Visible light-promoted transition metal-free direct C3-carbamoylation of 2H-Indazoles

Chunhua Ma, Linchun Shang, Hanying Zhao, Xing He, Qiyang Ly, Dandan Zhang* and Yuqin Jiang*

1Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China, 2National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, China, 3Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China

We reported a general transition metal-free transformation to access C3-carbamoylated 2H-indazoles via visible light-induced oxidative decarboxylation coupling, in the presence of oxamic acids as the coupling sources, 4CzIPN as the photocatalyst, and Cs2CO3 as the base. The great application potential of this mild condition is highlighted by the late-stage modification of drugs, N-terminal modification of peptides, and the good antitumor activity of the novel desired product.

KEYWORDS
photocatalysis, 2H-indazole, carbamoylation, green oxidant, antitumor

Introduction

Nitrogen heterocycles are the essential structural elements widely ubiquitous in pharmaceutical chemistry, (Vitaku et al., 2014; Bhutani et al., 2021; Ma et al., 2021a), organic chemistry, (Chen et al., 2021; Darroudi et al., 2021; Jiang et al., 2021; Meng et al., 2021; Qu et al., 2021; Wang and Wang, 2021; Chen and Xuan, 2022; Gao et al., 2022; Wu et al., 2022; Zhang et al., 2022), and material chemistry (Huang and Yu, 2021). Among these, 2H-indazole is one of the most important heterocycles, existing in various drugs and bioactive molecules (Figure 1). The drug Niraparib with this scaffold is approved to treat various tumors including advanced epithelial ovarian carcinoma and primary peritoneal carcinoma. (Jones et al., 2009). The derivative Pazopanib has become the first-line anti-advanced renal cell carcinoma via inhibiting the activity of vascular endothelial growth factor receptor VEGFR. (Harris et al., 2008). The 3C-like protease inhibitor S-217622 has entered into clinical trials and exhibits antiviral activity against the coronavirus disease 2019 (COVID-19). (Unoh et al., 2022). Therefore, direct and site-selective incorporation of diverse functional groups into 2H-indazole is of broad interest in organic synthesis and the pharmaceutical industry.
Recent decades have witnessed the impressive achievement of direct C-H functionalization of 2H-indazoles via radical reactions. (Ghosh et al., 2020; Wang et al., 2022a; Ghosh et al., 2022). The C3-phosphonylation, (Singsardar et al., 2018), oxyalkylation, (Singsardar et al., 2019), trifluoromethylation, (Murugan et al., 2019; Wei et al., 2021), amination, (Neogi et al., 2020; Sun et al., 2021a), alkoxylation, (Sun et al., 2021b), arylation, (Aganda et al., 2019; Vidyacharan et al., 2019; Saritha et al., 2021), alkylation, (Liu et al., 2020; Ma et al., 2021b; Ma et al., 2022a), sulfonylation, (Kim et al., 2020; Mahanty et al., 2020), and selenylation (Lin et al., 2022) of 2H-indazoles were reported. However, the development of sustainable strategies to introduce other pharmacophores...
Amide groups represent a fundamental class of functional groups widely spread in most drugs, bioactive compounds, and peptides. Compared with the traditional condensation method, the C-H carbamoylation protocol provides the desired product without prefuctionalization of the 2H-indazole and wasteful coupling reagents. Nevertheless, the direct carbamoylation of 2H-indazole is rarely reported. Only recently, Lee’s group reports an elegant carbamoylation reaction of 2H-indazole using oxamic acid as a carbamoylating source under an elevated temperature in the presence of the strong oxidant (NH4)S2O8. (Bhat and Lee, 2021). However, the heating process which is essential for the radical generation results in the consumption of fossil fuels and the potential safety hazard. Meanwhile, a great quantity of strong oxidant might be detrimental to the sensitive functional groups.

Table 1: Optimization of reaction conditions.

Entry	Photocatalyst (5 mol%)	Base (2 equiv)	Solvent	Yield (%)
1	4CzIPN	Cs2CO3	DMSO	56
2	Rhodamine B	Cs2CO3	DMSO	0
3	Rhodamine 6G	Cs2CO3	DMSO	0
4	Fluorescein	Cs2CO3	DMSO	0
5	Na2-Eosin Y	Cs2CO3	DMSO	0
6	Rose bengal	Cs2CO3	DMSO	0
7	4CzIPN	Na2CO3	DMSO	23
8	4CzIPN	K2CO3	DMSO	17
9	4CzIPN	LiOH	DMSO	7
10	4CzIPN	KOH	DMSO	7
11	4CzIPN	CsOH	DMSO	32
12	4CzIPN	Et3N	DMSO	10
13	4CzIPN	DIPEA	DMSO	5
14	4CzIPN	TEMEDA	DMSO	5
15	4CzIPN	DABCO	DMSO	6
16	4CzIPN	Cs2CO3	DCM	22
17	4CzIPN	Cs2CO3	MeCN	0
18	4CzIPN	Cs2CO3	DMF	3
19	4CzIPN	Cs2CO3	DMac	13
20	4CzIPN	Cs2CO3	NMP	32
21	4CzIPN	Cs2CO3	THF	0
22	4CzIPN	Cs2CO3	DMC	0
23	4CzIPN	Cs2CO3	EG	0
24	4CzIPN	Cs2CO3	H2O	0
25	4CzIPN	Cs2CO3	DMSO	74
26	4CzIPN	Cs2CO3	DMSO	91
27	4CzIPN	Cs2CO3	DMSO	N. R.
28	–	Cs2CO3	DMSO	N. R.
29	4CzIPN	–	DMSO	N. R.

*aReaction conditions: 1a (0.2 mmol), 2a (2 equiv), catalyst (5 mol%), base (2 equiv), solvent (2 ml), rt, LED, 12 h under O2 atmosphere. Isolated yields. N. R. = no reaction.
*b2a (2.5 equiv).
*c2a (2.5 equiv), DMSO (3 ml).
*dWithout light.
Photocatalysis has emerged as a strong strategy to functionalize the nitrogen heterocycles. (Liu et al., 2017; Bagdi et al., 2020; Yuan et al., 2020; He et al., 2021; Qi et al., 2021; Yi and He, 2021; Ma et al., 2022b; Wang et al., 2022b; Ma et al., 2022c; Ma et al., 2022d; Ma et al., 2022e; Shi et al., 2022; Xiang et al., 2022; Yan et al., 2022; Yang et al., 2022; Zhu et al., 2022). The mild reaction condition and the visible light-induced neutral redox cycle may solve the above problems. Herein, we reported a visible light-mediated strong oxidant-free protocol to access the carbamoylated 2\textsubscript{H}-indazoles under mild conditions and the late-stage modification of drugs and peptides (Scheme 1).

Results and discussion

We chose 2-phenyl-2\textsubscript{H}-indazole (1a) and 2-(hexylamino)-2-oxoacetic acid (2a) as model substrates to investigate the decarboxylative C (sp2)-C (sp2) coupling reaction under 405 nm purple LED irradiation at room temperature. Consistent with the expected, when 4CzIPN was used as the photocatalyst and Cs\textsubscript{2}CO\textsubscript{3} as the base, 1a and 2a could be converted into the carbamoylated 2\textsubscript{H}-indazole 3a in 56% yield under O\textsubscript{2} atmosphere (Table 1, entry 1). Other transition metal-free photocatalysts including Rhodamine B, Rhodamine 6G, Fluorescein, Na\textsubscript{2}-Eosin Y, and Rose bengal were catalytically inactive, with no product detected (Table 1, entries 2–6). Then, a systematic survey of bases were conducted. The results indicated that replacing Cs\textsubscript{2}CO\textsubscript{3} with other inorganic bases (Na\textsubscript{2}CO\textsubscript{3}, K\textsubscript{2}CO\textsubscript{3}, LiOH, KOH, CsOH) or organic bases (Et\textsubscript{3}N, DIPEA, TMEDA, DABCO) decreases the formation of the desired product (Table 1, entries 7–15). A range of solvents, such as, DCM, MeCN, DMF, DMAP, THF, DMC, EG, and H\textsubscript{2}O were screened (Table 1, entries 16–24). We found that DMSO is superior in this process. Increasing the amount of 2a to 2.5 equiv. improved the yield to 74% (Table 1, entry 25). Because the
insoluble residue existed in the reaction system, the volume of DMSO was increased to 3 ml, along with the generation of products in 91% yield (Table 1, entry 26). In the absence of visible light or photocatalyst, no product was detected, which confirms the photochemical nature of this method (Table 1, entries 27–28). The reaction was completely inhibited in the absence of Cs₂CO₃, indicating the essential role of the base in the transformation (Table 1, entry 29). Taken together, the optimal reaction conditions were established as follows: 1a (0.2 mmol), 2a (2.5 equiv), 4CzIPN (5 mol%) as a catalyst, Cs₂CO₃ (2 equiv) as a base, DMSO (3 ml) as a solvent, at 35°C under O₂ atmosphere and the irradiation of purple LED (λ_max = 405 nm) for 12 h.

With the optimal conditions for the construction of carbamoylated 2H-indazoles in hand, we further explored the scope and generality of this reaction. Firstly, the scope of aryl-2H-indazoles was examined. As shown in Scheme 2, the substitutions on the phenyl group exhibited good tolerance. The electron-donating groups (p-Me and m-Me) could give the desired products 3b-3c in 72% and 64% yields, respectively. The derivatives with electron-withdrawing groups (p-Cl, m-Cl, p-Br, m-Br, and p-CF₃) were also effective substrates for this transformation, affording the corresponding products 3d-3h in moderate to good yields. Moreover, both the electron-donating substitution (5-OMe) and the electron-withdrawing groups (5-F, 5-Cl, and 5-Br) on the heteronucleus were well tolerant to the standard conditions (3i-3l). The 2H-indazoles with disubstitution were also evaluated to react with 2a under the optimal condition, delivering the corresponding products 3m-3o in 49–59% yields.

Subsequently, we investigated the reactivity profile of a variety of oxamic acids 2. As depicted in Scheme 3, oxamic acids with different length alkyl chains reacted well with 1a, affording the desired products 3p-3s in 58–94% yields.
The benzyl group was also compatible with the method, giving the product 3t in 42% yield. Both the secondary carbon (cyclopentyl and cyclohexyl group) and tertiary carbon (2-phenylpropyl group) substituted oxamic acids were successful in providing the corresponding products 3u-3w in 80%–93% yields. Meanwhile, the substrates containing primary aromatic amines reacted well with 1a and produced the desired products 3x-3aa in 54%–93% yields. The oxamic acids bearing secondary amine also showed good reactivity and could be smoothly converted into the carbamoylated products 3ab and 3ac. Moreover, the oxamic acid without N-substitution was tolerated to generate the desired product 3ad in 55% yield.

To evaluate the synthetic utility of this decarboxylative carbamoylation transformation in the pharmaceutical industry, the late-stage modification of drugs and natural products was conducted. Delightfully, the non-sulfonylureas antidiabetic drug Nateglinide, the lipid regulator Gemfibrozil, and the antiviral drug amantadine could be successfully connected with 2H-indazole, affording the desired products 4a-4c in 35%–76% yield (Scheme 4). The natural product dehydroabietylamine was also suitable and gave the products 4d in 40% yield. The N-terminal modified of peptides play an important role in drug development and biochemical research. Inspired by the good functional group tolerance of this sustainable system, we then applied the photocatalytic method in the modification of natural amino acids and peptides. As shown in Scheme 4, the important amino acid in humans, l-leucine, could be converted into the corresponding products.
4e in 63% yield. What’s more, both the dipeptide (l-phenylalanine-l-leucine) and the tripeptides (l-glycine-l-proline-l-phenylalanine and l-glycine-l-phenylalanine-
l-leucine) reacted well with 2H-indazole, delivering the coupling products 4f-4h in 40%–73% yields. The above results indicate that this method could be used in the development of peptidomimetic drugs and probe molecules.

To investigate the mechanism of this carbamoylation reaction, a radical scavenge experiment was conducted (Scheme 5). When 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) was added to the standard conditions, the reaction completely shuttled down. Moreover, the carbamoyl radical trapped adduct 5 was detected by HRMS. It indicates that this photocatalytic transformation occurred via a radical pathway. Next, it was found that the yields of 3a were decreased to 9% and 23% under N2 atmosphere or air atmosphere, revealing that O2 is important in the photocatalytic system.

We performed the Stern–Volmer luminescence-quenching experiments by mixing the photocatalyst 4CzIPN with different concentrations of 2H-indazole 1a, 2-(hexylamino)-2-oxoacetic acid 2a, or the Cs salt of 2a (6). As depicted in Scheme 6A, the fluorescence of photoredox catalyst 4CzIPN was quenched by the addition of 1a and 6, and the linear relationships were observed between I0/I and the concentration of 1a and 6 (see the Supplementary Figure S2). The oxidative potential of 6 was E1/2ox = +0.9 V vs. SCE (Scheme 6B), indicating that the excited state 4CzIPN* could be reductively quenched by 6 rather than 1a (E1/2ox = +1.4 V vs. SCE) (Ma et al., 2021b).

A plausible mechanism for this sustainable reaction was proposed according to the above experimental results and the previous reports (Scheme 7). Initially, 4CzIPN was activated into the excited state 4CzIPN* under visible light irradiation. The oxamic acid 2 was in situ converted into the Cs salt 6 in the presence of the base Cs2CO3. 6 underwent the oxidization of 4CzIPN* via single electron transfer (SET) and fragmentation to generate the key carbamoyl radical 7, along with the production of the radical anion 4CzIPN-. 4CzIPN- was oxidated by O2 to regenerate the ground state 4CzIPN and close the photoredox cycle. On the other hand, radical 7 attacked the C3-position of 1a to deliver intermediate 8. It underwent the 4CzIPN- mediated
oxidation and base mediated dehydrogenate to afford the desired product 3.

To highlight this greener protocol in the pharmaceutical industry, we evaluated the in vitro antitumor activity of these carbamoylated 2H-indazole derivatives. As depicted in Scheme 8, compound 4d possessed better antitumor activity against Ramos cell than that of the FDA-approved drug 5-fluorouracil (5-FU, IC_{50} = 36.0 \times 10^{-6} \text{ mol/L}), suggesting that this method could provide novel chemical entries for anti-human B cell lymphoma treatment.
Conclusion

In summary, we have developed a visible-light-promoted, transition metal-free, strong oxidant-free method to achieve the direct decarboxylation/carbamylation of 2-aryl-2H-indazoles. This mild and general protocol is tolerant of sensitive functional groups and sterically hindered groups. It is highlighted by the successful application in the late-stage modification of drugs, natural products, amino acids, and peptides. Moreover, the good antitumor activity of compound 4d indicates that this strategy could be used in antitumor drug development. Further activity studies and structural modification are ongoing in our laboratory.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Funding

We acknowledge the financial support from the National Natural Science Foundation of China (82003585), the Technical innovation Team of Henan Normal University (2022TD03), the Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2021AL079), the Scientific Research and Practice Innovation Program of Henan Normal University (Y202103), and the National College Students’ innovation and entrepreneurship training program of China (202210476076).

Acknowledgments

We would like to thank the Large Instrument Sharing System for the support of structure confirmation.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a past co-authorship with the author QL.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.1087834/full#supplementary-material

References

Aganda, K. C. C., Kim, J., and Lee, A. (2019). Visible-light-mediated direct C3-arylation of 2H-indazoles enabled by an electron-donor-acceptor complex. Org. Biomol. Chem. 17, 9698–9702. doi:10.1039/c9ob02074h

Bagdi, A. K., Rahman, M., Bhattacharjee, D., Zyrvanov, G. V., Ghosh, S., Chupakhin, O. N., et al. (2020). Visible light promoted cross-dehydrogenative coupling: A decade update. Green Chem. 22, 6632–6661. doi:10.1039/d0gc02437f

Bhat, V. S., and Lee, A. (2021). Direct C3 carbamoylation of 2H-indazoles. Eur. J. Org. Chem. 2021, 3382–3385. doi:10.1002/ejoc.202100461

Bhutani, P., Joshi, G., Raja, N., Bachhav, N., Rajanna, P. K., Bhutani, H., et al. (2021). U.S. FDA approved drugs from 2015–June 2020: A perspective. J. Med. Chem. 64, 2339–2381. doi:10.1021/acs.jmedchem.0c01786

Chen, J.-Y., Wu, H.-Y., Gui, Q.-W., Yan, S.-S., Deng, J., Lin, Y.-W., et al. (2021). Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. Chin. J. Catal. 42, 1445–1450. doi:10.1016/S1872-2067(20)63750-0

Chen, Z., and Xuan, J. (2022). Photochemical synthesis of arylated heterocycles under catalyst and additive free conditions. Chin. J. Org. Chem. 42, 923–924. doi:10.6023/cjoc202200018

Durroodi, M., Mohammadi Ziarani, G., Bahar, S., Ghasemi, J., and Radiei, A. (2021). Lansoprazole-based colorimetric chemosensor for efficient binding and sensing of carbonate ion: Spectroscopy and DFT studies. Front. Chem. 8, 626472. doi:10.3389/fchem.2020.626472

Gao, F., Zhang, S., Lv, Q., and Yu, B. (2022). Recent advances in graphene oxide catalyzed organic transformations. Chem. Chin. Lett. 33, 2354–2362. doi:10.1016/j.ccl.2021.10.081

Ghosh, D., Ghosh, S., Ghosh, A., Pyne, P., Majumder, S., and Hajra, A. (2022). Visible light-induced functionalization of indazole and pyrazole: A recent update. Chem. Commun. 58, 4435–4455. doi:10.1039/d2cc00002d

Ghosh, S., Mondal, S., and Hajra, A. (2020). Direct catalytic functionalization of indazole derivatives. Adv. Synth. Catal. 362, 3768–3794. doi:10.1002/adsc.202000423

Harris, P. A., Boloor, A., Cheung, M., Kumar, R., Crosby, R. M., Davis-Ward, R. G., et al. (2008). Discovery of 5-[[4-[(12, 3-dimethyl-2H-indazol-6-yl)methyl]methyl]-2-pyrimidinyl][aminol]-2-methyl-benzenesulphonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem. 51, 4632–4640. doi:10.1021/jm070566m
Advances of N-hydroxyphthalimide esters in photocatalytic alkylation reactions.

Ma, C.-H., Zhao, L., He, X., Jiang, Y.-Q., and Yu, B. (2022). Visible-light-induced fluoromethylation of 2H-indazole derivatives using CF3SO2Na. Chin. J. Org. Chem. 38, 12701–12704. doi:10.1002/cjoc.202100444

Shang, T.-Y., Liu, L.-H., Cao, Z., Liu, Y., He, W.-M., and Yu, B. (2019). Recent advances of 1, 2, 3, 5-tetrazakis(carbazol-9-yl)-4, 6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419. doi:10.1039/c9cc01047e

Shi, T., Liu, Y.-T., Wang, S.-S., Lv, Q.-Y., and Yu, B. (2022). Recyclable carbon nitride nanosheet-photocatalyzed aminomethylation of imidazol[1, 2-α]pyridines in green solvent. Chin. J. Chem. 40, 97–103. doi:10.1002/cjoc.202100444

Singsurard, M., Dey, A., Sarkar, R., and Haja, A. (2018). Visible-light-induced organophotoredox catalyzed phosphorylation of 2H-indazoles with diphenylphosphine oxide. J. Org. Chem. 83, 12694–12701. doi:10.1021/acs.orglett.8b02019

Sun, M., Zhou, Y., Li, L., Wang, L., Ma, Y., and Li, P. (2021). Electrocatalyzed C-3-amination of 2H-indazoles. Org. Chem. Front. 8, 754–759. doi:10.1039/d0qo01088g

Unoh, Y., Uehara, S., Nakahara, K., Nobori, H., Yamatsu, Y., Yamamoto, S., et al. (2022). Discovery of S-217622, a noncovalent oral SARS-CoV-2 3C1L protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512. doi:10.1021/acs.jmedchem.2c00592

Vitak, E., Smith, D. T., and Njardarson, J. T. (2014). Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274. doi:10.1021/acs.jmedchem.7b00100

Wang, D., Wang, J., Ma, C., Jiang, Y., and Yu, B. (2022). C-3 functionalization of 2-aryl-2H-indazoles under photoelectrochemistry. Chin. J. Org. Chem. 42. doi:10.1002/cjoc.202002039

Wang, F., and Wang, S.-Y. (2021). Visible-light-promoted cross-coupling reaction of hydropertuvalent bis-catecholato silicon compounds with selenoureas or thioureas. Chin. Org. Chem. 8, 1976–1982. doi:10.1039/d1qo00805c

Wang, Z., Liu, Q., Liu, R., Ji, Z., Li, Y., Zhao, X., et al. (2022). Visible-light-initiated Wacker-type [5+2] annihilation of quinoline-C(2)-1(2H)-ones. Chin. J. Chem. 33, 1479–1482. doi:10.1016/j.cjoc.2021.08.036

Wei, T., Wang, K., Yu, Z., Hou, J., and Xie, Y. (2021). Electrocatalytically mediated trifluoromethylation of 2H-indazole derivatives using CF3SO2N2a. Tetrahedron Lett. 65, 153313. doi:10.1016/j.tetlet.2021.153313

Wu, Z.-L., Chen, J.-Y., Tian, X.-Z., Ouyang, W.-T., Zhang, Z.-T., and He, W.-M. (2020). Regioselective electrochemical reductive synthesis of 24-selenylsulfoximinoquinolin-11(2H)-ones. Chin. J. Chem. Lett. 31, 1501–1504. doi:10.1016/j.cjcl.2021.08.071

Xiang, P., Sun, K., Wang, S., Chen, X., Qu, L., and Yu, B. (2022). Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. Chin. J. Chem. Lett. 33, 5074–5079. doi:10.1016/j.cjcl.2022.03.096

Yang, D., Yan, Q., Zhu, F., Lv, J., and He, W.-M. (2022). Carbon–sulfur bond formation via photocatalytic strategies. An efficient method for the synthesis of sulfur-containing compounds. Chin. Org. Chem. Lett. 33, 1798–1816. doi:10.1016/j.cjoc.2021.09.068

Yu, R., and He, W. (2021). Proton-coupled electron transfer for photocatalysis of phosphoryl-N-heteroaromatics. Chin. J. Org. Chem. 41, 1267–1268. doi:10.1002/cjoc.202100022

Yuan, X., Yang, T., and Yu, B. (2020). Photocatalyzed decatungstate-catalyzed C–H functionalization. Chin. J. Org. Chem. 40, 3620–3632. doi:10.1002/cjoc.202006068

Zhang, H., Xu, J., Ouyang, Y., Yue, X., Zhou, C., Ni, Z., et al. (2022). Molecular oxygen-mediated selective hydroxyalkylation and alkylation of quinolin-2(1H)-ones with alkyloboronic acids. Chin. J. Chem. 33, 2036–2040. doi:10.1016/j.cjcl.2021.09.069

Zhu, X., Jiang, M., Li, X., Deng, Q., Song, X., et al. (2022). Alkylsulfonium salts for the photochemical desulphurization functionalization of heterocenes. Org. Chem. Front. 9, 347–355. doi:10.1039/d1qo01570b