Elliptic algebra, Frenkel–Kac construction and root of unity limit

H Itoyama¹,², T Oota³,⁴ and R Yoshioka²

¹ Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
² Osaka City University, Advanced Mathematical Institute (OCAMI), 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

E-mail: itoyama@sci.osaka-cu.ac.jp, toota@sci.osaka-cu.ac.jp and yoshioka@sci.osaka-cu.ac.jp

Received 12 June 2017
Accepted for publication 26 July 2017
Published 11 August 2017

Abstract

We argue that the level-1 elliptic algebra $U_{q,p}(\hat{\mathfrak{g}})$ is a dynamical symmetry realized as a part of 2d/5d correspondence where the Drinfeld currents are the screening currents to the q-Virasoro/W block in the 2d side. For the case of $U_{q,p}(\hat{\mathfrak{sl}}(2))$, the level-1 module has a realization by an elliptic version of the Frenkel–Kac construction. The module admits the action of the deformed Virasoro algebra. In a rth root of unity limit of p with $q^2 \to 1$, the \mathbb{Z}_r-parafermions and a free boson appear and the value of the central charge that we obtain agrees with that of the 2d coset CFT with para-Virasoro symmetry, which corresponds to the 4d $\mathcal{N} = 2$ $SU(2)$ gauge theory on $\mathbb{R}^4/\mathbb{Z}_r$.

Keywords: elliptic algebra, deformed Virasoro symmetry, root of unity limit

1. Introduction

Since the proposal of AGT(W) relation [1, 2], 2d/4d correspondence and its generalizations have been intensively studied. Originally, it was the correspondence between the Nekrasov partition function of 4d $\mathcal{N} = 2$ supersymmetric $SU(N)$ gauge theory and the conformal block of 2d CFT with the W_N symmetry. One of the generalizations is to consider the 4d $SU(N)$ gauge theory on $\mathbb{R}^4/\mathbb{Z}_r$ [3, 4]. For works in this direction, see for example [4–15]. The corresponding CFT is described by a coset

$$\frac{\hat{\mathfrak{sl}}(N)_r \oplus \hat{\mathfrak{sl}}(N)_\kappa}{\hat{\mathfrak{sl}}(N)_{r+\kappa}}.$$ (1.1)

³ Author to whom any correspondence should be addressed.
possessing the \(r \)th ‘para-\(W_N \) symmetry’ [6, 16]. Here \(\kappa \) is a parameter related to the \(\Omega \)-background parameters \(\epsilon_{1,2} \).

Another generalization is a 5d lift (or K-theoretic lift), i.e. to consider the 5d \(\mathcal{N} = 1 \) \(SU(N) \) gauge theories on \(\mathbb{R}^4 \times S^1 \) [17–23]. (For more general 2d/6d correspondence, see for example [24–28]). The corresponding 2d theories are no longer conformally invariant but are invariant under the deformed Virasoro [29–31] \((N = 2) \) or deformed \(W_N \) symmetry \((N \geq 3) \) [32, 33]. The deformed vertex operators [34–37] play important roles in constructing \(q \)-deformed conformal/W block. The \(q \)-Virasoro/W algebras themselves are, however, not sufficient to determine the \(q \)-vertex operators. This comes from their lack of the coalgebra structure—in particular, the coproduct. To construct the deformed vertex operators, one can take an approach that utilizes algebras having the coproduct and that is closely connected with the \(q \)-Viraroso/W algebras. There are at least two such algebras: the Ding–Iohara–Miki (DIM) algebras [38, 39] and the elliptic algebra \(U_{q,p} (\hat{\mathfrak{g}}) \) [40–47]. Here \(\hat{\mathfrak{g}} \) is an untwisted affine Lie algebra. They are different kinds of extension of the quantum group \(U_q (\mathfrak{g}) \). For research based on the DIM algebras, see, for example, [26, 48–55].

In this paper, we take the second approach to make exploit the elliptic algebra \(U_{q,p} (\hat{\mathfrak{g}}) \). One important property of this elliptic algebra with regard to the 2d/5d correspondence is that the Drinfeld currents act as the screening currents on the \(q \)-Virasoro/W block in the 2d side. The elliptic algebras are constructed based on the elliptic solutions to the Yang–Baxter equations. There are two class of elliptic solutions. One is related to the eight-vertex model (XYZ model) [56, 57]. The other is related to the face-type integrable lattice models (ABF [58] or RSOS models). The corresponding elliptic algebras are called vertex-type and face-type respectively. The Sklyanin algebra [59] and \(A_{q,p} (\mathfrak{sl}(N)) \) [60, 61] are vertex-type elliptic algebras.

The face-type elliptic solutions obey the dynamical Yang–Baxter equation (or the Gervais–Neveu–Felder equation) [62, 63]. The dynamical Yang–Baxter equation

\[R_{12}(\lambda + h_2) R_{13}(\lambda) R_{23}(\lambda + h_1) = R_{23}(\lambda) R_{13}(\lambda + h_2) R_{12}(\lambda) \tag{1.2} \]

is equivalent to the star-triangle equation in solvable lattice models [64]. Here \(\lambda \) is a dynamical parameter and \(h \) is an element of the Cartan subalgebra. This equation first appeared in the study of the monodromy properties of the conformal blocks of the Liouville field theory [62]. (See also [65–67]).

Based on the face-type elliptic solutions, various elliptic quantum groups have been introduced. Some of them are \(E_{\gamma,\eta} (\mathfrak{sl}(2)) \) [63, 64], \(B_{q,\lambda} (\mathfrak{g}) \) [61] and \(U_{q,p} (\hat{\mathfrak{g}}) \). The latter two, \(B_{q,\lambda} (\mathfrak{g}) \) and \(U_{q,p} (\hat{\mathfrak{g}}) \), are face-type algebras closely related each other. They are quite similar, but have different Hopf algebra-like structures. \(B_{q,\lambda} (\mathfrak{g}) \) is a quasi-Hopf algebra [68] whose coproduct is not coassociative, while \(U_{q,p} (\hat{\mathfrak{g}}) \) is a \(H \)-Hopf algebra [69] whose coproduct is coassociative. Due to this coassociativity, \(U_{q,p} (\hat{\mathfrak{g}}) \) has a simpler coalgebra structure than \(B_{q,\lambda} (\mathfrak{g}) \) does.

Let us consider the face-type elliptic algebra \(U_{q,p} (\hat{\mathfrak{g}}) \) with level \(k \). It is an elliptic deformation of the algebra of screening charges of the coset CFT [40, 41]

\[\hat{\mathfrak{g}}_k \oplus \hat{\mathfrak{g}}_{-k-2}. \tag{1.3} \]

This CFT is closely related to the \(k \)-fusion RSOS model of type \(\mathfrak{g} \). For the level \(k = 1 \), \(U_{q,p} (\hat{\mathfrak{g}}) \) is closely related to the deformed \(W \) algebra of type \(\mathfrak{g} \) [32, 33]. In the CFT limit (\(q \to 1 \) limit), the coset model \(\hat{\mathfrak{g}}_1 \oplus \hat{\mathfrak{g}}_{-3} \) shows the ordinary \(W(\mathfrak{g}) \)-symmetry.

In this paper, we would like to argue that the level-1 \(U_{q,p} (\hat{\mathfrak{sl}}(N)) \) algebra is a dynamical symmetry in its connection with the 5d \(\mathcal{N} = 1 \) \(SU(N) \) gauge theory on \(\mathbb{R}^4 \times S^1 \). Let us denote
the radius of S^1 by R. We propose the following dictionary between the deformation parameters and gauge theory parameters:

\[q = e^{(1/2)R(n + n^2)}, \quad p = e^{Re}, \quad p^* = pq^{-2} = e^{-Re}. \]

(1.4)

Taking $R \to 0$ limit is equivalent to a CFT limit of $U_{q,p}(\hat{sl}(N))$ with $q \to 1$ ($p,p^* \to 1$). Hence we obtain ordinary 2d/4d correspondence: 4d $SU(N)$ gauge theory on \mathbb{R}^4 and 2d CFT with W_N symmetry.

We also propose another CFT limit: a root of unity limit of the parameters

\[p \to \omega^{\ell}, \quad p^* \to \omega^{\ell}, \quad q^2 \to 1, \]

(1.5)

where ω is the primitive rth root of unity and ℓ is an integer such that $\omega^{\ell} \neq 1$. If the level 1 elliptic algebra $U_{q,p}(\hat{sl}(N))$ is the 2d side symmetry of 2d/5d correspondence and deformed blocks are given by the correlation functions of vertex operators of this algebra, this root of unity limit automatically leads to the correspondence between the W block of the coset CFT $\hat{sl}(N) \oplus \hat{sl}(N)$ and the Nekrasov instanton partition function on $\mathbb{R}^4/\mathbb{Z}_r$.

For simplicity, we consider the $N = 2$ case: $U_{q,p}(\hat{sl}(2))$ [40]. Generalization to general N is straightforward (though it may be tedious).

For the level $k = 1$ elliptic algebra $U_{q,p}(\hat{sl}(2))$, the closely related RSOS model is known as the Andrews–Baxter–Forrester (ABF) face model [58]. The q-deformed Virasoro algebra plays the role of dynamical symmetry of the ABF model [29, 70–72]. It has a general level k realization by a deformed Z-algebra or parafermions. As we here only deal with its connection with the deformed Virasoro algebra, we consider a simple level-1 realization, i.e. an elliptic deformation of the Frenkel–Kac construction. In the $p \to 0$ limit, the elliptic algebra $U_{q,p}(\hat{sl}(2))$ essentially goes to the quantum group $U_q(\hat{sl}(2))$, and if we take further limit $q \to 1$, it goes to the affine Lie algebra $\hat{sl}(2)_k$.

This paper is organized as follows: in the next section, we review the elliptic algebra $U_{q,p}(\hat{sl}(2))$. In section 3, level 1-modules of $U_{q,p}(\hat{sl}(2))$ algebra based on an elliptic version of the Frenkel–Kac construction is explained. In section 4, we discuss the root of unity limit of the level-1 $U_{q,p}(\hat{sl}(2))$ algebra. In appendix, we briefly recall the Frenkel–Kac construction of the affine Lie algebra $\hat{sl}(2)_k$.

2. Elliptic algebra $U_{q,p}(\hat{sl}(2))$

In this section, we review the elliptic algebra $U_{q,p}(\hat{sl}(2))$ [40]. The face-type elliptic algebra $U_{q,p}(\hat{sl}(2))$ is an elliptic deformation of the affine Lie algebra $\hat{sl}(2)$. If we take the deformation parameters $p \to 0$ and $q \to 1$, then $U_{q,p}(\hat{sl}(2))$ goes to the $\hat{sl}(2)$ current algebra (and a Heisenberg algebra). We essentially follow the convention of [73].

Let q and p be two parameters. The elliptic algebra $U_{q,p}(\hat{sl}(2))$ is a unital associative algebra generated by the following elements

\[P, h, e_m, f_m, \alpha_n, K^\pm, q^{\pm(1/2)k}, d, \quad (m \in \mathbb{Z}, n \in \mathbb{Z} \setminus \{0\}). \]

(2.1)

K^\pm are invertible, k is a central element and d is a grading operator

\[[d, e_m] = m e_m, \quad [d, f_m] = m f_m, \quad [d, \alpha_n] = n \alpha_n, \quad [d, P] = [d, h] = [d, K^\pm] = 0. \]

(2.2)

The eigenvalue of k on a $U_{q,p}(\hat{sl}(2))$-module is called the level of the module.
It is convenient to introduce the elliptic currents:

\[e(z) = \sum_{m \in \mathbb{Z}} e_m z^{-m-1}, \quad f(z) = \sum_{m \in \mathbb{Z}} f_m z^{-m-1}, \]

(2.3)

\[\psi^+(q^{-1/2}z) = K^+ \exp \left(-\left(q - q^{-1} \right) \sum_{m > 0} \frac{\alpha_m}{1 - p^m} z^m \right) \exp \left(\left(q - q^{-1} \right) \sum_{m > 0} \frac{p^m \alpha_m}{1 - p^m} z^{-m} \right), \]

(2.4)

\[\psi^-(q^{1/2}z) = K^- \exp \left(-\left(q - q^{-1} \right) \sum_{m > 0} \frac{p^m \alpha_m}{1 - p^m} z^m \right) \exp \left(\left(q - q^{-1} \right) \sum_{m > 0} \frac{\alpha_m}{1 - p^m} z^{-m} \right). \]

(2.5)

Then the remaining defining relations are given by

\[[P, h] = 0, \quad [P, e(z)] = -2 e(z), \quad [h, e(z)] = 2 e(z), \]

(2.6)

\[[P, f(z)] = 0, \quad [h, f(z)] = -2 f(z), \quad [P, \alpha_n] = 0, \quad [h, \alpha_n] = 0, \]

(2.7)

\[[P, K^\pm] = -2K^\pm, \quad [h, K^\pm] = 0, \]

(2.8)

\[K^\pm e(z) = q^{\mp 2} e(z) K^\pm, \quad K^\pm f(z) = q^{\mp 2} f(z) K^\pm, \]

(2.9)

\[[\alpha_m, \alpha_n] = \delta_{m+n,0} \frac{[2m]_q}{m} \frac{1 - p^{|m|}}{1 - p^{|n|}} q^{-k|m|}, \]

(2.10)

\[[\alpha_m, e(z)] = \frac{[2m]_q}{m} \frac{1 - p^{|m|}}{1 - p^{|n|}} q^{-k|m|} \zeta^m e(z), \quad [\alpha_m, f(z)] = - \frac{[2m]_q}{m} \zeta^m f(z), \]

(2.11)

\[z_1 \frac{(q^{-2} z_1 / z_2 ; p^*)^L}{(p^* q^{-2} z_1 / z_2 ; p^*)^L} e(z_1) e(z_2) = - z_2 \frac{(q^2 z_1 / z_2 ; p^*)^L}{(p^* q^2 z_1 / z_2 ; p^*)^L} e(z_2) e(z_1), \]

(2.12)

\[z_1 \frac{(q^{-2} z_1 / z_2 ; p^*)^L}{(p^* q^{-2} z_1 / z_2 ; p^*)^L} f(z_1) f(z_2) = - z_2 \frac{(q^2 z_1 / z_2 ; p^*)^L}{(p^* q^2 z_1 / z_2 ; p^*)^L} f(z_2) f(z_1). \]

(2.13)

\[[e(z_1), f(z_2)] = \frac{1}{(q - q^{-1}) z_1 z_2} \left(\delta(q^{-2} z_1 / z_2) \psi^-(q^{1/2} z_2) - \delta(q^2 z_1 / z_2) \psi^+(q^{-1/2} z_2) \right). \]

(2.14)

Here \(p^* = pq^{-2k} \) and

\[[x]_q = \frac{q^x - q^{-x}}{q - q^{-1}}, \quad (x; \xi)_\infty = \prod_{n = 0}^{\infty} (1 - x \xi^n), \quad \delta(z) = \sum_{n \in \mathbb{Z}} z^n. \]

(2.15)

2.1. \(p \to 0 \) limit: \(U_q(\widehat{sl}(2)) \)

In the \(p \to 0 \) limit, the elliptic algebra \(U_{q,p}(\widehat{sl}(2)) \) becomes the direct product of quantum group \(U_q(\widehat{sl}(2)) \) and the algebra \(\mathcal{H} \) generated by \(\{ P, e^{\pm 2k} \} \) where \([P, Q] = 1 \).
\[U_{q,p}(\mathfrak{sl}(2)) \rightarrow U_{q}(\mathfrak{sl}(2)) \otimes \mathcal{H}, \quad [U_{q}(\mathfrak{sl}(2)), \mathcal{H}] = 0, \quad (2.16) \]

\[P \rightarrow P, \quad h \rightarrow h, \quad q^{\pm (1/2)k} \rightarrow q^{\pm (1/2)k}, \quad d \rightarrow d, \quad (2.17) \]

\[e(z) \rightarrow x^+(z) e^{-2Q}, \quad f(z) \rightarrow x^-(z), \quad \alpha_n \rightarrow \tilde{\alpha}_n, \quad K^\pm \rightarrow q^{\pm h} e^{-2Q}, \quad (2.18) \]

\[\psi^+(q^{-k/2}z) \rightarrow \varphi(q^{-k/2}z) e^{-2Q}, \quad \psi^-(q^{k/2}z) \rightarrow \psi(q^{k/2}z) e^{-2Q}, \quad (2.19) \]

where

\[\varphi(q^{-k/2}z) = q^{-h} \exp \left(- (q - q^{-1}) \sum_{m > 0} \tilde{\alpha}_m z_m^m \right), \quad (2.20) \]

\[\psi(q^{k/2}z) = q^h \exp \left((q - q^{-1}) \sum_{m > 0} \tilde{\alpha}_m z_m^{-m} \right). \quad (2.21) \]

Here \(\tilde{\alpha}_n \) satisfies the following commutation relations:

\[[\tilde{\alpha}_m, \tilde{\alpha}_n] = \delta_{m+n,0} \frac{[2m]_q [km]_q}{m} q^{-k|m|}. \quad (2.22) \]

The mode expansion of the Drinfeld currents \(x^\pm(z) \) is given by

\[x^\pm(z) = \sum_{m \in \mathbb{Z}} x_m^m z^{m-1}. \quad (2.23) \]

Then, the quantum group \(U_{q}(\mathfrak{sl}(2)) \) is generated by

\[x_m^\pm, \tilde{\alpha}_n, h, q^{\pm (1/2)k}, \tilde{d}, \quad (m \in \mathbb{Z}; n \in \mathbb{Z} \setminus \{0\}). \quad (2.24) \]

The defining relations are given as follows: \(k \) is a central element,

\[[\tilde{d}, x_m^\pm] = mx_m^\pm, \quad [\tilde{d}, \tilde{\alpha}_n] = n \tilde{\alpha}_n, \quad [\tilde{d}, h] = 0, \quad (2.25) \]

\[[h, \tilde{\alpha}_n] = 0, \quad [h, x_m^\pm] = \pm 2x_m^\pm, \quad (2.26) \]

\[[\tilde{\alpha}_m, \tilde{\alpha}_n] = \delta_{m+n,0} \frac{[2m]_q [km]_q}{m} q^{-k|m|}, \quad (2.27) \]

\[[\tilde{\alpha}_m, x^+(z)] = \frac{[2m]_q}{m} q^{-k|m|} z^{m} x^+(z), \quad [\tilde{\alpha}_m, x^-(z)] = -\frac{[2m]_q}{m} z^{m} x^-(z), \quad (2.28) \]

\[z_1 (1 - q^{k/2} z_2 / z_1) x^+(z_1) x^+(z_2) = -z_2 (1 - q^{k/2} z_1 / z_2) x^+(z_2) x^+(z_1). \quad (2.29) \]

\[[x^+(z_1), x^-(z_2)] = \frac{1}{(q - q^{-1})z_1 z_2} \left(\delta(q^{-k} z_1 / z_2) \psi(q^{k/2} z_2) - \delta(q^k z_1 / z_2) \varphi(q^{-k/2} z_2) \right). \quad (2.30) \]

2.1.1 \(q \rightarrow 1 \): \(\widehat{\mathfrak{sl}(2)_k} \) current algebra

Furthermore, if we also take the \(q \rightarrow 1 \) limit, \(U_{q}(\mathfrak{sl}(2)) \) goes to the \(\widehat{\mathfrak{sl}(2)_k} \) current algebra with level \(k \):

\[U_{q}(\mathfrak{sl}(2)) \rightarrow \widehat{\mathfrak{sl}(2)_k}, \quad (2.31) \]
\[x^\pm(z) \rightarrow J^\pm(z), \quad \tilde{\alpha}_n \rightarrow a_n, \quad \frac{\psi(q^{1/2}z) - \varphi(q^{-1/2}z)}{(q - q^{-1})z} \rightarrow 2J^3(z), \]
\tag{3.22}

where
\[2J^3(z) = h z^{-1} + \sum_{m \neq 0} a_m z^{-m-1}. \]
\tag{3.23}

Here
\[[a_m, a_n] = 2k m \delta_{m+n,0}. \]
\tag{3.24}

The commutation relations for the \(\hat{\mathfrak{sl}}(2) \) currents are given by
\[[J^3(z_1), J^\pm(z_2)] = \pm \delta(z_2/z_1) \frac{J^\pm(z_2)}{z_2}, \quad [J^3(z_1), J^3(z_2)] = \frac{(k/2)}{z_1 z_2} \delta'(z_2/z_1), \]
\tag{3.25}

\[[J^+(z_1), J^-(z_2)] = \frac{k}{z_1 z_2} \delta'(z_2/z_1) + \delta(z_2/z_1) \frac{2J^3(z_2)}{z_2}. \]
\tag{3.26}

Here \(\delta'(x) = \sum_{n \in \mathbb{Z}} nx^n \). These commutation relations are equivalent to the following OPE:
\[J^3(z_1) J^\pm(z_2) \sim \frac{\pm J^\pm(z_2)}{z_1 - z_2}, \quad J^3(z_1) J^3(z_2) \sim \frac{k/2}{(z_1 - z_2)^2}, \]
\tag{3.27}

\[J^+(z_1) J^-(z_2) \sim \frac{k}{(z_1 - z_2)^2} + \frac{2J^3(z_2)}{z_1 - z_2}. \]
\tag{3.28}

3. Level 1 modules of \(U_{q,p}(\hat{\mathfrak{sl}}(2)) \)

It is well-known that the level \(k = 1 \) modules of the \(\hat{\mathfrak{sl}}(2) \) current algebra can be obtained by a free massless chiral boson compactified on a circle with the self-dual radius. The Fock space of the compactified boson is decomposed into the two irreducible \(\hat{\mathfrak{sl}}(2)_1 \) modules with highest weights \(\Delta_0 \) and \(\Lambda_1 \). It is the so-called the Frenkel–Kac construction [74] (see appendix for a brief review).

In this section, the elliptic analog of the Frenkel–Kac construction is explained. Let us introduce elliptic bosons by
\[\Phi(z) = 2Q_h + h \log z - \sum_{m \neq 0} \frac{\alpha_m}{|m|_q} z^{-m}, \]
\tag{3.29}

\[\Phi^\vee(z) = 2Q_h + h \log z - \sum_{m \neq 0} \frac{\alpha_m}{|m|_q} \frac{(1 - p^{|m|})}{(1 - p^{|m|})} q^{|m|} z^{-m}, \]
\tag{3.30}

where the modes obey the following commutation relations
\[[\alpha_m, \alpha_n] = \delta_{m+n,0} \frac{2|m|_q |m|_q}{m} \frac{(1 - p^{|m|})}{(1 - p^{|m|})} q^{|m|}, \quad [h, Q_h] = 1, \quad (m, n \neq 0). \]
\tag{3.31}
Note that the commutation relations among the non-zero modes \(\alpha_n \) are the \(k = 1 \) case of (2.10). We also introduce an additional algebra generated by \(\{ P, e^{\pm 2Q} \} \) with \([P, Q] = 1 \).

We assume that the elliptic bosons are ‘compactified on a circle of self-dual radius’. This means that the eigenvalues of \(h \) on the elliptic boson Fock space are integers\(^4\). Hence \(Q_h \) can appear only in the form \(e^{\pm q} \) (\(n \in \mathbb{Z} \)).

Let \(|0\rangle \) be the Fock vacuum characterized by
\[
h |0\rangle = 0, \quad P |0\rangle = 0, \quad \alpha_n |0\rangle = 0, \quad (n > 0).
\]
The Fock space \(\mathcal{F} \) of the elliptic bosons and the additional algebra is spanned by the following vectors
\[
\alpha_{n_1} \alpha_{n_2} \cdots \alpha_{n_k} e^{2m_0Q + m_2Q_h} |0\rangle, \quad (0 < n_1 \leq n_2 \leq \cdots \leq n_k; m_1, m_2 \in \mathbb{Z}). \tag{3.5}
\]

The action of the level 1 \(U_q(\widehat{\mathfrak{sl}}(2)) \) on the Fock space \(\mathcal{F} \) is realized by
\[
e(z) = e^{-2Q} e^{\Phi(z)} : \quad f(z) = e^{-\Phi(z)} :. \tag{3.6}
\]
\[
K^\pm = e^{-2Q} q^{\mp h} \tag{3.7}
\]
Here \(p^* = pq^{-2} \). The normal ordering is defined by moving \(Q \) and \(Q_h \) to the left of \(P \) and \(h \), the creation operators \(\alpha_{-n} (n > 0) \) to the left of the annihilation operators \(\alpha_n (n > 0) \). Hence,
\[
e(z) = e^{-2Q + 2\alpha_0 z^h} \exp \left(\sum_{m>0} \frac{\alpha_m z^m}{m!q} \right) \exp \left(-\sum_{m>0} \frac{\alpha_m z^{-m}}{m!q} \right). \tag{3.8}
\]
\[
f(z) = e^{-2Q} q^{-h} \alpha_m \exp \left(-\sum_{m>0} \frac{\alpha_m (1 - p^{*m})}{m!q} q^m z^m \right) \exp \left(\sum_{m>0} \frac{\alpha_m (1 - p^{m})}{m!q} q^m z^{-m} \right). \tag{3.9}
\]

The currents \(\varphi^\pm (q^{\mp_{1/2}} z) \) are given by (2.4) and (2.5) for level 1 \(\alpha_m \) and with \(K^\pm \) substituted by (3.7). The grading operator is realized as
\[
d = -\frac{1}{4} h^2 - \sum_{m>0} \frac{m^2}{2m!q} \frac{(1 - p^{*m})}{(1 - p^m)} q^m \alpha_m \alpha_m. \tag{3.10}
\]

As in the case of the affine Lie algebra, the Fock space \(\mathcal{F} \) decomposes into two irreducible level 1 \(U_q(\widehat{\mathfrak{sl}}(2)) \)-modules according to the eigenvalues of \((-1)^h \):
\[
\mathcal{F} = \mathcal{F}_+ \oplus \mathcal{F}_- \tag{3.11}
\]
where \(\mathcal{F}_\pm = \{ v \in \mathcal{F} | (-1)^h v = \pm v \} \).

3.1. \(p \to 0 \) limit

In the \(p \to 0 \) limit, we obtain the free boson representation of level 1 \(U_q(\widehat{\mathfrak{sl}}(2)) \) [75]:
\[
e(z) \to e^{-2Q} x^+ (z), \quad f(z) \to x^- (z), \quad \alpha_n \to \tilde{\alpha}_n, \tag{3.12}
\]
\(^4\)See a remark on the last paragraph of appendix.
where
\[x^+(z) = e^{2Q_0 z^h} : \exp \left(- \sum_{m \neq 0} \tilde{\alpha}_m \frac{z^{-m}}{|m|_q} \right) : , \]
(3.13)

\[x^-(z) = e^{-2Q_0 z^{-h}} : \exp \left(\sum_{m \neq 0} \frac{q^{|m|} \tilde{\alpha}_m}{|m|_q} z^{-m} \right) : , \]
(3.14)

with

\[[\tilde{\alpha}_m, \tilde{\alpha}_n] = \delta_{m+n,0} \sum_{m \neq 0} \frac{m}{|m|_q} q^{-|m|}. \]
(3.15)

Note that

\[\tilde{d} = -\frac{1}{4} h^2 - \sum_{m > 0} \frac{m^2}{|m|_q} q^m \tilde{\alpha}_m \tilde{\alpha}_m. \]
(3.16)

3.1.1. \(q \to 1 \) limit. Furthermore, if we take \(q \to 1 \) limit, we obtain the Frenkel–Kac construction of the level 1 \(\hat{sl}(2) \) current algebra:

\[x^\pm (z) \to J^\pm (z), \quad \tilde{\alpha}_n \to a_n, \]
(3.17)

where

\[J^\pm (z) = : e^{\pm \Phi_0(z)} : = e^{\pm 2Q_0 z^\pm h} : \exp \left(\pm \sum_{m \neq 0} \frac{a_m}{m} z^{-m} \right) :, \]
(3.18)

\[\Phi_0(z) = 2Q_0 + h \log z - \sum_{m \neq 0} \frac{a_m}{m} z^{-m}, \quad [a_m, a_n] = 2m \delta_{m+n,0}. \]
(3.19)

Also, we find

\[J^3(z) = \frac{1}{2} \partial \Phi_0(z). \]
(3.20)

Note that the normalization of the free boson \(\Phi(z) \) is chosen as \(\langle \Phi_0(z_1) \Phi_0(z_2) \rangle = 2 \log(z_1 - z_2) \).

In the \(q \to 1 \) limit, the grading operator goes to

\[\tilde{d} \to -L_0, \]
(3.21)

where

\[L_0 = \frac{1}{4} h^2 + \frac{1}{2} \sum_{m > 0} a_{-m} a_m. \]
(3.22)

This operator \(L_0 \) is one of the Virasoro generators with the central charge \(c = 1 \):

\[T(z) = \frac{1}{4} : (\partial \Phi_0(z))^2 : = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}. \]
(3.23)
3.2. \textit{q}-Virasoro algebra

It is known that on the level-1 $U_{q,p}(\mathfrak{sl}(2))$-modules, the action of the deformed Virasoro algebra can be defined \cite{40}.

The deformed Virasoro algebra is introduced in \cite{29–31}. It contains two parameters, usually denoted by q and t (and $p = q/t$). But in order to avoid confusion with those of $U_{q,p}(\hat{\mathfrak{sl}}(2))$, we denote them by \tilde{q} and \tilde{t} (and $\tilde{p} = \tilde{q}/\tilde{t}$) in this paper.

The generators of q-Virasoro algebra are combined into the generating operator as

$$T(z) = \sum_{n \in \mathbb{Z}} T_n z^{-n}. \quad (3.24)$$

The defining relations of the q-Virasoro algebra are given by

$$f(z_2/z_1)T(z_1)T(z_2) - f(z_1/z_2)T(z_2)T(z_1) = \frac{(1 - \tilde{q})(1 - \tilde{t}^{-1})}{(1 - \tilde{p})} [\delta(\tilde{p}z_1/z_2) - \delta(\tilde{p}^{-1}z_1/z_2)], \quad (3.25)$$

where

$$f(z) = \exp \left(\sum_{n > 0} 1 - n \frac{(1 - \tilde{q}^n)(1 - \tilde{t}^{-n})}{(1 - \tilde{p}^n)} z^n \right). \quad (3.26)$$

Let

$$T(z) = \tilde{\Lambda}_1(z) + \tilde{\Lambda}_2(z), \quad (3.27)$$

with

$$\tilde{\Lambda}_1(z) = q^{p_{+1}}(p^*)^{-(1/2)h} : \exp \left(\sum_{m \neq 0} \frac{1 - p^*m}{[2m]_q} \alpha_m z^{-m} \right) :, \quad (3.28)$$

$$\tilde{\Lambda}_2(z) = q^{-p_{-1}}(p^*)^{(1/2)h} : \exp \left(- \sum_{m \neq 0} \frac{1 - p^*m}{[2m]_q} \alpha_m (q^2 z)^{-m} \right) :, \quad (3.29)$$

This operator defines the action of the q-Virasoro algebra on the level 1 module of $U_{q,p}(\hat{\mathfrak{sl}}(2))$. The parameters of q-Virasoro algebra \tilde{q}, \tilde{t} are respectively identified with those of the elliptic algebra as follows:

$$\tilde{q} = p, \quad \tilde{t} = p^* = pq^{-2}. \quad (3.30)$$

Note that $\tilde{p} = \tilde{q}/\tilde{t} = q^2$. The parameter β is defined by $\tilde{t} = \tilde{q}^\beta$. Then we have $p^* = p^\beta$. If we write

$$p = q^{2M}, \quad p^* = q^{2(M-1)}, \quad (3.31)$$

then we can read off the value of the parameter β:

$$\beta = \frac{M - 1}{M}. \quad (3.32)$$

The deformation parameters \tilde{q} and \tilde{t} is related to the gauge theory parameters as $\tilde{q} = e^{R \epsilon z}$, $\tilde{t} = e^{-R \epsilon z}$. Therefore, (3.30) leads to (1.4).
Let us introduce the following currents:

\[
\tilde{e}(z) = e(z)z^{-(M-1)^{-1}p}, \quad \tilde{f}(z) = f(z)z^{M-1(L_2+\beta H)}.
\] (3.33)

These are the screening currents of the \(q\)-Virasoro algebra as we have stressed in the introduction:

\[
[T(z_1), \tilde{e}(z_2)] = (1-p)(1-p^*) \frac{d\tilde{e}}{dz_2} \left[\delta(qz_1/z_2)z_2O_1(z_2) \right].
\] (3.34)

\[
[T(z_2), \tilde{f}(z_2)] = (1-p)(1-p^*) \frac{d\tilde{f}}{dz_2} \left[\delta(q^2z_1/z_2)z_2O_2(z_2) \right].
\] (3.35)

Here

\[
\frac{d\tilde{e}}{dz}f(z) = \frac{f(z) - f(\xi z)}{(1-\xi)z}, \quad (\xi = p, p^*).
\] (3.36)

The operators \(O_1(z)\) and \(O_2(z)\) are given by

\[
O_1(z) = p^{-1}e^{-2\Omega_2q_0}q^{\rho_2(1/2)h}z^{-(M-1)^{-1}p+h}
\times \exp \left(- \sum_{m \neq 0} \frac{(1+p^m)}{[2m]_q} \alpha_m (qz)^{-m} \right) \quad :.
\] (3.37)

\[
O_2(z) = (p^*)^{-1}e^{-2\Omega_2q_0}q^{-(p+1)(1/2)h}z^{M-1(p+h)-h}
\times \exp \left(\sum_{m \neq 0} \frac{(1-p^m)(1+p^m)}{[2m]_q(1-p^m)} \alpha_m (q^{-2}z)^{-m} \right) \quad :.
\] (3.38)

4. Root of unity limit

We have obtained the dictionary between the parameters of the deformed Virasoro algebra and those of \(U_{q,p}(\hat{\mathfrak{sl}}(2))\). We can take the same root of unity limit of the parameters as was done in \[13, 14\].

Let us consider the following \(r\)th root of unity limit of the level-1 representations of \(U_{q,p}(\hat{\mathfrak{sl}}(2))\).

\[
p \to \omega^\ell, \quad p^* \to \omega^\ell, \quad q^2 \to 1,
\] (4.1)

where \(\omega\) is the primitive \(r\)th root of unity \(\omega = \exp(2\pi i/r)\), and \(\ell\) is an integer such that \(\omega^\ell \neq 1\).

A branch of \(\log p\) and \(\log p^*\) are chosen as

\[
\log p = 2\pi i \left(k_1 + \frac{\ell}{r} \right) - \frac{1}{\sqrt{3}}R, \quad (k_1 \in \mathbb{Z}),
\] (4.2)

\[
\log p^* = 2\pi i \left(k_2 + \frac{\ell}{r} \right) - \sqrt{3}R, \quad (k_2 \in \mathbb{Z}),
\] (4.3)
and the root of unity limit is meant by the limit of $R \to 0$. For simplicity, we assume $k_1 \neq k_2$.

The parameter β is restricted to the value

$$\beta = \frac{k_2}{k_1} + \frac{\ell}{r} = \frac{r k_2 + \ell}{r k_1 + \ell},$$

(4.4)

from the consistency of the relation

$$\beta = \frac{\log p^*}{\log p}.$$

(4.5)

For later convenience, let

$$m := \frac{r k_1 + \ell}{k_1 - k_2}.$$

(4.6)

Then

$$m - r = \frac{r k_2 + \ell}{k_1 - k_2}, \quad \beta = \frac{m - r}{m}.$$

(4.7)

By repeating the analysis of [14], we see that the level 1 $U_{q,p}(\hat{sl}(2))$ goes to the tensor product of an algebra generated by $\{P, e^{\pm 2q}\}$, the \mathbb{Z}_r-parafermions and a free boson. The parafermions and the boson are fields on the w-plane where $w = z'$. The \mathbb{Z}_r-parafermions and the boson in a backgound charge Q_E/\sqrt{r} are described by a conformal field theory (CFT) with the central charge

$$c = c_{\text{parafermion}} + c_{\text{boson}},$$

(4.8)

with

$$c_{\text{parafermion}} = \frac{2(r - 1)}{r + 2}, \quad c_{\text{boson}} = 1 - 6 \left(\frac{Q_E}{\sqrt{r}}\right)^2, \quad Q_E = \sqrt{\beta} - \frac{1}{\sqrt{\beta}}.$$

(4.9)

Then

$$c = \frac{2(r - 1)}{r + 2} + 1 - \frac{6r}{m(m - r)}$$

$$= \frac{3r}{r + 2} + \frac{3(m - 2 - r)}{m - r} - \frac{3(m - 2)}{m},$$

(4.10)

which is the central charge of the coset CFT:

$$\hat{sl}(2)_r \oplus \hat{sl}(2)_{m - 2 - r} \oplus \hat{sl}(2)_{m - 1}.$$

(4.11)

We remark that by setting $b = i\sqrt{\beta}$, this central charge (4.10) can be expressed as

$$c = \frac{3r}{r + 2} + \frac{6}{r} (b + 1/b)^2.$$

(4.12)

Hence the coset (4.11) may be described by the rth para-Liouville theory [16, 76].
Acknowledgments

We thank Hidetoshi Awata and Hitoshi Konno for valuable discussions. We also thank Yaroslav Pugai for useful comments. This work was supported by JSPS KAKENHI Grant Number 15K05059. Support from JSPS/RFBR bilateral collaborations ‘Faces of matrix models in quantum field theory and statistical mechanics’ (H I and R Y) and ‘Exploration of Quantum Geometry via Symmetry and Duality’ (T O) is gratefully appreciated.

Appendix. Frenkel–Kac construction for $\hat{sl}(2)_1$

We briefly review the Frenkel–Kac construction [74] for the case of the level 1 $\hat{sl}(2)$ current algebra.

Let $\phi(z)$ be the free massless chiral boson on a circle of radius R:

$$\phi(z) = \hat{q} - i\hat{p} \log z + i \sum_{n \neq 0} \frac{1}{n} \hat{a}_n z^{-n},$$ \hspace{1cm} (A.1)

where

$$[\hat{q}, \hat{p}] = i, \quad [\hat{a}_m, \hat{a}_n] = m\delta_{m+n,0}. \hspace{1cm} (A.2)$$

Note that $\langle \phi(z_1) \phi(z_2) \rangle = - \log(z_1 - z_2)$. Let $|0\rangle$ be the Fock vacuum defined by

$$\hat{p} |0\rangle = 0, \quad \hat{a}_n |0\rangle = 0, \quad (n > 0). \hspace{1cm} (A.3)$$

Since the boson is compactified on the circle with radius R, the eigenvalues of the momentum operator \hat{p} must be $n/R \ (n \in \mathbb{Z})$. Let us denote the corresponding momentum eigenstates by

$$|n; R\rangle = e^{i(n/R)\hat{q}} |0\rangle, \quad \hat{p} |n; R\rangle = \frac{n}{R} |n; R\rangle. \hspace{1cm} (A.4)$$

The compactified boson Fock space \mathcal{F}_R is obtained from the Fock vacuum $|0\rangle$ by acting the creation operators $\hat{a}_m \ (m > 0)$ and $e^{i(n/R)\hat{q}} \ (n \in \mathbb{Z})$. On this Fock space the action of the position operator \hat{q} is allowed only through the form of $e^{i(n/R)\hat{q}} \ (n \in \mathbb{Z})$. Hence the vertex operators

$$V_u(z) = : e^{iu\phi(z)} : = e^{iu\hat{q}z\partial_z} \exp \left(u \sum_{n > 0} \frac{1}{n} \hat{a}_{-n} z^n \right) \exp \left(-u \sum_{n > 0} \frac{1}{n} \hat{a}_n z^{-n} \right),$$ \hspace{1cm} (A.5)

with $Ru \in \mathbb{Z}$ can act on the Fock space. Let

$$J^\pm(z) = V_{\pm \sqrt{2}}(z) = : e^{\pm i \sqrt{2} \phi(z)} :, \quad J^3(z) = \frac{i}{\sqrt{2}} \partial \phi(z), \hspace{1cm} (A.6)$$

with mode expansion

$$J^a_m = \sum_{m \in \mathbb{Z}} J^a_m z^{-m-1}, \quad a = \pm, 3. \hspace{1cm} (A.7)$$

It is well-known that J^a_m realize the affine Lie algebra $\hat{sl}(2)$ with level 1. In order to make the Fock space \mathcal{F}_R be a $\hat{sl}(2)_1$-module, the compactification radius R must be an integer multiple of $1/\sqrt{2}$.
In particular, at $R = \sqrt{2}$ (the self-dual radius), J_{n}^{\pm} shifts the momentum $\hat{p} = n/\sqrt{2}$ to $\hat{p} = (n \pm 2)/\sqrt{2}$. Therefore, the boson Fock space $F_{R=\sqrt{2}}$ decomposes into two irreducible $\mathfrak{sl}(2)$-modules according to the values of $(-1)^{\hat{p}}$:

$$F_{\sqrt{2}} = L(\Lambda_0) \oplus L(\Lambda_1),$$

where

$L(\Lambda_0) = \{ v \in F_{\sqrt{2}} \mid (-1)^{\hat{p}} v = (+1)v \}, \quad L(\Lambda_1) = \{ v \in F_{\sqrt{2}} \mid (-1)^{\hat{p}} v = (-1)v \}.$

(A.8)

Here Λ_0 and Λ_1 are the fundamental weights of the affine Lie algebra $\mathfrak{sl}(2)$ and $L(\Lambda_i)$ are the integrable highest-weight module with highest weight Λ_i. The highest-weight vector of the basic module $L(\Lambda_0)$ and that of the defining module $L(\Lambda_1)$ are respectively given by

$|\Lambda_0 \rangle = |0; \sqrt{2} \rangle = |0 \rangle \in L(\Lambda_0), \quad |\Lambda_1 \rangle = |1; \sqrt{2} \rangle = e^{(i/\sqrt{2})\hat{q}} |0 \rangle \in L(\Lambda_1).$

(A.9)

Remark. The boson $\Phi_0(z)$ (3.19) is related to the canonically normalized boson $\phi(z)$ (A.1) as $\Phi_0(z) = i\sqrt{2} \phi(z)$. In particular, h is identified with $\sqrt{2} \hat{p}$. Hence at the self-dual radius, the eigenvalues of h must be integers.

References

[1] Alday L F, Gaiotto D and Tachikawa Y 2010 Liouville correlation functions from four-dimensional gauge theories *Lett. Math. Phys.* 91 167–97

[2] Wyllard N 2009 $\mathcal{N} = 1$ conformal Toda field theory correlation functions from conformal $\mathcal{N} = 2$ $SU(N)$ quiver gauge theories *J. High Energy Phys.* JHEP11(2009)002

[3] Wyllard N 2011 Coset conformal blocks and $\mathcal{N} = 2$ gauge theories (arXiv:1109.4264)

[4] Alfimov M N and Tarnopolsky G M 2012 Parafermionic Liouville field theory and instantons on ALE spaces *J. High Energy Phys.* JHEP02(2012)036

[5] Bershtein M A, Fateev V A and Litvinov A V 2011 Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory *Nucl. Phys.* B 847 413–59

[6] Belavin V and Feigin B 2011 Super Liouville conformal blocks from $\mathcal{N} = 2$ $SU(2)$ quiver gauge theories *J. High Energy Phys.* JHEP07(2011)079

[7] Belavin A, Belavin V and Bershtein M 2011 Instantons and 2d superconformal field theory *J. High Energy Phys.* JHEP09(2011)117

[8] Bonelli G, Maruyoshi K and Tanzini A 2011 Instantons on ALE spaces and super Liouville conformal field theories *J. High Energy Phys.* JHEP08(2011)056

Bonelli G, Maruyoshi K and Tanzini A 2012 Gauge theories on ALE space and super Liouville correlation functions *Lett. Math. Phys.* 101 103–24

[9] Ito Y 2012 Ramond sector of super Liouville theory from instantons on an ALE space *Nucl. Phys.* B 861 387–402

[10] Belavin A A, Bershtein M A, Feigin B L, Litvinov A V and Tarnopolsky G M 2013 Instanton moduli spaces and bases in coset conformal field theory *Commun. Math. Phys.* 319 269–301

[11] Belavin A A, Bershtein M A and Tarnopolsky G M 2013 Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity *J. High Energy Phys.* JHEP03(2013)019
[12] Alfimov M N, Belavin A A and Tarnopolsky G M 2013 Coset conformal field theory and instanton counting on $\mathbb{C}^2/\mathbb{Z}_\nu$. J. High Energy Phys. JHEP08(2013)134

[13] Itoyama H, Oota T and Yoshioka R 2013 q-Virasoro/W block at root of unity limit and instanton partition function on ALE Space Nucl. Phys. B 877 506–37

Itoyama H, Oota T and Yoshioka R 2013 q-Virasoro algebra at root of unity limit and 2d–4d connection J. Phys.: Conf. Ser. 474 012022

[14] Itoyama H, Oota T and Yoshioka R 2014 q-Virasoro/W algebra at root of unity and parafermions Nucl. Phys. B 889 25–35

[15] Bruzzo U, Pedrini M, Sala F and Szabo R J 2016 Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces Adv. Math. 288 1175–308

Pedrini M, Sala F and Szabo R J 2016 AGT relations for abelian quiver gauge theories on ALE spaces J. Geom. Phys. 103 43–89

Bruzzo U, Sala F and Szabo R J 2015 $N=2$ quiver gauge theories on A-type ALE spaces Lett. Math. Phys. 105 401–45

[16] Nishioka T and Tachikawa Y 2011 Central charges of para-Liouville and Toda theories from M5-branes Phys. Rev. D 84 046009

[17] Awata H and Yamada Y 2010 Five-dimensional AGT conjecture and the deformed Virasoro algebra J. High Energy Phys. JHEP01(2010)125

Awata H and Yamada Y 2010 Five-dimensional AGT relation and the deformed β-ensemble Prog. Theor. Phys. 124 227–62

[18] Nieri F, Pasquetti S and Passerini F 2015 3d and 5d gauge theory partition functions as q-deformed CFT correlators Lett. Math. Phys. 105 109–48

Nieri F, Pasquetti S, Passerini F and Torrielli A 2014 5D partition functions, q-Virasoro systems and integrable spin-chains J. High Energy Phys. JHEP12(2014)040

[19] Orlando D 2013 A stringy perspective on the quantum integrable model/gauge correspondence (arXiv:1310.0031)

[20] Tan M-C 2013 M-theoretic derivations of 4d–2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems J. High Energy Phys. JHEP07(2013)171

[21] Aganagic M, Haouzi N, Koszća C and Shakirov S 2013 Gauge/Liouville triality (arXiv:1309.1687)

[22] Yoshioka R 2015 The integral representation of solutions of KZ equation and a modification by K operator insertion (arXiv:1512.01084)

[23] Kimura T and Pestun V 2015 Quiver W-algebras (arXiv:1512.08533)

[24] Saito Y 2014 Elliptic Ding–Iohara algebra and the free field realization of the elliptic Macdonald operator Publ. Res. Inst. Math. Sci. 50 411–55

Saito Y 2014 Commutative families of the elliptic macdonald operator SIGMA 10 021

[25] Tan M-C 2013 An M-theoretic derivation of a 5d and 6d AGT correspondence and relativistic and elliptized integrable systems J. High Energy Phys. JHEP12(2013)031

Tan M-C 2016 Higher AGT correspondences, W-algebras and higher quantum geometric langlands duality from M-theory (arXiv:1607.08330)

[26] Iqbal A, Koszća C and Yau S-T 2015 Elliptic Virasoro conformal blocks (arXiv:1511.00458)

[27] Nieri F 2015 An elliptic Virasoro symmetry in 6d (arXiv:1511.00574)

[28] Kimura T and Pestun V 2016 Quiver elliptic W-algebras (arXiv:1608.04651)

[29] Lukyanov S and Pugai Y 1996 Bosonization of Z_F algebras: direction toward deformed Virasoro algebra J. Exp. Theor. Phys. 82 1021–45

Lukyanov S and Pugai Y 1996 Bosonization of Z_F algebras: direction toward deformed Virasoro algebra Zh. Eksp. Teor. Fiz. 109 1900–47

[30] Frenkel E and Reshetikhin N 1996 Quantum affine algebras and deformations of the virasoso and W-algebras Commun. Math. Phys. 178 237–64

[31] Shiraishi J, Kubo H, Awata H and Odake S 1996 A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions Lett. Math. Phys. 38 33–51

[32] Feigin B and Frenkel E 1996 Quantum W-algebras and elliptic algebras Commun. Math. Phys. 178 653–78

[33] Awata H, Kubo H, Odake S and Shiraishi J 1996 Quantum W_λ algebras and Macdonald polynomials Commun. Math. Phys. 179 401–16

[34] Awata H, Kubo H, Morita Y, Odake S and Shiraishi J 1997 Vertex operators of the q-Virasoro algebra; defining relations, adjoint actions and four point functions Lett. Math. Phys. 41 65–78

[35] Kadeishvili A A 1996 Vertex operators for deformed Virasoro algebra JETP Lett. 63 917–23
Kadeishvili A A 1996 Vertex operators for deformed Virasoro algebra Zh. Eksp. Teor. Fiz. Pis’ma
3 63 876–81
[36] Jimbo M and Shiraishi J 1998 A Coset-type construction for the deformed Virasoro algebra Lett.
Math. Phys. 43 173–85
[37] Itoyama H, Oota T and Yoshioka R 2016 q-vertex operator from 5D Nekrasov function J. Phys. A:
Math. Theor. 49 345201
[38] Ding J and Johara K 1997 Generalization of drinfeld quantum affine algebras Lett. Math. Phys.
41 181–93
[39] Miki K 2007 A (q, γ) analog of the $W_{1+\infty}$ algebra J. Math. Phys. 48 123520
[40] Konno H 1998 An elliptic algebra $U_{q,p}(\hat{sl}_2)$ and the fusion RSOS model Commun. Math. Phys.
195 373–403
[41] Jimbo M, Konno H, Odake S and Shiraishi J 1999 Elliptic algebra $U_{q,p}(\hat{sl}_2)$; drinfeld currents and
vertex operators Commun. Math. Phys. 199 605–47
[42] Kojima T and Konno H 2003 The elliptic algebra $U_{q,p}(\hat{sl}_2)$ and the drinfeld realization of the
elliptic quantum group $B_{q,p}(\hat{sl}_2)$ Commun. Math. Phys. 239 405–47
[43] Kojima T and Konno H 2004 The elliptic algebra $U_{q,p}(\hat{sl}_2)$ and the deformation of W_N algebra J.
Phys. A: Math. Gen. 37 371–83
[44] Kojima T, Konno H and Weston R 2005 The vertex-face correspondence and correlation functions
of the fusion eight-vertex model: I: the general formalism Nucl. Phys. B 720 348–98
[45] Konno H 2008 Elliptic quantum group $U_{q,p}(\hat{sl}_2)$ and vertex operators J. Phys. A: Math. Theor.
41 194012
[46] Konno H 2009 Elliptic quantum group $U_{q,p}(\hat{sl}_2)$. Hopf algebraic structure and elliptic
hypergeometric series J. Geom. Phys. 59 1485–511
[47] Konno H 2016 Elliptic quantum groups $U_{q,p}(\hat{gl}_N)$ and $E_{q,p}(\hat{gl}_N)$ (arXiv:1603.04129)
[48] Awata H, Feigin B, Hoshino A, Kanai M, Shiraishi J and Yanagida S 2011 Notes on Ding–Johara
algebra and AGT conjecture RIMS Kôkyûroku 1765 12–32
[49] Kanno S, Matsuo Y and Zhang H 2013 Extended conformal symmetry and recursion formulae for
Nekrasov partition function J. High Energy Phys. JHEP08(2013)028
Matsuo Y, Rim C and Zhang H 2014 Construction of Gaiotto states with fundamental multiplets
through degenerate DAHA J. High Energy Phys. JHEP09(2014)028
Bourjine J-E, Matsuo Y and Zhang H 2016 Holomorphic field realization of SH’ and quantum
geometry of quiver gauge theories J. High Energy Phys. JHEP04(2016)167
[50] Spodyneiko L 2015 AGT correspondence: Ding–Johara algebra at roots of unity and Lepowsky–
Wilson construction J. Phys. A: Math. Theor. 48 275404
[51] Ohkubo Y, Awata H and Fujino H 2015 Crystallization of deformed Virasoro algebra, Ding–Johara–
Miki algebra and 5D AGT correspondence (arXiv:1512.08016)
[52] Awata H, Kanno H, Matsumoto T, Mironov A, Morozov A, Okubo Y and Zenkevich Y 2016 Explicit examples of DIM constraints for network matrix models J. High Energy Phys.
JHEP07(2016)103
[53] Awata H, Kanno H, Mironov A, Morozov A, Okubo Y and Zenkevich Y 2016 Toric Calabi–Yau threefolds as quantum integrable systems R-matrix and RTT relations J. High Energy Phys. JHEP10(2016)044
[54] Awata H, Kanno H, Mironov A, Morozov A, Okubo Y and Zenkevich Y 2017 Anomaly in RTT relation for DIM algebra and network matrix models Nucl. Phys. B 918 358–85
[55] Awata H, Kanno H, Mironov A, Morozov A, Okubo Y and Zenkevich Y 2017 (q, t)-KZ equation for Ding–Johara–Miki algebra Phys. Rev. D 96 026021
[56] Mironov A, Morozov A and Zenkevich Y 2016 Spectral duality in elliptic systems, six-dimensional
gauge theories and topological strings J. High Energy Phys. JHEP05(2016)121
Mironov A, Morozov A and Zenkevich Y 2016 Ding–Johara–Miki symmetry of network matrix
models Phys. Lett. B 762 196–208
[57] Bourjine J-E, Fukuda M, Matsuo Y, Zhang H and Zhu R-D 2016 Coherent states in quantum
$W_{1+\infty}$ algebra and qq-character for 5d super Yang–Mills Proc. Theor. Exp. Phys. 2016 123B05
Bourjine J-E, Fukuda M, Harada K, Matsuo Y and Zhu R-D 2017 (p, q)-webs of DIM representations, 5d $\mathcal{N} = 1$ instanton partition functions and qq-characters (arXiv:1703.10759)
Fukuda M, Harada K, Matsuo Y and Zhu R-D 2017 Maulik-Okounkov’s R-matrix from Ding–
Johara–Miki algebra (arXiv:1705.02941)
[56] Baxter R J 1972 Partition function of the eight-vertex lattice model Ann. Phys. 70 193–228
[57] Belavin A A 1981 Dynamical symmetry of integrable quantum systems Nucl. Phys. B 180 189–200
[58] Andrews G E, Baxter R J and Forrester P J 1984 Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities J. Stat. Phys. 35 193–266
[59] Sklyanin E K 1982 Some algebraic structures connected with the Yang–Baxter equation Funct. Anal. Appl. 16 263–70
Cherednik I V 1985 Some finite-dimensional representations of generalized Sklyanin algebras Funct. Anal. Appl. 19 77–9
[60] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H 1994 An elliptic quantum algebra for \(\hat{sl}_2 \) Lett. Math. Phys. 32 259–68
[61] Jimbo M, Konno H, Odake S and Shiraishi J 1999 Quasi–Hopf twistors for elliptic quantum groups Transform Groups 4 303–27
[62] Gervais J-L and Neveu A 1984 Novel triangle relation and absence of tachyons in Liouville string field theory Nucl. Phys. B 238 125–41
[63] Felder G 1994 Conformal field theory and integrable systems associated to elliptic curves (arXiv:hep-th/9407154)
[64] Felder G 1994 Elliptic quantum groups 11th Int. Congress, Proc., Mathematical Physics (Paris, France, 18–22 July 1994) pp 211–8
[65] Babelon O 1991 Universal exchange algebra for Bloch waves and Liouville theory Commun. Math. Phys. 139 619–43
[66] Babelon O, Billey E and Bernard D 1996 A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations Phys. Lett. B 375 89–97
[67] Avan J, Babelon O and Billey E 1996 The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems Commun. Math. Phys. 178 281–300
[68] Drinfel’d V G 1989 Quasi-Hopf algebras Algebr. Anal. 2 149–81
Drinfel’d V G 1990 Quasi-Hopf algebras Leningr. Math. J. 1 1419–57
[69] Etingof P and Varchenko A 1998 Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups Commun. Math. Phys. 196 591–640
Etingof P and Varchenko A 1999 Exchange dynamical quantum groups Commun. Math. Phys. 205 19–52
[70] Lukyanov S L and Pugai Y 1996 Multi-point local height probabilities in the integrable RSOS model Nucl. Phys. B 473 631–58
[71] Jimbo M, Lashkevich M, Miwa T and Pugai Y 1997 Lukyanov’s screening operators for the deformed Virasoro algebra Phys. Lett. A 229 285–92
[72] Pugai Y 2004 Vacuum expectation values from fusion of vertex operators JETP Lett. 79 457–63
[73] Farghly R M, Konno H and Oshima K 2015 Elliptic algebra \(U_{sl_2}(\hat{g}) \) and quantum Z-algebras Algebr. Represent. Theory 18 103–35
[74] Frenkel I B and Kac V G 1980 Basic representations of affine lie algebras and dual resonance models Invent. math. 62 23–66
[75] Frenkel I B and Jing N 1988 Vertex representations of quantum affine algebras Proc. Natl Acad. Sci. USA 85 9373–7
[76] LeClair A, Nemeschansky D and Warner N P 1993 S-matrices for perturbed \(N = 2 \) superconformal field theory from quantum groups Nucl. Phys. B 390 653–80