cinaR: A comprehensive R package for the differential analyses and functional interpretation of ATAC-seq data

E Onur Karakaslar1*, Duygu Ucar2*

1The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
2To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: ATAC-seq is a frequently used assay to study chromatin accessibility levels. Differential chromatin accessibility analyses between biological groups and functional interpretation of these differential regions are essential in ATAC-seq data analyses. Although distinct methods and analyses pipelines are developed for this purpose, a stand-alone R package that combines state-of-the-art differential and functional enrichment analyses pipelines is missing. To fill this gap, we developed cinaR (Chromatin Analyses in R), which is a single wrapper function and provides users with various data analyses and visualization options, including functional enrichment analyses with gene sets curated from multiple sources.

Availability and implementation: cinaR is an R/CRAN package which is under GPL-3 License and its source code is freely accessible at https://CRAN.R-project.org/package=cinaR. Gene sets are available at https://CRAN.R-project.org/package=cinaRgenesets. Bone marrow ATAC-seq data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165120. Contact: onur.karakaslar@jax.org or duygu.ucar@jax.org

1 Introduction

Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) is a technology for probing the chromatin-accessibility levels from small cell numbers (Buenrostro et al., 2013). Briefly, Tn5 transposase cuts the open chromatin regions (OCRs); these fragments are sequenced using high-throughput sequencing and then aligned to the genome to uncover ATAC-seq peaks mapping to OCRs (Tsompana and Buck., 2014). ATAC-seq is highly adopted by the scientific community including its application to study single cell epigenomes (Chung et al. 2019, Zhang et al., 2021, Satpathy et al. 2019).

ATAC-seq data analyses guidelines have been developed including by the ENCODE project (ATAC-seq Data Standards and Processing Pipeline – ENCODE, 2020) and others (Gaspar, 2020). However, an easy-to-use R package for this purpose is missing. To fill this gap, we developed cinaR (Chromatin Analyses in R), which can conduct differential accessibility analyses, batch correction, and functional enrichment of differential peak results. cinaR accomplishes these within a single wrapper function in order to provide an easy-to-use interface for users while maintaining high customizability via various options for data analyses and visualization. To complement functional enrichments in cinaR, we also implemented an additional CRAN/R package which contains gene sets that are carefully curated from different sources especially for the analyses of immune cells (https://github.com/eonurk/cinaR-genesets).

2 Materials and Methods

Starting from a consensus peaks matrix, cinaR filters the peaks, annotates them to their corresponding genes, conducts differential and functional enrichment analyses with customizable options and then lets users visualize their findings (summarized in Figure 1A).

2.1 Implementation Details

2.1.1 Peak filtering and annotation to genes

cinaR requires a consensus peak matrix and a vector that indicates the biological/clinical grouping of the ATAC-seq samples to be used in the differential analyses. First, ATAC-seq peaks are kept for downstream analyses if the count-per-million (CPM) normalized counts are above a certain threshold (>0.5) for more than k samples (default k=2). Then these selected peaks are annotated to the closest gene based on distance to Transcription Start Site (TSS) using ChIPseeker (Yu et al., 2015). The annotated peaks are further filtered with a threshold (default 50Kb) of their absolute distance to transcription start sites (TSS).
2.1.2 Differential accessibility analyses

To conduct differential accessibility analyses, a design matrix is built to conduct pairwise comparisons among all distinct biological/clinical groups provided by the user. For n groups, \(\binom{n}{2} \) comparisons are conducted. Users can select among four alternative methods for differential analyses: edgeR (Robinson et al., 2009), limma-voom and limma-trend (Richie et al., 2015) and DESeq2 (Love et al., 2014). edgeR is selected as the default option with FDR = 0.05. If the input consensus peak matrix is composed of raw counts (e.g., CPM), we suggest using either edgeR or DESeq2. If the library sizes are heterogeneous limma-voom is recommended. If the consensus peaks are already normalized, limma-trend should be used.

To eliminate potential batch-effects, we implemented two alternative methods. If batch information is not provided by the user, surrogate variable analyses (SVA) is conducted to detect unknown batch effects (Leek and Storey, 2020). This option will calculate the number surrogate variables (SVs) automatically and add these to the design matrix. Users also have an option for using a certain number of SVs instead of all significant ones. On the other hand, if the batches are known, the batch information is included in the design matrix of the linear model and used as a covariate in the differential analyses.

2.1.3 Functional enrichment analyses

For functional enrichment analyses, cinaR provides two options: hypergeometric p-value (HPEA) and gene set enrichment analyses (GSEA) (Subramanian et al., 2005). If HPEA is selected, the differential peaks are split based on the direction of changes (opening versus closing peaks) and enrichment p-values are calculated for each group separately. If GSEA is selected, annotated peaks are sorted with respect to their fold change. If a gene is associated with multiple peaks, the one that is closest to the gene TSS is used in these analyses. For both methods, the enrichment p-values are corrected using Benjamini-Hochberg procedure (Hochberg and Benjamini, 1990) and adjusted p-values are reported. The users can also retrieve the hits for enriched gene sets for further analyses.
3 Results

To benchmark cinaR, we generated ATAC-seq data from bone-marrow (GEO accession GSE165120) in short-lived NZO/HILtJ (NZO) mice strain at two age groups: 3-month-old (n=6, young) and 18-month-old (n=6, old) animals. These samples were analyzed using cinaR to identify age-related changes in the chromatin accessibility maps. Figure 1B shows the PCA plot for filtered and normalized peaks (n=34116), where samples are separated with respect to age (no batch effects are detected). Using default settings of cinaR, we identified 6653 differentially accessible peaks between young and old animals (2956 opening, 3697 closing with age) at FDR 5%. Functional enrichment analyses of these peaks using HPEA and GSEA options with the immune modules revealed that as expected pro-inflammatory modules are activated (myeloid lineage, NFkB) with age (Figure 1C).

4 Discussion

ATAC-seq is a widely used technology to study open chromatin regions in the genome. Although there are distinct pipelines for differential and functional enrichment analyses of ATAC-seq data, a pipeline which combines the state-of-art methodologies is still missing. Here, we presented cinaR, a CRAN/R package that provides users with flexibility to run both analyses with their methods of choice. In addition to that it has options to correct for batch effects as well as covariates, and it also includes highly customizable functions for visualizations. We also implemented another CRAN/R package (cinaR-genesets) along with the original one where we shared immune-related gene sets that we have curated from different resources.

5 Funding

This work was supported by the National Institute of General Medical Sciences under award number [GM124922 to D.U.]; and a pilot grant from American Federation for Aging Research is used to generate ATAC-seq data from young and old mice (GEO-GSE165120).

Conflict of Interest: none declared.

References

Buenrostro,J. et al. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10, 1213-1218.

Tsompana,M. and Buck,M. (2014) Chromatin accessibility: a window into the genome. Epigenetics & Chromatin, 7.

Chung,C. et al. (2019) Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Reports, 29, 495-510.e6.

Zhang,K. et al. (2021) A cell atlas of chromatin accessibility across 25 adult human tissues. Nat Genet, 53, 1712-1720.

Satpathy,A. et al. (2019) Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnology, 37, 925-936.

Reznikoff,W. (2003) Tn5 as a model for understanding DNA transposition. Molecular Microbiology, 47, 1199-1206.

Gaspar,J. (2020) ATAC-seq Guidelines. Harvard FAS Informatics.

ATAC-seq Data Standards and Processing Pipeline – ENCODE (2020) Encodeproject.org.

Robinson,M. et al. (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.

Yu,G. et al. (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31, 2382-2383.

Ritchie,M. et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47-e47.

Leek,J. and Storey,J. (2007) Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genetics, 3, e161.

Subramanian,A. et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 15545-15550.

Hochberg,Y. and Benjamini,Y. (1990) More powerful procedures for multiple significance testing. Statistics in Medicine, 9, 811-818.

Chaussabel,D. et al. (2008) A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus. Immunity, 29, 150-164.

Pico,A. et al. (2008) WikiPathways: Pathway Editing for the People. PLoS Biology, 6, e184.

Schmiedel,B. et al. (2018) Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell, 175, 1701-1715.e16.

Márquez,E. et al. (2020) Sexual-dimorphism in human immune system aging. Nature Communications, 11.

Nehar-Belaid,D. et al. (2020) Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nature Immunology, 21, 1094-1106.