Adapted SETAR model for Lithuanian HCPI time series

Nomeda Bratčikovienė

Vilnius Gediminas Technical University
Saulėtekio ave. 11, LT-10223 Vilnius, Lithuania
nomeda.bratickiviene@vgtu.lt

Received: 13 May 2010 / Revised: 28 June 2011 / Published online: 24 February 2012

Abstract. We present adapted SETAR (self-exciting threshold autoregressive) model, which enables simultaneous estimation of nonlinearity and unobserved time series components. This model was tested on real Lithuanian harmonised consumer price index (HCPI) time series, covering the period from January 1996 to December 2009. The results show that adapted SETAR model is able to capture features of the real time series with complex nature. ARIMA model has also been used for the same time series for the comparison. Evaluated models and results of the comparison are presented in this work.

Keywords: adapted SETAR model, nonlinearity, ARIMA model, HCPI.

1 Introduction

Social, economic, political and other changes that occur leave structural breaks, dynamic changes, business cycle asymmetries and changes in mean of economic time series. Structural breaks may produce a short-term transient effect or a long-term change in the model structure, such as change in mean. Short-term effects – one or more outliers, can create problems with standard time series methods unless such outliers are not modified by adjusting or removing outliers (e.g., by an intervention analysis), or by using of robust methods, which automatically downweight extreme observations (e.g., by a Kalman filter). It is more difficult to deal with long-term changes, because it can affect all subsequent time series observations or to change dynamic of the time series. Such features cannot be captured by conventional linear models with constant parameters.

Linear models, which allow infrequent structural changes in the parameters (see [1–4] or non-linear models (see [5]) can help to solve these problems.

In recent years there has been considerable interest in non-linear modelling of economic time series. Examples of these models are threshold, smooth transition autoregressive, Markov-switching models and neural networks.

Multi regime forecasting models, which allows for a smooth transition from one linear regime to the other were proposed by Bacon and Watts [6]. Threshold autoregressive models (TAR) were introduced by Tong [7] and extensively discussed in [8–10]. TAR is one of nonlinear time series modelling class. A basic feature of these models is that
they allow for some sort or regime-switching have been applied to describe the different
dynamic behaviour of time series.

There are various forms of TAR models. Basically they are linear autoregressive
models in which the linear relationships varies over regimes depending on the threshold
values. If the regime is determined by the past values of the time series, the model is
described as self-exciting. We explore this class of non-linear models, named the self-
exciting threshold autoregressive models (SETAR models) in this paper. SETAR models
are sufficiently flexible to allow different relationships to apply over separate regimes.
These models are good tool for modelling time series with unstable means, variances and
complicated structure.

In this paper adapted SETAR model is proposed for real time series with difficult
structure, for which standard linear models did not present expected results. We suggest
to test a non-linearity of such time series and if it was confirmed, then to use adapted
SETAR model for these time series modelling.

The paper is organized as follows. First, in Section 2 we introduce a SETAR model. In
Section 3 we provide details on the model specification and parameter estimation proce-
dure. Out-of-sample forecasting is described in Section 4. Time series used for modelling
are overviewed in Section 5. This section also contains the empirical results of non-linear
modelling of Lithuanian macroeconomic indicators and out-of-sample forecasting results.
And finally, Section 6 contains some concluding remarks and prepositions.

2 Self-exciting threshold autoregressive model

Suppose that a univariate series \(\{ y_t \} = \{ y_t, \ t = 1, 2, \ldots \} \) follows the two-regime self-
exciting threshold autoregressive model SETAR \((2 p_1, p_2)\):

\[
y_t = \left(1 - I(y_{t-d} \leq r)\right) \left(\alpha_{1,0} + \sum_{i=1}^{p_1} \alpha_{1,i} y_{t-i} + \epsilon_{1,t}\right) \\
+ I(y_{t-d} > r) \left(\alpha_{2,0} + \sum_{i=1}^{p_2} \alpha_{2,i} y_{t-i} + \epsilon_{2,t}\right),
\]

where \(I(y_{t-d} > r) = 1 \) if \(y_{t-d} > r \) and zero otherwise. \(\epsilon_{1,t} \) and \(\epsilon_{2,t} \) are sequences
of independent and identically distributed random variables. Positive integer \(d \) is delay
parameter – transition variable that governs changes in regime. \(r \) is the threshold value.
For a given threshold \(r \) and the position of \(y_{t-d} \) with respect to this threshold \(r \), the time
series \(\{ y_t \} \) follows AR\((p_1)\) model or an AR\((p_2)\) model. The model parameters are \(\alpha_{i,j} \),
for \(i = 1, 2 \) and \(j = 1, \ldots, p_k \), \(k = 1 \) or \(2 \), the delay \(d \) and threshold \(r \).

3 Adapted SETAR model specification and parameter estimation
procedure

Class of threshold autoregressive models (TAR) has not been widely used in applications
because the main problems in the analysis of SETAR models were selecting the correct
Adapted SETAR model for Lithuanian HCPI time series

order of the model and complicated identification of threshold value and delay parameters. Some authors have proposed different ways to avoid these problems. Currently the Akaike information criterion is usually used in practical researches. AIC is defined \[9\] as the sum of AIC’s for the AR models in the two regimes for two-regime SETAR model. This approach is used and in this article. Usage of other criteria can be also found in literature: Bayesian information criterion (BIC) (see [11]), Bootstrap criteria (see [12]).

In this work adapted SETAR model was used, which can assess the significance of unobserved time series components. Proposed adapted SETAR model can adequately capture non-linear features and eliminate an impact of “interfering” components.

Important subject in adapted SETAR modelling is choosing an appropriate model from a large set of candidate models. Proposed algorithm for model selection is presented in Fig. 1. For simplicity of presentation, but without loss of generality, the details of proposed algorithm are derived for a two-regime SETAR model in this section. The methodology used is as follows:

Steps 1–4. Before considering a series appropriate for modelling, several prior corrections or adjustments may be needed. Most of real time series are affected by sudden unexpected changes, structural variations of the series that can only be observed on very long time periods, fluctuations observed during the year, which repeat themselves on a more or less regular basis from one year to the other, or by other effects, that cannot be explained by the most commonly used time series models. First of all we propose to perform separation of “interfering” time series components for real time series \(\{Y_t\} = \{Y_t, t = 1, 2, \ldots, N\} \):

\[
Y_t = \omega_t' \beta + C_t' \eta + \sum_{j=1}^{k} \varphi_j \lambda_j I_{jt} (t_j) + \sum_{i=1}^{l} U_{t,i} + y_t, \tag{2}
\]

There \(\omega_t = (\omega_{t,1}, \ldots, \omega_{t,n})' \) denotes \(n \) regression or intervention variables, \(\beta = (\beta_1, \ldots, \beta_n)' \) is a vector of regression coefficients, \(C_t' \) denotes the matrix with columns the calendar effect variables (trading day, Easter effect, leap year effect, holidays), \(\eta \) is a vector of associated coefficients. \(I_{jt} (t_j) \) – an indicator variable for the possible presence of an outlier at period \(t_j \); \(\lambda_j \) captures the transmission of the \(j \)th outlier effect and \(\varphi_j \) denotes the coefficient of the outlier in the multiple regression model with \(k \) outliers. \(\{U_{t,i}\} \) is an unobserved time series components (seasonal component, trend or cycle), \(\{y_t\} \) follows a SETAR process.

Parametric [13] or nonparametric methods [14] can be used for seasonal, trend or cycle component detection. Comparative analysis of these methods by using simulated series was done. This analysis showed that both methods are suitable for unobserved components detection. In order not to expand the scope of this article the details of this analysis will not be described here.

Finally, before SETAR modelling, we suggest to test non-linearity for \(\{Y_t\} \) and if it is confirmed, then to check regime-switching nonlinearity.

Ramsey regression equation specification error test (RESET) can be chosen for non-linearity detection. The test is devised for a general form of misspecification. This is executed by estimating the following model:

\[
y = \phi x + \phi_1 x^2 + \ldots + \phi_{k-1} x^k + \epsilon, \tag{3}
\]

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 1, 27–46
where x is an exploratory variables (autoregression variables in our case), $\phi, \phi_1, \ldots, \phi_k$ are parameters. Then testing null hypothesis whether ϕ_1, \ldots, ϕ_k are zero, by a means of a F-test. If the null-hypothesis that all coefficients of the non-linear terms are zero is rejected, then the model has mis-specification.

RESET is popular test for identification of general form of nonlinearity. But it can not answer to question whether this nonlinearity is threshold. Other tests for threshold nonlinearity testing must be chosen. The class SETAR(1) is the class of linear autoregressions. Thus testing for linearity against the alternative of a SETAR model is discussed in [15] and [16].

A solution is to use estimates of the SETAR model. F-statistic was proposed for testing of null hypothesis restrictions:

$$F_{jk} = N \left(\frac{S_j - S_k}{S_k} \right),$$

here S_j is the sum of squared residuals of SETAR(j) model (under the null hypothesis of linearity) and accordingly S_k – of SETAR(k). For more details see [16].

Similarly null hypothesis of the SETAR(2) model versus alternative of SETAR(m) for some $m > 2$ can be tested for right form of non-linearity identification. Scatterplots are also informative tool for identification of nonlinearity and number of regimes.

Steps 5–6. User must to fix maximum model (p_1, p_2) and delay (d) parameters. They can not be larger than $N - 1$, there N is the modelled time series length and must be such as to allow modelling of sufficient time series observations. Moreover model and delay parameters can acquire only integer values. We recommend to take attention to time series length before fixing delay parameter. Choosing of quite small d is appropriate for insufficiently long time series.

Steps 7–8. Threshold value r must be selected. The set of allowable threshold values r should be such that each regime contains enough observations for the estimator defined above to produce reliable estimates of autoregressive parameters. A popular choice of r is to require that each regime contains at least a fraction π of the observations, that is $r \in \{ y_{\lfloor \pi(N-d) \rfloor} \leq r \leq y_{\lfloor (1-\pi)(N-d) \rfloor}, \}$. where $y(0), y(1), \ldots, y(N-d)$ denote the order statistics of the threshold variable y_{N-d}. $y(0) \leq y(1) \leq \ldots \leq y(N-d)$ and $[\cdot]$ denotes integer part. A safe choice for this fraction appears to be 0.15 [17].

Steps 9–17. These steps allow to locate the threshold value r and delay parameter d selected in the previous step. Threshold value r can vary over a set of possible values while delay parameter d has to remain fixed. Then vice versa – r must be fixed and d can vary. Parameters are identified by calculating Akaike information criterion. (AIC). AIC is used and for a model selection. AIC is defined [9] as the sum of AIC’s for the AR models in the two regimes for two-regime SETAR model:

$$\text{AIC}(p_1, p_2) = n_1 \ln \hat{\sigma}_1^2 + n_2 \ln \hat{\sigma}_2^2 + 2(p_1 + 1) + 2(p_2 + 1)$$

there $\hat{\sigma}_j^2, j = 1, 2$ is the variance of the residuals in the jth regime. AIC must attains its minimum value for selected r and d.

www.mii.lt/NA
Adapted SETAR model for Lithuanian HCPI time series

Fig. 1. ASETAR algorithm.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 1, 27–46
Steps 18–19. Once the threshold value and delay parameter are fixed, the SETAR model parameters can be estimated by using standard regression methods, for example ordinary least squares (OLS) method.

Assumption that the means and variances of variables are constant over the time within regime must be done (otherwise OLS method may give misleading inferences). Therefore unit root hypothesis must be tested within regimes before model parameters estimation. It is not necessary to test unit roots for \(Y_t \) and \(y_t \), because unit root can be mistakenly identified in the presence of threshold determined regime switching (see [18]).

4 Out-of sample forecasting

Estimating of forecasts from nonlinear models is considerably more complicated than estimating from linear models. But there are some possibilities of out-of-sample forecasting of the nonlinear SETAR model: one-step-ahead, multi-step-ahead, the normal forecast error, the Monte Carlo method, a special case of Monte Carlo method – the Skeleton method, the Bootstrap method and others. Comprehensive presentation of these methods and forecasting results require quite a lot of space of this article. So we briefly outline only two forecasting methods: one-step-ahead and multi-step-ahead methods.

One-step-ahead method uses the only actual data for forecasting. It’s means that we do not have to re-estimate the model every time when we added new data in the sample series. Denote

\[
\hat{y}_{t+1} = E[y_{t+1} \mid \Omega_t] = F(\{y_t\}; \alpha)
\]

as the optimal one-step-ahead forecast. Here \(F(\{y_t\}; \alpha) \) is nonlinear function which follows SETAR process (1); \(\Omega_t \) is the history of the time series up to observation at time \(t \).

Estimation of more than one period ahead forecast rise some problems, because the linear conditional expectation operator \(E \) can not be interchanged with the nonlinear operator \(F \) (for more details see [17]).

The optimal \(h \)-step-ahead forecast can be obtained as

\[
\hat{y}_{t+h} = E[y_{t+h} \mid \Omega_t] = F(\{y_{t+h-1}\}; \alpha)
\]

(see [18]). Original data and forecasted values of previous \(h - 1 \) periods are used for calculation of forecast at time \(h \).

5 Data and results

5.1 Initial data and preadjustment

The series under this study are harmonised consumer price index (HCPI) by classification of individual consumption by purpose (COICOP/HICP) time series of Lithuania, covering the period from January of 1996 to December of 2009 (monthly data, 168 observations). Time series frequency is monthly. A set of twelve HCPI index groups are a subject to investigation of this article: Food and non-alcoholic beverages; Alcoholic beverages, tobacco; Clothing and footwear; Housing, water, electricity, gas and other fuels; Furnishings, household equipment and routine maintenance of the house; Health;
Transport; Communication; Recreation and culture; Education; Restaurants and hotels; Miscellaneous goods and services. The natural logarithms of the original series were analysed. The data were obtained from the databases of statistics Lithuania.

Permanent changes took place in Lithuania’s economy over the past years. Most of Lithuanian time series have outliers, turning points, structural changes and breaks, significant seasonality. Accordingly, the time series of statistical indicators are complicated both in nature and their evaluation methods. Another problem with Lithuanian time series is that unfortunately they aren’t sufficiently long.

Due to these problems, as shown in the model selection algorithm, prior treatment of time series is proposed before the SETAR modelling. Refusing of time series pre-adjustment can lead to model misspecification, biased parameter estimation. Important pre-adjustments are the outlier correction and the removal of calendar effects.

Most of Lithuanian HCPI time series have significant outliers. All types of outliers (additive, transitory changes, level shifts) were fixed by using specific regression variables (see [14]). Easter effect was significant only for index of Furnishings, household equipment and routine maintenance of the house. A working day effect wasn’t significant for all HCPI time series. All HCPI series had significant seasonal component and following by the proposed adapted SETAR model algorithm time series were detrended and deseasonalized by using parametric method (see [13]) in the Step 3.

5.2 Empirical model selection results

In order to detect nonlinearities in HCPI, we performed the RESET test. It is composed for the null hypothesis of linearity. It tests whether non-linear combinations of the estimated values help explain the endogenous variable and if non-linear combinations of the explanatory variables have any power in explaining the endogenous variable, then the model is mis-specified.

Table 1 reports the results of this test: value of RESET statistics and its p-value, powers (h) of the variables that should be included in the test and lag order under the null hypothesis of linearity. The RESET test has been computed in the modified form. The modified RESET test requires that all the initial regressors enter linearly and up to a certain power h in the auxiliary regression (for details, see [19]). Only results with the most significant RESET statistic values are shown in Table 1.

As we mentioned above, RESET test is devised for general form of misspecification and it can not detect threshold nonlinearity. For this purpose hypothesis of linear model versus SETAR(2) was tested. Value of F-statistic test for linear model versus SETAR(2) are also presented in the Table 1. F-statistics for SETAR(3) models were not estimated, because analysed HCPI time series are sufficient short for SETAR(3) type modelling.

Nonlinearities in HCPI of Alcoholic beverages, tobacco, of Clothing and footwear, of Health, of Recreation and culture and of Restaurants and hotels time series were not obtained by using RESET test. F test results are quite similar, except for Health and Recreation and culture groups, where SETAR type nonlinearity are significant. We decided to use all HCPI time series for this study, on purpose to test adapted SETER models algorithm for such time series.
Table 1. Nonlinearity test results.

HCPI group	RESET statistics	p-value	Power Lag order	F-statistics SETAR(1) vs SETAR(2)
01 Food and non-alcoholic beverages	8.4458	.0042	2 1	14.1521
02 Alcoholic beverages, tobacco	2.0390	.1553	3 8	3.8307
03 Clothing and footwear	2.6575	.1051	3 11	3.8307
04 Housing, water, electricity, gas and other fuels	6.5197	.0117	2 12	10.4923
05 Furnishings, household equipment and routine maintenance of the house	5.5619	.0196	4 12	5.7670
06 Health	2.4429	.1201	3 11	6.6974
07 Transport	5.1110	.0251	2 1	7.1669
08 Communication	4.1340	.0437	3 2	10.4452
09 Recreation and culture	2.0849	.1508	2 11	8.3700
10 Education	7.2487	.0078	2 1	21.6340
11 Restaurants and hotels	2.6015	.1087	4 4	5.9740
12 Miscellaneous goods and services	4.6926	.0318	2 1	8.2807

The selected SETAR model specifications are presented in Appendix A. The models show clear evidence that Lithuanian HCPI by classification of individual consumption by purpose time series are characterised by nonlinearities. Regime switching plots are presented in Appendix B.

In order to compare the non-linear adapted SETAR model with a linear model, we choose the ARIMA model to fit the data.

Box–Jenkins approach for building ARIMA models was used. ARIMA model identification was made depending on autocorrelation function (ACF) and partial autocorrelation function (PACF). Models were selected by using Akaike information criterion. AIC was chosen for comparability and because our sample is quite small. Under unstable conditions such as small sample and large noise levels Akaike information criterion outperforms Bayesian information criteria (BIC) (see Acquah H., 2010). Residuals of estimated models were tested for normality, Ljung-Box and Box-Pierce tests were done and ACF/PACF also checked.

Nonlinearity of analysed time series were tested and parameters of SETAR and ARIMA models were estimated using R package.

For model comparison we use the mean absolute percentage error (MAPE)

$$MAPE = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{\hat{y}_t - y_t}{y_t} \right| \cdot 100$$

and root mean square prediction error (RMSPE)

$$RMSPE = \sqrt{\frac{1}{N} \sum_{t=1}^{N} \left(\frac{\hat{y}_t - y_t}{y_t} \right)^2} \cdot 100,$$
here N is the number of observations, \hat{y}_t is the estimated value. The results are presented in Table 2.

Table 2. Adapted SETAR model and ARIMA model errors, pct.

HCPI group	SETAR			ARIMA		
	Model type	MAPE	RMSPE	Model type	MAPE	RMSPE
01 Food and non-alcohics beverages	(2 2 2)	0.0889	0.1137	(2 2 0)	0.2146	0.2760
02 Alcoholic beverages, tobacco	(2 3 3)	0.0343	0.0466	(0 2 1)	0.1911	0.3108
03 Clothing and footwear	(2 3 3)	0.0456	0.0607	(1 2 0)	0.1663	0.2340
04 Housing, water, electricity, gas and other fuels	(2 2 3)	0.1380	0.1981	(1 2 0)	0.4198	0.6252
05 Furnishings, household equipment and routine maintenance of the house	(2 3 3)	0.0264	0.0331	(0 2 1)	0.0804	0.1041
06 Health	(2 2 2)	0.0501	0.0664	(1 2 0)	0.1309	0.1795
07 Transport	(2 3 3)	0.3438	0.4271	(2 2 0)	0.7483	0.9328
08 Communication	(2 2 2)	0.0900	0.1164	(2 2 0)	0.2197	0.2870
09 Recreation and culture	(2 2 2)	0.0596	0.0753	(1 2 0)	0.1327	0.1770
10 Education	(2 3 2)	0.0830	0.1345	(1 2 0)	0.2848	0.4077
11 Restaurants and hotels	(2 2 3)	0.0715	0.0916	(0 2 1)	0.1757	0.2420
12 Miscellaneous goods and services	(2 3 2)	0.0816	0.1053	(1 2 0)	0.2190	0.2942

According to our results shown in the Table 2 below, the preferred adapted SETAR model better fits the data than the preferred ARIMA model for most of HCPI time series of Lithuania. Adapted SETAR model achieved results that are better and for some series, the nonlinearity was not confirmed with a RESET test. Probably it is because RESET test is devised for a generic form of misspecification. For detailed analysis of SETAR type nonlinearities other tests must be chosen.

On purpose not to extend the scope of this article, here we show estimated models graphs only for two HCPI groups – for Recreation and culture group and for Miscellaneous goods and services group. Figures 2, 3 shows evaluated adapted SETAR and ARIMA models for every observation within the sample.

The adapted SETAR model more accurately describes real data than the ARIMA model, in the sense that the deviations of estimated values are smaller.

Graphs of other HCPI groups are presented in Appendix C.

Furthermore, analysis of SETAR and ARIMA models errors showed that SETAR model is relatively more stable than the ARIMA model for real time series with complex behaviour. Range of errors of SETAR model is significantly smaller than range of ARIMA model errors. Graphs of errors are presented in Appendix D.
5.3 Out-of-sample forecasting results

As we mentioned above, one-step-ahead and multi-step-ahead methods were used for out-of-sample forecasting. Data were forecasted for 12 periods (one year) ahead. The results were compared with real monthly HCPI of 2010 year. ARIMA model forecasts were also estimated for comparison. MAPE and RMSPE of out-of-sample forecasting presented in Table 3. The lowest values of MAPE and RMSPE are in bold.

Results in the Table 3 shows that there are no strong differences between the out-of-sample forecasting methods errors, but better ARIMA forecasts obtained only for one time series – Clothing and footwear. MAPE of Alcoholic beverages, tobacco time series forecasts is lower by using ARIMA, but RMSPE is lower by using SETAR multi-step-ahead method. Greatest difference is seen in miscellaneous goods and services time series – errors obtained by using SETAR multi-step-ahead methods are more than five times
lower than by using ARIMA method. However there is a clear dependence between lowest MAPE (or RMSPE) and F-statistic of test linear model versus SETAR(2). Linear models show the best results for time series with lowest F-statistic values, SETAR multi-step-ahead method is preferable for time series with highest F-statistics values and SETAR one-step-ahead method is valuable for rest time series (with a middle F-statistics values).

Table 3. Out-of-sample forecasting errors, pct.

HCPI group	SETAR	ARIMA							
	Model	One-step-ahead	Multi-step-ahead	Model	type	MAPE	RMSPE	MAPE	RMSPE
01 Food and nonalcoholic beverages	(2 2 2)	3.0543	3.5453	3.0535	3.5447	(2 2 0)	3.0838	3.5747	
02 Alcoholic beverages, tobacco	(2 3 3)	0.7885	1.0213	0.7881	1.0207	(0 2 1)	0.7854	1.0233	
03 Clothing and footwear	(2 3 3)	3.8221	4.2440	3.8257	4.3493	(1 2 0)	3.4361	3.9385	
04 Housing, water, electricity, gas and other fuels	(2 2 3)	5.3047	5.7144	5.3004	5.7099	(1 2 0)	5.3616	5.7542	
05 Furnishings, household equipment and routine maintenance of the house	(2 3 3)	0.5829	0.6780	0.5829	0.6780	(2 2 1)	0.5865	0.6804	
06 Health	(2 2 2)	1.5168	1.7569	1.5174	1.7576	(1 2 0)	1.8618	2.1055	
07 Transport	(2 3 3)	1.1521	1.3830	1.1523	1.3836	(2 2 0)	1.8875	2.4789	
08 Communication	(2 2 2)	2.4277	2.7128	2.4274	2.7127	(2 2 0)	2.8424	3.1468	
09 Recreation and culture	(2 2 2)	2.5065	2.5447	2.5066	2.5448	(1 2 0)	3.2171	3.2988	
10 Education	(2 3 2)	4.0937	4.9063	4.0931	4.9057	(1 2 0)	4.2021	5.0285	
11 Restaurants and hotels	(2 3 3)	0.9181	1.1205	0.9178	1.1202	(0 2 1)	0.9237	1.1258	
12 Miscellaneous goods and services	(2 3 2)	0.6869	0.7397	0.6860	0.7388	(1 2 0)	3.6385	4.2798	

6 Concluding remarks

Most of Lithuanian time series are complex in their nature: it is difficult to estimate trend component, significant fluctuations observed during the year, they often have a few additive outlier, transitory change level shift or ramps. Analysis of such time series showed that elimination of these components usually leaves time series with non-linear behaviour. Therefore, linear models can not give the expected results.

In this paper proposed adapted SETAR model for time series which can assess the significance of unobserved time series components and capture nonlinearity of time series simultaneously. Furthermore, algorithm and selection procedure for adapted SETAR modelling has been presented.
Considering the nonlinearities of Lithuanian HCPI time series the adapted SETAR model was proposed for modelling of these time series. Estimated results are compared with a standard ARIMA model. The adapted SETAR model have a good in-sample and out-of-sample fit compared to linear models and performs more accurate modelling results for most of analysed time series. A practical example shows that the proposed algorithm allows for a relatively accurate description of time series with difficult structure. The proposed model is appropriate to use in modelling of real time series with complex behaviour.

A Appendix. Models specification

Table 4. SETAR models specification.

SETAR	Coefficients	t-value	
01 Food and non-alcoholic beverages	$r = -0.001321$, $d = 1$	Residuals: $\sigma^2 = 1.456e-06$, AIC = −2236	
Regime 1	$\alpha_{1,0}$	0.0012039480	3.5962
	$\alpha_{1,1}$	-0.6083981450	−4.1591
Regime 2	$\alpha_{2,0}$	-0.0002239026	−2.1248
	$\alpha_{2,1}$	-0.6761263532	−8.5952
02 Alcoholic beverages, tobacco	$r = -0.0008643$, $d = 1$	Residuals: $\sigma^2 = 2.831e-07$, AIC = −2506	
Regime 1	$\alpha_{1,0}$	-0.0002057731	−0.7124
	$\alpha_{1,1}$	-1.6221727546	−9.2993
	$\alpha_{1,2}$	-1.0618182104	−5.5055
Regime 2	$\alpha_{2,0}$	$-3.456317e-05$	−0.7109
	$\alpha_{2,1}$	$-9.655383e-01$	−13.1450
	$\alpha_{2,2}$	$-2.547517e-01$	−3.1458
03 Clothing and footwear	$r = 0.0002846$, $d = 1$	Residuals: $\sigma^2 = 3.181e-07$, AIC = −2486	
Regime 1	$\alpha_{1,0}$	-0.0001012661	−1.5988
	$\alpha_{1,1}$	-0.8752428211	−11.1250
	$\alpha_{1,2}$	-0.4306680029	−4.2287
Regime 2	$\alpha_{2,0}$	-0.0002173414	−1.4592
	$\alpha_{2,1}$	-1.0163095643	−7.2433
	$\alpha_{2,2}$	-0.5135607943	−3.2459
04 Housing, water, electricity, gas and other fuels	$r = -0.002226$, $d = 1$	Residuals: $\sigma^2 = 3.781e-06$, AIC = −2075	
Regime 1	$\alpha_{1,0}$	0.0024159830	4.6720
	$\alpha_{1,1}$	-0.6445811930	−4.6469
Regime	Coefficients	t-value	
--------	--------------	---------	
Regime 2	$\alpha_{2,0}$	-0.0001112684	-0.6347
	$\alpha_{2,1}$	-0.8126394166	-11.1550
	$\alpha_{2,2}$	-0.5158333462	-6.1125

05 Furnishings, household equipment and routine maintenance of the house

$$r = -0.0002725, \ d = 1$$

Residuals: $\sigma^2 = 1.103e - 07, \ AIC = -2663$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	-0.0001126799	-0.8281
$\alpha_{1,1}$	-0.6275533966	-4.6399
$\alpha_{1,2}$	-0.5199540370	-2.1064

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	-2.383143e-05	-0.6409
$\alpha_{2,1}$	-7.950423e-01	-9.0729
$\alpha_{2,2}$	-2.685457e-01	-2.5776

06 Health

$$r = -0.0004662, \ d = 0$$

Residuals: $\sigma^2 = 4.361e - 07, \ AIC = -2438$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	-0.0003329224	-1.8259
$\alpha_{1,1}$	-0.3108870673	-1.6835

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	-0.0004793827	-3.8626
$\alpha_{2,1}$	-0.5314376157	-7.0065

07 Transport

$$r = -0.004508, \ d = 1$$

Residuals: $\sigma^2 = 1.683e - 05, \ AIC = -1826$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	0.0044665070	4.4104
$\alpha_{1,1}$	-0.5742683750	-2.9868

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	0.0003811062	0.9805
$\alpha_{2,1}$	-0.6748489982	-8.9148
$\alpha_{2,2}$	-0.4327181118	-4.3506

08 Communication

$$r = -0.001198, \ d = 0$$

Residuals: $\sigma^2 = 1.217e - 06, \ AIC = -2266$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	-0.0020796470	-2.7685
$\alpha_{1,1}$	-1.166576320	-3.4192

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	-0.0001881815	-1.9643
$\alpha_{2,1}$	-0.4659240738	-4.8597

09 Recreation and culture

$$r = -0.0005073, \ d = 0$$

Residuals: $\sigma^2 = 6.027e - 07, \ AIC = -2384$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	-0.0004371123	-1.1773
$\alpha_{1,1}$	-1.2622289072	-3.6243
Regime	Coefficients	t-value
--------	--------------	-----------
Regime 2	$\alpha_{2,0}$ = 0.0006235662	6.9811
	$\alpha_{2,1}$ = -0.4734874292	-5.0142

10 Education
$r = 0.0004024, d = 1$
Residuals: $\sigma^2 = 1.980e - 06, \text{AIC} = -2183$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	0.0001074849	0.7230
$\alpha_{1,1}$	-0.6612599177	-8.4164
$\alpha_{1,2}$	-0.3715715094	-3.1676

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	-0.000623708	-2.7291
$\alpha_{2,1}$	-0.124767848	-0.8233

11 Restaurants and hotels
$r = -0.0001142, d = 0$
Residuals: $\sigma^2 = 8.389e - 07, \text{AIC} = -2327$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	-1.818863e-05	-0.0919
$\alpha_{1,1}$	-6.098142e-01	-4.1601

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	0.0003628096	2.6708
$\alpha_{2,1}$	-0.9513979917	-7.3238
$\alpha_{2,2}$	-0.4500337286	-5.2651

12 Miscellaneous goods and services
$r = 0.0007705, d = 1$
Residuals: $\sigma^2 = 1.052e - 06, \text{AIC} = -2289$

Regime 1	Coefficients	t-value
$\alpha_{1,0}$	0.0003265502	3.0956
$\alpha_{1,1}$	-0.6114431815	-7.6719
$\alpha_{1,2}$	-0.4733193410	-4.1515

Regime 2	Coefficients	t-value
$\alpha_{2,0}$	-0.0005396149	-3.3403
$\alpha_{2,1}$	-0.4003480709	-2.8540

B Appendix. Regime switching plots

![Fig. 4. 01 Food and non-alcoholic beverages.](image1)

![Fig. 5. 02 Alcoholic beverages, tobacco.](image2)

www.mii.lt/NA
Adapted SETAR model for Lithuanian HCPI time series

Fig. 6. 03 Clothing and footwear.
Fig. 7. 04 Housing, water, electricity etc.

Fig. 8. 05 Furnishings etc.
Fig. 9. 06 Health.

Fig. 10. 07 Transport.
Fig. 11. 08 Communication.

Fig. 12. 09 Recreation and culture.
Fig. 13. 10 Education.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 1, 27–46
C Appendix. Evaluated adapted SETAR and ARIMA models

Fig. 14. 11 Restaurants and hotels.
Fig. 15. Miscellaneous goods and services.

Fig. 16. 01 Food and non-alcoholic beverages.
Fig. 17. 02 Alcoholic beverages, tobacco.

Fig. 18. 03 Clothing and footwear.
Fig. 19. 04 Housing, water, electricity etc.

Fig. 20. 05 Furnishings etc.
Fig. 21. 06 Health.

www.mii.lt/NA
D Appendix. SETAR and ARIMA models errors

Fig. 22. 07 Transport.

Fig. 23. 08 Communication.

Fig. 24. 10 Education.

Fig. 25. 11 Restaurants and hotels.

Fig. 26. 01 Food and non-alcoholic beverages.

Fig. 27. 02 Alcoholic beverages, tobacco.

Fig. 28. 03 Clothing and footwear.

Fig. 29. 04 Housing, water etc.
Fig. 30. 05 Furnishings etc.

Fig. 31. 06 Health.

Fig. 32. 07 Transport.

Fig. 33. 08 Communication.

Fig. 34. 09 Recreation and culture.

Fig. 35. 10 Education.

Fig. 36. 11 Restaurants and hotels.

Fig. 37. 12 Miscellaneous goods and services.
Adapted SETAR model for Lithuanian HCPI time series

References

1. J. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, *Econometrica*, 66, pp. 47–78, 1998.

2. S.E. Culver, D.H. Papell, Is there a unit root in the inflation rate? Evidence from sequential break and panel data models, *J. Appl. Econom.*, 12, pp. 435–444, 1997.

3. J. Emerson, K. Chihwa, Testing for structural change in panel data: GDP growth, consumption growth, and productivity growth, *Economics Bulletin*, 3(14), pp. 1–12, 2006.

4. P. Perron, Q. Zhongjun, Estimating and testing structural changes in multivariate regressions, *Econometrica*, 75(2), pp. 459–502, 2007.

5. Ch. Chatfield, *The Analysis of Time Series: An Introduction*, CRC Press, Boca Raton, FL, 2004.

6. D.W. Bacon, D.G. Watts, Estimating the transition between two intersecting lines, *Biometrica*, 58, pp. 525–534, 1971.

7. H. Tong, On a threshold model, in: C.H. Chen (Ed.), *Pattern Recognition and Signal Processing*, Sijthoff and Noordhoff, Amsterdam, 1978, pp. 101–141.

8. H. Tong, *Threshold Models in Non-Linear Time Series Analysis*, Springer-Verlag, New York, 1983.

9. H. Tong, *Non-Linear Time Series: A Dynamical Systems Approach*, Oxford Univ. Press, Oxford, 1990.

10. H. Tong, A personal overview of non-linear time series analysis from a chaos perspective, *Scand. J. Stat.*, 22, pp. 299–445, 1995.

11. B. Siliverstovs, D. Dijk, Forecasting industrial production with linear, nonlinear, and structural change models, Econometric Institute Report, No. EI 2003-16, Erasmus School of Economics, Rotterdam, 2003.

12. J. Öhrvic, G. Schoier, SETAR model selection – A Bootstrap approach, *Comput. Stat.*, 20(4), pp. 559–573, 2005.

13. V. Gòmez, A. Maravall, Seasonal adjustment and signal extraction in economic time series, in: *A Course in Time Series Analysis*, J. Wiley, New York, 2001, Chapt. 8, pp. 202–247.

14. D.F. Findley, B.C. Monsell, W.R. Bell, M.C. Otto, B.Ch. Chen, New capabilities and methods of the X-12-ARIMA seasonal adjustment program, *J. Bus. Econ. Stat.*, 16(2), pp. 127–152, 1998.

15. K.S. Chan, Testing for threshold autoregression, *Ann. Stat.*, 18, pp. 1886–1894, 1990.

16. E.H. Hansen, Testing for linearity, *Journal of Economic Surveys*, 13(5), pp. 551–575, 1999.

17. P.H. Franses, D. van Dijk, *Non-Linear Time Series Models in Empirical Finance*, Cambridge Univ. Press, Cambridge, 2000.

18. H. Feng, J. Liu, A SETAR model for canadian GDP: Non-linearities and forecast comparisons, *Appl. Econ.*, 35(18), pp. 1957–1964, 2003.
19. J.G. Thursby, P. Schmidt, Some properties of tests for the specification error in a linear regression model, *J. Am. Stat. Assoc.*, **72**, pp. 635–641, 1977.

20. A.F. Burns, W.C. Mitchell, *Measuring Business Cycles*, National Bureau of Econometric Research, New York, 1946.

21. R. Dacco, S. Satchell, Why do regime-switching models forecast so badly?, *J. Forecast.*, **18**, pp. 1–16, 1999.

22. W. Mitchell, *Business Cycles: The Problem and Its Setting*, National Bureau of Econometric Research, New York, 1927.

23. R.S. Tsay, Testing and modelling threshold autoregressive processes, *J. Am. Stat. Assoc.*, **84**(405), pp. 231–240, 1989.