1	U2	U3	U12	U13	U23
------	---------	---------	---------	--------	--------	--------	--------	--------	--------
N2	0.2431	0.3430	0.5530	0.0195	0.023				
H2A	0.2365	0.4062	0.5928						
H2B	0.1577	0.2843	0.5476						
N3	0.6105	0.1242	0.2732	0.0178	0.0215				
N4	0.6482	0.0108	0.3943						
H4A	0.7247	0.0319	0.4328	0.026					
H4B	0.5779	-0.0487	0.4106	0.026					
N5	0.7027	0.3075	0.0865	0.0166					
N6	0.8492	0.1541	0.0304	0.0171					
H6A	0.9313	0.1394	0.0495	0.021					
H6B	0.8054	0.0916	-0.0116	0.021					
N7	0.5575	0.6039	0.1480	0.0172					
N8	0.7190	0.6918	0.0356	0.0159					
H8A	0.8059	0.7427	0.0570	0.019					
H8B	0.7203	0.6761	-0.0211	0.019					
N9	0.2929	0.5471	0.3302	0.0173					
N10	0.2378	0.7509	0.3133	0.022					
H10A	0.2987	0.8242	0.3365	0.027					
H10B	0.1710	0.7639	0.2780	0.027					
O1	0.5000	0.2882	0.3716	0.016					
O2	0.5244	0.1896	0.5060	0.019					
O3	0.6029	0.1998	0.2163	0.019					
O4	0.7336	0.0300	0.1769	0.019					
O5	0.6158	0.3809	0.1186	0.015					
O6	0.7979	0.4510	0.0074	0.018					
O7	0.4861	0.5537	0.2123	0.016					
O8	0.4330	0.7478	0.1689	0.019					
O9	0.3463	0.4493	0.3393	0.017					
O10	0.1827	0.5265	0.4519	0.019					
O11	0.2853	0.1696	0.2229	0.023					
O12	0.2734	0.3216	0.1464	0.020					
O13	0.1448	0.1123	0.0876	0.025					
O14	0.0575	0.2189	0.2058	0.031					
O15	0.7222	0.4609	0.3006	0.018					
O16	0.767	0.430	0.331	0.028					
O17	0.562	0.617	0.269	0.028					
O18	0.455	0.312	0.156	0.033					
O19	0.472	-0.003	0.060	0.071					
O20	0.552	0.02	-0.021	0.071					
---	---	---	---	---	---				
O20	0.3102 (4)	0.0221 (3)	0.3519 (3)	0.0283 (8)					
H20A	0.236 (5)	0.022 (7)	0.377 (4)	0.043*					
H20B	0.291 (8)	0.063 (6)	0.318 (4)	0.043*					
O21	0.8274 (4)	0.3337 (4)	0.3966 (2)	0.0308 (8)					
H21A	0.909 (4)	0.320 (7)	0.392 (5)	0.046*					
H21B	0.841 (8)	0.380 (6)	0.443 (3)	0.046*					
O22	0.9749 (5)	0.8150 (4)	0.2711 (3)	0.0361 (9)					
H22A	0.972 (9)	0.855 (7)	0.319 (2)	0.054*					
H22B	0.980 (9)	0.857 (6)	0.234 (4)	0.054*					
O23	0.9394 (4)	0.9116 (3)	0.1345 (2)	0.0243 (7)					
H23A	0.876 (4)	0.947 (5)	0.150 (4)	0.036*					
H23B	1.011 (4)	0.968 (4)	0.126 (4)	0.036*					
O24	0.3431 (7)	0.9430 (4)	0.1264 (3)	0.0523 (14)					
H24A	0.328 (11)	0.998 (6)	0.163 (4)	0.079*					
H24B	0.368 (10)	0.893 (6)	0.152 (4)	0.079*					
O25	0.1618 (8)	0.0365 (9)	0.4920 (5)	0.0357 (19)	0.5				
O26	−0.0300 (9)	−0.0158 (7)	0.5820 (5)	0.0339 (17)	0.5				
O27	−0.0484 (9)	0.1032 (7)	0.4781 (5)	0.0333 (17)	0.5				
O28	−0.0592 (9)	−0.1078 (7)	0.4360 (5)	0.0346 (17)	0.5				
S1	0.18461 (12)	0.20240 (10)	0.16476 (7)	0.0195 (2)					
S2	0.000000	0.000000	0.500000	0.0199 (3)					

Atomic displacement parameters (Å²)

U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃	
C1	0.0163 (19)	0.0162 (19)	0.019 (2)	0.0070 (16)	0.0042 (17)	0.0016 (17)
C2	0.024 (2)	0.025 (2)	0.016 (2)	0.0143 (18)	0.0049 (17)	0.0080 (18)
C3	0.0152 (19)	0.0150 (19)	0.019 (2)	0.0092 (16)	0.0030 (16)	0.0011 (17)
C4	0.034 (3)	0.024 (2)	0.019 (2)	0.020 (2)	0.0063 (19)	0.0025 (19)
C5	0.018 (2)	0.019 (2)	0.016 (2)	0.0074 (17)	0.0045 (17)	0.0023 (17)
C6	0.025 (2)	0.018 (2)	0.025 (2)	0.0068 (18)	0.0113 (19)	0.0018 (18)
C7	0.0150 (19)	0.0126 (19)	0.019 (2)	0.0023 (15)	0.0009 (16)	0.0027 (17)
C8	0.018 (2)	0.017 (2)	0.021 (2)	0.0078 (16)	0.0038 (17)	0.0055 (17)
C9	0.018 (2)	0.0165 (19)	0.017 (2)	0.0114 (16)	0.0011 (16)	−0.0027 (17)
C10	0.029 (2)	0.024 (2)	0.022 (2)	0.0194 (19)	0.0081 (19)	0.0066 (19)
Cu1	0.0252 (3)	0.0179 (3)	0.0165 (3)	0.0146 (3)	0.0054 (3)	0.0048 (3)
Cu2	0.0252 (3)	0.0152 (3)	0.0212 (4)	0.0122 (3)	0.0111 (3)	0.0051 (3)
Cu3	0.0188 (3)	0.0136 (3)	0.0167 (3)	0.0074 (2)	0.0067 (2)	0.0039 (2)
Cu4	0.0173 (3)	0.0138 (3)	0.0189 (3)	0.0090 (2)	0.0052 (2)	0.0045 (2)
Cu5	0.0188 (3)	0.0174 (3)	0.0169 (3)	0.0111 (3)	0.0069 (2)	0.0053 (3)
Tb1	0.01436 (14)	0.01192 (14)	0.01535 (15)	0.00683 (10)	0.00396 (10)	0.00235 (10)
N1	0.0233 (18)	0.0181 (17)	0.0138 (18)	0.0112 (15)	0.0065 (14)	0.0044 (14)
N2	0.0220 (19)	0.0194 (18)	0.020 (2)	0.0106 (15)	0.0073 (15)	0.0036 (15)
N3	0.0234 (19)	0.0150 (17)	0.0201 (19)	0.0111 (15)	0.0070 (15)	0.0071 (15)
N4	0.029 (2)	0.0223 (19)	0.020 (2)	0.0157 (16)	0.0087 (16)	0.0072 (16)
N5	0.0159 (17)	0.0179 (17)	0.0169 (18)	0.0087 (14)	0.0056 (14)	−0.0016 (15)
N6	0.0171 (17)	0.0183 (18)	0.0193 (19)	0.0092 (14)	0.0060 (14)	0.0053 (15)
N7	0.0192 (18)	0.0170 (17)	0.0174 (18)	0.0075 (14)	0.0036 (15)	0.0043 (15)
Geometric parameters (Å, °)

	C1—N1	C1—O2	C1—C2	C2—N2	C2—H2C	C2—H2D	C3—N3	C3—O4	C3—C4	C4—N4	C4—H4C	C4—H4D
	1.294 (6)	1.298 (5)	1.509 (6)	1.480 (6)	0.9900	0.9900	1.301 (5)	1.304 (6)	1.488 (7)	1.488 (6)	0.9900	0.9900

N8 0.0212 (18) 0.0104 (15) 0.0183 (18) 0.0060 (14) 0.0061 (14) 0.0057 (14)

N9 0.0202 (18) 0.0166 (17) 0.0185 (19) 0.0108 (14) 0.0029 (15) 0.0032 (15)

N10 0.0212 (19) 0.0169 (18) 0.034 (2) 0.0125 (15) 0.0102 (17) 0.0039 (17)

O1 0.0207 (15) 0.0205 (15) 0.0148 (15) 0.0141 (12) 0.0090 (12) 0.0057 (12)

O2 0.0277 (17) 0.0195 (15) 0.0172 (16) 0.0146 (13) 0.0065 (13) 0.0050 (13)

O3 0.0307 (17) 0.0187 (15) 0.0182 (16) 0.0155 (13) 0.0121 (13) 0.0095 (13)

O4 0.0251 (16) 0.0183 (15) 0.0197 (16) 0.0123 (13) 0.0084 (13) 0.0041 (13)

O5 0.0193 (14) 0.0119 (13) 0.0197 (16) 0.0103 (11) 0.0064 (12) 0.0031 (12)

O6 0.0271 (17) 0.0166 (14) 0.0172 (16) 0.0107 (13) 0.0104 (13) 0.0053 (12)

O7 0.0180 (14) 0.0154 (14) 0.0205 (16) 0.0086 (12) 0.0114 (12) 0.0067 (12)

O8 0.0201 (15) 0.0193 (15) 0.0238 (17) 0.0120 (12) 0.0072 (13) 0.0070 (13)

O9 0.0204 (15) 0.0178 (15) 0.0210 (16) 0.0168 (12) 0.0109 (12) 0.0065 (13)

O10 0.0280 (17) 0.0209 (15) 0.0172 (16) 0.0160 (13) 0.0094 (13) 0.0081 (13)

O11 0.0247 (17) 0.0219 (16) 0.0246 (18) 0.0061 (13) −0.0008 (14) 0.0042 (14)

O12 0.0253 (16) 0.0174 (15) 0.0180 (16) 0.0028 (13) 0.0002 (13) 0.0058 (13)

O13 0.0280 (17) 0.0206 (16) 0.0241 (18) 0.0028 (14) 0.0013 (14) 0.0010 (14)

O14 0.0210 (17) 0.043 (2) 0.0267 (19) 0.0086 (16) 0.0047 (14) −0.0019 (16)

O15 0.0178 (15) 0.0222 (16) 0.0167 (16) 0.0076 (12) 0.0016 (12) 0.0044 (13)

O16 0.0190 (16) 0.0268 (17) 0.0287 (19) 0.0047 (14) 0.0044 (14) 0.0029 (15)

O17 0.0281 (17) 0.0224 (16) 0.0183 (16) 0.0111 (14) 0.0040 (14) 0.0043 (14)

O18 0.0261 (17) 0.0227 (17) 0.0236 (18) 0.0066 (14) 0.0045 (14) 0.0040 (14)

O19 0.038 (5) 0.064 (6) 0.026 (4) −0.007 (4) −0.001 (4) 0.005 (4)

O20 0.0309 (19) 0.0200 (17) 0.035 (2) 0.0066 (15) 0.0100 (16) 0.0063 (15)

O21 0.0287 (19) 0.044 (2) 0.0241 (19) 0.0232 (17) 0.0003 (15) −0.0036 (16)

O22 0.047 (2) 0.036 (2) 0.032 (2) 0.0236 (19) −0.0020 (19) 0.0038 (17)

O23 0.0215 (16) 0.0173 (15) 0.035 (2) 0.0072 (13) 0.0068 (15) 0.0026 (14)

O24 0.090 (4) 0.039 (2) 0.037 (2) 0.043 (3) −0.015 (2) −0.008 (2)

O25 0.023 (4) 0.058 (5) 0.034 (4) 0.014 (4) 0.007 (3) 0.022 (4)

O26 0.042 (4) 0.034 (4) 0.025 (4) 0.011 (3) 0.007 (3) 0.002 (3)

O27 0.038 (4) 0.030 (4) 0.041 (5) 0.018 (3) 0.007 (3) 0.018 (3)

O28 0.044 (5) 0.026 (4) 0.033 (4) 0.009 (3) 0.004 (3) 0.003 (3)

S1 0.0186 (5) 0.0195 (5) 0.0200 (5) 0.0044 (4) 0.0019 (4) 0.0037 (4)

S2 0.0189 (7) 0.0180 (7) 0.0235 (8) 0.0071 (6) −0.0005 (6) 0.0026 (6)
Bond	Length (Å)	Bond Angle (°)	Other Bond Angle (°)
C5—N5	1.295 (6)		
C5—O6	1.298 (6)		
C5—C6	1.509 (6)		
C6—N6	1.491 (6)		
C6—H6C	0.9900		
C6—H6D	0.9900		
C7—N7	1.288 (6)		
C7—O8	1.298 (5)		
C7—C8	1.509 (6)		
C8—N8	1.489 (5)		
C8—H8C	0.9900		
C8—H8D	0.9900		
C9—O10	1.282 (6)		
C9—N9	1.306 (6)		
C9—C10	1.498 (6)		
C10—N10	1.487 (7)		
C10—H10C	0.9900		
C10—H10D	0.9900		
Cu1—N3	1.915 (4)		
Cu1—O1	1.928 (3)		
Cu1—O2	1.969 (3)		
Cu1—N4	1.991 (4)		
Cu1—O20	2.601 (4)		
Cu1—O21	2.736 (4)		
Cu2—N5	1.900 (4)		
Cu2—O3	1.928 (3)		
Cu2—O4	1.936 (3)		
Cu2—N6	2.018 (4)		
Cu2—O19	2.409 (10)		
Cu3—N7	1.904 (4)		
Cu3—O6	1.944 (3)		
Cu3—O5	1.949 (3)		
Cu3—N8	2.014 (4)		
Cu3—O16	2.508 (4)		
Cu4—N9	1.894 (4)		
Cu4—O8	1.940 (3)		
Cu4—O7	1.947 (3)		
Cu4—N10	2.012 (4)		
Cu4—O17	2.481 (4)		
Cu5—N1	1.890 (4)		
Cu5—O9	1.943 (3)		
Cu5—O10	1.946 (3)		

Bond Angle	Value (°)	Bond Angle	Value (°)
C5—N5—C6	125.3 (4)	O5—Tb1—O11	112.83 (11)
N1—C1—O2	114.2 (4)	O12—Tb1—O11	57.34 (11)
O2—C1—C2	120.5 (4)	O9—Tb1—S1	83.26 (8)
N2—C2—C1	110.0 (4)	O1—Tb1—S1	102.84 (8)
N2—C2—H2C	109.7	O15—Tb1—S1	174.96 (8)
Bond Pairs	Angle (°)	Error (°)	
-----------	-----------	-----------	
C1—C2—H2C	109.7		
N2—C2—H2D	109.7		
C1—C2—H2D	109.7		
H2C—C2—H2D	108.2		
N3—C3—O4	123.0 (4)		
N3—C3—C4	115.9 (4)		
O4—C3—C4	121.1 (4)		
C3—C4—N4	111.1 (4)		
C3—C4—H4C	109.4		
N4—C4—H4C	109.4		
C3—C4—H4D	109.4		
N4—C4—H4D	109.4		
H4C—C4—H4D	108.0		
N5—C5—O6	123.7 (4)		
N5—C5—C6	116.0 (4)		
O6—C5—C6	120.3 (4)		
N6—C6—C5	110.5 (4)		
N6—C6—H6C	109.5		
C5—C6—H6C	109.5		
N6—C6—H6D	109.5		
C5—C6—H6D	109.5		
H6C—C6—H6D	108.1		
N7—C7—C8	115.5 (4)		
O8—C7—C8	120.4 (4)		
N8—C8—C7	109.8 (4)		
N8—C8—H8C	109.7		
C7—C8—H8C	109.7		
N8—C8—H8D	109.7		
O10—C9—N9	123.8 (4)		
O10—C9—C10	121.2 (4)		
N9—C9—C10	115.0 (4)		
N10—C10—C9	111.3 (4)		
N10—C10—H10C	109.4		
C9—C10—H10C	109.4		
N10—C10—H10D	109.4		
C9—C10—H10D	109.4		
H10C—C10—H10D	108.0		
N3—Cu1—O1	90.36 (14)		
N3—Cu1—O2	175.68 (15)		
O1—Cu1—O2	86.12 (13)		
N3—Cu1—N4	83.85 (16)		
O1—Cu1—N4	173.91 (15)		
O2—Cu1—N4	99.57 (15)		
N3—Cu1—O20	89.10 (15)		
O1—Cu1—O20	85.07 (13)		
Bond	Angle (°) (E)		
--------------------	---------------		
O2—Cu1—O20	88.10 (14)		
N4—Cu1—O20	92.89 (15)		
N3—Cu1—O21	82.42 (14)		
O1—Cu1—O21	80.09 (13)		
O2—Cu1—O21	99.41 (13)		
N4—Cu1—O21	100.98 (15)		
O20—Cu1—O21	162.82 (12)		
N5—Cu2—O3	89.51 (15)		
N5—Cu2—O4	172.53 (15)		
O3—Cu2—O4	84.79 (13)		
N5—Cu2—N6	83.61 (16)		
O3—Cu2—N6	171.24 (15)		
N4—Cu2—O3	101.58 (15)		
N5—Cu2—O19	92.3 (3)		
O3—Cu2—O19	97.4 (3)		
N5—Cu2—N6	93.2 (3)		
O3—Cu2—N6	88.3 (3)		
N6—Cu2—O19	174.11 (15)		
N7—Cu3—O5	91.24 (15)		
N7—Cu3—O5	171.24 (15)		
N7—Cu3—O5	96.61 (14)		
O6—Cu3—O5	84.79 (13)		
O7—Cu3—N8	82.67 (16)		
O6—Cu3—O5	100.63 (14)		
O5—Cu3—N8	169.87 (14)		
N7—Cu3—O16	96.61 (14)		
O6—Cu3—O16	103.81 (14)		
O5—Cu3—N8	172.67 (15)		
N9—Cu4—O8	89.19 (15)		
O8—Cu4—O7	85.34 (13)		
O9—Cu4—N10	83.73 (17)		
O8—Cu4—N10	100.54 (16)		
N10—Cu4—O17	165.82 (17)		
N9—Cu4—O17	90.56 (14)		
O8—Cu4—O17	94.98 (13)		
O7—Cu4—O17	97.53 (13)		
N10—Cu4—O17	94.81 (15)		
N1—Cu5—O9	88.98 (14)		
N1—Cu5—O10	163.89 (16)		
O9—Cu5—O10	85.41 (13)		
N1—Cu5—N2	83.21 (16)		
O9—Cu5—N2	171.78 (14)		
O10—Cu5—N2	101.44 (14)		
N1—Cu5—O18	104.51 (15)		
O9—Cu5—O18	93.14 (13)		
O10—Cu5—O18	90.88 (14)		
N2—Cu5—O18	91.31 (15)		
O9—Tb1—O1	71.67 (10)		

Cu—N10—H10B 109.7
H10A—N10—H10B 108.2
N1—O1—Cu1 106.2 (2)
N1—O1—Tb1 125.6 (2)
Cu1—O1—Tb1 126.24 (14)
C1—O2—Cu1 104.0 (3)
N3—O3—Cu2 108.6 (2)
N3—O3—Tb1 122.4 (2)
Cu2—O3—Tb1 128.77 (15)
C3—O4—Cu2 107.7 (3)
N5—O5—Cu3 107.1 (2)
N5—O5—Tb1 124.1 (2)
Cu3—O5—Tb1 123.88 (13)
C5—O6—Cu3 107.0 (3)
N7—O7—Cu4 107.2 (2)
N7—O7—Tb1 124.7 (2)
Cu4—O7—Tb1 125.89 (14)
C7—O8—Cu4 106.9 (3)
N9—O9—Cu5 107.2 (2)
N9—O9—Tb1 126.2 (2)
Cu5—O9—Tb1 126.55 (14)
C9—O10—Cu5 107.4 (3)
S1—O11—Tb1 99.41 (17)
S1—O12—Tb1 100.02 (16)
Tb1—O15—H15A 121 (4)
Tb1—O15—H15B 118 (4)
H15A—O15—H15B 107 (6)
Cu3—O16—H16A 122 (5)
Cu3—O16—H16B 114 (5)
H16A—O16—H16B 102 (7)
Cu4—O17—H17A 92 (5)
Cu4—O17—H17B 111 (5)
H17A—O17—H17B 103 (6)
Cu5—O18—H18A 120 (5)
Cu5—O18—H18B 115 (5)
H18A—O18—H18B 107 (7)
Cu2—O19—H19A 99 (10)
Cu2—O19—H19B 113 (10)
H19A—O19—H19B 135 (10)
Cu1—O20—H20A 131 (5)
Cu1—O20—H20B 95 (5)
H20A—O20—H20B 93 (7)
Cu1—O21—H21A 124 (5)
Cu1—O21—H21B 110 (5)
H21A—O21—H21B 101 (7)
H22A—O22—H22B 113 (8)
H23A—O23—H23B 105 (3)
H24A—O24—H24B 108 (3)
Bond	Angle (°) (RMS)	Bond	Angle (°) (RMS)	Bond	Angle (°) (RMS)
O9—Tb1—O15	100.80 (11)	O14—S1—O13	110.9 (2)		
O1—Tb1—O15	75.87 (11)	O14—S1—O11	111.0 (2)		
O9—Tb1—O3	144.63 (11)	O13—S1—O11	111.6 (2)		
O1—Tb1—O3	73.91 (10)	O14—S1—O12	110.1 (2)		
O15—Tb1—O3	78.22 (11)	O13—S1—O12	110.3 (2)		
O9—Tb1—O7	70.65 (10)	O11—S1—O12	102.68 (19)		
O1—Tb1—O7	131.81 (10)	O14—S1—Tb1	118.92 (16)		
O15—Tb1—O7	82.82 (11)	O13—S1—Tb1	130.15 (15)		
O3—Tb1—O7	142.47 (10)	O11—S1—Tb1	51.82 (13)		
O9—Tb1—O5	143.39 (10)	O12—S1—Tb1	51.24 (13)		
O1—Tb1—O5	139.79 (10)	O26—S2—O26	180.0		
O15—Tb1—O5	77.50 (11)	O26—S2—O28	114.8 (5)		
O3—Tb1—O5	71.55 (10)	O26—S2—O28	65.2 (5)		
O7—Tb1—O5	72.88 (10)	O26—S2—O28	65.2 (5)		
O9—Tb1—O12	83.74 (11)	O26—S2—O28	114.8 (5)		
O1—Tb1—O12	129.16 (11)	O28—S2—O28	180.0		
O15—Tb1—O12	153.99 (11)	O26—S2—O27	68.7 (5)		
O3—Tb1—O12	112.70 (11)	O26—S2—O27	111.3 (5)		
O7—Tb1—O12	74.50 (11)	O28—S2—O27	70.8 (5)		
O5—Tb1—O12	83.70 (11)	O28—S2—O27	109.2 (5)		
O9—Tb1—O11	88.43 (11)	O26—S2—O25	69.6 (5)		
O1—Tb1—O11	77.71 (11)	O26—S2—O25	110.4 (5)		
O15—Tb1—O11	147.49 (12)	O28—S2—O25	73.6 (5)		
O3—Tb1—O11	76.51 (12)	O28—S2—O25	106.4 (5)		
O7—Tb1—O11	129.39 (11)	O27—S2—O25	104.2 (5)		
N1—C1—C2—N2	18.5 (6)	O10—C9—N9—Cu4	−173.1 (3)		
O2—C1—C2—N2	−161.5 (4)	C10—C9—N9—Cu4	6.7 (5)		
N3—C3—C4—N4	−9.9 (6)	O7—Cu4—N9—C9	167.0 (4)		
O4—C3—C4—N4	168.5 (4)	N10—Cu4—N9—C9	−0.7 (4)		
N5—C5—C6—N6	5.8 (6)	O17—Cu4—N9—C9	−95.5 (3)		
O6—C5—C6—N6	−176.2 (4)	O7—Cu4—N9—O9	−2.8 (3)		
N7—C7—C8—N8	−10.1 (5)	N10—Cu4—N9—O9	−170.5 (3)		
O8—C7—C8—N8	170.5 (4)	O17—Cu4—N9—O9	94.8 (3)		
O10—C9—C10—N10	168.9 (4)	C9—C10—N10—Cu4	9.8 (5)		
N9—C9—C10—N10	−10.9 (6)	C1—N1—O1—Cu1	11.7 (4)		
O2—C1—N1—O1	−0.6 (6)	Cu5—N1—O1—Cu1	−159.6 (2)		
C2—C1—N1—O1	179.4 (4)	C1—N1—O1—Tb1	176.5 (3)		
O2—C1—N1—Cu5	171.2 (3)	Cu5—N1—O1—Tb1	5.2 (5)		
C2—C1—N1—Cu5	−8.8 (5)	N1—C1—O2—Cu1	−10.6 (5)		
O9—Cu5—N1—C1	175.3 (4)	C2—C1—O2—Cu1	169.4 (3)		
O10—Cu5—N1—C1	105.8 (6)	C3—N3—O3—Cu2	−5.7 (4)		
N2—Cu5—N1—C1	−2.1 (4)	Cu1—N3—O3—Cu2	158.1 (2)		
O18—Cu5—N1—C1	−91.7 (4)	C3—N3—O3—Tb1	179.5 (3)		
O9—Cu5—N1—O1	−13.6 (3)	Cu1—N3—O3—Tb1	−16.7 (5)		
O10—Cu5—N1—O1	−83.1 (6)	N3—C3—O4—Cu2	7.1 (5)		
N2—Cu5—N1—O1	169.0 (3)	C4—C3—O4—Cu2	−171.2 (4)		
O18—Cu5—N1—O1	79.4 (3)	C5—N5—O5—Cu3	−9.7 (4)		
C1—C2—N2—Cu5 −19.1 (5) Cu2—N5—O5—Cu3 164.1 (2)
O4—C3—N3—O3 −1.0 (6) C5—N5—O5—Tb1 −165.6 (3)
C4—C3—N3—O3 177.4 (4) Cu2—N5—O5—Tb1 8.2 (4)
O4—C3—N3—Cu1 −166.2 (3) N5—C5—O6—Cu3 8.8 (5)
C4—C3—N3—Cu1 12.2 (5) C6—C5—O6—Cu3 −169.1 (3)
C3—C4—N4—Cu1 3.3 (5) C7—N7—O7—Cu4 3.2 (4)
O6—C5—N5—O5 0.7 (6) Cu3—N7—O7—Cu4 −171.6 (2)
O4—C3—N3—Cu1 −166.2 (3) C5—N5—O5—Tb1 −167.2 (3)
C4—C3—N3—Cu1 12.2 (5) Cu2—N5—O5—Tb1 −7.7 (5)
C3—C4—N4—Cu1 3.3 (5) N5—C5—O6—Cu3 8.8 (4)
N6—Cu2—N5—C5 −9.4 (3) C9—N9—O9—Cu5 −0.7 (4)
C19—Cu2—N5—C5 −97.4 (4) Cu4—N9—O9—Tb1 169.3 (2)
O6—Cu2—N5—C5 −173.6 (3) C9—N9—O9—Tb1 177.4 (3)
C6—C5—N5—Cu2 4.4 (5) Cu4—N9—O9—Tb1 −12.5 (5)
O3—Cu2—N5—C5 165.2 (4) N9—C9—O10—Cu5 4.2 (5)
N6—Cu2—N5—C5 −9.4 (3) C10—C9—O10—Cu5 −175.6 (4)
C19—Cu2—N5—C5 −97.4 (4) C10—C9—O10—Cu5 −110.9 (2)
O8—C7—N7—O7 0.3 (6) Tb1—O11—S1—O14 124.81 (18)
C8—C7—N7—O7 −179.1 (4) Tb1—O11—S1—O13 6.7 (2)
O8—C7—N7—Cu3 175.5 (3) Tb1—O11—S1—O12 111.5 (2)
C8—C7—N7—Cu3 −3.9 (5) Tb1—O12—S1—O14 −125.78 (18)
C7—C8—N8—Cu3 18.0 (4) Tb1—O12—S1—O13 −6.7 (2)
O10—C9—N9—O9 −2.5 (6) C10—C9—O10—Cu5 4.2 (5)
C10—C9—N9—O9 177.3 (4)

Symmetry code: (i) −x, −y, −z + 1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O24—H24B·O8	0.84 (2)	2.01 (3)	2.807 (5)	159 (7)
O24—H24A·O11 i	0.84 (2)	2.21 (3)	3.015 (5)	162 (7)
O23—H23B·O13 iii	0.85 (2)	2.02 (3)	2.853 (5)	166 (6)
O23—H23A·O4 ii	0.84 (2)	1.89 (2)	2.734 (5)	176 (7)
O22—H22B·O23	0.84 (2)	1.89 (3)	2.701 (6)	162 (8)
O22—H22A·O26 viii	0.84 (2)	2.18 (4)	2.968 (9)	155 (8)
O22—H22A·O28 viii	0.84 (2)	1.92 (3)	2.733 (9)	161 (8)
O21—H21B·O10 vii	0.83 (2)	1.91 (3)	2.728 (5)	165 (8)
O21—H21A·O18 vii	0.84 (2)	1.94 (3)	2.765 (5)	167 (7)
O20—H20B·O11	0.83 (2)	2.14 (3)	2.960 (5)	168 (7)
O20—H20A·O26 v	0.83 (2)	2.09 (3)	2.916 (9)	170 (7)
O20—H20A·O25	0.83 (2)	2.02 (5)	2.719 (9)	142 (7)
O19—H19B·O24 v	0.84 (2)	2.07 (9)	2.866 (11)	157 (22)
O19—H19A·O24 v	0.84 (2)	1.72 (7)	2.535 (12)	162 (21)
O18—H18B·O14	0.83 (2)	1.90 (2)	2.732 (5)	173 (7)
O18—I18A·O26 v	0.84 (2)	2.04 (3)	2.857 (9)	163 (7)
O18—I18A·O27	0.84 (2)	1.91 (4)	2.648 (9)	146 (6)
O17—I17B·O6 vi	0.83 (2)	1.90 (2)	2.730 (5)	176 (7)
Bond	Distances	Angles		
----------------------	--------------------	------------------		
O17—H17A···O12	0.83 (2) 2.10 (3)	2.905 (5) 163 (6)		
O16—H16B···O22	0.84 (2) 1.89 (2)	2.721 (6) 173 (7)		
O16—H16A···O17A	0.84 (2) 1.95 (2)	2.784 (5) 172 (7)		
O15—H15B···O16	0.84 (2) 1.86 (2)	2.692 (5) 170 (6)		
O15—H15A···O21	0.84 (2) 1.85 (3)	2.668 (5) 166 (6)		
N10—H10B···O22A	0.91 2.13	2.920 (6) 145		
N10—H10A···O20B	0.91 2.24	2.987 (5) 139		
N8—H8B···O12A	0.91 2.04	2.937 (5) 168		
N8—H8A···O23	0.91 2.20	3.031 (5) 152		
N6—H6B···O13A	0.91 2.64	3.363 (5) 137		
N6—H6B···O24A	0.91 2.24	2.984 (6) 139		
N6—H6A···O13A	0.91 2.25	3.158 (5) 175		
N4—H4B···O2A	0.91 2.33	3.182 (5) 156		
N4—H4A···O27A	0.91 2.18	3.037 (9) 156		
N4—H4A···O25A	0.91 2.01	2.789 (9) 143		
N2—H2B···O27	0.91 2.55	3.418 (9) 159		
N2—H2B···O28A	0.91 2.08	2.868 (9) 144		
N2—H2A···O15A	0.91 2.07	2.946 (5) 162		

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z; (vii) x, y+1, z; (viii) x−1, y, z; (ix) −x+1, −y, −z; (x) −x+1, −y, −z+1.