Research Article

An Analytic Characterization of \((p, q)\)-White Noise Functionals

Anis Riahi,1,2 Amine Ettaieb,3 Wathek Chammam4,1 and Ziyad Ali Alhussain1

1Department of Mathematics, College of Science Al-Zulfi, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
2Department of Mathematics, Nabeul Preparatory Institute for Engineering Studies, Carthage University, Nabeul, Tunisia
3Department of Mathematics, Higher School of Sciences and Technologies of Hammam-Sousse, MaPSFA Laboratory, Sousse University, Hammam Sousse 4011, Tunisia
4Department of Electro Mechanics, Higher Institute of Industrial Systems of Gabès, Gabès 6072, Tunisia

Correspondence should be addressed to Wathek Chammam; w.chammam@mu.edu.sa

Received 12 August 2020; Accepted 20 November 2020; Published 8 December 2020

Academic Editor: Yongqiang Fu

In this paper, a characterization theorem for the \(S\)-transform of infinite dimensional distributions of noncommutative white noise corresponding to the \((p, q)\)-deformed quantum oscillator algebra is investigated. We derive a unitary operator \(U\) between the noncommutative \(L^2\)-space and the \((p, q)\)-Fock space which serves to give the construction of a white noise Gel’fand triple. Next, a general characterization theorem is proven for the space of \((p, q)\)-Gaussian white noise distributions in terms of new spaces of \((p, q)\)-entire functions with certain growth rates determined by Young functions and a suitable \((p, q)\)-exponential map.

1. Introduction

The white noise distribution theory originally aiming to extend Itô theory keeping contact with Lévy’s stochastic variational calculus [1] has been developed to an efficient infinite dimensional calculus with considerable applications to quantum physics, infinite dimensional harmonic analysis, infinite dimensional differential equations, quantum stochastic calculus, and mathematical finance, see, e.g., [2–8] and the references therein. This theory is based on the quantum decomposition of the Gaussian random variable \(\langle \omega, \xi \rangle\) given as the sum of creation and annihilation operators which satisfies the canonical commutative commutation relation. As a generalization by replacing the classical commutative notion of independence by some other type in a noncommutative probability space, we conclude that the noncommutative white noise theory is a generalization of classical white noise theory to the description of quantum systems. In the framework of the free probability, Alpay and Salomon [9] (see also [10]) constructed a noncommutative analog of the Kondratiev space. For \(q \in (−1, 1)\), Bożejko et al. introduced \(q\)-analogs of Brownian motions and Gaussian processes in [11, 12], which are governed by classical independence for \(q = 1\) and free independence for \(q = 0\) introduced by Voiculescu et al. in [13].

The aim of the present paper is to introduce a proper mathematical framework of \((p, q)\)-white noise calculus based on the noncommutative white noise corresponding to the \((p, q)\)-deformed oscillator algebra [14]. More precisely, as a generalization by using the second-parameter refinement of the \(q\)-Fock space, formulated as the \((p, q)\)-Fock space \(\mathcal{F}_{pq}(\mathcal{H})\) which is constructed via a direct generalization of Bożejko and Speicher’s framework, yielding the \(q\)-Fock space when \(p = 1\), we introduce the noncommutative analogs of Gaussian processes (white noise measure) for the relation of the \((p, q)\)-deformed quantum oscillator algebra. Next, we construct a white noise Gel’fand triple, and we derive the characterization of the space of generalized functions in terms of new spaces of \((p, q)\)-entire functions with certain growth.

Our paper is organized as follows. Section 2 is devoted to study the \((p, q)\)-white noise functionals with special emphasis on the chaos decomposition of the noncommutative \(L^2\)-space with respect to the vacuum expectation \(\tau\) based on orthogonalization of polynomials of \((p, q)\)-white noise. In
Section 3, firstly for a fixed Young function θ with particular condition, we construct a nuclear Gelfand triple
\[
\mathcal{W}_{p,q}(\mathcal{E}_c) \subset \mathcal{L}^2(\tau) \subset \mathcal{W}^*_p(\mathcal{E}_c),
\]
of test and generalized functions, and we introduce the \mathcal{S}-transform which is our main analytical tool in working with these spaces and serves to prove a characterization of white noise functionals.

2. Noncommutative Orthogonal Polynomials of (p, q)-White Noise

We start with the real Gelfand triple:
\[
\mathcal{E} := \mathcal{S}(\mathbb{R}) \subset H = L^2(\mathbb{R}, dt) \subset \mathcal{E}' := \mathcal{S}'(\mathbb{R}),
\]
where $\mathcal{S}(\mathbb{R})$ is the space of rapidly decreasing functions and $\mathcal{S}'(\mathbb{R})$ is the dual space, i.e., the space of tempered distributions. We denote by $\langle \cdot, \cdot \rangle$ the canonical bilinear form on $\mathcal{E}' \times \mathcal{E}$ and by $| \cdot |_0$ the norm of H. For notational convenience, the \mathbb{C}-bilinear form on $\mathcal{E}_c \times \mathcal{E}_c$ is denoted by the same symbol so that $|\xi|^2 = \langle \xi, t_0 \xi \rangle$ holds for $\xi \in \mathcal{H} = H_c$ (in general, the complexification of a real vector space X is denoted by X_c). In [15], Simon has proved that the space \mathcal{E} is a nuclear Fréchet space constructed from the Hilbert space H and the Harmonic oscillator operator $A = 1 + \frac{d^2}{dt^2}$, i.e., $\mathcal{E} = \text{projlim}_{s \to \infty} \mathcal{E}_s = \cap_{s \geq 0} \mathcal{E}_s$, where for $s \geq 0$, \mathcal{E}_s is the Hilbert space corresponding to the domain of A^s, i.e.,
\[
\mathcal{E}_s = \{ \xi \in H; |\xi|^2_0 < \infty \}.
\]

We define \mathcal{E}_{-s} to be the completion of H with respect to $|\cdot|_s = |A^{-s} \cdot |_0$, and hence we obtain a chain of Hilbert spaces $\{ \mathcal{E}_s, s \in \mathbb{R} \}$, and one can see that
\[
\mathcal{E}' = \text{ind lim}_{s \to \infty} \mathcal{E}_{-s} = \bigcup_{s \in \mathbb{R}} \mathcal{E}_{-s}.
\]

Let S_n denote the symmetric group of all permutations on $1, n = \{1, \ldots, n\}$ and $I(\sigma)$ denote the number of inversions of the permutation $\sigma \in S_n$ defined by
\[
I(\sigma) = \#(\text{Inv}(\sigma)) = \#\{(i, j) | 1 \leq i < j \leq n, \sigma(i) > \sigma(j)\},
\]
where $\#$ denotes the cardinality of the set A. Analogously, the pair (i, j) with $i < j$ is called a inversion in σ if $\sigma(i) < \sigma(j)$. The corresponding inversions is encoded by (i, j) and contained in the set
\[
\text{Cinv}(\sigma) := \{(i, j) | 1 \leq i < j \leq n, \sigma(i) < \sigma(j)\},
\]
with cardinality $C(\sigma) = \#(\text{Cinv}(\sigma))$. Denote $\mathcal{F}_0(\mathcal{H}) = \bigoplus_{n \geq 0} \mathcal{H}^{an}$ the full Fock space over \mathcal{H} with the inner product $\langle \cdot, \cdot \rangle_0$ and $\mathcal{F}^\text{fin}(\mathcal{H})$ the linear span of vectors of the form $\xi_1 \otimes \cdots \otimes \xi_n \in \mathcal{H}^{an}, n \in \mathbb{N}$, where $\mathcal{H}^{an} = \mathcal{C}\mathcal{O}$ for the vacuum vector $\Omega = (1, 0, 0, \ldots) \in \mathcal{F}_0(\mathcal{H})$. We equip $\mathcal{F}^\text{fin}(\mathcal{H})$ with the inner product
\[
\langle \xi_1 \otimes \cdots \otimes \xi_n, \eta_1 \otimes \cdots \otimes \eta_m \rangle = \delta_{nm} \prod_{k=1}^n \langle \xi^*_k, \eta_k \rangle.
\]

Recall that for p and q, two real numbers such that $0 < q < p \leq 1$, the (p, q)- factorial is defined by
\[
[n]_{p,q}^{!} = \prod_{k=1}^n [k]_{p,q}, \quad \text{with } [0]_{p,q}^{!} = 1,
\]
where $[n]_{p,q}$ is the (p, q)-deformation of the natural number n given by
\[
[n]_{p,q} = \sum_{i=1}^n q^i - p^{n-i} = \frac{p^n - q^n}{p - q},
\]
and put
\[
\xi_1 \otimes_{p,q} \cdots \otimes_{p,q} \xi_n := \mathcal{F}_{p,q}(\xi_1 \otimes \cdots \otimes \xi_n), \quad \xi_i \in \mathcal{H}, i \in 1, n.
\]

Define $\mathcal{F}^\text{fin}(\mathcal{H})$ as the separable Hilbert space which coincides with \mathcal{H}^{an} as a set and has a scalar product:
\[
\langle f^{(n)}, g^{(n)} \rangle_{p,q} := \langle f^{(n)}, g^{(n)} \rangle_{\mathcal{F}^\text{fin}(\mathcal{H})} = \langle \mathcal{F}_{p,q}(f^{(n)}), g^{(n)} \rangle.
\]

Hence, the (p, q)-Fock space denoted $\mathcal{F}_{p,q}(\mathcal{H})$ is defined by
\[
\mathcal{F}_{p,q}(\mathcal{H}) = \bigoplus_{n \geq 0} \mathcal{F}^\text{fin}_{p,q}(\mathcal{H}),
\]
and if we denote $\mathcal{F}^\text{fin}_{p,q}(\mathcal{H})$ the linear span of vectors of the form
\[
\xi_1 \otimes_{p,q} \cdots \otimes_{p,q} \xi_n \in \mathcal{F}^\text{fin}_{p,q}(\mathcal{H}), \quad n \in \mathbb{N},
\]
one can see that $\langle \cdot, \cdot \rangle_{p,q}$ on $\mathcal{F}^\text{fin}_{p,q}(\mathcal{H})$ satisfies the following useful relation:
\[
\langle f^{(n)}, \xi_1 \otimes_{p,q} \cdots \otimes_{p,q} \xi_n \rangle_{p,q} = \delta_{nm} [n]_{p,q}^{!} \langle f^{(n)}, \xi_1 \otimes \cdots \otimes \xi_n \rangle.
\]

For more details about the properties of the operator $\mathcal{F}_{p,q}$ and the construction of the (p, q)-Fock space, see [16].

Definition 1. For each $\xi \in \mathcal{H}$, we define the (p, q)-creation operator $a^*(\xi)$ and the (p, q)-annihilation operator $a(\xi)$ on the dense subspace $\mathcal{F}^\text{fin}_{p,q}(\mathcal{H})$ as follows:
where \(\langle \cdot, \cdot \rangle \) denotes the inner product on \(\mathcal{H} \) and the symbol \(f_i \) means that \(f_i \) has to be deleted in the tensor product.

The \((p, q)\)-creation and \((p, q)\)-annihilation operators fulfill the \((p, q)\)-commutation relations of the \((p, q)\)-deformed quantum oscillator algebra, i.e.,

\[
\begin{align*}
\langle q^n f_1 \otimes_p \cdots \otimes_p f_n \rangle &= q^n \langle f_1 \otimes_p \cdots \otimes_p f_n \rangle, \\
\langle N f_1 \otimes_p \cdots \otimes_p f_n \rangle &= n f_1 \otimes_p \cdots \otimes_p f_n,
\end{align*}
\]

(18)

such that \(N \) is the standard number operator defined by

\[
\begin{align*}
\langle N f_1 \otimes_p \cdots \otimes_p f_n \rangle &= nf_1 \otimes_p \cdots \otimes_p f_n,
\end{align*}
\]

(19)

and the commutator \([,\cdot]\) is defined by \([B, C] = BC - CB\). For more details, one can see [16].

Now, we will introduce noncommutative analogs of Gaussian processes (white noise measure) for the relation of the \((p, q)\)-deformed quantum oscillator algebra. For \(t \in \mathbb{R} \), if we denote by \(b_t \) and \(b_t^* \) the standard pointwise annihilation and creation operators on \(\mathcal{F}_{p,q}(\mathcal{H}) \) defined by

\[
\langle \omega, \xi \rangle = \int_{\mathbb{R}^n} \omega(t_1, \ldots, t_n) \xi(t_1, \ldots, t_n) \, dt_1 \cdots dt_n
\]

(20)

where \(\delta_t \) is the delta function at \(t \) and \(\otimes \) stands for the symmetric tensor product, then one can see that the \((p, q)\)-creation and \((p, q)\)-annihilation operators are given as the smeared operators in terms of \(b_t \) and \(b_t^* \), i.e.,

\[
\begin{align*}
\langle \xi(t_1, \ldots, t_n) \rangle &= \int_{\mathbb{R}^n} \xi(t_1, \ldots, t_n) \, dt_1 \cdots dt_n, \\
\langle \omega, \xi \rangle &= \int_{\mathbb{R}^n} \omega(t_1, \ldots, t_n) \xi(t_1, \ldots, t_n) \, dt_1 \cdots dt_n
\end{align*}
\]

(21)

Now, the \((p, q)\)-white noise is defined by

\[
\omega(t) = b_t + b_t^*
\]

(22)

Thus, by using (21), we deduce that \(\omega(t) \) is an operator-valued distribution which satisfies

\[
\langle \omega, \xi \rangle = \int_{\mathbb{R}^n} \omega(t) \xi(t) \, dt = \xi^* \langle \xi \rangle + \omega \langle \xi \rangle
\]

(23)

Moreover, for each \(\xi^{(n)} \in \mathcal{F}^{\mathbb{R}}_{p,q}(\mathcal{H}) \), we define a monomial of \(\omega \) by

\[
\langle \omega^{\otimes m}, \xi^{(n)} \rangle = \int_{\mathbb{R}^{m+n}} \omega^{\otimes m}(t_1, \ldots, t_m) \xi^{(n)}(t_1, \ldots, t_n) \, dt_1 \cdots dt_m \, dt_n
\]

(24)

Using the Cauchy-Schwarz inequality, we easily conclude that (24) indeed identifies a bounded linear operator in \(\mathcal{F}_{p,q}(\mathcal{H}) \).

Let \(\mathcal{P} \) denote the complex unital *-algebra generated by \(\{\langle \omega, \xi \rangle, \xi \in \mathcal{H}\} \), i.e., the algebra of noncommutative polynomials in the variables \(\langle \omega, \xi \rangle \). Evidently, \(\mathcal{P} \) consists of all noncommutative polynomials in \(\omega \) which are of the form:

\[
T = \xi^{(1)} + \sum_{i=1}^k \langle \omega^{\otimes i}, \xi^{(i)} \rangle, \quad \xi^{(i)} \in \mathcal{C}, \xi^{(i)} \in \mathcal{F}^{(i)}_{p,q}(\mathcal{H}).
\]

(25)

In particular, elements of \(\mathcal{P} \) are linear operators acting on \(\mathcal{F}_{p,q}(\mathcal{H}) \).
For \(n \in \mathbb{N}\setminus\{0\} \), we denote by \(\mathcal{P}_n \) the subset of \(\mathcal{P} \) consisting of all noncommutative polynomials of order \(\leq n \), i.e., all \(T \in \mathcal{P} \) given as in (25) with \(k \leq n \). Let \(\mathcal{P}_n \) denote the closure of \(\mathcal{P}_n \) in \(L^2(\tau) \), and let \(\mathcal{O}_{\mathcal{P}_n} \) be the set of orthogonal polynomials of order \(n \) defined by
\[
\mathcal{O}_{\mathcal{P}_n} = \mathcal{P}_n \ominus \mathcal{P}_{n-1},
\]
where \(\ominus \) denotes the orthogonal difference in \(L^2(\tau) \).

Let \(\langle : \omega; \xi \rangle = \langle \omega, \xi \rangle, \quad \xi \in \mathcal{H} \),
\[
\langle : \omega^{(n+1)}; \xi^{(n+1)} \rangle = \langle \omega^{(n+1)}; \xi \rangle = \xi^{(n)} + [n]_{\mathbb{P}_q} \langle \xi, \xi \rangle^{(n-1)}.
\]

Theorem 1. For each \(T \in \mathcal{P} \), define \(UT = T\Omega \). Then, \(U \) is extended by continuity to a unitary operator \(U: L^2(\tau) \to \mathcal{F}_{\mathcal{P}_q}(\mathcal{H}) \) defined as follows:
\[
U(\langle : \omega^{(n)}; \xi^{(n)} \rangle) = \xi^{(n)} + [n]_{\mathbb{P}_q} \langle \xi, \xi \rangle^{(n-1)}.
\]
where \(\langle : \omega^{(n)}; \xi^{(n)} \rangle \) is the orthogonal projection of the monomial \(\omega^{(n)} \xi^{(n)} \) onto \(\mathcal{O}_{\mathcal{P}_n} \) and given recursively by

3. \((p, q)\) White Noise Gel'fand Triple and Characterization Theorem

Recall that a Young function is a continuous, convex, and increasing function
\[
\theta: \mathcal{O} \to [0, +\infty[,
\]
such that
\[
\theta(0) = 0,
\]
\[
\lim_{x \to +\infty} \frac{\theta(x)}{x} = +\infty.
\]
Define a weight sequence \(\{\theta_{n(p,q)}\}_{n=0}^{\infty} \) by
\[
\theta_{n(p,q)} = \inf_{x>0} E_{p,q} \left(\frac{\theta(x)}{x^n} \right), \quad n = 0, 1, 2, \ldots,
\]
where \(\theta\) is a Young function and \(E_{p,q}\) is the \((p,q)\)-exponential function defined by
\[
E_{p,q}(x) = \sum_{n=0}^{\infty} \frac{q^{(n-1)/2}}{[n]_{p,q}} x^n, \quad x \in \mathbb{R}.
\]

Let \(\theta^{*}_{n,p,q} \) be the sequence associated with the \((p,q)\)-polar function \(\theta^{*} \) of \(\theta\), defined by
\[
\theta^{*}(x) = E_{p,q}^{-1} \left(\sup_{t \geq 0} \frac{E_{p,q}(xt)}{E_{p,q}(\theta(t))} \right), \quad x \geq 0.
\]

For simplicity of notation, we denote
\[
|\varphi^{(n)}|_{s,p,q} = |\varphi^{(n)}|_{\mathcal{F}_{p,q}^s(E_{\mathcal{C}})}, \quad s \in \mathbb{Z},
\]
where \(\mathcal{F}_{p,q}^s(E_{\mathcal{C}})\) is constructed as for \(\mathcal{F}_{p,q}^s(\mathcal{H})\) by replacing \(\mathcal{H}\) by the space \(\mathcal{E}_{s,\mathcal{C}}\) given by equation (3). Now, suppose a pair \(s \geq 0 \) and \(y > 0 \) is given, then for \(\varphi^{(n)} \in \mathcal{F}_{p,q}^s(\mathcal{E}_{s,\mathcal{C}})\), we put
\[
|\varphi^{(n)}|_{s,p,q} = |\varphi^{(n)}|_{\mathcal{F}_{p,q}^s(E_{\mathcal{C}})}, \quad s \in \mathbb{Z}.
\]
\[\| \varphi \|_{s,p,q,y}^2 = \sum_{n=0}^{\infty} 2^{-n} \| \varphi^{(n)} \|_{s,p,q}^2, \]

Hence, we obtain a projective system of Hilbert spaces \[\mathcal{F}_{p,q}(\mathcal{E}_{x,E}, \gamma, \theta) = \{ \varphi = t(\varphi_n)_{n=0}^{\infty} : \varphi_n h \in \mathcal{F}_{p,q}(\mathcal{E}_{x,E}, \gamma, \theta) \in \mathcal{F}_{p,q}(\mathcal{E}_{x,E}, \gamma, \theta) \}, \] where

Finally, we define the nuclear space \(\mathcal{F}_{p,q}(\mathcal{E}_{C}) \) by

\[\mathcal{F}_{p,q}(\mathcal{E}_{C}) = \text{proj lim }_{s \to \infty, y \to 0} \mathcal{F}_{p,q}(\mathcal{E}_{x,E}, \gamma, \theta). \]

Definition 3. The space of \((p,q)\)-white noise test functions \(\mathcal{W}_{p,q}(\mathcal{E}_{C}) \) is defined as a projective system of Hilbert space \(\{ \mathcal{W}_{p,q}(\mathcal{E}_{x,E}) ; s \geq 0, \gamma > 0 \} \), where \(\mathcal{W}_{p,q}(\mathcal{E}_{x,E}) \) is the set of function \(\varphi \) of the form

\[\varphi(\omega) = \sum_{n=0}^{\infty} \langle \cdot , \omega^n : \varphi^{(n)} \rangle, \quad \varphi^*(\varphi) = \varphi^{(n)} \in \mathcal{F}_{p,q}(\mathcal{E}_{C}), \]

such that

\[\| \varphi \|_{s,p,q,y} = \| \varphi \|_{s,p,q,y} < \infty. \]

Moreover, if \(\mathcal{W}_{p,q}(\mathcal{E}_{x,E}) \) is the set of functions \(\Phi \) of the form

\[\Phi(\omega) = \sum_{n=0}^{\infty} \langle \cdot , \omega^n : \Phi^{(n)} \rangle, \quad \Phi = \Phi^{(n)} \in \mathcal{F}_{p,q}(\mathcal{E}_{C}), \]

equipped with Hilbertian norm

\[\| \Phi \|_{s,p,q,y}^2 = \sum_{n=0}^{\infty} \theta^2_{n,p,q,y} \| \Phi^{(n)} \|_{s,p,q}^2, \]

the space of \((p,q)\)-white noise generalized functions is defined by

\[\mathcal{W}_{p,q}(\mathcal{E}_{C}) = \bigcup_{s \geq 0, y > 0} \mathcal{W}_{p,q}(\mathcal{E}_{x,E}). \]

Theorem 2. Assume that the Young function \(\theta \) satisfies the following condition:

\[E_{p,q}(r) = \sum_{k=0}^{\infty} q^{(k+1)/2} r \sqrt{k! \over [k]_{p,q}} = \left(\sum_{k=0}^{\infty} q^{(k+1)/2} k! \over [k]_{p,q} ! \right)^{1/2} \quad \text{e}^{(r/2)}, \quad r > 0, \]
and the inequality (57), we obtain

$$\theta_{n,p,q}^2 y^n \leq a \left(\frac{2be^{-y}}{n} \sum_{k=0}^{\infty} \frac{q^{k(k-1)}k!}{[k]_{p,q}^n} \right)$$

which means that $\mathcal{F}_{p,q,\theta}(\mathcal{E}_C) \subset \mathcal{F}_{p,q}(\mathcal{H})$ and the inclusion is continuous. On the other hand, if we put $\mathcal{W}_{p,q,\theta}(\mathcal{E}_C) := U^{-1}(\mathcal{F}_{p,q,\theta}(\mathcal{E}_C))$, where U is the isomorphism given in Theorem 1, we obtain the following diagram:

$$
\begin{array}{ccc}
\mathcal{F}_{p,q,\theta}(\mathcal{E}_C) & \longrightarrow & \mathcal{F}_{p,q}(\mathcal{H}) \\
\downarrow & & \downarrow \\
\mathcal{W}_{p,q,\theta}(\mathcal{E}_C) & \longrightarrow & L^2(\tau)
\end{array}
$$

Moreover, one can see that $\mathcal{W}^*_{p,q,\theta}(\mathcal{E}_{s,c})$ is the dual of $\mathcal{W}_{p,q,\theta}(\mathcal{E}_{s,c})$ with respect to $L^2(\tau)$, and we obtain the nuclear Gel'fand triple given by (53). From here the statement follows.

Now our goal is to carry out a characterization of the space of (p,q)-white noise generalized functions by using a suitable space of (p,q)-entire functions with certain growth determined by using the Young functions and a suitable (p,q)-exponential map.

Let $(\mathcal{B}, \| \cdot \|)$ be a complex Banach space. Define the space \mathcal{B}^{∞} by

$$\mathcal{B}^{\infty} := \left\{ \xi = (\xi_k)_{k \in \mathbb{N}} \in \mathcal{B} \mid \|\xi\|_{\infty} := \sup_{k \in \mathbb{N}} \|\xi_k\| < \infty \right\}.$$

Then, $(\mathcal{B}^{\infty}, \| \cdot \|_{\infty})$ becomes a Banach space.

Definition 4. Let \mathcal{H} be a fixed Hilbert space. A C-valued function F is said to be (p,q)-entire function on \mathcal{B}^{∞}, if there exists $(F_n)_{n=0}^{\infty}$ with $F_n \in \mathcal{B}^{\infty}_{p,q,\theta}$ such that

$$F(\xi) = \sum_{n=0}^{\infty} \langle F_n \xi \rangle_{p,q} \xi_k, \quad \xi_k = (\xi_k)_{k \in \mathbb{N}} \in \mathcal{B}^{\infty},$$

where the series in the right hand side of (63) converges uniformly on every bounded subset of \mathcal{B}^{∞}.

For $s \in \mathbb{R}$ and $y > 0$, let $\Gamma_{p,q,\theta}(\mathcal{E}_{s,c})$ be the space of (p,q)-entire functions g on the complex Hilbert space $\mathcal{E}_{s,c}$ such that

$$\|g\|_{s,p,q,\theta} := \sup \|g(z)E^{-1}_{p,q}\theta(y|z|)\|_{\mathcal{E}_{s,c}} < +\infty.$$

Note that $\{\Gamma_{p,q,\theta}(\mathcal{E}_{s,c}) ; \ s \in \mathbb{N}, y > 0 \}$ becomes a projective system of Banach spaces as $s \to \infty$ and $\gamma \to 0$. Then, we can define

$$\mathcal{N}_{p,q,\theta}(\mathcal{E}_{s,c}) := \text{proj} \lim_{s \to \infty} \Gamma_{p,q,\theta}(\mathcal{E}_{s,c}).$$

This is called the space of (p,q)-entire functions on $\mathcal{E}_{s,c}$ with (θ, p, q)-exponential of minimal type. Similarly, $\{\Gamma_{p,q,\theta}(\mathcal{E}_{s,c}) ; s \in \mathbb{N}, y > 0 \}$ becomes a projective system of Banach spaces as $s \to \infty$ and $\gamma \to 0$. $\mathcal{G}_{p,q,\theta}(\mathcal{E}_{s,c})$ the space of (p,q)-entire functions on $\mathcal{E}_{s,c}$ with (θ, p, q)-exponential growth of finite type is defined by

$$\mathcal{G}_{p,q,\theta}(\mathcal{E}_{s,c}) = \bigcup_{s > 0} \Gamma_{p,q,\theta}(\mathcal{E}_{s,c}).$$

Lemma 1. Let $F \in \mathcal{N}_{p,q,\theta}(\mathcal{E}_{s,c})$ be given by

$$F(\overline{z}) = \sum_{n=0}^{\infty} \langle z_1 \otimes \cdots \otimes p,q \otimes z_n F_n \rangle, \quad F_n \in \mathcal{B}^{\infty}_{p,q,\theta},$$

where $F_n \in \mathcal{B}^{\infty}_{s,p,q,\theta}$ and $\overline{z} = (z_k)_{k \in \mathbb{N}} \in \mathcal{B}^{\infty}_{s,c}$. Then, for any $s \geq 0$, there exists $s' > s$ such that the canonical embedding $i_{s', s} : \mathcal{E}_{s', c} \hookrightarrow \mathcal{E}_{s, c}$ is of the Hilbert-Schmidt type, and for $\gamma > 0$, we get

$$\|F_n|_{s,p,q,\theta} \leq \|F\|_{s', p,q,\theta} \|\theta_{n,p,q}y^n\|_{\mathcal{E}_{s', c}}.$$

Proof. Fixing $s' > s$ and $\overline{z} = (z_k)_{k \in \mathbb{N}} \in \mathcal{B}^{\infty}_{s', c}$ such that $|z_k|_{s'} = 1, \forall k \in \mathbb{N}$.

By definition, the series in the right hand side of (67) converges uniformly on every bounded subset of $\mathcal{E}_{s', c}$. Then, for every $R > 0$, we have the following Cauchy’s integral formula:

$$\langle z_1 \otimes \cdots \otimes p,q \otimes z_n F_n \rangle = \frac{1}{2\pi i} \int_{|z|=R} \frac{F(\lambda \overline{z})}{\lambda^{n+1}} d\lambda, \quad n \in \mathbb{N}.$$

Therefore, by using the fact that $F \in \mathcal{N}_{p,q,\theta}(\mathcal{E}_{s,c})$, for $\gamma > 0$, we get

$$\langle z_1 \otimes \cdots \otimes p,q \otimes z_n F_n \rangle \leq \|F\|_{s', p,q,\theta} \|\theta(y|z|)\|_{\mathcal{E}_{s', c}}, \quad \forall R > 0,$$

which gives

$$\langle z_1 \otimes \cdots \otimes p,q \otimes z_n F_n \rangle \leq \|F\|_{s', p,q,\theta} \|\theta_{n,p,q}y^n\|_{\mathcal{E}_{s', c}}.$$

Let now $\overline{z} = (z_k)_{k \in \mathbb{N}}$ be an orthonormal basis of $\mathcal{E}_{s,c}$. Then, we get
\[|F_{n,k,p,q} |^2 \leq \sum_{k_1 \leq \ldots \leq k_n \leq 0} \left| \langle F_n, e_{k_1} \otimes p_{k_1} \cdots \otimes p_{k_n} e_{k_n} \rangle \right|^2 \]

\[\leq \sum_{k_1 \leq \ldots \leq k_n \leq 0} |F_{k_1, p_{k_1} \ldots p_{k_n}} |^2 2^n \left(\prod_{j=1}^{n} |e_{k_j} |^2 \right) \]

This provides the desired inequality.

Lemma 2. For each \(\xi \in \mathcal{E}_n \), the generating function of the noncommutative polynomials \(\langle \omega^m; \xi^a; r^b \rangle \) defined by

\[E_{p,q} (\langle \omega, \xi \rangle) = \sum_{n=0}^{\infty} \frac{\gamma(n-1)}{[n]_p,q!} \langle \omega^m; \xi^a; r^b \rangle, \]

is an element in \(W_{p,q} (\mathcal{E}_n) \). Moreover, for all \(s \geq 0 \) and \(\gamma > 0 \), there exist \(c, \gamma > 0 \) and \(s' > s \) such that

\[\| E_{p,q} (\langle \omega, \xi \rangle) \|_{s,p,q} \leq c E_{p,q} \left(\theta' \left(\frac{|\xi|}{\gamma} \right) \right). \]

Theorem 3. Assume that the sequences \(\theta_n, p_n, q_n \) satisfy

\[\theta_n, p_n, q_n \leq \beta^{n(n-1)/2} \frac{|n|_p,q!}{[n]_p,q!}, \]

for some constant \(\beta > 0 \). Then, the \(\delta \)-transform realizes a topological isomorphism from \(W_{p,q} (\mathcal{E}_n) \) onto the space \(\mathcal{E}_{n, p,q} \).

This implies that \(E_{p,q} (\langle \omega, \xi \rangle) \in W_{p,q} (\mathcal{E}_n) \). As a consequence, we can define the \(\delta \)-transform of a distribution \(\Phi \in W_{p,q} (\mathcal{E}_n) \), at \(\xi \in \mathcal{E}_n \), as follows:

\[\delta \Phi (\xi) = \langle \Phi, E_{p,q} (\langle \xi, \xi \rangle) \rangle. \]

Moreover, by using (15) and (49), we get

\[\delta \Phi (\xi) = \sum_{n=0}^{\infty} \frac{\gamma(n-1)}{[n]_p,q!} \langle \Phi (n), \xi^a; r^b \rangle p_n,q \]

(81)

\[= \sum_{n=0}^{\infty} \gamma(n-1)/2 \langle \Phi (n), \xi^a; r^b \rangle. \]

On the other hand, by inequality (75), there exist \(c, \gamma > 0 \) and \(s' > s \) such that

\[\| \delta \Phi (\xi) \| \leq c \Phi \|_{s,p,q} \theta' \left(\frac{|\xi|}{\gamma} \right), \]

which yields

\[\| \delta \Phi (\xi) \|_{s', p,q} \theta' (\gamma) \leq c \| \Phi \|_{s,p,q} \theta' (\gamma). \]

This proves the continuity and injectivity of the \(\delta \)-transform.

Conversely, given \(g \in \mathcal{E}_{n, p,q} \), then there exist \(s \geq 0 \) and \(\gamma > 0 \) such that \(g \in \mathcal{E}_{n, p,q} \), with Taylor expansion

\[g (\xi) = \sum_{n=0}^{\infty} \langle G_n, \xi^a; r^b \rangle, \quad G_n \in \mathcal{E}_{n, p,q} \].

(86)

Put \(\Phi (\omega) = \sum_{n=0}^{\infty} \gamma(n-1)/2 \| n \|_p,q! \langle \omega^m; G_n \rangle \), and then (15) and (81) yield

\[\delta \Phi (\xi) = \sum_{n=0}^{\infty} [n]_p,q! \langle G_n, \xi^a; r^b \rangle = \sum_{n=0}^{\infty} \langle G_n, \xi^a; r^b \rangle = g (\xi). \]
Using the same technics as in Lemma 1, we immediately prove that for all $\hat{s} > s$ such that $i_{\hat{s},s}$ is of the Hilbert–Schmidt type the following inequality holds:

$$\|G_{n_{\hat{s}},p,q}\| \leq \|g\|_{\infty} \|n_{\hat{s},p,q}\| \|\theta^y\| \|i_{\hat{s},s}\|_{HS}.$$ (88)

Thus, under condition (82), we obtain

$$\|\Phi\|_{\infty} \leq \sum_{n=0}^{\infty} q^{n(1-n)} \|n_{p,q}\| \|\theta^y\| \|i_{\hat{s},s}\|_{HS}.$$ (89)

On the other hand, for all $\gamma > 0$ such that $\beta^\gamma \sqrt{\gamma} \|i_{\hat{s},s}\|_{HS} < 1$, one can see that the series $\sum_{n=0}^{\infty} (\beta^\gamma \sqrt{\gamma} \|i_{\hat{s},s}\|_{HS})^2n$ converges. This proves that S acts surjectively and that S^{-1} is continuous.

Data Availability

All data required for this paper are included within this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under project number (RGP-2019-1).

References

[1] T. Hida, "Analysis of Brownian Functionals," *Carleton Mathematical Lecture Notes*, Vol. 13, Carleton University, Ottawa, Canada, 1975.

[2] L. Accardi, Y. G. Lu, and I. Volovich, "White noise approach to classical and quantum stochastic calculus," *Lecture Notes of the Volterra International School*, Springer, Trento, NJ, USA, 1999.

[3] Y. M. Berezansky and Y. G. Kondratiev, *Spectral Methods in Infinite Dimensional Analysis*, Vol. 1, Kluwer Academic Publishers, Dordrecht, Netherlands, 1995.

[4] A. Barhoumi, H. Ouerdiane, and A. Riahi, "Pascal white noise calculus," *Stochastics: An International Journal of Probability and Stochastic Processes*, vol. 81, no. 3-4, pp. 323–343, 2009.

[5] D. M. Chung, U. C. Ji, and N. Obata, "Transformations on white noise functions associated with second order differential operators of diagonal type," *Nagoya Mathematical Journal*, vol. 149, pp. 173–192, 1998.

[6] Z. Huang, "Quantum white noise white noise approach to quantum stochastic calculus," *Nagoya Mathematical Journal*, vol. 129, pp. 23–42, 1993.

[7] T. Hida, H.–H. Kuo, J. Potthoff, and L. Streit, *White Noise: An Infinite Dimensional Calculus*, Kluwer Academic, Amsterdam, Netherlands, 1993.

[8] A. Riahi, "Wick ordering associated with the (p,q)-Gaussian white noise process," *Complex Analysis and Operator Theory*, vol. 13, no. 4, pp. 1–17, 2019.

[9] D. Alpay and G. Salomon, "Non-commutative stochastic distributions and applications to linear systems theory," *Stochastic Process and their Applications*, vol. 123, pp. 2303–2322, 2013.

[10] D. Alpay, P. Jorgensen, and G. Salomon, "On free stochastic processes and their derivatives," *Stochastic Process and their Applications*, vol. 124, pp. 3392–3411, 2014.

[11] M. Bożejko, B. Kümmerer, and R. Speicher, "q-Gaussian processes: non-commutative and classical aspects," *Communications in Mathematical Physics*, vol. 185, pp. 129–154, 1997.

[12] M. Bożejko and R. Speicher, "An example of a generalized Brownian motion," *Communications in Mathematical Physics*, vol. 137, pp. 519–531, 1991.

[13] D. Voiculescu, K. Dykema, and A. Nica, "Free random variables," *CMR Monograph Series*, Vol. 1, American Mathematical Society, Providence, RI, USA, 1992.

[14] R. Chakrabarti and R. Jagannathan, "A (p,q)-oscillator realization of two-parameter quantum algebras," *Journal of Physics A*, vol. 24, no. 13, pp. L711–L718, 1991.

[15] B Simon, "Distributions and their Hermite expansions," *Journal of Mathematical Physics*, vol. 12, pp. 140–148, 1971.

[16] N. Britvic, "The (q,t)-Gaussian process," *Journal of Functional Analysis*, vol. 263, pp. 3270–3305, 2012.