Comment on "Universal Fluctuations in Correlated Systems"

B. Zheng and S. Trimper

1 Physics Department, Zhejiang University, Hangzhou 310027, P.R. China
2 FB Physik, Universität Halle, 06099 Halle, Germany
3 ICTP, 34014 Trieste, Italy

PACS: 05.65.+b, 05.40.-a, 05.50.+q, 68.35.Rh

Typeset using REVTeX
In [1], it is suggested that the probability distribution functions (PDF’s) of fluctuating observables for critical systems in different universality classes exhibit a same form. This Comment concerns the PDF’s for equilibrium systems.

In [2], it is pointed out that the standard scaling form is a sufficient condition for the data collapse. The suggestion in [1] seems contradicting the idea of standard universality. To clarify it, we have performed calculations for different critical systems. Firstly, the temperature is fixed at the bulk critical value \(T_c \). In Fig. 1, the normalized PDF \(P(m) \) for the Ising and XY models are displayed. Here \(m = (M - \langle M \rangle) / \sigma \) with \(M \) being the magnetization, \(\langle M \rangle \) being its mean and \(\sigma \) being the standard deviation. Data collapse for different lattice sizes \(L \)'s are observed. However, the differences between the curves for different models are clearly not minor perturbations. The PDF for the Potts model is even not symmetric in \(M \) and can hardly be put in the figure.

The critical temperature can be modified in a finite system. Let us take a size-dependent coupling \(K(L) \sim 1/T(L) \) such that \(\tau \equiv (K(L) - K_c)/K_c = s/L^{1/\nu} \) with \(\nu = 1 \) being the static exponent and \(s \) being a constant. Following similar scaling analysis in [2] (see also [3]), it leads to \(P(m, \tau, L) = P(m, L^{1/\nu} \tau) = P(m, s) \). At the critical regime, data for different \(L \)'s at \(T(L) \)'s also collapse onto a single curve, but \(P(m, s) \) changes continuously with \(s \). If \(s \) is small, in other words, if the spatial correlation function \(l(L) \) is much larger than the lattice size \(L \), \(T(L) \) can be considered approximately as a size-dependent critical temperature. Choosing \(s = 2.90 \), \(P(m, s) \) looks falling onto that for the 2D XY model at \(T = 0.89 \). This is shown in Fig. 1. However, \(T(L) \) with such a large value of \(s \) should not be defined as a size-dependent critical temperature, since in the infinite limit of \(L \), the behavior of the system (not only \(P(m) \)) remains very different from that at the bulk \(T_c \). To confirm this, we have calculated the spatial correlation function and found that at \(s = 2.90 \) the correlation length \(l(L) \) is much smaller than the lattice size \(L \).

We do not think the \textit{shape} of \(P(m) \) for the XY model is a characteristic property at (or very close to) the critical point. The observation is that for systems with a second order transition such as the Ising and Potts models, the tail of the PDF for negative \(m \) at the \(T_c \) reaches a nonzero value at \(M = 0 \) and is roughly power-law-like (before cut at \(M = 0 \)). This reasonably indicates that the system can transit from the positive sector of \(M \) to the negative one. Below \(T_c \), symmetry breaking occurs. The (infinite) system can not transit from one sector to another. The exponential-like tail at a large but not too large \(s \) should be a signal of symmetry breaking. (But when \(s \) tends to infinite, the tail crosses over to Gaussian.) For the XY model, the fluctuations are mainly rotational. The exponential tail of \(P(m) \) is only an indication for the energy barrier in small \(M \) regime. The conjecture is that the exponential-like tail of the PDF induced typically by energy barriers may be similar to the exponential decay of the correlation functions with a finite correlation length. It can be rather generic, and independent of whether the system is with or without a first order, second order or Kosterlitz-Thouless phase transition. The results for the 1D and 3D XY model in [3] support this statement. A critical point is only a sufficient condition for data collapse for infinite systems.

The complete form of the PDF is in general not independent of universality classes. However, the large \(s \) regime may be somewhat special and it needs more investigations. For example, as shown in Fig. 1, \(P(m, s) \) for the 3D Ising model at \(s = 2.21 \) fits also to the curve of the XY model at \(T = 0.89 \).
Acknowledgement: Work is supported in part by DFG, TR 300/3-1.
REFERENCES

[1] S.T. Bramwell et al, Phys. Rev. Lett. \textbf{84}, 3744 (2000).
[2] V. Aji and N. Goldenfeld, Phys. Rev. Lett. \textbf{86}, 1007 (2001).
[3] S.T. Bramwell et al, Phys. Rev. \textbf{E63}, 41106 (2001).
FIG. 1. The three solid lines with a higher peak are for the 2D Ising model at T_c with $L = 32$, 64 and 128. The three solid lines with a lower peak are for the 2D XY model at $T = 0.89$ with $L = 16$, 32 and 64. The dashed curve is for the 3D Ising model at T_c with $L = 32$. The circles, triangles and stars are for the 2D Ising model at $s = 2.90$ with $L = 32$, 64 and 128. The filled circles are for the 3D Ising model at $s = 2.21$ with $L = 32$.