Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

D Carlisi, G Buttitta, R Di Fiore, C Scerri, R Drago-Ferrante, R Vento, and G Tesoriere

Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a general inhibitor of caspase activity, was ineffective. Analysis of ROS generation, performed using fluorescent probes, showed that both the drugs stimulated in the first hours of treatment a very high production of hydrogen peroxide. This event was, at least in part, a consequence of activation of NADPH oxidases (NOXs), as it was reduced by apocynin and diphenylene iodium, two inhibitors of NOXs. Moreover, both the drugs caused downregulation of Nrf2 (nuclear factor erythroid 2-related factor 2), which is a critical regulator of the intracellular antioxidant response. Prolonging the treatment with PN or DMAPT we observed between 12 and 24 h that the levels of both superoxide anion and hROS increased in concomitance with the downregulation of manganese superoxide dismutase and catalase. In addition, during this phase dissipation of mitochondrial membrane potential occurred together with necrosis of stem-like cells. Finally, our results suggested that the effect on ROS generation found in the first hours of treatment was, in part, responsible for the cytotoxic events observed in the successive phase. In conclusion, PN and DMAPT markedly inhibited viability of stem-like cells derived from three lines of TNBCs by inducing ROS generation, mitochondrial dysfunction and cell necrosis.

Cell Death and Disease (2016) 7, e2194; doi:10.1038/cddis.2016.94; published online 14 April 2016

Parthenolide (PN), a sesquiterpene lactone, found in medicinal plants, particularly in feverfew (Tanacetum parthenium), exerts selective toxicity against a wide range of tumors, but is ineffective in normal cells.

Structure of PN exhibits the typical α-methylene-γ-lactone group, which reacts with cysteine thiol groups inducing modifications of many biological functions. The antitumour activity of PN can be mediated by distinct mechanisms: (i) inhibition of NF-κB activity either by inhibition of IκB phosphorylation or alkylation of SH groups in the p65 subunit; (ii) epigenetic mechanism through DNA hypomethylation, determined by downregulation of DNA methyltransferase 1; (iii) increment in reactive oxygen species (ROS) generation. In prostate cancer cells, ROS generation is accompanied by downregulation of antioxidant enzymes, such as manganese superoxide dismutase (MnSOD) and catalase.

Triple-negative breast cancers (TNBCs) are aggressive forms, associated with poor prognosis, which do not express estrogen, progesterone and Her-2/neu receptors, and consequently are unresponsive to hormonal treatment. Recently, we showed that PN and dimethylaminoparthenolide (DMAPT), a soluble analog of PN, induced cytotoxic effects in MDA-MB231 cells, the most studied line of TNBCs, by stimulating ROS generation and autophagy. Moreover, DMAPT decreased tumor growth in mice bearing xenografts of MDA-MB231 cells and induced animal survival. Finally, suberoylanilide hydroxamic acid, an histone deacetylase inhibitor, synergistically sensitized MDA-MB231 cells to PN effect.

Today a body of evidence strongly suggests that a small proportion of tumor cells, termed cancer stem cells (CSCs), represent the basis for tumor formation, progression,
metastasis and recurrence. CSCs have been demonstrated in many tumors including breast cancer. Interestingly, many drugs, which inhibit replication of the bulk of cancer cells, are not effective for eradication of CSCs in many types of tumors. Consequently, new researches are needed to individuate molecules able to eliminate CSCs.

This paper deals with the production of mammospheres from three distinct lines of TNBCs. Besides, it shows that both PN and DMAPT suppress production of spheres and cause cytotoxic effects in stem-like cells derived from their dissociation.

Results

PN inhibited production and growth of mammospheres. As Figure 1a shows, PN inhibited viability of three distinct lines of TNBCs, namely MDA-MB231, BT20 and MDA-MB436 cells. At 5 μM, PN reduced viability of the three lines by 25–40% and at 20 μM by 75–80%. Otherwise, PN at 5 μM was ineffective on viability of normal human mammary epithelial cells (HMECs), while at 20 μM exerted only a modest effect (~15%).

When single cells of the three lines of TNBCs were grown for 10 days in non-adherent conditions, a small number of survival cells generated floating mammospheres, as reported by other authors. Primary mammospheres with at least one diameter ≥ 100 μm were counted. MDA-MB231 cells were the most active and produced loose and not round mammospheres in the ratio of 5.4/1000 cells. Similar spheres derived from MDA-MB436 cells (1.0/1000 cells), while BT20 cells produced spheres (3.8/1000 cells) with a round conformation.

Figure 1b shows typical spheres produced from the three lines of cells.

Stem cells are characterized by the expression of some genes required to maintain stem-like conditions. This group includes Nanog, Oct3/4 and Sox2. Figure 1c reports relative mRNA levels ascertained by means of RT-PCR procedure in stem-like cells derived from dissociation of secondary mammospheres produced from the three lines. Nanog exhibited a sharp increase in comparison with parental cells. Also, the levels of Oct3/4 and Sox2 increased, but less than...
Nanog, whereas p21 and p27, two oncosuppressor genes, showed only little modifications.

Production of tertiary mammospheres was inhibited by PN or DMAPT in a dose-dependent manner. At 10 μM both the compounds suppressed the production of spheres (Figures 2a and b).

In other experiments, various doses of PN were added in non-adherent conditions in the medium containing secondary mammospheres at day 10 of production. PN reduced their number and after 5 days, spheres were almost completely destroyed. Figures 2c and d show PN effects on spheres derived from MDA-MB231 cells. Similar results were obtained with spheres derived from the other two lines (not shown).

PN inhibited viability of stem-like cells derived from mammospheres. Stem-like cells derived from dissociation of secondary mammospheres (sphere cells) were used for all the experiments.

Both PN and DMAPT inhibited in a dose-dependent manner the sphere cell viability (Figures 3a and b). PN exerted a higher effect than DMAPT, in particular at low doses (2–10 μM). MDA-MB231 sphere cells were the most sensible line.

PDTC (pyrrolidine dithiocarbamate) and DETC (diethyl-dithiocarbamate), two compounds that like PN inhibit NF-κB activity, were unable to inhibit sphere cells viability, except for a modest effect on MDA-MB436 sphere cells (Figures 3a and b). Therefore, viability in stem-like cells is not correlated with NF-κB activity.

Figure 2 PN and DMAPT inhibited production and stability of mammospheres. (a) PN and DMAPT decreased in a dose-dependent manner the production of secondary mammospheres from the three lines of TNBC cells. Primary mammospheres were dissociated and the isolated cells were again grown for 10 days in non-adherent conditions, as reported in Materials and Methods, without or with PN or DMAPT at various doses. Mammospheres, with at least one diameter ≥ 100 μm were counted under light microscopy at x100 original magnification. (b) Images showing the effects of 10 μM PN and 10 μM DMAPT on the production of secondary mammospheres. (c) PN destroyed secondary mammospheres. About 40 secondary mammospheres derived from MDA-MB231 cells at 10 days of growth were treated without or with PN at various doses for other 5 days in non-adherent conditions. (d) Images showing the destructive power exerted by PN on secondary mammospheres derived from MDA-MB231 cells. In (a) and (c), the results are the mean of three independent experiments ± S.D. *P<0.01 versus untreated control. In (b and d), the results are representative of three independent experiments. Scale bar, 100 μm.
MDA-MB231 sphere cells were more susceptible than parental cells to both PN (Figure 3c) and DMAPT (not shown). Significant differences were observed at 5 and 10 μM. Instead, differences between sphere and parental cells were not statistically reliable for the two other cell lines.

PN and DMAPT progressively decreased viability of MDA-MB231 sphere cells so that at 24 h of treatment with 10 μM PN viable cells lowered to ~40% of control (Figures 3d and f) and after 6 days (Figure 3e) to only 4%. A similar behavior was observed using BT20 and MDA-MB436 sphere cells (not shown).
As Figure 3f shows, PN inhibitory effect on cell viability was not modified by z-VAD, a general inhibitor of caspases, but was suppressed by N-acetylcysteine (NAC). Therefore, the effect on cell viability was not a consequence of apoptosis, but of oxidative stress. Moreover, apocynin (100 μM), an inhibitor of NADPH oxidase (NOX), and BAPTA-AM, partially prevented PN effect, since in the presence of NAC, PN decreased viability to 60% and 83%, respectively.

In some experiments, MDA-MB231 sphere cells were at first treated for 4 h with 10 μM PN, then the medium was substituted with fresh medium lacking in PN and the incubation was continued. Viability was evaluated at 24 and 72 h of treatment. All the data shown in this figure are the mean of three experiments. Viability was evaluated at 24 and 72 h of treatment. (II) Sphere cells were treated for 4 h with PN or PN plus NAC, then the medium was substituted with fresh medium lacking in both PN and NAC and the incubation was continued. Viability was evaluated at 24 and 72 h of treatment. All the data shown in this figure are the mean of three independent experiments ± S.D. *P<0.01 versus untreated control; **P<0.01 versus parental cells.

Figure 3
PN and DMAPT inhibited viability of mammosphere-derived cells. Secondary mammospheres, derived from three lines of TNBCs, were dissociated to produce isolated sphere cells, which were plated (8x10^4/well) in adherent conditions. After 24 h, sphere cells were used for the experiments. At the end, viability was evaluated by MTT assay. (a) Dose-dependent effect evaluated at 24 h of treatment with various doses of PN or DMAPT in comparison with PDTC and DETC in MDA-MB231 sphere cells. (b) Comparison of the effects determined by 24 h treatment with PN, DMAPT, PDTC and DETC in sphere cells derived from the three lines of TNBCs. (c) Dose-dependent effect induced by 24 h of treatment with PN. Comparison between sphere cells and the respective parental cells. (d) Time course of the effects exerted by PN and DMAPT on MDA-MB231 sphere cells. (e) Comparison between the time-dependent effect exerted by 10 μM PN on MDA-MB231 sphere cells and the respective parental cells. (f) The inhibitory influence exerted by various compounds on the effect induced by treatment for 24 h with 10 μM PN in sphere cells derived from the three lines of TNBCs. (g) The effect of substitution of the medium in MDA-MB231 sphere cells treated with PN. (I) Control condition. Sphere cells were treated continuously with PN or PN plus NAC during the incubation. Viability was evaluated at 4, 24 and 72 h of treatment. (II) Sphere cells were treated for 4 h with PN or PN plus NAC, then the medium was substituted with fresh medium lacking in both PN and NAC and the incubation was continued. Viability was evaluated at 24 and 72 h of treatment. All the data shown in this figure are the mean of three independent experiments ± S.D. *P<0.01 versus untreated control; **P<0.01 versus parental cells.
during this phase. At first we studied, using the fluorescent
cationic dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzimidazolylcarbocyanine iodide), whether the expo-
sure to PN modified mitochondrial membrane potential
(ΔΨm).

When MDA-MB231 sphere cells were incubated without
PN, red-orange fluorescence prevailed on greenish fluores-
cence, suggesting that most of the cells were polarized.
Greenish fluorescence markedly increased after treatment
with 10 μM PN, indicating dissipation of ΔΨm. The effect
already appeared at 12 h and reached the maximum at 24 h, when most of the cells were depolarized. Two micromoles of NAC suppressed \(\Delta\psi_m \) dissipation induced by PN. Figure 6a (conditions I, II and III) shows merged images relative to sphere cells, treated for 24 h with PN. In condition IV, the medium containing PN was substituted after 4 h of treatment with fresh medium lacking in PN and the incubation was continued. Also in this case greenish fluorescence clearly prevailed in merged images at 24 h of incubation, but the efficacy of the treatment was minor. PN induced dissipation of \(\Delta\psi_m \) also in sphere cells derived from the two other lines of TNBCs (Figure 6b), but with a lower efficacy in comparison with MDA-MB231 sphere cells.

In agreement with previous observations reported for prostate cancer cells,12 10 \(\mu \)M PN decreased in MDA-MB231 sphere cells both MnSOD and catalase levels (Figure 6c). The effects appeared at 8 h of treatment and reached the maximum at 24 h, in concomitance with the increment in the levels of superoxide anion and hROS.

To study the time course of the cytotoxic effect induced by PN, sphere cells were treated with propidium iodide (PI). The amount of PI-positive cells increased very slowly in the first 8 h of treatment with 10 \(\mu \)M PN, then more rapidly, in accordance with PN effect exerted on cell viability, reaching for MDA-MB231 sphere cells at 24 h the proportion of 80% of the total cells (Figure 6d), while for BT20 and MDA-MB436 sphere cells, PI-positive cells reached 70% and 65%, respectively.

Interestingly, when the medium containing PN was substituted after 4 h of treatment with medium lacking in PN, changes in MnSOD and catalase levels were not observed in MDA-MB231 sphere cells at 24 h of treatment. Moreover, in this case the amount of PI-positive sphere cells reached at 24 h only the proportion of 33% (not shown).

To ascertain the mechanism of cytotoxic effect, sphere cells were stained with Annexin V-FITC (fluorescein isothiocyanate)/PI and analyzed by flow cytometry at various times of treatment with 10 \(\mu \)M PN. Using MDA-MB231 sphere cells, population of positive cells to both Annexin V and PI was increased during treatment, reaching at 24 h the percentage of 43.1% (Figure 6e). Although these cells could be either late apoptotic or necrotic dead cells, we concluded that they are necrotic dead cells, as modest amounts of early apoptotic cells (C4) were found during the treatment, and at 24 h cells in C4 accounted for 3.6%, a value inferior than that found in the control (4.4%). Instead, cells undergoing necrosis (C1) exhibited a different trend and at 24 h their amount increased from 1.0% of control to 5.3% of treated cells. PN effect was completely abolished by 2 mM NAC. Similar results were obtained using BT20 and MDA-MB436 sphere cells. In particular, cells in C2 reached at 24 h of treatment the percentages of 40.2% and 38.6%, respectively.

Discussion

Regenerative ability of tumors depends on a small population of self-renewing CSCs.17,34 Proliferation of normal stem cells is submitted to a control leading to the production of various typologies of cells. CSCs are lacking in this control and in the active state induce a progressive increase in undifferentiated cells causing the generation of tumors. Besides, CSCs exhibit many protective systems,35 consisting in multifunctional efflux transporters and in mechanisms directed against apoptosis. Therefore, CSCs display clinical resistance to chemotherapeutic agents and to radiation and after conventional treatment can remain vital, although in a silent state. However, CSCs can be activated by the surrounding microenvironment,36,37 leading to recurrence or distant metastasis. Consequently, new approaches to kill CSCs and to eliminate cancer recurrence represent a new possible strategy against tumors.

PN was identified in leukemia and in solid tumors as the first small molecule capable of killing CSCs.38 Recently, Zhou et al.24 showed that PN inhibited the production of mammospheres from breast cancer MCF-7 cells, an effect that was caused by inhibition of NF-κB activity.

TNBCs often exhibit acquired resistance when submitted to standard chemotherapy39 and undergo recurrence and metastasis. As these events depend on stem cell activity, we investigated in this research about the effects exerted by PN and DMAPT on stem-like cells. We ascertained that both PN and DMAPT suppressed the production of mammospheres from the three lines of cells. Besides, the two compounds inhibited viability of stem-like cells prepared from mammospheres. This inhibitory effect was clearly evident for MDA-MB231 sphere cells at low doses (2–10 \(\mu \)M) of PN.

To clarify the mechanism of these effects, we investigated about the role of PN in ROS generation, as suggested by two considerations: (i) intracellular ROS level, which is essential in cell viability control, results from the balance between the mechanisms that produce ROS and the antioxidant activities. In cancer cells, discrete amounts of ROS are involved in the stimulation of prosurvival pathways,40,41 but increment in ROS level causes structural damages and activation of antisurvival pathways. (ii) Previoulsy, we showed14 that the cytotoxic effect of PN increased in merged images at 24 h of incubation, but the efficacy of the treatment was minor. PN induced dissipation of \(\Delta\psi_m \) also in sphere cells derived from the two other lines of TNBCs (Figure 6b), but with a lower efficacy in comparison with MDA-MB231 sphere cells.

In agreement with previous observations reported for prostate cancer cells,12 10 \(\mu \)M PN decreased in MDA-MB231 sphere cells both MnSOD and catalase levels (Figure 6c). The effects appeared at 8 h of treatment and reached the maximum at 24 h, in concomitance with the increment in the levels of superoxide anion and hROS.

To study the time course of the cytotoxic effect induced by PN, sphere cells were treated with propidium iodide (PI). The amount of PI-positive cells increased very slowly in the first 8 h of treatment with 10 \(\mu \)M PN, then more rapidly, in accordance with PN effect exerted on cell viability, reaching for MDA-MB231 sphere cells at 24 h the proportion of 80% of the total cells (Figure 6d), while for BT20 and MDA-MB436 sphere cells, PI-positive cells reached 70% and 65%, respectively.

Interestingly, when the medium containing PN was substituted after 4 h of treatment with medium lacking in PN, changes in MnSOD and catalase levels were not observed in MDA-MB231 sphere cells at 24 h of treatment. Moreover, in this case the amount of PI-positive sphere cells reached at 24 h only the proportion of 33% (not shown).

To ascertain the mechanism of cytotoxic effect, sphere cells were stained with Annexin V-FITC (fluorescein isothiocyanate)/PI and analyzed by flow cytometry at various times of treatment with 10 \(\mu \)M PN. Using MDA-MB231 sphere cells, population of positive cells to both Annexin V and PI was increased during treatment, reaching at 24 h the percentage of 43.1% (Figure 6e). Although these cells could be either late apoptotic or necrotic dead cells, we concluded that they are necrotic dead cells, as modest amounts of early apoptotic cells (C4) were found during the treatment, and at 24 h cells in C4 accounted for 3.6%, a value inferior than that found in the control (4.4%). Instead, cells undergoing necrosis (C1) exhibited a different trend and at 24 h their amount increased from 1.0% of control to 5.3% of treated cells. PN effect was completely abolished by 2 mM NAC. Similar results were obtained using BT20 and MDA-MB436 sphere cells. In particular, cells in C2 reached at 24 h of treatment the percentages of 40.2% and 38.6%, respectively.

Discussion

Regenerative ability of tumors depends on a small population of self-renewing CSCs.17,34 Proliferation of normal stem cells is submitted to a control leading to the production of various typologies of cells. CSCs are lacking in this control and in the active state induce a progressive increase in undifferentiated cells causing the generation of tumors. Besides, CSCs exhibit many protective systems,35 consisting in multifunctional efflux transporters and in mechanisms directed against apoptosis. Therefore, CSCs display clinical resistance to chemotherapeutic agents and to radiation and after conventional treatment can remain vital, although in a silent state. However, CSCs can be activated by the surrounding microenvironment,36,37 leading to recurrence or distant metastasis. Consequently, new approaches to kill CSCs and to eliminate cancer recurrence represent a new possible strategy against tumors.

PN was identified in leukemia and in solid tumors as the first small molecule capable of killing CSCs.38 Recently, Zhou et al.24 showed that PN inhibited the production of mammospheres from breast cancer MCF-7 cells, an effect that was caused by inhibition of NF-κB activity.

TNBCs often exhibit acquired resistance when submitted to standard chemotherapy39 and undergo recurrence and metastasis. As these events depend on stem cell activity, we investigated in this research about the effects exerted by PN and DMAPT on stem-like cells. We ascertained that both PN and DMAPT suppressed the production of mammospheres from the three lines of cells. Besides, the two compounds inhibited viability of stem-like cells prepared from mammospheres. This inhibitory effect was clearly evident for MDA-MB231 sphere cells at low doses (2–10 \(\mu \)M) of PN.

To clarify the mechanism of these effects, we investigated about the role of PN in ROS generation, as suggested by two considerations: (i) intracellular ROS level, which is essential in cell viability control, results from the balance between the mechanisms that produce ROS and the antioxidant activities. In cancer cells, discrete amounts of ROS are involved in the stimulation of prosurvival pathways,40,41 but increment in ROS level causes structural damages and activation of antisurvival pathways. (ii) Previoulsy, we showed14 that the cytotoxic effect

Figure 4 PN induced generation of oxygen radicals in sphere cells derived from three lines of TNBCs. Sphere cells (8 \(\times \) 10^2 cells per well) were treated for various times (1–24 h) with 10 \(\mu \)M PN. Three different fluorescent probes were used: DCF, DHE and HPF. Fluorescent cells were visualized with a Leica DC 300 F microscope at x200 original magnification with fluorescent filters for FITC (DCF and HPF) or rhodamine (DHE). Cells with fluorescence were counted in three different microscopic fields in each well (3 cells per treatment) and expressed as percentage of the total number of cells counted under light microscopy. (a) The time course of DCF, DHE and HPF signals analyzed by fluorescence microscopy in MDA-MB231 sphere cells treated with 10 \(\mu \)M PN. (b) Images of fluorescence microscopy showing the inhibitory influence exerted in MDA-MB231 sphere cells by various compounds on the effect induced on DCF signal by treatment for 1 h with 10 \(\mu \)M PN. In the inset, histograms showing the percentage of fluorescence-positive cells observed in the various conditions. (c) Flow cytometric detection of DCF signal in the same conditions shown in (b). (d) The effect of 10 \(\mu \)M PN on the amount of positive cells to DCF, DHE and HPF signals analyzed by fluorescence microscopy for various times in sphere cells derived from the three lines of TNBCs. In (a, b, inset and d), the results are the mean of three independent experiments ± S.D. *P<0.01 versus untreated control. In (b, images and c), the results are representative of three independent experiments. Scale bar, 10 \(\mu \)m.
Figure 5 Western blotting analysis showing the effects of PN and DMAPT on the expression of Nrf2. Ten micromoles of PN (a) and 10 μM DMAPT (b) caused downregulation of Nrf2 expression in MDA-MB231 sphere cells. Time dependence of the effect in comparison with the parental cells. (c) SF and tBHQ suppress downregulation of Nrf2 induced by PN in MDA-MB231 sphere cells. Sphere cells were previously incubated for 2 h without or with the activators of Nrf2, SF or tBHQ. Then, 10 μM PN was added and the treatment was protracted for other 2 h. (d) The dose dependence of PN effect in MDA-MB231 sphere cells. (e) The addition of 2 mM NAC did not modify PN effect observed at 2 h of treatment. (f) The time dependence of PN effect in BT20 sphere cells in comparison with the parental cells. All the results are representative of three independent experiments.
exerted by PN in MDA-MB231 cells is correlated with ROS generation.

Interestingly, ROS level in breast CSCs is lower compared with that in non-stem counterparts. Moreover, it seems that the intracellular amount of ROS must remain at low levels to assure stem cell viability. Consequently, the increase in ROS level could represent an effective mechanism for the induction of CSC death.

Our results show that DCF-positive sphere cells markedly enhanced at 1 h of PN treatment with PN. DCF signal is induced not only by H_2O_2 but also by hROS. As the specific probe HPF showed that in the first hours of treatment hROS were not detected, it seems that the positivity to DCF signal was entirely due to H_2O_2 production. Furthermore, as DCF-positive cells were markedly decreased by both apocynin and DPI, two effective inhibitors of various forms of NOXs, we suggest that NOXs have a role in ROS generation in the first hours of treatment, although other mechanisms can be involved in this process. Finally, also BAPTA-AM markedly reduced positivity to DCF signal. Therefore, PN could induce NOX activation through a Ca^{2+}-dependent mechanism. In this regard, it was demonstrated that Ca^{2+} regulates activation and translocation of Rac, a component of NOX complex, and that elevation of intracellular Ca^{2+} stimulates NOX5 to generate superoxide.

To ascertain whether the increase in H_2O_2 level can also result from a decrease in the antioxidant activities, we investigated about the effect of PN on Nrf2 expression. The transcription factor Nrf2 controls the expression of many antioxidant and detoxifying genes. Nrf2 is regulated by Keap1, a factor that mediates ubiquitination and the consequent proteasomal degradation of Nrf2. Recently, it has been shown that brusatol, an inhibitor of Nrf2 pathway, markedly decreases the Nrf2 level, while it enhances intracellular ROS and sensitizes tumor cells to chemotherapeutic drugs. These results demonstrate that Nrf2 exerts an important role in the control of the antioxidant response.

This paper shows that PN downregulates Nrf2 expression in sphere cells, an effect suppressed by both SF and tBHQ, two activators of Nrf2. Downregulation of Nrf2, which was observed after a brief period of treatment with PN, could be, at least partially, responsible for the rapid induction of ROS level caused by PN. This conclusion is supported by the observation that both SF and tBHQ markedly reduced PN effect on DCF signal.

In conclusion, we show that 10 μM PN and DMAPT also induced the generation of superoxide anion and hROS, and these can further increase the mitochondrial dysfunction, together with the decrement in cell viability and a partial depolarization of sphere cells were observed. However, the persistent presence of PN also in the second phase was a decisive to induce downregulation of MnSOD and catalase, as well as to increase depolarization of sphere cells and cell necrosis.

Chemotherapy with platinum agents, anthracyclines and taxanes represents today the elective treatment for TNBCs. As this therapy is accompanied by a high rate of recidivism, a novel treatment strategy is urgently needed. Our results, concerning the effects exerted by PN and DMAPT on stem-like cells derived from TNBCs, strongly suggest that the two drugs can be used for new therapeutic strategies against TNBCs. Moreover, association with other drugs could be useful to increase oxidative stress and cytotoxic effect induced by PN. Finally, it seems possible that PN, increasing ROS level, can sensitize breast CSCs to radiation, as previously ascertained in prostate cancer cells. This consideration suggests a combination of PN treatment with irradiation to improve the effectiveness of therapy for TNBCs.

Materials and Methods

Chemicals and reagents. PN was supplied by Sigma-Aldrich (Milan, Italy), whereas DMAPT was supplied by Biomol (Plymouth Meeting, PA, USA). All the other reagents were purchased from Sigma-Aldrich, except for z-VAD-fmk, which was supplied by Promega (Milan, Italy).

Cell cultures. HMECs were purchased from Lonza (Walkersville, MD, USA) and grown according to the manufacturer’s instructions. Three different lines of TNBC cells, supplied by “Istituto Scientifico Tumori” (Genoa, Italy), were used for these experiments. MDA-MB231 cells were grown as a monolayer in Dulbecco’s modified Eagle’s medium (DMEM), BT20 cells in minimum essential medium (MEM) and MDA-MB436 cells in Roswell Park Memorial Institute (RPMI-1640). The three media were supplemented with 10% fetal calf serum, 2 mM glutamine, 1% non-essential...
amino acids and 1 mM pyruvate. Cells were grown in an incubator at 37 °C in a humidified atmosphere containing 5% CO₂. Before each experiment, cells were seeded in 96- or 6-well plates and were allowed to adhere overnight, and then were treated with chemicals or vehicle only.

Mammosphere culture. Single cells of MDA-MB231, BT20 and MDA-MB436 lines were plated in ultralow attachment plates (Corning Incorporated Life Sciences, Corning, NY, USA) at a density of 5 000 viable cells per ml either in primary cultures or in the successive passages and grown in DMEM/Ham's F12 (Euroclone, Milan, Italy) without bovine pituitary extract, but supplemented with B27 (Life Technologies, Eugene, OR, USA), 20 ng/ml EGF, 20 ng/ml bFGF (Life Technologies) and 5 μg/ml Insulin (Sigma-Aldrich). Mammospheres were collected by gentle centrifugation after 10–12 days and dissociated enzymatically with 0.05% trypsin, 0.02% EDTA (Sigma-Aldrich) and mechanically by a glass Pasteur pipette. Dissociated cells were
Figure 6 PN caused mitochondrial depolarization and necrosis of sphere cells derived from three lines of TNBCs. (a and b) Estimation of $\Delta \psi_m$. Sphere cells (8 x 10^3 cells per well) were treated for 24 h with 10 μM PN without or with 2 mM NAC. In condition IV, cells were treated with PN for only 4 h, then the medium was substituted with fresh medium lacking in PN and the incubation was protracted until 24 h. At the end of incubation in all samples, the fluorescent cationic dye JC-1 was added for 15 min and then fluorescence was visualized by a Leica microscope at 200 original magnification with fluorescence filters for FITC and rhodamine. Fluorescent sphere cells were counted in three different microscopic fields in each well (3 wells per treatment) and expressed as percentage of the total number of cells counted under light microscopy. (a) Merged images of an experiment performed using MDA-MB231 sphere cells. (b) Histograms showing the percentage of cells with green fluorescence ascertained for the three lines of sphere cells. (c) Western blotting analysis showing the effect induced by treatment for various times with 10 μM PN on the expression of MnSOD and catalase in MDA-MB231 sphere cells. (d) Time course of the effect exerted by 10 μM PN on the number of PI-positive cells. Sphere cells from the three lines of TNBCs were treated with 10 μM PN for various times, then PI was added as reported in Materials and Methods and the percentages of PI-positive cells were ascertained. (e) Analysis by Annexin V/PI double-staining assay. After 24 h of treatment with 10 μM PN, without or with 2 mM NAC, MDA-MB231 sphere cells were stained with Annexin V-FITC and PI and analyzed by flow cytometry. In (a, c and e), the results are representative of three independent experiments. Scale bar, 10 μm. In (b) and (d), the results are the mean of three independent experiments ± S.D. *P < 0.01 versus untreated control.

Cell viability and cell death assays. Cell viability was ascertained, as described previously, by MTT method, a colorimetric assay. For these experiments, cells (8 x 10^3/well) were plated in 200 μL of DMEM in a 96-well plate and treated for various times with PN or DMAPT or other compounds. Control samples were incubated for the established times in DMEM supplemented with vehicle only. At the end, the absorbance was measured directly at 490 nm in a 96-well plate using an automatic ELISA plate reader (OPSYS MR; Dynex Technologies, Chantilly, VA, USA).

To determine extensive membrane damage, cells were treated, as suggested by Asare et al., with PI, a cell-impermeant nuclear dye, which stains the nuclei of cells that have lost plasma membrane integrity. After treatment of the cells (8 x 10^3/well) with PN or DMAPT, PI (2.0 μg/ml medium) was added and the incubation was protracted for additional 15 min. At the end, cell morphology was visualized by a Leica MDR microscope equipped with a DC300F camera (Leica, Wetlar, Germany) using rhodamine filter to examine PI with an excitation wavelength of 596 nm and emission wavelength of 620 nm. Cells with red fluorescence were counted and normalized to total number of cells per field to calculate the percentage of PI-positive cells.

Apoptotic and necrotic effects were identified by using the Annexin V-FITC/PI Detection Kit (BD Biosciences, Pharmingen, San Diego, CA, USA) according to the manufacturer's instructions. Fluorescence of the cells was analyzed by flow cytometry on a Beckman Coulter Epics XL Flow Cytometer (Brea, CA, USA).

Analysis of $\Delta \psi_m$. The $\Delta \psi_m$ in CSCs was measured using the cationic dye JC-1, which in depolarized mitochondria shows a fluorescence shift from red to green. Consequently, dissipation of $\Delta \psi_m$ was indicated by an increase in the green-to-red fluorescence-intensity ratio. After treatment with the drugs, cells (8 x 10^5/well) were incubated with medium containing JC-1 (Cayman Chemical Company, Ann Arbor, MI, USA) for 15 min at 37 °C. The cells were then washed with PBS. Then, the cells were analyzed on a Leica DMR fluorescence microscope (Leica Microsystems, Wetlar, Germany) by using appropriate filters for rhodamine (excitation wavelength of 596 nm and emission wavelength of 620 nm) and FITC (excitation wavelength of 485 nm and emission wavelength of 530 nm).

Evaluation of ROS generation. To ascertain the effect exerted by both PN and DMAPT on ROS generation, we analyzed by fluorescence microscopy the changes produced by the two compounds on three different fluorescent signals: DCF, DHE and HPF.

H$_2$DCFDA (5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate; Molecular Probe, Life Technologies, Eugene, OR, USA) is a cell-permeant, fluorescent dye that easily diffuses across cell membranes. After cleavage of acetate groups by intracellular esterases, a fluorescent adduct (DCF) is produced by oxidation. This probe is widely used for H$_2$O$_2$. However, the probe lacks specificity as it also reacts with HROS, such as hydroxy radical and peroxynitrite. Cells (8 x 10^5/well) were treated with the effectors for various times. Then, the medium was removed, 100 μL of 50 μM H$_2$DCFDA were added and the incubation was protracted for 30 min at 37 °C. Production of superoxide anion was assessed by DHE (Sigma-Aldrich) staining. The fluorochrome DHE is oxidized by superoxide to fluorescent ethidium that intercalates with nuclear DNA, staining the nucleus with a bright red fluorescence. After treatment with PN, the cells were incubated with 20 μM DHE in PBS for 15 min at 37 °C in darkness.

HPF (Enzo Life Sciences Inc., Farmingdale, NY, USA) was used to detect hROS (hydroxy radical and peroxynitrite). HPF is a cell-permeable minimally fluorescent dye, which reacts with hROS, and is converted to fluorescent, which exhibits strong, dose-dependent fluorescence. For this analysis, cells, after the treatment, were incubated with 10 μM HPF in PBS for 1 h at 37 °C in the dark. In all the three cases at the end of incubation, the medium containing the fluorescent signal was replaced with PBS alone and the fluorescence was directly visualized by means of a fluorescence microscope.

All analyses were performed by a Leica DMR fluorescence microscope equipped with a DC300F camera with appropriate filters. FITC filter with excitation wavelength of 485 nm and emission wavelength of 530 nm was used for the analysis of DCF and HPF signals, while rhodamine filter with excitation wavelength of 596 nm and emission wavelength of 620 nm was used for DHE analysis. All the images were acquired by the Leica Q Fluro Software (Wetzlar, Germany). Cells with green or red fluorescence were counted and normalized to a total number of cells per field to calculate the percentage of PI-positive cells.

RNA extraction and real-time PCR analysis. RNA was extracted by Trizol reagent (Life Technologies Ltd, Monza, Italy) and isolated using Direct-zol RNA Miniprep Kit (Zymo Research, Irvine, CA, USA). Then, removal of residual genomic DNA with DNase I (Zymo Research), oligo (dT)-primed reverse transcription was performed on 1 μg of total cellular RNA using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, CA, USA). The reaction mixture contained 2 μL of template cDNA, 10 μL of SYBR Green Supermix (Bio-Rad Laboratories), as reported previously, using the QuantiTect primers Oct3/4, Sox2, Nanog (Qiagen, Milan, Italy). All PCR reactions were performed in triplicate in 96-well plates; each reaction mixture contained 2 μL of template cDNA. Q-PCR Master Mix 2X (Bio-Rad Laboratories), forward and reverse primers at the concentration of 300 nM and RNase-free dH$_2$O to a final volume of 20 μL. Reactions were performed in iQ5 Thermal Cycler Instrument (Bio-Rad Laboratories), as reported previously. The relative quantities of analyzed genes were calculated using the $2^{-\Delta\Delta\text{Ct}}$ method and the data were normalized with the endogenous control, GAPDH (Qiagen).

Western blotting analysis. Cell lysates and protein samples were prepared as reported previously. Equal amounts of protein samples (50 μg per lane) were run in a SDS-polyacrylamide gel electrophoresis, and then transferred to a nitrocellulose membrane. All analyses were performed using specific primary antibodies, which were provided by Santa Cruz Biotechnology (Santa Cruz, CA, USA). Then, the detection was developed by using a secondary antibody conjugated with alkaline phosphatase. Protein bands were visualized using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl-phosphate (Promega, Milan, Italy) and their intensity was quantified by densitometric analysis using the SMX Image software (Bio-Rad Laboratories). The correct protein loading was ascertained by red Ponceau staining and immunoblotting for β-actin. All the blots shown are representative of at least three different experiments.
Statistical analysis. Results are presented as mean ± S.D. of data from at least three independent experiments. Data were analyzed using Student’s t-Test. A P-value below 0.01 was considered significant.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. This work was partially funded by European Regional Development Fund, European Territorial Cooperation 2007-2013, CCI 2007 CB 163 PO 037, OP Italia-Malta 2007-2013. Drs. G. Buttitta, R. Di Fiore and R. Drago-Ferrante benefit by contract grants supported by the same above-mentioned European Fund Italia-Malta 2007-2013. Dr. D. Carlisi is a recipient of a grant by ‘Italian Ministry of Education, University and Research’ (MIUR).

1. Marles RJ, Pazos-Sano EL, Compadre CM, Pezzuto JM, Bloszyk EJ, Arnason J. Sesquiterpene lactones revisited: recent developments in the assessment of biological activities and structure relationships. Rocz Panstwowych 1995; 29: 333-356.
2. Knight DW. Feverfew: chemistry and biological activity. Nat Prod Rep 1995; 12: 271-276.
3. Pareek A, Suthar M, Rathore GS, Bansal V. Feverfew (Tanacetum parthenium): a systematic review. Farmacol Rev 2011; 1: 103-110.
4. Zunino SJ, Doccio JM, Storms DH. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett 2007; 254: 119-127.
5. Suvannasankha A, Crean CD, Shanmugam R, Faraq SS, Abouron N, Nakshati H et al. Antimyeloma effects of a sesquiterpene lactone parthenolide. Clin Cancer Res 2008; 14: 1814-1822.
6. Hayashi S, Koshiba K, Katsabia M, Sato T, Jujo Y, Shiroua H et al. Thermosensitization and induction of apoptosis or cell-cycle arrest via the MAPK cascade by parthenolide, an NF-кB inhibitor in human prostate cancer androgen-independent cell lines. Int J Mol Med 2011; 28: 1033-1042.
7. Guzman ML, Rossi RM, Kunitzcheck L. U. X, Peterson DR, Jordan CT et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2010; 105: 4163-4169.
8. Kwon BH, Koh N, Nubudisi M, Elfioso M, Crews CM et al. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits iκB kinase. Chem Biol 2001; 8: 759-766.
9. Garcia-Pineros AJ, Lindemeyer MT, Mertolf I. Role of cytokine responses of p65NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci 2004; 79: 841-856.
10. Lu Z, Liu S, Xie Z, Pavlovic HE, Wu J, Chan MK et al. Modulation of DNA Methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 2009; 329: 505-514.
11. Baker AM, Oberley LW, Cohen MB. Expression of antioxidant enzymes in human prostatic adenocarcinoma. Prostate 1997; 32: 229-233.
12. Sun Y, St Clair DK, Xu Y, Crooks PA, St Clair WH. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res 2010; 70: 2830-2839.
13. Bauer KR, Brown M, Cress RD, Paradise CA, Caggiano V. Descriptive analysis of estrogen receptors: implications for cancer therapy. Proc Natl Acad Sci USA 2007; 58: 5508-5511.
14. Zhou J, Zhang H, Gu P, Bai J, Manglick JB, Zhang Y. NF-кB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 2008; 111: 419-427.
15. Dong G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Wicha MS et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Cancer Res 2006; 65: 5058-5061.
16. Zhou J, Zhang H, Gu P, Bai J, Manglick JB, Zhang Y. NF-кB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 2008; 111: 419-427.
17. Hart NA, Copay S, Philippe P, Apolonia, a low molecular oral treatment for neurodegenerative disease. Biomed Res Int 2014; 202903.
18. Jagnandan D, Church JE, Bari B, Stehr DJ, Marrero BB, Fulton DJ. Novel mechanism of activation of NADPH oxidase 5: calcium sensitization via phosphorylation. J Biol Chem 2007; 282: 6494-6507.
19. Kent US. Regulation of the Keap1-Nrf2 system by chemopreventive sulforaphane: implications for translational modifications. Ann NY Acad Sci 2011; 1229: 184–189.
20. Tassell J, Perez-De La Cruz V, Elias-Calderron D, Carrillo-Mora P, Gonzalez-Herrera IG, Santamaria A et al. Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: role of the Nrf2-antioxidant response element pathway. Neurosignals 2010; 18: 24–31.
21. Carisi D, D’Annino A, Emanuele S, Buttiga G, Tesoriero G, Lauricella M et al. The oxygen radicals involved in the toxicity induced by parthenolide in MDA-MB-231 cells. Oncol Rep 2014; 32: 167–172.
22. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10: 549-557.
23. Kessler TL, Wakabayashi N, Biwat S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007; 47: 89–116.
24. Mackenzie IC. Stem cell properties and epithelial malignancies. Eur J Cancer 2006; 42: 1204–1212.
25. Dehlin M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radiosensitivity. J Natl Cancer Inst 2006; 98: 1755–1757.
26. Vermeulen L, De Sousa E, Meio F, van der Heijden M, Cameron K, Medema JP et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476.
27. Gines C, Margolin DA, LL. Are cancer stem cells responsible for cancer recurrence? Cell Biol Res Ther 2012; 1: 1.
28. Ghantous A, Sinjab A, Herceq Z, Darwiche N. Parthenolide: from plant shoots to cancer therapy. J Natl Cancer Inst 2012; 104: 856.
29. Liao X, Han L, Zhang B, Shi S, Li W, Shen X et al. Nrf2-Keap1 defines a physiologically important stress response mechanism. Proc Natl Acad Sci U S A 2003; 100: 3893-3898.
30. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45: 872-877.
31. Costello RT, Maitel F, Gaugler B, Sainy D, Arnotel C, Olive D et al. Human acute myeloid leukemia (CD34+CD38–) progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity and impaired dendritic cells transformation capacities. Cancer Res 2000; 60: 4403–4411.
52. Bayraktar S, Gluck S. Molecularly targeted therapies for metastatic triple-negative breast cancer. *Breast Cancer Res Treat* 2013; 138: 21–35.
53. Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. *Oncologist* 2011; 1: 1–11.
54. Xu Y, Fang F, Miriyala S, Crooks PA, Oberley TD, Clair WH et al. Keap1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. *Cancer Res* 2013; 73: 4406–4417.
55. Asare N, Lag M, Lagadic-Gossmann D, Rissel M, Schwarze P, Holme JA et al. 3-Nitrofluoroanthene (3-NF) but not 3-aminofluoroanthene (3-AF) elicits apoptosis as well as programmed necrosis in Hepa 1c1c7 cells. *Toxicology* 2009; 255: 140–150.
56. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. *J Biol Chem* 2003; 278: 3170–3175.
57. Carlisi D, D’Anneo A, Lauricella M, Emanuele S, Vento R, Tesoriere G et al. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. *J Cell Physiol* 2011; 226: 1632–1641.
58. Di Fiore R, Marcatti M, Drago-Ferrante R, D’Anneo A, Tesoriere G, Vento R et al. Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells. *Bone* 2014; 60: 198–212.