Small Airways: The “Silent Zone” of 2021 GINA Report?

Marcello Cottini 1*, Carlo Lombardi 2*, Giovanni Passalacqua 3, Diego Bagnasco 3, Alvise Berti 4, Pasquale Comberiati 5, Gianluca Imeri 6, Massimo Landi 7,8 and Enrico Heffler 9,10

Small Airways: The “Silent Zone” of 2021 GINA Report?

Marcello Cottini 1*, Carlo Lombardi 2*, Giovanni Passalacqua 3, Diego Bagnasco 3, Alvise Berti 4, Pasquale Comberiati 5, Gianluca Imeri 6, Massimo Landi 7,8 and Enrico Heffler 9,10

Asthma is a chronic condition affecting the airways, characterized by inflammatory infiltration and remodeling of the bronchial tree (1). Recently, small airways have been recognized as a major site of airflow limitation in both asthma and chronic obstructive pulmonary disease (2–5). According to the current Global Initiative for Asthma (GINA) guidelines, spirometry remains the method of choice in evaluating the respiratory function (6). However, conventional spirometry reflects mostly the variability and/or the reversibility of airflow obstruction and is unable to sensitively evaluate small airways, becoming abnormal only when approximately 75% of small airways are obstructed (7). In recent years more specialized tests have been developed, which may better assess small-airways dysfunction (SAD). These tests are now moving from clinical research laboratories to clinical practice.
TABLE 1 | Available techniques for the assessment of bronchial airways by size (small vs. large airways).

Method	Small airway function	Large airway function
Spirometry	FEF25–75%, FVC, FVC/SVC	FEV1, FEV1/FVC
Impulse oscillometry (IOS)	R5–R20, X5, ΔX5 in-esp, AX, Fres	R20
Single breath nitrogen washout (SBNW) or	Slope phase III, CV, CC, Sacin, Scond, LCI	
Multiple breath nitrogen washout (MBNW) test		
Body plethysmography	RV, RV/TLC	
High resolution computerized tomography (HRCT)	Air trapping, airway wall thickness	Airway wall thickness
Nuclear medicine (Scintigraphy, SPECT, PET)	Regional ventilation defects	
3He-MRI	Non-ventilated lung volume	
Bronchoscopy	Transbronchial biopsy, BAL	Endobronchial biopsy
Sputum induction	Late phase sputum	Early phase sputum

AX, reactance area; Fres, resonant frequency; LCI, Lung Clearance Index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; R5, resistance at 5 Hz; R20, resistance at 20 Hz; RV, residual volume; Sacin and Scond, acinar and conductive airways ventilation heterogeneity; TLC, total lung capacity.

TABLE 2 | Prevalence data of Impulse Oscillometry-defined small airways dysfunction (SAD) in recent studies.

References	Tool of assessment	Measure	Prevalence of SAD
Anderson et al. (24)	Impulse oscillometry	R5-R20	BTS 2 65%
			BTS 3 64%
			BTS4 70%
Postma et al. (18)	Impulse oscillometry	R5-R20	42%
Cottini et al. (19, 22)	Impulse oscillometry	R5-R20	62%
			GINA 2 58%
			GINA 3 61%
			GINA 4 63%
			GINA 5 78%
Abdo et al. (20)	Impulse oscillometry	R5-R20	63%
Alferi et al. (25)	Impulse oscillometry	R5-R20	48%
Manoharan et al. (26)	Impulse oscillometry	R5-R20	42%
Berti et al. (23)	Impulse oscillometry	R5-R20	84% (Elderly asthmatic patients)

R5, resistance at 5 Hz; R20, resistance at 20 Hz; R5-R20, the difference between R5 and R20.

into routine clinical practice (8). Table 1 summarizes the techniques available for the assessment of small airways disease.

In particular, impulse oscillometry (IOS) is an effort-independent modality based on the well-described forced oscillation technique (FOT) (9, 10) and has emerged as a method to measure pulmonary function in both children and adults (11, 12).

We previously reviewed the prevalence and negative impact of SAD on asthma control, without addressing the position of current international guidelines on the role of SAD in asthma (13). In recent years, several original studies and systematic reviews confirmed that SAD is associated with, among others, greater bronchial hyper-responsiveness, worse asthma control and severity, more nocturnal and exercise-induced symptoms, and a higher number of exacerbations (14–16). Nevertheless, unlike the GOLD guidelines (17) which, in their definition, identify COPD as a disease of the small airways, the Global Initiative for Asthma (GINA) guidelines do not refer to the prevalence and role of SAD in asthmatic patients (6). This decision seems surprising, given the growing body of compelling evidence accumulating pointing out the high prevalence of SAD in asthmatic patients and the importance of SAD in poor asthma control. Furthermore, and remarkably, SAD appears to possess the characteristics of a treatable pulmonary trait, making it certainly appealing for asthma control optimization and exacerbation rate reduction.

In this mini-review article, we address the most recent evidence on the role of SAD on asthma control and critically review the possible inclusion of SAD among treatable lung traits in international guidelines on asthma.

PREVALENCE OF SAD IN ASTHMATIC PATIENTS

Overall, the prevalence of SAD in patients with asthma is around 50–60% (18–21). In the ATLANTIS study, the largest multinational study showing the contribution of SAD to asthma...
severity, 91% of asthmatics was found to have SAD, defined as any abnormal physiological variable, and SAD was strongly present across all GINA severity stages (18). Several other cohort studies showed the prevalence of SAD as defined by impulse oscillometry (IOS) (19, 20, 22, 23). We found (19, 22) in a cohort of 400 community-managed patients with physician-diagnosed asthma an overall prevalence of SAD of 62% in all the GINA step classes (step 2 58.3%; step 3 60.9%; step 4 63.3%; step 5 78.6%). Abdo et al. (20) confirmed these data, finding an IOS-defined prevalence of SAD of 63% in 268 asthma patients, with a higher prevalence of SAD in higher severity GINA stages, i.e., steps 4–5. Table 2 shows the prevalence data of IOS-defined SAD in studies from recent years.

ASSOCIATION OF SAD WITH SPECIFIC ASTHMA PHENOTYPES AND POOR ASTHMA CONTROL

Regardless of its prevalence in asthma, identifying SAD is of particular importance since it is clearly associated with specific clinical features and worse asthma control (19). Ignoring these key aspects would reduce the chances of maintaining asthma control.

SAD was previously linked to some clinical phenotypes of patients, i.e., active smokers, elderly patients with long duration of asthma and presence of fixed airflow obstruction, patients with nocturnal and exercise-induced symptoms, severe/uncontrolled asthma (13–16). The limit of most of the available studies is that they analyze the association of single features with SAD, instead of comprehensively address multiple asthma features associated with SAD. In more recent studies, multivariable analyses, classification tree analysis and structural equation modeling indicated that exercise-induced symptoms, overweight/obesity, asthma-related nocturnal symptoms, older age, smoking, and T2 inflammation are strong independent predictors of SAD in patients with community-managed asthma (19, 20, 27). Furthermore, emerging evidence shows that small conducting airways are an important site of disease also in pediatric asthma and are affected from an early stage of the disease (28). These associations may be of help in distinguishing subjects with SAD among patients with asthma, especially when IOS cannot be performed.

Spirometry is the most commonly used procedure to assess pulmonary function and GINA Guidelines and the Expert Panel Report-3 Guidelines for the Diagnosis and Management of Asthma both stated that pulmonary function measures are weakly correlated with asthma symptoms (6, 29). This statement refers to the "standard" pulmonary function test, unable to sensitively evaluate small airways, despite a growing body of literature supporting the correlation of SAD with asthma features (19). For instance, IOS-measured SAD has been shown to be present in virtually all patients with uncontrolled asthma vs. one third with well-controlled asthma, and to correlate (i.e., as assessed by the value of the difference in the resistance at 5 and 20 Hz [R5-R20], the IOS physiological marker that most strongly correlates with SAD) with worst asthma control and higher GINA step categories (19). Of note, a very weak inverse correlation between the spirometry value FEF25-75 and R5-R20 has been observed (19).

Similarly, Abdo et al. (20) recently showed that small airway dysfunction is strongly associated with poor control of the disease. In the ATLANTIS study (17), a SAD score (by both impulse oscillometry and spirometry) was significantly associated with asthma control, history of exacerbation, and disease severity. Kraft and colleagues very recently published the longitudinal one-year follow-up data of the ATLANTIS study, which showed that SAD (as measured by IOS, lung volumes, MBNW, and FEF25-75) was longitudinally associated with asthma control, exacerbations, and quality of life (30). In all of these studies, asthma control was

Asthma Features	References
Poor asthma control (ACT, ACQ)	18-20, 28-32, 34, 36-38, 42-44, 47-53, 60, 64-65
Asthma severity	18-20, 22, 28, 33, 38, 45, 47-48, 59
Exercise-induced symptoms	19-20, 55-57
Nocturnal symptoms	19, 24, 29, 58
Bronchial hyperreactivity	28, 33-34, 39, 54, 61-62
Reduced QoL	18, 38, 47, 49, 52, 53
History of exacerbations	18-20, 28, 29, 45, 53
Future loss of control	27, 43-44
Risk of future exacerbations	27, 40-41, 46
T-2 high inflammation	19-20, 28, 33, 40, 50

FIGURE 1 | Association of small airways dysfunction with specific asthma features. ACT, asthma control test; ACQ, asthma control questionnaire; QoL, quality of life.
biologic therapies result not only in improvements in asthma features, and SAD (18–28, 30–63) are summarized in Figure 1.

SAD IS A TREATABLE PULMONARY TRAIT

The term “precision medicine” usually refers to an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person (64). A new personalized approach, termed the “treatable traits” approach, has been suggested to address the limitations of the existing treatment strategies. IOS may be of great help to better characterize SAD as a “pulmonary treatable trait,” leading to a more targeted asthma management and more individualized patient care (64, 65). The importance of the peripheral airways in the pathophysiology and clinical manifestations of asthma makes them the intuitive target for long-term pharmacologic approaches (66, 67), i.e., for extra-fine formulations of bronchodilators and inhaled steroids (the mainstay treatment for COPD and asthma) and biologicals. Technological progress has allowed the development of new delivery systems and drug formulations designed to increase drug deposition and improve therapeutic efficiency, effectiveness, and drug safety (68–71). In real-life studies (72–75), extra-fine formulations (ICS and ICS/LABA) have shown significantly higher odds of achieving asthma control, even in small airway clinical phenotypes (76–78). Several real-life studies found an association between inhaled extra-fine ICS and ICS/LABA vs. standard particles size ICS or ICS/LABA and a reduction in airway resistance (18, 24).

Very intriguing, SAD may be modified by biologics; indeed, biologic therapies result not only in improvements in asthma control, OCS use, and exacerbation frequency but also in small airways function (54, 79–85).

CONCLUSIONS

Despite the availability of effective therapies, a substantial proportion of asthmatics remain poorly controlled in real life. Given the clinical impact of SAD on asthma control, we believe that SAD should be actively searched as part of the daily management of patients with asthma. Since asthma control has been extensively proved to be linked with SAD, and SAD to be better assessed with IOS than conventional spirometry, we truly believe that IOS should complement spirometry as part of the routine diagnostic work-up of asthma patients in a real-life clinic setting. IOS-defined SAD can assist the clinician in understanding the risk of an asthma exacerbation in their patients along with routinely collected information on treatment intensity and asthma control. In clinical routine practice, the identification of SAD during the diagnostic work-up should influence clinicians on the treatment choice. Therefore, IOS may be of great help to better characterize SAD as a “pulmonary treatable trait,” leading to a more targeted asthma management and individualized patient care. Based on the above arguments, there appears to be an urgent need to implement the GINA recommendations with SAD, which is shown to be present in the majority of asthmatic patients and associated with worse disease control, helping to guide the therapeutic approach.

AUTHOR CONTRIBUTIONS

MC, CL, and GP contributed to conception and design of the study. AB organized the database. MC, CL, GP, PC, and ML wrote the first draft of the manuscript. EH wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

REFERENCES

1. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. (2018) 391:783–800. doi: 10.1016/S0140-6736(17)33311-1
2. Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, et al. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an interasma (Global Asthma Association—GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA2LEN). Asthma Res Pract. (2016) 2:12. doi: 10.1186/s40733-016-0027-5
3. Mead J. The lung’s “quiet zone”. N Engl J Med. (1970) 282:1318–9. doi: 10.1056/NEJM197006042822311
4. Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. (1968) 278:1355–6. doi: 10.1056/NEJM196806202827801
5. Burgel PR. The role of small airways in obstructive airway diseases. Eur Respir Rev. (2011) 20:23–33. doi: 10.1183/09059180.00010410
6. GINA report. Global Strategy for Asthma Management and Prevention. Available online at: https://GINAsthma.org/gina-reports/ (accessed April 01, 2022).
7. Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman J, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. (1978) 298:1277–81. doi: 10.1056/NEJM197806082982303
8. Trinkmann F, Watz H, Herth FJF. Why do we still cling to spirometry for assessing small airway function? Eur Respir J. (2020) 56:2001071. doi: 10.1183/13993003.01071-2020
9. Dubois AB, Brody AW, Lewis DH, Burgess BF Jr. Oscillation mechanics of lungs and chest in man. J Appl Physiol. (1956) 8:587–94. doi: 10.1152/jappl.1956.8.6.587
10. Cogswell JF. Forced oscillation technique for determination of resistance to breathing in children. Arch Dis Child. (1973) 48:259–66. doi: 10.1136/adc.48.4.259
11. Bednarek M, Grabicki M, Piorunek T, Batura-Gabryel H. Current place of impulse oscillometry in the assessment of pulmonary diseases. Respir Med. (2020) 170:105952. doi: 10.1016/j.rmed.2020.105952
12. Kaminsky DA, Simpson SJ, Berger KL, Calverley P, de Melo PL, Dandurand R, et al. Clinical significance and applications of oscillometry. Eur Respir Rev. (2022) 31:210208. doi: 10.1183/16000617.0208-2021
27. Abdo M, Trinkmann F, Kirsten AM, Biller H, Pedersen F, Waschki B, van der Wiel E, ten Hacken NH, Postma DS, van den Berge M. Small airways dysfunction and poor asthma control: a dangerous liaison. *Clin Mol Allergy.* (2021) 19:7. doi: 10.1186/s12928-021-00147-8

28. Cottini M, Lombardi C, Micheleto C. Small airway dysfunction and bronchial asthma control: the state of the art. *Asthma Res Pract.* (2015) 13:10. doi: 10.1007/s13000-015-0133-3

29. van der Wiel E, ten Hacken NH, Postma DS, van den Berge M. Small airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. *J Allergy Clin Immunol.* (2013) 131:646–57. doi: 10.1016/j.jaci.2012.12.1567

30. Contoli M, Bousquet J, Fabbi F, Magnussen H, Rabe KF, Siafakas NM, et al. The small airways and distal lung compartment in asthma and COPD: a time for reappraisal. *Allergy.* (2010) 65:141–51. doi: 10.1111/j.1398-9995.2009.02242.x

31. Cottini M, Lombardi C, Berti A, Comberiati P. Small-airway dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. *J Allergy Clin Immunol.* (2013) 131:646–57. doi: 10.1016/j.jaci.2012.12.1567

32. Riley CM, Wenzel SE, Castro M, Erzurum SC, Chung KF, Fitzpatrick AM, et al. Clinical implications of having reduced mid forced expiratory flow rates (FEF25-75), independently of FEV1, in adult patients with asthma. *PLoS ONE.* (2015) 10:e0145476. doi: 10.1371/journal.pone.0145476

33. Chaiwong W, Namwongprom S, Liwsrisakun C, Pothirat C. The roles of impulse oscillometry in detection of poorly controlled asthma in adults with normal spirometry. *J Asthma.* (2021) 61:6–7. doi: 10.1089/jasthma.2020.2193

34. Pisi R, Trani P, Aiello M, Martinelli E, Marangio E, Nicolini G, et al. Allergy Asthma Proc. 2013 Small airway dysfunction by impulse oscillometry in asthmatic patients with normal FEV1 values. *Allergy Asthma Proc.* (2013) 34:14–20. doi: 10.2500/aap.2013.34.3641

35. Lipworth B, Manoharan A, Anderson W. Unlocking the quiet zone: the small airway asthma phenotype. *Lancet Respir Med.* (2014) 2:497–506. doi: 10.1016/s2213-2600(14)70103-1

36. Qin R, An J, Xie J, Huang R, Xie Y, He L, et al. FEF25–75% is a more sensitive measure reflecting airway dysfunction in patients with asthma: a comparison study using FEF25–75% and FEV1. *J Allergy Clin Immunol Pract.* (2021) 9:3649–3659.e6. doi: 10.1016/j.jaip.2021.06.027

37. Chiu HY, Hsiao YH, Su KC, Lee YC, Ko HK, Perng DW. Small airway dysfunction by impulse oscillometry in symptomatic patients with preserved pulmonary function. *J Allergy Clin Immunol Pract.* (2020) 8:2229–235.e3. doi: 10.1016/j.jaip.2019.06.035

38. Cottini M, Seccombe LM, Thanmir C, King GG, Peters MJ, Farah CS. Oscillometry and asthma control in patients with and without fixed airflow obstruction. *J Allergy Clin Immunol Pract.* (2022) S2213-2198(21)01453-7. doi: 10.1016/j.jaip.2021.12.026. [Epub ahead of print].

39. Cottini M, Seccombe LM, Thanmir C, King GG, Peters MJ, Farah CS. Bronchodilator-airway response assessed by the forced oscillation technique identifies poor asthma control with greater sensitivity than spirometry. *Chest.* (2020) 157:1435–41. doi: 10.1016/j.chest.2019.12.035

40. Young HM, Guo F, Eddy RL, Maksym G, Parraga G. Oscillometry and pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: relationship to quality of life and disease control. *J Appl Physiol.* (1985). (2012) 125:73–85. doi: 10.1152/japplphysiol.01031.2017

41. Siroyx V, Boudrier A, Dolgoropolof M, Chanoine S, Bousquet J, Gornand F, et al. Forced mid-expiratory flow between 25% and 75% of forced vital capacity is associated with long-term persistence of asthma and poor asthma outcomes. *J Allergy Clin Immunol.* (2016) 137:1709–16.e6. doi: 10.1016/j.jaci.2015.10.029

42. de Groot JC, Amelink M, de Nijs SB, Plaat R, Reitsma BH, Storm RL, et al. Ventilation defects on hyperpolarized helium-3 MRI in asthma are associated with enhanced airway closure phenotype as measured by quantitative CT analysis. *Chest.* (2021) 157:1435–41. doi: 10.1016/j.chest.2019.12.035

43. de Groot JC, Amelink M, de Nijs SB, Plaat R, Reitsma BH, Storm RL, et al. Multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. *Chest.* (2021) 157:1435–41. doi: 10.1016/j.chest.2019.12.035

44. Farah CS, King GG, Brown NJ, Peters MJ, Berend N, Salome CM. Ventilation heterogeneity predicts asthma control in adults following inhaled corticosteroid dose titration. *J Allergy Clin Immunol.* (2012) 130:61–8. doi: 10.1016/j.jaci.2012.02.015

45. Farah CS, King GG, Brown NJ, Downie SR, Kermoda JA, Hardaker KM, et al. The role of small airways in the clinical expression of asthma in adults. *J Allergy Clin Immunol.* (2012) 129:381–7, 387.e4. doi: 10.1016/j.jaci.2011.11.017

46. Busacker A, Newell JD Jr, Keefe T, Hoffman EA, Granroth JC, Castro M, et al. Multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. *Chest.* (2009) 135:48–56. doi: 10.1378/chest.08-0049

47. Mummy DG, Carey KJ, Evans MD, Denlinger LC, Schiebler ML, Sorkness RL, et al. Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency. *J Allergy Clin Immunol.* (2020) 146(3):506.e2-9. doi: 10.1016/j.jaci.2020.02.029

48. Takeda T, Oga T, Niimi A, Matsumoto H, Ito I, Yamaguchi M, et al. Relationship between small airway function and health status, dyspnea and disease control in asthma. *Respiration.* (2010) 80:120–6. doi: 10.1159/000242113
49. Jabbar S, Manoharan A, Lipworth J, Lipworth B. Utility of impulse oscillometry in patients with moderate to severe persistent asthma. J Allergy Clin Immunol. (2016) 138:601–3. doi: 10.1016/j.jaci.2015.12.1336

50. Kuo CR, Lipworth B. Airwave oscillometry and patient-reported outcomes in persistent asthma. Ann Allergy Asthma Immunol. (2020) 124:289–90. doi: 10.1016/j.anai.2019.12.017

51. Kuo CR, Jabbar S, Lipworth B. Is small airways dysfunction related to asthma control and type 2 inflammation? Ann Allergy Asthma Immunol. (2018) 121:631–2. doi: 10.1016/j.anai.2018.08.009

52. Heijinkenskjold Rentzhog C, Janson C, Berglund L, Borres MP, Nordvall L, Alving K, et al. Overall and peripheral lung function assessment by spirometry and forced oscillation technique in relation to asthma diagnosis and control. Clin Exp Allergy. (2017) 47:1546–155. doi: 10.1111/cea.13035

53. Bell AJ, Foy BH, Richardson M, Singapuri A, Mirkes E, van den Berg M, et al. Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma. J Allergy Clin Immunol. (2019) 144:83–93. doi: 10.1016/j.jaci.2019.01.014

54. Foy BH, Soares M, Bordas R, Richardson M, Bell A, Singapuri A, et al. Lung computational models and the role of the small airways in asthma. Am J Respir Crit Care Med. (2019) 200:982–91. doi: 10.1164/rccm.201812-2320OC

55. Telenga ED, van den Berge M, Ten Hacken NH, Riemersma RA, van der Molen T, Postma DS. Small airways in asthma: their independent contribution to the severity of hyperresponsiveness. Eur Respir J. (2013) 41:752–4. doi: 10.1183/09031936.00179912

56. Bahmer T, Waschki B, Schatz F, Herzmann C, Zabel P, Kirsten M, et al. PRISMA (PRospectIve Study on asthMA control) Study Group. Real-life prospective study on asthma control in Italy: across-sectional phase results. Respir Med. (2012) 106:205–14. doi: 10.1016/j.rmed.2011.10.001

57. Müller V, Gálfy G, Eszés N, Losonczy G, Bizzi A, Nicolini G, et al. Asthma control in patients receiving inhaled corticosteroid and long-acting beta2 agonist fixed combinations: a real-life study comparing dry powder inhalers and a pressurized metered dose inhaler extrafine formulation. BMC Pulm Med. (2011) 11:40. 38. doi: 10.1186/1471-2466-11-40

58. Allegra L, Cremonesi G, Giribino G, Ingrossa E, Marsico S, Nicolini G, et al. PRISMA (PRospectIve Study on asthMA control) Study Group. Real-life prospective study on asthma control in persistent asthma. Chest. (2015) 141:1345–55. doi: 10.1016/j.chest.2016.07.035

59. Sonnappa S, McQueen B, Postma DS, Martin RJ, Roche N, Grigg J, et al. Extrafine versus fine inhaled corticosteroids in relation to asthma control: a systematic review and meta-analysis of observational real-life studies. J Allergy Clin Immunol Pract. (2018) 6:907–15.e7. doi: 10.1016/j.jaip.2017.07.032

60. Shirai T, Akamatsu T, Hirai K, Watanabe H, Tamura K, Kishimoto Y, et al. Forced oscillation technique may identify severe asthma. J Allergy Clin Immunol. (2019) 144:83–93. doi: 10.1016/j.jaci.2019.01.014

61. Manoharan A, Anderson WJ, Lipworth J, Lipworth BJ. Assessment of anti-T2 biologic treatment on lung ventilation evaluated by MRI. Eur Respir J. (2014) 50:1701655. doi: 10.1183/13993003.2014.01.014

62. Bao W, Zhang X, Yin J, Han L, Huang Z, Bao L, et al. Small-airway changes associated with mild asthma. Eur Respir J. (2020) 124:289–90. doi: 10.1164/ajrccm.163.7.2008013

63. Sonnappa S, McQueen B, Postma DS, Martin RJ, Roche N, Grigg J, et al. Extrafine versus fine inhaled corticosteroids in relation to asthma control: a systematic review and meta-analysis of observational real-life studies. J Allergy Clin Immunol Pract. (2018) 6:907–15.e7. doi: 10.1016/j.jaip.2017.07.032

64. Agustí A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, et al. Efficacy of mepolizumab in treating severe eosinophilic asthma. Respir Med. (2019) 144:83–93. doi: 10.1016/j.rmed.2019.01.014

65. Diaz-García R, Flores-Ramírez G, Ramírez-Osgeru RT. Effect of extrafine formulation of BDP/FF inhaler on asthma control, small airway function and airflow inflammation among Mexican asthmatic patients. A retrospective analysis. Respir Med. (2020) 165:105932. doi: 10.1016/j.rmed.2020.105932

66. Brusselle G, Peché R, Van den Brande P, Verhulst A, Hollanders W, Bruhwiler J, et al. Real-life effectiveness of extrafine beclomethasone dipropionate/formoterol in adults with persistent asthma according to smoking status. Respir Med. (2012) 106:811–9. doi: 10.1016/j.rmed.2012.01.010

67. Marth K, Spinola M, Kiel S, Hoegerter C, Petrovic M, Pohl W. Treatment response according to small airway phenotypes: a real-life observational study. Ther Adv Respir Dis. (2016) 10:200–10. doi: 10.1177/175346816642635

68. Carpagnano GE, Scioscia G, Lacedonia D, Stornelli SR, Quaratò CM, Soccio P. Treatment response according to small airways disease status: the effects of high-strength extrafine pMDI beclomethasone dipropionate/formoterol fumurate in fixed dose combination in moderate uncontrolled asthmatic patients. Palm Pharmacol Ther. (2020) 60:101879. doi: 10.1016/j.ppth.2019.10.0789

69. Farah CS, Badal T, Reed N, Rogers PG, King GG, Thamrin C, et al. Mepolizumab improves small airway function in severe eosinophilic asthma. Respir Med. (2019) 148:49–53. doi: 10.1016/j.rmed.2019.01.016

70. Sposato B, Camiciotelli G, Bacci E, Scalese M, Carpagnano GE, Pelaia C, et al. Mepolizumab effectiveness on small airway obstruction, corticosteroid sparing and maintenance therapy step-down in real life. Palm Pharmacol Ther. (2020) 61:101899. doi: 10.1016/j.ppth.2020.10.0899

71. Shirai T, Akamatsu T, Hirai K, Watanabe H, Tamura K, Kishimoto Y, et al. Oscillometry improves earlier than spirometry after benralizumab initiation in severe asthma. Allergy. (2020) 75:2673–80. doi: 10.1111/all.13439

72. Antonicielli L, Tontini C, Marchionni A, Lucchetti B, Garratani MS, Bilò MB. Forced oscillation technique as method to document and monitor the efficacy of mepolizumab in treating severe eosinophilic asthma. J Allergy Clin Immunol Pract. (2021) 9:2907–9. doi: 10.1016/j.jaip.2021.01.029
85. Abdo M, Watz H, Veith V, Kirsten AM, Biller H, Pedersen F, et al. Small airway dysfunction as predictor and marker for clinical response to biological therapy in severe eosinophilic asthma: a longitudinal observational study. *Respir Res.* (2020) 21:278. doi: 10.1186/s12931-020-01543-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Cottini, Lombardi, Passalacqua, Bagnasco, Berti, Comberiati, Imeri, Landi and Heffler. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.