Development of green building maintenance information system for electrical components based on ministerial regulation

I Indriani*, Y Latief and R A Machfudiyanto

Department of Civil Engineering, Faculty of Engineering, University of Indonesia, Kampus Baru UI Depok, Jawa Barat, 16424, Indonesia

*irma.indriani88@gmail.com

Abstract. Green building maintenance is a series of structured, complicated and complex work. Maintenance of building components can support the achievement of building reliability requirements, which are safety, comfort, health and convenience. If this maintenance work is not done properly, it will cause problems and damages, such as trip, corrosion, overheated, electrical short circuit to building fires. This research aims to improve the maintenance performance of green building electrical components in order to achieve building reliability requirements by developing an information system. The research methods used are a systematic literature study of major academic and research papers and a case study of information system development in a green building to achieve the aim of this research. The result of this research is a web-based information system consists of guidelines for electrical components maintenance. This guideline informs about damages, damage categories, causes of damages, activities and schedule for each of electrical components maintenance in a green building. The result of this research revealed that green building maintenance guideline in a web-based information system will help to reduce the problems and damages that often occur in electrical components, thereby reducing the harmful impacts that can occur in a green building and its surrounding environment.

1. Introduction
Almost every building is inseparable from defect or damage despite various preventive measures taken during the design and construction. There are those who prefer to build a new building to replace the abandoned buildings repair and maintenance. As a result, more and more buildings must be evacuated well ahead of time that should be. This means that the country has lost a part of the property that was built from a limited capital. Maintenance is an activity to conserve, preserve, manage and regulate buildings, facilities, equipment, services and its surrounding buildings to meet current standards, the usefulness and value of defence facilities and security of the institution. Building maintenance is required once the building is complete [1]. The main aim of maintenance is to protect a building at its preliminary stage and to retain the value of investments in the property. Keeping a building in a condition in which it continues to fulfil its purpose and making sure it presents an attractive exterior are also important factors made possible through proper building maintenance. Building maintenance is an expensive process both from financial aspects (operational costs, real estate management, administration, job with debtors, legal services, etc.) and environmental aspects (climate change, greenhouse emissions, and energy efficiency measures) [2].
The purpose of green buildings is to increase the comfort and satisfaction of building occupants, while decreasing the negative impacts on environment, leading to reduction in costs. Green building practices provide a high level of supporting environment, increasing efficiency in the usage of various energy resources such as electricity, water, and environmentally friendly materials, and decreasing negative impacts on human health and environment during its life cycle [3]. Building maintenance activities have become more complex recently as they have evolved to be more sophisticated in design and functionality. The technology improvement in the building maintenance management system has been rapidly upgraded. Technology and device development plus the availability of integration with the system make it easier for the developer to ensure that they really are on the right current track. The process of developing technology is likely to be on-going as the building and its facilities become more sophisticated over the years [4].

In Indonesia, building maintenance is regulated in the Minister of Public Works regulation concerning building maintenance guidelines. But currently in Indonesia there is no regulations regarding green building maintenance guidelines. So, this research is aimed to provide a guideline for electrical components maintenance of a green building in a web-based information system. Electrical system requirements must pay attention to electrical installation planning, electricity distribution network, electricity load, electricity power source, distribution transformer, inspection, testing and maintenance. This guideline is expected to meet the needs of a green building that are guaranteed the aspects of human safety from electrical hazards, the safety of electrical installations and their equipment, the safety of green buildings and their contents from the dangers of fire due to electricity, and environmental protection.

2. Methods
The research methods adopted for this study are a systematic literature study and case study of information systems development. This research consists of five stages of data collecting and data analysing. Method of data collection was through questionnaire. The population of this study comprised the green building expert and green building maintenance expert. The first stage of data collection and analysis is to carry out identification and validation of green building electrical components based on ministerial regulation. The second stage is to identify and validate the green building electrical component damages and its category. The third stage is to identify and validate the causes of damage. The fourth stage is to identify and validate the maintenance activities and schedules based on ministerial regulation. The last stage of this research is the development of web-based information systems based on the results of data analysis that has been done in the previous stage. The process of developing this information system is carried out through several processes, including analysis and development of information systems, design, construction and testing. After the information system is completed, the final expert validation is carried out which aims to validate the information system that has been developed.

3. Results and discussion
Based on the data collection and analysing from stage one to stage three, a guideline about green building electrical components regarding damages, category and causes is shown in Table 1 below.
Table 1. List of green building electrical components, damages, category and causes.

Electrical Component	Damages	Category of Damage	Causes of Damage
Transformer	Trip	Medium	Overload, overheat
	Oil spill	Medium	Broken rubber / adhesive
	Corrosion	Medium	Weather and location
Transformer	Broken insulation	Heavy	Struck by lightning
	Dirty	Light	Lack of maintenance
	Short-circuit	Heavy	Incorrect installation, overload
UPS	Unable to supply power	Heavy	Low battery, lost power supply from main power
	Battery drop	Heavy	Duration of use
	Power drop	Heavy	Lost power supply from main power, duration of use
	Short-circuit	Heavy	Incorrect installation
	Overheat	Medium	Cooling system error
MVDP	Breaker off	Medium	Ampere adjustment error
	Incorrect relay	Heavy	Change of substation setting
LMVDP	Trip MCB and MCCB	Medium	Overload
	Lamp indicator off	Medium	Broken fuse
Panel Board	Dirty and dusty	Light	Lack of maintenance
	Corrosion	Light	Weather and location
Metering	Error reading	Medium	Duration of use, lack of calibration, fabrication defect
	Metering off	Medium	Incorrect installation
MCB and MCBB	Trip	Heavy	Overload
Lighting System	Lights off	Light	Duration of use, lack of maintenance, incorrect installation, unstable voltage
	Lights dim	Light	Duration of use, lack of maintenance, deceased ballast power
Lighting Control System	Defunct control system	Medium	Incorrect setting
	Broken censor	Medium	Lack of maintenance
	Error reading	Heavy	Incorrect installation
	Broken wire	Light	Lack of maintenance
Electrical	Electric socket off	Light	Broken wire
Socket and Switch	Weak switch	Light	Lack of maintenance
Internet Network	Short-circuit	Medium	Overload
	Internet network off	Light	Overcapacity, network provider interruption
BAS	Error indicator reading	Heavy	Incorrect setting, lack of maintenance

The result above shows the factors that influence building maintenance such as design factors, human factors, environmental factors, age of property or building, quality and appropriateness of material used, faulty construction and faulty system [5]. Based on the data collection and analysing from stage four, a guideline about maintenance activities and schedule for green building electrical components is shown in Table 2 below.

Table 2. Green building electrical components maintenance activities and schedule.
Electrical Components	Maintenance Activities	Maintenance Schedule
Transformer	Check and adjust the temperature and air condition in the transformer room, check the transformer oil. Clean the outside parts of the transformer. Check the cable connections at the bushing terminal, ground system, the condition of safety relay, bushing, terminal, seat, temperature and physical condition of transformer. Check security and measurement equipment. Check the high temperature alarm for each transformer.	Daily Weekly Monthly Monthly Monthly
UPS	Check and verify the condition of the cable, fuse, relay, battery back-up conditions and battery terminals. Check the UPS control system function and clean the terminal. Calibrate the pointing device on the UPS panel. Tighten every bolt.	Monthly Every 3 months Every 3 months
MVDP	Measure ground resistance. Check MV panel components (Load Break Switches, Earthing Switches, HRC Fuse, Lightning Arrester, Interlock System, measurement equipment and all the assist equipment). Clean the earth electrodes. Measure and clean the LBS contact resistance and Earthing Switch. Tests the electrical and mechanical interlocking.	Monthly Every 3 months Every 3 months
LMVDP	Check the LVDP panel status, current, voltage indication and KWH panel indication. Check the connecting indication on the power breaker. Calibrate all gauges on the panel.	Daily Monthly
Panel Board	Check and clean the panel board. Check and improve the physical condition of the feeder cable and control cable. Check and tighten cable terminals, nuts and bolts. Tidy up the cable paths on the panel.	Monthly Monthly Monthly Every 6 months
Metering	Check the recording of all measuring instruments, as well as evaluating and handling the results of the recording. Check the recording and accounting of the electric load curves from transformer output, and evaluating and handling the results of recording. Check and tighten the cable terminal to the meter. Calibrate all gauges on the panel.	Monthly Every 3 months Every year
MCB and MCBB	Check the physical condition and cleanse water, moisture, dust and dirt on MCB and MCCB. Test the MCB and MCCB trips using Current Injector.	Monthly Every 3 months
Lighting System	Observe every light point and the intensity of lighting Check the main switch status indication on each floor. Check the condition of battery back-up on emergency lights and clean the armature. Check the connecting indication on the power breaker and the operation of the main switch on each floor. Replace the battery back-up on the emergency lights. Test the insulation with Megger 500 V.	Daily Monthly Every 6 months Every 6 months
Lighting Control	Check and observe all light points and the operation of the main switch on each floor centrally.	Daily Every 6 months
Electric Socket and Switch	Check the lighting and power supply contacts. Check the overall condition of the control system (transmission, terminals, transformers, relays, contact outputs, installation and equipment assistance). Clean the entire control system.	Daily Monthly Monthly
Electric Socket and	Check and observe the function of all sockets and switches. Check the physical condition of the socket and switch, including the cord. Check the installation with Megger 500 V.	Monthly Monthly Every 6 months
Switch	Check the performance of Computer Networks, Servers, Repeaters, Hubs, and Uninterrupted Power Supply (UPS) equipment from the control panel in the operator's station.	Monthly
BAS	Check the conditions and indicators of all Building Automation System	Daily
Table 2 above show maintenance activities and schedule for each of green building electrical components to reduce or avoid damages that often occur on components. This result can be a guideline in conducted maintenance for green building electrical components.

The next stage is developing a web-based information system based on the guideline that has been validated by green building experts. This information system provides all the information concerning all the objectives of this research. Figure 1 below shows the login page of this information system.

![Figure 1. Information system login page.](image1)

Figure 1 show the information system login page which can be accessed by the green building user and building management team. This system can be used to seek information regarding maintenance activities and schedule for each of green building electrical components. This system also functioning as a reporting system to report any damages occurred in green building so that the building management team take action to resolve the problems and also to make an appointment about periodic maintenance of each building components based on its schedule defined in Table 2.

![Figure 2. Information system dashboard.](image2)

Figure 2 show the dashboard of information system regarding all reports status. Every report will be documented on this system and can be used as a database for periodic reporting of building management team.
4. Conclusion
The development of a green building electrical components maintenance guideline in a web-based information system has shown its capability in improving maintenance work in achieving building reliability requirements. The information system will help to reduce the problems and damages that often occur in electrical components, thereby reducing the harmful impacts that can occur in a green building and its surrounding environment.

Acknowledgement
This paper and the research behind it would not have been possible without the exceptional support of my counsellors, Yusuf Latief and Rossy Armyn. Their enthusiasm, knowledge and exacting attention to detail have been an inspiration and kept my work on track from my first encounter to the final draft of this paper.

References
[1] Nawi M N M, Baharum F, Ibrahim S H and Riazi S R M 2017 A Review Study of Maintenance and Management Issues in Malaysian Commercial Building Towards Sustainable Future Practice AIP Conference Proceedings 1891
[2] Puķite I and Geipele I 2017 Different Approaches to Building Management and Maintenance Meaning Explanation Procedia Engineering 172 905–12
[3] Aghili N, Mohammed M A H and Sheau-Ting L 2017 Management Key Practices for Improving Green Building Performance International Journal of Real Estate Studies 11(2)
[4] Zakiyudin M Z, Fathi M S, Tobi S U and Rambat S 2016 Building Maintenance Information Systems: The Adaptation of Context Aware Technology International Journal of Research in Chemical, Metallurgical and Civil Engineering 3(1)
[5] Okosun B O and Olagunju R E 2017 Assessment of Factors Contributing to Maintenance Problems in Higher Institutions in Niger State, Nigeria Journal of Building Performance 8(1)