Isolamento de Candida spp. de estomatite relacionada à prótese no Pará, Brasil.

O objetivo deste estudo foi isolar e identificar espécies de Candida da cavidade oral de usuários com estomatite relacionada à dentadura, atendidos na Universidade Federal do Pará (Cidade de Belém, Pará, Brasil). Foram incluídos 36 usuários de prótese com estomatite relacionada à prótese, e foram observadas estomatite tipo I (50%), tipo II (33%) e tipo III (17%). Candida spp. foram isolados em 89% dos casos e incluíram cinco espécies diferentes de Candida. C. albicans, frequentemente recuperada (78% dos casos), seguida por C. famata e C. tropicalis. Observamos uma associação significativa entre o isolamento da espécie Candida e a condição insatisfatória da prótese (p = 0,0017). Nossos resultados demonstraram a alta frequência de isolamento de espécies de Candida em usuários de próteses com estomatite relacionada à prótese e mostraram a relação entre essas espécies e má manutenção da prótese.
Isolation of Candida spp. from denture-related stomatitis in Pará, Brazil.

The aim of this study was to isolate and identify Candida species from the oral cavity of denture wearers with denture-related stomatitis who were attended at the University Federal of Pará (Belém City, Pará State, Brazil). A total of 36 denture wearers with denture-related stomatitis were included, and type I (50%), type II (33%) and type III (17%) stomatitis were observed. Candida spp. were isolated from 89% of the cases and included five different Candida species. C. albicans was the most frequently recovered species (78% of the cases), followed by C. famata and C. tropicalis. We observed a significant association between Candida species isolation and unsatisfactory denture condition (p = 0.0017). Our results demonstrated the highly frequency of Candida species isolation in denture wearers with denture-related stomatitis and showed the relationship between these species and poor denture maintaince.

Keywords: Candida albicans, Candida non-albicans, Stomatitis.
INTRODUCTION

Aproximadamente 200 espécies de *Candida* são conhecidas e 10% podem causar infecções em humanos. *C. albicans* é a espécie mais frequentemente descrita nos casos de infecções hospitalares, seguida por *C. parapsilosis, C. tropicalis* e *C. glabrata* [1]. A frequência com que essas espécies são observadas tem implicações significativas para infecções humanas. Essas espécies são organismos comensais que fazem parte da microbiota oral normal e estão presentes em 30 a 60% dos indivíduos saudáveis e em 60 a 100% dos pacientes com dentaduras [2]. O uso prolongado de dentaduras é o fator de risco mais importante para a colonização das espécies por *Candida* e pode ser suficiente para o desenvolvimento de candidíase oral [3]. A candidíase oral está associada a trauma da mucosa causado pelo mau ajuste da prótese, aumento da idade dos usuários, aumento da idade das próteses, infecções por fungos (principalmente *C. albicans*) e falta de higiene dental [4,5,6]. Nesse contexto, a adesão de *Candida* à superfície de materiais dentários, como o polimetil metacrilato, facilita a colonização por *Candida* [7,8]. Os mecanismos pelos quais *C. albicans* aderem às substâncias poliméricas das superfícies (por exemplo, dentaduras) incluem principalmente a formação de biofilme e mudança morfológica, o que facilita a colonização desses materiais pelo fungo. A colonização é o principal fator de risco para o desenvolvimento de estomatite relacionada à prótese (DRS), que é a manifestação clínica mais comum da infecção por *Candida* em usuários de prótese [9].

Infecção por *Candida* spp. é frequentemente observado em pacientes com prótese e pode levar a lesões orais secundárias, como líquen plano, leucoplasia e carcinoma [10]. Colonização de espécies de *Candida* [11, 12] e infecções [9] na cavidade oral de usuários de próteses dentárias foram relatadas em todo o mundo, e *C. albicans* é particularmente prevalente [13]. Além disso, o isolamento de outras espécies de *Candida* além de *C. albicans* tem aumentado, o que provavelmente ocorre devido ao uso indevido de antifúngicos [14]. No Brasil, poucos estudos demonstraram o perfil de *Espécies de Candida* relacionadas à colonização da superfície da prótese ou mucosa oral e à incidência dessas lesões em usuários de próteses [15]. Portanto, focalizamos este estudo no isolamento e identificação de *Espécies de Candida* da superfície das próteses e da mucosa oral de usuários de prótese com DRS.

METHODS

Aspectos éticos
O estudo foi aprovado pelo Comitê de Ética do Instituto Evandro Chagas (CEP / IEC 032/10) e realizado entre março e outubro de 2012. Todos os pacientes foram informados sobre o estudo e assinaram um termo de consentimento livre e esclarecido.
População
Trinta e seis (n = 36) pacientes com prótese à base de acrílico que apresentaram estomatite relacionada à prótese foram incluídos. Os pacientes foram equipados com próteses totais (n = 32) ou parcialmente removíveis (n = 4). Todos os participantes foram atendidos na clínica odontológica da Universidade Federal do Pará (Belém, Pará, Brasil). Foram realizadas análises dos dados demográficos dos pacientes, que incluíam idade, sexo, hábitos de higiene (ruim ou não), uso de enxaguatório bucal, condição da prótese presente (satisfatória ou insatisfatória) e característica qualitativa (próteses novas ou antigas). A presença de DRS foi avaliada de acordo com uma versão modificada da classificação de Newton [16]. A gravidade da inflamação palatina foi classificada como (1) sem estomatite, que não incluía evidência de inflamação palatina ou discreta alteração de cor da mucosa do palato; (2) estomatite tipo I, que incluía petéquias dispersas por toda ou parte da mucosa palatina em contato com a prótese; (3) tipo II, que incluiu eritema macular sem hiperplasia; e (4) tipo III, que incluiu eritema difuso ou generalizado com hiperplasia papilar. Os critérios de exclusão dos pacientes incluíram a presença de diabetes ou doença autoimune e o uso de corticosteroides.

Isolamento e identificação
Após um exame da cavidade oral, as amostras de prótese e mucosa foram coletadas raspando-se cotonetes estéreis na superfície interna da prótese (base da prótese, BP) e mucosa oral (mucosa palatina, MP) em contato com a prótese. Posteriormente, as amostras foram cultivadas em ágar Sabouraud dextrose (Difco, Laboratories, Detroit, MI, EUA), incubadas a 35 °C e observadas diariamente por 7 dias. Quando se observou o crescimento de colônias de leveduras, o método de coloração de Gram foi utilizado para verificar a ausência de contaminação bacteriana. As leveduras foram identificadas através de perfis de assimilação de carboidratos usando o Sistema Vitek 2 (BioMerieux l’Etoile, França) de acordo com as instruções do fabricante.

Leveduras identificadas como C. dubliniensis foram submetidas a confirmação molecular devido à estreita relação fenotípica desta espécie com C. albicans. Resumidamente, o DNA genômico foi extraído como descrito anteriormente [17] e, quando necessário, a identificação molecular foi realizada como descrito por Mannarelli e Kurtzman [18] (C. dubliniensis / frente: CDU2 - 5′-AGT TAC TCT TTC GGG GGT GGC CT-3′; C. dubliniensis / reverse: NL4CAL - 5′-AAG ATC ATG ATC CCA ACA TCC TAG GTA AA-3′) e por Luo e Mitchell [19] (C. albicans / atacante: CALB1 - 5′-TTT ATC AAC TTG TCA CAC CAG A-3′; C. albicans / reverso: CALB2 - 5′-ATC CGG CCT TAC CAC TAC CG-3′) e por Luo e Mitchell [19] (C. albicans / atacante: CALB1 - 5′-TTT ATC AAC TTG TCA CAC CAG A-3′; C. albicans / reverso: CALB2 - 5′-ATC CGG CCT TAC CAC TAC CG-3′) e por Luo e Mitchell [19] (C. albicans / atacante: CALB1 - 5′-TTT ATC AAC TTG TCA CAC CAG A-3′; C. albicans / reverso: CALB2 - 5′-ATC CGG CCT TAC CAC TAC CG-3′) e por Luo e Mitchell [19] (C. albicans / atacante: CALB1 - 5′-TTT ATC AAC TTG TCA CAC CAG A-3′; C. albicans / reverso: CALB2 - 5′-ATC CGG CCT TAC CAC TAC CG-3′) e por Luo e Mitchell [19] (C. albicans / atacante: CALB1 - 5′-TTT ATC AAC TTG TCA CAC CAG A-3′; C. albicans / reverso: CALB2 - 5′-ATC CGG CCT TAC CAC TAC CG-3′). A mistura foi preparada para um volume final de 25 μL da seguinte maneira: 10 × MgCl₂ (2 μL), 10 mM dNTP (1 μL), 10 x tampão PCR (2,5 μL), solução Q (2 μL), solução Q (2 μL), Taq DNA polimerase (1 U; Invitrogen Life Technologies, Carlsbad, Califórnia) e modelo de DNA genômico (2 μL). A amplificação foi realizada em um termociclador (TX96 plus, Amplitherm, Axigen) da seguinte forma: para C. dubliniensis: 98 °C por 3 min; seguido por 35 ciclos de 95 °C por 1 min, 52 °C por 1,5 min e 72 °C por 10 min; e então 72 °C por 10 min; e para C. albicans: 96 °C por 5 min; seguido
de 40 ciclos de 94 °C por 30 s, 58 °C por 30 s e 72 °C por 30 s; e depois 72 °C por 15 min. Os produtos de PCR foram submetidos à eletroforese horizontal. Os fragmentos amplificados foram 175 pb e 273 pb para *C. dubliniensis* e *C. albicans*, respectivamente.

Análise estatística

As inferências estatísticas dos resultados descritivos foram realizadas com base em testes não paramétricos, como o teste de independência de aderência G, utilizando o BioEstat versão 5.3 (Instituto Maumirauá, Belém, Pará, Brasil). A significância estatística foi considerada em *p* ≤ 0,05.

Este estudo é uma adaptação para o português, que segue os critérios de acesso aberto e direitos autorais *creative commons attribution 4.0 license*, do artigo: Gauch, Lurdete Maria Rocha, et al. "Isolation of Candida spp. from denture-related stomatitis in Pará, Brazil." *brazilian journal of microbiology* 49.1 (2018): 148-151. [32]

RESULTS

Trinta e seis (*n* = 36) usuários de prótese com DRS foram incluídos neste estudo. Os pacientes variaram de 40 a 83 anos (idade média = 62 anos) e incluíram 12 homens (33%) e 24 mulheres (67%). De acordo com a classificação de Newton, os casos de DRS foram distribuídos da seguinte forma: Tipo I (50%), Tipo II (33%) e Tipo III (17%) entre os casos. As espécies de *Candida* foram isoladas apenas da PA (17%), somente FM (5%) e PA e FM simultaneamente (67%). Em quatro casos (11%), as espécies de *Candida* não foram isoladas. Com base na identificação bioquímica ou bioquímica e molecular, foram observadas cinco espécies diferentes de *Candida*. *C. albicans* foi a espécie mais frequentemente observada (78% dos casos) e isolada ou em isolamento simultâneo com *C. famata*, *C. tropicalis* ou *C. parapsilosis*. O isolamento restrito de outras espécies de *Candida* além de *C. albicans* foi observado em 11% dos casos. Todos esses resultados estão resumidos na Tabela 1.

Tabela 1. Presença de espécies de *Candida* nas amostras orais de 36 usuários de estomatite com estomatite relacionada à prótese.

Registro de paciente no.	Local de coleta de amostras	Tipo de estomatite	
	BP	PM	
5	*Candida albicans*	WCG	Tipo I
7	*C. albicans*	*C. famata*	Tipo I
8	*C. albicans*	WCG	Tipo I

BJIHS, v.2, n.5, p. 03-11, May 29, 2020

Article received on May 02, revised on May 09, accepted for publication on May 26 and published on May 29
Registro de paciente no.	Local de coleta de amostras	Tipo de estomatite	
	BP	FM	
10	WCG	C. *famata*	Tipo 1
11	C. *albicans*	C. *albicans*	Tipo 1
12	C. *albicans*	C. *famata*	Tipo 1
13	C. *albicans*	WCG	Tipo II
18	WCG	WCG	Tipo 1
19	C. *albicans*	WCG	Tipo II
22	WCG	WCG	Tipo 1
24	C. *albicans*	WCG	Tipo II
26	C. *albicans*	C. *albicans*	Tipo II
27	WCG	WCG	Tipo II
33	C. *albicans*	C. *albicans*	Tipo I
34	WCG	WCG	Tipo III
41	C. *parapsilosis*	C. *albicans*	Tipo I
55	C. *albicans*	C. *tropicalis*	Tipo I
56.	C. *albicans*	C. *albicans*	Tipo III
63.	C. *albicans*	C. *albicans*	Tipo III
66.	C. *tropicalis*	WCG	Tipo I
70	C. *albicans*	C. *albicans*	Tipo I
74	C. *tropicalis*	C. *albicans*	Tipo II
78	C. *albicans*	C. *albicans*	Tipo II
81	C. *famata*	C. *albicans*	Tipo I
82	C. *albicans*	C. *famata*	Tipo I
83	C. *albicans*	C. *albicans*	Tipo II
De acordo com os dados demográficos, a condição insatisfatória da prótese foi um fator de influência no isolamento das espécies de Candida ($p = 0,0017$); no entanto, sexo ($p = 0,7015$), uso de enxaguatório bucal ($p = 0,6514$), hábitos de higiene ($p = 0,3897$), uso contínuo de dentaduras ($p = 0,4011$) e dentaduras antigas ($p = 0,2502$) não foram relacionados ao isolamento das espécies de Candida.

DISCUSSION

A DRS exibe uma etiologia multifatorial e está associada ao uso de próteses, indicando que a apresentação da doença pode ser afetada por fatores endógenos e exógenos [7,9]. Um fator de risco crítico, no entanto, é a colonização da mucosa oral por espécies de Candida [20]. No presente estudo, Candida spp. foram isolados em 89% dos casos de usuários de prótese com DRS (de acordo com a classificação de Newton), reforçando a relação entre Candida spp. e DRS. Em usuários de dentaduras brasileiras, a DRS foi anteriormente observada como a
principal lesão na cavidade oral [21], o que é consistente com nossos resultados. No presente estudo, o fator que influenciou se Candida foi isolada foi uma condição insatisfatória da prótese. A manutenção frequente das próteses permite melhorias em certas características funcionais, como o RVD (dimensão vertical de repouso) e o VDO (dimensão vertical de oclusão) do paciente, a adesão da prótese à mucosa e a diminuição da rugosidade da resina. Melhorar esses fatores pode diminuir a contaminação por microorganismos da prótese de superfície, o que influenciará a saúde bucal dos usuários. Nesse contexto, Pereira-Cenci et al. [22] e Park et al. [23] observaram que a colonização de próteses por Candida espécie é causada pela rugosidade da superfície, o que facilita a adesão do fermento às dentaduras de resina. Como a aderência de C. albicans às resinas acrílicas da superfície está relacionada à porosidade e rugosidade da superfície, as superfícies das próteses podem ser consideradas uma fonte de infecção, e esses achados são consistentes com a colonização significativa observada em usuários de próteses que apresentam DRS porque todos os pacientes foram adaptados com próteses de resina acrílica. Além disso, os resultados apoiaram a relação entre a condição insatisfatória da prótese e o isolamento das espécies de Candida.

Outros fatores têm sido frequentemente relatados como influentes no desenvolvimento de DRS. Por exemplo, Bulad et al. [4] mencionaram que o uso contínuo de próteses facilitou a estomatite porque a exposição prolongada da mucosa às placas dentárias pode intensificar certas lesões. Além disso, Darwazeh et al. [24] observaram uma forte associação entre falta de higiene dental e colonização por Candida e sugeriram que o acúmulo de placa na superfície da prótese pode criar um ambiente ideal para leveduras. No entanto, não foi observada associação entre falta de higiene, uso contínuo de dentaduras ou dentaduras antigas e o isolamento de espécies de Candida neste estudo.

Entre os usuários de dentaduras colonizadas em nosso estudo, C. albicans foi a principal espécie isolada, seguida por C. famata e C. tropicalis, que foram as espécies não-frequentes de C. albicans. Esses resultados corroboram os achados de outros estudos [11,14,21,25,26,27], incluindo outros estudos brasileiros [16,28,29,30]. Além disso, Sant'Ana et al. [31] relataram que a presença de duas ou mais espécies no mesmo paciente pode predispor o paciente a estomatite recorrente, e isolamentos duplos também foram observados em usuários de próteses com DRS no presente estudo. Além disso, C. famata foi observado na PM de usuários de próteses que exibiram DRS e encontraram associação com C. albicans. Esses resultados demonstraram o potencial de patógenos emergentes nos casos de DRS.

Observamos uma frequência significativa de DRS em pacientes brasileiros colonizados por espécies de Candida, e a infecção foi causada principalmente por C. albicans. Os resultados indicam que, nos pacientes observados, a DRS se desenvolveu ao longo de um caminho dependente do estado insatisfatório da prótese e da colonização da cavidade oral por espécies de Candida.
Conflitos de interesse
Os autores declaram não haver conflitos de interesse.

REFERENCES
1- M.E. Maluche, J.I. Santos. *Candida* spp e infecções hospitalares: aspectos epidemiológicos e laboratoriais. RBAC, 40 (2008), pp. 65-67

2- B.W. Loste, J. Loste, A. Wieczorek, W. Ryniewicz. Mycological analysis of the cavity of patients using acrylic removable dentures. Gastroenterol Res Pract, (2012), p. 951572

3- O. Abaci, B. Ozturk, H. Boyacioglu. Determining *Candida* spp. Incidence in denture wearers. Mycopathologia, 169 (2010), pp. 365-372

4- K. Bulad, R.L. Taylor, J. Verran, J.F. McCord. Colonization and penetration of denture soft lining materials by *Candida albicans*. Dent Mater, 20 (2004), pp. 167-175

5- S. Jeganathan, C.C. Lin. Denture stomatitis – a review of the etiology, diagnosis and management. Aust Dent J, 37 (1992), pp. 107-114

6- B.C. Webb, C.J. Thomas, M.D.P. Willcox. *Candida*-associated denture stomatitis. Aetiology and management: a review. Part I. Factors influencing distribution of Candida species in the oral cavity. Aust Dent J, 43 (1998), pp. 45-50

7- S. Silva, M. Henriques, A. Hayes, R. Oliveira, J. Azeredo, D.W. Williams. *Candida glabrata* and *Candida albicans* co-infection of an in vitro oral epithelium. J Oral Pathol Med, 40 (2011), pp. 421-427

8- M.G. Waters, D.W. Williams, R.G. Jagger, M.A. Lewis. Adherence of *Candida albicans* to experimental denture soft lining materials. J Prosthet Dent, 77 (1997), pp. 306-312

9- L. Gendreau, Z.G. Loewy. Epidemiology and etiology of denture stomatitis. J Prosthodont, 20 (2011), pp. 251-260

10- L.C. Spolidorio, V.R.G. Martins, R.D. Nogueira, D.M.P. Spolidorio. Frequência de *Candida* spp em biópsias de lesões da mucosa oral. Pesq Odont Bras, 17 (2003), pp. 89-93

11- E.A.F.A. Navas, A.C. Inocêncio, J. Dias, et al. Oral distribution of *Candida* species and presence of oral lesions in Brazilian leprosy patients under multidrug therapy. J Oral Pathol Med, 38 (2009), pp. 764-767
12- P.A. Reichart, L.P. Samaranayake, C.H. Bendick, A.M. Schmidt-Westhausen, J.A. Jayatilake. Prevalence of oral Candida species in leprosy patients from Cambodia and Thailand. J Oral Pathol Med, 36 (2007), pp. 342-346

13- M. Martins, M. Henriques, A.P. Ribeiro, et al. Oral Candida carriage of patients attending a dental clinic in Braga, Portugal. Rev Iberoam Micol, 27 (2010), pp. 119-124

14- D.R. Snydman. Shifting patterns in the epidemiology of nosocomial Candida infections. Chest, 123 (2003), pp. 5005-5035

15- P.V. Sanitá, A.C. Pavarina, E.T. Giampaolo, et al. Candida spp. prevalence in well controlled type 2 diabetic patients with denture stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 111 (2011), pp. 726-733

16- A.V. Newton. Denture sore mouth: a possible etiology. Br Dent J, 112 (1962), pp. 357-360

17- J. Sambrook, E.F. Fritsch, T. Maniatis. Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Habor Laboratory Press (1986)

18- B.M. Mannarelli, C.P. Kurtzman. Rapid identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J Clin Microbiol, 36 (1998), pp. 1634-1641

19- G. Luo, T.G. Mitchell. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol, 40 (2002), pp. 2860-2865

20- K. Zomorodian, N.N. Haghighi, N. Rajaee, et al. Assessment of Candida species colonization and denture-related stomatitis in complete denture wearers. Med Mycol, 49 (2011), pp. 208-211

21- R.C. Ferreira, C.S. Magalhães, N.A. Moreira. Oral mucosal alterations among the institutionalized elderly in Brazil. Braz Oral Res, 24 (2010), pp. 296-302

22- T. Pereira-Cenci, A.A. Cury, M.S. Cenci, R.C. Rodrigues-Garcia. In vitro Candida colonization on acrylic resin and denture liners: influence of surface free energy, roughness, saliva, and adhering bactéria. Int J Prosthodont, 20 (2007), pp. 308-310

23- S.E. Park, R. Blissett, S.M. Susarla, H.-P. Weber Candida albicans adherence to surface-modified denture resin surfaces. J Prosthodont, 17 (2008), pp. 365-369
24- A.M.G. Darwazeh, M.M. Hammad, A.A. Al-Jamaei. The relationship between oral hygiene and oral colonization with Candida species in healthy adult subject. Int J Dent Hyg, 8 (2010), pp. 128-133.

25- S. Dagistan, A.E. Aktas, F. Caglayan, A. Ayyildiz, M. Bilge. Differential diagnosis of denture-induced stomatitis, Candida and their variations in patients using complete denture: a clinical and mycological study. Mycoses, 52 (2008), pp. 266-271

26- P.Y. Ge, X.G. He, T. Lin, X.G. Lu, N.Y. Shen, W.D. LiuFirst isolation of Candida dubliniensis from oral cavities of dermatological patients in Nanjing, China. Mycopathologia, 172 (2011), pp. 465-471

27- T. Kadir, R. Pisiriciler, S. Akyüz, A. Yarat, N. Emekli, A. Ipbüker. Mycological and cytological examination of oral candida carriage in diabetic patients and non-diabetic control subject: thorough analysis of local etiologic and systemic factors. J Oral Rehabil, 29 (2002), pp. 452-457

28- J.P. Lyon, L.M. Moreira, M.A.G. Cardoso, J. Saade, M.A. Resende. Antifungal susceptibility profile of Candida spp. oral isolates obtained from denture wearers. Braz J Microbiol, 39 (2008), pp. 668-672

29- E.A. Menezes, M.S. Cavalcante, R.B. Farias, et al. Frequency and enzymatic activity of Candida albicans isolates from the buccal mucosa of children of a day-care center of the city hall of Fortaleza, Ceará, Brazil. J Bras Pathol Med Lab, 41 (2005), pp. 9-13

30- F.R. Pires, E.B. Santos, P.R. Bonan, O.P. De Almeida, M.A. Lopes. Denture stomatitis and salivary Candida in Brazilian edentulous patients. J Oral Rehabil, 29 (2002), pp. 1115-1119

31- P.L. Sant’Ana, E.P. Milan, R. Martine, et al. Multicenter Brazilian Study of oral Candida species isolated from Aids patients. Mem Inst Oswaldo Cruz, 97 (2002), pp. 253-257

32- Gauch, Lurdete Maria Rocha, et al. "Isolation of Candida spp. from denture-related stomatitis in Pará, Brazil." brazilian journal of microbiology 49.1 (2018): 148-151.