On practical problems to compute the ghost propagator in SU(2) lattice gauge theory

T. Bakeev
Joint Institute for Nuclear Research, 141980 Dubna, Russia

E.-M. Ilgenfritz and M. Müller–Preussker
Institut für Physik, Humboldt Universität zu Berlin, Newton-Str. 15, D-12489 Berlin, Germany

V. K. Mitrjushkin
Joint Institute for Nuclear Research, 141980 Dubna, Russia
and Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
(Dated: March 25, 2022)

In SU(2) lattice pure gauge theory we study numerically the dependence of the ghost propagator $G(p)$ on the choice of Gribov copies in Lorentz (or Landau) gauge. We find that the effect of Gribov copies is essential in the scaling window region, however, it tends to decrease with increasing β. On the other hand, we find that at larger β-values very strong fluctuations appear which can make problematic the calculation of the ghost propagator. $Z_{gh}(p^2) \propto (p^2)^{-\kappa}$. In a particular truncation scheme $\kappa = 0.595$ has been determined.

There are only relatively few previous lattice studies of the ghost propagator $Z_{gh}(p^2)$, in contrast to numerous investigations of the gluon propagator $Z_{gl}(p^2)$. As for the latter, is not yet clear from the lattice whether $Z_{gl}(p^2)/p^2 \to 0$ or $\neq 0$ with $p^2 \to 0$. The lattice volumes might still be insufficient to decide this question. The singular behavior of $Z_{gh}(p^2)$ is seen to become stronger with increasing volume V. This supports the expectation that the sample of physically important gauge field configurations $A \in \Gamma$, which constitutes the Euclidean functional integral, in the thermodynamical limit $V \to \infty$ concentrating towards the edge of the Gribov region, the first Gribov horizon $\partial \Omega$ where the lowest non-vanishing eigenvalue of the Faddeev-Popov operator is approaching zero. This statement is the content of Zwanziger’s horizon condition which can be related to the Kugo-Ojima criterion.

All this is complicated by the non-uniqueness, first pointed out by Gribov, of the intersection with Γ of the gauge orbit A^0 of any gauge field A, even if restricted to the Gribov region Ω. Practically, the Landau gauge is implemented by maximizing (with respect to gauge transformations g) a certain gauge functional. Usually, such a problem leads to more than a single maximum, which are gauge copies (Gribov copies) of each other,
hence to a non-unique definition of gauge dependent observables. Thus, in a lattice investigation one has to determine which observables are really subject to the so-called Gribov problem which reflects the dependence of an observable on the restriction (if possible) to the copy corresponding to the absolute maximum of the gauge functional. More precisely, one has to study whether this dependence disappears when one is approaching the continuum and/or infinite volume limit. Otherwise this would indicate the persistence of a real Gribov problem to which Gribov has drawn the attention. On the lattice, the structure of the Gribov region has been closer investigated under this aspect only by Cucchieri \[21] some years ago.

Here we are mainly dealing with the infrared behavior of the calculated ghost propagator. In the result of a study for $SU(2)$ gluodynamics \[11], Cucchieri came to the conclusion that the ghost propagator depends on the selection of the highest among more and more maxima of the gauge functional while the gluon propagator does not depend. This study was restricted on one hand to the strong coupling region ($\beta = 0.0, 0.8, 1.6$) where these observations apply, and $\beta = 2.7$ where no gauge copy dependence was seen at all. These β values are outside the physically interesting scaling region. In a more recent paper \[13], it has been reported that the gauge copy dependence of the ghost propagator in the more interesting scaling region (at $\beta = 2.15, 2.2, 2.3$ and 2.4 for lattices $16^3 \times 32$) has been found to be within the statistical errors, on a level which is called Gribov noise.

In the present paper we reanalyse the scaling region at $\beta = 2.2, 2.3, 2.4, 2.5$ and 2.6 for lattices 8^4 and 16^4 by comparing two ensembles of gauge-fixed field configurations. One ensemble ("fc") consists of an arbitrary maximum (usually the first being found), and the other consists of the best (relative) maximum ("bc") among N_{copy} local maxima of the gauge functional. We find that the difference of the ensemble averages of the ghost propagator for the lowest non-vanishing lattice momentum between the two ensembles does not vanish, except for the highest β value. Hence the Gribov problem remains a serious obstacle for a unique definition of the $SU(2)$ ghost propagator in the scaling region. More serious is an unexpected observation in the higher-β region. We find an intermittent behavior of the ghost propagator estimator for the lowest non-vanishing momentum, signalled by anomalously large, isolated fluctuations of the ghost propagator $G(p_{\text{min}})$ (see below) within the time history of uncorrelated configurations. We stress already here that this behavior is not a Gribov copy problem since the anomalous peaks of $G(p_{\text{min}})$ are observed both for the first and the best Gribov copy, entering the ensembles "fc" and "bc", respectively. We have tested whether this is correlated with various infrared observables. For the time being, two hypothetic causes must be excluded as a viable explanation of the phenomenon.

In Section 2 we recall the definition of the gluon field A_μ, the definition of the Lorentz (or Landau) gauge, the structure of the Faddeev-Popov operator and the definition of the ghost propagator. Details of the simulations, the gauge fixing and the observation of Gribov copies are reported in Section 3. In Section 4 we discuss the results on the ghost propagator. We conclude in Section 5.

II. FADDEEV-POPOV OPERATOR AND GHOST PROPAGATOR

A. Definition of the gluon field and Faddeev-Popov operator

For the Monte Carlo generation of ensembles of non-gauge-fixed gauge field configurations we use the standard Wilson action \[22], which for the case of an $SU(N)$ gauge group is written

$$ S = \beta \sum_x \sum_{\mu > \nu} \left[1 - \frac{1}{N} \text{Re} \, \text{Tr} \left(U_{x\mu} U_{x+\mu;\nu} U_{x+\nu;\mu} U_{x;\nu}^\dagger \right) \right] ; $$

$$ \beta = 2N/g_0^2 . $$

(1)

Here g_0 is a bare coupling constant and $U_{x\mu} \in SU(N)$ are the link variables. The field variables $U_{x\mu}$ transform as follows under gauge transformations g_x:

$$ U_{x\mu} \rightarrow g_x^g U_{x\mu} g_{x+\mu}^g ; \quad g_x \in SU(N) . $$

(2)

For $SU(2)$ gauge links $U_{x\mu}$, a standard definition \[23] of the lattice gauge field (vector potential) $A_{x+\mu/2,\mu}$ is

$$ A_{x+\mu/2,\mu} = \frac{1}{2i} \left(U_{x\mu} - U_{x\mu}^\dagger \right) . $$

(3)
Therefore, for $SU(2)$, the link can be written
\[
U_{x\mu} = b^0_{x\mu} \hat{1} + i \tilde{b}_{x\mu} \sigma = b^0_{x\mu} \hat{1} + i A_{x+\mu/2,\mu};
\]
\[
b^0_{x\mu} = \frac{1}{2} \text{Tr} \ U_{x\mu} . \tag{4}
\]

In lattice gauge theory the usual choice of the Landau gauge condition is
\[
(\partial A)_x = \frac{4}{\mu} \left(A_{x+\mu/2,\mu} - A_{x-\mu/2,\mu} \right) = 0 , \tag{5}
\]
which is equivalent to finding an extremum of the gauge functional
\[
F_U(g) = \frac{1}{4V} \sum_{x\mu} \frac{1}{N} \text{Re} \text{Tr} \ U^g_{x\mu} \tag{6}
\]
with respect to gauge transformations g_x. After replacing $U \Rightarrow U^g$ at the extremum the gauge condition \([3]\) is satisfied. In what follows this gauge is referred to as Landau gauge.

The lattice expression of the Faddeev-Popov operator M^{ab} corresponding to $M^{ab} = -\partial_{\mu} D^{ab}_{\mu}$ in the continuum theory (where D^{ab}_{μ} is the covariant derivative in the adjoint representation) is given by
\[
M^{ab}_{xy} = \sum_{\mu} \left\{ \left(\bar{S}^{ab}_{x\mu} + \bar{S}^{ab}_{x-\mu,\mu} \right) \delta_{xy} \right. \\
\left. - \left(\bar{S}^{ab}_{x\mu} - \bar{A}^{ab}_{x\mu} \right) \delta_{xy} + \left(\bar{S}^{ab}_{x-\mu,\mu} + \bar{A}^{ab}_{x-\mu,\mu} \right) \delta_{xy} \right\} . \tag{7}
\]
where
\[
\bar{S}^{ab}_{x\mu} = \delta^{ab} \frac{1}{2} \text{Tr} \ U_{x\mu}; \quad \bar{A}^{ab}_{x\mu} = -\frac{1}{2} \epsilon^{abc} A_{x+\mu,2\mu} . \tag{8}
\]

From the form \([8]\) it follows that a trivial zero eigenvalue is always present, such that at the Gribov horizon $\partial \Gamma$ the first non-trivial zero eigenvalue appears. Conversely, it is easy to see that for constant field configurations, with $b^0_{x\mu} = \bar{b}^0_{x\mu}$ and $b^a_{x\mu} = \bar{b}^a_{x\mu}$ independent of x, there exist eigenmodes of M with a vanishing eigenvalue. Thus, if the Landau gauge is properly implemented, $M[U]$ is a symmetric and semi-positive definite matrix.

B. Ghost propagator

The ghost propagator $G^{ab}(x,y)$ is defined as \([10,19]\)
\[
G^{ab}(x,y) = \delta^{ab} G(x-y) \equiv \left\langle \left(M^{-1} \right)^{ab}_{xy} [U] \right\rangle , \tag{9}
\]
where $M[U]$ is the Faddeev-Popov operator. Note that the ghost propagator becomes translational invariant (i.e., dependent only on $x - y$) and diagonal in color space only in the result of averaging over the ensemble of gauge-fixed representants (first or best gauge-fixed copies) of the original Monte Carlo gauge configurations. The ghost propagator in momentum space can be written as
\[
G(p) = \frac{1}{3V} \sum_{x,y} \epsilon^{-2\pi i p \cdot (x-y)} \left\langle \left(M^{-1} \right)^{a\bar{a}}_{xy} [U] \right\rangle , \tag{10}
\]
where $V = L^4$ is the lattice volume, and the coefficient $\frac{1}{3V}$ is taken for a full normalization, including the indicated color average over $a = 1,\ldots,3$.

We mentioned above that $M[U]$ is a symmetric and semi-positive definite matrix. In particular, this matrix is positive-definite in the subspace orthogonal to constant vectors. The latter are zero modes of $M[U]$. Therefore, it can be inverted by using a conjugate-gradient method, provided that both the source $\psi^a(y)$ and the initial guess of the solution are orthogonal to zero modes. As the source we adopted the one proposed by Cucchieri \([11]\):
\[
\psi^a(y) = \delta^{ac} e^{2\pi i p \cdot y} p \neq (0,0,0) , \tag{11}
\]
for which the condition $\sum_y \psi^a(y) = 0$ is automatically imposed. Choosing the source in this way allows to save computer time since, instead of the summation over x and y in Eq. \([10]\), only the scalar product of $M^{-1}\psi$ with the source ψ itself has to be evaluated. In general, the gauge fixed configurations can be used in a more efficient way when the inversion of M is done on sources for $c = 1,\ldots,3$ such that the (adjoint) color averaging, formally required in Eq. \([10]\), will be explicitly performed.

III. SIMULATION DETAILS

The numerical simulations have been done for $SU(2)$ pure gauge theory using the standard Wilson action, for lattice volumes L^4 with $L = 8$ and $L = 16$. At a given lattice size L for each β value we have generated N_{conf} independent mother configurations, for which the Landau gauge was fixed $N_{\text{copy}} = 20$ times, each time starting from a random gauge transformation of the mother
configuration, obtaining in this way N_{copy} Landau-gauge fixed copies.

Two consecutive configurations (considered as independent) were separated by 100 and 200 sweeps for lattice sizes 8^4 and 16^4, respectively. Each sweep consisted of one local heatbath update followed by 4 or 8 microcanonical updates for 8^4 or 16^4 lattices. In all our runs we have measured the integrated autocorrelation time for the plaquette, for the Polyakov loop and for the ghost propagator (separately for each momentum p). In all cases, the relation $\tau_{\text{int}} \sim 0.5$ was observed, showing that the consecutive configurations are effectively independent.

The actual measurements of the ghost propagator were done for the ”first”, i.e. in fact an arbitrary gauge copy and for the ”best” one among the N_{copy} copies. If the first copy turned out to be the best, the ghost propagator was measured only once, and the result simultaneously entered the two different gauge-fixed ensemble averages. In the following the two ensembles are labelled “fc” and ”bc”, referring to the first or the best gauge copy, respectively. In Table II we give, for each set of simulation parameters (L, β), the number of times the first copy produced turned not out to be the best, i.e., did not correspond to the relative maximum of $F_U(g_i)$ among the N_{copy} copies.

As the gauge fixing procedure we used standard Los Alamos type overrelaxation with $\omega = 1.7$. The iterations have been stopped when the following transversality condition was satisfied:

$$\max_{x,a} \left| \sum_{\mu=1}^{4} \left(A^a_{x+\hat{\mu}/2;\mu} - A^a_{x-\hat{\mu}/2;\mu} \right) \right| < \epsilon_{\text{lor}}. \quad (12)$$

We used the parameters $\epsilon_{\text{lor}} = 10^{-10}$ or 10^{-9} for lattice size 8^4 or 16^4, respectively. In our test runs it was found that further decreasing ϵ_{lor} does not affect the results for the ghost propagator. Also it was checked that these values of ϵ_{lor} are sufficient for identifying, according only to the values of $F_U(g_i)$, Gribov copies which are actually global gauge transformations of each other and conversely for distinguishing this from the case of actually inequivalent lattice Gribov copies.

In Table II for each set of simulation parameters (L, β), we present also the number of configurations for which Gribov copies have been found and the total number of different Gribov copies.

Table III gives for each set of simulation parameters (L, β) the number of configurations which underwent gauge fixing; in the 4th column the total number N_{conf} of non-equivalent Gribov copies out of a total number N_{conf} of configurations which underwent gauge fixing; in the 4th column the total number $N_{\text{total}} = N_{\text{conf}} \times N_{\text{copy}}$ of gauge copies under investigation. The last column presents the number of times out of N_{conf} that the first copy was not identical to the best (relative maximum) copy.

IV. DISCUSSION OF THE RESULTS

From Table II one can learn that at the lattice size 8^4 the fraction of Monte Carlo configurations which are represented by more than one gauge-fixed configurations (among 20 attempts to find copies) drastically begins to decrease at $\beta = 2.3$. Parallel to this also the multiplicity of actually different copies among 20 drops down. The decrease of the number of available basins of attraction for the gauge fixing process is a finite-volume effect. For the bigger lattice size (16^4) one sees that the fraction of Monte Carlo configurations with more than one gauge-fixed configurations practically does not depend on β.

However, the multiplicity of non-equivalent copies among the 20 obtained copies starts to decrease from $\beta = 2.3$.

From Table III one can see for separate small momenta,
TABLE II: The ghost propagator \(G(p) \) from Eq. (10) as a function of \(k_4 = 1, 2, 3, 4 \). We have set the momentum \(p = (0, 0, k_4/L) \), where \(L = 8, 16 \) is the lattice size. The averages over the gauge configurations in Eq. (10) were taken in two different ways: "fc" means the average taking only the gauge-fixed copy generated first for each configuration, "bc" means the average over only the best (relative maximum) copy among 20 different gauge-fixed copies that we have generated.

\(\beta \)	\(\eta_{\text{meas}} \)	Copy	\(k_4 = 1 \)	\(k_4 = 2 \)	\(k_4 = 3 \)	\(k_4 = 4 \)
1.6	500	bc	6.58(4)	1.327(5)	0.628(2)	0.501(1)
1.6	500	fc	7.02(6)	1.363(5)	0.638(1)	0.508(1)
2.0	500	bc	5.15(3)	1.013(2)	0.491(1)	0.3970(4)
2.0	500	fc	5.46(9)	1.028(3)	0.495(1)	0.3995(6)
2.1	500	bc	4.62(3)	0.920(2)	0.4545(6)	0.3701(4)
2.1	500	fc	4.89(7)	0.935(3)	0.4573(8)	0.3719(5)
2.2	500	bc	4.06(3)	0.823(2)	0.4189(4)	0.3444(3)
2.2	500	fc	4.26(4)	0.833(2)	0.4205(5)	0.3450(3)
2.3	500	bc	3.60(4)	0.741(1)	0.3903(3)	0.3238(2)
2.3	500	fc	3.65(4)	0.747(2)	0.3909(4)	0.3241(2)
2.4	500	bc	3.38(5)	0.691(1)	0.3710(4)	0.3098(2)
2.4	500	fc	3.47(7)	0.692(2)	0.3712(4)	0.3099(2)

With respect to the dependence on Gribov copies for \(\beta \in [2.2, 2.6] \). Whereas for the lowest momentum the results resemble those of the smaller lattice, for the second lowest momentum they are practically indistinguishable at the given scale. For increasing \(\beta \) the difference becomes of the order of the statistical error (Gribov noise). At \(\beta = 2.6 \) the ghost propagator data even for the lowest momentum fall together within error bars. This indicates that the Gribov problem has disappeared for the ghost propagator there.

Instead, at \(\beta = 2.6 \) a new problem arises which can be recognized already in Fig. 2 where we also demonstrate how, at \(\beta = 2.6 \), the average for the ghost propagator at the lowest momentum would be influenced by the removal of "exceptional configurations". These are signalled as spikes in the Monte Carlo time histories of the corresponding observable shown in Fig. 3 for \(\beta = 2.6 \). Precursors of this phenomenon are visible there at lower \(\beta \), too, but for \(\beta = 2.6 \) the effect becomes notable. We notice that these spikes occur in the first as well as in the best gauge-fixed copy. Therefore, the existence of these "exceptional configurations" is definitely not a result of gauge fixing.

In order to explore what the essence of these "exceptional configurations" is, we have looked for correlations with certain "toron" excitations on one hand and with different Polyakov loops on the other.

In the first case we followed the procedure applied by Kovacs [27] for extracting the toron content of Monte Carlo gauge field configurations [27]. We evaluated for all four directions \(\mu \) on the lattice the corresponding holonomies over a \(\mu \)-slice fixed at \(x_\mu = 1 \)

\[
P_\mu(x) = \prod_{s=0}^{L-1} U_{x+s\bar{\mu},\mu} .
\]

We averaged this quantity over the \(\mu \)-slice,

\[
\bar{P}_\mu = \frac{1}{L^3} \sum_{x_\mu = 1} P_\mu(x) .
\]

These gauge dependent quantities were normalized to \(SU(2) \) in the usual way

\[
\bar{P}_\mu \Rightarrow \bar{P}_\mu / \sqrt{\det \bar{P}_\mu} .
\]
Then the anticipated homogeneous toron field is given by links $\bar{U}_{x\mu}$ independent of x, which are required to reproduce \bar{P}_μ as follows:

$$(\bar{U}_{x\mu})^L = \bar{P}_\mu. \tag{4}$$

The corresponding toron gluon field can be extracted as

$$A_{toron}^{x+\mu/2,\mu} = \frac{1}{2i} \left(\bar{U}_{x\mu} - \bar{U}_{x\mu}^\dagger \right). \tag{5}$$

We have plotted the time history of the lowest moment-
FIG. 3: Monte Carlo time histories of the ghost propagator $G(p_{\text{min}})$ for various β on the 16^4 lattice. The frequency of the occurrence of "exceptional configurations" increases with higher β.

tum ghost propagator together with the toron observable

$$T_\mu = \sum_{a=1}^{3} \text{Tr} \left(A_{\text{toron}}^{x+\bar{\mu}/2,\mu} \right)^2,$$ \hspace{1cm} (6)

defined separately for the four Euclidean directions. We noticed that the previously mentioned spikes ("exceptional configurations") occur independent of spikes of this toron observable in each of the Euclidean directions. We demonstrate this in Fig. 4 which shows the Monte Carlo history of the lowest-momentum ghost propagator (upper panel) together with the histories of the toron fields T_μ for $\mu = 4$ (middle) and $\mu = 1$ (lower panel).

We also checked the Monte Carlo sample for eventual correlations with the average Polyakov loop

$$L_\mu = \frac{1}{2} \text{Tr} \bar{P}_\mu.$$ \hspace{1cm} (7)

Similarly, we illustrate in Fig. 5 that there are no correlations between the spikes of the lowest momentum ghost propagator with extremal fluctuations of the average Polyakov loop in any of the four directions. Shown in the Fig. 5 are, beside the history of the lowest-momentum ghost propagator (upper panel), the histories of the average Polyakov lines L_μ for $\mu = 4$ (middle) and $\mu = 1$ (lower panel).

V. CONCLUSIONS

In this work we studied numerically the dependence of the ghost propagator $G(p)$ in pure gauge $SU(2)$ theory on the choice of Gribov copies in Lorentz (or Landau) gauge with the special focus on the physically interesting scaling region. All simulations have been performed on the 8^4 and 16^4 lattices.

We found that the effect of Gribov copies is essential in the scaling window region. Therefore, the Gribov problem remains a serious obstacle for a unique definition of the $SU(2)$ ghost propagator in the scaling region. However, it tends to decrease with increasing β values.

Another – and more serious – problem is presented by the unexpected observation, in the higher-β region, of anomalously large, isolated fluctuations of the ghost propagator $G(p_{\text{min}})$ within the time history of uncorrelated configurations. These strong fluctuations make problematic the calculation of the ghost propagator.

We believe that this problem deserves a more thorough study, in particular how to interpret the relevant config-
FIG. 4: Monte Carlo time histories of the ghost propagator $G(p_{\text{min}})$ (above) for $\beta = 2.6$ on the 16^4 lattice, compared with the histories of the toron fields T_4 (middle) and T_1 (below). The fluctuations of the latter have been arbitrarily rescaled and shifted for better visual inspection.

FIG. 5: Monte Carlo time histories of the ghost propagator $G(p_{\text{min}})$ (above) for $\beta = 2.6$ on the 16^4 lattice, compared with the histories of the average Polyakov lines L_4 (middle) and L_1 (below). The fluctuations of the latter have been arbitrarily rescaled and shifted for better visual inspection.

If there is nothing physically wrong with them, much more statistics is necessary to get a reliable result.

Acknowledgment

This work has been supported by the grant INTAS–00–00111 and RFBR grants 02–02–17308 and 99–01–00190.
One of us (T. B.) recognizes the support of young scientist’s grant 02-01-06064. E.–M. I. is supported by DFG through the DFG-Forschergruppe ”Lattice Hadron Phenomenology” (FOR 465).

[1] I. Ojima, Nucl. Phys. B 143, 340 (1978).
[2] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979).
[3] V. N. Gribov, Nucl. Phys. B 139, 1 (1978).
[4] D. Zwanziger, Nucl. Phys. B 364, 127 (1991); Nucl. Phys. B 378, 525 (1992).
[5] L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. Lett. 79, 3591 (1997); L. von Smekal, A. Hauck and R. Alkofer, Ann. Phys. (NY) 267, 1 (1998).
[6] R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001).
[7] P. Watson and R. Alkofer, Phys. Rev. Lett. 86, 5239 (2001).
[8] R. Alkofer, C.S. Fischer and L. von Smekal, Eur. Phys. J. A 17, 773 (2003); Prog. Part. Nucl. Phys. 50, 317 (2003), e-print archive: nucl-th/0301048.
[9] D. Zwanziger, Phys. Rev. D 65, 094039 (2002); Phys. Rev. D 67, 105001 (2003).
[10] H. Suman and K. Schilling, Phys. Lett. B 373, 314 (1996).
[11] A. Cucchieri, Nucl. Phys. B 508, 353 (1997).
[12] H. Nakajima and S. Furui, Nucl. Phys. B (Proc. Suppl.) 73, 865 (1999); Nucl. Phys. B (Proc. Suppl.) 83, 521 (2000); Nucl. Phys. A 680, 151 (2000); H. Nakajima, S. Furui and A. Yamaguchi, Nucl. Phys. B (Proc. Suppl.) 94, 558 (2001); H. Nakajima and S. Furui, Nucl. Phys. B (Proc. Suppl.) 119, 730 (2003).
[13] J.C.R Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Nucl. Phys. B (Proc. Suppl.) 119, 736 (2003); K. Langfeld, J.C.R. Bloch, J. Gattnar, H. Reinhardt, A. Cucchieri and T. Mendes, talk given at 5th International Conference on Quark Confinement and the Hadron Spectrum, Gargnano, Brescia, Italy, 10-14 Sep 2002, edited by N. Brambilla, G. M. Prosperi; River Edge, N.J., World Scientific (2003), pp. 297-299; e-print archive: hep-th/0209173.
[14] J. E. Mandula, Phys. Rept. 315, 273 (1999).
[15] G. Damm, W. Kerler and V.K. Mitrjushkin, Phys. Lett. B 433, 88 (1998); A. Cucchieri, Phys. Rev. D 60, 034508 (1999); K. Langfeld, H. Reinhardt and J. Gattnar, Nucl. Phys. B 621, 131 (2002); A. Cucchieri, T. Mendes and A. R. Taurines, Phus. Rev. D 67, 091502 (2003).
[16] D. B. Leinweber et al. (UKQCD collaboration), Phys. Rev. D 58, 031501 (1998); Phys. Rev. D 60, 094507 (1999), Erratum-ibid. D 61, 079901 (2000); H. Nakajima and S. Furui, Nucl. Phys. B (Proc. Suppl.) 73, 635 (1999); F.D.R. Bonnet, P. O. Bowman, D. B. Leinweber and A. G. Williams, Phys. Rev. D 62, 051501 (2000); F.D.R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams and J. M. Zanotti, Phys. Rev. D 64, 034501 (2001).
[17] see the last two of Ref. 16.
[18] C. Alexandrou, P. de Forcrand and E. Follana, Phys. Rev. D 65, 114508 (2002); P. O. Bowman, U. M. Heller, D. B. Leinweber and A. G. Williams, Phys. Rev. D 66, 074505 (2002).
[19] D. Zwanziger, Nucl. Phys. B 412, 657 (1994).
[20] M. Schaden and D. Zwanziger, in Proceedings of the Workshop on Quantum Infrared Physics, Paris, France, 6-10 Jun 1994, edited by H.M. Fried and B. Muller; River Edge, N.J., World Scientific (1995), pp. 0010-17; e-print archive: hep-th/9410019.
[21] A. Cucchieri, Nucl. Phys. B 521, 365 (1998).
[22] K. Wilson, Phys. Rev. D 10, 2445 (1974).
[23] J. E. Mandula and M. Ogilvie, Phys. Lett. B 185, 127 (1987).
[24] S. L. Adler, Nucl. Phys. B (Proc. Suppl.) 9, 437 (1989).
[25] T. G. Kovacs, Phys. Rev. D 62, 034502 (2000).
[26] We notice that the gluon propagator in the Gribov-copy free Laplacian gauge is finite in the limit $p \to 0$, $V \to \infty$ [18].
[27] In an attempt to reconstruct hadronic correlators from model configurations derived from lattice Monte Carlo configurations he found it necessary to augment the instanton content of the latter - as extracted via smoothing - by an appropriate ”toron” field extracted as we explain in the text. Indeed, this mixture turned out essential to reproduce mesonic correlators in his ”instanton plus toron” model of the vacuum.