Trichomonas gallinae Identification and Histopathological Study in Pigeon (Columba livia domestica) in Baghdad City, Iraq

Layla T Fadhil*, Azhar A Faraj, and Amer M Al-Amery

Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Iraq

INTRODUCTION

Birds form part of the human diet consumption. Some are used for breeding, decorative or entertainment purposes, while other birds are used for scientific experiments or teaching the art of mummification (1). However, birds like any animals can suffer from diverse types of disease (viruses or infectious diseases). Pigeons, for example, may infect with a group of external parasites such as lice and ticks (2). Pigeons can be infected by nematodes and cestoda parasites, such as the species of Raillietina, Capillaria and Ascaridia, as well as protozoa parasites such as Eimeria spp., Cryptosporidium spp. and Trichomonas spp., that leads to trichomomiasis (3). Avian trichomoniasis is protozoan disease caused by Trichomonas gallinae, which is a mitochondrial anaerobic protozoan, a flagellated parasite belongs to the class Zoomastigophorea and order Trichomonadida (4). Trichomonas infects the upper digestive tract of birds and this parasite infects a widespread of birds, such as pigeons, chickens, turkeys, and...
other poultry worldwide (5). Infection by Trichomonas gallinae (T. gallinae) may occur without signs while it may lead to death with intermediate symptoms including anorexia, vomiting, ruffled feathers, diarrhea, dysphagia, dyspnea, weight loss, and increased thirst (6, 7). Several reports indicated that many large events of avian mortality have been associated with Trichomoniasis (8, 9). The main host of T. gallinae is domestic pigeon (Columba livia domestica), this pigeon breeds a role in the spread of this disease. Young pigeons are frequently infected by these protozoa and can die from the infection, but adult birds’ species may act as a carrier with no sign (10). Therefore, this study was designed to study the histopathological changes that occur in some organ tissue of pigeon that infected with T. gallinae in Baghdad, Iraq.

MATERIALS AND METHODS

Birds and Study Area

The procedures used in this study were reviewed and approved by the scientific committee at the University of Baghdad’s College of Veterinary Medicine in compliance with animal welfare ethical standards.

A total of 180 pigeons (Columba livia domestica) of different in ages and sexes were brought from local markets at Baghdad city, Iraq during the period from the beginning of October 2018 to the end of March 2019.

Microscopic Examination

Oropharyngeal swab samples were taken from the mouths and crop of pigeons randomly by using sterile, pre-moistened, cotton-tipped applicators which was confirmed by microscopic examination (wet mount method). The Trichomonas were identified if they motile and flagellated protozoa were observed under light microscope (11).

Staining

Swabs were taken from the oral cavity and crop of pigeons randomly. Swabs were blended with phosphate buffered saline, fixed with methanol, and dried at room temperature, then stained with Giemsa stain prepared by adding 1 part of Giemsa stain solution to 9 part of buffer solution (pH 7.2) (12). The slides were examined under the light microscope with oil immersion lens (100×). The parasite was identified according to (13).

Histopathological Examination

Samples were taken from the oral cavity, esophagus, crop, liver, larynx, trachea, and lung of 30 birds and placed in 10% neutral buffered formalin before being sent to the pathology laboratory at the College of Veterinary Medicine, University of Baghdad for histopathological examination. Formalin fixed samples were sectioned at 5 µm thickness and stained with Hematoxylin and Eosin (14).

RESULTS

Gross Examination

The gross lesion in the infected birds showed to be white to yellowish nodule of varied sizes in the oropharyngeal cavity associated with inflammation and ulceration. The lesion extended sometimes into esophagus, crop and proventriculus blocking of the respiratory tract and led to the death of the birds (Figure1).

Staining Examination

The primary purpose of staining was to optimize the visualization of key anatomic structures to facilitate accurate identification of an organism. In this study, it was used Giemsa stain. Microscopic structures of T. gallinae appeared when smears prepared and stained by Giemsa. Giemsa stained the cytoplasm with light purple and nucleus with dark purple color and visualizing the flagella and both of nucleus and cytoplasm were also very well (Figure 3).

Histopathological Examination

Larynx
Multiple caseous necrotic lesions were recognized in lamina propria associated with focal epithelial sloughing, the laryngeal mucous glands showed various degree of sever degeneration with evidence of sloughed glandular epithelium with necrotic debris in lumen (Figure 4), the laryngeal was stratified epithelium exhibited focal keratinization with diffuse mononuclear cells (MNCS) infiltration and congestion in the lamina properia as well as slight lymphoid depletion recorded in sub mucosal layer. Cystic glandular dilation with flat epithelial lining and luminal debris were also noticed. In addition, laryngeal findings showed moderate to severe congestion of laryngeal muscular coated with evidence of vacuolation of muscle bundles, some laryngeal glands appeared lining with hyper plastic epithelium.

Trachea

The main histopathological finding of trachea was cystic dilation of major mucus glands with evidence of hyperactivity. This was associated with moderate hyperemia of tunica properia, severe degeneration of tracheal submucosal glands with sub mucosal blood vessel congestion with no clear lesion in sub mucosal layer was noticed. Another section showed severe hyperatrophy of goblet cell with evidence of degeneration of some mucosal glands associated with vascular congestion of sub mucosal tissue (Figure 5).

Esophagus

The stratified squamous epithelial of esophagus in many parts was necrotized and debris was seen in the lumen. Moderate to severe disruption of esophageal submucosal glands with cellular infiltration and blood vessel congestion were also noticed in (Figure 6). There was focal MNCS infiltration composed mainly of lymphocyte that was seen between muscular bundles (Figure 7). Intense MNCS infiltration between mucus gland was also seen (Figure 8).
Crop

Crop lesion was characterized by focal surface mucosal desquamation with focal moderate necrotic lesion of the mucosal epithelia appeared with sloughed epithelium and focal MNCs with heterophils aggregation was also seen (Figure 9).

Proventriculus

The mucosal fold of proventriculus showed moderate sloughing with mild atrophy of properial lymphoid tissue, while other section showed severe congestion of sub mucosal layer with diffuse MNCS infiltration in tunica properia. No clear lesion was detected in periventricular glandular tissue, while other observation revealed focal disruption of periventricular glandular tissue with diffuse sub mucosal MNCS infiltration (Figure 10).

Lung

Pulmonary parenchyma showed multiple necrotic foci were surrounded by various type of MNCS forming granulomatous like lesion with giant cell formation (Figure 12) associated with severe destruction in adjacent parenchyma. The primary bronchi also showed moderate thickness of its wall due to glandular hyperplasia and muscular fibroplasia. Severe pulmonary congestion was detected mainly in arterial tissue (Figure 13) while slight changes were detected in para bronchi as well as diffuse...
MNCS infiltration with neutrophils result in severe consolidation of pulmonary tissue.

Figure 12. Histopathological section in lung of domestic pigeon (*Columba livia domestica*) infected with *Trichomonas gallinae* shows multiple necrotic foci surrounded by various type of MNCS forming granulomatous like lesion with giant cell formation (black arrow) (H&E stain, 40×).

Figure 13. Histopathological section in lung of domestic pigeon (*Columba livia domestica*) infected with *Trichomonas gallinae* shows severe pulmonary congestion (black arrow) (H&E stain 40×).

Liver

Multiple MNCS and heterophils aggregation were observed in liver tissue mainly around blood vessels with evidence of sinusoidal dilation, while other finding showed granulomatous like lesion composed mainly of MNCS. Severe vacuolation of hepatocytes were also observed with evidence of hepatic steatosis, per vascular MNCS aggregation accompanied with appearance cytoplasmic fat droplets in adjacent hepatocytes, large MNCS aggregation was noticed in liver parenchyma with cellular swelling of adjacent hepatocytes. While other sections showed focal necrosis of parenchyma with MNCS and heterophils infiltration accompanied with individualization and atrophy of adjacent hepatocytes (Figure 14).

Portal MNCS infiltration with heterophils also recorded together with evidence of portal fibrosis and ductal dilation. Severe congestion and dilation of hepatic sinusoids resulted in disruption of hepatic cords (Figure 15) accompanied with severe congestion and dilation of central vein were also reported in many sections accompanied with focus MNCS infiltration, moderate portal enlargement due to marked MNCS infiltration and portal vein congestion, with evidence of portal fibrosis and focal perivascular infiltration. Other hepatic manifestations showed moderate number of apoptosis mainly adjacent to the central vein and granuloma was observed composed of MNCS and heterophils (Figure 16). There was massive hemorrhage and sinusoidal congestion resulting in severe atrophy of hepatic cords.

Figure 14. Histopathological section in liver of domestic pigeon (*Columba livia domestica*) infected with *Trichomonas gallinae* shows focal necrosis with MNCS and heterophils infiltration accompanied with individualization of adjacent hepatocytes (black arrow) (H&E stain, 40×).

Figure 15. Histopathological section in liver of domestic pigeon (*Columba livia domestica*) infected with *Trichomonas gallinae* shows severe congestion and dilation of hepatic sinusoids result in disruption of hepatic cords (H&E stain, 40×).

Figure 16. Histopathological section in liver of domestic pigeon (*Columba livia domestica*) infected with *Trichomonas gallinae* shows granuloma composed of MNCS and heterophils (H&E stain, 40×).
DISCUSSION

Occluded mouth and esophagus of pigeons with cheesy white to yellow-colored materials were also described previously by (14).

Histopathological examination of tissues in domestic pigeon that infected naturally with *T. gallinae* in the present study revealed multiple caseous necrosis were mainly seen in larynx, esophagus, and lung and diffuse MNCs infiltration and congestion in lamina propria. Severe degeneration in mucosal gland, cystic glandular dilation with luminal debris in the larynx, trachea revealed cystic dilation mucus glands hyperactivity with moderate hyperemia of tunica propria and severe degeneration of tracheal glands with sub mucosal blood vessel congestion were similar to observation seen with El-khatam (14) in Egypt when it was recorded in trachea and larynx severe inflammatory cell infiltration. Abd El-Rahman (15) revealed existence of necrosis and infiltration of inflammatory cells mainly eosinophil in the mucosa of esophagus and these results agreed with our study that revealed necrosis of epithelial cell, focal MNCs infiltration especially lymphocyte between muscular bundles, infiltration of inflammatory cell between mucus glands. The crop and proventriculus revealed desquamation and sloughed in epithelial cell, focal MNCs with heterophils aggregation, infiltration of inflammatory cells mainly heterophils, necrosis in sub mucosa, focal disruption of periventricular glandular tissue with diffuse sub mucosal MNCs infiltration, edema, and congestion in the proventriculus. The above results were in agreement with the results of Abd El-Rahman et al. (15) in Egypt, Begum et al. (16) in Bangladesh, Al-Sadi and Hamodi (17) in Mosul, and Jaafar (18) in Baghdad in which they recorded necrosis in the sub mucosa of crop and desquamation in the epithelial cells of proventriculus.

lung showed multiple necrotic foci surrounded with various type of MNCS forming granulomatous like lesion with giant cell formation and congestion in pulmonary tissue, moderate thickness in bronchi wall due to glandular hyperplasia and muscular fibroplasia, and liver tissue showed multiple MNCS and heterophils aggregation necrosis in parenchyma, congestion and dilation in hepatic sinusoids, granuloma composed of MNCS and heterophils. The above results agreed with studies of (8, 14). The current study may contribute to determining the histopathological changes in the esophagus, trachea, crop, liver, and liver of pigeons that infected with trichomoniasis.

ACKNOWLEDGEMENTS

The authors are appreciated the faculty members of the College of Veterinary Medicine, University of Baghdad for providing all facilities for completing this work.

FUNDING

These authors declare that above-submitted work was not funded by any governmental or private funding source nor supported by any financial projects.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Chen YT. Current situation, investment analysis and developing prospects of meat pigeon industry in China. Poulf. Husband. Dis. Cont. 2015; 2:10-13.
2. Al-Tamimi FA. Pigeon [Thesis]. Baghdad, Iraq: University of Baghdad; 1981.
3. Bahrami AM, Doosti A, Nahrevanian H, Shamsi M. Pathological study on parasitism in racing pigeons; An indication of its effects on community health. Adv. Environ. Bio l. 2012; 6(2): 726-732.
4. Grabenstein E, Bilic I, Kolbe T, Hess M. Molecular analysis of zonal Trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Vet. Parasitol.2010; 172: 53-64.
5. Nematollahi A, EbrahimiM, Ahmadi A , Himan M. Prevalence of Haemoproteus columiae and Trichomonas gallinae in pigeons (Columba domestica) in Isfahan. Iran. J. Parasit. Dis.2012; 36:141-142.
6. Amin A, Nöbauer K, Patzl M, Berger E, Hess M, Bilic I. Cysteine peptidases, secreted by *Trichomonas gallinae*, are involved in the cytopathogenic effects on a permanent chicken liver cell culture. PLoSOne.2012;(7): 37-417.
7. Stockdale JE, Dunning JC, Goodman SJ, Morris AJ, Sheehan DK, Grice PV, et al. The protozoan parasite *Trichomonas gallinae* causes adult and nesting mortality in a declining population of European Turtle Doves, *Streptopelia turtur*. Parasitology. 2015; 142(3): 490-498.
8. Eco R, Preis IS, Vikela DA, Luppi MM, Malta MC, Beckstead RB, et al. Molecular confirmation of *Trichomonas gallinae* and other parabasalids from Brazil using the 5.8S and ITS-1 rRNA regions. Vet. Parasitol. 2012; 190: 36-42.
9. Robinson RA, Lawson B, Toombs MP, Peak KM, Kirkwood JK, Chantrey J, et al. Emerging infectious disease leads to rapid population declines of common British birds. PloS One. 2010; 5: e12215.
10. Urban EH, Mannan RW. The potential role of oral pH in the persistence of *Trichomonas gallinae* in Cooper's Hawks (*Accipiter cooperii*). J Wild l. Dis. 2014; 50: 50-55.
11. Anderson NL, Grahm RA, Van-Hoosear K, Bondurant RH. Studies of Trichomonad protozoa in free ranging songbirds: prevalence of *Trichomonas gallinae* in house finches (*Carpodacus mexicanus*) and cowbirds and a novel Trichomonad in mockingbirds (*Minmus polyglottos*). Vet. Parasitol. 2009; 161: 178-186.
12. Chaudhri SS, Gupta SK. Manual of General Veterinary Parasitology. 1st ed. India, Haryana: ABLakweli publishing company;2003.467p.
13. Levine D. Veterinary Protozoology.1st ed. Iowa City, IA, USA: Ames Iowa State Press;1985.484p.
14. El-Khatam AO, AbouLaila MR, Ibrahim M, AbdEl-Gaber MM. *Trichomonas gallinae*: Prevalence and molecular characterization from pigeons in Minouliya governorate, Egypt. Exp. Parasitol. 2016; 170: 161-167.
15. Abd El-Rahman MA, Seddiek ShA, Soliman AS. Some studies on trichomoniasis of pigeons at Qualioha governorate, Egypt.J. Comp. Path. & Clinic. Path. 2008; 21(2): 123-141.
16. Begum N, Mamun MA, Rahman SA, Bari AS. Epidemiology and pathology of *Trichomonas gallinae* in the common pigeon (*Columba livia*). J. Bangladesh Agril. Univ. 2008; 6(2): 301-306.
داء المشعرات ودراسة التشريح المرضي في الحمام في مدينة بغداد، العراق

ليلى طاهر فاضل، ازهار علي فرج، عامر مرحم العامري
فرع الطفيليات، كلية الطب البيطري، جامعة بغداد، العراق

الخلاصة

داء المشعرات هو واحد من أهم أنواع العدوى التي تسبب الطيور في العالم، والتي تسببها طفيلة Trichomonas gallinae (السمحة المبكرة وصبغة كيما) في مدينة بغداد، العراق خلال الفترات بداية من تبرير الأولى 2018 إلى نهاية أذار 2019. أظهرت النتائج المرئية للطيور المصابة بداء المشعرات وصبغة كيما بشكل واضح في تجويف الفم والمرئ. أظهرت استخدام صبغة كيما بصبغ السيلولوز باللون الأرجواني النشيط، واللوز السوسي في التنبيذ وال환경 والمريء بشكل جيداً. تم الفحص المجهري للسماكة المخاطية للفم، والعين، والحلق، واللوز السوسي باللون الأرجواني النشيط، والسماكة النسيجية في الحمام، واللوز السوسي، والبطن، والربة. كاشفت النتائج تصاعد الخلايا الالتهابية بشكل رئيسي في الخلايا التي تحتوي على السماكة المخاطية، وتشمل التعبيرات الالتهابية، وتشمل التعبيرات الالتهابية.

الكلمات المفتاحية: داء المشعرات، مرض الطيور، التغييرات النسيجية، Columba livia domestica