The Next Generation Very Large Array

James Di Francesco
NRC Herzberg Astronomy & Astrophysics Research Centre
The Jansky Very Large Array

VLA began in 1980 with 27 x 25-m antennas

Jansky VLA upgrade by 2011 (includes WIDAR correlator)
A Next Generation VLA (2035 – 2065+)

- Scientific Focus: **Thermal imaging at milli-arcsecond scale resolution**
- Design Goals:
 - 10x effective collecting area of JVLA and ALMA
 - 10x resolution of JVLA and ALMA
 - Frequency range: **1.2 – 116 GHz**
- PI driven / pointed observations model
- Baseline design: **214 x 18-m dishes**, no reconfiguration
- Low technical risk (reasonable step beyond current state-of-the-art)

https://science.nrao.edu/futures/ngvla
ngVLA: comparative sensitivity

Complementary suite from cm to submm, appropriate for the mid-21st century:

- **< 0.3 cm:** ALMA 2030 superb for chemistry, dust, fine structure lines
- **0.3 – 3 cm:** ngVLA superb for terrestrial planet formation, dense gas history, baryon cycling
- **> 3 cm:** SKA superb for pulsars, reionization, HI + continuum surveys
Complementary suite from cm to submm, appropriate for the mid-21st century:

- **< 0.3 cm**: ALMA 2030 superb for chemistry, dust, fine structure lines
- **0.3 – 3 cm**: ngVLA superb for terrestrial planet formation, dense gas history, baryon cycling
- **> 3 cm**: SKA superb for pulsars, reionization, HI + continuum surveys
Complementary suite from cm to submm, appropriate for the mid-21st century:

- **< 0.3 cm**: ALMA 2030 superb for chemistry, dust, fine structure lines
- **0.3 – 3 cm**: ngVLA superb for terrestrial planet formation, dense gas history, baryon cycling
- **> 3 cm**: SKA superb for pulsars, reionization, HI + continuum surveys
ngVLA: comparative resolution

- Resolution ~ 10 mas @ 1 cm (300 km)
- Synergy with ALMA submm, future ELTs
- Complement to SKA lower frequency capabilities
ngVLA Science Cases

- 75 Community-led Science Use Cases Submitted for ‘Reqs to Specs’ process (so far)

- ngVLA “consensus vision” developed in June at well-attended Socorro workshop
ngVLA will measure orbital motions of planets and related features on monthly timescales.

Simulated 100 GHz ngVLA observations of a newborn planetary system comprising a Jupiter analogue orbiting at 5 AU from a Solar type star.

http://library.nrao.edu/public/memos/ngvla/NGVLA_19.pdf

Credit: Luca Ricci (Rice Univ.) et al.
ngVLA will detect complex pre-biotic molecules and provide initial chemical conditions in forming solar systems and individual planets, e.g., “chirality”
ngVLA will detect reservoirs of atomic & cold molecular gas over a wide range of redshift.
ngVLA Costs and Partnerships

- Target construction baseline budget ~ (2016) $1.5B
- Target operations budget of < (2016) $75M (< 3x current VLA)

 Operations, maintenance, computing, archiving, etc.; optimize as part of design

- Partnerships:
 - Possible U.S. Multiagency Interest [including VLBI option]
 - ICRF – DOD / Navy, Air Force
 - Spacecraft tracking/imaging, ‘burst-telemetry’ (mission-critical events) – NASA, DOD
 - Space situational awareness – DOD

 - **Strong International Partnership critical for success:**
 - Canada, Mexico, Japan, Germany, Netherlands, Taiwan

 - Current Industrial Involvement through Community Studies:
 - REhnu Inc., Minex Engineering Corp, LaserLaB, Quantum Design
Canadians are presently:

- **participating** in ngVLA Science and Technical Advisory Councils
- **authoring** ngVLA Science Use Cases
- **organizing** / participating in ngVLA Workshops and AAS Special Sessions
- **pursuing** ngVLA Technical Studies (antennas, correlators, receivers, etc.)

Future new collaborations will be welcomed!
ngVLA: the way forward (near-term)

Goal: NRAO CoDR-level proposal to 2020 Decade Survey

Compelling science program & defensibly costed design of all major elements

- 2017
 - Sci Case Capture: Mon 10/31/16 - Wed 5/30/17
 - Ref. Design First Draft: Mon 10/31/16 - Fri 4/28/17
 - Community Study Development: Mon 10/31/16 - Tue 8/15/17

- 2018
 - Sci Book First Draft: Thu 6/1/17 - Fri 12/1/17
 - Ref. Design 1.5 Draft: Mon 5/15/17 - Fri 11/24/17
 - Reference Design Second Draft: Mon 11/27/17 - Tue 7/31/18

- 2019
 - Sci Book Second Draft: Mon 12/4/17 - Fri 6/15/18
 - Sci Book Final Draft: Mon 6/18/18 - Fri 12/14/18
 - ngVLA Astro2020 Proposal: Sat 12/15/18 - Mon 7/1/19

- Other key dates:
 - US Radio Futures Conference #3: Community Study Final Reports Due
 - Release 2nd Draft of Sci Book
 - Pre-Proposal Review #1
 - Submit NOI
 - Submit SWPs
 - Pre-Proposal Review #2
 - Submit RFIR1
 - Submit RFIR2

- Key events:
 - VLA Special Session at Washington AAS (Jan. 2018)
 - Science meeting in Boulder, CO (June 2018)
ngVLA: the way forward (long-term)

MREFC = “Major Research Equipment and Facilities Construction”
ngVLA Summary

• The Next Generation Very Large Array is a burgeoning effort in the U.S. and abroad for a new instrument with 10x better sensitivity / resolution than JVLA

• The project has a lot of momentum, with wide community engagement and science and technical development studies underway

• The U.S. community is organizing to make a strong push for the ngVLA in the upcoming Astro2020 Decadal Survey process

• International partners are welcome and Canada can bring a lot of scientific and technical expertise to the table
ngVLA-Canada

- Engage, inform, and coordinate Canadian community about ngVLA, as the project moves toward Astro2020 submission (and LRP2020)

- Keep up to date on ongoing Science Case developments and Technical Study progress, discuss roles

- To join, contact James Di Francesco (james.difrancesco@nrc-cnrc.gc.ca)
Thanks to:
Andrea Isella (Rice)
Mark McKinnon (NRAO)
Eric Murphy (NRAO)
Rob Selina (NRAO)
Melissa Soriano (JPL)

James Di Francesco
Senior Research Officer
Tel: 250-363-6925
james.difrancesco@nrc-cnrc.gc.ca
www.nrc-cnrc.gc.ca
Current ngVLA Reference Design Specifications
(ngVLA Memo #17)

- 214 18m offset Gregorian (feed-low) antennas
 - Supported by internal costing exercise
- Fixed antenna locations across NM, TX, MX
 - ~1000 km baselines being explored
- 1.2 – 50.5 GHz; 70 – 116 GHz
 - Single-pixel feeds
 - 6 feeds / 2 dewar package
- Short-spacing/total power array under consideration

- Continuum Sensitivity: ~0.1 uJy/bm @ 1 cm, 10 mas, 10 hr => $T_B \sim 1$ K
- Line sensitivity: ~20 uJy @ 1 cm/bm, 10 km/s, 1” => $T_B \sim 25$ mK

Band #	Dewar	f_L GHz	f_M GHz	f_H GHz	$f_H : f_L$	BW GHz
1	A	1.2	2.55	3.9	3.25	2.7
2	A	3.9	8.25	12.6	3.23	8.7
3	B	12.6	16.8	21.0	1.67	8.4
4	B	21.0	28.0	35.0	1.67	14.0
5	B	30.5	40.5	50.5	1.66	20.0
6	B	70.0	93.0	116	1.66	46.0
ngVLA Operating Modes / Functional Capabilities

- Spectral Line & Continuum Modes
- Time Domain Capabilities
- VLBI Capabilities
- Phased Array Capability
- Total Power Measurements
- Sub-Array Capabilities
- Solar Observation Capabilities

- Goal to maximize flexibility of both modes. Both equally represented.
- Time domain search capabilities on msec scales.
- Combine with other antennas out to continental scale baselines.
- Operate as both an interferometer and phased array.
- Need a solution to recover total flux.
- Flexible sub-array capability.
- Analog dynamic range for bright sources.
Key Open Questions – Specification Decisions

• Recovering Large Scale Structure
 ➢ Is a 30m minimum spacing good enough?
 ➢ Large single dish w/ FPA (e.g., 45m x 20 beams – D. Frayer, ngVLA memo 14)?
 ➢ Short-spacing array of small dishes + TP mode (e.g., 6m – Murphy/Condon+, Sci. Case NGA-3)?

• Distribution of collecting area – sensitivity over a range of angular scales needed.

• Maximum baseline in the reference design.
 • 300 – 500 km. Up to 1000 km?
 • How far should we go with connected elements?
ngVLA Science Options

• Commensal Low Frequency Science (Taylor)
 • Leverage ngVLA infrastructure (land/fiber/power) for commensal LF capabilities (ngLOBO)
 o 5 – 150 MHz: multi-beam dipole arrays alongside ngVLA long-baseline stations (e.g., LWA style).
 o 150 – 800 MHz commensal prime focus feeds on ngVLA antennas (e.g., VLITE style)

• U.S. VLBI Expansion of Capabilities (Brisken)
 • Replace existing VLBI antennas/infrastructure with ngVLA technology
 • Introduce new ~1000 km baseline stations to bridge gap between ngVLA & existing VLBA baselines
 • Cross correlate VLBI antennas with phased ngVLA
Five Key ngVLA Science Cases

- Unveiling the Formation of Solar System Analogues
- Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry
- Charting the Assembly, Structure, and Evolution of Galaxies from the First Billion Years to Present
- Using Pulsars in the Galactic Center as Fundamental Tests of Gravity
- Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messenger Astronomy

http://library.nrao.edu/public/memos/ngvla/NGVLA_19.pdf
ngVLA Science Use Cases

- Cradle of Life
- Galaxy Ecosystems
- Galaxy Assembly
- Fundamental physics
- Planet Formation
- Star Formation
- Solar System
- SETI
- Astrochemistry
Frequency Distribution of ngVLA Science Cases

Scenario Distribution by Band

Frequency (GHz)	Count of Scenarios
70.0–116.0	45
30.0–50.0	30
18.0–30.0	20
11.0–18.0	10
3.6–10.8	5
1.2–3.6	5

Drivers | Related | Identified

Band 6
Band 5
Band 4
Band 3
Band 2
Band 1
Next Generation Very Large Array

Receiver Band Distribution over Baseline

Frequency (GHz)

1.2–3.6
3.6–10.8
11.0–18.0
18.0–30.0
30.0–50.0
70.0–116.0

Maximum Baseline (km)

10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4}

Band 1
Band 2
Band 3
Band 4
Band 5
Band 6
• 90% of ngVLA science use cases require max baselines of 100 km or less
• ngVLA workshop feedback from key science drivers found that 1-30 km baselines are desirable/essential
Charting the Assembly, Structure, and Evolution of Galaxies from the First Billions Years to the Present

- Understanding How Galaxies Produce New Generations of Stars
 - The ngVLA can study extended atomic reservoirs and large samples of GMC populations
 - Unique windows into the physical and chemical properties of accretion, transport, phase change, and excretion processes

NGC 628: THINGS HI (12", blue), PHANGS ALMA CO (1", red), IRAC 4.5 um (green)
Using Pulsars in the Galactic Center as Fundamental Tests of Gravity

- The ngVLA sensitivity and frequency coverage will probe deeper than possible into the GC area looking for pulsars, which are moving clocks in the space-time potential of Sgr A*
- New tests of theories of gravity, constraints on exotic binaries, SF history, stellar dynamics and evolution, and ISM at the GC
- Estimates are as high as 1,000 PSRs. Only know example is PSR J1745-2900 magnetar
• The ngVLA sensitivity and frequency coverage will probe deeper than possible into the GC area looking for pulsars, which are moving clocks in the space-time potential of Sgr A
• New tests of theories of gravity, constraints on exotic binaries, SF history, stellar dynamics and evolution, and ISM at the GC
• Estimates are as high as 1,000 PSRs. Only know example is PSR J1745-2900 magnetar
Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messenger Astronomy

- Unaffected by dust obscuration and with the angular resolution to separate Galactic sources from background objects using proper motions, the ngVLA will enable a search for accreting black holes across the entire Galaxy.
- Key to understanding GW discoveries
The Next Generation Very Large Array

Understanding the Formation and Evolution of Stellar and Supermassive Black Holes in the Era of Multi-Messanger Astronomy

- The ngVLA, with its deep high resolution imaging capabilities, will enable discovery of many supermassive black holes.

- Synergies to LISA and Pulsar Timing Arrays.

22 GHz VLBA image of binary SMBH

VLBA Image Courtesy of NRAO/AUI/NSF, from Taylor 2014
Summary of Requirements from Key Science Cases

Key Science Use Case	Frequency Coverage	Angular Resolution	Sensitivity
1. Terrestrial Zone Planet Formation	20-40, 90-110	<10	0.5 uJy/beam
2. Initial Conditions for Planetary Systems and Life	16-50	50-200	30 uJy/beam/km/s
3. Assembly and Structure of Galaxies	5-50	100-3000	10 uJy/beam/km/s
4. Understanding how Galaxies Produce Stars	1.2-1.4, 80-120	100-60000	8 uJy/beam/km/s
5. Pulsars in the Galactic Center	2-26		0.05 uJy/beam

Driving cases for sensitivity requirements

http://library.nrao.edu/public/memos/ngvla/NGVLA_19.pdf
The SAC was formed to provide science direction:

- represents the external community (no NRAO members): US + five int’l
- Currently 23 members, including B. Matthews and J. Di Francesco

For practical reasons, SAC split into Science Working Groups

- Cradle of Life (sub-GMC scales including the Solar System)
- Galactic Ecosystems (from Milky Way to nearby galaxies)
- Galaxy Assembly (the high-redshift universe)
- Fundamental Physics (time domain, Cosmology, Physics)
- SWGs are open: community members can participate in SWGs
The TAC was formed to provide technical direction:

- represents the external community (no NRAO members)
- currently 10 members, including M. Rupen and S. Dougherty

Activities

- Review of cost model
- Identification of areas in need of additional study
- Analysis of key science use cases and associated requirements
- Review of key specification documents (e.g., antenna)
- Development phase proposal input
ngVLA Construction Cost Distribution

Antenna subsystem is the construction cost driver

- Antennas 53.1
- Antenna Electronics 18.0
- Array Infrastructure 9.4
- Computing & Software 4.3
- Project Management & Administration 3.8
- Buildings 3.0
- Correlator 2.7
- Central/Distribution Electronics (LO, DTS) 2.2
- Commissioning & Scientific Validation (CSV) 1.9
- Systems Engineering 0.9
- IT Infrastructure 0.7
Key ngVLA Antenna Specs and Comparison

Antenna	Primary Aperture Diameter (meters)	Secondary angle of illumination angle (degrees)	f/D	shaped/unshaped	surface accuracy (microns) Precision conditions	surface accuracy (microns) Standard conditions	pointing accuracy rms (arcsec) Precision conditions	pointing accuracy rms (arcsec) Standard conditions
MeerKAT	13.5	100	0.55	unshaped	600	600	5	25
DVA-2	15	110	0.8	shaped	335	?	10	180
ALMA	12	7.16	0.4	unshaped	25	25	2	2
SKA	15	110	0.36	shaped	500	500	5	10
ngVLA	18			shaped	160	300	2.7	4.2

Antenna requirements are reasonable when compared to other radio telescope projects in development, study coming soon to improve cost model.

Note: Data shown for constructed antennas is requirements, not actual performance. Nighttime/no wind (precision) conditions and daytime (normal) conditions differ for each system.
ngVLA Concept

Parameter	Value
Antenna Diameter	18m Homogeneous Array
Number of Antennas	214
Antenna Optics	Offset Gregorian, Feed Low, Shaped
Frequency Range	1.2 GHz – 50.5 GHz, 70 GHz – 116 GHz
Front Ends	Single Pixel Feeds, Dual Linear Polarization
Instantaneous Bandwidth	Up to 20 GHz / pol.
ngVLA Concept

ngVLA Configuration

Parameter	Value
Antenna Locations	Fixed Configuration
(Minimum) Array Extent	500 km + (Evaluating 500-1000km scales)
Radial Distribution of Collecting Area	40/40/20 % at 2/50/500 km scales

![Map of ngVLA Configuration](image-url)
ngVLA Concept

Antenna Concept

- **18m Aperture**: Based on cost and performance modeling.
- **Offset Gregorian**: Off-axis geometry minimizes scattering, spillover, and sidelobe pickup
- **Feed Low**: Performance and maintenance requirements favor a receiver feed arm on the low side of the reflector
- **Mount concept**: TBD.
 - Evaluating pedestal mount vs wheel and track.
 - Pointing specification is a design driver.
- **Will pursue antenna reference design this fall.**
Receiver/Feed Configuration Concept

- 6 Bands in 2 Cryogenic Dewars
- 1.2-3.9 GHz and 3.9-12.6 GHz Quad-Ridge Horns, 3.25:1 bandwidth, coaxial LNAs.
- 12.6-50.5 GHz using three 1.67:1 BW corrugated horns and waveguide LNAs.
- 70-116 GHz 1.67:1 BW corrugated horn and waveguide LNAs with block down conversion.
- Single stage down-conversion to baseband for 5 bands. Direct SSB or IQ sampling using modular devices @ FE.
ngVLA Concept

Correlator, Back Ends, Pipelines

- FX Correlator Architecture
 - FPGA vs. ASICs
 - Dev $ vs. Ops $
 - Evaluating distributed F-Engine

- Down to 1 msec. dump times to BE
- Up to 64k spectral channels to BE

- Basic Data Products
 - Uncalibrated Visibilities (to Archive)
 - Calibration & Flagging Tables

- Advanced Data Products
 - VLA and ALMA “Science Ready Data Products” pipelines as a pathfinder.
ngVLA Concept

Phase Calibration

• Three Options Under Consideration:
 • Fast Switching
 • Water Vapour Radiometry
 • Auxiliary Array

• Optimize for Sensitivity & Efficiency per $\:
 • \((\text{uJy/beam})/\delta_{\text{sys}}/T_{\text{clock}}\)
 • Across all bands

• **Fast Switching** more technically challenging with larger dishes.

• **WVR** likely lowest cost solution, with longer switching cycles for instrumental calibration & recovery of the dry term.

• **Aux. Array** a contingency option.
ngVLA Concept

Recovering Total Flux / Large Scale Structure

- Existing Large Single Dish
- New Large Single Dish
- Short Spacing Array + 18m Total Power Mode
Longest Baselines

• Evaluating extending the array beyond 500km scale.
• 500-1000km baseline stations (e.g., Texas) bridge the UV-gap between the ngVLA & existing VLBA baselines.