Discovery of the astatine, radon, francium, and radium isotopes

C. Fry, M. Thoennessen*

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Abstract

Currently, thirty-nine astatine, thirty-nine radon, thirty-five francium, and thirty-four radium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

*Corresponding author.
Email address: theoennessen@nscl.msu.edu (M. Thoennessen)
1. Introduction

The discovery of astatine, radon, francium, and radium isotopes is discussed as part of the series summarizing the discovery of isotopes, beginning with the cerium isotopes in 2009 [1]. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adopted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case we credited the authors with the discovery in spite of the inaccurate half-life. All reported half-lives inconsistent with the presently adopted half-life for the ground state were compared to isomer half-lives and accepted as discoveries if appropriate following the criterium described above.

The first criterium is not clear cut and in many instances debatable. Within the scope of the present project it is not possible to scrutinize each paper for the accuracy of the experimental data as is done for the discovery of elements [4]. In some cases an initial tentative assignment is not specifically confirmed in later papers and the first assignment is tacitly accepted by the community. The readers are encouraged to contact the authors if they disagree with an assignment because they are aware of an earlier paper or if they found evidence that the data of the chosen paper were incorrect.

The discovery of several isotopes has only been reported in conference proceedings which are not accepted according to the second criterium. One example from fragmentation experiments why publications in conference proceedings should not be considered is 118Tc and 129Ru which had been reported as being discovered in a conference proceeding [5] but not in the subsequent refereed publication [6].
The initial literature search was performed using the databases ENSDF [3] and NSR [7] of the National Nuclear Data Center at Brookhaven National Laboratory. These databases are complete and reliable back to the early 1960’s. For earlier references, several editions of the Table of Isotopes were used [8–13]. A good reference for the discovery of the stable isotopes was the second edition of Aston’s book “Mass Spectra and Isotopes” [14]. For the isotopes of the radioactive decay chains several books and articles were consulted, for example, the 1908 edition of “Gmelin-Kraut’s Handbuch der anorganischen Chemie” [15], Soddy’s 1911 book “The chemistry of the radio-elements” [16], the 1913 edition of Rutherford’s book “Radioactive substances and their radiations” [17], and the 1933 article by Mary Elvira Weeks “The discovery of the elements. XIX. The radioactive elements” published in the Journal of Chemical Education [18]. In addition, the wikipedia page on the radioactive decay chains was a good starting point [19].

The isotopes within the radioactive decay chains were treated differently. Their decay properties were largely measured before the concept of isotopes was established. Thus we gave credit to the first observation and identification of a specific activity, even when it was only later placed properly within in the decay chain.

Figure 1 summarizes the isotopes of the three natural occurring radioactive decay series with their original nomenclature. This notation of the original substances introduced by Rutherford during his Bakerian lecture presented on May 19th 1904 and published a year later [20] are shown by grey squares and connected by the grey arrows representing \(\alpha \) and \(\beta \) decay. The decay from actinium to actinium X and from thorium to thorium X was later shown to be more complex. These isotopes are shown as black squares with the corresponding decays shown by black arrows.

2. \(^{219}–^{229}\text{At} \)

Astatine was discovered in 1940 by Corson et al. by bombarding a bismuth target with \(\alpha \) particles [21]. A month later Minder reported the observation of element 85 naming it helvetium [22] which was later shown to be incorrect [23]. Also a later claim by Leigh-Smith and Minder naming element 85 anglohelvetium [24] was not confirmed. An even earlier report of the discovery of element 85 by Allison et al. in 1931 [25] selecting the name alabamine was incorrect [26]. The name astatine was officially accepted at the 15th IUPAC conference in Amsterdam in 1949 [27].

Thirty-nine astatine isotopes from \(A = 191–229 \) have been discovered so far and according to the HFB-14 model [28] about 37 additional astatine isotopes could exist. Figure 2 summarizes the year of first discovery for all astatine isotopes identified by the method of discovery: radioactive decay (RD), fusion evaporation reactions (FE), light-particle reactions (LP), projectile fission or fragmentation (PF), and spallation (SP). In the following, the discovery of each astatine isotope is discussed in detail and a summary is presented in Table 1. The observation of \(^{230}\text{At} \) was reported in a preprint [29], however, the paper was never accepted for publication in a refereed journal.

\(^{191}\text{At} \)

Kettunen et al. reported the discovery of \(^{191}\text{At} \) in the 2003 paper “Alpha-decay studies of the new isotopes \(^{191}\text{At} \) and \(^{193}\text{At} \)” [30]. A \(^{141}\text{Pr} \) target was bombarded with 248–266 MeV \(^{54}\text{Fe} \) beams from the Jyväskylä K-130 cyclotron forming \(^{191}\text{At} \) in \((4n)\) fusion-evaporation reactions. Recoil products were separated with the gas filled recoil separator RITU and implanted into a position sensitive Si detector which also measured subsequent \(\alpha \) decay. “The corresponding mother activity with an alpha-decay energy \(E_\alpha = 7552(11) \) keV and half-life \(T_{1/2} = (1.7^{+1.1}_{-0.5}) \) ms was assigned to originate from the equivalent \(1/2^+ \) state in \(^{191}\text{At} \)...” The quoted half-life is the currently accepted value.
Fig. 1: Original nomenclature of radon, radium, actinium, and thorium isotopes within the three natural occurring radioactive decay series. The grey squares connected by the grey arrows depict the activities labeled by Rutherford in his Bakerian lecture [20]. The black squares correspond to radioactive substances discovered later.
Fig. 2: Astatine isotopes as a function of time when they were discovered. The different production methods are indicated.
^{192}At

In the 2006 paper “α-decay spectroscopy of the new isotope ^{192}At”, Andreyev et al. announced the discovery of ^{192}At [31]. A ^{144}Sm target was bombarded with a 230 MeV ^{51}V beam from the GSI UNILAC heavy ion accelerator producing ^{192}At in the $(3n)$ fusion-evaporation reaction. Recoil products were separated with the velocity filter SHIP and implanted in a 16-strip position-sensitive silicon detector which also measured subsequent α decay. “Two α-decaying isomeric states with half-lives of 88(6) ms and 11.5(6) ms were identified in the new isotope ^{192}At, both of them having complex decay paths to the excited states in the daughter nucleus ^{188}Bi.” The quoted half-lives correspond to the currently accepted values for the ground state and an isomeric state, respectively.

^{193}At

Kettunen et al. reported the discovery of ^{193}At in the 2003 paper “Alpha-decay studies of the new isotopes ^{191}At and ^{193}At” [30]. A ^{141}Pr target was bombarded with 264–272 MeV ^{56}Fe beams from the Jyväskylä K-130 cyclotron forming ^{193}At in $(4n)$ fusion-evaporation reactions. Recoil products were separated with the gas filled recoil separator RITU and implanted into a position sensitive Si detector which also measured subsequent α decay. “The corresponding mother activity with the alpha-decay energy $E_\alpha=7295(5)$ keV and half-life $T_{1/2}=(28^{+5}_{-4})$ ms was assigned to originate from the equivalent 1/2$^+$ state in ^{193}At...” The quoted half-life is the currently accepted value. Previously, the observation of ^{193}At was reported in a conference proceeding [32].

^{194}At

In 2009 Andreyev et al. reported the observation of ^{194}At in the paper “α decay of ^{194}At” [33]. ^{141}Pr targets were bombarded with a 259 MeV ^{56}Fe beam from the GSI UNILAC producing ^{194}At in $(3n)$ fusion-evaporation reactions. Residues were separated with the velocity filter SHIP and implanted in a 16-strip position-sensitive silicon detector which also recorded subsequent α decay. “Thus, two different half-life values for decays attributed to ^{194}At identify two α-decaying isomeric states in this nucleus. The 310(8) ms isomer decaying to $^{190}\text{Bi}^{m1}$ will further be denoted as $^{194}\text{At}^{m1}$ while the 253(10) ms isomer decaying to $^{190}\text{Bi}^{m2}$ will be denoted as $^{194}\text{At}^{m2}$.” These half-lives correspond to the currently accepted values for isomeric states. Previously, a half-life of 180(80) ms was reported in a conference proceeding [32].

^{195}At

Tagaya et al. reported the discovery of ^{195}At in the 1999 paper “The α-decay energies and halflives of $^{195g,m}\text{At}$ and ^{199}Fr” [34]. ^{169}Tm targets were bombarded with a 215 MeV ^{36}Ar beam from the RIKEN ring cyclotron to form ^{195}At in $(\alpha6n)$ fusion-evaporation reactions. Recoils were separated with the gas-filled recoil separator GARIS and implanted in a position sensitive detector which also recorded subsequent α decay. “We therefore assigned the corresponding $\alpha1$ events to the decay of ^{195g}At, of which the E_α and $T_{1/2}$ values were determined to be 7105±30 keV and 146^{+21}_{-17} ms.” Tagaya et al. also reported an 385^{+69}_{-51} ms isomeric state which is currently assigned the ground state with a half-life of 328(20) ms. Previously, a half-life of 630^{+320}_{-160} ms was reported in a conference proceeding [32].
At Treytl and Valli identified 196At, 197At, 198At, and 199At in the 1967 article “Alpha decay of neutron deficient astatine isotopes” [35]. Enriched 185Re and 187Re targets were bombarded with 100–200 MeV 20Ne beams from the Berkeley HILAC. Reaction products were collected on a silver foil by a helium jet and rotated in front of a Si(Au) surface barrier detector. “ASTATINE-199: The peak at 6.638 MeV with a half-life of 7.2 sec clearly belongs to 199At... ASTATINE-198: The alpha peaks at 6.747 MeV with a half-life of 4.9 sec and at 6.847 MeV with 1.5 sec have excitation functions similar to 198Po. We have assigned the former one to the ground state and the second one to an isomeric state of 198At... ASTATINE-197: The peak at 6.957 MeV with a half-life of 0.4 sec belongs to 197At... ASTATINE-196: In subsequent runs, an alpha peak at 7.055 MeV with a half-life of 0.3 sec was observed. The excitation function shown in [the figure] clearly follows that of 196Po.” The measured half-lives of 0.3(1) s for 196At, 0.4(1) s for 197At, 4.9(5) s for 198At, and 7.2(5) s for 199At, are close to the currently accepted values of 0.388(7) s, 0.350(40) s, 3.8(4) s, and 7.03(15) s, respectively.

At In the 1963 paper “Alpha decay of neutron-deficient astatine isotopes”, Hoff et al. reported the first observation of 200At and 201At [36]. A gold foil was bombarded with a 12C beam with energies up to 125 MeV from the Berkeley Hilac. Alpha-particle spectra were measured with a 180° double-focusing spectrograph. “An α-emitter with a half-life of 1.5±0.1 min and an α-particle energy of 6.342±0.006 MeV has been assigned to 201At... Two α-groups with a half-life 0.9±0.2 min and energies of 6.412±0.009 and 6.465±0.011 MeV have been tentatively assigned to 200At.” These half-lives of 0.9(2) min for 200At and 1.5(1) min for 201At agree with the currently accepted values of 43(1) s and 85.2(16) s, respectively. Earlier, Barton et al. reported half-lives of 43 s and 1.7 min, but were only able to assign them to astatine isotopes with A<202 and A<203, respectively [37].

At The paper “α-particle branching ratios for neutron-deficient astatine isotopes” by Latimer et al. reported the observation of 202At in 1961 [38]. Gold and platinum foils were irradiated with 50–125 MeV 12C and 65–130 MeV 14N beams, respectively, from the Berkeley HILAC. Alpha-particle spectra were measured with a gridded ionization chamber following chemical separation. “Using the reported α-branching ratio of 0.02 for 202Po, we have calculated an alpha-branching ratio of 0.120±0.008 for 202At, corresponding to a partial α-half-life of 25 min... The over-all half-lives observed are in agreement with those reported by Hoff et al. [39]...” The overall half-life quoted for 202At was 3.0(2) min which agrees with the currently accepted half-life of 184(1) s. The reference to Hoff et al. corresponds to a conference abstract. Hoff et al. published their results in a refereed journal two years later [36]. Also, about three months later Forsling et al. independently reported a 3(1) min half-life for 202At [40].

At 203At was identified by Barton et al. and published in the 1951 paper “Radioactivity of astatine isotopes” [37]. 209Bi was irradiated with 4He beams of up to 380 MeV from the Berkeley 184-in. cyclotron. Alpha spectra were recorded with an alpha-pulse analyzer following chemical separation. “For the present we shall assume the 7-min 6.10-Mev group to be
At203 and designate the 6.35-Mev group with 1.7-min half-life as At$^{<203}$. This value agrees with the currently adopted value of 7.4(2) min. About three months earlier Miller et al. [41] measured an 11 min half-life by bombarding a gold target with a 13C beam and suggested the possibility that they had formed the 7 min 203At activity based on a private communication with Barton et al.

204At

The paper “α-particle branching ratios for neutron-deficient astatine isotopes” by Latimer et al. reported the observation of 204At in 1961 [38]. Gold and platinum foils were irradiated with 50–125 MeV 12C and 65–130 MeV 14N beams, respectively, from the Berkeley HILAC. Alpha-particle spectra were measured with a gridded ionization chamber following chemical separation. “In this study, an α-group of 5.95 MeV energy and half-life of 9±1 min has been observed. Excitation functions support the assignment of this activity to 204At.” This value agrees with the currently accepted value of 9.12(11) min. An earlier report of a 22 min half-life [37] was evidently incorrect. Also, about three months later Forsling et al. independently reported a 9(3) min half-life [40] and in 1959 Hoff et al. had reported a half-life of 9.3(2) min in a conference abstract [39].

205At

205At was identified by Barton et al. and published in the 1951 paper “Radioactivity of astatine isotopes” [37]. 209Bi was irradiated with 4He beams of up to 380 MeV from the Berkeley 184-in. cyclotron. Alpha spectra were recorded with an alpha-pulse analyzer following chemical separation. “For the present, we shall attribute the alpha-particle, which was found to decay with a 25-min half-life to At205. This value is consistent with the currently adopted value of 26.9(8) min. About three months earlier Miller et al. [41] measured an 25 min half-life by bombarding a gold target with a 13C beam and suggested the possibility that they had formed the 24 min 205At activity based on a private communication with Barton et al.

206At

The paper “α-particle branching ratios for neutron-deficient astatine isotopes” by Latimer et al. reported the observation of 206At in 1961 [38]. Gold and platinum foils were irradiated with 50–125 MeV 12C and 65–130 MeV 14N beams, respectively, from the Berkeley HILAC. Alpha-particle spectra were measured with a gridded ionization chamber following chemical separation. “A least-squares analysis of several of the curves for which the statistics were good yielded a value of 29.5±0.6 min for the half-life of 206At.” This value agrees with the currently accepted value of 30.6(8) min. An earlier report of a 2.6 h half-life [37] was evidently incorrect. Also, about three months later Forsling et al. independently reported a 20(10) min half-life [40] and in 1959 Hoff et al. had reported a half-life of 31.0(15) min in a conference abstract [39].

207At

207At was identified by Barton et al. and published in the 1951 paper “Radioactivity of astatine isotopes” [37]. 209Bi was irradiated with 4He beams of up to 380 MeV from the Berkeley 184-in. cyclotron. Alpha spectra were recorded with an alpha-pulse analyzer following chemical separation. “At 75 Mev a new activity appeared having a half-life of about 2 hr, and this has been assigned to At207 formed by the (α,6n) reaction.” This value agrees with the currently adopted value of 1.81(3) h.
In 1950 Hyde et al. reported the first observation of 208At in the paper “Low mass francium and emanation isotopes of high alpha-stability” [42]. Thorium foils were bombarded with up to 350 MeV protons from the Berkeley 184-inch cyclotron. 212Fr was chemically separated and 208At was populated by α-decay. Alpha spectra were measured with an ionization chamber. “High volatility is characteristic of astatine, and this 5.65 Mev activity was judged to be the At208 daughter of Fr212.” The measured half-life of 1.7 h agrees with the currently adopted value of 1.63(3) h.

209At

209At was identified by Barton et al. and published in the 1951 paper “Radioactivity of astatine isotopes” [37]. 209Bi was irradiated with 4He beams of up to 380 MeV from the Berkeley 184-in. cyclotron. Alpha spectra were recorded with an alpha-pulse analyzer following chemical separation. “An activity assigned to At209 is characterized by a half-life of 5.5 ± 0.3 hr and an alpha-particle of 5.65 Mev.” This half-life agrees with the currently adopted value of 5.41(5) h.

210At

Kelly and Segre first observed 210At and reported their results in the 1949 paper “Some excitation functions of bismuth” [43]. Bismuth targets were bombarded with 29 MeV 4He beams from the Berkeley 60-inch cyclotron. Resulting activities were measured with a parallel plate ionization chamber. “Careful investigation, which will be discussed in detail later, showed that the Po210 came from the Bi(α,3n) reaction producing At210 which in turn decays to Po210 by orbital electron capture, with a half-life of 8.3 hr.” This value is included in the calculation of the currently accepted half-life of 8.1(4) h.

211At

The discovery of 211At was reported in “Artificially radioactive element 85” by Corson et al. in 1940 [44]. The Berkeley 60-inch cyclotron was used to bombard a bismuth target with 32 MeV alpha particles. Alpha particles, gamma-, and x-rays were measured following chemical separation. “All these radiations separate together chemically as element 85, and all show the same half-life of 7.5 hours. The probable explanation of these effects is the following: Bi209, by an (α,2n) reaction, goes to 85211, which decays either by K-electron capture to actinium C'(Po211) or by alpha-particle emission (range 4.5 cm) to Bi207.” The measured half-life agrees with the currently accepted value of 7.214(7) h. The discovery of the element astatine in this experiment had been published earlier without a mass assignment [21].

212At

Winn reported the observation of 212At in the 1954 paper “Short-lived alpha emitters produced by 3He and heavy ion bombardments” [45]. 28 MeV α particles from the Birmingham cyclotron bombarded a bismuth target forming 212Bi in the reaction 209Bi(α,n). The alpha activity was measured with a zinc sulphide screen attached to a light guide and a magnetically shielded phototube. Results were summarized in a table, quoting an observed half-life of 0.22(3) s, which is close to the currently accepted value of 0.314(2) s. Winn did not consider this observation a new discovery referring to the 1948 Table of Isotopes which listed a half-life of 0.25 s based on a private communication [10].
213\textit{At}

In the 1968 article “New neptunium isotopes, ^{230}Np and ^{229}Np” Hahn et al. reported the observation of ^{213}At [46]. Enriched ^{233}U targets were bombarded with 32–41.6 MeV protons from the Oak Ridge Isochronous Cyclotron forming ^{229}Np in (p,5n) reactions, respectively. Reaction products were implanted on a catcher foil which was periodically rotated in front of a surface barrier Si(Au) detector. Isotopes populated by subsequent α emission were measured. “The α-particle energies found for the ^{225}Pa series are more precise than the previously available values: ^{225}Pa, 7.25 ± 0.02 MeV (new value); ^{221}Ac, 7.63 ± 0.02 MeV; ^{217}Fr, 8.31 ± 0.02 MeV and ^{213}At, 9.06 ± 0.02 MeV.” The observation of ^{213}At was not considered new, referring to an unpublished thesis [47]. The currently accepted half-life is 125(6) ms.

214\textit{At}

Meinke et al. reported the observation of ^{214}At in the 1949 paper “Three additional collateral alpha-decay chains” [48]. Thorium was bombarded by 150 MeV deuterons from the Berkeley 184-inch cyclotron. Alpha-decay chain from ^{226}Pa was measured following chemical separation. “Although the mass type has not yet been identified through known daughters as above, general considerations with regard to the method of formation and half-life of the parent substance, and the energies of all the members of the series suggest a collateral branch of the 4n+2 family: ^{91}Pa \rightarrow^{222} $^{89}\text{Ac} \rightarrow^{222}$ $^{87}\text{Fr} \rightarrow^{218}$ $^{85}\text{Fr} \rightarrow^{214}$ $^{83}\text{Bi} \rightarrow^{210}$ (RaE).” In a table summarizing the energies and half-lives of the decay chain only the α-decay energy was given for ^{214}At stating a calculated half-life of 10^{-6} s. The currently accepted half-life is 558(10) ns.

215\textit{At}

In the 1944 paper “Das Element 85 in der Actiniumreihe”, Karlik and Bernert reported the first observation of ^{215}At [49]. The range of α particles from a actinium emanation source was measured with an ionization chamber. “Wir fanden in einem Verhältnis von ungefähr $5\cdot10^{-6}$ zur Actinium A-Strahlung eine α-Strahlung mit einer extrapolierten Reichweite von 8,0 cm (15°, 760 mm), was 8,4 MeV Zerfallsenergie entspricht. Dieser Betrag steht in sehr guter Übereinstimmung mit dem Wert, der sich ergibt, wenn man in dem Diagramm der Zerfallsenergie als Funktion der Massenzahl die Kurve von der Ordnungszahl 85 bis zur Massenzahl 215 extrapoliert, so daß uns die Zuordnung der neuen α-Strahlung zu dem Kern ^{85}At (entstanden aus Ac A durch β-Zerfall) berechtigt erscheint.” [We found an α radiation with a ratio of approximately $5\cdot10^{-6}$ relative to the actinium A radiation which has an extrapolated range of 8.0 cm (15°, 760 mm), corresponding to a decay energy of 8.4 MeV. This value agrees very well with the extrapolated value for mass number 215 in a plot of the decay energy as a function of the mass number for atomic number 85. Thus it is reasonable to assign the new α radiation to the nuclide ^{85}At (produced by β decay from Ac A).] The presently adopted half-life is 100(20) μs.

216\textit{At}

In “Artificial collateral chains to the thorium and actinium families,” Ghiorso et al. discovered ^{216}At in 1948 [50]. Thorium targets were irradiated with 80 MeV deuterons from the Berkeley 184-inch cyclotron. The α-decay chain beginning at ^{228}Pa was measured following chemical separation. “After the decay of the above-described series, a second group of alpha-particle emitters can be resolved. This second series, which decays with the 22-hour half-life of its protactinium
parent, is a collateral branch of the 4n radioactive family as follows:
\[\text{Pr}^{228} \xrightarrow{\alpha} \text{Ac}^{224} \xrightarrow{\alpha} \text{Fr}^{220} \xrightarrow{\alpha} \text{At}^{216} \xrightarrow{\alpha} \ldots \]

The measured half-life of about \(10^{-3}\) s is consistent with the presently adopted value of 0.3 ms. In 1940, Minder [22] and later in 1942, Leigh-Smith and Minder [24] had reported the observation of \(\text{At}^{216}\) \(\beta\)-decay which was evidently incorrect [23]. Also the observation of \(\text{At}^{216}\) in the natural thorium radioactive decay chain [51] was not correct [52].

\(\text{At}^{217}\)

Hagemann et al. discovered \(\text{At}^{217}\) in 1947 in “The (4n+1) radioactive series: the decay products of \(\text{U}^{233}\)” [53]. The half-lives and \(\alpha\)- and \(\beta\)-decay energies of the nuclides in the decay chain of \(\text{U}^{233}\) were measured. “These decay products, which constitute a substantial fraction of the entire missing, 4n+1, radioactive series are listed together with their radioactive properties, in [the table].” The measured half-life of 18 ms is within a factor of two of the presently accepted value of 32.3(4) ms. Hagemann et al. acknowledge the simultaneous observation of \(\text{At}^{217}\) by English et al. which was submitted only a day later and published in the same issue of Physical Review on the next page [54].

\(\text{At}^{218}\)

\(\text{At}^{218}\) was identified by Karlik and Bernert in the 1943 paper “Eine neue natürliche \(\alpha\)-Strahlung” [51]. The range of \(\alpha\) particles from a radium A source was measured with an ionization chamber. “Eine \(\beta\)-Umwandlung von Radium A würde zu einem Isotop des Elementes 85 von der Massenzahl 218 führen... Die entsprechende Energie beträgt 6.63 MeV, bzw. die gesamte Zerfallsenergie 6.75 MeV. Aus der Geiger-Nutallschen Beziehung würde sich daraus eine Halbwertszeit in der Großenordnung von Sekunden ableiten, was mit unseren Beobachtungen im Einklang steht.” [A potential \(\beta\) decay of radium A would lead to an isotope of element 85 with a mass number of 218... The corresponding energy is 6.63 MeV, corresponding to a total decay energy of 6.75 MeV. From this energy a half-life on the order of seconds can be derived from the Geiger-Nutall relation which is consistent with our observations.] The currently adopted half-life for \(\text{At}^{218}\) is 1.5(3) s.

\(\text{At}^{219}\)

In 1953 \(\text{At}^{219}\) was first reported by Hyde and Ghiorso in “The alpha-branching of AcK and the presence of astatine in nature” [55]. A 20-mC \(\text{Ac}^{227}\) source was used to study the nuclide of the 4n+3 decay series by chemical and physical separation and measuring the radioactivity with an alpha-ray differential pulse analyzer. “The observed branching rate is ca \(4 \times 10^{-5}\), and the \(\text{At}^{219}\) daughter decays predominantly by the emission of 6.27 Mev alpha-particles with a half-life of 0.9 minute to the new isotopes \(\text{Bi}^{215}\), which in turn emits \(\beta^-\) particles with a half-life of 8 minutes.” The measured half-life of 0.9 min for \(\text{At}^{219}\) is included in the calculated average of the currently adopted value of 56(3) s.

\(\text{At}^{220}\)

In 1989 Liang et al. reported the first observation of \(\text{At}^{220}\) in “A new isotope \(\text{At}^{220}\)” [56]. Thorium oxide was bombarded with 200 MeV protons from the Orsay synchrocyclotron. \(\text{At}^{220}\) was separated with the ISOCELE II on-line mass separator and transported to a measuring station consisting of a 4\(\pi\) \(\beta\)-detector and two Ge(Li) detectors. “A new isotope \(\text{At}^{220}\) has been identified among the mass-separated products of a spallation reaction of \(\text{ThO}_2\). Its half-life has been found to be 3.71±0.04 min.” This half-life is the currently adopted value. Less than three months later, Burke et al. independently reported a half-life of 3.73(13) min [57].
In the 1989 paper “New neutron-rich isotopes of astatine and bismuth” Burke et al. described the observation of ^{221}At, ^{222}At and ^{223}At [57]. A thorium/tantalum metal-foil target was bombarded with 600 MeV protons from the CERN synchro-cyclotron. Astatine isotopes were produced in spallation reactions and separated with the ISOLDE-II on-line separator. Beta-ray spectra were measured with a 4π plastic scintillator. “Multiscaling of the 4π plastic scintillator signal gave a half-life of 2.3(2) min. This can be assigned to ^{221}At... At mass $A=222$, an activity with a half-life of 54(10) s has been observed and assigned to ^{222}At... The most neutron-rich astatine isotope seen in the present experiment was ^{223}At. Its half-life was measured to be 50(7) s.” The measured half-lives of 2.3(2) min, 54(10) s, and 50(7) s for ^{221}At, ^{222}At and ^{223}At, respectively, are the currently accepted values.

^{224}At

In the 2010 paper “Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range from thallium to actinium”, Chen et al. described the discovery of ^{224}At [58]. A beryllium target was bombarded with a 670 MeV/u ^{238}U beam from the GSI heavy-ion synchrotron SIS and projectile fragments were separated with the fragment separator FRS. The mass and half-life of ^{224}At was measured with time-resolved Schottky Mass Spectrometry in the storage-cooler ring ESR. “In [the figure] time traces and their projection into a frequency spectrum are shown for the new isotope ^{224}At and close-lying ions.” The quoted half-life of 76^{+138}_{-23} s is currently the only measured value for ^{224}At.

$^{225-229}\text{At}$

^{225}At, ^{226}At, ^{227}At, ^{228}At, and ^{229}At were discovered by Alvarez-Pol and the results were published in the 2010 paper “Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of ^{238}U projectiles at 1A GeV” [59]. A beryllium target was bombarded with a 1 A GeV ^{238}U beam from the GSI SIS synchrotron. The isotopes were separated and identified with the high-resolving-power magnetic spectrometer FRS. “To search for new heavy neutron-rich nuclei, we tuned the FRS magnets for centering the nuclei ^{227}At, ^{229}At, ^{216}Pb, ^{219}Pb, and ^{210}Au along its central trajectory. Combining the signals recorded in these settings of the FRS and using the analysis technique previously explained, we were able to identify 40 new neutron-rich nuclei with atomic numbers between Z=78 and Z=87; ^{208}Pt, $^{207-210}\text{Au}$, $^{211-216}\text{Hg}$, $^{214-217}\text{Tl}$, $^{215-220}\text{Pb}$, $^{219-224}\text{Bi}$, $^{223-227}\text{Po}$, $^{225-229}\text{At}$, $^{230,231}\text{Rn}$, and $^{233}\text{Fr}.”$

3. $^{193-231}\text{Rn}$

Although it is generally accepted that the element radon was discovered by Dorn in 1900 the references to the original papers is not straightforward [60]. Also arguments have been made to credit Rutherford [61] or M. and P. Curie [62] with the discovery of radon. In 1923, the International Union of Pure and Applied Chemistry (IUPAC) named the three known emanations - radium, actinium, and thorium - radon (Rn), actinon (An), and thoron (Tn), respectively. Ramsay and Gray had suggested the name niton for radium emanation [63] in 1910. Later radon (Rn) was adopted for all radon isotopes, however, the name emanation with the symbol Em was commonly in use for a long time, see for example reference [64].
Thirty-nine radon isotopes from $A = 193–231$ have been discovered so far and according to the HFB-14 model \cite{28} about 48 additional radon isotopes could exist. Figure 3 summarizes the year of first discovery for all radon isotopes identified by the method of discovery: radioactive decay (RD), fusion evaporation reactions (FE), light-particle reactions (LP), projectile fission or fragmentation (PF), and spallation (SP). In the following, the discovery of each radon isotope is discussed in detail and a summary is presented in Table 1. The observation of 232Rn was reported in a preprint \cite{29}, however, the paper was never accepted for publication in a refereed journal.

193,194Rn

Andreyev et al. reported the first observation of 193Rn and 194Rn in the 2006 paper “α decay of the new isotopes 193,194Rn” \cite{65}. A 144Sm target was bombarded with $231–252$ MeV 52Cr beams from the GSI UNILAC forming 193Rn and 194Rn in the (3n) and (2n) fusion-evaporation reactions, respectively. Recoil products were separated with the velocity filter SHIP and implanted into a position-sensitive silicon detector which also recorded subsequent α decay. “By using all 26 full-energy correlated recoil-α_1 decays a half-life of $T_{1/2}=0.78(16)$ ms was deduced for 194Rn... The half-life of $T_{1/2}(^{193}$Rn$)=1.15(27)$ ms was deduced from 19 full-energy recoil-$\alpha_1(7670$ keV-7890 keV) decays, which includes 16 events with the full-energy deposition in the PSSD and 3 events in which the energy was shared between the PSSD and BOX detectors.” Both of these half-lives are the currently adopted values.

195Rn

The discovery of 195Rn by Kettunen et al. was reported in the 2001 paper “α decay studies of the nuclides 195Rn and 196Rn” \cite{66}. A 142Nd target was bombarded with $239–267$ MeV 56Fe beams from the Jyväskylä K-130 cyclotron producing 195Rn in the (3n) fusion-evaporation reaction. Recoil products were separated with the gas-filled recoil separator RITU and implanted into a position sensitive silicon detector which also measured subsequent α decay. “Two α decaying isomeric states, with $E_{\alpha}=7536(11)$ keV [$T_{1/2}=(6^{+3}_{-2})$ ms] for the ground state and $E_{\alpha}=7555(11)$ keV [$T_{1/2}=(5^{+3}_{-2})$ ms] for an isomeric state were identified in 195Rn.” These half-lives are the currently accepted values.

196,197Rn

In the 1995 article “New α-decaying neutron deficient isotopes 197Rn and 200Fr,” Morita et al. announced the identification of 196Rn and 197Rn \cite{67}. A 273.6 MeV 36Ar beam from the RIKEN ring cyclotron bombarded an enriched 166Er target forming 196Rn and 197Rn in (6n) and (5n) fusion-evaporation reactions, respectively. Reaction products were separated with the gas-filled recoil separator GARIS and implanted in a position-sensitive silicon detector which also measured subsequent α decay. “The α-decay energies (half-lives) of 197Rn, 197mRn and 200Fr have been determined to be 7261 ± 30 keV (51^{+35}_{-15} ms), 7370 ± 30 keV (18^{+9}_{-5} ms), and 7500 ± 30 keV, (570^{+270}_{-140} ms), respectively.” Only one α-decay event was observed for 196Rn with 5 ms between the implant and the α particle. The same group reported the half-life of 196Rn as 3^{+7}_{-2} ms which agrees with the presently accepted value of $4.4^{+1.3}_{-0.5}$ ms a year later \cite{68}. The measured half-life of 51^{+35}_{-15} ms for 197Rn agrees with the present value of 65^{+25}_{-14} ms. Three months later Enquist et al. \cite{69} independently reported the observation of the isomeric state which agreed with the value of Morita et al.
Fig. 3: Radon isotopes as a function of time when they were discovered. The different production methods are indicated.
The discovery of 198Rn was published in the 1984 paper “Alpha decay of 198Rn” by Calaprice et al. [70]. Thorium hydroxide targets were bombarded with 600 MeV protons from the CERN synchrocyclotron forming 198Rn in spallation reactions. Decay curves of 198Rn were measured following isotope separation with the online mass separator ISOLDE. “The new nuclide 198Rn was found to have an α-decay energy of 7196±10 keV and a half-life of 50±9 ms.” This half-life agrees with the currently accepted value of 65(3) ms.

In 1980, DiRienzo et al. reported the observation of 199Rn in “New isotope 199Rn and evidence for an isomeric state 199Rnm” [71]. A 200 MeV 35Cl beam from the BNL three-stage Tandem Accelerator bombarded a 169Tm target forming 199Rn in the (5n) fusion-evaporation reaction. Recoil products were separated with a zero-degree recoil separator and implanted in a surface barrier detector which also measured subsequent α decay. “The other two lines at 6.990±0.015 MeV and 7.060±0.012 MeV are assigned to a new isotope 199Rn.” The currently accepted half-life is 0.59(3) s.

Hornshoj et al. reported the identification of 200Rn in “Alpha decay of neutron-deficient radon and polonium isotopes” in 1971 [72]. Th(OH)$_4$ targets were bombarded with 600 MeV protons from the CERN synchrocyclotron forming 200Rn in spallation reactions. Alpha-decay spectra were measured following isotope separation with the online mass separator ISOLDE. “200Rn decays by an α-group of energy 6.909±0.008 MeV, see [the figure]. The half-life was found to be 1.0±0.2 s.” This value is included in the calculation of the currently accepted value.

Valli et al. reported the discovery of 201Rn, 202Rn, 203Rn, 204Rn, and 205Rn in the 1967 article “Alpha-decay properties of neutron-deficient isotopes of emanation” [64]. Platinum, gold, mercury, and thallium targets were bombarded with 16O, 14N, and 12C beams from the Berkeley HILAC. Alpha-particle spectra were measured with a Si(Au) detector following chemical separation. “Emanation-201: ...The most prominent of the groups, at 6.768 MeV, had a half-life of 3±1 sec. We tentatively assign it to 201Em on the following incomplete evidence... Emanation-202: ...By examination of several spectra taken at 15-sec intervals, the half-life was determined to be 13±2 sec... The excitation function leads to a mass assignment of 202... Emanation-203 and Emanation-203m: ...We assign the 45-sec 6.547 MeV activity to the ground state of 203Em and the 28-sec 6.547 MeV activity to an isomeric state as this choice fits best in the energy-versus-mass-number curve... Emanation-204: An α activity at 6.416 MeV with a half-life of 75±2 sec was prominent in the emanation fraction from gold targets bombarded with 14N or 16O nuclei or from platinum targets bombarded with 16O nuclei... the agreement of the α energy with the approximate value to be expected from systematic trends in α-decay energies confirm the assignment of the new activity to 204Em... Emanation-206 and Emanation-205: ...From an analysis of many decay curves of the 6.260-MeV α group we found a two-component mixture with half-life periods of 6.5±1 min and 1.8±0.5 min. The longer-lived component corresponds to the 206Em reported by Stoner and Hyde [73]. The 1.8-min period can be assigned to the previously unknown 205Em from arguments based on our excitation function results.” The measured half-lives of 3.0(15) s (201Rn), 13(2) s (202Rn), 45(5) s (203Rn), 75(2) s (204Rn), and 1.8(5) min
(205Rn) agree with the presently adopted values of 3.8(1) s, 9.7(1) s, 44(2) s, 74.5(14) s, and 170(4) s, respectively. The value for 201Rn corresponds to an isomeric state. Earlier, Stoner and Hyde had reported a 3 min half-life and assigned it to either 204Rn or 205Rn [73].

206,207Rn

In the 1954 paper “The α-activity induced in gold by bombardment with nitrogen ions,” Burcham described the identification of 206Rn and 207Rn [74]. Gold foils were bombarded with a 75–120 MeV nitrogen beam from the Birmingham Nuffield 60-inch cyclotron forming 206Rn and 207Rn in the fusion-evaporation reactions 197Au(14N,5n) and 197Au(14N,4n), respectively. Alpha-decay curves of the irradiated samples were measured with an ionization chamber. “Assignment of the 6.25 MeV group of α-particles to 206Em is based on predictions from α-decay systematics... The 6.09 MeV group of α-particles could come from 207Em according to the systematics.” The measured half-lives of 6.5(5) min for 206Rn and 11.0(10) min for 207Rn are close to the currently adopted values of 5.67(17) min and 9.25(17) min, respectively.

208Rn

Momyer and Hyde reported the observation of 208Rn in the 1955 article “The influence of the 126-neutron shell on the alpha-decay properties of the isotopes of emanation, francium, and radium” [75]. Thorium foils were bombarded with 340 MeV protons from the Berkeley 184-inch cyclotron. Alpha-particle spectra and decay curves were measured with an ionization chamber following chemical separation. “In summary, Em208 appears to be a 23±2-minute activity with alpha-particle energy 6.141 MeV.” This half-life agrees with the currently adopted value of 24.35(14) min. In a companion paper actually submitted a day earlier, Momyer et al. measured the α-decay energies in a magnetic spectrograph [76].

209−211Rn

Momyer et al. identified 209Rn, 210Rn, and 211Rn in “Recent studies of the isotopes of emanation, francium and radium” in 1952 [77]. Thorium targets were bombarded with 340 MeV protons from the Berkeley 184-inch cyclotron. Alpha-decay spectra were measured following chemical separation. Results were summarized in a table, assigning half-lives of 31 min, 2.7 h, and 16 h to 209Rn, 210Rn, and 211Rn, which agree with the currently accepted half-lives of 28.5(10) min, 2.4(1) h, and 14.6(2) h, respectively. Half-lives of 23 min and 2.1 h had been previously reported without firm mass assignments [78].

212Rn

In 1950 Hyde et al. reported the first observation of 212Rn in the paper “Low mass francium and emanation isotopes of high alpha-stability” [42]. Thorium foils were bombarded with up to 350 MeV protons from the Berkeley 184-inch cyclotron. 212Fr was chemically separated and 212Rn was populated by electron capture. Alpha spectra were measured with an ionization chamber. “Em212 is shown to be a 23-minute alpha-emitter.” This agrees with the currently adopted half-life of 23.9(12) min. The same group had reported this activity previously without a mass assignment [78].
Rotter et al. observed ^{213}Rn in 1967 and reported their results in the paper “The new isotope ^{216}Ac” [79]. A 78 MeV ^{12}C beam from the Dubna 1.5 m cyclotron bombarded a lead target forming radium in (xn) reactions. ^{213}Rn was populated by α decay of ^{217}Ra. Recoil nuclei were collected on an aluminum foil and α-particle spectra were measured with a silicon surface barrier detector. “We obtained the following α-particle energies: Rn^{213} - 8.14 MeV, Fr^{214} - 8.53 MeV, and Ra^{215} - 8.73 MeV.” Rotter et al. did not consider this observation a new discovery referring to a conference abstract [80].

In 1970 Torgerson and MacFarlane reported the first observation of ^{214}Rn in “Alpha decay of the ^{221}Th and ^{222}Th decay chains” [81]. A 10.6 MeV/nucleon ^{16}O beam from the Yale heavy ion accelerator was used to bombard a ^{208}Pb target forming ^{222}Th in $(2n)$ fusion-evaporation reactions. ^{214}Rn was then populated by subsequent α decays. Recoil products were transported to a stainless steel surface with a helium jet and α spectra were measured with a Si(Au) surface barrier detector. “However, at ^{16}O incident energies below 80 MeV, the 9.040 MeV group could be clearly resolved as shown in [the figure].” Only three days later Valli et al. submitted their measurement of a 9.035(10) MeV α energy assigned to ^{214}Rn with a 0.27(2) μs half-life [82]. Earlier, the assignment of a 11.7 MeV α energy to ^{214}Rn [83] was evidently incorrect.

In 1952, ^{215}Rn was discovered by Meinke et al. and the results were reported in the paper “Further work on heavy collateral radioactive chains” [84]. Thorium nitrate targets were irradiated with a ^{4}He beam from the Berkeley 184-inch cyclotron. ^{227}U was chemically separated and the decay and energy of α-particles were measured with an alpha-particle pulse analyzer. “An additional short-lived chain collateral to the actinium (4n+3) natural radioactive family has also been partially identified. This chain decays as follows: $\text{U}^{227} \rightarrow \text{Th}^{223} \rightarrow \text{Ra}^{219} \rightarrow \text{Em}^{215} \rightarrow \text{Po}^{211} \rightarrow \text{Pb}^{207}.$” An α energy of 8.6(1) MeV was assigned to ^{215}Rn. The presently adopted half-life is 2.3(1) μs.

Meinke et al. reported the observation of ^{216}Rn and ^{217}Rn in the 1949 paper “Three additional collateral alpha-decay chains” [48]. Thorium was bombarded with 100−120 MeV ^{4}He beams from the Berkeley 184-inch cyclotron. Alpha-decay chains from ^{228}U and ^{229}U were measured following chemical separation. “The irradiation of thorium with 100-Mev helium ions resulted in the observation of the following collateral branch of the artificial 4n+1, neptunium, radioactive family shown with Po^{213} and its decay products: $^{92}\text{U}^{229} \rightarrow^{90}\text{Th}^{225} \rightarrow^{88}\text{Ra}^{221} \rightarrow^{86}\text{Em}^{217} \cdots$ Immediately after 120-Mev helium ion bombardment of thorium the uranium fraction contains another series of five alpha-emitters, which is apparently a collateral branch of the 4n family: $^{92}\text{U}^{228} \rightarrow^{90}\text{Th}^{224} \rightarrow^{88}\text{Ra}^{220} \rightarrow^{86}\text{Em}^{216} \cdots$” In a table summarizing the energies and half-lives of the decay chain only the α-decay energies were given for ^{216}Rn and ^{217}Rn stating calculated half-lives of $\sim 10^{-5}$ s and $\sim 10^{-3}$ s, respectively. The currently accepted half-lives of ^{216}Rn and ^{217}Rn are 45(5) μs and 540(50) μs, respectively.
218Rn

Studier and Hyde announced the discovery of 218Rn in the 1948 paper “A new radioactive series - the protactinium series” [85]. Thorium metal targets were bombarded with 19 MeV deuterons and a 38 MeV 4He beam from the Berkeley 60-inch cyclotron forming 230Pa in (d,4n) and (\alpha,p5n) reactions. 218Rn was populated by subsequent \alpha decay after the initial \beta^- decay of 230Pa to 230U. Alpha-decay spectra were measured following chemical separation. “[The figure] shows the frequency distribution of the observed time intervals after correction for random events. The total number of observed coincidence periods equal to or less than a given time interval is plotted against the time interval. The integral curve so obtained is exponential within the errors of the experiment and represents the decay of Em218. The mean interval is 0.027 sec. corresponding to a half-life of 0.019 sec.” This value is within a factor of two of the currently accepted half-life of 35(5) ms.

219Rn

In the 1903 article “Ueber den Emanationskörper aus Pechblende und über Radium” Giesel identified a new emanation which was later identified as 219Rn [86]. The emanation was separated from a pitchblende sample. “In den erwähnten ca. 2 g müssten also mindestens 2 Milligramm des fraglichen Elementes enthalten sein. Dass dasselbe nicht Radium oder Polonium sein kann, ist nach dem Gegebenen wohl ausgeschlossen. Von einer sonst aus praktischen Gründen üblichen Namengebung des hypothetischen Elementes sehe ich vorläufig ab...” [At least 2 mg of the element in question should be in the mentioned 2 g. Based on the presented facts it is probably ruled out that this substance can be radium or polonium. For now I refrain from the customary naming of the hypothetical element.] A month later Debierne independently observed the actinium emanation and reported that it disappear rapidly [87]. The half-life of 219Rn is 3.96(1) s.

220Rn

Rutherford reported the observation of an activity from radium later identified as 220Rn in the 1900 article “A radio-active substance emitted from thorium compounds” [88]. Thorium oxide samples were used to study the activity of the “emanation”: “...I have found that thorium compounds continuously emit radio-active particles of some kind, which retain their radio-active powers for several minutes. This ‘emanation,’ as it will be termed for shortness, has the power of ionizing the gas in its neighbourhood and of passing through thin layers of metals, and, with great ease, through considerable thicknesses of paper... The emanation passes through a plug of cotton-wool without any loss of its radio-active powers. It is also unaffected by bubbling through hot or cold water, weak or strong sulphuric acid. In this respect it acts like an ordinary gas... The result shows that the intensity of the radiation has fallen to one-half its value after an interval of about one minute.” This half-life agrees with the currently accepted value of 55.6(1) s.

221Rn

Momyer and Hyde reported the observation of 221Rn in the 1956 paper “Properties of Em221” [89]. Thorium targets were bombarded with 110 MeV protons from the 184-inch Berkeley cyclotron. Alpha-decay spectra were measured following chemical separation. “These results lead directly to the conclusion that a beta-emitting Em221 with a 25-minute half-life is present in the samples and is giving rise to the known Fr221 chain.” The quoted value is the currently adopted half-life.
In 1899 P. Curie and M. Curie reported the observation of an activity in radium samples later identified as ^{222}Rn in "Sur la radioactivité provoquée par les rayons de Becquerel" [90]. The radioactivity of polonium and radium samples was studied by measuring current due to the ionization of air. "Si l'on soustrait la plaque activée à l’influence de la substance radioactive, elle reste radioactive pendant plusieurs jours. Toutefois, cette radioactivité induite va en décroissant, d’abord très rapidement, ensuite de moins en moins vite et tend à disparaître suivant une loi asymptotique." [Subtracting the contribution of the activated plate due to the radioactive substance, it remains radioactive for several days. However, the induced radioactivity is decreasing, first very rapidly, then slower and slower and tends to disappear asymptotically.] The currently accepted half-life of ^{222}Ra is 3.8235(3) d.

$^{223,224}\text{Rn}$

Butement and Robinson announced the discovery of ^{223}Rn and ^{224}Rn in the 1964 paper “New isotopes of emanation” [91]. Thorium metal powder was irradiated with a 370 MeV proton beam from the Liverpool synchrocyclotron. The half-lives of ^{223}Rn and ^{224}Rn were determined by the milking technique, where the activities were measured with a ZnS-Ag alpha scintillation counter. “The half-life of ^{224}Em was obtained by extrapolating the decay curves of 3.6 day ^{224}Ra to the time of milking, and plotting these extrapolated values against time of milking. The value obtained for the half life of ^{224}Em is 114±6 min., the error being the standard deviation of the mean of six experiments... These experiments were very similar to those on ^{224}Em, except that the intervals between milkings were shorter [because of the shorter half life of ^{223}Em], and it was necessary to count the radium samples for some 50-60 days in order to follow the decay of 11.6 day ^{223}Ra after 3.6 day ^{224}Ra had decayed out... The value obtained for the half life of ^{223}Em is 43±5 min, where the error is the standard deviation on the mean of six experiments.” The half-life of 43(5) min for ^{223}Rn is within a factor of two of the accepted value of 24.3(4) min and the half-life of 114(6) min for ^{224}Rn agrees with currently accepted value of 107(3) min.

$^{225,226}\text{Rn}$

Hansen et al. reported the first observation of ^{225}Rn and ^{226}Rn in the paper “Decay characteristics of short-lived radio-nuclides studied by on-line isotope separator techniques” in 1969 [92]. Protons of 600 MeV from the CERN synchrocyclotron bombarded a molten tin target and ^{225}Rn and ^{226}Rn were separated using the ISOLDE facility. The paper summarized the ISOLDE program and did not contain details about the individual nuclei but the results were presented in a table. The measured half-lives of 4.5(3) min for ^{225}Rn and 6.0(5) min for ^{226}Rn agree with the currently adopted values of 4.66(4) min and 7.4(1) min, respectively.

^{227}Rn

In 1986 Borge et al. reported the observation of ^{227}Rn in the article “New isotope ^{227}Rn and revised halflives for ^{223}Rn and ^{226}Rn” [93]. ThC$_2$ was bombarded with 600 MeV protons from the CERN synchrocyclotron. Decay curves were measured with a 4π plastic scintillation detector following mass separation with the ISOLDE on-line separator. “These results yielded halflives of 23±1 s for the previously unknown isotope ^{227}Rn and 2.52±0.05 min for ^{227}Fr.” This value is included in the calculation of the current half-life.
228\text{Rn}

228\text{Rn} was first discovered by Borge et al. and the results were published in the 1989 paper “The new neutron-rich isotope 228\text{Rn}” [94]. The CERN synchrocyclotron was used to bombard a \text{232Th} target with 600 MeV protons. Decay curves were measured with a 4\pi plastic scintillation detector following mass separation with the ISOLDE II on-line separator. “From the growth and decay pattern of the Ra K\alpha X-rays and the two strongest \gamma-lines from the decay of 228\text{Fr} at 141 and 474 keV a half-life of 36±2 s was obtained for 228\text{Fr} when the value of 65 s has been kept fixed for the precursor 228\text{Rn}, and a half-life of 62±3 s for 228\text{Rn} resulted when the value of 38 s has been kept fixed for the daughter nucleus 228\text{Fr}.” The quoted half-life is the currently accepted value.

229\text{Rn}

Neidherr et al. announced the discovery of 229\text{Rn} in the 2009 article “Discovery of 229\text{Rn} and the structure of the heaviest Rn and Ra isotopes from Penning-trap mass measurements” [95]. A UC\text{X} target was bombarded with 1.4 GeV protons from the CERN proton synchrotron booster accelerator. 229\text{Rn} was measured with the double Penning-trap mass spectrometer ISOLTRAP after mass separation with the on-line isotopes separator ISOLDE. “This measurement gives a half-life of 12\text{+1.2−1.3}s for a nuclide with mass number 229 then delivered to ISOLTRAP.” The quoted value is the currently adopted half-life.

230,231\text{Rn}

230\text{Rn} and 231\text{Rn} were discovered by Alvarez-Pol and the results were published in the 2010 paper “Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of 238\text{U} projectiles at 1A GeV” [59]. A beryllium target was bombarded with a 1 A GeV 238\text{U} beam from the GSI SIS synchrotron. The isotopes were separated and identified with the high-resolving-power magnetic spectrometer FRS. “To search for new heavy neutron-rich nuclei, we tuned the FRS magnets for centering the nuclei 227\text{At}, 229\text{At}, 216\text{Pb}, 219\text{Pb}, and 210\text{Au} along its central trajectory. Combining the signals recorded in these settings of the FRS and using the analysis technique previously explained, we were able to identify 40 new neutron-rich nuclei with atomic numbers between Z=78 and Z=87; \text{205Pt}, \text{207–210Au}, \text{211–216Hg}, \text{214–217Tl}, \text{215–220Pb}, \text{219–224Bi}, \text{223–227Po}, \text{225–229At}, \text{230,231Rn}, and \text{233Fr}.”

4. 199−233\text{Fr}

The element francium was discovered by Perey in 1939 by observing the \beta-decay of 223\text{Fr} in the natural actinium radioactive decay chain [96]. Earlier incorrect observations of francium are described and referenced in the 2005 article “Francium (atomic number 87), the last discovered natural element” on the occasion of the 30th anniversary of Marguerite Perey’s death in 1975 [97]. The name francium was officially accepted at the 15th IUPAC conference in Amsterdam in 1949 [27]. Perey had originally suggested the symbol Fa but agreed it to be changed to Fr [97].

Thirty-five francium isotopes from A = 193–231 have been discovered so far and according to the HFB-14 model [28] about 40 additional francium isotopes could exist. Figure 4 summarizes the year of first discovery for all francium isotopes identified by the method of discovery: radioactive decay (RD), fusion evaporation reactions (FE), light-particle reactions (LP), projectile fission or fragmentation (PF), and spallation (SP). In the following, the discovery of each francium isotope is discussed in detail and a summary is presented in Table 1.
Fig. 4: Francium isotopes as a function of time when they were discovered. The different production methods are indicated.
Tagaya et al. reported the discovery of ^{199}Fr in the 1999 paper “The α-decay energies and halflives of $^{195,197}\text{At}$ and ^{199}Fr” [34]. ^{169}Tm targets were bombarded with a 215 MeV ^{36}Ar beam from the RIKEN ring cyclotron to form ^{199}Fr in (6n) fusion-evaporation reactions. Recoils were separated with the gas-filled recoil separator GARIS and implanted in a position sensitive detector which also recorded subsequent α decay. “The E_α and $T_{1/2}$ of ^{199}Fr are 7655(±40) keV and 12(±10) ms, respectively.” The quoted value is the currently accepted half-life.

In the 1995 article “New α-decaying neutron deficient isotopes ^{197}Rn and ^{200}Fr,” Morita et al. announced the identification of ^{200}Fr [67]. A 186 MeV ^{36}Ar beam from the RIKEN ring cyclotron bombarded a ^{169}Tm target forming ^{200}Fr in (5n) fusion-evaporation reactions. Reaction products were separated with the gas-filled recoil separator GARIS and implanted in a position-sensitive silicon detector which also measured subsequent α decay. “The α-decay energies (half-lives) of ^{197}Rn, ^{197m}Rn and ^{200}Fr have been determined to be 7261(±30) keV (51(±35) ms), 7370(±30) keV (18(±9) ms), and 7500(±30) keV, (570(±30) ms), respectively.” This value does not agree with the currently accepted value of 49(4) ms. We credit Morita et al. with the discovery of ^{200}Fr because they measured the correct decay energy and correlated the events with known properties of the daughter nucleus ^{196}At. Three months later Enquist et al. [69] independently reported a half-life of 19(±13) ms which also disagrees with the present value.

The first observation of ^{201}Fr and ^{202}Fr was reported in “Alpha decay studies of new neutron-deficient francium isotopes and their daughters” by Ewan et al. [98]. A uranium target was bombarded with 600 MeV protons from the CERN synchrocyclotron producing ^{201}Fr and ^{202}Fr in spallation reactions. Alpha-particle spectra were measured with a silicon surface-barrier detector following mass separation with the isotope separator ISOLDE. “The only hitherto unreported line in the spectrum is the 7388±15 keV line, whose decay, as obtained from the measurement with the position-sensitive detector, is shown in the inset of [the figure]. This line is assigned to ^{201}Fr, for which a half-life of 48±15 ms thus was derived... The singles alpha spectrum observed from the decay of a source collected at mass 202 is shown in the lower part of [the figure]. In addition to previously known lines, mainly coming from heavier francium isotopes in analogy with the A=201 spectrum, a strong alpha line with an energy of 7251±10 keV is present... The new line is assigned to ^{202}Fr, and the half-life was deduced to be 0.34±0.04 s.” The measured half-lives of 48(15) ms for ^{201}Fr and 0.34(4) s for ^{202}Fr agree with the currently adopted values of 62(5) ms and 0.30(5) s, respectively.

Valli et al. announced the discovery of ^{203}Fr in the 1967 article “Alpha decay of neutron-deficient francium isotopes” [99]. The Berkeley heavy ion linear accelerator was used to bombard ^{197}Au and ^{205}Tl targets with ^{16}O and ^{12}C beams with energies up to 166 and 126 MeV, respectively. Recoil products were collected on a catcher foil which was quickly positioned in front of a Si(Au) surface-barrier detector which measured subsequent α decay. “Francium-203. The peak at 7.130 MeV with a half-life of 0.7±0.3 sec is visible only in the spectra taken at the highest beam energies. Comparison of excitation functions indicates that the peak belongs to a francium isotope lighter than ^{204}Fr, most probably to ^{203}Fr.” This value is consistent with the currently adopted value of 0.30(5) s.
In 1964, Griffioen and MacFarlane reported the identification of 204Fr, 205Fr, 206Fr, 207Fr, 208Fr, 209Fr, 210Fr, and 211Fr in the paper “Alpha-decay properties of some francium isotopes near the 126-neutron closed shell” [100]. 197Au, 203,205Tl, and 208Pb targets were bombarded with 16O, 12C, and 11B beams with energies up to 10.38 MeV/amu from the Berkeley HILAC. Recoil products were collected on a catcher foil which was positioned in front of a gold surface-barrier detector which measured subsequent α decay. "B. Fr211 and Fr210: ... These facts seem to indicate that this group is due to two different isotopes, Fr211 and Fr210, which were formed by (C12,6n) and (C12,7n) reactions, respectively... C. Fr209 and Fr208: ... Once again there were indications that this alpha group is a result of two different isotopes. The Tl203+C12 excitation function is somewhat broadened and distorted and no other alpha groups with an excitation function corresponding to a (C12,7n) reaction were found. The excitation function from the Au197+O16 system is also consistent with the assignment to Fr209 and Fr208... D. Fr207 and Fr206: ... Since, as has been mentioned before and will be discussed later, the cross section for the Au197(O16,7n)Fr206 reaction is probably about one fourth the value of the Au197(O16,6n)Fr207 reaction cross section, we cannot see any great effect on the excitation function for this group. Several things have led us to the conclusion that this is both Fr207 and Fr206... E. Fr205 and Fr204: ... Since it follows the excitation function for the 6.91-MeV group, this would identify this group as the parent of At201 namely, Fr205. The assignment of the 7.02-MeV group to Fr204 is based on the excitation-function data and on alpha decay systematics.” The measured half-lives of 2.0(5) s (204Fr), 3.7(4) s (205Fr), 15.8(4) s (206Fr), 18.7(8) s (207Fr), 37.5(20) s (208Fr), 54.7(10) s (209Fr), 159(5) s (210Fr), and 186(4) s (211Fr) are close to the currently adopted values of 1.8(3) s, 3.92(4) s, 15.9(1) s, 14.8(1) s, 50.0(3) s, 3.18(6) min, and 3.10(2) min, respectively.

212Fr

Hyde et al. reported the first observation of 212Fr in the 1950 paper “Low mass francium and emanation isotopes of high alpha-stability” [42]. Thorium foils were bombarded with up to 350 MeV protons from the Berkeley 184-inch cyclotron. 212Fr was chemically separated and alpha spectra were measured with an ionization chamber. “Fr212, with an apparent half-life of 19.3 minutes for branching decay by alpha-emission (44 percent) to At208 and by orbital electron-capture (56 percent) to Em212, has been found.” This half-life is included in the calculation of the currently accepted value.

213Fr

In 1964 Griffioen and MacFarlane reported the identification of 213Fr in the paper “Alpha-decay properties of some francium isotopes near the 126-neutron closed shell” [100]. 197Au, 203,205Tl, and 208Pb targets were bombarded with 16O, 12C, and 11B beams with energies up to 10.38 MeV/amu from the Berkeley HILAC. Recoil products were collected on a catcher foil which was positioned in front of a gold surface-barrier detector which measured subsequent α decay. “A. Fr213: [The figure] shows an alpha-particle spectrum of the activity collected while bombarding Tl205 with 86-MeV C12 ions. A strong group is seen at 6.77±0.01 MeV alpha particle energy. This activity decays with a half-life of 33.7±1.5 sec.” This value is included in the calculation of the currently accepted value.
Rotter et al. observed ^{214}Fr in 1967 and reported their results in the paper “The new isotope Ac216” [79]. A 78 MeV ^{12}C beam from the Dubna 1.5 m cyclotron bombarded a bismuth target forming actinium in (xn) reactions. ^{214}Fr was populated by α decay of ^{218}Ac. Recoil nuclei were collected on an aluminum foil and α-particle spectra were measured with a silicon surface barrier detector. “We obtained the following α-particle energies: Rn213 - 8.14 MeV, Fr214 - 8.53 MeV, and Ra215 - 8.73 MeV.” Rotter et al. did not consider this observation a new discovery referring to a conference abstract [80]. The observation corresponds to an isomeric state with a currently accepted half-life of 3.35(5) ms.

In the 1970 article “Production and decay properties of protactinium isotopes of mass 222 to 225 formed in heavy-ion reactions,” Borggreen et al. identified ^{215}Fr and ^{216}Fr [101]. The Berkeley heavy-ion linear accelerator (HILAC) was used to bombard ^{208}Pb and ^{205}Tl targets with ^{19}F and ^{22}Ne beams forming ^{224}Pa and ^{223}Pa in (3n) and (4n) fusion-evaporation reactions, respectively. ^{216}Fr and ^{215}Fr were then populated by subsequent α-decay. Recoil products were deposited by a helium gas stream on a metal surface located in front of a gold surface-barrier detector which recorded the subsequent α decay. “Francium-216 appears to emit a single α group of 9.005 \pm 0.010 MeV which fits smoothly on the francium curve in [the figure]... The time-parameter information associated with the data sorting displayed in [the figure] yielded a 0.70 \pm 0.02 µsec half-life for ^{216}Fr. The assignment of the 9.365-MeV group to ^{215}Fr seems particularly secure owing to the very restricted number of possible assignments of α groups above 9.3-MeV energy.” For ^{215}Fr only an upper limit of <500 ns was given. The currently accepted value is 86(5) ns. The measured half-life for ^{216}Fr is the presently adopted value.

In the 1968 article “New neptunium isotopes, ^{230}Np and ^{229}Np” Hahn et al. reported the observation of ^{217}Fr [46]. Enriched ^{233}U targets were bombarded with 32–41.6 MeV protons from the Oak Ridge Isochronous Cyclotron forming ^{228}Np in (p,5n) reactions. Reaction products were implanted on a catcher foil which was periodically rotated in front of a surface barrier Si(Au) detector. Isotopes populated by subsequent α emission were measured. “The α-particle energies found for the ^{225}Pa series are more precise than the previously available values: ^{225}Pa, 7.25 \pm 0.02 MeV (new value); ^{221}Ac, 7.63 \pm 0.02 MeV; ^{217}Fr, 8.31 \pm 0.02 MeV and ^{213}At, 9.06 \pm 0.02 MeV.” The observation of ^{217}Fr was not considered new, referring to an unpublished thesis [47].

Meinke et al. reported the observation of ^{218}Fr in the 1949 paper “Three additional collateral alpha-decay chains” [48]. Thorium was bombarded with 150 MeV deuterons from the Berkeley 184-inch cyclotron. The α-decay chain from ^{228}Pa was measured following chemical separation. “General considerations with regard to the method of formation and half-life of the parent substance, and the energies of all the members of the series suggest a collateral branch of the 4n+2 family: ^{91}Pa $^{226}\text{S}_{89}\text{Ac}$ $^{222}\text{S}_{87}\text{Fr}$ $^{218}\text{S}_{85}\text{At}$ $^{214}\text{S}_{83}\text{Bi}$ ^{210}RaE.” In a table summarizing the energies and half-lives of the decay chain only the α-decay energy was given for ^{216}Rn stating a calculated half-life of about 10^{-2} s. The currently accepted half-life is 1.0(6) ms.
In “Artificial collateral chains to the thorium and actinium families,” Ghiorso et al. discovered 219Fr and 220Fr in 1948 [50]. Thorium targets were irradiated with 80 MeV deuterons from the Berkeley 184-inch cyclotron. The α-decay chains beginning at 227Pa and 228Pa were measured following chemical separation. “Prominent soon after bombardment are a number of alpha-particle groups, which decay with the 38-minute half-life of the protactinium parent. These are due to the following collateral branch of the 4n+3 radioactive family:

\[
\begin{align*}
91\text{Pa} & \rightarrow^{\alpha} 89\text{Ac} \\
227\text{Ac} & \rightarrow^{\alpha} 223\text{Fr} \\
220\text{Fr} & \rightarrow^{\alpha} 216\text{At}
\end{align*}
\]

After the decay of the above-described series, a second group of alpha-particle emitters can be resolved. This second series, which decays with the 22-hour half-life of its protactinium parent, is a collateral branch of the 4n radioactive family as follows:

\[
\begin{align*}
91\text{Pa} & \rightarrow^{\alpha} 89\text{Ac} \\
228\text{Ac} & \rightarrow^{\alpha} 224\text{Fr} \\
220\text{Fr} & \rightarrow^{\alpha} 216\text{At}
\end{align*}
\]

The decay energies and half-lives of the decay chains were listed in a table, assigning half-lives of $\sim 10^{-4}$ s and ~ 30 s to 219Fr and 220Fr, respectively. The currently adopted half-lives for 219Fr and 220Fr are 20(2) ms and 27.4(3) s, respectively.

221Fr

Hagemann et al. discovered 221Fr in 1947 in “The (4n+1) radioactive series: the decay products of 233U” [53]. The half-lives and α- and β-decay energies of the nuclides in the decay chain of 233U were measured. “These decay products, which constitute a substantial fraction of the entire missing, 4n+1, radioactive series are listed together with their radioactive properties, in [the table].” The measured half-life of 4.8 min agrees with the presently accepted value of 4.9(2) min. Hagemann et al. acknowledge the simultaneous observation of 221Fr by English et al. which was submitted only a day later and published in the same issue of Physical Review on the next page [54].

222Fr

Westgaard et al. identified 222Fr in the 1975 paper “Beta-decay energies and masses of short-lived isotopes of rubidium, caesium, francium, and radium” [102]. Lanthanum, yttrium-lanthanum, and thorium-lanthanum targets were irradiated with 600 MeV protons from the CERN synchrocyclotron. Beta- and gamma-rays were measured following mass separation with the ISOLDE on-line separator at CERN. “The decay of 15 min 222Fr: ... The singles β spectrum measured in our experiment showed a flat tail of low intensity, extending to much higher energies than the main portion of the data. After subtraction of this tail, presumably due to α particles from 222Ra, a FK analysis gave for the endpoint energy $E_{\beta}^{max}=1.78\pm0.02$ MeV.” They measured half-life of 14.8 min agrees with the currently adopted value of 14.2(3) min.

223Fr

Perey discovered 223Fr in 1939 as reported in “Sur un élément 87, dérivé de l’actinium” [96]. 223Fr was observed within the natural actinium radioactive decay chain and populated by α decay from 227Ac. Beta-decay curves were measured following chemical separation. “En ajoutant du chlorure de caesium à l’eau mère et en précipitant par une solution de perchlorate de sodium, il se forme des cristaux qui entraînent l’activité: celle-ci s’accroît exponentiellement avec la période de 21 minutes ± 1. [By adding liquid cesium chloride and precipitating a solution of sodium perchlorate crystals are formed that cause an activity which decreases exponentially with the period of 21 minutes ± 1.] This half-life agrees with the presently adopted value of 22.00(7) min. This observation of 223Fr also represented the discovery of the element francium.
224−226 Fr

Hansen et al. reported the first observation of 224Fr, 225Fr and 226Fr in the paper “Decay characteristics of short-lived radio-nuclides studied by on-line isotope separator techniques” in 1969 [92]. Protons of 600 MeV from the CERN synchrocyclotron bombarded a molten tin target and 224Fr, 225Fr and 226Fr were separated using the ISOLDE facility. The paper summarized the ISOLDE program and did not contain details about the individual nuclei but the results were presented in a table. The measured half-life of 2.67(20) min for 224Fr agrees with the presently adopted value of 3.33(10) min and the 3.9(2) min for 225Fr is included in the calculation of the currently accepted half-life of 3.95(14) min. The half-life of 1.43(23) min for 226Fr is within a factor of two of the present value of 49(1) s.

227,228 Fr

In 1972 Klapisch et al. reported the first observation of 227Fr and 228Fr in “Half-life of the new isotope 32Na; Observation of 33Na and other new isotopes produced in the reaction of high-energy protons on U” [103]. Uranium targets were bombarded with 24 GeV protons from the CERN proton synchrotron. 227Fr and 228Fr were identified by on-line mass spectrometry and decay curves were measured. “Following the same procedure as for Na, the isotopes 48K, 49K, and 50K were found. However, their half-lives were not short compared with the diffusion time, and hence could not be determined. We also observed the new neutron-rich isotopes 227Fr and 228Fr produced in the spallation of the uranium target.” The presently accepted half-lives are 2.47(3) min and 38(1) s for 227Fr and 228Fr, respectively.

229 Fr

In 1975 the discovery of 229Fr by Ravn et al. was announced in the paper “Short-lived isotopes of alkali and alkaline-earth elements studied by on-line isotope separator techniques” [104]. A thorium plus lanthanum target was bombarded with protons from the CERN synchrocyclotron. Beta-ray decay curves were measured with a 4π plastic detector following mass separation with the isotope separator ISOLDE. “The following half-lives of new nucleides have been determined: ... 229Fr (50±20) sec.” This half-life agrees with the presently adopted value of 50.2(20) s.

230 Fr

In the 1987 article “Collective states in 230Ra fed by β− decay of 230Fr,” Kurcewicz et al. identified 230Fr [105]. Francium was produced by spallation of 238U with 600 MeV protons from the CERN synchrocyclotron. Gamma-ray singles and γ−γ coincidences were measured with Ge(Li) detectors after mass separation with the on-line separator ISOLDE II. “A half-life of 19.1±0.5 s for 230Fr has been obtained by means of multispectra analysis using cycles of 20 s collection time followed by 6×7 s measuring time.” This value is the currently accepted half-life.

231 Fr

The discovery of 231Fr was reported in the 1985 paper “The new neutron-rich nuclei 231Fr and 231Ra” by Hill et al. [106]. Francium was produced by spallation of 238U with 600 MeV protons from the CERN synchrocyclotron. Beta-particles and γ-rays were measured with a plastic scintillator and two Ge(Li) detectors, respectively, following mass separation with the on-line separator ISOLDE II. “With three other γ-lines, which are assigned to the 231Fr decay due to their half-lives, a weighted average of 17.5(8) s is obtained for the half-life of 231Fr.” The quoted value is included in the calculation of the currently adopted half-life.
Mezlev et al. reported the discovery of 232Fr in the 1990 paper “Search for delayed fission in neutron-rich nuclei” [107]. A uranium target was bombarded with 1 GeV protons. Beta-, gamma-, and X-rays were measured with solid state detectors following mass separation with the on-line mass separator IRIS. “Due to this technique the new isotopes 232Fr ($T_{1/2}=5\pm 1$ s), 233Ra ($T_{1/2}=30\pm 5$ s) and 234Ra ($T_{1/2}=30\pm 10$ s) have been identified using the solid state detectors for the registration of the beta-, gamma-, X-radiation.” The measured of 5(1) s half-life for 232Fr agrees with the currently adopted value of 5.5(6) s.

233Fr

233Fr was discovered by Alvarez-Pol and the results were published in the 2010 paper “Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of 238U projectiles at 1A GeV” [59]. A beryllium target was bombarded with a 1 A GeV 238U beam from the GSI SIS synchrotron. The isotopes were separated and identified with the high-resolving-power magnetic spectrometer FRS. “To search for new heavy neutron-rich nuclei, we tuned the FRS magnets for centering the nuclei 227At, 229At, 216Pb, 219Pb, and 210Au along its central trajectory. Combining the signals recorded in these settings of the FRS and using the analysis technique previously explained, we were able to identify 40 new neutron-rich nuclei with atomic numbers between Z=78 and Z=87: 205Pt, $^{207−210}$Au, $^{211−216}$Hg, $^{214−217}$Tl, $^{215−220}$Pb, $^{219−224}$Bi, $^{223−227}$Po, $^{225−229}$At, 230,231Rn, and 233Fr.”

5. $^{201−234}$Ra

The element radium was discovered in 1898 by P. Curie, M. Curie and G. Bémont [108]. Thirty-four radium isotopes from A = 201–234 have been discovered so far and according to the HFB-14 model [28] about 50 additional radon isotopes could exist. Figure 5 summarizes the year of first discovery for all radon isotopes identified by the method of discovery: radioactive decay (RD), fusion evaporation reactions (FE), light-particle reactions (LP), neutron-capture reactions (NC), and spallation (SP). In the following, the discovery of each radon isotope is discussed in detail and a summary is presented in Table 1.

201,202Ra

201Ra and 202Ra were first observed by Uusitalo et al. and the results were published in the 2005 paper “α decay studies of very neutron-deficient francium and radium isotopes” [109]. A 141Pr target was bombarded with 278-288 MeV 63Cu beams from the Jyväskylä K-130 cyclotron forming 201Ra and 202Ra in (3n) and (2n) fusion-evaporation reactions, respectively. Reaction products were separated with the gas-filled recoil separator RITU and implanted in a position-sensitive silicon detector which measured subsequent α decay. “We associate these measured values with the known activities of 197Rnm (from the 13/2$^+$ isomeric state) with $E_\alpha = 7356(7)$ keV and $T_{1/2} = 19^{+8}_{−4}$ ms and 193Pom (from the 13/2$^+$ isomeric state) with $E_\alpha = 7004(5)$ keV and $T_{1/2} = 240(10)$ ms [13], and thus the activity with $E_\alpha = 7905$ keV and $T_{lt} = 2$ ms can be identified to originate from a new even-odd radium isotope 201Ra... Thus the activity with $E_\alpha = 7740$ keV and $T_{lt} = 46$ ms can be identified to originate from the (0$^+$) ground state of a new even-even isotope 202Ra.” The measured half-lives of 1.6$^{+7.7}_{−0.7}$ ms and 16$^{+40}_{−7}$ ms are the current values for 201Ra and 202Ra, respectively. A previously measured half-life of 0.7$^{+3.3}_{−0.3}$ ms for 202Ra [110] was evidently incorrect.
Fig. 5: Radium isotopes as a function of time when they were discovered. The different production methods are indicated.
In the 1996 paper “Alpha decay studies of neutron-deficient radium isotopes,” Leino et al. described the observation of 203Ra [110]. A 175Lu target was bombarded with 191–208 MeV 35Cl beams from the Jyväskylä K130 cyclotron to produce 203Ra in the (7n) fusion-evaporation reaction. Reaction products were separated with the gas-filled recoil separator RITU and implanted in a position-sensitive PIPS detector which measured subsequent α decay. “The alpha particle energy E_α and the half-life $T_{1/2}$ of an isomeric state of the new isotope, 203mRa, have been determined to be (7615\pm20) keV and (33$^{+22}_{-10}$) ms, respectively. An assignment of another decay with E_α = (7577\pm20) keV and $T_{1/2}$ = (1.1$^{+5.0}_{-0.5}$) ms to 203gRa is made on the basis of one observed three-decay chain.” While the half-life for the ground state is not consistent with the currently adopted value of 31$^{+17}_{-9}$ ms the half-life for the isomeric state agrees with the present value of 24$^{+6}_{-4}$ ms.

204Ra

Leddy et al. reported the observation of 204Ra in the 1995 article “α decay of a new isotope, 204Ra” [111]. 28Si beams with energies of 164 and 170 MeV from the Argonne Tandem-Linac Accelerator System bombarded a 182W target producing 204Ra in the (6n) fusion-evaporation reaction. Recoil products were separated with the Fragment Mass Analyzer (FMA) and implanted in a double-sided silicon strip detector which measured subsequent α decay. “This assignment, summarized in [the table], constitutes the first observation of α decay from the ground state of 204Ra with an α energy of 7.488(12) MeV and a half-life of 45$^{+55}_{-21}$ ms.” The quoted half-life agrees with the currently accepted value of 57($^{+11}_{-5}$) ms.

205Ra

205Ra was first observed by Heßberger et al. as reported in the 1987 paper “Observation of two new alpha emitters with Z = 88” [112]. A 159Tb target was irradiated with 51V beams from the GSI UNILAC. Recoils were separated by the velocity filter SHIP and implanted in an array of seven position-sensitive surface-barrier detectors. “For 205Ra an α energy of E_α=(7360\pm20) keV and a half-life of $T_{1/2}$=(220\pm60) ms were obtained.” This value agrees with the currently adopted half-life of 210($^{+60}_{-30}$) ms.

$^{206-212}$Ra

In the 1967 paper “On-line alpha spectroscopy of neutron-deficient radium isotopes,” Valli et al. described the observation of 206Ra, 207Ra, 208Ra, 209Ra, 210Ra, 211Ra, and 212Ra [113]. 197Au and 206Pb targets were bombarded with 19F and 12C beams from the Berkeley HILAC to produce 210Ra and 218Ra compound nuclei. Recoil products were deposited on a collector foil which was then placed in front of a Si(Au) surface barrier detector. “C. Radium-212 and Radium-211: ...In careful measurements made at beam energies where 212Ra was predominant over 211Ra we determined an α energy of 6.896 MeV and a half-life of 13\pm2 sec. At beam energies where 211Ra was the principal activity we determined values of 6.910 MeV and 15\pm2 sec... D. Radium-210 and Radium-209: ...From measurements made at a 105-MeV 19F beam energy where 210Ra predominates over 209Ra we measured an α energy of 7.018 MeV and a half-life of 3.8\pm0.2 sec. Properties of 209Ra were measured on samples prepared at a beam energy of 140 MeV. The α energy and half-life are 7.008 MeV and 4.7\pm0.2 sec, respectively. E. Radium-208 and Radium-207: ...The half-life
of the group was also determined at several beam energies. Values between 1.1 and 1.4 sec were observed, the shorter ones coming systematically from measurements at lower beam energies. Therefore, 1.3±0.2 sec is reported for 207Ra and 1.2±0.2 sec for 208Ra... F. Radium-206: The weak α group at 7.270 MeV in [the figure] belongs to 206Ra. Its half-life was measured to be 0.4±0.2 sec.” These half-lives of 13(2) s, 15(2) s, 3.8(2) s, 4.7(2) s, 1.2(2) s, 1.3(2) s, and 0.4(2) s for 212Ra, 211Ra, 209Ra, 208Ra, 207Ra, and 206Ra, respectively agree with the currently adopted values of 13.0(2) s, 13(2) s, 3.7(2) s, 4.6(2) s, 1.3(2) s, 1.35±0.22 s, and 0.24(2) s.

213Ra

Momyer and Hyde reported the observation of 213Rn in the 1955 article “The influence of the 126-neutron shell on the alpha-decay properties of the isotopes of emanation, francium, and radium” [75]. A lead target was bombarded with a 12C beam from the Berkeley 60-inch cyclotron to form 213Ra in the 206Pb(12C,5n) fusion-evaporation reaction. Alpha-particle spectra and decay curves were recorded with an α pulse analyzer following chemical separation. “The half-life of the activity was 2.7±0.3 minutes, and the energy of the alpha particle was 6.90±0.04 MeV. After decay of the short-lived activity, several counts per minute of Em209 were observed on the plate.” This half-life agrees with the currently adopted value of 2.73(5) min. Earlier Momyer et al. presented indirect evidence for the production of a ~2 min half-life for 213Ra [77].

214,215Ra

Rotter et al. observed 214Ra and 215Ra in 1967 and reported their results in the paper “The new isotope Ac216” [79]. An 78 MeV 12C beam from the Dubna 1.5 m cyclotron bombarded a lead target forming radium in (xn) reactions. Recoil nuclei were collected on an aluminum foil and α-particle spectra were measured with a silicon surface barrier detector. “…an accuracy of 0.02-0.03 MeV is possible when determining α-line energies if the absolute energy scale is based on an ‘internal’ reference line. The latter was the 6.77 MeV line of Fr213 in our experiments with bismuth bombardment; in the case of a lead target it was the 7.17 MeV line of Ra214. These lines were clearly discriminated in all the measured spectra... We obtained the following α-particle energies: Rn213 - 8.14 MeV, Fr214 - 8.53 MeV, and Ra215 - 8.73 MeV.” Rotter et al. did not consider these observations new discoveries referring to an earlier conference abstract [80] and a book by Hyde et al. [114] which most probably also referred to the same conference abstract. Over a year later Valli et al. independently reported a 7.136(5) MeV α energy for 214Ra [113]. The presently accepted half-lives are 2.46(3) s and 1.55(7) ms for 214Ra and 215Ra, respectively.

216Ra

In the article “In-beam alpha spectroscopy of N=128 isotones. Lifetimes of 216Ra and a new isotope 217Ac,” Nomura et al. reported the observation of 216Ra in 1972 [115]. A 206Pb target was bombarded with 65–85 MeV 12C beams from the RIKEN IPCR cyclotron forming 216Ra in (4n) fusion-evaporation reactions. Alpha-particle spectra and decay curves were measured with a surface barrier Si detector. “Time distributions of the ground-state decay of 216Ra and 217Ac are shown in [the figure], from which half-lives of 216Ra and 217Ac have been determined of 0.18±0.03 µs and 0.10±0.01 µs, respectively.” The quoted value for 216Ra agrees with the currently adopted half-life of 182(10) ns.
In 1970, Torgerson and MacFarlane reported the first observation of 217Ra and 218Ra in “Alpha decay of the 221Th and 222Th decay chains” [81]. A 10.6 MeV/nucleon 16O beam from the Yale heavy ion accelerator was used to bombard a 208Pb target forming 221Th and 222Th in (3n) and (2n) fusion-evaporation reactions, respectively. 217Ra and 218Ra were then populated by subsequent α decay. Recoil products were transported to a stainless steel surface with a helium jet and α spectra were measured with a Si(Au) surface barrier detector. 217Ra: A direct measurement of the half-life was made by gating the two prominent 221Th groups (8.146 and 8.472 MeV) and the 217Ra group to produce start and stop pulses respectively on a time-to-amplitude converter. The output of the converter was then routed into a pulse-height analyser, and the decay curve was obtained. Using this procedure, we have measured the half-life of 217Ra to be 4 ± 2 μs.

In 1952, 219Ra was discovered by Meinke et al. and the results were reported in the paper “Further work on heavy collateral radioactive chains” [84]. Thorium nitrate targets were irradiated with a 4He beam from the Berkeley 184-inch cyclotron. 227U was chemically separated and the decay and energy of α-particles were measured with an alpha-particle pulse analyzer. “An additional short-lived chain collateral to the actinium (4n+3) natural radioactive family has also been partially identified. This chain decays as follows: 92U \rightarrow 90Th \rightarrow 88Ra \rightarrow 86Em \rightarrow 84Po \rightarrow 82Pb.” An α energy of 8.0(1) MeV was assigned to 219Ra. The presently accepted half-life is 10(3) ms.

Meinke et al. reported the observation of 220Ra and 221Ra in the 1949 paper “Three additional collateral alpha-decay chains” [48]. Thorium was bombarded with 100–120 MeV 4He beams from the Berkeley 184-inch cyclotron. Alpha-decay chains from 228U and 229U were measured following chemical separation. “The irradiation of thorium with 100-Mev helium ions resulted in the observation of the following collateral branch of the artificial 4n+1, neptunium, radioactive family shown with 213Po and its decay products: 92U \rightarrow 90Th \rightarrow 88Ra \rightarrow 86Em \rightarrow 84Po \rightarrow 82Pb.” Immediately after 120-Mev helium ion bombardment of thorium the uranium fraction contains another series of five alpha-emitters, which is apparently a collateral branch of the 4n family: 92U \rightarrow 90Th \rightarrow 88Ra \rightarrow 86Em \rightarrow 84Po \rightarrow 82Pb.” In a table summarizing the energies and half-lives of the decay chains only the α-decay energy was given for 220Ra stating a calculated half-life of 10$^{-2}$ s. The currently accepted half-life is 18(2) ms. The measured half-life of 31.0(15) s for 221Ra agrees with the presently adopted value of 28(2) s.

Studier and Hyde announced the discovery of 222Ra in the 1948 paper “A new radioactive series - the protactinium series” [85]. Thorium metal targets were bombarded with 19 MeV deuterons and a 38 MeV 4He beam from the Berkeley
60-inch cyclotron forming ^{230}Pa in (d,4n) and (α,p5n) reactions. ^{222}Ra was populated by subsequent α decay after the initial β^- decay of ^{230}Pa to ^{230}U. Alpha-decay spectra were measured following chemical separation. “It was necessary to measure the activity at such short intervals of time because of the short half-life of Ra222, and as a result the statistical fluctuations were rather severe. An integral decay curve was plotted to minimize the scatter of points... The half-life of Ra222 based on four such determinations is 38.0 seconds.” The quoted half-life is included in the calculation of the currently adopted value of 38.0(5) s.

^{223}Ra

In the 1905 article “A new radio-active product from actinium,” Godlewski reported the discovery of a new activity in the natural actinium decay chain which was later identified as ^{223}Ra [116]. The activity of actinium samples were measured following chemical separation. “Taking into consideration the similarity of actinium and thorium, both as regards their chemical and radioactive properties, I resolved to try if the method used by Rutherford and Soddy for the separation of ThX would not serve also to separate an analogous product from actinium. The experiments were at once successful... This substance, which is so similar in properties to ThX, will be called actinium X (AcX). The product AcX, immediately after its separation, weight for weight, was more than a hundred times more active than the original actinium. The activity increased in the first day after removal to about 15 per cent. of its original value, and then decayed with the time according to an exponential law, falling to half value in about ten days.” This half-life agrees with the currently accepted value of 11.43(5) d. A year earlier Giesel had reported a new substance separated from emanium (actinium) [117] without any measurements [118].

^{224}Ra

In 1902 Rutherford and Soddy announced the discovery of a new activity extracted from thorium later identified as ^{224}Ra in the paper “The cause and nature of radioactivity - part I” [119]. Activities from a thorium nitrate sample were observed with a photographic plate and an electrometer following chemical separation. “If for present purposes the initial periods of the curves are disregarded and the later portions only considered, it will be seen at once that the time taken for the hydroxide to recover one half of its lost activity is about equal to the time taken by the ThX to lose half its activity, viz., in each case about 4 days, and speaking generally the percentage proportion of the lost activity regained by the hydroxide over any given interval is approximately equal to the percentage proportion of the activity lost by the ThX during the same interval.” The quoted half-life is close to the currently adopted value of 3.66(4) d.

^{225}Ra

Hagemann et al. discovered ^{225}Ra in 1947 in “The (4n+1) radioactive series: the decay products of U^{233}n” [53]. The half-lives and α- and β-decay energies of the nuclides in the decay chain of ^{233}U were measured. “These decay products, which constitute a substantial fraction of the entire missing, 4n+1, radioactive series are listed together with their radioactive properties, in [the table].” The measured half-life of 14.8 d agrees with the presently accepted value of 14.9(2) d. Hagemann et al. acknowledge the simultaneous observation of ^{225}Ra by English et al. which was submitted only a day later and published in the same issue of Physical Review on the next page [54].
In 1898 Curie et al. announced the discovery of a new radioactive substance later identified as ^{226}Ra in the paper “Sur une nouvelle substance fortement radio-active, contenue dans la pechblende” [108]. During the study of radioactivity of pitchblende in addition to polonium a second new radioactive element was chemically separated. “La nouvelle substance radio-active que nous venons de trouver a toutes les apparences chimiques du baryum presque pur: elle n’est précipitée ni par l’hydrogene sulfure, ni par le sulfate d’ammonium, ni par l’ammoniaque; le sulfate est insoluble dans l’eau et dans les acides; le carbonate est insoluble dans l’eau; le chlorure, très soluble dans l’eau, est insoluble dans l’acide chlorhydrique concentré et dans l’alcool. Enfin cette substance donne le spectre du baryum, facile à reconnaître... Les diverses raisons que nous venons d’enumerer nous portent à croire que la nouvelle substance radio-active renferme un élément nouveau, auquel nous proposons de donner le nom de radium.” [The new radio-active substance which we have found has all the chemical appearances of almost pure barium: it is neither precipitated by hydrogen sulfide nor by the ammonium sulfide, nor with ammonia; the sulfate is insoluble in water and in acids; the carbonate is insoluble in water, the chloride, very soluble in water, is insoluble in concentrated hydrochloric acid and alcohol. Finally, the spectrum of this substance is easily recognizable as barium... The various reasons we have enumerated lead us to believe that the new radioactive substance contains a new element, which we propose to name radium.] The currently adopted half-life is 1600(7) y.

^{227}Ra

^{227}Ra was discovered by Butler and Adam and the results were published in the 1953 article “Radiations of Ra227” [120]. ^{226}Ra was irradiated with thermal neutrons from the Chalk River NRX reactor producing ^{227}Ra in neutron capture reactions. Beta- and gamma-rays were measured with an end-window Geiger counter and a sodium iodide (thalliated) scintillation spectrometer, respectively, following chemical separation. “Ra227 is a β^- emitter with a half-life of 41.2 ± 0.2 minutes and with a β^- endpoint of 1.31 ± 0.02 Mev.” This half-life agrees with the currently accepted value of $42.2(5)$ min.

^{228}Ra

Hahn first observed a new activity in the natural thorium decay series later identified as ^{228}Ra in 1907 and published his results in the article “Ein neues Zwischenprodukt im Thorium” [121]. The activities from thorium nitrate samples of different ages were compared. “Es ist naheliegend, daß die allmähliche Abnahme der Aktivität der frisch bereiteten Thorpräparate vom Zerfall eines aus irgend einem Grunde vorliegenden Überschusses an Radiothor herrührt; und in der Tat ergibt sich als Größenordnung für die Abnahme eine Periode von etwa zwei Jahren... Von der definitiven Wahl eines Namens für den neuen Körper sehe ich ab, bis sich seine Natur genauer hat feststellen lassen. Im letzteren Fall würde mir der Name ‘Mesothorium’ als zweckmäßig erscheinen.” [It seems evident that the slow reduction of the activity of the newly prepared thorium samples is due to the decay of an unexplained excess of radio thorium; and indeed the order of magnitude of the activity is about two years... I restrain from selecting a name for the new substance until its properties are better determined. In the latter case the name ‘mesothorium’ seems suitable.] Hahn submitted the identical paper three days later to another journal [122]. In a subsequent paper Hahn estimated the half-life of mesothorium to be about 7 years [123]. A year later Hahn quoted a half-life of ~ 5.5 y [124] which agrees with the presently accepted value of $5.75(3)$ y for ^{228}Ra. In the same paper Hahn renamed mesothorium to mesothorium 1 because he identified a separated decay product (mesothorium 2 or ^{228}Ac).
In 1975 the discovery of 229Fr by Ravn et al. was announced in the paper “Short-lived isotopes of alkali and alkaline-earth elements studied by on-line isotope separator techniques” [104]. A thorium plus lanthanum target was bombarded with protons from the CERN synchrocyclotron. Beta-ray decay curves were measured with a 4π plastic detector following mass separation with the isotope separator ISOLDE. “The following half-lives of new nuclides have been determined: ... 229Ra (4.0±0.2) min.” This half-life is the current value.

In the 1978 article “Decay of 230Ra and 230Ac,” Gilat and Katcoff announced the discovery of 230Ra [125]. At the Brookhaven Medium Energy Intense Neutron (MEIN) facility thorium targets were irradiated with secondary neutrons produced by stopping 200 MeV protons from the Brookhaven AGS injector Linac in a copper beam stop. 230Ra was produced in 232Th(n,2pn) reactions. Gamma-ray spectra and decay curves were measured following chemical separation. “The half-life of 230Ra was determined by: (1) analysis of the decay curves of ~20 of the most prominent lines in the 230Ra-230Ac spectrum, some of which are shown in [the figure]; and (2) milking experiments, in which the 23Ac daughter was milked successively at 20 min intervals over a period of 3 hr, and the parent half-life was extracted from the values of the daughter activity. Both methods gave the identical result of 93±2 min.” This half-life is the currently adopted value. The tentative assignment of a 45.5(15) min half-life to 230Ra was evidently incorrect [104]. An even earlier measurement of a ~1 hr half-life assigned to 230Ra was only published in a conference abstract [126].

The observation of 231Ra and 232Ra was reported by Ahmad et al. in the 1983 paper “Determination of nuclear spins and moments in a series of radium isotopes” [127]. A UC$_2$ target was bombarded with 600 MeV protons from the CERN synchrocyclotron. 231Ra and 232Ra were identified by on-line collinear fast beam laser spectroscopy following mass separation with the isotope separator ISOLDE. “The optical high-resolution measurements on 18 Ra isotopes in the range 208–232 have been carried out in the 4826 Å line ($7s^2\, ^1S_0-7s7p^1P_1$) of the neutral Ra and the 4683 Å line ($7s^2S_{1/2}-7p^2P_{1/2}$) of the Ra$^+$ spectra.” The presently accepted half-lives for 213Ra and 232Ra are 103(3) s and 250(50) s.

Mezlev et al. reported the discovery of 233Ra and 234Ra in the 1990 paper “Search for delayed fission in neutron-rich nuclei” [107]. A uranium target was bombarded with 1 GeV protons. Beta-, gamma-, and X-rays were measured with solid state detectors following mass separation with the on-line mass separator IRIS. “Due to this technique the new isotopes 232Fr (T$_{1/2}$=5±1 s), 233Ra(T$_{1/2}$=30±5 s) and 234Ra (T$_{1/2}$=30±10 s) have been identified using the solid state detectors for the registration of the beta-, gamma-, X-radiation.” For 233Ra, the quoted half-life is the currently accepted value, and for 234Ra the quoted half-life agrees with the currently adopted value of 30(10) s.

6. Summary

The discoveries of the known astatine, radon, francium, and radium isotopes have been compiled and the methods of their production discussed. Only the following six isotopes were initially identified incorrectly: 204,206,216At, 214Rn,
and 202,230Ra. In addition, the half-lives of 200,201,211At and 205,212Ra were at first reported without definite mass assignments.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL) and PHY10-62410 (REU).

References

[1] G. Q. Ginepro, J. Snyder, M. Thoennessen, At. Data Nucl. Data Tables 95 (2009) 805.
[2] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 729 (2003) 3.
[3] http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
[4] IUPAC Transfermium Working Group, Pure Appl. Chem. 63 (1991) 879.
[5] S. Czajkowski, F. Ameil, P. Armbuster, M. Bernas, P. Dessagne, C. Donzaud, C. Engelmann, H. R. Faust, H. Geissel, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, C. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stephan, K. Sümmerer, L. Tassan-Got, B. Voss, Proc. Int. Conf. on Exotic Nuclei, Atomic Masses, ENAM’95, Arles, France, 1995, Editions Frontiéres (1996), p. 553.
[6] M. Bernas, C. Engelmann, P. Armbuster, S. Czajkowski, F. Ameil, C. Böckstiegel, P. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, C. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, B. Voss, Phys. Lett. B 415 (1997) 111.
[7] http://www.nndc.bnl.gov/nsr/ NSR, Nuclear Science References, maintained by the National Nuclear Data Center at Brookhaven National Laboratory.
[8] J. J. Livingood, G. T. Seaborg, Rev. Mod. Phys. 12 (1940) 30.
[9] G. T. Seaborg, Rev. Mod. Phys. 16 (1944) 1.
[10] G. Seaborg, I. Perlman, Rev. Mod. Phys. 20 (1948) 585.
[11] J. M. Hollander, I. Perlman, G. T. Seaborg, Rev. Mod. Phys. 25 (1953) 469.
[12] D. Strominger, J. M. Hollander, G. T. Seaborg, Rev. Mod. Phys. 30 (1958) 585.
[13] C. M. Lederer, J. M. Hollander, I. Perlman, Table of Isotopes, 6th Edition, John Wiley & Sons 1967.
[14] F. W. Aston, Mass Spectra and Isotopes, 2nd Edition, Longmans, Green & Co., New York 1942.
[15] Gmelin-Kraut’s Handbuch der anorganischen Chemie, Siebente Auflage, Band III, Abteilung 2, herausgegeben von C. Friedheim, (Heidelberg 1908).
[16] The chemistry of the radio-elements, F. Soddy, Longmans, Green and Co. (London 1911).
[17] E. Rutherford, Radioactive substances and their radiations, Cambridge University Press, New York, 1913.
[42] E. K. Hyde, A. Ghiorsó, G. T. Seaborg, Phys. Rev. 77 (1950) 765.
[43] E. L. Kelly, E. Segre, Phys. Rev. 75 (1949) 999.
[44] D. R. Corson, K. R. MacKenzie, E. Segre, Phys. Rev. 58 (1940) 672.
[45] M. M. Winn, Proc. Phys. Soc. A 67 (1954) 949.
[46] R. L. Hahn, M. F. Roche, K. S. Toth, Nucl. Phys. A 113 (1968) 206.
[47] J. D. Keys, unpublished thesis and McGill University (1951).
[48] W. W. Meinke, A. Ghiorsó, G. T. Seaborg, Phys. Rev. 75 (1949) 314.
[49] B. Karlik, T. Bernert, Naturwiss. 32 (1944) 44.
[50] A. Ghiorsó, W. W. Meinke, G. T. Seaborg, Phys. Rev. 74 (1948) 695.
[51] B. Karlik, T. Bernert, Naturwiss. 31 (1943) 298.
[52] I. Perlman, A. Ghiorsó, G. T. Seaborg, Phys. Rev. 77 (1950) 26.
[53] F. Hagemann, L. I. Katzin, M. H. Studier, A. Ghiorsó, G. T. Seaborg, Phys. Rev. 72 (1947) 252.
[54] A. C. English, T. E. Cranshaw, P. Demers, J. A. Harvey, E. P. Hincks, J. V. Jelley, A. N. May, Phys. Rev. 72 (1947) 253.
[55] E. K. Hyde, A. Ghiorsó, Phys. Rev. 90 (1953) 267.
[56] C. F. Liang, P. Paris, E. Ruchowska, C. Briancon, J. Phys. G 15 (1989) L31.
[57] D. G. Burke, H. Folger, H. Gabelmann, E. Hagebo, P. Hill, P. Hoff, O. Jonsson, N. Kaffrell, W. Kurzewicz, G. Lovhoiden, K. Nybo, G. Nyman, H. I. Ravn, K. Riisager, J. Rogowski, K. Steffensen, T. F. Thorsteinsen, the ISOLDE Collaboration, Z. Phys. A 333 (1989) 131.
[58] L. Chen, W. R. Plass, H. Geissel, R. Knobel, C. Kozhuharov, Y. A. Litvinov, Z. Patyck, C. Scheidenberger, K. Sieggen-Iwaniuk, B. Sun, H. Weick, K. Beckert, P. Beller, F. Bosch, D. Boutin, L. Caceres, J. J. Carroll, D. M. Cullen, I. J. Cullen, B. Franzke, J. Gerl, M. Gorska, G. A. Jones, A. Kishada, J. Kurcewicz, S. A. Litvinov, Z. Liu, S. Mandal, F. Montes, G. Münzenberg, F. Nolden, T. Ohtsubo, Z. Podolyak, R. Propri, S. Rigby, N. Saito, T. Saito, M. Shindo, M. Steck, P. Ugorowski, P. M. Walker, S. Williams, M. Winkler, H. J. Wollersheim, T. Yamaguchi, Phys. Lett. B 691 (2010) 234.
[59] H. Alvarez-Pol, J. Benlliure, E. Caserejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K.-H. Schmidt, O. Yordanov, Phys. Rev. C 82 (2010) 041602.
[60] J. R. Partington, Nature 179 (1957) 912.
[61] J. L. Marshall, V. R. Marshall, Bull. Hist. Chem. 28 (2003) 76.
[62] D. J. Brenner, Med. Phys. 27 (2000) 618.
[63] W. Ramsay, R. W. Gray, Compt. Rend. Acad. Sci. 151 (1910) 126.
[64] K. Valli, M. J. Nurmia, E. K. Hyde, Phys. Rev. 159 (1967) 1013.
[88] E. Rutherford, Phil. Mag. 49 (1900) 1.
[89] F. F. Momyer, E. K. Hyde, Phys. Rev. 101 (1956) 136.
[90] P. Curie, M. Curie, Compt. Rend. Acad. Sci. 129 (1899) 714.
[91] F. D. S. Butement, V. J. Robinson, J. Inorg. Nucl. Chem. 26 (1964) 1.
[92] P. G. Hansen, P. Hornshøj, H. L. Nielsen, K. Wilsky, H. Kugler, G. Astner, E. Hagebo, J. Hudis, A. Kjelberg, F. Münich, P. Patzelt, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, R. A. Naumann, O. B. Nielsen, E. Beck, R. Foucher, P. Husson, J. Jastrzebski, A. Johnson, J. Alstad, T. Jahnson, A. C. Pappas, T. Tunaal, R. Henck, P. Siffert, G. Rudstam, Phys. Lett. B 28 (1969) 415.
[93] M. J. G. Borge, D. G. Burke, F. Calaprice, O. C. Johansson, G. Lovhoiden, R. A. Naumann, K. Nybo, G. Nyman, H. L. Ravn, T. F. Thorsteinsen, the ISOLDE Collaboration, Z. Phys. A 325 (1986) 429.
[94] M. J. G. Borge, D. G. Burke, H. Gabelmann, P. Hill, O. C. Johansson, N. Kaffrell, W. Kurcewicz, G. Lovhoiden, K. Nybo, G. Nyman, H. L. Ravn, J. Rogowski, T. F. Thorsteinsen, the ISOLDE Collaboration, Z. Phys. A 333 (1989) 109.
[95] D. Neidherr, G. Audi, D. Beck, K. Blaum, C. Bohm, M. Breitenfeldt, R. B. Cakirli, R. F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunnay, E. Minaya-Ramirez, S. Naimi, E. Noah, L. Penescu, M. Rosenbusch, S. Schwarz, L. Schweikhard, T. Stora, Phys. Rev. Lett. 102 (2009) 112501.
[96] M. Perey, Compt. Rend. Acad. Sci. 208 (1939) 97.
[97] J.-P. Adloff, G. B. Kauffman, Chem. Educator 10 (2005) 387.
[98] G. T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson, the ISOLDE Collaboration, Z. Phys. A 296 (1980) 223.
[99] K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29 (1967) 2503.
[100] R. D. Griffioen, R. D. MacFarlane, Phys. Rev. 133 (1964) B1373.
[101] J. Borggreen, K. Valli, E. K. Hyde, Phys. Rev. C 2 (1970) 1841.
[102] L. Westgaard, K. Aleklett, G. Nyman, E. Roeckl, Z. Phys. A 275 (1975) 127.
[103] R. Klapisch, C. Thibault, A. M. Poskanzer, R. Price, C. Rigaud, E. Roeckl, Phys. Rev. Lett. 29 (1972) 1254.
[104] H. L. Ravn, S. Sundell, L. Westgaard, E. Roeckl, J. Inorg. Nucl. Chem. 37 (1975) 383.
[105] W. Kurcewicz, E. Ruchowska, P. Hill, N. Kaffrell, G. Nyman, the ISOLDE Collaboration, Nucl. Phys. A 464 (1987) 1.
[106] P. Hill, N. Kaffrell, W. Kurcewicz, G. Nyman, Z. Phys. A 320 (1985) 531.
[107] K. A. Mezlev, Y. N. Novikov, A. V. Popov, Y. Y. Sergeev, V. I. Tikhonov, Z. Phys. A 337 (1990) 109.
[108] P. Curie, M. Curie, G. Bemont, Compt. Rend. Acad. Sci. 127 (1898) 1215.
[109] J. Uusitalo, M. Leino, T. Enqvist, K. Eskola, T. Granh, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keeman, H. Kettunen, H. Koivisto, P. Kuusiniemi, A.-P. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, Phys.
[110] M. Leino, J. Uusitalo, R. G. Allatt, P. Armbruster, T. Enqvist, K. Eskola, S. Hofmann, S. Hurskanen, A. Jokinen, V. Ninov, R. D. Page, W. H. Trzaska, Z. Phys. A 355 (1996) 157.

[111] M. J. Leddy, S. J. Freeman, J. L. Durell, A. G. Smith, S. J. Warburton, D. J. Blumenthal, C. N. Davids, C. J. Lister, H. Penttilä, Phys. Rev. C 51 (1995) R1047.

[112] F. P. Heßberger, S. Hofmann, G. Münzenberg, A. B. Quint, K. Sümmerer, P. Armbruster, Europhys. Lett. 3 (1987) 895.

[113] K. Valli, W. Treytl, E. K. Hyde, Phys. Rev. 161 (1967) 1284.

[114] E. K. Hyde, I. Perlman, and G. T. Seaborg, The Nuclear Properties of the Heavy Elements, vol. 2, 1964, p. 1107.

[115] T. Nomura, K. Hiruta, T. Inamura, M. Odera, Phys. Lett. B 40 (1972) 543.

[116] T. Godlewski, Nature 71 (1905) 294.

[117] F. Giesel, Ber. Deuts. Chem. Ges. 37 (1904) 3963.

[118] T. Godlewski, Phil. Mag. 10 (1905) 35.

[119] E. Rutherford, F. Soddy, Phil. Mag. 4 (1902) 370.

[120] J. P. Butler, J. S. Adam, Phys. Rev. 91 (1953) 1219.

[121] O. Hahn, Ber. Deuts. Chem. Ges. 40 (1907) 1462.

[122] O. Hahn, Phys. Z. 8 (1907) 227.

[123] O. Hahn, Ber. Deuts. Chem. Ges. 40 (1907) 3304.

[124] O. Hahn, Phys. Z. 9 (1908) 246.

[125] J. Gilat, S. Katcoff, J. Inorg. Nucl. Chem. 40 (1978) 369.

[126] W. A. Jenkins, G. T. Seaborg, Phys. Rev. 85 (1952) 758.

[127] S. A. Ahmad, W. Klempt, R. Neugart, E. W. Otten, K. Wendt, C. Ekstrom, the ISOLDE Collaboration, Phys. Lett. B 133 (1983) 47.
Explanation of Tables

7. Table 1. Discovery of astatine, radon, francium, and radium isotopes

Isotope	Astatine, radon, francium, and radium isotope						
First author	First author of refereed publication						
Journal	Journal of publication						
Ref.	Reference						
Method	Production method used in the discovery:						
	FE: fusion evaporation						
	NC: Neutron capture reactions						
	LP: light-particle reactions (including neutrons)						
	RD: radioactive decay						
	SP: spallation reactions						
	PF: projectile fragmentation of fission						
Laboratory	Laboratory where the experiment was performed						
Country	Country of laboratory						
Year	Year of discovery						
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------------	---------	------	--------	------------	---------	------
193At	H. Kettunen	Eur. Phys. J. A	30	FE	Jyväskylä	Finland	2003
192At	A.N. Andreyev	Phys. Rev. C	31	FE	Darmstadt	Germany	2006
193At	H. Kettunen	Eur. Phys. J. A	30	FE	Jyväskylä	Finland	2003
194At	A.N. Andreyev	Phys. Rev. C	33	FE	Darmstadt	Germany	2009
195At	Y. Tagaya	Eur. Phys. J. A	34	FE	RIKEN	Japan	1999
196At	W. Tretyl	Nucl. Phys. A	35	FE	Berkeley	USA	1967
197At	W. Tretyl	Nucl. Phys. A	35	FE	Berkeley	USA	1967
198At	W. Tretyl	Nucl. Phys. A	35	FE	Berkeley	USA	1967
200At	R.W. Hoff	J. Inorg. Nucl. Chem.	36	FE	Berkeley	USA	1963
201At	R.W. Hoff	J. Inorg. Nucl. Chem.	36	FE	Berkeley	USA	1963
202At	R.M. Latimer	J. Inorg. Nucl. Chem.	38	FE	Berkeley	USA	1961
203At	G.W. Barton	Phys. Rev.	37	LP	Berkeley	USA	1951
204At	R.M. Latimer	J. Inorg. Nucl. Chem.	38	FE	Berkeley	USA	1961
205At	G.W. Barton	Phys. Rev.	37	LP	Berkeley	USA	1951
206At	R.M. Latimer	J. Inorg. Nucl. Chem.	38	FE	Berkeley	USA	1961
207At	G.W. Barton	Phys. Rev.	37	LP	Berkeley	USA	1961
208At	E.K. Hyde	Phys. Rev.	42	LP	Berkeley	USA	1950
209At	G.W. Barton	Phys. Rev.	37	LP	Berkeley	USA	1951
210At	E.L. Kelly	Phys. Rev.	43	LP	Berkeley	USA	1949
211At	D.R. Comins	Proc. Roy. Soc. A	44	LP	Berkeley	USA	1949
212At	M.M. Winn	Proc. Roy. Soc. A	45	LP	Birmingham	UK	1954
213At	R.L. Hahn	Nucl. Phys. A	46	LP	Oak Ridge	USA	1968
214At	W.W. Meikne	Phys. Rev.	48	LP	Berkeley	USA	1949
215At	B. Karlik	Naturwiss.	49	RD	Wien	Austria	1944
216At	A. Ghiosio	Phys. Rev.	50	RP	Berkeley	USA	1948
217At	F. Hagemann	Phys. Rev.	53	RD	Argonne	USA	1947
218At	B. Karlik	Naturwiss.	51	RD	Wien	Austria	1943
219At	E.K. Hyde	Phys. Rev.	55	RD	Berkeley	USA	1953
220At	C.F. Liang	J. Phys. G	56	SP	Orsay	France	1989
221At	D.G. Burke	Z. Phys. A	57	SP	CERN	Switzerland	1989
222At	D.G. Burke	Z. Phys. A	57	SP	CERN	Switzerland	1989
223At	D.G. Burke	Z. Phys. A	57	SP	CERN	Switzerland	1989
224At	L. Chen	Phys. Lett. B	58	PF	Darmstadt	Germany	2010
225At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
226At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
227At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
228At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
229At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
230At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
231At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
232At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
233At	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
234At	A.N. Andreyev	Phys. Rev. C	65	FE	Darmstadt	Germany	2006
235At	A.N. Andreyev	Phys. Rev. C	65	FE	Darmstadt	Germany	2006
236At	H. Kettunen	Phys. Rev. C	66	FE	Jyväskylä	Finland	2001
237At	K. Morita	Z. Phys. A	67	FE	RIKEN	Japan	1995
238At	K. Morita	Z. Phys. A	67	FE	RIKEN	Japan	1995
239At	F. Calaprice	Phys. Rev. C	70	SP	CERN	Switzerland	1984
240At	A.C. DiRienzo	Phys. Rev. C	71	FE	Brookhaven	USA	1980
241At	P. Hornshoj	Nucl. Phys. A	72	SP	CERN	Switzerland	1971
242At	K. Valli	Phys. Rev.	64	FE	Berkeley	USA	1967
243At	K. Valli	Phys. Rev.	64	FE	Berkeley	USA	1967
244At	K. Valli	Phys. Rev.	64	FE	Berkeley	USA	1967
245At	K. Valli	Phys. Rev.	64	FE	Berkeley	USA	1967
246At	K. Valli	Phys. Rev.	64	FE	Berkeley	USA	1967
247At	W.E. Burcham	Proc. Phys. Soc. A	74	FE	Birmingham	UK	1954
248At	W.E. Burcham	Proc. Phys. Soc. A	74	FE	Birmingham	UK	1954
249At	F.F. Monyer	J. Inorg. Nucl. Chem.	75	SP	Berkeley	USA	1955
250At	F.F. Monyer	Phys. Rev.	77	SP	Berkeley	USA	1952
251At	F.F. Monyer	Phys. Rev.	77	SP	Berkeley	USA	1952
252At	F.F. Monyer	Phys. Rev.	77	SP	Berkeley	USA	1952
253At	E.K. Hyde	Phys. Rev.	42	SP	Berkeley	USA	1950
254At	H. Rotter	Sov. J. Nucl. Phys.	79	FE	Dubna	Russia	1967
255At	D.F. Targerson	Nucl. Phys. A	81	FE	Yale	USA	1970
256At	W.W. Meikne	Phys. Rev.	48	LP	Berkeley	USA	1949
257At	W.W. Meikne	Phys. Rev.	48	LP	Berkeley	USA	1949
258At	M.H. Studier	Phys. Rev.	85	LP	Argonne	USA	1948
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------------	---------	------	--------	------------	---------	------
219Rn	F. Giesel	Ber. Deuts. Chem. Ges.	86	RD	Braunschweig	Germany	1903
226Rn	E. Rutherford	Phil. Mag.	88	RD	McGill	Canada	1900
227Rn	F. F. Momyer	Phys. Rev.	89	LP	Berkeley	USA	1956
228Rn	P. Curie	Compt. Rend. Acad. Sci.	90	RD	Paris	France	1899
229Rn	F.D.S. Butement	J. Inorg. Nucl. Chem.	91	LP	Liverpool	UK	1964
230Rn	P.G. Hansen	Phys. Lett. B	92	SP	CERN	Switzerland	1969
231Rn	P.G. Hansen	Phys. Lett. B	92	SP	CERN	Switzerland	1969
232Rn	M.J.G. Borge	Z. Phys. A	93	SP	CERN	Switzerland	1986
233Rn	M.J.G. Borge	Z. Phys. A	94	SP	CERN	Switzerland	1989
234Rn	D. Neidherr	Phys. Rev. Lett.	95	SP	CERN	Switzerland	2009
235Rn	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
236Rn	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010
199Fr	Y. Tagaya	Eur. Phys. J. A	34	FE	RIKEN	Japan	1999
200Fr	K. Morita	Z. Phys. A	67	FE	RIKEN	Japan	1995
201Fr	G.T. Ewan	Z. Phys. A	98	SP	CERN	Switzerland	1980
202Fr	G.T. Ewan	Z. Phys. A	98	SP	CERN	Switzerland	1980
203Fr	K. Valli	J. Inorg. Nucl. Chem.	99	FE	Berkeley	USA	1967
204Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
205Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
206Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
207Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
208Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
209Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
211Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
212Fr	E.K. Hyde	Phys. Rev.	42	SP	Berkeley	USA	1950
213Fr	R.D. Griffoen	Phys. Rev.	100	FE	Berkeley	USA	1964
214Fr	H. Rotter	Sov. J. Nucl. Phys.	79	FE	Dubna	Russia	1967
215Fr	J. Borggreen	Phys. Rev. C	101	FE	Berkeley	USA	1970
216Fr	J. Borggreen	Phys. Rev. C	101	FE	Berkeley	USA	1970
217Fr	R.L. Hahn	Nucl. Phys. A	46	LP	Oak Ridge	USA	1968
218Fr	W.W. Meink	Phys. Rev.	48	LP	Berkeley	USA	1949
219Fr	A. Ghiorso	Phys. Rev.	50	LP	Berkeley	USA	1948
220Fr	A. Ghiorso	Phys. Rev.	50	LP	Berkeley	USA	1948
221Fr	F. Hagemann	Phys. Rev.	53	RD	Argonne	USA	1947
222Fr	L. Westgaard	Z. Phys. A	102	SP	CERN	Switzerland	1975
223Fr	M. Perez	Compt. Rend. Acad. Sci.	96	RD	Paris	France	1939
224Fr	P.G. Hansen	Phys. Lett. B	92	SP	CERN	Switzerland	1969
225Fr	P.G. Hansen	Phys. Lett. B	92	SP	CERN	Switzerland	1969
226Fr	P.G. Hansen	Phys. Lett. B	92	SP	CERN	Switzerland	1969
227Fr	R. Klapisch	Phys. Rev. Lett.	103	SP	CERN	Switzerland	1972
228Fr	R. Klapisch	Phys. Rev. Lett.	103	SP	CERN	Switzerland	1972
229Fr	H.U. Hug	J. Inorg. Nucl. Chem.	104	SP	CERN	Switzerland	1973
230Fr	W. Kurewicz	Nucl. Phys. A	105	SP	CERN	Switzerland	1987
231Fr	P. Hill	Z. Phys. A	106	SP	CERN	Switzerland	1985
232Fr	K.A. Mezlev	Z. Phys. A	107	SP	Leningrad	Russia	1990
233Fr	H. Alvarez-Pol	Phys. Rev. C	59	PF	Darmstadt	Germany	2010

201Ra | J. Uusitalo | Phys. Rev. C | 109 | FE | Jyväskylä | Finland | 2005 |
202Ra | J. Uusitalo | Phys. Rev. C | 109 | FE | Jyväskylä | Finland | 2005 |
203Ra | M. Leino | Z. Phys. A | 110 | FE | Jyväskylä | Finland | 1996 |
204Ra | M.J. Leddy | Phys. Rev. C | 111 | FE | Argonne | USA | 1995 |
205Ra | F.P. Heilberger | Europhys. Lett. | 112 | FE | Darmstadt | Germany | 1998 |
206Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
207Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
208Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
209Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
210Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
211Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
212Ra | K. Valli | Phys. Rev. | 113 | FE | Berkeley | USA | 1967 |
213Ra | F.P. Monyer | J. Inorg. Nucl. Chem. | 75 | SP | Berkeley | USA | 1955 |
214Ra | H. Rotter | Sov. J. Nucl. Phys. | 79 | FE | Dubna | Russia | 1967 |
215Ra | H. Rotter | Sov. J. Nucl. Phys. | 79 | FE | Dubna | Russia | 1967 |
Isotope	First author	Journal	Ref.	Method	Laboratory	Country	Year
^{216}Ra	T. Nomura	Phys. Lett. B	[115]	FE	RIKEN	Japan	1972
^{217}Ra	D.F. Torgerson	Nucl. Phys. A	[81]	FE	Yale	USA	1970
^{218}Ra	D.F. Torgerson	Nucl. Phys. A	[81]	FE	Yale	USA	1970
^{219}Ra	W.W. Meinke	Phys. Rev.	[84]	LP	Berkeley	USA	1952
^{220}Ra	W.W. Meinke	Phys. Rev.	[48]	LP	Berkeley	USA	1949
^{222}Ra	W.W. Meinke	Phys. Rev.	[48]	LP	Berkeley	USA	1949
^{223}Ra	M.H. Studier	Phys. Rev.	[53]	RD	Argonne	USA	1948
^{224}Ra	T. Godlewski	Nature	[116]	RD	McGill	Canada	1905
^{225}Ra	E. Rutherford	Phil. Mag.	[119]	RD	McGill	Canada	1902
^{226}Ra	F. Hagemann	Phys. Rev.	[108]	RD	Argonne	USA	1947
^{227}Ra	P. Curie	Compt. Rend. Acad. Sci.	[120]	NC	Chalk River	Canada	1953
^{228}Ra	J.P. Butler	Phys. Rev.	[121]	RD	Berlin	Germany	1907
^{229}Ra	O. Hahn	Ber. Deuts. Chem. Ges.	[104]	SP	CERN	Switzerland	1975
^{230}Ra	H.L. Ravn	J. Inorg. Nucl. Chem.	[125]	LP	Brookhaven	USA	1978
^{231}Ra	J. Gilat	J. Inorg. Nucl. Chem.	[127]	SP	CERN	Switzerland	1983
^{232}Ra	S.A. Ahmad	Phys. Lett. B	[107]	SP	CERN	Switzerland	1983
^{233}Ra	K.A. Mezlev	Z. Phys. A	[107]	SP	Leningrad	Russia	1990
^{234}Ra	K.A. Mezlev	Z. Phys. A	[107]	SP	Leningrad	Russia	1990