PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers

Gang Huang, Tian Zhao, Chensu Wang, Kien Nham, Yahong Xiong, Xiaofei Gao, Yihui Wang, Guiyang Hao, Woo-Ping Ge, Xiankai Sun, Baran D. Sumer* and Jinming Gao

Owing to the diversity of cancer types and the spatiotemporal heterogeneity of tumour signals, high-resolution imaging of occult malignancy is challenging. 18F-fluoro-deoxyglucose positron emission tomography allows for near-universal cancer detection, yet in many clinical scenarios it is hampered by false positives. Here, we report a method for the amplification of imaging contrast in tumours via the temporal integration of the imaging signals triggered by tumour-acidosis. This method exploits the catastrophic disassembly, at the acidic pH of the tumour milieu, of pH-sensitive positron-emitting neutral copolymer micelles into polycationic polymers, which are then internalized and retained by the cancer cells. Positron emission tomography imaging of the 64Cu-labelled polymers detected small occult tumours (10–20 mm3) in the brain, head, neck and breast of mice at much higher contrast than 18F-fluoro-deoxyglucose, 11C-methionine and pH-insensitive 64Cu-labelled nanoparticles. We also show that the pH-sensitive probes reduce false positive detection rates in a mouse model of non-cancerous lipopolysaccharide-induced inflammation. This macromolecular strategy for integrating tumour-acidosis should enable improved cancer detection, surveillance and staging.

Cancer exhibits diverse genetic and histological differences from normal tissues. Molecular characterization of these differences is useful to stratify patients towards personalized therapy. However, the strategy may not serve as a broad diagnostic tool because genetic/phenotypic biomarkers are expressed in a subset of patients, and significant overlap with normal tissues exists. Deregulated energetics are hallmarks of cancer that occur across many types of cancers. Elevated glucose metabolism in cancer cells has long been associated with aerobic glycolysis, where cancer cells preferentially take up glucose and convert it into lactic acid. More recent studies using 13C-labelled glucose in lung cancer patients further show accelerated oxidative phosphorylation in addition to glycolysis as a cancer cell mechanism for growth and proliferation. The clinical significance of the glucose metabolism is manifested by the widespread use of 18F-fluoro-deoxyglucose (FDG) positron emission tomography (PET), where FDG—a radiolabelled glucose analogue—is selectively taken up by overexpressed glucose transporters and trapped inside the cancer cells after phosphorylation by hexokinase for PET detection.

Despite broad clinical adoption, FDG has many well-described pitfalls, including relatively high false rates, depending on tumour size and variable levels of FDG uptake in tumours and normal tissues. High physiological uptake of FDG typically occurs in the brain, heart, kidneys and urinary tract, obscuring the tumour signal from areas adjacent to these tissues. In head and neck cancer, high FDG uptake in the Waldeyer's ring (nasopharyngeal, palatine and lingual tonsils), salivary glands, striated muscle or brown fat, and inflammation/infection all contribute to false positive signals. For tumours <1 cm, inadequate accumulation of FDG in tumours over the surrounding normal tissues often leads to false negatives. The variability of FDG uptake, overlap in retention, and temporal fluctuations in metabolism for both normal and tumour tissues significantly limit the accuracy of FDG-PET in cancer detection.

Previously, we reported an indocyanine green (ICG)-encoded ultra-pH-sensitive (UPS) nanoprobe for the broad detection of a wide range of solid cancers by near-infrared fluorescence imaging. This optical tracer exploits the phase transition of the polymers to quench and unquench the fluorescence of dyes conjugated to the hydrophobic portion of the polymers. The optical output is discrete (all on or off with no intermediate values), leading to the high specificity and sensitivity in tumour detection. However, it was unclear whether the phase transition behaviour of the polymers could be harnessed to generate a response or output other than fluorescence. In the tumour milieu, irreversible capture and integration of polycationic unimers on pH activation of neutral circulating micelles can lead to an increase in the polymer dose in acidic tumours over the surrounding normal tissues. Based on this insight, we hypothesized that the catastrophic phase transition responsible for the binary fluorescence response could be further exploited to achieve binary tumour-specific tissue retention or capture of the activated nanoparticles. Temporal integration of this activated and captured signal can provide signal amplification in only tumours, to overcome the spatiotemporal limitations of FDG. To test this hypothesis, we synthesized a positron-emitting radionuclide (64Cu; $t_{1/2} = 12.7$ h)-encoded 64Cu-labelled nanoparticles that can provide a new PET imaging tool for the detection of occult malignancy.
Results

Synthesis of the 64Cu-UPS6.9 nanosensor. 1,4,7-triazacyclononane-\(N,N',N''\)-trisacetic acid (NOTA)- and ICG-conjugated poly(ethylene glycol)-b-poly(ethylpropylaminoethyl methacrylate) (PEG-b-PEPA) copolymer (also known as UPS6.9 for pH transition at 6.9) was synthesized via the atom transfer radical polymerization method (Fig. 1a)\(^\text{25}\). The average numbers of NOTA and ICG per copolymer were determined to be two and one, respectively. After polymer synthesis, 64Cu chelation to NOTA was carried out at 37°C and pH 6.5 for 15 min to ensure fully dissociated unimers for efficient copper binding (95%; Fig. 1b). After 64Cu labelling, the solution was brought back to pH 7.4 in sodium carbonate buffer to form micelle nanoparticles (32.7 ± 1.6 nm) (Fig. 1c). Removal of unbound 64CuCl\(_2\) and the 64Cu-NOTA complex was achieved by centrifugal membrane filtration three times with a molecular weight cutoff of 100 kD. The specific activity of the 64Cu-UPS6.9 nanosensor is 5.5 mCi mg\(^{-1}\) (per mass unit) or 165 Ci mmol\(^{-1}\) for molar activity (~6% NOTA on the UPS polymer) (Fig. 1a). The protonation process is highly cooperative with a Hill coefficient of 38 (Fig. 2c). Along the pH titration coordinate, nanophase segregation (that is, micellization) rendered a bistable-state solution consisting of highly protonated unimers in solution versus neutral copolymers in micelles (Fig. 2d). This all-or-nothing protonation phenotype without the intermediate states is a hallmark of positive cooperativity\(^\text{26,27}\). The divergent physical properties of the neutral PE Gylated micelles and polycationic unimers account for the molecular basis of capture and integration mechanism in the biological system.

In biological milieu, serum protein binding can ‘irreversibly’ arrest UPS copolymers in the dissociated unimer state on pH activation of PEGylated micelles (Fig. 3a). We examined the reversibility of the UPS6.9 nanoprobes in the presence or absence of 40 mg ml\(^{-1}\) human serum albumin (HSA) (Fig. 3b). The results show that in the absence of HSA, UPS6.9 fluorescence intensity returned to the base level after the pH was reversed from 6.5 to 7.4 multiple times. In contrast, in the presence of HSA, the fluorescence intensity was kept at the ‘on’ state after pH reversal. These data suggest that the nanoprobe response can be drastically different in the biological environment compared with pristine buffer solutions. This irreversible characteristic contributes to the capture of persistent but fluctuating tumour acidic signals into stabilized output.

Irreversible activation of 64Cu-UPS6.9 in biological milieu. In aqueous saline solution (protein free), UPS6.9 copolymers undergo ‘reversible’ micelle assembly/disassembly across a narrow pH span (<0.2 pH; Fig. 2a,b). The protonation process is highly cooperative with a Hill coefficient of 38 (Fig. 2c). Along the pH titration coordinate, nanophase segregation (that is, micellization) rendered a bistable-state solution consisting of highly protonated unimers in solution versus neutral copolymers in micelles (Fig. 2d). This all-or-nothing protonation phenotype without the intermediate states is a hallmark of positive cooperativity\(^\text{26,27}\). The divergent physical properties of the neutral PEGylated micelles and polycationic unimers account for the molecular basis of capture and integration mechanism in the biological system.

In biological milieu, serum protein binding can ‘irreversibly’ arrest UPS copolymers in the dissociated unimer state on pH activation of PEGylated micelles (Fig. 3a). We examined the reversibility of the UPS6.9 nanoprobes in the presence or absence of 40 mg ml\(^{-1}\) human serum albumin (HSA) (Fig. 3b). The results show that in the absence of HSA, UPS6.9 fluorescence intensity returned to the base level after the pH was reversed from 6.5 to 7.4 multiple times. In contrast, in the presence of HSA, the fluorescence intensity was kept at the ‘on’ state after pH reversal. These data suggest that the nanoprobe response can be drastically different in the biological environment compared with pristine buffer solutions. This irreversible characteristic contributes to the capture of persistent but fluctuating tumour acidic signals into stabilized output.
Irreversible capture and uptake of 64Cu-UPS$_{6.9}$. To investigate whether acidic pH can impact nanoprobe uptake inside cancer cells, we incubated 64Cu-UPS$_{6.9}$ with HN5 head and neck cancer cells in DMEM medium at pH 6.5 and 7.4. To mimic the physiological environment, 40 mg ml$^{-1}$ HSA was added to the medium. For comparison, 64Cu-PEG-PLA nanoparticles were used as a non-pH-sensitive control. HN5 cells were incubated with the same dose of either nanoparticle (25 μg ml$^{-1}$) for different time periods. Then, the radioactive medium was replaced and washed with medium without the tracers. Autoradiography images of HN5 cells from the 96-well plate show pH-dependent uptake of 64Cu-UPS$_{6.9}$. At pH 6.5, increased amounts of positron signals were detected over time, leading to an approximately fivefold increase in cell uptake at 1 h over that at pH 7.4 (Fig. 3c,d and Supplementary Figs. 3 and 4). Albumin-mediated unimer uptake was investigated by pretreating UPS nanoparticles at pH 6.5 in the presence of HSA. The pH was then brought back to 7.4. It was found that 50% of polymer uptake occurred in HN5 cells at pH 6.5 (Supplementary Fig. 5). HN5 cells incubated with non-pH-sensitive 64Cu-PEG-PLA micelles did not show any observable pH dependence in radioactivity signals, and the cell uptake remained low at both pH levels, consistent with the stealth properties of PEGylated micelle nanoparticles28. We used laser confocal scanning microscopy to examine the distribution of the UPS$_{6.9}$ (free of 64Cu to avoid radiation exposure) 5 and 60 min after incubation in albumin-containing medium at pH 6.5. HN5 cells were stained for nucleus, cell membrane and lysosomes with Hoechst (blue), anti-F-actin (cyan) and anti-lysosomal-associated membrane protein 1 (green), respectively. Anti-poly(ethylene glycol) antibody was used to label the UPS$_{6.9}$ copolymer. Data show the initial adhesion of the copolymer on the cell surface, followed by internalization inside the HN5 cells at 60 min. An image overlay shows the internalized UPS$_{6.9}$ punctates colocalized with lysosomes (Fig. 3e).

Capture and integration of 64Cu-UPS$_{6.9}$ in the HN5 tumours. Spatiotemporal characterization of 64Cu-UPS$_{6.9}$ distribution in orthotopic HN5 tumours in vivo further validated the capture and integration mechanism. HN5 cancer cells were inoculated in the submental space in the head and neck area of a severe combined immunodeficient mouse. After tumours grew to 100–200 mm3, 64Cu-UPS$_{6.9}$ tracer (0.1 mCi) was injected through the tail vein. At 30 min, 3 h and 24 h, animals were sacrificed and tumours were removed and resected into 30-μm-thin slices. Autoradiography analysis showed the initial sporadic capture of 64Cu-UPS$_{6.9}$ in HN5 tumours (mostly at the tumour periphery) at 30 min and 3 h, as verified by haematoxylin and eosin histology, followed by increased tracer accumulation throughout the whole tumour at 24 h (Supplementary Fig. 6).

64Cu-UPS$_{6.9}$ reduced false detection of inflammation by FDG. Non-cancerous tissue inflammation (for example, infection) frequently causes false positive FDG-PET results because inflammatory cells use glucose as a primary source of energy29. To compare the imaging response to tissue inflammation by 64Cu-UPS$_{6.9}$ versus FDG, we employed a lipopolysaccharide (LPS)-induced, tumour-free animal model for evaluation. In these experiments, healthy BALB/c mice were used. Two days before PET imaging, LPS was

![Fig. 2](image_url)
injected subcutaneously into the right hind leg of mice to induce inflammation, while phosphate buffered saline (PBS) was injected into the left hind leg as a control. FDG (150 µCi) and 64Cu-UPS6.9 (120 µCi) were intravenously injected and imaged 1 and 24 h postinjection, respectively. The FDG signal was significantly higher at the inflammation site (3.4 ± 0.2% of the injected dose per gram of tissue (%ID g⁻¹) compared with the normal muscle tissue (0.7 ± 0.2%ID g⁻¹; P < 0.01; Fig. 4 and Supplementary Fig. 7). In contrast, 64Cu-UPS6.9 showed a slightly increased signal at the LPS injection site (0.56 ± 0.13%ID g⁻¹) over the control muscle tissue (0.32 ± 0.05%ID g⁻¹), but this difference was not statistically significant. The contrast ratios of inflammation tissue over normal tissue were 4.9 ± 1.3 for FDG and 1.7 ± 0.5 for 64Cu-UPS6.9. The lower contrast ratio by 64Cu-UPS6.9 offers a potential advantage via the
64Cu-UPS6.9 achieved binary detection of brain tumours. Brain cancer is one of the most lethal forms of cancer without a widely accepted method for early detection. Late diagnosis when symptoms occur often leads to poor prognosis and survival. Conventional metabolic PET tracer FDG cannot be used for brain tumour imaging because of the high physiological uptake of glucose in the normal brain tissues. To investigate the feasibility of 64Cu-UPS6.9 for glioma detection, we utilized an orthotopic glioma mouse model by transplantation of a green fluorescent protein (GFP)-labelled murine glioma cell line, 73C (astrocyte-derived gliomas with p53−/−, PTEN−/− and BRAFV600E mutations), into the stratum of mouse brains. At 24 h after intravenous administration of 64Cu-UPS6.9, PET imaging showed bright illumination of small-sized brain tumours (~10 mm3) over the dark normal brain tissue background (Fig. 5a and Supplementary Fig. 8). Tissue uptake of 64Cu-UPS6.9 was measured at 3.1 ± 1.6 and 0.54 ± 0.3%ID g−1 for 73C tumours and normal brain tissues, respectively. The contrast-to-noise ratio (CNR) was determined to be 15.1 ± 6.8, and the tumour-to-background ratio (TBR) was 6.0 ± 1.6. For comparison, 11C-methionine (MET)—a newly developed amino acid tracer for brain tumour imaging—was also employed to detect 73C tumours. After intravenous administration, the tissue uptake of MET in tumours was 3.1 ± 0.4%ID g−1 at 20 min. Normal brain tissues had relatively high uptake of MET at 1.9 ± 0.2%ID g−1, lowering the CNR to 2.8 ± 0.7 and the TBR to 1.6 ± 0.1 compared with 64Cu-UPS6.9 (Supplementary Fig. 9). In the normal brain tissues, the blood–brain barrier was effective at keeping the PEGylated micelle form of 64Cu-UPS6.9 out of the brain parenchyma. In 73C gliomas, tumour acidosis was able to activate 64Cu-UPS6.9, leading to significantly increased positron signals. Subsequent investigation of brain tumour slides (8 μm in thickness) by autoradiography and ICG fluorescence correlated microscopically with haematoxylin and eosin histology and GFP fluorescence (Fig. 5b). Fluorescence microscopy data further illustrate that the UPS tracer can cross the blood–tumour barrier in 73C gliomas and not only accumulate at the perivascular area, but also distribute broadly in the tumour sections (overlay image in Fig. 5c and Supplementary Fig. 10). These data corroborate the feasibility of irreversibly trapping UPS tracers in brain cancer cells.

Fig. 4 | 64Cu-UPS6.9 reduced false positive PET signals from LPS-induced inflammation compared with FDG. a, PET/computed tomography imaging of BALB/c mice with LPS injection in the right hind legs, by FDG (left) and 64Cu-UPS6.9 (right). Arrow heads point to the LPS injection sites in the muscle tissues. Top: PET images; Bottom: Fused PET/computed tomography images. Representative images are shown (n = 3). b, Quantification of PET signals from the inflammation sites and normal left leg muscle tissues by FDG and 64Cu-UPS6.9. Significance (**P = 0.0024) was determined by paired two-sided Student’s t-test. NS, not significant. c, Inflammation-tissue-to-normal-muscle ratios by PET, for 64Cu-UPS6.9 and FDG. Significance (*P = 0.017) was determined by unpaired two-sided Student’s t-test. In b and c, individual data points are shown. Bar heights and error bars represent means ± s.d. (n = 3).
to achieve binary tumour imaging outcomes at both macroscopic and microscopic levels.

Non-invasive imaging of multiple tumour types by ⁶⁴Cu-UPS₉. To investigate the feasibility of ⁶⁴Cu-UPS₉ to image a broad set of cancers, we evaluated PET imaging of additional head/neck and breast tumour nodules. ⁶⁴Cu-UPS₉ tracers (0.1 mCi) were injected into the tail vein of tumour-bearing mice. The results show conspicuous detection of occult nodules (10–20 mm³) in orthotopic HN5 and FaDu head and neck tumours, as well as 4T1 triple-negative breast tumours (Fig. 6a and Supplementary Figs. 9–11 for triplicate reports showing the robustness of tumour detection). Autoradiography images on another set of tumour models with tumour invasion to the surrounding muscles also showed increased accumulation of ⁶⁴Cu-UPS in the tumour tissues over the surrounding normal muscles (Supplementary Fig. 11–13). The tissue uptakes were 9.9 ± 2.5, 6.5 ± 2.5 and 5.7 ± 1.2%ID g⁻¹ in the HN5, FaDu and 4T1 tumours 18–24 h after intravenous injection of ⁶⁴Cu-UPS₉ tracers, respectively. The CNRs were 54.3 ± 8.7, 33.5 ± 3.7 and 34.6 ± 12.1 in the HN5, FaDu and 4T1 tumours (n = 3 for each tumour type),
Fig. 6 | Non-invasive digitization of tumour acidotic signals by PET. **a**, Cancer-specific detection of various small tumour nodules (10–20 mm³) by intravenously administered ⁶⁴Cu-UPS tracers. Orthotopic HNS and FaDu head and neck cancers, and 4T1 triple-negative breast cancer were clearly visualized. Top: PET images; Bottom: Fused PET/computed tomography images. Yellow arrow heads point to the tumour site. Representative images are shown (n = 3). The liver and spleen are the other major organs for UPS uptake. FDG-PET imaging showed high false rates in the head and neck region. BF, brown fat; BR, brain. **b**, PET quantification of CNR values for ⁶⁴Cu-UPS₆.⁹ in different tumour models. **c**, Comparison of CNR values in HN5 tumours by ⁶⁴Cu-UPS₆.⁹ versus FDG and ⁶⁴Cu-PEG-PLA nanoparticles. Significance (***P = 0.0006) was determined by unpaired two-sided Student’s t-test. In **b** and **c**, individual data points are shown. Bar heights and error bars represent means ± s.d (n = 3).
false positive signals that complicated tumour diagnosis (Fig. 6a,c). 30% compared with the PBS control (Supplementary Fig. 17). In the 64Cu-PEG-PLA study, a small percentage (2.0 ± 0.2%ID g⁻¹) of tumour uptake was observed in HN5 tumours 18–24 h after intravenous injection. The CNR and TBR values of 64Cu-PEG-PLA (4.4 ± 1.0 and 3.9 ± 0.4, respectively; Fig. 6c and Supplementary Figs. 15 and 16) were significantly lower than for 64Cu-UPS (54.3 ± 8.7 and 21.5 ± 5.6, respectively). These results show that passive targeting through the leaky tumour vasculature is not sufficient to produce high tumour contrast, as shown by the low CNR value of conventional 64Cu-PEG-PLA micelle probes. To further demonstrate the effect of tumour acidosis, pretreatment of HN5 tumours with acetazolamide—an inhibitor targeting carbonic anhydrase IX (a tumour acidotic protein)—decreased the 64Cu-UPS signals by 30% compared with the PBS control (Supplementary Fig. 17).

Discussion

Biological processes are dynamic and complex, with perpetual changes in space and time. The resulting spatiotemporal heterogeneity makes it challenging to accurately diagnose pathological conditions from normal physiological background. PET or magnetic resonance imaging of acidic tumour microenvironments has been studied extensively in recent years. However, conventional pH sensors have low pH resolution (that is, tenfold signal changes occur over 2 pH units). Previously, we reported an ICG-based UPS nanoprobe for cancer detection by fluorescence imaging. A binary fluorescent delineation of tumour margins was achieved, which led to accurate cancer surgery and prolonged survival in tumour-bearing mice. The main mechanism was thought to be the coupling of the pH-dependent phase transition phenomenon to the quenching and unquenching of the fluorophores conjugated to the hydrophobic segment of the polymers. In this study, we incorporated a 64Cu PET functional moiety in the fluorescent nanoparticle formulation. Unlike the on/off fluorescence reporter, the positron signals are always ‘on’ and cannot be quenched; therefore, phase transition-based changes in signal analogous to fluorescence were not expected. Contrary to expectation, the positron signal showed a binary pattern of background signal suppression and tumour activation similar to the fluorescence output (Figs. 5 and 6). While PET imaging overcomes the light penetration limitations of optical imaging, we were curious about the mechanisms for the unpredicted pattern of the positron signal. Clearly, passive accumulation due to EPR effect alone was not sufficient to produce the high tumour contrast, as indicated by the relatively low CNR and TBR values of 64Cu-PEG-PLA compared with 64Cu-UPS in HN5 tumours.

We attribute the dramatically improved sensitivity and specificity of cancer detection by 64Cu-UPS tracers to a ‘capture and integration’ mechanism in the acidic tumour milieu (Fig. 7). Like most biological signals, tumour acidosis is dynamic, with high
intrapitual heterogeneity in space and time. Reversible small molecular pH sensors do not show high tumour contrast due to broad pH responses leading to background activation and incomplete tumour activation. In addition, their signal output varies with the transient fluctuations in tumour metabolism and pH. Other pH tracers, such as the pH (low) insertion peptide (pHLIP), have been reported to undergo a similar capture mechanism by protonation and insertion into the cell membrane in the lower pH environment. However, broad pH responses and strong binding and insertion into blood cells increased background signals with reduced tumour contrast. Consequently, the tumour-to-muscle ratio is around 8 by pHLIP tracers in LNCaP and PC-3 tumours at 24 h postinjection, compared with a ratio is around 8 by pHLIP tracers in LNCaP and PC-3 tumours. A similar outcome was also observed in small molecular approximated by 1 (tumour) or 0 (muscle/brain) outputs. The sharpness of the phase transition response in this instance resulted in specific retention or capture of the Cu-bearing polymers in acidic tissues such as tumours, while capture was suppressed in the background normal tissue. More specifically, at different time points (t1, t2, ..., t6), different regions of the tumour could be acidified below the pH threshold (6.9), as indicated by the green spots in the front images in Fig. 7. This transient acidic signal in turn activates Cu-UPS micelles circulating at the tumour site into polycationic unimers, which are irreversibly captured, leaving a stable imprint of polymer signal (red spots on the positron map). The irreversible capture resulted in increased dose accumulation over time for Cu-UPS, as validated experimentally (Supplementary Fig. 6). Furthermore, uptake of polymers inside the lysosomes of cancer cells avoids diffusion-caused signal blurring, which may explain the sharp contrast at the tumour and normal tissue boundary even after 24 h. Intact micelles are cleared from the tumour sites, as well as normal tissues through blood circulation. Cu-UPS, by linking the binary activation in response to pH to a novel tissue retention output, suppresses the background while allowing maximum amplification of the tumour signal as approximated by 1 (tumour) or 0 (muscle/brain) outputs.

The data showed that Cu-UPS tracers were able to detect a broad range of occult cancer types (Figs. 5 and 6) in the brain, head and neck, where FDG imaging is obscured by the high signal found in normal brain and tonsil tissues. Moreover, in a non-cancerous, LPS-induced inflammation model, FDG showed significantly increased uptake at LPS-injected muscle sites compared with the normal muscle control, whereas Cu-UPS tracers showed insignificant increases (Fig. 4). For tumour imaging, although respectable dose accumulation of FDG was observed in tumours (for example, 5.4 ± 0.7%IDg−1 in HN5 tumours), high physiological uptake of FDG in healthy tissues hampers cancer-specific detection of tumours. A similar outcome was also observed in small molecular tracer MET for brain tumour detection, where high normal brain signals lowered tumour contrast compared with Cu-UPS (Fig. 5 and Supplementary Fig. 9). For Cu-UPS, coupling the unique binary output of phase transition to the capture of the acidic signal allows a more cancer-specific detection of occult diseases (Fig. 6; see also three-dimensional (3D) rotation Supplementary Videos 1–3). Besides tumour acidosis, other factors, such as leaky tumour vasculature, disrupted blood–brain barriers (as in the case for 73G glioma), elevated micropinocytosis and impaired lymphatics may also contribute to the robust contrast of tumours over surrounding normal tissues by Cu-UPS. Meanwhile, high uptake of Cu-UPS in the reticuloendothelial systems (for example, liver and spleen) may preclude the use of this agent for the detection of cancers in these organs.

In summary, we report the molecular mechanism of proton transitor-like nanoparticles to capture and integrate tumour acidic signals into discrete outputs to improve the precision of cancer detection. This represents a second output—tissue retention—coupled to the transistor-like binary behaviour of the UPS nanoparticles besides fluorescence readout. The impact of the concept is illustrated by the non-invasive detection of small occult diseases (10–20 mm3 or 3–4 mm) in the brain, head/neck and breast by PET imaging. Incorporation of both PET and fluorescence functions in one UPS nanotracer further synergizes two orthogonal imaging modalities, which potentially allows initial whole-body assessment of tumour burden by PET, followed by high-resolution fluorescence imaging for local interventions (for example, biopsy or surgery). We anticipate that the proposed chemical integration mechanism will impact early cancer detection and surveillance while creating strategic insights to incorporate molecular cooperativity principles for the design of precision medicine.

Methods

Synthesis of ICG- and NOTA-conjugated UPS, nanoparticles and NOTA-PEG-b-PLA nanoparticles. The PEG-b-PLA copolymer was synthesized following the reported procedure using the anionic transfer radical polymerization technique. The polymers were then dissolved in methanol. ICG-Sulfo-OSu was first added to react with the amino group (1:1 molar ratio) via N-hydroxysuccinimide ester chemistry for 1 h. Next, p-SCN-Bn-NOTA was added to react with the remaining amino group (4:1 molar ratio) overnight at room temperature. Unconjugated ICG and NOTA were removed using Millipore ultrafiltration membranes with a molecular weight cut off of 10 kDa. The UPS nanoparticles were produced via a solvolysis evaporation method, and concentrated to 5 mg ml−1 for further use. NOTA-conjugated PEG-b-PLA block copolymers were synthesized by ring-opening polymerization following a published procedure. Briefly, polymerization of d,l-lactide was performed at 110 °C using Fructose-amine–PEG5K-hydroxyl diethylnitrosoiminium and Sn(Oct)3 as a catalyst. Deprotection of PEG was achieved by 20% piperidine in dimethylformamide. After polymer purification with precipitation in ether three times, the solid polymer was suspended in dimethylformamide and reacted with p-SCN-Bn-NOTA at room temperature overnight. Unconjugated NOTA was removed using Millipore ultrafiltration membranes with a molecular weight cut off of 10 kDa.

Cu labelling of UPS nanoparticles or PEG-b-PLA nanoparticles. Chelation of “Cu” to NOTA on the UPS nanoparticles or PEG-b-PLA copolymer was accomplished by adjusting the pH to 6.0–6.5 with 4 M ammonium acetate buffer for 15 min at 37 °C. MIllicon formation was carried out by adjusting the solution pH to 7.4 with 2 M sodium carbonate. Removal of unbound CuCl2 was achieved by centrifugal filtration through a 0.2-micron filter. The lyophilisate was reconstituted with PBS for use. Cu60 uptake was determined by radio-scintillation counting.

pH titration and dialysis. UPS nanoparticles were first dissolved in 2.5 ml 0.1 M HCl and diluted to 2.0 mg ml−1 with deionized water. Sodium chloride was added to adjust the salt concentration to 150 mM. pH titration was performed by adding small volumes (1 μl in increments) of 4.0 M NaOH solution under stirring. The pH increase in the range of 3–11 was monitored as a function of the total added volume of NaOH. The fully protonated and complete deprotonation states (that is, protonated state) were determined by the two extreme-value points of first-derivation pH titration curves. The pH values were measured using a Mettler Toledo pH meter with a microelectrode.

Next, UPS nanoparticles with a protonation degree of 50% were obtained by adding corresponding volumes of 4.0 M NaOH. Then, 10 μl of polymer solution was centrifuged using an ultracentrifugation tube with a molecular weight cut off of 10 kDa, to produce ~5 ml of filtrated sample. pH titrations were performed to quantify the amount of polymers and the degree of protonation in both residual and filtrate layers. We repeated the experiments three times and present the results as mean ± s.d.

Cell culture. The cancer cell lines used for the in vivo tumour models included HN5, FaDu, human head and neck cancers, 4T1 breast cancers, and GFP-labelled glioma cells with p53−/−, PTEN−/− and BRAF mutation (also known as 73G glioma cells). The HN5 and FaDu cell lines were obtained from the laboratory of M. Story; the 4T1 cell line was obtained from the laboratory of D. Boothman; and the 73G glioma cells were originally obtained from the laboratory of R. Bachoo at the University of Texas Southwestern. All cells were tested negative for Mycoplasma contamination before use. Negative status for contamination was verified using a Mycoplasma Detection Kit from Biotool. Cells were cultured in DMEM or RPMI medium with 10% foetal bovine serum and antibiotics.
Animal models. Animal protocols related to this study were reviewed and approved by the Institutional Animal Care and Use Committee. Female non-obese diabetic and severe combined immunodeficient mice (6–8 weeks of age; 20–22 g) were purchased from the University of Texas Southwestern Medical Center Breeding Core. For orthotopic head and neck tumours, HN5 and FaDu (2 × 10⁶ mouse−1) were injected into the submental triangle area. One week after inoculation, animals with a tumour size of 20–100 mm³ were used for imaging studies. The orthotopic murine 4T1 breast tumour model was established in female BALB/c mice (6–8 weeks of age; 20–22 g) by injection of 4T1 cells (5 × 10⁶ mouse−1) into the mammary fat pads. The GFP-transfected 73C glioma murine model was established by implanting 10⁶ glioma cells intracranially into the striatum (2 mm, 0.5 mm, −2.5 mm; coordinates to the location of tumour cells with respect to the original point at the bregma) of the right hemisphere in male C57BL/6j mice (6–8 weeks of age; 20–22 g). Gliomas (2–4 mm in diameter) were formed within 2–3 weeks in mice. The LPS-induced inflammation animal models were established by subcutaneous injection of 50 µg per 20 µL into the right hind leg of BALB/c mice 2 d before the imaging. As a control, 20 µL PBS was injected subcutaneously into the left hind leg of the same mice.

Cell uptake assay. Some 1.5 × 10⁶ HN5 cancer cells were seeded into individual wells of 96-well plates (n = 3 for each time point) containing 0.2 mL DMEM media overnight before the nanoprobe incubation. Then, 20 µg mL−1 Cu-UPS₄₈ or Cu-PEG-PLA dispersed in either pH 6.5 or pH 7.4 DMEM medium were added to the wells and incubated with cold PBS buffer three times to remove all of the non-trapped nanoparticles. Finally, the 96-well plates were exposed on Perkin Elmer storage phosphor screens overnight, then imaged using Typhoon scanner. Immediately after the computed tomography data acquisition (performed at 150 kV and 164 mA), PET images were reconstructed using a Fourier rebinning algorithm. Immediately following PET imaging, the animals were sacrificed and the tissues were harvested for histology. The mean activity (tumour) and mean activity (background) are calculated as 49,50:

\[CNR = \frac{\text{mean activity (tumour)} - \text{mean activity (background)}}{\text{s.d. (background)}} \]

The background signal was measured as the mean activity in the surrounding normal muscle tissues, with the exception of 73C brain tumours. For 73C gliomas, the background signal was measured from the contralateral normal brain tissues. s.d. (background) refers to the standard deviation of the background tissues. The TBR was calculated as mean activity (tumour)/mean activity (background).

Ex vivo autoradiography and histology. Immediately following PET imaging, the mice were sacrificed, and the tumour and major organs (for example, brain, liver, spleen, heart, kidney, muscle, and so on) were harvested and frozen. Section slides were prepared from each specimen. The slides were first exposed on Perkin Elmer storage phosphor screens, then imaged using Typhoon scanner for Cu tracer quantification, followed by fluorescence imaging using a Li-COR Odyssey flatbed scanner with an 800 nm filter for the ICG signal. Finally, haematoxylin and eosin staining was performed for histological correlation of the tumours.

Statistical analysis. Data are expressed as means ± s.d. Sample sizes were chosen to ensure adequate power (>85% at a significance level of P < 0.05) to detect predicted effect sizes, and were estimated on the basis of either preliminary data or previous experiences with similar experiments. Differences between groups were assessed using GraphPad Prism 8, with paired or unpaired two-sided Student’s t-tests for the calculation of P-values.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The authors declare that the main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request.

Received: 28 August 2018; Accepted: 13 May 2019; Published online: 24 June 2019

References

1. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1553 (2015).
2. Jacobs, T. W., Gown, A. M., Yajizi, H., Barnes, M. J. & Schnitt, S. J. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am. J. Clin. Pathol. 113, 251–258 (2000).
3. Paik, S. et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J. Natl Cancer Inst. 91, 1991–1998 (2000).
4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
5. Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
6. Hickey, C. T. et al. Metabolic heterogeneity in human lung tumours. Cell 164, 681–694 (2016).
7. Zhu, A., Lee, D. & Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 38, 55–69 (2011).
8. Som, P. et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): noninvasive tracer for rapid tumour detection. J. Nucl. Med. 21, 670–675 (1980).
9. Cook, G. J., Wegner, E. A. & Fogelman, I. Pitfalls and artifacts in ¹⁸FDG PET and PET/CT oncoplastic imaging. Semin. Nucl. Med. 34, 122–133 (2004).
10. Purohit, B. S. et al. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5, 585–602 (2014).
11. Truong, M. T., Viswanathan, C., Carter, B. W., Mawlawi, O. & Marom, E. M. PET/CT in the thorax: pitfalls. Radiol. Clin. North Am. 52, 17–25 (2014).
12. Culverwell, A. D., Scharbrook, A. F. & Chowdhury, F. U. False-positive uptake on 2-[¹⁸F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) in oncological imaging. Clin. Radiol. 66, 366–382 (2011).
13. Truong, M. T. et al. Integrated positron emission tomography/computed tomography in patients with non-small cell lung cancer: normal variants and pitfalls. J. Comput. Assist. Tomogr. 29, 205–209 (2005).
14. Bhardwaj, P., Rahman, S. & Wendi, J. Atlas of confounding factors in head and neck PET/CT imaging. Clin. Nucl. Med. 36, e20–e29 (2011).
15. Blodgett, T. M., Mehta, A. S., Laymon, C. M., Carney, J. & Townsend, D. W. PET/CT artifacts. Clin. Imaging 35, 49–63 (2011).
16. Fukui, M. R. et al. Combined PET-CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiographics 25, 913–930 (2005).
17. Cohade, C., Mourtzakis, K. A. & Wähl, R. L. “USA-Fat”: prevalence is related to ambient outdoor temperature—evaluation with ¹⁸FDG PET/CT. J. Nucl. Med. 44, 1265–1270 (2003).
18. Perkins, A. C., Mihella, D. S., Symonds, M. E. & Salthlage, M. Prevalence and pattern of brown adipose tissue distribution of ¹⁸FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl. Med. Commun. 34, 168–174 (2013).
19. Gould, M. K., Maclean, C. C., Kuchner, W. G., Rydzak, C. E. & Owens, D. K. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. J. Am. Med. Assoc. 285, 914–924 (2001).
20. Harvey, R. J. et al. PET/CT in the assessment of previously treated skull base tumours. Clin. Radiol. 66, 29, 205–209 (2005).
21. Schoder, H. in Nuclear Oncology: Pathophysiology and Clinical Applications (eds Strauss, H. W., Mariani, G., Volterrani, D. & Larson, S. M.) 269–295 (Springer, 2012).
22. Castaing, C., Muylle, K. & Flamen, P. in Head and Neck Cancer Imaging (ed. Hermans, R.) 329–343 (Springer, 2006).
23. Schmaluss, I. in Head and Neck Cancer Imaging (ed. Hermans, R.) 363–385 (Springer, 2012).
24. Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2016).
25. Tsarevsky, N. V. & Matyjaszewski, K. “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 107, 2270–2299 (2007).
26. Lopez-Fontal, E., Milanesi, L. & Tomas, S. Multivalence cooperativity leading to “all-or-nothing” assembly: the case of nucleation-growth in supramolecular polymers. Chem. Sci. 7, 4468–4475 (2016).
27. Williamson, J. R. Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4, 458–465 (2008).
28. Moghimi, S. M. & Szepesi, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).
29. Hess, S., Hansson, S. H., Pedersen, K. T., Baus, S. & Hohlund-Carlsen, P. F. FDG-PET/CT in infectious and inflammatory diseases. PET Clin. 9, 497–519 (2014).
30. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).
31. Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: a clinical review. J. Am. Med. Assoc. 310, 1842–1850 (2013).
32. Fink, J. R., Muzi, M., Peck, M. & Krohn, K. A. Multimodality brain tumor imaging: MR imaging, PET, and PET/MR Imaging. J. Nucl. Med. 56, 1554–1561 (2015).
33. Recherer, A. et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur. J. Nucl. Med. Mol. Imaging 30, 1561–1567 (2003).
34. Glaudemans, A. W. et al. Value of 11 C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging 40, 615–635 (2013).
35. Juhasz, C., Dwivedi, S., Kamson, D. O., Michelhaugh, S. K. & Mittal, S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumours. Mol. Imaging 13, 1–16 (2014).
36. Harris, R. J. et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncol. 17, 1514–1524 (2015).
37. Thews, O. et al. Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 89Ga labelled PET tracer. Eur. J. Nucl. Med. Mol. Imaging 37, 1935–1942 (2010).
38. Demoin, D. W. et al. PET imaging of extracellular pH in tumours with 99mTc and 11C-labeled pHILP peptides: a structure–activity optimization study. Bioconjug. Chem. 27, 2014–2023 (2016).
39. Vavere, A. L. et al. A novel technology for the imaging of acidic prostate tumours by positron emission tomography. Cancer Res. 69, 4510–4516 (2009).
40. Weerakkody, D. et al. Family of pH (low) insertion peptides for tumour targeting. Proc. Natl Acad. Sci. USA 110, 5834–5839 (2013).
41. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).
42. Gillies, R. J., Liu, Z. & Bhujwalla, Z. P-31-Mrs measurements of extracellular pH of tumours using 3-aminopropylphosphonate. Am. J. Physiol. 267, C195–C203 (1994).
43. Gillies, R. J., Raghunand, N., Garcia-Martin, M. L. & Gatenby, R. A. PH imaging. IEEE Eng. Med. Biol. Mag. 23, 57–64 (2004).
44. Volk, T., Jahde, E., Fortmeyer, H. P., Glusenkamp, K. H. & Rajewsky, M. F. pH in human tumour xenograft: effect of intravenous administration of glucose. Br. J. Cancer 68, 492–500 (1993).
45. Li, Y., Wang, Y., Huang, G. & Gao, J. Cooperativity principles in self-assembled nanomedicine. Chem. Rev. 118, 5359–5391 (2018).
46. Ma, X. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).
47. Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).
48. Blanco, E. et al. β-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 70, 3896–3904 (2010).
49. Fin, L., Bailly, P., Daouik, J. & Meyer, M. E. A practical way to improve contrast-to-noise ratio and quantitation for statistical-based iterative reconstruction in whole-body PET imaging. Med. Phys. 36, 3072–3079 (2009).
50. Yan, J., Schaefferkotte, J., Conti, M. & Townsend, D. A method to assess image quality for low-dose PET: analysis of SNR, CNR, bias and image noise. Cancer Imaging 16, 26 (2016).

Acknowledgements
We thank R. Bachoo for the original 73C cancer cells, Y. Li and Q. Feng for helpful discussions. This work is supported by the National Institutes of Health (R01CA192221 and R01CA119330) and Cancer Prevention and Research Institute of Texas (RP180343). The animal imaging work was supported by a University of Texas Southwestern Small Animal Imaging Resource Grant (U24 CA136668), and radiochemistry and PET imaging were supported by a Simmons Cancer Center Support Grant (P30 CA142543) and CPRIT Grant (RP110771) to X.S.

Author contributions
G.Huang, B.D.S. and J.G. are responsible for all of the phases of the research. G.Huang performed all of the experiments and analyses. T.Z. assisted the polymer synthesis and FDG-PET imaging. C.W. performed the confocal imaging on cell uptake of nanoprobes. X.G. and Y.W. prepared the 73C brain tumour model. G.Hao helped with FDG-PET imaging. C.W. performed the confocal imaging on cell uptake of nanoprobes. X.S. helped design the FDG and 64Cu PET experiments. W.-P.G. assisted with the analysis of the 73C brain tumour model. G.Huang is a scientific advisor for OncoNano Medicine, Inc. B.D.S. and J.G. are scientific co-founders and scientific advisors of OncoNano Medicine, Inc. G.Huang is a scientific advisor for OncoNano Medicine, Inc. T.Z. is currently an employee of OncoNano Medicine, Inc.

Competing interests
B.D.S. and J.G. are scientific co-founders and scientific advisors of OncoNano Medicine, Inc. G.Huang is a scientific advisor for OncoNano Medicine, Inc. T.Z. is currently an employee of OncoNano Medicine, Inc.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41551-019-0416-1.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to B.D.S. or J.G.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2019
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ The statistical test(s) used AND whether they are one- or two-sided

☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ A description of all covariates tested

☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

The PET images were reconstructed by using a Fourier Rebinning and Ordered Subsets Expectation Maximization 3D (OSEM3D) algorithm. Regions of interest (ROI) were drawn manually as guided by CT encompassing the tumour in all planes containing the tissue. The target activity was quantitatively calculated as percentage injected dose per gram of tissue (%ID/g). The contrast-to-noise ratio was calculated as (tumour mean activity – background mean activity) / background standard deviation.

Data analysis

PET signal quantification was analysed using Inveon Research Workplace (IRW) software. Statistical analyses were performed by GraphPad Prism 8 using paired or unpaired, two-sided Student’s t-tests for the calculation of p-values.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The authors declare that the main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Sample sizes were chosen to ensure adequate power (>85%, at significance of 0.05) to detect predicted effect sizes, which were estimated on the basis of either preliminary data or previous experiences with similar experiments.
Data exclusions	No data were excluded.
Replication	All attempts at replication are successful.
Randomization	The animals were randomized by independent technician without knowing the group assignment.
Blinding	The technician carried out the data collection and analysis without knowing the group assignment for each sample.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑️	Antibodies
☑️	Eukaryotic cell lines
☑️	Palaeontology
☑️	Animals and other organisms
☑️	Human research participants
☑️	Clinical data

Methods

n/a	Involved in the study
☑️	ChIP-seq
☑️	Flow cytometry
☑️	MRI-based neuroimaging

Antibodies

Antibodies used

- Anti-poly(ethylene glycol) antibody (ab190652), anti-F-actin, anti-LAMP1 and anti-GLUT1 were all purchased from abcam.
- Hoechst 33342 (Invitrogen).

Validation

Validation of each antibody was done under standard information offered by the supplier.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

- HNS and FaDu cell lines were obtained from Michael Story’s lab; 4T1 were obtained from David Boothman lab; 73C glioma cells were originally obtained from Robert Bachoo lab at UT Southwestern.

Authentication

None of the cell lines used were authenticated.

Mycoplasma contamination

All cells lines were tested for mycoplasma contamination before use. Negative status for contamination was verified by Mycoplasma Detection Kit from Biotool. Cells were cultured in DMEM with 10% fetal bovine serum and antibiotics.

Commonly misidentified lines (See ICLAC register)

No commonly misidentified lines were used in this study.
Animals and other organisms

Policy information about [studies involving animals](#): **ARRIVE guidelines** recommended for reporting animal research

Category	Description
Laboratory animals	Female NOD-SCID mice (6–8 weeks, ~20 g), female BALB/c mice (6–8 weeks, 20 g) and male C57BL/6J mice (6–8 weeks, 20 g) were all purchased from UT Southwestern Medical Center Breeding Core.
Wild animals	The study did not involve wild animals.
Field-collected samples	The study did not involve samples collected from the field.
Ethics oversight	Animal protocols related to this study were reviewed and approved by the Institutional Animal Care and Use Committee.