Research Article

Safety and Effectiveness of Inhaling Different Dosage Recombinant Human Interferon α1B for Bronchiolitis in Children: a Systematic Review and Meta-Analysis

Jiefeng Luo, Mengting Yang, Linan Zeng, Xiangcheng Pan, Dan Liu, Sha Diao, Liang Huang, Ting Chen, Zhi-Jun Jia, Guo Cheng, Qin Yu, and Lingli Zhang

1 West China School of Pharmacy, Sichuan University, Chengdu, China
2 Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
3 Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
4 Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
5 West China School of Medicine, Sichuan University, Chengdu, China
6 Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
7 Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
8 National Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu, China

Correspondence should be addressed to Lingli Zhang; zhanglingli1306@163.com

Received 10 January 2022; Revised 30 March 2022; Accepted 4 April 2022; Published 27 April 2022

Academic Editor: Roberto Miniero

Copyright © 2022 Jiefeng Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To systematically evaluate the safety and effectiveness of different dosages of recombinant human interferon α1b (IFNα1b) inhaled for bronchiolitis in children. Methods. 7 databases, including PubMed, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang Database, and VIP, were searched. The search time was from their inception dates to March 28, 2022. A randomized controlled trial (RCT) of 2 μg/kg IFNα1b (low dosage group) monotherapy or in combination with other drugs vs. 4 μg/kg IFNα1b (high dosage group) monotherapy or in combination with the other drugs was included. The risk of bias 2.0 evaluated the RCT’s quality, and the grading of recommendations assessment, development and evaluation (GRADE) tool was used for evaluating the overall quality of the evidence. Then, a meta-analysis was performed by RevMan 5.4. Results. A total of 13 RCTs with 1719 children were included. The meta-analysis results showed that the high dosage group was significantly shorter than the low dosage group of the duration of hospital stays (MD = −0.40, 95%CI (−0.73, −0.07), P = 0.02) (low quality), three depressions sign disappearing time (MD = −0.60, 95%CI (−1.05, −0.14), P = 0.010) (low quality), and wheeze disappearing time (MD = −0.62, 95%CI (−1.17, −0.06), P = 0.03) (low quality). There was no significant difference between the two groups in coughing disappearing time, pulmonary rales disappearing time, wheezing sound disappearing time, or adverse event rates. Conclusions. Compared with low dosage IFNα1b, high dosage IFNα1b reduces the duration of hospital stays, the disappearance time of the three depression signs, and the disappearance time of wheeze in the treatment of bronchiolitis in children. Limited by the low quality of the evidence, the conclusions still need to be supported by high-quality studies.

1. Introduction

Bronchiolitis is a lower respiratory tract disease that mainly occurs in children under 24 months. The peak age of onset ranges from 2 months to 6 months. The incidence of infants in the first year after birth is approximately 11%, and bronchiolitis is one of the leading causes of illness and hospitalization in children under one year old [1, 2]. The
most common etiology of bronchiolitis is respiratory syncytial virus (RSV) infection. Other viruses include the parainfluenza virus, influenza virus, and rhinovirus [2, 3]. Unfortunately, a causative treatment of acute viral bronchiolitis does not exist due to its special pathophysiology [4, 5]. In clinical practice, oxygen and fluid supplementation are usually used for symptomatic treatment [6].

Interferon (IFN) plays an essential role during bronchiolitis, particularly for children infected with RSV [7]. IFNs are a group of signaling proteins synthesized and released by host cells in response to pathogens. Normally, virus-infected cells release IFNs to enable surrounding cells to improve their anti-viral defenses [8]. This early response can influence the clinical course of RSV bronchiolitis, thereby affecting the duration of the disease and damage to the lungs [9]. However, it has been considered that common respiratory viruses, including RSV, may disrupt the host antiviral IFN response [9–12]. Based on the importance of IFN in bronchiolitis, many researchers in China have used exogenous IFN as a supplementary treatment for bronchiolitis.

Recombinant human interferon α1B (IFNα1B), as a major antiviral subtype in the Chinese population, has attracted the attention of Chinese researchers [5]. As the lesion site of bronchiolitis is located in the bronchioles, administration by nebulized has the advantages of rapid-onset, fewer adverse reactions, and high compliance [5]. Therefore, aerosol inhalation IFNα1B for bronchiolitis in children has been recommended by the Chinese National Formulary [13] and the Standardized Management Guidelines for Children’s Nebulization Center [14]. At present, the guidelines or expert consensus recommended dosage of nebulized IFNα1b for bronchiolitis in children is 2–4 μg/kg [15, 16]. However, there is still controversy about 2 μg/kg or 4 μg/kg in clinical practice. Some researchers believe that 4 μg/kg of IFNα1b has better efficacy [17, 18]. Others believe that 2 μg/kg and 4 μg/kg of IFNα1b have equivalent efficacy. Considering the safety and economic effects, 2 μg/kg IFNα1b should be promoted [19, 20].

Therefore, this study aims to evaluate the safety and effectiveness of inhaling 2 μg/kg and 4 μg/kg of IFNα1b for bronchiolitis in children, providing evidence-based evidence for clinical practice.

2. Methods

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [21].

2.1. Search Strategy. A total of 7 databases, including PubMed, Embase (Ovid), Cochrane Library (Ovid), Web of Science, CNKI, Wanfang Database, and VIP, were searched. Additionally, we used a manual search strategy to retrieve the relevant articles cited by the retrieved publications. The search time was from their inception dates to March 28, 2022. Medical subject headings combined with free text terms were used to search for eligible articles. Two clinical trial registration sites, including clinicaltrials.gov (https://clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (http://apps.who.int/trialsearch/), were searched for unpublished but eligible articles.

2.2. Inclusion and Exclusion Criteria

2.2.1. The Inclusion Criteria

Population: infants under 2 years old and hospitalized with a diagnosis of bronchiolitis.

Intervention/control: the high dosage group was given 4 μg/kg IFNα1b, and the low dosage group was given 2 μg/kg IFNα1b, and both were treated with nebulization. IFNα1b monotherapathy or in combination with other drugs (e.g., budesonide, albuterol, and hypertonic saline) were included.

Outcomes: the primary outcome is the duration of hospital stays. The secondary outcome is based on the main clinical symptoms described in the “Expert consensus on the diagnosis, treatment and prevention of bronchiolitis (2014),” including cough disappearance time, pulmonary rales disappearance time, wheeze disappearance time, and wheezing sound disappearance time, three depression sign disappearance times, and adverse event rates.

2.2.2. The Exclusion Criteria.

(1) Non-Chinese and Non-English studies

(2) Inaccessible studies

(3) No information about the child

(4) Duplicate publication

2.3. Data Extraction and Risk-of-Bias Assessments. Two researchers selected the included RCTs back-to-back according to the inclusion and exclusion criteria and extracted the data. Cochrane risk of bias assessment tool (ROB 2.0) was used to evaluate the RCT’s quality, and the grading of recommendations assessment, development and evaluation (GRADE) tool was used to evaluate the overall quality of evidence. When two researchers had opposite opinions, disputes were decided by the third researcher. The content of the literature extraction includes basic information about the literature (such as first author and year of publication); basic information about the child (such as age and course of the disease); basic information about intervention (such as course of treatment, frequency of administration, and combined therapy); and research results (data of outcomes).

2.4. Statistical Analysis. RevMan 5.4 statistical software provided by the Cochrane Collaboration Network was performed for meta-analysis. Relative risk (RR) and risk difference (RD) were used for dichotomous data, mean difference (MD) was used for continuous data, and 95% CIs were calculated using the Mantel–Haenszel method and the inverse variance statistical method, respectively. Heterogeneity was tested by χ² test and I² statistics, and the random effect model was performed for meta-
analysis. Subgroup analysis was performed by mono-
therapy or combined therapy. Sensitivity analysis was
performed by eliminating included RCTs one by one in
each outcome.

3. Results

The initial searches included 2129 RCTs. After dedupli-
cation, 927 RCTs were removed. After screening titles and
abstracts, 1013 RCTs were removed. Ultimately, 13 RCTs
remained after screening full texts [17–20, 22–30]
(Figure 1).

3.1. Characteristics of the Included Studies. The basic infor-
mation of the included RCT is presented in Table 1. Among
the included RCTs, 5 RCTs adopted a random number table
for randomization [17, 24, 26–28], 1 RCT adopted the en-
velope method for randomization [18], and the rest did not
describe the method or used the wrong method. 1 RCT
adopted a central randomization system for concealed al-
location [17], and the rest did not mention the method for
concealed allocation. Only 1 RCT risk-of-bias assessment
result was “Some concerns” [17], and the results of the other
RCTs were “High risk” (Figures 2 and 3); GRADE results
were “low” and “very low” (Table 2).

Chen 2018 [18] subdivided the drug administration into
the early high dosage group, the early low dosage group, the
late high dosage group, and the late low dosage group. Since
there were no overlap children between the early and late,
the early and late were independently analyzed. Additionally,
Zhao 2018 [17] subdivided the low dosage group into the qid
and the tid group. Since there were no overlap

3.2. Primary Outcome. The duration of hospital stays: 8
RCTs included 733 children [18–20, 22, 23, 26, 27, 29]. The
duration of hospital stays in the high dosage group was
significantly shorter than that in the low dosage group
(MD = −0.40, 95% CI (−0.73, −0.07), P = 0.02; I² = 68%) (low
quality) (Figure 4).

3.3. Secondary Outcomes. Three depression signs dis-
appearing time: 4 RCTs included 487 children
[17, 18, 22, 28]. Three depressions sign disappearing time in
the high dosage group was significantly shorter than that in
the low dosage group (MD = −0.60, 95% CI (−1.05, −0.14),
P = 0.010; I² = 75%) (low quality) (Figure 5).

Cough disappearance time: 8 RCTs included 797 chil-
dren [17–19, 23, 27–30]. There was no significant difference
in coughing disappearance time between the high dosage
group and the low dosage group (MD = −0.13, 95% CI
(−0.43, 0.16), P = 0.38; I² = 63%) (very low quality) (Figure 6).

Pulmonary rales disappearing time: 4 RCTs included 303
children [18, 22, 25, 29]. There was no significant difference
in pulmonary rales disappearance time between the high
dosage group and the low dosage group (MD = −0.25, 95% CI
(−0.94, 0.43), P = 0.47; I² = 83%) (very low quality) (Figure 7).

Wheeze disappearing time: 3 RCTs included 381 children
[17, 18, 28]. Wheeze disappearing time in the high dosage
Study ID	Age (months)	Course of disease (days)	Number	Interventions	Low dosage group	High dosage group	Combination with other drugs	Low dosage group	Combination with other drugs	Outcome
Huang 2015 [12]	T: 9.23 ± 0.53 C: 9.45 ± 0.62	T: 6.08 ± 1.24 C: 6.10 ± 1.28	80	IFNα1b 4 μg/kg qid, 5–7d	80	Albuterol + budesonide	2 μg/kg qid, 5–7d	IFNα1b	Albuterol + budesonide	(1) (3) (4)
Shang 2014 [10]	—	—	110	IFNα1b 4 μg/kg qid, 5–7d	110	Albuterol + budesonide	2 μg/kg qid, 5–7d	IFNα1b	Albuterol + budesonide	(2) (3) (4)
Li 2019 [11]	T: 11.83 ± 2.53 C: 11.63 ± 2.17	T: 0.90 ± 0.34 C: 0.92 ± 0.35	30	IFNα1b 4 μg/kg qid, 5–7d	30	Albuterol + budesonide	2 μg/kg qid, 5–7d	IFNα1b	Albuterol + budesonide	(2) (3) (4) (5)
Cai 2020 [14]	6.54 ± 3.10	—	53	IFNα1b 4 μg/kg qid, 5–7d	53	Albuterol + budesonide	2 μg/kg qid, 5–7d	IFNα1b	Albuterol + budesonide	(2) (3) (4)
Hu 2014 [22]	—	—	17	IFNα1b 4 μg/kg qid, 5–7d	20	Albuterol + budesonide	2 μg/kg qid, 5–7d	IFNα1b	Albuterol + budesonide	(3) (5)
Dai 2019 [16]	T: 13.52 ± 3.87 C: 13.63 ± 3.84	T: (5.36 ± 0.74) C: (5.11 ± 0.77)	50	IFNα1b 4 μg/kg qid, 7d	50	Albuterol + budesonide	2 μg/kg qid, 7d	IFNα1b	Albuterol + budesonide	(1)
Wang 2018 [13]	T: 10.42 ± 0.56 C: 10.31 ± 0.77	T: (2.46 ± 0.68) C: (2.29 ± 0.77)	41	IFNα1b 4 μg/kg qid, 5–7d	41	—	2 μg/kg qid, 5–7d	IFNα1b	—	(1) (3) (4)
Liao 2017 [20]	T: 9.4 ± 0.5 C: 9.6 ± 0.6	—	47	Budesonide + ipratropium bromide	54	Budesonide + ipratropium bromide	2 μg/kg qid	IFNα1b	Budesonide + ipratropium bromide	(2) (3) (4)
Zhao 2018 [17]	T: 6.69 ± 0.6 C: 7.2 ± 0.84	—	20	Albuterol + budesonide	40	Albuterol + budesonide	2 μg/kg qid	IFNα1b	Albuterol + budesonide	(3) (5)
Xu 2017 [19]	T: 12.21 ± 3.32 C: 12.23 ± 3.45	T: 2.57 ± 0.42 C: 2.51 ± 0.52	40	Budesonide + ambroxol	40	Budesonide + ambroxol	2 μg/kg qid	IFNα1b	Budesonide + ambroxol	(3) (5) (7)
Liu 2018 [15]	T: 17.16 ± 6.12 C: 18 ± 2.76	T: 2.57 ± 0.42 C: 2.51 ± 0.52	31	Budesonide + ambroxol	31	Budesonide + ambroxol	2 μg/kg qid	IFNα1b	Budesonide + ambroxol	(3) (5) (7)
Chao 2016 [21]	—	—	40 (tid 20; qid 20)	Albuterol + terbutaline + normal saline	37	Albuterol + terbutaline + normal saline	2 μg/kg qid	IFNα1b	Albuterol + terbutaline + normal saline	(3) (5) (7)
Chen 2018 [18]	T (early): 6.0 ± 1.8 C (early): 5.5 ± 2.1	—	54 (early 27; late 27)	52 (early 26; late 26)	4 μg/kg qid, 5–7d	32	Albuterol + terbutaline	2 μg/kg qid, 5–7d	Albuterol + terbutaline	(1) (7)

Qid: twice a day; tid: three times a day. ① the duration of hospital stays; ② three depression sign disappearing times; ③ cough disappearance time; ④ pulmonary rales disappearing time; ⑤ wheeze disappearing time; ⑥ wheezing sound disappearing time; ⑦ adverse event rates. T: high dosage group; C: low dosage group.
group was significantly shorter than that in the low dosage group (MD = −0.62, 95%CI (−1.17, −0.06), P = 0.03; I² = 73%) (low quality) (Figure 8).

Wheezing sound disappearing time: 3 RCTs included 179 children. The high dosage group and the low dosage group had no significant difference in wheezing sound disappearance time (MD = 0.01, 95%CI (−0.37, 0.39), P = 0.96; I² = 0%) (low quality) (Figure 9).

Adverse event rates: 13 RCTs included 1251 children [17–20, 22–30]. The high dosage group and the low dosage group had no significant difference in adverse event rates (RR = 1.20, 95%CI (0.61, 2.39), P = 0.59; RD = 0.00, 95%CI...
3.4. Subgroup Analysis

3.4.1. The Duration of Hospital Stays. The results of subgroup analysis showed that when IFNα1b was combined with other drugs, the hospital stay in the high dosage group was significantly shorter than that in the low dosage group (MD = −0.44, 95%CI (−0.84, −0.03), P = 0.04; I² = 71%); when IFNα1b was treated with monotherapy, there was no statistically significant difference in hospital stay between the two groups (MD = −0.21, 95%CI (−0.51, 0.09), P = 0.17) (Figure 12).

3.4.2. Adverse Event Rates. The results of subgroup analysis showed that regardless of IFNα1b combined therapy or monotherapy, there was no statistically significant difference in adverse event rates between the two groups (Figures 13 and 14).
3.5. Sensitivity Analysis. When eliminating Li 2019, the heterogeneity of the duration of hospital stays, cough disappearance time, and wheeze disappearance time decreased significantly. The meta-analysis results of the duration of hospital stays, cough disappearance time, three depression sign disappearance times, wheezing sound disappearance
times, and adverse event rates showed no change after eliminating including RCTs one by one. The meta-analysis results of pulmonary rales disappearing time turned into statistically significant differences (MD = −0.55, 95%CI (−1.06,−0.04)) when eliminating Zhao 2018. The meta-analysis results of wheeze disappearing time turned into no statistically significant difference (MD = −0.38, 95%CI (−0.87, 0.11)) when eliminating Li 2019.

4. Discussions

4.1. Summary.
Bronchiolitis is a lower respiratory tract infection mainly involving small airways (bronchioles). It is a common cause of illness and hospitalization in infants and young children. Severe bronchiolitis may also increase the risk of children developing asthma and continue to adulthood [6, 31, 32]. Therefore, the etiological treatment of bronchiolitis is of great importance.

This study included 13 RCTs with 1719 children to study the safety and effectiveness of different dosages of IFNα1b inhalation for bronchiolitis. The results showed that in the duration of hospital stays, wheeze disappearing time, and three depressions sign disappearing time, the high-dosage group is significantly shorter than the low-dosage group (P < 0.05), but there was no difference between the two groups in cough disappearance time, pulmonary rales disappearing time, wheezing sound disappearing time, and adverse event rates (P > 0.05).
Heterogeneity: Tau² = 0.16; Chi² = 25.02,

Test for overall effect: Z = 0.02 (P = 2.37 (Z = 0.04)

Heterogeneity: Tau² = 0.23; Chi² = 24.16,

Test for overall effect: Z = 0.77 (P = 0.77)

Study or Subgroup	4 ug/kg	2 ug/kg	Risk Difference
Cai 2020 | 2 | 53 | 3 | 53 | 4.4 | -0.02 [-0.10, 0.06]
Chao 2016 | 1 | 37 | 0 | 40 | 5.8 | 0.03 [-0.04, 0.10]
Chen (early) 2018 | 2 | 27 | 1 | 26 | 1.9 | 0.04 [-0.09, 0.16]
Chen (Late) 2018 | 1 | 27 | 0 | 26 | 3.0 | 0.04 [-0.06, 0.13]
Dai 2019 | 3 | 50 | 2 | 50 | 4.0 | 0.02 [-0.07, 0.11]
Hu 2014 | 2 | 17 | 0 | 20 | 1.0 | 0.12 [-0.05, 0.28]
Huang 2015 | 1 | 80 | 1 | 80 | 24.3 | 0.00 [-0.03, 0.03]
Li 2019 | 0 | 30 | 0 | 30 | 7.3 | 0.00 [-0.06, 0.06]
Liao 2017 | 1 | 47 | 1 | 54 | 9.6 | 0.00 [-0.05, 0.06]
Liu 2018 | 2 | 31 | 1 | 31 | 2.5 | 0.03 [-0.07, 0.14]
Shang 2014 | 3 | 110 | 3 | 110 | 15.5 | 0.00 [-0.04, 0.04]
Wang 2018 | 0 | 41 | 5 | 41 | 2.5 | -0.12 [-0.23, -0.01]
Xu 2017 | 0 | 40 | 0 | 40 | 12.8 | 0.00 [-0.05, 0.05]
Zhao 2018 | 0 | 20 | 0 | 40 | 5.4 | 0.00 [-0.07, 0.07]

Total (95% CI) | 610 | 641 | 100.0 | 0.00 [-0.01, 0.02]

Heterogeneity: Tau² = 0.00; Chi² = 8.90,

Test for overall effect: Z = 0.29 (P = 0.77)

Study or Subgroup	4 ug/kg	2 ug/kg	Risk Difference
Cai 2020 | 6.03 | 1.37 | 53 | 6.62 | 1.31 | 53 | 12.5 | -0.59 [-1.10, -0.08]
Chao 2016 | 7.84 | 1.57 | 37 | 7.86 | 1.54 | 40 | 10.0 | -0.02 [-0.72, 0.68]
Chen (early) 2018 | 6.36 | 2.14 | 27 | 6.95 | 1.17 | 26 | 7.4 | -0.59 [-1.51, 0.33]
Chen (Late) 2018 | 6.93 | 2.57 | 27 | 7.21 | 1.21 | 26 | 6.2 | -0.28 [-1.36, 0.80]
Huang 2015 | 6.1 | 1.28 | 80 | 6.08 | 1.24 | 80 | 14.3 | 0.02 [-0.37, 0.41]
Li 2019 | 5.57 | 1.34 | 30 | 7.23 | 1.01 | 30 | 11.2 | -1.66 [-2.26, -1.06]
Liu 2018 | 5.42 | 1.22 | 31 | 5.6 | 1.27 | 31 | 11.0 | -0.18 [-0.80, 0.44]
Xu 2017 | 5.41 | 1.23 | 40 | 5.62 | 1.29 | 40 | 11.9 | -0.21 [-0.76, 0.34]
Subtotal (95% CI) | 325 | 326 | 84.4 | -0.44 [-0.84, -0.03]

Heterogeneity: Tau² = 0.23; Chi² = 24.16, df = 7 (P = 0.001); I² = 71%

Test for overall effect: Z = 2.10 (P = 0.04)

Study or Subgroup	4 ug/kg	2 ug/kg	Risk Difference
Cai 2020 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Chao 2016 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Chen (early) 2018 | 0.12 | 0.12 | 41 | 0.12 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Chen (Late) 2018 | 0.02 | 0.02 | 41 | 0.02 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Huang 2015 | 0.04 | 0.04 | 41 | 0.04 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Li 2019 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Liao 2017 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Liu 2018 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Xu 2017 | 0.00 | 0.00 | 41 | 0.00 | 41 | 15.6 | -0.21 [-0.51, 0.09]
Subtotal (95% CI) | 366 | 367 | 100.0 | -0.40 [-0.73, -0.07]

Heterogeneity: Tau² = 0.16; Chi² = 25.02, df = 8 (P = 0.002); I² = 68%

Test for overall effect: Z = 2.37 (P = 0.02)

Test for subgroup differences: Chi² = 0.76, df = 1 (P = 0.38); I² = 0%

4.2. Comparison with Similar Research. Chen Can [33] conducted a meta-analysis on the effectiveness and safety of IFNα1b nebulized inhalation for bronchiolitis based on 24 RCTs. The study results concluded that IFNα1b nebulized inhalation is safe and effective for bronchiolitis. However, there are still some problems in this study. The first is the high heterogeneity, such as the outcome of the duration of hospital stays (P < 0.01, I² = 98%), and the subgroup analysis of different doses of IFNα1b did not reduce the heterogeneity. In addition, only 3 RCTs compared different dosages of IFNα1b [17, 19, 30], and different dosages of IFNα1b were not further studied.

4.3. Sensitivity Analysis. When eliminating Li 2019 [18], the heterogeneity of each outcome has decreased, and the meta-analysis results of wheeze disappearance time have changed. The possible reason is that the disease course of children in this RCT (both groups are < 24 hours) is significantly shorter than in other RCTs (1–5 days). Another cause may be that the children have a high proportion of fever. The proportion of children with a temperature ≥39°C in the high and low dosage groups is 30% and 43%, respectively. However, the consensus points out that the temperature of children with bronchiolitis generally does not exceed 39°C [3]. When eliminating Zhao (2018), the meta-analysis results
Study or Subgroup

5.1.1 combination therapy

Study	4 ug/kg Events	Total	2 ug/kg Events	Total	Weight (%)	Risk Ratio M-H, Random, 95% CI
Cai 2020	2	53	3	53	15.4	0.67 [0.12, 3.83]
Chao 2016	1	37	0	40	4.7	3.24 [0.14, 77.06]
Chen (early) 2018	2	27	1	26	8.6	1.93 [0.19, 19.98]
Chen (Late) 2018	1	27	0	26	4.7	2.89 [0.12, 67.96]
Dai 2019	3	50	2	50	15.5	1.50 [0.26, 8.60]
Hu 2014	2	17	0	20	5.3	5.83 [0.30, 113.75]
Huang 2014	1	80	1	80	6.2	1.00 [0.06, 15.71]
Li 2019	0	30	0	30	Not estimable	
Liao 2017	1	47	1	54	6.3	1.15 [0.07, 17.87]
Liu 2018	2	31	1	31	8.6	2.00 [0.19, 20.93]
Shang 2018	3	110	3	110	18.9	1.00 [0.21, 4.85]
Xu 2017	0	40	0	40	Not estimable	
Zhao 2018	0	20	0	40	Not estimable	
Subtotal (95% CI)	569	600	94.2	1.41 [0.70, 2.86]		

Total events 18 17

Heterogeneity: Tau² = 0.00; Chi² = 5.90, df = 10 (P = 0.82); I² = 0%

Test for overall effect: Z = 0.53 (P = 0.59)

Test for subgroup differences: Chi² = 3.32, df = 1 (P = 0.07); I² = 69.9%

Study or Subgroup

5.1.2 monotherapy

Study	4 ug/kg Events	Total	2 ug/kg Events	Total	Weight (%)	Risk Ratio M-H, Random, 95% CI
Liu 2018	31	31	1	2.5	0.03 [–0.07, 0.14]	
Shang 2014	110	110	3	15.5	0.00 [–0.04, 0.04]	
Wang 2018	41	41	5	2.5	0.03 [–0.07, 0.07]	
Subtotal (95% CI)	569	600	97.5	0.01 [–0.01, 0.02]		

Total events 18 17

Heterogeneity: Tau² = 0.00; Chi² = 5.90, df = 10 (P = 0.82); I² = 0%

Test for overall effect: Z = 0.53 (P = 0.59)

Test for subgroup differences: Chi² = 3.32, df = 1 (P = 0.07); I² = 69.9%

Figure 13: Subgroup analysis (adverse event rates (RRs)).

Study or Subgroup

5.1.1 combination therapy

Study	4 ug/kg Events	Total	2 ug/kg Events	Total	Weight (%)	Risk Difference M-H, Random, 95% CI
Cai 2020	2	53	3	53	4.4	–0.02 [–0.10, 0.06]
Chao 2016	1	37	0	40	5.8	0.03 [–0.04, 0.10]
Chen (early) 2018	2	27	1	26	1.9	0.04 [–0.09, 0.16]
Chen (Late) 2018	1	27	0	26	3.0	0.04 [–0.06, 0.13]
Dai 2019	3	50	2	50	4.0	0.02 [–0.07, 0.11]
Hu 2014	2	17	0	20	1.0	0.12 [–0.05, 0.29]
Huang 2015	1	80	1	80	24.3	0.00 [–0.03, 0.03]
Li 2019	0	30	0	30	7.3	0.00 [–0.06, 0.06]
Liao 2017	1	47	1	54	9.6	0.00 [–0.05, 0.06]
Liu 2018	2	31	1	31	2.5	0.03 [–0.07, 0.14]
Shang 2014	3	110	3	110	15.5	0.00 [–0.04, 0.04]
Xu 2017	0	40	0	40	12.8	0.00 [–0.05, 0.05]
Zhao 2018	0	20	0	40	5.4	0.00 [–0.07, 0.07]
Subtotal (95% CI)	569	600	97.5	0.01 [–0.01, 0.02]		

Total events 18 12

Heterogeneity: Tau² = 0.00; Chi² = 3.93, df = 12 (P = 0.98); I² = 0%

Test for overall effect: Z = 0.65 (P = 0.52)

Figure 14: Subgroup analysis (adverse event rates (RDs)).
RCTs mentioned the symptom classification of bronchiolitis, appearance time of disease symptoms, and the judgment of hospital stays between the high dosage group and the low dosage group when IFNα1b was treated with monotherapy. In terms of the duration of hospital stays, the conclusions of monotherapy and when combined with other drugs are inconsistent. However, considering that there is only 1 RCT on monotherapy, it cannot be concluded that there is no statistically significant difference in the duration of hospital stays between the high dosage group and the low dosage group when IFNα1b was treated with monotherapy. A large sample, multicenter clinical research is needed to support these results.

4.4. Subgroup Analysis. Subgroup analysis showed no significant difference between the high dosage group and the low dosage group in the duration of hospital stays and adverse event rates when IFNα1b was treated with monotherapy. In terms of the duration of hospital stays, the conclusions of monotherapy and when combined with other drugs are inconsistent. However, considering that there is only 1 RCT on monotherapy, it cannot be concluded that there is no statistically significant difference in the duration of hospital stays between the high dosage group and the low dosage group when IFNα1b was treated with monotherapy. A large sample, multicenter clinical research is needed to support these results.

4.5. Risk-of-Bias Assessments. The areas of lower quality are “Randomization process” and “Randomization process,” 53.85% of the RCTs did not use or used the wrong method for randomization, such as according to the order of admission, which may lead to incomparable baselines between the two groups. In addition, 92.31% of the RCTs did not use blinding or concealed allocation, which may lead to bias when giving interventions or measuring outcome data.

5. Advantages and Limitations

5.1. Advantage. There has been controversy about the different dosages of IFNα1b inhaling for bronchiolitis in clinical practice. However, there is not any evidence-based medical evidence. This study uses systematic reviews and meta-analysis methods to provide a reference for clinical practice.

5.2. Limitation. There are some limitations to this study. First, the quality of the included RCTs is low. Only 1 RCT has a result of “Some concerns,” and the others are “High risk.” Second, most of the outcomes of this study adopt the division of hospital stays, the conclusions of monotherapy and when combined with other drugs are inconsistent. However, considering that there is only 1 RCT on monotherapy, it cannot be concluded that there is no statistically significant difference in the duration of hospital stays between the high dosage group and the low dosage group when IFNα1b was treated with monotherapy. A large sample, multicenter clinical research is needed to support these results.

6. Conclusions

Compared with the low dosage IFNα1b, the high dosage IFNα1b reduces the duration of hospital stays, the disappearance time of three depression signs, and the disappearance time of wheeze in the treatment of bronchiolitis in children. Limited by the quality of the included RCTs, the above conclusions still need to be supported by large samples and high-quality studies.

Data Availability

The RevMan data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author reports no conflicts of interest in this work.

Acknowledgments

This study was supported by the Sichuan Province Science and Technology Plan Project (No.2020YFS0035) and Sub-project of Science and Technology Plan Project of Sichuan Province (20ZDYF3101).

Supplementary Materials

Search strategies for all databases can be seen in the supplementary material. (Supplementary Materials)

References

[1] Merck Clinic Manual[homepage on the Internet]. Bronchiolitis. 2018-08-01; https://www.msdmanuals.cn/professional/pediatrics/respiratory-disorders-in-young-children/bronchiolitis.
[2] T. A. Florin, A. C. Plint, and J. J. Zorc, “Viral bronchiolitis,” The Lancet, vol. 389, no. 10065, pp. 211–224, 2017.
[3] E. Liu, H. Chen, and Y. Qian, “Expert consensus on the diagnosis, treatment and prevention of bronchiolitis (2014),” Chin J Pediatr, vol. 53, no. 03, pp. 168–171, 2015.
[4] J. Meyburg and M. Ries, “Decision-making in acute viral bronchiolitis: a universal guideline and a publication gap,” PLoS One, vol. 15, no. 8, p. e0237801, 2020.
[5] L. Chen, M. Shi, and Q. Deng, “α1A multi-center randomized prospective study on the treatment of infant bronchiolitis with interferon α1b nebulization,” PLoS One, vol. 15, no. 2, p. e0228391, 2020.
[6] H. C. Meissner, “Viral bronchiolitis in children,” New England Journal of Medicine, vol. 374, no. 1, pp. 62–72, 2016.
[7] D. A. Paggi and F. P. Polack, “Toward personalized medicine in bronchiolitis,” American Journal of Respiratory and Critical Care Medicine, vol. 199, no. 12, pp. 1456–1458, 2019.
[8] L. Rønnblom, “The importance of the type I interferon system in autoimmunity,” Clinical & Experimental Rheumatology, vol. 34, no. 4 Suppl 98, pp. 21–26, 2016.
[9] F. Savino, V. Dapr`a, A. Savino, and C. P. I. M. Calvi, “Assessment of interferon gamma and indoleamine 2,3-dioxygenase 1 analysis during respiratory syncytial virus infection in infants in Italy: an observational case-control study,” BMJ Open, vol. 12, no. 2, p. e053323, 2022.
[10] R. S. Thwaites, M. Coates, K. Ito, and M. C. F. T. P. L. G. T. T. S. P. Ghazaly, “Reduced nasal viral load and IFN responses in infants with respiratory syncytial virus bronchiolitis and respiratory failure,” American Journal of Respiratory and Critical Care Medicine, vol. 198, no. 8, pp. 1074–1084, 2018.
[11] J. Ban, N.-R. Lee, N.-J. Lee, J. K. Lee, F.-S. Quan, and K.-S. Imn, “Human respiratory syncytial virus NS 1 targets TRIM25 to
suppress RIG-I ubiquitination and subsequent RIG-I-mediated antiviral signaling." *Viruses*, vol. 10, no. 12, p. 716, 2018.

[12] T. Van Royen, I. Rossey, K. Sedeyn, B. Schepens, and X. Saelens, "How RSV proteins join forces to overcome the host innate immune response," *Viruses*, vol. 14, no. 2, p. 419, 2022.

[13] Chinese National Formulary, *Chinese National Formulary: Chemicals and Biological Products Volume*, People’s Military Medical Publishing House, Beijing, China, 2013.

[14] K. Shen, J. Hong, and G. Yu, *Guidelines for Standardized Management of Children's Nebulization Center*, People’s Medical Publishing House, Beijing, China, 2014.

[15] K. Shen, Y. Shang, and G. Zhang, "Expert consensus on the rational application of interferon alpha in pediatrics," *Chinese Journal of Applied Clinical Pediatrics*, vol. 33, no. 17, pp. 1301–1308, 2018.

[16] K. Shen, G. Zhang, and Y. Shang, "Expert consensus on the clinical application of recombinant human interferon-α1b in pediatrics," *Chinese Journal of Applied Clinical Pediatrics*, vol. 30, no. 16, pp. 1214–1219, 2015.

[17] Y. Shang, Y. Huang, and E. Liu, "A multicenter clinical study on the treatment for children’s acute bronchiolitis by nebulized recombinant human interferon α1b," *Chinese Journal of Practical Pediatrics*, vol. 29, no. 11, pp. 840–844, 2014.

[18] X. Li, Z. Ye, and Y. Hu, "The effect of aerosol inhalation of recombinant human interferon α1b on the immune function of children with bronchiolitis," *Maternal and Child Health Care of China January*, vol. 34, no. 02, pp. 345–348, 2019.

[19] Y. Huang, "Effect and safety of interferon α1b treatment of bronchiolitis in children," *Journal of Pediatric Pharmacy*, vol. 21, no. 08, pp. 25–27, 2015.

[20] W. Yinan, "Observation on the effect of different doses of recombinant human interferon α1b nebulized inhalation on bronchiolitis," *Medical Frontier*, vol. 8, no. 31, pp. 98–99, 2018.

[21] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," *BMJ*, vol. 339, no. jul211, p. b2535, 2009.

[22] L. Cai, "Clinical comparison of different doses of recombinant human interferon-1B aerosolized treatment of bronchiolitis in children," *Contemporary Medical Symposium*, vol. 18, no. 13, pp. 125–127, 2020.

[23] Y. Liu, "Effect of nebulized inhalation of different doses of recombinant human interferon α1b on acute bronchiolitis in children," *Contemporary Clinical Medicine Journal*, vol. 32, no. 01, pp. 62–63, 2019.

[24] R. Dai, "Comparison of different doses of recombinant human interferon α1b in the treatment of acute bronchiolitis in children," *Journal of North Pharmacy*, vol. 16, no. 05, p. 179+178, 2019.

[25] M. Zhao, H. Jin, and W. Lin, "Observation on the curative effect of nebulized inhalation of different doses of interferon-α1b in the treatment of bronchiolitis," *Home medicine*, vol. 6, pp. 150–151, 2018.

[26] C. Chen, Li Jian, Yu Zhang, X. Chen, Y. Fan, and S. Wang, "Effects of early inhalation of recombinant human interferon α1b on children’s bronchiolitis," *Journal of Xuzhou Medical University*, vol. 38, no. 5, pp. 337–343, 2018.

[27] J. Xu, X. Zhou, and Q. Deng, "Comparison of different doses of recombinant human interferon α1b in treatment of acute bronchiolitis in children," *Hainan Medical Journal*, vol. 28, no. 13, pp. 2116–2118, 2017.

[28] L. Xing, H. Liu, Q. Zheng, Y. Zhou, J. Zhang, and W. Chen, "Study on nebulization of interferon and ribavirin in the treatment of bronchiolitis," *Strait Journal of Preventive Medicine*, vol. 23, no. 03, pp. 97–99, 2017.

[29] C. Zhanhu, H. Yan, L. Qin, H. Yan, and L. Qin, "Clinical analysis of nebulized inhalation of different doses of recombinant human interferon α1 in the treatment for Bronchiolitis in Infants," *Medical Frontier*, vol. 6, pp. 121–122, 2016.

[30] T. Hu, J. Guo, and J. Yu, "Study on the clinical efficacy of different doses of recombinant human interferon α1b nebulized inhalation in the treatment of bronchiolitis," *For all Health*, vol. 8, no. 01, pp. 227–228, 2014.

[31] N. Yang and S. Yunxiao, "The relationship between bronchiolitis and asthma," *Chin J Pediatr*, vol. 34, no. 09, pp. 737–742, 2019.

[32] G. Wang, D. Han, Z. Jiang, M. Li, S. Yang, and L. Liu, "Association between early bronchiolitis and the development of childhood asthma: a meta-analysis," *BMJ Open*, vol. 11, no. 5, p. e043956, 2021.

[33] C. Chen, M. Liping, Z. Lei, S. Sijing, and Z. Suodi, "Efficacy and safety of recombinant human interferon α1b injection inhaling as adjuvant therapy for bronchiolitis in infants: a systematic review and meta-analysis," *Evaluation and analysis of drug-use in hospitals of China*, vol. 16, no. 06, pp. 806–810, 2016.