Adaptation of Group A *Streptococcus* to Human Amniotic Fluid

Izabela Sitkiewicz¹,²*, Nicole M. Green¹,², Nina Guo¹,², Ann M. Bongiovanni³, Steven S. Witkin³, James M. Musser¹,²,³*

¹ Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America, ² Department of Pathology, The Methodist Hospital, Houston, Texas, United States of America, ³ Weill Medical College of Cornell University, New York, New York, United States of America

Abstract

Background: For more than 100 years, group A *Streptococcus* has been identified as a cause of severe and, in many cases, fatal infections of the female urogenital tract. Due to advances in hospital hygiene and the advent of antibiotics, this type of infection has been virtually eradicated. However, within the last three decades there has been an increase in severe intra- and post-partum infections attributed to GAS.

Methodology: We hypothesized that GAS alters its transcriptome to survive in human amniotic fluid (AF) and cause disease. To identify genes that were up or down regulated in response to growth in AF, GAS was grown in human AF or standard laboratory media (THY) and samples for expression microarray analysis were collected during mid-logarithmic, late-logarithmic, and stationary growth phases. Microarray analysis was performed using a custom Affymetrix chip and normalized hybridization values derived from three biological replicates were collected at each growth point. Ratios of AF/THY above a 2-fold change and P-value <0.05 were considered significant.

Principal Findings: The majority of changes in the GAS transcriptome involved down regulation of multiple adhesins and virulence factors and activation of the stress response. We observed significant changes in genes involved in the arginine deiminase pathway and in the nucleotide de novo synthesis pathway.

Conclusions/Significance: Our work provides new insight into how pathogenic bacteria respond to their environment to establish infection and cause disease.

Introduction

Group A *Streptococcus* (Streptococcus pyogenes, GAS) is an exclusively human, Gram-positive pathogen that causes a broad variety of diseases from mild pharyngitis and skin infections to necrotizing fasciitis, streptococcal toxic shock syndrome, and non-suppurative sequelae such as acute rheumatic fever or glomerulonephritis (for a review see [1]). Since the 1980’s, GAS has re-emerged as an important cause of severe invasive infections and is estimated to cause approximately 500,000 deaths each year globally despite available antibiotic treatment [2]. In the late 1800’s, GAS was identified as a causative factor of puerperal sepsis – a severe invasive infection in post partum women [3]. Due to advances in hospital hygiene, namely physicians washing their hands between deliveries, these types of GAS infections became less frequent. However, in the last three decades there has been a resurgence in GAS infections of the female urogenital tract and vulvovaginitis in pre-pubescent females, and invasive postpartum disease now accounts for approximately 2.2% of invasive GAS diseases [4]. Women with pre-existing throat infections or disrupted mucosal and skin barriers during pregnancy and delivery are particularly susceptible [4].

GAS strains are classified based on the amineterminal sequence of the M protein, a polymorphic cell surface adhesin and anti-phagocytic factor [1]. Among the various GAS serotypes, serotype M28 strains are a common cause of invasive disease and have an unusual propensity to cause vaginitis and postpartum infections [4–6]. Full-genome sequence analysis of an M28 strain provided the first insight into the underlying molecular mechanism for the ability of these strains to cause a disproportionate number of postpartum infections [5]. Green et al. identified a mobile genetic element, named Region of Difference (RD) 2, that was present in all serotype M28 strains analyzed and a subset of other M serotype strains that have been linked epidemiologically to maternal-neonatal infections [5]. Interestingly, RD2 shares extensive similarity with regions in group B *Streptococcus* (Streptococcus agalactiae,
GBS) [5,7], which is a common cause of female urogenital tract infections, and genes in groups C and G Streptococcus (Sitkiewicz I., Green NM., and Musser JM, unpublished) that can also cause severe invasive infections [8,9].

As mentioned previously, GAS is capable of causing a wide range of diseases by successfully colonizing a variety of anatomical sites. Transcriptome analyses of GAS grown in blood, saliva, epithelial cells, and polymorphonuclear leukocytes (PMNs) have revealed that GAS is extremely adaptable and modifies its transcriptome based on environmental signals [10–13]. To establish infection in the female urogenital tract, GAS must survive and replicate in a bacteriostatic host environment. The ability of GBS to persist and replicate in human amniotic fluid (AF) [14] is an important contributing factor to its ability to cause severe pre- and postpartum infections, despite AF having antibiotic properties towards other bacterial species [15]. Because M28 GAS strains contain the RD2 element and cause a disproportionate number of postpartum infections, we hypothesized that serotype M28 GAS would be able to survive and persist in human AF, similarly to GBS. To initially characterize the interaction of pathogenic GAS within this specific host niche, we used an ex vivo strategy to analyze the global transcriptional response of GAS grown in human AF compared to GAS grown under standard laboratory conditions.

Materials and Methods

Bacterial strains and routine growth

GAS strains MGAS6180 (serotype M28, RD2+) [5], and MGAS 5005 (serotype M1, RD2-) [16] were grown in Todd Hewitt medium with 0.5% yeast extract or on TSA II plates supplemented with 5% sheep blood (BD Diagnostics) at 37°C in 5% CO2.

Growth of bacteria in AF

Human (AF) was collected from pregnant women seen at The Methodist Hospital, Houston, Texas, or Weill Medical College of Cornell University in New York City. Samples were collected in accordance with an exempt human subjects protocol approved by the Institution Review Board of each institution. The study involved collection of existing diagnostic specimens routinely collected during clinical procedures as amniocenteses and would have been otherwise discarded. Specimens were stripped of all identifiers and processed in a manner that subjects cannot be directly or indirectly identified.

AF samples were tested to determine if they supported bacterial growth. GAS cells were grown overnight in THY, washed twice in sterile PBS, and re-suspended in PBS to 10^6. Ten ml of the 10^6 bacteria suspension were diluted further in PBS and were used to inoculate each 250 ml sample of heat inactivated (95°C, 5 min) AF, resulting in a final average inoculum of ~10^4 CFU/ml. Samples were incubated at 37°C with 5% CO2 for 24 h. To avoid THY
carryover that might bias the growth results, bacteria were diluted 1:50 or 1:25 into a fresh aliquot of AF after the first 24 h. Aliquots were removed, serially diluted, and plated on TSA II plates (BD Diagnostics) every hour for the first 12 h and every 12 h thereafter for CFU enumeration. AF samples that supported growth of GAS were pooled and used for the microarray analysis. Samples were collected from three pooled AF cultures (biological replicates) after 3.5, 5, and 9 hours of growth in AF, which corresponds to bacteria in mid log (ML) growth phase, late log (LL, time point corresponding with the transition from log to stationary phase) and stationary (S) phase, respectively. Bacteria grown in THY laboratory medium were collected in ML, LL and S phase from three independent cultures (biological replicates).

RNA isolation
The bacteria used for RNA isolation were mixed with 2 volumes of RNA Protect reagent (Qiagen) and cells were collected by centrifugation and stored at −80°C until processing. RNA from GAS was isolated as described previously [17]. All samples were processed at the same time to minimize experimental error. Reverse transcription, cDNA fragmentation, and labeling for all samples were performed as described previously [17].

Microarray analysis
Microarray analysis was performed using a custom-made Affymetrix chip [18] that contained 1929 redundant probes representing the core GAS chromosome and 289 redundant probes unique for MGAS6180. A total of 1765 MGAS6180 genes were represented on the array. Chip hybridization and data acquisition and processing were performed as described [19]. Samples used for microarray analysis were collected from cultures in THY and AF at mid logarithmic (ML), late logarithmic (LL) and stationary (S) growth phases. The average expression values for each transcript in AF in each growth phase was divided by the average expression in THY to generate AF/THY ratios and degree of changes. Genes that had a two-fold change of expression or greater in AF and were statistically significant (P<0.05) were included in the analysis.

The data is deposited in MIAME-compliant GEO database under accession number GSE19985.

Figure 3. Dynamics of gene expression of GAS genes in ML, LL, and S phase in response to AF. Each dot represents a single transcript and its coordinates are the average level of expression in THY (x-axis) and AF (y-axis). The dotted lines denote 2-fold change in transcription. Transcripts below the lower dotted line are more highly expressed in THY, transcripts above the upper dotted line are more highly expressed in AF. Thick black lines denote 10-fold differences in transcript level between the studied conditions.

doi:10.1371/journal.pone.0009785.g003
Results and Discussion

Characterization of GAS growth in AF

Human AF is a nutritionally poor environment. AF is composed primarily of water and low amounts of sugars and proteins, levels of which decrease as the pregnancy nears term [20]. Recent detailed compositional analysis of AF revealed the presence of multiple proteins (serum albumin, transferrin, α1-Antitripsin, α2-fetoprotein, calpain 6, pinin, type XIII collagen, immunoglobulins) [21], glucose, fructose, lipids, hormones (estrogen and progesterone), and epithelial cells. Sources of AF are predominantly fetal urine (~900 ml per day influx at term), tracheal fluid, fetal lung fluid, and water and solvents transferred between AF and fetal blood in placenta [22].

GAS rarely causes septic abortions [4]; however, after disruption of membranes, release of AF can change the environment of the female genital tract by increasing pH from acidic to neutral/slightly alkaline and affect balance of natural bacterial vaginal flora. GAS grows better in neutral than acidic pH [23], therefore pH change can promote growth of colonizing pathogens and postpartum infection. Because GAS is able to cause postpartum infections suggests that it is able to survive in an environment containing AF.

Individual specimens of AF collected from women at various stages of pregnancy can vary in their bacteriostatic properties, primarily due to the activity of lysozyme, immunoglobulins, and β-lactamase [24–26]. In general, samples from early stage pregnancies are less bacteriostatic than samples from late stage pregnancies [27]. In addition, bacteriostatic properties of AF also depend on the presence of meconium and iron availability [20]. Often the presence of meconium in AF is used to predict the likelihood of the mother developing a postpartum or intrapartum bacterial infection [29]. Therefore we wanted to determine if GAS can survive in bacteriostatic AF and if so, what transcriptional changes it undergoes to achieve this.

To determine if AF had antimicrobial properties towards GAS, we tested samples collected from separate individuals at different stages of pregnancy. About half of the tested specimens did not support the growth of GAS (Fig 1A). Observed inhibition of GAS growth did not correlate with the gestation period (data not shown), and was instead patient specific and influenced by unknown factors. Visual inspection of AF specimens did not allow determination of the presence of meconium. Growth of GAS in AF was not restricted to the serotype M28 strain, as serotype M1 strain MGAS5005 grew at a comparable density to the M28 strain.

Table 1. Differential expression of genes encoding known GAS virulence factors upon contact with AF.

Locus	6180	SF370	ML	LL	S	Descriptions
M28_Spy0105	-4.20	-12.76	-28.84		Fibronectin-binding protein	
M28_Spy0107	-2.49	-9.14	-7.83		Fibronectin-binding protein	
M28_Spy0109	-2.33	-5.79	-5.36		Fibronectin-binding protein	
M28_Spy0113	-2.49	-2.64	-16.21		Collagen adhesion protein	
M28_Spy0754	-2.41	-1.82	-2.83		Collagen-like surface protein	
M28_Spy1675	167.84	-13.82	-2.83		Collagen-like surface protein	
M28_Spy1696		-2.90	-5.03		Laminin-binding surface protein	
M28_Spy1702		-21.63	-3.84		M protein	
M28_Spy1715	-53.54	-8.97	-3.47		Fibronectin-binding protein	
M28_Spy1716	-75.85	-15.05	-5.01		Fibronectin-binding protein	
M28_Spy1336	-53.13	-90.92	-133.85		R28 protein	
M28_Spy0139		-45.03	2.68		Streptolysin O	
M28_Spy0540		-2.06			Streptolysin S precursor	
M28_Spy0541		-12.20			Streptolysin S biosynthesis protein	
M28_Spy0542		-18.65			Streptolysin S biosynthesis protein	
M28_Spy0543		-15.04			Streptolysin S biosynthesis protein	
M28_Spy0544		-15.65			Streptolysin S biosynthesis protein	
M28_Spy0545		-15.06			Streptolysin S biosynthesis protein	
M28_Spy0546		-18.88			Streptolysin S export ATP-binding protein	
M28_Spy0547		-16.89			Streptolysin S export protein	
M28_Spy0548		-14.21			Streptolysin S export protein	
M28_Spy0180		-2.59			Enterotoxin	
M28_Spy0969		2.53			Enterotoxin	
M28_Spy0953		15.18	2.52		cAMP factor	
M28_Spy0968		2.26			Streptodornase (EC 3.1.21.1)	
M28_Spy0329		-16.21		-2.50	Endopeptidase lactopeptidin	
M28_Spy1700		-47.34	-2.64		CSA peptidase precursor (EC 3.4.21.)	

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium.

doi:10.1371/journal.pone.0009785.t001
in one of the individual growth-positive specimens (data not shown). In conclusion, unlike many other bacteria, GAS can survive and grow in some AF specimens, which could have important implications for its ability to cause postpartum infections.

To further characterize the growth of GAS in AF, we pooled all AF specimens that supported growth of GAS and performed growth curves with two different starting inocula and compared it to GAS grown in laboratory medium (THY) (Fig. 1B). Interestingly, GAS grown in AF reached similar density (around 2×10^7 CFU/ml) in stationary phase, despite a three-fold difference in starting inocula. Similar cell density was observed after 48h of incubation in AF. This suggests that the limited nutrient availability of AF could not sustain higher density growth.

Microarray analysis: general quantitative trends in response to AF

To characterize the transcriptional response of GAS grown in AF we utilized an ex vivo microarray approach that has been used previously to characterize the interactions of GAS with various environments such as blood and saliva [10,11]. We detected 859 differentially expressed genes fulfilling the criteria of differentially expressed gene ($P < 0.05$), 49% of genes present on the array). Over 250 genes were differentially expressed in ML and LL phases and the number of differentially expressed genes increased and reached maximum in S phase (Figures 2 and 3). The majority of these genes in ML and LL phases were up regulated rather than down regulated. This differs from the response of GBS grown in AF [19], in which the majority of genes are down regulated when compared to laboratory conditions and the bulk of changes are observed during the transition from

Gene	ML	P	LL	S	Putative function	note
M28_Spy1304	10.19	6.76	16.10	+	Hypothetical Protein	
M28_Spy1305	2.39	2.43	1.75	+	Hypothetical membrane protein	
M28_Spy1306	10.06	7.60	2.47	+	Cell surface protein	Virulence
M28_Spy1307	5.13	3.98	1.08	+	Hypothetical exported protein	Virulence
M28_Spy1308	5.52	3.81	+		Hypothetical exported protein	Virulence
M28_Spy1309	1.54	1.70	+		Hypothetical protein	
M28_Spy1310	3.41	3.13	1.78	+	Membrane protein	
M28_Spy1311	Not detected					
M28_Spy1312	Not detected					
M28_Spy1313	8.70	6.23	2.28	+	Hypothetical membrane protein	
M28_Spy1314	5.17	4.37	3.00	+	Hypothetical protein	
M28_Spy1315	5.69	7.31	3.42	+	Hypothetical protein	
M28_Spy1316	9.67	8.45	6.03	+	Hypothetical protein	
M28_Spy1317	35.90	12.95	6.67	+	Hypothetical protein	
M28_Spy1318	3.81	2.69	6.31	+	Hypothetical protein	
M28_Spy1319	Not detected					
M28_Spy1320	11.20	36.55	10.89	+	Hypothetical cytosolic protein	
M28_Spy1321	Not detected					
M28_Spy1322	6.26	4.41	2.37	+	FtsK SpoIIE family	
M28_Spy1323	9.05	6.88	1.61	+	Hypothetical cytosolic protein	
M28_Spy1324	5.80	7.41	2.68	+	Hypothetical cytosolic protein	
M28_Spy1325	3.99	2.28	1.72	+	Cell surface protein	Virulence
M28_Spy1326	2.18	1.08	−1.29	+	M like protein	Virulence
M28_Spy1327	18.65	6.43	4.84	+	Hypothetical cytosolic protein	
M28_Spy1328	Not detected					
M28_Spy1329	12.91	5.16	2.98	+	Transcriptional Cro CI regulator	
M28_Spy1330	1.80	1.75	2.23	+	Transcriptional Cro CI regulator	
M28_Spy1331	2.22	2.51	4.28	+	Hypothetical cytosolic protein	
M28_Spy1332	2.42	2.50	8.66	+	Hypothetical exported protein	Virulence
M28_Spy1333	1.89	1.69	5.46	+	Hypothetical cytosolic protein	
M28_Spy1334	1.74	2.35	6.34	+	DNA-damage-inducible protein J	
M28_Spy1335	1.20	1.36	3.20	+	Transposase	
M28_Spy1336	−53.13	−90.92	−133.85	+	R28 Cell surface protein	Virulence
M28_Spy1337	−5.18	−8.50	−7.93	+	Transcriptional regulator	

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium. $+: P < 0.05$. doi:10.1371/journal.pone.0009785.t002
Adaptation of GAS to Human AF

The complete list of transcriptional changes in GAS is shown in Table S1 and comparison of gene expression between GAS and GBS in Table S2.

Table 3. Differential expression of stress response genes in response to AF.

Locus	SF370	ML	LL	S	Descriptions
M28_Spy0317	SFy0395	clpP	2.01	2.64	2.04 proteolytic subunit clpP
M28_Spy0659	SFy0873	clpE	-	2.05	GTP pyrophosphokinase
M28_Spy0671	clpX	-	6.23		ATP-binding subunit clpX
M28_Spy0674	SFy0888	clpL	3.29	6.32	ATP-binding subunit clpL
M28_Spy0943	SFy1260	-	2.66		General stress protein, Gls24 family
M28_Spy0945	SFy1262	-	2.59		General stress protein, Gls24 family
M28_Spy1286	SFy1557	msrA	3.73	2.41	Peptide methionine sulfide reductase msrA
M28_Spy1503	SFy1780	-	2.71		Universal stress protein family
M28_Spy1674	SFy1981	relA	-102.42	-17.90	Universal stress protein family
M28_Spy1747	SFy2070	groEL	2.34		60 kDa chaperoninGroEL
M28_Spy1748	SFy2072	groES	2.36		10 kDa chaperoninGroES
M28_Spy1751	SFy2077	csp	2.24	8.50	Cold shock protein

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium.

doi:10.1371/journal.pone.0009785.t003

Table 4. Differential expression of selected regulatory systems in response to AF.

Locus	SF370	ML	LL	S	Descriptions
M28_Spy0104	SFy0124	rofA	-2.09	-3.56	-2.69 Transcriptional regulator RofA
M28_Spy0122	SFy0146	sloR	-11.53	-13.76	-2.69 Transcriptional regulator pfoR
M28_Spy0198	SFy0242	fasB	-3.31		Sensory transduction protein kinase FasB
M28_Spy0199	SFy0244	fasC	-2.08	-2.09	-4.77 Sensory transduction protein kinase FasC
M28_Spy0200	SFy0245	fasA	-3.61		Response regulator FasA
M28_Spy0356	SFy0450	msrR	3.96		Iron-dependent repressor
M28_Spy0412	SFy0514	ccpA	-3.65		Catabolite control protein A
M28_Spy0465	SFy0584	ptsK	2.66		HPR(SER) kinase
M28_Spy0761	SFy1061	-	-4.83		Two-component sensor kinase yesM
M28_Spy0762	SFy1062	-	-3.19		Two-component response regulator yesN
M28_Spy0807	SFy1106	dpiA	2.09		Transcriptional regulatory protein dpiA
M28_Spy0808	SFy1107	dpiB	2.16		Sensor kinase dpiB
M28_Spy0919	SFy1236	ciaH	-3.35		Sensor protein ciaH
M28_Spy0920	SFy1237	ciaR	-2.58		Transcriptional regulatory protein ciaR
M28_Spy1215	SFy1549	ahrC2	-16.22		Arginine repressor, argR
M28_Spy1346	SFy1587	-	-4.45		Two-component response regulator yesN
M28_Spy1347	SFy1588	-	-3.03		Two-component sensor kinase yesM
M28_Spy1373	SFy1621	yvqC	2.05		Two-component response regulator yvqC
M28_Spy1374	SFy1622	yvqE	2.28	3.93	Two-component sensor protein yvqE
M28_Spy1708	SFy2026	ilh	-1.96		Two component system histidine kinase
M28_Spy1709	SFy2027	irr	-1.58		Two-component response regulator

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium.

doi:10.1371/journal.pone.0009785.t004

Expression of virulence factors

Because GAS causes severe invasive postpartum diseases, we were interested in determining which virulence factors exhibited a logarithmic to stationary phase [19].
change in expression in response to AF. Surprisingly, with the exception of CAMP factor, streptodornase, and one of the enterotoxins (Table 1), we did not detect up regulation of virulence factor expression. However, we did detect massive down regulation of genes encoding proteins involved in adhesion, such as multiple fibronectin, collagen and laminin binding proteins, M protein, the gene encoding R28 protein (M28_Spy1336), and streptolysin S. Down regulation of multiple adhesins and capsule was observed in GBS when grown in AF [19].

R28 is an adhesin encoded by the RD2 element present in MGAS6180 and several other GAS strains [5]. It is a known virulence factor that increases attachment of GAS to cervical cells [31]. Its down regulation might be connected to down regulation of M28_Spy1337, which encodes a putative regulator; however, this has yet to be tested experimentally. In addition to R28, we observed an increase in transcription levels for multiple genes encoded by RD2 (Table 2). The RD2 element has been suggested to be involved in pathogenesis and adaptation to specific environments [5]. Interestingly, a large number of RD2 genes differed in their expression among biological replicates; therefore the calculated P value in many cases was greater than 0.05.

Stress response of GAS and GBS to AF

In contrast to GBS, which does not increase transcription of genes encoding proteins involved in the stress response [19], GAS

Table 5: Differential expression of selected genes responsible for transport and metabolism of carbohydrates.
6180
M28_Spy0757
M28_Spy0759
M28_Spy0958
M28_Spy1036
M28_Spy1037
M28_Spy1039
M28_Spy1041
M28_Spy1044
M28_Spy1045
M28_Spy1046
M28_Spy1047
M28_Spy1048
M28_Spy1349
M28_Spy1350
M28_Spy1351
M28_Spy1354
M28_Spy1438
M28_Spy1440
M28_Spy1441
M28_Spy1442
M28_Spy1443
M28_Spy1444
M28_Spy1445
M28_Spy1622
M28_Spy1624
M28_Spy1625
M28_Spy1626
M28_Spy1627
M28_Spy1628
M28_Spy1629
M28_Spy1668
M28_Spy1767
M28_Spy1768

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium.
doi:10.1371/journal.pone.0009785.t005
activates multiple genes involved in this process. We observed increased transcription of the genes encoding proteolytic complex composed of ATPase and catalytic subunits (clpP, clpE, clpX, and clpL), known to be stress effectors in streptococci [32,33], the GroEL and GroES chaperons, members of the Gls24 family of stress proteins (stress and starvation inducible genes in Enterococcus faecalis, [34]), and a putative GTP pyrophosphokinase (Table 3). Expression of the gene M28_Spy1562 that encodes a putative stress protein, was dramatically decreased in AF; however, its function in GAS is unknown. We also observed lowered expression of the relA gene which is major regulator of stringent control in GAS [35].

Regulatory events during growth in AF

We observed a large number of significant changes in transcription of regulatory genes (Table S1). Because the exact functions of many of these are unknown, it is impossible to predict the significance of these changes. However, we did detect changes in expression of known GAS regulators (Table 4) such as RofA/RALP that are involved in the regulation of virulence factor expression, namely adhesins [36]. Down regulation of relA in response to AF might be partially responsible for the observed decreases in the transcription of the genes encoding fibronectin binding proteins. The decreased gene expression of the regulator absC.2 may be responsible for the observed changes in expression of genes involved in arginine metabolism (see below). Two other differentially expressed regulators were recently shown to be involved in GAS pathogenesis. The first, MtsR, is a regulator of ion transport and is involved in the development of necrotizing fasciitis [37,38]. The second, CcpA, links GAS virulence and carbohydrate metabolism [39]. In addition to individual regulators, we detected differential expression of seven (of 13) two component systems (TCSs) encoded by GAS. In the absence of regulation by alternative sigma factors in GAS, it is believed that concerted activity of regulons and TCSs is responsible for reaction of GAS to the environment. FasBCA and ihk/irr were shown to be involved in regulation of GAS pathogenesis. FasBCA controls

Table 6. Differential expression of genes involved in the transport and metabolism of amino acids, peptides, and amines.
6180
Proteases
M28_Spy0463
M28_Spy0470
M28_Spy0471
M28_Spy0572
M28_Spy1136
M28_Spy1397
M28_Spy1565
M28_Spy1744
M28_Spy1766
Arginine metabolism
M28_Spy0575
M28_Spy1176
M28_Spy1177
M28_Spy1208
M28_Spy1209
M28_Spy1210
M28_Spy1211
M28_Spy1213
Branched chain amino acids
M28_Spy0266
M28_Spy0693
Di- and oligopeptide transport
M28_Spy1689
M28_Spy1690
M28_Spy1691
M28_Spy1692
M28_Spy1693
M28_Spy0245
M28_Spy0246
M28_Spy0247
M28_Spy0248

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to expression in THY medium.
doi:10.1371/journal.pone.0009785.t006
expression of streptokinase, strepoylsin S, and fibronectin binding proteins [39,40]. The Ihk/Irr system is involved in GAS survival upon contact with human PMNs [12]. Circuits regulated by two other two component systems, M28_Spy0161/2 (Spy1061/2 in SF370 strain) and M28_Spy0607/8 (Spy1106/7 in SF370 strain), were studied by microarray analysis [17] and were shown to be involved in regulation of genes involved in carbohydrate and malate utilization, respectively. M28_Spy0919/20, M28_Spy1346/7 and M28_Spy1373/4 (Spy1236/7, Spy1587/8, Spy1621/2 in SF370 strain, respectively) have not been characterized thus far.

Metabolic adaptation to AF environment

A recently performed transcriptional analysis of GBS grown in AF revealed dramatic changes in expression of genes that control metabolism of carbohydrates, amino acids, and nucleotides [19], which presumably reflects an adaptive response to limited nutrient availability. We observed similar trends in the metabolic response of GAS to AF, with the majority of differences occurring in expression of genes involved in carbohydrate utilization (Table S2). In contrast to GBS that up regulates genes involved in carbohydrate utilization, GAS down regulates genes belonging to this category. Clear examples are the M28_Spy1036-1048 (mal genes), M28_Spy1349-1354, M28_Spy1438-1445 (lac.1 genes), and M28_Spy1622-1629 (lac.2 genes) loci (Table 5). The Mal locus has been shown to be involved in GAS persistence in the oropharynx [41], and lac loci are not only involved in fermentation and energy production via the tagatose pathway, but also link metabolism and the regulation of virulence [42].

Another category of metabolic genes affected by growth in AF were genes involved in protein and amino acid utilization. We observed differential expression of multiple proteases, and di- and oligopeptide transport systems (Table 6). Similarly to GBS, we observed up regulation of genes involved in uptake and utilization of branched chain amino acids (BCAA, valine, leucine, and isoleucine). GBS is auxotrophic in respect to BCAA and mobilizes
all transport systems to maximize utilization from AF [19]; GAS could possibly employ the same mechanism to maximize nutrient utilization.

The most dramatic changes in gene expression were observed in genes encoding enzymes of the arginine deiminase pathway, which were down regulated almost 900-fold upon contact with AF (Table 6). The arginine deiminase pathway allows utilization of arginine as a carbon and energy source [43] and plays a role in the modification of the environmental acidity [44,45]. Arginine deiminase from the GAS Manfredo strain is also a potent inhibitor of the proliferation of peripheral blood mononuclear cells [46]. However, arginine deiminase is not only an intracellular enzyme.

Table 7. Differential expression of selected genes involved in nucleotide metabolism upon contact with AF.

Locus	Description
M28_Spy0022	Phosphoribosylamidazole-succinocarboxamide synthase
M28_Spy0024	Amidophosphoribosyltransferase
M28_Spy0026	Phosphoribosylglycinamide formyltransferase
M28_Spy0027	Phosphoribosylamidazolecarboxamide formyltransferase
M28_Spy0029	Phosphoribosylamine-glycine ligase
M28_Spy0030	Phosphoribosylamidazolocarboxylase carboxyltransferase
M28_Spy0031	Phosphoribosylamidazole carboxylase NCAIR mutase
M28_Spy0032	Adenylate kinase
M28_Spy0033	Adenylosuccinate synthetase
M28_Spy0034	Deoxyuridine 5'-triphosphate nucleotidohydrolase
M28_Spy0035	Uracil phosphoribosyltransferase
M28_Spy0036	Ribonucleoside-diphosphate reductase beta chain
M28_Spy0037	Nrdl protein
M28_Spy0038	Ribonucleoside-diphosphate reductase alpha chain
M28_Spy0039	Cytidylate kinase
M28_Spy0040	Uricase
M28_Spy0041	Carbamoyl-phosphate synthase small chain
M28_Spy0042	Carbamoyl-phosphate synthase large chain
M28_Spy0043	5'-nucleotidase
M28_Spy0044	Thymidylate synthase
M28_Spy0045	Purine nucleoside phosphorylase
M28_Spy0046	Orotidine 5'-phosphate decarboxylase
M28_Spy0047	Orotate phosphoribosyltransferase
M28_Spy0048	Dihydroorotase
M28_Spy0049	Adenine phosphoribosyltransferase
M28_Spy0050	Ribose-phosphate pyrophosphokinase
M28_Spy0051	GMP reductase
M28_Spy0052	Xanthine phosphoribosyltransferase
M28_Spy0053	Xanthine permease
M28_Spy0054	Anaerobic ribonucleoside-triphosphate reductase
M28_Spy0055	Formate–tetrahydrofolate ligase
M28_Spy0056	Nucleoside-binding protein
M28_Spy0057	Uridine kinase
M28_Spy0058	Ribonucleoside-diphosphate reductase beta chain
M28_Spy0059	Dihydroorotate dehydrogenase
M28_Spy0060	Guanine-hypoxanthine permease
M28_Spy0061	Uridine phosphorylase
M28_Spy0062	CTP synthase
M28_Spy0063	Formate–tetrahydrofolate ligase
M28_Spy0064	Anaerobic ribonucleoside-triphosphate reductase activating protein
M28_Spy0065	Anaerobic ribonucleoside-triphosphate reductase
M28_Spy0066	Inosine-5'-monophosphate dehydrogenase

Values represent fold change in expression in AF at ML, LL, and S growth phases compared to the expression in THY medium.
involved in the aforementioned processes. It can be also found on the GAS cell surface [47] and antibodies against this protein have been recently reported to protect mice against GAS infection (Walker MJ, Henningham A, Cork A, Cole JN, Ramachandran V et al. (2008) Group A Anchorless Surface proteins. XVII Lancefield International Symposium on Streptococci and Streptococcal Diseases P92; Henningham A, Batzloff M, Cole JN, Gillen C, Hartas J et al. (2008) Protection Against lethal Streptococcus pyogenes challenge following vaccination with anchorless cell wall-associated proteins. XVII Lancefield International Symposium on Streptococci and Streptococcal Diseases P54). It is possible that the lack of arginine deiminase on the surface is linked to decreased recognition by the host immune response, which would be consistent with the observed down regulation of adhesins and other major surface proteins. Interestingly, fetal urine (which is a major component of AF) flow and composition is modulated by arginine levels [22], therefore bacterial arginine metabolism could be linked to AF dynamics.

Arginine metabolism is linked via carbamate kinase to another pathway – nucleotide synthesis (Figure 4). We observed dramatic up regulation of genes involved in purine and pyrimidine nucleotide biosynthesis pathways and down regulation of genes encoding enzymes involved in salvage pathways (Table 7). The extent of changes in GAS correlates well with changes detected in GBS [19], and almost all of the enzymes in the nucleotide metabolic pathways undergo the same directional changes (Figure 4), what suggests direct influence of the AF environment.

Samant et al. [48] recently showed that multiple enzymes involved in nucleotide metabolism are essential for growth of Escherichia coli in human serum, and a bacterial growth defect can be rescued by the addition of nucleotides to the serum. To test if a lack of nucleotides or arginine/ornithine in the AF is a growth limiting factor, we tested growth of GAS in AF with the addition of selected amino acids and nucleotides (arginine, ornithine, adenine, xanthine, and uracil) at concentrations corresponding to minimal chemically defined media (CDM) concentrations for GAS [49]. The observed culture densities after overnight growth did not increase compared to the AF without any supplements (Figure 5). Therefore, the lack of arginine and nucleotides in AF is not a limiting factor for growth of GAS and up regulation of the nucleotide synthesis pathway has a distinct function from providing material for DNA synthesis. Multiple reports have suggested a connection between nucleotide metabolism and bacterial virulence [50]. Mereghetti et al. recently reported changes in nucleotide metabolism in GBS during growth in blood and as an effect of a temperature switch [51,52].

Summary

Group A *Streptococcus*, a causative agent of postpartum invasive infections, is able to survive and multiply in AF. It is able to multiply and survive over 48h in the AF environment. The response of GAS is in many aspects similar to the response exhibited by GBS; however, on the contrary to GBS, GAS exhibits stronger stress response to the AF environment. GAS adapts to growth in AF by differential regulation of genes involved in arginine and nucleotide metabolism. In addition, GAS down regulates multiple cell surface proteins, presumably to escape host immune recognition.

Supporting Information

Table S1 Differential expression of all GAS genes in response to AF. Changes in transcription of GAS genes upon contact with amniotic fluid. All changes detected in transcription of GAS in...
response to amniotic fluid. Values represent fold change in expression in amniotic fluid compared to expression in THY; ML, mid-logarithmic growth phase; LL, late-logarithmic growth phase; S, stationary growth phase; cut-off two fold change with P value less than 0.05. Positive values represent genes up-regulated in AF (orange), negative values represent down-regulated (green, better expressed in THY) genes. Rows marked grey denote transcripts not detected during the experiment.

Table S2 Comparison of transcriptional changes between GAS and GBS grown in AF. Differential expression of GAS and GBS genes in response to AF - Changes in transcription of GAS and GBS genes upon contact with amniotic fluid. Values represent fold change in expression in amniotic fluid compared to expression in THY; ML, mid-logarithmic growth phase; LL, late-logarithmic growth phase; S, stationary growth phase; cut-off two fold change

References
1. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13: 470–511.
2. Carapetis JR, Steer AC, Maclennan EK, Weber M (2003) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 603–614.
3. Pasteur L (1879) Septicemia purperale. Bulletin de l’Academie de Medicine 8: 271–274.
4. Chung I, Van BC, Beall B, Schuchat A (2002) Population-based surveillance for postpartum invasive group A Streptococcus infections, 1995–2000. Clin Infect Dis 35: 665–670.
5. Green NM, Zhang S, Porcella SF, Magier MJ, Barbarin KD, et al. (2005) Genome sequence of a serotype M28 strain of group A Streptococcus: potential new insights into peripapil sepsis and bacterial disease specificity. J Infect Dis 192: 760–770.
6. Green NM, Beres SB, Gravis EA, Allston, JF, McGeer AJ, et al. (2005) Genetic diversity among type emm28 group A Streptococcus strains causing invasive infections and GAS. J Clin Microbiol 43: 4803–4891.
7. Tettelin H, Maasigani V, Giesmied J, Donati C, Medini D, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102: 19540–19545.
8. Mlynakam H, Bruun T, Vinders HA, Langeland N, Skrede S (2009) Molecular epidemiological investigation of an outbreak of invasive beta-hemolytic streptococcal infection in western Norway. Clin Microbiol Infect 15: 245–252.
9. Pinho MD, Melo-Cristino J, Ramirez M (2006) Clonal relationships between invasive and noninvasive Lancefield group C and G streptococci and emm-specific differences in haemagglutinin. J Clin Microbiol 44: 81–86.
10. Graham MK, Beatty K, Porcella SF, Barry WT, Grosec BF, et al. (2005) Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol 166: 455–465.
11. Shelturme SR, SI, Sunny P, Sitkiewicz I, Gravelli C, DeLeo FR, et al. (2005) Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogenesis in human salvia. Proc Natl Acad Sci U S A 102: 16007–16402.
12. Vojdic JM, Sturdevant DE, Braugton RK, Kobayashi SD, Leb, et al. (2003) Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 100: 1996–2001.
13. Goldmann O, von Koskio-Bleichwer, M, Holge J, Chhatwal GS, Gerfils R, et al. (2007) Transcriptional analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75: 4148–4157.
14. Eichner AH, Nevet A, Rudensky B, Rahainowitz R, Hammerman C, et al. (2002) The effect of meconium staining of amniotic fluid on the growth of Escherichia coli and group B Streptococcus. J Perinatol 22: 467–471.
15. Pommerrone WT, Taylor PW (1953) Antibacterial properties of vaginal and cervical secretions and amniotic fluid. Ann Obstet Gynecol 73: 899–901.
16. Sunny P, Porcella SF, Madrigal AG, Barbarin KD, Virtaneva K, et al. (2005) Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis 192: 771–782.
17. Sitkiewicz I, Musser JM (2006) Expression microarray and mouse virulence analysis of four conserved two-component gene regulatory systems in group A Streptococcus. Infect Immun 74: 1339–1351.
18. Shelturme SR, SI, Keild D, Horstmann N, Sunny P, Davenport MT, et al. (2008) A direct link between carbohydrate utilization and virulence in the major pathogen group A Streptococcus. Proc Natl Acad Sci U S A 105: 1698–1703.
19. Sitkiewicz I, Green NM, Guo N, Bongiovanni AM, Witkin SS, et al. (2009) Transcriptional adaptation of group B Streptococcus to growth in human amniotic fluid. PLoS One 4: e6114.
20. Noutouki A (1961) The biochemical composition of amniotic fluid and of maternal and fetal blood at various periods of pregnancy. Bulli Epts Biol Med 51: 321–326.
21. Nilsson S, Ramstrom M, Palmblad M, Axelson O, Bergquist J (2004) Explorative study of the protein composition of amniotic fluid by liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 3: 884–889.
22. Modena AB, Feni S (2004) Amniotic fluid dynamics. Acta Biomed 75 Suppl 1: 11–15.
23. Beck A, Bergner-Rabinowitz S, Otek I (1969) Effect of pH on in vitro phagocytosis of Streptococcus pyogenes. J Bacteriol 100: 1204–1207.
24. Galask RP, Snyder IS (1970) Antibacterial factors in amniotic fluid. Am J Obstet Gynecol 106: 59–65.
25. Larsen B, Snyder IS, Galask RP (1974) Bacterial growth inhibition by amniotic fluid. I. In vitro evidence for bacterial growth-inhibiting activity. Am J Obstet Gynecol 119: 492–496.
26. Larsen B, Snyder IS, Galask RP (1974) Bacterial growth inhibition by amniotic fluid. 2. Reversal of amniotic fluid bacterial growth inhibition by addition of a chemically defined medium. Am J Obstet Gynecol 119: 497–501.
27. Evans HE, Levy E, Glass L (1977) Effect of amniotic fluid on bacterial growth. Obstet Gynecol 49: 35–37.
28. Ahn YJ, Park SK, Oh JW, Sun HY, Shin SH (2004) Bacterial growth in amniotic fluid is dependent on the iron-availability and the activity of bacterial iron-uptake system. J Korean Med Sci 19: 333–340.
29. Tran SH, Caughey AH, Xie TJ (2003) Meconium-stained amniotic fluid is associated with purpural infections. Am J Obstet Gynecol 189: 746–750.
30. Purushothaman SS, Park HS, Cleary PP (2004) Promotion of bacteriocyte independent invasion by C5a peptidase into epithelial cells in group A Streptococcus. Indian J Med Res 119 Suppl: 44–47.
31. Stalhammar-Carlenlalm M, Arscough T, Larsson C, Lindahl G (1999) The R25 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol 33: 208–219.
32. Nair S, Poyart C, Beretti JL, Veiga-Fernandes H, Berche P, et al. (2003) Role of the Streptococcus agalactiae ClpP serine protease in heat-induced stress defence and growth arrest. Microbiology 149: 407–417.
33. Robertson GT, Ng WL, Foley J, Gilmour R, Winkler ME (2002) Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184: 3508–3520.
34. Giard JC, Riner A, Capiaux H, Auffray Y, Hurtle A (2000) Inactivation of the stress- and starvation-inducible gsh24 operon has a pleiotropic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J Bacteriol 182: 4512–4520.
35. Malke H, Steiner K, McShan WM, Ferretti J (2006) Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int J Med Microbiol 296: 267–274.
36. Kreikemeyer B, Beckert S, Braun-Kiewnick A, Podbielski A (2002) Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology 148: 1501–1511.
37. Beres SB, Richter EW, Najiec MI, Sunny P, Porcella SF, et al. (2006) Molecular genetic anatomy of inter- and intraspecies variation in the human bacterial pathogen group A Streptococcus. Proc Natl Acad Sci U S A 103: 7059–7064.
38. Olsen RJ, Sitkiewicz I, Ayers AA, Goumalal VE, Cantu C, et al. (2010) Decreased necrotizing fasciitis capacity caused by a single nucleotide mutation...
that alters a multiple gene virulence axis. Proc Natl Acad Sci U S A 107: 888–893.

39. Kreikemeyer B, Boyle MD, Buttaro BA, Heinemann M, Podbielski A (2001) Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol Microbiol 39: 392–406.

40. Steiner K, Malke H (2002) Dual control of streptokinase and streptolysin S production by the covRS and fasCAX two-component regulators in *Streptococcus dysgalactiae* subsp. *equisimilis*. Infect Immun 70: 3627–3636.

41. Shelburne SA, III, Keith DB, Davenport MT, Horstmann N, Brennan RG, et al. (2008) Molecular characterization of group A *Streptococcus* maltodextrin catabolism and its role in pharyngitis. Mol Microbiol 69: 436–452.

42. Loughman JA, Caparon MG (2006) A novel adaptation of aldolase regulates virulence in *Streptococcus pyogenes*. EMBO J 25: 5414–5422.

43. Pierce WA, White AG (1955) Arginine and glucose metabolism in a strain of *Streptococcus pyogenes*. J Bacteriol 69: 230–231.

44. Degnan BA, Fontaine MC, Doebereiner AH, Lee JJ, Mastroeni P, et al. (2000) Characterization of an isogenic mutant of *Streptococcus pyogenes* Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun 68: 2441–2448.

45. Quivey RG, Kuhnert WL, Hahn K (2001) Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12: 301–314.

46. Degnan BA, Palmer JM, Robson T, Jones CE, Fischer M, et al. (1998) Inhibition of human peripheral blood mononuclear cell proliferation by *Streptococcus pyogenes* cell extract is associated with arginine deiminase activity. Infect Immun 66: 3050–3058.

47. Lei B, Mackie S, Lukomski S, Musser JM (2000) Identification and immunogenicity of group A *Streptococcus* culture supernatant proteins. Infect Immun 68: 6807–6818.

48. Samani S, Lee H, Ghassemi M, Chen J, Cook JL, et al. (2008) Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog 4: e37.

49. van de Rijn I, Keseler RE (1980) Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 27: 444–448.

50. Petersson J, Schrumpf ME, Raffel SJ, Porcella SF, Guyard C, et al. (2007) Purine salvage pathways among *Borrelia* species. Infect Immun 75: 3077–3084.

51. Mereghetti L, Sikiewicz I, Green NM, Musser JM (2008) Extensive adaptive changes occur in the transcriptome of *Streptococcus agalactiae* (group B *Streptococcus*) in response to incubation with human blood. PLoS One 3: e3143.

52. Mereghetti L, Sikiewicz I, Green NM, Musser JM (2008) Remodeling of the *Streptococcus agalactiae* transcriptome in response to growth temperature. PLoS One 3: e2785.