The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions

Arthur J. Kastl Jr,1 Natalie A. Terry,1 Gary D Wu,2 and Lindsey G. Albenberg1

1Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; 2Division of Gastroenterology, Hepatology, and Nutrition, The University of Pennsylvania, Philadelphia, Pennsylvania

SUMMARY

There is limited information about the small intestinal microbiota, an ecosystem that is relevant to many physiologic mechanisms and pathologic states. Here, we highlight human and animal studies to advance understanding of microbe-influenced human conditions, and the fundamental distinctions of this population relative to the large intestine.

Despite growing literature characterizing the fecal microbiome and its association with health and disease, few studies have analyzed the microbiome of the small intestine. Here, we examine what is known about the human small intestinal microbiota in terms of community structure and functional properties. We examine temporal dynamics of select bacterial populations in the small intestine, and the effects of dietary carbohydrates and fats on shaping these populations. We then evaluate dysbiosis in the small intestine in several human disease models, including small intestinal bacterial overgrowth, short-bowel syndrome, pouchitis, environmental enteric dysfunction, and irritable bowel syndrome. What is clear is that the bacterial biology, and mechanisms of bacteria-induced pathophysiology, are enormously broad and elegant in the small intestine. Studying the small intestinal microbiota is challenged by rapidly fluctuating environmental conditions in these intestinal segments, as well as the complexity of sample collection and bioinformatic analysis. Because the functionality of the digestive tract is determined primarily by the small intestine, efforts must be made to better characterize this unique and important microbial ecosystem. (Cell Mol Gastroenterol Hepatol 2020;9:33–45; https://doi.org/10.1016/j.jcmgh.2019.07.006)

Keywords: Microbiota; Microbiome; Small Intestine; Structure; Function; Dysbiosis.

Methodologic Challenges in Studying the Small Intestinal Microbiota

A distinguishing feature of the small intestine compared with the colon is its relative inaccessibility, which poses challenges to sampling and experimental design. Although fecal samples most commonly are collected in studies of the gut microbiota, stool more accurately represents the distal portions of the gut, leaving the small intestinal microbiota communities hidden from view. Studies of the human small intestinal microbiota have involved invasive sampling procedures including esophagoduodenogastroscopy and nasoduodenal catheters, while other studies have sampled ileal mucosa obtained during colonoscopy, intestinal resection, small-bowel transplantation, or from sudden death victims.8–13 These methodologies are subject to contamination from the oropharyngeal cavity or colon, and also limit the microbiota in the human small intestine are less well characterized, primarily because of challenges in sampling this segment of the digestive tract.4,5 Studying the small intestine ecosystem is principally relevant to digestive health, because the duodenum and jejunum are tasked with facilitating the majority of nutrient assimilation and absorption.1 In addition, there is significant contact between food substrate and commensal bacteria in the small intestine, creating an environment rich in microbe–microbe and host–microbe interactions.4 Studying these concepts is challenged by rapidly fluctuating environmental conditions in these intestinal segments, as well as the complexity of sample collection and bioinformatic analysis.7 Here, we examine what is known about the human small intestinal microbiota in terms of community structure and functional properties, methodologic challenges, and the roles of this community in select human pathologic conditions.

Abbreviations used in this paper: BA, bile acid; CFU, colony-forming units; EED, environmental enteric dysfunction; FAP, familial adenomatous polyposis; FXR, farnesoid X receptor; GF, germ-free; HF, high-fat; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; IPAA, ileal pouch–anal anastomosis; PN, parenteral nutrition; SBS, short-bowel syndrome; SIBO, small intestinal bacterial overgrowth; UC, ulcerative colitis.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ability to study microbial dynamics as a function of time or environmental change (eg, diet). Some studies have enrolled participants with ileostomies, which affords longitudinal effluent sampling directly from the small intestine.14–18 Although this may be methodologically advantageous, it is important to recognize that ostomy samples are exposed to the skin and external environment, which may impact the microbial community.12 An additional methodological challenge of microbiome investigations is moving beyond correlations and associations, toward better pinpointing microbe-phenotype relationships and causality.19 Thus, animal models of germ-free (GF), gnotobiotic, and conventionalized mice continue to be valuable for mechanistic exploration, although major differences to human beings in terms of intestinal size, metabolic rate, dietary habits, and spatiotemporal microbial structures need to be considered carefully when extrapolating data.20 The term dysbiosis is used pervasively in microbiota literature to refer to microbial imbalance, and serves as a broad communication tool without clear establishment of cause and effect.21 The challenge moving forward is to establish when and how dysbiosis contributes to a disease state as opposed to its presence alone.

The Diversity and Temporal Dynamics of the Small Intestinal Microbiota

The small intestine is a harsh environment for microbial life owing to short transit time, the influx of digestive enzymes and bile, and intermittent food substrate delivery. As a result, the bacterial populations in this region of the intestinal tract have a lower biomass, are less diverse, but are more dynamic, given the need to respond to rapidly changing luminal conditions. Generally speaking, bacterial populations increase from approximately 10^3–5 CFU/mL in the duodenum to 10^7–8 CFU/mL in the distal ileum, where transit slows (Figure 1).13 In addition, the proportion of gram-positive to gram-negative, as well as facultative anaerobic and strict anaerobic, species increases from proximal to distal segments of the small intestine and colon.13,22 These changes are thought to be secondary, in part, to oxygen use by proximal aerobic and facultative anaerobic communities.13 Bacterial genera commonly found in the small intestine include Lactobacillus, Clostridium, Staphylococcus, Streptococcus, and Bacteroides, among others,9,11,13 but taxonomic classification has been inconsistent across studies16,17,18 owing to differences in sample collection and analytic methodologies (Figure 2). A major concept that has been shown across studies is that the small intestinal microbiota is phylogenetically less diverse than the colon, but more dynamic. Booijink et al15 highlighted this concept in their study of 7 patients with inflammatory bowel disease (IBD), all of whom had ileostomies. There, the ileal effluent had a higher relative abundance of species within the orders Lactobacillales and Clostridiales, mainly Streptococcus bovis-related species, and the Veillonella group.15 There were significant interindividual differences, and intra-individual temporal fluxes, between morning and afternoon profiles over a period of 9–28 days,15 a notion that has been corroborated over a much longer study period.18 A separate study looking specifically at Streptococcus and Veillonella species from ileostomies highlighted that there is incredible strain-level richness in the small intestine.17 There, 16S ribosomal RNA gene sequencing showed a total of 160 Streptococcus and 37 Veillonella isolates, with temporal variance in 7 predominant isolates within a 72-hour time frame. The theme of temporal variation in the small intestinal microbiota is a stark contrast to the relatively stable composition in the colon,15,17,18 and dietary influences may drive some of these findings.

Dietary Influences on Community Structures and Functions

Carbohydrates and the Small Intestinal Microbiota

A major contributor to the luminal environment is the host diet, and studies have examined the effects of isolated macronutrients on the structure of small intestinal microbial communities and resulting metabolic profiles. Carbohydrate fermentation is a core function of the gut microbiota. Zoetendal et al18 collected ileostomy effluent samples to show that the small intestinal metagenome, compared with the fecal metagenome, is significantly more enriched with genes related to carbohydrate metabolism. Processes such as sugar phosphotransferase systems, the pentose phosphate pathway, lactate and propionate fermentation, as well as cofactors such as cobalamin and biotin, were encoded across many taxa from ileal effluent, and in particular Streptococcus, arguing that carbohydrate metabolism is a central function of the collective small intestinal microbiota.18 Metatranscriptomic analysis showed that the earlier-mentioned metabolic processes are highly active, and that the small intestinal microbiota...
adapt rapidly to fluctuating nutrient availability in the lumen, rapidly metabolizing simple carbohydrates for community maintenance. This contrasts with colon communities, which are more equipped to degrade complex carbohydrates. Streptococci are enriched with genes for energy generation, and are suggested to make a considerable contribution to primary digestion of food components in the small bowel, with fermentation products that support the growth of secondary fermenters (e.g., Veillonella, Clostridium) (Figure 2). Indeed, cohabitation of Streptococcus and Veillonella occurs not only in the intestine, but also in the stomach, esophagus, throat, and oral cavity, and is likely attributed to their metabolic interaction surrounding lactic acid production and utilization, respectively.

Dietary Fat and the Small Intestinal Microbiota

Lipid digestion and absorption are complex physiologic processes that are central to the duodenum and jejunum. GF mice have increased fecal lipid levels compared with mice in conventional housing, positing that the microbiota modulates lipid digestive physiology. Furthermore, the small intestinal microbiota differ when comparing mice on low-fat and high-fat (HF) diets. A HF diet induces an abundance of Clostridia, while decreasing Bifidobacteria and Bacteroides, creating a microbial genetic profile with an enhanced capacity for inducing genes involved in small intestine epithelial lipid transport and pancreatic cholecystokinin signaling. Indeed, when a HF diet microbiota was transplanted into GF mice, lipid absorption improved. We know from fecal-based human studies that diet can alter the colonic microbiota and metabolites within 48 hours, as well as lead to long-term reductions in diversity and taxonomic changes such as increases in Firmicutes and Proteobacteria. Future investigations should consider the small intestinal microbiota’s response to factors such as fat saturation status and varying fatty acid composition, and dietary intervention studies are needed.

Of particular relevance to studying microbial–fat digestion interplay is the influence of bile acids (BAs) both on digestive physiology and community structure (Table 1). Primary BAs are synthesized in the liver, secreted into the small intestine, and are central to emulsification and absorption of dietary lipids and fat-soluble vitamins. They also affect bacterial growth, particularly gram-positive
colonies, through oxidative stress and DNA damage, and exert wide-ranging physiologic effects through activation of the nuclear hormone receptor farnesoid X receptor (FXR) and the G-protein-coupled receptor Takeda G-protein coupled Receptor 5. Suppression of bile acid synthesis via obeticholic acid (a semisynthetic primary bile acid and activator of FXR) causes induction of small intestinal gram-positive bacteria in human fecal samples. As part of the enterohepatic circulation, primary BAs are conjugated to glycine or taurine, and are reabsorbed in the distal ileum. Bacteria in the ileum express bile salt hydrolases, which induce deconjugation of primary BAs, and subsequent conversion to secondary BAs through bacteria-mediated 7α-dihydroxylation. Secondary BAs in turn are mediators of the FXR pathway. GF mice have increased conjugated microbial bile acids, such as tauro- and glycocholic acid, which in turn was correlated with colitis in genetically susceptible interleukin 10 knockout mice. Because sulfate-reducing organisms preferentially transport their nutrients from sites of inflammation, they have relevance in IBD and are found in abundance in mucosal biopsy specimens from patients with ileal Crohn's disease. Taken together, these studies are beginning to show that small intestinal microbial communities depend on the capacity to quickly metabolize temporarily available macronutrients, and the resulting metabolites are integrated into an enormously complex network of microbiome-microbe and microbe-host interactions. Certainly, more mechanistic investigation is needed, and there are clues from human disease processes that can serve as models to help guide future research.

Table 1. Small Intestinal Microbiota, Select Roles, and Physiologic Effects

Nutrient	Mechanism
Carbohydrate digestion	Degradation and fermentation of diet-derived simple carbohydrates into organic acids, aldehydes, alcohols, and gases. Impaired brush-border disaccharidase activity. Hydrogen sulfide and hydrogen gas contribute to intestinal motility regulation through effects on smooth muscle.
Fat digestion and bile acid physiology	Bile acid deconjugation, decreased bile acid pool for fat solubilization lead to steatorrhea. Bile acid (eg, lithocholic acid) may directly inhibit absorption, leading to steatorrhea. Induce intestinal peristalsis and contractions mediated by Takeda G-protein coupled Receptor 5 on enteric neurons and enteroendocrine cells (deoxycholic acid). Secondary bile acid pools stimulate chloride and water secretion.
Micronutrient stores	Vitamin K stores may be increased owing to bacterial synthesis. Direct bacterial consumption for vitamin B12 and modification for use as own cofactor. Anaerobe-induced inhibition of vitamin B12 absorption in terminal ileum. Fat-soluble vitamin deficiency from deconjugated bile acids, decreased fat absorption.

Micronutrients and the Small Intestinal Microbiota

Beyond their roles in the digestive physiology of dietary macronutrients, the small intestinal microbiota also contributes to synthesis and assimilation of several important micronutrients (Table 1). Proper fat absorption is crucial for maintaining fat-soluble vitamin stores, and all but vitamin K are absorbed via passive diffusion in the small intestine. Although human vitamin K1 (phytomenadione) stores are derived primarily from dietary plant sources, the majority of vitamin K2 (menaquinone) is generated by intestinal bacterial biosynthesis. Veillonella, Enterodermatobacteriaceae, Bacteroides, and Prevotella all have been shown to synthesize this nutrient. Small intestinal bacterial overgrowth (SIBO), a condition discussed later in this review, is associated with impaired vitamin K metabolism in human beings. Vitamin B12, whose digestive physiology is intimately linked to the small intestine, also is impacted by bacterial biology. Facultative gram-negative aerobes and anaerobes are capable of competitively using cobalamin as a cofactor for their own metabolic processes. Thus, cobalamin deficiency is a complication of SIBO, likely resulting from competition between bacterial metabolism and host absorption. Indeed, in vitro models have shown that members of the genus Bacteroides outcompete intrinsic factor for binding to cobalamin, interfering with absorption in vivo. Folate levels, by comparison, may be increased in SIBO as a result of bacterial biosynthesis. Iron, thiamine, and niacinamide deficiencies also have been described in SIBO, although the mechanisms are not fully elucidated.

Disease Models of Dysbiosis in the Small Intestine

Although SIBO has been investigated for decades, it remains diagnostically challenging owing to difficulty characterizing and analyzing the small intestinal microbiota. SIBO is often a consequence of gut stasis, and has been studied in the context of anatomic abnormalities in the small intestine including diverticulae, surgically created blind loops,
strictures, \(^5^0\) and also dysmotility. \(^6^0\) In these disorders, there is ineffective food clearance, enhanced bacterial contact with food substrate, and subsequent bacterial colony expansion. \(^6^1\) Biochemically, bacterial fermentation of carbohydrate sources leads to production of organic acids, aldehydes, alcohols, and gases. \(^5^2^–^6^4\) When excessive fermentation occurs in the small intestine, metabolic byproducts contribute to bloating, nausea, abdominal pain, distension, and acidic stools. Rarely, encephalopathy from D-lactic acidosis \(^6^5^–^6^6\) is a metabolic complication of SIBO that results from excessive fermentation by *Lactobacilli* species, *Enterococci*, and *Streptococci*, and, interestingly, has been described only in patients with short-bowel syndrome (SBS). \(^5^7^–^6^8\) Typically, primary bile salts assist with fat absorption before deconjugation and reabsorption in the ileum. \(^3^9\) With bacterial overgrowth, however, steatorrhea and fat-soluble vitamin deficiency can result from premature bacterial deconjugation of primary bile salts. \(^6^9^,^7^0\)

At present, the most commonly used tests to diagnose SIBO in clinical practice are hydrogen and methane breath tests, and small-bowel aspirate for culture. Both of these modalities have significant diagnostic and practical limitations. \(^7^1\) In the human gut, the majority of methanogenic archaea, classically *Methanobrevibacter smithii*, deplete hydrogen in the generation of methane. \(^7^2\) Through scavenging hydrogen produced by neighboring microbes, termed the *sink effect*, methanogenic bacteria allow increased polysaccharide fermentation by neighboring microbes. \(^7^3\) This normal physiology predominates in the colon, but also can be altered in SIBO, leading to depleted methanogenic species, and subsequently positive hydrogen breath tests. \(^7^2\) However, both sensitivity and specificity are variable, and, as a consequence, the symptomatic response of a trial of antibiotics often is substituted for objective testing in clinical practice. Despite the risk for contamination and its invasive nature, small-bowel aspiration for culture has the advantage of potentially identifying the organisms involved in SIBO, and the antimicrobial sensitivities thereof. A wide variety of oropharyngeal and colonic commensal bacteria have predominated duodenal and proximal jejunal cultures in patients with SIBO-induced diarrhea and malabsorption, including *Streptococcus*, *Escherichia*, *Staphylococcus*, *Klebsiella*, *Proteus*, *Lactobacillus*, *Bacteroides*, *Clostridium*, *Veillonella*, *Fusobacterium*, and *Peptostreptococcus*, among others, \(^2^3^,^7^4\) meaning that SIBO, as a heterogeneous entity, is unlikely to be caused by a single bacterial strain. A deeper understanding of SIBO is needed to better understand the host–microbe relationships in the small intestine, and to develop improved diagnostic and treatment modalities.

Short-Bowel Syndrome

SBS occurs when a significant amount of small intestine is surgically removed, resulting in malabsorption that disrupts protein–energy, fluid, electrolyte, and micronutrient balances. \(^7^5\) Patients with SBS have disrupted microbiota related not only to the anatomic change, but superimposed parenteral nutrition (PN), variable enteral intake, and potentially recurrent antibiotic exposure. Small studies analyzing fecal samples have shown that the diversity of the colonic bacteria is reduced, with a higher proportion of the proinflammatory *Proteobacteria* phylum. \(^7^6^–^7^8\) Interestingly, longer bowel length or increased enteral nutrition over time reduced the amount of *Proteobacteria*. \(^7^7\) Patients with SBS have a higher abundance of *Lactobacillus* in fecal samples, bacteria that are efficient fermenters, but also may induce encephalopathy and acidosis through D-lactate production. \(^7^8^–^8^0\) When feces from patients with SBS are transplanted into GF rats, the SBS microbiota stimulate colonocyte proliferation and gut hormone production. \(^8^1\) However, the excess D-lactate production was not transferred, indicating that the host small intestine may be protective against this systemic acidosis. \(^8^1\) In addition to disruption of the colonic bacteria in patients with SBS, small intestinal bacteria also is disrupted such that patients with SBS have a high incidence of SIBO as diagnosed by a glucose breath test \(^8^2\) and duodenal aspirate, \(^8^3^,^8^4\) where gas production can lead to severe abdominal distension, and in turn limit the ability to tolerate food. One study showed that 70% of children who had refractory bloating, diarrhea, or emesis had duodenal aspirates consistent with SIBO, with *Escherichia coli*, *Klebsiella*, *Streptococcus viridans*, and *Enterococcus* being the most common organisms. \(^8^5\) Although PN can be life-saving in this population, children with SBS who need PN, particularly those with SIBO, have a high incidence of gram-negative and enteric bacteremia \(^8^2\) suspected to result from mucosal atrophy, barrier impairment, and translocation of bacteria or proinflammatory compounds. \(^8^2^,^8^5\) Many *Proteobacteria* produce lipopolysaccharide, which can induce a sepsis picture and liver damage through Toll-like receptor pathway activation. \(^8^6\) *Proteobacteria* were associated with prolonged PN and hepatitis, and *Lactobacilli* were associated with advanced steatosis and fibrosis, mostly after weaning off PN. \(^8^7\) This may suggest that steatosis begins during PN in response to, for example, proinflammatory lipopolysaccharide produced by *Proteobacteria*, and progresses after weaning off PN because *Lactobacilli* become dominant and affect lipid metabolism through altered BA signaling. \(^8^7\) Ongoing insult may lead to the need for liver and/or intestinal transplantation, an important cause of significant morbidity and mortality in SBS patients. \(^8^8\) Indeed, more investigation into the small bowel specifically is needed to develop improved diagnostics and therapeutic targets.

Pouchitis

The etiology of IBD is a complex interplay of factors including genetic susceptibility, interaction of mucosal immunity with environmental triggers, and the intestinal microbiota. \(^3^9\) An alternative to an ileostomy for patients with IBD whose colon has been removed is an ileal pouch–anal anastomosis (IPAA), in which an ileal reservoir, or pouch, is surgically created and anastomosed to the anal canal. This surgery also may be indicated for patients with familial adenomatous polyposis (FAP), in whom a colectomy often is performed to remove innumerable precancerous or
Inflammation of the pouch, termed *pouchitis*, may manifest as tenesmus, diarrhea, and blood per rectum,5,91–93 and frequently is treated with antibiotics. Interestingly, *pouchitis* occurs in approximately half of patients with IBD pouches, but seldom in FAP patients,91,94 suspected to be owing in part to a higher basal epithelial turnover rate in FAP.55 In patients with multiple-stage IPAA surgery, biopsy specimens upstream from the ileostomy at the time of stoma closure harbor predominantly facultative anaerobes (e.g., *Lactobacilli*, *Enterococci*, and *Clostridia*), a paucity of sulfate-reducing bacteria, and low levels of *Clostridium perfringens*.96 After ileostomy closure, the bacterial biomass increases in the ileal pouch, and populations shift with decreased facultative anaerobes and increased obligate anaerobes, sulfate-reducing bacteria, and *Clostridia* species.96–98 which is much more prominent in ulcerative colitis (UC) pouches compared with FAP. Mucosal adaptation occurs in maturing ileal pouches, and the presence of feces has been associated with colonic metaplasia and transformed mucin glycosylation.99 These changes do not happen in ileostomies before IPAA,100,101 and also are more prominent in pouches from UC patients compared with FAP patients,95 arguing that fecal stasis may be a contributing factor in the metaplasia process. Sulfomucin provides a metabolic substrate for sulfate-reducing bacteria such as *Bacteroides fragilis*,102–104 which promote colonization and expansion of these bacteria, and explains the high prevalence of sulfate-reducing bacteria in UC, compared with minimal or no colonization in FAP pouches.95,96,105 What has yet to be well characterized are the microbiota differences between UC and FAP ileostomies, before IPAA occurs, which may help elucidate why metaplasia and *pouchitis* occur to a greater extent in UC patients.

Environmental Enteric Dysfunction

Childhood malnutrition is a global health challenge, and there are new insights about the roles of microbiota maturation and enteropathogen burden as perpetuators of malnutrition. Malnourished children have an impaired microbiota maturation index, and stool transplantation from malnourished children into GF mice transmit an impaired growth phenotype.106 Adding routine antibiotic agents to nutritional interventions has been shown to decrease mortality in children with uncomplicated severe acute malnutrition,107 providing additional evidence for the relevance of studying microbial-based interventions in this condition. Environmental enteric dysfunction (EED) is the intersection of dietary macronutrient insufficiency with small intestinal dysfunction and is a significant contributor to global malnutrition in children.108–110 EED is characterized by increased inflammatory markers,111,112 increased markers of small intestinal permeability, and bacterial protein translocation.113–116 Dietary intervention alone is not fully effective in treating malnutrition in patients with EED,117 and a disrupted resident small intestinal microbiota is hypothesized to play a key role in the pathogenesis of EED.118 Enteropathogens commonly isolated in fecal samples from stunted children, including *Campylobacter* species, *Cryptosporidium*, *E coli* pathotypes, and *Giardia*, normally reside in the small intestine119–121 and have been associated with EED. Furthermore, *SIBO* as diagnosed by a breath test is associated with malnutrition and poor sanitation.122–124 Although sampling the small intestinal microbiota in patients with EED has not been reported, there is evidence from mouse models that protein malnutrition predisposes the small intestine to persistent pathogen colonization and mucosal injury.125,126

It already is known that malnutrition itself can significantly alter the microbiome in the duodenum, with a shift toward *Bacteroidetes* and *Proteobacteria*, and changes in bile acid and vitamin pools.126 To recapitulate the small intestinal villus blunting and inflammation characteristic of EED, infection must co-occur with malnutrition. Several models of EED with dietary restrictions and concomitant enteric pathogen exposure have been detailed, including *Giardia*,127 *Cryptosporidium*,121 *Enteropathogenic E coli*,128 and a mixture of *E coli* and *Bacteroidiales*.126 The dysbiosis induced by malnutrition, coupled with exposure to these specific microbes, makes the host more susceptible to adherent bacteria126 and allows pathogens to trigger an immune response that is ongoing, even after the pathogen is cleared. In the setting of protein malnutrition, even a small inoculum of *Cryptosporidium* triggered increases in chemokine ligand 5, interferon γ, and B- and T-cell infiltration into the lamina propria, an effect that was not seen in fully fed mice.129 Taken together, the evidence suggests that in EED, protein malnutrition provides a platform for disrupted resident microbiota and propagation of intestinal pathogen colonization and small intestine injury.

Irritable Bowel Syndrome

Irritable bowel syndrome (IBS) is a clinical diagnosis characterized by a change in stool characteristics and associated abdominal discomfort, and has long been speculated to be associated with changes in the gut microbiome.130 Although the reported prevalence of SIBO in IBS is variable based on diagnostic modality, meta-analyses have shown that more than one third of IBS patients have SIBO.131 Furthermore, antibiotic treatment including rifaximin132 and dietary interventions including low fermentable oligo-, di-, monosaccharides and polyols are beneficial in the treatment of IBS, providing further evidence for a microbial basis. Changes in the populations of *Bifidobacteria*,133 *Prevotella*,134 *Escherichia*, *Shigella*, *Aeromonas*, *Acinetobacter*, *Citrobacter*, and *Microvirga*135 in the small intestine are associated with IBS, as well as a decrease in α diversity and an increase in the ratio of Firmicutes to *Bacteroidetes*.136 *Faecalibacterium* is most abundant in both the duodenum and rectum of patients with the diarrhea type of IBS and is associated with clinical symptoms.137 GF mice colonized with the stool of patients with the diarrhea type of IBS showed faster intestinal transit, increased colonic permeability, and increased CD3 + T lymphocytes compared with mice colonized by stool from healthy controls.138
In addition, microbiologically mediated effects on small and large intestinal secretion in IBS may be linked with BA metabolism through deconjugation in the small bowel.139 Deoxycholic acid, a secondary BA, has been shown to induce intestinal peristalsis and contractions mediated by Takeda G-protein coupled Receptor 5 on enteric neurons and enteroendocrine cells,140 and also stimulate chloride and water secretion.141,142 There are other lines of evidence that microbial metabolites, such as hydrogen sulfide,143 tryptamine,144 and hydrogen gas,145 contribute to intestinal motility regulation through their effects on smooth muscle. Given the heterogeneous nature of the disease with multiple putative mechanisms, it will be important moving forward to phenotype patients based on the underlying physiological alterations to develop targeted approaches.

Conclusions

Despite increasing literature characterizing the fecal microbiome and its association with health and disease, few studies have analyzed the microbiome of the small intestine. The immense surface area, an oxygenated environment, the presence of pancreatic and biliary secretions, rapid motility, antimicrobial peptides produced by Paneth cells, and the proximity to ingested nutrients all are factors that differentiate the small intestinal luminal environment from that of the colon, thus leading to a distinctly different composition. Because the functionality of the digestive tract is determined primarily by the small intestine, efforts must be made to characterize the small intestine microbiome, which is central to understanding normal human physiological responses to diet and nutrient absorption, the development of the mucosal immune system, bile acid metabolism through deconjugation in the small bowel.139 Large intestinal secretion in IBS may be linked with BA transporters. These samples then would be analyzed using the influx of advanced sequencing and deep metagenomics profiling technologies that have allowed a larger window into the elegant and enormously complex human gut ecosystem. The identification of specific genes and metabolites, their actions, and host targets will in turn allow for novel microbial-based interventions (eg, to promote effective dietary macronutrient and micronutrient processing), genetically modified strains as bacteriotherapy, targeted antibiotic therapy, and functional foods to modulate the small intestine bacteria for specific individual needs.

References

1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009;457:480–484.
2. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. Genomic variation landscape of the human gut microbiome. Nature 2013;493:45–50.
3. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature 2012;486:222–227.
4. Boopij CC, Zoetendal EG, Kleerebezem M, de Vos WM. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2007;2:285–295.
5. Cotter PD. Small intestine and microbiota. Curr Opin Gastroenterol 2011;27:99–105.
6. Volk N, Lacy B. Anatomy and physiology of the small bowel. Gastrointest Endosc Clin N Am 2017;27:1–13.
7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fornarés G, Tapi, J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Sins D, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guerner F, Pedersen O, de Vos WM, Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Gucht M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdir O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrezon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011;473:174–180.
8. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Schel E, Simpson KW. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007;1:403–418.
9. Wang M, Ahrne S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 2005;54:219–231.
10. Willing B, Halvorson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, Tysk C, Jansson JK. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis 2009;15:653–660.
11. Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 2007;73:7435–7442.

12. Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, Eisen JA. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci U S A 2009; 106:17187–17192.

13. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and rectosigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005;54:1093–1101.

14. Gorbach SL, Nahas L, Weinstein L, Levitan R, Patterson JF. Studies of intestinal microflora. IV. The microflora of ileostomy effluent: a unique microbial ecology. Gastroenterology 1967;53:874–880.

15. Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Helling HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 2010;12:3213–3227.

16. Van den Bogert B, Boekhorst J, Hermann R, Smid EJ, Zoetendal EG, Kleerebezem M, Diversification of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 2013;85:376–388.

17. van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, Kleerebezem M. Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem. PLoS One 2013;8:e83418.

18. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. The human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 2013;85:376–388.

19. Surana NK, Kasper DL. Moving beyond microbiome-wide associations to causal microbe identification. Nature 2017;552:244–247.

20. Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci 2018;75:149–160.

21. Hooks KB, O’Malley MA. Dysbiosis and its discontents. MBio 2017;8.

22. Thadepalli H, Lou MA, Bach VT, Matsui TK, Mandal AK. Microflora of the human small intestine. Am J Surg 1979; 138:845–850.

23. Bouhnik Y, Alain S, Attar A, Flourie B, Raskine L, Sanson-Le Pors MJ, Rambaud JC. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol 1999;94:1327–1331.

24. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008;4:337–349.

25. Nichols RL, Condon RE, Bentley DW, Gorbach SL. Ileal microflora in surgical patients. J Urol 1971;105:351–353.

26. Pignata C, Budillon G, Monaco G, Nani E, Cuomo R, Parrilli G, Ciccimarra F. Jejunal bacterial overgrowth and intestinal permeability in children with immunodeficiency syndromes. Gut 1990;31:879–882.

27. Riordan SM, McVier CJ, Wakefield D, Duncombe VM, Thomas MC, Bolin TD. Small intestinal mucosal immunity and morphometry in luminal overgrowth of indigenous gut flora. Am J Gastroenterol 2001;96:494–500.

28. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57:1605–1615.

29. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko N, I Fieritz E, Egholm M, Henrissat B, Knight R, Gordon JI. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 2010;107:7503–7508.

30. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 2008;3:e2836.

31. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 2006;103:732–737.

32. Egli GD, Palmo RJ, Kolenbrander PE. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A 2004;101:16917–16922.

33. Rabot S, Membrez M, Brueneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 2010;24:4948–4959.

34. Martinez-Guryn K, Hubert N, Frazier K, Urrlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM, Reardon CA, Leone V, Chang EB. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018;23:458–469 e5.

35. Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015;17:72–84.

36. David LA, Friedman ES, Li Y, David Shen TC, Jiang J, Chau L, Adorini L, Babakhani F, Edwards J, Shapiro D, Zhao C, Carr RM, Bittinger K, Li H, Wu GD. FXR-dependent...
modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 2018;155:1741–1752.e5.

39. Schneider KM, Albers S, Trautwein C. Role of bile acids in the gut-liver axis. J Hepatol 2018;68:1083–1085.

40. Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005;29:625–651.

41. Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015;17:500.

42. Sayin SI, Wahilstrom A, Felin J, Jantti S, Marschall HU, Bamberg L, Angelin B, Hyotylainen T, Oresic M, Backhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013;17:225–235.

43. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut bacterial overgrowth and warfarin dose requirement. Eur J Pediatr Surg 2006;16:171.

44. Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome modulation of the human small intestinal microbiome by bile. FEMS Microbiol Rev 2005;29:625–651.

45. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peuch H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012;487:104–108.

46. Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000;46:64–72.

47. Zinkevich VV, Beech IB. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol 2000;34:147–155.

48. Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD. Vitamin A absorption, storage and mobilization. Subcell Biochem 2016;81:95–125.

49. Goncalves A, Roi S, Nowicki M, Dhaussy A, Huertas A, Santoliquido A, Rossi E, Ojeti V, Cammarota G, De Stefano V, Gasbarrini A. The interaction between small intestinal bacterial overgrowth and warfarin treatment. Am J Gastroenterol 2009;104:2364–2365.

50. Welkos SL, Toskes PP, Baer H. Importance of anaerobic bacteria in the cobalamin malabsorption of the experimental rat blind loop syndrome. Gastroenterology 1981;80:313–320.

51. Rowley CA, Kendall MM. To B12 or not to B12: five questions on the role of cobalamin in host-microbial inter- actions. PLoS Pathog 2019;15:e1007479.

52. Sachdev AH, Pimentel M. Gastrointestinal bacterial overgrowth: pathogenesis and clinical significance. Ther Adv Chronic Dis 2013;4:223–231.

53. Akhrass R, Yaffe MB, Fischer C, Ponsky J, Shuck JM. Small-bowel diverticulosis: perceptions and reality. J Am Coll Surg 1997;184:383–388.

54. Armbrecht U, Lundell L, Lindstedt G, Stockbruegger RW. Causes of malabsorption after total gastrectomy with Roux-en-Y reconstruction. Acta Chir Scand 1988;154:37–41.

55. Swan RW. Stagnant loop syndrome resulting from small-bowel irradiation injury and intestinal by-pass. Gynecol Oncol 1974;2:441–445.

56. Wegener M, Adamek RJ, Wedmann B, Jergas M, Corazza GR, Menozzi MG, Strocchi A, Rasciti L, Vaira D, Amieneiros-Rodriguez E, Donapetry-Garcia C, Vilaltesor M, Rodriguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014;17:76–100.

57. Halperin ML, Kamel KS. D-lactic acidosis: turning sugar into acids in the gastrointestinal tract. Kidney Int 1996;49:1–8.

58. Adike A, DiBaise JK. Small intestinal bacterial overgrowth: nutritional implications, diagnosis, and management. Gastroenterol Clin North Am 2018;47:193–208.

59. Corazza GR, Menozzi MG, Strocchi A, Rasciti L, Vaira D, Lecchini R, Avanzini P, Chezzi C, Gasbarrini G. The diagnosis of small bowel bacterial overgrowth. Reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterology 1990;98:302–309.

60. Hosie S, Loff S, Wirth H, Rapp HJ, von Buch C, Waag KL. Experience of 49 longitudinal intestinal lengthening procedures for short bowel syndrome. Eur J Pediatr Surg 2006;16:171–175.

61. Vitetta L, Coulson S, Thomsen M, Nguyen T, Hall S. Probiotics, D-lactic acidosis, oxidative stress and strain specificity. Gut Microbes 2017;8:311–322.
68. Bulik-Sullivan EC, Roy S, Elliott RJ, Kassam Z, Lichtman SN, Carroll IM, Gulati AS. Intestinal microbial and metabolic alterations following successful fecal microbiota transplant for D-lactic acidosis. J Pediatr Gastroenterol Nutr 2018;67:483–487.

69. Rana SV, Malik A, Bhadada SK, Sachdeva N, Morya RK, Sharma G. Malabsorption, oro-cecal transit time and small intestinal bacterial overgrowth in type 2 diabetic patients: a connection. Indian J Clin Biochem 2017;32:84–89.

70. Stotzer PO, Johansson C, Mellstrom D, Lindstedt G, Kilander AF. Bone mineral density in patients with small intestinal bacterial overgrowth. Hepatogastroenterology 2003;50:1415–1418.

71. Khoshini R, Dai SC, Lezcano S, Pimentel M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig Dis Sci 2008;53:1443–1454.

72. Rezaie A, Buresi M, Lembo A, Lin H, McCallum R, Rao S, Schmulson M, Valdivinos M, Zakko S, Pimentel M. Hydrogen and methane-based breath testing in gastro-intestinal disorders: the North American consensus. Am J Gastroenterol 2017;112:775–784.

73. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 2012;27:201–214.

74. Erdogan A, Rao SS, Gulley D, Jacobs C, Lee YY, Badger C. Small intestinal bacterial overgrowth: duodenal aspiration vs glucose breath test. Neurogastroenterol Motil 2015;27:481–489.

75. Goulet O, Olieren J, Ksiazyk J, Spolidoro J, Tibboe D, Kohler H, Yagci RV, Falconer J, Grimble G, Beattie RM. Neonatal short bowel syndrome as a model of intestinal failure: physiological background for enteral feeding. Clin Nutr 2013;32:162–171.

76. Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The fecal microbiome in pediatric patients with short bowel syndrome. JPEN J Parenter Enteral Nutr 2016;40:1106.

77. Larroque B, Messing B, Duee PH, Cherbuy C, Thomas M. Extensive intestinal resection triggers behavioral adaptation, intestinal remodeling and microbiota transition in short bowel syndrome. Biochimie 2010;92:753–761.

78. Engstrand Lilja H, Wefer H, Nystrom N, Finkel Y, Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome 2015;3:18.

79. Joly F, Mayeur C, Bruneau A, Noordine ML, Meylheuc T, Langella P, Messing B, Duee PH, Cherbuy C, Thomas M. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie 2010;92:753–761.

80. Mayeur C, Gratadoux JJ, Bridonneau C, Chegdani F, Larroque B, Kapel N, Cercos O, Thomas M, Joly F. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One 2013;8:e54335.

81. Gillard L, Mayeur C, Robert V, Pingenot I, Le Beyec J, Bado A, Lepage P, Thomas M, Joly F. Microbiota is involved in post-resection adaptation in humans with short bowel syndrome. Front Physiol 2017;8:224.

82. Cole CR, Frem JC, Schmotzer B, Gewirtz AT, Meddings JB, Gold BD, Ziegler TR. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr 2010;156:941–947 e1.

83. Gutierrez IM, Kang KH, Calvert CE, Johnson VM, Zurakowski D, Kamin D, Jaksic T, Duggan C. Risk factors for small bowel bacterial overgrowth and diagnostic yield of duodenal aspirates in children with intestinal failure: a retrospective review. J Pediatr Surg 2012;47:1150–1154.

84. Kaufman SS, Loseke CA, Lupo JV, Young RJ, Murray ND, Pinch LW, Vanderhoof JA. Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J Pediatr 1997;131:356–361.

85. Demehri FR, Krug SM, Feng Y, Lee IF, Schulzke JD, Teitelbaum DH. Tight junction ultrastructure alterations in a mouse model of enteral nutrient deprivation. Dig Dis Sci 2016;61:1524–1533.

86. Chichlowski M. Hale LP. Bacterial-mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am J Physiol Gastrointest Liver Physiol 2008;295:G1139–G1149.

87. Koppelka P, Mutanen A, Salonen A, Savilahti E, de Vos WM, Pakarinen MP. Intestinal microbiota signatures associated with histological liver steatosis in pediatric-onset intestinal failure. JPEN J Parenter Enteral Nutr 2017;41:238–248.

88. Mutanen A, Wales PW. Etiology and prognosis of pediatric short bowel syndrome. Semin Pediatr Surg 2018;27:209–217.

89. Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, Marteau P, Dore J. Specificities of the fecal microbiota in inflammatory bowel disease: a retrospective review. J Pediatr Surg 2012;47:1150–1154.

90. Komanduri S, Gillevet PM, Sikaroodi M, Mutlu E, Kamin D, Jaksic T, Duggan C. Risk factors for small bowel bacterial overgrowth and diagnostic yield of duodenal aspirates in children with intestinal failure: a retrospective review. J Pediatr Surg 2012;47:1150–1154.

91. Coffey JC, Rowan F, Burke J, Dochery NG, Kirwan WO, Estes MH. Pathogenesis of and unifying hypothesis for idiopathic pouchitis. Am J Gastroenterol 2009;104:1013–1023.

92. Komanduri S, Gillevet PM, Sikaroodi M, Mutlu E, Keshavarzian A. Dysbiosis in pouchitis: evidence of unique microfloral patterns in pouch inflammation. Clin Gastroenterol Hepatol 2007;5:352–360.
familial adenomatous polyposis. Inflamm Bowel Dis 2011;17:1092–1100.

95. Bamby N, Coffey JC, Burke J, Redmond HP, Kirwan WO. Sulphomucin expression in ileal pouches: emerging differences between ulcerative colitis and familial adenomatous polyposis pouches. Dis Colon Rectum 2008;51:561–567.

96. Smith FM, Coffey JC, Kell MR, O’Sullivan M, Redmond HP, Kirwan WO. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch. Colorectal Dis 2005;7:563–570.

97. Kohyama A, Ogawa H, Funayama Y, Takahashi K, Benyo Y, Nagasawa K, Tomita S, Sasaki I, Fukushima K. Bacterial population moves toward a colon-like community in the pouch after total proctocolectomy. Surgery 2009;145:435–447.

98. Young VB, Raffals LH, Huse SM, Vital M, Dai D, Schloss PD, Bruc JM, Antonopoulos DA, Arrieta RL, Kwon JH, Reddy KG, Hubert NA, Grim SL, Vineis JM, Dalal S, Morrison HG, Eren AM, Meyer F, Schmidt TM, Tiedje JM, Chang EB, Sogin ML. Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis. Microbiome 2013;1:9.

99. de Silva HJ, Millard PR, Kettlewell M, Mortensen NJ, Prince C, Jewell DP. Mucosal characteristics of pelvic ileal pouches. Gut 1991;32:61–65.

100. de Silva HJ, Millard PR, Soper N, Kettlewell M, Mortensen N, Jewell DP. Effects of the faecal stream and stasis on the ileal pouch mucosa. Gut 1991;32:1166–1169.

101. Shepherd NA, Jass JR, Duval I, Moskowitz RL, Nicholls RJ, Morson BC. Restorative proctocolectomy with ileal reservoir: pathological and histochemical study of mucosal biopsy specimens. J Clin Pathol 1987;40:601–607.

102. Florin T, Khalil D, Lenarczyck A, Moody S, Cowley D. Re: Levine et al. Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 1998;93:2638.

103. Levine J, Ellis CJ, Fumre JK, Springfield J, Levitt MD. Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 1998;93:83–87.

104. Levine J, Fumre JK, Levitt MD. Ashkenazi Jews, sulfur gases, and ulcerative colitis. J Clin Gastroenterol 1996;22:288–291.

105. Duffy M, O’Mahony L, Coffey JC, Collins JK, Shanahan F, Redmond HP, Kirwan WO. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis Colon Rectum 2002;45:384–388.

106. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan J, Jorgensen JM, Fan YM, Henriassat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon J. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016;351.

107. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM, Manary MJ. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med 2013;368:425–435.

108. Denno DM, Tarr PI, Nataro JP. Environmental enteric dysfunction: a case definition for intervention trials. Am J Trop Med Hyg 2017;97:1643–1646.

109. Keusch GT, Denno DM, Black RE, Duggan C, Guerrant RL, Lavery JV, Nataro JP, Rosenberg IH, Ryan ET, Tarr PI, Ward H, Bhutta ZA, Coovadia H, Lima A, Ramakrishna B, Zaidi AK, Hay Burgess DC, Brewer T. Environmental enteric dysfunction: pathogenesis, diagnosis, and clinical consequences. Clin Infect Dis 2014;59(Suppl 4):S207–S212.

110. Syed S, Ali A, Duggan C. Environmental enteric dysfunction in children. J Pediatr Gastroenterol Nutr 2016;63:6–14.

111. Guerrant RL, Leite AM, Pinkerton R, Medeiros PH, Cavalcante PA, DeBoer M, Kosek M, Duggan C, Gewirtz A, Kagan JC, Gauthier AE, Swann J, Mayneris-Perruchs J, Bolick DT, Maier EA, Guedes MM, Moore SR, Petri WA, Havit A, Lima IF, Prata MM, Michalecky J, Scharf RJ, Sturgeon C, Fasano A, Lima AA. Biomarkers of environmental enteropathy, inflammation, stunting, and impaired growth in children in northeast Brazil. PLoS One 2016;11:e0158772.

112. Syed S, Manji KP, McDonald CM, Kisenge R, Aboud S, Sudfeld C, Locks L, Liu E, Fawzi WW, Duggan CP. Biomarkers of systemic inflammation and growth in early infancy are associated with stunting in young Tanzanian children. Nutrients 2018;10.

113. Kosek MN, Lee GO, Guerrant RL, Haque R, Kang G, Ahmed T, Bessong P, Ali A, Mduma E, Penarto Yori P, Faubion WA, Lima AAM, Paredes Olortegui M, Mason C, Babji S, Singh R, Qureshi S, Kosek PS, Samie A, Pascal J, Shrestha S, McCormick BJ; Seidman JC, Lang DR, Zaidi A, Caulfield LE, Gottlieb M; MAL-ED Network. Age and sex normalization of intestinal permeability measures for the improved assessment of enteropathy in infancy and early childhood: results from the MAL-ED study. J Pediatr Gastroenterol Nutr 2017;65:31–39.

114. Campbell DI, Elia M, Lunn PG. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr 2003;133:1332–1338.

115. Weisz AJ, Manary MJ, Stephenson K, Agapova S, Manary FG, Thakwalakwa C, Shulman RJ, Manary MJ. Abnormal gut integrity is associated with reduced linear growth in rural Malawian children. J Pediatr Gastroenterol Nutr 2012;55:747–750.

116. Welsh FK, Farmery SM, MacLennan K, Sheridan MB, Barclay GR, Guillou PJ, Reynolds JV. Gut barrier function in malnourished patients. Gut 1998;42:396–401.

117. Petri WA Jr, Naylor C, Haque R. Environmental enteropathy and malnutrition: do we know enough to intervene? BMC Med 2014;12:187.

118. Bartelt LA, Bolick DT, Maynoris-Perruchs J, Kell MR, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon J. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016;351.
co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog 2017;13:e1006471.

119. Bolick DT, Kolling GL, Moore JH 2nd, de Oliveira LA, Tung L, Philipson C, Viladomiu M, Hontecillas R, Bas-saganya-Riera J, Guerrant RL. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 2014;5:618–627.

120. Bolick DT, Meideiros P, Ledwaba SE, Lima AAM, Nataro JP, Barry EM, Guerrant RL. The critical role of zinc in a new murine model of enterotoxigenic E. coli (ETEC) diarrhea. Infect Immun 2018;86.

121. Costa LB, Noronha FJ, Roche JK, Sevilleja JE, Warren CA, Oria R, Lima A, Guerrant RL. Novel in vitro and in vivo models and potential new therapeutics to break the vicious cycle of Cryptosporidium infection and malnutrition. J Infect Dis 2012;205:1464–1471.

122. Donowitz JR, Haque R, Kirkpatrick BD, Alam M, Lu M, Kabir M, Kakon SH, Islam BZ, Afreen S, Musa A, Khan SS, Colgate ER, Carmolli MP, Ma JZ, Petri WA Jr. Small intestine bacterial overgrowth and environmental enteropathy in Bangladeshi children. MBio 2016;7:e02102–e02115.

123. dos Reis JC, de Morais MB, Oliva CA, Fagundes-Neto U. Breath hydrogen test in the diagnosis of environmental enteropathy in children living in an urban slum. Dig Dis Sci 2007;52:1253–1258.

124. Mello CS, Tahan S, Melli LC, Rodrigues MS, de Mello RM, Scaletsky IC, de Morais MB. Methane production and small intestinal bacterial overgrowth in children living in a slum. World J Gastroenterol 2012;18:5932–5939.

125. Attia S, Feenstra M, Swain N, Cuesta M, Bandsma RHJ. Starved guts: morphologic and functional intestinal changes in malnutrition. J Pediatr Gastroenterol Nutr 2017;65:491–495.

126. Brown EM, Wlodarska M, Willing BP, Vonaeesch P, Han J, Reynolds LA, Arrieta MC, Uhrig M, Scholz R, Partida O, Borchers CH, Sansonetti PJ, Finlay BB. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat Commun 2015;6:7806.

127. Bartelt LA, Roche J, Kolling G, Bolick D, Noronha F, Naylor C, Hoffman P, Warren C, Singer S, Guerrant R. Persistent G. lamblia impairs growth in a murine malnutrition model. J Clin Invest 2013;123:2672–2684.

128. Roche JK, Cabel A, Sevilleja J, Nataro J, Guerrant RL. Enteroaggregative Escherichia coli (EAEC) impairs growth while malnutrition worsens EAEC infection: a novel murine model of the infection malnutrition cycle. J Infect Dis 2010;202:506–514.

129. Bartelt LA, Bolick DT, Kolling GL, Roche JK, Zaenker EI, Lara AM, Noronha FJ, Cowardin CA, Moore JH, Turner JR, Warren CA, Buck GA, Guerrant RL. Cryptosporidium priming is more effective than vaccine for protection against cryptosporidiosis in a murine protein malnutrition model. PLoS Negl Trop Dis 2016;10:e0004820.

130. Stanghellini V. Functional dyspepsia and irritable bowel syndrome: beyond Rome IV. Dig Dis 2017;35(Suppl 1):14–17.

131. Chen B, Kim JJ, Zhang Y, Du L, Dai N. Prevalence and predictors of small intestinal bacterial overgrowth in irritable bowel syndrome: a systematic review and meta-analysis. J Gastroenterol 2018;53:807–818.

132. Pimentel M, Lembo A, Chey WD, Zakko S, Ringel Y, Yu J, Mareya SM, Sham SL, Bortey E, Forbes WP; TARGET Study Group. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011;364:22–32.

133. Kerckhoffs AP, Samsom M, van der Rest ME, de Vogel J, Knol J, Ben-Amor K, Akkermans LM. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol 2009;15:2887–2892.

134. Chung CS, Chang PF, Liao CH, Lee TH, Chen Y, Lee YC, Wu MS, Wang HP, Ni YH. Differences of microbiota in small bowel and faeces between irritable bowel syndrome patients and healthy subjects. Scand J Gastroenterol 2016;51:410–419.

135. Giamparelos-Bourboulis E, Tang J, Pyleris E, Pistaki A, Barbatzas C, Brown J, Lee CC, Harkins TT, Kim G, Weitsman S, Barlow GM, Funari VA, Pimentel M. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand J Gastroenterol 2015;50:1076–1087.

136. Bhattacharyya, Muniz Pedrogo DA, Kashyap KC. Irritable bowel syndrome: a gut microbiota-related disorder? Am J Physiol Gastrointest Liver Physiol 2017;312:G52–G62.

137. Li G, Yang M, Jin Y, Li Y, Qian W, Xiong H, Song J, Hou X. Involvement of shared mucosal-associated microbiota in the duodenum and rectum in diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol 2018;33:1220–1226.

138. De Palma G, Lynch MD, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pigrau Pastor M, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb MG, Surette MG, Bergonzelli GE, Verdu EF, Britz-Mckibbon P, Neufeld JD, Collins SM, Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 2017;9.

139. Shin A, Camilleri M, Vijayvargiya P, Busciglio I, Burton D, Ryks M, Rhoten D, Lueke A, Saenger A, Girtman A, Zinsmeister AR. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 2013;11:1270–1275 e1.

140. Aliem F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnell NW, Corvera CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145–154.

141. Alrefai WA, Saksena S, Tyagi S, Gill RK, Ramaswamy K, Dudeja PK. Taurodeoxycholate modulates apical Cl-/OH- exchange activity in Caco2 cells. Dig Dis Sci 2007;52:1270–1278.

142. Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(-) secretion via
cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol 2013; 305:C447–C456.

143. Jimenez M, Gil V, Martinez-Cutillas M, Mane N, Gallego D. Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Br J Pharmacol 2017;174:2805–2817.

144. Takaki M, Mawe GM, Barasch JM, Gershon MD, Gershon MD. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience 1985; 16:223–240.

145. Jahng J, Jung IS, Choi EJ, Conklin JL, Park H. The effects of methane and hydrogen gases produced by enteric bacteria on ileal motility and colonic transit time. Neurogastroenterol Motil 2012;24:185–190, e92.

Received April 19, 2019. Accepted July 17, 2019.

Correspondence
Address correspondence to: Arthur J. Kastl Jr, MD, Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, 7NW, Philadelphia, Pennsylvania 19104. e-mail: kastla@email.chop.edu; fax: (215) 590-3606.

Conflicts of interest
The authors disclose no conflicts.