A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation

Minghua Chen, Weihua Deng*

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China

Abstract

Space fractional convection diffusion equation describes physical phenomena where particles or energy (or other physical quantities) are transferred inside a physical system due to two processes: convection and superdiffusion. In this paper, we discuss the practical alternating directions implicit method to solve the two-dimensional two-sided space fractional convection diffusion equation on a finite domain. We theoretically prove and numerically verify that the presented finite difference scheme is unconditionally von Neumann stable and second order convergent in both space and time directions.

Keywords: Space fractional convection diffusion equation; Numerical stability; Crank-Nicolson scheme; Two-dimensional two-sided fractional PDE; Alternating direction implicit method

1. Introduction

Relaxing the restriction of the boundedness of the second moments, fractional derivatives naturally appear to characterize anomalous diffusion [13], usually the time fractional derivative is used for describing the subdiffusion and space fractional derivative for the superdiffusion. More often, diffusion corresponds to a power law, \(\langle x^2(t) \rangle \sim Dt^\alpha \), where \(D \) is the diffusion coefficient and \(t \) the elapsed time. In a classical diffusion process, \(\alpha = 1 \). If \(\alpha < 1 \), the phenomenon is called subdiffusion. If \(\alpha > 1 \), the particles undergo superdiffusion. For \(\alpha = 1 \), the position probability density of the particles satisfies the classical diffusion equation with first order time derivative and second order space derivative; for \(\alpha < 1 \), the position probability density of the particles is the solution of the time fractional diffusion equation with \(\alpha \)-th order time derivative and second order space derivative; for \(\alpha > 1 \), the position probability density satisfies the space fractional diffusion equation with first order time derivative and \((3 - \alpha)\)-th order space derivative.

*Corresponding author. E-mail: dengwh@lzu.edu.cn.
The space fractional advection diffusion equation describes the physical phenomena involving two physical processes: convection and superdiffusion, i.e., for the equation, besides the α-th order space fractional derivative term there exists the classical first order space derivative. This paper focuses on the numerical algorithm of the following two-dimensional two-sided space fractional convection diffusion equation

$$\frac{\partial u(x, y, t)}{\partial t} = d_+ (x, y) x_L D_x^\alpha u(x, y, t) + d_- (x, y) x_R D_x^\alpha u(x, y, t)$$
$$+ e_+ (x, y) y_L D_y^\beta u(x, y, t) + e_- (x, y) y_R D_y^\beta u(x, y, t)$$
$$+ g(x, y) u(x, y, t) + h(x, y) u_y (x, y, t),$$

(1.1)

where $(x, y) \in \Omega = (x_L, x_R) \times (y_L, y_R), 0 < t \leq T, the fractional orders $1 < \alpha, \beta < 2; the function $s(x, y, t)$ is a source term; and the diffusion coefficients $d_+ (x, y) \geq 0, d_- (x, y) \geq 0, e_+ (x, y) \geq 0$ and $e_- (x, y) \geq 0$. The initial and boundary conditions are, respectively, taken as

$$u(x, y, 0) = u_0 (x, y) \text{ for } (x, y) \in \Omega,$$

(1.2)

and

$$u(x, y, t)|_{\partial \Omega} = B(x, y, t).$$

(1.3)

The left and right Riemann-Liouville fractional derivatives of order μ $(0 \leq n - 1 \leq \mu < n$ and n is an integer) are, respectively, defined by $[4, 14, 15]$

$$x_L D_x^{-\nu} u(x) = \frac{1}{\Gamma(\nu)} \int_{x_L}^x (x - \xi)^{\nu-1} u(\xi) d\xi, \quad \nu > 0,$$

(1.4)

and

$$x_R D_{xR}^{-\nu} u(x) = \frac{1}{\Gamma(\nu)} \int_x^{x_R} (\xi - x)^{\nu-1} u(\xi) d\xi, \quad \nu > 0,$$

(1.5)

where

$$x_L D_x^{-\nu} u(x) = \frac{1}{\Gamma(\nu)} \int_{x_L}^x (x - \xi)^{\nu-1} u(\xi) d\xi, \quad \nu > 0,$$

and

$$D = \frac{d}{dx}, \quad E \equiv -D = -\frac{d}{dx}.$$

The Grünwald-Letnikov definitions for the left and right fractional derivatives are, respectively, given as

$$G_{x_L}^\mu D_x^\mu u(x) = \lim_{h_+ \to 0} \frac{1}{h_+^\mu} \sum_{i=0}^{M_+} (-1)^i \binom{\mu}{i} u(x - ih_+),$$

(1.6)

and

$$G_{x_R}^\mu D_x^\mu u(x) = \lim_{h_- \to 0} \frac{1}{h_-^\mu} \sum_{i=0}^{M_-} (-1)^i \binom{\mu}{i} u(x + ih_-),$$

(1.7)
where \(h_+ = (x - x_L)/M_+ \), \(h_- = (x_R - x)/M_+ \), and \(M_+ \) and \(M_- \) are positive integers. The Riemann-Liouville and Grünwald-Letnikov derivatives are equivalent \([7]\) under the assumptions that the function performed are sufficiently smooth.

Using the formulae (1.6) and (1.7) to discretize the space fractional derivatives is a nature idea for designing the numerical schemes. Unfortunately, this usually leads to unconditionally unstable finite difference schemes, but Meerschaert et al successfully circumvent this difficulties by modifying the formulae (1.6) and (1.7) to obtain the so-called shifted Grünwald formulae \([10]\). Based on these shifted formulae, Meerschaert et al did a series of works for numerically solving space fractional diffusion equations \([11, 12, 19, 20]\). Sousa proposes another way to approximate the fractional Caputo derivatives \([16, 17]\), which can obtain second order accuracy. More recently Sousa et al further discuss using the similar idea to discretize Riemann-Liouville fractional derivatives in infinite domain \([18]\). By using different ideas, Liu’s group discusses the finite difference methods for fractional partial differential equations with Riesz space fractional derivatives \([21]\) and the difference methods for the space-time fractional advection-diffusion equation \([9]\). For the discretization of the time fractional derivatives, usually the different challenges will be met \([1, 2, 6, 8]\). Here we will combine the alternating directions implicit (ADI) method with Crank-Nicolson scheme to design the finite difference scheme for the two-sided two-dimensional space fractional advection diffusion equation (1.1). The numerical scheme will be theoretically proven and numerically verified to be unconditionally von Neumann stable and second order convergent.

The paper is organized as follows. In Section 2, we derive the linear spline approximation to the right Riemann-Liouville fractional derivative, and the full discretization of (1.1) is presented, where the Crank-Nicolson scheme and the alternating directions implicit method are combined together. Section 3 does the detailed theoretical analyses for the consistency and stability of the given schemes. To show the effectiveness of the algorithm, we perform the numerical experiments to verify the theoretical results in Section 4. Finally, we conclude the paper with some remarks in the last section.

2. Discretization Schemes

We use three subsections to derive the full discretization of (1.1). Since the linear spline approximation for the left Riemann-Liouville fractional derivative in the infinite interval can be easily got from \([18]\), we further derive the linear spline approximation for the right Riemann-Liouville fractional derivative and make some remarks on the relationship between the discretization schemes of left and right Riemann-Liouville fractional derivatives in the first subsection. Then in the second subsection, we present the scheme for the
one dimensional case of (1.1). The third subsection detailedly provides the full discrete scheme of the two-dimensional two-sided space fractional convection diffusion equation.

2.1. Discretizations for the left and right Riemann-Liouville fractional derivatives

Let the mesh points $x_i = x_L + i\Delta x$, $i = 0, 1, \ldots, N_x$, where $\Delta x = (x_R - x_L)/N_x$ is the uniform space step. Taking $\alpha \in (1, 2)$ in the left Riemann-Liouville fractional derivative (1.4), its approximation operator $\delta'_{\alpha, i} u^n_i$ has second order accuracy in a bounded domain (proved in next section), where u^n_i denotes the approximated value of $u(x_i, t_n)$ and the left fractional approximation operator, which can be obtained by truncating its infinite version [18], is defined as

$$\delta'_{\alpha, i} u^n_i := \frac{1}{\Gamma(4 - \alpha)\Delta x^\alpha} \sum_{k=0}^{i+1} u^n_k p^\alpha_{i,k},$$

where

$$p^\alpha_{i,k} = \begin{cases} a_{i-1,k} - 2a_{i,k} + a_{i+1,k}, & k \leq i - 1, \\ -2a_{i,k} + a_{i+1,k}, & k = i, \\ a_{i+1,k}, & k = i + 1, \\ 0, & k > i + 1, \end{cases}$$

and

$$a_{i,k} = \begin{cases} (i - 1)^{3-\alpha} - i^2-\alpha(i - 3 + \alpha), & k = 0, \\ (i - k + 1)^{3-\alpha} - 2(i - k)^{3-\alpha} + (i - k - 1)^{3-\alpha}, & 1 \leq k \leq i - 1, \\ 1, & k = i. \end{cases}$$

Here in the finite interval $x_L < x < x_R$ with $\alpha \in (1, 2)$, we further derive the linear spline approximation for the right Riemann-Liouville fractional derivative defined by

$$x D_{x_R}^{\alpha} u(x, t) = \frac{1}{\Gamma(2 - \alpha)} \frac{\partial^2}{\partial x^2} \int_{x}^{x_R} u(\xi, t)(\xi - x)^{1-\alpha} d\xi.$$ (2.3)

For a fixed time t, denote

$$I_\alpha(x) = \frac{1}{\Gamma(2 - \alpha)} \int_{x}^{x_R} u(\xi, t)(\xi - x)^{1-\alpha} d\xi,$$ (2.4)

then

$$x D_{x_R}^{\alpha} u(x, t) = \frac{\partial^2}{\partial x^2} I_\alpha(x),$$ (2.5)

and we can do the following approximation at x_i,

$$\frac{\partial^2}{\partial x^2} I_\alpha(x_i) \approx \frac{1}{\Delta x^2} [I_\alpha(x_{i-1}) - 2I_\alpha(x_{i}) + I_\alpha(x_{i+1})], \quad 1 \leq i \leq N_x - 1.$$ (2.6)
For each \(x_i \), take
\[
\mathcal{I}_\alpha(x_i) \approx I_\alpha(x_i) = \frac{1}{\Gamma(2 - \alpha)} \int_{x_i}^{x_{i+1}} S_i(\xi)(\xi - x_i)^{1-\alpha} d\xi, \tag{2.7}
\]
where the spline \(S_i(\xi) \) is defined by
\[
S_i(\xi) = \sum_{k=i}^{N_x} u(x_k, t) s_{i,k}(\xi), \tag{2.8}
\]
with \(s_{i,k}(\xi) \), in every subinterval \([x_{k-1}, x_{k+1}]\), for \(i + 1 \leq k \leq N_x - 1 \), given as
\[
s_{i,k}(\xi) = \begin{cases}
\frac{\xi - x_{k-1}}{x_k - x_{k-1}}, & x_{k-1} \leq \xi \leq x_k, \\
\frac{x_{k+1} - \xi}{x_{k+1} - x_k}, & x_k \leq \xi \leq x_{k+1}; \\
0, & \text{otherwise},
\end{cases}
\]
and for \(k = i \) and \(k = N_x \), \(s_{i,k}(\xi) \) taken as
\[
s_{i,i}(\xi) = \begin{cases}
\frac{x_{i+1} - \xi}{x_{i+1} - x_i}, & x_i \leq \xi \leq x_{i+1}, \\
0, & \text{otherwise},
\end{cases}
\]
and
\[
s_{i,N_x}(\xi) = \begin{cases}
\frac{\xi - x_{N_x-1}}{x_{N_x} - x_{N_x-1}}, & x_{N_x-1} \leq \xi \leq x_{N_x}; \\
0, & \text{otherwise}.
\end{cases}
\]
According to (2.7) and (2.8), we have
\[
\mathcal{I}_\alpha(x_i) \approx I_\alpha(x_i) = \frac{1}{\Gamma(2 - \alpha)} \int_{x_i}^{x_{i+1}} u(x_i, t) \int_{x_i}^{x_{i+1}} s_{i,i}(\xi)(\xi - x_i)^{1-\alpha} d\xi \\
+ \frac{1}{\Gamma(2 - \alpha)} \sum_{k=i+1}^{N_x-1} u(x_k, t) \int_{x_k}^{x_{k+1}} s_{i,k}(\xi)(\xi - x_i)^{1-\alpha} d\xi \\
+ \frac{1}{\Gamma(2 - \alpha)} u(x_N, t) \int_{x_{N_x-1}}^{x_{N_x}} s_{i,N_x}(\xi)(\xi - x_i)^{1-\alpha} d\xi, \tag{2.9}
\]
and
\[
\frac{1}{\Gamma(2 - \alpha)} \int_{x_i}^{x_{i+1}} s_{i,i}(\xi)(\xi - x_i)^{1-\alpha} d\xi = \frac{\Delta x^{2-\alpha}}{\Gamma(4 - \alpha)} b_{i,i}, \\
\frac{1}{\Gamma(2 - \alpha)} \int_{x_{k-1}}^{x_{k+1}} s_{i,k}(\xi)(\xi - x_i)^{1-\alpha} d\xi = \frac{\Delta x^{2-\alpha}}{\Gamma(4 - \alpha)} b_{i,k}, \tag{2.10}
\]
and
\[
\frac{1}{\Gamma(2 - \alpha)} \int_{x_{N_x-1}}^{x_{N_x}} s_{i,N_x}(\xi)(\xi - x_i)^{1-\alpha} d\xi = \frac{\Delta x^{2-\alpha}}{\Gamma(4 - \alpha)} b_{i,N_x},
\]
where
\[b_{i,k} = \begin{cases}
1, & k = i, \\
(k - i + 1)^{3-\alpha} - 2(k - i)^{3-\alpha} + (k - i - 1)^{3-\alpha}, & 1 \leq k \leq N_x - 1, \\
(3 - \alpha - N_x + i)(N_x - i)^{2-\alpha} + (N_x - i - 1)^{3-\alpha}, & k = N_x.
\end{cases} \]

(2.11)

Then
\[I_\alpha(x_i) \simeq I_\alpha(x_i) = \frac{\Delta x^{2-\alpha}}{\Gamma(4-\alpha)} \sum_{k=i}^{N_x} u(x_k, t) b_{i,k}, \]

(2.12)

and (2.6) can be written as
\[\frac{\partial^2}{\partial x^2} I_\alpha(x_i) \simeq \frac{1}{\Delta x^2} \left[I_\alpha(x_{i-1}) - 2I_\alpha(x_i) + I_\alpha(x_{i+1}) \right] \]
\[\simeq \frac{1}{\Gamma(4-\alpha)\Delta x^\alpha} \left[\sum_{k=1}^{N_x} u(x_k, t)b_{i-1,k} - 2\sum_{k=i}^{N_x} u(x_k, t)b_{i,k} + \sum_{k=i+1}^{N_x} u(x_k, t)b_{i+1,k} \right] \]
\[= \frac{1}{\Gamma(4-\alpha)\Delta x^\alpha} \sum_{k=1}^{N_x} u(x_k, t) q^\alpha_{i,k}, \]

(2.13)

where
\[q^\alpha_{i,k} = \begin{cases}
0, & k < i - 1, \\
b_{i-1,i-1}, & k = i - 1, \\
-2b_{i,i} + b_{i-1,i}, & k = i, \\
b_{i-1,k} - 2b_{i,k} + b_{i+1,k}, & i + 1 \leq k \leq N_x.
\end{cases} \]

(2.14)

Denoting \(u^n_i \) as the approximated value of \(u(x_i, t_n) \), we can define the right fractional approximation operator as
\[\delta^\prime_{\alpha,+,x} u^n_i := \frac{1}{\Gamma(4-\alpha)\Delta x^\alpha} \sum_{k=i-1}^{N_x} u^n_k q^\alpha_{i,k}, \]

(2.15)

which has second order accuracy for approximating (2.3) (proved in the next section).

Remark 2.1. Denoting \(\tilde{U}^n = [u^n_1, u^n_2, \ldots, u^n_{N_x-1}]^T \), and rewriting (2.11) and (2.15) as matrix forms \(\delta^\prime_{\alpha,+,x} \tilde{U}^n = A\tilde{U}^n + b_1 \) and \(\delta^\prime_{\alpha,+,x} \tilde{U}^n = B\tilde{U}^n + b_2 \), respectively, then there exists \(\tilde{A} = \tilde{B}^T \).

2.2. Numerical scheme for one-dimensional fractional convection diffusion equation

We now examine the full discretization scheme to the one-dimensional two-sided fractional convection diffusion equation
\[\frac{\partial u(x, t)}{\partial t} = d_+(x) D_x^\alpha u(x) + d_-(x) D_x^\alpha u(x) + g(x) u_x(x, t) + s(x, t). \]

(2.16)
In the time direction, we use the Crank-Nicolson scheme. The central difference formula, left fractional approximation operator \((2.1)\), and right fractional approximation operator \((2.15)\) are respectively used to discretize the classical first order space derivative, left Riemann-Liouville fractional derivative, and right Riemann-Liouville fractional derivative.

Taking the uniform time step \(\Delta t\) and space step \(\Delta x\), and setting \(d_{+,i} = d_+(x_i), d_{-,i} = d_-(x_i), g_i = g(x_i),\) and \(s_i^{n+1/2} = s(x_i, t_{n+1/2})\), where \(t_{n+1/2} = (t_n + t_{n+1})/2\), the full discretization of \((2.16)\) has the following form

\[
\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{1}{\Gamma(4-\alpha)\Delta x^\alpha} \left[\sum_{k=0}^{i+1} p_{i,k}^{\alpha} d_{+,i} u_k^n + u_k^n + \sum_{k=i-1}^{N_x} q_{i,k}^{\alpha} d_{-,i} u_k^{n+1} + u_k^n \right]
+ \frac{g_i}{2\Delta x} \left(\frac{u_{i+1}^n + u_{i-1}^n}{2} - \frac{u_{i-1}^n + u_{i+1}^n}{2} \right) + s_i^{n+1/2}.
\]

(2.17)

Similar to \((2.1)\) and \((2.15)\), we define

\[
D'_{\alpha,x} u_i^n := \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x};
\]

\[
D''_{\alpha,x} u_i^n := \frac{d_{+,i}}{\Gamma(4-\alpha)\Delta x^\alpha} \sum_{k=0}^{i+1} u_k^n p_{i,k}^{\alpha};
\]

\[
\delta'_{\alpha,+x} u_i^n := \frac{d_{+,i}}{\Gamma(4-\alpha)\Delta x^\alpha} \sum_{k=0}^{i+1} u_k^n p_{i,k}^{\alpha};
\]

\[
\delta''_{\alpha,-x} u_i^n := \frac{d_{-,i}}{\Gamma(4-\alpha)\Delta x^\alpha} \sum_{k=1}^{N_x} u_k^n q_{i,k}^{\alpha},
\]

then \((2.17)\) can be expressed as

\[
\left[1 - \frac{\Delta t}{2} (\delta''_{\alpha,+x} + \delta''_{\alpha,-x} + D''_{\alpha,x}) \right] u_i^{n+1} = \left[1 + \frac{\Delta t}{2} (\delta''_{\alpha,+x} + \delta''_{\alpha,-x} + D''_{\alpha,x}) \right] u_i^n + s_i^{n+1/2} \Delta t,
\]

(2.18)

(2.19)

for \(i = 1, 2, \ldots, N_x - 1\), associated with the boundary conditions \(u_0^n\) and \(u_{N_x}^n\). Putting \(\xi_i = \frac{\Delta t}{2\Gamma(4-\alpha)\Delta x^\alpha} d_{+,i}, \eta_i = \frac{\Delta t}{2\Gamma(4-\alpha)\Delta x^\alpha} d_{-,i},\) and \(\gamma_i = \frac{\Delta t}{\Delta x} g_i,\) the system of equations given by \((2.17)\) takes the form

\[
(I - A) U_i^{n+1} = (I + A) U_i^n + \Delta t S_i^{n+1/2};
\]

(2.20)

where \(I\) is the identity matrix, and

\[
U^n = [u_0^n, u_1^n, u_2^n, \ldots, u_{N_x}^n]^T, \quad S^{n+1/2} = [s_0^{n+1/2}, s_1^{n+1/2}, s_2^{n+1/2}, \ldots, s_{N_x}^{n+1/2}]^T,
\]

and the matrix entries \(A_{i,j}\) for \(i = 1, \ldots, N_x - 1\) and \(j = 1, \ldots, N_x - 1\) are defined by

\[
A_{i,j} = \begin{cases}
\xi_i p_{i,i}^{\alpha} + \eta_i q_{i,i}^{\alpha}, & j = i, \\
\xi_i p_{i,i-1}^{\alpha} + \eta_i q_{i,i-1}^{\alpha} + \gamma_i, & j = i - 1, \\
\xi_i p_{i,i+1}^{\alpha} + \eta_i q_{i,i+1}^{\alpha} - \gamma_i, & j = i + 1, \\
\xi_i p_{i,j}^{\alpha}, & j < i + 1, \\
\eta_i q_{i,j}^{\alpha}, & j > i + 1,
\end{cases}
\]

(2.21)
and \(A_{0,0} = 1, A_{0,i} = 0 \) for \(i = 1, \ldots, N_x \); \(A_{N_x,N_x} = 1 \) and \(A_{N_x,i} = 0 \) for \(i = 0, \ldots, N_x - 1 \).

2.3. ADI scheme for two-dimensional two-sided fractional convection diffusion equation

Under the direction of discretizing the one-dimensional case of (1.1) in the last subsection, we use ADI [19, 3, 5] to numerically solve (1.1). First we introduce and list the denotations (some of them already given above) that will be used in the following:

\[
\begin{align*}
D'_{\alpha,x} u^n_{i,j} &:= \frac{u^n_{i+1,j} - u^n_{i-1,j}}{2 \Delta x}; \\
D'_{\alpha,y} u^n_{i,j} &:= \frac{u^n_{i,j+1} - u^n_{i,j-1}}{2 \Delta y}; \\
\delta'_{\alpha,+x} u^n_{i,j} &:= \frac{1}{\Gamma(4 - \alpha) \Delta x^\alpha} \sum_{k=0}^{i+1} u^n_{k,j} p_{i,k}^\alpha; \\
\delta'_{\alpha,-x} u^n_{i,j} &:= \frac{1}{\Gamma(4 - \alpha) \Delta x^\alpha} \sum_{k=0}^{i} u^n_{k,j} q_{i,k}^\alpha; \\
\delta''_{\alpha,+x} u^n_{i,j} &:= \frac{d_{+,i,j}}{\Gamma(4 - \alpha) \Delta x^\alpha} \sum_{k=0}^{i+1} u^n_{k,j} p_{i,k}^\alpha; \\
\delta''_{\alpha,-x} u^n_{i,j} &:= \frac{d_{-,i,j}}{\Gamma(4 - \alpha) \Delta x^\alpha} \sum_{k=0}^{i} u^n_{k,j} q_{i,k}^\alpha; \\
\delta'_{\beta,+y} u^n_{i,j} &:= \frac{1}{\Gamma(4 - \beta) \Delta y^\alpha} \sum_{k=0}^{j+1} u^n_{i,k} p_{j,k}^\beta; \\
\delta'_{\beta,-y} u^n_{i,j} &:= \frac{1}{\Gamma(4 - \beta) \Delta y^\alpha} \sum_{k=0}^{j} u^n_{i,k} q_{j,k}^\beta; \\
\delta''_{\beta,+y} u^n_{i,j} &:= \frac{e_{+,i,j}}{\Gamma(4 - \beta) \Delta y^\alpha} \sum_{k=0}^{j+1} u^n_{i,k} p_{j,k}^\beta; \\
\delta''_{\beta,-y} u^n_{i,j} &:= \frac{e_{-,i,j}}{\Gamma(4 - \beta) \Delta y^\alpha} \sum_{k=0}^{j} u^n_{i,k} q_{j,k}^\beta.
\end{align*}
\]

(2.22)

Analogously we still use the Crank-Nicolson scheme to do the discretization in time direction. Taking \(u^n_{i,j} \) as the approximated value of \(u(x_i, y_j, t_n) \), \(d_{+,i,j} = d_+(x_i, y_j) \), \(d_{-,i,j} = d_-(x_i, y_j) \), \(e_{+,i,j} = e_+(x_i, y_j) \), \(e_{-,i,j} = e_-(x_i, y_j) \), \(g_{i,j} = g(x_i, y_j) \), \(h_{i,j} = h(x_i, y_j) \), \(t_{n+1/2} = (t_n + t_{n+1})/2 \), \(s^{n+1/2}_{i,j} = s(x_i, y_j, t_{n+1/2}) \), \(\Delta x = (x_R - x_L)/N_x \), and \(\Delta y = (y_R - y_L)/N_y \), for the uniform space steps \(\Delta x, \Delta y \) and time step \(\Delta t \), the resulting discretization of (1.1) can be written as

\[
\begin{align*}
\frac{u^{n+1}_{i,j} - u^n_{i,j}}{\Delta t} = & \frac{1}{\Gamma(4 - \alpha) \Delta x^\alpha} \left[\sum_{k=0}^{i+1} p_{i,k}^\alpha \frac{u^{n+1}_{k,j} + u^n_{k,j}}{2} + \sum_{k=1}^{i} q_{i,k}^\alpha \frac{u^{n+1}_{k,j} + u^n_{k,j}}{2} \right] \\
+ & \frac{1}{\Gamma(4 - \beta) \Delta y^\beta} \left[\sum_{k=0}^{j+1} p_{j,k}^\beta \frac{u^{n+1}_{i,k} + u^n_{i,k}}{2} + \sum_{k=1}^{j} q_{j,k}^\beta \frac{u^{n+1}_{i,k} + u^n_{i,k}}{2} \right] \\
+ & \frac{g_{i,j}}{2 \Delta x} \left(\frac{u^{n+1}_{i+1,j} + u^n_{i+1,j}}{2} - \frac{u^{n+1}_{i-1,j} + u^n_{i-1,j}}{2} \right) \\
+ & \frac{h_{i,j}}{2 \Delta y} \left(\frac{u^{n+1}_{i,j+1} + u^n_{i,j+1}}{2} - \frac{u^{n+1}_{i,j-1} + u^n_{i,j-1}}{2} \right) \\
+ & s^{n+1/2}_{i,j}.
\end{align*}
\]

(2.23)
Using the notations (2.22), we have
\[
\left[1 - \frac{\Delta t}{2} \left(\delta''_{\alpha,x} + \delta''_{\alpha,-x} + D''_{\alpha,x} \right) - \frac{\Delta t}{2} \left(\delta''_{\beta,+y} + \delta''_{\beta,-y} + D''_{\beta,y} \right) \right] u_{i,j}^{n+1} \\
= \left[1 + \frac{\Delta t}{2} \left(\delta''_{\alpha,x} + \delta''_{\alpha,-x} + D''_{\alpha,x} \right) + \frac{\Delta t}{2} \left(\delta''_{\beta,+y} + \delta''_{\beta,-y} + D''_{\beta,y} \right) \right] u_{i,j}^{n} + s_{i,j}^{n+1/2} \Delta t.
\]
(2.24)

Further define
\[
\delta_{\alpha,x} := \delta''_{\alpha,x} + \delta''_{\alpha,-x} + D''_{\alpha,x}; \\
\delta_{\beta,y} := \delta''_{\beta,+y} + \delta''_{\beta,-y} + D''_{\beta,y},
\]
(2.25)

thus, (2.24) may be rewritten as
\[
\left(1 - \frac{\Delta t}{2} \delta_{\alpha,x} - \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n+1} \\
= \left(1 + \frac{\Delta t}{2} \delta_{\alpha,x} + \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n} + s_{i,j}^{n+1/2} \Delta t.
\]
(2.26)

For the two-dimensional two-sided fractional convection diffusion equation (1.1), the relevant perturbation of (2.26) is of the form
\[
\left(1 - \frac{\Delta t}{2} \delta_{\alpha,x} \right) \left(1 - \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n+1} \\
= \left(1 + \frac{\Delta t}{2} \delta_{\alpha,x} \right) \left(1 + \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n} + s_{i,j}^{n+1/2} \Delta t.
\]
(2.27)

The system of equations defined by (2.27) may be solved by the following ADI (Peaceman-Rachford type) scheme [19]:
\[
\left(1 - \frac{\Delta t}{2} \delta_{\alpha,x} \right) u_{i,j}^{*} = \left(1 + \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n} + \frac{\Delta t}{2} s_{i,j}^{n+1/2},
\]
(2.28)
\[
\left(1 - \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n+1} = \left(1 + \frac{\Delta t}{2} \delta_{\alpha,x} \right) u_{i,j}^{*} + \frac{\Delta t}{2} s_{i,j}^{n+1/2},
\]
(2.29)

where \(u_{i,j}^{*} \) is an intermediate solution. For maintaining the consistency, we need to carefully specify the boundary conditions of \(u_{i,j}^{*} \). Subtracting (2.29) from (2.28), we obtain
\[
2u_{i,j}^{*} = \left(1 - \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n+1} + \left(1 + \frac{\Delta t}{2} \delta_{\beta,y} \right) u_{i,j}^{n},
\]
(2.30)
then the boundary conditions for $u_{i,j}^\ast$ ($i = 0$ and $i = N_x$ with $j = 1, \ldots, N_y - 1$) can be given as

$$

to obtain $u_{k,j}^{n+1}$.

3. Convergence and Stability Analysis

We show the convergence for one-dimensional and two-dimensional two-sided fractional convection diffusion equation by proving the consistency and stability (according to Lax’s equivalence theorem).

3.1. Convergence and stability for one dimensional two-sided fractional convection diffusion equation

Lemma 3.1. Let $u \in C^4(\bar{\Omega})$ and $\xi \in [x_k, x_{k+1}]$, then we have

$$

u(\xi) - S_i(\xi) = \theta(1 - \theta)\frac{(\Delta x)^2}{2!}u''(\xi) + \frac{\theta(1 - \theta)(1 - 2\theta)(\Delta x)^3}{3!}u'''(\xi) + O((\Delta x)^4),

where $\Delta x = x_{k+1} - x_k$, $\theta = (\xi - x_k)/\Delta x$.

Proof. For any $\xi \in [x_k, x_{k+1}]$, using Taylor series expansion at ξ, it is easy to get the results.

Lemma 3.2. [4, 14] Let $D^\mu u(x)$ be continuous in the interval $[x_L, x_R]$ and $0 \leq n - 1 \leq \mu < n$, then for $x_L < x < x_R$ the following holds

$$
x_L D^\mu_x u(x) = D^n x_L D_x^{-(n-\mu)} u(x) = x_L D_x^{-(n-\mu)} [D^\mu u(x)] + \sum_{k=0}^{n-1} \frac{(x - x_L)^{k-\mu}}{\Gamma(-\mu + k + 1)} D^k f(x_L).

10
Lemma 3.3. Let $D^n u(x)$ be continuous in the interval $[x_L, x_R]$ and $0 \leq n - 1 \leq \mu < n$, then for $x_L < x < x_R$ the following holds

$$x D_{xR}^\mu u(x) = E^n [x D_{xR}^{-(n-\mu)} u(x)] = x D_{xR}^{-(n-\mu)} [E^n u(x)] + \sum_{k=0}^{n-1} \frac{(x_R - x)^{k-\mu}}{\Gamma(-\mu + k + 1)} E^k f(x_R).$$

Proof. Since $x D_{xR}^{-\nu} u(x) = \frac{1}{\Gamma(\nu)} \int_x^{x_R} (\xi - x)^{\nu-1} u(\xi) d\xi$, $\nu > 0$, it can be obtained

$$D[x D_{xR}^{-\nu} u(x)] = \frac{1}{\Gamma(\nu)} \int_x^{x_R} \frac{d(\xi - x)^{\nu-1}}{dx} u(\xi) d\xi = -\frac{1}{\Gamma(\nu)} \int_x^{x_R} u(\xi) d(\xi - x)^{\nu-1}$$

$$= x D_{xR}^{-\nu} [Du(x)] - \frac{(x_R - x)^{\nu-1}}{\Gamma(\nu)} f(x_R),$$

then

$$E[x D_{xR}^{-\nu} u(x)] = x D_{xR}^{-\nu} [Eu(x)] + \frac{(x_R - x)^{\nu-1}}{\Gamma(\nu)} f(x_R).$$ (3.1)

Using E to differentiate both sides of (3.1) leads to

$$E^2[x D_{xR}^{-\nu} u(x)] = E\{E[x D_{xR}^{-\nu} u(x)]\} = E\{x D_{xR}^{-\nu} [Eu(x)]\} + \frac{(x_R - x)^{\nu-2}}{\Gamma(\nu - 1)} f(x_R).$$ (3.2)

Replacing u with Eu in (3.1), then (3.2) can be rewritten as

$$E^2[x D_{xR}^{-\nu} u(x)] = x D_{xR}^{-\nu} [E^2 u(x)] + \frac{(x_R - x)^{\nu-1}}{\Gamma(\nu)} Ef(x_R) + \frac{(x_R - x)^{\nu-2}}{\Gamma(\nu - 1)} f(x_R).$$ (3.3)

Repeated iterations establish the desired result.

Theorem 3.4. Let $u \in C^4(\bar{\Omega})$ and $x D_{xR}^\alpha - 2u \in C^4(\bar{\Omega})$, then $x D_{xR}^\alpha u(x_i, t_n) = \delta_i^t u_i^n + O((\Delta x)^2)$, where $\alpha \in (1, 2)$.

Proof. In the following we use $u(x_i)$ to denote $u(x_i, t_n)$. Since t_n is fixed and $x D_{xR}^{\alpha-2} u \in C^4(\bar{\Omega})$, then the following holds

$$x D_{xR}^\alpha u(x_i) = \frac{\partial^2}{\partial x^2} I_\alpha (x_i) = \frac{1}{(\Delta x)^2} [I_\alpha (x_{i-1}) - 2I_\alpha (x_i) + I_\alpha (x_{i+1})] + O((\Delta x)^2).$$

Let $\epsilon(x_i)$ be the error satisfying

$$I_\alpha (x_{i-1}) - 2I_\alpha (x_i) + I_\alpha (x_{i+1}) = I_\alpha (x_{i-1}) - 2I_\alpha (x_i) + I_\alpha (x_{i+1}) + \epsilon(x_i),$$

then there exists

$$x D_{xR}^\alpha u(x_i) = \frac{1}{(\Delta x)^2} [I_\alpha (x_{i-1}) - 2I_\alpha (x_i) + I_\alpha (x_{i+1})] + \frac{1}{(\Delta x)^2} \epsilon(x_i) + O((\Delta x)^2),$$

which concludes the proof.
i.e.,
\[xD_x^\alpha u(x_i) = \delta_{\alpha, n} u_i + \frac{1}{(\Delta x)^2} \epsilon(x_i) + \mathcal{O}((\Delta x)^2). \]

Next we calculate the error \(\epsilon(x_i) \). Extending the definition of \(u(x) \) from \([x_L, x_R]\) to \([x_L, x_R + \Delta x]\) with the extended part of \(u(x) \) being the one given in Theorem A of Appendix, then

\[
\epsilon(x_i) = \int_{x_{i-1}}^{x_i} (u(\xi) - S_{i-1}(\xi)) (\xi - x_{i-1})^{1-\alpha} d\xi
- 2 \int_{x_i}^{x_R} (u(\xi) - S_i(\xi)) (\xi - x_i)^{1-\alpha} d\xi + \int_{x_{i+1}}^{x_R} (u(\xi) - S_{i+1}(\xi))(\xi - x_{i+1})^{1-\alpha} d\xi
= \int_{x_i}^{x_{i+1}} (u(\xi - \Delta x) - S_{i-1}(\xi - \Delta x))(\xi - x_i)^{1-\alpha} d\xi
- 2 \int_{x_i}^{x_R} (u(\xi) - S_i(\xi))(\xi - x_i)^{1-\alpha} d\xi
+ \int_{x_i}^{x_R-\Delta x} (u(\xi + \Delta x) - S_{i+1}(\xi + \Delta x))(\xi - x_i)^{1-\alpha} d\xi
= \sum_{k=i}^{N_x-1} \int_{x_k}^{x_{k+1}} (u(\xi - \Delta x) - S_{i-1}(\xi - \Delta x))(\xi - x_i)^{1-\alpha} d\xi
- 2 \sum_{k=i}^{N_x-1} \int_{x_k}^{x_{k+1}} (u(\xi) - S_i(\xi))(\xi - x_i)^{1-\alpha} d\xi
+ \sum_{k=i}^{N_x-1} \int_{x_k}^{x_{k+1}} (u(\xi + \Delta x) - S_{i+1}(\xi + \Delta x))(\xi - x_i)^{1-\alpha} d\xi + C(x_i),
\]

where

\[
C(x_i) = \int_{x_{i-1}}^{x_i} (u(\xi) - S_{i-1}(\xi))(\xi - x_{i-1})^{1-\alpha} d\xi - \int_{x_i}^{x_{i+1}} (u(\xi) - S_{i+1}(\xi))(\xi - x_{i+1})^{1-\alpha} d\xi,
\]

and \(C(x_i) = 0 \). Using Taylor series expansion and denoting \(\theta = (\xi - x_k)/\Delta x \), from Lemma 3.1 we get

\[
\epsilon(x_i) = \sum_{k=i}^{N_x-1} \int_{x_k}^{x_{k+1}} (\xi - x_i)^{1-\alpha} \left[\frac{\theta(1-\theta)(\Delta x)^2}{2!} (u''(\xi - \Delta x) - 2u''(\xi) + u''(\xi + \Delta x))
+ \frac{\theta(1-\theta)(1-2\theta)(\Delta x)^3}{3!} (u''''(\xi - \Delta x) - 2u''''(\xi) + u''''(\xi + \Delta x)) + \mathcal{O}((\Delta x)^4) \right] d\xi.
\]

Further using the first mean value theorem for integration and Taylor series expansion,
there exist \(\bar{\eta}^k, \bar{\eta}^k_1, \bar{\eta}^k_2, \bar{\eta}^k_3, \) and \(\bar{\eta}^k_4 \) such that

\[
|\epsilon(x_i)| = \frac{N_x-1}{\sum_{k=1}^{N_x-1} \left\{ \left[\frac{(1-\theta)(\Delta x)^2}{2!} (u''(\bar{\eta}^k_1 - \Delta x) - 2u''(\bar{\eta}^k_1) + u''(\bar{\eta}^k_1 + \Delta x)) + \frac{\theta(1-\theta)(1-2\theta)}{3!} \right] \times (\Delta x)^3 (u'''(\bar{\eta}^k_1 - \Delta x) - 2u'''(\bar{\eta}^k_1) + u'''(\bar{\eta}^k_1 + \Delta x)) + \mathcal{O}((\Delta x)^4) \right\}}
\]

\[
\times (\Delta x)^3 (u'''(\bar{\eta}^k_1) - \Delta x) - 2u'''(\bar{\eta}^k_1) + u'''(\bar{\eta}^k_1 + \Delta x)) + \mathcal{O}((\Delta x)^4) \right\} \int_{\Delta x}^{N_x-1} (\xi - x_i)^{1-\alpha} d\xi \right\}
\]

\[
\leq |u'''(\bar{\eta}^k_0)| \left\{ \frac{(1-\theta)(\Delta x)^4}{2} + \frac{\theta(1-\theta)(1-2\theta)(\Delta x)^4}{3} + \mathcal{O}((\Delta x)^4) \right\} \int_{\Delta x}^{N_x-1} (\xi - x_i)^{1-\alpha} d\xi
\]

\[
= |u'''(\bar{\eta}^k_0)| \left\{ \frac{(1-\theta)(\Delta x)^4}{2} + \frac{\theta(1-\theta)(1-2\theta)(\Delta x)^4}{3} + \mathcal{O}((\Delta x)^4) \right\} \frac{1}{2-\alpha} (x_R - x_i)^{2-\alpha},
\]

where \(|u'''(\bar{\eta}^k_0)| = \max_{i \leq k \leq N_x-1, i \leq j \leq 4} |u'''(\bar{\eta}^k_j)| \). Therefore \(\epsilon(x_i)/(\Delta x)^2 = \mathcal{O}((\Delta x)^2) \), the desired result is proved.

\[
\square
\]

Remark 3.1. From Lemma 3.3, it can be noted that \(u \in C^4(\bar{\Omega}) \) and \(x \partial_x \alpha u \in C^4(\bar{\Omega}) \) if and only if \(u \in C^4(\bar{\Omega}) \) and \(u^{(k)}(x_R) = 0, k = 0, 1, 2, 3 \). At the same time, if we do the zero extension to \(u \) at \([x_R, x_R + \Delta x]\), then \(u \in C^3[x_L, x_R + \Delta x] \) not belongs to \(C^4[x_L, x_R + \Delta x] \).

Using similar idea we can prove

Lemma 3.5. Let \(u \in C^4(\bar{\Omega}) \) and \(x_L \partial_x \alpha u \in C^4(\bar{\Omega}) \), then \(x_L \partial_x \alpha u(x_i, t_n) = \delta^{(\alpha)}_{\alpha} x L u^{(n)} + \mathcal{O}((\Delta x)^2) \), where \(\alpha \in (1, 2) \).

Remark 3.2. From Lemma 3.4, it can be noted that \(u \in C^4(\bar{\Omega}) \) and \(x_L \partial_x \alpha u \in C^4(\bar{\Omega}) \) if and only if \(u \in C^4(\bar{\Omega}) \) and \(u^{(k)}(x_L) = 0, k = 0, 1, 2, 3 \).

Example 1. To numerically verify the truncation error given in Theorem 3.4 in a bounded domain, consider the function \(u(x) = \sin((1-x)^4), x \in \Omega = (0, 1) \); and it is easy to check that \(u^{(4)}(x)|_{\partial \Omega} \neq 0 \). Denoting \(f(x) = x \partial_x \alpha u(x) \), by the algorithm given in [1], we can numerically obtain the value of \(f(x) \) at anywhere of the considered rectangle domain with any desired accuracy.

Example 2. To numerically verify the truncation error given in Lemma 3.5 in a bounded domain, consider the function \(u(x) = \sin(x^4), x \in \Omega = (0, 1) \); and it is easy to check that \(u^{(4)}(x)|_{\partial \Omega} \neq 0 \). Denoting \(F(x) = x \partial_x \alpha u(x) \), again by the algorithm given in [1], we can numerically obtain the value of \(F(x) \) at anywhere of the considered rectangle domain with any desired accuracy.
Table 1: The maximum errors (4.1) and convergent orders for the scheme (2.15).

Δx	α = 1.1	Rate	α = 1.5	Rate	α = 1.9	Rate
1/50	1.0303e-002	2.4122e-002	3.8358e-002			
1/100	2.7832e-003	1.8882	6.4914e-003	1.8937	1.0322e-002	1.8938
1/200	7.2217e-004	1.9464	1.6846e-003	1.9461	2.7038e-003	1.9327
1/400	1.8379e-004	1.9743	4.2937e-004	1.9721	6.9889e-004	1.9518

Table 2: The maximum errors (4.1) and convergent orders for the scheme (2.1).

Δx	α = 1.1	Rate	α = 1.5	Rate	α = 1.9	Rate
1/50	1.0303e-002	2.4122e-002	3.8358e-002			
1/100	2.7832e-003	1.8882	6.4914e-003	1.8937	1.0322e-002	1.8938
1/200	7.2217e-004	1.9464	1.6846e-003	1.9461	2.7038e-003	1.9327
1/400	1.8379e-004	1.9743	4.2937e-004	1.9721	6.9889e-004	1.9518

Table 1 and Table 2 numerically verify Theorem 3.4 and Lemma 3.5, respectively, and they show that the truncation errors are second order. In fact, watch carefully the numerical results, which also confirm Remark 2.1 in some sense.

Lemma 3.6. The coefficients $q_{i,k}^\alpha$ defined in (2.14) satisfy $\sum_{k=i-1}^{N_x} q_{i,k}^\alpha < 0$, $1 \leq i \leq N_x - 1$.

Proof. Taking $u(x,t) \equiv 1$, from [2.7, 2.12, 2.13], we have

$$
\sum_{k=i-1}^{N_x} q_{i,k}^\alpha = \sum_{k=i-1}^{N_x} u(x_k,t)q_{i,k}^\alpha = I_\alpha(x_{i-1}) - 2I_\alpha(x_i) + I_\alpha(x_{i+1}),
$$

since $u(x,t) \equiv 1$ implies its linear interpolation function $S_i(x) = u(x,t) \equiv 1$.

Then

$$
I_\alpha(x_{i-1}) - 2I_\alpha(x_i) + I_\alpha(x_{i+1})
= \frac{1}{\Gamma(2 - \alpha)} \left[\int_{x_{i-1}}^{x_i} (\xi - x_{i-1})^{1-\alpha} d\xi - 2 \int_{x_i}^{x_{i+1}} (\xi - x_{i})^{1-\alpha} d\xi + \int_{x_{i+1}}^{x_{i+1}} (\xi - x_{i+1})^{1-\alpha} d\xi \right]
= \frac{1}{\Gamma(3 - \alpha)} \left[(x_{R} - x_{i-1})^{2-\alpha} - 2(x_{R} - x_{i})^{2-\alpha} + (x_{R} - x_{i+1})^{2-\alpha} \right]
= \frac{1}{\Gamma(3 - \alpha)} \left[(a + \Delta x)^{2-\alpha} - 2a^{2-\alpha} + (a - \Delta x)^{2-\alpha} \right]
= \frac{1}{\Gamma(3 - \alpha)} \left[((a + \Delta x)^{2-\alpha} - a^{2-\alpha}) - (a^{2-\alpha} - (a - \Delta x)^{2-\alpha}) \right]
= \frac{1}{(2 - \alpha)\Gamma(3 - \alpha)} \left(\int_{a}^{a+\Delta x} x^{1-\alpha} dx - \int_{a-\Delta x}^{a} x^{1-\alpha} dx \right).
$$

\[14\]
where \(a = x_R - x_i > 0 \); obviously, \(x^{1-\alpha} \) is a decreasing function, so \(I_\alpha(x_{i-1}) - 2I_\alpha(x_i) + I_\alpha(x_{i+1}) < 0 \).

Using similar method, we can prove

Lemma 3.7. The coefficients \(p_{i,k}^\alpha \) defined in (2.2) satisfy \(\sum_{k=0}^{i+1} p_{i,k}^\alpha < 0 \), \(1 \leq i \leq N_x - 1 \).

Theorem 3.8. The scheme (2.19) of the fractional convection diffusion equation (2.16) with constant coefficients and \(1 < \alpha < 2 \) is unconditionally von Neumann stable.

Proof. Let \(\tilde{u}_j^n \) be the approximate solution of \(u_j^n \), which is the exact solution of the scheme (2.19). Setting \(\varepsilon_j^n = \tilde{u}_j^n - u_j^n \), \(1 \leq j \leq N_x - 1 \), then from (2.19) we get the following perturbation equation

\[
\left(1 - \frac{\Delta t}{2} \delta_{\alpha,x} \right) \varepsilon_{j+1}^n = \left(1 + \frac{\Delta t}{2} \delta_{\alpha,x} \right) \varepsilon_j^n, \tag{3.4}
\]

with zero boundary conditions, i.e., \(\varepsilon_0^n = \varepsilon_{N_x}^n = 0 \). Then we can use the Von Neumann analysis or Fourier method [3] to do the stability analysis. Putting \(\xi_j = \frac{\Delta t}{2(4-\alpha)\Delta x^\alpha} d_{-j} \), \(\eta_j = \frac{\Delta t}{4\Delta x} g_j \), and assuming

\[
\varepsilon_j^n = \frac{1}{\sqrt{2\pi}} \tilde{\varepsilon}(\omega) e^{i\omega x_j},
\]

then (3.4) leads to

\[
\tilde{\varepsilon}^{n+1}(\omega) \left[1 - \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x} \right) \right) \right] = \tilde{\varepsilon}^n(\omega) \left[1 + \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x} \right) \right) \right].
\]

The amplification factor is

\[
\tilde{Q}(\omega) = \left[1 - \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x} \right) \right) \right]^{-1} \cdot \left[1 + \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^\alpha e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x} \right) \right) \right].
\]

Next we prove that \(|\tilde{Q}(\omega)| < 1 \), it means that the real part of the element in the big parentheses of above equation is negative, that is

\[
\sum_{k=0}^{j+1} p_{j,k}^\alpha \cos(\omega(k-j)\Delta x) < 0 \quad \text{and} \quad \sum_{k=j-1}^{N_x} q_{j,k}^\alpha \cos(\omega(k-j)\Delta x) < 0.
\]
We can write
\[
\sum_{k=0}^{j+1} p_{j,k}^\alpha \cos((k-j)\Delta x) = (p_{j,j-1}^\alpha + p_{j,j+1}^\alpha) \cos(\omega \Delta x) + p_{j,j}^\alpha + \sum_{k=0}^{j-2} p_{j,k}^\alpha \cos((k-j)\Delta x),
\]
\[
\sum_{k=0}^{N_x} q_{j,k}^\alpha \cos((k-j)\Delta x) = (q_{j,j-1}^\alpha + q_{j,j+1}^\alpha) \cos(\omega \Delta x) + q_{j,j}^\alpha + \sum_{k=0}^{j+2} q_{j,k}^\alpha \cos((k-j)\Delta x).
\]

From Theorem B of Appendix, we know that \(p_{j,j-1}^\alpha + p_{j,j+1}^\alpha \geq 0\), \(p_{j,j}^\alpha \geq 0\) for \(k \leq j - 2\), and \(q_{j,j-1}^\alpha + q_{j,j+1}^\alpha \geq 0\), \(q_{j,j}^\alpha \geq 0\) for \(k \geq j + 2\), then
\[
\sum_{k=0}^{j+1} p_{j,k}^\alpha \cos((k-j)\Delta x) \leq (p_{j,j-1}^\alpha + p_{j,j+1}^\alpha) + p_{j,j}^\alpha + \sum_{k=0}^{j-2} p_{j,k}^\alpha \leq \sum_{k=0}^{j+1} p_{j,k}^\alpha \leq 0,
\]
\[
\sum_{k=0}^{N_x} q_{j,k}^\alpha \cos((k-j)\Delta x) \leq (q_{j,j-1}^\alpha + q_{j,j+1}^\alpha) + q_{j,j}^\alpha + \sum_{k=0}^{j+2} q_{j,k}^\alpha \leq \sum_{k=0}^{j+2} q_{j,k}^\alpha \leq 0,
\]
where Lemma 3.6 and 3.7 are used.

3.2. Convergence and stability for two-dimensional two-sided fractional convection diffusion equation

In this subsection, we prove the consistency and stability of the scheme (2.27)-(2.31) which combine the alternating directions implicit scheme with Crank-Nicolson scheme together (ADI-CN). According to the Lax’s equivalence theorem, the convergence of the ADI-CN scheme is naturally obtained.

Theorem 3.9. The truncation error of the scheme (2.27) is \(O((\Delta x)^2) + O((\Delta y)^2) + O((\Delta t)^2)\).

Proof. Let \(u(x,y,t)\) be the exact solution of the two-dimensional two-sided fractional convection diffusion equation (1.1), then for the scheme (2.26) we have
\[
\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - (d_{+,i,j} \delta_{+,x} + d_{-,i,j} \delta_{-,x} + e_{+,i,j} \delta_{+,y} + e_{-,i,j} \delta_{-,y}) D_{\alpha,x} u_{i,j}^{n+1} + u_{i,j}^n = 2 s_{i,j}^{n+1/2}
\]
\[
= \frac{\partial u(x_i, y_j, t_{n+1/2})}{\partial t} - d_{+,i,j} x_D u(x_i, y_j, t_{n+1/2}) - d_{-,i,j} x_D u(x_i, y_j, t_{n+1/2})
\]
\[
- e_{+,i,j} y_D u(x_i, y_j, t_{n+1/2}) - e_{-,i,j} y_D u(x_i, y_j, t_{n+1/2}) - g_{i,j} u(x_i, y_j, t_{n+1/2})
\]
\[
- h_{i,j} u(x_i, y_j, t_{n+1/2}) - s(x_i, y_j, t_{n+1/2}) + O(\Delta x)^2 + O(\Delta y)^2 + O(\Delta t)^2.
\]

The scheme (2.27) differs from (2.26) by a perturbation equals to (19)
\[
\frac{(\Delta t)^2}{4} \delta_{\alpha,x} \delta_{\beta,y} (u_{i,j}^{n+1} - u_{i,j}^n),
\]
which may be deduced by distributing the operator products in (2.27). Since \((u_{i,j}^{n+1} - u_{i,j}^n)\) is an \(O(\Delta t)\) term, it follows that the perturbation contributes an \(O((\Delta t)^2)\) error component to the truncation error of (2.26). Thus, the scheme (2.27) has a truncation error also \(O((\Delta x)^2) + O((\Delta y)^2) + O((\Delta t)^2)\).

\[\Box\]

Theorem 3.10. The ADI-CN scheme, defined by (2.26) with constant coefficients, is unconditionally von Neumann stable for \(1 < \alpha, \beta < 2\).

Proof. Let \(\tilde{u}_{j,m}^n\) be the approximate solution of \(u_{j,m}^n\), which is the exact solution of the scheme (2.26). Setting \(\varepsilon_{j,m}^n = \tilde{u}_{j,m}^n - u_{j,m}^n, 1 \leq j \leq N_x - 1, \) and \(1 \leq m \leq N_y - 1,\) then from (2.26) we get the following perturbation equation

\[
(1 - \frac{\Delta t}{2} \delta_{\alpha,x} - \frac{\Delta t}{2} \delta_{\beta,y}) \varepsilon_{j,m}^{n+1} = \left(1 + \frac{\Delta t}{2} \delta_{\alpha,x} + \frac{\Delta t}{2} \delta_{\beta,y}\right) \varepsilon_{j,m}^n.
\]

Similarly, putting \(\xi_j = \frac{\Delta t}{2(4 - \alpha)\Delta x^2} d_{+,j}, \eta_j = \frac{\Delta t}{2(4 - \alpha)\Delta x^2} d_{-,j}, \gamma_j = \frac{\Delta t}{4\Delta x} g_j\) and \(\tilde{\eta}_m = \frac{\Delta t}{2(4 - \beta)\Delta y^2} e_{+,m}, \tilde{\gamma}_m = \frac{\Delta t}{4\Delta y} h_m,\) assuming

\[
\varepsilon_{j,m}^n = \frac{1}{\sqrt{2\pi}} \varepsilon^n(\omega)e^{i\omega(x+y)},
\]

then (3.5) leads to

\[
varepsilon^{n+1}(\omega) \left[1 - \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x}\right)\right)\right.
\]

\[
- \left(\tilde{\xi}_m \sum_{k=0}^{m+1} p_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\eta}_m \sum_{k=m-1}^{N_y} q_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\gamma}_m \left(e^{i\omega\Delta y} - e^{-i\omega\Delta y}\right)\right)\right]
\]

\[= \varepsilon^n(\omega) \left[1 + \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x}\right)\right)\right.
\]

\[
+ \left(\tilde{\xi}_m \sum_{k=0}^{m+1} p_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\eta}_m \sum_{k=m-1}^{N_y} q_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\gamma}_m \left(e^{i\omega\Delta y} - e^{-i\omega\Delta y}\right)\right)\right]
\]

The amplification factor is

\[
Q(\omega) = \left[1 - \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x}\right)\right)\right.
\]

\[
- \left(\tilde{\xi}_m \sum_{k=0}^{m+1} p_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\eta}_m \sum_{k=m-1}^{N_y} q_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\gamma}_m \left(e^{i\omega\Delta y} - e^{-i\omega\Delta y}\right)\right)\right]
\]

\[\cdot \left[1 + \left(\xi_j \sum_{k=0}^{j+1} p_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \eta_j \sum_{k=j-1}^{N_x} q_{j,k}^{\alpha} e^{i\omega(k-j)\Delta x} + \gamma_j \left(e^{i\omega\Delta x} - e^{-i\omega\Delta x}\right)\right)\right.
\]

\[
+ \left(\tilde{\xi}_m \sum_{k=0}^{m+1} p_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\eta}_m \sum_{k=m-1}^{N_y} q_{m,k}^{\beta} e^{i\omega(k-m)\Delta y} + \tilde{\gamma}_m \left(e^{i\omega\Delta y} - e^{-i\omega\Delta y}\right)\right)\right].
\]
Next we prove that $|\hat{Q}(\omega)| < 1$, it means that the real part of the element in the big parentheses of above equation is negative, that is

$$\sum_{k=0}^{j+1} p_{j,k}^\alpha \cos(\omega(k-j)\Delta x) < 0 \quad \text{and} \quad \sum_{k=j}^{N_x} q_{j,k}^\alpha \cos(\omega(k-j)\Delta x) < 0,$$

$$\sum_{k=0}^{m+1} p_{m,k}^\beta \cos(\omega(k-m)\Delta y) < 0 \quad \text{and} \quad \sum_{k=m}^{N_y} q_{m,k}^\beta \cos(\omega(k-m)\Delta y) < 0.$$

Similar to Theorem 3.8, we get that the scheme (2.26) is unconditionally von Neumann stable.\blacksquare

4. Numerical Results

Here we verify the above theoretical results including convergent order and stability. Introducing the vectors $U = [u_h(x_0, t), \ldots, u_h(x_N, t)]^T$, where U is the approximated value, and $u = [u(x_0, t), \ldots, u(x_N, t)]^T$, where u is the exact value, in the following numerical examples the errors are measured by

$$||U(\Delta x) - u(\Delta x)||_\infty,$$

where $|| \cdot ||_\infty$ is the l_∞ norm.

4.1. Numerical results for one-dimensional two-sided fractional convection diffusion equation

Let us consider the one-dimensional fractional convection diffusion equation (2.16), where $0 < x < 1$ and $0 < t \leq 1$, with the coefficient functions

$$d_+(x) = \Gamma(3 - \alpha)x^\alpha, \quad d_-(x) = \Gamma(3 - \alpha)(2 - x)^\alpha, \quad \text{and} \quad g(x) = \frac{1}{4}x.$$

Take the exact solution of the equation as $u(x, t) = e^{-t} \sin((2x)^4)\sin((2 - 2x)^4)$, then the corresponding initial and boundary conditions are, respectively, $u(x, 0) = \sin((2x)^4)\sin((2 - 2x)^4)$ and $u(0, t) = u(1, t) = 0$; and the forcing function

$$s(x, t) = -e^{-t} \sin((2x)^4)\sin((2 - 2x)^4) - e^{-t}d_+(x)_x D_x^\alpha \sin((2x)^4)\sin((2 - 2x)^4)$$

$$- d_-(x)_x D_x^\alpha \sin((2x)^4)\sin((2 - 2x)^4)$$

$$- 64e^{-t}g(x)(x^3\cos((2x)^4)\sin((2 - 2x)^4) - (1 - x)^3\sin((2x)^4)\cos((2 - 2x)^4)),$$

by the algorithm given in [1], we can numerically obtain the value of $s(x, t)$ at anywhere of the considered rectangle domain with any desired accuracy.

In Table 3, we show the scheme (2.17) is second order convergent in both space and time directions.
Table 3: The maximum errors (4.1) and convergent orders for the scheme (2.17) of the one-dimensional two-side fractional convection diffusion equation (2.16) at $t=1$ and $\Delta t = \Delta x$.

Δt, Δx, Δy	$\alpha = 1.1$	Rate	$\alpha = 1.5$	Rate	$\alpha = 1.9$	Rate
$1/50$	2.1180e-003	1.9815e-003	1.3809e-003	1.8099e-003	1.9532e-003	1.9559
$1/100$	5.2688e-004	2.0072	5.0092e-004	1.9839	3.5593e-004	1.9559
$1/200$	1.3174e-004	1.9997	1.2649e-004	1.9856	9.1681e-005	1.9569
$1/400$	3.2913e-005	2.0010	3.1851e-005	1.9896	2.3523e-005	1.9625

4.2. Numerical results for two-dimensional two-sided fractional convection diffusion equation

Consider the two-dimensional two-sided fractional convection diffusion equation (1.1), on a finite domain $0 < x < 1$, $0 < y < 1$, $0 < t \leq 1$, and with the coefficients

$$d_+(x, y) = \Gamma(3 - \alpha)x^\alpha, \quad d_-(x, y) = \Gamma(3 - \alpha)(2 - x)^\alpha, \quad g(x, y) = \frac{1}{4}x,$$
$$e_+(x, y) = \Gamma(3 - \beta)y^\beta, \quad e_-(x, y) = \Gamma(3 - \beta)(2 - y)^\beta, \quad h(x, y) = \frac{1}{4}y,$$

and the initial condition $u(x, y, 0) = \sin((2x)^4)\sin((2y)^2)\sin((2 - 2y)^2)$ and the Dirichlet boundary conditions on the rectangle in the form $u(0, y, t) = u(x, 0, t) = 0$ and $u(1, y, t) = u(x, 1, t) = 0$ for all $t \geq 0$. The exact solution to this two-dimensional two-sided fractional convection diffusion equation is

$$u(x, y, t) = e^{-t}\sin((2x)^4)\sin((2 - 2x)^4)\sin((2y)^4)\sin((2 - 2y)^4).$$

By the algorithm given in [1] and above conditions, it is easy to obtain the forcing function $s(x, y, t)$ at anywhere of the considered rectangle domain with any desired accuracy.

Table 4: The maximum errors (4.1) and convergent orders for the scheme (2.27)-(2.31) of the two-dimensional two-sided fractional convection diffusion equation (1.1) at $t = 1$ and $\Delta t = \Delta x = \Delta y$.

Δt, Δx, Δy	$\alpha = 1.1$, $\beta = 1.1$	Rate	$\alpha = 1.6$, $\beta = 1.4$	Rate	$\alpha = 1.9$, $\beta = 1.9$	Rate
$1/25$	9.5946e-003	8.5313e-003	1.0232e-002	1.0232e-002	1.0232e-002	1.0232e-002
$1/50$	2.3956e-003	2.0018	2.1729e-003	1.9731	2.6207e-003	1.9650
$1/100$	5.9582e-004	2.0075	5.5244e-004	1.9757	6.6155e-004	1.9860
$1/200$	1.4915e-004	1.9981	1.3959e-004	1.9847	1.6796e-004	1.9778

Table 4 also shows the maximum error, at time $t = 1$ and $\Delta t = \Delta x = \Delta y$, between the exact analytical value and the numerical value obtained by applying the ADI-CN scheme
and the scheme is second order convergent and this is in agreement with the order of the truncation error.

4.3. Numerical results for two-dimensional one-sided fractional convection diffusion equation

Considering the two-dimensional two-sided fractional convection diffusion equation (1.1), and taking the coefficients functions as
\[
\begin{align*}
d_+ (x, y) &= 1, & d_- (x, y) &= 0, & g(x, y) &= 1, \\
e_+ (x, y) &= 1, & e_- (x, y) &= 0, & h(x, y) &= 1,
\end{align*}
\]
then it becomes the two-dimensional one-sided fractional convection diffusion equation,
\[
\frac{\partial u(x, y, t)}{\partial t} = \frac{\partial^\alpha u(x, y, t)}{\partial x^\alpha} + \frac{\partial^\beta u(x, y, t)}{\partial y^\beta} + \frac{\partial u(x, y, t)}{\partial x} + \frac{\partial u(x, y, t)}{\partial y} + s(x, y, t),
\]
where \(0 < x < 1, 0 < y < 1, 0 < t \leq 1\), and the initial condition \(u(x, y, 0) = \sin(x^4)\sin(y^4)\) and the Dirichlet boundary conditions on the rectangle in the simple form \(u(0, y, t) = u(x, 0, t) = 0, u(1, y, t) = e^{-t}\sin(1)\sin(y^4)\) and \(u(x, 1, t) = e^{-t}\sin(1)\sin(x^4)\) for all \(t > 0\). The exact value to this two-dimensional one-sided fractional convection diffusion equation is
\[
u(x, y, t) = e^{-t}\sin(x^4)\sin(y^4).
\]
By the algorithm given in [1] and above conditions, it is easy to obtain the forcing function \(s(x, y, t)\) at anywhere of the considered rectangle domain with any desired accuracy.

Table 5: The maximum errors (1.1) and convergent orders for the scheme (2.27)-(2.31) of the two-dimensional one-sided fractional convection diffusion equation (1.2) at \(t = 1\) and \(\Delta t = \Delta x = \Delta y\).

\(\Delta t, \Delta x, \Delta y\)	\(\alpha = 1.1, \beta = 1.1\)	Rate	\(\alpha = 1.6, \beta = 1.4\)	Rate	\(\alpha = 1.9, \beta = 1.9\)	Rate
1/25	1.1435e-003	5.0896e-004	2.6381e-004			
1/50	2.8953e-004	1.9817	1.3592e-004	1.9048	6.9390e-005	1.9267
1/100	6.8091e-005	2.0882	3.4877e-005	1.9624	1.8064e-005	1.9416
1/200	1.5950e-005	2.0939	8.8502e-006	1.9785	4.6728e-006	1.9507

Table 5 shows the maximum error, at time \(t = 1\) and \(\Delta t = \Delta x = \Delta y\), between the exact analytical value and the numerical value obtained by applying the ADI-CN scheme (2.27)-(2.31), and the scheme is second order convergent and it corresponds to the order of the truncation error.
5. Conclusions

This work provides the second-order efficient numerical scheme for the two-dimensional two-sided fractional advection diffusion equation on a finite domain. Both the convergent order and numerical stability of the scheme are theoretically proved and numerically verified. This paper can be considered as the sequel of the works \[10, 11, 12, 16, 17, 18, 19, 20\].

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University under Grant No. NCET-09-0438, the National Natural Science Foundation of China under Grant No. 11271173, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2010-63 and lzujbky-2012-k26. M.H. Chen thanks Meerschaert for providing the materials and discussions.

Appendix

Theorem A. For any given \(u(x) \in C^4[x_L, x_R]\), there exists an extension of \(u(x)\) defined on \([x_R, x_R + \Delta x]\), such that the extended \(u(x) \in C^4[x_L, x_R + \Delta x]\) and

\[
\int_{x_R-\Delta x}^{x_R} (u(\xi) - S_{i-1}(\xi))(\xi - x_{i-1})^{1-\alpha} d\xi - \int_{x_R}^{x_R+\Delta x} (u(\xi) - S_{i+1}(\xi))(\xi - x_{i+1})^{1-\alpha} d\xi = 0, \tag{5.1}
\]

where \(S_{i-1}(x)\) is the linear interpolation function of \(u(x)\) on the interval \([x_R-\Delta x, x_R]\), and \(S_{i+1}(x)\) the linear interpolation function of the extended \(u(x)\) on the interval \([x_R, x_R + \Delta x]\).

Proof. Denoting \(a = x_R, b = x_R + \Delta x\), and \(d_1 = \int_{x_R-\Delta x}^{x_R} (u(\xi) - S_{i-1}(\xi))(\xi - x_{i-1})^{1-\alpha} d\xi\), then the equality \((5.1)\) means to find the extension of \(u(x)\) on the interval \([a, b]\) such that \(\int_a^b (u(\xi) - S_{i+1}(\xi))(\xi - x_{i+1})^{1-\alpha} d\xi = d_1\). Taking \(u(b) = u(a)\), then \(S_{i+1}(x) \equiv u(a)\) on the interval \([a, b]\) since \(S_{i+1}(x)\) is the linear interpolation of \(u(x)\). Now we need to prove that there exists \(V(x) = u(x) - S_{i+1}(x)\) on the interval \([a, b]\) such that \(V(a) = 0, V(b) = 0, V'(a^+) = u'(a^-) = d_2, V''(a^+) = u''(a^-) = d_3, V'''(a^+) = u'''(a^-) = d_4, \) and \(V''''(a^+) = u''''(a^-) = d_5\).

Suppose that \(V(x)\) is composed by \(\{1, x, x^2, x^3, x^4, x^5, x^6\}\), i.e.,

\[
V(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + c_6 x^6.
\]

Using the first mean value theorem for integration, there exists \(\eta \in (a, b)\), such that

\[
\int_a^b V(\xi)(\xi - x_{i+1})^{1-\alpha} d\xi = V(\eta) \int_a^b (\xi - x_{i+1})^{1-\alpha} d\xi = d_1,
\]
and it can be rewritten as
\[
c_0 + c_1 \eta + c_2 \eta^2 + c_3 \eta^3 + c_4 \eta^4 + c_5 \eta^5 + c_6 \eta^6 = \left(\int_a^b (\xi - x_{i+1})^{1-\alpha} \, d\xi \right)^{-1} d_1 =: d_1
\]
(again denoted by \(d_1\), and it is easy to check that \(\int_a^b (\xi - x_{i+1})^{1-\alpha} \, d\xi \neq 0\)). Combining all the above requirements, we obtain the linear algebraic equations \(Ac = d\), where \(c = [c_0, c_1, c_2, c_3, c_4, c_5, c_6]^T\), \(d = [0, d_1, d_2, d_3, d_4, d_5]^T\), and the determinant of the coefficient matrix \(A\) is

\[
det(A) = \begin{vmatrix}
1 & a & a^2 & a^3 & a^4 & a^5 & a^6 \\
1 & b & b^2 & b^3 & b^4 & b^5 & b^6 \\
1 & \eta & \eta^2 & \eta^3 & \eta^4 & \eta^5 & \eta^6 \\
0 & 1 & 2a & 3a^2 & 4a^3 & 5a^4 & 6a^5 \\
0 & 0 & 2 & 6a & 12a^2 & 20a^3 & 30a^4 \\
0 & 0 & 0 & 6 & 24a & 60a^2 & 120a^3 \\
0 & 0 & 0 & 0 & 24 & 120a & 360a^2
\end{vmatrix}
\]

Using the formula \(a^n - b^n = (a - b)(a^{n-1} + ba^{n-2} + b^2a^{n-3} + \ldots + b^{n-2}a + b^{n-1})\), taking out the common factors \(\eta - a\) and \(b - a\), and repeating the steps, finally we get

\[
det(A) = 288(\eta - a)^5(b - a)^5
\]

Since \(\eta \neq a\), \(\eta \neq b\), and \(a \neq b\), we get \(det(A) \neq 0\). Then with the given basis functions \(\{1, x, x^2, x^3, x^4, x^5, x^6\}\), there exists a unique extended part of \(u(x)\), which is \(V(x) + u(a)\) with \(x \in [x_R, x_R + \Delta x]\). The extended \(u(x) \in C^4[x_L, x_R + \Delta x]\) and (5.1) holds. \(\square\)
Theorem B. For the coefficients $q_{i,k}^\alpha$ defined in (2.14) and $p_{i,k}^\alpha$ defined by (2.2), the following hold: $q_{i,k}^\alpha > 0$ for $k \geq i + 2$, $p_{i,k}^\alpha > 0$ for $k \leq i - 2$, and $p_{i,i+1}^\alpha = q_{i,i+1}^\alpha = 1$.

Proof. Similar to the proof given in [18] for the left Riemann-Liouville fractional derivative, we have $q_{i,k}^\alpha = 0$, $k < i - 1$, $q_{i,i}^\alpha - 1$, $q_{i,i}^\alpha = -4 + 2^3 - \alpha$, $q_{i,i}^\alpha + 1 = 6 - 2^5 - \alpha + 3^3 - \alpha$, and $q_{i,k}^\alpha = (k - i + 2)^3 - 4(k - i + 1)^3 - 4(k - i - 1)^3 + (k - i - 2)^3$, $k \geq i + 2$. For $q_{i,k}^\alpha$, $k \geq i + 2$, denote $m = k - i \geq 2$, then

$$q_{i,i+m}^\alpha = (m + 2)^3 - 4(m + 1)^3 + 6m^3 - 4(m - 1)^3 + (m - 2)^3$$

$$= m^{3-\alpha} \left[6 + \left(1 + \frac{2}{m} \right)^3 - 4 \left(1 + \frac{1}{m} \right)^3 - 4 \left(1 - \frac{1}{m} \right)^3 \right]$$

$$= m^{3-\alpha} \left\{ 6 + \sum_{k=0}^{\infty} \binom{3 - \alpha}{k} \left[\left(\frac{2}{m} \right)^k - 4 \left(\frac{1}{m} \right)^k - 4 \left(\frac{-1}{m} \right)^k + \left(\frac{-2}{m} \right)^k \right] \right\}$$

$$= m^{3-\alpha} \sum_{k=0}^{\infty} \binom{3 - \alpha}{k} \left[\left(\frac{2}{m} \right)^k - 4 \left(\frac{1}{m} \right)^k - 4 \left(\frac{-1}{m} \right)^k + \left(\frac{-2}{m} \right)^k \right]$$

$$= \frac{1}{m^{\alpha-1}} \left[(3 - \alpha)(2 - \alpha)(1 - \alpha)(-\alpha) + \ldots \right]$$

$$> 0,$$

noting that the terms (with k being odd numbers) of the series are zero and the terms (with k being even numbers) are positive. According to Remark 2.1, all the corresponding properties of $p_{i,k}^\alpha$ are obtained.

References

[1] W.H. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys. 227 (2007) 1510-1522.

[2] K. Diethelm, N.J. Ford, A.D. Freed, A predictor corrector approach for the numerical solution of fractional differential equations, Nonl. Dyna. 29 (2002) 3-22.

[3] B. Gustafsson, H.-O. Kreiss, J. Oliger, Time dependent problems and difference methods, John Wiley & Sons, Inc, New York, 1995.

[4] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience Publication, US, 1993.

[5] L. Lapidus, G.F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley, New York, 1982.
[6] C.P. Li, A. Chen, J.J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phy. 230 (2011) 3352-3368.

[7] C.P. Li, W.H. Deng, Remarks on fractional derivatives, Appl. Math. Comput. 187 (2007) 777-784.

[8] F. Liu, V. Anh, I. Turner, P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing 13 (2003) 233-245.

[9] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comp., 191 (2007) 12-20.

[10] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004) 65-77.

[11] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006) 80-90.

[12] M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys. 211 (2006) 249-261.

[13] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000) 1-77.

[14] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[15] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.

[16] E. Sousa, How to approximate the fractional derivative of order $1 < \alpha \leq 2$, in: Proceedings of the 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, 2010.

[17] E. Sousa, Numerical approximations for fractional diffusion equations via splines, Comput. Math. Appl. 62 (2011) 938-944.

[18] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, arXiv:1109.2345v1 [math.NA].

[19] C. Tadjeran, M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys. 220 (2007) 813-823.
[20] C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006) 205-213.

[21] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010) 200-218.