HUMANT-LYMPHOTROPIC VIRUS TYPE I AND II INFECTIONS IN FIRST NATIONS ALCOHOL AND DRUG TREATMENT CENTRES IN BRITISH COLUMBIA, CANADA, 1992-2000

J. David Martin1, Richard G. Mathias2, Christopher Sarin1, Sarah E Byrne3

1Health Canada, First Nations and Inuit Health Branch, Pacific Region, Vancouver, Canada,

2Department of Health Care and Epidemiology, Faculty of Medicine, University of British Columbia,

ABSTRACT

Since 1992, prevalence data on HTLV-I and II have been collected as part of an ongoing viral seroprevalence study in clients of six First Nations alcohol and drug treatment centres in British Columbia, Canada. Prior studies indicate that the lifetime risk of clinical disease (neurologic or hematologic) resulting from HTLV-I infection is low (less than 5%) and HTLV-II to date has not been clearly associated with clinical disease. In 1993, the first cases of HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP) were reported in four Aboriginal residents of British Columbia; these were the first reports of HTLV-I linked disease among Aboriginal persons in Canada. All clients of the treatment centres involved in this study were offered confidential, voluntary testing following pre-test counseling, and the results are given to participants before the residential session is complete. 1953 men and women were tested; 11 were positive for HTLV-1 (0.56%) and 33 were positive for HTLV-2 (1.8%).

Keywords: HTLV-1, HTLV-2, First Nations, Aboriginal, North American Indian, HAM/TSP, Canada, British Columbia

This study was designed to track the prevalence of HTLV infection in First Nations people entering several residential alcohol and drug treatment centres in British Columbia. Human T-cell lymphotropic virus (HTLV) is a retrovirus, similar to HIV, but which replicates at a much slower rate. The virus is spread through breastfeeding, by sexual transmission (mainly male-to-female), and parenterally, by blood product transfusion and injection drug use. HTLV-I and II are endemic in various populations around the world; they also are found in intravenous drug users (IDUs). Coastal communities generally have a higher prevalence of HTLV-I. Both viruses are present in the indigenous peoples of South,
Central, and North America, including in BC First Nations (7,8). Phylogenetic studies have been unable to conclusively determine the source of the viruses in Amerindians, but the best available evidence suggests that they were present in at least one wave of the original colonization of the Americas 15,000 to 40,000 years ago.

HTLV-I infection is prevalent in central Africa and southern Japan; there are also clusters in isolated populations in northern Iran, the Philippines, Papua New Guinea, northern Australia and in other scattered pockets of indigenous peoples throughout the world (1,12). Several strains of the virus are known to be present in coastal First Nations people in British Columbia (8); they show similarities to strains from Japan (8) and Iran (13). Infection carries a 2-4% lifetime risk of HTLV-I associated myelopathy/tropical spastic paresis (HAM/TSP), a progressive, multiple-sclerosis-like spinal degenerative disease, and approximately the same risk of adult T cell leukemia/lymphoma; it may also cause arthropathy and uveitis (5). The first case reports of HAM/TSP amongst Canadian Aboriginals were published by Oger et al. in 1993 (6), involving four British Columbian First Nations people. This underscores the importance of tracking the seroprevalence of this virus.

HTLV-II is endemic in many Indian tribes in North and South America (10). It is also the predominant strain encountered in the intravenous drug user population in the United States (11). It has yet to be conclusively proven that HTLV-II causes any illness in those infected. Preliminary epidemiologic data suggests it may be associated with an increased relative risk of various infections, including abscesses, pyelonephritis, pneumonia, and possibly tuberculosis (3,4). Several cases of neurologic disease, similar to HAM/TSP, in the setting of HTLV-II infection have been reported. Reports of a link between HTLV-II and lymphoproliferative disorders have not been supported by epidemiologic evidence.

METHODS

The testing program, which began in January 1992, consists of an information workshop on sexually transmitted diseases and voluntary testing for HIV, viral hepatitis, HTLV-I and HTLV-2 (the results for HIV and Hepatitis B testing are reported separately). Part-time nurses are hired and trained
to coordinate the program.

All clients are offered the education workshop within two weeks of entering the centres. Clients are given the opportunity to participate in the testing program; those participating are given pre-test counseling by the nurse, and post-test counseling is carried out if at all possible prior to discharge from the centre.

Blood is submitted to the Provincial Laboratory at the British Columbia Centre for Disease Control Society in Vancouver, where testing by ELISA, with confirmation and viral typing by Western Blot, is performed. The provincial laboratory can usually determine the HTLV type present in positive tests, although occasionally the result is indeterminate; these results are excluded from the final analysis. The rate of positive tests were treated as negative results. The staff at the provincial laboratory and the researchers at the University of British Columbia provide, receive, and enter the test results in such a way that individuals cannot be identified except by the study nurses, in order to preserve confidentiality. The data are collected and reported by one of the investigators (RGM) at the Department of Health Care and Epidemiology, Faculty of Medicine, University of British Columbia.

RESULTS

A total of 1,953 men and women were tested.

In males the rate of HTLV-I infection is 3.1/1000 (95% CI 0.0-6.5/1000). For females the rate is 8.3/1000 (95% CI 2.6-14.0/1000). The overall rate is 5.6/1000 (95% CI 2.3-9.0/1000). When looked at by region, 8 of 10 positives were from Vancouver Island (Nanaimo or Campbell River regions).

For HTLV-II, the rate in males is 15.3/1000 (95% CI 7.6-23.0/1000), and in females 20.8/1000 (95% CI 11.8-29.8/1000). The overall rate is 17.9/1000 (95% CI 12.0-23.8/1000).

The rate rates of positive tests for HTLV-I and HTLV-II have not changed over the years (Table I).

DISCUSSION

For HTLV-I, the infection rates in this population are similar to rates of HIV (3.7/1000) and to chronic hepatitis B infec-
Table 1. Gender, HTLV results and ages.

	Negative	HTLV-1 positive	HTLV-2 positive	Not tested	Total
Male	963	3	15	242	1223
Female	934	8	20	219	1182
Not specified	9	0	0	24	33
Total	1907*	11	35	485	2438
Average age	33	35.1	40.9	33.9	33.4
Male rate positive (per 1000)	3.1	15.3			
Female rate positive (per 1000)	8.3	20.8			
Overall rate	5.6	17.9			

*Includes 13 who tested positive but HTLV type could not be determined, and 4 whose results were equivocal (treated as negative in analyses). Also includes one person of unspecified gender.

The seroprevalence rate of HTLV-I infection in clients entering First Nations alcohol and drug treatment centres (5.6/1000) is higher than that among volunteer blood donors in the United States (0.9/1000) (5), but lower than in some endemic areas, where seroprevalence rates are as high as 15% (8). The relatively high HTLV-I rate found on Vancouver Island is consistent with studies done by Oger and Werker, who found higher HTLV-I prevalence in coastal communities in BC (6). The overall HTLV-II rate of 17.9/1000 is similar to the prevalence of 16/1000 reported in samples drawn in the 1980s from the Nuu-Chah-Nulth of Vancouver Island (7), and higher than the rate in US blood donors of 2.2/1000 (5).

Rates of HTLV-II infection were three times higher than HTLV-I. The predominance of HTLV-II infection in this study, while typical of many more southern Native Americans, contrasts with the predominance of HTLV-I recently found in the Nuu-Chah-Nulth (7); this may reflect parenteral transmission of HTLV-II through intravenous drug use in our study population. The rates of positive tests for HTLV-I and HTLV-II have not varied much by year (Table II).

There is no treatment currently available or recommended for either HTLV-I or HTLV-II infected individuals. Those that test positive are notified of their status and told to inform their family physician. These individuals are advised to take precautions (condom use, avoid breast feeding and sharing of needles) to prevent virus transmission. Their contacts are not tested and it is not known whether they abide...
REFERENCES

1. Centres for Disease Control and Prevention and the U.S.P.H.S. Working Group. Guidelines for counseling persons infected with human T-lymphotropic virus type I (HTLV-I) and type II (HTLV-II). Ann Intern Med 1993; 118(6): 448-54

2. Martin JD, Mathias RG. Hepatitis B Surveillance in First Nations Alcohol and Drug Treatment Centres in British Columbia, Canada. Proceedings of the 10th International Congress on Circumpolar Health. Anchorage, Alaska 1998: 280-84

3. Murphy EL, Glynn SA, Fridey J et al. Increased prevalence of infectious diseases and other adverse outcomes in human T-lymphotropic virus types I- and II-infected blood donors. J Infect Dis 1997; 176: 1468-75

4. Murphy EL, Glynn SA, Fridey J, et al. Increased incidence of infectious diseases during prospective follow-up of human T-lymphotropic virus type II and I-infected blood donors. Arch Intern Med 1999; 159(13):1485-1491

5. Murphy EL, Watanabe K, Nass CC, Owahy H, Williams A, Nemo G. Evidence among blood donors for a 30-year-epidemic of human T-lymphotropic virus type II in the United States. J Infect Dis 1999; 180: 1777-83

6. Oger JJF, Werker DH, Foti DJ, Dekaban GA. HTLV-I associated myelopathy: an endemic disease of Canadian aboriginals of the Northwest Pacific coast? Can J Neurol by the advised precautions. Health practitioners in British Columbia, including physicians and community health nurses, were provided HTLV information in a comprehensive media campaign conducted in 1994.

At present there is no central registry and no way to effectively track those who test positive for HTLV. It is the authors’ opinion that there is a need for an enhanced surveillance system to better track these individuals. This would permit them to be informed if there is a change in the availability of treatment, and could also be used for tracing if treatment options improve. In addition, these individuals could be followed to detect early disease in the HTLV-I infected and to determine whether the HTLV-II infected persons are at increased risk for any adverse health outcome.

Acknowledgements

The cooperation of the treatment centres who have participated over the years and the nurses who have done the counseling and taken the samples is gratefully acknowledged. Without the participation of the field staff, no results would be possible. The authors would like to thank the following nurses for their support of the program: Bruce Self, Dana Fetherstonhaugh, Debbie Miller, Sarah Day, Debbie Sullivan, Marg Horvath, and Sharon Cullen. No information would be gathered without the participation of the persons
who come for the treatment programs.

This surveillance program is funded by First Nations and Inuit Health Branch of Health Canada and supervised by Dr. J. David Martin.

J. David Martin

Health Canada, First Nations and Inuit Health Branch

Pacific West Region, 540-547 West Hastings Street

Vancouver, BC V6C 3E6, Canada

7. Peters AA, Coulthart MB, Oger JJF et al. HTLV type I/II in British Columbia Amerindians: a seroprevalence study and sequence characterization of an HTLV type IIa isolate. AIDS Res Hum Retroviruses 2000; 16(9):883-892

8. Picard FJ, Coulthart MB, Oger JJF et al. Human T-lymphotropic virus type I in coastal natives of British Columbia: phylogenetic affinities and possible origins. J Virol 1995; 69(11): 7248-56

9. Salemi M, Lewis M, Egan JF, Hall WW, Desmyter J, Vandamme AM. Different population dynamics of human T-cell lymphotropic virus type II in intravenous drug users compared with endemically infected tribes. Proc Natl Acad Sci USA 1999; 96(23):13253-13258

10. Salemi M, Vandamme AM, Desmyter J, Casoli C, Bertazzoni U. The origin and evolution of human T-cell lymphotropic virus type II (HTLV-II) and the relationship with its replication strategy. Gene 1999; 234:11-21

11. Schwebke J, Calsyn D, Shriver K, et al. Prevalence and epidemiologic correlates of human T cell lymphotropic virus infection among intravenous drug users. J Infect Dis 1994; 169: 962-7

12. Tajima K. Worldwide distribution of HTLV. Jpn J Cancer Res 1998; 89(1): inside front cover

13. Voevodin A, Gessain A. Common origin of human T-lymphotropic virus type I from Iran, Kuwait, Israel, and La Reunion Island. J Med Virol 1997; 52(1):77-82.