A Slightly Supercritical Condition of Regularity of Axisymmetric Solutions to the Navier-Stokes Equations

G. Seregin

September 21, 2021

Dedicated to Yoshihiro Shibata

Abstract

In the note, a new regularity condition for axisymmetric solutions to the non-stationary 3D Navier-Stokes equations is proven. It is slightly supercritical.

Keywords Navier-Stokes equations, axisymmetric solutions, local regularity

Data availability statement Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgement The work is supported by the grant RFBR 20-01-00397.

*University of Oxford, Mathematical Institute, OxPDE, Oxford, UK and St Petersburg Department of Steklov Mathematical Institute, RAS, Russia, email address: seregin@maths.ox.ac.uk
1 Introduction

In this note, we continue to analyze potential singularities of axisymmetric solutions to the non-stationary Navier-Stokes equations. In the previous paper [23], it has been shown that an axially symmetric solution is smooth provided a certain scale-invariant energy quantity of the velocity field is bounded. By definition, a potential singularity with bounded scale-invariant energy quantities is called the Type I blowup. It is important to notice that the above result does not follow from the so-called ε-regularity theory developed in [2], [15], and [10], where regularity is coming out due to smallness of those scale-invariant energy quantities.

We consider the 3D Navier-Stokes system

$$\frac{\partial v}{\partial t} + v \cdot \nabla v - \Delta v = -\nabla q, \quad \text{div} v = 0 \quad (1.1)$$

in the parabolic cylinder $Q = C \times]1, 0[, \quad \text{where} \quad C = \{ x = (x_1, x_2, x_3) : x_1^2 + x_2^2 < 1, \quad -1 < x_3 < 1 \}$. A solution v and q is supposed to be a suitable weak one, which means the following:

Definition 1.1. Let $\omega \subset \mathbb{R}^3$ and $T_2 > T_1$. The pair w and r is a suitable weak solution to the Navier-Stokes system in $Q_* = \omega \times]T_1, T_2[$ if:

1. $w \in L_{2,\infty}(Q_*), \quad \nabla w \in L_2(Q_*), \quad r \in L_{2,2}^3(Q_*);$

2. w and r satisfy the Navier-Stokes equations in Q_* in the sense of distributions;

3. for a.a. $t \in [T_1, T_2]$, the local energy inequality

$$\int_{\omega} \varphi(x, t)|w(x, t)|^2dx + 2 \int_{T_1}^t \int_{\omega} \varphi|\nabla w|^2dxdt' \leq \int_{T_1}^t \int_{\omega} [||w||^2(\partial_t \varphi + \Delta \varphi) +$$

$$+w \cdot \nabla \varphi(|v|^2 + 2r)]dxdt'$$

holds for all non-negative $\varphi \in C_0^1(\omega \times]T_1, T_2 + (T_2 - T_1)/2[)$.

In our standing assumption, it is supposed that a suitable weak solution v and q to the Navier-Stokes equations in $Q = C \times]1, 0[$ is axially symmetric with respect to the axis x_3. The latter means the following: if we introduce the corresponding cylindrical coordinates (ρ, φ, x_3) and use the corresponding representation $v = v_\rho e_\rho + v_\varphi e_\varphi + v_3 e_3$, then $v_\rho, v_\varphi = v_3, \varphi = q, \varphi = 0.$

There are many papers on regularity of axially symmetric solutions. We cannot pretend to cite all good works in this direction. For example, let us
mention papers: [9], [28], [13], [18], [20], [3], [26], [5], [25], [11], [19], [12], [4], [27], and [29].

Actually, our note is inspired by the paper [19], where the regularity of solutions has been proved under a slightly supercritical assumption. We would like to consider a different supercritical assumption, to give a different proof and to get a better result.

To state our supercritical assumption, additional notation is needed. Given \(x = (x_1, x_2, x_3) \in \mathbb{R}^3 \), denote \(x' = (x_1, x_2, 0) \). Next, different types of cylinders will be denoted as \(C(r) = \{x : |x'| < r, |x_3| < r\} \), \(C(x_0, r) = C(r) + x_0 \), \(Q^{\lambda, \mu}(r) = C(\lambda r) \times [-\mu R^2, 0] \), \(Q^{1, 1}(r) = Q(r) \), \(Q^{\lambda, \mu}(z_0, r) = C(x_0, \lambda r) \times [t_0 - \mu R^2, t_0] \). And, finally, we let

\[
f(R) := \frac{1}{\sqrt{R}} \left(\int_{-R^2}^{0} \left(\int_{C(R)} |v|^3 \, dx \right)^{\frac{3}{2}} \, dt \right)^{\frac{2}{3}}
\]

and

\[
M(R) := \frac{1}{\sqrt{R}} \left(\int_{Q(R)} |v|^{\frac{10}{3}} \, dz \right)^{\frac{3}{10}}
\]

for any \(0 < R \leq 1 \) and assume that:

\[
f(R) + M(R) \leq g(R) := c_* \ln^\alpha \ln^{\frac{3}{2}}(1/R) \tag{1.2}
\]

for all \(0 < R \leq 2/3 \), where \(c_* \) and \(\alpha \) are positive constants and \(\alpha \) obeys the condition:

\[
0 < \alpha \leq \frac{1}{224}. \tag{1.3}
\]

Without loss of generality, one may assume that \(g(R) \geq 1 \) for \(0 < R \leq \frac{2}{3} \). To ensure the above condition, it is enough to increase the constant \(c_* \) if necessary.

Our aim could be the following completely local statement.

Theorem 1.2. Assume that a pair \(v \) and \(q \) is axially symmetric suitable weak solution to the Navier-Stokes equations in \(Q \) and conditions (1.2) and (1.3) hold. Then the origin \(z = 0 \) is a regular point of \(v \).

However, in this paper, we shall prove a weaker result leaving Theorem 1.2 as a plausible conjecture. We shall return to a proof of Theorem 1.2 elsewhere. In the present paper, the following fact is going to be justified.
Theorem 1.3. Let \(v \) be an axially symmetric solution to the Cauchy problem for the Xavier-Stokes equations \((\text{[L]}) \) in \(\mathbb{R}^3 \times]0, T[\) with initial divergence free field \(v_0 \) from the Sobolev space \(H^2 = W^2_2(\mathbb{R}^3) \) such that

\[
\sup_{0 < t < T - \delta} \| \nabla v(\cdot, t) \|_{L^2(\mathbb{R}^3)} \leq C(\delta) < \infty
\]

for all \(0 < \delta < T \). Assume further that

\[
\Sigma_0 = \sup_{x \in \mathbb{R}^3} |v_{02}(x)x_1 - v_{01}(x)x_2| < \infty \tag{1.4}
\]

and

\[
\sup_{0 < R \leq 2/3} \sup_{-\infty < h < \infty} f(R; (0, h, T)) + M(R; (0, h, T)) \leq g(R) \tag{1.5}
\]

with some positive constants \(c_* \) and \(\alpha \), satisfying \((\text{[L]}) \), where

\[
f(R; z_0) := \frac{1}{\sqrt{R}} \left(\int_{t_0 - R^2}^{t_0} \left(\int_{C(z_0, R)} |v|^3 \, dx \right)^{\frac{4}{3}} \, dt \right)^{\frac{3}{4}}
\]

and

\[
M(R; z_0) := \frac{1}{\sqrt{R}} \left(\int_{Q(z_0, R)} |v|^{10} \, dz \right)^{\frac{3}{10}}
\]

Then \(v \) is a strong solution to the above Cauchy problem in \(\mathbb{R}^3 \times]0, T[\), i.e.,

\[
\sup_{0 < t < T} \| \nabla v(\cdot, t) \|_{L^2(\mathbb{R}^3)} < \infty.
\]

Our proof is based on the analysis of the following scalar equation

\[
\partial_t \sigma + \left(v + 2x' \frac{x'}{|x'|^2} \right) \cdot \nabla \sigma - \Delta \sigma = 0 \tag{1.6}
\]

in \(Q \setminus \{ x' = 0 \times [1, 0] \} \), where \(\sigma := \rho v_{x'} = v_2x_1 - v_1x_2 \).

Let us list some differentiability properties of \(\sigma \). Some of them follows from partial regularity theory developed by Caffarelli-Kohn-Nirenberg.

Indeed, since \(v \) and \(q \) are an axially symmetric suitable weak solution, there exists a closed set \(S^\sigma \) in \(Q \), whose 1D-parabolic measure in \(\mathbb{R}^3 \times \mathbb{R} \) is equal to zero and \(x' = 0 \) for any \(z = (x, t) \in S^\sigma \), such that any spatial derivative of \(v \) (and thus of \(\sigma \)) is Hölder continuous in \(Q \setminus S^\sigma \).
Next, we observe that
\[
|\partial_t \sigma(z) - \Delta \sigma(z)| \leq \left(\sup_{z=(x,t) \in P(\delta,R;R) \times [-R^2,0]} |v(z)| + 2/\delta \right) |\nabla \sigma(z)|
\]
for any \(0 < \delta < R < 1\), where \(P(a,b;h) = \{x: a < |x'| < b, |x_3| < h\}\). Since \(v\) is axially symmetric, the first factor on the right hand side is finite. This fact, by iteration, yields
\[
\sigma \in W^{2,1}_p(P(\delta,R;R) \times [-R^2,0])
\]
for any \(0 < \delta < R < 1\) and for any finite \(p \geq 2\).

It follows from the above partial regularity theory that, for any \(-1 < t < 0\),
\[
\sigma(x',x_3,t) \to 0 \quad \text{as} \quad |x'| \to 0 \quad (1.7)
\]
for all \(x_3 \in]-1,1[\cup S^\sigma_t\).

In the same way, as it has been done in [25] and [23], one can show that \(\sigma \in L_\infty(Q(R))\) for any \(0 < R < 1\).

The main part of the proof of Theorem 1.3 is the following fact.

Proposition 1.4. Let \(\sigma = gv_\varphi\), then
\[
\text{osc}_{z \in Q(r)} \sigma \leq C_1(c_*) \left(\frac{r}{2R} \right)^{C_2(c_*)} \text{osc}_{z \in Q(2R)} \sigma(z), \quad (1.8)
\]
where \(C_1\) and \(C_2\) are positive constants and \(0 < r < R \leq R_*(c_*,\alpha) \leq 1/6\). Here, \(\text{osc}_{z \in Q(r)} \sigma(z) = M_r - m_r\) and
\[
M_r = \sup_{z \in Q(r)} \sigma(z), \quad m_r = \inf_{z \in Q(r)} \sigma(z).
\]

The above statement is an improvement of the result in [19], where the bound for oscillations of \(\sigma\) contains a logarithmic factor only.

The proof of Proposition 1.4 is based on a technique developed in [17], see also references there. We also would like to mention interesting results for the heat equation with a divergence free drift, see [6], [7], [24], and [1].

2 Auxiliary Facts

Define the class \(V\) of functions \(\pi: Q \to \mathbb{R}\) possessing the properties:
(i) there exists a closed set S^π in Q, whose 1D-parabolic measure $\mathbb{R}^3 \times \mathbb{R}$ is equal to zero and $x' = 0$ for any $z = (x', x_3, t) \in S^\pi$, such that any spatial derivative is Hölder continuous in $Q \setminus S^\pi$;

(ii) $\pi \in W^{2,1}_2(P(\delta, R; R) \times] - R^2, 0[) \cap L_\infty(Q(R))$

for any $0 < \delta < R < 1$.

We are going to use the following subclass V_0 of the class V, saying that $\pi \in V_0$ if and only if $\pi \in V$ and

$$\partial_t \pi + \left(u + 2 \frac{x'}{|x'|^2} \right) \cdot \nabla \pi - \Delta \pi = 0 \quad (2.1)$$

in $C \setminus \{x' = 0\} \times] - 1, 0[$.

We shall also say that $\pi \in V_0$ has the property (B_R) in $Q(2R)$ if there exists a number $k_R > 0$ such that $\pi(0, x, t) \geq k_R$ for $-(2R)^2 \leq t \leq 0, x_3 \in] - 2R, 2R[\setminus S^\pi_t$, where $S^\pi_t = \{ x \in C : (x, t) \in S^\pi \}$.

Remark 2.1. Let $0 < r \leq R$ and $\pi \in V_0$ have the property (B_R) in $Q(2R)$. Then π has the property (B_r) in $Q(2r)$ with any constant less or equal to k_R.

In what follows, we always suppose that $0 < R \leq 1/6$.

Proposition 2.2. Let $\pi \in V_0$ have the property (B_R). Then, for any $0 < k \leq k_R$, for any $0 < \tau_1 < \tau < 2$, and for any $0 < \gamma_1 < \gamma < 4$, the following inequality holds:

$$\sigma(z) \leq c_1(\tau_1, \tau, \gamma_1, \gamma, M(2R)) \left(\frac{1}{|Q^{\tau, \gamma}(R)|} \int_{Q^{\tau, \gamma}(R)} \sigma^{\frac{10}{3}}(R) dz \right)^\frac{3}{10},$$

where $\sigma = (k - \pi)_+$,

$$c_1(\tau_1, \tau, \gamma_1, \gamma, M(2R)) = \frac{c}{(\tau - \tau_1)^\frac{10}{3}} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \left(\frac{1}{\gamma_1 \tau_1^2} \right)^\frac{1}{3} M(2R) \right)^3,$$

and $Q^{\tau, \gamma}(R) = C(\tau R) \times] - \gamma R^2, 0[.$

Proof. Repeating arguments in [23], we can get the following estimate of $h = \sigma^m$:

$$\left(\int_0^t \int_{c(r^2)} |h|^{\frac{10}{3}} dz \right)^\frac{3}{10} \leq$$
\[
\leq c \left(\int_{t_1}^{0} \int_{C(r_1)} |h|^2 \, dz \right)^\frac{2}{m} \frac{(r_1^3|t_1|)^\frac{1}{m}}{r_1 - r_2} \left(1 + \frac{r_1 - r_2}{\sqrt{t_2 - t_1}} + \frac{r_1^3|t_1|^\frac{1}{m}}{(r_1 - r_2)^\frac{5}{m}} \right)
\]

(2.3)

for any \(0 < r_2 < r_1 < 2R\) and \(-4R^2 < t_1 < t_2 < 0\), where

\[
\overline{M}(r_1, t_1) = \left(\frac{1}{|t_1|r_1^2} \right)^\frac{1}{m} \left(\int_{t_1}^{0} \int_{C(r_1)} |\sigma|^\frac{4}{3} \, dz \right)^\frac{3}{m}.
\]

Next, we wish to iterate (2.3). To this end, let \(m = m_i = \left(\frac{4}{3}\right)^i\),

\[
r_1 = r_i = \tau_1 R + (\tau - \tau_1) R 2^{-i+1}, \quad r_2 = r_{i+1},
\]

\[
t_1 = t_i = -\gamma_1 R^2 - (\gamma - \gamma_1) R^2 4^{-i+1}, \quad t_2 = t_{i+1},
\]

where \(i = 1, 2, \ldots\). Then, we can derive from (2.3) the following inequality

\[
G_{i+1} \leq \left(\frac{c2^{i+1}}{\tau - \tau_1} \right)^\frac{1}{m_i} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \overline{M}(r_i, t_i) + \frac{2^{(i+1)\frac{2}{5}}}{(\tau - \tau_1)^\frac{5}{2}} \right)^\frac{1}{m_i} G_i,
\]

(2.4)

where

\[
G_i = \left(\frac{1}{|t_i|r_i^2} \right)^\frac{1}{m_i} \left(\int_{t_i}^{0} \int_{C(r_i)} |\sigma|^\frac{5m_i}{3} \, dz \right)^\frac{3}{5m_i}.
\]

Noticing that

\[
\overline{M}(r_i, t_i) \leq c \left(\frac{1}{\gamma_1 \tau_1^2} \right)^\frac{1}{m} M(2R),
\]

let us make use of (2.4) to obtain the estimate

\[
G_{i+1} \leq \left(\frac{c2^{i+1}}{\tau - \tau_1} \right)^\frac{1}{m_i} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{2^{(i+1)\frac{2}{5}}}{(\tau - \tau_1)^\frac{5}{2}} + \left(\frac{1}{\gamma_1 \tau_1^2} \right)^\frac{1}{m} M(2R) \right)^\frac{1}{m_i} G_i,
\]

(2.5)

which, after iterations, gives the following

\[
G_{i+1} \leq \xi_i G_1,
\]

(2.6)
where
\[
\xi_i = \prod_{k=1}^{i} \left(\frac{c^{2k+1}}{\tau - \tau_1} \right)^{\frac{1}{m_k}} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{2^{(k+1)\frac{7}{\sigma}}}{(\tau - \tau_1)^{\frac{7}{\sigma}}} \right) \left(\frac{1}{\gamma_1 \tau_1^2} \right)^{\frac{1}{10}} M(2R) \right)^{\frac{1}{m_k}}.
\]

Obviously,
\[
\xi_i \leq \prod_{k=1}^{i} \left(\frac{c^{2k+1}}{\tau - \tau_1} \right)^{\frac{1}{m_k}} \left(1 + \frac{2^{(k+1)\frac{7}{\sigma}}}{(\tau - \tau_1)^{\frac{7}{\sigma}}} \right)^{\frac{1}{m_k}} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{1}{\gamma_1 \tau_1^2} M(2R) \right)^{\frac{1}{m_k}}.
\]

Next,
\[
\ln \xi_i \leq A_1 + A_2 + A_3,
\]
where
\[
A_1 = \sum_{k=1}^{i} \frac{1}{m_k} \left(\ln c + (k+1) \ln 2 - \ln (\tau - \tau_1) \right) \leq \ln c - 3 \ln (\tau - \tau_1),
\]
\[
A_2 = \sum_{k=1}^{i} \frac{1}{m_k} \ln \left(1 + \frac{2^{(k+1)\frac{7}{\sigma}}}{(\tau - \tau_1)^{\frac{7}{\sigma}}} \right) = \sum_{k=1}^{i} \frac{1}{m_k} \ln \left(\frac{2^{(k+1)\frac{7}{\sigma}}}{(\tau - \tau_1)^{\frac{7}{\sigma}}} \right) + \frac{1}{m_k} \ln \left(1 + \frac{(\tau - \tau_1)^{\frac{7}{\sigma}}}{2^{(k+1)\frac{7}{\sigma}}} \right) \leq \ln \frac{c}{(\tau - \tau_1)^{\frac{7}{\sigma}}} + (\tau - \tau_1)^{\frac{7}{\sigma}} \sum_{k=1}^{i} \frac{1}{m_k} \frac{1}{2^{(k+1)\frac{7}{\sigma}}} \leq \ln \frac{c}{(\tau - \tau_1)^{\frac{7}{\sigma}}},
\]
and
\[
A_3 = \ln \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{1}{\gamma_1 \tau_1^2} M(2R) \right) \sum_{k=1}^{i} \frac{1}{m_k} \leq \ln \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{1}{\gamma_1 \tau_1^2} M(2R) \right)^{\frac{1}{10}}.
\]
So,
\[
\xi_i \leq \frac{c}{(\tau - \tau_1)^{\frac{7}{\sigma}}} \left(1 + \frac{\tau - \tau_1}{\sqrt{\gamma - \gamma_1}} + \frac{1}{\gamma_1 \tau_1^2} M(2R) \right)^{\frac{1}{m_k}}.
\]
Passing to the limit as \(i \to \infty\) in (2.6), we complete the proof the Proposition. \(\square\)
Remark 2.3. If we additionally assume that \(\pi(\cdot, -\theta R^2) \geq k \) in \(B \) for some \(0 < \theta \leq 1 \), then we do not need to use a cut-off in \(t \). So, for \(0 < \lambda < 1 \), we have
\[
\sup_{Q^{\lambda, \theta}(R)} \sigma \leq c'_1(\lambda, M(2R)) \left(\frac{1}{|Q^{1, \theta}(R)|} \int_{Q^{1, \theta}(R)} \sigma^{\frac{10}{3}} \, dz \right)^{\frac{3}{10}},
\]
where
\[
c'_1(\lambda, M(2R)) = \frac{c}{(1 - \lambda)^{10}} \left(1 + \left(\frac{1}{\theta \lambda^3} \right)^{\frac{1}{10}} M(2R) \right)^{3}.
\]

Corollary 2.4. Let a non-negative function \(\pi \in \mathcal{V}_0 \) have the property \((\mathcal{B}_R)\) in \(Q(2R) \) and let \(0 < \lambda_1 < \lambda < 2 \) and \(0 < \theta \leq 1 \). Suppose that
\[
|\{ \pi < k \} \cap Q^{\lambda, \theta}((0, t_0), R)| < \mu |\mathcal{C}(2R)|
\]
for some \(t_0 > -4R^2 \), for some \(0 < k \leq k_R \), and for some
\[
0 < \mu \leq \mu_* = \left(\frac{1}{2c_1(\lambda_1, \lambda, \theta/2, \theta, M(2R))} \right)^{\frac{10}{3}}.
\]
Then \(\pi \geq \frac{k}{2} \) in \(Q^{\lambda_1, \theta/2}((0, t_0), R) \).

If, in addition, \(\pi(\cdot, t_0 - \theta R^2) > k \) in \(\mathcal{C}(\lambda R) \), then \(\pi \geq \frac{k}{2} \) in \(Q^{\lambda_1, \theta}((0, t_0), R) \).

Proof. The first statement can be proved ad absurdum with the help of inequality (2.2) and a suitable choice of the number \(\mu_* \). The second statement is proved in the same way but with the help of the inequality of Remark 2.3. Number \(\mu_* \) is defined by the constant \(c'_1 \) instead of \(c_1 \).

The two lemmas below are obvious modifications of the corresponding statements in the paper \([17]\).

Lemma 2.5. Let \(0 \leq \pi \in \mathcal{V}_0 \) have the property \((\mathcal{B}_R)\) in \(Q(2R) \). Given \(\delta_0 \in [0, 1] \), there exists a positive number \(\theta_0(\delta_0, f(2R)) \leq 1 \) such that if, for \(0 < \theta \leq \theta_0 \), \(0 < k_0 \leq k_R \), there holds
\[
|\{ \pi(\cdot, t_0 - \theta R^2) \geq k_0 \} \cap \mathcal{C}(R)| > \delta_0 |\mathcal{C}(R)|,
\]
then
\[
|\{ \pi(\cdot, t) \geq \frac{\delta_0}{3} k_0 \} \cap \mathcal{C}(R)| > \frac{\delta_0}{3} |\mathcal{C}(R)|
\]
for all \(t \in [t_0 - \theta R^2, t_0] \).
Remark 2.6. There is a formula for θ_0:

$$\theta_0 = \left(\frac{c_0 \delta_0}{1 + \delta_0 f(2R)} \right)^{\frac{4}{3}}.$$

Lemma 2.7. Let $0 \leq \pi \in V_0$ have the property (B_R) in $Q(2R)$. Let, for any $t \in [t_0 - \theta_1 R^2, t_0]$, δ_0:

$$\left\{ \pi(\cdot, t) \geq k_1 \cap C(R) \right\} \geq \delta_1 |C(R)|$$

for some $0 < k_1 \leq k_R$ and for some $0 < \delta_1 \leq 1$ and $0 < \theta_1 \leq 1$.

Then, for any $\mu_1 \in]0, 1[$, the following inequality is valid:

$$|\{ \pi < 2^{-s} k_1 \cap Q^{1,\theta_1}((0, t_0), R) \} | \leq \mu_1 |Q^{1,\theta_1}(R)|$$

with the integer number s defined as

$$s = \text{entier} \left(\frac{c}{\delta_1^2 \mu_1 \theta_1} (1 + f(2R)) \right) + 1.$$

Given $\theta \in]0, 1[$, we can find an number $0 < R_\ast(c, \alpha, \theta) \leq 1$ so that

$$\left(\frac{1}{\pi g(2r)} \right)^{\frac{4}{3}} \leq \theta \text{ for all } 0 < r \leq R_\ast.$$

Corollary 2.8. Let $0 \leq \pi \in V_0$ have the property (B_R) in $Q(2R)$. If $\pi(\cdot, t) \geq k_2$ in $C(R)$, then, for any $\sigma \in]0, 1[$, the inequality $\pi \geq \beta_2 k_2$ holds in $Q^{\sigma, \theta_0}((0, t_0), R)$, where

$$\beta_2 = \frac{1}{6} 2^{-c(1-\sigma)} - 40 \sigma - 6g^2(2R)$$

provided $R \leq R_\ast$.

Proof. We apply Lemma 2.5 with $\delta_0 = \delta_2 = 1$ and $k_0 = k_2$. Then, for $\sigma = 4/(27c)$, we calculate

$$\theta_0 = \left(\frac{4 \pi \sigma}{1 + f(2R)} \right)^{\frac{4}{3}} \geq \left(\frac{c}{g(2R)} \right)^{\frac{4}{3}}$$

and state that the following inequality holds:

$$|\{ \pi(\cdot, t) \geq \frac{k_0}{3} \cap C(R) \} | \geq \frac{1}{3} |C(R)|$$

and state that the following inequality holds:
for any $t \in [t_0 - \theta_0 R^2, t_0]$, where $t_0 = \bar{t} + \theta_0 R^2$. In what follows, we are going to use the quantity $(c/(g(2R)))^{\frac{3}{2}}$ as a new number θ_0 instead of $\theta_0(1, f(2R))$.

Now, we are going to apply Lemma 2.7 with another set of parameters $k_1 = \frac{1}{3} k_2$, $\theta_1 = \theta_0$, $\delta_1 = \frac{1}{3}$, and

$$\mu_1 = \mu_* = \left(\frac{1}{2c'_1} \right)^{\frac{10}{3}}, \quad c'_1 = \frac{c}{(1 - \sigma)^{\frac{10}{3}}} \left(1 + \left(\frac{1}{\theta_0 \sigma^3} \right)^{\frac{1}{10}} M(2R) \right)^{\frac{3}{5}} \leq \frac{1}{(1 - \alpha)^{\frac{10}{3}}} \left(\frac{1}{\theta_0 \sigma^3} \right)^{\frac{3}{10}} g^3(2R).$$

Lemma (2.7) gives us:

$$|\{ \pi < 2^{-s} k_1 \} \cap Q^{1, \theta_1}((0, t_0), R)| < \mu_1 |Q^{1, \theta_1}(R)|,$$

where

$$s = \text{entier} \left(\frac{c}{\delta_1^2 \mu_1 \theta_1} (1 + f(2R)) \right) + 1.$$

But we know that

$$\pi(\cdot, t_0 - \theta_0 R^2) \geq k_2 > 2^{-s} k_1 = 2^{-s} \frac{k_2}{3}.$$

Then, from Corollary 2.4 it follows that $\pi > \frac{1}{2} 2^{-s} k_1 = \beta_2 k_2$ with $\beta_2 = \frac{1}{2} 2^{-s} \frac{1}{3}$ in $Q^{\sigma, \theta_0}((0, t_0), R)$.

\[\square \]

Lemma 2.9. Let $0 \leq \pi \in \mathcal{V}_0$ have the property (\mathcal{B}_R) in $Q(2R)$, assuming that $R \leq R_*(c_*, \alpha, \theta)$ for some $0 < \theta \leq 1$. Suppose further that, for some $0 < k \leq k_R$ and for some $-R^2 \leq \bar{t} \leq -\theta R^2$, there holds $\pi(\cdot, \bar{t}) \geq k$ in $C(R)$. Then $\pi \geq \beta_0 k$ in $\hat{Q} := C(\frac{2}{3} R) \times [\bar{t}, 0]$, where

$$\beta_0 \geq \ln^{-\frac{1}{2}}(1/R)$$

for $R \leq R_*(c_*, \alpha, \theta)$.

Proof. Let

$$N = \text{entier} \left(\frac{9}{8 \theta_0 R^2} |\bar{t}| \right) + 1,$$
where $\tilde{\theta}_0 = (c/g(\frac{2}{3}2R))^\frac{1}{4} \leq \theta$. Next, we introduce

$$\hat{\theta}_0 = \frac{\overline{t}}{\left(\frac{8N}{9} + \frac{1}{2N}\right)R^2} \leq \tilde{\theta}_0.$$

Step 1. By Corollary 2.8, the inequality $\pi \geq \beta_2^{(1)}k$ holds at least in $C((1 - \frac{1}{3N})R) \times [\overline{t}_1, \overline{t}_1 + \hat{\theta}_0R^2]$, where $\overline{t}_1 = \overline{t}$, $\overline{t}_2 = \overline{t}_1 + \hat{\theta}_0R^2$, $\sigma = 1 - 1/(3N) \geq 2/3$, $1 - \sigma = 1/(3N)$, and

$$\ln \beta_2^{(1)} = -\ln 6 - cN^{40}g^{25}(2R).$$

Step 2. Here, we are going to use Corollary 2.8 with $R(1 - 1/(3N))$ instead of R and with $\sigma = (1 - 2(3N))/(1 - 1/(3N))$. As a result, we have the estimate

$$\pi \geq \beta_2^{(2)}\beta_2^{(1)}k$$

at least in $C((1 - 2/(3N))R) \times [\overline{t}_2, \overline{t}_2 + \hat{\theta}_0(1 - 1/(3N))^2R^2]$, $\overline{t}_3 = \overline{t}_2 + \hat{\theta}_0(1 - 1/(3N))^2R^2$, and

$$\ln \beta_2^{(2)} = -\ln 6 - cN^{40}g^{25}(2 - 1/(3N))R).$$

So, $\pi \geq \beta_2^{(2)}\beta_2^{(1)}k$ in $C((1 - 2(3N))R) \times [\overline{t}, \overline{t}_3]$. After N steps, we shall have $\overline{t}_N = 0$ and

$$\pi \geq \beta_2^{(N)}...\beta_2^{(1)}k = \beta_0(R)k$$

in $C(\frac{2}{3}R) \times [0, 0]$, where

$$\ln \beta_2^{(i+1)} = -\ln 6 - cN^{40}g^{25}(2(1 - i/(3N))R)$$

for $i = 0, 1, ..., N - 1$.

Next, according to assumption (1.2), we can have

$$\ln \beta_0 \geq -N \ln 6 - cN^{40} \sum_{k=1}^{N-1} c_+^{25} \ln^\gamma \ln^\frac{1}{\gamma} \left(\frac{1}{2(1 - i/(3N))R}\right),$$

where $25\alpha < 1$. Since

$$\ln \frac{1}{1 - x} \leq 2x$$

provided $0 \leq x \leq 1/2$, we find, assuming that $R \leq 1/6$, the following:

$$\ln^\gamma \ln^\frac{1}{\gamma} \left(\frac{1}{2(1 - i/(3N))R}\right) \leq \ln^\gamma \left(\ln \frac{1}{2R} + \frac{i}{N}\right)^\frac{1}{\gamma}. $$
\[
\leq \ln \gamma \left(\ln \frac{\frac{1}{2R}}{\ln N} + \left(\frac{i}{N} \right)^{\frac{1}{2}} \right) = \ln \gamma \left(\ln \frac{\frac{1}{2R}}{\ln N} + \left(\frac{i}{N} \ln \frac{2}{2R} \right) \right) \leq \\
\leq \ln \gamma \left(\ln \frac{\frac{1}{2}}{2R} \left(1 + \left(\frac{i}{N} \right)^{\frac{1}{2}} \right) = \left(\ln \left(\ln \frac{\frac{1}{2}}{2R} \right) + \ln \left(1 + \left(\frac{i}{N} \right)^{\frac{1}{2}} \right) \right) \right) \gamma \leq \\
\leq \left(\ln \left(\ln \frac{\frac{1}{2}}{2R} \right) + \left(\frac{i}{N} \right)^{\frac{1}{2}} \right) \gamma \leq \ln \gamma \left(\ln \frac{\frac{1}{2}}{2R} \right) + \left(\frac{i}{N} \right)^{\frac{1}{2}}.
\]

From the latter inequality, one can deduce the bound

\[
\ln \beta_0 \geq -N \ln 6 - cc^2_\gamma N^{40} \left(N \ln \gamma \ln \frac{\frac{1}{2}}{2R} + \sum_{i=0}^{N-1} \left(\frac{i}{N} \right)^{\frac{1}{2}} \right) \geq \\
\geq -N \ln 6 - cc^2_\gamma N^{41} \ln \gamma \ln \frac{\frac{1}{2}}{2R},
\]

which is valid for \(0 < R \leq R_{s3}(\alpha) \leq 1/6 \). Taking into account that \(N \leq c(g(2R))^4 \), we conclude

\[
\ln \beta_0 \geq -c_1(c_\gamma) \frac{239 \alpha}{3} \sqrt{\ln \frac{1}{R}}.
\]

It remains to find \(R_{s4}(c_s, \alpha) \leq 1 \) such that

\[
c_1(c_\gamma) \frac{239 \alpha}{3} \sqrt{\ln \frac{1}{R}} \leq 1
\]

for all \(0 < R \leq R_{s4} \). So, we have the required inequality provided \(0 < R \leq R_{s2} = \min\{R_{s1}, R_{s3}, R_{s4}\} \). \(\square \)

3 Proof of Proposition 1.4

Now, we can state an analog of Lemma 4.2 of [17] for the class \(\mathcal{V} \).

Lemma 3.1. Let \(0 \leq \pi \in \mathcal{V}_0 \) possess the property \((B_R) \) in \(Q(2R) \).

Suppose further that

\[
\pi \leq M_0 k_R \tag{3.1}
\]

in \(Q(2R) \) for some \(M_0 \geq 1 \). Then, there exists \(\bar{t} \in [-R^2, -\frac{3}{4}R^2] \) such that

\[
|e_{\pi_0}(\bar{t})| \geq \delta_0 |B(R)| \tag{3.2}
\]
Here, \(\kappa_0 = \kappa_0(f(2R)) = c/(1 + f(2R)) \), \(e_\kappa(t) := \{ x \in C(R) : \pi(x, t) \geq \kappa k_R \} \), and
\[
\delta_0(M_0, f(2R)) = \left(\frac{c}{M_0(1 + f(2R))} \right)^{\frac{3}{2}}.
\]

Proof. Here, we follow arguments of the paper [17]. They are based on the identity:
\[
\int_Q \left(-\pi \partial_t \eta - \pi \Delta \eta - (v + 2x'/|x'|^2) \cdot \nabla \eta \pi \right) dx dt =
\]
\[
= 4\pi_0 \int_{-1}^1 \int_{-1}^1 \pi(0, x_3, t) \eta(0, x_3, t) dx_3 dt,
\]
which is valid for any non-negative test function \(\eta \) supported in \(Q \). Here, \(\pi_0 = 3.14... \). Although a similar statement has been proven in [17] under the assumption that \(\pi \) is Lipschitz, it remains to be true for functions \(\pi \) from the class \(V_0 \) as well. Indeed, take a smooth cut-off function \(\psi = \psi(x') \) so that \(\psi(x') = \Psi(|x'|), 0 \leq \psi \leq 1, \psi(x') = 0 \) if \(|x'| \leq \varepsilon/2, \psi(x') = 1 \) if \(|x'| \geq \varepsilon, \Psi'(\varrho) \leq c/\varrho \) and \(\Psi''(\varrho) \leq c/\varrho^2 \) for some positive constant \(c \). Then, it follows from (2.1) that:
\[
\int_Q \left(\pi \partial_t(\eta \psi) + \pi(u + b) \cdot \nabla(\eta \psi) + \pi \Delta(\eta \psi) \right) dz = 0.
\]

There are two difficult terms for passing to the limit as \(\varepsilon \to 0 \). The first one is as follows:
\[
I_1 := \int_Q \pi \eta \Delta \psi dx dt = J_1 + J_2,
\]
where
\[
J_1 := \int_Q (\pi \eta - (\pi \eta)|_{x'=0}) \Delta \psi dx dt,
\]

For \(J_2 \), we find
\[
J_2 := \int_Q (\pi \eta)|_{x'=0} \Delta \psi dx dt = \int_{-1}^1 \int_{-1}^1 (\pi \eta)|_{x'=0} dx_3 dt \int_{|x'|<1} \Delta \psi(x') dx'
\]
and
\[\int_{|x'|<1} \Delta \psi(x') \, dx' = 2\pi_0 \int_\Omega \frac{1}{\varrho} \frac{\partial}{\partial \varrho} \left(\varrho \Psi'(\varrho) \right) \, d\varrho = 2\pi_0 \varrho \Psi'(\varrho) \bigg|^{\varrho=\frac{\varepsilon}{2}} = 0. \]

Now, we wish to show that
\[J_1 := \int_\Omega \xi \Delta \psi \, dx \, dt \to 0 \]
as \(\varepsilon \to 0 \), where, \(\xi := \pi \eta - (\pi \eta)|_{x'=0} \). To this end, let us introduce the function
\[H_\varepsilon(x_3, t) := \int_{\frac{\varepsilon}{2} < \varrho < \varepsilon} \xi \Delta \psi \, dx'. \]

It can be bounded from above and from below
\[|H_\varepsilon(x_3, t)| \leq c \sup_{spt \eta} \pi \sup_{|x'|<1} (\pi \eta)(x', x_3, t) \frac{1}{\varepsilon^2} \int_{\frac{\varepsilon}{2}}^{\varepsilon} \varrho \, d\varrho =: h(x_3, t) \]
provided \(\varepsilon < 1 \). The function \(h \) is supported in \(]-1, 1[\times]-1, 0[\) and thus
\[\int_{-1}^{1} \int_{-1}^{0} h(x_3, t) \, dx_3 \, dt < \infty. \]

Now, let \((0, x_3, t) \) be a regular point of \(\pi \), i.e., \((0, x_3, t) \notin S^\pi \). Then, \(\xi(x', x_3, t) \to 0 \) as \(|x'| \to 0 \) and thus for any \(\delta > 0 \) there exists a number \(\tau(x_3, t) > 0 \) such that \(|\xi(x', x_3, t)| < \delta \) provided \(|x'| < \tau \). So,
\[|H_\varepsilon(x_3, t)| < c \frac{\delta}{\varepsilon^2} \int_{\frac{\varepsilon}{2}}^{\varepsilon} \varrho \, d\varrho = c \frac{\delta}{2} \]
provided \(\varepsilon < \tau \). Therefore, \(H_\varepsilon(x_3, t) \to 0 \) as \(\varepsilon \to 0 \) and by the Lebesgue theorem on dominated convergence, we find that
\[J_1 = \int_{-1}^{1} \int_{-1}^{0} H_\varepsilon(x_3, t) \, dx_3 \, dt \to 0 \]
as $\varepsilon \to 0$.

Similar arguments work for the second difficult term:

$$I := \int_Q \pi \eta b \cdot \nabla \psi dz = J_1 + J_2,$$

where

$$J_1 = \int_Q \xi b \cdot \nabla \psi dz$$

and

$$J_2 := \int_Q (\pi \eta)_{x_3=0} b \cdot \nabla \psi dxdt = \int_{-1}^{0} \int_{-1}^{1} (\pi \eta)_{x_3=0} dx_3 dt \pi_0 \int_{\frac{\varepsilon}{2}}^{e} \frac{2}{q} \Psi'(q) q dq =$$

$$= 4 \pi_0 \int_{-1}^{0} \int_{-1}^{1} (\pi \eta)_{x_3=0} dx_3 dt.$$

The fact that $J_1 \to 0$ as $\varepsilon \to 0$ can be justified in the same way as above, replacing H_ε with the function

$$G_\varepsilon(x_3, t) := \int_{\frac{\varepsilon}{2} < |x'| < \varepsilon} \xi b \cdot \nabla \psi dx'.$$

Other terms can be treated in a similar way and even easier. So, the required identity (3.3) has been proven.

Now, let us select the test function η in (3.3), using the following notation

$$Q^{\lambda, \theta}(z_0, R) := C(x_0, \lambda R) \times]t_0 - \theta R^2, t_0[,$$

so that $\eta = 1$ in $Q^{\frac{1}{4}, \frac{1}{2}}((0, -\frac{12}{10} R^2), R)$, $\eta = 0$ out of $Q^{1, \frac{4}{3}}((0, -\frac{3}{10} R^2), R)$ and $|\partial \eta| + |\nabla \eta|^2 + |\nabla^2 \eta| \leq c/R^2$. Taking into account that π has the property (B.R), we find

$$\frac{\pi_0}{2} k_R R^2 \leq \frac{c}{R^2} \int_{Q^{1, \frac{4}{3}}(z_R, R)} \pi dz + \frac{c}{R} \int_{Q^{1, \frac{4}{3}}(z_R, R)} \pi |v| dz + \frac{c}{R} \int_{Q^{1, \frac{4}{3}}(z_R, R)} \pi \frac{1}{|x'|} dz.$$
where $z = (0, -\frac{3}{4}R^2)$.

Setting $E_\kappa = \{(x, t) : t \in [-R^2, -\frac{3}{4}R^2], x \in e_\kappa(t)\}$, we can deduce from the latter inequality

$$\frac{\pi_0}{2} k_R R^3 \leq \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} \pi dz + \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} \pi |v| dz + \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} \frac{\pi |x|}{|x'|} dz\]

+ \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} \pi dz + \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} \pi |v| dz + \frac{c}{R^2} \int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} \frac{\pi |x|}{|x'|} dz.

Applying (3.1) and recalling definitions of the sets $e_\kappa(t)$ and E_κ, we can get

$$\frac{\pi_0}{2} k_R R^3 \leq \frac{c\kappa k_R}{R^2} \left\{ |Q^{1,\frac{\kappa}{2}}(R)| + R \int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} |v| dz + R \int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} \frac{1}{|x'|} dz \right\} +

\frac{cM_0 k_R}{R^2} \left\{ |E_\kappa| + R \int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} |v| dz + R \int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} \frac{1}{|x'|} dz \right\}.

We need to estimate integrals in the above inequality. First, for integrals, containing v, Holder inequality gives

$$\int_{Q^{1,\frac{\kappa}{2}(z, R)\setminus E_\kappa}} |v| dx \leq \|v\|_{\frac{3}{2}, \frac{4}{\kappa}, Q^{1,\frac{\kappa}{2}}(R)} \left(\int_{-R^2}^{0} \left(\int_{C(R)} |v|^3 dx \right)^{\frac{4}{3}} dt \right)^{\frac{1}{4}} \leq

f(2R) R^{\frac{1}{2}} \|v\|_{\frac{3}{2}, \frac{4}{\kappa}, Q^{1,\frac{\kappa}{2}}(R)} \leq f(2R) R^{4}

and similarly

$$\int_{Q^{1,\frac{\kappa}{2}(z, R)\cap E_\kappa}} |v| dz \leq f(2R) R^{\frac{1}{2}} \|v\|_{\frac{3}{2}, \frac{4}{\kappa}, E_\kappa}.

To evaluate the last two integrals, let us take into account the fact:

$$\frac{1}{|x'|} \in L^{2, \infty}(Q^{1,\frac{\kappa}{2}}(z, R)).$$
Then,
\[\int_{Q^{1/4}(z_R,R) \setminus E_\kappa} \frac{1}{|x'|} \, dz \leq \| \frac{1}{|x'|} \|_{L_\infty} \| Q^{1/4}(z_R,R) \|_{L_{3/4},1,1} \| \kappa \|_{L_{3/4},1,1,1} \leq \]
\[\leq c R^{3/4} \| \kappa \|_{L_{3/4},1,1,1} \]
\[\leq c R^4 \]
and
\[\int_{Q^{1/4}(z_R,R) \cap E_\kappa} \frac{1}{|x|} \, dz \leq c R^{3/4} \| \kappa \|_{L_{3/4},1,E_\kappa}. \]

Hence, we have
\[\frac{\pi_0}{2} k_R R^3 \leq c \kappa k_R R^3 (1 + f(2R)) + \]
\[+ c M_0 k_R \left[|E_\kappa| + f(2R) R^{3/4} \| \kappa \|_{L_{3/4},1,E_\kappa} + R^{5/4} \| \kappa \|_{L_{3/4},1,E_\kappa} \right]. \]
So,
\[\frac{\pi_0}{2} \leq c \kappa (1 + f(2R)) + \frac{c M_0}{R^5} \left[|E_\kappa| + f(2R) R^{3/4} \| \kappa \|_{L_{3/4},1,E_\kappa} + R^{5/4} \| \kappa \|_{L_{3/4},1,E_\kappa} \right]. \]

Now, one can find \(\kappa = \kappa_0(f(2R)) = c/(1 + f(2R)) \) such that
\[\frac{c M_0}{R^5} \left[|E_{\kappa_0}| + f(2R) R^{3/4} \| \kappa \|_{L_{3/4},1,E_{\kappa_0}} + R^{5/4} \| \kappa \|_{L_{3/4},1,E_{\kappa_0}} \right] \geq 1. \]

It remains to estimate two integrals on the left hand side of the latter inequality:
\[\| \kappa \|_{L_{3/4},1,E_{\kappa_0}} = \left(\int_{-R^2}^{R^2} |\kappa(t)|^{3/4} \, dt \right)^{\frac{4}{3}} \leq c |E_{\kappa_0}|^{\frac{3}{4}} R^{\frac{3}{4}} \]
and
\[\| \kappa \|_{L_{3/4},1,E_\kappa} \leq c |E_{\kappa_0}|^{\frac{3}{4}} R^{\frac{10}{3}}. \]

Letting \(A = |E_{\kappa_0}|/R^5 \), we arrive at the following inequality
\[f(A) := A + A^{3/4} + f(2R) A^{3/2} \geq \frac{1}{c M_0}. \]
Since $f'(A) > 0$ for $A > 0$, we can state that the last inequality implies
\[
\frac{|E_{\kappa_0}|}{|C(R)|\frac{1}{4}R^2} \geq \delta_0 = \left(\frac{c}{M_0(1 + f(2R))}\right)^{\frac{2}{3}}.
\]

It is not so difficult to show the existence of $\overline{t} \in [-R^2, -\frac{3}{4}R^2]$ with the property:
\[
|e_{\kappa_0}(\overline{t})|\frac{1}{4}R^2 \geq |E_{\kappa_0}|.
\]
So, it is proven that there exists $\overline{t} \in [-R^2, -\frac{3}{4}R^2]$ such that
\[
|\{x \in C(R) : \pi(x, \overline{t}) > \kappa_0k_R\}| \geq \delta_0|C(R)|, \tag{3.4}
\]
which completes the proof of the lemma. \(\square\)

Now, we are able to prove Proposition 1.4.

Assume that the function π meets all the conditions of Lemma 3.1 and according to it, we can claim that:
\[
|e_{\kappa_0}(\overline{t})| = |\{x \in C(R) : \pi(x, \overline{t}) \geq \kappa_0k_R\}| \geq \delta_0|C(R)|
\]
for some $\overline{t} \in [-R^2, -\frac{3}{4}R^2]$, $\kappa_0 = c/g(2R)$, and $\delta_0 = c(M_0)/g^{\frac{2}{3}}(2R)$. Now, we can calculate
\[
\theta(\delta_0(M_0, f(2R)), f(2R)) \geq c\left(\frac{\delta_0}{1 + \frac{\delta_0^2}{\delta_0}f(2R)}\right)^{\frac{4}{3}} \geq c(M_0)\left(\frac{1}{g(2R)}\right)^{18},
\]
apply Lemma 2.5, and find
\[
|\{\pi(\cdot, t) \geq \delta_0\kappa_0k_R/3\} \cap C(R)| > \delta_0|C(R)|
\]
for all $t \in [\overline{t}, t_0]$ with $t_0 = \overline{t} + \theta_0R^2$ and $\theta_0 = c(M_0)(g(2R))^{-18}$.

Next, it follows from Lemma 2.7 that:
\[
|\{\pi < 2^{-s}\delta_0\kappa_0k_R/3\} \cap Q_{1, \theta_0}^{1, \theta_0}(0, t_0, R)| \leq \mu_*|Q_{1, \theta_0}^{1, \theta_0}(R)|,
\]
where
\[
s = \text{entier}\left(\frac{c}{\delta_0^2\mu_*\theta_0}(1 + f(2R))\right) + 1
\]

19
and μ_* is the number that appears in Corollary 2.4, see also Proposition 2.2.

In our case,

$$\mu_* = \left(\frac{1}{2c_1(3/4, 1, \theta_0/2, M(2R))} \right)^{10/3}$$

and, moreover

$$c_1(3/4, 1, \theta_0/2, M(2R)) \leq c\theta_0^{-\frac{3}{2}} g^3(2R) \leq c(M_0)(g(2R))^{30}.$$

Then, Corollary 2.4 implies the bound

$$\pi \geq 2^{-s} \delta_0 \kappa_0 k_R/6 = \hat{\beta}_2 \kappa_0 k_R$$

in $Q^{\frac{1}{2}, \theta_0}(0, t_0, R)$. So, combining previous estimates, we find the following:

$$\hat{\beta}_2 = \frac{1}{6} 2^{-s} \delta_0 \geq e^{-s\ln 2 - \ln 6} \delta_0 \geq e^{-cs} \delta_0,$$

where

$$s \leq \frac{2g(2R)}{\delta_0^2 \mu_*^2 \theta_0} \leq c(M_0)g(2R)(g(2R))^{\frac{2}{7}} (g(2R))^{18} c_1^{\frac{20}{3}} \leq c(M_0)(g(2R))^{\frac{24}{7}} (g(2R))^{30} \leq c(M_0)(g(2R))^{224}.$$

So,

$$\hat{\beta}_2 \geq e^{-c(M_0)(g(2R))^{224}} c(M_0)(g(2R))^{-\frac{9}{7}} \geq e^{-2c(M_0)(g(2R))^{224}} \geq e^{-c(M_0, c_*) \ln^{24\alpha} \sqrt{\ln 2}},$$

Obviously, there exists a number $0 < R_5(M_0, c_*, \alpha) \leq \min\{1/6, R_2\}$ such that

$$2c(M_0, c_*) \ln^{24\alpha - 1} \sqrt{\ln \frac{1}{R}} \leq 1$$

and

$$c(M_0, c_*) \ln^{24\alpha} \sqrt{\ln \frac{1}{R}} \geq \ln \ln \alpha \sqrt{\ln 1}$$

for $0 < R \leq R_5(M_0, c_*, \alpha)$ and thus

$$-c(M_0, c_*) \ln^{24\alpha} \sqrt{\ln \frac{1}{R}} = -2c(M_0, c_*) \ln^{24\alpha} \sqrt{\ln 1} +$$

$$+ c(M_0, c_*) \ln^{24\alpha} \sqrt{\ln \frac{1}{R}} \geq -\ln \sqrt{\ln \frac{1}{R}} + \ln \ln \alpha \sqrt{\ln 1}.$$
Now, the number $\hat{\beta}_2$ is estimated as follows:

$$\hat{\beta}_2 \geq \left(\ln \frac{1}{R} \right)^{-\frac{1}{4}} \ln \ln \sqrt{\ln \frac{1}{R}}$$ \hspace{1cm} (3.5)

for $0 < R \leq R_{s5}(M_0, c_*, \alpha)$.

Since

$$-R^2 \leq \bar{t} + \theta_0/2R^2 = t_0 - \theta_0/2R^2 < t_0 = \bar{t} + \theta_0R^2 \leq -\frac{3}{4}R^2 + \frac{1}{4}R^2 = -\frac{1}{2}R^2,$$

there is $\bar{t}_1 \in [-R^2, -\frac{1}{2}R^2]$ such that

$$\pi(\cdot, \bar{t}_1) > \hat{\beta}_2\kappa_0 k_R$$

in $C(\frac{3}{4}R)$. It allows us to apply Lemma 2.9 with $\theta = 1/2$, with $\frac{3}{4}R$ instead of R, with \bar{t}_1 instead of \bar{t}, and with $\hat{\beta}_2\kappa_0 k_R$ instead of k. According to Lemma 2.9 the inequality

$$\pi \geq \beta_0 \hat{\beta}_2\kappa_0 k_R$$

holds in $Q(R/2)$. It follows from Lemma 2.9 and from (3.5) that

$$\pi \geq \frac{c(c_*)k_R}{\ln(1/R)} = \beta(2R)k_R$$

in $Q(R/2)$.

By our assumption imposed on function σ, we can put $k_R = \frac{1}{2}\text{osc}_{z \in Q(2R)}\sigma(z)$. Then, either $\pi = \sigma - m_{2R}$ or $\pi = M_{2R} - \sigma(z)$ satisfies all the conditions of the proposition with $M_0 = 2$. Simple arguments show that

$$\text{osc}_{z \in Q(R/2)}\sigma(z) \leq \left(1 - \frac{1}{2}\beta(2R)\right)\text{osc}_{z \in Q(2R)}\sigma(z).$$

Now, after iterations of the latter inequality, we arrive at the following bound

$$\text{osc}_{z \in Q(R/2^{2k+1})} \leq \prod_{i=0}^{k} \left(1 - \frac{1}{2}\beta(R/2^{2k+1})\right)\text{osc}_{z \in Q(2R)}\sigma(z) =$$

$$= \eta_k \text{osc}_{z \in Q(2R)}\sigma(z)$$

being valid for any natural number k.

21
In order to evaluate η_k, take ln of it. As a result,

$$\ln \eta_k = \sum_{i=0}^{k} \ln \left(1 - \frac{1}{2}\beta\left(R/2^{2k+1}\right)\right) \leq - \sum_{i=0}^{k} \frac{1}{2}\beta\left(R/2^{2k+1}\right) =$$

$$= -c(c_*) \sum_{i=0}^{k} (\ln(2^k/R))^{-1} = -c(c_*) \sum_{i=0}^{k} \frac{1}{k \ln 2 + \ln 1/R} \leq$$

$$\leq -c(c_*) \int_{0}^{k+1} \frac{dx}{x \ln 2 + \ln 1/R} =$$

$$= -c(c_*) \left(\ln(2^{k+1}/R) - \ln(1/R)\right) = -c(c_*) \left(\ln(2^{k+1})\right).$$

So, (1.8) follows. The proof of Proposition 1.4 is complete.

4 Proof of Theorem 1.3

By the maximum principle, we have $|\sigma| = |\rho v_\rho| \leq \Sigma_0$ in $\mathbb{R}^3 \times [0,T]$. From Proposition 1.4, it follows that

$$|\sigma(\rho, x_3, t)| \leq C_1(c_*) \left(\frac{\rho}{2R_*}\right)^{C_2(c_*)} 2\Sigma_0$$

for all $0 < \rho \leq R_*(c_*, \alpha)$, for all $x_3 \in \mathbb{R}$, and for $t \in [T - R_*^2, T]$. For $\rho > R_*$, we simply have

$$|\sigma(\rho, x_3, t)| \leq \Sigma_0 \left(\frac{\rho}{R_*}\right)^{C_2(c_*)}.$$

It remains to notice that $v(\cdot, T - R_*^2) \in H^2$. Therefore, one can use the main result of the paper [4], see also [10] and [12], for the Cauchy problem for the Navier-Stokes system (1.1) in $\mathbb{R}^3 \times [T - R_*^2, T]$ and conclude that v is a strong solution in the interval $[0, T]$.

References

[1] Albritton, D., Dong, H., Regularity properties of passive scalars with rough divergence-free drifts, arXiv:2107.12511
[2] Caffarelli, L., Kohn, R.-V., Nirenberg, L., *Partial regularity of suitable weak solutions of the Navier-Stokes equations*, Comm. Pure Appl. Math., Vol. XXXV (1982), pp. 771–831.

[3] Chae D., Lee, J., On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239(2002), 645-671.

[4] C. Chen, D. Fang and T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939.

[5] C. Chen, R. M. Strain, H. Yau and T. Tsai, Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations II, Comm. Part. Diff. Equa., 34(2009), 203–232.

[6] Ignatova, M., On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts. Adv. Nonlinear Anal., 3(2):81-86, 2014.

[7] Ignatova, M., Kukavica, I., and Ryzhik, L., The Harnack inequality for second-order parabolic equations with divergence-free drifts of low regularity. Comm. Partial Differential Equations, 41(2):208–226, 2016.

[8] Kang, K., Regularity of axially symmetric flows in half-space in three dimensions, SIAM J. Math. Anal. Vol. 35(2004), No. 6, pp. 1636–1643.

[9] Ladyzhenskaya, O. A., On unique solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations under the axial symmetry, Zap. Nauchn. Sem. LOMI 7(1968), 155-177.

[10] Ladyzhenskaya, O. A., Seregin, G. A., On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. math. fluid mech., 1(1999), pp. 356-387.

[11] Z. Lei and Q. Zhang, A Liouville theorem for the axially symmetric Navier-Stokes equations, J. Funct. Anal., 261(2011), 2323–2345.

[12] Z. Lei and Q. Zhang. Criticality of the axially symmetric Navier-Stokes equations. Pacific Journal of Mathematics, 289(1):169–187, 2017.

[13] Leonardi, S., Malek, Necas, J., & Pokorny, M., On axially symmetric flows in \mathbb{R}^3, ZAA, 18(1999), 639-649.
[14] Leray, J., *Sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Math. 63 (1934), 193–248.

[15] Lin, F.-H., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math. 51 (1998), 241–257.

[16] C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation. Comm. Math. Phys. 321 (2013), no. 1, 33–67.

[17] Nazarov, A.I., Uraltseva, N.N., The Harnack inequality and related properties for solutions to elliptic and parabolic equations with divergence-free lower-order coefficients, St. Petersburg Math. J., 23:1. (2012), 93–115.

[18] Neustupa, J., Pokorny, M., Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity components, Math. Bohemica, 126(2001), 469-481.

[19] Pan, X., Regularity of solutions to axisymmetric Navier-Stokes equations with a slightly supercritical condition, Journal of Differential Equations Volume 260, Issue 12, 15 June 2016, 8485-8529.

[20] Pokorny, M., A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations, 2001.

[21] Scheffer, V., Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66(1976), 535–552.

[22] Scheffer, V., Hausdorff measure and the Navier-Stokes equations, Commun. Math. Phys., 55(1977), pp. 97–112.

[23] Seregin, G. Local regularity of axisymmetric solutions to the Navier-Stokes equations. Anal. Math. Phys. 10 (2020), no. 4, Paper No. 46, 20 pp.

[24] Seregin, G., Silvestre, L., Sverak, V., and Zlatos, A. On divergence-free drifts. J. Differential Equations, 252(1):505–540, 2012.

[25] Seregin, G., Sverak, V., On Type I singularities of the local axisymmetric solutions of the Navier-Stokes equations, Communications in PDE’s, 34(2009), pp. 171–201.
[26] Seregin, G., Zajaczkowski, W., A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations, SIAM J. Math. Anal, 39(2007), pp. 669-685.

[27] Seregin, G., Zhou, D., Regularity of solutions to the Navier-Stokes equations in $\dot{B}_{\infty,\infty}^{-1}$, Zapiski POMI, Vol. 407, 2018, pp.119–128.

[28] Ukhovskij, M. R., Yudovich, V. L., Axially symmetric motions of ideal and viscous fluids filling all space, Prikl. Mat. Mech. 32 (1968), 59-69.

[29] P. Zhang and T. Zhang, Global axisymmetric solutions to the three-dimensional Navier-Stokes equations system, Int. Math. Res. Not., 2014(2014), 610–642.