Difference in surgical outcomes of rectal cancer by study design: meta-analyses of randomized clinical trials, case-matched studies, and cohort studies

N. Hoshino, T. Sakamoto, K. Hida, Y. Takahashi, H. Okada, K. Obama and T. Nakayama

Abstract

Background: RCTs are considered the standard in surgical research, whereas case-matched studies and propensity score matching studies are conducted as an alternative option. Both study designs have been used to investigate the potential superiority of robotic surgery over laparoscopic surgery for rectal cancer. However, no conclusion has been reached regarding whether there are differences in findings according to study design. This study aimed to examine similarities and differences in findings relating to robotic surgery for rectal cancer by study design.

Methods: A comprehensive literature search was conducted using PubMed, Scopus, and Cochrane CENTRAL to identify RCTs, case-matched studies, and cohort studies that compared robotic versus laparoscopic surgery for rectal cancer. Primary outcomes were incidence of postoperative overall complications, incidence of anastomotic leakage, and postoperative mortality. Meta-analyses were performed for each study design using a random-effects model.

Results: Fifty-nine articles were identified and reviewed. No differences were observed in incidence of anastomotic leakage, mortality, rate of positive circumferential resection margins, conversion rate, and duration of operation by study design. With respect to the incidence of postoperative overall complications and duration of hospital stay, the superiority of robotic surgery was most evident in cohort studies (risk ratio (RR) 0.83, 95 per cent c.i. 0.74 to 0.92, P < 0.001; mean difference (MD) –1.11 (95 per cent c.i. –1.86 to –0.36) days, P = 0.004; respectively), and least evident in RCTs (RR 1.12, 0.91 to 1.38, P = 0.64; MD –0.28 (–1.44 to 0.88) days, P = 0.64; respectively).

Conclusion: Results of case-matched studies were often similar to those of RCTs in terms of outcomes of robotic surgery for rectal cancer. However, case-matched studies occasionally overestimated the effects of interventions compared with RCTs.

Introduction

RCTs are currently considered the standard for studying treatment effects in surgical research. However, RCTs require considerable resources such as time, resources, costs, and collaboration among various specialists to ensure patient security, standardization of interventions, and data correctness. Although blinding is an important design feature of RCTs, blinding of outcome assessors, as well as for patients and surgeons, is difficult to achieve in surgical research, making it difficult to conduct high-quality RCTs. Moreover, it is often impossible to conduct surgical RCTs for various reasons, such as feasibility and ethics. Thus, findings from high-quality RCTs are not always available in surgical research.

Recently, matching methods such as propensity score matching have been adopted as alternative methods to randomization. A number of studies using matching methods have been published, and such studies are generally referred to as case-matched studies. However, only measurable confounding factors can be adjusted for in case-matched studies, and reports of such studies occasionally lack sufficient details of matching variables and patient characteristics.

Both high- and low-quality RCTs and case-matched studies have been published. Apart from methodological differences between the two types of study, such as patient selection and adjustment for confounders, it remains unclear whether there are differences in results by study design. RCTs and case-matched studies have been conducted to examine the potential superiority of robotic surgery over laparoscopic surgery for rectal cancer, a topic of major interest among surgeons. However, no conclusion has been reached regarding whether differences exist by study design. On this basis, the present study aimed to examine similarities and differences in findings related to surgical outcomes for rectal cancer according to study design.

Methods

Eligible studies were those comparing robotic versus laparoscopic surgery for rectal cancer. Studies of transanal surgery were
excluded. RCTs, case-matched studies, and cohort studies were subjected to analysis. Both prospective and retrospective studies were included in non-RCT studies. No restrictions were placed regarding methods of randomization or matching.

A comprehensive literature search was conducted on 12 June 2019 using PubMed, Scopus, and the Cochrane Central Register of Controlled Trials (CENTRAL). The following search terms were used: ‘rectal cancer’, ‘surgery’, ‘robot’, ‘laparoscopy’, and related terms (Appendix S1). Duplications were excluded by checking author names, year of publication, and study characteristics (such as study design, setting, and period). Two authors independently screened the extracted publications according to title and abstract, and then reviewed the full text of potentially eligible articles. Disagreement was resolved by discussion.

Data extracted included: study design and setting, number and characteristics of patients, type of surgery, and short-term surgical outcomes. The extracted data were checked for consistency, and discordance was resolved by discussion. For cohort studies, unadjusted data were extracted.

Outcome measures
Primary outcomes were: incidence of postoperative overall complications, incidence of anastomotic leakage, and mortality. Secondary outcomes were: duration of hospital stay, conversion rate, duration of operation, estimated blood loss, rate of positive circumferential resection margins, and quality of total mesorectal excision.

Statistical analysis
Data synthesis was performed using Review Manager 5.3 (The Nordic Cochrane Centre, Copenhagen, Denmark). A random-effects model was used for all meta-analyses, as all types of rectal cancer surgery were included in the present review. An inverse-variance method was used for continuous variables, and the Mantel–Haenszel method for dichotomous variables. Mean difference (MD) with 95 per cent confidence interval was used for continuous variables when a single measure was included in the meta-analysis. Median (range) values were converted to continuous variables when a single measure was included in the meta-analysis stratified by study design. The incidence of anastomotic leakage did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 0.97, 95 per cent c.i. 0.67 to 1.39; P = 0.86), case-matched studies (RR: 0.97, 0.74 to 1.29; P = 0.85), and cohort studies (RR: 0.94, 0.74 to 1.18; P = 0.57) (Table 2 and Fig. S1).

Incidence of postoperative overall complications
Forty-five studies involving a total of 8390 patients (6 RCTs, 895 patients; 9 case-matched studies, 2582 patients; 30 cohort studies, 4913 patients) reported on the incidence of overall complications and were included in a meta-analysis stratified by study design. The incidence of overall complications did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 1.12, 95 per cent c.i. 0.91 to 1.38; P = 0.27) and case-matched studies (RR 1.01, 0.89 to 1.15; P = 0.88). In cohort studies, however, robotic surgery was associated with a significantly lower incidence of overall postoperative complications compared with laparoscopic surgery (RR 0.83, 0.74 to 0.92; P < 0.001) (Table 2 and Fig. 2).

Incidence of anastomotic leakage
Fifty-three studies involving a total of 8372 patients (6 RCTs, 784 patients; 12 case-matched studies, 2222 patients; 35 cohort studies, 5366 patients) that reported on the incidence of anastomotic leakage were included in a meta-analysis stratified by study design. The incidence of anastomotic leakage did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 0.97, 95 per cent c.i. 0.67 to 1.39; P = 0.86), case-matched studies (RR: 0.97, 0.74 to 1.29; P = 0.85), and cohort studies (RR: 0.94, 0.74 to 1.18; P = 0.57) (Table 2 and Fig. S1).

Mortality
Forty-two studies involving a total of 7839 patients (6 RCTs, 904 patients; 10 case-matched studies, 1910 patients; 26 cohort studies, 5025 patients) that reported on mortality were included in a meta-analysis stratified by study design. Mortality did not differ significantly between robotic and laparoscopic surgery in RCTs (RD –0.00, 95 per cent c.i. –0.01 to 0.01; P = 0.99), case-matched studies (RD –0.00, –0.01 to 0.00; P = 0.38), and cohort studies (RD –0.00, –0.00 to 0.00; P = 0.45) (Table 2 and Fig. S2).

Duration of hospital stay
Thirty-nine studies involving a total of 7651 patients (6 RCTs, 781 patients; 8 case-matched studies, 1904 patients; 25 cohort studies, 4966 patients) that reported on duration of hospital stay were included in a meta-analysis stratified by study design. Duration of hospital stay did not differ significantly between robotic and laparoscopic surgery in RCTs (MD –0.28 (95 per cent c.i. –1.44 to 0.88) days; P = 0.64) and case-matched studies (MD –0.59 (–1.18 to 0.00) days; P = 0.05). In cohort studies, however, robotic surgery was associated with a significantly shorter hospital stay than laparoscopic surgery (MD –1.11 (–1.86 to –0.36) days; P = 0.004) (Table 2 and Fig. 3).

Conversion rate
Fifty-three studies involving a total of 9813 patients (6 RCTs, 803 patients; 11 case-matched studies, 2976 patients; 36 cohort studies, 6034 patients) that reported on conversion rate were included in a meta-analysis stratified by study design. Conversion rate did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 0.42, 95 per cent c.i. 0.17 to 1.03; P = 0.06). On the other hand, robotic surgery was associated with a significantly lower conversion rate than laparoscopic surgery in case-matched studies (RR 0.40, 0.31 to 0.51; P < 0.001) and cohort studies (RR 0.34, 0.24 to 0.49; P < 0.001) (Table 2 and Fig. S3).

Duration of operation
Forty-two studies involving a total of 7792 patients (six RCTs, 803 patients; seven case-matched studies, 1644 patients; 29 cohort
studies, 5345 patients) that reported on duration of operation were included in a meta-analysis stratified by study design. Duration of operation did not differ significantly between robotic and laparoscopic surgery in RCTs (MD 33.53 (95 per cent c.i. –3.25 to 70.31) min; \(P = 0.07 \)). However, robotic surgery was associated with a significantly longer operating time than laparoscopic surgery in case-matched studies (MD 83.41 (54.37 to 112.45) min; \(P < 0.001 \)) and cohort studies (MD 44.70 (32.40 to 57.00) min; \(P < 0.001 \)) (Table 2 and Fig. S4).

Estimated blood loss
Twenty-nine studies involving a total of 5783 patients (3 RCTs, 250 patients; 5 case-matched studies, 1095 patients; 21 cohort studies, 4438 patients) that reported on estimated blood loss were included in a meta-analysis stratified by study design. Estimated blood loss did not differ significantly between robotic and laparoscopic surgery in RCTs (MD 36.09 (95 per cent c.i. –136.41 to 208.59) ml; \(P = 0.68 \)), case-matched studies (MD –16.23 (–69.27 to 36.82) ml; \(P = 0.55 \)) and cohort studies (MD –13.49 (–29.11 to 2.14) ml; \(P = 0.09 \)) (Table 2 and Fig. S5).

Rate of positive circumferential resection margins
Forty-two studies involving a total of 8255 patients (3 RCTs, 664 patients; 10 case-matched studies, 2046 patients; 29 cohort studies, 5545 patients) that reported on the rate of positive circumferential resection margins were included in a meta-analysis stratified by study design. The rate of positive circumferential resection margins did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 0.88, 95 per cent c.i. 0.46 to 1.69; \(P = 0.70 \)), case-matched studies (RR 1.05, 0.70 to 1.57; \(P = 0.81 \)) and cohort studies (RR 0.84, 0.63 to 1.12; \(P = 0.23 \)) (Table 2 and Fig. S6).

Quality of total mesorectal excision
Fifteen studies involving a total of 1585 patients (4 RCTs, 686 patients; 2 case-matched studies, 133 patients; 9 cohort studies, 1585 patients) that reported on the quality of total mesorectal excision were included in a meta-analysis stratified by study design. The quality of total mesorectal excision did not differ significantly between robotic and laparoscopic surgery in RCTs (RR 1.08, 95 per cent c.i. 0.95 to 1.23; \(P = 0.22 \)) and cohort studies (RR 1.34, 0.74 to 2.42; \(P = 0.33 \)). In cohort studies, however, robotic surgery was associated with a significantly higher quality of total mesorectal excision than laparoscopic surgery (RR 1.14, 1.01 to 1.28; \(P = 0.03 \)) (Table 2 and Fig. S7).

Discussion
The present systematic review and meta-analyses revealed that, among 59 studies that compared robotic versus laparoscopic surgery for rectal cancer, similarities and differences in findings...
were observed by study design, particularly between RCTs and case-matched studies. Among the nine outcomes assessed, two (estimated blood loss and quality of total mesorectal excision) were difficult to compare by meta-analyses, as the number of included studies was small and the 95 per cent confidence intervals were wide.

Table 1 Patient characteristics

Reference	Setting	Study interval	Study type	Surgical procedures	No. of patients
RCTs					
Baik et al.	Korea Single	Apr 2006 to Feb 2007	Prospective	LAR	18
Debackey et al.	Egypt Single	April 2015 to Feb 2017	Prospective	AR, LAR, APR	21
Jayne et al.	International Multiple	Jan 2011 to Sept 2014	Prospective	TME, PME, APR, ISR	236 230
Kim et al.	Korea Single	Feb 2012 to Mar 2015	Prospective	LAR, HO, APR	66 73
Patriti et al.	Italy	Mar 2004 to Oct 2008	Prospective	PME, TME, APR, CAA	29 37
Tolstrup et al.	Denmark	Nov 2012 to Apr 2014	Prospective	PME, TME, APR, ISR	25 26
Wang et al.	China Single	Nov 2010 to Sept 2013	Prospective	LAR, HO	71 66
Case-matched studies					
Ackerman et al.	USA Multiple	Jan 2012 to Dec 2014	Retrospective	AR, LAR, APR, ISR	533 533
Allemann et al.	Switzerland Single	May 2012 to Jan 2014	Retrospective	LAR, CAA, APR	41 41
Baek et al.	Korea Single	Apr 2003 to Mar 2009	Retrospective	LAR, CAA	278 278
Cho et al.	Korea Single	Jan 2007 to Jun 2011	Retrospective	LAR, HO, APR	33 66
Kim et al.	Korea Single	Mar 2010 to Jan 2012	Retrospective	LAR, APR, APR, ISR	224 224
Kim et al.	Korea Single	Apr 2007 to Mar 2014	Retrospective	LAR, CAA, APR	130 130
Kim et al.	Korea Single	2009-2013	Retrospective	LAR, APR	19 19
Koh et al.	Singapore Single	Aug 2008 to Aug 2011	Retrospective	LAR, HO, APR	63 61
Panteleimonitis et al.	International Multiple	2006-2012	Retrospective	LAR, CAA, APR	41 82
Park et al.	Korea Single	Dec 2005 to Jun 2009	Retrospective	LAR, APR, ISR	32 32
Park et al.	Korea Single	Feb 2009 to Dec 2010	Retrospective	LAR, ISR, APR	106 106
Park et al.	Korea Multiple	Jun 2008 to May 2011	Retrospective	LAR, TSR, TPE	84 84
Sugor et al.	India Single	Jun 2013 to Dec 2017	Retrospective	LAR, APR, HO	168 184
Cohort studies					
Ahmed et al.	UK Single	May 2013 to Nov 2015	Retrospective	AR, APR, HO, TPC	99 88
Aselmann et al.	Germany Single	Jan 2011 to Dec 2016	Retrospective	LAR, CAA, APR	44 41
Baek et al.	Korea Single	Jan 2007 to Dec 2010	Retrospective	LAR, CAA	47 37
Bedirli et al.	Turkey Single	Apr 2006 to Sep 2007	Retrospective	LAR, CAA	56 57
Bianchi et al.	Italy Single	Mar 2008 to Jun 2009	Retrospective	LAR, APR	35 28
Bo et al.	China Single	Mar 2010 to Jun 2016	Retrospective	LAR, APR, ISR, HO	356 1139
Croissard et al.	Netherlands Single	2005-2015	Retrospective	LAR, HO, APR	168 184
D’Annibale et al.	Italy Single	2004-2012	Retrospective	TME	50 50
Erguner et al.	Turkey Single	Feb 2008 to Jun 2011	Retrospective	LAR	27 37
Eisen et al.	Turkey Single	Dec 2014 to Aug 2017	Retrospective	LAR, APR, CAA	100 78
Fernandez et al.	USA Single	2002-2012	Retrospective	LAR, APR	13 59
Feroci et al.	Italy Multiple	Jan 2008 to Dec 2014	Retrospective	TME	53 58
Gorguni et al.	USA Single	Jan 2011 to Jun 2014	Retrospective	LAR, CAA	29 27
Huang et al.	Taiwan Single	Jan 2012 to Apr 2015	Retrospective	LAR, APR	40 38
Ielpo et al.	Spain Single	Oct 2010 to Jul 2013	Retrospective	LAR, APR, ISR	56 87
Ielpo et al.	Spain Single	Oct 2010 to Mar 2017	Retrospective	LAR, CAA, APR	86 112
Kamali et al.	UK Single	Jul 2014 to Sep 2016	Retrospective	LAR	18 18
Kamali et al.	UK Single	Feb 2015 to Aug 2016	Retrospective	LAR	11 11
Kim et al.	Korea Single	Jun 2009 to Nov 2009	Retrospective	APR	30 39
Kim et al.	Korea Single	May 2006 to Dec 2014	Retrospective	APR, ISR, APR	50 35
Kron et al.	Taiwan Single	Nov 2009 to Jul 2013	Retrospective	ISR	36 28
Law et al.	China Single	Jan 2008 to Jun 2015	Retrospective	LAR, HO, APR	220 171
Levi et al.	Denmark Multiple	2010-2012	Retrospective	LAR, HO, APR	56 36
Lim et al.	Korea Single	Jan 2006 to Dec 2010	Retrospective	LAR, CAA, APR	74 64
Liu et al.	China Single	Jul 2015 to Oct 2017	Retrospective	LAR, APR	80 116
Megevand et al.	Italy Single	Jan 2011 to Dec 2015	Retrospective	LAR, APR, HO	35 35
Panteleimonitis et al.	UK Single	Dec 2006 to Sep 2014	Retrospective	LAR, HO, APR	48 78
Park et al.	Korea Single	Mar 2008 to Jul 2011	Retrospective	ISR	40 40
Park et al.	Korea Single	Apr 2006 to Aug 2011	Retrospective	LAR	133 84
Pigazzi et al.	USA Single	Sep 2004 to Oct 2005	Retrospective	LAR	6 6
Popescu et al.	Romania Single	1995-2010	Retrospective	LAR, APR	38 84
Sakiani et al.	Korea Single	Jan 2006 to Dec 2010	Retrospective	LAR, CAA, APR	74 64
Serin et al.	Turkey Single	Jan 2005 to Dec 2013	Retrospective	LAR, ISR	14 65
Shin et al.	Korea Single	Jan 2011 to Dec 2014	Retrospective	ISR	34 60
Tam et al.	USA Single	Feb 2011 to Feb 2013	Retrospective	LAR, APR, APR, CAA	21 21
Yamauchi et al.	Japan Single	Apr 2010 to Apr 2015	Retrospective	LAR, ISR, HO, APR	203 239
Yoo et al.	Korea Single	Sep 2006 to Aug 2008	Retrospective	ISR	44 26
Yoon et al.	Korea Single	Jun 2006 to Dec 2010	Retrospective	LAR	17 61

LAR, low anterior resection; AR, anterior resection; APR, abdominoperineal resection; HO, Hartmann’s operation; PME, partial mesorectal excision; TME, total mesorectal excision; CAA, coloanal anastomosis; ISR, intersphincteric resection; TPE, total pelvic excision; TPC, total proctocolectomy; SSP, sphincter-saving procedure.
Measure	RCTs	Case-matched studies	Cohort studies							
Primary outcomes										
	No. of	No. of	No. of							
	studies	patients	studies	patients	studies	patients				
Postoperative overall complications	RR	6	895	11.2 (9.1, 13.8)	9	2382	1.01 (0.89, 1.15)	30	10,175	0.83 (0.74, 0.92)
	MD	6	784	–0.28 (–0.44, 0.09)	12	1910	–0.00 (–0.01, 0.00)	26	5385	–0.00 (–0.01, 0.00)
Anastomotic leakage	RR	6	803	0.42 (0.17, 0.69)	11	303	0.97 (0.74, 1.29)	36	5365	0.94 (0.74, 1.18)
	MD	6	803	33.53 (–3.25, 70.34)	7	1644	83.41 (54.37, 112.45)	27	1385	44.70 (32.40, 57.00)
Mortality	RD	6	904	–0.00 (–0.01, 0.01)	25	1474	–0.00 (–0.01, 0.00)	26	5385	–0.00 (–0.01, 0.00)
	MD	6	803	–0.59 (–1.18, 0.00)	12	2222	–0.09 (–0.18, 0.00)	26	5385	–0.09 (–0.18, 0.00)
Duration of hospital stay (days)	MD	6	784	–0.28 (–0.44, 0.09)	12	1910	–0.00 (–0.01, 0.00)	26	5385	–0.00 (–0.01, 0.00)
Conversion rate	RR	6	803	0.42 (0.17, 0.69)	11	303	0.97 (0.74, 1.29)	36	5365	0.94 (0.74, 1.18)
	MD	6	803	33.53 (–3.25, 70.34)	7	1644	83.41 (54.37, 112.45)	27	1385	44.70 (32.40, 57.00)
Duration of operation (min)	MD	6	803	33.53 (–3.25, 70.34)	7	1644	83.41 (54.37, 112.45)	27	1385	44.70 (32.40, 57.00)
Estimated blood loss (ml)	MD	6	369	–0.09 (–0.18, 0.00)	26	5385	–0.09 (–0.18, 0.00)	26	5385	–0.09 (–0.18, 0.00)
Positive circumferential resection margins	RR	3	664	0.88 (0.46, 1.30)	10	2045	1.05 (0.70, 1.57)	29	5545	0.84 (0.63, 1.12)
	MD	3	664	0.88 (0.46, 1.30)	10	2045	1.05 (0.70, 1.57)	29	5545	0.84 (0.63, 1.12)
Quality of total mesorectal excision	RR	4	686	1.08 (0.95, 1.23)	9	1585	1.14 (1.05, 1.23)			
	MD	4	686	1.08 (0.95, 1.23)	9	1585	1.14 (1.05, 1.23)			

Values in parentheses are 95 per cent confidence intervals. RR, risk ratio; RD, risk difference; MD, mean difference.

With respect to the incidence of anastomotic leakage, mortality, and rate of positive circumferential resection margins, meta-analyses for each study design revealed no significant differences between robotic and laparoscopic surgery, suggesting that findings related to these outcomes did not differ by study design. On the other hand, meta-analyses of case-matched studies and cohort studies, but not RCTs, revealed significant differences between robotic and laparoscopic surgery with respect to conversion rate and duration of operation. However, the number of included patients was lower for RCTs than for case-matched studies and cohort studies, and 95 per cent confidence intervals were also wider, suggesting that the statistical power might have been lower. Given the wide range of 95 per cent confidence intervals and lower statistical power, the difference between the three study designs in terms of conversion rate and operating time in the meta-analysis could be considered minimal.

The incidence of postoperative overall complications (primary outcome) and duration of hospital stay (secondary outcome) did not differ significantly between robotic surgery and laparoscopic surgery in RCTs and case-matched studies, whereas significant differences were observed in cohort studies. In-depth analyses of the distribution of 95 per cent confidence across study designs showed that outcomes from case-matched studies fell between those of RCTs and cohort studies in meta-analyses. Specifically, superiority of robotic surgery was most evident in cohort studies, least evident in RCTs, and intermediate (between cohort studies and RCTs) in case-matched studies. These differences by study design might reflect the degree of adjustment for confounding factors between study designs. All confounding factors including measurable and unmeasurable factors could be adjusted for in RCTs, whereas confounding factors in cohort studies were not controlled for in the present meta-analyses because the data were unadjusted.

In this review, the results of meta-analyses did not show differences in most of the outcomes assessed. This is consistent with a previous report that results of RCTs were similar to those of case-matched studies in cardiac surgery. On the other hand, other authors reported that case-matched studies tended to overestimate the efficacy of interventions compared with RCTs in patients with acute coronary syndrome. In the present review, the incidence of postoperative overall complications differed by study design, whereas that of anastomotic leakage did not. Postoperative overall complications include anastomotic leakage and so the rates are higher for postoperative overall complications than for anastomotic leakage. Because the statistical power was greater for postoperative overall complications than for anastomotic leakage, the difference in power might have had some influence. Moreover, although anastomotic leakage can be assessed objectively, other complications such as surgical-site infection and ileus are often influenced by subjective judgements. Duration of hospital stay can also be influenced by subjective judgements because the timing of discharge may depend on surgeon preference. In addition, experimental and comparator interventions are usually performed during the same interval in RCTs, whereas historical comparators are sometimes used in cohort studies. Duration of hospital stay tends to shorten as time progresses owing to the introduction of newer and more effective treatment modalities. In this regard, robotic surgery is a newer technique than laparoscopic surgery. Thus, hospital stay after robotic surgery might be shorter in RCTs than in cohort studies. Clinicians should
A Mantel–Haenszel random-effects model was used for statistical analysis. Mean differences are shown with 95% confidence intervals.

Fig. 2 Results of meta-analysis stratified by study design: incidence of postoperative overall complications

A Mantel–Haenszel random-effects model was used for statistical analysis. Mean differences are shown with 95% confidence intervals.
interpret findings related to these outcomes with caution, and consider the study design when doing so.

The strength of the present review is the large number of studies examined. In total, 59 studies were reviewed, compared with 5–23 in previous systematic reviews. Moreover, previous studies that focused on differences by study design often investigated a single outcome for each comparison, whereas nine outcomes for a single comparison (robotic versus laparoscopic surgery) were investigated here to highlight differences in surgical outcomes. However, this study also has some limitations. The numbers of studies and patients differed among the three types of study, and tended to be lower in RCTs. The present review included only published data and did not consider the quality of each study.

Finally, the results of case-matched studies were often similar to those of RCTs with respect to objective outcomes of robotic surgery for rectal cancer. However, case-matched studies potentially overestimated the effect of interventions compared with RCTs in terms of subjective outcomes.
Funding
The study received no funding.

Acknowledgements
K.O. has received a lecture honorarium from Intuitive Surgical.

Disclosure. The authors declare no other conflict of interest.

Supplementary material
Supplementary material is available at BJS Open online.

References
1. Adamina M, Guller U, Weber WP, Oertli D. Propensity scores and the surgeon. Br J Surg 2006;93:389–394
2. Kuss O, Legler T, Börgermann J. Treatments effects from randomized trials and propensity score analyses were similar in similar populations in an example from cardiac surgery. J Clin Epidemiol 2011;64:1076–1084
3. Sterne JAC, Savovć J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al. RoB 2: a revised tool for assessing risk of bias in randomized trials. BMJ 2019;366:l4898
4. Speich B. Blinding in surgical randomized clinical trials in 2015. Ann Surg 2017;266:21–22
5. Shikata S, Nakayama T, Noguchi Y, Taji Y, Yamagishi H. Comparison of effects in randomized controlled trials with observational studies in digestive surgery. Ann Surg 2006;244:668–676
6. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:41–55
7. Braithwaite LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med 2002;137:693–695
8. D’Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998;17:2265–2281
9. McMurry TL, Hu Y, Blackstone EH, Kozower BD. Propensity score methods: analytic strategies using propensity scores. J Thorac Cardiovasc Surg 2015;150:14–19
10. Reiffel JA. Propensity-score matching: optimal, adequate, or incomplete? J Afr Cardiothorac Surg 2011;26:521–525
11. Cho MS, Kim CW, Baek SJ, Hur H, Min BS, Baik SH et al. Minimally invasive versus open total mesorectal excision for rectal cancer: long-term survival analysis in 633 patients. Surgery 2015;157:1121–1129
12. Kim YM, Kim MJ, Park SC, Sohn DK, Kim DY, Chang HJ et al. Robotic versus laparoscopic surgery for rectal cancer after preoperative chemoradiotherapy: case-matched study of short-term outcomes. Cancer Treat Rev 2014;40:1010–1016
13. Baek SH, Ko YT, Kang CM, Lee WJ, Kim NK, Sohn SK et al. Robotic tumor-specific mesorectal excision of rectal cancer: short-term outcome of a pilot randomized trial. Surg Endosc 2008;22:1601–1608
14. Debackey Y, Zaghlool A, Farag A, Mahmoud A, Elattar I. Robotic-assisted versus conventional laparoscopic approach for rectal cancer surgery. First Egyptian Academic Center Experience, RCT. Minim Invasive Surg 2018;2018;1–11
15. Jayne DG, Guilhou PJ, Thorpe H, Quirke P, Copeland J, Smith AMH et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol 2007;25:3061–3068
16. Kim MJ, Park SC, Park JW, Chang HJ, Kim DY, Nam BH et al. Robot-assisted versus laparoscopic surgery for rectal cancer: a phase II open label prospective randomized controlled trial. Ann Surg 2018;267:243–251
17. Patriti A, Ceccarelli G, Bartoli A, Spaziani A, Biancafarina A, Casciola L. Short- and medium-term outcome of robot-assisted traditional laparoscopic rectal resection. JSLS 2009;13:176–183
18. Tolstrup R, Funder JA, Lundbech L, Thomassen N, Iversen LH. Perioperative pain after robot-assisted versus laparoscopic rectal resection. Int J Colorectal Dis 2018;33:285–289
19. Wang G, Wang Z, Jiang Z, Liu J, Zhao J, Li J. Male urinary and sexual function after robotic pelvic autonomic nerve-preserving surgery for rectal cancer. Int J Med Robotics Comput Assist Surg 2017;13:e1725
20. Ackerman SJ, Daniel S, Baik R, Liu E, Mehendale S, Tackett S et al. Comparison of complication and conversion rates between robotic-assisted and laparoscopic rectal resection for rectal cancer: which patients and providers could benefit most from robotic-assisted surgery? J Med Econ 2018;21:254–261
21. Allemann P, Duvoisin C, Di Mare L, Hubner M, Demartines N, Hahnloser D. Robotic-assisted surgery improves the quality of total mesorectal excision for rectal cancer compared to laparoscopic: results of a case-controlled analysis. World J Surg 2016;40:1010–1016
22. Baek JH, Pastor C, Pigazzi A. Robotic and laparoscopic total mesorectal excision for rectal cancer: a case-matched study. Surg Endosc 2011;25:521–525
23. Cho MS, Kim CW, Baek SJ, Hur H, Min BS, Baik SH et al. Robotic-assisted and laparoscopic rectal resection for rectal cancer: which patients and providers could benefit most from robotic-assisted surgery? J Med Econ 2018;21:254–261
24. Kim YM, Kim MJ, Park SC, Sohn DK, Kim DY, Chang HJ et al. Robotic versus laparoscopic surgery for rectal cancer after preoperative chemoradiotherapy: case-matched study of short-term outcomes. Cancer Treat Rev 2014;40:225–231
25. Kim J, Baek SJ, Kang DW, Roh YE, Lee JW, Kwaak HD et al. Robotic resection is a good prognostic factor in rectal cancer compared with laparoscopic resection: long-term survival analysis using propensity score matching. Dis Colon Rectum 2017;60:266–273
26. Kim HJ, Choi GS, Park JS, Park SY, Yang CS, Lee HJ. The impact of robotic surgery on quality of life, urinary and sexual function following total mesorectal excision for rectal cancer: a propensity score-matched analysis with laparoscopic surgery. Colorectal Dis 2018;20:O103–O113
27. Koh F, Tan KK, Lieske B, Tsang M, Tsang C, Koh D. Endowrist versus wrist: a case-controlled study comparing robotic versus hand-assisted laparoscopic surgery for rectal cancer. Surg Laparosc Endosc Percutan Tech 2014;24:452–456
28. Panteleimonitis S, Pickering O, Abbas H, Harper M, Kandala N, Figueiredo N et al. Robotic rectal cancer surgery in obese patients may lead to better short-term outcomes when
compared to laparoscopy: a comparative propensity scored match study. Int J Colorectal Dis 2018;33:1079–1086
31. Park JS, Choi GS, Lim KH, Jang YS, Jun SH. Robotic-assisted versus laparoscopic surgery for low rectal cancer: case-match analysis of short-term outcomes. Ann Surg Oncol 2010;17:3195–3202
32. Park SY, Choi GS, Park JS, Kim HJ, Ryuk JP, Yun SH. Urinary and erectile function in men after total mesorectal excision by laparoscopic or robot-assisted methods for the treatment of rectal cancer: a case-match comparison. World J Surg 2014;38:1834–1842
33. Park JS, Kim NK, Kim SH, Lee KY, Lee KY, Shin JY et al. Multicentre study of robotic intersphincteric resection for low rectal cancer. Br J Surg 2015;102:1567–1573
34. Sugoor P, Verma K, Chaturvedi A, Kannan S, Desouza A, Ostwal V et al. Robotic versus laparoscopic sphincter-preserving total mesorectal excision: a propensity case-match analysis. Int J Med Robotics Comput Assist Surg 2019;15:e1965
35. Ahmed J, Cao H, Panteleimonitis S, Khan J, Parvaiz A. Robotic vs laparoscopic rectal surgery in high-risk patients. Colorectal Dis 2017;19:1092–1099
36. Aselmann H, Kersebaum JN, Bernsmeier A, Beckmann JH, Möller T, Egberts JH et al. Robotic-assisted total mesorectal excision (TME) for rectal cancer results in a significantly higher quality of TME specimen compared to the laparoscopic approach-report of a single-center experience. Int J Colorectal Dis 2018;33:1575–1581
37. Baek SJ, Al-Asari S, Jeong DH, Hur H, Min BS, Baik SH et al. Robotic versus laparoscopic colonic anastomosis with or without intersphincteric resection for rectal cancer. Surg Endosc 2013;27:4157–4163
38. Baik SH, Kwon HY, Kim JS, Hur H, Sohn SK, Cho CH et al. Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study. Ann Surg Oncol 2009;16:1480–1487
39. Bedirli A, Salman B, Yuksel O. Robotic versus laparoscopic resection for mid and low rectal cancers. JSLS 2016;20:e2015.00110
40. Bianchi PP, Ceriani C, Locatelli A, Spinoglio G, Zampino MG, Sonzogni A et al. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a comparative analysis of oncological safety and short-term outcomes. Surg Endosc 2010;24:2885–2894
41. Bo T, Chuan L, Hongchang L, Chao Z, Huaxing L, Peiwu Y. Robotic versus laparoscopic rectal resection surgery: short-term outcomes and complications: a retrospective comparative study. Surg Oncol 2019;29:71–77
42. Crolla RMPh, Mulder PG, van der Schelling GP. Does robotic rectal cancer surgery improve the results of experienced laparoscopic surgeons? An observational single institution study comparing 168 robotic assisted with 184 laparoscopic rectal resections. Surg Endosc 2018;32:4562–4570
43. D’Annibale A, Pernazza G, Monsellato I, Pende V, Lucandri G, Mazzocchi P et al. Total mesorectal excision: a comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg Endosc 2013;27:1887–1895
44. Erguner I, Aytaç E, Boler DE et al. What have we gained by performing robotic rectal resection? Evaluation of 64 consecutive patients who underwent laparoscopic or robotic low anterior resection for rectal adenocarcinoma. Surg Laparosc Endosc Percutan Tech 2013;23:316–319
45. Ensé E, Aytaç E, Aycaoglu O et al. Totally robotic versus totally laparoscopic surgery for rectal cancer. Surg Laparosc Endosc Percutan Tech 2018;28:245–249
46. Fernandez R, Anaya DA, Li LT, Orcutt ST, Balentij CJ, Awad SA et al. Laparoscopic versus robotic rectal resection for rectal cancer in a veteran population. Am J Surg 2013;206:509–517
47. Feroci F, Vannuccchi A, Bianchi PP, Cantafo S, Garzi A, Formisano G et al. Total mesorectal excision for mid and low rectal cancer: laparoscopic vs robotic surgery. World J Gastroenterol 2016;22:3602–3610
48. Gorgun E, Ozben V, Costedio M, Stocchi L, Kalady M, Remzi F. Robotic versus conventional laparoscopic rectal cancer surgery in obese patients. Colorectal Dis 2016;18:1063–1071
49. Huang YM, Huang YJ, Wei PL. Outcomes of robotic versus laparoscopic surgery for mid and low rectal cancer after neoadjuvant chemoradiation therapy and the effect of learning curve. Medicine (Baltimore) 2017;96:e8171
50. Ielpo B, Caruso R, Quijano Y, Duran H, Díaz E, Fabra I et al. Robotic versus laparoscopic rectal resection: is there any real difference? A comparative single center study. Int J Med Robotics Comput Assist Surg 2014;10:300–305
51. Ielpo B, Duran H, Díaz E, Fabra I, Caruso R, Malavé L et al. Robotic versus laparoscopic surgery for rectal cancer: a comparative study of clinical outcomes and costs. Int J Colorectal Dis 2017;32:1423–1429
52. Kamali D, Omar K, Imam SZ, Jha A, Reddy A, Jha M. Patient quality of life and short-term surgical outcomes between robotic and laparoscopic anterior resection for adenocarcinoma of the rectum. Tech Coloproctol 2017;21:355–361
53. Kamali D, Reddy A, Imam S, Omar K, Jha A, Jha M. Short-term surgical outcomes and patient quality of life between robotic and laparoscopic extralevator abdominoperineal excision for adenocarcinoma of the rectum. Ann R Coll surg Engl 2017;99:607–613
54. Kim JY, Kim NK, Lee KY, Hur H, Min BS, Kim JH. A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. Ann Surg Oncol 2012;19:2485–2493
55. Kim HJ, Choi GS, Park JS, Park SY, Lee HJ, Woo IT et al. Selective lateral pelvic lymph node dissection: a comparative study of the robotic versus laparoscopic approach. Surg Endosc 2018;32:2466–2473
56. Kuo LJ, Lin YK, Chang CC, Tai CJ, Chiov JF, Chang YJ. Clinical outcomes of robot-assisted intersphincteric resection for low rectal cancer: comparison with conventional laparoscopy and multifactorial analysis of the learning curve for robotic surgery. Int J Colorectal Dis 2014;29:555–562
57. Law WL, Foo DCC. Comparison of short-term and oncologic outcomes of robotic and laparoscopic resection for mid- and distal rectal cancer. Surg Endosc 2017;31:2798–2807
58. Levic K, Donatsky AM, Bulto O, Rosenberg J. A comparative study of single-port laparoscopic surgery versus robotic-assisted laparoscopic surgery for rectal cancer. Surg Innov 2015;22:368–375
59. Lim DR, Bae SU, Hur H, Min BS, Baik SH, Lee KY et al. Long-term oncological outcomes of robotic versus laparoscopic total mesorectal excision of mid-low rectal cancer following neoadjuvant chemoradiation therapy. Surg Endosc 2017;31:1728–1737
60. Liu WH, Yan PJ, Hu DP, Jin PH, Lv YC, Liu R et al. Short-term outcomes of robotic versus laparoscopic total mesorectal excision for rectal cancer: a cohort study. Am Surg 2019;85:294–302
61. Megevand JL, Lillo E, Amboldi M, Lenisa L, Ambrosi A, Rusconi A. TME for rectal cancer: consecutive 70 patients treated with laparoscopic and robotic technique—cumulative experience in a single centre. Updates Surg 2019;71:331–338
62. Panteleimonitis S, Ahmed J, Ramachandra M, Farooq M, Harper M, Parvaiz A. Urogenital function in robotic vs laparoscopic rectal cancer surgery: a comparative study. *Int J Colorectal Dis* 2017;32:241–248

63. Park SY, Choi GS, Park JS, Kim HJ, Ryuk JP. Short-term clinical outcome of robot-assisted intersphincteric resection for low rectal cancer: a retrospective comparison with conventional laparoscopy. *Surg Endosc* 2013;27:48–55

64. Park EJ, Cho MS, Baek SJ, Hur H, Min BS, Baik SH et al. Long-term oncologic outcomes of robotic low anterior resection for rectal cancer: a comparative study with laparoscopic surgery. *Ann Surg* 2015;261:129–137

65. Pigazzi A, Ellenhorn JD, Ballantyne GH, Paz IB. Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. *Surg Endosc* 2006;20:1521–1525

66. Popescu I, Vasilescu C, Tomulescu V, Vasile S, Sgarbura O. The minimally invasive approach, laparoscopic and robotic, in rectal resection for cancer. A single center experience. *Acta Chir Iugosl* 2010;57:29–35

67. Saklani AP, Lim DR, Hur H, Min BS, Baik SH, Lee KY et al. Robotic versus laparoscopic surgery for mid–low rectal cancer after neoadjuvant chemoradiation therapy: comparison of oncologic outcomes. *Int J Colorectal Dis* 2013;28:1689–1698

68. Serin KR, Gultekin FA, Batman B, Ay S, Kapran Y, Saglam S et al. Robotic versus laparoscopic surgery for mid or low rectal cancer in male patients after neoadjuvant chemoradiation therapy: comparison of short-term outcomes. *J Robotic Surg* 2015;9:187–194

69. Shin JK, Park Y, Kim HC, Huh JW, Cho YB, Yun SH et al. Robotic versus laparoscopic intersphincteric resection for low rectal cancer: a comparative study of short-term outcomes. *J Minim Invasive Surg* 2015;18:98–105

70. Tam MS, Abbass M, Abbas MA. Robotic-laparoscopic rectal cancer excision versus traditional laparoscopy. *JSLS* 2014;18:e2014.00020

71. Yamaguchi T, Kinugasa Y, Shiomi A, Tomioka H, Kagawa H, Yamakawa Y. Robotic-assisted vs. conventional laparoscopic surgery for rectal cancer: short-term outcomes at a single center. *Surg Today* 2016;46:957–962

72. Yoo BE, Cho JS, Shin JW, Lee DW, Kwak JM, Kim J et al. Robotic versus laparoscopic intersphincteric resection for low rectal cancer: comparison of the operative, oncological, and functional outcomes. *Ann Surg Oncol* 2015;22:1219–1225

73. Yoon SN, Kim KY, Kim JW et al. Comparison of short- and long-term outcomes of an early experience with robotic and laparoscopic-assisted resection for rectal cancer. *Hepatogastroenterology* 2015;62:34–39

74. Hoshino N, Sakamoto T, Hida K, Sakai Y. Robotic versus laparoscopic surgery for rectal cancer: an overview of systematic reviews with quality assessment of current evidence. *Surg Today* 2019;49:556–570

75. Ioannidis JP, Haidich AB, Pappa M et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. *JAMA* 2001;286:821–830