Prevalence of osteoporosis and osteopenia in an apparently healthy Indian population - a cross-sectional retrospective study

Neelam Kaushal a, Divya Vohora a,⁎⁎, Rajinder K. Jalali b, Sujeet Jha c,⁎

a Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
b Medical Affairs & Clinical Research, Sun Pharmaceutical Industries Limited, Gurgaon, India
c Institute of Endocrinology, Diabetes and Metabolism, Max Healthcare Inst. Ltd., New Delhi, India

1. Introduction

Osteoporosis is a global public health problem affecting over 200 million people worldwide. It is a disease characterized by reduction in the bone mass and disruption of bone architecture leading to impaired skeletal strength and an increased predisposition for fractures [1–3]. Osteoporosis has clinical and public health implications because of the mortality, morbidity, and cost of medical care related with osteoporotic fractures [4]. Hip fractures are a useful surrogate for determining the international burden of osteoporosis [5,6]. About 1.6 million hip fractures occur each year worldwide and the incidence is set to increase to 6.3 million by 2050 with major increase projected outside of Europe and the United States [7]. It is estimated that more than about 50% of all osteoporotic hip fractures in the world will occur in Asia by the year 2050 [8]. In India, there were around 26 million osteoporosis cases in 2003, while in 2013, 50 million people were either osteoporotic or had low bone mass. An annual incidence rate (hip fractures) of 163 and 121 per 100,000 per year in women and men, respectively, above the age of 55 years has been reported in a study in North India [9].
Although osteoporosis occurs in all populations, not all populations are at equal risk [10]. Studies have reported that Asian women have higher predisposition for osteoporosis than their Caucasian counterparts [11]. Reasons attributed for lower bone mineral density (BMD) in Indians include possible genetic differences, nutritional deficiency and smaller skeletal size [9]. In a review article, Lei et al. [12] noted that though osteoporosis is a serious health problem in both Caucasians and Asians, both are 2 distinct major ethnic groups, which may have differential genetic determination underlying complex genetic diseases such as osteoporosis. Bone phenotypes are determined by both genetic and environmental factors and their interactions. Rapidly accumulating data have reported that the genetic factors can explain about 50%–90% of total BMD variation. A number of bone-related candidate genes, such as the estrogen receptor gene and vitamin D receptor gene, alpha2-HS-glycoprotein and parathyroid hormone, have been investigated for their association with bone phenotypes [12]. Additionally, there are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to contributed differences [12].

An understanding of BMD pattern in a population is crucial for prevention, diagnosis of osteoporosis and management of its complications in later life [14]. There is not much data on prevalence of osteoporosis/osteopenia in healthy Indian population. We undertook current investigation to examine the prevalence of osteoporosis/osteopenia and related risk factors in an apparently healthy Indian population.

2. Methods

This was a single-center, cross-sectional investigation in which retrospective data were collected in Max Super Specialty Hospital, Saket, New Delhi (a tertiary care hospital) after requisite approvals from Scientific Committee and the Institutional Ethics Committee of Max Super Specialty Hospital (TS/MSHH/SKT-21/ENDO/IEC/15–11). There was no direct contact with the subjects in this retrospective study; therefore, requirement for informed consent was waived off. This study did not involve any intervention or therapy, and the research involved no risks to the subjects. Subjects were identified by subject ID numbers only, and their names and identity were not disclosed in any way during or after this database review study. Hence, subject data confidentiality has been maintained.

We reviewed the medical records of adult males and females who had voluntarily visited the hospital for general health check-up and had willingly chosen the health plans including measurement of BMD and laboratory investigations. The consecutive sampling method was used to collect the data.

2.1. Data collection

The data on sex, age (year), weight (kg), height (cm), body mass index (BMI, kg/m²), history of smoking, alcohol consumption, exercise status (presence/absence for all) and dietary habits (vegetarian/nonvegetarian diet) were recorded. Subjects who underwent bone scanning with dual-energy-X-ray absorptiometry (DXA) machine (Lunar Prodigy Advance DXA System, GE Healthcare) during health check-ups. The absolute areal BMD values (g/cm²) and T scores were available for care) during health check-ups. The absolute areal BMD values (g/cm²) and T scores were available for...

2.2. Statistical analysis

Descriptive data were presented as mean ± standard deviation or number (%), unless specified. Univariate analysis was done by Student t-test, chi-square test and 1-way analysis of variance as appropriate. Pearson correlation was calculated to assess the relationship between BMD with age and other parameters at various skeletal sites. We reassessed the relationships by partial correlation analysis after adjustment for the known confounders for low BMD as applicable. A stepwise multiple regression analysis was done to identify the significant associated factors with BMD. A 2-sided P-value of <0.05 was considered statistically significant. Bone status analysis was done using World Health Organization classification based on T score: normal BMD (T score ≥ –1), osteopenia (T score < –1 and > –2.5) and osteoporosis (T score ≤ –2.5). Statistical analysis was performed using IBM SPSS Statistics ver. 20.0 (IBM Co., Armonk, NY, USA).

3. Results

We studied 524 subjects (age, 50.0 ± 12.4 years; range, 20–85 years) who were categorised into 2 groups based on sex. Study population included 216 females (41.2%) and 308 males (58.8%) with a mean age of 50.7 ± 11.9 years and 49.6 ± 12.8 years (P < 0.313), respectively (Table 1).

3.1. Baseline characteristics and laboratory parameters

The baseline characteristics and laboratory parameters of the study population stratified by sex are presented in Table 1. Height and weight were significantly higher in males (both P < 0.001) as compared to females. Males had significantly higher VLDL, TG, UA (all P < 0.001) and bicarbonate levels (P = 0.039); and significantly lower ALP (P = 0.015), HDL and phosphorus levels (P < 0.001) as compared to females. There were no significant differences in BMI, TC, LDL, bicarbonate, calcium, vitamin D, glucose (fasting), and glycosylated hemoglobin levels (P > 0.05) between both the sexes. Smoking and alcohol consumption were reported more in males (15% and 26.1%, respectively) as compared to females (11% and 3.4%, respectively). Some kind of physical activity was reported by 39.1% females and 54.3% males. Nonvegetarian diet intake was reported by 23.9% females and 31.4% males.

3.2. BMD status

Table 2A, B shows the results of the DXA measurements and the proportion of subjects who had osteoporosis, osteopenia, and normal BMD at different skeletal sites in total population, males, and females.

3.2.1. Absolute BMD and T scores

Absolute BMD (g/cm²) was significantly higher in males (P < 0.001) as compared to females at all bone sites. Males had significantly higher T scores at lumbar spine, left femur neck, and right femur neck (all P < 0.001) whereas T scores at left total femur (P = 0.510) and right total femur (P = 0.639) were comparable in both the sexes (Table 2A).

3.2.2. Prevalence of osteoporosis and osteopenia

In total population, prevalence of osteoporosis was 6.9%, 5.0%, 2.9%, 1.9%, and 2.7% at lumbar spine, left femur neck, right femur neck, left total femur, and right total femur, respectively, whereas measured in mg/dL, glycosylated hemoglobin (%), and vitamin D (ng/mL).
osteopenia was reported in 27.7%, 34.0%, 33.2%, 27.3%, and 26.9% subjects at these bone sites respectively. In females, prevalence of osteoporosis was 11.1%, 6.0%, 4.2%, 3.2%, and 4.2% at aforementioned sites respectively, while it was 3.9%, 4.2%, 1.9%, 1.0%, and 1.6% in males at these bone sites respectively. Prevalence of osteopenia in females was 31.9%, 39.8%, 40.3%, 25.9%, and 27.3% at lumbar spine, left femur neck, right femur neck, left total femur, and right total femur, respectively, whereas osteopenia was reported in 24.7%, 29.9%, 28.2%, 28.2%, and 26.6% males at these bone sites respectively (Table 2B).

Table 2A

Bone mineral density and T scores of patients with osteoporosis and osteopenia at measured sites.
Variable

Bone mineral density, g/cm²
Lumbar spine
Left femur neck
Right femur neck
Wilcoxon P⁴
Left total femur
Right total femur
Wilcoxon P⁴
T scores
Lumbar spine
Left femur neck
Right femur neck
Left total femur
Right total femur

Values are presented as mean ± standard deviation. Based on aforementioned, considering highest prevalence rate at any site, osteoporosis was present in 6.9% subjects (female, 11.1%; male, 4.2%) and osteopenia in 34% subjects (female, 40.3%; male, 29.9%) in this dataset of apparently healthy population.

3.2.3. Discordances of BMD between right and left skeletal sides

We compared bilateral BMD (g/cm²) at different parts of the femur in males and females. Significant discordances of BMD

Table 2B

Variable	Osteoporosis	Osteopenia	Normal BMD
Lumbar spine			
Left femur neck			
Right femur neck			
Left total femur			
Right total femur			
Females (n = 216)			
Lumbar spine	24 (11.1)	69 (31.9)	123 (56.9)
Left femur neck	13 (6)	86 (39.8)	117 (54.2)
Right femur neck	9 (4.2)	87 (40.3)	120 (55.6)
Left total femur	7 (3.2)	56 (25.9)	153 (70.8)
Right total femur	9 (4.2)	59 (27.3)	148 (68.5)
Males (n = 308)			
Lumbar spine	12 (3.9)	76 (24.7)	220 (71.4)
Left femur neck	13 (4.2)	92 (29.9)	203 (65.9)
Right femur neck	6 (1.9)	87 (28.2)	215 (68.8)
Left total femur	3 (1.0)	87 (28.2)	218 (70.8)
Right total femur	5 (1.6)	82 (26.6)	221 (71.8)

Values are presented as number (%). BMD, bone mineral density.

⁴ Prevalence analysis done using the World Health Organization classification based on T score: normal BMD (T score ≥ −1), osteopenia (T score < −1 and ≥ −2.5), and osteoporosis (T score ≤ −2.5).
between right and left sides of femur neck and total femur were seen according to the Wilcoxon signed ranks test ($P < 0.05$) in males. In females, though discordance was significant at total femur in line with Table 2A ($P < 0.05$), BMD did not differ significantly ($P = 0.669$) between 2 sides at femur neck in line with Table 2A (Table 2A).

3.3. Relationship between BMD and age in both the sexes

3.3.1. Age wise distribution of prevalence

The study participants were divided into 5 age groups: 30–39, 40–49, 50–59, 60–69, and ≥70 years. The prevalence for osteoporosis in females at lumbar spine was 3%, 3.4%, 14.3%, 18.6%, and 36.4% in the age groups of 30–39, 40–49, 50–59, 60–69, and ≥70 years, respectively; while in males it was 0%, 4%, 6.5%, 4.3%, and 5.6%, respectively. Foregoing distribution conveys that prevalence of osteoporosis increased with age in females while there was no specific trend in prevalence of osteoporosis in males with age at lumbar site. Osteoporosis rates at other bone sites also reported no significant trend of increase with age in females. However, no such trend of increase in prevalence of osteoporosis was seen in males at other sites (Table 3).

3.3.2. Pearson bivariate and partial correlation between BMD and age

On Pearson correlation analysis, age was negatively and significantly, associated with BMD ($r = -0.180$ to -0.316) at all bone sites in females ($P < 0.05$) (Table 4). This remained significant at all bone sites after independently controlling for known risk factors for low BMD that is for BMI ($P < 0.05$); BMI, weight and height ($P < 0.05$); and lifestyle factors (smoking, alcohol use, physical activity, and diet; $P < 0.05$) in partial correlation analysis. In males, negative and significant association between BMD and age was seen at left femur neck ($r = -0.268$) and right femur neck ($r = -0.209$) only (both $P < 0.05$), which remained significant after controlling for similar confounders as used in females in partial correlation. No significant association between age and BMD at lumbar spine, left total femur and right total femur was seen in males (Table 4).

3.4. Pearson analysis between BMD and other parameters

On Pearson correlation analysis (Table 5), height ($r = 0.234$–0.358), weight ($r = 0.305$–0.388), and BMI ($r = 0.143$–0.285) were positively; and ALP ($r = -0.133$ to -0.203) was negatively correlated with BMD (all $P < 0.01$) at all sites. Physical activity ($r = 0.136$–0.153), alcohol use ($r = 0.211$–0.250), and smoking ($r = 0.099$–0.150) were positively associated with BMD at all bone site (all $P < 0.05$). Glycosylated haemoglobin showed positive correlation at right total femur ($r = 0.087$, $P < 0.05$). However, when adjusted for age and sex in partial correlation, only BMI, height, weight, physical activity (all positively) and ALP (negatively) remained significantly ($P < 0.01$) associated with BMD. No correlation was noted between serum 25-hydroxyvitamin D (25(OH)D), bicarbonate, calcium, phosphorus, and fasting sugar levels; and BMD ($P > 0.05$) at any site.

3.5. Multiple regression analysis

We conducted multiple regression analysis in males and females by including the variables that significantly correlated with BMD in correlation analysis, after checking for collinearity. A stepwise selection of the variables was implemented in which the dependent variables were BMD values of the respective skeletal site. The standardized $β$, P-value for each significant variable in a model and R^2 for that model are depicted in Table 6.

In females, in stepwise multiple regression analysis; BMI, ALP and age were found to be the only significant factors ($P < 0.05$, all) that predicted the BMD at any respective skeletal site. Physical activity did not contribute to the BMD prediction at any site in females (Table 6). In males, stepwise multiple regression analysis revealed that BMI, ALP, age, and physical activity were the 4 significant factors ($P < 0.05$, all) that predicted the BMD at right and left femur neck (Table 6). At left and right total femur, ALP and physical activity were the only predicting factors ($P < 0.05$, all) for BMD. At lumbar spine, BMI and ALP were the contributing factors ($P < 0.05$, all) towards BMD prediction.

4. Discussion

We conducted this retrospective study in a tertiary care hospital and included subjects from urban community that had willingly visited the hospital for primary health check-ups. Present study reported significantly higher absolute BMD in males as compared to females at all bone sites which is in concurrence with literature [15] and [16].

Our analysis shows higher prevalence of osteoporosis and osteopenia in females compared to males at all bone sites. Osteoporosis was present in 6.5% subjects (female, 11.1%; male, 4.2%) and osteopenia in 34% subjects (female, 40.3%; male, 29.9%) in this apparently healthy urban population, considering highest prevalence rate at any site. These findings are in concurrence with another study reporting prevalence rates in urban community from India. That study yielded a similar prevalence of 12.85% in females.
and 3.7% in males for osteoporosis, and 41.4% in females and 33.3% in males for osteopenia respectively [17]. However, previous literature has reported wide variation in the prevalence data for osteoporosis in Indian population. For instance, a study including 200 healthy males (mean age, 62.6 years) reported osteoporosis and osteopenia rates of 8.5% and 42% respectively with Vitamin D deficiency as the main risk factor [18]. Another study in urban males (n = 252; mean age, 58 years) noted 20% osteoporosis and 54.3% females and males respectively using DXA. Risk factors included vitamin D and calcium deficiency as risk factors [23].

In a hospital based study among 158 urban women aged >25 years utilizing calcaneal quantitative ultrasound, 20.2% and 36.8% were suffering from osteoporosis and osteopenia respectively [20]. Another retrospective study of 40–60 years old Indian women documented 18.41% osteoporotic and 47% osteopenics [21]. A study in 158 females (mean age, 42.5 years) reported osteoporosis and osteopenia rates as 13.3% and 48.1% respectively. Increasing age of the women, higher gravidity status and menopausal status, low body weight and lesser physically active status were identified as risk factor [14]. Another study in an urban area including 808 females with mean age of 57.3 years and 792 males (mean age, 58.0 years) reported osteoporosis in 42.5% and 44.9%, and osteopenia in 24.8% and 54.3% females and males respectively using DXA. Risk factors included vitamin D and calcium deficiency and increasing age [22]. A study reported osteoporosis in 15% of reproductive potential females (n = 55; mean age, 38 years) and in 28% of 136 postmenopausal females (mean age, 53 years). Vitamin D and calcium deficiency were identified as risk factors [23].

In another study in 105 females with mean age 50.5 years, osteoporosis and osteopenia rates were 14.3% and 31.4% with time since menopause, lower socioeconomic status, calcium intake as main risk factors. Women from the lower socioeconomic strata had a significantly higher percentage of osteopenia and osteoporosis (P < 0.001) [24]. Osteoporosis was reported in 25.8% post-menopausal urban females (n = 92; age, 40–75 years) in a study. Vitamin D deficiency, increasing age, low weight, menopause, low intakes of calcium, poor sunlight exposure were documented risk factors [25]. In a study in rural India including 538 females and 71 males (mean age, 52.7 years), prevalence of 44.1% in females and
28.2% in males for osteoporosis, and 41.1% in females and 36.7% in males for osteopenia respectively were reported with increasing age being documented as the main associated risk factor [26]. Another study in 150 females (mean age, 60.1 years) from semi-urban area reported 43% osteoporosis prevalence rates. The risk factors included low BMI, body mass index.

In present study, difference between right and left hip BMD was seen in males and females. Similar finding about right and left hip BMD discordance have been reported in literature in females [35–37] as well as in males [38]. Though, in our study, we did not evaluate the analytical variations due to data limitations about DXA instrument. It has been reported that only part of the difference appeared to be due to analytical problems in an earlier study [37]. The explanations for the discordance may include genetic variation, immobilization, dominance of the extremity etc. Higher BMD in the dominant stroke arm has been reported in professional tennis players due to mechanical stimulation and hypoxia of the constantly strained extremity [39]. It has been debated that a significant number of subjects with osteoporosis may possibly be classified differently when scanning only one hip because of the high prevalence of left-right differences in BMD. The undiagnosed cases of osteoporosis may go unnoticed and may suffer fragility fractures due to nonintervention. So from a public health viewpoint, the practice of scanning both hips is recommended [40].

Table 6

Variable	Females Standardized β	P-value	Males Standardized β	P-value
Lumbar spine				
Age	−0.319	<0.001	−	−
BMI	0.186	0.006	0.232	<0.001
Alkaline phosphatase R2	−0.210	0.002	−0.119	0.043
Left femur neck				
Age	−0.285	<0.001	−0.284	<0.001
BMI	0.164	0.017	0.215	<0.001
Alkaline phosphatase R2	−0.153	0.025	−0.124	0.029
Physical activity	−		0.144	0.011
R2	0.120		0.152	
Right femur neck				
Age	−0.267	<0.001	−0.224	<0.001
BMI	0.245	<0.001	0.273	<0.001
Alkaline phosphatase R2	−0.182	0.007	0.122	0.031
Physical activity	−		0.163	0.004
R2	0.042		0.157	
Left total femur				
Age	−0.221		−0.217	<0.001
BMI	0.342	<0.001	0.317	<0.001
Alkaline phosphatase R2	−0.135	0.045		
Physical activity	−		0.148	0.010
R2	0.152		0.119	
Right total femur				
Age	−0.240	<0.001	−	−
BMI	0.386	<0.001	0.306	<0.001
Alkaline phosphatase R2	−0.196	<0.001	−0.130	<0.001
Physical activity	−		0.159	<0.001
R2	0.203		0.116	

BMI, body mass index.
respectively. On Pearson correlation analysis too, the association \((r = 0.075)\) was not significant \((P = 0.086)\) between BMI and ALP. Thus, ALP did not show any correlation with BMI and obesity.

Physical activity was positively associated with BMD showing that physical activity increase BMD which is in agreement with [10]. Our data set of population uncovered physical activity generates strains of adequate degree \([53\, 55]\), ascribed to the activation of osteocytes, that alters the balance between bone resorption and formation, causing modeling, if physical activity increases BMD that is in agreement with [10]. On Pearson correlation analysis too, the association respectively.

Though literature widely reports positive association between BMD and Vitamin D \([56]\), our data set of population uncovered physical activity increase BMD which is in agreement with [10]. On Pearson correlation analysis too, the association respectively.

5. Conclusions

To conclude, osteoporosis is widely prevalent in otherwise healthy Indian population with higher prevalence in females compared to males.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

We are thankful to Tertiary Care Hospital (Max Healthcare Inst. Ltd, Saket, New Delhi, India) for all the support provided in data collection for this study. We thank Laxmi Raghuvanshi, and Samreen Siddiqui, Max Healthcare Inst. Ltd, Saket, New Delhi, India for their technical and data collection support. Dr. Sujee Jha has additionally been instrumental in acquisition of the data from the hospital.

References

[1] Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 2006;194(2 Suppl):53–11.
[2] Strom O, Borgström F, Kanas JA, Compston J, Cooper C, McCloskey EV, et al. Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos 2011;6:59–155.
[3] Cooper C, Campion G, Melton 3rd LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992;2:285–9.
[4] Mauck KF, Clarke BL. Diagnosis, screening, prevention, and treatment of osteoporosis. Mayo Clin Proc 2006;81:662–72.
[5] Hernlund E, Svedbom A, Ivertgard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos 2013;8:136.
[6] Kanas JA, Adachi JD, Cooper C, Clark P, Cummings SR, Diaz-Curiel M, et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of IOF. Osteoporos Int 2013;24:2763–4.
[7] World Health Organization (WHO). WHO scientific group on the assessment of osteoporosis at primary health care level. Summary Meeting Report. Geneva (Switzerland): WHO; 2007. Brussels, Belgium, 5–7 May 2004.
[8] Johnell O, Kanas JA. An estimate of the worldwide prevalence, morbidity and disability associated with hip fracture. Osteoporos Int 2004;15:897–902.
[9] Mithal A, Bansal B, Kyer CS, Ebeling P. The Asia-Pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: a report of International Osteoporosis Foundation. Indian J Endocrinol Metab 2014;18:494–54.
[10] Leslie WD. Clinical review: ethnic differences in bone mass—clinical implications. J Clin Endocrinol Metab 2012;97:4329.
[11] Khadirkar AV, Mandlik RM. Epidemiology and treatment of osteoporosis in women: an Indian perspective. Int J Womens Health 2015;7:481–50.
[12] Lei SF, Chen Y, Xiong DH, Li LM, Deng HW. Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J Musculoskelet Neuronal Interact 2006;6:36–46.
[13] Zengin A, Prentice A, Ward KA. Ethnic differences in bone health. Front Endocrinol (Lausanne) 2015;6;24.
[14] Agrawal T, Verma AK. Cross sectional study of osteoporosis among women. Med J Armed Forces India. 2013;69:168–71.
[15] Naganathan V, Sambrook P. Gender differences in volumetric bone density: a study of opposite-sex twins. Osteoporos Int 2003;14:364–9.
[16] Nliegw PJ, Forncia C, Ruffing J, Zien M, Carrent P, Lindsay R, et al. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 2005;20:529–35.
[17] Silvanus V, Ghosal K, Bheera A, Subramanian P. Screening for osteoporosis and osteoporosis in an urban community in India. J Coll Med Sci 2012;14:247–50.
[18] Agrawal NK, Sharma B. Prevalence of osteoporosis in otherwise healthy Indian males aged 50 years and above. Arch Osteoporos 2013;8:116.
[19] Shetty S, Kapoor N, Naik D, Asha HS, Prabu S, Thomas N, et al. Osteoporosis in healthy South Indian males and the influence of lifestyle factors and vitamin D status on bone mineral density. J Osteoporos 2014;2014:723238.
[20] Sharma S, Tandon VR, Mahajan A, Kaur A, Kumar D. Preliminary screening of osteoporosis and osteopenia in urban women from Jammu using calcaneal QUS. Indian J Med Sci 2006;60:183–9.
[21] Acharya S, Srivastava A, Sen IB. Osteoporosis in Indian women aged 40–60 years. Arch Osteoporos 2010;5:83–9.
[22] Marwaha RK, Tandon N, Garg MK, Kanwar R, Narang A, Saxtry A, et al. Bone health in healthy Indian population aged 50 years and above. Osteoporos Int 2011;22:2829–36.
[23] Harinarayan CV, Sachan A, Reddy PA, Satish KM, Prasad UV, Srivani P, Vitamin D status and bone mineral density in women of reproductive and post-menopausal age groups: a cross-sectional study from south India. J Assoc Phys India 2011;59:698–704.
[24] Unni J, Garg R, Pawar R. Bone mineral density in women above 40 years. J Indian J Health Sci 2010;1:19–23.
[25] Kadam N, Chipalkar S, Khadirkar A, Dive A, Khadirkar V. Low bone mass in urban Indian women above 40 years of age: prevalence and risk factors. Cynecol Endocrinol 2010;26:909–17.
[26] Babu AS, Ikbal FM, Noone MS, Joseph AN, Samuel P. Osteoporosis and osteopenia in India: a few more observations. Indian J Med Sci 2009;63:76–7.
[27] Paul TV, Thomas N, Sheshadri MS, Oommen R, Jose A, Mahendri NV. Prevalence of osteoporosis in ambulatory postmenopausal women from a semiurban region in Southern India: relationship to calcium nutrition and vitamin D status. Endocr Pract 2008;14:665–71.
[28] Shatruvna V, Kulkarni A, Reddy PA, Satish KM, Prasad UV, Srivani P. Vitamin D status and bone mineral density in women of reproductive and post-menopausal age groups: a cross-sectional study from south India. J Assoc Phys India 2011;59:698–704.
[29] Makker A, Mishra G, Singh BP, Tripathi A, Singh MM. Normative bone mineral density data at multiple skeletal sites in Indian subjects. Arch Osteoporos 2008;3:25–37.
[30] By DG, Lamont UE, Ton QV, Lane JM. Sex and gender considerations in male patients with osteoporosis. Clin Orthop Relat Res 2011;469:1906–12.
[31] Clarke BK, Khosa S. Physiology of bone loss. Radiol Clin 2010;48:481–95.
[32] Guggenbuhl P. Osteoporosis in males and females: is there really a difference? Bone Spine 2008;76:595–601.
[33] Looker AC, Melton 3rd LJ, Harris T, Borrud L, Shepherd J, McGowan J. Age, gender, and race/ethnic differences in total body and subregional bone density. Osteoporos Int 2009;20:1141–5.
[34] Henry MV, Eastell R. Epidemiology and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int 2000;11:512–7.
[35] Hwang HJ, Park SY, Lee SH, Han SB, Ro KH. Differences in bone mineral density between the right and left hips in postmenopausal women. J Korf Med Sci 2012;7:868–90.
[36] Hamdy R, Kiebzak GM, Seier E, Watts NB. The prevalence of significant left-hip bone mineral density differences. Osteoporos Int 2006;17:1772–80.
[37] Lilley J, Walters BG, Heath DA, Droic Z. Comparison and investigation of bone mineral density in opposing femora by dual-energy X-ray absorptiometry. Osteoporos Int 1992;2:274–8.

[38] Mounach A, Reizi A, Ghozlani I, Achemlal L, Bezza A, El Maghraoui A. Prevalence and risk factors of discordance between left- and right-hip bone mineral density using DXA. ISRN Rheumatol 2012;2012:617535.

[39] Krahl H, Michaelis U, Peiper HG, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 1994;22:751–7.

[40] Afezulis P, Garding MM, Molsted S. Dual-energy X-ray absorptiometry of both hips helps appropriate dosing of low bone mineral density and osteoporosis. Diagnostics (Basel) 2017 Jul 9;7(3). https://doi.org/10.3390/diagnostics7030041. pii: E41.

[41] El Hage R, Bouchou F, Sebaaly A, Isa M, Zakhem E, Maalouf G. The influence of weight status on radial bone mineral density in Lebanese women. Calcif Tissue Int 2014;94:465–7.

[42] Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993;8:567–73.

[43] Wu SF, Du XJ. Body mass index may positively correlate with bone mineral density of lumbar vertebra and femoral neck in postmenopausal females. Med Sci Mon Int Med J Exp Clin Res 2016;22:145–51.

[44] Migliaccio S, Greco EA, Fornari R, Donini LM, Lenzi A. Is obesity in women protective against osteoporosis? Diabetes Metab Syndr Obes 2011;4:273–82.

[45] Salamat MR, Salamat AH, Janghorbani M. Association between obesity and bone mineral density by gender and menopausal status. Endocrinol Metab (Seoul) 2016;31:547–58.

[46] Kaushal N, Vohora D, Jalali RK, Jha S. Raised serum uric acid is associated with obesity in women. Therapeut Clin Risk Manag 2018;14:75–82.

[47] van Straalen JP, Sanders E, Prummel MF, Sanders GT. Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 1991;201:27

[48] Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem 1999;45(8 Pt 2):1359–68.

[49] Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 2016;20:846–52.

[50] Khan AR, Awan FR, Najam SS, Islam M, Siddique T, Zain M. Elevated serum level of human alkaline phosphatase in obesity. J Pakistan Med Assoc 2015;65:1182–5.

[51] Tønnesen R, Schwarz P, Hovind PH, Jensen LT. Physical exercise associated with improved BMD independently of sex and vitamin D levels in young adults. Eur J Appl Physiol 2016;116:1297–304.

[52] Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 2001;16:2291–7.

[53] Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr) 2012;34:1493–515.

[54] Cadore EL, Bentzana MA, Kruehl LF. Effects of the physical activity on the bone mineral density and bone remodeling. Rev Bras Med Do Esporte 2005;11:338–44.

[55] Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 2004;116:634–9.

[56] Kota S, Jammula S, Kota S, Meher L, Modi K. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density. Indian J Orthop 2013;47:402–7.

[57] Labronici PJ, Bluncck SS, Lana FR, Esteves BB, Franco JS, Fukuyama JM, et al. Vitamin D and its relation to bone mineral density in postmenopause women. Rev Bras Ortop 2013;48:228–35.

[58] Ramsay A, Horsley T, O'Donnell S, Reilly H, Pull L, Ooi D, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid rep technol assess (Full Rep) 2007;158:1–235.

[59] Arta Y, Bhambr R, Godbole MM, Mithal A. Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporos Int 2004;15:56–61.

[60] Li C, Chen F, Duan X, Wang J, Shu B, Li X, et al. Bioavailable 25(OH)D but not total 25(OH)D is an independent determinant for bone mineral density in Chinese postmenopausal women. EBiomedicine 2017;15:184–92.

[61] Shahnaz SE, Khorrami MS, Akhavan M, et al. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 2012;82:84–9.