The idiopathic avascular osteonecrosis of the third metacarpal head (M. Mauclaire/Dieterich’s disease)

Ingo Schmidt

ABSTRACT

Introduction: M. Mauclaire/Dieterich’s disease is an uncommon condition mostly affecting the third metacarpal head, and can lead to secondary osteoarthritis of the metacarpophalangeal joint. For this condition, the total joint replacement is inevitable.

Case Report: We report a 64-year-old male with a history of increasing pain in his third metacarpophalangeal joint right over a period of 10 years. Radiographically, there was a severe osteonecrosis of the third metacarpal head that was accompanied with pronounced osteoarthritis of the metacarpophalangeal joint. The patient was treated successfully with an unconstrained resurfacing total joint replacement.

Conclusion: The preservation of motion in the metacarpophalangeal joints II–V has a top priority. A stable and functioning metacarpophalangeal joint is the key for satisfactory function of the overall finger. If a avascular osteonecrosis of a metacarpal head is not accompanied with secondary osteoarthritis, other joints preserving procedures are the methods of choice. In case of secondary osteoarthritis, the total joint replacement is inevitable. Resection arthroplasty or arthrodesis should be avoided as primary surgical procedure, and are to be considered as salvage options after a failed total joint replacement.
ABSTRACT

Introduction: M. Mauclaire/Dieterich’s disease is an uncommon condition mostly affecting the third metacarpal head, and can lead to secondary osteoarthritis of the metacarpophalangeal joint. For this condition, the total joint replacement is inevitable. Case Report: We report a 64-year-old male with a history of increasing pain in his third metacarpophalangeal joint right over a period of 10 years. Radiographically, there was a severe osteonecrosis of the third metacarpal head that was accompanied with pronounced osteoarthritis of the metacarpophalangeal joint. The patient was treated successfully with an unconstrained resurfacing total joint replacement. Conclusion: The preservation of motion in the metacarpophalangeal joints II–V has a top priority. A stable and functioning metacarpophalangeal joint is the key for satisfactory function of the overall finger. If a avascular osteonecrosis of a metacarpal head is not accompanied with secondary osteoarthritits, other joints preserving procedures are the methods of choice. In case of secondary osteoarthritis, the total joint replacement is inevitable. Resection arthroplasty or arthrodesis should be avoided as primary surgical procedure, and are to be considered as salvage options after a failed total joint replacement.

INTRODUCTION

The avascular osteonecrosis of the metacarpal head is a rare juvenile/adolescent lesion of the hand, and was first described in 1927 by Mauclaire [1]. Dieterich published in 1932 first results of eight treated patients and suggested that there is a strong correlation for manifestation of the third metacarpal head in young females [2]. These observations have been found its confirmation in all subsequent publications. Usually, the symptoms occur in childhood and adolescence, followed by patients in the middle decades of life, elderly patients from the 5th decade of life are tend to be under-represented, it also may be present in the 1st, 2nd, 4th and 5th metacarpal, and bilateral occurrence was observed as well [3–11].

CASE REPORT

At presentation, 64-year-old male reported increasing pain in his metacarpophalangeal joint III right over a period of 10 years.
period of 10 years. There was no history of any additional trauma. Professionally, he has been worked as a miner with jackhammers, and also he was a passionate boxer over a period of 20 years. The fist conclusion was incomplete. The extension of the third finger showed a deficit of 20 degrees to neutral, the flexion was limited to 60 degree. Radiographically, a severe osteonecrosis of the third metacarpal head was present that was accompanied with secondary osteoarthritis of the metacarpophalangeal joint (Figure 1A). The resurfacing joint replacement using the unconstrained SR™ MCP implant (formerly Avanta SR, Small Bone Innovations, Morrisville, PA, USA) with uncemented cobalt-chrome (CoCr) alloy metacarpal hemispherical head that articulates against the cemented ultra-high molecular weight polyethylene (UHMWPE) phalangeal component was performed through a dorsal incision (Figure 1b-c).

Radiographically follow-up, at the fourth year showed that there was unchanged a correct positioning of the implant without any signs of loosening nor subsidence (Figure 2a). Fist conclusion and long finger extension were completely restored (Figure 2b–c). Grip strength (Jamar dynamometer) improved from 6–13 kp, and pain improved from 8 points to 0 points in visual analogue score (0–10 points). The patient reported that he would have the same procedure again if it necessary.

Figure 1: (a) Posteroanterior radiograph showing avascular osteonecrosis of the third metacarpal head accompanied with pronounced metacarpophalangeal joint osteoarthritis (rectangle), (b) Clinical photograph showing both components of SR™ MCP implant, and (c) Clinical photograph showing insertion of implant through the dorsal incision, note that there is a correct alignment of the third finger (arrow).

Figure 2: (a) Posteroanterior and lateral photographs showing correct positioning of the implant without any signs of loosening nor subsidence, note the sufficient cement coating around the distal UHMWPE component (arrows), (b) Clinical photographs demonstrating complete restoration of passive and active long finger extension, and (c) Clinical photograph demonstrating complete fist conclusion.

DISCUSSION

M. Mauclaire/Dieterich’s disease is an uncommon condition mostly affecting the third metacarpal head. In literature, only case reports with no reliable conclusions regarding etiology and pathogenesis could be found. Any predispositions in systemic lupus erythematosus, juvenile dermatomyositis, gene mutations, long-term medication of glucocorticoids and intraosseous microinfarcts by repetitive microtrauma on the prominent third metacarpal head as the central pillar to load transmission are discussed [12–14]. Wright et al. [15] suggest a predisposition in vascular malformations of the epiphyseal vascular network that was found in 35% of specimens.

The preservation of motion in the metacarpophalangeal joints II–V has a top priority. A stable and functioning metacarpophalangeal joint is the key for satisfactory function of the overall finger. The stable active extrinsic motion-arc modulates synergistically the intrinsic function in the proximal interphalangeal (PIP) joint for a powerful extension and fist conclusion. On the other hand, the actions of the intrinsic muscles are necessary for stabilizing the metacarpophalangeal joint in flexion posture during PIP joint motion. Functional flexion postures averaged about 60 degree at the metacarpophalangeal and PIP joint and 40 degree at the distal interphalangeal (DIP) joint [16, 17]. A metacarpophalangeal joint arthrodesis should be avoided, and it is only considered when other surgical procedures have been failed [18]. Metacarpophalangeal joint resection arthroplasty can be one surgical option for low demand and/or rheumatoid patients [19].
In addition to the initial conservative treatment in patients with M. Mauclaire/Dieterich’s disease [20], joint-preserving surgical procedures and joint replacement can be applied. The core decompression is the method of choice when smaller intra-osseous findings are present [6]. For larger intra-osseous focal findings, curettage and filling of the necrotic cavity with autologous cancellous bone grafts is recommended [3, 21]. The subcapital flexion osteotomy (open wedge) of the metacarpal can be applied if the dorsal joint surface does not show cartilage lesions [22, 23]. For central or dorsal cartilage lesions the mosaicplasty is recommended [10]. Erne et al. [4] published satisfactory results with two cases following transplantation of a metatarsal head.

If the metacarpophalangeal joint is completely involved in osteoarthritis, the total joint replacement is inevitable. The unconstrained partial cemented metacarpophalangeal joint resurfacing SR™ MCP implant is one of the new generation type that is current in use [24]. The metacarpophalangeal joint is a condylar ball-and-socket joint with a convex surface on the metacarpal head and an incongruent (larger radius of curvature) concave surface on the proximal phalanx. One of the major complications of all unconstrained metacarpophalangeal joint implants is luxation tendency in the ulnopalmar direction. The SR™ MCP implant is designed to decrease this risk by having a greater arc of curvature on the dorsal aspect of the proximal component. In a biomechanical study, a higher intrinsic stability of this implant compared to un-affected human cadaver joints could be evaluated [25]. One disadvantage of implant is that cement removal is difficult in the necessity of revision and also there is a concern about the effect of heat polymerization [26]. Further studies with long-term results are needed to validate this concept.

CONCLUSION

M. Mauclaire/Dieterich’s disease as a rare condition mostly affecting the third metacarpal head. Motion preserving procedures at the metacarpophalangeal joints II-V are absolutely required to obtain function of the overall long finger. When distinctive osteoarthritis in metacarpophalangeal joints II-V is present, the use of an unconstrained resurfacing metacarpophalangeal joint replacement is one surgical option that can be recommended. Arthrodesis or resection arthroplasty as a primary procedure should be avoided, and is to be considered as a salvage option when a joint replacement has failed.

Author Contribution

Ingo Schmidt – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published.

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2017 Ingo Schmidt. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Mauclaire P. Epiphysite des tetes metacarpiennes avec main un peu creuse. [Article in French]. Bulle et Mem Soc Nat Chir 1927;33:1377–8.
2. Dieterich H. Die subchondrale Herderkrankung am Metakarpale III. [Article in German]. Arch Klin Chir 1932;171:555–67.
3. Karlakki SL, Bindra RR. Idiopathic avascular necrosis of the metacarpal head. Clin Orthop Relat Res 2003 Jan;(406):103–8.
4. Erne HC, Lanz U, van Schoonhoven J, Prommersberger KJ. Aseptic osteonecrosis of the head of the metacarpal (Mauclaire's disease): Case report and review of the literature. [Article in German]. Handchir Mikrochir Plast Chir 2008 Jun;40(3):207–10.
5. Sagar P, Shaillam R, Nimikin K. Avascular necrosis of the metacarpal head: A report of two cases and review of literature. Pediatr Radiol 2010 Dec;40(12):1895–901.
6. Myerthall SL, Graham B. Osteonecrosis of the base of the second metacarpal: A case report. J Hand Surg Am 1999 Jul;24(4):853–5.
7. Ares O, Seijas R, Conesa X, Pedemonte J. Avascular necrosis of the metacarpal head: A case report. J Hand Surg Am 2010 Aug;35(8):1264–8.
8. Hu MH, Chen WC, Chang CH. Idiopathic osteonecrosis of the third metacarpal head. J Formos Med Assoc 2003 Jan;102(1):89–92.
9. Carstam N, Danielsson LG. Aseptic necrosis of the head of the fifth metacarpal. Acta Orthop Scand 1966;37(3):297–300.
10. Maes M, Hansen L, Cheyns P. Osteochondral mosaicplasty as a treatment method for bilateral avascular necrosis of the long finger metacarpal: Case report. J Hand Surg Am 2010 Aug;35(8):1264–8.
11. McGoldrick NP, McGoldrick FJ. Avascular necrosis of the metacarpal head: A case of Dietrich's disease and review of the literature. Am J Case Rep 2015 Jan 12;16:12–5.
12. Björkman A, Jörgsholm P, Burtcher IM. Osteonecrosis of the metacarpal head in a patient with a prothrombin 20210A gene mutation. Scand J Plast Reconstr Surg Hand Surg 2005;39(6):379–81.
13. Robinson AB, Rabinovich CE. Avascular necrosis of the metacarpals in juvenile dermatomyositis. J Clin Rheumatol 2010 Aug;16(5):233–6.
14. Thienpont E, Vandesande W, De Smet L. Dieterich’s disease: Avascular necrosis of the metacarpal head: A case report. Acta Orthop Belg 2001 Apr;67(2):182–4.
15. Wright TC, Dell PC. Avascular necrosis and vascular anatomy of the metacarpals. J Hand Surg Am 1991 May;16(3):540–4.
16. Tomaino MM, Leit M. Finger metacarpophalangeal joint disease: The role of resection arthroplasty and arthrodesis. Hand Clin 2006 May;22(2):195–200.
17. Rongières M. Surgical treatment of degenerative osteoarthritis of the fingers. Chir Main 2013 Sep;32(4):193–8.
18. Beldner S, Polatsch DB. Arthrodesis of the Metacarpophalangeal and Interphalangeal Joints of the Hand: Current Concepts. J Am Acad Orthop Surg 2016 May;24(5):290–7.
19. Gruber AA. Long-term results of resection arthroplasty of the metacarpophalangeal joint in rheumatoid arthritis. [Article in German]. Handchir Mikrochir Plast Chir 2005 Feb;37(1):2–6.
20. Wijeratna MD, Hopkinson-Woolley JA. Conservative management of Dieterich disease: Case report. J Hand Surg Am 2012 Apr;37(4):807–10.
21. De Smet L. Avascular necrosis of the metacarpal head. J Hand Surg Br 1998 Aug;23(4):552–4.
22. Ohta S, Kakinoki R, Fujita S, Noguchi T. Open wedge flexion osteotomy of the metacarpal neck for the avascular necrosis of the third metacarpal head: Case report. Hand Surg 2012;17(2):251–3.
23. Wada M, Toh S, Iwaya D, Harata S. Flexion osteotomy of the metacarpal neck: A treatment method for avascular necrosis of the head of the third metacarpal: A case report. J Bone Joint Surg Am 2002 Feb;84-A(2):274–6.
24. Thesen Sørensen A. Avanta SR-MCP arthroplasties, a prospective consecutive study for five years. J Hand Surg Eur 2011;36 E (Suppl 1):49.
25. Kung PL, Chou P, Linscheid RL, Berglund LJ, Cooney WP 3rd, An KN. Intrinsic stability of an unconstrained metacarpophalangeal joint implant. Clin Biomech (Bristol, Avon) 2003 Feb;18(2):119–25.
26. Linscheid RL. Implant arthroplasty of the hand: Retrospective and prospective considerations. J Hand Surg Am 2000 Sep;25(5):796–816.

ABOUT THE AUTHOR

Article citation: Schmidt I. The idiopathic avascular osteonecrosis of the third metacarpal head (M. Mauclaire/Dieterich’s disease). Int J Case Rep Images 2017;8(2):95–95.

Ingo Schmidt is a surgeon in the Department of Traumatology SRH Poliklinik, Waldklinikum Gera GmbH, Germany. From 1983 to 1989, he studied human medicine at the Friedrich-Schiller-University in Jena (Germany). From 1990 to 1999, Dr. Schmidt graduated his training for general surgery, traumatology, orthopaedics, and hand surgery at the University hospital in Jena. In 1994, he successfully defended his scientific work to gain the title as a medical doctor. He has published more than 20 scientific articles. His areas of interest include hip replacement, coverage of soft tissue defects, and hand surgery with special focus on total wrist replacement and arthroplasties of all other joints of the hand.
About Edorium Journals

Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

* Terms and condition apply. Please see Edorium Journals website for more information.

We welcome you to interact with us, share with us, join us and of course publish with us.