Direct method for the quantitative analysis of surface contamination on ultra-low background materials from exposure to dust

March 18, 2021

Maria Laura di Vacri¹, Isaac Arnquist¹, Silvia Scorza², Eric Hoppe¹, Jeter Hall²

¹ Pacific Northwest National Laboratory ² SNOLAB
Ultrasensitive detectors

- Ultralow background
 - Underground facilities
 - Detector shielding
 - Ultrapure materials
Major contributors to material radioactive background

Uranium-238

Thorium-232

Potassium-40

Images from
By Tosaka - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=5531106
Material selection: a critical challenging task

- Radiopurity requirements
 - μBq/kg range or lower

- Extensive assay campaigns
 - Selection of the most-radiopure materials

- Ultrasensitive analytical techniques

- Ultraclean analytical procedures and material handling

For reference:
1 ppt Th = 4.1 μBq 232Th/kg
1 ppt U = 12.4 μBq 238U/kg
1 ppb 40K = 30.5 μBq 40K/kg

https://pubs.usgs.gov/of/2005/1413/maps.htm
A dedicated facility at PNNL

• Class 10,000 cleanroom
• 2 dedicated mass spectrometers (ICP-QQQ-MS)
• Only Optima grade reagents
• Low background PFA labware
• Cutting edge sample digestion techniques
• Automated system for analyte separation via extraction chromatography
Current detection limits for different materials

Material	Th/U Detection Limits	
	µBq/kg	ppt
Copper†	<0.1	<0.01
(Electroformed or commercial OFHC)		
Lead†	<1	<0.1
Titanium	<1	<0.1
Stainless Steel	<1	<0.1
Polymers‡	<1	<0.1
(PTFE, PVDF, “Acrylic”, Kapton*, etc.)		
Linear Alkyl Benzene (LAB)	<0.1	<0.01
Quartz, Fused Silica	<1	<0.1
Electronic Components	<0.1 pg/piece	<1 nanoBq/piece
(FETs, resistors, thermocouples, etc.)		
Solutions	<0.01	<0.001

†I.J. Arnquist, M.L. di Vacri, E.W. Hoppe. NIM A (2020)
‡I.J. Arnquist, J.W. Grate, M. Bliss, E.W. Hoppe. Analytical Chemistry (2017)
*I.J. Arnquist, C. Beck, M.L. di Vacri et al., Nuclear Inst. And Methods in Physics Research, A 959 (2020)
Dust particulate: a significant contribution to material surface contamination

- High purity materials
 - Concerning (even in cleanrooms!)

- Ongoing efforts to estimate backgrounds from dust, mainly from
 - Fallout models
 - Assumed dust composition

- Dust in cleanrooms = local soil ← Not necessarily!
 - Generated by handled materials and ongoing activities
Direct method for quantitative analysis

- Exposure of a dust collection media
- Dissolution of deposited contamination
- Analysis via Inductively Coupled Plasma Mass Spectrometry (ICP-MS, long-lived radionuclides and stable elements)

M.L. di Vacri, I.J. Arnquist, S. Scorza et al., Direct method for the quantitative analysis of surface contamination on ultra-low background materials from exposure to dust, Nuclear Inst. And Methods in Physics Research, A 994 (2021) 165051
Exposure in a class 10,000 cleanroom at PNNL

	PFA vial [ng·day⁻¹·cm⁻²]	Si coupon [ng·day⁻¹·cm⁻²]
K-nat	(1.1 ± 0.2)x10⁻³	(5.1 ± 1.6)x10⁻⁴
Pb-stable	(1.2 ± 0.2)x10⁻⁵	(1.1 ± 0.5)x10⁻⁵
Th-232	(1.8 ± 0.4)x10⁻⁸	(5 ± 4)x10⁻⁸
U-238	(1.7 ± 0.6)x10⁻⁸	(3 ± 2)x10⁻⁸

Exposure: ca. 30 days

K ~ 1.4 E+4 ppm
Th ~ 7.2 ppm
U ~ 1.2 ppm

* https://pubs.usgs.gov/of/2005/1413/maps.htm
In terms of radioactivity

\[
\begin{align*}
\text{nat}K &= 30.5 \text{ Bq} \; {}^{40}\text{K} \cdot \text{g}^{-1} \\
\text{nat}Pb &= 0.2 \text{ Bq} \; {}^{210}\text{Pb} \cdot \text{g}^{-1} \\
{}^{232}\text{Th} &= 4.1 \text{ kBq} \cdot \text{g}^{-1} \\
{}^{238}\text{U} &= 12.2 \text{ kBq} \cdot \text{g}^{-1}
\end{align*}
\]

Isotope	PFA vial [\(\mu\text{Bq} \cdot \text{day}^{-1} \cdot \text{cm}^{-2}\)]	Si coupon [\(\mu\text{Bq} \cdot \text{day}^{-1} \cdot \text{cm}^{-2}\)]
K-40	\((3.3 \pm 0.5) \times 10^{-5}\)	\((1.5 \pm 0.5) \times 10^{-5}\)
Pb-210	\((2.4 \pm 0.4) \times 10^{-9}\)	\((2.1 \pm 0.9) \times 10^{-9}\)
Th-232	\((7.6 \pm 1.5) \times 10^{-8}\)	\((2.0 \pm 1.8) \times 10^{-7}\)
U-238	\((2.1 \pm 0.7) \times 10^{-7}\)	\((3.1 \pm 2.8) \times 10^{-7}\)

* A. Alessandrello et al./Nucl. Instr. And Meth. In Phys. Res. B 142 (1998) 163-172
Cleanroom vs non-cleanroom

Exposure of 8 PFA vial sets for 30 days

- Exposure also performed in a Class 10 laminar flow hood at PNNL

Isotope	Office space [ng·day⁻¹·cm⁻²]	Cleanroom [ng·day⁻¹·cm⁻²]
Th-232	(1.03 ± 0.06)x10⁻⁵	(7.5 ± 1.5)x10⁻⁸
U-238	(2.7 ± 0.4)x10⁻⁵	(2.1 ± 0.7)x10⁻⁷
Campaign of measurements at SNOLAB

- Excavated 6,800 ft underground
- In the working Creighton nickel mine, operated by Vale Ltd.
- A ca. 54,000 sq ft class-2,000 cleanroom hosting neutrino and dark matter experiments
Selected locations

- 9 underground cleanroom locations
- 1 underground non-cleanroom location
- 1 non-cleanroom location in the surface building

- A: South Drift LBL.
- B: Rm 127.
- C: Drift F.
- D: Rm 141.
- E: SNO+ control room.
- F: Rm 104.
- G: Rm 123.
- I: Drift F/J.
- J: Rm 132.
- K: Rm 137.

Map of the underground facility: investigated locations tagged with a letter and a star
Results
(reduced lab activities and mine shutdown)

Isotope	2000-class cleanroom UG	non cleanroom UG	non cleanroom Surface
K-40	(5.7 ± 5.9)x10^{-5}		
Pb-210	(5.7 ± 13)x10^{-8}		
Th-232	(6.3 ± 7.8)x10^{-7}		
U-238	(6.5 ± 4.4)x10^{-7}		

* Excluding 3 cleanroom locations where activities may have triggered higher accumulation rates (empty circle markers)

• Results reflected local activities
XRF-based method for dust fallout monitoring

- System of witness plates at SNOLAB
- X-Ray Fluorescence (XRF) analysis
 - Surrogate elements (i.e., Fe and Ca)
- Assumption: rock/concrete sole dust source
- Deposition rates for other elements (e.g., Th and U) estimated based on relative content in rock/concrete

Element	Rock (avg) [ppm]	Concrete [ppm]
K	1.0x10^4	1.6x10^4
Ca	3.6x10^4	1.0x10^5
Fe	6.5x10^4	2.6x10^4
Pb	10.4	13.9
Th	5.4	13.1
U	1.2	2.4

Composition of rock and concrete at the SNOLAB site*

* From: I.T Lawson, “Analysis of Rock Samples from the New Laboratory”, STR-2007-003 SNOLAB Technical Report 2007
Comparison: ICP-MS and XRF results

- Same locations
- Same exposure time

Iron

Calcium

*Upper limits
Estimated/Measured ratios of fallout rates

Potassium

Lead

Thorium

Uranium
Conclusions and perspectives

- Effective method for the **direct measurement** of dust contribution to material radioactive background
 - Discrepancy directly measured/inferred fallout rates in cleanrooms

- Relatively inexpensive, practical collection media

- ICP-MS technique:
 - **Multi-elemental**
 - Potentially all the elements in the periodic table, elemental fingerprint to dust sources
 - **Ultrasensitive**: relatively short exposure

- New campaigns ongoing/planned
 - Different lab activity and lab conditions
 - Targeting a larger number of elements (local major contributor to dust)
 - Interest within the ultralow background community

- Quantitatively assess the efficiency of material cleaning procedures
Thank you

- DOE, USA Office of High Energy Physics Advanced Technology R&D subprogram (KA-25)
- Canada Foundation for Innovation
- Province of Ontario Ministry of Research and Innovation
Back up slides
| Analyte | DL |
|---------|--------|
| K [fg·g⁻¹] | 30.0 |
| Ca [pg·g⁻¹] | 0.82 |
| Fe [pg·g⁻¹] | 0.66 |
| Pb [fg·g⁻¹] | 70.8 |
| Th [fg·g⁻¹] | 0.61 |
| U [fg·g⁻¹] | 0.79 |
Material assay: analytical techniques

- High Purity Germanium (HPGe) gamma spectroscopy
 - $\approx 100 \, \mu{\text{Bq}}\cdot{\text{kg}}^{-1} - \text{mBq} \cdot \text{kg}^{-1}$ sensitivity

- Neutron Activation Analysis (NAA)
 - $\approx \mu{\text{Bq}} \cdot \text{kg}^{-1}$ sensitivity

- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
 - $\approx \mu{\text{Bq}} \cdot \text{kg}^{-1}$ sensitivity
Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

- Fast, quantitative
- Surface and bulk
ICP-QQQ-MS