The Combination of UHPLC-HRMS and Molecular Networking Improving Discovery Efficiency of Chemical Components in Chinese Classical Formula

Xiaoxia Xue
China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica

Qishu Jiao
China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica

Runa Jin
China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica

Xueyuan Wang
Shanxi University

Shougang Shi
Sunflower Pharmaceutical Group (Xiangyang) Longzhong Co.Ltd

Zhengjun Huang
Sunflower Pharmaceutical Group (Xiangyang) Longzhong Co.Ltd

Yuntao Dai (✉ ytdai@icmm.ac.cn)
China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica

Shilin Chen
China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica

Research Article

Keywords: Chinese Classical Formula, Chemical component identification, Erdong decoction, UHPLC-LTQ-Orbitrap-MS/MS, Molecular networking, Steroidal saponins, Triterpenoid saponins, Flavone C-glycosides

DOI: https://doi.org/10.21203/rs.3.rs-443278/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

It is essential to identify the chemical components for the quality control methods establishment of Chinese Classical Formula (CCF). However, CCF are complex mixture of several herbal medicines with huge number of different compounds and they are not equal to the combination of chemical components from each herb due to particular formula ratio and preparation techniques. Therefore, it is time-consuming to identify compounds in a CCF by analyzing the LC-MS/MS data one by one, especially for unknown components.

Methods

An ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) approach was developed to comprehensively profile and characterize multi-components in CCF with Erdong decoction composed of eight herbal medicines as an example. Then the MS data of Erdong decoction was analyzed by MS/MS-based molecular networking and these compounds with similar structures were connected to each other into a cluster in the network map. Then the unknown compounds connected to known compounds in a cluster of the network map were identified due to their similar structures.

Results

Based on the clusters in the molecular networking, 113 compounds were rapidly identified from Erdong decoction for the first time, which including steroidal saponins, triterpenoid saponins, flavone O-glycosides and flavone C-glycosides.

Conclusion

MS/MS-based molecular networking technique is very useful for the rapid identification of components in CCF. In Erdong decoction, this method was very suitable for the identification of major steroidal saponins, triterpenoid saponins, and flavone C-glycosides.

Background

The Chinese Classical Formula (CCF) are the essences of thousands of years of practical experience in the clinical application of tradition Chinese medicines (TCM). It is important and preferred direction of traditional Chinese medicine (TCM) to develop CCF into modern preparations to meet the needs of convenience. The chemical components analysis is of great significance for the study of pharmacologically active components and the establishment of quality control methods of CCF. The main chemical components of CCF are extremely complex and they are not equal to the combination of chemical components of each herb due to different formula proportions and preparation techniques. Therefore, how to quickly identify the main chemical components of a TCM formula is an important step for the modernization development of CCF.

Identification of chemical components of TCM formula have been facilitated by modern analytical techniques. In particular, high-resolution mass spectrometry (HRMS) plays a critical role in characterizing structures of chemical compounds by providing precise molecular weight as well as fragmental structures with the advantages of high sensitivity and throughput in detecting versatile molecules [1]. Conventionally, liquid chromatography mass spectrometry (LC-MS) is one of the most widely used approaches to the preliminary characterization of chemical components of TCM formula extract. Nevertheless, it is time-consuming and difficult to analyze the MS data of a TCM formula due to its complex components, especially for unknown components.

Recently, the combination of LC-HRMS and molecular networking has facilitated the MS data analysis. Molecular networking (MN) is outstanding to dispose of complicated MS data. It is capable of gathering the molecules with similar structures together based on the similarity of their MS/MS fragments. Compounds that share similar MS/MS fragmentation patterns or molecular classes are likely to group together in MN. This improves the possibility of identification of unidentified nodes, if their spectra or the spectra of surrounding nodes are known by references [2–4]. Thus, the combination of LC-HRMS and molecular networking immensely enhances the efficiency and drastically reduces the time on data processing. In the last few decades, molecular networking was introduced in drug development and metabolomics, particularly for natural products containing hundreds of components.

As one example from the "Catalogue of Ancient Chinese Classic formula (First Batch)", Erdong decoction was record in yixuexinwu and used in nourishing Yin and quenching thirst. In modern clinical practice, Erdong decoction and its modified prescriptions have been mainly used to treat type 2 diabetes and its complications [5, 6]. It was composed of eight herbs including Asparagi Radix (the radix of Asparagus cochinchinensis(Lour.)Merr.), Ophiopogonis Radix (the radix of Ophiopogon japonicus.), Trichosanthis Radix (the radix of Trichosanthes kirilowii Maxim.), Scutellariae Radix (the radix of Scutellaria baicalensis Georgi.), Anemarrhe Naerhizoma (the naerhizoma of Anemarrhena asphodeloides Bunge.), Glycyrrhizae Radix Et Rhizoma (the radix et rhizoma of Glycyrrhiza uralensis Fisch.), Ginseng Radix Et Rhizoma (the radix et rhizoma of Panax ginseng C. A. Mey.) and
Nelumbinis Folium (the folium of *Nelumbo nucifera* Gaertn.). However, hitherto there is no report on systematic characterization of chemical components of Erdong decoction and its quality control methods.

In this study, the combination of LC-HRMS and molecular networking was applied to rapidly identify compounds in Erdong decoction as a case study to demonstrate the application of the combined techniques in TCM formula. An ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) approach was developed to comprehensively profile and characterize multi-components in Erdong decoction. Then the MS data of Erdong decoction was analyzed by MS/MS-based molecular networking (Fig. 1). The results show that the combination of LC-HRMS and molecular networking greatly improves the efficiency of chemical components identification in CCF.

Materials And Methods

Materials and reagents

A. cochinchinensis was purchased from Guizhou Province in July 2018. *O. japonicus* was purchased from Santai, Sichuan Province in July 2018. *T. kirilowii* was purchased from Feicheng, Shandong Province in July 2018. *S. baicalensis* was purchased from Lingchuan, Shanxi Province in July 2018. *A. asphodeloides* was purchased from Wanrong, Shanxi Province in July 2018. *G. uralensis* was purchased from Beitun Town, Xinjiang Province in July 2018. *P. ginseng* was purchased from Fushong, Jilin Province in July 2018. *N. nucifera* was purchased from Nanchang, Jiangxi Province in September 2018. Reference compounds, neomangiferin, oroxylin A-7-O-β-D-glucuronide and glycyrrhizin acid were purchased from Beijing Century Aoko Biotechnology Co. Ltd. (Beijing, China), mangiferin, baicalin and wogonoside were purchased from National Institutes for Food and Drug Control (Beijing, China), and quercetin-3-O-gluconuride and hyperoside were purchased from Chengdu Cloma Biological Technology Co. Ltd. (Sichuan, China). HPLC-grade acetonitrile and LC-MS-grade formic acid were purchased from Fisher Scientific (USA).

Sample Preparation

The solutions of neomangiferin, mangiferin, hyperoside, quercetin-3-O-gluconuride, baicalin, oroxylin A-7-O-β-D-glucuronide, wogonoside and glycyrrhizic acid were prepared in methanol at appropriate concentrations. A mixture of 8 different slices consisting of 33.6 g of dried *O. japonicus* radixs, 22.5 g of dried *A. cochinchinensis* radixs, 11.1 g of dried *T. kirilowii* radixs, 11.1 g of dried *S. baicalensis* radixs, 11.1 g of dried *A. asphodeloides* naerhizomas, 11.1 g of dried *N. nucifera* foliums, 5.7 g of dried *G. uralensis* radix et rhizoma, and 5.7 g of dried *P. ginseng* radix et rhizome were extracted twice with water for 40 min, with ten times (w/v) water and six times (w/v) water, respectively. All extraction solutions were concentrated to 560 mL at 60°C. One hundred microlitre of concentrated solution was dissolved in 900 µL of 10% acetonitrile and centrifuged at 13000 r·min⁻¹ for 5 min, then the supernatant solution was filtered through a 0.22 µm membrane filter prior to injection into the chromatographic system.

Data Acquisition And Molecular Networking Analysis

HPLC analysis was performed on Dionex Ultimate 3000 UHPLC system (USA) with photodiode array (PDA) detector. Samples were separated on an Acquity UPLC HSS T3 column (100 × 2.1 mm i.d., 1.8µm) at 40°C. The mobile phase consisted of acetonitrile (A) and water containing 0.1% formic acid (B). A gradient program was adopted as follows: 0-3min, 10–13%; 3-6min, 13–14% A; 6-9min, 14–17% A; 9-11min, 17–25% A; 11-18min, 25–30% A; 18-19min, 30–48% A; 19-22min, 48–48% A, with a flow rate of 0.4 mL/min. The PDA detector scanned at 254 nm.

The LTQ-Orbitrap XL mass spectrometer was purchased from Thermo Scientific equipped with electrospray ionization (EIS) and Xcalibur 2.1 workstation. The analysis was performed in both negative and positive mode with a mass range of m/z 100–1400. High-purity nitrogen (N₂) was used as auxiliary gas (10 arb) and sheath gas (40 arb). The other parameters were as follows: capillary temperature, 350°C; capillary voltage, 3.3 kV (in the positive mode), 3.0 kV (in the negative mode).

The MS data of the targeted fraction was converted from the raw format to the mzXML format using the Proteo-Wizard 3.0.20014. Then, the mzXML file was uploaded by the suggested software of WinSCP (https://winscp.net/eng/download.php) to the GNPS platform (https://gnps.ucsd.edu). The resulting analysis and parameters for the network can be accessed via links http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4e68c1650ff24ec9091a7a021d52531e0 (in the negative mode) and http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=bc6d018bf9d044d09353515f1ed7bca (in the positive mode). The following settings were used for generation of the network: minimum pairs cos 0.6; parent mass tolerance, 2 Da; MS/MS fragment ion tolerance, 0.5 Da; network top, 10; minimum matched peaks, 5. The molecular networking data were analyzed and visualized using Cytoscape (ver. 3.7.2).

Results

Study on molecular networking of Mass spectrometry of Erdong Decoction

All the full-MS and MS/MS spectra were obtained in high-resolution FT-MS for robust identification. In order to quickly identify the main chemical components in Erdong decoction, LC-MS/MS based molecular networking was applied. The MS data was processed through GNPS online workflow and visualized by MS/MS molecular networking. Their spectral similarities were evaluated through cosine calculation (cos θ), the larger the cos θ value,
the higher the similarity of the MS/MS fragments [7]. The results showed that the molecular networking in the negative mode was more obvious than that of the positive mode. The MS data of steroids, triterpenes, and flavones in the LC-MS/MS molecular networking of Erdong decoction were split into different groups. Herein, a total of 430 nodes was incorporated into the MS/MS molecular networking of Erdong decoction in the negative mode, rendering 30 molecular clusters and 164 unconnected nodes (Figure 2). Based on the clusters in the molecular networking, 113 compounds were rapidly identified from Erdong decoction for the first time, which including steroidal saponins, triterpenoid saponins, flavone O-glycosides and flavone C-glycosides. The typical total ion chromatograms (TIC) of Erdong decoction in the positive mode and the negative mode are presented in Figure 3. Details of the characterization of these compounds were further elaborated.

Rapid identification of Steroidal Saponins

Previous studies had reported that steroidal saponin was one of the main compounds of Asparagi radix [8]. Taking aspacochioside A at m/z 903.495 as an example, its MS/MS spectrum showed three characteristic fragments of m/z 757.432, m/z 595.383, and m/z 433.330, which in turn lost rhamnosyl, glucosyl and glucosyl, the fragment of m/z 433.330 corresponding to the aglycone of aspacochioside A (Figure S1). The fragmentation scheme of aspacochioside A was further elaborated in Figure S1. In comparison to aspacochioside A, its adjacent node of m/z 919.491 gave a MS/MS spectrum showing identical aglycone and three identical characteristic fragments, with different [M-H]- ion (Figure 4a). The node of m/z 919.491 was preliminarily deduced as aspacochioside A analogue with one more hydroxyl group to the rhamnose of aspacochioside A, finally annotated as 3-O-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl-26-O-β-D-glucopyranosyl-25S-5β-furostan-3β,22α26-triol according literature [8]. According to the clusters, the structures of these compounds could be rapidly identified. Sixteen steroidal saponins were identified from Asparagus radix and 14 steroidal saponins were identified from Anemarrhe naerhizoma by comparison with reported literatures [8-10] (Table 1), and they were annotated in red and light green in Figure 2, respectively.

Steroidal saponins in Erdong Decoction are partly from Asparagus radix and Anemarrhe naerhizoma, and partly from Ophiopogonis radix. But only two steroidal saponins from Ophiopogonis radix were identified by comparison with literature [11] (Table 1).

Rapid identification of triterpenoid saponins

Triterpenoid saponins in Erdong decoction were derived from Glycyrrhizae radix and Ginseng radix [12]. Glycyrrhizin acid as the mainly active compound in Glycyrrhizae radix, its MS/MS fragments mainly showed the fragment of disaccharides chain at m/z 351.057 and the weak signal of aglycone fragment at m/z 469.332. The fragmentation scheme of glycyrrhizin acid was further elaborated in Figure 5a. In comparison to glycyrrhizin acid, its adjacent node of m/z 837.392 gave a MS/MS spectra of an identical disaccharides chain fragment, with different fragment of aglycone at m/z 485.330 (Figure 4b). The node of m/z 837.392 was preliminarily deduced as glycyrrhizin acid analogue with one more hydroxyl group in the aglycone moiety of glycyrrhizin acid, finally annotated as macedonoside A by comparison with literature [12]. Based on the cluster, twenty-four steroidal saponins were identified rapidly from Glycyrrhizae radix by comparison with literatures [12,13], including 3 groups of isomers (Table 1), they were annotated in dark green in Figure 2.

Ginsenosides could not be quickly identified by LC-MS/MS molecular networking under the condition of negative mode. Only 8 triterpenoid saponins from ginseng were identified by comparison with literatures [14,15] (Table 1), they were annotated in purple in Figure 2.

Rapid identification of Flavonoids

The flavonoids in Erdong decoction were derived from four herbs, Anemarrhe naerhizoma, Nelumbinis folium, Glycyrrhizae radix and Scutellariae radix. According to the difference of glycoside bond atoms, flavones in Erdong decoction were divided into two types. Identified flavonoids were annotated in blue for flavone O-glycosides and light blue for flavone C-glycosides (Figure 2).

Flavone O-glycosides

The flavone O-glycosides in the Erdong decoction are mainly from Scutellariae radix and Glycyrrhizae radix. The types of aglycone are mainly flavone and flavanone. It was well known that baicalin and wogonoside were mainly active components in Scutellariae radix [16,17]. Peak 72 was identified as wogonoside by comparison with its standard compound, and its MS/MS spectra showed three characteristic fragments of m/z 283.061, m/z 268.038, and m/z 240.042, which in turn lost C6H10O5, CH3 and CO, the fragment of m/z 283.061 corresponding to the aglycone moiety of wogonoside by the loss of Da 176 (C6H10O5) from the [M-H]- ion [18] (Figure S2). The fragmentation scheme of wogonoside was further elaborated in Figure S2. In comparison to wogonoside, its adjacent node of m/z 475.088 gave a MS/MS spectrum of different aglycone fragment at m/z 299.056 by the loss of Da 176 (C6H10O5), with one more hydroxyl group to the aglycone of wogonoside. The node of m/z 475.088 was annotated as the isomer of hydroxyl wogonoside according to literatures [16,19] (Figure 4c). Notably, another adjacent node of m/z 445.078 was connected to wogonoside in the molecular networking with a relatively low similarity (Figure 4c). Comparing with wogonoside, the node of m/z 445.078 gave a MS/MS spectrum showing a different aglycone fragment at m/z 269.045 by the loss of Da 176 (C6H10O5), with one less methyl group to the aglycone of wogonoside. The node of m/z 445.078 was annotated as baicalin by comparison with standard compound. Basing on the cluster, forty-one flavone O-glycosides were identified from Scutellariae radix and Glycyrrhizae radix by comparison with literatures [12,16,17].

Some studies have shown that liquiritin and isoliquiritin are the active compounds in Glycyrrhizae radix [12]. It is noteworthy that some of isomers could not be distinguished by MS/MS and MN, but these isomers could be separated by retention time during LC-MS/MS analysis. Therefore, two
groups of flavone isomers (peaks 9, 11, 44, 48, 14, 38, and 46) from Glycyrrhiza radix were identified by comparison with literatures [12,13] (Table 1).

Flavone C-glycosides

The flavone C-glycosides in Erdong decoction were mainly from Scutellariae radix and Anemarrhe naerhizoma. Taking peak 19 at m/z 547.146 as an example, at m/z 487.125, m/z 457.114, m/z 427.123 involved serial losses of 60 Da, 90 Da, 120 Da, revealed that these compounds were flavone C-glycosides with two attached saccharides: glucose and arabinose [16]. So peak 19 was identified as Chrysirin 6-C-arabinoside-8-C-glucoside. The fragmentation scheme of Chrysirin 6-C-arabinoside-8-C-glucoside was further elaborated in Figure 4d and it shows special cleavage rule in the glucosyl part. In comparison to Chrysirin 6-C-arabinoside-8-C-glucoside, its adjacent node of m/z 561.161 gave a MS/MS spectrum showing two characteristic fragments at m/z 471.130 and at m/z 441.118 by the loss of 90 Da, 120 Da, and so one more methyl group should be connected to the aglycone of Chrysirin 6-C-arabinoside-8-C-glucoside. The node of m/z 561.161 was annotated as 5-hydroxy-7-methoxyflavone 6-C-arabinoside-8-C-glucoside or 7-hydroxy-5-methoxyflavone 6-C-arabinoside-8-C-glucoside [16] (Figure 4d). Basing on the cluster, six flavone C-glycosides were identified from Scutellariae radix by comparison with literatures [16,17].

Previous studies showed that the flavonoids from Anemarrhe naerhizoma were main xanthones, which was a special structure type of flavonoids, so it was not clustered with most of flavonoids in the molecular networking. Finally, 3 flavone C-glycosides were identified from Anemarrhe naerhizoma by comparison with literature [10] (Table 1).

Identification of alkaloids

A total of 169 nodes were incorporated into the MS/MS molecular network (in the positive mode) of the Erdong decoction, rendering 15 molecular clusters and 88 unconnected nodes. Besides the above three types of main compounds detected in Erdong decoction in negative mode, there are alkaloids from Nelumbinis folium mainly detected in positive mode. The mass spectrum of nuciferine at m/z 296.164 was detected and its MS/MS spectrum showed four characteristic fragments of m/z 265.123, m/z 250.098, m/z 234.103 and m/z 235.075 (Figure S3). The fragmentation scheme of nuciferine was further elaborated in Figure S3. It was well known that alkaloids were the major active compound of Nelumbinis folium [20], however, it was not shown in molecular networking and alkaloids could not be rapidly identified through the clusters in the LC-MS/MS molecular networking due to its various structural types. Finally, a total of 10 alkaloids were identified from Nelumbinis folium by comparison with literatures [20,21] (Table 2).

Discussion

According to the above results, LC-MS/MS molecular networking is suitable for the rapid identification of steroidal saponins, glycyrrhizin saponins, and flavonoids. Because of the stable structure of steroidal saponins and glycyrrhizin saponins, and special cleavage rule of flavone C-glycosides, their analogues in the LC-MS/MS molecular networking were obviously clustered with a high similarity. Based on the clusters, the structures of these compounds could be rapidly identified by MN. In addition, the flavone O-glycosides obviously clustered in LC-MS/MS molecular networking, but the similarity between nodes was low, which might be due to different substituents sites on aglycones. Therefore, the identification of flavone O-glycosides could be facilitated by the combination of LC-MS/MS and molecular networking, but standard compounds are needed for the finally identification of isomers.

Notably, MS/MS-based molecular networking technique is not suitable for the rapid identification of compounds without cluster in MN. Steroidal saponins from Ophiopogonis radix and triterpenoid saponins from Ginseng radix in Erdong decoction couldn't be rapid identified, which might be due to their low content caused by both low formula ratio in Erdong decoction and low content in each herb itself. According to the unpublished quantification data by our laboratory, the content of saponins from Glycyrrhiza Radix Et Rhizoma, Anemarrhe Naerhizoma, Asparagi Radix are very high, whereas the content of saponins from Ophiopogonis Radix and Ginseng Radix Et Rhizoma are very low. The content of those compounds might be too low to generate fragment of aglycones in this study, so the MS/MS fragments of these compounds were not clustered in this study. The second type of compounds without cluster in the molecular networking is the alkaloids from Nelumbinis folium. That might be due to the various types of structural framework of alkaloids, which leads to the MS/MS fragments of alkaloids doesn't have a certain similar.

Conclusions

In this study, the combination of LC-HRMS and molecular networking was applied to rapidly identify compounds in Erdong decoction as a case study to demonstrate the application of this technique in complex TCM formula. MS/MS-based molecular networking technique is very useful for the rapid identification of major components in CCF. Finally, 113 compounds were rapidly identified, the types of these compounds mainly include steroidal saponin, triterpenoid saponins and flavonoids in Erdong decoction. MS/MS-based molecular networking greatly improves the efficiency of chemical components identification in CCF.

Abbreviations

CCF: Chinese Classical Formula; UHPLC-LTQ-Orbitrap-MS/MS: Ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry; TCM: Traditional Chinese medicine; HRMS: High-resolution mass spectrometry; LC-MS: Liquid chromatography mass spectrometry; MN: Molecular networking.
Declarations

Competing interests
The authors declare no conflict of interest.

Authors' contribution
YD, SC, and ZH designed the experiment. RJ, XW, and SS carried out the experiment. QJ contributed analysis tools. XX contributed to the data analysis. XX, QJ, SC, and YD wrote the manuscript.

Availability of data and materials
All data included in this article are available from the corresponding author upon request.

Acknowledgements
The authors greatly appreciate the financial support from Sunflower Pharmaceutical Group (Xiangyang) Longzhong Co.Ltd.

Funding
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

References
1. Yao C, Yang W, Si W, Pan H, Qiu S, Wu J, et al. A strategy for establishment of practical identification methods for chinese patent medicine from systematic multi-component characterization to selective ion monitoring of chemical markers: shuxiong tablet as a case study. RSC Advances, 2016;6(69):65055-65066.
2. Wei W, Hou J, Yao C, et al. A high-efficiency strategy integrating offline two-dimensional separation and data post-processing with dereplication: Characterization of bufadienolides in Venenum Bufonis as a case study. Journal of Chromatography A. 2019;1603:179-189.
3. Wang T, Lu Q, Sun C, et al. Hetiamacin E and F, New Amicoumacin Antibiotics from Bacillus subtilis PJS Using MS/MS-Based Molecular Networking. Molecules. 2020;25(19):4446.
4. Han YK, Kim H, Shin H, et al. Characterization of Anti-Inflammatory and Antioxidant Constituents from Scutellaria baicalensis Using LC-MS Coupled with a Bioassay Method. Molecules. 2020;25(16).
5. Zou XH, Zhang JX, Liu SZ, et al. Clinical Study on Treatment of Diabetic Peripheral Neuropathy with Erdong Decoction and Zhufeng Tongbi Decoction Combined with Western Medicine. Chinese Archives of Traditional Chinese Medicine. 2012. (In Chinese)
6. Yuan X, Xie M, Yang Y, et al. Effect of erdong decoction and aerobic exercise on glucose metabolism and lipid metabolism in type 2 diabetes rats. Chongqing Medicine. 2018. (In Chinese)
7. Kuo TH, Huang HC, Hsu CC. Mass spectrometry imaging guided molecular networking to expedite discovery and structural analysis of agarwood natural products. Analytica chimica acta. 2019;1080:95–103.
8. Ling Y, He X, Jiang R, et al. Rapid Detection and Characterization of Steroidal Saponins in the Root of Asparagus cochinichinensis by High-Performance Liquid Chromatography Coupled to Electrospray Ionization and Quadrupole Time-of-Flight Mass Spectrometry. Journal of Chromatographic Science. 2020;55(5):5.
9. Jaiswal Y, Liang Z, Ho A, et al. A comparative tissue-specific metabolite analysis and determination of protodioscin content in Asparagus species used in traditional Chinese medicine and Ayurveda by use of laser microdissection, UHPLC-QTOF/MS and LC-MS/MS. Phytochem Anal. 2014;25(6):514-528.
10. Sun Y, Du Y, Yong L, et al. Simultaneous determination of nine components in Anemarrhena asphodeloides by liquid chromatography-tandem mass spectrometry combined with chemometric techniques. Journal of Separation Science. 2015;35(14):1796-1807.
11. Ji X, Feng YF. Advances in studies on saponins in Anemarrhena asphodeloides. Chinese Traditional & Herbal Drugs. 2010;41(4):a12-a15. (In Chinese)
12. Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). Journal of Chromatography A. 2009;1216(11):1954-1969.
13. Ji S, Li Z, Song W, et al. Bioactive Constituents of Glycyrrhiza uralensis (Licorice): Discovery of the Effective Components of a Traditional Herbal Medicine. Journal of Natural Products. 2017;79 (2):281.

14. Hu C, Kong H, Zhu C, et al. An ultra performance liquid chromatography-time-of-flight-mass spectrometric method for fast analysis of ginsenosides in Panax ginseng root. Chinese Journal of Chromatography. 2011;29 (06):488-494.

15. Meng Q, Zhong YM, Guo XL, Feng YF. Rapid identification and preliminary study of fragmentation regularity of saponins components of ginseng. Zhong Yao Cai. 2013;36(2):240-245. (In Chinese)

16. Zhang F, Li Z, Li M, et al. An integrated strategy for profiling the chemical components of Scutellariae Radix and their exogenous substances in rats by ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2020;34(18):e8823.

17. Huang S, Fu Y, Xu B, et al. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. Phytomedicine. 2020;68:153179.

18. Tong L, Wan M, Zhang L, Zhu Y, Sun H, Bi K. Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of Radix scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2012;70:6-12.

19. Zhang W, Saif M, Dutschman GE, et al. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J Chromatogr A. 2010;1217(37):5785-5793.

20. Menéndez-Perdomo IM, Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). J Biol Chem. 2020;295(6):1598-1612.

21. Ma W, Lu Y, Hu R, Chen J, Zhang Z, Pan Y. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta. 2010;80(3):1292-1297.

Tables
Table 1
Identification of the chemical constituents of Erdong decoction by UHPLC-MS in the negative mode.

Peak no.	\(T_R \) (min)	Formula	Adduct \(\text{Mass m/z} \)	Experimental \(\text{Mass m/z} \)	Theoretical \(\text{Mass m/z} \)	Mass Error (ppm)	Fragment ions	Identification	Source
1	2.21	\(\text{C}_{25}\text{H}_{28}\text{O}_{16} \)	\([\text{M-H}]^-\)	583.1306	583.1294	2.039	493.0986\(\ldots\)	Neomangiferin	A
2	2.54	\(\text{C}_{21}\text{H}_{22}\text{O}_{12} \)	\([\text{M-H}]^-\)	465.1032	465.1028	0.984	303.0524\(\ldots\)	Spiraeoside	S
3	4.13	\(\text{C}_{19}\text{H}_{18}\text{O}_{11} \)	\([\text{M-H}]^-\)	421.0778	421.0765	2.974	285.0404\(\ldots\)	Mangiferin	A
4	4.33	\(\text{C}_{21}\text{H}_{21}\text{O}_{11} \)	\([\text{M-H}]^-\)	449.1087	449.1078	1.987	259.0246\(\ldots\)	Taxifolin 7-rhamnoside	N
5	4.49	\(\text{C}_{19}\text{H}_{18}\text{O}_{11} \)	\([\text{M-H}]^-\)	421.0778	421.0765	3.045	285.0404\(\ldots\)	Isomangiferin	A
6	6.30	\(\text{C}_{27}\text{H}_{32}\text{O}_{14} \)	\([\text{M-H}]^-\)	579.1721	579.1708	2.224	255.0662\(\ldots\)	Liquiritigenin 7,4'-di-O-	G
7	6.65	\(\text{C}_{26}\text{H}_{28}\text{O}_{14} \)	\([\text{M-H}]^-\)	563.1406	563.1395	1.826	503.1200\(\ldots\)	Apigenin 6-C-glucoside-8-C-arabinoside	S
8	7.12	\(\text{C}_{26}\text{H}_{28}\text{O}_{16} \)	\([\text{M-H}]^-\)	595.1307	595.1294	2.317	255.0661\(\ldots\)	Quercetin-3-O-sambubioside	N
9	8.01	\(\text{C}_{21}\text{H}_{22}\text{O}_{9} \)	\([\text{M-H}]^-\)	417.1194	417.1180	3.288	255.0661\(\ldots\)	Neoliquiritin	G
10	8.43	\(\text{C}_{27}\text{H}_{30}\text{O}_{14} \)	\([\text{M-H}]^-\)	577.9597	577.9599	-0.502	541.9865\(\ldots\)	5-Hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 2-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside	G
11	8.46	\(\text{C}_{27}\text{H}_{30}\text{O}_{14} \)	\([\text{M-H}]^-\)	517.0400	517.0402	-0.217	255.0655\(\ldots\)	liquiritin	G
12	8.50	\(\text{C}_{26}\text{H}_{14}\text{O}_{12} \)	\([\text{M-H}]^-\)	547.1458	547.1446	2.180	255.0661\(\ldots\)	1',3',4',5',6',8',8''-Octahydroxy-9H,9'H-2,2'-bixanthene-9,9'-dione	G
13	8.67	\(\text{C}_{26}\text{H}_{28}\text{O}_{13} \)	\([\text{M-H}]^-\)	549.1614	549.1603	2.135	255.0661\(\ldots\)	Isomer of chrysin 6-C-arabinoside-8-C-glucoside	S
14	8.78	\(\text{C}_{26}\text{H}_{30}\text{O}_{13} \)	\([\text{M-H}]^-\)	549.1614	549.1603	2.135	255.0661\(\ldots\)	liquiritin apioside	G

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source					
15	8.86	C$_{32}$H$_{40}$O$_{18}$	[M+H]$^+$	711.2114	711.2131	-2.335	549.1617\pm255.0660	153.0176\pm135.0073	119.0487					
16	9.22	C$_{21}$H$_{20}$O$_{12}$	[M+H]$^+$	463.0884	463.0871	2.694	301.0346\pm300.0276	272.0300\pm271.0249	255.0298	178.9979	151.0024	Hyperoside	N	
17	9.23	C$_{22}$H$_{30}$O$_{16}$	[M+H]$^+$	609.1450	609.1450	0.015	300.0277\pm271.0251	255.0297	178.9977					
18	9.26	C$_{21}$H$_{20}$O$_{10}$	[M+H]$^+$	431.0972	431.0973	-0.100	341.0667\pm311.0565	293.0613	269.0455					
19	9.33	C$_{26}$H$_{28}$O$_{13}$	[M+H]$^+$	547.1457	547.1446	1.961	487.1252\pm457.1140	427.1031	367.0822	337.0718	Chrysin 6-Carabinoside-8-C-glucoside	S		
20	9.42	C$_{26}$H$_{30}$O$_{14}$	[M+H]$^+$	565.1558	565.1552	1.023	438.8078\pm295.0642	271.0612						
21	9.48	C$_{21}$H$_{18}$O$_{13}$	[M+H]$^+$	477.0676	477.0664	2.585	302.0389\pm301.0354	283.0245	255.0300	227.0338	178.9976	151.0024	Quercetin-3-O-glucuronide	N
22	9.59	C$_{26}$H$_{28}$O$_{15}$	[M+H]$^+$	579.1363	579.1344	3.183	284.0328\pm255.0293	227.0346	151.0025					
23	9.68	C$_{23}$H$_{24}$O$_{13}$	[M+H]$^+$	507.1151	507.1133	3.595	345.0613\pm330.0382	315.0154						
24	9.74	C$_{21}$H$_{20}$O$_{12}$	[M+H]$^+$	463.0884	463.0871	2.694	300.0276\pm271.0250	255.0296	178.9976	151.0024				
25	9.86	C$_{21}$H$_{18}$O$_{12}$	[M+H]$^+$	461.0716	461.0715	0.234	285.0407\pm267.0296	175.0238						
26	10.61	C$_{26}$H$_{28}$O$_{13}$	[M+H]$^+$	547.1457	547.1446	1.961	457.1138\pm427.1029	367.0823	337.0719					
27	11.11	C$_{26}$H$_{28}$O$_{13}$	[M+H]$^+$	547.1458	547.1446	2.070	457.1140\pm427.1028	367.0822	337.0720					
28	11.26	C$_{27}$H$_{28}$O$_{16}$	[M+H]$^+$	607.1306	607.1294	2.074	431.0992\pm269.0456							
29	11.35	C$_{27}$H$_{28}$O$_{16}$	[M+H]$^+$	607.1303	607.1294	1.563	445.0771\pm431.0983	269.0455						

A: Anemarrhe naerizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source
30	11.59	C_{2}H_{20}O_{9}	[M+H]^+	415.1035	415.1024	2.629	295.0613, 267.0663, 251.0709, 223.0758	Chrysirin 8-C-β-glucoside	S
31	11.82	C_{2}H_{24}O_{10}	[M+H]^+	459.1299	459.1286	2.781	255.0661, 153.0181, 135.0073, 119.0487	6'-Acetylisoliquiritin	G
32	11.91	C_{2}H_{24}O_{13}	[M+H]^+	507.1144	507.1133	2.037	344.0537, 329.0306, 316.0585	Viscidulin III-2'-O-β-D-glucopyranoside	S
33	12.35	C_{2}H_{30}O_{13}	[M+H]^+	561.1610	561.1603	1.324	471.1297, 441.1179, 281.0830	5-Hydroxy-7-methoxyflavone 6-C-arabinoside-8-C-glucoside or 7-Hydroxy-5-methoxyflavone 6-C-arabinoside-8-C-glucoside	S
34	12.36	C_{2}H_{20}O_{12}	[M+H]^+	475.0880	475.0871	1.847	299.0563, 284.0327	Isomer of hydroxyl oroxylin A 7'-O-glucuronide or hydroxyl wogonoside	S
35	12.37	C_{4}H_{26}O_{20}	[M+H]^+	935.4862	935.4846	1.699	773.4357, 611.3790, 449.3284	Timosaponin E	A
36	12.59	C_{5}H_{34}O_{25}	[M+H]^+	1095.5241	1095.5218	2.059	933.4723, 771.4182, 404.0874	(2α,3β,5α,6β,25R,26-Dihydroxyisoprostanes-3-yl)-β-D-glucopyranosyl-(1→2)-(β-D-glucopyranosyl-(1→3))-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosid	A
37	12.65	C_{3}H_{26}O_{11}	[M+H]^+	585.1365	585.1391	-4.440	549.1618, 539.2637, 417.1174, 297.0774, 255.0662	(3'-4-Hydroxy-3-methoxylphenyl)-6-[(2R,3R)-3,5,7-trihydroxy-4-oxo-3,4-dihydro-2H-chromen-2-yl]-2,3-dihydro-1,4-benzodioxin-2-yl)methyl benzoate	G
38	12.66	C_{2}H_{30}O_{13}	[M+H]^+	549.1614	549.1603	2.026	255.0661, 153.0180, 135.0074, 119.0487	Isoliquiritin apioside	G
39	12.67	C_{5}H_{32}O_{29}	[M+H]^+	1227.5653	1227.5641	1.024	1065.5123, 933.4720, 771.4169, 447.3155	3-O-β-D-xylopyranosyl(1→4)-[β-D-glucopyranosyl(1→2)]-β-D-glucopyranosyl-26-O-β-D-glucopyranosyl-(25S)-5'-furostan-22-methoxy-3β,26-diol	As
40	12.69	C_{4}H_{32}O_{19}	[M+H]^+	961.5383	961.5367	1.678	799.4863, 637.4363, 475.3780, 391.2874	20-Glc-Rf	P
41	12.75	C_{4}H_{32}O_{19}	[M+H]^+	917.4751	917.4741	1.138	755.4233, 593.3687, 553.3922, 364.0068, 319.1408	Timosaponin D	A
42	12.80	C_{5}H_{34}O_{24}	[M+H]^+	1079.5287	1079.5269	1.677	933.4645, 917.4766, 771.4186, 609.3615	Alliinomside B	A
43	12.87	C_{2}H_{32}O_{10}	[M+H]^+	459.1300	459.1286	3.107	255.0660, 153.0180, 135.0073, 119.0488	6'-Acetylisoliquiritin	G

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduction	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source
44	12.91	C₂₁H₂₂O₉	[M-H]⁻	417.1190	417.1180	2.281	255.0661, 153.0179, 119.0487	isoliquiritin	G
45	12.93	C₂₁H₁₈O₁₁	[M-H]⁻	445.0776	445.0765	2.477	270.0490, 269.0455, 251.0349, 241.0509, 223.0393	Baicalin	S
46	12.95	C₂₁H₁₅O₁₃	[M-H]⁻	549.1620	549.1603	3.137	255.0659, 153.0182, 135.0073, 119.0490	licuraside	G
47	13.01	C₄₅H₇₆O₂₀	[M-H]⁻	935.4857	935.4846	1.111	773.4354, 611.3803, 449.3252	Timosaponin E1	A
48	13.36	C₂₁H₂₂O₉	[M-H]⁻	417.1195	417.1180	3.599	255.0662	neoisoliquiritin	G
49	13.41	C₂₃H₂₂O₁₃	[M-H]⁻	505.0992	505.0977	3.055	329.0667, 314.0435, 299.0198, 271.0250, 255.0291, 227.0344, 175.0237	5,6'-dihydroxy-6,7-dimethoxyflavone 2'-O-β-D-glucuronide	S
50	13.53	C₂₁H₂₀O₁₁	[M-H]⁻	447.0930	447.0922	1.861	271.0613, 243.0660	dihydrobaicalin	S
51	13.60	C₄₅H₇₇O₁₄	[M-H + HCOOH]⁻	845.4905	845.4893	1.381	799.4837, 637.4315, 475.3803, 273.3054	ginsenoside Rg1	P
52	13.61	C₄₆H₈₂O₁₈	[M-H + HCOOH]⁻	991.5499	991.5472	2.671	945.5428, 783.4907, 637.4326, 475.3786	ginsenoside Re	P
53	13.69	C₃₃H₅₆O₁₅	[M-H]⁻	695.1979	695.1970	1.199	549.1608, 531.1499, 255.0664, 153.0185, 135.0074, 119.0486	Licorice-glycoside B	G
54	13.81	C₃₄H₅₈O₁₆	[M-H]⁻	725.2089	725.2076	1.722	549.1630, 531.1491, 255.0660, 153.0179, 135.0072, 119.0488	Licorice-glycoside A	G
55	13.92	C₂₁H₁₈O₁₁	[M-H]⁻	445.0761	445.0765	-0.961	270.0488, 269.0455, 249.0541, 241.0501, 225.0548	Apigenin 7-O-glucuronide	S
56	14.12	C₅₀H₈₄O₂₃	[M-H]⁻	1051.5342	1051.5320	2.107	919.4982, 889.4860, 757.4376, 595.3851, 433.3344	Officinalisin-1	As
57	14.20	C₄₅H₇₆O₁₉	[M-H]⁻	919.4907	919.4897	1.103	757.4378, 595.3847, 433.3319	3-O-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl-26-O-β-D-glucopyranosyl-(25S)-5β-furostan-3β22a26-triol	As

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source
58	14.24	C$_{30}$H$_{64}$O$_{23}$	[M+H]$^+$	1051.5327	1051.5320	0.709	919.4877; 889.4722; 757.4381; 594.6215; 418.5930	25-epi-officinalisin	As
59	14.28	C$_{43}$H$_{76}$O$_{21}$	[M+H]$^+$	951.4787	951.4795	-0.878	633.9669; 475.0884	(2a,3b,5a,22S)-26-(β-D-Glucopyranosyl)-2,5,22-trihydroxyfurostan-3-yl 4-O-β-D-glucopyranosyl-β-D-glucopyranoside	As
60	14.41	C$_{43}$H$_{74}$O$_{17}$	[M-CO$_2$-H]$^+$	841.4950	841.4944	0.716	781.4773; 637.4346; 475.3789	ginsenoside mRg1	P
61	14.45	C$_{43}$H$_{74}$O$_{20}$	[M+H]$^+$	969.4695	969.4690	0.525	922.5041; 825.9856; 760.4490; 471.1639; 351.0573	(3β,22β,22-(β-D-Glucopyranosylxy)-11-oxolean-12-en-3-yl 2-O-β-D-glucopyranuronosyl-β-D-glucopyranosiduronic acid	G
62	14.46	C$_{56}$H$_{92}$O$_{27}$	[M+H + HCOOH]$^+$	1241.5817	1241.5797	1.584	1241.5817; 1195.5740; 1079.5382; 1033.5212; 917.4714; 755.4238; 455.1436	Ophiopojaponin G	O
63	14.55	C$_{21}$H$_{18}$O$_{11}$	[M+H]$^+$	445.0772	445.0765	2.409	270.0491; 269.0456; 251.0346; 241.0503; 225.0552; 223.0392	Isomer of baicalin	S
64	14.60	C$_{43}$H$_{72}$O$_{19}$	[M+H]$^+$	919.4914	919.4897	1.831	757.4382; 595.3838; 433.3329	3-O-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl-26-0-β-D-glucopyranosyl-(25R)-5β-furostan-3β,22α,26-triol	As
65	14.61	C$_{51}$H$_{96}$O$_{24}$	[M+H]$^+$	1081.5433	1081.5425	0.740	919.4806; 757.4385; 595.3859	26-(Hexopyranosyloxy)-22-hydroxyfurostan-3-yl hexopyranosyl-(1→2)hexopyranosyl-(1→4)hexopyranoside	A
66	14.65	C$_{21}$H$_{18}$O$_{10}$	[M+H]$^+$	429.0821	429.0816	1.018	253.0505; 175.0236; 113.0229	Chrysirin-7-Oββ-D-glucuronic	S
67	14.79	C$_{22}$H$_{20}$O$_{11}$	[M+H]$^+$	459.0937	459.0922	3.338	283.0614; 269.0411; 268.0370; 241.0481; 175.0235	Oroxylin A-7-Oβ-D-glucuronide	S
68	14.81	C$_{51}$H$_{96}$O$_{23}$	[M+H]$^+$	1063.5324	1063.5320	0.362	901.4807; 755.4263; 468.3537; 423.1946	Timosaponin BII	A
69	14.91	C$_{22}$H$_{20}$O$_{12}$	[M+H]$^+$	475.0882	475.0871	2.247	290.0563; 284.0327	Isomer of hydroxywogonin glucuronide	S
70	14.93	C$_{56}$H$_{92}$O$_{28}$	[M+H]$^+$	1211.5714	1211.5691	1.875	1079.5255; 917.4763; 865.0001; 755.4222	Timosaponin C1	A
71	15.02	C$_{43}$H$_{76}$O$_{19}$	[M+H]$^+$	919.4921	919.4897	2.571	841.4293; 757.4416; 595.3847; 459.0930	Timosaponin BII	A

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source
72	15.59	$C_{22}H_{20}O_{11}$	[M+H]$^+$	459.0932	459.0922	2.205	283.0614; 269.0431; 268.0378; 240.0425; 175.0237	Wogonoside	S
73	15.70	$C_{57}H_{44}O_{27}$	[M+H]$^+$	1209.5912	1209.5899	1.088	1047.5446; 901.4795; 883.4755; 755.4213; 737.4127; 431.3182	(2α,3β,5α,25R)-2-Hydroxyfurostan-3-yl β-D-glucopyranosyl(1→2)-4-O-(2,3,5-R,4S)-3-hydroxy-4-(hydroxymethyl)-4-methyltetrahydro-2-furanyl]-β-D-glucopyranosyl(1→3)]-β-D-glucopyranosyl(1→4)]-β-D-galactopyranoside	A
74	15.91	$C_{57}H_{44}O_{22}$	[M+H]$^+$	1047.5380	1047.5371	0.868	901.4722; 885.4497; 755.4229	Protodioscin	As
75	16.06	$C_{57}H_{44}O_{22}$	[M+H]$^+$	1047.5382	1047.5371	1.107	901.4749; 883.4813; 755.4178; 413.2992	Protodioscin	As
76	16.09	$C_{50}H_{44}O_{25}$	[M+H]$^+$	1083.5170	1083.5218	-4.452	1047.5375; 901.4825; 802.9248; 755.4275; 487.1885	(2α,3β,5α,22S,25R)-26-(β-D-glucopyranosyloxy)-2,5,22-trihydrofurostan-3-yl β-D-xylopyranosyl(1→3)]-β-D-glucopyranosyl(1→4)]-β-D-galactopyranoside	A
77	16.29	$C_{50}H_{44}O_{22}$	[M+H]$^+$	1035.5374	1035.5371	0.289	903.5004; 889.4836; 757.4378; 595.3881; 433.3307	3-O-α-L-rhamnopyranosyl(1→4)]-β-D-xylopyranosyl(1→2)]-β-D-glucopyranosyl(26-β-D-glucopyranosyl(25S)-5β-furostan-3β22α26-trio	As
78	16.69	$C_{51}H_{46}O_{23}$	[M+H]$^+$	1065.5487	1065.5476	1.028	903.4990; 757.4362; 595.3870; 445.8120	(5α22R)-26-(β-D-Glucopyranosyloxy)-22-hydroxypyranostan-3-yl 6-deoxy-α-L-mannopyranosyl(1→4)]-β-D-glucopyranoside	A
79	16.87	$C_{48}H_{52}O_{22}$	[M+H]$^+$	999.4452	999.4431	2.041	837.3885; 351.0569	24-hydroxy-licoricesaponin A3	G
80	16.90	$C_{51}H_{56}O_{23}$	[M+H]$^+$	1065.5483	1065.5476	0.680	903.4954; 757.4395; 739.4266; 595.3826; 433.3332	3-O-α-L-rhamnopyranosyl(1→4)]-β-D-glucopyranosyl(1→2)]-β-D-glucopyranosyl(25S)-5β-furostan-3β22α26-triol	As
81	17.24	$C_{48}H_{48}O_{18}$	[M+H]$^+$	903.4975	903.4948	0.363	757.4323; 595.3828; 433.3293	aspachioside A	As
82	17.47	$C_{48}H_{48}O_{18}$	[M+H]$^+$	903.4968	903.4948	2.256	757.4388; 595.3868; 433.3327	Isomer of aspachioside A	As
83	17.53	$C_{48}H_{48}O_{19}$	[M+H]$^+$	895.3964	895.3958	0.619	456.4406; 429.6882; 351.0563	Hydroxyacetoxyglycyrrhizin	G
84	17.75	$C_{48}H_{48}O_{18}$	[M+H]$^+$	853.3855	853.3852	0.303	351.0568	22-Hydroxy-licoricesaponin G2	G
85	19.31	$C_{48}H_{22}O_{21}$	[M+H]$^+$	983.4494	983.4482	1.184	821.3983; 351.0575	Licorice-saponin A3	G

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagus radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Iонаs	Identification	Source
86	19.61	C$_{42}$H$_{60}$O$_{17}$	[M+H]$^+$	835.3760	835.3747	1.560	801.4187\rightarrow 443.5862\rightarrow 381.5747\rightarrow 351.0575	formylglycyrrhizin acid	G
87	19.71	C$_{50}$H$_{62}$O$_{22}$	[M+H]$^+$	1033.5227	1033.5214	1.267	901.4716\rightarrow 739.4283\rightarrow 577.3704\rightarrow 427.2860	3-O-βD-glucopyranosyl (1\rightarrow4)-[βD-glucopyranosyl (1\rightarrow2)-[βD-glucopyranosyl (1\rightarrow2)]-26-O-βD-glucopyranosyl-(25S)-5β-furostane-20 (22)-ene-3β-26-diol	As
88	19.73	C$_{44}$H$_{64}$O$_{18}$	[M+H]$^+$	879.4027	879.4009	2.068	351.0570\rightarrow 193.0346\rightarrow 175.0236\rightarrow 113.0229	22β-Acetoxyglycyrrhizin	G
89	19.78	C$_{43}$H$_{74}$O$_{18}$	[M+H]$^+$	901.4808	901.4791	1.873	739.4278\rightarrow 577.3749\rightarrow 356.9583	Xilingsaponin B	A
90	19.83	C$_{42}$H$_{62}$O$_{17}$	[M+H]$^+$	837.3911	837.3903	0.935	351.0570	Gusenoside P2	G
91	19.89	C$_{53}$H$_{64}$O$_{23}$	[M+H]$^+$	1063.5335	1063.5320	1.396	901.4749\rightarrow 739.4255\rightarrow 577.3785\rightarrow 445.3186	3-O-βD-glucopyranosyl (1\rightarrow4)-[βD-glucopyranosyl (1\rightarrow2)-[βD-glucopyranosyl (1\rightarrow2)]-26-O-βD-glucopyranosyl-(25S)-5β-furostane-20 (22)-ene-3β-26-diol	As
92	20.01	C$_{53}$H$_{64}$O$_{26}$	[M-CO2-H]$^+$	1149.6069	1149.6051	1.566	1149.6069\rightarrow 1107.5963\rightarrow 945.5444\rightarrow 783.4910\rightarrow 621.4361\rightarrow 459.3843	Ginsenoside mRb1	P
93	20.04	C$_{47}$H$_{60}$O$_{17}$	[M+H$+$ HCOOH]$^+$	965.4387	965.4377	1.025	919.4950\rightarrow 758.4404\rightarrow 497.1143\rightarrow 435.1156	Gypenoside IX	P
94	20.09	C$_{48}$H$_{76}$O$_{19}$	[M+H]$^+$	955.4913	955.4897	1.699	793.4381\rightarrow 731.4389\rightarrow 613.3751\rightarrow 569.3850\rightarrow 523.3790\rightarrow 455.3533	Ginsenoside Ro	P
95	20.11	C$_{59}$H$_{92}$O$_{25}$	[M-CO2-H]$^+$	1119.5964	1119.5946	1.675	1077.5857\rightarrow 945.5567\rightarrow 915.5332\rightarrow 783.4905\rightarrow 621.4422\rightarrow 459.3855	Ginsenoside mRb2	P
96	20.13	C$_{45}$H$_{74}$O$_{17}$	[M+H]$^+$	885.4871	885.4842	3.199	739.4278\rightarrow 577.3763\rightarrow 484.2304	3-O-[αL-rhamnopyranosyl (1\rightarrow4)-[βD-glucopyranosyl (1\rightarrow2)-[βD-glucopyranosyl (1\rightarrow2)]-26-O-βD-glucopyranosyl-(25S)-5β-furostane-20 (22)-ene-3β-26-diol	As
97	20.16	C$_{48}$H$_{60}$O$_{16}$	[M+H]$^+$	819.3818	819.3815	2.085	351.0568\rightarrow 193.0346\rightarrow 175.0237\rightarrow 113.0229	licorice-saponin E2	G
98	20.18	C$_{48}$H$_{60}$O$_{17}$	[M+H]$^+$	859.3739	859.3747	-0.904	837.3852\rightarrow 797.3743\rightarrow 351.0557	methyllicorice-saponin Q2	G
99	20.19	C$_{42}$H$_{62}$O$_{17}$	[M+H]$^+$	837.3916	837.3903	1.521	351.0570	Macedonoside A	G

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Peakno.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment Ions	Identification	Source
100	20.28	C₄₄H₇₂O₂₀	[M-H]	967.4548	967.4533	1.498	645.3641\(\text{m}+\text{n}\)	(3β,22β)-23-Hydroxy-29-oxo-22,29-epoxyolean-12-en-3β-yl 5-deoxy-α-L-mannopyranosyl-(1→2)-β-D-glucopyranuronosyl-(1→2)-βD-glucopyranosiduronic acid	G
101	20.29	C₄₄H₇₂O₁₇	[M-H]	863.4081	863.4082	2.575	351.0566\(\text{m}+\text{n}\)	22β-acetoxyglycyrrhaldehyde	G
102	20.45	C₄₄H₇₂O₁₇	[M-H]	837.3915	837.3903	1.377	595.3846\(\text{m}+\text{n}\)	licorice-saponin Q2	G
103	20.47	C₃₉H₆₆O₁₄	[M-H]	757.4377	757.4369	1.132	351.0568\(\text{m}+\text{n}\)	Anemarrhenasaponin I or II	A
104	20.50	C₄₂H₆₂O₁₆	[M-H]	821.3968	821.3954	1.678	352.0605\(\text{m}+\text{n}\)	Glycyrrhizin acid	G
105	20.52	C₄₂H₆₂O₁₆	[M-H]	823.4128	823.4111	1.778	721.3478\(\text{m}+\text{n}\)	licorice-saponin J2	G
106	20.74	C₄₂H₆₂O₁₇	[M-H]	837.3918	837.3903	1.736	351.0573\(\text{m}+\text{n}\)	licorice-saponin G2	G
107	20.75	C₃₉H₆₆O₁₄	[M-H+HCOOH]	799.4072	799.4111	4.869	799.4072\(\text{m}+\text{n}\)	Ophiopojaponin Ra	O
108	20.79	C₄₂H₆₂O₁₅	[M-H]	807.4177	807.4161	1.873	351.0572\(\text{m}+\text{n}\)	licorice-saponin B2	G
109	20.88	C₄₂H₆₂O₁₆	[M-H]	821.3971	821.3954	2.043	352.0600\(\text{m}+\text{n}\)	licorice-saponin H2	G
110	20.95	C₃₉H₆₆O₁₄	[M-H]	755.4227	755.4212	1.982	593.3716\(\text{m}+\text{n}\)	Timosaponin A1	A
111	21.06	C₄₂H₆₂O₁₆	[M-H]	821.3972	821.3954	2.201	352.0616\(\text{m}+\text{n}\)	licorice-saponin K2	G
112	21.13	C₄₂H₆₂O₁₆	[M-H]	821.3970	821.3954	1.897	352.0634\(\text{m}+\text{n}\)	Apioglycyrrhizin	G
113	21.57	C₄₂H₆₂O₁₅	[M-H]	805.4006	805.4005	0.090	351.0572\(\text{m}+\text{n}\)	licorice-saponin C2	G

A: Anemarrhe naerhizoma, S: Scutellariae radix, N: Nelumbinis folium, G: Glycyrrhizae radix, As: Asparagi radix, O: Ophiopogonis radix, P: Ginseng radix.
Table 2
Identification of the chemical constituents of Erdong decoction by UHPLC-MS in the positive mode.

Peak no.	T_R (min)	Formula	Adduct ion	Experimental Mass m/z	Theoretical Mass m/z	Mass Error (ppm)	Fragment ions	Identification	Source
114	6.43	C_{19}H_{23}NO_{3}	[M + H]^+	314.1746	314.1751	-1.433	283.1324, 252.1144, 189.0909, 174.0670, 145.0645, 107.0494	Armepavine	N
115	6.89	C_{18}H_{21}NO_{3}	[M + H]^+	300.1591	300.1594	-1.100	283.1324, 252.1143, 189.0909, 174.0671, 145.0647, 107.0494	NorarMepavine	N
116	9.06	C_{18}H_{19}NO_{3}	[M + H]^+	282.1485	282.1489	-1.366	251.1062, 236.0828, 219.0801, 191.0853	OmNuciferine	N
117	10.84	C_{38}H_{44}N_{2}O_{6}	[M + H]^+	625.3267	625.3272	-0.885	566.4268, 489.2368, 325.0908, 206.1174, 163.0388, 121.0649	Dauricine	N
118	12.78	C_{17}H_{15}NO_{2}	[M + H]^+	266.1172	266.1176	-1.485	249.0906, 219.0801, 191.0853	Anonaine	N
119	12.82	C_{18}H_{19}NO_{2}	[M + H]^+	282.1486	282.1489	-0.834	265.1219, 250.0984, 234.1036	N-MethylNuciferine	N
120	12.96	C_{18}H_{17}NO_{2}	[M + H]^+	280.1330	280.1332	-0.840	249.0907, 219.0803, 191.0854, 149.0233	Roemerine	N
121	13.07	C_{19}H_{21}NO_{2}	[M + H]^+	296.1643	296.1645	-0.255	265.1218, 250.0984, 234.1035	Nuciferine	N
122	14.2	C_{19}H_{21}NO_{3}	[M + H]^+	312.1591	312.1594	-0.300	265.1219, 250.0986, 234.1033	Pronuciferine	N
123	16.96	C_{20}H_{21}NO_{4}	[M + H]^+	340.1539	340.1543	-1.278	269.1166, 233.1045, 215.0938, 197.0836, 179.0864	Tetrahydroberberine THB	N

N: Nelumbinis folium.

Figures
Figure 1

A general workflow for a strategy identifying compounds rapidly of Erdong decoction.

Figure 2

MS/MS molecular networking of Erdong decoction.
Figure 3

TIC of Erdong decoction in the negative mode (a) and positive mode (b).
Figure 4

MS/MS spectra of (a) steroidal saponins, (b) triterpenoid saponins, (c) flavone O-glycosides and (d) flavone C-glycosides.
Figure 5

The proposed fragmentation pathways for (a) glycyrrhizin acid and (b) Chrys 6-C-arabinoside-8-C-glucoside in negative mode.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterial.docx