National and subnational short-term forecasting of COVID-19 in Germany and Poland, early 2021

J. Bracher, D. Wolffram, J. Deuschel, K. Görgen, J.L. Ketterer, A. Ullrich, S. Abbott, M.V. Barbarossa, D. Bertsimas, S. Bhatia, M. Bodych, N.I. Boße, J.P. Burgard, J. Fiedler, J. Fuhrmann, S. Funk, A. Gambin, K. Gogolewski, S. Heyder, T. Hotz, Y. Kheifetz, H. Kirsten, T. Krueger, E. Krymova, N. Leithäuser, M.L. Li, J.H. Meinke, B. Miasojedow, J. Mohring, P. Nouvellet, J.M. Nowosielski, T. Ozanski, M. Radwan, F. Rakowski, M. Scholz, S. Soni, A. Srivastava, T. Gneiting, M. Schienle

November 5, 2021

Abstract

We report on the second and final part of a pre-registered forecasting study on COVID-19 cases and deaths in Germany and Poland. Fifteen independent research teams provided forecasts at lead times of one through four weeks from January through mid-April 2021. Compared to the first part (October–December 2020), the number of participating teams increased, and a number of teams started providing subnational-level forecasts. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in the first part of our study. In both countries, case counts declined initially, before rebounding due to the rise of the B.1.1.7 variant. Deaths declined through most of the study period in Germany while in Poland they increased after a prolonged plateau. Many, though not all, models outperformed a simple baseline model up to four weeks ahead, with ensemble methods showing very good relative performance. Major trend changes in reported cases, however, remained challenging to predict.

* Correspondence to: Johannes Bracher (johannes.bracher@kit.edu), Melanie Schienle (melanie.schienle@kit.edu)

1 Chair of Statistics and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Germany
3 HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
4 Robert Koch Institute (RKI), Berlin, Germany
5 London School of Hygiene and Tropical Medicine, London, UK
6 Frankfurt Institute for Advanced Studies, Frankfurt, Germany
7 Sloan School of Management, Massachusetts Institute of Technology, Cambridge MA, USA
8 MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Imperial College London, London, UK
9 Wrocław University of Science and Technology, Wrocław, Poland
10 Economic and Social Statistics Department, University of Trier, Trier, Germany
11 Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
12 Institute for Applied Mathematics, University of Heidelberg
13 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
14 Institute of Mathematics, Technische Universität Ilmenau
15 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
16 Swiss Data Science Center, ETH Zurich and EPFL, Lausanne, Switzerland
17 Operations Research Centre, Massachusetts Institute of Technology, Cambridge, MA, USA
18 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
19 School of Life Sciences, University of Sussex, Brighton, UK
20 Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
21 Ming Hsieh Department of Computer and Electrical Engineering, University of Southern California, Los Angeles, CA, USA
22 Institute for Stochastics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1 Introduction

Short-term forecasts of infectious diseases and longer-term scenario projections provide complementary perspectives to inform public health decision making. Both have received considerable attention during the COVID-19 pandemic and are increasingly embraced by public health agencies. This is illustrated by the US COVID-19 Forecast (1; 2) and Scenario Modelling Hubs (3), supported by the US Centers for Disease Control and Prevention, as well as the more recent European COVID-19 Forecast Hub (4), supported by the European Center for Disease Prevention and Control (ECDC). The Forecast Hub concept, building on pre-pandemic collaborative disease forecasting projects like FluSight (5), the DARPA Chikungunya Challenge (6) or the Dengue Forecasting Project (7) aims to provide a broad picture of existing short-term projections in real time, making the agreement or disagreement between different models visible. Also, it forms the basis for a systematic evaluation of performance. This is a prerequisite for model consolidation and improvement, and a need repeatedly expressed (8). In the German-speaking public discourse, the need for well-designed prospective and pre-registered studies in the field of disease modelling has been highlighted (9).

We here report on the second part of such a study, pre-registered on 8 October 2020 (10) and including forecasts made between 11 January 2021 and 29 March 2021 (with last observed values running through April; twelve weeks of forecasting). It is based on the German and Polish COVID-19 Forecast Hub (https://kitmetricslab.github.io/forecasthub/), which gathers and stores forecasts in real time. This platform was launched in close exchange with the US COVID-19 Forecast Hub in June 2020. In April 2021 it was largely merged into the European COVID-19 Forecast Hub, shortly after the latter had been launched by ECDC. During our study period, fifteen independent modelling teams provided forecasts of cases and deaths by reporting date, based on data either from national health authorities (Robert Koch Institute, RKI or the Polish Ministry of Health, MZ; the primary data source) or the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE; (11)). As in the first part of our study ((12), October 2020–December 2020), we focus on forecasts one and two weeks ahead. As non-pharmaceutical interventions were more stable in the second than in the first period, we give more attention to the evaluation of three- and four-week-ahead forecasts, but acknowledge that forecasts (as opposed to scenarios) are most meaningful for short time horizons.

The time series of cases and deaths in both countries are displayed in panels (a) and (b) of Figure 1. The study period covered in this paper is marked in dark grey, while the light grey area represents the time span addressed in (12). Our study period contains the transition from the original wild type variant of the virus to the B.1.1.7 variant (later called Alpha); panel (c) of Figure 1 shows the weekly percentages of all cases which were due to the B.1.1.7 variant in the two countries in calendar weeks 4–12 (taken from (13) for Germany and (14), (15) for Poland). Panel (d) shows the Oxford Coronavirus Government Response Tracker (OxCGRT) Stringency Index (16). It can be seen that compared to the first part of our study, the level of non-pharmaceutical interventions was rather stable at a high level during the second period. We note, however, that on 27 March a new set of restrictions was added in Poland (closure of daycare centers, hair salons and sports facilities, among others), which is not reflected very strongly in the stringency index. The start of vaccination rollout in both countries coincides with the start of our study period. However, by its end only roughly one sixth of the population of both countries had received a first dose, and roughly one twentieth had received two doses (with the role of the one-dose Johnson and Johnson vaccine negligible in both countries); see panel (e).

We find that averaged over the second evaluation period, most though not all of the compared models were able to outperform a naive baseline model. Heterogeneity between forecasts from different models was considerable. Combined ensemble forecasts achieved very good performance relative to single-model forecasts. However, most models, including the ensemble, did not anticipate changes in trend well, in particular for cases. Pooling results over both evaluation periods we find that ensemble forecasts for deaths were well-calibrated even at longer prediction horizons and clearly outperformed baseline and individual models, while for cases this was only the case for one- and to a lesser degree two-week-ahead forecasts.

2 Results

Figures 2 and 3 show the forecasts made by the median ensemble (KIT-median_ensemble; our pre-specified main ensemble approach), a naive last-observation-carried-forward model (KIT-baseline) and seven con-
Figure 1: Reported cases (a) and deaths (b) in Germany and Poland according to Robert Koch Institute, the Polish Ministry of Health (MZ) and Johns Hopkins CSSE. Additional panels show (c) the share of cases due to the B.1.1.7 (Alpha) variant, (d) the overall level of non-pharmaceutical interventions as measured by the Oxford Coronavirus Government Response Tracker (OxCGRT) Stringency Index, and (e) the population shares having received at least one vaccination dose and complete vaccination. The dark grey area indicates the period addressed in the present manuscript, the light grey area the one from (12).

2.1 Formal evaluation, January–April 2021

Table 1 and Figure 4 summarize the performance of the submitted, baseline and ensemble models over the twelve-week study period. Performance is measured via the average weighted interval score (WIS, (17)), an error measure for probabilistic forecasts, and the absolute error of the predictive median. For both measures lower values indicate better predictive performance, and the WIS can be decomposed into components representing underprediction, forecast spread and overprediction, see Section 4.2. Detailed results in tabular form at horizons of three and four weeks ahead can be found in Supplementary Table 4. As specified in the study protocol, we also provide results for cumulative cases and deaths (Supplementary Tables 6 and 7) and based on JHU rather than RKI/MZ data (Supplementary Tables 8 and 9; evaluation
Figure 2: One-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland. The figure shows forecasts from a baseline model, the median ensemble of all submissions and a subset of submitted models with above-average performance. Asterisks mark prediction intervals exceeding the upper plot limit. The remaining submitted models are displayed in Supplementary Figure 8.
Figure 3: Two-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland. The figure shows forecasts from a baseline model, the median ensemble of all submissions and a subset of submitted models. Asterisks mark prediction intervals exceeding the upper plot limit. The remaining submitted models are displayed in Supplementary Figure 9.
against JHU data leads to slightly higher WIS and absolute errors, but quite similar relative performance of models). Both for incident cases and deaths, a majority, but not all models outperformed the naïve baseline model KIT-baseline (a model outperforms the baseline for a given target whenever its stacked bar chart in Figure 4 does not reach into the grey area). As one would expect, the performance of all models considerably deteriorated for longer forecast horizons. The pre-specified median ensemble (see Materials and Methods) was consistently among the best-performing methods, outperforming most individual forecasts for all targets. The KIT-extrapolation_baseline model shows quite reasonable relative performance for cases in both countries. This model extrapolates exponential growth or decrease if the last three observations are monotonically increasing or decreasing, with a weekly growth rate equal to the one observed between the last and second to last week; if the last three observations are not ordered, it predicts a plateau. Predictive quantiles are obtained by assuming a negative binomial observation model with a dispersion parameter estimated via maximum likelihood from five recent observations (see Supplementary Note 2 of (12) for a detailed description). Given the relatively long stretches of continued upward or downward trends, this simple heuristic was not easy to beat. For deaths, on the other hand, the ensemble approaches achieve quite substantial improvement relative to this baseline.

The most striking cases of individual models outperforming the ensemble occurred for longer-range case forecasts in Poland. Here, the two microsimulation models MOCOS-agent1 and ICM-agentModel performed considerably better. These two models were arguably among the ones which were most meticulously tuned to the specific national context. It seems that this yielded benefits for longer horizons, while at shorter horizons the ensemble and some considerably simpler models were at least on par (the best performance at the one week horizon being achieved by the compartmental model MIMUW-StochSEIR).

There were considerable differences in the forecast uncertainty of the different models. This can be seen from the quite variable forecast interval widths in Figures 2 and 3, and resulted in large differences in the empirical coverage rates of 50% and 95% prediction intervals (Table 1). The ensemble methods performed quite favourably in terms of coverage, typically with slight undercoverage for cases and slight overcoverage for deaths. The differences in forecast dispersion are also reflected by the components of the weighted interval score shown in Figure 4 (see Materials and Methods for an explanation of the decomposition). Some models, most strikingly ITWW-county_repro, issued very sharp predictions, leading to very small dispersion components of the weighted interval score (the darkest block in the middle of the stacked bar). In turn, this model received rather large penalties for both over- and underprediction. Other models, like LANL-GrowthRate, epiforecasts-EpiNov2 and ICM-agentModel issued comparatively wide forecasts, leading to WIS values with large dispersion components. While there is no clear rule on what the score decomposition of an “ideal” forecast should look like, comparisons of the components provide useful indications on how to improve a model (e.g., the ITWW-county_repro model might benefit from widening the uncertainty intervals).

A subset of models also provided forecasts at the subnational level (states in Germany, voivodeships in Poland). Table 2 provides a summary of the respective results at the one and two week horizons (results for three and four weeks can be found in Supplementary Table 5). Despite the rather low number of available models, the ensembles generally achieved improvements over the individual models and, with exceptions for case forecasts in Germany, clearly outperformed the baseline model KIT-baseline. The mean WIS values are lower for the regional forecasts than for the national-level forecasts in Table 1 primarily because the numbers to be predicted are lower at the regional level; the WIS – like the absolute error – scales with the order of magnitude of the predicted quantity and cannot be compared directly across different forecasting tasks. Coverage of the ensemble forecasts was close to the nominal level for deaths and somewhat lower for cases. Note that in this comparison part of the forecasts from the FIAS_FZJ-epiGer model were created retrospectively as the team only started issuing forecasts for all German federal states on 22 February 2021.

As specified in the study protocol (10), we also report evaluation results at the national level pooled across the two study periods for those models which covered both. These are summarized in Supplementary Tables 10 and 11. For deaths, ensemble forecasts clearly outperformed individual models, the four-week-ahead horizon in Poland being the only one at which an individual model (epiforecasts-EpiExpert) meaningfully outperformed the pre-specified median ensemble. While most contributed and baseline models were somewhat overconfident, the ensemble showed close to nominal coverage even at the four-week-ahead horizon. For cases, the median ensemble achieved good relative performance (comparable to the best individual models) one and two weeks ahead, but was outperformed by a number of other models at three and four weeks. Notably, it failed to beat the naïve last-observation-carried-forward model KIT-baseline. Its coverage of prediction intervals was acceptable one week ahead, but substantially below nominal at higher horizons (e.g.,
Model	1 wk ahead case	2 wk ahead case	1 wk ahead death	2 wk ahead death				
	AE	WIS C0.95	AE	WIS C0.95				
epiforecasts-EpiExp	9.253	5.415	3/12	12/12	20.233	13.607	5/12	6/12
epiforecasts-EpiNow2	9.676	6.644	8/12	10/12	29.348	21.478	7/12	8/12
FIAS_FZI-Epi Ger	10.218	6.294	4/12	11/12	25.662	16.611	1/12	7/12
HIME-CurveFit	*193	*8.277	6/11	10/11	*22.734	*16.006	*4.11	*8.11
Imperial-ensemble2	6.905	4.644	5/12	9/12	18.935	13.626	5/12	9/12
ITWW-county_repro	15.223	12.418	1/12	3/12	31.836	25.851	0/12	2/12
Karlen-primp	18.532	13.629	6/12	11/12	35.010	25.385	3/12	10/12
LANL-GrowthRate	12.623	10.542	9/12	12/12	15.797	13.945	9/12	12/12
LeipzigMISE-SECIR	9.161	6.376	2/12	8/12	26.650	19.185	2/12	7/12
MIT_CovidAnalytics-DELPHI	*11.910	*8.277	6/11	10/11	*22.734	*16.006	*4.11	*8.11
SDDS_SlJS-TrendModel	7.861	4.660	8/12	12/12	19.296	12.734	5/12	10/12
USC-SkJalpha	13.766	9.001	3/12	10/12	25.730	17.681	2/12	7/12
KIT-baseline	12.756	7.953	5/12	11/12	23.785	17.360	2/12	7/12
KIT-extrapolation_baseline	8.823	5.715	6/12	12/12	22.858	14.679	4/12	9/12
KIT-time_series_baseline	15.583	10.281	3/12	9/12	32.306	22.026	3/12	8/12
KITCOVIDhub-inverse_wis_ensemble	8.586	5.294	7/12	12/12	22.000	13.824	6/12	10/12
KITCOVIDhub-mean_ensemble	8.377	5.277	9/12	12/12	21.825	13.662	6/12	11/12
KITCOVIDhub-median_ensemble	7.344	4.660	8/12	12/12	19.296	12.734	5/12	10/12
ICM-agentModel	*23.011	*15.824	3/11	10/11	*26.694	*18.098	*8.11	*11/11
Imperial-ensemble2	*193	*15.824	3/11	10/11	*26.694	*18.098	*8.11	*11/11
epiforecasts-EpiExp	7.500	4.553	6/12	11/12	25.316	17.468	2/12	8/12
epiforecasts-EpiNow2	8.823	5.715	6/12	12/12	22.858	14.679	4/12	9/12
HIME-CurveFit	*23.011	*15.824	3/11	10/11	*26.694	*18.098	*8.11	*11/11
Imperial-ensemble2	*193	*15.824	3/11	10/11	*26.694	*18.098	*8.11	*11/11
ITWW-county_repro	20.054	17.364	2/12	3/12	36.651	31.445	2/12	6/12
LANL-GrowthRate	8.182	7.878	10/12	12/12	23.269	15.240	7/12	11/12
MIMUW-StochSEIR	5.705	4.028	4/12	10/12	17.642	15.347	2/12	4/12
MIT_CovidAnalytics-DELPHI	*23.011	*12.912	2/10	9/10	*49.667	*33.033	1/10	7/10
MOCOS-agent1	5.173	4.975	5/12	8/12	15.022	11.380	3/12	8/12
SDDS_SlJS-TrendModel	6.323	4.660	8/12	12/12	19.296	12.734	5/12	10/12
USC-SkJalpha	10.404	6.919	4/12	10/12	32.822	24.436	2/12	6/12
KIT-baseline	16.407	9.536	5/12	11/12	32.182	22.709	1/12	5/12
KIT-extrapolationBaseline	9.448	5.992	6/12	11/12	29.638	22.165	3/12	7/12
KIT-time_series_baseline	10.784	7.787	9/12	10/12	30.359	21.510	6/12	9/12
KITCOVIDhub-inverse_wis_ensemble	7.319	4.689	6/12	12/12	23.418	15.580	5/12	10/12
KITCOVIDhub-mean_ensemble	6.866	4.784	9/12	12/12	23.673	15.573	4/12	10/12
KITCOVIDhub-median_ensemble	7.130	4.403	7/12	12/12	23.027	16.241	4/12	10/12

Table 1: Forecast evaluation for Germany and Poland (incidence scales, based on RKI/MAZ data). C0.95 and C0.95 denote coverage rates of the 50% and 95% prediction intervals. AE and WIS stand for the mean absolute error and mean weighted interval score.
Figure 4: Average weighted interval score and absolute error achieved by models across countries, targets and forecast horizons. The grey area represents the performance of the baseline model KIT-baseline. WIS values are decomposed into components for forecast spread and penalties for overprediction and underprediction.
13/19 and 10/19 four weeks ahead in Germany and Poland, respectively, at the 0.95 level), which reflects the severe difficulties in predicting cases in Fall 2020 as discussed in (12).

2.2 Behaviour at inflection points

From a public health perspective, there is often a specific interest in how well models anticipated major inflection points. We therefore specifically discuss these instances. However, we note that, as will be detailed in the discussion, post-hoc conditioning of evaluation results on the occurrence of unusual events comes with important conceptual challenges.

Shift from wild type to B.1.1.7 variant The renewed increase in cases in both Germany and Poland (“third wave”) in late February 2021 was due to the shift from the wild-type variant of the virus to the B.1.1.7 (or Alpha) variant, see Figure 1, panel (c) for estimated shares of the new variant over time. Given earlier observations about the spread of the B.1.1.7 variant in the UK (18) and Denmark, there was public discussion about the likelihood of a re-surgence, but there was considerable uncertainty about the timing and strength (see (19) for a German newspaper article from early February 2021). This was largely due to the limited availability of representative sequencing data. In certain regions of Germany, specifically the city of Cologne (20) and the state of Baden-Württemberg (21), large-scale sequencing had been adopted by late January, but results were considered difficult to extrapolate to the whole of Germany. An updated RKI report on virus variants from 10 February 2020 (22) described a “continuous increase in the share of the VOC B.1.1.7”, but cautioned that the data were “subject to biases, e.g., with respect to the selection of samples to sequence” (our translation).

Given the limited available data, and the fact that many approaches had not been designed to accommodate multiple variants, only two of the teams submitting forecasts for Germany opted to account for this aspect (a question which was repeatedly discussed during coordination calls). These exceptions were the Karlen-pypm and LeipzigIMISE-SECIR models, which starting from 1 March 2021 explicitly accounted for the presence of two variants. As a result, most models did not anticipate the change in trend well and only reacted implicitly once the change became apparent in the data on 27 February 2021. Figure 5 shows the case forecasts of all submitted models and the median ensemble from 15 February, 22 February and 1 March 2021. We also show the two short time series of shares of the B.1.1.7 variant available from Robert Koch Institute at the respective prediction time points.

The ITWW-county-repro model was the only one to anticipate a change in trend on 15 February (though slower than the observed one), and adapted quickly to the upward trend in the following week. This model extrapolates recently observed growth or decline at the county-level and aggregates these fine-grained forecasts to the state or national level. Therefore it may have been able to catch a signal of renewed growth, as a handful of German states had already experienced a slight increase in cases in the previous week (e.g., Thuringia and Saxony-Anhalt, see panel (b) of Supplementary Figure 14). However, as illustrated in panel (a) of the same Figure, the ITWW model had also predicted turning points earlier during the same phase of decline in cases, and might generally have a tendency to produce such patterns. Another noteworthy observation in this context is the change in the predictions of the Karlen-pypm model. After the extension of the model to account for the B.1.1.7 variant on 1 March, its forecasts changed from the most optimistic to the most pessimistic among all included models (panels b and c of Figure 5).

In Poland, availability of sequencing data was very limited during our study period; as indicated in (14), the GISAID database (15) only contained 2271 sequenced samples for Poland by 29 March 2021. Nonetheless, the ICM-agentModel and MOCOS-agent1 models explicitly took this aspect into account to the degree possible. Again, the ITWW-county-repro model was the first to predict a change in overall trends (in this case without having predicted turning points already in the preceding weeks; see Supplementary Figure 8).

Peak of the third wave (cases) In Poland, the third wave reached its peak in the week ending on 3 April 2021. Despite the fact that it coincided with the Easter weekend and thus somewhat unclear data quality, this turnaround was predicted quite well by two Poland-based teams, MOCOS-agent1 and ICM-agentModel. As can be seen from Figure 6, the trajectory of these two models differed substantially from those of most other models, including the ensemble, which predicted a sustained increase. This successful prediction of the turning point was in large part responsible for the good relative performance of MOCOS-agent1 and
Table 2: Forecast evaluation at the regional level, Germany and Poland (incidence scale, based on RKI/MZ data). Results are averaged over the different regions (states in Germany, voivodeships in Poland). $C_{0.5}$ and $C_{0.95}$ denote coverage rates of the 50% and 95% prediction intervals; AE and WIS stand for the mean absolute error and mean weighted interval score.

Model	Germany 1 wk ahead case	2 wk ahead case	1 wk ahead death	2 wk ahead death	Poland 1 wk ahead case	2 wk ahead case	1 wk ahead death	2 wk ahead death
	AE	WIS	$C_{0.5}$	$C_{0.95}$	AE	WIS	$C_{0.5}$	$C_{0.95}$
epiforecasts-EpiNo2	694/12192	558/12192	39/12192	95/12192	694/12192	558/12192	39/12192	95/12192
FIAS	801/12192	518/12192	57/12192	146/12192	801/12192	518/12192	57/12192	146/12192
Karlen-pypm	1,251/12192	704/12192	124/12192	183/12192	1,251/12192	704/12192	124/12192	183/12192
KIT-baseline	1,010/12192	653/12192	76/12192	153/12192	1,010/12192	653/12192	76/12192	153/12192
KIT-extrapolation-baseline	859/12192	544/12192	57/12192	146/12192	859/12192	544/12192	57/12192	146/12192
KIT-time-series-baseline	801/12192	518/12192	57/12192	146/12192	801/12192	518/12192	57/12192	146/12192
KITCOVIDhub-mean-ensemble	694/12192	558/12192	44/12192	99/12192	694/12192	558/12192	44/12192	99/12192
KITCOVIDhub-median-ensemble	769/12192	485/12192	102/12192	170/12192	769/12192	485/12192	102/12192	170/12192

*Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.
Figure 5: Panels (a)–(c) Point forecasts of cases in Germany, as issued on 15 February, 22 February and 1 March 2021. These dates mark the start of a renewed increase in overall case counts due to the new variant of concern B.1.1.7. Panel (d): Data by RKI on the share of the B.1.1.7 variant as available on the different forecast dates (the next data release by RKI occurred on 3 March).

ICM-agentModel at longer horizons reported in Section 2.1. In retrospective discussions, the respective teams noted that the tightening of non-pharmaceutical interventions (NPIs) on 27 March (which they had anticipated) in combination with possible seasonal effects had led them to expect a downward turn.

For Germany, the peak of the third wave occurred only after the end of our pre-specified study period, but we note that numerous models showed strong overshoot as they expected the upward trend to continue. The exact mechanisms underlying the turnaround remain poorly understood (a new set of restrictions referred to as the Bundesnotbremse was introduced too late to explain the change on its own).

Changes in trend of deaths In Germany, the study period coincided almost perfectly with a prolonged period of decline in deaths. In Figure 7, panels (a) and (b) show the behaviour of the median ensemble at the beginning and end of this phase. The ensemble had already anticipated a downward turn on 4 January, two weeks before it actually occurred. Following the unexpected strong increase in the following week, it went to extending the upward tendency, before switching back to predicting a turnaround. It seems likely that the irregular pattern in late December and early January is partly due to holiday effects in reporting, and forecast models may have been disturbed by this aspect.

At the end of the downward trend in late March, the ensemble again anticipated the turnaround to arrive earlier than it did, and predicted a more prolonged rise than was observed. Nonetheless, in both cases the ensemble to some degree anticipated qualitative change, and the observed trajectories were well inside the respective 95% prediction intervals (with the exception of the forecast from 4 January; however, this forecast had prospectively been excluded from the analysis as we anticipated reporting irregularities).

In Poland, deaths started to increase in early March after a prolonged period of decay. As can be seen in panel c of Figure 7, the median ensemble had anticipated this change (22 February 2021), but in terms of its point forecast did not initially expect a prolonged upward trend as later observed. Nonetheless, the observed trajectory was contained in the relatively wide 95% prediction intervals (Figures 2 and 3).
Figure 6: Point forecasts of cases in Poland from 22 March, 29 March and 5 April 2021, surrounding the peak week.

3 Discussion

We presented results from the second and final part of a pre-registered forecast evaluation study conducted in Germany and Poland (January–April 2021). During the period covered in this paper, ensemble approaches yielded very good performance relative to contributed individual models and baseline models. The majority of contributed models was able to outperform a simple last-observation-carried-forward model for most targets and forecast horizons up to four weeks.

The results in this manuscript differ in important aspects from those for our first evaluation period (October–December 2020), when most models struggled to meaningfully outperform the KIT-baseline model for cases. Fall 2020 was characterized by rapidly changing non-pharmaceutical intervention measures, making it hard for models to anticipate the case trajectory. Pooled across both study periods, we found ensemble forecasts of deaths to yield satisfactory reliability and clear improvement over baseline models. For cases, however, coverage was clearly below nominal from the two-week horizon onward, and in terms of mean weighted interval scores the ensemble failed to outperform the KIT-baseline model three and four weeks ahead. This strengthens our previous conclusion (12) that meaningful case forecasts are only feasible at very short horizons. It also agrees with recent results from the US COVID-19 Forecast Hub (23), which led the organizers to suspend ensemble case forecasts beyond the one-week horizon.

The differences between our two study periods illustrate that performance relative to simple baseline models is strongly dependent on how good a fit these are for a given period. Cases in Germany plateaued during November and early December 2020, making the last-observation-carried-forward strategy of KIT-baseline difficult to beat. The second evaluation period was characterized by longer stretches of continued upward or downward trends, making it much easier to beat that baseline. In this situation, however, many models did not achieve strong improvements over the extrapolation approach KIT-extrapolation baseline. Ideally one would wish complex forecast models to outperform each of these different baseline models. However, there are many ways of specifying a “simple” baseline (24), and post-hoc at least one of them will likely be
in acceptable agreement with the observed trajectory. While the choice of the most meaningful reference remains subject to debate, we believe that the use of a small set of pre-specified baselines as in the present study is a reasonable approach.

An observation made for both the first and the second part of our study is that predicting changing trends in cases is very challenging; turnarounds in death counts are less difficult to anticipate. This finding is shared by other works on short-term forecasts of COVID-19 in real time, see (25) for the UK and (26) for the US. To interpret these insights we note that, in principle, there are two ways of forecasting epidemiological time series:

(i) Applying a mechanistic model to project future spread based on recent trends and other relevant factors like NPIs, population behaviour or vaccination. Models can then predict trend changes based on classical epidemiological mechanisms (depletion of susceptibles) or observed/anticipated changes in surrounding factors, which depending on the model may be treated as exogenous or endogenous.

(ii) Establishing a statistical relationship (often with a mechanistic motivation) to a leading indicators, i.e. a data stream which is informative on the trajectory of the quantity of interest, but available earlier. Changes in the trend of the leading indicator can then help anticipate future turning points in the time series of interest.

Death forecasts belong into the realm of category (ii), with cases and hospitalizations serving as leading indicators. This prediction task has been addressed with considerable success. Case forecasts, on the other hand, typically are based on approach (i), which largely reduces to trend extrapolation, unless models are carefully tuned to changing NPIs (see Table 3). Theoretical arguments on the limited predictability of turning points in such curves have been brought forward (27; 28), and empirical work including ours confirms that this is a very difficult task. The success of the two microsimulation models MOCOS-agent1 and ICM-agentModel in anticipating the downward turn in cases in Poland is encouraging, but remains a rather rare exception. Potential leading indicators to improve case forecasts could be trajectories in other countries (29) or additional data streams on e.g., mobility, insurance claims or web searches. However, the benefits of such data for short-term forecasting thus far have been found to be modest (30). Changes in dominant variants may make changes in overall trends predictable as they arise from the superposition of adverse but stable trends for the different variants. The availability of sequencing data has improved considerably since our study period, but in practice the associated delays may still limit predictability in crucial periods.

We have extensively discussed the difficulties models encountered at turning points, both upward and downward. In the aftermath of such events, epidemic forecasts typically receive increased attention in the general media (see e.g. (31) for coverage of the rapid downward turn in cases in Germany in May 2021). While
important from a subject-matter perspective, this is not without problems from a formal forecast evaluation standpoint. Major turning points are rare events and as such difficult to forecast. Focusing evaluation on solely these instances will benefit models with a strong tendency to predict change, and adapting scoring rules to emphasize these events in a principled way is not straightforward. This problem is known as the forecaster’s dilemma (32) in the literature and likewise occurs in, e.g., economics and meteorology (see illustrations in Table 1 from (32)).

The present paper marks the end of the German and Polish COVID-19 Forecast Hub as an independently run platform. In April 2021, the European Center for Disease Prevention and Control (ECDC) announced the launch of a European COVID-19 Forecast Hub (4), which has since attracted submissions from more than 30 independent teams. The German and Polish COVID-19 Forecast Hub has been synchronized with this larger effort, meaning that all forecasts submitted to our platform are forwarded to the European repository, while forecasts submitted there are mirrored in our dashboard. In addition, we still collect regional-level forecasts, which are not currently covered in the European Forecast Hub. The adoption of the Forecast Hub concept by ECDC underscores the potential of collaborative forecasting systems with combined ensemble predictions as a key output, along with continuous monitoring of forecast performance. We anticipate that this closer link to public health policy making will enhance the usefulness of this system to decision makers. An important step will be the inclusion of hospitalization forecasts. Due to unclear data access, these had not been tackled in the framework of the German and Polish COVID-19 Forecast Hub, but have recently been added in the new European version.

4 Materials and Methods

The methods described in the following are largely identical to those in the first part (12) of our study, but are presented in abridged form to ensure self-containedness of the present work.

4.1 Targets and submission system

Teams submitted forecasts for weekly incident and cumulative confirmed cases and deaths from COVID-19 via a dedicated public GitHub repository (https://github.com/KITmetricslab/covid19-forecast-hub-de). For certain teams running public dashboards, software scripts were put in place to transfer forecasts to the Forecast Hub repository. Weeks were defined to run from Sunday through Saturday. Each week, teams were asked to submit forecasts using data available up to Monday, with submission possible until Tuesday 3pm Berlin/Warsaw time (the first two daily observations are thus already available at the time of forecasting). Forecasts could either refer to the time series provided by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE; (11)) or those from Robert Koch Institute and the Polish Ministry of Health. All data streams were aggregated by time of reporting, see Supplementary Note 4 of (12) for details. Submissions consisted of a point forecast and 23 predictive quantiles (1%, 2.5%, 5%, 10%, ..., 95%, 97.5%, 0.99) for the incident and cumulative weekly quantities. As in (12), we focus on the targets on the incidence scale. These are easier to compare across the different data sources than cumulative numbers which sometimes show systematic shifts.

4.2 Evaluation metrics

As forecasts were reported in the form of 11 nested central prediction intervals (plus the predictive median), a natural choice for evaluation is the interval score (33). For a central prediction interval [l, u] at the level (1 − α), thus reaching from the α/2 to the 1 − α/2 quantile, it is defined as

\[IS_\alpha(F, y) = (u - l) + \frac{2}{\alpha} \times (l - y) \times \chi(y < l) + \frac{2}{\alpha} \times (y - u) \times \chi(y > u), \]

where \(\chi \) is the indicator function and \(y \) is the realized value. Here, the first term characterizes the spread of the forecast distribution, the second penalizes overprediction (observations fall below the prediction interval) and the third term penalizes underprediction. To assess the full predictive distribution we use the weighted interval score (WIS; (17)). The WIS is a weighted average of interval scores at different nominal levels and
the absolute error. For eleven prediction intervals it is defined as
\[
WIS(F, y) = \frac{1}{11.5} \times \left(\frac{1}{2} \times |y - m| + \sum_{k=1}^{11} \left(\frac{\alpha_k}{2} \times IS_{\alpha_k}(F, y) \right) \right),
\]
where \(m \) is the predictive median. The WIS is a well-known approximation of the continuous ranked probability score (CRPS: (33)) and generalizes the absolute error to probabilistic forecasts. Its values can be interpreted on the natural scale of the data and measures how far the observed value \(y \) is from the predictive distribution (lower values are thus better). For deterministic one-point forecasts the WIS reduces to the absolute error. A useful property of the WIS is that it inherits the decomposition of the interval score into forecast spread, overprediction and underprediction, which makes average scores more interpretable. As secondary measures of forecast quality we use the absolute error to assess the central tendency of forecasts and interval coverage rates of 50% and 95% prediction intervals to assess calibration.

As specified in our study protocol, whenever forecasts from a model were missing for a given week, we imputed the score with the worst (largest) value achieved by any other model for the respective week and target. However, almost all teams provided complete sets of forecasts and very few scores needed imputation.

4.3 Individual models

During the evaluation period, forecasts from fifteen different models run by fourteen independent teams of researchers were collected. Thirteen of these were already available during the first part of our preregistered study, see Table 3 and Supplementary Note 3 of (12) for detailed descriptions. Table 3 provides a slightly extended summary of model properties, including the two new models, itwm-dSEIR and Karlen-pypm: a more detailed description of the latter can be found in Supplement A.

During the evaluation period, only the ICM-agentModel explicitly accounted for vaccinations (given the low realized vaccination coverage by the end of the study period this aspect likely had limited impact). Only four models (ICM-agentModel, Karlen-pypm, LeipzigIMISE-SECIR and MOCOS-agent1, all only for certain weeks) explicitly accounted for the presence of multiple variants.

To put the results achieved by the submitted models into perspective, the Forecast Hub team generated forecasts from three simple reference models: a last-observation-carried-forward model (KIT-baseline), a multiplicative extrapolation model which continues exponential growth or decline based on the last three observations (KIT-extrapolation_baseline) and an exponential smoothing time series baseline (KIT-time_series_baseline).
which has been taken from (34). Detailed descriptions can be found in (12), Supplementary Note 2. As a further external comparison we added publicly available death forecasts by the Institute for Health Metrics and Evaluation (IHME, University of Washington (35); available under the CC BY-NC 4.0 license). Here, we always used the most recent prediction available on a given forecast date.

4.4 Forecast ensembles

The Forecast Hub team used the submitted forecasts to generate three different ensemble forecasts:

KITCOVIDhub-median ensemble The α-quantile of the ensemble forecast is obtained as the median of the α-quantiles of the member forecasts.

KITCOVIDhub-mean ensemble The α-quantile of the ensemble forecast is obtained as the mean of the α-quantiles of the member forecasts.

KITCOVIDhub-inverse wis ensemble The α-quantile of the ensemble forecast is a convex combination of the α-quantiles of the member forecasts. The weights are chosen inversely to the mean WIS value obtained by the member models over the last six evaluated forecasts (last three one-week-ahead, last two two-week-ahead, last three-week-ahead; missing scores are imputed by the worst score achieved by any model for the respective target). This is done separately for each time series to be predicted.

Inverse score weighting has recently also been employed by (36) who found it to perform well in a re-analysis of forecasts from the US COVID-19 Forecast Hub. In the study protocol, the median ensemble was defined as our primary ensemble approach (10), which is why we displayed this version in all figures and focused our discussion on it. We have previously discussed advantages and disadvantages of the different ensemble approaches in (12).

There were no formal inclusion criteria other than completeness of the submitted set of 23 quantiles. The Forecast Hub team did, however, occasionally exclude forecasts with highly implausible central tendency or degree of dispersion. These exclusions have been documented in the Forecast Hub platform.

Data availability

The forecast data generated in this study have been deposited in a GitHub repository (https://github.com/KITmetricslab/covid19-forecast-hub-de), with a stable Zenodo release available under accession code 5608390 https://zenodo.org/record/5608390#.YYFxdJso9H4. This repository also contains all truth data used for evaluation. Forecasts can be visualised interactively at https://kitmetricslab.github.io/forecasthub/.

Code availability

Codes to reproduce figures and tables are available at https://github.com/KITmetricslab/analyses_de_pl2, with a stable version at https://zenodo.org/record/5639514#.YYF1aZso9H4. The results presented in this paper have been generated using the release preprint2 of the repository https://github.com/KITmetricslab/covid19-forecast-hub-de, see above for the link to the stable Zenodo release.

Competing interests

The authors declare no competing interests.

References

[1] Ray, E. L. et al. Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the U.S. medRxiv (2020). URL https://www.medrxiv.org/content/early/2020/08/22/2020.08.19.20177493.
1. Cramer, E. et al. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US. medRxiv (2021). URL https://www.medrxiv.org/content/early/2021/02/05/2021.02.21250974.

2. Borchering, R. K. et al. Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates and nonpharmaceutical intervention scenarios – United States, April–September 2021. Morbidity and Mortality Weekly Report 70, 719–724 (2021).

3. European Center for Disease Prevention and Control. Forecasting COVID-19 cases and deaths in Europe – new hub will support European pandemic planning. Press release, published online 22 April 2021, https://www.ecdc.europa.eu/en/news-events/forecasting-covid-19-cases-and-deaths-europe-new-hub.

4. McGowan, C. J. et al. Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Scientific Reports 9, 683 (2019).

5. Del Valle, S. et al. Summary results of the 2014–2015 DARPA Chikungunya Challenge. BMC Infectious Diseases 18, 245 (2018).

6. Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences 116, 24268–24274 (2019).

7. Nature Publishing Group. Editorial: Developing infectious disease surveillance systems. Nature Communications 11, 4962 (2020).

8. Bracher, J., the German and Polish COVID-19 Forecast Hub Team & Participants. Study protocol: Comparison and combination of real-time COVID19 forecasts in Germany and Poland. Deposited 8 October 2020, Registry of the Open Science Foundation, https://osf.io/k8d39 (2020).

9. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases 20, 533–534 (2020).

10. Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 government response tracker). Nature Human Behaviour 5, 529–538 (2021).

11. Bracher, J. et al. Evaluating epidemic forecasts in an interval format. PLOS Computational Biology 17, e1008618 (2021).

12. Davies, N. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372 (2021). URL https://science.sciencemag.org/content/372/6538/eabg3055. https://science.sciencemag.org/content/372/6538/eabg3055.full.pdf.

13. Berndt, C., Endt, C. & Müller-Hansen, S. Die unsichtbare Welle. Süddeutsche Zeitung (2021). Published online, 5 February 2021, https://www.sueddeutsche.de/wissen/coronavirus-mutante-b117-daten-1.5197700.
[20] Fischer-Fels, J. Erste Hochrechnung zur Verbreitung der Coronamutationen. *Ärzteblatt* (2021). 3 February 2021, available at https://www.aerzteblatt.de/nachrichten/120768/Erste-Hochrechnung-zur-Verbreitung-der-Corona-Mutationen.

[21] Landesgesundheitsamt Baden Württemberg. Tagesbericht COVID-19, Montag 8.2.2021 (2021). Available online at https://www.gesundheitsamt-bw.de/fileadmin/LGA/DocumentLibraries/SiteCollectionDocuments/05_Service/LageberichtCOVID19/COVID_Lagebericht_LGA_210208.pdf.

[22] Robert Koch Institute. Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland, insbesondere zur Variant of Concern (VOC) B.1.1.7. update 10 February 2021. Available at https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/Bericht_VOC_2021-02-10.pdf (2021).

[23] Reich, N., Tibshirani, R., Ray, E. & Rosenfeld, R. On the predictability of COVID-19. Blog post, International Institute of Forecasters, https://forecasters.org/blog/2021/09/28/on-the-predictability-of-covid-19/ (2021).

[24] Keyel, A. C. & Kilpatrick, A. M. Probabilistic evaluation of null models for West Nile Virus in the United States. *bioRxiv* (2021). URL https://www.biorxiv.org/content/early/2021/07/26/2021.07.26.453866. https://www.biorxiv.org/content/early/2021/07/26/2021.07.26.453866.full.pdf.

[25] Funk, S. *et al.* Short-term forecasts to inform the response to the Covid-19 epidemic in the UK. *medRxiv* (2020). URL https://www.medrxiv.org/content/early/2020/11/13/2020.11.11.20220962.

[26] Ray, E. L. *et al.* Challenges in training ensembles to forecast COVID-19 cases and deaths in the United States. Blog post, International Institute of Forecasters, https://forecasters.org/blog/2021/04/09/challenges-in-training-ensembles-to-forecast-covid-19-cases-and-deaths-in-the-united-states/ (2021).

[27] Castro, M., Ares, S., Cuesta, J. & Manrubia, S. The turning point and end of an expanding epidemic cannot be precisely forecast. *Proceedings of the National Academy of Sciences* 117, 26190–26196 (2020). URL https://www.pnas.org/content/117/42/26190. https://www.pnas.org/content/117/42/26190.full.pdf.

[28] Wilke, C. O. & Bergstrom, C. T. Predicting an epidemic trajectory is difficult. *Proceedings of the National Academy of Sciences* 117, 28549–28551 (2020). URL https://www.pnas.org/content/117/46/28549. https://www.pnas.org/content/117/46/28549.full.pdf.

[29] Harvey, A. Time series modeling of epidemics: Leading indicators, control groups and policy assessment. Tech. Rep. 2114, Cambridge Working Papers in Economics (2021). Available online at https://www.repository.cam.ac.uk/handle/1810/318300.

[30] McDonald, D. J. *et al.* Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction? *medRxiv* (2021). URL https://www.medrxiv.org/content/early/2021/06/25/2021.06.22.21259346.

[31] Berndt, C., Hametner, M., Kruse, B., Müller-Hansen, S. & Witzenberger, B. Ist die dritte Welle überstanden? *Süddeutsche Zeitung* (2021). Published online, 4 May 2020, https://www.sueddeutsche.de/gesundheit/corona-infektionen-trendwende-modellierungen-1.5284545.

[32] Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. & Gneiting, T. Forecaster’s dilemma: Extreme events and forecast evaluation. *Statistical Science* 32, 106–127 (2017).

[33] Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association* 102, 359–378 (2007).

[34] Petropoulos, F. & Makridakis, S. Forecasting the novel coronavirus COVID-19. *PLOS ONE* 15, e0231236 (2020).

[35] IHME COVID-19 Forecasting Team. Modeling COVID-19 scenarios for the United States. *Nature Medicine* 27, 94–105 (2021).
Taylor, J. W. & Taylor, K. S. Combining probabilistic forecasts of COVID-19 mortality in the United States. European Journal of Operational Research (2021). URL https://www.sciencedirect.com/science/article/pii/S0377221721005609.

Kheifetz, Y., Kirsten, H. & Scholz, M. On the parametrization of epidemiologic models – lessons from modelling covid-19 epidemic (2021). 2109.11916.

Karlen, D. Characterizing the spread of CoViD-19. https://arxiv.org/abs/2007.07156 (2020).

Acknowledgements

J. Bracher, M. Schienle and T. Gneiting acknowledge support from the Helmholtz Foundation via the SIMCARD Information and Data Science Pilot Project. T. Gneiting and D. Wolfram are grateful for support by the Klaus Tschira Foundation. D. Wolfram’s contribution was moreover supported by the Helmholtz Association under the joint research school “HIDSS4Health – Helmholtz Information and Data Science School for Health.” N.I. Bosse was supported by the Health Protection Research Unit (grant code NIHR200908). S. Funk and S. Abbott were supported by the Wellcome Trust (210758/Z/18/Z). The itwm-dSEIR forecasting team (J. Fiedler, N. Leithäuser, J. Mohring) was supported by the Ministry of Health and Science of Rhineland Palatinate and the Fraunhofer Anti-Corona Program. S. Bhatia acknowledges funding from the Wellcome Trust (219415). Work on the ICM UW epidemiological model (J.M Nowosielski, M. Radwan, F. Rakowski) was supported by the Polish Minister of Science and Higher Education grant 51/WFSN/2020 given to the University of Warsaw. Development of the IMISE-SECIR model (Y. Kheifetz, H. Kirsten, S. Scholz) was funded in the framework of the project SaxoCOV (Saxonian COVID-19 Research Consortium). SaxoCOV was co-financed with tax funds on the basis of the budget passed by the Saxon state parliament. Model presentation was funded by the NFDI4Health Task Force COVID-19 (www.nfdi4health.de/task-force-covid-19-2) within DFG project LO-342/17-1.

We thank Dean Karlen for contributing forecasts and the Institute for Health Metrics and Evaluation, University of Washington, for making forecasts publicly available under a free license. We are moreover grateful for support and advice from the organizing team of the US COVID-19 Forecast Hub.

The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the institutions they are affiliated with.

Author contributions

JB, DW, TG and MSe conceived the study with advice from AU. JB, DW, JD, KG and JK put in place and maintained the forecast submission and processing system. AU coordinated the creation of an interactive visualization tool. JB performed the evaluation analyses with inputs from DW, TG, MSe and members of various teams. SA, MVB, DB, SB, MB, NIB, JPB, LC, GF, JFr, JFn, SF, AG, KG, SH, TH, YK, HK, TK, EK, NL, MLL, JHM, BM, IJM, JMe, JMG, PN, JMN, TO, MR, FR, MS, SS, and AS contributed forecasts (see list of contributors by team). JB, TG and MSe wrote the manuscript. All teams and members of the coordinating team provided feedback on the manuscript and descriptions of the respective models.

List of contributors by team

CovidAnalytics-DELPHI: Michael Lingzhi Li (Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA), Dimitris Bertsimas, Saksham Soni (both Sloan School of Management, Massachusetts Institute of Technology, Cambridge, USA)

epiforecasts-EpiExpert and epiforecasts-EpiNov2: Sam Abbott, Nikos I. Bosse, Sebastian Funk (all London School of Hygiene and Tropical Medicine, London, UK)

FIAS_FZJ-Epi1Ger: Maria Vittoria Barbarossa (Frankfurt Institute for Advanced Studies, Frankfurt, Germany), Jan Fuhrmann (Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany), Jan H. Meinke (Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany)
SDSC_ISG-TrendModel: Antoine Flahault, Elisa Manetti, Kristen Namigai (all Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland), Christine Choirat, Benjamin Bejar Haro, Ekaterina Krymova, Gavin Lee, Guillaume Obozinski, Tao Sun (all Swiss Data Science Center, ETH Zurich and EPFL Lausanne, Switzerland), Dorina Thanou (Center for Intelligent Systems, EPFL, Lausanne Switzerland)

ICM-agentModel: Filip Dreger, Lukasz Górski, Magdalena Gruziel-Słomka, Artur Kaczorek, Antoni Moszyński, Karol Niedzielewski, Jedrzej Nowosielski, Maciej Radwan, Franciszek Rakowski, Marcin Semeniuk, Jakub Zieliński (all Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland), Rafal Bartczuk (Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw and Institute of Psychology, John Paul II Catholic University of Lublin, Lublin, Poland), Jan Kisielewski (Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw and Faculty of Physics, University of Białystok)

Imperial-ensemble2: Sangeeta Bhatia (MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Imperial College, London, UK), Pierre Nouvellet (School of Life Sciences, University of Sussex, Brighton, UK)

itwm-dSEIR: Michael Burger, Robert Feßler, Jochen Fiedler, Michael Helmling, Karl-Heinz Küfer, Neele Leithäuser, Jan Mohring, Johanna Schneider, Anita Schöbel, Michael Speckert, Raimund Wegener, Jarosław Wlazło (all Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany)

ITWW-county_repro: Przemysław Biecek (Warsaw University of Technology, Warsaw, Poland), Viktor Bezborodov, Marcin Bodych, Tyll Krueger (all Wrocław University of Science and Technology, Poland), Jan Pablo Burgard (Economic and Social Statistics Department, University of Trier, Germany), Stefan Heyder, Thomas Hotz (both Institute of Mathematics, Technische Universität Ilmenau, Ilmenau, Germany)

LeipzigIMISE-SECIR: Yuri Kheifetz, Holger Kirsten, Markus Scholz (all Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany)

MIMU-W-StochSEIR: Anna Gambin, Krzysztof Gogolewski, Błażej Miasojedow, Ewa Szczurek (all Institute of Informatics, University of Warsaw, Warsaw, Poland), Daniel Rabczenko, Magdalena Rosińska (Polish National Institute of Public Health – National Institute of Hygiene)

MOCOS-agent1: Marek Bawiec, Viktor Bezborodov, Marcin Bodych, Radosław Idzikowski, Tyll Krueger, Tomasz Ożański, Barbara Pabian, Ewaryst Rafajłowicz, Ewa Skubalska-Rafajłowicz, Wojciech Rafajłowicz (all Wrocław University of Science and Technology, Poland), Przemysław Biecek (Warsaw University of Technology), Agata Migalska (Wrocław University of Science and Technology, Poland and Nokia Solutions and Networks, Wrocław, Poland), Ewa Szczurek (University of Warsaw)

USC-SIKJaAlpha: Ajitesh Srivastava, Frost Tianjian Xu (both University of Southern California, Los Angeles, USA)
Supplementary Materials for Bracher et al (2021): National and subnational short-term forecasting of COVID-19 in Germany and Poland, early 2021

A Detailed description of new models

We only provide detailed descriptions of models which were added to our project for the second evaluation period. Descriptions for the other models can be found in Supplementary Note 3 of (12). A more detailed documentation of the LeipzigIMISE-SECIR model which had not been available at the appearance of (12) can be found in (37).

itwm-dSEIR Fraunhofer-ITWM’s predictions are based on a cohort model that groups people according to four age groups and according to the status infected, detected and since 19 April successfully vaccinated (i.e., this extension was added after the evaluation period). The dynamics of the epidemic are described by integral equations, assuming an infectious period with fixed onset, end and infectivity. The most important parameters are contact rates between age groups, detection rates and times, and death rates and times, which are adjusted to the historical data of the RKI. For forecasts, the simulation is continued with the parameters determined for the last week. In principle, the forecast quality could be improved by anticipating the effects of events such as the end of public holidays on contact and detection rates. However, this is not yet done in the automatic submissions. All calculations use automatic differentiation. This speeds up parameter adjustment and allows for error estimates. The latter are determined by comparing counted and simulated cases and by matching the empirical standard deviations with the standard deviations predicted by the calculated sensitivities. The model is described in detail in https://www.itwm.fraunhofer.de/de/presse-publikationen/presseinformationen/2021/2021-06-22_Dritte_Welle_Starker-Effekt-von-Schnelltests-an-Schulen.html.

Karlen-pypm The python Population Modeller (pyPM, (38)), is a mechanistic modeling framework to describe viral spread via discrete-time difference equations. In a pyPM model, different population objects are connected by a list of directional connector objects. The adjustable parameters of the model are stored in parameter objects. The core of the model consists of a model of the infection cycle involving the susceptible, infected (but not yet contagious) and contagious parts of the population. The contagious population is modelled in more detail by introducing symptomatic, test-positive, hospitalized (normal ward and ICU) and deceased populations. The model takes time series of cases, deaths and intensive care occupancy as data inputs. Forecasts are generated at the regional level (German states) first and subsequently aggregated to the national level. Starting from 1 March 2021, the model was stratified into spread of the wild type of the virus and the B.1.1.7 variant, and integrated genetic sequencing data on their respective importance.
B Additional forecast visualizations

Figure 8: One-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland. Asterisks mark prediction intervals exceeding the upper plot limit. The figure shows forecasts from models not displayed in Figure 2.
Figure 9: Two-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland, same models as displayed in Figure 8. Asterisks mark prediction intervals exceeding the upper plot limit.
Figure 10: Three-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland, same models as displayed in Figure 2. Asterisks mark prediction intervals exceeding the upper plot limit.
Figure 11: Four-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland, same models as displayed in Figure 2. Asterisks mark prediction intervals exceeding the upper plot limit.
Figure 12: Three-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland, same models as displayed in Figure 8. Asterisks mark prediction intervals exceeding the upper plot limit.
Figure 13: Four-week-ahead forecasts of confirmed cases and deaths from COVID-19 in Germany and Poland, same models as displayed in Figure 8. Asterisks mark prediction intervals exceeding the upper plot limit.
Figure 14: **a** Forecasts of cases in Germany by the ITWW-county_repro model, 25 January to 22 February 2021. **b** Forecasts for cases in selected German states by the ITWW-county_repro model, 22 February 2021.

C Additional summary tables on forecast evaluation
Germany

Model	3 wk ahead case	4 wk ahead case	3 wk ahead death	4 wk ahead death
	AE, WIS, C0.5, C0.95			
epiforecasts-EpiExpert	20,140/37,879	24,429/1/12	712/463	925/614
epiforecasts-EpiNow2	36,966/940	54,216/6/12	4,653/1,234	843/6/12
FIAS-FZ1-Epi1Ger	25,939/720	35,472/1/12	625/1,071	688/2/12
IHME-CurveFit			839/967	
Imperial-ensemble2				
itwm-dSEIR	20,772/6,895	29,388/5/12	547/348	588/366
ITWW-county.repro	38,477/6,652	54,070/1/12	350/266	753/599
Karen-pvpm	40,195/89,745	63,976/2/12	933/618	1,309/965
LANL-GrowthRate	17,577/29,959	21,224/8/12	715/450	1,037/651
LeipzigMISE-SEICIR	33,952/79,741	54,914/8/12	1,570/1,107	2,493/1,773
MIT-CovidAnalytics-DELPHI	*28,404*	*22,268*	*23,661*	*20,934*
SDSC-IGS-TrendModel				
USC-Slikalpha	35,434/46,612	36,819/7/12	762/492	947/617
KIT-baseline	26,554/834	34,072/2/12	1,688/494	1,494/1,132
KIT-extrapolation_baseline	23,333/1,331	34,906/6/12	1,331/865	1,693/1,273
KIT-time-series_baseline	33,930/60,577	46,342/7/12	1,299/983	1,791/1,432
KITCOVIDhub-inverse_wis_ensemble	21,456/48,943	30,201/5/12	494/320	678/450
KITCOVIDhub-mean_ensemble	21,288/48,688	29,683/6/12	518/318	712/435
KITCOVIDhub-median_ensemble	19,767/45,928	27,397/9/12	543/332	690/456

Poland

Model	3 wk ahead case	4 wk ahead case	3 wk ahead death	4 wk ahead death
	AE, WIS, C0.5, C0.95			
epiforecasts-EpiExpert	33,301/63,055	48,822/5/12	350/220	491/295
epiforecasts-EpiNow2	39,353/59,002	35,013/2/12	1,331/865	1,693/1,273
ICM-agentModel	29,103/610	26,540/7/12	810/576	1,791/1,432
IHME-CurveFit			637	505
Imperial-ensemble2				
ITWW-county.repro	54,555/108,188	93,286/12/12	1,047/915	1,466/1,241
LANL-SEIR	24,958/55,486	35,013/2/12	1,331/865	363/888
MIMUW-StochSEIR	30,118/58,203	52,730/1/12	365/331	408/327
MIT-CovidAnalytics-DELPHI	52,292/94,054	*70,385*	*717*	*1019*
MOCOS-agent	19,350/39,711	27,951/5/12	235/166	243/202
SDSC-IGS-TrendModel	19,067/63,352	56,280/12/12	256/166	371/252
USC-Slikalpha	34,351/54,127	43,833/2/12	618/491	791/611
KIT-baseline	35,149/98,777	79,912/2/12	530/399	852/624
KIT-extrapolation_baseline	45,278/53,011	72,907/8/12	644/539	1,024/614
KIT-time-series_baseline	53,810/94,873	72,907/8/12	644/539	1,024/614
KITCOVIDhub-inverse_wis_ensemble	27,016/59,449	42,678/3/12	242/178	408/326
KITCOVIDhub-mean_ensemble	27,591/62,918	43,800/6/12	169/185	353/263
KITCOVIDhub-median_ensemble	28,852/61,177	43,683/12/12	196/173	354/256

Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.
Table 5: Forecast evaluation at the regional level, Germany and Poland, 3 and 4 weeks ahead (incidence scale, based on RKI/INZ data). Results are averaged over the different regions (states in Germany, voivodeships in Poland). C0.5 and C0.95 denote coverage rates of the 50% and 95% prediction intervals; AE and WIS stand for the mean absolute error and mean weighted interval score.

Model	Germany 3 wk ahead case	Poland 3 wk ahead case	Germany 4 wk ahead case	Poland 4 wk ahead case				
	AE	WIS	C0.5	C0.95	AE	WIS	C0.5	C0.95
epiforecasts-EpiNo2	2.697	1.803	63/192	141/192	3.879	2.630	55/192	135/192
FIAS_FZJ-Epi1Ger	2.840	1.929	36/192	112/192	4.192	2.862	34/192	99/192
IHME-CurvFit								
ITW-county_epi_repro	3.123	2.100	75/192	147/192	4.394	2.970	85/192	149/192
Karlen-pypm	3.634	2.261	83/192	162/192	5.740	3.578	58/192	144/192
LeipzigMISE-SECIR								
USC-Sikhalpha	2.190	1.584	44/192	124/192	2.830	2.094	36/192	104/192
KIT-baseline	2.194	1.636	32/192	96/192	2.774	2.168	21/192	76/192
KIT-extrapolation_baselines	2.496	1.629	41/192	132/192	3.392	2.315	30/192	116/192
KIT-time_series_baseline	2.806	1.989	38/192	117/192	3.571	2.748	41/192	106/192
KITCOVIDhub-inverse_wis_ensemble	2.622	1.675	73/192	158/192	3.679	2.375	68/192	152/192
KITCOVIDhub-mean_ensemble	2.503	1.582	71/192	165/192	3.496	2.254	71/192	154/192
KITCOVIDhub-median_ensemble	2.589	1.607	62/192	163/192	3.669	2.323	51/192	146/192
KITCOVIDhub-mean_ensemble	2.589	1.607	62/192	163/192	3.669	2.323	51/192	146/192

Model	Germany 3 wk ahead death	Poland 3 wk ahead death	Germany 4 wk ahead death	Poland 4 wk ahead death				
	AE	WIS	C0.5	C0.95	AE	WIS	C0.5	C0.95
epiforecasts-EpiNo2	66	85/192	154/192	136	95	81/192	149/192	
FIAS_FZJ-Epi1Ger	54	31/192	86/192	96	66	25/192	98/192	
IHME-CurvFit								
ITW-county_epi_repro	23	66/192	151/192	52	34	60/192	148/192	
Karlen-pypm	36	79/192	177/192	84	49	63/192	164/192	
LeipzigMISE-SECIR								
USC-Sikhalpha	36	67/192	158/192	65	45	57/192	156/192	
KIT-baseline	54	48/192	133/192	96	69	38/192	109/192	
KIT-extrapolation_baselines	76	69/192	150/192	157	106	68/192	144/192	
KIT-time_series_baseline	90	72/192	149/192	178	130	61/192	140/192	
KITCOVIDhub-inverse_wis_ensemble	35	79/192	178/192	77	51	74/192	171/192	
KITCOVIDhub-mean_ensemble	39	84/192	179/192	86	58	85/192	171/192	
KITCOVIDhub-median_ensemble	32	92/192	182/192	70	45	77/192	176/192	
KITCOVIDhub-mean_ensemble	32	92/192	182/192	70	45	77/192	176/192	

Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.
Table 6: Forecast evaluation for Germany and Poland, 1 and 2 weeks ahead (cumulative scale, based on RKI/MZ data). Co and C95 denote coverage rates of the 50% and 95% prediction intervals; AE and WIS stand for the absolute error and mean weighted interval score.

Model	Germany 1 wk ahead cumul case	Poland 1 wk ahead cumul case	Germany 2 wk ahead cumul case	Poland 2 wk ahead cumul case	Germany 1 wk ahead cumul death	Poland 1 wk ahead cumul death	Germany 2 wk ahead cumul death	Poland 2 wk ahead cumul death
epiforecasts-EpiExpert	8.921	5.605	4/12	12/12	25,991	16,113	4/12	11/12
epiforecasts-EpiNow2	14.087	11.023	8/12	9/12	42,806	32,126	7/12	9/12
FIAS-EpiJEnsemble	10.859	6.690	6/12	11/12	35,351	21,697	2/12	3/12
Imperial-ensemble2	7.517	5.379	5/12	8/12	36,184	19,526	4/12	8/12
ITWW-county_repro	15.223	12.418	1/12	3/12	46,473	37,889	1/12	2/12
Karlen-pypm	18.532	13.629	6/12	11/12	53,323	38,243	4/12	11/12
LANL-GrowthRate	12.623	10.542	9/12	12/12	24,933	23,423	9/12	12/12
LeipzigMISE-SECIR	17.708	12.470	0/12	5/12	41,912	29,444	3/12	12/12
MIT_CovidAnalytics-DELPHI	9.11	5.600	4/12	11/12	1,593	987	4/12	8/12
SDSC-ISG-TrendModel	10.394	3.84			40,016	30,407	2/12	7/12
KIT-baseline	12.756	7.993	5/12	11/12	35,996	26,100	2/12	11/12
KIT-extrapolation_baseLine	8.823	5.715	6/12	12/12	31,598	19,803	5/12	9/12
KIT-time_series_baseLine	15.583	10.281	3/12	9/12	47,712	33,183	3/12	8/12
KITCOVIDhub-inverse_wis ensemble	10.649	6.614	5/12	11/12	32,451	20,251	4/12	10/12
KITCOVIDhub-mean ensemble	9.715	6.000	8/12	12/12	31,815	19,363	6/12	12/12
KITCOVIDhub-median ensemble	8.118	5.344	6/12	11/12	27,596	18,028	5/12	12/12
MIT_CovidAnalytics-DELPHI	5.173	4.978	5/12	8/12	19,929	15,373	3/12	9/12
MOCOs-agent1	12,372	9,851	5/12	10/12	35,323	29,915	4/12	10/12
USCS-SkAlpha	10.405	6.919	4/12	10/12	42,376	32,924	1/12	11/12
KIT-baseline	16,407	9.736	5/12	10/12	44,834	32,767	2/12	6/12
KIT-extrapolation_baseLine	9,448	5,992	12/12	10/12	36,410	27,616	3/12	9/12
KIT-time_series_baseLine	10,784	7,787	9/12	10/12	41,180	29,143	5/12	9/12
KITCOVIDhub-inverse_wis ensemble	8,743	5,680	5/12	11/12	28,915	18,765	5/12	10/12
KITCOVIDhub-mean ensemble	8,448	5,465	8/12	11/12	28,569	18,187	5/12	12/12
KITCOVIDhub-median ensemble	6,334	4,402	8/12	11/12	28,772	19,818	4/12	10/12

* Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.
Table 7: Forecast evaluation for Germany and Poland, 3 and 4 weeks ahead (cumulative scale, based on RKI/MZ data). \(C_{0.5} \) and \(C_{0.95} \) denote coverage rates of the 50% and 95% prediction intervals; AE and WIS stand for the mean absolute error and mean weighted interval score.

Model	3 wk ahead cumulative case	4 wk ahead cumulative case	3 wk ahead cumulative death	4 wk ahead cumulative death
	AE	WIS	AE	WIS
	3/12	7/12	8/12	12/12
epiforecasts-EpiExpert	72,293	53,494	95	95
epiforecasts-EpiNov2	71,693	52,894	95	95
Imperial-ensemble	71,293	52,494	95	95
Imperial-ensemble2	70,893	51,994	95	95
Imperial-ensemble2	70,493	51,094	95	95
Imperial-ensemble2	69,993	50,194	95	95
Imperial-ensemble2	69,493	49,294	95	95
Imperial-ensemble2	68,993	48,394	95	95
Imperial-ensemble2	68,493	47,494	95	95
Imperial-ensemble2	67,993	46,594	95	95
Imperial-ensemble2	67,493	45,694	95	95
Imperial-ensemble2	66,993	44,794	95	95
Imperial-ensemble2	66,493	43,894	95	95
Imperial-ensemble2	65,993	42,994	95	95
Imperial-ensemble2	65,493	42,094	95	95
Imperial-ensemble2	64,993	41,194	95	95
Imperial-ensemble2	64,493	40,294	95	95
Imperial-ensemble2	63,993	39,394	95	95
Imperial-ensemble2	63,493	38,494	95	95

The copyright holder for this preprint this version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.05.21265810doi: medRxiv preprint

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license.
Table 8: Forecast evaluation for Germany and Poland, 1 and 2 weeks ahead (incidence scale, based on JHU)

Model	1 wk ahead case (JHU)	2 wk ahead case (JHU)	1 wk ahead death (JHU)	2 wk ahead death (JHU)								
	AE	WIS	C0.95									
epiforecasts-EpiExpert	13,319	8,491	1/12	22,391	15,479	2/12	336	226	2/12	485	323	2/12
epiforecasts-EpiNow2	14,041	10,182	12/12	31,439	22,548	6/12	284	196	11/12	601	424	7/12
FIAS_FZJ-Epi1Ger	14,650	9,740	2/12	27,022	17,565	1/12	389	299	2/12	636	468	2/12
IHME-CurveFit	481											
Imperial-ensemble2	*234	*155	7/10	*214	*135	9/10						
itwm-dSEIR	9,919	7,887	6/12	20,214	14,003	5/12	492	319	6/12	518	336	6/12
ITWW-county_repro	17,888	15,162	4/12	33,039	27,132	1/2	577	483	2/12	259	204	1/2
Karlen-pypm	22,754	16,794	4/12	34,263	25,765	4/12	383	253	6/12	556	414	2/12
LANL-GrowthRate	12,175	10,877	9/12	17,749	14,958	9/12	286	193	6/12	457	286	6/12
LeipzigIMSE-SECIR	14,283	11,458	2/12	28,741	20,567	2/12	406	292	7/12	912	656	4/12
MIT_CovidAnalytics-DELPHI	*15,629	*10,544	5/11	*23,970	*16,970	3/11	*777	*468	*7/12	*763	*452	*7/12
SDSC_BSG-TrendModel	9,981											
German	13,319	8,491	2/12	22,391	15,479	2/12	336	226	2/12	485	323	2/12
C	9,919	7,887	6/12	20,214	14,003	5/12	492	319	6/12	518	336	6/12
C	17,888	15,162	4/12	33,039	27,132	1/2	577	483	2/12	259	204	1/2
C	22,754	16,794	4/12	34,263	25,765	4/12	383	253	6/12	556	414	2/12
C	12,175	10,877	9/12	17,749	14,958	9/12	286	193	6/12	457	286	6/12
*Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.												
Germany

Model	3 wk ahead case (JHU)	4 wk ahead case (JHU)	3 wk ahead death (JHU)	4 wk ahead death (JHU)
epiforecasts-EpiExpert	30,920 20,680	38,187 24,940	724 470 3/12 11/12	971 646 2/12 9/12
epiforecasts-EpiNow2	51,165 35,835	74,985 54,568	946 659 6/12 9/12	1,260 866 6/12 9/12
FIAS_FZJ-EpiILGer	37,482 25,141	52,812 36,746	871 592 1/12 7/12	1,071 678 1/12 6/12
IHME-CurveFit				
Imperial-ensemble2				
itwm-dSEIR	31,973 19,974	47,231 30,301	532 335 5/12 12/12	539 337 5/12 12/12
ITWW-county_repro	48,002 38,724	61,365 53,500	330 246 2/14 4/12	781 625 1/12 1/12
Karlen-pypm	55,203 39,875	91,822 66,228	952 628 0/12 10/12	1,342 939 0/12 7/12
LANL-GrowthRate	23,138 17,800	32,959 22,202	722 457 5/12 11/12	1,076 675 6/12 11/12
LeipzigMISE-SECIR	48,868 33,487	77,302 54,290	1,589 1,102 3/12 8/12	2,526 1,798 2/12 7/12
MIT-CovidAnalytics-DELPHI	*29,198 22,885	*39,778 31,367	*718 465 9/12 12/12	680 488 9/12 12/12
SDSC-NSG-TrendModel				
USC-SiKlambda	35,113 26,616	49,985 39,839	815 519 3/12 8/12	948 619 2/12 7/12
KIT-baseline	37,102 28,457	46,124 37,251	1,188 888 2/12 6/12	1,529 1,159 1/12 3/12
KIT-extrapolation_baseline	36,004 23,750	54,153 37,117	1,351 866 2/12 9/12	1,917 1,302 2/12 9/12
KIT-time_series_baseline	46,542 34,947	63,585 47,872	1,318 981 6/12 10/12	1,815 1,452 5/12 10/12
KITCOVIDhub-inverse_wissemble	35,449 21,286	49,251 31,504	505 320 9/12 12/12	717 473 8/12 12/12
KITCOVIDhub-mean_ensemble	35,296 21,200	48,995 31,027	537 319 8/12 12/12	745 454 8/12 12/12
KITCOVIDhub-median_ensemble	31,963 19,924	46,236 28,865	553 343 4/12 12/12	727 475 5/12 12/12

Note: The copyright holder for this preprint this version posted November 8, 2021. doi: medRxiv preprint

Poland

Model	3 wk ahead case	4 wk ahead case	3 wk ahead death	4 wk ahead death
epiforecasts-EpiExpert	49,190 36,126	66,413	381 248 7/12 11/12	538 316 5/12 11/12
epiforecasts-EpiNow2	63,993 47,204	94,344	564 382 7/12 11/12	640 385 5/12 11/12
Imperial-ensemble2	61,128 46,092	96,644	589 324 7/12 11/12	685 390 5/12 11/12
KIT-baseline	37,055 29,147	61,666	547 314 2/12 6/12	422 350 2/12 6/12
KIT-extrapolation_baseline	37,055 29,147	61,666	547 314 2/12 6/12	422 350 2/12 6/12
KIT-extrapolation_median_ensemble	37,055 29,147	61,666	547 314 2/12 6/12	422 350 2/12 6/12
KITCOVIDhub-inverse_wis ensemble	37,055 29,147	61,666	547 314 2/12 6/12	422 350 2/12 6/12
KITCOVIDhub-mean_ensemble	36,635 28,158	53,331	449 291 2/12 6/12	494 343 2/12 6/12
KITCOVIDhub-median_ensemble	35,055 27,566	48,995	529 325 2/12 6/12	543 376 2/12 6/12

Note: Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.

Table 9. Forecast evaluation for Germany and Poland, 3 and 4 weeks ahead (arbitrarily scale based on Huawei data), C_0.9 and C_0.95 denote coverage rates of the 50% and 95% prediction intervals; AE and WIS stand for the mean absolute error and mean weighted interval score.
Table 10: Forecast evaluation for Germany and Poland, pooled across evaluation periods, 1 and 2 weeks ahead (incidence scale, based on RKI/MZ data).

Model	1 wk ahead case			2 wk ahead case			1 wk ahead death			2 wk ahead death						
	AE	WIS	C0.5	C0.95	AE	WIS	C0.5	C0.95	AE	WIS	C0.5	C0.95				
epiforecasts-EpiExpert	10.653	6.945	8/22	19/22	24,560	17,271	7/21	9/21	249	171	11/22	18/22	433	285	7/21	17/21
epiforecasts-EpiNow2	10.355	7.229	13/22	17/22	32,772	23,970	11/21	15/21	246	157	14/22	18/22	493	339	11/21	16/21
FIAS,FZJ-Epi1Ger	9.118	6.028	11/22	20/22	27,174	18,523	6/21	14/21	354	285	5/22	7/22	599	457	4/21	10/21
IHME-CurveFit	12.620*	10.028*	14/21	18/21	14,409*	12,878*	8/11	16/21	190**	180**	16/22	18/22	336**	326**	11/21	15/21
Imperial-ensemble2	15.832	6.451	10/22	20/22	21,475	15,287	7/21	13/21	279	200	9/21	13/21	463	340	8/21	12/21
item-dSEIR	15.942	6.451	10/22	20/22	21,475	15,287	7/21	13/21	279	200	9/21	13/21	463	340	8/21	12/21
ITWW-county_repro	23.951	19.913	1/22	5/22	45,782	37,544	0/21	4/21	476	449	1/22	2/22	393	342	2/21	5/21
Karlin-pym	6.451	10/22	20/22	21,475	15,287	7/21	13/21	279	200	9/21	13/21	463	340	8/21	12/21	
LANL-GrowthRate	23.320*	15.271*	14/19	19/19	36,344*	23,394*	11/18	18/18	285*	187*	9/19	19/19	436*	281*	9/18	17/18
LeipzigMISE-SECIR	14.697	13.366	4/17	11/17	37.135	36.634	2/6	8/6	484	318*	7/7	13/17	828	621*	5/16	10/16
MIT-CovidAnalytics-DELPHI	24.290*	17.904*	7/19	14/19	44,566*	33,677*	6/18	10/18	671*	436*	6/20	14/20	636*	397*	7/19	17/19
SDSC-JSG-TrendModel	9.271	400														
UCLA-SoEIR	16.613	6.451	10/22	20/22	21,475	15,287	7/21	13/21	279	200	9/21	13/21	463	340	8/21	12/21
USC-SiKalpha	15.355	6.028	11/22	20/22	27,601	20,850	5/21	13/21	412	270	9/22	20/22	804	518	7/21	13/21
KIT-baseline	10.274	7.900	13/22	22/22	28,704	19,614	10/21	16/21	341	208	11/22	21/22	624	385	9/21	18/21
KIT- extrapolation_baseline	15.492	10.614	8/22	18/22	37,524	24,854	7/21	16/21	330	230	14/22	21/22	754	521	10/21	19/21
KIT-time_series_baseline	11.055	7.141	12/22	21/22	30,599	19,896	6/21	15/21	200	134	13/22	21/22	285	181	11/21	20/21
KITCOVIDhub-inverse_wis_ensemble	25.290	17.290	7/19	14/19	48,566	36,677	6/18	10/18	671	436	6/20	14/20	636	397	7/19	17/19
KITCOVIDhub-mean_ensemble	12.137	7.732	13/22	20/22	20,563	15,902	7/21	17/21	213	146	10/22	21/22	326	199	10/21	19/21
KITCOVIDhub-median_ensemble	9.249	6.221	13/22	21/22	27,149	17,988	8/21	17/21	217	143	13/22	20/22	358	221	10/21	19/21

* Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.

The copyright holder for this preprint this version posted November 8, 2021. doi: medRxiv preprint
Model	3 wk ahead case	4 wk ahead case	3 wk ahead death	4 wk ahead death
	AE WIS C₀.₅ C₀.₉₅			
epiforecasts-EpiExpert				
epiforecasts-EpiNow2				
FIAS_FZJ-EpiGer				
HME-CurveFit				
Imperial-ensemble2				
itwm-dSEIR				
ITWW-County_repro	70,730	58,490	4/12	9/12
Karlen-pypm	4/12	9/12	2/12	8/12
LANL-GrowthRate	45.698*	29.603*	9/16	15/16
Leipzig-BMSE-SECIR	62.495	72.724*	1/15	8/15
MIT-CovidAnalytics-DELPHI	71.468*	58.657*	10/18	8/18
epiforecasts-EpiExp	55,346	40,055	1/20	5/20
epiforecasts-EpiNow2	73,258	51,543	5/20	10/20
ICM-agentModel	41,792	35,988	5/20	8/20
HME-CurveFit	49,788	33,166	6/20	17/20
Imperial-ensemble2	41,039	30,289	5/20	9/20
ITWW-County_repro	56,618	38,957	5/20	15/20
KITCOVIDhub-inverse_wis_ensemble	53,170	35,696	4/20	12/20
KITCOVIDhub-mean_ensemble	47,788	33,166	6/20	17/20
KITCOVIDhub-median_ensemble	56,346	40,055	1/20	5/20
KIT-extrapolation baseline	55,156	42,440	2/20	10/20
KIT-time-seriesbaseline	83,345	62,296	7/20	11/20
KITCOVIDhub-inverse_wis_ensemble	54,734	39,215	4/20	12/20
KITCOVIDhub-mean_ensemble	56,238	39,027	5/20	13/20
KITCOVIDhub-median_ensemble	54,928	40,367	4/20	11/20

* Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.

Table 1: Forecast evaluation for Germany and Poland, pooled across evaluation periods, 3 and 4 weeks ahead, based on RKI/MZ data. C₀.₅ and C₀.₉₅ denote median and worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two thirds of the evaluation period, results are omitted.