Observational studies of the effects of exposures or medical treatments usually suffer from confounding. Whereas measured confounding variables can be adjusted for, it is often impossible to correct for unmeasured confounding. Unfortunately, the potential impact of unmeasured confounding, and whether an observed relation (or part of it) may be due to unmeasured confounding, is not often discussed.\(^1\)–\(^3\)

To guide the thinking about unmeasured confounding, a useful classification is in known, yet unmeasured, confounding variables (the ‘known unknowns’), and unknown, and therefore unmeasured, confounding variables (the ‘unknown unknowns’). Given the former are known, their relation with exposure and outcome may be known too, and their potential confounding effect can often be quantified through bias analysis.\(^4\)–\(^6\)

A starting point for the discussion about unknown unknowns could be to ask what an unmeasured confounding variable should look like in order to explain the observed effect, if in fact there is no exposure–outcome relation.\(^6\)–\(^7\) This can be quantified by the E-value, which is the minimum strength of association, on a risk ratio scale, an unmeasured confounding variable would need to have with both exposure and outcome in order to explain the observed effect.\(^8\) Although the E-value was proposed only recently, Blum et al. have already performed a systematic review of its use and interpretation, published in this issue.\(^9\)

They found that studies that report similar E-values draw different conclusions about the potential for unmeasured confounding. Given that the E-value is merely a function of the effect estimate (e.g. estimated risk ratio), this basically shows that, despite similar effect estimates, the perceived potential for unmeasured confounding differs between studies. A simple reason is that one field of research may be more prone to unmeasured confounding than another.\(^10\) Furthermore, the study design, rather than effect estimate, is informative about the potential for unmeasured confounding. Consider three almost identical studies of the same exposure–outcome relation. All three studies find that exposure increases the risk of the outcome by, say, 33% (relative risk = 1.33). For each study, the E-value is 2. But once you know that one study is a large randomized trial, one is an observational study with extensive adjustment for confounding variables, and one is an observational study with adjustment for age and sex only, the potential for unmeasured confounding clearly differs between the different studies, despite the E-value being the same.

Critics of the E-value might argue that it does not quantify other sources of bias. Indeed, E-values are intended to quantify the discussion about unmeasured confounding, but not about, e.g. measurement error or missing values. But since it was never the intention of E-values to do so, the E-value is not to be blamed. Also, E-values assume that the strength of the relations of the confounding variable with exposure and with the outcome are the same. Those who consider this unrealistic, can apply slightly more complicated formulae,\(^11\) of which the E-value is just a
particular case. Furthermore, the E-value considers the perhaps unrealistic situation that the exposure–outcome relation is null. It is, however, possible to calculate E-values for non-null hypotheses. Finally, although E-values are often presented for a single unmeasured confounding variable, they can be thought of as a summary of multiple unmeasured variables. Note that all these concerns are about the use of the E-value, not about the E-value itself.

A central issue in the debate about the E-value seems to be whether this tool is a useful first step when considering unmeasured confounding or whether it will do more harm than good by being too simplistic. The latter concern is justified should the E-value prevent researchers from applying more advanced bias analysis methods. But current practice is that these methods are hardly ever used anyway. Blum et al. argue that ‘facile automation in calculating E-values may compound the already poor handling of confounding’. However, that fear is not supported by the numbers found in their review. In 69 papers in which an E-value was reported, 18 made no comment about the potential impact of unmeasured confounding, whereas no such comment was made in 52 of the 69 matched control papers. These numbers suggest that, among researchers who reported an E-value, there appears to be more (not less!) attention to unmeasured confounding, which in any case is a starting point for further discussions about that topic.

Despite at least 60 years of literature about bias analysis for unmeasured confounding, little progress has been made in practice: usually unmeasured confounding is addressed only vaguely, and often not at all. We should move beyond unsubstantiated statements about unmeasured confounding being present or not. E-Values are not meant to reduce discussions about unmeasured confounding or whether it will do more harm than good by being too simplistic. The latter concern is justified should the E-value prevent researchers from applying more advanced bias analysis methods. But current practice is that these methods are hardly ever used anyway.

Conflict of Interest
None declared.

References
1. Hemkens LG, Ewald H, Naudet F et al. Interpretation of epidemiologic studies very often lacked adequate consideration of confounding. J Clin Epidemiol 2018;93:94–102.
2. Pouwels KB, Widyakusuma NN, Groenwold RH, Hak E. Quality of reporting of confounding remained suboptimal after the STROBE guideline. J Clin Epidemiol 2016;69:217–24.
3. Groenwold RH, Van Deursen AM, Hoes AW, Hak E. Poor quality of reporting confounding bias in observational intervention studies: a systematic review. Ann Epidemiol 2008;18:746–51.
4. Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 1998;54:948–63.
5. Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data. New York: Springer-Verlag, 2009.
6. Groenwold RH, Sterne JA, Lawlor DA, Moons KG, Hoes AW, Tilling K. Sensitivity analysis for the effects of multiple unmeasured confounders. Ann Epidemiol 2016;26:605–11.
7. Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology 2003;14:459–66.
8. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017;167:268–74.
9. Blum MR, Tan YJ, Ioannidis J. Use of E-values for addressing confounding in observational studies—an empirical assessment of the literature. Int J Epidemiol 2020; https://doi.org/10.1093/ije/dyaz261.
10. Trinquart L, Erlinger AL, Petersen JM, Fox M, Galea S. Applying the E value to assess the robustness of epidemiologic fields of inquiry to unmeasured confounding. Am J Epidemiol 2019;188:1174–80.
11. Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiology 2016;27:368–77.
12. VanderWeele TJ, Mathur MB, Ding P. Correcting misinterpretations of the E-value. Ann Intern Med 2019;170:131–2.
13. Ioannidis JPA, Tan YJ, Blum MR. Limitations and misinterpretations of E-values for sensitivity analyses of observational studies. Ann Intern Med 2019;170:108–11.
14. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-value to assess the potential effect of unmeasured confounding in observational studies. JAMA 2019;321:602–3.
15. Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence and a discussion of some questions. J Nat Canc Inst 1959;22:173–203.

Funding
This work was supported by grants from the Netherlands Organization for Scientific Research (ZonMW-Vidi project 917.16.430) and the Leiden University Medical Centre.