Land cover and Proboscis monkey habitats in Berau Delta, East Kalimantan

T Atmoko1,2, A Mardiastuti3, M Bismark4, L B Prasetyo3, and E Iskandar5

1 Research and Development Institute for Natural Resources Conservation Technology, Samboja, East Kalimantan, Indonesia
2 Study Program of Primatology, IPB University, Bogor, West Java, Indonesia
3 Faculty of Forestry and Environment, IPB University, Bogor, West Java, Indonesia
4 Forest Research and Development Center, Bogor, West Java, Indonesia
5 Primate Research Centre, IPB University, Bogor, West Java, Indonesia

E-mail: three.atmoko@gmail.com

Abstract. The proboscis monkey is an endangered primate endemic to Borneo. Most of their habitats are outside conservation areas and are under threat from conversion to other land uses, such as those found in the Berau Delta. Habitat loss and destruction significantly affect the quality and viability of the proboscis monkey population. This study aims to determine land cover and proboscis monkey habitat types in Berau Delta. Land cover was obtained from the interpretation of the Lanskit 8 OLI 2019 satellite image. Vegetation data were collected using a line plot transect method and continued with cluster analysis. The results showed that mangrove forest has the largest coverage (35.92%), followed by secondary forest (17.10%) and riparian forest (12.96%). At least 74 species of woody plants belonging to 61 genera and 37 families in a 2.4 ha observation plot. The range of species diversity index was from 0.80 to 2.88, and; evenness index values range from 0.58 to 0.82. The habitat was categorized into two main clusters: mangrove cluster (Buasin Cape, Guntung Estuary) and riverine cluster (Lati River, Saodang Kecil Island, Batu-Batu, Bebanir Lama). The mangrove forest habitat consists of Rhizophora mucronata, R. apiculata, Bruguiera sp, Sonneratia alba, and Avicennia alba. The riparian habitats are dominated by Sonneratia caseolaris, Vitex pinnata, Cerbera manghas, Brownlowia argentata, Heritiera littoralis, Syzygium lineatum, Nauclea officinalis, Xylocarpus granatum, Syzygium sp.1, and A. alba. The average of total and lower branches height of trees in the Lati River and Basin Cape were higher than in other habitats, forming a continuous canopy.

1. Introduction

The proboscis monkey (Nasalis larvatus) is one of the primate species of the Colobinae sub-family, which is endemic to Borneo. The proboscis monkey occupies several types of habitats, each with different characteristics; mangrove, swamp, and riparian forests [1]. These habitats, however, are undergoing rapid conversion. Mangrove forests have a high fishery potential so that many of them are being converted into fishponds. In contrast, riparian forests are being converted the fastest because of their easy accessibility by river transportation [2]. Indeed, riparian habitats are under pressure due to conversion into residential areas, fields, and oil palm and cocoa plantations [1]. Habitat destruction is also caused by forest fires [3] and various river pollutants [2].

Habitat loss and destruction significantly affect the quality and viability of the proboscis monkey population. The habitat loss rate is estimated at 2% per year [4]; currently only 55% of the original 121,670 km² proboscis monkey habitat remains. Eleven percent of its habitat is located in conservation...
areas [5] and only 9% of is in protected areas [6]. The destruction of their habitat can result in habitat fragmentation and isolated populations in small areas. Small populations have a high potential for extinction due to inbreeding pressure [7]. This paper aims to identify land cover conditions, vegetation types, and characteristics of the proboscis monkey habitat in the Berau Delta.

2. Methods

2.1. Study site
Observations were conducted from Augustus to December 2019 in Berau Delta, East Kalimantan, Indonesia. The study area covers an area of interest (AOI) of 911.21 km² consisting of six locations where vegetation analysis was conducted: a narrow river (Lati River), a wide river (Batu-Batu), a small island (Saodang Kecil Island), coastal habitats (Buasin Cape and Guntung Estuary), and a mixed habitat, (Bebanir Lama). The farthest of these habitats extended 1,810m inland from the riverbank, representing the monkey’s maximum daily range [8].

2.2. Land cover
Land cover was delineated based on Lansat 8 OLI Path 116 Row 59 images acquired on July 15, 2019 (https://earthexplorer.usgs.gov/). Before interpretation, the image was radiometric and atmospheric corrected, pan-sharpening using the panchromatic band with 15 m resolution. Delineation was carried out in potential proboscis monkey habitats: (mangrove/swamp forest, riverine forest, secondary forest), buffering habitats (scrub, swamp, garden/field), and non-habitat (open areas, roads, settlements, ponds/water canals, mining/industry). The interpretation results were then verified through ground checking.

2.3. Vegetation analysis
Vegetation data was collected using a line plot transect method. Each location is made of two paths, namely a line perpendicular to the riverbank and parallel to the riverbank. The first transect was made to determine the variation of plant species from the riverbank into the forest. The second transect was to determine species variation along the riverbank, considering that many proboscis monkeys use sleeping trees on the riverbanks and as a place for their activities. The whole transect is 1.20 km, with a sample area of 2.40 ha. The transect is divided into 20 x 20 m plots to record tree levels (trees; dbh>20 cm) and small trees (pole; ≥10 cm dbh <20 cm), nested there are 5 x 5 m sub-plots for sapling level (dbh <10cm, height> 1.5m) [9]. Data collection focused on plant species, lower branch height, total height, and diameter at breast height (dbh). Plant species were identified at the Herbarium Wanariset Samboja (WAN). Scientific nomenclature refers to http://theplantlist.org/. Plant types found were tabulated and sorted according to the family, genus, and species.

2.4. Data analysis
Plant diversity was calculated using the Shannon index (H') [10] and the Evenness Index [11]. Vegetation data is calculated as the importance value index (IVI), which is the sum of relative frequency (Rf), relative density (Rd), relative dominance (Rdo) [12]. Community habitats similarity was analyzed using the Jaccard Index [13]. Hierarchical clustering between habitats was analyzed using R software version 3.4.4 with “vegan” packages. The data used was binary data (1 = found, 0 = not found). The cluster spacing used the Jaccard method, while the habitat cluster used the ward.D method.

3. Results and Discussion

3.1. Land cover
The Lansat image interpretation and ground checking identified eleven land cover types in the Berau Delta (Table 1). Mangrove forest/swamp has the highest percentage (35.92%), followed by secondary forest (17.10%) and riparian forest (12.96%). Most of the mangrove forests are located in coastal areas. Most of the mangrove forests on the large islands of the Berau Delta have been primarily
converted into ponds. There are more than 11 thousand hectares of ponds in the Berau Delta, and it is expected that the conversion will continue as evidenced by field observations that found mangrove areas being prepared for conversion to fish ponds. Riparian forests are generally located along the banks of major rivers and creeks. The partially riparian forest has been fragmented into settlements, roads, fields, plantations, industry, and mining. Meanwhile, secondary forest is located in areas not affected by tides and in an ecotone area behind riparian forests (Figure 1).

Table 1. Land covers of Berau Delta

Land covers	ha	%
Mangrove/Swamp	32,734.15	35.92
Secondary forest	15,578.47	17.10
Riverine forest	11,811.33	12.96
Pond/water canal	11,530.12	12.65
Shrubs	5,983.81	6.57
Swamp scrub	4,983.67	5.47
Garden/Field	2,857.34	3.14
Open area	2,480.45	2.72
Settlemaker	1,856.90	2.04
Road	810.90	0.89
Mining/industrial area	494.19	0.54
Total	91,121.33	100

Figure 1. The land cover of proboscis monkey habitat in Berau Delta

3.2. Plant diversity

Based on an analysis of the data, at least 74 species of woody plants belonging to 61 genera and 37 families in the observation plot. The species diversity index ranged from 0.80 to 2.88; the highest index value was in the riparian habitat Bebanir Lama, while the lowest index was in the mangrove
habitat Guntung estuary. Evenness index values range from 0.58-0.82 (Table 2). The high index value indicates that the number of trees in each species is relatively the same in the habitat.

Table 2. Vegetation profile at six sampling sites in proboscis monkey habitats in Berau Delta

Parameter	Riverine	Mangrove				
	Lati River	Saodang Kecil Island	Batu-Batu	Bebanir Lama	Guntung Estuary	Buasin Cape
Density (trees/ha)	513	348	383	295	478	505
Number species	24	8	14	33	4	4
H'	2.39	1.33	2.07	2.88	1.03	0.80
Hmax	3.18	2.08	2.64	3.5	1.39	1.39
Evenness Index	0.75	0.64	0.78	0.82	0.74	0.58

3.3. **Habitat clustering**

In general, the community similarity index in the proboscis monkey habitat in the Berau Delta ranges from 0-60%. In general, the community similarity index in the proboscis monkey habitat in the Berau Delta ranges from 0-60%. The habitats in Buasin Cape and Guntung Estuary have a high plant community similarity of 60%; meanwhile a comparison of the habitat of Saodang Kecil Island with Guntung Estuary and Buasin Cape with Batu-Batu, found no similarities at all. The proboscis monkey habitat is divided into two main clusters, namely: cluster mangrove (Buasin Cape, Guntung Estuary), and cluster riverine (Lati river, Saodang Kecil Island, Batu-Batu, Bebanir Lama) (Figure 2).

![Cluster Habitat](image)

Figure 2. The cluster of proboscis monkey habitat is based on the Jaccard similarity index.

3.4. **Structure and composition**

3.4.1. **Mangrove forest.** The mangrove forest habitats are Buasin Cape and Guntung Estuary, formed by *Rhizophora mucronata, R. apiculata, Bruguiera sp, Sonneratia alba,* and *Avicennia alba* (Table 3).
Table 3. The floristic composition in mangrove forests on the tree, poles, and saplings stages

Species	Busain Cape	Guntung Estuary						
	Rf (%)	Rd (%)	Rdo (%)	IVI (%)	Rf (%)	Rd (%)	Rdo (%)	IVI (%)
Trees								
Rhizophora mucronata	50.0	73.2	74.0	197.2(1)	14.3	7.1	5.0	26.5(3)
Rhizophora apiculata	35.7	22.0	23.2	80.9(2)	-	-	-	-
Bruguiera sp.	7.1	2.4	1.5	11.0(3)	-	-	-	-
Sonneratia alba	7.1	2.4	1.3	10.9(4)	21.4	20.2	24.0	65.6(2)
Avicennia alba	-	-	-	-	64.3	72.6	71.0	207.9(1)
Poles								
Bruguiera sp.	39.1	61.5	62.1	162.7(1)	-	-	-	-
Rhizophora apiculata	39.1	34.2	32.6	105.9(2)	5.3	2.8	3.4	11.4(4)
Rhizophora mucronata	21.7	4.4	5.3	31.3(3)	36.8	61.5	58.1	156.4(1)
Avicennia alba	-	-	-	-	42.1	30.3	32.9	105.3(2)
Sonneratia alba	-	-	-	-	15.8	5.5	5.6	26.9(3)
Saplings								
Rhizophora mucronata	33.3	55.9	63.93	153.2(1)	57.1	79.0	66.8	202.9(1)
Rhizophora apiculata	27.8	17.8	29.18	74.8(2)	14.3	4.8	10.8	29.9(4)
Xylocarpus granatum	16.7	11.9	1.01	29.5(3)	-	-	-	-
Sonneratia alba	11.1	11.9	4.52	27.5(4)	14.3	11.3	11.6	37.2(2)
Bruguiera sp.	11.1	2.5	1.35	15.0(5)	-	-	-	-
Avicennia alba	-	-	-	-	14.3	4.8	10.9	30.0(3)

Remarks: Rf= Relative frequency; Rd= Relative density; Rdo= Relative dominance; IVI=Important Value Index; The numbers in parentheses indicate the grade by important value index (IVI).

3.4.2. Type Riparian. The riparian forest habitat cluster is Lati River, Batu-Batu, Saodang Kecil Island, and Bebanir Lama. The Lati River represents the habitat on the banks of a small river, Saodang Kecil Island represents an island habitat, while Batu-Batu represents habitat on the banks of a major river.

Table 4. The top five of tree, pole, and saplings stages with the highest IVI were in riparian forest

Location/Species	Tree	Pole	Sapling										
	FR	KR	DR	IVI	FR	KR	DR	IVI					
Bebanir Lama													
Xylocarpus granatum	16.0	23.1	16.8	55.9(1)	10.3	17.7	27.0	55.0(1)	6.3	10.5	14.1	30.8(2)	
Syzygium sp.1	8.0	7.7	20.4	36.1(2)	-	-	-	-	-	-	-	-	
Avicennia alba	8.0	15.4	11.4	34.8(3)	-	-	-	-	-	-	-	-	
Rhizophora apiculata	8.0	12.8	7.4	28.2(4)	7.7	8.9	9.5	26.0(3)	-	-	-	-	
Koompassia excelsa	4.0	2.6	21.4	28.0(5)	-	-	-	-	-	-	-	-	
Sonneratia caseolaris	-	-	-	-	2.6	21.5	13.6	37.7(2)	-	-	-	-	
Rhizophora mucronata	-	-	-	-	-	2.6	8.9	7.0	18.4(4)	-	-	-	-
Syzygium lineatum	-	-	-	-	-	7.7	5.1	4.8	17.6(5)	6.3	7.0	8.9	22.2(3)
Fordia splendidissima	-	-	-	-	-	-	-	-	-	10.4	18.6	20.4	49.5(1)
Aquilaria beccariana	-	-	-	-	-	-	-	-	-	6.3	4.7	7.0	17.9(4)
Baccaraea tetrandra	-	-	-	-	-	-	-	-	-	4.2	2.3	7.8	14.3(5)
Lati River													
Sonneratia caseolaris	13.9	20.5	55.2	89.6(1)	-	-	-	-	-	-	-	-	
Syzygium lineatum	11.1	28.8	12.8	52.7(2)	11.8	19.7	21.7	53.2(2)	11.1	20.0	6.7	37.9(3)	
Nauclea officinalis	16.7	20.5	11.6	48.8(3)	13.7	14.4	15.9	44.0(3)	7.4	4.4	8.2	20.1(4)	
Heritiera littoralis	8.3	4.1	3.1	15.6(4)	7.8	3.0	3.8	14.6(5)	-	-	-	-	
Tree species in riparian habitats are dominated by *Sonneratia caseolaris*, *Vitex pinnata*, *Cerbera manghas*, *Brownlowia argenteata*, *Heritiera littoralis*, *Syzygium lineatum*, *Nuclea officinalis*, *Xylocarpus granatum*, *Syzygium sp.*, and *Avicennia alba*. Poles stage is dominated by *Oncosperma horridum*, *Symphlocos celastrifolia*, *V. pinnata*, *H. littoralis*, *B. argenteata*, *S. caseolaris*, *Syzygium creaghi*, *S. lineatum*, *N. officinalis*, *X. granatum*, and *Rhizophora apiculata*. The sapling stage is dominated by *Glochidion littorale*, *Ardisia elliptica*, *Croton oblongus*, *B. argenteata*, *H. littoralis*, *Disoolxym arborescens*, *S. creaghi*, *Barringtonia conoidea*, *S. lineatum*, *Fordia splendidissima*, and *X. granatum* (Table 4). Generally, no seedlings were found in the observation plots in the Lati River and Batu-Batu habitat because the riverbanks were often inundated with water. The land area was cover by shrubs, such as *Acroticum aureum*, *Etilgera sp.*, *Lygodium sp.*, *Pothos sp.*, *Scleria sp.*, *Adenia sp.*, *Pandanus sp.*, *Flagelaria sp.*, and *Derris sp.* Meanwhile, the forest floor on Saodang Kecil Island was mostly tightly closed by *Acanthus illicifolius*.

3.5. Trees strata

The average of total and lower branches height of trees in the Lati River and Buasin Cape were higher than in other habitats and formed a continuous canopy. Meanwhile, the average tree diameter and basal area in Saodang Kecil Island and Muara Guntung were higher relatively but with a discontinuous canopy. Trees in Batu-Batu clustered on land formed by watercourses so that the canopy that forms can create gaps between tree clusters. In general, tree species on river banks are relatively more diverse with lower canopy heights than those farther from the riverbanks. The habitat in Bebanir Lama is a riparian forest and a small part of the mangrove forest. The leaves and shoots of *Sonneratia alba*, which grow on the riverbanks, are the main food source for the proboscis monkeys. The leaves are continuously eaten by monkeys so that the *S. alba* tree conditions become dwarfed.
3.6. Discussions

The proboscis monkey’s habitat in the Berau Delta consists of two types of habitat: mangrove forests in the coastline and riparian forests, which are relatively far from the coast. Their habitat is not only found in coastal wetlands but is also found living far on land 250-300 km inland from the coast [14]. Although they are far from the coast, their habitats are still associated with waters [15], such as rivers, swamps, and lakes. Apart from living in mangrove and riparian forests, proboscis monkeys are also reported to live in peat swamp forests [16]; [17], freshwater peat swamp forest [18], galam swamp forest [3], mixed Dipterocarp forest [19], kerangas forest [16], rubber forest and limestone/karst forest [20].

Their habitat in the Berau Delta is geomorphologically similar to the Mahakam Delta habitat, which is both fertile areas formed by silt from large river flows [2]. The Berau Delta is the estuary of the Berau River (292 km), which is the main river of the Segah River (152 km) and the Kelay River (254 km), while the Mahakam Delta is the estuary of the Mahakam River (980 km). Proboscis monkeys can be found from the mouth of the river and along the river banks. The river is a transportation route in Kalimantan, which is the source of many threats and disturbances, including hunting, industrial development, and fisheries [21].

Proboscis monkeys prefer the riparian habitat type in the Berau Delta. This habitat is supported by a higher plant species richness than other habitat types. The richness of plant species in riparian habitats occurs due to several reasons. First, the habitat’s location is in an intermediate area between the wetlands on the riverbank and the dry land, which forms an ecotone area with a combination of the two types of forest. Second, the frequency of flooding and altitude also affects the richness of plant species in riparian forests. Riparian forests with regular flooding have high plant species richness and species that are more tolerant of their habitat’s resilient conditions [22], that is, they can adapt to food conditions. Third, the distribution and abundance of plant species are also related to topographic variations. The riparian habitat is significantly richer in plant species than montane forest and hill forest [23].

Proboscis monkeys are arboreal primates meaning that most of their time is spent in the trees. The ideal habitat for proboscis monkeys is to have an interconnected canopy where there are many trees of large diameters and branches, such as along the Lati River and in Buasin Cape. In contrast, other riverbank habitats have been fragmented and converted into fishponds, settlements, coal mining facilities, and docks. These conditions create forest gaps that are too far away and will be challenging to jump over, so the proboscis monkeys have to come down to the ground to move between patches of habitat. Large trees are needed to support their relatively large bodyweight of the proboscis monkeys compared to several other Colobinae subfamilies. Adult male proboscis monkeys can weigh up to 22.5 kg, while females can weigh 11.0 kg [24]. Proboscis monkeys often break trees when they jump or move and cause monkeys to fall from trees and suffer injuries. The examination of several specimens of proboscis bones in the museum showed many fracture marks [25].

Large and tall trees on the river banks are essential for the proboscis monkeys because their daily routine generally brings them back to the riverbank’s sleeping trees in the late afternoon [2]. The selection of sleeping trees by the river is a strategy to; avoid land predators [26], seek out conducive

Table 5. The tree stands condition of several proboscis monkey’s habitat type in Berau Delta.

Parameter	Riverine	Mangrove
Height (x+SD)(m)	Lati	Guntung
	14.5±4.9	9.7±4.0
Range	6-26	5-23
TBC (x+SD)(m)	Saodang	Buasin
	6.6±3.2	4.8±3.2
Range	1.5-18	0.15-18
dbh (x+SD)(cm)	Batu	21.5±7.4
	21.1±12.9	19.3±15.1
Range	10-85	10-95
Basal area (m²/ha)	Bebanir	10-40
	Lama	11.3
Canopy	Guntung	19.4
	Estuary	5.1
	Buasin	

Continue

continue dis-continue dis-continue dis-continue dis-continue
temperatures, allow for easier foraging [27], enhance social communication between groups [28], and allow for efficiency in movement [29].

Proboscis monkeys generally prefer sleeping trees that are close to the river bank (5-35 m), consisting of large trees (height, diameter, the diameter of the lowest branches) with primary branches connected to the surrounding trees, and dense undergrowth [30]. Sleeping trees also have branches closest to the opposite river bank, so that if there is a threat from land predators, they can quickly jump to the other side of the river [26] [31]. Several of proboscis monkey groups often use sleeping trees close to each other, and even two groups use the same sleeping tree. This behavior reflects an effort for them to cooperate to protect against potential [17].

The different habitat types provide different food plants [32]. Proboscis monkeys eat not only the leaves and plants fruits [33] but also flowers, seeds [34], bark, crabs [35], small animals [36], insects [16], and termites of the Microcerotermes distans species [21]. The diversity of plant species in riparian forests provides various food plants for the proboscis monkeys. The monkeys consume several plants to balance nutrients, where the nutrients that are not contained in certain plants will be fulfilled from other plants [37]. The quality and quantity of feed needs will vary depending on species, sex, age, physiological function, season, weather, and geographical conditions [38]. The primary food sources for proboscis monkeys in the Berau Delta are the leaves of Sonneratia caseolaris and S. alba. S. caseolaris species are more common in riparian habitats, which are relatively far from the coastline with lower salinity levels, such as in the areas of Lati River, Besing Island, Batu-Batu, Perangat Cape, and Saodang Kecil Island. Sonneratia alba is mostly in tidal areas with high salinity, such as in Semanting Bay, Guntung Estuary, Radak, and Bebanir Lama.

4. Conclusion
Proboscis monkeys generally inhabit two types of forest, riparian and mangrove. Both forest types are relatively dominant in the Berau Delta. The diversity of plant species in the habitat provides a source of food, while the vegetation's structure and composition support the monkeys' movement and daily activities.

Acknowledgments
We express our sincere thanks to Yayasan Arsari Djoyohadikusumo for benefitted funding to this research. We are grateful to Priyono, staff Herbarium Wanariset, for his support along with our field study and plant identification. Lastly, thank you to Mr. Tom Walsh for his kind effort to proofread the early manuscript.

References
[1] Boonratana R 2013 Fragmentation and its significance on the conservation of proboscis monkey (Nasalis larvatus) in the Lower Kinabatangan, Sabah (North Borneo) Primates in Fragments: Complexity and Resilience, Developments in Primatology: Progress and Prospects ed L K M and C A Chapman (New York: Springer) pp 459–75
[2] Atmoko T 2015 Habitat dan penyebaran bekantan di Delta Mahakam, Kalimantan Timur Perjuangan Melawan Kepunahan ed H S Alikodra, M Bismark and M A Sondjoto (Bogor: IPB Press) pp 119–40
[3] Iskandar S, Alikodra H S, Bismark M and Kartono A P 2017 Status populasi dan konservasi bekantan (Nasalis larvatus Wurmb. 1787) di hutan rawa gelam, Kalimantan Selatan J. Penelit. Hutan dan Konserv. Alam 14 pp 123–32.
[4] Manansang J, Traylor-Holzer K, Reed D and Leus K 2005 Indonesian Proboscis Monkey PHVA Indonesian (Apple Valley: IUCN/SSC Conserv. Breed. Spec. Gr.) p 76
[5] Meijaard E and Nijman V 2000 Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia Biol. Conserv. 92 pp 15–24
[6] Wardatutthoyyibah, Pudyatmoko S, Subrata S A and Imron M A 2019 The sufficiency of existed protected areas in conserving the habitat of proboscis monkey (Nasalis larvatus) Biodiversitas 20 pp 1–10.
[7] Harman L J and Braude S 2010 Conservation of small populations: Effective population sizes,
inbreeding, and the 50/500 rule An Introduction to Methods and Models in Ecology, Evolution, and Conservation Biology ed S Braude and S L Bobby (Princeton and Oxford: Princeton University Press) pp 125–38

[8] Boonratana R 2000 Ranging behavior of proboscis monkeys (Nasalis larvatus) in the Lower Kinabatangan, Northern Borneo Int. J. Primatol. 21 pp 497–518

[9] Susilowati A, Rachmat H H, Elfiati D, Kholibrina C R, Kusuma Y S and Siregar H 2019 Population structure of Cotylelobium melanoxylon within vegetation community in Bora Lumban Forest, Central Tapanuli, North Sumatra, Indonesia Biodiversitas 20 pp 1681–87

[10] Pielou E 1966 Shannon’s formula as a measure of specific diversity: Its use and misuse Am. Nat. 100 pp 463–65

[11] Chiaretti A, Bacaro G and Scheiner S M 2011 Old and new challenges in using species diversity for assessing biodiversity Philos. Trans. R. Soc. B 366 pp. 2426–37

[12] Bhadra A and Pattanayak S K 2017 Dominance is more justified than abundance to calculate Importance Value Index (IVI) of plant species Asian J. Sci. Technol. 8 pp 4304–26

[13] Bag S, Kumar S K and Tiwari M K 2019 An efficient recommendation generation using relevant Jaccard similarity Inf. Sci. (Ny). 483 pp 53–64

[14] Soendjoto M A 2005 Adaptasi Bekantan (Nasalis larvatus) terhadap Hutan Karet Studi Kasus di Kabupaten Tabalong Kalimantan Selatan (Bogor: Institut Pertanian Bogor) PhD thesis p 131

[15] Soendjoto M A, Alikodra H S, Bismark M and Setijanto H 2006 Aktivitas harian bekantan (Nasalis larvatus Wurmb) di hutan karet Kabupaten Tabalong, Kalimantan Selatan Biota 11 pp 101–9

[16] Salter R E, MacKenzie N A, Aken K M and Chai P K P 1985 Habitat use, ranging behaviour, and food habits of the proboscis monkey, Nasalis larvatus (van Wurmb), in Sarawak Primates 26 pp 436–51

[17] Matsuda I, Tuuga A and Higashi S 2010 Effects of water level on sleeping-site selection and inter-group association in proboscis monkeys: Why do they sleep alone inland on flooded days? Ecol. Res. 25 pp 475–82

[18] Yeager C P 1991 Possible antipredator behavior associated with river crossings by proboscis monkeys (Nasalis larvatus) Am. J. Primatol. 24 pp 61–66

[19] Bennett E L and Sebastian A C Social organization and ecology of proboscis monkeys (Nasalis larvatus) in mixed coastal forest in Sarawak Int. J. Primatol. 9 pp 233–55

[20] Soendjoto M A, Alikodra H S, Bismark M and Setijanto H 2005 Hubungan kehadiran bekantan (Nasalis larvatus) dengan perairan hutan karet di Kabupaten Tabalong, Kalimantan Selatan Enviro 5 pp 43–47

[21] Phillips Q and Phillips K 2016 Field Guide to The Mammals of Borneo and Their Ecology (England: John Beaufoy Publishing Ltd.) p 400

[22] Budke J C, Jarenkow J A and de Oliveira-Filho A T 2008 Tree community features of two stands of riverine forest under different flooding regimes in Southern Brazil Flora 203 pp 162-74

[23] Katovai E, Katovai D D, Edwards W and Laurance W F 2015 Forest structure, plant diversity and local endemism in a highly varied New Guinea landscape Trop. Conserv. Sci. 8 pp 284-300

[24] Nowak R M 1999 Primates of The World (Baltimore and London: The Johns Hopkins University Press) p 224

[25] Schultz A H 1938 The relative weight of the testes in primates Anat. Rec. 72 pp 387–94

[26] Matsuda I, Tuuga A, Akiyama Y and Higashi S 2008 Selection of river crossing location and sleeping site by proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia Am. J. Primatol. 70 pp 1097–1101

[27] Bismark M 1981 Preliminary survey of the proboscis monkey at Tanjung Puting Reserve, Kalimantan Tigerpaper 8 pp 26

[28] Yeager C P 1993 Ecological constraints on intergroup association in the proboscis monkey (Nasalis larvatus) Trop. Biodivers. 1 pp 89–100

[29] Bernard H, Matsuda I, Hanya G and Ahmad A H 2011 Effects of river width on the selection of sleeping-site by proboscis monkeys (Nasalis larvatus) in Sabah Malaysia J. Trop. Biol. Conserv. 8 pp 9–12
[30] Bernard H, Matsuda I, Hanya G and Ahmad A H 2011 Characteristics of night sleeping trees of proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia Int. J. Primatol. 32 pp 259–67
[31] Feilen K L and Marshall A J 2014 Sleeping site selection by proboscis monkeys (Nasalis larvatus) in West Kalimantan, Indonesia Am. J. Primatol. 76 pp 1127–39
[32] Bismark M 2009 Biologi Konservasi Bekantan (Nasalis larvatus) (Bogor: Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam) p 132
[33] Yeager C P 1989 Feeding ecology of the proboscis monkey (Nasalis larvatus) Int. J. Primatol. 10 pp 497–530
[34] Matsuda I, Tuuga A and Higashi S 2009 The feeding ecology and activity budget of proboscis monkeys Am. J. Primatol. 71 pp 478–92
[35] Bismark M 1994 Ekologi Makan dan Perilaku Bekantan (Nasalis larvatus Wurmb) di Hutan Bakau TN Kutai Kalimantan Timur (Bogor: Institut Pertanian Bogor) PhD thesis p 190
[36] Hutchins M, Kleiman D G, Geist V and McDade M C 2003 Grzimek’s Animal Life Encyclopedia, 2nd edition. Volumes 12–16, Mammals I–V (Farmington Hills, MI: Gale Group) p 490
[37] Alikodra H S 2002 Pengelolaan Satwaliar Jilid 1 (Bogor: Yayasan Penerbit Fakultas Kehutanan Institut Pertanian Bogor) p 366
[38] Matsuda I 2008 Feeding and Ranging Behaviors of Proboscis Monkey Nasalis larvatus in Sabah, Malaysia (Hokkaido: Hokkaido University) p 113