ON THE GENERALIZED CONVEXITY AND CONCAVITY

BARKAT ALI BHAYO AND LI YIN

ABSTRACT. In this paper, authors study the convexity and concavity properties of real-valued function with respect to the classical means, and prove a conjecture posed by Bruce Ebanks in [12].

Subject classification 2010: 33B10, 26D15, 26D99.
keywords: Logarithmic mean, identric mean, power mean, Alzer mean, convexity and concavity property, conjecture.

1. Introduction

A function $f : \mathbb{R}_+ \to \mathbb{R}_+$ is $[m_1, m_2]$-convex (concave) if $f(m_1(x, y)) \leq (\geq)m_2(f(x), f(y))$ for all $x, y \in \mathbb{R}_+ = (0, \infty)$ and $m_1, m_2 \in \mathcal{M}$, where \mathcal{M} denotes the family of all mean values of two numbers in \mathbb{R}_+. Some examples of mean values of two distinct positive real numbers are given below:

Arithmetic mean: $A = A(x, y) = \frac{x + y}{2}$,

Geometric mean: $G = G(x, y) = \sqrt{xy}$,

Harmonic mean: $H = H(x, y) = \frac{1}{A(1/x, 1/y)}$,

Logarithmic mean: $L = L(x, y) = \frac{x - y}{\log(x) - \log(y)}$,

Identric mean: $I = I(x, y) = \frac{1}{e} \left(\frac{x^x}{y^y} \right)^{1/(x-y)}$,

Alzer mean: $J_p = J_p(x, y) = \frac{p}{p+1} \frac{x^{p+1} - y^{p+1}}{x^p - y^p}$, $p \neq 0, -1$,

Power mean: $M_t = M_t(x, y) = \begin{cases} \left(\frac{x^t + y^t}{2} \right)^{1/t}, & t \neq 0, \\ \sqrt[2]{xy}, & t = 0. \end{cases}$
It is easy to see that \(J_1(x, y) = A(x, y), J_0(x, y) = L(x, y), J_{-2}(x, y) = H(x, y) \). For the historical background of these means we refer the reader to see \[4, 5, 11, 15, 16\] and the bibliography of these papers.

Before we introduce the earlier results from the literature we recall the following definition, see \[2, 6\].

1.1. Definition. Let \(f : I \to (0, \infty) \) be continuous, where \(I \) is a sub-interval of \((0, \infty)\). Let \(M \) and \(N \) be two any mean functions. We say that the function \(f \) is \(MN \)-convex \((concave)\) if

\[
f(M(x, y)) \leq (\geq)N(f(x), f(y)) \quad \text{for all } x, y \in I.
\]

In \[2\], Anderson, Vamanamurthy and Vuorinen studied the convexity and concavity of a function \(f \) with respect two mean values, and gave the following detailed result:

1.2. Theorem. Let \(I \) be an open sub-interval of \((0, \infty)\) and let \(f : I \to (0, \infty) \) be differentiable. In parts (4)(9), let \(I = (0, b), 0 < b < \infty \).

(1) \(f \) is \(AA \)-convex \((concave)\) if and only if \(f'(x) \) is increasing \((decreasing) \),

(2) \(f \) is \(AG \)-convex \((concave)\) if and only if \(f'(x)/f(x) \) is increasing \((decreasing) \),

(3) \(f \) is \(AH \)-convex \((concave)\) if and only if \(f'(x)/f(x)^2 \) is increasing \((decreasing) \),

(4) \(f \) is \(GA \)-convex \((concave)\) if and only if \(xf'(x) \) is increasing \((decreasing) \),

(5) \(f \) is \(GG \)-convex \((concave)\) if and only if \(xf'(x)/f(x) \) is increasing \((decreasing) \),

(6) \(f \) is \(GH \)-convex \((concave)\) if and only if \(xf'(x)/f(x)^2 \) is increasing \((decreasing) \),

(7) \(f \) is \(HA \)-convex \((concave)\) if and only if \(x^2f'(x) \) is increasing \((decreasing) \),

(8) \(f \) is \(HG \)-convex \((concave)\) if and only if \(x^2f'(x)/f(x) \) is increasing \((decreasing) \),

(9) \(f \) is \(HH \)-convex \((concave)\) if and only if \(x^2f'(x)/f(x)^2 \) is increasing \((decreasing) \).

After the publication of \[2\] many authors have studied generalized convexity. For a partial survey of the recent results, see \[3\].

In \[9\], the following inequalities were studied:

1.3. Theorem. Let \(f : I \to (0, \infty) \) be a continuous and \(I \subseteq (0, \infty) \), then

(1) \(f \) is \(LL \)-convex \((concave)\) if \(f \) is increasing and \(\log \)-convex \((concave)\),

(2) \(f \) is \(AL \)-convex \((concave)\) if \(f \) is increasing and \(\log \)-convex \((concave)\).

Recently, Baricz \[7\] took one step further and studied the \(MN \)-convexity(concavity) of a function \(f \) in a generalized way, and gave the following result:

1.4. Lemma. \[7\] Lemma 3] Let \(p, q \in \mathbb{R} \) and let \(f : [a, b] \to (0, \infty) \) be a differentiable function for \(a, b \in (0, \infty) \). The function \(f \) is \((p, q)\)-convex \(((p, q)\)-concave) if and only if \(x \mapsto x^\alpha f'(x)/(f(x))^{q-1} \) is increasing \((decreasing) \).

It can be observed easily that \((1, 1)\)-convexity means the \(AA \)-convexity, \((1, 0)\)-convexity means the \(AG \)-convexity, and \((0, 0)\)-convexity means \(GG \)-convexity.
1.5. **Lemma.** [7] Theorem 7] Let $a, b \in (0, \infty)$ and $f : [a, b] \to (0, \infty)$ be a differentiable function. Denote $g(x) = \int_1^x f(t) dt$ and $h(x) = \int_0^b f(t) dt$. Then

(a) If for all $p \in [0, 1]$ the function f is $(p, 0)$-concave, then the function g is (p, q)-concave for all $p \in [0, 1]$ and $q \leq 0$. If, in addition the function $x \mapsto x^{1-p}f(x)$ is increasing for all $p \in [0, 1]$, then g is (p, q)-concave for all $p \in [0, 1]$ and $q \in (0, 1)$. Moreover, if for all $p \in \mathbb{R}$ the function $x \mapsto x^{1-p}f(x)$ is increasing, then g is (p, q)-convex for all $p \in \mathbb{R}$ and $q \geq 1$.

(b) If for all $p \in [0, 1]$ the function f is $(p, 0)$-concave, then the function g is (p, q)-concave for all $p \in [0, 1]$ and $q \leq 0$. If, in addition the function $x \mapsto x^{1-p}f(x)$ is decreasing for all $p \in [0, 1]$, then g is (p, q)-concave for all $p \in [0, 1]$ and $q \in (0, 1)$. Moreover, if for all $p \in \mathbb{R}$ the function $x \mapsto x^{1-p}f(x)$ is decreasing, then g is (p, q)-convex for all $p \in \mathbb{R}$ and $q \geq 1$.

(c) If for all $p \notin (0, 1)$ we have $a^{1-p}f(a) = 0$ and the function f is $(p, 0)$-convex, then g is (p, q)-convex for all $p \notin (0, 1)$ and $q \geq 0$. If, in addition the function $x \mapsto x^{1-p}f(x)$ is increasing for all $p \notin (0, 1)$, then g is (p, q)-convex for all $p \notin (0, 1)$ and $q < 0$.

(d) If for all $p \notin (0, 1)$ we have $b^{1-p}f(b) = 0$ and the function f is $(p, 0)$-convex, then g is (p, q)-convex for all $p \notin (0, 1)$ and $q \geq 0$. If, in addition the function $x \mapsto x^{1-p}f(x)$ is decreasing for all $p \notin (0, 1)$, then g is (p, q)-convex for all $p \notin (0, 1)$ and $q < 0$.

In this paper we make a contribution to the subject by giving the following theorems.

1.6. **Theorem.** Let $f : I \to (0, \infty)$ and $I \subseteq (0, \infty)$. Then the following inequality holds true:

\[
I(f(x), f(y)) \geq f(I(x, y))
\]

\[
I(f(x), f(y)) \leq f(A(x, y)),
\]

if the function $f(x)$ is a continuously differentiable, increasing and log-convex(concave).

1.7. **Theorem.** Let f be a continuous real-valued function on $(0, \infty)$. If f is strictly increasing and convex, then

\[
(1.8) \quad P_f(x, y) \leq R_f(x, y)
\]

where

\[
P_f(x, y) = f \left((xy)^{1/4} \left(\frac{x + y}{2} \right)^{1/2} \right)
\]

and

\[
R_f(x, y) = \frac{1}{y - x} \int_x^y f(t) dt.
\]

1.9. **Remark.** In [12], Ebanks defined $P_f(x, y)$ and $R_f(x, y)$, and proposed an open problem for a continuous and strictly monotonic real-valued function f on $(0, \infty)$ as follows:

Problem. Does f strictly increasing and convex (or $f'' > 0$) imply $P_f \leq R_f$?
It is obvious that the Theorem 1.7 gives an affirmative answer to the Ebanks’ problem.

1.10. **Theorem.** Let \(f : I \to (0, \infty) \) and \(I \subseteq (0, \infty) \).

1. (If \(f(x) \) is continuously differentiable, strictly increasing (decreasing) and convex (concave) and \(f^{p-1}(x)f(x) \) is increasing on \((0, 1) \), then

\[
J_p(f(x), f(y)) \geq f(J_p(x, y))
\]

\[
J_p(f(x), f(y)) \leq f(A(x, y))
\]

for \(p \leq 1 \).

2. (If \(f(x) \) is continuously differentiable, strictly decreasing (increasing) and convex (concave) and \(f^{p-1}(x)f(x) \) is decreasing on \((0, 1) \), then

\[
J_p(f(x), f(y)) \geq f(J_p(x, y))
\]

\[
J_p(f(x), f(y)) \leq f(A(x, y))
\]

for \(p > 1 \).

2. **Lemmas and Proofs**

We recall the following lemmas which will be used in the proof of the theorems.

2.1. **Lemma.** [17] Let \(f, g : [a, b] \to \mathbb{R} \) be integrable functions, both increasing or both decreasing. Furthermore, let \(p : [a, b] \to \mathbb{R} \) be a positive, integrable function. Then

\[
\int_a^b p(x)f(x)dx \cdot \int_a^b p(x)g(x)dx \leq \int_a^b p(x)dx \cdot \int_a^b p(x)f(x)g(x)dx.
\]

If one of the functions \(f \) or \(g \) is non-increasing and the other non-decreasing, then the inequality in (2.1) is reversed.

2.3. **Lemma.** [13] If \(f(x) \) is continuous and convex function on \([a, b] \), and \(\varphi(x) \) is continuous on \([a, b] \), then

\[
f \left(\frac{1}{b-a} \int_a^b \varphi(x)dx \right) \leq \frac{1}{b-a} \int_a^b f(\varphi(x))dx.
\]

If function \(f(x) \) is continuous and concave on \([a, b] \), the inequality in (2.3) is reversed.

2.5. **Lemma.** [5] Fix two positive number \(a, b \). Then \(L(a, b) \leq I(a, b) \leq A(a, b) \).

2.6. **Lemma.** [13] The function \(p \mapsto J_p(x, y) \) is strictly increasing on \(\mathbb{R} \setminus \{0, -1\} \).

Proof of Theorem 1.6. Since the proof of part (2) is similar to part (1), we only prove the part (1) here. An easy computation and substitution \(t = f(u) \) yield

\[
\ln I(f(x), f(y)) = \frac{\int_{f(y)}^{f(x)} \ln t dt}{\int_{f(y)}^{f(x)} 1} = \frac{\int_y^x \ln f(u)f'(u)du}{\int_y^x f'(u)du}.
\]
Since the functions \(f(x) \) and \(f'(x) \) are increasing on \(I \subseteq (0, \infty) \), now by using Lemma 2.1 we have

\[
\int_y^x 1du \cdot \int_y^x \ln f(u)f'(u)du \geq \int_y^x f'(u)du \cdot \int_y^x \ln f(u)du.
\]

Combining (2.7) and (2.8), we obtain

\[
I(f(x), f(y)) \geq \frac{\int_y^x \ln f(u)du}{y - x}.
\]

Considering the log-convexity of the function \(f(x) \) and using Lemmas 2.3 and 2.5, we get

\[
I(f(x), f(y)) \geq \ln f \left(\frac{\int_y^x udu}{y - x} \right) = \ln f \left(\frac{x + y}{2} \right) \geq \ln f \left(I(x, y) \right).
\]

This completes the proof. \(\square \)

Proof of Theorem 1.7. Since \(f \) is strictly increasing and convex, by utilizing the Lemma 2.1 and the inequality \(G(x, y) \leq A(x, y) \) we obtain

\[
R_f(x, y) \geq \frac{\int_y^x f(u)du}{y - x} \geq f \left(\frac{\int_y^x udu}{y - x} \right) = f \left(\frac{x + y}{2} \right) \geq f \left(I(x, y) \right).
\]

This completes the proof. \(\square \)

Proof of Theorem 1.10. For the proof of part (1), letting \(t = f(u) \), we get

\[
J_p(f(x), f(y)) = \frac{\int_{f(y)}^{f(x)} t^p dt}{\int_{f(y)}^{f(x)} t^{p-1}} = \frac{\int_y^x f^p(u)f'(u)du}{\int_y^x f^{p-1}(u)f'(u)du}.
\]

By using Lemma 2.1, we obtain

\[
J_p(f(x), f(y)) \geq \frac{\int_y^x f(u)du}{y - x}.
\]

Considering convexity of the function \(f(x) \) and using Lemmas 2.3 and 2.6, we get

\[
J_p(f(x), f(y)) \geq f \left(\frac{\int_y^x udu}{y - x} \right) = f \left(\frac{x + y}{2} \right) \geq f \left(J_p(x, y) \right),
\]

this implies (1). The proof of part (2) follows similarly. \(\square \)
B. A. BHAYO AND L. YIN

References

[1] M. Abramowitz, I. Stegun, eds.: Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Dover, New York, 1965.

[2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen: Generalized convexity and inequalities. J. Math. Anal. Appl. 335 2007, 1294-1308.

[3] G. D. Anderson, M. Vuorinen and X. Zhang: Topics in special functions III, http://arxiv.org/abs/1209.1696.

[4] H. Alzer: Two inequalities for means, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 11–16.

[5] H. Alzer and S.-L Qiu: Inequalities for means in two variables, Arch. Math. 80 2003, 201-205.

[6] G. Aumann: Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelwerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Abh., Math. Ann. 109 (1933) 405–413.

[7] Á. Baricz: Geometrically concave univariate distributions, J. Math. Anal. 308 Appl. 363(1), 182–196 (2010).

[8] B. A. Bhayo and M. Vuorinen: Inequalities for eigenfunctions of the p-Laplacian, Issues of Analysis Vol. 2(20), No 1, 2013. http://arxiv.org/abs/1101.3911

[9] B. A. Bhayo and L. Yin: Logarithmic mean inequality for generalized trigonometric and hyperbolic functions, http://arxiv.org/abs/1404.6732

[10] B. C. Carlson: Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc., vol. 17, (1966), no. 1, 32–39.

[11] B.C. Carlson: The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615–618.

[12] B. Ebanks: Looking for a few good mean. Amer. Math. Monthly 119 ,No. 8, 2012, 658–669. 1–9.

[13] J.-C. Kuang: Applied inequalities(Second edition). Shan Dong Science and Technology Press. Jinan, 2002.

[14] I. Lazarević: Sur une imigalite de Lochs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 230-241, 55–56 (1968).

[15] D. S. Mitrinović: Analytic Inequalities, Springer, New York, USA, 1970.

[16] J. Sándor: On the identric and logarithmic means, Aequat. Math., 40(1990), 261–270.

[17] F. Qi and Z. Huang: Inequalities of the complete elliptic integrals, Tamkang J. Math., 29 (1998), no.3, 165-169.

B. A. Bhayo) Department of Mathematical Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
E-mail address: bhayo.barkat@gmail.com

(L. Yin) Department of Mathematics, Binzhou University, Binzhou City, Shandong Province, 256603, China
E-mail address: yinli7@163.com