Surprising Sun

S. Turck-Chize, 1 S. Couvidat, 2,1 L. Pian, 3 J. Ferguson, 4 P. Lambert, 1, J. Ballot, 1 R. A. García, 1 P. A. P. Nghiem, 1
1 SAP/DAPNIA/CEA, CE Saclay, 91191 Gif sur Yvette, France
2 HEPL, 455 via Palou, Stanford University, CA 94305-4085, USA
3 Institut d’Astronomie et d’Astrophysique, ULB, CP226, 1050 Brussels, Belgium and
4 Physics Department, Wichita State University, Wichita, KS 67260-0032, USA
(Dated: June 12, 2018)

Important revisions of the solar model ingredients appear after 35 years of intense work which have led to an excellent agreement between solar models and solar neutrino detections. We first show that the updated CNO composition suppresses the anomalous position of the Sun in the known galactic enrichment. The following law: He/H = 0.075 + 44.6 O/H in fraction number is now compatible with all the indicators. We then examine the existing discrepancies between the standard model and solar- and neutrino-observations and suggest some directions of investigation to solve them. We update our predicted neutrino fluxes using the recent composition, new nuclear reaction rates and seismic models as the most representative of the central plasma properties. We get $5.31 \pm 0.6 \times 10^9$ for the total 8B neutrinos, $66.5 \, \text{SNU}$ and $2.76 \, \text{SNU}$ for the gallium and chlorine detectors, all in remarkable agreement with the detected values including neutrino oscillations for the last two. We conclude that the acoustic modes and detected neutrinos see the same Sun, but that clear discrepancies in solar modelling encourage further observational and theoretical efforts.

The Sun is one of the best defined reference object in astrophysics. As it is the most studied and best known star in the Universe, the main characteristics of the sun — luminosity, mass, radius and composition — are used as standard units in astrophysics. Through the years, progress has been constant to determine better the different ingredients which enter in the description of a star: nuclear reaction rates, opacity coefficients, diffusion of elements, etc. Two types of probes, (the solar acoustic modes and neutrino detections) have been particularly useful to check the internal properties of the Sun. The first probe determines the sound speed, the adiabatic exponent and the rotation profiles from which the amount of photospheric helium (due to the extraction of the adiabatic exponent), or the convective zone basis (due to the variation of the temperature gradient) are deduced.

Precise acoustic modes have recently been used to predict neutrino fluxes through seismic models 1 2. In parallel, different flavours of neutrinos have been detected in the direction of the Sun in Sudbury Neutrino Observatory (SNO). So, the total neutrino flux associated to boron has been measured for the first time 3. These two improvements and their agreement have demonstrated the great interest to use the Sun as a laboratory for progressing on fundamental properties of the Universe.

Nevertheless this satisfactory picture offers some contradictions. On one hand, it seems that the picture of the “standard” model is a reasonable description of what we observe. It was noticed that the “seismic models” were not far from standard model. On the other hand, the Sun appears to be a more complex star than we thought for which one needs to interpret the internal rotation profile, the origin and evolution of the solar magnetic cycle(s) and the presence of meridional circulation. It has so far been important to describe the thermodynamical status of the Sun; it is now a natural next step to reveal a dynamical picture of our star.

In this paper, we discuss several aspects of the impact of the recent updates of the CNO composition abundances (-20% or -30% depending of authors) and of the nuclear reaction rates for $^{7}\text{Be}(p, \gamma)^{8}\text{B}$ and $^{14}\text{N}(p, \gamma)^{15}\text{O}$ (decrease by a factor 2) on the knowledge of the Sun, following previous studies 4 5 6. In Section 1, we show the status of the Sun in the enrichment of stars in the galaxy. We present in Section 2 new models of the Sun, how they can be compared with seismic models and possible interpretations and verifications of the discrepancies. Finally we recalculate neutrino predictions in Section 3 and show that we have a coherent picture of the Sun including the recent update.

1. GALACTIC EVOLUTION AND THE SUN

Fifteen years ago, the Sun appeared to be strangely rich in oxygen in comparison with its environment and with the Magellanic clouds 7 11 12. Its metallicity was $Z=0.02$, where Z is the mass fraction of elements heavier than helium, and the galactic enrichment in oxygen excluded the Sun as representative of the near neighborhood (Figure 1 [OC]). At that time, it has been suggested that the Sun was formed in a cloud enriched by a supernova explosion. However, the comparison between meteoritic composition and photospheric composition 7 revealed some contradictions.

One of the contradictions has been solved by a reduction of the solar iron photospheric composition by 30% 12, so that the metallicity of the Sun has been slightly reduced ($Z=0.0173$). As a consequence, the central temperature has been reduced by 1.5% due to the crucial role of iron in the opacity coefficient, the ^8B neutrino flux has been reduced by 13% and an increase of the discrepancy
between model and the Sun for the sound speed profile has been noticed \cite{15}. This effect has been compensated for by other progresses, for example the introduction of the microscopic diffusion (see the review of \cite{3}). Today, CNO composition has been revisited and reduced by almost the same amount with a stronger impact on the metallicity (Z as low as 0.013). In the case of the oxygen, two origins to the overestimate of the abundance have been identified: a false contribution due to a previously unidentified nickel line and the current use of hydrodynamical calculations of the atmosphere which lead to a better coherence between the analysis of different lines \cite{16,17}.

The solar initial helium abundance, obtained through a solar model, is not very sensitive to the details of the models. So we can look to the impact of the recent oxygen measurement on the place of the Sun in the general oxygen evolution along time (Figure 1). Contrary to the past situation, we note that the Sun appears now naturally enriched in oxygen in comparison with extragalactic HII regions, Magellanic clouds, other clusters and neighbours [PC]. We can now deduce a galactic enrichment in oxygen, including the Sun, after the introduction of a correction for taking into account the oxygen locked in grains \cite{11}. The best value we get is: \(\frac{\text{He}}{\text{H}} = 44.6 \frac{\text{O}}{\text{H}} + 0.075 \).

Recently, \cite{14} also noticed that the radioactive ^{26}Al, ^{10}Be and even ^7Be abundances in meteorites are compatible with production by irradiation in the disk of the young sun. They conclude that the presence of a supernova in the neighbourhood is not favoured.

So these new estimates of the Sun composition solve serious problems and must be taken as the result of 10 years of improvements in this field.

2. STANDARD AND SEISMIC MODELS

The consequences of the CNO abundance variations are well known: CNO play a role in the energy generation and consequently on the chlorine and gallium neutrino experimental predictions. They also play an important role in the opacity coefficients at all depths in the Sun but more specifically in the zone of the transition between radiation to convection, where the change in the degree of ionization of oxygen increases the opacity coefficient (see \cite{12}). To test this impact, solar models were computed with the 1D stellar evolution code CESAM using the most updated basic physical ingredients already described in \cite{2}. All the models are calibrated at the solar radius $R_\odot = 6.9599 \times 10^{10}$ cm, solar mass $M_\odot = 1.9891 \times 10^{33}$ g, and solar luminosity $L_\odot = 3.8460 \times 10^{33}$ erg, values at the age of 4.6 Gyr including premainsequence. We also calibrate the photospheric metallicity, expressed by the ratio Z/X, where X is the mass fraction of hydrogen; each model is calibrated at a specific Z/X value.

At low temperature ($T < 5600$ K), we use opacity tables provided by coauthor, J. Ferguson, which were specifically calculated for this work and based on \cite{20}. These tables were computed for $Y = 0.27$ (photospheric mass fraction of helium). For higher temperatures, we have computed three different sets opacity tables from the OPAL website \cite{19}. The first opacity set is based on the abundances of Asplund (A) \cite{17} for C, N, O, Ne, and Ar elements, completed by the abundances of \cite{13}. The second set is based on the abundances of Holweger (H) \cite{16} for C, N, O, Ne, Mg, Si, and Fe elements, completed by the abundances of \cite{13}. A last set is based on
the photospheric abundances of Lodders (L) [18] Table 1, with the isotopic abundances from Table 6, instead of the isotopic abundances of [5]. Therefore we produce three kinds of solar models. For each kind we derive two models, one with mixing in the tachocline (transition region between radiation and convection, prefix “tac” in the model name) and one without (prefix “St” in the model name). The models are respectively calibrated at $Z/X = 0.0172, 0.0176, 0.0210$ for Asplund, Lodders and Holweger composition and their main characteristics presented in Table 1, in comparison with seismic model results.

We present in Figure 2 the models with turbulent mixing in the tachocline compared with the seismic model 2 of [2]. This figure illustrates the discrepancies between these new models and the seismic results. As already mentioned [4, 5, 6], it is evident that the introduction of the new CNO composition largely deteriorates the previous agreement in the sound speed profile and does not improve the density profile in the radiative zone and particularly at the edge between the two types of energy transfer. In parallel the ^{8}B neutrino flux is largely reduced and is no more compatible with the SNO results. This does not mean that the new composition is incorrect, but that these models are not in agreement with the seismic observations.

It could be partly due to the determination of the opacity coefficients in partially ionised elements. It is interesting to note that Seaton and Badnell [22] show differences in their calculation in comparison with those of Livermore [19], which may explain part of the differences._opacity coefficients are important ingredients of the solar model. So we recommend checking them with the new generation of high intensity lasers like the ”Ligne Integration Laser” or future Laser MegaJoule or National Ignition Facility as it has been done for lower temperatures and densities [23]. There is a clear need for experimental investigation in the million of degree range and density of fraction of g/cm3.

We cannot exclude that the introduction of the microscopic diffusion is totally correct and one could need to improve it. Another possibility is that the discrepancies are partly due to the absence of rotation effects in the radiative zone. Meridional circulation and magnetic field must be introduced to justify a narrow sudden transition in the rotation profile [24, 25]. Moreover a detailed energy balance must be looked for to check if the nuclear energy balances precisely the surface luminosity. Is this new update of the composition the first evidence showing that the standard model is no longer representative of the present Sun?

3. REVISED NEUTRINO PREDICTIONS

In our recent studies [1, 2] we have deduced neutrino fluxes from the recent seismic results of SoHO [21]. It is reasonable to think that these measurements are now sufficiently good in the region of emission of the neutrinos to give real insight into the properties and the mean cen-
central core temperature of the plasma. The seismic models we have built are not yet considered as physical models but they are representative models of the present seismic observations. They allow a determination of the main ingredients for neutrino predictions which are the temperature and density profiles in the radiative region.

At the same time, it is of great interest to improve the knowledge of the nuclear reaction rates as we improve the modelling of stars since such rate are essential ingredients necessary to predict the neutrino fluxes. Conversely it is also of great interest to extract the physical conditions of the core from the detected neutrino fluxes. So, recent revisions of the reaction rate $^7\text{Be}(p, \gamma)^8\text{B}$ or of $^{14}\text{N}(p, \gamma)^{15}\text{O}$, which is the slowest reaction of the CNO cycle, are extremely important.

$^7\text{Be}(p, \gamma)^8\text{B}$ has been remeasured several times these last few years, but without real agreement between measurements. This confirms the difficulty to determine this cross section, so a mean value between the recent measurements has been estimated by 24 of $S(20 \text{ keV}) = 20.7 \pm 0.8 \text{ eV barn}$ instead of the value of 19.4 eV barn used in our previous predictions. Using this revised value and seismic models, the new prediction for the ^8B neutrino is $5.31 \times 10^8 \pm 0.6 \text{ cm}^{-2}\text{s}^{-1}$. This value stays in complete agreement with the SNO result of $5.21 \pm 0.27 \pm 0.38 \text{ SNU}$, even if we need to introduce some magnetic field effect which has been considered as extremely small (2%) in our previous crude estimate 3. The uncertainties of this prediction have been slightly reduced with the recent progresses. The main contributor to the error is at present the knowledge of the $(^3\text{He},^4\text{He})$ reaction rate which will be improved with the upcoming LUNA planned experiment.

The new estimate of $^{14}\text{N}(p, \gamma)^{15}\text{O}$ astrophysical factor $S(0)$ of $1.7 \pm 0.2 \text{ keV barn}$ is an important result for the lifetime of the hydrogen burning (increase by 0.7-1 Gyr of the globular cluster age). The CNO contribution to the luminosity decreases from 1.5% to 0.7%, it is compensated by the pp luminosity, so the impact on the neutrino fluxes coming from the pp chain is small. But this new estimate also influences the neutrino predictions in the case of chlorine and gallium experiments. In fact, the ^{13}N, ^{15}O and ^{17}F neutrino fluxes are doubly reduced by the effect of composition and reaction rate. They are reduced at 40% of their previous values.

Consequently, we get $123.4 \pm 8.2 \text{ SNU}$ for the gallium prediction and $7.6 \pm 1.1 \text{ SNU}$ for the chlorine experiment. By applying the reduction on the neutrino fluxes due to LMA oscillation solution $\Delta m^2 = 7.3 \times 10^{-5} \text{ eV}^2$ and $\theta_{12} = 0.41$ given by 20, we get respectively 66.65 SNU and 2.76 SNU (in solar neutrino unit) for the detected fluxes which must be compared to $68.1 \pm 3.75 \text{ SNU}$ for combined gallium value 31 and $2.56 \pm 0.23 \text{ SNU}$ for the chlorine experiment.

In conclusion current observations show a very good agreement between seismic predictions of neutrino fluxes and detected neutrinos but a difficulty to properly model the Sun. One needs to pursue the detailed observations of the radiative zone to orientate the main progresses to perform in modelling.

We acknowledge financial support by NASA GRANTS NAG5-13261 and NAG5-12452 (SC) and by CNES for Saclay activities.

[1] Turck-Chièze, S., et al., ApJ 555, L69 (2001)
[2] Couvidat, S., Turck-Chièze, S, Kosovichev, A., ApJ 599, 1434 (2003)
[3] Ahmed et al., Phys. Rev. lett. 92, 181301 (2004)
[4] Turck-Chièze, S., 11th Lomonosov Conference, (2003)
[5] Bahcall, J. N., Pinsonneault, M. H., Phys. Rev. lett. 92, 121301 (2004)
[6] Basu, S., Antia, H. M., ApJ. 606, L85 (2004)
[7] Anders, E., & Grevesse, N., Geochim. et Cosmochim. Acta 53, 197 (1989)
[8] Tsamis et al., MNRAS, 338 (2003)
[9] Marconi et al., MNRAS, 270 (1994)
[10] Deharveng et al. MNRAS, 311 (2000)
[11] Meyer, J.P., in Cosmic abundances of matter, AIP conference 183, 245 (1989)
[12] Turck-Chièze, S., et al. Phys. Rep. 230, 57-235 (1993)
[13] Grevesse, N., & Noels, A., Origin and Evolution of the Elements, ed. N. Prantzos, E. Vangioni-Flam, & M. Cassé (Cambridge University, Cambridge), 15 (1993)
[14] Gounelle, M., et al., ApJ., 548, 1051 (2001); Gounelle, M. et al., 35th Lunar and Planetary Science Conference, 35, 1829.
[15] Turck-Chièze, S. & Lopes, I., ApJ 408,347(1993)
[16] Holweger, H., in Joint SOHO/ACE workshop "Solar and Galactic Compositional", AIP 598, 23 (2001)
[17] Asplund, M., et al., A & A, 417, 751 (2004)
[18] Lodders, K, 2003, ApJ 591, 1220
[19] Iglesias, C. A., & Rogers, F. J., ApJ 464, 943 (1996)
[20] Alexander, D. R., Ferguson, J. W., ApJ 437 879 (1994)
[21] Bertello, L., et al., ApJ, 537, L143 (2000); García, R. A., et al., Sol. Phys. 200, 361 (2001)
[22] Seaton, M. J., Badnell, N. R., astro-ph/0404437 submitted to MNRAS
[23] Cheness-Popovics, C. et al., Phys. Rev. E 65 6413 (2002)
[24] Rudiger, G., Kitchatinov, L. L., Astron. Nash. 318 273 (1997)
[25] Basa, A., et al. , Sol. Phys. 235, 943 (1996)
[26] Formicola, A. et al., Phys. Lett. B 591 61 (2004)
[27] Adelberger, E. G., et al. Rev. Mod. Phys. 70, 4 (1998)
[28] Holmberg, F., et al. Phys. Rev. Lett. 80, 5, 928 (1998)
[29] Bahcall, J. N., Pena-Garay, C., New J. of Phys. 6 63 (2004)
[30] Cattadori, et al., for GNO and SAGE Neutrino 2004, (2004)