Numerical Analysis of a Model of Two Phase Compressible Fluid Flow

Eduard Feireisl1 \cdot Mădălina Petcu2,3,4 \cdot Bangwei She1,5

Received: 11 February 2021 / Revised: 5 July 2021 / Accepted: 11 August 2021 / Published online: 25 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider a model of a binary mixture of two immiscible compressible fluids. We propose a numerical scheme and discuss its basic properties: stability, consistency, convergence. The convergence is established via the method of generalized weak solutions combined with the weak–strong uniqueness principle.

Keywords Barotropic Navier–Stokes system \cdot Allen–Cahn equation \cdot Dissipative weak solution \cdot Weak–strong uniqueness

1 Introduction

We consider a binary mixture of two immiscible compressible fluids. There are several ways how to model such a system. Here, we consider the model introduced in [12] based on the phase field approach:
\[
\frac{\partial}{\partial t} \varrho + \text{div}_x (\varrho u) = 0,
\]
\[
\frac{\partial}{\partial t} (\varrho u) + \text{div}_x (\varrho u \otimes u) + \nabla_x p(\varrho) = \text{div}_x \mathcal{S}(\nabla_x u) - \text{div}_x \left(\nabla_x \epsilon \otimes \nabla_x \epsilon - \frac{1}{2} |\nabla_x \epsilon|^2 \mathbb{I} \right) + \nabla_x F(c),
\]
\[
\frac{\partial}{\partial t} \epsilon + u \cdot \nabla_x \epsilon = \mu,
\]
where
\[
\mu = \Delta_x \epsilon - F'(c),
\]
\[
\mathcal{S}(\nabla_x u) = \nu \left(\nabla_x u + \nabla_x^t u - \frac{2}{d} \text{div}_x u \mathbb{I} \right) + \lambda \text{div}_x u \mathbb{I}, \quad \nu > 0, \quad \lambda \geq 0.
\]

The system (1.1), (1.2) is a variant of the general phase field approach, where the density of the mixture is represented by a single scalar function \(\varrho \), the joint velocity is \(u \), and the concentration difference of the two phases is the order parameter \(\epsilon \), the evolution of which is governed by the Allen–Cahn equation. A similar simplified model was proposed by [24] to describe the stem cell differentiation. We would also like to mention the result of Giorgini and Temam for nonhomogeneous system [15].

The energy of the system is
\[
E(\varrho, u, \epsilon) = \frac{1}{2} \varrho |u|^2 + \frac{1}{2} |\nabla_x \epsilon|^2 + P(\varrho) + F(c),
\]
where \(P \) is the pressure potential and \(F \) is the Ginzburg–Landau potential. The pressure potential is related to the pressure \(p \) as
\[
P'(\varrho) \varrho - P(\varrho) = p(\varrho).
\]

Moreover, we suppose that
\[
p \in C[0, \infty) \cap C^\infty(0, \infty),
\]
\[
p'(\varrho) > 0 \text{ for } \varrho > 0, \quad \lim\inf_{\varrho \to \infty} p'(\varrho) > 0, \quad p(\varrho) \leq c \left(1 + P(\varrho) \right) \text{ for all } \varrho \geq 0.
\]

The Ginzburg–Landau potential takes the form
\[
F(c) = \begin{cases}
(c + 1)^2, & \text{on } c \leq -1, \\
\frac{1}{4} (c^2 - 1)^2, & \text{on } -1 \leq c \leq 1, \\
(c - 1)^2, & \text{on } c > 1.
\end{cases}
\]

Note that \(F \) coincides with the more standard double well potential \(F(c) = \frac{1}{4} (c^2 - 1)^2 \) in the physically relevant area \(c \in [-1, 1] \). All results of this paper remain valid for \(F \) of the form \(F(c) = \lambda c^2 + W(c), \lambda > 0 \), with \(W \in C^2 \cap W^{2, \infty}(\mathbb{R}) \) such that \(W \) and \(W' \) are (globally) Lipschitz functions.

We consider either the simplified periodic boundary conditions, where the physical domain can be identified with the flat torus
\[
\Omega = T^d = \left([-1, 1] \right)^d, \quad d = 2, 3,
\]
or the Dirichlet boundary conditions
\[
\begin{align*}
\frac{\partial u}{\partial a} = 0, \quad \epsilon|_{\partial \Omega} = 0, \quad \Omega \subset \mathbb{R}^d \text{ a bounded domain}.
\end{align*}
\]
In comparison with more complex models proposed by Blesgen [3] or Anderson et al. [2], the present model is much simpler to facilitate numerical analysis. To the best of our knowledge, this is the first attempt in the context of mixtures of compressible fluids.

If the boundary conditions (1.5) are imposed, the total energy is a Lyapunov function,

\[
\frac{d}{dt} \int_{\Omega} \left[\frac{1}{2} \rho |u|^2 + \frac{1}{2} |\nabla_x c|^2 + P(\rho) + F(c) \right] dx \\
+ \int_{\Omega} S(\nabla_x u) : \nabla_x u dx + \int_{\Omega} |\Delta_x c - F'(c)|^2 dx = 0. \tag{1.6}
\]

Our goal in the present paper is

- to propose a numerical scheme to solve (1.1), (1.2), with the boundary conditions (1.5);
- to show stability estimates and consistency of the scheme;
- to show convergence of numerical approximations to a regular solution as long as it exists.

The strategy is to identify a large class of generalized solutions to the problem that goes beyond the standard framework of weak solutions. These are the so called dissipative weak solutions similar to those introduced in the monograph [9]. Although dissipative weak solutions are more general objects than the weak solutions, they still comply with the weak–strong uniqueness principle. A dissipative weak solution coincides with the strong solution originating from the same initial data. Then we show that any sequence of numerical solutions that is stable and consistent converges to a dissipative weak solution. Applying the weak–strong uniqueness principle, we finally prove unconditional convergence to the strong solution, provided the latter exists.

2 Dissipative weak solutions

In accordance with the choice of the boundary conditions (1.5), we will use the same symbol \(\Omega\) to denote either the flat torus \(\mathbb{T}^d\) or a bounded domain in \(\mathbb{R}^d\). The symbol \(\mathcal{M}(\Omega; X)\) denotes the set of (Radon) measures on \(\Omega\) ranging in a (finite–dimensional) space \(X\), \(\mathcal{M}^+\) is the cone of non–negative scalar–valued measures.

The anticipated integrability properties of dissipative solutions are in agreement with the energy balance (1.6):

\[
\sqrt{\rho} u \in L^\infty(0, T; L^2(\Omega; \mathbb{R}^d)), \quad c \in L^\infty(0, T; W^{1,2}(\Omega)), \quad P(\rho) \in L^\infty(0, T; L^1(\Omega)) \\
u \in L^2(0, T; W^{1,2}(\Omega; \mathbb{R}^d)), \quad c \in L^2(0, T; W^{2,2}(\Omega)). \tag{2.1}
\]

Definition 2.1 (Dissipative weak solution)

A triple \((\rho, u, c)\) is called dissipative weak solution of the problem (1.1), (1.2) in \((0, T) \times \Omega\), with the boundary conditions (1.5a) (or (1.5b)) and the initial conditions

\[
\rho(0, \cdot) = \rho_0, \quad \rho u(0, \cdot) = (\rho u)_0, \quad c(0, \cdot) = c_0,
\]

if the following is satisfied:

- **Regularity** The solution belongs to the class (2.1). Moreover,

\[
\rho \geq 0 \text{ a.a. in } (0, T) \times \Omega.
\]
• Equation of continuity

\[
\int_0^T \int_{\Omega} \left[\varrho \partial_t \varphi + \varrho \mathbf{u} \cdot \nabla \varphi \right] \, dx \, dt = - \int_{\Omega} \varrho_0 \varphi(0, \cdot) \, dx
\]

(2.2)

for any \(\varphi \in C^1_c([0, T) \times \Omega) \).

• Momentum equation

\[
\int_0^T \int_{\Omega} \left[\varrho \mathbf{u} \cdot \partial_t \mathbf{\phi} + \varrho \mathbf{u} \otimes \mathbf{u} : \nabla \mathbf{\phi} + p(\varrho) \text{div}_x \mathbf{\phi} \right] \, dx \, dt
\]

\[
= \int_0^T \int_{\Omega} \left[\mathbf{S}(\nabla_x \mathbf{u}) : \nabla \mathbf{\phi} + (\Delta_x c - F'(c)) \nabla_x c \cdot \mathbf{\phi} \right] \, dx \, dt
\]

\[
- \int_{\Omega} (\varrho \mathbf{u})_0 \cdot \mathbf{\phi}(0, \cdot) \, dx + \int_0^T \int_{\Omega} \nabla_x \mathbf{\phi} : d\mathfrak{R}(t) \, dt
\]

(2.3)

for any \(\mathbf{\phi} \in C^1_c([0, T) \times \Omega) \); \(\mathfrak{R} \in L^\infty(0, T; \mathcal{M}(\Omega; \mathbb{R}^d \times \mathbb{R}^d)) \).

In the case of the Dirichlet boundary conditions (1.5b), we also require

\(\mathbf{u} \in L^2(0, T; W^{1,2}_0(\Omega; \mathbb{R}^d)) \).

• Allen–Cahn equation for the concentration difference

\[
\int_0^T \int_{\Omega} \left[c \partial_t \varphi - \mathbf{u} \cdot \nabla \varphi \right] \, dx \, dt = - \int_0^T \int_{\Omega} \mu \varphi \, dx \, dt - \int_{\Omega} \varphi_0 \varphi(0, \cdot) \, dx,
\]

(2.4)

\[
\mu = \Delta_x c - F'(c)
\]

for any \(\varphi \in C^1_c([0, T) \times \Omega) \). If (1.5b) is imposed, we require

\(c \in L^\infty(0, T; W^{1,2}_0(\Omega)) \).

• Energy balance

\[
\int_{\Omega} \left[\frac{1}{2} |\varrho \mathbf{u}|^2 + \frac{1}{2} |\nabla_x c|^2 + P(\varrho) + F(c) \right] (\tau, \cdot) \, dx
\]

\[
+ \int_0^\tau \int_{\Omega} \left(\mathbf{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u} + |\Delta_x c - F'(c)|^2 \right) \, dx \, dt + \int_{\Omega} d\mathfrak{E}(\tau)
\]

\[
\leq \int_{\Omega} \left[\frac{1}{2} |(\varrho \mathbf{u})_0|^2 \varrho_0 + \frac{1}{2} |\nabla_x c_0|^2 + P(\varrho_0) + F(c_0) \right] \, dx
\]

(2.5)

for a.a. \(\tau \in (0, T) \), where

\(\mathfrak{E} \in L^\infty(0, T; \mathcal{M}^+(\Omega)) \).

• Defect compatibility

\[
|\mathfrak{R}(\tau)| \lesssim \mathfrak{E}(\tau)
\]

(2.6)

for a.a. \(\tau \in (0, T) \).

Remark 2.2 The inequality (2.6) can be interpreted as the requirement that there exists a constant \(\Lambda > 0 \) such that
\[
\left(\Lambda \mathcal{E} \pm \mathcal{R} \right)(\tau) \geq 0,
\]
meaning
\[
\int_{\Omega} \phi \xi : \mathbf{d} \left(\Lambda \mathcal{E}(\tau) \pm \mathcal{R}(\tau) \right) \geq 0
\]
for any \(\phi \in C_\infty(\Omega) \), \(\phi \geq 0 \), \(\xi \in \mathbb{R}^d \).

The measure \(\mathcal{R} \) can be viewed as the sum of a concentration and oscillation defects related to the non-linearities in the momentum balance. Similarly, the measure \(\mathcal{E} \) results from the defect due to possible “anomalous” energy dissipation. The compatibility property (2.6) is absolutely crucial for the weak–strong uniqueness principle. A more elaborate discussion concerning this approach can be found in the monograph [9].

3 Relative energy inequality

The relative energy is a non-negative quantity that represents a “distance” between a dissipative weak solution in the sense of Definition 2.1 and any triple of suitable smooth test functions. It can be also interpreted as the Bregman distance generated by the energy functional, cf. Sprung [22]. In this section we derive a differential inequality satisfied by the relative energy. Later we use it to evaluate the distance between a dissipative weak solution for the problem (1.1)–(1.2) and a more regular one. This technique, introduced by Dafermos in [5], was largely used in order to prove weak–strong uniqueness for the solutions of different types of partial differential equations (see for example [7,14,23]) as well as to study certain singular limits as for example incompressible, inviscid limits of compressible, viscous fluids (see [11,20,21]).

Let \(R, R > 0, U \), and \(\mathcal{C} \) be arbitrary continuously differentiable functions. We define the relative energy as
\[
\mathcal{E}(\varrho, u, c \mid R, U, \mathcal{C}) = \sum_{j=1}^{5} I_j,
\]
with
\[
I_1 = \int_{\Omega} \left[\frac{1}{2} \varrho |u - U|^2 + (c - \mathcal{C})^2 + \frac{1}{2} |\nabla_x c - \nabla_x \mathcal{C}|^2 + P(\varrho) - P'(R)(\varrho - R) - P(R) \right] \, dx,
\]
\[
I_2 = \int_{\Omega} \varrho \left[\frac{1}{2} |u|^2 - P'(R) \right] \, dx,
\]
\[
I_3 = - \int_{\Omega} \varrho u \cdot U \, dx,
\]
\[
I_4 = - \int_{\Omega} \nabla_x c \cdot \nabla_x \mathcal{C} + 2 c \mathcal{C} \, dx,
\]
\[
I_5 = \int_{\Omega} \left[c^2 + \frac{1}{2} |\nabla_x \mathcal{C}|^2 + p(R) \right] \, dx,
\]
where \(p(R) = P'(R)R - P(R) \).
Let us now state and prove the main result of this section:

Theorem 3.1 Let \((\varrho, \mathbf{u}, \mathbf{c})\) be a dissipative weak solution to problem (1.1)–(1.2), (1.5), in the sense specified in Definition 2.1.

Then, for any continuously differentiable functions satisfying

\[R \in C^1([0, T] \times \Omega), \quad R > 0, \quad \mathbf{U} \in C^1([0, T] \times \Omega; \mathbb{R}^d), \quad \mathbf{c}, \nabla_x \mathbf{c}, \Delta_x \mathbf{c} \in C^1([0, T] \times \Omega), \]

and, in the case of the Dirichlet boundary conditions, also

\[\mathbf{U}|_{\partial \Omega} = 0, \quad \mathbf{c}|_{\partial \Omega} = 0, \]

the following relative energy inequality holds:

\[
\left[E(\varrho, \mathbf{c}, \mathbf{u} \mid R, \mathbf{c}, \mathbf{U}) \right]_{t=0}^{t=T} + \int_0^T \int_{\Omega} \left[\mathcal{S}(\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) + \mu^2 \right] \, dx \, dt + \int_{\Omega} d\mathcal{E}(\tau) \\
\leq - \int_0^T \int_{\Omega} \mu(\Delta_x \mathbf{c} - \mu - 2\mathbf{c}) \, dx \, dt - \int_0^T \int_{\Omega} (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) W(\mathbf{c}) \, dx \, dt \\
+ \int_0^T \int_{\Omega} \varrho(U - \mathbf{u}) \cdot \partial_t \mathbf{U} \, dx \, dt + \int_0^T \int_{\Omega} (R - \varrho) \partial_t P'(R) \, dx \, dt \\
- \int_0^T \int_{\Omega} \mathbf{u} \cdot \nabla_x P'(R) \, dx \, dt + \int_0^T \int_{\Omega} \mathbf{u} \cdot \nabla_x \mathbf{U} \cdot (U - \mathbf{u}) \, dx \, dt \\
- \int_0^T \int_{\Omega} (p(\varrho) - c^2) \partial_t \mathbf{U} \, dx \, dt - \int_0^T \int_{\Omega} \left(\nabla_x c \otimes \nabla_x c - \frac{1}{2} |\nabla_x c|^2 \right) : \nabla_x \mathbf{U} \, dx \, dt \\
+ \int_0^T \int_{\Omega} \nabla_x \mathbf{U} : \partial \mathcal{R}(t) \, dt + \int_0^T \int_{\Omega} (\mu - \mathbf{u} \cdot \nabla_x c)(\Delta_x \mathbf{c} - 2\mathbf{c}) \, dx \, dt \\
+ \int_0^T \int_{\Omega} (c - \mathbf{c})(\Delta_x \mathbf{c} - 2\mathbf{c}) \, dx \, dt - \int_0^T \int_{\Omega} \left[\mathcal{S}(\nabla_x \mathbf{U}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \right] \, dx \, dt
\]

for a.a. \(\tau \in (0, T) \).

Proof Since a dissipative weak solution satisfies the energy inequality (2.5), the term \(I_1 \) from the relative energy is estimated as follows:

\[
[I_1]_{t=0}^{t=T} = \left[\int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho) + c^2 + W(\mathbf{c}) + \frac{1}{2} |\nabla_x \mathbf{c}|^2 \right] \, dx \right]_{t=0}^{t=T} - \left[\int_{\Omega} W(\mathbf{c}) \, dx \right]_{t=0}^{t=T} \\
\leq - \int_{\Omega} d\mathcal{E}(\tau) - \int_0^T \int_{\Omega} \left[\mathcal{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u} + \mu^2 \right] \, dx \, dt - \left[\int_{\Omega} W(\mathbf{c}) \, dx \right]_{t=0}^{t=T},
\]

(3.2)

where \(W(\mathbf{c}) = F(\mathbf{c}) - c^2 \).

For the last term in (3.2), we use the Allen–Cahn equation for the concentration \(\mathbf{c} \) and we get:

\[
\left[\int_{\Omega} W(\mathbf{c}) \, dx \right]_{t=0}^{t=T} = - \int_0^T \int_{\Omega} \partial_t W(\mathbf{c}) \, dx \, dt = - \int_0^T \int_{\Omega} \partial_t \mathbf{c} W'(\mathbf{c}) \, dx \, dt \\
= - \int_0^T \int_{\Omega} (\mu - \mathbf{u} \cdot \nabla_x \mathbf{c}) W'(\mathbf{c}) \, dx \, dt \\
= - \int_0^T \int_{\Omega} \mu(\Delta_x \mathbf{c} - \mu - 2\mathbf{c}) \, dx \, dt + \int_0^T \int_{\Omega} \mathbf{u} \cdot \nabla_x W(\mathbf{c}) \, dx \, dt \\
= - \int_0^T \int_{\Omega} \mu(\Delta_x \mathbf{c} - \mu - 2\mathbf{c}) \, dx \, dt - \int_0^T \int_{\Omega} \text{div}_x \mathbf{u} W(\mathbf{c}) \, dx \, dt.
\]

(3.3)
The estimates for \(I_2 \) are obtained testing the continuity equation by \(\psi = \frac{1}{2} |\mathbf{U}|^2 - P'(R) \). Remark that the choice of \(\psi \) is possible thanks to the regularity of the functions \(R \) and \(U \). We obtain:

\[
\begin{align*}
\int_0^T \int_{\Omega} \left[\psi \left(\mathbf{U} \cdot \partial_t \mathbf{U} - \partial_t P'(R) \right) \right] \, dx \, dt \\
+ \int_0^T \int_{\Omega} \left[\psi \mathbf{u} \cdot \left(\nabla_x^t \mathbf{U} - \nabla_x P'(R) \right) \right] \, dx \, dt.
\end{align*}
\]

(3.4)

Adding the inequalities for \(I_1 \) and \(I_2 \), we obtain:

\[
\begin{align*}
[I_1 + I_2]_{t=0}^T + \int_0^T \int_{\Omega} d\mathcal{E}(t) + \int_0^T \int_{\Omega} \left[\nabla_x \mathbf{u} \cdot \nabla_x \mathbf{u} + \mu^2 \right] \, dx \, dt \\
\leq - \int_0^T \int_{\Omega} \mu (\Delta x \psi - \mu - 2c) \, dx \, dt - \int_0^T \int_{\Omega} \text{div}_x \mathbf{u} W(c) \, dx \, dt \\
+ \int_0^T \int_{\Omega} \left(\psi \mathbf{U} \cdot \partial_t \mathbf{U} - \psi \partial_t P'(R) \right) \, dx \, dt + \int_0^T \int_{\Omega} \psi \mathbf{u} \cdot \left(\nabla_x^t \mathbf{U} - \nabla_x P'(R) \right) \, dx \, dt.
\end{align*}
\]

(3.5)

We also test the momentum equation by \(\mathbf{U} \) and get:

\[
\begin{align*}
\int_0^T \int_{\Omega} \left[\psi \mathbf{u} \cdot \partial_t \mathbf{U} + \psi \mathbf{u} \cdot \nabla_x \mathbf{U} \cdot \mathbf{u} + (p(\psi) - c^2 - W(c)) \text{div}_x \mathbf{U} \right] \, dx \, dt \\
+ \int_0^T \int_{\Omega} \nabla_x \mathbf{u} \cdot \nabla_x \mathbf{u} \, dx \, dt + \int_0^T \int_{\Omega} \nabla_x \mathbf{U} : \mathbf{d} \mathcal{R}(t) dt \\
- \int_0^T \int_{\Omega} \left(\nabla_x \psi \otimes \nabla_x \psi - \frac{1}{2} |\nabla_x \psi|^2 \right) \cdot \nabla_x \mathbf{U} \, dx \, dt.
\end{align*}
\]

(3.6)

Summing (3.5) and (3.6), we have:

\[
\begin{align*}
[I_1 + I_2 + I_3]_{t=0}^T + \int_0^T \int_{\Omega} d\mathcal{E}(t) + \int_0^T \int_{\Omega} \left[\nabla_x \mathbf{u} \cdot \nabla_x \mathbf{u} + \mu^2 \right] \, dx \, dt \\
\leq - \int_0^T \int_{\Omega} \mu (\Delta x \psi - \mu - 2c) \, dx \, dt - \int_0^T \int_{\Omega} (\text{div}_x \mathbf{u} - \text{div}_x \mathbf{U}) W(c) \, dx \, dt \\
+ \int_0^T \int_{\Omega} \left[\psi (\mathbf{U} - \mathbf{u}) \cdot \partial_t \mathbf{U} + \psi \mathbf{u} \cdot \nabla_x \mathbf{U} \cdot (\mathbf{U} - \mathbf{u}) \right] \, dx \, dt \\
- \int_0^T \int_{\Omega} \left(\psi \partial_t P'(R) + \psi \mathbf{u} \cdot \nabla_x P'(R) \right) \, dx \, dt - \int_0^T \int_{\Omega} (p(\psi) - c^2) \text{div}_x \mathbf{U} \, dx \, dt \\
- \int_0^T \int_{\Omega} \left(\nabla_x \psi \otimes \nabla_x \psi - \frac{1}{2} |\nabla_x \psi|^2 \right) \cdot \nabla_x \mathbf{U} \, dx \, dt + \int_0^T \int_{\Omega} \nabla_x \mathbf{U} : \mathbf{d} \mathcal{R}(t) dt.
\end{align*}
\]

(3.7)

For the last two terms in the relative energy, we use the Allen–Cahn equation. Thus:

\[
\begin{align*}
\int_0^T \int_{\Omega} \nabla_x \mathbf{c} \cdot \nabla_x \mathbf{c} \, dx \bigg|_{t=0}^T = \left[\int_{\Omega} [\Delta_x \mathbf{c} - 2\mathbf{c}] \, dx \right]_{t=0}^T \\
= \int_0^T \int_{\Omega} \partial_t [\Delta_x \mathbf{c} - 2\mathbf{c}] \, dx \, dt + \int_0^T \int_{\Omega} [\Delta_x \mathbf{c} - 2\mathbf{c}] \, dx \, dt \\
= \int_0^T \int_{\Omega} \partial_t [\Delta_x \mathbf{c} - 2\mathbf{c}] \, dx \, dt + \int_0^T \int_{\Omega} [\Delta_x \mathbf{c} - 2\mathbf{c}] \mu - \mathbf{u} \cdot \nabla_x \mathbf{c} \, dx \, dt.
\end{align*}
\]

(3.8)
\[
E_{\mathcal{T}} - E_{\mathcal{T}_0} = - \int_0^\tau \int_\Omega \left(\mathcal{C} \Delta_x \mathcal{C}_t - 2 \mathcal{C} \mathcal{C}_t \right) \, dx \, dt + \int_0^\tau \int_\Omega R \partial_t P'(R) \, dx \, dt.
\]

thanks to the equality \(\partial_t p(R) = \partial_t (P'(R)R - P(R)) = R \partial_t P'(R) \).

Adding (3.8) and (3.9) to (3.7), we obtain the desired relative energy inequality.

\[\Box\]

4 Weak–Strong Uniqueness

In this section we prove that a dissipative weak solution and a strong solution for the compressible Navier–Stokes–Allen–Cahn problem (1.1)–(1.2), (1.5a)/(1.5b), both emanating from the same initial data, coincide on the life span of the strong solution. More exactly, we prove the following result:

Theorem 4.1 Let the initial data \((\varrho_0, \mathbf{m}_0, c_0)\) be given such that the initial energy is finite

\[
\int_\Omega \left[\frac{1}{2} \frac{|\mathbf{m}_0|^2}{\varrho_0} + \frac{1}{2} |\nabla_x c_0|^2 + P(\varrho_0) + F(c_0) \right] \, dx < \infty.
\]

Let \((\varrho, \mathbf{u}, c)\) be a dissipative weak solution of the problem (1.1)–(1.2), (1.5a)/(1.5b) in \((0, T) \times \Omega\) in the sense of Definition 2.1, with the initial data \((\varrho_0, \mathbf{m}_0, c_0)\). Suppose that \((R, \mathbf{U}, \mathcal{C})\) is a strong solution of the same problem belonging to the class:

\[
\begin{align*}
\inf_{(0, T) \times \Omega} R > 0, & \quad R \in C^1([0, T] \times \overline{\Omega}), \\
\mathbf{U} \in C^1([0, T] \times \overline{\Omega}; \mathbb{R}^N), & \quad \text{div}_x \mathcal{S}(\nabla_x \mathbf{U}) \in C([0, T] \times \overline{\Omega}; \mathbb{R}^N), \\
\mathcal{C}, \nabla_x \mathcal{C}, \Delta_x \mathcal{C} \in C^1([0, T] \times \overline{\Omega}),
\end{align*}
\]

and such that

\[
R(0, \cdot) = \varrho_0, \quad R(0, \cdot) \mathbf{U}(0, \cdot) = \mathbf{m}_0, \quad \mathcal{C}(0, \cdot) = c_0.
\]

Then

\[
\varrho = R, \quad \mathbf{u} = \mathbf{U}, \quad c = \mathcal{C} \quad \text{in} \quad (0, T) \times \Omega,
\]

and

\[
\mathcal{C} = \mathcal{R} = 0.
\]

Proof The idea of the proof is to test the relative energy inequality by the strong solution and use the Gronwall inequality in order to obtain the desired result. Let us proceed by considering the following terms from the relative energy inequality:

\[
J = \int_0^\tau \int_\Omega \left[\varrho (\mathbf{U} - \mathbf{u}) \cdot \partial_t \mathbf{U} + \varrho \mathbf{u} \cdot \nabla_x \mathbf{U} \cdot (\mathbf{U} - \mathbf{u}) \right] \, dx \, dt
\]

\[
- \int_0^\tau \int_\Omega \mathcal{S}(\nabla_x \mathbf{U}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt
\]

\[
= \int_0^\tau \int_\Omega \left[\frac{\varrho}{R} (\mathbf{U} - \mathbf{u}) \cdot R \partial_t \mathbf{U} \right] \, dx \, dt - \int_0^\tau \int_\Omega \mathcal{S}(\nabla_x \mathbf{U}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt
\]

\[
+ \int_0^\tau \int_\Omega \varrho \mathbf{U} \cdot \nabla_x \mathbf{U} \cdot (\mathbf{U} - \mathbf{u}) \, dx \, dt + \int_0^\tau \int_\Omega \varrho (\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathbf{U} \cdot (\mathbf{U} - \mathbf{u}) \, dx \, dt
\]

\[
= \sum_{i=1}^4 J_i.
\]
For $J_1 + J_2$ we use the momentum equation and get:

\[
J_1 + J_2 = - \int_0^T \int_\Omega \frac{\rho}{R} (U - u) \cdot \left[\text{div}_x (\nabla_x U) - \text{div}_x \left(\nabla_x c \otimes \nabla_x c - \frac{1}{2} |\nabla_x c|^2 I \right) \right] \, dx \, dt
- \int_0^T \int_\Omega \mathcal{S}(\nabla_x U) : (\nabla_x U - \nabla_x U) \, dx \, dt
- \int_0^T \int_\Omega \frac{\rho - R}{R} (U - u) \cdot \text{div}_x (RU \otimes U) \, dx \, dt
- \int_0^T \int_\Omega \frac{\rho}{R} (U - u) \cdot \nabla_x (p(R) - \epsilon^2 - W(\mathcal{C})) \, dx \, dt
\]

which implies that:

\[
J_1 + J_2 + J_3 =
- \int_0^T \int_\Omega \frac{\rho}{R} (U - u) \cdot \nabla_x c \Delta_x c \, dx \, dt
- \int_0^T \int_\Omega \frac{\rho - R}{R} (U - u) \cdot \text{div}_x \mathcal{S}(\nabla_x U) \, dx \, dt
- \int_0^T \int_\Omega \frac{\rho}{R} (U - u) \cdot \nabla_x (p(R) - \epsilon^2 - W(\mathcal{C})) \, dx \, dt
\]

The last term in J can be easily estimated as follows:

\[
|J_4| \leq \int_0^T |\nabla_x U|_{L^\infty(\Omega)} \mathcal{E}(\mathcal{C}, U, \mathcal{C}(t)) \, dt.
\]

Using exactly the same arguments as in [7], we also estimate:

\[
\left| \int_0^T \int_\Omega \frac{\rho - R}{R} (U - u) \cdot \text{div}_x \mathcal{S}(\nabla_x U) \, dx \, dt \right|
\leq \delta \int_0^T \int_\Omega (\mathcal{S}(\nabla_x u) - \mathcal{S}(\nabla_x U)) : (\nabla_x u - \nabla_x U) \, dx \, dt
+ c(\delta) \int_0^T \mathcal{E}(\mathcal{C}, U, \mathcal{C}(t)) \, dt,
\]

for any $\delta > 0$, where $c(\delta)$ is a positive constant depending on δ and on certain norms of R and U. The estimate is based on the Korn-Poincaré inequality (see e.g. [11]):

\[
\int_\Omega |u - U|^2 + |\nabla_x (u - U)|^2 \, dx
\leq c_{kp} \int_\Omega \left[(\mathcal{S}(\nabla_x u) - \mathcal{S}(\nabla_x U)) : (\nabla_x u - \nabla_x U) + \rho |u - U|^2 \right] \, dx.
\]

The last term in (4.3) is split up as follows:

\[
\int_0^T \int_\Omega \frac{\rho}{R} (U - u) \cdot \nabla_x (p(R) - \epsilon^2 - W(\mathcal{C})) \, dx \, dt
= \int_0^T \int_\Omega (U - u) \cdot \nabla_x (p(R) - \epsilon^2 - W(\mathcal{C})) \, dx \, dt
+ \int_0^T \int_\Omega \frac{\rho - R}{R} (U - u) \cdot \nabla_x (p(R) - \epsilon^2 - W(\mathcal{C})) \, dx \, dt.
\]
Using the fact that R and \mathcal{C} are regular enough, we can bound
\[
\left| \int_0^T \int_\Omega \frac{\rho - R}{R} (\mathbf{U} - \mathbf{u}) \cdot \nabla_x \left(p(R) - \mathcal{C}^2 - W(\mathcal{C}) \right) \, dx \, dt \right|
\leq c(R, \mathcal{C}) \int_0^T \int_\Omega |\rho - R| |\mathbf{U} - \mathbf{u}| \, dx \, dt,
\] (4.7)
where $c(R, \mathcal{C})$ is a positive constant depending on the norms of R and \mathcal{C}.

Using the same arguments as in [7] and [12], we now introduce the following cut-off function:
\[
\Psi \in C^\infty_c(0, \infty), \ 0 \leq \Psi \leq 1, \ \Psi \equiv 1 \text{ in } [\delta, \frac{1}{2\delta}],
\]
where δ is chosen so small that
\[
R(t, x) \in [2\delta, \frac{1}{2\delta}] \text{ for all } (t, x) \in [0, T] \times \overline{\Omega}.
\]
For any function $h \in L^1((0, T) \times \Omega)$, we set the following splitting
\[
h = h_{\text{ess}} + h_{\text{res}}, \ h_{\text{ess}} = \Psi(q) h, \ h_{\text{res}} = (1 - \Psi(q)) h.
\]
We can thus continue to estimate in (4.7) as:
\[
\int_0^T \int_\Omega |\rho - R| |\mathbf{U} - \mathbf{u}| \, dx \, dt \leq \int_0^T \int_\Omega |\rho - R|_{\text{ess}} |\mathbf{U} - \mathbf{u}|_{\text{ess}} \, dx \, dt
\]
\[
+ \int_0^T \int_\Omega |\rho - R|_{\text{res}} |\mathbf{U} - \mathbf{u}| \, dx \, dt,
\] (4.8)
where we used the fact that:
\[
||\rho - r||_{\text{ess}} \ |\mathbf{U} - \mathbf{u}| = \sqrt{|\rho - r|^2_{\text{ess}}} \sqrt{|\mathbf{U} - \mathbf{u}|^2_{\text{ess}}},
\] (4.9)
It can be easily checked that
\[
P(\rho) - P(r)(\rho - r) - P(r) \gtrsim (\rho - r)^2_{\text{ess}} + (1 + \rho)_{\text{res}}.
\] (4.10)
We can thus write
\[
\mathcal{E} \left(\rho, \mathbf{u}, c \left| r, \mathbf{U}, C \right. \right) \gtrsim \int_\Omega \left(|\mathbf{u} - \mathbf{U}|^2_{\text{ess}} + |\rho - r|^2_{\text{ess}} + 1_{\text{res}} + \rho_{\text{res}} \right) \, dx,
\] (4.11)
which allows us to conclude that:
\[
\int_0^T \int_\Omega |\rho - R|_{\text{ess}} |\mathbf{U} - \mathbf{u}|_{\text{ess}} \, dx \, dt \lesssim \mathcal{E} \left(\rho, \mathbf{u}, c \left| r, \mathbf{U}, C \right. \right).
\]
We also know that:
\[
||\rho - r||_{\text{res}} \ |\mathbf{U} - \mathbf{u}| \lesssim 1_{\text{res}} |\mathbf{U} - \mathbf{u}| + \sqrt{\rho_{\text{res}}} \sqrt{\rho} |\mathbf{U} - \mathbf{u}|,
\] (4.12)
which implies:
\[
\int_0^T \int_\Omega ||\rho - r||_{\text{res}} \ |\mathbf{U} - \mathbf{u}| \, dx \, dt
\]
\[
\leq c(\delta) \int_0^T \int_\Omega (1_{\text{res}} + \rho_{\text{res}} + \rho |\mathbf{u} - \mathbf{U}|^2) \, dx \, dt + \delta \int_\Omega \left(\nabla_x \mathbf{u} - \mathbf{S}(\nabla_x \mathbf{U}) \right) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx,
\]
where we have used again the Korn-Poincaré inequality (4.5).
Gathering all these estimates, we obtain the following inequality:

\[
\left[\mathcal{E} \left(\varrho, c, u \left| R, \mathcal{C}, U \right. \right) \right]_{t=0}^{T} + \int_{0}^{T} \int_{\Omega} \left[(1 - 2\delta)S(\nabla_{x} u - \nabla_{x} U) : (\nabla_{x} u - \nabla_{x} U) + \mu^{2} \right] \, dx \, dt \\
\quad + \int_{\Omega} d\mathcal{E}(r) \\
\leq -\int_{0}^{T} \int_{\Omega} \mu(\Delta_{x} c - \mu - 2c) \, dx \, dt - \int_{0}^{T} \int_{\Omega} (\text{div}_{x} u - \text{div}_{x} U) W(c) \, dx \, dt \\
+ \int_{0}^{T} \int_{\Omega} \frac{\varrho}{R}(u - U) \cdot \nabla_{x} \mathcal{C} \Delta_{x} c \, dx \, dt + \int_{0}^{T} \int_{\Omega} (R - \varrho) \partial_{t} P'(R) \, dx \, dt \\
- \int_{0}^{T} \int_{\Omega} (U - u) \cdot \nabla_{x} p(R) \, dx \, dt + \int_{0}^{T} \int_{\Omega} (U - u) \cdot \nabla_{x} \left[q^{2} + W(\mathcal{C}) \right] \, dx \, dt \tag{4.13} \\
- \int_{0}^{T} \int_{\Omega} \varrho u \cdot \nabla_{x} P'(R) \, dx \, dt - \int_{0}^{T} \int_{\Omega} (p(\varrho) - c^{2}) \text{div}_{x} U \, dx \, dt \\
- \int_{0}^{T} \int_{\Omega} \left(\nabla_{x} c \otimes \nabla_{x} c - \frac{1}{2} |\nabla_{x} c|^{2} \mathbb{I} \right) : \nabla_{x} U \, dx \, dt - \int_{0}^{T} \int_{\Omega} \nabla_{x} U : d\mathcal{R}(r) \, dt \\
+ \int_{0}^{T} \int_{\Omega} (\mu - u) \cdot \nabla_{x} c(\Delta_{x} \mathcal{C} - 2\mathcal{C}) \, dx \, dt + \int_{0}^{T} \int_{\Omega} (\mathcal{C} - \mathcal{C})(\Delta_{x} \mathcal{C} - 2\mathcal{C}) \, dx \, dt \\
+ c(\delta, R, \mathcal{C}, U) \int_{0}^{T} \mathcal{E} \left(\varrho, c, u \left| R, \mathcal{C}, U \right. \right) (t) \, dt.
\]

Now, notice that the continuity equation for \(R \) and \(U \) also implies that

\[
\partial_{t} P'(R) + U \cdot \nabla_{x} P'(R) + RP''(R)\text{div}_{x} U = 0, \tag{4.14}
\]

with \(RP''(R) = p'(R) \).

Using (4.14), we can handle the terms related to the elastic pressure \(P \):

\[
- \int_{0}^{T} \int_{\Omega} (U - u) \cdot \nabla_{x} p(R) \, dx \, dt - \int_{0}^{T} \int_{\Omega} p(\varrho) \text{div}_{x} U \, dx \, dt \\
- \int_{0}^{T} \int_{\Omega} \varrho u \cdot \nabla_{x} P'(R) \, dx \, dt + \int_{0}^{T} \int_{\Omega} (R - \varrho) \partial_{t} P'(R) \, dx \, dt \\
= \int_{0}^{T} \int_{\Omega} \text{div}_{x} U (p(R) - p(\varrho) - (R - \varrho)p'(R)) \, dx \, dt + \int_{0}^{T} \int_{\Omega} u \cdot \nabla_{x} p(R) \, dx \, dt \\
- \int_{0}^{T} \int_{\Omega} (R - \varrho)(u - U) \cdot \nabla_{x} P'(R) \, dx \, dt - \int_{0}^{T} \int_{\Omega} Ru \cdot \nabla_{x} P'(R) \, dx \, dt. \tag{4.15}
\]

For the first term from the right hand side of (4.15) we have the following bound:

\[
\left| \int_{0}^{T} \int_{\Omega} \text{div}_{x} U (p(R) - p(\varrho) - (R - \varrho)p'(R)) \, dx \, dt \right| \lesssim \int_{0}^{T} \mathcal{E} \left(\varrho, c, u \left| R, \mathcal{C}, U \right. \right) (t) \, dt, \tag{4.16}
\]

where we used the fact that:

\[
|p(R) - p'(R)(R - \varrho) - p(\varrho)| \lesssim |P(\varrho) - P'(R)(\varrho - R) - P(R)|. \tag{4.17}
\]
Returning to (4.13), we obtain:

\[
\left| \int_0^\tau \int_\Omega (R - \varrho)(\mathbf{U} - \mathbf{u}) \cdot \nabla_x P'(R) \, dx \, dt \right| \leq \int_0^\tau \int_\Omega |R - \varrho||\mathbf{U} - \mathbf{u}| \, dx \, dt
\]

\[
\leq \delta \int_0^\tau \int_\Omega (\mathcal{S}(\nabla_x \mathbf{u}) - \mathcal{S}(\nabla_x \mathbf{U})) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt + c(\delta, R, \mathbf{U}) \int_0^\tau \mathcal{E}(\varrho, \mathbf{u}, c|R, \mathbf{U}, \mathcal{C})(t) \, dt.
\]

(4.18)

Returning to (4.13), we obtain:

\[
\left[\mathcal{E}(\varrho, c, \mathbf{u} | R, \mathcal{C}, \mathbf{U}) \right]_{t=0}^{t=\tau} + \int_0^\tau \int_\Omega \left[(1 - 3\delta)\mathcal{S}(\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) + \mu^2 \right] \, dx \, dt
\]

\[
+ \int_\Omega \mathcal{E}(\tau) \, dx
\]

\[
\leq - \int_0^\tau \int_\Omega \mu(\Delta_x c - \mu - 2c) \, dx \, dt + \int_0^\tau \int_\Omega (\text{div}_x \mathbf{u} - \text{div}_x \mathbf{U})W(c) \, dx \, dt
\]

\[
+ \int_0^\tau \int_\Omega \frac{\varrho - R}{R}(\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathcal{C}_x \mathbf{c} \, dx \, dt + \int_0^\tau \int_\Omega (\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathcal{C}_x \mathbf{c} \, dx \, dt
\]

\[
+ \int_0^\tau \int_\Omega (\mathbf{U} - \mathbf{u}) \cdot \nabla_x \mathbf{c}^2 \, dx \, dt + \int_0^\tau \int_\Omega (\mathbf{U} - \mathbf{u}) \cdot \nabla_x W(\mathcal{C}) \, dx \, dt
\]

\[
+ \int_0^\tau \int_\Omega c^2 \text{div}_x \mathbf{U} \, dx \, dt - \int_0^\tau \int_\Omega \left(\nabla_x \mathcal{C}_x \otimes \nabla_x \mathbf{c} - \frac{1}{2}||\nabla_x \mathbf{c}||^2 \right) : \nabla_x \mathbf{U} \, dx \, dt
\]

\[
- \int_0^\tau \int_\Omega \nabla_x \mathbf{U} : d\mathfrak{S}(t) \, dt + \int_0^\tau \int_\Omega \mu(\Delta_x \mathcal{C}_x - 2\mathcal{C}_x) \, dx \, dt - \int_0^\tau \int_\Omega \mathbf{u} \cdot \nabla_x (\Delta_x \mathcal{C}_x - 2\mathcal{C}_x) \, dx \, dt
\]

\[
+ \int_0^\tau \int_\Omega (c - \mathcal{C}_x)(\Delta_x \mathcal{C}_x - 2\mathcal{C}_x) \, dx \, dt + c(\delta, R, \mathcal{C}, \mathbf{U}) \int_0^\tau \mathcal{E}(\varrho, c, \mathbf{u} | R, \mathcal{C}, \mathbf{U})(t) \, dt.
\]

(4.19)

We first remark that:

\[
\left| \int_0^\tau \int_\Omega (\text{div}_x \mathbf{u} - \text{div}_x \mathbf{U})W(c) \, dx \, dt \right|
\]

\[
= \left| \int_0^\tau \int_\Omega (\text{div}_x \mathbf{u} - \text{div}_x \mathbf{U})(W(c) - W(\mathcal{C})) \, dx \, dt \right|
\]

\[
\leq \delta \int_0^\tau \int_\Omega (\mathcal{S}(\nabla_x \mathbf{u}) - \mathcal{S}(\nabla_x \mathbf{U})) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt + c(\delta) \int_0^\tau \mathcal{E}(\varrho, \mathbf{u}, c|R, \mathbf{U}, \mathcal{C})(t) \, dt.
\]

(4.20)

Since \(R \) and \(\mathcal{C} \) are regular, we can also write:

\[
\left| \int_0^\tau \int_\Omega \frac{\varrho - R}{R}(\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathcal{C}_x \mathbf{c} \, dx \, dt \right| \leq \int_0^\tau \int_\Omega |\varrho - R||\mathbf{u} - \mathbf{U}| \, dx \, dt,
\]

(4.21)

and the right-hand side we estimate identically as in (4.7).
Using the equation for the concentration \mathcal{C}, we have:

$$
\int_0^T \int_\Omega (c - \mathcal{C})(\Delta_x \mathcal{C} - 2\mathcal{C}) \, dx \, dt
\quad = \quad \int_0^T \int_\Omega [\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})] \left[\Delta_x \mathcal{C} - 2\mathcal{C} - W'(\mathcal{C}) \right] \, dx \, dt
\tag{4.22}
\quad - \int_0^T \int_\Omega \Delta_x (c - \mathcal{C}) \mathbf{U} \cdot \nabla_x \mathcal{C} \, dx \, dt + 2 \int_0^T \int_\Omega (c - \mathcal{C}) \mathbf{U} \cdot \nabla_x \mathcal{C} \, dx \, dt.
$$

Gathering the following terms, we also obtain:

$$
\int_0^T \int_\Omega (\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt - \int_0^T \int_\Omega \left(\nabla_x c \otimes \nabla_x c - \frac{1}{2} |\nabla_x c|^2 \mathbb{I} \right) : \nabla_x \mathbf{U} \, dx \, dt
\quad - \int_0^T \int_\Omega \mathbf{u} \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt - \int_0^T \int_\Omega (\Delta_x c - \Delta_x \mathcal{C}) \mathbf{U} \cdot \nabla_x \mathcal{C} \, dx \, dt
\quad = \int_0^T \int_\Omega \mathbf{u} \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt + \int_0^T \int_\Omega \mathbf{U} \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt
\quad - \int_0^T \int_\Omega \mathbf{u} \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt - \int_0^T \int_\Omega \mathbf{U} \cdot \nabla_x \mathcal{C} \mathbf{A}_x \mathcal{C} \, dx \, dt
\quad = \int_0^T \int_\Omega \Delta_x \mathcal{C}(\nabla_x c - \nabla_x \mathcal{C}) \cdot (\mathbf{u} - \mathbf{U}) \, dx \, dt + \int_0^T \int_\Omega \mathbf{U} \cdot (\nabla_x \mathcal{C} - \nabla_x c)(\Delta_x \mathcal{C} - \Delta_x c) \, dx \, dt
\quad - \int_0^T \int_\Omega \nabla_x \mathbf{U} : \left[\nabla_x (c - \mathcal{C}) \otimes \nabla_x (c - \mathcal{C}) - \frac{1}{2} | \nabla_x (c - \mathcal{C}) |^2 \mathbb{I} \right] \, dx \, dt,
$$

terms that can be also bounded by:

$$
\delta \int_0^T \int_\Omega \left(\mathbb{S}(\nabla_x \mathbf{u}) - \mathbb{S}(\nabla_x \mathbf{U}) \right) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt + c(\delta, \mathbf{U}, \mathcal{C}) \int_0^T \mathcal{E}(\mathcal{Q}, \mathbf{u}, \mathbf{c}; R, \mathbf{U}, \mathcal{C})(t) \, dt.
$$

We also gather the following convective terms:

$$
\int_0^T \int_\Omega (\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathcal{C} c^2 \, dx \, dt + \int_0^T \int_\Omega c^2 \text{div}_x \mathbf{U} \, dx \, dt
\quad + 2 \int_0^T \int_\Omega \mathbf{u} \cdot \nabla_x \mathcal{C} c \, dx \, dt - 2 \int_0^T \int_\Omega (c - \mathcal{C}) \mathbf{U} \cdot \nabla_x \mathcal{C} \, dx \, dt
\quad = \int_0^T \int_\Omega \text{div}_x \mathbf{U} (c - \mathcal{C})^2 \, dx \, dt + 2 \int_0^T \int_\Omega (\mathbf{u} - \mathbf{U}) \cdot (\nabla_x c - \nabla_x \mathcal{C}) \, dx \, dt
\quad \leq \delta \int_0^T \int_\Omega \left(\mathbb{S}(\nabla_x \mathbf{u}) - \mathbb{S}(\nabla_x \mathbf{U}) \right) : (\nabla_x \mathbf{u} - \nabla_x \mathbf{U}) \, dx \, dt + c(\delta, \mathbf{U}, \mathcal{C}) \int_0^T \mathcal{E}(\mathcal{Q}, \mathbf{u}, \mathbf{c}; R, \mathbf{U}, \mathcal{C})(t) \, dt.
\tag{4.23}
$$

The remaining terms give, after elementary manipulations:

$$
- \int_0^T \int_\Omega \mu(\Delta_x c - \mu - 2\mathcal{C}) \, dx \, dt + \int_0^T \int_\Omega \mu(\Delta_x \mathcal{C} - 2\mathcal{C}) \, dx \, dt
\quad + \int_0^T \int_\Omega [\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})] \left[\Delta_x \mathcal{C} - 2\mathcal{C} - W'(\mathcal{C}) \right] \, dx \, dt
\quad = \int_0^T \int_\Omega \mu^2 \, dx \, dt - \int_0^T \int_\Omega [\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})] [\mu - \Delta_x \mathcal{C} - 2\mathcal{C} - W'(\mathcal{C})] \, dx \, dt
\quad = \int_0^T \int_\Omega \mu^2 \, dx \, dt - \int_0^T \int_\Omega |\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})|^2 \, dx \, dt.
Applying the Gronwall lemma, we finally obtain the desired conclusion.

\[-\int_0^\tau \int_\Omega [\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})] [W'(c) - W'(\mathcal{C})] \, dx \, dt, \]

(4.24)

where we can bound the last term in (4.24) by:

\[\left| \int_0^\tau \int_\Omega [\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})] [W'(c) - W'(\mathcal{C})] \, dx \, dt \right| \leq \frac{1}{2} \int_0^\tau \int_\Omega |\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})|^2 \, dx \, dt + \frac{9}{2} \int_0^\tau \int_\Omega (c - \mathcal{C})^2 \, dx \, dt, \]

(4.25)

where we have used the fact that \(|W'(c) - W'(\mathcal{C})| \leq |W''|_{\max} |c - \mathcal{C}| \) and \(|W''(c)| = \|F(c) - c^2\|^2 \leq 3\).

Gathering all these estimates in (4.19) and taking \(\delta\) small enough, we obtain:

\[\left[\mathcal{E}(\varrho, t, u, c | R, U, \mathcal{C}) \right]_{t=0}^{t=\tau} + \frac{1}{2} \int_0^\tau \int_\Omega \mathcal{S}(\nabla_x u - \nabla_x U) : (\nabla_x u - \nabla_x U) \, dx \, dt
+ \int_\Omega d\mathcal{E}(\tau) + \frac{1}{2} \int_0^\tau \int_\Omega |\Delta_x (c - \mathcal{C}) - 2(c - \mathcal{C})|^2 \, dx \, dt
\leq - \int_0^\tau \int_\Omega \nabla_x U : d\mathcal{R}(t) \, dt + c(\delta, R, \mathcal{C}, U) \int_0^\tau \mathcal{E}(\varrho, u, c | R, U, \mathcal{C})(t) \, dt. \]

Using the defect compatibility hypothesis (2.6) (see also Remark 2.2), we also have:

\[\left| \int_0^\tau \int_\Omega \nabla_x U : d\mathcal{R}(t) \, dx \, dt \right| \leq \Lambda \|\nabla_x U\|_{L^\infty((0,\tau) \times \Omega; \mathbb{R}^{N \times N})} \int_0^\tau \int_\Omega d\mathcal{E}(t) \, dt. \]

(4.27)

Using (4.27) with (4.26), the relative energy inequality reduces to:

\[\mathcal{E}(\varrho, u, c | R, U, \mathcal{C})(\tau) + \int_\Omega d\mathcal{E}(\tau) \leq \mathcal{E}(\varrho_0, u_0, c_0 | R(0, \cdot), U(0, \cdot), \mathcal{C}(0, \cdot))
+ c(\delta, R, \mathcal{C}, U) \int_0^\tau \left[\mathcal{E}(\varrho, u, c | R, U, \mathcal{C})(t) + \int_\Omega d\mathcal{E}(t) \right] \, dt. \]

(4.28)

Applying the Gronwall lemma, we finally obtain the desired conclusion. \(\square \)

5 Convergence of a Numerical Approximation

In this section we propose a combined discontinuous Galerkin (DG)—finite element (FE) method for the approximation of the Navier–Stokes–Allen–Cahn system (1.1). Specifically, for the Navier–Stokes part, we adopt the method studied by Karper [17] as well as Feireisl and Lukačová [10]. For the Allen–Cahn part, we take a discontinuous Galerkin approximation. The main purpose is to analyze the convergence of DG-FE method using the theoretical study built in the previous sections. For the sake of simplicity, we restrict ourselves to the space periodic boundary conditions, meaning \(\Omega = \mathbb{T}^d\).

Moreover, we strengthen the hypothesis (1.3) concerning the structural properties of the pressure. Here and hereafter we suppose that
p \in C[0, \infty) \cap C^2(0, \infty), \ p(0) = 0, \ p'(\varrho) > 0 \text{ for } \varrho > 0;
the pressure potential \(P \) determined by \(P'(\varrho)\varrho - P(\varrho) = p(\varrho) \) satisfies \(P(0) = 0 \), and \(P - a_p, \ P - a_p \) are convex functions for certain constants \(a > 0 \), \(\bar{a} > 0 \).

\begin{equation}
P(\varrho) \geq a\varrho^\gamma \text{ for some } a > 0 \text{ and all } \varrho \geq 1. \tag{5.1}
\end{equation}

As shown in [1, Section 2.1.1], hypothesis (5.1) implies that there exists \(\gamma > 1 \) such that

\begin{equation}
P(\varrho) \geq a\varrho^\gamma \text{ for some } a > 0 \text{ and all } \varrho \geq 1. \tag{5.2}
\end{equation}

5.1 Notations

We begin by introducing the notations. We write \(A \lesssim B \) if \(A \leq cB \) for a generic positive constant \(c \) independent of discretization parameters \(\Delta t \) and \(h \). We denote the norms \(\| \cdot \|_{L^q(\Omega)} \) and \(\| \cdot \|_{L^p L^q} \) by \(\| \cdot \|_{L^q} \) and \(\| \cdot \|_{L^p L^q} \) respectively. Moreover, we denote \(\text{co}\{A, B\} = [\min\{A, B\}, \max\{A, B\}] \).

Mesh Let \(T = T_h \) be a regular and quasi-uniform triangulation of \(\Omega \equiv \{[-1, 1]|[-1,1])^d \) in the sense of Ciarlet [4], where \(h \) is the mesh size defined below. Moreover, let \(T \) be periodic in the sense of Definition 5.1. We use the following notations:

- We denote by \(K \) a generic element such that \(\Omega = \bigcup_{K \in \mathcal{T}} K \). For any element \(K \) we denote by \(|K| \) its volume and by \(h_K \) its diameter. Further, we define \(h = \max_{K \in \mathcal{T}} h_K \) as the size of the mesh.

- We denote by \(\mathcal{E} \) the set of all faces, \(\mathcal{E}(K) \) the set of faces of an element \(K \in \mathcal{T} \). By \(|\sigma| \) we denote the volume of the face \(\sigma \in \mathcal{E} \). Note that each \(\sigma \in \mathcal{E} \) is an interior edge due to the periodicity assumption, i.e., there exist two different elements \(K \in \mathcal{T} \) and \(L \in \mathcal{T} \) such that \(\sigma = \mathcal{E}(K) \cap \mathcal{E}(L) \) for all \(\sigma \in \mathcal{E} \), which we often denote by \(\sigma = K \cap L \).

- For each face \(\sigma \in \mathcal{E} \), we denote by \(n \) its outer normal vector. If furthermore \(\sigma \in \mathcal{E}(K) \) (resp. \(\sigma \in \mathcal{E}(L) \)) we write it as \(n_K \) (resp. \(n_L \)).

Periodic boundary conditions frequently appear in mathematical physical problems. Their numerical realization is often more complicated than that of Dirichlet or Neumann type boundary conditions. We realize the periodicity by the following definition.

Definition 5.1 (Periodic mesh) Let \(T \) be a triangulation of \(\Omega \subset \mathbb{R}^d \). Let \(P^L_i \) (resp. \(P^R_i \)), \(i = 1, \ldots, d \), be the set of vertices that forms the edges on the left (resp. right) boundary of \(\Omega \) in the \(i \)-th direction of the Cartesian coordinates. We say \(T \) is periodic mesh if the following conditions are satisfied:

1. For any vertex \(P \in P^L_i \), there exists a dual vertex \(P^* \in P^R_i \) such that \(x_{P^*} - x_P = \ell_i e_i \), where \(e_i \) is the \(i \)-th basis vector of the Cartesian coordinates and \(\ell_i \) is the length of the domain \(\Omega \) in the \(i \)-th direction.
2. For all \(i = 1, \ldots, d \), the vertices \(P \in P^L_i \) and their duals \(P^* \in P^R_i \) are treated as the same degree of freedom.

For a piecewise (elementwise) continuous function \(v \) we define

\[v^{\text{out}}(x) = \lim_{\delta \to 0^+} v(x + \delta n), \quad v^{\text{in}}(x) = \lim_{\delta \to 0^+} v(x - \delta n), \]

\[\|v\|(x) = \frac{v^{\text{in}}(x) + v^{\text{out}}(x)}{2}, \quad [v](x) = v^{\text{out}}(x) - v^{\text{in}}(x) \]
whenever \(x \in \sigma \in \mathcal{E} \). Note that our jump operator has an opposite sign with respect to the classical discontinuous Galerkin setting \([6]\).

Function spaces Let \(\mathcal{P}_d(K) \) be the space of polynomials of degree not greater than \(\ell \) on \(K \) for \(d \)-dimensional vector-valued functions. We introduce the following function spaces:

\[
Q_h = \left\{ v \in L^1(\Omega) | v_K \in \mathcal{P}_d(K) \forall K \in \mathcal{T} \right\},
\]
\[
V_h = \left\{ v \in L^2(\Omega) | v_K \in \mathcal{P}_d(K) \forall K \in \mathcal{T}; \int_{\sigma} [v] \ dS_x = 0 \forall \sigma \in \mathcal{E} \right\},
\]
\[
X_h = \left\{ v \in L^2(\Omega) | v_K \in \mathcal{P}_d(K) \forall K \in \mathcal{T} \right\},
\]

associated with the following projection operators

\[
\Pi_h^Q : L^1(\Omega) \rightarrow Q_h, \quad \Pi_h^V : W^{1,2}(\Omega) \rightarrow V_h, \quad \Pi_h^X : W^{2,2}(\Omega) \rightarrow X_h.
\]

Moreover, we introduce the space

\[
W_h := \left\{ v \in X_h \left| \int_{\Omega} v \ dx = 0 \right. \right\}
\]

along with the projection operator \(\Pi_h^W \) constructed by Kay et al. \([18]\), enjoying the following properties, see \([18, \text{Section 2, formula (2.20)})\]

\[
\|\Pi_h^W v - v\|_{L^2(\Omega)} \leq h\|\Pi_h^W v - v\| \quad \text{and} \quad \|\Pi_h^W v - v\| \lesssim h^{1-\beta}\|v\|_{W^{2,2}(\Omega)} \tag{5.3}
\]

for any \(v \in W^{2,2}(\Omega) \). Here we have introduced the broken norm

\[
\|v\|^2 = \sum_{K \in \mathcal{T}} \int_K |\nabla_h v|^2 \ dx + h \sum_{\sigma \in \mathcal{E}} \int_{\sigma} ([\nabla_h v])^2 \ dS_x + \frac{1}{h^{1+\beta}} \sum_{\sigma \in \mathcal{E}} \int_{\sigma} \|v\|^2 \ dS_x, \quad \text{with} \ \beta > 0.
\]

Note that the operator \(\Pi_h^Q \) can be explicitly written as

\[
\Pi_h^Q \phi = \sum_{K \in \mathcal{T}} \frac{1}{|K|} \int_K \phi \ dx, \quad 1_K = \begin{cases} 1 & \text{if} \ x \in K, \\ 0 & \text{otherwise.} \end{cases}
\]

We shall frequently use the notation \(\hat{\phi} = \Pi_h^Q \phi \). Hereafter, for any \(K \in \mathcal{T} \) we denote:

\[
\nabla_h v|_K = \nabla x v|_K, \quad \text{div}_h u|_K = \text{div}_x u|_K
\]

for any \(v \in V_h \cup X_h, \ u \in V_h \).

Further, we introduce the bilinear form

\[
B(v, w) = \int_{\Omega} \nabla_h v \cdot \nabla_h w \ dx
\]
\[
+ \sum_{\sigma \in \mathcal{E}} \int_{\sigma} \left(\|w\| \ n \cdot ([\nabla_h v]) + [v] \ n \cdot ([\nabla_h w]) + \frac{C_B}{h^{1+\beta}} \|v\| \|w\| \right) \ dS_x,
\]

where \(C_B > 0 \) is big enough in order to ensure the coercivity. It is easy to check that

\[
B(v, v - w) = \frac{1}{2}\|v\|^2_B - \frac{1}{2}\|w\|^2_B + \frac{1}{2}\|v - w\|^2_B, \tag{5.4}
\]
where \(\| \cdot \|_B \geq 0 \) is a norm on \(W_h \) (seminorm on \(X_h \)) given by
\[
\| v \|_B^2 := B(v, v) = \sum_{K \in T} |\nabla h v|^2 \, dx + 2 \sum_{\sigma \in \mathcal{E}} \int_{\sigma} [v] \cdot [\nabla h v] \, dS_x + \frac{C_B}{h^{1+\beta}} \sum_{\sigma \in \mathcal{E}} \int_{\sigma} [v]^2 \, dS_x.
\]

Observe that the seminorms \(\| \cdot \|_B \) and \(\| \cdot \|_2 \) are equivalent on \(X_h \) with a constant independent of \(h \). Consequently, by means of the Riesz representation theorem, there exists a unique \(\Delta_h v \in W_h \) such that
\[
- \int_{\Omega} \Delta_h v \, w \, dx = B(v, w) \quad \text{for any } w \in W_h.
\]

Here we may replace the test function space \(W_h \) by \(X_h = W_h \oplus \text{span}\{1\} \) and \(w \equiv 1 \) satisfies (5.6).

Lemma 5.2 (Closed graph lemma) Suppose that \(v_h(t) \in X_h \) for a.a. \(t \in (0, T) \),
\[
\sup_{t \in (0, T)} \| v_h \|_B \lesssim 1,
\]
and \(v_h \to v \) weakly in \(L^2(0, T; L^2(\Omega)) \), \(\Delta_h v_h \to \Delta_x v \) weakly in \(L^2(0, T; L^2(\Omega)) \).

Then
\[
\Delta_x v = \Delta_x v \text{ in } \mathcal{D}'((0, T) \times \Omega).
\]

Proof Our goal is to show
\[
- \int_{0}^{T} \int_{\Omega} \Delta_x v w \, dx \, dt = - \int_{0}^{T} \left(\lim_{h \to 0} \Delta_h v_h w \, dx \right) \, dt = - \int_{0}^{T} \int_{\Omega} v \Delta_x w \, dx \, dt
\]
for any \(w \in L^2(0, T; W^{2,2}(\Omega)) \). Without loss of generality, we may assume \(\int_{\Omega} w \, dx = 0 \) for a.a. \(t \).

We have
\[
- \int_{0}^{T} \int_{\Omega} \Delta_h v_h w \, dx \, dt = - \int_{0}^{T} \int_{\Omega} \Delta_h v_h (w - \Pi_h^W w) \, dx \, dt - \int_{0}^{T} \int_{\Omega} \Delta_h v_h \Pi_h^W w \, dx \, dt,
\]
where, by virtue of (5.3),
\[
\int_{0}^{T} \int_{\Omega} \Delta_h v_h (w - \Pi_h^W w) \, dx \, dt \to 0 \text{ as } h \to 0.
\]

Next, in accordance with (5.6),
\[
- \int_{\Omega} \Delta_h v_h \Pi_h^W w \, dx = B(v_h, \Pi_h^W w) = B(v_h, \Pi_h^W w - w) + B(v_h, w),
\]
where, by direct manipulation,
\[
B(v_h, w) = - \int_{\Omega} v_h \Delta_x w \, dx \text{ and, in particular, } \int_{0}^{T} B(v_h, w) \, dt \to - \int_{0}^{T} \int_{\Omega} v \Delta_x w \, dx \text{ as } h \to 0.
\]

Thus it is enough to show that
\[
\int_{0}^{T} B(v_h, \Pi_h^W w - w) \, dt \to 0 \text{ as } h \to 0.
\]
It follows from the Cauchy–Schwarz inequality that
\[|B(v_h, \Pi_h^W w - w)| \lesssim \|v_h\| \|\Pi_h^W w - w\|. \]
As \(v_h \in X_h\), we have
\[\|v_h\| \lesssim \|v_h\|_B \]
and the desired conclusion follows from (5.3).

\[\square \]

Lemma 5.3 (Compactness Lemma)

Suppose that \(v_h(t) \in X_h\) for a.a. \(t \in (0, T)\),
\(v_h(t) \to v\) (strongly) in \(L^2(0, T; L^2(\Omega))\), \(\Delta_h v_h(t) \to \Delta_x v\) weakly in \(L^2(0, T; L^2(\Omega))\),
and
\[\nabla_h v_h \to \nabla_x v \text{ weakly in } L^2(0, T; L^2(\Omega; \mathbb{R}^d)). \]

Then
\[\nabla_h v_h \to \nabla_x v \text{ (strongly) in } L^2(0, T; L^2(\Omega; \mathbb{R}^d)). \]

Proof In view of the weak lower semi–continuity and convexity of the \(L^2\)-norm, it is enough to show
\[
\limsup_{h \to 0} \int_0^T \int_\Omega |\nabla_h v_h|^2 \, dx \, dt \leq \int_0^T \int_\Omega |\nabla_x v|^2 \, dx \, dt.
\]
To see this, we write
\[
\int_\Omega |\nabla_h v_h|^2 \, dx = -\int_\Omega \Delta_h v_h v_h \, dx - \sum_{\sigma \in E} \int_\sigma \left(2 [v_h] \cdot [\nabla_h v_h] + \frac{C_B}{h^{1+\beta}} [v_h]^2 \right) \, dS_x.
\]
On one hand, thanks to our hypotheses,
\[
-\int_0^T \int_\Omega \Delta_h v_h v_h \, dx \, dt \to -\int_0^T \int_\Omega \Delta_x v v \, dx \, dt = \int_0^T \int_\Omega |\nabla_x v|^2 \, dx \, dt.
\]
On the other hand,
\[
\left| \sum_{\sigma \in E} \int_\sigma 2 [v_h] \cdot [\nabla_h v_h] \, dS_x \right| \leq \sum_{\sigma \in E} \int_\sigma \frac{C_B}{h^{1+\beta}} [v_h]^2 \, dS_x + ch^\beta \int_\Omega |\nabla_h v_h|^2 \, dx.
\]
As \(\beta > 0\), we get the desired conclusion.

\[\square \]

Diffusive upwind flux Given the velocity field \(v \in V_h\), the upwind flux for any function \(r \in Q_h\) is specified at each face \(\sigma \in E\) by
\[
\text{Up}[r, v]_{\sigma} = r_{\text{up}}^v v_{\sigma} \cdot n = r_{\text{in}}^v [v_{\sigma} \cdot n]_{\sigma} + r_{\text{out}}^v [v_{\sigma} \cdot n]_{\sigma} = \langle [r] v_{\sigma} \cdot n - \frac{1}{2} |v_{\sigma} \cdot n| [r] \rangle,
\]
where
\[
v_{\sigma} = \frac{1}{|\sigma|} \int_{\sigma} v \, dS_x, \quad [f]_{\sigma} = \frac{f_+ - f_-}{2} \quad \text{and} \quad r_{\text{up}}^v = \begin{cases} r_{\text{in}} & \text{if } v_{\sigma} \cdot n \geq 0, \\ r_{\text{out}} & \text{if } v_{\sigma} \cdot n < 0. \end{cases}
\]
Furthermore, we consider a diffusive numerical flux function of the following form

\[
F^{\text{up}}_{\varepsilon}(r, v) = U_p[r, v] - h^\varepsilon [r], \quad \varepsilon > 0.
\] (5.7)

When \(r \) is a vector function, e.g. \(r = \rho u \) in the momentum equation, we write the above numerical flux as

\[
F^{\text{up}}_{\varepsilon}(\rho u, v) = (F^{\text{up}}_{\varepsilon}(\rho u_1, v), \ldots , F^{\text{up}}_{\varepsilon}(\rho u_d, v))^T \quad \text{and} \quad U_p(\rho u, v) = (U_p(\rho u_1, v), \ldots , U_p(\rho u_d, v))^T.
\]

Time discretization For a given time step \(\Delta t \approx h > 0 \), we denote the approximation of a function \(v_h \) at time \(t^k = k \Delta t \) by \(v_h^k \) for \(k = 1, \ldots , N_T (= T / \Delta t) \). Then, we introduce the piecewise constant extension of discrete values,

\[
v_h(t) = \sum_{k=1}^{N_T} v_h^k 1_{I^k} \quad \text{with} \quad I^k = ((k - 1) \Delta t, k \Delta t].
\] (5.8)

Furthermore, we approximate the time derivative by the backward Euler method

\[
D_t v_h(t) = \frac{v_h(t) - v_h(t - \Delta t)}{\Delta t} \quad \forall t \in (0, T], \text{i.e.,} \quad D_t v_h^k = \frac{v_h^k - v_h^{k-1}}{\Delta t} \quad \text{for all} \quad k = 1, \ldots , N_T.
\]

Useful estimates We recall some basic inequalities used in the numerical analysis. First, thanks to Taylor’s theorem, it is obvious for \(\phi, \phi \in C^2(\Omega) \) that

\[
\begin{align*}
\|\phi - \Pi_h^0 \phi\|_{L^p} \lesssim & h^s \|\phi\|_{C^s}, \quad \|\phi - \Pi_h^v \phi\|_{L^p} \lesssim h^s \|\phi\|_{C^s}, \quad 1 < p \leq \infty, \quad \text{for} \quad s = 1, 2,
\end{align*}
\] (5.9)

Next, we report a discrete analogue of the Poincaré–Sobolev type inequality (see [9, Theorem 17] for a similar result):

Lemma 5.4 (Sobolev inequality) Let \(r \geq 0 \) be a function defined on \(\Omega \subset \mathbb{R}^d \) such that

\[
0 < c_M \leq \int_\Omega r \, dx, \quad \text{and} \quad \int_\Omega r^\gamma \, dx \leq c_E \quad \text{for} \gamma > 1,
\]

where \(c_M \) and \(c_E \) are some positive constants. Then the following Poincaré–Sobolev type inequality holds true

\[
\|v_h\|^2_{L^q(\Omega)} \lesssim c \|\nabla_h v_h\|^2_{L^2(\Omega)} + c \int_\Omega r |\Pi_a v_h|^2 \, dx
\] (5.10)

for any \(v_h \in V_h \cup X_h \), and \(1 \leq q \leq 6 \) for \(d = 3, 1 \leq q < \infty \) for \(d = 2 \), where the constant \(c \) depends on \(c_M \) and \(c_E \) but not on the mesh parameter and \(\Pi_a \in \{1, \Pi_h^0\} \). In particular, setting \(r = 1 \) yields

\[
\|v_h\|^2_{L^2(\Omega)} \lesssim \|\nabla_h v_h\|^2_{L^2(\Omega)} + \|v_h\|^2_{L^2(\Omega)}.
\] (5.11)

The following lemma shall be useful in the analysis of the energy stability.

Lemma 5.5 For any \(\varrho_h \in Q_h \) and \(u_h \in V_h \) it holds

\[
\sum_{\sigma \in E} \int_{\sigma} \left(F^{\text{up}}_{\varepsilon}(\varrho_h \tilde{u}_h, u_h) \cdot [\tilde{u}_h] - F^{\text{up}}_{\varepsilon}(\varrho_h, u_h) \left[\frac{1}{2} \tilde{u}_h^2 \right] \right) \, dS_x
\]

\[
= - \frac{1}{2} \sum_{\sigma \in E} \int_{\sigma} \tilde{e}_h^{\text{up}} [\tilde{u}_h^2] |u_\sigma \cdot n| \, dS_x - h^\varepsilon \sum_{\sigma \in E} \int_{\sigma} [\varrho_h] [\tilde{u}_h]^2 \, dS_x,
\]

where we have denoted \(u_\sigma = \frac{1}{|\sigma|} \int_{\sigma} u_h \, dS_x \).
The proof is analogous to [9, Lemma 8.1]. For completeness, we have included the proof in Appendix A.1.

5.2 A Mixed Discontinuous Galerkin-Finite Element Method

Now we are ready to introduce a combined discontinuous Galerkin (DG)—finite element (FE) method for the approximation of Navier–Stokes–Allen–Cahn system (1.1)–(1.2) with the periodic boundary conditions (1.5a).

Definition 5.6 (DG-FE method) Let \((\varrho_h^0, u_h^0, c_h^0) = (\Pi_h^0 \varrho_0, \Pi_h^0 u_0, \Pi_h^0 c_0)\) be the initial data. We say that \((\varrho_h, u_h, c_h) = \sum_{k=1}^{N_T} (\varrho_h^k, u_h^k, c_h^k) 1_{t^k}\) is a DG-FE approximation of the Navier–Stokes–Allen–Cahn system (1.1)–(1.5a) if the triple \((\varrho_h^k, u_h^k, c_h^k) \in Q_h \times V_h \times X_h\) satisfies the following system of algebraic equations with spatially periodic boundary conditions for all \(k = 1, \ldots, N_T\):

\[
\begin{align*}
\int_{\Omega} D_t \varrho_h^k \phi_h \, dx - \sum_{\sigma \in \mathcal{E}} \int_{\sigma} F_{x}^\text{up}(\varrho_h^k, u_h^k) [\phi_h] \, dS_x & = 0, \quad \text{for all } \phi_h \in Q_h; \quad (5.13a) \\
\int_{\Omega} D_t (\varrho_h^k \hat{u}_h^k) \cdot \phi_h \, dx - \sum_{\sigma \in \mathcal{E}} \int_{\sigma} F_{x}^\text{up}(\varrho_h^k \hat{u}_h^k, u_h^k) \cdot [\hat{\phi}_h] \, dS_x + \nu \int_{\Omega} \nabla_h u_h^k : \nabla_h \phi_h \, dx & + \eta \int_{\Omega} \text{div}_h u_h^k \text{div}_h \phi_h \, dx = \int_{\Omega} p_h^k \text{div}_h \phi_h \, dx \\
& + \int_{\Omega} (f_h^k - \Delta_h c_h^k) \nabla_h c_h^k \cdot \phi_h \, dx, \quad \text{for all } \phi_h \in V_h; \quad (5.13b) \\
\int_{\Omega} (D_t c_h^k + u_h^k \cdot \nabla_h c_h^k) \psi_h \, dx & = \int_{\Omega} (\Delta_h c_h^k - f_h^k) \psi_h \, dx, \quad \text{for all } \psi_h \in X_h; \quad (5.13c)
\end{align*}
\]

where \(\Delta_h c_h^k \in W_h\) is defined according to (5.6),

\[
- \int_{\Omega} \Delta_h c_h^k \psi_h \, dx = B(c_h^k, \psi_h) \quad \text{for all } \psi_h \in W_h. \quad (5.13d)
\]

Here, \(p_h^k = p(\rho_h^k), \eta = \frac{d-2}{d} \nu + \lambda > 0\) and

\[
f_h^k = \begin{cases}
2(c_h^k + 1) & \text{if } c_h^k \in (-\infty, -1), \\
(c_h^k)^3 - c_h^k & \text{if } c_h^k \in [-1, 1], \\
2(c_h^k - 1) & \text{if } c_h^k \in (1, \infty).
\end{cases} \quad (5.14)
\]

Remark 5.7 Note that \(f_h^k\) is an approximation of \(f \equiv F'(c)\) at time \(t^k\). The idea in defining \(f_h\) is that we split the convex and concave parts of \(F(c_h)\) respectively approximate them implicitly and explicitly in time. Such kind of splitting shall be helpful in deriving the energy stability, see the proof of Theorem 5.10 below.

5.3 Stability

In this section we show the stability of the DG-FE method, including the positivity of density, conservation of mass and the energy stability.
5.3.1 Basic Properties of the DG-FE Scheme

Before stating the stability result, let us show some fundamental properties of the DG-FE scheme (5.13).

Conservation of mass Setting $\phi_h = 1$ in the discrete continuity equation (5.13a) we get

$$\int_{\Omega} D_t \hat{\phi}_h^k \, dx = 0,$$

which implies for all $k = 1, 2, \ldots, N_T$ that

$$\int_{\Omega} \hat{\phi}_h^k \, dx = \int_{\Omega} \hat{\phi}_h^{k-1} \, dx = \cdots = \int_{\Omega} \hat{\phi}_h^0 \, dx = \int_{\Omega} \Phi_0 \, dx = \int_{\Omega} \phi_0 \, dx.$$

Internal energy balance We recall the discrete internal energy balance from [8, Section 4.1] or [16, Lemma 3.1]. Indeed, testing the scheme for the density (5.13a) by $\phi_h = P'(\hat{\phi}_h^k)$ gives rise to the following lemma.

Lemma 5.8 (Discrete internal energy balance) Let $(\hat{\phi}_h^k, \hat{u}_h^k) \in Qh \times Vh$ satisfy the discrete continuity equation (5.13a) for any $k \in \{1, \ldots, N_T\}$. Then, there exist $\xi \in \text{co}\{\hat{\phi}_h^{k-1}, \hat{\phi}_h^k\}$ and $\zeta \in \text{co}\{\hat{\phi}_h^K, \hat{\phi}_h^L\}$ for any $\sigma = K | L \in E$ such that

$$\int_{\Omega} D_t P(\hat{\phi}_h^k) \, dx + \int_{\Omega} p(\hat{\phi}_h^k) \text{div} h \hat{u}_h^k \, dx = -\frac{\Delta t}{2} \int_{\Omega} P''(\xi) |D_t \hat{\phi}_h^k|^2 \, dx - \sum_{\sigma \in E} \int_{\sigma} P''(\zeta) \left[\frac{\hat{\phi}_h^k}{h^k} \right]^2 \left(h^k + \frac{1}{2} |\hat{u}_h^k \cdot \mathbf{n}| \right) \, dS \leq 0.$$ (5.15)

Lemma 5.9 (Existence of a solution and positivity of density) Given $\phi_0 > 0$. For every $k = 1, \ldots, N_T$ there exists a solution $(\hat{\phi}_h^k, \hat{u}_h^k, \hat{c}_h^k) \in Qh \times Vh \times Xh$ to the DG-FE scheme (5.13). Moreover, any solution to (5.13) preserves the positivity of the density, i.e. $\phi_h^k > 0$ for any $k = 1, \ldots, N_T$.

The proof can be done analogously as [9, Lemma 11.3]. For completeness, we give the proof in Appendix A.2.

5.3.2 Energy Estimates

Now, we are ready to derive the discrete counterpart of the total energy balance (1.6).

Theorem 5.10 (Discrete energy balance) Let (ϕ_h, u_h, c_h) be a solution of the DG-FE method (5.13). Then we have the following energy estimate

$$D_t \int_{\Omega} \left(\frac{1}{2} \phi_h u_h^T u_h^k + P(\phi_h^k) \right) \, dx + D_t \left(\int_{\Omega} F(c_h^k) \, dx + \frac{1}{2} ||c_h^k||_B^2 \right) + \nu ||\nabla h u_h^k||_{L^2}^2 + \eta ||\text{div} h u_h^k||_{L^2}^2 + ||D_t c_h^k + u_h^T \nabla c_h^k||_{L^2}^2 = -D_{\text{num}}^k,$$ (5.16)
where \(D_{num}^k \geq 0 \) is the numerical dissipation

\[
D_{num}^k = \frac{\Delta t}{2} \int_{\Omega} \partial_h^{k-1} |D_t \hat{u}_h^k|^2 \, dx + \frac{1}{2} \sum_{\sigma \in E} \int_{\sigma} (\partial_h^k)^{up} \left| u_h^k \cdot n \right| \left| \left[\hat{u}_h^k \right] \right|^2 \, dS_x \\
+ h^2 \sum_{\sigma \in E} \int_{\sigma} \left\{ \left[\partial_h^k \right] \right\} \left[\left[\hat{u}_h^k \right] \right]^2 \, dS_x \\
+ \frac{\Delta t}{2} \int_{\Omega} P''(\xi)|D_t \hat{u}_h^k|^2 \, dx + \sum_{\sigma \in E} \int_{\sigma} P''(\xi) \left(\hat{u}_h^k \right)^2 \left(h^2 + \frac{1}{2} |u_h^k \cdot n| \right) \, dS_x \\
+ \frac{\Delta t}{2} \left\| D_t c_h^k \right\|_{L^2}^2 + \int_{\Omega} \frac{\Delta t}{2} \left(1 + 1 |c_h^k| + 3 (c_h^k) \left(|c_h^k| \right) 1 |c_h^k| \leq 1 \right) \left| D_t c_h^k \right|^2 \, dx.
\]

(5.17)

where \(\xi \in \text{co}(\partial_h^k, \partial_L^k) \) for any \(\sigma = K \in E, \xi \in \text{co}(\partial_h^{k-1}, \partial_h^k) \) and \(c_h^k \in \text{co}(c_h^{k-1}, c_h^k) \).

Proof First, setting \(\phi_h = u_h^k \in V_h \) in (5.13b) we get

\[
\int_{\Omega} D_t (\partial_h^k \hat{u}_h^k) \cdot u_h^k \, dx + v \| \nabla_h u_h^k \|_{L^2}^2 + \eta \| \text{div}_h u_h^k \|_{L^2}^2 = \sum_{\sigma \in E} \int_{\sigma} F_{\sigma}^{up} (\partial_h^k, u_h^k) \left[\left[\hat{u}_h^k \right] \right] \, dS_x + \int_{\Omega} p_h^k \text{div}_h u_h^k \, dx + \int_{\Omega} (f_h^k - \Delta_h c_h^k) \nabla_h c_h^k \cdot u_h^k \, dx.
\]

(5.18)

Next, letting \(\phi_h = \frac{1}{2} \left| \hat{u}_h^k \right|^2 \in Q_h \) in (5.13a) we find

\[
\int_{\Omega} D_t \partial_h^k \frac{1}{2} \left| \hat{u}_h^k \right|^2 \, dx = \sum_{\sigma \in E} \int_{\sigma} F_{\sigma}^{up} (\partial_h^k, u_h^k) \left[\left[\frac{1}{2} \left| \hat{u}_h^k \right|^2 \right] \right] \, dS_x.
\]

(5.19)

Subtracting (5.19) from (5.18) we derive

\[
D_t \int_{\Omega} \frac{1}{2} \partial_h^k \left| \hat{u}_h^k \right|^2 \, dx + v \| \nabla_h u_h^k \|_{L^2}^2 + \eta \| \text{div}_h u_h^k \|_{L^2}^2 = - \frac{\Delta t}{2} \int_{\Omega} \partial_h^{k-1} \left| D_t \hat{u}_h^k \right|^2 \, dx - \frac{1}{2} \sum_{\sigma \in E} \int_{\sigma} (\partial_h^{k, up}) \left| \left[\hat{u}_h^k \right] \right|^2 \, u_h^k \cdot n \, dS_x \\
- h^2 \sum_{\sigma \in E} \int_{\sigma} \left[\left[\partial_h^k \right] \right] \left[\left[\hat{u}_h^k \right] \right]^2 \, dS_x + \int_{\Omega} p_h^k \text{div}_h u_h^k \, dx + \int_{\Omega} (f_h^k - \Delta_h c_h^k) \nabla_h c_h^k \cdot u_h^k \, dx.
\]

(5.20)

where we have used (5.12) and the following identity

\[
\int_{\Omega} \left(D_t (\partial_h \hat{u}_h^k)^k - D_t \partial_h \frac{1}{2} \left| \hat{u}_h^k \right|^2 \right) \, dx = \int_{\Omega} \left(D_t \left(\frac{1}{2} \partial_h^k \left| \hat{u}_h^k \right|^2 \right) + \frac{\Delta t}{2} \partial_h^{k-1} \left| D_t \hat{u}_h^k \right|^2 \right) \, dx.
\]
Further, by setting $\psi_h = D_t c_h^k + u_h^k \cdot \nabla_h c_h^k \in X_h$ in (5.13c) we get

$$\int_\Omega \left| D_t c_h^k + u_h^k \cdot \nabla_h c_h^k \right|^2 \, dx = \int_\Omega (\Delta_h c_h^k - f_h^k)(D_t c_h^k + u_h^k \cdot \nabla_h c_h^k) \, dx$$

$$= \int_\Omega (\Delta_h c_h^k - f_h^k)u_h^k \cdot \nabla_h c_h^k \, dx - B(c_h^k, D_t c_h^k) - \int_\Omega f_h^k D_t c_h^k \, dx$$

$$= \int_\Omega (\Delta_h c_h^k - f_h^k)u_h^k \cdot \nabla_h c_h^k \, dx - \frac{1}{2} D_t \| c_h^k \|_B^2 - \frac{\Delta t}{2} \| D_t c_h^k \|_B^2$$

$$- \int_\Omega \left(D_t F(c_h^k) + \frac{\Delta t}{2} \left(1 + 1 + 3(c_h^{k,*})^2 \right) |c_h^k|_1 \right) \left| D_t c_h^k \right|^2 \, dx,$$

where we have used (5.4) and the following two applications of Taylor's theorem

$$2 \left(c_h^k + 1 \right) D_t c_h^k = D_t (c_h^k + 1)^2 + \Delta t (D_t c_h^k)^2 = D_t F(c_h^k) + \Delta t (D_t c_h^k)^2,$$

for $\| c_h^k \|_1 \geq 1$.

$$(c_h^{k,-1})^3 - c_h^{k,-1} D_t c_h^k = \frac{1}{4} D_t (c_h^{k,-1})^4 + \frac{\Delta t}{2} 3(c_h^{k,*})^2 \left| D_t c_h^k \right|^2 = \frac{1}{2} D_t (c_h^{k,-1})^2 + \frac{\Delta t}{2} \left| D_t c_h^k \right|^2$$

$$= D_t F(c_h^{k,-1}) + \frac{\Delta t}{2} (3(c_h^{k,*})^2 + 1)(D_t c_h^k)^2, \quad \text{for } |c_h^k| \leq 1.$$

Here $c_h^{k,*} \in \text{co}\{c_h^{k,-1}, c_h^k\}$ is a Taylor remainder term.

Finally, combining (5.20) and (5.21) together with (5.15), we complete the proof, i.e.,

$$D_t \int_\Omega \left(\frac{1}{2} \varphi_h \mathbf{u}_h^k \right)^2 + P(\varphi_h^k) \, dx + D_t \left(\int_\Omega F(c_h^k) \, dx + \frac{1}{2} \| c_h^k \|_B^2 \right)$$

$$+ \| \nabla_h u_h^k \|_{L^2}^2 + \eta \| \div_h u_h^k \|_{L^2}^2 + \| D_t c_h^k + u_h^k \cdot \nabla_h c_h^k \|_{L^2}^2$$

$$= -\frac{\Delta t}{2} \int_\Omega \varphi_h^{k-1} |D_t u_h^k|^2 \, dx - \frac{1}{2} \sum_{\sigma \in E} \int_{\sigma} \left(\varphi_h^k \right)_{\text{up}} \left| u_h^k \cdot n \right| \left| \mathbf{u}_h^k \right|^2 \, dS_\sigma$$

$$- h^\varepsilon \sum_{\sigma \in E} \int_{\sigma} \left\{ \left(\varphi_h^k \right) \right\} \left| \mathbf{u}_h^k \right|^2 \, dS_\sigma$$

$$- \frac{\Delta t}{2} \int_\Omega P''(\xi) |D_t \varphi_h^k|^2 \, dx - \sum_{\sigma \in E} \int_{\sigma} P''(\xi) \left[\varphi_h^k \right]^2 \left(h^\varepsilon + \frac{1}{2} |u_h^k \cdot n| \right) \, dS_\sigma$$

$$- \frac{\Delta t}{2} \| D_t c_h^k \|_{B}^2 - \int_\Omega \left(1 + \frac{1}{2} |c_h^{k,*}|_1 \right) \Delta t \left| D_t c_h^k \right|^2 \, dx$$

$$= -D_{\text{num}}.$$

Uniform bounds From the energy estimates we derive the following uniform bounds.

Lemma 5.11 Let (φ_h, u_h, c_h) be a solution to the scheme (5.13) for $\gamma > 1$.

Then, the following estimates hold:

$$\| \varphi_h \mathbf{u}_h \|_{L^{\infty,L^1}} \lesssim 1, \quad \| \varphi_h \|_{L^{\infty,L^\gamma}} \lesssim 1, \quad \| \varphi_h \mathbf{u}_h \|_{L^{\infty,L^\gamma}} \lesssim 1, \quad \| \varphi_h \mathbf{u}_h \|_{L^{\infty,L^\gamma}} \lesssim 1,$$

$$\| \nabla_h u_h \|_{L^2,L^2} \lesssim 1, \quad \| \div_h u_h \|_{L^2,L^2} \lesssim 1, \quad \| u_h \|_{L^2,L^\gamma} \lesssim 1,$$

$$\sup_{t \in (0,T)} \| c_h(t) \|_B \lesssim 1, \quad \| f_h \|_{L^{\infty,L^2}} \lesssim \| c_h \|_{L^{\infty,L^2}} \lesssim \| F(c_h) \|_{L^{\infty,L^2}} \lesssim 1,$$
\[
\|c_h\|_{L^\infty L^p} \lesssim \sup_{t \in (0,T)} \|c_h\|_B + \|c_h\|_{L^\infty L^2} \lesssim 1, \quad \|D_t c_h + u_h \cdot \nabla c_h\|_{L^2} \lesssim 1, \quad (5.22d)
\]
\[
\|\Delta_h c_h\|_{L^2} \lesssim 1, \quad \|D_t c_h\|_{L^2 L^{3/2}} \lesssim 1. \quad (5.22e)
\]

where \(|\cdot|\) and \(|\cdot|_B\) are defined in (5.5), \(p \in [1, \infty)\) if \(d = 2\) or \(p \in [1, 6]\) if \(d = 3\).

Proof Applying the Sobolev–Poincaré inequality Lemma 5.4 to the energy estimates stated in Theorem 5.10 we directly obtain the estimates (5.22a)–(5.22d). We are left with the proof of (5.22e). First, we set \(\psi = \Delta_h c_h^k\) in (5.13c) to get
\[
\|\Delta_h c_h^k\|^2_{L^2} = \int (D_t c_h^k + u_h \cdot \nabla c_h^k) \Delta_h c_h^k \, dx + \int f_h^k \Delta_h c_h^k \, dx \\
\leq \|D_t c_h^k + u_h \cdot \nabla c_h^k\|_{L^2}^2 + \frac{1}{4}\|\Delta_h c_h^k\|_{L^2}^2 + \|f_h\|_{L^2}^2 + \frac{1}{4}\|\Delta_h c_h^k\|_{L^2}^2.
\]

Then we observe the first estimate of (5.22e) after recalling the bounds \(\|D_t c_h + u_h \cdot \nabla c_h\|_{L^2} \lesssim 1\) and \(\|f_h\|_{L^\infty L^2} \lesssim 1\).

Next, due to the uniform bound \(\|u_h \cdot \nabla c_h\|_{L^2 L^{3/2}} \lesssim \|u_h\|_{L^2 L^p} \|\nabla c_h\|_{L^\infty L^2} \lesssim 1\) and the second estimate of (5.22d) we deduce the second estimate of (5.22e), which completes the proof. \(\square\)

5.4 Consistency

The next step towards the convergence of the approximate solutions is the consistency of the numerical scheme. In particular, we require the numerical solution to satisfy the weak formulation of the continuous problem up to residual terms vanishing for \(h \to 0\).

Theorem 5.12 Let \((q_h, u_h, c_h)\) be a solution of the approximate problem (5.13) on the time interval \([0, T]\) with \(\Delta t \approx h\), \(\gamma > 4d/(1 + 3d)\) and the artificial diffusion coefficient \(\varepsilon\) satisfies
\[
\varepsilon > 0 \text{ if } \gamma \geq 2 \quad \text{and} \quad \varepsilon \in (0, 2\gamma - 1 - d/3) \text{ if } \gamma \in (4d/(1 + 3d), 2). \quad (5.23)
\]

Then
\[
- \int_\Omega q_h^0 \phi(0, \cdot) \, dx = \int_0^T \int_\Omega \left[q_h \partial_t \phi + q_h u_h \cdot \nabla \phi \right] \, dx dt + \int_0^T e_{1,h}(t, \phi) dt, \quad (5.24a)
\]
for any \(\phi \in C^2([0, T] \times \Omega)\) with \(\|e_{1,h}(\cdot, \phi)\|_{L^\infty(0,T)} \lesssim h^\alpha\) for some \(\alpha > 0\);
\[
- \int_\Omega q_h^0 \widehat{u}_h^0 \cdot \phi(0, \cdot) \, dx = \int_0^T \int_\Omega \left[q_h \partial_t \phi + q_h \widehat{u}_h - \frac{1}{2} \partial_t \phi \right] \, dx dt + \int_0^T e_{2,h}(t, \phi) dt
\]
\[
+ \int_0^T \int_\Omega (f_h - \Delta_h c_h) \nabla c_h \cdot \phi \, dx dt + \int_0^T \int_\Omega \left[q_h \partial_t \phi + q_h \widehat{u}_h \cdot \nabla \phi \right] \, dx dt
\]
\[
\quad \text{for any } \phi \in C^2([0, T] \times \Omega; \mathbb{R}^d) \text{ with } \|e_{2,h}(\cdot, \phi)\|_{L^1(0,T)} \lesssim h^\alpha \text{ for some } \alpha > 0;
\]
\[
- \int_\Omega q_h^0 \psi(0, \cdot) \, dx = \int_0^T \int_\Omega \left[c_h \partial_t \psi - u_h \cdot \nabla c_h \psi + (\Delta_h c_h - f_h) \psi \right] \, dx dt + \int_0^T e_{3,h}(t, \psi) dt,
\]
\(\quad \text{for any } \psi \in H^1(\Omega) \text{ and } \|e_{3,h}(\cdot, \psi)\|_{L^2(0,T)} \lesssim h^\alpha \text{ for some } \alpha > 0.\)
for any $\psi \in C^1_c([0, T) \times \Omega)$ with $\|e_{3,h}(\cdot, \psi)\|_{L^1(0, T)} \lesssim h^\alpha$ for some $\alpha > 0$.

Proof Step 1: Proof of (5.24a). Recalling the first estimate of [9, Theorem 13.2] we have (5.24a).

Step 2: Proof of (5.24b). Recalling the second estimate of [9, Theorem 13.2], we know that there exists a positive constant α such that

\[
\int_0^T \int_\Omega D_t(Q_h \hat{u}_h) \cdot \phi_h \, dx \, dt - \int_0^T \sum_{\sigma \in \mathcal{E}} \int_{c \sigma} F^\text{up}(Q_h \hat{u}_h, u_h) \cdot \left[\frac{\phi_h}{h} \right] \, dS_x \, dt
\]

\[
+ \nu \int_0^T \int_\Omega \nabla_h u_h : \nabla_h \phi \, dx \, dt + \eta \int_0^T \int_\Omega \nabla_h u_h \nabla_h \phi \, dx \, dt - \int_0^T \int_\Omega p_h \nabla_h \phi_h \, dx \, dt
\]

\[
= - \int_\Omega Q_h^0 \hat{u}_h^0 \cdot \phi(0, \cdot) \, dx - \int_0^T \int_\Omega \left[Q_h \hat{u}_h \cdot \partial_t \phi + Q_h \hat{u}_h \otimes u_h : \nabla_x \phi + p_h \nabla_x \phi \right] \, dx \, dt,
\]

\[
+ \nu \int_0^T \int_\Omega \nabla_h u_h \nabla_x \phi \, dx \, dt + \eta \int_0^T \int_\Omega \nabla_h u_h \nabla_x \phi \, dx \, dt + ch^\alpha
\]

(5.25)

for any $\phi \in C^2_c([0, T) \times \Omega; \mathbb{R}^d)$ with $\phi_h = \Pi_h^\phi \phi$, where ϵ depends on $\|\phi\|_{C^2}$ and on the initial energy of the problem. Comparing the left-hand side of (5.25) with the momentum method (5.13b) we are left to treat the consistency of $\int_0^T \int_\Omega (f_h - \Delta_h c_h) \nabla_h c_h \cdot \phi_h \, dx \, dt$, which reads

\[
\int_0^T \int_\Omega (f_h - \Delta_h c_h) \nabla_h c_h \cdot (\phi_h - \phi) \, dx \, dt \lesssim h^2 \|f_h - \Delta_h c_h\|_{L^2 L^2} \|\nabla_h c_h\|_{L^2 L^2} \|\phi\|_{C^2} \lesssim h^2.
\]

(5.26)

where we have used (5.9), the uniform bounds (5.22c), and the first estimate in (5.22e). Obviously, combining (5.25) and (5.26) proves (5.24b), i.e.

\[
- \int_\Omega Q_h^0 \hat{u}_h^0 \cdot \phi(0, \cdot) \, dx = \int_0^T \int_\Omega \left[Q_h \hat{u}_h \cdot \partial_t \phi + Q_h \hat{u}_h \otimes u_h : \nabla_x \phi + p_h \nabla_x \phi \right] \, dx \, dt,
\]

\[
- \nu \int_0^T \int_\Omega \nabla_h u_h : \nabla_x \phi \, dx \, dt - \eta \int_0^T \int_\Omega \nabla_h u_h \nabla_x \phi \, dx \, dt
\]

\[
+ \int_0^T \int_\Omega (f_h - \Delta_h c_h) \nabla_h c_h \cdot \phi \, dx + ch^\alpha
\]

for some $\alpha > 0$, where the positive constant c depends on $\|\phi\|_{C^2}$ and the initial energy of the problem.

Step 3: Proof of (5.24c). Let $\psi_h = \Pi_h^X \psi$ be the test function in (5.13c) for $\psi \in C^1_c([0, T) \times \Omega)$. Thanks to Hölder’s inequality and the uniform bounds (5.22c)–(5.22e) we first calculate

\[
\left| \int_0^T \int_\Omega ((D_t c_h + u_h \cdot \nabla_h c_h) - \Delta_h c_h + f_h) (\psi_h - \psi) \, dx \, dt \right|
\]

\[
\leq \|(D_t c_h + u_h \cdot \nabla_h c_h) - \Delta_h c_h + f_h\|_{L^2 L^2}\|\psi_h - \psi\|_{L^2 L^2}
\]

\[
\lesssim h \left(\|D_t c_h + u_h \cdot \nabla_h c_h\|_{L^2 L^2} + \|\Delta_h c_h\|_{L^2 L^2} + \|f_h\|_{L^\infty L^2} \right) \|\psi\|_{C^1} \lesssim h.
\]

(5.27)
Next, we rewrite the term $\int_0^T \int_\Omega D_t c_h \psi \, dx \, dt$ as

$$
\int_0^T \int_\Omega D_t c_h \psi \, dx \, dt = \int_0^T \int_\Omega D_t c_h (\psi - \psi^{k-1}) \, dx \, dt + \int_0^T \int_\Omega D_t c_h \psi^{k-1} \, dx \, dt =: I_1 + I_2.
$$

(5.28)

For the term I_1 we have by Taylor’s theorem and the estimate (5.22e) that

$$
|I_1| \leq \| D_t c_h \|_{L^2 \Delta t} \Delta t \| \psi \|_{C^1} \lesssim \Delta t.
$$

Further, we treat the term I_2 in the following way

$$
I_2 = \int_0^T \int_\Omega D_t c_h \psi^{k-1} \, dx \, dt = \sum_{k=1}^{N_T} \Delta t \int_\Omega D_t c_h \psi^{k-1} \, dx = \sum_{k=1}^{N_T} \int_\Omega (c_h^k - c_h^{k-1}) \psi^{k-1} \, dx
$$

$$
= - \sum_{k=1}^{N_T} \int_\Omega c_h^k (\psi^k - \psi^{k-1}) \, dx + \int_\Omega c_h^k \psi_{\text{NT}} \psi_{\text{NT}} \, dx - \int_\Omega c_h^0 \psi^0 \, dx
$$

$$
= - \int_\Omega c_h \partial_t \psi \, dx \, dt - \int_\Omega c_h^0 \psi^0 \, dx.
$$

Substituting the above relation together with the estimate of the term I_1 into (5.28) implies

$$
\left| \int_0^T \int_\Omega D_t c_h \psi \, dx \, dt + \int_0^T \int_\Omega c_h \partial_t \psi \, dx \, dt + \int_\Omega c_h^0 \psi^0 \, dx \right| \lesssim \Delta t \approx h. \quad (5.29)
$$

Finally, combining (5.27) with (5.29) yields

$$
\int_0^T \int_\Omega -c_h \partial_t \psi - c_h^0 \psi^0 + (u_h \cdot \nabla_h c_h - \Delta_h c_h + f_h) \psi \, dx \, dt \lesssim h,
$$

which proves (5.24c), and completes the proof of Theorem 5.12.

\[\square \]

5.5 Convergence

In this subsection, we prove the final result, that is the convergence of the numerical solutions resulting from the DG–FE method.

Theorem 5.13 Let (ϱ_h, u_h, c_h) be a solution of the DG–FE method (5.13), with $\Delta t \approx h, \gamma > 3/2$ for $d = 3$ and $\gamma > 8/7$ for $d = 2$, the artificial diffusion coefficient ε satisfies (5.23), and the initial data satisfying

$$
\varrho_0 \in L^\gamma (\Omega), \quad \varrho_0 > 0, \quad u_0 \in L^2 (\Omega; \mathbb{R}^d), \quad c_0 \in H^{1,2} (\Omega).
$$

1. Then, for a suitable subsequence,

$$
\varrho_h \rightharpoonup \varrho \text{ weakly-(*) in } L^\infty (0, T; L^\gamma (\Omega)),
$$

$$
u_h \rightharpoonup u \text{ weakly in } L^2 ((0, T) \times \Omega; \mathbb{R}^d),
$$

$$
c_h \rightharpoonup c \text{ weakly-(*) in } L^\infty (0, T; L^2 (\Omega)),
$$

where (ϱ, u, c) is a dissipative weak solution of the Navier–Stokes–Allen–Cahn system (1.1)–(1.2) in the sense of Definition 2.1.
2. In addition, suppose that the Navier–Stokes–Allen–Cahn system (1.1)–(1.2) with the initial data \((\varrho_0, u_0, c_0)\) admits a strong solution in the class \((4.1)\). Then the limit in (5.30) is unconditional (no need of a subsequence) and the limit quantity \((\varrho, u, c)\) coincides with the strong solution.

Proof From the energy estimates (5.16) (see also Lemma 5.11) and the Closed Graph Lemma 5.2 we deduce that at least for suitable subsequences,

\[
\varrho_h \to \varrho \text{ weakly-}(*) \text{ in } L^\infty(0, T; L^Y(\Omega)), \quad \varrho \geq 0,
\]

\[
u_h, \hat{\nu}_h \to u \text{ weakly in } L^2((0, T) \times \Omega; \mathbb{R}^d),
\]

\[
\nabla h u_h \to \nabla_x u \text{ weakly in } L^2((0, T) \times \Omega; \mathbb{R}^{d \times d}), \quad \text{where } u \in L^2(0, T; W^{1,2}(\Omega; \mathbb{R}^d)),
\]

\[
\varrho_h u_h, \varrho_h \hat{u}_h \to m \text{ weakly-}(*) \text{ in } L^\infty(0, T; L^\frac{2\nu}{\nu+1}(\Omega; \mathbb{R}^d)).
\]

\(c_h \to c\) weakly-(*) in \(L^\infty(0, T; L^2(\Omega))\),

\[
\nabla h c_h \to \nabla_x c \text{ weakly-}(*) \text{ in } L^\infty(0, T; L^2(\Omega; \mathbb{R}^d)),
\]

\[
\Delta h c_h \to \Delta_x c \text{ weakly in } L^2((0, T) \times \Omega), \quad \text{where } c \in L^\infty(0, T; W^{1,2}(\Omega)) \cap L^2(0, T; W^{2,2}(\Omega)),
\]

\[
f_h \to f(c) = F'(c) \text{ weakly-}(*) \text{ in } L^\infty(0, T; L^2(\Omega)).
\]

Moreover, by virtue of the same arguments as in [17, Lemma 7.1] (see also [19, Section 8]), we have \(m = \varrho u\), and

\[
\varrho_h \hat{u}_h \otimes u_h \to \varrho u \otimes u \text{ weakly in } L^1((0, T) \times \Omega; \mathbb{R}^{d \times d}).
\]

Similarly, combining the estimates on the discrete time derivative \(D_t c_h\) (5.22e) with (5.31) we obtain

\[
c_h \to c \text{ in } L^2((0, T) \times \Omega).
\]

Further, employing the compactness Lemma 5.3 we find

\[
\nabla h c_h \to \nabla_x c \text{ in } L^2((0, T) \times \Omega; \mathbb{R}^d).
\]

Finally, it follows from the energy estimates (5.16) and hypothesis (5.1) that

\[
P(\varrho_h) \to \overline{P(\varrho)} \text{ weakly-}(*) \text{ in } L^\infty(0, T; \mathcal{M}^+\gamma(\Omega)),
\]

\[
p(\varrho_h) \to \overline{p(\varrho)} \text{ weakly-}(*) \text{ in } L^\infty(0, T; \mathcal{M}^+\gamma(\Omega)),
\]

where

\[
0 \leq (\overline{p(\varrho)} - p(\varrho))^\| \equiv \mathfrak{R} \lesssim \mathfrak{C} \equiv \overline{P(\varrho)} - P(\varrho),
\]

see [1, Section 3.4] for details.

Passing to the limit for \(h \to 0\) in the consistency formulation (5.24a)–(5.24c) and the energy inequality (5.16) we deduce that \((\varrho, u, c)\) is a dissipative weak solution in the sense of Definition 2.1 and thus, by virtue of the weak–strong uniqueness we can conclude that the limit coincides with the strong solution, provided it exists. \(\square\)

Acknowledgements This work was supported by the mobility Project 8J20FR007 Barrande 2020 of collaboration between France and Czech Republic. The grantor in the Czech Republic is the Ministry of Education, Youth and Sports.

Availability of data and materials The datasets supporting the conclusions of this article are included within the article and its additional files.
A Appendix A

A.1 Useful Equality for the Diffusive Upwind Flux

Here we prove Lemma 5.5.

Proof First, recalling the discrete operators defined in Sect. 5.1 we obtain by direct calculation that

\[
\sum_{\sigma \in \mathcal{E}} \int_{\sigma} \left(U p(\varrho, \mathbf{u}_h) \cdot [\mathbf{u}_h] - U p(\varrho, \mathbf{u}_h) \left[\frac{1}{2} |\mathbf{u}_h|^2 \right] \right) dS_x = \sum_{\sigma \in \mathcal{E}} \int_{\sigma} U p(\varrho, \mathbf{u}_h) \cdot [\mathbf{u}_h] - \frac{1}{2} \left[|\mathbf{u}_h|^2 \right] u_{\sigma} \cdot n dS_x \\
= \sum_{\sigma \in \mathcal{E}} \int_{\sigma} U p(\varrho, \mathbf{u}_h) \cdot [\mathbf{u}_h] - \frac{1}{2} \left[|\mathbf{u}_h|^2 \right] u_{\sigma} \cdot n dS_x \\
+ \sum_{\sigma \in \mathcal{E}} \int_{\sigma} U p(\varrho, \mathbf{u}_h) \cdot [\mathbf{u}_h] - \frac{1}{2} \left[|\mathbf{u}_h|^2 \right] u_{\sigma} \cdot n dS_x \\
= \frac{1}{2} \sum_{\sigma \in \mathcal{E}} \int_{\sigma} U p(\varrho, \mathbf{u}_h) \cdot [\mathbf{u}_h] - \frac{1}{2} \left[|\mathbf{u}_h|^2 \right] u_{\sigma} \cdot n dS_x.
\]

Next, it is easy to get

\[
-h^e \sum_{\sigma \in \mathcal{E}} \int_{\sigma} \varrho_h [\mathbf{u}_h] \cdot [\mathbf{u}_h] dS_x + h^e \sum_{\sigma \in \mathcal{E}} \int_{\sigma} \varrho_h \cdot \left[\frac{1}{2} |\mathbf{u}_h|^2 \right] dS_x = -h^e \sum_{\sigma \in \mathcal{E}} \int_{\sigma} \varrho_h \cdot |\mathbf{u}_h|^2 dS_x.
\]

Summing the two identities above we finish the proof of Lemma 5.5. □

A.2 Existence of a Numerical Solution

Here we prove Lemma 5.9, that is the existence of a solution and positivity of density for the numerical method (5.13). We shall show the proof via a topological degree theory, which was reported in Gallouët et al. [13].

Theorem A.1 ([13, Theorem A.1] Topological degree theory.) Let M and N be two positive integers. Let $C_1 > \varepsilon > 0$ and $C_2 > 0$ be real numbers. Let

\[
V = \{ (r, U) \in R^M \times R^N: r_i > 0 \forall i = 1, \ldots, M \},
\]

\[
W = \{ (r, U) \in R^M \times R^N: |U| \leq C_2 \text{ and } \varepsilon < r_i < C_1 \forall i = 1, \ldots, M \}.
\]

Let F be a continuous function mapping $V \times [0, 1]$ to $R^M \times R^N$ and satisfying:

1. $f \in W$ if $f \in V$ satisfies $F(\varrho, f, \xi) = 0$ for all $\xi \in [0, 1]$;
2. The equation $F(f, 0) = 0$ is a linear system with respect to f and admits a solution in W.
Then there exists an \(f \in W \) such that \(F(f, 1) = 0 \).

Now we are ready to prove Lemma 5.9.

Proof of Lemma 5.9 The idea of the proof is to construct a mapping \(F \) that satisfies Theorem A.1. We begin with the definition of the spaces \(V \) and \(W \)

\[
V = \left\{ (\varrho_h^k, U_h^k) \in \mathcal{Q}_h \times \varOmega_h, \varrho_h^k > 0 \right\},
\]

\[
W = \left\{ (\varrho_h^k, U_h^k) \in \mathcal{Q}_h \times \varOmega_h, \| U_h^k \| \leq C_2, \epsilon < \varrho_h^k < C_1 \right\},
\]

where \(U_h := (\mathbf{u}_h, c_h) \in \mathbf{V} \times \varOmega_h =: \varOmega_h, \varrho_h > c \) means \(\varrho_K > c \) for all \(K \in \mathcal{T} \), and the norm \(\| U_h \| \) is given by \(\| U_h \| \equiv \| \mathbf{u}_h \|_{L^2} + \| c_h \|_{L^2} \). Obviously, the dimensions of the spaces \(\mathcal{Q}_h \) and \(\varOmega_h \) are finite.

Next, for \(\zeta \in (0, 1] \) and \(U^* = (\mathbf{u}^*, c^*, \mu^*) \) we define the following mapping

\[
F: V \times (0, 1] \rightarrow \mathcal{Q}_h \times \varOmega_h, \quad (\varrho_h^k, U_h^k, \zeta) \rightarrow (\varrho^*, U^*) = F(\varrho_h^k, U_h^k, \zeta),
\]

where \((\varrho^*, U^*) \) is defined by:

\[
\int_{\varOmega} \varrho^* \varphi_h \, dx = \int_{\varOmega} \varrho_h^k \varphi_h \, dx - \zeta \sum_{\sigma \in E} \int_{\varOmega} F_{\text{up}}(\varrho_h^k, U_h^k) \left[\varphi_h \right] dS_x, \tag{A.1a}
\]

\[
\int_{\varOmega} \mathbf{u}^* \cdot \varphi_h \, dx = \int_{\varOmega} \varrho_h^k \mathbf{u}_h^k \varphi_h \, dx - \zeta \sum_{\sigma \in E} \int_{\varOmega} F_{\text{up}}(\varrho_h^k, U_h^k) \left[\varphi_h \right] \cdot \mathbf{u}_h^k dS_x,
\]

\[
+ \nu \int_{\varOmega} \nabla_h \mathbf{u}_h^k : \nabla_h \varphi_h \, dx + \zeta \eta \int_{\varOmega} \nabla_h \varphi_h \cdot \mathbf{u}_h^k \, dx - \zeta \int_{\varOmega} \left(\varrho_h^k \right) \nabla_h \varphi_h \, dx
\]

\[
- \zeta \int_{\varOmega} \left(\frac{\varrho_h^k}{\Delta t} - \Delta_h c_h^k \right) \nabla_h c_h^k \cdot \varphi_h \, dx, \tag{A.1b}
\]

\[
\int_{\varOmega} c^* \psi_h \, dx = \int_{\varOmega} \varrho_h^k \psi_h \, dx + \zeta \int_{\varOmega} \mathbf{u}_h^k \cdot \nabla_h c_h^k \psi_h \, dx - \int_{\varOmega} \left(\Delta_h c_h^k \right) \psi_h \, dx - \zeta f_h^k \psi_h \, dx, \tag{A.1c}
\]

for any \(\varphi_h \in \mathcal{Q}_h \) and \(\varphi_h \times \psi_h \in \varOmega_h \), where \(\varphi_h = (\varphi_{1,h}, \ldots, \varphi_{d,h}) \), and the discrete Laplace operator is defined by the following equality

\[
- \int_{\varOmega} \Delta_h c_h \psi_h \, dx = (1 - \zeta) \int_{\varOmega} c_h \psi_h \, dx + B(c_h, \psi_h).
\]

It is obvious that \(F \) is well defined and continuous since the values of \(\varrho^* \) and \(U^* = (\mathbf{u}^*, c^*) \) can be determined by setting \(\varphi_{h,i} = 1 \), \(K \in \mathcal{T} \) in (A.1a), \(\varphi_{j,h,i} = 1 \), \(\sigma \in E \) with \(\varphi_{j,h,i} = 0 \) for \(j \neq i \), \(i, j \in (1, \ldots, d) \) in (A.1b), and \(\psi_{h,i} = 1 \), \(P \) being a degree of freedom of the space \(X_h \) in (A.1c), respectively.

With the above definitions, we aim to show that both hypotheses of Theorem A.1 hold.

We first aim to prove that Hypothesis 1 of Theorem A.1 holds. To this end, we suppose \((\varrho_h^k, U_h^k) \in \mathcal{Q}_h \times \varOmega_h \) is a solution to \(F(\varrho_h^k, U_h^k, \zeta) = 0 \) for any \(\zeta \in (0, 1] \). Then the system (A.1) becomes

\[
\int_{\varOmega} \varrho_h^k \frac{\varrho_h^k - \varrho_h^{k-1}}{\Delta t} \varphi_h \, dx - \zeta \sum_{\sigma \in E} \int_{\varOmega} F_{\text{up}}(\varrho_h^k, U_h^k) \left[\varphi_h \right] dS_x = 0, \tag{A.2a}
\]
\[
\int_\Omega \left(\frac{\partial_h^k u_h^k - \partial_h^{k-1} u_h^{k-1}}{\Delta t} \right) \cdot \phi_h \, dx + v \int_\Omega \nabla_h u_h^k : \nabla_h \phi_h \, dx + \zeta \eta \int_\Omega \text{div}_h u_h^k \text{div}_h \phi_h \, dx \\
- \zeta \sum_{\sigma \in \mathcal{E}} \int_{\sigma} F_{e}^{\text{up}}(\partial_h^k u_h^k, u_h^k) \cdot [\phi_h] \, ds - \zeta \int_\Omega p(\partial_h^k) \text{div}_h \phi_h \, dx \\
- \zeta \int_\Omega (\zeta f_h^k - \Delta_h \epsilon_h^k) \nabla_h \epsilon_h^k \cdot \phi_h \, dx = 0,
\]
(A.2b)

Thus \(\| \epsilon_h^k \|_{L^1} = \| \epsilon_h^k \|_{L^6} \) and noticing \(\| \epsilon_h^k \|_{L^6} \leq C_2 \),

(A.4)

Further, following the proof of the energy stability (5.16) we know that

\[
D_I \int_\Omega \left(\frac{1}{2} \partial_h \| u_h^k \|^2 + \frac{1}{2} \| \epsilon_h^k \|^2_B + \zeta \epsilon(F(\epsilon_h^k) + \frac{1}{2} (1 - \zeta) \| \epsilon_h^k \|^2 + P(\partial_h^k)) \right) \, dx + \nu \| \nabla_h u_h^k \|_{L^2} \leq 0.
\]

Then we may apply the discrete Sobolev’s inequality stated in Lemma 5.4 to derive

\[
\| U_h^k \| \equiv \| u_h^k \|_{L^6} \leq C_2,
\]

(A.4)

where \(C_2 \) depends on the initial data of the problem.

Next, let \(K \in T \) be such that \(\partial_h^k = \min_{L \in T} \partial_h^k |L| \). Now setting \(\phi_h = 1_K \) and noticing \(\left[\epsilon_h^k \right]_{\sigma \in \mathcal{E}(K)} \geq 0 \) we find

\[
\frac{|K| (\partial_h^k - \partial_h^{k-1})}{\Delta t \zeta} = - \sum_{\sigma \in \mathcal{E}(K)} \int_{\sigma} F_{e}^{\text{up}}(\partial_h^k, u_h^k) \, ds = - \sum_{\sigma \in \mathcal{E}(K)} |\sigma| \left(\epsilon_h^{k, \text{up}} u_h^k \cdot n - h^k \left[\epsilon_h^k \right] \right) \\
\geq - \sum_{\sigma \in \mathcal{E}(K)} |\sigma| \epsilon_h^k u_h^k \cdot n + \sum_{\sigma \in \mathcal{E}(K)} |\sigma| (\partial_h^k - \partial_h^{k, \text{up}}) u_h^k \cdot n \\
= - |K| \epsilon_h^k (\text{div}_h u_h^k)_K - \sum_{\sigma \in \mathcal{E}(K)} |\sigma| \left[\epsilon_h^k \right] (u_h^k \cdot n)^- \geq - |K| \epsilon_h^k (\text{div}_h u_h^k)_K \\
\geq - |K| \epsilon_h^k \left| \text{div}_h u_h^k \right|_K.
\]

Thus \(\epsilon_h^k \geq \epsilon_h^k \geq \frac{\partial_h^{k-1}}{1 + \Delta t |(\text{div}_h u_h^k)_K|} > 0 \). Consequently, by virtue of (A.4) \(\epsilon_h^k > \epsilon \), where \(\epsilon \) depends only on the data of the problem. Further, we get from (A.3) that \(\epsilon_h^k \leq \frac{M_0}{\min_{K \in T} |K|} \), which indicates the existence of \(C_1 > 0 \) such that \(\epsilon_h^k < C_1 \). Therefore, Hypothesis 1 of Theorem A.1 is satisfied.

We also need to show that Hypothesis 2 of Theorem A.1 is satisfied. Let \(\zeta = 0 \) then the system \(\mathcal{F}(\partial_h^k, U_h^k, 0) = 0 \) reads

\[
\partial_h^k = \partial_h^{k-1}, \quad (A.5a)
\]

\[
\int_\Omega \frac{\partial_h^k u_h^k - \partial_h^{k-1} u_h^{k-1}}{\Delta t} \cdot \phi_h \, dx + v \int_\Omega \nabla_h u_h^k : \nabla_h \phi_h \, dx = 0.
\]

(A.5b)
\begin{align}
\int_{\Omega} \frac{c_h^k - c_h^{k-1}}{\Delta t} \psi_h \, dx &= \int_{\Omega} \Delta h c_h^k \psi_h \, dx = -\int_{\Omega} \left(c_h^k \psi_h + \nabla h c_h^k \cdot \nabla h \psi_h \right) \, dx \\
&- \sum_{\sigma \in \mathcal{C}} \int_{\sigma} \left([\psi_h] \cdot \left\{ \nabla h c_h^k \right\} + \left\{ c_h^k \right\} \cdot \left\{ \nabla h \psi_h \right\} + \frac{C_B}{h^{1+\beta}} \left\{ c_h^k \right\} \left\{ \psi_h \right\} \right) \, dS_x. \tag{A.5c}
\end{align}

From (A.5a) it is obvious \(\varrho_h^k = \varrho_h^{k-1} > 0 \). Substituting (A.5a) into (A.5b) we arrive at a linear system for \(u_h^k \) with a symmetric positive definite matrix. Thus (A.5b) admits a unique solution. Further, by noticing (A.5c) is a linear system of \(c_h^k \) with a positive definite matrix, we know that it admits a unique solution \(c_h^k \).

Consequently, Hypothesis 2 of Theorem A.1 is satisfied.

We have shown that both hypotheses of Theorem A.1 hold. Applying Theorem A.1 finishes the proof of Lemma 5.9. \qed

References

1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Discret. Contin. Dyn. Syst. A 41(1), 1–28 (2021)
2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)
3. Blesgen, T.: A generalization of the Navier–Stokes equations to two-phase flow. J. Phys. D Appl. Phys. 32, 1119–1123 (1999)
4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia (2002)
5. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)
6. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications. Springer, Heidelberg (2012)
7. Feireisl, E., Jin, B., Novotný, A.: Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)
8. Feireisl, E., Karper, T., Novotný, A.: A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36(4), 1477–1535 (2016)
9. Feireisl, E., Lukáčová-Medviďová, M., Mizerařová, H., She, B.: Numerical Analysis of Compressible Fluid Flows. Springer. https://doi.org/10.1007/978-3-030-73788-7 (to appear)
10. Feireisl, E., Lukáčová-Medviďová, M.: Convergence of a mixed finite element-discontinuous Galerkin scheme for the isentropic Navier–Stokes system via dissipative measure-valued solutions. Found. Comput. Math. 18(3), 703–730 (2018)
11. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhauser, Basel (2009)
12. Feireisl, E., Petcu, M., Pražák, D.: Relative energy approach to a diffuse interface model of a compressible two-phase flow. Math. Methods Appl. Sci. 42(5), 1465–1479 (2019)
13. Gallouët, T., Malteze, D., Novotný, A.: Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations. Numer. Math. 141(2), 495–567 (2019)
14. Germain, P.: Weak–strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)
15. Giorgini, A., Temam, R.: Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. J. Math. Pures Appl. 144, 194–249 (2020)
16. Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)
17. Karper, T.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)
18. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)
19. Kwon, Y.-S., Novotný, A.: Consistency, convergence and error estimates for a mixed finite element-finite volume scheme to compressible Navier–Stokes equations with general inflow/outflow boundary data. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/dra093 (2020)
20. Masmoudi, N.: Incompressible inviscid limit of the compressible Navier–Stokes system. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 18, 199–224 (2001)
21. Saint-Raymond, L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 26, 705–744 (2009)
22. Sprung, B.: Upper and lower bounds for the Bregman divergence. J. Inequal. Appl. 2019(4), 12 (2019)
23. Williams, S.A.: Analyticity of the boundary for Lipschitz domains without Pompeiu property. Indiana Univ. Math. J. 30(3), 357–369 (1981)
24. Witterstein, G.: A phase field model for stem cell differentiation. AIP Conf. Proc. 971, 69 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.