Phytochemical, GC-MS and FT-IR Analysis of *Papaver somniferum* L

S. Kumaravel¹, P. Muthukumaran²*, Nimia Thomas³

¹Professor, ²Senior Lecturer ³Student, ¹Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, ²DMI St. Eugene University, 9 Miles, Great North Road, Chibombo, Zambia, ³Bishop Kurialacherry College, Kerala, India

Corresponding Author: P. Muthukumaran

Email: kumaravel.bio14@gmail.com

Abstract

The present study was aimed to analysis of bioactive constituents of *Papaver somniferum* (Poppy seed). The ethanol extract of the seeds were subjected to Phytochemical Screening, Gas chromatography- mass spectroscopic (GC-MS) and Fourier transform infrared spectroscopy (FTIR) analysis. GC-MS analysis of the seeds was performed using a Scion 436- GC Bruker model nd Interpretation on mass spectrometry MS was conducted using the database of National Institute Standard and Technology (NIST) and IR spectrum was recorded in spectrophotometer (Shimadzu, IR Affinity1, Japan). Phytochemical screening for seeds extracts indicated the presence of various secondary metabolites like Alkaloid, Cardiac Glycosides, Flavonoid, Phytosterols and Terpenoids. GC-MS analysis of compounds with totally, Thirty Nine volatile compounds major chemical compounds were identified, such as 9-Octadeconoic acid(30.72%), 9-Tetradec-1-ol, acetate, (E)- (24.02%), 9,12-Octadecadienoic acid, methylester, (E,E)- (7.82%), cis,9,10-Epoxoctadecan-1-ol (7.43%) and Undec-10-ynoic acid(4.36%). FT-IR analysis of peak values with various functional compounds such as alcohols, phenols, carboxylic acids, aldehydes, amides, amino acids, anhydrides, esters, ketones, Unsatuated aliphatics, aromatics, Unsatuated heterocycles, amines, Nitro compound, Alkanes, alkenes, sugars, Sulphur, phosphorus, and fluorine compounds. The present results concluded that the phytochemicals was observed in ethanol extract which revealed that the *Papaver somniferum* (Poppy seed) is potential use in different fields namely medical and pharmaceuticals and greatly valuable in medicinal practice for the treatment of several human ailments.

Keywords: GC-MS, FT-IR, *Papaver somniferum* L and NIST.

Introduction

Spices have been defined as plant substances from indigenous or exotic origin, aromatic or with strong taste, used to enhance the taste of foods (Pundir et al., 2010). Herbs and spices have been used for flavoring, food preservation, and/or medicinal commitments. Currently many ethnic cuisines are familiar for their reliance on “signature” herbs and spices. Several readings have endorsed the antimicrobial, antioxidant and pharmaceutical properties of spices and herbs to their phenolic compounds (Shan et al., 2005). Several studies have shown that spices are able to counteract oxidative stress in in vitro and in vivo systems (Ahmed et al., 2000). They extend the storage life of foods by preventing rancidity and oxidation of lipids (kelen and Tepe, 2008) or through bacteriostatic or bactericidal activity (Nazef et al., 2008) and they execute the antifungal activity (Kotzekidou et al., 2008). Spices and their extracts were had various therapeutic properties (Ayodele et al., 2009), they are affect digestion processes differently. Most of them stimulate the secretion of saliva.

Papaver somniferum L. belongs to the *Papaveraceae* family, and is commonly known as “Opium poppy.” The plant is found wild in various parts of Europe, northern Africa, and western Asia (GRIN database 2009). It is traditionally used as an herbal medicine against coughing, bronchitis, sore throat, minor sleep problems, and possesses a sedative effect (Soulimani et al., 2001). Previous investigations on this plant have revealed its nutritional composition (Trichopoulou et al., 2000), content of alkaloids, (Kalav,and Sarryar, 2007) and ethnobotanical studies (Scherrer et al., 2005, Kultu, 2007) and (Cornara et al., 2009). Poppy seeds are used in traditional cuisine of several nations, mostly in confectionary and bakery food products such as fillings in cakes and desserts, or sprinkled on bread or rolls. (Erinç et al., 2009). Moreover, they are a source of highly valuable oil, which is used not only for culinary purposes but also as an adjuvant for pharmaceutical and medical diagnostics, or as a component of cosmetic products and high-class oil-paints or varnishes (Krist et al., 2005).

GC-MS and FT-IR has played an important role in pharmaceutical analysis in recent years (Movasaghi et al., 2008), recently, spectroscopy has emerged as one of the major tools for biomedical claims and has made noteworthy progress in the field of clinical evaluation. Exploration has been accepted on a number of natural tissues using spectroscopic techniques, including FT-IR spectroscopy. GC-MS analysis is a breakthrough in analysis of phytoconstituents and structure elucidation of these compounds as they have a sensitivity of detecting compounds as low as 1 ng (Liebler et al., 1996). The present study was carried out the bioactive compounds present in the *Papaver somniferum* L Spice in ethanol extract with the aid of GC-MS and FT-IR techniques, which may offer a perception in its use of out-dated medicine.

Material and Methods

Extraction and Phytochemical Screening

Papaver somniferum L were dried and powdered using a mixer blender to make fine powder. Then 2 grams of the powdered sample was added to 250 mL of solvent was eluted sequentially based on the polarity index of the solvents. Then the extracts were subjected for rotary evaporator and saved at fridge for future uses.

Preliminary qualitative analysis of phytochemical screening was performed with shade dried and powdered of...
the spice. The presence and absence of derivative compounds like alkaloids, carbohydrates, Phytosterols, flavonoids, phenolic, tannins, saponins, and terpenoids were confirmed by phytochemical screening using standard protocols (Harborne, 1973).

Preparation of Extracts for GC–MS
20 g of the powdered seeds of Papaversomniferum L. were soaked in 100ml of 95% methanol for 12 h and filtered through Whatmann filter paper No. 41 along with 2 g sodium sulfate to remove the deposits and traces of water in the remainder. The filtrate was then concentrated and the extract contained both polar and nonpolar phytocomponents of the plant material used. 2 μl of this solution was used for GC/MS analysis (Muthukumaran et al., 2017).

GC Condition and Identification of Compounds
The sample was examined through Gas Chromatography Mass Spectrometry/Mass Spectrometry Electron Ionization (GC-MS/MS) mode. The GC-MS/MS was a Scion 436-GC Bruker model coupled with a Triple quadrupole mass spectrophotometer with fused silica capillary column BR-5MS (5% Diphenyl/95% Dimethyl polysiloxane) and Length: 30m; Internal diameter: 0.25 mm; Thickness: 0.25 μm. Helium gas (99.999%) was used as the carrier gas at a constant flow rate of 1 ml/min and an injection volume of 2 μl was working (split ratio of 10:1). The injector temperature 250°C; ion-source temperature 280°C.

The oven temperature was automated from 110°C (isothermal for 2 min), with an increase of 10°C/min, to 200°C, then 5°C/min to 280°C, wind up with a 9 min isothermal at 280°C and total GC running time was 41 min. This last escalation was to clean the column from any residues. The mass spectrometer was activated in the positive electron ionization (EI) mode with ionization energy of 70eV. The solvent delay was 0-3.0 min. A scan intermission of 0.5 seconds and fragments from m/z 50 to 500 Da was programmed. The inlet hotness was set at 280°C, source temperature 250°C. The relative fraction amount of each component was calculated by comparing its average peak area to the total areas. Software approved to handle mass spectra and chromatograms was MS Work station 8.

The NIST Version 2.0 library database of National Institute Standard and Technology (NIST) having more than 62,000 patterns was used for identifying the chemical components. The GC-MS/MS was performed by Food Safety and Quality Testing Laboratory, Indian Institute of Food Processing Technology, Thanjavur

FTIR Spectroscopic Analysis
Fourier transform infrared spectrophotometer (FTIR) is perhaps the most potent tools for identifying the types of chemical bonds (functional groups) present in compounds. Dry powders of altered solvent extracts of each plant material were used for FTIR analysis. 10mg of the dry extract powder was encapsulated in 100 mg of KBr pellet, in orderto prepare translucent sample disc. The powdered sample of each plant specimen was loaded in FTIR Spectroscope (Shimadzu, IR Affinity1, Japan), with a scan range from 400 to 4000 cm−1 with a resolution of 4cm−1.

Result and Discussion
Phytochemical Analysis
Spices have been supplementary to foods since ancient times as flavoring agent, also as food preservers and folk medicines. Spice is a natural compound that is extracted from the seeds, fruits, flowers or trunks (skin, roots, leaves) of several plants and add to food to provide taste, smell or flavor. Spices are staple dietary additives consumed all over the world (Farrell, 1990). Each spice has a unique aroma and flavor that derive from compounds known as phytochemicals or secondary metabolites. In the present study, the investigation of phytochemical screening was done by ethanol extract of Papaver somniferum L. The result revealed that the ethanolic extract of Papaver somniferum L recorded the presence of Alkaloid, Cardiac Glycosides, Flavonoid, Phytosterols and Terpenoids whereas the Carbohydrates-Saponins, Tannins were absent in the extract.

Table 1: Phytochemical screening of Papaver somniferum L

Phytochemical	Poppy seed
Alkaloids	+
Carbohydrate	-
Cardiac Glycosides	+
Flavonoids	+
Phytosterols	+
Saponins	-
Tannins	-
Terpenoids	+

+ Present - Absent

GC MS Analysis
The compounds present in the ethanolic extract of Papaver somniferum L, were identified by GC-MS analysis (Fig. 1). Thirty Nine volatile compounds from ethanolic extract of Papaver somniferum L were separated and identified by GCMS. The components identified, molecular formulae, molecular weight and the time of elution with peak area were delivered in Table 2.

The GC-MS analyses of Papaver somnif(=merum L established the identification of 39 volatile compounds in the ethanolic extract. The composition are as follows: 9-Octadecenoic acid (30.72%), 9-Tetradecen-1-ol, acetate, (E)- (24.02%), 9,12-Octadecadienoic acid, methyl ester,
(E,E) (7.82%), cis-9,10-Epoxyoctadecan-1-ol (7.43%) and Undec-10-ynoic acid (4.36%). The chemical group classifications are as follows: Monoterpenes (1.33%), Aromatic (0.47%), Amino acid (1.42), Fatty acid (51.03%), Acetate (24.31%), Nitrogen compounds (0.14%), Alcohol (0.73%), Aldehyde (0.33%), Alkanes (1.22%), Alkenes (1.07), Esters (0.94%), Epoxy compounds (2.23%), naphthalene (0.71%) and ketones (0.75%).

Table 2: GC-MS analysis revealed the presence of bioactive compounds in the Papaversomniferum L (Poppy seeds).

S. No	Identified Compound Details	Activity				
1	α-Pinene (RT-2.06), Molecular Formula- C_{10}H_{16}, MW 136, Peak Area% 0.12, Compound Nature- Monoterpene	Anti-inflammatory, Sedative, Anticancer, Antitumor, Antibacterial, Antiflu, Nematicide, Insecticide, Pesticide, Herbicide, Flavor, Immunomodulator, Fungistat, Antiobesity, Detoxicant, Chemo preventive, Expectorant, Photo sensitizer				
2	Benzene, 1-methyl-3-(1-methylethyl) (RT-2.33), Molecular Formula- C_{10}H_{14}, MW 134, Peak Area% 0.47, Compound Nature- Aromatic compound	No activity reported				
3	1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)-(RT-2.53), Molecular Formula- C_{10}H_{16}, MW 136, Peak Area% 1.21, Compound Nature- Monoterpene	Anti-inflammatory, Sedative, Anticancer, Antitumor, Antibacterial, Antiflu, Nematicide, Insecticide, Pesticide Herbicide, Flavor, Immunomodulator, Fungistat, Antiobesity, Detoxicant, Chemo preventive, Expectorant, Photo sensitizer				
4	Butanoic acid, 4-(dimethylamino)-3-hydroxy, (RT-3.64), Molecular Formula- C_{6}H_{13}NO_{3}, MW 147, Peak Area% 1.42, Compound Nature- Amino compound	Antimicrobial				
5	3-Ethylheptanoic acid, (RT-6.01), Molecular Formula- C_{9}H_{16}O_{2}, MW 158, Peak Area% 0.04, Compound Nature- Fatty acid compound	No activity reported				
6	1,3-Propanediol, 2-(hydroxymethyl)-2-nitro- (RT-8.40), Molecular Formula- C_{4}H_{9}NO_{5}, MW 151, Peak	Antimicrobial				
Compound	Nature	Molecular Formula	MW	Peak Area%	Compound	Nature
----------	--------	------------------	----	------------	----------	--------
1,3-Propanediol, 2-(hydroxymethyl)-2-nitro-	Antimicrobial	C₄H₉NO₅	151	0.07		
Cyclopentaneundecanoic acid, methyl ester-	No activity reported	C₁₇H₃₂O₂	268	0.05		
Tetradecanoic acid, ethyl ester-	Nematicide, Antioxidant, Cosmetic Cancer preventive, Hypercholesterolemic Lubricant	C₁₇H₃₂O₂	268	0.05		
Undec-10-ynoic acid-	No activity reported	C₁₁H₁₈O₂	182	0.22		
n-Hexadecanoic acid-	Antioxidant Hypcholesterolemic Nematicide Pesticide, Anti androgenic Flavor Hemolytic 5-Alpha reductase inhibitor	C₁₆H₃₂O₂	256	0.22		
Undecanoic acid-	No activity reported	C₁₁H₂₂O₂	186	0.38		
9,12-Octadecadienoic acid, methyl ester, (E,E)-	Anti androgenic, 5-Alpha reductase inhibitor Antihistaminic, Anticoronary, Insectifuge Antieczemic, Antiacne	C₁₉H₃₄O₂	294	7.82		
9,12-Octadecadienoic acid (Z,Z)	Anti androgenic 5-Alpha reductase inhibitor Antihistaminic Anticoronary Insectifuge Antieczemic Antiacne	C₁₉H₃₄O₂	294	0.78		
11,14-Eicosadienoic acid, methyl ester	Cardio protective	C₂₁H₃₈O₂	322	5.81		
9-Octadecynoic acid	No activity reported	C₁₈H₃₂O₂	280	0.30		
9-Tetradecon-1-ol, acetate, (E)-	No activity reported	C₁₆H₃₀O₂	254	24.02		
No.	Name	Molecular Formula	MW	Peak Area %	Compound Nature	Activity
-----	------	-------------------	-----	-------------	----------------	----------
18	cis-9,10-Epoxyoctadecan-1-ol	C_{18}H_{36}O_{2}	284	7.43	Alcoholic compound	Antimicrobial
19	1,2,15,16-Diepoxyhexadecane	C_{16}H_{30}O_{2}	254	2.23	Epoxy compound	No activity reported
20	Dodecane, 2,6,10-trimethyl	C_{15}H_{32}	212	1.01	Alkane compound	No activity reported
21	9,12-Octadecadienal	C_{15}H_{32}	264	0.33	Aldehyde compound	No activity reported
22	Methoxyacetic acid, 4-tetradecyl ester	C_{17}H_{34}O_{3}	286	0.51	Ester compound	No activity reported
23	E,E-1,9,17-Docasatriene	C_{22}H_{40}	304	0.70	Alkene compound	No activity reported
24	cisZ-11,12-Epoxytetradecan-1-ol	C_{14}H_{28}O	228	0.68	Alcoholic compound	Antimicrobial
25	(Z)6,(Z)9-Pentadecadien-1-ol	C_{15}H_{28}O	224	2.36	Alcoholic compound	Antimicrobial
26	Methoxyacetic acid, 3-tetradecyl ester	C_{17}H_{34}O_{3}	286	0.43	Alcoholic compound	No activity reported
27	1,E-11,Z-13-Octadecatriene	C_{18}H_{32}	248	0.13	Alkene compound	No activity reported
28	trans-2-Undecen-1-ol	C_{11}H_{22}O	170	0.51	Alcoholic compound	Antimicrobial
29	E-2-Tetradecen-1-ol	C_{14}H_{28}O	212	0.21	Alcoholic compound	Antimicrobial
The functional therapeutic activity of the poppy seed compounds were identified through Dr. Duke’s Phytochemical Database. The fatty acids which constitute 51.03% possess antioxidant activity and also the anti-inflammatory activity. Compounds namely, α-Pinene, 1,4-Cyclohexadiene, 1-methyl-4-(1-methylbutyl)-, n-Hexadecanoic acid are having insecticide activity and proven for pesticide activity. Flavors compounds like ketones, aldehydes and alcohols were enriched in poppy seed. The present study indicates that poppy seed is a good natural source of sterols. In addition, the findings in this study are

Compound	Nature	Alcoholic compound	Area %	Molecular Formula	MW	Peak Area %	Area
Naphthalene, decahydro-2,2-dimethyl- (RT-26.86) Molecular Formula- C₁₂H₂₂, MW 166, Peak Area% - 0.71, Compound Nature- Naphthalene compound	No activity reported						
2-Hydroxy-(Z)-9-pentadecenyl propanoate, (RT-27.56) Molecular Formula- C₁₈H₃₄O₃, MW 298, Peak Area% - 0.29, Compound Nature- Hydroxy compound	No activity reported						
13-Oxabicyclo[10.1.0]tridecane, (RT-27.84) Molecular Formula- C₁₂H₂₂O, MW 182, Peak Area% - 0.13, Compound Nature- Alcoholic compound	No activity reported						
E,E-1,9,17-Docasatriene, (RT-28.83) Molecular Formula- C₂₂H₄₀, MW 304, Peak Area% - 0.07, Compound Nature- Alkane compound	No activity reported						
Dodeca-1,6-dien-12-ol, 6,10-dimethyl- (RT-29.24) Molecular Formula- C₁₄H₂₆O, MW 210, Peak Area% - 0.73, Compound Nature- Unsaturated alcoholic compound	No activity reported						
Z,Z,Z-4,6,9-Nonadecatriene, (RT-29.69) Molecular Formula- C₁₉H₃₄, MW 262, Peak Area% - 0.17, Compound Nature- Alkene compound	No activity reported						
5α-Androstan-16-one, cyclic ethylene mercaptol (RT-30.78) Molecular Formula- C₂₁H₃₄S₂, MW 350, Peak Area% - 2.13, Compound Nature- Steroid	Antimicrobial Anti-inflammatory Anticancer Diuretic Antiarthritic Antiasthma						
Oxacycloheptadec-8-en-2-one, (RT-31.11) Molecular Formula- C₁₆H₂₈O₂, MW 252, Peak Area% - 0.75, Compound Nature- Ketone compound	No activity reported						
cis-7,cis-11-Hexadecadien-1-yl acetate, (RT-32.37) Molecular Formula- C₁₈H₃₂O₂, MW 280, Peak Area% - 0.29, Compound Nature- Acetate compound	No activity reported						
12-Methyl-E,E-2,13-octadecadien-1-ol, (RT-33.51) Molecular Formula- C₁₉H₃₆O, MW 280, Peak Area% - 0.08, Compound Nature- Unsaturated alcoholic compound	No activity reported						
important for the nutrition sciences, because fatty acids and phytosterols, in particular, seem to have considerable effects on health.

FTIR Analysis of Papaver somniferum

The FT-IR spectrum was used to find the functional groups of the active components present in extract based on the peaks values in the region of IR radiation. Once the extract was passed into the FT-IR, the functional groups of the components were separated based on its peaks ratio.

The ethanolic extract of *Papaver somniferum* L showed characteristic absorption bands at 3285.85 cm\(^{-1}\) for O–H stretching vibration presence of alcohols, phenols, 2925.05 cm\(^{-1}\) (O–H stretching vibration presence of carboxylic acids), 2855.04 cm\(^{-1}\) (CHO Aldehydes (Fermi doublet), 1744.18 cm\(^{-1}\) (C=O Acid halides, aldehydes, amides, amino acids, anhydrides, carboxylic acids, esters, ketones, lactams, lactones, quinines), 1637.03 cm\(^{-1}\) (C=C, C=N, NH Unsatuated aliphatics, aromatics, unsaturated heterocycles, amides, amines, amino acids), 1545.82 cm\(^{-1}\) (NO2 Nitro compound CH3 and CH2 Alkanes, alkenes), 1454.4 cm\(^{-1}\) (C–H bend stretching vibration presence of alkenes), 1313.89 cm\(^{-1}\) (N–O stretching vibration presence of nitro compounds), 1235.3 cm\(^{-1}\) (C-O-C and C-OH Ethers, alcohols, sugars S=O, P=O, C-F Sulphur, phosphorus, and fluorine compounds) and 1049.35 cm\(^{-1}\) for Si-O and P-O Organosilicon and phosphorus compounds (Fig. 2 & Table 3).

![Fig. 2: FTIR- Spectrum wave numbers of Papaver somniferum L](image)

Table 3: FTIR Analysis of Papaver somniferum L

S. No	Peak values	Frequency ranges(cm\(^{-1}\))	Functional groups and Possible compounds
1	3285.85	3500–3200	O–H stretching vibration presence of alcohols, phenols
2	2925.05	3300–2500	O–H stretching vibration presence of carboxylic acids
3	2855.04	2800–2600	CHO Aldehydes (Fermi doublet)
4	1744.18	1870–1650	C=O Acid halides, aldehydes, amides, amino acids, anhydrides, carboxylic acids, esters, ketones, lactams, lactones, quinines
5	1637.03	1650–1550	C=C, C=N, NH Unsatuated aliphatics, aromatics, unsaturated heterocycles, amides, amines, amino acids
6	1545.82	1550–1300	NO2 Nitro compound CH3 and CH2 Alkanes, alkenes, etc
7	1454.4	1470–1450	C–H bend stretching vibration presence of alkenes
8	1313.89	1400–1290	N–O stretching vibration presence of nitro compounds
9	1235.3	1300–1000	C-O-C and C-OH Ethers, alcohols, sugars S=O, P=O, C-F Sulphur, phosphorus, and fluorine compounds
10	1049.35	1100–800	Si-O and P-O Organosilicon and phosphorus compounds

Conclusion

The presence of naturally active compounds also contributes to its healthy value and thus proved to be potential sources of useful foods. Additionally, isolation, purification and characterization of the phytochemicals will make remarkable studies. The result of this study would lead to discovery of some compounds which are very useful for the manufacturing of new drugs. This primary information will simplify in leading further studies on discovery of bioactive
ingredients, resolve of their efficacy by in vivo studies and demonstration of their safety and efficacy in clinical trials.

Acknowledgement
The authors are thankful to Director, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India for providing all the facilities to conduct this work.

Conflict of Interest: None.

References
1. Ahmed RS, Seth V, Banerjee BD. Influence of dietary ginger (Zingiber officinale Rosc) on oxidative stress induced by malathion in rats. Food Chem Toxicol. 2000;38:443-50.
2. Ayyoode S.M., Llondu E.M. and Onwubolu N.C. Antifungal properties of some locally used spices In Nigeria against some rot fungi. Afr J Plant Sci 2009;36:139-41
3. Buldak S. (2004). Food Technology. 2nd edition, Detay Publishing, Ankara, Turkey.
4. Charaka, Charak Samhita and Sutra Sthan. 3rd 4. Edition. Chaukamba Surbharati Prakashan, Varanasi. 1994.
5. Chouhan H.S., Singh S.K.A. Review of plants of genus Leucas. J Pharmacognosy Phytotherapy 2001;3(3):13-26
6. Cornara, L., La Rocca, A., Marsili, S., Mariotti, M.G.(2009). “Traditional uses of plants in the Eastern Riviera (Liguria, Italy),” J Ethnopharmacol 125:16–30
7. Eriniç, D. D. Tekin, A. Özcan, M. M.(2009). Determination of fatty acid, tocopherol and phytosterol contents of the oils of various poppy (Papaversomniferum L.) seeds. Grasas Aceites 60:375–81.
8. Farrell KT. (1990). Spices, Condiments, and Seasonings. 2nd New York: Van Nostrand Reinhold.
9. GRIN database. Germplasm Resources Information Network- (GRIN) (2009). National Germplasm Resources Laboratory, Beltsville, Maryland, Retrieved from http://www.ars-grin.gov/cgi-bin/ html/tax.
10. Harborne, J. B. (1973) “Phenolic compounds.” Phytochemical methods. Prin ger Netherlands 33-88.
11. Kalav,Y.N. and Saryyar,G. “Alkaloids from Turkish Papaverrhoeas,” Planta Medica 1989;5:488.
12. Kelen M. and Tepe B. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioressour. Technol 2008;99:4096-4104
13. Kotzekidou P., Giannakidis P. and Boulamatisis A. Antimicrobial activity of some plant extracts and essential oils against food-borne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT 2008:41:119-27
14. Krist, S., Stuebinger, G., Unterweger, H., Bandion, F., Buchbauer, G. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaversomniferum L.). J Agricultural Food Chemistry 2005;53:8310–16.
15. Kultur,S.(2007). “Medicinal plants used in Kirklareli Province (Turkey),” J Ethnopharmacol 111:341–64.
16. Liebler D.C., Burr J.A., Phillips L., Ham A.J.L.(1996). Gas chromatography – mass spectrometry analysis of vitamin E and its oxidation products. Anal Biochem 236:27-34.
17. Movasaghi Z., Rehman S., Rehman I.U. (2008). Fourier transform infrared spectroscopy of biological tissues. Appl Spec Rev 43:129–79.
18. Muthukumaran, P., Suresh Kumar and Karthikeyen, R. Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesiaRoxb (Black Turmeric). Pharmacog J 2017;9(6):952-956.
19. Nazef L., Belguemzia Y., Tani A., Prevost H. and Drider D. Identification of lactic acid bacteria from poultry feces: Evidence on anti- Campylobacter and anti-Listeria activities. Poultry Sci 2008;87:329-34.
20. Oancea A., Routa G., Popescu S. Phytochemical screening of the bioactive compounds in the most widespread medicinal plants from calarasi-siilistra cross-border area. Bulletin of the Transilvania University of Brașov. 2013:135-142.
21. Pandur RK, Jain P, Sharma C. Antimicrobial activity of ethanolic extracts of Syzygium aromaticum and Allium sativum against food associated bacteria and fungi. Ethnobot Leaflets 2010;14:344-60.
22. Scherrer, A.M. Motlli,R and Weckerle, C.S. “Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy),” J Ethnopharmacol 2005:97:129–43.
23. Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterisation of their phenolic constituents. J Agric Food Chem. 2005;53(20):7749-59.
24. Soulimani, R. Younos, C. Jarmouni-Idrissi, S. Bousta, D. Khalouki, F. Laila, A. “Behavioral and pharmacotoxicological study of Papaverrhoeas L. in mice,” J Ethnopharmacol 2001;74:265–74.
25. Trichopoulou, A., Vasilopoulou, E., Hollman, P., Chamalides, C.H. Foufa, E., Kaloudis, T., R. Kromhout, D., Miskali, P., H. Etrochilou, I., Poulina, E., Stafilakis, K. and Theophilou, D. (2000). “Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet,” Food Chem 70:319–23.
26. Walker J.R.L. Antimicrobial compounds in food plants. Pages 181 204 in Dillon VM, Board RG, eds. Natural Antimicrobial Systems and Food Preservation. Wallingford UK: CAB International.1994.

How to cite this article: Muthukumaran P, Kumaravel S, Thomas N. Phytochemical, GC-MS and FT-IR Analysis of Papaver somniferum L. J Pharm Biolog Sci 2017;7(1):1-8.