A uniform Berry-Esseen theorem on M-estimators for geometrically ergodic Markov chains
Loïc Hervé, James Ledoux, Valentin Patilea

To cite this version:
Loïc Hervé, James Ledoux, Valentin Patilea. A uniform Berry-Esseen theorem on M-estimators for geometrically ergodic Markov chains. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2012, 18 (2), pp.703-734. 10.3150/10-BEJ347. hal-00563638

HAL Id: hal-00563638
https://hal.archives-ouvertes.fr/hal-00563638
Submitted on 7 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A uniform Berry-Esseen theorem on $M-$estimators for geometrically ergodic Markov chains

Loïc HERVÉ*, James LEDOUX*, Valentin PATILEA*

September 7, 2010

Abstract

Let $\{X_n\}_{n \geq 0}$ be a V-geometrically ergodic Markov chain. Given some real-valued functional F, define $M_n(\alpha) := \frac{1}{n} \sum_{k=1}^{n} F(\alpha, X_{k-1}, X_k)$, $\alpha \in A \subset \mathbb{R}$. Consider an $M-$estimator $\hat{\alpha}_n$, that is a measurable function of the observations satisfying $M_n(\hat{\alpha}_n) \leq \min_{\alpha \in A} M_n(\alpha) + c_n$ with $\{c_n\}_{n \geq 1}$ some sequence of real numbers going to zero. Under some standard regularity and moment assumptions, close to those of the i.i.d. case, the estimator $\hat{\alpha}_n$ satisfies a Berry-Esseen theorem uniformly with respect to the underlying probability distribution of the Markov chain.

AMS subject classification : 62F12, 62M05, 60F05, 60J05

Keywords : spectral method

I Introduction

Let (E, \mathcal{E}) be a measurable space with \mathcal{E} a countably generated σ-field, and let $\{X_n\}_{n \geq 0}$ be a Markov chain with state space E and transition kernels $\{Q_\theta(x, \cdot) : x \in E\}$ where θ is a parameter in some general set Θ. The initial distribution of the chain, i.e. the probability distribution of X_0, is denoted by μ and may or may not depend on θ. Although $\{X_n\}_{n \geq 0}$ does not need to be the canonical version, we use the standard notation $P_{\theta, \mu}$ to refer to the probability distribution of $\{X_n\}_{n \geq 0}$ (and $E_{\theta, \mu}$ for the expectation w.r.t. $P_{\theta, \mu}$). We consider that $\{X_n\}_{n \geq 0}$ is a V-geometrically ergodic Markov chain, where $V : E \to [1, +\infty)$ is some fixed unbounded function. This class of Markov chains is large enough to cover interesting applications (see [MT93, §16.4,§16.5]).

The parameter of interest is $\alpha_0 = \alpha_0(\theta) \subset A$, where $\alpha_0(\cdot)$ is a function of the parameter θ and A is an open interval of \mathbb{R}. To estimate α_0, let us introduce the statistic

$$M_n(\alpha) := \frac{1}{n} \sum_{k=1}^{n} F(\alpha, X_{k-1}, X_k), \quad (1)$$

where F is a real-valued measurable functional on $A \times E^2$. We define an $M-$estimator to be a random variable $\hat{\alpha}_n$ depending on the observations (X_0, \ldots, X_n) such that

$$M_n(\hat{\alpha}_n) \leq \min_{\alpha \in A} M_n(\alpha) + c_n,$$

This is slightly more general than the usual definition of $M-$estimators or minimum contrast estimators, where $c_n = 0$, see [Arc98].
where \(\{ c_n \}_{n \geq 1} \) is a sequence of non-negative real numbers going to zero to be specified later. Assume that for all \(\theta \in \Theta \)

\[
M_{\theta}(\alpha) := \lim_{n \to \infty} \mathbb{E}_{\theta, \mu}[M_n(\alpha)]
\]

is well defined everywhere on \(\mathcal{A} \) and does not depend on \(\mu \). In addition, assume that there exists a unique “true” value \(\alpha_0 \) of the parameter of interest, that is \(M_{\theta}(\alpha_0) < M_{\theta}(\alpha), \forall \alpha \neq \alpha_0 \).

We want to prove the following uniform Berry-Esseen bound for \(\hat{\alpha}_n \)

\[
\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu} \left\{ \frac{\sqrt{n}}{\tau(\theta)} \left(\hat{\alpha}_n - \alpha_0 \right) \leq u \right\} - \Gamma(u) \right| = O \left(\frac{1}{\sqrt{n}} \right), \tag{BE}
\]

where \(\Gamma \) denotes the standard normal distribution function, and \(\tau(\theta) \) is some positive real number defined in Theorem 3.

To derive (BE), we use Pfanzagl’s approach [Pfa71]. Besides technical assumptions, this approach relies on several ingredients. First, we need the uniform consistency condition:

\[
(UC) \quad \forall d > 0, \sup_{\theta \in \Theta} \mathbb{P}_{\theta, \mu} \{ |\hat{\alpha}_n - \alpha_0| \geq d \} = O(1/\sqrt{n}).
\]

Second, consider the following two convergence properties: if \(S_n(\alpha_0) = \sum_{k=1}^n \xi(\alpha_0, X_{k-1}, X_k) \) with \(\xi(\alpha_0, X_{k-1}, X_k) \) centered,

(a) the sequence \(\{ \mathbb{E}_{\theta, \mu}[S_n^2(\alpha_0)]/n \}_{n \geq 1} \) converges to a real number \(\sigma^2(\theta) \);

(b) there exists a positive constant \(B(\xi) \) such that for any \(n \geq 1 \)

\[
\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu} \left\{ \frac{S_n(\alpha_0)}{\sigma(\theta) \sqrt{n}} \leq u \right\} - \Gamma(u) \right| \leq \frac{B(\xi)}{\sqrt{n}}.
\]

The properties (a) and (b) will be required for certain \(\xi(\alpha_0, x, y) \) defined as linear combinations of some functionals related to \(F \). To obtain (a) and (b) for such \(\xi(\alpha_0, x, y) \)'s with \(V \)-geometrically ergodic Markov chains, a natural moment (or \(V \)-domination) condition is used: there exist positive constants \(C_\xi \) and \(m \) such that

\[
\forall (x, y) \in E^2, \forall \alpha \in \mathcal{A}, \quad |\xi(\alpha, x, y)|^m \leq C_\xi (V(x) + V(y)). \tag{2}
\]

The paper is organized as follows. In Section II, an extended version of Pfanzagl’s theorem [Pfa71, Th 1] is stated for any sequence of observations, not necessarily markovian. Section III is devoted to a Berry-Esseen bound for the additive functional \(\sum_{k=1}^n \xi(\alpha_0, X_{k-1}, X_k) \) of a \(V \)-geometrically ergodic Markov chain \(\{ X_n \}_{n \geq 0} \) with \(\xi \) satisfying Inequality (2). In Subsection III.2, we prove that the properties (a) and (b) are fulfilled when Inequality (2) holds with the (almost expected) order \(m \), namely: \(m > 2 \Rightarrow (a) \), and \(m > 3 \Rightarrow (b) \). These results follow from the weak spectral method based on the theorem of Keller and Liverani [KL99]. This approach, introduced in [HH04], is fully described in [HP10] in the Markov context (see also [GL06, Gou08] and other references given in [HP10]). It is important to notice that Pfanzagl’s method requires the precise control of the constant \(B(\xi) \) in Property (b) as a function of the size of \(\xi \). The present operator-type approach shows that \(B(\xi) \) depends only on the constant \(C_\xi \) in Inequality (2). Thanks to these preliminary results, in Section IV we prove our main statement, that is:
under some technical assumptions and the uniform consistency condition (UC), if two functionals F' and F'' related to F (in the basic case F' and F'' are the first and second order derivatives of F with respect to α) satisfy Inequality (2) for some $m > 3$ and constants $C_{F'}$, $C_{F''}$ that do not depend on α, then $\hat{\alpha}_n$ satisfies property (BE).

To the best of our knowledge, the result (R) is new. It completes the central limit theorem for $\{\hat{\alpha}_n\}_{n \geq 1}$ proved in [DY07] when Inequality (2) holds with $m = 2$. The domination condition (2) required by (R) is almost optimal in the sense that we impose $m > 3$ in place of the best possible value $m = 3$ obtained in the i.i.d. case. In Section V, our results are applied to the AR(1) process with ARCH (AutoRegressive Conditional Heteroscedastic) of order 1 errors. The paper ends with a conclusion section.

Let us close the introduction with a brief review of previous related work in the literature. In [Pfa71], $\{X_n\}_{n \in \mathbb{N}}$ is a sequence of i.i.d. random variables and Pfanzagl proved a Berry-Esseen theorem for minimum contrast estimators (which are special instances of M-estimators) associated with functionals of the form $F(\alpha, X_k)$. In [Pfa71], the moment conditions on $F' := \partial F/\partial \alpha$, $F'' := \partial^2 F/\partial \alpha^2$ are the expected ones since the property (b) is fulfilled under the expected third moment condition [Fel71, Chap. XVI]. Using convexity arguments, Bentkus et al. [BBG97] proposed an alternative method for deriving Berry-Esseen bounds for $M-$estimators with i.i.d. data. In the Markov context, the method proposed by Pfanzagl is extended, first by Rao to cover the case of uniformly ergodic Markov chains [Rao73], second in [MR89] to the case of the linear autoregressive model. However, their assumptions to get (BE) include much stronger moment conditions involving both the functional F and the Markov chain. Here, as already mentioned, the weak spectral method of [HP10] enables us to have an (almost) optimal treatment of (a) and (b), and hence an improved Berry-Esseen result (BE).

II The Pfanzagl method revisited

We state and prove a general result that allows to derive uniform Berry-Esseen bounds for $M-$estimators. This result is an extended version of Theorem 1 in [Pfa71] and is applied to our Markov context in Section IV.

II.1 The result

Consider a statistical model $\left(\Omega, \mathcal{F}, \{P_\theta, \theta \in \Theta\} \right)$, where Θ denotes some parameter space, and let $\{X_n\}_{n \geq 0}$ be any sequence of observations (not necessarily Markovian). Let us denote the expectation with respect to P_θ by E_θ.

For each n, let $M_n(\alpha)$ be a measurable functional of the observations X_0, \ldots, X_n and the parameter of interest $\alpha \in \mathcal{A}$ where \mathcal{A} is some open interval of \mathbb{R}. Let $\{c_n\}_{n \geq 1}$ be a sequence of non-negative real numbers going to zero at some rate to be specified later. An $M-$estimator is a measurable function $\hat{\alpha}_n$ of the observations (X_0, \ldots, X_n) such that

$$M_n(\hat{\alpha}_n) \leq \min_{\alpha \in \mathcal{A}} M_n(\alpha) + c_n.$$ \hfill (3)

This is the usual definition of minimum contrast estimators as soon as $c_n \equiv 0$.
Assumptions. Suppose that for all \(n \geq 1 \) and \(\alpha \in \mathcal{A} \), there exist \(M'_n(\alpha) \), \(M''_n(\alpha) \) some measurable functions depending on \(X_0, X_1, \ldots, X_n \) and on the parameter of interest such that the following properties hold true:

(A1) \(\forall \theta \in \Theta \), there exists a unique \(\alpha_0 = \alpha_0(\theta) \in \mathcal{A} \) such that \(M'_0(\alpha_0) = 0 \) where \(M'_0(\alpha) := \lim_{n \to \infty} \mathbb{E}_\theta [M'_n(\alpha)] \) (the limit is assumed to be well defined for all \((\theta, \alpha) \in \Theta \times \mathcal{A} \));

(A2) \(0 < \inf_{\theta \in \Theta} m(\theta) \leq \sup_{\theta \in \Theta} m(\theta) < \infty \) where \(m(\theta) := \lim_{n \to \infty} \mathbb{E}_\theta [M''_n(\alpha_0)] \) (the limit is assumed to be well defined for all \(\theta \));

(A3) for every \(n \geq 1 \), there exists \(r_n > 0 \) independent of \(\theta \) such that \(r_n = o(n^{-1/2}) \) and
\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \{ |M'_n(\widehat{\alpha}_n)| \geq r_n \} = O(n^{-1/2});
\]

(A4) for \(j = 1, 2 \), there exists a function \(\sigma_j(\cdot) \) such that \(0 < \inf_{\theta \in \Theta} \sigma_j(\theta) \leq \sup_{\theta \in \Theta} \sigma_j(\theta) < \infty \) and there exists a positive constant \(B \) such that for all \(n \geq 1 \)
\[
\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_1(\theta)} M'_n(\alpha_0) \leq u \right\} - \Gamma(u) \right| \leq \frac{B}{\sqrt{n}};
\]

\[
\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_2(\theta)} (M''_n(\alpha_0) - m(\theta)) \leq u \right\} - \Gamma(u) \right| \leq \frac{B}{\sqrt{n}};
\]

(A4’) for \(n \geq 1 \), \(|u| \leq 2\sqrt{\ln n} \), and \(\theta \in \Theta \), there is a positive number \(\sigma_{n,u}(\theta) \) such that
\[
|\sigma_{n,u}(\theta) - \sigma_1(\theta)| \leq \frac{A' |u|}{\sqrt{n}}, \quad \left| \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_{n,u}(\theta)} \left(M'_n(\alpha_0) + \frac{u \sigma_1(\theta)}{\sqrt{n} m(\theta)} (M''_n(\alpha_0) - m(\theta)) \right) \leq u \right\} - \Gamma(u) \right| \leq \frac{B'}{\sqrt{n}}
\]
with some positive constants \(A', B' \) independent of \(n, u, \theta \);

(A5) for any \((\alpha, \alpha') \in \mathcal{A}^2 \), let \(R_n(\alpha, \alpha') \) be defined by the equation
\[
M'_n(\alpha') = M'_n(\alpha) + [M''_n(\alpha) + R_n(\alpha, \alpha')](\alpha' - \alpha).
\]
For each \(n \), there exist \(\omega_n \geq 0 \) and a real-valued measurable function \(W_n \) depending on \(X_0, \ldots, X_n \), both independent of \(\theta \), such that \(\omega_n = o(1) \) and
\[
\forall (\alpha, \alpha') \in \mathcal{A}^2, \quad |R_n(\alpha, \alpha')| \leq \{ |\alpha - \alpha'| + \omega_n \} W_n,
\]
and there is a constant \(c_W > 0 \) such that
\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \{ c_W \leq W_n \} = O(n^{-1/2}).
\]

(A6) \(\widehat{\alpha}_n \) is assumed to be uniformly consistent, that is there exists \(\gamma_n = o(1) \) such that
\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \{ |\widehat{\alpha}_n - \alpha_0| \geq d \} \leq \gamma_n,
\]
where \(d := \inf_{\theta \in \Theta} m(\theta)/8c_W \) with \(c_W \) and \(m(\theta) \) defined in (A5) and (A2) respectively.
Let us comment on these assumptions. Condition (A1) identifies the true value of the parameter. In Conditions (A1) and (A2), the expectations $E_\theta[M_n'(\alpha)]$ and $E_\theta[M_n''(\alpha_0)]$ may depend on n, like for instance in the Markovian framework considered in the sequel when the initial distribution is not the stationary distribution. Condition (A3) ensures that the estimator (approximately) satisfies a kind of first order condition. Such a condition allows to take into account the numerical errors we are faced when computing $\hat{\alpha}_n$. It may also be useful when the estimator of the parameter α_0 depends on some “nuisance” parameters (see the example in the second part of Section V). Conditions (A4) and (A4') are the uniform Berry-Esseen bounds for $M_n'(\alpha_0)$, $M''_n(\alpha_0)$ and for some of their linear combinations. The identity defining $R_n(\alpha, \alpha')$ in Condition (A5) is guaranteed by a Taylor expansion when the criterion $M_n(\alpha)$ is twice differentiable with respect to α. In this case M_n' and M_n'' are nothing else but the first and second order derivatives of M_n with respect to α. The reminder $R_n(\alpha, \alpha')$ must satisfy a Lipschitz condition. For instance, when $\omega_n = 0$, this holds true if $\alpha \mapsto M_n(\alpha)$ is three times continuously differentiable with a bounded third order derivative. Condition (A6) is a standard consistency condition (e.g. see [BBG97]). General sufficient conditions for (A6) with $\gamma_n = O(n^{-1})$ have been proposed in the case of i.i.d. observations or uniformly ergodic Markov chains (see [MP71, Lemma 4] and [Rao73, Lemma 4.1] respectively). Such general arguments can easily be adapted to the geometrically ergodic Markov chain framework. In specific examples, like the one investigated in Section V, Condition (A6) can be checked by direct arguments.

The proof of Theorem 1, which adapts the arguments of [Pfa71], is given in Subsection II.2.

Theorem 1 Under Conditions (A1-A6), there exists a positive constant C such that

$$\forall n \geq 1, \sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| P_\theta \left(\frac{\sqrt{n}}{\tau(\theta)} (\hat{\alpha}_n - \alpha_0) \leq u \right) - \Gamma(u) \right| \leq C \left(\frac{1}{\sqrt{n}} + \sqrt{n} r_n + \omega_n + \gamma_n \right)$$

with $\tau(\theta) := \sigma_1(\theta)/m(\theta)$.

To obtain the classical order $O(n^{-1/2})$ of the Berry-Esseen bound, one needs $\gamma_n = O(n^{-1/2})$, $r_n = O(n^{-1})$ and $\omega_n = O(n^{-1/2})$. Note that this usually requires that the sequence $\{c_n\}_{n \geq 1}$ in (3) decreases at the rate $n^{-3/2}$. This is to be compared to the rate n^{-1} that is usually required to obtain the asymptotic normality of M-estimators (see [Arc98]).

Remark 1 A close inspection of the proof of Theorem 1 below, shows that the constant C in inequality (4) can be tracked provided that the $O(\cdot)$ and $o(\cdot)$ rates in Assumptions (A3)-(A6) are more explicit. For the sake of brevity, we only consider the case where $c_n = r_n = \omega_n = 0$, $\alpha(\theta) = \theta$ and (A3) is: for any $n \geq 1$, $|M_n'(\theta_n)| = 0$. The constants C in the various inequalities of Assumptions (A4)-(A6) are denoted by C_1, C_2 in (A4), C_3, C_4 in (A4'), C_5 in (A5) and we choose $\gamma_n \leq C_6 n^{-1/2}$ in (A6). Then, we can obtain from Propositions 1-2 that

$$\forall n \geq 1, \sup_{\theta \in \Theta} \left| P_\theta \left(\frac{\sqrt{n}}{\tau(\theta)} (\hat{\alpha}_n - \alpha_0) \leq u \right) - \Gamma(u) \right| \leq C \frac{1}{\sqrt{n}}$$

where $C := \frac{1}{2} + \frac{1}{\sqrt{2\pi}} + 2C_1 + 2C_2 + \frac{\exp(-a^2/2)}{a} + C_5 + C_6$ when $|u| \geq 2\sqrt{\ln n}$;

or

$$C := 2 \left(\frac{1}{\sqrt{2\pi}} + 2C_1 + 4C_2 + \frac{\exp(-a^2/2)}{a} + 2C_5 + C_6 \right) + C_4 + \frac{16e^{-1}(C_3 + \sigma_1^2 c_n)}{\sigma_1^2 \sqrt{2\pi}}$$

when $|u| < 2\sqrt{\ln n}$ provided that $\sqrt{n}/\ln n \geq \max\left(8C\sigma_2^2, 4 \right) / \sigma_1^2$;

with $a := \inf_{\theta \in \Theta} \left(m(\theta)/4\sigma_2(\theta) \right)$, $\sigma := \sup_{\theta \in \Theta} \sigma_1(\theta)/m(\theta)$, $\sigma_1 = \inf_{\theta \in \Theta} \sigma_1(\theta)$.

5
II.2 Proof of Theorem 1.

The hypotheses of Theorem 1 are assumed to hold. For the sake of brevity, the sequence \(\{r_n\}_{n \geq 1} \) in (A3) is supposed to be such that \(r_n = o(n^{-1/2}) \), and \(|M_n'(\hat{\theta}_n)| \leq r_n \) for every \(n \geq 1 \). In the general case, it suffices to work on the event \(\{|M_n'(\hat{\theta}_n)| \leq r_n\} \) and to bound the probability of the event \(\{|M_n'(\hat{\theta}_n)| > r_n\} \) using (A3). From Conditions (A2) and (A4),

\[
\tau(\theta) := \frac{\sigma_1(\theta)}{m(\theta)}, \quad m := \inf_{\theta \in \Theta} m(\theta), \quad \bar{m} := \sup_{\theta \in \Theta} m(\theta), \quad \sigma_j := \inf_{\theta \in \Theta} \sigma_j(\theta) \quad (j = 1, 2)
\]

are well defined. Recall that \(0 < m \leq \bar{m} < \infty \) and \(0 < \sigma_j \leq \bar{\sigma}_j < \infty \). Note that the function \(\tau(\cdot) \) is positive and bounded. In the following, \(\Gamma \) denotes a positive constant whose value may be different from line to line.

Inequality (4) is proved, first for \(|u| \geq 2\sqrt{n} \), second for \(|u| < 2\sqrt{n} \). In fact, for \(|u| \geq 2\sqrt{n} \), the bound in Inequality (4) does not involve \(r_n \) and \(\omega_n \).

Proposition 1 There exists a positive constant \(C \) such that for each \(n \geq 1 \) and all \(u \in \mathbb{R} \) such that \(|u| \geq 2\sqrt{n} \)

\[
\sup_{\theta \in \Theta} \left| \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\tau(\theta)} (\hat{\theta}_n - \alpha_0) \leq u \right\} - \Gamma(u) \right| \leq \frac{C}{\sqrt{n}} + \gamma_n.
\]

Proof. For \(|u| \geq 2\sqrt{n} \), it is easily checked that

\[
\mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\tau(\theta)} (\hat{\theta}_n - \alpha_0) \leq u \right\} - \Gamma(u) \leq \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\tau(\theta)} |\hat{\theta}_n - \alpha_0| \geq 2\sqrt{n} \right\} + \Gamma(-2\sqrt{n}).
\]

Now,

\[
\Gamma(-2\sqrt{n}) \leq \frac{1}{2\sqrt{n}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} v e^{-\frac{v^2}{2}} dv = \frac{1}{2\sqrt{n}} \frac{1}{\sqrt{2\pi} n^2}.
\]

Finally, the proof is complete if there exists \(C > 0 \) such that (see [MP71, Lem. 6])

\[
\forall n \geq 1, \sup_{\theta \in \Theta} \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{m(\theta)} |\hat{\theta}_n - \alpha_0| > 2\sqrt{n} \right\} \leq \frac{C}{\sqrt{n}} + \gamma_n.
\]

It follows from (A5) and (A3) that \(|M_n'(\hat{\theta}_n)| + r_n \geq |\hat{\theta}_n - \alpha_0| |M_n''(\hat{\theta}_n)| + R_n(\hat{\theta}_n, \alpha_0) \). Then,

\[
\frac{\sqrt{n}}{\sigma_1(\theta)} |\hat{\theta}_n - \alpha_0| > 2\sqrt{n} \frac{m(\theta)}{m(\theta)} \Rightarrow \frac{\sqrt{n}}{\sigma_1(\theta)} \left(|M_n'(\hat{\theta}_n)| + r_n \right) > 2 \sqrt{n} \frac{m(\theta)}{m(\theta)} |M_n''(\hat{\theta}_n)| + R_n(\hat{\theta}_n, \alpha_0)|
\]

provided that \(M_n'(\hat{\theta}_n) \neq M_n'(\alpha_0) \). Next, introducing the event \(\{2|M_n''(\hat{\theta}_n)| + R_n(\hat{\theta}_n, \alpha_0)| > m(\theta)\} \) and its complement (which includes the event \(\{M_n'(\hat{\theta}_n) = M_n'(\alpha_0)\} \)), we obtain

\[
\mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_1(\theta)} |\hat{\theta}_n - \alpha_0| > 2\sqrt{n} \right\} \leq \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_1(\theta)} \left(|M_n'(\hat{\theta}_n)| + r_n \right) > \sqrt{n} \right\}
\]

\[
+ \mathbb{P}_\theta \left\{ |2|M_n''(\hat{\theta}_n)| + R_n(\hat{\theta}_n, \alpha_0)| \leq m(\theta) \right\}.
\]

It is easily checked from (A4) and \(r_n = o(n^{-1/2}) \) that

\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\sigma_1(\theta)} \left(|M_n'(\hat{\theta}_n)| + r_n \right) > \sqrt{n} \right\} = O \left(\frac{1}{\sqrt{n}} \right) + 2 \Gamma \left(-\sqrt{n} + \frac{\sqrt{n}r_n}{\sigma_1(\theta)} \right) = O \left(\frac{1}{\sqrt{n}} \right).
\]
Finally, to obtain the bound (6), it remains to justify the use of the following bound:

\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \{ 2|M_\theta''(\alpha_0) + R_n(\hat{\alpha}_n, \alpha_0)| \leq m(\theta) \} = O(n^{-1/2}) + \gamma_n. \tag{7}
\]

Using elementary inequalities and Assumption (A5),

\[
\mathbb{P}_\theta \{ 2|M_\theta''(\alpha_0) + R_n(\hat{\alpha}_n, \alpha_0)| \leq m(\theta) \} \\
\leq \mathbb{P}_\theta \{ |M_\theta''(\alpha_0) - m(\theta)| \geq m(\theta)/4 \} + \mathbb{P}_\theta \{ |R_n(\hat{\alpha}_n, \alpha_0)| \geq m(\theta)/4 \} \\
\leq \mathbb{P}_\theta \{ |M_\theta''(\alpha_0) - m(\theta)| \geq m(\theta)/4 \} + \mathbb{P}_\theta \{ ||\hat{\alpha}_n - \alpha_0|| + \omega_n W_n \geq m(\theta)/4 \} \\
=: P_{1,n,\theta} + P_{2,n,\theta}.
\]

It follows from (A4) that \(a := \inf_{\theta \in \Theta} (m(\theta)/4\sigma_2(\theta)) \) is well defined and positive, and

\[
\sup_{\theta \in \Theta} P_{1,n,\theta} \leq O(n^{-1/2}) + 2\Gamma(-a\sqrt{n}) = O(n^{-1/2}). \tag{8}
\]

Now, let \(d(\theta) := m(\theta)/4c_W \) with \(c_W \) defined in (A5) and notice that \(d = \inf_{\theta \in \Theta} d(\theta')/2 \) in (A6). Use the event \(\{ \hat{\alpha}_n - \alpha_0 \leq d(\theta) - \omega_n \} \) and its complement to write

\[
P_{2,n,\theta} \leq \mathbb{P}_\theta \left\{ \frac{m(\theta)}{4} \leq ||\hat{\alpha}_n - \alpha_0|| + \omega_n W_n \leq W_n d(\theta) \right\} + \mathbb{P}_\theta \{ ||\hat{\alpha}_n - \alpha_0|| > d(\theta) - \omega_n \} \\
\leq \sup_{\theta \in \Theta} \mathbb{P}_\theta \{ c_W \leq W_n \} + \sup_{\theta \in \Theta} \mathbb{P}_\theta \{ ||\hat{\alpha}_n - \alpha_0|| > d \} = O(n^{-1/2}) + \gamma_n,
\]

from (A5-A6) and provided that \(\omega_n \leq d \). Therefore, Inequality (7) holds true. \(\square \)

Now, it remains to investigate the case \(|u| < 2\sqrt{\ln n} \).

Proposition 2 There exists a positive constant \(C \) such that, for any \(|u| < 2\sqrt{\ln n} \),

\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta \left\{ \frac{\sqrt{n}}{\tau(\theta)} ||\hat{\alpha}_n - \alpha_0|| \leq u \right\} - \Gamma(u) \leq C \left(\frac{1}{\sqrt{n}} + \sqrt{n} r_n + \omega_n + \gamma_n \right). \tag{9}
\]

Proof. We just have to prove that (9) holds true for all \(n \geq n_0 \), for some \(n_0 \in \mathbb{N} \). Let us introduce some sets and derive their probability bounds:

- \(E_{n,\theta} := \{ \sqrt{n} ||\hat{\alpha}_n - \alpha_0||/\tau(\theta) \leq 2\sqrt{\ln n} \} \). From (6), \(\sup_{\theta \in \Theta} \mathbb{P}_\theta (E_{n,\theta}^c) = O(n^{-1/2} + \gamma_n) \).

- \(A_n := \{ 0 \leq W_n \leq c_W \} \) where the r.v. \(W_n \) and the constant \(c_W \) are defined in (A5). Then \(\sup_{\theta \in \Theta} \mathbb{P}_\theta (A_n^c) = O(n^{-1/2}) \).

- \(D_{n,\theta} := \{ 2M_\theta''(\alpha_0) > m(\theta) \} \). We have \(\mathbb{P}_\theta \{ D_{n,\theta}^c \} \leq \mathbb{P}_\theta \{ |M_\theta''(\alpha_0) - m(\theta)| \geq m(\theta)/2 \} \leq \mathbb{P}_\theta \{ |M_\theta''(\alpha_0) - m(\theta)| \geq m(\theta)/4 \} \). We know from (8) that \(\sup_{\theta \in \Theta} \mathbb{P}_\theta (D_{n,\theta}^c) = O(n^{-1/2}) \).

Then, we obtain from the previous estimates that the following set

\[
B_{n,\theta} := E_{n,\theta} \cap A_n \cap D_{n,\theta}.
\]

is such that

\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta (B_{n,\theta}^c) \leq O(n^{-1/2} + \gamma_n). \tag{10}
\]

7
Now, if \(D_{n,\theta,u} := \{ \sqrt{n}(\hat{\alpha}_n - \alpha_0) / \tau(\theta) \leq u \} \), then we can write from (10)
\[
|\mathbb{P}\theta(D_{n,\theta,u}) - \Gamma(u)| \leq |\mathbb{P}\theta(D_{n,\theta,u} \cap B_{n,\theta}) - \Gamma(u)| + O(n^{-1/2} + \gamma_n). \tag{11}
\]
From (A2) and (A4), \(0 < \bar{\sigma} := \sup_{\theta \in \Theta} \tau(\theta) < \infty \). Define the piecewise quadratic functions
\[
g^-(v) := c^- + b^- v + a^- v^2, \quad g^+(v) := c^+ + b^+ v + a^+ v^2
\]
where \(c^\pm := n[M'_n(\alpha_0) \pm r_n], \quad b^\pm := \tau(\theta) \sqrt{n} [M''_n(\alpha_0) \pm \text{sign}(v)c_W \omega_n], \quad a^\pm := \pm \sigma^2 c_W, \)
and \(\text{sign}(v) \) denotes the sign of \(v \) when \(v \neq 0 \) and \(\text{sign}(0) = 0 \). Notice that \(g^- \) and \(g^+ \) are continuous on the whole real line. To bound the term \(|\mathbb{P}\theta(D_{n,\theta,u} \cap B_{n,\theta}) - \Gamma(u)| \) in (11), let us introduce the events
\[
E^\pm_{n,\theta,u} := \{ g^\pm(u) \geq 0 \}. \tag{12}
\]
It follows from Lemma A.2 in Appendix A that, for \(n \) large enough and \(|u| < 2\sqrt{\ln n} \),
\[
\mathbb{P}\theta(E^-_{n,\theta,u} \cap B_{n,\theta}) \leq \mathbb{P}\theta(D_{n,\theta,u} \cap B_{n,\theta}) \leq \mathbb{P}\theta(E^+_{n,\theta,u} \cap B_{n,\theta})
\]
so that
\[
|\mathbb{P}\theta(D_{n,\theta,u} \cap B_{n,\theta}) - \Gamma(u)| \leq \max \left\{ |\mathbb{P}\theta(E^-_{n,\theta,u} \cap B_{n,\theta}) - \Gamma(u)|, |\mathbb{P}\theta(E^+_{n,\theta,u} \cap B_{n,\theta}) - \Gamma(u)| \right\}
\]
\[
\leq \max \left\{ |\mathbb{P}\theta(E^-_{n,\theta,u}) - \Gamma(u)|, |\mathbb{P}\theta(E^+_{n,\theta,u}) - \Gamma(u)| \right\} + \mathbb{P}\theta(B^c_{n,\theta}). \tag{13}
\]
Then, the proof of Proposition 2 is easily completed using (10) and the following estimate: there exists a constant \(C \) such that for \(n \) large enough and \(|u| < 2\sqrt{\ln n} \)
\[
\sup_{\theta \in \Theta} |\mathbb{P}\theta(E^\pm_{n,\theta,u}) - \Gamma(u)| \leq C \left(\frac{1}{\sqrt{n}} + \sqrt{n} r_n + \omega_n \right). \tag{14}
\]
Indeed, \(E^\pm_{n,\theta,u} = \{ g^\pm(u) \geq 0 \} \) with \(g^\pm \) defined in (II.2). We can write
\[
E^\pm_{n,\theta,u} = \left\{ n \{ M'_n(\alpha_0) \pm r_n \} + u \tau(\theta) \sqrt{n} \{ M''_n(\alpha_0) \pm \text{sign}(u)c_W \omega_n \} \pm u^2 \sigma^2 c_W \geq 0 \right\}
\]
\[
= \left\{ \frac{\sqrt{n}}{\sigma_{n,u}(\theta)} \left(M'_n(\alpha_0) + \frac{u \sigma_1(\theta)}{\sqrt{n} m(\theta)} (M''_n(\alpha_0) - m(\theta)) \right) \geq - \frac{a_n(u,\theta) + b_n(u,\theta)}{\sigma_{n,u}(\theta)} \right\}
\]
where the positive real number \(\sigma_{n,u}(\theta) \) is that of Condition (A4') and
\[
a_n(u,\theta) = u \left[\sigma_1(\theta) \left(1 \pm \frac{\text{sign}(u)c_W \omega_n}{m(\theta)} \right) \pm u \frac{\sigma^2 c_W}{\sqrt{n}} \right], \quad b_n(u,\theta) = \pm \sqrt{n} r_n.
\]
From the second statement of (A4') it follows that there exists a constant \(B' \) such that we have, for \(n \) large enough and \(|u| < 2\sqrt{\ln n} \)
\[
\sup_{\theta \in \Theta} \left| \mathbb{P}\theta(E^\pm_{n,\theta,u}) - \Gamma \left(\frac{a_n(u,\theta) + b_n(u,\theta)}{\sigma_{n,u}(\theta)} \right) \right| \leq \frac{B'}{\sqrt{n}}.
\]
Now, from \(\sigma_1 = \inf_{\theta \in \Theta} \sigma_1(\theta) > 0 \) and from the first property of \(\sigma_{n,u}(\theta) \) in (A4'), it follows that, for \(n \) large enough and \(|u| < 2\sqrt{\ln n} \), and for all \(\theta \in \Theta \), we have \(\sigma_{n,u}(\theta) \geq \sigma_1 / 2 \), and
\[
\left| \frac{a_n(u,\theta)}{\sigma_{n,u}(\theta)} - u \right| \leq \frac{|u|}{\sigma_{n,u}(\theta)} \left(|\sigma_{n,u}(\theta) - \sigma_1(\theta)| + \frac{c_W \omega_n}{m(\theta)} + \frac{|u| \sigma_1^2}{\sqrt{n}} \right)
\]
\[
\leq \frac{2|u|}{\sigma_1} \left((A' + \sigma^2 c_W) \frac{|u|}{\sqrt{n}} + \frac{c_W}{m} \omega_n \right) \leq C' \left(\frac{u^2}{\sqrt{n}} + |u| \omega_n \right)
\]
where \(C' \) is independent of \(n, u, \theta \). We obtain from estimates on the characteristic function of the standard Gaussian distribution reported in [Pfa71, p.89] that, for \(n \) large enough, \(|u| < 2\sqrt{\ln n} \), and \(\theta \in \Theta \),
\[
\left| \Gamma \left(\frac{a_n(u,\theta)}{\sigma_{n,u}(\theta)} \right) - \Gamma(u) \right| \leq C_1 \left(\frac{1}{\sqrt{n}} + \omega_n \right)
\]
for some \(C_1 > 0 \). We deduce from similar arguments that, for some constant \(C_2 \),
\[
\left| \Gamma \left(\frac{a_n(u,\theta)}{\sigma_{n,u}(\theta)} \right) - \Gamma \left(\frac{a_n(u,\theta) + b_n(u,\theta)}{\sigma_{n,u}(\theta)} \right) \right| \leq C_2 \sqrt{n} r_n.
\]
Since \(C_1, C_2 \) only depend on \(A', \sigma_1, m, \sigma \) and \(c_W \), the proof of (14) is complete. \(\square \)

III A Berry-Esseen bound for an additive functional of geometrically ergodic Markov chains

The main focus of the paper is to apply the general Berry-Esseen result of Theorem 1 to the case of \(M \)-estimators as defined in the introduction when the observations come from a geometrically ergodic Markov chain. To check Conditions (A4) and (A4') in Theorem 1, we need the next probabilistic results based on a recent version of the Berry-Esseen theorem derived by [HP10] in the geometrically ergodic Markov chain setting.

III.1 The statistical model

Let \((E, \mathcal{E}) \) be a measurable space with a countably generated \(\sigma \)-field \(\mathcal{E} \) and \(\Theta \) be some general parameter space. Let \(\{X_n\}_{n \geq 0} \) be a Markov chain with state space \(E \), transition kernels \(\{Q_\theta(x, \cdot), x \in E\} \), \(\theta \in \Theta \), and an initial distribution \(\mu \) which may or may not depend on \(\theta \). Throughout Section III, we assume that \(\pi(V) := \sup_{\theta \in \Theta} \pi(V) < \infty \).

Assumption (M). Let \(V : E \rightarrow [1, +\infty) \) be an unbounded function (independent of \(\theta \)). For each \(\theta \in \Theta \), there exists a \(Q_\theta \)-invariant probability distribution, denoted by \(\pi_\theta \), such that

(VG1) \(b_1 := \sup_{\theta \in \Theta} \pi_\theta(V) < +\infty \).

(VG2) For all \(\gamma \in (0, 1] \), there exist real numbers \(\kappa_\gamma < 1 \) and \(C_\gamma \geq 0 \) such that we have, for any \(\theta \in \Theta \), \(n \geq 1 \) and \(x \in E \),
\[
\sup \{ |Q^n_\theta f(x) - \pi_\theta(f)|, f : E \rightarrow \mathbb{C} \text{ measurable}, |f| \leq V^\gamma \} \leq C_\gamma \kappa^n_\gamma V(x)^\gamma.
\]
Notice that (VG2) with \(\gamma = 1 \) implies the following property: for any measurable real-valued function \(f \) defined on \(E \) such that \(|f| \leq DV \) for some constant \(D > 0 \),

\[
\forall n \geq 1, \quad \sup_{\theta \in \Theta} |\mathbb{E}_{\theta, \mu}[f(X_n)] - \pi_\theta(f)| \leq DC_1 \kappa_1^n \bar{\pi}(V).
\]

(15)

Moreover, Conditions (VG1) and (VG2) imply that, for any \(\gamma \in (0, 1] \) and \(\theta \in \Theta \), \(Q_\theta \) is \(V^\gamma \)-geometrically ergodic, but it is worth noticing that the constants \(C_\gamma \) and \(\kappa_\gamma \) do not depend on \(\theta \). In the following remark, the properties (VG1) and (VG2) are related to the so-called drift condition w.r.t. the function \(V \) for each \(Q_\theta \).

Remark 2 Assume that for each \(\theta \in \Theta \), \(Q_\theta \) is aperiodic and \(\psi \)-irreducible w.r.t. a certain positive \(\sigma \)-finite measure \(\psi \) on \(E \) (which may depend on \(\theta \)).

1. For \(\gamma = 1 \) and any fixed \(\theta \), the properties (VG1)-(VG2) follow from the drift condition : \(Q_\theta V \leq \varrho V + \varsigma 1_S \), with \(\varrho < 1, \varsigma > 0 \) and \(S \) some set\(^{2}\) satisfying the minorization condition \(Q_\theta(x, \cdot) \geq c \nu(\cdot) 1_S(x) \), where \(c > 0 \) and \(\nu \) is a probability measure concentrated on \(S \) (see [MT93, Th. 16.0.1]). In addition, the constants \(C_1 \) and \(\kappa_1 \) can be bounded by a quantity involving \(\varrho, \varsigma, c, \) the measure \(\nu \) and the set \(S \) (see [MT94]). To obtain the uniformity in \(\theta \), it suffices to check that all these elements do not depend on \(\theta \).

2. For any \(\gamma \in (0, 1] \), we have \(\pi_\theta(V^\gamma) \leq \pi_\theta(V) \) and thus Condition (VG1) implies that \(\sup_{\theta \in \Theta} \pi_\theta(V^\gamma) < \infty \). Furthermore, under the drift condition, it follows from Jensen’s inequality that \(Q_\theta V^\gamma \leq \varrho V + \gamma S \). Using again [MT94] one obtains (VG2).

III.2 A preliminary uniform Berry-Esseen statement

Let \(\alpha_0 = \alpha_0(\theta) \in \mathcal{A} \) be the parameter of interest for the statistical applications we have in mind (see Condition (A1) page 4), where \(\theta \) is the parameter of the Markov chain model and \(\mathcal{A} \) is an open interval of the real line.

Let \(\xi(\alpha, x, y) \) be a real-valued measurable function defined on \(\mathcal{A} \times E^2 \) such that the random variable \(\xi(\alpha, X_{k-1}, X_k) \) is (integrable and) centered with respect to the stationary distribution \(\pi_\theta \), that is

\[
\mathbb{E}_{\theta \pi_\theta}[\xi(\alpha_0, X_0, X_1)] = 0,
\]

and let

\[
S_n(\alpha) := \sum_{k=1}^{n} \xi(\alpha, X_{k-1}, X_k).
\]

We investigate the following uniform Berry-Esseen property

\[
\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu} \left\{ \frac{S_n(\alpha_0)}{\sigma(\theta) \sqrt{n}} \leq u \right\} - \Gamma(u) \right| = O \left(\frac{1}{\sqrt{n}} \right)
\]

where \(\sigma^2(\theta) \) will be defined below as the asymptotic variance associated to the random variables \(\xi(\alpha, X_{k-1}, X_k) \). When \(\{X_n\}_{n \geq 0} \) are i.i.d. and \(\xi(\alpha, X_{k-1}, X_k) \equiv \xi(\alpha, X_k) \) this property follows from the Berry-Esseen theorem [Fel71], provided that \(\xi(\alpha, X_0) \) has finite third order moment, uniformly bounded in \(\alpha \), and a variance greater than some positive constant which does not depend on \(\alpha \).

\(^2S\) is the so-called small set.
In our Markov framework, the following moment (or V-domination) condition is natural for the functional ξ. In the sequel, this condition will be required for $m_0 = 1, 2$ or 3.

Condition (D_{m_0}). There exist real constants $m > m_0 \geq 1$ and $C_\xi > 0$ such that
\[
\forall \alpha \in \mathcal{A}, \forall (x, y) \in E^2, \quad |\xi(\alpha, x, y)|^m \leq C_\xi (V(x) + V(y)).
\]

(D_{m_0})

This domination condition implies that
\[
\mathbb{E}_{\theta, \mu}[|\xi(\alpha, X_0, X_1)|^m] = \int |\xi(\alpha, x, y)|^m Q_\theta(x, dy)d\pi_\theta(x) \leq C_\xi (\pi_\theta(V) + \pi_\theta(Q_\theta V)) < \infty,
\]
and since $m \geq 1$, observe that $\mathbb{E}_{\theta, \mu}[|\xi(\theta, X_0, X_1)|] < \infty$.

Proposition 3 Suppose that Assumption (M) holds true and that ξ is centered and satisfies Condition (D_1). Then, we have $\sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} |\mathbb{E}_{\theta, \mu}[S_n(\alpha_0)]/n - \Gamma(u)| \leq C_\xi (\pi_\theta(V) + \pi_\theta(Q_\theta V)) < \infty$. In particular, for each $\theta \in \Theta$, the non-negative real number
\[
\sigma^2(\theta) := \inf_{\theta \in \Theta} \sigma^2(\theta) > 0.
\]
is well-defined and does not depend on μ. Furthermore, the function $\sigma^2(\cdot)$ is bounded on Θ, and there exists a positive constant C, only depending on C_ξ and $\pi(V)$, such that
\[
\forall \theta \in \Theta, \forall n \geq 1, \quad \left| \sigma^2(\theta) - \frac{\mathbb{E}_{\theta, \mu}[S_n(\alpha_0)^2]}{n} \right| \leq C.
\]

Now, we are ready to state our uniform Berry-Esseen statement for $S_n(\alpha_0)$.

Theorem 2 Let us assume that:

1. Condition (M) holds true;
2. the functional ξ is centered and satisfies Condition (D_2);
3. $\sigma_0^2 := \inf_{\theta \in \Theta} \sigma^2(\theta) > 0$.

Then, there exists a constant $B(\xi)$ such that
\[
\forall n \geq 1, \quad \sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu}\left\{ \frac{S_n(\alpha_0)}{\sigma(\theta) \sqrt{n}} \leq u \right\} - \Gamma(u) \right| \leq \frac{B(\xi)}{\sqrt{n}}.
\]
Furthermore, the constant $B(\xi)$ depends on the functional ξ, but only through σ_0 and the constant C_ξ of Condition (D_3).

The fact that we look for a Berry-Esseen bound with a constant $B(\xi)$ independent of θ is natural given our main purpose, that is prove a uniform Berry-Esseen theorem for M-estimators.

There are several methods for deriving Berry-Esseen bound for the functionals of Markov chains (e.g. see [Bol82, Jen89]). But to prove Proposition 3 and Theorem 2, we use the weak
Lemma 1 If ξ is centered and satisfies Condition (D_{m_0}) with $m_0 \in \mathbb{N}^*$, then there exists $\beta > 0$ such that
\[\forall \theta \in \Theta, \forall n \geq 1, \forall t \in [-\beta, \beta], \quad \mathbb{E}_{\theta, \mu}[e^{itS_n(\alpha_0)}]\lambda_\theta(t)^n (1 + L_\theta(t)) + r_\theta,n(t), \] (17)
where $\lambda_\theta(\cdot), L_\theta(\cdot)$ and $r_\theta,n(\cdot)$ are some m_0 times continuously differentiable functions from $[-\beta, \beta]$ into \mathbb{C} satisfying $\lambda_\theta(0) = 1, \lambda_\theta'(0) = 0, L_\theta(0) = 0$ and $r_\theta,n(0) = 0$. Furthermore, there exists $\rho \in (0, 1)$ such that we have for $\ell = 0, \ldots, m_0$:
\[G_\ell \define \sup \{ \rho^{-n} |r_\theta,n(t)|, |t| \leq \beta, \theta \in \Theta, n \geq 1 \} < \infty. \]
Finally, the constants β, ρ, G_ℓ and the following ones (for $\ell = 0, \ldots, m_0$)
\[E_\ell \define \sup \{|\lambda_\theta^n(t)|, |t| \leq \beta, \theta \in \Theta\} < \infty, \quad F_\ell \define \sup \{|L_\theta^n(t)|, |t| \leq \beta, \theta \in \Theta\} < \infty, \]
depend on ξ, but only through the constant C_ℓ of Assumption (D_{m_0}).

Lemma 1 is proved in Subsection III.3. The definition of $L_\theta(t)$ and $r_\theta,n(t)$ (see (24) and (25)) shows that the constants F_ℓ and G_ℓ also depend on $\mu(V)$ (see Remark 3). Now, Lemma 1 allows us to derive Proposition 3 and Theorem 2.

Proof of Proposition 3. Assume that ξ is centered and satisfies (D_{m_0}) with $m_0 \in \mathbb{N}^*$. Proceeding as in (16) and using (15), (VG1) and $\pi(V) < \infty$, we obtain that
\[\sup_{\theta \in \Theta} \sup_{k \geq 1} \mathbb{E}_{\theta, \mu}[|\xi(\alpha_0, X_{k-1}, X_k)|^m] \leq F_1 + G_1, \]
Now assume $m_0 = 1$, and let $\phi(t) \define \mathbb{E}_{\theta, \mu}[e^{itS_n(\alpha_0)}], t \in \mathbb{R}$. Then $\phi'(0) = i \mathbb{E}_{\theta, \mu}[S_n(\alpha_0)]$, but Lemma 1 also gives $\phi'(0) = L_\theta'(0) + r_\theta,n(0)$. Hence $\sup_{\theta \in \Theta} \sup_{n \geq 1} [\mathbb{E}_{\theta, \mu}[S_n(\alpha_0)]] \leq F_1 + G_1$. Next, assume $m_0 = 2$. From (18) we have $\mathbb{E}_{\theta, \mu}[S_n(\alpha_0)^2] < \infty$, and thus we can write $\phi''(0) = -\mathbb{E}_{\theta, \mu}[S_n(\alpha_0)^3]$, and $\phi''(0) = n\chi_\theta''(0) + L_\theta''(0) + r_\theta'',n(0)$ by Lemma 1. Thus we obtain $|\lambda_\theta''(0) + \mathbb{E}_{\theta, \mu}[S_n(\alpha_0)^2]/n| \leq (|L_\theta''(0)| + |r_\theta'',n(0)|)/n \leq (F_2 + G_2)/n$. Set $\sigma^2(\theta) \define -\lambda_\theta''(0)$. Then $\sup_{\theta \in \Theta} \sigma^2(\theta) \leq E_2$ (by Lemma 1), and the proof is complete with $C := F_2 + G_2$. \hfill \square

Proof of Theorem 2. Recall that ξ is centered and satisfies Condition (D_3). To prove the result, we use Lemma 1 with $m_0 = 3$ and we adapt the arguments of the i.i.d. case. Recall that $\sigma^2(\theta) = -\lambda_\theta''(0)$. According to the classical Berry-Esseen inequality (e.g., see [Fel71]), we must prove that for some suitable positive constant c, $\sup_{\theta \in \Theta} A_n(\theta) = O(n^{-1/2})$ where
\[A_n(\theta) := \int_{-c\sqrt{n}}^{c\sqrt{n}} \left| \mathbb{E}[e^{itS_n(\alpha_0)}] e^{-t^2/2} - e^{-t^2/2} \right| dt. \]
\hfill 3

3A Berry-Esseen theorem is established in [Her08] for sequences of the form $\{\xi(X_k)\}_{k \geq 0}$ under the conditions $\mu(V) < \infty$ and $|\xi|^3 \leq CV$. However, the case of sequences of the form $\{\xi(X_{k-1}, X_k)\}_{k \geq 0}$ is not a direct corollary of this work since the Markov chain $\{(X_{k-1}, X_k)\}_{k \geq 0}$ may not be geometrically ergodic.
For the moment, we just assume that $0 < c \leq \beta \sigma_0$, where β is the real number in Lemma 1. Notice that $|t| \leq c$ implies $|t/\sigma(\theta)| \leq \beta$ for all $\theta \in \Theta$. Using Lemma 1, we have

$$A_n(\theta) \leq \int_{-c^{1/2}}^{c^{1/2}} \left| \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right|^n \frac{1 - e^{-t^2/2}}{t} dt + \int_{-c^{1/2}}^{c^{1/2}} \left| \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right|^n \left| L_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right| dt$$

$$+ \int_{-c^{1/2}}^{c^{1/2}} \left| r_{\theta,n} \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right| dt := I_n(\theta) + J_n(\theta) + K_n(\theta).$$

By a Taylor expansion, for all $\theta \in \Theta$ and $|v| \leq c$,

$$\left| \lambda_\theta \left(\frac{v}{\sigma(\theta)} \right) \right| - 1 + \frac{v^2}{2} \leq \frac{E_3}{6\sigma_0^3} |v|^3$$

where E_3 is defined in Lemma 1. Hereafter, set $c := \min\{\beta \sigma_0, 3\sigma_0^3/2E_3, \sqrt{2}\}$. From the last inequality, deduce that for any $|v| \leq c$

$$\left| \lambda_\theta \left(\frac{v}{\sigma(\theta)} \right) \right| \leq 1 - \frac{v^2}{2} + \frac{v^2}{4} \leq e^{-\frac{v^2}{4}}.$$

Therefore, for any $t \in \mathbb{R}$ such that $|t| \leq c^{1/2}$,

$$\left| \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right|^n \leq e^{-\frac{t^2}{8n}}. \quad (19)$$

Let us write

$$\lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \leq \left(\lambda \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) - e^{-\frac{t^2}{2n}} \right) \sum_{k=0}^{n-1} \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right)^{n-k-1} e^{-\frac{k^2}{4n}}. \quad (20)$$

Notice that $|\lambda_\theta(t/\sigma(\theta) \sqrt{n}) - \exp(-t^2/2n)| \leq (a + E_3/6\sigma_0^3) |t/\sqrt{n}|^3$ if $a := \sup_{|v| \leq c} |\psi(v)|$ with $\psi(v) := 6 \exp(-v^2/2)$. Moreover,

$$\sum_{k=0}^{n-1} \left| \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right|^{n-k-1} e^{-\frac{k^2}{2n}} \leq \sum_{k=0}^{n-1} e^{-\frac{k^2}{2n}} e^{-\frac{k^2}{4n}} \leq b n e^{-\frac{t^2}{8n}},$$

where $b := \sup_{|v| \leq c} \exp(v^2/4)$. Hence

$$\left| \lambda_\theta \left(\frac{t}{\sigma(\theta) \sqrt{n}} \right) \right|^n \leq \left(a + \frac{E_3}{6\sigma_0^3} \right) b n^{-\frac{1}{2}} |t|^3 e^{-\frac{t^2}{8n}}$$

which yields $\sup_{\theta \in \Theta} I_n(\theta) \leq b n^{-1/2} (a + E_3/6\sigma_0^3) \int_\mathbb{R} t^2 \exp(-t^2/4) dt$. Next, using (19) and $L_\theta(0) = 0$,

$$\sup_{\theta \in \Theta} J_n(\theta) \leq \frac{F_1}{\sigma_0 \sqrt{n}} \int_\mathbb{R} e^{-\frac{t^2}{8n}} dt.$$

Finally, using $r_{\theta,n}(0) = 0$, we have $\sup_{\theta \in \Theta} |r_{\theta,n}(t/\sigma(\theta) \sqrt{n})| \leq (|t|/\sigma_0 \sqrt{n}) G_1 \rho^n$, so that $\sup_{\theta \in \Theta} K_n(\theta) \leq (2cG_1/\sigma_0) \rho^n$. Gathering the results we deduce that

$$\sup_{\theta \in \Theta} A_n \leq \frac{A}{\sqrt{n}} + 2cG_1 \frac{\rho^n}{\sigma_0}.$$
where the constants A, ρ, G_1 and c depend on C_ξ of Condition (D_3). The Berry-Esseen inequality [Fel71] then yields
\[
\sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu} \left\{ \frac{S_n(\theta)}{\sigma(\theta)\sqrt{n}} \leq u \right\} - \Gamma(u) \right| \leq \frac{1}{\pi} \left(\frac{A}{\sqrt{n}} + \frac{2cG_1}{\sigma_0} \rho^n + \frac{24\eta}{c\sqrt{n}} \right),
\]
where $\eta = \sup_{u \in \mathbb{R}} |\Gamma'(u)|$. The proof of Theorem 2 is complete.
\[\square\]

III.3 Proof of Lemma 1

For $\theta \in \Theta$ fixed, Lemma 1 follows from [HP10, sect. 10]. Here we must prove that all the constants in Lemma 1 are uniform in θ and depend on ξ as claimed. For this purpose, the weak spectral method is outlined below (in the V-geometrical ergodicity context) and we give the main statements by paying special attention to the constants. For convenience, the technical proofs are postponed in Appendix B.

- **Geometrical ergodicity of Q_θ.** Let $0 < \gamma \leq 1$. We denote by B_γ the weighted supremum-normed space of measurable complex-valued functions f on E such that
\[
\|f\|_\gamma := \sup_{x \in E} \frac{|f(x)|}{V(x)^{\gamma}} < \infty.
\]
$(B_\gamma, \| \cdot \|_\gamma)$ is a Banach space. The space of bounded operators on B_γ is denoted by $L(B_\gamma)$, and the associated operator norm is still denoted by $\| \cdot \|_\gamma$. We have from (VG1)
\[
\sup_{\theta \in \Theta} \pi_\theta(V^{\gamma}) \leq b_1 = \sup_{\theta \in \Theta} \pi_\theta(V) < \infty,
\]
so that π_θ is a continuous linear form on B_γ. Define the following rank-one projection on B_γ:
\[
\forall f \in B_\gamma, \quad \Pi f := \pi_\theta(f)1_E.
\]
Then Condition (VG2) in (\mathcal{M}) can be rewritten as follows: $Q_\theta \in L(B_\gamma)$ and there exist $\kappa_\gamma < 1$ and $C_\gamma > 0$ such that
\[
\forall \theta \in \Theta, \forall f \in B_\gamma, \forall n \geq 1, \quad \|Q_\theta^n f - \Pi f\|_\gamma \leq C_\gamma \kappa_\gamma^n \|f\|_\gamma.
\]
From (20) and (21), $\|Q_\theta^n\|_\gamma = \sup_{x \in E} \|Q_\theta^nV^{\gamma}(x)/V(x)^{\gamma}\|$ is uniformly bounded in $n \in \mathbb{N}$ and $\theta \in \Theta$.

- **The Fourier kernels associated with Q_θ and ξ.** Assume that, for all $\alpha \in \mathcal{A}$, $\xi(\alpha, \cdot, \cdot)$ is measurable. The Fourier kernels associated with Q_θ and ξ are denoted by $\{Q_\theta(t)(x, dy), t \in \mathbb{R}\}$ and defined by
\[
\forall x \in E, \quad Q_\theta(t)(x, dy) := e^{it\xi(\alpha_0, x, y)}Q_\theta(x, dy).
\]
Let us recall that $S_n(\alpha_0) := \sum_{k=1}^n \xi(\alpha_0, X_{k-1}, X_k)$. The following link between $Q_\theta(t)$ and the characteristic function of $S_n(\alpha_0)$ is well-known in the spectral method:
\[
\forall n \geq 1, \forall t \in \mathbb{R}, \quad \mathbb{E}_{\theta, \mu}[e^{itS_n(\alpha_0)}] = \mu(Q_\theta(t)^n1_E).
\]
In fact, we have $\mathbb{E}_{\theta, \mu}[e^{itS_n(\alpha_0)}f(X_n)] = \mu(Q_\theta(t)^nf)$ for any real-valued measurable bounded function f on E. This can be easily checked by induction using the Markov property and the following equality
\[
\forall n \geq 2, \quad \mathbb{E}_{\theta, \mu}[e^{itS_n(\alpha_0)}f(X_n)] = \mathbb{E}_{\theta, \mu}[e^{itS_{n-1}(\alpha_0)}(Q_\theta(t)f)(X_{n-1})].
\]
• Spectral study of $Q\theta(t)$ on B_γ (for t near 0). It can be easily seen that, for all $t \in \mathbb{R}$, we have $Q\theta(t) \in \mathcal{L}(\mathcal{B}_\gamma)$. For $\kappa \in (0,1)$, we set

$$D_\kappa := \{ z \in \mathbb{C} : |z| \geq \kappa, |z-1| \geq (1-\kappa)/2 \}.$$

Lemma 2 Let $\gamma \in (0,1)$. For all $\kappa \in (\kappa_0,1)$, there exists $\beta_{\gamma,\kappa} > 0$ such that, for $\theta \in \Theta$, $|t| \leq \beta_{\gamma,\kappa}$ and $z \in D_\kappa$, we have $(z - Q\theta(t))^{-1} \in \mathcal{L}(\mathcal{B}_\gamma)$ and

$$\mathcal{R}_{\gamma,\kappa} := \sup \{ \| (z - Q\theta(t))^{-1} \|_\gamma : \theta \in \Theta, |t| \leq \beta_{\gamma,\kappa}, z \in D_\kappa \} < \infty.$$

Moreover, the constants $\beta_{\gamma,\kappa}$ and $\mathcal{R}_{\gamma,\kappa}$ depend on ξ, but only via the constant C_ξ of $(D_{m_0})_\kappa$.

For θ fixed, Lemma 2 is established in [HP10, Prop. 10.1] thanks to the theorem of Keller and Liverani [KL99, Liv04]. Here we only have to prove that the constants $\beta_{\gamma,\kappa}$ and $\mathcal{R}_{\gamma,\kappa}$ are uniform in θ and depend on ξ as stated above. According to [KL99, Rk. p. 145], it is enough to check that so are the constants involved in the hypotheses of the Keller-Liverani theorem. This is due to Lemmas B.1-B.2 in Appendix B.

• Proof of Formula (17). Now assume that ξ satisfies Condition (D_{m_0}) for some $m_0 \in \mathbb{N}^*$. Let $\gamma_0 \in (0,1)$ be fixed such that $\gamma_0 + m_0/m < 1$. For any $\kappa \in (\kappa_0,1)$, denote by $\Gamma_{0,\kappa}$ the oriented circle centered at $z = 0$, with radius κ, and by $\Gamma_{1,\kappa}$ the oriented circle centered at $z = 1$, with radius $(1-\kappa)/2$. Note that both $\Gamma_{0,\kappa}$ and $\Gamma_{1,\kappa}$ are contained in D_κ. From (21) and Lemma 2, one can deduce that we have, for all $n \geq 1$, $\theta \in \Theta$, and $t \in [-\gamma_0/\kappa;\beta_{\gamma_0,\kappa}]$, the following equality in $\mathcal{L}(\mathcal{B}_{\gamma_0})$:

$$Q\theta(t)^n = \lambda_\theta(t)^n \Pi_\theta(t) + N_\theta(t)^n,$$

where $\lambda_\theta(t)$ is the dominating simple eigenvalue of $Q\theta(t)$, $\Pi_\theta(t)$ and $N_\theta(t)^n$ are the elements of $\mathcal{L}(\mathcal{B}_{\gamma_0})$ defined by the following line integrals:

$$\Pi_\theta(t) := \frac{1}{2i\pi} \oint_{\Gamma_{1,\kappa}} (z - Q\theta(t))^{-1} dz \quad \text{and} \quad N_\theta(t)^n := \oint_{\Gamma_{0,\kappa}} z^n (z - Q\theta(t))^{-1} dz.$$

Note that we have $\lambda_\theta(0) = 1$ and $\Pi_\theta(0) = \Pi_\theta$ from (21). Also observe that, from Lemma 2 and the definition of $\Gamma_{0,\kappa}$, we have $\|N_\theta(t)^n\|_\gamma = O(\kappa^n)$. Since $1 \in \mathcal{B}_{\gamma_0}$ and $\mu(V) < \infty$ (μ is a continuous linear form on \mathcal{B}_{γ_0}), the equalities (22) and (23) give:

$$\mathcal{E}_{\theta,\mu}[e^{itS_n(\alpha_\theta)}] = \lambda_\theta(t)^n \mu(\Pi_\theta(t)1_E) + \mu(N_\theta(t)^n1_E).$$

Therefore formula (17) holds true with

$$L_\theta(t) := \mu(\Pi_\theta(t)1_E) - 1, \quad r_{\theta,n}(t) := \mu(N_\theta(t)^n1_E) \quad (n \in \mathbb{N}^*).$$

We have $L_\theta(0) = \mu(\Pi_\theta 1_E) - 1 = 0$ and $r_{\theta,n}(0) = \mu(N_\theta(0)^n1_E) = \mu(Q_\theta^n1_E - \Pi_\theta 1_E) = 0$. Finally, to make easier the link with Lemma 3 below, let us observe that

$$1 + L_\theta(t) = \frac{1}{2i\pi} \oint_{\Gamma_{1,\kappa}} \mu((z - Q\theta(t))^{-1}1_E) dz,$$

$$r_{\theta,n}(t) = \frac{1}{2i\pi} \oint_{\Gamma_{0,\kappa}} z^n \mu((z - Q\theta(t))^{-1}1_E) dz.$$

• Regularity properties of $\lambda(\cdot)$, $L_\theta(\cdot)$, $r_{\theta,n}(\cdot)$. Let γ_0' be such that $\gamma_0 + m_0/m < \gamma_0' < 1$. We denote by $\mathcal{L}(\mathcal{B}_{\gamma_0},\mathcal{B}_{\gamma_0'})$ the space of the bounded linear operators from \mathcal{B}_{γ_0} to $\mathcal{B}_{\gamma_0'}$, and by $\| \cdot \|_{\gamma_0,\gamma_0'}$ the associated operator norm.
We have the following regularity properties:

(a) The map \(Q_\theta(\cdot) \) is \(m_0 \)-times continuously differentiable from \(\mathbb{R} \) to \(\mathcal{L}(\mathcal{B}_{\gamma_0}, \mathcal{B}_{\gamma_0}') \), and we have \(Q_\ell := \sup_{t \in \mathbb{R}, \theta \in \Theta} \| Q_\theta^{(\ell)}(t) \|_{\gamma_0, \gamma_0'} < \infty \) for \(\ell = 0, \ldots, m_0 \).

(b) There exist some real numbers \(\kappa \in (\kappa_{\gamma_0}, 1) \) and \(0 < \beta < \beta_{\gamma_0, \kappa} \) such that, for all \(\theta \in \Theta \) and \(z \in \mathcal{D}_\kappa \), the function \(R_{\theta, z} : t \mapsto (z - Q_\theta(t))^{-1} \) is \(m_0 \)-times continuously differentiable from \([-\beta, \beta]\) into \(\mathcal{L}(\mathcal{B}_{\gamma_0}, \mathcal{B}_{\gamma_0}') \), and we have for \(\ell = 0, \ldots, m_0 \):

\[
\sup \{ \| R_{\theta, z}^{(\ell)}(t) \|_{\gamma_0, \gamma_0'} : |t| \leq \beta, z \in \mathcal{D}_\kappa, \theta \in \Theta \} < \infty.
\]

The scalars \(\beta, \kappa \) and all the bounds in (a) (b) depend on \(\xi \) only via the constant \(C_\xi \) of \((D_{m_0}) \).

For \(\theta \) fixed, Lemma 3 is established in [HP10, Prop. 10.3]. It can be also derived from [Gou08] which relaxes the assumptions used in [HH04, GL06] to obtain Taylor expansions\(^4\) of the resolvent maps. However, a fine control of the constants is still required. Using either [Gou08] or [HP10, sect. 10], this control is derived from Lemma 2 and from Lemma B.3 in Appendix B.

Since \(1_E \in \mathcal{B}_{\gamma_0} \) and \(\mu \) is a continuous linear form on \(\mathcal{B}_{\gamma_0}' \) (use \(\bar{\mu}(V) < \infty \)), Lemma 3 (b) gives that, for any \(z \in \Gamma_{0, \kappa} \cup \Gamma_{1, \kappa} \), the \(\mathbb{C} \)-valued function \(t \mapsto \mu((z - Q_{\bar{\theta}}(t))^{-1}1_E) \) is \(m_0 \)-times continuously differentiable on \([-\beta, \beta]\) and that its \(m_0 \) first derivatives are uniformly bounded in \(\theta \) and \(z \in \Gamma_{0, \kappa} \cup \Gamma_{1, \kappa} \). The regularity properties (and the related bounds) for \(L_\theta(\cdot) \) and \(r_{\theta, n}(\cdot) \) then follow from (24) and (25), while those concerning the function \(\lambda_\theta(\cdot) \) follow from both Lemma 3 (a) and Lemma 3 (b), according to a formula given in [HP10, sect. 7.2]. Finally the property \(\lambda_\theta'(0) = 0 \) can be proved as follows. By deriving (17) (applied with \(\mu = \pi_\theta \)) at \(t = 0 \) and by using the fact that \(\xi \) is centered, we have: \(0 = i \mathbb{E}_{\bar{\theta}, \pi_\theta}[S_n(\alpha_0)] = n \lambda_\theta'(0) + L_\theta'(0) + r_{\theta, n}(0) \). Hence \(\lambda_\theta'(0) = 0 \).

Remark 3 Notice that, according to (24) (25), the constants \(F_\ell \) and \(G_\ell \) in Lemma 1 also depend on the supremum in \(\theta \) of the norm of \(\mu \) in \(\mathcal{B}_{\gamma_0}' \), namely \(\sup_{\theta \in \Theta} \| \mu(V_{\gamma_0'}) \).

IV A Berry-Esseen theorem for M-estimators

Consider a Markov chain satisfying the condition \((\mathcal{M})\) of Section III.1. Let us introduce the statistic

\[
M_n(\alpha) := \frac{1}{n} \sum_{k=1}^{n} F(\alpha, X_{k-1}, X_k)
\]

where \(\alpha \) is the parameter of interest, \(F \) is a real-valued measurable function on \(\mathcal{A} \times \mathbb{E}^2 \) and \(\mathcal{A} \) is an open interval of the real line.

Assume that \(F \) satisfies Condition \((D_1)\) and let

\[
M_\theta(\alpha) := \lim_{n \to \infty} \mathbb{E}_{\theta, \mu}[M_n(\alpha)] = \mathbb{E}_{\theta, \pi_\theta}[F(\alpha, X_0, X_1)],
\]

which is well defined by Proposition 3. Assume also that, for each \(\theta \in \Theta \), there exists a unique \(\alpha_0 = \alpha_0(\theta) \in \mathcal{A} \), the so-called true value of the parameter of interest, such that

\(^4\) As observed in [Gou08], the passage to the differentiability properties can be derived from [Cam64].
\(M_\theta(\alpha) > M_\theta(\alpha_0), \forall \alpha \neq \alpha_0\). To estimate \(\alpha_0 = \alpha_0(\theta)\) we consider an \(M\)-estimator \(\hat{\alpha}_n\) as defined in Section II, that is \(M_n(\hat{\alpha}_n) \leq \min_{\alpha \in A} M_n(\alpha) + c_n\), where \(\{c_n\}_{n \geq 1}\) is a sequence of non-negative real numbers going to zero.

Let \(F'\) and \(F''\) be real-valued measurable functions defined on \(A \times E^2\) and let

\[
M_n'(\alpha) := \frac{1}{n} \sum_{k=1}^{n} F'(\alpha, X_{k-1}, X_k), \quad M_n''(\alpha) := \frac{1}{n} \sum_{k=1}^{n} F''(\alpha, X_{k-1}, X_k). \tag{27}
\]

The functionals \(F'\) and \(F''\) could be the first and second order partial derivatives of \(F\) with respect to \(\alpha\), but this is not necessary to deduce our next result. Consider the following assumptions on \(F'\) and \(F''\) (and implicitly on \(c_n\), see (V3)).

Assumptions.

(V0) \(F'\) and \(F''\) satisfy Condition (D3);

(V1) \(\forall \theta \in \Theta, \quad \mathbb{E}_{\theta, \pi_n}[F'(\alpha_0, X_0, X_1)] = 0\) and \(\alpha_0 = \alpha_0(\theta)\) is unique with this property;

(V2) \(m(\theta) := \mathbb{E}_{\theta, \pi_n}[F''(\alpha_0, X_0, X_1)]\) satisfies \(\inf_{\theta \in \Theta} m(\theta) > 0\);

(V3) \(M_n'(\hat{\alpha}_n)\) satisfies Condition (A3), that is \(\forall n \geq 1\) there exists \(r_n > 0\) independent of \(\theta\) such that \(r_n = o(1/\sqrt{n})\) and \(\sup_{\theta \in \Theta} \mathbb{P}_{\theta, \mu}\{M_n'(\hat{\alpha}_n) \geq r_n\} = O(n^{-1/2})\).

Notice that (V0) ensures \(\sup_{\theta \in \Theta} m(\theta) < \infty\) (see (16)). Now, as a consequence of Proposition 3 applied to \(F'\) and \(F''\), the conditions (V0)-(V2) enable us to define the asymptotic variances:

\[
\sigma_1^2(\theta) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\theta, \mu} \left[\left(\sum_{k=1}^{n} F'(\alpha_0, X_{k-1}, X_k) \right)^2 \right]
\]

\[
\sigma_2^2(\theta) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\theta, \mu} \left[\left(\sum_{k=1}^{n} F''(\alpha_0, X_{k-1}, X_k) - n m(\theta) \right)^2 \right].
\]

Moreover, Condition (V0) and Proposition 3 ensure that \(\sup_{\theta \in \Theta} \sigma_j(\theta) < \infty\) for \(j = 1, 2\). The following conditions are also assumed to hold.

(V4) \(\inf_{\theta \in \Theta} \sigma_j(\theta) > 0\) for \(j = 1, 2\).

(V5) There exist \(\eta \in (0, 1/2)\) and \(C > 0\) such that

\[\forall (\alpha, \alpha') \in A^2, \forall (x, y) \in E^2, \quad |F''(\alpha, x, y) - F''(\alpha', x, y)| \leq C |\alpha - \alpha'| (V(x) + V(y))^\eta.\]

(V6) Set \(d := \inf_{\theta \in \Theta} m(\theta)/8\pi \eta (V^\eta)\) with \(\eta\) defined in (V5). There exists \(\gamma_n = o(1)\) such that

\[\sup_{\theta \in \Theta} \mathbb{P}_{\theta, \mu}\{ |\hat{\alpha}_n - \alpha_0| \geq d \} \leq \gamma_n.\]

Theorem 3 Assume that the condition (M) holds true, that \(F\) satisfies Condition (D1), that Conditions (V0) to (V6) are fulfilled. Let \(\tau(\theta) := \sigma_1(\theta)/m(\theta)\). Then there exists a positive constant \(C\) such that

\[\forall n \geq 1, \quad \sup_{\theta \in \Theta} \sup_{\alpha \in A} \mathbb{P}_{\theta, \mu}\left\{ \frac{\sqrt{n}}{\tau(\theta)} (\hat{\alpha}_n - \alpha_0) \leq u \right\} - \Gamma(u) \leq C \left(\frac{1}{\sqrt{n}} + \sqrt{n} r_n + \gamma_n \right).\]
The statement in the above theorem corresponds to that of the i.i.d. case in [Pfa71] up to few changes: first the variances of the i.i.d context\(^5\) are replaced by the above asymptotic variances \(\sigma^2(\theta)\) and \(\sigma^2(\theta)\) (this is natural in a general markovian context); second the uniform in \(\theta\) third-order moment conditions\(^6\) on both \(F', F''\) are replaced by the domination condition \((D_3)\) for \(F', F''\); third, even when \(F' = \partial F/\partial \alpha\), here we allow for a positive sequence \(r_n\), \(n \geq 1\), provided it decreases to zero sufficiently fast. The second point is specific to the geometrically ergodic Markov chain case. Indeed, in the same statistical model, Dehay and Yao [DY07] proved a CLT for maximum likelihood estimates under a second-order domination assumption on the two first derivatives of the functional which corresponds to Inequality \((D_{m0})\) with \(m_0 = 2\). Here the previous second-order assumption is replaced by the (almost) optimal condition \((D_3)\) for deriving the Berry-Esseen theorem for \(M\)-estimators.

Proof of Theorem 3. It suffices to check the conditions \((A1)\) to \((A6)\) of Theorem 1. The limit \(M'_\theta(\alpha) := \lim n \mathbb{E}_{\theta, \mu}[M'_n(\alpha)]\) is well defined by Proposition 3 and Condition \((V0)\), the uniqueness of \(\alpha_0\) is guaranteed by \((V1)\), hence \((A1)\) holds true. One more application of Proposition 3 ensures that \(\mathbb{E}_{\theta, \mu}[F''(\alpha_0, X_0, X_1)] = \lim_n \mathbb{E}_{\theta, \mu}[M''_n(\alpha_0)]\), hence \((A2)\) is satisfied. Condition \((V3)\) is nothing but \((A3)\). The Berry-Esseen properties in \((A4)\) are associated to the functionals \(F'(\alpha_0, x, y)\) and \(F''(\alpha_0, x, y)\) respectively, so that they directly follow from Theorem 2.

Now, let us check that \((A5)\) holds true with \(\omega_n \equiv 0\). Define \(W := V^n\) where \(n \in (0, 1/2)\) is the scalar in \((V5)\) and notice that Condition \((A3)\) is nothing but \((A3)\). The second point is specific to the geometrically ergodic Markov chain case. Indeed, in the same statistical model, Dehay and Yao [DY07] proved a CLT for maximum likelihood estimates under a second-order domination assumption on the two first derivatives of the functional which corresponds to Inequality \((D_{m0})\) with \(m_0 = 2\). Here the previous second-order assumption is replaced by the (almost) optimal condition \((D_3)\) for deriving the Berry-Esseen theorem for \(M\)-estimators.

Equality \((28)\) is then obtained by Markov’s inequality
since
\[\sup_{\theta \in \Theta} \sup_{n \geq 1} \mathbb{E}_{\theta, \mu} [(W(X_0) + W(X_n))^{1/\eta}] \leq 2^{1/\eta - 1} [\mathcal{P}(V) + C_1 \mathcal{P}(V) + b_1], \]
using \((a + b)^{1/\eta} \leq 2^{1/\eta - 1}(a^{1/\eta} + b^{1/\eta})\) for any \(a, b \geq 0\) and (VG1)-(VG2). Notice also that now Condition (V6) is identical to Condition (A6).

The difficult part is to check the Berry-Esseen-type property (A4'). For this purpose, let \(\Xi := \{\xi_i(\cdot, \cdot), i \in I\}\) denote an arbitrary family of real-valued functionals defined on \(\mathcal{A} \times E^2\).

Suppose that each \(\xi_i\) is centered, i.e. \(\mathbb{E}_{\theta, \pi_\theta} [\xi_i(\alpha_0, X_0, X_1)] = 0\) for all \(i \in I\) and \(\theta \in \Theta\), and that Condition (D3) is fulfilled uniformly in \(i \in I\), that is
\[\exists m > 3, \exists C \geq 0, \forall i \in I, \forall \alpha \in \mathcal{A}, \forall (x, y) \in E^2, \quad |\xi_i(\alpha, x, y)|^m \leq C (V(x) + V(y)). \] (29)

For each \(i \in I\), set \(S_n(\alpha_0, i) := \sum_{k=1}^{n} \xi_i(\alpha_0, X_{k-1}, X_k)\), and using Proposition 3 associate the corresponding asymptotic variance denoted by \(\sigma_i^2(\theta)\). Moreover assume that
\[0 < \inf \{\sigma_i(\theta), \theta \in \Theta, i \in I\} \leq \sup \{\sigma_i(\theta), \theta \in \Theta, i \in I\} < \infty. \] (30)

Then, we deduce from Theorem 2 that, under Conditions (M), (29), (30), and \(\mathcal{P}(V) < \infty\), there exists a constant \(B\) such that
\[\forall n \geq 1, \sup_{i \in I} \sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \mu} \left\{ S_n(\alpha_0, i) \leq u \right\} - \Gamma(u) \right| \leq \frac{B}{\sqrt{n}}. \] (31)

This allows to establish the two conditions in (A4'). Indeed, for \((p, v) \in \mathbb{N}^* \times \mathbb{R}\) with \(v\) such that \(|v| \leq 2\sqrt{\ln \mathbb{P}}\), let us introduce the functional \(\xi_{p,v}\) defined by
\[\xi_{p,v}(\alpha_0, x, y) := F'(\alpha_0, x, y) + \frac{v}{\sqrt{\mathbb{P}} m(\theta)} \left(F''(\alpha_0, x, y) - m(\theta) \right). \]

Set \(S_n(\alpha_0, p, v) := \sum_{k=1}^{n} \xi_{p,v}(\alpha_0, X_{k-1}, X_k)\), and
\[\alpha_\theta(p, v) := \frac{v}{\sqrt{\mathbb{P}} m(\theta)}, \quad S'_n(\theta) := \sum_{k=1}^{n} F'(\alpha_0, X_{k-1}, X_k), \quad S''_n(\theta) := \sum_{k=1}^{n} F''(\alpha_0, X_{k-1}, X_k) - n m(\theta), \]
such that \(S_n(\alpha_0, p, v) = S'_n(\alpha_0) + \alpha_\theta(p, v) S''_n(\alpha_0)\). Notice that \(\mathbb{E}_{\theta, \pi_\theta}[\xi_{p,v}(\alpha_0, X_0, X_1)] = 0\) by (V1)-(V2). We have
\[\mathbb{E}_{\theta, \pi_\theta}[S_n(\alpha_0, p, v)^2] - \mathbb{E}_{\theta, \pi_\theta}[S'_n(\alpha_0)^2] = \alpha_\theta(p, v)^2 \mathbb{E}_{\theta, \pi_\theta}[S''_n(\alpha_0)^2] + 2 \alpha_\theta(p, v) \mathbb{E}_{\theta, \pi_\theta}[S'_n(\alpha_0) S''_n(\alpha_0)]. \]

From (V2) and the fact that \(\sigma_1(\cdot)\) is bounded, we have \(|\alpha_\theta(p, v)| \leq A|v|/\sqrt{\mathbb{P}}\) for some \(A > 0\) which does not depend on \(\theta\). Besides, as already mentioned in this section, one can define the asymptotic variances \(\sigma_i^2(\theta)\) and \(\sigma_2^2(\theta)\) associated to the functionals \(F'\) and \(F''\) by
\[\sigma_i^2(\theta) := \lim_n \frac{1}{n} \mathbb{E}_{\theta, \pi_\theta}[S'_n(\alpha_0)^2] \quad \sigma_2^2(\theta) := \lim_n \frac{1}{n} \mathbb{E}_{\theta, \pi_\theta}[S''_n(\alpha_0)^2]. \]

Similarly, the asymptotic variance \(\sigma_{p,v}^2(\theta)\) associated to \(\xi_{p,v}\) can be defined by:
\[\sigma_{p,v}^2(\theta) := \lim_n \frac{1}{n} \mathbb{E}_{\theta, \pi_\theta}[S_n(\alpha_0, p, v)^2]. \]
Then, it follows from $|\mathbb{E}_{\theta, p, v}[S_n'(\alpha_0) S_n''(\alpha_0)]| \leq \mathbb{E}_{\theta, p, v}[S_n'(\alpha_0)^2]^{1/2} \mathbb{E}_{\theta, p, v}[S_n''(\alpha_0)^2]^{1/2}$ that

$$|\sigma_{p, v}^2(\theta) - \sigma_1^2(\theta)| \leq A^2 \frac{\text{var}(\theta)}{p} + 2A \frac{|v|}{\sqrt{p}} \sigma_1(\theta) \sigma_2(\theta).$$

Since $\sigma_j(\cdot)$ is bounded ($j = 1, 2$) and $|v| \leq 2\sqrt{\ln p} \leq 2\sqrt{p}$, the previous inequality shows that there exists $C' > 0$, independent of θ, such that

$$|\sigma_{p, v}^2(\theta) - \sigma_1^2(\theta)| \leq C' \frac{|v|}{\sqrt{p}}.$$

Set $\sigma_1 := \sup_{\theta \in \Theta} \sigma_1(\theta)$ and $\sigma_1 := \inf_{\theta \in \Theta} \sigma_1(\theta)$ (we have $\sigma_1 > 0$ from (V4)). Using $|v|/\sqrt{p} \leq 2\sqrt{\ln p}/p$ and $\sqrt{\ln p}/p = o(1)$, the above inequality implies that there exists $P_0 \in \mathbb{N}$ such that we have, for all $p \geq P_0$ and v such that $|v| \leq 2\sqrt{\ln p}$

$$\forall \theta \in \Theta, \quad \frac{1}{2} \sigma_1 \leq \sigma_{p, v}(\theta) \leq \frac{3}{2} \sigma_1.$$

In particular, under the same condition on (p, v), this gives $\sigma_{p, v}(\theta) + \sigma_1(\theta) \geq 3\sigma_1/2$, hence: $|\sigma_{p, v}(\theta) - \sigma_1(\theta)| \leq 2C'|v|/3\sigma_1\sqrt{p}$. This proves the first assertion in (A4').

Now, let us define

$$I = \{ (p, v) \in \mathbb{N}^* \times \mathbb{R} : p \geq P_0, \ |v| \leq 2\sqrt{\ln p} \}.$$

It follows from (V0), (V2) and $\sigma_1 < +\infty$ that the family $\Xi := \{\xi_{p, v}, (p, v) \in I\}$ satisfies (29). Besides, the above bounds of $\sigma_{p, v}(\theta)$ give the property (30). Then Equation (31) shows that there exists $B' > 0$ such that we have for all $n \geq 1$, $(p, v) \in I$, $\theta \in \Theta$, and $u \in \mathbb{R}$:

$$\left|\mathbb{P}_{\theta, p} \left\{ S_n(\alpha_0, p, v, \sigma_{p, v}(\theta)) \leq u \right\} - \Gamma(u)\right| \leq \frac{B'}{|u|}.$$

Finally, let us fix any integer $n \geq P_0$ and any real number u such that $|u| \leq 2\sqrt{\ln n}$. Then, the previous Berry-Esseen property, applied with $p := n$ and $v := u$, exactly provides the second property of (A4'). Indeed, we obtain from $S_n'(\alpha_0) = n M_n'(\alpha_0)$ and $S_n''(\alpha_0) = n(M_n''(\alpha_0) - m(\theta))$ that

$$\frac{S_n(\alpha_0, n, u)}{\sigma_{n, u}(\theta) \sqrt{n}} = \frac{1}{\sigma_{n, u}(\theta) \sqrt{n}} \left(S_n'(\alpha_0) + \frac{u}{\sqrt{n}} \frac{\sigma_1(\theta)}{m(\theta)} S_n''(\alpha_0)\right) = \frac{\sqrt{n}}{\sigma_{n, u}(\theta)} \left(M_n'(\alpha_0) + \frac{u}{\sqrt{n}} \frac{\sigma_1(\theta)}{m(\theta)} (M_n''(\alpha_0) - m(\theta))\right).$$

Now the proof of Theorem 3 is complete. \hfill \Box

V An example: AR(1) process with ARCH(1) errors

Let us apply our theoretical results to an AR(1) process with ARCH(1) errors that belongs to the class of ARMA-GARCH models (see [FZ04] and the references therein). The observations are generated by the process

$$X_n = \rho_0 X_{n-1} + \sigma(X_{n-1}; a_0, b_0) \varepsilon_n, \quad n = 1, 2, \ldots \tag{32}$$
where X_0 has some probability distribution μ, $\sigma^2(x; a, b) := a + bx^2$ and $|\rho_0| < 1$, $a_0, b_0 > 0$ are the true values of the parameters. \{\varepsilon_n\}_{n \geq 1} is a sequence of i.i.d. random variables with zero mean and variance equal to 1, with finite pth order moment for some p to be specified below and (unknown) density f_ε that is continuous and positive on \mathbb{R}. \{\varepsilon_n\}_{n \geq 1} is independent of X_0. For simplicity, hereafter μ is assumed to be the Dirac distribution δ_0. The “true” parameter θ in the associated statistical model is the vector $(\rho_0, a_0, b_0) \in \Theta \subset [-\overline{\rho}, \overline{\rho}] \times [m_a, M_a] \times [m_b, M_b] \subset \mathbb{R}^3$, where $\overline{\rho} \in (0, 1)$, $0 < m_a < M_a < \infty$ and $0 < m_b < M_b < 1$ are given such that $\overline{\rho} + \sqrt{M_b} < 1$. For illustration, we apply our results to estimate ρ_0 and b_0.

First, let us check that the Markov chain defined by (32) satisfies Assumption (M) of Section III.1 with $V(x) = (1 + |x|)^p$. To check (VG1)-(VG2) and the existence of the Q_θ–invariant probability measure π_θ, by [MT94][Th. 2.3] it suffices to prove that there exist constants $\rho \in (0, 1), \epsilon, \zeta > 0$, a Borel subset S of the real line and a probability measure ν concentrated on S such that the following two conditions hold true (see also Remark 2): for all $\theta \in \Theta$,

$$\forall x \in \mathbb{R}, \quad Q_\theta V(x) \leq \varrho V(x) + \zeta 1_S(x) \quad \text{and} \quad Q_\theta(x, \cdot) \geq c \nu(\cdot) 1_S(x). \tag{33}$$

In our setting the transition probability of \{\{X_n\}_{n \geq 0} is given by

$$Q_\theta(x, B) = \int_{\mathbb{R}} 1_B(\rho_0 x + \sigma(x, a_0, b_0)y) f_\varepsilon(y) dy$$

for any Borel set $B \subset \mathbb{R}$. As a consequence, for all $\theta \in \Theta$ and $x \in \mathbb{R}$,

$$\frac{Q_\theta V(x)}{V(x)} = \int_{\mathbb{R}} \frac{V(\rho_0 x + \sigma(x, a_0, b_0)y)}{V(x)} f_\varepsilon(y) dy \leq \int_{\mathbb{R}} \left(\frac{1 + \overline{\rho} |x| + (\sqrt{M_a} + \sqrt{M_b} |x|)|y|}{1 + |x|} \right)^p f_\varepsilon(y) dy.$$

By Fatou’s Lemma,

$$\limsup_{|x| \to \infty} \left(\sup_{\theta \in \Theta} \frac{Q_\theta V(x)}{V(x)} \right) \leq \overline{\rho} + \sqrt{M_b} < 1.$$

Next, fix $\varrho \in (\overline{\rho} + \sqrt{M_b}, 1)$. There exists $s > 0$ such that for each $|x| > s$, $Q_\theta V(x) \leq \varrho V(x)$ for all $\theta \in \Theta$. Set $S := [-s; s]$. For all $x \in S$ and $\theta \in \Theta$,

$$Q_\theta V(x) \leq \zeta := \int_{\mathbb{R}} \left(1 + \overline{\rho} s + (\sqrt{M_a} + \sqrt{M_b} s)|y|^p f_\varepsilon(y) dy \right) < \infty,$$

so that the first condition in (33) is guaranteed. To check the second condition in (33), define

$$0 < \delta(u) := \inf_{x \in S, \theta \in \Theta} f_\varepsilon(\sigma^{-1}(x, a_0, b_0)(u - \rho_0 x)), \quad u \in \mathbb{R}.$$

Then, for any $x \in S$, Borel set $B \subset \mathbb{R}$ and $\theta \in \Theta$,

$$Q_\theta(x, B) = \int_{\mathbb{R}} 1_B(\rho_0 x + \sigma(x, a_0, b_0)y) f_\varepsilon(y) dy = \int_{B} f_\varepsilon(\sigma^{-1}(x, a_0, b_0)(u - \rho_0 x))/\sigma(x, a_0, b_0) \frac{du}{m_a} \geq \int_B \delta(u) m_a \, du.$$

Define the measure $m(du) := m_a^{-1} \delta(u) \, du$ and notice that $m(S) > 0$. We deduce from above that all $\theta \in \Theta$, $x \in S$ and Borel set $B \subset \mathbb{R}$,

$$Q_\theta(x, B) \geq m(B) \geq m(B \cap S) = m(S) \nu(B),$$

21
where \(\nu \) is the probability measure \(\nu(B) = m(B \cap S)/m(S) \). Hence the second condition in (33) is fulfilled and Assumption (M) is satisfied for \(\{X_n\}_{n \geq 0} \) defined in (32).

Second, to estimate \(\rho_0 \), one can use the least squares estimator

\[
\hat{\rho}_n := \frac{\sum_{k=1}^{n} X_k X_{k-1}}{\sum_{k=1}^{n} X_k^2} = \arg \min_{\rho} \frac{1}{n} \sum_{k=1}^{n} F(\rho, X_{k-1}, X_k),
\]

where \(F(\rho, X_{k-1}, X_k) := (X_k - \rho X_{k-1})^2 \). We show that the assumptions of Theorem 3 are satisfied so that we have an uniform Berry-Esseen bound for \(\hat{\rho}_n \). Fix some \(p > 6 \). Moreover, assume that \(\int_\mathbb{R} |x|^p f_\varepsilon(x) \, dx < \infty \). Take \(F'(\rho, X_{k-1}, X_k) := -2X_{k-1}(X_k - \rho X_{k-1}) \) and \(F''(\rho, X_{k-1}, X_k) := 2X_{k-1}^2 \). The conditions (V0) and (V1) are obviously fulfilled. Next, define \(m(\theta) := E_{\theta, \pi_\theta} [F''(\rho_0, X_{k-1}, X_k)] \) and notice that \(m(\theta)/2 = a_0 + (b_0 + \rho_0^2) m(\theta)/2 \). It follows that \(m(\theta) = 2a_0/(1 - \rho_0^2 - b_0) > 2m_a \) and thus (V2) holds. Condition (V3) is satisfied with \(r_n = 0 \). From Proposition 3, we can use the \(Q_\theta \)-invariant probability measure \(\pi_\theta \) to check Condition (V4). Notice that \(\lim_n E_{\theta, \pi_\theta} [X_n^2] = m(\theta)/2 > m_a \) and recall that \(\{\varepsilon_n\}_{n \geq 1} \) is i.i.d. We deduce that

\[
\sigma_1^2(\theta) = \lim_{n} \frac{4}{n} \sum_{k=1}^{n} E_{\theta, \pi_\theta} \left[X_{k-1}^2 \sigma^2(X_{k-1}, a_0, b_0) \varepsilon_k^2 \right] \geq 4a_0 \lim_{n} E_{\theta, \pi_\theta} [X_n^2] \geq 4m_a^2.
\]

To derive a lower bound for \(\sigma_2^2(\theta) \), let us decompose

\[
E_{\theta, \pi_\theta} \left[\sum_{k=1}^{n} (F''(\rho_0, X_{k-1}, X_k) - m(\theta)) \right]^2 = \sum_{k=1}^{n} v_{k,k} + 2 \sum_{1 \leq k < l \leq n} v_{k,l},
\]

where \(v_{k,l} := E_{\theta, \pi_\theta} \left[(F''(\rho_0, X_{k-1}, X_k) - m(\theta))(F''(\rho_0, X_{l-1}, X_l) - m(\theta)) \right], \; k \leq l \). It is easily checked that \(v_{k,l} = (\rho_0^2 + b_0) v_{k,l-1} \) for \(k < l \). In particular, this implies \(v_{k,k} > 0 \), \(k \leq l \). Next, by elementary inequalities, we can obtain \(\inf_\theta E_{\theta, \pi_\theta} \left[(F''(\rho_0, X_0, X_1) - m(\theta))^2 \right] \geq K \) for some positive constant \(K \) depending on the variance of \(\varepsilon_1^2 \). Deduce that \(\sigma_2^2(\theta) \geq K \), hence (V4) holds true. Condition (V5) is trivially satisfied. To check the consistency condition (V6) we take advantage of the explicit form of \(\hat{\rho}_n \). Indeed, we have

\[
\hat{\rho}_n - \rho_0 = \frac{n^{-1} \sum_{k=1}^{n} (X_k X_{k-1} - \rho_0 E_{\theta, \pi_\theta} [X_k^2]) - \rho_0 n^{-1} \sum_{k=1}^{n} \left(X_k^2 - E_{\theta, \pi_\theta} [X_k^2] \right)}{n^{-1} \sum_{k=1}^{n} \left(X_k^2 - E_{\theta, \pi_\theta} [X_k^2] \right) + E_{\theta, \pi_\theta} [X_1^2]}
\]

By Chebyshev’s inequality, for any \(d > 0 \), \(\mathbb{P}_{\theta, \delta_0} \{ |\Delta_{1n} | > d \} \leq d^{-2} n^{-1} E_{\theta, \delta_0} [\Delta_{1n}^2] \). Proposition 3 guarantees that \(E_{\theta, \delta_0} [n \Delta_{1n}^2] \) is uniformly bounded (with respect to \(\theta \)). Similar arguments apply for \(\Delta_{2n} \). Since \(E_{\theta, \pi_\theta} [X_1^2] > m_a \) for all \(\theta \), we deduce that (V6) holds with \(\gamma_n = O(n^{-1}) \). Finally, by Theorem 3, there exists \(C > 0 \) such that

\[
\forall n \geq 1, \sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \delta_0} \left(\frac{\sqrt{n} \varepsilon_n}{\sigma_1(\theta) m(\theta)^{-1}} (\hat{\rho}_n - \rho_0) \leq u \right) - \Gamma(u) \right| \leq \frac{C}{\sqrt{n}}.
\]

(34)

Third, let us now turn to the estimation of \(b_0 \). For this purpose, assume that the \(\varepsilon_n \)’s have a moment of order \(p \) for some \(p > 12 \). Recall that \(a_0 = m(\theta)(1 - \rho_0^2 - b_0)/2 \) and notice that
\(\tau_0^2 := m(\theta)/2 \) is easily estimated by \(\hat{\tau}_n^2 := n^{-1} \sum_{k=1}^{n} X_k^2 \). Next, define
\[
T_n(b; r, v) := \frac{1}{n} \sum_{k=1}^{n} \eta_k(b, r, v)^2 \quad \text{with} \quad \eta_k(b, r, v) := (X_k - rX_{k-1})^2 - v(1 - r^2 - b) - bX_{k-1}^2,
\]
with \(\frac{\partial T_n}{\partial b}(b; r, v) = \frac{2}{n} \sum_{k=1}^{n} (v - X_{k-1}^2) \eta_k(b, r, v) \), \(\frac{\partial^2 T_n}{\partial b^2}(b; r, v) = \frac{2}{n} \sum_{k=1}^{n} (v - X_{k-1}^2)^2 \).

If \(\rho_0 \) and \(a_0 \) were known, one could easily estimate \(b_0 \) by least squares, more precisely by minimizing \(T_n(b; \rho_0, \tau_0^2) \) with respect to \(b \). With this idea in mind, our feasible estimator of \(b_0 \) is defined as follows \(\hat{b}_n := \arg \min_{b \in [m_n, \bar{m}_n]} M_n(b) \) with \(M_n(b) := T_n(b; \hat{\rho}_n, \hat{\tau}_n^2) \).

Define \(F'(b, X_{k-1}, X_k) := 2(\tau_0^2 - X_{k-1}^2) \eta_k(b, \rho_0, \tau_0^2) \), \(F''(b, X_{k-1}, X_k) := 2(\tau_0^2 - X_{k-1}^2)^2 \) and \(M'_n(b) := \partial T_n/\partial b(b; \rho_0, \tau_0^2) \), \(M''_n(b) := \partial^2 T_n/\partial b^2(b; \rho_0, \tau_0^2) \). Let us point out that in this case \(M'_n(\cdot) \) and \(M''_n(\cdot) \) are only approximations of the derivatives of \(M_n(\cdot) \). Checking Assumptions (V0) to (V2) is obvious and therefore we skip the details. To check Condition (V3) for \(M'_n(\hat{b}_n) \), we use the decomposition \(M'_n(\hat{b}_n) = A_n + \Delta_n = A_n + \Delta_{1n} + \Delta_{2n} + \Delta_{3n} \) with
\[
A_n := \frac{2}{n} \sum_{k=1}^{n} (\tau_0^2 - X_{k-1}^2) \eta_k(\hat{b}_n, \hat{\rho}_n, \hat{\tau}_n^2), \quad \Delta_n := \frac{2}{n} \sum_{k=1}^{n} (\tau_0^2 - X_{k-1}^2) (\eta_k(\hat{b}_n, \rho_0, \tau_0^2) - \eta_k(\hat{b}_n, \hat{\rho}_n, \hat{\tau}_n^2))
\]
\[
\Delta_{1n} := \frac{4(\hat{\rho}_n - \rho_0)}{n} \sum_{k=1}^{n} (\tau_0^2 - X_{k-1}^2)(X_k - \rho_0X_{k-1})X_{k-1}
\]
\[
\Delta_{2n} := -\frac{2(\hat{\rho}_n - \rho_0)}{n} \sum_{k=1}^{n} (\tau_0^2 - X_{k-1}^2)X_{k-1}^2
\]
\[
\Delta_{3n} := 2\{\hat{\tau}_n^2(1 - \hat{\rho}_n^2 - \hat{\tau}_n) - \tau_0^2(1 - \rho_0^2 - \hat{b}_n)\} (\tau_0^2 - \hat{\tau}_n^2 + X_{n/2}^2/n).
\]
We check that each term satisfies Condition (V3) with a suitable \(r_n \). First, we can write
\[
0 = \frac{\partial M_n}{\partial b}(\hat{b}_n) = A_n + B_n \quad \text{with} \quad B_n := \frac{2(\hat{\tau}_n^2 - \tau_0^2)}{n} \sum_{k=1}^{n} \eta_k(\hat{b}_n, \hat{\rho}_n, \hat{\tau}_n^2).
\]
By elementary algebra \(B_n = 2(\hat{\tau}_n^2 - \tau_0^2)(\hat{\rho}_n + \hat{\tau}_n^2)X_{n/2}^2/n \). Using the Berry-Esseen bound for \(\hat{\tau}_n^2 \) (see Theorem 2) and Markov’s inequality for \(X^2 \) for some small \(a > 0 \), we can prove that \(\mathbb{P}_{\theta, \delta_0}(|B_n| \geq n^{-1}) = O(n^{-1/2}) \) so that \(\mathbb{P}_{\theta, \delta_0}(|A_n| \geq n^{-1}) = O(n^{-1/2}) \). By the bound in Equation (34), we have \(\sup_{\theta, \delta_0} \mathbb{P}_{\theta, \delta_0}(|\hat{\rho}_n - \rho_0| \geq n^{-j/2} \log^{3/2} n) = O(n^{-1/2}) \), \(j = 1, 2 \). Use this with \(j = 1 \) and our Theorem 2 for the centered functional \(\xi(X_k, X_{k-1}) = (\tau_0^2 - X_{k-1}^2)(X_k - \rho_0X_{k-1})X_{k-1} \) to deduce that \(\mathbb{P}_{\theta, \delta_0}(|\Delta_{1n}| \geq n^{-1} \log n) = O(n^{-1/2}) \). Next, the bound on \(|\hat{\rho}_n - \rho_0|^2 \) and Theorem 2 applied to the centered functional \(\xi(X_k, X_{k-1}) = (\tau_0^2 - X_{k-1}^2)X_{k-1}^2 - \tau_0^2 + \mathbb{E}_{\theta, \delta_0}[X_{k-1}^4] \) allow us to deduce that \(\mathbb{P}_{\theta, \delta_0}(|\Delta_{2n}| \geq n^{-1} \log n) = O(n^{-1/2}) \). Finally, use the Berry-Esseen bounds for \(\hat{\rho}_n \) and \(\hat{\tau}_n^2 \) and Markov’s inequality for \(X^2 \) with some \(a > 0 \) to deduce that \(\mathbb{P}_{\theta, \delta_0}(|\Delta_{3n}| \geq n^{-1} \log n) = O(n^{-1/2}) \). Combining these facts gives that \(M'_n(\hat{b}_n) \) satisfies Condition (V3) with \(r_n = n^{-1} \log n \). Condition (V4) can be checked using similar
arguments like those used for $\hat{\rho}_n$ and therefore the details are omitted. Condition (V5) is trivially satisfied. Finally, let us notice that

$$\hat{b}_n - b_0 = \sum_{k=1}^{n} \left(\frac{\bar{\tau}_i^2 - X_{k-1}^2}{\sum_{k=1}^{n} (\bar{\tau}_i^2 - X_{k-1}^2)^2} \right) \eta_k(b_0, \hat{\rho}_n, \hat{\tau}_i^2),$$

and thus Condition (V6) can be checked by arguments that we already used in this example.

We deduce from Theorem 3 that, for some suitable $\tau(\theta)$,

$$\forall n \geq 1, \sup_{\theta \in \Theta} \sup_{u \in \mathbb{R}} \left| \mathbb{P}_{\theta, \delta_0} \left\{ \frac{\sqrt{n}}{\tau(\theta)} \left(\hat{b}_n - b_0 \right) \leq u \right\} - \Gamma(u) \right| = O \left(\frac{\log n}{\sqrt{n}} \right).$$

The log factor in this Berry-Esseen bound is the price we pay for estimating b_0 by a simple two-step procedure, easy to implement, where we first estimate $\hat{\rho}_n$ and $\hat{\tau}_i^2$ and then we use the least squares criterion $M_n(b) = T_n(b; \hat{\rho}_n, \hat{\tau}_i^2)$. We feel that the log factor could be removed by using a direct approach where the three parameters are estimated simultaneously, but the investigation of this idea with Markov chain data is left for future work.

VI Conclusion

In this paper, we study Berry-Esseen’s theorem for M-estimators (or minimum contrast estimators) of some parameter α_0 on the real line. The estimators are defined from a criterion based on a functional $F(\alpha, X_{n-1}, X_n)$ of the observation process $\{X_n\}_{n \geq 0}$. Our approach to derive such bounds relies on Pfanzagl’s method originally proposed for i.i.d. observations [Pfa71]. In a first step, Theorem 1 in [Pfa71] is extended to obtain Berry-Esseen bounds for M-estimators based on any sequence of observations satisfying suitable conditions. In a second step, the specific case of V-geometrically ergodic Markov observations is considered. We show that such Markov framework allows to apply our general result provided that F and related functionals F', F'' satisfy suitable domination conditions. This result covers those reported in [Rao73, MR89] which are proved under much stronger moment conditions. We argue that the domination conditions used in the present paper gives an almost optimal treatment of Berry-Esseen bounds for V-geometrically ergodic Markov chains. This is possible due to the operator-type procedure developed in [HP10].

There are several possible extensions of our results. A straightforward one is to follow the lines of the proof [Pfa71, Th 2] and to consider an estimator of the standard deviation in the Berry-Esseen bounds when this standard deviation depends on θ only through α_0. The details are omitted. Next, for more effective bounds, we need to carefully evaluate the constants involved throughout the paper. This is a direction of future work. Finally, there is no doubt that the operator-type procedure in [HP10] could be further used in statistical applications with Markov models, in particular with strongly ergodic Markov chains. This is under investigation.

A Complements for the proof of Theorem 1.

The reader is referred to Proposition 2 and its proof for the notation and the definitions used throughout this part. The following lemma gives key properties of the random functions g^\pm.
The following properties hold true.

1. If \(\nu_{n,\theta} := \sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) \), then \(A_n \subset \{ g^-(\nu_{n,\theta}) \leq 0 \leq g^+(\nu_{n,\theta}) \} \).

2. For \(\omega \in D_{n,\theta} \), \(g^\pm \) are increasing on the interval \((-2\sqrt{\ln n}, 2\sqrt{\ln n}) \) provided that

\[
\sqrt{n} \geq \frac{2c_W}{m} \left[\frac{4\sigma^2 \ln \ln n}{\sigma_1} + \sqrt{n} \omega_n \right].
\]

Proof. We can write from Assumptions (A5) and (A3)

\[
|nM_n'(\alpha_0) + (\hat{\alpha}_n - \alpha_0)nM''_n(\alpha_0)| = |nM_n'_{\omega}(\hat{\alpha}_n) - (\hat{\alpha}_n - \alpha_0)R_n(\alpha_0, \hat{\alpha}_n)|
\]

\[
\leq nr_n + n|\hat{\alpha}_n - \alpha_0||R_n(\alpha_0, \hat{\alpha}_n)|
\]

\[
\leq nr_n + n|\hat{\alpha}_n - \alpha_0| [\|\hat{\alpha}_n - \alpha_0\| + \omega_n] W_n.
\]

If \(\omega \in A_n \) then

\[
|nM_n'(\alpha_0) + (\hat{\alpha}_n - \alpha_0)nM''_n(\alpha_0)| \leq n|\hat{\alpha}_n - \alpha_0|^2 c_W + n\omega_n|\hat{\alpha}_n - \alpha_0| c_W + nr_n.
\]

This last inequality is rewritten as

\[
n[M_n'(\alpha_0) - r_n] + \tau(\theta)\sqrt{n} [M''_n(\alpha_0) - \text{sign}(\nu_{n,\theta}) c_W \omega_n] \nu_{n,\theta} - \tau(\theta)^2 c_W \nu_{n,\theta}^2 \leq 0
\]

and

\[
n[M_n'(\alpha_0) - r_n] + \tau(\theta)\sqrt{n} [M''_n(\alpha_0) + \text{sign}(\nu_{n,\theta}) c_W \omega_n] \nu_{n,\theta} + \tau(\theta)^2 c_W \nu_{n,\theta}^2 \geq 0,
\]

with \(\nu_{n,\theta} := \sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) \). Since \(0 < \tau(\theta) \leq \tau \), then we obtain that

\[
g^-(\nu_{n,\theta}) \leq 0 \quad \text{and} \quad g^+(\nu_{n,\theta}) \geq 0.
\]

The second statement is proved as follows for \(g^+ \). Notice that \(a^+ > 0 \) and \(g^+ \) is continuous. If we restrict \(v < 0 \), the minimum of this quadratic function \(g^+(v) \) is achieved at

\[
v_{\min} = -\frac{b^+}{2a^+} = -\frac{\tau(\theta)\sqrt{n} [M''_n(\alpha_0) - c_W \omega_n]}{2\sigma^2 c_W},
\]

or at the origin if \(v_{\min} \geq 0 \). Now, if \(\omega \in D_{n,\theta} \) and \(n \) satisfies the condition (35), it is easy to check that

\[
v_{\min} < -2\sqrt{\ln n}
\]

and \(g^+ \) is strictly increasing on \((0, \infty)\). Hence, \(g^+ \) is increasing on \((-2\sqrt{\ln n}, 2\sqrt{\ln n})\). Similar arguments apply for \(g^- \).

Lemma A.2 We have for \(n \) large enough and \(|u| < 2\sqrt{\ln n} \)

\[
E_{n,\theta,u}^- \cap B_{n,\theta} \subset D_{n,\theta,u} \cap B_{n,\theta} \subset E_{n,\theta,u}^+ \cap B_{n,\theta}.
\]

Proof. It is understood below that \(\omega \in B_{n,\theta} \). Since \(B_{n,\theta} \subset E_{n,\theta,u} \cap D_{n,\theta} \) and \(|u| < 2\sqrt{\ln n} \), the second statement in Lemma A.1 guarantees that for \(n \) large enough

\[
\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) \leq u \implies g^+(\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta)) \leq g^+(u).
\]

Since \(B_{n,\theta} \subset A_n \), the first assertion in Lemma A.1 yields \(g^+(\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta)) \geq 0 \) so that \(g^+(u) \geq 0 \) when \(\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) \leq u \). This proves the second inclusion in (36).

Next, assume that \(g^- (u) \geq 0 \). Since \(g^- \) is increasing, we have

\[
\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) > u \implies g^- (\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta)) > g^- (u) \geq 0.
\]

Since \(B_{n,\theta} \subset A_n \), we know from Lemma A.1 that \(g^- (\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta)) \leq 0 \) which is in contradiction with the above inequality. Thus, \(g^- (u) \geq 0 \) gives \(\sqrt{n}(\hat{\alpha}_n - \alpha_0)/\tau(\theta) \leq u \). \(\square \)
B Complements for the proof of Lemma 1

A first step to control the constants in Lemma 2 is to study the resolvent map \((z - Q_\theta)^{-1}\) of the transition kernel \(Q_\theta\) acting on \(\mathcal{B}_\gamma\).

Lemma B.1 Let \(\delta, r\) be such that \(\kappa_\gamma < r < 1 < 1 - \delta\). Then, for any \(z \in \mathbb{C}\) such that \(|z| > r\) and \(|z - 1| > \delta\), the operator \(z - Q_\theta\) is invertible on \(\mathcal{B}_\gamma\), and we have:

\[
H_\gamma(\delta, r) := \sup \{ \| (z - Q_\theta)^{-1} \|_\gamma, \, \theta \in \Theta, \ |z| > r, \ |z - 1| > \delta \} < \infty.
\]

Proof. Let \(g \in \mathcal{B}_\gamma\), and let us write \(h_\theta = g - \pi_\theta(g) 1_E\). Since \(\pi_\theta(h_\theta) = 0\), it follows from (VG2) that \(\| Q_\theta^k h_\theta \|_\gamma \leq C_\gamma \kappa_\nu^k \| h_\theta \|_\gamma\). Now assume \(|z| > r\). Then

\[
\sum_{k \geq 0} |z|^{-(k+1)} \| Q_\theta^k h_\theta \|_\gamma \leq \frac{C_\gamma}{\kappa_\gamma} \sum_{k \geq 0} \left(\frac{\kappa_\nu}{r} \right)^{k+1} \| h_\theta \|_\gamma \leq \frac{C_\gamma}{r - \kappa_\gamma} \| h_\theta \|_\gamma.
\]

Thus, \(\psi_\theta := \sum_{k \geq 0} z^{-(k+1)} Q_\theta^k h_\theta\) is absolutely convergent in \(\mathcal{B}_\gamma\), we have \((z - Q_\theta) \psi_\theta = h_\theta\) and \(\| \psi_\theta \|_\gamma \leq C_\gamma \| h_\theta \|_\gamma/(r - \kappa_\gamma)\). Besides, if \(z \neq 1\), then we clearly have

\[
(z - Q_\theta) \left(\frac{\pi_\theta(g)}{z - 1} 1_E \right) = \pi_\theta(g) 1_E.
\]

Now assume \(|z| > r\) and \(|z - 1| > \delta\). Then the function \(f_\theta := (\pi_\theta(g)/(z - 1)) 1_E + \psi_\theta\) is such that \((z - Q_\theta)f_\theta = g\). Thus \((z - Q_\theta)^{-1} g = f_\theta\). From (20), we obtain \(\| \pi_\theta(g) \| \leq \| \pi_\theta(\| g \|) \| \leq \pi_\theta(V^\gamma) \| g \|_\gamma \leq b_1 \| g \|_\gamma\) and \(\| h_\theta \|_\gamma = \| g - \pi_\theta(g) 1_E \|_\gamma \leq (1 + b_1) \| g \|_\gamma\). This gives: \(\| f_\theta \|_\gamma \leq (b_1 / \delta) \| g \|_\gamma + C_\gamma (1 + b_1) \| g \|_\gamma/(r - \kappa_\gamma)\), hence \(H_\gamma(\delta, r) \leq (b_1 / \delta + C_\gamma (1 + b_1)/(r - \kappa_\gamma)) < +\infty\).

\(\square\)

Second, the constants involved in the Doeblin-Fortet inequality and the weak continuity condition of the Keller-Liverani theorem are proved to be uniform in \(\theta\) and to depend on \(\xi\) only via the constant \(C_\xi\) of \((D_{\text{rel}})\). We appeal to [KL99, Rk. p. 145] and to the improvements given in [LV04]. In the context of strongly ergodic Markov chains, the hypotheses resulting from [KL99, Liv04] are stated in [HP10, sect. 4] and used here with the auxiliary norm \(\| f \|_1 := \sup_{|z| \leq 1} |f|/V\) on \(\mathcal{B}_\gamma\). In the sequel, for \(0 < \gamma < \gamma' \leq 1\), we denote by \(\mathcal{L}(\mathcal{B}_\gamma, \mathcal{B}_{\gamma'})\) the space of the bounded linear operators from \(\mathcal{B}_\gamma\) to \(\mathcal{B}_{\gamma'}\), and by \(\| \cdot \|_{\gamma, \gamma'}\) the associated operator norm (with the convention \(\| \cdot \|_{\gamma} = \| \cdot \|_{\gamma, \gamma}\) when \(\gamma' = \gamma\)).

Lemma B.2 Let \(\gamma \in (0, 1)\). We have:

(a) \(\forall \theta \in \Theta, \forall t \in \mathbb{R}, \forall n \geq 1, \forall f \in \mathcal{B}_\gamma, \ |Q_\theta(t)^n f| \|_\gamma \leq C_\gamma \kappa_\nu^n \| f \|_\gamma + b_1 \| f \|_1\);

(b) \(\forall \theta \in \Theta, \forall t \in \mathbb{R}, \ |Q_\theta(t) - Q_\theta| \|_\gamma, 1 \leq 2^{\gamma - 1} C_\gamma^{1 - \gamma} \left(E_\gamma + E_1 \right) t^{1 - \gamma} \| f \|_\gamma\),

where \(E_\gamma := \sup_{\theta \in \Theta} |Q_\theta| \|, E_1 := \sup_{\theta \in \Theta} |Q_\theta|_1\) and \(C_\gamma, \kappa_\nu, b_1\) are defined in (20) (21).

Proof. By using the inequality \(\| Q_\theta(t)^n f \|_\gamma \leq \| Q_\theta^k f \| \| f \|_\gamma\), Assertion (a) easily follows from (21) and (20). To establish (b), let us recall that we have from \((D_{\text{rel}})\) (use \(V \geq 1\))

\[
|\xi(\theta, x, y)|^{1 - \gamma} \leq C_\xi^{(1 - \gamma)/m} (V(x) + V(y))^{1 - \gamma} \leq 2^{1 - \gamma} C_\xi^{(1 - \gamma)/m} (V(x)^{1 - \gamma} + V(y)^{1 - \gamma})\].

26
Let \(f \in \mathcal{B}_\gamma \). From the definition of \(Q_\theta(t)f \) and the inequalities \(|f| \leq V^\gamma \|f\|_\gamma, |e^{ia} - 1| \leq 2|a|^{1-\gamma}\), we obtain that

\[
\left| (Q_\theta(t)f)(x) - (Q_\theta f)(x) \right| \leq \|f\|_\gamma \int_E e^{it\xi(\alpha_0, x, y)} - 1 | V(y)^\gamma Q_\theta(x, dy) \\
\leq 2^{2-\gamma} C_\xi \frac{1}{\gamma} |t|^{1-\gamma} \|f\|_\gamma \left[V(x)^{1-\gamma} (Q_\theta V^\gamma)(x) + (Q_\theta V)(x) \right],
\]

from which we deduce (b).

For the next lemma (used to prove Lemma 3), we introduce the following notations. For any \(\theta \in \Theta, k \in \mathbb{N}, t \in \mathbb{R} \), let us denote by \(Q_{\theta,k}(t) \) the operator associated to the kernel: \(Q_{\theta,k}(t)(x, dy) = \int k\xi(\alpha, y) e^{it\xi(\alpha_0, x, y)} Q_\theta(x, dy) \) \((x \in E) \).

Lemma B.3 Let \(0 < \gamma < \gamma' \leq 1 \) and \(k = 0, \ldots, m_0 \):

(a) If \(\gamma + k/m < \gamma' \leq 1 \), then the map \(t \mapsto Q_{\theta,k}(t) \) is continuous from \(\mathbb{R} \) to \(\mathcal{L}(\mathcal{B}_\gamma, \mathcal{B}_{\gamma'}) \).

(b) If \(k \leq m_0 - 1 \) and \(\gamma + (k + 1)/m < \gamma' \leq 1 \), then the map \(t \mapsto Q_{\theta,k}(t) \) is continuously differentiable from \(\mathbb{R} \) to \(\mathcal{L}(\mathcal{B}_\gamma, \mathcal{B}_{\gamma'}) \), and for all \(t \in \mathbb{R} \), \((dQ_{\theta,k}/dt)(t) \) is the operator in \(\mathcal{L}(\mathcal{B}_\gamma, \mathcal{B}_{\gamma'}) \) associated to the kernel \(Q_{\theta,k+1}(t) \).

Finally, we have \(Q_{k,\gamma,\gamma'} := \sup \{ \|Q_{\theta,k}(t)\|_{\gamma,\gamma'}, \theta \in \Theta, t \in \mathbb{R} \} < \infty \), and \(Q_{k,\gamma,\gamma'} \) depends on \(\xi \) but only via the constant \(C_\xi \) of \((D_{m_0}) \).

Proof. Set \(\Delta_{\theta,k} := Q_{\theta,k}(t) - Q_{\theta,k}(0) \), and let \(0 < \varepsilon \leq 1 \) be such that \(\gamma + (k + \varepsilon)/m \leq \gamma' \). Using \(|e^{ia} - 1| \leq 2|a|^{1-\gamma} \) and \((D_{m_0}) \), we obtain for \(f \in \mathcal{B}_\gamma \):

\[
\left| \Delta_{\theta,k} f(x) \right| \leq 2 |t - t_0| \|f\|_\gamma \int |\xi(\alpha_0, x, y)|^{k+\varepsilon} V(y)^\gamma Q_\theta(x, dy) \\
\leq 2^{1+\frac{k+\varepsilon}{\gamma}} C_\xi \frac{k+\varepsilon}{\gamma} |t - t_0|^{\varepsilon} \|f\|_\gamma \left(V^{k+\varepsilon}(x) Q_\theta V^\gamma(x) + Q_\theta V^{\gamma'}(x) \right).
\]

Since the functions \(V^{-\gamma} Q_\theta V^\gamma \) and \(V^{-\gamma} Q_\theta V^{\gamma'} \) are bounded on \(E \) uniformly in \(\theta \in \Theta \), we deduce that \(\|\Delta_{\theta,k}\|_{\gamma'} \leq D_{\xi} |t - t_0|^{\varepsilon} \|f\|_\gamma \), where \(D_{\xi} \) is a positive constant depending on \(C_\xi \) (but independent of \(\theta \)). This gives (a). The proof of (b) is similar by using the operators \(Q_{\theta,k}(t) - Q_{\theta,k}(0) - (t - t_0)Q_{\theta,k+1}(0) \) and the inequality \(|e^{ia} - 1 - ia| \leq 2|a|^{1+\varepsilon} \). \(\square \)

References

[Arc98] M. A. Arcones. A remark on approximate M-estimators. *Statist. Probab. Letters*, 38:311–321, 1998.

[BBG97] V. Bentkus, M. Błaszczyszyn, and F. Götze. A Berry-Esseen bounds for M-estimators. *Scand. J. Statist.*, 24:485–502, 1997.

[Bol82] E. Bolthausen. The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains. *Z. Wahrsch. Verw. Gebiete*, 60:283–289, 1982.

[Cam64] S. Campanato. Proprietà di una famiglia di spazi funzionali. *Ann. Scuola Norm. Sup. Pisa (3)*, 18:137–160, 1964.
[DY07] D. Dehay and J.-F. Yao. On likelihood estimation for discretely observed Markov jump processes. *Aust. N. Z. J. Stat.*, 49:93–107, 2007.

[Fel71] W. Feller. *An introduction to probability theory and its applications, Vol. II*. John Wiley and Sons, New York, 1971.

[FZ04] C. Francq and J.-M. Zakoian. Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. *Bernoulli*, 10(4):605–637, 2004.

[GL06] S. Gouëzel and C. Liverani. Banach spaces adapted to Anosov systems. *Ergodic Theory Dynam. Systems*, 26:189–217, 2006.

[Gou08] S. Gouëzel. Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Preprint, 2008.

[Her08] L. Hervé. Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques. *Ann. Inst. H. Poincaré Probab. Statist.*, 44:280–292, 2008.

[HH04] H. Hennion and L. Hervé. Central limit theorems for iterated random Lipschitz mappings. *Ann. Probab.*, 32(3A):1934–1984, 2004.

[HP10] L. Hervé and F. Pène. The Nagaev-Guivarc’h method via the Keller-Liverani theorem. *Bull. Soc. Math. France*, 138:415–489, 2010.

[Jen89] J. L. Jensen. Asymptotic expansions for strongly mixing Harris recurrent Markov chains. *Scand. J. Statist.*, 16:47–63, 1989.

[KL99] G. Keller and C. Liverani. Stability of the spectrum for transfer operators. *Ann. Scuola Norm. Sup. Pisa - Cl. Sci. (4)*, XXVIII:141–152, 1999.

[Liv04] C. Liverani. Invariant measure and their properties. a functional analytic point of view. In Pisa Scuola Normale Superiore, editor, *Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics*, 2004.

[MP71] R. Michel and J. Pfanzagl. The accuracy of normal approximation. *Z. Wahrsch. Verw. Gebiete*, 18:73–84, 1971.

[MR89] X. Milhaud and A. Raugi. Étude de l’estimateur du maximum de vraisemblance dans le cas d’un processus autorégressif : convergence, normalité asymptotique, vitesse de convergence. *Ann. Inst. H. Poincaré Probab. Statist.*, 25:383–428, 1989.

[MT93] S. P. Meyn and R. L. Tweedie. *Markov chains and stochastic stability*. Springer Verlag, 1993.

[MT94] S. P. Meyn and R. L. Tweedie. Computable bounds for geometric convergence rates of Markov chains. *Ann. Probab.*, 4:981–1011, 1994.

[Pfa71] J. Pfanzagl. The Berry-Esseen bound for minimum contrast estimates. *Metrika*, 17:81–91, 1971.

[Rao73] B. L. S. Prakasa Rao. On the rate of convergence of estimators for Markov processes. *Z. Wahrsch. Verw. Gebiete*, 26:141–152, 1973.