Primary spinal cord tumors of childhood: effects of clinical presentation, radiographic features, and pathology on survival

John R. Crawford · Alejandra Zaninovic · Mariarita Santi · Elisabeth J. Rushing · Cara H. Olsen · Robert F. Keating · Gilbert Vezina · Nadja Kadom · Roger J. Packer

Received: 15 December 2008 / Accepted: 24 May 2009 / Published online: 12 June 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract To determine the relationship between clinical presentation, radiographic features, pathology, and treatment on overall survival of newly diagnosed pediatric primary spinal cord tumors (PSCT). Retrospective analysis of all previously healthy children with newly diagnosed PSCT at a single institution from 1995 to present was performed. Twenty-five pediatric patients (15 boys, average 7.9 years) were diagnosed with PSCT. Presenting symptoms ranged from 0.25 to 60 months (average 7.8 months). Symptom duration was significantly shorter for high grade tumors (average 1.65 months) than low grade tumors (average 11.2 months) ($P=0.05$). MRI revealed tumor (8 cervical, 17 thoracic, 7 lumbar, 7 sacral) volumes of 98–94,080 mm3 (average 19,474 mm3). Homogeneous gadolinium enhancement on MRI correlated with lower grade pathology ($P=0.003$). There was no correlation between tumor grade and volume ($P=0.63$) or edema ($P=0.36$) by MRI analysis. Median survival was 53 months and was dependent on tumor grade ($P=0.05$) and gross total resection ($P=0.01$) but not on gender ($P=0.49$), age of presentation ($P=0.82$), duration of presenting symptoms ($P=0.33$), or adjuvant therapies ($P=0.17$). Stratified Kaplan–Meier analysis confirmed the association between degree of resection and survival after controlling for tumor grade ($P=0.01$). MRI homogeneous gadolinium enhancement patterns may be helpful in distinguishing low grade from high grade spinal cord malignancies. While tumor grade and gross total resection rather than duration of symptoms correlated with survival in our series, greater than one-third of patients had reported symptoms greater than 6 months duration prior to diagnosis.
Keywords Pediatric spinal cord tumor - Intraspinal tumor - Childhood spinal tumor

Abbreviations
CNS Central nervous system
PSCT Primary spinal cord tumor

Introduction

Primary spinal cord tumors (PSCT) are rare central nervous system (CNS) neoplasms in childhood that occur at a frequency of 0.19 per 100,000 person-years according to the Central Brain Tumor Registry of the United States [1]. The incidence varies by age, and increases 1.6 times from 0–4 years old (0.17 per 100,000 person-years) to ages 15–19 (0.28 per 100,000 person-years) [1]. Pediatric PSCT account for <6% of all CNS tumors [2], and have a roughly similar male to female predominance [3–5]. The initial approach to diagnosis and management of PSCT has been extensively reviewed [2, 6, 8–21] and is dependent on anatomical location (intramedullary, extramedullary intradural, and extradural) and pathology. Much of our understanding of the clinical presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22]. Several smaller pediatric series of PSCT have been published correlating presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22]. Several smaller pediatric series of PSCT have been published correlating presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22]. Several smaller pediatric series of PSCT have been published correlating presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22].

The initial approach to diagnosis and management of PSCT has been extensively reviewed [2, 6, 8–21] and is dependent on anatomical location (intramedullary, extramedullary intradural, and extradural) and pathology. Much of our understanding of the clinical presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22].

The initial approach to diagnosis and management of PSCT has been extensively reviewed [2, 6, 8–21] and is dependent on anatomical location (intramedullary, extramedullary intradural, and extradural) and pathology. Much of our understanding of the clinical presentation, diagnosis, treatment, and survival features of PSCT comes from small series of patients due to the low incidence. A few larger series of combined multi-institutional PSCT patients have been reported according to specific tumor type [2, 17, 22].

Methods

Clinical information

All spinal cord tissue specimens at Children’s National Medical Center in Washington, DC, from 1995 to present were available for retrospective analysis and approved by the Institutional Review Board. A total of 45 patients were identified with spinal cord lesions diagnosed between 1995 and present. Neurodevelopmental tumors (dermoids, epidermoids, and teratomas), lesions associated with tethered cord (lipomas, fibrous bands, hemartomatous tissue, and fibrolipomatosis), sacrococcygeal teratomas, epidermoid cysts, and tumors related to neurofibromatosis Type 1 or Type 2 were excluded from the study. Patients with non-PSCT (i.e. drop metastasis from brain neoplasms) were excluded from the analysis. No patients in our study had meningiomas or schwannomas that were not associated with Neurofibromatosis. Of the 45 total spinal cord samples, 25 patients were diagnosed with PSCT and were available for analysis. Information including age, sex, presenting symptoms, duration of symptoms, neurological examination, and treatment were collected and utilized in the overall clinical analysis.

Neuroradiographic investigation

Standard MRI sequences of pediatric spinal cord tumors using a 1.5-T magnet were reviewed by three non-blinded pediatric neuroradiologists (NK, AZ, and GV). Of the 25 patients with available clinical information, 20 patients had complete imaging studies available for analysis. The following neuroimaging features were used for quantitative analysis: tumor location, size, contrast enhancement, and presence of edema. Tumor volume was measured in depth, height, and width. Volume (mm3) was calculated as: depth \times height \times width \times 0.5 and grouped in subcategories of small (\leq1,000 mm3), medium (1,001–9,999 mm3), and large (\geq10,000 mm3) for statistical analysis.

Pathological investigation

All pathology diagnosis were made by a pediatric neuropathologist. Select cases used for the clinical and radiographic analysis were re-reviewed by two pediatric neuropathologists (MS, EJR). Hematoxylin and eosin stained sections were re-reviewed as were other routine histochemical and immunohistochemical preparations. Neoplasms were classified and graded based on World Health Organization criteria.

Statistical analysis

Data were analyzed using Fisher’s exact test to compare proportions, and t-test for independent samples to compare means. Kaplan–Meier Survival and ANOVA analysis were performed using GraphPad 5.0 Software (San Diego, CA). Stratified Kaplan–Meier analysis was performed using SPSS software (Chicago IL).
Pt	Age at diagnosis (years)	Sex	Symptom duration (months)	Chief complaint	Clinical exam abnormalities	Spinal level	Pathology diagnosis	Treatmenta	Progressive disease	Survival
1	13	M	5	Right extremity weakness	RUE/RLE weakness, atrophy, fasciculations, shoulder drop	C5–T2	Pilocytic astrocytoma	GT No Yes No	Yes	Yes
2	11	M	7	Lower back pain, difficulty ambulating	Minimal hip flexion weakness bilaterally	L4–S2	Anaplastic ependymoma	GT No Yes Yes	Yes	Yes
3	14	M	24	Low back pain, difficulty ambulating	RLE weakness, dermatomal sensory loss, decreased reflexes	T8–L2	Pilocytic astrocytoma	GT No No No	Yes	Yes
4	5	M	0.5	Left extremity weakness, neck pain	LUE proximal > distal weakness, normal sensation/reflexes	C1–C5	Anaplastic astrocytoma	ST Yes Yes Yes	No	No
5	15	F	1	Back pain, left lower extremity weakness	LLE weakness, hyperreflexia, Babinski	T8–T10	Glioblastoma multiforme	ST Yes Yes Yes	No	No
6	9	M	18	Back Pain	Minimal LLE weakness	T4–T10	Fibrillary astrocytoma	ST Yes Yes Yes	No	No
7	5	F	0.25	Toe walking	LLE weakness, absent rectal tone	L3–L5	Lymphoblastic lymphoma	B Yes No No	Yes	Yes
8	11	M	0.75	Difficulty ambulating	Bilateral LE weakness, hyperreflexia, clonus, Babinski	T3–T5	Langerhans cell histiocytosis	GT Yes No No	No	No
9	6	M	0.25	Leg pain, abdominal pain	Bilateral proximal LE weakness, areflexia, sensory level	T11	Primitive neuroepithelial tumor	B Yes Yes Yes	No	No
10	0.75	F	0.25	Bilateral lower extremity weakness	Bilateral LE plegia, areflexia, sensory level, decreased rectal tone	T12–S5	Primitive undifferentiated neoplasm	ST No Yes Yes	No	No
11	11	M	4	Back pain	Bilateral LE weakness, areflexia	L2–L3	Ependymoma	GT No No No	Yes	Yes
12	1.5	F	0.5	Refusal to walk, neck stiffness	Head tilt, nuchal rigidity, minimal LUE weakness	C3–T1	Fibrillary astrocytoma	ST Yes Yes Yes	Yes	Yes
13	1.5	F	4	Neck stiffness	Increased tone neck flexors	C1–C7	Pilocytic astrocytoma	ST Yes No Yes	Yes	Yes
14	1	F	13	Early handedness, delayed motor milestones	Mild R hemiparesis, hyperreflexia, increased tone	Midbrain-C5	Pilocytic astrocytoma	B Yes No Yes	No	No
15	5	F	2	Urinary incontinence, difficulty ambulating	Bilateral LE weakness, decreased rectal tone	S1–5	Ependymoma	B Yes Yes Yes	Yes	No
Pt	Age at diagnosis (years)	Sex	Symptom duration (months)	Chief complaint	Physical exam abnormalities	Spinal level	Pathology diagnosis	Treatment	Progressive disease	Survival
----	-------------------------	-----	--------------------------	----------------	---------------------------	-------------	-------------------	-----------	---------------------	---------
	16	17	1	Back pain, lower extremity weakness, constipation	Bilateral LE weakness, hyperreflexia, Babinski, decreased rectal tone	Thoracic cord holosyrinx	Pilocytic Astrocytoma	ST Yes Yes No No	No	No
	17	17	12	Back pain	Bilateral hip flexion weakness	Cauda equina	Myxopapillary ependymoma	GT No Yes No No	No	Yes
	18	2.5	7	Nuchal tremor	Head tilt, decreased tone bilateral UE, depressed reflexes, decreased strength	T1–T6	Diffuse fibrillary astrocytoma	GT No Yes No No	No	Yes
	19	1	0.25	Progressive LE weakness	LE plegia, areflexia, absent sensation, absent rectal tone	C1–S5	Embryonal tumor	ST Yes No Yes No	No	No
	20	17	60	Intermittent low back pain, R thigh radicular pain	Hip flexion weakness, patellar hyperreflexia	L2–cauda equina	Ependymoma with myxopapillary features	GT No No No Yes	No	Yes
	21	10	3	Lower back pain	LE weakness, hyperreflexia, Babinski, Sensory level up to T8, decreased rectal tone	T5	Primitive Neuroepithelial tumor	ST Yes Yes Yes No	No	No
	22	0.75	4	Early handedness, head tilt	Head tilt, RUE weakness, hyperreflexia	C2–T2	Glioblastoma multiforme	ST Yes Yes Yes Yes	Yes	Yes
	23	9	12	Difficulty with ambulation	LE dorsiflexion/plantar flexion weakness, R patellar hyporeflexia, bilateral Babinski	T9–L1	Fibrillary astrocytoma	ST No Yes No Yes	Yes	Yes
	24	8	0.25	Back pain, LE weakness	LE weakness, hypotonia, areflexia, absent rectal tone	L3–L5	Ependymoma	GT Yes Yes Yes Yes	Yes	Yes
	25	7	15	Neck pain	RUE hemiatrophy, minimal weakness, depressed reflexes	Medulla-T1	Pilocytic astrocytoma	ST No No No No	No	Yes

S Surgery, *C* chemotherapy, *XRT* radiation therapy, *GT* gross total resection, *ST* subtotal resection, *B* biopsy
Results

Clinical features of primary spinal cord tumors of childhood

We retrospectively reviewed the records of 25 consecutive pediatric patients seen at a single institution from 1995 to present newly diagnosed with PSCT. As summarized in Table 1, the average age at presentation was 7.9 months (range 1–5 years; 15 boys). Thoracic cord was the most commonly involved location ($N=17$) followed by cervical ($N=9$), lumbar ($N=7$), and sacral/cauda equina ($N=7$). The most common presenting features were back pain (15/25) and weakness (13/25). In children less than 3 years old, head tilt, delayed motor milestones, and early handedness were the predominant presenting symptoms. There was no difference between age of presentation and symptoms of pain and weakness ($P=0.17$), however, specific neck complaints including pain, weakness, rigidity, or tremor were significantly observed in younger patients (average 2.5 years; range 1.5–5 years) ($P=0.05$). The average reported duration of symptoms was 7.8 months, ranging from 1 week (acute lower extremity pain/weakness) to 5 years (chronic low back pain). There was no significant difference between duration of symptoms and symptom type ($P=0.06$), but early handedness and back pain were present the longest prior to diagnosis (Fig. 1). There was no correlation between symptom duration and age of presentation ($P=0.95$). When stratified according to specific age groups (0–3 years, 4–12 years, and 13–18 years) duration of symptoms were not different ($P=0.11$). Boys had a longer reported duration of symptoms prior to diagnosis than girls (11.3 vs. 2.9 months) ($P=0.03$). While there was no correlation between length of presenting symptoms and anatomical location ($P=0.30$), there was a difference between length of symptoms and tumor grade. Patients with high grade tumors had a shorter duration of symptoms (average 1.65 months, range 0.25–7 months) than patients with low grade tumors (average 11.1 months, range 0.25–60 months) ($P=0.05$). There was no difference between tumor grade and age ($P=0.71$) or gender ($P=0.10$). The most common neurological abnormality was change in muscle tone or strength, followed by abnormal reflexes (7 hyper, 9 hypo/absent). Four patients had evidence of a sensory level on examination along with hypo or absent reflexes, mimicking transverse myelitis or Guillain Barre’ syndrome.

Neuroradiographic analysis of primary spinal cord tumors of childhood

We performed a detailed neuroradiographic analysis including tumor volume, T1/T2 signal characteristics, gadolinium enhancement patterns, and the presence of edema in 20 patients with newly diagnosed PSCT who had sufficient image sequences for interpretation. Typical and atypical neuroradiographic features of spinal cord astrocytomas and ependymomas, the most common tumors in our series, are illustrated in Fig. 2. As summarized in Table 2, the most common spinal tumor location was intramedullary ($N=11$) followed by extramedullary intradural ($N=8$) and epidural ($N=1$). Eighty percent (4/5) of ependymomas analyzed in our series had an extramedullary component; half of which had multiple lesions. Quantitative volumetric analysis revealed ranges from 98 to 94,080 mm3 (average 19,474 mm3). There was no difference between low grade tumor volume (average 19,868 mm3) and high grade tumor volume (average 15,676 mm3) ($P=0.63$) at the time of diagnosis. When stratifying for evidence of edema (illustrated in Fig. 3), there was no correlation with tumor grade ($P=0.22$).
Likewise, neither T2 hyperintensity \((P = 1.0)\) nor T1 hypointensity \((P = 0.11)\) were significantly associated with grade. Homogeneous gadolinium enhancement was found significantly more in low grade tumors \((P = 0.003)\). Rim gadolinium enhancement, on the other hand, did not correlate with tumor grade \((P = 0.098)\).

Effects of symptomatology and treatment on survival

The median overall survival of our series of PSCT was 53 months (range 1.5–53 months; 10 deaths) with a median follow up 21 months (Fig. 4). Despite the earlier presentation of girls in our series, there was no affect of
gender on survival (Median survival 53 months boys; 41 months girls) \((P = 0.58)\) (Fig. 4a). There was no correlation between age of diagnosis and survival \((P = 0.35)\), nor was there a difference when stratified according to specific age group \((P = 0.79)\) (Fig. 4b). Duration of symptoms did not affect overall survival; given the wide range of presenting neurological symptoms. Those patients with symptoms greater than 6 months had an average survival of 48 months compared to 35 months for symptoms greater than 6 months \((P = 0.91)\) (Fig. 4c). Of the 10 deaths in our series, the average time of presentation was 3.9 months compared to 10.4 months for those who survived \((P = 0.08)\). As expected, patients with high grade tumors (median survival 25 months) had significantly poorer survival than those with low grade tumors (median survival 53 months) \((P = 0.05)\) as shown in Fig. 4d. In addition to having no correlation with tumor grade, tumor volume did not correlate with overall survival in our series \((P = 0.13)\).

Compared to patients with biopsy or subtotal resection, patients with gross total resection had 100% survival (Fig. 4e) \((P = 0.01)\). Thirty-six percent of patients in our series had a gross total resection (9/25). Of these patients, three had residual post operative weakness. Of the 25 patients with surgical intervention (gross/subtotal resection, biopsy) 10 had some degree of post operative weakness, 8 of which resolved within months of surgery. The most severe complication was the development of Brown-Sequard syndrome in a patient with a lumbar sacral diffuse fibrillary astrocytoma.

Since non-surgical adjuvant treatments were not standardized, a generalized stratification of chemotherapy, radiation, or combined therapies were used for survival analysis. Three of 25 patients had adjuvant chemotherapy

Table 2 Radiographic features of primary spinal cord tumors (PSCT) of childhood

Pathology	Spinal level	Tumor location	Tumor volume (mm\(^3\))	MRI signal\(^a\)	Gadolinium enhancement	Edema	
1 Pilocytic astrocytoma	C5–T1	Intramedullary	21,660	↓	←	Irregular	No
2 Pilocytic astrocytoma	C1–C3	Intramedullary	12,000	←	↓↑	Homogenous	No
3 Anaplastic ependymoma	S2	Extramedullary Intradural	2,211	←	←	Homogenous	Yes
4 Anaplastic astrocytoma	C2–C5	Intramedullary	11,832	↓	↑↑	Rim enhancing	Yes
5 Langerhans cell histiocytes	T4	Epidural	11,160	←	←	Not performed	No
6 Primitive neuroepithelial tumor	T8–T12	Intramedullary	6,600	↓↑	↓↑	Irregular	Yes
7 Primitive neuroectodermal tumor	S3	Extramedullary Intradural	1,056	←	↑↑	Not performed	No
8 Primitive undifferentiated tumor	T10–S1	Extramedullary Intradural	13,520	↓	↓↑	Irregular	Yes
9 Ependymoma	L2–L3	Extramedullary Intradural	11,856	↓	↑	Homogenous	No
10 Fibrillary astrocytoma	C3–T1	Intramedullary	21,504	↑	↑	Irregular	No
11 Pilocytic astrocytoma	C1–C7	Intramedullary	21,560	↑	↑	Irregular	Yes
12 Pilocytic astrocytoma	C1–C5	Intramedullary	94,080	↑	↑	Irregular	No
13 Myxopapillary ependymoma	L1–S1	Extramedullary Intradural	21,630	↓	↑	Irregular	No
14 Pilocytic astrocytoma	T7–T8	Intramedullary	98	←	↓↑	Homogenous	No
15 Fibrillary astrocytoma	T1–T6	Intramedullary	21,097	↓	↑	Irregular	Yes
16 Embryonal tumor	C5–S2	Extramedullary Intradural	70,200	←	←	Irregular	No
17 Ependymoma with myxopapillary features	L2	Extramedullary Intradural	2,736	↓	↑	Irregular	No
18 Glioblastoma multiforme	C2–T2	Intramedullary	4,212	↓	↑	Rim enhancing	Yes
19 Ependymoma	L3–L5	Intramedullary	4,920	↓	↑	Homogenous	No
20 Pilocytic astrocytoma	C1–T1	Intramedullary	35,552	↓	↑	Irregular	Yes

\(C\) Cervical, \(T\) Thoracic, \(L\) Lumbar, \(S\) Sacral

\(^a\) ↑, Hyperintense; ↓, hypointense; ←, isointense
alone without evidence of relapse. Six of 25 had adjuvant radiation therapy alone (two fibrillary astrocytoma, one anaplastic astrocytoma, one pilocytic astrocytoma, one PNET, one myxopapillary ependymoma); of these two had progressive disease. Combined radiation and chemotherapy were used in 40% of patients (10/25), 90% of whom had either metastatic disease at diagnosis or eventually had progressive disease. As shown in Fig. 4f, adjuvant chemotherapy and radiation either alone or in combination had no significant effect on overall survival ($P = 0.31$). While the specific cause of death was not known for each of the 10 patients, 4 had complications secondary to pneumonia and sepsis.

Discussion

The average duration of presenting symptoms of 7.8 months in our series of PSCT is similar to previous reports ranging from 2 to 9 months [18, 21, 22]. Bouffet et al. reported 11% (8/73) of patients with primary spinal astrocytomas had greater than 3 years of symptoms prior to presentation. While pain and weakness were the predominant presenting features in many patients, more subtle findings such as early handedness can delay diagnosis particularly in younger patients. A common set of presenting complaints among younger patients in our series involved the neck and included pain and torticollis, as has been reported in two younger patients with PSCT [28]. In older patients, chronic back pain has been associated with delayed diagnosis of PSCT [22, 23], similar to our findings. The variability of reflexes (hypo/hyper/absent) on neurological examination was not particularly helpful in establishing tumor location or grade compared to more sensitive findings of tone and strength. Ultimately, duration of presenting symptoms did not correlate with outcome as has been reported [23]. However, shorter duration of symptoms is associated with higher grade tumors in our series and has been associated with poor survival in the series reported by Bouffet et al. [22].

One of the strengths of the current study is the detailed radiographic analysis performed on a subset of patients where neuroimaging studies were complete. It seems counterintuitive that there was no correlation between tumor volume and tumor type, grade, or survival. This suggests that tumor location itself as opposed to size may be an important factor in achieving gross total resection and hence improved survival. One set of factors that may associated with spinal cord tumor grade are specific patterns of gadolinium enhancement. Our observations of homogeneous gadolinium enhancement associated with low grade tumors has been reported [29]. However, in the context of predictors of survival, this may be an important finding. Due to our small number of patients studied, it is difficult to make generalizations. A multi-institutional series of collaborative neuroradiographic data on PSCT is ultimately necessary to validate our results.

One of the major factors associated with survival in our series of PSCT was degree of surgical resection. While 35% of PSCT are intramedullary (65% in our series), making total resection at times technically challenging, it is a feasible option [7, 14, 30–33]. However, as reported in our series, post operative complications, although temporary, can be associated with significant morbidity. Radical excision of intramedullary tumors has been reportedly associated with both an increase in survival and improved quality of life [6, 31–34], but are dependent on tumor type and grade. Long term control or cure can be achieved for some intramedullary ependymomas by total/subtotal resection alone [9, 11, 17, 21]. This is in contrast to infiltrating astrocytomas where the role of subtotal resection is less clear [4, 9, 17, 21, 31] but may be better than biopsy alone [35]. Only through collaborative studies involving

![Fig. 3](image-url) Detection of spinal cord tumor-related edema on MRI. Examples of the presence or absence of edema in two cases of pilocytic astrocytoma are shown. a Edema present Note the small central rim-enhancing lesions surrounded by bright T2 (top) and dark T1 (bottom) signal, compatible with edema. b Edema absent Note there is no increased T2 (top) or dark T1 (bottom) signal beyond the well-defined border of this lesion.
large number of patients will we be able to meaningfully assess the extent of surgical resection on survival.

One of the major criticisms of the current study in addition to the small sample size and retrospective study design, is the lack of uniformity of adjuvant therapies. While neither chemotherapy nor radiation alone or in combination affected overall survival in our series, there remains great debate regarding the role of adjuvant therapies in PSCT. There are some who avoid adjuvant therapy in cases of total resection [36, 37]. In the case of radiation therapy, favorable outcome results have been reported in patients with low grade spinal astrocytomas and ependymomas [38–44]. However, in patients with low grade astrocytomas with incomplete resection, the role of radiation therapy is unclear [22]. With regards to adjuvant chemotherapy, there is no proven efficacious regimen for any given pathological subtype or location.

A major hurdle in our understanding of PSCT, is a lack of fundamental knowledge of the biology of the tumor. It is naïve to assume the biological pathways that govern oncogenesis in the brain can be applied to the spinal cord. Furthermore, small amounts of tissue obtained during biopsy or resection can limit the number of non standard genetic/biochemical tests necessary to fully understand the biology of the tumors. While fortunately the incidence if PSCT is quite low, the mortality associated with PSCT calls for a more collaborative approach to our understanding and treatment of pediatric spinal cord tumors.
References

1. CBTRUS, Central Brain Tumor Registry of the United States (2004–2005) Primary brain tumors in the United States, Statistical Report, 1997–2001, years data collected. Central Brain Tumor Registry of the United States, Chicago

2. DeSouza AL, Kalsbeck JE, Mealey J Jr et al (1979) Intraspinal tumors in children: a review of 81 cases. J Neurosurg 51:437–445. doi:10.3171/jns.1979.51.4.0437

3. Brotchi J, Noterman J, Baleriaux D (1992) Surgery of intramedullary spinal cord tumours. Acta Neurochir 116:176–178. doi:10.1007/BF01540873

4. Goh KY, Velasquez L, Epstein FJ (1997) Pediatric intramedullary spinal cord tumors: is surgery alone enough? Pediatr Neurosurg 27:34–39. doi:10.1159/0000121222

5. Zileti M, Coskun E, Ordamar N et al (1996) Surgery of intramedullary spinal cord tumors. Eur Spine J 5:243–250. doi:10.1007/BF00301327

6. Constantini S, Epstein FJ (1996) Intraspinal tumors in infants and children. In: Youmans J (ed) Neurological Surgery, vol 4, 4th edn. WB Saunders, Philadelphia, pp 3123–3133

7. Constantini S, Houten J, Miller DC, Freed D, Ozek MM, Rorke LB, Allen JC, Epstein FJ (1996) Intramedullary spinal cord tumors in children under the age of 3 years. J Neurosurg 85:1036–1043

8. Steinbok P, Cochrane DD, Poskitt K (1992) Intramedullary spinal cord tumors in children. Neurosurg Clin N Am 3:931–945

9. Auguste KI, Gupta N (2006) Pediatric intramedullary spinal cord tumors. Neurosurg Clin N Am 17:51–61. doi:10.1016/j.nec.2005.10.004

10. Baysafer A, Kayam KM, IzcY et al (2004) The clinical and surgical aspects of spinal tumors in children. Pediatr Neurol 31:261–266. doi:10.1016/j.peditrneurol.2004.03.019

11. Binning M, Klimo P Jr, Gluf W, Goumerova L (2007) Spinal tumors in children. Neurosurg Clin N Am 18:631–658. doi:10.1016/j.nec.2007.07.001

12. Epstein FJ (1995) Spinal cord tumors in children. J Neurosurg 82:516–517

13. Giuffre R, Di Lorenzo N, Fortuna A (1981) Primary spinal tumors in infancy and childhood. Zentralbl Neurochir 42:87–95

14. Jallo GI, Freed D, Epstein F (2003) Intramedullary spinal cord tumors in children. Childs Nerv Syst 19:641–649. doi:10.1007/s00381-003-0820-3

15. Motil H, Koutecky J (1997) Treatment of spinal cord tumors in children. Med Pediatr Oncol 29:293–295. doi:10.1002/(SICI)1090-1013(199710)29:4<293::AID-MPO10>3.0.CO;2-C

16. Murovic J, Sundaresan N (1992) Pediatric intramedullary spinal cord tumors. Critical review of the literature. Childs Nerv Syst 15:17–28. doi:10.1007/s003810050321

17. Schick U, Marquardt G (2001) Pediatric spinal tumours. Pediatr Neurosurg 35:120–127. doi:10.1159/000050404

18. Scibba DM, Hsieh P, McLoughlin GS, Jallo GI (2008) Pediatric tumors involving the spinal column. Neurosurg Clin N Am 19:81–92. doi:10.1016/j.nec.2007.09.008

19. Wilson PE, Oleszek JL, Clayton GH (2007) Pediatric spinal cord tumors and masses. J Spinal Cord Med 30(Suppl 1):S15–S20

20. Houten JK, Weiner HL (2000) Pediatric intramedullary spinal cord tumors: special considerations. J Neurooncol 47:225–230. doi:10.1023/A:1006418506213

21. Bouffet E, Pierre-Kahn A, Marchal JC et al (1998) Prognostic factors in pediatric spinal cord astrocytoma. Cancer 83:2391–2399. doi:10.1002/(SICI)1097-0142(19981201)83:11<2391::AID-CNCR20>3.0.CO;2-0

22. Hardison HH, Packer RJ, Rorke LB et al (1987) Outcome of children with primary intramedullary spinal cord tumors. Childs Nerv Syst 3:89–92. doi:10.1007/BF00277131

23. Lonjon M, Goh KY, Epstein FJ (1998) Intramedullary spinal cord ependymomas in children: treatment, results and follow-up. Pediatr Neurosurg 29:178–183. doi:10.1159/000028718

24. Rossitch E Jr, Zeidman SM, Burger PC et al (1990) Clinical and pathological analysis of spinal cord astrocytomas in children. Neurosurgery 27:193–196. doi:10.1097/00006123-199008000-00003

25. Reimer R, Onofrio BM (1985) Astrocytomas of the spinal cord in children and adolescents. J Neurosurg 63:669–675

26. O’Sullivan C, Jenkin RD, Doherty MA et al (1994) Spinal cord tumors in children: long-term results of combined surgical and radiation treatment. J Neurosurg 81:507–512

27. Kumanadas S, Per H, Gumus H et al (2006) Torticollis secondary to posterior fossa and cervical spinal cord tumors: report of five cases and literature review. Neurosurg Rev 29:333–338. doi:10.1007/s10143-006-0034-8 discussion 338

28. Rossi A, Gandolfo C, Morana G, Tortori-Donati P (2007) Tumors of the spine in children. Neuroimaging Clin N Am 17:17–35. doi:10.1016/j.nic.2006.11.004

29. McGirt MJ, Chaichana KL, Atiba A et al (2008) Neurological outcome after resection of intramedullary spinal cord tumors in children. Childs Nerv Syst 24:93–97. doi:10.1007/s00381-007-0446-y

30. Constantini S, Miller DC, Allen JC et al (2000) Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg 93:183–193

31. Jallo GI, Daniel S, Velasquez L, Epstein F (2001) Intramedullary low-grade astrocytomas: long-term outcome following radical surgery. J Neurooncol 53:61–66. doi:10.1023/A:1011886516506

32. Shrivastava RK, Epstein FJ, Perin NI et al (2005) Intramedullary spinal cord tumors in patients older than 50 years of age: management and outcome analysis. J Neurosurg Spine 2:249–255. doi:10.3171/spi.2005.2.3.0249

33. Jallo GI, Freed D, Epstein FJ (2004) Spinal cord gangliogliomas: a review of 56 patients. J Neurooncol 68:71–77. doi:10.1023/B:NEON.0000024747.66993.26

34. McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63:55–60. doi:10.1227/01.NEU.0000335070.37943.09

35. Brotchi J, Dewitte O, Levivier M et al (1991) A survey of 65 tumors within the spinal cord: surgical results and the importance of preoperative magnetic resonance imaging. Neurosurgery 29:651–656. doi:10.1093/neuros/29.6.651

36. Epstein F, Epstein N (1982) Surgical treatment of spinal cord astrocytomas of childhood. A series of 19 patients. J Neurosurg 57:685–689

Acknowledgements This work was supported by the National Institutes of Health Neurological Sciences Academic Development Award (NSADA) K12NS052159-01A1.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

 Springer
38. Sandler HM, Papadopoulos SM, Thornton AF Jr, Ross DA (1992) Spinal cord astrocytomas: results of therapy. Neurosurgery 30:490–493. doi:10.1097/00006123-199204000-00003

39. Linstadt DE, Wara WM, Leibel SA et al (1989) Postoperative radiotherapy of primary spinal cord tumors. Int J Radiat Oncol Biol Phys 16:1397–1403

40. Merchant TE, Kiehna EN, Thompson SJ et al (2000) Pediatric low-grade and ependymal spinal cord tumors. Pediatr Neurosurg 32:30–36. doi:10.1159/000028894

41. Chun HC, Schmidt-Ullrich RK, Wolfson A et al (1990) External beam radiotherapy for primary spinal cord tumors. J Neurooncol 9:211–217. doi:10.1007/BF02341151

42. Haddart R, Traish D, Ashley S et al (1993) Management of spinal astrocytoma with conservative surgery and radiotherapy. Br J Neurosurg 7:473–481. doi:10.3109/02688699308995069

43. Hulshof MC, Menten J, Dito JJ et al (1993) Treatment results in primary intraspinal gliomas. Radiother Oncol 29:294–300. doi:10.1016/0167-8140(93)90147-Z

44. Shirato H, Kamada T, Hida K et al (1995) The role of radiotherapy in the management of spinal cord glioma. Int J Radiat Oncol Biol Phys 33:323–328. doi:10.1016/0360-3016(95)00179-3