Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COMMENTARY

MOLECULAR PROFILE OF REACTIVE ASTROCYTES—IMPLICATIONS FOR THEIR ROLE IN NEUROLOGIC DISEASE

M. EDDELESTON and L. MUCKE*
Division of Virology, Department of Neuropsychology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037, U.S.A.

Abstract—The central nervous system responds to diverse neurologic injuries with a vigorous activation of astrocytes. While this phenomenon is found in many different species, its function is obscure. Understanding the molecular profile characteristic of reactive astrocytes should help define their function. The purpose of this review is to provide a summary of molecules whose levels of expression differentiate activated from resting astrocytes and to use the molecular profile of reactive astrocytes as the basis for speculations on their role in neurologic disease. At present, reactive astroglosis is defined primarily as an increase in the number and size of cells expressing glial fibrillary acidic protein. In vivo, this increase in glial fibrillary acidic protein-positive cells reflects predominantly phenotypic changes of resident astroglia rather than migration or proliferation of such cells. Upon activation, astrocytes upmodulate the expression of a large number of molecules. From this molecular profile it becomes apparent that reactive astrocytes may benefit the injured nervous system by participating in diverse biological processes. For example, upregulation of proteases and protease inhibitors could help remodel the extracellular matrix, regulate the concentration of different proteins in the neuropil and clear up debris from degenerating cells. Cytokines are key mediators of immunity and inflammation and could play a critical role in the regulation of the blood–central nervous system interface. Neurotrophic factors, transporter molecules and enzymes involved in the metabolism of excitotoxic amino acids or in the antioxidant pathway may help protect neurons and other brain cells by controlling neurotoxin levels and contributing to homeostasis within the central nervous system. Therefore, an impairment of astroglial performance has the potential to exacerbate neuronal dysfunction. Based on the synopsis of studies presented, a number of issues become apparent that deserve a more extensive analysis. Among them are the relative contribution of microglia and astrocytes to early wound repair, the characterization of astroglial subpopulations, the specificity of the astroglial response in different diseases as well as the analysis of reactive astrocytes with techniques that can resolve fast physiologic processes. Differences between reactive astrocytes in vivo and primary astrocytes in culture are discussed and underline the need for the development and exploitation of models that will allow the analysis of reactive astrocytes in the intact organism.

CONTENTS

1. INTRODUCTION 15
2. REACTIVE ASTROCYTOSIS 16
3. STUDIES ON ACTIVATED ASTROCYTES 17
4. TABLE 1. MOLECULES THAT ARE UPREGULATED DURING ASTROCYTE ACTIVATION: EVIDENCE FROM IN VIVO AND IN VITRO 18
5. WHAT DIFFERENTIATES ACTIVATED FROM RESTING ASTROCYTES? TOWARDS A FUNCTIONAL CHARACTERIZATION OF REACTIVE ASTROCYTES 23
5.1 Mechanical functions and tissue repair 23
5.2 Immune responses 24
5.3 Blood–central nervous system interface 24
5.4 Neurotrophic support 25
5.5 Control of neurotoxins 25
6. CONCLUSIONS AND FUTURE STUDIES 26
ACKNOWLEDGEMENTS 27
REFERENCES 27

1. INTRODUCTION

Astrocytes make up a substantial proportion of the CNS and participate in a variety of important physiologic and pathologic processes.75 One of the most remarkable characteristics of astrocytes is their vigorous response to diverse neurologic insults, a feature that is well conserved across a variety of different species. The astroglial response (see section 2) occurs rapidly and can be detected within one hour of a focal mechanical trauma.201 Prominent reactive

*To whom correspondence should be addressed. Abbreviations: see over.
Astrocytosis is seen in AIDS dementia, a variety of other viral infections, prion-associated spongiform encephalopathies, inflammatory demyelinating disease, acute traumatic brain injury, and such neurodegenerative diseases as Alzheimer's disease. The prominence of astroglial reactions in various diseases, the rapidity of astroglial response and the evolutionary conservation of astrocytosis indicate that reactive astrocytes fulfill important functions for the CNS. Yet, the exact role reactive astrocytes play in the injured CNS has so far remained elusive. Assuming that the biological functions of reactive astrocytes are reflected in the proteins they express, this review aims to further our understanding of these cells by providing a synopsis of recent studies examining the molecular profile of activated astrocytes.

2. Reactive Astrocytosis

The CNS responds to neural injuries with an increase in the number and size of cells expressing glial fibrillary acidic protein (GFAP), a phenomenon generally referred to as reactive astrocytosis. GFAP is an intermediate filament cytoskeletal protein expressed primarily by astroglia and represents the prototypic marker of astroglial activation. However, despite its prominent upmodulation in response to diverse injuries, the precise function of the GFAP molecule remains unclear. Suppression of GFAP expression in glial cell lines with antisense mRNAs suggests that GFAP may be necessary for the formation of stable glial processes in response to neuronal signals. It will be interesting to assess the functional role of GFAP in vivo by ablating GFAP in experimental animals with the help of homologous recombination, expression of anti-sense mRNAs or ribozymes.

It should be noted that it has not yet been established whether an increased level of GFAP expression and/or turnover is, in fact, a reliable indicator of astroglial activity in general. For example, in normal rodent brains, astrocytes of the glial limitans and the hippocampal formation show higher levels of GFAP mRNA and GFAP immunostaining than astrocytes of other brain regions. This raises the question whether these heterogenous levels of GFAP expression reflect particular functional demands placed upon specific astroglial subpopulations and whether they correlate with a general increase in the functional activity/metabolism of the strongly GFAP-positive cells. It should also be noted that using increased GFAP expression as the basis for the definition of astroglial activation will exclude any subpopulation of astrocytes that responds to neural injury without astroglial activation.

The origin of the increased number of GFAP-expressing cells that appear in response to neurologic insults has been the subject of intense discussion over the last decade. Specifically, the debate has focused on the question of whether reactive astrocytes represent primarily the proliferation/migration of GFAP-positive cells or the phenotypic change of local astrocytes. Studies using double-labeling with GFAP antibodies and bromodeoxyuridine or tritiated thymidine to identify dividing astrocytes have shown that, at least in acute lesions, mitotic division (proliferation) of GFAP-expressing cells does not account...
for the majority of GFAP-positive cells that appear in response to the injury (for review, see Ref. 211). Furthermore, we have been unable to find convincing in vitro evidence that mature GFAP-positive astrocytes of adult brains are able to migrate effectively. Hence, it is likely that the appearance of GFAP-positive astrocytes in regions of acute neural injury represents primarily a change in the phenotype of resident astroglia. It can, however, not be excluded that astroglial proliferation contributes more significantly to chronic astrocytosis.

In many instances, the phenotypic changes seen in reactive astrocytes may reflect a substantial increase in astroglial metabolism and protein synthesis, consistent with a "healthy" cellular hypertrophy in response to increased physiologic demands. In other situations, however, astroglial swelling may result from pathologic processes that afflict the astrocyte itself (for review, see Ref. 210).

3. STUDIES ON ACTIVATED ASTROCYTES

The current literature on reactive astrocytosis is extensive. We have attempted a comprehensive review of this subject using rigid selection criteria to produce a practical synthesis that will be easily amenable to consultation. To construct a list of molecules expressed by activated astrocytes we have included information drawn from two types of studies. The first are studies carried out in vivo where the expression of a particular molecule or its mRNA was co-localized to reactive astrocytes by immunocytochemical staining or in situ hybridization. For inclusion into the table clear evidence for astroglial expression was required, for example co-labelling with GFAP or demonstration of electron-microscopic features typical of astrocytes. This should ensure that the molecules in question were indeed found in astrocytes rather than in other injury-responsive CNS cells, in particular microglia. The combination of immunostaining with in situ hybridization can also help differentiate between accumulation in astrocytes of molecules actually synthesized by these cells and those produced elsewhere and subsequently taken up by the astrocyte. Many interesting leads on the induction of potential astroglial molecules, particularly enzymes, have come from studies on bulk brain extracts. However, because these studies usually do not provide direct proof that astrocytes form the main cellular source of the identified molecules in the pathologically altered CNS, they have not been included in this review.

The second class of information comes from in vitro studies. Since the isolation of enriched astrocyte cultures by McCarthy and de Vellis and subsequent refinements, a great deal of experimental work on astrocytes has been carried out in vitro. Experiments indicating the upregulation of a molecule by a certain factor in vitro may offer clues as to what happens during reactive astrogensis in the CNS, especially if this factor is known to occur in pathological conditions. However, while tissue culture studies often provide important leads they can also sometimes be misleading. Therefore, because so much of our current knowledge on astrocytes is based on in vitro studies we would like to address a few caveats that should be kept in mind when considering the molecular profile of cultured astrocytes.

A major consideration is the imperfect purity of primary astrocyte cultures because current techniques for purifying astrocytes usually produce cultures of 90–99% purity. Contamination with microglia is particularly problematic because these cells also respond to neural injuries and secrete a number of biologically active molecules such as cytokines. At present, the most definitive assay for determining the cell source of most molecules is the combination of immunostaining with in situ hybridisation but this has been carried out only rarely (for an example, see Ref. 287). For inclusion into Table 1, we have favored studies that have addressed the issue of culture purity.

The adult CNS is characterized by the close interaction of many different cell types both through actual cell contact and secretion of factors. Thus a further problem is that cells in nearly pure primary culture have been released from these interactions. This point is illustrated by the fact that astrocytes in tissue culture have different morphologies depending on whether they are cultured alone or with other neural cells. Cultured alone, they bear few processes, however when co-cultured with neurons they develop multiple processes. The physiologic behavior of astrocytes is also dependent on the presence of other neural cells. Cocultivation of astrocytes with neurons induces calcium channel activity in astrocytes which is undetectable in pure astrocyte cultures or in astrocytes co-cultured with oligodendrocytes. Many protocols for the establishment of primary astrocyte cultures include an early exposure of the cells to relatively high concentrations of serum. This represents a major difference from the situation in vivo where astrocytes are shielded from blood-derived factors by the blood–brain barrier. In essence there are numerous variables in culture conditions that could dramatically influence the molecular profile of astrocytes in vitro and alter the astroglial responsiveness to further stimulation.

Cloned lines of immortalized glial cell lines such as the rat glioma cell line C6 can circumvent the problem of culture impurity and have yielded an enormous amount of interesting data. However, they differ from astrocytes in vivo in many respects, even more so than primary astrocytes. As an example, astrocytes of the adult CNS have only a limited proliferative potential and this is reflected to some extent in primary culture. In contrast, immortalized cell lines often proliferate vigorously having been released from many controlling influences, including in some cases contact inhibition. Therefore, findings obtained with immortalized glial cell lines have not been included in Table 1.
Lastly, cell cultures and cell culture-derived reagents (e.g., stocks of viruses) can easily become contaminated with mycoplasma. While very few in vitro studies address this possibility it is important not to underestimate mycoplasma as a source of complex artifacts. Recent studies24 clearly demonstrate that mycoplasma contamination has marked effects on cultured CNS cells, including astrocytes, and is often difficult to detect unless highly sensitive assays are used.

4. Table 1. MOLECULES THAT ARE UPREGULATED DURING ASTROCYTE ACTIVATION: EVIDENCE FROM IN VIVO AND IN VITRO

Category	Upregulated molecule	Induced by	In vitro	
			In vivo	
Adhesion	CD44	DD	92	
	CS-PG	Trauma	193	
	E-NCAM	Excitotox.inj.	161	
	E-Selectin	TNF\textsubscript{\gamma}	132a	
	GHAP	Wallerian degeneration	181	
	HNK-1	CPM	95	
	HSPG	FCS	8	
	ICAM-1	IFN\textsubscript{\gamma}	85, 240, 241	274
		DD	45a	
		PMA sup	240	
		TNF\textsubscript{\alpha}	241	
		IL-1	85	
		IL-1\alpha	240	
		TNF\textsubscript{\alpha}	85, 132a, 240	85
		TNF\beta (LT)	85	
		LPS	240	
Laminin	TGF\textsubscript{\alpha}	132a	95	
		Trauma	23, 91, 101,	169, 285
		excitotox. inj.	169	
		FCS	8	
Tenascin		Trauma	159, 193	
(cytotactin)				
Thrombospondin	PDGF	12		
		TNF\textsubscript{\alpha}	132a	
		IL-1\beta	3	
		TNF\textsubscript{\alpha}	3	
		IL-1\beta	3	
		TNF\textsubscript{\alpha}	3	
VLA-6		IFN\textsubscript{\gamma}	3	
VLA-1				
VLA-2				
Antigen	MHC class I	IFN\alpha/\beta	264	
presentation		IFN\textsubscript{\gamma}	283	
		Poly 1:C	174	
		TNF	157, 185	
		LPS	185	
		conA sup	241	
		measles particles	185	
		Coronavirus particles	262	
		Flavivirus infection	174	
		DD, PIBD	268	
	MHC class II	IFN\textsubscript{\gamma}	21, 77, 85, 125,	274, 283
			214, 187, 241,	275, 283

Around glioma conA sup 77, 241
4. Table 1—continued

Category	Upregulated molecule	Induced by	\(\text{In vitro}\)	\(\text{In vivo}\)
Calcium-binding proteins	S100β	AD/ADSD	100	
Cytokines/growth factors	aFGF (FGF-1)	AD	266	
	bFGF (FGF-2)	Trauma	99, 176, 263	
		AD	97	
		Ischaemia	144	
		IL-1β	6	
		IL-6	6	
		FGF	6	
		βA4 (aa1–42)	7	
	BNDF	TPA	290	
		Ionomycin	290	
		Forskolin	290	
		NE	290	
		Epinephrine	290	
		Dopamine	290	
		NE + quisqualate	290	
		NE + glutamate	290	
	Endothelin 1	LPS	73	
		NE	73	
		PMA	73	
		TNFz	73	
		Thrombin	73a	
		Sarafotoxin S6b	73	
	G-CSF	LPS	180	
		TNFz	4, 180	
		IL-1β	4	
		IL-1β + IFNγ	4	
		TNFz + IFNγ	4	
	GM-CSF	LPS	180	
		TNFz	180	
		IL-1β	4	
	IFNα	NDV infection	168	
	DD	268 [269]		
	IFNα/β	PCA	264	
		Flavivirus infection	174	
		Poly 1:C	174	
	IFNβ	NDV infection	168	
	DD	268		
	IFNγ	Trauma	246	
		DD	268, 269	
	ISPE, PIBD	268		
	IGF-1	Cuprizone	149	
		Ischaemia	94, 163	
	IL-1	HIV-1	195	
	ADC	58		
	AD/ADSD	100		
	IL-1α	LPS	168, 180	
		[89, 114]		
	IL-1β	LPS	168, 180	
		[89, 114]		
	IL-6	LPS	168	
		NDV infection	168	
		LCMV infection	84	

continued overleaf
4. Table 1—continued

Category	Upregulated molecule	Induced by	\textit{In vitro}	\textit{In vivo}
IL-8	IL-1β	4	4	
	TNFα	4		
M-CSF (CSF-1)	IL-1β	4, 161a	4, 161a	
	TNFα			
NGF	IL-6	84 [87, 287]		
	aFGF (FGF-1)	287, 288		
	aFGF + IL-1β	287		
	aFGF + TNFα	287		
	aFGF + dbcAMP	288		
	aFGF + TGFβ1	288		
	bFGF (FGF-2)	255, 287, 288		
	EGF	255		
	IL-1β	87, 255, 287		
	TNFα	387 [87]		
	IL-1β + TNFα	87		
	TGFβ2	255		
	TGFβ1	171		
	FCS	255		
	Excitotoxin inj	14		
TGFβ2	Trauma	136		
TGFβ1	IL-1z	59		
	IL-1z	58		
	ADC	58	277	
	EGF	170		
	FGF	170		
	TGFβ1	170	171	
	TGFβ1 + FGF	170		
TGFβ3	TGFβ1 + TGFβ2	170		
TNFα	DD	128		
	SSPE	128		
	NVD infection	168		
	HIV-1	195		
	ADC	271	248	
	DD	248		
	LPS	53, 168, 243		
	LPS + IFNγ	53		
	IFNγ + IL-1β	53		
TNFβ (LT)	NVD infection	168		
	Aphasia	168		
Cytoskeleton				
IFAP		dbcAMP	1	
		Trauma	1	
MAP 2		Trauma	90	
Vimentin		dbcAMP	76, 96	
		Trauma		
		dbcAMP		
		Myel. mut.	42, 43	
		CPM	50	
		Ischaemia	95	
		Wallerian degen.	223, 247	
		Irradiation	244	
		Ethynitrosourea	244	
		Ataxic CJD	153	
		Trauma	38, 224, 285	
Early response				
AP-1		Endothelin 1	73	
		Sarafotoxin S6b	73	
c-fos (TIS 28)		TPA	10, 11, 126	
		TGFβ1	171	
		EGF, FGF	10, 11, 126	
		Ganglioside GM,	10	
		dbcAMP, forskolin	10, 126	
		Carbachol	9	
		NE	9	
		Isoproterenol	9	
		Phenylephrine	9	
		heat shock	71, 242	
hsp68/70/72		Heat shock	71, 242	
NGF1A		TPA	10, 11	
(TIS8, egr-1,				
	krox-24, zif268)			

\[continued\]
4. Table 1—continued

Category	Upregulated molecule	Induced by	In vitro	In vivo
NGF1B				
(nur77, TIS1)				
Eicosanoids				
Leukotriene B4	A23187 (Ca²⁺1)	108		
Leukotriene C4	A23187 (Ca²⁺1)	107, 109		
	TPA + A23187	107		
	IL-1β	109		
Prostaglandin E	LPS	82, 106, 109		
	A23187 (Ca²⁺1)	108, 109		
	TPA	106, 109		
	sub P	105		
	Physalaemin	105		
	IL-1β	109		
Prostaglandin E2	LPS	89		
Thromboxane A2	sub P	105		
Thromboxane B2	Arachidonic acid	203		
	A23187 (Ca²⁺1)	203		
	IL-1β	109		
	A23187 (Ca²⁺1)	109		
	TPA	109		
Enzymes	CAD multidomain complex	Myel. mut.	40	
Ca²⁺-ATPase	Cold lesion		139	
CA II	DD		42	
	Myel. mut.		41, 44	
	dbcAMP			
Glutamine synthetase	aFGF (FGF-1)	221		
	bFGF (FGF-2)	221		
	dbcAMP	142		

continued overleaf
Table 1—continued

Category	Upregulated molecule	Induced by	In vitro	In vivo
Proteases				
	Glutathione-S.-transferase Y$_y$	dbcGMP	142	43
	HO-1	Heat shock	71, 72	
	MAO	AD		204
	NSE	Infarct		276
	PKC a	Infarct		276
	PKC a/b	Around glioma		233
	Calpain I	Excitotox. inj.		251
	Carboxypeptidase E	TPA	145	
	Cathepsin B	AD		205
	Cathepsin D	Scrapie		70
	t-PA	Leupeptin	780	
	u-PA	AD		205
	APP (PN II)	AD		
	PA I	Angiotensin II	213	251
	APP I	IL-1β	236	252
	PN I (GDN)	PMA	267	
	TIMP related protein	Ischaemia	127	
Epitopes	J1-31	Trauma		226
	LN-1	AD	68	
	M1	Trauma	154	
	M22	Trauma	284	
	X-hapten (Le*) (1-fucosyl-N-acetyllactosamin)	CPM	95	
Receptors	EGF receptor	Infarct	31	
	Tissue factor	Trauma	207	
	TNFα receptor	Scrape infection	72a	
	Transferin receptor	IFNγ	21	
Transport	Apolipoprotein E	IFNγ	216	
	Transferrin	Scrape infection	70	
Miscellaneous	α-B-crystallin	Infarct/hypoxia	133	
	C3	INFγ	133	
	Factor B	INFγ	133	
	Galactocerebroside	INFγ	133	
	GD$_{10}$ ganglioside	INFγ	133	
	LY-6A/E	conA sup	57	
	MCP (CD46)	CMV infection	99	
	Protoceratid	IL-1β	206	
		Cold shock	206	

continued
that this is due not to an intrinsic inability of these
excluding non-neural cells from the CNS parenchyma
wound repair by stabilizing the tissue surrounding
versial if the induced changes are generally beneficial
It remains, however, contro-
neuronal 10~s.~~
neural injuries. The glial scar formed by reactive astro-
changes upon activation which are likely to have func-
tional consequences. It remains, however, contro-
Table 1 lists a number of molecules whose expression
function of reactive astrocytes.
5. WHAT DIFFERENTIATES ACTIVATED FROM
RESTING ASTROCVTES? TOWARDS A FUNCTIONAL
CHARACTERIZATION OF REACTIVE ASTROCVTES
The transition of astrocytes from the resting to
the activated state is associated with the expression
of new molecules not normally detectable in quiescent
astroglia as well as with the upmodulation of factors
that are found in resting astrocytes at lower levels.
Table 1 lists a number of molecules whose expression
in astrocytes increases upon astroglial stimulation
and, hence, may provide a molecular profile of
reactive astroglosis. From this table, it appears that
reactive astrocytes are equipped with a large armamen-
tarium of molecules that allows them to participate in
many important biologic functions. In the subsequent
sections we will speculate how the expression of
specific groups of molecules could relate to the
function of reactive astrocytes.

5.1. Mechanical functions and tissue repair
As outlined above astrocytes undergo dramatic
changes upon activation which are likely to have func-
tional consequences. It remains, however, contro-
versial if the induced changes are generally beneficial
or detrimental in nature (reviewed in Ref. 231). On
one hand, it is conceivable that the increase in cyto-
skeletal proteins within reactive astrocytes may assist
wound repair by stabilizing the tissue surrounding
neural injuries. The glial scar formed by reactive astro-
cytes may also help to wall off areas of tissue necrosis,
excluding non-neural cells from the CNS parenchyma
and appears to fill in the space that results from
neuronal loss.~~
On the other hand, it has been suggested that the
glial scar may form a barrier that could hinder re-
generative processes such as neurite outgrowth.230,232
Central neurons do not regenerate effectively after
injury. The studies of Aguayo and colleagues indicate
that this is due not to an intrinsic inability of these
neurons to regenerate but to the environment present
within the CNS.2 Electron-microscopic analysis of
regenerating axons revealed that arrest of axonal
growth in the CNS occurs in the immediate vicinity
of reactive astrocytes.175 This observation together with
the finding that reactive astrocytes in vivo express
molecules which inhibit neurite extension in vitro193
suggests that astrocytes can actively inhibit
regeneration.
While it is difficult to prove that dense gliotic scars
do not mechanically block axonal growth, in vitro
evidence suggests that astrocytes themselves are not
necessarily inhibitory to regeneration (reviewed in
Refs 111,182). Furthermore, reactive astrocytes do not
prevent PC12 cells from extending neurites over glial
scars in optic nerve explants.64 Most conclusively, the
in vivo experiments of Gage and Kawaja showed that
in the presence of NGF (produced by transplanted
fibroblasts), reactive astrocytes could, in fact, provide
a substrate for the growth of sympathetic neurites.140
These findings demonstrate that, at least in certain
experimental situations, astrocytes do not inhibit but
may even promote regeneration.
A role for reactive astrocytes in regeneration and
tissue repair is also supported by their molecular
profile (see Table 1) which suggests both a production
of, and interaction with, the extracellular matrix. In
vivo astrocytes express extracellular matrix molecules
such as laminin, chondroitin-6-sulphate
proteoglycan and glial hyaluronate adhesion protein,
a hyaluronate binding protein. In vitro, they are also
able to secrete glectaminoglycans.8,135 Reactive
astrocytes may interact with extracellular matrix and
other CNS cells via adhesion molecules such as
embryonic neural cell adhesion molecule and
cytotactin/tenasin.
Transforming growth factor (TGF)-β1 has been
shown to be increased in reactive astrocytes after CNS
stab wounds.177 Logan and colleagues proposed that
astroglial secretion of TGF-β1 may attract fibroblasts
into the lesion site, regulate their deposition of extra-
cellular matrix proteins and synthesis of degradative
enzymes, and play a role in controlling angiogenesis in the scar. Hence, astrocytes may be important in controlling the deposition of scar tissue after injury and its vascularization.177

The production of proteases and protease inhibitors might allow astrocytes to further remodel the extracellular matrix at sites of neural injury and to clear up the debris of degenerating cells. While the activity of these molecules would thus assist in wound repair it is also conceivable that astrogial proteases or protease inhibitors have detrimental effects in certain pathologic conditions. The production of calcium activated proteases by reactive astrocytes has, for example, been implicated in the degeneration of neurons after ischemia, and in the production of the amyloid β protein,229 a protein that accumulates abnormally in the brains of patients with Alzheimer's disease.

 Destruction or degeneration of white matter tracts in the CNS leads to the release of large quantities of myelin lipids. Apolipoprotein E (apoE) is a major constituent of both low- and high-density lipoproteins and plays an important role in lipid transport and metabolism. Within the CNS apoE is constitutively produced by astrocytes,35,202,299 and the astrogial expression of apoE has been found to be upmodulated during reactive astrogliosis.30 Astrocyte-derived apoE may help deliver lipids to other CNS cells for membrane biosynthesis and facilitate the removal of cholesterol into the periphery. Consistent with the latter possibility is the increase in plasma apoE levels observed during the active phase of experimental allergic encephalomyelitis (EAE).270 a demyelinating disease of the CNS.

5.2. Immune responses

One of the major functions proposed for reactive astrocytes is the initiation of immune responses within the CNS (e.g., see Ref. 112). When treated with factors such as interferon-γ, astrocytes in vitro are induced to express molecules involved in immune responses, for example major histocompatibility complex (MHC) antigens and adhesion molecules such as intercellular adhesion molecule 1. Cultured astrocytes are able to present antigens to MHC class I and to MHC class II restricted T lymphocytes80,91,174,201 and to produce many different cytokines. In addition, a number of in vivo immunohistoechemical studies have reported the expression of MHC molecules on small numbers of reactive astrocytes in different pathologic conditions (see Table 1). Taken together, these findings support speculations that (i) antigen presentation by MHC expressing astrocytes and astrogial production of cytokines might play a crucial role in CNS-immune interactions; and that (ii) astrocyte responses could be causally involved in the pathogenesis of various immune-mediated neurologic diseases (reviewed by Refs 78,86,112).

However, recent in vivo experimental evidence has called the postulated immunologic functions of astrocytes into question. While injection of interferon-γ into the CSF space produces extensive induction of MHC class I and II on microglia, only a limited induction of MHC molecules was found on astrocytes.274,289 Systemic injection of interferon-γ154,257 or intracerebral injection of lipopolysaccharide also induced MHC class II expression primarily on microglia. Furthermore, studies on EAE, amyotrophic lateral sclerosis and intracerebral transplantation of allografts have provided ample evidence that CNS-immune interactions are mediated primarily by microglia rather than by astrocytes.75,131,123,141,156,158,188 These studies indicate that astrocytes probably do not function as the main antigen presenting cells in the CNS and argue against a major role for astrocytes in the initiation of immune-mediated neurologic diseases. However, as outlined below, astrocytes may still have important regulatory effects on inflammatory and immune responses directed at the CNS.

5.3. Blood–central nervous system interface

The interaction of the CNS with blood-borne factors and cells is of paramount importance in the pathogenesis of a number of neurologic diseases. This interaction is controlled, in part, by the blood–brain barrier which is formed by the unique properties of the CNS endothelial cells. Astrocytes are in intimate contact with these cells by their endfeet processes222 and several lines of evidence suggest that they may participate in the control of the blood–CNS interface.

Astrocytes could influence the entry of hematogenous cells into the CNS as well as their intraparenchymal activity through the secretion of cytokines. As indicated in Table 1, astrocytes appear to produce a large number of cytokines and inflammatory mediators in vitro. Unfortunately, in vivo confirmation of these findings is lacking in most cases and the possibility of microglial contamination of astrocyte cultures has not always been addressed rigorously. However, the few in vivo studies that are available support the postulate that astrogial cytokine production may be involved in the pathogenesis of viral and immune mediated neurologic diseases. For example, Wahl and colleagues277 have shown that reactive astrocytes in HIV-1 infected brains express TGFβ and speculate that this cytokine enhances the recruitment of HIV-1-infected monocytic cells. Hence, the astrogial TGFβ production could both contribute to the inflammatory changes seen in HIV-1 associated encephalomyelitis and also increase the spread of cell borne virus into the CNS. It should be noted in this context, however, that many cytokines appear to fulfill a multitude of functions (for review see Ref. 265) and that their effects in the intact adult CNS are only now beginning to be defined.49 It is, therefore, perhaps not too surprising that the effects of cytokines in specific neurologic diseases have been difficult to predict.30,39,144,146
Proteases and protease inhibitors could be used by astrocytes to regulate the concentration of a variety of proteins in the parenchyma, including cytokines and proteases derived from the blood or from other brain cells. Such a role has recently been suggested for protease nexin I.51,127 A protease inhibitor found to be increased in reactive astrocytes.17 In vitro data indicate that protease-protease inhibitor complexes can induce the synthesis of acute phase proteins in response to injury.148,162 and stimulate the directed migration of neutrophils.11 Because reactive astrocytes express both cathepsin G-like protease and alphalantichymotrypsin-like protease inhibitor activities (Abraham et al., unpublished observations) such complexes may form around reactive astrocytes where they would directly or indirectly increase the release of cytokines and acute phase proteins from astrocytes, endothelial cells, microglia or blood derived cells.

In head trauma and intracerebral hemorrhage the blood-CNS interface is acutely disrupted. This disruption causes red blood cells to extravasate, lyse and release iron-containing compounds into the CNS. Consequences of such lesions include focal encephalomalacia, hemoisiderin deposition and occasionally the development of recurrent seizures. Studies in experimental animals suggest that some of the clinical sequelae of brain trauma are related to the induction of free radicals by the iron moieties within extravasated blood, and the subsequent peroxidation of lipids.282 The expression of transferrin, which mobilizes and transports iron, and its receptor in reactive astrocytes25,95,215 suggests that these cells may help diminish excess iron loads around sites of tissue injury.

The blood-brain barrier shields the CNS from toxic metals present within the blood. However, in a number of locations the blood-brain barrier is leaky.25 Surrounding these sites one finds a class of GFAP-positive cells termed Gomori astrocytes (reviewed in Ref. 245) which may have an important role in controlling metal toxicity. These cells increase in number after irradiation256 and accumulate silver, mercury and lead after systemic administration of these compounds.245 Gomori astrocytes express metallothionein,200 a protein which can bind to heavy metals such as cadmium and mercury, detoxifying them in the process. The protein is inducible by heavy metals in various tissues and there is some evidence that this occurs in astrocytes after cadmium administration.200

Tissue factor or tissue thromboplastin is a transmembrane glycoprotein that functions as the initiator of the coagulation protease cascade. In the brain tissue factor is expressed predominantly in astrocytes.724 In view of the apposition of astroglial endfoot with CNS endothelial cells (see above), tissue factor could help astrocytes form a "hemostatic envelope" around the vascular system of the CNS. The upregulation of tissue factor expression by reactive astrocytes in nonhemorrhagic conditions such as scrapie suggests that tissue factor may fulfill additional functions within the CNS.

5.4. Neurotrophic support

While it has long been realized that astrocytes secrete factors that promote the growth and prolong the survival of neurons in explant culture,16 so far only a limited number of astroglial molecules that exert trophic effects on neurons have been identified. However, it seems likely that this small group represents the tip of the iceberg. As outlined below some astroglial neurotrophic factors may act directly on neurons whereas others could benefit neurons indirectly through the support of other CNS cells.

Both nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) act as survival and neurite extension factors for some types of cultured neurons.190,278,281 Astrocytes, in contrast to microglia, are able to secrete NGF in vitro.287 After trauma, NGF levels are increased in both the optic nerve74 and the hippocampus,160,281 and in a separate study, the cellular source of NGF was shown to be astrocytes.42 Astrocytes also produce bFGF in vitro in response to various factors, and in Alzheimer's disease and lesioned brain bFGF has been localized to reactive astrocytes (see Table 1). Recent evidence from tissue culture studies suggests that growth factors such as NGF and bFGF are able to protect central neurons against hypoglycemic/excitotoxic insults by stabilizing neuronal calcium hemo-

5.5. Control of neurotoxins

High concentrations of excitatory neurotransmitters are extremely toxic to neurons (reviewed in Ref. 52).
Evidence is increasing that the neuronal death or impairment that follows acute neurologic insults (e.g. hypoxia/ischemia, mechanical trauma, prolonged seizures) may, in the large part, be mediated by an increase in the extracellular concentration of excitatory amino acids such as glutamate. A role for glutamate toxicity has also been proposed in more chronic neurologic diseases such as Alzheimer’s disease,147,149 AIDS dementia (reviewed in Ref. 173), sulfite oxidase deficiency, Guam amyotrophic lateral sclerosis and Huntington’s disease (reviewed in Ref. 52).

In the presence of high glutamate levels, removal of astrocytes from mixed cultures quickly leads to neuronal cell death.237,238,240 In vitro studies suggest that amino acid transmitters may be removed from the extracellular space by astrocytic uptake mechanisms (reviewed in Refs 79,113,132). Astrocytes also contain glutamine synthetase which converts glutamate to glutamine and helps detoxify ammonia in the CNS. This enzyme has been shown to be upmodulated in reactive astrocytes in pathologic conditions.43,209 Hence, it is possible that astrocytes participate in the removal of neurotoxins by both enhanced uptake and metabolic turnover. The recent cloning of the transporters for GABA and the amines, noradrenaline, serotonin and dopamine (for review see Refs 254,272) should supply molecular tools that will help in understanding the role of reactive astrocytes in regulating other neurotransmitters.

In a number of recent studies, Heyes and his colleagues have provided evidence that the NMDA receptor agonist quinolinic acid is involved in the pathogenesis of the neurologic dysfunction that can be associated with HIV 1 infection and other inflammatory diseases of the nervous system.104,115,120 Because the quinolinic acid metabolizing enzymes, 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase, have been localized to astrocytes in vitro,150,151 it is conceivable that the expression of these enzymes increases in astrocytes responding to inflammatory lesions. While an upmodulation of these enzymes in reactive astrocytes has apparently not yet been documented in the literature such an astrogial response could serve important protective functions in a variety of neurologic diseases.

Free radicals form another group of chemicals that could be extremely toxic to the nervous system102,103 and the ability to eliminate or control these entities may be critical after neurologic insults such as cerebral hemorrhage.282 While this issue does not yet been documented in the literature such an astrogial response could serve important protective functions in a variety of neurologic diseases.

6. CONCLUSIONS AND FUTURE STUDIES

In this review we have constructed a molecular profile of reactive astrocytes and drawn conclusions from this profile on the functions reactive astrocytes may fulfill in neurologic diseases. As a result we have hypothesized that activated astroglia may benefit the damaged nervous system by participating in several important biologic processes such as the regulation of neurotransmitter levels, the repair of the extracellular matrix, control of the blood–CNS interface, transport processes, and trophic support of other CNS cells. The detectability of specific molecules depends not only on their absolute levels but also on the sensitivity of the assays used, i.e. the inability to detect certain markers does not necessarily exclude their presence. Consequently, it cannot be excluded that “resting” astrocytes also fulfill some of the functions assigned to reactive astrocytes but at a lower level.

We would like to emphasize that our extrapolation of the functions of reactive astrocytes from the molecules they express is speculative and based on current knowledge. It seems likely that other functions will be identified for many of these molecules, some of which may be more relevant to the CNS than the ones they are currently assigned. We also expect that the ongoing discovery of CNS-specific genes (see Ref. 198 for review) and the development of novel molecular probes/assays will significantly expand the molecular profile of reactive astrocytes.

In the majority of CNS diseases clinical signs and symptoms are related most directly to an impairment of neuronal function. While little evidence exists that the activity of reactive astrocytes is directly detrimental to the nervous system, it is conceivable that an impairment of astrogial performance could exacerbate neuronal dysfunction. This pathogenetic scenario may, for example, exist in hepatic encephalopathy (see Ref. 210 for review), scrapie in which priors appear to accumulate first in astrocytes24 or in AIDS dementia where viral or macrophage-derived products could interfere with astrogial functions such as neurotrophic support and/or elimination of excitotoxins.214,215,217,225

An inspection of Table 1 reveals that reactive astrocytes express a number of molecules that are typically produced by hematogenous cells. This observation could reflect the evolutionary response of.
the CNS to two different types of selective pressures. There appears to be a need for the CNS to restrict the access of hematogenous cells as evidenced by the blood-brain barrier and the delayed invasion of neutrophils and monocytes after injections of LPS slice preparations. There appears to be a need for the CNS to restrict the access of hematogenous cells as evidenced by the blood-brain barrier and the delayed invasion of neutrophils and monocytes after injections of LPS slice preparations. On the other hand, early stages of wound repair within the CNS may depend on the fast action of those factors which are released into peripheral wounds by hematogenous cells. Recent evidence suggest that astrocytes are able to respond to neural injury with great rapidity,130,131,201 Therefore, astrocytes may fulfill some of the functions that are carried out by invading hematogenous cells during wound repair in peripheral sites. We would like to emphasize at this point that the response of the CNS to neurologic injury involves many cell types in addition to astrocytes and that the assignment of certain functions to astrocytes by no means excludes the participation of other cells. An assessment of the relative contributions of microglia and astrocytes to early wound repair within the CNS should be a particularly fruitful subject for future studies.

Recent data indicate that subpopulations of astrocytes can be distinguished both at the molecular117,194,195,197 and functional167,227 levels. In leukocyte research the development of molecular markers has revealed a great functional diversity among cells that appear morphologically very similar. It seems likely that future molecular studies will also reveal a functional heterogeneity of reactive astrocytes that far surpasses their morphologic differences. It will be particularly interesting to find out whether there are subpopulations of astrocytes that respond to some neurologic disease processes but not to others. In a similar vein, it needs to be determined whether diverse neurologic diseases provoke the expression of the same set of astroglial molecules or whether the astroglial response is specific, with different molecules being expressed by astrocytes responding to different neurologic insults. It should also be pointed out that the response of astrocytes to neurologic insults has so far been documented primarily by immunohistochemical staining and in situ hybridization. This methodologic approach provides a static image of the molecular profile of reactive astrocytes and does not allow the resolution of fast physiologic changes. Recent evidence suggests that astrocytes participate in neurophysiologic processes that occur within seconds. For example, the response of neurons to electrical stimulation was shown to be accompanied by rapid Ca2+ oscillations within astrocytes in hippocampal slice preparations. Astrocytes themselves are also capable of responding to neurotransmitters (reviewed in Refs 19,26). Because of their close association with nodes of Ranvier,32,166 perinodal astrocytes may be in a particularly suitable position to influence neurophysiologic processes. It is possible that rapid responses of astrocytes are of greater functional importance in neurologic diseases than the molecular changes that occur over hours or days. Yet, this type of response cannot be detected with conventional histopathologic methods. The application of novel neurophysiologic and cell biologic techniques should allow a high chronologic and spatial resolution of astroglial responses and is expected to substantially further our understanding of astroglial functions in health and disease. We suspect that this type of analysis will reveal "reactive astrocytosis" to be a much more dynamic process than is currently conceptualized.

We would like to end this Commentary by pointing out the imbalance between in vitro and in vivo studies in astroglial research. Judged by the number of in vitro vs in vivo studies (see Table 1), much greater efforts appear to have been placed on the extensive analysis of astrocytes in culture than on the in vivo confirmation of existing in vitro findings. However, reactive astrocytes in the adult brain and primary astrocytes in cell culture differ in many respects and results obtained in vitro and in vivo often do not overlap (see Table 1 and, for an example, Ref. 170). It is, therefore, to be hoped that future research will complement the vigorous efforts made in cell culture systems with the development and exploitation of models that allow the analysis of reactive astrocytes in the intact organism.

Acknowledgements—We are grateful to R. Milner and G. Rall for their helpful comments on the manuscript. ME would like to thank M. Oldstone and J. C. de la Torre for their continual support and encouragement. Supported by Harry Weaver Neuroscience Scholar Award from the National Multiple Sclerosis Society (L.M.), Faculty Scholar Award from the Alzheimer's Association (L.M.), NIH grant MHA47680 and by the U.S. Army Medical Research and Development Command under Contract No. DAMD17-90-C-0700 (M.E.).

REFERENCES

1. Abd-el-Basset E. M., Kalnis V. I., Ahmed I, and Fedoroff S. (1989) A 48 kilodalton intermediate filament associated protein (IFAP) in reactive-like astrocytes induced by dibutyryl cyclic AMP in culture and in reactive astrocytes in situ. J. Neuropath. exp. Neurol. 48, 245–254.
2. Aguayo A., David S., Richardson P. and Bray G. (1982) Axonal elongation in peripheral and central nervous system transplants. Adv. cell Neurobiol. 3, 215–234.
3. Aloisi F., Borsellino G., Samoggia P., Test U., Chelucci C., Russo G., Peschle C. and Levi G. (1992) Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J. Neurosci. Res. 33, 494–506.
4. Aloisi F., Care A., Borsellino G., Gallo P., Rosa S., Bassani A., Cabibbo A., Testa U., Levi G. and Peschle C. (1992)
Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1β and tumor necrosis factor. J. Immun. 149, 2358-2366.

5. Andersson P.-B., Perry V. H. and Gordon S. (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48, 169-186.

Araujo D. M. and Cotman C. W. (1990) Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 12, 1668-1678.

Araujo D. M. and Cotman C. W. (1992) Beta-amyloid stimulates glial cells in vitro to product growth factors that accumulate in senile plaques in Alzheimer's disease. Brain. Res. 569, 141-145.

Ard M. D. and Bunge R. P. (1988) Heparan sulfate proteoglycan and laminin immunoreactivity on cultured astrocytes: relationship to differentiation and neurite growth. J. Neurosci. 8, 2844-2858.

Arendt A. T., de Vellis J. and Herschman H. R. (1989) Induction of c-fos and TIS genes in cultured rat astrocytes by lipopolysaccharide and mitogens. J. Neuroimmunol. 24, 107-114.

Arendt A. T., Lim R. W., Vannum B. C., Cole R., de Vellis J. and Herschman H. R. (1989) TIS gene expression in cultured rat astrocytes: induction by mitogens and stellation agents. J. Neurosci. Res. 23, 247-256.

Arendt A. T., Lim R. W., Vannum B. C., Cole R., de Vellis J. and Herschman H. R. (1989) TIS gene expression in cultured rat astrocytes: multiple pathways of induction by mitogens. J. Neurosci. Res. 23, 257-265.

Asch A. S., Leung L. K., Shapiro J. and Nachman L. R. (1986) Human brain glial cells synthesize thrombopsonin. Proc. natl. Acad. Sci. U.S.A. 83, 2904-2908.

Bach M. A., Shen-Orr Z., Lowe W. L. Jr, Roberts C. T. Jr and LeRoith D. (1991) Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res. molec. Brain Res. 10, 43-48.

Bakhit C., Armanini M., Bennett G. L., Wong W. L., Hansen S. E. and Taylor R. (1991) Increase in glia-derived nerve growth factor following destruction of hippocampal neurons. Brain Res. 560, 76-83.

Banda M. J., Rice A. G., Griffin G. L. and Senior R. M. (1988) The inhibitory complex of human alpha1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 167, 1608-1615.

Banker G. A. (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809-910.

Barbin G., Katz D. M., Chamak B., Glowinski J. and Prochiantz A. (1988) Brain astrocytes express region-specific surface glycoproteins in glia. Glia 1, 96-103.

Baron-Van Evercooren A., Olificon-Berthe C., Kowalski A., Visciano G. and Van Obberghen E. (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J. Neurosci. Res. 28, 244-253.

Barres B. A. (1991) New roles for glia. J. Neurosci. 11, 3685-3694.

Beach T. G., Walker R. and McGeer E. G. (1989) Patterns of gliosis in Alzheimer's disease and aging cerebrum. Glia 2, 420-436.

Benveniste E. N., Sparacio S. M. and Bethea J. R. (1989) Tumor necrosis factor-alpha enhances interferon-gamma-mediated class II antigen expression on astrocytes. J. Neuroimmunol. 25, 209-219.

Benveniste E. N., Sparacio S. M., Norris J. G., Grenett H. E. and Fuller G. M. (1990) Induction and regulation of interleukin 6 gene expression in rat astrocytes. J. Neuroimmunol. 30, 201-212.

Bernstein J. J., Getz R., Jefferson M. and Kellemens M. (1985) Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain. Res. 327, 135-141.

Bernton E. W., Bryant H. U., Decoster M. A., Orenstein J. M., Ribas J. L., Meltzer M. S. and Gendelman H. E. (1992) Heparan sulfate proteoglycan and laminin immunoreactivity on cultured astrocytes: relationship to differentiation and neurite growth. J. Neurosci. 8, 2844-2858.

Bignami A., Eng L. F., Dahl D. and Uyeda C. T. (1972) Localization of glial fibrillary acidic protein in astrocytes of mammalian central nervous system. Exp. Neurol. 32, 554-569.

Bignami A. and Dahl D. (1976) Astrocyte specific protein and neuroglial differentiation. An immunofluorescence study. J. Neurosci. Res. 2, 420-436.

Birke A., Fitton J., Rice A. G., Griffin G. L. and Senior R. M. (1988) The inhibitory complex of human alpha1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 167, 1608-1615.

Billiau A., Heremans H., Vandenkercove F., Dikmans R., Sobis H., Meulepas E. and Carton H. (1989) Effect of interleukin-6 on the production of human growth factors by cultured human fibroblasts. J. Interferon Res. 9, 31-39.

Birke A., Fitton J., Rice A. G., Griffin G. L. and Senior R. M. (1988) The inhibitory complex of human alpha1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 167, 1608-1615.

Birke A., Fitton J., Rice A. G., Griffin G. L. and Senior R. M. (1988) The inhibitory complex of human alpha1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 167, 1608-1615.

Billiau A., Heremans H., Vandenkercove F., Dikmans R., Sobis H., Meulepas E. and Carton H. (1989) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immun. 140, 1506-1510.

Breeze E., Whetsell W. O. Jr, Stocchec K., King L. E. Jr and Nanneny L. B. (1988) Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer's disease. J. Neuroimmunol. 15, 27-38.

Bignami A. and Dahl D. (1976) The astroglial response to stabwounding. Immunofluorescence studies with antibodies to astroctye specific protein (GFA) in mammalian and submammalian vertebrates. Neuropath. appl. Neurobiol. 2, 99-100.

Bignami A., Eng L. F., Dahl D. and Uyeda C. T. (1972) Localization of glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain. Res. 43, 429-435.

Billiau A., Heremans H., Vandenkercove F., Dikmans R., Sobis H., Meulepas E. and Carton H. (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immun. 140, 1506-1510.

Breeze E., Whetsell W. O. Jr, Stocchec K., King L. E. Jr and Nanneny L. B. (1988) Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer's disease. J. Neuroimmunol. 15, 27-38.

Bignami A. and Dahl D. (1976) The astroglial response to stabwounding. Immunofluorescence studies with antibodies to astroocyte specific protein (GFA) in mammalian and submammalian vertebrates. Neuropath. appl. Neurobiol. 2, 99-100.

Bondy C. A. (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J. Neurosci. 11, 3442-3455.

Birke A., Fitton J., Rice A. G., Griffin G. L. and Senior R. M. (1988) The inhibitory complex of human alpha1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 167, 1608-1615.

Bignami A., Eng L. F., Dahl D. and Uyeda C. T. (1972) Localization of glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain. Res. 43, 429-435.

Bignami A. and Dahl D. (1976) The astroglial response to stabwounding. Immunofluorescence studies with antibodies to astroocyte specific protein (GFA) in mammalian and submammalian vertebrates. Neuropath. appl. Neurobiol. 2, 99-100.
Molecular profile of reactive astrocytes

Kleiner J. E., Kofie V. Y. and et al. (1986) Systemic recombinant alpha-2 interferon therapy in relapsing multiple sclerosis. *Archs Neurol.* 43, 1239–1246.

40. Cammer W. and Downing M. (1991) Localization of the multifunctional protein CAD in astrocytes of rodent brain. *J. Histochcm. Cytochem.* 39, 695–700.

41. Cammer W. and Tansey F. A. (1988) The astrocyte as a locus of carbonic anhydrase in the brains of normal and demyelinating mutant mice. *J. Comp. Neurol.* 275, 65–75.

42. Cammer W., Tansey F. A. and Bronson C. F. (1989) Gliosis in the spinal cords of rats with experimental allergic encephalomyelitis: immunostaining of carbonic anhydrase and vimentin in reactive astrocytes. *J. Exp. Med.* 162, 223–230.

43. Cammer W., Tansey F. A. and Bronson C. F. (1990) Reactive gliosis in the brains of Lewis rats with experimental allergic encephalomyelitis. *J. Neuroimmunol.* 27, 111–120.

44. Cammer W. and Zhang H. (1991) Comparison of immunocytochemical staining of astrocytes, oligodendrocytes, and myelinated fibers in the brains of carbonic anhydrase II-deficient mice and normal littermates. *J. Neuroimmunol.* 34, 81–86.

45. Campbell L., Oldstone M. B. A. and Muckle L. (1992) Neurologic disease induced in transgenic mice by the astrocyte-specific expression of interleukin-6. *Soc. Neurosci. Abstr.* 18, 206.5.

46. Cannella B., Cross A. H. and Raine C. S. (1990) Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. *J. Exp. Med.* 172, 1521–1524.

47. Caroni P. and Becker M. (1992) The downregulation of growth-associated proteins in motorneurons at the onset of synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

48. Carroll W. M., Jennings A. R. and Mastaglia F. L. (1987) Reactive glial cells in CNS demyelination contain both carbonic anhydrase isoenzymes II and I. *J. Comp. Neurol.* 275, 65–75.

49. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

50. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

51. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

52. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

53. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

54. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

55. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

56. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

57. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

58. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

59. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

60. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

61. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

62. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

63. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

64. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

65. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

66. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

67. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

68. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

69. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.

70. Carson M. J., Behringer R. R., Brinster R. L. and McMorris F. A. (1993) Insulin-like growth factor I increases brain synapse elimination is controlled by muscle activity and IGF 1. *J. Neurosci.* 12, 3849–3861.
1. Dwyer B. E., Nishimura R. N., de Vellis J. and Clegg B. K. (1991) Regulation of heat shock protein synthesis in rat astrocytes. J. Neurosci. Res. 28, 352–358.

2. Dwyer B. E., Nishimura R. N., de Vellis J. and Yoshida T. (1992) Heme oxygenase is a heat shock protein and PEST protein in rat astroglial cells. Glia 5, 300–305.

3. Eldredon M. de la Torre J. C., Oldstone B. A., Loskovitch D. J., Edginton T. S. and Mackman N. (1993) Astrocytes are the primary source of tissue factor in the murine central nervous system—a role for astrocytes in cerebral hemostasis. J. clin. Invest. (in press).

4. Ehrenreich H., Anderson R. W., Ogino Y., Rieckmann P., Costa T., Wood G. P., Coligan J. E., Kehrl J. H. and Fauci A. S. (1991) Selective autoregulation of endothelins in primary astrocyte cultures: endothelin receptor-mediated potentiation of endothelin-1 secretion. New Biol. 3, 135–141.

5. Ehrenreich H., Costa T., Clouse K. A., Pluta R. M., Ogino Y., Coligan J. E. and Bard P. R. (1993) Thrombin is a regulator of astrocytic endothelin-1. Brain Res. 600, 201–207.

6. Ewing J. F., Haber S. N. and Maines M. D. (1992) Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein. J. Neurochem. 58, 1140–1149.

7. Fedoroff S. and Vernadakis A. (1986) Astrocytes, Vols 1–3. Academic Press, Orlando.

8. Fedoroff S., White R., Neal J., Subrahmanyan L. and Karnins V. I. (1983) Astrocyte lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin- and GFPI-containing intermediate filaments. Dev. Brain. Res. 7, 303–315.

9. Fierz W., Endler B., Reske K., Wekerle H. and Fontana A. (1985) Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immun. 134, 3785–3793.

10. Fierz W. and Fontana A. (1986) The role of astrocytes in the interaction between the immune and nervous system. In: Astrocytes. Cell Biology and Pathology of Astrocytes (eds Fedoroff S. and Vernadakis A.), pp. 203–229. Academic Press, Orlando.

11. Flott B. and Seifert W. (1991) Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4, 293–304.

12. Fontana A., Frhr P., Picher H., Zinkernagel R., Weber E. and Fierz W. (1986) Astrocytes as antigen-presenting cells. Part II: unlike H-2K-dependent cytotoxic T cells, H-2Lα-restricted T cells are only stimulated in the presence of interferon gamma. J. Neuroimmunol. 12, 15–28.

13. Fontana A., Fierz W. and Wekerle H. (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273–276.

14. Fontana A., Kristensen F., Dubs R., Gems D. and Weber E. (1982) Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immun. 129, 3243–3249.

15. Frank E., Pulvei M. and de Tribollet N. (1985) Expression of class II major histocompatibility antigens on reactive astrocytes and endothelial cells within the gliosis surrounding metastases and abscesses. J. Neuroimmunol. 12, 29–36.

16. Frei K., Malipiero U.V., Leist T. P., Zinkernagel R. M., Schwab M. E. and Fontana A. (1989) On the cellular source and function of interleukin-6 produced in the central nervous system in viral diseases. Eur. J. Immunol. 19, 689–694.

17. Frohman E. M., Frohman T. C., Dustin M. L., Vayveugela B., Choi B., Gupta A., van den Noort S. and Gupta S. (1989) The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphoxygen, and interleukin-1: relevance to intracerebral antigen presentation. J. Neuroimmunol. 23, 117–124.

18. Frohman E. M., van den Noort S. and Gupta S. (1989) Astrocytes and intracerebral immune responses. J. clin. Immun. 9, 1–9.

19. Gradient A. R., Cron K. C. and Otten U. (1990) Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci. Lett. 117, 335–340.

20. Gajdusek D. C. (1990) Subacute spongiform encephalopathies: transmissible cerebral amyloidoses caused by unconventional agents. In: l'irology (eds Fields B. N., Knipe D. M. et al.), 2nd ed, pp. 2289–2324. Raven Press, New York.

21. Gebicke-Haerter P. J., Bauer J., Schobert A. and Northoff H. (1990) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J. Neurosci. 10, 779–792.

22. Geisert E. E. Jr, Johnson H. G. and Binder L. I. (1990) Expression of microtubule-associated protein 2 by reactive astrocyte cultures allow growth and isolation of microglial cells. J. Neurosci. 10, 779–792.

23. Girgrah N., Letarte M., Becker L. E., Cruz T. F., Theriault E. and Moscarello M. A. (1991) Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J. Neurosci. 11, 1140–1149.

24. Goldmain J. E. and Chiu F.-C. (1984) Dibutyruc cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes. Brain Res. 306, 85–95.

25. Gortchenkova A. and Lohler J. (1990) Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta neuropath. (Berlin) 80, 46–58.

26. Goldman J. E. and Chiu F.-C. (1984) Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes. Brain Res. 306, 85–95.

27. Gomez-Pinilla F., Cummings B. J. and Cotman C. W. (1990) Induction of basic fibroblast growth factor in Alzheimer's disease pathology. Neuroreport 1, 211–214.

28. Gomez-Pinilla F., Lee J. W. and Cotman C. W. (1992) Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J. Neurosci. 12, 345–355.

29. Gordon D. L., Sadlon T. A., Wesselingh S. L., Russell S. M., Johnstone R. W. and Purcell D. F. (1992) Human
astrocytes express membrane cofactor protein (CD46), a regulator of complement activation. J. Neuroimmunol. 36, 199–208.

100. Griffin W. S., Stanley L. C., Ling C., White L., MacLeod V., Perrot L. J., White C. L. and Araoz C. (1989) Brain interleukin 1 and S-10 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 86, 7611–7615.

101. Hagg T., Muir D., Engvall E., Varon S. and Manthorpe M. (1989) Laminin-like antigen in rat CNS neurons: distribution and changes upon brain injury and nerve growth factor treatment. Neuron 3, 721–732.

102. Halliwell B. (1992) Reactive oxygen species and the central nervous system J. Neurochem. 59, 1609–1623.

103. Halliwell B. and Gutteridge J. M. C. (1985) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

104. Halperin J. J. and Heys M. P. (1992) Neuroactive kynurenines in Lyme borreliosis. Neurology 42, 43–50.

105. Hartung H.-P., Heisinger K., Schäfer B. and Toyka K. (1988) Substance P and astrocytes: Stimulation of the cyclooxygenase pathway of arachidonic acid metabolism. Fedn Am. Soc. exp. Biol J. 2, 48–51.

106. Hartung H.-P. and Toyka K. (1987) Phorbol diester TPA elicits prostaglandin E release from cultured rat astrocytes. Brain Res. 417, 347–349.

107. Hartung H.-P. and Toyka K. (1987) Loukotriene production by cultured astrocytes. Brain Res. 435, 367,370.

108. Hartung H.-P., Heisinger K. and Toyka K. V. (1988) Primary rat astroglial cultures can generate leukotriene B4. J. Neuroimmunol. 19, 237–243.

109. Hartung H.-P., Schafer B., Heisinger K. and Toyka K. V. (1989) Recombinant interleukin-1 beta stimulates eicosanoid production in rat primary culture astrocytes. Brain Res. 489, 113–119.

110. Hatten M. E. (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 100, 384–396.

111. Hatten M. E., Liem R. K., Shelanski M. L. and Mason C. A. (1991) Astroglia in CNS injury. Glia 4, 233–243.

112. Hertz L., McFarlin D. E. and Waksman B. H. (1990) Astrocytes: auxiliary cells for immune responses in the central nervous system? Immunol. Today 11, 265–268.

113. Hertz L. and Schousboe A. (1986) Role of astrocytes in compartmentation of amino acids and energy metabolism. In: Astrocytes, Physiology, Pharmacology, and Pharmacology of Astrocytes (eds Fedoroff S. and Vernadakis A.), pp. 179–208. Academic press, Orlando.

114. Hetier E., Ayala J., Denelle P., Bousseau A., Rouget P., Mallat M. and Prochiantz A. (1988) Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro J. Neurosci. Res. 21, 391–397.

115. Heyes M. P., Brew B. J., Martin A., Price R. W., Salaiz A. M., Siddiq J. J., Yergey J. A., Mouradian M. M., Sadler A. E. and Kaip J. (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol. 29, 202–209.

116. Heyes M. P., Gravel M., Hiisli E., Schousboe A. and Hiisli L. (1986) Amino acid uptake. In: Molecular profile of reactive astrocytes 31 (eds Fedoroff S. and Vemadakis A.), pp. 133–153. Academic Press, Orlando.

117. Heyes M. P., Mefford I. N., Querry B. J., Dedhia M. and Lackner A. (1990) Increased ration of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. AIDS 5, 55–560.

118. Heyes M. P., Mefford I. N., Querry B. J., Dedhia M. and Lackner A. (1990) Increased ratio of quinolinic acid to kynurenine in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann. Neurol. 27, 666–675.

119. Heyes M. P., Rubio D., Lane C. and Marky S. P. (1989) Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann. Neurol. 26, 275–277.

120. Hickey W. F. and Kimura H. (1992) Neuroactive kynurenines in Lyme borreliosis. Neurology 42, 43–50.

121. Hickey W. F., Mefford I. N., Quearry B. J., Dedhia M. and Lackner A. (1990) Increased ration of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann. Neurol. 29, 202–209.

122. Hickey W. F. and Kimura H. (1998) Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science 239, 290–292.

123. Hickey W. F., Osborn J. P. and Kirby W. M. (1985) Expression of Ia molecules by astrocytes during acute sterile meningitis. J. exp. Med. 162, 2082–2086.

124. Hickey W. F. and Kimura H. (1998) Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science 239, 290–292.

125. Hirayama M., Miyadai T., Yokochi T., Sato K., Kubota T., Iida M. and Fujiki N. (1988) Infection of human cerebral astrocytes associated with differentiation or proliferation but not depolarization. J. Neurochem. 52, 534, 535.

126. Hirayama M., Miyadai T., Yokochi T., Sato K., Kubota T., Iida M. and Fujiki N. (1988) Infection of human cerebral astrocytes associated with differentiation or proliferation but not depolarization. J. Neurochem. 59, 1609–1623.

127. Hoffmann M.-C., Nitsch C., Scotti A. L., Reinhard E. and Monard D. (1992) The neurotransmitter of HIV-derived neural disease. J. Neurochem. 59, 133–144.

128. Hoffmann M.-C., Nitsch C., Scotti A. L., Reinhard E. and Monard D. (1992) The neurotransmitter of HIV-derived neural disease. J. Neurochem. 59, 133–144.

129. Hoffmann M.-C., Nitsch C., Scotti A. L., Reinhard E. and Monard D. (1992) The neurotransmitter of HIV-derived neural disease. J. Neurochem. 59, 133–144.
133. Iwaki T., Wisniewski T., Iwaki A., Corbin E., Tomokane N., Tateishi J. and Goldman J. E. (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am. J. Pathol. 140, 345-356.

134. Johnson K. P. (1988) Treatment of multiple sclerosis with various interferons: the cons. Neurology 38, 62-65.

135. Johnson K. P., Dosek C. E. and Rispelle R. J. (1991) Characterization of glycosaminoglycans produced by primary astrocytes in vitro. Glia 4, 314-321.

136. Junier M. P., Ma Y. J., Costa M. E., Hoffman G., Hill D. F. and Ojeda S. R. (1991) Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty. Proc. natn. Acad. Sci. U.S.A. 88, 9743-9747.

137. Kalman M. and Hajos F. (1989) Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. Exp. Brain Res. 78, 147-163.

138. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyrouti K. and Muller Hilb B. (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733-736.

139. Kawai K., Takahashi H., Wakabayashi K. and Ikuta F. (1989) Ultrastructure and localization of Ca2+ ATPase activity in reactive astrocytes. Acta neuropath. Berlin 78, 449-454.

140. Kawaja M. D. and Gage F. H. (1991) Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron 7, 1019-1030.

141. Kawamata T., Akiyama H., Yamada T. and McGeer P. L. (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Pathol. 140, 691-707.

142. Kehil M., Rolland B., Fages C. and Tardy M. (1990) Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia 3, 75-80.

143. Kimelberg H. K., Stieg P. E. and Mazurkiewicz J. E. (1982) Glutamatecytochemistry and biochemical analysis of carbonic anhydrase in primary astrocyte cultures from rat brain J. Neurochem. 39, 734-742.

144. Koh J.-Y., Yang L. L. and Cotman C. W. (1990) Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain. Res. 533, 315-320.

145. Koj A., Magielaska-Zero D., Kurdowska A. and Bereta J. (1988) Proteinase inhibitors as acute phase reactants: Regulation of synthesis and turnover. Adv. exp. med. Biol. 240, 171-181.

146. Komoly S., Hudson L. D., Webster H. D. and Bondy C. A. (1992) Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc. natn. Acad. Sci. U.S.A. 89, 1894-1898.

147. Köhler C., Eriksson L. G., Okuno E. and Schwartz R. (1988) Localization of quinolinic acid metabolizing enzymes in the rat brain. Immunohistochemical studies using antibodies to 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase. Neurosci.ence 27, 49-76.

148. Kohn C., Okuno E., Flood P. R. and Schwarz R. (1987) Quinolinic acid phosphoribosyltransferase: preferential gial localization in the rat brain visualized by immunocytochemistry. Proc. natn. Acad. Sci. U.S.A. 84, 3491-3495.

149. Kordowska A. and Travis J. (1990) Acute phase protein stimulation by alpha-1-antichymotrypsin-cathepsin G complexes. Evidence for the involvement of interleukin-6. J. biol. Chem. 265, 21,023-21,026.

150. Lajer I., Bacolino M. T., Suareez I., Viadero C. F., Andres M. A. and Bercinio J. (1991) Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: a study on the ataxic form of Creutzfeldt-Jakob disease. Neuro science 40, 337-352.

151. Lagena C., Masters C. and Schachner M. (1982) Changes in expression of glial antigens M1 and C1 after cerebeilar injury. J. neurosci. 2, 470-476.

152. Landry C. F., Ivy G. O. and Brown J. R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J. Neuroscience 25, 194-203.

153. Lassmann H., Zimpfich F., Vass K. and Hickey W. F. (1991) Microglial cells are a component of the perivascular glia limtants. J. Lmmun. 38, 326-243.

154. Lavi E., Suzumura A., Murasko D. M., Murray E. M., Silverberg D. H. and Weiss S. R. (1988) Tumor necrosis factor induces expression of MHC class I antigens on mouse astrocytes. J. Lmnumunol. 18, 245-253.

155. Lawrence J. M., Morris R. J., Wilson D. J. and Raisman G. (1990) Mechanisms of allograft rejection in the rat brain. Neuroscience 37, 431-462.

156. Laywell E. D., Dorries U., Bartalsh U., Feinmen A., Schachner M. and Steinmeier D. A. (1992) Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc. natn. Acad. Sci. U.S.A. 89, 2634-2638.

157. Läffers L., Strömberg I., Enbend T. and Olsson L. (1987) Neural growth factor protein level increases in the adult rat hippocampus after a specific cholinergergic lesion. J. Neuroscience 18, 525-531.

158. Leston-Green G. and Forgan G. (1992) The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its expression on glial cells following kainic acid-induced status epilepticus. J. Neuroscience 12, 872-882.

159. Lee S. C., Liu W., Roth P., Dickson D. W., Berman J. W. and Brosnan C. F. (1993) Macrophage colony-stimulating factor in human fetal astrocytes and microglia. J. Immun. 150, 594-604.

160. Lee J. C., Moore O. R., Golwenky G. and Rainec C. S. (1990) Multiple sclerosis: a role for astrogliosis in active demyelination? Evidence suggested by class II MHC expression and ultrastructural study. J. Lmnumaph. exp. Neural. 49, 122-136.

161. Lee W.-H., Clemens J. A. and Bondy C. A. (1992) Insulin-like growth factors in the response to cerebral ischaemia. Molec. cell. Neurosci. 3, 36-43.

162. Lerea L. S. and McCarthy K. D. (1989) Astroglial cells in vitro are heterogeneous with respect to the expression of the x1-adrenergic receptor. Glia 2, 135-147.
165. Levi-Strauss M. and Mallat M. (1987) Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. *J. Immun.* 139, 2361–2366.

166. Levine S. M., Seyfried T. N., Yu R. K. and Goldman J. E. (1986) Immunocytochemical localization of GD3 ganglioside to astrocytes in murine cerebellar brain. *Brain Res.* 374, 260–269.

167. Lewis S. A. and Cowan N. J. (1985) Temporal expression of mouse glial fibrillary acidic protein mRNA studied by *in situ* hybridization procedure. *J. Neurochem.* 45, 913–919.

168. Lieberman A. P., Ptha P. M., Shin H. S. and Shin M. L. (1989) Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. *Proc. natn. Acad. Sci. U.S.A.* 86, 6348–6352.

169. Liesv. K., Kaakkola S., Dahl D. and Vaheri A. (1984) Laminin is induced in astrocytes of adult brain by injury. *Eur. molec. Biol. Org. J.* 3, 683–686.

170. Lindholm D., Castren E., Kanter K., Zafra F. and Thoenen H. (1992) Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. *J. Cell Biol.* 117, 395–400.

171. Lindholm D., Hengerer B., Zafra F. and Thoenen H. (1990) Transforming growth factor-beta 1 stimulates expression of nerve growth factor in the rat CNS. *Neuroreport* 1, 9–12.

172. Lindsay, R. M. (1986) Reactive gliosis. In *Astrocytes, Cell Biology and Pathology of Astrocytes* (eds Fedoroff S. and Vernadakis A.), pp. 231–262. Academic press, Orlando.

173. Lipson S A (1987) Models of neuronal injury in A117: another role for the NMDA receptor? *Trends Neurosci.* 15, 75–79.

174. Liu Y., King N., Kesson A., Banden R. V. and Mullbacher A. (1989) Flavivirus infection up-regulates the expression of the alternative pathway of complement activation. *J.* *Neuroimmunol.* 33, 231–238.

175. Liebeskind J. L., Futterer R. J. and Libby P. (1987) Analysis of Ia induction on Lewis rat astrocytes. In *Astrocytes. Cell Biology and Pathology of Astrocytes* (eds Fedoroff S. and Vemadakis A.), pp. 231–262. Academic press, Orlando.

176. Logan A., Frautschy S. A., Gonzalez A.-M. and Baird A. (1992) A time course for the focal elevation of synthesis of Ia antigen on astrocytes of adult brain using the monoclonal antibody 2H6. *J. Neurosci.* 12, 3825–3837.

177. Manthorpe M., Rudge J. S. and Varon S. (1986) Astroglial cell contributions to neuronal survival and neuritic growth. *J. Neuroimmunol.* 13, 259–271.

178. Massa P. T., Schimpl A., Wecker E. and ter Meulen V. (1987) Tumor necrosis factor amplifies measles virus-mediated Ia induction on astrocytes. *Proc. natn. Acad. Sci. U.S.A.* 84, 7242–7245.

179. Massa P. T., Predy R., Johnson E. S., Singh R. and Leeu W. (1989) Novel astrocytic protein in multiple sclerosis plaques. *J. Neurosci. Res.* 22, 36–49.

180. Massa P. T., Dorries R. and ter Meulen V. (1986) Viral particles induce Ia antigen expression on astrocytes. *Proc. natn. Acad. Sci. U.S.A.* 84, 3668–3676.

181. Mansour H., Asher R., Dahl D., Labkovsky B., Perides G. and Bignami A. (1990) Permissive and non-permissive actions in the generation and degeneration of hippocampal neuroarchitecture. *J. Neurosci.* 11, 2361–2366.

182. Martin D. L. (1992) Synthesis and release of neuroactive substances by glial cells. *Proc. natn. Acad. Sci. U.S.A.* 89, 4219–4223.

183. Matsuzawa M., Hara N., Tanaka R. and Fujimara M. (1986) Immunohistochemical analysis of the rat central nervous system during experimental allergic encephalomyelitis, with special reference to Ia-positive cells with dendritic morphology. *J. Immun.* 136, 3668–3676.

184. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I. and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. *J. Neurosci.* 11, 376–389.

185. Mattson M. P., Murray M., Guthrie F. B. and Kater S. B. (1989) Fibroblast growth factor and glutamate: opposing actions in the generation and degeneration of hippocampal neuroarchitecture. *J. Neurosci.* 9, 328-340.

186. Mattson M. P. and Rychlik B. (1990) Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor. *Int. J. devl Neurosci.* 8, 399–415.

187. McCarthy K. D. and de Vella J. (1980) Preparations of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. *J. Cell Biol.* 85, 890–902.

188. McKeon R. J., Schreiber R. C., Rudge J. S. and Silver J. (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. *J. Neurosci.* 11, 3391–3411.

189. Melner M. H., Low K. G., Allen R. G., Nielsen C. P., Young S. L. and Saneto R. P. (1990) The regulation of proenkephalin expression in a district population of glial cells. *Eur. molec. Biol. Org. J.* 9, 791–796.

190. Merrill J. E., Koyanagi Y., Zack J., Thomas L., Martin F. and Chen I. S. (1992) Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. *J. Virol.* 66, 2217–2225.

191. Miller R. H., Fulton B. P. and Raff M. C. (1984) A novel type of glial cell associated with nodes of Ranvier in rat optic nerve. *Eur. J. Neurosci.* 1, 172–180.

192. Miller R. H. and Raff M. C. (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. *J. Neurosci.* 4, 585–592.
nervous system. In Spinal Cord Reconstruction (eds Kao C. C., Bunge R. P. and Reier P. J.), pp. 163–195. Raven Press, New York.

233. Reifenberger G., Deckert M. and Wechsler W. (1989) Immunohistochemical determination of protein kinase C expression and proliferative activity in human brain tumors. Acta neuropath. Berlin 78, 166–175.

234. Robbins D. S., Shrirai Y., Dreydase B. E., Lieberman A., Shin H. S. and Shin M. L. (1987) Production of cytotoxic factor by oligodendrocytes by stimulated astrocytes. J. Immunol. 139, 2593–2597.

235. Rodriguez M., Pierce M. L. and Howie E. A. (1987) Immune response gene products (Ia antigens) on glial and endothelial cells in virus-induced demyelination. J. Immun. 138, 3438–3442.

236. Rogister B., Leprince P., Delere P., Van Damme J., Billiau A. and Moonen G. (1990) Enhanced release of plasminogen activator inhibitor(s) but not of plasminogen activators by cultured rat glial cells treated with interleukin-1. Glia 3, 252–257.

237. Rosenberg P. A. (1991) Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia 4, 91–100.

238. Rosenberg P. A., Amin S. and Leitner M. (1992) Glutamate uptake disguises neurotoxic potential of glutamate agonists in cerebral cortex in dissociated cell culture. J. Neurosci. 12, 56–61.

239. Sakai K., Tabira T., Endoh M. and Steinman L. (1986) Ia expression in chronic relapsing experimental allergic encephalomyelitis induced by long-term cultured T cell lines in mice. Lab. Invest. 54, 345–352.

240. Satoh J., Kastrukoff L. F. and Kim S. U. (1991) Cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes. J. Neuropath. exp. Neurol. 50, 215–226.

241. Satoh J., Kim S. U., Kastrukoff L. F. and Takei F. (1991) Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes. J. Neurosci. Res. 29, 1–12.

242. Schmidt B., Stoll G., Toyka K. V. and Hartung H. P. (1990) Rat astrocytes express interferon-gamma immuno-reactivity in normal optic nerve and after nerve transection. Brain Res. 515, 347–350.

243. Schmidt-Kastner R., Szymas J. and Hossmann K. A. (1990) Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience 38, 527–540.

244. Selmaj K., Raine C. S., Cannella B. and Brosnan C. F. (1991) Identification of lymphoptxin and tumor necrosis factor in multiple sclerosis lesions. J. clin. Invest. 87, 949–954.

245. Selimaj K. W. and Raine C. S. (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23, 339–346.

246. Shore V. G., Smith M. E., Perret V. and Laskaris M. A. (1987) Alterations in plasma lipoproteins and apolipoproteins in experimental allergic encephalomyelitis. J. Lipid Res. 28, 119–129.

247. Selmaj-Kastner R., Szynas J. and Hossmann K. A. (1990) Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience 38, 527–540.

248. Selmaj K., Raine C. S., Cannella B. and Brosnan C. F. (1991) Identification of lymphoptxin and tumor necrosis factor in multiple sclerosis lesions. J. clin. Invest. 87, 949–954.

249. Selimaj K. W. and Raine C. S. (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23, 339–346.

250. Srebro Z. (1971) Periventricular Gomori-positive glia in brains of X-irradiated rats. Brain Res. 111–118.

251. Siman R., Card J. P. and Davis L. G. (1990) Proteolytic processing of beta-amyloid precursor by calpain I. J. Neurosci. 10, 2400–2411.

252. Siman R., Card J. P., Nelson R. B. and Davis L. G. (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3, 275–285.

253. Smith M. E., Somera F. P. and Eng L. F. (1983) Immunocytochemical staining for glial fibrillary acidic protein and endotheial cells in virus-induced demyelination. J. Neuropath. exp. Neurol. 42, 91–100.

254. Snyder S. H. (1991) Neuroscience. Vehicles of inactivation [news]. Nature 354, 187.

255. Snyder S. H. (1991) Neuroscience. Vehicles of inactivation [news]. Nature 354, 187.

256. Srebro Z. (1971) Periventricular Gomori-positive glia in brains of X-irradiated rats. Brain Res. 111–118.

257. Srebro Z. (1971) Periventricular Gomori-positive glia in brains of X-irradiated rats. Brain Res. 111–118.

258. Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N. and Ames B. N. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046.

259. Stoll G. and Miller H. W. (1986) Macrophages in the peripheral nervous system and astroglia in the central nervous system of rat commonly express apolipoprotein E during development but differ in their response to injury. Neurosci. Lett. 72, 233–238.

260. Sugiyama K., Brunori A. and Mayer M. L. (1989) Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus. Neuroscience 32, 779–791.

261. Sun D. and Weckerle H. (1986) Ia-restricted ecephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. J. Exp. Med. 163, 70–72.

262. Suzumura A., Lavi E., Weiss S. R. and Silberberg D. H. (1986) Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. J. Immunol. 136, 257–259.

263. Takami K., Iwane M., Kiyota Y., Miyamoto M., Tsukuda R. and Shiosaka S. (1992) Increase in basic fibroblast growth factor immunoreactivity and its mRNA level in rat brain following transient forebrain ischemia. Exp. Brain Res. 90, 1–10.

264. Tedeschi B., Barrett J. N. and Keane R. W. (1986) Astrocytes produce interleukin-1 that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol. 102, 2244–2253.

265. Thomson A. W. (1991) The Cytokine Handbook. Academic Press, London.

266. Tooyama I., Akiyama H., McGee P. L., Hara Y., Yasuhara O. and Kimura H. (1991) Acidic fibroblast growth factor–like immunoreactivity in brain of Alzheimer patients. Neurosci. Lett. 121, 155–158.
267. Tranque P., Robbins R., Naftolin F. and Andrade-Gordon P. (1992) Regulation of plasminogen activators and type-I plasminogen activator inhibitor by cyclic AMP and phorbol ester in rat astrocytes. *Glia* 6, 163-171.

268. Traugott U. and Lebon P. (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. *Ann. Neurol.* 24, 243-251.

269. Traugott U. and Lebon P. (1988) Interferon-gamma and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. *J. neurol. Sci.* 84, 257-264.

270. Traugott U., Scheinberg L. C. and Raine C. S. (1985) On the presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. *J. Neuroimmunol.* 8, 1-14.

271. Tyrer W. R., Glass J. D., Griffin J. W., Becker P. S., McArthur J. C., Bezman L. and Griffin D. E. (1992) Cytokine expression in the brain during the acquired immunodeficiency syndrome. *Ann. Neurol.* 31, 349-360.

272. Uhl G. R. (1992) Neurotransmitter transporters (plaus): a promising new gene family. *Trends Neurosci.* 15, 265-268.

273. Van Nostrand W. E., Wagner S. L., Suzuki M., Choi B. H., Farrow J. S., Geddes J. W., Catman C. W. and Cunningham D. D. (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. *Nature* 341, 546-549.

274. Vass K. and Laemmli H. (1990) Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. *Am. J. Path.* 137, 789-800.

275. Vidovic M., Sparacio S. M., Elovitz M. and Benveniste E. N. (1990) Induction and regulation of class II major histocompatibility complex mRNA expression in astrocytes by interferon-gamma and tumor necrosis factor-alpha. *J. Neuroimmunol.* 30, 189-200.

276. Vinos S. A. and Rubinstein L. J. (1985) Simultaneous expression of glial fibrillary acidic (GFA) protein and neuron-specific enolase (NSE) by the same reactive or neoplastic astrocytes. *Neuropath. appl. Neurobiol.* 11, 349-359.

277. Walicke P., Cowan W. M., Baird A. and Guillemin R. (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. *Proc. natn. Acad. Sci. U.S.A.* 83, 3012-3016.

278. Whitaker J. N., Herman P. K., Sparacio S. M., Zhou S. R. and Benveniste E. N. (1991) Changes induced in astrocyte cathepsin D by cytokines and leupeptin. *J. Neurochem.* 57, 406-414.

279. Whittemore S. R., Larkfors L., Ebendal T., Holets V. R., Ericsson A. and Persson H. (1987) Increased beta-nerve growth factor messenger RNA and protein levels in neonatal rat hippocampus following specific cholinergic lesions. *J. Neurosci.* 7, 244-251.

280. Willmore L. J. and Triggs W. J. (1991) Iron-induced lipid peroxidation and brain injury responses. *Int. J. dev. Neurosci.* 9, 175-180.

281. Wong G. H., Bartlett P. F., Clark Lewis I., Battye F. and Schrader J. W. (1984) Inducible expression of H-2 and Ia antigens on brain cells. *Nature* 310, 688-691.

282. Yamada M., Zurbriggen A., Oldstone M. B. and Fujinami R. S. (1991) Common immunologic determinant between human immunodeficiency virus type 1 gp120 and astrocytes. *J. Virol.* 65, 1370-1376.

283. Yamanoto C. and Kawana E. (1990) Immunohistochemical detection of laminin and vimentin in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. *Okajimas. Folia Anat. Jpn.* 67, 21-29.

284. Yankner B. A. and Shooter E. M. (1982) The biology and mechanism of action of nerve growth factor. *A. Rev. Biochem.* 51, 854-868.

285. Yoshida K. and Gage F. H. (1991) Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes. *Brain Res.* 538, 118-126.

286. Yoshida K. and Gage F. H. (1992) Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. *Brain Res.* 569, 14-25.

287. Young J. K., Garvey J. S. and Huang P. C. (1991) Glial immunoreactivity for metatungstic acid in the rat brain. *Glia* 4, 602-610.

288. Zafra F., Lindholm D., Castren E., Hartikka J. and Thoenen H. (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. *J. Neurosci.* 12, 4793-4799.

289. Zlotnik I. (1968) The reaction of astrocytes to acute virus infections of the central nervous system. *Br. J. exp. Pathol.* 49, 555-564.

(Accepted 23 November 1992)