LC-MS/MS profiling, antibiofilm, antimicrobial and bacterial growth kinetic studies of *Pluchea dioscoridis* extracts

MAHA A.M. EL-SHAZLY¹, AHMED A. HAMED²*, HODA A. KABARY³ and MOSAD A. GHAREEB¹*

¹ Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
² Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
³ Department Agricultural Microbiology, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt

Received: July 12, 2021 • Accepted: August 17, 2021

ABSTRACT

The therapeutical applications of ornamental plants have been categorized to be of a great effectiveness in multiple industries from ancient times until present days. *Pluchea dioscoridis* is widely known Egyptian wooden plant that has been extensively applied for different medicinal purposes. In this study, LC-ESI-MS/MS analysis of the potent antimicrobial ethyl acetate and *n*-butanol extracts of *P. dioscoridis* leaves led to identification of 28 and 21 compounds, respectively. The identified compounds were categorized as phenolic acids, phenolic acids derivatives, organic acids, flavonoids (aglycones and glycosides), secoiridoids, coumarin derivatives, and gallotannins derivatives. Among them, caffeic acid 3-sulfate was the most predominate in the investigated extracts followed by ferulic acid and dicaffeoyl-quinic acid. Also, the antimicrobial potentiality of different extracts was evaluated against different pathogenic microbes including *Enterobacter cloacae*, *Micrococcus leutus*, *Aeromonas hydrophila*, *Bacillus subtilis*, *Bacillus cereus*, *Bacillus licheniformis* and *Clostridium* species. Furthermore, different concentrations of the most potent extract were assayed for antibacterial efficacy on growth curve kinetics against the susceptible bacteria along 4 days incubation period. Our gathered data confirmed that, the antimicrobial activity against tested bacteria was different according to the solvent used in the extraction process. Mostly, all the extracts showed a wide spectrum antibacterial activity except the plant water extract which shows a mild activity against *Clostridium* sp. only. Based on the highest inhibition zone diameter, the ethyl acetate extract followed by butanol extract exhibited the highest inhibition zone with *Micrococcus luteus* and *B. subtilis* (20.0 and 18.5 mm) respectively. Determining the effect of ethyl acetate extract at different concentration (0, 0.66, 1.66, 3.33, 6.67, 13.34 and 20.01 mg mL⁻¹) on *M. luteus* growth kinetics, the data assured that the antibacterial activity shows concentration dependent manner with the highest antibacterial activity at 20.01 mg mL⁻¹ culture. The data also confirmed that, none of the selected concentration showed bactericidal activity in the prepared cultures, and with the prolonged incubation period the bacteria acquire resistance against the extract beginning from second or third day of incubation.

KEYWORDS

Pluchea dioscoridis, LC-ESI-MS/MS, polyphenolics, bacterial growth kinetic, antibiofilm, antimicrobial

INTRODUCTION

Recently, the questions raising the existence of a link between globalization, urbanization and human health, is inevitably presented especially related to the infectious disease’s transmission and prevalence. Infectious diseases could be air, water or food borne which usually
resulted in the dissemination of several biological agents such as pathogenic bacteria, fungi, viruses and protozoa [1]. Microbial infection had been the main cause of different diseases as chronic and acute gastrointestinal, respiratory and auto-immune diseases. Microbial pathogens that have deleterious effects on public health include but not limited to, bacteria such as *Escherichia coli* O157:H7, *Campylobacter* spp., *Clostridium botulinum*, *Salmonella* spp., all of which cause hundreds of thousands of infections annually, reported by Hassanain et al. (2021) [1]. Not to mention, the emerging of worse scenario related to multi-drug resistance in various bacterial pathogens, such as *Enterobacteriaceae*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Salmonella* sp. etc. . . [2]. The wide application of synthetic antibiotics as antimicrobial substances caused resistance behavior among the microbial communities which in turn raises the need to find alternatives or substitutes with less possible harmful effects to be tolerated with the human cells [3]. Moreover, the bacterial biofilm formation has been found to play a critical role in the persistence of bacterial nosocomial infections. This phenomenon facilitates bacterial colonization on living or non-living surfaces and is associated with 65–80% of all clinical infections [4–6]. Due to such adaptive changes; biofilm-forming bacteria are 10- to 1000-fold more resistant to conventional antibiotics, which thus present a great challenge to develop antimicrobials specifically to treat biofilms [7].

The medicinal usage of natural plants and herbs to control pathogens infections had been widely known from the old centuries without knowing the exact reason for such healing effect of the applied plants. Recent studies detected that, there are major bioactive compounds presented in different amount in the various plants' parts (leaves, stem, flower, etc...) such as polyphenols and flavonoids that are mainly responsible for the antimicrobial effect presented on controlling the pathogens infections to multiple diseases [8–10].

Pluchea dioscoridis is a common perennial, evergreen herb that is belonging to Asteraceae (Compositae) family. This plant is naturally growing in moist, humid regions and grows spontaneously in Egypt along the Nile river banks [11]. *P. dioscoridis* had been known for centuries for its remedy benefits and due to this fact; the plant was used by different human cultures as therapeutic and medicinal natural plant. The therapeutical activity of *P. dioscoridis* based on that it contains various bioactive components that possess antioxidant and antimicrobial activity against multiple human and animal pathogens. Various bioactive compounds had been isolated and identified from different extracts of *P. dioscoridis* including oils, triterpenoids, flavonoids, pluchecin sesquiterpenoids, and thiophenes. These compounds were extracted from different plant parts with a highly potent antimicrobial activity against different gram negative and gram-positive bacteria [12, 13]. Although literatures had exhibited the antimicrobial potentiality of *P. dioscoridis* extracts, none or very few studies have compared the microbial response of different strains against various extracts types neither less studying the growth kinetics of the microbe in the presence of different concentration of the extract. Based on this approach, the research study was applied to investigate the effect of different extracts on various pathogenic bacteria including *Enterobacter cloacae*, *Micrococcus leutus*, *Aeromonas hydrophila*, *Bacillus subtilis*, *Bacillus cereus*, *Bacillus licheniformis* and *Clostridium* sp., and the response of the selected bacteria to the presence of different concentrations from the most potent extract alongside chemical profiling of the most active extracts via using LC-ESI-MS/MS in negative ion mode.

EXPERIMENTAL

Plant material

P. dioscoridis leaves were collected from Al-Qaliobia Governorate, Egypt during March 2020. The identification and authentication of the collected plant was performed by Dr. Tearse Labib, Department of Flora and Taxonomy, El-Orman Botanical Garden, Giza, Egypt. A voucher specimen (No. P.d/le/2020) is kept in the Medicinal Chemistry Department, Theodor Bilharz Research Institute.

Extraction and fractionation

Dry powdered leaves of *P. dioscoridis* (1.7 kg) were soaked for four days in 80% methanol (4 × 3 L) at room temperature. The combined extracts were filtered and evaporated under vacuum using Rotatory evaporator to afford 80% methanol extract 287.77 g. The dried aqueous methanol extract was defatted via using petroleum ether (60–80 °C). Then, the defatted methanol extract was undergoing successive fractionation using organic solvents (e.g., dichloromethane, ethyl acetate, and n-butanol) to afford 31.50, 40.5, 15.34, 88.63, and 100.45 g respectively for petroleum ether, dichloromethane, ethyl acetate, and n-butanol, and water extracts. 500 mg of each extract were suspended and homogenized in 1.5 mL DMSO (Dimethyl sulfoxide) to be assessed for the antimicrobial screening experiment.

Chemicals and reagents

All solvents, standards and reagents were of highly analytical grade. Methanol, petroleum ether, dichloromethane, ethyl acetate and n-butanol were obtained from El-Nasr Pharmaceutical Chemicals Company (Cairo, Egypt). Nutrient agar and Nutrient Broth media were purchased from HiMedia Laboratories Pvt. Ltd (Mumbai, India).

Cultures’ preparation and screening of the antimicrobial activity

Twenty four hour old, cultures were prepared in Nutrient broth medium from the following bacteria: Gram positive bacteria (*M. leutus*, *B. subtilis*, *B. cereus*, *B. licheniformis*, *Clostridium* sp. and *S. aureus*), Gram negative bacteria (*E. cloacae*, *A. hydrophila*, *Proteus vulgaris*, *E. coli*, *P. aeruginosa* and *K. pneumoniae*) and yeast (*Candida albicans*), the
cultures density were optimized to reach 0.5 to 1 MacFarland (equivalent absorbance at 600 nm: 0.1–0.3). Nutrient agar plates were poured and swapped with sterilized cotton swapper after immersed in the bacterial cultures separately. 7.00 mm sterilized puncher was used to form a maximum of four wells in each plate as designed by agar diffusion assay protocol according to Valgas et al. (2007) thereafter, 50 μL of each extract was added to the wells separately (=16.67 mg/50 μL). The plates were incubated for 24 h at 37 °C and the data were measured after incubation by ruler [14].

Effect of different concentrations of *P. dioscoridis* ethyl acetate extract on *M. luteus* growth kinetics

This experiment was designed to investigate the effect of *P. dioscoridis* ethyl acetate extract on *Micrococcus luteus* growth during 96 h incubation period. Concentrations of 0, 10, 25, 50, 100, 200 and 300 μL were added to 5 mL cultures inoculated with 250 μL of *M. luteus* culture (O.D.600: 1.5 abs). Microbial growth was measured spectrophotometrically by optical density determination at 600 nm at incubation intervals of (0, 24, 48, 72 and 96) respectively [4].

Antibiofilm activity evaluation

The biofilm inhibitory activity of tested extracts was measured using 96-well flat polystyrene plates toward four clinical microbes comprising gram-positive bacteria (*S. aureus* and *B. subtilis*) and gram-negative bacteria (*P. aeruginosa* and *E. coli*). Briefly, each well was filled with 180 μL lysogeny broth (LB broth) then inoculated with 10 μL of pathogenic bacteria followed by addition of 10 μL (final concentration of 500 μg mL⁻¹) of samples along with control (without test sample). The plates incubated at 37 °C for 24 h and after incubation, content in the wells were removed and wells washed with 200 μL of phosphate buffer saline (PBS) pH 7.2 to remove free floating bacteria and left to dry at sterilized laminar flow for 1 h. For staining, 200 μL/well of crystal violet (0.1%, w/v) were added for 1 h then excessive stain removed and plates kept for drying. Further, dried plates were washed with 95% ethanol and optical density was determined at optical density 570 nm by using a Spectrostar Nano Microplate Reader (BMG LABTECH GmbH, Allmendgrun, Germany [4, 15].

LC-ESI-MS/MS analysis

The chemical constituents of the tested extracts were tentatively identified using a Thermo Finnigan (Thermo electron Corporation, OK, USA), coupled with an LCQ Duo ion trap mass spectrometer with an ESI source in negative ionization mode (ThermoQuest Corporation, Austin, TX, USA) [16].

RESULTS AND DISCUSSION

In vitro antimicrobial activity

Results presented in Table 1, Figs 1 and 2 indicate the effect of *P. dioscoridis* different extracts on various pathogenic bacteria. Our data confirmed that, all the plant extracts show a significant antibacterial activity against different bacterial species.

![Antibacterial effect of *P. dioscoridis* extracts on various pathogenic bacteria after 24 h incubation period.](image)

Fig. 1. Antibacterial effect of *P. dioscoridis* extracts on various pathogenic bacteria after 24 h incubation period. (C: Control, 1-5: extracts codes, concentration of the extracts (=16.67 mg/50 μL)

Table 1. Antibacterial effect of *P. dioscoridis* extracts against bacteria illustrated by zone of inhibition measurements in mm

Microorganisms	H₂O	EtOAc	MeOH	Pet. ether	Butanol	CH₂Cl₂
E. cloacae	ND	10.5	4.75	ND	9.50	1.00
M. luteus	ND	20.0	3.50	5.75	10.3	8.50
A. hydrophila	ND	1.00	ND	1.00	16.5	3.00
B. cereus	ND	ND	ND	4.00	10.3	ND
B. subtilis	ND	1.25	1.00	6.25	18.5	5.75
B. licheniformis	ND	ND	ND	ND	14.0	ND
Clostridium sp.	8.00	8.50	4.25	7.50	16.5	8.50
S. aureus	ND	15.5	ND	ND	16.0	ND
P. vulgaris	12.5	13.0	14.5	ND	16.0	11.5
E. coli	5.0	ND	7.50	10.5	12.0	13.5
P. aeruginosa	ND	7.50	4.50	ND	5.50	10.0
C. albicans	4.50	3.50	15.5	4.00	17.0	15.0
K. pneumoniae	10.0	16.5	16.0	ND	17.0	18.0

Antimicrobial activity was determined by well-agar diffusion method [14]. The initial concentration of the extracts in each well (50 μL).
pathogens except water extract that possess a reasonable antibacterial activity only against *P. vulgaris* and *K. pneumoniae*. The highest antibacterial activity detected for ethyl acetate extract against *M. luteus* with inhibition zone diameter of 20.0 mm. Butanol extract also shows a stringent, wide spectrum, antibacterial activity against various bacteria like *B. subtilis*, *A. hydrophila*, *Clostridium sp*, *S. aureus*, *P. vulgaris* and *B. Lichneformis* with inhibition diameters of (18.5, 16.5, 16.5, 16.0, 16.0 and 14.5 mm) respectively. Our data were similar to the results obtained by Ghorab et al. (2015) who exhibited that ethanolic extract of *P. dioscoridis* had a potent antimicrobial activity against different pathogenic microbes: Gram positive (*E. fecalis*, *S. aureus*, *L. monocytogenes* and *B. cereus*), and Gram-negative bacteria (*E. coli*, *P. aeruginosa*, *K. pneumoniae* and *Salmonella*) and *C. albicans* [11]. Moreover, our results also confirmed that *P. dioscoridis* methanol fraction have a potent antimicrobial effect against *K. pneumoniae*, *C. albicans* and *P. vulgaris*. On the other hand, EtOAc fraction also displayed moderate antibacterial activity towards *K. pneumoniae*, *S. aureus* and *P. vulgaris*, while petroleum ether fraction only showed antibacterial activity toward *E. coli* (10.5 mm). Also, the CH₂Cl₂ showed abroad antimicrobial activity against *K. pneumoniae*, *C. albicans* *E. coli*, *P. vulgaris* and *P. aeruginosa* with inhibition zone diameters (18.0, 15.0, 13.5, 11.5 and 10 mm). Obeidat et al. (2012) reported that leaves aqueous extracts of *P. dioscoridis* possess the highest antibacterial potency against all tested bacteria including, *E. coli*, *Staphylococcus typhimurium*, *P. aeruginosa*, *S. aureus* and *C. albicans* fungi [17]. Zalabani et al. (2013) reported that leaf and root extracts of the plant caused the highest growth inhibitory activity against *B. subtilis*, *Mycobacterium phlei*, *Listeria innocua*, and moderate inhibitory effect was detected against *C. albicans* and *S. aureus* [18]. Paerkh and Chanda (2008) reported high antimicrobial potency of *P. dioscoridis* leaf extract against yeasts and the tested Gram-positive bacteria [19].

Effect of different concentrations of *P. dioscoridis* ethyl acetate extract on *M. luteus* growth kinetics

Through assessing the effect of *P. dioscoridis* ethyl acetate extract on *M. luteus* growth kinetics, the data confirmed that all the concentrations applied showed antibacterial activity against *M. luteus* growth with concentration dependent manner in comparison to control culture, illustrated in Table 2 and Fig. 3. Data also poses that the highest

Conc. (mg mL⁻¹)	0	24	48	72	96
	0.02	1.36	1.47	1.60	1.71
0.66 (10)	0.02	0.88	1.15	1.26	1.47
1.66 (25)	0.02	0.86	0.86	0.95	0.95
3.33 (50)	0.02	0.88	0.82	0.85	1.00
6.67 (100)	0.02	0.54	0.65	0.80	0.85
13.34 (200)	0.02	0.24	0.29	0.33	0.48
20.01 (300)	0.02	0.27	0.28	0.36	0.50

Table 2. *M. luteus* growth dynamics in response to different concentrations of *P. dioscoridis* ethyl acetate extract

![Fig. 2. Antibacterial activity of *P. dioscoridis* extracts against pathogenic microbial strains](image1)

Fig. 2. Antibacterial activity of *P. dioscoridis* extracts against pathogenic microbial strains

![Fig. 3. *M. luteus* growth curve kinetics at different concentrations of *P. dioscoridis* ethyl acetate extract](image2)

Fig. 3. *M. luteus* growth curve kinetics at different concentrations of *P. dioscoridis* ethyl acetate extract
antibacterial activity detected in concentration 300 µL at which the growth rate was lowered by approximately 70.1% at the end of the incubation period. The antimicrobial potency of *P. dioscoridis* various extracts as well as any plant extract depends on the interactions between the extracted, bioactive substance and one or more constituents (target sites) of the microbial cell membrane. The succession of the interaction resulted in further penetration of the active material into the cellular cytoplasm and the surrounding protein, nucleic acids that ultimately caused death and execution of the microbial cell [20]. Different studies had isolated the antimicrobial material form *P. dioscoridis* various extracts, Metwally et al. (2015) isolated flavonoids, phenolics, and tannins in ethanolic extract of *P. dioscoridis* [21].

Antibiofilm activity of *P. dioscoridis* extracts against four pathogenic microbial strains

Despite numerous attempts to eradicate bacterial biofilm, there is still an urgent need to find an effective way to inhibit the biofilm formation by bacteria. Nosocomial infections caused by bacterial pathogens include *S. aureus*, Bacillus subtilis, *P. aeruginosa* and *E. coli* are common in hospitals and other health-care facilities. These pathogens have become resistant to antibiotics due to biofilm formation. Nosocomial infections are common in hospitals and other health-care facilities. These pathogens have become resistant to antibiotics due to biofilm formation. Despite numerous attempts to eradicate bacterial biofilm, these pathogens have become resistant to antibiotics due to biofilm formation.

Biofilm formation by bacteria. Nosocomial infections caused by bacterial pathogens include *S. aureus*, Bacillus subtilis, *P. aeruginosa* and *E. coli* are common in hospitals and other health-care facilities. These pathogens have become resistant to antibiotics due to biofilm formation. Despite numerous attempts to eradicate bacterial biofilm, these pathogens have become resistant to antibiotics due to biofilm formation.

Extract	Biofilm inhibitory (%)			
	S. aureus	*B. subtilis*	*E. coli*	*P. aeruginosa*
H2O	0	5.55	0	0
CH2Cl2	16.66	30.07	16.98	27.61
BuOH	79.76	43.49	15.95	22.61
Pet. ether	0	0	0	0
EtOAc	53.65	2.54	0	22.93
MeOH	56.58	17.93	16.58	24.04

LC-ESI-MS/MS profiling of ethyl acetate extract

Phenolic acids, organic acids and their derivatives. Compound (1) showed a molecular ion peak [M–H]+ at m/z 111 with daughter ions at m/z 67 [M–H–44]+, corresponding to the neutral loss of a CO2 moiety, 49, and 41. This compound could be identified as furoic acid [22]. Compound (2) exhibited a molecular ion peak [M–H]+ at m/z 179 and the fragment ion at m/z 135 [M–H–44]– due the neutral loss of CO2 moiety, MS2 ions were also detected at m/z 125, and 107; it was tentatively identified as caffeic acid [23, 24]. Compound (3) showed a molecular ion peak [M–H]+ at m/z 147 with daughter ions at m/z 129 [M–H–18], corresponding to the neutral loss of a H2O moiety, and 103 [M–H–44], corresponding to the neutral loss of a CO2 moiety. This compound could be identified as cinnamic acid [25]. Compound (4) showed a molecular ion peak [M–H]+ at m/z 137 with daughter ions at m/z 109 [M–H–28], corresponding to the neutral loss of a CO moiety, and 93 [M–H–44], corresponding to the neutral loss of a CO2 moiety. This compound could be identified as salicylic acid [22]. Compounds (5, 6) showed molecular ion peaks [M–H]+ at m/z 515 with diagnostic fragments at m/z 353 [M–H–162]– corresponding to caffeoylquinic acid and due to neutral loss of caffeic acid moiety, 191 [M–H–162–162]– corresponding to quinic acid and due to further neutral loss of caffeic acid moiety, 179 [caffeic acid–H+]0, 173, and 135 [caffeic acid–CO2–H+]0. The two isomers could be identified as dicaffeoylquinic acid isomers [26]. Compound (7) showed a molecular ion peak [M–H]+ at m/z 259 with daughter ions at m/z 241 [sulfocaffeic acid–H2O–H+]0, 215 [sulfocaffeic acid–CO2–H+]0, 179 [sulfocaffeic acid–SO3–H+]0, and 135. This compound could be identified as Caffeic Acid 3-sulfate (Sulfocaffeic acid) [27]. Compound (8) showed a molecular ion peak [M–H]+ at m/z 193 and MS1 fragment ions at m/z 178 [M–H–CH3]+, 149 [M–H–CO3]+, and 134 [M–H–CO2–CH3]+. This compound could be identified as ferulic acid [28]. Compound (9) showed a molecular ion peak [M–H]+ at m/z 529 and MS1 fragment ions at m/z 427, 367 [M–H–caffeic acid moiety]+, 179 [M–H–ferulic acid moiety–quinic acid]0.
Table 4. Tentative identification of secondary metabolites in the ethyl acetate extract of *P. dioscoridis* leaves via negative LC-ESI-MS/MS

No.	RI (min)	m/z	M.wt.	M.F.	MS/MS fragments (m/z)*	Tentatively identified compounds	Class
1	0.73	111	112	C₇H₄O₃	111, 67, 49, 41	Furoic acid	Heterocyclic carboxylic acid
2	0.77	179	180	C₆H₄O₄	179, 135, 125, 107	Caffeic acid	Phenolic acids
3	0.98	147	148	C₆H₄O₃	147, 129, 115, 103	Cinnamic acid	Phenolic acids
4	2.11	137	138	C₆H₄O₃	137, 109, 93	Salicylic acid	Phenolic acids
5	6.22	515	516	C₂₅H₂₄O₁₂	515, 353, 335, 191, 179, 173, 135	Dicaffeoyl-quinic acid isomer	Phenolic acids
6	6.33	515	516	C₂₅H₂₄O₁₂	515, 353, 335, 191, 179, 173, 135	Dicaffeoyl-quinic acid isomer	Phenolic acids
7	6.58	259	260	C₈H₇O₅	259, 241, 215, 179, 173, 161, 135	Caffeic acid 3-sulfate	Phenolic acid derivatives
8	6.83	193	194	C₁₀H₁₀O₄	193, 178, 149, 134	Ferulic acid	Phenolic acids
9	6.98	529	530	C₂₆H₂₆O₁₂	529, 367, 193, 179, 173, 151	Feruloyl caffeoyl-quinic acid	Phenolic acid derivatives
10	7.09	571	572	C₁₀H₁₀O₁₂	571, 285	Dihydrophilinotisflavone	Flavonoid derivatives
11	7.24	529	530	C₁₀H₁₀O₆	529, 511, 419, 289, 273	(epi)-Guibourtinidol-(epi)-afzelechin	Flavonoid derivatives
12	7.32	311	312	C₂₀H₂₀O₈	311, 296, 293, 242	Eicosanoic acid	Saturated fatty acids
13	7.49	529	530	C₁₀H₁₀O₆	529, 511, 419, 289, 273	(epi)-Guibourtinidol-(epi)-afzelechin	Flavonoid derivatives
14	7.68	309	310	C₁₅H₁₆O₈	309, 291, 263, 240, 211, 197	Linolenic acid 13-hydroperoxide	Unsatuated fatty acids
15	7.98	529	530	C₁₀H₁₀O₆	529, 511, 419, 289, 273	(epi)-Guibourtinidol-(epi)-afzelechin	Flavonoid derivatives
16	8.30	359	360	C₁₅H₁₄O₉	359, 344, 329	Rosmarinic acid	Phenolic acid derivatives
17	8.71	315	316	C₁₀H₁₀O₇	315, 300, 283, 271, 164, 163, 151	*isorhamnetin	Flavonoids
18	9.19	359	360	C₁₀H₁₀O₆	359, 344, 329	Rosmarinic acid	Phenolic acid derivatives
19	9.53	315	316	C₁₀H₁₀O₆	315, 153, 109	Protopatechuic acid glucoside	Phenolic acid derivatives
20	9.81	313	314	C₁₀H₁₀O₆	313, 298, 285	3’,7-dimethoxyluetin	Flavonoid derivatives
21	9.93	247	248	C₁₀H₁₀O₆	247, 219, 191	Brevifolin [Geranium]	Benzopyrone derivatives
22	10.59	373	374	C₁₀H₁₀O₆	373, 358, 343, 328	Methylsudachitin	Flavonoid derivatives
23	10.85	421	422	C₂₀H₂₀O₁₀	421, 313, 271, 211, 169, 125	Benzy1-O-galloyl glucose	Gallotannins derivatives
24	11.32	363	364	C₁₀H₁₀O₇	363, 345, 313, 299, 281, 255	Tetra-O-methylcatechin derivatives	Flavonoid derivatives
25	11.59	247	248	C₁₀H₁₀O₆	247, 219, 191	Brevifolin [Geranium]	Benzopyrone derivatives
26	14.99	559	560	C₂₅H₂₆O₁₃	559, 381	1-O-caffeoyl-3-O-sinapoylquinic acid	Phenolic acid derivatives
27	15.49	555	556	C₂₅H₂₆O₁₄	555, 403, 393	Hydroxyleuropein	Secoiridoids
28	22.01	327	328	C₁₅H₁₈O₅	327, 314, 299, 229, 211	Oxiranedioctanoic	Fatty acids
29	31.07	100	101	–	–	Unknown	-

Major ion in MS, marked in bold numbers (100% relative abundance); *Compounds previously identified in the plant.*
acid moiety]", and 151. This compound could be identified as feruloyl-caffeoyl-quinic acid [25]. Compounds (16, 18) showed molecular ion peaks [M−H]− at m/z 359 and diagnostic fragment ions at m/z 344, and 329. These compounds could be identified as rosmarinic acid [26–28]. Compounds (19) showed molecular ion peaks [M−H]− at m/z 315 and diagnostic fragment ions at m/z 153 [M−H-162]− corresponding to protocatechuic acid moiety and due to neutral loss of glucose moiety, and 109 [M−H-162-44]− due to further neutral loss of CO2 moiety. This compound could be identified as protocatechuic acid glucoside [29]. Compounds (26) showed a molecular ion peak [M−H]− at m/z 559, and MS fragment ion at m/z 381. This compound could be identified as 1-O-caffeoyl-3-O-sinapoylquinic acid [30].

Flavonoids and their derivatives

Compound (10) showed a molecular ion peak [M−H]− at m/z 571 and a diagnostic fragment ion at m/z 285 [M−H-286]−. This compound could be identified as dihydrophilonotisflavone [30]. Compounds (11, 13, 15) showed molecular ion peaks [M−H]− at m/z 529 and diagnostic fragment ions at m/z 511, 419, and 273 [M-Guibourtinidol moiety-H]− corresponding to afzelechin moiety. These compounds could be identified as (epi)-Guiboutrinidol-(epi)-afzelechin [31]. Compound (17) showed a molecular ion peak [M−H]− at m/z 315 and diagnostic fragment ions at m/z 300 [M−H-CH3]−, 283, 271, 243, 164, 163, 151, and 107. This compound could be identified as isorhamnetin [32]. Compound (20) showed a molecular ion peak [M−H]− at m/z 595 and diagnostic fragment ions at m/z 285 and 273 [M-Guaihydropinochromone moiety-H]− corresponding to guaihydropinochromone moiety. This compound could be identified as guaihydropinochromone [33].

Fig. 4. Negative LC-ESI-MS/MS profile of phenolic compounds from ethyl acetate extract of P. dioscoridis leaves. Numbers at peaks refer to Table 4.

Fig. 5. Proposed fragmentation pattern of dicafeoyl-quinic acid using negative ionization mode.
peak [M−H]− at m/z 313 and diagnostic fragment ions at m/z 298 [M−H−CH3]−, and 283 [M−H−2 x CH3]−. This compound could be identified as 3,7-dimethoxyluteolin [25]. Compound (22) showed a molecular ion peak [M−H]− at m/z 373 and diagnostic fragment ions at m/z 358 [M−H−CH3]−, 343 [M−H−2 x CH3]−, 328 [M−H−3 x CH3]−. This compound could be identified as methyl-sudachitin [33]. Compound (24) showed a molecular ion peak [M−H]− at m/z 363 and fragment ions at m/z 345, 313, 299, 281, and 255. This compound could be identified as tetra-O-methylcatechin derivatives [34].

Other compounds

Compound (12) showed a molecular ion peak [M−H]− at m/z 311 and fragment ions at m/z 296 [M−H−CH3]−, 293 [M−H−H2O]−, and 195. This compound could be identified as eicosanoid acid [16]. Compound (14) showed a molecular ion peak [M−H]− at m/z 309 and fragment ions at m/z 291 [M−H−H2O]−, 277, 211, and 197. This compound could be identified as linolenic acid 13-hydroperoxide [26]. Compounds (21, 25) showed molecular ion peaks [M−H]− at m/z 247 and fragment ions at m/z 219 [M−H−CO]−, and 191 [M−H−CO−CO]−. These compounds could be identified as brevifolin [Geranium] [35]. Compound (23) showed a molecular ion peak [M−H]− at m/z 421 and fragment ions at m/z 331 [M−H−90]− corresponding to galloyl glucose moiety and due to neutral loss of benzyl moiety, 313 [M−H−90−18]− due to further neutral loss of H2O molecule, 271, 211, 169 [M−H−90−162]− due to further neutral loss of glucose moiety, and 125 [M−H−90−162−44]− due to further neutral loss of CO2 moiety. This compound could be identified as benzyl-O-galloyl glucose [16, 36]. Compound (27) showed a molecular ion peak [M−H]− at m/z 555 and fragment ions at m/z 537, 403, 393, and 323. This compound could be identified as hydroxyoleuropein [37]. Compound (28) showed a molecular ion peak [M−H]− at m/z 327 and fragment ions at m/z 314, 299, 229, and 211. This compound could be identified as oxiraneoctanoic acid [33].

LC-ESI-MS/MS profiling of n-butanol extract

Phenolic acids, organic acids and their derivatives. Compound (1) showed a molecular ion peak [M−H]− at m/z 191 with daughter ions at m/z 173 [M−H−18]−, corresponding to the neutral loss of a H2O moiety, 127, and 111. This compound could be identified as quinic acid [23]. Compound (2) showed a molecular ion peak [M−H]− at m/z 153 with daughter ion as a base peak at m/z 109 [M−H−44]− due to the neutral loss of a CO2 moiety. This compound could be identified as protocatechuic acid [22]. Compounds (3, 4, 5) showed molecular ion peaks [M−H]− at m/z 353 with daughter ions at m/z 191 [M−H−162]− corresponding to quinic acid and due the neutral loss of a caffeic acid moiety, 179 [M−H−18]− corresponding to caffeic acid and due to further neutral loss of a H2O moiety, 173 [quinic acid-H-H2O]−, 161 [caffeic acid-H-H2O]−, and 135 [caffeic acid-H-CO2]−. These compounds could be identified as chlorogenic acid [38]. Compound (7) showed a molecular ion peak [M−H]− at m/z 341 with characteristic ions at m/z 179 [M−H−162]− corresponding to caffeic acid and due to further neutral loss of a glucose moiety, 161 [caffeic acid-H-H2O]−, and 135 [caffeic acid-H-CO2]−. This fragmentation pattern was typically assigned to caffeic acid-O-hexoside [39]. Compounds (9, 10) showed molecular ion peaks [M−H]− at m/z 515 with diagnostic fragments at m/z 353 [M−H−162]− corresponding to caffeoyl-quinic acid and due to neutral loss of a glucose moiety, 191 [M−H−162−62]− corresponding to quinic acid moiety and due to further neutral loss of caffeic acid moiety, 179 [M−H−162−74]− corresponding to caffeic acid moiety and due to further neutral loss of quinic acid moiety, 173 [M−H−162-162-18]−, 161 [M−H−162-174-
Table 5. Tentative identification of secondary metabolites in the butanol extract of *P. dioscoridis* leaves via negative LC-ESI-MS/MS

No.	R_t (min)	m/z (M-\text{H})^-	M.wt.	M.F.	MS² fragments (m/z)*	Tentatively identified compounds	Class
1	0.80	191	192	C₇H₁₂O₆	191, 173, 127, 111	Quinic acid	Organic acids
2	2.32	153	154	C₅H₆O₄	153, 109	Protocatechuic acid	Phenolic acids
3	4.45	353	354	C₁₀H₁₄O₆	191, 179, 173, 161, 135	*Chlorogenic acid	Phenolic acids
4	4.50	353	354	C₁₀H₁₄O₆	191, 179, 173, 161, 135	Chlorogenic acid	Phenolic acids
5	5.25	353	354	C₁₀H₁₄O₆	191, 179, 173, 161, 135	Chlorogenic acid	Phenolic acids
6	6.11	303	304	C₁₃H₁₂O₇	303, 285, 271, 259, 241, 177, 151	Taxifolin	Flavonoids
7	6.27	341	342	C₁₃H₁₄O₈	341, 251, 233, 203, 179, 161, 135	Caffeic acid-O-hexoside	Phenolic acid glycosides
8	6.94	421	422	C₂₀H₂₂O₁₀	421, 313, 271, 211, 169, 125	Benzyl-O-galloyl glucose	Phenolic acid derivatives
9	7.61	515	516	C₂₃H₂₄O₁₂	515, 353, 335, 191, 179, 173, 135	Dicaffeoyl-quinic acid	Phenolic acid derivatives
10	7.72	515	516	C₂₃H₂₄O₁₂	515, 353, 335, 191, 179, 173, 135	Dicaffeoyl-quinic acid	Phenolic acid derivatives
11	7.99	259	260	C₅H₆O₅S	259, 241, 215, 179, 173, 161, 135	Caffeic acid 3-sulfate (Sulfo-caffeic acid)	Phenolic acid derivatives
12	8.40	193	194	C₁₀H₈O₄	193, 176, 149, 147, 134	Ferulic acid	Phenolic acids
13	8.56	529	530	C₁₉H₁₉O₉	529, 511, 419, 289, 273	(epi)-Guibourtinidol-(epi)-afzelechin	Flavanoid derivatives
14	8.98	529	530	C₁₉H₁₉O₉	529, 367, 193, 179, 173, 151	Feruloyl-cafeyrol-quinic acid	Phenolic acid derivatives
15	9.17	479	480	C₁₁H₁₈O₁₃	479, 317, 299, 284, 255	Gossypetin-8-glucoside (Gossypin)	Flavonoids
16	9.41	529	530	C₂₇H₂₇O₁₃	529, 367, 352, 329, 219, 335, 317	Glyccoumarin derivatives	Coumarin derivatives
17	9.58	677	678	C₁₈H₁₈O₁₅	677, 515, 497, 353, 323, 191	Tricaffeoylquinic acid	Phenolic acid derivatives
18	10.07	315	316	C₁₄H₁₈O₇	315, 300, 283, 272, 171, 164, 163, 151	Isorhamnetin	Flavonoids
19	11.89	571	572	C₂₀H₂₀O₁₂	285	Hegoalexane B	Flavonoids
20	12.56	285	286	C₁₄H₁₄O₆	285, 267, 241, 217, 199, 175, 161, 125	Luteolin	Flavonoids
21	20.31	555	556	C₂₅H₁₉O₁₄	555, 403, 393	Hydroxyoleuropein	Secoiridoids
and 135 [M–H–162–174–44]−. These compounds could be identified as dicaffeoyl-quinic acid [40]. Compound (11) showed a molecular ion peak [M–H]− at m/z 259 with daughter ions at m/z 241 [sulfocaffeic acid–H2O–H]−, 215 [sulfocaffeic acid–CO2–H]−, 179 [sulfocaffeic acid–SO3–H]−, 173, 161, 135, and 125. This compound could be identified as Caffeic acid 3-sulfate (Sulfo-caffeic acid) [26]. Compound (12) showed a molecular ion peak [M–H]− at m/z 193 and MSn fragment ions at m/z 178 [M–H–CH3]−, 149 [M–H–CO2]−, 147, and 134 [M–H–CO2–CH3]−. This compound could be identified as ferulic acid [27]. Compound (14) showed a molecular ion peak [M–H]− at m/z 529 and MSn fragment ions at m/z 367 [M–H–caffeic acid moiety]−, 193, 179 [M–H–ferulic acid moiety–quinic acid moiety]−, 173, and 151. This compound could be identified as feruloyl-caffeoyl-quinic acid [25]. Compound (17) showed a molecular ion peak [M–H]− at m/z 677 and MSn fragment ions at m/z 515 [M–H–caffeic acid moiety]−, 497 [M–H–caffeic acid moiety–H2O]−, 353 [M–H–2 × caffeic acid moiety]−, 335 [M–H–2 × caffeic acid moiety–H2O]−, and 191 [M–H–3 × caffeic acid moiety]−. This compound could be identified as 1,3,5-O or 1,4,5-O-Tricaffeolyquinic acid [41].

Flavonoids and their derivatives

Compound (6) showed a molecular ion peak [M–H]− at m/z 303 with daughter ions at m/z 285, 271, 259, 241, 177, and
151. This fragmentation pattern was typically assigned to taxifolin [34]. Compound (13) showed a molecular ion peak [M–H]⁻ at m/z 529 and diagnostic fragment ions at m/z 511, 419, 289, and 273 [M-Guibourtinidol moiety-H]⁻ corresponding to afzelechin moiety. This compound could be identified as (epi)-Guibourtinidol-(epi)-afzelechin [31]. Compound (15) showed a molecular ion peak [M–H]⁻ at m/z 479 with daughter ions at m/z 479, 317, 299, 284, and 255. This fragmentation pattern was typically assigned to Gossypetin-8-glucoside (Gossypin) [34]. Compound (18) showed a molecular ion peak [M–H]⁻ at m/z 571 and a diagnostic fragment ion at m/z 285. This compound could be identified as Hegoques, I. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int. J. Food Microbiol. 2017, 257, 192–200.

Other compounds

Compound (8) showed a molecular ion peak [M–H]⁻ at m/z 421 and fragment ions at m/z 331 [M–H–90]⁻ corresponding to galloyl glucose moiety and due to neutral loss of benzyl moiety, 313 [M–H–90–18]⁻ due to further neutral loss of H₂O molecule, 271, 211, 169 [M–H–90–162]⁻ due to further neutral loss of glucose moiety, and 125 [M–H–90–162–44]⁻ due to further neutral loss of CO₂ moiety. This compound could be identified as benzyl-O-galloyl glucose [36]. Compound (16) showed a molecular ion peak [M–H]⁻ at m/z 479 with daughter ions at m/z 529, 367, 352, 329, 219, 335, 317, and 299. This fragmentation pattern was typically assigned to glycycomar derivatives [34]. Compound (21) showed a molecular ion peak [M–H]⁻ at m/z 555 and fragment ions at m/z 537, 403, 393, and 323. This compound could be identified as hydroxyoleuropein [37].

CONCLUSIONS

The chemical profiling of P. dioscoridis leaf extracts led to identifying of 28 and 21 compounds, respectively from the ethyl acetate and n-butanol extracts, most of them are flavonoides and phenolic acid derivatives. Some compounds were identified for the first time in plant and also in the genus Pluchea. Moreover, the testes extracts showed a potent antimicrobial and antibiofilm activities against the selected bacteria except the water extract which showed a moderate activity on only two isolates from the selected bacterial strains. The variation between the antimicrobial activities of extracts against different bacteria related to bacterial type and microbial resistance behavior against the bioactive compounds presented in different concentrations in extracts used in the extraction process.

Financial support: This research received no external funding.

Conflicts of interest: The authors declare no conflict of interest.

REFERENCES

1. Hassanain, N.; Shaapan, R.; Saber, M.; Kabary, H.; Zaghluol, A. Adverse impacts of water pollution from agriculture (Crops, Livestock, and Aquaculture) on human health, environment, and economic activities. Egypt. J. Aquat. Biol. Fish. 2021, 25(2), 1093–116.
2. Araújo, S.; Silva, I. A. T.; Tacão, M.; Patinha, C.; Alves A.; Henriques, I. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int. J. Food Microbiol. 2017, 257, 192–200.
3. El Zawawy, N. A.; Hafez, E. E. Efficacy of Pluchea dioscoridis leaf extract against pathogenic Candida albicans. J. Infect. Dev. Cities. 2017, 11(4), 334–42.
4. Hamed, A. A.; Kabary, H.; Khedr, M.; Emam, A. N. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesised silver nanoparticles by two marine-derived actinomycete. RSC Adv. 2020a, 10(17), 10361–7.
5. Hamed, A. A.; Soldatou, S.; Qader, M. M.; Arjunan, S.; Miranda, K. J.; Casolari, F.; Varesi, C.; Diyaolu, O. A.; Thissera, B.; Esselli, M.; Belbahri, L.; Luptakova, L.; Ibrahim, N. A.; Abdel-Aziz, M. S.; Eid, B. M.; Ghereeb, M. A.; Rateb, M. E.; Ebel, R. Screening fungal endophytes derived from under-explored Egyptian marine habitats for antimicrobial and antioxidant properties in factionalised textiles. Microorganisms 2020b, 8, 1617.
6. Elkhouly, H. I.; Hamed, A. A.; El Hosainy, A. M.; Ghereeb, M. A.; Sidkey, N. M. Bioactive secondary metabolite from endophytic Aspergillus Tuberginesi ASH isolated from Hyoscyamus niger: antimicrobial, antibiofilm, antioxidant and anticancer activity. Pharmacogn. J. 2021, 13(2), 434–42.
7. Pletzer, D.; Hancock, R. E. W. Antibiofilm peptides: potential as broad-spectrum agents. J. Bacteriol. 2016, 198, 2572–8.
8. Sobhanizadeh, A.; Yadegari, H.; Fazeli-nasab, B.; Fakheri, B.; Shahpesandi, S. Introduction on application of herbal medicine. Paper presented at the 1st Annual Iranian Agricultural Research Conference, Kharazmi Higher Institute of Science and Technology, Shiraz, Iran, 2015, https://doi.org/10.13140/RG.2.1.4432.6882.
9. Khalaf, O. M.; Ghereeb, M. A.; Saad, A. M.; Madkour, H. M. F.; El-Ziaty, A. K.; Abdel-Aziz, M. S. Phenolic constituents, antimicrobial, antioxidant and anticaner activities of ethyl acetate and n-butanol extracts of Senna italica. Acta Chromatogr. 2019, 31(2), 138–45.
10. Mohammed, H. S.; Abdel-Aziz, M. M.; Abu-baker, M. S.; Saad, A. M.; Mohamed, M. A.; Ghereeb, M. A. Antibacterial and potential antidiabetic activities of flavone C-glycosides isolated from Beta vulgaris subspecies cicla L. var. flavescens (Amaranthaceae) cultivated in Egypt. Curr. Pharm. Biotechnol. 2019, 20(7), 595–604.
11. El-Ghorab, A. H.; Ramadan, M. M.; Abd El-Moez, S. H. Essential oil, antioxidant, antimicrobial and anticancer activities of Egyptian
Pluchea dioscoridis extract. Res. J. Pharm. Biol. Chem. Sci. 2015, 6(2), 1255–65.

12. El-Hamouly, M. A.; Ibrahim, M. T. GC/MS analysis of the volatile constituents of individual organs of Conyza dioscoridis L. (Desf.), growing in Egypt. J. Pharm. Sci. 2003, 17, 75–81.

13. Zaghloul, A. M. Pluchea dioscoridis (L.) DC. In Encyclopedia of Wild Medicinal Plants in Egypt: Vol. 1; Batanouny, K. H., Ed. Project of Conservation and Sustainable Use of Medicinal Plants in Arid and Semi-arid Ecosystems in Egypt. EEA, GEF and UND, 2005, pp. 43–55.

14. Valgas, C.; De Souza, S. M.; Smânia, E. F. A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–80.

15. Christensen, G. D.; Simpson, W. A.; Younger, J. J.; Baddour, L. M.; Barrett, F. F.; Melton, D. M.; Beechey, E. H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22(6), 996–1006.

16. Ghareeb, M. A.; Sobeh, M.; El-Maadawy, W. H.; Mohammed, H. S.; Khalil, H.; Botros, S.; Wink, M. Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 2019, 8, 415.

17. Obeidat, M.; Shatnawi, M.; Al-alawi, M.; Al-Zubi, E.; Al-Dmoor, H.; Al-Qudah, M.; El-Qudah, J.; Otri, I. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol. 2012, 7, 59–67.

18. Zalabani, S. M.; Hetta, M. H.; Ismail, A. S. Anti-inflammatory and antimicrobial activity of the different Conyza dioscoridis L. Desf. Organs. Bioseffity. 2013, 2, 106.

19. Paerki, J.; Chanda, S. In vitro antifungal activity of methanol extracts of some Indian medicinal plants against pathogenic yeast and moulds. Afr. J. Biotechnol. 2008, 7, 4349–53.

20. Hyldgaard, M.; Mygind, T.; Meyer, R. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 2–12.

21. Metwally, M.; Gamea, A.; Hafez, E.; El Zawawy, N. A survey on the determination of antibacterial activity of natural products. Rec. Nat. Prod. 2018, 12(1), 64–75.

22. Abu-Reidah, I. M.; Ali-Shwayeh, M. S.; Jamous, R. M.; Arráez-Román, D.; Segura-Carretero, A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography tandem mass spectrometry. Food Res. Int. 2015, 70, 74–86.

23. Abu-Reidah, I. M.; Arráez-Román, D.; Segura-Carretero, A., Fernández-Gutiérrez, A. Profiling of phenolic and other polar constituents from hydro-methanolic extract of watermelon (Citrus lanatus) by means of accurate-mass spectrometry (HPLC-ESI-QTOF-MS). Food Res. Int. 2013, 51, 354–62.

24. Ben Said, R.; Hamed, A. I.; Mahalel, U. A.; Al-Ayed, A. S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512.

25. Sobeh, M.; Mahmoud, M. F.; Abdel fattah, M. A. O.; Cheng, H.; El-Shalzly, A. M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47.

26. Fathoni, A.; Rezaei, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado, AIP Conf. Proc. 2017, 1862(1), 030079.

27. Abu-Reidah, I. M.; Arráez-Román, D.; Al-Nuri, M.; Warad, I.; Segura-Carretero, A. Untargeted metabolite profiling and phytochemical analysis of Microcyma fruticosa L. (Lamiaceae) leaves. Food Chem. 2019, 279, 128–43.

28. Reed, K. A. Identification of Phenolic Compounds from Peanut Skin Using HPLC-MS². Ph.D. thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2009.

29. Zhu, M.; Dong, X.; Guo, M. Phenolic profiling of Duchesnea indica combing macroporous resin chromatography (MRC) with HPLC-ESI-MS/ESI-IT-MS. Molecules. 2015, 20, 22463–75.

30. Sobeh, M.; Reza, S.; Sabry, O. M.; Abdel fattah, M. A. O.; El Raey, M. A.; El-Khashak, W. A.; El-Shalzly, A. M.; Mahmoud, M. F.; Wink, M. Albizia anheblinctica: HPLC-MS/MS profiling and in vivo anti-inflammatory, pain killing and antipyretic activities of its leaf extract. Biomed. Pharmacother. 2019, 115, 108882.

31. Kiss, A. K.; Michalak, B.; Patrya, A.; Majdan, M. UHPLC-DAD-ESI-MS/MS and HPTLC profiling of ash leaf samples from different commercial and natural sources and their in vitro effects on mediators of inflammation. Phytochem. Anal. 2020, 31, 57–67.

32. Ramubalana, A.; Steenkamp, P.; Madala, N.; Dubery, I. A. Profiling of chlorogenic acids from Bidens pilosa and differentiation of closely related positional isomers with the aid of UHPLC-QTOF-MS/MS-based in-source collision-induced dissociation. Metabolites. 2020, 10, 178.

33. Spinola, V.; Pinto, J.; Llorent-Martinez, E. J.; Tomas, H.; Castilho, P. C. Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models, Food Chem. Toxicol. 2019, 123, 443–52.

34. Ruan, J.; Yan, J.; Zheng, D.; Sun, F.; Wang, J.; Han, L.; Zhang, Y.; Wang, T. Comprehensive chemical profiling in the ethanol extract of Pluchea indica aerial parts by liquid chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 2019, 171, 104071.
spectrometry analysis of its silica gel column chromatography fractions. *Molecules*. 2019, 24, 2784.

41. Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R. C.; Carvalho, A. M.; Santos-Buelga, C.; Queiroz, M. R. P.; Ferreira, I. C. F. R. Infusion and decoction of wild German chamomile: bioactivity and characterization of organic acids and phenolic compounds *Food Chem*. 2013, 136(2), 947–54.

42. Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in *Rhamnus davurica* and its antiproliferative activities. *Molecules* 2016, 21, 1275.