Chordal directed graphs are not directed χ-bounded

Pierre Aboulker1, Nicolas Bousquet2, Rémi de Verclos3

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France.
 pierreaboulker@gmail.com
2 Univ. Lyon, Université Lyon 1, LIRIS, UMR CNRS 5205, F-69621, Lyon, France
 first.last@univ-lyon1.fr
3 remi.de.joannis.de.verclos@ens-lyon.org

Abstract

We show that digraphs with no transitive tournament on 3 vertices and in which every induced directed cycle has length 3 can have arbitrarily large dichromatic number. This answers to the negative a question of Carbonero, Hompe, Moore, and Spirkl (and strengthens one of their results).

1 Introduction

Throughout this paper, we only consider simple graphs (resp. directed graph) G, that is, for every two distinct vertices u and v, the graph G does not have multiple edges (resp. both arcs uv and vu).

Relations between the chromatic number $\chi(G)$ and the clique number $\omega(G)$ of a graph G have been studied for decades in structural graph theory. In particular, it is well known that there exist triangle-free graphs G with arbitrarily large chromatic number (see e.g. \cite{3,9}). A hereditary class of graphs is χ-bounded if there exists a function f such that for every $G \in \mathcal{G}$, $\chi(G) \leq f(\omega(G))$ (see e.g. a recent survey \cite{7} on the topic). The following question received considerable attention in the last few years: Consider a hereditary class of graphs \mathcal{G} in which every triangle-free graph has bounded chromatic number. Is it true that \mathcal{G} is χ-bounded? Carbonero, Hompe, Moore and Spirkl \cite{2} answered to it by the negative in a recent breakthrough paper.

Their initial motivation was actually to prove a result on digraphs. Let D be a digraph. A k-dicolouring of D is a k-partition (V_1, \ldots, V_k) of $V(D)$ such that $D[V_i]$ is acyclic for every $1 \leq i \leq k$. Such a partition is also called an acyclic colouring of D. The dichromatic number of D, denoted by $\overrightarrow{\chi}(D)$ and introduced by Neumann-Lara in \cite{6}, is the smallest integer k such that D admits a k-dicolouring. We denote by $\omega(D)$ the size of a largest clique in the underlying graph of D. We call directed triangle the directed cycle of length 3. As for unoriented graphs, we say that a hereditary class of digraphs \mathcal{G} is $\overrightarrow{\chi}$-bounded if for every $G \in \mathcal{G}$, $\overrightarrow{\chi}(G) \leq f(\omega(G))$.

Carbonero, Hompe, Moore and Spirkl \cite{2} proved that the class of digraphs with no induced directed cycle of odd length at least 5 is not $\overrightarrow{\chi}$-bounded by giving a collection of digraphs with no induced directed cycle of odd length at least 5, no K_4 and with arbitrarily large dichromatic number. They ask (Question 3.2) if the class of digraphs in which every induced directed cycle has length 3.
length 3 is $\overline{\chi}$-bounded. These digraphs can be seen as directed analogues of chordal graphs, where a chordal directed graph is a directed graph with no induced directed cycle of length at least 4.

We answer negatively to this question (and thus strengthen the construction of [2]). Let us denote by TT_3 the transitive tournament on 3 vertices (i.e. the triangle which is oriented acyclically). Let C_3 be the class of digraphs with no TT_3 nor induced directed cycle of length at least 4. We prove the following.

Theorem 1. For every k, there exists $G \in C_3$ such that $\overline{\chi}(G) \geq k$.

Since any orientation of a K_4 contains a TT_3, it answers Question 3.2 of [2].

2 Proof of Theorem 1

Our proof technique can be seen as a generalization of the construction of triangle-free graphs with arbitrarily large chromatic number due to Zykov [9]. Assume that we are given a triangle-free graph G_k with chromatic number at least k, and let us define G_{k+1} as follows (note that we can set G_1 as a single vertex graph). Let G be the graph made of k disjoint copies of G_k. Set I to be the set of all k-subsets of vertices of G containing exactly one vertex in each copy of G_k. Now, build the graph G_{k+1} from G as follows: for every set $I \in I$, create a new vertex x_I adjacent to every vertex in I. The key observation is that, for any colouring of G_{k+1}, for each $I \in I$, the vertex x_I forces I to miss at least one colour, namely the one received by x_I. This easily implies that G_{k+1} is not k-colourable. Indeed, if one tries to k-colour G_{k+1}, since G_k has chromatic number k, there must be a vertex x_i coloured i in the i^{th} copy of G_k for every $i \leq k$. A contradiction with the key observation above. Moreover, since each set of I is an independent set, G_{k+1} is triangle-free.

For digraphs, such a naive construction fails since adjacent vertices are allowed to receive the same colour. A way to force a given independent set I of a digraph D to avoid a colour (without creating induced directed cycle of length at least 4 nor TT_3) is to connect each vertex of I to an arc uv (instead of a single vertex as in the directed case) in such a way that each vertex of I forms a directed triangle with uv and then hope that the two vertices u and v receive the same colour. Unfortunately we cannot force an arc to have both endpoints of the same colour. But we have for a slightly weaker property, namely:

Remark 1. Let $G \in C_3$ be a directed graph with at least one arc. Any $\overline{\chi}(G)$-dicourloring of G contains at least one monochromatic arc.

Proof. The result trivially holds if $\overline{\chi}(G) = 1$, so we may assume that $\overline{\chi}(G) \geq 2$. Let $V_1, \ldots, V_{\overline{\chi}(G)}$ be a $\overline{\chi}(G)$-dicourloring of G. The set $V_1 \cup V_2$ must contain an induced directed cycle C since otherwise G would be $(\overline{\chi}(G) - 1)$-dicourlurable. (Indeed, a colouring of the vertices of a digraph is acyclic if and only if none of its induced directed cycle is monochromatic). Hence, by definition of C_3, $V_1 \cup V_2$ contains a directed triangle, and an arc of this directed triangle must have both endpoints in V_1 or both endpoints in V_2. \qed

Let G be a k-chromatic digraph and I be an independent set of G. Using Remark 1, we prove that we can create a graph G' containing many copies of G such that, for every k-coloring of G', there is one copy of G in G' where the vertices of I (in that copy) miss at least one color (Lemma 2). We then extend this result for arbitrarily many independent sets (Lemma 3). We then prove Theorem 1 using Lemma 3 as in Zykov’s construction.
Lemma 2. Let k be an integer. Let $G \in \mathcal{C}_3$ with n vertices and m arcs, and such that $\chi(G) = k$. Let I be an independent set of G. Then there exists a digraph $H \in \mathcal{C}_3$ such that H contains m pairwise disjoint copies G_1, \ldots, G_m of G and satisfy the following:

- For every $1 \leq i \neq j \leq m$, there is no arc between G_i and G_j;
- For every k-dicolouring of H, there exists an index $i \leq m$ and a colour α such that no vertex of the copy of I in G_i is coloured with α.

Moreover H has $n \cdot (m + 1) \leq n^4$ vertices and at most $m(m + 1) + mn^2 \leq n^4$ arcs.

Proof. Let us first describe the construction of H. We first create $m + 1$ pairwise disjoint copies of G denoted by $G_1, \ldots, G_m, G_{m+1}$. For every $i \leq m$, let I_i be the copy of I in G_i. Let us denote $u_1^{m+1}v_1^{m+1}, \ldots, u_m^{m+1}v_m^{m+1}$ the arcs of G_{m+1}. We add in H some arcs between the G_i ($i \leq m$) and G_{m+1} as follows. For every $i \leq m$ and for every vertex $x \in I_i$, add the arcs $v_i^{m+1}x$ and xu_i^{m+1} in H.

Observe that H has $n \cdot (m + 1)$ vertices and $m \cdot (m + 1) + 2m \cdot |I| \leq n^4$ arcs as announced.

By construction, for every $1 \leq i \neq j \leq m$, there is no arc between G_i and G_j, so the first bullet holds.

Let c be a k-dicolouring of H. By Remark [1] G_{m+1} has a monochromatic arc, say $u_i^{m+1}v_i^{m+1}$. Let α be the colour of u_i^{m+1} and v_i^{m+1} in c. Then, for every vertex $x \in I_i$, x is not coloured with α since $H[\{u_i, v_i, x\}]$ is a directed triangle. This proves the second bullet.

To conclude, we simply have to prove that $H \in \mathcal{C}_3$. First assume for contradiction that H contains a copy X of a TT_3 as a subgraph. Since there is no arc between G_i and G_j for $1 \leq i \neq j \leq m$, X intersects at most one of the graphs G_i for $i \leq m$. Moreover, since G is in \mathcal{C}_3, X is not included in G_i for $i \leq m + 1$. So X must intersect G_{m+1} and some G_i for some $i \leq m$. Assume first that X contains two vertices of G_{m+1}. By construction, the only vertices of G_{m+1} connected to G_i are u_i^{m+1} and v_i^{m+1}. So both vertices are in X. Moreover, the only vertices of G_i connected to G_{m+1} are the vertices of I_i so the third vertex must be a vertex x of I_i. But by construction, $G[\{x, u_i^{m+1}, v_i^{m+1}\}]$ is a directed triangle, a contradiction. So we can assume that X contains two vertices of G_i. Since X is a TT_3, they must be adjacent and both be adjacent to a vertex of G_{m+1}. But, by construction, the only vertices of G_i connected to G_{m+1} are the vertices of I_i which is an independent set, a contradiction. So H contains no TT_3.

Finally, assume for contradiction that H contains a directed cycle C of length at least 4 as an induced subgraph. Since $G \in \mathcal{C}_3$, C is not contained in G_i for $i = 1, \ldots, m + 1$. Since there is no arc between G_i and G_j for $1 \leq i \neq j \leq m$, the cycle C intersects G_{m+1} and we may assume without loss of generality that C also intersects G_1. So C contains u_1^{m+1} or v_1^{m+1}. Since, by construction, u_1^{m+1} has no out-neighbour in G_1 and v_1^{m+1} has no in-neighbour in G_1, C must contain both u_1^{m+1} and v_1^{m+1} (since the deletion of u_1^{m+1} and v_1^{m+1} disconnects G_1 from the rest of the graph). But now all the vertices of G_1 incident to u_1 or v_1 are the vertices x of I. And by construction, for every $x \in I$, $H[\{u_1^{m+1}, v_1^{m+1}, x\}]$ is a directed triangle, a contradiction.

Lemma 3. Let k, r be two integers. Let $G \in \mathcal{C}_3$ such that $\chi(G) = k$ and let I_1, \ldots, I_r be r independent sets of G. There exist an integer ℓ_r and a digraph $H \in \mathcal{C}_3$ such that H contains ℓ_r pairwise disjoint copies G_1, \ldots, G_{ℓ_r} of G such that:

- For every $1 \leq i \neq j \leq m$, there is no arc between G_i and G_j;
• For every k-dicolouring of H, there exists an index $j \leq \ell_r$ such that, for every $s \leq r$, there exists a colour α_s such that no vertex of the copy of I_s in G_j is coloured with α_s.

Moreover H contains at most n^{4r} vertices and arcs.

Proof. We now have all the ingredients to prove Lemma\ref{lem:approx} by induction on r. By Lemma\ref{lem:3} the case $r = 1$ holds.

Assume that the conclusion holds for $r \geq 1$ and let us prove the result for $r + 1$. Let $G \in \mathcal{C}_3$ with $\bar{\chi}(G) = k$ and let I_1, \ldots, I_{r+1} be $r + 1$ independent sets of G. By induction applied on G and independent sets I_1, \ldots, I_r, there exists an integer ℓ_r and a digraph $H_r \in \mathcal{C}_3$ such that H_r contains ℓ_r pairwise disjoint copies $G_{1}, \ldots, G_{\ell_r}$ of G such that:

• For every $1 \leq i \neq j \leq \ell_r$, there is no arc between G_i and G_j;

• For every k-dicolouring of H_r, there exists an index $j \leq \ell_r$ such that, for $s = 1, \ldots, r$, there exists a colour α_s such that no vertex of the copy of I_s in G_j is coloured with α_s.

Note that by induction, H_r has at most n^{4r} vertices and edges. Let us denote by J the union of the vertices of the copies of I_{r+1} in the subgraphs G_1, \ldots, G_{ℓ_r} and observe that J is an independent set. By Lemma\ref{lem:3} applied on H_r and J, there exists a digraph $H_{r+1} \in \mathcal{C}_3$ that contains $m = |E(H_r)|$ pairwise disjoint copies H_r^1, \ldots, H_r^m of H_r such that:

• For $1 \leq i \neq j \leq m$, there is no arc between H_i^1 and H_j^1;

• For every k-dicolouring of H_{r+1}, there exists an index $j \leq m$ and a colour α_{r+1} such that no vertex of the copy of J in H_r^j is coloured with α_{r+1}.

Moreover, H has at most $|V(H_r)|^4 = n^{4(r+1)}$ vertices and arcs.

Let us prove that H_{r+1} satisfies the conclusion of Lemma\ref{lem:approx}. For every $i \leq m$, H_r^i being a copy of H_r, it contains ℓ_r copies of G, denoted by $G_1^i, \ldots, G_{\ell_r}^i$. Thus, by construction of H_{r+1}, the graph $H_{r+1} := m \cdot \ell_r$ induced copies of G and by construction there is no arc linking any of these copies.

Fix a k-dicolouring of H_{r+1}. There exists an index $j \leq m$ and a colour α_{r+1} such that no vertex of the copy of J in H_r^j is coloured α_{r+1}. Since H_r^j is a copy of H_r there exists an index $k \leq \ell_r$ such that, for $s = 1, \ldots, r$, there exists a colour α_s such that no vertex of the copy of I_s in G_k^j is coloured with α_s. Hence, the second bullet holds, which completes the proof. □

Proof of Theorem\ref{thm:main} Let us construct a sequence $(G_k)_{k \in \mathcal{N}}$ such that for every k, $G_k \in \mathcal{C}_3$ and $\bar{\chi}(G_k) \geq k$. Let G_1 be the graph reduced to a single vertex and let G_2 be the directed triangle. Let $k \geq 2$ and assume that we have obtained a k-dichromatic digraph G_k which is in \mathcal{C}_3, let us define G_{k+1} as follows. Let G be the digraph consisting of k disjoint copies of G_k, denoted by G_1^k, \ldots, G_k^k. Let T be the set of independent sets that intersect each G_k^i on a single vertex. Since $\bar{\chi}(G_k) \geq k$, in any k-dicolouring of G, there exists a vertex x_i coloured i in G_k^i for every $i = 1, \ldots, k$. By definition of T, $\{x_1, \ldots, x_k\} \in T$. Hence, for every k-dicolouring of G, a set of T receives all the colours.

By Lemma\ref{lem:approx} applied on G and T, there exists a digraph $G_{k+1} \in \mathcal{C}_3$ such that, for every k-dicolouring of G_{k+1} (if such a colouring exists), there exists a copy of G in G_{k+1} such that each set T in that copy of G avoids a colour, a contradiction. So $\bar{\chi}(G_{k+1}) \geq k + 1$. □
3 Further works

Our \((k + 1)\)-dichromatic graph has size \(n^{2^{\text{poly}(n)}}\), which is larger than the graphs obtained using Zykov’s construction which have size of order \(2^{\text{poly}(|G_k|)}\). It would be interesting to know if the size of our example can be reduced.

One can wonder if directed triangles play a particular role in Theorem 1. More formally, one can wonder (as also asked in [2], Question 3.3) for which integer \(k\), the class of digraphs which only contain induced directed cycles of length exactly \(k\) are \(\vec{\chi}\)-bounded. Our main result is that it is not the case for \(k = 3\). We left the problem open for \(k \geq 4\).

On the same flavour, we recall here the following conjecture of Aboulker, Charbit and Naserasr which can be seen as a directed analogue of the well-known Gyárfás-Sumner conjecture [4, 8]. An oriented tree is an orientation of a tree.

Conjecture 1. [1] For every oriented tree \(T\), the class of digraphs with no induced \(T\) is \(\vec{\chi}\)-bounded.

Acknowledgments: This research was supported by ANR project DAGDigDec (JCJC) ANR-21-CE48-0012.

References

[1] P. Aboullker, P. Charbit, and R. Naserasr. Extension of gyárfás-sumner conjecture to digraphs. *The Electronic Journal of Combinatorics*, 18(2), 2021.

[2] Alvaro Carbonero, Patrick Hompe, Benjamin Moore, and Sophie Spirkl. A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number. *arXiv preprint:2201.08204*, 2022.

[3] Blanche Descartes. A three colour problem. *Eureka*, 9(21):24–25, 1947.

[4] A. Gyárfás. On ramsey covering-numbe. In *Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday*, pages 801–816. Colloq. Math. Soc. Janos Bolyai 10, North-Holland, Amsterdam, 1975.

[5] A. Gyárfás. “on ramsey covering-numbe. , *Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday*, II, 1975.

[6] V. Neumann-Lara. The dichromatic number of a digraph. *Journal of Combinatorial Theory, Series B*, 33(3):265 – 270, 1982.

[7] A. Scott and P. Seymour. A survey of \(\chi\)-boundedness. *Journal of Graph Theory*, 95(3), 2020.

[8] D. P. Sumner. Subtrees of a graph and chromatic number. In *The Theory and Applications of Graphs*, (G. Chartrand, ed.), pages 557–576, New York, 1981. John Wiley & Sons.

[9] A. Zykov. On some properties of linear complexes (in russian). *Mat. Sbornik N.S.*, 24(66), 1949.