We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,100 Open access books available
126,000 International authors and editors
145M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
The Natural Antibiotic Resistances of the Enterobacteriaceae \textit{Rahnella} and \textit{Ewingella}

Wilfried Rozhon, Mamoona Khan and Brigitte Poppenberger

Max F. Perutz Laboratories, University of Vienna, Austria

1. Introduction

The antibiotic resistance genes present in clinical isolates are usually acquired and located on mobile elements allowing their horizontal transfer to other strains or even across bacterial species. Consequently, resistance genes with 100\% sequence identity may be found in otherwise unrelated genera while the occurrence of such an acquired resistance within a certain species is highly variable.

In contrast, a number of bacteria are naturally resistant against some antibiotics. The molecular basis for natural resistance may be a general factor like the lack of the targeted pathway, a variant of the targeted molecule that is not inhibited by the antibiotic or a membrane limiting entry of the antibiotic into the cell. In addition natural resistance may also be mediated by a resistance gene belonging to the cell’s core genes. Such resistance genes are vertically inherited, shared by (nearly) all isolates of a species and co-evolve with their hosts. They are often encoded by the chromosome, are usually immobile and their expression level is tightly regulated or very low. The establishment of such a resistance requires a long lasting, usually mild selection pressure as it may be present in the soil, which contains many microorganisms producing antibiotics. Examples for this type of natural resistance are the chromosomally encoded β-lactamases found in several species of the Enterobacteriaceae (Naas et al., 2008), many of them colonising plants and soil.

Although these environmental microorganisms pose a low risk to human health, concerns about the spread of their antibiotic resistance genes to pathogens have arisen. Their resistance genes are usually non-mobile, but inclusion into mobile genetic elements may allow the spread to unrelated bacteria. In the last two decades the CTX-M type enzymes have become the most prevalent extended-spectrum β-lactamases (EBSLs) in pathogenic Enterobacteriaceae (Canton & Coque, 2006). The CTX-M enzymes are believed to originate from \textit{Klyvera ascorbata} and \textit{Klyvera georgiana} chromosomal β-lactamases (Olson et al., 2005; Rodriguez et al., 2004). The inclusion of these genes in integrons located on large conjugative plasmids has likely facilitated their spread among the Enterobacteriaceae. Such plasmids contain frequently multiple resistance genes, which might have further enhanced spread of the CTX-M genes in microbial communities by co-selection (Canton & Coque, 2006). Once established in pathogens the spectrum of the resistance genes may be increased by point mutations further impeding treatment of infections with antibiotics. Thus
improved understanding of natural resistance, conditions favouring transfer of resistance genes to pathogens and the underlying molecular mechanisms are important areas of research.

Rahnella and Ewingella, two closely related genera of the Enterobacteriaceae, are naturally resistant to several β-lactam antibiotics. Rahnella is widespread in nature and routinely present in the daily human diet but also Ewingella may be present at high titers in some kinds of food. Both microorganisms have been infrequently isolated from clinical specimens. Here the biology, natural habitats, clinical significance and antibiotic susceptibility patterns of Ewingella and Rahnella will be addressed. Novel results about their resistance genes will be presented and the evolution of these genes and the potential for their transfer to other bacteria will be discussed.

2. Biology, clinical significance and antibiotic resistances of Rahnella and Ewingella

In 1976 a new class of Enterobacteriaceae was defined during a numerical taxonomy study and provisionally named 'group H2' (Gavini et al., 1976). Based on DNA relatedness studies this group was later proposed as a new species, Rahnella aquatilis (Izard et al., 1979). In the following years strains belonging to this novel genus were infrequently isolated from water and clinical specimens and Rahnella was thought to be a rare microorganism (Farmer et al., 1985) until it was found to be frequent in plant and soil specimens. Also Ewingella was recognised as a separate group of the Enterobacteriaceae in a phenotypical study, which was subsequently confirmed by DNA-DNA hybridisation experiments (Grimont et al., 1983). Based on current reports Ewingella is believed to be a rare member of the Enterobacteriaceae (Brenner & Farmer 2005) but some studies indicate that it might be common in some ecological niches. Investigations of clinical isolates revealed that Rahnella and Ewingella are resistant to several antibiotics, mainly β-lactams. The susceptibility patterns suggested the presence of an extended spectrum Ambler class A β-lactamase (ESBL) in Rahnella (Stock et al., 2000), which could be confirmed by cloning and sequencing of the resistance gene (Bellais et al., 2001). The susceptibility pattern and detection of the enzyme by SDS-PAGE/nitrocefin staining suggested an Ambler class C β-lactamase (AmpC) for Ewingella (Stock et al., 2003). Here we report for the first time a DNA sequence-based phylogenetic analysis confirming that the Ewingella β-lactamase belongs to the AmpC class.

2.1 Biology, habitat and possible applications of Rahnella and Ewingella

The genus Rahnella comprises three genomospecies, Rahnella aquatilis (= genomospecies 1), Rahnella genomospecies 2 and Rahnella genomospecies 3 (Brenner et al., 1998), while the genus Ewingella consists of only one species: Ewingella americana. Based on phenotypical tests two biogroups of Ewingella americana have been defined, which show differences in L-rhamnose and D-xylose fermentation (Grimont et al., 1983). Strains belonging to Rahnella and Ewingella have no special nutritional requirements and can use a number of carbon sources. They are able to grow in the temperature range from close to 0°C to approximately 40°C, although many strains show a reduced biochemical activity at elevated temperatures (Brenner & Farmer 2005; Brenner et al., 1998; Davis & Eyles, 1992; Jensen et al., 2001; McNeil et al., 1987).
Rahnella is widely distributed and has been isolated from many types of samples. It is frequently found in the rhizosphere and tightly associated with roots and tubers of plants (Berge et al., 1991; Heulin et al., 1994; Jafra et al., 2009; Rozhon et al., 2010) but is also present on other parts of plants including leaves (Hamilton-Miller & Shah, 2001; Hashidoko et al., 2002), fruits (Lindow et al., 1998) and seeds (Cankar et al., 2005; Iimura & Hosono, 1996). Other sources are water (Brenner et al., 1998; Gavini et al., 1976; Niemi et al., 2001), soil (Martinez et al., 2007) and the intestine of snails, slugs (Brenner et al., 1998) and even American mastodon remains (Rhodes et al., 1998). Recently, **Rahnella** was also found at a high frequency in the gut of ghost moths (Yu et al., 2008) and to be associated with larvae and adults of the mountain pine beetle (Winder et al., 2010). **Rahnella** is frequently present in the human diet and has been isolated from different types of food including vegetables (Hamilton-Miller & Shah, 2001; Raphael et al., 2011; Rozhon et al., 2010; Ruimy et al., 2010a), sprouts (Cobo Molinos et al., 2009), fruits (Rozhon et al., 2006), meat (Brightwell et al., 2007; Lindberg et al., 1998) and beverages (Hamze et al., 1991; Jensen et al., 2001). In contrast to its wide distribution in nature **Rahnella** is rarely isolated from clinical specimens.

Ewingella has also been isolated from vegetables (Hamilton-Miller & Shah, 2001) and vacuum-packaged meat (Brightwell et al., 2007), but seems to be significantly less frequent than **Rahnella** in such samples. In contrast, **Ewingella** is very common on mushrooms including button mushroom, shiitake and oyster mushroom (Reyes et al., 2004). Importantly, **Ewingella** is the causative agent of a browning disorder of button mushroom called ‘internal stipe necrosis’ (Inglis & Pemberdy, 1996), which causes significant economic loss. In addition, **Ewingella** has also been isolated from molluscs (Müller et al., 1995). Clinical specimens tested positive for **Ewingella** were mainly blood and swabs from the respiratory tract and wounds.

Rahnella and **Ewingella** have some interesting properties for agronomic and industrial applications. Both seem to promote plant growth and **Rahnella** may be useful as antagonist for controlling plant pathogens including *Erwinia amylovora*, causing fire blight of pear and apple trees (Laux et al., 2002), and *Xanthomonas campestris*, the causative agent of black rot (El-Hendawy et al., 2005). In addition, **Rahnella** might improve the supply of plants with nutrients like phosphate (Kim et al., 1997) and it is able to fix nitrogen (Heulin et al., 1994). The polysaccharides levan and lactan produced by different strains of **Rahnella** have interesting properties for industrial processes (Kim et al., 2003; Matsuyama et al., 1999; Pintado et al., 1999; Seo et al., 2002). The high uranium(VI) resistance of **Rahnella** and its ability to bind this toxic heavy metal is currently intensively investigated and its potential for bioremediation is studied (Beazley et al., 2007; Geissler et al., 2009; Martinez et al., 2007). Because of the increasing interest a project for sequencing of the **Rahnella** genome was launched and recently finished. The sequence of environmental strain **Rahnella aquatilis** Y9602 is available from the genbank database (www.ncbi.nlm.nih.gov) under accession number NC_015061.

2.2 Clinical significance

Rahnella and **Ewingella** are only occasionally isolated from clinical specimens and the clinical significance of both microorganisms is still under debate. Both are believed to be opportunistic pathogens. The pathogenic potential of **Rahnella** seems to be relatively low while a few fatal outcomes of infections caused by **Ewingella** have been reported.
2.2.1 Clinical significance of Rahnella

Several reports describe the isolation of Rahnella in a clinical context (Table 1). However, in some cases the clinical significance is difficult to assess particularly because many patients had some underlying conditions including haematologic and solid organ malignancy, diabetes and AIDS or had undergone surgery. The age of the patients ranged from 11 months to 78 years and an, although statistically insignificant, male predominance has been recognised among them (Gaitán & Bronze, 2010). Typical sites of isolation were blood, wounds and urine. Interestingly, a significant number of patients developed symptoms during hospitalisation suggesting nosocomial infections.

The first description of Rahnella in a clinical context dates back to 1985, where it was isolated from a burn wound (Farmer et al., 1985). In another case Rahnella was isolated from a surgical wound that had persisted for more than eight months and was repeatedly tested negative for bacteria before a purulent exudate appeared. At that time pure cultures of Rahnella could be isolated from the wound exudate (Maraki et al., 1994). Since Rahnella is easy to cultivate and previous efforts to detect bacteria in the wound were negative it seems most likely that the wound was infected recently before the exudate appeared, for instance during the daily wound cleansing procedure. In a further case Rahnella was isolated from a diabetes mellitus associated foot wound. Although the infection reacted well to treatment with ampicillin-sublactam the toe and the second digit of the foot had to be amputated because of severe necrosis. This course of disease belongs to the most severe described for an infection with Rahnella. However, the ulceration of the wound had begun two month before any medical treatment was started and a co-infection with Candida sp. was diagnosed.

While, in a clinical context, Rahnella was first isolated from a wound swab, its most frequent site of isolation was blood. Rahnella bacteraemia was associated with fever and in two cases with septic shock (Chang et al., 1999; Gaitán & Bronze, 2010). Most patients showed Rahnella bacteraemia during hospitalisation (9 of 15 cases) and venous catheters, surgery and drug abuse seem to pose risk factors for infection with this bacterium (Funke & Rosner, 1995; Gaitán & Bronze, 2010; Hoppe et al., 1993; Oh & Tay, 1995). In two epidemiologically related cases a parenteral nutrition fluid was identified as the most probable source of Rahnella (Caroff et al., 1998). Both cases appeared in the same hospital within three days and the bacterial strains isolated from the blood of both patients showed identical biochemical profiles and antibiograms and shared the same macrorestriction and ribotyping profiles. Also other patients who had received the same batch of the parenteral nutrition fluid experienced episodes of shivers but blood cultures were not taken imped ing further analysis (Caroff et al., 1998). In one very unusual case a contaminated intravenous infusion fluid that a patient had self-administrated could be identified as the source of Rahnella (Chang et al., 1999). Thus in a number of cases Rahnella cells were directly introduced into the blood circulation. Under certain circumstances Rahnella may also be able to spread from the urinary tract to the blood system. Blood cultures of a febrile 76-year old man complaining of nausea and vomiting grew Rahnella. The patient had a history of a benign prostatic hypertrophy and the analysis of his urine revealed “many” bacteria. Because of these results and the underlying conditions pyelonephritis was suggested as a possible source of the patient’s bacteraemia (Tash, 2005). Since the bacteria isolated from blood and urine of this patient were not compared by biochemical and molecular methods a causal link between the urinary tract infection and bacteraemia remains speculative. With respect to that it is important to note that Rahnella was isolated from urine in some other cases but no signs for bacteraemia were reported (Alballaa et al., 1992; Domann et al., 2003; O’Hara et al., 1998).
Case	Year, country	Age, sex	Signs and symptoms	Site	Underlying condition(s)	Treatment	Outcome	Reference
1	1985, USA	NA	NA	Burn wound	Burn	NA	NA	(Farmer et al., 1985)
2	1986, USA	37 y, M	Cough, fever, right sweats, diarrhoea	Bronchial washings	AIDS; co-infection with Cryptococcus neoformans	Ampicillin, gentamycin	Cure	(Harrell et al., 1989)
3	1987, Belgium	79 y, M	Fever, expectoration	Sputum, bronchial aspirate	Chronic lymphocytic leukaemia, lymphoma, bronchopulmonary infection with Pseudomonas	Trimethoprim-sulfamethoxazole	Cure	(Christiaens et al., 1987)
4	1988, France	42 y, F	Septicaemia, leukaemic relapse	Blood	Acute lymphocytic leukaemia, diabetes mellitus, bronchial asthma, Hickman catheter	Vancomycin, ceftazidime	NA	(Goubau et al., 1988)
5	1991, Saudi Arabia	40 y, M	Dysuria	Urine	Renal transplant (status post)	Amoxicillin; ciprofloxacin	Cure	(Alballaa et al., 1992)
6	1992, Greece	63 y, F	Purulent exudate	Surgical wound	Osteoporosis, alcoholism, operation at the left knee	Trimethoprim-sulfamethoxazole	Cure	(Maraki et al., 1994)
7	1992, Germany	7 y, M	Fever (39.5°C)	Blood	Bone marrow transplant recipient; Hickman catheter	Gentamicin, azlocillin, fluclaxadil; amikacin, ceftriaxone, vancomycin	Cure	(Hoppe et al., 1993)
8	1994, Italy	59 y, F	Fever	Blood	Chronic renal failure, parenteral nutrition via a Hickman catheter	Ciprofloxacin	Cure	(Caraccio et al., 1994)
9	1994, Switzerland	21 y, M	Fever (39°C)	Blood	AIDS, positive for HBV, HCV and HDV antibodies, recent infection with Staphylococcus aureus, intravenous drug abuse	Ciprofloxacin	Cure	(Furke & Rosner, 1995)
10	1995, Singapore	48 y, M	Fever (38.2°C)	Blood	Diabetes mellitus (for 2 yr), pulmonary tuberculosis, appendicular abscess	Ampicillin, gentamycin, amoxicillin-clavulanate, gentamycin	Cure	(Oh & Tay, 1995)
11	1995, Singapore	57 y, M	Fever	Blood	Laryngeal carcinoma, total laryngectomy	Metronidazole, ceftriaxone; gentamycin	Cure	(Oh & Tay, 1995)
12	1996, Spain	2 y, F	Acute gastroenteritis	Faeces	None	None	Cure	(Reina & Lopez, 1996)
13	1996, Spain	2 y, M	Acute gastroenteritis	Faeces	AIDS	None	Cure	(Reina & Lopez, 1996)
Table 1. Infections caused by *Rahnella*. All cases we could find in the literature are included. a Year of death (not available); b The isolates were obtained in the 1990s; c *Pantoea agglomerans* is considered as the reason.

Case	Year, country	Age, sex	Signs and symptoms	Site	Underlying condition(s)	Treatment
14	1996, Japan	11 m, F	Fever (39.7°C), cough	Blood	Congenital heart disease	Cefpodoxime-proxetil, cefotaxime; ceftazidime, netilmicin, gentamicin; ticarcillin-clavulanate, vancomycin
15	1997, France	32 y, F	Fever (>38°C)	Blood	Ingestion of a caustic product, parenteral nutrition via a catheter	Removal of the catheter
16	1997, France	61 y, M	Fever (40°C)	Blood	Relapse from a renal carcinoma (status post), parenteral nutrition via a catheter	
17	1998, Japan	NA NA	Urine		Chronic urinary tract infection	NA
18	1999, Korea	26 y, M	Fever (38.2°C), septic shock	Blood	Contaminated intravenous fluid; healthy individual	Ceftriaxone, imipenem
19	1999, Tunisia	65 y, F	Fever (38.5°C), ketosis	Blood	Diabetes mellitus for 5 y	Cefotaxime, trimethoprim-sulfamethoxazole, gentamycin
20	2000, USA	46 y, M	Fever	Blood	B-cell lymphoblastic leukaemia, immunosuppressive medication, Hickman catheter	Piperacillin-tazobactam, amikacin
21	2000, Spain	63 y, M	Fever (37.8°C), excessive exudate	Tracheostomy	Laryngeal carcinoma (status post)	Amoxicillin-clavulanate, cefotaxime, amikacin
22	2003, NA	NA, F	NA	Urine	Co-infection with *Candida albicans*	None
23	2004, USA	76 y, M	Fever (39.8°C)	Blood	Benign prostatic hypertrophy, bacteria in urine	Tetracycline, levofloxacin
24	2009, Turkey	57 y, F	Ulcerated foot wound	Wound	Diabetes mellitus for 20 years, co-infection with *Candida* sp.	Ampicillin-subactam, augmentation of antibiotic therapy
25	2009, Italy	78 y, M	Fever, sepsis	Blood	Hospitalised at an intensive care unit, co-infection with *Candida famata* and *Pantoea agglomerans*	Meropenem
26	2011, USA	27 y, F	Septic shock, fever (38.1°C)	Blood	Sickle cell disease, central venous catheter	Ciprofloxacin, removal of the catheter
Rahnella was also isolated from the faeces of two children with acute diarrhoea. In both cases typical enteropathogenic bacteria, parasites and viruses could not be detected. However, the detection of Rahnella in the faeces of patients with diarrhoea is not a sufficient reason for the conclusion that this microorganism is the true cause of the infectious process (Reina & Lopez, 1996). It seems indeed unlikely that Rahnella is an enteropathogen since this organism is frequently present in food, particularly vegetables which are frequently eaten raw, while the isolation of Rahnella from faeces from patients suffering acute gastroenteritis seems to be a rare exception.

Infections with Rahnella reacted very well to treatment with antibiotics and most patients recovered rapidly, though even many of them were immunocompromised. Some patients recovered even without antibiotic treatment (Caroff et al., 1998; Reina & Lopez, 1996). Importantly, no deaths were reported as outcome of an infection with Rahnella. These data and the fact that Rahnella is a frequent microorganism routinely present in the human diet suggest that it has only a slight pathogenic capacity and its ability to infect humans may be highly dependent on their immunological status.

Currently few data about the pathogenic capacities of the three genomospecies of Rahnella are available. The routinely used phenotypic tests allow identification of Rahnella only at the genus level. Thus the genomospecies of the isolates of the cases summarised in Table 1 is unknown. A study using DNA-DNA hybridisation revealed that three clinical isolates belonged to Rahnella aquatilis (genomospecies 1) and three were identified as Rahnella genomospecies 2 (Brenner et al., 1998) indicating that both genomospecies may act as opportunistic pathogens. However, a study including more strains is highly demanded to assess any potential differences of the pathogenic potential of the Rahnella genomospecies.

2.2.2 Clinical significance of Ewingella americana

Ewingella americana has been isolated from a variety of clinical specimens, particularly blood and wound swabs and less frequently from sputum (Brenner & Farmer 2005). Typical underlying conditions were surgeries, injuries from accidents, drug abuse and renal failure (Table 2). Some patients had diabetes, received immunosuppressive therapy, were HIV positive or suffered from other chronic infections. However, in contrast to infections with Rahnella, a significant number of patients were fully immunocompetent.

Most patients had undergone surgery prior development of bacteraemia, suggesting nosocomial infections. Pien and Bruce (1986) described a nosocomial outbreak of Ewingella bacteraemia. Six cases of Ewingella bacteraemia appeared in an intensive care unit of a hospital within six weeks. All infected patients had high fever or leukocytosis and had undergone either cardiovascular or peripheral vascular surgery. A careful environmental culturing study identified a contaminated ice bath used to cool syringes for cardiac output determinations as most likely source for the bacteria. Ewingella americana was cultured from the bath and its removal from the intensive care unit terminated the outbreak (Pien & Bruce, 1986). In another hospital Ewingella americana was diagnosed in blood drawn from 20 patients (Gardner et al., 1985). None of the patients had symptoms typical for Ewingella americana sepsis. An environmental investigation revealed that the bacteria were present in a citric buffer anticoagulant used to fill coagulation tubes. Review of blood drawing procedures showed that the non-sterile coagulation tubes were frequently filled first
Case	Year, country	Age, sex	Signs and symptoms	Site	Underlying condition(s)	Treatment	Outcome	Reference
1	1982-1983, USA	55 y, F	Postoperative fever, sepsis	Blood	Aortoiliac graft bypass, aorta occlusion, diabetes	Ampicillin, carbenicillin	Cure	(Pien & Bruce, 1986)
2	1982-1983, USA	57 y, M	Postoperative fever	Blood	Ventricular aneurysmetomy, lower extremity thrombectomy	Cefotaxime, gentamicin, mezlocillin	Cure	(Pien & Bruce, 1986)
3	1982-1983, USA	58 y, M	Postoperative fever	Blood	Coronary artery bypass surgery	Gentamicin, mezlocillin, trimethoprim-sulfamethoxazole	Cure	(Pien & Bruce, 1986)
4	1982-1983, USA	54 y, F	Postoperative fever	Blood	Aorta-iliac artery bypass	Gentamicin, trimethoprim-sulfamethoxazole, doxycycline	Cure	(Pien & Bruce, 1986)
5	1983+, USA	41 y, M	Postoperative fever (39.2°C)	Blood	Bypass surgery; atherosclerosis, diabetes mellitus; intravascular catheters; co-infection with *Pseudomonas sp.*	Gentamicin, trimethoprim-sulfamethoxazole	Cure	(Pien et al., 1983)
6	1985, South Africa	46 y, M	Wound (traffic accident)	Wound swab	Wounds originating from a traffic accident; co-infection with *Staphylococcus aureus*	None	None	(Bear et al., 1986)
7	1985, Germany	30 y, F	adhesive eyelids, itching conjunctivae (swab)	Conjunctivae (swab)	Surgery of the gallbladder; also *Pseudomonas aeruginosa, Candida albicans* and *Serratia marcescens* were isolated from the patient	Amoxicillin-clavulanate	Cure	(Heizmann & Michel, 1991)
8	1991, Belgium	75 y, M	Cholecystitis, fever (39.4°C)	Blood	None	Gentamicin, trimethoprim-sulfamethoxazole	Cure	(DeVreese et al., 1992)
9	1991+, Spain	31 y, M	Balanitis	Penile exudate	HIV, intravenous drug abuse, several opportunistic infections	Tobramycin	Cure	(Sanmartin Jimenez et al., 1991)
10	1995+, Spain	18 m, M	Acute gastroenteritis	Faeces	None	None	Cure	(Reina et al., 1995)
11	1999+, Greece	70 y, F	Peritonitis, fever (37.4°C)	Peritoneal dialysate	End-stage renal disease, ambulatory dialysis for 5 years	Amikacin, vancomycin	Cure	(Kati et al., 1999)
Case	Year, country	Age, sex	Signs and symptoms	Site	Underlying condition(s)	Treatment		
------	---------------	----------	--------------------	------	-------------------------	-----------		
12	1999, France	38 y, M	Fever (39°C)	Blood	AIDS, intravenous drug abuse (a syringe used was rinsed with water from a fountain), co-infection with *Candida* sp.	Ceftriaxone, amikacin		
13	2000, Belgium	57 y, F	Fever (38.8°C)	Blood	Peripheral blood progenitor cell transplantation, treatment with cyclosporine A, Hickman catheter	Removal of the catheter		
14	2000, Brasilia	38 y, F	Keratoconjunctivitis	Conjunctivae (swab)	Soft contact lens	Ciprofloxacin		
15	2003, Germany	74 y, F	Waterhouse-Friderichsen syndrome	Blood from heart and spleen	Pain in the left leg; otherwise healthy	Tramadol (for treatment of pain)		
16	2004, Greece	72 y, M	Fever (38.5°C), diffuse abdominal pain	Peritoneal effluent	End-stage renal failure, dialysis for 3 years	Ceftazidime, tobramycin		
17	2005, Korea	35 y, M	Pneumonia, fever (38.2°C)	Sputum	Chronic renal failure for 7 y; rejection of the transplanted kidney; coinfection with alpha-haemolytic streptococci	Ceftriaxone, isepamicin		
19	2007, USA	77 y, F	Shortness in breath	Sputum	Infection with *Mycobacterium tuberculosis* and *M. avium* (status post); Cohen’s disease	Trimethoprim-sulfamethoxazole		
20	2007, Saudi Arabia	30 y, M	Pneumonia	Tracheal aspirate	Multiple severe injuries from a traffic accident, coma, contusion on the right upper lung, multiple organ failure	No treatment with antibiotics is described		

Table 2. Infections caused by *Ewingella*. All cases we could find in the literature are included. a Year of birth not available.)
allowing contamination of the subsequently filled culture tubes (McNeil et al., 1985). At least some of the patients received inappropriate, unnecessary antimicrobial therapy, incurring the risk of adverse drug reactions and the selection of drug-resistant bacteria (McNeil et al., 1987).

A fatal case of Waterhouse–Friderichsen syndrome was associated with an *Ewingella* infection of a previously healthy 74-year-old woman (Tsokos, 2003). She experienced dragging pain in her left leg. Since the physical examination was unremarkable except for restricted mobility caused by the painful leg and her temperature was normal, just an analgetic was administered and bed rest ordered. On the next morning she was found dead in her bed. An autopsy revealed intraparenchymal haemorrhages in both adrenal glands, the heart showed granulocytic infiltration, clots were present in the larger arterial vessels and her brain and lungs were oedematous. *Ewingella americana* could be isolated from heart and spleen blood obtained during autopsy. In agreement with a suspected sepsis a highly increased level of procalcitonin was measured. Death was attributed to acute adrenal insufficiency due to Waterhouse–Friderichsen syndrome caused by *Ewingella americana* (Tsokos, 2003). In a second case the death of a 30-year-old man was associated with pneumonia caused by *Ewingella americana* (Bukhari et al., 2008). In this case the patient was admitted deeply comatose with multiple severe injuries caused by a road traffic accident to hospital. His brain showed oedema, intercerebral haemorrhage in basal ganglia to the right thalamus and subarachnoid haemorrhage along with the fracture of the frontal bone. The upper part of his right lung showed contusion. *Ewingella americana* was identified in his tracheal aspirate but not from any other sample of the patient. The isolated strain exhibited multiple antibiotic resistances but it was not reported whether the patient received any antibiotic treatment. On the eighth day of admission he went to a stage of multiple organ failure and died. It was hypothesised that the cause of death may be pneumonia associated with brain damage (Bukhari et al., 2008). However, because of the underlying conditions it is difficult to rate whether the infection with *Ewingella* was indeed the cause of death. Only two other cases of respiratory infection caused by *Ewingella* have been reported. In both cases the patients recovered quickly after treatment with antibiotics. However, it is important to note that in one of these cases the isolated strain was multidrug resistant (Pound et al., 2007).

In two cases *Ewingella* was associated with eye infection (Da Costa et al., 2000; Heizmann & Michel, 1991). Swabs of the conjunctivae grew the microorganism. Symptoms were keratoconjunctivitis, adhesive eyelids, itching and impaired secretion of tears. In both cases the infection reacted well to antibiotic treatment and the symptoms were relieved in a few days. One report describes also the isolation of *Ewingella* from faeces of a patient with diarrhoea. However, like in the cases of isolation of *Rahnella* from faeces, the clinical significance of this finding is unclear. Since *Ewingella* may be present on some kinds of food, isolated bacteria may originate from the ingested food and be unrelated to diarrhoea. Studies on the frequency of *Ewingella* in the human diet and additional case reports are necessary to rate the enteropathogenic potential of this microorganism.

Taken together these reports suggest that *Ewingella* has a higher pathogenic capacity than *Rahnella*. Several cases of infection in immunocompetent patients were reported. *Ewingella* may also cause infections with fatal outcome. Furthermore, while all *Rahnella* strains isolated so far are susceptible to most antibiotics, two multiple drug resistant isolates of *Ewingella* have been reported. The origin of these resistances, their molecular basis and capacity to spread to other genera are intriguing questions to be addressed in the future.
2.3 Identification of Rahnella and Ewingella

Reliable identification of strains is crucial for determining appropriate treatments of infections, hygiene monitoring in medical centres and industry and for basic research studies investigating the biology and ecology of microorganisms. In the past Rahnella strains were often identified as *Enterobacter agglomerans*, which may also explain that Rahnella was thought to be a rare genus while it is now considered as a relatively frequent bacterium.

Rahnella and *Ewingella* can be isolated using media not inhibitory for Enterobacteriaceae such as MacConkey agar or Bromothymol blue lactose agar. Levine EMB agar is especially suitable for *Rahnella*, which forms dark colonies on this medium (Rozhon et al., 2010). *Ewingella* was successfully isolated from mushrooms using VRBG agar (Reyes et al., 2004) or LB agar plates. The latter were anaerobically incubated to suppress growth of *Pseudomonas* (Inglis & Peberdy, 1996). Since a single phenotypic test allowing identification of *Rahnella* or *Ewingella* is lacking, a complete set of biochemical tests is necessary for identification. *Rahnella* is often described to be phenylalanine deaminase positive, which is a very rare characteristic among the Enterobacteriaceae, and to be motile at 25°C but not at 37°C. However, it must be emphasised that *Rahnella* shows only a very weak positive reaction for phenylalanine deaminase and some isolates react negative. Similarly, some strains are also immotile at 25°C. Thus the results of these two tests should be interpreted with care. It is important to note that the three *Rahnella* genomospecies can not be differentiated by biochemical tests (Brenner et al., 1998). Nevertheless, in many reports strains are claimed to be identified as 'Rahnella aquatilis' although only phenotypic tests were performed. Such classifications should be evaluated very critically. The three *Rahnella* genomospecies were originally identified by DNA-DNA hybridisation experiments (Brenner et al., 1998). With the rapid development of molecular techniques in the last decades DNA sequencing of housekeeping genes is now the method of choice for identification of *Rahnella* at the genomospecies level and for confirmation of the identification of *Ewingella*. For sequencing

![Fig. 1. Neighbour-joining trees based on partial 16S rRNA (A), groEL (B) and dnaJ (C) gene sequences of Rahnella and Ewingella. The trees were constructed with MEGA4 (Tamura et al., 2007) using the p-distance model. Percentage bootstrap values of 1000 replicates are indicated at the corresponding nodes. The scale bars represents the indicated sequence difference. *Erwinia amylovora* ATCC 49946 was used as outgroup. Strains belonging to *Rahnella aquatilis*, *Rahnella* genomospecies 2, *Rahnella* genomospecies 3 and *Ewingella americana* are shown dark blue, light blue, green and red, respectively.](image-url)
of the (partial) 16S rRNA gene the primer pair 16S-3/16S-5 can be employed (sequences: 5’-ATATTGCACAATGGGCGC-3’ and 5’-GCCATTGTAGCAGGTGTAAG-3’, respectively; amplicon: 881 bp) (Rozhon et al., 2011). For verification a part of the groEL gene can be sequenced using the primer pair groEL-fwd/groEL-rev (sequences: 5’-ATGGCAGCTAAAGACGTAAAATT-3’ and 5’-TTACGACCGRTGACGAAC-3’, respectively; amplicon: 857 bp) (Rozhon et al., 2011). In addition a part of the dnaJ gene can be sequenced using the primer pair dnaJ-fwd/dnaJ-rev (sequences: 5’-CATATTGCTCATGCAGCCTTTGAACA-3’ and 5’-TCAAGAACITTTTCAAGCCGT-3’, respectively; amplicon: 917 bp). Neighbour-joining trees constructed with such sequences are shown in Figure 1. The genbank database contains numerous Rahnella and Ewingella 16S rRNA and several groEL and dnaJ gene sequences. Since little is known about the identification of most of these strains only sequences of strains deposited to strain collections should be used for analysis of the obtained data (Table 3).

Strain	Synonyms	16S rRNA Accession	groEL Accession	dnaJ Accession
Rahnella aquatilis DSM 4594	CCUG 14185[^a]	FM876214	FM877005	HE577308
Rahnella aquatilis DSM 30076		FM876215	FM877006	HE577309
Rahnella genomospecies 2 CCG 48021[^a]		U88434	FM877008	HE577311
Rahnella genomospecies 2 CCG 48023		U88438	FM877009	HE577312
Rahnella genomospecies 2 CCG 21213		FM876216	FM877007	NA
Rahnella genomospecies 3 DSM 30078[^b]	LMG 2640	U90758	FM877012	HE577310
Ewingella americana GTC 1277	DSM 4560, CCUG 14506 AB273745	NA	NA	
Ewingella americana NCPPB 3905	X88848	NA	NA	

[^a]: Reference strain for genomospecies 2.
[^b]: Reference strain for genomospecies 3.

Table 3. Accession numbers of 16S rRNA, groEL and dnaJ gene sequences of Rahnella and Ewingella strains. Abbreviations: CCUG: Culture Collection, University of Göteborg (www.ccug.se); DSM: Deutsche Sammlung von Mikroorganismen (www.dsmz.de); GTC: Gifu Type Culture Collection; LMG: BCC/LMG Belgian Co-ordinated Collection of Microorganisms (bccm.belspo.be); NCPPB: National Collection of Plant Pathogenic Bacteria (www.ncppb.com); NA: not available.

2.4 Antibiotic resistance of Rahnella and Ewingella

2.4.1 Susceptibility patterns

The susceptibility patterns of more than 180 Rahnella strains have been described in the literature (Table 4). Many of these strains were isolated from clinical specimens but more than 75 originate from environmental samples (most of them were obtained in the study of Ruimy et al. (2010b) and in this study). Rahnella was found to be resistant to narrow spectrum penicillins, aminopenicillins, carboxypenicillins and most strains showed a low-level resistance to ureidopenicillins with MICs below 16 mg/l (Stock et al., 2000). Resistance was also observed for 1st and 2nd generation cephalosporins while most strains were sensitive or at least intermediate for 3rd and all strains were sensitive to 4th generation cephalosporins and carbapenems. Addition of β-lactamase inhibitors including clavulanic acid, sublactam and tazobactam decreased the MICs of all β-lactams tested. This pattern suggests the presence of a cavulainc acid-sensitive extended spectrum Ambler class A β-lactamase (Ambler, 1980) resembling the chromosomally encoded class A β-lactamase of Klebsiella sp. (Labia et al., 1979; Sykes & Matthew, 1976), Escherichia hermanii (Stock &
The Natural Antibiotic Resistances of the Enterobacteriaceae *Rahnella* and *Ewingella*

| Antibiotic | Class | No. of strains tested | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
|-------------|--------|-----------------------|---
Antibiotic Resistant Bacteria – A Continuous Challenge in the New Millennium

Table 5. Susceptibility pattern of *E. americana*. a, b For codes see Table 4. c Only resistance information was published.

Antibiotic	Class	AMG	R	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Amikacin	AMG	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Amoxicillin	APEN	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Amoxicillin + In	APEN	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ampicillin	APEN	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Aztreonam	MOB	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Benzylopenicillin	PEN	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Carbenicillin	CPEN	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefclor	CEF2	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefamandole	CEF2	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefazolin	CEF1	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefepine	CEF4	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefotaxime	CEF3	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefotaxime	CEF2	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ceftriaxone	CEF3	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cefuroxime	CEF2	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cephalothin	CEF1	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Cephadrine	CEF1	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Chloramphenicol	O	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ciprofloxacin	FQU	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ertapenem	CARB	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Fosfomycin	O	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Gentamycin	AMG	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Imipenem	CARB	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Levofloxacin	FQU	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Meropenem	CARB	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Netilmicin	AMG	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ofloxacine	FQU	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Piperacillin	UPEN	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Piperacillin + In	UPEN	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Tetracycline	TET	S	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ticarcillin	CPEN	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
Ticarcillin + In	CPEN	R	S	S	S	S	S	R	R	1	1	1	1	1	1	1	1	1	1	2
TMP/SMX	SUL	S	S	S	S	S	S	S	R	1	1	1	1	1	1	1	1	1	1	2

For codes see Table 4. c Only resistance information was published.
Wiedemann, 1999) and Serratia fonticola (Peduzzi et al., 1997). In contrast to Rahnella, Escherichia hermanii and the Klebsiella isolates were sensitive to 1st and 2nd generation cephalosporins while the Serratia fonticola β-lactamase showed activity even against 3rd generation cephalosporins. The unique susceptibility pattern of Rahnella indicates an enzyme distant from the other Ambler class A β-lactamases.

Also most Ewingella strains are resistant to several β-lactamases, mainly 1st and 2nd generation cephalosporins, while they were sensitive to 3rd and 4th class cephalosporins. The β-lactamase of Ewingella is insensitive to inhibitors, which is typical for class C β-lactamases.

Apart from β-lactams the most remarkable resistance of Rahnella and Ewingella was for fosfomycin. The MICs of most strains exceeded 64 mg/l and often reached 512 mg/l (Stock et al., 2000; Stock et al., 2003). Also one highly resistant Rahnella isolate with a MIC exceeding 1600 mg/l was reported (O'Hara et al., 1998). Other resistances shared by most strains included only such to which other species of the Enterobacteriaceae are also intrinsically resistant, for instance macrolides, lincosamides and glycopeptides.

Remarkingly, two multidrug resistant strains of Ewingella were reported. Based on an antibiogram a successful treatment with cefotetan and trimethoprim/sulfamethoxazole was initiated in one case (Pound et al., 2007), while no information about antibiotic therapy was reported in the second case (Bukhari et al., 2008). Further reports of strains with unusual susceptibility patterns are rare and usually only one or two additional resistances were observed (Table 4 and 5). Thus treatment of infections is usually simple. In several cases trimethoprim/sulfamethoxazole, ciprofloxacin, gentamycin and 3rd generation cephalosporins were successfully used. For Rahnella also combinations of penicillins with β-lactamase inhibitors may be an option, while this is inappropriate for Ewingella infections.

2.4.2 Antibiotic resistance genes and their evolution

Cloning and sequencing of the Rahnella β-lactamase (bla\textsubscript{RAHN-1}) confirmed that it belongs to the Ambler group C (Bellais et al., 2001). The bla\textsubscript{RAHN-1} gene comprises 888 bp and its translated amino acid sequence shows 75%, 71% and 67% identity to the chromosomally encoded β-lactamases of Serratia fonticola, Kluyvera cryocrescens and Citrobacter sedlakii and approximately 70% identity to plasmid encoded CTX-M type ESLBs found in isolates of Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumanii and other species (Figure 2B). Currently the sequences of the complete bla\textsubscript{RAHN} loci of four different strains are available. They show a similar pattern: bla\textsubscript{RAHN} and its surrounding genes have the same transcriptional orientation. An upstream transcriptional regulator that may regulate bla\textsubscript{RAHN} expression is lacking (Figure 2A). The expression of many chromosomally encoded class A β-lactamas including that of Citrobacter diversus (Jones & Bennett, 1995) and Proteus vulgaris (Ishiguro & Sugimoto, 1996) is regulated by LysR-type transcription factors but also some examples lacking such a control system, for instance bla\textsubscript{KLUC-1} of Kluyvera cryocrescens (Decousser et al., 2001), are known. A recent phylogenetic study using partial β-lactamase gene sequences of Rahnella strains isolated from different vegetables and fruits revealed two
Fig. 2. The antibiotic resistance genes of *Rahnella* and *Ewingella*. (A) The *bla*_{RHAN} locus and its surrounding genes from strain *Rahnella aquatilis* Y9602 are shown. (B) Phylogenetic trees of class A β-lactamases related to *bla*_{RHAN} and (C) class C enzymes related to AmpC of *Ewingella americana*. (D) β-lactamases of *Rahnella aquatilis* and *Rahnella* genomospecies 2 cluster in two different clades. *Providencia stuartii* JF29 was used as outgroup. (E) *Rahnella* isolates obtained from 12,000 year old mastodon remains (shown in orange; the accession numbers are given in brackets) cluster with recent strains belonging to *Rahnella* genomospecies 2. The tree shown is based on partial 16S rRNA gene sequences. The same methods and colour codes like in Figure 1 were used.

clusters (Ruimy et al., 2010b). A similar dichotomy was also observed for a phylogenetic tree based on partial 16S rRNA and *rpoB* sequences (Ruimy et al., 2010a). The originally described *bla*_{RHAN-1} gene (Bellais et al., 2001) clustered with the sequences obtained from *Rahnella* genomospecies 2. The variant found in *Rahnella aquatilis* was named *bla*_{RHAN-2} (Ruimy et al., 2010b). Here we provide data confirming the results of these studies: we sequenced the (partial) *bla* gene of a number of reference strains and environmental isolates. The obtained phylogenetic tree (Figure 2D) is in agreement with that obtained for the 16S rRNA, *groEL* or *dnaJ* gene (Figure 1). These data clearly suggest that *bla*_{RHAN} was present in the ancestor before...
the divergence in genomospecies. Previously the isolation of *Rahnella* strains from 12,000 year old American mastodon remains was reported. We used the partial 16S rRNA gene sequence of these isolates and of recent reference strains to construct a phylogenetic tree (Figure 2E). The four prehistoric strains cluster clearly with genomospecies 2. This indicates that divergence in genomospecies occured significantly more than 12,000 years ago. Thus the *bla* \text{RHAN} seems to be present in *Rahnella* for a long time and thus represents a natural resistance of this microorganism.

However, we were unable to obtain any PCR product for strains belonging to *Rahnella* genomospecies 3 although these strains were intermediate or resistant to amoxicillin and cephalothin. Thus *Rahnella* genomospecies 3 may either possess a β-lactamase resistance gene unrelated to *bla* \text{RAHN-1} and *bla* \text{RAHN-2} or the primer binding sites may be different. Since the β-lactam susceptibility pattern of the three *Rahnella* genomospecies is very similar, the latter explanation seems more plausible.

Based on the susceptibility pattern an Abler class C β-lactamase was suggested for *Ewingella americana* (Stock et al., 2003). Using different primer combinations we could amplify and sequence the (partial) *ampC* gene of the strains WMR82 and WMR121. The amino acid sequence shows 72% identity to AmpC of *Serratia proteamaculans* and approximately 67% and 59% to AmpC of other *Serratia* species and to the *Providencia* cluster, respectively (Figure 2C). It is interesting to note that the AmpC sequences of the two *Ewingella* isolates share only 96.3% sequence identity. In contrast the plasmid encoded mobile β-lactamases found in some *Klebsiella pneumoniae* and *Escherichia coli* isolates exceed 98% identity (Figure 2C). It is believed that they originate from the chromosomally encoded *ampC* gene of *Haftia alvei* (Girlich et al., 2000). This result and the observation that the vast majority of *Ewingella americana* strains have a similar susceptibility pattern suggest natural rather than acquired β-lactam resistance for this microorganism.

Fig. 3. The plasmid pRAHAQ01 is ubiquitously present in *Rahnella*. The (putative) replication gene *repB* of plasmid pRAHAQ01 could be detected by PCR in all strains tested.

While the molecular basis of β-lactam resistance is well known, the genotype of the fosfomycin resistance remains elusive. The high level of fosfomycin resistance observed in several strains and the report of successful transfer of the fosfomycin resistance to *Serratia marcescens* (O’Hara et al., 1998) rather suggest the presence of a specific fosfomycin:glutation-S-transferase than mutations in the GlpT, a transporter necessary for entry of fosfomycin into the cell.
2.4.3 The plasmid complement of *Rahnella*

Originally *bla*_{RAHN}-₁ was thought to be chromosomally encoded, since transfer experiments to *Escherichia coli* failed (Bellais et al., 2001). The recently completed *Rahnella* genome sequencing project showed unambiguously that the β-lactamase gene of strain Y9602 is located on a 617 kb megaplasmid, pRAHAQ01. The *bla*_{RAHN}-₂ locus and the surrounding genes of pRAHAQ01 share striking homology to three previously reported *bla*_{RAHN}-₁ and *bla*_{RAHN}-₂ sequences (Bellais et al., 2001; Ruimy et al., 2010b), indicating that they may also be plasmid born. To investigate this in more detail we analysed the sequence of pRAHAQ01 for putative plasmid replication genes and found only one candidate: Rahaq_4731 or repB. RepB shares 82% amino acid sequence identity with the replication protein of pEA29, a large plasmid of the plant pathogen *Erwinia amylovora* (McGhee & Jones, 2000). PCR analysis using primers for a conserved part of the repB gene showed a positive result for all strains tested (Figure 3). Moreover, in a previous study the presence of 400 kb to 700 kb megaplasmids in *Rahnella* soil isolates has been described (Evgenieva-Hackenberg & Selenska-Pobell, 1995). This substantiates that *bla*_{RAHN} may be commonly plasmid encoded. pRAHAQ01 and a second large plasmid found in strain Y9602 seem to be immobile since no known transfer system could be found on their backbones. Furthermore, no evidence could be found that *bla*_{RAHN} is located on a transposon or an integron.

A number of *Rahnella* strains possess also small plasmids. The majority of them were found to belong to the CoIE1 family but also some CoIE2 and rolling circle plasmids were isolated. Interestingly, the *Rahnella* CoIE1 plasmids formed a distinct cluster in the CoIE1 family and lacked any mobilisation system, suggesting that they rarely spread by horizontal gene transfer events. The CoIE2 and the rolling circle plasmids possessed mobilisation systems but, like the CoIE1 plasmids, were cryptic and did not encode any resistance gene (Rozhon et al., 2010).

Taken together these results suggest that the *Rahnella* β-lactamase, although plasmid encoded, is hardly mobilised to other microorganisms. Indeed, any evidence for its spread to human pathogens is currently lacking (Ruimy et al., 2010b). Similarly, also the *ampC* gene of *Ewingella* has so far remained restricted to its natural host but further experiments are necessary to rate its ability for mobilisation. Such studies would be important because previous reports provide evidence that *Ewingella americana* may be present in clinical environments (McNeil et al., 1987; Pien & Bruce, 1986) and the appearance of multiple drug resistant *Ewingella americana* strains (Bukhari et al., 2008; Pound et al., 2007) indicates that this microorganism may exchange genetic information with human pathogens.

3. Conclusion

Rahnella is commonly associated with plants and *Ewingella* has been found at high titers in cultured mushrooms. Thus these two Enterobacteriaceae may be frequent in some types of food. Both may appear as infrequent human opportunistic pathogens. Infections are easy to treat if the specific antibiotic resistance patterns of these bacteria are considered. *Rahnella* and *Ewingella* are naturally resistant to several β-lactams, which is mediated by an Ambler class A and an Ambler class C β-lactamase, respectively. The β-lactam resistance gene of *Rahnella*, *bla*_{RAHN}, is located on the large non-mobile plasmid pRAHAQ01. This plasmid
The Natural Antibiotic Resistances of the Enterobacteriaceae *Rahnella* and *Ewingella*

Belongs to the pEA29 family, which is commonly found in plant associated bacteria. *Rahnella* acquired blαRAHN presumably in prehistoric times before the divergence into genomospecies. Since then blαRAHN has co-evolved with its host and diverged to blαRAHN-1 and blαRAHN-2 found in *Rahnella* genomospecies 2 and in *Rahnella aquatilis*, respectively. The variant present in *Rahnella* genomospecies 3 remains to be identified. Although blαRAHN is located on a plasmid it is not per se mobile and so far no hint for its mobilisation to other species has been found. However, since several examples of chromosomal resistance genes that were transferred into pathogens have been documented, it can not be excluded that also blαRAHN may spread to other bacteria in the future. Based on the susceptibility pattern it was previously hypothesised that the β-lactamase of *Ewingella americana* is an Ambler class C enzyme. Here we have provided compelling data confirming this assumption. However, further studies are necessary to assess whether the *Ewingella ampC* gene is chromosome or plasmid born and its potential for transfer needs to be investigated. *Rahnella* and *Ewingella* are also naturally resistant to fosfomycin. The molecular basis of this resistance remains elusive. Other resistances were rarely reported for *Rahnella*, while recently two multidrug resistant strains of *Ewingella* were described. These characteristics should be considered for treatment of infections and for potential applications of *Rahnella* and *Ewingella*.

4. Acknowledgment

We would like to thank Harald Preßlmayer for translation of French, Spanish and Italian manuscripts. This work was supported by the Austrian Science Fund.

5. References

Aktaş, E.; Külah, C.; Cömert, F.; Bektaş, Z. & Kargi, E. (2009). Isolation of *Rahnella aquatilis* from bone and soft tissue of a foot of a patient with diabetes (case report). *Türk Mikrobiyoloji Cemiyeti Dergisi*, Vol.39, No.1-2, (January 2009), pp. 54-57, ISBN 0258-2171

Alballaa, S.R.; Qadri, S.M.; al-Furayh, O. & al-Qatary, K. (1992). Urinary tract infection due to *Rahnella aquatilis* in a renal transplant patient. *Journal of clinical microbiology*, Vol.30, No.11, (November 1992), pp. 2948-2950, ISBN 0095-1137

Ambler, R.P. (1980). The structure of beta-lactamases. *Philosophical transactions of the Royal Society of London, Series B*, Vol.289, No.1036, (May 1980), pp. 321-331, ISBN 0962-8436

Bear, N.; Klugman, K.P.; Tobiensky, L. & Koornhof, H.J. (1986). Wound colonization by *Ewingella americana*. *Journal of clinical microbiology*, Vol.23, No.3, (March 1986), pp. 650-651, ISBN 0925-1137

Beazley, M.J.; Martinez, R.J.; Sobecyk, P.A.; Webb, S.M. & Teillefert, M. (2007). Uranium biomineralization as a result of bacterial phosphatase activity: Insights from bacterial isolates from a contaminated subsurface. *Environmental science and technology*, Vol.41, No.16, (August 2007), pp. 5701-5707, ISBN 0013-936X

Bellais, S.; Poirel, L.; Fortineau, N.; Decousser, J.W. & Nordmann, P. (2001). Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class A β-lactamase (blαRAHN) of *Rahnella aquatilis*. *Intechopen.com*
beta-lactamase from *Rahnella aquatilis*. *Antimicrobial agents and chemotherapy*, Vol.45, No.10, (October 2001), pp. 2965-2968, ISBN 0066-4804

Berge, O.; Heulin, T.; Achouak, W.; Richard, C.; Bally, R. & Balandreau, J. (1991). *Rahnella aquatilis*, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. *Canadian journal of microbiology*, Vol.37, No.3, (March 1991), pp. 195-203, ISBN 0008-4166

Boukadida, J.; Maaroufi, A. & Chaib, A. (1999). Septidmie à *Rahnella aquatilis*. *Médecine et maladies infectieuses*, Vol.29, No.11, (November 1999), pp. 718-720, ISBN 0399-077X

Brenner, D.J. & Farmer, J.J. (2005). Order XIII. "Enterobacteriales", In: *Bergey’s Manual of Systematic Bacteriology*, Volume 2, Part B, D.J. Brenner, N.R. Krieg, J.T. Staley, (Eds.). Springer, pp. 587-850, ISBN 978-0387-24144-9, New York, USA

Brenner, D.J.; Muller, H.E.; Steigerwalt, A.G.; Whitney, A.M.; O’Harra, C.M. & Kämpfer, P. (1998). Two new *Rahnella* genomspecies that cannot be phenotypically differentiated from *Rahnella aquatilis*. *International journal of systematic bacteriology*, Vol.48, No.1, (January 1998), pp. 141-149, ISBN 0020-7713

Brightwell, G.; Clemens, R.; Ulrich, S. & Boereama, J. (2007). Possible involvement of psychrotolerant Enterobacteriaceae in blown pack spoilage of vacuum-packaged raw meats. *International journal of food microbiology*, Vol.119, No.3, (November 2007), pp. 334-339, ISBN 0168-1605

Bukhari, S.Z.; Hussain, W.M.; Fatani, M.I. & Ashshi, A.M. (2008). Multi-drug resistant *Ewingella americana*. *Saudi medical journal*, Vol.29, No.7, (July 2008), pp. 1051-1053, ISBN 0379-5284

Cankar, K.; Kraigher, H.; Ravnikar, M. & Rupnik, M. (2005). Bacterial endophytes from seeds of Norway spruce (*Picea abies* L. Karst). *FEMS microbiology letters*, Vol.244, No.2, (March 2005), pp. 341-345, ISBN 0378-1097

Canton, R. & Coque, T.M. (2006). The CTX-M beta-lactamase pandemic. *Current opinion in microbiology*, Vol.9, No.5, (October 2006), pp. 466-475, ISBN 1369-5274

Caraccio, V.; Rocchetti, A. & Garavelli, P. (1994). *Rahnella aquatilis* bacteremia in a patient with chronic renal failure. *Giornale di malattie infettive e parassitarie*, Vol.46, No.5, (May 1994), pp. 330-331, ISBN 0017-0321

Carinder, J.E.; Chua, J.D.; Corales, R.B.; Taeg, A.J. & Procop, G.W. (2001). *Rahnella aquatilis* bacteremia in a patient with relapsed acute lymphoblastic leukemia. *Scandinavian journal of infectious diseases*, Vol.33, No.6, (June 2001), pp. 471-473, ISBN 0036-5548

Caroff, N.; Chamoux, C.; Le Gallou, F.; Espaze, E.; Gavini, F.; Gautreau, D.; Richet, H. & Reynaud, A. (1998). Two epidemiologically related cases of *Rahnella aquatilis* bacteremia. *European Journal of Clinical Microbiology and Infection Diseases*, Vol.17, No.5, (May 1998), pp. 349-352, ISBN 0934-9723

Chang, C.L.; Jeong, J.; Shin, J.H.; Lee, E.Y. & Son, H.C. (1999). *Rahnella aquatilis* sepsis in an immunocompetent adult. *Journal of clinical microbiology*, Vol.37, No.12, (December 1999), pp. 4161-4162, ISBN 0095-1137

Christiaens, E.; Hansen, W. & J., M. (1987). Isolement des expectorations d’un patient atteint de leucemie lymphoide chronique et de broncho-emphysemee d’une
Enterobacteriaceae nouvellement décrite: *Rahnella aquatilis*. Médecine et maladies infectieuses, Vol.17, No.12, (December 1987), pp. 732-734, ISBN 0399-077X

Cobo Molinos, A.; Abriouel, H.; Ben Omar, N.; Lopez, R.L. & Galvez, A. (2009). Microbial diversity changes in soybean sprouts treated with enterocin AS-48. *Food microbiology*, Vol.26, No.8, (December 2009), pp. 922-926, ISBN 1095-9998

Da Costa, P.S.; Tostes, M.M. & de Carvalho Valle, L.M. (2000). A case of keratoconjunctivitis due to *Ewingella americana* and a review of unusual organisms causing external eye infections. *Braz J Infect Dis*, Vol.4, No.5, (October 2000), pp. 262-267, ISBN 1413-8670

Davis, J.A. & Eyles, M.J. (1992). Discolouration of cottage cheese caused by *Rahnella aquatilis* in the presence of gluco delta-lactone. *Australian journal of dairy technology*, Vol.47, No.1, (January 1992), pp. 62-63, ISBN 0004-9433

Decousser, J.W.; Poirel, L. & Nordmann, P. (2001). Characterization of a chromosomally encoded extended-spectrum class A beta-lactamase from *Klebsiella cryocrescens*. *Antimicrobial agents and chemotherapy*, Vol.45, No.12, (December 2001), pp. 3595-3598, ISBN 0066-4804

DeVreese, K.; Claeyis, G. & Verschraegen, G. (1992). Septicemia with *Ewingella americana*. *Journal of clinical microbiology*, Vol.30, No.10, (October 1992), pp. 2746-2747, ISBN 0095-1137

Domann, E.; Hong, G.; Imirzalioglu, C.; Turschner, S.; Kuhle, J.; Watzel, C.; Hain, T.; Hessain, H. & Chakraborty, T. (2003). Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. *Journal of clinical microbiology*, Vol.41, No.12, (December 2003), pp. 5500-5510, ISBN 0095-1137

El-Hendawy, H.H.; Osman, M.E. & Sorour, N.M. (2005). Biological control of bacterial spot of tomato caused by *Xanthomonas campestris pv. vesicatoria* by *Rahnella aquatilis*. *Microbiological research*, Vol.160, No.4, pp. 343-352, ISBN 0944-5013

Evguenieva-Hackenberg, E. & Selenska-Pobell, S. (1995). Genome analysis of five soil bacterial isolates named formerly *Enterobacter agglomerans*. *Journal of Applied Bacteriology*, Vol.79, No.1, (July 1995), pp. 49-60, ISBN 1365-2672

Fajardo, M. & Bueno, M.J. (2000). Isolation of *Rahnella aquatilis* in the tracheostomy exudate from a patient with laryngeal cancer. *Enfermedades infecciosas y microbiologia clinica*, Vol.18, No.5, (May 2000), pp. 251, ISBN 0213-005X

Farmer, J.J.; R., D.B.; Hickman-Brenner, F.W.; McWhorter, A.; Huntley, C.G.; Ashby, M.A.; Riddle, C.; Wathen-Grady, H.G.; Elias, C.; Fanning, G.R.; Steigerwalt, A.G.; O’Hara, C.M.; Morris, G.K.; Smith, P.B. & Brenner, D.J. (1985). Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. *J Clin Microb*, Vol.21, No.1, (January 1985), pp. 46-76, ISBN 0095-1137

Frenen, J.; Husson, M.O.; Gavini, F.; Madier, S.; Martra, A.; Izard, D.; Leclerc, D. & Fleurette, D. (1988). Susceptibilities to antibiotics and antiseptics of new species of the family Enterobacteriaceae. *Antimicrobial agents and chemotherapy*, Vol.62, No.6, (June 1988), pp. 873-876, ISBN 0066-4804
Funke, G. & Rosner, H. (1995). *Rahnella aquatilis* bacteremia in an HIV-infected intravenous drug abuser. *Diagnostic microbiology and infectious disease*, Vol.22, No.3, (July 1995), pp. 293-296, ISBN 0732-8893

Gaitán, J.I. & Bronze, M.S. (2010). Infection caused by *Rahnella aquatilis*. *The American journal of the medical sciences*, Vol.339, No.6, (June 2010), pp. 577-579, ISBN 1538-2990

Gardner, S.; Kabat, K. & Shulman, S.T. (1985). An outbreak of pseudobacteremia caused by *Ewingella americana*. *Pediatric Research*, Vol.19, No.4/2, (April 1985), pp. 200, ISBN 0031-3998

Gavini, F.; Ferragut, C.; Lefebvre, B. & Leclerc, H. (1976). Étude taxonomique d’entérobactéries appartenant ou apparentés au genre Enterobacter. *Annales de microbiologie*, Vol.127, No.B, (February 1976), pp. 317-335, ISBN 0300-5410

Geissler, A.; Merroun, M.; Geipel, G.; Reuther, H. & Selenska-Pobell, S. (2009). Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. *Geobiology*, Vol.7, No.3, (June 2009), pp. 282-294, ISBN 1472-4669

Girlich, D.; Naas, T.; Bellais, S.; Poirel, L.; Karim, A. & Nordmann, P. (2000). Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from *Hafnia alvei*. *Antimicrobial agents and chemotherapy*, Vol.44, No.6, (June 2000), pp. 1470-1478, ISBN 0066-4804

Goubau, P.; Van Aelst, F.; Verhaegen, J. & Boogaerts, M. (1988). Septicaemia caused by *Rahnella aquatilis* in an immunocompromised patient. *European Journal of Clinical Microbiology Infection Diseases*, Vol.7, No.5, (October 1988), pp. 697-699, ISBN 0934-9723

Grimont, P.A.; Farmer, J.J.; Grimont, F.; Asbury, M.A.; Brenner, D.J. & Deval, C. (1983). *Ewingella americana* gen.nov., sp.nov., a new Enterobacteriaceae isolated from clinical specimens. *Annales de microbiologie*, Vol.134A, No.1, (January 1983), pp. 39-52, ISBN 0300-5410

Hamilton-Miller, J.M. & Shah, S. (2001). Identity and antibiotic susceptibility of enterobacterial flora of salad vegetables. *International journal of antimicrobial agents*, Vol.18, No.1, (July 2001), pp. 81-83, ISBN 0924-8579

Hamze, M.; Mergaert, J.; van Vuuren, H.J.; Gavini, F.; Beji, A.; Izard, D. & Kersters, K. (1991). *Rahnella aquatilis*, a potential contaminant in lager beer breweries. *International journal of food microbiology*, Vol.13, No.1, (May 1991), pp. 63-68, ISBN 0168-1605

Harrell, L.J.; Cameron, M.L. & O’Hara, C.M. (1989). *Rahnella aquatilis*, an unusual gram-negative rod isolated from the bronchial washing of a patient with acquired immunodeficiency syndrome. *Journal of clinical microbiology*, Vol.27, No.7, (July 1989), pp. 1671-1672, ISBN 0095-1137

Hashidoko, Y.; Itoh, E.; Yokota, K.; Yoshida, T. & Tahara, S. (2002). Characterization of five phyllosphere bacteria isolated from *Rosa rugosa* leaves, and their phenotypic and metabolic properties. *Bioscience, biotechnology, and biochemistry*, Vol.66, No.11, (November 2002), pp. 2474-2478, ISBN 0916-8451

Heizmann, W.R. & Michel, R. (1991). Isolation of *Ewingella americana* from a patient with conjunctivitis. *European Journal of Clinical Microbiology and Infection Diseases*, Vol.10, No.11, (November 1991), pp. 957-959, ISBN 0934-9723
Heulin, T.; Berge, O.; Mavingui, P.; Gouzou, L.; Hebar, K.P. & Balandreau, J. (1994). Bacillus polymyxa and Rahnella aquatilis, the dominant N\textsubscript{2}-fixing bacteria associated with wheat rhizosphere in French soils. European Journal of Soil Biology, Vol.30, No.1, (January 1994), pp. 35-42, ISBN 1164-5563

Hohl, P.; Lüthy-Hottenstein, J.; Zollinger-Iten, J. & Altwegg, M. (1990). In vitro activities of fleroxacin, cefetamet, ciprofloxacin, ceftriaxone, trimethoprim-sulfamethoxazole, and amoxicillin-clavulanic acid against rare members of the family Enterobacteriaceae primarily of human (clinical) origin. Antimicrobial agents and chemotherapy, Vol.34, No.8, (August 1990), pp. 1605-1608, ISBN 0066-4804

Hoppe, J.E.; Herter, M.; Aleksic, S.; Klingebiel, T. & Niethammer, D. (1993). Catheter-related Rahnella aquatilis bacteremia in a pediatric bone marrow transplant recipient. Journal of clinical microbiology, Vol.31, No.7, (July 1993), pp. 1911-1912, ISBN 0095-1137

Iimura, K. & Hosono, A. (1996). Biochemical characteristics of Enterobacter agglomerans and related strains found in buckwheat seeds. International journal of food microbiology, Vol.30, No.3, (July 1996), pp. 243-253, ISBN 0168-1605

Inglis, P.W. & Peberdy, J.F. (1996). Isolation of Ewingella americana from the cultivated mushroom, Agaricus bisporus. Current microbiology, Vol.33, No.5, (November 1996), pp. 334-337, ISBN 0343-8651

Ishiguro, K. & Sugimoto, K. (1996). Purification and characterization of the Proteus vulgaris BlaA protein, the activator of the beta-lactamase gene. Journal of biochemistry, Vol.120, No.1, (July 1996), pp. 98-103, ISBN 0021-924X

Izard, D.; Gavini, F.; Trinel, P.A. & Leclere, H. (1979). Rahnella aquatilis, nouveau membre de la famille des Enterobacteriaceae. Annales de microbiologie, Vol.130, No.2, (February 1979), pp. 163-177, ISBN 0300-5410

Jafra, S.; Przysowa, J.; Gwizdek-Wisniewska, A. & van der Wolf, J.M. (2009). Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. Journal of applied microbiology, Vol.106, No.1, (January 2009), pp. 268-277, ISBN 1365-2672

Jensen, N.; Varelis, P. & Whitfield, F.B. (2001). Formation of guaiacol in chocolate milk by the psychrotrophic bacterium Rahnella aquatilis. Letters in applied microbiology, Vol.33, No.5, (November 2001), pp. 339-343, ISBN 0266-8254

Jones, M.E. & Bennett, P.M. (1995). Inducible expression of the chromosomal cdiA from Citrobacter diversus NF85, encoding an ambler class A beta-lactamase, is under similar genetic control to the chromosomal ampC, encoding an Ambler class C enzyme, from Citrobacter freundii OS60. Microbial drug resistance, Vol.1, No.4, (Winter 1995), pp. 285-291, ISBN 1076-6294

Kati, C.; Bibashi, E.; Kokolina, E. & Sofianou, D. (1999). Case of peritonitis caused by Ewingella americana in a patient undergoing continuous ambulatory peritoneal dialysis. Journal of clinical microbiology, Vol.37, No.11, (November 1999), pp. 3733-3734, ISBN 0095-1137

Kim, H.; Park, H.-E.; Kim, M.-J.; Lee, H.G.; Yang, J.-Y. & Cha, J. (2003). Enzymatic characterization of a recombinant levansucrase from Rahnella aquatilis ATCC 15552.
Kim, K.Y.; Jordan, D. & Krishnan, H.B. (1997). *Rahnella aquatilis*, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. *FEMS microbiology letters*, Vol.153, No.2, (August 1997), pp. 273-277, ISBN 0378-1097

Labia, R.; Fabre, C.; Masson, J.M.; Barthelemy, M.; Heitz, M. & Pitton, J.S. (1979). *Klebsiella pneumonia* strains moderately resistant to ampicillin and carbenicillin: characterization of a new beta-lactamase. *The Journal of antimicrobial chemotherapy*, Vol.5, No.4, (July 1979), pp. 375-382, ISBN 0305-7453

Laux, P.; Baysal, Ö. & Zeller, W. (2002). Biological control of fire blight by using *Rahnella aquatilis* Ra39 and *Pseudomonas* spec. *Acta Hortiulturae*, Vol.590, (November 2002), pp. 225-229, ISBN 978-90-66058-06-4

Le Gall, S.; Pellissier, L.; Delmas, P.; Esterni, J.P. & Robin, X. (2000). Septicémie à *Ewingella americana* chez un patient toxicomane, au stade sida. *Médecine et maladies infectieuses*, Vol.30, No.7, (July 2000), pp. 484, ISBN 0399-077X

Liberto, M.C.; Matera, G.; Puccio, R.; Lo Russo, T.; Colosimo, E. & Foca, E. (2009). Six cases of sepsis caused by *Pantoea agglomerans* in a teaching hospital. *The new microbiologica*, Vol.32, No.1, (January 2009), pp. 119-123, ISBN 1121-7138

Lindberg, A.M.; Ljungh, A.; Ahrine, S.; Lofdahl, S. & Molin, G. (1998). Enterobacteriaceae found in high numbers in fish, minced meat and pasteurised milk or cream and the presence of toxin encoding genes. *International journal of food microbiology*, Vol.39, No.1-2, (January 1998), pp. 11-17, ISBN 0168-1605

Lindow, S.E.; Desurmont, C.; Elkins, R.; McGourty, G.; Clark, E. & Brandl, M.T. (1998). Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. *Phytopathology*, Vol.88, No.11, (November 1998), pp. 1149-1157, ISBN 0031-949X

Maertens, J.; Delforge, M.; Vandenbergh, P.; Boogaerts, M. & Verhaegen, J. (2001). Catheter-related bacteremia due to *Ewingella americana*. *Clin Microbiol Infect*, Vol.7, No.2, (February 2001), pp. 103-104, ISBN 1198-743X

Maraki, S.; Samonis, G.; Marnelakis, E. & Tselentis, Y. (1994). Surgical wound infection caused by *Rahnella aquatilis*. *Journal of clinical microbiology*, Vol.32, No.11, (November 1994), pp. 2706-2708, ISBN 0095-1137

Martinez, R.J.; Beazley, M.J.; Taillefert, M.; Arakaki, A.K.; Skolnick, J. & Sobecky, P.A. (2007). Aerobic uranium(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. *Environmental microbiology*, Vol.9, No.12, (December 2007), pp. 3122-3133, ISBN 1462-2912

Matsukura, H.; Katayama, K.; Kitano, N.; Kobayashi, K.; Kanegane, C.; Higuchi, A. & Kyotani, S. (1996). Infective endocarditis caused by an unusual gram-negative rod, *Rahnella aquatilis*. *Pediatric cardiology*, Vol.17, No.2, (April 1996), pp. 108-111, ISBN 0172-0643

Matsuyama, H.; Sasaki, R.; Kawasaki, K. & Yumoto, I. (1999). Production of a novel exopolysaccharide by *Rahnella aquatilis*. *Journal of bioscience and bioengineering*, Vol.87, No.2, (July 1999), pp. 180-183, ISBN 1389-1723
McGhee, G.C. & Jones, A.L. (2000). Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. *Applied and environmental microbiology*, Vol.66, No.11, (November 2000), pp. 4897-4907, ISBN 0099-2240

McNeil, M.M.; Davis, B.J.; Anderson, R.L.; Martone, W.J. & Solomon, S.L. (1985). Mechanism of cross-contamination of blood culture bottles in outbreaks of pseudobacteremia associated with nonsterile blood collection tubes. *Journal of clinical microbiology*, Vol.22, No.1, (July 1985), pp. 23-25, ISBN 0095-1137

McNeil, M.M.; Davis, B.J.; Solomon, S.L.; Anderson, R.L.; Shulman, S.T.; Gardner, S.; Kabat, K. & Martone, W.J. (1987). Ewingella americana: recurrent pseudobacteremia from a persistent environmental reservoir. *Journal of clinical microbiology*, Vol.25, No.3, (March 1987), pp. 498-500, ISBN 0095-1137

Müller, H.E.; Fanning, G.R. & Brenner, D.J. (1995). Isolation of Ewingella americana from mollusks. *Current microbiology*, Vol.31, No.5, (November 1995), pp. 287-8651

Naas, T.; Poi-rel, L. & Nordmann, P. (2008). Minor extended-spectrum beta-lactamases. *Clin Microbiol Infect*, Vol.14, No.1, (January 2008), pp. 42-52, ISBN 1198-743X

Niemi, R.M.; Heikkila, M.P.; Lahti, K.; Kalso, S. & Niemela, S.I. (2001). Comparison of methods for determining the numbers and species distribution of coliform bacteria in well water samples. *Journal of applied microbiology*, Vol.90, No.6, (June 2001), pp. 850-858, ISBN 1364-5072

O’Hara, K.; Chen, J.; Shigenobu, F.; Nakamura, A.; Taniguchi, K.; Shimojima, M.; Ida, H.; Yoshikawa, E.; Tsuboi, I.; Mizuoka, K. & Sawai, T. (1998). Appearance of fosfomycin resistant Rahnella aquatilis clinically isolated in Japan. *Microbios*, Vol.95, No.381, (May 1998), pp. 109-115, ISBN 0026-2633

Oh, H.M. & Tay, L. (1995). Bacteremia caused by Rahnella aquatilis: report of two cases and review. *Scandinavian journal of infectious diseases*, Vol.27, No.1, (January 1995), pp. 79-80, ISBN 0036-5548

Olson, A.B.; Silverman, M.; Boyd, D.A.; McGeer, A.; Willey, B.M.; Pong-Porter, V.; Daneman, N. & Mulvey, M.R. (2005). Identification of a progenitor of the CTX-M-9 group of extended-spectrum beta-lactamases from Kluyvera georgiana isolated in Guyana. *Antimicrobial agents and chemotherapy*, Vol.49, No.5, (May 2005), pp. 2112-2115, ISBN 0066-4804

Papaefstathiou, C.; Vlassopoulos, D.; Zoumberi, M.; Mangana, P.; Hadjiconstantinou, V. & Kouppari, G. (2004). Ewingella americana peritonitis in an adult patient on continuous ambulatory peritoneal dialysis. *Clinical Microbiology Newsletter*, Vol.26, (December 2004), pp. 184-185, ISBN 0196-4399

Peduzzi, J.; Farzaneh, S.; Reynaud, A.; Barthelemy, M. & Labia, R. (1997). Characterization and amino acid sequence analysis of a new oxyimino cephalosporin-hydrolyzing class A beta-lactamase from Serratia fonticola CUV. *Biochimica et biophysica acta*, Vol.1341, No.1, (August 1997), pp. 58-70, ISBN 0006-3002

Pien, F.D. & Bruce, A.E. (1986). Nosocomial Ewingella americana bacteremia in an intensive care unit. *Archives of internal medicine*, Vol.146, No.1, (January 1986), pp. 111-112, ISBN 0003-9926
Pien, F.D.; Farmer, J.J., 3rd & Weaver, R.E. (1983). Polymicrobial bacteremia caused by *Ewingella americana* (family Enterobacteriaceae) and an unusual *Pseudomonas* species. *Journal of clinical microbiology*, Vol.18, No.3, (September 1983), pp. 727-729, ISBN 0955-1137

Pintado, M.E.; Pintado, I.E. & Malcata, F.X. (1999). Production of polysaccharide by *Rahnella aquatilis* with whey feedstock. *Journal of food science*, Vol.64, No.2, (February 1999), pp. 348-352, ISBN 0022-1147

Pound, M.W.; Tart, S.B. & Okoye, O. (2007). Multidrug-resistant *Ewingella americana*: a case report and review of the literature. *The Annals of pharmacotherapy*, Vol.41, No.12, (December 2007), pp. 2066-2070, ISBN 1542-6270

Raphael, E.; Wong, L.K. & Riley, L.W. (2011). Extended-spectrum beta-lactamase gene sequences in gram-negative saprophytes on retail organic and nonorganic spinach. *Applied and environmental microbiology*, Vol.77, No.5, (March 2011), pp. 1601-1607, ISBN 1098-5336

Reina, J. & Lopez, A. (1996). Clinical and microbiological characteristics of *Rahnella aquatilis* strains isolated from children. *The Journal of infection*, Vol.33, No.2, (September 1996), pp. 135-137, ISBN 0163-4453

Reina, J.; Lopez, A.; Fernández-Baca, V. & Ros, M.J. (1995). Aislamiento de *Ewingella americana* en las heces de un paciente con diarrea secretora. *Revista española de pediatría*, Vol.51, No.4, (April 1995), pp. 393-395, ISBN 0034-947X

Reyes, J.E.; Venturini, M.E.; Oria, R. & Blanco, D. (2004). Prevalence of *Ewingella americana* in retail fresh cultivated mushrooms (*Agaricus bisporus*, *Lentinula edodes* and *Pleurotus ostreatus*) in Zaragoza (Spain). *FEMS microbiology ecology*, Vol.47, No.3, (March 2004), pp. 291-296, ISBN 1574-6941

Rhodes, A.N.; Urbance, J.W.; Youga, H.; Corlew-Newman, H.; Reddy, C.A.; Klug, M.J.; Tiedje, J.M. & Fisher, D.C. (1998). Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains. *Applied and environmental microbiology*, Vol.64, No.2, (February 1998), pp. 651-658, ISBN 0099-2240

Rodriguez, M.M.; Power, P.; Radice, M.; Vay, C.; Famiglietti, A.; Galleni, M.; Ayala, J.A. & Gutkind, G. (2004). Chromosome-encoded CTX-M-3 from *Kluyvera ascorbata*: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. *Antimicrobial agents and chemotherapy*, Vol.48, No.12, (December 2004), pp. 4895-4897, ISBN 0066-4804

Rozhon, W.; Khan, M.; Petutschnig, E. & Poppenberger, B. (2011). Identification of cis- and trans-acting elements in pHW126, a representative of a novel group of rolling circle plasmids. *Plasmid*, Vol.65, No.1, (January 2011), pp. 70-76, ISBN 1095-9890

Rozhon, W.; Petutschnig, E.; Khan, M.; Summers, D.K. & Poppenberger, B. (2010). Frequency and diversity of small cryptic plasmids in the genus *Rahnella*. *BMC microbiology*, Vol.10, (February 2010), pp. 56, ISBN 1471-2180

Rozhon, W.M.; Petutschnig, E.K. & Jonak, C. (2006). Isolation and characterization of pHW15, a small cryptic plasmid from *Rahnella* genomospecies 2. *Plasmid*, Vol.56, No.3, (November 2006), pp. 202-215, ISBN 0147-619X
Ruimy, R.; Brisabois, A.; Bernede, C.; Skurnik, D.; Barnat, S.; Arlet, G.; Momcilovic, S.; Elbaz, S.; Mouri, F.; Vibet, M.A.; Courvalin, P.; Guillemot, D. & Andremont, A. (2010a). Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. *Environmental microbiology*, Vol.12, No.3, (March 2010), pp. 608-615, ISBN 1462-2920

Ruimy, R.; Meziane-Cherif, D.; Momcilovic, S.; Arlet, G.; Andremont, A. & Courvalin, P. (2010b). RAHN-2, a chromosomal extended-spectrum class A beta-lactamase from *Rahnella aquatilis*. *The journal of antimicrobial chemotherapy*, Vol.65, No.8, (August 2010), pp. 1619-1623, ISBN 1460-2091

Ryoo, N.H.; Ha, J.S.; Jeon, D.S.; Kim, J.R. & Kim, H.C. (2005). A case of pneumonia caused by *Ewingella americana* in a patient with chronic renal failure. *Journal of Korean medical science*, Vol.20, No.1, (February 2005), pp. 143-145, ISBN 1011-8934

Sanmartin Jimenez, O.; Botella Estrada, R.; Roig Rubino, P.; Febrer Bosch, I.; Nieto Hernandez, A. & Navarro Ibanez, V. (1991). Balanitis por *Ewingella americana* en un paciente inmunodeprimido. *Actas dermo-sifiliograficas*, Vol.82, No.3, (March 1991), pp. 125-126, ISBN 1138-8196

Seo, J.W.; Jang, K.H.; Kang, S.A.; Song, K.B.; Jang, E.K.; Park, B.S.; Kim, C.H. & Rhee, S.K. (2002). Molecular characterization of the growth phase-dependent expression of the *lsrA* gene, encoding levansucrase of *Rahnella aquatilis*. *Journal of bacteriology*, Vol.184, No.21, (November 2002), pp. 5862-5870, ISBN 0021-9193

Stock, I.; Gruger, T. & Wiedemann, B. (2000). Natural antibiotic susceptibility of *Rahnella aquatilis* and *R. aquatilis*-related strains. *Journal of chemotherapy* (Florence, Italy), Vol.12, No.1, (February 2000), pp. 30-39, ISBN 1120-009X

Stock, I.; Sherwood, K.J. & Wiedemann, B. (2003). Natural antibiotic susceptibility of *Ewingella americana* strains. *Journal of chemotherapy* (Florence, Italy), Vol.15, No.5, (October 2003), pp. 428-441, ISBN 1120-009X

Stock, I. & Wiedemann, B. (1999). Natural antibiotic susceptibility of *Escherichia coli*, *Shigella*, *E. vulneris*, and *E. hermannii* strains. *Diagnostic microbiology and infectious disease*, Vol.33, No.3, (March 1999), pp. 187-199, ISBN 0732-8899

Sykes, R.B. & Matthew, M. (1976). The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. *The journal of antimicrobial chemotherapy*, Vol.2, No.2, (June 1976), pp. 115-157, ISBN 0305-7453

Tamura, K.; Dudley, J.; Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Molecular biology and evolution*, Vol.24, No.8, (August 2007), pp. 1596-1599, ISBN 0737-4038

Tash, K. (2005). *Rahnella aquatilis* bacteremia from a suspected urinary source. *Journal of clinical microbiology*, Vol.43, No.5, (May 2005), pp. 2526-2528, ISBN 0095-1137

Tsokos, M. (2003). Fatal Waterhouse-Friderichsen syndrome due to *Ewingella americana* infection. *The American journal of forensic medicine and pathology*, Vol.24, No.1, (March 2003), pp. 41-44, ISBN 0195-7910

Winder, R.S.; Macey, D.E. & Cortese, J. (2010). Dominant bacteria associated with broods of mountain pine beetle, *Dendroctonus ponderosae* (Coleoptera: Curculionidae, Scolytinae). *Journal of the entomological society of Britisch Columbia*, Vol.107, (December 2010), pp. ISBN 0071-0733

www.intechopen.com
Yu, H.; Wang, Z.; Liu, L.; Xia, Y.; Cao, Y. & Yin, Y. (2008). Analysis of the intestinal microflora in *Hepialus gonggaensis* larvae using 16S rRNA sequences. *Current microbiology*, Vol.56, No.4, (April 2008), pp. 391-396, ISBN 0343-8651
Antibiotic-resistant bacterial strains remain a major global threat, despite the prevention, diagnosis and antibiotherapy, which have improved considerably. In this thematic issue, the scientists present their results of accomplished studies, in order to provide an updated overview of scientific information and also, to exchange views on new strategies for interventions in antibiotic-resistant bacterial strains cases and outbreaks. As a consequence, the recently developed techniques in this field will contribute to a considerable progress in medical research.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wilfried Rozhon, Mamoona Khan and Brigitte Poppenberger (2012). The Natural Antibiotic Resistances of the Enterobacteriaceae Rahnella and Ewingella, Antibiotic Resistant Bacteria - A Continuous Challenge in the New Millennium, Dr. Marina Pana (Ed.), ISBN: 978-953-51-0472-8, InTech, Available from: http://www.intechopen.com/books/antibiotic-resistant-bacteria-a-continuous-challenge-in-the-new-millennium/the-natural-antibiotic-resistances-of-the-enterobacteriaceae-rahnella-and-ewingella
