A calorimetric test for Kerr black holes in gamma-ray bursts

Maurice H.P.M. van Putten

MIT, Cambridge, MA 02139-4307

ABSTRACT

Cosmological gamma-ray bursts are potentially associated with systems harboring a rotating black hole. Calorimetry on yet “unseen” emissions in gravitational waves from a surrounding torus may provide a measure for its rotational energy. We introduce a compactness parameter $\alpha = 2\pi \int f dE$ for the fluence E and frequency f in gravitational waves. For black hole-torus systems, $\alpha \simeq 2\pi Ef \simeq 0.005 - 0.05$ may exceed the upper bound $\alpha^\ast \simeq 0.005$ for rapidly rotating neutron stars. A duration in gravitational radiation consistent with the redshift corrected durations of the BATSE catalogue defines an association with long GRBs. This promises a new test for Kerr black holes as objects in Nature.

Subject headings: black hole physics — gamma-rays: bursts and theory – gravitational waves

1. Introduction

Gravitation is a vital and universal force in Nature. It ultimately leads to black holes as fundamental particles according to the Einstein theory of general relativity. These objects could be the source of cosmological gamma-ray bursts (GRBs) - the most enigmatic events in the Universe. Their emissions are characteristically non-thermal in the few hundred keV range with a bi-modal distribution in durations, of short bursts around 0.3s and long bursts around 30s (Kouveliotou 1993). These probably derive from dissipation of the kinetic energy in ultrarelativistic baryon poor jets (see Piran (1998) for a review). Redshift determinations from the X-ray afterglows to long bursts indicate a cosmological origin, consistent with their isotropic distribution in the sky and $<V/V_{\text{max}}>$ distinctly less than the Euclidean value of 1/2 (Schmidt 1999). They are probably associated with the formation of young massive stars (Paczyński 1998; Bloom et al. 2000) and, hence, should be most frequent at a redshift of about two. Remnants of GRBs are potentially found in some of the soft X-ray transients (Brown et al. 2000), with notable candidates GRO J1655-40 (Israelian et al. 1999) and V4645 (Orosz et al. 2001).

The inner engine producing the GRBs should be energetic and compact. Angular momentum forms a canonical energy reservoir, and GRB inner engines are probably no exception. This is
consistent with breaking of spherical symmetry (Woosley 1993). Hypernovae, then, follow up on this idea by postulating massive young stars in binaries as their progenitors (Paczyński 1998). These proposals have in common the formation of a black hole, which should be rotating (Bardeen 1970) by conservation of angular momentum from the progenitor star and its binary motion. Black holes formed in prompt collapse, furthermore, are subject to a minimum mass of the order of \(10 M_\odot\) (van Putten & Ostriker 2001) consistent with the observed masses of \(3 - 14 M_\odot\) in SXTs. We note that high angular momentum is also present in coalescing black hole-neutron star systems. Encysting rotating black holes as the baryon-free energy source in GRBs is perhaps tantamount to understanding how do stars shine.

According to the Kerr solution of rotating black holes (Kerr 1963), the horizon surface encloses baryonic matter collapsed under its own gravitational forces, while leaving rotational energy accessible by the Rayleigh criterion. The latter is a consequence of the first law of thermodynamics (Bardeen et al. 1973; Hawking 1975, 1976),

\[
\delta M = \Omega_H \delta J_H + T_H \delta S_H, \tag{1}
\]

where \(\Omega_H \leq 1/2M\) denotes the angular velocity of the black hole of mass \(M\), \(J_H\) its angular momentum, \(T_H\) and \(S_H\) its surface temperature and entropy, respectively. The specific angular momentum \(\delta J_H/\delta M\) of a radiated particle, therefore, is at least twice that of the black hole itself. In isolation, rotating black holes are effectively non-radiating due to angular momentum barriers (Unruh 1974; Hawking 1975; Teukolsky 1973; Press 1973; Teukolsky & Press 1974). However, a surrounding torus may trigger a rotating black hole into violent activity (see van Putten (2001a) for a review) – perhaps epitomized in GRBs.

Identifying Kerr black holes as the active nucleus in GBRs may derive from its three defining properties:

1. a compact horizon surface, which causally separates collapsed matter from its progenitor surroundings. The black hole is expected to represent the final outcome of stellar evolution, formed in accretion induced collapse of a neutron star, white dwarf or, alternatively, in prompt collapse. This may produce black holes of intermediate spin in the former (Brown et al. 1999, 2000), and black holes with rapid spin and above a certain mass threshold in the latter (van Putten & Ostriker 2001).

2. frame-dragging of space-time in violation with Mach's principle, in the sense of a correspondence of zero angular velocity relative to the distant stars with zero angular momentum. A rotating black hole introduces differential rotation in space-time described by frame-dragging \(-\beta\), equal to the angular velocity \(\Omega_H\) of the black hole on the horizon and zero at infinity. Upon reaching the north pole, a ballerina rotating with angular velocity \(-\beta\) relative to the distant stars will find her arms naturally pointed down, while one standing still will find her arms spread out.

3. a compact energy reservoir of up to one-third of the total mass of the black hole. Rotation of a Kerr black hole may be parametrized by \(\sin \lambda = a/M\), where \(a\) denotes the specific angular momentum \(J_H/M\) for an angular momentum \(J_H\) and mass \(M\). This gives \(\Omega_H = \tan(\lambda/2)/2M\) and
$E_{\text{rot}} = 2M \sin^2(\lambda/4)$ for the angular velocity and rotational energy of a Kerr black hole, respectively. Thus, the rotational energy may reach about 29% of the total mass of the black hole. This has no counterpart in baryonic matter. About one-half of the rotational energy is stored in the upper ten percent of the angular velocity of a maximally spinning black hole.

The first two properties – a compact horizon and frame-dragging – are potentially the driving agency behind the formation of a macroscopic gap with ultrarelativistic baryon poor outflows along open magnetic field-lines (van Putten 2001a,c), serving as the input to GRB/afterglows. These field-lines find their support in an equilibrium magnetic moment of the black hole in its lowest energy state as a consequence of the no-hair theorem, when surrounded by a torus magnetosphere. The latter is expected to be supported by a disk or torus, from fallback matter in failed supernovae/hypernovae (Woosley 1993; Paczyński 1998) or debris of a neutron star upon tidal break-up (Paczyński 1991).

Establishing the third property requires calorimetry on the output from GRBs in all energy channels. For long bursts from rapidly spinning black holes (van Putten & Ostriker 2001), discussed here, we expect a high incidence of the black hole luminosity onto the inner face of the surrounding disk or torus by equivalence in poloidal topology to pulsar magnetospheres (van Putten 1999). Firstly, this output into the disk or torus may be processed into several channels, powering gravitational waves, Poynting-flux dominated winds and, when sufficiently hot, neutrino emissions. Indeed, evidence for appreciable energy output from the spin of the black hole into the disk may already be found in chemical depositions onto the companion star of GRO J1655-40 and V4641Sgr, in the hypernovae proposed by Brown et al. (2000). Secondly, this output may be representative for the total output of the black hole, being at least two order of magnitudes more luminous (van Putten & Levinson 2001) than the true output of $3 - 5 \times 10^{50}$ ergs in GRB/afterglows (Frail et al. 2001; Panaitescu & Kumar 2001; Piran et al. 2001). Thus, GRBs could be merely the tip of the iceberg, being accompanied by as yet “unseen” emissions such as in gravitational waves, whose fluence may reach about 1% of the mass of the black hole (van Putten 2001b). Therefore, the upcoming Laser Interferometric Gravitational Wave Observatory LIGO (Abramovicci et al. 1992) and their French-Italian counter part VIRGO (Bradaschia et al. 1992) promise a new avenue for calorimetry on the energy reservoir in GRBs, and possibly that of rotating black holes.

The association between the fluence in gravitational waves from a torus and the spin-energy of a central black hole is described in §2. A compactness measure for the observed fluence and frequency in gravitational waves is proposed in §3, which may serve to discriminate black hole-torus systems from rapidly rotating neutron stars. We shall use geometrical units, expressing energy E in terms of the equivalent gravitational radius $EG/c^2 = 1.5 \times 10^5 \text{cm}(E/M_\odot c^2)$, where G denotes Newton’s constant and c the velocity of light, and frequency f in terms of f/c. For example, in these units luminosity is dimensionless, given as a rate of change of energy [cm] per unit of time [cm].
2. Proposed source of gravitational radiation from a torus around a black hole

Long/short GRBs may be associated with a state of suspended-/hyperaccretion onto the black hole (van Putten & Ostriker 2001). A suspended-accretion state lasts as long as the black hole spins rapidly, whereas the disk around a slowly rotating black hole evolves by magnetic regulated hyperaccretion towards a finite-time singularity. A bi-modal distribution of duration occurs, when the ratio of disk mass to torus mass is small. The suspended accretion state operates by equivalence in poloidal topology to pulsar magnetospheres (van Putten 1999; Brown et al. 2001): the inner face of the torus receives energy and angular momentum from the black hole as does a pulsar when infinity wraps around it (van Putten 2001c). Gravitational radiation may be produced in black hole-torus systems as the torus develops non-axisymmetric instabilities. With forementioned association to GRBs, this features several aspects which suggest considering long GRBs as LIGO/VIRGO sources: the torus is strongly coupled to the spin-energy of the black hole; lumpiness in the torus will produce gravitational radiation at twice the Keplerian angular frequency, i.e., in the range of 1-2kHz; gravitational radiation should dominate over emissions in radio waves; the true rate of GRBs should be frequent given their beaming factor of a few hundred (Frail et al. 2001; Panaitescu & Kumar 2001; Piran et al. 2001). Powered by the spin-energy of the black hole, these emissions are different from radiation produced during spiral in of neutron-neutron star binaries (Narayan et al. 1992; Kochanek & Piran 1993) or fragmentation in collapse towards supernovae (Bonell 1995).

Non-axisymmetries in the torus are expected from dynamical and, potentially, radiative instabilities. This can be described by a lumpiness m, which introduces a luminosity according to the Peters & Mathews’ formula for quadrupole radiation from two point masses (Peters & Mathews 1963)

$$L = \frac{32}{5} (\omega \mathcal{M})^{10/3} F(e) \simeq \frac{32}{5} (M/R)^{5} (m/M)^2$$

where $\omega \simeq M^{1/2}/R^{3/2}$ denotes the orbital frequency with separation R, $\mathcal{M} = (M_1 M_2)^{3/5}/(M_1 + M_2)^{1/5} \simeq M (m/M)^{5/3}$ the chirp mass and $F(e)$ a factor of order unity as a function of the ellipticity e. The torus may be thick, consistent with the recent indication that long GRBs may be standard (van Putten & Levinson 2001), which is generally susceptible to the Papaloizou-Pringle instability (Papaloizou & Pringle 1985). A massive torus, reaching an appreciable fraction of the mass of the black hole, would further be unstable to self-gravity (Woodward et al. 1994). Non-axisymmetries might also be promoted by gravitational radiation, as in the Chandrasekhar-Friedman-Schutz instability, or by its action preferentially on lumps of matter on inner orbits. Gravitational wave-emissions thus produced could be quasi-periodic (QPO), perhaps reminiscent of QPOs in X-ray binaries and possibly also related to general relativistic effects in orbital motions (Stella 2000).

We find that about one-third of the black hole-luminosity L_H (most of which is incident onto the torus) is re-radiated into gravitational waves (van Putten 2001b):

$$L_{gw} \simeq L_H/3$$
(the fraction on the right hand-side may range from 1/4 to 1/2). For a maximally spinning black hole, therefore, the fluence in gravitational radiation may reach about one-third the rotational energy of the black hole, times the efficiency factor given by the ratio of the angular velocity Ω_T of the torus to that of the central rotator. For a torus of radius R around a maximally spinning Kerr black hole of mass M, the latter is given by (Shapiro & Teukolsky 1983)

$$\frac{\Omega_T}{\Omega_H} = \frac{2}{[(R/M)^{3/2} + 1]}.$$ (4)

Hence, by (2-4), the characteristic mass m of lumpiness in the torus is required to be

$$m \simeq 0.15\%M\left(\frac{R}{3M}\right)^{7/4}$$ (5)

for a canonical burst duration of 15s (of long bursts). This estimate is consistent with condition that the perturbation m is much less than the mass M_T of the torus, while $M_T << M$ for there to be a bi-modal distribution. Note that the efficiency (4) will be less than 50% for a torus radius $R > 2M$, showing that generally most of the rotational energy is dissipated in the horizon of the black hole. Since 90% of the rotational energy of a maximally spinning black hole is contained in the upper 10% of its angular velocity, a black hole-torus system is not expected to evolve significantly during most of its gravitational wave emissions.

3. Compactness parameter for bursts of gravitational radiation

We propose a compactness parameter for gravitational wave-emissions by integration of the frequency f against fluence:

$$\alpha = 2\pi \int_0^E f dE$$ (6)

for a net fluence E. An equivalent expression is the integration of the luminosity \mathcal{L} against the number of periods n, i.e., $\alpha = 2\pi \int_0^T \mathcal{L}(t)dn(t)$ over the duration T of the burst. The measure (6) is reminiscent of the ratio of the rotational energy E_{rot} to the length scale M of black hole. Indeed, $\alpha \simeq 2\pi E/L$ for a system of size L close to its Schwarzschild radius, whose fundamental angular frequency is of order $2\pi/L$. In geometric units, α is dimensionless.

For a black hole-torus system, (6) becomes

$$\alpha \simeq 2\pi Ef$$ (7)

upon neglecting secular evolution while the black hole continues to spin rapidly. For a maximally spinning black hole, (3) shows that E may reach about one-third the rotational energy of the black hole, times the efficiency factor (4). Hence, we have

$$\alpha \simeq \frac{4}{9}\left[(R/M)^{3/2} + 1\right]^{-2} \simeq 0.005 - 0.05,$$ (8)
where $R = (2 - 4) \times M$ denotes a fiducial range of torus radii, corresponding formally to $f = 1.1 - 2.5\text{kHz}$ for $M = 7M_\odot$.

Gravitational radiation from a neutron star is commonly expected in its early stages of formation. In the approximation of a neutron star of uniform mass density, rotation about centrifugal break-up gives the upper bound

$$\alpha^* = \frac{4}{15} M_{ns} R_{ns}^2 \Omega_{ns}^2 = \frac{4}{15} (M_{ns}/R_{ns})^{5/2} \simeq 0.005$$

(9)

for a canonical value $M_{ns}/R_{ns} \simeq 1/5$ of the mass-to-radius ratio of a neutron star. The true value of α^* may be somewhat less by an (uncertain) efficiency factor and extremal angular velocities below the Newtonian bound $M_{ns}^{1/2}/R_{ns}^{3/2}$.

4. Calorimetric test for Kerr black holes

Gravitational wave-emissions from a black hole-torus system may be discriminated from those by a neutron star through the test

$$\alpha > \alpha^*$$

(10)

The estimates (8,9) show that (10) tends to be satisfied whenever the black hole-torus system is more compact than a neutron star. Here, compactness is now re-expressed in terms of a mass-to-radius ratio: the black hole mass to the radius of the torus in the former, and the neutron star mass to its radius in the latter case.

Applying the test (10) requires the distance to the source in deriving the fluence from the observed strain amplitude. This may be circumvented using a sample of detections, and taking averages to consider

$$\bar{\alpha} > \alpha^*$$

(11)

in the approximation

$$\bar{\alpha} \simeq 2\pi \bar{E} \bar{f}.$$
(12)

A cosmologically nearby sample is well-described by a constant GRB event-rate \dot{n} per unit volume, e.g., 2 per year within a distance to 100Mpc. This gives a differential event rate of gravitational wave-bursts $d\dot{N} \simeq \Sigma \dot{n} dr$, where $\Sigma = 4\pi r^2$ denotes the surface area of the sphere reaching the source at radius r. In what follows, we shall assume a source population with standard E and f.

Consider a sample of surface energy densities $e = E/\Sigma$ at the detector. Upon averaging, we have $\bar{e} = E < \Sigma_{\text{max}}/\Sigma > /\Sigma_{\text{max}} = 3E/\Sigma_{\text{max}}$, where $\Sigma_{\text{max}} = 4\pi r_{\text{max}}$ denotes the maximal surface area associated with a source at $r = r_{\text{max}}$ at detection threshold. The assumption that of standard emissions E may be checked through the relationship

$$d\dot{N} \propto e^{-1/2} d(1/e).$$

(13)
The averaged expression (12) for α now becomes

$$\bar{\alpha} = (4\pi/3)^{5/3} \left(\dot{N}/\dot{n} \right)^{2/3} \bar{e} \bar{f}$$

upon expressing Σ_{max} in the net detection rate \dot{N}.

Sources of gravitational waves in cosmologically nearby sample can be tested for an association with GBRs by comparing their durations with the redshift-corrected mean duration $\bar{T} = 30s < 1/(1 + z) >$ of long GRBs in the BATSE catalogue (Kouveliotou 1993). This gives $\bar{T} \simeq 10s$ if long GRBs are locked to the star formation rate, or $\bar{T} \simeq 10-15s$ working from the measured redshifts z to individual events (as in van Putten (2001b,c)). The latter might overestimate \bar{T} due to extinction of afterglows (see Ramirez-Ruiz et al. (2001)). A typical redshift of about two would be consistent with $<V/V_{\text{max}}>= 0.282$ for long bursts (Katz & Canel 1996) and the peak in the stellar formation rate (e.g., Connolly et al. (1997)).

In summary, calorimetry on gravitational wave-emissions from GRBs could offer a unique opportunity to establish the existence of Kerr black holes as objects in Nature, and hence that of black holes in general.

Acknowledgement. The author acknowledges stimulating discussions with R.P. Kerr, G.J. Tee, T. Piran and G.E. Brown, and constructive comments from the anonymous referee. This research is supported by NASA Grant 5-7012 and an MIT C.E. Reed Fund.

REFERENCES

Abramovici, A., et al., Science, 256, 325
Bardeen, J.M., Nature, 226, 64
Bardeen, J.M., Carter, B., Hawking, S.W., 1973, Commun. Math. Phys., 31
Bloom, J.S., Kulkarni, S.R., & Djorkovski, S.G., 2000, astro-ph/0010176
Bonnel, I.A., & Pringle, J.E., MNRAS, 273, L12
Bradascchia, C., et al., Phys. Lett. A., 163, 15
Brown, G.E., Lee, C.H., & Bethe, H.A., 1999, NewA, 4, 313
Brown G.E., Lee, C.-H., Wijers, R.A.M.J., Lee, H.K., Israelian, G., & Bethe, H.A., 2000, NewA, 5, 191
Brown, G.E., Bethe, H.A., & Lee, C.-H., 2001, Selected Papers: Formation and Evolution of Black Holes in the Galaxy, World Scientific, Singapore, in preparation
Connolly, A.J., Szalay, A.S., Dickinson, M., SubbaRao, M.U., Brunner, R.J., 1997, ApJ, in press
Frail et al., 2001, astro-ph/0102282
Hawking, S.W., 1975, Comm. Math. Phys., 175, 43, 199
Hawking, S.W., 1976, Phys. Rev. D., 13, 191
Israelian, G., Rebolo, R., Basri, G., Casares, J., & Martín, E.L., 1999, Nature, 401, 142
Katz, J.I., & Canel, L.M., 1996, ApJ, 471, 915
Kerr, R.P., 1963, Phys. Rev. Lett., 11, 237
Kochanek, C., & Piran, T., 1993, ApJ, 417, L17
Kouveliotou, C., et al., 1993, ApJ, 413, L101
Lee, H.K., Lee, C.H., & van Putten, M.H.P.M., 2001, MNRAS, 324, 781
Narayan, R., Paczynski, B., & Piran, T., 1995, ApJ, 395, L83
Orosz, J.A., et al., 2001, ApJ, 555, 489
Paczyński, B.P., 1991, Acta Astron., 41m, 257
Paczyński, B.P., 1998, ApJ, 494, L45
Panaitescu, A., & Kumar, P., 2001, astro-ph/0109124
Papaloizou, J.C.B., & Pringle, J.E., 1985, MNRAS, 208, 721
Peters, P.C., & Mathews, J., 1963, Phys. Rev., 131, 435
Piran, T., Physics Reports, 1998, 314, 575; ibid. 333, 529 (1999)
Piran, T., et al., 2001, ApJL, to appear; astro-ph/0108033
Press, W.H., & Teukolsky, S.A., 1973, ApJ, 185, 649
Ramirez-Ruiz, E., Trentham, N., & Blain, A.W., 2001, MNRAS, to appear; astro-ph/0103239
Schmidt, M., 1999, Astron. Astroph. Suppl. Ser. 138, 409
Shapiro, S.L., & Teukolsky, S.A., 1983, Black Holes, White Dwarfs and Neutron Stars (Wiley, New York)
Stella, L., in Proc. X-ray Astron. 1999; Stellar Endpoints, AGN and the Diffuse Background, edited by G. Malaguti, G. Palumbo, and N. White (Singapore, Gordon and Breach, New York, 2000)
Teukolsky, S.A., & Press, W.H., 1974, ApJ, 193, 443
Teukolsky, S.A., 1973, ApJ, 185, 635

Unruh, W., 1974, Phys. Rev. D.,

van Putten, 1999, Science, 284, 115

van Putten M.H.P.M. & Ostriker, E.C., 2001, ApJ, 552, L31

van Putten, M.H.P.M., 2001a, Phys. Reports, 345, 1

van Putten M.H.P.M. & Levinson, A., 2001, ApJ, 555, L41

van Putten, M.H.P.M., 2001b, Phys. Rev. Lett., 87, 0901101

van Putten, M.H.P.M., 2001c, in Proc. 2nd KIAS Workshop High Energy Emission Around Black Holes, KIAS, Seoul, Korea (to appear); astro-ph/0109429

Woodward, J.W., Tholine, J.W., & Hachisu, I., 1994, ApJ, 420, 247

Woosley, S.E., 1993, ApJ, 405, 273