Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study

Melchart, Dieter; Hager, Stefan; Albrecht, Sabine; Dai, Jingzhang; Weidenhammer, Wolfgang; Teschke, Rolf

DOI: https://doi.org/10.4254/wjh.v9.i29.1141

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-144284
Published Version

Originally published at:
Melchart, Dieter; Hager, Stefan; Albrecht, Sabine; Dai, Jingzhang; Weidenhammer, Wolfgang; Teschke, Rolf (2017). Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study. World Journal of Hepatology, 9(29):1141-1157.
DOI: https://doi.org/10.4254/wjh.v9.i29.1141
Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study

Dieter Melchart, Stefan Hager, Sabine Albrecht, Jingzhang Dai, Wolfgang Weidenhammer, Rolf Teschke

Dieter Melchart, Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland

Dieter Melchart, Wolfgang Weidenhammer, Competence Centre for Complementary Medicine and Naturopathy (CoCoNat), University Hospital Munich rechts der Isar, Technical University of Munich, D-80801 Munich, Germany

Stefan Hager, Sabine Albrecht, Jingzhang Dai, Hospital for Traditional Chinese Medicine, D-93444 Bad Kötzting, Germany

Jingzhang Dai, Beijing University of Chinese Medicine, Beijing 100029, China

Rolf Teschke, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-63450 Hanau, Frankfurt/Main, Germany

Author contributions: Melchart D had full access to all of the study data and takes full responsibility for the integrity of the data; Melchart D, Hager S, Albrecht S, Dai J and Weidenhammer W contributed to study conception and design; Melchart D, Hager S, Albrecht S, Dai J and Weidenhammer W contributed to acquisition of data; Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W and Teschke R contributed to analysis and interpretation of data; Melchart D, Weidenhammer W and Teschke R contributed to drafting of the manuscript; Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W and Teschke R contributed to critical revision of the manuscript; Melchart D, Weidenhammer W and Teschke R contributed to statistical analysis.

Institutional review board statement: All scientific activities are authorized and reviewed by an Academic Exchange Agreement between the Beijing University of Chinese Medicine and Technische Universität München.

Informed consent statement: All patients gave their written consent prior to the study inclusion on admission to the hospital.

Conflict-of-interest statement: Albrecht, Hager and Dai belong to the medical personnel of the TCM hospital in Bad Kötzting. Melchart is head of the scientific board of the TCM hospital in Bad Kötzting taking part in voluntary service. None financial disclosure of all authors is declared.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Dieter Melchart, MD, Professor, Competence Centre for Complementary Medicine and Naturopathy (CoCoNat), University Hospital Munich rechts der Isar, Technical University of Munich, Kaiserstrasse 9, D-80801 Munich, Germany. dieter.melchart@tum.de

Telephone: +49-89-7266970

Fax: +49-89-72669721

Received: May 15, 2017

Peer-review started: May 27, 2017

First decision: July 11, 2017

Revised: July 26, 2017

Accepted: August 16, 2017

Article in press: August 17, 2017

Published online: October 18, 2017

Abstract

AIM

To analyze liver tests before and following treatment with herbal Traditional Chinese Medicine (TCM) in order to evaluate the frequency of newly detected liver injury.

METHODS

Patients with normal values of alanine aminotransferase
INTRODUCTION

Traditional Chinese Medicine (TCM) with the focus on its herbal constituents is an individual treatment option with growing worldwide popularity\cite{1,2}, despite still insufficiently documented efficacy\cite{3} and known adverse reactions\cite{4,5}. In particular, the risk of liver injury in patients under therapy using TCM herbs has appeared as a major problem for many decades\cite{6}. This issue has been known at least since 1983\cite{7} and is in line with many subsequent case reports and case series\cite{8-15}. However, there have been attempts to downgrade the hepatotoxic risk of herbal TCM but such proposals were vague and rejected since no proof for this claim was provided\cite{16}. Other problems were recognized as variables, which confounded establishing valid causality\cite{17-20}. Among these variables were co-medication with other herbal products or synthetic, potentially hepatotoxic Western drugs, low case data quality, incomplete consideration of alternative causes, and questionable quality of herbal TCM products. Indeed, some herbal TCM products are confronted with problems of misidentified herbs, impurities, pesticides, heavy metals, or adulteration by Western drugs to enhance or provide efficacy\cite{20-24}.

Other challenges included the fact that not all publications used a sophisticated, robust causality assessment method. Nevertheless, Roussel Uclaf Causality Assessment Method (RUCAM)\cite{25} was successfully applied in many cases of suspected liver injury by TCM herbs\cite{25,26}, including as examples some more recent reports\cite{27-31}. Further, there was also uncertainty as to whether the observed liver disease could have been present prior to the initiation of the TCM use rather than caused by the herbal TCM therapy itself. Meeting the objections regarding pre-existing liver disease would have required an analytical approach whereby a study protocol is prospectively applied to patients without any liver disease, in whom therapy with herbal TCM is intended and liver tests can be analyzed under such treatment conditions. In patients with new abnormal liver tests under the therapy, causality for the suspected herbal TCM product can easily be assessed using RUCAM. So far, such a systematic prospective, large-scale investigation has not been published on liver-healthy individuals, at least not in the scientific literature available in the English language.

In this report, we present for the first time liver injury data derived from a prospective, hospital-based and large-scale study of 21,470 patients who had no liver disease prior to treatment by herbal TCM. This report presents for the first time liver injury data derived from a prospective, hospital-based and large-scale study of 21,470 patients who had no liver disease prior to treatment by herbal TCM. Among these, ALT ranged from 1 to < 5 × upper limit normal (ULN) in 844 patients (3.93%) and suggested mild or moderate liver adaptive abnormalities. However, 26 patients (0.12%) experienced higher ALT values of ≥ 5 × ULN (300.0 ± 172.9 U/L, mean ± SD). Causality for TCM herbs was RUCAM-based probable in 8/26 patients, possible in 16/26, and excluded in 2/26 cases. Bupleuri radix and Scutellariae radix were the two TCM herbs most commonly implicated.

RESULTS

In 26 (0.12%) of 21,470 patients treated with herbal TCM, liver injury with ALT values of ≥ 5 × ULN was found, which normalized shortly following treatment cessation, also substantiating causality.

CONCLUSION

In 26 (0.12%) of 21,470 patients treated with herbal TCM, liver injury with ALT values of ≥ 5 × ULN was found, which normalized shortly following treatment cessation, also substantiating causality.

Key words: Traditional Chinese Medicine; Herbal medicine; Liver injury; Roussel Uclaf Causality Assessment Method; Herb induced liver injury

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Worldwide research on herbal medicine safety is still limited. Adverse effects are range from clinically not relevant to more severe ones including suspected liver injury. We conducted a prospective hospital-based study to report the number of new liver injury in patients with no liver disease prior to treatment with herbal Traditional Chinese Medicine. Liver injury was detected in 26/21,470 patients (0.12%) with alanine aminotransferase values of ≥ 5 × upper limit normal. The Roussel Uclaf Causality Assessment Method assessed the causality of suspected cases and showed a causality level of “possible” for the majority of the liver injury cases.
TCM treatment leads to liver injury, we designed a protocol for a prospective study in consecutive patients, who were admitted to the Hospital for TCM in Bad Kötzting, Germany. Hospital admission was commonly arranged by patients’ general practitioners or medical specialists with the intention of a TCM-based therapy. No restrictions on admission exist for patients residing in Germany, as hospital costs are covered by most German statutory sickness funds. Treatment modalities including indications, choice of specific herbal TCM products, daily dosage, and duration of therapy are based on the recommendations of the Beijing University of Chinese Medicine (BUCM), China20,33.

Included in the TCM study cohort were all inpatients with normal ALT values on admission or the following day, who had received treatment with TCM herbs during their hospital stay, and were discharged between January 1, 1994, and December 31, 2015. Initial ALT results were obtained along with a routine blood sampling analysis. The inclusion criteria of normal serum ALT activities on admission ensured a lack of a preexisting liver disease that could later confound the potential diagnosis of liver injury along with herbal TCM treatment. For reasons of transparency, these patients represent the TCM study cohort. ALT was chosen as a specific diagnostic biomarker to clearly exclude or establish a liver disease25,34. Patients with increased ALT values on admission were excluded from the study.

To ensure the good medical care of the patients, six German hospital physicians and eight Chinese physicians who trained at the University of Chinese Medicine in Beijing were in charge of the patients at the 80-bed TCM hospital33. Also included in the team was a pharmacist. On admission, hospital physicians provided a complete physical examination for all patients and recorded their past medical history. They also assessed all normal and elevated laboratory values and documented these together with any adverse or medical event during hospitalization in a standardized adverse event record as part of a hospital-based safety and quality assurance program. During the last three days before discharge, the occurrence of liver injury was tested using serum ALT as the appropriate diagnostic tool.

Treatment with TCM was carried out with TCM herbs, given as decoctions from raw materials36,37. Overall TCM treatment may also include acupuncture, Chinese manual therapy, and relaxation therapy, as outlined previously19,35. Western therapies were continued or prescribed if necessary. Details of prescriptions, each single Western drug, all specific TCM treatment modalities, and the duration of treatment were documented systematically in the hospital files.

Herbal TCM products were obtained from China36,39. Prior to use in patients, all herbal TCM products delivered to the hospital underwent a comprehensive preclinical drug control program under the guidance of the Center for Drug Research of the Ludwig-Maximilian University Munich and other drug control centers in China. For herbal TCM product quality and safety assessment, established methods were used that included HPLC, colored TLC photographs, and botanical authenticity proof40. This approach aimed to reduce the risk of possible falsification of the herbal products and to ensure concentrations of heavy metals, aflatoxins, and microbial contamination were within the allowed limits. Some of the herbal products were thus rejected for human use before being prescribed to any patient, mostly due to a lack of pharmaceutical quality criteria or detection of contaminants outside the regulatory requirements. All herbal TCM products were also analyzed for microbial contamination41.

Liver injury study cohort: The liver injury cohort consists of and is limited to those patients of the TCM study cohort who experienced liver injury in connection with treatment with TCM herbs. Liver injury is defined by an elevated serum ALT activity of at least 5 × upper limit normal (ULN) in patients with normal ALT values on admission25. Case data of this liver injury cohort were recruited by further scrutinizing the files and adverse event reports supplied by the hospital physicians. Case identification covers age, sex, diagnosis, past medical history, treatment with herbal TCM drugs and conventional drugs, a course of laboratory data, and any adverse or medical event during hospitalization. The case details were recorded and summarized in individual narratives as part of the patients’ hospital documents.

For patients identified with newly emerging liver injury, the suspected herbal TCM products were analyzed and closely reviewed. The aim was to highlight TCM medications that might be associated with an increased risk of liver injury. As this safety analysis of herbal TCM drugs was an outcome study within a routine quality assurance program, approval by an ethical review board was not requested. All patients on admission provided informed written consent prior to study enrollment.

Causality assessment using RUCAM

In line with a previous report19 and the recommendations of the Chinese Society of Hepatology (GSH)42, a causality assessment of herb induced liver injury (HILI) for individual cases and herbal TCM products was achieved using RUCAM25. This is the most commonly used liver-specific, and validated tool for liver injury cases, and a standard form was used to extract core elements of RUCAM25. This assessment requires the initial evaluation of liver injury criteria and its pattern in each suspected case. The core elements of RUCAM include: The time period from the beginning until the cessation of herb intake in relation to disease onset or from the cessation of herb use to the onset of the liver injury; de-challenge characteristics with a course of ALT values after cessation or continuation of the herb use; risk factors such as alcohol abuse, age and pregnancy; co-medication with synthetic drugs or other...
Melchart D et al. Herbal TCM and liver injury

Herbs; search for alternative causes with special care for all hepatitis types; available information on previous herbal hepatotoxicity; and response to unintentional re-exposure. RUCAM was performed for the hepatocellular type of injury, and scoring was independently conducted by three hospital physicians (Stefan Hager, Sabine Albrecht, Dieter Melchart). Final RUCAM scores commonly range from -5 to +14 points and the resulting causality levels are defined as follows: ≤0 points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and ≥9, highly probable.

RESULTS

Flowchart

The inclusion criteria of the TCM study cohort were strict, especially the criterion of normal ALT values on admission and before the initiation of the treatment with herbal TCM. During the study period from 1994 to 2015, overall, 21896 patients were admitted to the hospital, but 426 patients of these had increased ALT values and were not eligible for inclusion in the study, which corresponds to 1.91%. Consequently, 21470 patients fulfilled the inclusion criteria of the TCM study cohort and were treated with herbal TCM (Figure 1). Among these patients of the TCM study cohort, ALT values remained in the normal range in 20600 patients (95.94%) under the TCM treatment. However, treatment led in 733 patients (3.41%) to abnormal ALT values (>1 × ULN <2 × ULN), in 111 patients (0.51%) to ALT values of ≥2 × ULN <5 × ULN, and 26 patients (0.12%) showed ALT ≥5 × ULN, representing the liver injury study group (Figure 1).

TCM study cohort

ALT abnormalities with values in a range from 2 × up to 5 × ULN observed in 111 patients in the TCM study cohort are clearly caused by the herbal TCM treatment (Figure 1 and Table 1), with a preference of the ALT range between 2 × and 3 × ULN. These small increases are commonly without clinical relevance and likely due to metabolic adaptation caused by events associated with the metabolism of TCM plant chemicals.

Analysis of the TCM study cohort showed that the age was 52.7 ± 14.0 years (mean ± SD), and females accounted for 71.9% (Table 2). All patients in this cohort suffered for about 7.8 years (median) from chronic disorders that led to hospital admission (Table 2). Chronic diseases or health conditions prevailed in the patients of the TCM study cohort (Table 2), whereby the majority experienced psychosomatic diseases as well as chronic pain syndromes. Additional diagnoses were, for example, hypertension and sleep disturbance. Herbal TCM decoctions were provided with four to five prescriptions of about 11 TCM herbs (ranging from a minimum of 6 to a maximum of 19 different herbs) per prescription during the hospital stay. The dosage of each herb was 6-15 g/d. The total
Table 2 Comparison of Traditional Chinese Medicine study cohort with liver injury study cohort

Parameter	TCM study cohort	Liver injury study cohort	P (difference between both cohorts)
Patients (n)	21470	26	
ALT (U/L, mean ± SD)	NA	300.0 ± 172.9	NS
Females (%)	71.9	84.6	NS
Age (yr, mean ± SD)	52.7 ± 14.0	57.6 ± 10.5	NS
Chronic diseases (%)	58.9	66.6	NS
Duration of complaints (yr, median)	7.8	8.5	NS
Duration of herbal TCM treatment (d, median, range)	20 (8-77)	19.5 (7-28)	NS
Total dosage of herbal TCM (g, mean, range)	88 ± 18 (18-208)	95 ± 30 (43-155)	< 0.05
Hospital stay (d, mean ± SD)	26.2 ± 5.2	26.1 ± 4.0	NS

NA: Not available; NS: Not significant; ALT: Alanine aminotransferase; TCM: Traditional Chinese Medicine.

daily dosage per prescription was mean 88 ± 18 g (range 18-208), provided by two dosages a day.

Liver injury study cohort

The liver injury study cohort consisting of 26 patients with serum ALT ≥ 5 × ULN (Table 1) merits further consideration (Table 2). Compared with the large TCM study cohort, patients in the liver injury study cohort were older (52.7 ± 14.0 years vs 57.6 ± 10.5 years) and contained a higher percentage of women (71.9% vs 84.6%), whereas the duration of the hospital stay was similar in both cohorts (Table 2). There is a long list of indications for herbal TCM treatment in the patients in the liver injury study group, along with individual TCM herbs that were used as medication (Table 3). For these patients with confirmed liver injury, details are given for maximum ALT values, which range from 140 U/L to 1052 U/L (Table 3).

TCM herbs were rarely applied as a mono-preparation, but mostly as mixtures consisting of several herbs adding up to 35 different drugs during the patients’ four-week stay. The daily dosage was 95 ± 30 g and thus slightly higher than in the TCM study cohort (Table 2). Among the many herbal TCM used by the 26 patients in the liver injury cohort, Bupleuri radix and Scuterllariae radix were the two TCM herbs most frequently implicated in liver injury, with variable RUCAM-based causality gradings. Most of the patients received one to six TCM drugs that were associated with potential liver injury as evidenced from the scientific literature, e.g., one patient (case 8) received six hepatotoxic herbal TCM drugs during their hospital stay (Table 4).

Narratives

Narratives are essential for case details including treatment conditions and are presented for reasons of transparency and possible re-evaluation by peers or regulatory agencies. The narratives were documented in the hospital case records and are provided for all 26 patients in the liver injury study cohort (Table 5). In only one patient (case 8), none of the potential hepatotoxic TCM herbs was prescribed. Half of the patients were also under co-medication with synthetic drugs, initiated prior to admission, and only a few of these drugs are known for their hepatotoxic potential. The RUCAM analysis excluded all co-medicated drugs as the cause of liver injury in the cases under consideration (Table 5).

Among the liver injury study cohort, 12/26 (46%) of the patients experienced one or more gastrointestinal symptoms such as abdominal pain, diarrhea (6/12), nausea (4/12), vomiting (3/12), and intestinal colicky cramps (3/12) (Table 2). These symptoms are most likely the result of incipient liver injury due to herbal TCM and may be interpreted as a clinical warning signal. Following the discontinuation of herbal TCM treatment, the symptoms rapidly vanished and ALT values normalized in virtually all patients in the liver injury study cohort.

RUCAM-based causality assessment and grading

For all 26 cases in the liver injury study cohort, causality for the used herbal TCM and co-medicated synthetic drugs used was assessed using RUCAM. RUCAM-based causality for TCM herbs was probable in 8/26 patients, possible in 16/26, and excluded in 2/26 cases. All details are presented to facilitate thorough information and reassessment by other groups or regulators (Table 6).

Assessing causality in the 26 cases is indeed challenging, but RUCAM can handle this condition fairly well. All patients used a mixture of several TCM herbs (Table 5). The exposure conditions of the suspected herbs are identical, especially regarding start of use and discontinuation. Therefore, basic causality gradings should be identical, unless some herbs have a record of known previous liver injury, which gives two extra RUCAM points, as compared to other herbs without such records, which do not allow two extra points. Therefore, differences in causality grading for TCM herbs can be achieved considering the criteria of known hepatotoxicity. In the absence of such criteria, causality must be attributed to all the herbs together that were used, without the possibility of differentiating between the various herbs. Some patients in the liver injury study cohort also used conventional drugs, which were prescribed either before they were included in the study or during hospitalization. RUCAM was also applied to
Cases	Indication for TCM treatment	Maxi-mum ALT (U/L)	Suspected TCM herbs	RUCAM-based causality
Patient 1	Asthma Depression Lower back pain syndrome	341	Bupleuri radix Glycyrrhizae radix Scutellariae radix	Possible (score +4)
Patient 2	Posttraumatic paralysis of both legs	140	Bupleuri radix Glycyrrhizae radix Scutellariae radix	Possible (score +3)
Patient 3	Chronic bronchitis Emphysema Sleeping disorder	234	Bupleuri radix Ephedrae herba Glycyrrhizae radix Scutellariae radix	Probable (score +7)
Patient 4	Chronic migraine	168	Bupleuri radix Glycyrrhizae radix	Probable (score +6)
Patient 5	Post herpes zoster state Hypertension Diabetes mellitus	330	Dictamni radicis cortex Scutellariae radix	Excluded (score -1)
Patient 6	Chronic migraine Cervico-brachial pain syndrome Low back pain syndrome Diarrhoea	530	Bombyx batryticatus (t) Psoraleae fructus (semen) Scutellariae radix	Possible (score +3)
Patient 7	Lumbosacral plexus syndrome Cervicobrachial pain syndrome	132	Bupleuri radix Dictamni radicis cortex Ephedrae herba Scutellariae radix	Possible (score +5)
Patient 8	Polynuropathy Polymyalgia rheumatica Fibromyalgia	193	Decoction; none identified suspected herb Bupleuri radix Scutellariae radix	Possible (score +3)
Patient 9	Polymyalgia rheumatica Fibromyalgia	162	Bupleuri radix Scutellariae radix	Possible (score +4)
Patient 10	Chronic migraine Tension headache	195	Bombyx batryticatus (t) Bupleuri radix Meliae toosendan fructus Scutellariae radix	Possible (score +3)
Patient 11	Difficulty of walking Polynuropathy Low back pain syndrome Chronic fatigue Depressive episodes Gastrointestinal symptoms	325	Meliae toosendan fructus	Excluded (score -1)
Patient 12	Low back pain syndrome Chronic fatigue Depressive episodes	751	Meliae toosendan fructus	Probable (score +7)
Patient 13	Low back pain syndrome Sleeping disorder	389	Cassiae semen	Possible (score +5)
Patient 14	Chronic osteomyelitis	1052	Meliae toosendan fructus Scutellariae radix Bupleuri radix	Probable (score +7)
Patient 15	Chronic fatigue	290	Meliae toosendan fructus Scutellariae radix Bupleuri radix	Possible (score +4)
Patient 16	Chronic cephalgia Lichen sclerosus Cervical spondylosis	715	Bombyx batryticatus (t) Bupleuri radix Scutellariae radix	Possible (score +5)
Patient 17	Chronic migraine Depression	252	Bombyx batryticatus (t) Bupleuri radix Cassiae semen Scutellariae radix	Probable (score +6)
Patient 18	Spondylosis cervicalis Depression Migraine	233	Bombyx batryticatus (t) Bupleuri radix Scutellariae radix	Probable (score +6)
Patient 19	Carcinophobia Tinnitus (2011) Allergic sensitivity syndrome (2014)	249	Bombyx batryticatus (t) Bupleuri radix Puerariae radix Polygoni multiflora caulis Scutellariae radix	Possible (score +6, 2011)
Patient 20	Migraine Lower back pain syndrome Depressive episodes	207	Bupleuri radix Ephedrae herba Glycyrrhizae radix Polygoni cuspidate rhizoma Scutellariae radix	Possible (score +4)
Patient 21	Neurasthenia Fibromyalgia	221	Bupleuri radix Glycyrrhizae radix Rhei radix et rhizoma Scutellariae radix	Possible (score +5)
these co-medicated drugs, which may differ regarding their previous hepatotoxicity and their duration of use. However, it is unlikely that drugs may have caused the increases of ALT during the hospitalization since at the time of inclusion in the study, the ALT values were normal.

DISCUSSION

This report provides liver injury data derived from a prospective, hospital-based and large-scale study of 21470 patients, who had no liver disease prior to treatment with TCM herbs for the first time. Clinically relevant liver injury with ALT \(\geq 5 \times \text{ULN} \) developed in 26 patients (0.12%) (Figure 1 and Tables 1-5). These data suggest that TCM herbs carry a risk of liver injury in line with other reports\(^{9,27,28,43}\) and concomitantly dismiss contrarian claims that TCM herbs lack hepatotoxic potency\(^{16}\). However, the surprisingly low frequency of liver injury caused by herbal TCM in this study (Figure 1) is at variance with several reports implying that liver injury cases due to these herbs occur at a high frequency\(^{2,9,11,17,19,27,28,43}\). The rarity of liver injury cases found in the present investigation may be explained by the strict study protocol: (1) prospective rather than retrospective study approach; (2) valid exclusion of pre-existing liver disease prior to the start of the therapy with TCM herbs; (3) hospital-based treatment with specifically trained TCM physicians from Germany and China; (4) use of good quality TCM herbal products specifically ascertained by appropriate analyses; (5) therapy with a median of 19.5 d, avoiding prolonged treatment; (6) selective inclusion in the study only of those patients meeting the liver injury criteria ALT \(\geq 5 \times \text{ULN} \); and (7) causality assessment using RUCAM and ascertaining ALT dechallenge following

Patient 22	Tension headache	361	Glycyrrhizae radix	Possible (score +3)
Patient 23	Alopecia cranialis totalis	268	Bupleuri radix	Possible (score +4)
Patient 24	Chronic migraine	210	Bombysis batryticatus (t)	Probable (score +6)
Patient 25	Chronic pain syndrome	359	Bupleuri radix	Possible (score +5)
Patient 26	Somatization	182	Scutellariae radix	Possible (score +3)

For ALT until 2002, the normal range was \(\leq 24 \text{ U/L} \) for males and females, thereafter \(\leq 35 \text{ U/L} \) for females and \(\leq 50 \text{ U/L} \) males. Causality levels are as follows: \(\leq 0 \text{ points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and} \geq 9, \text{ highly probable.} \text{TMC: Traditional Chinese Medicine; RUCAM: Roussel Uclaf Causality Assessment Method.} \)

Table 4 Frequency of herbal Traditional Chinese Medicine use in patients with liver injury with Traditional Chinese Medicine herbssuspected to cause and case number correlation to Roussel Uclaf Causality Assessment Method based causality grading
Potentially hepatotoxic TCM herbs
Bombysis batryticatus (t)
Bupleuri radix
Cassiae semen
Dictamni radixis cortex
Ephedrae herba
Glycyrrhizae radix
Meliae toosendan
Polygoni cuspidate rhizoma
Polygoni multiflori caulis
Polygoni multiflori radix
Psoraleae fructus (semen)
Puerariae radix
Rhei radix et rhizoma
Scutellariae radix

TCM: Traditional Chinese Medicine; RUCAM: Roussel Uclaf Causality Assessment Method.
Patients	Narratives
Case 1	Patient with asthma (ICD-9 493.9), chronic low back pain (ICD-9 724.2), and reactive depression (ICD-9 300.4) treated with TCM decoctions with 8 drugs for 23 d: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephala rhizoma, theophylline, fluocortolon. No alcohol abuse. Adverse events: nausea after drinking the decoction. ALT 293 U/L. First control after 5 d: ALT 341 U/L. Second control 14 d after discharge: ALT 17 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Glycyrrhiza radix and Scutellaria radix: Possible (score +4)**
Case 2	Patient suffered from unclear paralytic symptoms in both legs after trauma (ICD-9 344). Herbal TCM treatment with 9 drugs: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephala rhizoma, Bupleuri radix, Glycyrrhiza radix, Paeoniae rubrae radix, Poria (Stücke), Scutellariae radix for 22 d. Total daily dose: 80 g. Co-medication: digoxin, carbocistein, nitrofurantoin, and sulfadiazine. No alcohol abuse. No adverse event symptoms. At discharge: ALT 140 U/L. First control 3 d later: ALT 100 U/L. Second control 3 wk later: ALT 22 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Glycyrrhiza radix, and Scutellariae radix: Possible (score +3)**
Case 3	Patient with polymyalgia rheumatica (ICD-9 725) and fibromyalgia (ICD-9 74.1), treated with 17 drugs for 23 d with: Astragali radix, Moutan radicis cortex, Paeoniae rubrae radix, Rehmanniae praeparatae rhizoma, Spatholobi caulis, and Trachelospermi caulis. Total daily dose: 110 g. Co-medication: theophylline, vitamin B1, B12, and folic acid. No alcohol abuse. Adverse event symptoms: Diarrhea, headache, nausea, and vomiting. ALT at discharge: 35 U/L; at first control 5 wk later: 5 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Ephedrae herba, Glycyrrhiza radix, and Scutellariae radix: Probable (score +7)**
Case 4	Patient with migraine (ICD-9 346.0) was treated for 28 d with the following herbal TCM decoctions (15 drugs): Angelicae dahuricae radix, Angelicae sinensis radix, Armeniaca amuren semen, Asari herba, Bupleuri radix, Codonopsis pilosulae radix, Evodiae rhizoma, fructus, Forsythiae fructus, Glycyrrhizae radix, Instidis radix, Ligustici chuanxiong rhizoma, Magnoliate rhizoma, Moutan radicis cortex, Paeoniae rubrae radix, Poria (Stücke), Scutellariae radix. Total daily dose: 80 g. No co-medication. No alcohol abuse. No adverse event symptoms. ALT at discharge 168 U/L. At control 4 wk later: 18 U/L. Hepatitis serology post increased ALT detection: anti-HAV (IgM/IgG) negative; HBs-Ag negative; HBc negative; anti-HFk (IgM/IgG) negative. **RUCAM-based causality for Bupleuri radix and Glycyrrhiza radix: Probable (score +6)**
Case 5	Patient with post herpes zoster state (ICD-9 053.13), hypertension (ICD-9 401), diabetes mellitus (ICD-9 250) was treated for 12 d with 11 herbal TCM decoctions: Bupleuri radix, Chebulae fructus, Dictamnici cortex, Gentianae macrophyllae rhizoma, Gynostemma stem, Moutan radicis cortex, Phellodendron cortex, Prunellae spica. Total daily dose: 110 g. No co-medication. No alcohol abuse. No adverse event symptoms. At discharge ALT 17 U/L. At control 4 wk later: 18 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Ephedrae herba, Glycyrrhiza radix, and Scutellariae radix: Possible (score +4)**
Case 6	Patient Suffered From Chronic Migraine (ICD-9 346.0), Cervico-Brachial Pain Syndrome Left Side (ICD-9 724.2), Low Back Pain Syndrome (ICD-9 724.2), And Diarrhea (ICD-9 797.91) Without Clear Gastrointestinal Diagnosis Since 4 yr. Herbal TCM Medication Post Increased ALT: Anti-HAV-IgG Positive; Anti-HAV-IgM Negative; Anti-HBs Negative; Anti-HBc Negative. **RUCAM-based causality for Bupleuri radix and Glycyrrhiza radix: Probable (score +7)**
Case 7	Patient with lumbosacral plexus syndrome (ICD-9 953.5) and cervico-brachial syndrome (ICD-9 723.3) was treated with 24 drugs for 26 d with decoctions: Angelicae sinensis radix, Asteris radix, Bupleuri radix, Cinnamomi ramulus, Citr Ris, Pericarpium, Rehmanniae rubrae radix, Sophorae fructus, Pinelliae Praeparatae Rhizome, Poria (Stücke), Paeoniae rubrae radix. Total daily dose 110 g. Co-medication: theophylline, vitamin B1, B12, and folic acid. No alcohol abuse. Adverse event symptoms: Fever 38.6 °C, erythema, and transient sceral jaundice. At discharge ALT of 330 U/L at control 12 d after discharge < 24 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Dictamnici cortex, and Scutellariae radix: Excluded (score -1)**
Case 8	Patient with chronic bronchitis (ICD-9 491), emphysema (ICD-9 492), and sleeping disorder (ICD-9 780.50) was treated with herbal TCM decoctions (10 drugs) for 26 d: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephala rhizoma, Bupleuri radix, Ephedrae herba, Glycyrrhiza radix, Paeoniae rubrae radix, Poria (Stücke), Scutellariae radix. Total daily dose: 80 g. No co-medication. No alcohol abuse. No adverse event symptoms. ALT at discharge 168 U/L. At control 4 wk later: 18 U/L. Hepatitis serology post increased ALT detection: anti-HAV (IgM/IgG) negative; HBs-Ag negative; HBs negative; anti-HFk (IgM/IgG) negative. **RUCAM-based causality for Bupleuri radix and Glycyrrhiza radix: Excluded (score -1)**
Case 9	Patient with asthma (ICD-9 493.9), chronic low back pain (ICD-9 724.2), and reactive depression (ICD-9 300.4) treated with TCM decoctions with 8 drugs for 23 d: Angelicae sinensis radix, Asari herba, Astragali radix, Atractylodis macrocephala rhizoma, theophylline, fluocortolon. No alcohol abuse. Adverse events: nausea after drinking the decoction. ALT 293 U/L. First control after 5 d: ALT 341 U/L. Second control 14 d after discharge: ALT 17 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Glycyrrhiza radix and Scutellaria radix: Possible (score +3)**
Case 10	Patient with polyneuropathy (ICD-9 357.2), who was treated with 14 drugs for 22 d with Angelicae pubescens radix, Astragali radix, Chaenomelis fructus, Cinnamomi ramulus, Codonopsis pilosulae radix, Glycyrrhiza radix, Hippophaes fructus, Ilex suaveolens radix, Paeoniae rubrae radix, Rehmanniae praeparatae radix, Sophorae Flavescentis radix. Total daily dose: 110 g. Co-medication: theophylline, vitamin E. No alcohol abuse. Adverse event symptoms: Diarhea, headache, nausea, and vomiting. ALT at discharge: 35 U/L; at first control 5 d later ALT 132 U/L, at second control 4 wk later 8 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Dictamnici cortex, Ephedrae herba, and Scutellariae radix: Possible (score +5)**
Case 11	Patient with polyneuropathy (ICD-9 357.2), who was treated with 14 drugs for 22 d with Angelicae pubescens radix, Astragali radix, Chaenomelis fructus, Cinnamomi ramulus, Codonopsis pilosulae radix, Glycyrrhiza radix, Hippophaes fructus, Ilex suaveolens radix, Paeoniae rubrae radix, Rehmanniae praeparatae radix, Sophorae Flavescentis radix. Total daily dose: 110 g. Co-medication: theophylline, vitamin E. No alcohol abuse. Adverse event symptoms: Diarhea, headache, nausea, and vomiting. ALT at discharge: 35 U/L; at first control 5 d later ALT 132 U/L, at second control 4 wk later 8 U/L. No hepatitis serology. **RUCAM-based causality for Bupleuri radix, Dictamnici cortex, Ephedrae herba, and Scutellariae radix: Possible (score +5)**
Case 10
Patient suffered from migraine (ICD-9 346.0) and tension headache (ICD-9 307) since 20 yr. Treatment with 20 drugs: Albizieae cortex, Amomi cardamom semen, Angelieae dahuriae radix, Angelicelae sinensis radix, Artemisiae argyi folium, Bombyx batryticatus (t).
Bupleuri radix, Codonopsis pilosulae radix, Doliceliey album semen, Eudraee fleviciaa, Liquistici rhizoma, Maegartiferae usta concha (t), Meliae toosendan fructus, Mori ramulus, Notopteryghi rhizoma seu radix, Paenoeiae albae radix, Prunellae spica, Purariae radix, Scutellariae radix, Tribulii fructus as decoctions. Total daily dose: 95 g. Herbal TCM treatment for 28 d. Co-medication with potentially hepatotoxic drug: paracetamol (D400 mg, 3 times a day). Adverse event symptoms: abdominal pain and diarrhea. ALT at discharge 195 U/L: at first control 10 d after ALT 56 U/L. No hepatitis serology.
RUCAM-based causality for Bombyx batryticatus (t), Bupleuri radix, Meliae toosendan fructus, and Scutellariae radix: Possible (score +5)

Case 11
Patient with difficulty of walking (ICD-9 719.7), polyneuropathy (ICD-9 357.2), and low back pain (ICD-9 724.2). Herbal TCM treatment with decoctions (25 drugs): Achyranthis bidentatae radix, Albizieae cortex, Amomi cardamom semen, Angelieae sinensis radix, Astragali radix, Cassiae semen, Curcumae reticulatae pericarpium, Epimedii herba, Leonuri herba, Lycii fructus, Magnolie officinalis cortex, Meliae toosendan fructus, Notopteryghi radix, Phleumis reticulatae pericarpium, Prunellae spica, Puerariae radix, Scutellariae radix, Spatholobi caulis. Total daily dose: 40 g. Hepatitis serology post increased ALT: Hepatitis A, B, C excluded; anti-HAV (IgG) positive.
RUCAM-based causality for Glycyrrhizae radix: Excluded (score -1)

Case 12
Patient with chronic fatigue (ICD-10 L53), depressive episodes (ICD-10 F32.9), and gastrointestinal symptoms (ICD-10 K59.9) including abdominal pains and flatulence. Treatment with herbal TCM decoctions (18 drugs) for 26 d: Albizieae cortex, Amomi cardamom semen, Angelicelae sinensis radix, Astragali radix, Aurantii fructus, Citri sarcodactylis fructus, Codonopsis pilosulae radix, Coicis semen, Corydalis rhizoma, Curcumae radix, Gentianae macrophyllae rhizoma, Lonicerae radix, Notopteryghi radix, Phragmitis rhizoma, Platycodi radix, Poria (pars), Schisandrae fructus. Total daily dose 96 g. Co-medication with clozapin. No alcohol abuse. ALT at discharge 751 U/L: Seventeen days after cessation of herbal TCM products: ALT 148 U/L. No more subsequent ALT results available. Adverse event symptoms: Directly after discharge from the TCM-hospital, the patient was admitted at another hospital with a department of internal medicine due to deterioration of gastrointestinal symptoms. Serology: EBV-IgG 590 U/L, EBV-IgM negative.
RUCAM-based causality for Meliae toosendan fructus: probable (score +7)

Case 13
Patient with arthralgia (ICD-10 M02.5), lower back pain syndrome (ICD-10 M54.4), and sleeping disorder (ICD-10 G 47.9) was treated with herbal TCM decoctions (14 drugs) for 25 d: Achyranthis bidentatae radix, Albaeeae cortex, Angelicelae sinensis radix, Astragali radix, Cassiae semen, Cinamomum ramulus, Curcumae longae rhizoma, Gentianae macrophyllae rhizoma, Lonicerae radix, Notopteryghi radix, Phragmitis rhizoma, Periplocae radix, Psoraleae fructus, Spatholobi caulis. Total daily dose: 110 g. Co-medication: L-thyroxine, aminophylline. No alcohol abuse. Adverse event symptoms: abdominal pain, loss of appetite, and single vomiting. ALT at discharge 389 U/L: at first control 4 d later: ALT 191 U/L, and at second control 15 d later: ALT 22 U/L. Hepatitis serology post increased ALT: anti-HAV (IgG+IgM) positive; anti-HAV IgM negative; HBs-Antigen negative; anti-HBs positive; anti-HBc negative; HBcAb: negative.
RUCAM-based causality for Cassiae semen: possible (score +5)

Case 14
Patient with chronic osteomyelitis (ICD-10 M68.9) left leg and a six-year history after open fracture. PMH of hepatitis A 1968. Treatment with herbal TCM decoctions (12 drugs) for 24 d: Achyranthis bidentatae radix, Amomi cardamom semen, Chaenomelis fructus, Citri grandis exocarpium, Coicis semen, Corydalis rhizoma, Mangolie officinalis cortex, Meliae toosendan fructus, Paenoeiae rubra radix, Poria (pars), Scutellariae radix, Zingiberis rhizoma. Total daily dose: 155 g. Co-medication with potential hepatotoxicity: use of not overdosed paracetamol (once) and ibuprofen (when needed, but presently no intake). No alcohol abuse. At day 20 after admission, patient showed adverse event symptoms like abdominal pain of the colic type with intestinal cramps, nausea, and mushier diarrhoea. No ascites, no splenomegaly, no hyperbilirubinemia. ALT at discharge 1052 U/L: Three days later: 692 U/L and 33 U/L. Normal hepatitis serology with exclusion of hepatitis A, B, and C.
RUCAM-based causality for Meliae toosendan fructus: probable (score +7)

Case 15
Patient suffered from unclear post-infectious chronic fatigue (ICD-10 G93; 10 F.43) and chronic cephalgia (ICD-10 R51). Known history of EBV infection. Treatment with herbal TCM decoctions containing the following 23 components for 19 d: Albizieae cortex, Anemarrhenae rhizoma, Atragris radix, Bambusea caulis in taeniam, Bupleuri radix, Chaenomelis fructus, Cinamomum ramulus, Citri reticulatae pericarpium, Curcumae longae rhizoma, Epimediei herba, Leonuri herba, Liguistri lucidi fructus, Lycii fructus, Magnolie officinalis cortex, Meliae toosendan fructus, Paenoeiae rubra radix, Polygalae radix, Poria (pars), Pseudostellariae radix, Pyrrosiae folium, Salivae miltiorrhizae radix, Scutellariae radix, Tribulii fructus. Total daily dose: 69 g. Co-medication: L-thyroxine. No alcohol abuse. Adverse event symptoms: abdominal pain. ALT at discharge 280 U/L: 12 d later at first control: ALT 181 U/L. Second control 24 d later: ALT 81 U/L, third control 28 d later: normal ALT values. No hepatitis serology.
RUCAM-based causality for Bupleuri radix, Meliae toosendan fructus, and Scutellariae radix: Possible (score +4)

Case 16
Patient with lichen sclerosus (ICD-10 L90.0) and cervical spondylosis (ICD-10 M47.0) was treated with herbal TCM decoctions (11 drugs) for 25 d: Amomi cardamom semen, Atragris radix, Bambusea caulis in taeniam, Bombyx batryticatus (t), Bupleuri radix, Coicis semen, Coricis radix, Phellodendri cortex, Rehmanniae radix, Salviae miltiorrhizae radix, Spatholobi caulis. Total daily dose: 20 g. Co-medication: not known. Adverse event symptoms: no known adverse events. ALT values at discharge normal. Continued use of herbal TCM at home, but at reduced daily dose of 26 g (corresponding to about 60% of the individual hospital dosage). Twenty-one days after hospital stay, safety check: ALT 715 U/L. Cessation of the herb use. Fifteen days after the first control: ALT 113 U/L. Again 14 d thereafter, at a second control: ALT 44 U/L; and at a third control, ALT 23 U/L. Hepatitis serology post increased ALT: HBs positive; anti-HBc negative; HCV ab: negative.
RUCAM-based causality for Bombyx batryticatus (t), Bupleuri radix, Angelicae dahuriae radix, Bambusea caulis in taeniam, Bombyx batryticatus (t), Bupleuri radix, Cassiae semen, Curcumae longae rhizoma, Dipsaci radix, Gentianae macrophyllae rhizoma, Scutellariae radix, Siegesbeckiae herba, Trichosanthis fructus. Total daily dose: 60 g. No co-medication. No alcohol abuse. Adverse event symptoms: abdominal pain. Safety control: ALT 279 U/L. Cessation of the herb use. Five days after cessation and at discharge: ALT 252 U/L. First control 14 d after hospital discharge: ALT 12 U/L. Hepatitis serology post increased ALT: Hepatitis A, B, C excluded. Anti-EBV-VCA-IgG > 100; EBV-IgM < 0.9; HBAb:474 Units; HBC-ab negative; HBcAb not reactive; EBV-EBNA1-Ab (IgG) > 100 Units; Anti-HAV (IgM) negative; Anti-HBs (IgM) negative.
Case	Year	Patient Details	Medications and Comments
18	Female, 52	Mitral valve prolapse (ICD-10 I05.9), who was treated with herbal TCM decoctions for 22 d. The following 35 herbs were applied: Achyranthis bidentatae radix, Angelicae sinensis radix, Curcumae rhizoma, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Morina longa, Paeoniae albae radix, Paeoniae rubrae radix, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Rehmanniae radix, Scutellariae radix, Siegesbeckiae herba, Smilacis glabrae rhizoma, Solidaginis glomerata. Total daily dose was 96 g. Duration of treatment for only 7 d because of adverse event symptoms of diarrhea and deterioration of headache. Co-medication: L-thyroxine. Safety check 14 d after admission: ALT 76 U/L. At first control 20 d after admission: ALT 253 U/L. At discharge: ALT 198 U/L. Control 30 d after discharge: ALT 35 U/L. Serology post increased ALT: Anti-HAV (IgG, IgM) negative; anti-HAV (IgM) negative; HBS-antigen negative, Anti-HBs < 10 IU/L; Anti-HBc (IgG + IgM) negative; Anti-HCV negative	
19	Female, 60	In 2011, patient with carcinophobia (ICD-10 F45.2), allergic sensitivity (ICD-10 M79.7) and tinnitus (ICD-10 H93.1) was treated with 28 drugs for 19 d with: Achyranthis bidentatae radix, Angelicae dahuricae radix, Bupleuri radix, Curcumae rhizoma, Liquidambaris fructus, Lycii fructus, Menthae herba, Mori ramulus, Rubiae folium, Schisandrae fructus, Scutellariae radix. Total daily dose was 96 g. Co-medication: omega-3-acidethylester. No alcohol abuse known. No adverse event symptoms. Because of the previous experience, liver enzyme control already after 7 d: ALT 295 U/L; cessation of all herbal TCM products. Six days later ALT 182 U/L, and 3 d thereafter: ALT 86 U/L. Eleven days later: ALT 34 U/L. No hepatitis serology	
20	Female, 53	Patient with depression (ICD-10 F32.1), migraine (ICD-10 G43.0), and low back-pain (ICD-10 M54.1) was treated for 22 d with the following 12 components: Achyranthis bidentatae radix, Angelicae sinensis radix, Atractylodis macrocephala rhizoma, Atractylodis macrocephala rhizoma, Bupleuri radix, Curcumae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Ophiopogonis radix, Parthenium hysterophorus, Paeoniae albae radix, Paeoniae rubrae radix, Perillae frutescens, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Rehmanniae radix, Rhei radix, Scutellariae radix, Siegesbeckiae herba, Solidaginis glabrae rhizoma. Total daily dose was 78 g. No potentially hepatotoxic co-medication (only L-thyroxine). No alcohol. No adverse event symptoms. ALT at discharge 207 U/L, 22 d later at first control 30 U/L. No hepatitis serology	
21	Female, 53	Patient with neurasthenia (ICD-10 F48.0) and fibromyalgia (ICD-10 M79.7) received herbal TCM decoction for 18 d with the following 24 herbs: Achyranthis bidentatae radix, Astragali radix, Atractylodis macrocephala rhizoma, Atractylodis macrocephala rhizoma, Bupleuri radix, Curcumae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Ophiopogonis radix, Parthenium hysterophorus, Paeoniae albae radix, Paeoniae rubrae radix, Perillae frutescens, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Rehmanniae radix, Rhei radix, Scutellariae radix, Siegesbeckiae herba, Solidaginis glabrae rhizoma. Total daily dose: 88 g. Additional wind-heat-mixture: Rubiae folium and Polygoni cuspidata. Total daily dose: 319 g. No co-medication. No alcohol. No adverse event symptoms. ALT at discharge 221 U/L and 41 U/L at control 14 d later. No hepatitis serology	
22	Female, 52	Patient with somatoform pain disorder (ICD-10 F45.0), drug induced tension headache (ICD-10 G45.2), and polyarthritis (ICD-10 M10.5), who was treated with herbal TCM decoctions for 22 d. The following 35 herbs were applied: Achyranthis bidentatae radix, Angelicae sinensis radix, Atractylodis macrocephala rhizoma, Atractylodis macrocephala rhizoma, Bupleuri radix, Curcumae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Ophiopogonis radix, Parthenium hysterophorus, Paeoniae albae radix, Paeoniae rubrae radix, Perillae frutescens, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Rehmanniae radix, Rhei radix, Scutellariae radix, Siegesbeckiae herba, Solidaginis glabrae rhizoma. Total daily dose was 78 g. No potentially hepatotoxic co-medication (only L-thyroxine). No alcohol. No adverse event symptoms. ALT at discharge 207 U/L, 22 d later at first control 30 U/L. No hepatitis serology	
23	Female, 46	Patient with alopecia areata (ICD-10 L04.0) and vitiligo (ICD-10 L06.0) was treated for 28 d with a decoction containing 15 TCM herbs: Achyranthis bidentatae radix, Angelicae sinensis radix, Atractylodis macrocephala rhizoma, Bambusae rhizoma in taeniam, Bupleuri radix, Citri reticulatae pericarpium, Curcumae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Ophiopogonis radix, Parthenium hysterophorus, Paeoniae albae radix, Paeoniae rubrae radix, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Siegesbeckiae herba, Solidaginis glabrae rhizoma. Total daily dose: 72 g. Co-medication with L-thyroxine. No alcohol. Average adverse event symptoms: flatulence. At discharge ALT 268 U/L, with 210 U/L on day 20 and 62 U/L on day 30	
24	Female, 51	Patient with depression (ICD-10 F33.1) and migraine (ICD-10 G43.0) took for 17 d the herbal TCM decoction with the following 18 herbs: Achyranthis bidentatae radix, Angelicae sinensis radix, Bupleuri radix, Curcumae rhizoma, Dipsaci radix, Glycyrrhizae radix, Inulae flos, Lotus corniculatus, Ophiopogonis radix, Parthenium hysterophorus, Paeoniae albae radix, Paeoniae rubrae radix, Persicae semen, Pinelliae praeparatae rhizoma, Pseudostellariae radix, Siegesbeckiae herba, Solidaginis glabrae rhizoma. Total daily dose: 40 g. Co-medication: cimicifuga, zolpidem. No alcohol. Lack of adverse event symptoms. At discharge and control: ALT 210 U/L and 191 U/L. At a subsequent control 19 d later, ALT 36 U/L. RUCAM-based causality for Bombyx batryticatus (t), Bupleuri radix, Polygoni multiflori radix, and Scutellariae radix: Probable (score +6)	
sex female
age 53 y
status (2015)

sarcodactylis fructus, Curcuma longae rhizoma, Curcuma rhizoma, Ligustici chaunhiong rhizoma, Loranthis rhizoma, Lycopodi herba, Mori ramulus, Persicae semen, Poria (parts), Puerariae radix, Scutellariae radix, Sparganii tuber (rhizoma), Spatholobi caulis, Tribuli fructus, Viticis fructus. Total daily dose: 87 g. Co-medication: intermittent use of sumatriptane and the potentially hepatotoxic drug paracetamol. No alcohol. No adverse effect symptoms. ALT at discharge 359 U/L, at control 18 d later ALT 69 U/L. Hepatitis A and B were excluded serologically. RUCAM-based causality for Bupleuri radix and Scutellariae radix: Possible (score +5)

Case 26
Patient with unspecified somatization (ICD-10 F45.1), who suffered from abdominal symptoms of nausea, diarrhea, and loss of appetite, received herbal TCM decoction therapy for 23 d with 26 herbs: Amomi cardamomi semen, Amomi fructus, Armeniacae amarum semen, Atractylodis macrocephalae rhizoma, Bambusae caulis in taeniam, Bupleuri radix, Cinnamomi ramulus, Citri fructus, Codonopsis pilosulae radix, Coicis semen, Corydalis rhizoma, Cyperi rhizoma, Forsythiae fructus, Glehniae radix, Glycyrrhizae radix, Ledebouriellae rhizoma, Meliae toosendan fructus, Mori ramulus, Opisthoborus radix, Ophiopogonis radix, Peoniae albae radix, Paoniae albae radix, Peucedani radix, Pinelliae praeparata rhizoma, Poria (parts), Scutellariae radix, Zingiberis rhizoma. Total daily dose: 87 g. Intermittent co-medication with the potentially hepatotoxic pantoprazole. Alcohol use with 2 drinks a day. During hospital stay, she experienced deterioration of her gastrointestinal symptoms. At discharge, ALT 182 U/L. Two weeks later, normalization of ALT (30 U/L). No hepatitis serology
RUCAM-based causality for Bupleuri radix, Glycyrrhizae radix, Meliae toosendan fructus, and Scutellariae radix: Possible (score +3)

All patients showed normal ALT values at admission and experienced liver injury under therapy with herbal TCM. Indication for TCM treatment was based on diagnoses according to ICD classification. Liver injury is defined as ALT > 5 x ULN. TCM herbs with known hepatotoxicity from literature represented in bold[9,27,28,43]. Causality for all bold TCM herbs was assessed using the updated RUCAM[25]. Causality levels are as follows: 7 ≤ points, excluded causality; 1-2, unlikely; 3-5, possible; 6-8, probable; and 9, highly probable[3]. ALT normal ≥ 9, highly probable

Of note, in addition to the 21470 patients, who were included in the TCM study cohort due to their normal ALT values, 472 patients corresponding to 2.3% had been admitted to the hospital for TCM treatment with increased ALT values on admission and were therefore not included in the TCM study cohort. If included, these patients may have alternative diagnoses as confounders, as initially increased ALT values may reflect already existing liver disease. Similar to the hospital conditions, alternative causes as confounding variables have been described in suspected cases of discontinuation of the herbal TCM therapy. Such excellent investigational conditions rarely exist under normal field conditions, where patients are evaluated in retrospective studies, and often provide cases of limited data quality[25,26,17], mostly with the lack of a robust causality assessment such as RUCAM[25]. Despite these encouraging data under hospital conditions, herbal TCM treatment outside a hospital setting may be associated with higher liver injury risks, requiring a cautionary statement. Consequently and to err on the side of caution, patients who opt for special therapy with herbal TCM should be informed about the low risk of liver injury and its clinical symptoms.

Supportive evidence of causality for TCM herbs in the injury cases was provided by the rapid decline of discontinuation of the herbal TCM therapy. Such excellent investigational conditions rarely exist under normal field conditions, where patients are evaluated in retrospective studies, and often provide cases of limited data quality[25,26,17], mostly with the lack of a robust causality assessment such as RUCAM[25]. Despite these encouraging data under hospital conditions, herbal TCM treatment outside a hospital setting may be associated with higher liver injury risks, requiring a cautionary statement. Consequently and to err on the side of caution, patients who opt for special therapy with herbal TCM should be informed about the low risk of liver injury and its clinical symptoms.

Supportive evidence of causality for TCM herbs in the injury cases was provided by the rapid decline of ALT to nearly normal values shortly following cessation of herbal use in 24/26 patients (Table 5), while two patients escaped final ALT analysis (Table 5). Causality is further supported by the lack of pre-existing liver diseases in the patients in the liver injury study cohort, ruling out that alternative liver diseases could compete with the newly emerging liver injury caused by TCM herbs. Finally, the causality of liver injury for various TCM herbs was established using the updated RUCAM (Table 6), as published in 2016[25]. Causality was excluded in two patients, whereas most cases achieved a possible or even a probable causality level. Using both, RUCAM-based causality assessment and positive tests of unintentional re-exposures, valid causality was provided for numerous TCM herbs by other published analyses of liver injury[9,27,28,43]. It appears that patients with acute liver injury due to TCM herbs commonly have a good prognosis and no transition to chronic liver injury, at least under the treatment conditions of a hospital, and is possibly attributed to the exclusion of prolonged treatment as described in the present study (Table 2). This favorable outcome is in line with a previous RUCAM-based study, which does not report on severe courses[27], but is in contrast to a retrospective study[9] and another analysis[28]; Both publications reported severe clinical courses with the risk of acute liver failure, requirement of liver transplant, and of death[9,28]. In more detail, acute liver failure was reported in 7.8%, a requirement for liver transplant in 0.6%, and a fatality rate in 3.2%, but associated RUCAM-based causality gradings were not published in the study[9]. This was done in another report of 54 patients with an RUCAM-based causality grading of probable for herbal TCM: One patient had used a herbal TCM product for 60 d and required a liver transplantation, while another one died after using TCM herb for 30 d[28]. The difference in outcome between the present study and previous publications[9,28] cannot validly be explained and is certainly open for discussion, especially regarding the duration of herbal TCM exposure, which was 19.5 d in this study (Table 2).

Of note, in addition to the 21470 patients, who were included in the TCM study cohort due to their normal ALT values, 472 patients corresponding to 2.3% had been admitted to the hospital for TCM treatment with increased ALT values on admission and were therefore not included in the TCM study cohort. If included, these patients may have alternative diagnoses as confounders, as initially increased ALT values may reflect already existing liver disease. Similar to the hospital conditions, alternative causes as confounding variables have been described in suspected cases of

discontinuation of the herbal TCM therapy. Such excellent investigational conditions rarely exist under normal field conditions, where patients are evaluated in retrospective studies, and often provide cases of limited data quality[25,26,17], mostly with the lack of a robust causality assessment such as RUCAM[25]. Despite these encouraging data under hospital conditions, herbal TCM treatment outside a hospital setting may be associated with higher liver injury risks, requiring a cautionary statement. Consequently and to err on the side of caution, patients who opt for special therapy with herbal TCM should be informed about the low risk of liver injury and its clinical symptoms.

Supportive evidence of causality for TCM herbs in the injury cases was provided by the rapid decline of ALT to nearly normal values shortly following cessation of herbal use in 24/26 patients (Table 5), while two patients escaped final ALT analysis (Table 5). Causality is further supported by the lack of pre-existing liver diseases in the patients in the liver injury study cohort, ruling out that alternative liver diseases could compete with the newly emerging liver injury caused by TCM herbs. Finally, the causality of liver injury for various TCM herbs was established using the updated RUCAM (Table 6), as published in 2016[25]. Causality was excluded in two patients, whereas most cases achieved a possible or even a probable causality level. Using both, RUCAM-based causality assessment and positive tests of unintentional re-exposures, valid causality was provided for numerous TCM herbs by other published analyses of liver injury[9,27,28,43]. It appears that patients with acute liver injury due to TCM herbs commonly have a good prognosis and no transition to chronic liver injury, at least under the treatment conditions of a hospital, and is possibly attributed to the exclusion of prolonged treatment as described in the present study (Table 2). This favorable outcome is in line with a previous RUCAM-based study, which does not report on severe courses[27], but is in contrast to a retrospective study[9] and another analysis[28]; Both publications reported severe clinical courses with the risk of acute liver failure, requirement of liver transplant, and of death[9,28]. In more detail, acute liver failure was reported in 7.8%, a requirement for liver transplant in 0.6%, and a fatality rate in 3.2%, but associated RUCAM-based causality gradings were not published in the study[9]. This was done in another report of 54 patients with an RUCAM-based causality grading of probable for herbal TCM: One patient had used a herbal TCM product for 60 d and required a liver transplantation, while another one died after using TCM herb for 30 d[28]. The difference in outcome between the present study and previous publications[9,28] cannot validly be explained and is certainly open for discussion, especially regarding the duration of herbal TCM exposure, which was 19.5 d in this study (Table 2).

Of note, in addition to the 21470 patients, who were included in the TCM study cohort due to their normal ALT values, 472 patients corresponding to 2.3% had been admitted to the hospital for TCM treatment with increased ALT values on admission and were therefore not included in the TCM study cohort. If included, these patients may have alternative diagnoses as confounders, as initially increased ALT values may reflect already existing liver disease. Similar to the hospital conditions, alternative causes as confounding variables have been described in suspected cases of
Table 6 Causality assessment for cases 1-26 of the liver injury study cohort, using the updated Roussel Uclaf Causality Assessment Method\(^{23}\)

RUCAM items with attribution of scores (SC)	CASES 1-26		
1 Time to onset from the beginning of the herb 5-90 d	+2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 +2 +2 +2 +2 +2		
< 5 or > 90 d	+1		
Alternative: Time to onset from cessation of the herb ≤ 15 d	+1		
2 Course of ALT after cessation of the herb	Decrease ≥ 50% within 8 d	+3	
Decrease ≥ 50% within 30 d	+2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 +2 +2 +2		
No information of continued drug use	0		
Decrease ≥ 50% after the 30th day	0		
Decrease < 50% after the 30th day or recurrent increase	-2		
3 Risk factors	Alcohol use (current drinks/d: > 2 for woman, > 3 for men)	+1	
Alcohol use (current drinks/d: ≤ 2 for woman, ≤ 3 for men)	0		
Age ≥ 55 yr	+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1		
Age < 55 yr	0		
4 Concomitant drug(s)/herb(s)	Decrease ≥ 50% within 8 d	+3	
Decrease ≥ 50% within 30 d	+2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +1 +2 +2 +2 +2 +2 +2 +2		
No information of continued drug use	0		
Decrease ≥ 50% after the 30th day	0		
Decrease < 50% after the 30th day or recurrent increase	-2		
5 Search for alternative causes	Group I (7 causes)	HAV: Anti-HAV-IgM	0
HBV: Anti-HBC-IgM, HBV-DNA	0		
HCV: Anti-HCV, HCV-RNA	0		
HEV: Anti-HEV-IgM, HEV-RNA	0		
Hepatobiliary sonography/colour Doppler sonography of liver vessels/endo-sonography/CT/MRC	0		
Alcoholism	N		
Acute recent hypotension history (particularly if underlying heart disease)	Group II (5 causes)	Complications of underlying disease(s) such as sepsis, metastatic malignancy, autoimmune hepatitis, chronic hepatitis B or C, primary biliary cholangitis or sclerosing cholangitis, genetic liver diseases	
Table 1: Differentiation of DILI

Infection suggested by PCR and titre change for	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N/N	N	N	N	N	N	
CMV (anti-CMV-IgM, anti-CMV-IgG)																						
EBV (anti-EBV-IgM, anti-EBV-IgG)	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
HSV (anti-HSV-IgM, anti-HSV-IgG)	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	+	0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
VZV (anti-VZV-IgM, anti-VZV-IgG)	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø	Ø

Evaluation of group I and II

- All causes - groups I and II - reasonably ruled out +2
- The 7 causes of group I ruled out +1
- 6 or 5 causes of group I ruled out 0

Less than 5 causes of group I ruled out -2
- Alternative cause highly probable -3
- 6 Previous information on hepatotoxicity of the herb

Reaction labelled in the product characteristics	+2	+2	+2	+2	+2	+2	+2	+2	+2	+2	+2	+2
Reaction published but unlabelled	+1											
Reaction unknown	0											

7 Response to unintentional reexposure

- Doubling of ALT with the herb +3
 - alone, provided ALT below 5 ULN before reexposure +1
 - already given at the time of first reaction
 - Increase of ALT but less than 7 ULN in the same conditions as for the first administration +2

- Other situations: 0

Total score for case

| 4 | 3 | 7 | 6 | -1 | 3 | 5 | 3 | 4 | 3 | -1 | 7 | 5 | 7 | 4 | 5 | 6 | 6 | 6/7 | 4 | 5 | 3 | 4 | 6 | 5 | 3 |

Total score for causality: ≤ 0/excluded; 1-2/unlikely; 3-5/possible; 6-8/probable; ≥ 9/highly probable. Considered were the items for the hepatocellular type of liver injury and the data of 26 patients with normal ALT values at hospital admission, who experienced elevated ALT levels > 5 × ULN after use of herbal TCM. In the above section 4 (part 1 of the tabula) of concomitant drug(s), the following TCM herbs and drugs were considered. In the section 5 (search for alternative causes in part 2 of the tabula), the symbol of (n) denotes that the obtained result was negative, whereas (O) indicates that assessment was not performed. ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; CT: Computed tomography; HAV: Hepatitis A virus; HBc: Hepatitis B core antigen; HBV: Hepatitis B virus; HCV: Hepatitis C virus; CMV: Cytomegalovirus; EBV: Epstein Barr virus; HEV: Hepatitis E virus; HSV: Herpes simplex virus; MRC: Magnetic resonance cholangiography; PCR: Polymerase chain reaction; RUCAM: Roussel Uclaf Causality Assessment Method; ULN: Upper limit normal; VZV: Varicella zoster virus.

DILI[44,45] and HILI[46] including those caused by TCM herbs,9,46 and dietary supplements[46-50]. It is likely that in the real world, some patients seeking therapy with TCM herbs have a pre-existing, initially not recognized liver disease[46]. Uncertainty exists as to whether pre-existing liver disease is a risk factor for liver injury by TCM herbs, in analogy to some chronic liver diseases such as non-alcoholic fatty liver disease or alcoholic liver disease, which are risk factors of drug-induced liver injury (DILI) by some special drugs[51,52]. Our study clearly differentiated liver injury with ALT values of ≥ 5 × ULN from ALT abnormalities with ALT values of < 5 × ULN (Table 1). Those are considered as an adaptive phenomenon due to the metabolism of the chemicals provided from the herbs to the liver. These adaptive abnormalities are clinically not relevant. The present data do not allow the general clinical recommendations to analyze ALT before therapy with TCM herbs is considered, as liver injury is unpredictable. ALT assessment may be helpful in legal situations to prevent later patient claims.

The rarity of hepatotoxic reactions together with normal dosages of herbal TCM used in this study imply idiosyncrasy as a cause rather than an intrinsic mechanism, which is dose-dependent and can be elucidated by experimental studies. However, pathogenetic steps leading to the dose-independent idiosyncratic liver injury are largely unknown due to lack of appropriate animal models[57]. In analogy with other herbs, TCM herbs including those incriminated as...
causes of liver injury in the present study (Tables 3 and 5) contain dozens of known chemicals as ingredients but their specific hepatotoxic potency is difficult to assess and remains largely unknown[57]. Another problem of most TCM therapy regimens is the multiplicity of herbs included as ingredients in herbal mixtures[19,28], such as up to 35 in the present study (Table 5). Multiple plant chemicals of many herbs may lead to an increased risk of liver injury, which were described at least for DILI if several drugs were co-administered[55], and for herb-herb interactions or herb-drug interactions, if concomitantly used with Western drugs[58]. Used as co-medication to Western antipsychotic drugs such as quetiapine, clozapine, and olanzapine, in the case of Bupleuri radix it is known that this is associated with nearly 60% of the risk of adverse outcomes[4,12,55]. Other potential risk factors for liver injury by TCM herbs may include higher dosages and lipophilicity of chemicals and known conditions from DILI cases[56]. Publications on the quality problems of some herbal TCM products[20-24] called for providing excellent quality for our patients as high priority, which is a strength of this study and avoids discussions around product quality as causative for the observed liver injury.

In the present study, Bupleuri radix and Scutellariae radix are the two TCM herbs most implicated in liver injury (Tables 3-5). However, both herbs turned out to be the most frequently prescribed drugs in the TCM hospital in Bad Kötzting in general[57]. Even though liver injury from Polygonum multiflorum has increasingly been reported in recent years[9-11], but convincing evidence for causality is limited in the present analysis (Tables 3-5). Previous regulatory discussions focused on herbal products containing unsaturated pyrrolizidine alkaloids (PAs), and in 2012, EMA stated that herbal medicinal products containing herbal preparations with toxic, unsaturated PAs (even in very low amounts) should not be used orally[58]. Used in high amounts for a prolonged period, PAs can cause HSOS (hepatic sinusoidal obstruction syndrome)[19]. TCM herbs also include Jue Ming Zi (Cassia), but only its leaves and fruits contain PAs and may cause HSOS[19,58]. Cassiae semen lacks PAs that has been used by two patients, who as expected had no signs of HSOS (Table 5).

The use of herbal TCM is widely considered less risky as compared with synthetic drugs, although data on direct comparisons are not available in support of this view. Populations using herbal TCM, drugs, either alone, or combined experience more DILI than HILI, possibly due to a higher use of drugs[27]. Valid data of incidence and prevalence of HILI caused by TCM herbs are lacking[19], and respective data cannot be derived from the present study with a low frequency of liver injury of 0.12% among all 21470 patients treated with herbal TCM. Valid data were published for drugs, showing that idiosyncratic DILI is a rare event, in a population-based French study with an annual estimated incidence of 13.9 ± 2.4 cases per 100000 inhabitants[57]. A good overview of suspicious TCM herbs is provided in several reports[17,13-15,34], which were also used for comparison in our own survey (Table 5). Nevertheless, the list of suspected TCM herbs remains tentative (Tables 3-5).

Limitations of our study: The focus of our investigation was on ALT levels > 5 × ULN, considering thereby real HILI cases. Cases with ALT elevations between 2 and 5 × ULN are per definition not real but milder HILI due to treatment with TCM herbs, not requiring additional causality proof using RUCAM. As all patients with real HILI had a good outcome with ALT normalization during the relatively short follow-up periods, this favorable outcome can be expected also for patients with milder HILI. A single normal pre-treatment ALT value likely excludes pre-existing liver disease, though little uncertainty remains, which would decrease rather than increase the overall frequency of HILI by TCM. By study protocol, patients with increased ALT values were explicitly not included, although it would have been of interest how TCM treatment influences increased pre-treatment ALT values.

In this report, we present liver injury data for the first time derived from a prospective, hospital-based and large-scale study of 21470 patients, who received treatment with TCM herbs and had no liver disease before. ALT was used as a diagnostic biomarker to exclude liver disease prior to therapy initiation and to assess liver integrity during and after the therapy. This study of 21470 patients revealed that herbal TCM products cause rare liver injury in 26 patients corresponding to 0.12%. Liver injury rapidly improved in most patients following cessation of the therapy, also substantiating causality for the suspected TCM herbs. Under the present study conditions, a transition of acute liver injury to a chronic course was not observed. As these encouraging results are based on strict protocol in a hospital setting, it remains to be established whether these data can be transferred to normal field conditions. Indeed, in the real world confounding variables prevail, such as pre-existing chronic liver diseases, complex therapy conditions of co-medication with Western drugs, and possible problems of herbal TCM product quality regarding misidentification of herbs, impurities of heavy metals, pesticides and other toxins, and adulteration by Western drugs to enhance efficacy. To be on the side of caution and for risk minimizing physicians are well advised to inform patients about the low risk and symptoms of liver injury associated with the use of TCM herbs, if patients decide on this special therapy option.

COMMENTS

Background

Herbal Traditional Chinese Medicines (TCMs) are worldwide in common use, which is well documented in the literature. They are highly appreciated, as...
they are of natural origin, and mainly based the belief of their efficiency and lack of adverse events, and their preference as valuable alternatives over a conventional treatment with synthetic drugs. However, some criticism emerged regarding the issue of efficiency, and adverse reactions ranging from clinically not relevant events to more severe ones including suspected liver injury.

Research frontiers

In a prospective, hospital-based study, patients with normal values of alanine aminotransferase (ALT) as a diagnostic marker for ruling out pre-existing liver disease were enrolled and reassessed on discharge by routine laboratory within a safety program carried out at the First German Hospital of TCM from 1994 to 2015. Liver injury was detected in 262/21470, patients (0.12%) with normal liver tests prior to treatment initiation. In most of the liver injury cases, the Roussel Uclaf Causality Assessment Method (RUCAM)-based causality for herbal TCM was graded as ‘possible’.

Innovations and breakthroughs

In this report, the authors present for the first time liver injury data derived from a prospective, hospital based and large-scale study of 21470 patients, who received treatment with TCM herbs and had no liver disease before. Liver injury was defined ALT ≥ 5 × ULN = upper limit of normal as clinically relevant.

Peer-review

This is an interesting and well-written study.

ACKNOWLEDGMENTS

We thank the staff members at the TCM hospital in Bad Kötzting and all colleagues from the Beijing University of Chinese Medicine for their support and critical comments.

REFERENCES

1. Ge S, He TT, Hu H. Popularity and customer preferences for over-the-counter Chinese medicines perceived by community pharmacists in Shanghai and Guangzhou: a questionnaire survey study. Chin Med 2014; 9: 22 [PMID: 25243017 DOI: 10.1186/1749-8546-9-22]
2. National Institutes of Health (NIH) and LiverTox. Chinese and other Asian herbal medicines. 2016. Accessed on 23 April 2017. Available from: URL: http://livertox.nih.gov/ChineseAndOtherAsianHerbalMedicines.htm
3. Teschke R, Wolff A, Frenzel C, Eickhoff A, Schulze J. Herbal hepatotoxicity--an update on traditional Chinese medicine preparations. Aliment Pharmacol Ther 2014; 40: 32-50 [PMID: 24844799 DOI: 10.1111/apt.12798]
4. Zhu Y, Niu M, Chen J, Zou ZS, Ma ZJ, Liu SH, Wang RL, He TT, Song HB, Wang ZX, Pu SB, Ma X, Wang LF, Bai ZF, Zhao YL, Li YG, Wang JB, Xiao XH; Specialized Committee for Drug-Induced Liver Diseases, Division of Drug-Induced Diseases, Chinese Pharmacological Society. Hepatobiliary and pancreatic: Comparison between Chinese herbal medicine and Western medicine-induced liver injury of 1985 patients. J Gastroenterol Hepatol 2016; 31: 1476-1482 [PMID: 26896664 DOI: 10.1111/jgh.13323]
5. Lee CH, Wang JD, Chen PC. Risk of liver injury associated with Chinese herbal products containing radix bupleuri in 639,779 patients with hepatitis B virus infection. PLoS One 2011; 6: e16064 [PMID: 21264326 DOI: 10.1371/journal.pone.0016064]
6. Woo HJ, Kim HY, Choi ES, Cho YH, Kim Y, Lee JH, Jung E. Drug-induced liver injury: A 2-year retrospective study of 1169 hospitalized patients in a single medical center. Phytomedicine 2015; 22: 1201-1205 [PMID: 26589820 DOI: 10.1016/j.phymed.2015.10.002]
7. Dağ MS, Aydinli M, Ozturk ZA, Türkerbey IH, Koruk I, Savaş MC, Koruk M, Kadayıfçı A. Drug- and herb-induced liver injury: a case series from a single center. Turk J Gastroenterol 2014; 25: 41-45 [PMID: 24918129 DOI: 10.5152/tjg.2014.4486]
8. Ou P, Chen Y, Li B, Zhang M, Liu X, Li F, Li Y, Chen C, Mao Y, Chen J. Causes, clinical features and outcomes of drug-induced liver injury in hospitalized patients in a Chinese tertiary care hospital. Springerplus 2015; 4: 802 [PMID: 26702391 DOI: 10.1186/s40064-015-1600-8]
9. Teschke R, Wolff A, Frenzel C, Schulze J. Letter: Herbal hepatotoxicity--an update on traditional Chinese medicine preparations; authors' reply. Aliment Pharmacol Ther 2014; 40: 738-740 [PMID: 25123394 DOI: 10.1111/apt.12877]
10. Teschke R, Eickhoff A. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps. Front Pharmacol 2015; 6: 72 [PMID: 25954198 DOI: 10.3389/fphar.2015.00072]
11. Teschke R, Eickhoff A. Herbal hepatotoxicity: Clinical Characteristics and Listing Compilation. Int J Mol Sci 2016; 17: pii: E588 [PMID: 27128912 DOI: 10.3390/ijms17050588]
12. Teschke R, Larrey D, Melchart D, Danan G. Traditional Chinese Medicine (TCM) and herbal hepatotoxicity: RUCAM and the role of novel diagnostic biomarkers such as microRNAs. Medicines 2016; 3: 18 [DOI: 10.3390/medicines3030018]
13. Ernst E. Adulteration of Chinese herbal medicines with synthetic drugs: a systematic review. J Intern Med 2002; 252: 107-113 [PMID: 12190885 DOI: 10.1046/j.1365-2966.2002.00999.x]
14. Shaw D. Toxicological risks of Chinese herbs. Planta Med 2010; 76: 2012-2018 [PMID: 21077025 DOI: 10.1055/s-0030-1250533]
15. Efferth T, Kaina B. Toxicities by herbal medicines with emphasis to traditional Chinese medicine. Curr Drug Metab 2011; 12: 989-996 [PMID: 21892926 DOI: 10.2174/138920011798062328]
16. Zhang L, Yan J, Liu X, Ye Z, Yang X, Meyboom R, Chan K, Shaw D, Duzz P. Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: current status and future perspective. J Ethnopharmacol 2012; 140: 519-525 [PMID: 22374080]
Yuen MF, Tam S, Fung J, Wong DK, Wong BC, Lai CL. Traditional Chinese medicine causing hepatotoxicity in patients with chronic hepatitis B infection: a 1-year prospective study. *Aliment Pharmacol Ther* 2006; 24: 1179-1186 [PMID: 17014576 DOI: 10.1111/j.1365-2036.2006.03111.x]

P-Reviewer: Borzio M, Carvalho-Filho RJ, Tziomalos K
S-Editor: Ji FF
L-Editor: A
E-Editor: Lu YJ
