Amniotic Fluid Infection, Cytokine Levels, and Mortality and Adverse Pulmonary, Intestinal, and Neurologic Outcomes in Infants at 32 Weeks’ Gestation or Less

Eun Young Jung,1,2 Kyo Hoon Park,1 Bo Ryong Han,1 Soo–Hyun Cho,1 Ha–Na Yoo,1 and Juyoung Lee2

1Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; 2Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea; 3Department of Pediatrics, Inha University College of Medicine, Inha University Hospital, Incheon, Korea

Received: 7 July 2016
Accepted: 3 December 2016

Address for Correspondence:
Kyo Hoon Park, MD
Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro 173-beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
E-mail: pkh0419@snubh.org

Funding: This study was supported by a grant from the Korea Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (Grant No. HI 14C1798), and supported by the Seoul National University Bundang Hospital Research Fund (Grant No. 02–2013–021).

INTRODUCTION

Early preterm birth (defined as delivery before 32 weeks) is a major cause of infant morbidity and mortality, and the determinant for these is known to be gestational age at birth (1,2). Among very preterm infants staying in the intensive care unit, the occurrence of bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), severe intraventricular hemorrhage (IVH), and periventricular leukomalacia (PVL) is a major concern because these morbidities are at increased risk for later death or neurosensory impairments (3-5). However, to what extent the risks of these morbidities are directly related to preterm birth or to biological mechanisms of preterm birth remains uncertain.

Evidence has shown that intra-amniotic infection and/or inflammation, defined as elevated pro-inflammatory cytokine levels in amniotic fluid (AF), is strongly associated with preterm birth in women with preterm labor or preterm premature rupture of membranes (PPROM) (6-8). Thus, a large proportion of very preterm infants born from these women are already exposed to AF inflammation in utero. In fact, several studies have shown a systemic inflammatory response, with elevated AF cortisol levels, in the fetus exposed to infected AF (9-11). In particular, it has been reported that AF inflammation may also contribute to the pathogenesis of adverse short- and long-term neonatal pulmonary and neurologic sequelae, especially in very preterm infants (12-15). However, most of these studies have been relatively small (13,14,16), and recruited patients with non-infection-mediated preterm birth (e.g., preeclampsia) (14,16) or premature infants with advanced gestational age as a study cohort (12,14-17), adjusted for gestational age at enrolment but not at birth (17), and did not consider whether AF inflammation can modify the effect of gestational age on infant morbidities (12-16). As a result, studies that examined the risk of AF inflammation for infant morbidities may have concluded that AF inflammation poses a high risk for these morbidities. The purposes of
this study were to examine the effect of exposure to AF infection and elevated pro-inflammatory cytokine levels on the mortality and pulmonary, intestinal, and neurologic outcomes of preterm infants, and to determine whether these associations persist after adjustments are made for gestational age at birth.

MATERIALS AND METHODS

In this retrospective cohort study, we included all consecutive women who underwent amniocentesis and their infants who were admitted to a neonatal intensive care unit (NICU) at the Seoul National University Bundang Hospital (Seongnam, Korea) between August 2004 and August 2013. The inclusion criteria were: 1) singleton gestation; 2) preterm labor or PPROM; and 3) delivery with a gestational age between 23+0 and 32+0 weeks. Exclusion criteria included major congenital anomalies, twin and higher order multiple births, and transfer to another hospital after amniocentesis. Gestational age was calculated from the first day of the last menstrual period, and confirmed by first or second trimester ultrasound. The primary outcome measure was adverse perinatal outcome defined as the presence of one or more of the following: mortality (stillbirth or neonatal death), BPD, NEC, IVH, and PVL. Additionally, we investigated the associations of 4 individual morbidity variables with AF infection and elevated cytokine levels in infants who survived for at least 30 days after birth.

AF was obtained aseptically by transabdominal amniocentesis, and was cultured for aerobic and anaerobic bacteria and genital mycoplasma according to previously described methods (18). The remaining AF was centrifuged at 1,500 g at 4°C for 10 minutes, and the supernatant was aliquoted and immediately stored at −70°C until assayed. Interleukin-6 (IL-6) and IL-8 in stored AF were measured by an enzyme-linked immunosorbent assay human DuoSet Kit (R & D Systems, Minneapolis, MN, USA). The range of the IL-6 and IL-8 standard curves was 7.8–600 and 31.2–2,000 pg/mL, respectively. All samples were measured in duplicate. The intra- and inter-assay coefficients of variation for 2 different proteins were < 10% and < 15%, respectively. Culture proven AF infection was defined as an infection with positive cultures of AF, regardless of the inflammatory state of the AF.

Our primary explanatory variables for outcome parameters were AF culture and AF IL-6 and IL-8. The other explanatory variables investigated were maternal and infantile demographic characteristics (maternal age, parity, gestational age at birth, birth weight, and gender), cause of preterm delivery, antenatal use of medications, mode of delivery, clinical diagnosis of chorioamnionitis, Apgar scores at 1 and 5 minutes, mechanical ventilation, and surfactant application.

Diagnostic criteria and management of preterm labor and PPROM have been described in detail elsewhere (18,19). The following clinical definitions have also been described in detail elsewhere: clinical chorioamnionitis, BPD, NEC, IVH, and PVL (6,19-23). The severity of NEC was graded according to the modified Bell’s staging criteria; and stage Ia or higher was defined as the presence of NEC (21). The severity of IVH was graded according to the criteria of Papile et al. (22); and grade II–IV was defined as the presence of IVH.

Descriptive statistics were calculated to characterize all variables in the study cohort. Bivariate analysis of the association of adverse perinatal outcome with risk factors was conducted using Student’s t-test, the Mann-Whitney U test, Fisher’s exact test, or χ² test, as appropriate. The normality for continuous variables in groups was determined using the Shapiro-Wilk test. Odds ratio (OR) with 95% confidence interval (CI) was calculated for categorical variables, whereas continuous variables were summarized by the mean and standard deviation (SD) or by the median and range if not normally distributed. Multivariate logistic regression was then performed to determine the independent relationships of adverse perinatal outcome with AF infection, as well as with elevated cytokine levels, after adjusting for baseline variables showing a significant correlation or tendency towards an association with this outcome in bivariate analysis (P < 0.1). We checked for multicollinearity among the variables by using a χ²-test, the Pearson’s or Spearman’s rank correlation test and variance inflation factor (VIF). Variables with a high correlation were summarized in the analysis; gestational age at birth alone was included instead of both gestational age and birth weight, and Apgar score at 5 minutes alone was included instead of Apgar score at both 1 minute and 5 minutes. Although the AF IL-6 and IL-8 levels were highly correlated, as main explanatory variables of interest, they were analyzed in separate models. Potential interactions between independent variables were evaluated. The receiver operating characteristic (ROC) curve was used to identify the best cut-off values for independent risk factors in predicting adverse perinatal outcome. The optimal cut-off values were obtained from the Youden index maximum ([(sensitivity + specificity) − 1]). All statistical analyses were performed using SPSS for Windows version 20.0 (IBM Corp., Armonk, NY, USA). P values of < 0.05 were considered statistically significant.

Ethics statement

The study was approved by the Institutional Review Board at Seoul National University Bundang Hospital (IRB No. B-1105/128-102). All women provided written informed consent for the amniocentesis procedure and use of AF samples.

RESULTS

During the study period, 152 women with preterm labor and intact membranes (n = 81) or PPROM (n = 71) and their babies...
met eligibility criteria and were included in the final analysis. Infants who were transferred to another hospital prior to evaluation (n = 1) were excluded. The mean gestational age at birth was 29.1 weeks (SD 22.2 weeks; range 23.4–32.0 weeks) and the mean birth weight was 1,283 g (SD, 376 g; range, 500–2,275 g). The overall perinatal mortality was 5.2% with 1 stillbirth and 7 neonatal deaths occurring in the first 30 days of life. Seventy-four of 152 infants (48.7%) had an adverse perinatal outcome. Among 144 infants who survived for at least 30 days after birth, any stage BPD, NEC (≥ stage II), IVH (≥ grade II) or PVL developed in 56 (39%), 13 (9%), 10 (7%), and 5 (4%), respectively. Microorganisms were isolated from 61 (42.4%) of 144 AF specimens. The microorganisms isolated from the amniotic cavity included *Ureaplasma urealyticum* (n = 55), *Mycoplasma hominis* (n = 43), *Escherichia coli* (n = 1), *Streptococcus* spp. (n = 4), *Staphylococcus aureus* (n = 4), *Candida albicans* (n = 1), *Bacillus* spp. (n = 1), gram-positive bacteria (n = 5), and gram-negative bacteria (n = 2). Polymicrobial invasion was present in 43 of 66 cases (65.1%).

The levels of AF IL-6 and IL-8 were significantly correlated with each other (r = 0.799; P < 0.001). Gestational age at birth was also significantly correlated with AF IL-6 (r = −0.270; P = 0.001), AF IL-8 levels (r = −0.306; P < 0.001), or gestational age at amniocentesis (r = 0.726; P < 0.001), whereas gestational age at the time of amniocentesis was correlated with neither AF IL-6 (r = −0.091; P = 0.263) nor AF IL-8 levels (r = −0.057; P = 0.484).

Based on the bivariate analyses (Tables 1 and 2), elevated AF IL-6 and IL-8 levels were significantly associated with adverse perinatal outcome, as well as with BPD and IVH. Interactions between gestational age at birth and AF IL-6 and IL-8 levels were not found for the presence of adverse perinatal outcome, as well as of BPD and IVH (Fig. 1). The mortality, NEC and PVL were not associated with elevated IL-6 and IL-8 levels in AF. Intra-amniotic infection was not associated with adverse perinatal outcome, mortality and the 4 individual morbidity variables.

In bivariate analyses (Tables 1 and 2), the demographic and perinatal variables significantly associated with adverse perinatal outcome were gestational age at birth and amniocentesis, birth weight, low Apgar scores (< 7) at 1 and 5 minutes, mechanical ventilation, and surfactant application. The results for BPD and NEC were largely the same as those for adverse perinatal outcome. For IVH, an association was limited to gestational age at birth, birth weight, and surfactant application, and the associ-

Table 1. Demographic and perinatal characteristics in relation to the occurrence of composite adverse perinatal outcome

Characteristics	Composite adverse perinatal outcome (n = 74)	No composite adverse perinatal outcome (n = 78)	P value
Maternal age, yr	31 (21–40)	32 (22–41)	0.481
Nulliparity	35 (47.3)	35 (44.9)	0.764
No. of patients with PPROM	31 (41.9)	40 (51.3)	0.246
Gestational age at amniocentesis, wk	26.4 (18.0–31.3)	29.3 (19.3–32.0)	< 0.001
Antenatal corticosteroids	67 (90.5)	75 (96.2)	0.163
Antenatal antibiotics	57 (77.0)	63 (80.8)	0.572
Antenatal tocolytics	62 (47.7)	68 (87.2)	0.552
Cesarean delivery	33 (44.6)	43 (55.1)	0.194
Positive AF cultures	33 (44.6)	33 (42.3)	0.776
AF IL-6, mg/mL	8.7 (0.078–128.600)	4.2 (0.078–91.200)	0.037
AF IL-8, mg/mL	5.1 (0.031–101.300)	1.2 (0.031–87.600)	0.002
Clinical chorioamnionitis	7 (9.5)	8 (10.3)	0.869
Birth weight, g	1,060 (500–1,660)	1,520 (680–2,275)	< 0.001
Amniocentesis-to-delivery intervals, day	8.2 ± 14.1	9.2 ± 14.2	0.675
Gestational age at birth, wk	27.9 (23.4–31.6)	30.3 (24.5–32.0)	< 0.001
Male gender	41 (55.4)	40 (51.3)	0.611
Apgar score < 7 at 1 min	64 (84.5)	51 (65.3)	0.022
Apgar score < 7 at 5 min	40 (54.1)	22 (28.2)	0.001
Mechanical ventilation	54 (73.0)	33 (42.3)	< 0.001
Surfactant application	43 (58.1)	15 (19.2)	< 0.001
BPD all stages*	56 (38.9)	-	-
Mild BPD	25 (17.4)	-	-
Moderate BPD	19 (13.2)	-	-
Severe BPD	12 (8.3)	-	-
NEC, ≥ stage II*	13 (9.0)	-	-
IVH, ≥ grade II*	10 (6.9)	-	-
PVL*	5 (3.5)	-	-

Data are presented as number (percentage), median (range) or mean ± SD. AF = amniotic fluid, BPD = bronchopulmonary dysplasia, IL = interleukin, PPROM = preterm premature rupture of membranes, NEC = necrotizing enterocolitis, MH = intraventricular hemorrhage, PVL = periventricular leukomalacia, SD = standard deviation.

*Based on 144 subjects who survived for at least 30 days after birth.
ciation for PVL was further limited to amniocentesis-to-delivery interval.

The associations of adverse perinatal outcome, mortality and individual morbidity variables with AF infection as well as with elevated cytokine levels after adjusting for baseline parameters were compared using multivariate logistic regression analyses (Table 3). Because AF IL-6 and IL-8 levels were highly correlated, 2 separate multivariate analyses were carried out, whereby each excluded one of these terms. For adverse perinatal outcome, BPD and IVH, elevated AF IL-6 and IL-8 levels that were significantly associated in bivariate analyses remained significant risk factors for the aforementioned 3 outcomes, when we adjusted for low Apgar scores at 5 minutes, antenatal corticosteroids, mechanical ventilation, and surfactant application (AF IL-6 [ng/mL] for adverse perinatal outcome: adjusted OR [aOR], 1.022; 95% CI, 1.005–1.040; P = 0.010; AF IL-8 [ng/mL] for adverse perinatal outcome: aOR, 1.025; 95% CI, 1.005–1.046; P = 0.016, data on BPD and IVH not shown). However, the independent effect of elevated IL-6 and IL-8 levels in AF disappeared when additionally adjusted for low gestational age at birth; as a result, low gestational age at birth remained, in regression analyses, strongly associated with the risk of an adverse perinatal outcome and BPD (Table 3). The range of VIF in our models was from 1.012 to 1.821 which indicated absence of multicollinearity between our explanatory variables. The area under the curve (AUC) value for gestational age at birth predicting adverse perinatal outcome was 0.879 (95% CI, 0.822–0.936), and a cutoff value of <29.0 weeks was identified as the optimal threshold, with a sensitivity of 81.1% and specificity of 82.1%.

DISCUSSION

The principal findings of this study are as follows: 1) in bivariate analysis, elevated AF IL-6 and IL-8 levels were significantly associated with the risk of adverse perinatal outcome, but this relationship disappeared after adjustment for the gestational age at birth; and 2) culture-proven AF infection was not associated with the development of adverse perinatal outcomes. These observations are consistent with a recent study by Combs et al. (17) showing that AF IL-6 level was stronger than microbial invasion of the amniotic cavity as a predictor of composite perinatal morbidity and death, but IL-6 level was no longer predictive after adjustment for gestational age at delivery. Collectively, these findings suggest that the role of prenatal exposure to pro-inflammatory cytokines in the development of adverse neonatal outcomes may be overestimated, and underscored the importance of gestational age at preterm delivery to the risk of adverse neonatal outcomes in infants born at ≤32 weeks.

In the bivariate analyses, the risk of adverse perinatal outcome for infants exposed to elevated inflammatory cytokine levels in AF was increased, compared to those not exposed in utero. However, when low gestational age at birth was included in the multivariate model, the risk of elevated pro-inflammatory cytokine levels in AF disappeared, indicating the increased risk of elevated levels for adverse perinatal outcome may be mainly due to the large proportion of infants exposed to elevated levels who

Table 2. Bivariate analysis of AF cultures and cytokines and other risk factors for primary outcome variables

Outcome variables and potential risk factors	OR (95% CI) or median in infants with vs. without the indicated outcome variable	P-value
Mortality		
Gestational age at amniocentesis, wk	23.3 vs 28.3	0.001
Gestational age at birth, wk	24.7 vs 29.1	< 0.001
Birth weight, g	755 vs 1.305	< 0.001
Apgar score < 7 at 5 min	6.519 (1.334–31.841)	0.016
Positive AF culture	0.441 (0.101–1.916)	0.275
AF IL-6, ng/mL	6.816 vs 6.555	0.610
AF IL-8, ng/mL	25.593 vs 2.384	0.075
**BPD*		
Gestational age at amniocentesis, wk	26.4 vs 29.3	< 0.001
Gestational age at birth, wk	27.6 vs 30.2	< 0.001
Birth weight, g	1.038 vs 1.510	< 0.001
Apgar score < 7 at 1 min	2.437 (1.049–5.659)	0.035
Apgar score < 7 at 5 min	2.707 (1.345–5.448)	0.005
Mechanical ventilation	4.825 (2.245–10.369)	< 0.001
Surfactant application	7.000 (3.297–14.864)	< 0.001
Positive AF culture	1.165 (0.592–2.292)	0.658
AF IL-6, ng/mL	10.985 vs 3.968	0.005
AF IL-8, ng/mL	6.131 vs 1.158	< 0.001
NEC, ≥ stage II		
Gestational age at birth, wk	28.2 vs 29.3	0.005
Amniocentesis-to-delivery intervals, day	1.3 vs 3.7	0.048
Birth weight, g	1.015 vs 1.345	0.005
Mechanical ventilation	4.648 (0.991–21.797)	0.041
Surfactant application	4.300 (1.255–14.737)	0.018
Nulliparity	0.202 (0.043–0.949)	0.038
Antenatal tocolytics	0.291 (0.080–1.062)	0.072
Positive AF culture	0.378 (0.099–1.436)	0.238
AF IL-6, ng/mL	4.795 vs 6.596	0.875
AF IL-8, ng/mL	5.364 vs 2.020	0.875
IVH, ≥ grade II		
Gestational age at birth, wk	26.5 vs 29.3	0.002
Birth weight, g	1.008 vs 1.353	0.005
Surfactant application	4.319 (1.067–17.485)	0.041
Antenatal corticosteroids	0.188 (0.033–1.082)	0.097
Positive AF culture	2.155 (0.581–7.994)	0.251
AF IL-6, ng/mL	15.416 vs 4.998	0.019
AF IL-8, ng/mL	5.958 vs 1.930	0.024

*Based on 144 subjects who survived for at least 30 days after birth.
were born at lower gestational age (Fig. 1), given the tight inverse correlation between AF IL-6 and IL-8 levels and gestational age at birth. These findings suggest that delaying delivery in women with preterm labor or PPROM might reduce adverse outcomes in infants, especially in very preterm infants born at less than 29 weeks’ gestation, despite prolonged exposure of the fetus to AF infection/inflammation in utero. Several case reports should be noted, in which antibiotic therapy eradicated microorganisms in AF in some patients with AF infection/inflammation, with subsequent continuation of pregnancy near or at term (24-26).
Further studies are needed to confirm whether or not prolongation of pregnancy would be beneficial for the subgroup of women with both AF infection/inflammation and threatened birth of an infant of extremely low gestational age (e.g., 22–28 weeks of gestation), if antibiotic therapy can be targeted appropriately.

Previous studies have reported an association between elevated AF pro-inflammatory cytokines and the development of BPD, independent of gestational age at birth (13,16). However, these studies have the limitation of a small sample size (13,16) and the inclusion of a heterogeneous group of patients with regard to disease entity (16), cases with advanced gestational age as a study cohort (16), and the use of diagnostic criteria that differ from new criteria (20) for diagnosis and severity of BPD proposed by the National Institutes of Health in 2001 (13,16). In contrast to the results of these previous studies, we found that elevated AF IL-6 and IL-8 levels were significantly associated with the subsequent development of BPD in the bivariate analyses, but the association disappeared after adjustment for the gestational age at birth; traditional risk factors for adverse neonatal outcomes, such as gestational age at birth, rather than AF inflammation, remained significantly independently associated with BPD. Similarly, our observation of a lack of association between AF inflammation and grade II–IV IVH in gestational age-adjusted analysis, was different from the finding of only one study in which this association was investigated (15). This discrepancy may be related to which factor was adjusted for in the analyses (birth weight vs. gestational age at birth), which cytokines were used to define AF inflammation (tumor necrosis factor-α vs. IL-6 and IL-8), and different gestational age at enrolment (≤34 weeks vs. ≤32 weeks). In terms of association of AF inflammation with NEC, similar explanations can be applied to the discrepancy between our study and that of Hitti et al. (15).

The finding that positive AF cultures were not associated with adverse perinatal outcomes is consistent with previous studies (13,14,16). This observation is not surprising given 1) a recent report indicating that microbial colonization without inflammatory response appears relatively benign (17); and 2) the limitation of the standard microbiological culture technique used in the current study, which depends on many factors, including inoculum size, whether samples were obtained from an infected site, and the properties of the strains. With regard to microbial footprints in AF, a recent study in which culture and/or polymerase chain reaction (PCR) technique were used to detect *Ureaplasma* spp. showed that the presence of *Ureaplasma* spp. at the time of preterm cesarean delivery was strongly associated with BPD and IVH in preterm infants, even after adjustment for multiple risk factors (27).

A recent study suggested a synergistic detrimental effect of gestational age at birth and histologic and clinical chorioamnionitis.

Table 3. Regression analysis of risk factors for primary outcome variables

Outcome variables	Predictors	OR (95% CI)	P value	P value for interaction term
Adverse perinatal outcome	GA at birth, wk	0.421 (0.299–0.567)	< 0.001	-
	Apgar score < 7 at 5 min	0.694 (0.249–1.935)	0.485	-
	Mechanical ventilation	1.171 (0.409–3.358)	0.769	-
	Surfactant application	3.731 (1.160–12.006)	0.027	-
	AF IL-6, ng/mL	1.015 (0.996–1.034)	0.128	0.348
	AF IL-8, ng/mL	1.018 (0.994–1.043)	0.141	0.369
BPD*	GA at birth, wk	0.345 (0.233–0.510)	< 0.001	-
	Apgar score < 7 at 5 min	0.467 (0.138–1.581)	0.221	-
	Mechanical ventilation	1.421 (0.428–4.716)	0.566	-
	Surfactant application	4.885 (1.361–17.530)	0.015	-
	AF IL-6, ng/mL	1.014 (0.995–1.034)	0.154	0.601
	AF IL-8, ng/mL	1.015 (0.988–1.043)	0.282	0.704
NEC, ≥ stage II§	GA at birth, wk	0.764 (0.560–1.044)	0.091	-
	Amniocentesis-to-delivery intervals, day	0.997 (0.993–1.001)	0.153	-
	Nulliparity	0.176 (0.034–0.913)	0.039	-
	Tocolytics	0.369 (0.080–1.698)	0.200	-
	Mechanical ventilation	1.896 (0.257–14.009)	0.531	-
	Surfactant application	1.843 (0.364–9.339)	0.460	-
IVH, ≥ grade II‡	GA at birth, wk	0.726 (0.492–1.072)	0.107	-
	Antenatal corticosteroids	0.405 (0.044–3.756)	0.426	-
	Surfactant application	1.745 (0.328–9.297)	0.514	-
	AF IL-6, ng/mL	1.019 (0.998–1.041)	0.070	0.151
	AF IL-8, ng/mL	1.016 (0.988–1.044)	0.272	0.140

AF = amniotic fluid, BPD = bronchopulmonary dysplasia, CI = confidence interval, GA = gestational age, IL = interleukin, IVH = intraventricular hemorrhage, NEC = necrotizing enterocolitis, OR = odds ratio.

*AF IL-6 and IL-8 levels were highly correlated with each other (r = 0.804, P < 0.001), and thus 2 separate regression models were used in multivariate analyses, in which each excluded one of these terms; †Interaction term between gestational age at birth and AF IL-6 or AF IL-8 levels; ‡Adjusted for gestational age at birth, low Apgar scores (<7) at 5 minutes, mechanical ventilation, and surfactant application; §Based on 144 subjects who survived for at least 30 days after birth; *Adjusted for gestational age at birth, antenatal corticosteroids, and surfactant application.

https://doi.org/10.3346/jkms.2017.32.3.480
onitis as surrogate markers for prenatal inflammation on adverse neonatal outcomes (28). However, we did not find an interaction between gestational age at birth and elevated AF pro-inflammatory cytokines in association with adverse perinatal outcomes. The reason for this discrepancy may be related to the time difference at which the measured markers were taken to assess whether adverse neonatal outcomes were present. The measured markers in a previous study, which were late findings of antenatal inflammation, were assessed in samples taken at or near the time of delivery, and thus directly reflected adverse neonatal outcomes, whereas the measured markers in the current study, being early findings of antenatal inflammation, were assessed in samples taken remote from delivery. In fact, we found that gestational age at amniocentesis modified the association with elevated AF IL-8 levels on adverse perinatal outcome (data not shown).

The current study has several limitations. First, we did not use molecular techniques, such as PCR, to diagnose cases with actual AF infection that were falsely negative by standard microbiological technique for AF culture. Second, there were a relatively small number of patients in this study, which resulted in a low prevalence of certain individual adverse perinatal outcomes, such as PVL and mortality, with diminished statistical power for comparison with other groups. Third, the results of AF culture and white blood cell (WBC) counts were routinely reported to caregivers, which might affect the timing of delivery and initiation of antibiotic and tocolytic therapy. However, this bias is unlikely to change our main findings, because AF culture results take several days to become available, the results of AF culture and WBC counts were not shown).

In conclusion, elevated levels of pro-inflammatory cytokines in AF are associated with increased risk of adverse perinatal outcomes, but this risk is not independent of low gestational age at birth. Low gestational age at birth is a major contributor to the risk of adverse perinatal outcomes. Culture-proven AF infection is not associated with the development of adverse perinatal outcomes.

DISCLOSURE

The authors have no potential conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Conceptualization: Park KH. Data curation: Jung EY, Park KH, Han BR, Cho SH, Yoo HN, Lee J. Investigation: Jung EY, Park KH. Writing - original draft: Jung EY, Park KH. Supervision: Park KH, Han BR.

ORCID

Eun Young Jung http://orcid.org/0000-0001-6988-9280
Kyo Hoon Park http://orcid.org/0000-0003-3550-9686
Bo Ryong Han http://orcid.org/0000-0002-2924-4338
Soo-Hyun Cho http://orcid.org/0000-0002-8205-0997
Ha-Na Yoo http://orcid.org/0000-0001-8011-9447
Juyoung Lee http://orcid.org/0000-0002-1878-9308

REFERENCES

1. Callaghan WM, MacDorman MF; Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics 2006; 118: 1566-73.
2. Robertson PA, Sniderman SH, Laros RK Jr, Cowan R, Hellbrom D, Goldenberg RL, Iams JD, Creasy RK. Neonatal morbidity according to gestational age and birth weight from five tertiary care centers in the United States, 1983 through 1986. Am J Obstet Gynecol 1992; 166: 1629-41.
3. Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sause RS, Whitfield MF; Trial of Indomethacin Prophylaxis in Preterm (TIPP) Investigators. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterm. JAMA 2003; 289: 1124-9.
4. Luig M, Lui K; NSW & ACT NICUS Group. Epidemiology of necrotizing enterocolitis--Part II: risks and susceptibility of premature infants during the surfactant era: a regional study. J Paediatr Child Health 2005; 41: 174-9.
5. Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroﬀ AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992-1995. Arch Pediatr Adolesc Med 2000; 154: 725-31.
6. Park KH, Kim SN, Oh KJ, Lee SY, Jeong EH, Ryu Y. Noninvasive prediction of intra-amniotic infection and/or inflammation in preterm premature rupture of membranes. Reprod Sci 2012; 19: 658-65.
7. Jung HJ, Park KH, Kim SN, Hong JS, Oh KJ, Kim G, Kwon JY. Non-invasive prediction of intra-amniotic infection in women with preterm labor. Ultrasound Obstet Gynecol 2011; 37: 82-7.
8. Yoon BH, Romero R, Moon JB, Shim SS, Kim M, Kim G, Jun JK. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 2001; 183: 1130-6.
9. Yoon BH, Romero R, Shim JY, Shim SS, Kim CJ, Jun JK. C-reactive protein in umbilical cord blood: a simple and widely available clinical method to assess the risk of amniotic fluid infection and funisitis. J Matern Fetal Neonatal Med 2003; 14: 85-90.
10. Gravett MG, Hitti J, Hess DL, Eschenbach DA. Intrauterine infection and preterm delivery: evidence for activation of the fetal hypothalamic-pituitary-adrenal axis. Am J Obstet Gynecol 2000; 182: 1404-13.
11. Lee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol 2007; 197: 294.e1-6.
12. Hitti J, Krohn MA, Patton DL, Tarczy-Hornoch P, Hillier SL, Cassen EM, Eschenbach DA. Amniotic fluid tumor necrosis factor-alpha and the risk of respiratory distress syndrome among preterm infants. Am J Obstet Gy-
13. Ghezzi F, Gomez R, Romero R, Yoon BH, Ehvin SS, David C, Janisse J, Mazor M. Elevated interleukin-8 concentrations in amniotic fluid of mothers whose neonates subsequently develop bronchopulmonary dysplasia.
 Eur J Obstet Gynecol Reprod Biol 1998; 78: 5-10.

14. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy.
 Am J Obstet Gynecol 1997; 177: 19-26.

15. Hitti J, Tarczy-Hornoch P, Murphy J, Hillier SL, Aura J, Eschenbach DA. Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks’ gestation or less.
 Obstet Gynecol 2001; 98: 1080-8.

16. Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, Kim BI. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia.
 Am J Obstet Gynecol 1997; 177: 825-30.

17. Combs CA, Gravett M, Garite TJ, Hickok DE, Lapidus J, Porreco R, Rael J, Grove T, Morgan TK, Clewell W, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes.
 Am J Obstet Gynecol 2014; 210: 125.e1-15.

18. Lee SY, Park KH, Jeong EH, Oh KJ, Ryu A, Kim A. Intra-amniotic infection/inflammation as a risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor.
 J Korean Med Sci 2013; 28: 1226-32.

19. Ryu A, Park KH, Oh KJ, Lee SY, Jeong EH, Park JW. Predictive value of combined cervicovaginal cytokines and gestational age at sampling for intraamniotic infection in preterm premature rupture of membranes.
 Acta Obstet Gynecol Scand 2013; 92: 517-24.

20. Jobe AH, Bancalari E. Bronchopulmonary dysplasia.
 Am J Respir Crit Care Med 2001; 163: 1723-9.

21. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brothers T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging.
 Ann Surg 1978; 187: 1-7.

22. Papile LA, Burstine J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm.
 J Pediatr 1978; 92: 929-34.

23. Section V. Provisions for neonatal care. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff and Martin’s Neonatal-Perinatal Medicine. 9th ed. St. Louis, MO: Elsevier, 2011, p 553-758.

24. Romero R, Scioscia AL, Edberg SC, Hobbins JC. Use of parenteral antibiotic therapy to eradicate bacterial colonization of amniotic fluid in premature rupture of membranes.
 Obstet Gynecol 1986; 67: 15S-17S.

25. Mazor M, Chaim W, Herskovitz R, Wiznitzer A. Eradication of Viridans streptococci from the amniotic cavity with transplacental antibiotic treatment.
 Arch Gynecol Obstet 1994; 255: 147-51.

26. Lee SE, Romero R, Park CW, Jun JK, Yoon BH. The frequency and significance of intraamniotic inflammation in patients with cervical insufficiency.
 Am J Obstet Gynecol 2006; 195: 633.e1-8.

27. Kasper DC, Mechtler TP, Böhmer T, Petricevic L, Gleiss A, Sperger J, Witt A, Herkner KH, Berger A. In utero exposure to Ureaplasma spp. is associated with increased rate of bronchopulmonary dysplasia and intraventricular hemorrhage in preterm infants.
 J Perinat Med 2011; 39: 331-6.

28. Bastek JA, Weber AL, McShea MA, Ryan ME, Elovitz MA. Prenatal inflammation is associated with adverse neonatal outcomes.
 Am J Obstet Gynecol 2014; 210: 450.e1-10.