On Macroscopic Complexity and Perceptual Coding

John Scoville

July 8, 2011

Abstract

The theoretical limits of 'lossy' data compression algorithms are considered. The complexity of an object as seen by a macroscopic observer is the size of the perceptual code which discards all information that can be lost without altering the perception of the specified observer. The complexity of this macroscopically observed state is the simplest description of any microstate comprising that macrostate. Inference and pattern recognition based on macrostate rather than microstate complexities will take advantage of the complexity of the macroscopic observer to ignore irrelevant noise.

The quantification of information

Information theory in its modern form originated from Claude Shannon’s usage of Gibbs’ entropy formula to describe communication channels:

\[S = -k \sum P_i \log P_i \] (1)

This formula originally applied to an ensemble of microscopic states, and the analytic form of expected log-probability describes the entropy of systems and their representations whether classical or quantum in nature. In the context of quantum mechanics, it becomes the von Neumann entropy of the state density matrix, \(S = -\text{trace}(p \log p) \). The story goes that it was actually von Neumann who suggested the term 'entropy' to Shannon for his information function, for two reasons: 'In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have the advantage.'

Entropy has the units of the logarithm of action. Shannon showed that, in the absence of Boltzmann’s constant, \(k \), entropy quantifies the number of bits of data needed to identify a sample from some distribution. It quantifies the amount of choice or uncertainty that must be overcome in order to invoke the axiom of choice and select a specific element from a set. The Shannon Entropy,
\(H \), limits the information capacity of a signal communicated using an alphabet or codebook with known distribution, \(P \).

\[
H = - \sum P_i \log P_i
\]

(2)

Or, in the case of a continuous pdf, \(H = - \int p(x) \log p(x) dx \). The functional form of information entropy has the properties that one expects from a linear measure of choice[22] and, as such, establishes a theoretical bound for the average information capacity of a string of symbols sent from an ergodic source to a receiver. The base of the logarithm is equal to the cardinality of the symbol set. When the base is two, the units of entropy are bits, in base \(e \) they are 'nats', etc.

Shannon entropy represents choice or uncertainty in the space of possible states; it is synonymous with the development of information theory[3]. However, the definition of entropy due to Boltzmann is still more widely known for its role in the thermodynamics of physical systems[8, 13, 12, 4, 17, 13] than its role in the theory of information[5, 26, 15]. The definition of microscopic entropy (originally referred to by Boltzmann as 'molecular chaos') is

\[
S = k \log n
\]

(3)

For a set having \(n \) discrete elements. This definition may be extended to continuous spaces by considering \(n \) as a volume \(V \) of phase space, having some measure, \(\mu \), in such a case the entropy becomes \(S = k \log \mu(V) \).

Boltzmann’s thermodynamic entropy and Gibbs’s statistical mechanical entropy are closely related. The Gibbs entropy of an ensemble reduces to the Boltzmann entropy in the case of an ensemble of \(n \) equally likely microscopic states (or a volume \(n \) of state space) corresponding to a single maximum-entropy equilibrium state. Alternately, Gibbs’ entropy function may be shown to emerge from Boltzmann’s entropy as the increase in phase space volume corresponds to the expected value of the log-probability.[13]

The Boltzmann entropy of a non-equilibrium system (which could have any number of partial equilibrium macrostates) is proportional to the sum of the entropies of each macrostate.[13] The Boltzmann entropy of such a macrostate is the logarithm of the number of microscopic states consistent with the observed macroscopic state of the ensemble, or, equivalently, the volume of phase space occupied by that macroscopic state.

Rather than Boltzmann’s entropy function, which includes a constant to describe the phase spaces of physical systems, we will refer to an abstract Boltzmann entropy function on a discrete state space, \(S = \log n \) which is simply the logarithm of the set cardinality \(n \). If the set is continuous the form \(S = \log \mu(V) \) is implied. A discrete version of this abstract Boltzmann entropy takes the form of the Hartley information function \(\log p \). [10]

Shannon entropy is defined for ergodic sources[22], not particular instances of data. If a source is not ergodic then the results of classical information theory may hold only approximately, on average, or asymptotically. [15]. Colloquially,
this means that a series is statistically uniform throughout, which is related to the notion of a stationary stochastic process. For example, for a memoryless source such as a coin, 01101001110101101 may seem like a typical sequence, but 1111111111100000000 seems, offhand, highly unlikely to have been produced by the same random process. However, these sequences have the same number of 1s and 0s, so when viewed as an unordered set (rather than, for instance, a Markov chain) they have identical distributions with the same Shannon entropy.

Kolmogorov Complexity resolves this difficulty by describing any type of binary symbolic information, regardless of the source. It is defined as the minimum amount of information needed to completely reconstruct some object, represented as a binary string of symbols, X.

$$C_f(X) = \min_{f(p)=X} |p|$$ \hspace{1cm} (4)

In the parlance of computer science, f is a computer and p is a program running on that computer. The Kolmogorov Complexity is the length of the shortest computer program which terminates with X as output. In the example of the binary sequences above, the second clearly has a simpler algorithmic representation, whereas the first is nearly random.

The Turing equivalence of different computers relates Kolmogorov complexities by an equivalence constant:

$$C_f(X) = C_g(X) + C$$ \hspace{1cm} (5)

Since optimal specification does not depend on the particular computer used, we will assume a standard computer f unless otherwise specified.

The properties of $C(X)$ are sometimes more natural when the set of possible X are constrained to be prefix-free, that is, no X is a prefix of another X, so programs are self-delimiting rather than being demarcated by stop symbols. In this case, we refer to Chaitin’s algorithmic prefix complexity $K(X)$. We won’t delve into the details of $K(X)$, but we note that a program can be made self-delimiting by recursively prefixing the value of its length, and the length of this prefix, and so forth, so $K(X) = C(X) + C(C(X)) + O(C(C(C(X))))$. $K(X)$ gains some important attributes that $C(X)$ lacks. One is convergence of the universal probability:

$$U(x) = \sum_{f(p)=X} 2^{-|p|}$$ \hspace{1cm} (6)

This probability measure may be interpreted as the probability that a randomly selected prefix-free program terminates with x as its output. Convergence is assured by the use of a self-delimiting prefix code, as the Kraft inequality states that the lengths of codewords x in a prefix code satisfy $\sum 2^{l(x)} \leq 1$. Though convergence to the limit is in general very slow, this series is often...
dominated by the shortest program, and \(U(x) \approx 2^{-K(x)} \) constitutes a reasonable first-order approximation to the universal probability for these typical objects which are said to be 'shallow', whereas certain special 'deep' objects converge more slowly.

Performing complexity-based inference requires that we have a notion of the information that one object contains about another, or vice versa. In the theory of Kolmogorov complexity, this is achieved by the conditional prefix complexity:

\[
K(A|B) = K(AB) - K(B) \tag{7}
\]

Where the combination \(AB \) is the concatenation of strings \(A \) and \(B \). Algorithmic prefix complexity characterizes measurements at finite precision and may also be defined via algorithmic entropy, which we will consider shortly.

The notion of splitting complexity into a 'regular' (low prior probability) part and a 'random' (high prior probability) part is also originally due to Kolmogorov. The Kolmologorov Minimal Sufficient Statistic identifies the smallest superset of \(x \) which may be described with less than \(k \) bits. This is closely related to the notion of stochastic processes used earlier by Langevin to separate dynamical systems into deterministic and random components.

The Kolmogorov complexity may be used to define stochastic sequences in general, as such, is fundamental to the notion of a statistical probability. For natural numbers \(k \) and \(\delta \), we say that a string \(x \) is \((k, \delta)\)-stochastic if and only if there exists a finite set \(A \) such that:

\[
x \in A, C(A) \leq k, C(x|A) \geq \log |A| - \delta \tag{8}
\]

The deviation from randomness, \(\delta \), indicates whether \(x \) is a typical or atypical member of \(A \). The Kolmologorov Minimal Sufficient Statistic for \(x \), given \(n = |x| \), is the set of minimum cardinality subject to the first two constraints of stochasticity. This is defined through the Kolmologorov Structure Function, \(C_k(x|n) \):

\[
C_k(x|n) = \min \{ \log |A| : x \in A, C(A|n) \leq k \} \tag{9}
\]

The minimal set \(A_0 \) minimizes the randomness deficiency, \(\delta \), and is referred to as the Kolmologorov Minimal Sufficient Statistic for \(x \) given \(n \). This generalizes the notion of fitting a distribution to \(x \). The Kolmologorov Structure Function \(C_k(x|n) \) measures the amount of randomness in the string \(x \). For \(n \) coin tosses, it is nearly \(n \), for a number such as \(\pi \), it is \(O(1) \).

Another fundamental partitioning of random and nonrandom data is provided by the Algorithmic Entropy function, introduced by Zurek as physical entropy as it generalizes classical thermodynamics to a physical theory of information. Algorithmic Entropy combines Kolmogorov complexity and Boltzmann entropy to measure the macroscopic complexity of certain types of measurements. It relates computation and the informatic content of real-valued measurements to statistical mechanics. The algorithmic entropy of a string, \(H(Z) \) (not to be confused with the Shannon Information, \(H \), of a source) is defined in its most basic form as:

\[
H(Z) = K(Z) + S \tag{10}
\]
In this context, \(Z = X_{1:n} \) is a description of a macroscopic observation constructed by truncating a microscopic state \(X \) to a bit string of length \(n \). \(K(X) \) is the algorithmic prefix complexity\(^2\)\(^\text{15}\) of this representation of the macrostate. In the case of algorithmic entropy, the Boltzmann entropy \(S \) is seen to be the additional complexity needed to specify a microstate given knowledge of its macrostate.

Since all the microstates comprising a partition of macrostate share a common prefix in their string representation, \(K(X) \) is constructed as the prefix complexity of these microstates. The microstates are contained in a volume of state space sharing a common prefix. Relaxing this constraint leads to a more general functional, the effective complexity.

Gell-Mann and Lloyd\(^6\) describe a procedure for determining 'Effective Complexity' which extends the principles of of maximum entropy\(^11\) to complexity theory. The total information functional \(\Sigma \) is defined as the sum of the Shannon information of an ensemble \(Z \), of which the string \(X \) is a member, and another argument, the effective complexity, \(Y \), the \(K \)-complexity of this ensemble. By minimizing total information subject to arbitrary constraints \(f(X) = c \), which incorporate any prior information known about the system, the most likely configuration of the ensemble may be determined.

\[
\Sigma = Y + H(Z) = K(Z) + H(Z) \tag{11}
\]

This expression minimizes complexity and maximizes uncertainty. Typically, the total information is minimized by the Kolmogorov complexity\(^6\) and these quantities are within a few bits of \(K = Y + H \)\(^7\). The relationship between \(K, Y, \) and \(H \) may be characterized in terms of input to a computer program. The effective complexity \(Y \) represents a fixed deterministic algorithm, and the entropy \(H \) represents the information content of an arbitrary initial condition chosen as input for that algorithm\(^7\). Together, these represent the minimal total information content needed for the output of the program. In the absence of any additional constraints, this is typically the Kolmogorov complexity \(K \).

When macrostates are cylinder sets, which are coarse-grained partitions of phase space, the effective complexity becomes identical to the algorithmic entropy. In contrast to algorithmic entropy, effective complexity applies generally to any macrostates, which need not be compact volumes of state space and their string representations don’t generally share a common prefix. Such macrostates may represent any set of objects equivalent under an arbitrary relation; however, coarse-grained macrostates are a very special case which lead to algorithmic entropy and an alternative definition of the prefix complexity. Note that when algorithmic entropy is generalized to ensembles of arbitrary measure, it becomes equivalent to the effective complexity.

Finally, we note that the Kolmogorov complexity is not generally calculable due to non-halting programs\(^2\); and, moreover, a binary computation system is only optimal for representing powers of two. Though non-constructive, Kolmogorov complexity is a useful conceptual device which simplifies the reasoning of many proofs, e.g. demonstrating the incompleteness of axiomatic systems or the limits of inductive reasoning\(^15\).
1 Macroscopic Equivalence of Microstates

Macrostates may be described using the simplest representation of an equivalent microstate. This measure has an important application to 'lossy' data compression, as its objective is to find the simplest representation which is equivalent to a more complex datum. This is a function of the particular observer or classifier involved, which we may characterize by an equivalence relation, P.

The simplest string capable of reconstructing an object equivalent to X is the simplest definition of an object belonging to the equivalence class X/P; since no shorter string appears equivalent to the observer, this code is optimal. This establishes a formal theoretical limit for the performance of the so-called lossy data compression algorithms prevalent in digital media. Beyond this level, information about microscopic state constitutes irrelevant noise. Discarding this irrelevant microscopic data boosts the signal-to-noise ratio perceived by the macroscopic observer, which facilitates the inference and machine learning of macroscopic signals. Macroscopic equivalence relations arise naturally in the lossy compression of perceptual data - images, audio, and video - as the objective of such algorithms may be phrased as a search for shorter representations which are indistinguishable to an observer represented by class P.

The observer or classifier P groups indistinguishable objects into equivalence classes, with a finite but large number of objects falling into each equivalence class. Consider the equivalence relation P on the set of strings as a function which maps string representations of microstates to observable macrostates. X is indistinguishable from Y if and only if microscopic states X and Y are congruent modulo the equivalence class P.

A string X represents the microstate of an object or ensemble, and its equivalence class X/P is the macrostate of the object/ensemble as observed under P. For the purposes of this paper, set membership in class X/P is formally presumed to be determinable by an Oracle for P - a Turing machine may ask the Oracle a true/false question to determine set membership in X/P in a single operation. In general, P may take any form. The equivalence relation may be endowed with arbitrary criteria so long as these criteria provide consistent classification. The canonical example of classical thermodynamics involves measurement at a particular scale, resulting in P which partitions the phase space of the system at a characteristic length scale. P may specify, for example, a neural net or other classifier, time scales, statistics from human observations, or other factors.

2 The Complexity of an Equivalence Class

We introduce a new complexity metric for an object X, the Kolmogorov complexity of the simplest object equivalent to X under the relation $P()$. $S_f(X/P)$ is a measure of the descriptive complexity of an equivalence class of macroscopic objects.

$$S_f(X/P) \equiv \min_{Y \in P(X)} K_f(Y) \quad (12)$$
We refer to $S_f(X/P)$ as the complexity of a macroscopic state P, the macrostate complexity, or simply the macrocomplexity. These are macrostates in the sense of classical thermodynamics; as such, the logarithm of their cardinality is the Boltzmann entropy S. $S_f(X/P)$ is the minimum Kolmogorov complexity of any string equivalent to X, the length of the shortest computer program which terminates with output in the class $P(X)$. $K(Y)$, then, could also be used as a minimal description of the macroscopic equivalence class $P(X)$. $K(Y)$ represents the shortest description macroscopically equivalent to X, which is the optimal information-losing (‘lossy’) data compression of string X (on computer f).

In contrast to the Kolmogorov Structure Function, which produces the minimal Sufficient Statistic as a superset of x given the desired complexity of this set, the macrocomplexity is a function of x and its superset $P(X)$.

To simplify the expression, we substitute the definition of $K_f(X)$ into the definition of $S(X/P)$, which reduces to:

$$S_f(X/P) \equiv \min_{f(p) \in P(X)} |p|$$

This looks similar to the definition of the Kolmogorov complexity, but the equality in the argument has been replaced by an equivalence. The macrocomplexity $S_f(X/P)$ is a function of the microstate X and equivalence relation P, in contrast to Kolmogorov’s C-complexity, which depends only on X. Clearly, $S \leq C$. In fact, the difference between the macrocomplexity $S_f(X/P)$ and the C-Complexity of a typical state is close to Boltzmann’s entropy function.

3 Boltzmann Entropy and Optimal Information-Losing Codes

The entropy of multimedia data is typically high, its string representations are irregular and nearly incompressible by universal (lossless) data compression algorithms\cite{23, 18, 20, 21}, so the output of such algorithms is not significantly shorter than the original data. An effective lossy compression algorithm, on the other hand, minimizes description length within an equivalence class whose elements are indistinguishable to a macroscopic observer or other equivalence class P, which may allow significant savings.

As a concrete example, consider lossy MPEG Level 3 (MP3) audio compression, which typically provides higher levels of compression of music than the universal Lempel-Ziv \cite{14, 25} compression algorithm. MP3 frequently compresses music recordings 90%, whereas Lempel-Ziv’s compression ratio of raw music data is often close to zero. The reason such an improvement is possible, given entropic coding limits, is that the human nervous system discards large amounts of irrelevant perceptual data\cite{21, 9}. As a result, the classes of objects which are indistinguishable to humans often have many members, which, in turn, leads to the existence of shorter descriptions. By refining this notion, we will elucidate the role of Boltzmann entropy functions in macroscopic observation and lossy data compression.
For media such as audio or video which mimic the sensory channels of a macroscopic human observer, the amount of regularity or redundancy is often low in comparison to the length of the string. Not much compression is possible, so \(C_f(X) \approx |X| \). In this case, \(X \) is regarded as mostly random or chaotic\(^{[3,15]} \). Regardless of the string \(X \), the size of the class \(X/P \) naturally affects the existence of simpler equivalent descriptions. If the criteria for \(P \) are very restrictive, then it may be that

\[
S_f(X/P) \approx C(X)
\]

That is, any description of a macrostate requires specification of nearly the entire microstate. We will focus our attention on the more interesting case, when \(X/P \) contains simpler microstates equivalent to a typical element \(X \):

\[
S_f(X/P) < C(X)
\]

This is the case when lossy compression is practical, for example, with many digital audio and video recordings. In such cases, the Boltzmann entropy of \(X/P \) is comparable to the difference between the macrocomplexity and \(K \)-complexity. This may be demonstrated via the universal probability measure. Let us define the universal probability of an equivalence class:

\[
U(X, P) = \sum_{f(p) \in X/P} 2^{-|p|}
\]

Here the programs \(p \) are implied to be self-delimiting prefix codes, and hence the relation involves \(K \)-complexity rather than \(C \)-complexity. This may be rewritten as the sum of the individual universal probabilities \(U(X_i) \) for each string \(X_i \) belonging to the class \(X/P \):

\[
U(X, P) = \sum_{i=1}^{\lvert X/P \rvert} U(X_i)
\]

To first order, the universal probability of programs having \(X \) as output is dominated by the shortest program and may be approximated by

\[
U(X) \approx 2^{-K(X)}
\]

The universal probability of programs congruent to \(X/P \) may be expressed as

\[
U(X, P) \approx 2^{-S(X/P)}
\]

The relative frequency of programs with output in the class \(X/P \) over programs whose output is \(X \), then, is the ratio of these two measures. The universal probability of microstate \(X \) given that \(X \) is in \(X/P \) becomes

\[
U(X|X/P) = \frac{U(X)}{U(X, P)} = \frac{U(X)}{\sum_{u=1}^{\lvert X/P \rvert} U(X_i)}
\]
or, taking the leading terms in each series, we have, to first order,
\[U(X|X/P) \approx 2^{S(X/P) - K(X)} \] (21)

In a classical statistical ensemble, each of the $|X/P|$ microstates of the system are equally likely, with probability $\frac{1}{|X/P|}$. These probabilities do not directly correspond to the universal probabilities. The latter are the probabilities of obtaining a string as the output of a random program on a certain Turing machine, and the former are simply the probabilities directly implied by the length of the string. Directly equating the universal probability and the likelihood is not appropriate.

However, we may characterize a typical element X whose universal probability is close to its mean value of $\frac{1}{|X/P|}$. For such a typical element:

\[U(X|X/P) = \frac{U(X)}{U(X,P)} = \frac{U(X)}{\sum_{u=1}^{|X/P|} U(X_i)} \approx \frac{1}{|X/P|} \] (22)

Substituting, we see that the cardinality of the macrostate obeys, to first order,
\[U(X|X/P) = \frac{1}{|X/P|} \approx 2^{S(X/P) - K(X)} \] (23)

After taking logarithms and inverting the sign, we obtain a relation involving the Boltzmann entropy of the macrostate, which is the logarithm of the set cardinality:
\[S = \log |X/P| \approx K(X) - S(X/P) \] (24)

The Boltzmann entropy of the macrostate is seen to be the difference between the prefix complexity K and the macrocomplexity $S(X/P)$ for a typical element of X/P which occurs with approximately average probability. Entropy represents the additional information needed to specify a typical microstate, of complexity $K(X)$, provided the description of its macrostate having complexity $S(X/P)$. This holds for ‘shallow’ objects, where the universal probability is dominated by the shortest program, but need not be the case for ‘deep’ objects which reveal their structure in a slow convergence to the universal probability.

If the system has multiple macrostates, rather than a single equilibrium macrostate, then a different probability measure may apply. The uniform recursive probability measure for strings of length $|X|$, $\mu = 2^{-|X|}$, implies:
\[\frac{|X/P|}{2^{|X|}} \approx 2^{K(X) - S(X/P) - |X|} \] (25)

This measure effectively shifts the discrete Boltzmann entropy by a normalization constant $|X|:
\[S = \log \frac{|X/P|}{2^{|X|}} \approx K(X) - S(X/P) - |X| \] (26)

This form is related to universal randomness tests\cite{5, 15}. To first order, the sum of the macrocomplexity and Boltzmann entropy (which is also the total
information Σ) may be expressed as the Martin-Löf universal randomness test $K(X) - |X|$:

$$\Sigma = S + S(X/P) \approx K(X) - |X|$$

(27)

Such relationships are known to relate algorithmic entropy[15] and prefix complexity, which may be expressed as a special case of macrocomplexity. The macrocomplexity provides statistical and thermodynamic bounds for the optimal performance of lossy data compression, just as Shannon information limits exact universal compression. Furthermore, since the macrocomplexity is the Kolmogorov complexity of an equivalent element, it may be used (or approximated) for minimum description length inference in problems of pattern recognition and artificial intelligence.

4 Effective Complexity and Algorithmic Entropy of Macrostates

Like many complexity measures[7], macrocomplexity is closely related to effective complexity and algorithmic entropy[15]. These measures agree, under appropriate conditions, with macrocomplexity as the best information-losing data compression of a string X as judged by a classifier P.

The entropy of an unconstrained, discrete set is the logarithm or Boltzmann entropy function $S = \log |X/P|$ of the macrostate, so the total information becomes:

$$\Sigma = Y + H(X/P) = Y + \log |X/P|$$

(28)

Where Y is the K-complexity of the macrostate X/P. For the case of a typical element X, the total information Σ is close (within a few bits[7]) to the K-complexity X.

$$K(X) \approx Y + \log |X/P|$$

(29)

This level of effective complexity is typical of the equivalence class X/P. Hence, for typical elements, the effective complexity is:

$$Y \approx K(X) - \log |X/P|$$

(30)

This is approximately equal to the first-order approximation to the macrostate complexity obtained in the previous section:

$$S(X/P) \approx K(X) - \log |X/P|$$

(31)

So, $Y \approx S(X/P)$ is the complexity typically perceived by an observer or some other classifier described by the macrostate P. The correspondence may be seen to hold more generally by considering macroscopic equivalence in terms of Turing equivalence. The S-complexity may be alternately defined using the complexity of a computer-observer system. In this context, the entropy plays the role of a constant which relates the complexity of programs on computer f to those of a Turing-equivalent computer-observer system, g. Specifically, g
applies to its input program the instructions of computer \(f \) followed by the mapping to the equivalence class \(P(X) \), that is, \(g() = P(f()) \). This mapping loses information, so the complexities obey:

\[
K_f(X) = K_g(P(X)) + C
\]

(32)

As we have seen, for typical elements, the additive Turing equivalence constant, \(C \), is approximately the Boltzmann entropy \(S \). It represents the amount of Kolmogorov complexity lost by the computer-observer system, \(g = P(f) \), as compared to the standard computer, \(f \). This allows an alternative definition of macrocomplexity - the K-complexity of a macroscopic equivalence class \(P(X) \) on the computer-observer system \(g \):

\[
S_f(X, P) \equiv K_g(P(X))
\]

(33)

The macrostate complexity, originally defined in terms of a standard computer and an observer, is now the complexity of the macrostate on a computer system which incorporates the observer. This is an effective complexity, the K-complexity of \(P(X) \). In this way, we split the total information \(K_f(X) \) into an effective complexity \(K_g(X) \) and a Turing equivalence constant \(C \), a function of \(P \) which plays the role of the entropy.

Equivalently, macrocomplexity may be regarded as a generalization of algorithmic entropy. Endowing the algorithmic entropy with an arbitrary metric generalizes the prefix complexity\[15\] to macrostates which do not necessarily share common prefixes; in this case, macrocomplexity arises from the algorithmic entropy of arbitrary sets having uniform metrics.

5 Calculating the Complexity of a Macrostate

The first step in a consideration of macrocomplexity is to specify the observer or classifier \(P \). Once this is done, a calculation or estimate of complexity may be desired. Kolmogorov complexities are not generally calculable\[2\], so unless the class \(X/P \) contains objects with short string representations, exact calculation of \(S_f(X/P) \) could be impossible. Even if one discounts the halting problem and uses the finitely calculable resource-limited complexities\[15\], the number of enumerable strings to consider is potentially daunting.

Practical approximation of \(S_f(X/P) \), however, may be fairly simple, given one or more lossy compression algorithms offering good performance as judged by the classifier \(P \). Estimation of \(S_f(X/P) \) in this case amounts to tuning the lossy algorithms to minimize length without perceptible loss, as determined by the relation \(P \). Just as universal data compression algorithms such as Lempel-Ziv\[14\] may be used to estimate the algorithmic prefix complexity, \(K \), existing lossy data compression algorithms allow a quick estimate of certain macrostate complexities. These macrostate complexities may then be used to construct a mutual information function, universal probabilities, or other statistics.

Of course, if the cardinality of the macrostate, \(|X/P| \), is known or estimable, then \(S_f(X/P) \) may be approximated using results obtained relating the
macrocomplexity to the Boltzmann entropy. Conversely, knowledge of $S_f(X/P)$ may be used to estimate the cardinality or Boltzmann entropy of an unknown macrostate (with a known equivalence relation) whose cardinality might otherwise be difficult or impossible to count.

6 Classification of Macrostates

Given the ability to calculate or approximate $S_f(X/P)$, the minimal descriptive complexity of an element of the equivalence class X/P, we may use it for the purpose of classification. We may define a conditional complexity by directly substituting macrocomplexity in place of K-complexity:

$$S((A|B)/P) = S(AB/P) - S(B/P) \quad (34)$$

Effectively, this is $K(A|B)$ modulo P, and it represents the complexity of differences between A and B which persist even after passing through the classifier P. The combination AB is typically chosen in a way that preserves locality under P. For practical resource-limited estimation, AB should be constructed such that corresponding structural elements of the objects A and B are 'close' in some sense of the resulting representation.

Ideally, a similarity measure $D(x, y)$ would have the properties of a distance metric: $D(x, y) > 0$, $D(x, y) = D(y, x)$, and $D(x, y) + D(y, z) < D(x, z)$. One way to accomplish this would be to symmetrize by addition\footnote{\cite{15}} to $S((A|B)/P) + S((B|A)/P)$ which results in the macroscopic complexity’s equivalent of a mutual information function\cite{3,15} modulo the relation P. However, this combination is not necessarily the desired minimal distance function, as there is generally some redundancy between these two quantities. On the other hand, the 'max-distance' $E_1 = \max(C(A|B), C(B|A))$ is minimal among all such distances\cite{15}, up to an additive constant. In terms of macrocomplexity, this is:

$$D(A, B) = \max\{S((A|B)/P), S((B|A)/P)\}$$

This is the minimum amount of additional data that must be specified to transform A into an element of $P(B)$ or B into an element of $P(A)$, with the optimal transformation being in one of these two directions. This quantifies the similarity of any two macroscopic objects and provides a natural framework for the classification of macrostates. In this framework, classification problems reduce to minimizing a sort of universal invariant distance from X to the class P_i,

$$D_{P_i}(X) = \min_{Y \in P_i} D(X, Y) \quad (35)$$

This is evaluated against all macrostates in P to identify the closest macrostate, P_i, to a string whose equivalence class X/P is undefined or unknown:

$$\text{Class}(X) = \arg \min_{P_i \in P} D_{P_i}(X) \quad (36)$$

For example, the recognition of recorded speech as particular words might evaluate an unknown audio sample against recordings indexed in a dictionary.
Such patterns may be specified, as would typically be the case with a dictionary, or they may be defined based on proximity in equivalence distance.

7 Comments and Discussion

The extraction of meaningful information has always been a problem in the machine recognition of human sensory input. Prior to filtering by neural perceptual classifiers, such input is mostly random, incompressible, noisy and chaotic. The perception of useful information in such a signal involves removal of irrelevant noise in order to recognize compressible and learnable patterns. Lossy data compression schemes, by their nature, do this, and, coupled with a macroscopic equivalence relation, allow the practical estimation of macrocomplexity in some cases. As lossy compression algorithms improve, so will approximations of macrocomplexity, which will improve the quality of pattern recognition.

As evidenced by the success of lossy perceptual audio encoding, psychoacoustics has become a relatively mature science. When perceptual equivalence under P amounts to indistinguishability to a typical human ear, these psychoacoustic models provide effective lossy data compression. The resulting macrocomplexity may be used to perform auditory inference by proximity in equivalence distance.

Spoken language is richer in information than text, but the difficulty of extracting this information has historically limited its utility in analysis. For example, in the case of written human language, the transcription of audio data to symbolic data obviously loses large amounts of information about cues such as inflection, tone, and timing. One could define macroscopic perceptual classes based on some semantic equivalence, e.g. X/P could represent recordings of a particular word. Psychoacoustics models, however, properly describe indistinguishability of sounds to the ear of a hypothetical listener rather than this sort of higher-order linguistic processing.

As a trivial example of how macrocomplexity is relevant to inference, consider the filtering of human speech recorded in a noisy environment. If the original recording is, for example, a 48kHz channel recorded on an idealized microphone, then most of its data points are irrelevant to the capture of the human voice, whose frequency response does not exceed some maximum frequency threshold, typically around 3kHz. The speech frequency band constitutes a psychoacoustic model for an observer, P, ignorant of the higher frequencies. As such, a crude perceptual coding might simply perform a Fourier transform and discard all frequencies in the spectrum above (or below) the audible threshold. Entropic compression may then be used to estimate complexities or information distances using either the filtered spectrum or its inverse Fourier transform, the filtered signal. In addition to reconstructing the signal using less information, this improves inference regarding speech, as higher frequency components are not germane to speech analysis. The result is an estimate of macrocomplexity for the specified P.

The lossy compression of images and video is a more difficult problem than audio, as visual processing by humans is not so well understood as psychoacous-
tics, and because images often represent more information than audio recordings. Modern image compression is largely based on wavelets through the JPEG2000 standard\[1\], which remains the dominant medium for transmitted image data. Recent video codecs such as h.264 video and MPEG-7 audio have been developed using more realistic psychological models\[9\][20]. These algorithms offer more effective perceptual coding, greater compression, and hence more accurate estimates of macrocomplexity as compared to their predecessors. As one might expect based on the discussion here, such algorithms have improved utility in indexing and retrieval applications\[9\].

Due to the breadth of other definitions of equivalence classes, the notion of splitting microscopic complexity into a macroscopic observer and a macroscopic observation has many possible implications. Macrostate complexity may only be rigorously defined insofar as the macroscopic equivalence relation P may be well-posed. A rigorous and exact calculation of macrocomplexity, like the Kolmogorov complexity of its microstate, is not possible beyond trivial cases. However, for observers similar to those modeled by existing lossy data compression algorithms, the use of such a measure enables pattern recognition which can exceed the limits posed by classical information theory.

References

[1] T. Acharya and P. Tsai, *JPEG2000 standard for image compression*, Wiley, Hoboken, NJ, 2005.

[2] G.J. Chaitin, *Algorithmic information theory*, Cambridge University Press, 1987.

[3] T.M. Cover, *Elements of information theory*, Wiley, 1991.

[4] E. Fermi, *Thermodynamics*, Dover, New York, 1956.

[5] P. Gács, *The boltzmann entropy and randomness tests*, Proc. 2nd IEEE Workshop on Physics and Computation (1994), 209–216.

[6] M. Gell-Mann and S. Lloyd, *Information measures, effective complexity, and total information*, Complexity 2/1 (1996), 44–52.

[7] M. Gell-Mann and C. Tsallis, *Nonextensive entropy - interdisciplinary applications*, Oxford University Press, 2004.

[8] J. Gibbs, *Elementary principles of statistical mechanics*, Scribner and Sons, Cambridge, MA, 1902.

[9] T. Sikora H. Kim, N. Moreau, *Mpeg-7 audio and beyond*, Wiley, Hoboken, NJ, 2006.

[10] R. V. L. Hartley, *Transmission of information*, Bell System Technical Journal (July 1928), p.535
[11] E.T. Jaynes, *Probability theory: The logic of science*, Cambridge University Press, 2003.

[12] C. Kittell, *Thermal physics*, W.H. Freeman and Co., 1980.

[13] L. Landau and E. Lifshitz, *Statistical physics part 1*, 3rd ed., Pergamon Press, New York, 1980.

[14] A. Lempel and J. Ziv, *On the complexity of finite sequences*, IEEE Trans. Inform. Theory IT-22 (1976), 75–81.

[15] M. Li and P. Vitányi, *An introduction to kolmogorov complexity and its applications*, second ed., Springer-Verlag, New York, 1997.

[16] R. Pathria, *Statistical mechanics*, 2nd ed., Butterworth-Heinemann, Boston, MA, 1996.

[17] M. Planck, *Treatise on thermodynamics*, 3rd ed., Dover, New York, 1945.

[18] K.R. Rao and P.C. Yip, *The transform and data compression handbook*, CRC Press, Boca Raton, FL, 2001.

[19] F. Reif, *Fundamentals of statistical and thermal physics*, 3rd ed., McGraw-Hill, New York, 1965.

[20] I.E.G. Richardson, *H.264 and mpeg-4 video compression*, Wiley, Hoboken, NJ, 2003.

[21] D. Salomon, *Data compression. the complete reference*, 3rd ed., Springer-Verlag, New York, 1997.

[22] C.E. Shannon, *The mathematical theory of communication*, Bell Labs Tech. J. 27 (1948), 379–423,623–656.

[23] Y. Shi and H. Sun, *Image and video compression for multimedia engineering*, CRC Press, Boca Raton, FL, 2000.

[24] A.M. Turing, *On computable numbers with an application to the entscheidungsproblem*, Proc. London Math. Soc., Ser. 2 42 (1936), 230–265.

[25] J. Ziv and A. Lempel, *Compression of individual sequences via variable rate encoding*, IEEE Trans. Inform. Theory IT-24 (1978), 530–536.

[26] W.H. Zurek, *Algorithmic randomness and physical entropy*, Physical Review, Ser. A 40(8) (1989), 4731–4751.