A note on the action-angle variables for the rational Calogero–Moser system

Tomasz Brzeziński
Department of Mathematics, University of York
Heslington, York YO10 5DD, England

Cezary Gonera, Piotr Kosiński and Paweł Maślanka
Department of Theoretical Physics II, University of Łódź,
ul. Pomorska 149/153, 90-236 Łódź, Poland

Abstract

A relationship between the action-angle variables and the canonical transformation relating the rational Calogero–Moser system to the free one is discussed.
The aim of this note is to answer the question of S. Ruijsenaars [1] concerning the relationship between the action-angle variables [2] for the rational Calogero-Moser model [3] and the equivalence of the latter to free particle systems described explicitly with the help of $sl(2, \mathbb{R})$ dynamical symmetry in [4].

We begin by recalling the construction of the canonical transformation in [4]. This construction is based on the observation that many features of the rational Calogero-Moser model with the Hamiltonian

$$H_{CM} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{g}{2} \sum_{i \neq j} \frac{1}{(q_i - q_j)^2},$$

where p_i, q_i are the canonical variables, and g is a coupling constant, can be explained in terms of the dynamical $sl(2, \mathbb{R})$ symmetry. Consider the following four functions on the phase space:

$$T_+ = \frac{1}{\omega}H_{CM}, \quad T_- \equiv \omega \sum_{i=1}^{N} \frac{q_i^2}{2}, \quad T_0 \equiv \frac{1}{2} \sum_{i=1}^{N} q_i p_i, \quad \bar{T}_+ = \frac{1}{\omega} \sum_{i=1}^{N} \frac{p_i^2}{2},$$

where $\omega \neq 0$ is a parameter. One easily checks that each of the sets $\{T_+, T_-, T_0\}$ and $\{\bar{T}_+, T_-, T_0\}$ spans the $sl(2, \mathbb{R})$ Lie algebra with respect to the Poisson brackets, i.e.,

$$\{T_0, T_\pm\} = \pm T_\pm, \quad \{T_-, T_+\} = 2T_0,$$

and

$$\{T_0, \bar{T}_+\} = \bar{T}_+, \quad \{T_0, T_-\} = -T_-, \quad \{T_-, \bar{T}_+\} = 2T_0.$$

These $sl(2, \mathbb{R})$ algebras act on the phase space in the standard way by means of the Poisson brackets. The action can be integrated to the symplectic action of the $SL(2, \mathbb{R})$ group. In the construction of the transformation from the Calogero-Moser system to free particles an important role is played by the following one-parameter family of canonical transformations

$$q_k \to e^{i\lambda T_1} \ast q_k \equiv \sum_{n=0}^{\infty} \frac{(i\lambda)^n}{n!} \{T_1, \ldots, \{T_1, q_k\} \ldots\},$$

$$p_k \to e^{i\lambda T_1} \ast p_k \equiv \sum_{n=0}^{\infty} \frac{(i\lambda)^n}{n!} \{T_1, \ldots, \{T_1, p_k\} \ldots\}, \quad (1)$$
where \(T_1 = \frac{i}{2}(T_+ + T_-) \). Since \(T_1 = \frac{i}{2\omega} H_C \), where

\[
H_C = \sum_{i=1}^{N} \left(\frac{p_i^2}{2} + \frac{\omega^2 q_i^2}{2} \right) + \frac{g}{2} \sum_{i,j=1}^{N} \left(\frac{1}{(q_i - q_j)^2} \right)
\]

is the Hamiltonian of the Calogero model, the transformation (1) can be viewed as the time evolution generated by the Calogero Hamiltonian \(H_C \), with the time \(t = \lambda / 2\omega \).

On the other hand the transformation (2) is simply a rotation in the space spanned by \(T_0, T_\pm \) about the axis \(T_1 \) by an angle \(\lambda \). Thus for \(\lambda = \pi \) (i.e., \(t = \pi / 2\omega \)) we have \(H_{CM} = \omega T_+ \rightarrow \omega e^{i\pi T_1} \ast T_+ = \omega T_- \). Next we can make a rotation in the space spanned by \(T_0, T_-, \tilde{T}_+ \) about the axis \(\tilde{T}_1 = \frac{i}{2}(\tilde{T}_+ + T_-) \) through the angle \(-\pi\). In particular, this will rotate \(T_- \) to \(\tilde{T}_+ \). Since the latter is proportional to the Hamiltonian of the free theory \(H_0 = \sum_{i=1}^{N} \frac{\tilde{p}_i^2}{2} \), the canonical transformation obtained by the combination of two rotations transforms the rational Calogero-Moser model to the free particle theory, i.e.,

\[
H_{CM} \rightarrow e^{-i\pi \tilde{T}_1} \ast (e^{i\pi T_1} \ast H_{CM}) = H_0.
\]

Furthermore, this transformation sends the standard integrals of motion of the Calogero-Moser model \(\frac{1}{m} \text{Tr}(L^m) \), \(m = 1, \ldots, N \), where \(L \) is the Lax matrix,

\[
L_{jk} = \delta_{jk}p_k + (1 - \delta_{jk}) \frac{ig}{q_j - q_k}, \quad (2)
\]

to their free counterparts (obtained by setting \(g = 0 \)). The same applies to the functions \(\text{Tr}(Q L^m) \), \(m = 1, \ldots, N \), with \(Q = \text{diag}(q_1, q_2, \ldots, q_N) \).

The Ruijsenaars construction of the action-angle variables for the Calogero-Moser model can be most clearly explained in terms of the Hamiltonian reduction [5]. We now briefly recall how the reduction procedure can be applied to the Calogero-Moser model [5]. One starts with the space of pairs \((A, B)\) of \(N \times N \) hermitian matrices. This space is equipped with the symplectic form

\[
\Omega = \text{Tr}(dB \wedge dA). \quad (3)
\]

The action of the unitary group \(U(N) \),

\[
U \in U(N) : \quad (A, B) \rightarrow (UAU^\dagger, UBU^\dagger), \quad (4)
\]
preserves the form Ω in (3) and thus is a symplectic action. The reduced phase space is obtained with the help of the momentum map equation

$$i[A, B] = g(I - \nu^\dagger \otimes \nu), \quad \nu = (1, 1, \ldots, 1).$$

Using the symplectic action of the group $U(N)$ in equation (4), one can fix a gauge in which $A = \text{diag}(q_1, q_2, \ldots, q_N)$. In this gauge B is the Lax matrix in equation (2), and Ω takes the standard form $\Omega = \sum_{i=1}^N dp_i \wedge dq_i$. Thus we conclude that the Calogero-Moser model can be obtained by the Hamiltonian reduction of a simple dynamical system in Γ defined by the Hamiltonian $H = \frac{1}{2} \text{Tr} B^2$.

On the other hand the symplectic transformation $A \mapsto \tilde{A} = B$, $B \mapsto \tilde{B} = -A$ preserves the momentum map. Following Ruijsenaars we can fix a gauge in which $\tilde{A} = B$ is diagonal, i.e., $\tilde{A} = \text{diag}(I_1, I_2, \ldots, I_N)$. In this gauge the Hamiltonian $H = \frac{1}{2} \text{Tr} B^2$ is $H = \frac{1}{2} \sum_{i=1}^N I_i^2$. Clearly, the variables I_1, \ldots, I_N are constants of motion and together with the diagonal elements $-\phi_1, \ldots, -\phi_N$ of $\tilde{B} = -A$ in this gauge, form the complete set of canonical variables. Thus we conclude that (ϕ_i, I_i) are the action-angle variables for the matrix model.

It is now not difficult to relate this construction of action-angle variables to that of the canonical map [4] recalled at the beginning of this note. The action of the $\mathfrak{sl}(2, \mathbb{R})$ symmetry on the reduced phase space can be lifted to Γ. Using the explicit form of the Poisson brackets induced by the canonical form Ω (3), $\{A_{ij}, B_{kl}\} = \delta_{il} \delta_{jk}$ one easily verifies that the functions

$$t_+ = \frac{1}{2\omega} \text{Tr} B^2, \quad t_- = \frac{\omega}{2} \text{Tr} A^2, \quad t_0 = \frac{1}{2} \text{Tr} AB,$$

generate the $\mathfrak{sl}(2, \mathbb{R})$ Lie algebra, i.e., $\{t_0, t_{\pm}\} = \pm t_{\pm}, \{t_-, t_+\} = 2t_0$. The relationship between the actions of $\mathfrak{sl}(2, \mathbb{R})$ on the unreduced and reduced phase spaces can be
summarised in the following commutative diagram:

Again using the explicit form of the Poisson brackets one finds that t_0, t_{\pm} act linearly on A, B. This means that for any fixed k, l, (A_{kl}, B_{kl}) is an $sl(2, \mathbb{R})$ doublet. Therefore a general $sl(2, \mathbb{R})$ transformation of Γ can be represented as

$$\left(\begin{array}{c} A \\ \frac{1}{\omega} B \end{array} \right) \rightarrow \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \left(\begin{array}{c} A \\ \frac{1}{\omega} B \end{array} \right), \quad \alpha\delta - \beta\gamma = 1. \quad (5)$$

The transformation (5) is a lift of the $sl(2, \mathbb{R})$ action on the reduced phase space. Thus, in particular, the lift of the canonical transformation induced by $e^{i\pi T_1}$ (cf. equation (4)), must be of the form (4). We have

$$\left(\begin{array}{c} A \\ \frac{1}{\omega} B \end{array} \right) \rightarrow e^{i\pi T_1} \left(\begin{array}{c} A \\ \frac{1}{\omega} B \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \left(\begin{array}{c} A \\ \frac{1}{\omega} B \end{array} \right) = \left(\begin{array}{c} \frac{1}{\omega} B \\ -A \end{array} \right).$$

This shows that the Ruijsenaars procedure corresponds to the lifting of the construction of the canonical mapping of the Calogero-Moser system to free particles in [4]. One has to keep in mind, however, that the diagonal elements of B are viewed as momentum variables in the Ruijsenaars approach while in [4] they are proportional to the position variables. This explains the need for the additional transformation $e^{-i\pi T_1}$ which exchanges the momentum and position variables (and kills the factor ω).

The reasoning presented above explains also in a straightforward way why the functions $\text{Tr} L^n = \text{Tr} B^n$ and $\text{Tr}(Q L^n) = \text{Tr}(A B^n)$ are transformed to their free counterparts, while it is no longer the case for $\text{Tr}(Q^m L^n)$, $m \geq 2$. The point is that the $\text{Tr} B^n$ and $\text{Tr}(A B^n)$ depend only on the eigenvalues of B and diagonal elements of A in the gauge in which B is diagonal, while the $\text{Tr}(Q^m L^n)$, $m \geq 2$ depend on non-diagonal elements of A too.
One can quantise the matrix theory on unreduced phase space Γ. Since the action of $\mathfrak{sl}(2,\mathbb{R})$ is linear, it can easily be implemented on the quantum level too. Then one can use the quantum Hamiltonian reduction \[8\] and carry the Ruijsenaars procedure over to the quantum case (for a different approach see \[9\]). At this point the main advantage of the procedure producing the symplectic map in \[4\] is that it can be immediately quantised.

Acknowledgments
This research is supported by the British Council grant WAR/992/147. The work of PK is supported by the grant KBN 2 P03B 134 16.

References

[1] S.N.M. Ruijsenaars, private communication during the Needs ’99 conference.

[2] S.N.M. Ruijsenaars, Commun. Math. Phys. 115 (1988), 127.

[3] F. Calogero, J. Math. Phys. 12 (1971), 419;
 F. Calogero, G. Marchioro, J. Math. Phys. 15 (1974), 1425;
 J. Moser, Adv. Math. 16 (1975) 1.

[4] T. Brzeziński, C. Gonera and P. Maślanka, Phys. Lett. A 254 (1999), 185.

[5] D. Kazhdan, B. Kostant and S. Sternberg, Commun. Pure Appl. Math. 31 (1978), 481.

[6] M.A. Olshanetsky and A.M. Perelomov, Phys. Rep. 71 (1981), 313; A. Gorsky, Theor. Math. Phys. 103 (1995), 681.

[7] J. Moser [in:] Dynamical Systems, Progress in Mathematics No. 8, Brikhaüser, Boston, 1980, p. 233.

[8] A.P. Polychronakos, Phys. Lett. B 266 (1991), 29;
 A. Gorsky and N. Nekrasov, Nucl. Phys. B 414 (1994), 213; P. Etingof, J. Math. Phys. 36 (1995), 2636.
[9] S.N.M. Ruijsenaars, Commun. Math. Phys. 110 (1987), 191.