Simulating Heisenberg Interactions in the Ising Model with Strong Drive Fields

Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, Martin J. Savage and Pavel Lougovski

1IQubator for Quantum Simulation (IQs), Department of Physics, University of Washington, Seattle, Washington 98195-1550, USA
2AWS Center for Quantum Networking, Seattle, Washington 98121, USA

INTRODUCTION

With the recent advances in digital and analog quantum computers and simulators, there is a growing effort toward mapping quantum field theories onto arrays of qubits and, more generally, qudits [1–66]. While classical computers are used successfully in studies of the static properties of quantum systems, time-dependent evolution and finite-density systems typically suffer from non-polynomial scaling computational resource requirements [67–69]. This places important quantities of interest in Standard Model physics, and in many other areas, beyond the capabilities of classical computation. In contrast, quantum simulations are expected to be able to address some of these quantities with polynomially scaling computational costs [70, 71], and quantum advantages in scientific applications are being sought. A number of platforms for digital quantum computation are being developed, such as those utilizing superconducting qubits, optical qubits, quantum dots, trapped ions and Rydberg atoms [72–82]. In addition to performing universal digital quantum computations, these platforms can be used for analog simulations of systems that can be mapped onto their native Hamiltonians. This approach is more limited than universal digital quantum computation, but recent work suggests that the error rates on existing hardware may be low enough to enable a useful quantum advantage through analog simulation [83]. While the study of spin systems, and systems comprised of finite-dimensional Hilbert spaces more generally, are interesting by themselves, they are now central to advancing quantum simulations for scientific applications.

Despite the apparent simplicity of a regular lattice of qubits or qudits, it has been widely appreciated since the discovery of quantum mechanics that spin systems exhibit a wide variety of non-trivial properties and dynamics. One of the most studied spin systems is the Heisenberg model which is able to describe critical points and phase transitions in magnetic materials. In addition to condensed matter applications, the Heisenberg model also has an important role in high energy physics as, for example, it can be used to study the lattice $O(3)$ nonlinear σ model [59–63, 84–86]. This theory is one of the “sandboxes” used to better understand quantum chromodynamics (QCD) as it shares a number of qualitative aspects such as asymptotic freedom and θ-vacua [61–63]. In the electroweak sector, the dynamics of coherent collective flavor oscillations of neutrinos can be mapped to the Heisenberg model [87, 88]. This is of particular importance in extreme astrophysical environments, where neutrino-neutrino interactions can be significant. After extensive studies using classical computers, including of entanglement, for example Refs. [89–97], it is expected that quantum simulations [96, 98–102] of the Heisenberg model will enable the study of dynamics beyond the reach of classical computers and provide new insights into these problems. Due to this wide applicability, a number of methods for quantum simulation of the Heisenberg model have been developed, including digital approaches [103, 104], hybrid digital-analog approaches [105], and analog simulation on trapped ions [106], Rydberg atoms using dipole-dipole interactions [107] and nuclear spins [108, 109]. Dissipative versions of the Heisenberg model have also been studied on digital quantum computers [110, 111].

In this work, the potential for using Ising systems for analog simulations of physical systems that can be mapped to the Heisenberg model is investigated. The Ising model is considered because a number of platforms available for quantum simulation, such as Rydberg atoms, trapped ions and superconducting qubits, can be natively described by this Hamiltonian [112–120]. Unlike previous approaches, this method of analog simulation of the Heisenberg model can be implemented with a time-independent Hamiltonian which could be beneficial for some platforms. There is an extensive literature regarding the time evolution of Ising models in background fields [121–137], including recent work related to transitions to chaotic phases induced by finite-time steps in Trotterized time evolution in digital quantum simulations [136, 137], identified through studying the system at periodic times. Previous work has shown that Ising interactions with a transverse field generate time evolution according to the XY model [123–126, 138]. Studying the time evolution of the Ising model has also shown that the Ising model undergoes confinement analogous to QCD near its critical point with a field in the \hat{x} and \hat{z} directions [121, 122, 139]. Known to be universal in a computational sense [140], developing analog simulations of the Heisenberg model is expected to also advance simulations of other physical systems. We show how constant driving fields in the Ising model generate an effective Heisenberg model Hamiltonian to leading order in the inverse field strength at
where the time-evolution of this Hamiltonian, it is helpful to transform into the interaction picture, where the driving fields are taken to be the “free” term in the Hamiltonian. The interaction-picture Hamiltonian is

\[\hat{H}_I^{\text{Ising}}(t) = \sum_{i>j} J_{ij} \hat{Z}_{I,i}(t) \hat{Z}_{I,j}(t) , \]

To analyze the evolution of this Hamiltonian, it is useful to transform into the interaction picture, where the driving fields are taken to be the “free” term in the Hamiltonian. The interaction-picture Hamiltonian is

where \(\hat{Z}_{I,i}(t) = \hat{U}_0^\dagger(t) \hat{Z}_i \hat{U}_0(t) = \vec{e}(t) \cdot \vec{S} \), \(\hat{U}_0(t) = \prod_i e^{-i(\Omega_x \hat{x}_i + \Omega_y \hat{y}_i + \Omega_z \hat{z}_i)} \), \(\vec{S} \) is a vector of Pauli matrices and \(\vec{e}(t) \) is a unit vector. From this perspective, the driving fields can be viewed as rotating \(\vec{e}(t) \) from the north pole to other points on the unit sphere. By choosing periodic driving fields that generate closed paths on the sphere, it is possible to engineer evolution according to different Hamiltonians. The use of periodic dynamics to generate different Hamiltonians, known as Floquet engineering, has been used to simulate a range of interactions [106, 107, 141–151], including the Ising Hamiltonian from the Heisenberg interaction in quantum-dot systems [152, 153]. Floquet engineering has also been previously applied to static Hamiltonians in the interaction picture to understand how some systems prethermalize to a Hamiltonian that is not the generator of their evolution [154–157]. In particular, it has been used to show that the dynamics of the XYZ-Heisenberg model with a strong external field are approximated by the XXZ-Heisenberg model for times that are exponential in the driving field [154]. We will show that in the Ising model, evolution according to the XXZ-Heisenberg Hamiltonian can be approximated by taking \(\Omega_x = \Omega \sin \theta \), \(\Omega_y = 0 \), and \(\Omega_z = \Omega \cos \theta \). With these driving fields, the interaction Hamiltonian becomes periodic over time intervals \(\frac{2\pi}{\Omega} \), and the Schrödinger picture becomes equivalent to the interaction picture at these periods. A representative path generated by such fields on the unit sphere is shown in Fig. 1. The time-evolution of the system after discrete time intervals, and the associated Magnus expansion is given by

\[\hat{U}_F = T \exp \left\{ -i \int_0^{2\pi/\Omega} dt' \hat{H}_I^{\text{Ising}}(t') \right\} \]

\[= \hat{U}_B^\dagger \exp \left\{ -i \frac{2\pi}{\Omega} \left(\hat{H}_1 + O \left(\frac{1}{\Omega} \right) \right) \right\} \hat{U}_B , \]

where \(\hat{U}_F \) is a local change of basis given by \(\hat{U}_B = \prod_i e^{i \theta Y_i/2} \) (that aligns the driving field with the \(z \) axis). Therefore, time evolution of the Ising model with this choice of driving fields approximates that of the XXZ-Heisenberg model between discrete intervals of \(\Delta t = \frac{2\pi}{\Omega} \). Note that while the formalism of Floquet engineering was used to derive this result, the Hamiltonian is time independent and the periodicity is only manifest in the interaction picture. Also, the Ising model with a fast oscillating drive field could be used to simulate an XXZ-Heisenberg model because the dynamics of a transversely driven Ising model are equivalent to that of a time-independent Ising model with external fields in the \(\hat{z} \) and \(\hat{x} \) directions [127]. The \(O \left(\frac{1}{\Omega^2} \right) \) higher-order terms in the Magnus expansion of the Floquet operator in Eq. (3) have one-body and three-body operators. The one-body operators can be eliminated by renormalization of the “free” Hamiltonian employed to transform to the interaction picture, but the three-body terms are a genuine deviation from the Heisenberg Hamiltonian. Such higher-order terms in the Magnus expansion can be removed through the use of time-dependent driving fields [158].

This approach to simulating the XXZ-Heisenberg model is similar in spirit to recent proposals for simulating gauge theories by adding terms to the Hamiltonian that generate gauge symmetries [159–163]. In these proposals, an energy penalty for breaking gauge invariance decouples the gauge invariant sector from the rest of Hilbert space analogously to how dynamical decoupling can be used to decouple systems from their environment [162]. In this work, the addition of driving fields to the Ising model can be interpreted as adding an energy penalty for violating the global \(U(1) \) symmetry generated by the driving fields. This causes the different symmetry sectors to decouple, leading to time evolution that can be described by the XXZ-Heisenberg model.
where the leading order Eq. (4) becomes an XXX-Heisenberg chain time-evolution operator derived from Eq. (5) and the Floquet engineered approximation in Eqs. (3) and (4) as a function of the driving field strength Ω, for a selection of chain lengths.

BEYOND LEADING ORDER IN THE MAGNUS EXPANSION AND DYNAMICAL PHASE TRANSITIONS

The derivation of the approximate Heisenberg time evolution indicates that systematic errors from the Magnus expansion are suppressed by Ω^{-1} compared to leading order. However, the Magnus expansion is known to have a finite radius of convergence, and a priori it is not obvious what the minimum value of Ω is for the leading order term to accurately describe dynamics. As mentioned previously, numerical studies of digital quantum simulations have been used to show that Trotterized time evolution transitions into chaotic dynamics for sufficiently large time steps [136, 137]. In this context, the Floquet-period $\Delta t = \frac{2\pi}{\Omega}$ is analogous to a Trotter time step, and we show that at small Ω the breakdown of the Magnus expansion is associated with a dynamical quantum phase transition in the Ising model.

As an example, we focus on the special point $\theta = \tan^{-1} \sqrt{2}$, where the leading order Eq. (4) becomes an XXX-Heisenberg Hamiltonian with enhanced non-abelian $O(3)$-symmetry

$$\hat{H}_{\text{XXX}}^{\text{Heisen}} = \frac{1}{3} \sum_i \hat{X}_i \hat{X}_{i+1} + \hat{Y}_i \hat{Y}_{i+1} + \hat{Z}_i \hat{Z}_{i+1}. \quad (5)$$

The systematic errors in the time evolution (of any state) are bounded by the spectral norm (magnitude of the largest eigenvalue) of the difference between the exact Heisenberg time-evolution operator and the Floquet engineered approximation given in Eqs. (3) and (4), $|e^{-i\hat{H}_{\text{XXX}}^{\text{Heisen}} t} - \hat{U}_\tau|$. This is shown for the one-dimensional XXX-Heisenberg model with $J = 1/3$ in Fig. 2 as a function of Ω for varying chain lengths. At large values of Ω, systematic deviations in the spectral norm decrease with increasing Ω as predicted by the Magnus expansion. At small values of Ω, the spectral norm saturates below a critical value Ω_c. Unfortunately, the lattice sizes for which the spectral norm can be efficiently computed are not large enough to determine the scaling of Ω_c with chain length. For longer chain lengths, Loschmidt echoes of the ground state of the XXX-Heisenberg model in Eq. (5), $\langle \hat{\psi}_G \rangle$, time evolved over $t = \frac{2\pi}{\Omega}$ with the driven Ising model,

$$\hat{H}_{\text{Ising}} = \sum_i \hat{Z}_i \hat{Z}_{i+1} + \frac{\Omega}{2\sqrt{3}} \left(\hat{Z}_i + \sqrt{2} \hat{X}_i \right), \quad (6)$$

are computed. If the time evolution of the XXX-Heisenberg model were perfectly reproduced by the driven Ising model, the Loschmidt echo, defined as the probability to return to the initial state, i.e.,

$$\mathcal{L}(\Omega) = \left| \langle \hat{\psi}_G | e^{-i\hat{H}_{\text{Ising}} t} | \hat{\psi}_G \rangle \right|^2, \quad (7)$$

would equal unity, and deviation from unity provide an estimate of contributions beyond leading order in the Magnus expansion. As log $\mathcal{L}(\Omega)$ is an extensive quantity, the rate function

$$\lambda(\Omega) = -\log \left(\mathcal{L}(\Omega) / L \right), \quad (8)$$

is computed to compare chains of different lengths L, as shown in Fig. 3. For chains of $L \leq 16$, time evolution was computed using exact diagonalization. The ground states of the $L = 50$ and $L = 100$ chains were computed using DMRG and time evolution was performed using TDVP [164–169]. The ground state and time evolution of the infinite Heisenberg chain was computed using iTEBD [170–172]. At large Ω, $\lambda(\Omega)$ decreases with increasing Ω, indicating that the leading order Magnus expansion is correctly describing the dynamics of the model.

This asymptotic behavior only occurs beyond a “kink” in $\lambda(\Omega)$, indicating that at small values of Ω the Magnus expansion is failing to converge. The presence of a kink (non-analytic behavior) in $\lambda(\Omega)$ is the defining characteristic of a dynamical quantum phase transition [128]. Note that other inequivalent definitions of dynamical phase transitions have been introduced in the literature [173]. DQPTs have previously been studied in spin systems and have been shown to be associated with unstable renormalization group fixed points [128–133, 174]. Our results show that the Ising model with a constant driving
field $\tilde{\Omega} = \Omega \left(\frac{1}{\sqrt{3}} \hat{\bar{z}} + \sqrt{\frac{2}{3}} \hat{\bar{z}} \right)$ undergoes a DQPT into a regime with an approximate $O(3)$ symmetry at discrete time intervals, as seen in Fig. 3.

These calculations demonstrate that for short time scales Heisenberg evolution is being successfully simulated, provided a sufficiently large driving field strength is used. However, this does not guarantee that the dynamics are reproduced at long times. Generically, periodically driven systems are expected to heat at late times [175–177], however in the context of digital quantum simulation it has been shown that quantum localization prevents this in Trotterized time evolution [136, 137]. The Floquet engineering technique used in this work uses a static Ising Hamiltonian so one would expect that at large field strengths the eigenstates of the Ising model are perturbatively close to those of the Heisenberg Hamiltonian. This would guarantee that long time dynamics are correctly reproduced as in the case of Trotterized time evolution. This perturbative argument can be verified through the calculation of the inverse participation ratio (IPR). For a given state, $|\psi\rangle$, and eigenstates, $|n\rangle$ of some Hamiltonian, the IPR is defined by

$$\text{IPR} = \sum_n |\langle n | \psi \rangle|^4.$$ \hspace{1cm} (9)

The IPR measures how localized $|\psi\rangle$ is relative to the eigenbasis $|n\rangle$. In practice, it can be evaluated by averaging the Loschmidt echo over long periods of time. To compare systems of different sizes, a normalized IPR, defined by $\lambda_{\text{IPR}}(L) = -\frac{1}{L} \log(\text{IPR})$ for a chain of length L, was computed for the ground state of the XXX-Heisenberg model in Fig. 4. For the chain of length 10, the IPR was computed by explicitly evaluating Eq. (9), while for the larger chains the IPR was computed by averaging Loschmidt echos. As this figure shows, for large Ω the log IPR is small which indicates the perturbative argument holds and the XXX-Heisenberg ground state is localized with respect to the Ising Hamiltonian. This indicates that the long time dynamics of the XXX-Heisenberg model is being successfully simulated with this technique.

When the constant driving field is taken to be in another direction, an approximate $O(2)$ symmetry emerges. The arguments above suggest that there should be a DQPT that occurs in this case as well. As an example, the traditional one-dimensional transverse field Ising model with the driving field purely in the $\hat{\bar{z}}$ direction will generate evolution according to the XY-Heisenberg model (up to a change of basis),

$$\hat{H}_{\text{Heis}}^Y = \frac{1}{2} \sum_i \hat{Y}_i \hat{Y}_{i+1} + \hat{Z}_i \hat{Z}_{i+1}.$$ \hspace{1cm} (10)

The rate function $\lambda(\Omega)$ for the ground state of \hat{H}_{XY} evolved under the transverse field Ising Hamiltonian for one period is shown in Fig. 5. As is the case for the XXX-Heisenberg model, there is a series of kinks indicating a DQPT before the rate function begins to decrease. It is interesting to note that the final kink is at $\Omega^* \approx 1.948$ which is close to, but not quite at the critical point of the transverse field Ising model at $\Omega = 2$. While this work shows that the Ising model can be used to simulate \hat{H}_{XY} in the strong field limit, it has been shown in previous work that in $2 + 1$ dimensions, the weak field limit of the Ising model also reproduces the dynamics of the XY-Heisenberg model [134, 135].

These results explicitly show that in 1D, this technique can be used to simulate Heisenberg model physics for long times with a driving field that is not extensive with the system size. While there are classical computational tools that enable the study of large 1D systems such as tensor networks, simulating real time evolution in 1D systems still has computational costs that grow exponentially with time and analog quantum simulation may be of practical use. While these calculation were only performed for 1D, this technique can also be applied to simulate higher dimensional Heisenberg models and it is likely that the required driving field strength for simulating dynamics accurately is not extensive with the system size as well. Even if the required driving field strength is extensive with system

![FIG. 4. The log IPR for the ground state of XXX-Heisenberg chains of different lengths. The IPR for the chain of length 10 was computed with exact diagonalization and the IPR for larger chains was computed by averaging the Loschmidt echo over 1000 periods.](image)

![FIG. 5. The rate function for the ground state of XY-Heisenberg chains of different lengths.](image)
size in higher dimensions, this technique may still be of practical importance as real time evolution for even modest sized 2D systems is difficult for classical computers. In addition to enabling analog quantum simulation of the Heisenberg model on platforms with Ising interactions such as Rydberg atoms and superconducting qubits, this technique could be combined with the results of Ref. [140] to potentially perform analog quantum simulation of an arbitrary Hamiltonian. This could potentially enable analog simulations of any quantum field theory of physical interest on these platforms.

DISCUSSION

In this work, a new method for analog simulation of the Heisenberg model has been proposed that can be implemented on platforms whose natural evolution is described by the Ising model with constant external fields. For a specific driving field, the time-evolution operator of the Ising model is approximately that of the Heisenberg model over periodic time intervals. Interestingly, the leading-order effective Heisenberg operator has enhanced symmetry over the intrinsic Hamiltonian.

The systematic errors associated with this method at small external-field strength are limited by non-analytic behavior in the Ising model, associated with dynamical quantum phase transitions, which indicates the Magnus expansion is failing to converge. Beyond a critical value of the driving field, the effective Hamiltonian describing the time-evolution can be determined from a Magnus expansion, with each increasing order in $1/\Omega$ introducing operators involving an increasing number of spins.

The technique presented in this work could be implementable on a range of quantum devices, including systems of Rydberg atoms or even superconducting qubits, in any dimension. While Rydberg systems are very promising as analog quantum simulators, one of the main challenges is that natively they offer a very narrow class of interactions, which severely limits their applicability. Therefore, being able to engineer new interactions makes an important step forward in expanding the systems that can be studied on these platforms. Furthermore, unlike previous proposals for quantum simulations of Heisenberg models, this method can be implemented using time-independent fields, which is extremely important for experimental platforms with a limited slew rate for the external fields. In the near term, analog quantum simulations will be the only method of probing the long time dynamics of large systems. The dynamics of the Heisenberg model are of particular interest, not only for condensed matter applications, but also for high-energy physics, such as in coherent neutrino oscillations and as a lattice regularization of the O(3) nonlinear σ model which will be important for developing quantum simulations of QCD. Importantly, this technique easily scales to higher dimensions. By enabling analog simulation of the Heisenberg model on Rydberg atoms and superconducting qubits, systems beyond the reach of classical computers can be simulated and one may be able to achieve a scientifically useful quantum advantage.

ACKNOWLEDGMENTS

We would like to thank Marc Illa, Roland Farrell, Henry Froiland, and Nikita Zemlevskiy for useful discussions. We would also like to acknowledge Peter Komar and Cedric Lin from the Amazon Braket team for contributions to developing this technique. The views expressed are those of the authors and do not reflect the official policy or position of AWS. The material presented here was funded in part by the DOE QuantISED program through the theory consortium “Intersections of QIS and Theoretical Particle Physics” at Fermilab with Fermilab Subcontract No. 666484, in part by Institute for Nuclear Theory with US Department of Energy Grant DE-FG02-00ER41132, and in part by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Inqubator for Quantum Simulation (IQUS) under Award Number DOE (NP) Award DE-SC0020970. This work was enabled, in part, by the use of advanced computational, storage and networking infrastructure provided by the Hyak supercomputer system at the University of Washington [178]. This work is also supported, in part, through the Department of Physics [179] and the College of Arts and Sciences [180] at the University of Washington.

* aciavare@uw.edu
† caspar@uw.edu
‡ hershsg@uw.edu
§ mjs5@uw.edu, On leave from the Institute for Nuclear Theory.

[1] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum computation of scattering in scalar quantum field theories (2019), arXiv:1112.4833 [hep-th].

[2] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms for fermionic quantum field theories (2014), arXiv:1404.7115 [hep-th].

[3] J. Preskill, Simulating quantum field theory with a quantum computer (2018), arXiv:1811.10085 [hep-lat].

[4] D. M. Kurkcuoglu, M. S. Alam, J. A. Job, A. C. Y. Li, A. Macridin, G. N. Perdue, and S. Providence, Quantum simulation of φ4 theories in qudit systems (2021).

[5] H. Lamm, S. Lawrence, and Y. Yamauchi, Parton physics on a quantum computer, Physical Review Research 2, 10.1103/physrevresearch.2.013272 (2020).

[6] L. Mazza, A. Bermudez, N. Goldman, M. Rizzi, M. A. Martin-Delgado, and M. Lewenstein, An optical-lattice-based quantum simulator for relativistic field theories and topological insulators, New Journal of Physics 14, 015007 (2012).

[7] K. Yeter-Aydeniz, E. F. Dumitrescu, A. J. McCaskey, R. S. Bennink, R. C. Pooser, and G. Siopsis, Scalar quantum field theories as a benchmark for near-term quantum computers, Physical Review A 99, 10.1103/physreva.99.032306 (2019).

[8] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and et al., Self-verifying variational quantum simulation of lattice models, Nature 569, 355–360 (2019).
E. Zohar, Quantum simulation of lattice gauge theories in more than one space dimension – requirements, challenges, methods (2021), arXiv:2106.04609 [quant-ph].

T. Armon, T. Armon, S. Ashkenazi, G. García-Moreno, A. González-Tudela, and E. Zohar, Photon-mediated stroboscopic quantum simulation of a \mathbb{Z}_2 lattice gauge theory (2021), arXiv:2107.13024 [quant-ph].

N. Klco and M. J. Savage, Hierarchical qubit maps and hierarchical quantum error correction (2021), arXiv:2109.01953 [quant-ph].

L. Hostettler, J. Zhang, R. Sakai, J. Unmuth-Yockey, A. Bazzov, and Y. Meurice, Clock model interpolation and symmetry breaking in o(2) models, Physical Review D 104, 10.1103/physrevd.104.054505 (2021).

B. Andrade, Z. Davoudi, T. Graß, M. Hafezi, G. Pagano, and A. Seif, Engineering an effective three-spin hamiltonian in trapped-ion systems for applications in quantum simulation, Quantum Science and Technology 7, 034001 (2022).

A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, and M. A. Martin-Delgado, Wilson fermions and axion electrodynamics in optical lattices, Phys. Rev. Lett. 105, 190404 (2010).

T. Byrnes and Y. Yamamoto, Simulating lattice gauge theories on a quantum computer, Physical Review A 73, 10.1103/physreva.73.022328 (2006).

A. Kan and Y. Nam, Lattice quantum chromodynamics and electrodynamics on a universal quantum computer (2021), arXiv:2107.12769 [quant-ph].

J. Stryker, Shearing approach to gauge invariant trotterization (2021), arXiv:2105.11548 [hep-lat].

T. F. Stetina, A. Ciavarella, X. Li, and N. Wiebe, Simulating effective qcd on quantum computers, Quantum 6, 622 (2022).

R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A. Zemlyaskiy, M. Illa, and M. J. Savage, Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions: (i) axial gauge (2022).

Z. Davoudi, N. M. Linke, and G. Pagano, Toward simulating quantum field theories with controlled phonon-dynamics: A hybrid analog-digital approach (2021), arXiv:2104.09346 [quant-ph].

H. Singh and S. Chandrasekharan, Qubit regularization of the o(3) sigma model, Phys. Rev. D 100, 054505 (2019).

T. Bhattacharya, A. J. Buser, S. Chandrasekharan, R. Gupta, and H. Singh, Qubit regularization of asymptotic freedom, Phys. Rev. Lett. 126, 172001 (2021).

H. Singh, Qubit regularized o(n) nonlinear sigma models (2019).

H. Singh, Large-charge conformal dimensions at the o(n) wilson-fisher fixed point (2022).

S. Caspar and H. Singh, From asymptotic freedom to j vacua: Qubit embeddings of the o(3) nonlinear s model (2022).

E. J. Gustafson, Prospects for simulating a qubit-based model of (1+1)d scalar qed, Phys. Rev. D 103, 114505 (2021).

J. F. Unmuth-Yockey, Gauge-invariant rotor hamiltonian from dual variables of 3d u(1) gauge theory, Phys. Rev. D 99, 074502 (2019).

J. Zhang, R. Ferguson, S. Kühn, J. F. Haase, C. M. Wilson, K. Jansen, and C. A. Muschik, Simulating gauge theories with variational quantum eigensolvers in superconducting microwave cavities (2021).

M. Ünsal, Theta dependence, sign problems, and topological interference, Phys. Rev. D 86, 105012 (2012).

C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karchs, E. Laermann, C. Schmidt, and L. Scorzato, Qcd thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66, 074507 (2002).

P. de Forcrand and O. Philipsen, The qcd phase diagram for small densities from imaginary chemical potential, Nuclear Physics B 642, 290 (2002).

R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21, 467 (1982).

P. Benioff, The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines, Journal of statistical physics 22, 563 (1980).

H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Superconducting quantum computing: A review (2020), arXiv:2006.10433 [quant-ph].

S. Slussarenko and G. J. Pryde, Photonic quantum information processing: A concise review, Applied Physics Reviews 6, 041303 (2019).

P. Barthelmy and L. M. Vandersypen, Quantum dot systems: a versatile platform for quantum simulations, Annalen der Physik 525, 808 (2013).

C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Trapped-ion quantum computing: Progress and challenges, Applied Physics Reviews 6, 021314 (2019).

S. R. Cohen and J. D. Thompson, Quantum computing with circular rydberg atoms, PRX Quantum 2, 030322 (2021).

H. Weimer, M. Müller, H. P. Büchler, and I. Lesanovsky, Digital quantum simulation with rydberg atoms, Quantum Information Processing 10, 885 (2011).

R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang, and R. J. Schoelkopf, Cavity state manipulation using photon-number selective phase gates, Phys. Rev. Lett. 115, 137002 (2015).

R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Stef- fen, M. Boissonneault, A. Blais, and A. Wallraff, Control and tomography of a three level superconducting artificial atom, Phys. Rev. Lett. 105, 223601 (2010).

C. Wang, I. Gonin, A. Grassellino, S. Kazakov, A. Romanenko, V. P. Yakovlev, and S. Zorzetti, High-efficiency microwave-optical quantum transduction based on a cavity electro-optic superconducting system with long coherence time (2022).

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431, 162 (2004).

I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. Harmans, and J. Mooij, Coherent dynamics of a flux qubit coupled to a harmonic oscillator, Nature 431, 159 (2004).

S. Flannigan, N. Pearson, G. H. Low, A. Buyskikh, I. Bloch, P. Zoller, M. Troyer, and A. J. Daley, Propagation of errors and quantitative quantum simulation with quantum advantage (2022).

S. Chandrasekharan, B. Scarlet, and U.-J. Wiese, From spin ladders to the 2d o(3) model at non-zero density, Computer Physics Communications 147, 388 (2002), proceedings of the Europhysics Conference on Computational Physics Computational Modeling and Simulation of Complex Systems.

R. Brower, S. Chandrasekharan, S. Riederer, and U.-J. Wiese, O(3) nonlinear sigma model in 1+1 dimensions with matrix product states, Phys. Rev. D 99, 074501 (2019).

H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective neutrino flavor transformation in supernovae, Phys. Rev. D 74, 123004
Towards the first quantum simulation with quantum speedup, *Science* 370, 920303 (2022), arXiv:2204.12400 [quant-ph].

S. Ebadi, T. T. Wang, H. Levine, A. Keessling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, et al., Quantum phases of matter on a 256-atom programmable quantum simulator, *Nature* 595, 227 (2021).

G. Semeghini, H. Levine, A. Keessling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Veresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, Probing topological spin liquids on a programmable quantum simulator, *Science* 374, 1242 (2021), https://www.science.org/doi/pdf/10.1126/science.abi8794.

D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keessling, N. Maskara, H. Pichler, M. Greiner, et al., A quantum processor based on coherent transport of entangled atom arrays, *Nature* 604, 451 (2022).

D. Porras and J. I. Cirac, Effective quantum spin systems with trapped ions, *Phys. Rev. Lett.* 92, 207901 (2004).

T. Graß and M. Lewenstein, Trapped-ion quantum simulation of tunable-range heisenberg chains, *EPJ Quantum Technology* 1, 1 (2014).

C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, Programmable quantum simulations of spin systems with trapped ions, *Rev. Mod. Phys.* 93, 025001 (2021).

M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., Quantum annealing with manufactured spins, *Nature* 473, 194 (2011).

R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear, C. Enderud, C. Rich, S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson, K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose, Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor, *Phys. Rev. B* 82, 024511 (2010).

P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, and J. Whittaker, Architectural considerations in the design of a superconducting quantum annealing processor, *IEEE Transactions on Applied Superconductivity* 24, 1 (2014).

A. J. A. James, R. M. Konik, and N. J. Robinson, Nonthermal states arising from confinement in one and two dimensions, *Phys. Rev. Lett.* 122, 130603 (2019).

M. Kormos, M. Collura, G. Takács, and P. Calabrese, Real-time confinement following a quantum quench to a non-integrable model, *Nature Physics* 13, 246 (2017).
[123] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local propagation of correlations in quantum systems with long-range interactions, *Nature* 511, 198 (2014).

[124] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Quasiparticle engineering and entanglement propagation in a quantum many-body system, *Nature* 511, 202 (2014).

[125] M. L. Wall, A. Safavi-Naini, and A. M. Rey, Boson-mediated quantum spin simulators in transverse fields: Xy model and spin-boson entanglement, *Physical Review A* 95, 10.1103/physreva.95.013602 (2017).

[126] T. G. Kiely and J. K. Freericks, Relationship between the transverse-field ising model and the xy model via the rotating-wave approximation, *Physical Review A* 97, 10.1103/physreva.97.023611 (2018).

[127] N. J. Robinson, I. P. Castillo, and E. Guzmán-González, Quantum quench in a driven ising chain, *Physical Review B* 103, 10.1103/physrevb.103.1140407 (2021).

[128] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model, *Physical Review Letters* 110, 137504 (2013).

[129] C. Karrasch and D. Schuricht, Dynamical phase transitions after quenches in nonintegrable models, *Physical Review B* 87, 195104 (2013).

[130] S. De Nicola, A. A. Michailidis, and M. Serbyn, Entanglement view of dynamical quantum phase transitions, *Physical Review Letters* 126, 040602 (2021).

[131] T. Rakovszky, M. Mestyán, M. Collura, M. Kormos, and G. Takács, Hamiltonian truncation approach to quenches in the ising field theory, *Nuclear Physics B* 911, 805 (2016).

[132] M. Heyl, Scaling and universality at dynamical quantum phase transitions, *Physical Review Letters* 115, 10.1103/physrevlett.115.140602 (2015).

[133] T. Hashizume, I. P. McCulloch, and J. C. Halimeh, Dynamical phase transitions in the two-dimensional transverse-field ising model, *Physical Review Research* 4, 013250 (2022).

[134] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and R. Hamazaki, Emergence of hilbert space fragmentation in ising models with a weak transverse field (2021).

[135] O. Hart and R. Nandkishore, Hilbert space shattering and dynamical freezing in the quantum ising model (2022).

[136] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F. Hauke, and P. Zoller, Digital quantum simulation, trotter errors, and quantum chaos of the kicked top, npj Quantum Information 5, 1 (2019).

[137] M. Heyl, P. Hauke, and P. Zoller, Quantum localization bounds trotter errors in digital quantum simulation, *Science Advances* 5, 10.1126/sciadv.aau8342 (2019).

[138] J. T. Young, S. R. Mulready, M. A. Perlin, A. M. Kaufman, and A. M. Rey, Enhancing spin squeezing using soft-core interactions (2022).

[139] N. J. Robinson, A. J. A. James, and R. M. Konik, Signatures of rare states and thermalization in a theory with confinement, *Physical Review B* 99, 195108 (2019).

[140] T. S. Cubitt, A. Montanaro, and S. Piddock, Universal quantum hamiltonians, *Proceedings of the National Academy of Sciences* 115, 9497 (2018).

[141] N. Goldman and J. Dalibard, Periodically driven quantum systems: Effective hamiltonians and engineered gauge fields, *Physical Review X* 4, 031027 (2014).

[142] J. H. Shirley, Solution of the schrödinger equation with a hamiltonian periodic in time, *Physical Review* 138, B979 (1965).

[143] L. M. K. Vandersypen and I. L. Chuang, Nmr techniques for quantum control and computation, *Rev. Mod. Phys.* 76, 1037 (2005).

[144] Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kürpieres, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff, Digital quantum simulation of spin models with circuit quantum electrodynamics, *Physical Review X* 5, 021027 (2015).

[145] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the holstadder hamiltonian with ultracold atoms in optical lattices, *Physical Review Letters* 115, 185301 (2013).

[146] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sengstock, and C. Weitenberg, Experimental reconstruction of the berry curvature in a floquet bloch band, *Science* 352, 1091 (2016), https://www.science.org/doi/pdf/10.1126/science.aad4568.

[147] F. Heinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-C. Nägerl, Floquet engineering of correlated tunneling in the bose-hubbard model with ultracold atoms, *Physical Review Letters* 116, 205301 (2016).

[148] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet approach to z2 lattice gauge theories with ultracold atoms in optical lattices, *Nature Physics* 15, 1168 (2019).

[149] A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, *Review of Modern Physics* 89, 011004 (2017).

[150] K. Wintersberger, C. Braun, F. N. Únal, A. Eckardt, M. D. Liberto, N. Goldman, I. Bloch, and M. Aidelsburger, Realization of an anomalous floquet topological system with ultracold atoms, *Nature Physics* 16, 1058 (2020).

[151] J. Choi, H. Zhou, H. S. Knowles, R. Landig, S. Choi, and M. D. Lukin, Robust dynamic hamiltonian engineering of many-body spin systems, *Physical Review X* 10, 031002 (2020).

[152] H. Qiao, Y. P. Kandel, J. S. V. Dyke, S. Fallahi, G. C. Gardner, M. J. Manfra, E. Barnes, and J. M. Nichol, Floquet-enhanced spin swaps, *Nature communications* 12, 1 (2021).

[153] S. Sarkar and B. Buca, Protecting coherence from environment via stark many-body localization in a quantum-dot simulator (2022).

[154] D. Abanin, W. De Roeck, W. W. Ho, and F. H. V. Hugeneers, A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems, *Communications in Mathematical Physics* 354, 809 (2017).

[155] D. V. Else, B. Bauer, and C. Nayak, Prethermal phases of matter protected by time-translation symmetry, *Physical Review X* 7, 011026 (2017).

[156] K. Mizuta, K. Takasan, and N. Kawakami, High-frequency expansion for flopquet prethermal phases with emergent symmetries: Application to time crystals and floquet engineering, *Physical Review B* 100, 020301 (2019).

[157] M. Claassen, Flow renormalization and emergent prethermal regimes of periodically-driven quantum systems (2021).

[158] K. Agarwal and I. Martin, Dynamical enhancement of symmetries in many-body systems, *Physical Review Letters* 125, 080602 (2020).

[159] J. C. Halimeh, H. Lang, J. Mildenberger, Z. Jiang, and P. Hauke, Gauge-symmetry protection using single-body terms, *PRX Quantum* 2, 040311 (2021).

[160] J. C. Halimeh, H. Lang, and P. Hauke, Gauge protection in non-abelian lattice gauge theories, *New Journal of Physics* 24, 033015 (2022).

[161] J. C. Halimeh, L. Homeier, C. Schweizer, M. Aidelsburger, P. Hauke, and F. Grusdt, Stabilizing lattice gauge theories
through simplified local pseudo generators (2021).
[162] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
[163] V. Kasper, T. V. Zache, F. Jendrzejewski, M. Lewenstein, and E. Zohar, Non-abelian gauge invariance from dynamical decoupling (2020).
[164] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor software library for tensor network calculations (2020), arXiv:2007.14822.
[165] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
[166] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
[167] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Time-dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601 (2011).
[168] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Unifying time evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016).
[169] M. Yang and S. R. White, Time-dependent variational principle with ancillary krylov subspace, Phys. Rev. B 102, 094315 (2020).
[170] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Physical Review Letters 91, 10.1103/physrevlett.91.147902 (2003).
[171] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Physical Review Letters 93, 10.1103/phys-revlett.93.040502 (2004).
[172] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Physical Review Letters 93, 10.1103/phys-revlett.93.207204 (2004).
[173] M. Heyl, Dynamical quantum phase transitions: a review, Reports on Progress in Physics 81, 054001 (2018).
[174] G. A. Álvarez, E. P. Danieli, P. R. Levstein, and H. M. Pastawski, Environmentally induced quantum dynamical phase transition in the spin swapping operation, The Journal of chemical physics 124, 194507 (2006).
[175] A. Lazarides, A. Das, and R. Moessner, Equilibrium states of generic quantum systems subject to periodic driving, Phys. Rev. E 90, 012110 (2014).
[176] D. A. Abanin, W. D. Roeck, and F. Huveneers, Exponentially slow heating in periodically driven many-body systems, Physical Review Letters 115, 10.1103/physrevlett.115.256803 (2015).
[177] T. Mori, T. Kuwahara, and K. Saito, Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems, Phys. Rev. Lett. 116, 120401 (2016).
[178] https://itconnect.uw.edu/research/hpc.
[179] https://phys.washington.edu.
[180] https://www.artsci.washington.edu.