The functional significance of synaptotagmin diversity in neuroendocrine secretion

Paanteha K. Moghadam and Meyer B. Jackson*
Department of Neuroscience, University of Wisconsin, Madison, WI, USA

MINI REVIEW ARTICLE
doi: 10.3389/fendo.2013.00124
published: 18 September 2013

Edited by:
Stephane Gasman, Centre national de la recherche scientifique, France

Reviewed by:
Ling-Gang Wu, National Institute of Neurological Disorders and Stroke (NINDS), USA
Ralf Schneggenburger, Ecole Polytechnique Fédérale de Lausanne, Switzerland

*Correspondence:
Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA
e-mail: mbjackson@wisc.edu

INTRODUCTION
Nature employs the same basic molecular machinery for the release of both hormones and neurotransmitters (1–4). Several protein families function broadly in regulated exocytosis, including SNAREs, synaptotagmins (syt), and complexins (5–7). The rich molecular diversity within these families provides a platform for variations in the release process, enabling different cell types to tune and tailor release by blending the different molecular variants of the fusion apparatus. In this way endocrine cells can optimize secretory responses elicited by widely varying signals that are unique to each system. The rates of hormone release from different cell types vary by over two orders of magnitude (8). Endocrine cells secrete an extraordinary variety of hormones by exocytosis from dense-core vesicles (DCVs), and DCVs usually co-package collections of molecules ranging in size from small catecholamines to large peptides (9, 10). The nature of the stimulus can determine which packaged molecules will be released (11, 12), and a single DCV can release both catecholamines and neuropeptides simultaneously (13). Cells also can sort different hormones to different DCVs (14, 15). The diverse forms of storage and release raise questions as to how the exocytotic machinery can be called upon to modulate release rates and enable different types of Ca$^{2+}$ signals to trigger the release of different substances from the same cell or even the same vesicle. One can hope to gain a better understanding of these problems by studying functional variations within the diverse families of exocytotic proteins.

Exocytosis proceeds through a sequence of distinct steps. Release can start once a fusion pore has formed to create a continuous fluid pathway from the vesicle interior to the extracellular space. The fusion pore is initially very small and can allow only small molecules such as norepinephrine to pass, but after it expands larger molecules such as chromogranins, insulin, and glucagon can escape. It is well established that DCVs of endocrine cells undergo two modes of exocytosis, kiss-and-run, and full-fusion (16–19). In kiss-and-run the pore opens transiently, and closes so that vesicles maintain their integrity as they retreat from the plasma membrane. The fusion pore formed during kiss-and-run can act as a filter to expel small molecules and retain larger molecules. The small molecules can be rapidly restored by vesicular transporters so DCVs can recycle. By contrast, in full-fusion the pore expands and the vesicle membrane collapses into the plasma membrane. After full-fusion a DCV is lost; replacing these DCVs requires the entire production sequence beginning with peptide hormone translation in the endoplasmic reticulum, DCV processing in the trans-Golgi network, and maturation (20). The choice between full-fusion and kiss-and-run thus plays a decisive role in determining the fate of the DCV as well as in selecting what molecules are released.

Ca$^{2+}$ triggers exocytosis by binding to syt (21–23), but Ca$^{2+}$ can also influence the kinetics of fusion pores in a variety of ways (24–26), thus raising the possibility that syt isoforms play roles not only in triggering exocytosis, but also in regulating release in subtle ways. Syts regulate the stability of fusion pores (28–30), and fusion pore stability in turn is intimately related to release mode, with the relative frequency of kiss-and-run versus full-fusion described quantitatively in terms of the kinetic rates of fusion pore closure and dilation (26). There are many examples of syts influencing the choice between kiss-and-run and full-fusion (26, 29, 31–33). Syts are conserved proteins with well established functions in membrane trafficking and exocytosis. They contain two C2 domains, and in syt 1, the first isoform to be characterized, each C2 domain binds two or three Ca$^{2+}$ ions through

Synaptotagmins (syt) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca$^{2+}$ binding. Many syt play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca$^{2+}$ sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca$^{2+}$ sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.

Keywords: exocytosis, neuropeptides, dense-core vesicle, norepinephrine, insulin, calcium, fusion pores, kiss-and-run
interactions with key aspartate side chains (34). Syts interact with lipid membranes containing specific phospholipids including phosphatidylserine and phosphatidylinositol-4,5-biphosphate, as well as SNARE proteins. These interactions are regulated by Ca$^{2+}$, but it remains unclear how binding to these targets enables syts to serve as Ca$^{2+}$ sensors in exocytosis (21, 22, 30).

The mouse and human genomes encode 17 syt isoforms (35), and the functional significance of syt diversity is a subject of considerable interest (22, 36, 37). Syts vary widely in their Ca$^{2+}$-dependent lipid binding, with syts 1, 2, and 3 binding rapidly, syts 5, 6, 9, and 10 binding at an intermediate rate, and syt 7 binding slowly (38). The isoforms also vary in their activity in Ca$^{2+}$-stimulated liposome fusion: Ca$^{2+}$ concentrations that trigger responses range widely between the isoforms, and many syts completely fail to confer Ca$^{2+}$ sensitivity on SNARE-mediated liposome fusion in vitro (32, 39, 40). Variations in Ca$^{2+}$ sensitivity and fusion pore regulation make these proteins ideal candidates for modifying the release apparatus and tuning responses as Ca$^{2+}$ concentrations rise and fall in distinct spatiotemporal patterns. Here, we survey relevant work on syt functions in hormone release, and where possible draw parallels between syt isoform properties, Ca$^{2+}$ signals, and forms of secretion.

SYT FUNCTION IN ENDOCRINE CELLS

Synaptotagmins appear broadly throughout the endocrine system, with essentially every cell type examined expressing multiple isoforms (Table 1). Expression varies between cell types and not all reports agree. No effort was made here to distinguish between isoforms untested versus undetected, and the number of isoforms found in endocrine cells will grow as reagents are developed and improved, and as proteomics methods advance. A large body of work supports the expression of syts 1, 4, 7, and 9 in many endocrine systems, and it is remarkable that these four molecules appear in so many different cell types. Syts 1, 4, and 7 are ancient, conserved proteins distributed widely through metazoan genomes (35). These isoforms presumably perform fundamental biological functions, and evidence is accumulating for their roles in a wide range of endocrine and non-endocrine systems.

SYT 1

Syt 1 is the most widely distributed syt isoform in nervous and endocrine systems. This low-affinity Ca$^{2+}$ sensor (32, 39, 41, 42) generally triggers rapid exocytosis. The very tight temporal coupling between Ca$^{2+}$ entry and fusion, within milliseconds, has prompted investigators to use the term “synchronous” to describe this form of release, particularly in the context of synaptic transmission. An early syt 1 knock-down study suggested that PC12 cells can secrete without syt 1 (43), but subsequent work showed that this was due to redundancy with another syt isoform of PC12 cells, syt 9 (33, 44). Overexpression of wild type syt 1 in PC12 cells left the overall time course of secretion unchanged, but overexpression of either wild type syt 1 or a number of syt 1 mutants altered fusion pore kinetics (26–28, 30, 45). Overexpressing syt 1 in PC12 cells also produced more kiss-and-run events than syt 7 and 9 (32).

Deletion of the syt 1 gene in mouse selectively abolished the initial rapid phase of exocytosis in chromaffin cells (33, 46, 47), but had no deleterious effects on slower Ca$^{2+}$-triggered release. For a given concentration of Ca$^{2+}$, exocytosis was much slower in chromaffin cells lacking syt 1 than in control cells (46). Mutation of a residue that reduces Ca$^{2+}$ binding slowed exocytosis in chromaffin cells (48). In PC12 cells syt 1 sorted preferentially to smaller DCVs (32), raising the interesting possibility that hormones packaged in smaller vesicles will be released more rapidly than hormones packaged in larger vesicles.

SYT 7

In contrast to syt 1, syt 7 acts as a high affinity Ca$^{2+}$ sensor (32, 39, 49). Syt 7 is more abundant on larger DCVs in PC12 cells (32).

Table 1 | Syt isoform expression in various endocrine systems.

Cells	Syt isoforms	Reference
PC12 cells	1, 4, 7, 9	Tucker et al. (65)
	1, 9	Lynch and Martin (44), Fukuda et al. (54)
	3	Mizuta et al. (82)
	3, 5, 6, 10	Saegusa et al. (83)
	8	Montereat et al. (68)
Chromaffin cells	1, 4, 7, 9	Matsuoka et al. (84)
	1, 7	Schonn et al. (47)
	1	Voets et al. (46)
Hypothalamus	1–4	Xi et al. (71)
Anterior pituitary	1, 3, 4	Xi et al. (71)
LpT2	1, 4	Hu et al. (85)
AtT20	3	Mizuta et al. (82)
GH3	4	Eaton et al. (65)
	3	Mizuta et al. (82)
Posterior pituitary	1, 4	Zhang et al. (63)
Intermediate pituitary	1, 3, 4, 7, 9	Kreft et al. (88)
(melanotrophs)		
Pancreatic islets	3, 4, 7	Gao et al. (67)
	3	Mizuta et al. (88)
	5, 9	Iezzi et al. (89)
	7	Gustavsson et al. (51)
Pancreatic β-cells	3	Brown et al. (90)
	4	Gut et al. (67)
	7	Gustavsson et al. (50)
β-Cell lines*	1–4, 7, 8	Gao et al. (67)
	1, 2	Lang et al. (91)
	3	Gut et al. (67), Mizuta et al. (62), Mizuta et al. (88)
	4, 7, 11, 13	Andersson et al. (69)
	5, 9	Iezzi et al. (89)
	8	Montereat et al. (68)
Pancreatic α cells	7	Gustavsson et al. (51)

In most cases the localization and expression was based on immunocytochemistry (see text).

*β-Cell lines include RINm5F, INS1, MIN6, HT-T15, TC6-F2.

Deleted of the syt 1 gene in mouse selectively abolished the initial rapid phase of exocytosis in chromaffin cells (33, 46, 47), but had no deleterious effects on slower Ca$^{2+}$-triggered release. For a given concentration of Ca$^{2+}$, exocytosis was much slower in chromaffin cells lacking syt 1 than in control cells (46). Mutation of a residue that reduces Ca$^{2+}$ binding slowed exocytosis in chromaffin cells (48). In PC12 cells syt 1 sorted preferentially to smaller DCVs (32), raising the interesting possibility that hormones packaged in smaller vesicles will be released more rapidly than hormones packaged in larger vesicles.
Syt 7 overexpression in PC12 cells prolonged fusion pore lifetimes more than syt 1 overexpression (30), and favored full-fusion (32). Syt 7 knock-down in zebrafish reduced delayed synaptic release, indicating it is a slow Ca²⁺ sensor (49). Syt 7 deletion in chromaffin cells reduced Ca²⁺-triggered release by 50%, also selectively impairing the slow phase of exocytosis, and deletion of both syt 1 and 7 nearly abolished Ca²⁺-triggered exocytosis. Thus, in chromaffin cells syt 1 and 7 are the primary Ca²⁺ sensors for the fast and slow kinetic phases of exocytosis, respectively (47). Syt 7 gene ablation also reduced Ca²⁺-triggered exocytosis of insulin secretion from pancreatic β-cells and of glucagon secretion from pancreatic α-cells (50, 51). It is intriguing that syt 7 also functions in insulin responsive cells (fat and muscle), promoting glucose uptake through Ca²⁺-stimulated translocation of type-4 glucose transporter to the plasma membrane (52). In syt 7 knock-out α cells, ω-conotoxin further inhibited glucagon secretion to baseline levels, revealing the presence of an N-type Ca²⁺ channel-dependent component of residual glucagon secretion triggered by another protein (51).

SYT 9

Syt 9 is closely related to syt 1 but exhibits intermediate Ca²⁺ sensitivity in fusion assays (32, 39). This protein has also been referred to as syt 5 (35, 53); here syt 9 refers to a 386 amino acid isoform. It is abundant on DCVs of PC12 cells (32, 54, 55), and overexpressing it produces fusion pore lifetimes intermediate between those seen with syt 1 and 7 (30). Down-regulating syt 9 alone produced a small, insignificant reduction of fusion rate in PC12 cells, but as noted above, because of the redundancy of syt 1 and 9 as Ca²⁺ sensors, both must be down-regulated to reduce secretion (33, 44). Silencing of syt 9 strongly inhibited insulin release from islet β-cells and INS-1E cells (56). However, mice with a pancreas-specific knock-out of syt 9 had normal glucose homeostasis and showed no changes in other insulin-dependent functions (57).

Ca²⁺ NON-BINDERS

Slightly more than half of the mammalian syts have non-acidic amino acids at some of the positions engaged in Ca²⁺ binding (35), and these isoforms fail to act as Ca²⁺ sensors in liposome fusion assays (40). The best characterized of these, syt 4, harbors an evolutionarily conserved serine-for-aspartate substitution at a Ca²⁺ ligand in the C2A domain (58). Syt 4 is widely expressed in endocrine cells and its expression rises and falls depending on electrical activity (59) and reproductive state (60). Syt 4 negatively regulates both release and Ca²⁺-dependent liposome fusion (28, 32, 40) and does not bind Ca²⁺ (61). Syt 4 overexpression reduced exocytosis in PC12 cells (28, 32, 62). Although syt 4 overexpression in PC12 cells shortened the lifetimes of fusion pores capable of dilating to full-fusion (28), another form of release was enhanced in which very small fusion pores could open exclusively as kiss-and-run events with exceptionally long lifetimes. Many but not all of the effects of syt 4 overexpression were mimicked by syt 1 harboring the serine-for-alanine Ca²⁺ ligand replacement seen in syt 4 (29). Syt 4 overexpression also favored kiss-and-run in MIN6 β-cells (31). Ablation of the syt 4 gene altered exocytosis and fusion pore properties in posterior pituitary nerve terminals. These results suggested that syt 4 reduced exocytosis in response to modest Ca²⁺ rises but enhanced exocytosis in response to large Ca²⁺ rises (63). Syt 4 also contributes to the maturation of DCVs (64, 65), and altering syt 4 levels changes DCV size (62, 63, 66).

The Ca²⁺ non-binding isoforms syt 4, 8, and 13 have been detected in insulin-secreting cells (67–69). Silencing syt 4 and 13 reduced glucose stimulated insulin secretion in INS1 cells (69). Glucose stimulated expression of the syt 8 gene in human islets and syt 8 knock-down impaired both basal and evoked insulin release (70). Since syt 8 fails to stimulate liposome fusion in a Ca²⁺-dependent manner (40) the precise role of syt 8 in insulin secretion remains unclear. One intriguing possibility is that syt 8 increases the relative proportion of full-fusion events so that fusion pores can grow large enough to allow insulin to escape. It is likely that the Ca²⁺ non-binders interact with other components of the release machinery in ways that remain to be elucidated. These interactions could allow syts to regulate release in ways that cannot as yet be explained in terms of their biochemical properties.

Reports vary regarding the expression of other syt isoforms in endocrine cells (Table 1) and little is known about their localization and functions in hormone release. Syt 2 has been reported in the hypothalamus (71) but is absent from endocrine cells, and its primary function is likely to be as a synaptic Ca²⁺ sensor (72, 73).

SPECIFICITY OF Ca²⁺ SIGNALING

The differences in performance of syts as Ca²⁺ sensors gives a special significance to the spatiotemporal character of Ca²⁺ signals in different cell types and with different forms of stimuli. Ca²⁺ can enter cells through a variety of routes so that the dynamics and spatial extent of changes in cytosolic Ca²⁺ can vary enormously. This creates a scenario in which differences in Ca²⁺ sensing properties can have a major impact on responses (74). Intracellular Ca²⁺ rises and falls as Ca²⁺ enters through Ca²⁺ channels, diffuses away from these sources into the cytoplasm, binds Ca²⁺ binding proteins, and is sequestered into stores or pumped out of the cytoplasm (75–77). The opening of one voltage gated Ca²⁺ channel allows approximately 10¹⁰ ions to enter per msec. This localized flux sets up a steep gradient to create a domain of high local Ca²⁺ concentration. In the immediate vicinity of the channel mouth (within tens of nanometer) Ca²⁺ can rise to >100 μM, which is substantially higher than the average bulk cytoplasmic level, even under conditions of intense stimulation (75, 78). These Ca²⁺ domains around a Ca²⁺ channel can form and collapse rapidly (within a few ms) so that the activation of a Ca²⁺ sensor will depend critically on the kinetics of Ca²⁺ association and dissociation. A low-affinity sensor can detect this high local Ca²⁺ as long as it binds with rapid kinetics. A high affinity Ca²⁺ sensor may fail to respond if it binds too slowly. Syt 1 has properties suited for responding to transient domains with high Ca²⁺. Syt 7 has properties suited for responding to modest but prolonged rises in bulk Ca²⁺ concentration (38).

The idea of localized Ca²⁺ signals leads to two types of Ca²⁺ concentration profile illustrated in Figure 1. When an endocrine cell fires at a moderate rate, Ca²⁺ domains form and collapse around a few open Ca²⁺ channels as shown in Figure 1A. The resulting brief period of high Ca²⁺ concentration will only affect vesicles near the open channels, and will preferentially activate syt 1 over slower isoforms. Basal firing rates corresponding to the resting state of an animal (feed and breed) have been shown...
to trigger norepinephrine release from chromaffin cells without triggering chromogranin release (11). This implicates exocytosis by kiss-and-run, which is preferentially triggered by syt 1 (32). By contrast, with vigorous electrical activity during stress (fight and flight) the bulk Ca\(^{2+}\) concentration will rise to moderate levels (well under 50 \(\mu\)M) for longer times on the order of seconds (Figure 1B). These signals will activate slow, low-affinity Ca\(^{2+}\) sensors such as syt 7. This form of [Ca\(^{2+}\)] signal has been shown to trigger full-fusion (79), with release of both norepinephrine and chromogranin (11). This can be explained by the tendency of syt 7 to trigger full-fusion preferentially (32). Different spatiotemporal patterns of cytosolic Ca\(^{2+}\) can thus target different syt isoforms to modulate fusion kinetics. Furthermore, because syt isoforms favor different modes of exocytosis, by selectively promoting kiss-and-run or full-fusion, Ca\(^{2+}\) signals that activate different syts will determine the relative release of small and large molecules. The sorting of syts to different sized vesicles may also serve as a mechanism for allowing different Ca\(^{2+}\) signals to select different substances for release if content is also found to vary with vesicle size (32).

CONCLUSION

Studies of how different syt isoforms influence the kinetics of exocytosis are starting to resolve functionally relevant distinctions in the mechanisms by which Ca\(^{2+}\) regulates exocytosis. More studies like these will expand our understanding of the diversity of endocrine release mechanisms, but rigorous assessments of syt isoform function in cells face a number of challenges. (1) It is important to address the expression of multiple isoforms, either by ablating endogenous proteins or varying each isoform individually with careful assessment of protein levels. Overexpression of proteins can result in high protein concentrations, possibly leading to mis-targeting and artificial functions. (2) Experiments need to address the different Ca\(^{2+}\) sensitivities of syt isoforms. This requires measurement and control of Ca\(^{2+}\) concentration. (3) Biophysical techniques for measuring exocytosis are very sensitive but often measure surrogates of release and detect events on different time scales. Amperometry measures release and can detect rapid processes but its greatest sensitivity is realized with biogenic amines, and is not nearly as powerful in the measurement of peptides. Furthermore, after content expulsion the closure of a fusion pore can no longer be detected, and the mode of release as kiss-and-run or full-fusion can no longer be ascertained. Capacitance measures membrane area, and single-vesicle capacitance steps provide strong evidence for kiss-and-run. Total internal reflectance microscopy of fluorescent tracers follows the fate of the vesicle content or membrane (80). Like capacitance recording, this method can reveal kiss-and-run but its time resolution is poor. Furthermore, the fate of fluorescent cargo can vary with the design of the fusion construct, raising concerns about experimental artifacts (81). Amperometry, capacitance, and total internal reflectance microscopy are very powerful techniques but they do not always agree and these differences can complicate interpretations and comparisons (62).

Given the functional versatility within the syt protein family, the studies to date probably have only scratched the surface in addressing the roles of syt isoforms in the complex and varied forms of hormone release. By selecting among the different syt isoforms and regulating their expression, and by sorting to different vesicles containing different hormones, cells can regulate the response to diverse forms of Ca\(^{2+}\) signals. The syt isoforms present on a vesicle will determine what form of Ca\(^{2+}\) signal will trigger fusion, how different Ca\(^{2+}\) signals direct the choice between kiss-and-run and full-fusion, and what proportion of small and large molecules are released.

ACKNOWLEDGMENTS

This research was supported by NIH grants NS044057 and NS072905. We thank Drs. Xuelin Lou and Edwin Chapman for helpful discussions and comments.
REFERENCES

1. De Camilli P, Jahn R. Pathways to regulated exocytosis in neurons. Annu Rev Physiol (1990) 52:625–45. doi:10.1146/annurev.ph.52.030190.003205

2. Walch-Solimena C, Takeda K, Marek KL, Middy K, Sudhof TC, De Camilli P, et al. Synaptotagmin: a membrane constituent of neuro-peptide-containing large dense-core vesicles. J Neurosci (1993) 13:3895–903.

3. Brunnner Y, Coutie Y, Iezzi M, Forti M, Fukuda M, Hochstrasser DE, et al. Proteomics analysis of insulin secretory granules. Mol Cell Proteomics (2007) 6:1007–17. doi:10.1074/mcp.M600443-MCP200

4. Wegryn J, Bark S, Funkelstein L, Mosier C, Yap A, Kazemi-Esfarjani P, et al. Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuro-effector vesicles for cell-cell communication. J Proteome Res (2010) 9:5002–24. doi:10.1021/pr1003104.

5. Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science (2009) 323:474–7. doi:10.1126/science.1161748

6. Jahn R, Scheller RH. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol (2006) 7:631–43. doi:10.1038/nrm2002

7. Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature (2012) 490:201–7. doi:10.1038/nature11320

8. Martin TF. Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta (2003) 1641:157–65. doi:10.1016/S0167-4889(03)00093-4

9. Winkler H, Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience (1980) 5:1803–20. doi:10.1016/0306-4522(80)90031-7

10. Hokfelt T, Broberger C, Xu ZQ, Sergerve Y, Uribik R, Dier M. Neuropeptides—an overview. Neurropharmacology (2000) 39:1357–56. doi:10.1006/snb.2000.0808

11. 00010-0

12. Fulop T, Radabaugh S, Smith C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci (2005) 25:7324–32. doi:10.1523/JNEUROSCI.3564-05.2005

13. MacDonald PE, Braun M, Galvanoski J, Rorsman P. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab (2006) 4:283–90. doi:10.1016/j.cmet.2006.08.011

14. Wegrzyn JL, Bark SJ, Funkelstein L, Mosier C, Yap A, Kazemi-Esfarjani P, et al. Proteomics of dense core secretory vesicles reveal distinct protein categories for secretion of neuro-effector vesicles for cell-cell communication. J Proteome Res (2010) 9:5002–24. doi:10.1021/pr1003104.

15. Ferreira RM, Ito Y, Sudhof TC. Synaptotagmins: why so many? Front Mol Neurosci (2011) 4:13. doi:10.3389/fnmol.2011.00013

16. fryachka V, Jackson MB. Capacitance steps and fusion pores of small and large dense-core vesicles in nerve terminals. Nature (2002) 418:89–92. doi:10.1038/nature00852

17. Neher E, Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced sequestration in bovine adrenal chromatina. Proc Natl Acad Sci U S A (1982) 79:6712–16. doi:10.1073/pnas.79.21.6712

18. Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core vesicle exocytosis revealed by evanescent wave microscopy. Curr Biol (2003) 13:563–7. doi:10.1016/S0960-8225(03)00176-3

19. Zhang Z, Hui E, Chapman ER, Jack- son MB. Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Mol Biol Cell (2010) 21:2821–31. doi:10.1091/mbc.E10-04-0285

20. Liu C, Ulbrich B, Zhang H, Anderson BG, Brose N, Sudhof TC. Ca(2+) and K+ dependent and independent activities of neural and non-neuronal synaptotagmins. Nature (2005) 375:594–9. doi:10.1038/nature01980

21. Sugita S, Shin OH, Han W, Lao Y, Sudhof TC. Synaptotagmins form a hierarchy of exocy- totic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J (2002) 21:270–80. doi:10.1093/emboj/21.2.270

22. Shoji-Kasai Y, Yoshida A, Sato K, Hoshino T, Ogura A, Kondo S, et al. Neurotransmitter release from synaptotagmin-deficient clonal variants of PC12 cells. Science (1995) 268:1821–3.

23. Lynch KL, Lynch TF. Synaptotag- mins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells. J Cell Sci (2007) 120:617–27. doi:10.1242/jcs.03375
Fukuda M, Kowaldyck JA, Zhang X, Martin TF, Mikoshiba K. Synaptotagmin IX regulates Ca(2+)-dependent secretion in PC12 cells. J Biol Chem (2002) 277:4601–4. doi:10.1074/jbc.C100588200
55. Tucker WC, Edwardson JM, Bai J, Kim HM, Martin TF, Chapman ER. Identification of synaptotagmin effectors via acute inhibition of secretion from cradked PC12 cells. J Cell Biol (2003) 162:199–209. doi:10.1083/jcb.200300260
56. Iezzi M, Eliasson L, Fukuda M, Wollheim CB. Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca(2+)- dependent insulin secretion in islets. FEBS Lett (2005) 579:5241–6. doi:10.1016/j.febslet.2005.08.074
57. Gustavsson N, Wang X, Wang Y, Seah T, Xu J, Radda GK, et al. Neural calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion. PLoS One (2010) 5:e15414. doi:10.1371/journal.pone.0015414
58. von Poser C, Ichichkenko K, Shao X, Rizo J, Sudhof TC. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca(2+) binding. J Biol Chem (1997) 272:14134–9. doi:10.1074/jbc.272.22.14314
59. Vician L, Lim IK, Ferguson G, Tocq C, Baudry M, Herschman HR. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci U S A (1995) 92:2164–8. doi:10.1073/pnas.92.6.2164
60. Powapatapon A, Teramitsu I, Byun JS, Vician LJ, Herschman HR, White SA. Singing, but not seizure, dependent secretion in PC12 cells. J Neurosci (2008) 36:1616–29. doi:10.1523/JNEUROSCI.02023-09
61. Dai H, Shin OH, Machius M, Tomchick DR, Sudhof TC, Rizo J. Structural basis for the evolutionary inactivation of Ca(2+) binding to synaptotagmin 4. Nat Struct Mol Biol (2004) 11:844–9. doi:10.1038/nmb3817
62. Zhang Z, Zhang Z, Jackson MB. Synaptotagmin IV modulation of vesicle size and fusion pores in PC12 cells. Biophys J (2010) 98:2478–82. doi:10.1016/j.bpj.2009.11.024
63. Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB. Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat Neurosci (2009) 12:163–71. doi:10.1038/nn.2252
64. Abras M, Otto GP, Toose SA. Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. J Cell Biol (2006) 173:242–51. doi:10.1083/jcb.200506163
65. Eaton BA, Haugwitz M, Lau D, Moore HP. Biogenesis of regulated exocytotic carriers in neuroendocrine cells. J Neurosci (2000) 20:7334–44.
66. Wang P, Wang CT, Bai J, Jackson MB, Chapman ER. Mutations in the effectors binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J Biol Chem (2003) 278:47030–7. doi:10.1074/jbc.M308728200
67. Gut A, Kiraly CE, Fukuda M, Mikoshiba K, Wollheim CR, Lang J. Expression and localization of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. J Cell Sci (2001) 114:1709–16.
68. Monnett C, Boal F, Grise F, Hemar A, Lang J. Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. Biochim Biophys Acta (2006) 1763:73–81. doi:10.1016/j.bbadec.2005.11.008
69. Andersson SA, Olsson AH, Esquerre JL, Heimann E, Ladenvall C, Edlund J, Kim HJ, Martin TF, Chapman ER. Mutations of linear approximations to the understanding of Ca++ signals. Cell Calcium (1998) 24:345–57. doi:10.1016/S0896-4160(98)00058-6
70. Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neu- rons. Neuron (2003) 38:331–46. doi:10.1016/S0896-6273(03)00639-1
71. Yamada WM, Zucker RS. Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J (1992) 61:671–82. doi:10.1016/S0006-3495(92)81872-6
72. Elhamdani A, Azizi F, Artarcejo AR. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in cald adenalin chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci (2006) 26:3030–6. doi:10.1523/JNEUROSCI.3275-05.2006
73. Michael DJ, Cai H, Xiong W, Ouyang J, Chow RH. Mechanisms of peptide Endocirl Metab (2006) 17:408–15. doi:10.1016/j.tem.2006.10.011
74. Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, et al. Fluorescent cargo proteins in pancreatic beta-cells: design deter- mines secretion kinetics at exo- cytosis. Biophys J (2004) 87:1–5. doi:10.1529/biophysj.104.02173
75. Murata M, Inagaki N, Nemoto Y, Matsukura S, Takahashi M, Seino S. Synaptotagmin III is a novel isoform of rat synaptotag- min expressed in endocrine and neuronal cells. J Biol Chem (1994) 269:11675–8.
76. Saegusa C, Fukuda M, Mikoshiba K. Synaptotagmin V is tar- geted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol
Moghadam and Jackson Synaptotagmin diversity in neuroendocrine secretion

Chem (2002) 277:24499–505. doi:10.1074/jbc.M202767200

84. Matsuoka H, Harada K, Nakamura J, Fukuda M, Inoue M. Differential distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell Tissue Res (2011) 344:41–50. doi:10.1007/s00441-011-1131-8

85. Hu ZT, Chen MR, Ping Z, Dong YM, Zhang CY, Xu T, et al. Synaptotagmin IV regulates dense core vesicle (DCV) release in LbetaT2 cells. Biochem Biophys Res Commun (2008) 371:781–6. doi:10.1016/j.bbrc.2008.04.174

86. Kreft M, Kuster V, Grlic S, Rupnik M, Milisav I, Zoeck R, Synaptotagmin I increases the probability of vesicle fusion at low [Ca2+]i in pituitary cells. Am J Physiol Cell Physiol (2003) 284:C547–54. doi:10.1152/ajpcell.00333.2002

87. Gao Z, Reavey-Cantwell J, Young RA, Jegier P, Wolf BA. Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta-cells. J Biol Chem (2000) 275:36079–85. doi:10.1074/jbc.M004284200

88. Mizuta M, Kurose T, Miki T, Shoji-Kasai Y, Takahashi M, Seino S, et al. Localization and functional role of synaptotagmin III in insulin secretory vesicles in pancreatic beta-cells. Diabetes (1997) 46:2002–6. doi:10.2337/diabetes.46.12.2002

89. Iezzi M, Kouri G, Fukuda M, Wollheim CB. Synaptotagmin V and IX isoforms control Ca2+-dependent insulin exocytosis. J Cell Sci (2004) 117:3119–27. doi:10.1242/jcs.01179

90. Brown H, Meister B, Deeney J, Corkey BE, Yang SN, Larsson O, et al. Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis. Diabetes (2000) 49:383–91. doi:10.2337/diabetes.49.3.383

91. Lang J, Fukuda M, Zhang Y, Mikoshiba K, Wollheim CB. The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic beta-cells: action of synaptotagmin at low micromolar calcium. EMBO J (1997) 16:5837–46. doi:10.1093/emboj/16.19.5837

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 June 2013; accepted: 31 August 2013; published online: 18 September 2013.

Citation: Moghadam PK and Jackson MB (2013) The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front. Endocrinol. 4:124. doi: 10.3389/fendo.2013.00124

This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology. Copyright © 2013 Moghadam and Jackson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.