The Graph Laplacian and Morse Inequalities

Ivan Contreras∗- Boyan Xu †

Abstract
The objective of this note is to provide an interpretation of the discrete version of Morse inequalities, following Witten’s approach via supersymmetric quantum mechanics [8], adapted to finite graphs, as a particular instance of Morse-Witten theory for cell complexes [4]. We describe the general framework of graph quantum mechanics and we produce discrete versions of the Hodge theorems and energy cut-offs within this formulation.

Keywords: Graph Laplacian, Morse-Witten complex, graph Hodge theory, discrete Morse functions.
which depends on the combinatorics of the graph. We apply this framework to Morse theory, and we are able to recover Morse inequalities, by following Witten’s viewpoint of critical points of Morse functions.

In [4], Forman provided a combinatorial interpretation via cell complexes of Witten’s approach of Morse inequalities. He showed that, given a Morse function g on a CW-complex X, there is always an equivalent Morse function g that is self-indexing flat, i.e., its value is given by the dimension of the corresponding cell. It turns out that, by considering the particular case of finite graphs, the computations of the deformed Laplacian and Morse-Witten complex are explicit, regardless whether the function is self-indexing or not. In particular we deduce that the height function on trees (Section 5) gives rise to the correct Morse complex, after the deformation procedure.

The main idea can be summarized as follows: after introducing the supersymmetric version of quantum mechanics of graphs in terms of the graph Laplacian, we describe a version of Morse theory on graphs first by ordering the set of edges and vertices of Γ by declaring each vertex lesser than each edge of which it is an endpoint. With respect to this ordering, a discrete Morse function is a real-valued function f on the set of edges and vertices of Γ such that for all $\sigma \in \Gamma$,

$$\# \{ \tau > \sigma | f(\tau) \leq f(\sigma) \} \leq 1$$
$$\# \{ \tau < \sigma | f(\tau) \leq f(\sigma) \} \leq 1.$$

This means that a Morse function changes its value when there is a change in the dimension of the cells (0-cells being the vertices and 1-cells being the edges). A critical point σ of f is one for which the two sets above are empty.

The Morse inequalities state that Betti numbers b_0 and b_1 are bounded by the number of critical vertices and critical edges respectively. Using Theorem 2, we arrive to these inequalities, drawing inspiration from work of Witten [8]. The idea is as follows. Deform the supersymmetric Laplacian Δ using the Morse function f with real parameter s by taking boundary operator $d_s = \exp(fs)d\exp(-fs)$ and coboundary $d^*_s = \exp(fs)d^*\exp(-fs)$. The Hodge theorems still hold for the deformed Laplacian

$$\Delta_s = d^*_s d_s + d_s d^*_s,$$

and after taking a limit $s \to \infty$, there is an energy level a for which the cutoff complex C^*_a approaches the Morse complex as s approaches infinity.

This combinatorial approach, based on the linear algebraic properties of the deformed Laplacian and incidence matrices, gives an intuitive interpretation of Witten’s proof of Morse inequalities. In our description, the analytical issues of explicitly describing the spectra of deformed Laplacian operators (for which Witten requires to approximate the operators around the critical points by using the Morse coordinates) do not exist, since the operators are finite-dimensional.

1 Graph quantum mechanics

In this section we introduce the combinatorial version of quantum mechanics for finite graphs.

1.1 The graph Laplacian

For the purpose of this paper we consider finite graphs $\Gamma = (V,E)$, i.e., a finite set V or vertices and a finite set E of edges $e = (v_i, v_j)$. We will distinguish between unoriented and oriented graphs when necessary.

Definition 1.1. The adjacency matrix A_{Γ} (or simply A) of the graph Γ is

$$A_{\Gamma}(i,j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$
Definition 1.2. The valence matrix val_Γ of the graph Γ is the diagonal matrix such that the entry (i,i) is the number of neighbors of the vertex v_i.

Definition 1.3. The even graph Laplacian $\Delta_{+,\Gamma}$ is defined by

$$\Delta_{+,\Gamma} = \text{val}_\Gamma - A_{\Gamma}. \quad (1)$$

1.2 Orientation on graphs

In order to define the incidence matrix of Γ, we choose an orientation, that is, a particular order of the pairs (v_i, v_j).

Definition 1.4. Let Γ be an oriented graph. The incidence matrix I_Γ (or simply I) is a $|V| \times |E|$-matrix defined by

$$I_\Gamma(k,l) = \begin{cases}
-1 & \text{if } e_l \text{ starts at } v_k \\
1 & \text{if } e_l \text{ ends at } v_k \\
0 & \text{otherwise}
\end{cases}$$

The following relationship between the even Laplacian and the incidence matrix follows from the combinatorial description of the even Laplacian.

Proposition 1.1. The even graph Laplacian $\Delta_{+,\Gamma}$ can be written in terms of the incidence matrix, as follows:

$$\Delta_{+,\Gamma} = I_\Gamma^* I_\Gamma.$$

Note that from Definition 1.3 it follows that the even Laplacian is independent of the orientation. Based on proposition 1.1, we have the following definition of the odd Laplacian, which can be regarded as an operator on functions on edges.

Definition 1.5. The odd Laplacian $\Delta_{-,\Gamma}$ is defined by

$$\Delta_{-,\Gamma} = I_\Gamma^* I_\Gamma. \quad (2)$$
1.3 The state evolution

Definition 1.6. An even quantum state Ψ_+ on a graph Γ is a complex-valued function on the vertices Γ_0, that is, $\Psi_+ \in \mathbb{C}^{\Gamma_0}$. Similarly, an odd state Ψ_- is an element of $\mathbb{C}^{\partial \Gamma}$.

The quantum theory is given by the Schrödinger equation
\[
\frac{\partial}{\partial t} \Psi_{+,t} = -\Delta_+ \Psi_{+,t}
\]
which is solved by
\[
\exp(-\Delta_+ t) \Psi_{+,0}
\]
We denote $Z(t) = \exp(-\Delta_+ t)$, the (even) partition function of Γ. Indeed, if Γ is regular, then
\[
Z(t)(i,j) = \exp(tA) \exp(-\text{val}(t)) (i,j) = \sum_{\gamma: i \to j} e^{-\text{val}(t)}
\]
which is an integral over a space of paths with measure $\frac{\delta|\gamma|}{\gamma!}$ and integrand $e^{-\text{val}(t)}$. The “action” on a path is the sum of the valences over the vertices it traverses. $Z(t)$ is therefore a discretization of the Feynman path integral. Furthermore,
\[
\frac{d^k}{dt^k} Z \bigg|_0 (i,j)
\]
gives a signed count of generalized walks of length k from vertex i to j: a sequence $(v_1, e_1), (v_2, e_2), \ldots, (v_k, e_k)$ of pairs of vertices and edges in which v_j and v_{j+1} are endpoints to e_j (not necessarily distinct) for all j. In other words, a new path is a sequence of vertices which may traverse an edge while remaining stationary at a vertex. The precise combinatorial interpretation of the partition function can be found in \cite{2,7,9}. The sign of such a path is determined by the number of j such that $v_{j+1} \neq v_j$.

1.4 The supersymmetric version

In the supersymmetric theory, we extend Δ to the entire simplicial cochain complex C^\bullet of Γ with $\Delta := \Delta_+ \oplus \Delta_-$, where Δ_+ and Δ_- operate on edges and vertices respectively. The entries of $\Delta_{-,k}$ give signed counts of another type of special path: sequences of edges e_1, e_2, \ldots, e_k such that e_j is adjacent to e_{j+1}, with the sign determined by the number of j such that e_j meets e_{j+1} with opposite orientation. For further details see, e.g. \cite{2,9}.

1.4.1 Graph Hodge Theory

There is a close relationship between the graph Laplacian and the topology of the graph. More precisely, we have the following relationship between Δ and the cohomology groups of Γ.

Proposition 1.2. The dimension of $\ker(\Delta_+)$ is the number of connected components of Γ.

Proof. By Lemma \[A.1\] in Appendix A, $\ker(\Delta_+) = \ker(I)$. Now, if the vertices $\{v_{\alpha_1}, v_{\alpha_2}, \ldots, v_{\alpha_k}\}$ are all the elements of a connected component of Γ, then the state
\[
\Psi_+(v) = \begin{cases}
1 & \text{if } v = v_{\alpha_j}, 1 \leq j \leq k \\
0 & \text{otherwise}
\end{cases}
\]
is a generator of $\ker(I)$.

Proposition 1.3. The dimension of $\ker(\Delta_-)$ is the number of independent cycles of Γ.

Proof. Once again, by Lemma A.1, $\ker(\Delta) = \ker(I^*)$. Now, the combinatorial interpretation of the elements of the kernel of I^* is in terms of closed paths and this can be interpreted in terms of closed currents. More precisely, one may think as a state Ψ as a current, i.e. a function taking values on edges, obeying Kirchhoff’s first law: at each vertex, in- and outgoing currents balance. Thus, a current achieves balance if and only if the current is assigned to a closed path.

These two propositions lead to the following

Theorem 1. The cohomology groups of Γ can be calculated as

$$H^0(\Gamma, C) = \ker(I^*) = \ker(\Delta)$$

and

$$H^1(\Gamma, C) = \ker(I) = \ker(\Delta).$$

Thus Δ satisfies a “discrete” Hodge theorem.

We can further simplify the calculation of cohomology by considering energy cut-offs. Since Δ is symmetric, it is diagonalizable and its eigenvalues are real (non-negative, in fact), so the cochain complex decomposes as

$$C^* = \bigoplus_{\lambda \geq 0} E_\lambda$$

where E_λ is the eigenspace of Δ corresponding to λ. Given an energy $a \geq 0$, let

$$C^*_a = \bigoplus_{\lambda \leq a} E_\lambda$$

be the sub-cochain complex of C^* consisting of eigenspaces of energy lower than a.

Theorem 2. [Energy cut-off] $H^*(C^*_a) = H^*(C^*)$

Proof. It is clear that C^*_a contains $\ker(\Delta)$, for all a, thus $\ker(I^*|_{C^*}) = \ker(\Delta) = H^0(\Gamma)$. For H^1, it follows from the fact that $\text{coker}(I^*)$ is contained in C^*_a, for all a, and from Lemma A.1.

Remark:
In other words, the cohomology of Γ can be calculated by considering subcomplexes of lower energy!

2 Morse theory

In this section we describe a version of Morse theory on graphs by ordering the set of edges and vertices of Γ by declaring each vertex lesser than each edge of which it is an endpoint. With respect to this ordering, we consider special states which change value (at least in one direction) when there is a change of the dimension (from 0 to 1 and vice-versa). More precisely we have the following definition, originally due to Forman [3].

Definition 2.1. A discrete Morse function is a real-valued function f on the set of edges and vertices of Γ such that for all $\sigma \in \Gamma$,

$$\#\{\tau > \sigma | f(\tau) \leq f(\sigma)\} \leq 1$$

(3)

$$\#\{\tau < \sigma | f(\tau) \geq f(\sigma)\} \leq 1$$

(4)

Definition 2.2. A critical cell (vertex or edge) σ of f is one for which the two sets above are empty. We denote by $c_0(f)$ the number of critical vertices and by $c_1(f)$ the number of critical edges.
The following lemma follows directly from definition 2.1 (see e.g. [3], Lemma 2.4), and it will be useful when we will describe discrete gradient fields.

Lemma 2.1. If Γ is a finite graph with discrete Morse function f, for every vertex or edge σ either one of the following conditions hold:

i. $\# \{ \tau > \sigma | f(\tau) \leq f(\sigma) \} = 0$,

ii. $\# \{ \tau < \sigma | f(\tau) \geq f(\sigma) \} = 0$.

As we have said before, our main goal is to prove the following theorem.

Theorem 3. (Graph Morse inequalities) Let h_0 and h_1 be the Betti numbers of Γ. Then $h_0 \leq c_0(f)$ and $h_1 \leq c_1(f)$, for every Morse function f.

Proof. The strategy is as follows. By Using Theorem 2 above, we follow Witten’s approach to Morse inequalities for Riemannian manifolds [8], via deformation of the supersymmetric Laplacian. The precise idea is as follows. We deform the supersymmetric Laplacian Δ using the Morse function f with a real parameter s by deforming the boundary and coboundary operators d and d^*. The Hodge theorems still hold for the deformed Laplacian Δ_s, and, taking a limit $s \to \infty$, there is an energy level a for which the cutoff complex C_s^\ast approaches the Morse complex as s approaches infinity.

Now, let us start by deforming the boundary operator.

Definition 2.3. The deformed boundary and coboundary operators d_s and d_s^* are given by

$$d_s = \exp(fs)d\exp(-fs), \quad d_s^* = \exp(-fs)d^*\exp(fs).$$

Remark:
Note that the $\exp(fs)$ and $\exp(-fs)$ are represented by matrices of, a priori, different dimensions. For the deformed boundary operator, $\exp(-fs)$ is a diagonal $|E| \times |E|$-real matrix, whereas $\exp(fs)$ is a diagonal $|V| \times |V|$-real matrix. In the coboundary case, the situation is reversed.

Definition 2.4. The deformed Laplacian Δ_s is defined by $\Delta_s = d_s^*d_s + d_s d_s^*$. Therefore we can define the deformed co-chain complex C_s^\ast as:

$$0 \to C^{|V|} \to C^{|E|} \to 0.$$ (5)

Similarly we can define the cut-off cochain complexes $C_{s,a}^\ast$. If we denote by $H_s^\ast(\Gamma)$ the cohomology of the cochain $C_{s,a}^\ast$, the following proposition follows from lemma A.3 in Appendix A, since the matrices $\exp(-fs)$ and $\exp(fs)$ are both invertible.

Proposition 2.1 (deformed Energy cut-off).

$H_{s,a}^\ast(\Gamma) = H^\ast(\Gamma)$.

Now, if we take the limit $s \to \infty$ the matrices $\Delta_{s,\infty}$ become quite simple, and their kernels become independent on s, only they only depend on the critical cells. Explicitly we have the following description:

Proposition 2.2. The matrices $\Delta_{s,\infty}$ and Δ_{∞} with entries 0 and 1, and the number of zero columns is the number of corresponding critical cells.
Proof. The general entries of the deformed boundary operator have the form $\exp(ks)$, where k is the value of the Morse function on the respective cell. Thus, the graph Laplacian will have an entry of the form $\exp(qs)$, with q nonzero, if and only the Morse value of a cell and its incident cell is different. Thus when $s \to \infty$, the 1 entries will occur exactly when there is a non critical cell, for which the value of the cell and one of the incident cells is the same.

From proposition 2.2 we conclude that the dimension of \(\ker(\Delta_+\infty) \) is \(c_0(f) \) and that the dimension of \(\ker(\Delta_-\infty) \) is \(c_1(f) \). Therefore, if a is arbitrarily small, the energy cut-off produces a co-chain complex isomorphic to the Morse complex. This concludes the proof of Theorem 3.

\[
\frac{du(t)}{dt} = -\nabla f(u(t)), \quad u(0) = q,
\]

where q is a given non critical point, and with boundary conditions

\[
\lim_{t \to \infty} u(t) = p \quad \text{and} \quad \lim_{t \to -\infty} u(t) = r,
\]

for which p and r are critical points of the Morse function f.

The CW-decomposition for a well behaved Morse function (a so called Morse-Smale function, with suitable transversality conditions between the descending and ascending cells) comes equipped with an orientation, and a signed count of the number of solutions of Equation 6 gives the Morse differential for the Morse complex.

In the graph setting, there is a discrete analogue of a gradient vector field \[3\]. It turns out that non critical cells always come in pairs. In order to see this, we observe that given a non critical edge, it implies by definition that there exists an incident vertex with a nondecreasing value of the Morse function. In the same way, a non critical vertex has a adjacent edge such that the Morse value is nonincreasing.

Definition 3.1. Let f be a discrete Morse function on a graph Γ. The discrete gradient vector field of f, denoted by ∇f, is the set of adjacent noncritical pairs (v_n, e_n).

Usually discrete gradient fields are represented graphically by arrows having non critical vertices as tails and adjacent non critical edge as arrowheads, see e.g. Figure 8. The following definition of gradient curves for a Morse function is the graph version of gradient paths given in \[4\]:

Definition 3.2. A gradient curve between two vertices σ_{initial} and σ_{final} is a finite sequence

\[
\gamma : \sigma_{\text{initial}} = \sigma_0, \tau_0, \sigma_1, \tau_1, \ldots, \tau_k, \sigma_k = \sigma_{\text{final}}
\]

such that the following conditions are satisfied

1. $\sigma_i < \tau_i$ and $\sigma_{i+1} < \tau_i$
2. $\sigma_i \neq \sigma_{i+1}$
3. $f(\sigma_i) \geq f(\tau_i) > f(\sigma_{i+1})$.

We should interpret gradient curves as discrete solutions of Equation 6. In \[5\], each gradient curve has naturally equipped with a sign, so the Morse differential is obtained by counting the signed gradient curves among critical points of index differing by 1. In \[4\], the sign (or algebraic multiplicity) of a gradient curve is defined as follows. Given an orientation on the vertices σ_i, the sign of a path γ, denoted by $m(\gamma)$, is said to
be $+1$ if the orientation on σ_{final} agrees with the induced orientation on σ_{initial}, and is -1 otherwise. Now, we can define the Morse differential ∂ from critical edges to critical vertices as follows. If C^1, C^0 denote the vector spaces generated by critical edges and vertices respectively, and an inner product $\langle \cdot, \cdot \rangle$ is chosen so the critical cells form an orthonormal basis, the linear operator

$$\langle \partial \tau, \sigma \rangle = \sum_{\sigma_1, \tau} \langle \partial \sigma_1, \sigma \rangle \sum_{\gamma \in \Gamma(\sigma_1, \sigma)} m(\gamma)$$

is clearly a differential, and furthermore it is the Morse differential [4].

4 Examples

4.1 The simplest case

Let us consider a very simple graph, that is, a graph with two vertices and one edge: $V = \{v_1, v_2\}$ and $E = \{e_1 = (v_1, v_2)\}$.

![Graph K2](image)

Fig. 3: The graph K_2.

With respect to the orientation given in Figure 4, we get the following matrices:

$$I_\Gamma = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \Delta_+ = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \Delta_- = [2].$$

Let us consider the following Morse function f on Γ:

![Morse function on K2](image)

Fig. 5: The Morse function f on K_2.

It is easy to check that $c_0(f) = 1$ (the vertex v_2 is critical) and that $c_1(f) = 0$ (there are no critical edges). Now, the deformed boundary d_s is

$$d_s = I_{\Gamma, s} = (\exp(sf))I_\Gamma(\exp(-sf)) = \begin{pmatrix} \exp(s) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & \exp(-s) \end{pmatrix} = \begin{pmatrix} 1 \\ -\exp(-s) \end{pmatrix}.$$
Therefore, the deformed even Laplacian Δ_{+} is
\[
\Delta_{+} = d_+ d_+^* = \begin{bmatrix}
1 & -\exp(-s) \\
-\exp(-s) & \exp(-2s)
\end{bmatrix}
\] (10)
and the odd Laplacian Δ_{-} is
\[
\Delta_{-} = d_- d_-^* = [1 + \exp(-2s)].
\] (11)
Therefore,
\[
\Delta_{+}\infty = \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} \text{ and } \Delta_{-}\infty = [1].
\] (12)
It can be easily checked that $\dim(\ker(\Delta_{+}\infty)) = 1 = c_0(f)$ and that $\dim(\ker(\Delta_{-}\infty)) = 0 = c_1(f)$. More precisely,
\[
\ker(\Delta_{+}\infty) = \langle v_2 \rangle \\
\ker(\Delta_{-}\infty) = \langle 0 \rangle.
\]

4.2 The triangle

We illustrate the case in which we have two different Morse functions, one of each achieving sharpness of the Morse inequalities. Let as consider the triangle graph K_3 with $V = \{v_1, v_2, v_3\}$ and $E = \{e_1 = (v_1, v_2), (v_1, v_3), (v_2, v_3)\}$.

![Fig. 6: The triangle K_3.](image-url)
With respect to the orientation given in Figure 7,

![Diagram](image)

Fig. 7: An orientation on K_3.

we get the following incidence matrix:

$$I_{r} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \quad \text{(13)}$$

Now consider the following Morse function on K_3:

![Diagram](image)

Fig. 8: The Morse function f on K_3 and the corresponding gradient vector field ∇f.

It is easy to check that $c_0(f) = 1$ (the vertex v_2 is critical) and that $c_1(f) = 1$ (the edge e_2 is critical). Now, the deformed boundary d_s^e is

$$d_s = \begin{bmatrix} \exp(s) & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \exp(s) \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \exp(-s) & 0 & 0 \\ 0 & \exp(-2s) & 0 \\ 0 & 0 & \exp(-s) \end{bmatrix} = \begin{bmatrix} 0 & -\exp(-s) & -1 \\ -\exp(-s) & 0 & \exp(-s) \\ 1 & \exp(-s) & 0 \end{bmatrix}. \quad \text{(14)}$$

Therefore, the deformed even Laplacian $\Delta_{+,s}$ is

$$\Delta_{+,s} = d_s^e d_s = \begin{bmatrix} 1 + \exp(-2s) & -\exp(-s) & -\exp(-2s) \\ -\exp(-s) & 2\exp(-2s) & -\exp(-s) \\ -\exp(-2s) & -\exp(-s) & 1 + \exp(-2s) \end{bmatrix}. \quad \text{(15)}$$

and the odd Laplacian $\Delta_{-,s}$ is

$$\Delta_{-,s} = d_s^e d_s = \begin{bmatrix} 1 + \exp(-2s) & \exp(-s) & -\exp(-2s) \\ \exp(-s) & 2\exp(-2s) & -\exp(-s) \\ -\exp(-2s) & -\exp(-s) & 1 + \exp(-2s) \end{bmatrix}. \quad \text{(16)}$$

Therefore,

$$\Delta_{+,\infty} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \Delta_{-,\infty}. \quad \text{(17)}$$

It can be easily checked that $\text{dim}(\ker(\Delta_{+,\infty})) = 1 = c_0(f) = c_1(f) = \text{dim}(\ker(\Delta_{-,\infty}))$ and that

$$\ker(\Delta_{+,\infty}) = \{v_2\}$$

$$\ker(\Delta_{-,\infty}) = \{e_2\}.$$

As expected, this Morse function achieves the equality for the Morse inequalities.
The following proposition justifies the fact that we recover the Morse complex for such functions. Therefore, the deformed even Laplacian \(\Delta^*_e \) is
\[
d^*_e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \exp(-s) & 0 & 0 \\ 0 & \exp(-s) & 0 \\ 0 & 0 & \exp(-s) \end{bmatrix} = \begin{bmatrix} 0 & -\exp(-s) & -\exp(-s) \\ -\exp(-s) & 0 & \exp(-s) \\ \exp(-s) & \exp(-s) & 0 \end{bmatrix}.
\]
(18)

Therefore, the deformed even Laplacian \(\Delta^*_{+s} \) is
\[
\Delta^*_{+s} = d^*_e d_s = \begin{bmatrix} 2\exp(-2s) & -\exp(-2s) & -\exp(-2s) \\ -\exp(-2s) & 2\exp(-2s) & -\exp(-2s) \\ -\exp(-2s) & -\exp(-2s) & 2\exp(-2s) \end{bmatrix}.
\]
(19)

and the odd Laplacian \(\Delta^*_{-s} \) is
\[
\Delta^*_{-s} = d^*_e d_s = \begin{bmatrix} 2\exp(-2s) & \exp(-2s) & -\exp(-2s) \\ \exp(-2s) & 2\exp(-2s) & -\exp(-2s) \\ -\exp(-2s) & -\exp(-2s) & 2\exp(-2s) \end{bmatrix}.
\]
(20)

Therefore,
\[
\Delta^*_{\pm s} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \Delta^*_{\infty},
\]
(21)

thus
\[
\ker(\Delta^*_{+s}) = \{v_1, v_2, v_3\}
\]
\[
\ker(\Delta^*_{-s}) = \{e_1, e_2, e_3\}.
\]

5 Morse function of a tree and the boundary map

Given a vertex \(v \) in \(\Gamma \), let \(v' \) be the critical vertex obtained by flowing along the gradient field \(\nabla f \) of \(f \). For an edge \(e \) in \(\Gamma \) with endpoints \(v_0 \) and \(v_1 \), the Morse boundary map, defined on critical edges, is given by
\[
e \mapsto v'_e - v'_0.
\]
(22)

Let \(T \) be a spanning tree of \(\Gamma \) and \(v_r \) a vertex in \(T \), the root. Then it is an easy observation that the height function \(h \) defined by:
\[
h(v) = \text{edge distance from } v_r, \\
h(v_0) = \max(h(v_0), h(v_1)) \text{ if } e \text{ belongs to } T, \\
h(e) = \max(h(v_0), h(v_1)) + 1 \text{ otherwise},
\]
is Morse.

The following proposition justifies the fact that we recover the Morse complex for such functions.
Proposition 5.1. The boundary map is zero on critical edges of h.

Proof. The critical cells of h consist of v_0 and all the edges not contained in T, and the boundary map is zero on critical edges since $v_0' = v_1'$. Therefore, the boundary map coincides with the operator ∂' from Definition 7, and this implies that the boundary maps compute graph homology, see e.g. [3].

Fig. 10: The height function for a rooted tree. Note that the only critical cell of a rooted tree is the root, therefore there are no gradient curves and thus the Morse complex has trivially Morse homology with respect to the differential ∂.

6 Conclusion and perspectives

We have re-proven Morse inequalities in the particular case of finite graphs, by using Witten’s supersymmetric approach for quantum mechanics on Riemannian manifolds. The equality is achieved in both examples by a height type Morse function, which can be defined for a spanning tree in terms of the depth of the tree, once a root is chosen. The remaining values of the Morse function can be chosen to be larger than the maximum of the corresponding edges, so the Morse conditions (4) and (5) are satisfied. We conjecture that the sharpness of the equation is achieved by such functions in the general case of CW-complexes, for which there is a generalized notion of a spanning tree and corresponding height function. This will be part of an upcoming publication. We also intend to describe in detail how to use Witten’s approach to derive Morse inequalities and define a discrete version of quantum mechanics in interesting higher dimensional examples such as real projective spaces and complexes of graphs with a monotone decreasing property [3].

Acknowledgements

This research was conducted within the Illinois Geometry Lab (IGL) project Quantum Mechanics for Graphs and CW-Complexes.
I. C. thanks P. Mnëv for interesting discussions and for explaining the graph version of quantum mechanics and A. Cattaneo for useful comments on a preliminary version of the manuscript. I.C. and B.X thank Sarah Loeb, Michael Toriyama, Chengzheng Yu and Zhe Hu for useful discussions.
A Linear algebra and the graph Laplacian

The following are technical basic lemmas in linear algebra used throughout the paper, and they can be found in standard references for matrix linear algebra, such as [5].

Lemma A.1. Let A be a matrix and let A^* its adjoint. Then $\ker(A) = \ker(A^*A)$.

Proof. It is clear that $\ker A \subseteq \ker(A^*A)$. For the other direction, if $\langle \cdot, \cdot \rangle$ is the corresponding inner product, then, for each vector v in $\ker(A^*A)$

$$\|Av\|^2 = \langle Av, Av \rangle = \langle A^*Av, v \rangle = \langle 0, v \rangle = 0,$$

thus $v \in \ker(A)$. ✓

Lemma A.2. The matrices AA^* and A^*A are both non-negative definite and their spectra coincide (modulo multiplicities).

Lemma A.3. Let A be a $p \times q$ matrix, let X be an invertible $p \times p$-matrix and let Y be an invertible $q \times q$-matrix. Then

$$\ker(A) = \ker(XAY).$$
References

[1] R. Bott, Morse theory indomitable, Publications mathématiques de l'I.H.E.S tome 68, pp.99-114 (1988).
[2] S. Del Vecchio, Path sum formulae for propagators on graphs, gluing and continuum limit, ETH master thesis (2012).
[3] R. Forman, A User’s Guide to Discrete Morse Theory, S?inare Lotharinen de Combinatore 48 (2002).
[4] R. Forman, Witten-Morse theory for cell complexes, Topology Volume 37, Issue 5, pp 945-979 (1998).
[5] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press (1990).
[6] P. Mnev, Discrete path integral approach to the trace formula for regular graphs, Commun. Math. Phys. 274.1 233-241(2007).
[7] P. Mnev, Quantum mechanics on graphs, contribution to the MPIM Jahrbuch (2016).
[8] E. Witten, Supersymmetry and Morse theory. J. Differential Geom. 17, no. 4, 661–692 (1982).
[9] C. Yu, Super-Walk Formulae for Even and Odd Laplacians in Finite Graphs, arXiv:1612.05505 preprint.(2016).