Merging Mouse Transcriptome Analyses with Parkinson’s Disease Linkage Studies

Daniel Gherbassi, Lavinia Bhatt, Sandrine Thuret† and Horst H. Simon*

Department of Neuroanatomy, Interdisciplinary Center for Neuroscience, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany

(Received 5 September 2006; revised 26 March 2007; published online 23 May 2007)

Abstract

The hallmark of Parkinson’s disease (PD OMIM #168600) is the degeneration of the nigral dopaminergic system affecting approximately 1% of the human population older than 65. In pursuit of genetic factors contributing to PD, linkage and association studies identified several susceptibility genes. The majority of these genes are expressed by the dopamine-producing neurons in the substantia nigra. We, therefore, propose expression by these neurons as a selection criterion, to narrow down, in a rational manner, the number of candidate genes in orphan PD loci, where no mutation has been associated thus far. We determined the corresponding human chromosome locations of 1435 murine cDNA fragments obtained from murine expression analyses of nigral dopaminergic neurons and combined these data with human linkage studies. These fragments represent 19 genes within orphan OMIM PD loci. We used the same approach for independent association studies and determined the genes in neighborhood to the peaks with the highest LOD score value. Our approach did not make any assumptions about disease mechanisms, but it, nevertheless, revealed α-synuclein, NR4A2 (Nurr1), and the tau genes, which had previously been associated to PD. Furthermore, our transcriptome analysis identified several classes of candidate genes for PD mutations and may also provide insight into the molecular pathways active in nigral dopaminergic neurons.

Key words: dopaminergic neurons; substantia nigra; neurodegenerative disease; candidate genes

1. Introduction

The neuropathological hallmark of Parkinson’s disease (PD) is the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), affecting about 1–2% of the human population older than 65 years.1 It is characterized by the clinical symptoms of resting tremor, muscular rigidity, postural instability, a positive response to the administration of L-DOPA, and the presence of cytoplasmic inclusions in postmortem brains, Lewy Bodies.2 Despite its mostly sporadic onset and a high discordance rate in monozygotic twins,3 several human linkage studies had been initiated to determine susceptibility genes for this disease.4 In the Online Mendelian Inheritance in Man (OMIM) database, 13 PD loci have been recorded: PARK1,5 PARK2,6–9 PARK3,10 PARK4,11,12 PARK5,13 PARK6,14,15 PARK7,16,17 PARK8,18 PARK9,19,20 PARK10,21 PARK11,22,23 PARK12,23,24 and PARK13.25 Furthermore, genome-wide analyses of multiplex PD families provided evidence for linkage to regions on different chromosomes.21,22,24,26–29 The PARK loci are sometimes larger than 10 Mb and can contain hundreds of genes. In case of the genome-wide linkage studies for a complex, multifactorial disease such as PD, the regions with high LOD scores are rarely smaller than 20 cM.29 The differences among independent studies and the size of the suggested
susceptibility regions make the searches for the underlying mutations irremediably a time-consuming process.

For several PARK loci, the searches have been successful. Mutations in α-synuclein (PARK1 and PARK4), DJ-1 (PARK7), parkin (PARK2), PINK1 (PTEN-induced putative kinase) (PARK6), LRRK2 (leucine-rich repeat kinase 2) (PARK8), UCHL1 (ubiquitin carboxy-terminal-hydrolase-L1) (PARK5), and ATP13A2 (ATPase type 13A2) (PARK9) have been identified.51–53 Other studies have revealed the cytoskeletal protein tau (MAPT)36,38 and the ligand-independent nuclear receptor NR4A2 (Nurr1) as susceptibility genes. Although the definite role in PD of many of these genes is still discussed and controversial (especially for NR4A2 and UCHL1) and the known mutations account for less than 10% of all PD cases, the investigation into the functions of the underlying genes has generated an insight into the fundamental disease pathogenesis. For example, α-synuclein and parkin turned out to be major protein components of Lewy bodies in sporadic PD.41 Mutations in parkin, UCHL1, and DJ-1 suggest that abnormal protein folding and protein degradaton through the ubiquitin-proteasome system is an important factor in the etiology of the disease.42,43 PINK1 may be involved in the phosphorylation of mitochondrial proteins in response to cellular stress, thus protecting against mitochondrial dysfunction.45 Interestingly, mitochondria are also the site, where the known neurotoxins for DA neurons operate, suggesting that their malfunctioning could be a major contributor to PD pathogenesis.44

Current or future searches for the underlying mutations in the remaining orphan Parkinson loci could be accelerated and widened to promoter regions and to haplotype variations, if the number of candidate genes is narrowed down by other criteria. At least seven out of the nine PD-associated genes are expressed by nigral DA neurons,45–50 with different expression levels and specificity. These are α-synuclein, NR4A2, parkin,46 PINK1, tau, UCHL1, and LRRK1 (http://www.brain-map.org). For this reason, we propose expression (specific or non-specific) by mesDA neurons as a selection criterion to identify candidate genes in those PD loci where the underlying gene is still unknown (orphan). Such an approach does not make any presumption with respect to disease mechanisms. Conceptually, the same method was applied on five large PD loci using serial analysis of gene expression for a comparative expression analysis of SNpc and adjacent mesencephalon in postmortem brains.51 As cell-specific expression in mouse and human is very similar, we took three murine expression studies which employed fluorescent-activated cell sorting (FACS) and two unrelated subtractive methods for the identification of genes expressed by mesDA neurons.52–54 We collected the cDNA sequences of these expression analyses from public databases, determined the underlying genes and the corresponding gene ontology annotations [Gene Ontology (GO)] to obtain insight into their function. Then, we established their genetic locations and their syntenic positions on the human genome. Finally, we combined these data with existing human PD linkage studies.5–11,14–20,29,55,56

2. Material and methods

2.1. Transcriptome analysis

All nucleotide sequences used in this study are publicly available at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide and derived from three expression analyses in mouse: (i) Barrett et al.52 published 779 sequences (Accession Nos.: BE824469–BE824504, BE824506–BE824519, BE824521–BE824561, BE824563–BE824823, BE824825–BE825045, BE825047–BE825132, CK338036–CK338155). (ii) Stewart et al.53,57,58 published 496 cDNA sequences (Accession Nos.: AA008736, W33210–W33212, W33214–W33289, W35421–W35480, W36130–W36269, W39787–W40005, W40007–W40008, W40010–W40023, W45732). (iii) We published 160 sequences (Accession Nos.: CO436137–CO436293).54

Each nucleotide sequence was employed for a nucleotide-nucleotide BLAST (bl2seq) (basic local alignment search tool) on the nr database (non-redundant) (http://www.ncbi.nlm.nih.gov/BLAST/) and on the mouse genome (http://www.ncbi.nlm.nih.gov/genome/seq/MmBlast.html). We then recorded those alignments with the highest scores, the lowest e-values, and highest number of hits in a single locus. BLAST results were categorized into four groups: (1) no significant alignments on mouse genome (None), (2) significant alignments with mitochondrial DNA (Mitochondrial Genes), (3) multiple high-scoring alignments on mouse genome (Multiple Hits) for ambiguous results, and (4) significant alignments on mouse genome for single hits or otherwise unambiguous results (Table 1). The latter group was further subdivided into: ‘Genes’, ‘ESTs’, and ‘genomic Sequences’. The group ‘Genes’ comprises the results with high-scoring alignments in exons of single genes. In some cases, where the alignment lay in the region after the last exon or, according to the chromosome map view, in an intron of a given gene, we termed it also ‘Gene’, if the hit was in a UniGene cluster which was linked to the gene in the locus. With those alignments that we were unable to associate to a gene, we performed a blastn on the MmEST database. If we could associate the sequence to a previously described EST, we termed it ‘EST’; otherwise, it was termed ‘Genomic Sequence’.

For all the ‘Annotated Genes’, ‘Hypothetical Genes’, and mitochondrial genes, the following data were collected from the locus link feature (http://www.ncbi.nlm.nih.gov/LocusLink) this was replaced by http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene during the
2.2. Mapping the murine cDNA sequences to the human genome

For most of the murine genes, a human homolog has already been determined, normally carrying the same name and symbol. This information is registered on the Entrez Gene page together with the cytogenetic locations. When this information did not exist, we used the mouse protein sequence of the identified gene for a translated BLAST (tblastn), or the nucleotide sequence of the cDNA fragment or the GenBank accession number of the corresponding gene for a blastn on the human genome. We registered the position in kilobases on the chromosome and verified each position on the human genome. We registered the position in kilobases on the corresponding gene for a blastn on the human genome. We obtained 1435 sequences from three independent studies, which had the original aim to identify genes expressed by mesDA neurons. Barrett et al.52 had isolated DA neurons from E13 ventral midbrain by FACS. This library contains genes expressed by mesDA neurons with a preference for abundant genes. The other two studies used subtractive methods to enrich for rare RNA transcripts expressed by mesDA neurons. Stewart et al.53,57,58 had created a single-stranded directional cDNA library from substantia nigra of 8-week-old mice subtracted with a cDNA library from cerebellum. We had used a PCR-based differential display method54 employing cDNA from engrailed-1/2 double-mutant and wild-type ventral midbrain during the embryonic stages when mesDA neurons disappear in the mutants.59,60 The amplified sequences were compared to the expression profile of adult olfactory bulb, a source of DA neurons unrelated to those in the ventral midbrain. Only differentially expressed cDNA fragments were isolated and sequenced. As the original sequence analyses of the former two studies had been performed when a smaller nucleotide data set was available and in order to update our own expression analysis, we subjected the sequence data from all three screens to new BLAST searches and determined their association to genes and published ESTs, and their location on the mouse genome.

The entire data set was collected and processed using the database program, Filemaker Pro 7.0. The latest update was in February 2007. This database is available upon request.

Table 1. BLAST results on mouse genome

Alignment Type	Number of Alignments
No significant alignments on mouse genome	262 None
Significant alignments with mitochondrial genes	104 Mitochondrial genes
Multiple high-scoring alignments on mouse genome	19 Multiple hits
Significant alignments on mouse genome	1050 Genes (940)
Annotated genes (793)	
Hypothetical genes (147)	
ESTs (47)	
Genomic sequences (63)	

Candidate gene. For the loci suggested by genome-wide studies, we selected those genes, which were situated ±3 Mb from the chromosome marker (single nucleotide polymorphism (SNP)) with the highest LOD score (Table. 5). We are aware that this approach reduces the numbers of genes in an arbitrary manner. However, if preferred, the range can be widened with the provided data (see Supplementary Data) in order to more accurately consider asymmetry or size of each specific linkage peak.

The entire data set was collected and processed using the database program, Filemaker Pro 7.0. The latest update was in February 2007. This database is available upon request.

3. Results

We obtained 1435 sequences from three independent studies, which had the original aim to identify genes expressed by mesDA neurons. Barrett et al.52 had isolated DA neurons from E13 ventral midbrain by FACS. This library contains genes expressed by mesDA neurons with a preference for abundant genes. The other two studies used subtractive methods to enrich for rare RNA transcripts expressed by mesDA neurons. Stewart et al.53,57,58 had created a single-stranded directional cDNA library from substantia nigra of 8-week-old mice subtracted with a cDNA library from cerebellum. We had used a PCR-based differential display method54 employing cDNA from engrailed-1/2 double-mutant and wild-type ventral midbrain during the embryonic stages when mesDA neurons disappear in the mutants.59,60 The amplified sequences were compared to the expression profile of adult olfactory bulb, a source of DA neurons unrelated to those in the ventral midbrain. Only differentially expressed cDNA fragments were isolated and sequenced. As the original sequence analyses of the former two studies had been performed when a smaller nucleotide data set was available and in order to update our own expression analysis, we subjected the sequence data from all three screens to new BLAST searches and determined their association to genes and published ESTs, and their location on the mouse genome. The 1435 cDNA fragments generated 1050 unambiguous murine genomic hits, 19 ambiguous multiple hits, and 104 alignments with mitochondrial DNA. Two hundred and sixty-two hits, 19 ambiguous multiple hits, and 104 alignments with mitochondrial DNA. Two hundred and sixty-two hits

Out of 1050 cDNA fragments, which generated unambiguous alignments on the mouse genome, 1020 were in gene loci. Most of them aligned to exons of those genes (72.6%; 741 of 1020). Out these 1020 cDNA fragments, 181 (17.8%) lay 3′ to the last annotated exon, suggesting that substantial amounts of mRNAs isolated from brain tissue are longer at their 3′ end than mRNAs from other
tissues (Table 3). Finally, 9.6% (98 of 1020) of the alignments lay in regions designated as introns, suggesting that they are parts of unrecorded splice variants, possibly specific for mesDA neurons.

The 1050 cDNA fragments represented 503 genes (423 annotated and 80 hypothetical genes), 32 ESTs, and 44 unique genomic hits with no otherwise described ESTs. Additionally, the 104 sequences that aligned to the mitochondrial DNA represented 11 mitochondrial genes (Table 2). To these cDNA sequences, we associated the corresponding MGI numbers, if available. This provided us with insight into their molecular function, the cellular locations of the proteins, and the associated biological process (see Supplementary Data for the entire transcriptome analysis). Several protein classes were overrepresented, like, for example, those, which take part in mitochondria-related processes, in fatty acid chain metabolism, in ubiquitination, in the MAPK signaling pathways, or which are chaperones. Some of these molecular pathways were previously linked to the death of mesDA neurons, to PD, and other human neurodegenerative disorders.

The majority of the mutations, which are associated to PD, is in genes that are expressed in mesDA neurons. We, therefore, joined these expression analyses with human PD linkage and association studies, 5–11,13–24,26–29,55,56 where no mutation has been associated thus far. For each unique mouse cDNA sequencing tag, we determined its human homolog and the corresponding cytogenetic and physical positions on the human chromosomes. We verified each locus on the human genome by identifying the neighboring genes on the mouse genome and recorded the human position only if the adjacent genes were the same. We then determined whether these positions were within OMIM (Table 4) and other suggestive (non-OMIM) PD loci (Table 5). In case of the OMIM orphan PD loci, we projected on the human chromosome view the map for ‘morbid diseases’. In case of non-OMIM loci, we identified the genes ±3 Mb to the SNP marker with the highest LOD score. Totally, we linked the mouse transcriptome analyses to 569 unique locations on the human chromosomes. Nineteen of these are within orphan PARK loci (Table 6) and 51 in non-OMIM PD loci (Table 7).

The experimental design of the three different transcriptome analyses, we used for our study, were such that they included both highly and rarely expressed transcripts. Our analysis confirmed the complementary nature of the three screens. Only 7.2% (104 out of 1435) of the cDNA sequences of these libraries represent genes, hypothetical genes, or EST clusters, which are found in

Table 2. Classification of BLAST results from each library

A. Number of unique alignments per individual library	Total analysis	Barrett52	Stewart53	Thuret54
Genesa	423	150	218	77
Hyp. genesb	80	23	39	19
ESTsc	32	16	12	3
Genomic	44	15	8	21
Mitochondria	11	8	2	2
Multiple hitsd	14	6	4	4
Nonec	185	67	111	8
Total	789	285	394	134

B. Total number of fragmentsg	Genesa	793	403	293	97
Hyp. genesb	147	71	55	21	
ESTsc	46	28	15	5	
Genomic	62	30	11	21	
Mitochondria	104	100	2	2	
Multiple hitsd	19	9	4	6	
Nonec	262	138	116	8	
Total	1435	779	496	160	

aAnnotated mouse genes.
bHypothetical genes determined by EST clustering or predicted by automated computational genome analysis with a large open reading frame.
cExpressed sequencing tags.
dUnderlying gene not identifiable, due to multiple alignments with low e-values.
eNo hit in mouse and human genome.
fNumber of unique alignments. Five hundred and seventy-nine unique tags were on the mouse genome (excluding mitochondria).
gNumber of fragments that represent genes, hypothetical genes, ESTs, genomic sequences, multiple alignments, and mitochondrial genes, listed per individual library.

Table 3. Alignments in relation to gene loci

In gene loci Only in last exon	Genomic sequences	ESTs	Genes
In last and other exon(s)	132	132a	
Not in last exon	138		
After 3’ end	181	16	159
Intron	98	10	48
Subtotal	1020	26	948
Outside gene loci	30	17	13
Total	1050	63	39

Genomic alignments were divided into three groups: ‘ESTs’ (3.7%), ‘genomic sequences’ (6.0%), and ‘genes’ (90.3%). Majority of the cDNA fragments that aligned with genes are aligned with the last exon. A significant number of the cDNAs aligned with the region 3’ to the last exon. See Material and Methods for details.
aForty-four hits are in genes with only one exon.
Table 4. PARK loci

Locus	OMIM identifier	Gene	Cytogenetic location	From (kb)	To (kb)	Mb	Number of genes
PARK1	163890	SNCA	4q21.1-4q21.3				
PARK2	602544	Parkin	6q25.3-6q26				
PARK3	602041		2p13.3-2p13.1	68.075	75.307	7.2	106
PARK4	605543		4p15.33-4p15.1	13.424	37.324	23.9	60
PARK5	191342	UCHL1	4p14				
PARK6	605909	PINK1	1p36.33-1p35.1				
PARK7	602533	DJ1	1p36.23-1p36.22				
PARK8	607060		12q11.2-12q13.13	27.908	55.637	27.7	351
PARK9	606693	ATP13A2	1p36.33-1p36.11				
PARK10	606852		1p33-1p32.2	47.651	55.380	7.7	76
PARK11	607688		2q36.1-2q37.3	219.844	243.416	23.6	216
PARK12	300557		Xq21-q25	75.950	129.900	40.0	356
PARK13	610297		2p13.1-2p11.2	75.450	84.130	8.7	39
	601828	NR4A2	2q22.1-2q23.3				
	603779	SNCAIP	5q23.1-5q23.3				
	260540	MAPT	17q21.1				

Genomic location of PARK loci as recorded in the OMIM databank. For seven of the PARK loci, the mutated genes were identified. The number of genes is the current GenBank estimation of all annotated and predicted genes in the corresponding PARK locus. For the PARK10 locus, we used the narrow definition 1p33-1p32.2 as determined by the two genetic markers D1S2134 and D1S200, and not the entire shorter arm of chromosome 1 (1p) which contains 1232 genes.21

Table 5. Association studies not recorded at OMIM

Cytogenetic location	Genetic marker	Mb	CM Marshfield	LOD score
Bertoli-Avellà (03)	19p13.13	12.6	36	2.26
	19p13.13	13.7	38	
DeStefano (01)	9q24.11	123.3	136	1.3
	10q22.1	70.2	88	1.07
DeStefano (02)	9q32	110.6	120	1.86
	20q11.2	37.9	54	1.82
	21q21	27.7	24	2.21
Hicks (02)	5q23.3	120–137	135	1.6
Li (02)	10q25.3	116.1	134	2.62
	6q21.1	41.7	63	1.88
	5q15	96.4	105	
	5q21.1	100	108	1.65
	5q21.3	105–109	115	
	17q13.1	10.8	24	1.93
Martinez (04)	2p12–q22	88	111	1.24
	2p11–q12	102	117	2.04
	2q12	107	123	1.77
	5q23	117.5	130	1.05
	6p12	56	80	1.37
	6q11–q13	69–73	85	1.41
	6q14	~82	90	1.14
	7p22	3	5	1.51

Continued
Table 5. continued

Cytogenetic location	Genetic marker	Mb	CM Marshfield	LOD score	
11q14	D11S4175	89.9	91	1.6	
19q13.3	D19S902	53.6	73	1.05	
Pankratz (03)²⁴	Xq22.3	113.4	71	3.1	
10q11.2	D10S196	51.5	70.0	2.3	
Scott (01)²⁶	5q31.1	135.4	139	2.39	
	17p11.2	14.5	36	1.92	
Two-point and multipoint LOD	17q11.2	D17S1293	32.7	56	2.28
	17p11.2	14.5	36	2.02	
	17q11.2	32.7	56	2.62	
	9q33.1	117.8	130		
	9q34.2	132.3	150		
	3q13.32	118.7	135	1.62	

For each individual study, the highest LOD scores with the associated genetic markers are listed. In these studies, the peak positions and the flanking genetic markers were given in centiMorgan on the Marshfield genetic map. We determined, when possible, the exact position in Mb on the corresponding chromosome. The average distance between the two adjacent genetic markers in each study varied between 5 and 11 cM.

Table 6. Candidate genes in Orphan PARK loci

No. of cDNA fragments aligning with the gene	Mouse ID	Human ID	Symbol	Human gene name	Position	Locus
1	NM_146169	XM_376062	KIAA1155	KIAA1155 protein	2p13.3	Park3
1	NM_008717	NM_014497	ZFML	Zinc finger, matrin-like	2p13.2–p13.1	Park3
1	NM_183138	XM_371501	MGC22014	cDNA sequence BC037432	2p13.1	Park3
3	NM_080555	NM_003713	PPAP2B	Phosphatidic acid phosphatase type 2B	1p32	Park10
1	AA819910	Estimated	FAF1	In locus of Fas-associated factor 1	1p33	Park10
6	NM_009129	NM_003469	SCG2	Secretogranin II	2q35–q36	PARK11
3	AK052241	NM_005544	IRS1	Insulin receptor substrate 1	2q36	PARK11
1	NM_152915	NM_139072	DNER	Delta/notch-like EGF-related receptor	2q37.1	PARK11
1	NM_008440	NM_004321	KIF1A	Kinesin family member 1A	2q37.3	PARK11
2	NM_024197	NM_004544	NDUFA10	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 10	2q37.3	PARK11
1	NM_025437	NM_001412	EIF1AX	Eukaryotic translation initiation factor 1A, X-linked	Xp22.13	PARK12
2	NM_019768	NM_012286	MFRF1L2	Mortality factor 4 like 2	Xq22	PARK12
3	NM_011123	NM_000533	PLP1	Proteolipid protein 1	Xq22	PARK12
3	NM_013898	NM_004085	TIMM8A	Translocase of inner mitochondrial membrane 8 homolog a	Xq22.1	PARK12
3	NM_016783	NM_006667	PGRMC1	Progesterone receptor membrane component 1	Xq22–q24	PARK12
7	NM_030688	estimated	IL1RPL2	After 3’ of interleukin 1 receptor accessory protein-like 2	Xq22.2–q23.3	PARK12
1	NM_133196	NM_001325	CSTF2	Cleavage stimulation factor, 3’ pre-RNA, subunit 2	Xq22.1	PARK12
1	NM_025893	NM_173798	ZCCHC12	Zinc finger, CCHC domain containing 12	Xq24	PARK12
2	NM_172782	NM_018698	NXT2	Nuclear transport factor 2-like export factor 2	Xq23	PARK12
GenBank ID	Human ID	Symbol	Human location	In kb^b	Gene name	
-------------	-------------------	--------	----------------	------------------	---	
Scott (01)	D3S2460²⁶					
5	NM_008083	NM_002045	GAP43	3q13.1–13.2	116700 *Growth-associated protein 43*	
3	BB626331	EST	Lsamp	3q13.2–q21	117200 *Limbic system-associated membrane protein*	
2	NM_177093	XM_057296	LRRC58	3q13.33	121300 *Leucine-rich repeat containing 58*	
2	NM_008047	NM_007085	FST1	3q13.32–q13.3	121460 *follistatin-like 1*	
Martinez (04)	D5S471²⁹					
1	XM_283496	NM_005509	DMXL1	5q31.1	131060 *Folliculin interacting protein 1*	
1	Genomic	Estimated	FEM1C	5q31	131400 *Acyl-CoA synthetase long-chain family member*	
3	NM_152809	NM_004384	SEPT8	5q31	123180 *Septin 8*	
Li (02)	D5S1462	D5S145	LNPEP	5q15	96440 *Leucyl/cystinyl aminopeptidase*	
Scott (01)	D5S81²⁶					
1	NM_029518	NM_016604	JMJD1B	5q31	137810 *Jumonji domain containing 1B*	
3	NM_010771	NM_018834	MATR3	5q31.3	138730 *Matrin 3*	
Li (02)	D6S10¹⁷					
1	NM_025365	NM_013397	C6ORF49	6p21.31	41800 *Chromosome 6 open reading frame 49*	
1	NM_020493	NM_003131	SRF	6p21.1	43200 *Serum response factor (c-fos serum response element-binding transcription factor)*	
5	NM_008302	NM_007355	HSP90AB1	6p12	44300 *Heat shock protein 90 kDa alpha (cytosolic), class B member 1	
Martinez (04)	D6S257	D6S460²⁹				
1	Genomic	Estimated	EEF1A1	6q12–q13	72500 *Eukaryotic translation elongation factor 1 alpha 1	
8	NM_010106	NM_001402	KIAA1279	10q22.1	72424 *KIAA1279*	
Martinez (04)	D7S53¹⁹					
1	NM_028469	NM_032350	MGCL1257	7p22.3	850 *Hypothetical protein MGC11257*	
1	NM_010302	NM_007353	GNA12	7p22–p21	2510 *Guanine nucleotide binding protein (G protein) alpha 12*	
6	NM_007393	NM_001101	ACTB	7p15–p12	5300 *Actin beta*	
1	NM_026050	NM_032706	MGC12966	7p22.2	6110 *Hypothetical protein MGC12966*	
1	NM_009007	NM_006908	RAC1	7p22	6170 *ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac)*	
DeStefano (01)	D9S18^{25,26}	Scott (01)	D9S30¹			
7	NM_026434	NM_033117	RBM18	9q34.11	120400 *RNA binding motif protein 18*	
2	NM_022310	NM_005347	HSPA5	9q33–q34.1	123370 *Heat shock 70 kD protein 5*	
1	NM_025709	NM_015635	GAPVD1	9q34.11	123450 *GTPase-activating protein and VPS9 domains 1*	
1	NM_172661	XM_497089	KIAA0515	9q34.1	129650 *KIAA0515*	
DeStefano (01)	GATA121A0⁸					
1	NM_183295	NM_015634	KIAA1279	10q22.1	70100 *KIAA1279*	
Martinez (04)	D11S417²⁵					
1	NM_025844	NM_012124	CHORDC1	11q14.3	89650 *Cysteine and histidine-rich domain (CHORD)-containing, zinc-binding protein 1*	

Continued
more than one of them (Table 8). Moreover, the libraries also contained two cDNA fragments for α-synuclein, three for NR4A2, and one for the tau genes. Mutations in all three genes have been previously associated to PD.5,30,36 Assuming that all 30 000 genes in the human genome61 were equally likely detected, the probability to identify three of nine PD susceptibility genes by chance out of a pool of 569 was less than 3.4 × 10⁻³. If we exclude the controversial NR4A2 and UCHL1, the probability was less than 1.5 × 10⁻².

4. Discussion

The entire human and mouse genome sequences have been available for more than 3 years.61,62 Therefore, the chromosomal locations of most genes have been determined and as a consequence also those genes within a given disease locus. In order to identify potential PD susceptibility genes, we projected the sequence data of three murine transcriptome studies for mesDA neurons onto the human genome and compared them with previously

GenBank ID	Human ID	Symbol	Human location	In kb[b]	Gene name
Li (02) D10S123934	1 NM_172523 NM_003054 VMAT2 10q25	118680	Solute carrier family 18		
Li (02) D17S130221	1 NM_018768 NM_004853 STX8 17p12	9350	Syntaxin 8		
Scott (01) D17S921, D17S129326	1 NM_111664 NM_018955 UBB 17p12–p11.2	16470	Ubiquitin B		
	1 NM_111480 NM_004176 SREBF1 17p11.2	17950	Sterol regulatory element binding factor 1		
	1 XM_110937 NM_145809 USP32 17p11.2	18621	Ubiquitin-specific protease 32		
	1 NM_026389 NM_015584 POLDIP2 17q11.2	26800	Polymerase delta interacting protein 2		
	1 NM_174852 NM_020889 PHF12 17q11.1	27400	PHD finger protein 12		
	1 NM_010897 NM_000267 NF1 17q11.2	29700	Neurofibromatosis 1		
	1 NM_010161 NM_014210 EVI2A 17q11.2	29800	Ecotropic viral integration site 2A		
	1 NM_010716 NM_002311 LIG3 17q11.2–q12	33450	Ligase III, DNA, ATP-dependent		
Bertoli-Avella (03) D19S22127	2 NM_008319 NM_003259 ICAM5 19p13.2	10260	Intercellular adhesion molecule 5, telencephalin		
	16 NM_016742 NM_007065 CDC37 19p13.2	10370	Cell division cycle 37 homolog (S. cerevisiae)-like		
	1 NM_145624 NM_016264 ZNF44 19p13.2	12200	Zinc finger protein 44		
	1 NM_010906 NM_002501 NFIX 19p13.3	13030	Nuclear factor I/X		
	1 NM_183097 Estimated 19p13.13	14060	Progestin and adipoQ receptor family member		
DeStefano (02) D20S478526	1 BQ927659 Estimated 20q11.2–q12	35330			
	1 NM_013865 NM_022477 NDRG3 20q11.21–q11.23	36000	n-myc downstream regulated 3		
	1 NM_010658 NM_005461 MAFB 20q11.2–q13.1	40000	v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B		
	2 NM_021464 NM_007050 PTPRT 20q12–q13	40500	Protein tyrosine phosphatase, receptor type T		
DeStefano (02) D21S205226	2 NM_11782 Estimated ADAMTS5 21q21.2	27170	A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif 5 (aggrecanase-2) 3		
Pankratz (03) DXS805524	1 NM_016783 NM_006667 PGRMC1 Xq24	116713	Progesterone receptor membrane component 1		

Listed genes are situated +3 Mb to peak with the highest LOD score, except for D10S196 where we used +8Mb.

aNumber of cDNA fragments aligning with the gene.

bkb from the top of the short arm of the chromosome.

Human chromosome location was estimated by comparing the flanking regions of mouse and man.
Table 8. cDNA library comparison

	Barrett52	Stewart53	Thuret54
Barrett	45 (22)	11 (2)	
Stewart	35 (22)	5 (4)	
Thuret	3 (2)	5 (4)	

Of 1435, 104 (7.2%) cDNA fragments overlap with sequences also present in one other library. This number includes not only fragments that align with each other, but also those which align with the same annotated gene, hypothetical gene, mitochondrial gene, EST, or genomic position. These overlapping 104 cDNA fragments represent 28 of 781 (3.6%) unique tags (Table 2).

Finally, 26 mitochondrial genes encoded by nuclear DNA are present in our transcriptome analysis. Of these, an unexpected high proportion of genes, namely four, are located within orphan OMIM PARK loci. There is increasing evidence that impairment of mitochondrial functions and oxidative stress are contributing factors to PD supported by the recent finding of a mutation in PINK1. Furthermore, the functional deficiencies induced by several of the other PD mutations seem to converge onto the mitochondria. Our finding confirms a central role of the mitochondria in PD and suggests the possibility that a misregulation of some of these four mitochondrial genes may be a contributing factor for the disease.

We conclude that our transcriptome analysis, along with being applicable for the identification of PD candidate genes, may also be a useful tool for future genome-wide association studies with newer resources, such as HapMap (http://www.hapmap.org/), where tagSNPs can be chosen close to loci of genes expressed by mesDA neurons. Furthermore, new GO annotations are constantly added and with time it may turn out that many of the identified genes are part of shared metabolic pathways. Our data set may give new insight into ligand/receptor interactions and/or intracellular signaling pathways acting in mesDA neurons, allowing novel studies into the molecular etiology of PD.

Acknowledgements: This work was supported by a grant from the German Federal Secretary for Education and Research (BMBF) Biofuture 98.

Supplementary Data: Supplementary data are available online at www.dnaresearch.oxfordjournals.org.

References

1. Olanow, C. W. and Tatton, W. G. 1999, Etiology and pathogenesis of Parkinson’s disease, Annu. Rev. Neurosci., 22, 123–144.
2. Spillantini, M. G., Schmidt, M. L., Lee, V. M., et al. 1997, Alpha-synuclein in Lewy bodies, Nature, 388, 839–840.
3. Nussbaum, R. L. and Polymeropoulos, M. H. 1997, Genetics of Parkinson’s disease, Hum. Mol. Genet., 6, 1687–1691.
4. Gasser, T. 2001, Genetics of Parkinson’s disease, J. Neurol., 248, 833–840.
5. Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science, 276, 2045–2047.
6. Matsumine, H., Saito, M., Shimoda-Matsubayashi, S., et al. 1997, Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27, Am. J. Hum. Genet., 60, 588–596.
7. Tassin, J., Durr, A., de Brucker, T., et al. 1998, Chromosome 6-linked autosomal recessive early-onset Parkinsonism: linkage in European and Algerian families, extension of the clinical spectrum, and evidence of a small homozygous deletion in one family. The French Parkinson’s Disease Genetics Study Group, and the
European Consortium on Genetic Susceptibility in Parkinson’s Disease, *Am. J. Hum. Genet.*, **63**, 88–94.

8. Jones, A. C., Yamamura, Y., Almasy, L., et al. 1998, Autosomal recessive juvenile parkinsonism maps to 6q25.2-q27 in four ethnic groups: detailed genetic mapping of the linked region, *Am. J. Hum. Genet.*, **63**, 80–87.

9. Saito, M., Matsumine, H., Tanaka, H., et al. 1998, Refinement of the gene locus for autosomal recessive juvenile parkinsonism (AR-JP) on chromosome 6q25.2-27 and identification of markers exhibiting linkage disequilibrium, *J. Hum. Genet.*, **43**, 22–31.

10. Waters, C. H. and Miller, C. A. 1994, Autosomal dominant parkinsonism in a four-generation family, *Am. J. Hum. Genet.*, **55**, 302–310.

11. Leroy, E., Boyer, R., Auburger, G., et al. 1998, The ubiquitin-NR4A2 associated with familial Parkinson disease, *Nat. Genet.*, **20**, 262–265.

12. Valente, E. M., Bentivoglio, A. R., Dixon, P. H., et al. 2001, Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36, *Am. J. Hum. Genet.*, **68**, 895–900.

13. Valente, E. M., Brancati, F., Ferraris, A., et al. 2002, PARK6-linked parkinsonism occurs in several European families, *Ann. Neurol.*, **51**, 14–18.

14. van Duijn, C. M., Dekker, M. C., Bonifati, V., et al. 2001, Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36, *Am. J. Hum. Genet.*, **69**, 629–634.

15. Bonifati, V., Breedveld, G. J., Squotieri, F., et al. 2002, Localization of autosomal recessive early-onset parkinsonism to chromosome 1p36 (PARK7) in an independent data set, *Ann. Neurol.*, **51**, 253–256.

16. Funayama, M., Hasegawa, K., Kowa, H., et al. 2002, A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2–q13.1, *Ann. Neurol.*, **51**, 296–301.

17. Najim al-Din, A. S., Wriekat, A., Mubaidin, A., Dasouki, M. and Hiari, M. 1994, Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome, *Acta Neurol. Scand.*, **89**, 347–352.

18. Hampshire, D. J., Roberts, E., Crow, Y., et al. 2001, Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36, *J. Med. Genet.*, **38**, 680–682.

19. Li, Y. J., Scott, W. K., Hedges, D. J., et al. 2002, Age at onset in two common neurodegenerative diseases is genetically controlled, *Am. J. Hum. Genet.*, **70**, 985–993.

20. Pankratz, N., Nichols, W. C., Uniacke, S. K., et al. 2003, Significant linkage of Parkinson disease to chromosome 2q36–37, *Am. J. Hum. Genet.*, **72**, 1053–1057.

21. Pankratz, N., Nichols, W. C., Uniacke, S. K., et al. 2002, Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations, *Am. J. Hum. Genet.*, **71**, 124–135.

22. Pankratz, N., Nichols, W. C., Uniacke, S. K., et al. 2003, Genome-wide linkage analysis and evidence of gene-by-

gene interactions in a sample of 362 multiplex Parkinson disease families, *Hum. Mol. Genet.*, **12**, 2599–2608.

23. Strauss, K. M., Martins, L. M., Plun-Favreau, H., et al. 2005, Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease, *Hum. Mol. Genet.*, **14**, 2099–2111.

24. Scott, W. K., Nance, M. A., Watts, R. L., et al. 2001, Complete genomic screen in Parkinson disease/evidence for multiple genes, *JAMA*, **286**, 2239–2244.

25. Bertoli-Avella, A. M., Giroud-Benitez, J. L., Bonifati, V., et al. 2003, Suggestive linkage to chromosome 19 in a large Cuban family with late-onset Parkinson’s disease, *Mov. Disord.*, **18**, 1249–1259.

26. DeStefano, A. L., Golbe, L. I., Mark, M. H., et al. 2001, Genome-wide scan for Parkinson’s disease/the Gene PD Study, *Neurology*, **57**, 1124–1126.

27. Martinez, M., Brice, A., Vaughan, J. R., et al. 2004, Genome-wide scan linkage analysis for Parkinson’s disease: the European genetic study of Parkinson’s disease, *J. Med. Genet.*, **41**, 900–907.

28. Le, W. D., Xu, P., Jankovic, J., et al. 2003, Mutations in NR4A2 associated with familial Parkinson disease, *Nat. Genet.*, **33**, 85–89.

29. Kitada, T., Asakawa, S., Hattori, N., et al. 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, *Nature*, **392**, 605–608.

30. Wintemeyer, P., Kruger, R., Kuhn, W., et al. 2000, Mutation analysis and association studies of theUCHL1 gene in German Parkinson’s disease patients, *Neuroreport*, **11**, 2079–2082.

31. Harhangi, B. S., Farrer, M. J., Lincoln, S., et al. 1999, The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson’s disease, *Neurosci. Lett.*, **270**, 1–4.

32. Marx, F. P., Holzmann, C., Strauss, K. M., et al. 2003, Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease, *Hum. Mol. Genet.*, **12**, 1223–1231.

33. Valente, E. M., Abou-Sleiman, P. M., Caputo, V., et al. 2004, Hereditary early-onset Parkinson’s disease caused by mutations in PINK1, *Science*, **304**, 1158–1160.

34. Martin, E. R., Scott, W. K., Nance, M. A., et al. 2001, Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease, *JAMA*, **286**, 2245–2250.

35. Di Fonzo, A., Rohe, C. F., Ferreira, J., et al. 2005, A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease, *Lancet*, **365**, 412–415.

36. Zhang, J., Song, Y., Chen, H. and Fan, D. 2005, The tau gene haplotype h1 confers a susceptibility to Parkinson’s disease, *Neur. Eur. Neurol.*, **53**, 15–21.

37. Zheng, K., Heydari, B. and Simon, D. K. 2003, A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease, *Arch. Neurol.*, **60**, 722–725.

38. Xu, P. Y., Liang, R., Jankovic, J., et al. 2002, Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with late-onset Parkinson disease, *JAMA*, **286**, 881–884.

39. Kahle, P. J., Haass, C., Kretzschmar, H. A. and Neumann, M. 2002, Structure/function of alpha-synuclein in health and disease/rational development of animal models for Parkinson’s and related diseases, *J. Neurochem.*, **82**, 449–457.

40. Glasson, B. I. and Lee, V. M. 2001, Parkin and the molecular pathways of Parkinson’s disease, *Neuron*, **31**, 885–888.
43. Shendelman, S., Jonason, A., Martinat, C., Leete, T. and Abeliovich, A. 2004, DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation, *PloS Biol.*, 2, e362.

44. von Bohlen Und Halbach, O. 2004, Synucleins and their relationship to Parkinson’s disease, *Cell Tissue Res.*, 318, 163–174.

45. Zetterstrom, R. H., Williams, R., Perlmann, T. and Olson, L. 1996, Cellular expression of the immediate early transcription factors Nur1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system, *Brain Res. Mol. Brain Res.*, 41, 111–120.

46. Solano, S. M., Miller, D. W., Augood, S. J., Young, A. B. and Penney, J. B. Jr. 2000, Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain/genes associated with familial Parkinson’s disease, *Ann. Neurol.*, 47, 201–210.

47. Abeliovich, A., Schmitz, Y., Farinas, I., et al. 2000, Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system, *Neuron*, 25, 239–252.

48. Murray, I. J., Medford, M. A., Guan, H. P., et al. 2003, Identification and characterization of the human *alpha-synuclein* gene promoter, *PLoS Biol.*, 1, e362.

49. Xie, T., Tong, L., Barrett, T., et al. 2002, Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity, *J. Neurosci.*, 22, 274–283.

50. Unoki, M. and Nakamura, Y. 2001, Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway, *Oncogene*, 20, 4457–4465.

51. Stamatoyannopoulos, J. A. 2004, The genomics of gene expression, *Genomics*, 84, 449–457.

52. Barrett, T., Xie, T., Piao, Y., et al. 2001, A murine dopaminergic neuron-specific cDNA library and microarray/ increased COX1 expression during methamphetamine neurotoxicity, *Neurobiol. Dis.*, 8, 822–833.

53. Stewart, G. J., Savioz, A. and Davies, R. W. 1997, Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra, *Genomics*, 39, 147–153.

54. DeStefano, A. L., Lew, M. F., Golbe, L. I., et al. 2002, PARK3 influences age at onset in Parkinson disease/a genome scan in the GenePD study, *Am. J. Hum. Genet.*, 70, 1089–1095.

57. Savioz, A. and Davies, R. W. 1995, Discovering genes with localised expression in the mice brain/cDNAs specific to the substantia nigra, *Gene*, 154, 225–230.

58. Alberi, L., Sgaard, P. and Simon, H. H. 2004, Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons, *Development*, 131, 3229–3236.

59. Alberi, L., Saueressig, H., Wurst, W., Goulding, M. D. and O’Leary, D. D. 2001, Fate of midbrain dopaminergic neurons controlled by the engrailed genes, *J. Neurosci.*, 21, 3126–3134.

60. Beal, M. F. 2003, Mitochondria, oxidative damage, and inflammation in Parkinson’s disease, *Ann. NY Acad. Sci.*, 991, 120–131.

61. DeStefano, A. L., Lew, M. F., Golbe, L. I., et al. 2002, PARK3 influences age at onset in Parkinson disease/a genome scan in the GenePD study, *Am. J. Hum. Genet.*, 70, 1089–1095.

62. Gregory, S. G., Sekhon, M., Schein, J., et al. 2002, A physical map of the mouse genome, *Nature*, 418, 743–750.

63. Hauser, M. A., Li, Y. J., Takeuchi, S., et al. 2003, Synphilin in normal human brains and in synucleinopathies/studies with new antibodies, *Acta Neuropathol. (Berl)*, 105, 177–184.

64. Holzmann, C., Kruger, R., Saecker, A. M., et al. 2003, Polymorphisms of the alpha-synuclein promoter/expression analyses and association studies in Parkinson’s disease, *J. Neural. Transm.*, 110, 67–76.

65. Venter, J. C., Adams, M. D., Myers, E. W., et al. 2001, The sequence of the human genome, *Science*, 291, 1304–51.

66. Venter, J. C., Adams, M. D., Myers, E. W., et al. 2001, The sequence of the human genome, *Science*, 291, 1304–51.

67. Hauser, M. A., Li, Y. J., Takeuchi, S., et al. 2003, Genomic convergence: identifying candidate genes for Parkinson’s disease by combining serial analysis of gene expression and genetic linkage, *Hum. Mol. Genet.*, 12, 671–677.

68. Venter, J. C., Adams, M. D., Myers, E. W., et al. 2001, The sequence of the human genome, *Science*, 291, 1304–51.