The spanning number and the independence number of a subset of an abelian group

Béla Bajnok
Department of Mathematics, Gettysburg College
Gettysburg, PA 17325-1486 USA
E-mail: bbajnok@gettysburg.edu

April 29, 2003

Abstract

Let \(A = \{a_1, a_2, \ldots, a_m\} \) be a subset of a finite abelian group \(G \). We call \(A \) \(t \)-independent in \(G \), if whenever
\[
\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_m a_m = 0
\]
for some integers \(\lambda_1, \lambda_2, \ldots, \lambda_m \) with
\[
|\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| \leq t,
\]
we have \(\lambda_1 = \lambda_2 = \cdots = \lambda_m = 0 \), and we say that \(A \) is \(s \)-spanning in \(G \), if every element \(g \) of \(G \) can be written as
\[
g = \lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_m a_m
\]
for some integers \(\lambda_1, \lambda_2, \ldots, \lambda_m \) with
\[
|\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| \leq s.
\]

In this paper we give an upper bound for the size of a \(t \)-independent set and a lower bound for the size of an \(s \)-spanning set in \(G \), and determine some cases when this extremal size occurs. We also discuss an interesting connection to spherical combinatorics.

1 Introduction

We illuminate our concepts by the following examples.

Example 1 Consider the set \(A = \{1, 4, 6, 9, 11\} \) in the cyclic group \(G = \mathbb{Z}_{25} \). We are interested in the degree to which this set is independent in \(G \). We find, for example, that \(1 + 4 + 4 - 9 = 0 \) and \(11 + 11 + 9 - 6 = 0 \), but that such an equation with only three terms from \(A \) cannot be found. We therefore say that \(A \) is 3-independent in \(G \) and write \(\text{ind}(A) = 3 \). It can be shown that \(A \) is optimal in each of the following regards:
• no subset of \(G \) of size \(m > 5 \) is 3-independent in \(G \) (furthermore, \(A \) is essentially the unique 3-independent set in \(G \) of size 5);

• no subset of \(G \) of size 5 is \(t \)-independent for \(t > 3 \) (that is, for \(t > 3 \), there will always be \(t \), not necessarily distinct, elements with a signed sum of 0); and

• \(n = 25 \) is the smallest odd number for which a 3-independent set of size 5 in \(\mathbb{Z}_n \) exists. (In fact, it can be shown that \(\mathbb{Z}_n \) has a 3-independent set of size 5, if and only if, \(n = 20, 22, 24, 25, 26, \) or \(n \geq 28. \))

The fact that \(G = \mathbb{Z}_{25} \) has this relatively large 3-independent subset is due, as explained later, to the fact that 25 has a prime divisor which is congruent to 5 mod 6.

Example 2 How can one place a finite number of points on the \(d \)-dimensional sphere \(S^d \subset \mathbb{R}^{d+1} \) with the highest momentum balance? For the circle \(S^1 \), the answer is given by the vertices of a regular polygon, but the issue is far more difficult for \(d > 1 \). For a positive integer \(n \) and a set of integers \(A = \{a_1, a_2, \ldots, a_m\} \), define the set of \(n \) points \(X(A) = \{x_1, x_2, \ldots, x_n\} \) with

\[
x_i = \frac{1}{\sqrt{m}} \left(\cos\left(\frac{2\pi a_1}{n}\right), \sin\left(\frac{2\pi a_1}{n}\right), \ldots, \cos\left(\frac{2\pi a_m}{n}\right), \sin\left(\frac{2\pi a_m}{n}\right) \right)
\]

\((i = 1, 2, \ldots, n)\); thus, for example, for \(n = 25 \) and \(A = \{1, 4, 6, 9, 11\} \), \(X(A) \) is a set of 25 points on the unit sphere \(S^9 \). It can be shown that this \(X(A) \) is a spherical 3-design, that is, for every polynomial \(f : S^9 \to \mathbb{R} \) of total degree at most 3, the average value of \(f \) on \(S^9 \) equals the arithmetic average of \(f \) on \(X(A) \). We can also verify that \(X(A) \) is optimal in that

• no set of 25 points is a \(t \)-design on \(S^9 \) for \(t > 3 \);

• no set of 25 points is a 3-design on \(S^d \) for \(d > 9 \);

• \(n = 25 \) is the minimum odd size for which a 3-design on \(S^9 \) exists. (It was recently proved that an \(n \)-point 3-design on \(S^9 \) exists, if and only if, \(n = 20, 22, 24, \) or \(n \geq 25. \))

Example 3 Finally, consider \(A = \{3, 4\} \) in \(G = \mathbb{Z}_{25} \). Note that every element of \(G \) can be generated by a signed sum of at most three terms of \(A \): \(1 = 4 - 3, 2 = 3 + 3 - 4, \ldots, 24 = 3 - 4. \) We therefore call \(A = \{3, 4\} \) a 3-spanning set in \(G = \mathbb{Z}_{25} \), and write span(\(A \)) = 3. Again, our example is extremal; it can be shown that

• no subset of \(G \) of size \(m < 2 \) is 3-spanning in \(G \);

• no subset of \(G \) of size 2 is \(s \)-spanning for \(s < 3 \); and

• \(n = 25 \) is the largest number for which a 3-spanning set of size 2 in \(\mathbb{Z}_n \) exists. (Furthermore, as we will see, \(\mathbb{Z}_n \) has a 3-spanning set of size at most 2 for every \(n \leq 25. \))

In fact, this example has an even more distinguished property: every element of \(G \) can be written uniquely as a signed sum of at most 3 elements of \(A \); we call such a set perfect. As a consequence of being a perfect 3-spanning set, \(A \) is also a maximum size 6-independent set in \(G \).
The fact that $G = \mathbb{Z}_{25}$ has a perfect spanning subset of size 2 is due to the fact that 25 is the sum of two consecutive squares, as explained later.

In the subsequent sections of this paper we define and investigate the afore-mentioned concepts and statements. Topics similar to spanning numbers (e.g. h-bases) and independence numbers (e.g. sum-free sets, Sidon sets, and B_h sequences) have been studied vigorously for a long time, see, for example, [9], [13], [15], [20], [22], [23], [27], and various sections of Guy’s book [14]. For general references on spherical designs, see [4], [8], [10], [11], [12], [17], [21], and [25].

2 Spanning numbers

Let G be a finite abelian group of order $|G| = n$, written in additive notation. We are interested in the degree to which a given subset of G spans G. More precisely, we introduce the following definition.

Definition 1 Let s be a non-negative integer and $A = \{a_1, a_2, \ldots, a_m\}$. We say that A is an s-spanning set in G, if every $g \in G$ can be written as

$$g = \lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_m a_m$$

for some integers $\lambda_1, \lambda_2, \ldots, \lambda_m$ with

$$|\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| \leq s.$$

We call the smallest s for which A is s-spanning the spanning number of A in G, and denote it by $\text{span}(A)$.

Equivalently, A is an s-spanning subset of G if for every element $g \in G$, we can find non-negative integers h and k and elements x and y in G, so that x is the sum of h (not necessarily distinct) elements of A, y is the sum of k (not necessarily distinct) elements of A, $h + k \leq s$, and $g = x - y$.

The case $s = 0$ is trivial: the only group G which has a 0-span is the one with a single element; therefore, we may assume that $s \geq 1$ and $n \geq 2$. Obviously, $A = G$ is an s-spanning subset of G for every $s \geq 1$. Here we are interested in small s-spanning sets in G; we denote the size of a minimum s-spanning set of G by $p(G, s)$.

For $s = 1$, it is clear that $\text{span}(A) = 1$, if and only if, for each $g \in G$, A contains at least one of g or $-g$; in particular, A must contain every element of order 2. Let $O(G, 2)$ denote the set of order 2 elements of G; with this notation we have

$$p(G, 1) = |O(G, 2)| + \frac{|G \setminus O(G, 2) \setminus \{0\}|}{2} = \frac{n + |O(G, 2)| - 1}{2}. \quad (1)$$

As a special case, for the cyclic group of order n we have

$$p(\mathbb{Z}_n, 1) = \lfloor n/2 \rfloor. \quad (2)$$
For \(s \geq 2 \), values of \(p(G, s) \) seem difficult to establish, even in the case of the cyclic groups. Computational data shows that

\[
p(Z_n, 2) = \begin{cases}
0 & \text{if } n = 1; \\
1 & \text{if } n = 2, 3, 4, 5; \\
2 & \text{if } n = 6, 7, \ldots, 12, 13; \\
3 & \text{if } n = 14, 15, \ldots, 21; \\
4 & \text{if } n = 22, 23, \ldots, 33, \text{ and } n = 35; \\
5 & \text{if } n = 34, n = 36, 37, \ldots, 49, \text{ and } n = 51;
\end{cases}
\]

and

\[
p(Z_n, 3) = \begin{cases}
0 & \text{if } n = 1; \\
1 & \text{if } n = 2, 3, \ldots, 6, 7; \\
2 & \text{if } n = 8, 9 \ldots, 24, 25; \\
3 & \text{if } n = 26, 27, \ldots, 50, n = 52, \text{ and } n = 55; \\
4 & \text{if } n = 51, 53, 54, n = 56, 57, \ldots, 100, \text{ and } n = 104.
\end{cases}
\]

(Values marked in bold-face will be discussed later.)

As these values indicate, \(p(Z_n, s) \) is, in general, not a monotone function of \(n \), though we believe that

\[
P(s) := \lim_{n \to \infty} \frac{p(Z_n, s)^s}{n}
\]

exists for every \(s \). The following theorem provides a lower bound for \(p(G, s) \) which is of the order \(n^{1/s} \) as \(n \) goes to infinity.

Theorem 2 Let \(m \) and \(s \) be positive integers, and define \(a(m, s) \) recursively by \(a(m, 0) = a(0, s) = 1 \) and

\[
a(m, s) = a(m - 1, s) + a(m, s - 1) + a(m - 1, s - 1).
\]

1. We have

\[
a(m, s) = \sum_{k=0}^{s} \binom{s}{k} \binom{m}{k} 2^k.
\]

2. If \(G \) has order \(n \) and contains an \(s \)-spanning set of size \(m \), then \(n \leq a(m, s) \).

Proof. 1. Let us define

\[
a'(m, s) := \sum_{k=0}^{s} \binom{s}{k} \binom{m}{k} 2^k.
\]

Clearly, \(a'(m, 0) = a'(0, s) = 1 \); below we prove that \(a'(m, s) \) also satisfies the recursion.

We have

\[
a'(m - 1, s - 1) = \sum_{k=0}^{s-1} \binom{s-1}{k} \binom{m-1}{k} 2^k
\]

\[
= \sum_{k=0}^{s-2} \binom{s-1}{k} \binom{m-1}{k} 2^k + \binom{m-1}{s-1} 2^{s-1}.
\]
and
\[
a'(m-1, s) = \sum_{k=0}^{s} \binom{s}{k} \binom{m-1}{k} 2^k \\
= \sum_{k=0}^{s-1} \binom{s}{k} \binom{m-1}{k} 2^k + \binom{m-1}{s} 2^s \\
= \sum_{k=0}^{s-1} \binom{s-1}{k-1} \binom{m-1}{k} 2^k + \sum_{k=0}^{s-2} \binom{s-1}{k} \binom{m-1}{k} 2^k + \binom{m-1}{s-1} 2^{s-1} + \binom{m-1}{s} 2^s.
\]

Next, we add \(a'(m-1, s)\) and \(a'(m-1, s-1)\). Note that
\[
\binom{m-1}{s-1} 2^{s-1} + \binom{m-1}{s} 2^{s-1} + \binom{m-1}{s} 2^s = \binom{m}{s} 2^s,
\]
and
\[
\sum_{k=0}^{s-2} \binom{s-1}{k} \binom{m-1}{k} 2^k + \sum_{k=0}^{s-2} \binom{s-1}{k} \binom{m-1}{k} 2^k = \sum_{k=0}^{s-2} \binom{s-1}{k} \binom{m-1}{k} 2^{k+1},
\]
and by replacing \(k\) by \(k-1\), this sum becomes
\[
\sum_{k=0}^{s-1} \binom{s-1}{k-1} \binom{m-1}{k} 2^k.
\]

Therefore,
\[
a'(m-1, s) + a'(m-1, s-1) = \sum_{k=0}^{s-1} \binom{s-1}{k-1} \binom{m-1}{k} 2^k + \sum_{k=0}^{s-1} \binom{s-1}{k-1} \binom{m-1}{k} 2^k + \binom{m}{s} 2^s \\
= \sum_{k=0}^{s} \binom{s-1}{k-1} \binom{m}{k} 2^k + \binom{m}{s} 2^s \\
= \sum_{k=0}^{s} \binom{s}{k} \binom{m}{k} 2^k - \sum_{k=0}^{s} \binom{s-1}{k} \binom{m}{k} 2^k \\
= a'(m, s) - a'(m, s-1).
\]

2. Assume that \(A = \{a_1, \ldots, a_m\}\) is an \(s\)-spanning set in \(G\) of size \(m\), and let
\[
\Sigma = \{\lambda_1 a_1 + \cdots + \lambda_m a_m \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, |\lambda_1| + \cdots + |\lambda_m| \leq s\}.
\]
We will count the elements in the index set
\[
I = \{(\lambda_1, \ldots, \lambda_m) \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, |\lambda_1| + \cdots + |\lambda_m| \leq s\},
\]
and
as follows. For \(k = 0, 1, 2, \ldots, m \), let \(I_k \) be the set of those elements of \(I \) where exactly \(k \) of the \(m \) coördinates are non-zero. How many elements are in \(I_k \)? We can choose which \(k \) of the \(m \) coördinates are non-zero in \(\binom{m}{k} \) ways; w.l.o.g. let these coördinates be \(\lambda_1, \lambda_2, \ldots, \lambda_k \). Next, we choose the values of \(|\lambda_1|, |\lambda_2|, \ldots, |\lambda_k| \); since the sum of these \(k \) positive integers is at most \(s \), we have \(\binom{s}{k} \) choices. Finally, each of these coördinates can be positive or negative, and therefore

\[
|I_k| = \binom{s}{k} \binom{m}{k} 2^k,
\]

and

\[
|I| = \sum_{k=0}^{m} \binom{s}{k} \binom{m}{k} 2^k = \sum_{k=0}^{s} \binom{s}{k} \binom{m}{k} 2^k = a(m, s).
\]

Since \(A \) is \(s \)-spanning in \(G \), we must have \(n = |\Sigma| \leq |I| = a(m, s). \)

Theorem 2 thus provides a lower bound for the size of an \(s \)-spanning set in \(G \) which is of the order \(n^{1/s} \) as \(n \) goes to infinity.

For exact values, we establish the following results.

Proposition 3 Let \(s \geq 1 \) be an integer.

1. If \(2 \leq n \leq 2s + 1 \), then the set \(\{1\} \) is \(s \)-generating in \(\mathbb{Z}_n \) and \(p(\mathbb{Z}_n, s) = 1 \).
2. If \(2s + 2 \leq n \leq 2s^2 + 2s + 1 \), then the set \(\{s, s + 1\} \) is \(s \)-generating in \(\mathbb{Z}_n \) and \(p(\mathbb{Z}_n, s) = 2 \).
3. If \(n \geq 2s^2 + 2s + 2 \), then \(p(\mathbb{Z}_n, s) \geq 3 \).

Proof. 1 is trivial. To prove 2, let

\[
\Sigma = \{\lambda_1 s + \lambda_2 (s + 1) \mid \lambda_1, \lambda_2 \in \mathbb{Z}, |\lambda_1| + |\lambda_2| \leq s\}.
\]

The elements of \(\Sigma \) lie in the interval \([- (s^2 + s), (s^2 + s)]\) and, since the index set

\[
I = \{(\lambda_1, \lambda_2) \mid \lambda_1, \lambda_2 \in \mathbb{Z}, |\lambda_1| + |\lambda_2| \leq s\}
\]

contains exactly \(2s^2 + 2s + 1 \) elements, it suffices to prove that no integer in \([- (s^2 + s), (s^2 + s)]\) can be written as an element of \(\Sigma \) in two different ways. Indeed, it is an easy exercise to show that

\[
\lambda_1 s + \lambda_2 (s + 1) = \lambda'_1 s + \lambda'_2 (s + 1) \in \Sigma
\]

implies \(\lambda_1 = \lambda'_1 \) and \(\lambda_2 = \lambda'_2 \); therefore, the set \(\{s, s + 1\} \) is \(s \)-generating in \(\mathbb{Z}_n \). As the \(s \)-span of a single element can contain at most \(2s + 1 \) elements, for values \(n \geq 2s + 2 \) we must have \(p(\mathbb{Z}_n, s) = 2 \).

Statement 3 follows from Theorem 2 by noting that \(a(2, s) = 2s^2 + 2s + 1 \). \(\square \)

Let us now examine the extremal cases of Theorem 2.

Definition 4 Suppose that \(A \) is an \(s \)-spanning set of size \(m \) in \(G \) and that \(a(m, s) \) is defined as in Theorem 2. If \(|G| = n = a(m, s)\), then we say that \(A \) is a perfect \(s \)-spanning set in \(G \).
Cases where \mathbb{Z}_n has a perfect s-spanning set for $s = 2$ and $s = 3$ are marked with bold-face in (3) and (4). Trivially, the empty-set is a perfect s-spanning set in \mathbb{Z}_1 for every s. With (2) and Proposition 3, we can exhibit some other perfect spanning sets in the cyclic group.

Proposition 5 Let m, n, and s be positive integers, and let $G = \mathbb{Z}_n$.

1. If $n = 2m + 1$, then the set $\{1, 2, \ldots, m\}$ is a perfect 1-spanning set in G.

2. If $n = 2s + 1$, then the set $\{1\}$ is a perfect s-spanning set in G.

3. If $n = 2s^2 + 2s + 1$, then the set $\{s, s + 1\}$ is a perfect s-spanning set in G.

Note that the sets given in Proposition 5 are not unique: any element of the set in 1 can be replaced by its negative; in 2, the set $\{a\}$ is perfect for every a which is relatively prime to n; it is not difficult to show that another example in 3 is provided by $A = \{1, 2s + 1\}$ (however, the set $\{s, s + 1\}$ in Proposition 3 cannot be replaced by $\{1, 2s + 1\}$). We could not find perfect spanning sets for $s \geq 2$ and $m \geq 3$. It might be an interesting problem to find and classify all perfect spanning sets.

3 Independence numbers

As in the previous section, we let G be a finite abelian group of order $|G| = n$, written in additive notation, and suppose that A is a subset of G. Here we are interested in the degree to which A is independent in G. More precisely, we introduce the following definition.

Definition 6 Let t be a non-negative integer and $A = \{a_1, a_2, \ldots, a_m\}$. We say that A is a t-independent set in G, if whenever

$$\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_m a_m = 0$$

for some integers $\lambda_1, \lambda_2, \ldots, \lambda_m$ with

$$|\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| \leq t,$$

we have $\lambda_1 = \lambda_2 = \cdots = \lambda_m = 0$. We call the largest t for which A is t-independent the independence number of A in G, and denote it by $\text{ind}(A)$.

Equivalently, A is a t-independent set in G, if for all non-negative integers h and k with $h + k \leq t$, the sum of h (not necessarily distinct) elements of A can only equal the sum of k (not necessarily distinct) elements of A in a trivial way, that is, $h = k$ and the two sums contain the same terms in some order.

Here we are interested in the size of a maximum t-independent set in G; we denote this by $q(G, t)$.

Since $0 \leq \text{ind}(A) \leq n-1$ holds for every subset A of G (so no subset is “completely” independent), we see that $q(G, 0) = n$ and $q(G, n) = 0$. It is also clear that $\text{ind}(A) = 0$, if and only if, $0 \in A$, hence

$$q(G, 1) = n - 1.$$ \hfill (5)

For the rest of this section we assume that $t \geq 2$.

We can easily determine the value of $q(G, 2)$ as well. First, note that A cannot contain any element of $\{0\} \cup \text{Ord}(G, 2)$ (the elements of order at most 2); to get a maximum 2-independent set in G, take exactly one of each element or its negative in $G \setminus \text{Ord}(G, 2) \setminus \{0\}$, hence we have

$$q(G, 2) = \frac{n - |\text{Ord}(G, 2)| - 1}{2}. \hfill (6)$$

As a special case, for the cyclic group of order n we have

$$q(\mathbb{Z}_n, 2) = \left\lfloor \frac{n - 1}{2} \right\rfloor. \hfill (7)$$

Note that if $\text{Ord}(G, 2) \cup \{0\} = G$ then $q(G, 2) = 0$; for $n \geq 2$ this occurs only for the elementary abelian 2-group. If $\text{Ord}(G, 2) \cup \{0\} \neq G$ then, since $\text{Ord}(G, 2) \cup \{0\}$ is a subgroup of G, we have $1 \leq |\text{Ord}(G, 2)| + 1 \leq n/2$, and therefore we get the following.

Proposition 7 If G is isomorphic to the elementary abelian 2-group, then $q(G, 2) = 0$. Otherwise

$$\frac{1}{4} n \leq q(G, 2) \leq \frac{1}{2} n.$$

Let us now consider $t = 3$. As before, if G does not contain elements of order at least 4, then $q(G, 3) = 0$; this occurs if and only if G is isomorphic to the elementary abelian p-group for $p = 2$ or $p = 3$. In [3] we proved the following.

Theorem 8 ([3]) If G is isomorphic to the elementary abelian p-group for $p = 2$ or $p = 3$, then $q(G, 3) = 0$. Otherwise

$$q(G, 3) = \left\lfloor \frac{1}{4} n \right\rfloor \leq q(G, 3) \leq \frac{1}{4} n.$$

These bounds can be attained since $q(\mathbb{Z}_9, 3) = 1$ and $q(\mathbb{Z}_4, 3) = 1$.

For the cyclic group \mathbb{Z}_n, we can find explicit 3-independent sets as follows. For every n, the odd integers which are less than $n/3$ form a 3-independent set; if n is even, we can go up to (but not including) $n/2$ as then the sum of two odd integers cannot equal n. We can do better in one special case when n is odd; namely, when n has a prime divisor p which is congruent to 5 mod 6, one can show that the set

$$\left\{ pi_1 + 2i_2 + 1 \mid i_1 = 0, 1, \ldots, \frac{n}{p} - 1, \ i_2 = 0, 1, \ldots, \frac{p - 5}{6} \right\} \hfill (8)$$

is 3-independent. It is surprising that these examples cannot be improved, as we have the following exact values.
Theorem 9 \([3]\) For the cyclic group \(G = \mathbb{Z}_n\) we have

\[q(\mathbb{Z}_n, 3) = \begin{cases} \left\lfloor \frac{n}{4} \right\rfloor & \text{if } n \text{ is even}, \\ \left(1 + \frac{1}{2}\right) \frac{n}{6} & \text{if } n \text{ is odd, has prime divisors congruent to 5 } \pmod{6}, \\ \left\lfloor \frac{n}{6} \right\rfloor & \text{and } p \text{ is the smallest such divisor}, \\ \text{otherwise}. \end{cases} \]

For \(t \geq 4\), exact results seem more difficult. With the help of a computer, we generated the following values.

\[q(\mathbb{Z}_n, 4) = \begin{cases} 0 & \text{if } n = 1, 2, 3, 4; \\ 1 & \text{if } n = 5, 6, \ldots, 12; \\ 2 & \text{if } n = 13, 14, \ldots, 26; \\ 3 & \text{if } n = 27, 28, \ldots, 45, \text{ and } n = 47; \\ 4 & \text{if } n = 46, n = 48, 49, \ldots, 68, \text{ and } n = 72, 73; \\ 5 & \text{if } n = 69, 70, 71, \text{ and } n = 74, 75, \ldots, 102; \end{cases} \]

(9)

\[q(\mathbb{Z}_n, 5) = \begin{cases} 0 & \text{if } n = 1, 2, 3, 4, 5; \\ 1 & \text{if } n = 6, 7, \ldots, 17, \text{ and } n = 19, 20; \\ 2 & \text{if } n = 18, n = 21, 22, \ldots, 37, n = 39, 40, 41, n = 43, 44, 45, 47; \\ 3 & \text{if } n = 38, 42, 46, n = 48, 49, \ldots, 69, n = 71, 72, 73, 75, 76, 77, 79, 81, 83, 85, 87; \end{cases} \]

(10)

and

\[q(\mathbb{Z}_n, 6) = \begin{cases} 0 & \text{if } n = 1, 2, 3, \ldots, 6; \\ 1 & \text{if } n = 7, 8, 9, \ldots, 24; \\ 2 & \text{if } n = 25, 26, 27, \ldots, 69; \\ 3 & \text{if } n = 70, 71, \ldots, 151, \text{ and } n = 153, 154, 155, 158, 159, 160. \end{cases} \]

(11)

(Values marked in bold-face will be discussed later.)

Again we see that \(q(\mathbb{Z}_n, t)\) is not, in general, a monotone function of \(n\); although for even values of \(t\) the sequence seems to possess more regularity and we conjecture that

\[Q(t) := \lim_{n \to \infty} \frac{q(\mathbb{Z}_n, t)^{t^2}}{n} \]

exists for every even \(t\). The following theorem establishes an upper bound for \(q(G, s)\) which is of the order \(n^{1/[t/2]}\) as \(n\) goes to infinity.

Theorem 10 Let \(m\) and \(t\) be positive integers, \(t \geq 2\), and let us denote

\[q(m, t) = \begin{cases} a(m, t/2) & \text{if } t \text{ is even}, \\ a(m, (t-1)/2) + a(m-1, (t-1)/2) & \text{if } t \text{ is odd}, \end{cases} \]

where \(a(m, t)\) is defined in Theorem \([2]\). If \(G\) has order \(n\) and contains a \(t\)-independent set of size \(m\), then \(n \geq q(m, t)\).
Proof. Assume that $A = \{a_1, \ldots, a_m\}$ is a t-independent set in G of size m, and define
\[\Sigma = \{\lambda_1 a_1 + \cdots + \lambda_m a_m \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, |\lambda_1| + \cdots + |\lambda_m| \leq \lfloor t/2 \rfloor \} \]
and
\[I = \{(\lambda_1, \ldots, \lambda_m) \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, |\lambda_1| + \cdots + |\lambda_m| \leq \lfloor t/2 \rfloor \}. \]

As in the proof of Theorem 2 we have $|I| = a(m, \lfloor t/2 \rfloor)$. Since A is a t-independent set in G, the elements listed in Σ must be all distinct, hence $n \geq |\Sigma| = |I| = a(m, \lfloor t/2 \rfloor)$. If t is even, we are done.

Now let
\[\Sigma' = \{\lambda_1 a_1 + \cdots + \lambda_m a_m \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, \lambda_1 \geq 1, |\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| = \lfloor t/2 \rfloor + 1 \} \]
and
\[I' = \{(\lambda_1, \ldots, \lambda_m) \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z}, \lambda_1 \geq 1, |\lambda_1| + |\lambda_2| + \cdots + |\lambda_m| = \lfloor t/2 \rfloor + 1 \}. \]

We will count the elements in the index set $|I'|$ as follows. For $k = 0, 1, 2, \ldots, m - 1$, let I_k be the set of those elements of I' where exactly k of the $m - 1$ coordinates $\lambda_2, \ldots, \lambda_m$ are non-zero. An argument similar to that in the proof of Theorem 2 shows that
\[|I_k| = \binom{m-1}{k} \binom{\lfloor t/2 \rfloor}{k} 2^k, \]

hence
\[|I'| = \sum_{k=0}^{m-1} \binom{m-1}{k} \binom{\lfloor t/2 \rfloor}{k} 2^k = a(m - 1, \lfloor t/2 \rfloor). \]

If t is odd, then the elements listed in Σ' must be distinct from each other and from those in Σ as well, thus $n \geq |\Sigma| + |\Sigma'| = |I| + |I'| = a(m, \lfloor t/2 \rfloor) + a(m - 1, \lfloor t/2 \rfloor)$. \square

Theorem 10 thus provides an upper bound for the size of a t-independent set in G which is of the order $n^{1/\lfloor t/2 \rfloor}$ as n goes to infinity.

For exact values, we establish the following results.

Proposition 11 Let $t \geq 2$ be an integer.

1. If $1 \leq n \leq t$, then $q(\mathbb{Z}_n, t) = 0$.
2. If $t + 1 \leq n \leq \lfloor t^2/2 \rfloor + t$, then the set $\{1\}$ is t-independent in \mathbb{Z}_n and $q(\mathbb{Z}_n, t) = 1$.
3. (a) Suppose that t is even. If $n \geq t^2/2 + t + 1$, then the set $\{t/2, t/2 + 1\}$ is t-independent in \mathbb{Z}_n and $q(\mathbb{Z}_n, t) \geq 2$.
 (b) Suppose that t is odd. If $n = (t^2 - 1)/2 + t + 1$, then the set $\{1, t\}$ is t-independent in \mathbb{Z}_n and $q(\mathbb{Z}_n, t) = 2$.

10
Proof. Let \(q(m, t) \) be defined as in Theorem [10]. Since \(q(1, t) = t + 1 \), our first claim follows from Theorem [10]. To prove 2, note that if \(n \geq t + 1 \), then \(\{1\} \) is \(t \)-independent in \(\mathbb{Z}_n \); furthermore, \(q(2, t) = \lfloor t^2/2 \rfloor + t + 1 \).

Now let \(t \) be even, and assume that \(n \geq t^2/2 + t + 1 \). We define

\[
\Sigma = \{ \lambda_1 \frac{t}{2} + \lambda_2 (\frac{t}{2} + 1) \mid \lambda_1, \lambda_2 \in \mathbb{Z}, |\lambda_1| + |\lambda_2| \leq t \}.
\]

The elements of \(\Sigma \) lie in the interval \(-(t^2/2 + t), (t^2/2 + t) \) and therefore, to prove 3 (a), it suffices to show that

\[
0 = \lambda_1 \frac{t}{2} + \lambda_2 (\frac{t}{2} + 1) \in \Sigma
\]

implies \(\lambda_1 = \lambda_2 = 0 \), which is an easy exercise. Statement 3 (b) is essentially similar.

We now turn to the extremal cases of Theorem [10].

Definition 12 Suppose that \(A \) is a \(t \)-independent set of size \(m \) in \(G \) and that \(q(m, t) \) is defined as in Theorem [10]. If \(|G| = n = q(m, t) \), then we say that \(A \) is a tight \(t \)-independent set in \(G \).

Cases where \(\mathbb{Z}_n \) has a tight \(t \)-independent set for \(t = 4, t = 5, \) and \(t = 6 \) are marked with bold-face in (9), (10), and (11). Trivially, the empty-set is a perfect \(t \)-independent set in \(\mathbb{Z}_1 \) for every \(t \). With (5), (7), Theorem [9] Proposition [11] and one other (sporadic) example, we have the following tight \(t \)-independent sets in the cyclic group.

Proposition 13 Let \(m, n, \) and \(t \) be positive integers, and let \(G = \mathbb{Z}_n \).

1. If \(n = 2 \), then the set \(\{1\} \) is a tight 1-independent set in \(G \).
2. If \(n = 2m + 1 \), then the set \(\{1, 2, \ldots, m\} \) is a tight 2-independent set in \(G \).
3. If \(n = 4m \), then the set \(\{1, 3, \ldots, 2m - 1\} \) is a tight 3-independent set in \(G \).
4. If \(n = t + 1 \), then the set \(\{1\} \) is a tight \(t \)-independent set in \(G \).
5. Let \(n = \lfloor t^2/2 \rfloor + t + 1 \). If \(t \) is even, then the set \(\{t/2, t/2 + 1\} \) is a tight \(t \)-independent set in \(G \); if \(t \) is odd, then the set \(\{1, t\} \) is a tight \(t \)-independent set in \(G \).
6. If \(n = 38 \), then the set \(\{1, 7, 11\} \) is a tight 5-independent set in \(G \).

Proposition [13] contains every tight (non-empty) \(t \)-independent set that we could find so far; in particular, we could not find tight \(t \)-independent sets for \(t \geq 4 \) and \(m \geq 3 \) other than the seemingly sporadic example listed last. The problem of finding and classifying all tight \(t \)-independent sets remains open.

As it is clear from our exposition, there is a strong relationship between \(s \)-spanning sets and \(t \)-independent sets when \(t \) is even. Namely, we have the following.
Theorem 14 Let s and t positive integers, t even. Let A be a subset of G, and suppose that $\text{span}(A) = s$ and $\text{ind}(A) = t$.

1. The order n of G satisfies $a(m, t/2) \leq n \leq a(m, s)$.

2. We have $t \leq 2s$.

3. The following three statements are equivalent.

 (i) $t = 2s$;
 (ii) A is a perfect s-spanning set in G; and
 (iii) A is a tight t-independent set in G.

The analogous relationship when t is odd is considerably more complicated and will be the subject of future study.

4 Spherical designs

Here we discuss an application of the previous section to spherical combinatorics. We are interested in placing a finite number of points on the d-dimensional sphere $S^d \subset \mathbb{R}^{d+1}$ with the highest momentum balance. The following definition was introduced by Delsarte, Goethals, and Seidel in 1977 [8].

Definition 15 Let t be a non-negative integer. A finite set X of points on the d-sphere $S^d \subset \mathbb{R}^{d+1}$ is a spherical t-design, if for every polynomial f of total degree t or less, the average value of f over the whole sphere is equal to the arithmetic average of its values on X.

In other words, X is a spherical t-design if the Chebyshev-type quadrature formula

$$
\frac{1}{\sigma_d(S^d)} \int_{S^d} f(x) d\sigma_d(x) \approx \frac{1}{|X|} \sum_{x \in X} f(x)
$$

(12)

is exact for all polynomials $f : S^d \rightarrow \mathbb{R}$ of total degree at most t (σ_d denotes the surface measure on S^d).

The concept of t-designs on the sphere is analogous to $t-(v,k,\lambda)$ designs in combinatorics (see [21]), and has been studied in various contexts, including representation theory, spherical geometry, and approximation theory. For general references see [4], [8], [10], [11], [12], [17], [21], and [25]. The existence of spherical designs for every t and d and large enough $n = |X|$ was first proved by Seymour and Zaslavsky in 1984 [26].

A central question in the field is to find all integer triples (t, d, n) for which a spherical t-design on S^d exists consisting of n points, and to provide explicit constructions for these parameters.
Clearly, to achieve high momentum balance on the sphere, one needs to take a large number of points. Delsarte, Goethals, and Seidel [5] provide the tight lower bound

\[n \geq N_d^t := \left(d + \left\lfloor \frac{t}{2} \right\rfloor \right) + \left(d + \left\lfloor \frac{t-1}{2} \right\rfloor \right). \]

We shall refer to the bound \(N_d^t \) in (13) as the DGS bound. Spherical designs of this minimum size are called tight. Bannai and Damerell [5, 6] proved that tight spherical designs for \(d \geq 2 \) exist only for \(t = 1, 2, 3, 4, 5, 7, \) or 11. All tight \(t \)-designs are known, except possibly for \(t = 4, 5, \) or 7. In particular, there is a unique 11-\(t \)-design (\(d = 23 \) and \(n = 196560 \)).

Let us now attempt to construct spherical designs. One’s intuition that the vertices of a regular polygon provide spherical designs on the circle \(S^1 \) is indeed correct; more precisely, we have the following.

Proposition 16 Let \(t \) and \(n \) be positive integers.

1. If \(n \leq t \), then there is no \(n \)-point spherical \(t \)-design on \(S^1 \).

2. Suppose that \(n \geq t + 1 \). For a positive integer \(j \), define

\[z_n^j := \left(\cos\left(\frac{2\pi j}{n} \right), \sin\left(\frac{2\pi j}{n} \right) \right). \]

Then the set \(X_n := \{z_n^j | j = 1, 2, \ldots, n\} \) is a \(t \)-design on \(S^1 \).

Proof. 1 follows from the DGS bound as \(N_1^t = t + 1 \). To prove 2, we first note that, using spherical harmonics, one can prove (see [5]) that, in general, a finite set \(X \) is a spherical \(t \)-design, if and only if, for every integer \(1 \leq k \leq t \) and every homogeneous harmonic polynomial \(f \) of total degree \(k \),

\[\sum_{x \in X} f(x) = 0. \]

(A polynomial is harmonic if it is in the kernel of the Laplace operator.) The set of homogeneous harmonic polynomials of total degree \(k \) on the circle, \(\text{Harm}_k(S^1) \), is a 2-dimensional vector space over the reals and is spanned by the polynomials \(\text{Re}(z^k) \) and \(\text{Im}(z^k) \) where \(z = x + \sqrt{-1}y \) (we can think of the elements of \(X \) and \(S^1 \) as complex numbers). Therefore, we see that \(X \) is a \(t \)-design on \(S^1 \), if and only if,

\[\sum_{z \in X} z^k = 0 \]

for \(k = 1, 2, \ldots, t \). With \(X_n \) as defined above, one finds that

\[\sum_{j=1}^{n} (z_n^j)^k = \begin{cases} 0 & \text{if } k \not\equiv 0 \mod n, \\ n & \text{if } k \equiv 0 \mod n. \end{cases} \]

Therefore, \(X_n \) is a \(t \)-design on \(S^1 \), if and only if, \(k \not\equiv 0 \mod n \) for \(k = 1, 2, \ldots, t \) (using the terminology of our last section, if and only if, \(\{1\} \) is a \(t \)-independent set in \(\mathbb{Z}_n \)), or \(n \geq t + 1 \). \[\square \]
A further classification of t-designs on the circle can be found in Hong’s paper [18]; he proved, for example, that if $n \geq 2t + 3$, then there are infinitely many t-designs on S^1 which do not come from regular polygons.

We now attempt to generalize Proposition 16 for higher dimensions. For simplicity, we assume that d is odd, and let $m = (d + 1)/2$. (The case when d is even can be reduced to this case by a simple technique, see [2] or [19].)

Let a_1, a_2, \ldots, a_m be integers, and set $A := \{a_1, a_2, \ldots, a_m\}$. For a positive integers n, define

$$X_n(A) := \left\{ \frac{1}{\sqrt{m}} (z_n^j(a_1), z_n^j(a_2), \ldots, z_n^j(a_m)) \ | \ j = 1, 2, \ldots, n \right\},$$

(15)

where, like in (14),

$$z_n^j(a_i) := \left(\cos\left(\frac{2\pi j}{n}a_i\right), \sin\left(\frac{2\pi j}{n}a_i\right) \right).$$

Note that $X_n(A) \subset S^d$. In [2] we proved the following.

Theorem 17 ([2]) Let $t, d,$ and n be positive integers with $t \leq 3$, d odd, and set $m = (d + 1)/2$. For integers a_1, a_2, \ldots, a_m, define $X_n(A)$ as in (15). If A is a t-independent set in \mathbb{Z}_n, then $X_n(A)$ is a spherical t-design on S^d.

Theorem 17 yields the following results.

Corollary 18 Let n and d be positive integers, d odd, and set $m = (d + 1)/2$.

1. (a) If $n = 1$, then there is no n-point spherical 1-design on S^d.
 (b) If $n \geq 2$, define $a_i = 1$ for $1 \leq i \leq m$. Then the set $X_n(A)$, as defined in (15), is a spherical 1-design on S^d.

2. (a) If $n \leq d + 1$, then there is no n-point spherical 2-design on S^d.
 (b) If $n \geq d + 2$, define $a_i = i$ for $1 \leq i \leq m$. Then the set $X_n(A)$, as defined in (15), is a spherical 2-design on S^d.

3. (a) If $n \leq 2d + 1$, then there is no n-point spherical 3-design on S^d.
 (b) If $n \geq 2d + 2$ is even or if $n \geq 3d + 3$ is odd, define $a_i = 2i + 1$ for $1 \leq i \leq m$; if

$$n \geq \frac{p}{p + 1}(3d + 3)$$

where p is a divisor of n which is congruent to 5 mod 6, choose A to be any m elements of the set in (8). In each case the set $X_n(A)$, as defined in (15), is a spherical 3-design on S^d.
Proof. Parts (a) are from the DGS bounds N_d^t for $t \leq 3$; parts (b) follow from Theorem 17 since, by (5), (7), and the paragraph before Theorem 9, the sets specified are t-independent for $t = 1, 2, \text{ and } 3$, respectively (note that in all cases of 2 and 3, $m = (d + 1)/2 \leq q(\mathbb{Z}_n, t)$).

Part 3 of Corollary 18 leaves the question of existence of 3-designs open for some odd values of n. Note that the minimum value of $\frac{p}{p + 1}(3d + 3)$ is $5(d + 1)/2$ (when n is divisible by 5). In [2] we proved that a spherical 3-design on S^d (d odd) exists for every odd value of $n \geq 5(d + 1)/2$, and conjectured that 3-designs do not exist with $2(d + 1) < n < 5(d + 1)/2$ and n odd. This conjecture is supported by the numerical evidence of Hardin and Sloane [16]. A recent result of Boumova, Boyvalenkov, and Danev [7] proves that no 3-design exists of odd size n with $n \approx 2.32(d + 1)$. In particular, the case $d = 9$ of Example 2 in our Introduction is completely settled: 3-designs on n points on S^9 exist, if and only if, $n \geq 20$ even, or $n \geq 25$ odd.

The application of t-independent sets to spherical t-designs seems more complicated when $t \geq 4$, and will be the subject of an upcoming paper.

Acknowledgments. The author expresses his gratitude to his students Nicolae Laza for valuable computations and Nikolay Doskov for an improvement of Proposition 3.

References

[1] B. Bajnok. Construction of spherical t-designs. Geom. Dedicata, 43:167–179, 1992.

[2] B. Bajnok. Constructions of spherical 3-designs. Graphs Combin., 14/2:97–107, 1998.

[3] B. Bajnok and I. Ruzsa. The independence number of a subset of an abelian group. Integers, 3/Paper A2, 23 pp. (electronic), 2003.

[4] E. Bannai. On extremal finite sets in the sphere and other metric spaces. London Math. Soc. Lecture Note Ser., 131:13–38, 1988.

[5] E. Bannai and R. M. Damerell. Tight spherical designs I. J. Math. Soc. Japan, 31:199–207, 1979.

[6] E. Bannai and R. M. Damerell. Tight spherical designs II. J. London Math. Soc. (2), 21:13–30, 1980.

[7] S. Boumova, P. Boyvalenkov, and D. Danev. New nonexistence results for spherical designs. In B. Bojanov, editor, Constructive Theory of Functions, pages 225–232, Varna, 2002.

[8] P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geom. Dedicata, 6:363–388, 1977.

[9] P. Erdős and R. Freud. A Sidon problémakőr. Mat. Lapok, 1991/2:1–44, 1991.

[10] C. D. Godsil. Algebraic Combinatorics. Chapman and Hall, Inc., 1993.
[11] J. M. Goethals and J. J. Seidel. Spherical designs. In D. K. Ray-Chaudhuri, editor, Relations between combinatorics and other parts of mathematics, volume 34 of Proc. Sympos. Pure Math., pages 255–272. American Mathematical Society, 1979.

[12] J. M. Goethals and J. J. Seidel. Cubature formulae, polytopes and spherical designs. In C. Davis, B. Grünbaum, and F. A. Sher, editors, The Geometric Vein: The Coxeter Festschrift, pages 203–218. Springer-Verlag New York, Inc., 1981.

[13] S. W. Graham. B_h sequences. In B. C. Berndt, H. G. Diamond, and A. J. Hildebrand, editors, Analytic number theory, Vol.1. (Allerton Park, IL, 1995), pages 431-449, Progr. Math. 138, Birkhäuser Boston, Boston, MA, 1996.

[14] R. K. Guy. Unsolved Problems in Number Theory. Second edition. Springer-Verlag New York, 1994.

[15] H. Halberstam and K. F. Roth. Sequences. Second edition. Springer-Verlag New York – Berlin, 1983.

[16] R. H. Hardin and N. J. A. Sloane. McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15:429–441, 1996.

[17] S. G. Hoggar. Spherical t-designs. In C. J. Colbourn and J. H. Dinitz, editors, The CRC handbook of combinatorial designs, pages 462–466. CRC Press, Inc., 1996.

[18] Y. Hong. On Spherical t-designs in \mathbb{R}^2. Europ. J. Combinatorics, 3:255–258, 1982.

[19] J. Mimura. A construction of spherical 2-design. Graphs Combin., 6:369–372, 1990.

[20] M. B. Nathanson. Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer-Verlag New York, 1996.

[21] B. Reznick. Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 463, 1992.

[22] I. Ruzsa. Solving linear equations in a set of integers I. Acta Arith., 65/3:259–282, 1993.

[23] I. Ruzsa. Solving linear equations in a set of integers II. Acta Arith., 72/4:385–397, 1995.

[24] J. J. Seidel. Designs and approximation. Contemp. Math., 111:179–186, 1990.

[25] J. J. Seidel. Spherical designs and tensors. In E. Bannai and A. Munemasa, editors, Progress in algebraic combinatorics, volume 24 of Adv. Stud. Pure Math., pages 309–321. Mathematical Society of Japan, 1996.

[26] P. D. Seymour and T. Zaslavsky. Averaging sets: A generalization of mean values and spherical designs. Adv. Math., 52:213–240, 1984.

[27] W. D. Wallis, A. P. Street, and J. S. Wallis. Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Mathematics, Vol. 292, Part 3. Springer-Verlag, Berlin-New York, 1972.