HYDROGEN PRODUCTION AND CARBON DIOXIDE RECOVERY FROM KRW OXYGEN-BLOWN GASIFICATION*

by

Richard D. Doctor, Karen L. Chess,**
Norman F. Brockmeier, John C. Molburg, and P. Thimmapuram
Argonne National Laboratory
Energy Systems Division/Bldg. 362
9700 S. Cass Ave.
Argonne, IL 60439-4815

September 1998

Submitted for publication in the Proceedings of the Fourth Intl. Conference on Greenhouse Gas Control Technologies, Aug. 30-Sept. 2, 1998, Interlaken, Switzerland, sponsored by the IEA Greenhouse Gas R&D Programme.

*Work supported by the U.S. Department of Energy, Office of Fossil Energy, under Contract No. W-31-109-ENG-38.

**Current address: Fuel Tech, 1001 Frontenac Rd., Naperville, IL 60563-1746
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
HYDROGEN PRODUCTION AND CARBON DIOXIDE RECOVERY FROM KRW OXYGEN-BLOWN GASIFICATION

Richard D. Doctor, Karen L. Chess,* Norman F. Brockmeier, John C. Molburg, and P. Thimmapuram
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439-4815, USA

ABSTRACT
An oxygen-blown KRW integrated gasification combined-cycle plant producing hydrogen, electricity, and supercritical-CO₂ was studied in a full-energy cycle analysis extending from the coal mine to the final destination of the gaseous product streams. A location in the mid-western United States was chosen 160-km from Old Ben #26 mine which ships 3,866 tonnes/day of Illinois #6 coal by diesel locomotive. Three parallel gasifier trains, each capable of providing 42% of the plant's 413.5 MW nominal capacity use a combined total of 3,488 tonnes/day of 1/4" prepared coal. The plant produces a net 52 MW of power and 3.71 x 10⁶ nm³/day of 99.999% purity hydrogen which is sent 100 km by pipeline at 34 bars. The plant also produces 3.18 x 10⁶ nm³/day of supercritical CO₂ at 143 bars, which is sequestered in enhanced oil recovery operations 500 km away. A CO₂ emission rate of 1 kgCO₂/kWh was assumed for power purchases outside the fence of the IGCC plant.

INTRODUCTION
Oxygen-blown gasification is used to convert Illinois #6 coal to synthesis gas [Fig. 1]. After particulate removal, a shift reactor uses steam to convert the CO component of the gas to CO₂ and hydrogen (H₂). Next, H₂S is removed from the stream and processed to produce marketable sulfur. Carbon dioxide is then recovered in a glycol-based process and transported by pipeline for enhanced oil recovery. The gas stream after CO₂ recovery is processed using pressure-swing adsorption (PSA) to recover H₂ at a purity suitable for fuel cells, although there is no restriction on the actual hydrogen end-use. The H₂ stream is transported to end users via pipeline, while the residual gas from PSA—a combination of hydrogen, methane, and light hydrocarbons—is used to generate electricity by combustion turbine combined cycle. Part of the electricity generated supplies the internal needs of the plant, and the excess is sent to the grid.

MINING
The assumed power plant location is 100 mi (160 km) by diesel-rail transport from the Old Ben #26 underground mine in Sesser, Illinois. The plant receives 4,112 tons/day (155.4 metric tonnes/h) of 2 x 4-in. coal, which is prepared to 0 x 1/4-in. with 3.5% weight loss. A summary of this portion of the power cycle appears in Table 1.

INTEGRATED GASIFICATION COMBINED CYCLE CONVERSION
Previous process design studies to characterize integrated gasification combined-cycle (IGCC) power systems with CO₂ capture technologies were modified using ASPEN® modeling to evaluate a configuration producing both merchant hydrogen and electricity [1,2,3,4,5]. The power plant configuration employs three parallel gasifier trains, each capable of providing 42% of the plant's 413.5 MW nominal capacity (for the base case with no CO₂ recovery.) After modification, the plant produces 131 MMscf/day (3.71 million standard cubic m/day) of 99.999% purity hydrogen at 287.7 Btu/scf; 119.9 KJ/g (LHV) which is sent 100 km by pipeline at 34 bars. At 100% efficiency, this could yield 460 MW of power. The plant also produces 112 MMscf/day (3.18 million standard cubic m/day) of supercritical CO₂ at 143 bars, which is sent 500-km for sequestering in enhanced oil recovery. PSA reject gas goes to a turbine cycle to produce 118 MW. After supplying 66 MW for internal power use this yields 52 MW Net power. The designed plant availability is 95%. This is largely reflected in higher projected maintenance costs.

H₂ PIPELINE
A 100-km pipeline design was prepared and costs were estimated for a high purity hydrogen flow of 3.71 x 10⁶ nm³/day through a 343 mm pipe at 30 bar. There appears to be no economic justification for going to higher pipeline pressures and an internal study of the costs for delivering energy as methane vs. energy as H₂ showed a 13% advantage for methane at 500 psi rising to a 46% advantage at 800 psi. Economic assumptions were for an availability of 95% and capital recovery of 12% to yield transmission costs of 0.171 $/MMscf; 0.564 $/GJ. It is very important to observe that the high costs of a dedicated pipeline dictate the high availabilities.

*Current address: Fuel Tech, 1001 Frontenac Rd., Naperville, IL 60563-1746
Fig. 1. Integrated Gasification Combined-Cycle Producing Electricity, CO₂ and H₂

Table 1. Energy Use in Coal Mining, Preparation, and Transportation

Activity	Metric Units	Diesel Emissions	CO₂ Emissions	Electricity Losses	Coal	CO₂
MINING (a)						
Methane emissions (b)						
Hoisting	6.12	6.12	9.63	0.0%	178,981	1,724
Drilling	2.03	2.03	2.03			
Ventilation	2.20	2.20	2.20			
Dewatering	2.67	2.67	2.67			
Break and convey	0.73	0.73	0.73			
Ancillary	0.46	0.46	0.46			
subtotal	14.21	14.21	2.54	0.0%	178,981	2,543

PREPARATION 2x4-in. (c) | 5.85 | 6.5% | 145,341

PREPARATION 1/4-in. (c) | 5.85 | 6.5% | 145,341

(a) Operations of 250 days/yr at 13 hr/day
(b) Methane emissions of 175 scf/ton counted only as conversion to CO₂ within a 14-yr life
(c) Accounted for in IGCC plant balance
CO₂ PIPELINE

Design and economic assumptions for a supercritical-CO₂ pipeline were compared against current plans for Dakota Gasification Company, Beulah, ND [6] and Shell estimates of CO₂ purchase costs at $3.25/bbl of oil recovered [7] with a reasonable CO₂ utilization of 5.6 Mscf/bbl oil [8], which would come to a purchase price of about $0.60/Mscf. Since, the 30-in. Shell Cortez line is unusually large — resulting in economies of scale — previously determined pipeline costs of $0.77/Mscf CO₂ still appear reasonable.

RESULTS: FULL-ENERGY CYCLE BALANCES

The energy costs of delivering electricity 100-km from the IGCC plant are presented for three cases; the IGCC base case with no CO₂ recovery (Table 2); the IGCC system with CO₂ recovery (Table 3); the IGCC system developed for this study with H₂ production and CO₂ recovery (Table 4). For the Base-case with no CO₂ recovery; delivered power was 396-MW full-cycle with emissions of 0.83 kgCO₂/kWh. There is a derating with CO₂ recovery. Delivered power becomes 366-MW full-cycle at 0.20 kgCO₂/kWh. An additional derating takes place in the present case with both H₂ production and CO₂ recovery where the hydrogen goes to 3-stage solid-oxide fuel cells. The delivered power now becomes 344-MW full-cycle at 0.22 kgCO₂/kWh. This is the combination of 52-MW busbar at the plant and 298-MW from fuel cells and a steam generator topping cycle.

Table 2. KRW O₂-blown IGCC - Base Case
Basis: Electric power delivery 100 km from station

MINING AND TRANSPORT	Power	CO₂	CH₄	N₂O		
Coal methane emissions	3,845	145,341	-0.85			
Mining operations & preparation	8,937,000	2,347	88,717	-29.29		
Transport by rail - 161 km	17,254					
Subtotal	-2.61	2,614	0.00003			
POWER PLANT						
Coal preparation (0-in. x 1/4-in.)	8,937,000	2,347	88,717	-29.29		
O₂ by cryogenic separation	17,254					
Gasifier island	-2.90					
Solid waste	492	18,598				
Sulfur	78	2,948	-4.64			
SO₂ (gasifier only)	6.92	262	6,157	unknown		
Power island	-7.02	320,383				
Miscellaneous (5%)	-2.24					
Subtotal	-44.70	326,540				
Power - gas turbine	627.40					
Power - air compressor and losses	-328.60					
Power - steam turbine	159.40					
GROSS Power Subtotal	458.20					
b. NET Power	413.50					
c. CO₂ PIPELINE AND SEQUESTERING	0.00	0				
d. H₂ PIPELINE	0.00	0				
e. TRANSMISSION LOSS-3.5%	-14.47	0				
f. NET ENERGY CYCLE -Base Case*	0.833	kg CO₂/kWh	396.20	330,060	566	0.66267

*f = a+b+c+d+e.

APPLICATIONS

Carbon dioxide as a supercritical product (143 bar) can be recovered from coal gasification and power production. Where there is an enhanced oil recovery market, this actually is profitable. The need for high-pipeline utilization is critical. Hydrogen can be recovered at high purity (99.999%) for sale from coal gasification, however the need for high pipeline-utilization is critical. Pressures of 35 bar are optimal. Fuel-cell conversion efficiencies need to approach 77% to match the base-case output. At present, solid-oxide fuel cell efficiencies are 53-58%; while alkaline fuel cell efficiencies are near 70%.
Table 3. O₂-blown IGCC with CO₂
Glycol CO₂ and H₂S recovery; turbine topping
Basis: Electric power delivery 100 km from station

MINING AND TRANSPORT	Power	CO₂	CH₄	N₂O
	nm³/d	tons/d	kg/h	MW
Coal methane emissions				
Mining operations & preparation	-2.61	2,614	0.00003	
Transport by rail - 161 km	-0.21	905	0.66265	
a. Subtotal	-2.82	3,520	566	0.66267

POWER PLANT				
Coal preparation (0-in. x 1/4-in.)	3,845	145,341	-0.85	
O₂ by cryogenic separation	8,937,000	2,347	88,717	-29.29
Steam from heat recovery generator	17,254			
Gasifier island	-2.90			
Solid waste	492	18,598		
Sulfur	78	2,948		
SO₂ (gasifier only)	6.92	262	6,157	unknown
Glycol circulation	-5.80		320,383	
Glycol refrigeration	-4.50			
Power recovery turbines	3.40			
CO₂ compression to pipeline (143 bar)	3,178,000		-17.30	-260,055
Power island	-6.90			
Miscellaneous (5%)	-2.86			
Subtotal	-67.01	66,485	0	unknown
Power - gas turbine	580.78			
Power - air compressor and losses	-325.51			
Power - steam turbine	195.30			
GROSS Power Subtotal	450.57			
b. NET Power	383.56			

CO₂ PIPELINE AND SEQUESTERING	3,178,000		260,055			
Pipeline booster stations	-1.64	1,637	0.00002			
Geological reservoir (1% loss)	-257,454					
c. Subtotal	-1.64	4,238	0	0.00002		
d. H₂ PIPELINE	0.00					
e. TRANSMISSION LOSS-3.5%	-13.42					
f. NET ENERGY CYCLE*	0.203	kg CO₂/kWh	365.67	74,242	566	0.66269

*f = a+b+c+d+e.
Table 4. KRW O₂-blown IGCC

Glycol CO₂ and H₂S recovery; PSA H₂ recovery; turbine topping; 3-stage solid oxide fuel cell

MINING AND TRANSPORT	Power	CO₂	CH₄	N₂O			
	nm³/d	tons/d	kg/h	kW	kg/h	kg/h	kg/h
Coal methane emissions	-2.61	2,614	0.00003				
Mining operations & preparation	-0.21	905	0.66265				
Transport by rail - 161 km	-2.82	3,520	566	0.66267			
a. Subtotal							
POWER PLANT							
Coal preparation (0-in. x 1/4-in.)	8,937,000	2,347	88,717	-29.29			
O₂ by cryogenic separation	17,254						
Steam from heat recovery generator							
Gasifier island	-2.90						
Solid waste	492	18,598					
Sulfur	78	2,948					
SO₂ (gasifier only)	6.92	262	6,157	unknown			
Glycol circulation	-5.80	320,383					
Glycol refrigeration	-4.50						
Power recovery turbines	3.40						
CO₂ compression to 143 bar	3,178,000	-17.30	-260,055				
H₂ PSA purification to 31 bar	3,710,000	-3.18					
H₂ cryo-storage for pipeline	-0.92						
Power island	-1.81						
Miscellaneous (5%)	-3.07						
Subtotal	-66.22	66,485	0	unknown			
Power - gas turbine	244.53						
Power - air compressor and losses	-169.48						
Power - steam turbine	42.93						
GROSS Power Subtotal	117.98						
b. NET Power	51.76						
CO₂ PIPELINE & SEQUESTERING	3,178,000		260,055				
Pipeline booster stations	-1.64	1,637	0.00002				
Geological reservoir (1% loss)	-257,454						
c. Subtotal	-1.64	4,238	0	0.00002			
H₂ PIPELINE OUTLET (21 bar)	3,710,000						
H₂ 3-stage SOFC (58% of 460.0 MW)	266.80						
Steam Generator (85% of 36.8 MW)	31.28						
d. Subtotal	298.08	0	0	0.00000			
e. TRANSMISSION LOSS-3.5%	-1.81						
f. NET ENERGY CYCLE*	0.216	kg CO₂/kWh	343.56	74,242	566	0.66269	

*₂= a+b+c+d+e

FULL ENERGY CYCLE ANALYSIS OF GREENHOUSE GAS FORCING

Recent consideration of full-energy cycle analysis for power production (9) have emphasized the importance of greenhouse gases such as methane and N₂O in addition to other than carbon dioxide. Modeling results suggest that a molecule of methane is equivalent to 56 molecules of CO₂ in its climate-forcing impact, while each N₂O molecule is equivalent to 280 molecules of carbon dioxide (10). These “equivalent CO₂ impacts” were used as the basis for Fig. 2 which shows the equivalent CO₂ emissions to provide 396-MW of electricity 100-km from the IGCC system.
Fig. 2. Equivalent CO₂ Greenhouse Emissions 396 MW Net-Cycle.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy Fossil Energy Program at the Federal Energy Technology Center, through contract W-31-109-Eng-38; contract managers, Perry Bergman and Sean Plasynski. Special thanks for the support and encouragement from Harvey Ness and Dave Becey.

REFERENCES

1. Gallaspy, D.T., et al., 1990. "Southern Company Services Study of a KRW-based GCC Power Plant," EPRI GS-6876, Electric Power Research Institute, Palo Alto, CA.
2. Doctor, R.D., Molburg, J.C., Thimmapuram, P.R., Berry, G.F., and Livengood, C.D., 1994. "Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal," ANL/ESD-24, Argonne National Laboratory, Argonne, IL.
3. Doctor, R.D., Molburg, J.C., and Thimmapuram, P.R., 1996. "KRW Oxygen-Blown Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal," ANL/ESD-34, Argonne National Laboratory, Argonne, IL.
4. Doctor, R.D., J.C. Molburg, P.R. Thimmapuram, "Oxygen-Blown Gasification Combined Cycle, Carbon Dioxide Recovery, Transport, and Disposal," Proceedings of the 3rd Intl. Energy Agency Carbon Dioxide Disposal Symposium, Cambridge, MA, USA, 9-11 Sept. 1996, H.J. Herzog, Ed., Pergamon Press, Oxford; simultaneous publication in Energy Conservation and Management, 28 (Suppl):575-580 (1997).
5. Doctor, R.D., Molburg, J.C., Thimmapuram, P.R., Berry, G.F., and Livengood, C.D., and Richard A. Johnson, "Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal," Proceedings of the 2nd Intl. Energy Agency Carbon Dioxide Disposal Symposium, Oxford, UK, 29-31 March, 1993, P.W. F. Reimer, ed., IEA Greenhouse Gas R&D Programme, Pergamon Press, Oxford (1993); simultaneous Publication in Energy Conservation and Management, 34(9-11):1113-20 (1993).
6. "Big Canadian Miscible CO₂ EOR Project," Oil & Gas J. (July 7, 1997).
7. Moritz, C., IEOR Survey and Analysis, Oil & Gas J. (Apr. 15, 1996).
8. Hsu, C. et al., "Production Report," Oil and Gas J. (Oct. 23, 1995).
9. Smith, I.M., Greenhouse Gas Emission Factors for Coal-The Complete Fuel Cycle, International Energy Agency, London, UK, Nov. 1997.
10. Bryant, E., Climate Process and Change, Cambridge, 1997, p. 119.