Covalent Co–O–V and Sb–N Bonds Enable Polyoxovanadate Charge Control

Maren Rasmussen,† Christian Näther,‡ Jan van Leusen,‡ Paul Kögerler,§ Lyuben Zhechkov,§ Thoma Heine,§ and Wolfgang Bensch§

†Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany
‡Institut für Anorganische Chemie, RWTH Aachen, D-52074 Aachen, Germany
§Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, D-04103 Leipzig, Germany

Supporting Information

ABSTRACT: The formation of \([\{\text{Co}^{II}(\text{teta})_2\}\{\text{Co}^{II}(\text{tren})_2\}]\text{V}^{\text{V}}\text{Sb}^{III}\text{O}_{42}(\text{H}_2\text{O})\)·ca.9\text{H}_2\text{O} \[\text{teta} = \text{triethylenetetramine; tren = tris(2-aminoethyl)amine}\] illustrates a strategy toward reducing the molecular charge of polyoxovanadates, a key challenge in their use as components in single-molecule electronics. Here, a V−O−Co bond to a binuclear Co²⁺-centered complex and a Sb−N bond to the terminal N atom of a teta ligand of a mononuclear Co²⁺ complex allow for full charge compensation of the archetypal molecular magnet \([\text{V}^{\text{IV}}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})]\)⁶⁻. Density functional theory based electron localization function analysis demonstrates that the Sb−N bond has an electron density similar to that of a Sb−O bond. Magnetic exchange coupling between the V⁴⁺ and Co⁰ spin centers mediated via the Sb−N bridge is comparably weakly antiferromagnetic.

INTRODUCTION

Polyoxovanadates incorporating antimony (Sb-POVs) and other semimetal constituents represent a comparably new and rapidly growing class of molecular metal oxide compounds, enabling various subsequent functionalization methods relevant to materials chemistry.¹ In light of their versatile redox chemistry, polyoxovanadates (POVs) are currently extensively studied for their use in single-molecule electronics. In this context, single-molecule charge-transport experiments, e.g., in scanning tunneling microscopy (STM), are key challenges in their use as components in single-molecule spintronics. Here, a V−O−Co bond to a binuclear Co²⁺-centered complex and a Sb−N bond to the terminal N atom of a teta ligand of a mononuclear Co²⁺ complex allow for full charge compensation of the archetypal molecular magnet \([\text{V}^{\text{IV}}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})]\)⁶⁻. Density functional theory based electron localization function analysis demonstrates that the Sb−N bond has an electron density similar to that of a Sb−O bond. Magnetic exchange coupling between the V⁴⁺ and Co⁰ spin centers mediated via the Sb−N bridge is comparably weakly antiferromagnetic.

First reports of POVs chemically modified by Sb, specifically \([\text{V}^{\text{IV}}\text{Sb}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ anions, date back to 2002 and 2004.²,³ A less Sb-rich cluster anion with composition \([\text{V}^{\text{IV}}\text{Sb}_4\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ was first observed in \((\text{C}_6\text{H}_2\text{N}_3)_4[\text{V}^{\text{IV}}\text{Sb}_4\text{O}_{42}](\text{H}_2\text{O})_2\text{C}_2\text{H}_5\text{OH}\) \((\text{C}_6\text{H}_2\text{N}_3 = \text{double-protonated 2-piperazine-N-ethylamine})\), which was also prepared under solvothermal conditions.⁴ The structural family of Sb-POVs with the general formula \([\text{ami}neneH_n\text{V}^{\text{IV}}\text{Sb}_m\text{O}_{42}n\text{H}_2\text{O} \[\text{ami} = \text{amine; } n = 3−5; \text{tren} = \text{tris(2-aminoethyl)amine}\] containing the first antimony analogue of the \([\text{V}^{\text{IV}}\text{As}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ molecular magnet.⁶ The structure of the \([\text{V}^{\text{IV}}\text{Sb}_8\text{O}_{42}](\text{H}_2\text{O})\)⁴⁻ polyoxovanadon can be regarded as a derivative of the \([\text{V}^{\text{IV}}\text{As}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ archetype when three \([\text{VO}_3]^{-}\) square pyramids are replaced by three dumbbell-like \([\text{Sb}_2\text{O}_6]^{-}\) units. In the solid-state structure of \([\text{tren}H_2]\text{[V}^{\text{IV}}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})_2\text{]}\)₀.₃₃tren·nH₂O, weak intercluster interactions lead to the formation of a trimeric superstructure \(([\text{V}^{\text{IV}}\text{Sb}_8\text{O}_{42}](\text{H}_2\text{O})]_3)^{−}\). The Sb-POVs were chemically modified by covalent decoration, with transition-metal complexes like in \([\text{V}^{\text{IV}}\text{Sb}_2\text{O}_{15}(\text{H}_2\text{O})]\)⁴⁻·10H₂O·C₁₂H₁₄N₂ \((\text{C}_6\text{H}_2\text{N}_3 = (\pm)-\text{trans}-1,2\text{-diaminocyclohexane})\) displaying a neutral Sb-POV building block with two opposite \([\text{Sb}_2\text{O}_6]^{-}\) groups replacing two \([\text{VO}_3]^{-}\) square pyramids. The anion is further expanded by four square-pyramidal \([\text{V}^{\text{IV}}\text{O}-\text{(C}_6\text{H}_2\text{N}_3)_2]^{3+}\) complexes, thus leading to a charge-neutral compound. There are two examples for the functionalization of Sb-POVs with organic molecules,⁸ with the anions \([\text{V}^{\text{IV}}\text{Sb}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ and \([\text{V}^{\text{IV}}\text{Sb}_6\text{O}_{42}(\text{H}_2\text{O})]\)⁶⁻ displaying covalent bonds to the ammonium cations \((\text{C}_6\text{H}_15\text{N}_3)_n^+\) with Sb−N bonds from 2.502 to 2.542 Å. Further chemical modification by Zn²⁺-centered complexes was also achieved,⁹ leading to 1D chains formed by alternating complexes and polyoxoanions. A \([\text{V}^{\text{IV}}\text{Sb}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ anion with reduced symmetry of the \([\text{V}^{\text{IV}}\text{As}_8\text{O}_{42}(\text{H}_2\text{O})]\)⁴⁻ skeleton from \(D_{2h}\) to \(C_2\) was reported recently.¹⁰ The structural chemistry of Sb-POVs was enhanced.

Received: March 27, 2017
Published: May 25, 2017
by the covalent attachment of Co\(^{2+}\)-centered complexes like [Co(tren)(H\(_2\)O)]\(^{2+}\), [Co\(_2\)(tren)\(_3\)]\(^{4+}\), [Co(tren)(en)]\(^{2+}\), [Co(tren)]\(^{2+}\), and [Co(tren)(trenH\(_2\))]\(^{4+}\) moieties to the Sb-POV anions.\(^{11}\) Relatively short intercluster Sb···O distances were found in (enH\(_2\))\(_2\)[V\(^{14}\)Sb\(_8\)O\(_{42}\)(H\(_2\)O)] \(·\)3H\(_2\)O and (ppzH\(_2\))\(_2\)[V\(^{14}\)Sb\(_8\)O\(_{42}\)(H\(_2\)O)] (ppz = piperazine).\(^{12}\) Remarkable structural differences were observed between [Co(C\(_5\)H\(_{15}\)N\(_3\))\(_2\)]\(_4^+\)[Co(C\(_5\)H\(_{15}\)N\(_3\))\(_2\)V\(_3\)Sb\(_8\)O\(_{42}\)(H\(_2\)O)] \(·\)5H\(_2\)O and [Ni(C\(_5\)H\(_{15}\)N\(_3\))\(_2\)]\(_2^+\)[Ni(C\(_5\)H\(_{15}\)N\(_3\))\(_2\)V\(_3\)Sb\(_8\)O\(_{42}\)(H\(_2\)O)] \(·\)8H\(_2\)O.\(^{13}\) The strong absorption of the characteristic V\(^{IV}\)–O stretching vibration is located at 961 cm\(^{-1}\) in the IR spectrum (Figure S1 in the Supporting Information). Further broad absorptions between about 3600 and 3100 cm\(^{-1}\) are caused by the O–H stretching vibration of lattice water molecules and by symmetric and asymmetric N–H modes. The C–H stretching modes of CH\(_2\) are between 2807 and 2992 cm\(^{-1}\), the N–H bending vibration is observed at 1589 cm\(^{-1}\), and the CH\(_3\) bending mode is at 1458 cm\(^{-1}\). The two absorptions at 1070 and 1025 cm\(^{-1}\) are most probably caused by C–N stretching modes. Bands below about 750 cm\(^{-1}\) cannot be unambiguously assigned because of the overlap of V–O–V and N–H wagging and skeletal vibrations.

In the crystal lattice, two different Co\(^{2+}\)-centered complexes are present. The binuclear [Co\(_2\)(tren)(teta)]\(^{4+}\) complex consists of two crystallographically unique Co\(^{2+}\) cations in different coordination environments. Co1 is surrounded by one tetradeutate tren molecule, one N atom of a bridging teta ligand, and one O atom from a VO\(_5\) unit, leading to a distorted Co\(_2\)N\(_5\) octahedron (Table S4 in the Supporting Information). The Co–N bonds between 2.128(8) and 2.162(9) Å (Table S4 in the Supporting Information) are in line with the previously reported data.\(^{11,15,21}\)

The Co–O bond length of 2.120(5) Å is comparable to those reported for Co–O–V linkages in other POVs.\(^{22-25}\) The Co1-centered complex is joined to Co2 via a teta ligand acting bidentate to Co2 and monodentate to Co1. To the best of our knowledge, such an interconnection has never been observed before and no example could be found in the Cambridge Structure Database. The environment around Co2 is completed by two different Co\(^{2+}\)-centered complexes (Figure 2, left). The Co2–N bonds can be divided into two groups: four shorter bonds to N atoms in the basal plane of the octahedron [2.154(7)–2.190(8) Å] and two longer bonds to the apical atoms of the polyhedron [2.221(7)–2.228(7) Å] (Table S4 in the Supporting Information), but these values are still comparable with literature data.\(^{11,17-21}\)

The binuclear complex can be formulated as [Co\(_2\)(tren)(teta)]\(^{4+}\), and the connection mode observed here is unique. In the second complex, the Co3 atom is surrounded by one bidentate and one tetradeutate teta ligand to form a distorted...
The Co−N bonds are between 2.039(17) and 2.248(18) Å and scatter over a larger range than in the dimeric Co2+-centered complex (Table S4 in the Supporting Information).

The cluster anion is expanded by the V−Oterm−Co1 bond to the \{Co2(tren)(teta)2\}4+ complex (Figure 3).

Interestingly, the terminal N atom of the free “arm” of the bidentately acting teta ligand of the Co3 complex has a short contact to an Sb atom (N51−Sb4 = 2.559 Å). Such Sb−N separations were observed in other Sb-POVs, with Sb−N distances ranging from 2.502 to 2.542 Å,8 raising the question of what type of bond is formed.

A short literature survey demonstrates that Sb−N separation scatterings between about 2 and 2.8 Å are considered as covalent bonds. In the compounds Sb(phen)Br3 and Sb2(phen)4Br8, the Sb−N bonds are between 2.239 and 2.408 Å,26 and in dichloroN(4)-phenyl-2-formylpyridinethiosemicarbazonatoantimony(III), the Sb−N bond lengths are 2.247 and 2.502 Å.27 Much longer Sb−N bonds ranging from 2.563 to 2.832 Å were reported for Sb(C4H3N2S)3·1/2CH3OH,28 while a medium-long Sb−N bond is present in [SbCl(NHMe2)(μ-OEt)]2 (2.402 Å).29 Similar medium-long Sb−N distances (2.240 and 2.358 Å) were found for dichloroN(4)-o-fluorophenyl2-acetylpyridinethiosemicarbazonatoantimony(III).30 While the Sb−N distance of 2.029 Å is treated as a covalent bond in [(η1-Me2SiNDipp)-NHDippSbCl2] (Dipp = 2,6-diisopropylphenyl), the authors proposed no bonding interaction for the Sb−N separation at 2.66 Å.31 This short literature survey does not answer the key question of whether the Co3-centered complex is covalently bonded to the cluster anion via a Sb−N bond. However, the electron localization function (ELF), calculated by means of density functional theory (DFT), as shown in Figure 4, demonstrates that the electron distribution along the Sb−N axis has density values similar to those found in the Sb−O bond, i.e., suggesting covalent bonding.

Natural bond orbital (NBO) analysis also supports the assumption of a covalent Sb−N bond. The orientation and volume occupied by the 5s2 orbital are plotted in Figure 5, depicting overlap with the N lone-pair orbital (meshed isosurface).

To have a better understanding about the Sb−N bonding situation in the title compound, we compared the Sb−N bonds in several different compounds [compound 1, Sb-(C4H3N2S)3·1/2CH3OH,28 [SbCl2(NHMe2)(μ-OEt)]2, and [SbCl(NHMe2)(μ-NBu)]2]9 because these cover all of the
ranges of the Sb–N distances mentioned in the present contribution (see Table 1). The results demonstrate that the

Table 1. Atomic Electron Contributions (Sb and N in %) to All NLMOs Concerned with the Sb–N Bonds (in Å) in the Examples Used as References and in Compound 1

molecule	Sb–N	NLMO type	bond length	Sb	N
Sb(C13H18N5S)3/1 Ch3OH28	3–190	LP	2.599	4.5	93.3
	1–3	LP	2.676	3.4	91.6
	1–8	LP	2.563	4.3	90.6
	1–17	LP	2.833	1.7	93.4
[SbCl2(NHMe2)(μ-OE)]29	1–9	LP	2.403	7.8	88.7
	2–10	LP	2.403	7.8	88.7
[SbCl(NHMe2)(μ-NB)][39]	1–4	LP	2.523	6.3	90.3
	1–5	LP	2.018	2.3	92.3
	2–5	LP	2.029	2.0	92.3
	2–29	LP	2.523	6.3	90.3
	1–30	LP	2.029	2.0	92.3
	2–30	LP	2.018	2.3	92.3
	1–5	BD	2.018	20.6	78.3
	1–30	BD	2.018	20.6	78.3
	2–5	BD	2.029	20.7	78.1
	2–30	BD	2.029	20.7	78.1

“...The structures of the selected compounds used for the calculations are shown in Figure S2 in the Supporting Information. Note that very small contributions from other hybridized orbitals are not listed. The second column lists the atoms involved in a particular bond (x and y being the order number, as listed in Table S5 in the Supporting Information).

bonding between Sb and N atoms is covalent, and it is governed by electron-exchange and donor–acceptor mechanisms. The two mechanisms are reflected in the natural localized molecular orbital (NLMO) types found in the NBO analysis (see Table 1). BD (2-center bond NLMO) corresponds to a bond formed by the electron-exchange mechanism, and LP (lone-pair NLMO) corresponds to the donor–acceptor mechanism. Further examination of the data shows that the Sb–N bonding has NLMOs similar to those of the Sb–N identified as covalent in our reference compounds (see Table 1). The Sb contribution to the lone-pair NLMOs varies between 1.7 and 20.7% depending on the number of Sb–N bonds.

The molecules with the largest extension of about 28 Å are arranged in a layer-like fashion in the (010) plane (Figure 6). Intramolecular C–H···O, N–H···O, and N–H···N interactions (Table S6 in the Supporting Information, geometric parameters in bold) are observed that may stabilize the arrangement of the different constituents. Each molecule is surrounded by six other molecules, and an extended hydrogen-bonding network involving N–H/C–H and O atoms leads to the formation of a 3D arrangement (Table S6 in the Supporting Information). The void space of about 340 Å³ per unit cell is most likely occupied by crystal water molecules.

Upon first heating the material in an inert atmosphere, emission of the crystal water molecules occurs (Δm = 5.1%; Figure S3 in the Supporting Information), indicating the presence of ca. nine water molecules in the sample. After removal of the water molecules, only a very small weight loss is observed up to about 300 °C. Upon further heating, the sample is decomposed in several not very well-resolved steps up to 850 °C. In a second experiment, heating was stopped at T = 200 °C and an powder X-ray diffraction (XRD) pattern was recorded (Figure S4 in the Supporting Information). The sample is still crystalline, and only shifts of some reflections can be observed, indicating a change of the lattice parameters. In the IR spectrum of the heated sample, the signal of the strong νO═O stretching vibration at 961 cm⁻¹ is still visible, while the absorption between about 3600 and 3400 cm⁻¹ is significantly reduced, which is in line with the thermal removal of water molecules (Figure S5 in the Supporting Information). In addition, the absorptions of the ligand molecules are still visible, suggesting that the material is intact after heat treatment at 200 °C.

The UV–vis spectrum of the title compound (Figure S6 in the Supporting Information) exhibits broad absorptions located around 12100 cm⁻¹ (1.5 eV), 18400 cm⁻¹ (2.28 eV), and 26600 cm⁻¹ (3.3 eV). In the energetic region of the first two bands, the 4T1g(F) → 4T2g(F) and 4T1g(F) → 4A2g(F) transitions of the Co²⁺ ions and the 2B2 → 2E, 2B2 → 2B1 transitions of the vanadyl group are located, and an unambiguous assignment is not possible. The very intense signal at 3.3 eV is most likely a charge-transfer band.

MAGNETIC PROPERTIES

The magnetic data of compound 1 collected by SQUID measurements are shown in Figure 7 as the temperature dependence of χmT at 0.1 T and as molar magnetization Mm versus magnetic field B at 2.0 K. At 290 K, the χmT value of 10.65 cm³ K mol⁻¹ is higher than expected 32 for three noninteracting high-spin Co²⁺ centers (6.94–10.14 cm³ K mol⁻¹) but significantly below the value that is obtained if the contributions of 15 noninteracting V⁴⁺ centers are taken into account.

This is, however, expected because of the very strong antiferromagnetic coupling between the spin-1/2 vanadyl groups in {V15Sb6}. Upon lowering of the temperature, the χmT versus T curve is approximately linear down to 170 K, and
subsequently $\chi_m T$ continuously decreases down to 5.06 cm3 K mol$^{-1}$ at 2.0 K.

The magnetic properties of the Co$^{2+}$ centers can be considered to be magnetically identical because of their similar coordination environments, and the Co$^{2+}$...Co$^{2+}$ exchange interactions are expected to be negligible because of their distances and bridging modes, and the interaction between Co1 of \{Co₂(tren)(teta)₂\}$^{4+}$ and the POV is small because of the very strong antiferromagnetic interactions in \{V₁₁Sb₂\}, resulting in a magnetically almost independent spherical spin cluster that is connected to a single Co center. Following these assumptions, the magnetic properties may be determined by subtracting the susceptibility data for an isolated \{V₁₁Sb₂\} cluster $[5]$ until $\chi_m T$ is nearly temperature-independent for $T > 200$ K. The thus-determined scaling factor of ca. 0.8 reflects differences in the amount of crystal solvents and the cationic lattice. The corresponding scaled contribution for the individual \{V₁₁Sb₂\} polyanion is shown in Figure 7 as green circles, and the remaining contribution from the Co$^{2+}$ centers is shown as blue circles.

To model the magnetic data remaining after the aforementioned subtraction, we use our computational framework CONDON 2.033,34 employing a “full model” Hamiltonian. Because of the disorder of the octahedral site symmetries, we assume a site symmetry of $C₆₃$ introducing the ligand-field parameter B^4, besides B^6 and B^8 with the latter two required for $O₉$ symmetry. To model the Co1–POV exchange interaction, we introduce the mean-field parameter $zJ' (z = 1)$, which has to be small to justify our hypothesis of small exchange interactions and thus our approximation. The simultaneous least-squares fits to $\chi_m T$ versus T and M_m versus B data yield a good goodness-of-fit $SQ = 1.3\%$. The corresponding fits are shown as red lines in Figure 7, and the corresponding model parameters are given in Table S7 in the Supporting Information. We again emphasize that the assumptions made to model the magnetic data can only be understood as a first approximation and the fit parameters should be interpreted accordingly. Notwithstanding the above, the ligand-field parameters represent a ligand field of distorted octahedral symmetry and a ligand-field splitting of 10 Dq ≈ 12000 cm$^{-1}$. The mean-field parameter $zJ' = -0.44$ cm$^{-1}$ indicates a small antiferromagnetic exchange interaction between the \{V₁₁Sb₂\} polyanion and the Co1 center. Therefore, the temperature dependence of $\chi_m T$ at $T < 150$ K is mainly caused by the ligand-field effect of the single Co$^{2+}$ centers, and the exchange interaction affects the $\chi_m T$ versus T curve not until $T < 30$ K because of its small magnitude.

EXPERIMENTAL DETAILS

Synthesis. The title compound was prepared in 22 mL glass tubes using 224 mg of NH₄VO₃ (1.9 mmol), 457 mg of Sb₂O₃ (1.57 mmol), and 234 mg of CoCl₂·6H₂O (1 mmol) in 2.5 mL of triethylentetramine (60%) and 1.5 mL of water at 150 °C. The optimal reaction time is 7 days, giving a yield of about 40%. The deep-orange product crystallized as agglomerates of ill-shaped crystals.

Crystal Structure Determination. The intensities were measured using an Imaging Plate Diffraction System (IPDS-2) from STOE using Mo Kα radiation. The crystal structure was solved with the program SHELXS-2013 and refined against F^2 using SHELXL-2013. All non-H atoms, except those of two disordered amine ligands, were refined anisotropically. The C–H and N–H H atoms were positioned with idealized geometry and refined using a riding model. The O–H H atoms of the two water molecules were not located and, thus, not considered in the refinement but in the calculation of the molecular weight. A numerical absorption correction was performed ($T_{min}/T_{max} = 0.3351/0.6737$). The amine ligands connected to Co₃ shows unusually large anisotropic displacement parameters, which can be traced back to disordering, which was refined using a split model. For these atoms, large anisotropic displacement parameters are observed and, therefore, these atoms were refined only isotropically. The disordering remains constant in space group P1, and there is no indication for superstructure reflections or any kind of twinning. There is also significant residual electron density directly located at the corresponding Co cation, indicating that the whole complex is disordered. After structure refinement, there is additional residual electron density in the cavities of the structures, which originate from some disordered water molecules. Because no reasonable split model was found, the data were corrected for a disordered solvent using the SQUEEZE option in PLATON.

CCDC 1499371 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Energy-Dispersive X-ray (EDX) and Scanning Electron Microscopy (SEM) Analysis. EDX and SEM investigations were performed with a Philips XL-30 environmental scanning electron microscope equipped with an EDAX detector. The ratio of V, Sb, and Co was determined on different single crystals, and the average values are 14.85, 6.15, and 2.95, respectively.
Solid-State UV–Vis Spectroscopy. UV–vis spectroscopy investigations were conducted at room temperature using a Cary 5 UV–vis two-channel spectrometer from Varian Techtron Pty., Darmstadt, equipped with an Ulbricht diffuse-reflectance accessory. The optical properties of the compound were investigated by studying the UV–vis reflectance spectrum of the powder sample. BaSO₄ was used as a reference material.

IR Spectroscopy. IR spectra (400–4000 cm⁻¹) were recorded with a Bruker Alpha P spectrometer.

Elemental Analysis. CHN analyses were done using a EURO EA elemental analyzer, fabricated by EURO VECTOR Instruments and Software. Experimental data (wt %): C, 11.13; H, 3.36; N, 9.01.

Magnetic Measurement. Magnetic susceptibility data of 1 were measured as a function of the field (0.1–5.0 T) and temperature (2.0–290 K) using a Quantum Design MPMS-SXL SQUID magnetometer. The polycrystalline sample was compacted and immobilized into cylindrical poly(tetrafluoroethylene) capsules. Data were acquired as a function of the field (0.1–5.0 T at 2.0 K) and temperature (2.0–290 K at 0.1 T). The data were corrected for the diamagnetic contributions of the sample holder and the compound (χ⁰ = −1.62 × 10⁻⁵ cm³ mol⁻¹).

Theoretical Analysis. We performed DFT calculations and NBO interaction analyses, of intra- and intermolecular hydrogen-bonding patterns of the title compound and after heating to 200 °C, and a UV–vis spectrum of the powder sample. BaSO₄ was used as a reference material.

Accession Codes
CCDC 1499371 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.7b00724.

Tables of structural data and refinement results, of interatomic distances, of BVSs for V centers, of atomic coordinates of the model compounds used for theoretical analyses, of intra- and intermolecular hydrogen-bonding interactions, and of parameters used for modeling the magnetic susceptibility data and figures of IR spectra, molecular structures of the model compounds used for theoretical analyses, DTA–TG–DTG curves, XRD patterns of the title compound and after heating to 200 °C, and a UV–vis spectrum (PDF).

AUTHOR INFORMATION
Corresponding Author
*E-mail: wbensch@ac.uni-kiel.de. Fax: +49-431-880-1520.

ORCID
Christian Näther: 0000-0001-8741-6508
Paul Kögerler: 0000-0001-7831-3953
Thoma Heine: 0000-0003-2379-6251
Wolfgang Bensch: 0000-0002-3111-580X

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank the State of Schleswig-Holstein for financial support. Parts of this work were supported by EU ERC 308051-MOLSPINTRON. The computations were performed at Zentrum für Informationsdienste und Hochleistungsrechnen, Technischen Universität Dresden.

REFERENCES
(1) Monakhov, K. Yu.; Bensch, W.; Kögerler, P. Semimetal-functionalised polyoxovanadates. Chem. Soc. Rev. 2015, 44, 8443–8483.
(2) Zhang, L.; Zhao, X.; Xu, J.; Wang, T. A novel two-dimensional structure containing the first antimony-substituted polyoxovanadium clusters: [(Co(en)₂]₆SbIII(VO₄)₃]₆H₄O. J. Chem. Soc., Dalton Trans. 2002, 3275–3276.
(3) Hu, X.-X.; Xu, J.-Q.; Cui, X.-B.; Song, J.-F.; Wang, T.-G. A novel one-dimensional framework material constructed from antimony-substituted polyoxovanadium clusters: [(C₅N₂H₁₃O)₆[V₁₅Sb₆O₄₂(H₂O)](C₅N₂H₁₃)](CH₃N₄) – 4H₂O. Inorg. Chem. Commun. 2004, 7, 264–267.
(4) Kiebach, R.; Näther, C.; Bensch, W. [C₅H₁₇N₃]₄[SbⅢV₁₅O₴₂] • 2H₂O and [NH₄][V₁₅Sb₆O₄₂]• 2H₂O: the first isolated Sb derivates of the [V₁₅O₄₂] family. Solid State Sci. 2006, 8, 964–970.
(5) Kiebach, R.; Näther, C.; Kögerler, P.; Bensch, W. [V₁₅SbIIIⅣO₄₂] • 4 : An antimony analogue of the molecular magnet [V₁₅AIVO₄₃(H₂O)]β⁻ : Dalton Trans. 2007, 3221–3233.
(6) Müller, A.; Döring, J. A novel heterocluster with D₃-symmetry containing 21 core atoms ·[As₁₂IVO₄₋₋(H₂O)]β⁻: Angew. Chem., Int. Ed. Engl. 1988, 27, 1721.
(7) Wutkowski, A.; Näther, C.; Kögerler, P.; Bensch, W. [V₁₅SbIVIH₂O][VO(C₆H₁₄N₂)]₄: A terminal expansion to a polyoxovanadate archetype. Inorg. Chem. 2008, 47, 1916–1918.
(8) Antonova, E.; Näther, C.; Kögerler, P.; Bensch, W. Organic Functionalization of Polyoxovanadates: Sb-N Bonds and Charge Control. Angew. Chem., Int. Ed. 2011, 50, 764–767.
(9) Gao, Y.; Han, Z.; Xu, Y.; Hu, C. pH-Dependent Assembly of Two Novel Organic–inorganic Hybrids Based on Vanadatoantimonite Clusters. J. Cluster Sci. 2010, 21, 163–171.
(10) Antonova, E.; Näther, C.; Kögerler, P.; Bensch, W. A C₃-symmetric Antimonato Polyoxovanadate Cluster [V₁₅SbIVIH₂O]β⁻ derived from the [V₁₅O₄₂] archetype. Dalton Trans. 2012, 41, 6957–6962.
(11) Antonova, E.; Näther, C.; Bensch, W. Assembly of [V₁₅SbIVIH₂O]β⁻ cluster shells into higher dimensional aggregates via weak Sb···N/Sb···O intercluster interactions and a new polyoxovanadate with a discrete [V₁₅SbIVIH₂O]β⁻ cluster shell. CrystEngComm 2012, 14, 6853–6859.
(12) Antonova, E.; Wutkowski, A.; Näther, C.; Bensch, W. Synthesis and structural characterisation of two antimonato polyoxovanadates containing the [V₁₅SbIVIH₂O]β⁻ cluster. Solid State Sci. 2011, 13, 2154–2159.
(13) Antonova, E.; Näther, C.; Kögerler, P.; Bensch, W. Expansion of Antimonato Polyoxovanadates with Transition Metal Complexes: [Co(N(C₂H₄)₃)₃]₃[Co(N(C₂H₄)₃)₃]V₁₅SbIVIH₂O]β⁻ H₂O and [Ni(N(C₂H₄)₃)₃]₃[Ni(N(C₂H₄)₃)₃]V₁₅SbIVIH₂O]β⁻ H₂O. Inorg. Chem. 2012, 51, 2311–2317.
(14) Lihmann, H.; Näther, C.; Kögerler, P.; Bensch, W. Solvothermal Synthesis and Crystal Structure of a Heterometal-bridged [V₁₅SbIV] Dimer: [Ni₃(tren)](V₁₅SbIVIH₂O)]₄[Ni₃(trenH₃)]β⁻ H₂O. Inorg. Chem. Acta 2014, 421, 549–552.
(15) Antonova, E.; Näther, C.; Bensch, W. Antimonato Polyoxovanadates with Structure Directing Transition Metal Complexes: Pseudopolymporphic [Ni(dien)₃]₃[V₁₅SbIVIH₂O]β⁻ H₂O compounds and [Ni(dien)₃]₄[V₁₅SbIVIH₂O]β⁻ H₂O. Dalton Trans. 2012, 41, 1338–1344.
Inorganic Chemistry

(16) Wutkowski, A.; Näter, C.; Kögerler, P.; Bensch, W. An Antimonato-Polyoxovanadate Based Three-Dimensional Framework Exhibiting Ferromagnetic Exchange Interactions: Synthesis, structural characterization and magnetic investigation of [(Fe-
(C6H4)2(C5H9NO2))2[V12Sb6O42(H2O)]]+ 8H2O. Inorg. Chem. 2013, 52, 3280–3284.

(17) Panja, A. Exclusive selectivity of multidentate ligands independent on the oxidation state of cobalt: influence of steric hindrance on dioxygen binding and phenazinone synthase activity. Dalton Trans. 2014, 43, 7760–7770.

(18) Wang, G.-M.; Sun, Y.-Q.; Yang, G.-Y. Syntheses and crystal structures of three new borates templated by transition-metal complexes in situ. J. Solid State Chem. 2006, 179, 1545–1553.

(19) Liang, J.; Chen, J.; Zhao, J.; Pan, Y.; Zhang, Y.; Jia, D. Solvothermal Syntheses, Crystal Structures, and Thermal Properties of the First Example of Selenodistannates with Mixed Ethylene Polyamine-Coordination Transition Metal Complexes as Counterions. Z. Anorg. Allg. Chem. 2011, 637, 445–449.

(20) Zhang, Y.; Zhou, J.; Tang, A.-B.; Bian, G.-Q.; Dai, J. Solvothermal Syntheses and Crystal Structures of Two Thiostannates-IV [M(tepa)]2(μ-Sn2S6)2 (M = Fe2+ and Co2+). J. Chem. Crystallogr. 2010, 40, 496–500.

(21) Tokarev, K.; Kiskin, M.; Sidorov, A.; Aleksandrov, G.; Bogomonyakov, A.; Novotorstev, V.; Eremenko, I. Chemical assembly of an antiferromagnetic macrocyclic molecule containing two inner CoII centers from polymeric cobalt pivalate. Polyhedron 2009, 28, 2010–2016.

(22) Qi, Y.; Li, Y.; Wang, E.; Zhang, Z.; Chang, S. Metal-controlled self-assembly of arsonic–vanadium-cluster backbones with organic ligands. Dalton Trans. 2008, 2335–2345.

(23) Zhang, C.-D.; Liu, S.-X.; Gao, B.; Sun, C.-Y.; Xie, L.-H.; Yu, M.; Peng, J. Hybrid materials based on metal–organic coordination complexes and cage-like polyoxovanadate clusters: Synthesis, characterization and magnetic properties. Polyhedron 2007, 26, 1514–1522.

(24) Ollivier, P.; Do Be, Board, J. R. D.; Zapf, P. J.; Zubieta, J.; Meyer, L. M.; Wang, C.-C.; Mallouk, T. E.; Haushalter, R. C. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes. J. Mol. Struct. 1998, 470, 49–60.

(25) Zhou, G.; Xu, Y.; Guo, C.; Zheng, X. Hydrothermal synthesis, characterization and magnetic properties of a new 2D arsonic–vanadate layers supported cobalt coordination complex: [Co-(en)2(H2O)][(Co(en))2As4V12O42(SO4)] · 3H2O. Inorg. Chem. Commun. 2007, 10, 849–852.

(26) Yin, H. D.; Zhao, J. Synthesis, characterizations and crystal structures of antimony(III) complexes with nitrogen-containing ligands. Inorg. Chim. Acta 2009, 362, 339–345.

(27) Lessa, J. A.; Reis, D. C.; Mendes, I. C.; Speziali, N. L.; Rocha, L. F.; Pereira, V. R. A.; Melo, C. M. L.; Neves, J. K. Crystal Structures of Antimony(III) Complexes With a Bis(amino)-silane Ligand. Z. Anorg. Allg. Chem. 2013, 639, 49–52.

(28) Lukenh, H. Magnetochemistry; Teubner Verlag: Stuttgart, Germany, 1999.

(29) Speldrich, M.; Schäfer, H.; Luken, H.; Kögerler, P. A Computational Framework for Magnetic Polyoxometalates and Molecular Spin Structures: CONDON 2.0. Isr. J. Chem. 2011, 51, 215–227.

(30) van Leusen, J.; Speldrich, M.; Schäfer, H.; Kögerler, P. Comprehensive Insight into Molecular Magnetism via CONDON: Full vs. Effective Models. Coord. Chem. Rev. 2015, 289–290, 137–148.

(31) Bezde, A. D.; Edgecombe, K. E. Simple measures of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.