Weighted-indexed semi-Markov models for modeling financial returns

Guglielmo D’Amico1 and Filippo Petroni2

1 Dipartimento di Scienze del Farmaco, Università ‘G D’Annunzio’ di Chieti-Pescara, 66013 Chieti, Italy
2 Dipartimento di Scienze Economiche e Aziendali, Università degli studi di Cagliari, 09123 Cagliari, Italy
E-mail: g.damico@unich.it and fpetroni@unica.it

Received 13 May 2012
Accepted 25 June 2012
Published 16 July 2012

Online at stacks.iop.org/JSTAT/2012/P07015
doi:10.1088/1742-5468/2012/07/P07015

Abstract. In this paper we propose a new stochastic model based on a generalization of semi-Markov chains for studying the high frequency price dynamics of traded stocks. We assume that the financial returns are described by a weighted-indexed semi-Markov chain model. We show, through Monte Carlo simulations, that the model is able to reproduce important stylized facts of financial time series such as the first-passage-time distributions and the persistence of volatility. The model is applied to data from the Italian and German stock markets from 1 January 2007 until the end of December 2010.

Keywords: models of financial markets, stochastic processes
1. Introduction

Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. The main advantage of SMP is that they allow the use of any type of waiting time distribution for modeling the time to have a transition from one state to another one. In contrast, Markovian models have constraints on the distribution of the waiting times in the states which should be necessarily represented by memoryless distributions (exponential or geometric for continuous and discrete time cases respectively). For this major flexibility there is a price to pay: the parameters to be estimated are more numerous.

SMP also generalize the non-Markovian models based on continuous time random walks extensively used in the econophysics community; see for example [1, 2]. SMP have been used to analyze financial data and to describe different problems ranging from credit rating data modeling [3] to the pricing of options [4, 5].

With the financial industry becoming fully computerized, the amount of recorded data, from daily close all the way down to tick-by-tick level, has exploded. Nowadays, such tick-by-tick high frequency data are readily available for practitioners and researchers alike [6, 7]. It thus seemed natural to us to try to verify the semi-Markov hypothesis of returns on high frequency data; see [8]. In [8] we proposed a semi-Markov model, showing its ability to reproduce some stylized empirical facts, for example the absence of autocorrelations in returns and the gain/loss asymmetry. In that paper we showed also that the autocorrelation in the square of returns is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in another paper [9] we proposed an indexed semi-Markov model for price return. More precisely, we assumed that the intraday returns (up to 1 min frequency) are described by a discrete time homogeneous semi-Markov process where we introduced a memory index which takes into account the periods of different volatility in the market. It is well known that the market volatility is autocorrelated; thus periods of high (or low) volatility may persist for a long time. We made the hypothesis that the kernel of the semi-Markov process depends on which level of volatility the market has at that time. It is to be remarked that the weighted memory indexing is a stochastic process which depends on the same Markov renewal chain \((J_n, T_n)\) as the semi-Markov chain is associated with. Then, in our model, the high...
autocorrelation is obtained endogenously without introducing external or latent auxiliary stochastic processes. To improve further our previous results, in this work, we propose an exponentially weighted index which will be described in the following.

The database used for the analysis is made up of high frequency tick-by-tick price data from all the stock in the Italian and German stock markets from 1 January 2007 until the end of December 2010. From prices, we then define returns at one-minute frequency.

The plan of the paper is as follows. In section 2 we define the weighted-indexed semi-Markov chain model with memory and we explain how to perform a Monte Carlo simulation of its trajectory. In section 3, we present the empirical results deriving from the application of our model to real stock market data. Finally, in section 4 we present our conclusion.

2. The weighted-indexed semi-Markov model

In this section we propose a generalization of the semi-Markov process that is able to represent higher order dependences between successive observations of a state variable. One way to increase the memory of the process is by using high order semi-Markov processes as defined in [10] and more recently revisited and extended in a discrete time framework in [11]. A more parsimonious model has been defined by [12] and it is shown that it describes appropriately important empirical regularities of financial time series. In this paper we propose a further improvement of the indexed semi-Markov chain model proposed in [12] named the weighted-indexed semi-Markov chain (WISMC) model, which allows the possibility of reproducing long-term dependence in the square of stock returns in a very efficient way.

Let us assume that the value of the financial asset under study is described by the time varying asset price $S(t)$. The return at time t calculated over a time interval of length 1 is defined as $(S(t + 1) - S(t))/S(t)$. The return process changes value in time; thus we denote by $\{J_n\}_{n \in \mathbb{N}}$ the stochastic process with finite state space $E = \{1, 2, \ldots, s\}$ and describing the value of the return process at the nth transition.

Let us consider the stochastic process $\{T_n\}_{n \in \mathbb{N}}$ with values in \mathbb{N}. The random variable T_n describes the time in which the nth transition of the price return process occurs.

Let us consider also the stochastic process $\{U_n^\lambda\}_{n \in \mathbb{N}}$ with values in \mathbb{R}. The random variable U_n^λ describes the value of the index process at the nth transition.

In [9] the process $\{U_n\}$ was defined as a reward accumulation process linked to the Markov renewal process $\{J_n, T_n\}$; in [9] the process $\{U_n\}$ was defined as a moving average of the reward process. Here, motivated by the application to financial returns, we consider a more flexible index process defined as follows:

$$U_n^\lambda = \sum_{k=0}^{n-1} \sum_{a=T_{n-1-k}}^{T_{n-k}-1} f(J_{n-1-k}, a, \lambda),$$ \hspace{1cm} (1)

where $f : E \times \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Borel measurable bounded function and U_0^λ is known and non-random.
The process \(U_n^\lambda \) can be interpreted as an accumulated reward process with the function \(f \) as a measure of the weighted rate of reward per unit time. The function \(f \) depends on the current time \(a \), on the state \(J_{n-1-k} \) visited at the current time and on the parameter \(\lambda \) that represents the weight.

In section 3 a specific functional form of \(f \) will be selected in order to produce a real data application.

To construct the WISMC model we have to specify a structure of dependence between the variables. Toward this end we adopt the following assumption:

\[
P[J_{n+1} = j, T_{n+1} - T_n \leq t | \sigma(J_h, T_h, U_h^\lambda), h = 0, \ldots, n, J_n = i, U_n^\lambda = v] = \mathbb{P}[J_{n+1} = j, T_{n+1} - T_n \leq t | J_n = i, U_n^\lambda = v] := Q_{ij}^\lambda(v; t),
\]

(2)

where \(\sigma(J_h, T_h, U_h^\lambda), h \leq n, \) is the natural filtration of the three-variate process.

The matrix of functions \(Q^\lambda(v; t) = (Q_{ij}^\lambda(v; t))_{i,j \in E} \) has a fundamental role in the theory that we are going to present; in recognition of its importance, we call it the \textit{weighted-indexed semi-Markov kernel}.

The joint process \((J_n, T_n)\) depends on the process \(U_n^\lambda \); the latter acts as a stochastic index. Moreover, the index process \(U_n^\lambda \) depends on \((J_n, T_n)\) through the functional relationship (1).

Observe that if

\[
P[J_{n+1} = j, T_{n+1} - T_n \leq t | J_n = i, U_n^\lambda = v] = \mathbb{P}[J_{n+1} = j, T_{n+1} - T_n \leq t | J_n = i]
\]

for all values \(v \in \mathbb{R} \) of the index process, then the weighted-indexed semi-Markov kernel degenerates into an ordinary semi-Markov kernel and the WISMC model becomes equivalent to the classical semi-Markov chain model as presented for example in [13] and [14].

The triple of processes \{\(J_n, T_n, U_n^\lambda \)\} describes the behavior of the system only as regards the correspondence of the transition times \(T_n \). To describe the behavior of our model at any time \(t \), which can be a transition time or a waiting time, we need to define additional stochastic processes.

Given the three-dimensional process \{\(J_n, T_n, U_n^\lambda \)\} and the weighted-indexed semi-Markov kernel \(Q^\lambda(v; t) \), we define

\[
N(t) = \sup\{n \in \mathbb{N} : T_n \leq t\}; \quad Z(t) = J_{N(t)};
\]

\[
U^\lambda(t) = \sum_{k=0}^{N(t)-1} \sum_{a=T_{N(t)}+\theta-1-k} f(J_{N(t)}+\theta-1-k, a, \lambda),
\]

(3)

where \(\theta = 1_{(t>T_{N(t)})} \).

The stochastic processes defined in (3) represent the number of transitions up to time \(t \), the state of the system (price return) at time \(t \) and the value of the index process (the weighted moving average of the function of price return) up to \(t \), respectively. We refer to \(Z(t) \) as a weighted-indexed semi-Markov process.

The process \(U^\lambda(t) \) is a generalization of the process \(U_n^\lambda \) where time \(t \) can be a transition or a waiting time. It is simple to see that if \(t = T_n \) we have that \(U^\lambda(t) = U_n^\lambda \).

Let

\[
p_{ij}^\lambda(v) := \mathbb{P}[J_{n+1} = j | J_n = i, U_n^\lambda = v],
\]
be the transition probabilities of the embedded indexed Markov chain. It denotes the probability that the next transition is in state \(j \) given that at the current time the process entered in state \(i \) and the index process is equal to \(v \). It is simple to see that

\[
p^\lambda_{ij}(v) = \lim_{t \to \infty} Q^\lambda_{ij}(v; t). \tag{4}
\]

Let \(H^\lambda_i(v; \cdot) \) be the sojourn time cumulative distribution in state \(i \in E \):

\[
H^\lambda_i(v; t) := P[T_{n+1} - T_n \leq t | J_n = i, U^\lambda_n = v] = \sum_{j \in E} Q^\lambda_{ij}(v; t). \tag{5}
\]

It expresses the probability of making a transition from state \(i \) with sojourn time less than or equal to \(t \) given that the indexed process is \(v \).

The conditional waiting time distribution function \(G^\lambda \) expresses the following probability:

\[
G^\lambda_{ij}(v; t) := P[T_{n+1} - T_n \leq t | J_n = i, J_{n+1} = j, U^\lambda_n = u]. \tag{6}
\]

It is simple to establish that

\[
G^\lambda_{ij}(v; t) = \begin{cases}
\frac{Q^\lambda_{ij}(v; t)}{p^\lambda_{ij}(v)} & \text{if } p^\lambda_{ij}(v) \neq 0 \\
1 & \text{if } p^\lambda_{ij}(v) = 0.
\end{cases} \tag{7}
\]

In the papers \cite{9} and \cite{8}, explicit renewal-type equations were given to describe the probabilistic behavior of the indexed semi-Markov chain. It is possible to derive similar results for the WISMC model, but here we prefer not to report these results applied to our model because, in the implementation of the model given in section 3, we follow a Monte Carlo simulation based approach. Monte Carlo methods are very useful for simulating the system behavior and represent a way of generate replicable results. In the following we give a Monte Carlo algorithm in order to simulate a trajectory of a given WISMC in the time interval \([0, T]\). The algorithm consists in repeated random sampling to compute successive visited states of the random variables \(\{J_0, J_1, \ldots\} \), the jump times \(\{T_0, T_1, \ldots\} \) and the index values \(\{U^\lambda_0, U^\lambda_1, \ldots\} \) up to the time \(T \).

The algorithm consists of five steps:

1. set \(n = 0 \), \(J_0 = i \), \(T_0 = 0 \), \(U^\lambda_0 = v \), horizon time = \(T \);
2. sample \(J \) from \(p^\lambda_{J_n, J_n} \) and set \(J_{n+1} = J(\omega) \);
3. sample \(W \) from \(G^\lambda_{J_n, J_n+1} \) and set \(T_{n+1} = T_n + W(\omega) \);
4. set \(U^\lambda_{n+1} = \sum_{k=0}^{n} \sum_{a=1}^{T_{n+1} - T_k - 1} f(J_{n-k}, a, \lambda) \);
5. if \(T_{n+1} \geq T \) stop
 or else set \(n = n + 1 \) and go to (2).

3. Empirical results

In the following we show how our model performs, comparing its statistical features and those of real data returns. The comparison is done by means of Monte Carlo simulations according to the algorithms described in section 2.
For our analysis we choose four stocks from two databases of tick-by-tick quotes of real stocks from the Italian stock exchange (‘Borsa Italiana’) and the German stock exchange (‘Deutsche Börse’). The chosen stocks are Eni and Fiat from the Italian database and Allianz and VolksWagen from the German database. The period used goes from January 2007 to December 2010 (four full years). The data have been re-sampled to have 1 min frequency. The number of returns analyzed is thus roughly 500×10^3 for each stock.

To enable modeling of returns as a semi-Markov process, the state space has been discretized. In the four examples shown in this work, we discretized returns into five states chosen to be symmetrical with respect to returns equal to zero and to keep the shape of the distribution unchanged. Returns are in fact already discretized in real data due to the discretization of stock prices which is fixed by each stock exchange and depends on the value of the stock. Just to give an example, in the Italian stock market for stocks with value between 5.0001 and 10 euros the minimum variation is fixed to 0.005 euros (usually called the tick). We then tried to remain as much as possible close to this discretization.

In figure 1 we show an example of the discretization of the returns of one of the analyzed stocks. The model described in section 2 requires the specification of a function f in the definition of the weighted index U_n^λ in (1). Let us briefly recall that the volatility of a real market is long range positively autocorrelated and thus clustered in time. This implies that, in the stock market, there are periods of high and low volatility. Motivated by these empirical facts, we suppose that also the transition probabilities depend on whether the market is in a high volatility period or in a low volatility one. In a previous work [9], for reasons of simplicity, we used a moving average of the squares of returns as the index variable U. In that case we imposed that the index depended only on a memory m which was the number of transitions in the past used for the moving average. In this work we decided to use a more appropriate expression for f. We use an exponentially weighted
moving average (EWMA) of the squares of returns which has the following expression:

\[f(J_{n-1-k}, a, \lambda) = \frac{\lambda^{T_n-a} J_{n-1-k}^2}{\sum_{k=0}^{n-1} \sum_{a=T_{n-1-k}}^{T_n-a} \lambda^{T_n-a}} \]

and consequently the index process becomes

\[U^\lambda_n = \sum_{k=0}^{n-1} \sum_{a=T_{n-1-k}}^{T_{n-1-k}} \left(\frac{\lambda^{T_n-a} J_{n-1-k}^2}{\sum_{k=0}^{n-1} \sum_{a=T_{n-1-k}}^{T_n-a} \lambda^{T_n-a}} \right) . \]

The index \(U^\lambda \) was also discretized into five states of low, medium low, medium, medium high and high volatility. An example of the discretization used in the analysis is shown in figure 2.

A very important feature of stock market data is that, while returns are uncorrelated and show an i.i.d.-like behavior, their square or absolute values are long range correlated. It is very important that theoretical models of returns reproduce this features. We then tested our model to check whether it is able to reproduce such behavior. Given the presence of the parameter \(\lambda \) in the index function, we tested the autocorrelation behavior as a function of \(\lambda \). Note that in the definition of the index variable, the EWMA is performed over all the previous squares of returns, each with its weight. Before summing over all past returns we decided to check whether a better memory time \(m \) exists. For this reason we checked our model also against this other parameter. With this choice, formula (9) takes the form

\[U^\lambda_n(m) = \sum_{k=n-m}^{n-1} \sum_{a=T_{n-1-k}}^{T_{n-1-k}} \left(\frac{\lambda^{T_n-a} J_{n-1-k}^2}{\sum_{k=n-m}^{n-1} \sum_{a=T_{n-1-k}}^{T_n-a} \lambda^{T_n-a}} \right) . \]

doi:10.1088/1742-5468/2012/07/P07015
Weighted-indexed semi-Markov models for modeling financial returns

Figure 3. Mean square error between autocorrelation functions from real and simulated data as functions of m and for different values of λ.

We recall the definition of the autocorrelation function: if Z indicates returns, the time lagged (τ) autocorrelation of the square of returns is defined as

$$\Sigma(\tau) = \frac{\text{Cov}(Z^2(t + \tau), Z^2(t))}{\text{Var}(Z^2(t))}.$$ \hspace{1cm} (11)

We estimated $\Sigma(\tau)$ for real data and for returns time series simulated with different values of the memory time m and the weights λ. The time lag τ was made to run from 1 min up to 100 min. Note that to enable comparison of results for $\Sigma(\tau)$, each simulated time series was generated with the same length as real data. In figure 3 we show the mean square error between the $\Sigma(\tau)$ obtained from real and simulated returns (using the definition (10) for the index process) for the four stocks analyzed and for different m and λ. Let us give some considerations for the results shown in figure 3: m should be chosen as big as possible and thus definition (9) is appropriate as long as λ is chosen less than 1; in fact, in this last case definition (9) becomes equivalent to a moving average without weights and the results presented in [9] hold for m. In figure 4 we show again the mean square error but only as a function of the weights λ, thus using definition (9) for the index process. We can note that the behaviors are very similar for the different analyzed stocks even if the
The best value for λ is not the same for all of them. As can be seen, the best values of λ for the stocks Fiat, Eni, Allianz and VolksWagen are 0.96, 0.97, 0.97 and 0.98, respectively.

The comparison between the autocorrelations for the best values of λ for each stock and real data is shown in figure 5. This figure shows that real and synthetic data have almost the same autocorrelation function for the square of returns.

We tested our model also to verify whether it is able to reproduce the feature shown by real data as regards the first-passage-time (fpt) distribution [8, 15, 16]. Let us recall here the definition of the fpt: the fpt for an investment made at time t at price $S(t)$ is defined as the time interval $\tau = t' - t$, $t' > t$ where the relation $S(t + \tau)/S(t) \geq \rho$ is fulfilled for the first time. We will denote the fpt as $\Gamma_\rho(t)$. Then

$$\Gamma_\rho(t) = \min\{\tau \geq 0; S(t + \tau)/S(t) \geq \rho\}.$$

In [8] we have shown how to calculate analytically such a distribution for a semi-Markov process, so we will not repeat that here. Using the best values for λ for each stock, Fiat, Eni, Allianz and VolksWagen, and choosing a value $\rho = 1.005$ for all of them, we compare in figure 6 results for the first-passage-time distributions for each of the stocks. It can be noted that they are almost identical, improving the results obtained for a simple semi-Markov process presented in [8].
Weighted-indexed semi-Markov models for modeling financial returns

Figure 5. Autocorrelation functions of real data (solid line) and synthetic (dashed line) time series for the analyzed stocks.

The results obtained here improve those obtained in our previous work [9, 8] even further, showing that the semi-Markov approach is adequate for modeling high frequency financial time series.

4. Conclusions

We have modeled financial price changes through a semi-Markov model where we have added a weighted index. Our work is motivated by two main results: the existence in the market of periods of low and high volatility and our previous work [9], where we showed that an indexed semi-Markov model is able to capture almost all of the correlation in the square of returns present in real data. The results presented here show that the semi-Markov kernel is influenced by the past volatility and that its influence decreases exponentially with time. In fact, if the past volatility is used as an exponentially weighted index, the model is able to reproduce almost exactly the behavior of market returns: the returns generated by the model are uncorrelated, while the squares of returns present a long range correlation very similar to that of real data.

We have also shown, by analyzing different stocks from different markets (Italian and German), that results do not depend on the particular stock chosen for the analysis even if the value of the weights may depend on the stock.

We stress that our model is very different from those of the ARCH/GARCH family. We do not model directly the volatility as a correlated process. We model returns and
Weighted-indexed semi-Markov models for modeling financial returns

Figure 6. First-passage-time distributions of real data (solid line) and synthetic (dashed line) time series for the analyzed stocks.

on considering the semi-Markov kernel conditioned by a weighted index, the volatility correlation comes out freely.

References

[1] Mainardi F, Raberto M, Gorenflo R and Scalas E, Fractional calculus and continuous-time finance II: the waiting-time distribution, 2000 Physica A 287 468
[2] Raberto M, Scalas E and Mainardi F, Waiting-times and returns in high-frequency financial data: an empirical study, 2002 Physica A 314 749
[3] D’Amico G, Janssen J and Manca R, Homogeneous semi-Markov reliability models for credit risk management, 2005 Decis. Econ. Finance 28 79
[4] D’Amico G, Janssen J and Manca R, European and American options: the semi-Markov case, 2009 Physica A 388 3181
[5] Silvestrov D S and Steenberg F, A pricing process with stochastic volatility controlled by a semi-Markov process, 2004 Commun. Stat.—Theory Methods 33 591
[6] Guillaume D M, Dacorogna M M, Davé R R, Müller J A, Olsen R B and Pictet O V, From the bird’s eye to the microscope: a survey of new stylized facts of the intra-daily foreign exchange markets, 1997 Finance Stoch. 1 95
[7] Petroni F and Serva M, Spot foreign exchange market and time series, 2003 Eur. Phys. J. B 34 495
[8] D’Amico G and Petroni F, A semi-Markov model for price returns, 2012 Physica A 391 4867–76
[9] D’Amico G and Petroni F, A semi-Markov model with memory for price changes, 2011 J. Stat. Mech. P12009
[10] Limnios N and Oprişan G, An Introduction to Semi-Markov Processes with Application to Reliability 2003 (Handbook of Statistics vol 21) ed D N Shanbhag and C R Rao (Amsterdam: Elsevier) pp 515–56

doi:10.1088/1742-5468/2012/07/P07015

11
Weighted-indexed semi-Markov models for modeling financial returns

[11] D’Amico G, Petroni F and Prattico F, First and second order semi-Markov chains for wind speed modeling, 2012 arXiv:1206.2452
[12] D’Amico G, Age-usage semi-Markov models, 2011 Appl. Math. Modell. 35 4354
[13] Janssen J and Manca R, Applied Semi-Markov Processes 2006 (New York: Springer)
[14] Barbu V and Limnios N, Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications 2008 (New York: Springer)
[15] Simonsen I, Jensen M H and Johansen A, Optimal investment horizons, 2002 Eur. Phys. J. B 27 583
[16] Jensen M H, Johansen A, Petroni F and Simonsen I, Inverse statistics in the foreign exchange market, 2004 Physica A 340 678