EQUIVARIANT COHOMOLOGY OF INCIDENCE HILBERT SCHEMES AND LOOP ALGEBRAS

WEI-PING LI1 AND ZHENBO QIN2

ABSTRACT. Let S be the affine plane \mathbb{C}^2 together with an appropriate $T = \mathbb{C}^*$ action. Let $S^{[m,m+1]}$ be the incidence Hilbert scheme. Parallel to [LQ], we construct an infinite dimensional Lie algebra that acts on the direct sum

$$\tilde{H}_T = \bigoplus_{m=0}^{+\infty} H_T^{2(m+1)}(S^{[m,m+1]})$$

of the middle-degree equivariant cohomology group of $S^{[m,m+1]}$. The algebra is related to the loop algebra of an infinite dimensional Heisenberg algebra. In addition, we study the transformations among three different linear bases of \tilde{H}_T. Our results are applied to the ring structure of the ordinary cohomology of $S^{[m,m+1]}$ and to the ring of symmetric functions in infinitely many variables.

1. Introduction

Let S be the affine plane \mathbb{C}^2 together with the $T = \mathbb{C}^*$ action

$$a(w, z) = (aw, a^{-1}z), \quad a \in T$$

on the coordinate functions w and z of S. This T-action on S induces a T-action on the Hilbert scheme $S^{[n]}$ of n-points on S. The T-fixed points in $S^{[n]}$ are of the form ξ_λ where λ denotes partitions of n. In [Na2, Na3, Vas, LQW1, LQW2], the equivariant cohomology $H_T^*(S^{[n]})$ of the Hilbert scheme $S^{[n]}$ has been studied via representation theory. A generalization of Nakajima’s work [Na1] to the equivariant cohomology $H_T^*(S^{[n]})$ shows in [Vas] that the space

$$\mathbb{H}_T = \bigoplus_{n=0}^{+\infty} H_T^{2n}(S^{[n]})$$

is an irreducible representation of a Heisenberg algebra generated by the linear operators a_n^T, $n \in \mathbb{Z}$ in $\text{End}(\mathbb{H}_T)$. As a consequence, it induces a linear isomorphism

$$\Phi : \mathbb{H}_T \to \Lambda \otimes_{\mathbb{Z}} \mathbb{C}$$

2000 Mathematics Subject Classification. Primary: 14C05; Secondary: 14F43, 17B65.

Key words and phrases. Incidence Hilbert schemes, Heisenberg algebras, loop algebras, torus action, equivariant cohomology, ring of symmetric functions.

1Partially supported by the grant CERG601905.

2Partially supported by an NSF grant.
where Λ is the vector space of symmetric functions in infinitely many variables (see p.19 of [Mac]). More specifically, let $C = C^z$ be the z-axis of S. The homomorphism Φ maps $a^T_{-x}[0]$ and $[L^x C]$ (defined in (3.29) and (4.1)) to the power-sum symmetric function p_λ and the monomial symmetric function m_λ respectively. Here $[\cdot]$ denotes the equivariant fundamental cohomology class.

A new feature of the equivariant setup is the existence of the \mathbb{T}-fixed points. By the localization theorem, the ring structure of $H^*_T(S^{[n]})$ is easy to describe using the fixed points $\xi_\lambda \in S^{[n]}$. Note that Λ is a ring as well by the usual multiplication of functions. However, Φ is not a ring isomorphism. On the other hand, if we define a new ring structure on Λ by requiring $s_\lambda \cdot s_\mu = \delta_{\lambda,\mu} h(\lambda) s_\lambda$ for the Schur functions s_λ and s_μ, then Φ is a ring isomorphism from $\mathbb{H}^\mathbb{T}$ to (Λ, \cdot). Here $h(\lambda)$ denotes the hook number of the Young diagram associated to λ. In fact, Φ maps the fixed point class $(-1)^{|\lambda|/h(\lambda)} \cdot [\lambda]$ to the Schur function s_λ. This is an extra property gained by going to equivariant cohomology (see [Vas]).

In this paper, we study the equivariant cohomology $H^*_T(S^{[n,n+1]}))$ of the incidence Hilbert scheme $S^{[n,n+1]}$ which is defined by

$$S^{[n,n+1]} = \{ (\xi, \xi') | \xi, \xi' \in S^{[n]} \times S^{[n+1]} \}.$$

It is known from [Chl, Tik] that the incidence Hilbert scheme $S^{[n,n+1]}$ is irreducible, smooth and of dimension $2(n+1)$. Following [LQ], we construct the Heisenberg operators $\tilde{a}^T_n, n \in \mathbb{Z}$ and the translation operator t^T on the space

$$\mathbb{H}^\mathbb{T} = \bigoplus_{n=0}^{+\infty} H^*_{\mathbb{T}}(S^{[n,n+1]}).$$

Let $\tilde{h}^\mathbb{T}$ be the Heisenberg algebra generated by the operators $\tilde{a}^T_n, n \in \mathbb{Z}$. The loop algebra of $\tilde{h}^\mathbb{T}$ is the space $\mathbb{C}[u, u^{-1}] \otimes_{\mathbb{C}} \tilde{h}^\mathbb{T}$ together with the Lie bracket

$$[u^n \otimes g_1, u^m \otimes g_2] = u^{m+n} \otimes [g_1, g_2].$$

Theorem 1.1. The space $\mathbb{H}^\mathbb{T}$ is a representation of the Lie algebra $\mathbb{C}[u^{-1}] \otimes_{\mathbb{C}} \tilde{h}^\mathbb{T}$ with a highest weight vector being the vacuum vector

$$|0\rangle = [C^z] \in H^*_{\mathbb{T}}(S^{[0,1]}) = H^2_T(S) = H^2_T(\mathbb{C}^2)$$

where u^{-1} acts via t^T, and C^z denotes the z-axis of $S = \mathbb{C}^2$.

It follows that a linear basis of the space $\mathbb{H}^\mathbb{T}$ is given by

$$\mathcal{B}_2 = \left\{ (t^T)^i \tilde{a}^T_{\nu-\nu} | 0 \right\}_{i \geq 0, \nu}.$$

On the other hand, the \mathbb{T}-fixed points of $S^{[n,n+1]}$ are of the form $\xi_{\lambda,\mu} = (\xi_\lambda, \xi_\mu)$ where λ and μ denote partitions of n and $(n+1)$ respectively, and the Young diagram of λ is contained in the Young diagram of μ. Such a pair (λ, μ) of partitions is defined to be an incidence pair. For an incidence pair (λ, μ), let

$$[\lambda, \mu] = t^{-(n+1)} \cup [\xi_{\lambda,\mu}] \in H^*_{\mathbb{T}}(S^{[n,n+1]}).$$
where \(t \) is the character associated to the 1-dimensional standard module \(\theta \) of \(T \) on which \(a \in T \) acts as multiplication by \(a \). By the localization theorem, the ring structure of \(H^2_{T}(S^{[n,n+1]}) \) (and hence of \(\bar{H}_T \)) can be easily described in terms of the classes \([\lambda, \mu]\). In addition, these classes form another linear basis of \(\bar{H}_T \):

\[
\bar{B}_1 = \{ [\lambda, \mu] \}_{(\lambda, \mu) \text{ incidence}}.
\]

Theorem 1.2. There exists an algorithm to express each element \((\bar{t}_T^i \bar{a}^{-v}_T)|0\rangle\) in the linear basis \(\bar{B}_2\) as a linear combination of the elements in the linear basis \(\bar{B}_1\).

This theorem implies that the ring structure of \(\bar{H}_T \) can also be described (implicitly) in terms of the elements in the linear basis \(\bar{B}_2\). The main idea in proving Theorem 1.2 is to introduce a third linear basis of the space \(\bar{H}_T\):

\[
\bar{B}_3 = \{ [\bar{L}^{\lambda, \mu}C] \}
\]

where \(\bar{L}^{\lambda, \mu}C\) is defined by (4.5). We show that there exist algorithms to express every element in \(\bar{B}_2\) as a linear combination of the elements in \(\bar{B}_3\) and to express every element in \(\bar{B}_3\) as a linear combination of the elements in \(\bar{B}_1\).

There are two applications of our results. The first is to describe the ordinary cohomology ring \(H^*(S^{[n,n+1]}) \) of the incidence Hilbert scheme \(S^{[n,n+1]} \). The second is to the ring of symmetric functions. Indeed, define a linear isomorphism

\[
\bar{\Phi} : \bar{H}_T \rightarrow \Lambda \otimes_{\mathbb{Z}} C[v]
\]

by sending \((\bar{t}_T^i \bar{a}^{-v}_T)|0\rangle\) to \(p^i \otimes v^i\). Then the ring structure on \(\bar{H}_T \) induces a ring structure on \(\Lambda \otimes_{\mathbb{Z}} C[v] \) such that \(\Lambda \otimes_{\mathbb{Z}} \subset C[v] \) becomes a subring of \(\Lambda \otimes_{\mathbb{Z}} C[v] \). Moreover, we have a commutative diagram of ring homomorphisms:

\[
\begin{array}{ccc}
H_T & \xrightarrow{\Phi} & \Lambda \otimes_{\mathbb{Z}} C \\
\downarrow & & \downarrow \iota \\
\bar{H}_T & \xrightarrow{\bar{\Phi}} & \Lambda \otimes_{\mathbb{Z}} C[v]
\end{array}
\]

respecting the Heisenberg algebra actions on \(H_T \) and \(\bar{H}_T \), where \(\iota \) denotes the inclusion map. It is natural for us to ask what the induced ring structure on \(\Lambda \otimes_{\mathbb{Z}} C[v] \) is in the realm of symmetric functions.

The paper is organized as follows. In §2, we study the equivariant aspects of the incidence Hilbert scheme \(S^{[n,n+1]} \), including a description of the \(T \)-fixed points, the generating function for the Betti numbers, a \(T \)-invariant cell decomposition, the equivariant Zariski tangent spaces at the fixed points, and a bilinear pairing. In §3, we construct the loop algebra action on the space \(\bar{H}_T \), and compare it with the Heisenberg algebra action on the space \(H_T \). In §4, we study the transformations among the three linear bases \(\bar{B}_1, \bar{B}_2 \) and \(\bar{B}_3 \) of \(\bar{H}_T \). In §5, the two applications mentioned above are addressed. In §6 (the Appendix), we prove Lemma 2.8.
Conventions. We use λ and μ to denote partitions of n and $(n+1)$ respectively. The sign \sim, in the case of cohomology and operators, is for the incidence Hilbert schemes $S^{[n,n+1]}$. The sign $'$, in the case of equivariant cohomology, is for the localized equivariant cohomology.

Acknowledgments. The first author thank the Department of Mathematics at the University of Missouri for the Miller Scholarship which made his visit there in February and June of 2006 possible and MSRI at Berkeley for its support.

2. The equivariant setup for incidence Hilbert schemes

When a smooth algebraic variety X admits a torus \mathbb{C}^* action, one can study its equivariant cohomology $H^*_{\mathbb{C}^*}(X)$. It is known that the localized $H^*_{\mathbb{C}^*}(X)'$ has extra properties coming from the fixed points. In the case of Hilbert scheme $S^{[n]}$ of points on a surface S, this provides a much richer structure on the equivariant cohomology of $S^{[n]}$ than the ordinary cohomology [Vas, Na3, LQW1, LQW2].

Besides the Hilbert scheme of points $S^{[n]}$ for a surface S, the incidence Hilbert scheme $S^{[n,n+1]}$ for a surface S is the only class of (generalized or nested) Hilbert schemes of points on smooth varieties of dimension bigger than one which are smooth for all n (see [Ch1]). It has a nice generating function of Betti numbers. When the surface S is \mathbb{C}^2, the torus \mathbb{C}^* action on $S^{[n,n+1]}$ was studied in details in [Ch1]. In this section, we follow Cheah’s approach to the equivariant tangent spaces of the fixed points. We calculate the generating function of the Betti numbers of $S^{[n,n+1]}$, study in details the equivariant tangent spaces, and hence determine the ring structure of the localized equivariant cohomology $H^*_{\mathbb{C}^*}(S^{[n,n+1]})'$ in terms of the fixed points. It turns out that it is more natural to work on a modified cohomology ring, as illustrated in [Vas], which will be the material in the last subsection. We draw a special attention to three different torus actions on $S = \mathbb{C}^2$ in (2.10), (2.11) and (2.12) which serve for different purposes.

2.1. The equivariant homology and cohomology.

Let $\mathbb{T} = \mathbb{C}^*$, and let θ be the 1-dimensional standard module of \mathbb{T} on which $a \in \mathbb{T}$ acts as multiplication by a, and let t be the associated character. Then the representation ring $\mathcal{R}(\mathbb{T})$ is isomorphic to $\mathbb{Z}[t, t^{-1}]$.

Let X be an algebraic variety acted by \mathbb{T}. Let $H^*_T(X)$ and $H_*^T(X)$ be the equivariant cohomology and the equivariant homology with \mathbb{C}-coefficient respectively. Note that $H^*_T(pt) = H^*(B\mathbb{T}) = \mathbb{C}[t]$. Then there exist bilinear maps

$$\cup : H^*_T(X) \otimes H_*^T(X) \to H^*_T(X),$$

$$\cap : H^*_T(X) \otimes H_*^T(X) \to H^*_T(X).$$

If X is of pure dimension, then there exists a linear map

$$D : H^*_T(X) \to H^*_T(X).$$

If X is smooth of pure dimension, then D is an isomorphism. When $f : Y \to X$ is a \mathbb{T}-equivariant and proper morphism of varieties, we have a Gysin homomorphism

$$f_! : H^*_T(Y) \to H^*_T(X).$$
of equivariant homology. Moreover, when both Y and X are smooth of pure dimension, we have the Gysin homomorphism

$$D^{-1} f; D : H^*_T(Y) \to H^*_T(X)$$

of equivariant cohomology, which will still be denoted by f.

2.2. Incidence Hilbert schemes of points on surfaces.

Let S be a smooth complex surface, and $S^{[n]}$ be the Hilbert scheme of points in S. An element in $S^{[n]}$ is represented by a length-n 0-dimensional closed subscheme ξ of S. For $\xi \in S^{[n]}$, let I_ξ be the corresponding sheaf of ideals. It is well known that $S^{[n]}$ is a nonsingular complex variety of dimension $2n$. Sending an element in $S^{[n]}$ to its support in the symmetric product $\text{Sym}^n(S)$, we obtain the Hilbert-Chow morphism $\pi_n : S^{[n]} \to \text{Sym}^n(S)$, which is a resolution of singularities. Let

$$Z_n = \{(\xi, s) \in S^{[n]} \times S | s \in \text{Supp}(\xi)\}$$

be the universal codimension-2 subscheme in $S^{[n]} \times S$.

Fix a point $s \in S$. For $m \geq 0$ and $n > 0$, we define two closed subsets:

$$M_m(s) = \{\xi \in S^{[m]} | \text{Supp}(\xi) = \{s\}\}, \quad (2.1)$$

$$M_{m,m+n}(s) = \{(\xi, \xi') | \xi \subset \xi' \} \subset M_m(s) \times M_{m+n}(s). \quad (2.2)$$

It is known that $M_{m,m+1}(s)$ and $M_{m+1}(s)$ are irreducible with

$$\dim M_{m,m+1}(s) = \dim M_{m+1}(s) = m. \quad (2.3)$$

The incidence Hilbert scheme $S^{[n,n+1]}$ is defined by

$$S^{[n,n+1]} = \{(\xi, \xi') | \xi \subset \xi' \} \subset S^{[n]} \times S^{[n+1]} \quad (2.4)$$

It is known from [Ch1, Tik] that the incidence Hilbert scheme $S^{[n,n+1]}$ is irreducible, smooth and of dimension $2(n + 1)$. In fact, we have

$$S^{[n,n+1]} \cong \widetilde{S^{[n]}} \times S \quad (2.5)$$

where $\widetilde{S^{[n]}} \times S$ denotes the blowup of $S^{[n]} \times S$ along the subscheme Z_n (see [ES2]). Note that sending a pair $(\xi, \xi') \in S^{[n,n+1]}$ to the support of $I_\xi/I_{\xi'}$ yields a morphism:

$$\rho_n : S^{[n,n+1]} \to S \quad (2.6)$$

which is also the composition of the isomorphism (2.5) and the projection

$$\widetilde{S^{[n]}} \times S \to S^{[n]} \times S \to S.$$

2.3. The torus action on the incidence Hilbert schemes.

Let $S = \mathbb{C}^2$. Then the 2-dimensional complex torus $T^2 = (\mathbb{C}^*)^2$ acts on the affine coordinate functions w and z of S by

$$(a, b)w = aw, \quad (a, b)z = bz \quad (a, b) \in T^2. \quad (2.7)$$

It induces T^2-actions on both $S^{[n]}$ and $S^{[n,n+1]}$. It is known from [ES1] that the T^2-fixed points in $S^{[n]}$ are parametrized by the partitions of n. Let λ be a partition
Lemma 2.1. Let \(\xi_\lambda \) be the \(\mathbb{T}^2 \)-fixed point on \(S^{[n]} \) corresponding to \(\lambda \). If \(\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r) \) with \(\lambda_1 + \ldots + \lambda_r = n \), then we have

\[
I_{\xi_\lambda} = (w^{\lambda_1},zw^{\lambda_2},zr^{-1}w^{\lambda_r},z^r).
\] (2.8)

The multiplicity of part \(i \) in a partition \(\mu \) is denoted by \(m_i(\mu) \), or simply by \(m_i \) if there is no confusion. Using these multiplicities, we can also express \(\mu \) as:

\[
\mu = (1^{m_1(\mu)}2^{m_2(\mu)}\ldots i^{m_i(\mu)}\ldots) = (1^{m_1}2^{m_2}\ldots i^{m_i}\ldots).
\]

Lemma 2.1. The \(\mathbb{T}^2 \)-fixed points in \(S^{[n,n+1]} \) are of the form \((\xi_\lambda, \xi_\mu)\) where

\[
\begin{align*}
\lambda &= (\lambda_1 \geq \lambda_2 \geq \ldots), \quad \mu = (\mu_1 \geq \mu_2 \geq \ldots) \\
\mu &= (\cdots (i-1)^{m_{i-1}}i^{m_i}(i+1)^{m_{i+1}}\ldots) \vdash (n+1)
\end{align*}
\] (2.9)

for some \(i \geq 1 \) with \(m_i > 0 \) (the parts \((i-2)^{m_{i-2}},(i-1)^{m_{i-1}}\) and \((i-1)^{m_{i-1}}\) do not appear if \(i = 1 \)).

Proof. Since the \(\mathbb{T}^2 \)-fixed points in \(S^{[n]} \) are of the form \(\xi_\lambda \) with \(\lambda \vdash n \), the \(\mathbb{T}^2 \)-fixed points in \(S^{[n,n+1]} \) are of the form \((\xi_\lambda, \xi_\mu)\) where \(\lambda \vdash n, \mu \vdash (n+1) \) and \(I_{\xi_\mu} \subseteq I_{\xi_\lambda} \). Let \(\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots) \) and \(\mu = (\mu_1 \geq \mu_2 \geq \ldots) \). By (2.8),

\[
\mu_1 \geq \lambda_1, \quad \mu_2 \geq \lambda_2, \ldots.
\]

Since \(\sum_j \lambda_j = n \) and \(\sum_j \mu_j = n+1 \), there exists \(j_0 \) satisfying \(\mu_{j_0} = \lambda_{j_0} + 1 \) and \(\mu_j = \lambda_j \) whenever \(j \neq j_0 \). This is equivalent to (2.9). \(\square \)

Definition 2.2. (i) The step length \(s(\mu) \) of a partition \(\mu \) is defined to be

\[
s(\mu) = \#\{i \mid m_i(\mu) > 0\};
\]

(ii) If \((\xi_\lambda, \xi_\mu) \in S^{[n,n+1]} \), then \((\lambda, \mu)\) is defined to be an incidence pair. Put

\[
\xi_{\lambda,\mu} = (\xi_\lambda, \xi_\mu).
\]

Fix \(\mu \vdash (n+1) \). By Lemma 2.1, the number of \(\mathbb{T}^2 \)-fixed points in \(S^{[n,n+1]} \) which are of the form \((\xi_\lambda, \xi_\mu)\) is precisely equal to the step length of the partition \(\mu \).

Let \(T_+ = T_- = \mathbb{C}^* \). Consider the three actions on coordinate functions of \(S \):

\[
\begin{align*}
a(w, z) &= (aw, a^{-1}z), \quad a \in T, \quad \text{(2.10)} \\
a(w, z) &= (a^uw, a^{v}z), \quad a \in T_+, \quad \text{(2.11)} \\
a(w, z) &= (a^{-v}w, a^{v}z), \quad a \in T_-, \quad \text{(2.12)}
\end{align*}
\]

where \(0 < u \ll v \). We regard them as three 1-dimensional subgroups of \(\mathbb{T}^2 \). The fixed points in \(S^{[n,n+1]} \) under the action of \(T \) (respectively, \(T_+ \) and \(T_- \)) are exactly the same as those given by Lemma 2.1.
2.4. The generating function for the Betti numbers.

When the surface S is projective, the generating function for the Betti numbers of the incidence Hilbert schemes $S^{[n,n+1]}$ has been determined by Cheah [Ch2]:

$$
\sum_{n=0}^{+\infty} \left(\sum_{i} (-1)^i b_i(S^{[n,n+1]}) z^i \right) q^n
= \left(\sum_{i} (-1)^i b_i(S) z^i \right) \cdot \frac{1}{1-z^2} \cdot \prod_{n=1}^{+\infty} \prod_{i} \left(\frac{1}{1-z^{2n-2}q^n} \right)^{(-1)^i b_i(S)}
$$

(2.13)

where $b_i(\cdot)$ denotes the i-th Betti number, i.e., the rank of the i-th ordinary (co)homology with \mathbb{C}-coefficients. For a general smooth quasi-projective surface S, it is unclear whether the above formula still holds. In the following, we let $S = \mathbb{C}^2$ and show that the above formula holds for $S = \mathbb{C}^2$.

Proposition 2.3.

$$
\sum_{n=0}^{+\infty} \left(\sum_{i} (-1)^i b_i(S^{[n,n+1]}) z^i \right) q^n = \frac{1}{1-z^2} \cdot \prod_{n=1}^{+\infty} \prod_{i} \frac{1}{1-z^{2n-2}q^n}.
$$

Proof. Let O be the origin of $S = \mathbb{C}^2$. The \mathbb{T}_+-action on $S^{[n,n+1]}$ gives rise to a cell decomposition C^n_+ of the punctual incidence Hilbert scheme:

$$
S^{[n,n+1]}_O = \{ (\xi, \xi') \in S^{[n,n+1]} \mid \text{Supp}(\xi') = \{O\} \}.
$$

By the Proposition 2.6.4 in [Ch1], the dimension of the positive part of the tangent space of $S^{[n,n+1]}$ at a \mathbb{T}_+-fixed point $\xi_{\lambda,\mu} = (\lambda, \mu)$ is equal to

$$(n+1) - \mu_1,
$$

(2.14)

where $\mu = (\mu_1 \geq \mu_2 \geq \ldots \geq \mu_r)$. By the Theorem 3.3.3 (5) of [Ch1],

$$
\sum_{n=0}^{+\infty} \left(\sum_{i} (-1)^i b_i^{\mathbb{T}_+}(S^{[n,n+1]}_O) z^i \right) q^n = \frac{1}{1-z^2} \cdot \prod_{n=1}^{+\infty} \frac{1}{1-z^{2n-2}q^n}
$$

(2.15)

where $b_i^{\mathbb{T}_+}(\cdot)$ stands for the rank of the Borel-Moore homology group $H_i^{\mathbb{T}_+}(\cdot)$. On the other hand, the \mathbb{T}_--action on $S^{[n,n+1]}$ gives rise to a cell decomposition C^n_- of $S^{[n,n+1]}$ itself. The positive part of the tangent space of $S^{[n,n+1]}$ at a \mathbb{T}_--fixed point $\xi_{\lambda,\mu}$ is precisely the negative part of the tangent space of $S^{[n,n+1]}$ at the same \mathbb{T}_+-fixed point $\xi_{\lambda,\mu}$. Since $S^{[n,n+1]}$ is of dimension $2(n+1)$, we see from (2.15) that

$$
\sum_{n=0}^{+\infty} \left(\sum_{i} (-1)^i b_i^{\mathbb{T}_-}(S^{[n,n+1]}) z^i \right) q^n = \frac{1}{1-z^2} \cdot \prod_{n=1}^{+\infty} \frac{1}{1-z^{2n-2}q^n}
$$

Again, since $S^{[n,n+1]}$ is smooth, there are natural isomorphisms:

$$
H_i^{\mathbb{T}_+}(S^{[n,n+1]}) \cong H_i(S^{[n,n+1]})^* \cong H^i(S^{[n,n+1]})
$$

(2.16)

where $H_i(S^{[n,n+1]})^*$ is the dual of $H_i(S^{[n,n+1]})$. So we obtain the desired formula. □
2.5. A \mathbb{T}-invariant cell decomposition.

In the rest of this section, we let $S = \mathbb{C}^2$. Recall that the conjugate of a partition μ is the partition μ' whose Young diagram is the transpose of that of μ. Then

$$\ell(\mu) = \mu'_1$$

(2.17)

if $\mu' = (\mu'_1 \geq \mu'_2 \geq \ldots \geq \mu'_r)$. In addition, μ and μ' have the same step length.

Proposition 2.4. Let $S = \mathbb{C}^2$. Then $S^{[n,n+1]}$ admits a cell decomposition

$$S^{[n,n+1]} = \bigcup_{\mu \vdash (n+1), m_i(\mu') > 0} S_{\mu,i}$$

(2.18)

such that $(\xi_{(\mu')^c}, \xi_{\mu'}) \in S_{\mu,i} \cong \mathbb{C}^{(n+1) + \ell(\mu)}$ and every cell $S_{\mu,i}$ is \mathbb{T}-invariant.

Proof. From the proof of Proposition [2.3] we see that the \mathbb{T}_--action on $S^{[n,n+1]}$ gives rise to a cell decomposition C^μ_n of $S^{[n,n+1]}$. Let $C_{\mu',i}$ be the cell corresponding to the \mathbb{T}_--fixed point $(\xi_{(\mu')^c}, \xi_{\mu'})$ where $m_i(\mu') > 0$. By (2.14) and (2.17),

$$\dim(C_{\mu',i}) = 2(n + 1) - [(n + 1) - \mu'_1] = (n + 1) + \ell(\mu).$$

Define $S_{\mu,i} = C_{\mu',i}$ for every partition $\mu \vdash (n+1)$ and $m_i(\mu') > 0$. Then we have the cell decomposition (2.18) with $(\xi_{(\mu')^c}, \xi_{\mu'}) \in S_{\mu,i} \cong \mathbb{C}^{(n+1) + \ell(\mu)}$.

To show that $S_{\mu,i} = C_{\mu',i}$ is \mathbb{T}-invariant, let $(\eta, \eta') \in C_{\mu',i}$. Then,

$$\lim_{b \to 0} b(\eta, \eta') = (\xi_{(\mu')^c}, \xi_{\mu'})$$

where $b \in \mathbb{T}_-$. Let $a \in \mathbb{T}$. To show $a(\eta, \eta') \in C_{\mu',i}$, it suffices to verify

$$\lim_{b \to 0} b(a(\zeta)) = \lim_{b \to 0} b(\zeta)$$

(2.19)

for every $\zeta \in S^{[n]}$. Let $f = f(w, z) \in I_\zeta \subset \mathbb{C}[w, z]$. Then the contribution of $f \in I_\zeta$ to the limiting ideal $\lim_{b \to 0} I_{b(\zeta)}$ is equal to $w^j(f) z^i(f)$ where

$$j(f) = \max \{j \mid \text{for some } i, w^i z^j \text{ is a term in } f\},$$

$$i(f) = \max \{i \mid w^i z^j(f) \text{ is a term in } f\}.$$

Since $j(a(f)) = j(f)$ and $i(a(f)) = i(f)$, we conclude that the contribution of $a(f) \in I_{a(\zeta)}$ to $\lim_{b \to 0} I_{b(a(\zeta))}$ is also $w^j(f) z^i(f)$. This proves (2.19). \[\square\]

Corollary 2.5. (i) $H^2(k(S^{[n,n+1]})) \cong H^2_{\mathbb{T}}(S^{[n,n+1]}(\mathbb{C}[w, z])$ when $k \geq (n + 1)$;

(ii) There exists a ring isomorphism $H^*_T(S^{[n,n+1]})/t \cong H^*(S^{[n,n+1]})$.

Proof. (i) Let $\overline{S_{\mu,i}}$ be the closure of $S_{\mu,i}$ in $S^{[n,n+1]}$. By Proposition 2.4,

$$H^*_T(S^{[n,n+1]}) = \bigcup_{\mu \vdash (n+1), m_i(\mu') > 0} \mathbb{C}^{2} \cup \bigcup_{\mu \vdash (n+1), m_i(\mu') > 0} \mathbb{C}^{2} \bigcup \overline{S_{\mu,i}}$$

(2.20)

Here and below, $[\cdot]$ denotes the equivariant fundamental cycle or its associated equivariant cohomology class. Now (i) follows immediately.

(ii) There is the forgetful map $H^*_T(S^{[n,n+1]}) \to H^*(S^{[n,n+1]})$ which is a ring homomorphism. By Proposition 2.4 and (2.16), a \mathbb{C}-linear basis of $H^*(S^{[n,n+1]})$ consists
of the (ordinary) fundamental cohomology classes of the closures \(S_{\mu,i} \). Combining this with (2.20), we obtain \(H^*_T(S^{[n,n+1]}/(t) \cong H^*(S^{[n,n+1]}). \)

\[\square \]

2.6. The equivariant Zariski tangent spaces of \(S^{[n]} \).

The first study of the equivariant Zariski tangent space of the Hilbert scheme \(S^{[n]} \) at the fixed points was carried out in [ES1]. Here we review an approach due to Cheah in [Ch1]. It will be used in the next subsection for the equivariant Zariski tangent space of the incidence Hilbert scheme \(S^{[n,n+1]} \).

Let \(\lambda \vdash n \). Then the \(T \)-invariant ideal \(I_{\xi_\lambda} \subset R = \mathbb{C}[w,z] \) is given by:

\[I_{\xi_\lambda} = (w^{\lambda_1}, zw^{\lambda_2}, \ldots, z^{r-1}w^{\lambda_r}, z^r). \]

The Zariski tangent space \(T_{\xi_\lambda}S^{[n]} \) at \(\xi_\lambda \) is canonically isomorphic to the space \(\text{Hom}(I_{\xi_\lambda}, R/I_{\xi_\lambda}) \). To obtain a pure-weight linear basis of the \(T \)-invariant space \(\text{Hom}(I_{\xi_\lambda}, R/I_{\xi_\lambda}) \), we represent \(I_{\xi_\lambda} \) by a Young diagram \(D_\lambda \) as in [Ch1].

Example 2.6. The ideal \(I = \langle w^5, zw^4, z^4w^2, z^6 \rangle \) is represented by the diagram:

![Diagram](image1)

If we look at the Young diagram of \(I = I_{\xi_\lambda} \), then the corners of its complement (that is, the shaded boxes in the second diagram of Figure 2) represent the unique minimal set of monomials that generate the ideal \(I_{\xi_\lambda} \). Denote this set by \(A \), and let \(B \) be the set of monomials not in \(I_{\xi_\lambda} \):

![Diagram](image2)
The elements (called the canonical generators) in the set A are:

\[
\begin{align*}
\alpha_0 & := w^{\lambda_0}, \\
\alpha_1 & := z^{p_0} w^{\lambda_{p_0} + p_1}, \\
\vdots & \quad \vdots \\
\alpha_{m-1} & := z^{p_0 + p_1 + \ldots + p_{m-2}} w^{\lambda_{p_0 + p_1 + \ldots + p_{m-2}}}, \\
\alpha_m & := z^{p_0 + p_1 + \ldots + p_{m-1}} = z^r.
\end{align*}
\]

(2.23)

Define $q_m = \lambda_{p_0 + p_1 + \ldots + p_{m-2} + p_{m-1}}$. For $1 \leq i \leq m-1$, define

\[
q_i = \lambda_{p_0 + p_1 + \ldots + p_i} - \lambda_{p_0 + p_1 + \ldots + p_{i-1} + p_i}.
\]

(2.24)

Note that p_i is the vertical distance between the cells representing α_i and α_{i+1} and that q_i is the horizontal distance between the cells representing α_i and α_{i-1}.

For $\alpha = \alpha_i \in A$, let P_α be the subset of B consisting of the elements b satisfying

(i) b lies to the left of α in the Young diagram,

(ii) $z^{p_i} b \in I_{\xi_\alpha},$

and let Q_α be the subset of B consisting of the elements b satisfying

(i) b lies above α in the Young diagram,

(ii) $w^{q_i} b \in I_{\xi_\alpha}.$

Let S be the subset of $\text{Hom}(I_{\xi_\alpha}, R/I_{\xi_\alpha})$ consisting of elements of pure weight which take canonical generators in A either to zero or to monomials in B modulo I_{ξ_α}. For $\beta \in P_\alpha \cup Q_\alpha$, define $f_{\alpha, \beta} \in S$ to be the unique element satisfying

(i) $f_{\alpha, \beta}(\alpha) = \beta,$

(ii) $f_{\alpha, \beta}$ takes the largest number of canonical generators to zero.

The conditions (i) and (ii) imply that $f_{\alpha_i, \beta}(\alpha_j) = 0$ if $\beta \in P_\alpha$, and $j > i$, and that $f_{\alpha_i, \beta}(\alpha_j) = 0$ if $\beta \in Q_\alpha$, and $j < i$. By the Proposition 2.5.4 of [Ch1], a pure weight basis of the tangent space $T_{\xi_\alpha} S[\alpha] \cong \text{Hom}(I_{\xi_\alpha}, R/I_{\xi_\alpha})$ of $S[\alpha]$ at ξ_α is

\[
\{f_{\alpha, \beta} \mid \alpha \in A, \beta \in P_\alpha \cup Q_\alpha\}.
\]

When $\beta \in Q_\alpha$, we have $\beta = \alpha \cdot w^{i_1}/z^{i_2}$ for some integers $i_1 \geq 0$ and $i_2 > 0$, and the weight of $f_{\alpha, \beta}$ is equal to $(i_1 + i_2)$, which is the hook length $h(\square)$ of certain cell \square in the Young diagram D_{λ}. As β runs in the set Q_α, \square runs over all the cells in D_{λ} exactly once. Similarly, when $\beta \in P_\alpha$, we have $\beta = \alpha \cdot z^{i_2}/w^{i_1}$ for some integers $i_1 > 0$ and $i_2 \geq 0$, and the weight of $f_{\alpha, \beta}$ is equal to $-(i_1 + i_2)$, where $(i_1 + i_2)$ is
the hook length \(h(\square) \) of certain cell \(\square \) in \(D_\lambda \). Again, as \(\beta \) runs in \(Q_\alpha \), \(\square \) runs over all the cells in \(D_\lambda \) exactly once. Hence, there exists a \(\mathbb{T} \)-equivariant identification:

\[
T_{\xi_\lambda}S^{[n]} = \bigoplus_{\square \in D_\lambda} (\theta^{h(\square)} \oplus \theta^{-h(\square)}).
\]

(2.25)

It follows that the \(\mathbb{T} \)-equivariant Euler class of the tangent space is

\[
e_T(T_{\xi_\lambda}S^{[n]}) = (-1)^n \cdot \prod_{\square \in D_\lambda} h(\square)^2 \cdot t^{2n} = (-1)^n \cdot h(\lambda)^2 \cdot t^{2n}
\]

(2.26)

where \(h(\lambda) \) is the product of all the hook lengths \(h(\square), \square \in D_\lambda \).

2.7. The equivariant Zariski tangent spaces of \(S^{[n,n+1]} \).

Let \((\lambda, \mu)\) be an incidence pair of partitions with \(\lambda \vdash n \). Then, \((\xi_\lambda, \xi_\mu)\) is a \(\mathbb{T} \)-fixed point in \(S^{[n,n+1]} \). There are \(\mathbb{T} \)-equivariant maps:

\[
\phi : \text{Hom}(I_{\xi_\lambda}, R/I_{\xi_\lambda}) \to \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\lambda}),
\]

(2.27)

\[
\psi : \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\mu}) \to \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\lambda}).
\]

(2.28)

From pages 42-43 in [Ch1], we see that the Zariski tangent space of \(S^{[n,n+1]} \) at the point \((\xi_\lambda, \xi_\mu)\) is canonically isomorphic to \(\ker(\phi - \psi) \) where

\[
(\phi - \psi) : \text{Hom}(I_{\xi_\lambda}, R/I_{\xi_\lambda}) \oplus \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\mu}) \to \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\lambda})
\]

is defined by letting \((\phi - \psi)(a, b) = \phi(a) - \psi(b)\). By the Lemma 2.6.2 in [Ch1], \((\phi - \psi)\) is surjective. Therefore, there is a \(\mathbb{T} \)-equivariant exact sequence:

\[
0 \to \ker(\phi - \psi) \to \text{Hom}(I_{\xi_\lambda}, R/I_{\xi_\lambda}) \oplus \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\mu}) \to \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\lambda}) \to 0.
\]

(2.29)

We keep using the notations \(A, B, p_i, \alpha_i, q_i \) associated to \(\lambda \) from §2.6 and let \(A', B' \) be the corresponding notations associated to \(\mu \). Put

\[
A' = \{\alpha'_0, \alpha'_1, \ldots, \alpha'_s\}.
\]

The Young diagram of \(I_{\xi_\mu} \) is obtained from that of \(I_{\xi_\lambda} \) by adding one of the cells which represents a canonical generator in \(A \). Let

\[
\alpha_k \in A
\]

(2.30)

be this canonical generator. Then, \(\alpha_k \in B' \) and so \(\alpha_k \not\in A' \). Note that

\[
\alpha_k \in P_{\alpha'_i} \cup Q_{\alpha'_i}
\]

for all \(0 \leq i \leq s \), and that the homomorphism \(f_{\alpha'_i, \alpha_k} \in \text{Hom}(I_{\xi_\mu}, R/I_{\xi_\mu}) \) maps \(\alpha'_i \) to \(\alpha_k \) and all the other canonical generators in \(A' \) to zero. Moreover, \(f_{\alpha'_0, \alpha_k}, \ldots, f_{\alpha'_s, \alpha_k} \) form a basis of \(\ker(\psi) \subset \ker(\phi - \psi) \), i.e., we have

\[
\ker(\phi - \psi) \supset \ker(\psi) = \bigoplus_{i=0}^s \mathbb{C}f_{\alpha'_i, \alpha_k}.
\]

(2.31)

Definition 2.7. Let \((\lambda, \mu)\) be an incidence pair, and \(k \) be from (2.30).
For $0 \leq i \leq k - 1$, let $\square_{k,i}$ be the cell in the Young diagram D_λ which is directly to the left of α_i and directly above α_k, and let $\square'_{k,i}$ be the cell which is the $(p_i - 1)$-th cell directly under $\square_{k,i}$ ($\square'_{k,i} = \square_{k,i}$ if $p_i = 1$). For $k + 1 \leq i \leq m = s(\lambda)$, let $\square_{k,i}$ be the cell which is directly above α_i and directly to the left of α_k, and let $\square'_{k,i}$ be the cell which is the $(q_i - 1)$-th cell directly to the right of $\square_{k,i}$ ($\square'_{k,i} = \square_{k,i}$ if $q_i = 1$).

(ii) Define $k(\lambda, \mu)$ to be the integer k, and define

$$h(\lambda, \mu) = h(\lambda)^2 \cdot \prod_{0 \leq i \leq s(\lambda)} \frac{1 + h(\square_{k(\lambda, \mu), i})}{h(\square'_{k(\lambda, \mu), i})}.$$

(2.32)

The following lemma is the key step for determining the ring structure of the equivariant cohomology ring of the incidence Hilbert scheme $S^{[n,n+1]}$. Since the proof is a bit technical, we place it in the Appendix.

Lemma 2.8. Let $(\xi_\lambda, \xi_\mu) \in S^{[n,n+1]}$ be a \mathbb{T}-fixed point. Then the \mathbb{T}-equivariant Euler class of the tangent space of $S^{[n,n+1]}$ at (ξ_λ, ξ_μ) is equal to

$$e_\mathbb{T} = (-1)^{n+1} h(\lambda, \mu) \cdot t^{2(n+1)}.$$

(2.33)

2.8. A bilinear pairing.

Recall that the \mathbb{T}-fixed points in $S^{[n,n+1]}$ are of the form $\xi_{\lambda, \mu} = (\xi_\lambda, \xi_\mu)$ where (λ, μ) denotes incidence pairs of partitions. Let

$$t_{\lambda, \mu} : \xi_{\lambda, \mu} = (\xi_\lambda, \xi_\mu) \hookrightarrow S^{[n,n+1]}$$

(2.34)

be the inclusion map. Let $1_{\xi_{\lambda, \mu}} \in H^0_\mathbb{T}(\xi_{\lambda, \mu})$ be the unit. Thus,

$$[\xi_{\lambda, \mu}] = (t_{\lambda, \mu})!(1_{\xi_{\lambda, \mu}}) \in H^4_{\mathbb{T}}(S^{[n,n+1]}).$$

Denote by $\mathbb{C}[t]'$ the localization of the ring $\mathbb{C}[t]$ at the ideal $(t - 1)$, and denote

$$\tilde{t}_n = \bigoplus_{(\lambda, \mu) \text{ incidence}} t_{\lambda, \mu} : (S^{[n,n+1]})^\mathbb{T} \to S^{[n,n+1]}.$$

We define $H^*_\mathbb{T}((S^{[n,n+1]})^\mathbb{T})' = H^*_\mathbb{T}((S^{[n,n+1]})^\mathbb{T} \otimes \mathbb{C}[t]' \otimes \mathbb{C}[t]'$ and define $H^*_\mathbb{T}(S^{[n,n+1]})'$ similarly. Then we have the induced Gysin map:

$$\tilde{t}_n^* : H^*_\mathbb{T}((S^{[n,n+1]})^\mathbb{T})' \longrightarrow H^*_\mathbb{T}(S^{[n,n+1]})'.$$

By the localization theorem, \tilde{t}_n^* is an isomorphism. The inverse $(\tilde{t}_n^*)^{-1}$ is given by

$$\tilde{A} \mapsto \left(\frac{(t_{\lambda, \mu})^*(\tilde{A})}{e_\mathbb{T}(T_{\xi_{\lambda, \mu}} S^{[n,n+1]})} \right)_{(\lambda, \mu) \text{ incidence}}.$$

Therefore, we conclude from Lemma 2.8 on the Euler class $e_\mathbb{T}$ that

$$(\tilde{t}_n^*)^{-1}(\tilde{A}) = \left(\frac{(t_{\lambda, \mu})^*(\tilde{A})}{(-1)^{n+1} h(\lambda, \mu) \cdot t^{2(n+1)}} \right)_{(\lambda, \mu) \text{ incidence}}.$$

(2.35)
Next, we define a bilinear pairing on \(H^*_T(S^{[n,n+1]})' \) by:

\[
\langle -,- \rangle : H^*_T(S^{[n,n+1]})' \otimes \mathbb{C}[t] \to \mathbb{C}[t]',
\]

\[
\langle A, B \rangle = (-1)^{n+1} \pi_n(t_n)^{-1}(A \cup B) \tag{2.37}
\]

where \(\pi_n \) is the projection of the set \((S^{[n,n+1]})^T\) of \(T\)-fixed points to a point. This induces a bilinear pairing, again denoted by \(\langle -,- \rangle \), on the space:

\[
\tilde{\mathbb{H}}_T' = \bigoplus_{n=0}^{+\infty} H^*_T(S^{[n,n+1]})'.
\tag{2.38}
\]

2.9. A new ring \(\tilde{\mathbb{H}}_{T,n} \) and its linear basis from the fixed points.

For \(n \geq 0 \), let \(\tilde{\mathbb{H}}_{T,n} = H^{2(n+1)}_T(S^{[n,n+1]}) \) be the middle-degree equivariant cohomology of the incidence Hilbert scheme \(S^{[n,n+1]} \). By Corollary 2.5 (i),

\[
H^{2(n+1)}_T(S^{[n,n+1]}) = t^{(n+1)} \cup H^{2(n+1)}_T(S^{[n,n+1]}).
\]

Note that \(H^*_T(S^{[n,n+1]}) \) is \(\mathbb{C}[t] \)-torsion free. Define a product \(\hat{\star} \) on \(\tilde{\mathbb{H}}_{T,n} \) by:

\[
t^{n+1} \cup [\lambda, \mu] = [\xi_{\lambda,\mu}]
\tag{2.39}
\]

for \(\tilde{A}, \tilde{B} \in \tilde{\mathbb{H}}_{T,n} \). Then, we see that \((\tilde{\mathbb{H}}_{T,n}, \hat{\star})\) is a ring.

Next, we construct a linear basis of \(\tilde{\mathbb{H}}_{T,n} \). Define the class \([\lambda, \mu] \in \tilde{\mathbb{H}}_{T,n} \) by

\[
t^{n+1} \cup [\lambda, \mu] = [\xi_{\lambda,\mu}]
\tag{2.40}
\]

since \([\xi_{\lambda,\mu}] \in H^{2(n+1)}_T(S^{[n,n+1]}) \). Note that we have

\[
[\xi_{\lambda,\mu}] \cup [\xi_{\lambda,\mu}] = (t_{\lambda,\mu})!(1_{\xi_{\lambda,\mu}}) \cup (t_{\lambda,\mu}^*)(1_{\xi_{\lambda,\mu}})
\]

\[
= (t_{\lambda,\mu})!(1_{\xi_{\lambda,\mu}}) \cup (t_{\lambda,\mu}^*)(1_{\xi_{\lambda,\mu}})
\]

\[
= \delta(\lambda,\mu) e_T(T_{\xi_{\lambda,\mu}} S^{[n,n+1]})[\xi_{\lambda,\mu}]
\]

\[
= \delta(\lambda,\mu)(\lambda,\mu) (-1)^{n+1} h(\lambda,\mu) t^{(n+1)}[\xi_{\lambda,\mu}]
\tag{2.41}
\]

by the projection formula and Lemma 2.8. Thus we obtain

\[
[\lambda, \mu] \hat{\star} [\lambda, \mu] = \delta(\lambda,\mu) (-1)^{n+1} h(\lambda,\mu) [\lambda, \mu].
\tag{2.42}
\]

Combining this with the localization theorem, we see that the classes

\[
[\lambda, \mu]
\]

where \(\mu \vdash (n+1) \) and \((\lambda, \mu) \) is an incidence pair, form a linear basis of \(\tilde{\mathbb{H}}_{T,n} \).

In addition, we obtain from (2.37) and (2.41) that

\[
\langle [\lambda, \mu], [\lambda, \mu] \rangle = (-1)^{n+1} \pi_n(t_n)^{-1}([\lambda, \mu] \cup [\lambda, \mu])
\]

\[
= (-1)^{n+1} \pi_n(t_n)^{-1}([-2(\lambda,\mu) \cup [\xi_{\lambda,\mu}])]
\]

\[
= \delta(\lambda,\mu)(\lambda,\mu) h(\lambda,\mu) \cdot \pi_n(t_n)^{-1}([\xi_{\lambda,\mu}])
\]

\[
= \delta(\lambda,\mu)(\lambda,\mu) h(\lambda,\mu).
\tag{2.43}
\]
It follows that the restriction to $\tilde{H}_{T,n}$ of the bilinear form $\langle -, - \rangle$ on the space $H^*_T(S^{[n,n+1]})'$ is a nondegenerate bilinear form:

$$\langle -, - \rangle : \tilde{H}_{T,n} \times \tilde{H}_{T,n} \rightarrow \mathbb{C}$$ \hspace{1cm} (2.44)

This induces a nondegenerate bilinear form, denoted again by $\langle -, - \rangle$, on:

$$\tilde{H}_T = \bigoplus_{n=0}^{+\infty} \tilde{H}_{T,n}.$$ \hspace{1cm} (2.45)

Note that a \mathbb{C}-linear basis of the vector space \tilde{H}_T is given by

$$\tilde{B}_1 = \{ \{\lambda, \mu\} \} \text{ incidence}.$$ \hspace{1cm} (2.46)

3. The loop algebra action on \tilde{H}_T

One of the most important features of the Hilbert schemes $S^{[n]}$ of points on a surface S is a Heisenberg algebra action on the direct sum of the cohomology groups of $S^{[n]}$ over all n discovered by Nakajima and Grojnowski [Gro, Na1]. It lays the foundation for a new method in the study of the cohomology ring of the Hilbert scheme $S^{[n]}$. Without much difficulty, one can transport the Heisenberg algebra action to the equivariant cohomology of $S^{[n]}$ when $S = \mathbb{C}^2$.

A loop algebra of a Heisenberg algebra was found in [LQ] to act on the direct sum of the cohomology groups of incidence Hilbert schemes $S^{[n,n+1]}$. It is generated by a Heisenberg algebra and a translation operator. In this section, we transport the results in [LQ] to the equivariant cohomology of $S^{[n,n+1]}$ when $S = \mathbb{C}^2$.

3.1. The Heisenberg operators.

In the rest of this section, let $S = \mathbb{C}^2$. Let C^w and C^z be the w-axis and z-axis of $S = \mathbb{C}^2$ respectively. By the localization theorem, we have

$$[C^w] = t = -t^{-1}[O], \quad [C^z] = -t = t^{-1}[O]$$ \hspace{1cm} (3.1)

in $H^2_T(S)$, where $O \in S$ is the origin. In particular, $[C^w] = -[C^z]$ in $H^*_T(S)$.

Next, let $Y = C^w$ or C^z. Then, Y is T-invariant. For $m \geq 0$ and $n > 0$, define the closed subset $\tilde{Q}_Y^{[m,n,m]}$ of $S^{[m+n,m+n+1]} \times S^{[m,m+1]}$:

$$\tilde{Q}_Y^{[m+n,m]} = \{ ((\xi, \xi'), (\eta, \eta')) | \xi \supset \eta, \xi' \supset \eta', \text{ Supp}(I_\eta/I_\xi) = \{ s \} \subset Y, \text{ Supp}(I_{\xi'/I_{\xi'}}) = \text{ Supp}(I_{\eta'/I_{\eta}}) \}.$$ \hspace{1cm} (3.2)

Then $\tilde{Q}_Y^{[m+n,m]}$ is T-invariant. Define the linear operator $\tilde{a}_{-n}([Y]) \in \text{End}(\tilde{H}_T)$ by

$$\tilde{a}_{-n}([Y])(\tilde{A}) = D^{-1} \tilde{p}_1 ! \left(\tilde{p}_2 \tilde{A} \cap [\tilde{Q}_Y^{[m+n,m]}] \right)$$ \hspace{1cm} (3.2)

for $\tilde{A} \in H^*_T(S^{[m,m+1]})'$, where \tilde{p}_1 and \tilde{p}_2 are the two projections of $S^{[m+n,m+n+1]} \times S^{[m,m+1]}$. Note that the restriction of \tilde{p}_1 to $\tilde{Q}_Y^{[m+n,m]}$ is proper. Define $\tilde{a}_n([Y]) \in$
End(\(\widetilde{\mathbb{H}}_T^r\)) to be the adjoint operator of \(\tilde{a}_{-n}([Y])\) with respect to the bilinear form \(\langle\cdot,\cdot\rangle\) on the linear space \(\widetilde{\mathbb{H}}_T\). Alternatively, we have

\[
\tilde{a}_{-n}([Y])(\widetilde{A}) = D^{-1}(\tilde{p}_1 H(I_{\mathbb{H}_{\mathbb{T}}^{m^{[m+n,m+n+1]} \times \mathbb{H}_m})^{-1} \left(\tilde{p}_2 \tilde{A} \cap [\widetilde{Q}_{Y}^{m+n,m}]\right), \tag{3.3}
\]

\[
\tilde{a}_{n}([Y])(\widetilde{B}) = (-1)^n D^{-1}(\tilde{p}_2 H(I_{\mathbb{H}_{\mathbb{T}}^{m+n+m+1}}) \cap \tilde{B} \cap [\widetilde{Q}_{Y}^{m+n,m}] \tag{3.4}
\]

for \(\tilde{A} \in H_T^s(S^{[m,m+n+1')}\) and \(\tilde{B} \in H_T^s(S^{[m,m+n+1]}')\), where \(\tilde{p}_1, \tilde{p}_2\) are the projections:

\[
\tilde{p}_1 : S^{[m,m+n+1]} \times (S^{[m,m+1]})^\mathbb{T} \to S^{[m,m+n+1]},
\]

\[
\tilde{p}_2 : (S^{[m,m+n+1]})^\mathbb{T} \times S^{[m,m+1]} \to S^{[m,m+1]},
\]

Let \(n > 0\). From the definition of \(\tilde{a}_{-n}([Y]) \in \text{End}(\widetilde{\mathbb{H}}_T)\), we see that

\[
\tilde{a}_{-n}([Y])(\widetilde{A}) \in \mathbb{H}_{\mathbb{T},m+n}
\]

if \(\tilde{A} \in \mathbb{H}_{\mathbb{T},m} = H_T^{2(m+1)}(S^{[m,m+1]}) \subset H_T^s(S^{[m,m+1]}')\). Hence the restriction of \(\tilde{a}_{-n}([Y])\) to the space \(\mathbb{H}_T\) gives a linear operator in \(\text{End}(\mathbb{H}_T)\), denoted by \(\tilde{a}_{-n}([Y])\) as well. Recall from (2.44) that there is a bilinear form

\[
\langle\cdot,\cdot\rangle : \mathbb{H}_T \otimes \mathbb{H}_T \to \mathbb{C},
\]

which is the restriction of the bilinear form \(\langle\cdot,\cdot\rangle\) on \(\mathbb{H}_T^r\). Thus, the restriction of \(\tilde{a}_n([Y])\) to \(\mathbb{H}_T\) is the adjoint operator of \(\tilde{a}_{-n}([Y])\) with respect to the bilinear form \(\langle\cdot,\cdot\rangle\) on \(\mathbb{H}_T\), and hence is an operator in \(\text{End}(\mathbb{H}_T)\) which will again be denoted by \(\tilde{a}_n([Y])\). Finally, we define \(\tilde{a}_0([Y]) = 0 \in \text{End}(\mathbb{H}_T)\).

Proposition 3.1. The operators \(\tilde{a}_n([C^z])\), \(n \in \mathbb{Z}\), acting on the space \(\mathbb{H}_T^r\) satisfy the following Heisenberg commutation relation:

\[
[\tilde{a}_n([C^z]), \tilde{a}_m([C^z])] = n\delta_{n-m} \text{Id}_{\mathbb{H}_T^r}. \tag{3.5}
\]

Proof. Since \(C^w = -[C^z]\), we have \(\tilde{Q}_{C^w}^{m+n,m} = -\tilde{Q}_{C^z}^{m+n,m}\). It follows from the definition that \(\tilde{a}_m([C^w]) = -\tilde{a}_m([C^z])\). Hence (3.5) is equivalent to

\[
[\tilde{a}_n([C^w]), \tilde{a}_m([C^z])] = -n\delta_{n-m} \text{Id}_{\mathbb{H}_T^r}. \tag{3.6}
\]

Note that \(C^w\) and \(C^z\) intersect transversely at the origin. By (3.3) and (3.4), the commutation relation (3.6) is reduced to the intersections between certain cycles related to various \(\tilde{Q}_{C^w}^{[\ell_1,\ell_2]}\) and certain cycles related to various \(\tilde{Q}_{C^z}^{[\ell_3,\ell_4]}\). Therefore, an argument similar to the one used in the proof of the Proposition 3.5 in LQ (for smooth projective surfaces) works in our situation. This proves (3.6). \(\square\)

3.2. The translation operator.

For \(m \geq 0\), define \(\tilde{Q}_m \subset S^{[m+1,m+2]} \times S^{[m,m+1]}\) to be the closed subset:

\[
\tilde{Q}_m = \{((\xi', \xi''), (\xi, \xi'))|\text{Supp}(I_{\xi'}/I_{\xi''}) = \text{Supp}(I_{\xi'}/I_{\xi''})\}.
\]

Then, the subset \(\tilde{Q}_m\) is \(\mathbb{T}\)-invariant, and \(\dim \tilde{Q}_m = (2m + 3)\).
Definition 3.2. Define the linear operator \(\tilde{t}^\dagger \in \text{End}(\check{H}_T) \) by
\[
\tilde{t}^\dagger(\tilde{A}) = D^{-1}\tilde{p}_1(\tilde{p}_2^\dagger \tilde{A} \cap [\check{Q}_m])
\]
for \(\tilde{A} \in \check{H}_{T,m} \), where \(\tilde{p}_1, \tilde{p}_2 \) are the two projections of \(S^{[m+1.m+2]} \times S^{[m,m+1]} \).

Proposition 3.3. (i) The adjoint operator \((\tilde{t}^\dagger)^\dagger\) is the left inverse of \(\tilde{t}^\dagger\);
(ii) \(\tilde{t}^\dagger\) and \((\tilde{t}^\dagger)^\dagger\) commute with the Heisenberg operators \(\check{a}_{-n}(|C^z|)\).

Proof. Note that \(\tilde{t} \) and its adjoint operator \(\tilde{t}^\dagger \) are also given by
\[
(\tilde{t}^\dagger)(\tilde{B}) = -D^{-1}(\tilde{p}_2^\dagger)(\tilde{B} \cap [\check{Q}_m])^{-1},
\]
for \(\tilde{A} \in \check{H}_{T,m} \) and \(\tilde{B} \in \check{H}_{T,m+1} \), where \(\tilde{p}_1^\dagger \) and \(\tilde{p}_2^\dagger \) are the projections:
\[
\tilde{p}_1^\dagger: \quad S^{[m+1.m+2]} \times (S^{[m,m+1]})^\dagger \to S^{[m+1,m+2]},
\]
\[
\tilde{p}_2^\dagger: \quad (S^{[m+1,m+2]})^\dagger \times S^{[m,m+1]} \to S^{[m,m+1]}.
\]

So our results follow from arguments similar to the proofs of the Lemma 4.2 (i) and Proposition 4.3 in \([\text{LQ}]\) for smooth projective surfaces. \(\square\)

3.3. The loop algebra action.

Definition 3.4. Let \(\check{a}_n^\dagger = \check{a}_n(|C^z|) \) for all \(n \in \mathbb{Z} \). Define \(\check{h}_T \) to be the Heisenberg algebra generated by the operators \(\check{a}_n^\dagger, n \in \mathbb{Z} \), and the identity operator \(\text{Id}_{\check{H}_T} \).

The loop algebra of a Lie algebra \(\mathfrak{g} \) is \(\mathbb{C}[u,u^{-1}] \otimes \mathbb{C} \mathfrak{g} \) with
\[
[u^m \otimes g_1, u^n \otimes g_2] = u^{m+n} \otimes [g_1, g_2].
\]

Theorem 3.5. The space \(\check{H}_T \) is a representation of the Lie algebra \(\mathbb{C}[u^{-1}] \otimes \mathbb{C} \check{h}_T \) with a highest weight vector being the vacuum vector
\[
|0\rangle = |C^z\rangle \in \check{H}_{T,0} = H^2_\mathcal{T}(S^{[0,1]}) = H^2_\mathcal{T}(S) = H^2_\mathcal{T}(\mathbb{C}^2)
\]
where \(u^{-1} \) acts via \(\tilde{t}^\dagger \), and \(C^z \) denotes the z-axis of \(S = \mathbb{C}^2 \).

Proof. Follows from Proposition 2.3, Proposition 3.1 and Proposition 3.3. \(\square\)

For a partition \(\nu = (1^{m_1}2^{m_2}\cdots) \), we establish the notations:
\[
\check{a}_{-\nu}^\dagger = \prod_j (\check{a}_{-j}^\dagger)^{m_j},
\]
\[
\check{z}_\nu = \prod_j (j^{m_j}m_j!).
\]

By Theorem 3.5 a \(\mathbb{C} \)-linear basis of the space \(\check{H}_T \) is given by
\[
\check{B}_2 = \left\{ (\tilde{t}^\dagger)^i \check{a}_{-\nu}^\dagger|0\rangle \right\}_{i \geq 0, \nu}.
\]
Lemma 3.6. \(\langle (\bar{t}^T)i_\nu^+ a_{\nu}^\pm |0\rangle, (\bar{t}^T)j_\nu^+ a_{\nu}^\pm |0\rangle \rangle = 3^\nu \delta_{i,j} \delta_{\nu,\bar{\nu}}. \)

Proof. By Proposition 3.3 (ii) and Proposition 3.1, we obtain
\[
\langle \bar{t}^T \bar{a}_n, \bar{t}^T \bar{b} \rangle = \langle \bar{a}_n, (\bar{t}^T)^{-1} \bar{t}^T \bar{b} \rangle = \langle \bar{a}_n, \bar{b} \rangle,
\]
\[
\langle a_{\nu}^j \bar{a}_n, \bar{a}_{\nu}^j \bar{b} \rangle = \langle \bar{a}_n, a_{\nu}^j \bar{a}_{\nu}^j \bar{b} \rangle = j \langle \bar{a}_n, \bar{b} \rangle + \langle \bar{a}_n, \bar{a}_{\nu}^j a_{\nu}^j \bar{b} \rangle.
\]
Now the lemma follows from repeatedly applying these two formulas and
\[
\langle |0\rangle, |0\rangle \rangle = (\langle |C^\nu\rangle, [C^\nu] \rangle = \langle -t, -t \rangle = 1. \qed
\]

3.4. Relations with the Heisenberg operators on \(\bigoplus_n H_T^{2n}(S^{[n]}) \).

For \(n \geq 0 \), let \(H_{T,n} = H_T^{2n}(S^{[n]}) \). Define the infinite dimensional space
\[
H_T = \bigoplus_{n=0}^{+\infty} H_{T,n}. \tag{3.13}
\]

In [Vas] (see also [LQW2]), an irreducible representation of a Heisenberg algebra on the space \(H_T \) was constructed. The Heisenberg algebra is generated by the linear operators \(a_n^\pm := a_n([C^\nu]) \) in \(\text{End}(H_T) \) and the identity operator \(\text{Id}_{H_T} \).

The operators \(a_n([C^\nu]) \) were defined similarly as in \(\mathbb{C} \). Let \(Y = C^m \) or \(C^2 \). For \(m \geq 0 \) and \(n > 0 \), define the closed subset \(Q_Y^{m+n,m} \) of \(S^{[m+n]} \times S^{[m]} \):
\[
Q_Y^{m+n,m} = \{ (\xi, \eta) \mid \xi \supset \eta, \text{Supp}(I_{\eta}/I_{\xi}) = \{ s \} \subset Y \}.
\]

Define \(a_0([Y]) = 0 \in \text{End}(H_T) \), and define \(a_{-n}([Y]), a_n([Y]) \in \text{End}(H_T) \) by
\[
a_{-n}([Y]) (A) = D^{-1}(p_1')^t (\text{Id}_{S^{m+n}} \times \iota_m)^{-1} \left(p_2^* A \cap [Q_Y^{m+n,m}] \right),
\]
\[
a_n([Y]) (B) = (-1)^n D^{-1}(p_1')^t (\iota_{m+n} \times \text{Id}_{S^{m}})^{-1} \left(p_1^* B \cap [Q_Y^{m+n,m}] \right)
\]
for \(A \in H_{T,m} = H_T^{2m}(S^{[m]}) \) and \(B \in H_{T,m+n}, \) where \(p_1', p_2' \) are the projections:
\[
p_1' : S^{[m+n]} \times (S^{[m]})^T \rightarrow S^{[m+n]},
p_2' : (S^{[m+n]})^T \times S^{[m]} \rightarrow S^{[m]},
\]
p_1, p_2 are the two projections on \(S^{[m+n]} \times S^{[m]} \), and \(\iota_m \) is the inclusion map:
\[
\iota_m : (S^{[m]})^T \rightarrow S^{[m]}.
\]

It was proved in [Vas] (see [LQW2] for the correct sign) that
\[
[a_n^+, a_m^+] = n \delta_{n,-m} \text{Id}_{H_T}. \tag{3.14}
\]

Recall the morphism \(\rho_m : S^{[m,m+1]} \rightarrow S^{[m]} \) from (2.6). In addition, there are two natural morphisms from \(S^{[m,m+1]} \) to \(S^{[m]} \) and \(S^{[m+1]} \) respectively:
\[
S^{[m,m+1]} \xrightarrow{\beta_{m+1}} S^{[m+1]}
\]
\[
\downarrow f_m \quad S^{[m+1]}.
\]
These morphisms ρ_m, f_m and g_{m+1} are T-equivariant, and there are induced maps:

$$ t \cup f_m^* : \mathbb{H}_{T,m} \to \tilde{\mathbb{H}}_{T,m}, \quad (3.15) $$

$$ g_{m+1}^* : \mathbb{H}_{T,m+1} \to \tilde{\mathbb{H}}_{T,m}. \quad (3.16) $$

We remark that $H^2_T(S) = H^2_T(C^2) = \mathbb{C}$. Therefore, $t \cup f_m^*$ is essentially the only way to come up with a map $\mathbb{H}_{T,m} \to \tilde{\mathbb{H}}_{T,m}$ based on the pullback f_m^*.

Proposition 3.7. (i) For every $n \in \mathbb{Z}$, there is a commutative diagram:

$$
\begin{array}{ccc}
\mathbb{H}_{T,m} & \xrightarrow{a^*_n} & \mathbb{H}_{T,m+n} \\
\downarrow{t \cup f_m^*} & & \downarrow{t \cup f_{m+n}^*} \\
\tilde{\mathbb{H}}_{T,m} & \xrightarrow{\tilde{a}^*_n} & \tilde{\mathbb{H}}_{T,m+n}.
\end{array}
\quad (3.17)
$$

(ii) Let $n > 0$. Then we have a commutative diagram:

$$
\begin{array}{ccc}
\mathbb{H}_{T,m+1} & \xleftarrow{a^*_n} & \mathbb{H}_{T,m+n+1} \\
\downarrow{g_{m+1}^*} & & \downarrow{g_{m+n+1}^*} \\
\tilde{\mathbb{H}}_{T,m} & \xleftarrow{\tilde{a}^*_n} & \tilde{\mathbb{H}}_{T,m+n}.
\end{array}
\quad (3.18)
$$

(iii) Let $n > 0$ and $A \in \mathbb{H}_{T,m+1}$. Then, we have

$$
g_n^* a^*_n[A] = n \cdot (t^n)^{n-1}[0], \quad (3.19)
$$

$$
g_{m+n+1}^* a^*_m[A] = \tilde{a}^*_m (g_{m+1}^* A) - n \cdot (t^n)^{n-1} (t \cup f_{m+1}^* (A)). \quad (3.20)
$$

Proof. Note that $a^*_n = a_n([C^*])$ and $\tilde{a}^*_m = \tilde{a}_m([C^*])$. Regard the two operators a^*_n and \tilde{a}^*_m as operators on the vector spaces

$$
\mathbb{H}_T^* = \bigoplus_{m=0}^{+\infty} H^*_T(S^{[m]}), \quad \tilde{\mathbb{H}}_T^* = \bigoplus_{m=0}^{+\infty} H^*_T(S^{[m,m+1]}),
$$

respectively. Then similar arguments as in the proofs of the Lemma 3.4, Lemma 4.4 and Proposition 4.6 in [LQ] prove the results. One needs to note that \tilde{a}^*_m is $\mathbb{C}[t]$-linear and the sign discrepancy in (3.20) comes from the fact $[C^*] = \chi = 0$. \(\square\)

3.5. Further properties of $t \cup f_n^*$ and g_{n+1}^*

We recall some results from [Vas] and [LQW2]. First. As in Corollary 2.5 (i),

$$ H^n_T(S^{[n]}) = t^n \cup H^2_T(S^{[n]}). $$

Also, $H^n_T(S^{[n]})$ is a free $\mathbb{C}[t]$-module. A ring product $*$ on $\mathbb{H}_{T,n}$ is defined by

$$ t^n \cup (A \ast B) = A \cup B. \quad (3.22) $$

For $\lambda \vdash n$, define the class $[\lambda] \in \mathbb{H}_{T,n} = H^2_T(S^{[n]})$ by

$$ t^n \cup [\lambda] = [\xi, \lambda] \quad (3.23) $$
(note that our $[\lambda]$ differs that in [Vas, LQW2] by a scalar). Then the classes $[\lambda]$, $\lambda \vdash n$
form a linear basis of $\mathbb{H}_{T,n}$. Let $\iota_\lambda : \xi_\lambda \hookrightarrow S^{[n]}$ be the inclusion map, and let
$$
\iota_n = \bigoplus_{\lambda \vdash n} \iota_\lambda : (S^{[n]})^T \rightarrow S^{[n]}.
$$
The inverse of the induced Gysin map $\iota_n^* : H^*_T((S^{[n]})^T)' \rightarrow H^*_T(S^{[n]})'$ is given by
$$
(\iota_n)^{-1}(A) = \left(\frac{(\iota_\lambda)^*(A)}{(-1)^n h(\lambda)^2 t^{2n}} \right)_{\lambda \vdash n}.
$$
(3.24)

Define a bilinear pairing on the localization $H^*_T(S^{[n]})'$ by:
$$
\langle -,- \rangle : H^*_T(S^{[n]})' \otimes_C H^*_T(S^{[n]})' \rightarrow H^*_T(S^{[n]})',
$$
$$
\langle A, B \rangle = (-1)^n \pi_n(\iota_n)^{-1}(A \cup B)
$$
(3.26)
where π_n is the projection of the set $(S^{[n]})^T$ of T-fixed points to a point. This induces a C-valued bilinear pairing, again denoted by $\langle -,- \rangle$, on \mathbb{H}_T with
$$
\langle [\lambda], [\bar{\lambda}] \rangle = \delta_{\lambda, \bar{\lambda}} h(\lambda)^2.
$$
(3.27)

Then the operator a_λ^T with $n > 0$ is the adjoint of $a_{-\lambda}^T$, and
$$
\langle a_{-\lambda}^T|0\rangle, a_{\bar{\lambda}}^T|0\rangle \rangle = \delta_{\lambda, \bar{\lambda}}
$$
(3.28)
where for a partition $\lambda = (1^{m_1} 2^{m_2} \cdots)$, $a_{-\lambda}^T$ is defined by
$$
a_{-\lambda}^T = \prod_j (a_{-j}^T)^{m_j}.
$$
(3.29)

Proposition 3.8. With the product \ast on $\mathbb{H}_{T,n}$ and the product $\check{\ast}$ on $\mathbb{H}_{T,n}$, the linear maps $t \cup f_n^*$ and g_{n+1}^* are ring homomorphisms.

Proof. Let $A, B \in \mathbb{H}_{T,n}$. By (2.39) and (3.22), we have
$$
t^{n+1} \cup ((t \cup f_n^* A) \check{\ast} (t \cup f_n^* B)) = (t \cup f_n^* A) \cup (t \cup f_n^* B),
$$
t^{n} \cup (A \ast B) = A \cup B.
Since $f_n^* : H^*_T(S^{[n]}) \rightarrow H^*_T(S^{[m,n+1]})$ is a ring homomorphism with respect to the cup products and also a $C[t]$-module homomorphism, we obtain
$$
t^{n+1} \cup ((t \cup f_n^* A) \check{\ast} (t \cup f_n^* B)) = t^2 \cup f_n^* A \cup f_n^* B
$$
$$
= t^2 \cup f_n^* (A \cup B)
$$
$$
= t^2 \cup f_n^* (t^n \cup (A \ast B))
$$
$$
= t^{n+2} \cup f_n^* (A \ast B).
$$
So $(t \cup f_n^* A) \check{\ast} (t \cup f_n^* B) = t \cup f_n^* (A \ast B)$, and $t \cup f_n^*$ is a ring homomorphism.
By a similar argument, we see that g_{n+1}^* is a ring homomorphism. \qed
Remark 3.9. (i) We can also show that the linear map $t \cup f_n^*$ preserves bilinear forms, and that $\langle g_{n+1}^* A, g_{n+1}^* B \rangle = (n + 1) \langle A, B \rangle$ for $A, B \in \mathbb{H}_{T,n+1}$. Moreover,

$$t \cup f_n^* \lambda = - \sum_{(\lambda, \mu) \text{ incidence}} \frac{h(\lambda)^2}{h(\lambda, \mu)} [\lambda, \mu],$$

$$g_n^* \mu = \sum_{(\lambda, \mu) \text{ incidence}} \frac{h(\mu)^2}{h(\lambda, \mu)} [\lambda, \mu].$$

(ii) It follows from (i) that the number $h(\lambda, \mu)$ satisfies some interesting identities:

$$\sum_{(\lambda, \mu) \text{ incidence}} \frac{h(\lambda)^2}{h(\lambda, \mu)} = \sum_{k=0}^{s(\lambda)} \prod_{0 \leq s(k)} \frac{h(\square_{k,i})}{1 + h(\square_{k,i})} = 1,$$

$$\sum_{(\lambda, \mu) \text{ incidence}} \frac{h(\mu)^2}{h(\lambda, \mu)} = |\mu|. $$

4. Transformations among various linear bases of \widetilde{H}_T

Recall that the vector space \widetilde{H}_T has two linear bases:

$$\tilde{B}_1 = \{ [\lambda, \mu] \}_{(\lambda, \mu) \text{ incidence}}, \quad \tilde{B}_2 = \left\{ (i^T)^i a_{-\nu}^T | 0 \right\}_{i \geq 0, \nu}.$$

The ring structure of $\widetilde{H}_{T,n}$ is easily described in terms of the linear basis \tilde{B}_1 coming from the fixed points. However, the basis \tilde{B}_1 doesn’t exist in the ordinary cohomology of $S^{[n,n+1]}$, while the second basis \tilde{B}_2 survives. Since we are interested in the ring structure of the ordinary cohomology $H^*(S^{[n,n+1]})$, it is important to know the linear transformation between these two bases. In this section, we give an algorithm to express $(i^T)^i a_{-\nu}^T | 0$ as a linear combination of the elements in \tilde{B}_1. This allows us to describe (implicitly) the ring structure of $\widetilde{H}_{T,n}$ in terms of the linear basis \tilde{B}_2. The method is to introduce the subvarieties $\tilde{L}^{(\lambda,\mu)}(C^z)$ on $S^{[n,n+1]}$ and study the actions of the loop algebra and the Heisenberg algebra on them. As a consequence, the classes $[\tilde{L}^{(\lambda,\mu)}(C^z)]$ provide a link between the bases \tilde{B}_1 and \tilde{B}_2.

4.1. The subvariety $L^{(\lambda)}(C^z)$ on S^n.

Let $C = C^z$ be the z-axis of $S = \mathbb{C}^2$. For $\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots) \vdash n$, let

$$S_{\lambda}^n C = \left\{ \sum_i \lambda_i s_i \in \text{Sym}^n(S) | s_i \in C \text{ and the } s_i \text{'s are distinct} \right\}.$$

Recall the Hilbert-Chow morphism $\pi_n : S^{[n]} \to \text{Sym}^n(S)$. Let

$$L^{(\lambda)} C = \text{Closure of } (\pi_n)^{-1}(S_{\lambda}^n C). \quad (4.1)$$

The subvariety $L^{(\lambda)} C$ was first introduced in [Gro], and was studied intensively in [Na2, Na3]. Note that $L^{(\lambda)} C$ is irreducible, of dimension n and \mathbb{T}-invariant.
By the results in [Na2, Na3, Vas], ξ_λ is a smooth point of $L^\lambda C$, $\xi_\lambda \in L^\lambda C$ if and only if $\lambda \leq \lambda$ where \leq denotes the dominance partial ordering, and

$$a^T_{-m}[L^\lambda C] = \sum_\nu a_{\lambda,\nu}[L^\nu C],$$

(4.2)

where the summation is over partitions ν of $|\lambda| + m$, which are obtained as follows:

(i) add m to a term in λ, say λ_k (possibly 0), and then

(ii) arrange it in descending order.

The coefficient $a_{\lambda,\nu}$ is the number of ℓ with $\nu_\ell = \lambda_k + m$. Denote the above ν by:

$$\nu = \lambda(\lambda_k, m).$$

(4.3)

Then, formula (4.2) can be rewritten as

$$a^T_{-m}[L^\lambda C] = \sum_{\text{distinct } \lambda_k} a_{\lambda,\lambda(\lambda_k,m)}[L^{\lambda(\lambda_k,m)} C].$$

(4.4)

4.2. The subvariety $\tilde{L}^{\lambda,\mu}(C^z)$ on $S^{[n,n+1]}$.

Again, let $C = C^z$ be the z-axis of $S = \mathbb{C}^2$. Let (λ, μ) be an incidence pair:

$$\lambda = (\cdots (i - 1)^{m_{i-1}}i^m(i + 1)^{m_{i+1}}\cdots) \vdash n,$$

$$\mu = (\cdots (i - 1)^{m_{i-1}}i^{m_{i-1}}(i + 1)^{m_{i+1}+1}(i + 2)^{m_{i+2}}\cdots)$$

where the parts $(i - 1)^{m_{i-1}}, i^m$, and $(i + 1)^{m_{i+1}}$ do not appear when $i = 0$. We fix this i throughout the subsection. Let $\tilde{L}^{\lambda,\mu} C$ be the closed subset of $S^{[n,n+1]}$ defined by

$$\tilde{L}^{\lambda,\mu} C = \{(\xi, \xi')|\xi \in L^\lambda C, \xi' \in L^\mu C, \xi \subset \xi'\}.$$

(4.5)

Then, $\tilde{L}^{\lambda,\mu} C$ is irreducible, of dimension $(n + 1)$ and T-invariant.

Lemma 4.1. $\overline{\{\tilde{L}^{\lambda,\mu} C\}} = [\tilde{L}^{\lambda,\mu} C]$ where the partition ν is defined by

$$\nu = (\cdots (i - 1)^{m_{i-1}}i^{m_{i-1}}(i + 1)^{m_{i+1}}(i + 2)^{m_{i+2}+1}(i + 3)^{m_{i+3}}\cdots).$$

Proof. Let \tilde{p}_1, \tilde{p}_2 be the two projections of $S^{[n+1,n+2]} \times S^{[n,n+1]}$. Then,

$$\overline{\{\tilde{L}^{\lambda,\mu} C\}} = D^{-1}\tilde{p}_1* \left(\tilde{p}_2^*[\tilde{L}^{\lambda,\mu} C] \cap [\tilde{Q}_n]\right).$$

An element $((\xi', \xi''), (\xi, \xi'))$ in $\tilde{Q}_n \cap (\tilde{p}_2)^{-1}\tilde{L}^{\lambda,\mu} C$ is of the form

$$\xi = \xi_0 + \xi_s \in L^\lambda C, \quad \xi' = \xi_0 + \xi'_s \in L^\mu C, \quad \xi'' = \xi_0 + \xi''_s$$

where $\xi_s \subset \xi'_s \subset \xi''_s$, $\text{Supp}(\xi'') = \{s\} \subset C$, and $s \notin \text{Supp}(\xi_0) \subset C$. The image

$$p_1 \left(\tilde{Q}_n \cap (\tilde{p}_2)^{-1}\tilde{L}^{\lambda,\mu} C\right)$$

consists of elements of the form

$$\xi' = \xi_0 + \xi'_s, \quad \xi'' = \xi_0 + \xi''_s.$$

Let $\ell(\xi_s) = \ell$. Choose a local coordinate (w_s, z) of S near s such that C is given locally near s by $w_s = 0$. Now there are two cases:

Case 1: the element $\xi''_s \in M_{\ell+2}(s)$ is not generic. Since $M_{\ell+1,\ell+2}(s)$ is irreducible and has dimension $(\ell + 1)$, the corresponding element $((\xi', \xi''), (\xi_0 + \xi'_s, \xi_0 + \xi''_s)$ forms a subset of dimension less than $(n + 2)$.
Case 2: the element $\xi'' \in M_{\ell+2}(s)$ is generic. Then ξ''_s is of the form:

$$I_{\xi''_s} = (w_s^{\ell+2}, z + b_1 w_s + \ldots + b_{\ell+1} w_s^{\ell+1})$$

where $b_1, \ldots, b_{\ell+1} \in C$. The corresponding ξ'_s and ξ_s must be of the form

$$I_{\xi'_s} = (w_s^{\ell+1}, z + b_1 w_s + \ldots + b_{\ell} w_s^{\ell}),$$

$$I_{\xi_s} = (w_s^\ell, z + b_1 w_s + \ldots + b_{\ell-1} w_s^{\ell-1}).$$

By the definition of $L^{\mu}C$, we must have $\ell = i$.

It follows that $p_1 \left(\tilde{Q}_n \cap (\tilde{p}_2)^{-1} \tilde{L}^{\lambda,\mu}C \right)$ has exactly one irreducible component of the expected dimension $(n + 2)$, which is $\tilde{L}^{\mu,\nu}C$, and possibly other components with smaller dimension. Note that the intersection $\tilde{Q}_n \cap (\tilde{p}_2)^{-1} \tilde{L}^{\lambda,\mu}C$ is transversal along the element $((\xi', \xi''), (\xi, \xi'))$ if ξ''_s is from Case 2 and ξ_0 is generic. Hence

$$\tilde{t}^T [\tilde{L}^{\lambda,\mu}C] = [\tilde{L}^{\mu,\nu}C].$$

Lemma 4.2. Let $m_0 = 2$. Let $\lambda(\lambda_k, m)$ and $a_{\lambda, \lambda(\lambda_k, m)}$ be from (4.4). Then,

$$\tilde{a}^T_{-m} [\tilde{L}^{\lambda,\mu}C] = \sum_{\text{distinct } \lambda_k \neq i} a_{\lambda, \lambda(\lambda_k, m)} [\tilde{L}^{\lambda(\lambda_k, m), \mu(\lambda_k, m)}C]$$

$$+ (1 - \delta_{m, -1, 0}) a_{\lambda, \lambda(\lambda, m)} [\tilde{L}^{\lambda(i, m), \mu(i, m)}C] + [\tilde{L}^{\lambda(i, m), \mu(i+1, m)}C].$$

Proof. Let $n = |\lambda|$. Recall that $\tilde{a}^T_{-m} = \tilde{a}_{-m}([C])$. By (3.2), we have

$$\tilde{a}^T_{-m}([C]) [\tilde{L}^{\lambda,\mu}C] = D^{-1} \tilde{p}_1 \left(\tilde{p}_2^T [\tilde{L}^{\lambda,\mu}C] \cap [\tilde{Q}_C^{n+m, m}] \right).$$

Let $\xi_{0,1} = \xi_{0,2} = \emptyset$. Then a generic element $(\xi, \xi') \in \tilde{L}^{\lambda,\mu}C$ is of the form:

$$\xi = \sum_{r \geq 0} \sum_{1 \leq j \leq m_r} \xi_{r,j},$$

$$\xi' = \xi - \xi_{i,m_i} + \xi_{i,m_i}$$

where $i \geq 0$, $\ell(\xi_{r,j}) = r$, $\text{Supp}(\xi_{r,j}) = \{s_{r,j}\} \subset C$ for $r \geq 1$, the points $s_{r,j}$ are distinct, $(\xi_{i,m_i}, \xi'_{i,m_i}) \in M_{i+1}(s_{i,m_i})$ when $i > 0$, and when $i = 0$, ξ'_{i,m_i} is a point in C different from the points $s_{r,j}$ with $r \geq 1$.

The effect of the action of $\tilde{a}^T_{-m}([C])$ on $(\xi, \xi') \in \tilde{L}^{\lambda,\mu}C$ has two types:

Type 1: the action results in generic elements (η, η') of the form:

$$\eta = \xi - \xi_{r_0,j_0} + \eta_{r_0+m},$$

$$\eta' = \xi' - \xi_{r_0,j_0} + \eta_{r_0+m}$$

where $(r_0, j_0) \neq (i, m_i)$, $\ell(\eta_{r_0+m}) = r_0 + m$, $\text{Supp}(\eta_{r_0+m}) = \{s_{r_0+m}\} \subset C$, and

$$s_{r_0+m} \not\in \text{Supp}(\xi').$$

This type of action is similar to the action of a^T_{-m} on $[L^{\lambda}C]$. It follows that $\tilde{a}^T_{-m} [\tilde{L}^{\lambda,\mu}C]$ contains $a_{\lambda, \lambda(\lambda_k, m)} [\tilde{L}^{\lambda(\lambda_k, m), \mu(\lambda_k, m)}C]$ when $\lambda_k \neq i$, and contains

$$(1 - \delta_{m, -1, 0}) a_{\lambda, \lambda(i, m)} [\tilde{L}^{\lambda(i, m), \mu(i, m)}C]$$
Type 2: the action results in generic elements \((\eta, \eta')\) of the form:

\[
\eta = \xi - \xi_{i,m} + \eta_{i+m}, \\
\eta' = \xi - \xi_{i,m} + \eta'_{i+m}
\]

where \(i \geq 0\), \((\eta_{i+m}, \eta'_{i+m}) \in M_{i+m, i+m+1}(s_{i+m})\) for some \(s_{i+m} \in C\) with

\[s_{i+m} \notin \text{Supp}(\xi)\].

It follows that \(\tilde{a}^T_{-m}[\tilde{L}^{\lambda, \mu}C]\) contains \(a[\tilde{L}^{\lambda(|i,m), \mu(|i+1,m)}C]\) for certain multiplicity \(a\). As at the end of the proof of Lemma 4.1, the intersection multiplicity \(a\) is 1. \(\Box\)

Proposition 4.3. Let \((\lambda, \mu)\) be an incidence pair. Then, there exists an algorithm to express \([\tilde{L}^{\lambda, \mu}C]\) as a linear combination of the elements in the linear basis \(\tilde{B}_2\).

Proof. Use induction on \(|\lambda|\). When \(|\lambda| = 0\), we have

\[
[\tilde{L}^{\lambda, \mu}C] = [C] = [C^2] = [0].
\] (4.6)

So the conclusion holds. Next, let \(n \geq 1\) and assume that the conclusion holds for \([\tilde{L}^{\lambda, \mu}C]\) whenever \(|\lambda| < n\). In the following, let \(|\lambda| = n\).

Use a second induction on \(\ell(\lambda)\). When \(\ell(\lambda) = 1\), \(\lambda = (n)\), and either \(\mu = (1, n)\) or \(\mu = (n + 1)\). When \(\mu = (n + 1)\), we see from Lemma 4.1 that

\[
[\tilde{L}^{\lambda, \mu}C] = [\tilde{L}^{(n), (n+1)}C] = ([t^T]^n[0]),
\]

and so the conclusion holds in this case. When \(\mu = (1, n)\), applying the operator \(\tilde{a}^T_{-n}\) to (4.6) and using Lemma 4.2, we conclude that

\[
[\tilde{L}^{(n), (n+1)}C] + [\tilde{L}^{(n), (1, n)}C] = \tilde{a}^T_{-n}[0].
\]

Hence, the conclusion holds for \([\tilde{L}^{(n), (1, n)}C]\) as well.

Let \(|\lambda| = n\) and \(\ell(\lambda) > 1\). In this case, we can choose a part \(m > 0\) of \(\lambda\) so that \(m\) is also a part of \(\mu\). Let \(\lambda^{[m]}\) and \(\mu^{[m]}\) be the partitions of \(n - m\) obtained from \(\lambda\) and \(\mu\) respectively by deleting a copy of part \(m\). Let

\[
\begin{align*}
\lambda &= (\cdots (i-1)^{m_{i-1}}i^{m_i}(i+1)^{m_{i+1}}\cdots) + n, \\
\mu &= (\cdots (i-1)^{m_{i-1}}i^{m_{i-1}}(i+1)^{m_{i+1}}(i+2)^{m_{i+2}}\cdots).
\end{align*}
\]

Apply the formula in Lemma 4.2 to \(\tilde{a}^T_{-m}[\tilde{L}^{\lambda^{[m]}, \mu^{[m]}}C]\), for which the conclusion holds by the induction hypothesis on the size of partitions since \(|\lambda^{[m]}| < |\lambda|\). There are three types of terms on the right hand side of the formula. One is \([\tilde{L}^{\lambda^{[m]}, \mu^{[m]}}C]\) with a non-zero coefficient. The second type is \([\tilde{L}^{\tilde{\lambda}, \tilde{\mu}}C]\) with \(|\tilde{\lambda}| = |\lambda| = n\) and \(\ell(\tilde{\lambda}) < \ell(\lambda)\), for which the conclusion holds by the induction hypothesis on the length of partitions. The third type is the term \([\tilde{L}^{\lambda^{[m]}(i,m), \mu^{[m]}(i+1,m)}C]\) = \((\tilde{t}^T)^m[\tilde{L}^{\lambda^{[m]}, \mu^{[m]}}C]\), for which the conclusion holds by induction on the size again since \(|\lambda^{[m]}| < |\lambda|\). It follows immediately that the conclusion holds for \([\tilde{L}^{\lambda, \mu}C]\). \(\Box\)
4.3. Transformations between the linear bases \tilde{B}_1 and \tilde{B}_2.

Note that the T-action on $S^{[n,n+1]}$ induces a cell decomposition of
\[
\tilde{L}^{n,n+1}C := \bigcup_{\lambda,\mu} \tilde{L}^{\lambda,\mu}C.
\]

Let $\xi, \xi' \in \tilde{L}^{\lambda,\mu}C$ be a generic point. Then we see that
\[
\lim_{a \to 0} a(\xi, \xi') = (\xi_\lambda, \xi_\mu) \quad (4.7)
\]
for $a \in \mathbb{T}$. Since $\dim \tilde{L}^{\lambda,\mu}C = \dim \tilde{L}^{n,n+1}C = n + 1$, we conclude that the cell $C^{\lambda,\mu}$ corresponding to the fixed point (ξ_λ, ξ_μ) is isomorphic to \mathbb{C}^{n+1} and $\tilde{L}^{\lambda,\mu}C$ is the closure of $C^{\lambda,\mu}$. In particular, the fixed point (ξ_λ, ξ_μ) is a smooth point of $\tilde{L}^{\lambda,\mu}C$.

Recall the notation $k(\lambda, \mu)$ from Definition 2.7 (ii). Put
\[
h_+(\lambda, \mu) = h(\lambda) \cdot \prod_{k(\lambda, \mu) + 1 \leq i \leq s(\lambda)} \frac{1 + h(\square_{k(\lambda, \mu), i})}{h(\square_{k(\lambda, \mu), i})}. \quad (4.8)
\]

Lemma 4.4. Let $(\xi_\lambda, \xi_\mu) \in S^{[n,n+1]}$ be a T-fixed point. Then the T-equivariant Euler class of the tangent space of $\tilde{L}^{\lambda,\mu}C$ at (ξ_λ, ξ_μ) is equal to $h_+(\lambda, \mu)t^{n+1}$.

Proof. Since $\tilde{L}^{\lambda,\mu}C$ is the closure of the cell $C^{\lambda,\mu}$ corresponding to the fixed point (ξ_λ, ξ_μ), it suffices to compute the T-equivariant Euler class of the tangent space of $C^{\lambda,\mu}$ at (ξ_λ, ξ_μ). By (4.7), the tangent space of $C^{\lambda,\mu}$ at (ξ_λ, ξ_μ) is the positive part of the tangent space of $S^{[n,n+1]}$ at (ξ_λ, ξ_μ). The positive part of the tangent space of $S^{[n,n+1]}$ at (ξ_λ, ξ_μ) can be read from the detailed study of the equivariant Zariski tangent space in the Appendix. Hence we see that the T-equivariant Euler class of the tangent space of $C^{\lambda,\mu}$ (and hence of $\tilde{L}^{\lambda,\mu}C$) at (ξ_λ, ξ_μ) is $h_+(\lambda, \mu)t^{n+1}$. \(\square\)

Note that $(\xi_\lambda, \xi_\mu) \in \tilde{L}^{\lambda,\mu}C$ only if $\lambda \geq \bar{\lambda}$ and $\mu \geq \bar{\mu}$. When $\lambda \geq \bar{\lambda}$, $\mu \geq \bar{\mu}$ and $(\lambda, \mu) \neq (\bar{\lambda}, \bar{\mu})$, we define $(\lambda, \mu) > (\bar{\lambda}, \bar{\mu})$.

Lemma 4.5. Let (λ, μ) be an incidence pair. Then, we have
\[
[\tilde{L}^{\lambda,\mu}C] = h_+(\lambda, \mu)^{-1} [\lambda, \mu] + \sum_{(\lambda, \mu) > (\bar{\lambda}, \bar{\mu})} d_{(\lambda, \mu), (\bar{\lambda}, \bar{\mu})} [\bar{\lambda}, \bar{\mu}] \quad (4.9)
\]
for some constants $d_{(\lambda, \mu), (\bar{\lambda}, \bar{\mu})} \in \mathbb{Q}$. Moreover, there exists an algorithm to compute all the constants $d_{(\lambda, \mu), (\bar{\lambda}, \bar{\mu})} \in \mathbb{Q}$.

Proof. It is known from [Bri] that if X, Y are T-equivariant equidimensional varieties such that $Y \subset X$ is closed and X^T is finite, then
\[
[Y] = \sum_{y \in Y^T} c_y(Y)t^{-\dim Y} \cup [y] \in H^*_T(X')
\]
for some constants $c_y(Y) \in \mathbb{Q}$. Moreover, if $y \in Y^T$ is a smooth point of Y, then $c_y(Y) \neq 0$ and $c_y(Y)^{-1}t^{\dim Y}$ is the T-equivariant Euler class of the tangent space.
of Y at y. Apply this formula to $X = S^{[|\lambda|,|\lambda|+1]}$ and $Y = L^{\lambda,\mu}C$. We see that (4.9) follows from Lemma 4.4 and the definition of the class $[\lambda, \mu]$.

By Proposition 4.3 and Lemma 3.6, there exists an algorithm to compute the pairings among the classes $[\tilde{L}^{\lambda,\mu}C]$. By (4.9), the classes $[\tilde{L}^{\lambda,\mu}C]$ are related to the classes $[\lambda, \mu]$ via an upper triangular matrix. The diagonal entries of the matrix are $h_+([\lambda, \mu])^{-1}$, which are nonzero, and the entries above the diagonal are the constants $d_{(\lambda, \mu), (\tilde{\lambda}, \tilde{\mu})}$. Since the pairings between the fixed point classes $[\lambda, \mu]$ are already computed in (2.43), this upper triangular matrix can be determined. Therefore, there exists an algorithm to compute the constants $d_{(\lambda, \mu), (\tilde{\lambda}, \tilde{\mu})}$.

Theorem 4.6. There exists an algorithm to express each element $(\tilde{t}_i^T)^i \tilde{a}_{-\nu}^T|0\rangle$ in the linear basis \tilde{B}_2 as a linear combination of the elements in the linear basis \tilde{B}_1.

Proof. By Lemma 4.5, there exists an algorithm to express each element $[\lambda, \mu]$ in \tilde{B}_1 as a linear combination of the elements in the third linear basis

$$\tilde{B}_3 = \left\{ [\tilde{L}^{\lambda,\mu}C] \right\}_{(\lambda, \mu) \text{ incidence}}$$

of \tilde{H}. Note that the transition matrix between these two linear bases can be arranged to be lower triangular. By Proposition 4.3, there exists an algorithm to express each element $[\lambda, \mu]$ in \tilde{B}_1 as a linear combination of the elements in \tilde{B}_2. Therefore, we conclude that there exists an algorithm to express each element $(\tilde{t}_i^T)^i \tilde{a}_{-\nu}^T|0\rangle$ in \tilde{B}_2 as a linear combination of the elements in \tilde{B}_1.

5. Applications

5.1. Application to the ring structure of $H^*(S^{[n,n+1]})$.

In §5.2 of [LQ], we showed that the infinite dimensional space

$$\tilde{H}_S = \bigoplus_{n=0}^{+\infty} H^*(S^{[n,n+1]})$$

is a representation of the Lie algebra $\mathbb{C}[u^{-1}] \otimes_\mathbb{C} \tilde{h}_S$ with a highest weight vector being the vacuum vector

$$|0\rangle = 1_S \in H^0(S^{[0,1]}) = H^0(S).$$

Here, $1_S \in H^0(S)$ is the fundamental cohomology class of $S = \mathbb{C}^2$, u^{-1} acts via a translation operator \tilde{t} similarly defined as in §3.2 and \tilde{h}_S is the Heisenberg algebra generated by $\text{Id}_{\tilde{H}_S}$ and the Heisenberg operators \tilde{a}_n with $n \in \mathbb{Z}$. When $n > 0$, the creation Heisenberg operator $\tilde{a}_{-n} = \tilde{a}_{-n}(1_S)$ is defined similarly as in §3.1. In particular, the elements in \tilde{H}_S are of the form:

$$\tilde{t}^{i_1} \tilde{a}_{-n_1} \cdots \tilde{a}_{-n_k} |0\rangle$$

where $k \geq 0$, $i \geq 0$, $i_1, \ldots, i_k > 0$, and $n_1, \ldots, n_k > 0$.

For a partition $\nu = (1^{n_1} 2^{n_2} \cdots)$, we introduce the notation:

$$\tilde{a}_{-\nu} = \prod_j \tilde{a}_{-j}^{m_j}. $$

Recall the ring isomorphism in Corollary 2.5 (ii) induced by the forgetful map

$$\Psi : H^*_T(S^{[n,n+1]}) \to H^*(S^{[n,n+1]})$$

Let ν be a partition with $i + |\nu| = n$. As in §4 of [LQW3], we have

$$\Psi \left((-t)^{-t(\nu)-1} (t\bar{\nu})^\lambda C^{\nu} |0\rangle \right) = \bar{t}^i \tilde{a}_{-\nu} |0\rangle$$

noting $[C^2] = -t^{-1}[C^2]$ in $H^*_T(S^2) = H^*_T(S)$, $\tilde{a}_n^T = \tilde{a}_n([C^2])$, and the Heisenberg commutation relation (3.3). It follows that the cup products of the classes $\bar{t}^i \tilde{a}_{-\nu} |0\rangle$ can be reduced, by using (5.3) and Theorem 4.6, to computations in terms of the linear basis \tilde{B}_i of the fixed points. The cup products of the elements in \tilde{B}_i are already determined in §2.9. This gives the ring structure of $H^*(S^{[n,n+1]})$.

5.2. Application to the ring of symmetric functions.

Let Λ be the space of symmetric functions in infinitely many variables (see p.19 of [Mac]). For a partition λ, let p_λ, m_λ and s_λ be the power-sum symmetric function, the monomial symmetric function and the Schur function associated to λ respectively. Define a ring structure on Λ by requiring $s_\lambda \cdot s_\mu = \delta_{\lambda,\mu} h(\lambda) s_\lambda$ for the Schur functions s_λ and s_μ. Note that Λ already has a natural ring structure of the multiplication of functions. To avoid the confusion, we use (λ, \cdot) to denote Λ with the new ring structure, and always refer to this new ring structure when we mention the ring structure of $\Lambda \otimes \mathbb{C}$.

Let $C = C^2 \subset S = \mathbb{C}^2$. By the Proposition B of [Vas], there is a ring isomorphism

$$\Phi : H_T \to (\Lambda \otimes \mathbb{C}, \cdot)$$

which sends the classes $a_{\lambda} T |0\rangle$, $[\lambda^a C]$ and $(-1)^n / h(\lambda) \cdot [\lambda]$ to the symmetric functions p_λ, m_λ and s_λ respectively. Moreover, under this isomorphism, the operator $a_{\lambda} T_n$ with $n > 0$ on H_T corresponds to multiplication by $p_{(n)}$ on $\Lambda \otimes \mathbb{C}$.

Extending the map Φ, we define a linear isomorphism

$$\tilde{\Phi} : \tilde{H}_T \to \Lambda \otimes \mathbb{C} [v]$$

by sending $(\bar{t}^i)^\lambda \tilde{a}_{\lambda} T |0\rangle$ to $p_\lambda \otimes v^i$. Under this linear isomorphism, the operators \bar{t}^i and $\tilde{a}_{\lambda} T_n$ with $n > 0$ on \tilde{H}_T correspond to multiplications by $1 \otimes v$ and $p_{(n)} \otimes 1$ on $\Lambda \otimes \mathbb{C} [v]$ respectively. Moreover, the ring structure on \tilde{H}_T induces a ring structure on $\Lambda \otimes \mathbb{C} [v]$ such that $\Lambda \otimes \mathbb{C} \subset \Lambda \otimes \mathbb{C} [v]$ is a subring of $\Lambda \otimes \mathbb{C} [v]$. Let

$$\nu : \Lambda \otimes \mathbb{C} \hookrightarrow \Lambda \otimes \mathbb{C} [v]$$

be the inclusion map. Next, recall from Proposition 3.8 that there exists a ring homomorphism $t \cup f_m^* : \tilde{H}_T \to \tilde{H}_T \otimes m$. It induces a ring homomorphism:

$$t \cup f^*_m : H_T \to \tilde{H}_T.$$
By Proposition 3.7 (i), we obtain a commutative diagram of ring homomorphisms:

\[
\begin{array}{ccl}
\mathbb{H}_T & \xrightarrow{\phi} & \Lambda \otimes_{\mathbb{Z}} \mathbb{C} \\
\downarrow \iota \cup f^* & & \downarrow \iota \\
\widehat{\mathbb{H}}_T & \xrightarrow{\tilde{\phi}} & \Lambda \otimes_{\mathbb{Z}} \mathbb{C}[v],
\end{array}
\]

which respects the Heisenberg algebra actions on \(\mathbb{H}_T \) and \(\widehat{\mathbb{H}}_T \).

It is natural to ask what the induced ring structure on \(\Lambda \otimes_{\mathbb{Z}} \mathbb{C}[v] \) is. It should provide an interesting feature on \(\Lambda \otimes_{\mathbb{Z}} \mathbb{C}[v] \) in the realm of symmetric functions.

6. Appendix: the proof of Lemma 2.8

For simplicity, we denote \(\square_{k(\lambda,\mu),i} = \square_{k,i} \) and \(\square'_{k(\lambda,\mu),i} = \square'_i \) by \(\square_i \) and \(\square'_i \) respectively. Note from (2.22) and Definition 2.7 (ii) that (2.33) is the same as

\[
e_T = (-1)^{n+1} \cdot h(\lambda)^2 \cdot \prod_{0 \leq i \leq m, i \neq k} \frac{1 + h(\square_i)}{h(\square'_i)} \cdot t^{2(n+1)}.
\]

To prove (6.1), we follow the setup in [Ch1]. There are four separate cases.

Case 1a: \(q_k = 1 \) but \(p_k \neq 1 \). Then \(s = m, \alpha'_k \notin A, \) and \(\alpha'_i = \alpha_i \) if \(0 \leq i \leq s \) and \(i \neq k \). For \(0 \leq i \leq (k-2) \), we have \(p'_i = p_i \) and let \(\beta_i \in B \) be the \(p_i \)-th cell directly above \(\alpha_k \). Then, \(\beta_i \in P_{\alpha_i} \). For \(k \leq i \leq (s-1) \), we have \(q'_{i+1} = q_{i+1} \) and let \(\beta_{i+1} \in B \) be the \(g_{i+1} \)-th cell directly to the left of \(\alpha_k \). Then, \(\beta_{i+1} \in Q_{\alpha_{i+1}} \). By the formula (2.6.1) in [Ch1], \(\text{Hom}(I_{\xi_{\mu}}, R/I_{\xi_{\lambda}}) \) is equal to

\[
\text{im}(\psi) \bigoplus \left(\bigoplus_{i=0}^{k-2} \mathbb{C}\phi(f_{\alpha_i,\beta_i}) \right) \bigoplus \left(\bigoplus_{i=k}^{s-1} \mathbb{C}\phi(f_{\alpha_{i+1},\beta_{i+1}}) \right).
\]

Combining this with (2.29) and (2.31), we obtain an exact sequence

\[
0 \rightarrow \ker(\phi - \psi) \bigoplus_{i=0}^{k-2} \mathbb{C}f_{\alpha'_i,\alpha_k} \rightarrow \text{Hom}(I_{\xi_{\lambda}}, R/I_{\xi_{\lambda}}) \oplus \text{im}(\psi) \rightarrow \text{im}(\psi) \bigoplus \left(\bigoplus_{i=0}^{k-2} \mathbb{C}\phi(f_{\alpha_i,\beta_i}) \right) \bigoplus \left(\bigoplus_{i=k}^{s-1} \mathbb{C}\phi(f_{\alpha_{i+1},\beta_{i+1}}) \right) \rightarrow 0.
\]

If \(0 \leq i \leq (k-1) \), then the weight of \(f_{\alpha'_i,\alpha_k} \) is \(-1 - h(\square_i); \) the weight of \(f_{\alpha'_i,\alpha_k} \) is \(1 \); if \((k+1) \leq i \leq s \), then the weight of \(f_{\alpha'_i,\alpha_k} \) is \(1 + h(\square_i) \). Note that the weight of \(\phi(f_{\alpha_i,\beta_i}) \) is the same as the weight of \(f_{\alpha_i,\beta_i} \). Hence if \(0 \leq i \leq (k-2) \), then the weight of \(\phi(f_{\alpha_i,\beta_i}) \) is \((p_i - 1) - h(\square_i) = -h(\square'_i) \); if \(k \leq i \leq s - 1 \), then the weight
of $\phi(f_{a_{i+1},b_{i+1}})$ is $-(q_{i+1} - 1) + h(\square_{i+1}) = h(\square_{i+1}')$. By (6.3) and (2.26),
\[
\begin{align*}
 e_T &= (-1)^{n+1} \cdot h(\lambda)^2 \cdot \prod_{0 \leq i \leq m, i \neq k-1, k} \frac{1 + h(\square_i)}{h(\square_i')} \cdot [1 + h(\square_{i-1})] \cdot t^{2(n+1)} \\
 &= (-1)^{n+1} \cdot h(\lambda)^2 \cdot \prod_{0 \leq i \leq m, i \neq k} \frac{1 + h(\square_i)}{h(\square_i')} \cdot t^{2(n+1)} \quad (6.4)
\end{align*}
\]
where we have used the observation that $h(\square_{k-1}) = 1$.

Case 1b: $p_k = 1$ but $q_k \neq 1$. Then $s = m$, $\alpha'_k \notin A$, and $\alpha'_i = \alpha_i$ if $0 \leq i \leq s$ and $i \neq k$. For $0 \leq i \leq (k - 1)$, let $\beta_i \in B$ be the p_i-th cell directly above α_k. Then, $\beta_i \in P_{a_i}$. For $(k + 1) \leq i \leq (s - 1)$, let $\beta_{i+1} \in B$ be the q_{i+1}-th cell directly to the left of α_k. Then, $\beta_{i+1} \in Q_{a_{i+1}}$. As in Case 1a, there is an exact sequence
\[
0 \rightarrow \ker(\phi - \psi) \rightarrow \bigoplus_{i=0}^{k-1} \mathbb{C}f_{a_i',\alpha_k} \rightarrow \text{Hom}(I_{\xi}, R/I_{\xi}) \oplus \text{im}(\psi)
\]
\[
\rightarrow \text{im}(\psi) \bigoplus \left(\bigoplus_{i=0}^{k-1} \mathbb{C}f_{a_i',\alpha_i} \right) \bigoplus \left(\bigoplus_{i=k+1}^{s-1} \mathbb{C}f_{a_{i+1},\beta_{i+1}} \right) \rightarrow 0. \quad (6.5)
\]
If $0 \leq i \leq (k - 1)$, then the weight of f_{a_{i}'',α_k} is $-1 - h(\square_i)$; the weight of f_{a_{i}',α_k} is -1; if $(k + 1) \leq i \leq s$, then the weight of f_{a_{i}',α_k} is $1 + h(\square_i)$. If $0 \leq i \leq (k - 1)$, then the weight of $\phi(f_{a_{i}',\beta_i})$ is $-1 - h(\square_i)$; if $k + 1 \leq i \leq s - 1$, then the weight of $\phi(f_{a_{i+1},\beta_{i+1}})$ is $h(\square_i')$. Combining with $h(\square_{k+1}') = 1$, we obtain
\[
\begin{align*}
 e_T &= (-1)^{n+1} \cdot h(\lambda)^2 \cdot \prod_{0 \leq i \leq m, i \neq k, k+1} \frac{1 + h(\square_i)}{h(\square_i')} \cdot [1 + h(\square_{k+1})] \cdot t^{2(n+1)} \\
 &= (-1)^{n+1} \cdot h(\lambda)^2 \cdot \prod_{0 \leq i \leq m, i \neq k} \frac{1 + h(\square_i)}{h(\square_i')} \cdot t^{2(n+1)}. \quad (6.6)
\end{align*}
\]

Case 2: $k = 0$ and $p_0 > 1$, or $k = m$ and $q_m > 1$, or $0 < k < m$ and $p_k, q_k > 1$. Then $s = m + 1$, $\alpha'_k, \alpha'_{k+1} \notin A$, $\alpha'_i = \alpha_i$ if $0 \leq i \leq (k - 1)$, and $\alpha'_i = \alpha_{i-1}$ if $(k + 2) \leq i \leq s$. For $0 \leq i \leq (k - 1)$, we have $p_i' = p_i$ and let $\beta_i \in B$ be the p_i-th cell directly above α_k. Then, $\beta_i \in P_{a_i}$. For $(k + 1) \leq i \leq (s - 1)$, we have $q_{i+1} = q_i$ and $\alpha'_{i+1} = \alpha_i$. Let $\beta_i \in B$ be the q_i-th cell directly to the left of α_k. Then, $\beta_i \in Q_{a_{i}}$. There is an exact sequence
\[
0 \rightarrow \ker(\phi - \psi) \rightarrow \bigoplus_{i=0}^{k-1} \mathbb{C}f_{a_i',\alpha_k} \rightarrow \text{Hom}(I_{\xi}, R/I_{\xi}) \oplus \text{im}(\psi)
\]
\[
\rightarrow \text{im}(\psi) \bigoplus \left(\bigoplus_{i=0}^{k-1} \mathbb{C}f_{a_i',\alpha_i} \right) \bigoplus \left(\bigoplus_{i=k+1}^{s-1} \mathbb{C}f_{a_{i+1},\beta_{i+1}} \right) \rightarrow 0. \quad (6.7)
\]
If $0 \leq i \leq (k - 1)$, then the weight of f_{a_{i}'',α_k} is $-1 - h(\square_i)$; the weight of f_{a_{i}',α_k} is -1; the weight of f_{a_{k+1}'',α_k} is 1; if $(k + 2) \leq i \leq s$, then the weight of f_{a_{i}',α_k}
is $1 + h(□_{i-1})$. If $0 \leq i \leq (k - 1)$, then the weight of $\phi(f_{α, β})$ is $-h(□'_i)$; if $k + 1 \leq i \leq s - 1$, then the weight of $\phi(f_{α, β})$ is $h(□''_i)$. Hence (6.1) holds.

Case 3: $p_k = q_k = 1$. Then, $s = m - 1$, $α'_i = α_i$ if $0 \leq i \leq (k - 1)$, and $α'_i = α_{i+1}$ if $k \leq i \leq s$. For $0 \leq i \leq (k - 2)$, we have $p'_i = p_i$ and let $β_i \in B$ be the p_i-th cell directly above $α_k$. Then, $β_i \in P_{α_k}$. For $k \leq i \leq (s - 1)$, we have $q'_{i+1} = q_{i+2}$ and $α'_{i+1} = α_{i+2}$. Let $β_{i+2} \in B$ be the q_{i+2}-th cell directly to the left of $α_k$. Then, $β_{i+2} \in Q_{α_{i+2}}$. There is an exact sequence

$$0 \rightarrow \frac{\text{ker}(\phi - \psi)}{\bigoplus_{i=0}^s C f_{α'_i, α_k}} \rightarrow \text{Hom}(I_{ξ_λ}, R/I_{ξ_λ}) \oplus \text{im}(ψ) \rightarrow \text{im}(ψ) \bigoplus \left(\bigoplus_{i=0}^{k-2} C φ(f_{α_i, β_i})\right) \bigoplus \left(\bigoplus_{i=k}^{s-1} C φ(f_{α_{i+2}, β_{i+2}})\right) \rightarrow 0. \quad (6.8)$$

If $0 \leq i \leq (k - 1)$, then the weight of $f_{α'_i, α_k}$ is $-1 - h(□_i)$; if $k \leq i \leq s$, then the weight of $f_{α'_i, α_k}$ is $1 + h(□_{i+1})$. If $0 \leq i \leq (k - 2)$, then the weight of $φ(f_{α_i, β_i})$ is $-h(□'_i)$; if $k \leq i \leq s - 1$, then the weight of $φ(f_{α_{i+2}, β_{i+2}})$ is $h(□''_{i+1})$. Hence

$$(-1)^{n+1} \cdot h(λ)^2 \cdot \prod_{0 \leq i \leq m \atop i \neq k-1, k, k+1} \frac{1 + h(□_i)}{h(□'_i)} \cdot [1 + h(□_{k-1})] \cdot [1 + h(□_{k+1})] \cdot t^{2(n+1)}$$

noting that $h(□_{k-1}) = h(□'_{k+1}) = 1$. Therefore, (6.1) holds.

References

[Bri] M. Brion, *Equivariant Chow groups for torus actions*, J. Transformation Groups 2 (1997), 225-267.

[Ch1] J. Cheah, *Cellular decompositions for nested Hilbert schemes of points*, Pac. J. Math. 183 (1998), 39-90.

[Ch2] J. Cheah, *The virtual Hodge polynomials of nested Hilbert schemes and related varieties*, Math. Z. 227 (1998), 479-504.

[ES1] G. Ellingsrud, S.A. Strømme, *On the homology of the Hilbert scheme of points in the plane*, Invent. Math. 87 (1987), 343-352.

[ES2] G. Ellingsrud, S.A. Strømme, *An intersection number for the punctual Hilbert scheme of a surface*, Trans. Amer. Math. Soc. 350 (1999), 2547-2552.

[Got] L. Göttsche, *The Betti numbers of the Hilbert scheme of points on a smooth projective surface*, Math. Ann. 286 (1990), 193–207.

[Gro] I. Grojnowski, *Instantons and affine algebras I: the Hilbert scheme and vertex operators*, Math. Res. Lett. 3 (1996), 275–291.

[Lehn] M. Lehn, *Chern classes of tautological sheaves on Hilbert schemes of points on surfaces*, Invent. Math. 136 (1999), 157–207.

[LQ] W.-P. Li, Z. Qin, *Incidence Hilbert schemes and loop algebras*, Proceedings of Fourth International Congress of Chinese Mathematicians (Hangzhou, 2007), 408-441, Vol II.

[LQW1] W.-P. Li, Z. Qin, W. Wang, *The cohomology rings of Hilbert schemes via Jack polynomials*, CRM Proceedings and Lecture Notes 38 (2004), 249-258.

[LQW2] W.-P. Li, Z. Qin, W. Wang, *Hilbert schemes, integrable hierarchies, and Gromov-Witten theory*, Intern. Math. Res. Notices. 40 (2004), 2085–2104.

[LQW3] W.-P. Li, Z. Qin, W. Wang, *Hilbert scheme intersection numbers, Hurwitz numbers, and Gromov-Witten invariants*, Contemp. Math. 392 (2005), 67-81.
[Mac] I. G. Macdonald, *Symmetric functions and Hall polynomials*, 2nd Ed. Clarendon Press, Oxford, 1995.

[Na1] H. Nakajima, *Heisenberg algebra and Hilbert schemes of points on projective surfaces*, Ann. Math. **145** (1997), 379–388.

[Na2] H. Nakajima, *Lectures on Hilbert schemes of points on surfaces*, Univ. Lect. Ser. **18**, Amer. Math. Soc. (1999).

[Na3] H. Nakajima, *Jack polynomials and Hilbert schemes of points on surfaces*, Preprint, math.AG/9610021.

[Vas] E. Vasserot, *Sur l’anneau de cohomologie du schma de Hilbert de C^2*, C. R. Acad. Sci. Paris Sr. I Math. **332**, no. 1 (2001), 7-12.

[Tik] A.S. Tikhomirov, *On Hilbert schemes and flag varieties of points on algebraic surfaces*. Preprint (1992).

Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong
E-mail address: mawpli@ust.hk

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: zq@math.missouri.edu