Diversity of Crinozoa (Echinodermata: Eocrinoidea, Blastoidea, Crinoidea) from the Paleozoic of Mexico

Blanca Estela Buitrón-Sánchez¹, Francisco Javier Cuen-Romero²*, Rogelio Monreal², and Iván Manuel Cuadros-Mendoza³

¹ Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico.
² Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas y Rosales, 83000, Hermosillo, Sonora, Mexico.
³ Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico.
* francisco.cuen@ciencias.uson.mx

ABSTRACT

Paleozoic outcrops in Mexico containing echinoderms are located to the north, center and south of the country, mainly in the states of Baja California, Sonora, Chihuahua, Tamaulipas, Coahuila, Hidalgo, Puebla, Guerrero, Oaxaca, and Chiapas. These rocks correspond to marine carbonates deposited in warm shallow environments, with an approximate age of 541 to 251 Ma. Also containing a varied and diverse biota made up of phylloid algae, foraminifera (fusulinids), coralline sponges, corals, bryozoans, brachiopods, mollusks, trilobites and echinoderms. In order to know the diversity of Crinozoa from the Paleozoic of Mexico, an analysis of the species documented for the country was carried out, with the objective of contributing to the knowledge of the biostratigraphy and paleogeography of Mexico. The methodology consisted of a detailed analysis of bibliographic sources with information on echinoderms from the Paleozoic of Mexico. Cambrian eocrinoids (Gogia, and Ubaghsicystis) are distributed mainly in Sonora. Crinoid plates from the Carboniferous and Permian, particularly morphospecies of the genera Cyclocraterex, Cyclocrastera, Heterosteletechus, Lamprosterigma, Mooreanteris, Pentagonopternix, Preptopremnum, and Pantaridica, are widely distributed throughout the country. Analysis of the Mississippian-Permian biota indicates that the cosmopolitan distribution of the fauna studied in this work is due to the connections between the seas of western North America and eastern Asia. The Late Permian benthic fauna of Sonora was widely dispersed in the Tethyan realm, which stretched from western North America to North Africa and Asia. The comprehensive study of Paleozoic marine stratigraphic successions and their biotic content provided information on faunal migrations regarding the Paleozoic carbonate facies. It also contributed to reconstructing the geographical, climatological, and ecological characteristics of the Paleozoic of Mexico.

Keywords: Paleobiodiversity; invertebrates; echinoderms; paleobiogeography; Paleozoic; Mexico.

RESUMEN

Los afloramientos paleozoicos en México con equinodermos se ubican al norte, centro y sur del país, principalmente en los estados de Baja California, Sonora, Chihuahua, Tamaulipas, Coahuila, Hidalgo, Puebla, Guerrero, Oaxaca y Chiapas. Estas rocas fueron depositadas en ambientes cálidos poco profundos, con una edad aproximada de 541 a 251 Ma. También contienen una biota variada y diversa compuesta por algas filoides, foraminíferos (fusulínidos), esponjas corallinas, corales, briozoos, braquiopodos, moluscos, trilobites y equinodermos. Con el objetivo de conocer la diversidad de Crinozoa del Paleozoico de México, se realizó un análisis de las especies documentadas para el país, con el objetivo de contribuir al conocimiento de la bioestratigrafía y paleogeografía de México. La metodología consistió en un análisis detallado de fuentes bibliográficas con información sobre equinodermos del Paleozoico de México. Los eocrinoides cámbricos (Gogia y Ubaghsicystis) se distribuyen principalmente en Sonora. Las placas de crinoideos del Carbonífero y Pérmico, en particular las morfoespecies de los géneros Cyclocraterex, Cyclocrastera, Heterosteletechus, Lamprosterigma, Mooreanteris, Pentagonopternix, Preptopremnum y Pentaridica, están ampliamente distribuidas por todo el país. El análisis de la biota del Misisípico-Pérmico indica que la distribución cosmopolita de la fauna estudiada en este trabajo se debe a las conexiones entre los mares del oeste de América del Norte y el este de Asia. La fauna bentónica del Pérmico tardío de Sonora estaba muy dispersa en el dominio del Téthys, que se extendía desde el oeste de América del Norte hasta el norte de África y Asia. El estudio exhaustivo de las sucesiones estratigráficas marinas del Paleozoico y su contenido biótico proporcionó información sobre las migraciones de fauna con respecto a las facies carbonatadas del Paleozoico. También contribuyó a reconstruir las características geográficas, climatológicas y ecológicas del Paleozoico de México.

Palabras clave: paleobiodiversidad; invertebrados; equinodermos; paleobiogeografía; Paleozoico; México.
INTRODUCTION

The continents and seas have been subject to great changes in their position, shape, and oceanic characteristics, changes that were originated by the dynamics of the tectonic plates, and within this framework a numerous and diverse biota developed (Pantoja, 1970; Anderson and Silver, 1979; Baldiss and Bordonaro, 1981; Campa-Urranga and Coney, 1983; Coney, 1983; Stewart et al., 1984; 1990, 1999, 2002; González-León, 1986; Pérez-Ramos, 1992; Ramos and Keppie, 1999; Sánchez-Zavala et al., 1999; Almazán et al., 2006; Sour-Tovar et al., 2007).

Paleozoic marine outcrops of Mexico exposed in the states of Baja California (La Pintas, Navas-Parejo et al., 2018). Sonora (Caborca, El Chihuarruita, Sahuaral, Arivechi, Bisani, Cerros El Tule, Sierra Las Mesteñas, and Sierra Agua Verde), Chihuahua (Placer de Guadalupe-Sierra Plomosas), Tamaulipas (Cañón de Peregrina); while in south-central Mexico are exposed in the estates of Hidalgo (Calnali), and Puebla (San Salvador Patlanoaya), and in the southern region, in Guerrero (Oinalá), Oaxaca (Nochixtlán-Ixtaltepec) and Chiapas (Paso Hondo and Chicomuselo), which generally correspond to marine carbonate rocks deposited in warm shallow-water seas, these rocks have ages between 545 and 252 million years, with little representation of the Silurian, containing numerous and diverse fossils, including echinoderms (Buitrón, 1992; Buitrón et al., 2008) (Figure 1).

In the areas of Caborca, Bisani, Cananea, San José de Gracia, Mazatán, and Arivechi in the state of Sonora, Cambrian sedimentary rocks with algae and invertebrates that have been studied by several authors are exposed (Cooper et al., 1952; Stewart et al., 1984, 1999, 2002; González-León, 1986; McMenamin, 1985, 1987; Almazán, 1989; Cuen-Romero et al., 2016, 2018, 2019; Beresi et al., 2019).

Also, in Sonora, there are outcrops of upper Paleozoic sequences deposited in a carbonate shallow-water platform (Cordilleran System) thrusted by oceanic basin siliciclastic and carbonate rocks (Orozco-Grajeda, 2005). The Cordilleran System rocks correspond to deposits of continental shelves in shallow seas, which developed on the western edge of Laurentia (North American Craton) (Poole et al., 2005).

Paleozoic marine biota of Mexico, in general is mainly constituted by cyanobacteria algae (Cooper et al., 1952; Gómez-Espinosa et al., 2008; Beraldí et al., 2018; Buitrón et al., 2012; Vachard et al., 2017), foraminifer (Vachard et al., 1993, 1997, 2000a, 2000b, 2007; Pérez-Ramos, 2002; Gómez-Espinosa et al., 2008; Buitrón et al., 2012), sponges (Almazán et al., 2007; Buitrón et al., 2007a; Cuen-Romero et al., 2013; Beresi et al., 2012, 2017, 2019), archaeocyathids (Cooper et al., 1953; Debrenne, 1987; Debrenne et al., 1989; Buitrón et al., 2000), cnidaria (Easton, 1958; González-León, 1986; Buitrón et al., 2012; Villanueva-Olea 2016; Buitrón et al., 2000), bryozoans (González-León, 1986; González-Mora et al., 2018), brachiopods (Cooper et al., 1952; Buitrón et al., 2005b; Buitrón et al., 2012; Jiménez et al., 2018; Torres-Martínez et al., 2018), hyolithids (Cooper et al., 1952; MacMenamin, 1985; Buitrón et al., 2017a; Devaere et al., 2019), mollusks (Yochelson, 1968; Buitrón et al., 2000; Gómez-Espinosa et al., 2009; Buitrón et al., 2012), trilobites (Cooper et al., 1952; Pantoja and Robison, 1967; Robison and Pantoja 1968; Rivera, 1988; Cuen-Romero et al., 2016, 2018, 2019; Sundberg and Cuen-Romero, 2021), conodonts (Brunner, 1987; Navas-Parejo, 2018; Lara-Peña et
METHODOLOGY

Previous works are the data base used for this work, an exhaustive review of the existing bibliographic references with Paleozoic Crinozoa material was performed. The information was compiled in a database and later analyzed by locality and geological age.

Exhaustive bibliographical research was done on diverse sources for echinoderms in the Paleozoic rocks of Mexico (Baja California, Sonora, Chihuahua, Tamaulipas, Hidalgo, Puebla, Guerrero, Oaxaca, and Chiapas).

The data included in this paper is organized by location, and geologic period; also, the stratigraphy, ecology and paleogeographic conditions during the sedimentation is provided (Figures 2 and 3). The classification used is based on Guensburg and Sprinkle (2003) and Wright et al. (2017).

CAMBRIAN ECHINODERM DIVERSITY OF SONORA

Caborca area

Sprinkle (1973) mentioned the presence of isolated plates of gogid blastoids in the Cambrian sedimentary rocks exposed in the Caborca region, located to the northwest of Sonora (Figures 1, 2). Also, Durham (1978) mentioned the possible existence of eocrinoids in the same area.

San José de Gracia, El Chihuarruita Hill

The Chihuarruita hill is located near the San José de Gracia town, 40 km to the northeast of Hermosillo, within the coordinates 29°17'05"N, 110°35'03"W (Figures 1, 2). The lower Cambrian outcrops in the region have a diverse fauna of invertebrates. Nardin et al. (2009) reported the presence of the eocrinoids-blastoid species assigned to Gogia granulosa Robison, 1965 from a biostromic limestone. Later, Cuen-Romero et al. (2016) and Buitrón et al. (2017b) reported isolated plates of Gogia granulosa from the middle Cambrian Proveedora Formation (540 Ma) made up of sandstone and quartzite; and from the Buelna Formation (525 Ma) made up of limestone, shale, and sandy limestone. Also, the presence of trace fossils of the ichnogenus Asteriacites von Schlotheim, 1820 may correspond to an echinoderm starfish printing (Seilacher, 2007; Zamora et al., 2010; Buitrón et al., 2016). The biotic association allowed to establish paleogeographic relationships with Alberta (Canada), California, Nevada, Utah, and Idaho (United States of America), Spain and France (Europe), North Korea (Asia), and Australia.

San José de Gracia, El Sahuaral Hill

A middle Cambrian sedimentary sequence assigned to the El Gavilán Formation constituted by shale and oolitic limestone outcrops in the central Sonora. This unit is exposed at the Sahuaral hill, near the town of San José de Gracia, located at the coordinates 29°21’N and 110°37’W, where the eocrinoid species Ubaghsicystis cf. U. segu-rae was described by Gil-Cid and Domínguez-Alonso (2002). The Cambrian succession of Sonora, with the presence of Ubaghsicystis, and sponges, hyolithids, brachiopods, and trilobites, was part of the margin from the Laurentia craton during this period (Buitrón et al., 2021). Regarding the composition of the biotic community, it is inferred that the environment of deposition is a shallow-water carbonate platform with well-oxygenated tropical waters, which prevailed during the Cambrian in North America. The distribution of the Cambrian biota of San José de Gracia denotes that there was a vast faunal province that comprised northern Mexico, southwestern Canada, southeastern United States of America, Greenland, northern Europe, Antarctica and northeast Australia, which were part of the Panthalassic Ocean, Figures 1, 2.

MISSISSIPPIAN ECHINODERM DIVERSITY OF SONORA

El Bisani

The Bisani area is located in the Caborca region, in northwestern Sonora (Figures 1, 2). In this locality, Early Mississippian crinoid species were identified in the Represo Formation, corresponding to Gonioconion turgidus Moore and Jeffords, 1968; Flucticharax undatu Moore and Jeffords, 1968; and Eulonchorista impunitum, Moore and Jeffords, 1968; as well as the Late Mississippian species Pentagonalomischus plebeius, Moore and Jeffords, 1968 which were described by Moore and Jeffords (1968) from the Mississippian of the USA. The colonial coral Lithostrotonella confluenta Eaton, 1958 and the conodonts Gnathodus cuneiformis Mehl and Thomas, 1947 and Gnathodus typicus Cooper, 1939, confirmed the age of the sequence. The biota was present in in tropical shallow-water carbonate platforms seas. Due to the distribution of similar species, the region is paleogeographically related to Iowa, Kentucky, and Illinois in the United States of America, belonging to the North American Craton Province (Buitrón et al., 2015a).

Sierra Las Trincheras

The Sierra Las Trincheras is located in east-central Sonora, in the coordinates 29°03’35”N and 110°35’55”W (Figures 1, 2). Buitrón et al. (2008) cited two crinoids species collected in a partially recrystallized massive-bedded gray limestone. Among these, the species Rhysocamax cuneiformis Moore and Jeffords, 1968 that was previously reported from Iowa and Alabama, USA (Moore and Jeffords, 1968; Raymond, 2003), from Poland (Gluchowski, 1981, 2001) and from western Siberia (Dubatolova and Dubatolova, 1984), and Gilbertocrinus aequialis was reported from Kentucky, USA (Moore and Jeffords, 1968).

PENNSYLVANIAN ECHINODERM DIVERSITY OF SONORA

The Pennsylvanian localities in Sonora correspond to El Tule Hill, Sierra Las Mesteñas, and Sierra Agua Verde. These Upper Paleozoic outcrops represent sequences of carbonate platform thrusted by siliciclastic and carbonate ocean basin sediments (Orozco-Grajeda, 2005). Shallow-water shelf sediments correspond to continental shelf deposits of the western edge of Laurentia (North American Craton) (Poole et al., 2005).
El Tule Hill

The El Tule Hill is located in northeast Sonora, near the border to the United States of America, in the coordinates 37°17'22'' to 31°18'45''N and 110°16'00'' to 110°19'00''W (Figure 1, 2). In this area, sedimentary rocks are exposed and contain a biota constituted by diverse invertebrates and calcareous algae, whose age range from Lower Mississippian to Permian. In this region, Buitrón et al. (2004, 2006, 2008 and 2012) identified the crinoid species *Cyclocaudex insaturatus* Moore and Jeffords, 1968; *Cyclocaudex jucundus* Moore and Jeffords, 1968; *Cyclocaudex costatus* Moore and Jeffords, 1968; *Cyclocrista martini* Moore and Jeffords, 1968; *Heterostelechus keithi* Miller, 1968b; *Lamprosterigma mirificum*, Moore and Jeffords, 1968; *Lamprosterigma erathtense* Moore and Jeffords, 1968; *Preptopremnum rugosum* Moore and Jeffords, 1968. The species have also been reported from Ohio, Texas, and Kansas, USA (Moore and Jeffords 1968) and from the Carboniferous of Pribalkhash in Kazakhstan (Dubatolova and Dubatolova, 1984). Thanatocenosis is typical of shallow tropical seas whose species have a strong affinity to faunas of the mid-continental region in the USA and to faunas of the Eurasian-Arctic province.

Sierra Las Mesteñas

The Sierra Las Mesteñas is located in northeast Sonora, at coordinates 30°58' to 31°05'N, 109°45' to 108°52'W (Figures 1, 2). In the northeastern portion of the Sierra Las Mesteñas, marine sediments assigned to the Naco Formation are exposed. Buitrón et al. (2004,
STATE	AGE	LOCALITIES	TAXA
COAHUILA	MIDDLE PERMIAN	Sierra de las Delicias	Pentagonopterix coahuilensis
		Las Difuntas	Cylindrocaudex typicus
			Cyclocaudex insatnatarus
			Cyclocaudex cf. C. insatnatarus
			Cyclocaudex sp.
			Floricyclus diminuta
			Floricyclus sp.
			Preptopremnum rugosum
			Preptopremnum laeve
			Preptopremnum sp.
	LOWER PERMIAN	Sierras de las Sardinas	Heterostelechus keithi
			Cyclocaudicalculus regulararis
			Epicirrus torreonense
CHIHUAHUA	PENNSYLVANIAN -	Placer de Guadalupe	Preptopremnum sp.
	PERMIAN?	Sierra Plomosa	Heterostelechus sp.
TAMALIPAS		Cañón La Peregrina	Cylindrocaudex costatus
			Cylindrocaudex jucundus
			Cylindrocaudicaliscus fiski
HIDALGO	PENNSYLVANIAN	Pemuxco - Calnali	Cylindrocaudicaliscus fiski
			Barysichir anomius
			Cylindrocaudex jucundus
			Cyclocaudex plenus
			Plummeranteris cf. P. sanaba
PUEBLA	PENNSYLVANIAN	San Salvador Patlanoaya	Stiberotaurus acstnatis
			Ampholinetum apogema
			Cyclosteleschuss turritus
			Lomaegnum hornimodium
			Pentagohnomiscus plebeins
GUERRERO		Olinalá	Pentaridica pentagonals
			Cyclocaudex costatus
			Cyclocaudex jucundus
			Preptopremnum rugosum
OAXACA		Nochixtlan - Ixtaltepec	Cylindrocaudicaliscus fiski
			Cyclocaudex insatnatarus
			Azilinomis angustus
			Floricyclus welleri
			Pentagohnomiscus cf. P. plebeins
CHIAPAS		La Concordia - Chicomosuel	Cylindrocaudicaliscus fiski
			Lamprosterigma mirificum

Figure 3. Taxa belonging to the localities of Coahuila, Chihuahua, Tamaulipas, Hidalgo, Puebla, Guerrero, Oaxaca, and Chiapas states.

2008) documented the crinoid species Cyclocaudex plenus Moore and Jeffords, 1968; Cyclocaudex insatnatarus; Cylindrocaudicaliscus fiski Moore and Jeffords, 1968; Heterostelechus keithi Miller, 1968b; Heterostelechus jeffordsi Miller 1968a; Heterostelechus texanus Moore and Jeffords, 1968; Preptopremnum laeve; Preptopremnum rugosum; Lamprosterigma mirificum and Cyclosterigma martini from the Pennsylvanian (Villanueva-Olea et al., 2016).

Sierra Agua Verde

The Sierra Agua Verde is located 110 km to the northeast of Hermosillo (Figures 1, 2). In this area, a 294 m thick sequences of limestone and shale assigned to the La Joya Formation is exposed. The unit contains colonial corals of the genus Syringopora Goldfuss, 1826 and numerous plates and columnar fragments of crinoids of the genera: Pentaridica Moore and Jeffords, 1968; Pentagonopterix Moore and Jeffords, 1968; Cyclocaudex Moore and Jeffords, 1968; Mooreanteris Miller 1968c; Lamprosterigma Moore and Jeffords, 1968; Cyclocrista Moore and Jeffords, 1968; Preptopremnum Moore and Jeffords, 1968; and Cyclocaprus Moore and Jeffords, 1968 (Figure 4). Also, the unit contains fragments of gastropods and bryozoans. The thanatocenosis is typical of benthos in shallow tropical seas. The analysis of the distribution of the species allowed to establish paleogeographic relationships with elements of the Carboniferous biota of Texas and Kansas in the USA, belonging to the North American Craton province, (Ochoa-
the intracratonic Pedregosa Basin, which was interrupted by the first pulsations of the Appalachian Orogeny, originated by the collision of Laurentia with Gondwana during the late Permian to Middle Jurassic (Escamilla-Herrera et al., 1991).

PENNYSYLVANIAN ECHINODERM DIVERSITY OF TAMAULIPAS

La Peregrina canyon

The La Peregrina canyon is located in the state of Tamaulipas, in the coordinates 24°23' to 24°13'N and 99°29' to 99°19'W (Figures 1, 3). The Del Monte Formation (Pennsylvanian) consists of limestone, sandstone, and shale (Carrillo-Bravo, 1961; Buitrón et al., 1998). The unit contains the crinoid species Cyclocaudex costatus, Cyclocaudex jucundus, and Cylindrocauliscus fiski, described by Buitrón et al. (1998).

PENNYSYLVANIAN ECHINODERM DIVERSITY OF HIDALGO

Pemuxco-Calnali

The state of Hidalgo is located in the east-central region of Mexico. The Pemuxco area is located between the coordinates 20°36' to 20°45'N and 98°27' to 98°35'W (Figures 1, 3). The Tuzancoa Formation (Pennsylvanian) contains the crinoid species Cylindrocauliscus fiski; Barychir anosus Moore and Jeffords, 1968; Cyclocaudex plenus; Plummeranteris cf. P. sansaba Moore and Jeffords, 1968; previously described from Iowa, Illinois, and Kentucky, USA, (Moore and Jeffords, 1968; Arellano et al. 1998; Buitrón et al., 2008; 2017c).

PENNYSYLVANIAN ECHINODERM DIVERSITY OF CHIHUAHUA

Placer de Guadalupe-Sierra Plomosas

In the east-central region of Chihuahua, Paleozoic rocks are exposed at Placer de Guadalupe and Sierra Plomosas-Monillas areas (Figures 1, 3). Marine and continental sedimentary rocks are exposed in the Placer de Guadalupe area (Bridges, 1965; Barboza-Gudiño et al., 2016). The Plomosa Formation consists of sandstone and siltstone, containing crinoid plates of Preptopremnum Moore and Jeffords, 1968 and Heterostelechus Moore and Jeffords, 1968. The Plomosa Formation represents deposition in a marine transgression cycle deposited along the intracratonic Pedregosa Basin, which was interrupted by the first pulsations of the Appalachian Orogeny, originated by the collision of Laurentia with Gondwana during the late Permian to Middle Jurassic (Escamilla-Herrera et al., 1991).

PENNYSYLVANIAN-PERMIAN? ECHINODERM DIVERSITY OF SONORA

Caborca-Los Monos

Los Monos Hill is located in the Caborca region in northeast Sonora (Figures 1, 2). The Monos Formation comprises more than 600 m of siltstone and sandstone that alternate with fossiliferous limestone (Cooper et al., 1953), which middle part contains a diverse biota, represented by fusulinids, corals, bryozoans, brachiopods, gastropods, ammonites, and crinoids. The crinoid species in the area are Pentaridica rothi Moore and Jeffords, 1968; Cyclocaudex cf. Cyclocaudex jucundus Moore and Jeffords, 1968; Cyclocaudex cf. Cyclocaudex costatus Moore and Jeffords, 1968; Preptopremnum rugosum, and Heterostelechus texanus, which were previously described by Moore and Jeffords (1968) from the late Pennsylvania and Permian of Texas, USA. Some fusulinids from the Permian of Sonora are characteristic of the North American craton (Midcontinent, Glass Mountains), specifically with exotic lands of the faunal region of the North American Cordillera and related to the faunas of the Eurasian-Arctic provinces, (Buitrón et al., 2004; 2007b; Vachard et al., 2000b).

PERMIAN ECHINODERM DIVERSITY OF CHIHUAHUA

San Salvador Patlanoaya

In southern Puebla, the Patlanoaya Formation which consists of sandstone, tuffaceous shale, siltstone, and tuffaceous sandstone is exposed, Figures 1, 3. (Velasco de León and Buitrón. 1992; Vachard et al., 2000a; Buitrón et al., 2008) The unit contains the Pennsylvanian

Figure 4. Encrinite from the Pennsylvanian of the Sierra Agua Verde, Sonora, showing isolated crinoid plates and articulated crinoids. Scale line = 1 cm.
crinoid species *Stiberaeus aestimatus* Moore and Jeffords, 1968; *Ampholenium apolegna* Moore and Jeffords, 1968; *Cyclostelechus turritus* Moore and Jeffords, 1968; *Lomalegnium hormidium* Moore and Jeffords, 1968; and *Pentagonomischus plebeius* (Moore and Jeffords, 1968).

LOWER PALEOZOIC ECHINODERM DIVERSITY OF GUERRERO

Olinalá Area

Lower Paleozoic rocks outcrop in the Olinalá region of the state of Guerrero (Figures 1, 3). These rocks are assigned to the Olinalá and Cualac Formations. The Olinalá Formation consists of 550 m of shale, sandstone, conglomerate, siltstone, and limestone. The unit contains the crinoid species *Pentagontipernix* Moore and Jeffords, 1968; *Cyclocaudex costatus*; *Cyclocaudex jucundus*; and *Preptopremnum rugosum*. These species were also described from Colorado, Texas, Kansas, and Ohio USA (Flores de Dios and Buitrón, 1982; Vachard et al., 1993; González-Arreola et al., 1994).

PENNSYLVANIAN ECHINODERM DIVERSITY OF OAXACA

Nochitlán-Ixtaltepec

The Ixtaltepec Formation consists of limestone, sandstone, and shale from the Lower-Middle Pennsylvanian, exposed in the Nochitlán-Ixtaltepec area (Figures 1, 3). The unit contains the crinoid species *Cylindrocalculus fiski*, and *Cyclocaudex insaturatus* (Buitrón et al., 2000; 2008). Villanueva et al. (2011) cited the morphospecies *Axilinucrinus angustus*; *Cyclocaudex insaturatus*; and *Floricyclus welleri* Moore and Jeffords, 1968 from the Middle Mississippian of the Santiago Formation; *Axilinucrinus angustus* was reported from the Middle Mississippian of the Ixtaltepec Formation; *Cyclocaudex insaturatus* was described from the Olinalá Formation; *Pentagonomischus cf. P. plebeius* Moore and Jeffords, 1968 and *Cyclocion distinctus* Moore and Jeffords, 1968 from the Early-Middle Pennsylvanian of the Ixtaltepec Formation. The analysis of the distribution of crinoids from the Lower Mississippian-Middle Pennsylvanian of Oaxaca, denotes similarity with the morphospecies of the Mid-Continental region located in east-central USA, (Villanueva et al., 2011).

PENNSYLVANIAN ECHINODERM DIVERSITY OF CHIAPAS

La Concordia-Chicomosuelo

The Lower Santa Rosa Formation outcrops in La Concordia and Chicomosuelo areas of Chiapas, in the coordinates 9°03’N, 15°60’W (Figures 1, 3). The unit consists of shale interbedded with fine-grained quartzite, phyllite, shale, and conglomerate in the Aguacate River. The unit contains corals, bryozoans, bivalves, ammonites, and crinoids. The crinoid species documented are *Cylindrocalculus fiski* and *Lamprosterigma mirificum*. These species allowed to correlate localities of the Pennsylvanian of Texas, USA (Hernández-García, 1973; Buitrón 1977; Buitrón et al., 2008).

PERMIAN ECHINODERM DIVERSITY OF COAHUILA

La Concordia-Chicomosuelo

In the Sierra Las Delicias (Figures 1, 3) thirteen crinoid species were described in the Las Delicias Formation, belonging to the middle Permian species *Pentagonopertinix coahuilensis* Villanueva-Olea, et al., 2021; *Cyclocaudex typicus* Moore and Jeffords, 1968; *Cyclocaudex insaturatus*, *Cyclocaudex cf. C. insaturatus* Moore and Jeffords, 1968; *Cyclocaudex sp.*; *Floricyclus diminuita* Villanueva-Olea et al., 2021; *Floricyclus sp.*; *Preptopremnum rugosum*, *Preptopremnum laeve*, *Preptopremnum sp.*; *Heterosteletchus kithii*, *Cyclocaudicus regularis* Moore and Jeffords, 1968; *Epicrinus torremonense* Villanueva-Olea et al., 2021. As well as the lower Permian species *Cyclocaudex typicus*, *Cyclocaudex sp.*; *Preptopremnum laeve*, and *Epicrinus torremonense* (Villanueva-Olea et al., 2021).

DISCUSSIONS

Crinoids were very abundant in the Paleozoic seas of the world; they evolved rapidly in such a way that the teak and the articular plates of the column are used as age indicators for the rocks that contain them (Stukalina, 1967, 1988; Moore and Jeffords, 1968).

At the beginning of the Cambrian period, the seas were populated by an abundant and diverse biota, which included representatives of most of the current invertebrate groups. Among the main phyla that began in the Cambrian are the Porifera, Brachiopoda, Mollusca, Arthropoda, and Echinodermata, which continued to evolve through time and thus, to be of great stratigraphic value.

During the early Paleozoic, diverse taxa of invertebrates constituted the biotic community of San José de Gracia, such as sponges, brachiopods, arthropods and echinoderms. They lived in marine environments such as in shallow, tropical, well-oxygenated waters on carbonate platforms with normal salinity, and with abundant nutrients that led to a great diversity and early evolution.

The distribution of the Cambrian biota of San José de Gracia denotes a wide faunal province that was a part of the Quay Ocean, that includes several localities in Mexico (Caborca, and Ures) and the United States of America (Idaho, Utah, and California), Europe (Italy), Asia (India, and Pakistan) and Tasmania. Analysis of the Mississippian-Permian biota indicates that the cosmopolitan distribution of the fauna studied is due to the connections between the seas of western North America and eastern Asia (Figure 5). The benthic fauna of the Late Permian of Sonora was widely dispersed in the Tethyan sea, which stretched from western North America to North Asia and Asia. (Buitrón et al., 2004, 2008).

The outcrops containing Paleozoic rocks in Mexico are found in the states of Sonora (Arivechi, Bisani, El Tule, Sierra Agua Verde, La Proveedora, Las Norias, Placeritos, Pozo Nuevo, and San José de Gracia), Chihuahua (Placer de Guadalupe), Tamaulipas (La Peregrina, Las Norias, Placeritos, Pozo Nuevo, and San José de Gracia), Puebla (San Salvador Patlanoaya), Guerrero (Olinalá), Oaxaca (Nochistlán-Ixtaltepec) and Chiapas (La Concordia, Chicomosuelo and Aguacate River).

The Paleozoic rocks of Sonora are carbonate rocks deposited in a shallow-water marine environment. These rocks have an age between 541 and 251 Ma, approximately. They contain a varied and diverse biota constituted of phylloid algae, foraminifera (fusulinids), coralline sponges, corals, bryozoans, brachiopods, and crinoids, and numerous species of the genera *Cyclocaudex*, *Cyclocrista*, *Heterosteletchus*, *Lamprosterigma*, *Mooreanteris*, *Pentagonopertinix*, *Preptopremnum*, *Cyclocaspus*, and *Pentardica*.

A comprehensive study of Paleozoic marine rock sequences and their biotic content will allow to understand faunal migrations regarding the carbonate facies of the Paleozoic sequences. This knowledge will also contribute to better understand the geographical, climatological, and ecological characteristics of the Paleozoic of Mexico.
ACKNOWLEDGMENTS

This research was carried out within the framework of the projects: CONACyT No. 165826; ECOS-Francia; CONACyT-México No. M13U01 “Evolución de los Ecosistemas del Paleozoico de México” and CONACyT No. 235970 “La Revolución del Cámbrico y la gran radiación del Ordovícico en el norte de México y Oaxaca”.

We thank the anonymous reviewers that helped greatly to improve this manuscript.

REFERENCES

Almazán, E., 1989, El Cámbrico-Ordovícico de Arivechi del Estado de Sonora: Universidad Nacional Autónoma de México, Revista, Instituto de Geología, 8, 58-66.

Almazán, E., Buitrón, B.E., Franco-Vega, O., 2006, Formación Pozo Nuevo: una nueva secuencia litoestratigráfica de plataforma del Ordovícico temprano de la región central de Sonora, México: Revista Mexicana de Ciencias Geológicas, 23(1), 23-38.

Almazán, E., Buitrón, B.E., Vachard, D., Mendoza-Madera, C., Gómez-Espinosa, C., 2007, The late Atokan (Moscovian, Pennsylvanian) chaetetid accumulations of Sierra Agua Verde, Sonora (NW Mexico), composition, facies and paleoenvironmental signals, in Álvaro, J.J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D., Vennin, E. (eds.), Paleozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls: Geological Society, London, Special Publications, 275, 189-200.

Anderson, T.H., Silver, L.T., 1979, The role of the Mojave-Sonora megashear in the tectonic evolution of northern Sonora, in Anderson, T.H., Roldán-Quintana, J. (eds.), Geology of northern Sonora, Guidebook - Field Trip: Geological Society of America, 27, 59-68.

Arellano, J., Vachard, D., Yussim, S., Flores de Dios, A., 1998, Aspectos Estratigráficos, Estructural y Paleogeoestratigráficos del Pérmico inferior al Jurásico Inferior en Pemexco, Estado de Hidalgo, México: Revista Mexicana de Ciencias Geológicas, 15(1), 9-13.

Baldis, A.J., Bordonaro, O.L., 1981, Vinculación entre el Cámbrico del noroeste de México y la Precordillera Argentina: Anais do II Congresso Latino-Americano de Paleontologia, 1, 1-10.

Barboza-Gudiño, J.R., Torres-Hernández, J.R., Villasuso-Martínez, R., 2016, Revisión estratigráfica y estructura de la Sierra Plomosas, Chihuahua: Revista Mexicana de Ciencias Geológicas, 33(2), 221-238.

Beraldi, C.H., Cuen-Romero, F.J., Buitrón, B.E., 2018, Cambrian Oncolites from San José de Gracia, Sonora, México: Paleontología Mexicana, 7(1), 23-56.

Beresi, M.S., Cabaleri, N., Buitrón, B.E., Rodríguez, M., Heredia, S., Tortello, E., 2012, Microfacies and paleoambientes del Ordovícico Inferior del Cerro Salazar, Sonora Central, México: Revista Mexicana de Ciencias Geológicas, 29(2), 330-345.

Beresi, M.S., Buitrón, B.E., Vachard, D., Chancelloria eros, escleritos del Cámbrico medio, (Serie 3, Piso 5) de Sonora Central, México: Revista Mexicana de Ciencias Geológicas, 36(1), 54-63.

Bridges, L.W., 1965, Estudios geológicos en el Estado de Chihuahua, Parte I. Geología del área de Plomosas, Chihuahua: Universidad Nacional
Autónoma de México: Boletín del Instituto de Geología, 74, 1-134.
Brunner, P., 1987. Microfiascos and microfósiles de las rocas carbonatadas del Paleozoico de San Salvador Pallanaoya, Puebla, México: Revista de la Sociedad Mexicana de Paleontología, 1(1), 98-111.
Buitrón, B.E., 1977. Invertebrados (Crinoidea y Bivalvia) del del Paleovsíncico de Chiapas: Revista del Instituto de Geología, 1(2), 144-150.
Buitrón, B.E., 1992. Las rocas sedimentarias marinas del Paleozoico inferior de México y su contenido biótico, in Gutiérrez-Marco, J.C., Saavedra, J., Rábano, I. (eds.), Paleozoic inferior of Ibero-America: Spain, Universidad de Extremadura, 193-201.
Buitrón B.E., Patiño, J., Moreno, A., 1987. Crinoideas del Paleozoico tardío (Peplosilíaco) de Canali, Hidalgo: Revista de la Sociedad Mexicana de Paleontología, 1(1), 125-136.
Buitrón, B.E., Solís-Marín, F., 1993. La biodiversidad en los equinodermos (abstract), abundance and macroflora from Olinalá region, Guerrero State: Annales de la Société Hiolítidos del Cámbrico del Código de San José de Gracia, Sonora, México: Boletín Informativo Unión Geofísica Mexicana A.C., II, 25(1), 338.
Buitrón, B.E., Silva, P.A., Flores de Dios, A., Vachard, D., 2005b, New macrofauna and macroflora of the Permo-Carboniferous of México: Revista de la Sociedad Mexicana de Historia Natural, 64, 209-231.
Buitrón, B.E., Almazán, V.E., Vachard, D., 2005a, Middle Permian crinoids (abstract), in Primera Reunión Nacional de Ciencias de la Tierra: Mexico City, Mexico Unión Geofísica Mexicana, 184.
Buitrón, B.E., Almazán, V.E., Vachard, D., Gómez-Espinosa, C., Mendoza, M.C., 2005a, Crinoides Pensilvánicos asociados a facies "arrecifales" de Chaetétidos en Sierra Agua Verde, Estado de Sonora, México: Boletín del Instituto Geológico y Paleontológico de México, 25(3), 267-273.
Buitrón, B.E., Silva, P.A., Flores de Dios, A., Vachard, D., 2005b, New macrofauna and macroflora of Olinalá region, Guerrero State: Boletín de la Sociedad Geológica Mexicana, 64, 209-231.
Buitrón, B.E., Chacón-Wences, O., Vachard, D., Palafox, J.J., Ramírez-Guerrero, G., 2016, Infnofósiles del Cámbrico inferior de San José de Gracia, Sonora: Revista Paleontología Mexicana, 5(1), 33-40.
Estudio integral del Paleozoico en Chihuahua y Coahuila, Proyecto CAO-3515: Instituto Mexicano del Petróleo, 233.

Esquivel-Macias, C., Asisich,W.I., Buitrón, B.E., Flores de Dios, A., 2000, Pennsylvanian and Mississippian pluricolumnal assemblages (Class Crinoidea) from Southern Mexico and new occurrence of a column with a tetrablate lumen: Journal of Paleontology, 74(6), 1187-1190.

Esquivel-Macias, C., Solís-Marín, F., Buitrón, B.E., 2004, Nuevos registros de placas columna de crinoideos (Echinodermata, Crinoidea) del Paleozoico superior de México, algunas implicaciones paleobiogeográficas y paleoambientales: Coloquios de Paleontología, 54, 15-23.

Esquivel-Macias, C., Flores-Castro, K., León-Olvera, R.G., 2005, Clasificación y Tafonomía de Algunos crinoideos (Echinodermata, Crinoidea) del Paleozoico superior de México con base en placas columna: Paleos-Antiguo, 1(1), 1-17.

Flores de Dios, G.A., Buitrón, B.E., 1982, Revisión y aportes a la estratigrafía de la Montaña de Guerrero: Universidad Autónoma de Guerrero, Serie Técnico-Científica, 12, 28.

Gómez-Espinosa, C., Vachard, D., Buitrón, B.E., Almazán, E., Mendoza-Madera, C., 2008, Pennsylvanian Fusulinids and calcareous algae from Sonora (Northeastern Mexico): Comptes Rendus Palevol, 7(5), 259-268.

Gómez-Espinosa, C., Buitrón, B.E., Vachard, D., 2009, Análisis tafonómico del gasterópodo cf. Donaldina robusta (Heterobranchia: Streptacididae) del Pensilvaníaco medio de la Formación La Joya Paleozoico tardío de Sierra Agua Verde, Sonora, México: Revista Biología Tropical, 58(1), 183-194.

Gómez-Espinosa, C., Buitrón, B.E., 2017, Procesos tafonómicos en una encrinita regional pensilvanica (Atokano), Sonora, México: Revista de Biología Tropical, 6(1), 147-159.

González-Arreola, C., Villaseñor-Martínez, A.B., Corona-Esquivel, R., 1994, Permian fauna of the Los Arcos Formation, Municipality of Olinalá, State of Guerrero, Mexico: Revista Mexicana de Ciencias Geológicas, 35(1), 41-53.

González-Arreola, C., Villaseñor-Martínez, A.B., Corona-Esquivel, R., 1994, Permian fauna of the Los Arcos Formation, Municipality of Olinalá, State of Guerrero, Mexico: Revista Mexicana de Ciencias Geológicas, 35(1), 41-53.

Guensburg, T.E., Sprinkle, J., 2003, The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system: Bulletins of American Paleontology, 364, 43.

Hernández-García, R., 1973, Paleogeografía del Paleozoico de Chiapas, México: Boletín de la Asociación de Geólogos Petroleros, 25, 79-134.

Jiménez, L.I., Sour-Tovar, F., Buitrón, B.E., Palafox, J.I., 2018, Braquiopódos del Paleoceoico tardio de la Sierra Agua Verde, Sonora: implicaciones paleoecológicas y paleogeográficas: Revista Mexicana de Biodiversidad, 89, 637-650.

Lara-Peña, R.A., Navas-Parejo, P., Amaya-Martínez, R., 2020, New conodonts data related to the western Ouachita-Marathon-orogen: Age of the autochthonous Laurentian deformation Sonora: Journal of South American Earth Sciences, 103, 1-8.

McMenamin, M.A.S., 1985, Basal Cambrian small shelly fossils from La Ciénega Fm. NW, Sonora: Journal of Paleontology, 59(6), 1441-1425.

McMenamin, M.A.S., 1987, Lower Cambrian trilobites, zonation, and correlation of the Puerto Blanco Formation, Sonora, Mexico: Journal of Paleontology, 61(4), 738-749.

Mehl, M.G., Thomas, L.A., 1947, Conodonts from the Fern Glen of Missouri: Journal of Science Laboratory of Denison University, 40(4), 3-20.

Miller, T.H., 1968a, Heterostelechus jeffordsi Miller, new species, in Moore, R.C., Jeffords, R.M. (eds.), Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns: University of Kansas Paleontological Contributions Echinodermata, 82.

Miller, T.H., 1968b, Heterostelechus keithi Miller, new species, in Moore, R.C., Jeffords, R.M. (eds.), Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns: University of Kansas Paleontological Contributions Echinodermata, 82.

Miller, T.H., 1968c, Mooreanteris Miller, new genus, in Moore, R.C., Jeffords, R.M. (eds.), Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns: University of Kansas Paleontological Contributions Echinodermata, 82-83.

Moore R.C., Jeffords, R., 1968, Classification and nomenclature of fossil crinoids based on studies of dissociated parts and their columns. University of Kansas Paleontological contribution. Echinodermata, 9, 1-86.

Nardin, E., Almazán, E., Buitrón, B.E., 2009, First report of Gogia (Eocrinoidea, Echinodermata) from the early-middle Cambrian of Sonora (Mexico) with biostratigraphical and paleoecological comments: Geobios, 42, 233-242.

Navas-Parejo, P., 2018, Carboniferous, Stratigraphy of Sonora a review: Revista Mexicana de Ciencias Geológicas, 35(1), 41-53.

Navas-Parejo, P., Lara-Peña, R.A., Torres-Martínez, M.A., Martín, M., 2018, Biostratigraphic and petrography of upper Paleozoic rocks of Sierra Las Pintas, northern Baja California: Journal of South American Earth Sciences, 84(1), 160-171.

Ochoa-Camarillo, A., Sosa-León, P., 1993, Geología y estratigrafía de la Sierra Agua Verde, con énfasis en el Paleozoico, Universidad de Sonora, Departamento de Geología, Bachelor thesis, 44 pp.

Orozco-Grajeda, D., 2005, Bioestratigrafía y paleogeografía del Paleozoico Superior del centro-este de Sonora, México, Universidad de Sonora, Departamento de Geología, Bachelor thesis, 118 pp.

Pantoja, J., 1970, Rocas sedimentarias paleozoicas de la parte centro-septentrional de Oaxaca: Guía de la excursión México-Oaxaca: Sociedad Geológica Mexicana: Mexico City, Mexico, 211.

Pantoja, J., Robison, R.A., 1967, Paleozoic sedimentary rocks in Oaxaca, México: Science, 17, 1033-1035.

Peiffer-Rangin, E., Echeverri-Perez, A., Salas-Piza, G.A., Rangin, C., 1980, Sur la présence de l’Ordovicien supérieur à graptolites dans le nord-ouest du Mexique: Comptes Rendus de l’ Académie des Sciences, 290, 13-16.

Pérez-Ramos, O., 1992, Permian biostratigraphic and correlation between southeast Arizona and Sonora: Boletín del Departamento de Geología de la Universidad de Sonora, 9(2), 1-74.

Pérez-Ramos, O., 2002, Permian Fusulinids from Cobachi, central Sonora, México: Revista Mexicana de Ciencias Geológicas, 19(1), 25-37.

Poole, E.G., Perry, W.J., Madrid, R.J., Amaya-Martínez, R., 2005, Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: stratigraphic and structural implications for timing of deformational events and plate-tectonic model: Geological Society of America Special Papers, 393, 543-596.

Ramos, V.A., Keppie, J.D., 1999, Laurentia-Gondwana connections before Pangaea: Geological Society of America, Special Paper, 336, 277.

Raymond, D.E., 2003, Crinoid columnal from Payne Chert of Madison and limestone counties Alabama (online), in The Geological Society of America, <http://gsa.confex.com/gsa/2003SC/ final_program/abstract_49390.htm>, consulted in September 25th, 2021.

Riva, J., Ketner, K.B., 1989, Ordovician graptolites from the northern Sierra de Cobachi, Sonora, Mexico: Transactions of the Royal Society of Edinburgh, Earth: Sciences, 80, 71-90.

Rivera, C.E., 1988, Condiciones paleoambientales de depósito de las formaciones cámbricas del área de Caborca, Sonora, noroccidental: Universidad Nacional Autónoma de México: Revista Instituto de Geología, 7(1), 22-27.

Robison, R.A., 1965, Middle Cambrian trilobites from Western North America: Journal of Paleontology, 39, 355-364.

Robison, R.A., Pantoja, J.J., 1968, Tremadocian trilobites from the Nochixtlan region, Oaxaca: Journal of Paleontology, 42(3), 767-800.

Sánchez-Zavala, J.L., Centeno-García, E., Ortega-Gutiérrez, F., 1999, Review of Paleozoic stratigraphy of Mexico and its role in the Gondwana-Laurentia.
Sundberg, F.A., Cuen-Romero, F.J., 2021, Trilobites from the Crepicephalus Zone.

Stukalina, G.A., 1967, On principles of classification of stems of ancient sea lilies: International Geology Review, 9(4), 549-555.

Strimple, H.L., 1971, A Permian crinoid from Coahuila, México: Journal of Paleontology, 42(3), 801-803.

Stewart, J.H., Amaya-Martínez, R., Palmer, A.R., 2002, Neoproterozoic and Cambrian index fossils from Sonora, Mexico: Paleontology, 50(1), 65-79.

Stewart, J.H., McMenamin, A.S., Morales-Ramírez, J.M., 1984, Upper Proterozoic and Cambrian Rocks in the Caborca Region, Sonora, México. Physical Stratigraphy, Biostratigraphy, Paleocurrent Studies and Regional Relations: United States Geological Survey Professional Paper, 1309, 1-36.

Stewart, J.H., Poole, F.G., Roldán, J., 1990, Tectonic and stratigraphy of the Paleozoic and Triassic southern margin of North America, Sonora, México: Revista Mexicana de Ciencias Geológicas, 16(1), 35-62.

Stewart, J.H., Poole, F.G., Harris, A.G., Repetski, J.E., Wardlaw, B.R., Mamet, B.L., Morales-Ramírez, J.M., 1999, Neoproterozoic (?) to Pennsylvanian inner-shelf, miogeosynclinal strata in Sierra Agua Verde, Sonora, México: Boletín de la Sociedad Geológica Mexicana, 73(1), 1-17.

Stewart, J.H., Amaya-Martínez, R., Palmer, A.R., 2002, Neoproterozoic and Cambrian strata of Sonora, Mexico: Revista Mexicana de Biodiversidad, 87, 1225-1234.

Streible, M.H., 1971, A Permian crinoid from Coahuila, México: Journal of Paleontology, 45(6), 1040-1042.

Stukalina, G.A., 1967, On principles of classification of stems of ancient sea lilies: International Geology Review, 9(4), 549-555.

Stukalina, G.A., 1988, Studies in Paleozoic crinoid columns and stems: Paleonotographica, 204, 1-66.

Sundberg, F.A., Cuen-Romero, F.J., 2021, Trilobites from the Crepicephalus Zone (upper Guzhangian Stage, Miaoalingian Series, Cambrian) from northern Sonora, Mexico, and its correlation to Arizona and Texas, USA: Journal of South American Earth Sciences, 108, 103-185.

Torres-Martinez, M.A., Heredia J.D., Sour-Tovar, F., Buitrón, B.E., Barragán, M.R., 2018, Permian brachiopods from Chiapas, Mexico: new Stratigraphical and paleobiogeographical insights: Paläontologische Zeitschrift, 93, 627-624.

Vachard, D., Oviedo, A., Flores de Dios, A., Buitrón, B.E., 1993, Barranca d'Olinalá (Guerrero): Une coupe de reference for the Permien du Mexique Central; étude preliminaire: Annales de la Société Géologique du Nord, Lille, Francia, 2(2), 153-160.

Vachard, D., Flores de Dios, A., Buitrón, B.E., 1997, Sur une nouvelle localité a fusulinoides du Wordien (Permien supérieur) du Mexique; conséquences paléogéographiques: Geobios, 30(3), 361-370.

Vachard, D., Flores de Dios, A., Buitrón, B.E., Grajales, M., 2000a, Bioestratigraphie par fusulinides des calcaires carbonifères et permies de San Salvador Patlanoaya: Geobios 33(1), 5-55.

Vachard, D., Flores de Dios, A., Pantoja, J., Buitrón, B.E., Arellano, J., Grajales, M., 2000b, Les fusulinides du Mexique, une revue biostratigraphique et paléogéographique: Geobios 33(6), 655-679.

Vachard, D., Clausen, S., Palafox, J.J., Buitrón, B.E., Devaere, L., Hayardt, V., Regnier, S., 2017, Lower Ordovician microfossils and microfossilis from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined Nuia Province: Facies, 63(18), 1-37.

Velasco-De León, P., Buitrón B.E., 1992, Algunos crinoides (Echinodermata-Crinoida) del Miocénico-Pensilvánico de San Salvador Patlanoaya, Estado de Puebla: Revista de la Sociedad Mexicana de Paleontología, 5, 71-81.

Villanueva-Olea, R., Castillo, K., Sour-Tovar, F., Quiroz-Barroso, S.A. Buitrón, B.E., 2011, Placas columnares de crinoides (Echinodermata: Crinoidea) del Miocénico de la región de Santiago Ixtaltepec, Municipio de Nohchixtlán, Oaxaca. Consideraciones estratigráficas y paleobiogeográficas: Boletín de la Sociedad Geológica Mexicana, 63(3), 429-443.

Villanueva-Olea, R., Buitrón, B.E., Palafox, J.J., Piña-Flores, S., 2016, Crinoides (Echinodermata: Crinoidea) del Pensilvánico de sierra Las Mestecas, NE de Sonora México: Revista Mexicana de Biodiversidad, 87, 1225-1234.

Villanueva-Olea, R., Barragán R., Palafox J.J., Jiménez L., J., Buitrón, B.E., 2019, Microfossiles and stable isotope analysis from the Carboniferous Los Jayo section in the Sierra Agua Verde, Sonora, México: Boletín de la Sociedad Geológica Mexicana, 71(3), 585-607.

Villanueva-Olea, R., Quiroz-Barroso, S.A., Quiroz-Barragón, J., Torres-Martinez, M.A., Sour-Tovar, F., 2021, Placas columnares de crinoides de la Formación Las Delicias, Pérmico inferior y medio de Coahuila, México: Boletín de la Sociedad Geológica Mexicana, 73(1), 1-17.

Wright, D., Ausich, W., Cole, S., Peter, M., Rhenberg, E., 2017, Phyllogenic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, 91(4), 829-846. doi:10.1017/jpa.2016.142

Yocheelson, E.L., 1968, Tremadocian mollusks from the Nochixtlán region, Oaxaca, Mexico: Journal of Paleontology, 42(3), 801-803.

Zamora, S., Clausen, S., Álvaro, J.J. Smith, A.R., 2010, Pelmatozoa echinoderms as colonizers of carbonate firmgrounds in mid-Cambrian high-energy environments: Palaios, 25(12), 764-768.