Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus

Barth-Jensen, Coralie; Koski, Marja; Varpe, Øystein; Glad, Peter; Wangensteen, Owen S.; Præbel, Kim; Svensen, Camilla

Published in:
Journal of Plankton Research

Link to article, DOI:
10.1093/plankt/fbaa039

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Barth-Jensen, C., Koski, M., Varpe, Ø., Glad, P., Wangensteen, O. S., Præbel, K., & Svensen, C. (2020). Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. Journal of Plankton Research, 42(5), 564-580. [fbaa039]. https://doi.org/10.1093/plankt/fbaa039

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods *Oithona similis*, *Microsetella norvegica* and *Microcalanus pusillus*

ORIGINAL ARTICLE

Reproductive rates of copepods are temperature-dependent, but poorly known for small copepods at low temperatures, hindering the predictions of population dynamics and secondary production in high-latitude ecosystems. We investigated egg hatching rates, hatching success and egg production of the small copepods *Oithona similis* and *Microsetella norvegica* (sac spawners) and *Microcalanus pusillus* (broadcast spawner) between March and August. Incubations were performed at ecologically relevant temperatures between 1.3 and 13.2°C, and egg production rates were calculated.

All egg hatching rates were positively correlated to temperature, although with large species-specific differences. At the lowest temperatures, *M. pusillus* eggs hatched within 4 days, whereas the eggs from sac spawners took 3–8 weeks to hatch. The egg hatching success was ≤25% for *M. pusillus*, >75% for *O. similis* and variable for *M. norvegica*. The maximum weight-specific egg production rate (µg C µg⁻¹ C d⁻¹) of *M. pusillus* was higher (0.22) than *O. similis* (0.12) and *M. norvegica* (0.06). *M. norvegica* reproduction peaked at 6–8°C, the prevailing *in situ* temperatures during
its reproductive period. The difference in reproductive rates indicates species-specific thermal plasticity for the three copepods, which could have implications for present and future population dynamics of the species in arctic fjords.

KEYWORDS: female carbon content; hatching success; low temperature; seasonality; weight-specific egg production rate

INTRODUCTION

Small copepods, such as the cosmopolitan *Oithona* spp., are numerically abundant (Ormańczyk et al., 2017; Poulsen and Kiørboe, 2006; Schnack-Schiel, 2001; Zamora-Terol et al., 2013), and can seasonally dominate copepod biomass at high latitudes (Arendt et al., 2013; Svensen et al., 2011). They are an important food source for early larval stages of fish and carnivorous zooplankton, and can serve as an alternative or complementary carbon source for older larval stages (Castellani et al., 2007; Grønkjær et al., 2018; Turner, 2004). Some small copepod species are important for biogeochemical cycles (Koski et al., 2017; Turner, 2004), including the biological carbon pump, both through their diet (e.g. feeding on suspended particles and microzooplankton) and their sloppy feeding behavior (Shoemaker et al., 2019; Svensen and Vernet, 2016). Most small copepod species are active year round (Madsen et al., 2008; Zamora-Terol et al., 2014) while the large copepod species such as *Calanus* spp. hibernate in winter (Conover, 1988).

A body size of <2 mm defines small copepod species (Roura et al., 2018), but these species are not functionally uniform (Litchman et al., 2013). There is large variability in their feeding behavior (Drits and Semenova, 1984; Nishibe et al., 2010), reproductive strategies (Kiørboe and Sabatini, 1994) and seasonal population dynamics (Arendt et al., 2013; Ashjian et al., 2003; Madsen et al., 2008). At temperate and high latitudes, small copepods have been suggested to increase in abundance relative to larger ones due to climate-induced changes in salinity (Mäkinen et al., 2017) and temperature (Beaugrand et al., 2002; Coyle et al., 2008; Eisner et al., 2014). For example, small copepods tend to have increased production in warmer and more stable surface waters (Coyle et al., 2008; Mäkinen et al., 2017).

Measurements of growth (Uye et al., 2002) or egg production (Zamora-Terol et al., 2014) are commonly used to understand population dynamics and to estimate secondary production of copepods. These measurements are species-specific and time-consuming to obtain (Avila et al., 2012), and limited knowledge is available on small copepods growth and reproductive rates (Madsen et al., 2008; Norrbin, 1991; Turner, 2004). For the understudied species, rates from similar-sized or taxonomically close species are often used (e.g. Madsen et al., 2008; Middelbo et al., 2019; Nielsen and Andersen, 2002). However, the same environmental forcing may have different effects on different species, even when they belong to the same genus (Eisner et al., 2014; Ershova et al., 2016; Ershova et al., 2017; Jónasdóttir, 1989). Estimation of copepod secondary production based on average rates of model species rather than the dominant (but perhaps understudied) ones may therefore result in erroneous estimates.

A species response to increasing temperature is an important facet of environmental ecophysiology, with phenotypic plasticity being the capacity of organisms to modify their morphology, physiology or life history under environmental influence (Booth et al., 2018; Calow, 2009; Ortega-Mayagoitia et al., 2018). Thermal plasticity is attributed to temperature-induced modifications and can result in local adaptation in copepods (Drillet et al., 2008; Lonsdale and Levinton, 1986). Water temperature in the Arctic is predicted to rise over the next decades (Alexander et al., 2018). To assess the present state of the community and a future possible shift from large to small copepod species, more knowledge is needed about the temperature dependence of the vital rates of small copepod species. Temperature-dependent reproductive rates of copepods include the egg hatching rate (Ambler, 1985; Andersen and Nielsen, 1997) and egg production (Bunker and Hirst, 2004; Humley and Lopez, 1992) whereas the clutch size and hatching success have been described as both temperature-dependent (Devreker et al., 2012; Ershova et al., 2016; Hansen et al., 2010) and temperature-independent (Dvoretsky and Dvoretsky, 2009a; Ershova et al., 2016; Kurbjeweit, 1993; Weydmann et al., 2015). The latency time, i.e. the time between the separation of hatched eggs from the female to the production of a new egg sac (Devreker et al., 2012), seems to be temperature-independent for some small copepod species (Uye et al., 1982; Uye et al., 2002; Uye and Sano, 1995; Ward and Hirst, 2007), but was described as temperature-dependent for other species (Devreker et al., 2012). However, few studies have measured the reproductive rates of small copepods at low temperatures, although a broad range of life history adaptations could be expected in response to the highly seasonal environment of high-latitude seas (Varpe, 2017).

In the present study we investigated three small copepod species: *Oithona similis* (Cyclopoida), *Microsetella*
nорегика (Harpacticoida) and Microcalanus pusillus (Calanoïda). All three species are abundant in sub-arctic Balsfjord (69° N; northern Norway), have comparable body size (~300 μm), but differ regarding life-history strategies (Benedetti et al., 2016; Brun et al., 2017). Copepods have two main reproductive strategies; broadcast spawners (or free spawners) release a relatively large number of eggs (Kiørboe and Sabatini, 1994), whereas egg-carrying copepods (or sac spawners) produce fewer eggs clustered in one or two egg pouches. Although Kiørboe and Sabatini (1994) compared the reproductive strategies of sac spawners and broadcast spawners, their dataset include few small copepods, mainly from the genus Oithona that is the most investigated small copepod (e.g. Mironova and Pasternak, 2017; Nielsen et al., 2002; Sabatini and Kiørboe, 1994; Zamora-Terol et al., 2014).

In contrast, the reproduction and population dynamics of the egg-carrying M. norvegica (Koski et al., 2014; Mironova and Pasternak, 2017; Svensen et al., 2018; Uye et al., 2002) and broadcast spawner M. pusillus have been scarcely investigated (Norrbin, 1991).

We investigated the temperature-dependent responses of reproductive rates in O. similis, M. norvegica and M. pusillus, expecting that egg hatching rates of the three species will increase with temperature within their tolerance range. We also compared the influence of temperature on the egg hatching success and egg production of these ubiquitous species with different reproductive strategies. Genetic tools have revealed that cryptic or pseudocryptic species may be relatively common in marine species, including marine copepods (Lajus et al., 2015). It is therefore unsure if the historically reported broad tolerance ranges within a certain morphologically identified species can still be trusted for single species (Knowlton, 1993). The Microcalanus species identification was therefore resolved through genetic analysis. For O. similis, several lineages have been described, but only one was found in the Arctic (Cornils et al., 2017). We can therefore assume that the O. similis specimens in the present study belonged to the same species lineage.

MATERIAL AND METHODS

We investigated egg hatching rates, egg development times and hatching success of O. similis, M. norvegica and M. pusillus as a function of temperature, within the range of 1.3–13.2°C. In total, 22 incubations were conducted (Table I). The temporal spread of the incubations covered a wide temperature range so that the copepods response to different temperatures could be studied without needing a prior acclimation period.

Sampling

Copepods were collected in June and August 2017, and in March, May, June and August 2018 (Table I) at Svartnes, Balsfjord, Norway (N: 69° 22.947’; E: 19° 05.414’, depth 180 m). Balsfjord is one of the coldest fjords in Norway (Hopkins et al., 1989), with mean surface temperature ranging from 1.3°C in February to 8.6°C in July and August (Eilertsen and Skarøhømar, 2006). A WP-2 net (64 or 90 μm-mesh, Hydro-Bios, Germany, 0.25 m² opening), equipped with a non-filtering cod end, was raised at 0.3–0.4 m s⁻¹ from 50 m (2017) or 100 m (2018) to the surface. On deck, the content of the cod end was placed in 20 L of surface seawater, and transported to the laboratory within 2 h. Copepod samples were stored at 8°C for ~8 h during the experimental set-up, and the handling time was minimized for incubations with temperatures that deviated most from 8°C. In-situ temperature of the water column was obtained using conductivity, temperature, depth (CTD) profiler (Seabird model 25 Sealogger). Water samples were collected at four depths (5, 20, 50 and 150 m) using 20 L Go-Flo bottles (General Oceanics, Florida, USA). Water samples were stored in acid-washed Nalgene bottles in a dark cooler for 3 h until arrival at the laboratory. For each depth, three 100 mL aliquots were filtered for total chlorophyll a (Chl a, GF/F filter, 0.7 μm). The filters were extracted in 5 mL methanol for 12–18 h at 4°C in the dark (modified from Strickland and Parsons, 1972). Chl a was measured with a fluorometer (10-AU, Turner Designs, California, USA), and concentrations for the three aliquots were averaged for each depth.

Oithona similis and Microsetella norvegica egg-hatching incubations

Egg hatching was investigated at temperatures between 1.3°C and 13.2°C for O. similis, and at temperatures between 3.0°C and 13.2°C for M. norvegica. With the exception of August 2017 and May 2018, incubation temperatures reflected the in situ temperature at the time of sampling (Table I). Incubation temperatures were 3.5 and 4.2°C above in situ temperatures in May 2018 and August 2017, respectively. These higher temperatures were necessary to cover a 10°C temperature range. All incubations were performed without acclimation of the animals, following the procedure of Nielsen et al. (2002). Uye et al. (2002) removed egg sacs manually from females M. norvegica and incubated them separately. This procedure is not usual for other egg-carrying copepods, including O. similis, where females and eggs are typically incubated together. In our first incubations, we therefore tested whether hatching rates of attached vs. detached egg sacs differed. For both species, we sorted 60 egg-carrying females using a stereomicroscope. The egg sacs
were detached from 40 females, while 20 females were incubated with their egg sacs attached. Single females with their egg sacs or single egg sacs were individually incubated for 12 days, in order to ensure that all eggs had sufficient time to hatch. Since there were no significant differences in hatching rates between the two methods (Mann–Whitney rank-sum test, \(P \geq 0.424 \)), the egg sacs were not separated from the females in the remaining incubations.

The duration of each incubation at the different temperatures was determined on the basis of the first incubations at 4.6 °C, which lasted for 12 days. In these incubations, all viable eggs hatched within 11 days (\(O. \) similis) or within 4 days (\(M. \) norvegica). A change of color of the eggs was interpreted as a sign of degradation (Burkart and Kleppel, 1998; Drillet et al., 2011), and discolored eggs were assumed to be unviable. For incubations at higher temperatures, we assumed that 7 days would be sufficient as this represented the median duration of egg hatching of both species at 4.6 °C. The two incubations at 1.3 °C (\(O. \) similis, Table I) were prolonged to 15 and 18 days, in accordance with published data (Nielsen et al., 2002).

For all incubations, females with egg sacs were placed individually into 2.5 mL of 0.2 μm filtered seawater (FSW; Halvorsen, 2015), in 12-well culture plates and incubated in temperature-controlled incubators (Termaks KB8182, Termaks, Norway). The experimental design by Nielsen et al. (2002) relies on an even spread of the females through their egg-carrying cycle. We aimed for a minimum of 30 females per incubation, unless the total abundance of females in the sample was <30 (Table I). The water temperature was logged (model Kistock, Kimo, France) every 5 min for the duration of the incubation. We defined the number of eggs carried in the egg sacs of a female as a clutch. Clutch size was obtained for each female at the beginning of incubations by counting the number of eggs carried. Every 24 h (for incubations at 1.3 °C) or 8 h (for all other temperatures), the wells were checked for hatching following gentle mixing of the water. Every second day \(\sim 50\% \) of the water was replaced with fresh FSW. A hatching event for the entire clutch was defined as the time when at least one freely swimming nauplius was observed in the well. After the hatching event was recorded, the well was monitored to determine the final number of hatching eggs. Newly hatched nauplii were removed. The handling time was <10 min/plate. Wells containing a dead female during the first 24 h of the incubation were excluded from the dataset. During the first 2 days of the incubation, all females were photographed using a camera (Leica DFC450) connected to a stereomicroscope (Leica MZ16, ×84–100 magnification) for measurements of prosome length (for \(O. \) similis) or total length (for \(M. \) norvegica). In addition, 50 eggs of each species (×100–110 magnification) were photographed and measured with a precision of ±7 μm.

Microcalanus pusillus egg production and hatching rate

Incubations of \(M. \) pusillus were conducted in May, June and August 2018. For each incubation, 29 to 30 females were randomly selected from the samples (Table I) and individually incubated for 24 h in 2.5 mL of 0.2 μm-FSW in 12-well culture plates, under similar conditions to

Table I: Overview of the incubations including the start date, in situ minimum and maximum temperatures at the depths from 170 to 0 m, incubation temperature (mean ± SD) and number of females used in each incubation.

Start date	Temperature (in situ, °C)	Temperature (incubation, °C)	Oithona similis	Microsetella norvegica	Microcalanus pusillus
9.06.2017	4.8 ± 1.4	4.6 ± 0.1	60 (H\(^+1\))	60 (H\(^+1\))	
19.06.2017	5.0 ± 0.8	7.9 ± 0.2	61 (H\(^1\))	57 (H\(^1\))	
15.08.2017	Surface 9.0	10.4 ± 0.1	30 (H)	30 (H)	
1.03.2018	1.7 ± 0.1	1.3 ± 0.1	10 (H\(^2\))	30 (H)	30 (H, EP)
12.03.2018	1.2 ± 0.8	1.3 ± 0.1	30 (H\(^1\))	30 (H, EP)	
3.05.2018	2.0 ± 3.5	4.0 ± 0.1	30 (H)	30 (H, EP)	
11.06.2018	2.5 ± 7.7	3.0 ± 0.1	30 (H)	30 (H, EP)	
24.08.2018	6.8 ± 10.2	6.1 ± 0.2	29 (H, EP)	30 (H, EP)	

H, hatching; EP, egg production; DNA, DNA sequencing of the female *Microcalanus* used in the incubation. * both attached and detached egg sacs, (blank) no experiment. Duration was 7 days for all experiments except for: \(^1\)11 days, \(^2\)15 days and \(^3\)18 days.

Downloaded from https://academic.oup.com/plankt/article/42/5/564/5902327 by DTU Library user on 14 September 2020
those used for *O. similis* and *M. norvegica*. Overall mortality within the 24-h incubations never exceeds 7%, except for 23% mortality in the 9.8°C incubation. After 24 h, the eggs in each well (the clutch) were counted. The average clutch size for *M. pusillus* excluded the non-producing females. Females were photographed and size measured, before being preserved in pure grade ethanol (96%). The clutches were returned to the incubators and followed for 6 days. Eggs were checked for hatching every 8 h, with a handling time of maximum 10 min per plate. The same definition of a hatching event was used for *M. pusillus* as for the sac spawners. The mean development time (D, d) refers to the time between egg production and egg hatching and was calculated as the mean of all hatching events in all wells incubated at the same temperature.

Species determination of *M. pusillus*

It is uncertain whether one or two *Microcalanus* species are present in Balsfjord: *M. pygmaeus* and/or *M. pusillus* (S. Kwaśniewski, personal communication). The species can be identified on the basis of differences in the antennule/prosome length ratio and terminal spines on the second and fourth exopods, and can be identified on the basis of differences in the terminal spines on the second and fourth exopods, and can be identified on the basis of differences in the length ratio method for all specimens after fixation in 70% ethanol, using a stereomicroscope at ×100 magnification. Additionally, 58 females from two incubations (4.8°C and 5.7°C in June 2018) were sequenced to confirm taxonomic identification. DNA was extracted from individual females following a modified version of the HotShot protocol (Meissner et al., 2013; Truett et al., 2000). The Leray fragment of the mitochondrial cytochrome *c* oxidase subunit I (COI) was amplified using tagged mlCOIintF-XT 5′-GGWACWRGWGTGRACWITTAYCCYCCG-3′ as forward primer and tagged jgHCO2198 5′-TAIACYTCIGGRTGICRAARAAYCA-3′ as reverse primer, and the polymerase chain reaction (PCR) was performed with conditions described in Wangensteen et al., (2018). Multiplexed libraries for next generation sequencing were obtained using the NEXTflex PCR-free DNA-seq kit (BIOO Scientific, TX, USA) and sequencing was performed on an Illumina MiSeq using a nano-kit V2 2x250 bp (Illumina, CA, USA) following the manufacturer’s protocol. The obtained paired-end reads were aligned, demultiplexed, quality-filtered, and dereplicated using a custom pipeline based on OBITools (Boyer et al., 2016), following procedures described in Ershova et al. (2019). The most abundant sequence obtained from each individual was compared to available sequences in BOLD (barcode reference database) for *M. pusillus* and sequences of *M. pygmaeus* (T. Falkenhaug, Institute of Marine Research, Norway). The morphological identification of the 58 females was then compared to their genetic identification to check for the robustness of the species identification.

Copepod carbon content

The particulate organic carbon (POC) contents of female *O. similis, M. norvegica* and *M. pusillus* were analyzed for samples collected in August 2016, February, March and April 2017 and June 2018. Between 60 and 300 females (without egg sacs) were sorted under a stereomicroscope (Leica MZ16, ×64–80 magnification), rinsed in 0.2 μm-

FSW and placed onto precombusted GF/F filters (450°C, 0.7 μm pore size). The filters were stored frozen at −20°C until analysis. Prior to analysis, the filters were dried (60°C) and thereafter fumed with concentrated HCl (12 mol L⁻¹) to remove inorganic carbon. The filters with the females were analyzed using a CHN Lab Leeman 440 elemental analyzer. Measured values of POC for blanks (filters without copepods) were subtracted from filters containing copepods. Due to the loss of the June carbon measurement, *M. norvegica* carbon weight was approximated as the average between the April and August measurement for this month.

CALCULATIONS AND STATISTICAL ANALYSIS

Five variables were extracted from egg incubations with *M. norvegica* and *O. similis*: hatching rate of eggs, hatching success of clutches, hatching success of eggs in each clutch, total egg hatching success and weight-specific daily egg production.

Egg hatching rate

To obtain the egg hatching rate, the cumulative hatching events of the sac spawners were plotted against the incubation time. The large number of females incubated was assumed to ensure an even spread of the females’ egg-carrying cycle (Nielsen et al., 2002), which resulted in a linear increase of hatching events with time. The egg hatching rate (HR, d⁻¹) was defined as the slope of this linear regression between the cumulative hatching events of the sac spawners were plotted against the incubation time. The regressions were forced through the origin as no females with already hatched eggs in each well (the clutch) were counted. The average clutch size for *M. pusillus* as for the sac spawners. The mean development time (D, d) refers to the time between egg production and egg hatching and was calculated as the mean of all hatching events in all wells incubated at the same temperature.

Species determination of *M. pusillus*

It is uncertain whether one or two *Microcalanus* species are present in Balsfjord: *M. pygmaeus* and/or *M. pusillus* (S. Kwaśniewski, personal communication). The species can be identified on the basis of differences in the antennule/prosome length ratio and terminal spines on the second and fourth exopods, and can be identified on the basis of differences in the length ratio method for all specimens after fixation in 70% ethanol, using a stereomicroscope at ×100 magnification. Additionally, 58 females from two incubations (4.8°C and 5.7°C in June 2018) were sequenced to confirm taxonomic identification. DNA was extracted from individual females following a modified version of the HotShot protocol (Meissner et al., 2013; Truett et al., 2000). The Leray fragment of the mitochondrial cytochrome *c* oxidase subunit I (COI) was amplified using tagged mlCOIintF-XT 5′-GGWACWRGWGTGRACWITTAYCCYCCG-3′ as forward primer and tagged jgHCO2198 5′-TAIACYTCIGGRTGICRAARAAYCA-3′ as reverse primer, and the polymerase chain reaction (PCR) was performed with conditions described in Wangensteen et al., (2018). Multiplexed libraries for next generation sequencing were obtained using the NEXTflex PCR-free DNA-seq kit (BIOO Scientific, TX, USA) and sequencing was performed on an Illumina MiSeq using a nano-kit V2 2x250 bp (Illumina, CA, USA) following the manufacturer’s protocol. The obtained paired-end reads were aligned, demultiplexed, quality-filtered, and dereplicated using a custom pipeline based on OBITools (Boyer et al., 2016), following procedures described in Ershova et al. (2019). The most abundant sequence obtained from each individual was compared to available sequences in BOLD (barcode reference database) for *M. pusillus* and sequences of *M. pygmaeus* (T. Falkenhaug, Institute of Marine Research, Norway). The morphological identification of the 58 females was then compared to their genetic identification to check for the robustness of the species identification.

Copepod carbon content

The particulate organic carbon (POC) contents of female *O. similis, M. norvegica* and *M. pusillus* were analyzed for samples collected in August 2016, February, March and April 2017 and June 2018. Between 60 and 300 females (without egg sacs) were sorted under a stereomicroscope (Leica MZ16, ×64–80 magnification), rinsed in 0.2 μm-

FSW and placed onto precombusted GF/F filters (450°C, 0.7 μm pore size). The filters were stored frozen at −20°C until analysis. Prior to analysis, the filters were dried (60°C) and thereafter fumed with concentrated HCl (12 mol L⁻¹) to remove inorganic carbon. The filters with the females were analyzed using a CHN Lab Leeman 440 elemental analyzer. Measured values of POC for blanks (filters without copepods) were subtracted from filters containing copepods. Due to the loss of the June carbon measurement, *M. norvegica* carbon weight was approximated as the average between the April and August measurement for this month.

CALCULATIONS AND STATISTICAL ANALYSIS

Five variables were extracted from egg incubations with *M. norvegica* and *O. similis*: hatching rate of eggs, hatching success of clutches, hatching success of eggs in each clutch, total egg hatching success and weight-specific daily egg production.

Egg hatching rate

To obtain the egg hatching rate, the cumulative hatching events of the sac spawners were plotted against the incubation time. The large number of females incubated was assumed to ensure an even spread of the females’ egg-carrying cycle (Nielsen et al., 2002), which resulted in a linear increase of hatching events with time. The egg hatching rate (HR, d⁻¹) was defined as the slope of this linear regression between the cumulative hatching events of the sac spawners were plotted against the incubation time. The regressions were forced through the origin as no females with already hatched eggs in each well (the clutch) were counted. The average clutch size for *M. pusillus* as for the sac spawners. The mean development time (D, d) refers to the time between egg production and egg hatching and was calculated as the mean of all hatching events in all wells incubated at the same temperature.
rate was not determined by linear regression, but as the reciprocal of the mean development time (D, d), for all hatching events within a single incubation.

Hatching success

The hatching success of clutches (HSC, %) for each incubation was estimated as a percentage of clutches with at least one hatching event. The hatching success of eggs in each clutch (HS_E, %) was derived from the same incubation. This was expressed as the percentage of eggs in each clutch that had hatched by the end of the incubation. Total egg hatching success (HST, %) was then calculated by multiplying HSC by HS_E. These variables were calculated in the same way for the three species.

Egg production

For *M. pusillus*, egg production (eggs female$^{-1}$ d$^{-1}$) was estimated as the total number of eggs produced in 24 h divided by the number of females (including the non-producing females). Population-specific egg production could not be estimated for *O. similis* and *M. norvegica*, as the in situ ratio of females with egg sacs to the females without eggs was unknown. However, we estimated the individual carbon-specific egg production of the ovigerous (or reproducing) females (SEP_OV, μg C μg$^{-1}$ C d$^{-1}$) for all three species, assuming that the latency time would be short and not temperature-dependent (*Uye et al., 2002*; *Uye and Sano, 1995*). The SEP_OV was thus calculated by multiplying the average clutch size by the temperature-specific egg hatching rate obtained from the hatching incubations and the egg to female carbon ratio as:

Sac spawners : SEP_OV = CS × HR × C_EGG/C_F

Broadcast spawner : SEP_OV = CS × C_EGG/C_F

where CS is the average clutch size (# eggs female$^{-1}$), HR is the estimated hatching rates (d$^{-1}$), C_EGG is the carbon content of an egg (μg C), and C_F is the carbon content of a female (μg C).

Egg hatching rate for the sac spawners was calculated using the surface temperature (depending on the sampling date, *Table I*). The carbon content of females was measured at different times of the year, and the value closest in time to the incubation was used. Egg carbon content was calculated based on volumes (calculated from diameters), converted to carbon using the conversion 0.14×10^{-4} μg C μm$^{-3}$ for *O. similis* and *M. pusillus* (*Kiørboe et al., 1985; Sabatini and Kiørboe, 1994*). *M. norvegica* eggs are spherical or ovoid (*Uye et al., 2002*), and their egg volume was calculated from length and width measurements and converted to carbon using 0.19×10^{-4} μg C μm$^{-3}$ (*Uye et al., 2002*).

Statistics

Data are presented as means with standard deviation (mean ± SD) when available. The effect of temperature on hatching rate (HR), hatching success of clutches (HSC), hatching success of eggs within clutches (HS_E), total hatching success (HST), and development time (D; *M. pusillus* only) was tested using linear regressions following a Shapiro–Wilk normality test. If the assumption of normality was not met, the correlation between two variables was tested by the nonparametric Mann–Whitney rank-sum test. The differences in egg production of *M. pusillus* between incubation temperatures and sampling times were tested using a Kruskal–Wallis 1-way analysis of variance (ANOVA) on Ranks because the dataset could not be normalized due to a high number of zero values. Differences in clutch sizes between temperatures and sampling times were tested by two separate 1-way ANOVAs. These were followed by Holm–Sidak’s post hoc test to test for significant differences between groups. All statistical analyses were conducted with SigmaPlot 14.

RESULTS

Environmental background

Trends in temperature and Chl a followed a typical seasonal succession for Balsfjord. In March, the water column (0–100 m) was homogeneous, with temperatures of −2°C (*Table I*) and Chl a concentration below detection limits. By May, the surface temperature had increased to 3.5°C, and a thermocline was developing, with a temperature of 2.0°C at 20 m. Chl a peaked at 20 m with 1.2 μg L$^{-1}$. In June, the water column was stratified with warmer surface waters (~11.4°C in 2017 and 8.0°C in 2018), dropping to 6.5°C (2017) and 5.3°C (2018) at 20 m, and with a Chl a peak of 3.4 μg L$^{-1}$ in 2017 and 1.0 μg L$^{-1}$ in 2018 at 10 m. In August, the water column was still stratified, with warm surface temperatures (9.0°C in 2017 and 10.2°C in 2018) decreasing to 6.8°C at 50 m. The maximum Chl a concentration was 0.9 μg L$^{-1}$ (20 m depth). Hence, the copepods collected for incubations in early spring (March) had experienced low temperatures and low Chl a. The copepods collected in late spring (May) had been subject to slightly warmer temperatures and increasing Chl a concentration, and the copepods collected in early and late summer (June and August) had experienced a combination of a relatively warm surface temperature and medium to high Chl a concentrations.
Fig. 1. *Oithona similis*. Cumulative hatching (ratio) as a function of temperature (*T*) at five different temperatures, with the lines representing a linear model of its increase over time. The hatching rate (slope of linear model, d⁻¹) and number of individuals incubated (*n*) are given for each incubation. Different symbols indicate replicate experiments. Open circles and dashed lines are used for experiments on egg sacs alone, while black circles and squares and full lines are used for replicates of experiments with egg sacs attached to females. Note the different incubation times (x-axis).

Egg hatching rate and hatching success

The egg hatching rate of *O. similis* increased from 0.05–0.06 d⁻¹ at 1.3°C to 0.29 d⁻¹ at 13.2°C (Fig. 1), and was correlated to temperature (linear regression, *P* < 0.001; Fig. 2a). The egg hatching rate of *M. norvegica* was lowest at temperatures < 4.8°C (<0.07 d⁻¹; Fig. 3), reached a maximum of 0.14 d⁻¹ at 7.0°C but decreased slightly at temperatures ≥ 7.9°C (0.1 d⁻¹, Fig. 2b). *M. norvegica* egg hatching rate was thus positively correlated to temperature within the temperature range 3.0 to 7.9°C (*P* = 0.003). The mean development time of *M. pusillus* eggs decreased from 4.3 ± 0.4 d at 3.0°C to 1.6 ± 0.7 d at 9.8°C, and was linearly correlated to temperature (*P* < 0.01, Fig 2f). Therefore, *M. pusillus* egg hatching rate, calculated as the reciprocal of the mean development time, increased from 0.23 d⁻¹ at 3.0°C to a maximum of 0.61 d⁻¹ at 9.8°C (Fig. 2c).

During the 7-days incubations, ≥90% of *O. similis* clutches hatched (HSC, Table II). Average egg hatching success within clutches (HSC) was between 79 and 93%, and total egg hatching success (HST) varied between 75 and 90% (Fig. 4). *M. norvegica* had a highly variable percentage of clutches that hatched (13–87%; Table II). At low temperatures (<5°C), the average HSC was low (13–37%), while between 66 and 87% of the clutches hatched at temperatures from 5 to 8°C. HSC decreased to 33–37% during late summer at temperatures of > 10°C. In total, >50% of the eggs in each clutch hatched (HSE, Table II), except for the 4.0°C incubation (May 2018). The combination of *M. norvegica* HSC and HSE resulted in a bell-shaped distribution of the total egg hatching success (HST, Fig. 4); the HST was ≤25% at the lowest and highest incubation temperatures, but peaked at temperatures between 5 and 8°C. For *M. pusillus*, only 27 to 47% of the clutches hatched (HSC) during the 6-days incubations, with 28 to 65% hatching success of the eggs within the clutches (HSE, Table II). Therefore, *M. pusillus* total egg hatching success (HST) was ≤25% for all incubations (Fig. 4). None of the variables contributing to egg hatching success (HSC, HSE and HST) were correlated to incubation temperature for the three copepod species (linear regressions, all *P* ≥ 0.336).

Seasonal variations in clutch size, carbon content and specific egg production rate

In our study, *O. similis* females carried eggs from March to late August, whereas *M. norvegica* only started carrying eggs from May onwards. Ovigerous *M. pusillus* females were present throughout the study, and represented 51% ± 9% of the incubated females, independent of temperature (linear regression, *P* = 0.883). Average clutch
sizes of *O. similis* and *M. norvegica* peaked in June (Table III), and differed significantly between months (ANOVA on ranks, *P* < 0.001). *O. similis* had larger clutches (∼23 ± 9 eggs clutch⁻¹) than *M. norvegica* at all seasons (∼12 ± 3 eggs clutch⁻¹; Table III). The clutch size of *M. pusillus* varied over time (ANOVA on ranks: *P* = 0.003): the ovigerous females produced fewer eggs in June (6 ± 5 eggs female⁻¹) than in May (9 ± 3 eggs female⁻¹) and August (12 ± 8 eggs female⁻¹; Table III). Higher temperatures increased the numbers of eggs produced by ovigerous females but temperature could only explain a small part of the variation in egg production rate of *M. pusillus* (linear regression: *P* = 0.004, *R²* = 0.08).

Female carbon weight was lowest in February and peaked in June for *O. similis* and *M. pusillus*. The carbon content of *O. similis* females ranged from 0.32 to 0.61 μg C female⁻¹ and the carbon content of *M. pusillus* females from 0.76 to 1.26 μg C female⁻¹ (Table IV). Female *M. norvegica* carbon weight was lower in April (0.32 μg C female⁻¹) than in August (0.51 μg C female⁻¹; Table IV). The eggs of *O. similis* and *M. norvegica* were of similar size (diameter of 58 ± 3 and 59 ± 4 μm, respectively), equivalent to a calculated carbon content of 14 × 10⁻³ and 15 × 10⁻³ μg C egg⁻¹, respectively. *M. pusillus* eggs were larger (diameter of 65 ± 10 μm) than the sac-spawners’ eggs, and therefore had a higher carbon content (20 × 10⁻³ μg C egg⁻¹).

The mean egg production of all incubated *M. pusillus* females (i.e. including non-producing females) was stable irrespective of the season or temperature (Fig 5), varying from 2.9 to 6.6 eggs female⁻¹ d⁻¹. There was no significant linear correlation between the egg production and temperature (*P* = 0.059), nor were there any significant differences between the incubations conducted at different times (ANOVA on ranks: *P* = 0.208). The SEPOV of *M. pusillus* was 0.20 μg C μg⁻¹ Cd⁻¹ in May, 0.09 μg C μg⁻¹ Cd⁻¹ in June and 0.22 μg C μg⁻¹ Cd⁻¹ in August (Table III), and similar to egg production, independent of temperature.

The SEPOV of *O. similis* was lowest in spring at 0.02 μg C μg⁻¹ Cd⁻¹ (Table III), peaked in June at a maximum of 0.12 μg C μg⁻¹ Cd⁻¹, thereafter decreasing to 0.07 μg C μg⁻¹ Cd⁻¹ in late summer. *O. similis* SEPOV was correlated to surface temperatures (linear regression, *P* = 0.004). For *M. norvegica*, the SEPOV was relatively low and ranged from 0.03 to 0.06 μg C μg⁻¹ Cd⁻¹ (Table III), with the highest values during the summer. In contrast to *O. similis*, the SEPOV of *M. norvegica* was independent of the surface temperatures (linear regressions; *P* > 0.05).
Fig. 3. Microsetella norvegica. Cumulative hatching (ratio) as a function of temperature at 10 different temperatures, with the lines representing a linear model of its increase over time. The hatching rate (slope of linear model, d⁻¹) and number of individuals incubated (n) are given for each incubation. Different symbols indicate replicate experiments. Open circles and dashed lines are used for experiments on egg sacs alone, while black circles and full lines are used for replicates of experiments with egg sacs attached to females. Note the different incubation times (x-axis).

Microcalanus species identification

The genetic identification of the 58 Microcalanus females used in the incubations revealed that only *M. pusillus* were present (Table SI). The morphological examination of the specimens matched the genetic species identification as only one morphological type of *Microcalanus* was observed, with short antennae. Therefore, we assume that all Microcalanus in our incubations were *M. pusillus*.

Discussion

Egg production, hatching success and egg development time differed between the three species, as did their response to temperature. *O. similis* and *M. pusillus* had increasing egg hatching rates over the full temperature range studied, with a shorter development time but lower hatching success for the broadcast spawner *M. pusillus*. In contrast, *M. norvegica* had maximum egg hatching rate at 8°C, and a decrease thereafter. *M. norvegica* also
Table II: Range and mean (±SD) of hatching success of clutches (HS_C, %; based on the first appearance of a freely swimming nauplius) and egg hatching success within clutches (HS_E, %; mean ± SD) for the three copepod species obtained within all incubations

Species	HS_C Range	Mean ± SD	HS_E Range	Mean ± SD
Oithona similis	90–97	94 ± 3	79–93	84 ± 5
Microsetella norvegica	13–87	47 ± 28	21–92	66 ± 18
Microcalanus pusillus	27–47	36 ± 7	38–65	49 ± 9

Table III: Mean clutch size (±SD), clutch to female carbon ratio (C_{clutch}/C_♀, %) and specific egg production rate of ovigerous female (SEP_{OV}, µg C µg^{-1} C d^{-1}) for each experimental date

Species	Date	Clutch size	C_{clutch}/C_♀	SEP_{OV}
Oithona similis	9.06.2017	20 ± 9	45 ± 20	0.10
	19.06.2017	23 ± 9	51 ± 20	0.10
	15.08.2017	17 ± 7	42 ± 17	0.07
	1.03.2018	8 ± 3	30 ± 11	0.02
	12.03.2018	9 ± 2	39 ± 9	0.02
Microsetella norvegica	9.06.2017	11 ± 2	50 ± 9	0.06
	19.06.2017	10 ± 3	45 ± 14	0.05
	15.08.2017	9 ± 3	33 ± 11	0.03
	3.05.2018	10 ± 1	58 ± 6	0.03
	11.06.2018	12 ± 3	54 ± 14	0.05
Microcalanus pusillus	24.08.2018	9 ± 2	33 ± 7	0.03
	12.03.2018	Spawning observed but not quantified		
	3.05.2018	9 ± 3	20 ± 7	0.20
	11.06.2018	6 ± 5	9 ± 8	0.09
	24.08.2018	12 ± 8	22 ± 15	0.22

Clutch sizes are pooled from all experiments started the same day, and the SEP_{OV} is calculated based on the mean clutch size and surface water temperature.

had the lowest specific egg production at all time-points. It appears that O. similis and M. pusillus could increase their reproductive output with increasing temperature, whereas M. norvegica was most productive between 6 and 8°C. The observed differences could neither be attributed to body size for these similar-sized species, nor to their reproductive strategy (sac spawners versus free spawner).

Our study demonstrates that small copepod species show variable responses of egg hatching and productivity to temperature.

Temperature dependence of hatching rates and hatching success

The threefold increase of the egg hatching rate of the broadcast-spawning M. pusillus, within the 10°C increase in temperature, is comparable to that of the small calanoid Pseudocalanus spp. that tripled its hatching rate between 1 and 7°C (Middelbo et al., 2019). In a previous study, a Q_{10} of 2.45 was found for the egg hatching rate of broadcast spawners (Hirst and Bunker, 2003), which is comparable to our findings. M. pusillus is a sub-surface species (Norrbin, 1991), and is mostly found <50 m in Balsfjord where water masses were <6°C during the study. Previously, this species has probably been grouped with M. pygmaeus as Microcalanus.
Table IV: Mean sizes (±SD, μm) and carbon weight of female copepods (C♀, μg C) by date

Species	Date	Female size	C♀
Oithona similis	23.08.2016	472 ± 48	0.54
	27.02.2017	429 ± 25	0.36
	17.03.2017	490 ± 16	0.32
	7.04.2017	440 ± 36	0.48
	1.06.2018	0.61	
Microsetella norvegica	23.08.2016	463 ± 24	0.51
	7.04.2017	471 ± 16	0.32
	11.06.2018	478 ± 22	0.42a
Microcalanus pusillus	23.08.2016	494 ± 48	1.05b
	27.02.2017	450 ± 21	0.76
	7.04.2017	521 ± 34	0.87
	11.06.2018	539 ± 36	1.26

aDue to technical problems, the true carbon value was lost and it is approximated as the average between the female carbon weights of April and August.
bThe carbon value may be underestimated as the filter contained some stage five copepodites due to the scarcity of females.

could thus increase early-stage survival of *M. pusillus* by ensuring a faster transition from a non-motile to a motile stage.

In contrast to the short egg hatching time of broadcast-spawning copepods, a longer egg development time is characteristic of egg-carrying copepods (Kiørboe and Sabatini, 1994). An egg-carrying strategy usually constrains lifetime fecundity. It may prove disadvantageous in cases of high mortality of egg-bearing females (Ward and Hirst, 2007), but will pay off in environments where predation is high on pelagic eggs (Kiørboe and Sabatini, 1994). An increase in temperature might change the cost–benefit ratio of the egg-carrying strategy if mortality and egg hatching time respond differently to increasing temperature. This could be the case for *M. norvegica* where the maximum egg hatching rate was reached at 7°C with no further increase at higher temperatures, which describes a performance curve. Performance curves, i.e. the curve illustrating the effect of a climatic variable like temperature on a physiological rate, are often bell-shaped (Dam and Baumann, 2018). However, previous studies on copepods have reported a positive linear or power relationship between investigated temperatures and egg development times (e.g. Andersen and Nielsen, 1997, Ianora et al., 2007, McLaren, 1966, Middelboe et al., 2019, Nielsen et al., 2002, our observations of *O. similis*). The performance curve of *M. norvegica* hatching rate was therefore surprising. However, it is probable that an optimum may be reached for any particular physiological rate, given that the range of the climatic variable (e.g. temperature) is large enough for that species.

It is possible that the bell-shaped temperature response of *M. norvegica* egg hatching rate reflected an adaptation to temperatures that prevail during the reproductive season. The egg hatching rate of copepods reflects development of an egg, as a reciprocal measure of the time spent

downloads from https://academic.oup.com/plankt/article/42/5/564/5902327 by DTU Library user on 14 September 2020
between two developmental stages (Huntley and Lopez, 1992). Development and growth can indeed reach a maximum, after which growth may not further increase with increasing temperature or can be negatively affected (Lee et al., 2003; Lonsdale and Levinton, 1986). It is possible that northern harpacticoid populations, including *M. norvegica*, reach their maximum growth and egg hatching rate at lower temperatures than southern populations, as a local adaptation to the prevailing temperatures. In Balsfjord, egg-carrying females *M. norvegica* are found between May and September (Svensen et al., 2010), mostly above 50 m where temperatures are usually between 5 and 8°C (Eilertsen and Skarðhamar, 2006). Therefore, the Balsfjord population may have adapted to the local temperatures. *M. norvegica* and *O. similis* had comparable egg hatching rate only between 6 and 8°C, whereas the egg hatching rate of *O. similis* surpassed that of *M. norvegica* >8°C. Hence, *O. similis* appeared more thermally plastic than *M. norvegica*. The egg hatching rates of *O. similis* were similar to those observed by Nielsen et al. (2002).

In the Arctic, numerical dominance of *M. norvegica* seems to be confined to fjords (Arendt et al., 2013; Hjorth and Dahllöf, 2008; Svensen et al., 2018), whereas *O. similis* can be abundant both in fjords (Hop et al., 2019b; Middelbo et al., 2019) and coastal and shelf areas (Dvoretsky and Dvoretsky, 2009a; Dvoretsky and Dvoretsky, 2015; Hop et al., 2019a; Madsen et al., 2006). *M. norvegica* is present from tropical seas with temperatures >30°C (Chew and Chong, 2016) to polar areas (Arendt et al., 2013; Svensen et al., 2019). In the Inland Sea of Japan, the population of *M. norvegica* did not reach a maximum egg hatching rate within the temperature investigated (Uye et al., 2002), an observation that differs from ours. This suggests that although *M. norvegica* is present in widely different environments, populations may adapt to local conditions. For *M. norvegica* in Balsfjord, this could mean that recruitment of *M. norvegica* may decline if the temperature increases >8°C during the reproductive period, due to their lowered egg hatching rates at higher temperatures. In contrast, *O. similis* and *M. pusillus* may benefit at a higher temperature and increased egg hatching rates. A higher thermal plasticity of *O. similis* and *M. pusillus* suggests a higher recruitment potential than for *M. norvegica* (Allan, 1976; Devreker et al., 2012; Tang et al., 1998) in Balsfjord, although other processes linked to mortality and survival will also be important to shape the recruitment of species.

Other than the thermal plasticity of the egg hatching rate, the recruitment potential of a species is affected by its egg hatching success (Devreker et al., 2012). Hatching success can be influenced by temperature (Hansen et al., 2010), excreted substances from phytoplankton (Ambler, 1985; Ianora et al., 2007), successful mating/fertilization (Mironova and Pasternak, 2017), and food composition (Jónasdóttir et al., 2005). We found no correlation between egg hatching success and temperature or season, but notable differences were observed between species. *O. similis* had a high total egg hatching success compared to *M. norvegica* and *M. pusillus*. Though the egg hatching success of *M. norvegica* was not linearly related to temperature, the highest egg hatching success was found at the optimum temperatures for the egg hatching rate. This agrees with the possibility of a local temperature adaptation of *M. norvegica*.

The low egg hatching success of *M. pusillus* contrasted with the high thermal plasticity of its egg hatching rate. Egg hatching success of calanoid copepod eggs is rarely <60% (e.g. Devreker et al., 2012; Hansen et al., 2010; Tang et al., 1998), although episodically low hatching success (0–30%) has been observed (e.g. Halsband-Lenk et al., 2001; Ianora and Poulet, 1993; Jónasdóttir et al., 2005; Miralto et al., 1996; Yamaguchi et al., 2010). To our knowledge, no previous estimates of egg hatching success exist for *M. pusillus*. In our incubations, most of the *M. pusillus* eggs that did not hatch were discolored or disintegrated, and only ~4% of the unhatched eggs seemed still viable at the end of the 6 days observation. Therefore, we assume that the incubated *M. pusillus* female produced mainly subitaneous eggs (i.e. eggs hatching without delay), and that the low egg hatching success was representative of the *in situ* conditions. It should be noted that the incubation methods used in our study followed established methods for broadcast-spawning copepods (Drillet et al., 2008; Halvorsen, 2015), and female mortality was low. A low *in situ* hatching success, as observed in our study, would lower the positive effect of a temperature increase on the egg hatching rate and thereby on the recruitment potential of *M. pusillus*.

Seasonality

Egg-producing females were present at least from March to August (*O. similis* and *M. pusillus*) and from May to August (*M. norvegica*) in Balsfjord, which is in accordance with the long reproductive periods described in previous studies (Dvoretsky and Dvoretsky, 2009b; Norrbin, 1991; Svensen et al., 2018). Small copepods do not accumulate large lipid reserves (Arima et al., 2014; Norrbin, 1991), contrasting with larger diapausing, and sometimes capital-breeding, copepods (Conover, 1988; Saimmont et al., 2014; Varpe et al., 2009). Smaller copepod species typically rely on continuous feeding to fuel their reproduction (Norrbin, 1991; Svensen et al., 2019); i.e. income breeding. The three investigated species are omnivorous, grazing on food sources often...
Food availability and quality varies between March and size and the female body weight (i.e. female condition). Observed likely resulted from the changes in the clutch significant differences. Therefore, the seasonal variation similar temperatures but different months showed no (Equation 1 and 2). Egg hatching rates investigated at egg hatching rate, clutch size and female body weight were significant but not related to surface temperature peak SEPOV in June. The differences between months peaked in May and August and the sac spawners had a pods (Uye and Sano, 1995). Adverse environmental conditions may cause physiological cal stress, which could lower the egg production of cope- (Kiørboe and Sabatini, 1995). However, we found that the weight-specific egg production of ovigerous females varies seasonally, presumably influenced by the seasonal changes in the clutch size and carbon content of the female of the three species. This study therefore also highlights the importance of documenting vital rates at different seasons. In the future, oceans will have conditions combining new ranges of temperature, salinity, pH, oxygen and primary production (IPCC, 2019), including changes in the seasonality of these variables. According to our findings, the consequences of these new conditions will differ across species and potentially impact their phenology and relative biomass. Such alterations may in turn interact with the predator–prey interactions or the cycling of organic matter in the pelagic realm, both of which have implications for the energy flux and carbon turnover.

CONCLUSION

In this study, we provide egg hatching rate and egg hatching success data for three small and abundant copepod species. The egg hatching rates of all three species responded to increasing temperatures but their thermal plasticity differed. Our study therefore highlights species-specific temperature dependencies also within the abundant group of small copepods. Supporting previous observations, we confirmed that small sub-arctic broadcast spawners have faster egg development than co-occurring sac spawners and that their weight-specific egg production rate is higher. Moreover, we found that the weight-specific egg production of ovigerous females varies seasonally, presumably influenced by the seasonal changes in the clutch size and carbon content of the female of the three species. This study therefore also highlights the importance of documenting vital rates at different seasons. In the future, oceans will have conditions combining new ranges of temperature, salinity, pH, oxygen and primary production (IPCC, 2019), including changes in the seasonality of these variables. According to our findings, the consequences of these new conditions will differ across species and potentially impact their phenology and relative biomass. Such alterations may in turn interact with the predator–prey interactions or the cycling of organic matter in the pelagic realm, both of which have implications for the energy flux and carbon turnover.

SUPPLEMENTARY DATA

Supplementary data can be found at Journal of Plankton Research online.

ACKNOWLEDGEMENT

We wish to thank the captains and the crew on R/V Hyas and R/V Johan Ruud for the cruise operation and the help received during sampling. Thanks to Ulrike Grote, Helena K. Michelsen and Julie Larcher for their help during the incubations. We thank two anonymous reviewers for their constructive comments that improved the manuscript.

FUNDING

UiT the Arctic University of Norway’ (a PhD scholarship to C.B.J.); the Fram Center flagship ‘Climate Change in Fjord and Coast’ (grant no 2019147470 292018 [project ‘MICROSNOW’] to C.S.).

available outside the spring-bloom period, such as marine aggregates (Koski et al., 2005; Norrb, 1991) and microzooplankton (Castellani et al., 2005; Svendsen and Kiørboe, 2000).

The egg production rate for ovigerous females (SEP_OV) of M. norvegica was unusually low for a sac spawner at all seasons (Uye and Sano, 1995). In temperate waters, M. norvegica carried 15.8 eggs female−1 with an egg hatching rate of 0.67 d−1 at 27.8°C (Uye et al., 2002). Based on Equation 1, the weight-specific egg production rate for the egg-bearing females in the Inland Sea of Japan may be as high as 0.34 μg C μg−1 C d−1, which demonstrates a high production potential of M. norvegica at high temperature. The difference in egg production rates between O. similis and M. norvegica in Balsfjord may reflect diverse reproductive investments. Even if the two species carry eggs, the time spent carrying eggs may differ. Female M. norvegica are suggested to have a hybrid egg-carrying strategy, where they release their egg sac before the eggs have hatched (Koski et al., 2014). In that case, the egg hatching rate may not represent the time interval between two clutches, resulting in a potential underestimation of M. norvegica egg production rate.

We observed that M. pusillus had a SEP_OV ~3.1 times higher than O. similis, and ~7.3 times higher SEPov than M. norvegica. Broadcast spawners have on average a 2.5 times higher weight-specific egg production rate than sac spawners, to compensate for high egg mortality (Kiørboe and Sabatini, 1995). However, we found that the difference in SEP_OV between species varied with seasons. Adverse environmental conditions may cause physiological stress, which could lower the egg production of copepods (Uye and Sano, 1995). M. pusillus egg production peaked in May and August and the sac spawners had a peak SEP_OV in June. The differences between months were significant but not related to surface temperature (except for O. similis). The SEP_OV is influenced by the egg hatching rate, clutch size and female body weight (Equation 1 and 2). Egg hatching rates investigated at similar temperatures but different months showed no significant differences. Therefore, the seasonal variation observed likely resulted from the changes in the clutch size and the female body weight (i.e. female condition). Food availability and quality varies between March and August in Balsfjord (Eilertsen et al., 1981), which can affect clutch size (Ambler, 1985; Castellani et al., 2007; Halshand and Hirche, 2001) and carbon weight of copepods (Auel and Hagen, 2005, this study). The seasonal pattern in the weight-specific egg production rate of the three copepod species is likely the result of seasonal variation in abiotic and biotic factors that influence clutch size and female weight along with the temperature-dependency of the egg hatching rate.
REFERENCES

Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J. and Thomas, A. C. (2018) Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. *Elementa: Sci.Issuer* 6, 9.

Allan, J. (1976) Life history patterns in zooplankton. *Am. Nat.* 110, 165–180.

Ambler, J. W. (1985) Seasonal factors affecting egg production and viability of eggs of *Acartia tonsa* Dana from east lagoon, Galveston, Texas. *Estuar. Coast. Shelf Sci.* 20, 743–760.

Andersen, C. M. and Nielsen, T. G. (1997) Hatching rate of the egg-carrying estuarine copepod *Eurytemora affinis*. *Mar. Ecol. Prog. Ser.* 160, 283–289.

Arndt, K. E., Juul-Pedersen, T., Mørtensen, J., Blitcher, M. E. and Ambler, J. W. (1985) Seasonal factors affecting egg production and *Bunker, A. J. and Hirst, A. G. (2004) Fecundity of marine planktonic *Allan, J. (1976) Life history patterns in zooplankton. *Am. Nat.* 110, 165–180.

Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J. and Thomas, A. C. (2018) Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. *Elementa: Sci.Issuer* 6, 9.

Allan, J. (1976) Life history patterns in zooplankton. *Am. Nat.* 110, 165–180.

Ambler, J. W. (1985) Seasonal factors affecting egg production and viability of eggs of *Acartia tonsa* Dana from east lagoon, Galveston, Texas. *Estuar. Coast. Shelf Sci.* 20, 743–760.

Andersen, C. M. and Nielsen, T. G. (1997) Hatching rate of the egg-carrying estuarine copepod *Eurytemora affinis*. *Mar. Ecol. Prog. Ser.* 160, 283–289.

Arndt, K. E., Juul-Pedersen, T., Mørtensen, J., Blitcher, M. E. and Ambler, J. W. (1985) Seasonal factors affecting egg production and *Bunker, A. J. and Hirst, A. G. (2004) Fecundity of marine planktonic *Allan, J. (1976) Life history patterns in zooplankton. *Am. Nat.* 110, 165–180.

Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J. and Thomas, A. C. (2018) Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. *Elementa: Sci.Issuer* 6, 9.

Allan, J. (1976) Life history patterns in zooplankton. *Am. Nat.* 110, 165–180.
Eilertsen, H. C. and Skarðhamar, J. (2006) Temperatures of north Norwegian fjords and coastal waters: variability, significance of local processes and air–sea heat exchange. *Estuar. Coast. Shelf Sci.*, 67, 530–538.

Eiðar, L. B., Napp, J. M., Mier, K. L., Pinchuk, A. I. and Andrews, A. G. (2014) Climate-mediated changes in zooplankton community structure for the eastern Bering Sea. *Deep-Sea Res. II Top. Stud. Oceanogr.*, 109, 157–171.

Ershova, E., Descoteaux, R., Wangensteen, O., Iken, K., Hopcroft, R., Smoot, G., Grebmeier, J. M. and Buhm, B. A. (2019) Diversity and distribution of meroplanktonic larvae in the Pacific Arctic and connectivity with adult benthic invertebrate communities. *Front. Mar. Sci.*, 6, 490.

Ershova, E., Kosobokova, K. and Vorobieva, O. (2016) Changes in the egg production rate of two copepod species of the genus *Pseudocalanus* in relation to temperature in the White Sea. *Oceanology*, 56, 540–545.

Ershova, E. A., Questel, J. M., Kosobokova, K. and Hopcroft, R. R. (2017) Population structure and production of four sibling species of *Pseudocalanus* spp. in the Chukchi Sea. *J. Plankton Res.*, 39, 48–64.

Gromkjer, P., Nielsen, K. V., Zoccarato, G., Meire, L., Ryggaard, S. and Hedreholt, R. B. (2018) Feeding ecology of capelin (*Mallotus villosus*) in a fjord impacted by glacial meltwater (Godthabsfjord, Greenland). *Polar Biol.*, 42, 81–98.

Halband, C. and Hirche, H. J. (2001) Reproductive cycles of dominant calanoid copepods in the North Sea. *Mar. Ecol. Prog. Ser.*, 209, 219–229.

Halband-Lenk, C., Nival, S., Carlotti, F. and Hirche, H. J. (2001) Seasonal cycles of egg production of two planktonic copepods, *Centropages typicus* and *Temora stylifera*, in the north-western Mediterranean Sea. *J. Plankton Res.*, 23, 597–609.

Haborsen, E. (2015) Significance of lipid storage levels for reproductive output in the Arctic copepod *Calanus hyperboreus*. *Mar. Ecol. Prog. Ser.*, 540, 259–265.

Hansen, B. W., Drillet, G., Kozmér, A., Madsen, K. V., Pedersen, M. F. and Sorensen, T. F. (2010) Temperature effects on copepod egg hatching: does acclimatization matter? *J. Plankton Res.*, 32, 305–315.

Hirst, A. and Lopez-Urrutia, A. (2006) Effects of evolution on egg development time. *Mar. Ecol. Prog. Ser.*, 326, 29–33.

Hirst, A. G. and Banker, A. J. (2003) Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll *a*, temperature, and body weight. *Limnol. Oceanogr.*, 48, 1988–2010.

Hjort, M. and Dahllof, I. (2008) A harpacticoid copepod *Microsetella* spp. from sub-Arctic coastal waters and its sensitivity to the polyaromatic hydrocarbon pyrene. *Polar Biol.*, 31, 1437–1443.

Hop, H., Assmy, P., Wold, A., Sundjord, A., Daase, M., Duarte, P., Kwasniewski, S., Gliuchowska, M. et al. (2019a) Pelagic ecosystem characteristics across the Atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean during summer (2010–2014). *Front. Mar. Sci.*, 6, 181.

Hop, H., Wold, A., Viltakari, M., Daase, M., Kwasniewski, S., Gliuchowska, M., Lischka, S., Buchholz, F. et al. (2019b) Zooplankton in Kongsfjorden (1996–2016) in relation to climate change. In Hop, H. and Wienecke, C. (eds.), *The Ecosystem of Kongsfjorden, Svalbard*, Springer International Publishing, Cham, pp. 229–300.

Hopkins, C. C. E., Grotnes, P. E. and Eliassen, J.-E. (1989) Organization of a fjord community at 70° north: the pelagic food web in Balsfjord, northern Norway. *Rapp. P.-V. Réun. – Cons. Int. Explor. Mer.*, 188, 146–153.

Huntley, M. E. and Lopez, M. D. G. (1992) Temperature-dependent production of marine copepods: a global synthesis. *Am. Nat.*, 140, 201–242.

Ianora, A., Miralto, A. and Halsband-Lenk, C. (2007) Reproduction, hatching success, and early naupliar survival in *Centropages typicus*. *Prog. Oceanogr.*, 72, 193–213.

Ianora, A. and Poulot, S. A. (1993) Egg viability in the copepod *Temora stylifera*. *Limnol. Oceanogr.*, 38, 1615–1626.

IPCC (2019) https://www.ipcc.ch/sr15/

Jónasdóttir, S. H. (1989) Effects of food concentration on egg-production rates of two species of *Pseudocalanus*: laboratory observations. *J. Exp. Mar. Biol. Ecol.*, 130, 33–43.

Jónasdóttir, S. H., Trung, N. H., Hansen, E. and Gartner, S. (2005) Egg production and hatching success in the calanoid copepods *Calanus helgolandicus* and *Calanus finmarchicus* in the North Sea from march to September 2001. *J. Plankton Res.*, 27, 1239–1259.

Kiorboe, T., Mohlenberg, F. and Hamburger, K. (1985) Bioenergetics of the planktonic copepod *Acartia tonsa*: relation between feeding, egg production and respiration, and composition of specific dynamic action. *Mar. Ecol. Prog. Ser.*, 26, 85–97.

Kiorboe, T. and Sabatini, M. (1994) Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. *J. Plankton Res.*, 16, 1353–1366.

Kiorboe, T. and Sabatini, M. (1995) Scaling of fecundity, growth and development in marine planktonic copepods. *Mar. Ecol. Prog. Ser.*, 120, 285–298.

Knowlton, N. (1993) Sibling species in the sea. *Annu. Rev. Ecol. Syst.*, 24, 189–216.

Koski, M., Bouthor, J. and De La Rocha, C. (2017) Feeding on dispersed vs. aggregated particles: the effect of zooplankton feeding behavior on vertical flux. *PLoS One*, 12, e0177958.

Koski, M., Kiorboe, T. and Takahashi, K. (2005) Benthiic life in the pelagic: aggregate encounter and degradation rates by pelagic harpacticoid copepods. *Limnol. Oceanogr.*, 50, 1254–1263.

Koski, M., Swalethorp, R., Kjellerup, S. and Nielsen, T. G. (2014) The mystery of *Microsetella*: combination of sac- and broadcast-spawning in an Arctic fjord. *J. Plankton Res.*, 36, 259–264.

Kosztrey, J., Kwasniewski, S., Rózycki, O. and Weslawski, J. M. (1991) *Atlas of the Marine Fauna of Southern Spitsbergen* (V o l. 2, Polish Academy of Sciences, Institute of Ecology, Institute of Oceanology, Gdansk, Poland.

Kurbjeweit, F. (1993) Reproduktion und Lebenszyklen dominanter Copepodenarten aus dem Weddelmeer, Antarktis = Reproduction and life cycles of dominant copepod species from the Weddell Sea, Antarctica. PhD thesis, Alfred-Wegener-Institut für Polar- und Meeresforschung.

Lajus, D., Sukhikh, N. and Alekseev, V. (2015) Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the *Eurytemora affinis* species complex. *Ecol. Evol.*, 5, 2016–2028.

Lec, H.-W., Ban, S., Ikeda, T. and Matsuishi, T. (2003) Effect of temperature on development, growth and reproduction in the marine copepod *Pseudocalanus neomanni* at satiating food condition. *J. Plankton Res.*, 25, 261–271.

Litchman, E., Ohman, M. D. and Kiorboe, T. (2013) Trait-based approaches to zooplankton communities. *J. Plankton Res.*, 35, 473–484.
Lonsdale, D. J. and Levinton, J. S. (1986) Growth rate and reproductive differences in a widespread estuarine harpacticoid copepod (Scotodiaptomus canadensis). Mar. Biol., 91, 231–237.

Madsen, S. D., Nielsen, T. G. and Hansen, B. W. (2008) Annual population development and production by small copepods in Disko Bay, western Greenland. Mar. Biol., 155, 63–77.

Makinen, K., Vuorinen, I. and Hänninen, J. (2017) Climate-induced hydrography change favours small-bodied zooplankton in a coastal ecosystem. Hydrobiologia, 792, 83–96.

Mauchline, J. (1998) The Biology of Calanoid Copepods. In Blaxter, J. H. S., Southward, A. J. and Tyler, P. A. (eds), Advances in Marine Biology, Vol. 33, Academic Press, Oxford, UK, pp. 1–710.

Melaren, I. A. (1966) Predicting development rate of copepod eggs. Biol. Bull.-US, 131, 457–469.

Meisner, H., Fenvolden, S.-E., Amundsen, P.-A. and Præbel, K. (2013) Evaluation of three methods for high throughput extraction of DNA from challenging fish tissues. Conserv. Genet. Resour., 5, 733–735.

Middelboe, A., Moller, E., Arendt, K., Thyrring, J. and Sejr, M. (2019) Spatial, seasonal and inter-annual variation in abundance and carbon turnover of small copepods in young sound, Northeast Greenland. Polar Biol., 42, 179–193.

Miralto, A., Ianora, A., Guglielmo, L., Zagami, G. and Buttino, I. (1998) Egg production and hatching success in the peri-Antarctic copepod. J. Plankton Res., 20, 2369–2378.

Mironova, E. and Pasternak, A. (2017) Female gonad morphology of small copepods Oithona similis and Microsetella norvegica. Polar Biol., 40, 685–696.

Nielsen, T. G. and Andersen, C. M. (2002) Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol., 141, 707–724.

Nielsen, T. G., Moller, E. F., Satapoomin, S., Ringueute, M. and Hopcroft, R. R. (2002) Egg hatching rate of the cyclopoid copepod Oithona similis in arctic and temperate waters. Mar. Ecol. Prog. Ser., 236, 301–306.

Nishibe, Y., Kobari, T. and Ota, T. (2010) Feeding by the cyclopoid copepod Oithona similis on the microplankton assemblage in the Oyashio region during spring. Plankton Benthos Res., 5, 74–79.

Norrbin, M. F. (1991) Gonad maturation as an indication of seasonal cycles for several species of small copepods in the Barents Sea. Polar Biol., 10, 421–432.

Orra¼nczyk, M. R., Gluchowska, M., Okaszewska, A. and Kwaszynski, S. (2017) Zooplankton structure in high latitude fjords with contrasting oceanography (Hornsund and Kongsfjorden, Spitsbergen). Oceanologia, 59, 505–524.

Ortega-Mayagoitia, E., Hernández-Martínez, O. and Ciros-Pérez, J. (2018) Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: is the magnitude of thermal plasticity related to thermal variability? PLoS One, 13, e0196496.

Poulsen, L. K. and Kiørboe, T. (2006) Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar. Ecol. Prog. Ser., 323, 195–204.

Risgaard, K., Smaalæthorp, R., Kjellerup, S., Juel-Pedersen, T., Nielsen, T. G. and Risgaard, K. (2014) Trophic role and top-down control of a subarctic protozooplankton community. Mar. Ecol. Prog. Ser., 500, 67–82.

Roura, À., Strugnell, J. M., Guerra, À., González, À. F. and Richardson, A. J. (2018) Small copepods could channel missing carbon through metazoan predation. Ecol. Evol., 8, 10686–10878.

Sabatini, M. and Kiørboe, T. (1994) Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res., 16, 1329–1351.

Sainmont, J., Andersen, K., Varpe, O. and Visser, A. (2014) Capital versus income breeding in a seasonal environment. Am. Nat., 184, 466–476.

Schnack-Schiel, S. B. (2001) Aspects of the study of the life cycles of Antarctic copepods. Hydrobiologia, 453-454, 9–24.

Shoemaker, K. M., Duhamed, S. and Moisander, P. H. (2019) Copepods promote bacterial community changes in surrounding seawater through farming and nutrient enrichment. Environ. Microbiol., 21, 3737–3750.

Strickland, J. D. H. and Parsons, T. R. (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, Canada.

Svensen, C., Antonsen, T. M. and Reigstad, M. (2018) Small copepods matter: population dynamics of Microsetella norvegica in a high-latitude coastal ecosystem. J. Plankton Res., 40, 446–457.

Svensen, C., Halvorsen, E., Vernet, M., Franzé, G., Dmooh, K., Lavrentyeva, P. J. and Kwasniewski, S. (2019) Zooplankton communities associated with new and regenerated primary production in the Atlantic inflow north of Svalbard. Front. Mar. Sci., 6, 293.

Svensen, C. and Kiørboe, T. (2000) Remote prey detection in Oithona similis: hydromechanical versus chemical cues. J. Plankton Res., 22, 1155–1166.

Svensen, C., Seuthe, L., Vasilyeva, Y., Pasternak, A. and Hansen, E. (2011) Zooplankton distribution across Fram Strait in autumn: are small copepods and protozooplankton important? Prog. Oceanogr., 91, 534–544.

Svensen, C. and Vernet, M. (2016) Production of dissolved organic carbon by Oithona nana (Copepoda: Cyclopoida) grazing on two species of dinoflagellates. Mar. Biol., 163, 1–8.

Tang, K. W., Dam, H. G. and Feinberg, I. R. (1998) The relative importance of egg production rate, hatching success, hatching duration and egg sinking in population recruitment of two species of marine copepods. J. Plankton Res., 20, 1971–1987.

Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A. and Warman, M. L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques, 29, 52–54.

Turner, J. T. (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud., 43, 255–266.

Uye, S.-I., Iwai, Y. and Kasahara, S. (1982) Reproductive biology of Microsetella norvegica in the Oyashio region during spring. J. Plankton Res., 4, 195–204.

Uye, S.-I., Iwai, Y. and Kasahara, S. (1982) Reproductive biology of Pseudodiaptomus marinus (Copepoda : Calanoida) in the Inland Sea of Japan. Bull. Plankton Soc. Jpn., 29, 25–35.

Uye, S.-I. and Sano, K. (1995) Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser., 118, 121–128.

Varpe, O. (2017) Life history adaptations to seasonality. Integr. Comp. Biol., 57, 943–960.
Varpe, Ø., Jørgensen, C., Tarling, G. A. and Fiksen, Ø. (2009) The adaptive value of energy storage and capital breeding in seasonal environments. *Oikos*, 118, 363–370.

Walkusz, W., Kwasniewski, S., Falk-Petersen, S., Hop, H., Tverberg, V., Wieczorek, P. and Weslawski, J. M. (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. *Polar Res.*, 28, 254–281.

Wangensteen, O. S., Palacin, C., Guardiola, M. and Turon, X. (2018) DNA metabarcoding of littoral hardbottom communities: high diversity and database gaps revealed by two molecular markers. *PeerJ*, 6, e4705.

Ward, P. and Hirst, A. G. (2007) *Oithona similis* in a high latitude ecosystem: abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. *Mar. Biol.*, 151, 1099–1110.

Weydmann, A., Zwolicki, A., Muś, K. and Kwasińewski, S. (2015) The effect of temperature on egg development rate and hatching success in *Calanus glacialis* and *C. finmarchicus*. *Polar Res.*, 34, 23947.

Yamaguchi, A., Onishi, Y., Omata, A., Kawai, M., Kaneda, M. and Ikeda, T. (2010) Population structure, egg production and gut content pigment of large grazing copepods during the spring phytoplankton bloom in the Oyashio region. *Deep-Sea Res. II Top. Stud. Oceanogr.*, 57, 1679–1690.

Zamora-Terol, S., Kjellerup, S., Swalethorp, R., Saiz, E. and Nielsen, T. G. (2014) Population dynamics and production of the small copepod *Oithona* spp. in a subarctic fjord of West Greenland. *Polar Biol.*, 37, 953–965.

Zamora-Terol, S., Nielsen, T. G. and Saiz, E. (2013) Plankton community structure and role of *Oithona similis* on the western coast of Greenland during the winter-spring transition. *Mar. Ecol. Prog. Ser.*, 483, 85–102.