The impact of far-UVC radiation (200–230 nm) on pathogens, cells, skin, and eyes – a collection and analysis of a hundred years of data

Die Wirkung von Far-UVC-Strahlung (200–230 nm) auf Pathogene, Zellen, Haut und Augen – Eine Sammlung und Analyse von Daten der letzten 100 Jahre

Abstract

Background: The ongoing coronavirus pandemic requires new disinfection approaches, especially for airborne viruses. The 254 nm emission of low-pressure vacuum lamps is known for its antimicrobial effect, but unfortunately, this radiation is also harmful to human cells. Some researchers published reports that short-wavelength ultraviolet light in the spectral region of 200–230 nm (far-UVC) should inactivate pathogens without harming human cells, which might be very helpful in many applications.

Methods: A literature search on the impact of far-UVC radiation on pathogens, cells, skin and eyes was performed and median log-reduction doses for different pathogens and wavelengths were calculated. Observed damage to cells, skin and eyes was collected and presented in standardized form.

Results: More than 100 papers on far-UVC disinfection, published within the last 100 years, were found. Far-UVC radiation, especially the 222 nm emission of KrCl excimer lamps, exhibits strong antimicrobial properties. The average necessary log-reduction doses are 1.3 times higher than with 254 nm irradiation. A dose of 100 mJ/cm² reduces all pathogens by several orders of magnitude without harming human cells, if optical filters block emissions above 230 nm.

Conclusion: The approach is very promising, especially for temporary applications, but the data is still sparse. Investigations with high far-UVC doses over a longer period of time have not yet been carried out, and there is no positive study on the impact of this radiation on human eyes. Additionally, far-UVC sources are unavailable in larger quantities. Therefore, this is not a short-term solution for the current pandemic, but may be suitable for future technological approaches for decontamination in rooms in the presence of people or for antisepsis.

Keywords: radiation disinfection, far-UVC, excimer lamp, 222 nm, coronavirus, influenza virus

Zusammenfassung

Hintergrund: Die anhaltende Coronavirus-Pandemie erfordert neue Desinfektionsansätze, besonders für Viren in der Luft. Die 254 nm Emission von Niederdruck-Quecksilberdampflampen ist bekannt für ihre antibakterielle Wirkung, allerdings ist diese Art der Bestrahlung auch für menschliche Zellen schädlich. Einige Forscher veröffentlichten Berichte, dass kurzwelliges ultraviolettes Licht im Spektralbereich von 200–230 nm (Far-UVC) Krankheitserreger inaktiviert, ohne dabei menschlichen Zellen zu schaden, was für viele Anwendungen sehr hilfreich sein könnte.
Introduction

The ongoing severe acute coronavirus (SARS-CoV-2) pandemic is currently leading to an intensified worldwide search for approaches to inactivate viruses and other pathogens, especially in the air. The antimicrobial properties of ultraviolet radiation from mercury vapor lamps are well known and have been applied for over a hundred years [1]. They have also proven to be effective against coronaviruses [2], [3].

Mercury vapor lamps exhibit an emission peak at 254 nm in the ultraviolet spectral range, known as UVC, which extends from 200 to 280 nm. This radiation is absorbed by deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and leads to DNA and RNA damage, e.g., the formation of pyrimidine dimers [4], [5], [6].

Unfortunately, this radiation is also harmful to human cells and tissue, which also contain DNA. The possible consequences of skin irradiation include erythema formation and potentially carcinogenic mutations, while photokeratitis is among the potential eye lesions [7], [8], [9]. In 2004, Sosnin et al. [10] published an investigation on the impact of short-wavelength (206 nm) UVC light on Chinese hamster ovary (CHO) cells and with 222 nm irradiation of *Escherichia coli* (*E. coli*). While the *E. coli* were reduced by more than 3 orders of magnitude using a dose of 100 mJ/cm², there was no detectable damage to the CHO cells for doses up to 400 mJ/cm². Consequently, Sosnin et al. suggested applying this short-wavelength UV light for wound decontamination to prevent surgical site infections. This idea was examined more closely by Buonanno et al. [11], [12]. They also coined the term “far-UVC” for short-wavelength UVC light in the range between approximately 200 and 230 nm. In subsequent publications, Welch et al. and Buonanno et al. demonstrate that this far-UVC light seems suitable for the inactivation of influenza and coronaviruses in the air at doses that do not damage human cells [13], [14].

This advantageous characteristic of far-UVC radiation is probably due to the strong protein absorption (Figure 1A) and the larger size of human cells compared to most microorganisms. While bacteria or viruses (typical diameter 1 µm and 0.1 µm, respectively) are irradiated completely and without much attenuation, less than 5% of far-UVC radiation reaches the center of a mammalian cell with a typical diameter of more than 10 µm [15]. Human skin is assumed to be further protected against far-UVC radiation by the stratum corneum, the outermost layer of the epidermis, consisting of dead keratinocytes that absorb most of the ultraviolet radiation (Figure 1B) [11], [16], [17]. Additionally, for the eye, it is supposed that it is the cornea and its tear layer that protects the lens by absorbing far-UVC radiation [11], [13], [18].

The promising reports on the effects of far-UVC on cells, tissue and pathogens – including coronaviruses – give reason to hope that this radiation might become a very important tool in the fight against airborne pathogens and especially SARS-CoV-2 in the current pandemic.

However, there still seems to be only a very limited number of animal or human studies; among them, there exists at least one investigation describing the formation of
erythema and cyclobutane pyrimidine dimers (CPD) after 222 nm irradiation [19]. The aim of this study was to collect and analyze the results published to date on the impact of far-UVC in the spectral region between approximately 200 and 230 nm on pathogens, animal and human cells, skin and eyes, as well as to find further information regarding the safety of this kind of radiation and acquire data to determine the necessary doses for pathogen reductions.

Materials and methods

A search was performed in PubMed and Google Scholar using various combinations of the following terms:

- “far-UVC”
- “deep UV”
- “excimer lamp”
- “207 nm”
- “211 nm”
- “222 nm”
- “230 nm”
- “disinfection”
- “inactivation”
- “photoinactivation”
- “action spectrum”
- “cells”
- “skin”, and
- “eye”.

References in the retrieved literature were examined for their possible inclusion in this study. References citing the identified literature were also checked.

The results were divided into microorganisms (including bacteria, bacterial spores, fungi, viruses, and protists), human and animal cells, skin and eye. If results on microorganism inactivation for different irradiation doses were published in one report, those describing a reduction by approx. 3 log levels were selected, and the necessary dose for a 90% (1 log-) reduction was calculated. Results presented only as figures without exact values in the text or tables were read from enlarged figures. Combinations of different inactivation techniques were ignored, as were different reactivation approaches after irradiation. Only experiments with irradiation wavelengths between 200 and 235 nm were included in the analysis and divided into sections termed “210 nm” (200–215 nm), “222 nm” (216–225 nm) and “230 nm” (226–235 nm) for simplification.

For comparison with the effect of mercury vapor lamp emissions, a fourth section termed “254 nm”
Inactivation of Microorganisms

More than 100 studies on the impact of far-UVC radiation on microorganisms were found in the literature. Among them, many investigations dated from the first half of the last century and some were even performed about a hundred years ago, an impressive accomplishment considering the available (lamp) technology at that time. Unfortunately, not all of these investigations could be included in the following analysis because the inactivated microorganisms were not determined, or the inactivation doses were given in dimensions such as energy per volume, which could not be converted to today’s typical dose dimension of energy per area [20], [21], [22], [23], [24], [25]. The more recent far-UVC investigations were mostly performed with krypton chloride (KrCl) excimer lamps with a peak emission at 222 nm. Only a few researchers applied a broadband UVC source in combination with a monochromator or optical filters or even lasers. The data collection – about 250 single far-UVC results for 14 bacterial species, 9 bacterial spores, 5 fungi, 23 viruses and one protist – can be found in Table 1, divided into bacteria, bacterial spores, fungi, viruses, and protists and sorted by microorganism, wavelength and media (L: liquid, S: surface, A: air/aerosol), which were in most cases liquids (salt solutions). For each microorganism (species), the median value for the log-reduction dose was determined and compared to the median log-reduction dose for the wavelength of 254 nm of mercury vapor lamps by calculation of the log-reduction dose ratio.

Impact of far-UVC on human and animal cells, skin and eye

For the impact on human and animal cells, skin and eye, only 15 publications could be retrieved. Most of them are of recent origin, but one impressive study was performed almost 90 years ago. The results are listed in Table 2, which is divided into experiments involving “cells”, “skin” and “eyes”. Unfortunately, the comparison of the different results is complicated by the authors’ investigation of different possible observable phenomena, such as cell number/viability, epidermal thickening, dimer formation and erythema formation. Therefore, not all examined parameters are listed in Table 2 but only the most frequently mentioned ones, e.g., cyclobutane pyrimidine dimer (CPD) formation.

Discussion

Inactivation of Microorganisms

There are large variations in the necessary far-UVC log-reduction dose between different microorganisms and sometimes even between different strains of one species, but in all reports, far-UVC is a very powerful antimicrobial radiation. Additional differences can be found for different media. The observed reduction doses of pathogens in the air/aerosols are very low (about 1 mJ/cm²), but unfortunately this is based on only two investigations on human coronaviruses and influenza virus. Most results are available for microorganisms in liquids and in about 10 cases on surfaces, with much higher necessary irradiation doses for these surfaces. Most of these surfaces were not totally smooth, but exhibited pores, such as different natural skins or agar, which may have provided a kind of shade against the far-UVC irradiation. Nevertheless, for 2/3 of bacteria, bacterial spores, fungi, viruses, and protists, a dose of 10 mJ/cm² is sufficient for a 90% or higher reduction for all media. With a dose of 100 mJ/cm², almost all examined pathogens are inactivated by several orders of magnitude.

The antimicrobial property of 254-nm irradiation is assumed to be mostly based on DNA or RNA damage [4], [26], [27], [28], [29], [30], [31], [32]. However, if the far-UVC inactivation mechanism was caused by DNA/RNA damage alone, far-UVC should be much less effective than 254 nm radiation, because of the lower DNA and higher protein absorption at shorter wavelengths (see Figure 1) and the lower number of incident photons per mJ at this wavelength compared to 254 nm. In fact, higher average necessary log-reduction doses in liquids were observed for all far-UVC wavelengths. The calculated required increase is 1.8, 1.3, and 3.3 times higher for 210 nm, 222 nm, and 230 nm, respectively, compared to the 254 nm log-reduction doses. These values are not very precise, especially those for 210 nm and 230 nm, because of the very limited available data. Nevertheless, 222 nm irradiation seems to be more effective than 210 and 230 nm. The more comprehensive 222 nm results in liquids even allow to distinguish between the log-reduction doses necessary for the different types of pathogens: bacteria x1.2, bacterial spores x0.7, fungi x1.1 and viruses x1.7. Thus, 222 nm irradiation seems to be especially suited for spore inactivation. Deviations from the expected damage caused only by DNA destruction are suspected to have their origin in the additional protein absorption and lethal protein damage [11], [33], [34], [35].
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

Microorganism	Medium	Wavelength [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information
A) Bacteria					
Acinetobacter radioresistens	S	222	5.97	1.48	(DSM420, –, 254, 6.03, [33]), (ATCC49919, –, 222, 5.90, [43])
					(50v1, aluminum, 222, 16.43, [42])
Arthrobacter nicotinovorans	L	222	5.97	1.48	(DSM420, –, 254, 6.03, [33]), (ATCC49919, –, 222, 5.90, [43])
					(ATCC49919, –, 254, 6.04, [43])
Bacillus cereus	L	222	5.67	1.95	(DSM345, –, 222, 4.67, [33]), (–, PBS, 222, 6.67, [44]), (ATCC11778, –, 222, 4.57, [43]), (GN1, Ringer, 222, 32.68, [45])
					(254, 2.91)
					(DSM345, –, 254, 2.91, [33]), (–, PBS, 254, 7.5, [44]), (ATCC11778, –, 254, 2.83, [43])
Bacillus subtilis	L	222	4.09	0.97	(DSM10, –, 254, 2.17, [33]), (PS333, PBS, 222, 4.09, [46]), (NCIMB3610, Ringer, 222, 14.39, [45])
					(254, 4.22)
Clostridium sporogenes	L	222	2.87	0.61	(LJM1461, PBS, 222, 2.87, [44])
					(254, 4.69)
Deinococcus radiodurans	L	222	29.65	0.53	(DSM20539, –, 222, 28.97, [33]), (ATCC13939, 222, –, 30.33, [43])
					(254, 56.21)
Enterococcus faecalis	L	222	9.14	1.52	(DSM2570, –, 222, 9.14, [33])
					(254, 6.03)
	S	222	7.59	1.22	(VRE, –, 222, 7.59, [47])
Escherichia coli	L	222	2.10	1.22	(K12AB1157, –, 216, 11.86, [48]), (K12AB1886, –, 216, 0.93, [48]), (K12AB2463, –, 216, 0.35, [48]), (K12AB2248, –, 216, 0.02, [48]), (DSM103, –, 222, 2.1, [33]), (DSM9494, NaCl sol, 222, 13.8, [49]), (DSM9495, NaCl sol, 222, 1.5, [49]), (DSM9496, NaCl sol, 222, 2.76, [49]), (DSM9497, NaCl sol, 222, 1.61, [49]), (EHEC, PBS, 222, 2.41, [44]), (O157:H7, water, –, 222, 0.68, [50]), (O157:H7/NCTC12900, Ringer, 222, 2.53, [45]), (ATCC11229, NaCl sol, 222, 2.65, [51]), (ATCC11229, –, 222, 2.48, [52]), (O157:H7, PBS, 222, 0.48, [53]), (O157:H7 acid-adapted, PBS, 222, 0.61, [53]), (O157:H7, apple juice, 222, 204.74, [53])*, (O157:H7 acid-adapted, apple juice, 222, 361.46, [53])*, (O157:H7, apple juice, 222, 66.67, [54])*, (O111:NM, apple juice, 222, 38.87, [54])*, (O26:H11, apple juice, 222, 65.56, [54])*, (O145:NM, apple juice, 222, 41.98, [54])*, (O103:H2, apple juice, 222, 61.80, [54])*, (O157:DM3Na, apple juice, 222, 47.01, [54])*, (ATCC11775, apple juice, 222, 57.59, [54]), (ATCC11729, apple juice, 222, 66.67, [54])*, (ATCC8739, apple juice, 222, 54.19, [54])*, (O157:H7 EDL933, bovine milk, 222, 8.33, [55])*
					(L, –, 230, 3.67, [56])
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

Microorganism	Medium	Wavelength [nm]	Median log-reduct. dose [nJcm²]	Ratio to 254 nm dose	Additional information
Escherichia coli	S	210	4.29	0.05	(--, agar, 207, 4.29, [10])
		222	63.56	0.69	(--, water, 222, 13.36, [60])
		254	92.24		(--, water, 222, 1.03, [62])
Listeria monocytogenes	L	222	3.58	0.41	(--, water, 222, 13.36, [60])
		254	8.70		(--, water, 222, 1.03, [62])
Pseudomonas aeruginosa	L	222	1.98	2.47	(--, PBS, 222, 1.98, [44])
		254	0.80		(--, PBS, 222, 1.98, [44])
Salmonella Typhimurium	L	222	1.97	0.63	(--, PBS, 222, 1.98, [44])
		230	4.00	1.29	(LT2 SL3770, water, 232, 4.00, [26])
		254	3.10		(LT2 SL3770, water, 254, 2.62, [26])
	S	222	109.32	1.52	(LT2 SL3770, water, 232, 4.00, [26])
		254	71.86		(LT2 SL3770, water, 254, 2.62, [26])
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

A) Bacteria	Medium	Wavelength [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information (strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Staphylococcus aureus	L	222	3.24	1.33	(DSM1104, –, 222, 4.68, [33]), (MRSA, PBS, 222, 1.41, [44]), (ATCC25293, –, 222, 4.60, [43]), (NCIMB6571, Ringer, 222, 3.24, [45]), (43000, PBS, 222, 2.19, [46])
	S	210	19.71	4.20	(–, agar, 207, 8.78, [63]), (MRSA USA300, agar, 30.63, [11])
		222	4.69	1.46	(MRSA USA300, –, 222, 4.88, [47]), (MRSA USA300, agar, 222, 2.56, [16]), (MRSA USA300, naked mouse skin, 222, 357.14, [64]), (MRSA834, shaved mouse skin, 222, 4.42, [17]), (MRSA834, mouse wound, 222, 120.97, [17]), (MRSA USA300, agar, 224, 4.50, [65]), (MRSA, plastic, 222, 3.09, [86]), (–, –, 225, 3.50, [66])
		230	3.50	1.09	(–, –, 230, 4.33, [56]), (–, agar, 230, 2.67, [67])
Streptococcus pyogenes	L	222	20.91		(NCIMB 8884, Ringer, 222, 20.91, [45])
Streptomyces griseus conidia	S	210	56.18		(–, vacuum, 200, 56.18, [27])
Yersinia enterocolitica	L	222	2.20	1.49	(ATCC4780, –, 222, 2.20, [51])

B) Bacterial spores	Medium	Wavelength [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information (strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Alicyclobacillus acidoterrestris spores	L	222	6.02	0.71	(ATCC49025, PBS, 222, 6.02, [68]), (ATCC49025, apple juice, 222, 157.23, [68])*
		254	8.50		(ATCC49025, PBS, 254, 8.50, [68]), (ATCC49025, apple juice, 254, 165.02, [68])*
Bacillus cereus spores	L	222	17.88	0.39	(DSM345, –, 222, 12.12, [33]), (–, PBS, 222, 13.64, [44]), (ATCC11778, –, 222, 23.00, [43]), (TGA1, PBS, 222, 1.18, [45])
		254	46.42		(DSM345, –, 254, 46.42, [33]), (–, PBS, 222, 28.80, [44]), (ATCC11778, –, 222, 46.67, [43])
Bacillus pumilus spores	L	210	8.00	0.13	(ASFUVRC, –, 210, 8.00, [69])
		222	18.79	0.29	(ASFUVRC, –, 220, 18.79, [69])
	S	225	64.00		(ASFUVRC, –, 258, 64.00, [69])
Bacillus subtilis spores	L	210	13.96	0.97	(ATCC6633, –, 200, 13.96, [70]), (ATCC6633, –, 214, 7.52, [71]), (ATCC6633, –, 214, 16.05, [70])
		222	6.34	0.44	(ATCC6633, water, 222, 6.16, [26]), (DSM10, –, 222, 12.46, [33]), (ATCC6633, –, 222, 5.01, [72]), (ATCC6633, –, 222, 10.80, [73]), (PSS33, PBS, 222, 6.34, [46])
	S	230	10.75	0.75	(ATCC6633, –, 230, 10.75, [71]), (ATCC6633, –, 230, 23.33, [70]), (ATCC6633, water, 232, 8.63, [26])

Hessling et al.: The impact of far-UVC radiation (200–230 nm) on pathogens, ...
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

B) Bacterial spores	Medium	Wave-length [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information
Bacillus subtilis	254	14.37	[ATCC6633, ~, 254, 9.32, [71]],		(strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
			[ATCC6633, ~, 254, 16.33, [70]],		
			[ATCC6633, water, 254, 14.37, [28]],		
			[DSM10, ~, 254, 20.66, [33]],		
			[ATCC6633, ~, 254, 9.25, [72]],		
			[ATCC6633, ~, 254, 20.20, [73]],		
			[PS533, PBS, 254, 8.65, [46]]		
S	210	8.57	4.80		(UVR, vacuum, 200, 8.57, [74]),
					(UVS, vacuum, 200, 3.44, [74]),
					(UVP, vacuum, 200, 3.20, [74]),
					(168, ~, 200, 107.70, [75]),
					(168, vacuum, 200, 9.80, [75])
222		0.89	0.50		(UVR, vacuum, 220, 4.00, [74]),
					(UVS, vacuum, 220, 0.33, [74]),
					(UVP, vacuum, 220, 0.30, [74]),
					(UVS, vacuum, 220, 0.50, [28]),
					(UVP, vacuum, 220, 0.39, [28]),
					(UR, vacuum, 220, 5.18, [28]),
					(RCE, vacuum, 220, 0.98, [28]),
					(RCF, vacuum, 220, 1.20, [28]),
					(168, ~, 220, 52.94, [75]),
					(168, vacuum, 220, 6.02, [75])
230		0.83	0.46		(UVS, vacuum, 235, 0.12, [28]),
					(UVP, vacuum, 235, 0.33, [28]),
					(UVR, vacuum, 235, 4.91, [28]),
					(RCE, vacuum, 235, 0.83, [28]),
					(RCF, vacuum, 235, 1.90, [28]),
254		1.79			(UVR, vacuum, 220, 4.65, [74]),
					(UVS, vacuum, 220, 0.42, [74]),
					(UVP, vacuum, 220, 0.19, [74]),
					(UVS, vacuum, 220, 0.54, [28]),
					(UVP, vacuum, 220, 0.48, [28]),
					(UR, vacuum, 220, 5.95, [28]),
					(RCE, vacuum, 220, 0.47, [28]),
					(RCF, vacuum, 220, 3.03, [29]),
					(168, ~, 220, 37.10, [75]),
					(168, vacuum, 220, 3.55, [75])
L	222	10.73			(AIHakam, PBS, 10.73, 222, [46])
Clostridioides					
difficile spores		13.23	0.73		
L	222	13.23	0.73		(JCM1296, PBS, 222, 12.54, [44]),
					(ATCC43593, PBS, 222, 14.70, [46]),
					(JJIR8094, PBS, 222, 13.23, [46])
254		18.02			(JCM1296, PBS, 254, 18.02, [44])
S	222	16.67	0.17		(ATCC43592, ~, 222, 16.67, [47])
	254	100.36			(~, ~, 254, 100.35, [76])
Clostridioides					
sporogenes spores		10.37	0.76		(JCM1416, PBS, 222, 10.37, [44])
L	222	13.64			(JCM1416, PBS, 254, 13.64, [44])
Chlostridium		2.63	1.18		(ATCC6013, ~, 222, 2.63, [43])
pasteurianum		2.23			(ATCC6013, ~, 254, 2.23, [43])
Streptomyces		210	21.20	4.13	(DSM40236, ~, 200, 32.68, [29]),
griseus spores					(DSM40236, ~, 210, 9.52, [29])
L	222	6.67	1.30		(DSM40236, ~, 220, 6.57, [29]),
					(DSM2570, ~, 222, 6.85, [33]),
					(ATCC10137, ~, 222, 6.67, [43])
254		5.13			(DSM40236, ~, 254, 3.38, [29]),
					(DSM2570, ~, 254, 5.61, [33]),
					(ATCC10137, ~, 254, 5.13, [43])
S	210	33.77	5.14		(DSM40236, ~, 200, 51.11, [29]),
					(DSM40236, ~, 210, 16.43, [29])
222		14.38	2.19		(DSM40236, ~, 220, 14.38, [29])
230		15.33	2.33		(DSM40236, ~, 230, 15.33, [29])
254		6.57			(DSM40236, ~, 254, 6.57, [29])
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

B) Bacterial spores	Medium	Wave-	Median log-	Ratio to 254	Additional information
		length [nm]	log-deduct. dose [mJ/cm²]	nm dose	(strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Thermocococcus	L	222	15.14	0.40	(DSM43016, –, 222, 14.95, [33]), (ATCC43649, –, 222, 15.33, [43])
L. vulgaris	254	38.17			(DSM43016, –, 254, 38.00, [33]), (ATCC43649, –, 254, 38.33, [43])
C) Fungi	Medium	Wave-	Median log-	Ratio to 254	Additional information
		length [nm]	log-deduct. dose [mJ/cm²]	nm dose	(strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Apergillus niger spores	L	222	106.82	0.88	(DSM737, –, 222, 106.82, [33]), (ATCC32625, –, 222, 108.33, [43]), (–, –, 222, 72.46, [44])
	254	121.97			(DSM737, –, 254, 121.97, [33]), (ATCC32625, –, 254, 123.33, [43]), (–, –, 254, 50.76, [44])
Penicillium expansum spores	L	222	13.82	0.84	(DSM1282, –, 222, 13.84, [33]), (ATCC359200, –, 222, 14.00, [43])
	254	16.50			(DSM1282, –, 254, 16.67, [33]), (ATCC359200, –, 254, 16.33, [43])
Candida albicans	L	222	9.82	1.02	(DSM1386, –, 222, 9.85, [33]), (–, –, 222, 9.80, [44])
	254	9.67			(DSM1386, –, 254, 7.58, [33]), (–, –, 254, 11.76, [44])
Saccharomyces cerevisiae	L	222	22.33	1.31	(–, –, 222, 22.33, [77])
	254	17.00			(–, –, 254, 17.00, [77])
S			33.00	5.66	(–, vacuum, 200, 33.00, [78])
	222	12.77		2.19	(XS1972, vacuum, 220, 21.60, [79]), (XS2390, vacuum, 220, 3.94, [79])
	254	5.636			(XS1972, vacuum, 250, 3.70, [79]), (XS2390, vacuum, 250, 0.27, [79])
Trichophyton rubrum spores	L	222	13.64	1.58	(–, –, 222, 13.64, [44])
	254	8.63			(–, –, 254, 8.63, [44])
D) Viruses	Medium	Wave-	Median log-	Ratio to 254	Additional information
		length [nm]	log-deduct. dose [mJ/cm²]	nm dose	(strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Adenovirus	L	210	2.13	0.07	(ATCCVR846, PBS, 210, 2.13, [35])
	222	5.09		0.16	(ATCCVR846, PBS, 220, 4.66, [80]), (ATCCVR846, PBS, 220, 3.34, [35]), (ATCCVR846, water, 222, 7.04, [81]), (ATCCVR846, CBS, 224, 5.52, [82])
	230	5.74		0.18	(ATCCVR846, PBS, 228, 5.10, [80]), (ATCCVR846, PBS, 230, 6.37, [35])
	254	31.25			(ATCCVR846, PBS, 254, 25.55, [80]), (ATCCVR846, PBS, 254, 43.48, [35]), (ATCCVR846, CBS, 254, 31.25, [82])
Bacillus megatherium phage	S	222	4.79	1.98	(M5, vacuum, 230, 4.79, [83])
	254	2.43			(M5, vacuum, 254, 2.43, [83])
Encephalomyocardiitis virus	L	222	4.71	0.87	(–, PBS, 225, 4.71, [30])
	254	5.44			(–, PBS, 254, 5.44, [30])
Feline calicivirus	L	222	9.57	1.00	(–, –, 222, 9.57, [44])
	254	9.57			(–, –, 254, 9.57, [44])
Herpes simplex virus			0.96	0.25	(–, –, PBS, 225, 0.96, [30])
	254	3.90			(–, –, PBS, 254, 3.90, [30])
Human coronavirus	A	222	0.48		(HCoV229E, RH50 –70%, 222, 0.56, [14]), (HCoVOC43, RH50 –70%, 222, 0.39, [14])
Influenza virus	L	222	43.48	0.32	(Melbourne, PBS, 230, 43.48, [84])
	254	136.99			(Melbourne, PBS, 254, 136.99, [84])
	A	222	1.28	1.51	(H1N1, RH55%, 222, 1.28, [13])
	254	0.85			(H1N1, RH50%, 222, 0.85, [85])
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

D) Viruses	Medium	Wavelength [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information (strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Phage T1	S	210	1.76	1.71	(−, vacuum, 210, 2.06, [86]), (−, vacuum, 210, 1.46, [86])
		230	2.11	2.05	(−, vacuum, 230, 2.51, [86]), (−, vacuum, 230, 1.71, [86])
		254	1.03		(−, vacuum, 254, 1.28, [86]), (−, vacuum, 254, 0.78, [86])
Phage T1UV	L	210	1.67	0.39	(HER468, −, 210, 1.67, [69])
		222	2.84	0.67	(HER468, −, 220, 2.84, [69])
		230	5.00	1.17	(HER468, −, 230, 5.00, [69])
		254	4.27		(HER468, −, 254, 4.27, [69])
Phage T2	L	222	3.36	1.63	(−, −, 222, 5.79, [33]), (−, PBS, 225, 0.92, [30])
			254	2.060	(−, −, 254, 3.65, [33]), (−, PBS, 254, 0.47, [30])
Phage T7	L	210	1.21	0.56	(ATCC = BAA1025B2, −, 210, 1.23, [69]), (ATCC = -11302B38, −, 210, 1.19, [69])
		222	1.72	0.80	(ATCC = BAA1025B2, −, 220, 1.78, [69]), (ATCC = -11302B38, −, 220, 1.67, [69])
		230	3.52	1.64	(ATCC = BAA1025B2, −, 220, 3.56, [69]), (ATCC = -11302B38, −, 220, 3.47, [69])
		254	2.15		(ATCC = BAA1025B2, −, 220, 2.20, [69]), (ATCC = -11302B38, −, 220, 2.10, [69])
Phage MS2	L	210	6.76	0.35	(ATCC15597B1, −, 210, 4.52, [69]), (ATCC15597B1, −, 210, 7.32, [69]), (ATCC15597B1, −, 210, 15.15, [69]), (ATCC15597B1, −, 210, 6.76, [71])
		222	8.35	0.43	(ATCC15597B1, PBS, 220, 6.25, [88]), (ATCC15597B1, PBS, 220, 7.35, [87]), (ATCC15597B1, −, 222, 8.35, [52]), (−, −, 222, 10.31, [33]), (ATCC15597B1, PBS, 225, 11.24, [30])
		230	15.38	0.79	(ATCC15597B1, PBS, 230, 15.38, [87]), (ATCC15597B1, −, 230, 17.60, [71]), (ATCC15597B1, −, 230, 7.67, [89])
		254	19.45		(ATCC15597B1, −, 254, 20.00, [69]), (ATCC15597B1, PBS, 254, 17.80, [87]), (ATCC15597B1, −, 254, 19.48, [71]), (ATCC15597B1, PBS, 254, 14.29, [88]), (−, −, 222, 17.99, [33]), (ATCC15597B1, PBS, 254, 18.30, [30]), (ATCC15597B1, −, 254, 19.42, [89])
Phage PhiX174	L	222	1.84	1.73	(−, PBS, 225, 1.84, [30])
		230	2.2	2.07	(−, PBS, 230, 2.20, [90])
		254	1.06		(−, PBS, 254, 2.06, [30]), (−, PBS, 254, 1.79, [30])
Phage Q6	L	210	3.20	8.67	(ATCC 23631 –B1, −, 210, 3.20, [69])
		222	5.12	13.86	(ATCC 23631 –B1, −, 220, 5.12, [69])
		230	10.67	28.91	(ATCC 23631 –B1, −, 230, 10.67, [69])
		254	0.37		(ATCC 23631 –B1, −, 254, 11.27, [69])
Polyomavirus	L	222	106.53	1.54	(−, PBS, 225, 106.53, [30])
		254	69		(−, PBS, 254, 69.00, [30])
Reovirus 3	L	222	3.30	0.28	(−, PBS, 225, 3.3, [30])
		254	11.96		(−, PBS, 254, 11.96, [30])
Rotavirus	L	222	4.55	0.41	(ATCC porcine strain OSU, wastewater, 222, 4.55, [91])
		254	11.11		(ATCC porcine strain OSU, wastewater, 254, 11.11, [91])
Severe Acute Respiratory Syndrome Coronavirus	S	222	1.20		(SARS-CoV-2 Japan AI-l004), polystyrene, 222, 1.2,[92])
Impact of far-UVC on human and animal cells, skin and eye

The investigations listed in Table 2 are not very numerous and were performed on different kinds of research objects (cells, skin, eyes) and analyzed for different parameters (CPD, erythema, cell survival and other kinds of damage), which makes comparison difficult. However, at least for skin, there is a rather complete data set on CPD formation and some complementary results on erythema; furthermore, the corresponding irradiation doses are available for all lesions that occurred.

The majority of the presented studies conclude that human and animal cells can tolerate far-UVC doses of 150 mJ/cm² for 207 nm irradiation – and probably even much higher ones for 222 nm – without damage such as dimer formation, erythema or increased cell death. This irradiation dose is much higher than 1.7 mJ/cm², the only 222 nm dose published to date for a 3 log-reduction of coronaviruses in aerosols, and still many times above the previously mentioned 10 mJ/cm² for a one log-reduction of 2/3 of the pathogens in Table 2. In fact, even 100 mJ/cm², the dose necessary to inactivate all listed microorganisms by several orders of magnitude, seems to be harmless according to the majority of investigations. Unfortunately, these investigations stand in contrast to at least five studies in which cell lesions were observed at much lower doses [19], [36], [37], [38], [39], in two of these even for doses below 1 mJ/cm² [36], [37].

Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D) viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

D) Viruses	Medium	Wave-length [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information (strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Staphylococcus aureus phage	L	230	14.33	1.79	(−, −, 230, 14.33, [93])
		254	8		(−, −, 254, 8.00, [93])
Tulane virus	L	222	5.56	1.00	(−, wastewater, 222, 5.56, [91])
		254	5.56		(−, wastewater, 254, 5.56, [91])
Vaccinia virus	L	222	6.53	2.37	(−, PBS, 225, 6.53, [30])
		254	2.76		(−, PBS, 254, 2.76, [30])
	S	230	3.00	2.25	(−, agar, 230, 3.00, [87])
		254	1.33		(−, agar, 254, 1.33, [30])
Vesicular stomatitis virus	L	222	1.12	1.06	(−, PBS, 225, 1.12, [30])
		254	1.06		(−, PBS, 254, 1.06, [30])

E) Protists	Medium	Wave-length [nm]	Median log-reduct. dose [mJ/cm²]	Ratio to 254 nm dose	Additional information (strain, medium, wavelength [nm], log-reduction dose [mJ/cm²], reference)
Cryptosporidium parvum	L	210	1.33	1.49	(Iowa isolate, −, 210, 0.73, [69])
		222	2.50	1.79	(Iowa isolate, −, 220, 1.0, [69],
		230	2.36	2.79	(Iowa isolate, −, 230, 1.43, [69],
		254	0.90		(Iowa isolate, −, 254, 0.73, [69],
					(Iowa isolate, PBS, 254, 1.06, [94])

*Not included in analysis due to high medium absorption and therefore increased log-reduction dose
Table 2: Impact of far-UVC on human and animal cells (A), skin (B), and eye (C)

Ref.	Cell death and other damage	Erthema	Skin	Eye	
[36]	growth inhibition: 230 nm @0.74 μJ/cm²	chicken embryo cells	Chinese hamster ovary cells (CHO-K1 fibroblasts)	Grasshopper neuroblasts (Chorthippus parallelus)	Human dermis fibroblasts (AG 1522)
[37]	cell death: 230 nm				
[11]	10% death: 254 nm @0.5 μJ/cm²				
[11]	90% death: 254 nm @2 μJ/cm²				
[11]	225 nm: no effect @0.22 μJ/cm²			Mitosis: visible changes @0.87 μJ/cm²	
[38]	CpD: 207 nm filtered: <1% @150 μJ/cm²				
[39]	CpD: 254 nm filtered: 0.8% @150 μJ/cm²				
[40]	CpD: 254 nm @50% @150 μJ/cm²				
[41]	CpD: 254 nm @50% @150 μJ/cm²				
[42]	CpD: 254 nm @50% @150 μJ/cm²				
[43]	CpD: 254 nm @50% @150 μJ/cm²				
[44]	CpD: 254 nm @50% @150 μJ/cm²				
[45]	CpD: 254 nm @50% @150 μJ/cm²				
[46]	CpD: 254 nm @50% @150 μJ/cm²				
[47]	CpD: 254 nm @50% @150 μJ/cm²				
[48]	CpD: 254 nm @50% @150 μJ/cm²				
[49]	CpD: 254 nm @50% @150 μJ/cm²				
[50]	CpD: 254 nm @50% @150 μJ/cm²				
[51]	CpD: 254 nm @50% @150 μJ/cm²				

GMS Hygiene and Infection Control 2021, Vol. 16, ISSN 2196-5226
Table 2: Impact of far-UVC on human and animal cells (A), skin (B), and eye (C)

B) Skin	C) Eyes	Ref.
Mouse skin (hairless, XPA-knockout and wild type)	Human eye	[40]
Human skin	Mouse eye (hairless, XPA-knockout and wild type)	[39]
Rabbit skin (albino)	Primate eye	[38]
CPD	Human eye	[39]
222 nm (filtered):		
254 nm: strong		
(both genotypes)	CPD	[40]
Human skin	222 nm: formation start	
@ 60 mJ/cm²	[40]	
220 nm: no damage		
@ 600 mJ/cm²	222 nm (filtered):	
no erythema		
@ 13,000 nJ/cm²	[39]	
222 nm, formation start		
@ 45–50 mJ/cm²	222 nm: no damage	
@ 16,000 nJ/cm²	[38]	
222 nm, formation start		
@ 10 mJ/cm²	222 nm: no damage	
@ 3,000 nJ/cm²	[39]	
220 nm, formation start		
@ 3,000 nJ/cm²	220 nm: no damage	
@ 30 mJ/cm²	[39]	
220 nm, formation start		
@ 30 mJ/cm²	220 nm: no damage	
@ 0.5 mJ/cm²	[38]	
220 nm, formation start		
@ 0.5 mJ/cm² | 220 nm: no damage
@ 0.05 nJ/cm² | [39] |

Hessling et al.: The impact of far-UVC radiation (200–230 nm) on pathogens, ...
types which had different filter properties concerning transmission above 250 nm. However, even if the results of these 5 studies could be invalidated by cell type, protection and long-wavelength emissions, the fact remains that the total number of successful studies is quite small to date. Studies on the impact of 222 nm irradiation on the human eye have not yet been carried out at all, and among the skin investigations, only two positive ones have been performed on humans. One of these used very high doses of up to 18,000 mJ/cm² [41], but only on a single person. A daily exposure to far UVC radiation for several years might result in much higher total doses. Another aspect that has not been investigated yet is the potential impact of a repeated far-UVC skin irradiation on the skin’s microbiome, which might shift towards more far-UVC resistant microorganisms.

Conclusions

Far-UVC – especially at a wavelength of 222 nm – is very effective against all pathogens. The average necessary log-reduction doses are slightly higher compared to UVC irradiation with a 254 nm low-pressure mercury vapor lamp. A dose of 100 mJ/cm² should reduce most pathogens in most media by several orders of magnitude without harming human skin or eyes. Therefore, the prevention of surgical site infections by far-UVC irradiation – as suggested by Sosnin et al. [10] and Buonanno et al. [11] – seems to be very plausible and attractive. Far-UVC also raises hopes in the fight against viruses, as suggested by Welch et al. [13] and Buonanno et al. [14], but it will probably not offer a short-term, large-scale solution for two reasons:

1. The safety of far-UVC irradiation is not yet guaranteed, despite the predominantly very positive results of the last years. Even if the few observed lesions are due to avoidable long-wavelength UVC emissions, even the successful studies were only carried out with limited doses and durations and only in two successful studies on humans. These do not yet exclude possible damage in applications over long periods of time (months to years) with even higher total doses.

2. Mercury vapor lamps are readily available worldwide in all wattages. This does not apply to far-UVC sources. Far-UVC LEDs currently have outputs in the mW range and lifetimes of hundreds of hours. This means that suitably powerful LED light sources are still years away. Excimer lamps, which were also used in most of the studies presented, are much more highly developed and have lifetimes of 10,000–100,000 hours. However, they are only commercially manufactured by a handful of companies worldwide and are only available in very limited quantities.

Therefore, this is not a short-term solution for the current pandemic, but may be suitable for future technological approaches for decontamination in rooms in the presence of people or for antisepsis.

Notes

Competing interests

The authors declare that they have no competing interests.

Funding

The authors did not receive any funds.

References

1. Henri V, Hellbronner A, de Recklinghausen M. Stérilization de Grandes Quantités d’Eau par les Rayons Ultraviolets. Compt Rend Acad Sci. 1910;150:932-4.
2. Raieszadeh M, Adeli B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics. 2020;7:2941-51. DOI: 10.1021/acsphotonics.0c01245
3. Hessling M, Hönes K, Vatter P, Lingenfelder C. Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies. GMS Hyg Infect Control. 2020;15:Doc08. DOI: 10.3205/dghk000343.
4. Jagger J. Introduction to Research in Ultraviolet Photobiology. Photochem Photobiol. 1968;7:413. DOI: 10.1111/j.1751-1078.1968.tb08029.x
5. Budovsky EI, Bresler SE, Friedman EA, Zheleznova NV. Principles of selective inactivation of viral genome. I. UV-induced inactivation of influenza virus. Arch Virol. 1981;68(3-4):239-47. DOI: 10.1007/BF01314577
6. Wacker A, Dellweg H, Weindlum D. Strahlenchemische Veränderung der Bakterien-Desoxyribonucleinsäure in vivo. Naturwissenschaften. 1960;47:477. DOI: 10.1007/BF00638304
7. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res. 2005 Apr;571(1-2):19-31. DOI: 10.1016/j.mrfmmm.2004.06.057
8. Delic NC, Lyons JG, Di Girolamo N, Halliday GM. Damaging Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach. IEEE Trans Plasma Sci. 2004;32:1544-50. DOI: 10.1109/TPS.2004.833401
9. Sosnin EA, Stoffels E, Erofeev NV, Kieft IE, Kurts SE. The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach. IEEE Trans Plasma Sci. 2004;32:1544-50. DOI: 10.1109/TPS.2004.833401
10. Buonanno M, Randers-Pehrson G, Xu Y, Shuryak I, Smilenov L, Owens DM, Brenner DJ. 207-nm UV light – a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies. PLoS One. 2013;8(10):e76968. DOI: 10.1371/journal.pone.0076968
11. Buonanno M, Randers-Pehrson G, Bigelow AW, Trivedi S, Lowy FD, Spotnitz HM, Hammer SM, Brenner DJ. 207-nm UV light – a promising tool for safe low-cost reduction of surgical site infections. II: In-Vivo Safety Studies. PLoS One. 2016;11(6):e0158418. DOI: 10.1371/journal.pone.0158418
27. Jagger J, Stafford RS, Mackin RJ Jr. Killing and photoreactivation of Streptomyces griseus conidia by vacuum-ultraviolet and far-ultraviolet radiation (1500 to 2700 Å). Radiat Res. 1967 Sep;32(1):64-92.

28. Munakata N, Saito M, Hieda K. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation. Photochem Photobiol. 1991 Nov;54(5):761-8. DOI: 10.1111/j.1751-1097.1991.tb02087.x

29. Keller B, Horncek G. Action spectra in the vacuum UV and far UV (122-300 nm) for inactivation of wet and vacuum-dry spores of Streptomyces griseus and photoreactivation. J Photochem Photobiol B. 1992;16(1):61-72. DOI: 10.1016/1011-1344(92)85153-L

30. Rauth AM. The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophysical Journal. 1965;5:257-73. DOI: 10.1016/S0006-3495(65)86715-7

31. Gates FL. On nuclear derivatives and the lethal action of ultraviolet light. Science. 1928 Nov;68(1768):479-80. DOI: 10.1126/science.68.1768.479-a

32. Zelle MR, Hollaender A. Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. J Bacteriol. 1954 Aug;68(2):210-15. DOI: 10.1128/JB.68.2.210-215.1954

33. Claus M, Springerum AC, Hartung J. Ultraviolet disinfection with 222 nm wavelength – New options to inactivate UV-resistant pathogens. In: Briese A, Claub M, Hartung J, Springerum AC, Hrsg. Proceedings of the 14th ISAH Congress 2009 – International Society for Animal Hygiene, 19th to 23rd July, Vechta, Germany, Vol. 2. Brno: Tronu EU; 2009. pp. 740-2.

34. Lakretz A, Ron EZ, Mamane H. Biofouling control in water by various UVC wavelengths and doses. Biofouling. 2010;26:257-67. DOI: 10.1080/08927010903484154

35. Beck SE, Rodriguez RA, Linden KG, Hargy TM, Larsson TC, Wright HB. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR. Environ Sci Technol. 2014;48(1):591-8. DOI: 10.1021/es403850b

36. Mayer E, Schreiber H. Die Wellenlängenabhängigkeit der Ultraviolettwirkung auf Gewebekulturen („Reinkulturen“). Protoplasmas. 1934;21:34-61. DOI: 10.1007/BF01984464

37. Carlson JG, Hollaender A. Mitotic effects of ultraviolet radiation of the 2250 Å region, with special reference to the spindle and cleavage. J Cell Comp Physiol. 1948 Apr;31(2):149-73. DOI: 10.1002/jpc.978030310205

38. Freeman RG, Owens DW, Knox JM, Hudson HT. Relative energy requirements for an erythemal response of skin to monochromatic ultraviolet B wavelengths in the solar spectrum. J Invest Dermatol. 1966 Dec;47(6):586-92. DOI: 10.1038/jid.1966.189

39. Pitts DG. The ocular ultraviolet action spectrum and protection criteria. Health Phys. 1973 Dec;25(6):559-66. DOI: 10.1007/90004032-197-31200-00002

40. Yamano N, Kunisada M, Kaidzu S, Sugihara K, Nishiaki-Sawada O, Ohashi H, Yoshioka A, Igarashi T, Ohira A, Tantos M, Nishigori C. Long-term Effects of 222-nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation. Photochem Photobiol. 2020 07;96(4):853-62. DOI: 10.1111/php.13269

41. Eadie E, Barnard IMR, Ibbotson SH, Wood K. Extreme Exposure of 222 nm wavelength – New options to inactivate UV-resistant pathogens. Adv Space Res. 2020. DOI: 10.1016/j.asr.2020.08.037

42. Clemens SC, Pugh CE, Pohlman LE, Zerr H, Daniels JS, Pohlman JM, et al. A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep. 2018 02;8(1):2752. DOI: 10.1038/s41598-018-21058-w

43. Kaidzu S, Sugihara K, Nishiaki A, Igarashi T, Tanito M. Radiat Res. 1991 Nov;54(5):761-8. DOI: 10.1111/j.1751-1097.1991.tb02087.x

44. Keller B, Horncek G. Action spectra in the vacuum UV and far UV (122-300 nm) for inactivation of wet and vacuum-dry spores of Streptomyces griseus and photoreactivation. J Photochem Photobiol B. 1992;16(1):61-72. DOI: 10.1016/1011-1344(92)85153-L

45. Rauth AM. The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophysical Journal. 1965;5:257-73. DOI: 10.1016/S0006-3495(65)86715-7

46. Gates FL. On nuclear derivatives and the lethal action of ultraviolet light. Science. 1928 Nov;68(1768):479-80. DOI: 10.1126/science.68.1768.479-a

47. Zelle MR, Hollaender A. Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. J Bacteriol. 1954 Aug;68(2):210-15. DOI: 10.1128/JB.68.2.210-215.1954

48. Claus M, Springerum AC, Hartung J. Ultraviolet disinfection with 222 nm wavelength – New options to inactivate UV-resistant pathogens. In: Briese A, Claub M, Hartung J, Springerum AC, Hrsg. Proceedings of the 14th ISAH Congress 2009 – International Society for Animal Hygiene, 19th to 23rd July, Vechta, Germany, Vol. 2. Brno: Tronu EU; 2009. pp. 740-2.

49. Lakretz A, Ron EZ, Mamane H. Biofouling control in water by various UVC wavelengths and doses. Biofouling. 2010;26:257-67. DOI: 10.1080/08927010903484154

50. Beck SE, Rodriguez RA, Linden KG, Hargy TM, Larsson TC, Wright HB. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR. Environ Sci Technol. 2014;48(1):591-8. DOI: 10.1021/es403850b

51. Mayer E, Schreiber H. Die Wellenlängenabhängigkeit der Ultraviolettwirkung auf Gewebekulturen („Reinkulturen“). Protoplasmas. 1934;21:34-61. DOI: 10.1007/BF01984464

52. Carlson JG, Hollaender A. Mitotic effects of ultraviolet radiation of the 2250 Å region, with special reference to the spindle and cleavage. J Cell Comp Physiol. 1948 Apr;31(2):149-73. DOI: 10.1002/jpc.978030310205

53. Freeman RG, Owens DW, Knox JM, Hudson HT. Relative energy requirements for an erythemal response of skin to monochromatic ultraviolet B wavelengths in the solar spectrum. J Invest Dermatol. 1966 Dec;47(6):586-92. DOI: 10.1038/jid.1966.189

54. Pitts DG. The ocular ultraviolet action spectrum and protection criteria. Health Phys. 1973 Dec;25(6):559-66. DOI: 10.1007/90004032-197-31200-00002

55. Yamano N, Kunisada M, Kaidzu S, Sugihara K, Nishiaki-Sawada O, Ohashi H, Yoshioka A, Igarashi T, Ohira A, Tantos M, Nishigori C. Long-term Effects of 222-nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation. Photochem Photobiol. 2020 07;96(4):853-62. DOI: 10.1111/php.13269

56. Eadie E, Barnard IMR, Ibbotson SH, Wood K. Extreme Exposure of 222 nm wavelength – New options to inactivate UV-resistant pathogens. Adv Space Res. 2020. DOI: 10.1016/j.asr.2020.08.037

57. Clemens SC, Pugh CE, Pohlman LE, Zerr H, Daniels JS, Pohlman JM, et al. A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep. 2018 02;8(1):2752. DOI: 10.1038/s41598-018-21058-w
50. Ha JW, Lee JI, Kang DH. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms. Int J Food Microbiol. 2017 Feb;243:96-102. DOI: 10.1016/j.ijfoodmicro.2016.12.006

51. Clauss M, Mannesmann R, Kolch A. Photoreactivation of pathogenic Escherichia coli O157:H7 in bovine milk exposed to 222-nm krypton-chlorine excilamp compared to a 280-nm LED-UVC for inactivation of Salmonella Typhimurium and Listeria monocytogenes. LWT. 2020;131:108458. DOI: 10.1016/j.lwt.2020.108458

52. Gurzadyan GG, Görner H, Schulte-Frohlinde D. Ultraviolet (193, 203, and 254 nm) light inactivation of Bacillus cereus spores, spore-forming Corynebacterium, and spore-forming Clostridium. J Food Prot. 1989 Sep;52(9):715-20. DOI: 10.4315/0362-028X-52.9.715

53. Matafonova GG, Batoev VB, Astakhova SA, Gómez M, Christoffel N. Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension. Lett Appl Microbiol. 2008 Dec;47(6):508-13. DOI: 10.1111/j.1472-765X.2008.02461.x

54. Kang JW, Asano K, Taitt KR, Okada H. Decontamination of microbial pathogens. J Hosp Infect. 2020 Mar. DOI: 10.1016/j.jhin.2020.03.030

55. Yin F, Zhu Y, Koutchyna T, Kostrynska M, Tang J. Surrogate organisms for pathogenic O157:H7 and non-O157 Escherichia coli strains for apple juice treatments by UV-C light at three monochromatic wavelengths. Food Control. 2015;85(6). DOI: 10.1016/j.foodcont.2015.01.014

56. Gates FL. A study of the bactericidal action of ultra violet light: III. The absorption of ultra violet light by bacteria. J Gen Physiol. 1930 Sep;14(1):31-42. DOI: 10.1085/jgp.14.1.31

57. Wang D, Oppenländer T, Ei-Din MG, Bolton JR. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm. Photochem Photobiol. 2010 Jan-Feb;86(1):176-81. DOI: 10.1111/j.1751-1097.2009.00640.x
Hessling et al.: The impact of far-UVC radiation (200–230 nm) on pathogens, ...

Copyright ©2021 Hessling et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.

![Creative Commons License](http://creativecommons.org/licenses/by/4.0/)

Please cite as
Hessling M, Haag R, Sieber N, Vatter P. The impact of far-UVC radiation (200–230 nm) on pathogens, cells, skin, and eyes – a collection and analysis of a hundred years of data. GMS Hyg Infect Control. 2021;16:17/17GMS Hygiene and Infection Control 2021, Vol. 16, ISSN 2196-5226

Published: 2021-02-16

Corresponding author:
Prof. Dr. Martin Hessling
Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences (Technische Hochschule Ulm), Albert-Einstein-Allee 55, 89081 Ulm, Germany
Martin.Hessling@thu.de

GMS Hygiene and Infection Control 2021, Vol. 16, ISSN 2196-5226

17/17