Identification of 12 New Yeast Mitochondrial Ribosomal Proteins
Including 6 That Have No Prokaryotic Homologues*

Cosmin Saveanu‡‡, Micheline Fromont-Racine‡, Alexis Harington‡, Florence Ricard‡, Abdellkader Namane***, and Alain Jacquier‡‡‡
From the ‡Genétique des Interactions Macromoléculaires, CNRS (URA2171), ¶Genétique Moléculaire des Levures, CNRS (URA2171), and **Chimie Structurale des Macromolécules, CNRS (URA2185), Institut Pasteur, 28-28 Rue du Dr. Roux, 75724 Paris Cedex 15, France

Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.

In yeast mitochondria, the majority of the characterized ribosomal proteins are essential for protein synthesis (for review see Ref. 1). Homologues of about 18 of the 21 prokaryotic small ribosomal subunit proteins can be identified by similarity searches in the yeast complete genomic sequence. However, the number of ribosomal proteins is larger in the small subunit of yeast mitochondria, estimated to be 33 or 36 (2, 3).

Thus far, yeast mitochondrial ribosomal proteins have been identified either by the study of mutant strains with mitochondrial dysfunction (pet mutants; for review see Ref. 4) or by direct biochemical approaches involving isolation of mitochondria, purification of mitochondrial ribosomes, and protein separation followed by microsequencing (5). Mitochondrial ribosome purification has thus far been technically difficult, because the ribosomal proteins represent only 2–3% of the mitochondrial proteins (2). To date, these approaches have identified only a subset of the total number of mitochondrial ribosomal proteins. In yeast, the eukaryote in which most of the studies were performed, only 14 proteins of the small mitochondrial ribosomal subunit have been characterized experimentally (1, 6).

We were originally interested in the study of the yeast YKL155C gene because it was found in a two-hybrid exhaustive screen to interact with the Prp11 splicing factor (7). To test whether this protein was associated with splicing factors under physiological conditions, we used the recently described tandem affinity purification technique (8) that allows the isolation of protein complexes by two successive affinity purification steps under mild conditions. Instead of containing splicing factors, the purified complex associated with Ykl155c was found to consist of the mitochondrial small ribosomal subunit. We took advantage of this rapid and efficient affinity purification strategy to identify and characterize twelve novel proteins of the small mitochondrial ribosomal subunit.

EXPERIMENTAL PROCEDURES

Plasmids and Strains—Strains used in this study are listed in Table I. Gene deletions were made by replacing the entire open reading frame by a TRP1 or KanMX6 cassette (9). The strains containing green fluorescent protein (GFP)** fusion proteins or TAP-tagged fusion proteins were constructed by genomic insertion of the tag together with the TRP1 marker downstream of the affected genes to obtain C-terminally tagged fusion proteins. The Tag/TRP1 markers were generated by polymerase chain reaction either from pFA6a-GFP/S65Tr-TRP1 for the GFP fusion (9) or pBS1479 for the TAP-tagged fusion proteins (8) using oligonucleotides designed according to the authors. The YGL129C-containing vector pAH028.1R was constructed by cloning a BamHI/NotI polymerase chain reaction fragment of YGL129C into a pCM190-derived plasmid (10).

Complex Purification—Complex purification was done essentially by the method described in detail by Rigaut et al. (8) starting with 2 liters of yeast culture. Polycrylamide gradient gel electrophoresis was done in the Tris-Tricine system (11). A gradient of 5–20% acrylamide was used in all cases. Protein bands were visualized by Coomassie Blue G-250 staining (12).

Mass Spectrometry—In-gel digestion of the proteins was performed by the protocol of Shevchenko et al. (13), using bovine trypsin (Roche Molecular Biochemicals). The generated peptides were cleaned on a reversed-phase support using Millipore ZipTip C18 or Poros R2 (Perceptive Biosystems). The mixture of peptides was analyzed by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry on a Voyager DE-STR system (Perceptive Biosystems).

* This work was supported by grants from Groupe d’Interet Publique-Aventis, CNRS, and Ministère de l’Education Nationale (France). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Recipient of financial support from Groupe d’Interet Publique-Aventis.

§ Supported by a grant (EUROFAN2 Bio4-CT97–2294) from the European Economic Community.

¶ To whom correspondence should be addressed. Tel.: 33 140 613 205; Fax: 33 145 688 790; E-mail: jacquier@pasteur.fr.

1 The abbreviations used are: GFP, green fluorescent protein; TAP, tandem affinity purification; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine; MALDI-TOF, matrix-assisted laser desorption ionization time of flight.

This paper is available on line at http://www.jbc.org

Received for publication, December 1, 2000, and in revised form, January 18, 2001
Published, JBC Papers in Press, February 14, 2001, DOI 10.1074/jbc.M010864200
Yeast Mitochondrial Ribosomal Proteins

Table I

Strain name	Genotype	Source
MGD353–13D	MATa, trpl–289, ura3–52, ade2, leu2–3, 112, arg4	B. Séraphin
W303–1A	MATa, Δtrpl, ura3–1, ade2–1, leu2–3, 112, his3–11, 15	(27)
BMA64	MATa/MATα, Δtrpl1/Δtrpl1, ura3–1/ura3–1, ade2–1/ade2–1, leu2–3, 112/leu2–3, 112, his3–11, 15/ his3–11, 15	F. Lacroute
LMA31	BMA64 containing YKL155C/YKL155C ΔKanMX6	This study
LMA21-GFP	W303 containing YKL155C-GFP/HIS3	This study
LMA19	MGD353–13D containing YKL155C-TAP/TRP1	This study
LMA119	MGD353–13D containing MRPL-TAP/TRP1	This study
LMA132	MGD353–13D containing YLR036C-GFP/TRP1	This study
LMA133	MGD353–13D containing YGR215W-GFP/TRP1	This study
LMA134	MGD353–13D containing YNR037C-GFP/TRP1	This study
LMA135–3	MGD353–13D containing ydr034c–TRP1	This study
LMA136	MGD353–13D containing YDR041W-GFP/TRP1	This study
LMA137	MGD353–13D containing YDR175C-GFP/TRP1	This study
LMA139	MGD353–13D containing YER050C-GFP/TRP1	This study
LMA140	MGD353–13D containing YJR111W-GFP/TRP1	This study
FYAH018	MATa/MATα, ura3–52/ura3–52, ΔKanMX6, YLY22/ly2–Δ202, TRP1/trp1–Δ63, HIS3/his3–Δ200, ygl129c–KanMX6/YGL129C	This study
FYAH018/028.1R	FYAH018 bearing pAH028.1R	This study

FIG. 1. Proteins that copurify with Ykl155c are components of the small mitochondrial ribosomal subunit. **A**, the proteins that were isolated by tandem affinity purification using either a tagged version of Ykl155c (lane 1) or Mrp1 (lane 2) were separated by a Tris-Tricine 5–20% gradient gel electrophoresis. **MW**, molecular weight marker. Protein band identifications were done by mass spectrometry (see “Experimental Procedures”). **B** and **C**, RNA dot-blot analysis of the RNA that copurifies with Ykl155c (lane 1) or Mrp1 (lane 2) using 2 μg of total RNA as a control (**T**). Hybridization was done using radioactively labeled probes specific for the large subunit 21 S mitochondrial rRNA (**B**) and the small subunit 15 S mitochondrial rRNA (**C**).
The bands were excised from the gel, and the proteins were purified when using Ykl155c-TAP. The intensity of the Ykl155c band appears to be significantly lower in the Mrp1-TAP purification. It is possible that part of the tagged form of Ykl155c is not associated with the ribonucleoprotein complex, and therefore additional free protein was purified when using Ykl155c-TAP.

To search for RNA components in the purified complex, the RNAs extracted from the purified fractions were heated-denatured, spotted on a filter, and hybridized with either a 21 S (Fig. 1B) or a 15 S (Fig. 1C) yeast rRNA-specific probe. As expected, the 15 S probe for the small subunit mitochondrial rRNA hybridized specifically to the RNA associated with the Ykl155c and Mrp1 complexes, whereas the 21 S-specific probe did not.

Finally, we analyzed the cosedimentation of Ykl155c with Mrp1 and the 15 S RNA by ultracentrifugation on a 15–30% sucrose gradient under dissociating conditions (0.5 M salt). Whole yeast soluble crude extracts from the Ykl155c-TAP- and Mrp1-TAP-tagged strains were mixed and loaded on top of the gradient. After ultracentrifugation, the fractions were analyzed for their protein content by denaturing gel electrophoresis and immunoblot specific for the protein A component of the tag. In addition, the RNAs of an aliquot from each fraction were spotted on a filter and probed with the 21 S- or 15 S-specific probe. Cosedimentation of Ykl155c with Mrp1 and the 15 S mitochondrial rRNA is shown in Fig. 3.

In addition to the proteins previously described as components of the mitochondrial small ribosomal subunit, we found 12 proteins that had not been previously biochemically characterized. Only 6 of these 12 proteins had clear known ribosomal homologues (Table II).

The nomenclature of the mitochondrial ribosomal proteins is more as variable as the methods employed for their characterization, but MRP (for mitochondrial ribosomal protein) is the most frequently used. However, this name does not allow one to discriminate between small and large subunit proteins and thus may be misleading. For example, Mrp2 is not the homologue of the prokaryotic S2 ribosomal proteins but belongs to the S14p family. Accordingly, we preferred to designate the newly identified genes RSMxx genes, where RSM stands for ribosomal small subunit of mitochondria, and xx is the number of the corresponding prokaryotic protein family (see Table II). The genes that encode proteins that are not significantly similar to prokaryotic proteins were named with the same prefix RSM followed by a number that begins with 22, because there are 21 prokaryotic small ribosomal subunit protein families. Thus, the proposed name of the YKL155c gene is RSM22.
A large amount of functional data was generated in the course of genetic screenings and functional genomic studies in yeast. Hence, for a number of the identified proteins, some cellular or functional data were already available in public data bases. In addition, for some of the less well characterized proteins, we analyzed the cellular localization of the GFP C-terminal tagged proteins and the respiratory competency of the corresponding homologues Yjr113c and Ydr041w. Mammalian homologues of S7 (19) and S10 (20) were also recently described as components of the bovine small mitochondrial ribosomal subunit. As expected, the fluorescently labeled yeast proteins were not previously experimentally identified as components of the yeast mitochondrial ribosome.

Table II

Summary of small mitochondrial ribosomal subunit proteins

Systematic name^a	Gene name	Prokaryotic family	First direct biochemical identification	Apparent molecular mass^b	Comments	
Potential yeast homologues of known prokaryotic small ribosomal subunit proteins	YNL137c	NAM9	S4p (28)	Gly^c (29)		
YHL004w	MRP4	S2p (30)	Gly^c (30)	45		
Q0140	VARI	S3p (31)	Mitochondrially encoded, Gly^c (32) (33)	42	Mitochondrial ribosomal mRNA expression profile (35)	
YBR251w	MRPS5	S5p (34)	This study	37	Gly^c (35)	
YDR337w	MRPS28	S15p (23)	Gly^c (23)	31		
YBR146w	MRPS9	S9p	This study	31	Gly^c (36)	
YDR113c	RSM7	S7p	Mitochondrial localization (this study)	24		
YDR041w	RSM10	S10p	Mitochondrial localization (this study)	21		
YER050c	RSM18	S18p	This study	16	Gly^c (37)	
YPR166c	MRP2	S14p (38)	Gly^c (38)	13	Mitochondrial localization; Gly^cd (this study)	
YNR037c	RSM19	S19p	This study	8.3	Mitochondrial localization, Gly^c (this study)	
Yeast mitochondrial small subunit proteins with no known ribosomal homologues	YKL155c	RSM22	None	This study	68	Mitochondrial localization, Gly^c (this study), (37)
YGL129c	RSM23	None	This study	46	Mitochondrial localization, Gly^c (this study), (39); DAP-3 family member (24)	
YDR175c	RSM24	None	This study	41	Mitochondrial localization (this study), Gly^c (35), mitochondrial ribosome mRNA expression profile (37)	
YOR158w	PET123	None (40)	Gly^c (41)	40		
YPL118w	MRP51	None (6)	Mitochondrial localization, Gly^c (6)	39		
YDR347w	MRP1	None (42)	Mitochondrial localization, Gly^c (43)	37		
YIL093c	RSM25	None	This study	35	Mitochondrial localization, Gly^c (this study)	
YJR101w	RSM26	None	This study	29	Similar to Mrp1; Gly^c (44)	
YGR215w	RSM27	None	This study	15	Mitochondrial localization (this study)	

Other known or predictable small subunit mitochondrial ribosomal proteins

Systematic name^a	Gene name	Prokaryotic family	First direct biochemical identification	Predicted molecular mass^b	Comments	
Potential yeast homologues of known prokaryotic small ribosomal subunit proteins	YNL306w	MRPS38	S11p (5)	Deletion is lethal (45)		
YMR118c	None	S17p	None	22	Gly^c (37); mitochondrial ribosome mRNA expression profile (35)	
YBL090w	MRP21	S21p (6)	Gly^c (6)	20		
YMR158w	None	S8p	None	18		
YNR036c	None	S12p	None	17		
YKL005c	MRP17	S6p (46)	Mitochondrial localization, Gly^c (46)	17	Deletion slows growth on glucose and glycerol; mitochondrial localization (47)	
YNL081c	None	S13p	None	16		
YPL013c	None	S16p	None	14		
Yeast mitochondrial small subunit proteins with no known ribosomal homologues	YHR079c	PPK1/YMS2	None (5)	Similarity to human protein phosphatase methyl esterase (48)	40	
YGR084c	MRP13	None (49)	Deletion has no respiratory effect (49)	39		
YDL045w-A	MRP10	None (18)	Mitochondrial localization, Gly- (18)	14		

^a Systematic names are in bold and underlined when the corresponding proteins were not previously experimentally identified as components of the yeast mitochondrial ribosome.

^b In each category, proteins were sorted according to their apparent molecular mass determined in this study or predicted molecular mass calculated from the complete sequence.

^c Gene disruption or deletion hinders growth on glycerol as a unique carbon source (Gly-).

^d GFP fusion at the C terminus hinders growth on glycerol in a haploid strain.
Yeast Mitochondrial Ribosomal Proteins

Novel Proteins Not Similar to Prokaryotic Ribosomal Components Are Essential for Mitochondrial Function—Given that six newly identified ribosomal proteins have no obvious similarity with previously known ribosomal proteins, it was important to determine the cellular localization and the involvement of these proteins in mitochondrial function. The result of the cellular localization of the GFP C-terminally tagged proteins is shown in Fig. 4 and summarized in Table II. With the exception of Yjr101w, which was not analyzed, all these proteins were unambiguously localized to the mitochondria. Ykl155c, Ygl129c, Ydr175c, and Yjr101w were previously reported in the literature or public data bases to be essential for mitochondrial function (see Table II for references). We confirmed the direct involvement of Ykl155c in mitochondrial function by showing that the defective growth on glycerol resulting from the deletion of its gene could be complemented by a plasmid expressing the wild-type version of the protein (data not shown). For Yil093c, no previously reported functional data were available. We deleted the gene, which proved to be essential for growth on a medium containing glycerol as the sole carbon source (data not shown). For Yil093c, a homologue of the S19 prokaryotic ribosomal proteins. However, in a heterozygous diploid strain, we were able to detect a weak GFP signal that matches the mitochondrial marker (Fig. 4, bottom).

Affinity Purification of the Ribosomal Subunit Is Complementary to Previously Described Methods—The number of protein components of the yeast small mitochondrial ribosomal subunit was estimated by mitochondrial purification, preparative ultracentrifugation, and two-dimensional gel electrophoresis to lie between 33 (2) and 36 (3). We used an affinity purification method with tagged versions of yeast Ykl155c and Mrp1 that allowed us to identify, by mass spectrometry, 20 different proteins of this ribosomal particle. Some of the previously described components of the small subunit were not found (Table II). Our affinity-purified complex is unlikely to correspond to a specific particle, distinct in vivo from the bona fide small mitochondrial ribosomal subunit, because of the identical patterns of proteins obtained with either Ykl155c or Mrp1 (a previously described mitochondrial ribosomal protein). Thus, the discrepancies observed between the presented method and...
Yeast Mitochondrial Ribosomal Proteins

Previously described techniques might result from the loss of specific proteins during the purification procedure or from our inability to identify some of the components. Conversely, at least Ykl155c, with an apparent molecular mass of 68 kDa, is conspicuously absent from the two-dimensional gels previously published for the mitochondrial small ribosomal subunit in which no proteins with an apparent mass above 60 kDa were revealed. The two approaches may thus be regarded as complementary.

Yeast and Mammalian Mitochondrial Ribosomal Proteins—An international consortium for the study of mammalian mitochondrial ribosomal proteins has been created recently (Mammalian Mitochondrial Ribosomal Consortium). A number of mammalian homologues of the prokaryotic ribosomal proteins have been identified by using the bovine ribosome as a source for the isolation and purification of the mitochondrial ribosomes (19–22). Mammalian proteins belonging to prokaryotic families S7 (19), S12 (21), and S10 and S15 (20) were described this way. We were able to identify in yeast, along with other mitochondrial homologues of prokaryotic ribosomal proteins, the corresponding proteins for the S7 (Yjr113c/Rsm7) and S10 family (Ydr041w/Rsm10) and also the previously identified S15 homologue, Mrps28 (23).

The analysis of the bovine and yeast mitochondrial ribosome shows that an important number of proteins have no similarity with known ribosomal proteins from prokaryotes. For this group of yeast proteins, significant similarities can be detected with sequences of the relatively distant fungi Schizosaccharomyces pombe. In some cases, similar proteins from other fungi may also be found, and one example is a hypothetical protein from Neurospora crassa (NCBI GenPept database gi 7899415) that is similar to the yeast Ydr175c/Rsm24 protein. Yjr101w/Rsm26 is similar to the yeast mitochondrial small ribosomal subunit protein Mrp1. Interestingly, both proteins also share similarities with proteins of the superoxide dismutase family.

No prokaryotic homologues of Ykl155c/Rsm22 may be detected, but we found significant similarities of its sequence with hypothetical proteins of yet unknown function in several higher eukaryotes, including humans (Fig. 5). It is tempting to speculate that these proteins are true homologues of the yeast Ykl155c/Rsm22 ribosomal protein and are components of the corresponding mitochondrial ribosomes.

Ygl129c/Rsm23 was found by similarity search to be a member of the DAP-3 family of apoptosis mediator proteins (24). Just like Ygl129c/Rsm23, the mouse mDAP-3 protein is localized into the mitochondrial matrix. Ygl129c/Rsm23 is the yeast sequence most similar to the DAP-3 proteins, but this similarity is weak (17% identity with the mouse mDAP-3). Nevertheless, a BLAST search using the S. pombe Ygl129c homologue sequence (SPBC29A3.15c) also finds the human hDAP-3 sequence. Moreover, mDAP-3 is able to partially complement a mitochondrial DNA loss phenotype observed in yeast strains deleted for YGL129C (24). If Ygl129c/Rsm23 is the true homologue of hDAP-3, these observations would suggest an interesting link between modulation of apoptosis and the mitochondrial protein synthesis machinery.

In conclusion, an efficient affinity purification technique allowed us to characterize novel ribosomal components and to bring to 26 the total number of proteins identified as components of the yeast mitochondrial small ribosomal subunit. These findings and the discovery of the yeast Ykl155c/Rsm22 and Ylg129c/Rsm23 as essential components of the mitochondrial ribosome and members of conserved eukaryotic protein families contribute to extending the classification of mitochondrial ribosomal proteins to three different classes. A first group, which probably exists in every eukaryotic organism, consists of proteins similar to prokaryotic ribosomal components. Another group contain proteins with no prokaryotic homologues but only conserved in related species. Finally, a third group that includes the Ykl155c and Ylg129c protein families comprises mitochondrial ribosomal proteins that are conserved across diverse eukaryotic species.

Acknowledgments—We thank B. Séraphin for providing plasmid pBS1479, V. Galy for help on fluorescence microscopy, L. Decourt for help on strain constructions, P. Legrain and O. Bárzu for critical reading of the manuscript, B. Dujon for discussions, and J.-C. Rousselle for help with mass spectrometry.

REFERENCES
1. Graack, H. R., and Wittmann-Liebold, B. (1998) Biochem. J. 329, 433–448
2. Faye, G., and Sor, F. (1977) Biochem. J. 155, 27–34
3. Miesczak, M., Konkowski, M., and Ziegorski, W. (1988) Acta Biochim. Pol. 35, 105–118
4. Tzagoloff, A., and Dieckmann, C. L. (1990) Microbiol. Rev. 54, 211–225
5. Kitakawa, M., Graack, H. R., Grohmann, L., Goldschmidt-Reisin, S., Herfurth, E., Wittmann-Liebold, B., Nishimura, T., and Isono, K. (1997) Eur. J. Biochem. 245, 449–456
6. Green-Wilms, N. S., Fox, T. D., and Costanzo, M. C. (1998) Mol. Cell. Biol. 18, 1826–1834
7. Fromont-Racine, M., Rain, J. C., and Legrain, P. (1997) Nat. Genet. 16, 277–282
8. Rignat, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Séraphin, B.
Identification of 12 New Yeast Mitochondrial Ribosomal Proteins Including 6 That Have No Prokaryotic Homologues

Cosmin Saveanu, Micheline Fromont-Racine, Alexis Harington, Florence Ricard, Abdelkader Namane and Alain Jacquier

J. Biol. Chem. 2001, 276:15861-15867.
doi: 10.1074/jbc.M010864200 originally published online February 14, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M010864200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 49 references, 16 of which can be accessed free at http://www.jbc.org/content/276/19/15861.full.html#ref-list-1