(PARA)-KÄHLER WEYL STRUCTURES

P. GILKEY AND S. NIKČEVIĆ

ABSTRACT. We work in both the complex and in the para-complex categories and examine (para)-Kähler Weyl structures in both the geometric and in the algebraic settings. The higher dimensional setting is quite restrictive. We show that any (para)-Kähler Weyl algebraic curvature tensor is in fact Riemannian in dimension $m \geq 6$; this yields as a geometric consequence that any (para)-Kähler Weyl geometric structure is trivial for $m \geq 6$. By contrast, the 4-dimensional setting is, as always, rather special as it turns out that there are (para)-Kähler Weyl algebraic curvature tensors which are not Riemannian if $m = 4$. Since every (para)-Kähler Weyl algebraic curvature tensor is geometrically realizable and since every 4-dimensional Hermitian manifold admits a unique (para)-Kähler Weyl structure, there are also non-trivial 4-dimensional Hermitian (para)-Kähler Weyl manifolds.

MSC: 53B05, 15A72, 53A15, 53B10, 53C07, 53C25.

1. Introduction

Let ∇ be a torsion free connection on a pseudo-Riemannian manifold (M, g) of even dimension $m = 2\bar{m} \geq 4$. The triple (M, g, ∇) is said to be a Weyl structure if there exists a smooth 1-form ϕ so that $\nabla g = -2\phi \otimes g$. Such a geometric structure was introduced by Weyl [37] in an attempt to unify gravity with electromagnetism. Although this approach failed for physical reasons, these geometries are still studied for their intrinsic interest [2, 10, 21, 27, 28]; they also appear in the mathematical physics literature [12, 20, 26]. Weyl geometry is relevant to submanifold geometry [25] and to contact geometry [15]. The pseudo-Riemannian setting also is important [1, 24, 32] as are para-complex geometries [11, 13]. See also [9, 22, 30, 31] for related results. The literature in the field is vast and we can only give a flavor of it for reasons of brevity. We shall be primarily interested in the Hermitian setting. However since there are applications to higher signature geometry, we include the pseudo-Hermitian context as well; similarly we treat para-Hermitian geometries as they can be studied with little additional effort.

Section 1.1 of the Introduction deals with the real setting. In Theorem 1.1, we recall the basic theorems of geometric realizability for affine, Riemannian, and Weyl curvature models and in Theorem 1.2 provide various characterizations of the notion of a trivial Weyl structure. Section 1.2 treats the (para)-Kähler setting. In Theorem 1.3 we recall geometric realizability results for (para)-Kähler affine and (para)-Kähler Riemannian curvature models. Theorem 1.4 presents results in the geometric setting for (para)-Kähler Weyl manifolds. Theorem 1.5 is one of the two main results of this paper: every (para)-Kähler curvature model is geometrically realizable. The proof of Theorem 1.5 relies on a curvature decomposition result; the second main result of the paper, Theorem 1.6, discusses the space of (para)-Kähler Weyl algebraic curvature tensors.

1.1. Riemannian, Affine, and Weyl geometry. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space of signature (p, q) and dimension $m = p + q; \langle \cdot, \cdot \rangle$ is positive definite. A 4-tensor $A \in \otimes^4 V^*$ is said to be a Riemannian algebraic curvature tensor if A satisfies the symmetries of the Riemann curvature tensor,
The defining 1-form \(\phi \) and these are the Weyl algebraic curvature tensors. If there is an additional curvature symmetry which pertains in Weyl geometry (see, for example, the discussion in [17]):

\[
A(x, y, z, w) + A(y, x, z, w) = 0, \quad (1.a)
\]
\[
A(x, y, z, w) + A(y, z, x, w) + A(z, x, y, w) = 0, \quad (1.b)
\]
\[
A(x, y, z, w) = A(w, z, x, y). \quad (1.c)
\]

Let \(\mathfrak{A}(V) \) be the subspace of \(\otimes^4 V^* \) which consists of all tensors satisfying these relations. We say that a triple \(\mathcal{R} := (V, \langle \cdot, \cdot \rangle, A) \) is a Riemannian curvature model if \(A \in \mathfrak{A}(V) \). One says that \(\mathcal{R} \) is geometrically realizable by a pseudo-Riemannian manifold if there is a point \(P \) of some pseudo-Riemannian manifold \((M, g) \) and if there is an isomorphism \(\Phi : V \rightarrow T_P M \) so:

\[
\Phi^* g_P = \langle \cdot, \cdot \rangle \quad \text{and} \quad \Phi^* R^g_P = A
\]

where \(R^g \) is the curvature tensor of the Levi-Civita connection \(\nabla^g \) on \(M \).

Affine differential geometry extends Riemannian geometry. A pair \((M, \nabla) \) is said to be an affine manifold if \(\nabla \) is a torsion free connection on the tangent bundle \(TM \). The curvature \(R^\nabla \) of the connection \(\nabla \) then satisfies the identities of Equations (1.a) and (1.b) but need no longer satisfy Equation (1.c): if \(A \in \otimes^4 V^* \), one says \(A \) is an affine algebraic curvature tensor if \(A \) satisfies Equations (1.a) and (1.b) and one lets \(\mathfrak{A}(V) \) be the set of all such tensors. Note that the corresponding curvature operator \(\hat{A} \) and the curvature tensor \(A \) are related by the identity

\[
\langle \hat{A}(x,y)z,w \rangle = A(x,y,z,w).
\]

The pair \(\mathcal{A} := (V, A) \) is said to be an affine curvature model if \(A \in \mathfrak{A}(V) \); such an \(\mathcal{A} \) is said to be geometrically realizable by an affine manifold if there is a point \(P \) of some affine manifold \((M, \nabla) \) and if there is an isomorphism \(\Phi : V \rightarrow T_P M \) so that \(\Phi^* R^g_P = A \).

Weyl geometry is in a sense midway between Riemannian geometry and affine geometry. A triple \((M, g, \nabla) \) is said to be a Weyl manifold if \((M, g) \) is a pseudo-Riemannian manifold, if \((M, \nabla) \) is an affine manifold, and if there exists a smooth 1-form \(\phi \) on \(M \) so that the structures are related by the equation:

\[
\nabla g = -2\phi \otimes g. \quad (1.d)
\]

Define the Ricci-tensor \(\rho = \rho_V \) and the alternating Ricci tensor \(\rho_a = \rho_{a,V} \) by:

\[
\rho(x,y) := \text{Tr}(z \rightarrow R(z,x)y),
\]
\[
\rho_a(x,y) := \frac{1}{2} \{ \rho(x,y) - \rho(y,x) \}.
\]

There is an additional curvature symmetry which pertains in Weyl geometry (see, for example, the discussion in [17]):

\[
R(x,y,z,w) + R(x,y,w,z) = -\frac{4}{m} \rho_a(x,y) g(z,w). \quad (1.e)
\]

The defining 1-form \(\phi \) is related to the curvature by the equation:

\[
d\phi = -\frac{1}{m} \rho_a. \quad (1.f)
\]

Let \(\mathfrak{W}(V) \subset \otimes^4 V^* \) be space of 4-tensors satisfying Equations (1.a), (1.b), and (1.e); these are the Weyl algebraic curvature tensors. If \(A \in \mathfrak{A} \), then \(\rho_a = 0 \) and \(A(x,y,z,w) + A(x,y,w,z) = 0 \). Consequently:

\[
\mathfrak{A}(V) \subset \mathfrak{W}(V) \subset \mathfrak{A}(V).
\]

A triple \(\mathcal{W} := (V, \langle \cdot, \cdot \rangle, A) \) is said to be a Weyl curvature model if \(A \in \mathfrak{W}(V) \). The notion of geometric realizability is defined analogously in this setting.

We refer to [16, 8, 17] for the proof of the following result; the first two assertions are, of course, well known:

Theorem 1.1.
(1) Every Riemannian curvature model is geometrically realizable by a pseudo-Riemannian manifold.
(2) Every affine curvature model is geometrically realizable by an affine manifold.
(3) Every Weyl curvature model is geometrically realizable by a Weyl manifold.

Weyl geometry is a conformal theory; if \(g_1 = \varepsilon^2 g \) is conformally equivalent to \(g \) and if \((M, g, \nabla)\) is a Weyl manifold, then \((M, g_1, \nabla)\) is again a Weyl manifold with associated 1-form \(\phi_1 \) given by \(\phi_1 = \phi - df \). One has the following well known result characterizing trivial Weyl structures (see, for example, [17]):

Theorem 1.2. Let \((M, g, \nabla)\) be a Weyl manifold with \(H^1(M; \mathbb{R}) = 0 \). The following assertions are equivalent and if any is satisfied, then the Weyl structure is said to be trivial:

1. \(d\phi = 0 \).
2. \(\nabla = \nabla^{g_1} \) for some conformally equivalent metric \(g_1 \).
3. \(R^\nabla \in \mathfrak{R} \).

1.2. Kähler geometry. We now pass from the real to the (para)-complex setting. Let \(V \) be a real vector space of even dimension \(m = 2\tilde{m} \). A complex structure on \(V \) is an endomorphism \(J_- \) of \(V \) so \(J_-^2 = -\text{Id} \). Similarly, a para-complex structure on \(V \) is an endomorphism \(J_+ \) of \(V \) so \(J_+^2 = \text{Id} \) and \(\text{Tr}(J_+) = 0 \); this trace-free condition is automatic in the complex setting but must be imposed in the para-complex setting. It is convenient to introduce the notation \(J_{\pm} \) in order to have a common formulation in both contexts although we shall never be considering both structures simultaneously. In the geometric setting, \((M, J_{\pm})\) is said to be an almost (para)-complex manifold if \(J_{\pm} \) is a smooth endomorphism of the tangent bundle so that \((T_P M, J_\pm)\) is a (para)-complex structure for every \(P \in M \). The almost (para)-complex structure \(J_\pm \) is said to be integrable and the pair \((M, J_{\pm})\) is said to be a (para)-complex manifold if there are coordinate charts \((x^1, y^1, \ldots, x^{\tilde{m}}, y^{\tilde{m}})\) covering \(M \) so that:

\[
J_{\pm} \left\{ \frac{\partial}{\partial x_i} \right\} = \frac{\partial}{\partial y_i} \quad \text{and} \quad J_{\pm} \left\{ \frac{\partial}{\partial y_i} \right\} = \pm \frac{\partial}{\partial x_i} \quad \text{for} \quad 1 \leq i \leq \tilde{m}.
\]

(1.8)

If \((M, J_{\pm})\) is an almost (para)-complex manifold and if \(\nabla \) is a torsion free connection on \(M \), then \((M, J_{\pm}, \nabla)\) is said to be a Kähler affine manifold if \(\nabla J_{\pm} = 0 \); this assumption then implies that \(J_{\pm} \) is integrable. The curvature satisfies an extra symmetry in this setting:

\[
R(x, y, z, w) = \mp R(x, y, J_{\pm} z, J_{\pm} w).
\]

(1.9)

A (para)-complex pseudo-Riemannian manifold \((M, g, J_\pm)\) is said to be a (para)-Kähler Hermitian manifold if \(J_\pm^* g = \mp g \) and \(\nabla^g J_\pm = 0 \). Finally, a (para)-complex-Riemannian Weyl manifold \((M, g, J_\pm, \nabla)\) is said to be a (para)-Kähler Weyl manifold if \(\nabla J_\pm = 0 \).

We now pass to the algebraic context. Define the space of (para)-Kähler tensors \(\mathfrak{R}_\pm \), the space of (para)-Kähler affine algebraic curvature tensors \(\mathfrak{R}_{\pm, A} \), the space of (para)-Kähler Riemannian algebraic curvature tensors \(\mathfrak{R}_{\pm, R} \), and the space of (para)-Kähler Weyl algebraic curvature tensors \(\mathfrak{R}_{\pm, W} \) by setting, respectively:

\[
\mathfrak{R}_\pm := \{ A \in \otimes^4 V^* : A(x, y, z, w) = \mp A(x, y, J_{\pm} z, J_{\pm} w) \},
\]

\[
\mathfrak{R}_{\pm, A} := \mathfrak{R}_\pm \otimes \mathfrak{A}, \quad \mathfrak{R}_{\pm, R} := \mathfrak{R}_\pm \otimes \mathfrak{R}, \quad \mathfrak{R}_{\pm, W} := \mathfrak{R}_\pm \otimes \mathfrak{W}.
\]

A triple \(\mathcal{K}_A = (V, J_\pm, A) \) is said to be a (para)-Kähler affine curvature model if \((V, J_\pm)\) is (para)-complex and if \(A \in \mathfrak{R}_{\pm, A} \). A quadruple \(\mathcal{K}_R = (V, \langle \cdot, \cdot \rangle, J_\pm, A) \) is said to be a (para)-Kähler Hermitian curvature model if \(J_\pm^* \langle \cdot, \cdot \rangle = \mp \langle \cdot, \cdot \rangle \) and if
A ∈ \mathcal{R}_{\pm, \mathbb{R}}. A quadruple \(K W = (V, \langle \cdot, \cdot \rangle, J, A) \) is said to be a \((para)-\text{Kähler Weyl curvature model}\) if \(J^* \langle \cdot, \cdot \rangle = \mp \langle \cdot, \cdot \rangle \) and if \(A \in \mathcal{K}_{\pm, W} \).

Let \(\langle \cdot, \cdot \rangle \) have signature \((p,q)\); if \(p = 0 \), then \(\langle \cdot, \cdot \rangle \) is positive definite while if \(q = 0 \), then \(\langle \cdot, \cdot \rangle \) is negative definite. In the para-complex setting, \(p = q \) so \(\langle \cdot, \cdot \rangle \) is necessarily indefinite. In the complex setting, \(p \) and \(q \) must both be even; we emphasize that we do not assume necessarily that the inner product is positive definite. We refer to [5] for the proof of Assertion (1) and to [4] for the proof of Assertion (2) in the following result:

Theorem 1.3.

1. Every \((para)-\text{Kähler affine curvature model}\) is geometrically realizable by a \((para)-\text{Kähler affine manifold}\).
2. Every \((para)-\text{Kähler Hermitian curvature model}\) is geometrically realizable by a \((para)-\text{Kähler Hermitian manifold}\).

The \((para)-\text{Kähler form} \Omega_{\pm} \) is defined by the identity:

\[
\Omega_{\pm}(x, y) := g(x, J_{\pm}y).
\]

Let \(\delta \) be the co-derivative. We refer to [29, 35, 36] for the proof of Assertion (1) in the following result in the positive definite setting – the generalization to the indefinite setting is immediate. We refer to [23] for the proof of Assertion (2) in the Riemannian setting – the extension to the general setting is immediate:

Theorem 1.4.

1. Let \(m \geq 6 \). If \((M, g, J_\pm, \nabla) \) is a \((para)-\text{Kähler Weyl manifold}\), then the associated Weyl structure is trivial, i.e. locally there is a conformally equivalent metric \(g_1 \) so that \((M, g_1, J_\pm) \) is Kähler and so that \(\nabla = \nabla^{g_1} \).
2. Every \((para)-\text{Hermitian manifold}\) of dimension 4 admits a unique \((para)-\text{Kähler Weyl structure} \) defined by taking \(\phi = \pm \frac{1}{2} J_\pm \delta \Omega_{\pm} \).

The following theorem is the first main result of this paper:

Theorem 1.5. Every \((para)-\text{Kähler Weyl curvature model}\) is geometrically realizable by a \((para)-\text{Kähler Weyl manifold}\).

Curvature decompositions play a central role in modern differential geometry. The following theorem is the second main result of this paper and will play a central role in the proof of Theorem 1.5:

Theorem 1.6. Let \((V, \langle \cdot, \cdot \rangle, J_{\pm}) \) be a \((para)-\text{Hermitian vector space}\).

1. If \(m \geq 6 \), then \(\mathcal{R}_{\pm, \mathbb{R}} = \mathcal{R}_{\pm, \mathbb{R}} \).
2. If \(m = 4 \), then \(\mathcal{R}_{\pm, \mathbb{R}} = \mathcal{R}_{\pm, \mathbb{R}} \oplus L^2_{0, \mp} \) where

\[
\rho_a : L^2_{0, \mp} \xrightarrow{\subset} \Lambda^2_{\mp} := \{ \Phi \in \Lambda^2(V^*) : \Phi \perp \Omega_{\pm} \quad \text{and} \quad J_\pm^* \Phi = \mp \Phi \}.
\]

Theorem 1.6 is one of the facts about 4-dimensional geometry that distinguishes it from the higher dimensional setting; the module \(L^2_{0, \mp} \) provides additional curvature possibilities if \(m = 4 \).

Curvature decompositions are fundamental in establishing geometrical realizability results. For example, we can use Theorem 1.6 (1) to establish Theorem 1.4 (1) as follows. Suppose that \((M, g, J_\pm, \nabla) \) is a \((para)-\text{Kähler Weyl manifold} \) of dimension \(m \geq 6 \). By Theorem 1.6, \(R^\nabla \in \mathcal{R}_{\pm, \mathbb{R}} \subset \mathcal{R} \). By Theorem 1.2, there is a locally conformally equivalent metric \(g_1 \) so that \(\nabla = \nabla^{g_1} \); \(g_1 \) is globally defined if \(H^1(M; \mathbb{R}) = 0 \).

Here is a brief outline to the remainder of this paper. In Section 2, we review well known previous results concerning curvature decompositions that we shall need. Theorem 1.6 is established in Section 3 and Theorem 1.5 is established in Section 4.
2. Curvature decompositions

In Section 2.1, the structure groups O, U_\pm, and U^*_\pm will be defined and the fundamental facts needed from representation theory will be established. In Section 2.2, results of Singer and Thorpe [33] giving the decomposition of \mathfrak{F} and results of Higa [18, 19] giving the decomposition of \mathfrak{M} as an O-module will be presented. In Section 2.3 the Tricerri–Vanhecke decomposition [34] of the space of Riemannian algebraic curvature tensors \mathfrak{F} and the space of Kähler algebraic curvature tensors \mathfrak{K} as U^*_\pm modules will be outlined; this will rise to the decomposition of the space of Weyl algebraic curvature tensors \mathfrak{W} as a U^*_\pm module. As we shall not need the decomposition of \mathfrak{K} as a U^*_\pm module, we shall omit this decomposition and instead refer to the discussion in [6].

2.1. Representation theory. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. The orthogonal group O is the subgroup of all invertible linear transformations of V preserving the inner product. If $(V, \langle \cdot, \cdot \rangle, J_\pm)$ is a (para)-Hermitian vector space, define:

$$
U_\pm := \{ T \in O : TJ_\pm = J_\pm T \},
$$

$$
U^*_\pm := \{ T \in O : TJ_\pm = J_\pm T \text{ or } TJ_\pm = -J_\pm T \}.
$$

It is convenient to work with the \mathbb{Z}_2 extensions U_\pm^* as we may then interchange the roles of J_\pm and $-J_\pm$. Let χ be the \mathbb{Z}_2 valued character of U_\pm^* so that:

$$
J_\pm T = \chi(T)TJ_\pm \quad \text{and} \quad T^*\Omega_\pm = \chi(T)\Omega_\pm \quad \text{for } T \in U_\pm^*.
$$

By an abuse of notation, we identify χ with the associated 1-dimensional module. We can extend $\langle \cdot, \cdot \rangle$ to a natural non-degenerate inner product on $\otimes^k V$ and $\otimes^k V^\ast$. The following observation is fundamental in the subject:

Lemma 2.1. Let $G \in \{ O, U_-, U_-^*, U_+^* \}$ and let ξ be a G-submodule of $\otimes^k V^\ast$. Then the restriction of the inner product on $\otimes^k V^\ast$ to ξ is non-degenerate.

Proof. Let $\{ e_i \}$ be an orthonormal basis for V and let $\{ e^i \}$ be the associated dual basis for V^\ast. If $I = (i_1, \ldots, i_k)$ is a multi-index, set $e^I = e^{i_1} \otimes \ldots \otimes e^{i_k}$. Then:

$$
(e^I, e^J) := \langle e^{i_1}, e^{j_1} \rangle \cdots \langle e^{i_k}, e^{j_k} \rangle = \begin{cases} 0 & \text{if } I \neq J \\ \pm 1 & \text{if } I = J \end{cases}.
$$

(2.a)

Let $Te_i = \langle e_i, e_i \rangle \cdot e_i$ define an element $T \in O$. Suppose that ξ is an O invariant subspace of $\otimes^k V^\ast$. Decompose $\xi = \xi_+ \oplus \xi_-$ and decompose $\otimes^k V^\ast = W_+ \oplus W_-$ into the ± 1 eigenspaces of T. Since $T \in O$, these decompositions are orthogonal direct sums. By Equation (2.a), W_+ is spacelike and W_- is timelike. Since $\xi_+ \subset W_+$, ξ_- is spacelike and ξ_- is timelike; the Lemma now follows in this special case. If $G = U_-$ or if $G = U_+^*$, then we can choose the orthonormal basis so that

$$
J_- e_{2\nu-1} = e_{2\nu} \quad \text{and} \quad J_- e_{2\nu} = -e_{2\nu-1}.
$$

Since $J_-^2 \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$, $J_- T = TJ_-$. Thus $T \in G$ and the same argument pertains. Finally suppose $G = U^*_+$. We can choose the basis so

$$
J_+ e_{2\nu-1} = e_{2\nu} \quad \text{and} \quad J_+ e_{2\nu} = e_{2\nu-1}
$$

where $e_{2\nu-1}$ is spacelike and $e_{2\nu}$ is timelike. We now have $T \in U^*_+ - U_+$.

We note that Lemma 2.1 fails for the group $G = U_+$. For example, let V_\pm be the ± 1 eigenspaces of J_+; then $J_\pm V_\pm = V_\pm$ and V_\pm is totally isotropic. We can combine Lemma 2.1 with same arguments as used in the positive definite setting to establish the following result; we omit details in the interests of brevity:

Lemma 2.2. Let $G \in \{ O, U_-, U_-^*, U_+^* \}$ and let ξ be a G-submodule of $\otimes^k V^\ast$.

(1) There is an orthogonal direct sum decomposition of $\xi = \xi_1 \oplus \ldots \oplus \xi_k$ into irreducible G-submodules of ξ. The multiplicity with which a given irreducible G-module η appears in ξ is independent of the particular decomposition which is chosen. If ξ_1 appears with multiplicity 1 in the decomposition of ξ and if η is any G-submodule of ξ, then either $\xi_1 \subset \eta$ or $\xi_1 \perp \eta$.

(2) If $\xi_1 \to \xi \to \xi_2$ is a short exact sequence of G-modules, then ξ is isomorphic to $\xi_1 \oplus \xi_2$ as a G-module.

We can illustrate Lemma 2.2 as follows. Decompose

$$\otimes^2 V^* = \Lambda^2(V^*) \oplus S^2(V^*)$$

as the direct sum of the alternating and the symmetric bilinear forms. We can further decompose $\Lambda^2(V^*) = \Lambda^2 \pm \chi \oplus \Lambda^2 \pm$ and $S^2(V^*) = S^2 \pm \oplus I \oplus S^2 \pm$ where

$$\Lambda^2 \pm := \{ \omega \in \Lambda^2 : J^2 \pm = \pm \omega \}, \quad \chi := \Omega \cdot \mathbb{R},$$

$$\Lambda^2 \pm := \{ \omega \in \Lambda^2 : J^2 \pm = \mp \omega, \omega \perp \Omega \},$$

$$S^2 \pm := \{ \theta \in S^2 : J^2 \pm \theta = \pm \theta \}, \quad I := \langle \cdot, \cdot \rangle \cdot \mathbb{R},$$

$$S^2 \pm := \{ \theta \in S^2 : J^2 \pm \theta = \mp \theta, \theta \perp \langle \cdot, \cdot \rangle \}.$$

Lemma 2.3. Let $(V, \langle \cdot, \cdot \rangle, J_\pm)$ be a (para)-Hermitian vector space. We have the following decomposition of $\Lambda^2(V^*)$, $S^2(V^*)$, and $\otimes^2 V^*$ into inequivalent and irreducible U^\pm modules:

$$\Lambda^2(V^*) = \Lambda^2 \pm \oplus \chi \oplus \Lambda^2 \pm,$$

$$S^2(V^*) = S^2 \pm \oplus I \oplus S^2 \pm,$$

$$\otimes^2 V^* = \Lambda^2 \pm \oplus \chi \oplus \Lambda^2 \pm \oplus S^2 \pm \oplus I \oplus S^2 \pm.$$

We note that $\Lambda^2 \pm$ and $S^2 \pm$ are isomorphic U^\pm modules, that $\Lambda^2 \pm$ is isomorphic to $S^2 \pm \oplus \chi$ as a U^\pm module, and that $\Lambda^2 \pm$ is not an irreducible U^\pm module. We complete our discussion of elementary representation theory with the following diagonalization result (see, for example, the discussion in [7]):

Lemma 2.4. If ξ is a non-trivial proper U^\pm submodule of $\Lambda^2 \pm \oplus \Lambda^2 \pm$, then there exists $(a, b) \neq (0, 0)$ so $\xi = \xi(a, b) := \{(a\theta, b\theta) \} \theta \in \Lambda^2 \pm \subset \Lambda^2 \pm \oplus \Lambda^2 \pm$.

2.2. The Singer–Thorpe and the Higa decompositions. We now examine the O-module structure of \mathfrak{R} and \mathfrak{W}. Let

$$S^2_0 := \{ \theta \in S^2 : \theta \perp \langle \cdot, \cdot \rangle \} \quad \text{and} \quad \mathcal{C} := \ker(\rho) \cap \mathfrak{R}$$

be the O modules of trace free symmetric 2-tensors and Weyl conformal curvature tensors, respectively. We refer to Singer and Thorpe [33] for the proof of Assertion (1) and to Higa [18, 19] for the proof of Assertion (2) in the following result:

Theorem 2.5. Let $n \geq 4$.

(1) We may decompose $\mathfrak{R} = I \oplus S^2_0 \oplus \mathcal{C}$ as the orthogonal direct sum of irreducible and inequivalent O modules.

(2) We may decompose $\mathfrak{W} = I \oplus S^2_0 \oplus \mathcal{C} \oplus \mathfrak{P}$ as the orthogonal direct sum of irreducible and inequivalent O modules. Here ρ provides an O module isomorphism from \mathfrak{P} to Λ^2 with the inverse embedding $\Xi : \Lambda^2 \cong \mathfrak{P} \subset \mathfrak{W}$ given by:

$$\Xi(\psi)(x, y, z, w) := 2\psi(x, y)(z, w) + \psi(x, z)(y, w) - \psi(y, z)(x, w)$$

$$- \psi(x, w)(y, z) + \psi(y, w)(x, z).$$

(2.b)
2.3. The Tricerri-Vanhecke decompositions. The following decompositions of \mathfrak{R} and $\mathfrak{R}_{\pm,\mathfrak{R}}$ as \mathcal{U}_\pm modules was given by Tricerri and Vanhecke [34] in the positive definite setting; they extend easily to the more general context [4, 5]. The decomposition of \mathfrak{M} as a \mathcal{U}_\pm^* module then follows from Lemma 2.3 and Theorem 2.5.

Theorem 2.6. Let $(V, \langle \cdot, \cdot \rangle, J_\pm)$ be a (para)-Hermitian vector space. We have the following decompositions of \mathfrak{R}, $\mathfrak{R}_{\pm,\mathfrak{R}}$, and \mathfrak{M} as \mathcal{U}_\pm^* modules:

\[
\mathfrak{R} = W_{\pm,1} \oplus \ldots \oplus W_{\pm,10},
\]

\[
\mathfrak{R}_{\pm,\mathfrak{R}} = W_{\pm,1} \oplus W_{\pm,2} \oplus W_{\pm,3},
\]

\[
\mathfrak{M} = W_{\pm,1} \oplus \ldots \oplus W_{\pm,13}.
\]

If $n = 4$, we omit the modules $\{W_{\pm,5}, W_{\pm,6}, W_{\pm,10}\}$. If $n = 6$, we omit the module $W_{\pm,6}$. The decomposition of Equation (2.c) is then into irreducible \mathcal{U}_\pm^* modules. We have \mathcal{U}_\pm^* module isomorphisms:

\[
W_{\pm,1} \cong W_{\pm,4} \cong \mathfrak{l}, \quad W_{\pm,2} \cong W_{\pm,5} \cong S_{0,\mp}^2, \quad W_{\pm,9} \cong W_{\pm,13} \cong \Lambda_\pm^2, \quad (2.d)
\]

\[
W_{\pm,8} \cong S_{\mp}^2, \quad W_{\pm,11} \cong \chi, \quad W_{\pm,12} \cong \Lambda_{0,\mp}^2. \quad (2.e)
\]

With exception of the isomorphisms described in Equation (2.d), these are inequivalent \mathcal{U}_\pm^* modules. The isomorphism Ψ from Λ_+^2 to $W_{\pm,9}$ is given by setting

\[
\Psi(\psi)(x, y, z, w) := 2(x, J_\pm y)\psi(z, J_\pm w) + 2(z, J_\pm w)\psi(x, J_\pm y) + \langle x, J_\pm z \rangle \psi(y, J_\pm w) + \langle y, J_\pm w \rangle \psi(x, J_\pm z) - \langle x, J_\pm w \rangle \psi(y, J_\pm z) - \langle y, J_\pm z \rangle \psi(x, J_\pm w).
\]

It is worth describing the some of these in a bit more detail. Let $\{\epsilon_i\}$ be a basis for V. Set $\epsilon_{ij} := (\epsilon_i, \epsilon_j)$. Define $\rho_{J_\pm}(x, y) := \epsilon_i^A A \epsilon_i^x J_\pm^y (J_\pm x, J_\pm y)$. Then we have:

\[
W_{\pm,3} = \{A \in \mathfrak{R} : A(J_\pm x, y, z, w) = A(x, y, J_\pm z, w)\},
\]

\[
W_{\pm,6} = \{A \in \mathfrak{R} : J_\pm^* A = A\} \cap \{\mathfrak{R}_{\pm,\mathfrak{R}}\} = \{W_{\pm,7}\} \cap \ker(\rho \oplus \rho_{J_\pm})
\]

\[
W_{\pm,10} = \{A \in \mathfrak{R} : J_\pm^* A = -A\} \cap \ker(\rho \oplus \rho_{J_\pm}).
\]

3. The proof of Theorem 1.6

If η is an irreducible \mathcal{U}_\pm^* module and if ξ is a submodule of $\otimes^4 V^*$, let $n_\eta(\xi)$ be the multiplicity with which ξ appears in the decomposition of ξ given in Lemma 2.2; note that $W_{\pm,4} \cong W_{\pm,1}$ and $W_{\pm,2} \cong W_{\pm,5}$. We apply Theorem 2.6. If η is isomorphic to $W_{\pm,i}$ for $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, then $n_\eta(\Lambda_\pm^2) = 0$ so:

\[
n_\eta(\mathfrak{R}_{\pm,\mathfrak{R}}) = n_\eta(\mathfrak{R}_{\pm,\mathfrak{R}}) = \begin{cases} 1 & \text{if } i = 1, 2, 3, 4, 5 \\ 0 & \text{if } i = 6, 7, 8, 10 \end{cases}.
\]

Thus the multiplicities of the representations $\{\chi, \Lambda_{0,\mp}^2, \Lambda_{\mp,\mp}^2\}$ are at issue.

3.1. The module $\chi = \Xi(\Omega_\pm)$ for $m \geq 4$. Let $\{\epsilon_i\}$ be an orthonormal basis for V with $J_{\pm} e_{2i-1} = e_{2i}$ and $J_{\pm} e_{2i} = \pm e_{2i-1}$. Let $\epsilon_{ij} := (\epsilon_i, \epsilon_j)$. We use Equation (2.b) to see:

\[
\Xi(\Omega_\pm)(e_1, e_4, e_3, e_1) = -(e_4, J_{\mp} e_3)(e_1, e_1) = -\epsilon_{11}\epsilon_{44},
\]

\[
\mp \Xi(\Omega_\pm)(e_1, e_4, J_{\pm} e_3, J_{\pm} e_1) = \pm (e_1, J_{\pm} J_{\pm} e_1)(e_4, J_{\pm} e_3) = \epsilon_{11}\epsilon_{44}.
\]

Thus $\Xi(\Omega_\pm)$ does not satisfy the Kähler identity given in Equation (1.h). Consequently, $n_\chi(\mathfrak{R}_{\pm,\mathfrak{R}}) = 0$.
3.2. The module $W_{\pm,12} = \Xi(\Lambda^2_{\pm,\mp})$ for $m \geq 6$. Set
\[\psi_{0,\pm} := e^1 \otimes e^2 - e^2 \otimes e^1 - \varepsilon_{11333} \{ e^3 \otimes e^4 - e^4 \otimes e^3 \}. \]

Clearly $\psi_{0,\pm} \perp \Omega_{\pm}$. Since $J^\pm \psi_{0,\pm} = \mp \psi_{0,\pm}$, $\psi_{0,\pm} \in \Lambda^2_{\pm,\mp}$. By Equation (2.11):
\[\Xi(\psi_{0,\pm})(e_5, e_1, e_2, e_5) = -\psi_{0,\pm}(e_1, e_2)(e_5, e_5) = -\varepsilon_{55}, \]
\[\mp \Xi(\psi_{0,\pm})(e_5, e_1, J^\pm e_2, J^\pm e_5) = 0. \]
Consequently $\Xi(\psi_{0,\pm})$ does not satisfy the Kähler identity and we conclude that $n_{\Lambda^2_{\pm,\mp}}(\mathbb{R}_{\pm,\mp}) = 0$ if $m \geq 6$.

3.3. The module $\Lambda^2_{0,\pm}$ If $m = 4$. The argument given above in Section 3.2 does not, of course, pertain if $m = 4$ since we cannot examine $\Xi(\psi_{0,\pm})(e_5, e_1, e_2, e_5)$. Let $\eta = \Lambda^2_{0,\pm}$. As noted above, $n_{\eta}(\mathbb{R}_{\pm,\mp}) \leq 1$. Thus if we can exhibit a non-trivial element of $W_{\pm,12} \cap \mathbb{R}_{\pm,\mp}$, we will have $n_{\eta}(\mathbb{R}_{\pm,\mp}) = 1$. We work in the positive definite setting for the moment to simplify the argument. Let
\[\psi_{0,+} := e^1 \otimes e^2 - e^2 \otimes e^1 - e^3 \otimes e^4 + e^4 \otimes e^3, \]
\[\langle \cdot, \cdot \rangle := e^1 \otimes e^1 + e^2 \otimes e^2 + e^3 \otimes e^3 + e^4 \otimes e^4. \]
Decompose $A := \Xi(\psi_{0,+}) = A_1 + A_2 + A_3 + A_4 + A_5$ using the notation of Equation (2.9) where
\[A_1(x, y, z, w) := 2\psi_{0,+}(x, y)(y, w), \]
\[A_3(x, y, z, w) := -\psi_{0,+}(y, z)(x, w), \]
\[A_5(x, y, z, w) := \psi_{0,+}(y, w)(x, z). \]
As a short hand, we set $e^{ijkl} := e^i \otimes e^j \otimes e^k \otimes e^l$. We may then express:
\[A_1 = 2e^{1211} + 2e^{1222} + 2e^{1233} + 2e^{1244} - 2e^{2111} - 2e^{2122} - 2e^{2133} - 2e^{2144}, \]
\[-2e^{3411} - 2e^{3422} - 2e^{3433} + 2e^{3444} + 2e^{4311} + 2e^{4322} + 2e^{4333} + 2e^{4344}, \]
\[A_2 = e^{1121} + e^{1222} + e^{1322} + e^{1422} - e^{2111} - e^{2122} - e^{2131} - e^{2142}, \]
\[-e^{3111} - e^{2322} - e^{3131} + e^{4131} + e^{4232} + e^{4333} + e^{4434}, \]
\[A_3 = -e^{1121} - e^{2122} - e^{3122} - e^{4122} + e^{1211} + e^{2122} + e^{3123} + e^{4123}, \]
\[+e^{1311} + e^{2322} + e^{3333} - e^{4333} - e^{4333} - e^{4433}. \]
\[A_4 = -e^{1112} - e^{1222} - e^{1322} - e^{4444} + e^{2111} + e^{2221} + e^{2331} + e^{2441}, \]
\[+e^{3114} + e^{3224} + e^{3334} + e^{4444} - e^{4113} - e^{4223} - e^{4333} - e^{4443}, \]
\[A_5 = -e^{1112} - e^{2122} + e^{3122} + e^{4122} - e^{1211} - e^{2221} - e^{3231} - e^{4241}, \]
\[-e^{1314} - e^{2324} + e^{3334} - e^{4344} + e^{1413} + e^{2423} + e^{3433} + e^{4443}. \]
We may ignore the terms in A_1 as these belong to \mathbb{R}_{\pm}. The remaining terms yield a tensor which is anti-symmetric both in the first two and in the last two indices. Thus automatically terms of the form $e^{+,+}$ or $e^{+,-}$ will belong to \mathbb{R}_{\pm} and can be ignored. Using the \mathbb{Z}_2 symmetry, we may consider terms e^{ijkl} where $i < j$ and $k < l$. We establish the Kähler identity and show that $n_{\eta}(\mathbb{R}_{+,\mp}) = 1$ if $m = 4$ in the positive definite setting by examining the following crucial terms:

Term	Coeff.	Term	Coeff.
e^{1323}	$A_2 = 1$	e^{1314}	$A_5 = -1$
e^{1424}	$A_2 = 1$	e^{1413}	$A_5 = 1$
e^{2313}	$A_2 = -1$	e^{2324}	$A_5 = -1$
e^{2414}	$A_2 = -1$	e^{2423}	$A_5 = 1$
We now complexify and let $W := V \otimes \mathbb{R} \mathbb{C}$. Extend $(\cdot, \cdot), J_-$, and A to be complex bilinear, complex linear, and complex multi-linear, respectively. Let:

$$V_{2,2} := \text{Span}_\mathbb{R}\{\sqrt{-1}e_1, \sqrt{-1}e_2, e_3, e_4\}.$$

Then $(\langle \cdot, \cdot \rangle, J_-)$ restricts to a pseudo-Hermitian almost complex structure on $V_{2,2}$ of signature $(2, 2)$. Note that

$$\text{Re}(A|_{V_{2,2}}) \in W_{\pm,12}(V_{2,2}) \cap K_{\mathbb{R}},$$

$$\text{Im}(A|_{V_{2,2}}) \in W_{\pm,12}(V_{2,2}) \cap K_{\mathbb{R}}.$$

Since $A|_{V_{2,2}} \neq 0$, at least one of these tensors is non-trivial and the desired conclusion follows for neutral signature $(2, 2)$; a similar argument applied to

$$V_{4,0} := \text{Span}_\mathbb{R}\{\sqrt{-1}e_1, \sqrt{-1}e_2, \sqrt{-1}e_3, \sqrt{-1}e_4\}$$

establishes the desired result in signature $(4, 0)$ (which is the negative definite setting). Finally, by considering

$$U_{2,2} := \text{Span}_\mathbb{R}\{e_1, \sqrt{-1}e_2, e_3, \sqrt{-1}e_4\}$$

and $J_+ := \sqrt{-1}J_-$, we can construct an example in the para-complex setting.

3.4. The module $\Lambda^2_\mathbb{R}$ if $m \geq 6$

Let $\eta = \Lambda^2_{\mathbb{R}}$. Then $W_{\pm,9} \oplus W_{\pm,13} \cong 2 \cdot \eta$. We adopt the notation of Equation (2.b) and of Equation (2.f). For $(a, b) \neq (0, 0)$, let

$$\xi(a, b) := \text{Range}\{a \Xi + b \Psi\} \subset W_{\pm,9} \oplus W_{\pm,13}.$$

By Lemma 2.4, every non-trivial proper submodule of $W_{\pm,9} \oplus W_{\pm,13}$ is isomorphic to $\xi(a, b)$ for some $(a, b) \neq 0$. We suppose $\xi(a, b) \subset K_{\mathbb{R}}$ and thus

$$(a \Xi + b \Psi)\psi \in K_{\mathbb{R}}$$

for all $\psi \in \Lambda^2_\mathbb{R}$.

Set $\psi_+ := e^1 \otimes e^2 - e^3 \otimes e^1 \pm e^2 \otimes e^4 \mp e^4 \otimes e^2$. Then $J_+^2 \psi_+ = \pm \psi_+$ so $\psi_+ \in \Lambda^2_\mathbb{R}$. We show that $b = 0$ by checking:

$$a \Xi(\psi_+)(e_5, e_6, e_1, e_4) = 0,$$

$$b \Psi(\psi_+)(e_5, e_6, e_1, e_4) = 2b(e_5, J_\pm e_6)\psi_+(e_1, J_\pm e_4) = 2b\varepsilon_{55},$$

$$a \Xi(\psi_+)(e_5, e_6, J_\pm e_1, e_4) = 0.$$

We show that $a = 0$ and complete the proof of Theorem 1.6 if $m \geq 6$ by checking:

$$a \Xi(\psi_+)(e_5, e_1, e_3, e_5) = -a\psi_+(e_1, e_3)(e_5, e_5) = -a\varepsilon_{55},$$

$$a \Xi(\psi_+)(e_5, e_1, e_4, e_6) = 0.$$

3.5. The module $\Lambda^2_{\mathbb{R}}$ if $m = 4$

Again, the argument given in Section 3.4 is not available if $m = 4$ since, for example, we can not examine (e_5, e_1, e_4, e_6). Let $\eta = \Lambda^2_{\mathbb{R}}$. Again, we first work in the positive definite setting. Since $n_\eta(K_{\mathbb{R}, \mathbb{M}}) = 0$, to show $n_\eta(K_{\mathbb{R}, \mathbb{M}}) = 1$ it suffices to construct a suitable element of $K_{\mathbb{R}, \mathbb{M}}$. Let

$$\psi_- := e^1 \otimes e^3 - e^3 \otimes e^1 - e^2 \otimes e^4 + e^4 \otimes e^2 \in \Lambda^2_{\mathbb{R}};$$

$$\langle \cdot, \cdot \rangle := e^1 \otimes e^1 + e^2 \otimes e^2 + e^3 \otimes e^3 + e^4 \otimes e^4.$$

Adopt the notation of Equation (2.b) to decompose $\Xi(\psi_-) = F + G + H + J + K$ where

$$F(x, y, z, w) := 2\psi_-(x, y)(z, w),$$

$$G(x, y, z, w) := \psi_-(x, z)(y, w),$$

$$H(x, y, z, w) := -\psi_-(y, z)(x, w),$$

$$J(x, y, z, w) := -\psi_-(x, w)(y, z),$$

$$K(x, y, z, w) := \psi_-(y, w)(x, z).$$

We compute:

$$F = 2e_1^{1311} + 2e_2^{1322} + 2e_1^{1333} + 2e_2^{1344} - 2e_2^{3111} - 2e_2^{3122} - 2e_2^{3133} - 2e_2^{3144} + 2e_2^{4211} + 2e_2^{4222} + 2e_2^{4233} + 2e_2^{4244} - 2e_2^{4211} - 2e_2^{4222} - 2e_2^{4233} - 2e_2^{4244},$$
Thus we must have $-a + 3b = 0$ so we may take $a = 3$ and $b = 1$. This completes the proof in signature $(0, 4)$; the remaining cases are handled using the same techniques used in Section 3.3.
4. The proof of Theorem 1.5

Adopt the notation of Equation (1.6). Fix a bilinear form \(\varepsilon = (\varepsilon_{ij}) \) on \(\mathbb{R}^m \) which is \(\pm \)-invariant under \(J_\pm \). Let \(\langle \cdot, \cdot \rangle \) denote symmetric tensor product. Let \(\theta \in S^2_\pm \otimes S^2_\pm \). We form the germ of a pseudo-Riemannian metric which is \(\pm \)-invariant under the action of \(J_\pm \) by setting:

\[
g = \varepsilon + \theta_{ijkl} x^i dx^j \otimes dx^j ;
\]

\(g \) is a (para)-Hermitian metric on a neighborhood \(\mathcal{O} \) of 0 in \(\mathbb{R}^m \). By Theorem 1.4 (2) there is a unique Weyl connection \(\nabla = \nabla(\theta) \) so that \((\mathcal{O}, J_\pm, g, \nabla) \) is a (para)-Kähler Weyl manifold. Let \(\Theta(\theta) := R^\nabla(0) \); \(\Theta \) defines an equivariant linear map

\[
\Theta : S^2_\pm \otimes S^2_\pm \to \mathfrak{r}_{\pm,2}\mathfrak{m} .
\]

To show that \(\Theta \) is surjective and complete the proof of Theorem 1.5, we must to show:

\[
n_\eta(\text{Range}(\Theta)) = 1 \quad \text{for} \quad \eta \in \{1, S^2_0, \pm, W_{\pm,3}, \Lambda^2_0, \pm, \Lambda^2_0, \pm \} .
\]

4.1. The representations \(W_{\pm,i} \) for \(i = 1, 2, 3 \). Let \(R^\theta(0) \) be the curvature of the Levi-Civita connection at the origin. The map \(\mathcal{L} : \theta \to R^\theta(0) \) is a linear function of \(\theta \) given by:

\[
(\mathcal{L}\theta)(x, y, z, w) := \theta(x, z, y, w) + \Theta(y, w, x, z) - \theta(x, w, y, z) - \theta(y, z, x, w) .
\]

We set \(A := \mathcal{L}(\theta) \). Similarly the map \(K_\pm : \Theta \to \text{d}R^\theta \) is a linear map which takes \(S^2_\pm(V^*) \otimes S^2(V^*) \) to \(\Lambda^3(V^*) \otimes V^* \). It is given by:

\[
\{(K_\pm \Theta)(x, y, z, w)\} := \Theta(x, J_\pm y, z, w) + \Theta(y, J_\pm z, x, w) + \Theta(z, J_\pm x, y, w) .
\]

This shows that \(\ker(K_\pm) \) is invariant under the action of \(U^*_\pm \). Clearly \(\Theta \in \ker(K_\pm) \) if and only if \(g_\theta \) is a Kähler metric. On \(\ker(K_\pm) \), we have \(\Theta = \mathcal{L} \) since \(\phi = 0 \). Thus:

\[
\mathcal{L} : \ker(K_\pm) \to W_{1,\pm} \oplus W_{2,\pm} \oplus W_{3,\pm} .
\]

Take

\[
\Theta = \frac{1}{2}(e^1 \otimes e^1 \mp e^2 \otimes e^2) \otimes (e^1 \otimes e^1 + e^2 \otimes e^2)
\]

so that the metric has the form

\[
g_\Theta = \varepsilon + \frac{1}{2}(u_1^2 + u_2^2)(du_1^2 \mp du_2^2) .
\]

The metric \(g_\Theta \) is Kähler since it takes the form \(M_2 \times \mathbb{C} \) where \(M_2 \) is a Riemann surface. Thus \(\Theta \in \ker(K_\pm) \). Furthermore, the only non-zero curvature components of the curvature tensor \(A = R^\theta(0) \) at the origin, up to the usual \(\mathbb{Z}_2 \) symmetries, are given by

\[
A(e_1, e_2, e_2, e_1) = 1 .
\]

The symmetric Ricci tensor \(\rho_\theta(x, y) := \frac{1}{2}(\rho(x, y) + \rho(y, x)) \) defines a map from \(\mathfrak{r}_{\pm,2}\mathfrak{m} \) to \(S^2 \). We have

\[
\rho_\theta(e_i, e_j) = \begin{cases}
\varepsilon_{22} & \text{if } i = j = 1, \\
\varepsilon_{11} & \text{if } i = j = 2, \\
0 & \text{otherwise}
\end{cases} .
\]

Since \(\rho_\theta \) is neither a multiple of \(\langle \cdot, \cdot \rangle \) nor is \(\rho_\theta \) perpendicular to \(\langle \cdot, \cdot \rangle \), \(\rho_\theta \) has components both in \(1 \) and in \(S^2_0, \pm \). Consequently

\[
W_{\pm,1} \oplus W_{\pm,2} \subset \mathcal{L}(K_\pm) .
\]
Let $S \in S^2_\mathbb{R}$. Following [34], define:

\[
S_1(x, y, z, w) := \langle x, z \rangle S(y, w) + \langle y, w \rangle S(x, z) - \langle x, w \rangle S(y, z) - \langle y, z \rangle S(x, w)
\]

\[
S_2(x, y, z, w) := 2\langle x, J_\pm y \rangle S(z, J_\pm w) + 2\langle z, J_\pm w \rangle S(x, J_\pm y) + \langle x, J_\pm z \rangle S(y, J_\pm w) + \langle y, J_\pm w \rangle S(x, J_\pm z) - \langle x, J_\pm w \rangle S(y, J_\pm z) - \langle y, J_\pm z \rangle S(x, J_\pm w).
\]

Then the map $\Sigma : S \rightarrow S_1 \oplus S_2$ splits ρ_δ modulo a suitable normalizing constant.\footnote{This result was established in the positive definite setting; it extends easily to the general context.}

We have:

\[
\Sigma(\rho_\delta)(e_1, e_3, e_3, e_1) = -\varepsilon_{33}\varepsilon_{22}
\]

and thus $\Sigma(\rho_\delta)$ is not a multiple of R so R has a non-zero component in $W_{\pm,3}$ and $W_{\pm,3} \subset \mathcal{L}(K_\pm)$.

4.2. The representations Λ_0^2 and $\Lambda_0^2 \oplus \Lambda_2^2$. The alternating part of the Ricci tensor, ρ_δ, provides a map from $\mathcal{R}_{\pm,20}$ to Λ^2. If we can show $\rho_\delta \Theta$ is a surjective map to $\Lambda_0^2 \oplus \Lambda_2^2$, it will follow from Lemma 2.2 that $n_\eta(\mathcal{R}_{\pm,20}) \geq 1$ which will complete the proof. We have that ϕ is a multiple of $J_\pm^* \delta \Omega_\pm$ and that $\delta \phi$ is a multiple of ρ_δ.

Thus it will suffice to give an example where $dJ_\pm^* \delta \Omega_\pm$ has components in both $\Lambda_{0,\mp}^2$ and $\Lambda_{\pm,2}^2$. Suppose $f(x) = x_1 x_3$. Let:

\[
dx^2 := \varepsilon_{11} e^{2f(x_1, x_3)}(dx^1 \otimes dx^1 \mp dx^2 \otimes dx^2) + \varepsilon_{22}(dx^3 \otimes dx^3 \mp dx^4 \otimes dx^4).
\]

We have [3]:

\[
(\nabla^g \Omega_\pm)(\partial_{x_1}, \partial_{x_3}; \partial_{x_2}) = \frac{1}{2} \{ g(\partial_{x_2}, \partial_{x_2}; J_\pm \partial_{x_1}) - g(\partial_{x_2}, \partial_{x_2}; J_\pm \partial_{x_3}) + g(J_\pm \partial_{x_1}, \partial_{x_3}; \partial_{x_2}) - g(J_\pm \partial_{x_3}, \partial_{x_3}; \partial_{x_2}) \}.
\]

This permits us to compute that:

\[
(\nabla^g \Omega_\pm)(\partial_{x_1}, \partial_{x_3}; \partial_{x_2}) = \begin{cases}
\mp \varepsilon_{11} e^{2f} \partial_{x_1} f & \text{if } k = 2 \\
0 & \text{if } k \neq 2
\end{cases}.
\]

The covariant derivative of the Kähler form has the symmetries [3]:

\[
(\nabla^g \Omega_\pm)(x, y; z) = -(\nabla^g \Omega_\pm)(y, x; z) = \pm(\nabla^g \Omega_\pm)(J_\pm x, J_\pm y; z) = \mp(\nabla^g \Omega_\pm)(x, J_\pm y; J_\pm z).
\]

It now follows that the non-zero components of $\nabla^g \Omega_\pm$ are given, up to the \mathbb{Z}_2 symmetry in the first components, by:

\[
(\nabla^g \Omega_{\pm,1})(\partial_{x_1}, \partial_{x_3}; \partial_{x_2}) = \pm \varepsilon_{11} e^{2f} \partial_{x_1} f,
(\nabla^g \Omega_{\pm,1})(\partial_{x_2}, \partial_{x_3}; \partial_{x_1}) = \pm \varepsilon_{11} e^{2f} \partial_{x_3} f,
(\nabla^g \Omega_{\pm,1})(\partial_{x_2}, \partial_{x_3}; \partial_{x_3}) = \pm \varepsilon_{11} e^{2f} \partial_{x_3} f,
(\nabla^g \Omega_{\pm,1})(\partial_{x_3}, \partial_{x_3}; \partial_{x_2}) = \pm \varepsilon_{11} e^{2f} \partial_{x_3} f.
\]

This then implies

\[
J_\pm^* \delta \Omega_\pm = 2 \mp \partial_{x_3} f \cdot dx^3,

\]

\[
dJ_\pm^* \delta \Omega_\pm = 2 \mp \partial_{x_3} \partial_{x_3} f \cdot dx^1 \wedge dx^3.
\]

This has components in both $\Lambda_{0,\mp}^2$ and in $\Lambda_{\pm,2}^2$. The desired result now follows.

Acknowledgements

Research of both authors supported by project MTM2009-07756 (Spain), by project 174012 (Serbia), and by DFG PI 158/4-6 (Germany).
References

[1] Aguilar, J. and Romero, C.: Inducing the cosmological constant from five-dimensional Weyl space. Found. Phys. 39 1205–1216 (2009)
[2] Alexandrov B. and Ivanov S.: Weyl structures with positive Ricci tensor. Differ. Geom. Appl. 18, 343–350 (2005)
[3] Brozos-Vázquez M., García-Río E., Gilkey P., and Hervella L.: Geometric realizability of covariant derivative Kähler tensors for almost pseudo-Hermitian and almost para-Hermitian manifolds. To appear Ann. Mat. Pura Appl., http://arxiv.org/abs/1012.4964.
[4] Brozos-Vázquez M., Gilkey P., and Merino E.: Geometric realizations of Kaehler and of para-Kaehler curvature models. Int. J. Geom. Methods Mod. Phys 7 (2010), 505–515.
[5] Brozos-Vázquez M., Gilkey, P., and Nikčević, S.: Geometric realizations of affine Kaehler curvature models. Int. J. Geom. Methods Mod. Phys 7 (2010), 505–515.
[6] Brozos-Vázquez M., Gilkey, P., and Nikčević S.: Geometric Realizations of Curvature. Imperial College Press (2012)
[7] Blažič N., Gilkey P., Nikčević S., and Simon U.: Algebraic theory of affine curvature tensors. Archivum Mathematicum, Masaryk University (Brno, Czech Republic) ISSN 0044-8753, to appear Proceedings of the 26th Winter School Geometry and Physics 2006 (SRNI), 147–168 (2006)
[8] Calderbank D. and Pedersen H.: Self dual spaces with complex structures, Einstein-Weyl geometry and geodesics. Annales de l'institut Fourier 50, 921–963 (2000)
[9] Calderbank D. and Tod P.: Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painlevé I and II. Int. J. Geom. Methods Mod. Physics 7, 899–906 (2010).
[10] Ganchev G. and Ivanov S.: Semi-symmetric W-metric connections and the W-conformal group. God. Sofij. Univ. Fak. Mat. Inform. 81, 181–183 (1994)
[11] Higa T.: Weyl manifolds and Einstein-Weyl manifolds. Comm. Math. Univ. St. Pauli 42, 143–160 (1993)
[12] Higa T.: Curvature tensors and curvature conditions in Weyl geometry. Comm. Math. Univ. St. Pauli 43, 139–153 (1994)
[13] Itoh M.: Affine locally symmetric structures and finiteness theorems for Einstein-Weyl manifolds. Tokyo J. Math. 23, 37–49 (2000)
[14] Ivanov S.: Geometry of quaternionic Kähler connections with torsion. J. Geom. Phys. 41, 235–257 (2002)
[15] Kaczkowski M.: Geometric invariant theory and Einstein-Weyl geometry. Expo. Math. 29, 220–230 (2011)
[16] Kokarev G. and Kotschick D.: Fibrations and fundamental groups of Kähler-Weyl manifolds. Proc. Am. Math. Soc. 138, 997–1010 (2010)
[17] Matsuzoe H.: Geometry of semi-Weyl manifolds and Weyl manifolds. Kyushu J. Math. 55, 107–117 (2001)
[18] Matseu P.: Submanifolds of Weyl flat manifolds. Monatsh. Math. 136, 297–311 (2002)
[19] Mirizzi J.: Isotropic cosmologies in Weyl geometry. Classical Quantum Gravity 21, 3043–3055 (2004)
[20] Nurowski P.: Differential equations and conformal structures. J. Geom. Phys. 55, 19–49 (2005)
[21] Ozdeger, A: Conformal and generalized concircular mappings of Einstein–Weyl manifolds. Acta Math. Sci. Ser. B Engl. Ed. 30, 1739–1745 (2010)
[22] Pedersen H., Poon Y., and Swann A.: The Einstein-Weyl equations in complex and quaternionic geometry. Diff. Geo. and Appl. 3, 309–321 (1993)
[30] Pedersen H. and Swann A.: Riemannian submersions, four manifolds, and Einstein-Weyl geometry. Proc. London Math. Soc. 66, 381–399 (1991)
[31] Pedersen H. and Tod K.: Three-dimensional Einstein-Weyl geometry. Adv. Math. 97, 74–109 (1993)
[32] Scholz E.: Cosmological spacetimes balanced by a Weyl geometric scale covariant scalar field. Found. Phys. 39, 45–72 (2009)
[33] Singer I. M. and Thorpe J. A.: The curvature of 4-dimensional Einstein spaces. 1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365 (1969).
[34] Tricerri F. and Vanhecke L.: Curvature tensors on almost Hermitian manifolds. Trans. Amer. Math. Soc. 267, 365–397 (1981)
[35] Vaisman I.: Generalized Hopf manifolds. Geom. Dedicata 13, 231–255 (1982)
[36] Vaisman I.: A survey of generalized Hopf manifolds, Differential Geometry on Homogeneous Spaces. Proc. Conf. Torino Italy, Rend. Semin. Mat. Torino, Fasc. Spec. 205–221 (1983)
[37] Weyl H.: Space-Time-Matter. Dover Publ. 1922.

PG: Mathematics Department, University of Oregon, Eugene OR 97403 USA, E-mail: gilkey@uoregon.edu

SN: Mathematical Institute, SANU, Knez Mihailova 36, p.p. 367, 11001 Belgrade, Serbia, Email: stanan@mi.sanu.ac.rs