Application of Intersection Method for Multi-Objective Optimization in Optimal Test with Desirable Response Variable

Maosheng Zheng*, Haipeng Teng, Yi Wang

Abstract: This paper aims to conduct applications of intersection method for multi-objective optimization in optimal test design with desirable response variable. The partial favourable probability of the desirable response variable of the test is evaluated according to the type of "one side desirability problem" or "one range desirability problem" and the requirements of desirable response first; then the evaluation of total favourable probability P_t of the multi-objective optimization test design is conducted according to the common procedure of the "intersection" method for multi-object optimization of performance indicators of the test. Finally, regression analysis is performed for the total favourable probability and response variables to get maximum total favourable probability and optimal configuration of the optimal test with desirable response variable. As application examples of the intersection method for the test designs of maximizing yield with constraints of viscosity and molecular weight and the maximizing conversion rate with constraints of desirable thermal activity are given in detail, satisfied results are obtained.

Keywords: desirable response variable; intersection method; multi-objective optimization; optimal test design; partial favourable probability

1 INTRODUCTION

Optimization is an eternal topic in the world, including industrial production, transportation, architecture building, chemical reaction, banking, and social activities. They are likely involving several attributes or performances that must be considered in the analysis. An alternative is recommended to be an optimal one that needs to meet some requirements of response variables (performances), they are even conflicting each other. The proper approach to address this issue is to consider all responses comprehensively and simultaneously. Various techniques have been proposed, including technique for order preference by similarity to ideal solution (TOPSIS), Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR), multi attribute decision making (MADM), Analytical Hierarchy Process (AHP) and Multi-Objective Optimization on the basis of Ratio Analysis (MOORA), etc. [1].

Recently, a new approach named "intersection" method for multi-object optimization was proposed in the viewpoints of set theory and probability theory [1], which attempts to solve the inherent problems of personal and subjective factors in the above multi-object optimizations. The novel concept of favourable probability was developed to reflect the favourable degree of the candidate in the optimization, all performance utility indicators of candidates are divided into beneficial or unbeneficial types to the selection. Each performance utility indicator of the candidate is correlated to a partial favourable probability quantitatively, and the total favourable probability of a candidate is the product of all partial favourable probabilities in the viewpoints of probability theory and "intersection" of set theory, which is the overall and sole decisive index in the competitive selection process. The new multi-object optimization method was also extended in application of multi-objective orthogonal test design method (OTDM) and uniform test design method (UTDM) as well; appropriate achievements have been obtained [1].

In practical engineering fields, besides the beneficial or unbeneficial types of performance utility indicators of candidates, which have the features of the higher the better or the lower the better, there exists third type of performance indicators of candidates, which have the feature of the desired target being the best [2]. In order to address this problem, Derringer and Suich once implemented a multi-response optimization technique with a desirability function [3], which is with the weighting exponent to be assigned instead of favourable probability.

As a further development to the newly proposed "intersection" method for multi-object optimization, here in this paper, applications of intersection method for multi-objective optimization in optimal test design with desirable response are studied.

2 EVALUATIONS OF PARTIAL AND TOTAL FAVOURABLE PROBABILITIES OF DESIRABLE RESPONSE IN THE "INTERSECTION" METHOD FOR MULTI-OBJECTIVE OPTIMIZATION

2.1 One Range Desirability Problem

Under condition of one range desirability, the response variable Y_j has a desirable response range, i.e., within range of $[a, b]$. In this case, the partial favourable probability P_{ij} of response variable Y_j will have certain value α_j within range of $[a, b]$, and the partial favourable probability P_{ij} of response variable Y_j will be zero outside range of $[a, b]$, i.e.,

$$P_{ij} = \begin{cases} \alpha_j, & Y_j \in [a, b]; \\ 0, & Y_j \notin [a, b]; \end{cases} \quad i = 1, 2, \cdots, n; j = 1, 2, \cdots, m. \hspace{0.5cm} (1)$$

Y_j represents the j^{th} performance indicator of the i^{th} candidate; P_{ij} is the partial favourable probability of the one range desirable response variable Y_j; n is the total number of candidates in the candidate group involved; m is the total number of performance indicators of each candidate in the group; α_j is value of the partial favourable probability P_{ij} of the j^{th} response variable Y_j.

According to the general principle of probability theory [4], the summation of each \(P_i \) for the index \(i \) in \(j \)th performance factor is normalized and equal to 1, i.e.,
\[
\sum_{i=1}^{n} P_i = 1,
\]
thus, it obtains naturally
\[
\sum_{i=1}^{n} \alpha_i = 1, \quad \alpha_j = \frac{1}{l}.
\] (2)

\(l \) is the number of the value of the response variable \(Y_j \) falling within range of the \([a, b]\).

2.2 One Side Desirability Problem

In condition of one side desirability, the response variable \(Y_j \) has a desirable response limit, e.g., within range of \([a, \infty]\), which can be taken as a special case of one side desirable condition by setting \(b = \infty \). In this case, the partial favourable probability \(P_{i_j} \) of response \(Y_j \) will have certain value \(\beta \) within range of \([a, \infty]\), and the partial favourable probability \(P_{i_j} \) of response variable \(Y_j \) will be zero outside range of \([a, \infty]\), i.e.,
\[
P_{i_j} = \begin{cases}
\beta_i, & Y_j \in [a, \infty]; \\
0, & Y_j \not\in [a, \infty];
\end{cases}
\]
i = 1, 2, …, \(n \); \(j = 1, 2, \ldots, m \). (3)

Similarly, according to the general principle of probability theory [4], the summation of each \(P_{i_j} \) for the index \(i \) in \(j \)th performance factor is normalized and equal to 1, i.e.,
\[
\sum_{i=1}^{n} P_{i_j} = 1,
\]
thus, it obtains naturally
\[
\sum_{i=1}^{n} \beta_{i_j} = 1, \quad \beta_{i_j} = \frac{1}{k}
\] (4)
k is the number of the value of the response variable \(Y_j \) falling within range of the \([a, \infty]\).

The treatment for the situation for one side desirability within range of \([0, b]\) is similar to above procedure.

As the partial favourable probability \(P_{i_j} \) of response variable \(Y_j \) is obtained, the evaluations of total probability \(P_i \) of candidate and the ranking of the multi-objective optimization can be conducted according to the common procedure of the "intersection" method for multi-object optimization [1].

3 APPLICATIONS OF THE "INTERSECTION" METHOD FOR MULTI-OBJECTIVE OPTIMIZATION IN CASES OF DESIRABLE RESPONSE

3.1 Maximizing Yield with Constraints of Viscosity and Molecular Weight

Montgomery et al showed a maximizing yield optimization with constraints of viscosity and molecular weight problem two input variables reaction time \(x_1 \) and temperature \(x_2 \) [5], and three responses variables, i.e., the yield \(y_1 \) (%), the viscosity \(y_2 \) (cSt) and the molecular weight \(y_3 \) (Mr.) of the product, which is cited and displayed in Tab. 1. The optimization of this problem is to get maximum yield \(y_1 \) with the constraints of viscosity \(y_2 \) and molecular weight \(y_3 \) by \(62 \leq y_2 \leq 68 \) cSt and \(y_3 \leq 3400 \) Mr. In this phase of the study, two additional responses were of special interest: the viscosity \(y_2 \) and the molecular weight \(y_3 \) of the product in addition to yield \(y_1 \), which are responses with desirable values. The experimenter called it as a central composite design (or CCD).

In this problem, it involves complex optimization for yield \(y_1 \) as a beneficial performance index, viscosity \(y_2 \) and molecular weight \(y_3 \) as desirable response indexes. Therefore, the partial favourable probability for yield \(y_1 \) could be evaluated by the assessment for beneficial type variable proposed in [1], and partial favourable probabilities for the viscosity \(y_2 \) and molecular weight \(y_3 \) should be evaluated by the assessment methods developed in the last section for both one side desirability and one range desirability problems, respectively. The evaluated results of partial and total favourable probabilities \(P_{1y}, P_{2y}, P_{3y} \) and \(P_i \) of this product experiment are shown in Tab. 2. Tab. 2 shows that the test No. 1 exhibits the maximum total favourable probability at first glance, so the optimal configuration could be around test No. 1.

Table 1	Experimental results of maximizing yield with constraints of viscosity and molecular weight				
No.	Reaction time, x₁ / min	Temperature, x₂ °C	Yield, y₁ / %	Viscosity, y₂ / cSt	Molecular weight, y₃ (Mr.)
1	80	76.67	76.5	62	2940
2	80	82.22	77	60	3470
3	90	76.67	78	66	3680
4	90	82.22	79.5	59	3890
5	85	79.44	79.9	72	3480
6	85	79.44	80.3	69	3200
7	85	79.44	80	68	3410
8	85	79.44	79.7	70	3290
9	85	79.44	79.8	71	3500
10	92.07	79.44	78.4	68	3360
11	79.93	79.44	75.6	71	3020
12	85	83.37	78.5	58	3630
13	85	75.52	77	57	3150

Table 2	The evaluated results of partial and total favourable probabilities for the chemical experiment						
No.	y₁/y₂	y₂/cSt	y₃/Mr	P₁y	P₂y	P₃y	P₃y×10⁴
1	7.65	62	2940	0.0750	0.1997	0.0869	2.2437
2	77	60	3470	0.0755	1.46E-05	0.0751	0
3	78	66	3680	0.0765	0.3995	0.0704	0.1163
4	79.5	59	3890	0.0779	3.81E-07	0.0637	0
5	79.9	72	3480	0.0783	1.75E-08	0.0748	0
6	80.3	69	3200	0.0787	0.0013	0.0811	0.0142
7	80	68	3410	0.0784	0.1997	0.0764	1.0902
8	79.7	70	3290	0.0781	1.46E-05	0.0791	0.0001
9	79.8	71	3500	0.0782	3.81E-07	0.0744	0
10	78.4	68	3360	0.0768	0.1997	0.0775	1.4744
11	75.6	71	3020	0.0741	3.81E-07	0.0851	0
12	78.5	58	3630	0.0769	1.75E-08	0.0715	0
13	77	57	3150	0.0755	1.21E-09	0.0822	0

In order to get an accurate optimization, the data in Tab. 2 is regressed. The fitted result for the total favourable probability is
The yield \(y_1 \) gets its optimal value \(y_{1\text{opt}} = 76.979 \% \) at \(x_1 = 80.39 \) minutes, and \(x_2 = 76.91 \)°C.

The fitted result for viscosity \(y_2 \) is

\[
y_2 = 1454310.2050 + 20242.9592x_1 + 2436.0490x_2 - 0.0900x_1x_2 + 117.4347x_1^2 - 29.7790x_2^2 - 580304.3480 \ln(x_1) + 0.3025x_1^3 + 0.1215x_2^3,
\]

\[
R^2 = 0.9926.
\]

The desirable variable molecular weight \(y_3 \) gets its optimal value \(y_{3\text{opt}} = 2972.375 \) Mr. at \(x_1 = 80.39 \) minutes, and \(x_2 = 76.91 \)°C.

The fitted result for molecular weight \(y_3 \) is

\[
y_3 = -17621747.0000 - 2438309.5500x_1 - 13078.9964x_2 - 5.7600x_1x_2 + 14549.0282x_1^2 + 170.7936x_2^2 + 68063495.1500 \ln(x_1) - 38.5337 - 0.7128x_3,
\]

\[
R^2 = 0.9238.
\]

As to this problem, it involves complex optimization for conversion rate \(y_1 \) (%) as a beneficial performance index, and the thermal activity \(y_2 \) as desirable response index by \(50 \leq y_2 \leq 65 \) \(W\cdot s^{-0.5}/(m^2\cdot K) \) and as close to \(57.5 \) \(W\cdot s^{-0.5}/(m^2\cdot K) \) as possible. Therefore, the partial favourable probability for conversion rate \(y_1 \) could be evaluated by the assessment for beneficial type variable proposed in [1], and partial favourable probability for the thermal activity \(y_2 \) should be evaluated by the assessment methods developed in the last section for one range desirability problem. The evaluated results of partial and total favourable probabilities \(P_{1i}, P_{2i} \)
and P_i of this product experiment are shown in Tab. 4. Tab. 4 shows that the test No. 12 exhibits the maximum total favourable probability at first glance, so the optimal configuration might be around test No. 12.

The data in Tab. 4 is regressed, the fitted result for the total favourable probability is

$$P_i \times 10^3 = -55.9337 + 2.3901x_1 - 0.1179x_2 + 7.0079x_3 - 0.0250x_1^2 + 0.0010x_2^2 - 0.2800x_3^2 + 0.0019x_1x_2 - 0.0355x_2x_3 - 0.0893x_3x_1,$$

$$R^2 = 0.8166.$$

P_i gets its maximum value $P_{\text{max}} \times 10^3 = 3.657$ at $x_1 = 48.525$ min., and $x_3 = 61.41$ °C, and $x_2 = 2.473\%$.

While, the fitted result for the conversion rate y_1 is

$$y_1 = 497.1314 - 0.7916x_1 - 14.5965x_2 - 49.0071x_3 - 0.0733x_1^2 + 0.1175x_2^2 - 5.1915x_3^2 + 0.0850x_1x_2 - 0.7750x_2x_3 + 2.2750x_3x_1,$$

$$R^2 = 0.9199.$$

The conversion rate y_1 gets its optimal value y_{1opt} is 94.337 % at $x_1 = 48.525$ min., and $x_2 = 61.41$ °C, and $x_3 = 2.473\%$.

The fitted result for the desirable thermal activity y_2 is

$$y_2 = 73.4856 - 1.7884x_1 + 0.4035x_2 - 0.9000x_3 + 0.0334x_1^2 + 0.0030x_2^2 + 0.05716x_3^2 - 0.0155x_1x_2 + 0.0625x_2x_3 - 0.0075x_3x_1,$$

$$R^2 = 0.8918.$$

The desirable thermal activity y_2 gets it optimal value y_{2opt} is 57.545 $W \cdot s^{0.5}/(m^2 \cdot K)$ at $x_1 = 48.525$ min., and $x_2 = 61.41$ °C, and $x_3 = 2.473\%$.

Above optimal results meet the requirements of the original intention of the problem, which shows that all the optimized responses are more proper than those of test No. 12 of Tab. 3 comprehensively and the optimal configuration is not far from test No. 12.

4 CONCLUSION

From above discussion, the partial favourable probability of the desirable response variable of the test is evaluated, according to the type of "one side desirability problem" or "one range desirability problem" and the requirements of desirable response properly. The regression analysis for the total favourable probability and response variables provide the optimal configuration of the optimal test with desirable response variable, which corresponds to the maximum of the total favourable probability. The application examples of the intersection method for multi-objective optimization in optimal test designs of maximizing yield with constraints of viscosity and molecular weight and the maximizing conversion rate with constraints of desirable thermal activity present satisfied results, which indicate the validity of the assessment.

Conflict Statement

There is no conflict of interest.

5 REFERENCES

[1] Zheng, M., Wang, Y., & Teng, H. (2021). A New "Intersection" Method for Multi-Objective Optimization in Material Selection. Tehnički glasnik, 15(4), 562-568. https://doi.org/10.31803/tg-20210901142449
[2] Galgali, V. S., Ramachandran, M., & Vaidya, G. A. (2019). Multi-objective optimal sizing of distributed generation by application of Taguchi desirability function analysis. SN Applied Sciences, 1(742), 1-14. https://doi.org/10.1007/s42452-019-0738-3
[3] Derringer, G. & Suich, R. (1980). Simultaneous optimization of several response variables. J. Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
[4] Brémaud, P. (2020). Probability Theory and Stochastic Processes, Universitext Series, Springer, Cham. 7-11. https://doi.org/10.1007/978-3-030-40183-2
[5] Montgomery, D. C. (2017), Design and Analysis of Experiments, 9th Edition, John Wiley & Sons, Inc., 500-511.
[6] Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response Surface Methodology Process and Product Optimization Using Designed Experiments, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 276-277.

Authors' contacts:

Maosheng Zheng
(Corresponding author)
School of Chemical Engineering, Northwest University,
No. 229, Taibai North Road, Xi'an, 710069, Shaanxi Province, China
E-mail: mszhengok@aliyun.com

Haipeng Teng
School of Chemical Engineering, Northwest University,
No. 229, Taibai North Road, Xi'an, 710069, Shaanxi Province, China

Yi Wang
School of Chemical Engineering, Northwest University,
No. 229, Taibai North Road, Xi'an, 710069, Shaanxi Province, China