MULTIPLIER IDEALS AND FILTERED D-MODULES

NERO BUDUR

Abstract. We give a Hodge-theoretic interpretation of the multiplier ideal of an effective divisor on a smooth complex variety. More precisely, we show that the associated graded coherent sheaf with respect to the jumping-number filtration can be recovered from the smallest piece of M. Saito’s Hodge filtration of the \mathcal{D}-module of vanishing cycles.

1. Introduction

Let D be an effective \mathbb{Q}-divisor on a nonsingular complex variety X of dimension n. The multiplier ideal $\mathcal{J}(D)$ is a subsheaf of ideals of \mathcal{O}_X and measures in a subtle way the singularities of D, see [La01]. The singularities of D get ”worse” if $\mathcal{J}(D)$ is smaller. The main goal of this note is to give a Hodge-theoretic interpretation of multiplier ideals. That such an interpretation is possible was hinted by [Bu03] where we proved a local relation at a point $x \in X$ between $\mathcal{J}(D)$ and the mixed Hodge structure on the cohomology the Milnor fiber of an integral divisor D at x.

The natural setting for our result is the theory of mixed Hodge modules due to M. Saito ([Sa88], [Sa90]). Since we restrict our attention to the Hodge filtration only and disregard the weight filtration and the rational structure, we end up working with filtered \mathcal{D}_X-modules (M,F). Here \mathcal{D}_X is the sheaf of non-commutative rings of linear algebraic differential operators (see [Bo87]). The Hodge filtration F is always assumed here to be increasing. By the Riemann-Hilbert correspondence, M corresponds to a perverse sheaf on X. For example, the trivial mixed Hodge module $\mathbb{Q}^H_X[n]$ is represented by the filtered left \mathcal{D}_X-module (\mathcal{O}_X, F), where $\text{Gr}_p^F = 0$ for $p \neq 0$. The corresponding perverse sheaf is the shifted trivial complex $\mathbb{Q}_X[n]$.

For a non-constant regular function $f : X \to \mathbb{C}$, one has the vanishing cycles functor ψ_f which can be defined on the abelian category of mixed Hodge modules. By definition, ψ_f corresponds to $^p\psi_f = \psi_f[-1]$ on the category of perverse sheaves on X. For $\alpha \in (0,1] \cap \mathbb{Q}$, let $\psi_f^\alpha \mathcal{O}_X$
correspond to the eigenspace of the semisimple part of monodromy for the eigenvalue \(\exp(-2\pi i \alpha) \). M. Saito’s theory provides us with a canonical filtration \(F \) on \(\psi_f^\alpha \mathcal{O}_X \) (for definitions, see the introduction of [Sa88]).

Theorem. Let \(X \) be a smooth complex variety of dimension \(n \). Let \(f : X \to \mathbb{C} \) be a non-constant regular function and \(D = f^{-1}(0) \) the corresponding effective divisor. Then for \(\alpha \in (0, 1] \),

\[
\frac{\mathcal{J}((\alpha - \epsilon) \cdot D)}{\mathcal{J}(\alpha \cdot D)} = F_1\psi_f^\alpha \mathcal{O}_X,
\]

where \(0 < \epsilon \ll 1 \).

Here, \(F_1 \) is the smallest piece of the Hodge filtration of the left \(\mathcal{D}_X \)-module \(\psi_f \mathcal{O}_X \). The values \(\alpha \in (0, 1] \) for which the left-hand side of (1) is nonzero are called jumping numbers (see [Bu03], [La01], [ELSV]). The values \(\alpha \in (0, 1] \) for which the right-hand side of (1) is nonzero were considered in [Sa93]. Thus the Theorem answers a question in [ELSV] regarding the relation between the two sets of values and reproves their theorem that the jumping numbers of \(D \) are roots of the Bernstein-Sato polynomial of \(f \) up to a sign.

I thank Professor L. Ein for several discussions and comments on this work.

Acknowledgement. Professor M. Saito has also proved the Theorem of this note, see [Sa03]. Moreover, he proves that the multiplier ideals \(\mathcal{J}(\alpha \cdot D) \) give the \(V \)-filtration of Malgrange and Kashiwara corresponding to \(f \) on the left \(\mathcal{D}_X \)-module \(\mathcal{O}_X \).

2. **Proof of the Theorem**

We used left \(\mathcal{D} \)-modules only for the introduction. We will work, as our references do, with right \(\mathcal{D}_X \)-modules. The trivial right \(\mathcal{D}_X \)-module is \(\omega_X = \bigwedge^n \Omega^1_X \), the sheaf of regular \(n \)-forms. Locally, the action of a vector field \(\xi \) on \(w \in \omega_X \) is given by \(w \xi = -\text{Lie}_\xi w \), the Lie derivative. \(\mathbb{Q}[n] \) is represented by the filtered right \(\mathcal{D}_X \)-module \((\omega_X, F) \), where \(\text{Gr}_p F = 0 \) for \(p \neq -n \). In general, the transformation from left to right \(\mathcal{D}_X \)-modules is given by

\[
(M, F) \mapsto (\omega_X \otimes M, F_p = \omega_X \otimes F_{p+n}),
\]

\[
(w \otimes u) \xi = w \xi \otimes u - w \otimes \xi u.
\]

Hence (1) is equivalent to

\[
\omega_X \otimes \mathcal{O}_X \frac{\mathcal{J}((\alpha - \epsilon) \cdot D)}{\mathcal{J}(\alpha \cdot D)} = F_{1-n} \psi_f^\alpha \omega_X.
\]
Let \(\mu : Y \to X \) be a log resolution of \((X, D)\). Recall that the multiplier ideal \(\mathcal{J}(\alpha \cdot D) \) is defined for all \(\alpha > 0 \) by
\[
\mathcal{J}(\alpha \cdot D) = \mu_* \mathcal{O}_Y(K_{Y/X} - \lfloor \alpha \cdot D \rfloor),
\]
where \(K_{Y/X} = K_Y - \mu^* K_X \) and \(\lfloor \cdot \rfloor \) means rounding down the coefficients in a \(\mathbb{Q} \)-divisor. Put
\[
\mathcal{K}_\alpha(X, D) = \frac{\mathcal{J}((\alpha - \epsilon) \cdot D)}{\mathcal{J}(\alpha \cdot D)},
\]
where \(0 < \epsilon \ll 1 \). Then \(\mathcal{J}(\alpha \cdot D) \) and \(\mathcal{K}_\alpha(X, D) \) are independent of the choice of \(\mu \) and
\[
(3) \quad \mathcal{K}_\alpha(X, D) = \mu_* \left(\mathcal{O}_Y(K_{Y/X}) \otimes \mathcal{K}_\alpha(Y, \mu^* D) \right).
\]

Put \(g = f \circ \mu \). Let \(\mathcal{M} = (\omega_Y, F) \) be the filtered \(\mathcal{D}_Y \)-module with \(Gr^F_p = 0 \) for \(p \neq -n \). By Theorem 2.14 of [Sa90], for \(\alpha \in (0, 1] \),
\[
\psi^\alpha_j \mathcal{H}^j \mu_* \mathcal{M} = \mathcal{H}^j \mu_* \psi^\alpha_g \mathcal{M},
\]
for all \(j \in \mathbb{Z} \). Here \(\mu_* : D^b \text{MHM}(Y) \to D^b \text{MHM}(X) \) is the direct image functor on the bounded derived categories of mixed Hodge modules (we care only about the complexes of filtered \(\mathcal{D} \)-modules), and \(\mathcal{H}^j \) is the \(j \)-th cohomology of a complex. In particular, we have an equality of filtered \(\mathcal{D}_X \)-modules
\[
(4) \quad \psi^\alpha_j \mathcal{H}^0 \mu_* \mathcal{M} = \mathcal{H}^0 \mu_* \psi^\alpha_g \mathcal{M}.
\]
We will show that (2), hence the Theorem, follows by taking \(F_{1-n} \) of both sides of (4).

Lemma 2.1. \(F_{1-n} \psi^\alpha_j \mathcal{H}^0 \mu_* \mathcal{M} = F_{1-n} \psi^\alpha_j (\omega_X, F) \), for \(\alpha \in (0, 1] \).

Proof. Follows from \(\mathcal{H}^0 \mu_* \mathcal{Q}_X^H[n] = \mathcal{Q}_X^H[n] \). \(\square \)

Lemma 2.2. \(F_{1-n} \mathcal{H}^0 \mu_* \psi^\alpha_g \mathcal{M} = \omega_X \otimes_{\mathcal{O}_X} \mathcal{K}_\alpha(X, D) \), for \(\alpha \in (0, 1] \).

Proof. Recall the definition of \(\mu_*(M, F) \). Let \(i_\mu : Y \to Y \times X \) be the graph of \(\mu \). Let \(p : Y \times X \to X \) be the natural projection. Then
\[
\mu_*(M, F) = Rp \ DR_{X \times Y/X}(i_\mu)_*(M, F),
\]
where \(Rp \) is the usual derived direct image for sheaves. We put from now \(p_* = H^0(Rp_*) \) for the usual direct image of sheaves. Recall that \(DR_{X \times Y/X}(M', F) \) is defined by
\[
F_p DR_{X \times Y/X}(M', F) = \left[F_{p-n} M' \otimes \mathcal{O}_Y \longrightarrow \ldots \longrightarrow F_p M' \right],
\]
where \(F_p M' \) sits in degree zero in the last complex, and \(\mathcal{O}_Y = (\mathcal{O}_Y^\vee)\).

The definition of \((i_\mu)_*(M, F) = (M', F) \) is the same as for \(\mathcal{D}_Y \)-modules,
and all we need to know about the Hodge filtration is that $F_q M^\prime = (i_\mu)_p F_p M$ if $q = \min\{ p \mid F_p M \neq 0 \}$. In this case, also $q = \min\{ p \mid F_p M^\prime \neq 0 \}$.

If $(M, F) = \psi_Y^\alpha(\omega_Y, F)$ and $\alpha \in (0, 1]$ is such that $M \neq 0$, then $q = 1 - n$. Hence,

$$F_{1-n} H^0 \mu_* \psi_Y^\alpha (M, F) = p. (i_\mu)_p F_{1-n} M$$

$$= \mu. F_{1-n} M,$$

where the last μ is the usual sheaf direct image. By Lemma 2.3, $F_{1-n} M = \omega_Y \otimes K_\alpha(Y, \mu^* D)$. By (3), this proves the claim.

Lemma 2.3

The Theorem is true if D is a simple normal crossing divisor.

Proof. By definition, for $\alpha \in (0, 1],$

$$\psi_f^\alpha \omega_X = \text{Gr}_V^\alpha (i_f)_* \omega_X,$$

where $i_f : X \to X \times \mathbb{C}$ is the graph of f, $(i_f)_*$ is the direct image for (filtered) \mathcal{D}_X-modules, and V is the decreasing filtration of Malgrange and Kashiwara. The Hodge filtration on ψ_f^α is the filtration $F[1]$, where F is induced by $(i_f)_*$. Here $F[i]p = F_{p-i}$. In particular,

$$F_{1-n} \psi_f^\alpha \omega_X = F_{-n} \text{Gr}_V^\alpha (i_f)_* \omega_X.$$

By Proposition 3.5-(3.5.1) of [Sa90] applied to $(\omega_X, F[n])$, one has that

$$F_{-n} V^\alpha (i_f)_* \omega_X = \omega_X \otimes \mathcal{O}_X (-\downarrow (\alpha - \epsilon) \cdot D),$$

where $0 < \epsilon \ll 1$. Indeed, to apply that Proposition one only has to check locally, where X has coordinates x_1, \ldots, x_n, that $\omega(x_i \partial_i + 1) = 0$, for $\omega = dx_1 \wedge \ldots \wedge dx_n$, and $\partial_i = \partial_{x_i}$. This follows from $\text{Lie}_f (x_i \omega) = \omega$. Hence it gives $\mu = (-1, \ldots, -1)$ in the above-mentioned Proposition.

References

[Bo87] Borel, A.; Grivel, P.; Kaup, B.; Haefliger, A.; Malgrange, B., Ehlers, F., *Algebraic D-modules*, vol. 2 of Perspectives in Mathematics. Academic Press Inc., Boston, MA (1987).

[Bu03] Budur, N., *On Hodge spectrum and multiplier ideals*, to appear in Math. Ann. (2003).

[ELSV] Ein, L.; Lazarsfeld, R.; Smith, K.E.; Varolin, D., *Jumping coefficients of multiplier ideals*, preprint (2003).

[La01] Lazarsfeld, R., *Positivity in Algebraic Geometry*, preliminary draft (2001).

[Sa03] Saito, M. *Multiplier ideals, V-filtration and spectrum*, preprint (2003).
[Sa93] Saito, M. *On b-function, spectrum and rational singularity*, Math. Ann. 295, 51–74 (1993).

[Sa90] Saito M., *Mixed Hodge modules*, Publ. Res. Inst. Math. Sci. 26, no. 2, 221–333 (1990).

[Sa88] Saito M., *Modules de Hodge polarisables*, Publ. Res. Inst. Math. Sci. 24, no. 6, 849–995 (1988).

Department of Mathematics, University of Illinois at Chicago 851 South Morgan Street (M/C 249), Chicago, IL 60607-7045, USA

E-mail address: nero@math.uic.edu