The number of candidates that voters are allowed to rank can have a huge effect on IRV election outcomes.

Given (almost) any length \(k - 1 \) sequence of \(k \) candidates, we can construct voter preferences so that the IRV winners at ballot lengths 1, ..., \(k-1 \) follow the given sequence.

Example. \(k = 4 \) candidates, winner sequence ABC:

Ballot length 1	Ballot length 2	Ballot length 3
2 5 6 3	2 5 6 3	2 5 6 3
A D C B	A D C B	A D C B
A C D B	A C D B	A C D B
A C D B	A C D B	A C D B

A wins B wins C wins

Our constructions use only \(\Theta(k^2) \) voters to achieve any winner sequence, which is tight for \(k - 1 \) different winners.

Real-world IRV elections use various ballot lengths:

- Ballot length 3
- Ballot length 5
- Unlimited

We truncate ballots in 168 real-world elections: 25% of them have multiple winners as ballot length varies.