Supplementary Information

A Diversity-Oriented Synthesis Strategy Enabling the Combinatorial-Type Variation of Macrocyclic Peptidomimetic Scaffolds

Albert Isidro-Llobet, Kathy Hadje Georgiou, Warren R. J. D. Galloway, Elisa Giacomini, Mette Hansen, Gabriela Mendez, Yaw Sing Tan, Laura Carro, Hannah F. Sore, David R. Spring

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

To whom correspondence may be addressed: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK), Fax: (+44) 1223-336362. E-mail: spring@ch.cam.ac.uk. Homepage: http://www-spring.ch.cam.ac.uk/
Table of Contents

1. COMPOUND LABELLING IN MAUSCRIPT AND SUPPLEMENTARY INFORMATION 3
2. SUPPLEMENTARY FIGURES ... 10
3. GENERAL METHODS AND EQUIPMENT ... 14
4. GENERAL PROCEDURES ... 16
5. SYNTHESIS OF THE COMMON PRECURSORS 18
6. SYNTHESIS OF AZIDO-AMINE BUILDING BLOCKS 20
7. SYNTHESIS OF ALKYNE-ACID BUILDING BLOCKS 29
8. SYNTHESIS OF B/C/C/P AND B/C/C/C/P COUPLING UNITS 36
9. PREPARATION OF B/C/P LINEAR AMIDES 38
10. PREPARATION OF B/C/C/P AND B/C/C/C/P LINEAR AMIDES 54
11. PREPARATION OF B/C/P CUAAC MACROCYCLES 61
12. PREPARATION OF B/C/C/P AND B/C/C/C/P CUAAC MACROCYCLES ... 71
13. PREPARATION OF B/C/P RUAAC MACROCYCLES 74
14. PREPARATION OF B/C/C/P AND B/C/C/C/P RUAAC MACROCYCLES 89
15. PREPARATION OF B/C/P DKPS .. 96
16. PREPARATION OF B/C/C/P AND B/C/C/C/P DKPS 108
17. CHEMOINFORMATIC ANALYSIS .. 109
18. REFERENCES ... 140
19. NMR SPECTRA .. 141
1. Compound labelling in manuscript and Supplementary Information

For the sake of clarity, the compound labeling systems used here in the Supplementary Information is different to that used in the main manuscript. The following table lists the compounds given in the main manuscript that are labeled, and their corresponding labels as used in the Supplementary Information.

Figure/Scheme in manuscript	Compound	Compound label in manuscript	Compound label in Supporting Information
Figure 2	![Diagram](image1)	10a *(meta)*	Building block F
		10b *(para)*	Building block C
Figure 2	![Diagram](image2)	n = 1: 10c	Building block E
		n = 2: 10d	Building block D
Figure 2	![Diagram](image3)	n = 1: 10e	Building block B
		n = 4: 10f	Building block A
Figure 2	![Diagram](image4)	n = 1: 11a	Building block 6
		n = 2: 11b	Building block 13
Figure 2	![Diagram](image5)	n = 1: 11c	Building block 12
		n = 2: 11d	Building block 11
		n = 3: 11e	Building Block 5
		n = 4: 11f	Building block 4
Figure 2	![Chemical Structure](image)	n = 1: \(11g\)	Building block 10
---	---	---	---
Figure 2	![Chemical Structure](image)	n = 2: \(11h\)	Building Block 8
Figure 2	![Chemical Structure](image)	n = 3: \(11i\)	Building block 2
Figure 2	![Chemical Structure](image)	n = 4: \(11j\)	Building block 14
Figure 2	![Chemical Structure](image)	n = 1: \(11k\)	Building block 9
Figure 2	![Chemical Structure](image)	n = 2: \(11l\)	Building block 7
Figure 2	![Chemical Structure](image)	n = 3: \(11m\)	Building block 3
Figure 2	![Chemical Structure](image)	n = 4: \(11n\)	Building block 1

Figure 2	Boc\(-L\)-Ala-OH (12a)	Ala
Figure 2	Boc\(-L\)-Glu-OMe (12b)	Glu
Figure 2	Boc\(-\beta\)-Ala-OH (12c)	-\(\beta\)-Ala
Figure 2	Boc\(-L\)-Phe-OH (12d)	Phe

| Scheme 2 | ![Chemical Structure](image) | 13 | D14 |
Scheme	Structure	Number	Code
Scheme 2	![Structure 1](image1.png)	16	D14x
Scheme 2	![Structure 2](image2.png)	17	D14w
Scheme 2	![Structure 3](image3.png)	30	D14y
Scheme 2	![Structure 4](image4.png)	31	D14z
Scheme 3	![Structure 5](image5.png)	14	J
Scheme 3	![Structure 6](image6.png)	18	J13
Scheme 3	![Chemical Structure 3](image1)	19	J13x
----------	----------------------------------	----	------
Scheme 3	![Chemical Structure 3](image2)	20	J13w
Scheme 3	![Chemical Structure 3](image3)	23	M13x
Scheme 3	![Chemical Structure 3](image4)	22	M13
Scheme 3	![Chemical Structure 3](image5)	21	M
Scheme 4	![Chemical Structure 4](image6)	15	H
Scheme 4	![Molecule 33](image)	33	H3z
----------	-----------------------	----	-----
Scheme 4	![Molecule 34](image)	34	H14z
Figure 3	![Molecule 35](image)	35	K8x
Figure 3	![Molecule 36](image)	36	G11x
Figure 3	![Chemical Structure](image)	37	B8w
2. Supplementary Figures

SF1: General scheme for the synthesis of diverse peptidomimetic macrocyclic scaffolds

SF2: Azido-amine ("initiating") building blocks
SF3: Alkyne-acid (“capping”) building blocks
SF4: Synthetic Route to B/C/C/P Coupling Units from Boc-amino-acids ("propagating" building blocks)
SF5: Synthetic Route to B/C/C/C/P Coupling Units from Boc-amino-acids ("propagating" building blocks)
3. General Methods and Equipment

Except as otherwise indicated, reactions were carried out using oven-dried glassware under nitrogen with dry, freshly distilled solvents. Tetrahydrofuran was distilled from calcium hydride and LiAlH₄ in the presence of triphenyl methane. Diethyl ether was distilled from calcium hydride and LiAlH₄. CH₂Cl₂, MeOH, toluene, MeCN and hexane were distilled from calcium hydride. Petroleum ether refers to the 40-60 °C fractions. All other reagents were used as obtained from commercial sources.

Room temperature (rt) refers to ambient temperature. Temperatures at 0 °C were maintained using an ice-water bath. Reactions involving microwave irradiation were performed using a CEM Discover® microwave apparatus in 10 ml or 30 ml microwave tubes with clip lids.

Where possible, reactions were monitored by thin layer chromatography (TLC) using glass plates precoated with Merck silica gel 60 F₂₅₄. Visualization was by the quenching of UV fluorescence (λₘₐₓ = 254 nm) or by staining with potassium permanganate. Retention factors (Rf) are quoted to 0.01.

Flash column chromatography was carried out using slurry-packed Merck 9385 Kieselgel 60 silica gel under a positive pressure of air or nitrogen.

Preparative HPLC purification was performed on an Agilent 1260 Infinity system fitted with a Supelcosil ABZ+Plus column (250 mm x 21.2 mm, 5 µm) using linear gradient systems (solvent A: 0.1% (v/v) TFA in water, solvent B: 0.05% (v/v) TFA in acetonitrile) at a flow rate of 20 mL min⁻¹.

Analytical HPLC analysis was performed on an Agilent 1260 Infinity system fitted with a Supelcosil ABZ+Plus column (150 mm x 4.6 mm, 3 µm) using linear gradient systems (solvent A: 0.05% (v/v) TFA in water, solvent B: 0.05% (v/v) TFA in acetonitrile) over 15 min at a flow rate of 1 mL min⁻¹ and UV detection (λₘₐₓ = 220 nm and 254 nm). Retention times (tᵣ) are reported to the nearest 0.01 min. Peak area percentages are calculated for the UV absorbance at 220 nm and reported to the nearest 1%.

Liquid chromatography mass spectrometry (LC-MS) was conducted on an Agilent 1100 series LC with an ESci Multi-Mode Ionisation Waters ZQ spectrometer. LC system: solvent A: 10 mM NH₄OAc + 0.1% HCOOH in water; solvent B: 95% acetonitrile + 5% H₂O + 0.05% HCOOH; column: Supelcosil™ ABZ™PLUS column (33 mm x 4.6 mm, 3 µm); gradient: 0.0-0.7 min: 0% B, 0.7-4.2 min: 0-100% B, 4.2-7.7 min: 100% B, 7.7-8.5 min: 100-0% B; DAD spectrum: 190 nm - 600 nm, interval 2.0 nm, peak width 0.200 min). Only molecular ions are reported. ESI refers to the electrospray ionisation technique.

Melting points were obtained using a Büchi Melting Point B-545 melting point apparatus and are uncorrected.

Optical rotations were recorded on a Perkin Elmer 343 polarimeter. [α]ₒ values are reported in 10⁻¹ deg cm² g⁻¹ at 589 nm, concentration (c) is given in g (100 mL)⁻¹.
Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer with internal referencing as neat films. Selected absorption maxima (ν_{max}) are reported in wavenumbers (cm$^{-1}$).

Nuclear magnetic resonance (NMR) spectra were recorded using an internal deuterium lock on Bruker DPX 400 (400MHz), Bruker Avance 400 QNP Ultrashield (400 MHz), Bruker Avance 500 BB ATM (500 MHz) and Bruker Avance 500 Cryo Ultrashield (500 MHz) spectrometers. Chemical shifts (δ) are referenced to the solvent signal and are quoted in ppm to the nearest 0.01 ppm for δ_H and to the nearest 0.1 ppm for δ_C. Coupling constants (J) are reported in Hertz to the nearest 0.1 Hz. Assignments are supported by DEPT-135, 1H-1H COSY, HMQC, HMBC and NOESY spectra where necessary. Data are reported as follows: chemical shift, integration, multiplicity (app., apparent; br, broad; s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; or as a combination of these), coupling constant(s) and assignment (corresponding atom in italics). Diastereotopic protons are assigned as H and H, where H indicates the proton at higher chemical shift. The numbering schemes used on selected spectra do not follow the IUPAC naming system and are used for the clear assignment of 1H and 13C spectra.

Low resolution mass spectra (ESI) were recorded using an LCMS system (Agilent 1200 series LC with an ESCi Multi-Mode Ionization Waters ZQ spectrometer using MassLynx 4.1 software).

High resolution mass spectrometry (HRMS) was carried out with a Micromass QTOF or a Waters LCT Premier Mass Spectrometer using electrospray ionisation [ESI] or electron ionisation [EI]. The calculated mass value relative to found mass value is within the error limits of \pm5 ppm mass units.
4. General Procedures

GP1: Amide formation
The azido-amine (1.0 equiv) was dissolved in anhydrous CH$_2$Cl$_2$ and triethylamine (2.2 equiv), EDC.HCl (1.1 equiv) and HOBT.H$_2$O (1.1 equiv) were then added. Upon dissolution, the alkyne-acid (1.0 equiv) in anhydrous CH$_2$Cl$_2$ was added and the reaction was stirred at rt for 18 h. The solvent was removed under reduced pressure and the residue was re-suspended in EtOAc and washed with H$_2$O. The organic layer was separated and washed with saturated NaHCO$_3$ solution (×2). A second addition of EtOAc was made and the organic fraction was washed with 5% citric acid (×2) and H$_2$O (×2). The organic phase was dried (MgSO$_4$) and the solvent removed under reduced pressure. The crude material was purified by column chromatography to yield the linear peptide.

GP2: CuAAC Macrocyclization to form 1,4-triazoles
DIPEA (3.0 equiv) was added to a solution of the linear peptide (1.0 equiv, 1.2 mM) in anhydrous THF. The reaction was degassed by bubbling Ar directly into the solution for 30 min. CuI (2.0 equiv) was then added and the reaction was refluxed for 18 h under N$_2$. The solvent was removed under reduced pressure and the crude material purified by column chromatography or preparative HPLC if necessary.

GP3: RuAAC Macrocyclization to form 1,5-triazoles
The linear peptide (1.0 equiv, 1.25 mM) was dissolved in anhydrous toluene and the reaction mixture was heated to 80 °C and then degassed by bubbling Ar directly into the solution for 30 min. [Cp*RuCl]$_4$ (0.1 equiv.) was added and the reaction was heated to reflux for 18 h. The solvent was removed under reduced pressure and the crude material purified by column chromatography or preparative HPLC if necessary.

GP4: Removal of Boc protecting group with TMSCl
The Boc-protected macrocycle was dissolved in MeOH and the suspension was cooled to 0 °C. TMSCl (0.3 ml per 0.035 mmol linear peptide) was added dropwise to the solution at 0 °C with stirring. The reaction was allowed to warm to rt and stirred until TLC analysis indicated complete consumption of starting material (typically 3 h). The solvent was removed under reduced pressure and the crude material resuspended in CH$_2$Cl$_2$ and washed with NaHCO$_3$. The aqueous layer was extracted with CH$_2$Cl$_2$ (×2) and the combined organic fractions were dried (MgSO$_4$) and the solvent removed under reduced pressure. The crude material was purified by column chromatography (or preparative HPLC) if required to yield the macrocyclic peptidomimetic.
GP5: Removal of Boc protecting group with HCl

The Boc-protected macrocycle was treated with 4.0 M HCl/dioxane (1 ml HCl/dioxane per 20 mg sample) and the reaction was stirred at rt for 18 h. The solvent was removed under reduced pressure and the crude material resuspended in CH$_2$Cl$_2$ and washed with NaHCO$_3$. The aqueous layer was extracted with CH$_2$Cl$_2$ (\times2) and the combined organic fractions were dried (MgSO$_4$) and the solvent removed under reduced pressure. The crude material was purified by column chromatography (or preparative HPLC) if required to yield the macrocyclic peptidomimetic.

GP6: Synthesis of diketopiperazine

The macrocycle (0.3 equiv, used directly after the deprotection and used as the salt, without purification) and morpholinomethyl-polystyrene (1.0 equiv) were placed in a microwave (MW) tube. 2-Butanol (40 ml per mmol) and acetic acid (1.25 equiv) were added and the reaction was heated to 150 °C in a microwave (typically 2-3 h). The resin was filtered off and several washings with MeOH and CH$_2$Cl$_2$ were performed. The filtrate was evaporated to dryness and the crude material was purified by column chromatography to yield the final DKP-containing macrocycle.
5. Synthesis of the Common Precursors

(S)-3-amino-2-((tert-butoxycarbonyl)amino)propanoic acid (CP1)

Boc-Asn-OH (8.00 g, 34.4 mmol) was suspended in EtOAc (40 ml), CH₃CN (40 ml) and H₂O (20 ml) and the mixture was cooled to 15 °C. PIDA (13.3 g, 41.3 mmol) was added in a single portion and following 45 min of stirring at 15 °C, the reaction was allowed to warm to rt. TLC analysis after 4 h indicated that most of the starting material was consumed. The reaction mixture was heated to 70 °C for 5 min (until completely dissolved) and then cooled to 0 °C. The mixture was filtered and the precipitate was washed on the filter with cold EtOAc (2 x 10 ml) to afford the title compound 41 as an amorphous white solid (4.72 g, 67%).

Rᶠ = 0.07 (15% MeOH/ 85% CH₂Cl₂). Mp = 214-216 °C (EtOAc), lit. mp 216 °C (EtOAc).[1] δH /ppm (500 MHz, CD₃OD): 4.06 (1H, t, J=6.1 Hz, Hα), 3.22-3.09 (2H, m, Hβ), 1.46 (9H, s, C(CH₃)₃). δC /ppm (125 MHz, CD₃OD): 174.8 (COOH), 158.0 (OC=ONH), 80.9 (C(CH₃)₃), 53.9 (Cα), 43.1 (Cβ), 28.7 (C(CH₃)₃). νmax /cm⁻¹: 3342 (m, N-H), 2969 (w, C-H), 2929 (w, O-H), 2580 (m, O-H), 1684 (C=O), 1525 (s, N-H). HRMS (ESI⁺) m/z found [M+H]⁺ 205.1178, C₈H₁₇N₂O₄⁺ required 205.1183 (Δ -0.2 ppm). [α]D²⁵ = +19.0 (c 0.30, MeOH). Spectroscopic data is consistent with literature values.[2]

4-nitrophenyl prop-2-yn-1-ylcarbamate (CP2)

p-Nitrophenylchloroformate (2.98 g, 14.8 mmol) was dissolved in THF (80 mL) and cooled to -55°C in a acetone/acetonitrile/dry ice bath. After 10 minutes, propargylamine was added dropwise over 15 minutes. The resulting mixture was stirred at -55 °C for 45 minutes. The mixture was filtered through a plug of silica gel over Celite. The solids were washed with THF (3x40 mL). The combined eluents were concentrated in vacuo. The resulting yellow solid was recrystallised from EtOAc:hexane (1:2). Light brown crystals were isolated by filtration, washed with hexane and dried (1.648 g, 51%).

Spectroscopic data is consistent with literature values.[3]
4-pentynoic acid succinimidy l ester (CP3)

CP3 was prepared by literature procedures.\[^{[4]}\]

5-hexynoic acid succinimidy l ester (CP4)

CP4 was prepared by literature procedures.\[^{[5]}\]
6. Synthesis of Azido-Amine Building Blocks

Building Block A

Building block A was prepared by literature procedures.[6]

Building Block B

SF6: Synthetic Route to Building Block B
(S)-3-(((benzyloxy)carbonyl)amino)-2-(((tert-butoxycarbonyl)amino) propanoic acid
(abbreviated to Boc-Dap(Cbz)-OH)

A mixture of Boc-dap-OH CP1 (2.50 g, 12.2 mmol), K$_2$CO$_3$ (3.40 g, 24.6 mmol), KOH (0.695 g, 12.4 mmol), THF (22 ml) and H$_2$O (7 ml) was cooled to 0 °C. Benzyl chloroformate (2.60 ml, 18.2 mmol) was added dropwise over an hour and the reaction was allowed to warm to rt and stirred for 18 h. The organic solvents were removed under reduced pressure and the residue was diluted with H$_2$O (110 ml). The aqueous phase was acidified with citric acid to a pH of 4 and extracted with CH$_2$Cl$_2$ (2 × 15 ml). The combined organic fractions were dried (MgSO$_4$) and the solvent removed under reduced pressure. The crude material was purified by column chromatography (1% AcOH/ 10% MeOH/ 89% CH$_2$Cl$_2$) to afford the title compound 3 as a white solid (2.24 g, 54%).

$R_f = 0.45$ (1% AcOH/ 10% MeOH/ 89% CH$_2$Cl$_2$). $M_p = 47-49$ °C (CH$_2$Cl$_2$). δ_{H}/ppm (500 MHz, CDCl$_3$): 8.94 (1H, br s, COOH), 7.37-7.27 (5H, m, 5 × ArCH), 5.77 (1H, br s, C$_\alpha$-NH), 5.55 (1H, br s, C$_\beta$-NH), 5.07 (2H, s, CH$_2$Ph), 4.45-4.20 (1H, m, H$_\alpha$), 3.70-3.40 (2H, m, H$_\beta$), 1.43 (9H, s, C(C$_3$H$_7$)$_3$).

δ_{C}/ppm (125 MHz, CDCl$_3$): 173.8 (COOH), 157.6 (OC=ONH), 156.4 (OC=ONH), 136.2 (ArC), 128.7 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 80.9 (C(CH$_3$)$_3$), 67.4 (CH$_2$Ph), 54.6 (C$_\alpha$), 42.8(C$_\beta$), 28.4 (C(CH$_3$)$_3$). ν_{max}/cm^{-1}: 3342 (m, N-H), 2979 (m, C-H), 1688 (s, C=O), 1516 (s, N-H). HRMS (ESI+) m/z found [M+Na]$^+$ 361.1393, $C_{16}H_{22}N_2O_6Na^+$ required 361.1376 ($\Delta - 4.7$ ppm). $[\alpha]_{D}^{25} = -8.5$ (c 0.86, MeOH). Spectroscopic data is consistent with literature values.[7]

(S)-methyl 3-(((benzyloxy)carbonyl)amino)-2-(((tert-butoxycarbonyl) amino)propanoate

Boc-Dap(Cbz)-OH (1.50 g, 4.43 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (14 ml) and EDC.HCl (0.849 g, 4.43 mmol), anhydrous MeOH (0.72 ml, 18 mmol) and DMAP (0.054 g, 0.44 mmol) were added. The reaction was stirred at rt for 3 h. H$_2$O (10 ml) was added and the organic and aqueous layers were separated. The organic layer was washed with H$_2$O (10 ml), saturated NaHCO$_3$ solution (2 × 10 ml), 5% citric acid (2 × 10 ml) and H$_2$O (2 × 10 ml). The organic fraction was dried (MgSO$_4$) and the solvent removed under reduced pressure. Purification by column chromatography (5-10% MeOH/ CH$_2$Cl$_2$) gave the title compound (1.24 g, 79%) as a clear oil.
$R_f = 0.73$ (10% MeOH/ 90% CH$_2$Cl$_2$). δ_H /ppm (400 MHz, CDCl$_3$): 7.39-7.26 (5H, m, 5 × ArCH), 5.42 (1H, br s, C$_2$-NH), 5.14 (1H, br s, C$_3$-NH), 5.09 (2H, s, CH$_2$Ph), 4.42-4.31 (1H, m, H$_3$), 3.73 (3H, s, OCH$_3$), 3.64-3.53 (2H, m, H$_p$), 1.43 (9H, s, C(CH$_3$)$_3$). δ_C /ppm (125 MHz, CDCl$_3$): 171.3 (COOME), 156.8 (OC=ONH), 155.6 (OC=ONH), 136.4 (ArC), 128.7 (ArCH), 128.3 (ArCH), 80.4 (C(CH$_3$)$_3$), 67.1 (CH$_2$Ph), 54.1 (C$_3$), 52.8 (OCH$_3$), 43.1 (C$_p$), 28.4 (C(CH$_3$)$_3$). ν_{max} /cm$^{-1}$: 3343 (m, N=CH), 2976 (m, C-H), 1694 (s, C=O), 1515 (s, N-H). HRMS (ESI+) m/z found [M+H]$^+$ 353.1716, C$_{11}$H$_{25}$N$_2$O$_6$ required 353.1713 (Δ 0.8 ppm). [α]$_D^{25}$ = -9.1 (c 1.85, MeOH). Spectroscopic data is consistent with literature values.$^{[2a, 7a]}$

(S)-methyl 3-amino-2-((tert-butoxycarbonyl)amino)propanoate

![Structure](image)

To a solution of (S)-methyl 3-((benzyloxy)carbonyl)amino)-2-((tert-butoxycarbonyl)amino)propanoate (0.300 g, 0.851 mmol) in MeOH (3.3 ml) was added 5% w/w Pd/C (15 mg). The suspension was stirred under an atmosphere of hydrogen gas (balloon pressure) for 18 h and then filtered through a bed of celite®. The solvent was removed under reduced pressure and the crude mixture was purified by column chromatography (2-5% MeOH/ 1% 7N NH$_3$ in MeOH/CH$_2$Cl$_2$) to furnish the title compound as a clear oil (0.180 g, 73%).

$R_f = 0.44$ (10% MeOH/ 1% 7N NH$_3$ in MeOH/ 89% CH$_2$Cl$_2$). δ_H /ppm (500 MHz, CDCl$_3$): 5.36 (1H, br s, C$_2$-NH), 4.36-4.26 (1H, m, H$_a$), 3.77 (3H, s, OCH$_3$), 3.05 (2H, d, J=4.3 Hz, H$_b$), 1.46 (9H, s, C(CH$_3$)$_3$). δ_C /ppm (125 MHz, CDCl$_3$): 172.3 (COOME), 155.7 (OC=ONH), 80.2 (C(CH$_3$)$_3$), 56.0 (C$_3$), 52.8 (OCH$_3$), 44.1 (C$_p$), 28.5 (C(CH$_3$)$_3$). ν_{max} /cm$^{-1}$: 3315 (m, N-H), 2977 (m, C-H), 1695 (s, C=O), 1511 (s, N-H). HRMS (ESI+) m/z found [M+Na]$^+$ 241.1155, C$_9$H$_{18}$N$_2$O$_4$Na$^+$ required 241.1159 (Δ -1.4 ppm). [α]$_D^{25}$ = +6 (c 0.12, MeOH). Spectroscopic data is consistent with literature values.$^{[8]}$

(S)-2-azido-3-phenylpropanoic acid

![Structure](image)

3-Azidosulfonl-3H-imidazole-1-ium hydrogen sulfate (8.01 g, 25.4 mmol) was added to a mixture of L-phenylalanine (3.50 g, 21.2 mmol), K$_2$CO$_3$ (7.91 g, 57.2 mmol) and copper sulfate pentahydrate (0.052 g, 0.21 mmol) in MeOH (105 ml). The reaction was stirred at rt for 18 h. The solvent was removed under reduced pressure and the crude material diluted with H$_2$O (100 ml) and acidified with conc. HCl to a pH of 2. The aqueous layer was extracted with EtOAc (3 × 100 ml) and the combined organic fractions were dried (MgSO$_4$) and the solvent removed under
reduced pressure. The crude oil was purified by column chromatography (1% AcOH/ 25% EtOAc / 74% Pet ether) to yield the title compound as a yellow oil (3.62 g, 89%).

R_f = 0.30 (1% AcOH/ 25% EtOAc / 74% Pet ether 40:60). δ_H/ppm (500 MHz, CDCl₃): 9.76 (1H, br s, COOH), 7.37-7.24 (5H, m, 5 × ArCH), 4.17 (1H, dd, J=8.9, 5.0 Hz, H_α), 3.25 (1H, dd, J=14.1, 5.0 Hz, H_β), 3.05 (1H, dd, J=14.1, 8.9 Hz, H_β). δ_c/ppm (125 MHz, CDCl₃): 175.7 (COOH), 135.7 (Ar(C)), 129.4 (ArCH), 128.9 (ArCH), 127.6 (Ar(C)), 63.2 (C_α), 37.7 (C_β). ν_{max}/cm⁻¹: 3031 (m, C-H), 2105 (s, N₃), 1715 (s, C=O). HRMS (ESI-) m/z found [M-H]⁻ 190.0617, C₉H₈N₃O₂ required 190.0611 (Δ 3.4 ppm). [α]_D²⁵ = -72.0 (c 0.25, MeOH). Spectroscopic data is consistent with literature values.^[6]

(S)-methyl-3-((S)-2-azido-3-phenylpropanamido)-2-((tert-butoxycarbonyl)amino)propanoate

(S)-Methyl 3-amino-2-((tert-butoxycarbonyl)amino)propanoate (0.150 g, 0.687 mmol) was dissolved in CH₂Cl₂ (1.5 ml) and HOBr₂H₂O (0.105 g, 0.687 mmol) and EDC.HCl (0.132 g, 0.687 mmol) were added at rt. Once all the solids were dissolved, (S)-2-azido-3-phenylpropanoic acid (0.131 g, 0.687 mmol) in CH₂Cl₂ (1.5 ml) was added and the reaction was stirred for 18 h at rt. The solvent was removed under reduced pressure and the crude mixture was diluted with EtOAc (5 ml) and H₂O (5 ml). The layers were separated and the organic layer was washed with saturated NaHCO₃ solution (2 × 5 ml), 5% citric acid (2 × 5 ml) and H₂O (2 × 5 ml). The organic fraction was dried (MgSO₄) and the solvent removed under reduced pressure. The crude material was purified by column chromatography (0-5% MeOH/CH₂Cl₂) to afford the title compound as an amorphous cream solid (0.140 g, 52%).

R_f = 0.48 (5% MeOH/ 95% CH₂Cl₂). Mp = 84-87 °C (5% MeOH/ 95% CH₂Cl₂). δ_H/ppm (500 MHz, CDCl₃): 7.36-7.22 (5H, m, 5 × ArCH), 6.71 (1H br s, C_β-NH), 5.40 (1H, d, J=5.9 Hz, C_α-NH), 4.16 (1H, d, J=8.5, 4.3 Hz, H_α), 3.76 (3H, s, OCH₃), 3.68-3.53 (2H, m, H_β), 3.32 (1H, dd, J=14.1, 4.3 Hz, H_β), 2.96 (1H, dd, J=14.1, 8.5 Hz, H_β), 1.45 (9H, s, C(CH₃)₃). δ_c/ppm (125 MHz, CDCl₃): 171.0 (C=ONH), 169.7 (COOMe), 155.7 (OC=ONH), 136.3 (Ar(C)), 129.6 (ArCH), 128.8 (ArCH), 127.4 (ArCH), 80.6 (C(CH₃)₃), 65.7 (C_α), 53.7 (C_α), 52.9 (OCH₃), 41.8 (C_β), 38.7 (C_β), 28.4 (C(CH₃)₃). ν_{max}/cm⁻¹: 3308 (m, N-H), 3003 (w, C-H), 2117 (s, N₃) 1750 (s, C=O), 1691 (s, C-O), 1652 (s, C=C). HRMS (ESI+) m/z found [M+H]⁺ 392.1944, C₁₈H₂₆N₅O₅⁺ required 392.1934 (Δ 2.5 ppm). [α]_D²⁵ = +10.0 (c 0.26, MeOH).
(S)-3-((S)-2-azido-3-phenylpropanamido)-1-methoxy-1-oxopropan-2-aminium chloride (Building Block B)

TMSCl (4.70 ml, 0.0370 mmol) was added dropwise to MeOH (19.7 ml) at 0 °C. The solution was stirred for 10 min at 0 °C and then added dropwise to (S)-methyl-3-((S)-2-azido-3-phenylpropanamido)-2-((tert-butoxycarbonyl)amino) propanoate (2.39 g, 6.11 mmol) at rt. The solution was stirred at rt. TLC analysis after 3 h indicated that all the starting material had been consumed. The solvent was removed under reduced pressure following which co-evaporations with MeOH (20 ml) and CH$_2$Cl$_2$ (3 × 20 ml) gave the title compound as an amorphous cream solid (1.98 g, 99%).

Mp = 148-152 °C (CH$_2$Cl$_2$). δ$_H$/ppm (400 MHz, d$_6$-DMSO): 8.90 (1H, t, J=5.8 Hz, C$_β$-NH), 8.76 (3H, s, NH$_3^+$), 7.34-7.13 (5H, m, 5 × ArCH), 4.12-4.00 (2H, m, H$_α$ and H$_α'$), 3.67 (3H, s, OCH$_3$), 3.65-3.50 (2H, m, H$_β$), 3.14 (1H, dd, J=14.1, 4.2 Hz, H$_β'$), 2.86 (1H, dd, J=14.1, 10.1 Hz, H$_β'$).

δ$_C$/ppm (101 MHz, d$_6$-DMSO): 170.0 (COOMe), 168.1 (C=ONH), 137.1 (ArC), 129.1 (ArC), 128.4 (ArCH), 126.7 (ArCH), 62.9 (C$_α$), 53.0 (OCH$_3$), 51.8 (C$_α$), 38.6 (C$_β$), 37.0 (C$_β'$). ν$_{max}$/cm$^{-1}$: 3333 (m, N-H), 2830 (s, C-H), 2100 (s, N$_3$), 1740 (s, C=O), 1657 (s, C=O), 1529 (s, C=C).

HRMS (ESI+) m/z found [M+H]$^+$ 292.1417, C$_{13}$H$_{18}$N$_5$O$_3$+ required 292.1410 (Δ 2.4 ppm). [α]$_D$/25$^{}$ = +12.0 (c 0.29, MeOH).

Building Block C

SF7: Synthetic Route to Building Block C
(S)-3-(4-azidophenyl)-2-((tert-butoxycarbonyl)amino)propanoic acid

3-Azidosulfonyl-3H-imidazole-1-ium hydrogen sulfate (2.13 g, 7.87 mmol) was added to a mixture of Boc-Phe(4-NH$_2$)-OH (1.84 g, 6.56 mmol), K$_2$CO$_3$ (2.06 g, 14.9 mmol) and copper sulfate pentahydrate (16.4 mg, 0.0656 mmol) in MeOH (33 ml). The reaction was stirred at rt for 18 h. The solvent was removed under reduced pressure and the crude material diluted with H$_2$O (20 ml) and acidified with conc. HCl to a pH of 2. The aqueous layer was extracted with EtOAc (3 x 20 ml) and the combined organic fractions were dried (MgSO$_4$) and the solvent removed under reduced pressure. The crude oil was purified by column chromatography (1% AcOH/ 5% MeOH / 94% CH$_2$Cl$_2$) to yield the title compound as an orange oil (1.76 g, 89%).

R$_f$ = 0.34 (5% MeOH/ 1% AcOH/ 94% CH$_2$Cl$_2$). $\delta$$_H$ / ppm (500 MHz, d$_6$-DMSO): 7.17 (2H, d, J=8.4 Hz, 2 x ArCH), 6.97 (2H, d, J=8.4 Hz, 2 x ArCH), 4.93 (1H, d, J=7.3 Hz, BocNH), 4.58 (1H, m, H$_6$), 3.18 (1H, dd, J=13.9 Hz and 5.1 Hz, H$_6$), 3.06 (1H, dd, J=13.9 Hz and 6.5 Hz, H$_6$) 1.44 (9H, s, C(CH$_3$)$_3$). $\delta$$_C$ / ppm (125 MHz, d$_6$-DMSO): 175.2 (COOH), 155.5 (Boc C=O), 139.1 (ArC), 132.7 (ArC), 130.9 (ArCH), 119.4 (ArCH), 80.7 (C(CH$_3$)$_3$), 54.4 (C$_4$), 37.3 (C$_6$), 28.4 (C(CH$_3$)$_3$). $\nu$$_{max}$/cm$^{-1}$: 2979 (w, O-H), 2112 (s, N$_3$), 1687 (s, C=O), 1506 (s, N-H). HRMS (ESI+) m/z found [M+H]$^+$ 307.1386, C$_{11}$H$_{19}$N$_4$O$_4$$^+$ required 307.1401 (Δ -0.99 ppm). $[\alpha]$$_D$25 = +39.9 (c 0.51, CHCl$_3$). Spectroscopic data is consistent with literature values.$^{[10]}$

(S)-3-(4-azidophenyl)-1-methoxy-1-oxopropan-2-aminium chloride (Building Block C)

TMSCl (1.57 ml, 12.4 mmol) was added dropwise over 15 min to a solution of the azide (800 mg, 2.61 mmol) in MeOH (3 ml) at 0 °C. The reaction was allowed to warm to rt and stirred for 5h. Dry diethyl ether (4.6 ml) was added and the slurry was stirred for 30 min and then filtered. The precipitate was washed with cold diethyl ether (2 x 2 ml) and then dried in vacuo to afford the title compound as a cream solid (596 mg, 89%).

Mp = 183-186 °C (Et$_2$O). $\delta$$_H$ / ppm (500 MHz, d$_6$-DMSO): 8.65 (3H, s, NH$_3^+$), 7.33-7.21 (2H, m, 2 x ArCH), 7.15-7.04 (2H, m, 2 x ArCH), 4.26 (1H, t, J=6.4 Hz, H$_6$), 3.67 (3H, s, OCH$_3$), 3.17 (1H, d, J=14.1 Hz and 6.0 Hz, H$_6$), 3.09 (1H, dd, J=14.1 Hz and 7.2 Hz, H$_6$). $\delta$$_C$ / ppm (125 MHz, d$_6$-DMSO): 169.3 (COOMe), 138.4 (ArC), 131.6(ArC), 131.1 (ArCH), 119.3 (ArCH), 53.2 (C$_4$), 52.7 (OCH$_3$), 35.2 (C$_6$). $\nu$$_{max}$/cm$^{-1}$: 2805 (m, C=H), 2123 (m, N$_3$), 1742 (s, C=O), 1578 (m, C=C), 1509 (s, N-H). HRMS (ESI+) m/z found [M+H]+$^+$ 221.1027, C$_{10}$H$_{13}$N$_3$O$_2^+$ required 221.1033 (Δ -2.7 ppm). $[\alpha]$$_D$25 = +15.1 (c 0.56, MeOH).
Building Block D

\[
\begin{align*}
\text{NH}_2 & \quad \rightarrow \quad \text{Cl} \overset{\text{H}_3\text{N}}{\rightarrow} \overset{\text{O}}{\rightarrow} \\
\text{N}_3 & \quad \rightarrow \quad \text{N}_3
\end{align*}
\]

SF8: Synthetic Route to Building Block D

(S)-6-azido-1-methoxy-1-oxohexan-2-aminium chloride (Building Block D)

Imidazole-1-sulfonyl azide hydrochloride (2.2 g, 10.52 mmol) was added to a mixture of Boc-L-Lys-OMe (2.28 g, 8.77 mmol), CuSO\(_4\).5H\(_2\)O (21.9 mg, 0.09 mmol) and K\(_2\)CO\(_3\) (2.06 g, 14.9 mmol) in MeOH (45 mL). The reaction mixture was stirred overnight at room temperature. The solvent was removed under reduced pressure followed by addition of H\(_2\)O (60 mL); the mixture was acidified to pH 2-4 with 5% citric acid and extracted with EtOAc (3 x 80 mL). The organic fractions were dried over MgSO\(_4\) and the solvent evaporated under reduced pressure. The resulting orange oil was purified by column chromatography yielding 1.74 g of Boc-L-Lys(N\(_3\))-OMe. The Boc group was removed by following GP4 to yield the desired product as a white solid (1.24 g, 73% yield over 2 steps).

\(\delta^H/\text{ppm}\) (500 MHz, \(d_6\)-DMSO): 8.59 (3H, bs), 4.09-3.96 (1H, m), 3.75 (3H, s), 3.40-3.20 (2H, m), 1.86-1.76 (2H, m), 1.59-1.26 (4H, m). \(\delta^C/\text{ppm}\) (100 MHz, \(d_6\)-DMSO): 170.8, 53.7, 52.6, 51.2, 30.4, 28.6, 22.4. \(\nu_{\text{max}}/\text{cm}^{-1}\): 3424, 2925, 2870, 2093, 1743, 1596, 1509, 1231. **HRMS (ESI+) m/z** found [M+H]\(^+\) 187.1187, \(C_7H_{15}N_4O_2\)\(^+\) required 187.1195.

Building Block E

\[
\begin{align*}
\text{NH}_2 & \quad \rightarrow \quad \text{Cl} \overset{\text{H}_3\text{N}}{\rightarrow} \overset{\text{O}}{\rightarrow} \\
\text{N}_3 & \quad \rightarrow \quad \text{N}_3
\end{align*}
\]

SF9: Synthetic Route to Building Block E
(S)-5-azido-1-methoxy-1-oxopentan-2-aminium chloride (Building Block E)

![Diagram of Building Block E]

Imidazole-1-sulfonyl azide hydrochloride (4.78 g, 22.8 mmol) was added to a mixture of Boc-L-Orn-OH (4.41 g, 19 mmol), CuSO₄·5H₂O (47.4 mg, 0.19 mmol), and K₂CO₃ (7.09 g, 51.3 mmol). The reaction mixture was stirred overnight at room temperature. The solvent was removed under reduced pressure followed by addition of H₂O (75 mL); the mixture was acidified to pH 2-4 with 5% citric acid and extracted with EtOAc (3 x 150 mL). The organic fractions were dried over MgSO₄ and the solvent evaporated under reduced pressure to yield Boc-Orn(N₃)-OH as a yellow oil. Formation of the corresponding methyl ester was achieved by following a similar procedure to (S)-methyl-3-((S)-2-azido-3-phenylpropanamido)-2-((tert-butoxycarbonyl)amino)propanoate. The Boc group was removed by following GP4 to yield the desired product as a white solid (2.84 g, 72% yield over 3 steps).

δ_H/ppm (400 MHz, d_6-DMSO): 8.72 (3H, bs), 4.15-3.94 (1H, m), 3.74 (3H, s), 3.44-3.26 (2H, m), 1.90-1.81 (2H, m), 1.79- 1.51 (2H, m). δ_C/ppm (100 MHz, d_6-DMSO): 170.2, 53.3, 51.9, 50.4, 27.7, 24.4. ν_max/cm⁻¹: 3377, 2970, 2902, 2093, 1744, 1509, 1440, 1280, 1057. HRMS (ESI+) m/z found [M+Na]⁺ 195.0867, C₆H₁₂N₄O₂Na⁺ required 195.0858.

Building Block F

![Diagram of Building Block F]

SF9: Synthetic Route to Building Block F
N-Boc-3-nitro-L-phenylalanine (610 mg, 1.95 mmol) was dissolved in 25 mL of MeOH, following by addition of K$_2$CO$_3$ (323 mg, 2.34 mmol) and 10% Pd on charcoal. The reaction mixture was hydrogenated at room temperature under 55 psi. After 4 hours the reaction is stopped, filtered over Celite and evaporated to dryness to yield the potassium salt of N-Boc-3-amine-L-phenylalanine as a white solid (672 mg), this intermediate was used in the next reaction without further purification. N-Boc-3-amine-L-phenylalanine potassium salt (672 mg, 1.95 mmol), imidazol sulfonyl azide bisulfate (635 mg, 2.34 mmol), CuSO$_4$ pentahydrate (5 mg, 0.0195 mmol), were dissolved in 12 mL of MeOH, and the reaction mixture was stirred at room temperature for 18 hours. The solvent was evaporated and 6 mL of water was added to the slurry. The aqueous phase was acidified with 1M HCl until pH 3 and extracted with EtOAc (3 x 15 mL); the organic phase was dried over MgSO$_4$ and purified by flash column (DCM/MeOH/AcOH 95/5/0.6) to give N-Boc-3-azide-L-phenylalanine as a pink solid (330 mg). Formation of the corresponding methyl ester was achieved by following a similar procedure to (S)-methyl-3-((S)-2-azido-3-phenylpropanamido)-2-((tert-butoxycarbonyl)amino) propanoate. The Boc group was removed by following GP4 to yield the desired product as a violet solid (261 mg, 94% yield).

$\text{Mp} = 160-162 ^\circ\text{C (CH}_2\text{Cl}_2)$. δ_{H}/ppm (500 MHz, d_6-DMSO): 8.52 (3H, br), 7.37 (1H, t, $J=7.9$ Hz), 7.06 – 6.97 (3H, m), 4.34 (1H, t, $J=6.6$ Hz), 3.69 (3H, s), 3.13 (2H, d, $J=6.7$ Hz). δ_{C}/ppm (100 MHz, d_6-DMSO): 169.4, 139.7, 136.8, 130.4, 126.4, 120.2, 118.3, 53.1, 52.9, 35.6. ν_{max}/cm$^{-1}$: 2825, 2628, 2106, 1735, 1593, 1578, 1492, 1479, 1441, 1390, 1290, 1242, 1211, 1140, 1082. HRMS (ESI+) m/z found [M+H]$^+$ 221.1047, C$_{10}$H$_{13}$N$_4$O$_2$+ required 221.1039. $[\alpha]_D^{26.2}$ = +9.0 (c 0.000867, MeOH).
7. Synthesis of Alkyne-Acid Building Blocks

Building block 1

Boc-L-Lys-OH (1.72 g, 7 mmol) was suspended in dry DMF (25 mL) and DIPEA (1.27 mL, 7.7 mmol) was added followed by a solution of 5-hexynoic acid (1.61 g, 7.7 mmol) in dry DMF (10 mL). The solution was stirred for 5 min at rt followed by addition of extra DIPEA (1.27 mL, 7.7 mmol) and further stirring for 4h at rt. Most of the DMF was removed under reduced pressure (T= 35-40°C) and H2O (50 mL) was added and the pH adjusted to 8-9 with saturated aqueous Na₂CO₃. The resulting mixture was washed with diethyl ether (3 x 25 mL). The pH of the aqueous phase was adjusted to pH 2-3 with concentrated HCl and extracted with EtOAc (4 x 30 mL). The combined organic fractions were dried with MgSO₄ and evaporated to dryness to yield the product as a yellow oil (2.45 g, 80% purity, 82.3% yield).

δH /ppm (500 MHz, DMSO-d₆): 12.40 (1H, bs), 7.80 (1H, t, J=5.6 Hz), 7.02 (1H, d, J=8.0 Hz), 3.83-3.77 (1H, m), 3.04-2.95 (2H, m), 2.77 (1H, t, J=2.7 Hz), 2.17-2.09 (4H, m), 1.69-1.58 (3H, m), 1.58-1.48 (1H, m), 1.44-1.18 (4H, m), 1.37 (9H, s). δc /ppm (125 MHz, DMSO-d₆): 174.3, 172.8, 171.2, 155.6, 84.1, 78.0, 71.5, 53.4, 38.2, 34.2, 30.4, 28.8, 28.2, 24.3, 23.1, 17.4. vmax /cm⁻¹: 3359, 2941, 1720, 1683, 1626, 1525, 1436, 1160. HRMS (ESI+) m/z found [M+Na]⁺ 363.1908, C₁₇H₂₈N₂O₅Na⁺ required 363.1896.

Building block 2

A procedure analogous to the one used for the synthesis of building block 1, except using Boc-L-Orn-OH and 4-pentynoic acid as starting materials afforded building block 2 as a yellow oil (1.61 g, 80% purity, 98% yield).

δH /ppm (500 MHz, DMSO-d₆): 12.44 (1H, bs), 7.85 (1H, t, J=5.5 Hz), 7.05 (1H, d, J=8.0 Hz), 3.86-3.78 (1H, m), 3.05-2.97 (2H, m), 2.73 (1H, t, J=2.6 Hz), 2.34 (2H, td, J=7.5, 2.6 Hz), 2.24
(2H, t, J=7.5 Hz), 1.68-1.61 (1H, m), 1.56-1.30 (3H, m), 1.37 (9H, s). δ_{C /ppm} (125 MHz, DMSO-d₆): 174.1, 172.8, 170.1, 155.6, 83.8, 78.0, 71.3, 53.3, 39.5, 34.3, 28.3, 28.2, 26.0, 14.3. ν_{max /cm⁻¹}: 3285, 3086, 2978, 2933, 1738, 1695, 1626, 1550, 1162. HRMS (ESI+) m/z found [M+H]⁺ 313.1762, C₁₅H₂₅N₂O₅ required 313.1763.

Building block 3

![Building block 3](image)

A procedure analogous to the one used for the synthesis of building block 1, except using Boc-L-Orn-OH and 5-hexynoic acid as starting materials afforded building block 3 as a yellow oil (1.76 g, 82% purity, 88% yield).

δ_{H /ppm} (400 MHz, DMSO-d₆): 12.44 (1H, bs), 7.81 (1H, t, J=5.4 Hz), 7.08 (1H, d, J=8.0 Hz), 3.87-3.81 (1H, m, J=4.0 Hz), 3.11-2.95 (2H, m), 2.79 (1H, t, J=2.6 Hz), 2.21-2.10 (4H, m), 1.72-1.57 (3H, m), 1.58-1.30 (3H, m), 1.39 (9H, s, 9H). δ_{C /ppm} (100 MHz, DMSO-d₆): 174.6, 171.7, 156.3, 84.6, 78.4, 72.0, 53.8, 38.5, 34.6, 28.7, 28.7, 26.4, 24.8, 17.9. ν_{max /cm⁻¹}: 3309, 2931, 1701, 1641, 1525, 1367, 1161. HRMS (ESI+) m/z found [M+H]⁺ 327.1935, C₁₆H₂₇N₂O₅ required 327.1920.

Building block 4

![Building block 4](image)

Boc-L-Lys(Z)-OH (2.70 g, 7.10 mmol) was dissolved in MeOH (25 mL) and hydrogenated overnight over 5% palladium charcoal (135 mg) at room temperature and pressure. The mixture was filtered through a pad of Celite and the solvent was removed under reduced pressure. The slurry was co-evaporated with CH₂Cl₂ to give Boc-L-Lys-OH as a white solid which was used without further purification (1.68 g). 4-Nitrophenyl prop-2-yn-1-ylcarbamate (CP2, 1.36 g, 6.17 mmol), Boc-L-Lys-OH (1.67 g, 6.79 mmol), and CH₂Cl₂ (60 mL) was added to a round bottomed flask equipped with a stir bar. Et₃N (1.80 mL, 13.0 mmol) was added to give a yellow suspension. The mixture was stirred at RT overnight. The solvent was evaporated, and the residue purified by flash column chromatography (0-1% acetic acid in EtOAc). Co-evaporations with toluene were performed to give a white solid (1.56 g, 74% yield over 2 steps).
αH /ppm (400 MHz, d6-DMSO): 12.38 (1H, br s), 7.01 (1H, d, J=8.0 Hz), 6.10 (1H, t, J=5.5 Hz),
5.95 (1H, t, J=5.5 Hz), 3.85-3.78 (1H, m), 3.77 (2H, dd, J=5.5, 2.5 Hz), 3.01 (1H, t, J=2.5 Hz),
2.99-2.91 (2H, m), 1.70-1.42 (2H, m), 1.38 (9H, s), 1.39-1.20 (4H, m). δc /ppm (100 MHz, d6-
DMSO): 174.2, 157.4, 155.5, 82.5, 77.8, 72.4, 53.4, 38.6, 30.4, 29.5, 28.1, 22.9. νmax /cm−1:
3388, 3304, 2939, 2162, 1729, 1684, 1622, 1530, 1209, 1159. HRMS (ESI+) m/z found
[M+H]+ 328.1880, C15H25N3O5+ required 328.1872. [α]D25 = +5.6 (c 0.51, MeOH).

Building block 5

A procedure analogous to the one used for the synthesis of building block 4, except using Boc-
(Z)-Orn-OH as starting material afforded building block 5 as a clear oil (832 mg, 54% yield over 2
steps).

αH /ppm (500 MHz, d6-DMSO): 12.45 (1H, br s), 7.06 (1H, d, J=8.0 Hz), 6.12 (1H, t, J=5.5 Hz),
5.98 (1H, t, J=5.5 Hz), 3.83 (1H, td, J=8.5, 4.5 Hz), 3.76 (2H, dd, J=6.0, 2.5 Hz), 3.02 (1H, t,
J=2.5 Hz), 2.95 (2H, dd, J=12.80, 6.51 Hz), 1.71-1.56 (1H, m), 1.37 (9H, s), 1.55-1.31 (3H, m).
δc /ppm (125 MHz, d6-DMSO): 174.1, 157.4, 155.5, 82.5, 77.9, 72.4, 53.3, 38.9, 28.7, 28.2,
28.1, 26.7. νmax /cm−1: 3296, 3304, 2939, 2162, 1729, 1684, 1622, 1530, 1209, 1159. HRMS (ESI+) m/z
found [M+H]+ 314.1723, C14H23N3O5+ required 314.1716. [α]D25 = +9.2 (c 0.49, MeOH).

Building block 6

Building block 6 was prepared by literature procedures.[6]
Building block 7

A procedure analogous to the one used for the synthesis of building block 1, except using Boc-L-Dab-OH and 5-hexynoic acid as starting materials afforded building block 7 as a yellow oil (1.36 g, 86% purity, 89% yield).

δ\text{/ppm} (400 MHz, d$_6$-DMSO): 12.50 (1H, bs), 7.87 (1H, t, J=5.2 Hz), 7.12 (1H, d, J=8.1 Hz), 3.99-3.82 (1H, m), 3.20-2.98 (2H, m), 2.80 (1H, t, J=2.6 Hz), 2.18-2.12 (4H, m), 1.73-1.58 (3H, m), 1.39 (9H, s). δ\text{/ppm} (100 MHz, d$_6$-DMSO): 174.5, 171.9, 156.0, 84.6, 78.5, 72.0, 51.8, 36.1, 34.6, 31.2, 28.7, 24.7, 17.9. ν$_\text{max}$/cm$^{-1}$: 3294, 2979, 2938, 1679, 1601, 1568, 1366, 1215, 1159. HRMS (ESI+) m/z found [M+Na]$^+$ 335.1584, C$_{15}$H$_{24}$N$_2$O$_5$Na$^+$ required 335.1583.

Building block 8

A procedure analogous to the one used for the synthesis of building block 1, except using Boc-L-Dab-OH and 4-pentynoic acid as starting materials afforded building block 8 as a yellow oil (1.28 g, 83% purity, 85% yield).

δ\text{/ppm} (500 MHz, d$_6$-DMSO): 12.53 (1H, bs), 7.93 (1H, t, J=5.2 Hz), 7.12 (1H, d, J=8.1 Hz), 3.95–3.90 (1H, m), 3.28-3.06 (2H, m), 2.76 (1H, t, J=2.5 Hz), 2.36 (2H, t, J=6.5, 1.8 Hz), 2.27 (2H, t, J=7.2 Hz), 1.89-1.76 (1H, m), 1.75-1.61 (1H, m), 1.39 (9H, s). δ\text{/ppm} (125 MHz, d$_6$-DMSO): 174.8, 171.1, 156.4, 84.6, 78.9, 72.2, 52.2, 36.6, 35.02, 31.4, 29.1, 15.09. ν$_\text{max}$/cm$^{-1}$: 3296, 2975, 2930, 1703, 1628, 1542, 1365, 1215, 1160. HRMS (ESI+) m/z found [M+H]$^+$ 299.1598, C$_{14}$H$_{23}$N$_2$O$_5$ required 299.1607.
Building block 9

A procedure analogue to the one used for the synthesis of building block 10, except using hexynoyl-OSu instead of pentynoyl-OSu afforded building block 9 as a white solid (1.42 g, 95% yield).

δH/ppm (400 MHz, d6-DMSO): 12.56 (1H, br s), 7.91 (1H, t, J=5.5 Hz), 6.92 (1H, d, J=8.0 Hz), 4.03 (1H, dt, J=7.5, 5.0 Hz), 3.43-3.23 (2H, m), 2.76 (1H, t, J=2.5 Hz), 2.17-2.10 (4H, m), 1.64 (2H, p, J=7.0 Hz), 1.38 (9H, s). δC/ppm (100 MHz, d6-DMSO): 172.2, 172.0, 155.2, 84.0, 78.1, 71.3, 53.4, 39.7, 34.0, 28.1, 24.2, 17.2. νmax/cm⁻¹: 3291, 2979, 1739, 1679, 1611, 1534, 1296, 1240, 1159. HRMS (ESI+) m/z found [M+H]+ 299.1612, C14H23N2O5+ required 299.1607. [α]D25 = -3.2 (c 0.49, MeOH).

Building block 10

To a suspension of Boc-L-Dap-OH (1.00 g, 4.91 mmol), in dry DMF (20 mL), was added a fraction of DIPEA (940 µL, 5.4 mmol). A solution of pentynoyl-OSu (1.15 g, 5.90 mmol) in dry DMF (10 mL) was then added dropwise over 10 minutes. After 5 minutes a second fraction of DIPEA (940 µL, 5.4 mmol) was added and the mixture was stirred at rt for 5 hours. The organic solvent was removed under reduced pressure and the slurry was diluted with H2O (25 mL). The pH was adjusted to 8-9 by addition of saturated Na2CO3 and washings with Et2O (3 x 15 mL) were performed. The aqueous layer was then acidified to pH 2-3 with conc. HCl and extracted with EtOAc (3 x 20 mL). The organic extracts were dried (MgSO4) and evaporated to dryness under reduced pressure. After precipitations in Et2O, building block 10 was obtained as a white solid in 89% yield.

δH/ppm (400 MHz, d6-DMSO): 12.57 (1H, br s), 8.02-7.93 (1H, m), 6.94 (1H, d, J=8.5 Hz), 4.02 (1H, dt, J=7.5, 5.0 Hz), 3.41 (1H, td, J=13.3, 5.2 Hz), 3.36-3.23 (1H, m), 2.73 (1H, t, J=2.5 Hz), 2.38-2.22 (4H, m), 1.38 (9H, s). δC/ppm (100 MHz, d6-DMSO): 172.1, 170.7, 155.3, 83.6, 78.2, 71.2, 53.4, 39.8, 34.0, 28.1, 14.1. νmax/cm⁻¹: 3290, 3265, 3087, 2979, 1738, 1703, 1611, 1534, 1364, 1277, 1161. HRMS (ESI+) m/z found [M+H]+ 285.1461, C13H21N2O5+ required 285.1450. [α]D25 = -5.8 (c 0.51, MeOH).
Building block 11

A procedure analogues to the one used for the synthesis of building block 4, except using Boc-Dab-OH as starting material afforded building block 11 as a white foam after flash column chromatography (1% Acetic acid: 9% MeOH: 90% EtOAc) (998 mg, 80% yield).

δ_H / ppm (500 MHz, d_6-DMSO): 12.45 (1H, br s), 7.06 (1H, d, $J=8.0$ Hz), 6.23 (1H, t, $J=5.5$ Hz), 6.03 (1H, t, $J=5.5$ Hz), 3.88-3.82 (1H, m), 3.77 (2H, dd, $J=5.5, 2.5$ Hz), 3.12-3.01 (1H, m), 6.03 (1H, t, $J=2.5$ Hz), 3.00-2.91 (1H, m), 1.82-1.72 (1H, m), 1.65-1.55 (1H, m), 1.38 (1H, s).

δ_C / ppm (125 MHz, d_6-DMSO): 174.1, 157.4, 155.6, 82.5, 78.0, 72.5, 51.3, 36.3, 31.6, 28.7, 28.1.

$\nu_{\text{max}} / cm^{-1}$: 3295, 2979, 1685, 1627, 1558, 1255, 1157. HRMS (ESI+) m/z found [M+Na]$^+$ 322.1386, $C_{13}H_{21}N_3O_5$Na$^+$ required 322.1379. $[\alpha]_D^{25} = -10.5$ (c 0.53, MeOH).

Building block 12

A procedure analogues to the one used for the synthesis of building block 4, except using common precursor 1 as starting material afforded building block 12 as a white foam after flash column chromatography (5% MeOH: 1% AcOH: 94% EtOAc) (1.19 g, 79% yield).

δ_H / ppm (400 MHz, d_6-DMSO): 12.61 (1H, br s), 6.95 (1H, d, $J=7.5$ Hz), 6.46 (1H, t, $J=5.5$ Hz), 6.14-6.06 (1H, m), 3.93-3.81 (1H, m), 3.80-3.75 (2H, m), 3.41 (1H, dt, $J=13.0, 5.0$ Hz), 3.21-3.11 (1H, m), 3.03 (1H, t, $J=2.5$ Hz), 1.38 (9H, s).

δ_C / ppm (100 MHz, d_6-DMSO): 172.4, 157.5, 155.3, 82.2, 78.0, 72.5, 54.6, 40.5, 28.7, 28.1. $\nu_{\text{max}} / cm^{-1}$: 3376, 3306, 3261, 2979, 1743, 1406, 1627, 1558, 1255, 1160. HRMS (ESI+) m/z found [M+H]$^+$ 286.1391, $C_{12}H_{20}N_3O_5$ required 286.1403. $[\alpha]_D^{25} = -7.1$ (c 0.62, MeOH).
Building block 13

To a solution of 5-hexynoic acid (0.528 mL, 4.67 mmol, 1 eq) and Oxyma pure (634 mg, 4.67 mmol, 1 eq) in dry DMF, was added DCC (964 mg, 4.67 mmol, 1 eq). After an hour of stirring at room temperature, a solution of Boc-L-4-amino-phenylalanine-OH (1.31 g, 4.67 mmol, 1 eq) and DIPEA (1.70 mL, 10.3 mmol, 2.2 eq) in dry DMF was added, and the reaction mixture was stirred overnight. The precipitated dicyclohexylurea was filtered off, and the solvent evaporated under reduced pressure. The slurry was dissolved in 15 mL of EtOAc, and the organic phase was washed with 5% citric acid (2 x 10 mL), dried over MgSO$_4$ and evaporated to dryness. Purification by flash chromatography of the crude product (98.5% DCM: 1.5% MeOH: 1% AcOH) afforded the building block 13 as a white solid (1.13 g, 64% yield).

$\text{Mp} = 138$-$140^\circ C$ (1: 1.5: 98.5, AcOH/ MeOH/ CH$_2$Cl$_2$). δH/ppm (400 MHz, d$_6$-DMSO): 9.83 (1H, s), 7.45 (2H, d, J=8.4 Hz), 7.15 (2H, d, J=7.6 Hz), 7.02 (1H, d, J=8.4 Hz), 4.00 (1H, m), 2.90 (1H, dd, J= 20.0, 4.0 Hz), 2.79 (1H, t, J=2.5 Hz), 2.76-2.70 (1H, m), 2.36 (2H, t, J= 7.6 Hz), 2.18 (2H, td, J=7.0, 2.6 Hz), 1.75-1.70 (2H, m), 1.30 (9H, s). δC/ppm (100 MHz, d$_6$-DMSO): 174.0, 170.9, 155.9, 138.1, 133.0, 129.7, 119.3, 84.5, 78.5, 72.1, 55.8, 36.3, 35.5, 28.6, 24.4, 17.8. ν_{max}/cm$^{-1}$: 3549, 3351, 2975, 2162, 2008, 1727, 1706, 1661, 1597, 1523, 1411, 1367, 1308, 1248, 1161, 1057, 1027, 939, 897, 829, 779. HRMS (ESI+) m/z found [M+H]$^+$ 375.1927, $C_{20}H_{27}N_{2}O_{5}^+$ required 375.1920. $[\alpha]_D^{26.2} = +15$ (c 0.001, MeOH).

Building block 14

Building block 14 was prepared by literature procedures.[6]
8. Synthesis of B/C/C/P and B/C/C/C/P Coupling Units

See SF4 and SF5 for overview of synthetic routes used.

Compound	Method, Yield (%), Purity (%)	Analysis	
G	GP1 & GP4 71% 90%	\(\delta_\text{H} / \text{ppm} \) (400 MHz, CDC\(_3\)): 8.66 (3H, bs), 8.46 (1H, d, \(J=7.3 \) Hz), 4.23-4.16 (1H, m), 4.04-3.92 (1H, m), 3.73 (3H, s), 3.61 (3H, s), 3.32 (2H, t, \(J=6.8 \) Hz), 2.46-2.22 (2H, m), 2.06-1.95 (2H, m), 1.75-1.56 (2H, m), 1.58-1.43 (2H, m), 1.43-1.28 (2H, m). \(\delta_\text{C} / \text{ppm} \) (100 MHz, CDC\(_3\)): 173.0, 171.5, 170.2, 53.3, 52.4, 52.3, 51.9, 50.9, 30.8, 30.6, 28.3, 26.4, 23.2. \(\nu_{\text{max}} / \text{cm}^{-1} \): 3316, 2902, 1738, 1645, 1528, 1436, 1251, 1227, 1082. HRMS (ESI+) m/z found \([M+H]^+\) 330.1763, \(C_{13}H_{24}N_5O_5\) required 330.1772.	
H	GP1 & GP4 84% 90%	\(\delta_\text{H} / \text{ppm} \) (400 MHz, CDC\(_3\)): 8.68 (3H, bs), 8.50 (1H, d, \(J=7.3 \) Hz), 4.27-4.19 (1H, m), 4.03-3.94 (1H, m), 3.73 (3H, s), 3.62 (3H, s), 3.34 (2H, t, \(J=6.7 \) Hz), 2.45-2.23 (2H, m), 2.06-1.95 (2H, m), 1.80-1.50 (4H, m). \(\delta_\text{C} / \text{ppm} \) (101 MHz, CDC\(_3\)): 172.8, 171.5, 170.1, 53.3, 52.4, 52.1, 51.9, 50.6, 30.6, 28.4, 26.4, 25.3. \(\nu_{\text{max}} / \text{cm}^{-1} \): 3310, 2958, 2094, 1741, 1645, 1537, 1438, 1224, 1078. HPLC (5-100% ACN) Rt 10.53 mins. HRMS (ESI+) m/z found \([M+H]^+\) 316.1609, \(C_{12}H_{22}N_5O_5\) required 316.1615.	
J	GP1 & GP4 98% 83%	HPLC (5-100% ACN) Rt 9.66 mins. LCMS [M+H]^+ 244.10.	
K	GP1 & GP4 90% 86%	HPLC (5-100% ACN) Rt 7.80 mins. LCMS [M+H]^+ 405.17.	
L	GP1 & GP4 89% 77%	HPLC (5-100% ACN) Rt 8.91 mins. LCMS [M+H]^+ 552.33.	
		GP1 & GP4	
---	---	---------	---
M	![Molecule](image)	72%	HPLC (5-100% ACN) Rt 7.48 mins. LCMS [M+H]^+ 391.17.
N	![Molecule](image)	80%	HPLC (5-100% ACN) Rt 8.78 mins. LCMS [M+H]^+ 552.25.
9. Preparation of B/C/P Linear Amides

	Compound	Method, Yield (%), Purity (%)	Analysis	
A1	![Chemical Structure](image1)	GP1 78% 88%	HPLC (30-100% ACN) Rt 8.26 mins. LCMS [M+H]+ 656.33.	
A2	![Chemical Structure](image2)	GP1 76% 89%	HPLC (30-100% ACN) Rt 7.73 mins. LCMS [M+H]+ 628.86.	
A3	![Chemical Structure](image3)	GP1 78% 88%	HPLC (30-100% ACN) Rt 8.07 mins. LCMS [M+H]+ 642.50.	
A4	![Chemical Structure](image4)	GP1 71% 96%	HPLC (5-100% ACN) Rt 10.07 mins. LCMS [M+H]+ 643.54.	
---	---	---	---	---
A5	![Chemical Structure](image)	GP1	84%	HPLC (5-100% ACN) *Rt* 10.06 mins. LCMS [M+H]^+ 628.33.
A6	![Chemical Structure](image)	GP1	26%	HPLC (5-100% ACN) *Rt* 11.71 mins. LCMS [M+H]^+ 676.54.
A7	![Chemical Structure](image)	GP1	26%	HPLC (30-100% ACN) *Rt* 8.05 mins. LCMS [M+H]^+ 628.54.
A8	![Chemical Structure](image)	GP1	70%	HPLC (5-100% ACN) *Rt* 7.70 mins. LCMS [M+H]^+ 614.55.
A9	![Chemical Structure](image)	GP1	60%	HPLC (5-100% ACN) *Rt* 11.28 mins. LCMS [M+H]^+ 613.21.
A10

	GP1	49%	86%

HPLC (5-100% ACN) Rt 11.04 mins. LCMS [M+H]$^+$ 599.31.

A11

	GP1	81%	94%

HPLC (5-100% ACN) Rt 10.49 mins. LCMS [M+H]$^+$ 614.32.

A12

	GP1	59%	93%

δ$_H$/ppm (500 MHz, CDCl$_3$): 7.39-7.24 (5H, m), 7.13 (1H, d, J=7.5 Hz), 6.93-6.84 (1H, m), 6.53 (1H, t, J=6.0 Hz), 6.11 (1H, s), 5.83-5.71 (1H, m), 4.67 (1H, dt, J=10.0, 4.5 Hz), 4.20 (1H, dd, J=8.0, 4.5 Hz), 4.16-4.22 (1H, m), 4.08 (1H, ddd, J=17.5, 6.0, 2.5 Hz), 4.01-3.89 (1H, m), 3.72 (3H, s), 3.71-3.54 (2H, m), 3.44-3.35 (1H, m), 3.33 (1H, dd, J=14.0, 4.5 Hz), 3.17-3.08 (1H, m), 3.03 (1H, dd, J=14.0, 8.0 Hz), 2.18 (1H, t, J=2.5 Hz), 1.86-1.76 (1H, m), 1.69-1.58 (1H, m), 1.57-1.49 (1H, m), 1.47 (9H, s), 1.43-1.22 (3H, m). δ$_C$/ppm (101 MHz, CDCl$_3$): 172.4, 170.8, 169.9, 159.4, 156.2, 135.8, 129.5, 128.8, 127.4, 80.9, 80.2, 70.9, 65.5, 57.2, 52.4, 51.2, 42.6, 39.5, 38.7, 32.2, 29.9, 28.9, 28.3, 22.5. HPLC (5-100% ACN) Rt 10.85 mins. HRMS (ESI+) m/z found [M+H]$^+$ 601.3081, C$_{28}$H$_{41}$N$_8$O$_7$+ required 601.3098. [α]25 = +4.2 (c 0.55, CHCl$_3$).

A13

	GP1	86%	87%

HPLC (5-100% ACN) Rt 11.90 mins. LCMS [M+H]$^+$ 690.20.

B1

	GP1	60%	96%

HPLC (5-100% ACN) Rt 10.95 mins. LCMS [M+H]$^+$ 614.43.
\(R_t = 0.33 \) (10% MeOH/90% CH\(_2\)Cl\(_2\)). \(\text{Mp} = 104-108 ^\circ C \) (2% MeOH/98% CH\(_2\)Cl\(_2\)). \(\delta H/\text{ppm} \) (400 MHz, CDCl\(_3\)): 7.39-7.19 (6H, m, 5 × ArCH and C\(_\text{ar}-\text{NH}\)), 7.06-6.92 (1H, m, C\(_\text{ar}-\text{NH}\)), 6.03-5.93 (1H, m, C\(_\text{ar}-\text{NH}\)), 5.19 (1H, d, \(J=6.6 \) Hz, BocNH), 4.57 (1H, dt, \(J=7.4, 5.1 \) Hz, H\(_3\)), 4.25-4.16 (1H, m, H\(_5\)), 4.13 (1H, dd, \(J=8.4, 4.6 \) Hz, H\(_3\)), 3.76 (3H, s, OCH\(_3\)), 3.70-3.62 (2H, m, H\(_5\)), 3.57-3.43 (1H, m, H\(_5\)), 3.30 (1H, dd, \(J=14.0, 4.6 \) Hz, H\(_8\)), 3.25-3.15 (1H, m, H\(_8\)), 2.97 (1H, dd, \(J=14.0, 8.4 \) Hz, H\(_5\)), 2.55-2.47 (2H, m, COCH\(_2\)CH\(_2\)), 2.44-2.35 (2H, m, COCH\(_2\)CH\(_2\)), 2.03 (1H, t, \(J=2.6 \) Hz, CH\(_2\)C), 1.87-1.75 (1H, m, H\(_8\)), 1.67-1.55 (3H, m, H\(_6\) and H\(_7\)), 1.43 (9H, s, C(CH\(_3\))\(_3\)). \(\delta C/\text{ppm} \) (101 MHz, CDCl\(_3\)): 172.5 (C=O), 171.9 (C=OCH\(_2\)CH\(_2\)), 170.4 (COOMe), 170.0 (C\(_\text{ar}-\text{C}=\text{O}\)), 155.9 (Boc C=O), 136.4 (ArC), 129.6 (ArCH), 128.8 (ArCH), 127.4 (ArCH), 83.1 (C=CH), 80.3 (C(CH\(_3\))\(_3\)), 69.8 (C=CH), 65.4 (C\(_\text{ar}\)), 53.6 (C\(_\text{ar}\)), 53.0 (OCH\(_3\)), 52.8 (C\(_\text{ar}\)), 40.8 (C\(_\text{ar}\)), 38.6 (C\(_\text{ar}\)), 38.6 (C\(_\text{ar}\)), 35.5 (COCH\(_2\)CH\(_2\)), 30.1 (C\(_\text{ar}\)), 28.4 (C(CH\(_3\))\(_3\)), 25.7 (C\(_\text{ar}\)), 15.1 (COCH\(_2\)CH\(_2\)).

\[\nu_{\text{max}}/\text{cm}^{-1}: 3290 \text{ (m, alkyne C-H)}, 2938 \text{ (w, C-H)}, 2114 \text{ (m, N)}, 1744 \text{ (m, C=O)}, 1649 \text{ (s, C=O)}, 1522 \text{ (s, C=C)}. \]

HRMS (ESI+) \(m/z \) found [M+H\(^+\)]\(^\text{+}\) 586.2991, C\(_{29}\)H\(_{40}\)N\(_2\)O\(_7\)\(^+\) required 586.2989 (\(\Delta 0.3 \) ppm). \([\alpha]_D^{25}\) = +47.0 (c 0.24, CHCl\(_3\)).

\[\text{B2} \]

\[\text{B3} \]

\[\text{B4} \]
| B5 | $\text{R}_f = 0.44$ ($10\% \text{MeOH/ 90}\% \text{CH}_2\text{Cl}_2$). $\text{M}p = 105-108^\circ\text{C}$ ($2\% \text{MeOH/ 98}\% \text{CH}_2\text{Cl}_2$). δ_{H} / ppm (500 MHz, CDCl$_3$): 7.47 (1H, d, $J=7.5$ Hz, C$_p$-NH), 7.40-7.21 (5H, m, 5 x ArCH), 7.10 (1H, app. s, C$_p$-NH), 5.28 (1H, app. s, Boc-NH), 5.03-4.93 (2H, m, C$_p$-NH and NHC$_2$C=CH), 4.57 (1H, dt, $J=7.5$ Hz and 5.2 Hz, H$_a$), 4.26-4.18 (1H, m, H$_a$), 4.16-4.10 (1H, m, H$_b$), 4.01-3.88 (2H, m, NHC$_2$C=CH), 3.75 (3H, s, OCH$_3$), 3.73-3.59 (2H, m, H$_b$), 3.45-3.34 (1H, m, H$_b$), 3.29 (1H, dd, $J = 14.0$, 4.7 Hz, H$_c$), 3.22-3.12 (1H, m, H$_d$), 2.98 (1H, dd, $J = 14.0$, 8.5 Hz, H$_d$), 2.23 (1H, t, $J = 2.5$ Hz, CH=CH). 1.89-1.78 (1H, m, H$_e$), 1.65-1.51 (3H, m, H$_f$ and H$_g$). 1.42 (9H, s, C(CH$_3$)$_3$). δ_{C} / ppm (125 MHz, CDCl$_3$): 172.7 (C$_p$=C=O), 170.7 (COOMe), 170.1 (C$_a$=C=O), 158.3 (NHC=ONH), 156.0 (Boc C=O), 136.4 (ArC), 129.6 (ArCH), 128.8 (ArCH), 127.4 (ArCH), 80.8 (C=CH), 80.3 (C(CH$_3$)$_3$), 71.5 (C=CH), 65.4 (C$_a$), 53.6 (C$_b$), 53.0 (OCH$_3$), 52.7 (C$_a$), 40.8 (C$_b$), 39.4 (C$_c$), 38.6 (C$_a$), 30.3 (CH$_2$C=CH) and C$_b$, 28.4 (C(CH$_3$)$_3$), 26.2 (C$_c$). $\nu_{\text{max}} / \text{cm}^{-1}$: 3324 (m, alkyne C=H), 2945 (w, C-H), 2114 (m, N$_3$), 1738 (m, C=O), 1648 (s, C=O), 1518 (s, C=C). HPLC (5-100% ACN) Rt 10.27 mins. HRMS (ESI$^+$) m/z found [M+Na$^+$] 609.2756, $C_{27}H_{30}N_2O_2$Na$^+$ required 609.2761 (Δ - 0.8 ppm). [α]$_D^{25}$ = +47.0 (c 0.26, CHCl$_3$). | |
|---|---|
| GP1 | R$_f$ = 0.45 ($10\% \text{MeOH/ 90}\% \text{CH}_2\text{Cl}_2$). $\text{M}p = 137-138^\circ\text{C}$ ($2\% \text{MeOH/ 98}\% \text{CH}_2\text{Cl}_2$). δ_{H} / ppm (400 MHz, CDCl$_3$): 8.26 (1H, d, $J=6.7$ Hz, C$_p$-NH), 7.38-7.20 (5H, m, 5 x ArCH), 7.12 (1H, t, $J=5.0$ Hz, C$_p$-NH), 6.23 (1H, app. s, C$_p$-NH), 5.53 (1H, d, $J=6.7$ Hz, Boc-NH), 4.61-4.52 (1H, m, H$_a$), 4.16-3.99 (2H, m, H$_a$ and H$_b$), 3.99-3.88 (1H, m, H$_r$), 3.89-3.78 (1H, m, H$_s$), 3.75 (3H, s, OCH$_3$), 3.68-3.56 (1H, m, H$_b$), 3.29 (1H, dd, $J = 14.0$, 4.5 Hz, H$_e$), 3.13-2.99 (1H, m, H$_e$), 2.93 (1H, dd, $J = 14.0$, 8.9 Hz, H$_g$), 2.39 (2H, t, $J=7.4$ Hz, COCH$_2$CH$_2$CH$_2$), 2.27 (2H, td, $J=6.8$, 2.5 Hz, COCH$_2$CH$_2$CH$_2$), 2.00 (1H, t, $J=2.5$ Hz, CH=CH). 1.95-1.77 (4H, m, COCH$_2$CH$_2$CH$_2$ and H$_f$), 1.42 (9H, s, C(CH$_3$)$_3$). δ_{C} / ppm (101 MHz, CDCl$_3$): 174.3 (C=OCH$_2$CH$_2$CH$_2$), 171.4 (C$_p$=C=O), 170.5 (COOMe), 169.9 (C$_a$=C=O), 155.5 (Boc C=O), 136.6 (ArC), 129.5 (ArCH), 128.8 (ArCH), 127.3 (ArCH), 83.4 (C=CH), 80.2 (C(CH$_3$)$_3$), 65.6 (C$_a$), 53.0 (C$_b$), 53.0 (OCH$_3$), 51.4 (C$_c$), 40.5 (C$_b$), 38.7 (C$_b$), 36.2 (C$_r$), 35.3 (COCH$_2$CH$_2$CH$_2$), 34.3 (C$_f$ or COCH$_2$CH$_2$CH$_2$), 28.5 (C(CH$_3$)$_3$), 24.3 (C$_f$ or COCH$_2$CH$_2$CH$_2$), 18.0 (COCH$_2$CH$_2$CH$_2$). $\nu_{\text{max}} / \text{cm}^{-1}$: 3282 (m, alkyne C=H), 2950 (w, C-H), 2115 (m, N$_3$), 1746 (m, C=O), 1652 (s, C=O), 1523 (s, C=C). HPLC (5-100% ACN) Rt 10.82 mins. HRMS (ESI$^+$) m/z found [M+H$^+$] 586.2982, $C_{28}H_{30}N_2O_4$+ required 586.2989 (Δ -1.2 ppm). [α]$_D^{25}$ = +8.0 (c 0.27, CHCl$_3$). | |
B8

GP1	65%	99%

\[R_f = 0.47 \text{ (10\% MeOH/ 90\% CH}_2\text{Cl}_2). \] \[\text{M}p = 95-96 \text{ °C (2\% MeOH/ 98\% CH}_2\text{Cl}_2). \]

\[\delta_H/\text{ppm (400 MHz, CDCl}_3): 8.06 (1H, d, J=7.0 Hz, C=NH), 7.40-7.19 (5H, m, 5 × ArCH), 7.09 (1H, t, J=6.1 Hz, C=NH), 6.36 (1H, s, C=NH), 5.51 (1H, d, J=7.0 Hz, BocNH), 4.60-4.53 (1H, m, Hα), 4.19-4.03 (2H, m, Hβ and Hγ), 3.87-3.85 (1H, m, Hγ), 3.85-3.76 (1H, m, Hδ), 3.76 (3H, s, OCH3), 3.67-3.57 (1H, m, Hγ), 3.29 (1H, dd, J=14.0, 4.6 Hz, Hβ), 3.15-3.04 (1H, m, Hγ), 2.93 (1H, dd, J=14.0, 8.8 Hz, Hδ), 2.62-2.50 (2H, m, COCH2CH3), 2.50-2.38 (2H, m, COCH2CH3), 2.07 (1H, t, J=2.5 Hz, CH2C), 1.95-1.78 (2H, m, Hβ), 1.42 (9H, s, C(CH3)3). \]

\[\delta_C/\text{ppm (101 MHz, CDCl}_3): 172.8 (C=OCH2CH3), 171.5 (C=O), 170.4 (COOMe), 170.0 (C=O), 155.6 (Boc C=O), 136.5 (ArC), 129.5 (ArCH), 128.1 (ArCH), 127.3 (ArCH), 82.8 (C=CH), 80.2 (C(CH3)3), 70.2 (C=CH), 65.6 (Cα), 53.0 (Cβ), 53.0 (OCH3), 51.5 (Cγ), 40.6 (Cβ), 38.7 (Cγ), 36.2 (Cγ), 35.6 (COCH2CH3), 34.0 (Cβ), 28.4 (C(CH3)3), 15.1 (COCH2CH3). \]

HPLC (5-100% ACN) \[Rt 10.54 \text{ mins. HRMS (ESI+) m/z found [M+Na]+ 594.2656, C22H37N3O7Na+ required 594.2652 (Δ 0.7 ppm). } \]

[α]D\text{25} = +6.0 (c 0.27, CHCl3).

B9

| GP1 | 44% | 88% |

\[\delta_H/\text{ppm (400 MHz, CDCl}_3): 7.38-7.22 (6H, m), 6.96 (1H, t, J=6.0 Hz), 6.61-6.50 (1H, m), 5.85 (1H, d, J=4.0 Hz), 4.51 (1H, td, J=6.5, 4.0 Hz), 4.18-4.09 (2H, m), 3.83-3.68 (2H, m), 3.76 (3H, s), 3.63-3.44 (2H, m), 3.29 (1H, dd, J=14.0, 5.0 Hz), 2.99 (1H, dd, J=14.0, 8.5 Hz), 2.37 (2H, t, J=7.0), 2.28-2.23 (2H, m), 1.97 (1H, t, J=2.5 Hz), 1.90-1.79 (2H, m), 1.44 (9H, s). \]

\[\delta_C/\text{ppm (101 MHz, CDCl}_3): 174.2, 170.9, 170.0, 169.9, 155.9, 136.1, 129.5, 128.7, 127.3, 83.4, 80.6, 69.3, 65.2, 53.0, 52.9, 41.4, 40.6, 38.8, 34.8, 28.2, 23.9, 17.8. \]

HPLC (5-100% ACN) \[Rt 10.98 \text{ mins. HRMS (ESI+) m/z found [M+H]+ 572.2836, C22H35N3O7 required 572.2833. } \]

[α]D\text{25} = +3.8 (c 0.35, CHCl3).

B10

| GP1 | 53% | 93% |

\[R_f = 0.33 \text{ (10\% MeOH/ 90\% CH}_2\text{Cl}_2). \] \[\text{M}p = 143-144 \text{ °C (2\% MeOH/ 98\% CH}_2\text{Cl}_2). \]

\[\delta_H/\text{ppm (400 MHz, CDCl}_3): 7.41-7.19 (6H, m, 5 × ArCH and C=NH), 6.90-6.82 (1H, m, C=NH), 6.76 (1H, app. s, C=NH), 5.79 (1H, s, BocNH), 4.61-4.47 (1H, m, Hα), 4.25-4.07 (2H, m, Hδ and Hγ), 3.99-3.79 (2H, m, Hδ and Hγ), 3.77 (3H, s, OCH3), 3.60-3.45 (2H, m, Hβ and Hγ), 3.29 (1H, dd, J=14.0, 4.6 Hz, Hδ), 2.99 (1H, dd, J=14.0, 8.3 Hz, Hγ), 2.71-2.36 (4H, m, COCH2CH3 and COCH2CH3), 2.07-2.04 (1H, m, CH2C), 1.44 (9H, s, C(CH3)3). \]

\[\delta_C/\text{ppm (101 MHz, CDCl}_3): 173.1 (C=OCH2CH3), 171.1 (C=O), 170.2 (C=O and COOMe), 156.0 (Boc C=O), 136.2 (ArC), 129.6 (ArCH), 128.9 (ArCH), 127.5 (ArCH), 83.1 (C=CH), 80.7 (C(CH3)3), 69.8 (C=CH), 65.4 (Cα), 55.9 (Cβ), 53.3 (Cγ), 53.2 (OCH3), 41.3 (Cβ), 40.9 (Cγ), 38.6 (Cδ), 35.2 (COCH2CH3), 28.4 (C(CH3)3), 15.2 (COCH2CH3). \]

Vmax/\text{cm}^{-1}: 3301 (m, alkyne C-H), 2935 (w, C-H), 2112 (m, Nα), 1743 (m, C=O), 1652 (s, C=O), 1524 (s, C=C). \[\text{HPLC (5-100\% ACN) } \text{R}t 10.72 \text{ mins. HRMS (ESI+) m/z found [M+Na]+ 580.2502, C26H39N3O7Na+ required } 580.2496 (Δ 1.0 ppm). \]

[α]D\text{25} = +3.0 (c 0.23, CHCl3).
\(R_f = 0.40 \) (10% MeOH/ 90% CH₂Cl₂). \(M_p = 62-65 \, ^{\circ}C \) (2% MeOH/ 98% CH₂Cl₂). \(\delta \)H/ppm (500 MHz, CDCl₃): 8.62 (1H, d, \(J = 7.1 \, Hz \), \(C_\alpha-NH \)), 7.35-7.19 (1H, m, 5 x ArCH and \(C_\beta-NH \)), 5.67 (1H, d, \(J = 7.4 \, Hz \), BocNH), 5.41-5.32 (1H, m, \(C_\gamma-NH \)), 5.18-5.07 (1H, m, NHCH₂C=CH), 4.55 (1H, dd, \(J = 7.1, \ 5.3, \ 3.8 \, Hz \), H₂), 4.20-4.13 (1H, m, \(H_\beta \)), 4.10 (1H, dd, \(J = 8.8, \ 4.7 \, Hz \), H₂), 3.98 (2H, m, NHCH₂C=CH), 3.94-3.82 (2H, m, \(H_\alpha \) and \(H_\epsilon \)), 3.75 (3H, s, OCH₃), 3.60-3.53 (1H, m, \(H_\delta \)), 3.28 (1H, dd, \(J = 14.0, \ 4.7 \, Hz \), \(H_\epsilon \)), 3.13-3.03 (1H, m, \(H_\gamma \)), 2.94 (1H, dd, \(J = 14.0, \ 8.8 \, Hz \), \(H_\delta \)), 2.20 (1H, t, \(J = 2.5 \, Hz \), \(CH=CH \)), 1.91-1.76 (2H, m, \(H_\beta \)), 1.41 (9H, s, C(CH₃)₃). \(\delta _C/\text{ppm} \) (125 MHz, CDCl₃): 171.6 (\(C_\alpha-C=O \)), 170.6 (COOME), 169.9 (\(C_\gamma-C=O \)), 158.9 (\(C(\text{NCH}=\text{ONH}) \)), 155.6 (Boc \(C=O \)), 136.6 (\(ArC \)), 129.5 (\(ArCH \)), 128.8 (\(ArCH \)), 127.3 (\(ArCH \)), 80.6 (\(C=CH \)), 80.2 (C(CH₃)₃), 71.6 (\(C=CH \)), 65.6 (\(C_\beta \)), 53.1 (OCH₃), 52.9 (\(C_\delta \)), 51.2 (\(C_\gamma \)), 40.4 (\(C_\beta \)), 38.7 (\(C_\beta \)), 36.6 (\(C_\gamma \)), 35.2 (\(C_\beta \)), 30.3 (\(CH=CH \)), 28.5 (C(CH₃)₃). \(\nu_{\max }/\text{cm}^{-1}: \) 3310 (m, alkyn C-H), 2928 (w, C-H), 2111 (m, \(N_3 \)), 1740 (m, C=O), 1652 (s, C=O), 1523 (s, C=C). HPLC (5-100% ACN) \(R_t \) 10.27 mins. HRMS (ESI+) \(m/z \) found \([M+Na]^+\) 595.2605 \(\Delta 0.2 \, ppm \). \([\alpha]_D^{25} = +26.0 \) (c 0.24, CHCl₃).

\(R_f = 0.35 \) (10% MeOH/ 90% CH₂Cl₂). \(M_p = 98-99 \, ^{\circ}C \) (2% MeOH/ 98% CH₂Cl₂). \(\delta \)H/ppm (400 MHz, CDCl₃): 7.42-7.17 (6H, m, \(C_\alpha-NH \) and 5 x \(ArCH \)), 6.86 (1H, app. s, \(C_\beta-NH \)), 5.99 (1H, app. s, BocNH), 5.67 (1H, dd, \(J = 7.9, \ 4.9 \, Hz \), \(C_\beta-NH \)), 5.48 (1H, app. s, NHCH₂C=CH), 4.61 (1H, app. s, \(H_\delta \)), 4.30-4.19 (1H, m, \(H_\beta \)), 4.15-4.04 (1H, m, \(H_\epsilon \)), 4.02 (1H, dd, \(J = 5.8, \ 2.5 \, Hz \), NHCH₂C=CH), 3.99-3.95 (1H, m, NHCH₂C=CH), 3.94-3.84 (1H, m, \(H_\beta \)), 3.83-3.68 (4H, m, \(H_\gamma \) and \(OCH₃ \)), 3.56-3.40 (2H, m, \(H_\epsilon \) and \(H_\delta \)), 3.26 (1H, dd, \(J = 14.0, \ 5.0 \, Hz \), \(H_\gamma \)), 3.04 (1H, dd, \(J = 14.0 \, Hz \) and 7.8 \, Hz), 2.19 (1H, t, \(J = 2.5 \, Hz \), \(CH=CH \)), 1.45 (9H, s, C(CH₃)₃). \(\delta _C/\text{ppm} \) (101 MHz, CDCl₃): 171.5 (\(C_\alpha-C=O \)), 170.4 (\(C_\beta-C=O \)), 170.1 (COOME), 158.7 (\(NH=ONH \)), 156.1 (Boc \(C=O \)), 135.8 (\(ArC \)), 129.6 (\(ArCH \)), 127.5 (\(ArCH \)), 80.9 (\(C=CH \)), 80.7 (C(CH₃)₃), 71.5 (\(C=CH \)), 65.1 (\(C_\beta \)), 56.8 (\(C_\gamma \)), 53.2 (OCH₃), 53.1 (\(C_\delta \)), 42.2 (\(C_\beta \)), 40.8 (\(C_\beta \)), 38.5 (\(C_\beta \)), 30.2 (CH₂C=CH), 28.4 (C(CH₃)₃). \(\nu_{\max }/\text{cm}^{-1}: \) 3323 (m, alkyn C-H), 2954 (w, C-H), 2113 (m, \(N_3 \)), 1736 (m, C=O), 1649 (s, C=O), 1517 (s, C=C). HPLC (5-100% ACN) \(R_t \) 10.39 mins. HRMS (ESI+) \(m/z \) found \([M+Na]^+\) 581.2448, \(C_{25}H_{36}N_{2}O_{6}Na^{+} \) required 581.2448 \(\Delta 0.0 \, ppm \). \([\alpha]_D^{25} = +21.2 \) (c 0.31, CHCl₃).

HPLC (5-100% ACN) \(R_t \) 11.70 mins. LCMS \([M+H]^+\) 648.26.
δW/ppm

(400 MHz, CDCl$_3$): 7.33-6.95 (7H, m, 5 × ArCH, C$_6$-NH, C$_6$-NH), 6.16-6.05 (1H, m, C$_6$-NH), 5.29 (1H, d, J=6.7 Hz, BocNH), 4.56-4.45 (1H, m, H$_4$), 4.12 (1H, dd, J=8.5, 4.4 Hz, H$_6$), 4.01-3.90 (1H, m, H$_7$), 3.76-3.47 (5H, m, OCH$_3$ and H$_8$), 3.29-3.12 (3H, m, H$_7$ and H$_9$), 2.89 (1H, dd, J=14.0 Hz and 8.5 Hz, H$_5$), 2.51-2.38 (2H, m, CH$_2$C=C), 2.36-2.22 (2H, m, CH$_2$C=O), 1.96 (1H, t, J=2.6 Hz, CH=CH), 1.83-1.68 (1H, m, H$_8$), 1.66-1.52 (1H, m, H$_9$), 1.52-1.41 (2H, m, H$_7$), 1.40-1.25 (11H, m, H$_4$ and C(CH$_3$)$_3$)$_3$. δc/ppm

(125 MHz, CDCl$_3$): 172.7 (C$_6$-C=O), 171.5 (C=OCH$_2$CH$_2$), 170.4 (COO), 170.2 (C$_7$-C=O), 155.9 (Boc C=O), 136.3 (ArC), 129.5 (ArCH), 128.7 (ArCH), 127.3 (ArCH), 83.1 (C=CH), 80.2 (C(CH$_3$)$_3$), 69.6 (C=CH), 65.3 (C$_6$), 54.6 (C$_6$), 53.0 (OCH$_3$), 52.8 (C$_6$), 40.7 (C$_6$), 38.8 (C$_6$ or C$_8$), 38.5 (C$_6$ or C$_8$), 35.5 (COCH$_2$CH$_2$), 31.6 (C$_8$), 29.0 (C$_6$), 28.3 (C(CH$_3$)$_3$), 22.4 (Cy), 15.0 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3312 (m, alkyn C-H), 2929 (w, C-H), 2112 (m, N$_3$), 1744 (m, C=O), 1649 (s, C=O), 1522 (s, C=C). HPLC (5-100% ACN) Rt 10.72 mins. HRMS (ESI+) m/z found [M+H]$^+$ 600.3133, C$_{29}$H$_{32}$N$_7$O$_7$ required 600.3146 (Δ -2.2 ppm). [α]$_D^{25}$ = +41.0 (c 0.22, CHCl$_3$).

δW/ppm

(400 MHz, CDCl$_3$): 7.16 (2H, d, J=8.4 Hz, 2 × ArCH), 6.96 (2H, d, J=8.4 Hz, 2 × ArCH), 6.91 (1H, d, J=8.0 Hz, C$_6$-NH), 5.89 (1H, app s, C$_6$-NH), 5.14 (1H, d, J=6.9 Hz, BocNH), 4.82-4.73 (1H, m, H$_4$), 4.36-4.22 (1H, m, H$_5$), 3.70 (3H, s, OCH$_3$), 3.65-3.51 (1H, m, H$_6$), 3.20-3.08 (2H, m, H$_7$ and H$_8$), 3.03 (1H, dd, J=13.9, 7.1 Hz, H$_5$), 2.51-2.45 (2H, m, COCH$_2$CH$_2$), 2.38 (2H, dd, J=10.8, 3.8 Hz, COCH$_2$CH$_2$), 2.01 (1H, t, J=2.6 Hz, CH=CH), 1.84-1.72 (1H, m, H$_B$), 1.68-1.48 (3H, m, H$_B$ and H$_C$) 1.44 (9H, s, C(CH$_3$)$_3$). δc/ppm

(125 MHz, d$_6$-DMSO): 172.3 (C$_6$-C=O), 172.0 (COO), 171.9 (C=OCH$_2$CH$_2$), 155.8 (Boc C=O), 139.0 (ArC), 132.9 (ArC), 130.8 (ArCH), 119.4 (ArCH), 83.2 (CyCH), 80.1 (C(CH$_3$)$_3$), 69.6 (C=CH), 53.5 (C$_6$), 52.9 (Cy), 52.5 (OCH$_3$), 38.3 (C$_6$), 37.4 (C$_6$), 35.5 (COCH$_2$CH$_2$), 30.5 (C$_6$), 28.5 (C(CH$_3$)$_3$), 25.9 (Cy), 15.0 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3284 (m, alkyn C-H), 2950 (w, C-H), 2111 (m, N$_3$), 1739 (m, C=O), 1663 (s, C=O), 1518 (s, C=C). HPLC (5-100% ACN) Rt 10.9 mins. HRMS (ESI+) m/z found [M+H]$^+$ 515.2637, C$_{26}$H$_{30}$N$_7$O$_6$ required 515.2618 (Δ 3.7 ppm). [α]$_D^{25}$ = +48.4 (c 0.93, CHCl$_3$).
C3

GP1

73%

85%

\[R_f = 0.47 \ (10\% \text{ MeOH/} 90\% \text{ CH}_2\text{Cl}_2) \]

\[\text{Mp} = 130-133 \text{ °C (CH}_2\text{Cl}_2) \]

\[\delta_{H/\text{ppm}} (500 \text{ MHz, CDCl}_3): \]

7.17 (2H, d, \(J=8.4 \text{ Hz,} 2 \times \text{ArCH})

7.02-6.93 (3H, m, \text{C}-\text{NH and} 2 \times \text{ArCH})

5.77 (1H, app s, \text{C}-\text{NH})

5.15 (1H, d, \(J=7.4 \text{ Hz, BocNH})

4.81-4.73 (1H, m, \text{H})

3.70 (3H, s, OCH_3)

3.62-3.52 (1H, m, \text{H})

3.18-3.05 (2H, m, \text{H}_2\text{ and} \text{H})

3.02 (1H, dd, \(J=13.9, 7.4 \text{ Hz,} \text{H})

2.32 (2H, t, \(J=7.4 \text{ Hz, COCH}_2\text{CH}_2\text{CH}_2\))

2.25 (2H, td, \(J=6.8, 2.6 \text{ Hz, COCH}_2\text{CH}_2\text{CH}_2\))

1.97 (1H, t, \(J=2.6 \text{ Hz,} \text{CH}=\text{C})

1.86-1.72 (3H, m, COCH_2\text{CH}_2\text{CH}_2\text{H and} \text{H})

1.61-1.46 (3H, m, \text{H}_2\text{ and} \text{H})

1.43 (9H, s, C(CH_3)_3).\n
\[\delta_{C/\text{ppm}} (125 \text{ MHz, CDCl}_3): \]

173.1 (C=OCH_2\text{CH}_2\text{CH}_2\))

172.3 and

172.0 (C_2\text{C}=O and COMe)

155.8 (Boc C-O)

139.0 (ArC)

132.9 (ArC)

130.8 (ArC)

119.4 (ArC)

83.7 (C=CH)

80.1 (C(CH_3)_3)

69.4 (C=CH)

53.6 (C_2)

52.9 (C_3)

52.5 (OCH_3)

38.2 (C_2)

37.4 (C_2)

35.2 (COCH_2\text{CH}_2\text{CH}_2\)

30.6 (C_2)

28.5 (C(CH_3)_3)

26.0 (C_2)

18.0 (COCH_2\text{CH}_2\text{H})

\[\nu_{\text{max}} /\text{cm}^{-1}: \]

3319 (m, alkene C-H)

2940 (w, C-H)

2112 (m, N_2)

1738 (m, C-O)

1664 (s, C-O)

1519 (s, C=C).

HPLC (5-100% ACN) \(R_t \) 11.17 mins. HRMS (ESI+) m/z found [M+H]^+ 529.2792, C_{26}H_{35}N\text{O}_4+ required 529.2775 (\Delta 0.9 ppm). \[\alpha_{D}^{25} = +39.1 \ (c 0.66, \text{ CHCl}_3). \]

C5

GP1

34%

89%

HPLC (5-100% ACN) \(R_t \) 10.60 mins. LCMS [M+H]^+ 516.24.

C7

GP1

74%

92%

\[R_f = 0.37 \ (10\% \text{ MeOH/} 90\% \text{ CH}_2\text{Cl}_2) \]

\[\text{Mp} = 94-96 \text{ °C (CH}_2\text{Cl}_2) \]

\[\delta_{H/\text{ppm}} (500 \text{ MHz, CDCl}_3): \]

7.96 (1H, d, \(J=7.4 \text{ Hz,} \text{C}-\text{NH})

7.21 (2H, d, \(J=8.4 \text{ Hz,} 2 \times \text{ArCH})

6.98-6.92 (2H, m, \text{C}=\text{OCH}_2\text{CH}_2\text{CH}_2\))

6.19 (1H, app s, \text{C}=\text{NH})

5.45 (1H, d, \(J=7.0 \text{ Hz, BocNH})

4.74 (1H, td, \(J=8.1, 5.4 \text{ Hz,} \text{H})

4.01 (1H, dd, \(J=14.2, 7.0 \text{ Hz,} \text{H})

3.94-3.82 (1H, m, \text{H})

3.72 (3H, s, OCH_3)

3.17 (1H, dd,

\(J=14.0, 5.4 \text{ Hz,} \text{H})

3.04 (1H, dd, \(J=14.0, 8.1 \text{ Hz,} \text{H})

3.01-2.95 (1H, m, \text{H})

2.37 (2H, t, \(J=7.4 \text{ Hz, COCH}_2\text{CH}_2\text{CH}_2\))

2.31-2.25 (2H, m, COCH_2\text{CH}_2\text{CH}_2\text{H})

1.99 (1H, t, \(J=2.6 \text{ Hz,} \text{CH}=\text{C})

1.92-1.85 (1H, m, COCH_2\text{CH}_2\text{CH}_2\text{H})

1.84-1.77 (2H, m, \text{H})

1.42 (9H, s, C(CH_3)_3).\n
\[\delta_{C/\text{ppm}} (125 \text{ MHz, CDCl}_3): \]

173.8 (C=OCH_2\text{CH}_2\text{CH}_2\))

172.0 (COOMe)

171.3 (C_2\text{C}=O)

155.5 (Boc C-O)

139.0 (ArC)

133.1 (ArC)

130.8 (ArC)

119.3 (ArC)

83.6 (C-CH)

80.1 (C(CH_3)_3)

69.5 (C=CH)

54.1 (C_3)

52.6 (OCH_3)

51.3 (C_4)

37.2 (C_5)

36.0 (C_6)

35.1 (COCH_2\text{CH}_2\text{CH}_2\text{H})

28.5 (C(CH_3)_3)

24.2 (COCH_2\text{CH}_2\text{CH}_2\text{H})

18.0 (COCH_2\text{CH}_2\text{CH}_2\text{H}).\n
\[\nu_{\text{max}} /\text{cm}^{-1}: \]

3283 (m, alkene C-H)

2942 (w, C-H)

2113 (m, N_2)

1741 (m, C-O)

1662 (s, C-O)

1523 (s, C=C).

HPLC (5-100% ACN) \(R_t \) 11.12 mins. HRMS (ESI+) m/z found [M+H]^+ 537.2443, C_{26}H_{34}N\text{O}_4\text{Na}^+ required 537.2438 (\Delta 0.9 ppm). \[\alpha_{D}^{25} = -5.7 \ (c 0.74, \text{ CHCl}_3). \]
C8	GP1	64%	94%
C10	GP1	80%	89%
C11	GP1	82%	85%

C8

\[R_t = 0.45 \ (10\% \text{MeOH/} \ 90\% \text{CH}_2\text{Cl}_2), \ \delta / ppm \] (500 MHz, CDCl3): 7.73 (1H, d, J=6.9 Hz, Cα-NH), 7.19 (2H, d, J=8.3 Hz, 2 × ArCH), 7.00-6.92 (2H, m, 2 × ArCH), 6.31 (1H, app s, Cγ-NH), 5.41 (1H, d, J=7.1 Hz, BocNH), 4.78-4.72 (1H, m, Hδ), 4.06 (1H, dd, J=14.0, 7.1 Hz, Hγ), 3.95-3.82 (1H, m, Hα), 3.72 (3H, s, OCH3), 3.17 (1H, dd, J=14.0, 5.4 Hz, Hβ), 3.09-2.96 (2H, m, Hα and Hγ), 2.63-2.48 (2H, m, COCH2CH2), 2.44 (2H, dd, J=10.5, 4.4 Hz, COCH2CH2), 2.00 (1H, t, J=2.6 Hz, CH=CH), 1.87-1.78 (2H, m, Hα), 1.42 (9H, s, C(CH3)3). δC / ppm (125 MHz, CDCl3): 172.6 (C=OCH2CH2), 172.3 (COOme), 171.6 (Cα=O), 155.8 (Boc C=O), 139.3 (ArC), 133.3 (ArC), 131.1 (ArCH), 119.6 (ArCH), 83.3 (C=CH), 80.4 (C(CH3)3), 70.0 (C=CH), 54.3 (Cα), 52.9 (OCH3), 51.6 (Cβ), 37.4 (Cγ), 36.3 (Cδ), 35.8 (COCH2CH2), 34.5 (Cβ), 28.7 (C(CH3)3), 15.4 (COCH2CH2).

C10

\[R_t = 0.44 \ (10\% \text{MeOH/} \ 90\% \text{CH}_2\text{Cl}_2), \ \delta / ppm \] (500 MHz, CDCl3): 7.24 (1H, br s, Cα-NH), 7.12 (2H, d, J=8.4 Hz, 2 × ArCH), 6.95 (2H, d, J=8.4 Hz, 2 × ArCH), 6.38 (1H, app s, Cγ-NH), 5.73 (1H, app s, BocNH), 4.81-4.69 (1H, m, Hδ), 4.21-4.12 (1H, m, Hα), 3.75-3.68 (4H, m, OCH3 and Hα), 3.55-3.44 (1H, m, Hγ), 3.15 (1H, dd, J=14.1, 5.5 Hz, Hβ), 3.03 (1H, dd, J=14.1, 7.3 Hz, Hα), 2.51 (2H, ddd, J=13.6, 6.9, 2.6 Hz, COCH2CH2), 2.40-2.33 (2H, m, COCH2CH2), 2.00 (1H, t, J=2.6 Hz, CH=CH), 1.43 (9H, s, C(CH3)3). δC / ppm (125 MHz, CDCl3): 172.7 (C=OCH2CH2), 171.6 (COOme), 170.7 (Cα=O), 156.3 (Boc C=O), 139.1 (ArC), 132.7 (ArC), 130.7 (ArCH), 119.4 (ArCH), 82.9 (C=CH), 80.7 (C(CH3)3), 69.7 (C=CH), 55.4 (Cα), 53.7 (Cγ), 52.7 (OCH3), 41.7 (Cβ), 37.3 (Cδ), 35.3 (COCH2CH2), 28.4 (C(CH3)3), 15.0 (COCH2CH2). νmax / cm⁻¹: 3301 (m, alkene C-H), 2935 (w, C-H), 2110 (m, N3), 1737 (m, C=O), 1663 (s, C=O), 1526 (s, C=C). **HPLC** (5-100% ACN) Rt 11.06 mins. **HRMS** (ESI+) m/z found [M+H]+ 501.2473, C24H35N3O6 required 501.2462 (Δ 2.2 ppm). [α]D²⁵ = +1.0 (c 0.28, CHCl3).

C11

\[R_t = 0.44 \ (10\% \text{MeOH/} \ 90\% \text{CH}_2\text{Cl}_2), \ \delta / ppm \] (500 MHz, CDCl3): 7.24 (1H, br s, Cα-NH), 7.12 (2H, d, J=8.4 Hz, 2 × ArCH), 6.95 (2H, d, J=8.4 Hz, 2 × ArCH), 6.38 (1H, app s, Cγ-NH), 5.73 (1H, app s, BocNH), 4.81-4.69 (1H, m, Hδ), 4.21-4.12 (1H, m, Hα), 3.75-3.68 (4H, m, OCH3 and Hα), 3.55-3.44 (1H, m, Hγ), 3.15 (1H, dd, J=14.1, 5.5 Hz, Hβ), 3.03 (1H, dd, J=14.1, 7.3 Hz, Hα), 2.51 (2H, ddd, J=13.6, 6.9, 2.6 Hz, COCH2CH2), 2.40-2.33 (2H, m, COCH2CH2), 2.00 (1H, t, J=2.6 Hz, CH=CH), 1.43 (9H, s, C(CH3)3). δC / ppm (125 MHz, CDCl3): 172.7 (C=OCH2CH2), 171.6 (COOme), 170.7 (Cα=O), 156.3 (Boc C=O), 139.1 (ArC), 132.7 (ArC), 130.7 (ArCH), 119.4 (ArCH), 82.9 (C=CH), 80.7 (C(CH3)3), 69.7 (C=CH), 55.4 (Cα), 53.7 (Cγ), 52.7 (OCH3), 41.7 (Cβ), 37.3 (Cδ), 35.3 (COCH2CH2), 28.4 (C(CH3)3), 15.0 (COCH2CH2). νmax / cm⁻¹: 3301 (m, alkene C-H), 2935 (w, C-H), 2110 (m, N3), 1737 (m, C=O), 1663 (s, C=O), 1526 (s, C=C). **HPLC** (5-100% ACN) Rt 10.61 mins. **LCMS** [M+H]+ 502.31.
C12

- **Rf** = 0.47 (10% MeOH/90% CH₂Cl₂).
- **Mp** = 148-151 °C (CH₂Cl₂).
- **δH/ppm** (500 MHz, CDCl₃): 7.39 (1H, d, J=4.8 Hz, Cα-NH), 7.10 (2H, d, J=8.4 Hz, 2 × ArCH), 6.94 (2H, d, J=8.4 Hz, 2 × ArCH), 6.21 (1H, app s, BocNH), 5.56 (1H, s, app Cβ-NH), 5.19 (1H, app s, NHCH₂C≡CH), 4.78-4.66 (1H, m, Hβ), 4.14 (1H, J=4.7 Hz, Hα), 3.98 (2H, app s, NHCH₂C≡CH), 3.71 (3H, s, OCH₃), 3.62-3.42 (2H, m, Hβ), 3.10 (1H, dd, J=14.0, 5.6 Hz, Hδ), 3.01 (1H, dd, J=14.0, 7.0 Hz, Hγ), 2.22 (1H, t, J=2.5 Hz, CH)=C), 1.42 (9H, s, C(CH₃)₃).
- **δC/ppm** (125 MHz, CDCl₃): 171.7 (COOMe), 171.3 (Cα=C=O), 158.7 (NHC=ONH), 156.5 (Boc C=O), 139.1 (ArC), 132.7 (ArC), 130.7 (ArCH), 119.4 (ArCH), 80.6 (C≡CH), 80.6 (C(CH₃)₃), 71.5 (C=CH), 56.2 (Cα), 53.8 (Cα), 52.7 (OCH₃), 42.8 (Cβ), 37.3 (Cβ), 30.3 (CH₂C≡CH), 28.4 (C(CH₃)₃).
- **νmax/cm⁻¹**: 3319 (m, alkyne C-H), 2981 (w, C-H), 2109 (m, Nβ), 1731 (m, C=O), 1648 (s, C=O), 1527 (s, C=C). **HPLC** (5-100% ACN) Rf 10.66 mins. **HRMS (ESI+) m/z** found [M+H]⁺ 488.2257, C₂₂H₂₃N₃O₆⁺ required 488.2258 (Δ -0.2 ppm). [α]D²⁸ = -3.1 (c 0.76, CHCl₃).

C14

- **Rf** = 0.31 (10% MeOH/90% CH₂Cl₂).
- **Mp** = 100-103 °C (CH₂Cl₂).
- **δH/ppm** (500 MHz, CDCl₃): 7.11 (2H, d, J=8.5 Hz, 2 × ArCH), 6.95 (2H, d, J=8.5 Hz, 2 × ArCH), 6.56 (1H, d, J=7.8 Hz, Cα-NH), 5.83 (1H, app s, Cα-NH), 5.11 (1H, d, J=6.8 Hz, BocNH), 4.87-4.76 (1H, m, Hδ), 4.06-3.95 (1H, m, Hβ), 3.73 (3H, s, OCH₃), 3.34-3.19 (2H, m, Hδ), 3.14 (1H, dd, J=14.0, 5.7 Hz, Hγ), 3.04 (1H, dd, J=14.0, 6.4 Hz, Hδ), 2.53 (2H, td, J=7.1, 2.6 Hz, COCH₂CH₂), 2.43-2.35 (2H, m, COCH₂CH₂), 2.02 (1H, t, J=2.6 Hz, CH₂=C), 1.85-1.72 (1H, m, Hδ), 1.63-1.47 (3H, m, Hγ and Hβ), 1.44 (9H, s, C(CH₃)₃), 1.39-1.32 (2H, m, Hα). **δC/ppm** (125 MHz, CDCl₃): 171.9 and 171.8 (COOMe and Cα=C=O), 171.3 (C=OCH₂CH₂), 155.8 (Boc C=O), 139.1 (ArC), 132.6 (ArC), 130.8 (ArCH), 119.4 (ArCH), 83.2 (C≡CH), 80.3 (C(CH₃)₃), 69.6 (C≡CH), 54.5 (Cβ), 53.3 (Cα), 52.6 (OCH₃), 38.8 (Cβ), 37.4 (Cα), 35.6 (COCH₂CH₂), 31.7 (Cβ), 29.1 (Cβ), 28.5 (C(CH₃)₃), 22.5 (Cγ), 15.1 (COCH₂CH₂). **νmax/cm⁻¹**: 3312 (m, alkyne C-H), 2936 (w, C-H), 2115 (m, Nα), 1739 (m, C=O), 1644 (s, C=O), 1523 (s, C=C). **HPLC** (5-100% ACN) Rf 11.08 mins. **HRMS (ESI+) m/z** found [M+H]⁺ 529.2783, C₂₈H₃₈N₂O₆⁺ required 529.2775 (Δ 1.5 ppm). [α]D²⁸ = +25.1 (c 1.08, CHCl₃).

D1

- **HPLC** (30-100% ACN) Rf 7.49 mins.

D2

- **HPLC** (30-100% ACN) Rf 6.81 mins. **LCMS [M+H]⁺** 481.70.

48
D3	![Chemical Structure](image)	GP1	77%	92%	δ_H/ppm (400 MHz, CDCl₃): 7.08 (1H, d, J=8.1 Hz), 5.85 (1H, t), 5.22 (1H, d, J=8.2 Hz), 4.52 (1H, td, J=8.2, 5.0 Hz), 4.39-4.32 (1H, m), 3.71 (3H, s), 3.66-3.58 (1H, m), 3.27 (2H, t, J=6.8 Hz), 3.16-3.07 (1H, m), 2.32 (2H, t, J=7.4 Hz), 2.24 (2H, td, J=6.9, 2.7 Hz), 1.96 (1H, t, J=2.6 Hz), 1.92-1.35 (12H, m), 1.43 (9H, s). δ_C/ppm (101 MHz, CDCl₃): 173.3, 172.8, 172.5, 156.0, 83.7, 80.0, 69.3, 52.7, 52.5, 52.7, 51.2, 38.1, 35.2, 31.7, 30.6, 28.5, 28.5, 26.0, 24.3, 22.8, 18.0. v_max/cm⁻¹: 3316, 2946, 2083, 1737, 1682, 1654, 1642, 1535, 1516, 1245, 1165. HPLC (30-100% ACN) Rt 7.23 mins. HRMS (ESI+) m/z found [M+Na]+ 517.2742, C₂₃H₂₈N₄O₇Na⁺ required 517.2751.
D4	![Chemical Structure](image)	GP1	68%	89%	HPLC (5-100% ACN) Rt 10.04 mins. LCMS [M+H]+ 496.31.
D5	![Chemical Structure](image)	GP1	63%	83%	HPLC (5-100% ACN) Rt 10.10 mins. LCMS [M+H]+ 482.29.
D6	![Chemical Structure](image)	GP1	65%	79%	HPLC (5-100% ACN) Rt 11.25 mins. LCMS [M-BOC+H]+ 429.28.
D7	![Chemical Structure](image)	GP1	76%	91%	HPLC (30-100% ACN) Rt 7.23 mins. LCMS [M+H]+ 481.48.
D8	![Chemical Structure](image)	GP1	46%	97%	δ_H/ppm (400 MHz, CDCl₃): 7.87 (1H, d, J=7.7 Hz), 6.35 (1H, bp), 5.49 (1H, d, J=7.6 Hz), 4.54 (1H, td, J=8.0, 5.0 Hz), 4.17-4.06 (1H, m), 3.99-3.88 (1H, m), 3.74 (3H, s), 3.32 (2H, t, J=6.8 Hz), 3.10-2.98 (1H, m), 2.61-2.48 (2H, m), 2.52-2.39 (2H, m), 2.06 (1H, t, J=2.5 Hz), 1.98-1.43 (8H, m), 1.88-1.48 (8H, m), 1.43 (9H, s). δ_C/ppm (101 MHz, CDCl₃): 172.8, 172.5, 171.4, 155.5, 83.0, 80.1, 69.8, 52.5, 52.5, 51.2, 51.2, 36.2, 35.5, 34.5, 31.5, 28.5, 28.5, 22.9, 15.2. v_max/cm⁻¹: 3663, 3296, 2095, 1741, 1652, 1521, 1366, 1250, 1165, 1052. HPLC (30-100% ACN) Rt 6.78 mins. HRMS (ESI+) m/z found [M+Na]+ 489.2446, C₂₁H₃₀N₆O₇Na⁺ required 489.2438.
	Structure	Product	Yield	Purification	MS Data	Comments
D9	![Structure](image)	GP1	68%	HPLC (5-100% ACN) Rt 10.91 mins.	LCMS [M+H]^+ 467.21	
			96%			
D10	![Structure](image)	GP1	63%	HPLC (5-100% ACN) Rt 10.26 mins.	LCMS [M+H]^+ 453.19	
			99%			
D11	![Structure](image)	GP1	49%	δH/ppm (500 MHz, CDCl3): 8.44 (1H, d, J=7.0 Hz), 5.66 (1H, d, J=7.5 Hz), 5.42 (1H, dd, J=7.5, 5.0 Hz), 5.14 (1H, t, J=5.0 Hz), 4.51 (1H, dt, J=8.0, 5.0 Hz), 4.21-4.14 (1H, m), 4.03 (1H, ddd, J=17.5, 5.5, 2.5 Hz), 3.94 (1H, ddd, J=17.5, 5.5, 2.5 Hz), 3.89-3.80 (1H, m), 3.74 (3H, s), 3.29 (2H, t, J=7.0 Hz), 3.08-2.99 (1H, m), 2.22 (1H, d, J=2.5, 2.5 Hz), 1.95-1.77 (4H, m), 1.69-1.44 (4H, m), 1.42 (9H, s). δC/ppm (125 MHz, CDCl3): 172.8, 171.5, 158.6, 155.5, 80.7, 80.0, 71.2, 52.4, 52.4, 51.1, 51.0, 36.4, 35.5, 31.1, 30.1, 28.3, 22.8. HPLC (5-100% ACN) Rt 9.61 mins. HRMS (ESI+) m/z found [M+H]^+ 468.2563, C_{20}H_{34}N_{7}O_{6}^+ required 468.2571.	[α]_D^{25} = -8.0 (c 0.52, CHCl3)	
			99%			
D12	![Structure](image)	GP1	73%	HPLC (5-100% ACN) Rt 10.05 mins.	LCMS [M+H]^+ 454.24	
			83%			
D13	![Structure](image)	GP1	88%	HPLC (5-100% ACN) Rt 11.60 mins.	LCMS [M+H]^+ 543	
			97%			
D14	![Structure](image)	GP1	78%	HPLC (30-100% ACN) Rt 7.06 mins.	LCMS [M+H]^+ 495.21	
E1	![Chemical Structure](image1)	GP1	55%	88%	HPLC (5-100% ACN) *Rt* 10.16 mins. **LCMS [M+H]^+** 495.41.	
---	---	---	---	---	---	
E2	![Chemical Structure](image2)	GP1	70%	88%	HPLC (5-100% ACN) *Rt* 9.62 mins. **LCMS [M+H]^+** 467.33.	
E3	![Chemical Structure](image3)	GP1	61%	91%	δ\(_H\)/ppm (400 MHz, CDCl\(_3\)): 7.15 (1H, d, J=8.2 Hz), 5.82 (1H, t, J=6.4 Hz), 5.22 (1H, d, J=8.2 Hz), 4.60-4.46 (1H, m), 4.41-4.29 (1H, m), 3.72 (3H, s), 3.69-3.55 (1H, m), 3.32 (2H, t, J=6.5 Hz), 3.15-3.06 (1H, m), 2.33 (2H, t, J=7.4 Hz), 2.24 (2H, td, J=6.9, 2.6 Hz), 1.96 (1H, t, J=2.6 Hz), 2.02-1.89 (1H, m), 1.88-1.48 (9H, m), 1.43 (9H, s). δ\(_C\)/ppm (100 MHz, CDCl\(_3\)): 173.3, 172.6, 172.5, 155.9, 83.6, 80.0, 69.3, 52.7, 52.5, 51.7, 50.9, 38.1, 35.2, 30.6, 29.3, 28.4, 26.0, 25.1, 24.2, 18.0. \(\nu_{\text{max}}/\text{cm}^{-1}\): 3670, 3326, 3257, 2972, 2902, 2088, 1736, 1683, 1655, 1634, 1519, 1249, 1169, 1055. **HPLC** (5-100% ACN) *Rt* 9.36 mins. **HRMS (ESI+)** m/z found [M+H]^+ 468.2587, \(\text{C}_{20}\text{H}_{34}\text{N}_{7}\text{O}_{6}\) required 468.2571. \(\alpha\)\(_D\)\(_{25}\) = +10.9 (c 0.49, CHCl\(_3\)).	
E4	![Chemical Structure](image4)	GP1	69%	89%	HPLC (5-100% ACN) *Rt* 9.60 mins. **LCMS [M+H]^+** 482.29.	
E5	![Chemical Structure](image5)	GP1	69%	92%	δ\(_H\)/ppm (400 MHz, CDCl\(_3\)): 7.42 (1H, d, J=8.0 Hz), 5.35 (1H, d, J=8.0 Hz), 5.13 (2H, m), 4.54 (1H, dt, J=6.0, 5.0 Hz), 4.44-4.23 (1H, m), 3.96 (2H, td, J=5.5, 2.5 Hz), 3.74 (3H, s), 3.53-3.39 (1H, m), 3.33 (2H, t, J=6.5 Hz), 3.13 (1H, dd, J=13.5, 5.0 Hz), 2.23 (1H, t, J=2.5 Hz), 2.02-1.90 (1H, m), 1.84-1.48 (7H, m), 1.43 (9H, s). δ\(_C\)/ppm (100 MHz, CDCl\(_3\)): 172.6, 158.3, 155.9, 80.8, 79.9, 71.1, 52.8, 52.5, 51.7, 50.8, 38.9, 30.3, 30.0, 29.2, 28.3, 26.2, 25.0. **HPLC** (5-100% ACN) *Rt* 9.36 mins. **HRMS (ESI+)** m/z found [M+H]^+ 468.2587, \(\text{C}_{20}\text{H}_{34}\text{N}_{7}\text{O}_{6}\) required 468.2571. \(\alpha\)\(_D\)\(_{25}\) = +10.9 (c 0.49, CHCl\(_3\)).	
E6	![Chemical Structure](image6)	GP1	62%	82%	HPLC (5-100% ACN) *Rt* 10.92 mins. **LCMS [M+H]^+** 515.33.	
	Structure	δ_\text{H} /ppm (400 MHz, CDCl₃): 8.17 (1H, d, J=7.9 Hz), 6.21 (1H, t, J=6.3 Hz), 5.51 (1H, d, J=7.5 Hz), 4.61-4.51 (1H, m), 4.11-4.02 (1H, m), 3.99-3.88 (1H, m), 3.73 (3H, s), 3.32 (2H, t, J=6.6 Hz), 3.05-2.95 (1H, m), 2.37 (2H, t, J=7.4 Hz), 2.32-2.23 (2H, m), 1.99 (1H, t, J=2.7 Hz), 2.02-1.61 (8H, m), 1.42 (9H, s). δ_\text{C} /ppm (100 MHz, CDCl₃): 174.0, 172.5, 171.5, 155.5, 83.6, 80.0, 69.5, 52.6, 52.1, 51.3, 50.9, 36.1, 35.2, 34.8, 29.1, 28.5, 25.2, 24.3, 18.0. ν_{\text{max}} /cm⁻¹: 3670, 3312, 2972, 2902, 2097, 1745, 1687, 1649, 1524, 1394, 1249, 1164, 1052. HPLC (5-100% ACN) Rt 10.00 mins. HRMS (ESI+) m/z found [M+Na]^+ 489.2437, C_{21}H_{34}N_{6}O_{6}Na^+ required 489.2438.	E7			
---	---	---				
	Structure	GP1 68% 92%	E8			
	Structure	GP1 75% 77%	HPLC (5-100% ACN) Rt 9.79 mins. LCMS [M+H]^+ 453.31.			
	Structure	GP1 69% 93%	HPLC (5-100% ACN) Rt 10.17 mins. LCMS [M+H]^+ 453.26.			
	Structure	GP1 66% 94%	HPLC (5-100% ACN) Rt 9.82 mins. LCMS [M+H]^+ 439.22.			
	Structure	GP1 35% 87%	HPLC (5-100% ACN) Rt 9.33 mins. LCMS [M+H]^+ 454.23.			
	Structure	GP1 55% 96%	HPLC (5-100% ACN) Rt 9.41 mins. LCMS [M+H]^+ 440.22.			
Compound	Yield	Column	Retention Time	LCMS Mass Spectrum		
----------	-------	--------	----------------	-------------------		
E13	84%	HPLC	11.30 mins.	[M-H]^+ 527.		
	90%	(5-100% ACN)				
E14	73%	HPLC	10.05 mins.	[M+H]^+ 481.35.		
	84%	(5-100% ACN)				
F2	84%	HPLC	10.92 mins.	[M+H]^+ 515.21.		
	83%	(5-100% ACN)				
F3	77%	HPLC	11.08 mins.	[M+H]^+ 529.29.		
	77%	(5-100% ACN)				
F14	77%	HPLC	11.08 mins.	[M+H]^+ 529.29.		
	77%	(5-100% ACN)				
10. Preparation of B/C/C/P and B/C/C/C/P Linear Amides

Compound	Method, Yield (%), Purity (%)	Analysis
G1	GP1 48% 97%	HPLC (5-100% ACN) Rt 10.36 mins. LCMS [M+H]^+ 652.49.
G2	GP1 56% 86%	HPLC (5-100% ACN) Rt 9.88 mins. LCMS [M+H]^+ 624.42.
G3	GP1 82% 81%	HPLC (5-100% ACN) Rt 10.20 mins. LCMS [M+H]^+ 638.43.
G4	GP1 74% 75%	δH/ppm (400 MHz, CDCl3): 7.50 (1H, d, J=7.0 Hz), 7.29 (1H, d, J=7.5 Hz), 5.38 (1H, d, J=7.5 Hz), 5.25 (1H, t, J=5.5 Hz), 5.20 (1H, t, J=5.5 Hz), 4.64-4.55 (1H, m), 4.52 (1H, td, J=8.0, 5.0 Hz), 4.21-4.10 (1H, m), 3.97 (2H, dd, J=5.5, 2.5 Hz), 3.76 (3H, s), 3.75 (3H, s), 3.27 (2H, t, J=6.74, 6.74 Hz), 3.26-3.17 (2H, m), 2.37-2.18 (3H, m), 2.21 (1H, t, J=2.5 Hz), 2.17-2.02 (1H, m), 1.88-1.43 (12H, m), 1.43 (9H, s). δc/ppm (100 MHz, CDCl3): 173.7, 172.8, 172.7, 158.1, 156.0, 81.1, 80.2, 70.9, 54.1, 52.7, 52.6, 52.2, 51.5, 51.1, 39.5, 31.8, 31.5, 31.1, 29.9, 28.8, 28.3, 28.3, 26.7, 22.9, 22.1. νmax/cm⁻¹: 3294, 2951, 2097, 1759, 1651, 1537, 1426, 1206, 1165. HPLC (5-100% ACN) Rt 9.86 mins. HRMS (ESI+) m/z found [M+Na]^+ 661.3279, C14H23N3O5Na^+ required 661.3285. [α]D = +6.7 (c 0.52, CHCl3).
\(\delta_H / \text{ppm} \) (400 MHz, CDCl\(_3\)): 7.61 (1H, s), 7.42 (1H, d, J=8.4Hz), 7.42 (1H, d, J=8.4Hz), 5.43-5.16 (2H, m), 4.66-4.48 (1H, m), 4.51-4.38 (1H, m), 4.27-4.17 (1H, m), 4.16-4.06 (1H, m), 4.00-3.86 (1H, m), 3.76 (3H, s), 3.72 (3H, s), 3.34-3.21 (4H, m), 2.35-2.03 (5H, m), 1.99-1.52 (10H, m), 1.46 (9H, s).

\(\delta_C / \text{ppm} \) (100 MHz, CDCl\(_3\)): 174.1, 173.6, 172.9, 172.4, 158.7, 156.2, 81.5, 80.2, 71.7, 54.2, 52.8, 52.7, 52.6, 51.6, 51.2, 39.4, 32.0, 31.3, 30.2, 28.5, 27.5, 26.2, 23.1. \(\nu_{\text{max}} / \text{cm}^{-1} \): 3676, 3297, 2988, 2902, 2094, 1735, 1662, 1646, 1541, 1519, 1394, 1250, 1167, 1056. HPLC (5-100% ACN) Rt 9.67 mins. HRMS (ESI+) m/z found [M+H]\(^+\) 625.3296, C\(_{27}\)H\(_{45}\)N\(_8\)O\(_9\) required 625.3310.

HPLC (5-100% ACN) Rt 10.86 mins. LCMS [M+H]\(^+\) 672.41.

HPLC (5-100% ACN) Rt 10.18 mins. LCMS [M+H]\(^+\) 624.41.

HPLC (5-100% ACN) Rt 9.87 mins. LCMS [M+H]\(^+\) 610.39.

HPLC (5-100% ACN) Rt 10.27 mins. LCMS [M+H]\(^+\) 610.38.
G10	GP1	42%	HPLC (5-100% ACN) Rt 9.98 mins. LCMS [M+H]^+ 596.37.
G11	GP1	27%	HPLC (5-100% ACN) Rt 9.54 mins. LCMS [M+H]^+ 611.36.
G12	GP1	66%	HPLC (5-100% ACN) Rt 9.86 mins. LCMS [M+H]^+ 597.41.
G13	GP1	77%	HPLC (5-100% ACN) Rt 11.20 mins. LCMS [M+H]^+ 686.29.
G14	GP1	88%	HPLC (5-100% ACN) Rt 10.18 mins. LCMS [M+H]^+ 638.43.
---	---	---	
H1	GP1	74%	
92%	HPLC (5-100% ACN) Rt 9.93 mins. LCMS [M+H]^+ 638.55.		
H2	GP1	74%	
90%	HPLC (5-100% ACN) Rt 9.45 mins. LCMS [M+H]^+ 610.39.		
H3	GP1	99%	
82%	HPLC (5-100% ACN) Rt 9.74 mins. LCMS [M+H]^+ 624.44.		
H4	GP1	88%	
84%	HPLC (5-100% ACN) Rt 9.40 mins. LCMS [M+H]^+ 625.45.		
H5	GP1	57%	
87%	HPLC (5-100% ACN) Rt 9.18 mins. LCMS [M+H]^+ 611.36.		
H6	GP1	55%	
77%	HPLC (5-100% ACN) Rt 10.55 mins. LCMS [M+H]^+ 658.46.		
	Structure	GP	Yield
---	-----------	----	-------
H7	![H7 structure](image)	GP1	69%
H8	![H8 structure](image)	GP1	82%
H9	![H9 structure](image)	GP1	83%
H10	![H10 structure](image)	GP1	53%
H11	![H11 structure](image)	GP1	41%
Chemical Structure	GP1	Yield	HPLC Conditions
--------------------	-----	-------	-----------------
H12	66%	76%	HPLC (5-100% ACN) Rt 9.24 mins.
H14	67%	91%	HPLC (5-100% ACN) Rt 9.65 mins.
J13	73%	88%	HPLC (5-100% ACN) Rt 10.71 mins.
K3	62%	80%	HPLC (5-100% ACN) Rt 10.35 mins.
K8	67%	82%	HPLC (5-100% ACN) Rt 10.09 mins.
L7	79%	78%	HPLC (5-100% ACN) Rt 11.60 mins.
	Compound	Purity	5-100% ACN HPLC Rt
---	----------	--------	---------------------
L9	GP1	62%	832.57 mins.
M13	GP1	61%	11.67 mins.
N8	GP1	72%	11.05 mins.
11. Preparation of B/C/P CuAAC Macrocycles

Compound	Method, Yield (%), Purity (%)	Analysis				
A1 w	GP2 & GP4 54% 97%	δ_W/ppm (500 MHz; d₆-DMSO): 8.75 (1H, d, J=6.6 Hz), 8.43 (1H, t, J=5.6 Hz), 8.17 (3H, d, J=5.4 Hz), 7.98 (1H, s), 7.67 (1H, t, J=5.9 Hz), 7.26-7.11 (5H, m), 5.45 (1H, dd, J=8.6, 7.0 Hz), 4.17-4.06 (1H, m), 3.87-3.79 (1H, m), 3.58 (3H, s), 3.42-3.33 (2H, m), 3.29-3.19 (1H, m), 3.17-3.06 (1H, m), 3.06 -2.97 (1H, m), 2.90- 2.80 (1H, m), 2.56 (2H, td, J=7.3, 2.8 Hz), 2.07 (2H, td, J=7.4, 2.4 Hz), 1.87-1.74 (1H, m), 1.74 -1.47 (4H, m), 1.47-1.02 (8H, m). δ_C/ppm (125 MHz, d₆-DMSO): 171.9, 171.8, 168.9, 167.2, 146.1, 136.7, 129.0, 128.4, 126.7, 121.7, 64.0, 52.5, 52.0, 38.2, 37.4, 36.8, 35.0, 30.8, 29.7, 28.5, 25.3, 24.5, 23.3, 22.5, 21.7, 21.1. ν_{max}/cm⁻¹: 3228, 3060, 2929, 1736, 1551, 1440, 1212, 742. HPLC (5-80% ACN) Rt 8.02 mins. HRMS (ESI+) m/z found [M+H]⁺ 556.3237, C₂₈H₄₂N₇O₅⁺ required 556.3242.				
A2 w	GP2 & GP4 88% 78%	HPLC (0-60% ACN) Rt 9.21 mins. LCMS [M+H]⁺ 528.26.				
A3 w	GP2 & GP4 99% 81%	HPLC (5-100% ACN) Rt 7.13 mins. LCMS [M+H]⁺ 542.28.				
A4 w	GP2 & GP4 99% 71%	HPLC (5-100% ACN) Rt 7.08 mins. LCMS [M+H]⁺ 543.25.				
A5	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 6.91 mins. **LCMS** [M+H]^+ 529.23.			
-----	-----------------------------	-----------	---			
A7	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 7.38 mins. **LCMS** [M+H]^+ 528.18.			
A8	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 7.26 mins. **LCMS** [M+H]^+ 514.23.			
A9	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 7.26 mins. **LCMS** [M+H]^+ 514.16.			
A10	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 7.18 mins. **LCMS** [M+H]^+ 500.13.			
A11	![Chemical Structure](image)	GP2 & GP4	HPLC (5-100% ACN) Rt 7.19 mins. **LCMS** [M+H]^+ 515.21.			
Compound	Formula	Conditions	Yield	[M+H]^+	\[^{[\alpha]}_D\]	References
----------	---------	------------	-------	---------	---------	------------
A12 w	![Structure](image1.png)	GP2 & GP4	99%	501.11	-2.5	HPLC (5-100% ACN) Rt 6.88 mins. LCMS [M+H]^+ 501.11.
A13 w	![Structure](image2.png)	GP2 & GP5	11%	590.21		HPLC (5-100% ACN) Rt 7.59 mins. LCMS [M+H]^+ 590.21.
B1 w	![Structure](image3.png)	GP2 & GP4	61%	514.31		HPLC (5-100% ACN) Rt 6.77 mins. LCMS [M+H]^+ 514.31.
B2 w	![Structure](image4.png)	GP2 & GP4	45%			Mp = 215-217 °C (CH₂Cl₂). δH /ppm (500 MHz, d₆-DMSO): 9.10 (1H, d, J=6.5 Hz, C=N-H), 8.94 (1H, dd, J=8.5, 3.9 Hz, C=N-H), 8.16 (3H, d, J=5.5 Hz, NH₂). 8.06 (1H, t, J=6.0 Hz, C=N-H), 7.69 (1H, s, triazole CH), 7.27-7.09 (5H, m, 5 × ArCH), 5.45 (1H, dd, J=8.4, 7.1 Hz, H₂), 4.08 (1H, dt, J=6.5, 4.5 Hz, H₂), 3.95 (1H, ddd, J=13.7, 8.5, 4.5 Hz, H₂), 3.89-3.80 (1H, m, H₂), 3.43-3.36 (2H, m, H₂), 3.33 (3H, s, OCH₃), 2.97-2.75 (3H, m, H₃ and CH₂(CH₂)₂), 1.67-1.39 (4H, m, H₃ and H₄). δC /ppm (125 MHz, d₆-DMSO): 171.0 (C=OCH₂CH₂), 169.7 (C=O), 168.7 (C=O), 145.8 (triazole C), 136.4 (ArC), 128.9 (ArCH), 128.3 (ArCH), 126.7 (ArCH), 121.4 (triazole CH), 64.0 (C₆), 53.2 (C₆), 51.8 (OCH₃), 51.6 (C₆), 38.8 (C₆), 38.3 (C₆), 37.0 (C₆), 33.9 (OCH₂CH₂), 28.7 (C₆), 24.3 (C₆), 21.1 (CO₂CH₂). \[^{[\nu]}_{\text{max}}\] /cm⁻¹: 3224 (NH str), 2924 (CH str), 1737 (C=O str), 1683 (C=O str), 1543, 1437, 1212, 1148. HPLC (5-100% ACN) Rt 8.41 mins. HRMS (ESI+) m/z found [M+H]^+ 486.2458, C₁₃H₁₉N₄O₇ required 486.2459. [\[^{[\alpha]}_D\]_D^{25}\] = -2.5 (c 0.58, MeOH).
\[\delta_H / ppm \] (500 MHz, \(d_6 \)-DMSO): 9.42 (1H, d, \(J=7.5 \) Hz, C\(_{\alpha NT}\)-NH), 8.80 (1H, dd, \(J=9.4 \) Hz and 3.0 Hz, C\(_{\beta NT}\)-NH), 8.22 (3H, d, \(J=4.5 \) Hz, NH\(_3^+\)), 8.17 (1H, s, triazole CH), 7.89 (1H, t, \(J=5.9 \) Hz, C\(_{\delta NT}\)-NH), 7.28-7.09 (5H, m, 5 × ArCH), 5.34-5.28 (1H, m, H\(_2\)), 4.34 (1H, dt, \(J=7.5 \), 3.4 Hz, H\(_3\)), 4.15 (1H, ddd, \(J=13.3 \), 9.4, 3.4 Hz, H\(_4\)), 4.00-3.92 (1H, m, H\(_5\)), 3.57 (3H, s, OCH\(_3\)), 3.54-3.43 (2H, m, H\(_{\beta NT}\)), 3.26-3.18 (1H, m, H\(_{\delta NT}\)), 3.04-2.98 (1H, m, H\(_{\alpha NT}\)), 2.98-2.92 (1H, m, H\(_{\gamma NT}\)), 2.58 (2H, t, \(J=6.7 \) Hz, COCH\(_2\)CH\(_2\)), 2.19-2.11 (1H, m, COCH\(_2\)CH\(_2\)), 2.08-2.02 (1H, m, COCH\(_2\)CH\(_2\)), 1.89-1.76 (3H, m, COCH\(_2\)CH\(_2\) and H\(_{\beta NT}\)), 1.74-1.64 (1H, m, H\(_{\gamma NT}\)), 1.59-1.52 (2H, m, H\(_{\gamma NT}\)), \(\delta_C / ppm \) (125 MHz, \(d_6 \)-DMSO): 171.9 (C=OCH\(_2\)CH\(_2\)), 169.8 (COOMe), 169.1 (C\(_{\alpha NT}\)=C=O), 166.9 (C\(_{\beta NT}\)=C=O), 145.6 (triazole C), 136.7 (ArC), 129.1 (ArCH), 128.3 (ArCH), 126.6 (ArCH), 123.1 (triazole CH), 64.1 (C\(_{\alpha NT}\)), 52.3 (C\(_{\beta NT}\)), 51.2 (OCH\(_3\)), 51.1 (C\(_{\gamma NT}\)), 36.7 (C\(_{\delta NT}\)), 35.4 (C\(_{\delta NT}\)), 34.2 (COCH\(_2\)CH\(_2\)CH\(_2\)), 27.9 (C\(_{\delta NT}\)), 25.1 (COCH\(_2\)CH\(_2\)CH\(_2\)), 23.7 (COCH\(_2\)CH\(_2\)CH\(_2\)), 23.5 (C\(_{\alpha NT}\)). \(\nu_{\text{max}} / \text{cm}^{-1} \): 3231 (NH str), 2935 (CH str), 1739 (C=O str), 1684 (C=O str), 1640, 1548, 1440, 1215, 1146, 1054. HPLC (5-100% ACN) \(Rt \) 8.76 mins. HRMS (ESI+) \(m / z \) found [M+H]\(^+\) 500.2632, \(C_{24}H_{33}N_{10}O_{19}^+ \) required 500.2621. \([\alpha]_D^{25}\) = +3.0 (c 0.075, MeOH).

\[\delta_H / ppm \] (500 MHz, \(d_6 \)-DMSO): 9.24 (1H, d, \(J=7.0 \) Hz, C\(_{\alpha NT}\)-NH), 9.19 (1H, dd, \(J=8.9 \), 3.3 Hz, C\(_{\beta NT}\)-NH), 8.14 (3H, d, \(J=4.3 \) Hz, NH\(_3^+\)), 7.90 (1H, s, triazole CH), 7.26-7.13 (5H, m, 5 × ArCH), 6.38 (1H, s, NH\(_{\alpha NT}\)), 6.17 (1H, s, C\(_{\delta NT}\)=NH), 5.49-5.39 (1H, m, H\(_{\gamma NT}\)), 4.37 (1H, d, \(J=16.1 \) Hz, NH\(_{\delta NT}\)), 4.13 (1H, dt, \(J=7.0 \), 3.3 Hz, H\(_{\beta NT}\)), 4.07 (1H, d, \(J=16.1 \) Hz, NH\(_{\delta NT}\)), 4.02-3.95 (1H, m, H\(_{\gamma NT}\)), 3.95-3.88 (1H, m, H\(_{\gamma NT}\)), 3.52 (1H, dd, \(J=14.0 \), 8.4 Hz, H\(_{\alpha NT}\)), 3.45 (1H, dd, \(J=14.0 \), 6.9 Hz, H\(_{\alpha NT}\)), 3.16-0.37 (4H, m, OCH\(_3\) and H\(_{\beta NT}\)), 3.07-3.02 (1H, m, H\(_{\gamma NT}\)), 2.92-2.82 (1H, m, H\(_{\gamma NT}\)), 1.80-1.66 (2H, m, H\(_{\gamma NT}\)), 1.58-1.33 (2H, m, H\(_{\gamma NT}\)). \(\delta_C / ppm \) (125 MHz, \(d_6 \)-DMSO): 169.9 (COOMe), 169.1 (C\(_{\alpha NT}\)=C=O), 167.2 (C\(_{\beta NT}\)=C=O), 158.0 (NH=ONH), 147.5 (triazole C), 136.6 (ArC), 128.9 (ArCH), 128.3 (ArCH), 126.7 (ArCH), 122.3 (triazole CH), 64.0 (C\(_{\alpha NT}\)), 52.9 (C\(_{\beta NT}\)), 51.9 (C\(_{\gamma NT}\)), 51.6 (OCH\(_3\)), 38.9 (C\(_{\delta NT}\)), 38.8 (C\(_{\delta NT}\)), 35.7 (C\(_{\delta NT}\)), 35.3 (NH\(_{\beta NT}\)), 28.7 (C\(_{\beta NT}\)), 25.6 (C\(_{\gamma NT}\)). \(\nu_{\text{max}} / \text{cm}^{-1} \): 3233 (NH str), 2924 (CH str), 1737 (C=O str), 1678 (C=O str), 1542, 1437, 1260, 1145. HPLC (5-100% ACN) \(Rt \) 8.45 mins. HRMS (ESI+) \(m / z \) found [M+H]\(^+\) 487.2417, \(C_{22}H_{31}N_{10}O_{19}^+ \) required 487.2417. \([\alpha]_D^{25}\) = -13.3 (c 0.68, MeOH).
Name	Structure	GP2 & GP4	% Yield	δ_W / ppm (500 MHz, d₆-DMSO)	Physical Properties	Notes
B7 w	![Structure](image1.png)	70%	94%	81.29 (C=OCH₂CH₂CH₂), 169.9 (COOMe), 168.3 (C_αC=O), 167.7 (C_αC=O), 145.7 (triazole C), 128.9 (ArC), 128.2 (ArCH), 122.7 (triazole CH), 64.2 (C_α), 52.6 (C_β), 52.3 (OCH₃), 30.0 (C_α), 38.9 (C_β), 36.5 (C_υ), 33.9 (C_γ), 33.1 (COCH₂CH₂CH₂), 31.7 (C_ρ), 23.7 (COCH₂CH₂CH₂), 23.6 (COCH₂CH₂CH₂). ν_{max} / cm⁻¹: 3212 (NH str), 2925 (CH str), 1740 (C=O str), 1686 (C=O str), 1546, 1437, 1214, 1149.	Mp = 223-225 °C (CH₂Cl₂), δ_W / ppm (500 MHz, d₆-DMSO): 9.41 (1H, d, J=6.5 Hz, C_α-NH), 8.24 (3H, d, J=5.5 Hz, NH⁺), 8.14 (1H, dd, J=8.5, 3.7 Hz, C_β-NH)	
B8 w	![Structure](image2.png)	81%	98%	161.6 (COOMe), 166.3 (C_αC=O and C_βC=O), 145.3 (triazole C), 136.3 (ArC), 128.8 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.5 (triazole CH), 64.0 (C_α), 53.2 (C_β), 52.1 (OCH₃), 50.2 (C_γ), 38.1 (C_δ), 37.8 (C_ε), 34.4 (C_ρ), 34.3 (COCH₂CH₂), 31.3 (C_τ), 21.5 (COCH₂CH₂). ν_{max} / cm⁻¹: 3215 (NH str), 3035 (CH str), 2925 (CH str), 1742 (C=O str), 1682 (C=O str), 1542, 1433, 1213, 1151.	Mp = 223-226 °C (CH₂Cl₂), δ_W / ppm (500 MHz, d₆-DMSO): 8.84 (1H, d, J=6.5 Hz, C_α-NH), 8.50 (1H, dd, J=8.4, 4.1 Hz, C_β-NH), 8.18 (3H, d, J=4.4 Hz, NH⁺), 8.04 (1H, t, J=5.9 Hz, C_γ-NH), 7.90 (1H, s, triazole CH), 7.7-7.04 (5H, m, 5 x ArCH), 5.50 (1H dd, J=9.7, 6.0 Hz, H_α), 4.07 (1H, ddd, J=9.5, 6.5, 3.3 Hz, H_β), 4.02-3.93 (1H, m, H_ε), 3.58 (3H, s, OCH₃), 3.51-3.43 (1H, m, H_δ), 3.38 (1H, dd, J=14.0, 6.0 Hz, H_ε), 3.27 (1H, dd, J=14.0, 9.7 Hz, H_δ), 3.23-3.12 (2H, m, H_α and H_ε), 3.11-3.01 (1H, m, H_δ), 2.94-2.76 (2H, m, COCH₂CH₂), 2.47-2.37 (2H, m, COCH₂CH₂), 1.78-1.65 (1H, m, H_β), 1.63-1.51 (1H, m, H_τ), 5δ_W / ppm (125 MHz, d₆-DMSO): 171.6 (OCH₂CH₂), 169.6 (COOMe), 166.3 (C_αC=O and C_βC=O), 145.3 (triazole C), 136.3 (ArC), 128.8 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.5 (triazole CH), 64.0 (C_α), 53.2 (C_β), 52.1 (OCH₃), 50.2 (C_γ), 38.1 (C_δ), 37.8 (C_ε), 34.4 (C_τ), 34.3 (COCH₂CH₂), 31.3 (C_τ), 21.5 (COCH₂CH₂). ν_{max} / cm⁻¹: 3215 (NH str), 3035 (CH str), 2925 (CH str), 1742 (C=O str), 1682 (C=O str), 1542, 1433, 1213, 1151.	HPLC (5-100% ACN) Rt 8.31 mins. HRMS (ESI+) m/z found [M+H]+ 472.2301, C₂₂H₂₀N₇O₅⁺ required 472.2303. [α]_D = -28.2 (c 0.53, MeOH).
B9 w	![Structure](image3.png)	99%	61%	5δ_W / ppm (125 MHz, d₆-DMSO): 171.6 (OCH₂CH₂), 169.6 (COOMe), 166.3 (C_αC=O and C_βC=O), 145.3 (triazole C), 136.3 (ArC), 128.8 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.5 (triazole CH), 64.0 (C_α), 53.2 (C_β), 52.1 (OCH₃), 50.2 (C_γ), 38.1 (C_δ), 37.8 (C_ε), 34.4 (C_τ), 34.3 (COCH₂CH₂), 31.3 (C_τ), 21.5 (COCH₂CH₂). ν_{max} / cm⁻¹: 3215 (NH str), 3035 (CH str), 2925 (CH str), 1742 (C=O str), 1682 (C=O str), 1542, 1433, 1213, 1151.	HPLC (5-100% ACN) Rt 6.74 mins. LCMS [M+H]+ 472.16.	
B10 w

- **M p** = 224-225 °C (CH₂Cl₂). δₜ / ppm (500 MHz, d₆-DMSO): 8.56 (1H, d, J=7.0 Hz, C₆-NH), 8.32 (1H, dd, J=7.2, 4.4 Hz, C₅-NH), 8.19 (3H, d, J=4.3 Hz, NH₃), 8.02 (1H, s, triazole CH), 7.27-7.06 (5H, m, 5 × ArCH), 6.62 (1H, app. s, NHCH₂), 6.38 (1H, app. s, C₅=NH), 5.55 (1H, dd, J=10.0, 5.6 Hz, Hα), 4.30 (1H, dt, J=7.0, 4.1 Hz, Hβ), 4.26-4.07 (2H, m, NHCH₂), 3.87-3.77 (1H, m, Hβ), 3.62 (3H, s, OCH₃), 3.52 (1H, dd, J=14.3, 5.6 Hz, Hβ), Hα below DMSO signal, 3.19-3.08 (2H, m, Hγ), 1.92-1.81 (1H, m, Hα), 1.70-1.59 (1H, m, Hγ). δЄ / ppm (125 MHz, d₆-DMSO): 169.8 (COOMe), 169.0 (C₆=O), 168.3 (C₅=O), 159.1 (NH=ONH), 146.9 (triazole C), 136.4 (ArC), 128.8 (ArC), 128.3 (ArC), 126.7 (ArC), 122.1 (triazole CH), 64.1 (C₆), 52.7 (C₅), 52.3 (OCH₃), 49.9 (C₆), 38.5 (C₅), 37.0 (C₆), 35.7 (NHCH₂), 35.0 (C₆), 31.9 (C₅). vₘₐₓ / cm⁻¹: 3210 (NH str), 2921 (CH str), 1740 (C=O str), 1683 (C=O str), 1535, 1436, 1214, 1147. **HPLC** (5-100% ACN) Rₜ 8.33 mins. **HRMS** (ESI+) m/z found [M+H]+= 473.2267, C₂₁H₂₉N₄O₅ required 473.2261. [α]₀²⁵ = +11.2 (c 1.56, MeOH).

B11 w

- **M p** = 212-216 °C (CH₂Cl₂). δₜ / ppm (500 MHz, d₆-DMSO): 8.57 (1H, d, J=6.0 Hz, C₆-NH), 8.51-8.45 (1H, m, C₅-NH), 8.42 (3H, d, J=5.6 Hz, NH₃), 8.16 (1H, s, triazole CH), 7.27-7.08 (5H, m, 5 × ArCH), 6.51 (1H, s, C₅=NH), 6.32 (1H, t, J=5.6 Hz, NHCH₂), 5.46 (1H, dd, J=8.2, 6.8 Hz, Hα), 4.53-4.36 (1H, m, Hβ), 4.18-4.07 (2H, m, Hα and Hβ), 4.07-3.92 (2H, m, Hα and Hγ), 3.63-3.52 (1H, m, Hβ), 3.47-3.39 (1H, m, NHCH₂), 3.37 (3H, s, OCH₃), 3.27 (1H, dd, J=14.1, 8.2 Hz, Hβ), 3.07-2.95 (2H, m, Hβ and NHCH₂). δЄ / ppm (125 MHz, d₆-DMSO): 170.0 (COOMe), 167.8 (C₆=O), 166.9 (C₅=O), 158.0 (NH=ONH), 147.5 (triazole C), 136.7 (ArC), 129.1 (ArC), 128.2 (ArC), 126.6 (ArC), 122.7 (triazole CH), 63.9 (C₆), 52.9 (C₅), 52.3 (OCH₃), 50.9 (C₅), 40.5 (NHCH₂), 38.9 (C₆), 35.7 (C₆), 35.4 (C₅). vₘₐₓ / cm⁻¹: 3208 (NH str), 3031 (CH str), 2919 (CH str), 1741 (C=O str), 1678 (C=O str), 1546, 1435, 1121, 1146. **HPLC** (5-100% ACN) Rₜ 8.74 mins. **HRMS** (ESI+) m/z found [M+H]+ = 459.2104, C₂₀H₂₉NaO₅ required 459.2104. [α]₀²⁵ = -0.5 (c 2.05, MeOH).
| Code | Structure | GP2 & GP4 | 98% | Mp = 135-138 °C (CH₂Cl₂), δH/ppm (500 MHz, d6-DMSO): 9.06 (1H, dd, J=8.6, 3.7 Hz, C1=NH), 8.93 (1H, d, J=6.7 Hz, C2=NH), 8.20 (3H, d, J=4.5 Hz, NH3), 7.70 (1H, s, triazole CH), 7.64 (1H, t, J=5.5 Hz, C2-NH), 7.29-7.07 (5H, m, 5 × ArCH), 5.49 (1H, dd, J=9.2, 6.3 Hz, H2), 4.30-4.24 (1H, m, H3), 3.94 (1H, ddd, J=14.0, 8.6, 5.4 Hz, H6), 3.83-3.74 (1H, m, H3), 3.47 (3H, s, OCH3), 3.42-3.28 (2H, m, H6), 3.22-3.13 (1H, m, H3), 3.12-2.97 (2H, m, H6), 2.85 (2H, t, J=6.2 Hz, COCH₂CH₂), 2.44-2.33 (2H, m, COCH₂CH₂), 1.83-1.72 (1H, m, H5), 1.69-1.58 (1H, m, H5), 1.42-1.35 (2H, m, H6), 1.35-1.26 (2H, m, H6). δC/ppm (125 MHz, d6-DMSO): 171.0 (C=OCH₂CH₂), 169.7 (COOMe), 168.6 (C=O), 168.5 (C=O), 145.9 (triazole C), 136.2 (ArC), 128.9 (ArCH), 128.3 (ArCH), 126.8 (ArCH), 121.6 (triazole CH), 63.9 (Cα), 53.2 (Cβ), 52.1 (OCH₃), 51.8 (Cγ), Cβ below DMSO signal, 37.7 (Cγ), 37.3 (Cβ), 33.9 (COCH₂CH₂), 30.5 (Cγ), 28.3 (Cβ), 21.1 (COCH₂CH₂), 20.8 (Cγ). νmax/cm⁻¹: 3226 (NH str), 2921 (CH str), 1740 (C=O str), 1687 (C=O str), 1545, 1436, 1212, 1148. HPLC (5-100% ACN) Rt 8.8 mins. HRMS (ESI+) m/z found [M+H]+ 500.2618, C₂₃H₂₄N₇O₆⁺ required 500.2616. [α]D²⁰ = +24.7 (c 2.54, MeOH) |
|---|---|---|---|---|
| D1 | ![Structure](image1.png) | GP2 & GP4 | 98% | HPLC (5-30% ACN) Rt 6.74 mins. LCMS [M+H]+ 409.18. |
| D2 | ![Structure](image2.png) | GP2 & GP4 | 93% | HPLC (5-100% ACN) Rt 7.13 mins. LCMS [M+H]+ 381.22. |
| D3 | ![Structure](image3.png) | GP2 & GP4 | 99% | HPLC (0-60% ACN) Rt 5.44 mins. LCMS [M+H]+ 395.17. |
| D5 | ![Structure](image4.png) | GP2 & GP4 | 99% | HPLC (5-100% ACN) Rt 4.37 mins. LCMS [M+H]+ 382.12. |

67
Date	Assay	GP2 & GP4	HPLC Conditions	LCMS [M+H]+ (Da)	
D7 w		GP2 & GP4	HPLC (5-45% ACN)	381.15	
D8 w		GP2 & GP4	HPLC (5-100% ACN)	367.21	
D10 w		GP2 & GP4	HPLC (5-100% ACN)	353.12	
D11 w		GP2 & GP4	HPLC (5-100% ACN)	368.26	
D12 w		GP2 & GP4	HPLC (5-100% ACN)	354.09	
D14 w		GP2 & GP4	HPLC (5-80% ACN)	395.23	
	Structure	GP2 & GP4	HPLC (5-100% ACN) Rt	LCMS [M+H]^+	
---	-----------	-----------	----------------------	----------------	
E1w	![Structure](image1.png)	40%	4.62 mins.	395.24.	
E2w	![Structure](image2.png)	85%	4.09 mins.	367.21.	
E3w	![Structure](image3.png)	71%	4.43 mins.	381.30.	
E4w	![Structure](image4.png)	93%	3.83 mins.	382.20.	
E5w	![Structure](image5.png)	99%	3.86 mins.	368.26.	
E7w	![Structure](image6.png)	60%	4.70 mins.	367.21.	
E8w	![Structure](image7.png)	99%	4.14 mins.	353.19.	
E9w	![Molecule](image)	GP2 & GP4	52%	59%	HPLC (5-100% ACN) Rt 4.41 mins. LCMS [M+H]^+ 353.12.
---	---	---	---	---	---
E10w	![Molecule](image)	GP2 & GP4	53%	94%	HPLC (5-100% ACN) Rt 3.85 mins. LCMS [M+H]^+ 339.10.
E11w	![Molecule](image)	GP2 & GP4	29%	97%	HPLC (5-100% ACN) Rt 4.04 mins. LCMS [M+H]^+ 354.17.
E14w	![Molecule](image)	GP2 & GP4	99%	73%	HPLC (5-100% ACN) Rt 4.11 mins. LCMS [M+H]^+ 381.22.
12. Preparation of B/C/C/P and B/C/C/C/P CuAAC Macrocycles

Compound	Method, Yield (%), Purity (%)	Analysis		
G1	G1 w GP2 70% 61% HPLC (5-100% ACN) Rt 7.70 mins. LCMS [M+H]^+ 652.39.			
G2	G2 w GP2 71% 83% HPLC (5-100% ACN) Rt 7.39 mins. LCMS [M+H]^+ 624.54.			
G3	G3 w GP2 99% 87% HPLC (5-100% ACN) Rt 7.51 mins. LCMS [M+H]^+ 638.28.			
G4	G4 w GP2 62% 92% δH /ppm (400 MHz, d6-DMSO): 8.14 (1H, d, J=7.2 Hz), 8.05 (1H, d, J=8.3 Hz), 7.78 (1H, s), 6.79 (1H, d, J=7.8 Hz), 6.26 (1H, t, J=5.9 Hz), 5.93 (1H, t, J=5.9 Hz), 4.33-4.16 (5H, m), 3.95-3.83 (1H, m), 3.58 (3H, s), 3.57 (3H, s), 3.16-3.02 (1H, m), 2.95-2.80 (1H, m), 1.84-1.08 (13H, m), 1.37 (9H, s). δC /ppm (100 MHz, d6-DMSO): 173.1, 172.8, 172.6, 171.9, 158.7, 122.9, 78.5, 54.3, 52.3, 51.8, 51.4, 49.6, 39.1, 35.6, 31.9, 30.8, 30.9, 29.9, 29.7, 28.7, 26.4, 22.8, 22.4. νmax /cm⁻¹: 3304, 2920, 1739, 1650, 1544, 1436, 1366, 1249, 1212, 1164, 1048. HPLC (5-100% ACN) Rt 7.56 mins. HRMS (ESI+) m/z found [M+Na]^+ 661.3287, C28H46N6O9Na^+ required 661.3285.			
Compound	Structure	HPLC	LCMS	
----------	-----------	------	------	
G5 w	![Structure](image)	GP2 60% 98%	δ_H/ppm (500 MHz, d₆-DMSO): 8.18 (1H, d, J=7.8 Hz), 8.02 (1H, d, J=8.3 Hz), 7.82 (1H, s), 6.79 (1H, d, J=8.5 Hz), 6.39 (1H, t, J=5.9 Hz), 6.04 (1H, t, J=6.1 Hz), 4.40-4.06 (7H, m), 3.60 (3H, s), 3.59 (3H, s), 3.28-3.13 (1H, m), 2.96-2.84 (1H, m), 2.31-2.20 (1H, m), 2.10 (1H, m), 2.04-1.90 (1H, m), 1.88-1.55 (4H, m), 1.53-1.42 (1H, m), 1.40-1.30 (4H, m), 1.37 (9H, s), 1.12-1.01 (2H, m). δ_C/ppm (125 MHz, d₆-DMSO): 172.6, 172.2, 171.4, 158.8, 155.6, 146.5, 123.0, 78.1, 52.8, 52.0, 50.9, 50.8, 49.0, 37.2, 35.3, 30.8, 30.0, 28.7, 28.3, 27.1, 26.7, 21.8. ν_{max}/cm⁻¹: 3314, 2924, 1733, 1648, 1525, 1251, 1169, 1051. HPLC (5-45% ACN) R_t 11.65 mins. HRMS (ESI+) m/z found [M+H]⁺ 625.3298, C₂₂H₄₅N₈O₉ required 625.3310.	[M+H]⁺ 610.23.
G9 w	![Structure](image)	GP2 69% 81%	HPLC (5-45% ACN) R_t 12.13 mins. LCMS [M+H]⁺	
G10 w	![Structure](image)	GP2 94% 89%	HPLC (5-45% ACN) R_t 11.83 mins. LCMS [M+H]⁺ 596.21.	
G11 w	![Structure](image)	GP2 67% 74%	HPLC (15-30% ACN) R_t 11.08 mins. LCMS [M+H]⁺ 611.21.	
G12 w	![Structure](image)	GP2 99% 85%	HPLC (15-30% ACN) R_t 11.55 mins. LCMS [M+H]⁺ 597.18.	
Compound	Diluent	Yield	HPLC Conditions	LCMS Value
----------	---------	-------	-----------------	------------
G13 w	GP2	12%	HPLC (5-100% ACN) Rt 8.46 mins.	[M+H]^+ 686.29.
G14 w	GP2	69%	HPLC (5-100% ACN) Rt 7.49 mins.	[M+H]^+ 638.28.
H12 w	GP2 & GP4	78%	HPLC (5-100% ACN) Rt 4.94 mins.	[M+H]^+ 483.11.
H14 w	GP2 & GP4	86%	HPLC (5-30% ACN) Rt 7.31 mins.	[M+H]^+ 542.28.
J13 w	GP2 & GP5	21%	HPLC (5-100% ACN) Rt 5.34 mins.	[M+H]^+ 500.28.
13. Preparation of B/C/P RuAAC Macrocycles

Compound	Method, Yield (%), Purity (%)	Analysis		
A1x	**GP3 & GP4** 60% 86%	**HPLC** (5-80% ACN) *Rt 7.74 mins.** **LCMS** [M+H]$^+$ 556.27.		
A2x	**GP3 & GP4** 97% 81%	**HPLC** (5-60% ACN) *Rt 8.86 mins.** **LCMS** [M+H]$^+$ 528.29.		
A3x	**GP3 & GP4** 86% 75%	**HPLC** (5-100% ACN) *Rt 6.93 mins.** **LCMS** [M+H]$^+$ 542.28.		
A4x	**GP3 & GP4** 81% 81%	**HPLC** (5-100% ACN) *Rt 6.79 mins.** **LCMS** [M+H]$^+$ 543.33.		
A5x	GP3 & GP4	HPLC (5-100% ACN) Rt 6.67 mins. LCMS [M+H]^+ 529.23.		
-----	----------	--		
A6x	GP3 & GP5	δH//ppm (500 MHz, d_6-DMSO): 10.13 (1H, s), 8.47 (3H, d, J=4.3 Hz), 8.26 (1H, d, J=5.1 Hz), 7.71 (1H, t, J=5.5 Hz), 7.47 (1H, m), 7.40 (2H, d, J=8.4 Hz), 7.21-7.09 (5H, m), 7.06 (2H, d, J=6.9 Hz), 5.42 (1H, dd, J=9.6, 6.0 Hz), 4.10-3.98 (1H, m), 3.59 (1H, m), 3.47 (3H, s), 3.51-3.38 (2H, m), 3.17 (1H, dd, 1H, J=13.6, 4.7 Hz), 3.14-3.05 (1H, m), 2.84-2.71 (3H, m), 2.71-2.56 (2H, m), 2.55-2.40 (1H, m), 1.54-1.37 (1H, m), 1.33-0.92 (3H, m), 0.88-0.57 (1H, m). δC//ppm (125 MHz, d_6-DMSO): 170.8, 170.3, 166.9, 137.7, 137.6, 137.0, 131.5, 129.8, 129.5, 129.0, 128.2, 126.6, 119.4, 72.2, 70.6, 66.4, 61.8, 60.3, 52.8, 52.70, 51.8, 43.7, 36.7, 36.0, 34.6, 29.4, 28.4 22.2, 18.0. νmax/cm⁻¹: 3295, 2925, 1732, 1663, 1540, 701. HPLC (5-100% ACN) Rt 7.52mins. HRMS (ESI+) m/z found [M+H]^+ 576.2928, C_{30}H_{38}N_{7}O_{5}^+ required 576.2934.		
A7x	GP3 & GP4	HPLC (5-100% ACN) Rt 7.11 mins. LCMS [M+H]^+ 528.23.		
A8x	GP3 & GP4	HPLC (5-100% ACN) Rt 7.04 mins. LCMS [M+H]^+ 514.24.		
A9x	GP3 & GP4	HPLC (5-100% ACN) Rt 6.88 mins. LCMS [M+H]^+ 514.23.		
A10	![Chemical Structure](image)	GP3 & GP4	99%	74%
------	------------------------------	----------	-----	-----
	HPLC (5-100% ACN) **Rt** 6.63 mins. **LCMS** [M+H]^+ 500.21.			

A11	![Chemical Structure](image)	GP3 & GP4	78%	84%
	HPLC (5-100% ACN) **Rt** 6.94 mins. **LCMS** [M+H]^+ 515.28.			

A12	![Chemical Structure](image)	GP3 & GP4	38%	97%
	δ_H/ppm (500 MHz, d_6-DMSO): 8.92 (1H, d, J=5.5 Hz), 8.43 (3H, d, J=4.5 Hz), 8.01 (1H, t, J=6.0 Hz), 7.51 (1H, s), 7.23-7.11 (4H, m), 7.05-6.99 (2H, m), 6.32 (1H, t, J=6.0 Hz), 5.43 (1H, dd, J=10.5, 5.0 Hz), 4.23-4.11 (1H, m), 4.01-3.77 (3H, m), 3.60 (3H, s), 3.59-3.46 (2H, m), 3.44-3.32 (1H, m), 3.28-3.13 (2H, m), 3.09-2.98 (1H, m), 1.88-1.74 (1H, m), 1.70-1.58 (1H, m), 1.52-1.25 (3H, m), 1.16-1.01 (1H, m), δ_C/ppm (125 MHz, d_6-DMSO): 171.5, 167.9, 167.1, 158.0, 136.6, 136.1, 132.3, 128.7, 128.2, 126.6, 61.9, 52.8, 52.6, 52.0, 41.0, 38.2, 37.6, 31.9, 28.8, 28.0, 21.4. **HPLC** (5-100% ACN) **Rt** 6.78 mins. **HRMS** (ESI+) m/z found [M+H]^+ 501.2585, C_{23}H_{33}N_{8}O_{5}^+ required 501.2574, [α]_D^25 = +44.5 (c 0.50, MeOH).			

A13	![Chemical Structure](image)	GP3 & GP5	50%	89%
	v_max/cm^{-1}: 3311, 2922, 2852, 2161, 2029, 1726, 1661, 1601, 1537, 1456, 1416, 1253, 1119. **HPLC** (5-100% ACN) **Rt** 7.40 mins. **HRMS** (ESI+) m/z found [M+H]^+ 590.3080, C_{21}H_{40}N_{7}O_{5}^+ required 590.3090.			

B1x	![Chemical Structure](image)	GP3 & GP4	99%	91%
	HPLC (5-100% ACN) **Rt** 6.53 mins. **LCMS** [M+H]^+ 514.31.			
B2x	δ_{H}/ppm (500 MHz, d_2-DMSO, 90°C): 8.04 (1H, app s, C$_2$-NH), 7.93 (3H, br s, NH$_3$), 7.87 (1H, app s, C$_5$-NH), 7.79 (1H, app s, C$_{10}$-NH), 7.45 (1H, s, triazole CH), 7.24-7.16 (3H, m, $3 \times$ ArCH), 7.14-7.10 (2H, m, 2 × ArCH), 5.31 (1H, dd, $J = 8.7, 6.5$ Hz, H$_9$), 4.36-4.31 (1H, m, H$_{13}$), 3.93 (2H, m, H$_{15}$ and H$_{16}$), 3.57-3.53 (2H, m, H$_{17}$), 3.51 (3H, s, OCH$_2$), 3.45-3.36 (1H, m, H$_{21}$), 3.33-3.27 (1H, m, H$_{22}$), H$_2$ below H$_2$O signal, 2.80-2.69 (1H, m, COC$_{18}$CH$_2$), 2.69-2.58 (1H, m, COCH$_2$CH$_2$), COC$_{18}$CH$_2$ below DMSO signal 1.70-1.56 (3H, m, H$_{19}$ and H$_{20}$), 1.53-1.42 (1H, m, H$_{23}$). δ_{C}/ppm (125 MHz, d_2-DMSO): 171.8 (C=OCH$_2$CH$_2$), 169.8 (COOME), 169.4 (C$_5$-C=O), 167.8 (C$_2$-C=O), 137.2 (triazole C), 136.8 (ArC), 131.0 (triazole CH), 129.0 (ArCH), 128.3 (ArCH), 126.7 (ArCH), 62.0 (C$_5$), 52.4 (C$_{10}$), 52.2 (OCH$_2$), 50.9 (C$_{13}$), C$_9$ below DMSO signal, 36.5 (C$_{18}$), 36.3 (C$_{14}$), 33.6 (COCH$_2$CH$_2$), 28.0 (C$_{15}$), 24.3 (C$_{16}$), 19.1 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3276 (w, N-H), 2951 (w, C-H), 1743 (w, C=O), 1673 (s, C=O), 1545 (m, C=C). HPLC (5-100% ACN) Rt 8.85 mins. HRMS (ESI+) m/z found [M+Na]$^+$ 508.2280, C$_{29}$H$_{33}$N$_2$O$_5$Na$^+$ required 508.2284 (Δ -0.8 ppm). $[\alpha]_D^{25}$ = +50.0 (c 1.46, MeOH).			
GP3 & GP4	93%	99%		

| B3x | Mp = 202-204 °C (CH$_2$Cl$_2$). δ_{H}/ppm (500 MHz, d_2-DMSO): 8.99 (1H, d, $J=7.0$ Hz, C$_2$-NH), 8.91 (1H, dd, $J=8.4, 4.1$ Hz, C$_{10}$-NH), 8.19 (3H, d, $J=4.8$ Hz, NH$_3$), 8.15 (1H, t, $J=6.1$ Hz, C$_5$-NH), 7.41 (1H, s, triazole CH), 7.23-7.11 (5H, m, 5 × ArCH), 5.29 (1H, dd, $J=10.2, 5.3$ Hz, H$_9$), 4.28 (1H, dt, $J=7.0, 3.5$ Hz, H$_{13}$), 4.05-3.89 (2H, m, H$_{15}$ and H$_{16}$), 3.62-3.49 (2H, m, H$_{21}$), 3.28 (3H, s, OCH$_3$), 3.24-3.10 (2H, m, H$_{17}$ and H$_{20}$), 3.09-2.96 (1H, m, H$_{19}$), 2.69-2.39 (2H, m, COC$_{18}$CH$_2$), 2.27-2.18 (1H, m, COCH$_2$CH$_2$), 2.18-2.09 (1H, m, COCH$_2$CH$_2$), 1.83-1.67 (3H, m, COCH$_2$CH$_2$ and H$_{17}$), 1.67-1.52 (2H, m, H$_{18}$), 1.52-1.39 (1H, m, COCH$_2$CH$_2$). δ_{C}/ppm (125 MHz, d_2-DMSO): 171.9 (C=OCH$_2$CH$_2$), 169.8 (COOME), 169.0 (C$_5$-C=O), 167.7 (C$_2$-C=O), 138.0 (triazole C), 138.6 (ArC), 130.8 (triazole CH), 128.9 (ArCH), 128.2 (ArCH), 128.7 (ArCH), 61.8 (C$_5$), 52.7 (C$_{10}$), 51.9 (OCH$_3$), 51.3 (C$_{13}$), C$_9$ below DMSO peak, 37.1 (C$_{18}$), 37.1 (C$_{14}$), 34.6 (COCH$_2$CH$_2$), 28.3 (C$_{15}$), 24.3 (C$_{16}$), 23.9 (COCH$_2$CH$_2$), 21.3 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3222 (NH str), 2926 (CH str), 1736 (C=O str), 1683 (C=O str), 1544, 1438, 1213, 1140. HPLC (5-100% ACN) Rt 6.49 mins. HRMS (ESI+) m/z found [M+H]$^+$ 500.2632, C$_{29}$H$_{33}$N$_2$O$_5$ required 500.2621. $[\alpha]_D^{25}$ = +53.0 (c 0.15, MeOH). |
| GP3 & GP4 | 46% | 99% |

| B4x | HPLC (5-25% ACN) Rt 13.76 mins. LCMS [M+H]$^+$ 501.26. |
| GP3 & GP4 | 96% | 94% |
B5x

Compound	δH/ppm (500 MHz, d6-DMSO, 90°C)	86%	92%		
GP3 & GP4	8.30 (1H, app s, Cβ-NH), 7.80 (3H, br s, NH3)	7.58 (1H, dd, J=5.8, 4.5 Hz, Cβ-NH)	7.43 (1H, s, triazole CH), 7.24-7.12 (3H, m, 3 × ArCH), 7.01-6.95 (2H, m, 2 × ArCH), 6.56 (1H, app t, J=5.9 Hz, CH2-NH), 6.38-6.25 (1H, m, Cα-NH)	6.62 (1H, dd, J=10.4, 5.1 Hz, He), 4.42 (1H, app s, He), 4.02 (1H, dd, J=16.3, 6.3 Hz, CH2), 3.98-3.91 (2H, m, Hβ and Hδ), 3.74 (1H, dd, J=16.3, 5.5 Hz, CH2), 3.55 (1H, dd, J=14.1, 5.1 Hz, Hγ), 3.44-3.27 (3H, m, Hδ, Hβ, Hγ), 2.86-2.74 (1H, m, Hβ)	1.80-1.61 (2H, m, Hβ), 1.61-1.44 (2H, m, Hγ)
δC/ppm (125 MHz, d6-DMSO):	169.0 (COOMe), 169.0 (C=C=O)	158.8 (NHC=ONH), 137.3 (triazole C), 136.7 (ArC), 131.8 (triazole CH), 128.8 (ArCH), 128.2 (ArCH), 126.6 (ArCH), 61.2 (Cβ), 52.3(Cδ), 52.0 (OCH3), 50.4(Cα), Cβ below DMSO signal, 37.0 (Cβ), 37.0 (Cβ), 31.9 (CH2), 27.7(Cβ), 25.3(Cγ), v_max/cm⁻¹: 3284 (w, N-H), 2934 (w, C=H), 1743 (w, C=O), 1677 (s, C=O), 1546 (s, C=C). **HPLC (5-100% ACN) Rt 8.63 mins.**	**HRMS (ESI+) m/z found [M+H]+ 487.2423, C22H31N3O5+** required 487.2417 (Δ 1.2 ppm). [α]D²⁵ = -1.10 (c 0.59, MeOH).		

B7x

Compound	δH/ppm (500 MHz, d6-DMSO, 60 °C):	99%	86%			
GP3 & GP4	8.27 (1H, t, J = 5.2 Hz, Cβ-NH)	7.94 (1H, app s, Cα-NH)	7.89 (1H, t, J=5.3 Hz, Cγ-NH)	7.37 (1H, s, triazole CH), 7.22-7.06 (5H, m, 5 × ArCH), 5.38 (1H, dd, J=10.5, 5.1 Hz, He), 4.35 (1H, dd, J=5.6, 3.8 Hz, HHe)	3.68-3.58 (1H, m, Hδ), 3.55 (3H, s, OCH3), 3.56-3.42 (3H, m, Hδ and HHe), 3.33-3.27 (1H, m, HHe)	Hγ below H2O signal, 2.47-2.30 (2H, m, CHCH2CH2CH2), 2.26-2.11 (2H, m, COCH2CH2CH2), 1.82-1.73 (1H, m, COCH2CH2CH2), 1.73-1.64 (2H, m, COCH2CH2CH2 and Hγ), 1.60-1.50 (1H, m, Hδ)
δC/ppm (125 MHz, d6-DMSO):	174.9 (C=O)	170.4 (COOMe), 168.0 (C=O)	131.8 (triazole C), 136.6 (ArC), 131.3 (triazole CH), 128.9 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 62.1 (Cβ), 52.7 (Cγ), 52.2 (Cδ), 52.1 (OCH3), Cβ below DMSO signal, 37.0 (Cβ), 35.6 (Cγ), 35.0 (Cδ), 34.3 (COCH2CH2CH2), 23.5 (COCH2CH2CH2), 21.5 (COCH2CH2CH2).	v_max/cm⁻¹: 3260 (m, N-H), 2934 (m, C=H), 1740 (m, C=O), 1644 (s, C=O), 1541 (s, C=C). **HPLC (5-100% ACN) Rt 8.98 mins.**	**HRMS (ESI+) m/z found [M+H]+ 486.2488, C23H32N7O5+** required 486.2465 (Δ 4.7 ppm). [α]D²⁵ = +0.8 (c 2.25, MeOH).	

B8x

Compound	δH/ppm (500 MHz, d6-DMSO, 120 °C):	60%	96%		
GP3 & GP4	7.94 (1H, s, NH3)	7.69 (1H, app s, Cβ-NH)	7.38 (1H, s, triazole CH), 7.21-7.11 (3H, m, 3 × ArCH), 7.01-6.97 (2H, m, 2 × ArCH), 5.36 (1H, dd, J=10.4, 4.9 Hz, He), 4.40 (1H, t, J=5.0 Hz, Hδ), 3.77-3.66 (3H, m, Hδ and Hβ), 3.63 (3H, s, OCH3), 3.57 (1H, dd, J=14.0, 4.9 Hz, He), 3.42 (1H, dd, J=14.0, 10.4 Hz, Hδ), 3.28-3.20 (1H, m, Hβ), 3.13-3.02 (1H, m, Hβ'), 2.66-2.40 (4H, m, COCH2CH2 and COCH2CH2), 1.95-1.86 (1H, m, Hδ), 1.82-1.74 (1H, m, Hδ'), 1.62-1.40 (2H, m, Hβ), 1.52-1.30 (2H, m, Hβ'), 1.30-1.13 (2H, m, Hγ), 0.65 (s, MeO), Cβ below DMSO signal, 38.3 (Cδ), 34.7 (Cγ), 33.8 (COCH2CH2), 31.5 (Cγ), 17.3 (COCH2CH2).	v_max/cm⁻¹: 3260 (w, N-H), 2950 (w, C=H), 1741 (m, C=O), 1687 (s, C=O), 1551 (m, C=C). **HPLC (5-100% ACN) Rt 8.90 mins.**	**HRMS (ESI+) m/z found [M+H]+ 472.2301, C22H30N5O8+** required 472.2308 (Δ -1.5 ppm). [α]D²⁵ = +41.0 (c 1.3, MeOH).
\begin{align*}					
B9x &:\quad \text{GP3 & GP4} \\					
&:\quad 99\% \\					
&:\quad 72\% \\					
&:\quad \text{HPLC (5-100% ACN) Rt 6.44 mins. LCMS [M+H]^+ 472.24.} \\					
\end{align*}					
Compound	Structure	δ_H/ppm (500 MHz, d₆-DMSO, 120 °C): 7.47 (1H, s, triazole CH); 7.26-7.11 (3H, m, 3 × ArCH), 7.09-6.92 (3H, m, 2 × ArCH and C_p-NH), 6.52 (1H, app s, CH₂-NH), 6.06 (1H, app s, C_p-NH), 5.62 (1H, dd, J=10.3, 5.0 Hz, H_δ), 4.27 (1H, dd, J=8.3, 4.1 Hz, H_ε), 4.01 (1H, dd, J=15.7, 6.9 Hz, CH₂), 3.97-3.87 (2H, m, CH₂ and H_δ), 3.83-3.74 (2H, m, H_α and H_ε), 3.60-3.51 (2H, m, H_α and H_β), 3.43 (1H, dd, J=14.1, 10.3 Hz, H_ε), 3.26-3.18 (2H, m, H_δ).			
		δ_C/ppm (125 MHz, d₆-DMSO): 169.4 (COOME), 167.4 (C_a-C=O), 166.7 (C_b=O), 158.3 (NH=ONH), 136.7 (ArC), 136.5 (triazole C), 132.7 (triazole CH), 128.7 (ArCH), 128.3 (ArCH), 126.7 (ArCH), 61.2 (C_a), 52.8 (C_b), 52.6 (C_c), 52.1 (OCH₃), 38.1 (C_d), 37.5 (C_e), 30.9 (CH₂), 3291 (w, N-H), 2953 (w, C-H), 1736 (w, C=O), 1673 (s, C=O), 1561 (m, C=C). HPLC (5-100% ACN) Rt 8.52 mins. HRMS (ESI+) m/z found [M+H]⁺ 459.2097, C₂₀H₂₂N₆O₆⁺ required 459.2104 (Δ -1.5 ppm). [α]_D= -10.6 (c 0.68, MeOH).			
B12	![Structure](image1.png)	GP3 & GP4	40%	97%	
B13	![Structure](image2.png)	GP3 & GP5	15%	92%	
B14	![Structure](image3.png)	GP3 & GP4	90%	92%	
C2x	![Structure](image4.png)	GP3 & GP4	62%	75%	

HPLC (5-100% ACN) Rt 6.97 mins. LCMS [M+H]⁺ 548.13.

Rt = 0.18 (15% MeOH/ 85% CH₂Cl₂). Mp = 140-143 ºC (CH₂Cl₂). δ_H/ppm (400 MHz, CDCl₃): 8.16-7.98 (2H, m, C_p-NH and C_a-NH), 7.89 (1H, dd, J=6.2, 5.3 Hz, C_c-NH), 7.45 (1H, s, triazole CH), 7.28-7.10 (5H, m, 5 × ArCH), 5.30 (1H, dd, J=9.4, 6.1 Hz, H_δ), 4.37-4.30 (1H, m, H_ε), 3.87-3.77 (1H, m, H_α), 3.62-3.41 (2H, m, H_ε), 3.46 (3H, s, OCH₃), 3.30-3.23 (1H, m, H_c), 3.23-3.16 (1H, m, H_c), 3.16-3.12 (1H, m, H_ε), 3.02-2.84 (1H, m, H_γ), 2.73-2.49 (2H, m, COCH₂CH₂), 2.41-2.31 (2H, m, COCH₂CH₂), 1.55-1.44 (2H, m, H_γ), 1.44-1.26 (2H, m, H_γ), 1.25-1.06 (2H, m, H_γ). δ_C/ppm (125 MHz, CDCl₃): 175.0 (C_a-C=O), 170.8 (C=OCH₂CH₂), 170.3 (COOME), 167.6 (C_b-C=O), 137.6 (triazole C), 136.7 (ArC), 130.8 (triazole CH), 129.0 (ArCH), 128.3 (ArCH), 126.7 (ArCH), 61.2 (C_a), 54.1 (C_c), 52.0 (C_b), 51.9 (OCH₃), 36.8 (C_d), 36.8 (C_f), 34.8 (C_e), 33.5 (COCH₂CH₂), 28.8 (C_c), 21.6 (C_e), 18.9 (COCH₂CH₂), ν_{max}/cm⁻¹: 3269 (m, N-H), 2924 (s, C-H), 1744 (m, C=O), 1648 (s, C=O), 1646 (s, C=C), 1546 (s, C=C). HPLC (5-100% ACN) Rt 9.12 mins. HRMS (ESI+) m/z found [M+H]⁺ 500.2614, C₂₄H₃₄N₆O₈⁺ required 500.2621 (Δ -1.4 ppm). [α]_D= +14.3 (c 0.43, MeOH). |

HPLC (5-100% ACN) Rt 5.26 mins. LCMS [M+H]⁺ 415.16.
| C3x | 97% | 95% | \(\delta_{H}/ppm\) (500 Hz, \(d_{2}-\text{DMSO}, 70 \, ^{\circ}\text{C}\)): 8.33 (1H, d, \(J=6.5\text{ Hz}, C_{\alpha}-\text{NH}\)), 8.12 (3H, br s, \(\text{NH}_{3}\)), 7.68 (1H, s, triazole CH), 7.57 (1H, t, \(J=5.7\text{ Hz}, C_{\beta}-\text{NH}\)), 7.50-7.35 (4H, m, 4 \times \text{ArCH}) , 4.53-4.45 (1H, m, \(H_{\alpha}\)), 3.82-3.76 (1H, m, \(H_{\beta}\)), 3.66 (3H, s, OCH\(_{3}\)), 3.38 (1H, dd, \(J=14.2, 9.4\text{ Hz}, H_{\theta}\)), 3.26 (1H, dd, \(J=14.2, 4.1\text{ Hz}, H_{\beta}\)), 3.06-2.85 (2H, m, \(H_{\delta}\)), 2.67-2.54 (2H, m, COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 1.99 (2H, t, \(J=6.6\text{ Hz}, \text{COCH}_{2}\)CH\(_{2}\)CH\(_{2}\)), 1.73-1.65 (1H, m, COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 1.57-1.50 (2H, m, \(H_{\delta}\)), 1.39-1.27 (2H, m, \(H_{\beta}\)). \(\delta_c/ppm\) (125 MHz, \(d_{6}-\text{DMSO}\)) : 171.4 (C=OCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 170.5 (COOMe), 168.9 (C\(_{\alpha}\)=O), 138.9 (ArC), 137.9 (triazole C), 134.6 (ArC), 132.0 (triazole CH), 130.2 (ArCH), 125.5 (ArCH), 54.1 (C\(_{\theta}\)), 52.0 (OCH\(_{3}\)), 51.6 (C\(_{\varphi}\)), 37.9 (C\(_{\varphi}\)), 34.3 (C\(_{\varphi}\)), 34.3 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 28.6 (C\(_{p}\)), 24.4 (C\(_{p}\)), 23.6 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 21.9 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)). \(\nu_{\max }/\text{cm}^{-1}\): 3261 (v, N-H), 2945 (v, C-H), 1739 (m, C=O), 1675 (s, C=O), 1546 (s, C=C). HPLC (5-100% ACN) \(R_{t}\) 5.58 mins. HRMS (ESI+) \(m/z\) found [M+H]\(^{+}\) 429.2224, \(C_{23}H_{20}N_{3}O_{4}\) required 429.2245 (\(\Delta -4.9\) ppm). [\(\alpha\)]\(D\)\(^{25}\) = -29.2 (c 0.43, MeOH).

| C5x | 46% | 89% | HPLC (5-100% ACN) \(R_{t}\) 5.24 mins. LCMS [M+H]\(^{+}\) 416.16.

| C7x | 97% | 95% | \(R_{t}\) = 0.11 (15% MeOH/ 85% CH\(_{2}\)Cl\(_{2}\)). \(\delta_{H}/ppm\) (400 MHz, \(d_{2}-\text{DMSO}\)) : 8.18 (1H, d, \(J=9.5\text{ Hz}, C_{\alpha}-\text{NH}\)), 7.87 (1H, t, \(J=5.9\text{ Hz}, C_{\gamma}-\text{NH}\)), 7.77 (1H, s, triazole CH)), 7.43 (2H, d, \(J=8.5\text{ Hz}, 2 \times \text{ArCH}\)), 7.35 (2H, d, \(J=8.5\text{ Hz}, 2 \times \text{ArCH}\)), 4.83-4.73 (1H, m, \(H_{\alpha}\)), 3.72 (3H, s, OCH\(_{3}\)), \(H_{\beta}\) below H\(_{2}\)O signal, 3.08 (1H, dd, \(J=13.5, 12.3\text{ Hz}, H_{\theta}\)), 3.03-2.84 (3H, m, \(H_{\alpha}\) and \(H_{\beta}\)), 2.57-2.33 (2H, m, COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 2.08 (2H, t, \(J=6.1\text{ Hz}, \text{COCH}_{2}\)CH\(_{2}\)CH\(_{2}\)), 2.03-1.80 (2H, m, COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 1.34-1.08 (1H, m, \(H_{\delta}\)), 0.93-0.70 (1H, m, \(H_{\beta}\)). \(\delta_c/ppm\) (125 MHz, \(d_{6}-\text{DMSO}\)) : 174.8 (C\(_{\alpha}\)=O), 171.9 (COOMe), 171.1 (C=OCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 138.8 (ArC), 137.7 (triazole C), 134.1 (ArC), 131.6 (triazole CH), 130.5 (ArCH), 124.6 (ArCH), 54.2 (C\(_{\varphi}\)), 52.1 (OCH\(_{3}\)), 51.5 (C\(_{\varphi}\)), 36.8 (C\(_{\varphi}\)), 36.1 (C\(_{\varphi}\)), 35.9 (C\(_{\varphi}\)), 34.5 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 24.3 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)), 21.78 (COCH\(_{2}\)CH\(_{2}\)CH\(_{2}\)). \(\nu_{\max }/\text{cm}^{-1}\): 3274 (m, N-H), 2944 (w, C-H), 1742 (s, C=O), 1642 (s, C=O), 1541 (s, C=C). HPLC (5-100% ACN) \(R_{t}\) 5.70 mins. HRMS (ESI+) \(m/z\) found [M+H]\(^{+}\) 415.2072, \(C_{20}H_{27}N_{3}O_{4}\) required 415.2088 (\(\Delta -3.9\) ppm). [\(\alpha\)]\(D\)\(^{25}\) = -8.8 (c 0.65, MeOH).
Compound	Structure	R_f	δ_H / ppm (500 Hz, d₆-DMSO, 70 °C)	Observations					
C8x	![C8x Structure](image)	0.15 (15% MeOH/ 85% CH₃Cl₂)	7.66 (1H, s, triazole CH), 6.55 (1H, s, Cα-NH₂), 7.51-7.34 (4H, m, 4 × ArCH), 6.45 (1H, s, Cβ-NH), 4.73 (1H, dd, J=12.3, 4.1 Hz, Hβ⁵), 3.75 (3H, s, OCH₃), 3.39 (1H, dd, J=13.5, 4.1 Hz, Hγ), 3.30-3.24 (2H, m, Hβ and Hγ), 2.31-3.15 (1H, m, Hβ), Hβ below H₂O signal, 2.95-2.87 (2H, m, COCH₂CH₂), 2.10-1.98 (1H, m, COCH₂CH₂), 0.650 ppm.	R_f = 0.15 (15% MeOH/ 85% CH₃Cl₂)	δ_H / ppm (500 Hz, d₆-DMSO, 70 °C):	7.66 (1H, s, triazole CH), 7.55 (1H, s, Cα-NH), 7.51-7.34 (4H, m, 4 × ArCH), 6.55 (1H, s, Cβ-NH), 4.73 (1H, dd, J=12.3, 4.1 Hz, Hβ), 3.75 (3H, s, OCH₃), 3.39 (1H, dd, J=13.5, 4.1 Hz, Hγ), 3.30-3.24 (2H, m, Hβ and Hγ), 2.31-3.15 (1H, m, Hβ), Hβ below H₂O signal, 2.95-2.87 (2H, m, COCH₂CH₂), 2.10-1.98 (1H, m, COCH₂CH₂), 1.86-1.77 (1H, m, COCH₂CH₂).	GC/MS (5-100% ACN) R_t 5.36 mins.	HPLC (5-100% ACN) R_t 5.18 mins.	LCMS [M+H]⁺⁺ 402.14
C10 x	![C10 Structure](image)	0.50 (15% MeOH/ 85% CH₃Cl₂)	HPLC (5-100% ACN) R_t 5.36 mins.	HPLC (5-100% ACN) R_t 5.18 mins.	LCMS [M+H]⁺⁺ 402.14				
C11 x	![C11 Structure](image)	0.40 (15% MeOH/ 85% CH₃Cl₂)	HPLC (5-100% ACN) R_t 5.36 mins.	HPLC (5-100% ACN) R_t 5.21 mins.	LCMS [M+H]⁺⁺ 388.12				
C12 x	![C12 Structure](image)	0.27 (15% MeOH/ 85% CH₃Cl₂)	HPLC (5-100% ACN) R_t 5.36 mins.	HPLC (5-100% ACN) R_t 5.21 mins.	LCMS [M+H]⁺⁺ 388.12				
	Structure	GP3 & GP4	%	HRMS (ESI+) m/z found [M+H]^+	C_{19}H_{33}N_{6}O_{4}^+ required 409.2567	C_{19}H_{33}N_{6}O_{4}^+ required 409.2567			
---	-----------	-----------	---	-----------------------------	---	---			
C14x	![Structure Image]	68%	98%	409.2250, 429.2233	395.23.0, 381.30.				
D1x	![Structure Image]	65%	99%	409.2567, 381.30.	409.2567, 381.30.				
D2x	![Structure Image]	82%	78%	381.30.	381.30.				
D3x	![Structure Image]	99%	86%	395.23.	395.23.				
D4x	![Structure Image]	99%	95%	396.22.	396.22.				
D5x	GP3 & GP4	HPLC (5-100% ACN) Rt 4.30 mins. LCMS [M+H]^+ 382.20.							
-----	-----------	--							
D6x	GP3 & GP5	HPLC (5-100% ACN) Rt 5.22 mins. LCMS [M+H]^+ 429.13.							
D7x	GP3 & GP4	HPLC (5-100% ACN) Rt 5.31 mins. LCMS [M+H]^+ 381.24.							
D8x	GP3 & GP4	δH/ppm (500 MHz, d6-DMSO): 9.16 (1H, d, J=6.4 Hz), 8.45 (1H, t, J=5.9 Hz), 8.22 (3H, d, J=5.6 Hz), 7.55 (1H, s), 4.42-4.35 (1H, m), 4.24-4.17 (1H, m), 3.99 (1H, m), 3.59 (3H, s), 3.46 (1H, m), 3.42 (1H, m), 3.00 (1H, m), 2.97-2.86 (1H, m), 2.89-2.79 (1H, m), 2.63-2.53 (2H, m), 2.03-1.94 (1H, m), 1.94-1.87 (1H, m), 1.83-1.70 (3H, m), 1.68-1.62 (1H, m), 1.31-1.19 (1H, m), 0.93-0.85 (1H, m). δC/ppm (125 MHz, d6-DMSO): 172.6, 171.6, 167.6, 137.1, 131.8, 52.8, 52.1, 50.0, 46.6, 34.5, 34.0, 31.3, 29.0, 27.7, 21.8, 18.3. νmax/cm⁻¹: 3335, 2925, 1728, 1635, 1562, 1441, 1226. HPLC (5-100% ACN) Rt 5.36 mins. LCMS [M+H]^+ 367.28.							
D9x	GP3 & GP4	HPLC (5-100% ACN) Rt 4.60 mins. LCMS [M+H]^+ 367.21.							
D10x	GP3 & GP4	HPLC (5-100% ACN) Rt 4.63 mins. LCMS [M+H]^+ 353.19.							
			δ_H/δ_H (500 MHz, d₆-DMSO)	HPLC (5-100% ACN) Rt 6.37 mins. LCMS [M+H]⁺ 354.09.					
---	---	---	---	---					
D11		GP3 & GP4	99%	HPLC (5-100% ACN) Rt 6.37 mins. LCMS [M+H]⁺ 354.09.					
D12		GP3 & GP4	73%	HPLC (5-100% ACN) Rt 6.37 mins. LCMS [M+H]⁺ 443.15.					
D13		GP3 & GP5	66%	HPLC (5-100% ACN) Rt 6.37 mins. LCMS [M+H]⁺ 443.15.					
D14		GP3 & GP4	37%	HPLC (5-100% ACN) Rt 4.58 mins. LCMS [M+H]⁺ 354.24.					
E1x		GP3 & GP4	99%	HPLC (5-100% ACN) Rt 4.58 mins. LCMS [M+H]⁺ 367.28.					
E2x		GP3 & GP4	99%	HPLC (5-100% ACN) Rt 4.58 mins. LCMS [M+H]⁺ 367.28.					

Note: The table above summarizes the spectroscopic and chromatographic data for different compounds. Each entry includes the compound's chemical structure, spectral data (δ_H/δ_H), and chromatographic retention times. The HPLC conditions for each entry are also specified.
E3x

| δH/ppm (500 MHz, d6-DMSO): 8.96 (1H, d, J=5.2 Hz), 8.26-8.18 (4H, m), 7.52 (1H, s), 4.31-4.18 (2H, m), 4.09-4.02 (1H, m), 3.89-3.82 (1H, m), 3.60 (3H, s), 3.19-3.06 (1H, m), 3.06-2.94 (1H, m), 2.61 (2H, t, J=7.8 Hz), 2.25-2.09 (2H, m), 1.94-1.82 (4H, m), 1.79-1.58 (4H, m), 1.58-1.48 (2H, m).
| δC/ppm (125 MHz, d6-DMSO): 172.1, 170.9, 169.0, 136.7, 131.5, 52.2, 52.0, 51.5, 46.8, 37.3, 34.3, 34.2, 28.6, 26.1, 26.1, 24.8, 23.5, 21.5.
| νmax/cm⁻¹: 3360, 2952, 1636, 1560, 1445, 1221.
| HPLC (5-100% ACN) Rt 4.39 mins. HRMS (ESI+) m/z found [M+H]^+ 381.2239, C17H29N6O4^+ required 381.2245. | GP3 & GP4
| 99%
| 98%

E4x

| HPLC (5-100% ACN) Rt 3.90 mins. LCMS [M+H]^+ 382.20. | GP3 & GP4
| 99%
| 89%

E5x

| HPLC (5-100% ACN) Rt 3.96 mins. | GP3 & GP4
| 99%
| 90%

E6x

| νmax/cm⁻¹: 3388, 2920, 2851, 1926, 1719, 1672, 1605, 1572, 1541, 1445, 1418, 1345, 1321, 1297, 1263, 1228, 1173, 1145, 1118, 1011. HPLC (5-100% ACN) Rt 4.89 mins. HRMS (ESI+) m/z found [M+H]^+ 415.2104, C20H27N6O4^+ required 415.2094. | GP3 & GP5
| 44%
| 93%

E7x

| δH/ppm (500 MHz, d6-DMSO): 9.15 (1H, J=5.6 Hz), 8.35-8.26 (4H, m), 7.51 (1H, s), 4.33-4.22 (2H, m), 4.18-4.10 (1H, m), 4.01-3.93 (1H, m), 3.61 (3H, s), 3.38-3.23 (1H, m), 2.79-2.65 (1H, m), 2.64-2.49 (1H, m), 2.37-2.13 (2H, m), 2.06-1.69 (7H, m), 1.63-1.49 (1H, m). δC/ppm (125 MHz, d6-DMSO): 172.7, 171.06, 168.57, 136.9, 131.5, 52.1, 52.1, 50.2, 46.9, 34.5, 34.3, 31.5, 26.2, 25.8, 24.1, 21.6. νmax/cm⁻¹: 3344, 2924, 1728, 1635, 1559, 1443, 1231, 1076. HPLC (5-100% ACN) Rt 4.23 mins. LCMS [M+H]^+ 367.28. | GP3 & GP4
| 99%
| 95%

E8x

| HPLC (5-100% ACN) Rt 4.23 mins. LCMS [M+H]^+ 353.27. | GP3 & GP4
| 82%
| 75%

86
E9x	![Chemical Structure](image1)	GP3 & GP4	99%	HPLC (5-100% ACN) Rt 4.36 mins. LCMS [M+H]^+ 353.19.		
E10x	![Chemical Structure](image2)	GP3 & GP4	99%	HPLC (5-100% ACN) Rt 3.86 mins. LCMS [M+H]^+ 339.10.		
E11x	![Chemical Structure](image3)	GP3 & GP4	99%	HPLC (5-100% ACN) Rt 3.65 mins. LCMS [M+H]^+ 354.24.		
E12x	![Chemical Structure](image4)	GP3 & GP4	80%	HPLC (5-100% ACN) Rt 3.85 mins. LCMS [M+H]^+ 340.08.		
E13x	![Chemical Structure](image5)	GP3 & GP5	68%	HPLC (5-100% ACN) Rt 5.37 mins. LCMS [M+H]^+ 429.13.		
E14x	![Chemical Structure](image6)	GP3 & GP4	99%	HPLC (5-100% ACN) Rt 4.27 mins. LCMS [M+H]^+ 381.22.		
	Structure	GP3 & GP5	vmax/cm⁻¹:	HRMS (ESI+) m/z found [M+H]⁺	HPLC (5-100% ACN) Rt	LCMS [M+H]⁺
---	-----------	-----------	------------	-------------------------------	-----------------------	--------------
F2x	![Structure](image1)	GP3 & GP5	76%	415.2079, C_{20}H_{27}N_{6}O_{4}⁺	5.72 mins.	429.16
F3x	![Structure](image2)	GP3 & GP%	68%		5.78 mins.	429.16
F14x	![Structure](image3)	GP3 & GP5	61%		5.72 mins.	429.16
14. Preparation of B/C/C/P and B/C/C/C/P RuAAC Macroycles

Compound	Method, Yield (%), Purity (%)	Analysis			
G1x	GP3 24% 85%	HPLC (5-100% ACN) Rt 7.70 mins. LCMS [M+H]^+ 652.54.			
G2x	GP3 65% 91%	HPLC (5-100% ACN) Rt 7.43 mins. LCMS [M+H]^+ 624.48.			
G3x	GP3 29% 88%	HPLC (5-100% ACN) Rt 7.71 mins. LCMS [M+H]^+ 638.21.			
G4x	GP3 54% 85%	HPLC (5-100% ACN) Rt 7.65 mins. LCMS [M+H]^+ 639.41.			
G5x	GP3	46%	72%	HPLC (5-45% ACN) Rt 11.57 mins. LCMS [M+H]$^+$ 625.46.	
---	---	---	---	---	
G6x	GP3	62%	74%	HPLC (5-100% ACN) Rt 8.51 mins. LCMS [M+H]$^+$ 672.41.	
G7x	GP3	68%	94%	HPLC (5-100% ACN) Rt 7.41 mins. LCMS [M+H]$^+$ 624.48.	
G8x	GP3	68%	92%	HPLC (5-100% ACN) Rt 7.32 mins. LCMS [M+H]$^+$ 610.46.	
G9x	GP3	84%	93%	HPLC (5-45% ACN) Rt 12.24 mins. LCMS [M+H]$^+$ 610.46.	
---	---	---	---		
G10 x	![Molecule](image)	**GP3**	82% 91% HPLC (5-45% ACN) *Rt* 12.00 mins. **LCMS** [M+H]$^+$ 596.36.		
G11 x	![Molecule](image)	**GP3**	54% 72% HPLC (15-30% ACN) *Rt* 10.87 mins. **LCMS** [M+H]$^+$ 611.51.		
G12 x	![Molecule](image)	**GP3**	99% 87% HPLC (15-30% ACN) *Rt* 11.45 mins. **LCMS** [M+H]$^+$ 597.41.		
G13 x	![Molecule](image)	**GP3**	42% 90% HPLC (5-100% ACN) *Rt* 8.69 mins. **LCMS** [M+H]$^+$ 686.29.		
G14 x	![Molecule](image)	**GP3**	26% 75% HPLC (5-100% ACN) *Rt* 7.86 mins. **LCMS** [M+H]$^+$ 638.28.		
---	---	---	---		
H1x	![Chemical Structure](Image1)	GP3 & GP4	87% 87%		
		HPLC (5-100% ACN) Rt 5.19 mins.	LCMS [M+H]^+ 538.30.		
H2x	![Chemical Structure](Image2)	GP3 & GP4	83% 89%		
		HPLC (5-100% ACN) Rt 4.92 mins.	LCMS [M+H]^+ 496.16.		
H3x	![Chemical Structure](Image3)	GP3 & GP4	44% 81%		
		HPLC (5-100% ACN) Rt 5.08 mins.	LCMS [M+H]^+ 524.36.		
H4x	![Chemical Structure](Image4)	GP3 & GP4	75% 62%		
		HPLC (5-100% ACN) Rt 4.90 mins.	LCMS [M+H]^+ 525.18.		
H5x	![Chemical Structure](Image5)	GP3 & GP4	26% 68%		
		HPLC (5-100% ACN) Rt 4.69 mins.	LCMS [M+H]^+ 511.31.		
H	GP3 & GP5	GP3 & GP4	GP3 & GP4	GP3 & GP4	GP3 & GP4
----	-------	-------	-------	-------	-------
H6x	61%	68%	52%	88%	35%
H7x	64%	96%	64%	96%	66%
H8x	52%	88%	52%	88%	35%
H9x	65%	67%	65%	67%	66%
H10x	86%	66%	86%	66%	69%
H11x	35%	69%	35%	69%	66%

HPLC (5-100% ACN) *Rt* 5.63 mins. **LCMS** [M+H]^+ 558.18.

HPLC (5-100% ACN) *Rt* 5.23 mins. **LCMS** [M+H]^+ 510.26.

HPLC (5-100% ACN) *Rt* 4.99 mins. **LCMS** [M+H]^+ 496.23.

HPLC (5-100% ACN) *Rt* 4.97 mins. **LCMS** [M+H]^+ 496.08.

HPLC (5-100% ACN) *Rt* 4.78 mins. **LCMS** [M+H]^+ 482.14.

HPLC (5-100% ACN) *Rt* 4.89 mins. **LCMS** [M+H]^+ 497.21.
H12	![Molecule 1](image1.png)	GP3 & GP4	57%	78%	HPLC (5-100% ACN) *Rt* 4.59 mins. **LCMS [M+H]^+** 483.19.
H14	![Molecule 2](image2.png)	GP3 & GP4	86%	77%	HPLC (5-30% ACN) *Rt* 7.46 mins. **LCMS [M+H]^+** 524.28.
J13	![Molecule 3](image3.png)	GP3 & GP5	45%	88%	HPLC (5-100% ACN) *Rt* 5.36 mins. **LCMS [M+H]^+** 500.28.
K3x	![Molecule 4](image4.png)	GP3 & GP4	48%	83%	HPLC (5-100% ACN) *Rt* 6.89 mins. **LCMS [M+H]^+** 613.32.
K8x	![Molecule 5](image5.png)	GP3 & GP4	46%	80%	HPLC (5-100% ACN) *Rt* 6.85 mins. **LCMS [M+H]^+** 585.33.
L7x	![Molecule 6](image6.png)	GP3	43%	92%	HPLC (5-100% ACN) *Rt* 10.17 mins. **LCMS [M+H]^+** 846.59.
Compound	Structure	Isolation Yield	HPLC Conditions	LCMS Data	
----------	-----------	-----------------	-----------------	-----------	
L9x	![L9x Structure](image)	GP3 43% 89%	HPLC (5-100% ACN) Rt 10.17 mins.	LCMS [M+H]^+ 833.56.	
M13x	![M13x Structure](image)	GP3 & GP5 21% 80%	HPLC (5-100% ACN) Rt 6.65 mins.	LCMS [M+H]^+ 647.36.	
N8x	![N8x Structure](image)	GP3 15% 93%	HPLC (5-100% ACN) Rt 8.40 mins.	LCMS [M+H]^+ 832.64.	
15. Preparation of B/C/P DKPs

Compound	Method, Yield (%)	Analysis			
A1y	GP6 85% 90%	HPLC (5-80% ACN) Rt 7.56 mins. LCMS [M+H]⁺ 524.26.			
A1z	GP6 84% 90%	HPLC (5-80% ACN) Rt 7.43 mins. LCMS [M+H]⁺ 524.26.			
A2y	GP6 90% 86%	HPLC (5-45% ACN) Rt 9.48 mins. LCMS [M+H]⁺ 496.23.			
A2z	GP6 17% 61%	HPLC (5-45% ACN) Rt 9.81 mins. LCMS [M+H]⁺ 496.23.			
	Structure	Compound	HPLC Conditions	LCMS Peak	
---	-----------	----------	-----------------	--------	---
A3y	![Structure](image_url)	GP6	(5-100% ACN) Rt 6.75 mins	[M+H]$^+$ 510.41	
A3z	![Structure](image_url)	GP6	(5-100% ACN) Rt 6.53 mins	[M+H]$^+$ 510.26	
A4z	![Structure](image_url)	GP6	(5-45% ACN) Rt 10.07 mins	[M+H]$^+$ 511.23	
A5z	![Structure](image_url)	GP6	(5-45% ACN) Rt 9.51 mins	[M+H]$^+$ 497.21	
A6z	![Structure](image_url)	GP6	(5-100% ACN) Rt 7.47 mins	[M+H]$^+$ 544.15	
Compound	Purity	LC Conditions	Retention Time	MS Data	
----------	--------	---------------	----------------	---------	
A7y	42%	HPLC (5-45% ACN)	9.99 mins.	[M+H]^+ 496.08.	
A7z	34%	HPLC (5-45% ACN)	9.90 mins.	[M+H]^+ 496.23.	
A8z	98%	HPLC (5-45% ACN)	9.61 mins.	[M+H]^+ 482.21.	
A9y	44%	HPLC (5-100% ACN)	6.71 mins.	[M+H]^+ 482.14.	
A9z	69%	HPLC (5-100% ACN)	6.48 mins.	[M+H]^+ 482.14.	
---	---	---	---	---	---
A10	z		GP6	23%	HPLC (5-100% ACN) Rt 6.43 mins. LCMS [M+H]^+ 468.11.
A11	z		GP6	33%	HPLC (5-100% ACN) Rt 6.08 mins. LCMS [M+H]^+ 483.11.
A12	y		GP6	58%	HPLC (5-100% ACN) Rt 6.27 mins. LCMS [M+H]^+ 469.09.
A12	z		GP6	60%	HPLC (5-100% ACN) Rt 6.34 mins. LCMS [M+H]^+ 469.16.
A13	z		GP6	48%	HPLC (5-100% ACN) Rt 7.27 mins. LCMS [M+H]^+ 558.18.
Compound	Structure	GP6	LCMS [M+H]$^+$	HPLC (5-45% ACN) Ret mins.	
----------	-----------	-----	----------------	-----------------------------	
B1y	![Structure](image1)	89%	482.21	9.92	
B1z	![Structure](image2)	92%	482.21	9.36	
B2y	![Structure](image3)	73%	454.2203	5.99	
B2z	![Structure](image4)	88%	454.2202	6.22	

B1y

- **$R_f = 0.18$ (15% MeOH/ 85% CH$_2$Cl$_2$). δ_ν/ν (500 Hz, d_6-DMSO, 120 °C):**
 - 7.60-7.55 (2H, m, triazole CH and NH), 7.49 (1H, s, NH), 7.27-7.06 (7H, m, 5 × ArCH and 2 × NH), 5.45 (1H, dd, J=8.4, 6.6 Hz, H$_6$), 3.99 (1H, s, H$_4$), 3.91-3.83 (1H, m, H$_5$), 3.74 (1H, s, H$_2$), 3.44 (1H, dd, J=14.1, 6.6 Hz, H$_5$), 3.33 (2H, dd, J=14.1, 8.4 Hz, H$_5$), 3.16-3.05 (1H, m, H$_2$), 2.98-2.88 (2H, m, H$_2$ and COCH$_2$CH$_2$), COCH$_2$CH$_2$ below H$_2$O signal, 2.44-2.40 (2H, m, COCH$_2$CH$_2$), 1.66-1.54 (1H, m, H$_p$), 1.35-1.24 (3H, m, H$_3$ and H$_4$).

- **δ_α/α (125 MHz, d_6-DMSO):** 171.1 (C=OCH$_2$CH$_2$), 167.4 (C$_a$-C=O), 167.2 (C$_b$-C=O or C$_c$-C=O), 164.7 (C$_d$-C=O or C$_f$-C=O), 149.4 (triazole C), 136.4 (ArC), 128.9 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.8 (triazole CH), 63.6 (C$_a$), 54.0 (C$_a$), 53.7 (C$_b$), 40.3 (C$_c$), 38.6 (C$_f$), 37.8 (C$_d$), 33.9 (COCH$_2$CH$_2$), 30.2 (C$_p$), 25.2 (C$_y$), 21.3 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3263 (m, N-H), 2926 (m, C-H str), 1661 (s, C=O str), 1550 (m, C-C). HPLC (5-100% ACN) Ret 5.99 mins. HRMS (ESI+) m/z found [M+H]$^+$ 454.2220, C$_{22}$H$_{20}$N$_2$O$_4$ required 454.2203 (Δ 3.7 ppm). [α]$_{D}^{25}$ = +15.0 (c 0.21, MeOH).

B1z

- **$R_f = 0.18$ (15% MeOH/ 85% CH$_2$Cl$_2$). δ_ν/ν (500 Hz, d_6-DMSO, 120 °C):**
 - 7.60-7.55 (2H, m, triazole CH and NH), 7.49 (1H, s, NH), 7.27-7.06 (7H, m, 5 × ArCH and 2 × NH), 5.45 (1H, dd, J=8.4, 6.6 Hz, H$_6$), 3.99 (1H, s, H$_4$), 3.91-3.83 (1H, m, H$_5$), 3.74 (1H, s, H$_2$), 3.44 (1H, dd, J=14.1, 6.6 Hz, H$_5$), 3.33 (2H, dd, J=14.1, 8.4 Hz, H$_5$), 3.16-3.05 (1H, m, H$_2$), 2.98-2.88 (2H, m, H$_2$ and COCH$_2$CH$_2$), COCH$_2$CH$_2$ below H$_2$O signal, 2.44-2.40 (2H, m, COCH$_2$CH$_2$), 1.66-1.54 (1H, m, H$_p$), 1.35-1.24 (3H, m, H$_3$ and H$_4$).

- **δ_α/α (125 MHz, d_6-DMSO):** 171.1 (C=OCH$_2$CH$_2$), 167.4 (C$_a$-C=O), 167.2 (C$_b$-C=O or C$_c$-C=O), 164.7 (C$_d$-C=O or C$_f$-C=O), 149.4 (triazole C), 136.4 (ArC), 128.9 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.8 (triazole CH), 63.6 (C$_a$), 54.0 (C$_a$), 53.7 (C$_b$), 40.3 (C$_c$), 38.6 (C$_f$), 37.8 (C$_d$), 33.9 (COCH$_2$CH$_2$), 30.2 (C$_p$), 25.2 (C$_y$), 21.3 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3263 (m, N-H), 2926 (m, C-H str), 1661 (s, C=O str), 1550 (m, C-C). HPLC (5-100% ACN) Ret 5.99 mins. HRMS (ESI+) m/z found [M+H]$^+$ 454.2220, C$_{22}$H$_{20}$N$_2$O$_4$ required 454.2203 (Δ 3.7 ppm). [α]$_{D}^{25}$ = +15.0 (c 0.21, MeOH).

B2y

- **$R_f = 0.11$ (15% MeOH/ 85% CH$_2$Cl$_2$). δ_ν/ν (500 Hz, d_6-DMSO, 90 °C):**
 - 7.79 (1H, s, C$_b$-N), 7.74 (1H, s, NH), 7.60-7.51 (2H, m, 2 × NH), 7.41 (1H, s, triazole CH), 7.25-7.11 (3H, m, 3 × ArCH), 6.97 (2H, dd, J=7.3, 1.6 Hz, 2 × ArCH), 5.32 (1H, dd, J=9.9, 5.0 Hz, H$_2$), 4.12-4.03 (1H, m, H$_4$), 3.77 (1H, t, J=4.5 Hz, H$_5$), 3.74-3.67 (1H, m, H$_5$), 3.66-3.58 (1H, m, H$_5$), 3.49 (1H, dd, J=13.9, 5.0 Hz, H$_4$), 3.32 (1H, dd, J=13.9, 9.9 Hz, H$_3$), 3.04 (2H, m, H$_4$) below H$_2$O signal, COCH$_2$CH$_2$ below H$_2$O signal, 2.39-2.21 (3H, m, COCH$_2$CH$_2$, COCH$_2$CH$_2$), 1.71-1.57 (2H, m, H$_p$), 1.41-1.23 (2H, m, H$_y$). δ_ν/ν (125 MHz, d_6-DMSO): 170.9 (C=OCH$_2$CH$_2$), 167.6 (C$_d$-C=O), 167.5 (C$_c$-C=O or C$_f$-C=O), 164.9 (C$_a$-C=O or C$_g$-C=O), 137.7 (triazole C), 136.7 (ArC), 131.0 (triazole CH), 129.1 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 61.3 (C$_a$), 54.3 (C$_a$), 53.9 (C$_a$), 40.5 (C$_b$), 38.4 (C$_d$), 37.9 (C$_f$), 34.2 (COCH$_2$CH$_2$), 30.3 (C$_p$), 24.9 (C$_y$), 19.1 (COCH$_2$CH$_2$). ν_{max}/cm$^{-1}$: 3242 (m, N-H), 2921 (m, C-H), 1661 (s, C=O), 1545 (m, C=C). HPLC (5-100% ACN) Ret 6.22 mins. HRMS (ESI+) m/z found [M+H]$^+$ 454.2202, C$_{22}$H$_{22}$N$_2$O$_4$ required 454.2203 (Δ -0.2 ppm). [α]$_{D}^{25}$ = -7.5 (c 0.32, MeOH).
B3y

\[
\text{HPLC (5-45% ACN) Rt 9.17 mins. LCMS [M+H]^+ 468.13.}
\]

B3z

\[
\text{HPLC (5-45% ACN) Rt 9.07 mins. LCMS [M+H]^+ 468.11.}
\]

B4y

\[
\text{HPLC (5-45% ACN) Rt 5.83 mins. LCMS [M+H]^+ 469.16.}
\]

B4z

\[
\text{HPLC (5-100% ACN) Rt 6.19 mins. LCMS [M+H]^+ 469.24.}
\]

B5y

\[
\text{Mp = 245-249 °C (CH}_2\text{Cl}_2). \delta_H/\text{ppm (500 MHz, }\text{d}_6\text{-DMSO): 8.10 (1H, app. s, C}_\text{α}-\text{NH)}, 8.04 (1H, app. s, C}_\text{α}'-\text{NH), 7.91 (1H, app. s, C}_\beta'-\text{NH), 7.60 (1H, s, triazole CH), 7.28-7.05 (5H, m, 5 × ArCH), 6.37 (1H, t, J=6.6 Hz, NHCH}_2), 6.04 (1H, t, J=6.2 Hz, C}_\beta-\text{NH}, 5.54 (1H, t, J=6.8 Hz, H}_2\text{), 4.20 (1H, dd, J=15.9, 7.0 Hz, NHCH}_2), 4.11-4.04 (1H, m, NHCH}_2), 4.04-3.93 (2H, m, H}_β and H}_β'), 3.72 (1H, app. s, H}_β), 3.47-3.37 (2H, m, H}_β and H}_β'), 2.99-2.88 (2H, m, H}_β and H}_β'), 1.77-1.67 (1H, m, H}_β'), 1.48-1.29 (3H, m, H}_γ and H}_γ'). \delta_C/\text{ppm (125 MHz, }\text{d}_6\text{-DMSO): 167.6 (C}_\text{α}-\text{C}=O or C}_\text{α}'-\text{C}=O), 167.1 (C}_\text{α}-\text{C}=O), 164.7 (C}_\text{α}'-\text{C}=O or C}_\text{α}'-\text{C}=O), 158.5 (NHCH}_2=\text{ONH), 146.9 (C}_\beta'-\text{C}=O, 138.7 (C}_\text{α}-\text{C}=O or C}_\text{α}'-\text{C}=O), 136.4 (C}_\text{α}'-\text{C}=O or C}_\text{α}'-\text{C}=O), 129.0 (C}_\beta'-\text{C}=O or C}_\text{α}'-\text{C}=O), 126.7 (ArCH), 122.1 (triazole CH), 63.4 (C}_\text{γ}, 54.4 (C}_\text{γ}), 53.8 (C}_\text{γ}), C}_\beta below DMSO signal, 38.6 (C}_\text{γ}), 36.8 (C}_\text{γ}), 35.5 (NHCH}_2), 29.1 (C}_\text{β}), 27.2 (C}_\text{γ}). \nu_{max}/\text{cm}^{-1}: 3281 (NH str), 2921 (CH str), 1670 (C=O str), 1548, 1544, 1119, 1051. HPLC (5-100% ACN) Rt 5.83 mins. HRMS (ESI+) m/z found [M+H]^+ 455.2159, C_{21}H_{22}N_{8}O_{4}^+ required 455.2155. [\alpha]_D^{25} = +4.0 (c 0.15, MeOH).}
Compound	Structure	Purity	LCMS M/z	HPLC Conditions
B7z	![B7z Structure](image)	49%	454.09 (+)	ACN (5-100%) Rt 6.38 mins.
		62%		
B8y	![B8y Structure](image)	62%	440.2045 (+)	ACN (5-90%) Rt 6.20 mins.
		90%		
B8z	![B8z Structure](image)	91%	440.12 (+)	ACN (5-100%) Rt 6.20 mins.
		64%		
B10y	![B10y Structure](image)	24%	469.16 (+)	ACN (5-45%) Rt 5.83 mins.
B10 z

| Rf | δH ppm (400 Hz, d6-DMSO): 8.17 (1H, s, NH-CH-CH2-NH), 7.85 (1H, d, J=10.5 Hz, NH'-CH'-CH2-NH'), 7.76 (1H, d, J=9.4 Hz, NH-CH-CH2-NH), 7.65 (1H, s, NH-CH-CH2-NH'), 7.51 (1H, s, triazole CH), 7.31-7.00 (5H, m, 5 × ArCH), 5.35 (1H, t, J=7.5 Hz, Hα), 4.18 (1H, ddd, J=12.5, 9.4, 1.6 Hz, NH-CH-CH2-NH), 4.07 (1H, app s, NH-CH-CH2-NH'), 3.92-3.82 (2H, m, NH'-CH'-CH2-NH' and NH'-CH-CH2-NH'), 3.77 (1H, dd, J=13.9, 7.4 Hz, Hβ), 3.47-3.38 (1H, m, Hγ), 3.18-3.10 (1H, m, NH'-CH-CH2-NH), 2.85 (1H, ddd, J=17.6, 7.6, 3.5 Hz, COCH2CH2), 2.69 (1H, dd, J=12.5, 2.8 Hz, NH-CH-CH2-NH), COCH2CH2 below H2O signal, 2.37-2.24 (1H, m, COCH2CH2), 2.03-1.92 (1H, m, COCH2CH2), δc ppm (125 MHz, d6-DMSO): 171.7 (C=O), 167.8 (C=O), 165.8 (C=O), 164.4 (C=O), 136.6 (ArC), 135.6 (triazole C), 133.0 (triazole CH), 129.2 (ArCH), 128.3 (ArCH), 126.8 (ArCH), 61.8 (Cβ), 54.9 (CH), 54.0 (CH'), CH2 and CH2 below DMSO signal 36.2 (Cβ), 34.8 (COCH2CH2), 20.6 (COCH2CH2). v_max /cm⁻¹: 3233 (w, N-H), 2923 (m, C-H), 1661 (s, C=O), 1550 (m, C-C). HPLC (5-100% ACN) Rt 6.20 mins. HRMS (ESI+) m/z found [M+H]+' 426.1890, C20H20N2O4+ required 426.1890 (Δ 0.0 ppm). [α]D²⁵ = +14.0 (c 0.23, MeOH). |
| GP6 | 74% |

B12 z

| Rf | δH ppm (500 Hz, d6-DMSO): 8.02 (1H, s, C6-NH), 7.92 (1H, s, C5-NH), 7.37 (1H, d, J=5.4 Hz, triazole CH), 7.23-7.09 (3H, m, 3 × ArCH), 6.98 (1H, t, J=6.0 Hz, NHCH2), 6.94 (2H, dd, J=7.7, 1.5 Hz, 2 × ArCH), 6.89 (1H, t, J=5.3 Hz, C6-NH), 5.84 (1H, t, J=6.1 Hz, C5-NH), 5.44 (1H, dd, J=10.6, 4.8 Hz, Hα), 4.05 (1H, app s, Hβ), 3.98 (1H, dd, J=15.8, 5.4 Hz, NHCH2), 3.84-3.80 (1H, m, Hγ), 3.61 (1H, ddd, J=13.4, 5.5, 2.5 Hz, Hβ), 3.46 (1H, dd, J=13.6, 4.8 Hz, Hγ), 3.43-3.36 (2H, m, NHCH2 and Hβ), 2.98 below H2O signal, 2.37-2.22 (1H, m, Hγ). |
| GP6 | 57% |

B14 y

| Rf | δH ppm (500 Hz, d6-DMSO, 120 °C): 7.66-7.55 (2H, m, triazole CH and C9-NH), 7.44 (1H, s, NH), 7.34 (1H, s, C8-NH), 7.18 (5H, m, 5 × ArCH), 7.04 (1H, s, NH), 5.50 (1H, dd, J=8.7, 6.4 Hz, Hα), 3.95 (1H, app s, Hβ), 3.83-3.73 (2H, m, Hβ and Hγ), 3.45 (1H, dd, J=14.2, 6.4 Hz, Hα), 3.38-3.26 (2H, m, Hγ and Hβ), 3.15-3.06 (1H, m, Hγ), 3.06-2.97 (1H, m, Hβ), 2.97-2.85 (2H, m, COCH2CH2), 2.47-2.35 (2H, m, COCH2CH2), 1.69-1.61 (2H, m, Hγ), 1.38-1.29 (2H, m, Hβ), 1.18-1.09 (2H, m, Hγ). δc ppm (125 MHz, d6-DMSO): 170.9 (C=O=CH=CH2), 167.8 (C6-C=O or C6-C=O), 165.5 (C5-C=O or C5-C=O), 145.3 (triazole C), 136.3 (ArC), 129.0 (ArCH), 128.2 (ArCH), 126.7 (ArCH), 121.6 (triazole CH), 63.7 (Cβ), 54.5 (Cα), 53.3 (Cγ), 41.0 (Cφ), Cβ below DMSO signal, 36.9 (Cα), 34.4 (COCH2CH2), 33.4 (Cφ), 27.5 (Cβ), 21.2 (COCH2CH2), 19.0 (Cγ). v_max /cm⁻¹: 3252 (m, N-H), 2925 (m, C-H), 1662 (s, C=O), 1543 (m, C-C). HPLC (5-100% ACN) Rt 6.06 mins. HRMS (ESI+) m/z found [M+H]+' 468.2356, C23H20N2O4+ required 468.2354 (Δ 0.4 ppm). [α]D²⁵ = +0.8 (c 0.55, MeOH). |
| GP6 | 55% |

103
B14

\[
\text{R} = 0.1 \text{ (10\% MeOH/ 90\% CH}_2\text{Cl}_2) , \text{Mp = 176-178 °C (CH}_2\text{Cl}_2) \]

\[
\delta_\text{H}/\text{ppm} (400 \text{ MHz, d}_6\text{-DMSO}): 8.47 (1\text{H, dd, } J=6.4, 5.1 \text{ Hz, C}_\text{R-NH}), 8.08 (1\text{H, d, } J=2.4 \text{ Hz, C}_\text{R-NH}), 7.96 (1\text{H, dd, } J=6.9, 5.2 \text{ Hz, C}_\text{R-NH}), 7.90 (1\text{H, d, } J=1.8 \text{ Hz, C}_\text{N-NH}), 7.46 (1\text{H, s, triazole CH}), 7.29-7.08 (5\text{H, m, } 5 \times \text{ArCH}), \\
5.60 (1\text{H, dd, } J=10.5 \text{ Hz and } 4.7 \text{ Hz, H}_\text{α}), 4.15-4.04 (1\text{H, m, H}_\text{ε}), 3.84-3.73 (1\text{H, m, H}_\text{α}), 3.67-3.53 (2\text{H, m, H}_\text{ε}), 3.53-3.35 (1\text{H, m, H}_\text{α}), \\
2.96-2.84 (1\text{H, m, H}_\text{ε}), 2.84-2.64 (1\text{H, m, COCH}_2\text{CH}_2), 3.69-3.51 (2\text{H, m, H}_\text{α}), 1.81-1.56 (2\text{H, m, H}_\text{ε}), \\
1.52-1.39 (1\text{H, m, H}_\text{α}), 1.39-1.16 (3\text{H, m, H}_\text{δ} \text{ and H}_\text{γ}), \delta_\text{C}/\text{ppm} (125 \text{ MHz, d}_6\text{-DMSO}): 171.4 (C=OCH}_2\text{CH}_2), 167.9 (C=O or C=O), 167.5 (C=O), 166.2 (C=O or C=O), 138.2 (triazole C), 137.3 (ArC), 131.0 (triazole CH), 128.7 (ArCH), 128.2 (ArCH), 126.5 (ArCH), 61.6 (C=O), 54.4 (C=O), 52.7 (Cα), 41.7 (Cβ), 36.1 (Cγ), 35.7 (Cδ), 32.8 (COCH}_2\text{CH}_2), 31.7 (Cγ), 28.4 (Cδ), 19.4 (Cε), 18.7 (COCH}_2\text{CH}_2). \nu_{\text{max}}/\text{cm}^{-1}: 3239 (w, N-H), 2924 (m, C-H), 1650 (s, C=O str), 1544 (s, C=C). \text{HPLC (5-100\% ACN)} \text{ Rt 6.35 mins. HRMS (ESI+) m/z found } [\text{M+H}]^+ 468.2376, \text{C}_{23}\text{H}_{30}\text{N}_7\text{O}_4^+ \text{ required 468.2359 (Δ 2.3 ppm). } \left[\alpha\right]_{\text{D}}^{25} = -10.0 (c 0.235, \text{MeOH}).

D1z

\[
\text{HPLC (5-25\% ACN)} \text{ Rt 5.10 mins. LCMS [M+H]^+ 377.27.}
\]

D2y

\[
\text{HPLC (5-45\% ACN)} \text{ Rt 3.36 mins. LCMS [M+H]^+ 349.13.}
\]

D3y

\[
\text{HPLC (5-45\% ACN)} \text{ Rt 4.45 mins. LCMS [M+H]^+ 363.31.}
\]

D7z

\[
\text{HPLC (5-45\% ACN)} \text{ Rt 4.00 mins. LCMS [M+H]^+ 349.14.}
\]
D8y	![Chemical Structure](attachment:image1)	GP6	41%	74%	**HPLC** (5-45% ACN) *Rt* 3.36 mins. **LCMS** [M+H]^+ 335.10.
D8z	![Chemical Structure](attachment:image2)	GP6	33%	72%	**HPLC** (5-100% ACN) *Rt* 3.39 mins. **LCMS** [M+H]^+ 335.13.
D9z	![Chemical Structure](attachment:image3)	GP6	21%	75%	**HPLC** (5-100% ACN) *Rt* 3.54 mins. **LCMS** [M+H]^+ 335.13.
D11y	![Chemical Structure](attachment:image4)	GP6	32%	66%	**HPLC** (5-100% ACN) *Rt* 2.99 mins. **LCMS** [M+H]^+ 336.10.
D13z	![Chemical Structure](attachment:image5)	GP6	9%	78%	**HPLC** (5-100% ACN) *Rt* 5.30 mins. **LCMS** [M+H]^+ 411.13.
D14y	![Chemical Structure](attachment:image6)	GP6	87%	90%	\(\nu_{\text{max}}/\text{cm}^{-1}: 3228, 2924, 2859, 1653, 1549, 1452, 1333, 1270, 1055.\) **HPLC** (5-80% ACN) *Rt* 3.84 mins. **HRMS** (ESI+) *m/z* found [M+H]^+ 363.2140, \(\text{C}_{17}\text{H}_{27}\text{N}_{6}\text{O}_3\) required 363.2145.
Code	Structure	δH/δC ppm (500 MHz, d$_6$-DMSO and 125 MHz, d$_6$-DMSO), νmax/cm$^{-1}$, HPLC, LCMS	Notes		
------	-----------	---	-------		
D14z	![Structure](attachment:structure14z.png)	δH: 8.01 (1H, d, J=1.8 Hz), 7.97 (1H, s), 7.87 (1H, t, J=5.6 Hz), 7.52 (1H, s), 4.30 (2H, t, J=6.4 Hz), 3.94-3.90 (1H, m), 3.88-3.83 (1H, m), 3.19-3.01 (2H, m), 2.91-2.80 (2H, m), 2.40-2.33 (2H, m), 1.87-1.71 (4H, m), 1.68-1.58 (1H, m), 1.57-1.47 (1H, m), 1.44-0.98 (6H, m). δC: 170.8, 167.3, 167.2, 136.7, 131.5, 53.9, 53.9, 46.6, 38.4, 34.7, 32.3, 31.6, 30.1, 28.4, 20.8, 20.3, 19.9.	HPLC (5-80% ACN) Rt 3.66 mins. HRMS (ESI+) m/z found [M+Na$^+$] 385.1966, C$_{17}$H$_{26}$N$_6$O$_3$Na$^+$ required 385.1964.		
E1y	![Structure](attachment:structure1y.png)	GP6	HPLC (5-45% ACN) Rt 4.06 mins. LCMS [M+H]$^+$ 363.23.		
E1z	![Structure](attachment:structure1z.png)	GP6	90%	HPLC (5-45% ACN) Rt 4.12 mins. LCMS [M+H]$^+$ 363.16.	
E3z	![Structure](attachment:structure3z.png)	GP6	32%	HPLC (5-45% ACN) Rt 3.60 mins. LCMS [M+H]$^+$ 349.14.	
E6z	![Structure](attachment:structure6z.png)	GP6	16%	HPLC (5-100% ACN) Rt 4.59 mins. LCMS [M+H]$^+$ 383.10.	
E7z	![Structure](attachment:structure7z.png)	GP6	30%	HPLC (5-45% ACN) Rt 3.36 mins. LCMS [M+H]$^+$ 335.13.	
E8z	![Chemical Structure]	GP6	34%	84%	**HPLC** (5-45% ACN) *Rt* 2.65 mins. **LCMS** [M+H]^+ 321.12.
E9z	![Chemical Structure]	GP6	36%	86%	**HPLC** (5-45% ACN) *Rt* 3.16 mins. **LCMS** [M+H]^+ 321.12.
E11z	![Chemical Structure]	GP6	22%	74%	**HPLC** (5-100% ACN) *Rt* 2.82 mins. **LCMS** [M+H]^+ 322.17.
E13z	![Chemical Structure]	GP6	42%	87%	**HPLC** (5-100% ACN) *Rt* 5.06 mins. **LCMS** [M+H]^+ 397.12.
E14z	![Chemical Structure]	GP6	23%	90%	**HPLC** (5-45% ACN) *Rt* 3.43 mins. **LCMS** [M+H]^+ 349.14.
16. Preparation of B/C/C/P and B/C/C/C/P DKPs

Compound	Method, Yield (%), Purity (%)	Analysis
H2z	GP6 72%, 73%	HPLC (5-45% ACN) Rt 5.19 mins. LCMS [M+H]^+ 478.09.
H3z	GP6 44%, 71%	HPLC (5-45% ACN) Rt 5.78 mins. LCMS [M+H]^+ 492.11.
H14z	GP6 57%, 89%	HPLC (5-45% ACN) Rt 5.49 mins. LCMS [M+H]^+ 492.26.
17. Chemoinformatic analysis

Principal component analysis

Principal component analysis (PCA) was carried out using the Molecular Operating Environment (MOE) software package. A total of 15 physicochemical properties (Table S1) were obtained for 222 macrocyclic DOS library members and established reference sets of 40 top-selling brand-name drugs, 60 diverse natural products and 24 macrocyclic natural products.

The summary of the PCA is shown in Table S2. The first three principal components account for 87.3% of the variance in the dataset and were used to generate Figures 3a-c in the manuscript.

Table S1. Physicochemical properties used in PCA

Parameter	Description
a_acc	number of H-bond acceptor atoms
a_aro	number of aromatic atoms
a_don	number of H-bond donor atoms
a_nN	number of nitrogen atoms
a_nO	number of oxygen atoms
b_rotN	number of rotatable bonds
chiral	number of chiral centers
KierFlex	molecular flexibility
logP(o/w)	log octanol/water partition coefficient
log S	log solubility in water
mr	molar refractivity
rings	number of rings
SlogP	log octanol/water partition coefficient
TPSA	topological polar surface area
Weight	molecular weight
Table S2. Standard deviation and contribution of each principal component to variance

PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
2.77	1.89	1.34	0.95	0.63	0.43	0.36	0.32	0.24	0.18
5	5	2	0	8	1	3	0	2	9
0.51	0.64	0.12	0.06	0.02	0.01	0.00	0.00	0.00	0.00
4	0	0	0	7	2	9	7	4	2
0.51	0.75	0.87	0.93	0.96	0.97	0.98	0.98	0.99	0.99
4	3	3	3	0	3	2	8	2	5

Table S3. Component loadings for PCA of macrocycle library with established reference sets

Parameter	PC1	PC2	PC3
a_acc	0.038066	0.017781	-0.016773
a_aro	0.004001	0.005698	0.097251
a_don	0.041175	0.051005	-0.009315
a_nN	0.011825	0.073803	0.072352
a_nO	0.033946	-0.003718	-0.041977
b_rotN	0.018641	-0.011356	-0.017137
chiral	0.025172	-0.019564	-0.043522
KierFlex	0.027100	-0.003892	-0.030649
logP(o/w)	0.003847	-0.106012	0.004302
log S	-0.038518	0.084259	-0.073837
mr	0.026018	-0.005560	0.015126
rings	0.045324	-0.046568	0.262761
SlogP	0.000576	-0.122025	0.037147
TPSA	0.001592	0.001856	-0.000087
Weight	0.000677	-0.000057	0.000261
PCA Data:

DRUGS	PC1	PC2	PC3
Lipitor	0.44035336	-2.0922842	2.1781542
Nexium	-0.56550181	-0.68104434	1.0659434
Prevacid	-0.59435779	-0.92088705	1.1955206
Flonase	-0.14596421	-2.0885949	-0.57547647
Serevent	-0.061018318	-1.4764915	0.034017656
Singulair	0.29012862	-3.1157372	2.7073617
Effexor	-1.0479238	-1.1570442	-0.28889498
Plavix	-0.98261434	-1.5518504	0.69276941
Zocor	-0.36533195	-1.9022555	-0.87527949
Norvasc	-0.36513421	-0.94790769	-0.38823062
Lexapro	-0.90844232	-1.1583214	0.9173618
Seroquel	-0.61090952	-1.1148515	1.1556581
Protonix	-0.40576226	-0.6302695	0.93926328
Ambien	-1.0581216	-1.1308053	0.90474354
Actos	-0.61026462	-1.2560296	0.73286134
Zoloft	-1.0674506	-1.9562593	1.008045
Wellbutrin	-1.2362236	-1.2577442	-0.39570323
Avandia	-0.62388283	-0.96976894	0.7288534
Risperdal	-0.63164562	-1.2829981	1.3195344
Zyprexa	-1.0861667	-1.034258	0.81028336
Topamax	-0.4540301	-0.46410626	-1.1624413
Toprol	-0.87203783	-0.68965971	-0.87318957
Zetia	-0.44707555	-1.8197278	1.6259458
Fosamax	-0.56960052	1.4469109	-2.4331801
Name	PC1	PC2	PC3
--------------	---------	---------	---------
Abilify	-0.48024434	-1.6537925	1.2831823
Levaquin	-0.68553865	-0.47166136	0.31969854
Lamictal	-1.0722635	-0.50426841	0.85313201
Celebrex	-0.69964743	-1.2551666	1.5841386
Benazepril	-0.1722537	-1.0853065	0.47855175
Zyrtec	-0.47942379	-1.2031868	0.61839736
Coreg	-0.20518997	-1.339842	1.62435
Valtrex	-0.49919569	0.38027838	-0.43706414
Adderall	-1.6239618	-0.65025598	-0.53189367
Aciphex	-0.45343667	-0.75192112	1.0078642
Cymbalta	-0.92316884	-1.7507811	1.1712037
Crestor	0.14056866	-0.57007229	0.1367476
Diovan	0.054656371	-1.2894883	1.4949378
Tricor	-0.71295768	-1.9348887	0.51353991
Concerta	-1.1811528	-0.94267678	-0.35627496
Imitrex	-0.96518046	-0.42220587	0.019565227

NATURAL PRODUCTS

Name	PC1	PC2	PC3	
Forskolin	-0.22793074	-0.91015011	-1.172423	
SQ26180	-0.87785536	0.66188121	-1.7100738	
CephamycinC	0.33941141	0.94354922	-1.575893	
Thienamycin	-0.76859432	0.17549638	-1.2966894	
Artemisinin	-0.84689111	-1.4530129	-0.63662207	
Coformycin	-0.54190427	0.84613544	-0.64143258	
Arglabin	-1.1851399	-1.1351717	-0.51894414	
Mizorbine	-0.59756994	1.015848	-1.0570055	
Drug	Value 1	Value 2	Value 3	
--------------------	-------------	-------------	-------------	
Compactin	-0.44222924	-1.6801987	-0.96994025	
Bestatin	-0.46068856	-0.25168779	-0.91969138	
Plaurotol	-0.77315277	-1.5268536	-1.451203	
Spergualin	0.23765998	0.91931868	-2.0552449	
Taxol	1.9018565	-1.8936352	1.5840536	
Rapamycin	1.914791	-2.4318838	-1.1371188	
AvermectinB1a	1.9849749	-2.4668901	-0.73449647	
PseudomonicAcidA	0.61720502	-1.125052	-1.9112897	
Daptomycin	6.8387823	3.143348	-0.37000597	
MidecamycinA1	1.8331497	-1.3506995	-2.1281457	
EchinocandinB	3.58724	0.34384269	-0.91759968	
CalicheamicinG1	4.5329742	-2.1788938	-0.43363619	
Valdamicin	1.0950502	2.0700731	-2.728308	
CyclosporinA	3.0024731	-1.2290826	-1.1754317	
FK506	1.5112494	-1.9028938	-1.1877556	
Lipstatin	0.33398086	-2.8370755	-1.2085571	
Geldanamycin	0.37187731	-0.8260624	-1.2769804	
Actinonin	-0.15347186	-0.45159864	-1.5673654	
Discodermolide	0.88530988	-1.6108406	-2.080821	
Monensin	1.3066674	-2.1165187	-1.20472	
CalyculinA	3.1664143	-1.1070825	-1.4811376	
AmphotericinB	2.7472551	-0.2217932	-2.4432735	
Adriamycin	0.75543278	-0.17172959	0.35423809	
GinkgolideB	0.076751307	-0.42398295	-0.68785477	
PhorbolMA	0.78936607	-2.4432287	-0.67789841	
Vancomycin	5.5328674	0.41190192	3.1565979	
TrapoxinB	0.52696449	-1.0188068	1.0778458	
Vincristine	1.4792458	-1.6977637	2.2975564	
Drug	Value 1	Value 2	Value 3	
---------------------	-----------	-----------	-----------	
Colchicine	-0.42637482	-1.0862933	-0.1127376	
Trichostatin	-0.83681005	-0.86081833	-0.52208447	
Fumagillin	0.074679755	-1.7961711	-0.92736107	
Staurosporine	-0.1086929	-1.9755068	3.2671399	
Erythromycin A	1.5086728	-0.96488166	2.0675776	
Streptomycin	1.5435889	2.7522595	-2.2994957	
Penicillin G	-0.61026227	-0.60710198	-0.1307178	
Zaragozic Ac DA	1.706357	-1.4598362	-1.0643396	
Talaromycin B	-1.2211469	-1.6863494	-0.92124099	
Spongistatin 1	3.7285621	-2.6810601	-1.2223319	
Radicicol	-0.56284487	-1.185524	-0.17036377	
Salicylihalamide A	-0.1880146	-1.5681546	-0.31392559	
Brevetoxin B	2.0220592	-2.9930613	0.54134393	
Rifamycin B	1.5982065	-1.4188566	-0.030950295	
Quinine	-0.76435798	-1.1905845	0.68034565	
Mycobactin S	2.098506	-2.4474444	-0.70494437	
Telomestatin	0.63835406	-1.2211164	5.5911064	
Duocarmycin A	0.20226467	-0.92060089	1.3871363	
Bleomycin	6.0183692	4.0021272	0.19731249	
Brefeldin A	-0.94019729	-0.88748139	-1.2230606	
Cytochalasin B	-0.051231857	-1.5982953	0.16306159	
Epothilone A	-0.087701909	-1.3141584	-0.46590239	
Apoptolidin	3.6647611	-1.7290736	-2.2622764	
Lactacystin	-0.09661448	0.32651547	-1.9021096	
MACROCYCLIC NATURAL PRODUCTS	PC1	PC2	PC3	
------------------------------	---------	---------	---------	
O1[C@@H][C][C@@H][2O][C@@H][2][C=C][C=C](O)(CC1=O)C	-1.254164	-0.48006925	-1.288004	
O1[C@@H][C][C@@H][2O][C@@H][2][C=C][O](CC=C)[C=C](O)CC1=O)C	-1.1514407	-0.23300733	-1.3959749	
O1[C@@H][CC][C@@H][O]=C=C[C=C][O](CC1=O)C	-1.2388685	-0.33497229	-1.5778235	
O1[C@@H][C][C@@H][O]=C[C=C][O]CC1=O)C	-1.0686992	0.012939053	-1.7640325	
O1[C@@H][CC][C=C][=O]CC1=O)C	-1.4776767	-0.76367152	-1.2776806	
O1[C@@H][C]=C[C=C][O]CC1=O)CC2=O	-1.4233081	-0.68217933	-1.1074992	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.4533968	-0.83640671	-1.2657919	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.4869215	-0.75560492	-1.266059	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.5170075	-0.60832649	-1.3510424	
O1[C@@H][CCC][C@@H][O]CC1=O)CC1=O)C	-0.53092515	-1.0286188	-1.5801451	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.1146244	-0.66072041	-1.485773	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.1462444	-0.66072041	-1.485773	
O1[C@@H][C][O]CC1=O)CC1=O)C	-1.1839074	-0.77925378	-1.3672585	
O1[C@@H][C][O]CC1=O)CC1=O)C	-0.88771194	-0.99940687	-0.4087677	
O1[C@@H][C][O]CC1=O)CC1=O)C	0.6509608	-2.191673	-1.2758291	
O1[C@@H][C][O]CC1=O)CC1=O)C	-0.001966619	-1.1076781	-1.5600653	
O1[C@@H][C][O]CC1=O)CC1=O)C	0.01451358	-1.0140181	-1.6557032	
O1[C@@H][C][O]CC1=O)CC1=O)C	0.39372656	-1.6928641	-1.5938256	
DOS COMPOUND LIBRARY	PC1	PC2	PC3	
-----------------------	----------	----------	-----------	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCc2nnn(c2)[C@H]1Cc1ccccc1)C(OC)=O	0.24811314	0.068257265	0.58580607	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCc2n(nnc2)[C@H]1Cc1ccccc1)C(OC)=O	0.15436238	0.30244216	0.5365209	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCC(=O)CCc2nnn(c2)[C@H]1Cc1ccccc1)C(OC)=O	0.20108035	0.18537183	0.56135368	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCC(=O)CCc2n(nnc2)[C@H]1Cc1ccccc1)C(OC)=O	0.20118691	0.18534905	0.56141567	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCC(=O)CCc2nn(c2)[C@H]1Cc1ccccc1)C(OC)=O	0.2564576	0.3840912	0.62051564	
O=C1NCCCC[C@H](NC(=O)[C@@H](N)CCCCC(=O)CCc2n(nnc2)[C@H]1Cc1ccccc1)C(OC)=O	0.25656417	0.38406843	0.62057757	
Chemical Structure	E	S	D	
---	---	-----------	------------	
O=C1NCCCC[C@H]2NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1	0.05908246	0.30770487	1.0424241	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.20995161	0.50113326	0.59545267	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.21005815	0.50111049	0.59545267	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.014723856	0.42443934	1.01485	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.34129611	-0.10761018	1.5972095	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.15282303	-0.18526225	2.0087402	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.1546892	0.30241939	0.5365209	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.042385653	0.2259711	0.95758951	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.042279106	0.22594833	0.95765144	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.10797069	0.4194667	0.51129252	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.1087724	0.41944394	0.51135445	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.086480334	0.34265915	0.92992556	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.10797069	0.4194667	0.51129252	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.10807724	0.41944394	0.51135445	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.086586878	0.34268191	0.92986357	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.086480334	0.34265915	0.92992556	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.0619171	0.53644395	0.48565236	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.062023625	0.53642118	0.48571429	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	-0.13031098	0.45931816	0.90174609	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.16377425	0.61812925	0.56986445	
O=C1NCCCC[C@H][NC(=O)[C@@H](NC2=O)CCNCN(=O)NCc2nn2[C@@H](NC2=O)CCc2n(nnc2)[C@H]1Cc1cccc1]C(OC)=O	0.1638808	0.61810648	0.56992644	
Chemical Structure	LogP	LogS	logD	
---	-------	-------	--------	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)NCc2nnn(c2)CCNC(=O)CCCc2nnn(c2)...	-0.29724285	0.54112345	0.98683387	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)NCc2nnn(c2)CCNC(=O)CCCc2nnn(c2)...	0.11793721	0.7350778	0.5439207	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.38631293	-0.22442926	1.6237961	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.38641948	-0.22445203	1.6238581	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.19610819	-0.30184108	2.0374911	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.10797069	0.4194667	0.5112952	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.086586878	0.34268191	0.92986357	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.086480334	0.34265915	0.92992556	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.016213611	0.65337223	0.45958358	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.01632016	0.65334946	0.45964554	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.13786697	0.57594681	0.87303478	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.13736043	0.57592404	0.8730967	
O=C1NCCCN(=O)[C@@H](NC(=O)(C@@H)(N)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.0619171	0.53643953	0.48565236	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.062023625	0.53642118	0.48571429	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.13041754	0.45934093	0.90168411	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	-0.13031098	0.45931816	0.90174609	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.11793721	0.7350778	0.5439207	
O=C1NCCCN(=O)[C@@H]2NC(=O)[C@@H](NC2=O)CCNC(=O)CCCcc3nnn(c3)]C1Cc1ccccc1(COC)=O	0.11804377	0.73505503	0.54398263	
Formula	logP	logS	logB	
---------	------	------	------	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.50608093	0.49165723	-0.63767248	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.5061875	0.49163446	-0.63761055	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.60840744	0.57326901	-0.55384022	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.60851395	0.57324624	-0.55377829	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.60851395	0.57324624	-0.55377829	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.64995313	0.13990319	-0.56715852	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	0.64995313	0.13990319	-0.56715852	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.34565976	0.70074946	0.58108586	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.34565976	0.70074946	0.58108586	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.38926807	0.81737649	0.55265558	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.38926807	0.81737649	0.55265558	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.40261495	0.34648278	-0.40704125	
O=C1N[\@H]1(CCC(=O)NCC[C@H](CCC(=O)NCC[C@H]1NC(OC(C)(C)C)=O)c(OC)=O)c(OC)=O	-0.60722136	0.27113587	0.023022361	
Formula	Energy	ZPE	CorrE	TolE
---------	--------	-----	-------	------
O=C1N[C@@H][Cc2ccc(-n3nnc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.4983004	0.5809564	-0.45440438	
O=C1N[C@@H][Cc2ccc(-n3nnc3NC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.49819386	0.58093363	-0.45434245	
O=C1N[C@@H][Cc2ccc(-n3nnc3CCC(=O)NC[C@@H]1N)c2]C(OC)=O	-0.6976793	0.50472921	-0.031315621	
O=C1N[C@@H][Cc2ccc(-n3nnc3CCC(=O)NC[C@@H]1N)c2]C(OC)=O	-0.45072392	0.46376085	-0.43049601	
O=C1N[C@@H][Cc2ccc(-n3ncc3CNC(=O)NC[C@@H]1N)c2]C(OC)=O	-0.65229815	0.38797906	-0.003874723	
O=C1N[C@@H][Cc2ccc(-n3nnc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.3959946	0.66257566	-0.37065896	
O=C1N[C@@H][Cc2ccc(-n3ncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.44337204	0.77975315	-0.39505053	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.4432655	0.77973038	-0.3949886	
O=C1N[C@@H][CCCCn2nnc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.4983004	0.5809564	-0.45440438	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.49819386	0.58093363	-0.45434245	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.69666141	0.50470644	-0.03125361	
O=C1N[C@@H][CCCCn2nnc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.54542726	0.69808894	-0.47885954	
O=C1N[C@@H][CCCCn2nnc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.54532069	0.69806617	-0.47879761	
O=C1N[C@@H][CCCCn2nnc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.7406149	0.62140614	-0.05939351	
O=C1N[C@@H][CCCCn2nnc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.74060839	0.62138337	-0.05933157	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.54532069	0.69806617	-0.47879761	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCCCC[C@@H]1N)c2]C(OC)=O	-0.5920794	0.81515503	-0.50389498	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.59197289	0.81513226	-0.503833	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.49018738	0.89684427	-0.4193361	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.49008083	0.8968215	-0.41987768	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.68342686	0.81987202	-0.002903873	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.53652281	1.0138686	-0.4452193	
O=C1N[C@@H][CCCCn2nncc3CCC(=O)NCC[C@@H]1N)c2]C(OC)=O	-0.53641623	1.0138458	-0.44535998	
Chemical Structure	W1	W2	RT	
--------------------	----	----	----	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.2677677	0.054265343	0.63504297	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45712849	-0.023261161	1.0476351	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45072392	0.46376085	-0.43049601	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45061737	0.46373808	-0.43043408	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45072392	0.38797906	-0.003874723	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45061737	0.46373808	-0.43043408	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.45061737	0.46373808	-0.43043408	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.65229815	0.38797906	-0.003874723	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.65219164	0.38795629	-0.003812783	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.65229815	0.38797906	-0.003874723	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54542726	0.69808894	-0.47885954	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54532069	0.69806617	-0.47879761	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.4983004	0.5809564	-0.45440438	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.49819386	0.58093363	-0.45434245	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.69666141	0.50470644	-0.031253861	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.44337204	0.77973515	-0.39505053	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.4432655	0.77973038	-0.3949886	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.49018738	0.89684427	-0.41993961	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.49008083	0.8968215	-0.41987768	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.35784873	0.28792951	0.5814532	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54220092	0.20968623	0.98830926	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54542726	0.69808894	-0.47885954	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54532069	0.69806617	-0.47879761	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.54220092	0.20968623	0.98830926	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.74060839	0.62138337	-0.05933157	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.5920794	0.81515503	-0.50389498	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.59197289	0.81513226	-0.503833	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.78401023	0.73798424	-0.088079214	
O=C1NC[C@@H]2NC(=O)[C@@H](NC2=O)CCCN2nncc2CC1	-0.5920794	0.81515503	-0.50389498	
Reaction	Energy	Force	Torque	
--	----------	----------	----------	
O=C1N[O@@H]([C@H]23ncc2CCC(=O)Ncc2ccc([C@H]1N)cc2)C(OC)	-0.59197289	0.81513226	-0.503833	
O=C1Nc2ccc([C@H]3NCC(=O)NCC([C@H]1N)c2)C(OC)	-0.78401023	0.73798424	-0.088079214	
O=C1N([O@@H][Cn2nncCCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.63823086	0.93215132	-0.52954662	
O=C1N([O@@H][CCn2nnc2CC(=O)NCC([O@@H]1N)c2)C(OC)	-0.63812435	0.93641281	-0.032016985	
O=C1N([O@@H][Cn2nncCCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.72643363	0.93641281	-0.032016985	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.69666141	0.50470644	-0.031253681	
O=C1N([O@@H][CCn2nnc2CC(=O)NCC([O@@H]1N)c2)C(OC)	-0.25666147	0.46332175	0.63636326	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.31324393	0.2647851	0.57900637	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.06376148	0.8526333	-0.2174801	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.18918927	0.81067997	-0.62461621	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.14101417	0.92796409	-0.64791197	
O=C1N([O@@H]([C@H]2NCC([O@@H]1N)c2)C(OC)	-0.18918927	0.39067657	-0.031253681	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.23767319	0.69369437	-0.60169977	
O=C1Nc2ccc([C@H]3NCC(=O)NCC([C@H]1N)c2)C(OC)	0.14101417	0.92796409	-0.64791197	
O=C1N([O@@H][Cn2nncCCC(=O)NCC([O@@H]1N)c2)C(OC)	-0.06376148	0.8526333	-0.2174801	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.18918927	0.81067997	-0.62461621	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.14101417	0.92796409	-0.64791197	
O=C1N([O@@H][CCn2nnc2CCC(=O)NCC([O@@H]1N)c2)C(OC)	0.23767319	0.69369437	-0.60169977	
Structure	Energy (kcal/mol)	ZPE (kcal/mol)	Thermal (kcal/mol)	
--	-------------------	----------------	--------------------	
O=C1N[C@@H](Cc2cc(n3nncc3CCCCC(=O)NCCCCC(C@@H)1N)ccc2)C(OC)=O	0.093161009	1.0452033	-0.67160493	
O=C1N[C@@H](CCC(=O)N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)1N)C(OC)=O	0.045643277	1.162396	-0.69571394	
O=C1N[C@@H](CCC(=O)N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)1N)C(OC)=O	0.14783782	1.2440351	-0.61193961	
O=C1N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)2NC(=O)(C@@H)(NC2=O)CC1)C(OC)=O	0.1004501	1.3612193	-0.6364463	
O=C1N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)2NC(=O)(C@@H)(NC2=O)CC1)C(OC)=O	0.1005564	1.3611965	-0.63638437	
O=C1N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)2NC(=O)(C@@H)(NC2=O)CC1)C(OC)=O	0.13554282	0.64209908	-0.592893	
O=C1N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)2NC(=O)(C@@H)(NC2=O)CC1)C(OC)=O	0.13564937	0.64207631	-0.59283108	
O=C1N[C@@H](CCn2nncc2CCCC(=O)NCCCCC(C@@H)2NC(=O)(C@@H)(NC2=O)CC1)C(OC)=O	-0.01794026	0.7356863	-0.19147816	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	0.031486288	0.38723004	0.58770502	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	0.031592838	0.38720727	0.58776695	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	0.51395273	0.49620727	0.53745496	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	0.4197062	0.73046649	0.48865402	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	1.1532365	0.23998451	1.5045735	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	1.1070197	0.35693272	1.4791632	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	0.68571883	0.1086913	1.5765334	
O=C1N[C@@H](CCn2nncc2CCCC(=O)Nc2ccc(C[C@@H]1N)C(OC)=O	1.0726154	0.45212886	1.4788277	
Principal moment of inertia calculations

We compared the molecular shape diversity of our DOS library with the same reference sets of 124 compounds used in the PCA.

The LowModeMD conformational search algorithm in the MOE software package11 was used to generate low-energy 3D conformers for each compound. The MMFF94x force field was used with the generalized Born solvation model for the minimizations. Sampling and minimization parameters were implemented as follows:

- Rejection Limit: 150
- Iteration Limit: 10000
- MM Iteration Limit: 500
- RMS Gradient: 0.005
- RMSD Limit: 0.15
- Energy Window: 0.01
- Refinement Conformation Limit: 300

Only the conformer with the lowest energy was retained for principal moment of inertia (PMI) calculations. Normalized PMI ratios (I_1/I_3 and I_2/I_3) of these conformers were obtained from MOE and then plotted on a triangular graph, with the coordinates (0,1), (0.5,0.5) and (1,1) representing a perfect rod, disc and sphere respectively (Figure Xd).
PMI data:

DRUGS:

Compound	npr1	npr2
rod	0.000000	0.500000
sphere	1.000000	1.000000
Discodermolide	0.500000	0.500000
Aplify	0.205654	0.778329
Aciphex	0.075929	0.980037
Aciphex	0.082531	0.982998
Actos	0.463255	0.696069
Adderall	0.187001	0.927327
Ambien	0.377477	0.680460
Avandia	0.375426	0.822949
Benazepril	0.445433	0.816395
Celebrex	0.363167	0.687574
Concerta	0.429713	0.689608
Coreg	0.656530	0.721788
Crestor	0.270494	0.811394
Cymbalta	0.396282	0.751873
Diovan	0.275662	0.849159
Effexor	0.353232	0.802320
Flonase	0.253542	0.963402
Fosamax	0.677628	0.780477
Imitrex	0.247709	0.819678
Lamictal	0.229390	0.911644
Levaquin	0.190810	0.844335
Lexapro	0.455280	0.723125
Lipitor	0.529854	0.809632
Nexium	0.275484	0.797230
Norvasc	0.427443	0.811931
Plavix	0.296689	0.880172
Prevacid	0.099878	0.966122
Prevacid	0.303180	0.886000
Protonix	0.089751	0.955345
Protonix	0.094608	0.959908
Risperdal	0.090427	0.936130
Serevent	0.509771	0.760083
Seroquel	0.165779	0.929957
Singulair	0.272087	0.916115
Topamax	0.351737	0.800199
Toprol	0.136820	0.913152
Tricor	0.207635	0.830835
Valtrex	0.287954	0.751349
Wellbutrin	0.195106	0.948008
Zetia	0.246216	0.805541
Drug	AVG 1	AVG 2
------------	--------	--------
Zocor	0.403071	0.711209
Zoloft	0.299490	0.953590
Zyprexa	0.348574	0.692557
Zyrtec	0.199646	0.836693
Drug-AVG	0.300776	0.834714

NATURAL PRODUCTS:

Compound	npr1	npr2
Actinonin	0.314978	0.841802
Adriamycin	0.283220	0.800172
AmphotericinB	0.215551	0.847453
Apoptolidin	0.301694	0.830875
Bleomycin	0.404781	0.826205
BrefeldinA	0.255142	0.817388
BrevetoxinB	0.149647	0.899486
CalyculinA	0.442236	0.896401
Colchicine	0.395296	0.837965
Colchicine	0.258193	0.846521
Colchicine	0.458247	0.773003
Colchicine	0.513293	0.755147
CytochalasinB	0.431674	0.740608
Discodermolide	0.182128	0.981632
DuocarmycinA	0.104513	0.945885
EpothiloneA	0.447710	0.804309
ErythromycinA	0.485996	0.813810
Fumagillin	0.066479	0.974218
Geldanamycin	0.369201	0.725345
Geldanamycin	0.392818	0.769442
GinkgolideB	0.363537	0.879045
Lactacystin	0.478299	0.938709
Monensin	0.221267	0.914230
MycobactinS	0.567410	0.787169
PenicillinG	0.227679	0.840740
PhorbolMA	0.403734	0.770927
PhorbolMA	0.512005	0.787906
Radicicol	0.490589	0.823386
RifamycinB	0.534830	0.679088
RifamycinB	0.544966	0.674059
RifamycinB	0.618686	0.762072
RifamycinB	0.524795	0.868426
RifamycinB	0.648821	0.813721
RifamycinB	0.678080	0.844921
RifamycinB	0.627544	0.817624
RifamycinB	0.601820	0.886052
SalicylihalamideA	0.191225	0.848920
Staurosporine	0.464212	0.664055

128
Compound	Nat. Prod.	AVG
Streptomycin	0.335744	0.786998
TalaromycinB	0.186426	0.935125
Telomestatin	0.496427	0.509642
TrapoxinB	0.460215	0.680871
Trichostatin	0.288807	0.802339
Vancomycin	0.516891	0.626096
Vincristine	0.482176	0.946784
Quinine	0.303785	0.834042
Spongistatin1	0.428667	0.817984
Zaragozic Acid A	0.287707	0.920770
Aeglabin	0.402854	0.721308
Artemisinin	0.541282	0.644874
Bestatin	0.297570	0.838998
Cephamycin C	0.488698	0.856650
Coformycin	0.298204	0.821609
Compactin	0.430983	0.716564
Forskolin	0.520873	0.688349
Mizoribine	0.239424	0.857007
Plaunotol	0.460051	0.900390
Spergualin	0.541169	0.946050
SQ26180	0.435835	0.794101
Thienamycin	0.476680	0.854387
Avermectin B1a	0.278083	0.812448
Calicheamicin	0.227585	0.920330
Cyclosporin A	0.418415	0.935663
Daptomycin	0.762741	0.908347
Echinocandin B	0.317238	0.945521
FK506	0.377179	0.761235
Lipstatin	0.462998	0.738670
Midecamycin A1	0.325184	0.904263
Pseudomonic Acid A	0.380836	0.748719
Rapamycin	0.445581	0.764618
Taxol	0.437027	0.832107
Validamycin	0.451444	0.807012
Nat. Prod.-AVG	**0.402459**	**0.818175**
MACROCYCLIC NATURAL PRODUCTS:

Compound	npr1	npr2
decarestrictineA1	0.469217	0.640137
decarestrictineB	0.610153	0.676987
decarestrictineC1	0.523140	0.616675
decarestrictineD	0.460594	0.707181
diplodialideA	0.395167	0.735937
jasmineketolactone	0.361150	0.799690
phoracantholideI	0.533624	0.723704
phoracantholideJ	0.463326	0.712112
pinolidoxin	0.297314	0.861372
pyrenolideA	0.343546	0.781822
ferrulactone1	0.560992	0.709680
'2,4,6,8-tetramethyl-3,4-dihydroxydec-8(9)-enolide'	0.577023	0.641499
apicularenA	0.354153	0.885766
cladospolideA	0.320632	0.796694
cladospolideB	0.438580	0.721334
cladospolideD	0.377547	0.753806
curvularin	0.303779	0.797272
lyngbouilloside	0.249436	0.959705
methymycin	0.436257	0.864653
neomethymycin	0.496348	0.948657
pladienolideB	0.134666	0.972028
fluvirucinA1	0.243234	0.862219
hypothemycin	0.329504	0.776135
iriomoteolide3a	0.277092	0.789016
DOS COMPOUND LIBRARY:

Compound	mseq	E	npr1	npr2
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	1	-18.579687	0.49725053	0.74374086
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	2	-14.322118	0.60735232	0.73507661
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	3	-3.2473774	0.36002895	0.7288464
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	4	-0.17650503	0.41468045	0.74923283
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	5	-19.520784	0.31402269	0.83290458
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	6	-9.6214275	0.37753254	0.72670829
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	7	-9.8396349	0.63542295	0.85442364
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	8	-1.8342946	0.51106262	0.76519442
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	9	-18.378744	0.34596333	0.74453593
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	10	-11.323607	0.50315166	0.87528473
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	11	-4.5649004	0.5886426	0.7012735
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	12	3.5529692	0.46205592	0.77413642
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	13	-88.543777	0.44779876	0.69951922
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	14	-108.15442	0.38272107	0.86493093
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	15	-96.003441	0.33027884	0.84070128
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	16	-96.254021	0.55230206	0.85025734
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	17	-114.26881	0.29692572	0.8412727
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	18	-94.35981	0.41035461	0.84274638
O=C1NCCCC[C@H]2N[C(=O)]C[OHH](N)CCCCNC(O)CCCCCnnn(c2)[C=H]1Cc1ccccc1(C	19	21.7721	0.37631527	0.85723019
Chemical Structure	LogP	logD	logB	
--------------------	------	------	------	
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc2	20	32.2103	0.4299	0.9097
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	21	-20.42511	0.62381011	0.7540288
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	22	-22.050838	0.37934071	0.83368534
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	23	-7.3923335	0.2720947	0.85539728
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	24	-6.8267436	0.39542383	0.96092379
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	25	-7.3923335	0.2720947	0.85539728
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	26	-16.879242	0.39819816	0.94482762
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	27	-2.6672537	0.54260963	0.87756228
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	28	0.34442022	0.41999263	0.78562939
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	29	6.9792137	0.36260137	0.82622057
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	30	9.1514597	0.39401668	0.75762069
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	31	14.207901	0.51528609	0.79837269
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	32	-4.9668097	0.45067513	0.68744051
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc3n(nc3)]C@H)1Cc1ccc1cc1][C(OC)]=O	33	4.542604	0.42529106	0.89633834
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	34	11.954076	0.30352968	0.89746457
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	35	-91.403183	0.4733561	0.6595912
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc3n(nc3)]C@H)1Cc1ccc1cc1][C(OC)]=O	36	-117.00694	0.29085389	0.92186409
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	37	-101.00074	0.35293689	0.93048453
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	38	-72.761948	0.32672498	0.91003609
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc2nn(nc2)[C@H]1Cc1ccc1cc1][C(OC)]=O	39	-94.11911	0.29713649	0.88092822
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	40	-64.506279	0.27160886	0.84741575
O=C1NCCCC[C@H]2NC(=O)CC2ccc(NC(=O)CCc3n(nc3)]C@H)1Cc1ccc1cc1	41	-84.860443	0.29323732	0.93158513
O=C1NCCCC[C@H][NC(=O)C@@H][N]C(CN(O)CCc3n(nc3)]C@H)1Cc1ccc1cc1][C(OC)]=O	42	16.861866	0.42829001	0.97634572
O=C1NCNC[C@@H](N)CCc2nnn(c2)[C@H]1Cc1ccc1c1	133	20.141994	0.36281759	0.88496989
O=C1NCNC[C@@H]2NC(=O)[C@@H](N)CCc2nnn(c2)[C@H]1Cc1ccc1c1	43	30.216309	0.48582417	0.84051621
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1(C)(O)=O	44	-5.4302721	0.4966419	0.64285988
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1(C)(O)=O	45	-3.4149508	0.5272125	0.79831368
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	46	9.2347794	0.34794316	0.79531246
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	47	12.712286	0.57459515	0.84453958
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	48	14.881308	0.37162387	0.76978368
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	49	-17.769306	0.5007661	0.6696705
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	50	-6.6144142	0.42122838	0.83994621
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	51	4.2219515	0.36738986	0.78082758
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	52	-82.05674	0.54875678	0.64977336
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	53	-12.096288	0.56741917	0.65458477
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	54	-11.137595	0.54705954	0.85922724
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	55	6.9486489	0.31544626	0.79178888
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	56	-12.13857	0.56426167	0.64529794
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	57	-82.05674	0.54875678	0.64977336
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	58	-102.69968	0.42496893	0.80071694
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	59	-63.343781	0.37705129	0.751553
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	60	-82.77709	0.58810478	0.7517092
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	61	-80.352592	0.39169192	0.87295389
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	62	-104.75678	0.47762802	0.94119376
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	63	-63.992599	0.31471997	0.83503079
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	64	-9.718503	0.47863344	0.64831448
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	65	-8.3961773	0.60411292	0.67564666
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	66	11.761711	0.35096869	0.84563184
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	67	-18.718	0.511	0.5932
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	68	-8.4456005	0.4308047	0.86673069
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	69	6.9916992	0.30446689	0.82000983
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	70	17.265985	0.40353775	0.7802431
O=C1NC[C@H](N)CCNC(=O)CCc2nnn(c2)[C@H]1Cc1ccc1c1	71	11.222864	0.43740579	0.68413889
Chemical Structure	Energy (kcal/mol)	Enthalpy (kcal/mol)	Entropy (cal/mol K)	
--------------------	------------------	---------------------	--------------------	
O=C1NC[[@H](NC(=O)CCc2n(ncn2)[@H]1Cc1ccc1)C(OC)=O	72	10.067511	0.41724644	0.87867606
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	73	2.54427121	0.35860908	0.87867606
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	74	17.209806	0.61315691	0.73103625
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	75	17.272606	0.34479324	0.83280057
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	76	17.272606	0.33758074	0.90776217
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	77	17.272606	0.41697910	0.66488814
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	78	17.272606	0.37090600	0.88365996
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	79	17.272606	0.45645005	0.63577461
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	80	17.272606	0.45334679	0.83441211
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	81	17.272606	0.58475274	0.85370725
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	82	17.272606	0.43904787	0.82960278
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	83	17.272606	0.44628623	0.68228304
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	84	17.272606	0.56439245	0.80527276
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	85	17.272606	0.45346797	0.83441211
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	86	17.272606	0.38330805	0.86330497
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	87	17.272606	0.56439245	0.80527276
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	88	17.272606	0.62275279	0.84016353
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	89	17.272606	0.50404018	0.80163246
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	90	17.272606	0.63432962	0.74538469
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	91	17.272606	0.63055748	0.73572159
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	92	17.272606	0.60197908	0.97194690
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	93	17.272606	0.56670898	0.93692285
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	94	17.272606	0.49470905	0.80682433
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	95	17.272606	0.50868237	0.88095331
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	96	17.272606	0.37540352	0.86856055
O=C1NC[[@H](NC(=O)CCc2n2nn(c2)[@H]1Cc1ccc1)C(OC)=O	97	17.272606	0.49921075	0.72851467
Reaction	Energy (kcal/mol)	ZPE (kcal/mol)	Enthalpy (kcal/mol)	Gibbs Free Energy (kcal/mol)
----------	------------------	----------------	--------------------	-----------------------------
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	
O=C1N[C@H]1(CCc2nncc2CCC(O)NCC[C@H]1NC(=O)NC)c2)C(=O)=O	-24.540197	0.46330363	0.71350104	

Note: The table above shows the energy, ZPE, enthalpy, and Gibbs free energy for various chemical reactions, with values rounded to three decimal places. The reactions are presented in a tabular format for clarity and ease of reading.
Structure	E	ΔG	ΔH
O=C1NCCNC[C@H](NC(=O)CCNC(=O)[C@@H](C)C(=O)N[C@@H](n2nncc2CCC(=O)NC[C@H](N)C(=O)N[C@H]1Cc1cccc1)Cc1ccccc1)C(OC)=O	-48.75119	0.26812798	0.90605903
O=C1N[C@H](C)C(=O)[N[C@@H](CCCCNC(=O)[C@@H](n2nncc2CCC(=O)NCC[C@H](N)C(=O)N[C@H]1Cc1cccc1)Cc1ccccc1)C(OC)=O	6.6724072	0.69883889	0.86827999
O=C1N[C@H](C)C(=O)[N[C@@H](CCCCNC(=O)[C@@H](n2nncc2CCC(=O)NCC[C@H](N)C(=O)N[C@H]1Cc1cccc1)Cc1ccccc1)C(OC)=O	28.431448	0.48605844	0.7899878
O=C1N[C@H](C)C(=O)[N[C@@H](CCCCNC(=O)[C@@H](n2nncc2CCC(=O)NCC[C@H](N)C(=O)N[C@H]1Cc1cccc1)Cc1ccccc1)C(OC)=O	48.042835	0.48135337	0.7123825
O=C1NCCNC(=O)[NHC@@H](CCCN=C(O)[C@H](n2nncc2CCC(=O)NCC[C@H](N)C(=O)N[C@H]1Cc1cccc1)Cc1ccccc1)C(OC)=O	-22.956503	0.44217589	0.7771526
18. References

[1] L.-H. Zhang, J. A. Kauffman, J. A. Pesti, J. Yin, J. Org. Chem. 1997, 62, 6918-6920.

[2] a) R. Mitra, K. N. Ganesh, Chem. Commun. 2011, 47, 1198-1200; b) C. Yu, J. W. Taylor, Bioorg. Med. Chem. 1999, 7, 161-175.

[3] M. D. Simon, K. M. Shokat, J. Am. Chem. Soc. 2004, 126, 8078-8079.

[4] E. A. Alemán, H. S. Pedini, D. Rueda, ChemBioChem 2009, 10, 2862-2866.

[5] B. Jagadish, R. Sankaranarayanan, L. Xu, R. Richards, J. Vagner, V. J. Hruby, R. J. Gillies, E. A. Mash, Bioorg. Med. Chem. Lett. 2007, 17, 3310-3313.

[6] A. Isidro-Llobet, T. Murillo, P. Bello, A. Cilibrizzi, J. T. Hodgkinson, W. R. J. D. Galloway, A. Bender, M. Welch, D. R. Spring, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6793-6798.

[7] a) R. Mitra, K. N. Ganesh, J. Org. Chem. 2012, 77, 5696-5704; b) S. S. More, R. Vince, J. Med. Chem. 2008, 51, 4581-4588.

[8] a) D. Liu, J. Dong, Y. Yin, R. Ma, Y. Shi, H. Wu, S. Chen, G. Li, Chin. J. Chem. 2011, 29, 1489-1502; b) C. Couturier, J. Blanchet, T. Schlama, J. Zhu, Org. Lett. 2006, 8, 2183-2186.

[9] K. M. G. O’Connell, H. S. G. Beckmann, L. Laraia, H. T. Horsley, A. Bender, A. R. Venkitaraman, D. R. Spring, Org. Biomol. Chem., 2010, 10, 7545-7551 2010, 10, 7545-7551.

[10] W. Zhu, D. Ma, Chem. Commun. 2004, 0, 888-889.

[11] Chemical Computing Group Inc. (2012). Molecular Operating Environment (MOE) 2012.10, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.

[12] R. A. Bauer, J. M. Wurst, D. S. Tan, Curr. Opin. Chem. Bio. 2010, 14, 308-314.
19. NMR Spectra

Building block B
Building block D
Building block E
Building block F
Building block 1
Building block 2
Building block 3
Building block 4
Building block 5
Building block 7
Building block 8
Building block 9
Building block 10
Building block 11
Building block 12
Building block 13
Building block G
Building block H
B2
C7
C8
C12
D3
G4
B3w
B8w
B5x
B11x
C3x
C8x
E1x
E3x
E7x
B2y
D14z