GC-MS analysis of phytoconstituents of *Acacia nilotica* and its molecular docking with key drug-targets of *Leishmania donovani* to combat leishmaniasis

Shams Tabrez\textsuperscript{a}, Fazlur Rahman\textsuperscript{a}, Bader Mohammed Alshehri\textsuperscript{b}, Abdulaziz S. Alouffi\textsuperscript{c}, Rahat Ali\textsuperscript{a}, Fahdah Ayed Alshammari\textsuperscript{d}, Mohammed A. Alaidarous\textsuperscript{b,e}, Saeed Banawas\textsuperscript{b,e,f}, Abdul Aziz Bin Dukhyil\textsuperscript{b,e,*} Abdur Rub\textsuperscript{a,*}

\textsuperscript{a}Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India-110025. \textsuperscript{b}Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia. \textsuperscript{c}King Abdulaziz City for Science and Technology, Riyadh, KSA, \textsuperscript{d}College of Sciences and Literature Microbiology, Nothern Border University, KSA, \textsuperscript{e}Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia, \textsuperscript{f}Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331,

\textbf{*Corresponding authors:}\n
Dr. Abdur Rub
Email I.D. arub@jmi.ac.in
Dr. Abdul Aziz Bin Dukhyil
Email ID: a.dukhyil@mu.edu.sa

\textbf{Abstract:}\n
*Acacia nilotica* is an important medicinal plant, found in Africa, Middle East, and Indian subcontinent. Every part of the plant possesses a wide array of biologically-active and therapeutically important compounds and have been used in traditional-system of medicine. We reported the antileishmanial activity of *Acacia nilotica* (*A. nilotica*) bark methanolic extract
through *in vitro* assays and dissected the mechanism of its action through *in silico* studies. Bark methanolic extract exhibited anti-promastigote and anti-amastigote potency with IC$_{50}$ value of $19.6 \pm 0.9037$ μg/ml and $77.52 \pm 5.167$ μg/ml respectively in time and dose dependent manner. It showed very low cytotoxicity having CC$_{50}$ value of $432.7 \pm 7.71$ μg/ml on human-macrophage cell line, THP-1. The major constituents identified by GC-MS analysis are 13-docosenoic acid (34.06%), lupeol (20.15%), 9,12-octadecadienoic acid (9.92%) and 6-octadecanoic acid (8.43%) bind effectively with the potential drug-targets of *Leishmania donovani* (*L. donovani*) including sterol 24-c-methytransferase (SMT), trypanothione reductase (TR), pteridine reductase (PTR1) and adenine phosphorybosyl transferase (APRT); suggest the possible mechanism of its antileishmanial action. The highest affinity with all these targets was shown by lupeol. The pharmacokinetic studies, predicted bioactivity scores and acute toxicity studies of major extract constituents support safe antileishmanial drug candidate. This study proved the antileishmanial potential of bark-methanolic extract *A. nilotica* and its mechanism of action through the inhibition of potential drug targets of *L. donovani*.

**Key words:** Leishmania; Acacia nilotica; antileishmanial, drugs; host; infection; *in silico*

**Running Title:** Antileishmanial potential of *A. nilotica* bark extract

**1. Introduction:**

Visceral leishmaniasis (VL), also known as Kala-Azar in Indian subcontinent, is a fatal form of vector borne disease caused by protozoan parasites *L. donovani*. The disease remains endemic in more than 60 countries around the globe, while 95% cases are concentrated in 7 to 8 countries. More than 50% of the global burden of VL is found in the Indian subcontinent (India, Bangladesh, and Nepal) $^{1,2}$. The disease is proved to be fatal if left untreated in more than 95% of cases because of secondary infection and anemia $^{3}$. VL is ranked second in mortality rate
among the neglected tropical diseases\textsuperscript{4,5}. It is a significant problem for the economically weaker section of the society. Due to their unhygienic living environment, they are more vulnerable to the disease. Illiteracy is another factor which is directly proportional to the lack of awareness which leads to major morbidity and mortality. The available chemotherapy of visceral leishmaniasis is limited and undermined by drug resistance. Currently, in general the drug used in the Indian subcontinent sodium antimony gluconate (SAG) showed no response in more than 64\% of the patients due to development of resistance against the parasites\textsuperscript{6}. Alternate drugs, miltefosine, amphotericin B and its lipid formulations have several limitations because of high toxicity, cost and unavailability, limit its use. The present scenario of disease and its limited treatment options demand an urgent need to develop a promising and cost-effective operational drug to overcome the disease. In case of parasitic disease, directly targeting parasites is found to be significant in disease recovery. Till date, large numbers of medicinal plants and their extracts had been studied for antileishmanial activity and proved to be potential therapeutic options\textsuperscript{7,8}. Here, we planned to explore the antileishmanial activity of medicinal plant, \textit{A. nilotica}. \textit{A. nilotica} commonly known as babul, belongs to the family Fabaceae of genus Acacia, is an important medicinal plant, found in Africa, Middle East, and Indian subcontinent\textsuperscript{9-11}. It is rich in secondary metabolites including condensed tannins, flavonoids, gums and phlobatannins\textsuperscript{12,13}. Every parts of the plant possess a wide array of biologically active, therapeutically potential compounds that have been used in traditional system of medicine, as remedy for various diseases. Its different parts are used in the treatment of different diseases like, floral parts for gastrointestinal disorders\textsuperscript{14}, leaves extracts for cancer and microbial infections\textsuperscript{15,16}, roots extract for tuberculosis and liver disorders\textsuperscript{17} bark for bacterial infections including cold, bronchitis, dysentery, biliousness, cholera, bleeding piles\textsuperscript{12,18-20}. The extract of bark contains the
different form of tannins ((-) – epigallocatechin-7-gallat, (-) – epigallocatechin-5,7-digallat, dicatechin) 21,22, flavonoids ( (+)-catechin-5-gallate , (+)-catechin-5,7-digallate, (+)-catechin-3’,5-digallate, (+)-catechin-4’,5-digallate, (+)-mollisacidacidin, apigenin-6,8-bis-C-β-D-glucopyranoside (vicenin), leucocyanadin, kaempferol-7-glucoside, acacetin, umbelliferon, caffeic acid, protocatechuic acid and m-catechol 12,23,24. Keeping the rich antimicrobial bioactive collection of bark of A. nilotica, in mind, we planned to study its antileishmanial potential here. We also tried to dissect the mechanism of its antileishmanial action through different in silico approaches. SMT, TR, PTR1 and APRT are prerequisite enzymes for survival, pathogenicity and transmission of L. donovani. Therefore, we selected these potential drug-targets for molecular docking study of major constituents of bark-extract identified by GC-MS, with these mentioned essential enzymes of Leishmania.

2. Materials and method

2.1 Chemicals: M199 media, Roswell park memorial institute (RPMI) 1640 media, penicillin streptomycin antibiotic cocktail, fetal bovine serum (FBS) were purchased from Gibco. HEPES, sodium bicarbonate and paraformaldehyde were purchased from Sigma Aldrich. Miltefosine, MTT assay reagents, DMSO and different solvents were procured from Merck. Propidium iodide and Annexin V apoptosis kit were procured from Thermo scientific. All the other chemicals and reagents were purchased from Sigma Aldrich or Merck unless stated otherwise.

2.2 Parasites and cell culture:

Infective strain of L. donovani (MHOM/IN/83/AG83) was obtained from Dr. Rentala Madhubala (School of life science JNU, New Delhi; India). THP-1, Human monocytic cell line was procured from Cell Repository of National Centre for Cell Science, Pune, India. It was further maintained in M199 media. Human monocytic cell line, THP-1 was maintained in RPMI 1640
media supplemented with 10 % FBS and 1 % penicillin streptomycin antibiotic medium in a humidified environment at 5 % CO₂ and 37⁰C temperature. THP-1 monocyctic cell was differentiated to macrophages by using phorbol myristate acetate (PMA) at a concentration of 20 ng/ml.

2.3 Extract preparation and antileishmanial activity:

*A. nilotica* was collected from natural habitats. Bark identification was done at National Institute of Science Communication and Information Resources (NISCAIR), New Delhi, India. The selected plant material was washed and air dried in shade at room temperature. The powdered plant materials were soaked in methanol and placed on the rotary shaker at room temperature for 24 h. The extract was filtered and concentrated using rotatory evaporator under vaccum at 35⁰C. The dried plant extract was stored at -20⁰C until used for bioassay. To evaluate anti-promastigote potential of *A. nilotica*, stationary phase (2 x 10⁶ cells/ml) promastigotes were incubated with plant extract for 48 h followed by fixing using 1 % paraformaldehyde and counting through hemocytometer at 22⁰C. Miltefosine a known antileishmanial drug used as the positive control. Percent viability was determined using the formula:

\[
\% \text{ Viability} = \frac{\text{Average parasite count per ml (treated)}}{\text{Average parasite count per ml (control)}} \times 100
\]

50 % inhibitory concentration (IC₅₀) at which parasite growth was reduced by 50 % was assessed by GraphPad Prism 7.00, nonlinear regression curve fit.

2.5 Cytotoxicity assessment and anti-amastigote evaluation of extract:

The cytotoxicity of *A. nilotica* on THP-1 differentiated macrophages were assessed by MTT [3-(4,5 dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide]. Briefly, 2 x 10⁶ THP-1 monocytes were seeded in 96 well tissue culture plate (200 μl/well) in RPMI1640 complete
media for 24 h in CO\textsubscript{2} incubator at 37\textdegree C and 5\% CO\textsubscript{2}. After treatment to THP-1 differentiated macrophages, freshly prepared 5 mg/ml MTT was added (20 \mu l/well) with 50 \mu l of blank media and further incubated for 2 to 3 h in CO\textsubscript{2} incubator. Precipitated formazan was dissolved in dimethyl sulfoxide (DMSO) absorbance was recorded at 570 nm in an ELISA plate reader and percent viability was calculated. To determine the effect of \textit{A. nilotica} on the parasite burden of the host macrophages, 0.5 x 10\textsuperscript{6} THP-1 cells were seeded on the cover slip, placed in the six well plates in CO\textsubscript{2} incubator at 37\textdegree C. THP-1 macrophages were plated, infected with \textit{L. donovani} at the ratio of 1:10 (macrophages to \textit{Leishmania}) for 48 h then cells were fixed with chilled methanol and parasite counting was performed under microscope after Giemsa staining. From the different focus, 100 macrophages were counted to determine the parasite burden of the macrophages. Parasite burden in the infection control was considered 100 \%, with respect to parasite load in treated samples.

\textbf{2.6 GC-MS analysis of extract:}

GC-MS analysis was performed to identify the secondary metabolites that may be responsible for the antileishmanial efficacy of \textit{A. nilotica}. Bark was crushed, powdered, and extracted in methanol and then analyzed on Shimadzu QP2010 armed with a DB-5MS column. The mass spectrums of the sample were produced in an electron impact ionization mode of 70 eV and the phytochemicals were identified after correlation of the recorded mass spectrum with the reference library WILEY8.LIB and NIST14.LIB supplied with the software of the GC-MS system.

\textbf{2.7 Molecular docking studies:}

To begin with structure-based virtual screening and docking, we used various bioinformatic tools, such as PyRx \textsuperscript{25}, AutoDock Vina \textsuperscript{26}, PyMOL \textsuperscript{27} and BIOVIA Discovery Studio \textsuperscript{28}. The
online resources used in the retrieval, analysis and evaluation of the data are PubChem database and RCSB Protein Data Bank (PDB) \(^\text{(29)}\). The target proteins of \textit{L. donovani} and the phytochemical compounds were uploaded into the virtual screening program PyRx. The target protein was changed into macromolecule, which converted the atomic coordinates into pdbqt format. Molecular docking was performed by selecting the grid box around the crystal structures and rest of the parameters were left as default. AutoDock Vina was used to predict the binding mode and the best binding affinity of the phytochemicals. The algorithm used by AutoDock Vina is a hybrid scoring function that is inspired by X-score, which accounts for hydrogen bonding, hydrophobic effect, van der Waals forces and deformation penalty. In addition, for computing the binding energy AutoDock Vina combines both the conformational preferences of receptor–ligand complex and experimental affinity measurements. The results of molecular docking were screened for binding affinity and then all possible docked conformations were generated for different constituents. After analyzing with PyMOL and Discovery Studio, only those conformations were selected which specifically interact to the active-site residues of \textit{L. donovani} targeted proteins. Discovery Studio was used to analyze detailed interactions and their types including hydrogen bonds, alkyl, pi-alkyl, halogen, and the van der Waals interactions formed with between different constituents and the target proteins. The most favorable binding poses of the rutin were analyzed by choosing the lowest free energy of binding (\(\Delta G\)) and the lowest inhibition constant (\(K_i\)) which is calculated using the following formula:

\[
K_i\text{pred} = \text{exponential}\left(\frac{\Delta G}{RT}\right)
\]
where $\Delta G$ is binding affinity (kcal/mol), $R$ (gas constant) is 1.98 calK$^{-1}$mol$^{-1}$, and $T$ (room temperature) is 298.15 Kelvin.

2.8 Sequence analysis, template identification, homology modeling, and receptor and ligand preparation

The protein sequences of trypanothione reductase (XP_003858222.1) and sterol 24-c-methyltransferase (XP_003865366.1) from L. donovani were retrieved from NCBI. The blastp$^{30}$ was performed against Protein Data Bank for the identification of similar templates. The alignment of the query sequences and template sequences was performed using CLUSTAL $\Omega$ $^{31}$. The crystal structure of trypanothione reductase from L. infantum 2.95 Å resolution (PDB id: 2JK6_A) and X-ray diffracted crystal structure 1.34 Å resolution (PDB id: 5WP4_A) were used as template structures to model the 3D structures of trypanothione reductase and sterol 24-c-methyltransferase, respectively. PDB was used to retrieve the template structure. Homology modelling was carried out using Modeller 9.24 $^{32}$ and PyMol was used for the visualization of the 3D structures. The energy minimization was performed using Discovery studio. The PROCHECK program, Ramachandran plots was also used for the assessment of the model $^{33}$. Crystal structures of the Adenine phosphoribosyl transferase and Pteridine reductase proteins were downloaded from PDB [IDs: 1QB7 (APRT) and 2XOX (PTR1)]. The PDB files used for docking-based virtual screening study were processed by removing water molecules and adding hydrogen atoms. The proteins were finally prepared by Discovery Studio keeping all the parameters at default. The identification of the critical residues of the binding pockets were taken from the native binding pockets of available crystal structure of proteins, various submitted literatures, from their homologous template proteins and investigation in the mechanism of inhibition. The 3D structure of 9,12-Octadecadienoic acid, 6-Octadecenoic acid, 13-Docosenoic
acid and Lupeol was retrieved from PubChem database in SDF format. The atomic coordinates of all the ligands were changed to pdbqt set-up using Open Babel GUI, an open source chemical toolbox for the interconversion of chemical structures. Universal Force Field (uff) was used for the energy minimization.

2.9 Pharmacokinetics studies

The selected ligands were evaluated for their pharmacological profiles by analyzing for Lipinski’s rule of violation-5, which was analyzed by Molsoft L.L.C.: Drug-Likeness and molecular property prediction for drug-likeness. (http://www.molsoft.com/mprop/) The bioactivity of the selected inhibitors was checked by Molinspiration. (https://molinspiration.com/cgi-bin/properties). The successfully screened ligands were further evaluated for ADMET (absorption, distribution, metabolism, excretion and toxicity) properties by GUSAR and SwissADME database.

3. Results:

3.1 Antileishmanial activity of A. nilotica on L. donovani promastigotes:

The growth inhibitory effects of A. nilotica bark methanolic extract fraction was assessed against exponentially growing L. donovani promastigotes. A. nilotica treatment reduced the promastigotes proliferation in a time and dose dependent manner. Growth kinetics was assessed for seven days; there was a gradual decrease in the promastigote proliferation at all the doses (Figure. 1A). The promastigote culture was completely shattered at the dose concentration of 250 and 500 µg/ml of A. nilotica, after the three days of treatment. Miltefosine, an established antileishmanial drug rapidly shattered the promastigote parasites in vitro. The Leishmania promastigotes without any treatment or with 0.5 % DMSO (solvent control), exponentially grow till 4th days of parasites seeding, conforming no antileishmanial potential of solvent. After 4th day
of experimental setup, the culture even in the control and the solvent control were gradually decreased, because of media exhaustion. IC\textsubscript{50} value of A. nilotica on Leishmania-promastigotes was calculated as 19.6 ± 0.9037 µg/ml and the miltefosine treated positive control have the IC\textsubscript{50} of 3.118 ± 0.2395 (Figure. 1B). A. nilotica treatment exhibits the morphological changes in the promastigote stage parasites, though at lower doses the parasites retained normal morphology. At the higher concentrations there is reduction in size and shortening of flagella. Miltefosine treatment also exhibited the similar morphological changes as extract showed at higher doses (Figure. 1C).

3.2 Growth reversibility assay after extract treatment:

A. nilotica, treated and untreated parasites were washed with PBS after 7 days and old media was removed and supplemented with fresh media. The samples were further incubated at 22\textdegree C for next 72 h to study the growth reversibility of parasites. Parasites treated with higher doses do not revert back though parasites in flasks of lower dose plant-extract treatment show slower growth reversion (Figure. 1D). Suppression of growth reversion was observed significant (P < 0.001) at 250 µg/ml of A. nilotica in comparison to untreated sample (Figure. 1D).

3.3 Cytotoxicity and antileishmanial activity of A. nilotica on intra-macrophagic amastigotes

Upon internalization promastigotes are transformed into the amastigote form inside the parasitophorous vacuoles of macrophages. Theses amastigote forms of the parasites are non-motile and define the parasite pathogenicity. Thus, being the biologically and clinically relevant form it was important to check the anti-amastigote efficacy of A. nilotica methanolic extract. THP-1 differentiated macrophages were parasitized by L. donovani promastigotes and treated with different doses of extract. Plant extract treatment reduced the intra-macrophagic parasites in
dose dependent manner with IC\textsubscript{50} value of 77.52 ± 5.167 µg/ml (Figure. 2A). Miltefosine was taken as positive control (Figure. 2A). Cell cytotoxicity (CC\textsubscript{50}) of A. nilotica methanolic extract was evaluated along with miltefosine as positive control on THP-1 differentiated macrophages to study its safe dose. THP-1 differentiated macrophages were incubated with different concentrations of extract/miltefosine (0 to 1000 µg/ml) and the cell viability was assessed using MTT assay. It was observed that A. nilotica has least cytotoxic effect on the viability and morphology of the macrophages with CC\textsubscript{50} value of 432.7 ± 7.71 µg/ml while miltefosine showed higher toxicity with CC\textsubscript{50} value of 8.219 ±0.6337 µg/ml (Figure 2B). A significant reduction in intra-macrophagic parasite count was observed in micrographs of Giemsa stained infected and extract treated macrophages (Figure. 2C).

3.4 TLC-bioautography identification and GC-MS analysis of A. nilotica bark methanolic extract:

Plant secondary metabolites present in A. nilotica bark methanolic extract fractions that may have been responsible for the observed antileishmanial effects were identified through TLC-bioautography and GC-MS analysis. The total constituents found in were 25 (Table. 1) out of which the major constituents were 13-docosenoic acid (34.06 %), lupeol(20.15 %), 9,12-octadecadienoic acid (9.92 %) and 6-octadecanoic acid (8.43 %).

3.5 Molecular docking of A. nilotica methanolic extract of major constituents with potential drug-targets of L. donovani

The TR and SMT enzymes were modelled using Modeller 9.24 and the energy minimization was carried out by BIOVIA Discovery studio. The three-dimensional cartoon representation of TR and SMT enzymes are shown in Supplementary Fig 1A & 2A. The models were selected by analysing its stereochemical quality using PROCHECK program. The generated models of TR
and SMT show a good quality structure having 99.8 % and 99% residues in the allowed regions of Ramachandran plot respectively (Supplementary Fig. 1B & 2B). PDBsum tool was used to analyze and found that the 3D structure of the enzyme is composed of mixed α-helices and β-strands (α+β) secondary structures\(^{33}\). The structural topology of TR and SMT showed 5 sheets, 23 strands, 18 helices and 34 beta turns and 2 sheets, 10 strands, 14 helices and 41 beta turns, respectively (Supplementary Fig. 1C, 1D, 2C & 2D). Multiple sequence alignments were performed and Discovery studio was used in order to find the key residues and region around the binding cavity of TR and SMT. The active site residues of the SMT, TR, PTR11 and APT enzymes making different numbers of hydrogen bonds as well as hydrophobic bonds with the ligands were also identified. On the basis of binding affinity Lupeol; 9,12-Octadecadienoic acid; 6-Octadecenoic acid; and 13-Docosenoic acid have binding energies of $-8.5$ kcal/mol, $-5.7$ kcal/mol, $-5.7$ kcal/mol, and $-5.6$ kcal/mol ; $-8.4$ kcal/mol, $-4.9$ kcal/mol, $-4.9$ kcal/mol, and $-4.7$ kcal/mol ; $-7.9$ kcal/mol, $-5.3$ kcal/mol, $-4.4$ kcal/mol, and $-5.4$ kcal/mol ; $-6.2$ kcal/mol, $-6.1$ kcal/mol, $-5.9$ kcal/mol, and $-5.9$ kcal/mol with SMT, TR, PTR11 and APT enzymes, respectively (Table 2). The binding pattern of lupeol with SMT, TR, PTR11 and APT may hinder the substrate accessibility and its subsequent inhibition as shown in (Fig. 3A, 4A, 5A & 6A) where the binding energies and inhibition constants are $-8.5$ kcal/mol, $-8.4$ kcal/mol, $-7.9$ kcal/mol, $-6.2$ kcal/mol, and $6.25$ μM, $6.12$ μM, $5.81$ μM, $4.56$ μM respectively (Table 2). It shows favorable interactions with SMT through two pi-alkyl bonds with Arg347 and Lys351, TR via a pi-alkyl bond with Tyr198, PTR11 by two pi-alkyl bonds with Val83 and Arg88 and APRT through a hydrogen bond with Thr151. (Fig. 3B, 4B, 5B & 6B). The binding interaction shown by 9,12-Octadecadienoic acid with SMT, TR, PTR11 and APRT, may obstruct the substrate accessibility of these proteins which leads to their subsequent inhibition as shown in
Fig. 3C, 4C, 5C & 6C) where the binding energies and inhibition constants are $-5.7$ kcal/mol, $-4.9$ kcal/mol, $-5.3$ kcal/mol, $-6.1$ kcal/mol, and $4.19$ μM, $3.60$ μM, $3.90$ μM, $4.49$ μM respectively (Table 2). The favorable interactions shown by 9,12-Octadecadienoic acid with SMT through a hydrogen bond with Lys198, TR via a hydrogen bond with Gly376, PTR11 by eighteen pi-alkyl bonds with Phe86, Lys87, Ala90, Ala94, Lys156, Ala157, His160, Arg161 and APRT through a hydrogen bond with Arg82. (Fig. 3D, 4D, 4D, 5D & 6D). The binding pattern of 6-Octadecenoic acid with SMT, TR, PTR11 and APRT may lead to their subsequent inhibition by obstructing their substrate accessibility as shown in (Fig. 3E, 4E, 5E & 6E) where the binding energies and inhibition constants are $-5.7$ kcal/mol, $-4.9$ kcal/mol, $-4.4$ kcal/mol, $-5.9$ kcal/mol, and $4.19$ μM, $3.60$ μM, $3.24$ μM, $4.34$ μM, respectively (Table 2). The important and favorable interactions shown by 6-Octadecenoic acid with SMT through two pi-alkyl bonds with Lys198, TR via a hydrogen bond with Gly376, PTR11 by a hydrogen bond with Leu92 and APRT through two hydrogen bonds with Arg37 and Arg82. (Fig. 3F, 4F, 5F & 6F).

The pattern of interaction of 13-Octadecenoic acid with SMT, TR, PTR11 and APRT may lead to their subsequent inhibition by obstructing their substrate accessibility as shown in (Fig. 3G, 4G, 5G & 6G) where the binding energies and inhibition constants are $-5.6$ kcal/mol, $-4.7$ kcal/mol, $-5.4$ kcal/mol, $-5.9$ kcal/mol, and $4.12$ μM, $3.46$ μM, $3.97$ μM, $4.34$ μM respectively (Table 2). It shows favorable interactions with SMT through two hydrogen bonds with Lys241 and Gln263, TR via a hydrogen bond with Gly376, PTR11 by twenty pi-alkyl bonds with Val83, Phe86, Lys87, Ala90, Ala94, Lys156, Ala157, His160 and APRT through a hydrogen bond with Arg37 and Ar82. (Fig. 3H, 4H, 5H & 6H).

3.6 Pharmacokinetics studies of A. nilotica bark-methanolic extract constituents:
The pharmacological studies was done for the selected ligands against Adenine phosphoribosyl transferase, Pteridine reductase, trypanothione reductase and sterol 24-c-methyltransferase proteins for a good oral administration established through the Lipinski rule of five\textsuperscript{38}, which was evaluated by Molsoft L.L.C.: Drug-Likeness and molecular property prediction. Lipinski’s “rule of five” is an analytical approach for predicting drug-likeness stating that molecules had Molecular weight (M.W. $\leq 500$ Da), high lipophilicity expressed as LogP (LogP $\leq 5$), hydrogen bond donors (HBD $\leq 5$) and hydrogen bond acceptors (HBA $\leq 10$) have good absorption or permeation across the cell membrane. Lupeol, 9,12-Octadecadienoic acid, 6-Octadecenoic acid, and 13-Docosenoic acid followed all the parameters of Lipinski rule of five, except low lipophilicity as observed from Table 2. As per the Lipinski rule of five, violation of one parameter is acceptable for an orally active drug. The absorption percentage (AB\%) was calculated using the formula\textsuperscript{39}.

$$\text{AB}\% = [109 – (0.345\times\text{TPSA})]$$

It is important to look into the pharmacokinetic properties of the compounds, prior to animal and clinical studies. In order to evaluate the bio-chemical behaviour of these compounds inside an organism in respect of absorption, distribution, metabolism, and excretion (ADME), SwissADME database\textsuperscript{37} was used to explore the drug likeness and pharmacokinetics properties of these compounds. The lipophilicity of Lupeol, 9,12-Octadecadienoic acid, 6-Octadecenoic acid, and 13-Docosenoic acid showed LogPo/w value of 4.76, 4.61, 4.73 and 5.65 that indicates high sublingual absorption respectively. Lupeol and 13-Docosenoic acid possess low gastrointestinal absorption and poor water soluble capability whereas 9,12-Octadecadienoic acid and 6-Octadecenoic acid shows high gastrointestinal absorption as well as moderate water soluble capability. None of the compounds are permeable to the blood–brain barrier. 9,12-
Octadecadienoic acid, 6-Octadecenoic acid, and 13-Docosenoic acid are CYP1A2 inhibitors, which likely to increase the half-life of these compounds and also prevent serious drug interactions. The drug-likeness criteria are qualified by all the ligands with one violation and possess a significant bioavailability score. The results are summarized in Table 3.

The bioactivity prediction of the major constituents of *A. nilotica* bark-methanolic extract was analysis through molinspiration. The activity was calculated against G-protein coupled receptor-ligand, ion channel modulator, a kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor. The interpreted values for bioactivity were as: active (bioactivity score ≥ 0), moderately active (bioactivity score: between −5.0 to 0.0) and inactive (bioactivity score ≤ −5.0). Lupeol, 9,12-Octadecadienoic acid, 6-Octadecenoic acid, and 13-Docosenoic acid were evaluated as active enzyme inhibitors with values 0.52, 0.23, 0.12 and 0.10, respectively. Lupeol and 9,12-Octadecadienoic acid were evaluated as active protease inhibitor as well as ion channel modulator. (Table 4)

The principal aim of predicting the acute toxicity is to evaluate undesirable side effects of a compound after single or multiple exposures to an organism via a known administration route (oral, inhalation, subcutaneous, intravenous or intraperitoneal). GUSAR was used to determine the acute toxicity of the successfully docked compounds. The parameters used by GUSAR to probe compounds based on the prediction of activity spectra for substances algorithm and quantitative neighborhoods of atoms descriptors. The obtained results were compared with SYMYX MDL Toxicity Database to further categories them on the basis of Organisation for Economic Co-operation and Development (OECD) chemical classification manual. The criteria used for these compounds to elicit toxicity based upon the administration route when the compound dose is more than 7000 mg/kg for intravenous route, more than 500,000 mg/kg in
case of the oral route, and more than 20,000 mg/kg for intraperitoneal route and subcutaneous
database as shown in Table 5. As per the OECD chemical classification 9,12- Octadecadienoic
acid, 6-Octadecenoic acid, 13-Docosenoic acid found to be non-toxic and Lupeol is a Class 5
chemical.

4. Discussion:

Plant extracts have promising medicinal properties and extensively used in the traditional system
of medicine due to the presence of many active and leading medicinal 42. From the previous
studies, it has been revealed that many medicinal plants-extracts and their secondary metabolite
contents have proven to be efficient and low toxic antileishmanial drug candidates43,44. A. nilotica
which has been identified as the potential medicinal plants, are rich in secondary metabolites. Studies based on GC-MS analysis of A. nilotica showed presence of different types
of secondary plant metabolites including polyphenols, mainly composed of condensed tannin and
phlobatannin in addition to gallic acid, ellagic acid, catechin, epigallocatechin-7-gallate,
flavonoids and gum 13. Different solvent extracts of the A. nilotica had been shown to have
antimicrobial activities including anti-bacterial, anti-fungal, anti-viral and anti-amebic18,45,46. We
evaluated the antileishmanial potential of A. nilotica and identified its secondary metabolite
constituents by GC-MS analysis. A. nilotica bark methanolic extract repressed the growth of L.
donovani promastigotes in a time and dose dependent manner. It induced the morphological
changes and cytocidal mode of parasite killing. The cytocidal mode of killing of A. nilotica may
be because of its richness in phenolic compounds (31) and phenolic acids which cause
irreversible changes to cell membrane (32). Methanolic extract of fruit of A. nilotica has been
reported to have antileishmanial activity with IC₅₀ value of 89.38 µg/ml on the L. major
promastigotes (33). Here, we for the first time studied the role of A. nilotica bark-methanolic
extract against the growth and proliferation of *L. donovani* promastigotes and intra-macrophagic amastigotes. IC$_{50}$ value of *A. nilotica* was determined as 19.6 ± 0.9037 µg/ml, which is higher as compared to the IC$_{50}$ value of positive control miltefosine as 3.118 ± 0.2395 µg/ml. But the CC$_{50}$ value of *A. nilotica* on macrophages was 432.7 ± 7.71 µg/ml, while that of the miltefosine was 8.219 ± 0.6337 µg/ml. The plant extract significantly inhibited the growth of intra-macrophagic form of the parasites. The IC$_{50}$ value of the extract on amastigote form was calculated as 77.52 ± 5.167 µg/ml. *A. nilotica* has found to have low cytotoxic even after having higher IC$_{50}$ value as compare to the miltefosine. So, the higher concentration of *A. nilotica* can be used to inhibit the growth of amastigotes inside macrophages. The major constituents identified through GC-MS analysis were 13-docosenoic acid (34.06%), lupeol (20.15 %), 9,12-octadecadienoic acid (9.92 %) and 6-octadecanoic acid (8.43 %). To dissect the mechanism of antileishmanial activity of *A. nilotica*, we further performed the molecular docking study of major constituents of extract identified by GC-MS, with essential enzymes of *Leishmania* including SMT, TR, PTR1 and APRT. These enzymes play essential role in parasite growth, survival, virulence and its transmission inside host. SMT is required for the biosynthesis of ergosterol, the major membrane sterol in *L. donovani*. The enzyme TR follows thiol-redox metabolism to keep trypanothione in reduced form. This antioxidant property of TR is essential for survival of *L. donovani*. PTR1 catalyze the reduction of conjugated and non-conjugated pterins such as reduced biopterin to dihydrobiopterin. APRT plays vital role in purine metabolism by converting 6-aminopurines into 6-oxypurines. Molecular docking results prove that lupeol and 9,12-Octadecadienoic acid possesses higher binding affinity with SMT, TR, PTR1 and APRT as shown in Table 2. Pharmacological studies of these selected inhibitors for Lipinski rule of 5 indicated violation of only one Lipinski parameter, as shown in Table 3. The pharmacokinetic properties and acute
toxicity of lupeol; 9,12-Octadecadienoic acid; 6-Octadecenoic acid and 13-Docosenoic acid have shown relatively low toxicity profile, which means require high doses to evoke toxic response. The majority of the compounds are non-toxic chemicals whereas lupeol is a Class 5 chemical with very low toxic effects (31, 54). The pharmacokinetic attributes are in favour of these compounds to be exploited as promising antileishmanial drug candidates. It had already been reported that lupeol activates the PI3K/Akt pathway which triggers mechanism responsible for influencing various cell types, including keratinocytes, stimulated cytotoxicity in fibroblasts and the regulation of various diseases 51. The lupeol treatment had shown high imbalance between Th1/Th2 cytokines production and initiation of pro-inflammatory cytokine response as well as generation of NO in L. donovani infected macrophages 52. It further supports the antileishmanial activity of A. nilotica extract. Thus, in vitro, molecular docking, pharmacokinetics studies, bioactivity scores, and acute toxicity studies support possible mechanism of antileishmanial activity of the extract through inhibition of key Leishmania enzymes.

Acknowledgement

The Authors would like to thank Deanship of Scientific Research at Majmaah University, Al Majmaah, 11952, Saudi Arabia for supporting this work under the Group Project Number RGP-2019-31. Authors also would like to thank Ministry of AYUSH (Z. 28015/252/2015-HPC(EMR)-AYUSH-C) GoI for supports. ST is thankful to ICMR, GoI for SRF. RA is thankful to AYUSH, GoI for SRF.

Conflict of interest

The author showed no conflict of interest.

Author Contribution
Study was conceptualized by AR, SB and AABD, ASA; data acquisition and data analysis were performed by ST, RA and FR; manuscript preparation and manuscript editing were performed by AR, SB, AABD, FR, ASA, BMA, FAA, MAA and ST; the final manuscript was checked by AR and AABD; fund was obtained by SB, ASA, FAA, MAA, AABD and AR

References:

1 Murray, H. W., Berman, J. D., Davies, C. R. & Saravia, N. G. Advances in leishmaniasis. *Lancet* **366**, 1561-1577, doi:10.1016/s0140-6736(05)67629-5 (2005).
2 Huda, M. M. *et al.* Active case detection in national visceral leishmaniasis elimination programs in Bangladesh, India, and Nepal: feasibility, performance and costs. **12**, 1001 (2012).
3 Piscopo, T. V. & Mallia Azzopardi, C. Leishmaniasis. *Postgraduate medical journal* **83**, 649-657, doi:10.1136/pgmj.2006.047340corr1 (2007).
4 Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* **388**, 1603-1658, doi:10.1016/s0140-6736(16)31460-x (2016).
5 Wang, H. *et al.* Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. **388**, 1459-1544 (2016).
6 Sundar, S. Drug resistance in Indian visceral leishmaniasis. *Tropical medicine & international health : TM & IH* **6**, 849-854, doi:10.1046/j.1365-3156.2001.00778.x (2001).
7 Chouhan, G. *et al.* Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunostimulatory potential and therapeutic cure in vivo. *Parasites & vectors* **8**, 183, doi:10.1186/s13071-015-0788-3 (2015).
8 Islamuddin, M. *et al.* Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. *Frontiers in microbiology* **5**, 626, doi:10.3389/fmicb.2014.00626 (2014).
9 Hill, A. F. J. B. M. I., Harvard University. Some nomenclatorial problems in Acacia. **8**, 93-105 (1940).
10 Bargali, K., Bargali, S. J. N. & Science. Acacia nilotica: a multipurpose leguminous plant. **7**, 11-19 (2009).
11 Leela, V. *et al.* Determination of gallic acid in Acacia nilotica Linn. by HPTLC. **2**, 285-292 (2010).
12 Singh, B. N. *et al.* Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. *Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association* **47**, 778-786, doi:10.1016/j.fct.2009.01.009 (2009).
Seigler, D. S. J. B. s. & ecology. Phytochemistry of Acacia—sensu lato. 31, 845-873 (2003).

Gilani, S. A., Khan, A. M., AleemQureshi, R. & Sherwani, S. K. J. A. i. B. Ethnomedical treatment of common gastrointestinal disorders by indigenous people in Pakistan. 5, 42-49 (2014).

Al-Fatimi, M., Wurster, M., Schröder, G. & Lindequist, U. Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. Journal of ethnopharmacology 111, 657-666, doi:10.1016/j.jep.2007.01.018 (2007).

Kalaivani, T. & Mathew, L. Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 48, 298-305, doi:10.1016/j.fct.2009.10.013 (2010).

Eldeen, I. & Van Staden, J. J. S. A. J. o. B. Antimycobacterial activity of some trees used in South African traditional medicine. 73, 248-251 (2007).

Bhargava, A., Srivastava, A. & Kumbhare, V. J. I. f. Antifungal activity of polyphenolic complex of Acacia nilotica bark. 124, 292-298 (1998).

Qasim, M. et al. Traditional ethnobotanical uses of medicinal plants from coastal areas. 2, 22-30 (2014).

Baravkar, A., Kale, R., Patil, R., Sawant, S. J. R. J. o. P. & Technology. Pharmaceutical and biological evaluation of formulated cream of methanolic extract of Acacia nilotica leaves. 1, 480-483 (2008).

Hussein Ayoub, S. J. I. J. o. C. D. R. Flavanol molluscicides from the Sudan Acacias. 23, 87-90 (1985).

Leela, V. & Saraswathy, A. J. P. J. Pharmacognostic studies on the flowers of Acacia nilotica Linn. 4, 35-39 (2012).

Singh, R. et al. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Wild. Ex. Del. Toxicology in vitro : an international journal published in association with BIBRA 22, 1965-1970, doi:10.1016/j.tiv.2008.08.007 (2008).

Malan, E. & Roux, D. G. J. P. Flavonoids and tannins of Acacia species. 14, 1835-1841 (1975).

Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx. Methods in molecular biology (Clifton, N.J.) 1263, 243-250, doi:10.1007/978-1-4939-2269-7_19 (2015).

Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multitreading. Journal of computational chemistry 31, 455-461, doi:10.1002/jcc.21334 (2010).

Kashif, M. et al. In silico studies and evaluation of antiparasitic role of a novel pyruvate phosphate dikinase inhibitor in Leishmania donovani infected macrophages. 53, 508-514 (2019).

Shamsi, A. et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Bioscience reports 40, doi:10.1042/bsr20201256 (2020).

Kashif, M. et al. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis. J Cell Biochem 119, 2653-2665, doi:10.1002/jcb.26433 (2018).
30 Kashif, M. et al. In silico studies and evaluation of antiparasitic role of a novel pyruvate phosphate dikinase inhibitor in Leishmania donovani infected macrophages. *Int J Antimicrob Agents* **53**, 508-514, doi:10.1016/j.ijantimicag.2018.12.011 (2019).
31 Zimmermann, L. et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. *Journal of molecular biology* **430**, 2237-2243, doi:10.1016/j.jmb.2017.12.007 (2018).
32 Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. *Journal of molecular biology* **234**, 779-815, doi:10.1006/jmbi.1993.1626 (1993).
33 Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. *Journal of biomolecular NMR* **8**, 477-486, doi:10.1007/bf00228148 (1996).
34 O'Boyle, N. M. et al. Open Babel: An open chemical toolbox. *Journal of cheminformatics* **3**, 33, doi:10.1186/1758-2946-3-33 (2011).
35 Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. J. o. t. A. c. s. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. **114**, 10024-10035 (1992).
36 Lagunin, A., Zakharov, A., Filimonov, D. & Poroikov, V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. *Molecular informatics* **30**, 241-250, doi:10.1002/minf.201000151 (2011).
37 Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Sci Rep* **7**, 42717, doi:10.1038/srep42717 (2017).
38 Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. *Drug discovery today. Technologies* **1**, 337-341, doi:10.1016/j.dtect.2004.11.007 (2004).
39 Zhao, Y. H. et al. Rate-limited steps of human oral absorption and QSAR studies. *Pharmaceutical research* **19**, 1446-1457, doi:10.1023/a:1020444330011 (2002).
40 Mokhnache, K., Madoui, S., Khither, H. & Charef, N. J. S. J. A. M. S. Drug-Likeness and Pharmacokinetics of a bis-Phenolic Ligand: Evaluations by Computational Methods. **1**, 167-173 (2019).
41 Ungell, A.-L. In Vitro Absorption Studies and Their Relevance to Absorption from the GI Tract. *Drug Development and Industrial Pharmacy* **23**, 879-892, doi:10.3109/03639049709148694 (1997).
42 Farnsworth, N. R. The role of ethnopharmacology in drug development. *Ciba Foundation symposium* **154**, 2-11; discussion 11-21, doi:10.1002/9780470514009.ch2 (1990).
43 Chouhan, G., Islamuddin, M., Sahal, D. & Afrin, F. Exploring the role of medicinal plant-based immunomodulators for effective therapy of leishmaniasis. *Frontiers in immunology* **5**, 193, doi:10.3389/fimmu.2014.00193 (2014).
44 Tahir, A. E. et al. The potential antileishmanial activity of some Sudanese medicinal plants. **12**, 576-579 (1998).
45 Rai, S. P., Prasad, M. S. & Singh, K. J. I. Evaluation of the antifungal activity of the potent fraction of hexane extract obtained from the bark of Acacia nilotica. **3**, 730-738 (2014).
46 Ambasta, S. P. *The Useful Plants of India.* , 4 (Publication and information Directorate, Council of Scientific & Industrial Research, 1994).
Goto, Y. et al. Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection. *Vaccine* **27**, 2884-2890, doi:10.1016/j.vaccine.2009.02.079 (2009).

Baiocco, P., Colotti, G., Franceschini, S. & Ilari, A. Molecular basis of antimony treatment in leishmaniasis. *Journal of medicinal chemistry* **52**, 2603-2612, doi:10.1021/jm900185q (2009).

Ong, H. B., Sienkiewicz, N., Wyllie, S. & Fairlamb, A. H. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. *The Journal of biological chemistry* **286**, 10429-10438, doi:10.1074/jbc.M110.209593 (2011).

Scotti, L., Ishiki, H., Mendonça Júnior, F. J., Da Silva, M. S. & Scotti, M. T. In-silico analyses of natural products on leishmania enzyme targets. *Mini reviews in medicinal chemistry* **15**, 253-269, doi:10.2174/138955751503150312141854 (2015).

Yu, J. S. & Cui, W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. *Development (Cambridge, England)* **143**, 3050-3060, doi:10.1242/dev.137075 (2016).

Das, A. et al. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. *Int J Antimicrob Agents* **50**, 512-522, doi:10.1016/j.ijantimicag.2017.04.022 (2017).

**Figures legends:**

**Figure 1:** *A. nilotica* bark methanolic extract inhibits the growth and proliferation of *L. donovani* promastigotes. (A) 2 X 10^6 stationary phase *L donovani* promastigotes were treated with different concentration of *A nilotica* methanolic plants extracts, with miltefosine as standard drug and control (without any treatment). Each point is statistically significant as compare to control. (B) 2 X 10^6 stationary phase *L donovani* promastigotes were treated with different concentration of *A nilotica* methanolic plant extract fraction and miltefosine, IC_{50} was determined as described in the methods. Each point represents the mean ± SE of the samples in triplicate. (C) Image of the promastigote morphological changes in the treated samples at different concentration of *A nilotica* fraction and miltefosine treated samples. (D) Stationary phase *L donovani* promastigotes were incubated with different concentration of *A nilotica*, with miltefosine and DMSO (solvent control). And the growth reversal was analyzed as described in methods. ***P < 0.001 with respect to parasite control. Anti-promastigote efficacy of *A nilotica* fractions.
Figure 2: *A. nilotica* bark methanolic extract decreases the intra-macrophagic parasites (A). Anti-amastigote efficacy determination. THP-1 differentiated macrophages was parasitized in 1:10 ratio with stationary phase promastigotes and then treated with different concentration of *A nilotica* fraction. Percent reduction in the parasite load was determined as described in the method. **P < 0.001**, value was statistically significant as compare to control.(B). THP-1 differentiated macrophages were treated with different concentration of *A nilotica* and miltefosine (0 to 1000 μg/ml) and cell viability was ascertained by MTT assay. (C). Microscopic *L. donovani* infected macrophage images depict parasitized, treated THP-1 differentiated macrophages stained with modified Giemsa stained. The images were captured at 100X under oil immersion. The arrow indicates internalized parasites.

Figure 3: *A. nilotica* major chemical constituents inhibit SMT of *L. donovani in silico*

(A) Lupeol blocking the binding pocket of SMT enzyme. (B) 2D plot showing interactions between receptor and ligand. (C) 9,12-Octadecadienoic acid blocking the binding pocket of SMT enzyme. (D) 2D plot showing interactions between receptor and ligand. (E) 6-Octadecenoic acid blocking the binding pocket of SMT enzyme. (F) 2D plot showing interactions between receptor and ligand. (G) 13-Docosenoic acid blocking the binding pocket of SMT enzyme. (H) 2D plot showing interactions between receptor and ligand.

Figure 4: *A. nilotica* major chemical constituents inhibit TR of *L. donovani in silico*

(A) Lupeol blocking the binding pocket of TR enzyme. (B) 2D plot showing interactions between receptor and ligand. (C) 9,12-Octadecadienoic acid blocking the binding pocket of TR enzyme. (D) 2D plot showing interactions between receptor and ligand. (E) 6-Octadecenoic acid blocking the binding pocket of TR enzyme. (F) 2D plot showing interactions between receptor
and ligand. (G) 13-Docosenoic acid blocking the binding pocket of TR enzyme. (H) 2D plot showing interactions between receptor and ligand.

**Figure 5: A. nilotica major chemical constituents inhibit PTR1 of L. donovani in silico**

(A) Lupeol blocking the binding pocket of PTR1 (PDB ID: 2XOX) enzyme. (B) 2D plot showing interactions between receptor and ligand. (C) 9,12-Octadecadienoic acid blocking the binding pocket of PTR1 (PDB ID: 2XOX) enzyme. (D) 2D plot showing interactions between receptor and ligand. (E) 6-Octadecenoic acid blocking the binding pocket of PTR1 (PDB ID: 2XOX) enzyme. (F) 2D plot showing interactions between receptor and ligand. (G) 13-Docosenoic acid blocking the binding pocket of PTR1 (PDB ID: 2XOX) enzyme. (H) 2D plot showing interactions between receptor and ligand.

**Figure 6: A. nilotica major chemical constituents inhibit APRT of L. donovani in silico**

(A) Lupeol blocking the binding pocket of APRT (PDB ID: 1QB7) enzyme. (B) 2D plot showing interactions between receptor and ligand. (C) 9,12-Octadecadienoic acid blocking the binding pocket of APRT (PDB ID: 1QB7) enzyme. (D) 2D plot showing interactions between receptor and ligand. (E) 6-Octadecenoic acid blocking the binding pocket of APRT (PDB ID: 1QB7) enzyme. (F) 2D plot showing interactions between receptor and ligand. (G) 13-Docosenoic acid blocking the binding pocket of APRT (PDB ID: 1QB7) enzyme. (H) 2D plot showing interactions between receptor and ligand.

**Tables legends:**

**Table 1: Table 1:** TLC-bioautography identification and GC-MS analysis of A. nilotica bark methanolic extract depicted key chemical constituents of extract
Table 2: Molecular docking interaction of abundant medicinal constituents of *A. nilotica* bark methanolic extract shows significant inhibition of *L. donovani* target proteins

Table 3: Evaluation of physicochemical and ADMET properties show feasibility of usage of the chemical constituents for the treatment of disease

Table 4: Bioactivity prediction of the selected ligands against *L. donovani* by molinspiration

Table 5: Acute toxicity shows the lethal dose and extent of toxicity of chemical constituents on rodent models
### Table 1: TLC-bioautography identification and GC-MS analysis of *A. nilotica* bark methanolic extract depicted key chemical constituents of extract

| S. NO. | RETENTION TIME | % AREA | COMPOUND IDENTIFIED                                           |
|--------|----------------|--------|---------------------------------------------------------------|
| 1.     | 13.606         | 0.45   | 1H-3A,7-METHANOAZULEN-6-OL                                    |
| 2.     | 14.220         | 0.79   | 1H-BENZOCYCLOHEPTENE                                          |
| 3.     | 14.290         | 0.32   | PHENOL, 3,5-BIS(1,1-DIMETHYLETHYL)                            |
| 4.     | 15.277         | 1.49   | DIETHYL PHthalate                                            |
| 5.     | 16.139         | 0.54   | 1-(4-ISOPROPYLPHENYL)-2-METHYLPROPYL ACETATE                 |
| 6.     | 18.855         | 5.42   | HEXADECANOIC ACID, METHYL ESTER                              |
| 7.     | 19.328         | 1.71   | N-HEXADECANOIC ACID                                          |
| 8.     | 20.258         | 0.30   | 13-HEXIL-OXA-CYCLOTREDCE-10-EN-2-ONE                         |
| 9.     | **20.465**     | **9.92**| **9,12-OCTADECADENOIC ACID**                                |
| 10.    | 20.523         | 8.43   | 6-OCTADECENOIC ACID, METHYL ESTER                            |
| 11.    | 20.761         | 2.81   | METHYL STEARATE                                              |
| 12.    | 20.961         | 1.44   | E,E,Z-1,3,12-NONALECATUREN-5,14-DIOL                         |
| 13.    | 22.267         | 0.17   | HEXAHIDRO-3-BUTYLPHTHALIDE                                   |
| 14.    | 22.311         | 2.86   | CIS-11-EICOSENOIC ACID, METHYL ESTER                         |
| 15.    | 22.368         | 0.53   | CIS-13-EICOSENOIC ACID, METHYL ESTER                         |
| 16.    | 22.527         | 1.14   | EICOSANOIC ACID, METHYL ESTER                                |
| 17.    | **23.965**     | **34.06**| **13-DOCOSENOIC ACID**                                      |
| 18.    | 24.161         | 0.84   | DOCOSANOIC ACID                                              |
| 19.    | 25.532         | 1.52   | CIS-15-TETRACOSENSAEURE                                      |
| 20.    | 25.721         | 0.70   | TETRACOSANOIC ACID                                           |
| 21.    | 25.897         | 0.85   | CYCLOPENTADECANONE                                           |
| 22.    | 27.325         | 0.34   | OCTACOSANE                                                   |
| 23.    | 27.885         | 0.83   | 9-OCTADECENAL                                                |
| 24.    | 33.099         | 2.36   | STIGMASTEROL                                                 |
| 25.    | **36.679**     | **20.15**| **LUPEOL**                                                   |
Table 2: Molecular docking interaction of abundant medicinal constituents of *A. nilotica* bark methanolic extract shows significant inhibition of *L. donovani* target proteins

| S. No. | Proteins                             | Ligands          | Binding energy (Kcal/mol) | pKᵢₚₑᵈ (µM) | Interacting Residues                                                                                                                                 |
|-------|--------------------------------------|------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Sterol 24-c-methyltransferase        | Lupeol           | -8.5                      | 6.25        | Lys198, Tyr206, Met210, Asn215, Pro216, Asn217, Cys240, Gln242, Leu322, Ile344, Arg347, Lys348, Lys351                                                                 |
|       |                                      | 9,12-Octadecadienoic acid | -5.7                      | 4.19        | **Lys198**, Cys202, Phe203, Tyr206, Met210, Asn215, Asn217, Cys240, Lys241, Phe259, Gln263, Leu322, Ile344, Arg347, Lys348, Lys351 |
|       |                                      | 6-Octadecenoic acid | -5.7                      | 4.19        | **Lys198**, Cys202, Phe203, Tyr206, Met210, Asn215, Asn217, Cys240, Lys241, Ala257, Phe259, Ile261, Gln263, Leu322, Ile344, Arg347, Lys348, Lys351 |
|       |                                      | 13-Docosenoic acid | -5.6                      | 4.12        | Lys198, Gly200, Cys202, Phe203, Tyr206, Met210, Asn215, Cys240, Lys241, Ala257, Phe259, Ile261, Gln263, Leu322, Ile344, Arg347, Lys348, Lys351 |
| 2.    | Trypanothione reductase               | Lupeol           | -8.4                      | 6.12        | Gly197, Tyr198, Phe230, Val332, Met333, Leu334, His359, Val362, Cys364, Gly374                                                                                     |
|       |                                      | 9,12-Octadecadienoic acid | -4.9                      | 3.60        | Tyr198, Phe230, Val332, Met333, Cys364, **Gly376**                                                                                                           |
|       |                                      | 6-Octadecenoic acid | -4.9                      | 3.60        | Gly197, Tyr198, Gly229, Phe230, Val332, Met333, Leu334, Cys362, Cys364, Gly374, Cys375, **Gly376**                                                          |
|       |                                      | 13-Docosenoic acid | -4.7                      | 3.46        | Gly197, Tyr198, Phe230, Gly286, Val332, Met333, Leu334, Lys361, Cys362, Cys364, Gly374, Cys375, **Gly376** |
                                                                                   |                 |                             |             | His38, Gln63, Ala64, **Gly376**                                                                 |
|   |   |   |   |   |   |
|---|---|---|---|---|---|
|   | Pteridine reductase |   |   |   |   |
| 3. |   |   |   |   |   |
|   | Lupeol | -7.9 | 5.81 | Asp65, Lys71, Ala77, Val83, Lys87, Arg88, Asp91 |
|   | 9,12-Octadecadienoic acid | -5.3 | 3.90 | Phe86, Lys87, Ala90, Ala94, Lys156, Ala157, His160, Arg161 |
|   | 6-Octadecenoic acid | -4.4 | 3.24 | Lys71, Ala77, Val83, Lys87, Arg88, **Leu92** |
|   | 13-Docosenoic acid | -5.4 | 3.97 | Val83, Phe86, Lys87, Ala90, Ala94, Lys156, Ala157, His160, Arg161 |
|   |   |   |   |   |   |
|   | Adenine phosphor ybosyl transferase |   |   |   |   |
| 4. |   |   |   |   |   |
|   | Lupeol | -6.2 | 4.56 | Pro36, Arg37, Arg82, Lys103, Glu127, Asp146, Ala150, **Thr151**, Glu152, Gly153, Thr154 |
|   | 9,12-Octadecadienoic acid | -6.1 | 4.49 | Trp29, Arg37, Val39, Pro40, Arg41, Phe42, Ala43, **Arg82**, Val148, Ala150, Leu176, Ile178, Leu181, Asp206, Leu209 |
|   | 6-Octadecenoic acid | -5.9 | 4.34 | **Arg37**, Val39, Pro40, Arg41, Phe42, Ala43, **Arg82**, Val148, Ala150, Leu176, Ile178, Phe180, Leu181, Asp206 |
|   | 13-Docosenoic acid | -5.9 | 4.34 | **Arg37**, Val39, Pro40, Arg41, Phe42, Ala43, **Arg82**, Val148, Ala150, Leu176, Ile178, Phe180, Leu181, Asp206, Leu209 |
Table 3: Evaluation of physico-chemical and ADMET properties show feasibility of usage of the chemical constituents for the treatment of disease

| Ligands                  | MW (<500) | HB D (<5) | HB A (<10) | Log Po/w (Lipophilicity) | TPSA (≤140) | Absorption percentage (AB%) (>50%) | Druglikeness (Lipinski violations) | GI-absorption | BB B permeant | CYP 1A2 inhibitor | Bioavailability score | Water solubility (Log S) |
|--------------------------|-----------|-----------|------------|--------------------------|-------------|-------------------------------------|------------------------------------|---------------|---------------|-------------------|-----------------------|--------------------------|
| Lupeol                   | 426.39    | 1         | 1          | 4.76                     | 20.23       | 102.02                              | Low                                | No            | No            | Yes; 1 violation | 0.55                  | -8.64 (Poorly Soluble) |
| 9,12-Octadecadienioic acid | 294.48    | 0         | 2          | 4.61                     | 26.30       | 99.93                               | Yes; 1 violation                   | Hig           | No            | Yes               | 0.55                  | -4.97 (Moderately Soluble) |
| 6-Octadecenoic acid      | 296.50    | 0         | 2          | 4.73                     | 26.30       | 99.93                               | Yes; 1 violation                   | Hig           | No            | Yes               | 0.55                  | -5.13 (Moderately Soluble) |
| 13-Docosenoic acid       | 352.60    | 0         | 2          | 5.65                     | 26.30       | 99.93                               | Yes; 1 violation                   | Low           | No            | Yes               | 0.55                  | -6.58 (Poorly Soluble) |
Table 4: Bioactivity prediction of the selected ligands against *L. donovani* by molinspiration

| Ligands                        | GPCR ligand | Ion channel modulator | Kinase Inhibitor | Nuclear receptor ligand | Protease Inhibitor | Enzyme Inhibitor |
|-------------------------------|-------------|------------------------|------------------|-------------------------|---------------------|------------------|
| Lupeol                        | 0.27        | 0.11                   | -0.42            | 0.85                    | 0.15                | 0.52             |
| 9,12-Octadecadienoic acid     | 0.15        | 0.07                   | -0.20            | 0.14                    | 0.03                | 0.23             |
| 6-Octadecenoic acid           | 0.03        | -0.03                  | -0.25            | 0.06                    | -0.02               | 0.12             |
| 13-Docosenoic acid            | 0.07        | -0.02                  | -0.17            | 0.10                    | 0.07                | 0.10             |

Table 5: Acute toxicity shows the lethal dose and extent of toxicity of chemical constituents on rodent models

| S. No. | Ligands                        | Rat Oral LD50 (mg/kg) | Rat IV LD50 (mg/kg) | Rat SC LD50 (mg/kg) | Rat IP LD50 (mg/kg) | OECD chemical classification |
|--------|-------------------------------|-----------------------|---------------------|---------------------|---------------------|-----------------------------|
| 1.     | Lupeol                        | 2888,000              | 5,867               | 786,900             | 1684,000            | Class 5                     |
| 2.     | 9,12-Octadecadienoic acid     | 8747,000              | 309,300             | 9261,000            | 4673,000            | Non-Toxic                   |
| 3.     | 6-Octadecenoic acid           | 7813,000              | 381,700             | 7007,000            | 3028,000            | Non-Toxic                   |
| 4.     | 13-Docosenoic acid            | 9279,000              | 428,600             | 1,1160000           | 5206,000            | Non-Toxic                   |
Figure 1

A. 

Control
Solvent Control
A. nilotica 500 µg/ml
A. nilotica 250 µg/ml
A. nilotica 125 µg/ml
A. nilotica 62.5 µg/ml
Miltefosine 5 µg/ml

B. 

Days in culture

C.

Control
62.5 µg A. nilotica
125 µg A. nilotica
5 µg Miltefosine

D. 

% viability of L. donovani

Concentration (µg/ml)

% viability of L. donovani

Concentration (µg/ml)
**Figure 2**

**A.**

| % Parasite load | Control | A. nilotica 50 µg/ml | A. nilotica 100 µg/ml | A. nilotica 200 µg/ml | Miltefosine 5 µg/ml |
|----------------|---------|----------------------|-----------------------|-----------------------|---------------------|

**B.**

![Graph showing the viability of THP-1 cells](image)

| % Viability of the THP-1 cells | 120 | 100 | 80 | 60 | 40 | 20 | 0 |
|--------------------------------|-----|-----|----|----|----|----|---|
| Concentration (µg/ml)          | 0.00| 7.812| 15.62| 31.25| 62.5| 125| 250| 500| 1000 |

**C.**

- **Control**
- **50 µg/ml A. nilotica**
- **100 µg/ml A. nilotica**
- **5 µg/ml Miltefosine**
Figure 4

A
B
C
D
E
F
G
H

Lupeol
6-Octadecenoic acid
9,12-Octadecadienoic acid
13-Docosenoic acid

Interactions
- van der Waals
- Conventional Hydrogen Bond
- Carbon Hydrogen Bond
- Pi-Sigma
- Alkyl
- Pi-Alkyl
Figure 5
Lupeol 6-Octadecenoic acid
9,12-Octadecadienoic acid
13-Docosenoic acid

B
H
F
E
G
C
D
A

6-Octadecenoic acid
13-Docosenoic acid
9,12-Octadecadienoic acid

Interactions:
- van der Waals
- Alkyl
- Conventional Hydrogen Bond
- Carbon Hydrogen Bond
- Pi-Sigma
- Pi-Alkyl

Figure 5
