Can the Regime Type (Democracy versus Autocracy) Explain the COVID-19 Recovery Rates?

Yuval Arbel¹ · Yifat Arbel² · Amichai Kerner³ · Miryam Kerner⁴

Received: 30 July 2021 / Accepted: 27 April 2022
© Fudan University 2022

Abstract
COVID-19 is an example of worldwide and unanticipated global crisis. This study provides an example of crisis management in different countries and regime types. Previous studies provide evidence supporting reduced infant mortality as well as increased life expectancy with higher levels of democracy. These findings lead to the conventional wisdom that democracies provide conditions that promote better health for their citizens. The current study seeks to investigate health–democracy relationship in the context of recovery from COVID-19 disease. Unlike the conventional wisdom and based on 169 countries and regions around the world, for which information regarding accumulated recovery rates from coronavirus and Freedom House measures of democracy are available, findings suggest better projected prospects of recovery from COVID-19 disease in more “autocratic” countries. These findings may be explained on the grounds of (1) inefficient law enforcement in more democratic countries and (2) stronger autoimmune response (a cytokine storm, associated with COVID-19 severity) in Western countries due to excessive hygienic environmental conditions and, consequently, lack of exposure to different pathogens.

Keywords COVID-19 · Life expectancy · Democracy · Freedom house measures

JEL Classification H75 · I14

1 Introduction

A conventional assumption in political economy is that compared to “autocratic” countries, democratic countries provide conditions that promote better health for their citizens in terms of increased life expectancy and low infant mortality. Preston

Yuval Arbel, Yifat Arbel, Amichai Kerner and Miryam Kerner all the four co-authors contributed equally to this manuscript.

✉ Yuval Arbel
YuvalAr@wgalil.ac.il; yuval.arbel@gmail.com

Extended author information available on the last page of the article

Published online: 09 June 2022
(1975) tested the relationship between average life expectancy and income per capita in different countries and selected years (1900, 1930, 1960). The author demonstrated that the largest gains in life expectancy are associated with increases in per capita income at low-income levels. Likewise, Barro (1997) demonstrated a non-linear relationship between evolvement of electoral rights and growth rates. Finally, several studies demonstrated better life expectancy in democracies and after democratization processes (Besley and Kudamatsu 2006; Kudamatsu 2012).

The incentive structure, which promotes health services in democracies, might emanate from the objective function of the politicians to maximize their prospects for re-election. Consequently, improved health services may, in turn, promote public satisfaction (e.g., Martinez-Bravo et al. 2012, who demonstrated that elections significantly increase public goods expenditure in rural China Mainland). In this context, Barro (1999) states that: “But in places that have already achieved a moderate amount of democracy, a further increase impairs growth because the dominant effect comes from the intensified concern with social programs that redistribute resources.” (page S159). Also, democracies are based on better information flow, which, in turn, permits elevated awareness and adoption of healthier lifestyle regardless of income redistribution (e.g., Wigley and Akkoynulu-Wigley 2011).

Following (Arbel et al. 2020), who demonstrated negative relationships between COVID-19 infection–population ratio and lower levels of political rights and civil liberties in 168 countries, the objective of the current study is to investigate further whether democracy indeed promotes better health for their citizens, particularly in the context of the COVID-19 pandemic. In line with Arbel et al. (2020), and unlike the conventional wisdom, research findings suggest better prospects of recovery for infected citizens of 169 countries with lower levels of political rights and civil liberties. Moreover, the conclusion that projected mortality rates (mortality–cases ratio) remain unchanged regardless of the level of democracy in terms of political rights and civil liberties is also supported empirically.

The remainder of the article is organized as follows. Section 2 provides literature review, while Sect. 3 presents a comparison between India and China Mainland. Section 4 provides the descriptive statistics of the variables, which are later incorporated in the empirical model. Section 5 describes the empirical model and Sect. 6 presents the results. Section 7 discusses the findings. Finally, Sect. 8 concludes and summarizes the article.

2 Literature Review

This section discusses the way “autocracies” and democracies address crisis management. These include: the SARS and COVID-19 crises (Schwartz 2014; Shih 2020; Burkle 2020; Greer et al. 2020); banking crises, and particularly the sub-prime crisis (Guillermo 2009); the impact of oil shocks and world recession on Taiwan and South Korea (Jeon 1994); the protest against the EU (Mullis et al. 2016).

Schwartz (2014) compares the relatively effective response to the 2002–2003 SARS outbreak in China Mainland with the relatively ineffective intervention in Taiwan, focusing on three variables that constitute China Mainland’s
‘authoritarian advantage’—centralized decision-making powers; public support; and relations with the mass media.

Referring to the COVID-19 pandemic, and based on Shih (2020), Greer et al. (2020) suggest that on the one hand, “autocratic” regimes are effective at forceful actions. On the other hand, authoritarian regimes inhibit the internal and external flow of information.

Burkle (2020) analyzes “autocratic” states and the way they address environmental and public health issues, including COVID-19: China Mainland, North Korea, Iran, Turkey and several African nations. On the one hand, the author underestimates the effect of forceful actions in “autocratic” countries. On the other hand, the author stresses the consequences of unreliable flow of information and shortage of medical and sewage infrastructure.

Jeon (1994) suggests that for the nondemocratic third world leaders, a crisis situation can be seen as a superb chance to strengthen or even perpetuate political power. Yet, when South Korea and Taiwan faced similar shocks in the 70s of the twentieth century (e.g., the oil shock; worldwide recession; withdrawal of US forces from South Korea; Taiwan lost seat in United Nations Security Council to the People’s Republic of China), surprisingly, the concrete modes of their crisis responses turned out to contrast each other. South Korea drastically closed the political door via Yushin (1972), overwhelmed by Park Chung Hee’s hidden motives to perpetuate his personal rule. By contrast, Taiwan adopted a progressive political opening with aimed at diffusing societal challenges and broadening its power base. Alongside, on the economic front, South Korea aggressively launched capital-intensive heavy-chemical industrialization (HCI) as a means to legitimate the illegitimate Yushin system, whereas Taiwan took a partial HCI path with a great caution and flexibility not to violate the then international division of labor. As well, such varying modes of crisis management resulted in contrasting consequences by 1979–1980; South Korea was mired in another total crisis, compounded by political turmoil and negative GNP growth, while Taiwan continued to enjoy socio-political stability and positive economic growth.

Wang (2014) exemplifies the ability to implement a forceful action based on the Chinese Communist party decision. The author discusses the “guerrilla-style” decision to radically expand Chinese college enrollment in June 1999. The top leadership ignored opposition from the Ministry of Education (MOE), overturned established policies and assumed de facto control over MOE bureaucratic power.

As can be seen from the literature review, crisis management varies over time, space and the type of the regime involved (autocracy vs. democracy).

Ran and Jian (2021) discuss one of the advantages of the “autocratic” states, namely, blame avoidance due to lack of election pressures. The conventional Chinese version of this “blame game” is to deflect the blame downward to those at the lower levels, who are in a less influential position in the administrative system. Yet, the initial outbreak stages of the COVID-19 were unusual in that the deflection of blames was targeted upward, due to public appeal for transparency.

Su et al. (2021) surveyed online the responses of Chinese citizens to the rigorous lockdown until April 8, 2020. Based on the survey outcomes, the authors argue that
local governments in many parts of the country gained more trust than usual, narrowing the trust gap with the central government.

3 A Comparison Between India (Democracy) and China Mainland (“Autocracy”)

Appendix A provides a comparison between India (democracy) and China Mainland (autocracy). It is noteworthy that the level of democracy and autocracy varies across time, government status, and government policy (information flow, strategy of addressing the pandemic).

We chose to compare between similar countries in terms of population, infrastructure, pollution levels, etc. Both countries comprise more than 37% of the world’s population. In terms of size of population, the countries are similar. Yet, regarding political rights and civil liberties, while India receives a relatively high grade (2–3) and is considered “free”, China Mainland receives the worst grades (7) and is considered “not free”.

Jiang (2021) stresses the effectiveness in addressing the pandemic via the most comprehensive lockdown in history of Wuhan Province in China. The author demonstrates the more efficient mechanism “autocracies” have to cope with pandemics. This is because of an enhanced opportunity to impose lockdowns and ensure compliance to these restrictions compared to democracies. In that respect—India and China provide an excellent opportunity for comparison.

Compared to India, and as of September 19, 2021, the number of COVID-19 cases (33,448,163 vs. only 95,189) and the number of deaths from SARS-CoV2 virus (444,869 vs. 4,636) is much smaller in China Mainland. From this perspective, and in absolute figures, China Mainland is much more efficient than India, despite the fact that both countries have comparable levels of population (1,380,004,385 vs. 1,439,323,776 persons). While India is located in the 99th percentile, China Mainland is located in the 24th percentile. This is also demonstrated by the cases–population ratio (in India—2.42377%; in China Mainland—0.006648%).

4 Descriptive Statistics

Table 1 reports the descriptive statistics applied to 169 countries. Appendix B gives the full list of countries and reports recovery rates from COVID-19 and “Freedom Levels”. Information regarding COVID-19 cases and recovered persons is from September 19, 2021. The PR and CI measures are based on the Freedom House ranking of 2019 across countries. The GDP per capita of countries are based on information from 2018 (1 year prior to the outburst of the COVID-19 pandemic—see footnote 1 and “sect. 7”).

The mean recovery–cases ratio is 75.18% and the median is 82.13% (Rec_Per). Given that unlike the median, the mean is affected by extreme values at the tail of the distribution, and the implication is a left-tailed distribution. Indeed, this is clearly demonstrated in Fig. 1, where the distribution is skewed to the left (skewness = -1.168882). Based on the joint skewness and kurtosis test for
Table 1 Descriptive statistics

Variable	Definition	Obs	Mean	Median	Std. Dev	Min	Max
Recovered	Accumulated number of individuals who recovered from coronavirus	169	182,594	10,779	787,901	0	7,137,228
Cases	Accumulated number of coronavirus cases	169	238,237	17,943	1,003,181	3	8,725,151
Rec_Per	Recovered ÷ cases	169	0.7518	0.8213	0.2189	0	1
PR	Political rights on a Likert scale of 1 = the highest; 7 = the lowest grade	169	3.5858	3	2.1561	1	7
CL	Civil liberties on a Likert scale of 1 = the highest; 7 = the lowest	169	3.4852	3	1.8584	1	7
PR10	PR × \(\frac{10}{7}\) = political rights on a scale of 1–10	169	5.1226	4.2857	3.0802	1.4286	10
CL10	CL × \(\frac{10}{7}\) = civil liberties on a scale of 1–10	169	4.9789	4.2857	2.6549	1.4286	10
Free	1 = entirely free countries; 0 = otherwise	169	0.3905	0.4893	0	1	
Partly_Free	1 = partly free country; 0 = otherwise	169	0.2604	0.4401	0	1	
Not_Free	1 = non-free country; 0 = otherwise	169	0.3491	0.4781	0	1	

Measures of democracies for 2020 are based on the Freedom House measures (2021) available at: https://freedomhouse.org/countries/nations-transit/scores
normality, the calculated \(\chi^2 \) statistic, 24.80, is greater than the critical \(\chi^2 \) statistics with two degrees of freedom at the 1% level, 9.2103.

This left-tailed distribution, which indicates the existence of outliers at the left side of the distribution, justifies the use of the least absolute deviations (LAD) estimation, which is also known as the “median regression” (Green 2012). Consequently, we run this procedure in subsequent sections as a robustness test.

Other variables in Table 2 include three measures of democracy published by The Freedom House (available at: https://freedomhouse.org/countries/nations-transit/scores). The political rights (PR) and civil liberties (CL) are measured on a Likert scale where 1 = the highest and 7 = the lowest grades, measuring political rights and civil liberties in the country. For convenience, we converted the Likert scale to a 1–10 scale, where \(1.4286 \times 10 \) is the highest and \(7 \times 10 \) is the lowest grade for political rights (PR10) and civil liberties (CL10). While the median of political rights and civil liberties is “3”, the mean is “3.5858” and “3.4852”, respectively. This might generate the impression of a right-tailed distribution, namely, high prevalence of countries with high level of political rights and civil liberties. Yet, when stratified by three categories, only 39.05% of the 169 countries are classified as “entirely free” (Free), 26.04% are classified as “partially free” (Partial) and 34.91% as “not free” (Not).

5 The Empirical Model

Consider the following empirical model applied separately to three Freedom House measures:
where $j = 1, 2, 3$, $\text{Rec} _{\text{Per}}$ (the dependent variable) represents the ratio between the accumulated number of recovery cases and coronavirus cases on October 25, 2020 (approximately 8 months after the outburst of the pandemic), $\text{Freedom} _{\text{House} _{\text{Measure} } _{1,j}}$, and $\text{Freedom} _{\text{House} _{\text{Measure} } _{2,j}}$ are the independent variables, $\alpha _ {1,j}, \beta _ {1,j}, \gamma _ {1,j}$ are parameters, and $\mu _ {1,j}$ is the stochastic random disturbance term.

Given that the dependent variable is bounded between 0 and 1 ($0 \leq \text{Rec} _{\text{Per}} \leq 1$ —the countries cannot have a number of recovered cases, which is greater than the number of coronavirus cases—this model is also known as the linear probability model (LPM, e.g., Johnston and Dinardo 1997: 414–418).

Referring to the independent variable(s), we use two quantitative measures and one qualitative measure of democracies ($j = 1, 2, 3$):

1) $\text{Freedom} _{\text{House} _{\text{Measure} } _{1,1}} = \text{PR} 10$ and $\text{Freedom} _{\text{House} _{\text{Measure} } _{2,1}} = \text{0}$, where 0 is a column vector of zeros. The original scale of the political rights (PR) measure is a Likert scale from PR = 1, the highest to PR = 7, the lowest grade for political rights. After rescaling to a 1–10 scale (PR10 = PR · 10), the model takes the form where PR10 = 1.4286 is the highest and PR10 = 10 is the lowest grade.

2) $\text{Freedom} _{\text{House} _{\text{Measure} } _{1,2}} = \text{CL} 10$ and $\text{Freedom} _{\text{House} _{\text{Measure} } _{2,2}} = \text{0}$, where 0 is a column vector of zeros. The original scale of the Civil Liberties (CL) meas-

Table 2: Coronavirus recovery and measures of democracies

Method	(1)	(2)	(3)	(4)	(5)	(6)
LPM	LPM	LPM	Fractional	Fractional	Fractional	
VARIABLES	Rec_Per	Rec_Per	Rec_Per	$\Phi [\text{Rec} _{\text{Per}}]$	$\Phi [\text{Rec} _{\text{Per}}]$	$\Phi [\text{Rec} _{\text{Per}}]$
Constant	0.673***	0.668***	0.693***	0.433***	0.420***	0.505***
	(< 0.01)	(< 0.01)	(< 0.01)	(2.11 × 10⁻⁵)	(0.000105)	(5.15 × 10⁻⁹)
PR10	0.0154***	–	–	0.0498***	–	–
	(0.00425)	–	–	(0.00448)	–	–
CL10	–	0.0169***	–	–	0.0537***	–
	–	(0.00697)	–	–	(0.00746)	–
Partly_free	–	–	0.0815**	–	–	0.249**
	–	–	(0.0397)	–	–	(0.0363)
Not_free	–	–	0.116***	–	–	0.372***
	–	–	(0.00604)	–	–	(0.00623)
Observations	169	169	169	169	169	169
F-Statistics	8.40***	7.46***	4.05**	8.08***	7.16***	8.36**

Columns (1), (2) and (3) [(4), (5) and (6)] report the outcomes obtained from LPM, which is a simple OLS procedure [the fractional probit regression estimation]. The dependent variable $\text{Rec} _{\text{Per}}$ is the ratio between the number of recovered and coronavirus cases. In columns (3) and (6), the base category is “Free”. Robust p values are given in parentheses

** $p < 0.05$

*** $p < 0.01$
ure is a Likert scale from \(CL = 1 \), the highest to \(CL = 7 \), the lowest grade for political rights. Once again, we rescaled the model to 1–10 scale, \((CL10 = CL \cdot \frac{10}{7})\), so that \(CL10 = 1.4286 \) is the highest and \(CL = 10 \) is the lowest grade.

3) Freedom_House_Measure_{1,3} = PARTLY_FREE and Freedom_House_Measure_{2,3} NOT_FREE are dummy variables, which receive 1 if the country was defined as “partly free” or “not free” and zero otherwise. The base category is “free”, so that the constant term \((\alpha_{1,3})\) represents the projected probability of coronavirus infection in the case that the country is free and \(\beta_{1,3}\gamma_{1,3} \) represent the projected probability differences with respect to the base category.

Referring to the linear probability model, a major weakness of the linear probability model is that it does not constrain the predicted value to lie between 0 and 1 (Johnston and Dinardo 1997: 417). Consequently, consider the following model (e.g., Papke and Woldridge 1996; Woldridge 2010):

\[
\Pr(0 < \text{Case}_\text{Per} < 1) = F(\alpha_{1,j} + \beta_{1,j}\text{Freedom_House_Measure}_{1,j} + \gamma_{1,j} + \text{Freedom_House_Measure}_{2,j}').
\]

where \(F(\text{Case}_\text{Per}) = \Phi(Z) = \frac{\exp(-\mu/2\sigma^2)}{\sqrt{2\pi}\sigma^2} \) (the cumulative normal distribution function). Given the disadvantage of this model (interpretation of the coefficients is not straightforward), we converted the estimation results obtained from this model to figures describing projected probabilities of recoveries on the vertical axis and Freedom House measures on the horizontal axis.

Finally, as a robustness test, we replace the LPM, namely, the simple OLS procedure, by the least absolute deviation (LAD) procedure, also known as a “median regression”. Recall that our dependent variable Rec_Per is skewed to the left, namely, OLS estimation outcomes are affected by outliers. The median regression is the conventional tool to address this concern (e.g., Green 2012: 243–244).

6 Results

Table 2 reports the regression outcomes based on the LPM and the fractional probit. The table demonstrates that a one-point increase in PR10 and CL10 is associated with an anticipated rise in the probability of recovery from coronavirus by 1.54\% \((p=0.00425)\) – 1.69\% \((p=0.00697)\). The indication is that worsening the political rights and civil liberties is associated with an anticipated improvement in recovery rates. A shift from entirely free countries (the base category) to partly free countries is associated with an 8.15\% \((p=0.0397)\) rise in the projected prospects of recovery from coronavirus. A shift from entirely free countries (the base category) to countries that are not free is associated with an 11.6\% \((p=0.00604)\) rise in projected prospects of recovery from coronavirus.

Figures 2 and 3 are based on the regression outcomes obtained from columns 4 and 5 in Table 3 and gives the projected probability of recovery vs. the political rights [civil liberties] measure on the 1–10 scale. As the figure demonstrates, for the best countries in political right [civil liberties] terms, the projected likelihood to recover from coronavirus is 68.55\%
For the worst countries in political rights [civil liberties] terms, the projected likelihood to recover from coronavirus rises to 82.41% [83.07%]—a 20.22% increase in projected recovery rates. Moreover, the 95% projected upper bound for the best classified democracies $PR_{10} = 1$ [$CL_{10} = 1$] is a 74.63% [74.58%] projected likelihood of recovery. The 95% projected lower bound for the worst classified democracies, $PR_{10} = 10$ [$CL_{10} = 10$], is a 77.23% [77.21%] projected likelihood of recovery. Still, the 3.53% better projected recovery prospects is still preserved even under these circumstances.

Finally, as a robustness test, Table 3 reports the regression outcomes based on the LPM and the median regression procedures, where the latter approach better addresses outliers. The estimated coefficient of PR_{10} [CL_{10}] rises by 40.91% = $\begin{pmatrix} 0.0217 \\ 0.0154 \end{pmatrix} - 1$ from 1.54% ($p=0.00425$) [1.69% ($p=0.00697$)] to 2.17% ($p=0.000662$) [2.41% ($p=0.000524$)]—with a shift from OLS to the median regression procedure. Finally, referring to the classifications to “entirely free”, “partially free” and “not free”, the median regression procedure reduces the estimated coefficient of the dummy variable “Partial” from 8.15% ($p=0.0397$) to 8.00% ($p=0.118$), but raises the estimated coefficient of the dummy variable “Not_Free” by 33.62% = $\begin{pmatrix} 0.155 \\ 0.116 \end{pmatrix} - 1$—from 11.6% ($p=0.00604$) to 15.5% ($p=0.00293$).
Fig. 3 Projected recovery rates from coronavirus vs. civil liberties. Figure 3 is based on the regression outcomes obtained from column (5) in Table (2) and gives projections and 95% confidence intervals. The regression analysis is based on information obtained from 169 countries. According to the Freedom House measure for democracies, CL is the initial for political rights. The original measure was constructed on a Likert scale where 1 = countries with the highest political rights and 7 = countries with the lowest political rights. PR10 is a scaling to 1–10. Worsening the civil liberties from 1 to 10 is associated with a rise in recovery rates \(\frac{\text{Recovery}}{\text{Cases}} \) from 68.20% to 83.07%.

Table 3 Coronavirus recovery and measures of democracies: OLS vs. median regression

Method	(1)	(2)	(3)	(4)	(5)	(6)
LPM	LPM	LPM	Median	Median	Median	Median
Variables	Rec_Per	Rec_Per	Rec_Per	Rec_Per	Rec_Per	Rec_Per
Constant	0.673***	0.668***	0.693***	0.694***	0.690***	0.741***
(p < 0.01)						
PR10	0.0154***	–	–	0.0217***	–	–
(0.00425)	–	–	(0.000662)	–	–	
CL10	–	0.0169***	–	–	0.0241***	–
–	(0.00697)	–	–	(0.000524)	–	
Partly_free	–	–	0.0815**	–	–	0.0800
–	–	(0.0397)	–	–	(0.118)	
Not_free	–	–	0.116***	–	–	0.155***
–	–	(0.00604)	–	–	(0.00293)	
Observations	169	169	169	169	169	169
F-Statistics	8.40***	7.46***	4.05**	4.05**	4.05**	4.05**

Columns (1), (2) and (3) [(4), (5) and (6)] report the outcomes obtained from the LPM, which is a simple OLS procedure [median regression]. The dependent variable Rec_Per is the ratio between the number of recovered and coronavirus cases. In columns (3) and (6), the base category is “Free”. Robust p values are given in parentheses.

** p < 0.05
*** p < 0.01
Further statistical evidence, available upon request, supports the conclusion that the projected mortality rates (defined as mortality–cases ratio) remain unchanged regardless of the level of democracy in terms of political rights and civil liberties. The respective calculated p values are: $p=0.288$ for the estimated coefficient of $PR10$, $p=0.204$ for the estimated coefficient of $CL10$. Finally, estimation by median regression yields $p=0.161$ for the estimated coefficient of “Partially_Free” and $p=0.984$ for the estimated coefficient of “Not_Free”. The projected mortality rates remain around 1.71%-1.77% regardless of the grades given to political rights and civil liberties.

7 Discussion

Several interpretations may justify our findings. One possibility is non-compliance to social distancing rules and lockdown guidelines in democratic countries even after COVID-19 infection due to the incentive to defect and the preference of personal utility maximization over cooperation. In contrast to “autocratic” countries, deterrence of law enforcement system in democratic countries is ineffective (Arbel et al. 2020).

Another possible explanation is higher exposure to a variety of microbial organisms during early life in less developed countries, which happen to be more “autocratic”. In fact, 40% of the world’s population suffers from moderate-to-high water stress (Lewis and Tietenberg 2012). Moreover, the UN water development report for 2019 stresses that: “Safe drinking water and sanitation are recognized as basic human rights, as they are indispensable to sustaining healthy livelihoods and fundamental in maintaining the dignity of all human beings.”

The medical literature has long hypothesized that lack of hygienic environmental conditions (running water, sewage systems) exerts a protective effect in newborns in less developed countries (Tamburini et al. 2016). In Western countries, on the other hand, more favorable environmental factors (apparently, excessive hygienic environmental conditions and, consequently, lack of exposure to different pathogens) are suspected to have increased the penetrance of autoimmune diseases, such as celiac disease and type 1 diabetes. (Verdu and Danska 2018). Autoimmune response is closely related to COVID-19 (Hu et al. 2020; Ye et al. 2020; Gao et al. 2021).

Democracies typically help reduce mortality rates from cardiovascular disease, traffic accidents and cancer. Prevention of these non-communicable diseases requires a substantial allocation of funding for health-care delivery and transportation infrastructure, and treatment requires considerable budgets for medicine or sophisticated medical procedures. With the exception of tuberculosis, which requires expensive types of treatment, the advantage of democracies vanishes in many forms of infected diseases (Bollyky et al. 2019). As long as there is no efficient immunity against COVID-19 disease, and as an infected disease with inexpensive treatment, the advantage of democracy disappears.

In dealing with the pandemic, the following references provide further support to the differences between democratic and autocratic countries. Gerber and He (2021) discusses Sino-phobia in Russia and Kyrgyzstan prior to the COVID-19 pandemic. The authors concluded that: “Some evidence suggests that race plays a role in driving anti-Chinese views. Namely, Russian attitudes have been consistently less hostile toward European groups such as Jews and Ukrainians, even accounting for a short-term
increase in anti-Ukrainian sentiments following Russia’s annexation of Crimea and its initiation of support for violent secessionist in Eastern Ukraine in 2014.” (page 13). Qian and Hanser (2021) found that despite strong emotions initially, Wuhan residents quickly adapted to life under unprecedented lockdown. Jiang (2021) discussed the high effectiveness of the hardest lockdown in history in Wuhan province—considered to be the source of the pandemic. In sum, these references provide further support to our conclusion that coping with pandemics is easier in more “autocratic” countries.

8 Summary and Conclusions

Following the COVID-19 pandemic, the objective of the current study is to investigate whether democracy indeed promotes health. Unlike conventional thinking, research findings suggest better prospects of recovery for infected citizens of 169 countries with lower levels of political rights and civil liberties. Findings support the conclusion of the same projected mortality rates (mortality–cases ratio) regardless of the level of democracy in terms of political rights and civil liberties is also supported empirically.

One limitation of this study is the uncertainty regarding the methodology employed for measuring the number of persons who recovered from COVID-19 across countries. It could certainly be the case that the definition and identifications of COVID-19 recovered persons are different across countries. Nevertheless, this problem is typical in the literature that deals with international comparisons. Barro (1999), for example, investigates the relationship between the GDP and the level of democracy in different countries. It is not clear, however, how the reader could be certain that the GDP data in different countries are comparable and measured by the same statistical methodologies.

A second limitation is the data structure and the lack of additional important control variables. Given the data structure, there are no sufficient degrees of freedom to capture cultural (generic) differences across countries.

A third limitation is the fact that the measure of democracy employed in this study might not fully reflect all the subtle cultural features of every country. Any measure is an attempt to condense and weigh different characteristics into a single number and accordingly might miss important characteristics.

Appendix A (See Table 4)

Appendix B (See Table 5)

1 As a robustness test, and to control the wealth of the country, we supplemented the GDP per capita of 158 countries in the regression analysis. The outcomes remain robust, and, moreover, demonstrate the higher contribution of the regime type to the recovery rate compared to the GDP per capita. These findings stress further our interpretation, and particularly the importance of the regime type to the COVID-19 recovery rate.
Table 4 A comparison between India (democracy) and China Mainland (autocracy)

Variable	Definition	India	China Mainland
Cases	Accumulated number of infected in SARS-CoV2 virus as of September 19, 2021	33,448,163	95,689
Deaths	Accumulated number of deaths from COVID-19 as of September 19, 2021	444,869	4,636
Population	Population of the country	1,380,004,385	1,439,323,776
Cases_Per	Cases ÷ population	2.42377%	0.006648%
Deaths_Per	Deaths ÷ cases	1.3300%	4.844862%
PR	Political rights on a Likert scale of 1 = the highest; 7 = the lowest	2	7
CL	Civil liberties on a Likert scale of 1 = the highest; 7 = the lowest	3	6
PR10	PR × 10 = political rights on a scale of 1–10	2.8571	10
CL10	CL × 10 = civil liberties on a scale of 1–10	4.2857	8.5714
Free	1 = free countries; 0 = otherwise	Yes	No
Partly_free	1 = partly free country; 0 = otherwise	No	No
Not_free	1 = non-free country; 0 = otherwise	No	Yes

Information is taken from World Meter by countries (2021) available at: https://www.worldometers.info/coronavirus/#countries (Accessed on September 19, 2021)

In terms of the number of coronavirus cases, and despite the fact that the populations of both countries are similar in magnitude, of 223 countries India is located in the second place (the 99.103 percentile) and China Mainland is located on the 169 place (the 24.215 percentile). In terms of political rights, China Mainland receives the worst grade (7 points).
Num	Country/Region	Recovered	Freedom
1	Andorra	67.58%	Free
2	Antigua and Barbuda	82.79%	Free
3	Argentina	82.05%	Free
4	Australia	91.52%	Free
5	Austria	71.60%	Free
6	Bahamas	61.59%	Free
7	Barbados	91.63%	Free
8	Belize	61.85%	Free
9	Botswana	20.25%	Free
10	Brazil	89.65%	Free
11	Bulgaria	48.44%	Free
12	Canada	83.95%	Free
13	Cape Verde	86.77%	Free
14	Chile	95.26%	Free
15	Costa Rica	60.18%	Free
16	Croatia	68.17%	Free
17	Cyprus	43.57%	Free
18	Czech Republic	37.73%	Free
19	Denmark	79.26%	Free
20	Dominica	82.86%	Free
21	East Timor	100.00%	Free
22	Estonia	79.16%	Free
23	Finland	66.00%	Free
24	France	9.62%	Free
25	Germany	72.44%	Free
26	Ghana	98.32%	Free
27	Greece	32.45%	Free
28	Grenada	96.00%	Free
29	Guyana	74.40%	Free
30	Iceland	76.33%	Free
31	India	90.23%	Free
32	Ireland	42.01%	Free
33	Israel	94.57%	Free
34	Italy	50.63%	Free
35	Jamaica	49.14%	Free
36	Japan	92.41%	Free
37	Latvia	32.25%	Free
38	Liechtenstein	57.54%	Free
39	Lithuania	39.99%	Free
40	Luxembourg	63.96%	Free
41	Malta	64.88%	Free
42	Mauritius	90.45%	Free
43	Monaco	79.74%	Free
Num	Country/Region	Recovered	Freedom
-----	--------------------------------	-----------	---------
44	Mongolia	95.12%	Free
45	Namibia	85.14%	Free
46	New Zealand	93.75%	Free
47	Norway	66.49%	Free
48	Panama	81.45%	Free
49	Peru	90.88%	Free
50	Poland	44.39%	Free
51	Portugal	58.94%	Free
52	Romania	71.42%	Free
53	Saint Kitts and Nevis	100.00%	Free
54	Saint Lucia	50.00%	Free
55	San Marino	87.42%	Free
56	Slovakia	22.72%	Free
57	Solomon Islands	0.00%	Free
58	South Africa	90.26%	Free
59	South Korea	92.10%	Free
60	Suriname	97.33%	Free
61	Switzerland	53.83%	Free
62	São Tomé and Príncipe	95.96%	Free
63	Taiwan	91.27%	Free
64	Trinidad and Tobago	74.12%	Free
65	Tunisia	10.31%	Free
66	United States	62.07%	Free
67	Albania	55.61%	Partly
68	Armenia	65.40%	Partly
69	Bangladesh	79.01%	Partly
70	Bhutan	89.77%	Partly
71	Bolivia	77.14%	Partly
72	Bosnia and Herzegovina	64.70%	Partly
73	Burkina Faso	82.04%	Partly
74	Colombia	90.11%	Partly
75	Comoros	96.61%	Partly
76	Dominican Republic	82.43%	Partly
77	Ecuador	87.70%	Partly
78	El Salvador	86.72%	Partly
79	Fiji	90.91%	Partly
80	Georgia	37.87%	Partly
81	Guatemala	89.91%	Partly
82	Guinea	90.02%	Partly
83	Guinea-Bissau	75.66%	Partly
84	Haiti	81.69%	Partly
85	Honduras	40.76%	Partly
86	Hungary	26.79%	Partly
Table 5 (continued)

Num	Country/Region	Recovered	Freedom
87	Indonesia	80.85%	Partly
88	Ivory Coast	98.51%	Partly
89	Jordan	14.14%	Partly
90	Kenya	68.80%	Partly
91	Kosovo	84.09%	Partly
92	Kuwait	92.71%	Partly
93	Kyrgyzstan	85.41%	Partly
94	Lebanon	48.75%	Partly
95	Lesotho	50.10%	Partly
96	Liberia	92.13%	Partly
97	Madagascar	96.46%	Partly
98	Malawi	89.83%	Partly
99	Malaysia	64.50%	Partly
100	Maldives	91.47%	Partly
101	Mali	75.81%	Partly
102	Mauritania	96.36%	Partly
103	Mexico	72.98%	Partly
104	Moldova	73.13%	Partly
105	Montenegro	76.06%	Partly
106	Morocco	82.64%	Partly
107	Mozambique	77.20%	Partly
108	Nepal	70.64%	Partly
109	Niger	93.07%	Partly
110	Nigeria	92.70%	Partly
111	North Macedonia	69.11%	Partly
112	Pakistan	94.67%	Partly
113	Papua New Guinea	93.48%	Partly
114	Paraguay	66.68%	Partly
115	Philippines	88.33%	Partly
116	Senegal	91.66%	Partly
117	Seychelles	98.01%	Partly
118	Sierra Leone	76.08%	Partly
119	Singapore	99.81%	Partly
120	Sri Lanka	48.31%	Partly
121	Thailand	94.66%	Partly
122	Togo	72.73%	Partly
123	Ukraine	40.85%	Partly
124	Zambia	94.18%	Partly
125	Zimbabwe	82.13%	Partly
126	Afghanistan	83.58%	Not
127	Algeria	69.63%	Not
128	Angola	37.39%	Not
129	Azerbaijan	82.63%	Not
Table 5 (continued)

Num	Country/Region	Recovered	Freedom
130	Bahrain	95.67%	Not
131	Belarus	89.67%	Not
132	Brunei	96.62%	Not
133	Burundi	92.72%	Not
134	Cambodia	97.90%	Not
135	Cameroon	94.88%	Not
136	Central African Republic	39.64%	Not
137	Chad	86.97%	Not
138	China Mainland	94.29%	Not
139	Cuba	91.35%	Not
140	Djibouti	97.58%	Not
141	Egypt	92.83%	Not
142	Equatorial Guinea	97.75%	Not
143	Eritrea	89.86%	Not
144	Eswatini	93.99%	Not
145	Eswatini	50.93%	Not
146	Gabon	95.44%	Not
147	Iran	79.99%	Not
148	Iraq	84.42%	Not
149	Kazakhstan	95.67%	Not
150	Laos	95.65%	Not
151	Libya	54.86%	Not
152	Myanmar	55.66%	Not
153	Nicaragua	77.75%	Not
154	Oman	87.91%	Not
155	Qatar	97.66%	Not
156	Russia	74.85%	Not
157	Rwanda	94.94%	Not
158	Saudi Arabia	96.07%	Not
159	Somalia	81.24%	Not
160	South Sudan	44.85%	Not
161	Sudan	49.22%	Not
162	Syria	32.41%	Not
163	Tajikistan	91.77%	Not
164	Turkey	86.90%	Not
165	Uganda	64.24%	Not
166	United Arab Emirates	95.05%	Not
167	Venezuela	93.73%	Not
168	Vietnam	90.50%	Not
169	Yemen	65.34%	Not
Acknowledgements The authors are grateful to Chaim Fialkoff for helpful comments.

Declarations

Conflict of Interest All the four co-authors have no potential conflicts of interest, financially or non-financially, directly or indirectly related to this work.

Ethical Approval This research does not require an IRB approval, since it does not involve any experiment or manipulation of subjects.

References

Arbel Yuval, Yifat Arbel, Amichai Kerner, and Miryam Kerner. 2020. To obey or not to obey? Can game theory explain human behavior in the context of coronavirus disease? Unpublished Manuscript: 1–18.
Barro, Robert J. 1997. *Determinants of economic growth: a cross-country empirical study*. Cambridge.: MIT Press.
Barro, Robert J. 1999. Determinants of democracy. *Journal of Political Economy* 107 (S6): S158. https://doi.org/10.1086/250107.
Besley, Timothy, and Masayuki Kudamatsu. 2006. Health and democracy. *The American Economic Review* 96 (2): 313–318.
Bollyky, Thomas J., Tara Templin, Matthew Cohen, Diana Schoder, Joseph L. Dieleman, and Simon Wigley. 2019. The Relationships between democratic experience, adult health, and cause-specific mortality in 170 countries between 1980 and 2016: an observational analysis. *The Lancet* 393 (10181): 1628–1640. https://doi.org/10.1016/S0140-6736(19)30235-1.
Burkle, F.M. 2020. Declining public health protections within “autocratic” regimes: impact on global public health security, infectious disease outbreaks, epidemics, and pandemics. *Prehospital and Disaster Medicine.* 35 (3): 237–246. https://doi.org/10.1017/S1049023X20000424.
Freedom House Measures. 2021. Available at: https://freedomhouse.org/regions/nations-transit/scores.
Gao, Y.-D., M. Ding, X. Dong, J.-J. Zhang, A. Kursat Azkur, D. Azkur, H. Gan, Y.-L. Sun, W. Fu, W. Li, H.-L. Liang, Y.-Y. Cao, Q. Yan, C. Cao, H.-Y. Gao, M.-C. Brüggen, W. van de Veen, M. Sokolowska, M. Akdis, and C.A. Akdis. 2021. Risk factors for severe and critically ill COVID-19 patients: a review. *Allergy* 76 (2): 428–455. https://doi.org/10.1111/all.14657.
Gerber, T.P., and Q. He. 2021. Sino-phobia in Russia and Kyrgyzstan. *Journal of Contemporary China*. https://doi.org/10.1080/10670564.2021.1926090.
Green, William H. 2012. *Econometric analysis*, 7th ed. London: Pearson Education Limited (Printed and bound by Courier /Westford in the United States of America).
Greer, S.L., E.J. King, E.M. da Fonseca, and A. Peralta-Santos. 2020. The comparative politics of COVID-19: the need to understand government responses. *Global Public Health* 15 (9): 1413–1416. https://doi.org/10.1080/17441692.2020.1783340.
Hu, Biying, Shaoying Huang, and Lianghong Yin. 2020. The cytokine storm and COVID-19. *Journal of Medical Virology*. https://doi.org/10.1002/jmv.26232.
Jeon, Jei Guk. 1994. The political economy of crisis management in the third world: a comparative study of South Korea and Taiwan (1970s). *Pacific Affairs* 67 (4): 565–585. https://doi.org/10.2307/2759574.
Jiang, J. 2021. A question of human rights or human left? The ‘people’s war against COVID-19’ under the ‘gridded management’ system in China. *Journal of Contemporary China*. https://doi.org/10.1080/10670564.2021.1985827.
Johnston, Jack, and John Dinardo. 1997. *Econometric methods*, 4th ed. Singapore: McGraw Hills International Edition.
Kudamatsu, Masayuki. 2012. Has Democratization reduced infant mortality in Sub-Saharan Africa? Evidence from micro data. *Journal of the European Economic Association* 10 (6): 1294. https://doi.org/10.1111/j.1542-4774.2012.01092.x.
Martinez-Bravo, Monica, Gerard Padro i Miquel, Nancy Qian, and Yang Yao. 2012. The Effects of Democratization on Public Goods and Redistribution: Evidence from China. http://www.nber.org/papers/w18101.pdf. Accessed 27 May 2022.
Mullis, D., B. Belina, T. Petzold, L. Pohl, and S. Schipper. 2016. Social protest and its policing in the “heart of the European crisis regime”: the case of Blockupy in Frankfurt, Germany. *Political Geography* 55: 50–59. https://doi.org/10.1016/j.polgeo.2016.07.001.
Papke, L.E., and J.M. Woldridge. 1996. Econometric methods for fractional response variables with application to 401(k) plan participation rates. *Journal of Applied Econometrics* 11: 619–632.

Preston, Samuel H. 1975. The changing relation between mortality and the level of economic development. *Population Studies* 29 (2): 231–248.

Qian, Y., and A. Hanser. 2021. How did Wuhan residents cope with a 76-day lockdown? *Chinese Sociological Review* 53 (1): 55–86. https://doi.org/10.1080/21620555.2020.1820319.

Ran, Ran, and Jian Yan. 2021. When transparency meets accountability: how the fight against the COVID-19 pandemic became a blame game in Wuhan. *China Review* 21 (1): 7–36.

Rosas, Guillermo. 2009. *Curbing bailouts: bank crises and democratic accountability in comparative perspective*. Ann Arbor: University of Michigan Press.

Schwartz, J. 2014. Compensating for the ‘authoritarian advantage’ in crisis response: a comparative case study of sars pandemic responses in China and Taiwan. *Journal of Chinese Political Science* 17: 313–331. https://doi.org/10.1007/s11366-012-9204-4.

Shih Victor, C. 2020. *Economic shocks and authoritarian stability: duration, financial control, and institutions*. Ann Arbor: University of Michigan Press.

Su Zhenhua, Su., and Zhou Qian Shan. 2021. Government trust in a time of crisis: survey evidence at the beginning of the pandemic in China. *China Review* 21 (2): 87–116.

Tamburini, Sabrina, Nan Shen, Wu. Han Chih, and Jose C. Clemente. 2016. The microbiome in early life: implications for health outcomes. *Nature Medicine* 22 (7): 713–722. https://doi.org/10.1038/nm.4142.

Tom, Tietenberg, and Lynn Lewis. 2012. *Environmental and natural resource economics*, 9th ed. London: Pearson Education Inc (Published in the United States of America).

UN World Water Development Report. 2019. available at: https://www.unwater.org/publications/world-water-development-report-2019/

Verdu, Elena F., and Jayne S. Danska. 2018. Common ground: shared risk factors for type 1 diabetes and celiac disease. *Nature Immunology* 19 (7): 685–695. https://doi.org/10.1038/s41590-018-0130-2.

Wang, Qinghua. 2014. Crisis management, regime survival and “guerrilla-style” policymaking: the June 1999 decision to radically expand higher education in China. *The China Journal* 71 (1): 132–152. https://doi.org/10.1086/674557.

Wigley, Simon, and Arzu Akkoyunlu-Wigley. 2011. The impact of regime type on health: does redistribution explain everything. *World Politics* 63 (4): 647–677.

Woldridge, J.M. 2010. *Econometric analysis of cross section and panel data*, 2nd ed. Cambridge: MIT Press.

World Meter by countries. 2021. Available at: https://www.worldometers.info/coronavirus/#countries. Accessed 19 Sept 2021.

Ye, Q., B. Wang, and J. Mao. 2020. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. *Journal of Infection* 80 (6): 607–613. https://doi.org/10.1016/j.jinf.2020.03.037.

Authors and Affiliations

Yuval Arbel1 · Yifat Arbel2 · Amichai Kerner3 · Miryam Kerner4

Yifat Arbel
ifatarbel@gmail.com; yifat.damti@live.biu.ac.il

Amichai Kerner
kerneram@netvision.net.il

Miryam Kerner
Miryamke@clalit.org.il

1 Sir Harry Solomon School of Economics and Management, Western Galilee College, 2412101 Acre, Israel

2 Department of Financial Mathematics, Bar Ilan University, 5290002 Ramat Gan, Israel

3 Amichai KernerSchool of Real Estate, Netanya Academic College, 1 University Street, 4223587 Netanya, Israel

4 The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel