Prediction of polyps and bleeding by CS-LBP using RF and SVM

K Manikandan¹, R Visalakshi² and R Ponnusamy³

¹SRM University, Tamil Nadu, India
²,³Annamalai University, Tamil Nadu, India

E-mail: visalakshi.au@gmail.com

Abstract. In this paper, a method is proposed to differentiate the classes such as Bleeding and Polyps between the many classes present in GI tract using efficient classification model. The challenge in all image analysis is to characterize these images which improve the exact detection of these abnormalities. To solve this problem, a Center-Symmetric Local Binary Pattern (CS-LBP) feature extraction with Random Forest (RF) and Support Vector Machine (SVM) methods are employed to classify these two classes. Our model shows an excellent detection accuracy of 90.39 for polyps and 94.85 for bleeding respectively for the CS-LBP with RF and SVM.

1. Introduction

In wireless capsule endoscopy (WCE), a not reusable device in the structure of a capsule to analysis of gastrointestinal disease [1,2]. It is several anomalies in human digestive way because of several factors, namely hereditary, way of life, occupational risks, and medicinal history. Several of the usually observe abnormalities are the Ulcers, Polyps, Bleeding, Tumours, Esophagitis, Z-line and so on [3, 4].

An innovative technique is developed in these researches utilizing Local Binary Pattern (LBP) to detect Polyps and Bleeding. In classification phase, it is widely evaluated several classification models like SVM, and Random Forest (RF) for determining the suitable one to the GI tract image dataset. Polyps are lesions in the bowel detectable as mucosal outgrows. The polyp is flat, elevated or pedunculated, and is well-known from normal mucosa with color and surface model [5-6]. Bleeding can take place somewhere beside the digestive (gastrointestinal [GI]) area, from the mouth to the anus. The blood can be simply seen by the naked eye. Or blood can be occurring in amounts too tiny to be visible [7-8]. Figure 1 shows the image of polyps and bleeding.
The document has been managed in these methods. Section 2, we explained the technique that is presented. In Section 3, a deal regarding the feature extraction is established the LBP text features. After that the classifier is utilized in our technique is discussed in section 4. In section 5, in brief discussed experimental outcomes and performance and at last Section 6 have the conclusion.

2. Proposed Work

During this presented technique, an abnormality of Bleeding and Polyps are distinguished from WCE images utilizing the LBP text features. In LBP takes local features depends on the specific interest points. An extracted LBP features are unvarying beside rotation and illumination and robustness to tiny scaling. Utilizing RF, SVM methods, the removed characteristics are classified. The performance is measured by using accuracy, sensitivity and specificity. Figure 2 shows our proposed method.

3. Feature Extraction

3.1 Local Binary Pattern

A strong function for texture classification is known to be the Local Binary Pattern (LBP). In 2009, LBP and HOG (Histogram of Orienting Gradients) showed that detection efficiency was largely improved. LBP was used as an efficient, nonparametric technique for texture analysis by Unay and Ekin [9]. LBP was used to extract valuable data from medical images, especially magnetic brain resonance images. A content-based picture recovery algorithm was used to extract the characteristics. Their experiment has shown that the texture data, along with spatial characteristics is better than only texture characteristics based on intensity. In 2007, the micro-matters were removed with LBP from mammograms [10-12]. These masses are classified as benign or malignant with SVM. The findings of their research showed LBP's efficiency, as the amount of false positive characteristics decreased in all mass sizes [13-14]. The traditional LBP algorithm includes:
The picture is split into 16-pixel cells.

- It takes into account the 3 T3 neighborhoods within each pixel. The next pixels can be seen as a circle that is binarized accordingly.
- If the price of the neighbor is lower than that of the center, type "0." When the next pixel is more than the center pixel, press "1." Thus an 8-digit binary code is obtained which can be converted in the range \{0, 1, \ldots, 255\}.
- Next, the histogram is calculated on a cell. The y axis is the occurrence frequency of each x-axis binary code. The histogram is thus a vector of 256 dimensions.

In addition, the histogram is standardized to obtain the whole window feature vector, to concatenate the standardized histogram of all cells. Some LBP parameters can be adjusted to get excellent results. Perhaps the first parameter is the number of neighbours. For example, consider a 3 premises neighborhood, either 4 or 8 adjacent pixels could be present. We can also alter the neighborhood's radius. A radius of 1 and 2 pixels represents 3 and 5 neighborhoods.

4. Classification Methods

4.1 Random Forest

RFs are a set of untrained decision trees (DTs) trained utilizing a version of the arbitrary subspace model or feature carrying technique. In RF training model is not as simple as executing bagging for several separate DTs after that easily aggregating the yield [15-16]. This method to practice RFs is as following. Choose \(p\) characteristics from characteristics \(D\) at present node. Generally, count of characteristics \(p\) is lesser than the count of characteristics \(D\) entirely.

1. Utilize is provided dividing measure for calculating the optimal divide point to tree \(k\) and separate a present node into daughter nodes and reduce a count of characteristics \(D\) from that node.
2. Replicate steps 1 to 2, still either a highest tree depth \(l\) is obtained or the separating metric achieves a particular tremendous.
3. To all trees \(k\) in the forest, replicate steps 1 to 3.
4. Vote or aggregate all trees' making in the forest. These processes are clearly provided in Figure 3.

![Figure 3. RF Classifier Model](image_url)
4.2 Support Vector Machine

In SVM has been a standout among the optimal AI techniques to the past decade. The SVM is generally employed classifiers which has a powerful theoretical institution and carry out well if contrasted with several computations in various functions. SVM are nowadays a distinguished AI technique which is employed in an assortment of employment. In individuals’ functions; SVMs carry out at some rate in the similar class as several methods about speculation blunder. The SVM gets the ability of the scheme into account that can be suitable of the studied method for representing some training dataset with a minimum fault. In SVM have the efficiency of convex optimization purpose which makes sure getting a global best. A result attained with SVM is spares’ that enhances effectiveness of these methods if related to other kernel-based manners.

The generalizations of the linear binary SVM classify, \(\gamma (u) \), classifying samples of \(u \in U \) explained with vector of features \((u_1, u_2) \), into classes \(C = \{ \text{tested_positive}, \text{tested_negative} \} \) is illustrated as following:

\[
\gamma(u) = w \ldots u + b
\]

where \(w \) is a vector perpendicular to the edge and where \(b \) represents the edge offset from the origin. Because of these formalizations, \(u \) samples is classified as positively tested when \(\gamma (u) \geq 0 \) or tested negative when \(\gamma (u) \leq 0 \). In input data space is changed into a superior dimensional feature space for making data linearly separate and fit to linear SVM structure if classes could not be separated linearly. Generally, the kernel function is utilized for accomplishing these conversions. It creates it possible for determining a nonlinear decision edge that can be linear in the superior dimensionality feature space, with no computing perfect hyper plane parameters in a feasible superior dimensional feature space. Thus, the response is written as a weighted amount of the values of definite kernel feature measured in the support vectors [16-19].

5. Experimental Results

In experiments are carried out utilizing datasets gathered from the Kvasir datasets. It has occupied 200 images of Bleeding and Polyps and all classes involves of 100 images. A recommended method utilizes fusion of LBP features are used for detecting defects with the further frequently utilized classifiers like RF and SVM. In this work, 80% of the images were randomly selected for training for each class and the other 20% for testing.

5.1 Result and Discussion

In our proposed method, the WCE images are divided into a number of patches. From the patched images, features are extracted using LBP and classified using SVM and RF. The group of measures utilized to investigate the results are accuracy, sensitivity and specificity.

The classification performance using LBP with RF and SVM methods are shown in Table 1. If evaluating with all classes, the performance of LBP with SVM exhibits an accuracy of 90.39% for Polyps, and 94.85% bleeding is obtained. The accuracy obtained for polyps and bleeding is shown in Figure 4. Similarly, the sensitivity and specificity analysis of classifying various abnormalities are shown in Table 1 respectively.
Table 1: Performance of Abnormalities using RF and SVM with LBP

Abnormalities	Performance (in%)	RF	SVM	
Polyps		Accuracy	84.80	90.39
		Sensitivity	82.20	84.21
		Specificity	93.12	90.9
		Accuracy	84.92	94.85
Bleeding		Sensitivity	85.23	90.11
		Specificity	90.28	97.12

Figure 4. Performance of LBP with RF and SVM

6. Conclusion

The classification of abnormalities from WCE images such as Bleeding and Polyps is a challenging task. It may take 2 hours per patient for reviewing GI tract diseases. It is highly time consuming and increases healthcare costs considerably. To overcome this problem, Multi-Abnormalities classification model is proposed. It is built by the use of LBP features with RF and SVM classification model. From the experiment results, it is demonstrated that maximum accuracy of 90.39% for Polyps and 94.85% for bleeding is obtained for LBP with SVM. The proposed method outperforms the compared methods in a significant way.
References

[1] AG. Iddan, G. Meron, A. Glukhovsky, and P. Swain, 2000 Wireless capsule endoscopy, Nature, vol. 405, p. 417.

[2] Xiao Wu, Honghan Chen, Tao Gan, Junzhou Chen, Chong-Wah Ngo and Qiang Peng, 2016 Automatic Hookworm Detection in Wireless Capsule Endoscopy Images, IEEE transactions on medical imaging.

[3] Online reference: Wikipedia

[4] R. Sneha Sri, A. Sheryl Oliver and S. Shanthini, 2017 Detection of Hookworm Infection in the Wireless Capsule Endoscopy Images, International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE2017).

[5] Karargyris and N. G. Bourbakis, 2011 Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans. Biomed. Eng., vol. 58, no. 10, pp. 2777–2786.

[6] S. Hwang and M. E. Celebi, 2010 Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature. IEEE, pp. 678–681.

[7] Tonmoy Ghosh, Shaikh Anowarul Fattah, and Khan A. Wahid, 2018 CHOBS: Color Histogram of Block Statistics for Automatic Bleeding Detection in Wireless Capsule Endoscopy Video IEEE journal of Translation Engineering in Health and Medicine, Vol. 6.

[8] Ouiem Bchi, Mohamed Maher Ben Iisma, Nada Alzahrani, 2018 Multiple bleeding detection in wireless capsule endoscopy, in Springer: Signal, Image and Video Processing.

[9] Devrim Unay, Ahmet Ekin, Mujdat Cetin, Radu Jasinschi, Ayтуl Ercil, 2007 Robustness of local binary patterns in brain MR image analysis, International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2098–2101.

[10] T. Ahonen, A. Hadid, and M. Pietikäinen, 2004 Face recognition with local binary patterns, in Proc. Euro. Conf. Computer Vision (ECCV), pp. 469–481.

[11] Li, B. and Meng, M.Q.H., 2009a. Computer-aided detection of bleeding regions for capsule endoscopy images, IEEE Transactions on Biomedical Engineering, 56 (4), 1032–1039

[12] Maghsoudi, O.H., Alizadeh, M., and Mirmomen, M., 2016 A computer aided method to detect bleeding, tumor, and diseases regions in wireless capsule endoscopy, Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6.

[13] Ojala, T., Pietikäinen, M., and Maenpaa, T, 2002 Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE Transactions on pattern analysis and machine intelligence, 24 (7), pp.971–987.

[14] Rema, M. and Nair, M.S, Segmentation of human intestinal parasites from microscopy images using localized mean-separation based active contour model, Biomedical Engineering Letters, 3 (3), pp.179–189, 2013.

[15] K. Seetharaman, S. Sathiamoorthy, 2014 A unified learning framework for content based medical image retrieval using statistical model Journal of King Saud University – Computer and Information science.

[16] R Ponnumay, S Sathiamoorthy, 2019 Prediction of Esophagitis and Z-Line from Wireless Capsule Endoscopy images using Fusion of low-level features, International Journal of Recent Technology and Engineering (IJRTE), ISSN: 2277-3878, Volume-8, Issue-3.

[17] C.H. Lin, R.T. Chen and Y.K. Chan, 2009 A smart content-based image retrieval system based on color and texture feature, Image and Vision 12. Computing vol.27, pp.658–665.

[18] R Ponnumay, S Sathiamoorthy, 2019 An Efficient Gastrointestinal Hemorrhage Detection and Diagnosis Model for Wireless Capsule Endoscopy, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3.

[19] R Ponnumay, S Sathiamoorthy, 2020 Wireless Capsule Endoscopy Image Classification Model to Detect Gastro Intestinal Tract Diseases Using Visual Words Based on Feature Fusion, International Journal of Future Generation Communication and Networking (IJFGCN), ISSN: 2233-7857, Volume-13.