Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition

Christos Mikropoulos1 et al.

Background: Prostate-specific antigen (PSA) and PSA-velocity (PSAV) have been used to identify men at risk of prostate cancer (PrCa). The IMPACT study is evaluating PSA screening in men with a known genetic predisposition to PrCa due to BRCA1/2 mutations. This analysis evaluates the utility of PSA and PSAV for identifying PrCa and high-grade disease in this cohort.

Methods: PSAV was calculated using logistic regression to determine if PSA or PSAV predicted the result of prostate biopsy (PB) in men with elevated PSA values. Cox regression was used to determine whether PSA or PSAV predicted PSA elevation in men with low PSAs. Interaction terms were included in the models to determine whether BRCA status influenced the predictiveness of PSA or PSAV.

Results: 1634 participants had ≥3 PSA readings of whom 174 underwent PB and 45 PrCas diagnosed. In men with PSA > 3.0 ng/ml, PSAV was not significantly associated with presence of cancer or high-grade disease. PSAV did not add to PSA for predicting time to an elevated PSA. When comparing BRCA1/2 carriers to non-carriers, we found a significant interaction between BRCA status and last PSA before biopsy (P = 0.031) and BRCA2 status and PSAV (P = 0.024). However, PSAV was not predictive of biopsy outcome in BRCA2 carriers.

Conclusions: PSA is more strongly predictive of PrCa in BRCA carriers than non-carriers. We did not find evidence that PSAV aids decision-making for BRCA carriers over absolute PSA value alone.

Men with germline mutations in BRCA2 have an increased risk of prostate cancer (PrCa), estimated at 2.5–8.6 fold increased risk for BRCA2 mutation carriers (Breast Cancer Linkage Consortium, 1999; van Asperen et al, 2005; Kote-Jarai et al, 2011). There remains debate about whether there is an increased risk of PrCa associated with BRCA1 mutations, with some studies reporting no increased risk to those reporting a 1.8–3.75 fold increased risk (Thompson et al, 2002; Leongamornlert et al, 2012; Moran et al, 2012). A number of studies have reported that BRCA2 mutation carriers have more aggressive disease, suggested by their younger age at diagnosis, higher rates of lymph node involvement and distant metastasis at diagnosis, and higher mortality rates compared with non-carriers (Tryggvadottir et al, 2007; Mitra et al, 2008; Edwards et al, 2010; Gallagher et al, 2010; Thorne et al, 2011; Castro et al, 2013). There is increasing evidence that BRCA1 mutation carriers may also harbour more aggressive disease (Giusti et al, 2003; Gallagher et al, 2010; Castro et al, 2013). Furthermore, BRCA2-mutant localised prostate cancer demonstrates increased genomic instability and a mutational profile that more closely resembles metastatic than localised disease, therefore supporting early detection in this at risk patient population (Taylor et al, 2017).

General population prostate specific antigen (PSA) screening remains controversial due to an unclear balance of benefits, in terms of mortality reduction when compared to harms such as overdiagnosis and overtreatment. However, many expert groups continue to recommend PrCa screening with particular attention towards men with risk factors based on family history, genetics and/or race (Roobol et al, 2013; Eeles et al, 2014; Mikropoulos et al, 2014; Murphy et al, 2014).

It has previously been suggested that the rate of PSA change over time, or PSA velocity (PSAV), can be used to assist in differentiating between men with cancer from those with benign disease (Carter et al, 1992; Berger et al, 2005). Monitoring PSA...
over time could also improve the sensitivity of screening. It is also possible that PSAV could distinguish between men who might have advanced or aggressive disease that would require definitive treatment thus avoiding overdiagnosis and overtreatment (Carter et al, 2006; Carter et al, 2007).

However, the utility of PSAV in PrCa decision-making has been called into question. In particular, while PSAV may be predictive of biopsy outcome in univariate analyses, it has not been shown to improve the predictiveness of biopsy outcome over the absolute value of PSA (Roobol et al, 2004; Vickers et al, 2011; Loughlin, 2014). Although some studies have suggested that PSAV can be used to identify men with aggressive disease, these did not investigate whether calculation of PSAV provided additional information than the most recent PSA value (Carter et al, 1992; D’Amico et al, 2004; D’Amico et al, 2005). PSA and PSAV are highly correlated, and this may explain why PSAV does not add predictive value (Vickers et al, 2011). As a result of these considerations, PSAV has been removed from all major guidelines concerning the detection of prostate cancer.

It is currently unknown whether PSAV provides more information, beyond PSA absolute value, among a cohort of men considered to be at increased genetic risk of PrCa and aggressive disease. The IMPACT study (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in men at higher genetic risk and controls; www.impact-study.co.uk) is an international multi-centre study evaluating the role of targeted PSA screening in men with a BRCA1 or BRCA2 mutation and was established in 2005 (Bancroft et al, 2014). To date, ~3000 men have been recruited from 20 countries across the world. Men are followed up with annual (or biannual in the Dutch cohort) PSA screening for a minimum of 5 years within the study and this has produced a wealth of PSA results and follow-up data over time. The primary end-point of the IMPACT study is to determine the incidence, stage and pathology of screen-detected prostate cancer in the study population; a secondary end-point is to determine a profile of PSA level and its predictive value for the development of prostate cancer in the study population. The objective of the present study was to determine whether PSA values and/or PSAV were associated with PrCa and aggressive tumours among men at increased risk enrolled in the IMPACT trial.

MATERIALS AND METHODS

Patient selection. The design and eligibility criteria for the IMPACT study have been described elsewhere (Mitra et al, 2008; Bancroft et al, 2014). The protocol was approved by the West-Midlands Research and Ethics Committee in the UK (reference 05/MRE07/25), and subsequently by each participating institution’s local committee. Briefly, men aged between 40 and 69 were recruited from families with a known pathogenic germline BRCA1 or BRCA2 mutation. Men were invited to enrol if they had tested positive (carriers) or negative for the familial mutation (BRCA1/2 non-carriers), or if they were at 50% risk of inheriting a mutation but had not yet undergone predictive genetic testing. All participants provide written consent. Men with PrCa or with a prior diagnosis of another cancer with a prognosis of <5 years were excluded. In the Dutch centres, men were also excluded if they had PSA screening prior to study entry.

According to the IMPACT study design, men underwent annual PSA screening and those with a PSA > 3.0 ng ml⁻¹ were referred for a 10- or 12-core transrectal ultrasound guided (TRUS) biopsy based on institutional clinic practices. Men with a PSA > 3.0 ng/ml and a negative biopsy continue annual screening, with a repeat biopsy recommended when PSA increased by >50%. Men were also referred for biopsy if they had a PSA < 3.0 ng ml⁻¹ but clinical suspicion (e.g., abnormal digital rectal examination or clinical symptoms). After 5 years in the study, men at a subset of centres were also offered an elective biopsy.

PSA readings in the study are validated in a central laboratory to exclude inter-site variations. The results found a Spearman’s agreement of 0.95 between study sites (Bancroft et al, 2014).

Statistical considerations. PSA velocity (PSAV) has been used as a marker to inform decisions about biopsy or about the timing of the next PSA screen. With respect to the former, we considered that a physician had the most recent PSA measurements available. Our study question was therefore whether adding PSAV to this data point improves prediction of presence of PrCa at biopsy. As elevated PSA is the primary indication in routine clinical practice, our main analysis was restricted to men who had any PSA > 3.0 ng ml⁻¹ prior to biopsy. A sensitivity analysis was conducted including all men who underwent biopsy. We created logistic regression models, adjusted for last PSA measurement and age, for the outcomes of any grade and high-grade cancer. PSAV was calculated using three methods: arithmetic equation of change in PSA over time; linear regression; rate of PSA change using first and last values only. We also used cubic splines with knots at the tertiles to test for non-linearity in PSA and in PSAV.

To investigate whether the effect of PSAV on predicting biopsy outcome differed based on BRCA1 status, we included an interaction term between PSAV and BRCA status (BRCA1 or BRCA2 carriers vs BRCA non-carrier patients, and BRCA2 carriers vs BRCA1 and BRCA non-carrier patients). Due to a limited number of events, this analysis was performed only for the outcome of any cancer on biopsy. This analysis included 13 cancers diagnosed among 55 BRCA1 carriers and 23 cancers among 65 BRCA2 carriers.

To determine whether PSAV could aid decisions about screening frequency, e.g., whether a man with a high PSAV should receive a subsequent PSA test at a shorter interval than a man with low PSAV, we assessed whether PSAV was associated with having a future PSA > 3.0 ng ml⁻¹. As a minimum of three PSA measurements are required for accurate estimation of PSAV, we created Cox proportional hazards models for the time from the first PSA measurement to the patient’s third PSA measurement > 3.0 ng ml⁻¹. Four models were then created: one including the third PSA measurement only, and the others including both the third PSA measurement and each of the three methodologies for calculating PSAV. Men who had a PSA > 3.0 ng ml⁻¹ within the first three PSA measurements were excluded from this analysis. A total of 1086 men were included.

We planned to first evaluate the independent statistical significance of PSAV in models that also included absolute PSA level. If significant, we planned to estimate the improvement in concordance index afforded by PSAV after 10-fold cross-validation. All analyses were conducted using Stata 13.0 (Stata Corp., College Station, TX, USA).

RESULTS

Of the 2942 men recruited to the IMPACT study, 1654 men had three or more PSA measurements and appropriate clinical follow-up to be included in the analyses (Figure 1). Table 1 shows the demographic, PSA and biopsy grade characteristics of the analysis cohorts. The cohort of 1654 men consisted of 510 BRCA1 mutation carriers, 584 BRCA2 mutation carriers, 260 BRCA1 non-carriers and 288 BRCA2 non-carriers. Two men carried both a BRCA1 and BRCA2 mutation (included in the BRCA2 group for genetic sub-analysis) and 10 had not yet had a predictive test for the BRCA1 mutation in their family (excluded from genetic sub-analysis). In
Figure 1. Consort diagram of study population. The two bolded cohorts were included for in-depth analysis, as they had 3 or more PSA values available for analysis and underwent a prostate biopsy.

Table 1. Patient characteristics

	Total cohort N = 1654	BRCA2 N = 586*	BRCA1 N = 510	Non-carrier controls (BRCA1 and BRCA2 negative) N = 548
Age at first PSA test	53 (46, 60)	51 (45, 59)	53 (46, 60)	54 (48, 61)
Patient underwent biopsy	174 (11%)	65 (11%)	55 (11%)	54 (10%)
Prior negative biopsy	26 (1.6%)	8 (1.4%)	8 (1.6%)	10 (1.9%)
Biopsy Gleason score				
≤ 6	24 (14%)	11 (17%)	6 (11%)	7 (13%)
> 7	6 (3.4%)	5 (7.7%)	0 (0%)	1 (1.9%)
Negative biopsy	129 (74%)	43 (66%)	43 (78%)	43 (80%)
First PSA measurement (ng ml⁻¹)	0.8 (0.5, 1.3)	0.80 (0.50, 1.20)	0.80 (0.50, 1.30)	0.89 (0.60, 1.40)
Last PSA measurement (ng ml⁻¹)	0.9 (0.6, 1.6)	0.91 (0.59, 1.50)	0.88 (0.55, 1.70)	1.00 (0.60, 1.70)

Number of PSA tests before biopsy	3	4	5	6	7	8 or more
503 (30%)	163 (28%)	123 (21%)	108 (21%)	85 (17%)	42 (7.2%)	
328 (20%)	123 (21%)	108 (21%)	85 (17%)	42 (7.2%)		
474 (29%)	160 (27%)	135 (26%)	104 (20%)	21 (4.1%)		
156 (9.4%)	62 (11%)	50 (10%)	34 (6.2%)			
108 (6.5%)	36 (6.1%)	38 (7.5%)				

Data are reported as median (interquartile range) or frequency (%).

*Includes 2 men who had both a BRCA1 and a BRCA2 mutation.

This cohort, 174 men underwent prostate biopsy, with 45 men having any grade cancer of whom 21 having Gleason score 7 or higher (high-grade) cancer. Among men who had any PSA > 3.0 ng ml⁻¹, 40 had any grade of whom 20 had high-grade cancer.

The median age at the first PSA of BRCA2 carriers was significantly younger than both BRCA1 carriers and non-carriers (51 vs 53 vs 54 years, respectively, P < 0.0001). Overall, BRCA2 and BRCA1 carriers had significantly lower first PSA values than non-carriers (0.80 vs 0.80 vs 0.89 ng ml⁻¹; P = 0.022; however, overall there was no statistically significant difference in the median PSAV between the BRCA2, BRCA1 and non-carrier groups (P = 0.8).

The median age at first PSA reading of men diagnosed with cancer was higher than that of men without cancer (60 vs 53 years, U = 22069, z = -5.24, P < 0.001). The median most recent PSA (i.e., PSA at diagnosis for cancer cases) was significantly higher for those with cancer compared with those without cancer (3.70 vs 0.90 ng ml⁻¹) U = 8564, z = -9.34, P < 0.001). The median PSAV was significantly higher for those with cancer vs those without cancer (medians: 0.56 vs 0.02 ng/ml/yr, U = 9641, z = -9.012, P < 0.001). Of those diagnosed with cancer, there was no significant difference between the proportion of BRCA2 carriers with a PSAV (calculated by linear regression) > 0.35 ng ml⁻¹ per year compared with BRCA1 carriers and non-carrier controls (78.3 vs 61.5 vs 53.8%, p = 0.28).

We next assessed whether adding PSAV to the most recent PSA measurement would improve the ability to determine which men should undergo biopsy. Using cubic splines, we investigated and found no evidence of non-linearity in PSA or in PSAV. Among men with any PSA measurements > 3.0 ng/ml, PSAV was not significantly associated with either any grade or high-grade cancer after adjusting for most recent PSA measurement (Table 2). We repeated these analyses including all men who were biopsied, and found that PSAV was not statistically significant in any of the models (Table 3).

Additionally, we assessed whether PSAV affected the prediction of PrCa at biopsy differently based on BRCA status. When comparing BRCA1 and BRCA2 carriers to BRCA1/2 non-carriers, we found a significant interaction between BRCA status and the last PSA before biopsy (P = 0.031), however there was no evidence of an interaction between BRCA status and PSAV (Table 4). However, when comparing BRCA2 carriers to BRCA1 carriers and BRCA1/2 non-carriers, we found evidence of interactions between BRCA2 status and last PSA before biopsy (P = 0.078) and...
significant interactions between BRCA2 status and PSAV calculated using the arithmetic equation and linear regression \((P = 0.024\) and \(P = 0.049\) respectively, Table 4).

Based on these interactions, we performed subgroup analyses by BRCA2 status. All models were adjusted for age at biopsy and last PSA before biopsy. Due to a limited number of events (26 cancers in BRCA2 non-carriers and 23 in BRCA2 carriers), these models were somewhat overfitted. No evidence of an association between PSA and any grade cancer or PSAV and any grade cancer was seen in BRCA2 carriers or non-carriers, likely due to the strong correlation between PSA and PSAV (Table 5).

We then investigated whether PSAV was associated with time to PSA \(\geq 3.0\) ng ml\(^{-1}\). Using Cox proportional hazards models, we found no evidence of an association between PSAV and time from the third PSA measurement to PSA \(\geq 3.0\) ng ml\(^{-1}\). Out of 1533 men who did not have a PSA \(\geq 3.0\) ng ml\(^{-1}\) within the first three PSA tests, there were 28 who had a PSA \(\geq 3.0\) ng ml\(^{-1}\) within 1 year, 50 within 2 years and 62 within 3 years.

DISCUSSION

This is the first study to show that there are differences in PSA values among men with different genetic backgrounds. These PSA differences could be used to identify those men considered to be at high genetic risk of more aggressive disease. However, when evaluated with absolute PSA values, PSAV did not appear to provide additional information for BRCA1 or BRCA2 carriers.

A major problem of PSA screening is that, in attempting to detect clinically significant disease, it is inevitable that indolent disease will also be detected leading to overdiagnosis. However, early diagnosis and identification of men with high-risk disease is important to prevent mortality from PrCa. This might be particularly essential in light of recent publications indicating that men with a BRCA1 or BRCA2 mutation are at risk of more aggressive disease (Castro et al., 2013; Castro et al., 2015), early identification of those with clinically significant disease will be imperative. In view of the controversy about the role of PSAV in prostate screening in the general population, it was important to assess its role in BRCA1 and BRCA2 carriers and whether it added to the ability to detect clinically significant disease.

In this analysis of the IMPACT study cohort, we found BRCA2 carriers on average to be screened at a relatively young age. This may account for lower overall PSA values for BRCA2 carriers in this analysis compared to non-carrier controls. However, there were no differences in median PSAV between carriers and non-carriers. Given the possibility that higher PSAV may associate with aggressive PrCa (D’Amico et al., 2004; D’Amico et al., 2005), we would expect BRCA2 carriers who are at risk of aggressive disease would exhibit higher PSAVs (Castro et al., 2013; Castro et al., 2015). BRCA2 carriers in this group may be too young to demonstrate this trend at this point of follow up.

A single PSA reading over 3 ng ml\(^{-1}\) was applied to guide biopsy decisions according to the IMPACT protocol, as well as if there was clinical suspicion on digital rectal examination or clinical symptoms. PSAV was not a good indicator in this analysis for lower overall PSA values for BRCA2 carriers in this analysis compared to non-carrier controls. However, there were no differences in median PSAV between carriers and non-carriers. Given the possibility that higher PSAV may associate with aggressive PrCa (D’Amico et al., 2004; D’Amico et al., 2005), we would expect BRCA2 carriers who are at risk of aggressive disease would exhibit higher PSAVs (Castro et al., 2013; Castro et al., 2015). BRCA2 carriers in this group may be too young to demonstrate this trend at this point of follow up.

Table 2. Models for any grade and high-grade cancers among men with any PSA measurement \(\geq 3.0\) ng ml\(^{-1}\), \(N = 116\)

	Any grade cancer	High grade cancer				
OR	95% CI	\(P\) value	OR	95% CI	\(P\) value	
Age at biopsy	1.05	0.99, 1.12	0.13	1.08	0.99, 1.19	0.073
Last PSA measurement before biopsy	1.05	0.89, 1.23	0.6	1.26	1.04, 1.52	0.017*
Age at biopsy	1.05	0.98, 1.12	0.14	1.09	0.99, 1.19	0.065
Last PSA measurement before biopsy	1.08	0.89, 1.30	0.4	1.20	0.97, 1.49	0.10
PSA velocity (arithmetic equation)	0.91	0.69, 1.21	0.5	1.20	0.81, 1.76	0.4
Age at biopsy	1.06	0.99, 1.13	0.080	1.10	1.00, 1.20	0.047*
Last PSA measurement before biopsy	0.93	0.75, 1.17	0.5	1.12	0.88, 1.44	0.3
PSA velocity (linear regression)	1.92	0.92, 4.00	0.080	2.07	0.93, 4.61	0.076
Age at biopsy	1.06	0.99, 1.13	0.073	1.10	1.00, 1.21	0.042*
Last PSA measurement before biopsy	0.91	0.72, 1.16	0.4	1.09	0.83, 1.42	0.5
PSA velocity (first and last value)	2.01	0.94, 4.29	0.073	2.25	0.96, 5.28	0.063

Abbreviations: CI = confidence interval; PSA = prostate-specific antigen. All models were adjusted for age at biopsy and the last PSA measurement before biopsy. *Statistically significant.

Table 3. Models for any grade and high grade cancers among all men undergoing biopsy, \(N = 174\)

	Any grade cancer	High grade cancer				
OR	95% CI	\(P\) value	OR	95% CI	\(P\) value	
Age at biopsy	1.05	1.00, 1.11	0.051	1.08	1.00, 1.18	0.056
Last PSA measurement before biopsy	1.13	1.00, 1.28	0.058	1.35	1.14, 1.59	0.001*
Age at biopsy	1.05	1.00, 1.10	0.064	1.09	1.00, 1.18	0.050
Last PSA measurement before biopsy	1.17	1.01, 1.36	0.041*	1.29	1.06, 1.57	0.010*
PSA velocity (arithmetic equation)	0.88	0.67, 1.17	0.4	1.19	0.79, 1.78	0.4
Age at biopsy	1.06	1.00, 1.11	0.033*	1.10	1.01, 1.19	0.036*
Last PSA measurement before biopsy	1.01	0.84, 1.22	0.9	1.19	0.95, 1.50	0.14
PSA velocity (linear regression)	1.85	0.92, 3.71	0.085	2.09	0.95, 4.62	0.068
Age at biopsy	1.06	1.01, 1.11	0.030*	1.10	1.01, 1.20	0.033*
Last PSA measurement before biopsy	1.00	0.82, 1.22	\(> 0.9\)	1.16	0.90, 1.49	0.2
PSA velocity (first and last value)	1.90	0.93, 3.89	0.080	2.24	0.97, 5.20	0.059

Abbreviations: CI = confidence interval; PSA = prostate-specific antigen. All models were adjusted for age at biopsy and the last PSA measurement before biopsy. *Statistically significant.
A strength of this study is the unique patient cohort of men with a genetic predisposition to PrCa, in particular BRCA2 carriers who are predisposed to aggressive PrCas (Mitra et al, 2008; Narod et al, 2008; Castro et al, 2013; Castro et al, 2015). Within the group of BRCA2 carriers, PSAV proved predictive of any grade cancer, however, given the low number of cancers diagnosed overall it was not possible to assess whether PSAV was associated with high grade cancer and BRCA2 status. A high PSAV in an individual with a BRCA2 mutation could be used as an indicator of presence of PrCa and therefore as an indication for prostate biopsy. This model could lead to diagnosis of lower grade cancers in BRCA2 carriers. It may lead to better prognosis for men at risk for more aggressive disease and better disease-free survival when treated early. Although there are no definitive treatment recommendations for men with BRCA2 mutations when found to be diagnosed with low grade cancers, their risk for aggressive disease may spur them to follow a more active treatment plan such as radical prostatectomy vs external-beam radiation therapy or active surveillance (Bratt and Loman, 2015; Castro et al, 2015).

One major limitation of this analysis is the relatively small number of men in the study who had undergone diagnostic prostate biopsy. End of study biopsies are not mandated and the number of men in the study who had undergone diagnostic prostate biopsy and follow-up time increases, the findings from this analysis did not justify modifying the study algorithm to include a PSAV calculation.

In the general population, PSAV is not part of any major screening guideline. We also did not find PSAV to be an independent prognostic factor in BRCA1 or BRCA2 mutation carriers and therefore for screening an absolute PSA cut-off value should preferably be used.

CONCLUSION

PSA is more strongly predictive of PrCa in BRCA carriers than BRCA non-carriers. We did not find evidence that PSAV aids to decision making for either indicating biopsy or frequency of follow-up testing in BRCA carriers, but further follow-up is required for more definitive conclusions.
We are indebted to all the men who are taking part in this study. This research is coordinated by the Institute of Cancer Research, London, UK and is supported by grants from Cancer Research UK (Grant references C5047/A21332, C5047/A13232 and C5047/A17528) and The Ronald and Rita McAulay Foundation. Mr and Mrs Jack Baker for the study in NorthShore University HealthSystem, Evanston, Illinois and Myriad Genetics Laboratory, Salt Lake City, Utah, for providing research BRCA testing rates for NorthShore University HealthSystem participants. We acknowledge funding from the NIH to the Biomedical Research Center at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, at Central Manchester Foundation Trust and the Oxford Biomedical Research Centre Program. We acknowledge that in Australia, this project was co-funded by Cancer Council Tasmania and Cancer Australia, grant number 1006349 (2011–2013), Prostate Cancer Foundation of Australia, grant number PCFA PRO4 (2008) and Cancer Councils of Victoria and South Australia, grant number 400048 (2006–2008), The Victorian Cancer Agency Clinical Trial Capacity CCTCB08_14, Cancer Australia & Prostate Cancer Foundation of Australia (2014–2016) grant number 1059423, and Translational grants EO109_50. The Association of International Cancer Research funded data collection in The Netherlands (AICR 10–0596). We acknowledge funding from the Basser Centre for BRCA (to S Domchek). We acknowledge funding from the National Cancer Institute [P30-CA008748], the Sidney Kimmel Center for Prostate and Urologic Cancers, and David H. Koch through the Prostate Cancer Foundation, the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Program in UK, Swedish Cancer Society (Cancerfonden project no. 11–0624), and the Swedish Research Council (VR-MH project no. 2016–02974). We acknowledge funding from the Slovenian Research Agency, Research programme P3–0352. Elena Castro acknowledgements were given by the Juan de la Cierva fellowship from MINECO (grant reference IJC1-2014–19129). We acknowledge the support of the Asociación Española Contra el Cáncer (AEEC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad) and ‘Fondo Europeo de Desarrollo Regional (FEDER), una manera de hacer Europa’ (PI10/01422, PI11/00283, PI13/00022, PI16/00563 and CIBERONC) and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). We acknowledge David Fisas, Consol Lopez and Dr Nuria Calvo for their involvement in the project at Hospital de Sant Pau, Barcelona. We are grateful to the members of the Data and Safety Monitoring Committee: S. Duffy (Chair), P. White (UK NEQAS representative) and J. McGrath (BAUS representative). We acknowledge the contribution of past members of the IMPACT Steering Committee: J. Melia, S. Moss, P. Wilson and G. Mitchell.

CONFLICT OF INTEREST

Hans Lilja holds patents for free PSA, hK2, and intact PSA assays, and is named, along with Andrew J. Vickers, on a patent application for a statistical method to detect prostate cancer. The marker assay patents and the patent application for the statistical model has been licensed and commercialised as the 4Kscore by OPKO Diagnostics. Drs Vickers and Lilja receive royalties from sales of this test. Additionally, Dr Lilja owns stock and Dr Vickers owns stock options in OPKO. Professor Rosalind Eeles—Janssen: provided medical education support to GU ASCO Feb 2013. Succinct Communications: received an honorarium and expenses for attending and speaking at UK Cancer Convention Oct 2013. The authors have no other conflict of interest to declare.

REFERENCES

Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, Assel M, Foster CS, Mitchell G, Drew K, Mebale L, Axcanra K, Evans DG, Bulman B, Eccles D, McBride D, van Asperen C, Vasen H, Kienmeyer LA, Ringelberg J, Cybulski C, Wokolorczysz D, Selkirk C, Hulick PJ, Bojesen A, Skytte AB, Lam J, Taylor L, Oldenburg R, Cremers R, Verhaegh G, van Zelst-Stams WA, Oosterwijk JC, Blanco I, Salinas M, Cook J, Rosario DJ, Buys S, Conner T, Aussem MG, Ong KR, Hoffman J, Domchek S, Powers J, Teixeira MA, Maia S, Foulkes WD, Taherian N, Ruijs M, Helderman-van den Enden AT, Izzat L, Davidson R, Adank MA, Walker L, Schmutzler R, Tucker K, Kirk J, Hodgson S, Harris M, Douglas F, Lindeman GJ, Zaginar J, Tischkowitz M, Clowes WE, Susman R, Ramon y Cajal T, Patcher N, Gadea N, Spigelman A, van Os T, Liljegren A, Side L, Brewer C, Brady FA, Donaldson A, Stefandottir V, Friedman E, Chen-Shotoymer R, Amor DJ, Copakova L, Barwell J, Giri VN, Murthy V, Nicolai N, Tea SH, Greenhalgh L, Strom S, Anderson A, McGrath J, Gallagher D, Aaronson N, Ardern-Jones A, Bangma C, Dearnaley D, Costello P, Eyfjord J, Rothwell J, Falconer A, Gronberg H, Hamdy FC, Johannsson O, Khoo V, Kote-Jarai Z, Lubinski J, Axcanra U, Melia J, McKinley J, Mitra A, Moynihan C, Rennert G, Suri M, Wilson P, Killieck E, IMPACT Collaborators Moss S, Edes RA (2014) Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT Study. Eur Urol 66: 489–499.

Berger AP, Deibl M, Steiner H, Bektic J, Pelzer A, Klocker H, Haidl M, Vickers A, Lilja H, Tischkowitz M, Rosano D, Nigro A, Eeles R, Carter HB, Kettermann A, Ferrucci L, Landis P, Metter EJ, Brant LJ, Chan DW, Andres R, Fozard JL, Walsh PC (1992) Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 267: 2215–2220.

Carter HB, Pearson MJ, Metter EJ, Chan DW, Andres R, Fozard JL, Walsh PC (2011) Clinical management of prostate cancer in men with BRCA mutations. Eur Urol 68: 194–195.

Carter HB, Law T, Metter EJ, Blasko JC, Carter HB, Kettermann A, Ferrucci L, Landis P, Wright EJ, Epstein JI, Trock BJ, Metter EJ (2006) Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst 98: 1521–1527.

Carter HB, Kettermann A, Ferrucci L, Landis P, Metter EJ (2007) Prostate-specific antigen velocity risk count assessment: a new concept for detection of life-threatening prostate cancer during window of curability. Urol 70: 685–690.

Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadew T, Govindasami K, Guy M, Sawyer E, Wilkinson R, Ardern-Jones A, Ellis S, Frost D, Pecok S, Evans DG, Tischkowitz M, Cole T, Davidson R, Eccles D, Brewer C, Douglas F, Porteous ME, Donaldson A, Dorkins H, Izzat L, Cook J, Hodgson S, Kennedy MJ, Side LE, Eason J, Murray A, Antoniou AC, Easton DF, Kote-Jarai Z, Edes RA (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31: 1748–1757.

Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadew T, Govindasami K, Guy M, Sawyer E, Wilkinson R, Ardern-Jones A, Ellis S, Frost D, Bancroft E, Cole T, Tischkowitz M, Kennedy MJ, Eason J, Brewer C, Evans DG, Davidson R, Eccles D, Porteous ME, Douglas F, Adlard J, Donaldson A, Antoniou AC, Kote-Jarai Z, Easton DF, Olmos D, Edes RA (2015) Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol 68: 186–193.

D’Amico AV, Chen MH, Roehl KA, Catalona WJ (2004) Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 351: 125–135.

D’Amico AV, Renshaw AA, Sussman B, Chen MH (2005) Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA 294: 440–447.

Edward SM, Evans DG, Hope Q, Norton AR, Barbachano Y, Bullock S, Kote-Jarai Z, Meitz J, Falconer A, Osin P, Fisher C, Guy M, Jhavar SG, Hall AL, O’Brien LT, Geh-Swain BN, Wilkinson RA, Forrest MS, Deanaley DP, Ardern-Jones AT, Page EC, Easton DF, Edes RA. UK
Genetic Prostate Cancer Study Collaborators and BAUS Section of Oncology (2010) Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103: 918–924.

Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z (2014) The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 11: 18–31.

Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K, Bhatia J, Stadler Z, Fine SW, Reuter V, Zelefsky M, Morris MJ, Scher HI, Klein RJ, Norton L, Eastham JA, Scardino PT, Robson ME, Offit K (2010) Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16: 2115–2122.

Giusti RM, Rutter JL, Duray PH, Freedman LS, Konichezky M, Fisher-Fischbein J, Greene MH, Maslansky B, Fischbein A, Gruber SB, Rennert G, Ronchetti RD, Hewitt SM, Struwing JP, Icsovich J (2003) A twofold increase in BRCA1 mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 40: 787–792.

Kitagawa Y, Sawada K, Urata S, Izumi K, Ueno S, Kadono Y, Konaka H, Konishi J, Sato M, Ohno K, Nagao K, Loseth T, Cooperberg M, Gillatt D, Gleave M, Pomfret EA, Moller P, Penson DF, Djalal S, Haasbeek JC, van der Kwast TH, de Koning HJ, Schröder FH (2006) Prostate cancer in BRCA2 mutation carriers has a more aggressive phenotype. J Natl Cancer Inst 98: 936–945.

Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z (2014) Impact of PSA levels on second-round screening for the development of prostate cancer in men with low baseline PSA levels (<1.0 ng/ml). Anticancer Res 34: 6739–6746.

Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Dearnaley D, Goh C, Ueno S, Kadono Y, Konaka H, Rennert G, Ronchetti RD, Hewitt SM, Struwing JP, Icsovich J (2003) A twofold increase in BRCA1 mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 40: 787–792.

Loughlin KR (2014) PSA velocity: A systematic review of clinical applications. Urol Oncol 32(8): 1116–1125.

Mikropoulos C, Goh C, Leongamornlert D, Kote-Jarai Z, Eeles R (2014) Translating genetic risk factors for prostate cancer to the clinic: 2013 and beyond. Future Oncol 10: 1679–1694.

Mitra A, Fisher C, Foster CS, Jameson C, Bashir R, Walsh P, Blute M, Zincke H, Han M, Reuter V, Tewari K, Scher HI, Kattan MW, Uzzo RG, Roehl TH, Penson DF, Mittelman MS, Tewari M, Logan S, Kattan MW, Gillatt D, Gleave M, Pomfret EA, Moller P, Penson DF, Djalal S, Haasbeek JC, van der Kwast TH, de Koning HJ, Schröder FH (2014) A large international collaborative study of prostate cancer in men with BRCA2 mutations: Results of the Rotterdam section of the European Randomized study of screening for prostate cancer. Eur Urol 64: 530–539.

Taylor RA, Fraser M, Livingstone J, Espiritu SM, Thorne H, Huang V, Lo W, Shah YJ, Yamaguchi TN, Linslowski A, Hendry M, Heilser LE, Yu Y, Yousif F, Papapagris M, Lawrence MG, Timms L, Murphy DG, Rappaport J, Chuang S, Hsing AW, Zwieinski B, Hsing AW, Zwieinski B, Etzioni R, Li J, Penson DF, Djalal S, Haasbeek JC, van der Kwast TH, de Koning HJ, Schröder FH, Roehl TH, Penson DF, Djalal S, Haasbeek JC, van der Kwast TH, de Koning HJ, Schröder FH, Roehl TH, Penson DF, Djalal S, Haasbeek JC, van der Kwast TH, de Koning HJ, Schröder FH (2013) Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 4(9): 13671.

Thompson D, Easton DF. Breast Cancer Linkage Consortium (2002) Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94: 1358–1365.

Thorne H, Willems AJ, Niedermayr E, Hoh IM, Li J, Clouston D, Mitchell G, Fox S, Hopper JL. Kathleen Cunningham Consortium for Research in Familial Breast Cancer Consortium, Bolton D (2011) Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 4: 1002–1010.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
Christos Mikropoulos1, Christina G Hutten Selkirk2,3, Sibel Saya1, Elizabeth Bancroft1,4, Emily Vertosick5, Tokhir Dadaev1, Charles Brendler2, Elizabeth Page1, Alexander Dias1,4, D Gareth Evans6, Jeanette Rothwell6, Lovise Maehle7, Karol Axcrorna8, Kate Richardson9,10, Diana Eccles11,12, Thomas Jensen13, Palle J Oster13, Christi J van Aspere14, Hans Vansen5, Lambertus A Kiemeneij16, Janneke Ringelberg15, Cezary Cybulski17, Dominika Wokolorczyk17, Rachel Hart18, Wayne Glover18, Jimmy Lam19, Louise Taylor19, Monica Salinas20, Lidia Feliubadalo20, Rogier Oldenburg21, Ruben Cremers16, Gerald Verhaegh16, Wendy A van Zelst-Stams15, Jan C Oosterwijk22, Jackie Cook23, Derek J Rosario24, Sandra S Buys25, Tom Conner25, Susan Domchek26, Jacquelyn Powers26, Margreet GEM Ausems27, Manuel R Teixeira28,29, Sofia Maia28, Louise Izatt30, Rita Schmutzler31, Kerstin Rhiem31, William D Foukes32, Talia Boshari32, Rosemarie Davidson33, Marielle Rujs34, Apollonia TJM Helderman-van den Enden35, Lesley Andrews36, Lisa Walker37, Katie Snape38, Alex Henderson39, Irene Jobson39, Geoffrey J Lindeman40,41,42, Annelie Liljegren43, Marion Harris44, Muriel A Adank45, Judy Kirk46,47, Amy Taylor48, Rachel Susman49, Rakefet Chen-Shtoyerman50, Nicholas Pachter51,52, Allan Spigelman53,54,55, Lucy Side56, Janez Zgajnar57, Josefin Mora58, Carole Brewe59,60, Neus Gadea61, Angela F Brad62, David Gallagher63, Theo van Os64, Alan Donaldson65, Vigdis Stefansdottir66, Julian Barwell67,68, Paul A James9,10,69, Declan Murphy10, Eitan Friedman70,71, Nicola Nicola72, Lynn Greenhalgh73, Elias Obeid74, Vedang Murthy75, Lucia Copakova76, John McGrath76, Soo-Hwang Teo77, Sara Storm78, Karin Kast79,80,81, Daniel A Leongamormerl1, Anthony Chamberlain1, Jenny Pope1, Anna C Newlin3, Neil Aaronson34, Audrey Ardern-Jones4, Chris Bangma21, Elena Castro82, David Dearnaley1,4, Jorunn Eyfjord83, Alison Falconer84, Christopher S Foster85, Henrik Gronberg86, Freddie C Hamdy37,87, Oskar Johannsson66, Vincent Khoo4, Jan Lubinski17, Eli Marie Grindedal7, Jacquelyn Powers26, Margreet GEM Ausems27, Manuel R Teixeira28,29, Sofia Maia28, Louise Izatt30, Rita Schmutzler31, Kerstin Rhiem31, William D Foukes32, Talia Boshari32, Rosemarie Davidson33, Marielle Rujs34, Apollonia TJM Helderman-van den Enden35, Lesley Andrews36, Lisa Walker37, Katie Snape38, Alex Henderson39, Irene Jobson39, Geoffrey J Lindeman40,41,42, Annelie Liljegren43, Marion Harris44, Muriel A Adank45, Judy Kirk46,47, Amy Taylor48, Rachel Susman49, Rakefet Chen-Shtoyerman50, Nicholas Pachter51,52, Allan Spigelman53,54,55, Lucy Side56, Janez Zgajnar57, Josefin Mora58, Carole Brewe59,60, Neus Gadea61, Angela F Brad62, David Gallagher63, Theo van Os64, Alan Donaldson65, Vigdis Stefansdottir66, Julian Barwell67,68, Paul A James9,10,69, Declan Murphy10, Eitan Friedman70,71, Nicola Nicola72, Lynn Greenhalgh73, Elias Obeid74, Vedang Murthy75, Lucia Copakova76, John McGrath76, Soo-Hwang Teo77, Sara Storm78, Karin Kast79,80,81, Daniel A Leongamormerl1, Anthony Chamberlain1, Jenny Pope1, Anna C Newlin3, Neil Aaronson34, Audrey Ardern-Jones4, Chris Bangma21, Elena Castro82, David Dearnaley1,4, Jorunn Eyfjord83, Alison Falconer84, Christopher S Foster85, Henrik Gronberg86, Freddie C Hamdy37,87, Oskar Johannsson66, Vincent Khoo4, Jan Lubinski17, Eli Marie Grindedal7, Joanne McKinley9, Kylie Shackleton40, Anita V Mitra88, Clare Moynihan1, Gad Rennert89, Mohnish Suni90, Karen Tricker6, The IMPACT study collaborators91, Sue Moss92, Zsofia Kote-Jarai1, Andrew Vickers5, Hans Lilja87,93, Brian T Helfand2 and Rosalind A Eeles*,1,4

1The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK; 2The John and Carol Walter Center for Urological Health, Department of Surgery, North Shore University Health System, Evanston, IL 60201, USA; 3Center for Medical Genetics, Department of Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA; 4Royal Marsden NHS Foundation Trust, Fulham Rd, London SW3 6JJ, UK; 5Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; 6Genomic Medicine, Manchester Academic Health Sciences Centre, Division of Evolution and Genomic Sciences, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK; 7Department of Medical Genetics, Oslo University Hospital, Oslo 0372, Norway; 8Akershus University Hospital, Lørenskog 1478, Norway; 9Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, East Melbourne, VIC 3000, Australia; 10The Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; 11Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton SO16 5YA, UK; 12Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; 13Department of Clinical Genetics, Vejle Hospital, Vejle 7100, Denmark; 14Leiden University Medical Center, Department of Clinical Genetics, Leiden, ZA 2333, The Netherlands; 15Netherlands Foundation for the Detection of Hereditary Tumors, Leiden, ZA 2333, The Netherlands; 16Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands; 17International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 70-204, Poland; 18Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B1 2TQ, UK; 19Department of Urology, Repatriation General Hospital, Daw Park, SA 5041, Australia; 20Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL, CIBERONC), L'Hospitalet de Llobregat, Barcelona 08908, Spain; 21Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, The Netherlands; 22Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9713 EZ, The Netherlands; 23Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S10 2TH, UK; 24Royal Hallamshire Hospital, Sheffield S10 2JF, UK; 25Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT 84103, USA; 26Basser Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; 27Department of Genetics, University Medical Centre Utrecht, Utrecht, CX, The Netherlands; 28Genetics Department and Research Center, Portuguese Oncology Institute, Porto 4200-072, Portugal; 29Biomedical Sciences Institute (ICBAS), Porto University, Porto 4200-072, Portugal; 30South East Thames Genetics Service, Guy's Hospital, London SE1 9RT, UK; 31Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne 50937, Germany; 32McGill Program in Cancer Genetics, McGill University, Montreal, QC H3A 0G4, Canada; 33Duncan Guthrie Institute of Medical Genetics, Yorkhill NHS Trust, Glasgow G385J, UK; 34The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands; 35Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands; 36Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, NSW 2031, Australia; 37Churchill Hospital, Headington, Oxford OX3 7LE, UK; 38St George's Hospital, Tooting, London SW17 0QT, UK; 39Northern Genetics Service, Newcastle upon Tyne Hospitals, Newcastle NE1 3BZ, UK; 40Parkville Familial Cancer Centre, The Royal
