Interfacial Aspects of Metal Matrix Composites Prepared from Liquid Metals and Aqueous Solutions: A Review

Peter Baumli

Institute of Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary; fembaumli@uni-miskolc.hu

Received: 26 September 2020; Accepted: 20 October 2020; Published: 21 October 2020

Abstract: The paper reviews the preparation of the different metallic nanocomposites. In the preparation of composites, especially in the case of nanocomposites, interfacial phenomena play an important role. This review summarizes the literature on various interfacial phenomena, such as wettability and reactivity in the case of casting techniques and colloidal behavior in the case of electrochemical and electroless methods. The main contribution of this work lies in the evaluation of collected interfacial phenomena and difficulties in the production of metal matrix composites, for both nano-sized and micro-sized reinforcements. This study can guide the composite maker in choosing the best criteria for producing metal matrix composites, which means a real interface with good adhesion between the matrix and the reinforcement. This criterion results in desirable mechanical and physical properties and homogenous dispersion of the reinforcement in the matrix.

Keywords: metal matrix composites; wettability; Al matrix; Ni-P matrix; zeta potential

1. Introduction

Metal matrix composites are made up of a metal matrix and a reinforcing substance, which may be metal or another substance. Composites can be classified in various ways; some examples are formation type, preparation method and matrix type. According to the formation of the composites, we can group them into in-situ [1] and ex-situ composites [2]. The reinforcement could be graphite [3], graphene [4–9], carbon nanotubes [10–13], ceramics [14–17], metallic nano-sized particles [18–20] or fibers, whereas the matrix materials could be aluminum [21,22], magnesium [23], steel [24], copper [25], etc.

According to the preparation method [26,27], we can group composites into stir casting [28–32], assisted stir casting [33], pressure infiltration [34–37], pressureless infiltration [38], laser melting [39], electrochemical [40], electroless deposition [41–43] and powder metallurgy [44–50] methods. Based on the physical state of the matrix material, we can form three groups, namely the molten matrix (in the case of stir casting, pressure infiltration, pressureless infiltration, laser melting), the aqueous or non-aqueous solution of the matrix element (electro- and electroless deposition) and solid phase matrix (powder metallurgy). The methods and interfacial phenomena of metal matrix composite preparation are shown in Figure 1.

During the preparation of nanocomposites (using classification by the physical state of the matrix), the interfacial phenomena have the most important role. The following sections show the effect of interface on the structure of nanocomposites prepared by casting and aqueous methods.
Figure 1. Methods and interfacial phenomena of metal matrix composite preparation.

2. Using Melted Metal Matrix for the Preparation of the Composite

2.1. Role of the Wettability of the Reinforcement by Molten Metal

In metal matrix nanocomposites (MMNCs), the second ceramic phase is used as the reinforcing phase. This may have a particulate, fibrous or needle structure and at least one of the characteristic dimensions is less than 100 nm. The consequence of the size of the reinforcement is that in the manufacturing of MMNCs, interfacial phenomena—forces [51,52] and energies [53]—play a decisive role in the interaction of the reinforcement and the (molten) matrix metal. In the nanoscale range, the gravitational force and the difference in density between the melt and the particle no longer affect the subsidence of the particle. In such a case, the interfacial phenomena acting between the components influence the movement, penetration and incorporation of the reinforcement into the matrix. As a result of these interfacial interactions, the structure of the composite is formed, which decisively determines the strength and mechanical properties of the composite materials.

Based on thermodynamic formulations, we can derive the necessary criteria as appropriate parameters, including the interfacial energies [54]. The contact angle is characteristic of the interfacial behavior of solid–liquid phases when they are in contact. It is best observed when a small drop of molten metal is placed on the surface of a flat solid ceramic. The molten metal then assumes a characteristic shape, which may be spherical, hemispherical or fully spread, depending on the surface tension and adhesion energy prevailing in the system. The formed drop shape can be characterized by the contact angle, which is the angle between the tangent to the contour of the liquid drop at the point of contact of the liquid, the solid phase and the gas phase (the “triple line”). The contact angle is the angle between the tangent and the solid phase in the direction of the liquid phase (Figure 2).
Young’s equation is valid between the contact angle and the interfacial energies:

$$\cos \theta = \frac{\sigma_{cv} - \sigma_{cl}}{\sigma_{lv}}$$ \hspace{1cm} (1)

where

- σ_{cv}—the surface energy between the ceramic and the vacuum, J/m2
- σ_{cl}—the interfacial energy between the ceramic and the melt, J/m2
- σ_{lv}—the surface tension of the melt, J/m2.

Equation (1) is significantly simplified if we take into account the so-called adhesion energy, which is by definition:

$$W = \sigma_{cv} + \sigma_{lv} - \sigma_{cl}$$ \hspace{1cm} (2)

Adhesion energy is always a more positive number than 0; its unit is also J/m2. The higher the value of W, the stronger the mutual attraction between the molten metal and the ceramic, i.e., the adhesion. In the production of metal–matrix composites, it is theoretically worthwhile to use only metal–ceramic pairs that stably form two phases in contact with each other, i.e., for whom the value is certainly positive. Thus, for cermet pairs used in the production of metal matrix composites, the adhesive energy has the following range:

$$0 < W < \sigma_{cv} + \sigma_{lv}$$ \hspace{1cm} (3)

Substituting Equation (2) into Equation (1) gives the following relation for the contact angle:

$$\cos \theta = \frac{W}{\sigma_{lv}} - 1$$ \hspace{1cm} (4)

The value of the contact angle can be in the range of 0–180°, whose values as well as the ratios of energies clearly characterize the wetting conditions prevailing in the system. Based on (4), different ranges of the contact angle can be determined:
(a) $\geq 90^\circ$: the melt does not wet the ceramic; the adhesion energy is less than the surface tension of the melt;
(b) $<90^\circ$: the melt wets the ceramic; the adhesion energy of the melt surface is greater than the surface tension of the melt (but less than twice the surface tension);
(c) $=0^\circ$: the melt completely wets the ceramic; the adhesion energy is at least twice the surface tension of the melt.

One of the crucial points in the production of casting composites is the introduction of the reinforcing phase into the molten metal. Perfect wettability between reinforcement and the molten metal is required for complete immersion of the reinforcement [55–58]. If the molten metal does not perfectly wet the reinforcement phase, the composite can only be produced by prolonged stirring [59]. Hashim et al. [59] made the following observations during the preparation of die-cast aluminum composites:

- stirring does not promote the immersion of the particles in the matrix: the particles float on the surface of the molten metal, regardless of the speed of stirring;
- upon stirring, the ceramic particles are incorporated into the solidifying metal, but during the remelting of the composite, when the metal is completely melted, the composite can be separated;
- using magnesium improves wetting, but if the magnesium content of the aluminum melt exceeds 1 wt.%, the viscosity of the melt increases.

Another crucial point in the production of casting composites is the agglomeration of the reinforcement [60]. The cause of coagulation of the reinforcement can also be traced back to wetting, i.e., the less the molten metal wets the ceramic surface, the more likely the ceramic particles are to adhere to each other. Avoidance of this unfavorable process, and thus the homogeneous distribution of the reinforcement in the molten metal, can be achieved if the contact angle of the ceramic–molten metal pair is as close as possible to $\theta = 0^\circ$.

In general, one can say that the surface of the frequently used reinforcement is not perfectly wetted by molten metals. To achieve perfect wetting and perfect dispersion of the particles in the matrix, various modifications—for example, coatings or auxiliary phases—must be used in these systems. Another alternative is to modify the production method—for instance, by using an ultrasonic assisted application [60].

Two typical examples of composites for non-wetting and perfect wetting systems are shown here. The left-hand picture in Figure 3 shows non-wetting, where there is no adhesion and/or no common interface between the matrix and the reinforcement; here, there is no connection between the C fiber and the matrix. The right-hand picture shows the perfect wetting state; there are no pores on the matrix/reinforcement interface, as the molten matrix is able to flow around the reinforcement fibers or particles.

2.2. Improvement of the Wetting Behavior

The wettability of the reinforcement by molten metal can be improved by the modification of the surface of the reinforcement, e.g., by formation of a metallic coating on it. Another opportunity is the application of a molten salt phase, which can prevent the molten metal from further oxidation and can help in the formation of a well-wetted coating on the surface of the reinforcement.
Improvement of the wetting behavior of the liquid metal can be achieved by the modification of the oxide layer present on the surface of the reinforcement. Generally, one can say that molten metal or molten metal/metal-like ceramic systems does not wet the surface of the reinforcement. Generally, one can say that molten metal wets well the surfaces of a solid metal or metal-like ceramics. In the case of molten metal/solid metal or molten metal/metal-like ceramic systems, the contact angle is lower than 90°, typically between 0° and 50°. During the selection of the metal for the coating, the main consideration is that the metal providing the coating should be an alloy of the matrix and not form brittle or undesirable phases with the matrix.

In the production of metal matrix composites, the surface of the reinforcement is most frequently covered with a copper or nickel coating [61]. Electroless nickel and copper coatings can be prepared on the surface of metals [62,63], carbon fiber [64–67], Al_2O_3 surface [68] and SiC particles [69–74]. As with metals, metal-like ceramics such as TiC can be used as coatings [75].

The contact angle of molten aluminum on an SiC surface is $\theta = 150^\circ$; this contact angle is reduced to $\theta = 115^\circ$ at 2 h holding time. The contact angle of the molten aluminum on a Ni-coated SiC surface is $\theta = 12^\circ$. The nickel coating also prevents the formation of Al_4C_3 on the Al/SiC interface [68]. The wetting behavior of different solid materials by a molten matrix is tabulated in Table 1. Perfect wettability or good wetting is the criterion of the preparation of the metal matrix composites from liquid metal. One can see from Table 1 that to reach good wetting behavior of the liquid metal, the oxide layer needs to be removed (e.g., in the case of Al) and one needs to choose a metal or a metal-like ceramic required to be coated on the surface of the reinforcement.

![Figure 3](image-url)

Figure 3. The reinforcement (C-fiber) and the matrix (aluminum) position in the case of a “non-wetting” and a “perfect wetting” system.

2.2.1. Modification of the Surface of the Reinforcement

Due to the difference in the chemical bonding between the matrix metal and the reinforcement, the molten metal does not wet the surface of the reinforcement. Generally, one can say that molten metal wets well the surfaces of a solid metal or metal-like ceramics. In the case of molten metal/solid metal or molten metal/metal-like ceramic systems, the contact angle is lower than 90°, typically between 0° and 50°. During the selection of the metal for the coating, the main consideration is that the metal providing the coating should be an alloy of the matrix and not form brittle or undesirable phases with the matrix.

Liquid Phase	Solid Phase	Temperature	Contact Angle	Reference
Al	Al_2O_3	700 °C	140°	[76]
Al (oxide layer free)	Al_2O_3	710 °C	63°	[77]
Al	Zr	700 °C	$\sim 10^\circ$	[76]
Al	670 nm thick Zr-coated alumina	700 °C	20°	[76]
Al (oxide layer free)	SiO_2	710 °C	23°	[77]
Al (oxide layer free)	TiB$_2$	710 °C	0°	[77]
Al (oxide layer free)	TiB$_2$	710 °C	10°	[77]

Table 1. The wettability of the different materials by molten metal matrix.
Table 1. Cont.

Liquid Phase	Solid Phase	Temperature	Contact Angle	Reference
Al	Graphite	740 °C	140°	[78]
Al	Ni	740 °C	45°	[78]
Al	Ni-coated graphite	740 °C	27°–45°	[78]
Cu	WC	1080 °C	25°	[79]
Cu	WC	1133 °C	0°	[77]
Cu	WC-Co	1080 °C	6°	[79]
Cu	Graphite	1227 °C	140°	[80]
Cu	Cr3C2	1227 °C	0°	[80]
Zr2Cu	WC	1150 °C	28°	[81]
Ni	B4C	1480 °C	102°	[82]
Ni	ZrC	1480 °C	73°	[82]
Ni	TiC	1480 °C	25.5°	[82]
Ni	SiC	1480 °C	104°	[82]
Ni-based superalloy	Al2O3-based	1500 °C	141°	[83]
Ni-based superalloy	SiO2-based	1500 °C	143°	[83]
Ni-based superalloy	ZrSiO4	1500 °C	136°	[83]

2.2.2. Molten Salt-Assisted Process

Roy et al. [84] investigated the effect of the addition of chloride and fluoride salts to a basic equimolar NaCl-KCl mixture, examining the coalescence of small droplets. Coalescence can occur after the removal of the oxide layer from the molten aluminum droplets. A perfect oxide removal process, i.e., good coalescence, was achieved in the case of fluoride salt addition. The best additives are KF and NaF, LiF, Na3AlF6. One can say that the smaller the Al/salt interfacial energy, the more intensive the oxide removing effect. The same observation has been made in the case of NaCl-KCl-K2TiF6 salt mixture. Under the melted NaCl-KCl-K2TiF6 salt, the molten aluminum can perfectly wet the surface of a graphite [85,86]. The perfect wettability of aluminum on graphite under molten salts is achieved through the next steps:

1. The oxide layer is dissolved from the surface of molten aluminum due to the K2TiF6. In the molten salt, an oxo-fluoro complex compound is formed which prevents the further reaction of Ti ions.
2. As the molten salt/aluminum ratio increases, the Ti content increases in the system (salt/aluminum/graphite). Due to higher Ti content, the free Ti ion number will be raised so the possibility of the exchange reaction also grows.
3. At a critical Ti content and temperature (higher than 0.4 w% Ti in aluminum and above 750 °C), TiC can be formed at the Al/C interface. Due to the TiC nanolayer at the interface, the wettability of graphite by molten aluminum will be increased.
4. During the cooling of the sample, an Al3Ti intermetallic phase will be created due to a decrease in the solubility of Ti.

The wettability of TiC by molten aluminum was investigated by Lopez et al. [87] under Ar gas and molten KF-AlF3 eutectic mixture. They observed that the aluminum does not wet the TiC under Ar but perfectly wets that under molten salt. The role of the molten salt was to clean the surface of Al and TiC of the oxide layer. This observation proves that if one can prepare a TiC coating on the carbon surface, perfect wettability could be achieved. Kennedy and Karantzalis [88] investigated the effect
of KAlF$_4$ and K$_3$AlF$_6$ salts on the incorporation of the reinforcement particles in molten aluminum. They observed that the graphite particles have not been incorporated in molten aluminum. From these two observations, we can determine that the oxide layer removal alone is not enough to reach perfect wettability. In addition to the fluoride ion responsible for decomposing the oxide, the molten salts must contain an ion capable of forming a coating on the surface of the reinforcement which can be perfectly wetted by the molten aluminum.

K$_2$TiF$_6$, as mentioned above, is used as an additive to the basic salt, but one can use it as the pure salt as well. Using pure K$_2$TiF$_6$, the reinforcement is mixed with the salt and then this mixture is admixed to the molten aluminum. Another possibility is to prepare a saturated aqueous solution of the K$_2$TiF$_6$ at around 100 °C. The reinforcement is admixed with the saturated solution and then the salt is dried and crystallizes on the surface of the reinforcement, as mentioned in [89] for the case of Al/C, Al/SiC composites.

Lekatou et al. [2,90] prepared an aluminum matrix composite reinforced with TiC and WC nanoparticles using K$_2$TiF$_6$ salt. In their experiments, the salt and carbide particles were mixed and then introduced into the aluminum melt with vigorous stirring. Stirring ensured a homogeneous distribution of the reinforcement phase. Al$_3$Ti and Al$_5$W intermetallic phases were also identified in the aluminum matrix composite using WC particles.

Reactive salts are able to form in-situ metal matrix composites as well. In this case, the reinforcement will be formed due to a chemical reaction between the salt and a component of the matrix or other additives. In the molten salt-assisted in-situ method, (nano) composites can be prepared using different reactive salts [91]. In this procedure, Birol prepared a TiC-reinforced aluminum matrix composite [92], while Mahamani developed in-situ TiB$_2$/ZrB$_2$-reinforced aluminum matrix composites [93]. Other salt-assisted in-situ reinforcements could include TiB$_2$ [94], TiN nanoparticles [95] or Al$_3$Ti [96].

3. Composite Preparation from Aqueous Solutions

Composite coating, especially Ni and Ni alloy matrix coating, can be prepared by electrodeposition [97–101] or electroless [102–109] methods. Electrodeposition, in contrast to electroless deposition, forces the deposition process on the surface of the cathode using potential difference. The electroless method means that a reducing agent can be used instead of voltage [43]. The potential reducing agents are hydrazine [110], sodium hypophosphite (NaH$_2$PO$_4$) [111,112], sodium-borohydride (NaBH$_4$) [111]. One type of highly investigated electroless Ni composite coating is the phosphorus-containing Ni-P, so the next part of the paper focuses on such composites.

Ni-P coatings prepared by deposition from aqueous solution have good mechanical properties. These can be improved by subjecting the product to heat treatment, during which nano- or micro-Ni$_3$P phases can appear. In this case, one can actually speak of an in-situ composite in which the reinforcement is the second phase formed during the heat treatment. The properties of Ni-P coatings can be further modified by the co-deposition of a well-chosen reinforcement (ex-situ composite). In addition to improving hardness and wear resistance, the presence of a second reinforcing phase also improves the corrosion resistance of the Ni-P coatings [113,114].

Ni-P matrix composites are reinforced using different nano- and microparticles, of which the most common are SiC [115], SiO$_2$ [116], TiO$_2$ [117], ZrO$_2$ [118], WC [119] and, more recently, TiC [120]. Furthermore, graphene [121] and nano-diamonds also appear in the literature as a reinforcement [80].

Initial attempts to prepare Ni-P composites failed, as described in the literature. This is because nickel baths very often become unstable due to the high specific surface area of the reinforcement. The unstable bath disintegrates, i.e., the Ni$^{2+}$ ions precipitate on the surface of the particles in the form of some Ni compounds. Various stabilizers are added to the bath to prevent the bath from disintegrating.
Thiourea [133,134], Pb-acetate and maleic acid [135] have been used as stabilizers. Due to the stabilizers, it has become possible to produce Ni-P matrix composites by reduction [136]. One of the reasons for the disintegration of the bath is the electrokinetic behavior of the reinforcement, which is characterized by the zeta potential. The zeta potential in the Ni-P bath-reinforcement dispersion can be modified by the addition of surfactants.

A prerequisite for the production of Ni-P matrix composite coatings with a uniform distribution of the reinforcement and the designed mechanical properties is that the reinforcement phase can be homogeneously dispersed in the Ni-P bath, in both the electro- and electroless deposition methods. To avoid the agglomeration of the particles in the bath, there is a crucial physico-chemical property, namely the zeta potential of the particles in the bath [43,123].

Nano-sized particles easily form agglomerates due to their high specific surface area, zeta potential and wetting properties. Ensuring the proper dispersion of the nanoparticles in the bath can be achieved by the continuous stirring of the bath, sonication treatment, or using surfactants. Regarding the surfactant, cationic, anionic and non-ionic forms are used in practice. As a result of these surfactants, the bath can wet the surface of the reinforcement, and they can also modify the zeta potential value. In the case of increasing the value of the zeta potential by changing the composition and pH of the bath, the particles push away from each other to a greater extent, thus preventing their agglomeration [136,137].

In connection with this, various studies have been carried out in which the properties of the Ni-P bath–particle system were investigated by measuring the zeta potential and the study of the particle size distribution, deposition and the amount of reinforcement in the composite.

Tamilarasan et al. [138] deal with the development of a Ni-P-TiO\textsubscript{2} composite coating. They observed that as the surfactant concentration increased, the amount of TiO\textsubscript{2} particles in the Ni-P-TiO\textsubscript{2} composite varied according to a maximum curve. It was also observed that when using a cationic DTAB (Dodecyltrimethylammonium Bromide) surfactant, the amount of TiO\textsubscript{2} nanoparticles in the composite was twice the value of SDS. The changing of the amount of the reinforcement in the composite according to a maximum curve is described for Al\textsubscript{2}O\textsubscript{3} particles using a cationic surfactant [139].

Using CTAB (Cetyltrimethylammonium Bromide), Liu et al. [137] developed Ni–P–Al\textsubscript{2}O\textsubscript{3} composite coatings. The cationic surfactant prevented the Al\textsubscript{2}O\textsubscript{3} particles from agglomerating in the bath. In parallel, however, it was found that the proportion of Al\textsubscript{2}O\textsubscript{3} in the coating decreased significantly with increasing CTAB concentration. In their work, they conclude by stating that the stability of the sol formed by the bath and Al\textsubscript{2}O\textsubscript{3} is due to the fact that CTAB changes the zeta potential of the particle to a positive value. This finding was not supported by measurements. Comparing these results with the results of Necula et al. [140], it can be clearly seen that the measured zeta potential of Al\textsubscript{2}O\textsubscript{3} particles in the nickel bath shows a decreasing trend as a function of the pH range studied by Liu [137] as well. The zeta potential drops from the initial 10 to −2 mV. Comparing these results with the zeta potential value measured in the sol formed by distilled water- Al\textsubscript{2}O\textsubscript{3}, which is 50 ± 2 mV, it can be seen to what extent the presence of Ni2+ in the bath deteriorates the zeta potential value and thus the stability of the sol. The 10−(-)2 mV zeta potential measured by Necula explains the formation of agglomeration of the particles in the bath, which was also observed by Liu et al. [137].

In the case of Ni-P-TiC composite preparation, it has been reported that the use of an anionic surfactant (linear alkylbenzene sulfonate; LABS) results in the most TiC in the composite, but the nanoparticles are in the composite as agglomerations. In comparison, with the use of polymeric (polyethylene glycol) and cationic (CTAB) surfactants, the particles did not agglomerate, but the amount of TiC deposited lagged behind the results obtained with the anionic surfactant. Together with this observation, it was found that in the anionic case, the separated structure was composed of many spherical (cauliflower) units. This is because the higher amount of TiC provides more nucleating sites for the deposited Ni-P matrix [141,142].

In many cases, it has been published in the literature that the layer thickness of the deposited composite decreases as the concentration of the surfactant in the bath is increased. One reason for this
may be that surfactants reach the surface of the liquid and reach the substrate, which also acts as a catalyst, sooner than Ni$^{2+}$ ions coming from inside the solution. An additional reason may be that by increasing the concentration of the surfactant, in addition to the decrease in the surface tension of the bath, the formation of micelles [43] must also be expected, which may prevent the escape of hydrogen gas during reduction. During reduction deposition, hydrogen gas near the surface of the substrate also inhibits the deposition of Ni$^{2+}$ ions on the substrate [143]. One can observe a correlation between the wetting angle (θ) measured on the surface of the particles and the zeta potential (ζ) based on data in the literature [43,144,145].

4. Conclusions

According to the physical state of the matrix, we can group the metal matrix composite methods as follows: techniques using a molten matrix, powder metallurgy and aqueous solution-assisted methods. The interface between the reinforcement and the matrix plays a crucial role. The most important physicochemical parameters are wettability and reactivity, and in the case of the aqueous method, electrokinetic behavior, i.e., the zeta potential. In the casting method and powder metallurgy, it is a well-known fact that the surface of the matrix is covered by an oxide layer. The first step in these methods is to remove the oxide layer or avoid its formation. Using a melted matrix, the second step is modifying the surface of the reinforcement to avoid the chemical reaction between the reinforcement and the matrix and reach better wettability (closer to $\theta = 0$). In the third group, using aqueous solutions, one needs to calculate the zeta potential, which correlates to the contact angle of the reinforcement in the aqueous solution. Zeta potential is responsible for the homogeneous dispersion of the reinforcement in the bath (aqueous solution) and also in the matrix.

Funding: This research received no external funding.

Acknowledgments: The research work presented is based on the results achieved within the GINOP-2.3.2-15-2016-00027 “Sustainable operation of the workshop of excellence for the research and development of crystalline and amorphous nanostructured materials” project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Wang, T.; Zou, C.; Chen, Z.; Li, M.; Wang, W.; Li, R.; Kang, H. In situ synthesis of TiB$_2$ particulate reinforced copper matrix composite with a rotating magnetic field. *Mater. Des.* **2015**, *65*, 280–288. [CrossRef]
2. Lekatou, A.; Karantzalis, A.E.; Evangelou, A.; Gousia, V.; Kaptay, G.; Gácsi, Z.; Baumli, P.; Simon, A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. *Mater. Des.* **2015**, *65*. [CrossRef]
3. Varol, T.; Canakci, A. The effect of flake microstructure on the preparation and properties of Cu-graphite sintered nanocomposites. *Powder Metall. Met. Ceram.* **2016**, *55*, 426–436. [CrossRef]
4. Wen, X.; Joshi, R. 2D materials-based metal matrix composites. *J. Phys. D Appl. Phys.* **2020**, *53*, 423001. [CrossRef]
5. Zhao, Z.; Bai, P.; Du, W.; Liu, B.; Pan, D.; Das, R.; Liu, C.; Guo, Z. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. *Carbon N. Y.* **2020**, *170*, 302–326. [CrossRef]
6. Güler, Ö.; Bağci, N. A short review on mechanical properties of graphene reinforced metal matrix composites. *J. Mater. Res. Technol.* **2020**, *9*, 6808–6833. [CrossRef]
7. Tabandeh-Khorshid, M.; Ajay, K.; Omrani, E.; Kim, C.; Rohatgi, P. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. *Compos. Part B Eng.* **2020**, *183*, 107664. [CrossRef]
8. Saboori, A.; Pavese, M.; Badini, C.; Fino, P. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. *Front. Mater. Sci.* **2017**, *11*, 171–181. [CrossRef]
9. Alipour, M.; Esfandi-Farsani, R. Synthesis and characterization of graphene nanoplatelets reinforced AA7068 matrix nanocomposites produced by liquid metallurgy route. *Mater. Sci. Eng. A* **2017**, *706*, 71–82. [CrossRef]
10. Shu, R.; Jiang, X.; Shao, Z.; Sun, D.; Zhu, D.; Luo, Z. Fabrication and mechanical properties of MWCNTs and graphene synergistically reinforced Cu–graphite matrix composites. *Powder Technol.* 2019, 349, 59–69. [CrossRef]

11. Bakshi, S.R.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites—A review. *Int. Mater. Rev.* 2010, 55, 41–64. [CrossRef]

12. Faria, B.; Guarda, C.; Silvestre, N.; Lopes, J.N.C.CNT-reinforced iron and titanium nanocomposites: Strength and deformation mechanisms. *Compos. Part B Eng.* 2020, 187, 107836. [CrossRef]

13. Azamiya, A.; Safavi, M.; Sovizi, S.; Azamiya, A.; Chen, B.; Madaah Hosseini, H.; Ramakrishna, S. Metallurgical Challenges in Carbon Nanotube-Reinforced Metal Matrix Nanocomposites. *Metals* 2017, 7, 384. [CrossRef]

14. Choudhary, R.; Kumar, A.; Raj, H.; Kumar, S.; Tiwari, S.; Khan, S.; Sharma, V. Fabrication and characterization of stir cast Al2024/SiCp metal matrix composite. *Mater. Today Proc.* 2019, 26, 3316–3320. [CrossRef]

15. Saxena, A.; Singh, N.; Kumar, D.; Gupta, P. Effect of Ceramic Reinforcement on the Properties of Metal Matrix Nanocomposites. *Mater. Today Proc.* 2017, 4, 5561–5570. [CrossRef]

16. Taherzadeh Mousaviani, R.; Azari Khosroshahi, R.; Yazdani, S.; Brabazon, D.; Boostani, A.F. Fabrication of aluminum matrix composites in situ with nano- to micrometer-sized SiC particles. *Mater. Des.* 2016, 89, 58–70. [CrossRef]

17. Zhang, F.; Du, M.; Fan, K.; Ye, C.; Zhang, B. Fabrication and mechanical properties of network structured titanium alloy matrix composites reinforced with Ti5Al5C particulates. *Mater. Sci. Eng. A* 2020, 776. [CrossRef]

18. Zhang, W.W.; Hu, Y.; Wang, Z.; Yang, C.; Zhang, G.Q.; Prashanth, K.G.; Suryanarayana, C. A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. *Mater. Sci. Eng. A* 2018, 734, 34–41. [CrossRef]

19. Janovszky, D.; Kristaly, F.; Miko, T.; Sveda, M.; Sycheva, A. Development of novel Ultrafine Grain Cu metal matrix composites reinforced with Ti-Cu-Co-M (M: Ni, Zr) amorphous-nanocrystalline powder. *J. Min. Metall. Sect. B Metall.* 2018, 54, 349–360. [CrossRef]

20. Czel, G.; Tomolya, K.; Sveda, M.; Sycheva, A.; Kristaly, F.; Roosz, A.; Janovszky, D. Synthesis and characterization of Zr-based in situ crystal precipitated and liquid phase separated bulk metallic glass composite. *J. Non. Cryst. Solids* 2017, 458, 41–51. [CrossRef]

21. Manivannan, I.; Ranganathan, S.; Gopalakannan, S.; Suresh, S.; Nagakarthigan, K.; Jubendradass, R. Tribological and surface behavior of silicon carbide reinforced aluminum matrix nanocomposite. *Surf. Interfaces* 2017, 8, 127–136. [CrossRef]

22. Maleki, A.; Taherzadeh, A.R.; Issa, H.K.; Niroumand, B.; Allafchian, A.R.; Ghaei, A. Development of a new magnetic aluminum matrix nanocomposite. *Ceram. Int.* 2018, 44, 15079–15085. [CrossRef]

23. Jabbari, A.H.; Delavari, H.; Sedighi, M. High cycle fatigue behavior of magnesium matrix nanocomposite at elevated temperatures. *Mach. Mater.* 2020, 142, 103278. [CrossRef]

24. AlMangour, B.; Grzesiak, D.; Yang, J.M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. *Mater. Des.* 2016, 96, 150–161. [CrossRef]

25. Fathy, A.; Elkady, O.; Abu-Oqail, A. Microstructure, mechanical and wear properties of Cu–ZrO2 nanocomposites. *Mater. Sci. Technol.* 2017, 33, 2138–2146. [CrossRef]

26. Chawla, K.K. *Composite Materials: Science and Engineering*, 3rd ed.; Springer: New York, NY, USA, 2012; ISBN 978038734653.

27. Sharma, D.K.; Mahant, D.; Upadhyay, G. Manufacturing of metal matrix composites: A state of review. *Mater. Today Proc.* 2019, 26, 506–519. [CrossRef]

28. Sharma, A.K.; Bhandari, R.; Aherwar, A.; Pinca-Bretotean, C. A study of fabrication methods of aluminum based composites focused on stir casting process. *Mater. Today Proc.* 2020, 27, 1608–1612. [CrossRef]

29. Guan, Z.; Hwang, I.; Li, X. Highly Concentrated WC Reinforced Ag Matrix Nanocomposite Manufactured by Molten Salt Assisted Stir Casting. *Proc. Manuf.* 2018, 26, 146–151. [CrossRef]

30. Chandra Kandpal, B.; Kumar, J.; Singh, H. Manufacturing and technological challenges in Stir casting of metal matrix composites—A Review. *Mater. Today Proc.* 2018, 5, 5–10. [CrossRef]

31. Kandpal, B.C.; Kumar, J.; Singh, H. Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting. *Mater. Today Proc.* 2017, 4, 2783–2792. [CrossRef]

32. Kumar Koli, D.; Agnihotri Professor, G.; Professor, A. Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review) Rajesh Purohit. *Int. J. Latest Trends Eng. Technol.* 2013, 2, 486–496.
33. Prasad Reddy, A.; Vamsi Krishna, P.; Rao, R.N. Mechanical and Wear Properties of Aluminum-Based Nanocomposites Fabricated through Ultrasonic Assisted Stir Casting. J. Test. Eval. 2020, 48, 20170560. [CrossRef]

34. Etemadi, R.; Wang, B.; Pillai, K.M.; Niroumand, B.; Omrani, E.; Rohatgi, P. Pressure infiltration processes to synthesize metal matrix composites–A review of metal matrix composites, the technology and process simulation. Mater. Manuf. Process. 2018, 33, 1261–1290. [CrossRef]

35. Orbulo, I.N.; Németh, A.; Dobrászsky, J. Composite production by pressure infiltration. Mater. Sci. Forum 2008, 589, 137–142. [CrossRef]

36. Blucher, J.T.; Dobranszky, J.; Narusawa, U. Aluminium double composite structures reinforced with composite wires. Mater. Sci. Eng. A 2004, 387–389, 867–872. [CrossRef]

37. Blucher, J.T.; Narusawa, U.; Katsumata, M.; Nemeth, A. Continuous manufacturing of fiber-reinforced metal matrix composite wires—Technology and product characteristics. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1759–1766. [CrossRef]

38. Cramer, C.L.; Edwards, M.S.; McMurray, J.W.; Elliott, A.M.; Lowden, R.A. Lightweight TiC–(Fe–Al) ceramic–metal composites made in situ by pressureless melt infiltration. J. Mater. Sci. 2019, 54, 12573–12581. [CrossRef]

39. Yu, W.H.; Sing, S.L.; Chua, C.K.; Kuo, C.N.; Tian, X.L. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog. Mater. Sci. 2019, 104, 330–379. [CrossRef]

40. Li, B.; Zhang, W.; Zhang, W.; Huan, Y. Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition. J. Alloys Compd. 2017, 702, 38–50. [CrossRef]

41. Fayyad, E.M.; Hassan, M.K.; Rasool, K.; Mohamed, A.M.A.; Jarjoura, G.; Farhat, Z.; Abdullah, A.M. Novel electroless deposited corrosion—Resistant and anti-bacterial NiP–TiNi nanocomposite coatings. Surf. Coat. Technol. 2019, 369, 323–333. [CrossRef]

42. Farzaneh, A.; Ehteshamzadeh, M.; Can, M.; Mermer, O.; Okur, S. Effects of SiC Particles Size on Electrochemical Properties of Electroless Ni-P-SiC Nanocomposite Coatings 1. Prot. Met. Phys. Chem. Surf. 2016, 52, 632–636. [CrossRef]

43. Czagánya, M.; Bauml, P. Effect of surfactants on the behavior of Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings. Surf. Coat. Technol. 2019, 361, 42–49. [CrossRef]

44. Canakci, A.; Varol, T.; Erdemir, F.; Canakci, B.A. The Effect of Flake Powder Metallurgy on the Microstructure and Densification Behavior of B4C Nanoparticle-Reinforced Al-Cu-Mg Alloy Matrix Nanocomposites. Arab. J. Sci. Eng. 2016, 41, 1781–1796. [CrossRef]

45. Ramachandra, M.; Abhishek, A.; Siddeshwar, P.; Bharathi, V. Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy. Procedia Mater. Sci. 2015, 10, 212–219. [CrossRef]

46. Casati, R.; Bonollo, F.; Dellasega, D.; Fabrizi, A.; Timelli, G.; Tuissi, A.; Vedani, M. Ex situ Al-Al2O3 ultrafine grained nanocomposites produced via powder metallurgy. J. Alloys Compd. 2015, 615, S386–S388. [CrossRef]

47. Toozandehjani, M.; Matori, K.; Ostovan, F.; Abdul Aziz, S.; Mamat, M. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy. Materials 2017, 10, 1232. [CrossRef] [PubMed]

48. Akbarpour, M.R.; Pouresmaeil, A. The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flame powder metallurgy and hot pressing method. Diam. Relat. Mater. 2018, 88, 6–11. [CrossRef]

49. Akbarpour, M.R. Analysis of Load Transfer Mechanism in Cu Reinforced with Carbon Nanotubes Fabricated by Powder Metallurgy Route. J. Mater. Eng. Perform. 2016, 25, 1749–1756. [CrossRef]

50. Sadooghi, A.; Hashemi, S.J. Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process. Mater. Res. Express 2019, 6, 1–19. [CrossRef]

51. Kaptay, G. Interfacial Forces in Dispersion Science and Technology. J. Dispers. Sci. Technol. 2012, 33, 130–140. [CrossRef]

52. Kaptay, G. Classification and general derivation of interfacial forces, acting on phases, situated in the bulk, or at the interface of other phases. J. Mater. Sci. 2005, 40, 2125–2131. [CrossRef]

53. Kaptay, G. A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Adv. Colloid Interface Sci. 2020, 283, 102212. [CrossRef] [PubMed]
54. Eustathopoulos, N.; Nicholas, M.G.; Drevet, B.B. Wettability at High Temperatures; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, ISBN 0080421466.

55. Delannay, F.; Froyen, L.; Deruyttere, A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J. Mater. Sci. 1987, 22, 1–16. [CrossRef]

56. Kaptay, G. Interfacial phenomena during melt processing of ceramic particle-reinforced metal matrix composites part I. Introduction (incorporation) of solid particles into melts. Mater. Sci. Forum 1996, 215–216, 459–466. [CrossRef]

57. Asthana, R.; Tewari, S.N. Interfacial and capillary phenomena in solidification processing of metal-matrix composites. Compos. Manuf. 1993, 4, 3–25. [CrossRef]

58. Kaptay, G. Interfacial Aspects to Produce Particulate Reinforced Metal Matrix Composites. In Affordable Metal-Matrix Composites for High Performance Applications II; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 71–99.

59. Hashim, J.; Looney, L.; Hashmi, M.S.J. Metal matrix composites: Production by the stir casting method. J. Mater. Process. Technol. 1999, 92–93, 1–7. [CrossRef]

60. Li, X.; Yang, Y.; Cheng, X. Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 2004, 39, 3211–3212. [CrossRef]

61. Rajan, T.P.D.; Pillai, R.M.; Pai, B.C. Reinforcement coatings and interfaces in metal matrix composites. J. Mater. Sci. 1998, 33, 3491–3503. [CrossRef]

62. Takács, D.; Sziráki, L.; Török, T.I.; Sólyom, J.; Gácsy, Z.; Gál-Solymos, K. Effects of pre-treatments on the corrosion properties of electroless Ni-P layers deposited on AlMg2 alloy. Surf. Coat. Technol. 2007, 201, 4526–4535. [CrossRef]

63. Czagány, M.; Baumlí, P.; Kaptay, G. The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel. Appl. Surf. Sci. 2017, 423. [CrossRef]

64. Xia, Z.; Zhou, Y.; Mao, Z.; Shang, B. Fabrication of fiber-reinforced metal matrix composites by variable pressure infiltration. Metall. Trans. B 1992, 23, 295–302. [CrossRef]

65. Rams, J.; Ureña, A.; Escalera, M.D.; Sánchez, M. Electroless nickel coated short carbon fibres in aluminium matrix composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 566–575. [CrossRef]

66. Ureña, A.; Rams, J.; Escalera, M.D.; Sánchez, M. Effect of copper electroless coatings on the interaction between a molten Al-Si-Mg alloy and coated short carbon fibres. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1947–1956. [CrossRef]

67. Alten, A.; Erzi, E.; Gürsöy, Ö.; Haç méth Öğlu, G.; Dispinar, D.; Orhan, G. Production and mechanical characterization of Ni-coated carbon fibers reinforced Al-6063 alloy matrix composites. J. Alloys Compd. 2019, 787, 543–550. [CrossRef]

68. León, C.A.; Drew, R.A.L. The influence of nickel coating on the wettability of aluminum on ceramics. In Composites Part A: Applied Science and Manufacturing; Elsevier: Amsterdam, The Netherlands, 2002; Volume 33, pp. 1429–1432.

69. Kretz, F.; Gácsi, Z.; Kovács, J.; Pieczonka, T. The electroless deposition of nickel on SiC particles for aluminum matrix composites. Surf. Coat. Technol. 2004, 180–181, 575–579. [CrossRef]

70. Trespaille-Barrau, P.; Suéry, M. Microstructural and mechanical characterisation of aluminium matrix composites reinforced with Ni and NiP coated SiC particles via liquid processing, Mater. Sci. Technol. 1994, 10, 497–504. [CrossRef]

71. Huang, C.W.; Huang, Y.F.; Aoh, J.N. Strengthening mechanisms of aluminum matrix composite containing Cu-coated SiC particles produced by friction stir processing. J. Chinese Inst. Eng. Trans. Chin. Inst. Eng. A 2019, 42, 653–663. [CrossRef]

72. Huang, C.-W.; Aoh, J.-N. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite. Materials 2018, 11, 599. [CrossRef]

73. Abolkassem, S.A.; Elkady, O.A.; Elsayed, A.H.; Hussein, W.A.; Yehya, H.M. Effect of consolidation techniques on the properties of Al matrix composite reinforced with nano Ni-coated SiC. Results Phys. 2018, 9, 1102–1111. [CrossRef]

74. Zou, G.; Cao, M.; Lin, H.; Jin, H.; Kang, Y.; Chen, Y. Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technol. 2006, 168, 84–88. [CrossRef]
75. Körner, C.; Schäff, W.; Ottmüller, M.; Singer, R.F. Carbon Long Fiber Reinforced Magnesium Alloys. *Adv. Eng. Mater.* 2000, 2, 327–337. [CrossRef]
76. Xu, Q.G.; Guo, L.W.; Zhang, L.; Liu, H. Wettability of zirconium-coated alumina by molten aluminium. *Surf. Coat. Technol.* 2016, 302, 150–157. [CrossRef]
77. Kaptay, G.; Bädé, E.; Bolyán, L. Interfacial forces and energies relevant to production of metal matrix composites. *Mater. Sci. Forum* 2000, 329, 151–156. [CrossRef]
78. Ip, S.W.; Sridhar, R.; Toguri, J.M.; Stephenson, T.F.; Warner, A.E.M. Wettability of nickel coated graphite by aluminum. *Mater. Sci. Eng. A* 1998, 244, 31–38. [CrossRef]
79. Silva, V.L.; Fernandes, C.M.; Senos, A.M.R. Copper wettability on tungsten carbide surfaces. *Ceram. Int.* 2016, 42, 1191–1196. [CrossRef]
80. Kong, B.; Fan, T.; Ru, J. Improved wetting and thermal properties of graphite-Cu composite by Cr-solution immersion method. *Diam. Relat. Mater.* 2016, 65, 191–197. [CrossRef]
81. Zhao, Y.; Wang, Y.; Zhou, Y.; Shen, P. Reactive wetting and infiltration of polycrystalline WC by molten Zr2Cu alloy. *Scr. Mater.* 2011, 64, 229–232. [CrossRef]
82. Lin, Q.; Sui, R. Wetting of carbide ceramics (B4C, SiC, TiC and ZrC) by molten Ni at 1753 K. *J. Alloys Compd.* 2015, 649, 505–514. [CrossRef]
83. Wang, H.; Yang, J.; Meng, J.; Yang, Y.; Zhou, Y. Wettability and interfacial reactions of a low Hf-containing nickel-based superalloy on Al2O3-based, SiO2-based, ZrSiO4, and CoAl2O4 substrates. *Ceram. Int.* 2020, 46, 22057–22066. [CrossRef]
84. Roy, R.R.; Sahai, Y. Coalescence behavior of aluminum alloy drops in molten salts. *Mater. Trans. JIM* 1997, 38, 995–1003. [CrossRef]
85. Juhasz, K.L.; Baumli, P.; Kaptay, G. Fabrication of carbon fibre reinforced, aluminium matrix composite via a titanium-ion containing flux. *Materwiss. Werksttech.* 2012, 43. [CrossRef]
86. Baumli, P.; Sychev, J.; Budai, I.; Szabo, J.T.; Kaptay, G. Fabrication of carbon fiber reinforced aluminum matrix composites via a titanium-ion containing flux. *Compos. Part A Appl. Sci. Manuf.* 2013, 44, 47–50. [CrossRef]
87. López, V.H.; Kennedy, A.R. Flux-assisted wetting and spreading of Al on TiC. *J. Colloid Interface Sci.* 2006, 298, 356–362. [CrossRef] [PubMed]
88. Kennedy, A.R.; Karantzalis, A.E. The incorporation of ceramic particles in molten aluminium and the relationship to contact angle data. *Mater. Sci. Eng. A* 1999, 264, 122–129. [CrossRef]
89. Rocher, J.P.; Quenisset, J.M.; Naslain, R. Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF7, KBF4, K2ZrF6, KBF4-K2ZrF6, K2ZrF6, KBF4-K2ZrF6 reaction system. *Arch. Metall. Mater.* 2017, 62. [CrossRef]
90. Lekatou, A.; Gkikas, N.; Karantzalis, A.E.; Kaptay, G.; Gacsi, Z.; Baumli, P.; Simon, A. Effect of Wetting Agent and Carbide Volume Fraction on the Wear Response of Aluminum Matrix Composites Reinforced by WC Nanoparticles and Aluminide Particles. *Arch. Metall. Mater.* 2017, 62. [CrossRef]
91. Mohan, P.; Azhagesan, N.; Sivapragash, M. The preparation and mechanical properties of Al metal matrix composites by in-situ method. *Int. J. Comput. Aided Eng. Technol.* 2018, 10, 35–41. [CrossRef]
92. Birol, Y. In situ synthesis of Al-TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium. *J. Alloys Compd.* 2008, 454, 110–117. [CrossRef]
93. Mahamani, A.; Jayasree, A.; Mounika, K.; Prasad, K.R.; Sakthivelan, N. Evaluation of mechanical properties of AA6061-TiB2/ZrB2 in-situ metal matrix composites fabricated by K2TiF6-KBF4-K2ZrF6 reaction system. *Int. J. Microstruct. Mater. Prop.* 2015, 10, 185–200. [CrossRef]
94. Mallikarjuna, C.; Shashidhara, S.M. The Precipitation Of TiB2 in Aluminum Alloy Melts from the Exothermic Reaction of K2TiF6 and KBF4 Halide Salts and Evaluation of Its Mechanical Properties. In *Proceedings of the World Congress on Engineering and Computer Science 2007*; Newswood Limited: San Francisco, CA, USA, 2007; pp. 189–194. ISBN 9789889867164.
95. Kim, D.Y.; Lee, Y.J.; Lee, T.H.; Lee, K.H.; Nersisyan, H.H.; Han, M.H.; Jeong, S.U.; Kang, K.S.; Bae, K.K.; Lee, J.H. Aluminothermic reduction of K2TiF6 to prepare TiC, TiB2, and TiN nanoparticles. *Combust. Sci. Technol.* 2014, 186, 90–101. [CrossRef]
96. Gupta, R.; Chaudhari, G.P.; Daniel, B.S.S. Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al2Ti by salt addition. *Compos. Part B Eng.* 2018, 140, 27–34. [CrossRef]
97. Li, D.; Li, B.; Du, S.; Zhang, W. Synthesis of a novel Ni-B/YSZ metal-ceramic composite coating via single-step electrodeposition at different current density. *Ceram. Int.* 2019, 45, 24884–24893. [CrossRef]

98. Li, B.; Zhang, W.; Huan, Y.; Dong, J. Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor. *Surf. Coat. Technol.* 2018, 337, 186–197. [CrossRef]

99. Ratajski, T.; Kalemba-Rec, I.; Indyka, P.; Ledwig, P.; Szczerba, M.J.; Dubiel, B. Effect of PDDA surfactant on the microstructure and properties of electrodeposited SiO2/Ni nanocomposites. *Mater. Charact.* 2020, 163, 110229. [CrossRef]

100. Qu, N.S.; Zhu, D.; Chan, K.C. Fabrication of Ni–CeO2 nanocomposite by electrodeposition. *Scr. Mater.* 2006, 54, 1421–1425. [CrossRef]

101. Rasooli, A.; Safavi, M.S.; Babaei, F.; Ansarian, A. Electrodeposited Ni–Fe–Cr nanocomposites: A survey of influences of Cr2O3 nanoparticles loadings in the electrolyte. *J. Alloys Compd.* 2020, 822, 153725. [CrossRef]

102. Fayyad, E.M.; Abdullah, A.M.; Mohamed, A.M.A.; Jarjoura, G.; Farhat, Z.; Hassan, M.K. Effect of electroless bath composition on the mechanical, chemical, and electrochemical properties of new NiP–C3N4 nanocomposite coatings. *Surf. Coat. Technol.* 2019, 362, 239–251. [CrossRef]

103. Dhalak, D.R.; Gyawali, G.; Kshetri, Y.K.; Choi, J.H.; Lee, S.W. Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating. *Surf. Coat. Technol.* 2020, 381. [CrossRef]

104. Hanachi, M.; Seyedraoufi, Z.S.; Abouei, V. Advanced Ceramics Progress Investigation of Microstructure, Hardness, and Corrosion Resistance of Ni-P-GO Electroless Nanocomposite Coating on AZ31D Alloy Surface. *Adv. Ceram. Prog.* 2020, 6, 55–62. [CrossRef]

105. Gholizadeh-Gheshlaghi, M.; Seifzadeh, D.; Shoghi, P.; Habibi-Yangjeh, A. Electroless Ni-P-nano-WO3 coating and its mechanical and corrosion protection properties. *J. Alloys Compd.* 2018, 769, 149–160. [CrossRef]

106. Akyol, A.; Algul, H.; Uysal, M.; Akbulut, H.; Alp, A. A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions. *Appl. Surf. Sci.* 2018, 453, 482–492. [CrossRef]

107. MacLean, M.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M. Fabrication and investigation of the scratch and indentation behaviour of new generation Ni-P-nano-NiTi composite coating for oil and gas pipelines. *Wear* 2019, 426–427, 265–276. [CrossRef]

108. León-Patiño, C.A.; García-Guerra, J.; Aguilar-Reyes, E.A. Tribological characterization of heat-treated Ni-P and Ni-P-Al2O3 composite coatings by reciprocating sliding tests. *Wear* 2019, 426–427, 330–340. [CrossRef]

109. Hashemi, S.H.; Ashrafi, A. Characterisations of low phosphorus electroless Ni and composite electrophoresis Ni-P-SiC coatings on A356 aluminium alloy. *Trans. Inst. Met. Finish.* 2018, 96, 52–56. [CrossRef]

110. Sudagar, J.; Lian, J.; Sha, W. Electroless nickel, alloy, composite and nano coatings—A critical review. *J. Alloys Compd.* 2013, 571, 183–204. [CrossRef]

111. Kaya, B.; Gulmez, T.; Demirkol, M. Study on the electroless Ni-B nano-composite coatings. *AlP* 2009, 1127, 62–73.

112. Wang, L.Y.; Tu, J.P.; Chen, W.X.; Wang, Y.C.; Liu, X.K.; Olk, C.; Cheng, D.H.; Zhang, X.B. Friction and wear behavior of electroless Ni-based CNT composite coatings. *Wear* 2003, 254, 1289–1293. [CrossRef]

113. Xu, H.; Yang, Z.; Li, M.K.; Shi, Y.L.; Huang, Y.; Li, H.L. Synthesis and properties of electroless Ni-P-Nanometer Diamond composite coatings. *Surf. Coat. Technol.* 2005, 191, 161–165. [CrossRef]

114. Chintada, V.B.; Koona, R. Preparation and properties of composite electroless Ni-P-ZnO coatings. *Mater. Res. Innov.* 2020, 24, 67–74. [CrossRef]

115. Franco, M.; Sha, W.; Aldic, G.; Malinov, S.; Çimenoğlu, H. Effect of Reinforcement and Heat Treatment on Elevated Temperature Sliding of Electroless Ni–P/SiC Composite Coatings; Elsevier: Amsterdam, The Netherlands, 2016.

116. Dong, D.; Chen, X.H.; Xiao, W.T.; Yang, G.B.; Zhang, P.Y. Preparation and properties of electroless Ni-P-SiO2 composite coatings. *Appl. Surf. Sci.* 2009, 255, 7051–7055. [CrossRef]

117. Gadhari, P.; Sahoo, P. Optimization of Coating Process Parameters to Improve Microhardness of Ni-P-TiO2 Composite Coating. *Mater. Today Proc.* 2015, 2, 2367–2374. [CrossRef]

118. Zielinska, K.; Stankiewicz, A.; Szczygiet, I. Electroless deposition of Ni-P-nano-ZrO2 composite coatings in the presence of various types of surfactants. *J. Colloid Interface Sci.* 2012, 377, 362–367. [CrossRef] [PubMed]

119. Hamid, Z.A.; El Badry, S.A.; Aal, A.A. Electroless deposition and characterization of Ni-P-WC composite alloys. *Surf. Coat. Technol.* 2007, 201, 5948–5953. [CrossRef]
120. Dhakal, D.R.; Gyawali, G.; Kshetri, Y.K.; Choi, J.-H.; Lee, S.W. Influence of SiC and TiC nanoparticles reinforcement on the microstructure, tribological, and scratch resistance behavior of electroless Ni-P coatings. *Nanotechnology* **2020**, *31*, 104001. [CrossRef]

121. Rana, A.R.K.; Farhat, Z. Preparation and tribological characterization of graphene incorporated electroless Ni-P composite coatings. *Surf. Coat. Technol.* **2019**, *369*, 334–346. [CrossRef]

122. Salari Mehr, M.; Akbari, A.; Damerchi, E. Structural and Electrochemical Properties of Electrodeposited Ni–P nanocomposite Coatings Containing Mixed Ceramic Oxide Particles. *Int. J. Electrochem. Sci.* **2016**, *11*, 7020–7030. [CrossRef]

123. Zadeh, K.M.; Shakoor, R.A.; Radwan, A.B. A Structural and Electrochemical Properties of Electrodeposited Ni–P nanocomposite Coatings Containing Mixed Ceramic Oxide Particles. *Int. J. Electrochem. Sci.* **2016**, *11*, 7020–7030. [CrossRef]

124. Liu, C.; Wei, D.; Xu, R.; Mai, Y.; Zhang, L.; Jie, X. Electroplated Co-Ni composite coatings with excellent tribological properties. *Surf. Coat. Technol.* **2019**, *373*, 38–46. [CrossRef]

125. Afroukhteh, S.; Dehghanian, C.; Emamy, M. Electrodeposited Ni-B/SiC micro- and nano-composite coatings: A comparative study. *J. Alloys Compd.* **2019**, *782*, 477–487. [CrossRef]

126. He, Y.; Wang, S.; Sun, W.; Reed, P.A.S.; Walsh, F.C. Synthesis and properties of electrodeposited Ni-Co/WS2 nanocomposite coatings. *Coatings* **2019**, *9*, 148. [CrossRef]

127. Liu, C.; Wei, D.; Xu, R.; Mai, Y.; Zhang, L.; Jie, X. Electroplated Co-Ni/WS2 Composite Coating with Excellent Tribological and Anticorrosion Performance. *Tribol. Trans.* **2020**, 1–12. [CrossRef]

128. Goyal, A. Nanoscale structural defects in electrodeposited NiAl2O3 composite coatings. *Surf. Coat. Technol.* **2017**, *319*, 23–32. [CrossRef]

129. He, Y.D.; Fu, H.F.; Li, X.G.; Gao, W. Microstructure and properties of mechanical attrition enhanced electroless Ni-P plating on magnesium alloy. *Scr. Mater.* **2008**, *58*, 504–507. [CrossRef]

130. Cheong, W.J.; Luan, B.L.; Shoesmith, D.W. Protective coating on Mg AZ91D alloy—The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni-P deposit. *Corros. Sci.* **2007**, *49*, 1777–1798. [CrossRef]

131. Cheong, W.J.; Luan, B.L.; Shoesmith, D.W. The effects of stabilizers on the bath stability of electroless Ni deposition and the deposit. *Appl. Surf. Sci.* **2004**, *229*, 282–300. [CrossRef]

132. Balaraju, J.N.; Sankara Narayanan, T.S.N.; Seshadri, S.K. Electroless Ni-P composite coatings. *Surf. Coat. Technol.* **2003**, *33*, 807–816. [CrossRef]

133. Liu, D.; Yan, Y.; Lee, K.; Yu, J. Effect of surfactant on the alumina dispersion and corrosion behavior of electroless Ni-P-Al2O3 composite coatings. *Mater. Corros.* **2009**, *60*, 690–694. [CrossRef]

134. TiC particles and evaluation of it’s corrosion property. *Appl. Surf. Sci.* **2012**, *258*, 2597–2601. [CrossRef]
143. Chen, B.H.; Hong, L.; Ma, Y.; Ko, T.M. Effects of surfactants in an electroless nickel-plating bath on the properties of Ni-P alloy deposits. *Ind. Eng. Chem. Res.* **2002**, *41*, 2668–2678. [CrossRef]

144. Amaral, M.; Lopes, M.A.; Santos, J.D.; Silva, R.F. Wettability and surface charge of Si$_3$N$_4$-bioglass composites in contact with simulated physiological liquids. *Biomaterials* **2002**, *23*, 4123–4129. [CrossRef]

145. Nishizawa, K.; Toriyama, M.; Suzuki, T.; Kawamoto, Y.; Yokogawa, Y.; Nagae, H. Effects of the surface wettability and zeta potential of bioceramics on the adhesiveness of anchorage-dependent animal cells. *J. Ferment. Bioeng.* **1993**, *75*, 435–437. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.