Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Genotypes and antimicrobial profiles of Shigella sonnei isolates from diarrheal patients circulating in Beijing between 2002 and 2007

Fen Qu a, Chunmei Bao a, Suming Chen a, Enbo Cui a, Tongsheng Guo a, Huan Wang a, Juling Zhang a, Han Wang a, Yi-Wei Tang b,*, Yuanli Mao a,∗

a Clinical Diagnostic Center, 302nd Hospital of the People’s Liberation Army, Beijing 100039, China
b Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA

1. Introduction

Shigelloides is one of the most common causes of diarrhea in humans worldwide. The annual number of Shigella episodes throughout the world has been estimated to be 164.7 million, of which 163.2 million have occurred in developing nations resulting in 1.1 million deaths (Kotloff et al., 1999). Humans and other primates are the only natural reservoirs for Shigella species (Niyogi, 2005). Epidemics usually occur in crowded areas with poor sanitary conditions where transmission from person to person is common, or when food or water is contaminated by the organism. Despite economic and public health improvements, outbreaks of shigellosis are still reported regularly (Anonymous, 1999a; Gaynor et al., 2009; Kuo et al., 2009; Marcus et al., 2004; Morgan et al., 2006; Wei et al., 2007). A definitive diagnosis of shigellosis can be made by isolating the organism from a stool sample. In China, shigellosis has been ranked third in morbidity, following tuberculosis and hepatitis, and has become the number 1 cause of disease-related death in children (CDC, 2007; Mathers et al., 2009). Historically, there have been 4 subgroups of Shigella that have been described: subgroup A as S. dysenteriae, subgroup B as S. flexneri, subgroup C as S. boydii, and subgroup D as S. sonnei. Among these subgroups, the epidemic subgroup of diarrhea was typically S. sonnei in industrialized countries and S. flexneri in developing countries including the Beijing area for many years (Gupta et al., 2004; Kotloff et al., 1999; Qu et al., 2008; von Seidlein et al., 2006). However, cases of S. sonnei have noticeably increased and S. sonnei is becoming the dominant subgroup in Asian countries in recent years (Bangtrakulnonth et al., 2008; Filliol-Toutain et al., 2011; Kotloff et al., 1999; Maminshi et al., 2009; Orrett, 2008; Qu et al., 2008; Salmanzadeh-Ahrabi et al., 2007; Wei et al., 2007). It is necessary to explore the clinical importance of S. sonnei-related infections because it can cause systematic infections such as bacteremia and meningitis in immunocompromised individuals (Chapel et al., 2005). In addition, S. sonnei is often associated with international food-borne infection outbreaks by airline passengers, imported food, travelers, animals, and insect vectors. S. sonnei can also be sexually transmitted among homosexual males (Anonymous, 2005).
2. Materials and methods

2.1. Bacterial strains

From January 2002 to December 2007, fresh stool specimens were collected from diarrhea patients with clinically suspected dysentery and submitted to the Microbiology Laboratory of the 302nd Hospital of the People’s Liberation Army, Beijing, China, a 1300-bed infectious disease teaching hospital. Samples were cultured for Shigella by streaking directly onto Salmonella–Shigella (SS) agar (Tian Tan Biologic Technology Company, China) and incubated overnight at 37 °C. Colorless, semitransparent, smooth, and moist circular colonies were screened for on SS agar and streaked out on Kligler iron agar (Ye et al., 2006). Shigella strains were identified according to their biochemical characteristics (Nataro et al., 2011). Serotypes of Shigella isolates were further determined with commercially variable antigens according to their agglutination method according to the manufacturer’s instructions (Japan Institute of Health Diagnostic Serum Shigella, Japan). Only 1 Shigella isolate per patient per diarrhea episode was included in the analysis.

2.2. Antimicrobial susceptibility testing

In vitro activities of ampicillin (AMP, 10 μg), piperacillin (PIP, 100 μg), ceftriaxone (CRO, 30 μg), cefepime (FEP, 30 μg), ciprofloxacin (CIP, 5 μg), norfloxacin (NOR, 10 μg), ofloxacin (OFX, 5 μg), levofloxacin (LVX, 5 μg), cefmetazole (CMZ, 30 μg), chloramphenicol (CHL, 30 μg), sulfamethoxazole/trimethoprim (SXT, 23.75/1.25 μg), and fosfomycin (FOS, 200 μg) were determined by the Kirby–Bauer disc-diffusion method in accordance with the guidelines of the Performance Standards for Antimicrobial Susceptibility Testing as recommended by Clinical and Laboratory Standards Institute (CLSI, 2006). An Escherichia coli (ATCC 25922) strain was used as the quality control strain. Results were interpreted as either sensitive, intermediate, or resistant. In our study, we considered both intermediate and resistant results as resistant.

2.3. Molecular typing

Clonality and transmission patterns were determined by pulsed-field gel electrophoresis (PFGE) as described previously (Qu et al., 2010). Briefly, genomic DNA was extracted from logarithmic-phase cultures and prepared in low-melting-point agarose plugs and digested with the restriction enzyme HindIII (Takara, Shiga, Japan) according to a standard procedure. Electrophoresis was performed with the Bio-Rad CHEF DR II system (Bio-Rad, Hercules, CA, USA). PFGE run conditions were 200 V with a switch from 10 to 50 s for 15 h at 14 °C. Along with the specimens, DNA from Salmonella serotype Braenderup strain H9812 was digested with XbaI and used as molecular weight standards. After gel electrophoresis, gels were stained with ethidium bromide, rinsed, and photographed under UV light. The banding patterns of all isolates evaluated with PFGE were compared by visual inspection, and the isolates were grouped as suggested by Na-Ubol et al. (2006). Isolates were defined as epidemic ones when belonging to a genotype that was identified in at least 2 individuals.

2.4. Statistical analysis

Statistical comparisons were performed with the Epi Info software (version 3.5.1; Centers for Disease Control and Prevention, Atlanta, GA, USA). Categorical data were expressed as percentages and calculated using a chi-squared test. P values were calculated, and \(P \leq 0.05 \) was considered statistically significant.

3. Results

3.1. Strain distribution

During the 6-year study period, a total of 1108 Shigella strains were isolated from diarrhea patients. Among them, 362 (32.7%) were \(S. \) sonnei isolates which came from 197 males (54.4%) and 165 females (45.6%) with ages ranging from 4 months to 88 years old (mean ± SD = 18.8 ± 17.8 years). Children less than 14 years old accounted for 46.7% of the study patients with no death revealed. There were 59 inpatients and 303 outpatients. The \(S. \) sonnei isolates...
were recovered dominantly in summer seasons with 3 (0.8%), 4 (1.1%), 248 (68.5%), and 107 (29.6%) in winter (December, January, and February), spring (March, April, and May), summer (June, July, and August), and fall (September, October, and November), respectively. The S. sonnei subgroup was responsible for 31.26%, 11.11%, 24.70%, 37.32%, 47.36%, and 52.81% of shigellosis cases from the years 2002 to 2007, respectively. In contrast, the S. flexneri group was responsible for 68.73%, 82.1%, 53.8%, 30.9%, and 42.9% of isolates from 2002 to 2007 (except for 2003), respectively, with clone A4 being the next most common subtype. Subtype A2 prevalence decreased gradually from 2002 to 2006 but increased again in 2007. Subtype A4 increased since 2005 and remains constant, which indicates that there are different majorities of clonal transmission at different times (Fig. 3). The year 2003 was unusual due to the severe acute respiratory syndrome (SARS) outbreak in the region.

3.3. Genotyping profiles

Among 272 S. sonnei isolates, 266 (97.8%) and 6 (2.1%) were phase I and phase II isolates, respectively. Based on the PFGE analysis, 263 (96.7%) were determined to be epidemic clone A, and these were further divided into A1–A6 subtypes (Fig. 2). Subtype A2 was the most prevalent genotype covering 86.6%, 82.1%, 53.8%, 30.9%, and 42.9% of isolates from 2002 to 2007 (except for 2003), respectively, with clone A4 being the next most common subtype. Subtype A2 prevalence decreased gradually from 2002 to 2006 but increased again in 2007. Subtype A4 increased since 2005 and remains constant, which indicates that there are different majorities of clonal transmission at different times (Fig. 3). The year 2003 was unusual due to the severe acute respiratory syndrome (SARS) outbreak in the region.

3.4. Factors in relation to S. sonnei subtypes

The antibiotic resistance rates of S. sonnei isolates varied among different PFGE subtypes, especially β-lactam antibiotics. As shown in Table 2, the AMP and PIP resistance rates in subtype groups A4 (P = 0.0000), A5 (P = 0.0052), A3 (P = 0.01), and A1 (P = 0.017) were statistically higher than those in A2. The resistant rate to CRO was the highest in clone A3, which was statistically higher than those in clone A2 (P = 0.0000), clone A4 (P = 0.0131), and clone A5 (P = 0.0077). Even for fourth-generation cephalosporin FEP, the resistance in clone A3 and A1 was statistically higher than that in clone A2 (P = 0.0000) and clone A4 (P = 0.0032) (Table 2). Among the factors of the original department source, sex, and age of diarrheal patients, subtype A3 was statistically higher than those in clone A2. The resistant rate to CRO was the highest in clone A3, which was statistically higher than those in clone A2 (P = 0.0000), clone A4 (P = 0.0131), and clone A5 (P = 0.0077). Even for fourth-generation cephalosporin FEP, the resistance in clone A3 and A1 was statistically higher than that in clone A2 (P = 0.0000) and clone A4 (P = 0.0032) (Table 2). Among the factors of the original department source, sex, and age of diarrheal patients, subtype A3 was statistically higher than those in clone A2. The resistant rate to CRO was the highest in clone A3, which was statistically higher than those in clone A2 (P = 0.0000), clone A4 (P = 0.0131), and clone A5 (P = 0.0077). Even for fourth-generation cephalosporin FEP, the resistance in clone A3 and A1 was statistically higher than that in clone A2 (P = 0.0000) and clone A4 (P = 0.0032) (Table 2). Among the factors of the original department source, sex, and age of diarrheal patients, subtype A3 was statistically higher than those in clone A2.

Table 1

Antibiotic resistance trends during the 6-year study period.

Antibiotics	No. (%) of resistant S. sonnei cases for each year	\(\chi^2 \)	\(p \) value				
2002 (n = 124)	2003 (n = 10)	2004 (n = 62)	2005 (n = 53)	2006 (n = 66)	2007 (n = 47)		
AMP 22 (17.7)	1 (10)	18 (29)	21 (39.6)	52 (78.8)	36 (76.6)	114.19	0.0000
PIP 16 (12.9)	1 (10)	12 (19.4)	21 (39.6)	50 (75.7)	37 (78.7)	134.25	0.0000
CRO 4 (3.2)	0	2 (3.2)	7 (13.2)	21 (32.2)	15 (32)	66.80	0.0000
FEP 3 (2.4)	0	0	4 (7.6)	12 (18.2)	1 (2.1)	44.57	0.0000
CMZ 0	0	0	0	1 (1.5)	0	4.50	0.4802
SXT 119 (96)	8 (80)	56 (90.3)	53 (100)	60 (90.7)	47 (100)	30.16	0.0008
CMZ 0	0	0	0	1 (1.5)	0	4.50	0.4802
FEP 3 (2.4)	0	0	4 (7.6)	12 (18.2)	1 (2.1)	44.57	0.0000
CMZ 0	0	0	0	1 (1.5)	0	4.50	0.4802
SXT 119 (96)	8 (80)	56 (90.3)	53 (100)	60 (90.7)	47 (100)	30.16	0.0008

Fig. 2

PFGE of XbaI-digested genomic DNA from S. sonnei isolates; lanes A1–A6 are epidemic and lane S is sporadic. Lane M is XbaI-digested genomic DNA from the Salmonella Braenderup strain H9812 which served as a molecular size marker.

Fig. 3

Changing trend of S. sonnei subtypes between 2002 and 2007 (\(\chi^2 = 80.21, P = 0.0000 \)).
observed in significantly higher frequencies in inpatients than other PFGE subtypes \((P = 0.0145) \) (Table 3).

4. Discussion

Our study presented the antibiotic resistance and genotyping profiles of clinical \(S. \ sonnei \) isolates circulating for a six-year period from 2002 to 2007 in the Beijing area. Our data showed a decreased frequency of \(Shigella \) infection cases from 2002 to 2007 (with the exception of 2003) due to improved economic situations, environmental conditions, hygiene habits, and quality of water supplies, which had a similar trend of decrease to other intestinal pathogens during the same period \((Qu \ et \ al., \ 2008) \). In 2003, during the epidemic of SARS, few people ate out and fewer \(S. \ sonnei \) cases occurred compared to other years, which indicated that eating out has been the main cause of \(S. \ sonnei \) infections. Another related reason might be that much fewer patients with diarrhea desired to go to the hospital, which decreased the chances of acquiring lethal SARS infections. Another important finding was that \(S. \ sonnei \) replaced \(S. \ flexneri \) to become the predominant subgroup causing shigellosis in the Beijing area, which was similar to the trends and patterns reported in industrialized countries \((Bonfiglio \ et \ al., \ 2002; \ Ekdahl \ and \ Andersson, \ 2005; \ Filliol-Toutain \ et \ al., \ 2011; \ Gupta \ et \ al., \ 2004; \ Ozmert \ et \ al., \ 2011) \).

The emergence of drug-resistant and multidrug-resistant \(S. \ sonnei \) strains has become an important issue and has complicated the selection of empirical agents for the treatment of shigellosis. Identifying and monitoring the local resistance patterns of \(S. \ sonnei \) can provide effective empiric treatment regimens. The resistance rates and single- and multidrug resistance of \(S. \ sonnei \) isolates in Beijing were higher than those reported in other developed and developing countries \((Ozmert \ et \ al., \ 2011; \ Pourakbari \ et \ al., \ 2010; \ Talukder \ et \ al., \ 2006; \ Wong \ et \ al., \ 2010; \ Wu \ et \ al., \ 2009) \). Our study results revealed that drug resistance occurred in all antibiotics tested with \(S. \ sonnei \). As in other countries \((Huang \ et \ al., \ 2005; \ Jain \ et \ al., \ 2005; \ Lartigue \ et \ al., \ 2005; \ Nagano \ et \ al., \ 2009; \ Vinh \ et \ al., \ 2009; \ Vrints \ et \ al., \ 2009) \), multidrug-resistant \(S. \ sonnei \) isolates and the resistant rate of \(S. \ sonnei \) to AMP, PIP, CRO, and FEP have increased significantly over the study period years, which will significantly limit the empiric therapy capacity of shigellosis in this area. As resistance to antimicrobial agents increases constantly, it is important to survey and monitor local resistance in order to formulate policies for the rational use of antimicrobial agents.

Our study indicates that current resistance patterns should limit the use of sulfonamides and \(\beta \)-lactam antibiotics even though SXT, AMP, and PIP are currently considered acceptable empirical agents for therapy of shigellosis in developed countries. According to the resistant results, fluoroquinolones are an effective alternative for treating adult shigellosis but are not approved by the Food and Drug Administration for shigellosis treatment in children aged less than 18 years \((Stahlmann, \ 2002) \). In comparison, fosfomycin with good antibacterial activities in vitro and low incidence of adverse events can be used as an alternative treatment for diarrhea infection including in pediatric patients \((Fukuyama \ et \ al., \ 2000; \ Michalopoulos \ et \ al., \ 2011) \), but chloramphenicol with lower level of resistance is rarely used in diarrhea patients in clinical settings because of its more adverse effects \((Arjyal \ et \ al., \ 2011) \).

We have used PFGE to characterize the diversity of \(S. \ sonnei \) isolates and to determine the clonality of these isolates in subtype levels as other studies have previously reported \((DeLappe \ et \ al., \ 2003; \ Huang \ et \ al., \ 2005) \). In our study, the PFGE genotype analysis of \(272 \) \(S. \ sonnei \) strains indicated that 96.7% were determined to be 1 epidemic clonal genotype A. At the subtype level, subtype A2 was the most dominant one in the early stages of our study period, while subtype A4 started to emerge and increase significantly in later years, indicating that clonal transmission of \(S. \ sonnei \) remains at the genotype level, while alternation starts at the subtype level in Beijing area.

So far, limited data are available on the relationship of genotyping and antimicrobial resistance profiles of \(S. \ sonnei \) isolates recovered in China. The PFGE subtype of \(S. \ sonnei \) isolates has changed during the 6-year study period. Antimicrobial resistance rates were statistically different among the 6 subtypes. The resistance rates of different PFGE subtypes to antibiotics varied, especially \(\beta \)-lactam antibiotics. Subtypes A4 and A3 were associated with resistance to AMP and PIP with the highest resistance rate to CRO found in A3. The higher levels of AMP, PIP, CRO, and FEP resistance in \(S. \ sonnei \) isolates play an important role in the majority of clonal transmission in Beijing. Other risk factors related to \(S. \ sonnei \) circulation were department besides sex and age.

\(S. \ sonnei \) has become the dominant \(Shigella \) subgroup causing gastroenteritis in the Beijing area. Studies on \(S. \ sonnei \) have

Table 2

Relationship between PFGE subtypes and antibiotic resistant rates in 272 \(S. \ sonnei \).

Antibiotic	No. (%) of subjects for each case type	\(\chi^2 \)	\(P \)						
	Epidemic PFGE subtype	value							
AMP	A1 (n = 25)	13 (52.0)	44 (26.3)	6 (75.0)	36 (83.7)	11 (61.1)	1 (50.0)	54.8	0.0000
	A2 (n = 167)	12 (46.0)	41 (24.6)	6 (75.0)	35 (81.4)	11 (61.1)	1 (50.0)	55.3	0.0000
PIP	A1 (n = 25)	7 (28.0)	5 (3.0)	3 (37.5)	3 (7.0)	0 (0.0)	0 (0.0)	34.3	0.0000
	A2 (n = 167)	11 (44.0)	12 (72.2)	6 (75.0)	10 (23.3)	3 (16.7)	0 (0.0)	46.4	0.0000

Table 3

PFGE Subtype distribution and related factors in 272 \(S. \ sonnei \) isolates.

Factor	Group	No. (%) of subjects for each case type	\(\chi^2 \)	\(P \)					
	Epidemic PFGE subtype								
	A1 (n = 25)	8 (27)	17 (53)	3 (36)	16 (14)	10 (9)	14.18	0.0145	
	A2 (n = 167)	5 (17)	14 (40)	2 (36)	2 (15)	2 (2)	7.80	0.1675	
Department	Inpatients	Female	Male	Female	Male	5 (17)	14 (40)	2 (36)	2 (2)
Sex	Outpatients	Female	Male	Female	Male	5 (17)	14 (40)	2 (36)	2 (2)
Age	≤14 years	10 (35)	8 (25)	7 (36)	23 (14)	11 (9)	7 (7)	7.14	0.7117
	15–59 years	1 (6)	6 (0)	3 (0)	0 (0)	0 (0)	0 (0)		
become very important due to the increase of epidemic frequency, multiresistant strain emergence, and clonal transmission. Furthermore, continuous monitoring of subgroups, resistance patterns, and prevalence of *Shigella sonnei* is mandatory for the appropriate selection of empiric antimicrobial drugs in the therapy and prevention of the emergence of resistant strains and of the dissemination of resistance genes.

Acknowledgments

The authors thank Dr. Melody Toosky, Dr. Yunhui Zhang, and Ms. Theresa Edmonds for the critical review, statistical analysis, and/or proofreading of the manuscript.

References

Anonymous. From the Centers for Disease Control and Prevention. Outbreaks of *Shigella sonnei* infection associated with eating fresh parsley — United States and Canada, July–August 1998. JAMA 1999a;281:1785–7.

Anonymous. Outbreaks of *Shigella sonnei* infection associated with eating fresh parsley — United States and Canada, July–August 1998. MMWR Morb Mortal Wkly Rep 1999b;48:285–9.

Ariyal A, Bansiyat B, Koirala S, Karkey A, Dongol S, Agraawal KK, et al. Catatifloxacin versus chloramphenicol for uncomplicated enteric fever: an open-label, randomised, controlled trial. Lancet Infect Dis 2011;11:445–54.

Bangtrakulonth A, Vieira AR, Lo Fo Wong DM, Pornreeongwong S, Pulskiarn C, Sawapanpanyalert P, et al. *Shigella* from humans in Thailand during 1993 to 2006: spatial-time trends in species and serotype distribution. Foodborne Pathog Dis 2008;5:773–84.

Bonfiglio G, Simpore J, Pignatelli S, Musumeci S, Solinas ML. Epidemiology of bacterial resistance in gastro-intestinal pathogens in a tropical area. Int J Antimicrob Agents 2002;20:387–9.

Centers for Disease Control and Prevention (CDC). The report of infectious disease in China. http://www.chinacdc.cn/tjwj/cjbrb2007/2007072015_25257.htm 2007.

Chapel H, Puel A, von Bernuth H, Picard G, Casanova JL. *Shigella sonnei* meningitis due to interleukin-1 receptor-associated kinase-4 deficiency: first association with a primary immune deficiency. Clin Infect Dis 2005;40:1227–31.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility testing; approved standard - ninth edition, M2-A9,26. Wayne, PA: CLSI; 2006.

Delappe N, O’Halloran F, Fanning S, Corbett-Feeney G, Cheasty T, Cormican M. Multidrug-resistant *Staphylococcus aureus* found in a *Salmonella enterica* serotype typhimurium isolate producing CTX-M beta-lactamase as causes of community-acquired infection in France. Clin Infect Dis 2005;40:1227–31.

Marcus U, Zucs P, Bremer V, Hannouda O, Prager R, Tschaephe H, et al. Shigelllosis — a re-emerging sexually transmitted infection: outbreak in men having sex with men in Berlin. Int J STD AIDS 2004;15:533–7.

Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. Br Med Bull 2009;92:7–32.

Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis 2011;15:673–9.

Morgan G, Crook P, Cheasty T, Jiggle B, Giraudon I, Hughes H, et al. *Shigella sonnei* outbreak among homosexual men. London. Emerg Infect Dis 2006;12:1458–60.

Nagano Y, Nagano N, Wachino J, Ishikawa K, Arakawa Y. Novel chimeric beta-lactamase CTX-M-64, a hybrid of CTX-M-15-like and CTX-M-14 beta-lactamases, found in a *Shigella sonnei* strain resistant to various oxyimino-cephalosporins, including cefotaxime. Antimicrob Agents Chemother 2009;53:69–74.

Nataro JN, Bopp CA, Fields PI, Kaper JB, Stockbaine NA. Escherichia, Shigella, and Salmonella. Manual of Clinical Microbiology 2011;1:1603–26.

Na-Ubol M, Samorsornrus S, Von Seidlein L, Tachpisiri P, Ali M, Clemens JD, et al. Molecular characteristics of *Shigella* spp. isolated from patients with diarrhoea in a new industrialized area of Thailand. Epidemiol Infect 2006;134:957–1003.

Niyogi SK. Shigelllosis. J Microbiol 2005;43:133–43.

Okeke IN, Edelman R. Dissemination of antibiotic-resistant bacteria across geographic borders. Clin Infect Dis 2001;33:364–9.

Orrett FA. Prevalence of *Shigella* serogroups and their antimicrobial resistance patterns in southern Thailand. J Health Popul Nutr 2008;26:456–62.

Ozment ER, Ince OT, Orun E, Yalcin S, Yurdakol K, Gur D. Clinical characteristics and antibiotic resistance of *Shigella* gastroenteritis in Ankara, Turkey between 2003 and 2009, and comparison with previous reports. Int J Infect Dis 2011;15:e840–53.

Pourkarbabi B, Marnishi S, Mabhoobi N, Ashitani MH, Afsharpaiman S, et al. Frequency and antimicrobial susceptibility of *Shigella* species isolated in Children Medical Center Hospital, Tehran, Iran, 2001–2006. Braz J Infect Dis 2010;14:153–7.

Qu F, Mao YL, Cui EB, Guo TS, Bao CM, Liu LM, et al. The distribution and antimicrobial resistance tendency of pathogens associated with diarrhea in Beijing, Zhonghua Nei Ke Za Zhi 2008;47:304–7.

Qu F, Cui E, Guo T, Li H, Chen S, Liu L, et al. Nasal colonization of and clonal transmission of meticillin-resistant *Staphylococcus aureus* among Chinese military volunteers. J Clin Microbiol 2010;48:64–9.

Salama BM, Bennis ML. Antimicrobial therapy for shigellosis. Rev Infect Dis 1991;13:533–41.

Salmanzadeh-Ahrabi S, Jafari F, Habibi E, Irajian GR, Aslani MM, Baghbani-Arani S, et al. Variation of antimicrobial susceptibilities among *Shigella* spp. isolated in Tehran, Iran. Microbiol Bul 2007;41:453–7.

Stahlmann R. Clinical toxicological aspects of fluorquinolones. Toxicol Lett 2002;127:269–77.

Talukder KA, Islam Z, Dutta DK, Islam MA, Khajanchi BK, Azmi IJ, et al. Antibiotic resistance and genetic diversity of *Shigella sonnei* isolated from patients with diarrhoea between 1999 and 2003 in Bangladesh. J Med Microbiol 2006;55:1257–63.

Vinh H, Nhu NT, Nga TV, Duy PT, Campbell JJ, Hoang NV, et al. A multicentre study of serotype distribution and antimicrobial resistance rates of *Shigella* spp. isolates in southern Vietnam: shifting species dominance, antimicrobial resistance trends of *Shigella sonnei* clone resistant to various oxyimino-cephalosporins, including cefotaxime. Antimicrob Agents Chemother 2006;50:791–3.

Vrints M, Mairiaux E, Van Meervenne E, Collard JM, Bertrand S. Surveillance of new industrialized area of Thailand. Epidemiol Infect 2006;134:209–15.

Wang HY, Wang YW, Li CC, Tang SK, Chou CS. Epidemiology and evolution of genotype and antimicrobial resistance of an imported *Shigella* clone circulating in central Taiwan. Diagn Microbiol Infect Dis 2007;58:469–75.

Wong MR, Reddy V, Hanson H, Johnson KM, Tsui B, Cokes C, et al. Antimicrobial resistance trends of *Shigella* diarrhoea serotypes in New York City, 2006–2009. Microb Drug Resist 2010;16:155–61.

Ye WW, WangYS, Shen ZY. National guide to clinical laboratory procedures. Third Edition. 2006. in Chinese.