The recent discovery of large magnetoresistance in tungsten ditelluride provides a unique playground to find new phenomena and significant perspective for potential applications. The large magnetoresistance effect originates from a perfect balance of hole and electron carriers, which is sensitive to external pressure. Here we report the suppression of the large magnetoresistance and emergence of superconductivity in pressurized tungsten ditelluride via high-pressure synchrotron X-ray diffraction, electrical resistance, magnetoresistance and alternating current magnetic susceptibility measurements. Upon increasing pressure, the positive large magnetoresistance effect is gradually suppressed and turned off at a critical pressure of 10.5 GPa, where superconductivity accordingly emerges. No structural phase transition is observed under the pressure investigated. In situ high-pressure Hall coefficient measurements at low temperatures demonstrate that elevating pressure decreases the population of hole carriers but increases that of the electron ones. Significantly, at the critical pressure, a sign change of the Hall coefficient is observed.
Superconductivity in WTe$_2$ from electrical resistance measurement—a arXiv paper that reports the evidence of pressure-induced quantum phase transition of the Fermi surface reconstruction, change in the Hall coefficient at the critical pressure, indicating a transition temperature (T_c) decreases monotonically with increasing pressure down to 2.6 K. The superconducting structural phase transition, while the LMR effect is gradually decreased without structural phase transition, while the LMR effect is gradually suppressed and turned off at a critical pressure of 10.5 GPa where superconductivity accordingly emerges. The superconducting transition temperature (T_c) reaches 6.5 K at ~13.0 GPa and then decreases monotonically with increasing pressure down to 2.6 K at ~24.0 GPa. Significantly, our Hall measurements reveal a sign change in the Hall coefficient at the critical pressure, indicating a quantum phase transition of the Fermi surface reconstruction.

During the preparation of this manuscript, we became aware of an arXiv paper that reports the evidence of pressure-induced superconductivity in WTe$_2$ from electrical resistance measurements without a pressure-transmitting medium.

Results
Structure under pressure. We first characterize the structure of the WTe$_2$ sample at ambient pressure. Figure 1a shows the X-ray diffraction (XRD) pattern of a powdered sample that is ground from a few pieces of single crystals. As it can be seen, the Bragg peaks in the pattern can be well indexed by orthorhombic structure. To clarify whether there is a structure change in pressurized WTe$_2$, we perform in situ high-pressure synchrotron XRD measurements. The results shown in Fig. 2a indicate no first-order structure phase transition under pressure up to 20.1 GPa. Then we extract the lattice parameters as a function of pressure, shown in Fig. 2b,c. The pressure dependence of volume also displays in Fig. 2d. It is found that the lattice constants (a, b and c) as well as the volume decrease continuously upon increasing pressure. However, the reduction of c is substantial, compared with those of the in-plane parameters.

Pressure-induced superconductivity. The electrical resistance measurement for the single crystal is performed under quasi-hydrostatic pressure. Since WTe$_2$ has an anisotropic electron structure, the LMR effect was discovered along the tungsten chain direction (a axis). To reveal the pressure effect on the LMR state, we apply the magnetic field and current in the same manner as ambient pressure. Figure 3 shows the typical temperature dependence of electrical resistance measured at zero magnetic field for pressures ranging from 0.3 to 24.0 GPa. In Fig. 3a, the electrical resistance curve at 0.3 GPa shares the similar behaviour to that measured at ambient pressure. Upon increasing pressure below 13.0 GPa, the electrical resistance in the whole temperature range is suppressed, while it is enhanced above 13.0 GPa. Intriguingly, at the pressure of 10.5 GPa, the resistance drops abruptly at 2.8 K. Such a drop becomes more pronounced at higher pressures, and the zero-electrical resistance is achieved between 11.0 and 24.0 GPa (Fig. 3b).

To confirm whether the zero-electrical resistance state is superconducting or not, we carry out in situ high-pressure alternating-current (a.c.) susceptibility measurements. The Meissner effect is observed at the selected pressures of 15.0 and 18.3 GPa, respectively (Fig. 3c). The onset temperatures of the diamagnetism are consistent with that of the electrical resistance drop (Fig. 3b). Both electrical resistance and magnetic measurements coordinate confirm that pressure induces a superconducting transition in WTe$_2$. The T_c can reach to 6.5 K at ~13.0 GPa and monotonically decreases down to 2.6 K at ~24.0 GPa.

Suppression of the LMR state. To reveal how the LMR state evolves into the superconducting state, we systematically investigate the temperature dependence of electrical resistance at fixed pressures under different magnetic fields. We find that the positive LMR effect of WTe$_2$ is suppressed by applying pressure (Fig. 4a,b). At the pressure of 11.0 GPa and above, the positive magnetoresistance effect no longer exists (Fig. 4c,d), and the superconductivity appears simultaneously.

Determination of upper critical magnetic field. Notably, the superconductivity of the sample is fully suppressed at 13.0 GPa under 3 and 7 Tesla (Fig. 4d). To determine the value of upper critical magnetic field (H_{c2}) precisely, we perform the temperature measurements coordinately confirm that pressure induces a superconducting transition in WTe$_2$. The T_c can reach to 6.5 K at ~13.0 GPa and monotonically decreases down to 2.6 K at ~24.0 GPa.

Figure 1 | Experimental and indexed X-ray diffraction patterns of WTe$_2$ at ambient pressure. The purple crosses represent experimental data, and the cyan line and bars represent calculated Bragg reflection pattern and positions. The inset shows the three-dimensional layer structure constructed by an edge-shared WTe$_6$ octahedron.
dependence of resistance measurements under lower magnetic fields on the pressurized sample (Fig. 5a–c). Using the Ginzburg–Landau formula to fit the experimental data yields the values of upper critical magnetic field at zero temperature: 1.86 T at 13.7 GPa, 1.44 T at 16.0 GPa and 0.85 T at 19.4 GPa (Fig. 5d).

Pressure–temperature phase diagram. A characteristic temperature \(T^{\ast}_{ZF} \) as the turn-on temperature of the LMR effect at zero field is defined, as indicated by the arrows in the inset of Fig. 3a. Such a definition of the \(T^{\ast}_{ZF} \) is coincident with the temperature of the linear extrapolation of turn-on LMR temperatures under different magnetic fields. Then we summarize our experimental results in the pressure–temperature phase diagram (Fig. 6a). There are two distinct regions in the diagram: the LMR state and the superconducting state. It is found that the \(T^{\ast}_{ZF} \) of the LMR state decreases with increasing pressure and vanishes at the critical pressure 10.5 GPa, where the superconductivity emerges at 2.8 K. The value of \(T_c \) increases up to a maximum at 13.0 GPa and then declines with further increasing pressure.
This phase diagram clearly demonstrates how the pressure can effectively suppress the LMR state and induce superconductivity.

Change of Hall coefficient with pressure. It is known that the perfect balance between hole and electron populations accounts for the ambient-pressure LMR effect. To understand the suppression of the LMR effect under pressure, we conduct the *in situ* high-pressure Hall coefficient (R_H) measurements at low temperature (Fig. 6b). The set-up of our high-pressure Hall measurements leads to the detected R_H combining signals from

![Figure 4](https://example.com/figure4.png)

Figure 4 | High-pressure electrical resistance versus temperature under different magnetic fields. (a,b) The electrical resistance as a function of temperature at 0.3 and 2.4 GPa, respectively, illustrating the obvious suppression of the LMR effect by increasing pressure. (c) The plot of resistance versus temperature at 11.0 GPa. The inset shows an enlarged view of a full suppression of the positive magnetoresistance and a zero resistance at 3.2 K. (d) The temperature dependence of electrical resistance at 13.0 GPa. The inset displays the elimination of superconductivity by magnetic fields.

![Figure 5](https://example.com/figure5.png)

Figure 5 | Determination of the value of upper critical field (H_{c2}) for the superconducting WTe$_2$. (a–c) Temperature dependence of electrical resistance at fixed pressures under different magnetic fields. (d) H_{c2} as a function of temperature. The dashed lines represent the Ginzburg–Landau (GL) fits.
reconstruction of Fermi surface is associated with anisotropic reductions of the lattice.

We thus propose that a quantum phase transition occurs at the critical pressure, separating the LMR state and superconducting state. Such a kind of quantum phase transition with the changes of the Fermi surface structure can be characterized by the Lifshitz phase transition24, so the emergence of superconductivity observed in the pressurized WTe2 may be connected with this transition, reminiscent of what is seen in Fe-based superconductors25. The mechanism of superconductivity in WTe2 deserves further investigations from both experimental and theoretical sides.

Methods

Single-crystal growth. Single crystals of WTe2 were grown by means of a solid-state reaction. Tungsten powder (99.9%) was mixed with excessive amounts of tellurium (99.999%) and placed in an alumina ampule, then sealed in an evacuated quartz tube. The operation above was performed in a glove box filled with high-purity argon gas. The mixture was heated in a furnace to 1,000°C with a rate of 100°C·h⁻¹, followed by keeping the temperature at 1,000°C for 5 h. After reaction, the sample was cooled down to 800°C at a rate of 1°C·h⁻¹, then to 700°C at a rate of 5°C·h⁻¹. The quartz tube was then taken out from the furnace, and put in a centrifuge to remove the Te flux.

Experimental details of high-pressure measurements. Pressure was generated by a device, the so-called diamond anvil cell that consists of two opposing anvils sitting on the supporting plates. Diamond anvils of 300-μm flats were used for this study. Nonmagnetic rhenium gaskets with a 100-μm diameter hole were used for different runs of the high-pressure studies. The four-probe method was applied in the ab plane of the single-crystal WTe2, for all high-pressure transport measurements. For the high-pressure Hall coefficient measurements, the van der Pauw method was applied in this study. A constant current goes through the squared sample diagonally, and the Hall voltage is measured from the other diagonal. To keep the sample in a quasi-hydrostatic pressure environment, NaCl powder was employed as the pressure medium. The high-pressure alternating-current susceptibility were detected using a primary/secondary-compensated coil system surrounding the sample26. High-pressure XRD experiments were performed at beam line 15U at the Shanghai Synchrotron Radiation Facility. A monochromatic X-ray beam with a wavelength of 0.6199 Å was chosen for all XRD measurements. Diamonds with low birefringence were selected for the experiments. To maintain the sample in a hydrostatic pressure environment, silicon oil was used as a pressure medium in the high-pressure XRD measurements. Pressure was determined by the ruby fluorescence method27.

References

1. Callanan, J. E., Hope, G. A., Weir, R. D. & Westrum, E. F. Thermodynamic properties of tungsten ditelluride (WTe2). I. The preparation and low temperature heat capacity at temperatures from 6K to 326K. J. Chem. Thermodyn. 24, 627–638 (1992).
2. Kabashim, S. Electrical properties of tungsten-ditelluride WTe2. J. Phys. Soc. Jpn. 21, 945 (1966).
3. Revolinsky, E. & Beernstsem, D. Electrical properties of the MoTe2, WTe2, and MoSe2-WSe2 systems. J. Appl. Phys. 35, 2086–2089 (1964).
4. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).
5. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2014).
6. Mun, E. et al. Magnetic field effects on transport properties of PtSn5. Phys. Rev. B 85, 035135 (2012).
7. Wang, K., Graf, D., Li, L., Wang, L. & Petrovic, C. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep. 4, 7328 (2014).
8. Galvis, J. A., Sunderow, H., Vieira, S., Bud’ko, S. L. & Canfield, P. C. Scanning tunneling microscopy in the superconductor LaSb2. Phys. Rev. B 87, 214504 (2013).
9. Young, D. P. et al. High magnetic field sensor using LaSb2. Appl. Phys. Lett. 82, 3713–3715 (2003).
10. Bud’ko, S. L., Canfield, P. C., Mielecki, C. H. & Lacerda, A. H. Anisotropic magnetic properties of light rare-earth dianitomides. Phys. Rev. B 57, 13624 (1998).
11. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. B. 20, 268–274 (1966).
12. Pletikosic, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys. Rev. Lett. 115, 216601 (2014).
13. Cai, P. L. et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2. Preprint at http://arxiv.org/abs/1412.8289 (2014).
Acknowledgements
We thank V. Sidorov for helpful discussions. The work was supported by the NSF of China (Grant Nos 91321207 and 11427805), 973 projects (Grant Nos 2011CBA00100 and 2010CB923000) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos XDB07020300 and XDB07020100).

Author contributions
D.K., Y.Z. and L.S. performed high-pressure resistance, a.c. susceptibility, magnetoresistance and Hall measurements. C.Y. and Y.S. grew the single crystals. Y.Z., D.K., W.Y., S.J., A.L. and K.Y. carried out high-pressure X-ray diffraction measurements. L.S., Q.W., G.Z., Y.Z., D.K. and Z.Z. wrote the paper. All the authors analysed the data and discussed the results.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Kang, D. et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 6:7804 doi: 10.1038/ncomms8804 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/