Absorption features caused by oscillations of electrons on the surface of a quark star

R. X. Xu¹, S. I. Bastrukov¹,², F. Weber³, J. W. Yu¹ and I. V. Molodtsova²
¹State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
²Joint Institute for Nuclear Research, 141980 Dubna, Russia
³Department of Physics, San Diego State University, San Diego, California 92182, USA
(Dated: February 3, 2013)

If quark stars exist, they may be enveloped in thin electron layers (electron seas), which uniformly surround the entire star. These layers will be affected by the magnetic fields of quark stars in such a way that the electron seas would transmit hydromagnetic cyclotron waves, as studied in this paper. Particular attention is devoted to vortex hydrodynamical oscillations of the electron sea. The frequency spectrum of these oscillations is derived in analytic form. If the thermal X-ray spectra of quark stars are modulated by vortex hydrodynamical vibrations, the thermal spectra of compact stars, foremost central compact objects (CCOs) and X-ray dim isolated neutron stars (XDINSs), could be used to study the existence of these vibrational modes observationally. The central compact object 1E 1207.4-5209 appears particularly interesting in this context, since its absorption features at 0.7 keV and 1.4 keV can be comfortably explained in the framework of the hydro-cyclotron oscillation model.

PACS numbers: 26.60.-c, 97.60.Jd, 97.60.Gb

I. INTRODUCTION

The spectral features of thermal X-ray emission are essential for us to understand the real nature of pulsar-like compact stars. Calculations show that atomic spectral lines form in the atmospheres of neutron stars. From the detection and identification of atomic lines in thermal X-ray spectra one can infer neutron star masses (\(M \)) and radii (\(R \)), since the redshift and broadening of the spectral lines depend on \(M/R \) and \(M/R^2 \), respectively. Atomic features are expected to be detectable with the spectrographs on board of Chandra and XMM-Newton. No atomic features have yet been discovered with certainty, however. This may have its origin in the very strong magnetic fields carried by neutron stars. An alternative explanation could be that the underlying compact star is not a neutron star but a bare strange (quark matter) star [1, 2]. The surface of such an object does not consist of atomic nuclei/ions, as it is the case for a neutron star, but of a sea of electrons which envelopes the quark matter.

Strange stars are quark stars made of absolutely stable strange quark matter [3–5]. They consist of essentially equal numbers of up, down and strange quarks as well as of electrons [9–11]. The latter are needed to neutralize the electric charges of the quarks, rendering the interior of strange stars electrically neutral. Quark matter is bound by the strong interaction, while electrons are bound to quark matter by the electromagnetic interaction. Since the latter is long-range, some of the electrons in the surface region of a quark star reside outside of the quark matter boundary, leading to a quark matter core which is surrounded by a fairly thin (thousands of femtometer thick) sea of electrons [8, 9, 12]. Due to the enormous advances in X-ray astronomy, more and more so-called dead pulsars are discovered, whose thermal radiation dominates over a very weak or negligibly small magnetospheric activity. The best absorption features (at ~ 0.7 keV and ~ 1.4 keV) were detected for the central compact object (CCO) 1E 1207.4-5209 in the center of supernova remnant PKS 1209-51/52 (see Table I). Initially, these features were thought to be associated with...
in agreement to what is obtained under the assumption that the lowest-energy line at 0.7 keV is the electron-cyclotron fundamental, favoring the electron-cyclotron interpretation

Besides 1E 1207.4-5209, broad absorption lines have also been discovered in other dead pulsars (listed in Table [1]), especially in so-called X-ray dim isolated neutron stars (XDINSSs), between about 0.3 and 0.7 keV [19].

In this paper, we re-investigate the physics of these absorption features. The key assumption that we make here is that these features originate from the electron seas on quarks stars rather than from neutron stars, whose surface properties are radically different from those of strange stars [8, 9, 12]. Of key importance is the magnetic field carried by a quark star, which critically affects the global properties (hydrodynamic surface fluctuations) of the electron sea at the surface of the star. We study this problem in the framework of classical electrodynamics, since the magnetic fields of dead pulsars are much lower than the critical field, $B_q = 4.414 \times 10^{13}$ G, at which the quantization of the cyclotron orbits of electrons into Landau levels occurs.

II. HYDRO-CYLCOTRON WAVES

A. Governing equations

For what follows we restrict ourselves to a discussion of the large-scale oscillations of an electron sea subjected to a stellar magnetic field. We will be applying the semi-classical approach of classical electron theory of metals and making use of standard equations of fluid-mechanics. The electrons are viewed as a viscous fluid of uniform density $\rho = n m_e$ (where n is the electron number density) whose oscillations are given in terms of the mean electron flow velocity $\delta \mathbf{v}$. This implies that the fluctuation-current-carrying flow is described by the density of the convective current $\delta \mathbf{j} = \rho_e \delta \mathbf{v}$, where $\rho_e = e n$ is the electron charge density. The equations of motions of a viscous electron fluid are then given by [20]

$$
\frac{\rho}{c} \frac{\partial \delta \mathbf{v}}{\partial t} = \frac{1}{c} [\delta \mathbf{j} \times \mathbf{B}] + \eta \nabla^2 \delta \mathbf{v},
$$

(1)

$$
\delta \mathbf{J} = \rho_e \delta \mathbf{v}, \quad \rho = n m_e, \quad \rho_e = e n,
$$

(2)

where e and n are the change and number densities of electrons, respectively. We emphasize that $\delta \mathbf{j}$ stands for the convective current density and not for Ampére’s $\mathbf{j} = (c/4\pi) \nabla \times \mathbf{B}$, as it is the case for magneto-hydrodynamics. This means that the hydrodynamic oscillations in question are of non-Alfvén type. In Eq. [1], η denotes the effective viscosity of the electron fluid, which originates from collisions of electrons with the magnetic field lines at the stellar surface. It is worth noting that the cyclotron waves can be regarded as an analogue of the inertial waves in a rotating incompressible fluid, as presented in Eq. (III.56) of Chandrasekhar’s book [21].

The governing equation, Eq. (1), can be represented as

$$
\frac{\partial \delta \mathbf{v}}{\partial t} + \omega_c [\mathbf{n}_B \times \delta \mathbf{v}] - \nabla \delta \mathbf{v} = 0,
$$

(3)

$$
\omega_c = \frac{e B}{m_e c}, \quad \mathbf{n}_B = \frac{\mathbf{B}}{B}, \quad \nu = \frac{\eta}{\rho}.
$$

(4)

where ω_c is the cyclotron frequency. In the Appendix, we show that the electron sea can transmit macroscopic perturbations in the form of rotational hydro-cyclotron waves which are characterized by the following dispersion relation,

$$
\omega = \pm \omega_c \cos \theta \left[\frac{1}{1 - (\nu k^2/\omega^2)} + i \frac{(\nu k^2/\omega)}{1 - (\nu k^2/\omega)^2} \right].
$$

(5)

where ω and k denote the frequency and wave vector of the perturbations, respectively. The Larmor radius of an electron in a strong magnetic field, $r_L = m_e c^2 / (e B) \propto B^{-1}$, is very small for pulsar-like compact stars, and we neglect the viscosity term in the following analysis of the motion of collective electrons. In the collision-free regime, $\nu = 0$, the hydro-cyclotron electron wave is described as a transverse, circularly polarized wave whose dispersion relation and propagation speed are given by

$$
\omega = \pm \omega_c \cos \theta \quad \text{and} \quad V = \pm (\omega_c/k) \cos \theta,
$$

(6)

respectively. Here, θ is the angle between the magnetic field \mathbf{B} and the wave vector \mathbf{k}. If $\mathbf{k} \parallel \mathbf{B}$ one has $\omega = \pm \omega_c$. In metals these kind of oscillations are observed as electron-cyclotron resonances. There are two possible resonance states, one for $\omega = \omega_c$ and the other for $\omega = -\omega_c$. These resonances correspond to the two opposite orientations of circularly polarized electron cyclotron waves.

B. Hydro-cyclotron oscillations of electrons on bare strange quark stars

We restrict our analysis to the collision-free regime of vortex hydro-cyclotron oscillations. Using spherical coordinates, equation (3) then takes the form

$$
\frac{\partial \delta \mathbf{v}}{\partial t} + \omega_c [\mathbf{n}_B \times \delta \mathbf{v}] = 0.
$$

(7)

Taking the curl of both sides of Eq. (7), we obtain

$$
\frac{\partial \delta \mathbf{v}}{\partial t} = \omega_c (\mathbf{n}_B \cdot \nabla) \delta \mathbf{v}, \quad \delta \mathbf{v} = \nabla \times \delta \mathbf{v}.
$$

(8)

Let the magnetic field \mathbf{B} be directed along the z-axis, so that in Cartesian coordinates $\mathbf{n}_B = (0, 0, 1)$. We then have

$$
n_r = \cos \theta, \quad n_\theta = -\sin \theta, \quad n_\phi = 0.
$$

(9)

From a mathematical point of view, the problem can be considerably simplified if one expresses the velocity $\delta \mathbf{v}$,
which obeys the condition \(\nabla \cdot \delta \mathbf{v} = 0 \), in terms of Stokes’ stream function, \(\chi(\theta, \phi) \). This leads to
\[
\delta v_r = 0, \quad \delta v_\theta = \frac{1}{r \sin \theta} \frac{\partial \chi(\theta, \phi)}{\partial \phi}, \quad \delta v_\phi = -\frac{1}{r} \frac{\partial \chi(\theta, \phi)}{\partial \theta}.
\]
Equation (10) then simplifies to
\[
\frac{\partial \delta \omega_c}{\partial t} = -\omega_c \frac{\partial \delta \psi_\theta}{R},
\]
with the radial component of the vortex given in terms of \(\chi \),
\[
\delta \omega_r = \frac{1}{R} \left[\frac{\partial \delta \psi_\phi}{\partial \theta} - \frac{1}{\sin \theta} \frac{\partial \delta \psi_\theta}{\partial \phi} \right] = -\frac{1}{R^2} \nabla \chi(\theta, \phi),
\]
\[
\nabla^2 \chi = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \chi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \chi}{\partial \phi^2}.
\]
Substituting Eq. (12) and Eq. (13) into Eq. (11) leads to
\[
\nabla^2 \chi = \omega_c \frac{\partial \chi}{\partial \phi}. \quad \nabla^2 \chi = 0.
\]
The fact that free electrons undergo cyclotron oscillations in the planes perpendicular to the magnetic field suggests that the stream function \(\chi \) can be written in the following separable form,
\[
\chi(\theta, \phi) = \psi(\theta) \cos(\phi \pm \omega_t).
\]
The “+” sign allows for cyclotron oscillations induced by the clockwise polarized wave, and the “−” sign allows for cyclotron oscillations induced by the count-clockwise polarized wave. Substituting \(\psi(\theta) \) into (12) leads to
\[
\nabla^2 \psi(\theta) = \omega_c \frac{\omega_c}{\omega} \psi(\theta) = 0.
\]
In the reference frame where the polar axis is fixed, Eq. (16) is identical to the Legendre equation for the surface spherical function,
\[
\nabla^2 \Psi(\theta) + \ell(\ell + 1) \Psi(\theta) = 0,
\]
where \(P_\ell(\cos \theta) \) denotes the Legendre polynomial of degree \(\ell \). Hence, setting \(\psi(\theta) = P_\ell(\theta) \) we obtain
\[
\omega_c(\ell) = \pm \frac{\omega_c}{\ell(\ell + 1)}, \quad \omega_c = \frac{eB}{mc}, \quad \ell \geq 1.
\]
From this relation we can read off the frequency of a surface hydro-cyclotron oscillation of a given order \(\ell \).

C. Characteristic features of cyclotron frequencies

Let us consider the spectrum of the positive branch \(\omega(\ell) = \omega_+(\ell) \) of Eq. (15),
\[
\omega(\ell) = \frac{\omega_c}{\ell(\ell + 1)}, \quad \ell \geq 1.
\]

| TABLE II. Comparison between single-particle (Landau level) and hydro-wave results for the cyclotron frequencies (\(B_{12} = B/10^{12} \) G, \(\omega_i = \omega(\ell = 1) \)), \(\omega_c \) denotes the cyclotron frequency. |
|-----------------|-----------------|-----------------|
| \(\omega(\ell = 1) \) | \(\omega(\ell = 2) \) | \(\omega(\ell = 3) \) |
| Landau level \(\omega_c \) | \(2\omega_c \) | \(3\omega_c \) | \(11.6B_{12} \) |
| Hydro-wave \(\omega_c/2 \) | \(\omega_c/6 \) | \(\omega_c/12 \) | \(5.8B_{12} \) |
| From \(\frac{\omega(\ell)}{\omega(\ell + 1)} = \frac{\ell + 2}{\ell}, \quad \ell \geq 1, \) it follows that this ratio becomes a constant for \(\ell \gg 1 \). Such a spectral feature is notably different from the one of electron-cyclotron resonances of transitions between different Landau levels. |
| From the energy eigenvalues, \(E_n \), of an electron in a strong magnetic field, which are found by solving the Dirac equation (see Ref. [22]), one may approximate the solution of Eq. (19) obtained for the hydro-cyclotron wave model. Most notably, it follows that for the hydro-cyclotron wave model one obtains \(\omega_c(\ell = 2)/\omega_c(\ell = 3) = 2 \), in contrast to the cyclotron resonance model for single electrons which predicts this ratio for \(\omega_c(\ell = 2)/\omega_c(\ell = 1) = 2 \). |

III. 1E 1207.4-5209 AND OTHER COMPACT OBJECTS

As already mentioned in the Introduction, 1E 1207.4-5209 (or J1210-5226) in PKS 1209-51/52 is one of the central compact objects in supernova remnants [23], where broad absorption lines, near (0.7, 1.4) keV [14], and possibly near (2.1, 2.8) keV [16] were detected for the first time. The interpretation of the absorption feature at \(\sim 2.8 \) keV is currently a matter of debate, in contrast to the feature at \(\sim 2.1 \) keV which is essentially unexplained. Intriguingly, an absorption feature with the same energy, \(\sim 2.1 \) keV, has also been detected in the accretion-driven X-ray pulsar 4U 1538-52 [24].

For what follows, we assume that 1E 1207.4-5209 is a strange quark star and that (some of) these absorption features are produced by the hydro-cyclotron oscillations of the electron sea at the surface of such an object. Assuming a magnetic surface field of \(B \approx 7 \times 10^{11} \) G and...
TABLE III. The frequencies, $\omega(\ell)$, at which hydro-cyclotron oscillations occur for 1E 1207.4-5209 with effective temperature $T \approx 0.2$ keV, assuming a magnetic field of $B \simeq 7 \times 10^{11}$ G.

ℓ	1	2	3	4	5	6
$\omega(\ell)$/keV	4.2	1.4	0.7	0.4	0.3	0.2

thus $\omega(\ell = 3) = 0.7$ keV, we obtain the oscillation frequencies shown in Table III. A magnetic field of $\sim 7 \times 10^{11}$ G is compatible with the magnetic fields inferred for 1E 1207.4-5209 from timing solutions [18] (9.9×10^{10} G or 2.4×10^{11} G), since 1E 1207.4-5209 shows no magnetospheric activity and the P-value would be overestimated if one applies the spin-down power of magnetic dipole radiation [25, 26]. We note that the absorption feature at $\omega(\ell = 1) = 4.2$ keV shown in Table III may not be detectable since the stellar temperature is only ~ 0.2 keV (see Table I), which will suppress any thermal feature in that energy range.

Aside from 1E 1207.4-5209, one may ask what would be the magnetic fields of other dead pulsars (e.g., radio-quiet compact objects) if their spectral absorption features would also be of hydro-cyclotron origin? Intriguingly, the hydro-cyclotron wave model predicts magnetic fields that are twice as large as those derived from the electron cyclotron model if the absorption feature is at $\omega(\ell = 1) = \omega_c/2$; these fields could be ~ 10 times greater (see Table III) if the absorption feature is at $\omega(\ell = 2) = \omega_c/6$ or $\omega(\ell = 3) = \omega_c/12$. The absorption lines at (0.3 \sim 0.7) keV may indicate that the fields of XDINSs are on the order of $\sim 10^{10}$ to 10^{11} G, if oscillation modes with $\ell \geq 4$ are not significant.

As noted in [15], unique absorption features on compact stars are only detectable with Chandra and XMM-Newton if the stellar magnetic fields are relatively weak (10^{10} G to 10^{11} G), since the stellar temperatures are only a few 0.1 keV. The fields of many pulsar-like objects are generally greater than this value, with the exception of old millisecond pulsars whose fields are on the order of 10^8 G. Central compact objects, on the other hand, seem to have sufficiently weak magnetic fields (see Table II) so that absorption features originating from their surfaces should be detectable by Chandra and XMM-Newton. Arguments favoring the interpretation of compact field objects as strange quark stars have been put forward in [27], where it was shown that the magnetic field observed for some CCOs could be generated by small amounts of differential rotation between the quark matter core and the electron sea.

Besides dead pulsars, anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are enigmatic objects which have become hot topics of modern astrophysics. Whether they are magnetars/quark stars is an open question [28]. In case that AXPs/SGRs should be bare strange stars, the absorption lines detected from SGR 1806-20 could be understood in the framework of the hydro-cyclotron oscillation model. Assuming a normal magnetic field of $B \simeq 1.86 \times 10^{13}$ G so that $\hbar \omega_c/12 = 18$ keV, one sees that the oscillation model predicts hydro-cyclotron frequencies which coincide with the observed listed in Table IV.

IV. SUMMARY

In this paper, we study the global motion of the electron seas on the surfaces of hypothetical strange quark stars. It is found that such electron seas may undergo hydro-cyclotron oscillations whose frequencies are given by $\omega(\ell) = \omega_c/[(\ell(\ell + 1)]$, where $\ell \geq 1$ and ω_c the cyclotron frequency. We propose that some of the absorption features detected in the thermal X-ray spectra of dead (e.g., radio silent) compact objects may have their origin in excitations of these hydro-cyclotron oscillations of the electron sea, provided these stellar objects are interpreted as strange quark stars. The central compact object 1E 1207.4-5209 appears particularly interesting. It shows an absorption feature at 0.7 keV which is not much stronger than the another absorption feature observed at 1.4 keV. This can be readily explained in the framework of the hydro-cyclotron oscillation model, since two lines with ℓ and $\ell + 1$ could essentially have the same intensity. This is very different for the electron-cyclotron model, for which the oscillator strength of the first harmonic is much smaller than the oscillator strength of the fundamental.

APPENDIX

Here we derive the dispersion relation characterizing the propagation of hydro-cyclotron electron wave in the slab-geometry approximation. The governing equation for viscous electron fluid under the action of Lorentz force is given by

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \frac{\rho_e}{c} [\mathbf{v} \times \mathbf{B}] + \eta \nabla^2 \mathbf{v},$$

which can be written as

$$\frac{\partial \delta \mathbf{v}}{\partial t} + \omega_c [\mathbf{n}_B \times \delta \mathbf{v}] - \nu \nabla^2 \delta \mathbf{v} = 0, \quad (23)$$

where

$$\omega_c = \frac{eB}{m_ec}, \quad \mathbf{n}_B = \frac{\mathbf{B}}{B}, \quad \nu = \frac{\eta}{\rho}, \quad \rho = m_en, \quad \rho_e = en,$$
\(\omega_c \) is the cyclotron frequency, and \(\eta \) stands for the effective viscosity of an electron fluid originating from collisions between electrons. To make the problem analytically tractable, we treat the electron sea as an incompressible fluid and assume a uniform magnetic field. Equation (23) can then be written as

\[
\frac{\partial \delta \mathbf{v}}{\partial t} = -\omega_c [\mathbf{n}_B \times \delta \mathbf{v}] + \nu \nabla^2 \delta \mathbf{v}. \tag{24}
\]

Upon applying to Eq. (24) the operator \(\nabla \times \), we arrive at

\[
\frac{\partial}{\partial t} [\nabla \times \delta \mathbf{v}] = \omega_c (\mathbf{n}_B \cdot \nabla) \delta \mathbf{v} - \nu \nabla \times \nabla \times \delta \mathbf{v}, \tag{25}
\]

where \(\nabla \cdot \delta \mathbf{v} = 0 \), and

\[
\frac{\partial \delta \mathbf{v}}{\partial t} = \omega_c (\mathbf{n}_B \cdot \nabla) \delta \mathbf{v} - \nu \nabla \times \nabla \times \delta \mathbf{v}, \tag{26}
\]

where \(\delta \mathbf{v} = \nabla \times \delta \mathbf{v} \). Considering a perturbation in the form of \(\delta \mathbf{v} = \mathbf{v}' \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] \), we have

\[
[k \times \delta \mathbf{v}] = i \frac{\omega_c}{\omega} (\mathbf{n}_B \cdot \mathbf{k}) \delta \mathbf{v} + \frac{\nu k^2}{\omega} [k \times \delta \mathbf{v}], \tag{27}
\]

\[
\left(1 - \frac{\nu k^2}{\omega} \right) [k \times \delta \mathbf{v}] = i \frac{\omega_c}{\omega} (\mathbf{n}_B \cdot \mathbf{k}) \delta \mathbf{v}, \tag{28}
\]

where \(\mathbf{k} \cdot \delta \mathbf{v} = 0 \). It is convenient to rewrite the last equation as

\[
[k \times \delta \mathbf{v}] = i \frac{\omega_c}{\omega} (\mathbf{n}_B \cdot \mathbf{k}) \delta \mathbf{v} \left[1 + i (\nu k^2/\omega) \right] \left[1 - (\nu k^2/\omega)^2 \right]. \tag{29}
\]

Multiplication of both sides of Eq. (29) with \(\mathbf{k} \) leads to

\[
- \omega \delta \mathbf{v} k^2 = i \omega c (\mathbf{n}_B \cdot \mathbf{k}) \left[1 + i (\nu k^2/\omega) \right] \left[1 - (\nu k^2/\omega)^2 \right] [k \times \delta \mathbf{v}]. \tag{30}
\]

Inserting the left-hand-side of Eq. (29) into the right-hand-side of Eq. (30) gives

\[
\omega^2 = \omega_c^2 \left(\frac{\mathbf{n}_B \cdot \mathbf{k}}{k^2}\right)^2 \left[1 + i (\nu k^2/\omega) \right] \left[1 - (\nu k^2/\omega)^2 \right]^2, \tag{31}
\]

or

\[
\omega = \pm \frac{\omega_c}{k} \left(\frac{\mathbf{n}_B \cdot \mathbf{k}}{k}\right) \left[1 + i (\nu k^2/\omega) \right] \left[1 - (\nu k^2/\omega)^2 \right]^{1/2},
\]

which is Eq. (15).

Acknowledgement. We would like to acknowledge valuable discussions at the PKU pulsar group. F.W. is supported by the National Science Foundation under Grant PHY-0854699. This work is supported by the National Natural Science Foundation of China (grant 10935001 and 10973002), the National Basic Research Program of China (grants 2009CB824800, 2012CB821800), and the John Templeton Foundation.