Case Report: Natal tooth in a four-day old newborn [version 1; peer review: awaiting peer review]

Nabeela Fatima¹, Saurab Karki², Subashchandra Pokharel³, Samikshya Basnet⁴

¹St. Paul’s College of Pharmacy, Hyderabad, Telangana, 501510, India
²Military Hospital, Itahari, Sunsari, 56705, Nepal
³Nepalese Army Institute of Health Sciences, Kathmandu, Bagmati, 44600, Nepal
⁴Institute of Medicine, Trinhuvan University, Kathmandu, 44600, Nepal

Abstract

Background: A natal tooth is a tooth that is present at the time of birth. Eruption of teeth in infants is a rare phenomenon. Though rare, natal and neonatal tooth must be looked upon with great importance because they may lead to many complications.

Case report: We present a case of a four-day old baby presenting with a mandibular natal tooth, which was successfully extracted without any complications. The mother had presented with a single umbilical artery during her pregnancy, which might be the proposed etiology of the natal tooth as the exact etiology is unknown.

Conclusion: The exact etiology of natal tooth is unknown but there are a lot of factors that might be a cause. For the majority of cases, extraction is the mainstay of therapy as the risk associated is higher and can be life-threatening in most cases.

Keywords

natal tooth, congenital teeth, predecidious teeth, precocious dentition, extraction, case report

Corresponding author: Subashchandra Pokharel (sc.pokharel3@gmail.com)

Author roles: Fatima N: Conceptualization, Data Curation, Writing – Original Draft Preparation; Karki S: Validation, Writing – Review & Editing; Pokharel S: Validation, Writing – Review & Editing; Basnet S: Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2022 Fatima N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Fatima N, Karki S, Pokharel S and Basnet S. Case Report: Natal tooth in a four-day old newborn [version 1; peer review: awaiting peer review] F1000Research 2022, 11:423 https://doi.org/10.12688/f1000research.109706.1

First published: 14 Apr 2022, 11:423 https://doi.org/10.12688/f1000research.109706.1
Introduction

Eruption of teeth in infants is a rare phenomenon. When present at birth they are known as natal teeth and if present during the first 30 days are known as neonatal teeth. After six months, the natural eruption of teeth occurs in infants.

The other terms used for natal and neonatal teeth from the literature are ‘congenital teeth’, ‘dentition praecox’, ‘fetal teeth’. Also, terms previously used were ‘dens connatalis’, ‘predecidious teeth’, ‘precocious dentition’.

The incidence of natal and neonatal teeth is 1:716 to 1:30,000 as reported by Zhu and King, and 1:2000 to 1:3800 as reported by Chow. The general ratio for natal:neonatal teeth is 3:11. In most cases, these teeth are present as lower primary incisors. A study by Bodenhoff reported 85% of these are mandibular incisors; 11% are maxillary incisors; 3% are mandibular canines and 1% are maxillary canines or molars.

The clinical categories of these teeth include:

i) A shell-like crown structure that is loosely attached to the alveolus by gingival tissue with no root.

ii) A solid crown attached loosely to the alveolus by gingival tissue, without or little root.

iii) Eruption of the incisal margin of the crown through gingival tissue.

iv) Edema of the gingival tissue with an un-erupted but palpable tooth.

The causative factors include infection, febrile states, trauma, malnutrition, superficial position of the tooth germ, hormonal stimulation, and maternal exposure to environmental toxins. The environmental predisposing factors include polychlorinated biphenyls (PCB); polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which are usually believed to cross the placenta and the concentrations of these are found in adipose tissues of newborns, which are then correlated with those present in the mother’s milk.

The complications might include discomfort during suckling, laceration of the mother’s breast, sublingual ulceration (Riga-Fede disease) with feeding refusal, ulceration on the ventral surface of the tongue caused by the tooth’s sharp incisal edge and swallowing or aspiration of teeth.

If extraction is considered as a treatment plan, the clinician should assess the risk of hemorrhage and wellbeing of the baby especially in the case of supernumerary teeth. For mature teeth of normal dentition, it is crucial to take measures to preserve the tooth in healthy condition in the baby’s mouth using appropriate clinical resources.

Case report

A four-day old male baby born through lower segment cesarean section (LSCS) weighing 2.89 kilograms presented with a gum-like appearance at birth on the lower jaw. On noticing the projection, he was brought to medical attention on day four after birth. Eruption of a tooth started from the gum like projection from day eight and the tooth fully erupted a month after his birth. His maternal records showed a single umbilical artery (SUA) in targeted imaging for fetal anomalies (TIFFA). He was otherwise an active baby with adequate feeds. The diagnosis made by the pediatric team was natal tooth.

His birth records showed a bleeding time of two minutes 45 seconds and a clotting time of four minutes. In view of a single umbilical artery, the baby was referred for ultrasonography (USG) abdomen and pelvis which was normal. He was vaccinated as per immunization protocols.

The gum-like appearance further protruded and presented as a tooth over time (Figure 1).

The baby was then referred for a dental consultation. The dentist made a note of the complaints as hard tissue in the lower front teeth region and natal tooth in the lower gum pad in the anterior region (Figure 1). The plan of treatment was the extraction of the tooth (Figure 2). Post extraction was uneventful without any complications. The parents were counseled for post-operative instructions and advised to maintain oral hygiene and review after one week.
The timeline of important events is as follows:

January 2, 2022: The child was born.

January 6, 2022: Gum like projection on the anterior region of lower jaw.

January 11, 2022: Notable eruption of tooth in the anterior region of lower jaw.

February 1, 2022: Dental consultation and extraction of tooth.

Discussion

Natal or neonatal teeth are conical or yellowish with hypoplastic enamel and dentin with poor or absent development of the root. In most cases, these teeth are mobile.\(^2,14\) The predisposing factors include dominant autosomal traits, endocrine disturbances (pituitary, thyroid, gonads), excessive or increased resorption of overlying bone, poor mental health, and congenital syphilis.\(^16\) A study by Gladen *et al.* reported 13 out of 128 infants having natal or neonatal teeth and showed that the mother was heavily exposed to polychlorinated biphenyls and benzofurans in Taiwan.\(^11\) On the other side, a study by Alaluusua *et al.* showed no association between milk levels of polychlorinated biphenyls and benzofurans with the occurrence of a natal tooth.\(^12\)

![Figure 1. A: A gum like projection on the anterior region of the lower jaw (day 4) B: Beginning of tooth eruption from the projection (day 9); C: Fully erupted natal tooth (day 30); D: Post-extraction (day 30).](image)
No intervention is necessary if the tooth doesn’t interfere with breastfeeding and is asymptomatic. Extraction is recommended if the tooth is supernumerary and consultation with a pediatrician is strongly recommended.10

The treatment options include:

- Maintenance of tooth in the mouth, unless this would cause injury to the baby.
- When the tooth is not mobile it should be left unless it interferes with feeding.
- When highly mobile, the risk of aspiration is high. So, extraction might be the mainstay for treatment.7,10

The factors that need to be considered include implantation and degrees of mobility, inconveniences during suckling, interference with breastfeeding and possibility of traumatic injury.17

A study by Allwright reported extraction of 25 natal teeth with no complications of hemorrhage due to the risk of hypothrombimemia.18 All the extraction procedures were done in babies who were older than 20 days and it is recommended that the child is at least 10 days old for safer outcomes.18,19 If it is not possible to wait, then evaluation of the need and administration of vitamin K should be performed to prevent hemorrhage. The advisable dose is 0.5–1 mg, which is given intramuscularly.20

Most importantly, the decision of retaining or extracting the tooth should be carefully evaluated for three factors: scientific knowledge, clinical common sense, and parenteral concern. It is very important to give complete information to the parents before letting them decide.

Conclusion

Natal tooth is presented as a rare indication in infants. The exact etiology is unknown but there are a lot of factors that might be a cause. For the majority of cases, extraction is the mainstay of therapy as the associated risk of retaining the
tooth is higher and can be life-threatening in most cases. A study on the accelerated or premature pattern of dental development will provide more insights.

Data availability

All the data underlying the results are available as part of the article and no additional source data are required.

Consent

Written informed consent for publication of the clinical details and clinical images was obtained from the parents of the patient.

Acknowledgements

We are grateful to the Peer Research Mentorship Program (PRMP) started by the International Society for Chronic Illness (ISCI) for their support.

References

1. To EWH: A study of natal teeth in Hong Kong Chinese. Int. J. Paediatr. Dent. 1991; 1(2): 73–76. PubMed Abstract | Publisher Full Text
2. Zhu J, King D: Natal and neonatal teeth. ASDC J. Dent. Child. 1995; 62(2): 123–128.
3. Mayhall JT: Natal and Neonatal Teeth Among the Tlinget Indians. Pediatr. Dent. 1986 Dec 1; 799–808. PubMed Abstract | Publisher Full Text
4. Kates GA, Needleman HL, Holmes LB: Natal and neonatal teeth. Pediatrics. 1967 Jul 1; 46(4): 748-749. PubMed Abstract | Publisher Full Text
5. Chow MH: Natal and Neonatal Teeth. J. Am. Dent. Assoc. 1984 Sep; 109(3): 441–443. PubMed Abstract | Publisher Full Text
6. King NM, Lee AM: Natal and Neonatal Teeth. J. Am. Dent. Assoc. 2001; 132(2): 215–216. PubMed Abstract | Publisher Full Text
7. Bodenhoff J, Gorlin RJ: Natal and neonatal teeth: Folklore and fact. Pediatrics. 1963 Dec 1; 32(6): 1087–1093. Publisher Full Text
8. Hebling J, Zuanon ACC, Vianna DR: Dente Natal—I a case of natal teeth. Odontol. Clin. 1997; 9: 37–40.
9. Cunha RF, Boer FAC, Torriani DD, et al.: Natal and neonatal teeth: review of the literature. Pediatr. Dent. 2001; 23(2): 158–162. PubMed Abstract
10. Leung AKC: Natal Teeth in American Indians-Reply. Am. J. Dis. Child. 1986 Dec 1; 140(12): 1214. Publisher Full Text
11. Gladin BC, Taylor JS, Wu Y-C, et al.: Dermatological findings in children exposed transplacentally to heat-degraded polychlorinated biphenyls in Taiwan. Br. J. Dermatol. 1990; 122(6): 799–808. Publisher Full Text
12. Alaluusua S, Kiviranta H, Leppäniemi A, et al.: Natal and neonatal teeth in relation to environmental toxicants. Pediatr. Res. 2002; 52(5): 652-655. PubMed Abstract
13. Buchanan S, Jenkins CR: Riga-Fedez syndrome: Natal or neonatal teeth associated with tongue ulceration. Case report. Aust. Dent. J. 1997; 42(4): 225–227. Publisher Full Text
14. Galassi MS, Santos-Pinto L, Ramalho LTO: Natal maxillary primary molars: case report. J. Clin. Pediatr. Dent. 2004; 29(1): 41–44. PubMed Abstract
15. Ziai MN, Bock DJ, da Silvaera A, et al.: Natal Teeth: A Potential Impediment to Nasoalveolar Molding in Infants With Cleft Lip and Palate. J. Craniofac. Surg. 2005 Mar; 16(2): 262–266. PubMed Abstract | Publisher Full Text
16. Štarmfelj I, Janc J, Cvetko E, et al.: Size, ultrastructure, and microhardness of natal teeth with agenesis of permanent successors. Annals of Anatomy - Anatomischer Anzeiger. 2010 Aug 20; 253: 220–226. PubMed Abstract | Publisher Full Text
17. Khandelwal V, Nayak UA, Nayak PA, et al.: Management of an infant having natal teeth. BMJ Case Rep. 2013 Jun 3; 2013: bcr2013010049. Publisher Full Text
18. Allwright WC: Natal and neonatal teeth: a study among Chinese in Hong Kong. Br. Dent. J. 1958; 105: 163–172.
19. Rusman MA: Natal and neonatal teeth: a clinical and histological study. J. Clin. Pediatr. Dent. 1991 Jan 1; 15(4): 251-253. PubMed Abstract
20. Ryba GE, Kramer IRH: Continued growth of human dentine papillae following removal of the crowns of partly formed deciduous teeth. Oral Surg. Oral Med. Oral Pathol. 1962 Jul 1; 15(7): 867–875. PubMed Abstract | Publisher Full Text
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com