Stroke Hospitalizations Before and During COVID-19 Pandemic Among Medicare Beneficiaries in the United States

Quanhe Yang, PhD; Xin Tong, MPH; Sallyann Coleman King, MD; Benjamin S. Olivari, MPH; Robert K. Merritt, MPH

BACKGROUND AND PURPOSE: Emergency department visits and hospitalizations for stroke declined significantly following declaration of coronavirus disease 2019 (COVID-19) as a national emergency on March 13, 2020, in the United States. This study examined trends in hospitalizations for stroke among Medicare fee-for-service beneficiaries aged ≥65 years and compared characteristics of stroke patients during COVID-19 pandemic to comparable weeks in the preceding year (2019).

METHODS: For trend analysis, we examined stroke hospitalizations from week 1 in 2019 through week 44 in 2020. For comparison of patient characteristics, we estimated percent reduction in weekly stroke hospitalizations from 2019 to 2020 during weeks 10 through 23 and during weeks 24 through 44 by age, sex, race/ethnicity, and state.

RESULTS: Compared to weekly numbers of hospitalizations for stroke reported during 2019, stroke hospitalizations in 2020 decreased sharply during weeks 10 through 15 (March 1–April 11), began increasing during weeks 16 through 23, and remained at a level lower than the same weeks in 2019 from weeks 24 through 44 (June 7–October 31). During weeks 10 through 23, stroke hospitalizations decreased by 22.3% (95% CI, 21.4%–23.1%) in 2020 compared with same period in 2019; during weeks 24 through 44, they decreased by 12.1% (95% CI, 11.2%–12.9%). The magnitude of reduction increased with age but similar between men and women and among different race/ethnicity groups. Reductions in stroke hospitalizations between weeks 10 through 23 varied by state ranging from 0.0% (95% CI, −16.0%–1.7%) in New Hampshire to 36.2% (95% CI, 24.8%–46.7%) in Montana.

CONCLUSIONS: One-in-5 fewer stroke hospitalizations among Medicare fee-for-service beneficiaries occurred during initial weeks of the COVID-19 pandemic (March 1–June 6) and weekly stroke hospitalizations remained at a lower than expected level from June 7 to October 31 in 2020 compared with 2019. Changes in stroke hospitalizations varied substantially by state.

GRAPHIC ABSTRACT: An online graphic abstract is available for this article.

Key Words: COVID-19 ■ hospitalization ■ Medicare ■ pandemic ■ United States
also declined significantly during the early period of the COVID-19 pandemic.3–9 The observed reduction in stroke hospitalizations during the COVID-19 pandemic could have significant unintended consequences; each year nearly 800,000 Americans have a new or recurrent stroke (on average 15,000 stroke per week) and ≈150,000 die, accounting for 1 in 20 deaths in the United States.10 Early treatment is crucial in maximizing the benefit of stroke interventions such as thrombolitics and thrombectomy treatment for ischemic stroke11 and blood pressure control for hemorrhagic stroke.12 Delayed treatments are associated with increased risk of serious long-term disability and death from stroke.13,14 We analyzed Medicare data among Medicare fee-for-service (FFS) beneficiaries aged ≥65 years who were hospitalized with a stroke from January 1, 2019, to October 31, 2020, to understand the changes in weekly stroke hospitalizations that occurred during the COVID-19 pandemic and to assess if the change in weekly rate of stroke hospitalization during the pandemic differed by patient characteristics or geographic location.

METHODS

The Medicare data used in this study cannot be shared by authors because of the data use agreement, but the investigators can request the data access through Centers for Medicare and Medicaid Services.

We identified all Medicare FFS beneficiaries aged ≥65 years with at least 11 months of continuous enrollment in Medicare Part A (hospitalization) and Part B (outpatient care) in 2019 and at least 9 months of enrollment in 2020. We used the Medicare monthly Research Identifiable File from Part A to calculate the weekly number of stroke hospitalizations (https://www.cms.gov/Research-Statistics-Data-and-Systems/Research/ResearchGenInfo/ResearchDataAssistanceCenter). The Research Identifiable File Part A contains inpatient hospital records for Medicare FFS beneficiaries; stroke hospitalizations were defined as those having a primary diagnosis of stroke using International Classification of Diseases, Tenth Revision codes (I60–I69 for all types of cerebrovascular disease [all-stroke]; I63 for acute ischemic stroke [AIS] and I60–I61 for hemorrhagic stroke [subarachnoid hemorrhage and intracerebral hemorrhage]).

To examine the timing and duration of reductions in stroke hospitalizations, we conducted trend analyses on the weekly number of stroke hospitalizations from week 1 in 2019 through week 44 in 2020 by stroke type (all-stroke, AIS, and hemorrhagic stroke) and by age group (65–74, 75–84, and ≥85 years), sex, race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, and other) as supplemental material using Joinpoint Regression Program (version 4.8.0.0, National Cancer Institute); we calculated the weekly percentage change (WPC) in stroke hospitalizations for each trend segment. We limited modeling to a maximum of 3 joinpoints with 4 trend segments and used the weighted Bayesian Information Criterion for model selection.

To quantify the magnitude of stroke hospitalization changes during the early weeks of the COVID-19 pandemic, when compared with the same time periods in the previous year, we compared the total number of stroke hospitalizations for 2 periods of time based on the Joinpoint results: weeks 10 through 23 in 2020 (compared to same weeks in 2019) to assess the initial impact of the COVID-19 pandemic and weeks 24 through 44 in 2020 (compared to the same weeks in 2019) as the period of the pandemic after the initial impact. Comparisons were by age group, sex, and race/ethnicity and tested for differences based on χ² tests and presented adjusted P values by using Holm method for multiple comparisons.15 To evaluate changes in stroke hospitalizations by patient state of residence, we compared stroke hospitalizations during weeks 10 through 23 in 2019 (the pre–COVID-19 period) to hospitalizations during weeks 10 through 23 in 2020 (during the COVID-19 pandemic) within each state.

The weekly number of all-stroke hospitalizations during 2 time periods: between weeks 10 through 23 in 2019 and 2020 and between weeks 24 through 44 in 2019 and 2020. We divided the difference in number of stroke hospitalizations between 2019 and 2020 (numerator) by the number of stroke hospitalizations in 2019 (denominator) and multiplied by 100. We used bootstrap resamples with 1000 bootstrap samples to determine the 95% CI with lower 95% CI <0 as insignificant change.16

The study findings are reported in accordance with the Reporting of Studies Conducted Using Observational Routinely Collected Health Data recommendations (Figure 1 in the Data Supplement shows the study flow diagram).17 This study was reviewed by Centers for Disease Control and Prevention and conducted consistent with applicable federal law and Centers for Disease Control and Prevention policy (See eg, 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq).

RESULTS

The weekly number of all-stroke hospitalizations decreased slightly from week 1 in 2019 through week 9 in 2020 (WPC, −0.08% [95% CI, −0.14% to −0.02%]), followed by a sharp decline from week 10 through week 15 in 2020 (WPC, −5.98% [95% CI, −7.50% to −4.43%]) (Table 1 and Figure 1). Hospitalizations started trending towards those seen in 2019 thereafter, with a WPC of 3.09% (95% CI, 1.94%–4.25%) from weeks 15 through 23, and remained at a lower than normal level from weeks 23 through 44 (WPC, 0.05% [95% CI, −0.23% to 0.33%]).
to 0.32%). The pattern of change was largely consistent by age group, sex, race/ethnicity, and for all-stroke and AIS (Table 1, Figure 1A and 1B and Table I in the Data Supplement). There was no clear pattern of changes for hemorrhagic stroke; it appeared to decline during the initial period of COVID-19 circulation (WPC, −2.68% [95% CI, −4.06% to 1.28%] from weeks 4 to 15) and increased slightly from weeks 15 through 44 in 2020 (Table 1 and Figure 1C).

During a 14-week time interval (weeks 10 through 23; March 1 to June 6, 2020), all-stroke hospitalizations among FFS beneficiaries were reduced by 22.3% (95% CI, 21.4%–23.1%) compared with weeks 10 through 23 in 2019 (March 3–June 8). From weeks 24 through 44, the reduction of all-stroke hospitalizations remained the same. The number of stroke deaths decreased from 2019 to 2020, but there were no differences in in-hospital death rates comparing pre-pandemic to the COVID-19 pandemic period (6.1% [95% CI, 5.9%–6.3%] versus 6.2% [95% CI, 6.0%–6.4%] for all-stroke for week 10 through 23 and 5.8% [95% CI, 5.7%–6.0%] versus 5.8% [95% CI, 5.7%–6.0%] for week 24 through 44 (P>0.05)).

Stroke hospitalization trends from weeks 10 through 23 varied significantly by state ranging from no change in New Hampshire (0.0% [95% CI, −15.9% to 13.7%]) to a 36.2% decline (95% CI, 24.8%–46.7%) in Montana during 2020 compared with the same time period in 2019 for all-stroke, from −6.1% (95% CI, −26.5% to 11.1%) in New Hampshire to 37.0% (95% CI, 23.1%–47.6%) in Montana for AIS, and from −10.8% (95% CI, −37.0% to 9.7%) in Massachusetts to 57.4% (95% CI, −32.0% to 76.6%) in Maine for hemorrhagic stroke. Ten states had insignificant changes in AIS stroke hospitalizations, and 32 states had insignificant changes in hemorrhagic stroke hospitalizations comparing weeks 10 through 23 in 2019 to 2020 (Figure 2A through 2C).

DISCUSSION

We observed a sharp decline in the number of weekly stroke hospitalizations from weeks 10 through 15 in 2020 (WPC, 5.98%) among Medicare FFS beneficiaries aged ≥65 years followed by an increase during weeks 15 through 23 to levels slightly below those seen during the same weeks in 2019. However, changes in stroke hospitalizations during the initial period of COVID-19 pandemic (weeks 10 through 23) varied significantly by state.

Several studies reported significant reductions in stroke patients admitted to hospitals during the early phase of COVID-19 pandemic in the United States and in other countries.3,4,6,9,18–24 Although most of these studies focused on the initial decline of stroke hospitalizations amidst the COVID-19 pandemic, our study examined the timing, duration, and magnitude of the reduction by including more recent data with longer trend analysis. Based on the National Inpatient Sample of the Healthcare Cost and Utilization Project, there were 579,825 all-stroke hospitalizations in 2017 among
people aged ≥65 years with an average expected weekly all-stroke hospitalizations of 11,150 (https://hcupnet.ahrq.gov/#setup). In contrast, approximately 34,700 fewer all-stroke hospitalizations occurred during weeks 10 through 23 in 2020 and 28,100 fewer during weeks 24 through 44 among individuals aged ≥65 years. A continued increase in stroke hospitalizations as the pandemic continues. The reasons for lower than expected stroke hospitalizations following the initial impact of COVID-19 pandemic are not clear; further studies are needed to better understand the reasons why stroke hospitalizations are lower during a pandemic that likely increases stroke risk and to explore the impact of lower hospital-seeking behavior.

Figure 1. Trends in weekly numbers of stroke hospitalizations among Medicare fee-for-service beneficiaries aged ≥65 years from weeks 1 in 2019 through 44 in 2020, by stroke type, United States. A, All-stroke. B, Acute ischemic stroke. C, Hemorrhagic stroke. COVID-19 indicates coronavirus disease 2019. (Continued)
The observed reduction in stroke hospitalizations increased with increasing age. Studies suggest that older adults tend to overlook the signs of stroke and delay seeking care. Among older adults, those living alone or with less caregiver support are more likely to experience a prehospital delay in stroke treatment and care, which may partly explain the larger reduction in stroke hospitalizations by age during the COVID-19 pandemic. In addition, social isolation during the early phase of COVID-19 pandemic may have resulted in missed or untimely recognition of stroke symptoms and lead to a delay in seeking care.

The findings of our study suggest that the reduction in stroke hospitalizations during the early phase of COVID-19 pandemic was similar between men and women and among different racial and ethnic groups consistent with findings of other studies. However, studies have documented significant racial-ethnic disparities in utilization of emergency medical services systems and often delayed arrival at emergency department for stroke treatment and care in the period before COVID-19 pandemic, as well as a disproportionate impact of COVID-19 on persons of color during the COVID-19 pandemic. In this study, however, it appears that the effect of COVID-19 on the reduction of stroke hospitalizations was proportionally distributed across sex and race/ethnicity groups among Medicare FFS beneficiaries. Further studies may examine whether there may be any differences in the reduction of stroke hospitalizations by socioeconomic status, insurance coverage, healthcare access, rural and urban, and among non-FFS Medicare beneficiaries.

Our study is the first to examine the variations in the reduction of stroke hospitalizations by state. Nine states had nonsignificant differences, and 12 states had a reduction in all-stroke hospitalizations greater than 25% comparing weeks 10 through 23 in 2019 to the same time period in 2020. The reasons for the significant variation in reductions by states are not clear. The states with a smaller number of stroke hospitalizations were more likely to have nonsignificant changes in stroke hospitalizations during the early phase of COVID-19 pandemic, likely partially due to smaller sample sizes. The starting dates, duration, and type of stay-at-home orders varied by states. For example, California started mandatory stay-at-home order on March 19 and South Carolina on April 6, 2020, and 6 states did not have mandatory stay-at-home orders during March and May 2020 (Arkansas, Iowa, Nebraska, North Dakota, South Dakota, and Wyoming) (https://www.nashp.org/governors-prioritize-health-for-all). The differences in starting dates, duration, type of stay-at-home orders, and the timing of the geographic spread of SARS-CoV-2 may also contribute to states variations in percent reduction of stroke hospitalizations. Further studies are needed to examine the reasons for the significant variation in the reduction of stroke hospitalizations by states because of the COVID-19 pandemic.

Our findings showed the percent reduction in AIS hospitalizations was greater than that of hemorrhagic stroke. Other studies found that the decline in the number of patients admitted with mild strokes (a National Institutes of Health Stroke Scale score ≤5) was greater than that of moderate or severe strokes in the United Kingdom.
and Norway,24,35 and the preliminary findings from Paul Coverdell National Acute Stroke Program suggested the National Institutes of Health Stroke Scale was significantly higher among hospitalized stroke patients comparing pre–COVID-19 and during the COVID-19 pandemic time periods (Paul Coverdell National Acute Stroke Program, personal communication, October 5, 2020). Despite more moderate or severe stroke were admitted to the hospitals during the pandemic, our study found no differences in in-hospital death rates among Medicare beneficiaries comparing prepandemic to the COVID-19 pandemic period consistent with the findings of other studies.36,37 Studies suggested that stroke treatments and quality of care were preserved during the pandemic that may partly explain the lack of temporal change in death rates.26–39 Hemorrhagic stroke is generally more severe than AIS and associated with considerable risk of mortality.40 The severity of hemorrhagic stroke may partly explain the differences in reduction of AIS and hemorrhagic stroke hospitalizations as a result of COVID-19 pandemic. However, information on stroke severity was not available in Medicare data. The smaller number of hemorrhagic stroke hospitalizations compared to AIS may also contribute to the finding of fewer reductions that were statistically significant.

Significant reduction in stroke hospitalizations may be due to multiple reasons, including fear of exposure to COVID-19 in hospitals or healthcare settings, stay-at-home orders, and social distancing guidance that may make people more likely to be alone, or there could be true changes in incidence of stroke.4,5,19,41,42 In addition, it is possible that some hospitalized FFS beneficiaries with COVID-19 having stroke may be classified as COVID-19 instead of stroke. Further study is needed to determine the effect of deferred care-seeking behavior and changes in incidence of stroke on the reduction of stroke hospitalizations during COVID-19 pandemic.

Stroke is the fifth leading cause of death in the United States, and approximately every 40 seconds, an American will experience a stroke.10 This life-threatening condition requires timely emergency care to avoid serious complications, long-term disability, or death regardless of the COVID-19 pandemic status.4 As part of its framework for provision of non–COVID-19 health care during the COVID-19 pandemic, the Centers for Disease Control and Prevention recommends seeking timely health care for non–COVID-19 time-sensitive conditions, such as stroke and heart attack during COVID-19 (https://www.cdc.gov/coronavirus/2019-ncov/hcp/framework-non-COVID-care.html). The Stroke Council of the American Heart Association/American Stroke Association published guidelines for the care of stroke patients and for reducing the risk of infectious exposure at hospital or health care settings during the COVID-19 pandemic.53,44 It is recommended that patients seek immediate care for life-threatening conditions like stroke (https://www.cdc.gov/stroke/signs Symptoms.htm).

There are several limitations of this analysis. First, this study used the Medicare preliminary data that is updated on monthly basis and the latest data included in our analysis (week 44 in 2020, October 25–October 31) was updated in January 2021. The number of weekly stroke hospitalizations may be subject to change. However, Centers for Medicare & Medicaid Services suggested that >95% of Medicare FFS in-hospital claims were received within 3 months (https://www.cms.gov/files/document/medicare-covid-19-data-snapshot-fact-sheet.pdf). Second, Medicare inpatient claims have no information on the severity of stroke; therefore, we could not assess potential differences in the reduction of stroke hospitalizations by severity. Third, Medicare data is an administrative claims database that has important strengths, including the ability to answer a wide range of health care–related questions such as understanding the epidemiology of the chronic diseases, quantifying the costs related to health care interventions, and studying the effects of policy changes on prescribing patterns and clinical outcomes, but it is not designed to be a surveillance system or to track the trends and changes in time-sensitive conditions, including stroke. In addition, the coding of stroke diagnosis using International Classification of Diseases, Tenth Revision in Medicare databases may not reflect the final diagnosis by the treating physicians. However, studies suggested that the sensitivity of International Classification of Diseases, Tenth Revision codes for any cerebrovascular disease (I60-I69) in the administrative health databases was over 80%.45 Fourth, Medicare databases do not have information on the duration of prehospital delay between the time of stroke symptoms onset and seeking medical care. This information may be particularly important during the pandemic. Fifth, we had limited sample size to examine the timing and duration of weekly reduction in stroke hospitalizations at state level and focused on comparing the difference during the initial effects of COVID-19 pandemic by state. Sixth, we restricted our study to Medicare FFS beneficiaries which included about 60% of Medicare beneficiaries, thus our findings may not be generalizable to non-FFS beneficiaries. About 80% of Medicare beneficiaries in this study identified as non-Hispanic Whites, and our findings may reflect primarily the changes in stroke hospitalizations among non-Hispanic White beneficiaries.

CONCLUSIONS

Our findings suggest that the number of stroke hospitalizations was reduced significantly during the early phase of COVID-19 pandemic compared with the same period in 2019 among Medicare FFS beneficiaries and remained at a lower than usual level following the initial impact of pandemic in the United States. Public health agencies and other organizations should enhance communication efforts to remind the public about the signs and symptoms of stroke. Stroke is a medical emergency,
Table 2. Percent Reduction in Number of Medicare Fee-for-Service Beneficiaries Aged ≥65 Years Hospitalized With Stroke From Week 10 to 23 and Week 24 to 44 in 2019 and 2020 by Stroke Type and Selected Characteristics—United States, 2019–2020

Characteristics	Initial impact of COVID-19 pandemic	2019 Weeks 10–23 (March 3–June 8)*	2020 Weeks 10–23 (March 1–June 6)*	% Reduction in stroke hospitalization†	P value‡			
	No.	Percent (95% CI)	No.	Percent (95% CI)	Percent (95% CI)			
All-stroke	Total	68266	53062	22.3 (21.4–23.1)	0.08			
	Age, y (median, IQR)	79.1 (72.4–86.0)	78.9 (72.5–85.6)	0.08				
	Age group, n (%)	65–74 y	23349	34.2 (33.9–34.6)	18469	34.8 (34.4–35.2)	20.9 (19.3–22.4)	
	75–84 y	25710	37.7 (37.3–38.0)	20163	38.0 (37.6–38.4)	21.6 (20.1–23.0)		
	≥85 y	19207	28.1 (27.8–28.5)	14430	27.2 (26.8–27.6)	24.9 (23.2–26.5)		
	Sex, n (%)	Men	31232	45.8 (45.4–46.1)	24354	45.9 (45.5–46.3)	22.0 (20.7–23.4)	0.001
	Women	37034	54.3 (53.9–54.6)	28708	54.1 (53.7–54.5)	22.5 (21.3–23.6)		
	Race/ethnicity, n (%)	Non-Hispanic White	54602	80.0 (79.7–80.3)	42463	80.0 (79.7–80.4)	22.2 (21.2–23.1)	
	Non-Hispanic Black	7597	11.1 (10.9–11.4)	5865	11.1 (10.8–11.3)	22.8 (19.9–25.4)		
	Hispanic	3365	4.9 (4.8–5.1)	2633	5.0 (4.8–5.2)	21.8 (176–25.6)		
	Other	2702	4.0 (3.8–4.1)	2101	4.0 (3.8–4.1)	22.2 (177–26.3)		
	Length of stay in days (median, IQR)	3 (2–6)	3 (2–6)	0.001				
	In-hospital death, n (%)	Yes	4140	6.1 (5.9–6.3)	3266	6.2 (6.0–6.4)	21.1 (17.4–24.5)	
	No	64126	93.9 (93.8–94.1)	49796	93.8 (93.6–94.1)	22.3 (21.5–23.2)		
Acute ischemic stroke	Total	49779	39012	21.6 (20.6–22.6)	0.10			
	Age, y (median, IQR)	79.4 (72.5–86.4)	79.2 (72.6–86.0)	0.10				
	Age group, n (%)	65–74 y	16575	33.3 (32.9–33.7)	13229	33.9 (33.4–34.4)	20.2 (18.3–22.0)	
	75–84 y	18463	37.1 (36.7–37.5)	14648	37.6 (37.1–38.0)	20.7 (18.8–22.3)		
	≥85 y	14741	29.6 (29.2–30.0)	11135	28.5 (28.1–29.0)	24.5 (22.6–26.4)		
	Sex, n (%)	Men	22549	45.3 (44.9–45.7)	17551	45.0 (44.5–45.5)	22.2 (20.6–23.7)	
	Women	27230	54.7 (54.3–55.1)	21461	55.0 (54.5–55.5)	21.2 (19.7–22.5)		
	Race/ethnicity, n (%)	Non-Hispanic White	40157	80.7 (80.3–81.0)	31453	80.6 (80.2–81.0)	21.7 (20.5–22.8)	
	Non-Hispanic Black	5460	11.0 (10.7–11.3)	4255	10.9 (10.6–11.2)	22.1 (18.6–25.3)		
	Hispanic	2336	4.7 (4.5–4.9)	1861	4.8 (4.6–5.0)	20.3 (15.3–25.4)		
	Other	1826	3.7 (3.5–3.8)	1443	3.7 (3.5–3.9)	21.0 (15.1–26.4)		
	Length of stay in days (median, IQR)	3 (2–5)	3 (2–5)	0.001				
	In-hospital death, n (%)	Yes	2076	4.2 (4.0–4.4)	1658	4.3 (4.1–4.5)	20.1 (14.7–25.3)	
	No	47703	95.8 (95.7–96.0)	37354	95.8 (95.6–96.0)	21.7 (20.6–22.8)		
Hemorrhagic stroke	Total	7300	6032	17.4 (14.7–20.2)	1.00			
	Age, y (median, IQR)	78.3 (72.2–85.0)	78.1 (72.1–84.8)	1.00				
	Age group, n (%)	65–74 y	2666	36.5 (35.4–37.6)	2215	36.7 (35.5–38.0)	16.9 (12.2–21.7)	
	75–84 y	2821	38.6 (37.5–39.8)	2359	39.1 (37.9–40.4)	16.4 (11.8–20.8)		

(Continued)
Table 2. Percent Reduction in Number of Medicare Fee-for-Service Beneficiaries Aged 75–84 y and 65–74 y

Age group, n (%)	2019 Weeks 24–44 (June 9–November 2)§	2020 Weeks 24–44 (June 7–October 31)§	% Reduction in stroke hospitalization†	P value‡			
	No.	Percent (95% CI)	No.	Percent (95% CI)	No.	Percent (95% CI)	P value‡
75–84 y	79.2 (72.6–86.1)	79.0 (72.6–85.7)	12.1 (11.2–12.9)	<0.001			
65–74 y	8.3 (7.5–9.1)	8.1 (7.4–8.8)	10.1 (9.0–11.3)	<0.001			
Total	33 147	33.5 (33.2–33.8)	33 015	32.7 (32.4–33.1)	10.1 (9.0–11.3)	<0.001	
Hemorrhagic stroke	95.8 (95.7–96.0)	95.8 (95.6–96.0)	12.1 (11.2–12.9)	<0.001			
Acute ischemic stroke	80.7 (80.3–80.8)	80.7 (80.3–80.8)	12.1 (11.2–12.9)	<0.001			
Other	5.8 (5.7–6.0)	5.8 (5.7–6.0)	12.1 (8.5–15.5)	<0.001			
Hispanic	94.2 (94.0–94.3)	94.2 (94.0–94.3)	12.1 (11.2–12.8)	1.00			
Non-Hispanic Black	80.7 (80.5–81.1)	80.7 (80.5–81.1)	12.0 (11.0–13.0)	<0.001			
Non-Hispanic White	5.8 (5.7–6.0)	5.8 (5.7–6.0)	12.1 (8.5–15.5)	<0.001			
Race/ethnicity, n (%)	79.2 (72.8–86.5)	79.2 (72.7–86.0)	12.2 (11.3–13.1)	<0.001			
Women	4.6 (4.4–4.8)	4.6 (4.4–4.8)	12.9 (11.6–14.3)	<0.001			
Men	55.4 (55.0–55.7)	55.8 (55.4–56.1)	11.6 (10.3–12.8)	1.00			
≥85 y	90.8 (90.5–91.1)	90.8 (90.5–91.1)	12.0 (11.0–13.0)	<0.001			
Initial impact of COVID-19 pandemic	2019 Weeks 24–44 (June 9–November 2)§	2020 Weeks 24–44 (June 7–October 31)§	% Reduction in stroke hospitalization†	P value‡			
	No.	Percent (95% CI)	No.	Percent (95% CI)	No.	Percent (95% CI)	P value‡
75–84 y	79.2 (72.6–86.1)	79.0 (72.6–85.7)	12.1 (11.2–12.9)	<0.001			
65–74 y	33 147	33.5 (33.2–33.8)	33 015	32.7 (32.4–33.1)	10.1 (9.0–11.3)	<0.001	
Total	33 147	33.5 (33.2–33.8)	33 015	32.7 (32.4–33.1)	10.1 (9.0–11.3)	<0.001	
Hemorrhagic stroke	95.8 (95.7–96.0)	95.8 (95.6–96.0)	12.1 (11.2–12.9)	<0.001			
Acute ischemic stroke	80.7 (80.3–80.8)	80.7 (80.3–80.8)	12.1 (11.2–12.9)	<0.001			
Other	5.8 (5.7–6.0)	5.8 (5.7–6.0)	12.1 (8.5–15.5)	<0.001			
Hispanic	94.2 (94.0–94.3)	94.2 (94.0–94.3)	12.1 (11.2–12.8)	1.00			
Non-Hispanic Black	80.7 (80.5–81.1)	80.7 (80.5–81.1)	12.0 (11.0–13.0)	<0.001			
Non-Hispanic White	5.8 (5.7–6.0)	5.8 (5.7–6.0)	12.1 (8.5–15.5)	<0.001			
Race/ethnicity, n (%)	79.2 (72.8–86.5)	79.2 (72.7–86.0)	12.2 (11.3–13.1)	<0.001			
Women	4.6 (4.4–4.8)	4.6 (4.4–4.8)	12.9 (11.6–14.3)	<0.001			
Men	55.4 (55.0–55.7)	55.8 (55.4–56.1)	11.6 (10.3–12.8)	1.00			
≥85 y	90.8 (90.5–91.1)	90.8 (90.5–91.1)	12.0 (11.0–13.0)	<0.001			

(Continued)
Table 2. Continued

Characteristics	Initial impact of COVID-19 pandemic	2019 Weeks 10–23 (March 3–June 8)*	2020 Weeks 10–23 (March 1–June 6)*	% Reduction in stroke hospitalization†	P value‡	
	No.	Percent (95% CI)	No.	Percent (95% CI)	Percent (95% CI)	P value‡
≥85 y	1813	24.8 (23.9–25.8)	1458	24.2 (23.1–25.3)	19.6 (14.1–25.4)	1.00
Sex, n (%)						
Men	3215	44.0 (42.9–45.2)	2782	46.1 (44.9–47.4)	13.5 (9.0–17.9)	0.96
Women	4085	56.0 (54.8–57.1)	3250	53.9 (52.6–55.1)	20.4 (16.7–24.2)	0.50
Race/ethnicity, n (%)						
Non-Hispanic White	5738	78.6 (77.6–79.5)	4746	78.7 (77.6–79.7)	17.3 (14.2–20.6)	
Non-Hispanic Black	749	10.3 (9.6–11.0)	603	10.0 (9.3–10.8)	19.5 (9.7–27.8)	
Hispanic	397	5.4 (4.9–6.0)	350	5.8 (5.2–6.4)	11.8 (–1.7–23.5)	
Other	416	5.7 (5.2–6.3)	333	5.5 (5.0–6.1)	20.0 (7.7–30.9)	1.00
Length of stay (median, IQR) in days	4 (2–8)		4 (2–8)			1.00
In-hospital death, n (%)						
Yes	1663	22.8 (21.8–23.8)	1301	21.6 (20.5–22.6)	21.8 (16.2–26.9)	
No	5637	77.2 (76.2–78.2)	4731	78.4 (77.4–79.5)	16.1 (13.1–19.8)	1.00

(Continued)

and it is recommended that people who experience stroke symptoms during the COVID-19 pandemic seek immediate care to reduce serious outcomes or death.

ARTICLE INFORMATION

Received February 6, 2021; final revision received April 23, 2021; accepted May 6, 2021.

Presented in part at the International Stroke Conference, virtual, March 17–19, 2021.

Affiliations

Division for Heart Disease and Stroke Prevention (G.Y., X.T., S.C.K., R.K.M.) and Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention, Atlanta, GA.

Acknowledgments

We thank Dr Mary G. George, Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), for her insightful comments and suggestions on early version of the manuscript.

Sources of Funding

None.

Disclosures

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Supplemental Materials

Online Figure I

Online Table I

REFERENCES

1. Moreland A, Herlthy C, Tynan MA, Sunshine G, McCord RF, Hilton C, Piovey J, Werner AK, Jones CD, Füllner EB, et al. CDC Public Health Law Program; CDC COVID-19 Response Team, Mitigation Policy Analysis Unit. Timing of state and territorial COVID-19 stay-at-home orders and changes in population movement - United States, March 1-May 31, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1198–1203. doi: 10.15585/mmwr.mm6935a2

2. Meredith JW, High KP, Freischlag JA. Preserving elective surgeries in the COVID-19 pandemic and the future. JAMA. 2020;324:1725–1726. doi: 10.1001/jama.2020.19594

3. Jasne AS, Chojeczka P, Maran I, Mageid R, El dokmak M, Zhang Q, Nystrom K, Vlieks K, Askenase M, Petersen N, et al. Stroke code presentations, interventions, and outcomes before and during the COVID-19 pandemic. Stroke. 2020;51:2664–2673. DOI: 10.1161/STROKEAHA.120.030337

4. Lange SJ, Ritchey MD, Goodman AB, Dias T, Twentyman E, Fuld J, Schieve LA, Imperatore G, Benoit SR, Kite-Powell A, et al. Potential indirect effects of the COVID-19 pandemic on use of emergency departments for acute life-threatening conditions - United States, January-May 2020. MMWR Morb Mortal Wkly Rep. 2020;69:795–800. doi: 10.15585/mmwr.mm6925e2

5. Aguiar de Sousa D, Sandset EC, Elkind MSV. The curious case of the missing strokes during the COVID-19 pandemic. Stroke. 2020;51:1921–1923. doi: 10.1161/STROKEAHA.120.030792

6. Uchino K, Kolikonda MK, Brown D, Kovi S, Collins D, Khawaja Z, Buletko AB, Russman AN, Hussain MS. Decline in stroke presentations during COVID-19 surge. Stroke. 2020;51:2544–2547. doi: 10.1161/STROKEAHA.120.030331

7. Solomon MD, McNulty EJ, Rana JS, Leong TK, Lee C, Sung SH, Ambrosy AP, Sidney S, Go AS. The COVID-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med. 2020;383:691–693. doi: 10.1056/NEJMoa205630

8. Wilson SJ, Connolly MJ, Elghamry Z, Cosgrove C, Firoozi S, Lim P, Sharma R, Pratt JC. Effect of the COVID-19 pandemic on ST-segment-elevation myocardial infarction presentations and in-hospital outcomes. Circ Cardiovasc Interv. 2020;13:e009438. doi: 10.1161/CIRCINTERVENTIONS.120.009438

9. Hoyer C, Ebert A, Huttner HB, Puetz V, Kallmünzer B, Barlinn K, Haverkamp C, Harloff A, Birch J, Platten M, et al. Acute stroke in times of the COVID-19 pandemic: a multicenter study. Stroke. 2020;51:2222–2227. doi: 10.1161/STROKEAHA.120.030396

10. Visani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–e743. doi: 10.1161/CIR.0000000000009560

11. Elberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, et al; Stroke Thrombolysis Trialists’ Collaborative Group. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384:1929–1935. doi: 10.1016/S0140-6736(14)60584-5

12. Anderson CS, Huang Y, Wang JG, Arima H, Neil A, Beng P, Heeley E, Skulina C, Parsons MW, Kim JS, et al; INTERACT Investigators. Intensive
Table 2. Continued

Characteristics	2019 Weeks 24–44 (June 9–November 2)§	2020 Weeks 24–44 (June 7–October 31)§	% Reduction in stroke hospitalization†	P value‡		
2019	2280	7995	22.2 (21.4–23.0)	21.0 (20.2–21.8)	15.3 (10.3–20.0)	0.96

COVID-19 indicates coronavirus disease 2019; and IQR, interquartile range.

*Weeks 10 (March 3–9) through 23 (June 2–8) in 2019 serve as pre–COVID-19 pandemic period and weeks 10 (March 1–7) through 23 (May 3–June 6) in 2020 as initial impact of COVID-19 pandemic weeks.

†% reduction of stroke hospitalization between 2019 and 2020 is calculated as (2019-2020)/(2019)×100 and the bootstrap resamples were used to determine the 95% CI.

‡P value to test for difference in median age or length of stay between 2019 and 2010 and P value to test difference in distribution by age group, sex, race/ethnicity, and in-hospital death between 2019 and 2020 based on \(\chi^2 \) test and presented adjusted \(P \) values by Holm method for multiple comparison.

§Weeks 24 (June 9–15) through 44 (October 27–November 2) in 2019 serve as pre–COVID-19 pandemic period and weeks 24 (June 7–13) through 44 (October 25–31) in 2020 as the period after initial impact of stroke hospitalizations.

Blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7:391–399. doi: 10.1016/S1474-4422(08)60069-3

13. Kamal N, Sheng S, Xian Y, Matsouaka R, Hill MD, Bhatt DL, Saver JL, Reeves MJ, Fonarow GC, Schwamm LH, et al. Delays in door-to-needle times and their impact on treatment time and outcomes in get with the guidelines-stroke. Stroke. 2017;48:946–954. doi: 10.1161/STROKEAHA.116.015712

14. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hamilton S, Albers GW, RECORD Working Committee. The REPorting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12:e1001885. doi: 10.1371/journal.pmed.1001885

15. Holm SA. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

16. Efron B, Tibshirani R. An Introduction to the Bootstrap. Chapman & Hall; 1993.

17. Benchimol EI, Sneath L, Guttman A, Harron K, Moher D, Petersen I, Serensen HT, von Elm E, Langan SM; RECORD Working Committee. The REPorting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12:e1001885. doi: 10.1371/journal.pmed.1001885

18. Holmes JL, Brake S, Docherty M, Lliford R, Watson S. Emergency ambulance services for heart attack and stroke during UK’s COVID-19 lockdown. Lancet. 2020;395:e93–e94. doi: 10.1016/S0140-6736(20)31031-X

19. Kansagara AP, Goyal MS, Hamilton S, Albers GW. Collateral effect of COVID-19 on stroke evaluation in the United States. N Engl J Med. 2020;383:400–401. doi: 10.1056/NEJMj0014186

20. Onteddu SR, Nallekalle K, Sharma R, Brown AT. Underutilization of health data (RECORD) statement. PLoS Med. 2015;12:e1001885. doi: 10.1371/journal.pmed.1001885

21. Rusillo S, Laredo C, Vera V, Vergas M, René A, Llull L, Obach V, Amaro S, Ulla X, Torres E, et al. Acute stroke care is at risk in the era of COVID-19: experience at a comprehensive stroke center in Barcelona. Stroke. 2020;50:1911–1925. doi: 10.1161/STROKEAHA.120.030329

22. Schirmer CM, Ringer AJ, Arthur AS, Binning MJ, Fox WC, James RF, Levitt MR, Tawk RG, Veznedaroglu E, Walker M, et al; Endovascular Research Group (ENRG). Delayed presentation of acute ischemic strokes during the COVID-19 crisis. J Neurolnterv Surg. 2020;12:639–642. doi: 10.1136/neurintsurg-2020-016299

23. Eisenwa C, Parides MK, Labowitz DL. The effect of COVID-19 on stroke hospitalisations in New York City. J Stroke Cerebrovasc Dis. 2020;29:105114. doi: 10.1016/j.jstrokecerebrovasdis.2020.105114

24. Sharma M, Lioutas VA, Madsen T, Clark J, O’Sullivan J, Elkind MSV, Willey JZ, Marshall RS, Selim MH, Greer D, et al. Decline in stroke alerts and hospitalisations during the COVID-19 pandemic. Stroke Vasc Neurol. 2020;5:e000441. doi: 10.1136/svn-2020-000441

25. Merkler AE, Parikh NS, Mir S, Gupta A, Kamel H, Lin E, Lantos J, Schenck EJ, Goyal P, Bruce SS, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77:1–7. doi: 10.1001/jamaneurol.2020.2730

26. Steppmann T, Sedghi A, Simon E, Winzer S, Barlinn J, de Wth K, Mirow L, Wolz M, Gruenewald T, Schroettner P, et al. Increased risk of acute stroke among patients with severe COVID-19: a multicenter study and meta-analysis. Eur J Neurol. 2021;28:239–247. doi: 10.1111/ene.14535

27. Yanagida T, Fujimoto S, Inoue T, Suzuki S. Causes of prehospital delay in stroke patients in an urban aging society. J Clin Gerontol Geriat. 2014;5:77–81.

28. Cesieł M, Marynka K, Clarke KEN, Shaiku Y, Thierry JM, Ali N, McMillan H, Wiley JF, Weaver MD, et al. Delay or avoidance of medical care because of COVID-19-related concerns - United States, June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1250–1257. doi: 10.15585/mmwr.mm6936a4

29. Evenson KR, Foraker RE, Morris DL, Rosamond WD. A comprehensive review of prehospital and in-hospital delay times in acute stroke care. Stroke. 2009;40:187–199. doi: 10.1161/101111.174949.2009.00276x

30. García Ruiz R, Silva Fernández J, García Ruiz RM, Recio Bermejo M, Arias Arias Á, Del Saucio Puertas P, Huertas Arroyo R, González Manero A, Santos Pinto A, Navarro Muñoz S, et al. Response to symptoms and prehospital delay in stroke patients. Is it time to reconsider stroke awareness campaigns? J Stroke Cerebrovasc Dis. 2018;27:625–632. doi: 10.1016/j.jstrokecerebrovasdis.2017.09.036

31. Cruz-Flores S, Rabinstein A, Biller J, Elkind MS, Griffith P, Gorelick PB, Howard G, Leira EC, Morgenstern LB, Ovbiagele B, et al; American Heart
Association Stroke Council; Council on Cardiovascular Nursing; Council on Epidemiology and Prevention; Council on Quality of Care and Outcomes Research. Racial-ethnic disparities in stroke care: the American experience: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2091–2116. doi: 10.1161/STR.0b013e3182213e24

32. Moore JT, Ricaldi JD, Ross CE, Fulda J, Parise M, Kang GJ, Driscoll AK, Norris T, Wilson N, Rainisch G, et al. COVID-19 State, Tribal, Local, and Territorial Response Team. Disparities in incidence of COVID-19 among underrepresented racial/ethnic groups in counties identified as hotspots during June 5–18, 2020 - 22 States, February–June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:112–1126. doi: 10.15585/mmwr.mm6934e1

33. Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Burai Felix S, Tie Y, Fullerton KE. Coronavirus disease 2019 case surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:759–766. doi: 10.15585/mmwr.mm6924e2

34. Perry R, Banaras A, Werring DJ, Simister R. What has caused the fall in stroke admissions during the COVID-19 pandemic? J Neuro. 2020;267:3457–3458. doi: 10.1097/00014101-202010030-00020

35. Kristoffersen ES, Jahr SH, Thommessen B, Ronning OM. Effect of COVID-19 pandemic weeks. (Continued)

36. Nguyen-Huynh MN, Tang XN, Vinson DR, Flint AC, Alexander JG, Kristoffersen ES, Jahr SH, Thommessen B, Ronning OM. Effect of COVID-19 pandemic weeks. (Continued)

37. Srivastava PK, Zhang S, Xiong Y, Xu H, Rutan C, Alger HM, Walchok J, Andersen KK, Olsen TS, Delhendorff C, Kammersgaard LP. Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke. 2009;40:2068–2072. doi: 10.1161/STROKEAHA.108.540112

38. Wong LE, Hawkins LE, Langness S, Murrell KL, Ibus P, Sammann A. Where are all the patients? Addressing COVID-19 fear to encourage sick patients to seek emergency care. N Engl J Med Catalyst Innovations in Care Delivery. Accessed May 25, 2020. https://catalyst.nejm.org/doi/pdf/10.1056/CAT200193.

39. Rinkela LA, Prick JCM, Slot RER, Sombrao NMA, Burggraaff J, Groot AE, Emmer BJ, Roos YBWM, Brouwer MC, van den Berg-Vos RM, et al. Impact of the COVID-19 outbreak on acute stroke care. J Neuro. 2021;268:403–408. doi: 10.1007/s00115-020-10069-1

40. Andersen KK, Olsen TS, Delhendorff C, Kammersgaard LP. Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke. 2020;51:2918–2924. doi: 10.1161/STROKEAHA.120.031099

41. Allison MC, Doyle NA, Greene G, Mahmood A, Glickman M, Jones AK, Mizen PE. Lockdown Britain: evidence for reduced incidence and severity of some non-COVID acute medical illnesses. Clin Med (Lond). 2021;21:e171–e178. doi: 10.7861/clinmed.2020-0586

42. Goyal M, Ospel JM, Southerland AM, Wira C, Amin-Hanjani S, Fraser JF, Panagos P; AHA/ASA Stroke Council Science Subcommittees: Emergency Neurovascular Care (ENCC), the Telestroke and the Neurovascular Intervention Committees. Prehospital triage of acute stroke patients during the COVID-19 pandemic. Stroke. 2020;51:2263–2267. doi: 10.1161/STROKEAHA.120.030340

43. Leadership AASC. Temporary emergency guidance to US stroke centers during the coronavirus disease 2019 (COVID-19) pandemic: on behalf of the American Heart Association/American Stroke Association. Stroke. 2020;51:1910–1912. doi: 10.1161/STROKEAHA.120.030023

44. Leadership AASC. Temporary emergency guidance to US stroke centers during the coronavirus disease 2019 (COVID-19) pandemic: on behalf of the American Heart Association/American Stroke Association. Stroke. 2020;51:1910–1912. doi: 10.1161/STROKEAHA.120.030023

45. McCormick N, Bhole V, Lacaille D, Avina-Zubieta JA. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS One. 2015;10:e0135834. doi: 10.1371/journal.pone.0135834

Figure 2. Percent reduction of stroke hospitalizations comparing weeks 10 through 23 in 2019 and 2020 among Medicare fee-for-service beneficiaries aged ≥65 y by stroke type and State, United States*. A, All-stroke. B, AIS. C, hemorrhagic stroke. *Weeks 10 (March 3–9) through 23 (June 2–June 8) in 2019 serve as pre–coronavirus disease 2019 (COVID-19) pandemic period and weeks 10 (March 1–7) in 2020 through 23 (May 31–June 6) as the initial impact of the COVID-19 pandemic weeks. (Continued)
Figure 2 Continued.
Figure 2 Continued.
States	2019	2020	% reduction (95% CI)
Montana	243	153	37.0 (23.1, 47.6)
Connecticut	573	362	36.8 (27.9, 44.4)
Delaware	294	188	36.1 (23.1, 47.9)
Michigan	1739	1164	33.1 (28.0, 38.2)
West Virginia	436	300	31.2 (20.7, 41.3)
Vermont	161	114	29.2 (10.9, 43.4)
New Jersey	1561	1130	27.6 (22.0, 32.8)
Maryland	1380	1010	26.8 (19.9, 32.5)
Massachusetts	820	601	26.7 (18.8, 33.8)
New York	2595	1902	26.7 (22.1, 30.7)
Arizona	964	708	26.6 (18.8, 33.1)
Alabama	928	711	23.4 (14.7, 31.1)
Ohio	1836	1423	22.5 (17.1, 27.3)
Iowa	596	464	22.1 (11.0, 30.9)
Kansas	560	436	22.1 (12.2, 31.3)
Minnesota	673	524	22.1 (12.9, 30.6)
Florida	3360	2833	21.6 (17.8, 25.5)
Tennessee	1271	999	21.4 (14.8, 27.8)
Virginia	1784	1403	21.4 (15.7, 27.0)
Colorado	498	395	20.7 (9.1, 30.9)
Arkansas	722	574	20.5 (11.0, 28.4)
Massachusetts	1210	964	20.3 (13.4, 26.9)
New Mexico	246	197	19.9 (3.3, 34.0)
Missouri	1080	866	19.8 (12.5, 26.4)
South Carolina	1108	890	19.7 (12.3, 26.4)
Nebraska	352	283	19.6 (4.9, 31.3)
Illinois	2286	1838	19.6 (14.5, 25.0)
Washington	1164	939	19.3 (11.9, 26.5)
Georgia	1384	1126	18.6 (11.6, 24.6)
California	3831	3117	18.6 (14.9, 22.6)
Maine	229	187	18.3 (0.9, 32.2)
Texas	3143	2578	16.0 (13.8, 22.1)
Oregon	479	393	18.0 (5.6, 27.9)
Oklahoma	815	671	17.7 (6.9, 26.3)
Kentucky	833	666	17.6 (9.4, 26.0)
Louisiana	738	614	16.8 (8.5, 25.0)
North Carolina	1828	1522	16.7 (11.1, 22.0)
Utah	249	213	14.5 (-2.2, 29.1)
Idaho	230	199	13.5 (-4.7, 29.0)
Wisconsin	718	625	13.0 (3.3, 21.7)
Nevada	326	287	12.0 (-2.3, 25.2)
Wyoming	115	107	7.0 (21.4, 30.0)
North Dakota	135	127	5.9 (-18.8, 24.7)
Rhode Island	120	115	4.2 (-24.2, 27.0)
Hawaii	151	149	1.3 (-24.8, 21.7)
New Hampshire	247	262	-6.1 (-26.5, 11.1)

Figure 2 Continued.
Figure 2 Continued.
States	2019	2020	% reduction (95% CI)
Maine	47	20	57.4 (32.0, 76.6)
New Mexico	42	21	50.0 (19.2, 71.1)
Hawaii	37	19	48.6 (11.8, 72.2)
North Dakota	18	11	38.9 (-36.4, 75.0)
Rhode Island	24	15	37.5 (-8.9, 69.0)
Oregon	74	48	35.1 (6.3, 55.8)
Vermont	23	15	34.8 (-28.6, 67.2)
Arizona	150	99	34.0 (14.5, 49.3)
Connecticut	83	55	33.7 (8.5, 54.0)
Minnesota	127	88	30.7 (10.1, 47.5)
Wisconsin	142	99	30.3 (9.4, 45.8)
New Jersey	243	170	30.0 (15.1, 42.7)
Nebraska	64	45	29.7 (1.9, 52.5)
Montana	32	23	28.1 (-25.5, 59.7)
Michigan	246	184	25.2 (9.4, 38.0)
Maryland	176	132	25.0 (6.0, 40.7)
Pennsylvania	322	243	24.5 (9.6, 36.5)
Mississippi	107	81	24.3 (-2.2, 43.3)
Delaware	47	36	23.4 (-15.2, 51.6)
South Carolina	161	124	23.0 (-2.8, 39.3)
Illinois	337	261	22.6 (9.6, 34.5)
Arkansas	90	71	21.1 (-9.2, 42.4)
Missouri	149	120	19.5 (-2.2, 37.2)
North Carolina	263	212	19.4 (3.1, 32.8)
Iowa	102	83	18.6 (-9.0, 40.0)
Tennessee	139	114	18.0 (-6.5, 37.0)
Florida	478	399	15.5 (5.0, 27.1)
Kentucky	107	92	14.0 (13.7, 35.7)
Louisiana	108	93	13.9 (-13.3, 34.6)
New York	404	350	13.4 (0.3, 24.1)
Utah	30	26	13.3 (-54.2, 51.4)
California	684	594	13.2 (3.4, 22.5)
West Virginia	46	40	13.0 (-31.6, 44.2)
Alaska	16	14	12.5 (-87.5, 60.4)
Georgia	200	175	12.5 (-6.8, 28.3)
Indiana	162	142	12.3 (-11.2, 30.0)
Virginia	244	215	11.9 (-6.6, 27.2)
Washington	169	150	11.2 (-11.1, 30.2)
Ohio	260	231	11.2 (-5.3, 26.6)
Alabama	123	110	10.6 (-15.1, 30.6)
Idaho	24	22	8.3 (-60.0, 51.7)
Colorado	75	70	6.7 (-29.3, 33.3)
Texas	435	408	6.2 (-6.5, 17.3)
Oklahoma	101	96	5.0 (-24.9, 28.8)
District of Columbia	9	9	0.0 (-100, 63.6)
Wyoming	18	18	0.0 (-100, 50.0)
Nevada	53	54	-1.9 (-50.0, 30.7)
New Hampshire	44	45	-2.3 (-89.9, 33.6)
Kansas	84	90	-7.1 (-45.1, 21.3)
South Dakota	23	25	-8.7 (-100, 38.7)
Massachusetts	158	175	-11 (-37.0, 9.7)

Figure 2 Continued.