Process positive operator valued measure: A mathematical framework for the description of process tomography experiments

Mário Ziman1,2

1Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
2Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

In this paper we shall introduce the mathematical framework for the description of measurements of quantum processes. Using this framework the process estimation problems can be treated in the similar way as the state estimation problems, only replacing the concept of positive operator valued measure (POVM) by the concept of process POVM (PPPOVM). In particular, we will show that any measurement of qudit channels can be described by a collection of effects (positive operators) defined on two-qudit system. However, the effects forming a PPOVM are not normalized in the usual sense. We will demonstrate the usage of this formalism in discrimination problems by showing that perfect channel discrimination is equivalent to a specific unambiguous state discrimination.

I. INTRODUCTION

Quantum and classical information processing are both based on quantum properties of matter and light. Therefore, a big experimental effort is paid in order to increase our abilities to control and manipulate individual quantum systems. Depending on the particular problem the goal of quantum experiments is to design a quantum device either able to prepare a quantum state, or to perform a measurement, or to implement a quantum process.

In quantum theory the states and the measurements are intimately related via the Born’s duality relation predicting the quantum probabilities \[1, 2\]. In particular, for a system prepared in a state \[\rho \in \mathcal{S}(\mathcal{H})\] = \{\rho \geq 0, \text{Tr}\rho = 1\} the probability of measuring the outcome associated with an effect \[F (0 \leq F \leq I)\] is defined as \[p(F|\rho) = \text{Tr}\rho F\]. Consequently, the measurement devices giving rise to outcomes \[x_j\] are described by collections of quantum effects \[F_j\] forming the so-called positive operator valued measure (POVM), i.e. \[\sum_j F_j = I\]. Most of the problems (such as state estimation \[\text{[5, 6, 7]}\], state discrimination \[\text{[8, 9]}\], state comparison \[\text{[10]}\], etc.) related to the identification of quantum states can be mathematically formulated in the language of POVMs.

However, the preparation of states is not the only interesting experimental task. For example, the implementation of specific quantum processes is one of the main goal of the area of quantum information processing \[\text{[3]}\] aiming to run useful quantum algorithms. The identification problems for states (preparators) can be naturally extended to processes. But, a fundamental concept playing the role of POVM is missing. The main aim of this paper is to introduce a resembling mathematical framework for the description of all possible experiments measuring the quantum channels. This framework will simplify the investigation of the process identification problems.

II. MEASUREMENTS OF CHANNEL PARAMETERS

Consider an unknown quantum channel \[\mathcal{E}\] (i.e. a completely positive tracepreserving linear map \[\mathcal{E}\]) acting on a \[d\]-dimensional quantum system (qudit). The most general process/channel measurement \[\mathcal{M}\] consists of the following three steps:

1. Preparation of a (test) state \[\varrho_j \in \mathcal{S}(\mathcal{H}_{\text{anc}} \otimes \mathcal{H})\] of \[D_j \times d\]-dimensional system, thus, initially the testing system is composed of a qudit and an ancillary system of dimension \[D_j\]. The ancillary system can be of different size for a different test state \[\varrho_j\].

2. Application of an unknown process \[\mathcal{E}\] on the qudit and some known channel \[\mathcal{T}_{\text{anc}}\] on the ancillary quantum system.

3. A measurement \[\mathcal{M}_j\] (given as a collection of positive operators, \[F_{jk} \geq 0, \text{summing up to identity \[\sum_k F_{jk} = I\]}\] for all \[j\]) of the output state \[\varrho'_j = \langle \mathcal{T}_{\text{anc}} \otimes \mathcal{E}\rangle(\varrho_j)\] results in an outcome \[k\] with a probability \[p_{jk}\]

It follows that a general experimental measuring a process \[\mathcal{E}\] is associated with a collection of triples \[\mathcal{M}_{jk} = \langle \varrho_j, \mathcal{T}_{\text{anc}}, F_{jk}\rangle\] occurring with probabilities \[p_{jk}\] defined above. However, a channel \[\mathcal{T}_{\text{anc}}\] can be considered as being a part of a preparation, or a measurement process, i.e. the triples \[\langle \varrho_j, \mathcal{T}_{\text{anc}}, F_{jk}\rangle, \langle \mathcal{T}_{\text{anc}} \otimes \mathcal{I}\rangle(\varrho_j), \mathcal{I}, F_{jk}\], and \[\langle \varrho_j, \mathcal{T}_{\text{anc}} \otimes \mathcal{I}\rangle(\mathcal{F}_{jk})\], (where \[\mathcal{I}\] is the identity quantum channel, and \[\mathcal{T}_{\text{anc}}\] is defined via the duality relation \[\text{Tr}\{\mathcal{B}\mathcal{T}_{\text{anc}}[\mathcal{A}]\} = \text{Tr}\{\mathcal{T}_{\text{anc}}[\mathcal{B}]\mathcal{A}\}\]) holding for all operators \[\mathcal{A}, \mathcal{B}\] define the same probabilities \[p_{jk}\]. Without the loss of generality we may assume that the ancilla system evolves trivially, \[\mathcal{T}_{\text{anc}} = \mathcal{I}\] for all \[j\], hence, the triples can be replaced by couples \[\mathcal{M}_{jk} = \langle \varrho_j, F_{jk}\rangle\] occurring with probabilities \[p_{jk}\]

The following lemma is a version of the so-called Choi-Jamiolkowski isomorphism \[\text{[11, 12]}\] relating qudit linear maps with linear operators on \[d \times d\] system.
Lemma 1. For arbitrary state of $D \times d$ system ($\varrho \in S(\mathcal{H}_D \otimes \mathcal{H}_d)$) there exists a completely positive linear map $\mathcal{R}_\varrho : \mathcal{B}(\mathcal{H}_d) \rightarrow \mathcal{B}(\mathcal{H}_D)$ such that $(\mathcal{R}_\varrho \otimes I)[\Psi_+] = \varrho$, where $\Psi_+ = |\Psi_+\rangle\langle\Psi_+|$ and $|\Psi_+\rangle = \sum_{j=1}^{d}|j\rangle \otimes |j\rangle$ is an unnormalized maximally entangled quantum state on $d \times d$ system.

Proof. Consider a pure state $\varrho = |\phi\rangle\langle\phi| = \Phi$ of a $d \times D$-dimensional system and $[\Phi] = \sum_{j=1}^{d} |j\rangle \otimes I_d |\phi_j\rangle \otimes |\phi_j\rangle$. Define an operator $A_\Phi : \mathcal{H}_d \rightarrow \mathcal{H}_D$ by $A_\Phi = \sum_{j=1}^{d} \Phi_\omega_\Phi |j\rangle \otimes |\phi_j\rangle$. We can write $\Phi = (R_\Phi \otimes I)[\Psi_+] = (A_\Phi \otimes I)\Psi_+ + (A_\Phi \otimes I)\eta$, where Φ is a unique linear completely positive map, because the expression of $|\Phi\rangle$ in the basis $\{\alpha\} \otimes \{\eta\}$ is unique. Generalization to an arbitrary mixed state is straightforward. For $\varrho = \sum_{j=1}^{d} \lambda_j |\phi_j\rangle \langle\phi_j|$ we can define a map $\mathcal{R}_\varrho = \mathcal{R}_\sum_{j=1}^{d} \lambda_j |\phi_j\rangle \langle\phi_j|$, that maps the maximally entangled state $\Psi_+ \rightarrow (R_\varrho \otimes I)[\Psi_+] = \sum_{j=1}^{d} \lambda_j (R_\Phi \otimes I)[\Psi_+] = \sum_{j=1}^{d} \lambda_j \Phi_\omega_\Phi$.

Using this lemma and the definition of the dual map R_ω^* the probability for a couple (ϱ, F) of the test state ϱ and a measurement resulting in an outcome in an associated with an effect F can be expressed as follows:

$$p(E) = \text{Tr}\{(I_\gamma \otimes X)[\varrho] F\} = \text{Tr}\{(R_\varrho \otimes I)[\Psi_+] (R_\omega^* \otimes I)[F]\} = \text{Tr}\{(I_\gamma \otimes X)[\Psi_+](R_\omega^* \otimes I)[M]\}.$$

Based on this calculation we see that an operator $M = (R_\omega^* \otimes I)[F]$ completely describes the considered process measurement outcome associated with (ϱ, F). Since both the operations R_ϱ, R_ω^* are completely positive, but not necessarily trace-preserving, it follows that an operator $M = (R_\omega^* \otimes I)[F]$ is positive and $M \leq I_{d \times d}$, that is, M is an effect defined on a $d \times d$-dimensional system that we shall call a process/channel effect.

The most general process/channel measurement is defined as a collection of process effects $M_{jk} = p_j (R_{\omega_{jk}} \otimes I)[F_{jk}]$ associated with couples $<p_j \| \varrho_j \| F_{jk}>$ with $\sum_{j=1}^{d} F_{jk} = I_{D \times d}$ for each testing state ϱ_j chosen with a prior distribution p_j.

Let us assume that the process is probed only by a single test state ϱ, i.e. $M_{jk} \leftrightarrow <\varrho, F_{jk}>$. In such case $\sum_{k} M_{k} = (R_\omega^* \otimes I)[\sum_{k} F_{k}] = (R_\omega^* \otimes I)[I_{D \times d}]$. Since $R_\varrho[X] = \sum_{j} \lambda_j A_{\Phi_j} X A_{\Phi_j}$ the action of the dual map can be expressed as $R_{\omega_{jk}}^*[X] = \sum_{j} \lambda_j A_{\Phi_j} X A_{\Phi_j}$. Consequently, we get that the following normalization condition holds

$$\sum_{k} M_{k} = \sum_{j} \lambda_j A_{\Phi_j} A_{\Phi_j} \otimes I_d = (\text{Tr}_{\omega} \varrho)^T \otimes I_d.$$

Thus, the process effects M_k form a positive operator valued measure not necessarily normalized in the usual sense, because $\sum_{k} M_k \leq I_{d \times d}$.

For a general process measurement (described by process effects $M_{jk} = p_j (R_{\omega_{jk}} \otimes I)[F_{jk}]$) it follows that $\sum_{j=1}^{d} M_{jk} = \sum_{j=1}^{d} (p_j \text{Tr}_{\omega} (\varrho_j))^T \otimes I_d = (\text{Tr}_{\omega} (\varrho))^T \otimes I_d$, where the operator $\varrho = \sum_j p_j \varrho_j$ is the average test state.

We have shown that each qudit channel measurement can be associated with a process positive operator valued measure (PPOVM), i.e. by a collection of effects M_{α} of $d \times d$-dimensional system summing up to $\varrho^T \otimes I_d$, where ϱ is a qudit quantum state. In the following we will prove that the converse of this statement also holds.

Theorem 1. Each PPOVM can be implemented as a process measurement.

Proof. Consider a PPOVM $\{M_{\alpha}\}$ with $\sum_{\alpha} M_{\alpha} = \varrho^T \otimes I_d$. Our aim is to show that this PPOVM really corresponds to a process measurement. It was argued before that we can restrict ourselves to a process measurement using only a single test state ϱ such that $\text{Tr}_{\omega} (\varrho) = \varrho$. Moreover, assuming that the test state is a pure state, the question is whether $M_{\alpha} = (A_{\omega}^\dagger \otimes I_d) F_{\alpha} (A_{\omega} \otimes I_d)$ implies that $F_{\alpha} = (|A_{\alpha}^\dagger\rangle \langle A_{\alpha}\| \otimes I_d) M_{\alpha} (A_{\alpha}^\dagger \otimes I_d)$,

$$F_{\alpha} = (|A_{\alpha}^\dagger\rangle \langle A_{\alpha}\| \otimes I_d) M_{\alpha} (A_{\alpha}^\dagger \otimes I_d),$$

where, hence, the operators $A_{\omega}^\dagger, A_{\alpha}^\dagger$ are invertible. Let $r = \text{rank}_{\omega} \leq d$ and assume that ϱ is a pure state of a qudit and an ancilla of the dimension r, hence, $R_{\omega}^2 [X] = A_{\omega}^\dagger X A_{\omega}$ and $A_{\alpha}^\dagger A_{\omega} = (\text{Tr}_{\omega} (\varrho))^T = \varrho^T$. The support of each operator \mathcal{M}_{α} is a subset of the support of $\varrho^T \otimes I$, i.e. both are defined on $(r \times d)$-dimensional system. Since $\text{rank}(A_{\omega}^\dagger A_{\alpha}) = \text{rank}(A_{\alpha}^\dagger A_{\omega}) = \text{rank}_{\omega} = \text{rank} A_{\omega}$, it follows that operators $A_{\omega}, A_{\alpha}^\dagger, \varrho$ have the same rank (equal to r). Because the operators $A_{\omega}, A_{\alpha}^\dagger$ act on r-dimensional ancilla system (they have full rank) it follows they are invertible. Consequently, the above equation defines positive operators F_{α} forming a POVM, because $\sum_{\alpha} F_{\alpha} = (|A_{\alpha}^\dagger\rangle \langle A_{\alpha}\| \otimes I_d) = I_r \otimes I_d$.

To summarize, we have shown that arbitrary collection of process effects M_{α} forming PPOVMs can be implemented by using a pure state $|\varrho\rangle \in \mathcal{H}_\omega \otimes \mathcal{H}_d$ such
that $\text{Tr}_{\text{anc}} E = \rho$ and performing a POVM given by positive operators $F_\alpha = (A_\alpha^{-1} \otimes I_d) M_\alpha (A_\alpha^{-1} \otimes I_d)$ with $A_\alpha = \sqrt{\rho_\alpha}$. This result allows us to abstract particular experimental realizations of process measurements and employ the framework of PPOVM directly. In this framework the qudit quantum channels are represented by positive two-qudit operators $\omega_x = I \otimes \epsilon [\Psi_+]$ satisfying $\text{Tr}_x \omega_x = d$ and $\text{Tr}_2 \omega_x = I$. Let us denote the set of all processes (process state space) by $S_{\text{proc}} = \{ \omega \in B_+(\mathcal{H} \otimes \mathcal{H}), \text{Tr}_x \omega = I, \text{Tr}_2 \omega = d \}$. This set is convex and compact subset of the set of positive operators of trace d denoted as $B_+(\mathcal{H} \otimes \mathcal{H})$, which is isomorphic to $B_{d+1}(\mathcal{H} \otimes \mathcal{H}) = S(\mathcal{H} \otimes \mathcal{H})$ (set of density matrices).

Let us illustrate the process POVM in two usually analyzed process tomography experiments:

1. MaximalentLY entangled probe. Consider an unknown qudit channel is probed by a (normalized) maximally entangled state $|\psi_+\rangle = \frac{1}{\sqrt{d}} \sum_j |j\rangle \otimes |j\rangle$. In this case the mapping $R_{\psi_+} = \frac{1}{d} I$, i.e. $|\psi_+\rangle\langle\psi_+| = \frac{1}{d} I$. That is, $M = (R_{\psi_+} \otimes I)[F] = \frac{1}{d^2} F$, where F is a two-qudit effect. Considering a POVM consisting of effects $F_1,...,F_n$ the corresponding PPOVM is composed of positive operators $M_j = \frac{1}{d^2} F_j$.

2. Ancilla-free test states. In this case the qudit test state ρ can be understood as being a factorized state of an ancilla and a qudit, i.e. $\Omega = \xi \otimes \rho$. The POVM effects have the form $I_\text{anc} \otimes F_j$ and the corresponding process effects are $M_j = (R_{\Omega}^* \otimes I)[I_{\text{anc}} \otimes F_j] = \rho^{\otimes} \otimes F_j$. It follows that if we want to perform an equivalent (defining the same PPOVM) process measurement with the maximally entangled probe, the state measurement entangled probe $X_j = d \rho^{\otimes} \otimes F_j$. However, let us note that these operators are not effects.

III. INFORMATIONALLY COMPLETE PROCESS TOMOGRAPHY

A process measurement $\{M_\alpha\}$ is called informationally complete if for each quantum process E the probability distribution $p_\nu(E) = \text{Tr}[\omega_x M_\alpha]$ is different. Thus the process can be uniquely identified from the observed probability distribution. This happens if and only if a linear span of operators M_α contains the whole set of process states S_{proc}. Consider a qudit channel probed by a maximally entangled state $|\psi_+\rangle = \frac{1}{\sqrt{d}} (|00\rangle + |11\rangle)$. Performing the measurements of sharp observables $\sigma_x \otimes \sigma_x$ (each with the probability $1/9$), where $\mu, \nu = x, y, z$. That is, the POVM is composed of effects $F_{a,b} = \frac{1}{9} |a\rangle \langle a| \otimes |b\rangle \langle b| = 2M_{a,b}$, where $a, b = \pm x, \pm y, \pm z$. The states $|\pm x\rangle, |\pm y\rangle, |\pm z\rangle$ are the eigenvectors of $\sigma_x, \sigma_y, \sigma_z$ associated with eigenvalues ± 1, respectively. The set of operators $M_{a,b}$ is overcomplete and its span contains the whole set of process states, i.e. it is an informationally complete PPOVM. Calculating the sum we find that $\sum_{a,b} M_{a,b} = \frac{1}{2} I_2 \otimes I_2$.

Alternatively, one of the simplest experimental implementations of an informationally complete process measurement consists of the preparation of six test states $|\pm x\rangle, |\pm y\rangle, |\pm z\rangle$ distributed with the same probability $1/6$. The measurement of the output states is the complete qubit state tomography measuring all three Pauli operators $\sigma_x, \sigma_y, \sigma_z$, hence, it consists of effects $F_{a,b} = \frac{1}{2}(|\pm a\rangle \langle \pm a| (a = x, y, z)$. Consequently, the whole setup is described by PPOVM composed of operators $M_{\nu,\mu} = \frac{1}{12} |\nu\rangle \langle \nu| \otimes |\mu\rangle \langle \mu|$ with $\sum_{\nu,\mu} M_{\nu,\mu} = \frac{1}{4} I_2 \otimes I_2$, where $\nu, \mu = \pm x, \pm y, \pm z$. Let us note that PPOVMs $\{M_{\nu,\mu}\}$ and $\{M_{a,b}\}$ (described in the previous paragraph) coincide, because $(|\pm x\rangle \langle \pm x|)^T = |\pm x\rangle \langle \pm x|$, $(|\pm y\rangle \langle \pm y|)^T = |\pm y\rangle \langle \pm y|$, $(|\pm z\rangle \langle \pm z|)^T = |\pm z\rangle \langle \pm z|$, where the transposition is performed with respect to basis $|\pm z\rangle$.

IV. PERFECT DISCRIMINATION

Two processes E_1, E_2 are perfectly distinguishable if there exists an experimental setup such that in its single run the outcomes uniquely identify the process. It corresponds to an existence of a two-outcome PPOVM, $M_1 + M_2 = g^T \otimes I$, such that $p_1(E_1)p_1(E_2) = p_2(E_1)p_2(E_2) = 0$. That is, the process effect M_1 is associated with the conclusion that the process is E_1, and the process effect M_2 corresponds to the conclusion E_2. The conditions $\text{Tr}_1 M_1 \omega_{E_2} = 0$ and $\text{Tr}_1 M_2 \omega_{E_1} = 0$ imply that $\text{supp}[M_1] \perp \text{supp}[\omega_{E_2}]$ and $\text{supp}[M_2] \perp \text{supp}[\omega_{E_1}]$, where ω_{E_1} and ω_{E_2} are the corresponding process states. Without any doubts the process and state discrimination tasks are closely related and it seems they are almost the same in the sense that process discrimination problems are reducible to state discrimination problems. It is so indeed, but there is still one important difference: PPOVMs are not normalized to identity. As the consequence of this fact we cannot make a conclusion that orthogonality of supports of ω_{E_1} and ω_{E_2} is the necessary condition for perfect discrimination of processes E_1 and E_2. In fact, there are process states with non-orthogonal supports that can be perfectly discriminated by means of PPOVM.

In particular, consider one of the channels being the identity map ($E_1 = I$) and second one transforming the whole state space into a fixed pure state $|0\rangle$ ($E_2 = A_0$). The corresponding operators $\omega_I = \Psi_+ + \omega_0 = I \otimes |0\rangle \langle 0|$, have non-orthogonal supports, i.e. if considered as states they are not perfectly distinguishable. However, there exists a very simple experimental procedure of channel discrimination using the test state $|1\rangle$. Probing the identity the output state is $|1\rangle$, whereas probing the contraction A_0 the output state is $|0\rangle$, i.e. which is orthogonal to $|1\rangle$. A simple measurement (described by POVM elements $|0\rangle \langle 0|, I - |0\rangle \langle 0|$) tells us whether the channel was I, or A_0. The corresponding PPOVM consists of process
effects $M_T = |1\rangle\langle 1| \otimes (I - |0\rangle\langle 0|)$ and $M_0 = |1\rangle\langle 1| \otimes 0$, $M_T + M_0 = |1\rangle\langle 1| \otimes I$. It is straightforward to verify that $\text{Tr} M_{T+M_0} = \text{Tr} M_0 = 1$.

The characterization of all channels that can be perfectly discriminated is beyond the scope of this paper. Instead we will provide qualitative arguments why the orthogonality of supports is only sufficient, but not necessary for perfect distinguishability of processes. In a sense any POVM can be understood as a normalized POVM consisting of two qudits states of trace 1.

The no-error condition $\langle \omega_U | M_I | \omega_U \rangle = 0$ and the definition of $M_I = (A^\dagger_\Omega \otimes I) E_I (A_\Omega \otimes I)$ result in identity

$$0 = |\langle \Psi_+ | A_\Omega^\dagger A_\Omega \otimes U | \Psi_+ \rangle|^2 = |\langle \Omega | I \otimes U | \Omega \rangle|^2,$$

hence, the existence of perfect discrimination is guaranteed if and only if there exists a pure state Ω such that $\langle \Omega | I \otimes U | \Omega \rangle$ vanishes. As it was argued in [13, 14, 15] this is possible if and only if zero belongs to a convex hull of eigenvalues of U distributed on a unit circle in the complex plane. For a general pair of unitaries U, V the problem is reduced to the analysis of eigenvalues of UV^\dagger.

In the qubit case each unitary has two eigenvalues, thus the perfect discrimination of a pair I, U requires that $U = e^{i\pi}|\varphi\rangle\langle \varphi | + e^{i(\pi+\tau)}|\varphi_\perp\rangle\langle \varphi_\perp |$, i.e. $\text{Tr} U = 0$. Consequently, qubit unitary channels U, V can be perfectly discriminated if and only if they are orthogonal. However, such statement no longer holds for qudits and as it was shown in [16] for an arbitrary pair of (qudit) unitary processes U, V there exists a finite n such that $U^\otimes n$ and $V^\otimes n$ can be perfectly discriminated, i.e. the distinguishability is not equivalent to the orthogonality. Let us note that this qubit example also shows that the necessary condition $|\text{Tr} U V^\dagger| \leq 1$ is not sufficient.

V. CONCLUSIONS

The goal of this paper has been to introduce a mathematical framework for the description of measurements on quantum processes. This idea led us to the definition of the so-called process POVM (PPOVM) defined as a collection of effects M_1, \ldots, M_n, such that $\sum_j M_j = I_q \otimes I_1$, where q is an arbitrary single qubit state and T denotes its transposition. In this framework the channels are associated with positive operators of $d \times d$ system with trace equal to d. An arbitrary process measurement can be described by PPOVMs and we have shown that also each PPOVM can be implemented experimentally although the experimental realization is not unique. This ambiguity is one of important open problems left for further investigation.

The framework of PPOVMs provides us with a powerful tool for different process estimation problems [14, 15, 16, 17, 18], mostly in answering the optimality questions. Moreover, the concepts originally developed for POVMs can be directly translated and applied for PPOVMs as it was demonstrated in the case of informational completeness of PPOVMs. Using the PPOVM framework we have argued that perfect discrimination problems for quantum channels are equivalent to very
specific unambiguous discrimination problems of quantum states. As it is discussed in [19] the PPOVM framework is a special instance of a more general framework describing operations on quantum channels and observables.

Acknowledgment. This work was supported by the EU integrated project QAP 2004- IST- FETPI-15848 and by Slovak grant agency APVV RPEU-0014-06.

[1] A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993)
[2] P. Busch, et al., The Quantum Theory of Measurement (Springer Verlag, 1996)
[3] E. B. Davies, Quantum Theory of Open Systems (Academic Press, New York, 1976)
[4] M. A. Nielsen, et al., Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000)
[5] Quantum State Estimation, edited by M. Paris et al., (Springer, 2004)
[6] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North Holland, 1982)
[7] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
[8] I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
[9] A. Chefles, Contemporary Physics (2000)
[10] S. M. Barnett, et al., Phys. Lett. A 307, 189 (2003).
[11] M. Choi, Lin. Algebra and Its Appl., 285-290 (1975)
[12] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972)
[13] A. Acin, Phys. Rev. Lett 87, 177901 (2001)
[14] G. M. D’Ariano, et al., Phys.Rev.Lett. 87, 270404 (2001)
[15] R. Duan, et al. Phys.Rev.Lett. 98, 100503 (2007)
[16] G. Wang, et al., Phys.Rev.A 73, 042301 (2006)
[17] G. M. D’Ariano, et al., Phys.Rev.A 72, 052302 (2005)
[18] L. Li, et al., arXiv:0705.2549
[19] G. Chiribella, M. G. D’Ariano and P. Perinotti, arXiv:0803.0180