Brentuximab vedotin compared with other therapies in relapsed/refractory Hodgkin lymphoma post autologous stem cell transplant: median overall survival meta-analysis

Vijayveer Bonthapally
Global Oncology Pricing Market Access and Health Economics, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

Hongbo Yang
Rajeev Ayyagari
Ruo-Ding Tan
Analysis Group Inc., Boston, MA, USA

Sean Cai
Analysis Group Inc., New York, USA

Eric Wu
Analysis Group Inc., Boston, MA, USA

Ashish Gautam
Medical Affairs, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

Andy Chi
Biostatistics, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

Dirk Huebner
Oncology Clinical Research, Millennium Pharmaceuticals Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

Address for correspondence:
Dr Vijayveer Bonthapally, Global Oncology Pricing Market Access and Health Economics, Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, Cambridge, MA 02139, USA.
Tel: +1 617 444 2248; Fax: +1 617 551 7992; vijayveer.bonthapally@takeda.com

Key words:
Antigens – Brentuximab vedotin – CD30 – Hematopoietic stem cell transplantation – Hodgkin lymphoma – Meta-analysis – Overall survival

Abstract

Objective:
This meta-analysis compared the median overall survival (mOS) of brentuximab vedotin reported in the pivotal phase 2 study with published results of other therapies for the treatment of relapsed/refractory (R/R) Hodgkin lymphoma (HL) post autologous stem cell transplant (ASCT).

Research design and methods:
A systematic literature review identified studies that reported survival outcomes following conventional/experimental therapies in R/R HL patients, with ≥50% having failed ≥1 ASCT. Kaplan–Meier curves were used to reconstruct individual patient level survival data. Patients were grouped by treatment type and reconstructed data were used to estimate the mOS. Censored median regression modeling was used to compare mOS in each group with the mOS in the pivotal brentuximab vedotin trial. All patients in the pivotal trial had undergone ASCT, therefore a sensitivity analysis was conducted among studies with a 100% post-ASCT patient population.

Results:
The mOS reported for brentuximab vedotin was 40.5 (95% CI 30.8–NA) compared with 26.4 months (95% CI 23.5–28.5) across all 40 studies identified (n = 2518 excluding the brentuximab vedotin trial) (p < 0.0001). The difference in mOS between brentuximab vedotin and chemotherapy, allogeneic stem cell transplant (allo-SCT), and other therapies, was 17.7 (95% CI 10.6–24.7; p < 0.0001), 12.5 (95% CI 8.2–16.9; p < 0.0001), and 15.2 months (95% CI 4.9–25.5; p = 0.0037), respectively. For the 11 studies reporting a 100% prior-ASCT rate (n = 662 excluding the brentuximab vedotin trial), the mOS was 28.1 months (95% CI 23.9–34.5), and the difference in mOS between brentuximab vedotin, chemotherapy, allo-SCT, and other therapies was 19.0 (95% CI 12.9–25.1; p < 0.0001), 9.4 (p < 0.05), and 6.8 months (95% CI 1.2–12.5; p = 0.0018), respectively.

Conclusions:
While some selection bias may occur when comparing trials with heterogeneous eligibility criteria, in the absence of randomized controlled trial data these results suggest brentuximab vedotin improves long-term survival and is associated with longer mOS in R/R HL post-ASCT compared with other therapies.

Introduction
Hodgkin lymphoma (HL) is a rare clonal lymphoid malignancy, with an annual incidence rate of 2.90 and 2.49 per 100,000 in the US and Europe, respectively1,2. It is estimated that in 2014 there will be 9190 new HL diagnoses and 1180 deaths in the US alone3. Currently, more than 80% of all newly diagnosed HL patients, aged ≤60 years, are likely to be cured following front-line therapy consisting of multi-agent chemotherapy and radiotherapy4,5. However,
depending on the initial stage of the disease at diagnosis as well as the various prognostic factors, up to 30% of patients who achieve remission, relapse or are refractory to frontline therapy. For patients with relapsed/refractory (R/R) HL, standard treatment involves second-line, salvage combination chemotherapy followed by high-dose chemotherapy and autologous stem cell transplant (HDT-ASCT). Unfortunately, approximately 50% of HL patients relapse after ASCT and their prognosis is generally poor with a median survival of 25 months. Treatment options for R/R HL patients post-ASCT are limited and include additional chemotherapy, allogeneic stem cell transplant (allo-SCT), recurrent ASCT, radiotherapy, and immunotherapy. The management of this subset of patients remains a significant challenge.

Brentuximab vedotin is an antibody–drug conjugate that targets CD30, a cell-surface antigen expressed on the malignant Hodgkin’s Reed–Sternberg cells of classical HL. It consists of a CD30-targeted monoclonal antibody (cAC10) covalently linked to the microtubule-disrupting agent monomethyl auristatin E (MMAE) by a protease-cleavable linker. It received accelerated approval from the US Food and Drug Administration in 2011 for the treatment of HL patients that have relapsed after ASCT or after at least two prior multi-agent chemotherapy regimens with ineligibility for ASCT. Subsequently, brentuximab vedotin received conditional approval from the European Commission in 2012 for the treatment of CD30-positive R/R HL patients after ASCT or after failure of at least two prior multi-agent chemotherapy regimens when ASCT or multi-agent chemotherapy is not a treatment option.

The efficacy and safety of brentuximab vedotin in R/R HL post-ASCT was demonstrated in a single-arm, multicenter, pivotal phase 2 clinical trial (SG035-0003; NCT00848926). A total of 102 patients with R/R HL following ASCT were treated with brentuximab vedotin 1.8 mg/kg by intravenous infusion every 21 days for a maximum of 16 cycles. The objective response rate was 75%, with complete remission (CR) in 33% of patients. Recent long-term follow-up data from the pivotal phase 2 trial, with a median observation time of 32.7 months, reported a median overall survival (mOS) of 40.5 months.

The US and European approval of brentuximab vedotin for the treatment of R/R HL was based on the results of the pivotal phase 2 study. In the absence of head-to-head, randomized, controlled, phase 3 trials, no comparative efficacy data for brentuximab vedotin and existing therapies in the R/R setting are available. A recent meta-analysis compared the antitumor activity of brentuximab vedotin, in terms of CR rate as reported in the phase 2 study, with existing drug therapies or experimental agents, for the treatment of R/R HL post-ASCT. Brentuximab vedotin was associated with a significantly higher CR rate compared with other therapies (33.3% vs. 11.1%, p < 0.0001). Now that long-term survival data are available for patients treated with brentuximab vedotin in the pivotal phase 2 study, we conducted a systematic literature review to identify studies which reported survival outcomes for other therapies among adult R/R HL patients post-ASCT. We then performed a meta-analysis to compare the mOS of brentuximab vedotin as reported in the pivotal study to that of other therapies reported in the literature for the treatment of R/R HL post-ASCT patients.

Patients and methods

Systematic literature review

Per pre-specified criteria, a systematic literature review was undertaken to identify studies that reported survival outcomes following conventional and experimental therapies in R/R HL patients post-ASCT. Indexed search terms and free text terms were used to identify ‘relapsed’, ‘refractory’, ‘HL’, and ‘ASCT’ in studies published between February 2013 and January 2014 in six electronic databases: MEDLINE, MEDLINE In-Process and other non-indexed citations, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). Recent conference proceedings (2011 to 2013) from the American Society for Clinical Oncology (ASCO), American Society of Hematology (ASH), European Society for Medical Oncology (ESMO), and European Hematology Association (EHA) were also included. There were no restrictions regarding study design or type of treatment in the initial search, and English-language studies involving human subjects were selected for review. A comprehensive summary of the search strategies with detailed search terms is provided in the supplementary appendix. Relevant studies published from January 1993 to January 2013, identified from a prior systematic literature review that was conducted using the same search strategy as the current study, were included in the final analysis.

Studies identified from both the current and prior systematic literature review were selected for relevance for the subsequent meta-analysis by a two-level screening process, according to predetermined inclusion and exclusion criteria. The results are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Studies were screened by title and/or abstract at the first level followed by full text screening at the second level. Clinical trials from the ICTRP were screened by title, by trial description, and by full text of any linked publication. The inclusion
criteria required that the study population include ≥20 R/R HL patients, of whom ≥80% were ≥12 years of age and ≥50% had failed at least one ASCT. Included studies were to report survival outcomes, specifically Kaplan–Meier (KM) curves, mOS, and survival rates. Kin studies deemed non-primary publications for a study and not reporting relevant outcomes were excluded, as were studies reporting survival time from time points other than the start of the treatment under evaluation and studies reporting actuarial survival rate. Certain publication types were excluded, including reviews, meta-analyses, comments, recommendations/guidelines, study protocols, and case reports.

Data collection

Two reviewers independently extracted data from each eligible study which were collected in a pre-specified extraction table. Where available, extracted data included bibliographic information, study description and design (type of study, time frame, location of study, condition, number of HL patients, and number of study arms), patient baseline demographics and disease characteristics, study treatment(s), and clinical outcomes (KM curves and/or mOS). Any discrepancies were discussed or a third reviewer was consulted to reach a consensus.

Statistical analysis

Studies that included KM curves of OS, estimated from the start of treatment under evaluation, were used to reconstruct pseudo-individual patient level survival data or censoring times at the pseudo-individual patient level. Engauge digitization software (v4.1) was used to extract time points and survival probabilities from the published KM curves. Pseudo-individual patient level data were reconstructed from the digitized curves using the published algorithm recommended by the National Institute for Health and Care Excellence (NICE), UK25,26. Patients were grouped according to the type of post-ASCT treatment they received (brentuximab vedotin, chemotherapy, allo-SCT, or other therapies), and the reconstructed pooled datasets were used to plot a single KM curve and estimate the mOS and 95% confidence interval (CI) for each treatment group identified. Reconstructed survival data was validated by comparing the estimated mOS with those reported in published studies (or derived from published KM curves using pixel analysis). In addition, reproduced KM curves from four randomly selected studies (one from each treatment group) were overlaid on top of the original published curves and the level of agreement was visually assessed.

A censored quantile regression model27 was used to estimate the difference in mOS obtained from the long-term follow-up results for the pivotal phase 2 brentuximab vedotin trial with the other treatment groups, and the p-value of the difference. A log-rank test was also performed to test for overall differences between the KM curves of brentuximab vedotin versus alternative treatment groups as a whole. All analyses were carried out using the statistical software R (v2.15.2). Two sensitivity analyses were carried out: one including only those studies reporting a 100% prior-ASCT patient population to assess the impact of prior-ASCT on the estimated mOS for each treatment group, and one using a relaxed classification for chemotherapy including all studies reporting either sole chemotherapy regimens or chemotherapy in combination with other treatments to better reflect the diverse treatment regimens that patients may receive in clinical practice.

Results

Selection of studies

The systematic literature search process is shown in Figure 1. Our initial search identified a total of 787 potentially relevant records. An additional 121 records published between January 1993 and February 2013 were obtained from the prior systematic literature review. Forty-eight studies met the required criteria after full-text screening. The most frequent reasons for exclusion were studies without relevant populations (n = 48) or outcomes (n = 20). Forty-one of these 48 studies, including the brentuximab vedotin pivotal trial, with a total of 2619 evaluable R/R HL patients, reported KM curves of OS among R/R HL post-ASCT patients and were included in the meta-analysis22,28–67. The study design and key patient characteristics for all 41 studies included in the meta-analysis are described in Table 1. They consisted of 1 phase 1/2, 11 phase 2, 8 prospective cohort, and 21 retrospective studies. The most commonly observed treatment types were allo-SCT and chemotherapy with 21 and 8 studies reporting survival outcomes, respectively. Chemotherapy under evaluation included single sequential or multi-agent treatments, and the agent used varied, including gemcitabine (n = 3), bendamustine (n = 3), vinorelbine (n = 4), and pegylated liposomal doxorubicin (n = 2). The remaining 11 studies reported outcomes for other therapies including radiation therapy, immunotherapies such as donor leukocyte infusions, and mixed treatments such as radiation therapy in combination with salvage chemotherapy.

The studies varied in size, with the number of HL patients in each study ranging from 21 to 285. The median age of all patients ranged from 25 to 51 years, the median number of prior regimens ranged from ≤2–5, and the number of patients with previous-ASCT ranged from 52 to 100%. In the pivotal study of
brentuximab vedotin, the median age was 31 years (range: 15–77), the median number of prior chemotherapy regimens was 3.5 (range: 1–13), and all patients had undergone ASCT. Twelve studies, including the brentuximab vedotin phase 2 trial, with a total of 763 evaluable R/R HL patients, reported a 100% prior-ASCT rate and were included in the sensitivity analysis. Of these 11 remaining studies, 4 reported outcomes for chemotherapy, 3 for allo-SCT, and 4 for other therapies.

Analysis of mOS

The estimated mOS in R/R HL post-ASCT patients across the 40 pooled studies of current treatment was 26.4 months (95% CI 23.5–28.5). This was significantly lower than the reported mOS of 40.5 months (95% CI 30.8–NA; \(p < 0.0001 \)) for patients receiving brentuximab vedotin in the pivotal phase 2 trial. The results of the meta-analysis are presented in Figure 2. The estimated mOS for chemotherapy, allo-SCT, and other treatment regimens was 23.0 months (95% CI 21.0–28.1), 27.9 months (95% CI 23.9–30.2), and 23.9 months (95% CI 21.0–28.0), respectively. Brentuximab vedotin-treated patients experienced significantly longer mOS compared with patients on chemotherapy, allo-SCT, and other treatment regimens as demonstrated by differences in mOS of 17.7 months (95% CI 10.6–24.7; \(p < 0.0001 \)) (Figure 2a), 12.5 months (95% CI 8.2–16.9; \(p < 0.0001 \)) (Figure 2b), and 15.2 months (95% CI 4.9–25.5; \(p = 0.0037 \)) (Figure 2c), respectively.

The sensitivity meta-analysis, which included only those studies that reported a 100% prior-ASCT rate, showed a significant difference between the reported mOS of 40.5 months in the brentuximab vedotin trial and the estimated mOS across the 11 pooled studies of 28.1 months (95% CI 23.9–34.5; \(p < 0.0001 \)). The results of this sensitivity meta-analysis are presented in Figure 3.
Table 1. Study design and key patient characteristics of 41 identified studies included in the meta-analysis.

Study	Study design	Regimen	Number of evaluable HL patients	Median baseline age, years	Number of HL patients with prior-ASCT, n (%)	Median follow up (months)	Reported median OS (or derived from KM curve), months
Alvarez et al.	Prospective cohort	Allo-SCT with RIC	40	35	29 (73)	8.5	20 (survivors)
Anastasia et al.	Prospective cohort	Bendamustine	69/73	34	73 (100)\(1\)	13	Not reached
Anderlini et al.	Retrospective	Allo-SCT with RIC	40	31	30 (75)	13 (survivors)	Not reached
Anderlini et al.	Prospective cohort	Allo-SCT with RIC	58	32	48 (83)	24 (survivors)	33.6 (survivors)
Anderlini et al.	Retrospective	Donor leukocyte infusion	27	30	21 (78)	41 (5 survivors)	17.6 (survivors)
Armand et al.	Retrospective	Allo-SCT following nonmyeloablative conditioning	36	31	34 (94)	26 (survivors)	48.3 (survivors)
Baron et al.	Prospective cohort	Allo-SCT following nonmyeloablative conditioning	35/147*	46 (all patients)	NR (~2) (all patients)	26.7 (survivors)	22.3 (survivors)
Bartlett et al.	Phase 1/2	GVD	91 (40 with previous ASCT)	33 (all patients)	40 (44)	43.2 (survivors)	42 (survivors)
Blum et al.	Phase 2	Bortezomib and Allo-SCT following nonmyeloablative conditioning	30	35	24 (80)	18 (all patients)	14.8 (all patients)
Burroughs et al.	Retrospective	HLA-matched: 38 Unrelated: 24 HLA-haploidentical: 28	24	35	20 (83)	27.2 (all patients)	39.6 (all patients)
Chen et al.	Retrospective	Allo-SCT with RIC PLD or PLD + MOPP/GVD/BEACOPP/vinblastine	47	25	47 (100)\(1\)	36	42 (all patients)
Clozel et al.	Retrospective	Bendamustine and allo-SCT	41	33	35 (85)	Not reported	21.4 (survivors)
Corazzelli et al.	Retrospective	Allo-SCT with RIC GCS or GV	32/170*	51 (all patients)	25 (78)	33 (all patients)	26.9 (survivors)
Corradini et al.	Phase 2	Ric and nonmyeloablative SCT	37	32	37 (100)\(1\)	26.4 (survivors)	15.5 (survivors)
Devenett et al.	Retrospective	Lenalidomide or bendamustine or rituximab or vinorelbine	143	30	127 (89)	25 (survivors)	14.8 (survivors)
Fehninger et al.	Phase 2	PTCL	36/38	34	29 (76)	20	20 (survivors)
Ghesquieres et al.	Retrospective study	Brentuximab vedotin	66	30	56 (100)\(1\)	31.3	40.8 (survivors)
Goda et al.	Retrospective study	Brentuximab vedotin	102	31	102 (100)\(1\)	32.7	40.5 (survivors)
Gopal et al.	Pivotal phase 2	Brentuximab vedotin	56	30	56 (100)\(1\)	31.3	40.8 (survivors)

(continued)
Table 1. Continued.

Study	Study design	Regimen	Number of evaluable HL patients	Median baseline age, years	Number of HL patients with prior-ASCT, n (%)	Median follow up (months)	Reported median OS (or derived from KM curve), months
Guidetti et al.	Phase 2	Perifosine and perifosine + sorafenib	25/40*	42 (all patients)	27 (67) (all patients)	14 (all patients)	16
Harrison et al.	Prospective cohort	Panobinostat	129	32	129 (100)	NA	Not reached
Johansson et al.	Retrospective	Allo-SCT with RIC	23	36	20 (87)	NA	46 (survivors)
Majhail et al.	Prospective cohort	UCB or MSD allo-SCT with RIC	21 total	UCB: 9	UCB: 7 (78)	UCB: 17	UCB: Not reached
Marcais et al.	Retrospective	Allo-SCT	191	31	174 (92)	36	55
Moskovitz et al.	Phase 2	Bendamustine	34/36	34	27 (75)	19 (all patients)	36 (survivors)
Peggs et al.	Prospective cohort	Allo-SCT with RIC	49 total	Unrelated donors: 18	32	44 (90)	31.8 (survivors)
Peggs et al.	Retrospective	Allo-SCT with RIC followed by GvHD prophylaxis with MF-A or MF	67 total	MF-A: 36	MF-A: 27 (87)	MF-A: 58.6 (survivors)	MF-A: Not reached
Robinson et al.	Retrospective	Allo-SCT with RIC	272/285	104	229 (80)	26 (all patients)	28.4
Sarina et al.	Retrospective	Donor group: conditioning regimen	37 total	31.2	104 (100)	47.9 (all patients)	Allo-SCT patients: 37.9
Schmitz et al.	Retrospective	Nonmyeloablative conditioning + allo-SCT	80/94	30	NR (~50)	NR	18.6
Shamash et al.	Retrospective	HDCT with autologous hematopoietic support	37 total	Single sequential chemotherapy: 20 multiple agent group: 17	37 (100)	24	Single sequential chemotherapy: 12.0 multiple agent group: 21.9
Smith et al.	Retrospective	Second ASCT	21/40*	38 (all patients)	40 (100)	(all patients)	72 (survivors)
Smith et al.	Phase 2	Galiximab	29/30	36	21 (70)	13.6	
Sobol et al.	Prospective cohort	Allo-SCT with RIC	31	36	100	84	Chemorefractory bulky: 19.4 Chemorefractory non-bulky: NA Chemosensitive bulky: 18.4 Chemosensitive non-bulky: NA
Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma

Bonthapally et al. (2015) conducted a meta-analysis to evaluate the antitumor activity of brentuximab vedotin as reported in the pivotal phase 2 study versus the activity of other drug therapies and experimental agents as reported in 17 evaluable studies identified from the literature, in patients with R/R HL post-ASCT. CR rate was selected as the most appropriate endpoint for the study due to the lack of long-term survival data for patients on chemotherapies, and other treatment regimens as demonstrated by differences in mOS of 19.0 months (95% CI 12.9–25.1; \(p < 0.0001 \)), and 6.8 months (95% CI 1.2–12.5; \(p = 0.0018 \)), respectively. The median difference in mOS estimated from the censored quantile regression method between patients receiving brentuximab vedotin and allo-SCT was not reported as the assumption of monotonicity for quantile difference was not met; however, the raw numeric difference of 9.4 months was not statistically significant (\(p > 0.05 \)).

The sensitivity meta-analysis, which grouped studies using a relaxed classification for chemotherapy, further demonstrated that brentuximab vedotin-treated patients experienced a significantly longer mOS compared with patients on chemotherapies. The estimated mOS for the broad chemotherapies group was 22.2 months (95% CI 21.0–27.5). The difference in mOS between brentuximab vedotin and broad chemotherapies was 17.3 months (95% CI 9.9–24.7; \(p < 0.0001 \)) (Figure 4).

Discussion

This meta-analysis is the first study to compare mOS between brentuximab vedotin and other therapies for the treatment of adult patients with R/R HL post-ASCT. In the absence of randomized controlled trial data, this study allows for an indirect comparison of survival outcome between brentuximab vedotin and current therapies used in the R/R setting. Brentuximab vedotin was associated with a significantly longer mOS compared with that of other therapies reported in the literature (40.5 months vs. 26.4 months, \(p < 0.0001 \)). The difference in mOS between brentuximab vedotin and chemotherapy, allo-SCT, and other therapies was 17.7 months (\(p < 0.0001 \)), 12.5 months (\(p < 0.0001 \)), and 6.8 months (\(p = 0.0018 \)), respectively. Our results suggest brentuximab vedotin improves long-term survival in adult R/R HL patients.

The results of this meta-analysis are consistent with those reported from previous meta-analyses. Using a similar methodological approach, Bonthapally et al. conducted a meta-analysis to evaluate the antitumor activity of brentuximab vedotin as reported in the pivotal phase 2 study versus the activity of other drug therapies and experimental agents as reported in 17 evaluable studies identified from the literature, in patients with R/R HL post-ASCT. CR rate was selected as the most appropriate endpoint for the study due to the lack of long-term survival data for...
Figure 2. Comparison of mOS for brentuximab vedotin versus (a) chemotherapy, (b) allo-SCT, and (c) other therapies.
patients treated with brentuximab vedotin. Brentuximab vedotin was associated with a significantly higher CR rate compared with other therapies in the treatment of R/R HL post-ASCT patients (33.3% vs. 11.1%, \(p < 0.0001 \))\(^{23} \). Karuturi et al. compared OS from the pivotal brentuximab vedotin study with 756 R/R HL historical control post-ASCT patients from six international centers, prior to the approval and widespread availability of brentuximab vedotin. Brentuximab vedotin was associated with prolonged mOS, measured from the point of ASCT, when compared with historical control patients (91.49 months vs. 27.99 months, \(p < 0.0001 \)). Improvement in OS was irrespective of time to relapse post-ASCT, age, or sex\(^{68} \). These findings further support the results of our study suggesting that brentuximab vedotin’s anti-tumor activity exceeds that of other therapies currently

Figure 3. Sensitivity meta-analysis comparison of mOS for brentuximab vedotin versus chemotherapy, allo-SCT, and other therapies in patients with a 100% prior-ASCT rate.

Figure 4. Sensitivity meta-analysis comparison of mOS for brentuximab vedotin versus chemotherapy using a relaxed classification for chemotherapy.
used in the treatment of R/R HL post-ASCT. Our study provides a comprehensive review of the literature to date, comparing brentuximab vedotin’s efficacy, in terms of mOS, with other therapies used to treat R/R HL post-ASCT using long-term survival data over a 24-month period.

In the absence of well-controlled head-to-head comparisons, meta-analyses such as this provide valuable insights; however, results should obviously be interpreted with caution. We acknowledge the potential for patient selection bias that may occur when comparing trials with heterogeneous eligibility criteria. The systemic literature review identified 41 studies that met all eligibility criteria and presented KM curves of OS for inclusion in the meta-analysis. There was substantial heterogeneity in the mOS reported within each treatment group. In the studies for chemotherapy, allo-SCT, and other therapies, mOS ranged from 12 to 42 months, 6 to 55 months, and 14.8 to 40.8 months, respectively. Nine studies had relatively short follow-up time and mOS was not reached by the end of the study period. With the inclusion of these immature data, the censored quantile regression model was likely to over-estimate mOS for the treatment group; however, the final impact of these immature data on the meta-analysis is unclear. Survival data for brentuximab vedotin were obtained from the pivotal phase 2 trial, where all 102 patients had undergone ASCT prior to receiving brentuximab vedotin; however, only 11 out of the 40 pooled studies of other treatments reported a 100% prior-ASCT rate. Therefore, we conducted a sensitivity analysis among only those studies reporting a 100% post-ASCT population, to examine the effect of ASCT status on the primary result. Our findings confirmed the robustness of the brentuximab vedotin mOS result compared with that of other therapies reported in the literature. Survival data for brentuximab vedotin was 19.0 months (p < 0.0001), the median difference in mOS between brentuximab vedotin and chemotherapy, and other therapies for the 100% prior-ASCT patient population was 9.4 months (p < 0.0001), and 6.8 months (p = 0.0018), respectively, further suggesting brentuximab vedotin improves long-term survival compared to other treatment types. The raw numeric difference of 9.4 months (p > 0.05) between 100% prior-ASCT patients receiving brentuximab vedotin and allo-SCT was not statistically significant; however, this may be due to the low number of allo-SCT studies reporting survival outcomes for a 100% prior-ASCT patient population.

Due to the lack of individual patient baseline characteristics reported in the studies, they could not be adjusted for effect modifiers in the censored quantile regression model to account for differences in observed baseline characteristics. This could have led to biased estimates. Furthermore, as the studies included in the meta-analysis were either single-arm or lacked common comparator arms, it was not possible to make adjustments to account for differences in unobserved baseline characteristics. Finally, it is important to note that this meta-analysis compared three alternative treatment groups to brentuximab vedotin: chemotherapies, allo-SCT, and other therapies. The chemotherapy group included studies where patients only received chemotherapy agents. Mixed treatments, such as chemotherapies in combination with salvage radiation therapy were categorized in the other therapies group. In clinical practice, patients do not fall exclusively into one treatment category, but receive multiple salvage treatment regimens depending on their age, performance status, disease type and stage, and time to relapse. We therefore conducted a sensitivity analysis using a relaxed classification for chemotherapy to better reflect clinical practice. The estimated mOS for the broad chemotherapies group was 22.2 months (95% CI 21.0–27.5), which was significantly lower than for patients receiving brentuximab vedotin as demonstrated by a difference in mOS of 17.3 months (95% CI 9.9–24.7; p < 0.0001). Analysis of safety data was beyond the scope of this meta-analysis.

Future analyses which can prospectively compare brentuximab vedotin to alternative therapies using a randomized design are needed to verify the findings from the current study. Two randomized, multicentre phase 3 brentuximab vedotin studies are ongoing; however, these are not in the R/R HL post-ASCT population. AETHERA (NCT01100502) is a double-blind, placebo-controlled study investigating brentuximab vedotin and best supportive care (BSC) versus placebo and BSC in the treatment of HL patients at risk of progression following ASCT. Efficacy data were recently published. As of August 2013, all patients have completed or discontinued study treatment. ECHELON-1 (NCT01712490) is an open-label study, investigating the safety and efficacy of front-line brentuximab vedotin plus doxorubicin, vinblastine, and dacarbazine (A + AVD) versus doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) in patients with advanced-stage classical HL. As of 23 June 2014, 444 patients have been randomized at 195 sites; data is expected to be published in the near future.

Conclusion

Results of this meta-analysis suggest that brentuximab vedotin is associated with a longer mOS compared with other therapies among patients with R/R HL post-ASCT. In the absence of randomized clinical trials, our findings suggest brentuximab vedotin improves long-term survival and provides meaningful clinical benefit in adult R/R HL patients.
Transparency

Declaration of funding
The analysis was funded by Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

Declaration of financial/other relationships
V.B., A.C., and D.H. have disclosed that they are employed by Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited. V.B. has disclosed that he owns stocks in Takeda Pharmaceutical Company Limited. A.G. has disclosed that he is employed by Millennium Pharmaceuticals, Inc. H.Y., R.A., R.-D.T., S.C., and E.W. have disclosed that they are employees of Analysis Group Inc., which has received a consultancy fee from Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited.

CMRO peer reviewers on this manuscript have received an honorarium from CMRO for their review work, but have no relevant financial or other relationships to disclose.

Acknowledgments
The authors would like to acknowledge the writing assistance of Hannah Finnegan of FireKite, an Ashfield business, part of UDG Healthcare plc, during the development of this manuscript, which was funded by Millennium Pharmaceuticals Inc.

References
1. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2011. Bethesda, MD: National Cancer Institutem 2014. Available at: http://seer.cancer.gov/csr/1975_2011/ [Last accessed 22 December 2014]
2. Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010;116:3724-34
3. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:6-29
4. Ansell SM. Hodgkin lymphoma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol 2012;87:1096-103
5. Porchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol 2012;9:450-9
6. Carella AM. Role of hematopoietic stem cell transplantation in relapsed/refractory Hodgkin lymphoma. Mediterr J Hematol Infect Dis 2012;4:e2012059
7. Quddus F, Armitage JO. Salvage therapy for Hodgkin’s lymphoma. Cancer J 2009;15:161-3
8. National Comprehensive Cancer Network. Hodgkin Lymphoma. 2014. Available at: http://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf [Last accessed 22 December 2014]
9. Bristow P. Managing relapsed and refractory Hodgkin lymphoma. Br J Haematol 2008;141:13-13
10. Mahboubi NS, Weisdorf DJ, Defor TE, et al. Long-term results of autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2006;12:1065-72
11. Sureda A, Constans M, Iriondo A, et al. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann Oncol 2005;16:625-33
12. Moskowitz AJ, Perales MA, Kawaiairmani T, et al. Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br J Haematol 2009:146:58-63
13. Francisco JA, Cerveny CG, Meyer DL, et al. CAIC10-vCMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003;102:1458-65
14. Wahl AF, Kluusman K, Thompson JD, et al. The anti-CD30 monoclonal antibody SGN-33 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res 2002;62:3736-42
15. Stein H, Delsol G, Pileri SA, et al. Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon, France: IARC Press, 2008:321-34
16. Dorrinson S0, Toki BE, Torgov MV, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21:778-84
17. Okeye IM, Miyamoto JB, Zhang X, et al. Intracelular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clin Cancer Res 2010;16:888-97
18. Ad cetris (brentuximab vedotin) for injection. Full prescribing information, 2013. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125388s045lbl.pdf [Last accessed 22 December 2014]
19. Takeda Pharma AS. Ad cetris 50 mg powder for concentrate for solution for infusion. Summary of product characteristics, 2013. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/ human/002455/WC500135055.pdf [Last accessed 22 December 2014]
20. Yoneses A, GOPAL AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012;30:2183-9
21. Chen RW, GOPAL AK, Smith SE, et al. Long-term survival analyses of an ongoing phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 2012;120:abstract 3689
22. GOPAL AK, Chen R, Smith SE, et al. Three-year follow-up data and characterization of long-term remissions from an ongoing phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 2013;122:abstract 4382
23. Bonthapally V, Wu E, Macaladad A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma post-autologous transplant: meta-analysis versus historical data. Curr Med Res Opin 2015: published online 16 March 2015, doi: 10.1185/03007995.2015.1030378
24. Mohler D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097
25. Guyot P, Ades AE, Ouwens NJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves. BMC Med Res Methodol 2012;12:9
26. Latimer N. NICE DSU Technical Support Document 14: Survival analysis for economic evaluations alongside clinical trials – extrapolation with patient-level data, 2014. Available at: http://www.nicedsu.org.uk/NICE%20DSU%20TS%20Survival%20Analysis.updated%20March%202013.v2. pdf [Last accessed 22 December 2014]
27. Peng L, Huang Y. Survival analysis with quantile regression models. J Am Stat Assoc 2008;103:637-49
28. Alvarez I, Sureda A, Caballero MD, et al. Nonmyeloablative stem cell transplantation is an effective therapy for refractory or relapsed Hodgkin lymphoma: results of a Spanish prospective cooperative protocol. Biol Blood Marrow Transplant 2006;12:172-83
29. Anastasia A, Carlo-Stella C, Corradini P, et al. Bendamustine for relapsed/refractory classical Hodgkin lymphoma: results of a Spanish prospective cooperative protocol. Blood 2008;112:abstract 20DSU
30. Anderlini P, Saliba R, Acholonu S, et al. Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma. Blood 2014;123:abstract 2015/125388s045lbl.pdf [Last accessed 22 December 2014]
31. Bonthapally V, Wu E, Macaladad A, et al. Brentuximab vedotin in relapsed/refractory Hodgkin lymphoma post-autologous transplant: meta-analysis versus historical data. Curr Med Res Opin 2015: published online 16 March 2015, doi: 10.1185/03007995.2015.1030378
transplantation in relapsed and refractory Hodgkin’s lymphoma: the updated M.D. Anderson Cancer Center experience. Haematologica 2008;93:257-64

32. Anderlini P, Salati R, Acheloulo S, et al. Donor leukocyte infusions in recurrent Hodgkin lymphoma following alemtuzumab stem cell transplant: 10-year experience at the M.D. Anderson Cancer Center. Leuk Lymphoma 2012;53:1239-41

33. Amrando P, Kim HT, Ho VT, et al. Allogeneic transplantation with reduced-intensity conditioning for Hodgkin and non-Hodgkin lymphoma: importance of histology for outcome. Biol Blood Marrow Transplant 2008;14:418-25

34. Baron F, Storb R, Storer BE, et al. Factors associated with outcomes in alemtuzumab hematopoietic cell transplantation with nonmyeloablative conditioning after failed myeloablative hematopoietic cell transplantation. J Clin Oncol 2006;24:4150-7

35. Bartlett NL, Niedzwiecki D, Johnson JL, et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann Oncol 2007;18:1071-9

36. Blum KA, Johnson JL, Niedzwiecki D, et al. Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: cancer and leukemia Group B protocol 50206. Leuk Lymphoma 2007;48:1313-19

37. Burroughs LM, O’Donnell PV, Sandmaier BM, et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol Blood Marrow Transplant 2008;14:1279-87

38. Chen R, Palmer JM, Popplewell L, et al. Reduced intensity alemtuzumab hematopoietic cell transplantation can induce durable remission in heavily pretreated relapsed Hodgkin lymphoma. Ann Hematol 2011;90:803-8

39. Clozel T, Deau B, Benet C, et al. Pegylated liposomal doxorubicin: an efficient treatment in patients with Hodgkin lymphoma relapsing after high dose therapy and stem cell transplantation. Br J Haematol 2013;162:846-8

40. Corazzelli G, Angriulli F, D’Arco A, et al. Efficacy and safety of bendamustine for the treatment of patients with recurring Hodgkin lymphoma. Br J Haematol 2013;160:207-15

41. Corradini P, Dodero A, Farina L, et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: pre-treatment disease status and histotype heavily influence outcome. Leukemia 2007;21:2316-23

42. Czyz A, Romejko-Jarosinska J, Kropinska-Poslusny W, et al. Treatment strategy based on gemcitabine-containing salvage chemotherapy used with intent to proceed to second stem cell transplant for patients with Hodgkin lymphoma relapsing after a prior autologous transplant. Leuk Lymphoma 2013;54:973-8

43. Devetten MP, Hari PN, Carreras J, et al. Unrelated donor reduced-intensity alemtuzumab hematopoietic stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Biol Blood Marrow Transplant 2009;15:109-17

44. Fehniger TA, Larson S, Trinkaus K, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood 2008;110:2770-7

45. Guidetti A, Viviani S, Marchiano A, et al. Dual targeted therapy with the AKT inhibitor perifosine and the multikinase inhibitor sorafenib in patients with relapsed/refractory lymphomas: final results of a phase II trial. Blood 2012;120:abstract 3679

46. Harrison SJ, Hsu AK, Neeon P, et al. Biomarker analysis of pivotal phase II study of oral panobinostat (Pan) in relapsed/refractory Hodgkin lymphoma (HL) patients following autologous stem cell transplant (ASCT). J Clin Oncol 2011;29:abstract 8046

47. Johansson JE, Remberger M, Lazarevic VL, et al. Allogeneic haematopoietic stem-cell transplantation with reduced intensity conditioning for advanced stage Hodgkin’s lymphoma in Sweden: high incidence of post transplant lymphoproliferative disorder. Bone Marrow Transplant 2011;46:870-5

48. Majhail NS, Weisdorf DJ, Wagner JE, et al. Comparable results of umbilical cord blood and HLA-matched sibling donor hematopoietic stem cell transplantation after reduced-intensity preparative regimen for advanced Hodgkin lymphoma. Blood 2006;107:3804-7

49. Markakis A, Porcher R, Robin M, et al. Impact of disease status and stem cell source on the results of reduced intensity conditioning transplant for Hodgkin’s lymphoma: a retrospective study from the French Society of Bone Marrow Transplantation and Cellular Therapy (SFMO-T). Haematologica 2013;98:1467-75

50. Moskwitz AJ, Hamlin Jr PA, Perales MA, et al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J Clin Oncol 2013;31:456-60

51. Pegg KS, Hunter A, Chopra R, et al. Clinical evidence of a graft-versus-Hodgkin’s-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet 2005;366:1934-41

52. Pegg KS, Sureda A, Qian W, et al. Reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation in relapsed and refractory Hodgkin lymphoma: impact of altemuzumab and donor lymphocyte infusions on long-term outcomes. Br J Haematol 2007;139:70-80

53. Robinson SP, Sureda A, Canals C, et al. Reduced intensity conditioning allogeneic stem cell transplantation for Hodgkin’s lymphoma: Identification of prognostic factors predicting outcome. Haematologica 2009;94:230-8

54. Sarina B, Castagna L, Farina L, et al. Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability. Blood 2010;115:3671-7

55. Schmitz N, Sureda A, Robinson S. Allogeneic transplantation of hematopoietic stem cells after nonmyeloablative conditioning for Hodgkin’s disease: indications and results. Semin Oncol 2004;31:27-32

56. Shanash J, Lee SM, Radford JA, et al. Patterns of relapse and subsequent management following high-dose chemotherapy with autologous haematopoietic support in relapsed or refractory Hodgkin’s lymphoma: a two centre study. Ann Oncol 2000;11:715-19

57. Smith SM, van BK, Carreras J, et al. Second autologous stem cell transplantation for relapsed Hodgkin lymphoma after a prior autologous transplant. Biol Blood Marrow Transplant 2008;14:904-12

58. Smith SM, Schoder H, Johnson JL, et al. The anti-CD20 primatized monoclonal antibody, galiximab, is well-tolerated but has limited activity in relapsed Hodgkin lymphoma: Cancer and Leukemia Group B 50602 (Alliance). Leuk Lymphoma 2013;54:1405-10

59. Sobol UA, Rodriguez TE, Smith SE, et al. Long term follow-up of allogeneic transplantation using BEAM chemotherapy for patients with Hodgkin’s lymphoma who relapse after autologous transplantation: importance of minimal residual disease at transplant. Blood 2012;120:abstract 3131

60. Sureda A, Robinson S, Canals C, et al. Reduced-intensity conditioning compared with conventional allogeneic stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma: an analysis from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26:455-62

61. Sureda A, Canals C, Arranz R, et al. Allogeneic stem cell transplantation after reduced intensity conditioning in patients with relapsed or refractory Hodgkin’s lymphoma. Results of the HDR-ALLO study – a prospective clinical trial by the Grupo Espanol de Linfomas/Trasplante de Medula Osea (GEL/TAMO) and the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2012;97:310-17

62. Thomson KJ, Pegg KS, Smith P, et al. Superiority of reduced-intensity allogeneic transplantation over conventional treatment for relapse of Hodgkin’s lymphoma following autologous stem cell transplantation. Bone Marrow Transplant 2008;41:765-70
65. Validire P, Ferme C, Brice P, et al. A multicenter study of gemcitabine-containing regimen in relapsed or refractory Hodgkin’s lymphoma patients. Anticancer Drugs 2008;19:309-15

66. Younes A, Oki Y, Bociek RG, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol 2011;12:1222-8

67. Younes A, Sureda A, Ben-Yehuda D, et al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J Clin Oncol 2012;30:2197-203

68. Karuturi MS, Arai SCR, Gopal AK, et al. Overall survival benefit for patients with relapsed Hodgkin lymphoma treated with brentuximab vedotin after autologous stem cell transplant. Blood 2012;120:abstract 3701

69. Mendler JH, Friedberg JW. Salvage therapy in Hodgkin’s lymphoma. Oncologist 2009;14:425-32

70. Moskowitz CH, Nadamanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015: published online 19 March 2015. doi: 10.1016/S0140-6736(15)60165-9