Abstract. Aim: There is very little literature reporting the association of matrix metalloproteinase-1 (MMP1) with personal susceptibility to bladder cancer. In the current study, we carried out the first examination of the contribution of MMP1 rs1799750 to bladder cancer risk in Taiwanese.

Materials and Methods: A total of 375 bladder cancer cases and 375 healthy controls were genotyped for MMP1 rs1799750 via polymerase chain reaction-restriction fragment length polymorphism methodology and this was evaluated for association with clinicopathological factors. Results: The frequencies of MMP1 rs1799750 2G/2G, 1G/2G, and 1G/1G genotypes were 35.7%, 44.8% and 19.5% in the group with bladder cancer and 32.5%, 46.4%, and 21.1% in the healthy control group (p for trend=0.6362). The odds ratios (ORs) for bladder cancer risk after adjusting for age and gender for those carrying 1G/2G and 1G/1G genotypes at MMP1 rs1799750 were 0.88 (95% CI=0.62-1.24, p=0.4357) and 0.83 (95% CI=0.61-1.26, p=0.3990), respectively, compared with the wild-type 2G/2G genotype. In allelic frequency analysis, the adjusted OR for those carrying the 1G allele at MMP1 rs1799750 was 0.87 (95% CI=0.71-1.23, p=0.3479) compared to those people carrying a 2G allele. Conclusion: Our findings indicated that the genotypes at MMP1 rs1799750 appear to play little role in determining personal susceptibility to bladder cancer for Taiwanese.

Bladder cancer is the 11th most common cancer, accounting for about 3% of total cancer deaths globally estimated in 2018 (1). In Taiwan, although the incidence rates of bladder cancer have decreased in recent years, the rapid aging of the population means bladder cancer remains a serious public burden, which has an impact on patients and their relatives, resulting in a massive financial problem for society overall (2, 3). From the epidemiological viewpoint, tobacco smoking is believed to be the most critical risk factor for bladder cancer (4, 5), in addition to diabetes, exposure to chemicals, contamination in drinking water by arsenic, overuse of traditional Chinese herbs and genetic variations (6-9). A better understanding about genetic predictive markers of bladder cancer is useful for personalized medication and therapy, and reducing the incidence of and death rate by bladder cancer.

In literature, mounting evidence has shown that genetic polymorphisms of matrix metalloproteinases (MMPs) may contribute to the development of bladder cancer (10). MMPs, also named as matrixins, are a large protein family controlling metabolism of the extracellular matrix (11-13). MMPs are closely related to a series of cell behaviors such as proliferation, inflammation, apoptosis, invasion, migration and angiogenesis (12, 13). In literature, much evidence has shown that polymorphic variants of MMPs may be associated with personal susceptibility to several types of cancer (14-19).

In 2010, Chuang and colleagues examined the expression of MMPs in 30 bladder neoplasms, finding all were MMP1-positive, while other MMPs such as MMP2 and MMP9 were
not so highly expressed (20). In addition, the overexpression of MMP1 was not correlated with tumor staging nor grading (20). The genomic role of MMP1 remains unclear. In literature, the most commonly studied polymorphic site of MMP1 is rs1799750 which located at −1,607 of the promoter of the MMP1 gene. The variants at this polymorphic site consist of the insertion (2G) polymorphism, which in mice was reported to lead to higher transcriptional activity of MMP1, potentially higher levels or rates of collagen breakdown, and higher levels of MMP1 in serum than in mice with 1G/1G genotype (21). A meta-analysis published in 2012 investigating about 10,000 cancer cases concluded that those MMP1 carrying the rs1799750 2G/2G genotype may have a slightly higher overall metastasis rate (22). In light of all the above, the aim of the current study was to examine the contribution of MMP1 rs1799750 genotype at the promoter region to the risk of bladder cancer in Taiwanese.

Materials and Methods

Patients with bladder cancer and matched controls. Totally, 375 cases diagnosed with bladder cancer were collected at the China Medical University Hospital in central Taiwan. At the same time, 375 controls matched for age and gender were selected from the Health Examination Cohort. The exclusion criteria for the controls were any previous malignancy, metastasized cancer, and any known familial or genetic diseases. The study design was approved by the Institutional Review Board of the China Medical University Hospital (DMR104-IRB-158). Selective demographic characteristics are summarized in Table I.

Methodology for determination of MMP1 rs1799750 genotype. Genomic DNA from the blood of each participant was extracted, aliquoted and stored at −80°C as routinely conducted (23-25). The MMP1 genotyping methodology was the same as in our recently published article (26). The polymerase chain reaction (PCR) conditions set at My Cycler (Biorad, Hercules, CA, USA) for MMP1 genotyping were initially one cycle at 94°C for 5 min; followed by 35 cycles of 94°C for 30 s, 57°C for 30 s and 72°C for 30 s, and a final extension at 72°C for 10 min.

Methodology for statistical analysis and determination of significance. The descriptive statistics of bladder cancer cases and healthy controls are shown as the mean and standard deviation (SD) or as percentages. In Table I, Student’s t-test was adopted for the comparison of ages between the two groups. In Tables I-III, Pearson’s chi-square test without Yates’ correction was used to compare the distribution of the subgroups. In addition, associations were evaluated using adjusted odds ratios (aORs) with their corresponding 95% confidence intervals (CIs) with adjustment for age, gender, and personal habits. Differences were identified as being significant when the p-value was less than 0.05.

Results

Comparison of characteristics among the patient and the healthy control groups. Characteristics such as age, gender, personal habits, tumor stage and grades for the 375 control and 375 patients with bladder cancer are shown in Table I. Firstly, there was no difference found in the distribution of age and gender between the patient and healthy control groups since these frequencies were matched during recruiting of the non-cancer healthy controls. Secondly, neither smokers nor alcohol drinkers were found to be more frequent in the case group than in the control group (both p>0.05). It showed there was no difference in the frequency of smokers/drinkers between the two groups. Lastly, bladder cancer was mostly of non-muscle-invasive type (62.7%) and high clinical stage (59.7%).

Association of MMP1 rs1799750 genotypes and bladder cancer risk. The genotypic analysis for the MMP1 rs1799750 among the controls and the patients with bladder cancer is shown in Table II. The MMP1 rs1799750 genotypic frequency distributions were not significantly different between the control and the case groups (p for trend=0.6362) (Table II). In detail, 1G/2G and 1G/1G variants at MMP1 rs1799750 seemed not to be associated with an elevated bladder cancer risk [aOR=0.88 (95% CI=0.62-1.24) and 0.83 (95% CI=0.61-1.26); p=0.4357 and 0.3990, respectively; Table II]. Compared with those carrying a 2G allele (2G/2G+1G/2G), homozygosity for the 1G allele at MMP1 rs1799750 conferred no risk for bladder cancer (aOR=0.88, 95% CI=0.62-1.27; p=0.5857) (Table II). Lastly, compared with those homozygous for the 2G allele, the analytic results still showed that carrying a 1G allele (1G/1G+1G/2G) at MMP1 rs1799750 did not alter bladder cancer risk.
(aOR=0.86, 95% CI=0.65-1.18; p=0.3554) (Table II). Overall, MMP1 rs1799750 seemed to have no direct contribution to the risk of bladder cancer.

Bladder cancer risk according to MMP1 promoter allelic frequencies. The distributions of alleles for MMP1 rs1799750 among the patients with bladder cancer and healthy controls are shown in Table III. Consistent with the findings in Table II, analysis of allelic frequencies showed that the 1G allele at MMP1 rs1799750 was not significantly associated with the risk of bladder cancer in Taiwan (p=0.3479, adjusted OR=0.87, 95% CI=0.71-1.23) (Table III). In detail, the percentages of variant allelic frequencies in the groups of cases and controls were 41.9% and 44.3%, respectively (Table III). The results of analysis of MMP1 rs1799750 genotypes after stratifying by age, gender, smoking and alcohol consumption status showed no associations at all (all p>0.05, data not shown). Clinically, there was no significant difference in distributions between different stages and grades (both p>0.05, data not shown).

Discussion

One of the major components of the extracellular matrix is collagen, the enzymatic substrate of MMP1. In esophageal and colorectal cancer tissues, MMP1 has been shown to be overexpressed and associated with higher risk of death (27, 28). As early as 1979, a pilot study showed that muscle-invasive bladder cancer tissues have higher collagenase activity as their non-invasive counterparts (29). Later MMP1 was detected in the urine of patients with bladder cancer for the first time, and its concentration was found to be significantly increased in urine from patients with higher stage and grade (30). Elevated MMP1 has also been associated with poor survival of patients with bladder cancer (31). Notably, it has been reported that MMP1 was overexpressed in all tissues of fresh-prepared samples from patients with bladder cancer (n=30), while the overexpression of MMP1 was not correlated with tumor staging nor grading (20). It is hypothesized that inhered genomic variations may determine personal susceptibility to bladder cancer initiation, progression, invasion and metastasis.

In the literature, associations of MMP1 genotypes have been examined among many types of cancer, such as lung (32, 33), breast (34-36), oral (37), colorectal (38, 39), gastric (40-42), endometrial (43), cervical (44, 45), prostate (17, 46), and ovarian (47, 48), in addition to bladder cancer (49-52). Although there were several studies investigating the association of MMP1 genotypes with bladder cancer, the results were inconclusive and the total sample size is far from convincing, which we discuss later.
In the present study, it was found that the 1G allele of MMP1 rs1799750 was not significantly associated with risk of bladder cancer (Tables II and III). In addition, MMP1 rs1799750 genotypes were not associated with age, gender, nor smoking and alcohol consumption behaviors (data not shown). Compared with previous studies, our samples are more genetically conserved (all Taiwanese) and representative (375 patients with bladder cancer and 375 healthy controls).

We have summarized previous articles on MMP1 in bladder cancer in Table IV. Our findings are consistent with that reported by Kader and colleagues (50) but not with others with relatively limited samples (49-52). There may be ethnic variations among the reports, and more investigations are needed. Another limitation of the study is that we did not measure the phenotypic status of the participants, and have no understanding the correlation of 1G allele at MMP1 rs1799750 and transcriptional activity. In addition, the associations between the expression level of MMP1 with other parameters, such as age, gender, smoking or alcohol consumption status, or tumor stage and grade, are not available. Chuang and colleagues analyzed 30 samples, finding that MMP2 was correlated with high-grade tumors and MMP9 was correlated with advanced tumor stage. However, the expression of MMP1, MMP3, and tissue inhibitor of metalloproteinase-1 and -2 was not correlated with either tumor staging or grading (20). Their data are valuable, however, there is no genotype–phenotype correlation.

In conclusion, this study examined the genotypic patterns of MMP1 rs1799750 among Taiwanese people. Neither MMP1 1G nor 2G allele appeared to contribute to susceptibility of bladder cancer. Some other markers, for instance single nucleotide polymorphisms on other MMPs may play more critical roles than MMP1, and further investigations are needed to elucidate their role in bladder cancer etiology.

Conflicts of Interest

The Authors have declared no conflicts of interest.
Liao et al: MMP1 Genotypes in Bladder Cancer

6 Lai MN, Wang SM, Chen PC, Chen YY and Wang JD: Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk. J Natl Cancer Inst 102(3): 179-186, 2010. PMID: 20026811. DOI: 10.1093/jnci/djp467

7 Yang HY, Wang JD, Lo TC and Chen PC: Occupational exposure to herbs containing aristolochic acids increases the risk of urothelial carcinoma in Chinese herbalists. J Urol 189(1): 48-52, 2013. PMID: 23164394. DOI: 10.1016/j.juro.2012.08.090

8 Poons L, Huang MN, Choo Y, McPherson JR, Yu W, Heng HL, Gan A, Myint SS, Siew EY, Ler LD, Ng LG, Weng WH, Chuang CK, Yuen JS, Pang ST, Tan P, Teh BT and Rozen SG: Mutation signatures implicate aristolochic acid in bladder cancer development. Genome Med 7(1): 38, 2015. PMID: 26015880. DOI: 10.1186/s13073-015-0161-3

9 Jhuang JR, Chiang CJ, Su SY, Yang YW and Lee WC: Reduction in the incidence of urological cancers after the ban on Chinese herbal products containing aristolochic acid: An interrupted-time-series analysis. Sci Rep 9(1): 19860, 2019. PMID: 31882868. DOI: 10.1038/s41598-019-56394-y

10 Kader AK, Liu J, Shao L, Dinney CP, Lin J, Wang Y, Gu J, Grossman HB and Wu X: Matrix metalloproteinase polymorphisms are associated with bladder cancer invasiveness. Clin Cancer Res 13(9): 2614-2620, 2007. PMID: 17473191. DOI: 10.1158/1078-0432.CCR-06-1187

11 de Souza AP, Trevilatto PC, Scarcel-Caminaga RM, Brito RB and Line SR: MMP-1 promoter polymorphism: association with chronic periodontitis severity in a Brazilian population. J Clin Periodontol 30(2): 154-158, 2003. PMID: 12622858. DOI: 10.1034/j.1600-051x.2003.300202.x

12 Egeland M and Werb Z: New functions for the matrix metalloproteinases and its effect on leukocyte migration. J Leukoc Biol 82 (6): 821-827, 2002. PMID: 12082550. DOI: 10.1038/jlb.04066-137

13 Van Lint P and Libert C: Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82(6): 1375-1381, 2007. PMID: 17709402. DOI: 10.1189/jbl.0607338

14 Tsai CW, Chang WS, Gao CL, Shih LC, Chen LY, Lin EY, Li HT, Yen ST, Wu CN and Bau DT: Contribution of matrix metallopeptidase-1 genotypes, smoking, alcohol drinking and areca chewing to nasopharyngeal carcinoma susceptibility. Anticancer Res 36(7): 3335-3340, 2016. PMID: 27354591.

15 Sun KT, Tsai CW, Chang WS, Shih LC, Chen LY, Tsai MH, Ji HX, Hsiao CL, Liu YC, Li CY and Bau DT: The contribution of matrix metalloproteinase-1 genotype to oral cancer susceptibility in Taiwan. In Vivo 30(4): 439-444, 2016. PMID: 27381606.

16 Wu MH, Tzeng HE, Wu CN, Yuen TC, Peng YC, Tsai CH, Wang YC, Ke TW, Pei JS, Chang WS, Tsai CW and Bau DT: Association of matrix metalloproteinase-9 rs3918282 promoter genotypes with colorectal cancer risk. Anticancer Res 39(12): 6523-6529, 2019. PMID: 31810917. DOI: 10.21873/anticanres.13867

17 Liao CH, Wu HC, Hu PS, Hsu SW, Shen TC, Hsia TC, Chang WS, Tsai CW and Bau DT: The association of matrix metalloproteinase-1 promoter polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res 38(7): 3907-3911, 2018. PMID: 29970511. DOI: 10.21873/anticanres.12675

18 Yueh TC, Wu CN, Hung YW, Chang WS, Fu CK, Pei JS, Wu MH, Lai YL, Lee YM, Yen ST, Li HT, Tsai CW and Bau DT: The contribution of MMP-7 genotypes to colorectal cancer susceptibility in Taiwan. Cancer Genomics Proteomics 15(3): 207-212, 2018. PMID: 29695403. DOI: 10.21873/cgpp.20079

19 Shen TC, Chang WS, Tsai CW, Chao CY, Lin YT, Hsiao CL, Hsu CL, Chen WC, Hsia TC and Bau DT: The contribution of matrix metalloproteinase-1 promoter genotypes in Taiwan lung cancer risk. Anticancer Res 38(1): 253-257, 2018. PMID: 29277780. DOI: 10.21873/anticanres.12215

20 Chuang CK, Pang ST, Chuang TJ and Liao SK: Profiling of matrix metalloproteinases and tissue inhibitors of metalloproteinases proteins in bladder urothelial carcinoma. Oncol Lett 1(4): 691-695, 2010. PMID: 22966365. DOI: 10.3892/ol_00000121

21 Tower GB, Coon CI and Brinckerhoff CE: The 2G single nucleotide polymorphism (SNP) in the MMP-1 promoter contributes to high levels of MMP-1 transcription in MCF-7/ADR breast cancer cells. Breast Cancer Res Treat 82(2): 75-82, 2003. PMID: 14692651. DOI: 10.1023/B:BRREA.000003948.14026.7c

22 Liu D, Guo H, Li Y, Xu X, Yang K and Bai Y: Association between polymorphisms in the promoter regions of matrix metalloproteinases (MMPs) and risk of cancer metastasis: a meta-analysis. PLoS One 7(2): e31251, 2012. PMID: 22348060. DOI: 10.1371/journal.pone.0031251

23 Chen GL, Wang SC, Chen TC, Wang JS, Tsai CW and Tsai CW: Significant association of chitinase 3-like 1 genotypes to asthma risk in Taiwan. In Vivo 35(2): 799-803, 2021. PMID: 33622872. DOI: 10.21873/inivivo.12320

24 Chen KY, Chien WC, Liao JM, Tsai CW, Wang WS, Su CH, Hsu SW, Wang HC and Bau DT: Contribution of interleukin-10 genotype to triple negative breast cancer risk. Anticancer Res 41(5): 2451-2457, 2021. PMID: 33952470. DOI: 10.21873/anticancers.15020

25 Wu CN, Chang WS, Shih LC, Wang YC, Lee HT, Yu CC, Wang ZH, Meng MC, Hsia TC, Tsai CW and Bau DT: Interaction of DNA repair gene XPC with smoking and betel quid chewing behaviors of oral cancer. Cancer Genomics Proteomics 18(3 Supplement): 441-449, 2021. PMID: 33994366. DOI: 10.21873/cgp.202270

26 Tsai CB, Hsia NY, Wang YC, Wang ZH, Chin YT, Huang TL, Yu CC, Chang WS, Tsai CW, Yin MC and Bau DT: The significant association of MMP-1 genotypes with Taiwan pterygium. Anticancer Res 41(4): 2563-2569, 2021. PMID: 33905120. DOI: 10.21873/anticancers.14940

27 Murray GI, Duncan ME, O’Neil P, Melvin WT and Fothergill JE: Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2(3): 161-174, 2002. PMID: 11990853. DOI: 10.1038/nr745

28 Murray GI, Duncan ME, O’Neil P, Melvin WT and Fothergill JE: Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2(3): 161-174, 2002. PMID: 11990853. DOI: 10.1038/nr745

29 Liao CH, Wu HC, Hu PS, Hsu SW, Shen TC, Hsia TC, Chang WS, Tsai CW and Bau DT: The association of matrix metalloproteinase-1 promoter polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res 38(7): 3907-3911, 2018. PMID: 29970511. DOI: 10.21873/anticanres.12675

30 Nutt JE, Mellon JK, Qureshi K and Lunec J: Matrix metalloproteinase-1 is induced by epidermal growth factor in human bladder tumour cell lines and is detectable in urine of patients with bladder tumours. Br J Cancer 78(2): 215-220, 1998. PMID: 9683296. DOI: 10.1038/bjc.1998.467
Durkan GC, Nutt JE, Rajayabun PH, Neal DE, Lunec J and Mellon JK: Prognostic significance of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in voided urine samples from patients with transitional cell carcinoma of the bladder. Clin Cancer Res 7(11): 3450-3456, 2001. PMID: 11705862.

Liu L, Wu J, Wu C, Wang Y, Zhong R, Zhang X, Tan W, Nie S, Miao X and Lin D: A functional polymorphism (-1607 1G→2G) in the matrix metalloproteinase-1 promoter is associated with development and progression of gastric cancer. Cancer Epidemiol Biomarkers Prev 11(7): 5172-5181, 2002. PMID: 121523769. DOI: 10.1002/cncr.26154

Heist RS, Marshall AL, Liu G, Zhou W, Su L, Neuberg D, Lynch TJ, Wain J and Christianson DC: Matrix metalloproteinase polymorphisms and survival in stage I non-small cell lung cancer. Clin Cancer Res 12(18): 5448-5453, 2006. PMID: 17000679. DOI: 10.1158/1078-0432.CCR-06-0262

Balkhi S, Mashayekhi F, Salehzedeh A and Saedi HS: Matrix metalloproteinase (MMP)-1 and MMP-3 gene variations affect MMP-1 and -3 serum concentration and associates with breast cancer. Mol Biol Rep 47(12): 9637-9644, 2020. PMID: 33170424. DOI: 10.1007/s11033-020-05962-x

 hsiao CL, Liu LC, Shih TC, Lai YL, Hsu SW, Wang HC, Pan SY, Shen TC, Tsai CW, Chang WS, Su CH, Wang YT, Chung JG and Bau DT: The association of Matrix Metalloproteinase-1 promoter polymorphisms with breast cancer. In Vivo 32(3): 487-491, 2018. PMID: 29665550. DOI: 10.21873/in vivo.11265

Padala C, Tупurama MA, Puranam K, Gantala S, Shyamala N, Kondapalli MS, Gundapaneni KK, Mudigonda S, Galiymudi KK, Kupsal K, Nanchari SR, Chavan U, Chinta SK, Mukta S, Satti V and Hanumanth SR: Synergistic effect of collagenase-1 (MMP1), stromelysin-1 (MMP3) and gelatinase-B (MMP9) gene polymorphisms in breast cancer. PLoS One 12(9): e0184448, 2017. PMID: 28961241. DOI: 10.1371/journal.pone.0184448

Vairaktaris E, Serefoglou Z, Avgoustidis D, Yapijakis C, Critselis G, Grzegorczyk A, Gromadzinska J, Sosnowski M and Wasowicz J: Prognostic significance of matrix metalloproteinase-1 in voided urine samples from patients with transitional cell carcinoma of the bladder. Genet Test Mol Biomarkers 18(10): 675-682, 2014. PMID: 25148204. DOI: 10.1089/gtmb.2014.0117

Song YX, Zhou X, Wang ZN, Gao P, Li AL, Liang JW, Zhu JL, Xu YY and Xu HM: The association between individual SNPs or haplotypes of matrix metalloproteinase-1 and gastric cancer susceptibility, progression and prognosis. PLoS One 7(5): e38002, 2012. PMID: 22655095. DOI: 10.1371/journal.pone.0038002

Beeghly-Fadiel A, Xiang YB, Deming SL, Long JR, Xu WH, Cai Q, Zheng W and Shu XO: No association between matrix metalloproteinase (MMP)-1, MMP-3, and MMP-7 SNPs and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 18(6): 1925-1928, 2009. PMID: 19435861. DOI: 10.1158/1055-9965.EPI-09-0244

Lai HC, Chu CM, Lin YW, Chang CC, Nieh S, Yu MH and Chu TY: Matrix metalloproteinase 1 gene polymorphism as a prognostic predictor of invasive cervical cancer. Gynecol Oncol 96(2): 314-319, 2005. PMID: 15661214. DOI: 10.1016/j.ygyno.2004.09.065

Ju W, Kang S, Kim JW, Park NH, Song YS, Kang SB and Lee HP: Promoter polymorphism in the matrix metalloproteinase-1 and risk of cervical cancer in Korean women. Cancer Lett 217(2): 191-196, 2005. PMID: 15617836. DOI: 10.1016/j.canlet.2004.08.032

Albayrak S, Cangüven O, Göktaş Ç, Aydemir H and Köksal V: Role of MMP-1 1G/2G promoter gene polymorphism on the development of prostate cancer in the Turkish population. Urol Int 79(4): 312-315, 2007. PMID: 18028584. DOI: 10.1159/000109715

Ju W, Kim JW, Park NH, Song YS, Kim SC, Kang SB and Lee HP: Matrix metalloproteinase-1 promoter polymorphism and epithelial ovarian cancer: does ethnicity matter? J Obstet Gynaecol Res 33(2): 155-160, 2007. PMID: 17441888. DOI: 10.1111/j.1447-0756.2007.00511.x

Li Y, Jin X, Kang S, Wang Y, Du H, Zhang J, Guo W, Wang N and Fang S: Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7 and -9 and the risk of epithelial ovarian cancer in China. Gynecol Oncol 101(1): 92-96, 2006. PMID: 16278009. DOI: 10.1016/j.ygyno.2005.09.058

Tasci AI, Tugcu V, Ozbek E, Ozbay B, Simsek A and Koksal V: A single-nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances bladder cancer susceptibility. BJU Int 101(4): 503-507, 2008. PMID: 17986285. DOI: 10.1111/j.1447-0756.2007.07511.x

Kader AK, Shao L, Dinney CP, Schabath MB, Wang Y, Liu J, Gu J, Grossman HB and Wu X: Matrix metalloproteinase polymorphisms and bladder cancer risk. Cancer Res 66(24): 11644-11648, 2006. PMID: 17178858. DOI: 10.1158/0008-5472.CAN-06-1212

Srivastava P, Gangwar R, Kapoor R and Mittal RD: Bladder cancer risk associated with genotypic polymorphism of the matrix metalloproteinase-1 and 7 in North Indian population. DisMarkers 29(1): 37-46, 2010. PMID: 20826916. DOI: 10.3233/DMA-2010-0724

Wieczorek E, Reszka E, Jablonowski Z, Jablonska E, Krol MB, Grzezgorczyk A, Gromadzinska J, Sosnowski M and Wasowicz W: Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase-1 (TIMPs), and bladder cancer susceptibility. BJU Int 112(8): 1207-1214, 2013. PMID: 23819551. DOI: 10.1111/bju.12230

Accepted July 6, 2021

Received June 4, 2021

2540