Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions

Nanjundan Magesh · Serap Bulut

Received: 26 December 2016 / Accepted: 9 October 2017 / Published online: 14 October 2017
© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

Abstract In this paper, we obtain initial coefficient bounds for functions belong to a subclass of analytic bi-univalent functions related to pseudo-starlike functions by using the Chebyshev polynomials and also we find Fekete-Szegö inequalities for this class.

Keywords Analytic functions · Bi-univalent functions · Coefficient bounds · Chebyshev polynomial · Fekete-Szegö problem · Subordination

Mathematics Subject Classification Primary 30C45

1 Introduction

Let $\mathbb{R} = (-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers and

$\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\}$

be the set of positive integers.

Let \mathcal{A} denote the class of all functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

1 P. G. and Research Department of Mathematics, Govt Arts College for Men, Krishnagiri 635001, India

2 Faculty of Aviation and Space Sciences, Arslanbey Campus, Kocaeli University, 41285 Kartepe-Kocaeli, Turkey
which are analytic in the open unit disk
\[\Delta = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} . \]

We also denote by \(\mathcal{S} \) the class of all functions in the normalized analytic function class \(\mathcal{A} \) which are univalent in \(\Delta \).

For two functions \(f \) and \(g \), analytic in \(\Delta \), we say that the function \(f \) is subordinate to \(g \) in \(\Delta \), and write
\[f (z) \prec g (z) \quad (z \in \Delta), \]
if there exists a Schwarz function \(\omega \), which is analytic in \(\Delta \) with
\[\omega (0) = 0 \quad \text{and} \quad |\omega (z)| < 1 \quad (z \in \Delta) \]
such that
\[f (z) = g (\omega (z)) \quad (z \in \Delta). \]

Indeed, it is known that
\[f (z) \prec g (z) \quad (z \in \Delta) \Rightarrow f (0) = g (0) \quad \text{and} \quad f (\Delta) \subset g (\Delta). \]

Furthermore, if the function \(g \) is univalent in \(\Delta \), then we have the following equivalence
\[f (z) \prec g (z) \quad (z \in \Delta) \Leftrightarrow f (0) = g (0) \quad \text{and} \quad f (\Delta) \subset g (\Delta). \]

It is well known (e.g. see Duren [11]) that every function \(f \in \mathcal{S} \) has an inverse map \(f^{-1} \), defined by
\[f^{-1} (f (z)) = z \quad (z \in \Delta) \]
and
\[f (f^{-1} (w)) = w \quad \left(|w| < r_0 (f) : r_0 (f) \geq \frac{1}{4} \right). \]

In fact, the inverse function \(g = f^{-1} \) is given by
\[g (w) = f^{-1} (w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots. \quad (1.2) \]

A function \(f \in \mathcal{A} \) is said to be bi-univalent in \(\Delta \) if both \(f \) and \(f^{-1} \) are univalent in \(\Delta \). We let \(\Sigma \) denote the class of bi-univalent functions in \(\Delta \) given by (1.1). For a history and examples of functions which are (or which are not) in the class \(\Sigma \), together with various other properties of subclasses of bi-univalent functions one can refer [1,4,6,13,15,17,19,21].

Recently, Babalola [3] defined the class \(\mathcal{L}_\lambda (\beta) \) of \(\lambda \)-pseudo-starlike functions of order \(\beta \) as follows:

Suppose \(0 \leq \beta < 1 \) and \(\lambda \geq 1 \) is real. A function \(f \in \mathcal{A} \) given by (1.1) belongs to the class \(\mathcal{L}_\lambda (\beta) \) of \(\lambda \)-pseudo-starlike functions of order \(\beta \) in the unit disk \(\Delta \) if and only if
\[\Re \left(\frac{z (f'(z))^\lambda}{f(z)} \right) > \beta \quad (z \in \Delta). \]

Remark 1 (see [3]) (i) If \(\lambda = 1 \), we have the class of starlike functions of order \(\beta \), that is, are 1-pseudo-starlike functions of order \(\beta \).

(ii) If \(\lambda = 2 \), we have the class \(\mathcal{L}_2 (\beta) \) consists of functions \(f \) satisfying
\[\Re \left(\frac{f'(z)z f'(z)}{f(z)^2} \right) > \beta \]
which is a product combination of geometric expressions for bounded turning and starlike
functions.

(iii) The class \(L_{\infty} (\beta) \) is the singleton subclass of \(S \) containing the identity map only.

(iv) All pseudo-starlike functions are Bazilevič of type \(1 - 1/\lambda \), order \(\beta^{1/\lambda} \) and univalent in \(\Delta \).

The significance of Chebyshev polynomials in numerical analysis is increased in both
theoretical and practical points of view. Out of four kinds of Chebyshev polynomials, many
researchers dealing with orthogonal polynomials of Chebyshev. For a brief history of Cheby-
shev polynomials of first kind \(T_n (t) \), the second kind \(U_n (t) \) and their applications one can
refer [2,10,12,16]. The Chebyshev polynomials of the first and second kinds are well known
and they are defined by

\[
T_n (t) = \cos n \theta \quad \text{and} \quad U_n (t) = \frac{\sin (n + 1) \theta}{\sin \theta} \quad (-1 < t < 1)
\]

where \(n \) denotes the polynomial degree and \(t = \cos \theta \).

Definition 1 For \(\lambda \geq 1 \) and \(t \in (1/2, 1] \), a function \(f \in \Sigma \) given by (1.1) is said to be in
the class \(LB_{\Sigma} (\lambda, t) \) if the following conditions are satisfied:

\[
\frac{z (f'(z))^{\lambda}}{f(z)} < H(z, t) := \frac{1}{1 - 2tz + z^2} \quad (z \in \Delta)
\]

and

\[
\frac{w (g'(w))^{\lambda}}{g(w)} < H(w, t) := \frac{1}{1 - 2tw + w^2} \quad (w \in \Delta),
\]

where the function \(g = f^{-1} \) is defined by (1.2).

In addition to the identity map \(f(z) = z \), we give following nontrivial example of pseudo-
starlike functions for the special choice, \(\lambda = 2 \).

Example 1 The function \(f(z) \) given by

\[
f(z) = \left(\arcsin \sqrt{1 - z} \right)^2 = z + \frac{1}{3} z^2 + \frac{8}{45} z^3 + \cdots
\]

belong to \(LB_{\Sigma} (2, t) \).

In particular, we set \(LB_{\Sigma} (1, t) = S^*_t \) (see [5]) for the class of functions \(f \in \Sigma \) given
by (1.1) and satisfying the following subordination conditions for all \(z, w \in \Delta \) :

\[
\frac{zf'(z)}{f(z)} < H(z, t) = \frac{1}{1 - 2tz + z^2}
\]

and

\[
\frac{wg'(w)}{g(w)} < H(w, t) = \frac{1}{1 - 2tw + w^2},
\]

where the function \(g = f^{-1} \) is defined by (1.2), (see also [2]).

We note that if \(t = \cos \alpha \), where \(\alpha \in (-\pi/3, \pi/3) \), then

\[
H(z, t) = \frac{1}{1 - 2 \cos \alpha z + z^2} = 1 + \sum_{n=1}^{\infty} \frac{\sin (n + 1) \alpha}{\sin \alpha} z^n \quad (z \in \Delta).
\]
Thus
\[H(z, t) = 1 + 2 \cos \alpha z + (3 \cos^2 \alpha - \sin^2 \alpha)z^2 + \ldots \ (z \in \Delta). \]

From [20], we can write
\[H(z, t) = 1 + U_1(t)z + U_2(t)z^2 + \ldots \ (z \in \Delta, \ t \in (-1, 1)) \]
where
\[U_{n-1} = \frac{\sin(n \arccos t)}{\sqrt{1-t^2}} \ (n \in \mathbb{N}) \]
are the Chebyshev polynomials of the second kind and we have
\[U_n(t) = 2t U_{n-1}(t) - U_{n-2}(t), \]
and \[U_1(t) = 2t, \ U_2(t) = 4t^2 - 1, \ U_3(t) = 8t^3 - 4t, \ U_4(t) = 16t^4 - 12t^2 + 1, \ldots. \] (1.5)

The generating function of the first kind of Chebyshev polynomial \(T_n(t) \), \(t \in [-1, 1] \), is given by
\[\sum_{n=0}^{\infty} T_n(t)z^n = \frac{1-tz}{1-2tz+z^2} \ (z \in \Delta). \]

The first kind of Chebyshev polynomial \(T_n(t) \) and second kind of Chebyshev polynomial \(U_n(t) \) are connected by:
\[\frac{dT_n(t)}{dt} = nU_{n-1}(t); \quad T_n(t) = U_n(t) - tU_{n-1}(t); \quad 2T_n(t) = U_n(t) - U_{n-2}(t). \]

In this present paper, we use the Chebyshev polynomials expansions to provide the initial coefficients of bi-univalent functions in \(\mathcal{LB}_\Sigma(\lambda, t) \). We also solve Fekete-Szegö problem for functions in this class.

2 Coefficient bounds for the function class \(\mathcal{LB}_\Sigma(\lambda, t) \)

Theorem 1 For \(\lambda \geq 1 \) and \(t \in (1/2, 1] \), let the function \(f \in \Sigma \) given by (1.1) be in the class \(\mathcal{LB}_\Sigma(\lambda, t) \). Then
\[|a_2| \leq \min \left\{ \frac{2t}{2\lambda - 1}, \frac{2t\sqrt{2t}}{(2\lambda - 1)\sqrt{4(1-\lambda)t^2 + 2\lambda - 1}} \right\}, \] (2.1)
\[|a_3| \leq \frac{4t^2}{(2\lambda - 1)^2} + \frac{2t}{3\lambda - 1}, \] (2.2)
and for some \(\mu \in \mathbb{R} \),
\[|a_3 - \mu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{2t}{3\lambda - 1}, & |\mu - 1| \leq \frac{(2\lambda - 1)(4(1-\lambda)t^2 + 2\lambda - 1)}{4(3\lambda - 1)t^2} \\
\frac{8|\mu - 1|^3}{(2\lambda - 1)(4(1-\lambda)t^2 + 2\lambda - 1)}, & |\mu - 1| \geq \frac{(2\lambda - 1)(4(1-\lambda)t^2 + 2\lambda - 1)}{4(3\lambda - 1)t^2}.
\end{array} \right. \] (2.3)
Proof Let the function \(f \in \Sigma \) given by (1.1) be in the class \(\mathcal{L}B_{\Sigma} (\lambda, t) \). From (1.3) and (1.4), we have
\[
\frac{z \left(f'(z) \right)^\lambda}{f(z)} = 1 + U_1(t) p(z) + U_2(t) p^2(z) + \cdots \quad (2.4)
\]
and
\[
\frac{w \left(g'(w) \right)^\lambda}{g(w)} = 1 + U_1(t) q(w) + U_2(t) q^2(w) + \cdots \quad (2.5)
\]
for some analytic functions
\[
p(z) = c_1 z + c_2 z^2 + c_3 z^3 + \cdots \quad (z \in \Delta),
\]
and
\[
q(w) = d_1 w + d_2 w^2 + d_3 w^3 + \cdots \quad (w \in \Delta),
\]
such that \(p(0) = q(0) = 0 \), \(|p(z)| < 1 \) \((z \in \Delta)\) and \(|q(w)| < 1 \) \((w \in \Delta)\). It is well-known that if \(|p(z)| < 1 \) and \(|q(w)| < 1 \), then
\[
|c_j| \leq 1 \quad \text{and} \quad |d_j| \leq 1 \quad \text{for all} \quad j \in \mathbb{N}. \quad (2.8)
\]
From (2.4), (2.5), (2.6) and (2.7), we have
\[
\frac{z \left(f'(z) \right)^\lambda}{f(z)} = 1 + U_1(t) c_1 z + \left[U_1(t) c_2 + U_2(t) c_1^2 \right] z^2 + \cdots \quad (2.9)
\]
and
\[
\frac{w \left(g'(w) \right)^\lambda}{g(w)} = 1 + U_1(t) d_1 w + \left[U_1(t) d_2 + U_2(t) d_1^2 \right] w^2 + \cdots . \quad (2.10)
\]
Equating the coefficients in (2.9) and (2.10), we get
\[
(2\lambda - 1) a_2 = U_1(t) c_1 \quad (2.11)
\]
\[
(2\lambda - 4\lambda + 1) a_2^2 + (3\lambda - 1) a_3 = U_1(t) c_2 + U_2(t) c_1^2 \quad (2.12)
\]
\[
- (2\lambda - 1) a_2 = U_1(t) d_1 \quad (2.13)
\]
and
\[
(2\lambda^2 + 2\lambda - 1) a_2^2 - (3\lambda - 1) a_3 = U_1(t) d_2 + U_2(t) d_1^2 . \quad (2.14)
\]
From (2.11) and (2.13) we obtain
\[
c_1 = -d_1 \quad (2.15)
\]
and
\[
2 (2\lambda - 1)^2 a_2^2 = U_1^2(t) \left(c_1^2 + d_1^2 \right) . \quad (2.16)
\]
Also, by using (2.12) and (2.14), we obtain
\[
2\lambda (2\lambda - 1) a_2^2 = U_1(t) \left(c_2 + d_2 \right) + U_2(t) \left(c_1^2 + d_1^2 \right) . \quad (2.17)
\]
By using (2.16) in (2.17), we get
\[
\left[2\lambda (2\lambda - 1) - \frac{2U_2(t)}{U_1^2(t)} (2\lambda - 1)^2 \right] a_2^2 = U_1(t) \left(c_2 + d_2 \right) . \quad (2.18)
\]
From (1.5), (2.8) and (2.18), we have the desired inequality (2.1) comparing with (2.11). Next, by subtracting (2.14) from (2.12), we have
\[
2 (3\lambda - 1) a_3 - 2 (3\lambda - 1) a_2^2 = U_1(t) \left(c_2 - d_2 \right) + U_2(t) \left(c_1^2 - d_1^2 \right) . \quad (2.19)
\]
Further, in view of (2.15), we obtain
\[
a_3 = a_2^2 + \frac{U_1(t)}{2 (3\lambda - 1)} (c_2 - d_2) . \quad (2.20)
\]
Hence using (2.16) and applying (1.5), we get desired inequality (2.2).

Now, by using (2.18) and (2.20) for some $\mu \in \mathbb{R}$, we get

$$a_3 - \mu a_2^2 = (1 - \mu) \left[\frac{U_1^3(t)(c_2 + d_2)}{2(2\lambda - 1)} \left(\lambda U_1^2(t) - (2\lambda - 1) U_2(t) \right) \right] + \frac{U_1(t) (c_2 - d_2)}{2(3\lambda - 1)}$$

$$= \frac{U_1(t)}{2} \left[\left(h(\mu) + \frac{1}{3\lambda - 1} \right) c_2 + \left(h(\mu) - \frac{1}{3\lambda - 1} \right) d_2 \right],$$

where $h(\mu) = \frac{U_1^2(t)(1 - \mu)}{(2\lambda - 1) \left[\lambda U_1^2(t) - (2\lambda - 1) U_2(t) \right]}$.

So, we conclude that

$$|a_3 - \mu a_2^2| \leq \begin{cases} \frac{2t}{3\lambda - 1}, & 0 \leq |h(\mu)| \leq \frac{1}{3\lambda - 1} \\ 2 |h(\mu)| t, & |h(\mu)| \geq \frac{1}{3\lambda - 1} \end{cases}.$$

This completes the proof of Theorem 1.

Taking $\mu = 1$ in Theorem 1, we get the following consequence.

Corollary 1 For $\lambda \geq 1$ and $t \in (1/2, 1]$, let the function $f \in \Sigma$ given by (1.1) be in the class $LB_\Sigma(\lambda, t)$. Then

$$|a_3 - a_2^2| \leq \frac{2t}{3\lambda - 1}.$$

Taking $\lambda = 1$ in Theorem 1, we get the following consequence.

Corollary 2 For $t \in (1/2, 1]$, let the function $f \in \Sigma$ given by (1.1) be in the class $S^*_\Sigma(t)$. Then

$$|a_2| \leq 2t,$$

$$|a_3| \leq 4t^2 + t,$$

and for some $\mu \in \mathbb{R}$,

$$|a_3 - \mu a_2^2| \leq \begin{cases} t, & |\mu - 1| \leq \frac{1}{8t^2} \\ 8 |\mu - 1| t^3, & |\mu - 1| \geq \frac{1}{8t^2} \end{cases}.$$

Taking $\mu = 1$ in Corollary 2, we get the following consequence.

Corollary 3 For $t \in (1/2, 1]$, let the function $f \in \Sigma$ given by (1.1) be in the class $S^*_\Sigma(t)$. Then

$$|a_3 - a_2^2| \leq t.$$

Acknowledgements The authors would like to thank the referees for their valuable suggestions and comments to the betterment of the article which is in the present form.

References

1. Ali, R.M., Lee, S.K., Ravichandran, V., Supramanian, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25(3), 344–351 (2012)

"Springer"
2. Altınkaya, Ş., Yağmur, S.: Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. Khayyam J. Math. 2(1), 1–5 (2016)
3. Babalola, K.O.: On λ-pseudo-starlike functions. J. Class. Anal. 3(2), 137–147 (2013)
4. Bulut, S.: Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math. 43(2), 59–65 (2013)
5. Bulut, S., Magesh, N., Abirami, C.: A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 8(2), 32–39 (2017)
6. Çağlar, M., Orhan, H., Yağmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat 27(7), 1165–1171 (2013)
7. Chen, M.: On the regular functions satisfying $\Re \left(\frac{f(z)}{z} \right) > \alpha$. Bull. Inst. Math. Acad. Sinica 3, 65–70 (1975)
8. Chichra, P.N.: New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 62, 37–43 (1977)
9. Ding, S.S., Ling, Y., Bao, G.J.: Some properties of a class of analytic functions. J. Math. Anal. Appl. 195(1), 71–81 (1995)
10. Doha, E.H.: The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differentiable function. Int. J. Comput. Math. 51, 21–35 (1994)
11. Duren, P.L.: Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259. Springer, New York (1983)
12. Dziok, J., Raina, R.K., Sokól, J.: Application of Chebyshev polynomials to classes of analytic functions. C. R. Math. Acad. Sci. Paris 353(5), 433–438 (2015)
13. Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions. Appl. Math. Lett. 24(9), 1569–1573 (2011)
14. MacGregor, T.H.: Functions whose derivative has a positive real part. Trans. Am. Math. Soc. 104, 532–537 (1962)
15. Magesh, N., Prameela, V.: Coefficient estimate problems for certain subclasses of analytic and bi-univalent functions. Afr. Mat. 26(3), 465–470 (2013)
16. Mason, J.C.: Chebyshev polynomial approximations for the L-membrane eigenvalue problem. SIAM J. Appl. Math. 15, 172–186 (1967)
17. Orhan, H., Magesh, N., Balaji, V.K.: Initial coefficient bounds for a general class of bi-univalent functions. Filomat 29(6), 1259–1267 (2015)
18. Srivastava, H.M., Bulut, S.: M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 27(5), 831–842 (2013)
19. Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23(10), 1188–1192 (2010)
20. Whittaker, T., Watson, G.N.: A course of modern analysis, reprint of the fourth (1927) edition, Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge (1996)
21. Zaprawa, P.: Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014, Art. ID 357480, 1–6