This article will discuss listeria infections in patients treated with biological agents.

Key words: Anti-TNF alfa agents; Biological therapy; Inflammatory bowel disorders; Listeriosis; Sepsis

INTRODUCTION

The therapy with anti tumor necrosis factor (TNF)-alpha agents such as infliximab, adalimumab, golimumab, etanercept is to date an established approach for several rheumatologic and gastrointestinal diseases; however, such therapy is associated to an increased risk of reactivating granulomatous diseases and other intracellular bacterial infections where the host defenses are macrophage dependent. Thus, Listeriosis may develop more frequently in patients receiving anti TNF-alpha therapies.

MICROBIOLOGICAL AND PATHOPHYSIOLOGICAL ASPECTS

Listeria monocytogenes is a gram positive, anaerobic, short rod-like bacterium with a median incubation period of 35 days (range 1 to 91 days). The contact with this bacterium happens through ingestion of foods such as soft or unpasteurized cheese, unwashed vegetables, and uncooked meat. Also water tanks contaminated by swallows may be a source of infection and we must always consider the failure of basic sanitation measures in Industry, particularly the special condition of food served in hospitals where a strict control is needed in food preparation to avoid the bacterium’s transmission to vulnerable individuals. Listerialiosis is considered a relatively rare infection in adults, and it is regarded as an opportunistic infection affecting principally subjects with malignancy and/ or on immunosuppressive therapy, as well as pregnant women.
newborns and elderly subjects\(^\text{10}\). A human disease caused by _Listeria monocytogenes_ was described for the first time in 1929 by Nyfedef\(^\text{10}\); however, the mechanisms of _Listeria_ infection have not been clearly elucidated yet\(^\text{10}\). TNF-alpha has an important role as a defense against intracellular organism such as _Listeria_, by increasing the number of macrophages and the amount of nitric oxide in the involved area, both of paramount importance for microbial killing\(^\text{10}\). The immunity to _Listeria_ is mediated through T-cell lymphokine activation of macrophages; the latter are responsible for and determinant to clear _Listeria_ from the blood\(^\text{10}\). Soulat et al\(^\text{10}\) reported that the host DEAD-box RNA helicase DDX3X may be considered a “key component” involved in the transcriptional induction of a type 1 IFN response to Listeriosis infection. Soulat et al\(^\text{10}\) reported the mice deficient for DDX3X show a complex immune imbalance with increased predisposition to Listeriosis infection for a reduced production of cytokines and INF-gamma and impaired maturation of lymphoid lineage determining a reduction in Natural Killer (NK) cell population\(^\text{10}\).

The therapeutical use of anti TNF-alpha agents impairs the effect of endogenous TNF-alpha and it may promote the development of Listeriosis\(^\text{10}\); since _Listeria monocytogenes_ DNA has been found in the intestine of inflammatory bowel disease (IBD) patients and in control subjects\(^\text{10}\). Thus, mucosal damage in IBD patients with intestinal presence of _Listeria_ may represent a predisposing condition to develop systemic Listeriosis during anti-TNF therapy, due to bacterial invasion from the gut to the bloodstream\(^\text{10}\), since it has been suggested that the intestine may represent the entrance of the bacterium in the systemic circulation\(^\text{10}\). Therefore, intestinal mucosal damage in IBD patients chronically harboring _Listeria_ may make them more susceptible to develop Listeriosis during anti-TNF therapy, particularly in case of ingestion of processed meat that increase this risk\(^\text{10}\).

CLINICAL SIGNS

The clinical spectrum of _Listeria_ infection includes febrile gastroenteritis, bacteremia, meningitis and meningonecrosis, focal infections as septic arthritis, and endocarditis; cutaneous infections, polyserositis and cholecystitis have also been described\(^\text{12,13}\). Bierhoff et al\(^\text{14}\) described 2 cases of _Listeria_ Peritonitis in patients on peritoneal dialysis\(^\text{14}\). The mortality rate, if the condition is undiagnosed, is high (13-34%)\(^\text{13}\); in non-immunosuppressed patients, 80% has a central nervous system (CNS) infection and 52% of immunosuppressed patients show septicemia\(^\text{12}\). Rhomboencephalitis may show with the clinical signs of cerebellar ataxia and it is more frequent with hypervirulent clones of _Listeria\(^\text{13}\). Brain Abscess may be present in 10% of all cases of Neulosteriosis and in 85% of these cases, blood cultures are positive suggesting a bloodstream diffusion\(^\text{16}\). Al-Heibi et al\(^\text{16}\) described the development of brain abscess after Rituximab infusion in a patient with Pemphigus Vulgaris.

LITERATURE DATA

The first description of _Listeria monocytogenes_ infection during infliximab treatment had been reported in 2000 by Mooreli and Wilson\(^\text{17}\). A review of the United States Food and Drug Administration’s (FDA) Adverse Events reporting program described 3 patients on infliximab therapy for Crohn’s disease (CD) that developed septicemia and/or meningitis; one of these died\(^\text{17}\). Aparicio et al\(^\text{17}\) stressed the fact that the rate of _Listeria_ infection in infliximab-treated rheumatic patients (5 out of 82.000) may be higher than in CD patients (2 out of 104.500) receiving infliximab therapy; this difference might be correlated to a larger concomitant use of methotrexate in rheumatoid arthritis (RA) patients, the different dosage of infliximab in RA and CD, and a higher age of AR patients\(^\text{17}\). Dixon et al\(^\text{18}\), in the British Society for Rheumatology Biologic Register (BSRBR), described 3 cases of Listeriosis out of 7664 patients treated by anti TNF-alpha agents, with this prevalence being higher compared to Listeriosis’s incidence in the general population, estimated to be 0.7 per 100.000 subjects\(^\text{19}\). In 2010, the FDA Adverse Event Reporting System identified 92 case of Listeriosis related to infliximab therapy\(^\text{20}\); 69 patients (75%) showed _Listeria_ meningitis and 14 of these (20.3%) also had encephalitis. A mortality rate of 17.4% (16/92 cases) was reported, and 15 out of 16 patients (93.8%) died for meningitis. Three cases of _Listeria_ were reported by the BSRBR in 1352-person treated by biologic therapy\(^\text{21}\); none was reported in patients non receiving biologic agents\(^\text{21}\). The Spanish BIODABASER found an incidence of serious infections of about 53 cases per 1000 persons-year\(^\text{22}\), and 6 _Listeria_ infections were identified. The French RATIO registry reported 4 cases of Listeriosis in patients receiving biologic therapy (etanercept, infliximab, adalimumab)\(^\text{23}\). The FDA Adverse Event Reporting, in a review of reports in patients treated with infliximab or etanercept from 1998 to 2002, reported 38 cases of Listeriosis\(^\text{24}\). Subsequently, a more comprehensive literature review from 2004 to 2011 reported 266 cases of _Listeria_ infections associated with the use of biologic agents\(^\text{25}\). Most infections were related to the use of infliximab (77.1%), and the others to the use of etanercept (11.7%), adalimumab (9.8%), rituximab (4.1%), abatacept (0.4%), and golimumab (0.4%). Most patients (47.7%) received biological therapies for rheumatologic diseases, 38% for IBD, 10.5% for miscellaneous indications, and 3.4% for hematological conditions. 73% of all these patients were in concomitant immunosuppressive therapy (56% with Steroids and 31.6% with Methotrexate). The median time of the disease’s onset was 184 days. The mortality rate varied from about 11% (adalimumab) to about 30% (rituximab)\(^\text{25}\).

More recently, a few more case have been described, related to high steroid dosage and also to other biological agents (ertulizumab, alemtuzumab)\(^\text{26,27}\). The importance of an early diagnosis of _Listeria_ infection should be stressed, particularly for meningitis due to its high mortality. _Listeria_ meningitis may be less frequent in ulcerative colitis because _Listeria_ organism are not transferred to the CNS by phagocytosis and are killed extracellularly by antibiotic therapy\(^\text{4}\). Minami et al\(^\text{4}\) described _Listeria_ septicemia following colonoscopy, and suggested to consider the prevention of bacteremic complications in immunosuppressed patients before this procedure. _Listeria_ species have been added to the “FDA Boxed Warning” for the entire class of anti TNF-alpha therapies\(^\text{28}\).

TREATMENT

Ampicillin is the first choice drug to treat Listeriosis infection and the Meningitis United Kingdom Guidelines recommend to prescribe ampicillin for all patients with suspected meningitis above the age of 55 years to cover _Listeria\(^\text{29}\). At present, _Listeria_ resistance to antibiotics of the penicillin family has not been found\(^\text{29}\). The effectiveness of the penicillin family is due to their high affinity for penicillin-binding protein 3 (PBP3), essential transpeptidase participating in the construction of peptidoglycan, a main constituent of the bacterial cell wall\(^\text{29}\). Cephalosporins are inactive against _Listeria_ because they have only weak affinity for PBP3, even
though this resistance may have more complex pathophysiologic
grounds[31]. Aminoglycosides are also indicated for the treatment of
Listeriosis[32]. The second-line drugs, used particularly in penicillin
allergic patients, are trimethoprim/sulphamethoxazole, erythromycin,
vancomycin and meropenem[33]. In immunocompromised patients,
the therapy should always be prolonged for more than 2 weeks, due
to a high risk of relapse[34].

CONCLUSIONS

It is very important to recognize that every patient during anti TNF-
alpha therapy must be informed about the potential risk to contract
Listeria monocytogenes infection in case of ingestion of high risk
foods, and a list of such foods should be given when prescribing
TNF-alpha therapy[35]. An early diagnosis determined by increased
medical sensibilization for this infection could permit a reduction of
mortality, especially that due to meningitis and septicaemia.

REFERENCES

1. Slifman NR, Gershon SK, Lee JH, Edwards ET, Braun MM. Listeria
monocytogenes infection as a complication of treatment with
tumor necrosis factor alpha-neutralizing agents. Arthritis Rheum
2003; 48: 319-324 [PMID: 15468359]
2. Camargo AC, Woodward JJ, Nero LA. The continuous challenge
of characterizing the foodborne pathogen Listeria monocytogenes.
Foodborne Pathog Dis 2016 (in press) [PMID: 27162388]; [DOI:
10.1007/s11359-015-2126-3]
3. Lefebvre A, Stavru F, Brisse S, Cossart P. 926-2016: 90 years of
Listeriology.
4. Minami M, Hasegawa T, Ando T, Maeda O., Ohta K, Ohkura T., Ohta
M., Goto H. - Post-colonoscopy Listeria septicemia in ulcerative
colitis during immunosuppressive therapy. Intern Med 2007; 46:
2023-2027 [PMID: 18084128]
5. Nyfelft A. Etiologie de la mononucleose infectieuse. C R Sciences
Soc Biol (Paris) 1929; 101: 590-595
6. Izbeki F, Nagy F, Szepes Z, Kiss I, Lonvics J, Molnár T. Severe
Listeria meningococcal in infections in an infliximab-treated patient
with Crohn's disease. Inflamm Bowel Dis 2008; 14(3): 429-431 [PMID:
17973302]
7. Southwick FS, Purich DL. Intracellular pathogenesis of listerio-
sis. N Engl J Med 1996; 334: 770-776 [PMID: 8925228]
8. Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A,
Stefanovic A, Hantschel O, Bennett KL, Decker T, Superti-Furga
G. The DEAD-box helicase DDX3X is a critical component of
the TANK-binding kinase 1-dependent innate immune response.
Embo J. 2008; 27: 2135-46 [DOI: 10.1038/emboj.2008.126];
[PMID: 18583960]
9. Morelli J, Wilson FA. Does administration of Infliximab increase
susceptibility to Listeriosis? Am J Gastroenterol 2000; 95: 841-842
[PMID: 10710107]
10. Ramos JM, García-Sepulcre MF, Masiá M, Brotons A, Grau MC,
Gutiérrez F. Listeria monocytogenes infection in patients with
inflammatory bowel diseases receiving anti-tumor necrosis fac-
tor therapy and Listeria monocytogenes infection: comment on
the letter by Gluck et al Arthritis Rheum 2003; 48:
1764-1765 Author Reply 1765-6 [PMID: 12794847]
11. Zachar Z, Savage DC. Microbial interference and colonization of
the murine gastro-intestinal tract by Listeria Monocytogenes.
12. Charlier C, Leclercq A, Cazenave B, Travier L, Cantinelli T, Lor-
tholary O, Goulet V, Lemonnier A, Lecuit M. Listeria monocyt-
genes-associated joint and bone infections: a study of 43 consecu-
tive cases. Clín Infect Dis 2012; 54: 240-248 [DOI: 10.1093/cid/
cir803]; [PMID: 22100574]
13. Goulet V, Marchetti P. Listeriosis in 225 non-pregnant patients
in 1992: clinical aspects and outcome in relation to predispos-
ing conditions. Scand J Infect Dis 1996; 28(4): 367-374 [PMID:
8893400]
14. Bierhoff M, Kruftwagen E, Van Bommel EF, Verburgh CA. Listeria
Peritonitis in patients on peritoneal dialysis: 2 cases and review of
the literature. Ned. J. Med. 2011; 63(10): 461-4 [PMID:
22058269]
15. MacGowan AP, Bowker K, McLaughlin J, Bennett PM, Reeves J.
The occurrence and seasonal changes in the isolation of Listeria
pp. in shop bought food stuffs, human feces, sewage and soil
from urban sources. Int J Food Microbiol 1994; 21(4):325-334
[PMID: 8043351]
16. Al-Harbi TM, Al-Muammar SA, Ellis RJ. Brain Abscesses following
Rutiximab infusion in patients with Pemphigus Vulgaris. Am. J.
Case Report 2016; 16: 65-8 [DOI: 10.12659/AJORC.892635]
17. Aparicio AG, Munoz-Fernandez S, Bonilla G, Miralles A, Cerde-
no V, Martin-Mola E. Report of an additional case of anti tumor
necrosis factor therapy and Listeria monocytogenes infection:
neurological manifestations. Neurology 2003; 60: 386-396 [PMID:
12740327]
18. Ptolomides K, Grohowski G, van der Heuvel E, van der Born P.
Listeria meningitis complicating use of Infliximab in a patient
with a previous history of Listeriosis. J Med Microbiol 2007; 56:
461-465 [PMID: 17547395]
19. Aparicio AG, Muñoz-Fernandez S, Bonilla G, Miralles A, Cerde-
no V, Martin-Mola E. Report of an additional case of anti tumor
necrosis factor therapy and Listeria monocytogenes infection:
neurological manifestations. Neurology 2003; 60: 386-396 [PMID:
12740327]
20. Rana F, Shaikh MM, Bowles J. Listeria meningitis and resultant
symptomatic hydrocephalus complicating infliximab treatment for
ulcerative colitis. JBRB Open 2014; 4: 2054270441522223
[PMID: 25057381]
21. Heyderman RS. British Infection Society. Early management of
suspected bacterial meningitis and meningococcal septicaemia in
immunocompetent adults-second edition. J Infect 2005; 50:
373-374 [PMID: 15991345]
22. Perez-Sola MJ, Torre-Cisneros J, Perez-Zafirilla B, Carmona L,
Descalzo MA, Gomez-Reino JJ. Infections in patients treated with
anti tumor necrosis factor protein antagonists: incidence, etiology
and mortality in the BIOBADASER registry. Med Clin (Barc)
2011; 137(12): 533-540 [DOI: 10.1016/j.medci.2011.01.032];
[PMID: 21514066]
23. Salmon-Ceron D, Tubach F, Lortholary O, Chosidow O, Bretagne
S, Nicolas N, Cuillerier E, Fautrel B, Michelet C, Morel J, Puéchal
X, Wendling D, Lemann M, Ravau P, Mariette X; RATIO group.
Drug-specific risk of non-tuberculosis opportunistic infections in
patients receiving anti-TNF therapy reported to the 3-year pro-
spective French RATIO registry. Ann Rheum Dis 2011; 70:
616-623 [PMID: 21177290]
24. Witlox MA, Klinkenberg-Knol EC, Meuwissen SG. Listeria sep-
sis as a complication of endoscopy. Gastrointest Endosc 2000;
51: 235-236 [PMID: 10650280]
25. Bodro M, Paterson DL. Listeriosis in patients receiving biologic
therapies. Eur J Microbiol Infect Dis 2013; 32(9): 1225-1230 [PMID:
23568666]
26. Miranda-Bautista J, Padilla-Suárez C, Bouza E, Muñoz-P, Men-
chén L, Marín-Jiménez I. Listeriosis in inflammatory bowel disease
diagnosed cases: a case series and review of the literature. Eur J
Gastroenterol Hepatol 2014; 26(11): 1247-1252 [DOI:
10.1097/MEG.0000000000000188]; [PMID: 25171025]
27. Rau D, Lang M, Harth A, Naumann M, Weber F, Tumani H,
Bayas A. Listeria meningitis complicating alemtuzumab treatment
in multiple sclerosis—report of two cases. Int J Mol Sci 2015 Jun
Casella G et al. Listeriosis during biological therapy

31 Krawczyk-Balska A, Markiewicz Z. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 2016; 120(2): 251-265 [DOI: 10.1111/jam.12989]; [PMID: 26509460]

32 Temple ME, Nahata MC. Treatment of Listeriosis. Ann Pharmacother 2000; 34: 656-661 [PMID: 10852095]

Peer reviewer: Monowar Aziz