Preparation of human single chain Fv antibody against hepatitis C virus E2 protein and its identification in immunohistochemistry

Yan-Wei Zhong, Jun Cheng, Gang Wang, Shuang-Shuang Shi, Li Li, Ling-Xia Zhang, Ju-Mei Chen

Abstract
AIM: To screen human single chain Fv antibody (scFv) against hepatitis C virus E2 antigen and identify its application in immunohistochemistry.

METHODS: The phage antibody library was panned by HCV E2 antigen, which was coated in microtiter plate. After five rounds of biopanning, 56 phage clones were identified specific to HCV E2 antigen. The selected scFv clones were digested by SfiI/NotI and DNA was sequenced. Then it was subcloned into the vector pCANTAB5E for expression as E-tagged soluble scFv. The liver tissue sections from normal person and patients with chronic hepatitis B and chronic hepatitis C were immunostained with HCV E2 scFv antibody.

RESULTS: The data of scFv-E2 DNA digestion and DNA sequencing showed that the scFv gene is composed of 750 bp. ELISA and immunohistochemistry demonstrated that the human single chain Fv antibody against hepatitis C E2 antigen has a specific binding character with hepatitis virus E2 antigen and paraffin-embedded tissue, but did not react with liver tissues from healthy persons or patients with chronic hepatitis B.

CONCLUSION: We have successfully screened and identified HCV E2 scFv and the scFv could be used in the immunostaining of liver tissue sections from patients with chronic hepatitis C.

Zhong YW, Cheng J, Wang G, Shi SS, Li L, Zhang L, Chen JM. Preparation of human single chain Fv antibody against hepatitis C virus E2 protein and its identification in immunohistochemistry. World J Gastroenterol 2002; 8(5):863-867

INTRODUCTION
Hepatitis C virus (HCV) has been identified as the major etiological agent of post-transfusion non-A non-B hepatitis, responsible for most cases of non-A non-B hepatitis. Hepatitis C is a disease of clinical importance because of its high infection rate in blood donors and its persistence as chronic infections which may lead to cirrhosis and hepatocellular carcinoma in the long term. The variability of the HCV genome has difficulties in serological detection and vaccine design. Recent advance in phage technology offers a means of cloning human anti-HCV antibodies of a defined specificity that may have potential therapeutic use.

MATERIALS AND METHODS
Materials
Humanized scFv antibody phage library in which the variable region coding gene of VL and VH were amplified by polymerase chain reaction (PCR) with degenerate primers and connected with a glycin linker ([Gly4Ser]3) was widely used in the screen and identification of humanized scFv to various antigens. The recombinant HCV E2 protein was purchased from Virostat Co, USA. Phage M13K07 was purchased from Pharmacia Co., Sweden. Other reagents used in this experiment are all domestic products of analytical grade.

Biopanning
The phage library was amplified in 37 °C. The host E. coli TG1 was infected with phage M13K07 and incubated at 37 °C for 12 hours, the phage in the supernatant was harvested and concentrated by PEG. Culture plate (Nunc) was coated with recombinant HCV E2 protein at the concentration of 80 mg/L. The coating buffer was 0.05 mol/L NaHCO3, pH 9.6. The plate was blocked with BSA at the concentration of 20 g/L for 2 hours and the concentrated phages were added to the well of the plate, incubated at the room temperature for 90 min. The plates were washed 20 times with PBST and PBS buffer respectively. The bound phage was eluted by the 0.1M of triethylamine, and neutralized with 1M Tris buffer (pH 7.4). Recovered phages were used to infect the host E. coli TG1 at the log phase growth and HCV E2 protein-binding phages were amplified. The procedure of absorption-elution-amplification was repeated 5 times.

Identification of phage clones
After 5 rounds of biopanning, 56 phage clones were selected randomly. The clones grew in 400 μl 2×TY-AMP-Glu at 37 °C overnight. The culture was transformed to another Eppendorf tube when its A600 nm reached 0.5. The culture was continued at 30 °C overnight after adding helper phage. ELISA for determining the supernatants was repeated at least two times. The cross-reaction of the supernatants to the BSA antigen was conducted. According to the ELISA results to the HCV E2 and BSA, one clone with high reaction to HCV E2 and low reaction to BSA was selected.
Sequencing analysis
The plasmid DNA was prepared using Wizard plus miniprep DNA Purification System (Promega Co., USA) and sequenced using ABI automated DNA sequencing machine.

Expression of human HCV E2-scFv in E. coli
The selected HCV E2 scFv clone was subcloned as SfiI/NotI fragments into the vector pCANTAB5E for expression as E-tagged soluble scFv. DNA digestion and electrophoresis confirmed the recombinant vector pCANTAB5E-E2-scFv. Competent E. coli XL1-Blue was transformed with pCANTAB5E-E2-scFv and transformed XL1-Blue was induced by IPTG for 20 h. The E. coli was harvested by centrifugation at 10 000 rpm. The culture supernatant was rendered for ELISA test according to the standard procedure. In ELISA detection, Nunc plate was coated with 1µg/well of recombinant HCV E2 antigen and blocked with 2 % bovine serum albumin (BSA) at 37 ºC for 2 h. The supernatants from induced and non-induced transformed E. coli were added and incubated at 37 ºC for 2 h. The plate was washed with PBS buffer, and 100 µl of HRP/anti-E Tag 1:4000 ratio diluted in PBS buffer containing 1 % BSA was added, and incubated at 37 ºC for 1 h. The substrate solution was added and A450nm value was measured.

Immunohistochemical identification of scFv in liver tissue
Paraffin-embedded liver tissue slices were from patients with positive anti-HCV antibodies and HCV-RNA. After deactivating endogenous peroxidase, these slices were submersed in the methanol solution with 0.5 % H2O2 in the room temperature. Fifty min later, they were washed with PBS buffer for 3 times,5 % BSA was added and slices were stored overnight at 4 ºC. Self-made scFv primary anti-HCV E2 single-chain antibodies were diluted at 1:100 ratio and added on to the slice. They were kept in the 37 ºC incubator for 1 h, then 4 ºC refrigerator overnight. HRP-sheep anti-M13 antibodies (diluted to 1:200) solutions were dropped on to the tissue sections, incubated at 37 ºC for 40 min. After ten times with PBS buffer, DAB solutions (9 mg DAB, 13.5 ml Tris.cl, 1.5 ml CoCl2, 15 µl 30 % H2O2) were dropped on to the tissue sections at room temperature. After ten minutes, the slices were washed with PBS buffer for 3 times again, and 1 % heamatin solution was used to stain the cell nucleus. Gradient ethanol was utilized to dehydrate and dimethylbenzene to clear the sections, then neutral resin to envelope them. The resultant slices were observed under microscope. The set was as follows: 1) PBS buffer instead of anti- HCV E2 scFv; 2) HBsAg, HBCag double-positive liver tissue sections; and 3) Normal liver tissue sections.

RESULTS
 Screening and identification phage clones
Using HCV E2 protein as immobilized antigen, the humanized scFv phage library was biopanned. After 5 rounds of biopanning, 56 phage clones were selected randomly. ELISA and cross-reaction of these clones to BSA confirmed their specificity to HCV E2. Among the 56 phage clones, 16 showed good reactivity to the recombinant HCV E2 protein with high A value in the ELISA. In the cross-reaction screen, 6 among the 16 showed low cross-reaction with BSA. The combined results indicated that 1 of the 6 showed the highest reaction to HCV E2 protein and lowest reaction to BSA. One clone has been utilized for further DNA digestion and sequence analysis. The DNA sequence digestion was made by SfiI/NotI in Figure 1. Its nucleic acid sequence and deduced amino acid sequence about HCV-E2-scFv fragment are shown in Figure 2.

![Figure 2](https://example.com/figure2.png)

Figure 2 Nucleic acid and deduced amino acid sequences of scFv for HCV E2 protein GenBank accession number for this sequence is AF317001

![Absorbances of HCV-E2-scFv binding to E2 antigen by ELISA.](https://example.com/figure3.png)

Figure 3 Absorbances of HCV-E2-scFv binding to E2 antigen by ELISA. (a), supernant from induced XL1-blue transformed with pCANTAB5E-E2-scFv; (b), posive control; (c), supernant from non-induced XL1-blue transformed with pCANTAB5E-E2-scFv, d. negative control

www.wjgnet.com
Expression of human HCV-E2-scFv in E. coli.
The expressed HCV-E2-scFv antibody from E. coli XL1-blue transformed by pCANTAB5E and induced by IPTG was confirmed by ELISA as shown in Figure 3. The recombinant HCV E2 antigen was taken as the positive control. The protein from induced and non-induced E. coli XL1-blue transformed by expression vector was positive. But the protein derived from the E. coli non-transformed by pCANTAB5E- HCV E2- scFv was negative. These results indicated that the soluble form of human HCV E2- scFv antibody has been successfully expressed in this procedure.

Immunostaining of HCV E2 antigen of liver tissue sections
The different sections from liver tissues of healthy persons and patients with chronic hepatitis B or C were immunostained. The positive immunostaining was seen only in the liver tissue section of patients with chronic hepatitis C, but not in the liver tissue of normal person and patients with chronic hepatitis B as seen in (Figure 4A). The HCV E2 antigen was mainly located in the cytoplasm of the hepatocytes infected by HCV virus (Figure 4B).

REFERENCES
1. Assy N, Minuk G. A comparison between previous and present histologic assessments of chronic hepatitis C viral infections in humans. World J Gastroenterol 1999; 5:107-110
2. Caselmann WH, Serwe M, Lehmann T, Ludwig J, Sproat BS, Engels JW. Design, delivery and efficacy testing of therapeutic nucleic acids used to inhibit hepatitis C virus gene expression in vitro and in vivo. World J Gastroenterol 2000; 6: 626-629
3. Cheng JL, Liu BL, Zhang Y, Tong WB, Yan Z, Feng BF. Hepatitis C virus in human B lymphocytes transformed by Epstein-Barr virus in vitro by in situ reverse Transcriptase polymerase chain reaction. World J Gastroenterol 2001; 7: 370-375
4. Dai YM, Shou ZP, Ni CR, Wang NJ, Zhang SP. Localization of HCV RNA and capsid protein in human hepatocellular carcinoma. World J Gastroenterol 2000; 6:136-137
5. Deng ZL, Ma Y, Yuan L, Teng PK. The importance of hepatitis C as a risk factor for hepatocellular carcinoma in Guangxi. World J Gastroenterol 2000; 6(Suppl 3):75
6. Feng DY, Chen RX, Peng Y, Zheng H, Yan YH. Effect of HCV NS3 protein on p53 protein expression in hepatocarcinogenesis. World J Gastroenterol 1999; 5:45-46
7. Gao JE, Tao QM, Guo JP, Ji HP, Lang ZW, Ji Y, Feng BF.
Preparation and application of monoclonal antibodies against hepatitis C virus nonstructural proteins. World J Gastroenterol 1997; 3: 114-116.

8. Huang F, Zhao GZ, Li Y. HCV genotypes in hepatitis C patients and their clinical significances. World J Gastroenterol 1999; 5: 547-549.

9. Li LF, Zhou Y, Xia S, Zhao LL, Wang ZX, Wang CQ. The epidemiologic feature of HCV prevalence in Fujian. World J Gastroenterol 2000; 6(Suppl 3):80.

10. Maier KP. Iron, HCV and the liver. World J Gastroenterol 1997; 3: 61-63.

11. Song ZQ, Hao F, Min F, Ma QY, Liu GD. Hepatitis C virus infection of human hepatoma cell line 7721 in vitro. World J Gastroenterol 2001; 7: 685-689.

12. Sun DG, Liu CY, Meng ZD, Sun YD, Wang SC, Yang YQ, Liang ZL, Zhuang H. A prospective study of vertical transmission of hepatitis C virus. World J Gastroenterol 1997; 3: 111-113.

13. Tang BZ, Zhuang L, You J, Zhang HB, Zhang L. Seven years follow up on trial of Interferon alpha in patients with HCV RNA positive chronic hepatitis C. World J Gastroenterol 2000; 6(Suppl 3):68.

14. Zhao YY, Yang HY, Liu GX, Li ZQ, Liu L, He LL, Deng WJ. Hepatitis C virus infection in patients with primary liver cancer. Xin Xiuhaubingxue Zazhi 1996; 4: 43-44.

15. Tang ZY, Qi JY, Shen RX, Yang DL, Hao L. Short- and long-term effect of interferon therapy in chronic hepatitis C. World J Gastroenterol 1997; 3: 77.

16. Wietzke Braun P, Meier V, Braun F, Ramadori G. Combination of "low-dose" ribavirin and interferon alfa 2a therapy followed by interferon alfa 2a monotherapy in chronic HCV infected non responders and relapers after interferon alfa 2a monotherapy. World J Gastroenterol 2001; 7: 222-227.

17. Worman HJ, Lin F. Molecular biology of liver disorders: the hepatitis C virus and molecular targets for drug development. World J Gastroenterol 2000; 6: 465-469.

18. Worman HJ, Lin F. Molecular biology of liver disorders: the hepatitis C virus and molecular targets for drug development. World J Gastroenterol 2000; 6: 465-469.

19. Xiao LY, Yan XJ, Li MG, Han FC, Hou Y. Preliminary study of a dot immunogold filtration assay for rapid detection of anti-HCV IgG. World J Gastroenterol 1999; 5: 349-350.

20. Yan FM, Chen AS, Hao F, Zhao XP, Gu CH, Zhao LB, Yang DL, Hao LJ. Hepatitis C virus may infect extracellular tissues in patients with hepatitis C. World J Gastroenterol 2000; 6: 805-811.

21. Yang JM, Wang QY, Bu BG, Zhou ZC, Fang DC, Luo YH. Effect of HCV infection on expression of several cancer associated gene products in HCC. World J Gastroenterol 1999; 5: 25-27.

22. Yu SJ. A comparative study on proliferating activity between HBV related and HCV related small HCC. World J Gastroenterol 1997; 3: 236-237.

23. Zhang LF, Peng WW, Yao JL, Tang YH. Immunohistochemical detection of HCV infection in patients with hepatocellular carcinoma and other liver diseases. World J Gastroenterol 1998; 4:64-65.

24. Zhang SL, Liang XS, Lin SM, Qiu PC. Relation between viremia level and liver disease in patients with chronic HCV infection. World J Gastroenterol 1996; 2: 115-117.

25. Zhou P, Cai Q, Chen YC, Zhang MS, Guan J, Li XJ. Hepatitis C virus RNA detection in serum and peripheral blood mononuclear cells of patients with hepatitis C. World J Gastroenterol 1997; 3:108-110.

26. Zhu FL, Lu HY, Li Z, QI ZT. Cloning and expression of N53 cDNA fragment of HCV genome of Hep-2 isolate in E. coli. World J Gastroenterol 1998; 4: 165-168.

27. Zhong Y, Cheng J, Shi S, Xia X, Wang G, Yang J, Chen J. Screening and characterization of human phage antibody to hepatitis virus C core antigen. Zhonghua Gangzhangbing Zazhi 2001; 9: 217-219.

28. Zhong YW, Chen J, Shi SS, Wang G, Dong J, Xia XB, Yang JZ, Chen JM. Screening and expression of human phage antibody to hepatitis virus C NS5A antigen. Chinese J Western Med 2001; 2: 97-99.

29. Chen J, Zhong YW, Shi SS. Screening and characterization of human phage antibody to hepatitis virus C NS5A antigen. Zhonghua Shiyan He Linchuangbingxue Zazhi 2001; 15: 186-188.

30. Zhong Y, Cheng J, Liu Y, Dong J, Yang J, Zhang L. Expression of human single-chain variable fragment antibody against non-structural protein 3 of hepatitis C virus antigen in E.coli. Zhonghua Gangzhangbing Zazhi 2000; 8: 171-173.

31. Zhong YW, Chen J, Xia XB, Wang G, Yang JZ, Chen JM. Screening and characterization of human phage antibody to hepatitis virus C NS4A antigen. Immunological J 2000; 16: 422-428.

32. Zhong Y, Yang W, Zhao J. The preparation of human single-chain Fv antibody specifically against hepatitis C virus N53 antigen and its application in histochemistry. Zhonghua Shiyan He Linchuangbingxue Zazhi 2001; 15:216-218.

33. Zhong YW, Chen J, Liu Y, Dong J, Yang JZ, Zhang LX. Expression of soluble human single chain Fv antibody to hepatitis C NS3 antigen in E.coli. Gann Zhang Zhazhi 1999; 4: 71-73.

34. Zhong YW, Chen J, Liu Y, Dong J, Yang JZ, Zhang LX. Screening and characterization of human phage antibody with single-chain variable fragment specific to hepatitis C nonstructural 3 protein. Zhonghua Chuanganbing Zazhi 2000; 18: 84-87.

35. He YW, Liu W, Zen LL, Xiong KJ, Luo DD. Effect of interferon in combination with ribavirin on the plus and minus strands of HCV RNA in patients with chronic hepatitis C. China Natl J New Gastroenterol 1996; 2: 179-181.

36. Wei L, Wang Y, Chen HS, Tao QM. Sequencing of hepatitis C virus cDNA with polymerase chain reaction directed sequencing. China Natl J New Gastroenterol 1997; 3: 12-15.

37. Worman HJ, Feng L, Mamiya N, Mustachia PJ. Molecular biology and the diagnosis and treatment of liver diseases. World J Gastroenterol 1998; 4: 185-191.

38. Chen MY, Huang ZQ, Chen LZ, Gao YB, Peng RY, Wang DW. Detection of hepatitis C virus NS5 protein and genome in Chinese carcinoma of the extrahepatic bile duct and its significance. World J Gastroenterol 2000; 6: 800-804.

39. Han FC, Hou Y, Yan XJ, Xiao LY, Guo YH. Dot Immunogold filtration assay for rapid detection of anti HAV IgM in Chinese. World J Gastroenterol 2000; 6: 400-401.

40. Liu LH, Xiao WH, Liu WW. Effect of 5-Aza-2'-deoxycytidine on the P16 tumor suppressor gene in hepatocellular carcinoma cell line HepG2. World J Gastroenterol 2001; 7: 131-135.

41. Meier V, Mihm S, Ramadori G. HCV-RNA positivity in peripheral blood mononuclear cells of patients with chronic HCV infection: does it really mean viral replication? World J Gastroenterol 2001; 7: 228-234.

42. Si XH, Yang LJ. Extraction and purification of TGF β and its effect on the induction of apoptosis of hepatocytes. World J Gastroenterol 2001; 7: 527-531.

43. Wang NS, Liao LT, Zhu YJ, Pan W, Fang F. Follow-up study of hepatitis C virus infection in uremic patients on maintenance hemodialysis for 30 months. World J Gastroenterol 2000; 6:888-892.
44 Yan J, Dennin RH. A high frequency of GBV-C/HGV coinfection in hepatitis C patients in Germany. World J Gastroenterol 2000; 6: 833-841
45 Chen S, Wang YM, Li CM, Fang YF. Molecular epidemiology of HCV infection in intravenous drug abusers. Shijie Huaren Xiaohua Zazhi 2001; 9: 526-528
46 Ding HL, Cheng H, Fu ZZ, Deng QL, Yan L, Yan T. The relationship of A2mp2 and DR3 genes with susceptibility to type 1 diabetes mellitus in South China Han population. World J Gastroenterol 2000; 6: 111-114
47 Huang F, Zhao GZ, Li Y. HCV genotypes in hepatitis C patients and their clinical significances. World J Gastroenterol 1999; 5: 547-549
48 Su YH, Zhu SN, Lu SL, Gu YH. HCV genotypes expression in hepatocellular carcinoma by reverse transcription in situ polymerase chain reaction. Shijie Huaren Xiaohua Zazhi 2000; 8: 874-878
49 Wang PZ, Zhou YX. Study on hepatitis C virus genotyping in Xi’an area. Shijie Huaren Xiaohua Zazhi 1999; 7: 757-759
50 Yan XB, Wu WY, Wei L. Clinical features of infection with different genotypes of hepatitis C virus. Huaren Xiaohua Zazhi 1998; 6: 653-655
51 Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-immunization human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222: 581-597
52 Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. Anti-body phage display technology and its applications. Immunotechnology 1998; 4: 1-20
53 Lamarre A, Talbot P. Characterization of phage-displayed recombinant anti-idiotypic antibody fragments against coronavirus neutralizing monoclonal antibodies. Viral Immunol 1997; 10: 175-182

Edited by Ma JY