The incidence risk of type 2 diabetes mellitus in female nurses: a nationwide matched cohort study

Hsiu-Ling Huang, Cheng-Chin Pan, Shun-Mu Wang, Pei-Tseng Kung, Wen-Yu Chou and Wen-Chen Tsai

Abstract

Background: Diabetes is one of the most common chronic illnesses worldwide. This study was to assess whether the incidence risk of type 2 diabetes mellitus between female nurses and female non-nurses.

Methods: Study data were obtained from the Longitudinal Health Insurance Research Database, and nurses were sampled from the Registry for medical personnel. Nurses and non-nurses with similar traits and health conditions were selected via 1:1 propensity score matching. A total of 111,670 subjects were selected (55,835 nurses and 55,835 non-nurses). Stages of diabetes development were monitored until December 31, 2009. The Cox proportional hazards model was used to discuss risks and influencing factors related to diabetes. Poisson distribution methods were used to examine the incidence rate of diabetes per 1,000 person-years.

Results: The propensity matching results show that on average, female nurses who were diagnosed with diabetes were younger compared with the non-nurses (46.98 ± 10.80 vs. 48.31 ± 10.43, p < 0.05). However, the results of the Cox proportional hazards model show that the nurses showed a lower risk of developing diabetes compared with the non-nurses (Adj. HR = 0.84, 95 % CI: 0.79–0.90). Factors influencing diabetes development risks among the nurses include advanced age and high Charlson Comorbidity Index levels.

Conclusion: The low degree of diabetes development among the nurses may be attributable to the fact that nurses possess substantial knowledge on health care and on healthy behaviors. The results of this study can be used as a reference to assess occupational risks facing nursing staff, to prevent diabetes development, and to promote health education.

Keywords: Diabetes, Nurse, Occupational health, National health insurance, Cohort study

Background

Nurses work on the front lines in the medical industry and account for 45.2 % of all professional medical personnel in Taiwan [1]. Numerous medical orders and procedures rely on the work of nurses; therefore, nursing care is highly correlated with care quality levels and with patient treatment outcomes, and nurses play a crucial role in the medical industry.

Ongoing care services are essential to the medical industry. Shift work creates certain occupational problems for nurses [2, 3]. Relevant studies have shown that in addition to causing an increasing number of accidents [4] and higher rates of disease and cancer development [5], engagement in shift work increases one’s likelihood of developing metabolic diseases [6, 7]. Previous studies have revealed that individuals working in occupations that involve shift work show higher risks of developing diabetes compared with those who do not work shifts [8–10].

Diabetes is one of the most common chronic illnesses worldwide. Statistics [11] show that approximately 366 million people worldwide were diagnosed with diabetes in 2011. This number is estimated to increase to 552 million by 2030, accounting for 4.4 % of the global population. In the United States,
research has been conducted on the health status of 67,420 nurses from 1976 to 1996, and the results show that 7,401 (11 %) of the nurses were diagnosed with type 2 diabetes mellitus (DM) [12]. Since 2003, diabetes has ranked third among the top 10 causes of death among women in Taiwan [13]. Nurses are exposed to an occupational environment that may be detrimental to their health, which may affect the quality of medical care. The present study compares type 2 DM development risk levels among female nurses to those of the general female citizen population to further identify influencing factors. These data may serve as a foundation for future discussions on occupational health in relation to health promotion, prevention and protection.

Methods

Study design

A retrospective and longitudinal method was adopted in this study, and data were sourced from the National Health Insurance Research Database. To comply with privacy measures, personal information was removed from the collected data.

The Taiwanese government created a compulsory National Health Insurance (NHI) system in 1995, a governmental insurance system that all citizens are mandated to be insured under. Since the end of 2012, the NHI coverage rate reached to as high as 99.85 % [14]. The NHI covers costs for outpatient procedures; emergency procedures; and inpatient prescriptions, treatments, and examinations. The NHI database details all medical

Table 1	Participants demographics before and after propensity score (PS) matching							
Variables	Before PS Matching	After PS Matching (1:1)						
	Total	Non-nurses	Nurse	p-value	Total	Non-nurses	Nurse	p-value
N	%	N	%	N	%	N	%	
Total participants	374173	100.00	303498	81.11	70675	18.89		
Age				<0.001	1.000			
<25	59213	15.83	39267	12.94	19946	28.22		
25–34	107621	28.76	76758	25.29	30863	43.67		
35–44	88584	23.67	74351	24.50	14233	20.14		
45–54	54406	14.54	49631	16.35	4775	6.76		
55–64	32444	8.67	31771	10.47	19946	28.22		
≥65	31905	8.53	31720	10.47	185	0.26		
Average age (Mean, Std)	40.13	15.05	42.20	15.48	31.23	8.48		
Monthly salary(NT$)				<0.001	1.000			
Low-income household	1326	0.35	1312	0.43	14	0.02		
≥17280	47252	12.63	42573	14.03	4679	6.62		
17281 ~ 22800	141273	37.76	134297	44.25	6976	9.87		
22801 ~ 28800	71049	18.99	61248	20.18	9801	13.87		
28801 ~ 36300	34972	9.35	23113	7.62	11859	16.78		
36301 ~ 45800	44721	11.99	20443	6.74	24278	34.35		
45801 ~ 57800	24723	6.49	14628	4.82	9645	13.65		
≥57801	9291	2.48	5868	1.93	3423	4.84		
Average Salary (Mean, Std)				3.38	3.34			

CCI, Charlson Comorbidity Index; PS, propensity score

It’s 30 New Taiwan Dollar (NT$) per US dollar

p-value was considered significant at p < 0.05
claims records for the insured, including treatments for chronic illnesses such as diabetes [15, 16].

Data sources and study participants

Data were sourced from the Longitudinal Health Insurance Research Database of 2000 published by the NHI, which included one million population randomly selected to be representative of whole population in Taiwan and a sample of nurses was selected from the nationwide Registry for Medical Personnel published by the NHI. We used female nurses and female non-nurses as the study participants. Nurses were defined as the

Table 2 Bivariate analysis on the incidence of diabetes
Variables
Total participants
Nurses or non-nurses
Non-nurses
Nurses
Age
<25
25–34
35–44
45–54
55–64
≧65
Average age (Mean, Std)
Monthly salary (NT$)
≧17280
17281 ~ 22800
22801 ~ 28800
28801 ~ 36300
36301 ~ 45800
45801 ~ 57800
≧57801
Urbanization of residence
Level 1
Level 2 & 3
Level 4 & 5
Level 6 & 7
Other catastrophic illnesses
No
Yes
CCI
0
1 ~ 3
4 ~ 6
7 ~ 9
≧10
Average CCI (Mean, Std)

CCI, Charlson Comorbidity Index; HR, hazard ratio; CI, confidence interval
It's 30 New Taiwan Dollar (NT$) per US dollar
Urbanization level of residence area (overall 7 levels; Level 1 was the most urbanized)
p-value was considered significant at $p < 0.05$
nurses were listed in the Registry for Medical Personnel before December 31, 2000. Non-nurses were defined as the participants who had not registered as a licensed medical professional, such as physicians, dentists, physical therapists, nutritionists, and so on before the end of study observation. Participants younger than 20 years and older than 90 years and those diagnosed with type 2 DM prior to December 31, 2000 were excluded. Male nurses were excluded from the study, as most nurses in Taiwan are female (98.92 %) [17]. A total of 374,173 participants were selected, 70,675 of whom were nurses and 303,498 of whom were female non-nurses.

To objectively compare diabetes development risks among female nurses and female non-nurses, 1:1 propensity score matching was used to control for selection bias, and participants with similar characteristics and health conditions were selected from the two groups. After propensity score matching, we assigned 55,835 nurses to the observation group and 55,835 non-nurses to the control group (Table 1). Patterns of diabetes development were monitored until December 31, 2009, covering an average of 9.68 ± 1.06 years (9.72 ± 0.92 and 9.64 ± 1.19 y for nurses and non-nurses, respectively).

Variables description

In this study, the type 2 diabetes mellitus was defined as a primary or secondary diagnosis with ICD-9-CM: 250 or A-code: A181 and the patients had made 3 or more...

Variables description	Non-nurses	Nurses	Adj. HR* (Nurse:GP)	95 % CI	p -value		
Total Diabetes (N)	1750	1498	0.84	0.79	0.90	<0.001	
Age (y/o)							
<35	36084	36099	2.23	0.97	0.85	1.11	0.628
35–44	14118	14103	3.68	0.82	0.73	0.92	<0.001
45–54	4775	4775	8.90	0.75	0.66	0.85	<0.001
55–64	673	673	13.82	0.85	0.64	1.13	0.260
≥65	185	185	17.84	0.98	0.60	1.62	0.943
Monthly salary (NT$)							
≤17280	4693	4693	2.62	0.65	0.52	0.82	<0.001
17281 ~ 22800	6976	6976	2.62	0.84	0.69	1.03	0.089
22801 ~ 28800	9801	9801	2.16	0.77	0.64	0.92	0.004
28801 ~ 36300	10023	10038	2.16	0.97	0.81	1.18	0.779
36301 ~ 45800	13680	13686	3.08	0.86	0.76	0.99	0.030
45801 ~ 57800	8068	8068	2.79	0.93	0.78	1.12	0.433
≥57801	2594	2573	4.55	0.80	0.63	1.03	0.080
Urbanization of residence							
Level 1	22883	19566	2.78	0.86	0.76	0.96	0.006
Level 2 & 3	25499	27086	2.59	0.84	0.76	0.93	<0.001
Level 4 & 5	5544	6668	2.73	0.85	0.69	1.05	0.133
Level 6 & 7	1909	2515	2.78	0.71	0.50	1.00	0.050
Other catastrophic illnesses							
No	54530	54653	2.63	0.84	0.78	0.90	<0.001
Yes	1305	1182	5.33	0.93	0.66	1.31	0.667
CCI							
≤3	30433	29795	2.10	0.82	0.73	0.93	0.002
4 ~ 6	15428	15753	3.12	0.87	0.77	0.98	0.026
7 ~ 9	6912	7164	4.82	0.85	0.74	0.99	0.030
≥10	3062	3123	6.63	0.80	0.66	0.96	0.015

*The stratified Cox proportional hazards models have controlled for age, monthly salary, urbanization of residence, other catastrophic illnesses, CCI. CCI, Charlson Comorbidity Index; HR, hazard ratio; CI, confidence interval.

It’s 30 New Taiwan Dollar (NT$) per US dollar.

p -value was considered significant at p < 0.05.
clinic visits or been hospitalized at least once within 365 days [18], and this study excluded other types DM patients. We categorized residence areas into 7 levels, and level 1 was the most urbanized [19]. We used the modified Charlson Comorbidity Index (CCI) to classify the severity of comorbidity [20]. The CCI involved 17 comorbidities weighted based on severity. Higher score denoted greater comorbidity. Presence of catastrophic illnesses was defined as yes or no. The catastrophic illnesses or injuries were defined by National Health Insurance Administration in Taiwan including 30 categories of major illnesses (e.g., cancer, stroke, hemophilia, type I diabetes, autoimmune diseases, end-stage renal disease etc.) for which patients were exempted from copayment and thus avoided financial hardship [21].

Data analysis
A descriptive analysis was conducted to examine demographical traits of the research population (e.g., age, monthly salary, and CCI) and to classify the participants as nurses and non-nurses. Propensity matching (PS) methods were used, and a Chi-square test was subsequently employed to compare variations in diabetes development risks for the two groups. The Cox proportional hazards model was used to discuss relative risks and influencing factors related to diabetes. Hazard ratios (HRs) and 95 % CIs were derived from Cox proportional hazards models. Poisson distribution methods were employed to examine diabetes incidence rates for 1,000 person-years for the two groups. In this study, statistic significance was set at \(p < 0.05 \).

Results
Participants demographics
The data prior to propensity matching revealed significant differences \((p < 0.05) \) between age, monthly salary, and CCI levels for the two groups (Table 1). Before propensity score matching, the average age of the nurses was 31.23 ± 8.48 years, whereas that of the non-nurses was younger by 10.97 ± 7.00 years at 42.20 ± 15.48 years. Most of the nurses (34.35 %) earned a salary of NT$ 36,301 – NT$ 45,800, and the non-nurses earned NT$ 17,281 – NT$ 22,800 (44.25 %) on average. The CCI scores for the nurses and non-nurses were 2.93 ± 2.89 and 3.48 ± 3.43, respectively.

After performing the propensity score matching tasks, we did not find any significant differences in terms of age, monthly salaries, residence area urbanization levels, CCI levels, and in other catastrophic illness levels between the two groups (Table 1).

Stratified analysis on the risk of diabetes for the nurses and non-nurses
In the Table 2, the results of the bivariate analysis revealed a lower incidence of diabetes among the nurses (2.68 %) compared with that of the non-nurses (3.13 %), revealing a statistically significant difference \((p <0.05) \). After controlling for other factors, Cox proportional hazards models were used to identify the risk of diabetes for the nurses and non-nurses (Table 3). The results of the nurses showed a lower risk of developing diabetes compared with the non-nurses (Adj. HR = 0.84, 95 % CI: 0.79–0.90). For age, in the 35–44- and 45–54-year age groups, the nurses exhibited a significantly lower risk of diabetes compared with the non-nurses (Adj. HR: 0.82 and 0.75, respectively). For the income groups of less than NT$ 17,280, NT$ 22,801–NT$ 28,800, and NT$
36,301–NT$ 45,800, nurses presented significantly lower risks of diabetes development compared with those of the non-nurses (Adj. HR: 0.65, 0.77, 0.86, respectively). Regarding urbanization variables, with the exception of participants residing in Levels 4 and 5 urbanization areas, no significant differences in diabetes development risk were found between the nurses and non-nurses ($p < 0.05$). In less urbanized regions, nurses showed lower risks of diabetes development than non-nurses ($p < 0.05$).

An analysis on the comorbidity of other catastrophic illnesses indicated that risks of diabetes development facing those nurses who did not have other catastrophic illnesses were significantly lower than those of non-nurses (Adj. HR: 0.84; $p < 0.05$). While risks of diabetes development among the nurses with catastrophic illnesses were lower than those for the non-nurses, the results were non-significant ($p < 0.05$). The results of the CCI analysis show that the nurses presented significantly lower risks of diabetes development compared with those of the non-nurses (Adj. HR: 0.65, 0.77, 0.86, respectively).

Table 5 The incidence rate of diabetes per 1000 person-years

Variables	Non-nurses	Nurses	p -value		
	Diabetes (N)	Incidence rate(%)	Diabetes (N)	Incidence rate(%)	
Total participants	1750	3.25	1498	2.76	<0.001
Age					
<25	104	0.87	113	0.94	0.574
25–34	330	1.44	315	1.36	0.492
35–44	617	4.53	519	3.78	0.003
45–54	563	12.63	425	9.41	<0.001
55–64	104	17.25	93	14.97	0.322
≧65	32	21.99	33	20.62	0.794
Average age (Mean, Std)	48.31	10.43	46.98	10.80	<0.001
Monthly salary (NT$)					
≦17280	176	4.07	123	2.71	<0.001
17281 ~ 22800	211	3.14	183	2.70	0.139
22801 ~ 28800	273	2.89	212	2.23	0.005
28801 ~ 36300	218	2.25	217	2.23	0.924
36301 ~ 45800	479	3.61	421	3.16	0.045
45801 ~ 57800	251	3.20	225	2.86	0.221
≧57801	142	5.68	117	4.68	0.120
Urbanization of residence					
Level 1	695	3.14	544	2.85	0.094
Level 2 & 3	804	3.28	702	2.67	<0.001
Level 4 & 5	181	3.40	182	2.82	0.077
Level 6 & 7	70	3.81	70	2.87	0.093
Other catastrophic illnesses					
No	1680	3.19	1435	2.70	<0.001
Yes	70	5.72	63	5.63	0.928
CCI					
0	22	0.26	10	0.14	0.107
1 ~ 3	530	2.52	444	2.01	<0.001
4 ~ 6	551	3.69	492	3.22	0.028
7 ~ 9	389	5.89	345	5.01	0.029
≧10	258	9.06	207	7.01	0.006

CCI, Charlson Comorbidity Index

It’s 30 New Taiwan Dollar (NT$) per US dollar

Urbanization level of residence area (overall 7 levels; Level 1 was the most urbanized)

p -value was considered significant at $p < 0.05$
lower susceptibility to diabetes development overall compared with the non-nurses ($p < 0.05$).

Relative factors and the incidence of diabetes among nurses

The analysis results presented in Table 4 show that age and CCI serve as critical factors that influence diabetes development risks among nurses. Regarding age variables, a 10-year period was used as an interval to create age groups. The older nurses presented relatively higher risks of diabetes development compared with the nurses of less than 25 years (Adj. HR: 1.56–16.85). Nurses who were older than 65 years of age showed a 16.85-fold higher risk of developing diabetes compared with nurses who were younger than 25 years of age (95 % CI: 11.47–24.75).

CCI significantly influences diabetes development risks among nurses. The analysis results indicate that those nurses with a higher CCI were at a higher risk of developing diabetes than the reference group (CCI = 0). Those nurses with a CCI of ≥10 presented 28.48-fold higher relative risks of diabetes development than the reference group (95 % CI: 15.51–52.29). The research results shown in Table 5 indicate that diabetes incidence rates per 1,000 person-years for the nurses were lower than those of the non-nurses (2.76 % vs. 3.25 %). The analysis results on the various variables reveal that with the exception of the ≤25-year age group, the incidence rate of diabetes per 1,000 person-years for nurses of all of the age groups was lower than that of the non-nurses.

Discussion

After the research population was collected from the NHI database, 1:1 propensity score matching was employed. The results of the bivariate analysis shown in Table 2 indicate that the nurses presented a lower risk of diabetes development than the non-nurses (2.68 % vs. 3.13 %), which is consistent with that of the Cox proportional hazards model (Table 3 and Fig. 1; Adj. HR: 0.83, 95 % CI: 0.78–0.89).

Previous studies [8–10] have determined that individuals who work in professions that require shift work present higher risks of developing diabetes. After propensity score matching, our nurses cohort and non-nurses control group were similar in terms of demographics, socioeconomic status, and health conditions. However, the nurses showed lower risks of developing diabetes than the non-nurses, and this may be attributed to nurses’ medical knowledge and educational training. Furthermore, nurses are assume health promotion and education responsibilities [22] and are thus likely to live healthy lifestyles and to invest in their long-term health. This phenomenon is known as the healthy worker effect [23, 24]. Nurses must be in excellent health to achieve effective performance; therefore, nurses are generally healthier than non-nurses.
The aforementioned results may be correlated with knowledge, attitudes, and practice (KAP) theory principles [25, 26]. Self-care levels depend on patient behaviors, and a patient’s knowledge influences his or her attitudes, thereby affecting his or her practices. Acquiring correct knowledge about a disease and adopting positive and proactive attitudes are essential for motivating self-care behaviors, which directly or indirectly affect health outcomes. Nurses are equipped with comprehensive medical knowledge and thus possess a favorable view of personal health and diseases and a positive attitude toward medical care, resulting in superior self-care [27]. However, further study is needed to examine the effect of KAP theory on the nurses’ incidence risk of developing diabetes.

The results presented in Tables 3 and 4 show that for the entire sample population, age and CCI variables most heavily influenced diabetes development risks. The older participants presented higher risks of diabetes development than the reference group (<25 y), complementing the results of previous studies [28–30], and this shows that glucose tolerance levels decrease with age; therefore, diabetes development risks increase rapidly among individuals who are older than 45 years of age. As shown in Table 5, a rapid increase in the incidence rate of diabetes per 1,000 person-years was observed among both nurses and non-nurses of 45 years of age and older. As shown in Tables 3 and 4, a higher CCI involves an increased relative risk of diabetes development, complementing the results of Huang [31] and Monami et al. [32]. Thus, CCI serves as a critical variable for predicting diabetes development risks.

Conclusion
This study is the first to use a nationwide database to compare risks of diabetes development among female nurses and female non-nurses. The results show that nurses present a lower risk of developing diabetes than non-nurses. This result may be attributable to the fact that nurses possess superior medical knowledge and thus have lower incidence risk of developing diabetes.

Abbreviations
CCI, Charlson Comorbidity Index; CI, confidence interval; DM, diabetes mellitus; HR, hazard ratio; ICD, International Statistical Classification of Diseases; KAP, knowledge, attitudes, and practice; NHI, National Health Insurance; NTS, New Taiwan Dollar; PS, propensity score.

Acknowledgments
We are grateful for use of the National Health Insurance Research Database provided by the National Health Research Institutes. The interpretations and conclusions contained herein do not represent those of the Ministry of Health and Welfare, Taiwan, R.O.C.

Funding
This study was supported by the grant (CMU1102-ASIA-12) from China Medical University and Asia University as well as the grant (DOH 10216) from Ministry of Health and Welfare.

Availability of data and materials
Data are available from the National Health Research Institutes (NHRI), Taiwan. All interested researchers can obtain the databases published and managed by the NHRI. All researchers are allowed to use the databases for their studies if they are interested in using the data. Before using the databases for research, all studies should get the IRB permission.

Authors’ contributions
HLH and WCT designed the study. CCP, SMW, PTK and WYC collected data. HLH, PTK and WCT were responsible for study conceptualization and developing the analytical plan. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics statement
The institutional review board of China Medical University approved this study (IRB No.: CMUH 20130326C).

Author details
1Department of Aged Welfare & Social Work, Toko University, Taiwan, Republic of China. 2Department of Public Health and Department of Health Services Administration, China Medical University, Taiwan, Republic of China. 3Department of Urology, Hengchun Tourism Hospital, Ministry of Health and Welfare, Taiwan, Republic of China. 4Department of Healthcare Administration, Asia University, Taichung, Taiwan, Republic of China.

Received: 17 December 2015 Accepted: 12 May 2016
Published online: 26 May 2016

References
1. National Statistic. R.O.C (Taiwan). Health, Medical Facilities and Medical Personnel. 2013. http://eng.stat.gov.tw/mp.asp?mp=5. Accessed 20 May 2015.
2. Triolo P. Occupational health hazards of hospital staff nurses. Part I: Overview and psychosocial stressors. AAOHN J. 1989;37(6):232–7.
25. Bhargava A, Mishra B, Thakur A, Dogra V, Loomba P, Gupta S. Assessment of
27. Andersen R, Newman JF. Societal and individual determinants of medical
26. Tobin EA, Okojie P-W, Isah EC. Community knowledge and attitude to
22. Carpenter, H. Nurses. Role models, advocates and educators of health,
21. National Health insurance Administration, Ministry of Health and Welfare.
20. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use
18. Chang C, Shau W, Jiang Y, Li H, Chang T, Huang H. [A preliminary study of the work values of
17. Hsu Y, Tang W, Chang Y, Maa S. Rotating night-shift work and lung cancer risk among female nurses in the United States. Am J Epidemiol. 2013;178(9):1434–41.
16. Lu J-FR, Hsiao WC. Does universal health insurance make health care unaffordable? Lessons from Taiwan. Health Aff. 2003;22(3):77–88.
15. Ministry of Health and Welfare. 2012 statistics of causes of death. 2014.
14. National Health insurance Administration, Ministry of Health and Welfare. Statistics & Surveys. 2013. http://www.nhi.gov.tw. Accessed 13 May 2015.
13. Ministry of Health and Welfare. 2012 statistics of causes of death. 2014. http://www.mohw.gov.tw/EN/Ministry/Statistic. Accessed 31 Dec 2015.
12. Al-Delaimy WK, Willett WC, Manson JE, Speizer FE, Hu FB. Smoking and mortality among women with type 2 diabetes: the Nurses’ Health Study cohort. Diabetes Care. 2001;24(12):2043–8.
11. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(Suppl 1):S1–21.
10. Suwazono Y, Sakata K, Okubo Y, Harada H, Oishi M, Kobayashi E, Uetani M, Kido T, Nogawa K. Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J Occup Environ Med. 2006;48(5):455–61.
9. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people. Occup Environ Med. 2001;58(11):747–52.
8. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night-shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8(12):e1001141.
7. Esquirol Y, Bongard V, Mable L, Jomier B, Soulant J-M, Perret B. Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms. Chronobiol Int. 2009;26(3):544–59.
6. Sookoian S, Gemma C, Fernandez Gianotti T, Burgueno A, Alvarez A, Gonzalez C, Pirola C. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J Intern Med. 2007;261(3):285–92.
5. Schernhammer ES, Feskanich D, Liang G, Han J. Rotating night-shift work and lung cancer risk among female nurses Working Night Shift and Day Shift. Sinagrigi MD. 2013;274(9):393–400.
4. Plaimee P, Mittraphap R, Nuangjumrong W, Johns NP, Johns J. Comparison of Melatonin Levels, Sleep Quality and Alertness between Nurses Working Night Shift and Day Shift. Sinagrigi MD. 2013;274(9):393–400.
3. Triolo P. Occupational health hazards of hospital staff nurses. Part II: Physical, chemical, and biological stressors. AAOHN J. 1989;37(7):274–9.