Iodine-induced cleavage at phosphorothioate DNA (PT-DNA) is characterized by extremely high sensitivity (~1 phosphorothioate link per 10^6 nucleotides), which has been used for detecting and sequencing PT-DNA in bacteria. Despite its foreseeable potential for wide applications, the cleavage mechanism at the PT-modified site has not been well established, and it remains unknown as to whether or not cleavage of the bridging P-O occurs at every PT-modified site. In this work, we conducted accurate ωB97X-D calculations and high-performance liquid chromatography-mass spectrometry to investigate the process of PT-DNA cleavage at the atomic and molecular levels. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-ido-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphorothioester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.

Bacterial DNA phosphorothioation is the replacement of a nonbridging oxygen atom with a sulfur atom in the phosphodiester linkage of the DNA backbone by functional gene clusters such as type I dnpABCDE in Streptomyces lividans (1) and type II sspABCD in Vibrio cyclitrophicus FF75 (2). The physiologically phosphorothioate DNA (PT-DNA) constitutes a modification-restriction system with a partner gene cluster like sspE or dnpE/GH to distinguish non–PT-modified foreign DNA (2, 3). The DNA phosphorothioation is physically recognized by the molecular interaction of the sulfur binding domain (SBD) in the Streptomyces coelicolor type IV restriction enzyme ScoMcra (4, 5). Moreover, phosphorothioate chemistry confers PT-DNA antioxidant activity to repair oxidative damage caused by hydrogen peroxide and peracetic acid (6, 7) and even peroxyxinitrite acid (8), in which PT-DNA is converted back to normal DNA and forms sulfur oxide products. As shown in Fig. 1, compared with the complicated gene-editing molecular machine ScoMcra (4, 5), iodine (I₂) is able to selectively cleave the P-O bridging bond at the PT-DNA phosphorothioate site and can thereby potentially be used to detect, quantify, and map PT-containing bacterial genomes (9–11).

The reaction mechanism for the iodine-induced PT-DNA cleavage (Fig. 1, path 4) is illusive, in part because the P-S/P-O reversion usually dominates, and the P-O scission rarely occurs during most antioxidative reactions (Fig. 1, path 2) (6–8). For instance, in the presence of hydrogen peroxide and peroxyxinitrite, the P-S/P-O reversion converts the phosphorothioate diester to a normal phosphate DNA linkage (loss of the PT handle) and provides multiple electrons to quench additional reactive oxygen species (ROS). In the presence of hypochlorous acid, liquid chromatography-mass spectrometry (LC-MS) analysis was used to show that a considerable amount of P-S/P-O transformation was observed, along with instability in the PT genome (12, 13). Even though molecular iodine is able to act as an oxidant (as in Fig. 1, path 2), previous studies of iodine-induced PT-DNA cleavage did not address the potential competition between the P-S/P-O reversion and P-O scission; the bioinformatics analysis of these studies assumed an equivalent (if not fully) P-O cleavage occurring at all the PT-modified sites. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-ido-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphorothioester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.
PT-modified sites (9–11). In order to accurately map the PT genome, it is crucial to know the probability of the dissociation of the bridging P-O bond in the iodine-induced PT site–specific scission; consequently, it is necessary to distinguish the detailed reaction mechanisms between iodine and phosphorothioate or iodine and phosphate.

Even though the iodine-induced phosphorothionucleotide cleavage was first proposed more than three decades ago by Eckstein and coworkers (14, 15), recent studies have failed to explain the actual role of iodine in this process. It has been suggested that iodine-induced cleavage stemmed from 2-iodoethanol–conjugated phosphorothioate alkylation (11), but the simple mixture of iodine and ethanol under ambient conditions cannot generate 2-iodoethanol, the so-called active alkylating reagent in iodine-induced cleavage reactions. Therefore, a more comprehensive understanding is required for the purpose of developing the iodine-PT deep sequencing protocol for biotechnology; otherwise, bioinformatic analysis based on the assumption of breaking all-phosphorothioate linkages would give misleading PT-modified information about bacterial PT genomes.

Moreover, the rapid rupture of the bridging P-O bonds in phosphorothioate diesters apparently violates phosphoryltransfer biochemistry (16, 17). In the absence of phosphodiesterase, the bridging P-O bond in DNA is exceptionally stable, with a theoretical half-life of 30 million y at 25°C (18). The thio effect of phosphorothioate substitution further enhances the antihydrolytic stability of this linkage by one or two orders of magnitude, and this substitution is widely used in developing stable antisense RNA drugs (19, 20). Thus, revealing the unique “click” chemistry of iodine-induced PT-DNA cleavage at the hydrolysis-resistant PT site has significant implications for both biotechnology and drug discovery.

We have performed density functional theory (DFT) calculations to 1) interrogate the extremely high chemoselectivity between iodine-phosphorothioate and iodine-phosphate and 2) determine the enhanced rate of bridging P-O bond scissions in the iodine-phosphorothioate derivatives. We have discovered that iodine and phosphorothioate selectively form a significantly strong halogen-chalcogen bond. After release of an iodide ion, the resulting iodine-phosphorothioate complex \([PS^-\cdot I]_2 \) is able to convert the hydrolysis-resistant phosphorothioate diester to a hydrolysis-vulnerable phosphorothioate-like structure. The hydrolytic dissociation of the bridging P-O bonds at the PT site is significantly promoted in the downstream phosphodiester species, such as the Tris-O-grafting phosphodiester and other S-aminophosphorothioates (PSNs), affording nucleophilic substitution by amine groups from Tris buffer and DNA bases. The Tris-O-grafting phosphorothiester dominates these conversions via internal cyclization of its hydroxyl branches. Our findings successfully illustrate the comprehensive mechanistic cascade processes of iodine addition, iodide elimination, nucleophilic substitution, and P-O/P-S bond dissociation in iodine-induced PT-DNA cleavage.

Results

The Halogen-Chalcogen Interaction of Phosphorothioate and Iodine

In order to elucidate the mechanism of iodine’s preferential attack at the phosphorothioate site, we began by investigating possible molecular interactions between the DNA backbones and iodine. We calculated Gibbs free energies for the 3-center–4-electron (3c-4e) halogen bonding (XB) interaction of iodine with phosphorothioate, phosphate, and iodide in aqueous solution. The complexes formed by phosphorothioate diester (PS, 4) or phosphate diester (PO, 1) with \(I_2 \) were compared at the \(\omega B97X-D/cc-pVTZ/LanL2DZ(\text{I})/SMD(\text{water}) \) level of theory (SMD, solvation model based on density). The free energy of complex formation for phosphorothioate and iodine (5) was calculated to be \(-14.9 \text{ kcal/mol} \), while that of phosphate and iodine (2) is unfavorable by \(+1.3 \text{ kcal/mol} \) at room temperature (Fig. 2A). The large negative free energy of the halogen-chalcogen interaction is much more significant than that of the [I\(_2 \)] interaction, which is the strongest halogen bond reported in the literature to date (\(I^- + I_2 = I_3^- \), \(\Delta H_{\text{cal}} = -8.5 \text{ kcal/mol} \) and \(\Delta G_{\text{cal}} = +0.8 \text{ kcal/mol} \) (21, 22).
We calculated the highest-energy occupied molecular orbital (HOMO) and the lowest-energy unoccupied molecular orbital (LUMO) gaps to examine the origin of the unprecedented I₂-chalcogen interaction, which has an enthalpy change of −22.4 kcal/mol. For comparison, the I₂ − I⁻ interaction is computed to be −8.5 kcal/mol for the strong halogen bond in I₃⁻. In the 3c-4e sigma bond system, the higher-energy HOMO (−2.46 eV) of phosphorothioate may donate electrons to the LUMO (anti-0°, −4.95 eV) of iodine more efficiently than the lower-energy HOMO (−3.31 eV) of phosphate; moreover, the high-energy sulfur 3p lone pair electrons may also be involved in π-bond interactions (SI Appendix, Fig. S1). These interactions were visualized by the typical representation of reduced density gradient of ring and cloud regions in the spatial electron density gradient analysis for noncovalent interactions (SI Appendix, Fig. S2).

The halogen-chalcogen complexes of phosphorothioate and iodine can decompose into S-iodo-phosphorothioate (PSI, 6) via release of an iodide anion. Although this process is computed to be endothermic by 3.0 kcal/mol in enthalpy, it benefited from an entropic gain; its Gibbs free energy is calculated to be exergonic at room temperature by −3.1 kcal/mol. For comparison, the hypothetical decomposition of PO+/I₂ (2) to POI (3) was computed to be unfavorable in both enthalpy (+10.9 kcal/mol) and free energy (+5.0 kcal/mol). Thus, the strong halogen-chalcogen interaction between phosphorothioate (PS, 4) and I₂ decreases the covalent I-I bond significantly, leading to heterogeneous dissociation of the I-I bond (the I-I bond length elongates by 0.5 Å in the XB complex) (Fig. 2B). We also employed COPASI (the Complex Pathway Simulator package; see the details in the computational section of Materials and Methods) to simulate the halogen-chalcogen complex formation and consequent I-I dissociation using the high-level quantum-mechanics (QM)-calculated Gibbs free energies. The initial concentrations of PO (1) and PS (4) were estimated using the iodine/PT-plasmid experiment, where [PSI] = ∼0.115 μM and [PO] = ∼76.5 μM for OD₂₆₀ (absorbance at 260 nm) = 0.5 plasmid solution (equivalently ∼25 μg/mL double-stranded DNA, assuming that 0.15% of PO linkages were physiologically modified to PS by the dnd gene) (Fig. 1, path 1). The phosphospecies response distinguished between different iodine concentrations in the hypothetical equilibria toward POI (3) and PSI (6). As shown in Fig. 2C, the COPASI simulation indicates that PS (4) reacts with iodine stoichiometrically, while PO (1) requires a much higher iodine concentration to form POI (3). At the half-half transformation (PX: PXI = 1:1, where X = S or O), the hypothetical iodine concentrations were calculated to be 10⁻⁴ and 10² mM, respectively. Thus, the chemoselectivity of iodine at the PT site reaches about ∼10⁶ under experimental conditions ([I₂] in the millimolar range), by which the phosphorothioate at the PT-modified site is fully converted to the PSI (6) species, and the inert phosphate linkage in the DNA molecule was unchanged. This result is consistent with the observed cleavage taking place exclusively at the PT site. In the iodine-induced experiment, however, 30 mM iodine was overdosed unless the real PT-modification frequency was over 1,500/10⁷ nt.

Nevertheless, the halogen-chalcogen interaction, a distinctive type of halogen bond, conveys a chemoselective attack preferentially at the PT site and converts the hydrolysis-resistant phosphodiester PS (4) to a hydrolysis-vulnerable phospho-triester-like PSI (6). Since P-O bond hydrolysis of the phosphate triester is much faster than that of the phosphodiester (23), we next explored possible phosphotriester-like derivatives from the active species PSI (6), which can transform the nucleophilic sulfur in PS (4) to an electrophilic sulfur in PSI (6) that is able to react with available nucleophiles.

Possible Triester-Like Structures Derived from Nucleophilic Substitution at the Sulfur Site. PSI is activated and possesses two electrophilic sites: S and P. Before investigating the
electrophilic phosphorus site, we computationally tested the electrophilic sulfur region against a variety of nucleophiles available in the experiments. Two types of nucleophiles were accessible: N-containing nucleophiles, such as DNA bases and Tris buffer (amine group), or O-containing nucleophiles, such as $3'$-hydroxyl ends of DNA, water, and Tris buffer (alcohol branches). Both class of nucleophiles were tested for nucleophilic addition (A_N) to PSI using the methylamine and methanol models. As shown in Fig. 3, the S-N coupling was validated to be feasible between PSI and amine, while the hydroxyl group was unreactive to PSI.

The formation of the S-N bond was nearly barrier free between PSI and amine, with an activation energy of 0.94 kcal/mol (diffusion controlled owing to entropy loss of the bimolecular reaction, $\approx 36 \text{ J} \cdot \text{K}^{-1}$) (SI Appendix, Fig. S3). The A_N was exothermic by -15.0 kcal/mol in enthalpy and -2.9 kcal/mol in Gibbs free energy. The zwitterionic adduct (7) spontaneously transforms to PSN (8) (via iodide elimination (-1.3 kcal/mol in free energy) and deprotonation of phosphorosulfenylammonium in aqueous solution (24).

When methanol is used as a nucleophile, no theoretical adduct was observed, though a similar hydrogen bond is formed between the nonbridging oxygen and the hydroxyl group (SI Appendix, Fig. S3). One straightforward rationale for this observation is that alcohol is less nucleophilic and the conjugate acid (phosphoric acid) formed by attack of the hydroxyl group is much stronger than the conjugate acid ($\text{phosphorosulfenylammonium}$) formed by the attack of the amine (25).

Secondary amines can also lead to the formation of nucleophilic adducts, but they are higher in activation energy and free energy. Thus, the PSN was likely formed via nucleophilic substitution by primary amines like Tris and the sp^2-hybridized nitrogen ($-\text{NH}_2$) of the amine-containing DNA bases A, G, and C. It should be noted that Tris possesses primary amine substituents to form Tris-N-grafting PSN (10) (Fig. 3C).

Secondary amines adducts were observed in bimolecular transphosphorane, but they are higher in activation energy and free energy. Thus, the PSN was likely formed via nucleophilic substitution by primary amines like Tris and the sp^2-hybridized nitrogen ($-\text{NH}_2$) of the amine-containing DNA bases A, G, and C. It should be noted that Tris possesses primary amine substituents to form Tris-N-grafting PSN (10) (Fig. 3C).

In the iodine-cleavage deep sequencing (ICDS), genomic DNA was mixed with iodine and heated up to 65°C for 5 min to maximize the cleavage (9). The temperature 65°C is approximately the melting point of DNA primers of a 25-nt length, which may unwind compact DNA molecules to expose the primary amine substituents of DNA bases in the previous experiments (9). However, genomic/longer DNA won’t melt at this temperature, and the heat-up effect might be negligible to expose DNA bases. In addition, the amines of DNA bases are usually solvent exposed in the major and minor grooves, which may modify their base ionization constant values and nucleophilicity due to base-base hydrogen bonds.

Hypothetically, all three types of phosphotriester-like species (6, 8, and 10) are susceptible to nucleophilic attack at the electrophilic phosphorus, which can lead to competitive P-O and P-S cleavage.

Competitive P-S and P-O Dissociations in the Phosphotriester-Like Species. The P-O and P-S bond dissociations of the above phosphotriesters were calculated at the oB97X-D/6-31+G(d)/ 1(LANL2DZ)/SMD(water) level of theory, as previously described (26, 27). Both spontaneous and base-assisted transition structures were extensively searched (28, 29). Since spontaneous phosphoryl transfers have high activation energies, in a range of 31.5 to 43.8 kcal/mol (see the details in SI Appendix, Fig. S4), we chose to focus on the base-catalyzed P-O and P-S dissociations of the thiophosphotriester-like species (6, 8, and 10) due to the availability primary amines in either DNA bases or Tris buffer.

PSI. The spontaneous hydrolysis of PSI was calculated to be slow due to the high activation free energy (ΔG_{aq}^\ddagger) of nucleophilic association (41.4 kcal/mol). The resulting pentacoordinate phosphorane intermediate underwent either P-O dissociation (transition state TS_D-PO, 38.7 kcal/mol) or P-S dissociation (transition state TS_D-PS, 26.2 kcal/mol) (SI Appendix, Fig. S4).

Alternatively, in the presence of a primary amine, PSI undergoes a relatively lower-energy and single-step nucleophilic substitution (S_N2). As shown in Fig. 4A, we carried out a model calculation with methylamine to mimic the primary amine group in either DNA bases or Tris buffer. Only the dissociation of the P-S bond was observed in computation, because the S_N2 anion is a better leaving group than the alkoxide or hydroxide ions. The calculated ΔG_{aq}^\ddagger was estimated to be 28.4 kcal/mol at the

Fig. 3. A_N of amine to the sulfur atom of PSI. (A) The reaction ΔG_{aq}^\ddagger of the S-I to S-N transformation (Top). S-I to S-O formation does not give a stable intermediate (Bottom). (B) Computed geometry of PSN (8). (C) Tris-N-grafting PSN (10).

Fig. 4. S_N2 substitution of PSI. (A) The reaction and activation ΔG_{aq}^\ddagger of the PSI to PO transformation. The bridging P-O dissociation is not observed in computational base-assisted hydrolysis. (B) Computed geometry of 11. The activation energy was estimated with reference to a zwitterionic complex because of the barrier-free association of PSI + CH$_3$NH$_2$ \rightarrow PSNH$_2$CH$_3$+\ddagger \rightarrow (7).
It should be noted that the nucleophilic addition of a primary amine at the sulfur atom is competitive with the base-assisted PSI hydrolysis and feasibly leads to the formation of PSN (8), as in Fig. 3. Here, the primary amine is used as a general base to enhance the nucleophilicity of a water molecule for the hypothetical hydrolysis of PSI (8). If a primary amine is replaced by a hydroxide (a strong base, $[\text{OH}^-] = 0.010 \text{ mM}$ at pH 9.0) (30), the activation energy for the hydroxide-assisted PSI hydrolysis decreased to 11.4 kcal/mol under standard conditions (temperature = 298.15 K, 1 atm) (SI Appendix, Fig. S5).

PSN. The spontaneous hydrolysis of PSN is similar to that of the PSI species. The $\Delta G^\ddagger_{\text{PSN}}$ for nucleophilic substitution is calculated to be 43.8 kcal/mol. The phosphorane intermediate can dissociate by either P-O (TS$_{\text{D-PO}}$, 36.1 kcal/mol) or P-S (TS$_{\text{D-PS}}$, 37.8 kcal/mol) scission (SI Appendix, Fig. S4).

Similarly, the association-dissociation process can be significantly accelerated when a primary amine is involved. Using the methylamine base model, these $\Delta G^\ddagger_{\text{PSN}}$ decrease to 21.6 kcal/mol (12, TSA, a transition state for association reaction), 11.7 kcal/mol (14, TS$_{\text{D-PO}}$, a transition state for the bridging P-Ome bond dissociation), and 17.2 kcal/mol (16, TS$_{\text{D-PS}}$, a transition state for the P-S bond dissociation) (Fig. 5A).

In comparison to PSI hydrolysis, the P-S bond dissociation of the PSN species is much exothermic when releasing sulfenamine, but this process required a higher activation energy (5.5 kcal/mol) than the P-O bond dissociation (Fig. 5B). Intriguingly, the bridging P-O bond dissociation was selectively promoted in the PSN species; however, the rate-determining step was AN in the hydrolytic process, indicating the hydrolytic reaction needs a stronger base to promote nucleophilic attack.

Tris-N-grafting PSN. The unimolecular cyclization of Tris-N-grafting PSN (10) provides a feasible route for AN. Tris-N-grafting denotes a S-N covalent bond with the Tris amine group in the PSN, allowing intramolecular attacks of Tris hydroxyl groups to the PSN electrophilic phosphor center. The activation energy for the spontaneous cyclization was calculated to be 31.5 kcal/mol, which was lower by 12.3 kcal/mol than PSN (8) for the less entropic loss in the unimolecular reaction. However, the P-O and P-S bond dissociations of the cyclic Tris-N,O-grafting phosphorane intermediate (18) had higher $\Delta G^\ddagger_{\text{PSN}}$: 34.2 and 34.7 kcal/mol in the absence of base catalysis, respectively (SI Appendix, Fig. S4).

With this Tris, instead of a water molecule, the nucleophilic cyclization involves a branching alcohol group for grafting to Tris. The P-S and P-O bond dissociations of the cyclic phosphorane did not break down the Tris-N-grafting triester-like species to hydrolysis-inert diesters as in Fig. 5. Instead, this process generated the second generation of hydrolysis-vulnerable triesters.

In the presence of primary amine such as the second Tris molecule or a DNA base, the associative-dissociative (AN$_2$-D_N) process was also accelerated. Within the methylamine base model, these $\Delta G^\ddagger_{\text{PSN}}$ decreased to 11.2 kcal/mol (17, TSA), 19.3 kcal/mol (19, TS$_{\text{D-PO}}$, bridging P-Ome bond dissociation), and 16.3 kcal/mol (21, TS$_{\text{D-PS}}$, P-S bond dissociation) (Fig. 6A).

We found that the bridging P-O bond dissociation was higher by 3.0 kcal/mol in $\Delta G^\ddagger_{\text{PSN}}$ than the P-S bond dissociation, which was an unexpected result (Fig. 6B). Compared transition state 19 with the geometry of transition state 14 (TS$_{\text{D-PO}}$), it is likely that the equatorial hydroxyl group in transition state 14 dramatically stabilized the leaving alkoxide by about 7.6 kcal/mol, probably via a hydrogen-bonding interaction. Consequently, the P-S bond cleavage became a major pathway for the Tris-N-grafting PSN, which led to a typical phosphotriester (22).

We also computed the cascade association-dissociation for the derivative phosphotriester (22) based on the assumption of a rapid disproportionation with another primary amine like...
Tris buffer (HSNHR + NH₂R' → NH₂R + HSNHR'), as shown in SI Appendix, Fig. S6) (31–33). The ΔG⧧ of the base-assisted self-association with the terminal primary amine was calculated to be 21.4 kcal/mol, while that of the consequent P-O bond dissociation was 23.4 kcal/mol (SI Appendix, Fig. S7). The cascade association-dissociation for the third generation of phosphotriester was calculated to be 23.8 and 20.6 kcal/mol in ΔG⧧, respectively. Therefore, the second-generation phosphotriester (22) slowly decomposes to a hydrolysis-inert phosphate diester under conditions typical for DNA experiments (34). Because the three bridging P-O bonds in the phosphotriester (22) are chemically equal in terms of cascade hydrolysis, there are two chances to break down the three P-O bridges into two DNA fragments.

In summary, our computational exploration of P-O bond dissociation at the PT-modified site suggests the following: 1) straightforward hydrolysis for the original PSI (6) recovers the phosphate linkage and leads to the P-S/P-O conversion; 2) the amine-derivative PSN (8) selectively cleaves the bridging P-O bond, which was favorable for the cleavage of iodine-induced PT-DNA, but this step has a relatively high activation barrier for the formation of the pentaphosphorane intermediate; and 3) the Tris-N-grafting PSN (10) rapidly transforms to the next generation of Tris-O-grafting phosphotriester (22), resulting in a two-thirds chance for the dissociation of the bridging P-O bond. The overall diagram for the iodine-induced PT-DNA cleavage is shown in Fig. 7.

Experimental Validation. We validated the speculative Tris effects with modified conditions for iodine-induced treatments, in which phosphate buffer was purposely replaced with Tris. The plasmid agarose gel electrophoresis of PT-containing plasmid was consistent with our earlier studies (SI Appendix, Figs. S8–S10, figure S2 in 7, and figure S3 in ref. 8). Two PT dinucleotides (G₃₅G and G₃₅A, the most abundant PT-
modified sites in dnd gene–bioengineering S. lividans 1326 and Escherichia coli B7A) were used as the PT model compounds for iodine-induced reactions, and the iodine-induced product profiles were measured using high-pressure liquid chromatography-mass spectrometry (HPLC-MS) (8).

As shown in Fig. 8A, using the average mass spectrometry (MS) intensities of non–iodine-phosphorothioate dinucleotide controls, the P-S/P-O conversion yields reached ~93% and ~62% for GpG and GpA in phosphate buffer, respectively, while the yields decreased to ~25% and ~32% in Tris buffer solution (see the raw HPLC-MS data, chromatograms in SI Appendix, Figs. S11–S14, and detailed XCMS [various forms (X) of chromatography mass spectrometry] analysis in SI Appendix). The dramatic change of P-S/P-O conversion is in good agreement with the calculated results that predict that Tris is involved in the iodine-induced reactions of PT-DNA. The yields of guanine nucleoside, the direct product of bridging P-O cleavage, were ~71% and ~15% for GpG and GpA in Tris solution, respectively, and ~24% for GpG in phosphate buffer, but nondetectable for GpA in phosphate buffer. A considerable amount of guanine nucleotide (pG or Gp) was observed in the case of GpG iodine-induced cleavage in both buffers. This result indicates that the P-O cleavage is highly dependent on the chemical environment and DNA sequence (see conformational analysis of GpG and GpA in SI Appendix, Fig. S15).

The evidence for Tris involvement in the P-O cleavage is reflected by the MS signals of G-Tris-Pi ([M-H]+, mass-to-charge ratio m/z 449.117) (+183.028, Tris-phosphate), G-Tris-2Pi ([M-H]+, m/z 529.073) (+262.984, Tris-diphosphate), and A-Tris-Pi ([M-H]+, m/z 433.121) (+183.027, Tris-phosphate) (see the plausible structures in SI Appendix, Fig. S16). These m/z shifts are in good agreement with the m/z values previously reported in which Tris-phosphate (+183.1) and Tris-diphosphate (+263.1) were measured by the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS (9). In this work, Tris is characterized as a general base for the bridging P-O cleavage, rather than an unwanted contaminant as described in previous studies. More intriguingly, the formation of the Tris-phosphate derivative implies that one molecule of Tris is involved in two units of phosphorothioate cleavage, which may provide insights into the degree of typical palindromic PT modifications in the PT-DNA genome.

Discussion

Taken together, our results demonstrate that the strong halogen bond between phosphorothioate and iodine conveys an exceptional chemoselectivity for iodine attack at the PT-modified site. The I-I dissociation of the triiodide-like ([PSI-I-I]-) XB complex produces the reactive PSI species. Although hypouric acid can be formed via iodine hydrolysis under the experimental condition, it cannot form a halogen bond with phosphorothioate as strong as iodine does, and its contribution to the iodine LANL2DZ basis set; however, the XB energies decrease by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2). In the presence of amines, i.e., DNA bases, the XB energy decreases by 8.1 and 1.9 kcal/mol, respectively (SI Appendix, Tables S1 and S2).
We have discovered that Tris plays critical roles in PT-DNA cleavage. The Tris adducts observed by HPLC-MS appear to be precursors or by-products of terminal hydroxyl DNA fragments, rather than the side products that have been described in previous literature (figure 4 in ref. 9). Our results advocate for the need for more reactive alcohol-amine catalysis. This revelation is based on the observation that both the PT dinucleotide experiment and model calculation indicated that the bridging P-O bond breaking in the iodine-induced PT-DNA cleavage was dependent on neighboring DNA 3‘ bases (e.g., guanine C2-NH2) that might be accessible for the nascent PSI species. Otherwise, the PSI species could hydrolyze to normal phosphate diester as in Figs. 4 and 8 B (GPsA).

The less efficient P-O bond cleavage implied that the PT-modified site was not fully broken with the iodine treatment and that a considerable fraction of the P-S bonds is transformed to the normal phosphate linkages. This suggests that the bioinformatic analyses need to fully consider the unrealistic assumption of highly efficient cleavage at the PT-modified site, particularly for GpG sites. On the other hand, the iodine-induced P-S/P-O conversion (direct PSI hydrolysis) provides an alternative two-electron antioxidative pathway accompanied by multiple nucleophilic addition and eliminations, which is complementary with the one-electron radical pathways proposed in our previous work on anti-ROS function.

Iodine treatment can cleave bridging P-O bonds at the PT site in the presence of nucleophiles like amines or convert the PT modification to a normal phosphate linkage. These results provide an insightful understanding that helps define PT-DNA cleavage as a XB-guiding and amine-related process, which is consistent with results observed in experiments. Our results also suggest that it is desirable to develop more efficient auxiliary alcohol-amines or diamines to further decrease barriers at the rate-determining step of pentacoordinate phosphorane intermediates for iodine-induced deep sequencing of PT-modified genomes.

Materials and Methods

Experiment. The Tris effect in the iodine-induced PT-DNA cleavage was validated by agarose gel electrophoresis. *E. coli* DH10B cells harboring pJTU1238, which contained the dsbBE functional gene cluster from *Salmonella enterica* and was reported to possess ~1,500 PT modifications per 106 nt (35), were used for the validating experiment. The freshly extracted PT-DNA (OD260 0.26) was treated with 3.0 mM I2 (10% ethanol solution) in 50 mM (at pH 9.0) phosphate buffer (20 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 5.0 mM NaAc, and 1.0 mM ethylenediamine tetraacetic acid) at 65 °C for 15 min. Agarose gel electrophoresis was performed on a 0.8% agarose gel in 1× TBE (49) at 5 μA per gel. The reactant mixture was incubated for 15 min. Agarose gel electrophoresis was performed on a 0.8% agarose gel in 1× TBE (49) at 5 μA per gel. The reactant mixture was incubated for 15 min.

Data Availability. All study data are included in the article and/or Supporting Information, such as the XYZ coordinates of calculated structures, agarose gel image, and UPLC-MS chromatograms.

ACKNOWLEDGMENTS. This research was funded by the National Key R&D Program of China (Grants 2018YFA0901200 and 2020YFA0907700), the National Science Foundation of China (Grants 31970041, 31770070, and 21377085), and the Ministry of Education of the People’s Republic of China Joint International Research Laboratory of Metabolic & Developmental Sciences Collaborative (Grant MDS-JF-2019A01). We thank the Center for High Performance Computing at Shanghai Jiao Tong University for computing resources. O.H. also thanks Tingting Wu and Yuanqi Wang for informative discussions. R.L.Z. is an intern at University of California, Los Angeles and a student at Brentwood School, Los Angeles.

Author affiliations: 1State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; 2Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and 3Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

1. J. Liang et al., DNA modification by sulfur: Analysis of the sequence recognition specificity surrounding the modification sites. *Nucleic Acids Res.* 35, 2944–2954 (2007).
2. X. Xiong et al., SupABCD-SpoE is a phosphorothioate-sensing bacterial defence system with broad anti-parallel activity. *Nat. Microbiol.* 5, 917–928 (2020).
3. Y. Ding et al., Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. *Proc. Natl. Acad. Sci. U.S.A.* 115, E2988–E2996 (2018).
4. G. Liu et al., Structural basis for the recognition of sulfur in phosphorothioated DNA. *Nat. Commun.* 9, 4689 (2018).
5. H. Yu et al., DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: Revelations from structural analyses. *Nucleic Acids Res.* 48, 8755–8766 (2020).
6. X. Xie et al., Phosphorothioate DNA as an antioxidant in bacteria. *Nucleic Acids Res.* 40, 9115–9124 (2012).
7. D. Wu et al., Mechanistic investigation on ROS Resistance of phosphorothioated DNA; Sci. Rep. 7, 42823 (2017).
8. Q. Huang et al., Defense mechanism of phosphorothioated DNA under peroxynitrite-mediated oxidative stress. *ACS Chem. Biol.* 15, 2558–2567 (2020).
9. B. Cao et al., Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat. Commun. 5, 3951–3963 (2014).

10. J. Li et al., Quantitative mapping of DNA phosphorothioate reveals phosphorothioate heterogeneity of low modification frequency. PLoS Genet. 15, e1008026 (2019).

11. Y. Chen et al., Novel iodine-induced cleavage real-time PCR assay for accurate quantification of phosphorothioate modified sites in bacterial DNA. Sci. Rep. 9, 7448 (2019).

12. S. Kellner et al., Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat. Chem. Biol. 13, 888–894 (2017).

13. Z. Hu et al., Site-specific scissors based on myeloperoxidase for phosphorothioate DNA. J. Am. Chem. Soc. 143, 12361–12366 (2021).

14. K. L. Nakamaye, G. Gish, F. Eckstein, H. P. Vosberg, Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside alpha-thiophosphates. Nucleic Acids Res. 16, 9947–9959 (1988).

15. G. Gish, F. Eckstein, DNA and RNA sequence determination based on phosphorothioate chemistry. J. Org. Chem. 45, 4643–4646 (1980).

16. F. H. Westheimer, Why nature chose phosphates. Acc. Chem. Res. 32, 1104–1108 (1999).

17. A. J. Kirby, F. Nome, Fundamentals of phosphate transfer. J. Am. Chem. Soc. 132, 253–256 (2010).

18. F. R. Wagner, V. Bezugly, M. Kohout, Y. Grin, Charge decomposition analysis of the electron localization failure indicator: A bridge between the orbital and direct space representation of the chemical bond. Chemistry 13, 5724–5741 (2007).

19. L. K. Ebelbe et al., Accurately extracting the signature of intermolecular interactions present in the NG plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19, 17928–17936 (2017).

20. T. Lu, F. Chen, Multifwfn: A multifunctional waveform analyzer. J. Comput. Chem. 33, 580–592 (2012).

21. S. Hoops et al., COPASI-A ComplexPathway Simulator. Bioinformatics 22, 3067–3074 (2006).

22. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–29 (1996).

23. C. Y. Legault, Cytoview20 (Universite de Sherbrooke, Quebec, Canada, 2020). https://www.cylview.org/.