Myotubularin-related Protein 4 (MTMR4) Attenuates BMP/Dpp Signaling by Dephosphorylation of Smad Proteins

Junjing Yu, Xiaomeng He, Ye-Guang Chen, Yan Hao, Shuo Yang, Lei Wang, Lei Pan, and Hong Tang

Background: The intensity and duration of phosphorylation levels of R-Smads are required for precise control of BMP signaling.

Results: MTMR4 associated with and dephosphorylated the activated R-Smads in cytoplasm.

Conclusion: MTMR4 attenuates BMP signaling via its DUSP activity.

Significance: This study describes a novel role of MTMR4 as a negative modulator essentially involved in homeostatic BMP signaling.

Bone morphogenetic proteins (BMPs) signaling essentially regulates a wide range of biological responses. Although multiple regulators at different layers of the receptor-effectors axis have been identified, the mechanisms of homeostatic BMP signaling remain vague. Herein we demonstrated that myotubularin-related protein 4 (MTMR4), a FYVE domain-containing dual-specificity protein phosphatase (DUSP), preferentially associated with and dephosphorylated the activated R-Smads in cytoplasm, which is a critical checkpoint in BMP signal transduction. Therefore, transcriptional activation by BMPs was tightly controlled by the expression level and the intrinsic phosphatase activity of MTMR4. More profoundly, ectopic expression of MTMR4 or its Drosophila homolog CG3632 genetically interacted with BMP/Dpp signaling axis in regulation of the vein development of Drosophila wings. By doing so, MTMR4 could interact with and dephosphorylate Mothers against Decapentaplegic (Mad), the sole R-Smad in BMP pathway, and hence affected the target genes expression of Mad. In conclusion, this study has suggested that MTMR4 is a necessary negative modulator for the homeostasis of BMP/Dpp signaling.
MTMR4 Negatively Regulates BMP Signaling

tase (DUSP) activity (23) and functions in early endosomes (22, 24). MTMR4 specifically interacts with and dephosphorylates the activated R-Smads to keep TGFβ signaling in homeostasis (22). It therefore would be highly interesting to determine whether MTMR4 is also critically involved in BMP signaling.

In this study, we managed to demonstrate that MTMR4 is also an essential negative regulator of BMP signaling pathway. MTMR4 directly bound to and dephosphorylated the activated Smad1 via the DUSP enzymatic domain. Thus, overexpression of MTMR4 inhibited BMP-induced gene expression by accelerating Smad1 dephosphorylation, whereas knockdown of MTMR4 by siRNA enhanced BMP signaling with sustained Smad1 phosphorylation. We further demonstrated in vivo that MTMR4 and its Drosophila homologous gene CG3632 critically modulated the vein formation of Drosophila wings, by specifically targeting Mad activation. Therefore, MTMR4 may possess a conserved attenuator activity on R-Smads activation that is required for homeostatic BMP/Dpp signaling.

EXPERIMENTAL PROCEDURES

Plasmids—Expression of plasmids for YFP-tagged MTMR4 and its truncations/point mutation (MTMR4C407S) has been previously described (22). pCMV-Flag-Smad1, pCMV-HA-Smad5, GCGG-luc, and BRE-luc were described elsewhere (19, 25, 26). HA-MAD (27) was kindly provided by Dr Xin-hua Feng. The various truncations of Smad1 (pCMV-Flag-Smad1N/L/C) were obtained by PCR and cloned inbetween BglII (‘5’) and KpnI (‘3’) sites of the pCMV-Flag-HA-Flag vector derived from pCMV-HA (Clontech, Japan). Each derivative clone was verified by DNA sequencing analysis. pAGW-MTMR4 was constructed by the Gateway cloning technique (Invitrogen).

Cell Culture, Transfection, and Reporter Assays—HEK293T, HeLa, and HepG2 cells were grown in DMEM (Invitrogen), and S2 cells were cultured in Schneider’s insect medium (Sigma). All media were supplemented with 10% heat-inactivated FBS, 1% penicillin, and streptomycin (Invitrogen). The various truncations of Smad1 were transfected with various RFP/GFP fusion plasmids indicated (1 1/3, 27) into S2 cells and calcium-phosphate method for Drosophila stocks used in this study.

Immunoprecipitation and Western Blotting—Immunoprecipitation was carried out exactly as previously described (22). Antibodies against pSmad1/5/8 (phospho-SXS) and Smad1 were from Cell Signaling Technology (Beverly, MA). GFP anti-Body was from Zymed Laboratories Inc. (San Diego, CA) and MTMR4 antibody from Abgent (San Diego, CA). Flag and β-actin antibodies were from Sigma.

Real-time PCR—Total RNA was extracted with TRIzol reagent (Invitrogen) from HeLa or S2 cells treated with or without BMP2/DPP for the times indicated. Quantitative RT-PCR (ABI7500, Invitrogen) was carried out as previously described (22) using GAPDH or rP49 as the internal controls, respectively. Primer sequences for p21, forward: 5’-GGCAACGGCCAGCATGACAGATT-3’; reverse: 5’-GCCTCCCCCTTCC-3’; Id1, forward: 5’-AACCCTAGTGCGCTGGGA-3’; reverse: 5’-ACCTGCAGGTACGGTGGC-3’; GAPDH, forward: 5’-CTGGCTCACTGAAGAACAG-3’; reverse: 5’-ACCGTCGAAAAGGTGGAG-3’; Brinker, forward: 5’-CGGCAATCAGAAACAAAAAG-3’; reverse: 5’-TGGTATCGA-CGGACCA-3’; Omb, forward: 5’-AAGTGCGTAAAGT GTGGAGT-3’; reverse: 5’-ATATCTTTTGACCTCCCCAC-3’; Rp49, forward: 5’-AGATCGTGAAGAGCCGCACAAAC-3’; reverse: 5’-CAGCAAGACACTTCTGAATCCCG-3’. Data represent the average of three independent experiments (mean ± S.D.).

RNA Interference—The 21-nucleotide siRNA duplexes targeting MTMR4 and scrambled siRNA were synthesized and purified as previously described (22). The efficiency was measured by Western blot using MTMR4 antibody.

Fluorescence Microscopy—S2 cells in 35-mm plates were transfected with various RFP/GFP fusion plasmids indicated (1 μg each). After 36 h, the transfectants were seeded at 80% confluence on glass bottom tissue culture dishes and serum-starved overnight. Cells were then exposed to Dpp (40 ng/ml) for 2 h before fixed in 4% formaldehyde for 15 min at room temperature. Images were taken using a Zeiss fluorescence microscope (Observer Z1, Germany) and analyzed by Image software. DAPI (1:1000 dilution) was used to counter stain the nuclei.

Drosophila Stocks and Experimental Genotypes—All stocks were cultured at room temperature in standard cornmeal/molasses/agar media. The Drosophila stocks used in this study were as follows: UAS-gbb and UAS-dpp (described in Flybase), UAS-tkvRNAi (II), UAS-tkvRNAi (III), and vg-gal4 (kind gifts from Matthew Gibson, Stowers Institute for Medical Research). The Gateway cloning system (Invitrogen) was used to generate UAS-CG3632, UAS-MTMR4, and UAS-MTMR4C407S constructs according to manufacturer’s manual, after cg3632, mtmr4, and mtmr4-C407S gene fragments were PCR amplified. Different plasmid constructs were injected into w1118 embryos to generate transgenic lines. To determine whether a moderate reduction of BMP signaling and overexpression of MTMR4 has any effect on Drosophila wing patterning, the vg-gal4 virgins were crossed with UAS-tkvRNAi (II), UAS-tkvRNAi (III), UAS-CG3632, UAS-MTMR4, UAS-MTMR4C407S, and w1118 males. To investigate how gbb overexpression affects wing pattern formation, the vg-gal4 virgins were crossed with UAS-gbb males. To test whether MTMR4, MTMR4-C407S could interfere with BMP signaling, the vg-gal4 virgins were crossed with UAS-CG3632/Cyo;UAS-tkvRNAi(III)/TM6, UAS-MTMR4/Cyo;UAS-tkvRNAi(III)/TM6, UAS-MTMR4C407S/Cyo;UAS-tkvRNAi(III)/TM6, UAS-gbb/FM7; UAS-CG3632/Cyo, UAS-gbb/FM7;UAS-MTMR4/Cyo, UAS-gbb/FM7;UAS-MTMR4C407S/Cyo males. All wings demonstrated here are from adult females and were mounted in Hoyer’s medium.

RESULTS

MTMR4 Attenuates BMP Signaling—Because BMP and TGFβ both belong to TGFβ superfamily, that MTMR4 attenuates R-Smads activation in TGFβ pathway (22) prompted us to
test whether the conserved DUSP activity of MTMR4 would also play a role in BMP signaling. To test this hypothesis, first we transiently transfected two BMP-responsive luciferase reporters in HeLa cells, namely BRE-lux and GCCG-lux which contained multiple BMP-specific R-Smads binding elements GCCG (25, 29). The R-Smad responsive reporter activities increased by 2.5-fold post-BMP2 treatment for 16 h, which was effectively suppressed by co-expressed MTMR4 (Fig. 1, A and B; supplemental Fig. S1 for expression levels of MTMR4 in transfectants). This result thus suggested that MTMR4 plays an inhibitory role in BMP signaling. Moreover, when we knocked down the endogenous MTMR4 gene expression by siRNA (supplemental Fig. S1B for the knockdown efficiency), as expected, cells became more responsive to BMP2, as demonstrated by much higher BRE/GCCG reporter activities than those treated with scrambled RNAi (Fig. 1, C and D). Quantitative RT-PCR were performed for induction of Id1 (E, G) and p21 (F, H) gene expression. All data represent the average of triplicate independent experiments (mean ± S.E.). **, p < 0.01; *, p < 0.05, Student’s t test.

MTMR4 Negatively Regulates BMP Signaling—To validate the aforementioned hypothesis, we set out to examine whether MTMR4 interacts with those R-Smads of BMP pathway. Co-immunoprecipitation experiments showed that YFP-MTMR4 transiently expressed in 293T cells readily associated with Flag-Smad1 (Fig. 2A) or HA-Smad5 (Fig. 2B), two of R-Smads in BMP signaling pathway. Such intermolecular interactions also occurred under physiological conditions since the endogenous MTMR4 and Smad1 associated with each other, and interestingly enough, only after BMP2 stimulation (Fig. 2C). Moreover, the amount of MTMR4 associated with Smad1 reduced proportionally to the phosphorylation levels of Smad1, suggesting that MTMR4 might preferentially interact with the activated Smad1 (Fig. 2C).

To map the regions of contact between MTMR4 and Smad1, we further performed co-immunoprecipitation experiments using an array of truncational mutants of MTMR4 and Smad1 that transiently co-expressed in 293T cells (supplemental Fig. S2, A and B for the scheme of different mutants). The results showed that MTMR4 utilized its N-terminal region (MTMR4/H9004 FYVE, amino acids 1–591), which contains the conserved DUSP phosphatase domain, to contact Smad1 (Fig. 2D). Reciprocally, the MH2 domain, but not MH1 domain or linker region, of Smad1 was involved in contact with MTMR4 (Fig. 2E). These results suggested that the phosphorylated MH2 domain of Smad1 might serve as a physiological substrate of MTMR4.

MTMR4 Physically Interacts with Smad1/5—To validate the aforementioned hypothesis, we set out to examine whether MTMR4 interacts with those R-Smads of BMP pathway. Co-immunoprecipitation experiments showed that YFP-MTMR4 transiently expressed in 293T cells readily associated with Flag-Smad1 (Fig. 2A) or HA-Smad5 (Fig. 2B), two of R-Smads in BMP signaling pathway. Such intermolecular interactions also occurred under physiological conditions since the endogenous MTMR4 and Smad1 associated with each other, and interestingly enough, only after BMP2 stimulation (Fig. 2C). Moreover, the amount of MTMR4 associated with Smad1 reduced proportionally to the phosphorylation levels of Smad1, suggesting that MTMR4 might preferentially interact with the activated Smad1 (Fig. 2C).

To map the regions of contact between MTMR4 and Smad1, we further performed co-immunoprecipitation experiments using an array of truncational mutants of MTMR4 and Smad1 that transiently co-expressed in 293T cells (supplemental Fig. S2, A and B for the scheme of different mutants). The results showed that MTMR4 utilized its N-terminal region (MTMR4/H9004 FYVE, amino acids 1–591), which contains the conserved DUSP phosphatase domain, to contact Smad1 (Fig. 2D). Reciprocally, the MH2 domain, but not MH1 domain or linker region, of Smad1 was involved in contact with MTMR4 (Fig. 2E). These results suggested that the phosphorylated MH2 domain of Smad1 might serve as a physiological substrate of MTMR4.
vated Smad1 suggested that BMP signaling could be modulated by MTMR4 via targeting Smad1 phosphorylation. To test this hypothesis, HeLa cells were co-transfected with pEYFP-MTMR4 and pCMV-Flag-Smad1 (A) or pCMV-HA-Smad5 (B) for 48 h. Indicated parental vectors were transfected as negative control. YFP-MTMR4 was co-immunoprecipitated with Flag (A) or HA (B) antibody and visualized with GFP antibody. Protein expression levels were verified by Flag, HA, or GFP antibodies as indicated. C, endogenous MTMR4 and Smad1 interacted depending upon BMP2 stimulation. HepG2 cells at 90% confluency were treated with BMP2 (25 ng/ml) for 4 h. Whole cell lysates (WCL, 300 μg total proteins) were prepared and immunoprecipitated with anti-Smad1 antibody. MTMR4 antibody was then used for immunoblotting of MTMR4. The WCL was immunoblotted with phospho-Smad1, Smad1 or MTMR4 antibody, respectively, for loading control. D, DUSP domain of MTMR4 was required for interaction with Smad1. HEK293T cells were co-transfected with pCMV-Flag-Smad1 and pEYFP-MTMR4 or its mutant derivatives as indicated for 48 h. Cell lysates were immunoprecipitated with M2 Flag antibody and visualized with GFP antibody (top panel). Expression levels of Flag-Smad1 (middle) and YFP-MTMR4 and various mutants (bottom) are also shown. E, MH2 domain of Smad1 was required for interaction with MTMR4. HEK293T cells were co-transfected with pEYFP-MTMR4 and pCMV-Flag-Smad1 or its mutant derivatives as indicated for 48 h. Cell lysates were immunoprecipitated with M2 Flag antibody and blotted with anti-GFP antibody (top panel). Expression levels of YFP-MTMR4 (middle) and Flag-Smad1 and various mutants (two bottom panels) are also shown.

FIGURE 2. MTMR4 interacted with R-Smad proteins of BMP signaling. A and B, MTMR4 interacted with Smad1 and Smad5. HEK293T cells were co-transfected with pEYFP-MTMR4 and pCMV-Flag-Smad1 (A) or pCMV-HA-Smad5 (B) for 48 h. Indicated parental vectors were transfected as negative control. YFP-MTMR4 was co-immunoprecipitated with Flag (A) or HA (B) antibody and visualized with GFP antibody. Protein expression levels were verified by Flag, HA, or GFP antibodies as indicated. C, endogenous MTMR4 and Smad1 interacted depending upon BMP2 stimulation. HepG2 cells at 90% confluency were treated with BMP2 (25 ng/ml) for indicated time. Whole cell lysates (WCL, 300 μg total proteins) were prepared and immunoprecipitated with anti-Smad1 antibody. MTMR4 antibody was then used for immunoblotting of MTMR4. The WCL was immunoblotted with phospho-Smad1, Smad1 or MTMR4 antibody, respectively, for loading control. D, DUSP domain of MTMR4 was required for interaction with Smad1. HEK293T cells were co-transfected with pCMV-Flag-Smad1 and pEYFP-MTMR4 or its mutant derivatives as indicated for 48 h. Cell lysates were immunoprecipitated with M2 Flag antibody and visualized with GFP antibody (top panel). Expression levels of Flag-Smad1 (middle) and YFP-MTMR4 and various mutants (bottom) are also shown. E, MH2 domain of Smad1 was required for interaction with MTMR4. HEK293T cells were co-transfected with pEYFP-MTMR4 and pCMV-Flag-Smad1 or its mutant derivatives as indicated for 48 h. Cell lysates were immunoprecipitated with M2 Flag antibody and blotted with anti-GFP antibody (top panel). Expression levels of YFP-MTMR4 (middle) and Flag-Smad1 and various mutants (two bottom panels) are also shown.

To further detect the function of MTMR4 in dephosphorylation of Smad1, we then transiently expressed the “phosphatase dead” mutant (MTMR4-C407S) or the mutant defective in early endosome localization (MTMR4/H9004FYVE) of MTMR4 (supplemental Fig. S2, A and C for the scheme of different mutants). Measurement of phosphorylation levels of Smad1 upon BMP2 stimulation indicated that neither the onset nor the decay of Smad1 phosphorylation was affected by MTMR4-C407S or MTMR4/H9004FYVE (Fig. 3C). Indeed, both BRE and GCCG reporter assays showed that overexpressed MTMR4-C407S or MTMR4/H9004FYVE (Fig. 3, D and E) could no longer suppress BMP activation as compared with wild type MTMR4 (Fig. 1, A and B). These results therefore suggested that Smad1 dephosphorylation would require an endosome-localized phosphatase activity of MTMR4.
MTMR4 Negatively Regulates BMP Signaling

MTMR4 Impacts Vein Formation of Drosophila Wings—The regulatory specificity of BMP signaling can be conveniently scored by visual phenotypes of vein formation in Drosophila wings (13). Thus, to emphasize the biological significance of MTMR4 in the control of BMP signaling in vivo, we then assessed whether ectopically expressed MTMR4 might affect BMP signaling in the development of Drosophila wings. First we tissue-specifically knocked down BMP type I receptor tkv expression in wings by UAS-tkvRNAi driven by vg-gal4 (32). Roughly 63% (n = 189) of vg-gal4/+; UAS-tkvRNAi(III)/+ wings (Fig. 4B) showed branches at posterior crossovein (PCV) compared with normal wings of vg-gal4/+ (Fig. 4A) or UAS-tkvRNAi(III)/+ (supplemental Fig. S4A) controls (Fig. 4, A for statistical analysis). The same branching phenotype was obtained in another independent strain, UAS-tkvRNAi(II)/vg-gal4 (81% (n = 200), supplemental Fig. S4B, F for representative phenotype). These results would represent the first line of evidence that tkv was required for vein development in wings. We then generated three lines of transgenic flies, UAS-MTMR4, UAS-MTMR4-C407S, and UAS-CG3632, respectively. CG3632 is a Drosophila homologue of MTMR4 that shares all the conserved functional domains including the phosphatase domain (supplemental Fig. S2C) typified for the catalytic subgroup of MTM super family (23). Interestingly, wings containing overexpressed mtmr4 (UAS-MTMR4/vg-gal4) or cg3632 (UAS-CG3632/vg-gal4) also developed the similar branched PCV as to those in tkv knockdown lines, albeit at slightly lower rates (20.6% (n = 126) for UAS-CG3632/vg-gal4 and 24.2% (n = 120) for UAS-MTMR4/vg-gal4, respectively) (Fig. 4, C, D, and J). In contrast, the wings developed normally in the UAS-MTMR4-C407S/vg-gal4 line (Fig. 4E, J, n = 150). The phenotypic similarity in PCV development would suggest that MTMR4 might play a role in tkv signaling, and more importantly, by tempering Dpp activation signaling when MTMR4 was overexpressed.

To substantiate this notion, we went on to assess whether overexpression of MTMR4 or CG3632 could synergize wing patterning deficiency in the background of the reduced tkv expression. As expected, vg-gal4-driven simultaneous expression of CG3632 and tkvRNAi(III) in wings (UAS-CG3632/vg-gal4; UAS-tkvRNAi(III)/+) caused 51.8% branched veins in PCV (n = 110, supplemental Fig. S5A). More profoundly, 14% showed intense deformity (classified as “enhanced” phenotype) with partial duplications and gaps (Fig. 4, F, J, and supplemental Fig. S5B). Similarly, UAS-MTMR4/vg-gal4; UAS-tkvRNAi(III)/+ wings not only had the branched PCV (55.2%, n = 105, supplemental Fig. S5C) and enhanced phenotype (18.1%, n = 105, Fig. 4, G and J and supplemental Fig. S5D), but also displayed more severe deformation (4.8%, n = 105) with longer branches at PCV and L2 and partial duplications of L2 and L3 (Fig. 4, H and J and supplemental Fig. S5E) (classified as “severe” phenotype). To the contrary, only 25.8% (n = 129) UAS-MTMR4-C407S/vg-gal4; UAS-tkvRNAi(III)/+ wings exhibited the branched PCV (Fig. 4, I and J), a much lower rate than that in vg-gal4/+; UAS-tkvRNAi(III)/+ line (63%, Fig. 4, B and J). Provided that MTMR family proteins usually homo- or het-
erodimerize for function (33), a possible explanation could be that the null mutation of DUSP catalytic site (MTMR4-C407S) might inactivate the endogenous CG3632, which led to constitutive activation of R-Smads to partially rescue tkv deficiency. That overexpressed MTMR4 or CG3632 potentiated Tkv deficiency in wing development would suggest that these DUSPs could temper otherwise overactivated BMP signaling.

To address this issue, we first analyzed vein development with BMP signaling over-activated in wings by tissue-specific deficiency in wing development would suggest that these DUSPs might negatively control BMP/Tkv activation using its DUSP activity. Corresponding enhanced or severe percentage scores derived from Fig. 3J are shown in the box. J, statistics of various phenotypes of vein development of all flies in A–I is plotted in the bar graph.

Figure 4. MTMR4 and CG3632 potentiated Tkv knockdown in the vein formation. A, representative genetic control wing (vg-gal4/+), with normal morphology. Longitudinal veins (L1, L2, L3, L4, and L5), anterior (ACV) and posterior crossovers (PCV) were indicated. B–D, MTMR4 and CG3632 transgenic flies had the similar vein abnormality to Tkv knockdown flies. Representative defective wings of vg-gal4/+; UAS-tkvRNAi (III)/+ (n = 189), UAS-CG3632/vg-gal4 (n = 126), and UAS-MTMR4/vg-gal4 (n = 120) flies were shown, and the aberrant branches at PCV were marked by asterisks. Corresponding branching percentage derived from Fig. 3J are shown in boxes. E, loss of DUSP activity of MTMR4 failed to affect vein development. The representative wing of UAS-MTMR4-C407S/vg-gal4 (n = 150) flies were shown, and the corresponding percentage of normal veins is shown in the box. F–H, MTMR4 and CG3632 enhanced vein abnormality of Tkv knockdown flies. Representative enhanced defective wings of UAS-CG3632/vg-gal4; UAS-tkvRNAi (III)/+ (n = 110) and UAS-MTMR4/vg-gal4; UAS-tkvRNAi (III)/+ (n = 105) flies were shown for branches at PCV (asterisk), partial duplicated vein of L5 (white arrowhead), and gaps at L5 vein junctions of the margin (black arrowhead). The representative wing of UAS-MTMR4/vg-gal4; UAS-CG3632/vg-gal4 (n = 103) flies with severe vein abnormality was shown in J for an increased number and places of branches (asterisks) and duplications (white arrowheads). Corresponding enhanced or severe percentage scores derived from Fig. 3J are shown in boxes. I, loss of DUSP activity of MTMR4 partially rescue Tkv knockdown in vein development. The representative defective wing of UAS-MTMR4-C407S/vg-gal4; UAS-tkvRNAi (III)/+ flies (n = 119) exhibit fewer branched PCV (asterisks) and none enhanced or severe phenotypes. Corresponding branching percentage derived from Fig. 3J are shown in the box. J, statistics of various phenotypes of vein development of all flies in A–I is plotted in the bar graph.

MTMR4 Is a Conserved BMP Attenuator—The genetic interaction between MTMR4 and Gbb/Tkv signaling pathway pro-
MTMR4 Negatively Regulates BMP Signaling

FIGURE 5. MTMR4 and CG3632 ameliorate vein defectiveness induced by forced Gbb signaling. A, representative genetic control wing (vg-gal4/+) with normal morphology. B and C, overexpression of Gbb caused deformity of vein development. Representative wings of UAS-gbb/+; vg-gal4/+ flies (n = 155) showed moderate (B) and severe (C) vein defects. D and E, co-expression of CG3632 antagonized Gbb. Representative moderate (D) and severe (E) defective wings of UAS-gbb/+; UAS-CG3632/vg-gal4 (n = 106) flies were shown. F and G, co-expression of MTMR4 antagonized Gbb. Representative moderate (F) and severe (G) defective wings of UAS-gbb/+; UAS-MTMR4/vg-gal4 (n = 110) flies are shown. H and I, loss of DUSP activity of MTMR4 failed to antagonize Gbb. Representative wings of UAS-gbb/+; UAS-MTMR4/C407S/vg-gal4 flies (n = 139) are shown for moderate (H) and severe (I) vein deformity. In the aforementioned figures, the black arrow indicates ectopic vein branches near PCV and L5, and the asterisk indicates ectopic vein tissue. Corresponding moderate or severe percentage scores derived from Fig. 4J are shown in boxes. J, statistics of various phenotypes of vein development of all flies in A–I is plotted in the bar graph.

COMMENTED: To determine whether MTMR4 could interact with Mad, the only R-Smad in Drosophila BMP pathway. We transiently co-transfected HEK293T cells with YFP-MTMR4 and HA-Mad. Co-immunoprecipitation showed that there was indeed an inter-molecular interaction between Mad and MTMR4 (Fig. 6A). We then analyzed whether the phosphorylation levels of the endogenous Mad was affected by MTMR4 in Drosophila S2 cells. Immunoblotting with a phospho-Smad1 antibody showed that Mad phosphorylation peaked at 30 min after Dpp treatment of S2 cells, and gradually decreased till 2 h (Fig. 6B). Overexpression of MTMR4 carried by a Drosophila expression vector (pAGW-MTMR4) did not apparently affect the onset of Mad phosphorylation. However, it enhanced Mad dephosphorylation in response to Dpp stimulation (Fig. 6B). Co-transfection of the DUSP null mutant of MTMR4 (pAGW-C407S), as expected, failed to alter the activation kinetics of Mad (Fig. 6B). In agreement with the effect of MTMR4 on Mad dephosphorylation, fluorescent microscopy showed that nuclear translocation of RFP-Mad in response to Dpp stimulation (Fig. 6C, top two panels) was inhibited by co-expressed GFP-MTMR4 (middle two panels), but not by GFP-C407S (bottom two panels) in S2 cells. Finally, previous studies have established that gene expression of Drosophila optomotor-blind (omb) is induced by Dpp (35), while brinker (brk) is suppressed by Dpp (36). Overexpression of MTMR4, but not MTMR4-C407S, apparently inhibited omb (Fig. 6D and supplemental Fig. S7B) and promoted brk (Fig. 6E and supplemental Fig. S7A) gene expression, respectively, when S2 cells were treated with Dpp. Therefore, these results suggested that human MTMR4 possessed a conserved phosphatase activity on R-Smads including Drosophila Mad, and more importantly, was able to modulate BMP signaling homeostasis via targeting the activated Smad1 in mammalian cells or Mad in Drosophila cells.

DISCUSSION

Homeostasis of BMP signaling is critical for numerous biological processes. Among various modulators, phosphorylation-dephosphorylation of R-Smads provides undoubtedly efficient fine tuning. The observations in this work suggest that MTMR4/CG3632 might serve as a critical endosomal phosphatase that controls activation status of R-Smads/Mad in the BMP signaling pathway. MTMR4/CG3632 probably binds to the phosphorylated SXS-motif of R-Smads, and such physical proximity allows DUSP domain to dephosphorylate the activated Smad/Mad in the BMP signaling pathway. MTMR4/CG3632 might serve as a critical endosomal phosphatase that controls activation status of R-Smads/Mad in the BMP signaling pathway. MTMR4/CG3632 probably binds to the phosphorylated SXS-motif of R-Smads, and such physical proximity allows DUSP domain to dephosphorylate the activated Smad/Mad in the BMP signaling pathway. MTMR4/CG3632 probably binds to the phosphorylated SXS-motif of R-Smads, and such physical proximity allows DUSP domain to dephosphorylate the activated Smad/Mad in the BMP signaling pathway. MTMR4/CG3632 probably binds to the phosphorylated SXS-motif of R-Smads, and such physical proximity allows DUSP domain to dephosphorylate the activated Smad/Mad in the BMP signaling pathway.
translocation and accumulation of phosphorylated R-Smads/Mad in endosomes. The supportive evidence was shown by observation that Smad1 or Mad phosphorylation occurred normally (30 min after BMP2/Dpp stimulation) even in the presence of overexpressed MTMR4. Thus, overexpressing MTMR4 does not alter the onset of R-Smads phosphorylation. This indicates that MTMR4 inhibits BMP signaling might be not due to the redistribution of Endofin or related proteins (37) although some MTMs could result in P13P diminution (33). Such an endosomal attenuator would be advantageous for cells to avoid R-Smads from being overactivated.

BMP activity gradients are critical for Drosophila wing patterning (38, 39). The finding that MTMR4/CG3632 modulated BMP signaling in vein formation strongly suggested that an endosomal DUSP activity would be critical in fine tuning of R-Smad activation status for proper BMP signaling. The precise spectrum of MTMR4/CG3632 target genes remains to be investigated. It is worthy of note that a great proportion of “severe” vein deformity appears in UAS-MTMR4/vg-gal4;lias-tkvRNAi(III)/+ wings. This is likely that the increased amount of dephosphorylated Mad could activate the canonical Wingless signaling, because Wingless and BMP signal pathways are by large partitioned by the phosphorylation status of Mad (40). Therefore, besides modulating the homeostasis of BMP/Dpp signaling, MTMR4 activity per se has to be tightly controlled to avoid unnecessary crosstalk with other signaling pathways. This speculation has yet to be experimentally confirmed.

The involvement of multiple protein phosphatases at multiple layers of R-Smads activation axis has presented a complex network of TGFβ/BMP signaling. It has become more complicated that some phosphatases are dual functional in both TGFβ and BMP signalings while some are unique to certain pathway. For example, PDP is a Mad-specific phosphatase in Drosophila BMP signaling (21), but with no effect on Smad2 dephosphorylation in TGFβ signaling pathway (21, 41). In contrast, PPM1A can dephosphorylate all R-Smads members in the nucleus (19, 41). MTMR4 functions on both Smad2/3 and Mad, suggesting a PPM1A-like dual player on both TGFβ and BMP pathways. Of course, MTMR4 differs from PPM1A for its subcellular localization, thus providing different checkpoint of BMP activation. Moreover, the new role of MTMR4 on vein development of Drosophila revealed by this study would provide insight into better understanding of hypoxic response that MTMR4

MTMR4 Negatively Regulates BMP Signaling

FIGURE 6. **MTMR4 interacts with Drosophila MAD and inhibits Dpp signaling.** A, MTMR4 interacted with Mad. HEK293T cells were transiently transfected with pCMV-HA-Mad and pEYFP-MTMR4, with each parental expression vectors as control. YFP-MTMR4 was co-immunoprecipitated with HA antibody and visualized by immunoblotting with GFP antibody (top panel). Protein expression levels were verified by anti-HA (middle) or -GFP (bottom) antibodies, respectively. B, MTMR4 dephosphorylated Mad in S2 cells. S2 cells were transiently co-transfected with pACS.1-FLAG-Mad and pAGW parental vector, or pAGW-MTMR4, pAGW-MTMR4-C407S for 48 h. Dpp (40 ng/ml) was then added for indicated time. Phosphorylation of Mad was detected by immunoblotting with phosphor-Smad1 antibody (top panels). Expression levels of GFP-MTMR4, GFP-MTMR4-C407S, and Flag-Mad was verified with GFP (middle panels) and Flag (bottom panels) antibodies. C, DUSP activity of MTMR4 attenuated nuclear translocation of Mad. S2 cells were transiently co-expressed with RFP-Mad and GFP-MTMR4 or GFP-MTMR4-C407S for 48 h before Dpp (40 ng/ml) was added for an additional 2 h. Mad or MTMR4 was visualized under fluorescent microscopy using RFP and GFP channels, respectively. Scale bar: 5 μm. D and E, MTMR4 affected expression of Dpp target genes. S2 cells were transiently overexpressed with MTMR4 or MTMR4-C407S for 48 h. Dpp (40 ng/ml) was added for the indicated time before Omb (D) and brk (E) mRNA were measured by quantitative RT-PCR. All data represent the average of triplicate independent experiments (mean ± S.E.). ***, p < 0.001; **, p < 0.01; *, p < 0.05, Student’s t test.
might be involved, such as the malignancy of papillary thyroid cancer (42) and hypertensive fibrogenesis (43).

Acknowledgments—We thank Drs. Xin-hua Feng (Baylor College of Medicine) for kindly providing various constructs, Da-hua Chen (Institute of Zoology, CAS) for S2 cells, Matthew Gibson (Stowers Institute for Medical Research) for kindly providing various constructs, Da-hua Chen (Institute of Biophysics, CAS) for technical assistance and stimulating discussions. We are grateful to Dr. Nian Zhan (University of Rochester, NY) for linguistic editing of the manuscript and incisive and helpful comments.

REFERENCES
1. Hogan, B. L. (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594
2. Qi, X., Li, T. G., Hao, J., Hu, J., Wang, J., Simmons, H., Miura, S., Mishina, Y., and Zhao, G. Q. (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci. U. S. A. 101, 6027–6032
3. Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292
4. Pan, L., Chen, S., Weng, C., Call, G., Zhu, D., Tang, H., Zhang, N., and Xie, T. (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell stem cell 1, 458–469
5. Attisano, L., and Warna, J. L. (2002) Signal transduction by the TGF-β superfamily. Science 296, 1646–1647
6. Shi, Y., and Massagué, J. (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700
7. Kheradmand, F., Folkesson, H. G., Shum, L., Derynk, R., Pytel, R., and Matthy, M. A. (1994) Transforming growth factor-α enhances alveolar epithelial cell repair in a new in vitro model. Am. J. Physiol. 267, L278–L278
8. Miyazono, K., Maeda, S., and Imamura, T. (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokeine Growth Factor Rev. 16, 251–263
9. Padgett, R. W., St Johnston, R. D., and Gelbart, W. M. (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family. Nature 325, 81–84
10. Wharton, K. A., Thomsen, G. H., and Gelbart, W. M. (1991) Drosophila 60A gene, another transforming growth factor β family member, is closely related to human bone morphogenetic proteins. Proc. Natl. Acad. Sci. U. S. A. 88, 9214–9218
11. Burke, R., and Basler, K. (1996) Dpp receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122, 2261–2269
12. Sturtevant, M. A., and Bier, E. (1995) Analysis of the genetic hierarchy guiding wing vein development in Drosophila. Development 121, 785–801
13. Blair, S. S. (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu. Rev. Cell Dev. Biol. 23, 293–319
14. Xie, T., Finelli, A. L., and Padgett, R. W. (1994) The Drosophila saxophone gene: a serine-threonine kinase receptor of the TGF-β superfamily. Science 263, 1756–1759
15. Brummel, T. J., Twombly, V., Marqués, G., Wrana, J. L., Newfeld, S. J., Attisano, L., Massagué, J., O’Connor, M. M., and Gelbart, W. M. (1994) Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261
16. Raftery, L. A., Twombly, V., Wharton, K., and Gelbart, W. M. (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254
17. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H., and Gelbart, W. M. (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358
18. Satow, R., Kurisaki, A., Chan, T. C., Hamazaki, T. S., and Asashima, M. (2006) Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev. Cell 11, 763–774
19. Duan, X., Liang, Y. Y., Feng, X. H., and Lin, X. (2006) Protein serine/threonine phosphatase PP1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J. Biol. Chem. 281, 36526–36532
20. Knockaert, M., Sakgota, G., Alarcón, C., Massagué, J., and Brivanlou, A. H. (2006) Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proc. Natl. Acad. Sci. U. S. A. 103, 11940–11945
21. Chen, H. B., Shen, J., Ip, Y. T., and Xu, L. (2006) Identification of phosphatases for Smad in the BMP/DPF pathway. Genes Dev. 20, 648–653
22. Yu, J., Pan, L., Qin, X., Chen, H., Xu, Y., Chen, Y., and Tang, H. (2010) MTMR4 attenuates transforming growth factor β (TGFβ) signaling by dephosphorylating R-Smads in endosomes. J. Biol. Chem. 285, 8454–8462
23. Laporte, J., Bedez, F., Bolindo, A., and Mandel, J. L. (2003) Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum. Mol. Genet. 12 Spec No 2, R285–R292
24. Naughtin, M. J., Sheffield, D. A., Rahman, P., Hughes, W. E., Gurung, R., Stow, I. L., Nandurkar, H. H., Dyson, J. M., and Mitchell, C. A. (2010) The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J. Cell Sci. 123, 3071–3083
25. Kusanagi, K., Inoue, H., Ishidou, Y., Mishima, H. K., Kawabata, M., and Miyazono, K. (2000) Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol. Biol. Cell 11, 555–565
26. Korchynskiy, O., and ten Dijke, P. (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891
27. Liang, Y. Y., Lin, X., Liang, M., Brunicardi, F. C., ten Dijke, P., Chen, Z., Choi, K. W., and Feng, X. H. (2003) dSmurf selectively degrades decapentaplegic-activated MAD, and its overexpression disrupts imaginal disc development. J. Biol. Chem. 278, 26307–26310
28. Weng, C., Li, Y., Xu, D., Shi, Y., and Tang, H. (2005) Specific cleavage of McI-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem. 280, 10491–10500
29. Monteiro, R. M., de Sousa Lopes, S. M., Korchynskiy, O., ten Dijke, P., and Mummery, C. L. (2004) Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J. Cell Sci. 117, 4653–4663
30. Miyazono, K., and Miyazawa, K. (2002) Id: a target of BMP signaling. Science STKE 2002, pe40
31. Pardali, K., Kowanetz, M., Heldin, C. H., and Moustakas, A. (2005) Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J. Cell. Physiol. 204, 260–272
32. Simmonds, A. J., Brook, W. J., Cohen, S. M., and Bell, J. B. (1995) Distinguishing functions for engrailed and invected in anterior-posterior patterning in the Drosophila wing. Nature 376, 424–427
33. Lorenzo, O., Urbé, S., and Clague, M. J. (2006) Systematic analysis of myotubularins: heteromorphic interactions, subcellular localisation and endosome related functions. J. Cell Sci. 119, 2953–2959
34. Khalsa, O., Yoon, J. W., Torres-Schumann, S., and Wharton, K. A. (1998) TGF-β/SMAD superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. Development 125, 2723–2734
35. Lecuit, T., Brook, W. J., Ng, M., Calleja, M., Sun, H., and Cohen, S. M. (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393
36. Marty, T., Müller, B., Basler, K., and Affolter, M. (2000) Schnurri mediates Dpp-dependent repression of brinker transcription. Nat. Cell Biol. 2, 745–749
37. Shi, W., Chang, C., Nie, S., Xie, S., Wan, M., and Cao, X. (2007) Endoﬁn
MTMR4 Negatively Regulates BMP Signaling

acts as a Smad anchor for receptor activation in BMP signaling. J. Cell Sci. 120, 1216–1224

38. Bangi, E., and Wharton, K. (2006) Dpp and Gbb exhibit different effective ranges in the establishment of the BMP activity gradient critical for Drosophila wing patterning. Dev. Biol. 295, 178–193

39. Green, J. (2002) Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev. Dyn. 225, 392–408

40. Eivers, E., Demagny, H., Choi, R. H., and De Robertis, E. M. (2011) Phosphorylation of Mad controls competition between wingless and BMP signaling. Sci. Signal 4, ra68

41. Lin, X., Duan, X., Liang, Y. Y., Su, Y., Wrighton, K. H., Long, J., Hu, M., Davis, C. M., Wang, J., Brunicardi, F. C., Shi, Y., Chen, Y. G., Meng, A., and Feng, X. H. (2006) PPM1A functions as a Smad phosphatase to terminate TGFβ signaling. Cell 125, 915–928

42. Jarzab, B., Wiench, M., Fujarewicz, K., Simek, K., Jarzab, M., Oczko-Wojciechowska, M., Wloch, J., Czarniecka, A., Chmielik, E., Lange, D., Pawlaczek, A., Szpak, S., Gubala, E., and Swierniak, A. (2005) Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 65, 1587–1597

43. Chauvet, C. M., Ménard, A., Xiao, C., Aguila, B., Blain, M., Roy, J., and Deng, A. Y. (2012) Novel genes as primary triggers for polygenic hypertension. J. Hypertension 30, 81–86

44. Staehling-Hampton, K., Jackson, P. D., Clark, M. J., Brand, A. H., and Hoffmann, F. M. (1994) Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ. 5, 585–593