Environmental Research Letters

LETTER

Central Taiwan’s hydroclimate in response to land use/cover change

Chia-Jeng Chen¹, Chu-Chun Chen²,³, Min-Hui Lo⁴, Jeyn-Yih Juang⁴ and Che-Min Chang³

1 Department of Civil Engineering, National Chung Hsing University, Taichung, Taiwan
2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
3 Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, United States of America
4 Department of Geography, National Taiwan University, Taipei, Taiwan

E-mail: cjchen@nchu.edu.tw and minhuilo@ntu.edu.tw

Keywords: land-atmosphere interactions, land-surface model, statistical analysis, climate change

Abstract

Land use/cover change (L.UCC) has taken place since the 1990s in central Taiwan; however, its impacts on the local and regional hydroclimatology are not understood thoroughly. This study is grounded in a numerical experiment using the Weather Research and Forecasting (WRF) model and statistical assessments of continuous land cover and gridded precipitation data derived for central Taiwan. We incorporate survey-based land use data in 1995 and 2007 in driving WRF to simulate selective non-rainy and rainy (dry and wet) cases under weak synoptic forcings in July and August (JA). The two land-use conditions reveal changes in simulation fields on account of increased urban and built-up lands. Results averaged over the dry cases show increased (diminished) sensible heat fluxes and 2 m temperatures (latent heat fluxes and 2 m specific humidity) in 2007 compared to that in 1995. The wet-case simulation further identifies intensified precipitation over the downwind areas of urban and built-up lands, strongly subject to local topography and prevailing winds. Statistical assessments of the Landsat land cover and gridded precipitation data verify significant increasing trends in urbanization and the JA rainfall. Regression-based analysis that scales the effect of the L.UCC on the change in precipitation corroborates the WRF simulation: L.UCC has induced eastward, downwind association with the JA rainfall.

1. Introduction

Land use/cover change (L.UCC) can induce significant variations in land surface fluxes and water budget partitioning, thereby impacting local and regional climate [1–7]. The influences of L.UCC in the Earth system have been a major concern for the global change assessment. For example, extensive anthropogenic irrigation and deforestations result in changes in canopy resistance, surface albedo, soil moisture, and soil temperature that can potentially modify surface heat fluxes [8, 9]. Many studies have shown irrigation’s impacts on local, regional, and global climate, and even the atmospheric circulation changes (e.g., [10–15]). While deforestation usually causes less evapotranspiration and higher temperature, leading to reduced precipitation [16–18], precipitation in deforested areas could also be more extensive than that in high-density forests [19]. Reference [20] further indicated that deforestation could increase local convection and precipitation by introducing more lateral water vapor transport from the surrounding oceans over the Maritime Continent regions.

Variations of heavy rainfall events subject to regional L.UCC have been discussed in previous studies (e.g., [1, 21, 22]). Some other studies showed that the rainfall cycles through the controls (e.g., transpiration and the partitioning of surface net radiation) of different land surface conditions can further alter the feedback mechanisms between the land surface and consequential strong convective events [23–26]. While copious studies have investigated how the dynamics of urban expansion (as one type of L.UCC) impacts local atmospheric circulations, precipitation quantities, and microenvironment (temperature or humidity) through analyzing observed data or modeling results

© 2020 The Author(s). Published by IOP Publishing Ltd
(e.g. [27–31]), more emergent attention should be paid to explore how LUCC associated with urbanization alter the initiation of strong convective rainfall events.

Over the past few decades, the world has been experiencing significant LUCC, and Taiwan is no exception. Several major administrative areas in Taiwan have undergone rapid development, and central Taiwan ranks among the top. To simulate the impact of urbanization in central Taiwan on precipitation, [32] conducted a numerical experiment using the MM5 model. Their findings based on a hypothetical urban expansion showed that the warmer and drier conditions of built-up lands create a more unstable atmospheric condition that further enhances local convection. In association with the effect of the land-sea breeze and topography, their simulations suggested increased precipitation over downwind areas. [30] thereafter used the Weather Research and Forecasting (WRF) model to examine how meteorological simulation responds to different land use data in Taiwan, including the default USGS and MODIS and a proprietary product derived from SPOT satellite images. They found the respective overestimation of irrigated cropland and urban areas in the USGS and MODIS land use data, resulting in erroneous simulations (e.g. overpredicting the surface wind speed and daytime temperatures). Similar studies are abundant, and most of them imply the importance of accounting for more realistic and accurate LUCC conditions to avoid significant biases in numerical simulations.

To the best of our knowledge, there exists a gap in literature emphasizing the assessment of LUCC on island-scale climate subject to complex terrain. This research gap could be attributed to the lack of extended observations for both climate and land use/cover data at a resolution fine enough to clarify such intricate land-atmosphere relationships.

2. Data and methods

2.1. Land use/cover data: sources and derivation

To understand the impact of LUCC on central Taiwan (i.e. Miaoli, Taichung, Changhua, Yunlin, and Nantou counties/cities in this study) climate, we acquired and derived two types of land use/cover data from different sources. The first is survey-based data acquired from the National Land Surveying and Mapping Center (NLSC, www.nlsc.gov.tw/LUI), who applied cadastral survey supplemented by aerial images, GIS analysis, and field survey to the development of the land use data at a spatial resolution of 50 m in 1995 and 2007 (NLSC95 and NLSC07 hereafter). The NLSC adopts a three-tier hierarchical classification system that shows different number of classes in the two years. To prepare a compatible land cover data in the numerical model (i.e. WRF) environment, we performed reclassification for the NLSC data in both years according to the 24 land-use types retrieved from the default USGS data. A series of GIS practices (e.g. reproject and resample) were used to prepare the 1 km NLSC data for Taiwan with 10 common USGS land-use classes in 1995 and 2007. We plotted the processed NLSC95 and NLSC07 data (figure 1) and recognised the predominant LUCC, which is from agricultural land use types to urban and built-up lands. The processed NLSC data were regarded as the true land use/cover states used for driving WRF; the same data were also used for calibrating satellite-based land cover from 1995 to 2007 described next.

Owing to the two-year NLSC data that fell short of providing a continuous correspondence between LUCC and local circulations, we derived the second type of land cover data from Landsat 4–5 Thematic Mapper (TM) satellite images (available from the EarthExplorer, USGS, https://earthexplorer.usgs.gov/) at a 30 m resolution according to the following procedure. We scrutinised all Landsat images in wintertime from 1995 to 2007, identifying one image per year with the least cloud cover over central Taiwan. Data collection category level is L1TP, indicating the data have been radiometrically calibrated and orthorectified using digital elevation models. Afterward, we applied a hybrid unsupervised-supervised classification scheme based on ISODATA (Iterative Self-Organizing Data Analysis Techniques Algorithm) and MLE (Maximum Likelihood Estimate) to classify satellite imagery in ERDAS IMAGINE. Similar concepts of using a hybrid classification scheme for the investigation of LUCC have been employed by other studies (e.g. [33]). In our case, ISODATA first recognised various clusters from the original image in any given year, which was then merged into five dominant classes in the region (i.e. urban, cropland, mixed forest, water body, and barren) with the guidance of the unchanged areas between the NLSC95 and NLSC07 data. Signature files generated from ISODATA were used by MLE to map the five land cover classes in each year, and each land cover map was then superimposed with water bodies in 1995 and unchanged areas between the NLSC95 and NLSC07 data, assuming these areas remain unchanged throughout the years. The final land cover data were upsampled to 5 km spacing, and the percentage of each land cover class in a coarser grid can thus be derived. The classification results perform to a satisfactory level, with high spatial correlation coefficients and accuracy (both >0.8) for urban and overall classes (see figures S1 and S2 is available online at stacks.iop.org/ERL/15/034015/mmedia).

2.2. Precipitation data and case selection

One of the essential elements of the case selection for numerical simulations and the characterization of spatiotemporal patterns is precipitation data. We used both station and gridded precipitation data in this study: while the former was acquired from 216
weather stations over central Taiwan managed by the Central Weather Bureau (available from the Data Bank of Atmosphere & Hydrologic Research, https://dbar.pccu.edu.tw/Default.aspx), the latter product was recently developed by the Taiwan Climate Change projection and Information Platform (TCCIP, https://tccip.ncdr.nat.gov.tw/). It is worth noting that the TCCIP data is the best available gridded data for the whole Taiwan island with very fine spatiotemporal resolution (5 km, daily) and extended records (1960–2015), developed using all available station data and other gridded products (e.g. APHRODITE, Yata-gai et al [34]). Rigorous QA/QC, filling of missing data, and the temperature-rainfall-topography relationship have all been accounted for in the generation of the TCCIP gridded data [35].

The temporal resolution of the station data is hourly, which is finer than the daily gridded data. We wished to identify cases that exhibit more intense convective rainfall in the afternoon (1200–1800 local standard time, LST), so hourly rainfall records available from the station data were used for case selection for better identifying rainfall events in the designated time frame. Non-rainy (dry) and rainy (wet) events in July and August (JA) were identified from the station data from 1999 to 2016, and events affected by typhoons were excluded from our selection based on historical typhoon warnings. On the other hand, we derived the total cumulative rainfall and maximum daily rainfall in JA from the gridded data for further statistical assessments.

Case selection was conducted to illustrate the differences between energy budget driven by the NLSC95 and that by NLSC07 land use, in compliance with a specific procedure summarized herein. The specific procedure was designed to identify the most representative 10 dry and 10 wet events in JA by systematically scrutinising all the events from 1999 to 2016. The 10 dry cases were selected based on (1) 24 h accumulated rainfall less than 5 mm for all the stations lasting at least two consecutive days, and (2) <10 mm rainfall occurring at two stations at most for the third consecutive day (before or after). In contrast, the 10 wet cases were selected from those rainy events in which at least 40 stations were exhibiting maximum hourly rainfall greater than 15 mm during 1200–1800 LST. Table S1 lists the dates of all the dry and wet cases, and figure S3 shows the observed 6 h rainfall for the wet cases using station data. The aforementioned systematic search was implemented by means of two criteria based on the number of stations and rainfall thresholds. In fact, sensitivity analysis of the criteria has been performed: decreasing (increasing) the number of stations and/or the rainfall threshold would result in an increase (decrease) in the number of cases; for example, if decreasing 40 stations to 20, or 15 mm to 10, we would obtain approximately triple or double amount of wet cases. Along with examining the
observed rainfall patterns (figure S3), we determined the threshold values and the final 10 cases.

While dry-case simulation is primarily to explore changes in energy budget in generally sunny conditions, wet-case simulation can reveal how LUC influences thunderstorm characteristics (e.g. intensity and spatial patterns). According to the case selection procedure, major weather systems (e.g. typhoons and weather fronts) and their impacts should be largely circumvented, enhancing the sensitivity of the WRF simulation to specified LUC.

2.3. Model configuration and simulations

We used the WRF version 3.9.1 [36] with the Noah land surface model [37] to conduct numerical simulations. The simulation domain is nested and shown in figure 1. The outer coarsest domain has a resolution of 18 km (D1), ranging down to 6 and 2 km (D2 and D3). The vertical layer is composed of 45 sigma levels, and vertically stretched with finer resolution (from 50 to 350 m) below 2 km and coarser resolution (about 625 m) above 2 km. Regarding the cumulus parameterization scheme, the most common one applied to East Asian (Taiwan) regions is either the Kain–Fritsch or the Betts–Miller–Janjic (BMJ) scheme [38, 39]. A preliminary assessment of the two schemes revealed that the BMJ scheme performed better in estimating precipitation amounts and patterns in our cases, so the BMJ scheme [40–43] was adopted and used in D1 and D2. No cumulus parameterizations were used in D3. Other physical options set to initialize the WRF simulation include the RRTM [44], Goddard [45], WSM5 [46], YSU [47], and the revised MM5 Monin-Obukhov [48] schemes for the longwave radiation, shortwave radiation, cloud microphysics, PBL, and surface layer schemes, respectively. The selection of these physical parameterizations (listed in Table S2) was based on recommendations from previous studies [38, 49, 50].

We acquired the initial and boundary conditions from the National Centers for Environmental Prediction’s (NCEP) Final Analysis (FNL) of global data at 1° × 1° spatial and 6 h temporal resolutions. The total simulation time of each case was 36 h, beginning at 1200 UTC the day before and ending at 0000 UTC the day after. According to previous numerical studies (e.g. [49, 51, 52]), it is known that the time required by the regional model (e.g. WRF) to develop realistic cloud and rainfall patterns from the large-scale initial condition is generally 6–12 h, and the model shows the highest skill over 12–36 h. Thus we used the first 12 simulation hours as the model spin-up period, and then obtained major outputs for analysis from the remaining 24 h. The designed numerical experiment intends to capture the fine-scale meteorological process (e.g. precipitation) and to partition the energy budget for the aforementioned cases under weak synoptic forcing.

In order to discriminate central Taiwan’s climate in response to two land use data in 1995 and 2007, we conducted two sets of identical WRF runs except that one was driven by the NLSC95 data and the other by the NLSC07 data. Areas outside central Taiwan were configured with the NLSC07 data for both sets of runs. In other words, we performed 2 × 10 runs for both dry and wet cases, and then obtained two sets of dry- and wet-case results for further analysis. In both sets of simulations, we assured the consistency among the physical options (i.e. two land-use conditions, but consistent physical parameterizations).

2.4. Statistical analysis of LUC–precipitation relationship

To corroborate findings from numerical simulations, we conducted statistical assessments of observed datasets. First, trend analysis was applied to the LandSat land cover as well as the gridded precipitation data using Sen’s slope estimator [53]. Significant trends estimated by Sen’s slope, while irrespective of the cause, can help identify sensitive areas bearing possible resemblance to other observed data and simulated patterns (e.g. intensified or weakened precipitation at specific locations resulting from the WRF simulation).

Another regression-based approach was adopted to scale the effect of LUC on the interannual variations of precipitation. Assuming the change of precipitation (ΔP) is linearly dependent on the change of urban/built-up percentage (ΔX) in a particular grid, which can be expressed as

\[
\Delta P = \left(\frac{dP}{dX} \right) \Delta X, \tag{1}
\]

where \(dP/dX\) can be approximated as the coefficient of simple regression of \(P\) against \(X\). Similar discussions were made by [34] and [55], while in their case, different correspondences were made (e.g. between hydrological quantities and temperature or precipitation). In our case, the above analysis was performed both on-grid and off-grid: whereas the former is to identify any significant correlations between \(P\) and \(X\) at the same grid, the latter is to seek any remote connections with certain displacement of the \(P\) grid. Technically, we followed the equation below for the off-grid analysis:

\[
\Delta P_{i+E,j+SN} = \left(\frac{dP}{dX} \right) \Delta X_{i,j}, \quad i = 1, \ldots, m; \quad j = 1, \ldots, n; \quad E = 0, \ldots, 6; \quad SN = -6, \ldots, 6; \tag{2}
\]

where \(i\) and \(j\) denote the grid location, \(m\) and \(n\) the total number of zonal and meridional grids, \(E\) and \(SN\) the eastward and southward/northward displacement of the \(P\) grid. If \(E\) and \(SN\) are both zeros, the equation is identical the on-grid analysis. In addition, urban/built-up percentage \(X\) was derived for 5 km grids in consistent with the alignment of \(P\) grids for this analysis, and regression is not performed for
precipitation data outside central Taiwan or over the ocean (i.e. no westward displacement).

3. Results

3.1. WRF simulation in response to LUCC

To better illustrate the differences in energy budget and rainfall patterns caused by the two sets of land use data, we calculated the average of simulated fields (e.g. temperature, fluxes, and precipitation) over the 10 dry (or wet) cases driven by the NLSC95 and NLSC07 land use, and then subtracted the averaged 1995 fields from the 2007 fields to generate the composite plots. In the dry-case simulation, we found that increased urban and built-up lands enhance sensible heat fluxes and diminish latent heat fluxes, as shown in Figure 2. Changes in energy budget further lead to an increase in 2 m temperatures and reduction in 2 m specific humidity (q), illustrating an urban heat island in general. In the wet-case simulation, similar but less prominent patterns of energy fluxes and temperatures were obtained. The increase (reduction) in sensible heat (latent heat) fluxes and 2 m temperatures ($2m\, q$) can still be observed.

LUCC through perturbing land surface fluxes can influence local circulations, which can be further examined in the wet-case simulation. The thickness of the planetary boundary layer (PBL) indicates the mixing layer height; a warmer surface can enhance the mixing, thereby increasing the thickness of PBL (Figure 3). The PBL and temperature patterns thus bear a high resemblance. A warmer surface can also reduce air density and lead to a decrease in sea level pressure (SLP); lower SLP anomalies can be found over areas with increased urban and built-up lands. In accordance with the SLP anomalies, 10 m winds indicate local convergence taking place at the low SLP anomalies, and intensified onshore wind vectors can be located at certain areas (e.g. along the coast of Changhua County). The vertical profile (from 1000 to 800 mb) of the areal mean upward velocity in Taichung city also indicates a stronger upward motion in 2007 compared to that in 1995. Consequently, precipitation patterns have been altered: Major positive precipitation anomalies were identified not right above but in proximity to those areas where more urban and built-up lands were located and extended (figures 1 and 4(a)). These areas are mostly over the hilly areas, suggesting the underlying topography also plays an important role in altering precipitation patterns.

To manifest the combined effect of LUCC, local topography, and prevailing winds on precipitation, we overlaid the simulated precipitation anomalies with the wind field, along with the topography as background images, as shown in Figure 4(b). We found intensified precipitation over the downwind areas of...
more urban and built-up lands, consistent with the major finding of [32] but having more details disclosed. The intensified precipitation patterns basically align over the windward side of the hills and specific basins, such as the Jialishan mountain in Miaoli, Taichung and Puli (Nantou) Basins, and Bagua Plateau in Changhua.

3.2. Observed trends in precipitation and relationship with urban expansion

Findings from the WRF simulation were further supported with the statistical assessments of observed datasets. As described in section 2.4, we first applied trend analysis to the Landsat land cover and gridded precipitation. Figure 3(a) indicates the observed trends in the percentage of urban areas derived from the Landsat data. In line with the NLSC data, several areas were identified with significant urbanization trends over central Taiwan, especially in the Taichung metropolitan area. In figures 3(b) and (c), central Taiwan exhibits mostly upward trends in the total cumulative as well as maximum daily rainfall in JA, based on the long-term precipitation records from 1960 to 2015. Certain areas marked with significant
upward trends in the JA rainfall coincide with our simulated patterns, such as the Jialishan mountain and Taichung and Puli Basins previously mentioned. We also ensured that the field trend is significant using the false discovery rate approach \[56–58\]. Nevertheless, some coastal enhancement was also found, which should be a derivative of some other mechanisms than LUCC.

Next we performed the regression-based analysis to associate the interannual variations of precipitation
with LUCC. Following equation (2) for the off-grid association analysis that sifted through all E and SN grids can actually yield many significant correlations between \(P \) (total or max rain) and \(X \) (percentage of urban areas) over different grids. In figure 6, we presented selective results of \(dP/dX \), of which the average is highest over heavily urbanized areas (i.e. grids of urban areas >50% in figure 6 (a)). In both cases where the total and max rain as variable \(P \), significant associations were identified for the eastward displacement of the \(P \) grid \((E = 4, \sim 20 \text{ km}) \). Thus, in agreement with the WRF simulation, the statistical assessment also suggests urbanization in central Taiwan has induced eastward, downwind intensification of the JA rainfall in the past decades.

4. Conclusions and recommendations

Central Taiwan has experienced rapid urbanization since the 1990s. Through numerical and statistical assessments, we concluded that changes in land surface conditions were responsible for the altered island-scale circulations subject to complex terrain. Our demonstration factored impacts of LUCC derived from realistic, survey-based land use data in the WRF simulation, producing significant differences in dry and wet cases under weak synoptic forcing in JA. The dry-case simulation suggested an urban heat island effect, resulting from further expansion of existing metropolitan areas. On the other hand, the wet-case simulation indicated that intensified precipitation could be associated with not only LUCC but also local topography and prevailing winds. Findings from the numerical experiment were corroborated by the statistical assessments of the Landsat land cover and gridded precipitation data: Significant increasing trends in urbanization and the JA rainfall and the off-grid LUCC-rainfall association were identified.

A more recent version of the NLSC land use data in 2015 (NLSC15) was just released and shown along with the NLSC95 and NLSC07 data in figure S4; the percentage change from the NLSC95 to NLSC07, and from the NLSC07 to NLSC15 were listed in table S3. Whereas there was a significant increase (16.5%) in irrigated cropland areas from 2007 to 2015, the change in urban and built-up land was minute (\(-0.8\%\)). In contrast, the increase in urban and built-up land areas was much more dramatic from 1995 to 2007 (66.79%). This update suggests that the impacts of LUCC on central Taiwan’s hydroclimate should have been made a decade ago, and we suspect that such impacts are still lasting due to similar land surface conditions.

Urbanization along with other types of LUCC (e.g. irrigation and deforestation) can exert effects on land surface energy and water budget, further increasing the complexity in the Earth system under climate change. While our findings only verified the influences of LUCC in a particular region, various LUCC taking place in different regions suggests that global hydroclimatic conditions have been experiencing changes more rapidly than expected. More studies are required for the discussion of the consequence of LUCC associated with climate change in both regional and global contexts.

Acknowledgments

We are grateful to the NLSC and the TCCIP for providing the land-use and gridded data, respectively. This work was supported by fundings from the Ministry of Science and Technology, Taiwan, grants MOST 105-2621-M-005-004-MY3 and MOST 108-2621-M-005-008-MY3.

Data availability statement

The data that support the findings of this study are available from the corresponding author ([cjchen@nchu.edu.tw or minhuiolo@ntu.edu.tw]) upon reasonable request.

ORCID iDs

Chia-Jeng Chen @ https://orcid.org/0000-0002-7018-1025
Min-Hui Lo @ https://orcid.org/0000-0002-8653-143X

References

[1] Feddema J I, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A and Washington W M 2005 The importance of land-cover change in simulating future climates Science 310 1674–8
[2] Kanamitsu M and Mo K 2003 Dynamical effect of land surface processes on summer precipitation over the southwestern United States J. Clim. 16 496–509
[3] Luyssaert S, Marie G, Valade A, Chen Y Y, Djomo S N, Ryder J and Otto J 2018 Trade-offs in using European forests to meet climate objectives Nature 562 259
[4] Cao Q, Yu D, Georgescu M, Han Z and Wu J 2015 Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China Environ. Res. Lett. 10 120125
[5] Pielke RA and Avissar R 1990 Influence of landscape structure on local and regional climate Landscape Ecol. 4 133–55
[6] Pielke RA 2001 Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall Rev. Geophys. 39 151–77
[7] Pielke RA 2005 Land use and climate change Science 310 1625–6
[8] Kueppers L M et al 2008 Seasonal temperature response to land-use change in the western United States Global Planet. Change 60 250–64
[9] Lo M H and Famiglietti J S 2013 Irrigation in California’s Central Valley strengthens the southwestern US water cycle Geophys. Res. Lett. 40 301–6
[10] Sacks W J, Cook B I, Buening N, Levis S and Helkowski J H 2009 Effects of global irrigation on the near-surface climate Clim. Dyn. 33 159–75
[11] Saeed F, Hagemann S and Jacob D 2009 Impact of irrigation on the South Asian summer monsoon Geophys. Res. Lett. 36 L20711

[12] Puma M and Cook B 2010 Effects of irrigation on global climate during the 20th century J. Geophys. Res. 115 1–15

[13] Lo M H, Wu C M, Ma HY and Famiglietti J S 2013 The response of coastal stratuscumulus clouds to agricultural irrigation in California J. Geophys. Res. Atmos. 118 6044–51

[14] Wey HW, Lo M H, Lee SY, Yu J Y and Hsu HH 2015 Potential impacts of wintertime soil–moisture anomalies from agricultural irrigation at low latitudes on regional and global climates Geophys. Res. Lett. 42 8605–14

[15] Chou C, Ryu D, Lo M H, Wey H and Malano H 2018 Irrigation induced land–atmosphere feedback and their impacts on Indian summer monsoon J. Clim. 31 8785–801

[16] Han R, Werth RD and Aviso R 2008 Regional impacts of future land–cover changes on the Amazon basin wet–season climate J. Clim. 21 1153–70

[17] Lawrence D and Vandecar K 2015 Effects of tropical deforestation on climate and agriculture Nat. Clim. Change 5 27–36

[18] Lejeune Q, Davin E, Guillod B and Seneviratne S 2015 Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation Clim. Dyn. 44 2769–86

[19] Negri A J, Adler R F, Xu L and Surratt J 2004 The impact of Amazonian deforestation on dry season rainfall J. Clim. 17 1306–19

[20] Chen C C, Lo M H, Im E S, Yu J Y, Liang Y C, Chen W T, Tang I, Lan C W, Wu R J and Chien R Y 2019 Thermodynamic and dynamic responses to deforestation in the Maritime Continent a modeling study J. Clim. 32 5903–27

[21] He J F, Liu Y, Zhuang D F, Zhang W and Liu M J 2007 Assessing the effect of land use/land cover change on the change of urban heat island intensity Ther. Appl. Climatol. 90 217–26

[22] Pielke R A, Adegoke J, Beltrañ馨–Przekurat A, Hiemstra CA, Lin J, Nair U S, Niyogi D and Nobis T E 2007 An overview of regional–land use–land cover impacts on rainfall Tellus B 59 567–601

[23] Findell K L and Eltahir E A B 2003a Atmospheric controls on soil moisture-boundary layer interactions I framework development J. Hydrometeorol. 4 552–69

[24] Findell K L and Eltahir E A B 2003b Atmospheric controls on soil moisture-boundary layer interactions II Feedbacks within the continental United States J. Hydrometeorol. 4 570–83

[25] Jiang J Y, Porporato A, Stoy P C, Siqueira M S, Oishi A C, Detto M, Kim H S and Katul G G 2007 Hydrologic and atmospheric controls on initiation of convective precipitation events Water Resour. Res. 43 10

[26] Wu W and Dickinson R E 2005 Warm–season rainfall variability over the US Great Plains and its correlation with evapotranspiration in a climate simulation Geophys. Res. Lett. 32 L17402

[27] van Heerwaarden C C and Guerre de Aredjano J V 2008 Relative humidity as an indicator for cloud formation over heterogeneous land surfaces J. Atmos. Sci. 65 3262–77

[28] Grossman–Clarke S, Zehnder J A, Lortie T and Grimm C S B 2010 Contribution of land use changes to near–surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area J. Appl. Meteor. Climatol. 49 1649–64

[29] Zhang N, Gao Z Q, Wang X M and Chen Y 2010 Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta China Theor. Appl. Climatol. 102 331–42

[30] Cheng F Y, Hsu Y C, Lin P L and Lin T H 2013 Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area J. Appl. Meteor. Climatol. 52 570–87

[31] Li X, Mitra G, Dong L and Yang Q 2018 Understanding land use change impacts on microclimate using weather research and Forecasting (WRF) model Phys. Chem. Earth A/B/C 103 115–26

[32] Lin C, Chen W, Liu S, Liu Y, Liu G and Lin T 2008a Numerical study of the impact of urbanization on the precipitation over Taiwan Atmos. Environ. 42 2934–47

[33] Li H, Wang C, Zhong C, Zhang Z and Liu Q 2017 Mapping typical urban LULC from Landsat imagery without training samples or self-defined parameters Remote Sens. 9 700

[34] Yasatagi A, Kaminaguchi K, Arakawa O, Hamada A, Yasutomo N and Kitocho A 2012 APEHRODITE constructing a long–term daily gridded precipitation dataset for Asia based on a dense network of rain gauges Bull. Am. Meteorol. Soc. 93 1401–15

[35] Weng S P and Yang C D 2018 The construction and verification of daily gridded rainfall dataset (1960–2015) in taiwan Taiwan Water Conserv. 66 33–52 (in Chinese with English abstract)

[36] Skamarock W C et al 2008 A description of the Advanced Research WRF version 3 NCAR Tech. Note NCR/ TN–475+ STR (https://doi.org/10.5065/D88S4MVH)

[37] Livneh B, Restrepo P J and Lettenmaier D P 2011 Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions J. Hydrometeor. 12 1299–320

[38] Hong J S, Fong C T, Hsiao L F, Yu Y C and Tseng C Y 2015 Ensemble typhoon quantitative precipitation forecasts model in Taiwan Weather Forecast. 30 217–27

[39] Yang M J and Tung Q C 2003 Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes J. Meteorol. Soc. Japan. 81 1163–83

[40] Betts A K 1986 A new convective adjustment scheme I Observational and theoretical basis Q. J. R. Meteor. Soc. 121 255–70

[41] Janic Z I 1994 The step–mountain eta coordinate model further developments of the convection, viscous sublayer and turbulence closure schemes Mon. Weather Rev. 122 927–45

[42] Janic Z I 2000 Comments on development and evaluation of a convection scheme for use in climate models J. Atmos. Sci. 57 3686

[43] Betts A K and Miller M J 1986 A new convective adjustment scheme II Single column tests using GATE wave, BOMEX, and arctic air–mass data sets Q. J. R. Meteor. Soc. 121 693–709

[44] Mlawer E J, Taubman S J, Brown P D, Iacono M J and Clough S A 1997 Radiative transfer for inhomogeneous atmosphere RRTM, a validated correlated–k model for the long–wave J. Geophys. Res. 102 16663–82

[45] Chou MJ and Suarez M J 1994 An efficient thermal infrared radiation parameterization for use in general circulation models NASA Tech. Memo. 3 104060

[46] Hong S Y, Dudhia J and Chen S H 2004 A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation Mon. Weather Rev. 132 103–20

[47] Hong S Y, Noh Y and Dudhia J 2006 A new vertical diffusion package with an explicit treatment of entrainment processes Mon. Weather Rev. 134 2318–41

[48] Jiménez P A, Dudhia J, González–Rouco J F, Navarro J, Montávez J P and García–Bustamante E 2012 A revised scheme for the WRF surface layer formulation Mon. Wea. Rev. 140 898–918

[49] Wang C C, Chien F C, Paul S, Lee D I and Chuang P Y 2017 An evaluation of WRF rainfall forecasts in Taiwan during three mei–yu seasons from 2008 to 2010 Weather Forecast. 32 1329–51

[50] Chien F C, Liu Y C and Jou B Y 2006 MM5 ensemble mean forecasts in the Taiwan area for the 2003 mei–yu season Weather Forecast. 21 1006–23

[51] Chien F C, Kuo Y H and Yang M J 2002 Precipitation forecast of MM5 in the Taiwan area during the 1998 mei–yu season Weather Forecast. 17 739–54

[52] Hong J S 2003 Evaluation of the high–resolution model forecasts over the Taiwan area during GIMEX Weather Forecast. 18 836–46

[53] Sen P K 1968 Estimates of regression coefficients based on Kendall’s tau J. Am. Stat. Assoc. 63 1379–89

[54] Lu E, Taktle E S and Manoj J 2010 The relationships between climatic and hydrological changes in the upper Mississippi River basin: a SWAT and multi–GCM study J. Hydrometeorol. 11 437–51
[55] Sun Q, Miao C and Duan Q 2017 Changes in the spatial heterogeneity and annual distribution of observed precipitation across China J. Clim. 30 9399–416

[56] Benjamini Y and Hochberg Y 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc. Ser. B 57 289–300

[57] Wilks D S 2006 On ‘field significance’ and the false discovery rate J. Appl. Meteorol. Clim. 45 1181–9

[58] Wilks D S 2016 The stippling shows statistically significant grid points: How research results are routinely overstated and overinterpreted, and what to do about it Bull. Am. Meteorol. Soc. 97 2263–73