Ultrasound as the first imaging method in severe lung disease. Considerations about a case of pulmonary tuberculosis and review of the literature

Iulia Gavrilă1, Radu Badea1,2, Claudia Jude3, Mihai Adrian Socaciuc, Mihai Comșa4, Alexandru Florin Badea5

1Ultrasound Department, 3rd Medical Clinic, “Prof. Dr. Octavian Fodor”, Regional Institute of Gastroenterology and Hepatology, 2Imaging Department, School of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 3Department of Internal Medicine, 3rd Medical Clinic, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 4Radiology Department, 3rd Medical Clinic, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 5Department of Anatomy, “Iuliu Hatieganu” UMF Cluj-Napoca

Introduction

Tuberculosis (TBC) is the 9th cause of death worldwide. In Romania the incidence is 4 times higher than the Europe average and the low healing rate determines the constant increase of the patient reservoir. TBC diagnosis is based on classical analyses and less on pleuro-pulmonary and thoracic ultrasonography (TUS), although the utility of US in assessing thoraco-pleuro-pulmonary pathology, chest wall conditions and sub-centimetric tumors in contact with the thoracic wall is largely recognized [1,2].

Case report

A 47-year-old male patient, heavy smoker, was referred to the gastroenterology department by the general practitioner for investigation due to a severe anemic syndrome (pallor, skin tightening, asthenia) and weight loss (7 kg in 2 months). The steatacustic lung examination found fine crackels in the bilateral basal areas. Abdominal palpation was within normal limits. Laboratory samples revealed: moderate normocytic anemia, hyposideremia, mild thrombocytosis, lymphopenia, high erythocyte sedimentation rate and C-reactive protein, normal range of CEA and CA19-9 tumor markers.
In such a patient, with general non-specific complaints and no significant objective signs, in our gastroenterology department, the current mode of initiating investigations is ultrasound (US) centered on the abdomen.

Abdominal US, performed as a “primary imaging” procedure, excluded abdominal tumor pathology (including digestive tube, liver, pancreas, spleen, kidneys), but identified a small perirenal fluid accumulation considered to be in relation with a severe hypoproteinemia. The evaluation of costal-diaphragmatic sinuses in inspiration/expiration phases (current procedure at the US examination of the abdomen) revealed fluid in both pleural sinuses (fig 1a-d). As a result, the investigation was extended to the lungs. Evaluation of pleural areas identified pleural thickening and anfractuous surface, interpreted as erosions/exulcerations expressed by anomalies of the distal reverberations (called A and B lines). The magnitude and extension of pleuro-pulmonary changes were considered relevant for a significant respiratory disorder of high severity (fig 1e). An emergency chest X-ray was indicated.

Pulmonary radiography identified apical pulmonary opacities, bilateral pleural collection, raising the suspicion of an infectious bacillary infection (fig 1f). The diagnosis was confirmed by the pneumologist.

Discussions

US is the imaging procedure recently introduced into the pleuropulmonary exploration portfolio. The benefits of the US are well known: high image accuracy; noninvasiveness; low cost; repeatability; accessibility; possibility to be used in the emergency department; “real time” imaging; substitution in many situations of costly/risky procedures; “friendly” (painlessness) procedure largely recommended for infants/pregnant women; higher sensitivity than pulmonary X-ray in detecting minor peripheral lesions. Nevertheless, these qualities have not led to the use of US at its maximum potential [1,3-5]. US allows exploration of the pleura, pericardium, spleen, abdominal cavity, lymph nodes (simultaneously affected, suggests TBC) and it is superior to pulmonary X-ray in assessing lung changes over time, in response to therapy [1,6].

The TUS accuracy and efficacy in detecting pleural, lung parenchyma and thoracic wall anomalies are known [7]: for the pleura the method identifies effusions, thickening and tumors. The nature of pleural fluids differs according to the echogeneity and echostructure; an anechoic, homogeneous space between the parietal and visceral pleura indicates pleural collection [2]. A non-septated anechoic space indicates a transudate (in heart failure, liver cirrhosis, hypoalbuminemia); an anechoic space with hyperechoic structures floating inside indicates the exudate from the tuberculous, parapneumonic or paraneoplastic effusions [8-10]; hyperechoic collections indicate hemorrhages/empyema [11,12]. Pleural thickening appears like a hypoechogenic enlargement of the pleura and it is associated with the presence of scars, fibrosis, empyema and pleuritis [12]. Pleural thickening >1 cm or nodularity predict malignancy with high specificity in areas with low TBC prevalence [13]. Benign pleural tumors are rare (5%) and appear as round/oval, well defined, encapsulated and hypoechogenic [14]. Irregular pleural thickening and effusions, as well as infiltration of adjacent structures, represent US aspects of pleural malignant tumors [2,12,14]. TUS indications are represented by qualitative/quantitative description and identification of
minimal localized pleural effusions (more sensitive than x-ray), highlighting chest wall tumors, guiding safe performance of thoracocentesis, aspiration, biopsy of lung infiltrations/nodules/abscesses [5,6,15]. The efficiency depends on examination protocol: 3.5-5 MHz transducers are used for rapid identification of pathological aspects, but sometimes a higher frequency transducer (7.5-13 MHz) is required [2].

In our case report, the non-specific but alarming clinical context (anemic syndrome, altered clinical status, underweight) and the absence of fever in the patient admitted to the gastroenterology department determined the current course of investigations centered on the suspicion of abdominal neoplasia. Abdominal US exploration was performed at the level of “primary imaging”. The method excluded abdominal neoplasia but identified a perirenal fluid accumulation (sign of severe hypoproteinemia) and, by extension to lung exploration, it identified suggestive elements for a severe pleuro-pulmonary pathology. US findings – erosions and surface exudates of the pleura and lung, abundant membranes, semimolten liquid, bilateral changes – raised the suspicion of TBC pathology. This condition was intuited ultrasonographically and, subsequently, certified by specific investigations.

According to the literature, the good resolution of US images and integration into clinical diagnosis provided new criteria for a prompt diagnosis of TBC. Arguments in this regard were brought by some authors who pointed out the importance of US. Thus, Lobo V et al emphasized that the sensitivity/specificity of US in lung disease were higher than that of radiography, speeding up the diagnosis [16]. Yang et al highlighted the US value in determining the nature of pleural effusions, showing that transudate / exudate could be clearly distinguished [9]. Agostinis et al emphasized the role of TUS in identifying typical TBC changes, although the radiological appearance was normal [1].

In conclusion the small pleural effusions accidentally detected by US require an extensive assessment centered on the lungs. The identification of membranes in the fluid and the presence of pleural discontinuations should take TBC into consideration. The presented case and literature data recommend US as a potential imaging method even for TBC, especially in children and pregnant women.

References

1. Agostinis P, Copetti R, Lapini L, et al. Chest ultrasound findings in pulmonary tuberculosis. Trop Doct 2017;47:320-328.
2. Chira R, Chira A, Mânzat Săplăcan R, Nagy G, Bîntîntân A, Mircea PA. Pleural ultrasonography. Pictorial essay. Med Ultrason 2014;16:364-371.
3. Bollinger CT, Herth FJ, Mayo PH, et al. (Eds.). Clinical chest ultrasound: from ICU to the bronchoscopy suite. Prog Respir Res. Basel, Karger 2009;37:76-80.
4. Derchi LE, Cludon M. Ultrasound: a strategic issue for radiology? Eur Radiol 2009;19:1-6.
5. Koegelenberg CF, von Groote-Bidlingmaier F, Bolliger CT. Transthoracic ultrasonography for the respiratory physician. Respiration 2012;84:337-350.
6. Groote-Bidlingmaier F, Koegelenberg CFN. A practical guide to transthoracic ultrasound. Breathe 2012;9:132-142.
7. Koenig SJ, Narasimhan M, Mayo PH. Thoracic ultrasonography for the pulmonary specialist. Chest 2011;140:1332-1341.
8. Porcel JM, Light RW. Diagnostic approach to pleural effusion in adults. Am Fam Pysician 2006;73:1211-1220.
9. Yang PC, Luh KT, Chang DB, et al. Value of Sonography in Determining the Nature of Pleural Effusion: Analysis of 320 Cases. AJR Am J Roentgenol 1992;159:29-33.
10. Chandra S, Narasimhan M. Pleural ultrasonography. Open Crit Care Med J 2010;3:26-32.
11. Sartori S, Tombesi P. Emerging roles for transthoracic ultrasonography in pulmonary diseases. World J Radiol 2010;2:203-214.
12. Koh DM, Burke S, Davies N, Padley SP. Transthoracic US of the chest: clinical uses and applications. Radiographics 2002;22:e1.
13. Qureshi NR, Rahman NM, Gleeson FV. Thoracic ultrasound in the diagnosis of malignant pleural effusion. Thorax 2009;64:139-143.
14. Dietrich CF, Mathis G, Cui X, Ignee A, Hocke M, Hirche TO. Ultrasound of the pleurae and lungs. Ultrasound Med Biol 2015;41:351-365.
15. Hew M, Tay TR. The efficacy of bedside chest ultrasound: from accuracy to outcomes. Eur Respir Rev 2016;25:230-246.
16. Lobo V, Weingrow D, Perera P, Williams SR, Gharahbaghiyan L. Thoracic ultrasonography. Crit Care Clin 2014;30:93-117.