Universal stability of Banach spaces for ε-isometries

Lixin Cheng†
School of Mathematical Sciences
Xiamen University
Xiamen 361005, China
E-mail: lxcheng@xmu.edu.cn

Duanxu Dai‡
School of Mathematical Sciences
Xiamen University
Xiamen 361005, China
E-mail: dduanxu@163.com

Yunbai Dong§
School of Mathematics and Computer
Wuhan Textile University
Wuhan 430073, China
E-mail: baiyunmu301@126.com

Yu Zhou
School of Fundamental Studies
Shanghai University of Engineering Science
Shanghai 201620, China
E-mail: Roczhou_fly@126.com

† Support in partial by NSFC, grants 11071201 & 11371296.
‡ Support in partial by a fund of China Scholarship Council and Texas A&M University.
§ Support in partial by NSFC, grant 11201353.

2010 \textit{Mathematics Subject Classification}: Primary 46B04, 46B20, 47A58; Secondary 26E25, 46A20, 46A24.

\textit{Key words and phrases}: ε-isometry, stability, injective space, Banach space.
Abstract

Let X, Y be two real Banach spaces and $\varepsilon > 0$. A standard ε-isometry $f : X \to Y$ is said to be (α, γ)-stable (with respect to $T : L(f) \equiv \text{span} f(X) \to X$ for some $\alpha, \gamma > 0$) if T is a linear operator with $\|T\| \leq \alpha$ so that $Tf - Id$ is uniformly bounded by $\gamma \varepsilon$ on X. The pair (X,Y) is said to be stable if every standard ε-isometry $f : X \to Y$ is (α, γ)-stable for some $\alpha, \gamma > 0$. $X(Y)$ is said to be universally left (right)-stable, if (X,Y) is always stable for every $Y(X)$. In this paper, we show that universal right-stability spaces are just Hilbert spaces; every injective space is universally left-stable; a Banach space X isomorphic to a subspace of ℓ_∞ is universally left-stable if and only if it is isomorphic to ℓ_∞; and that a separable space X satisfies the condition that (X,Y) is left-stable for every separable Y if and only if it is isomorphic to c_0.

1 Introduction

The study of properties of isometries and its generalizations between Banach spaces has continued for 80 years since Mazur and Ulam 1932’s celebrated results [18]: Every surjective isometry between two Banach spaces X and Y is necessarily affine. While a simple example $f : \mathbb{R} \to \ell_\infty^2$ defined by $f(t) = (t, \sin t)$ shows that it is not always possible if the mapping is not surjective. In 1968, Figiel [10] showed the following remarkable result: For every standard isometry $f : X \to Y$ there is a linear operator $T : L(f) \to X$ with $\|T\| = 1$ so that $Tf = Id$ on X, where $L(f)$ is the closure of $\text{span} f(X)$ in Y (see, also, [3] and [8]). In 2003, Godefroy and Kalton [12] studied the relationship between isometries and linear isometries and resolved a long-standing problem: Whether existence of an isometry $f : X \to Y$ implies the existence of a linear isometry $U : X \to Y$?

Definition 1.1. Let X, Y be two Banach spaces, $\varepsilon \geq 0$, and let $f : X \to Y$ be a mapping.

(1) f is said to be an ε-isometry if

\begin{equation}
\|f(x) - f(y)\| - \|x - y\| \leq \varepsilon \quad \text{for all } x, y \in X.
\end{equation}

In particular, a 0-isometry f is simply called an isometry.

(2) We say an ε-isometry f is standard if $f(0) = 0$.

(3) A standard ε-isometry is (α, γ)-stable if there exist $\alpha, \gamma > 0$ and a bounded linear operator $T : L(f) \to X$ with $\|T\| \leq \alpha$ such that

\begin{equation}
\|Tf(x) - x\| \leq \gamma \varepsilon, \quad \text{for all } x \in X.
\end{equation}
Universal stability of Banach spaces for ε-isometries

In this case, we also simply say f is stable, if no confusion arises.

(4) A pair (X, Y) of Banach spaces X and Y is said to be stable if every standard ε-isometry $f : X \to Y$ is (α, γ)-stable for some $\alpha, \gamma > 0$.

(5) A pair (X, Y) of Banach spaces X and Y is called (α, γ)-stable for some $\alpha, \gamma > 0$ if every standard ε-isometry $f : X \to Y$ is (α, γ)-stable.

In 1945, Hyers and Ulam proposed the following question \[15\] (see, also \[19\]): Whether for every pair of Banach spaces (X, Y) there is $\gamma > 0$ such that for every standard surjective ε-isometry $f : X \to Y$ there exists a surjective linear isometry $U : X \to Y$ so that

$$\|f(x) - Ux\| \leq \gamma \varepsilon, \quad \text{for all } x \in X. \quad (1.3)$$

After many years efforts of a number of mathematicians (see, for instance, \[11\], \[13\], \[15\], and \[19\]), Omladič and Šemrl \[19\] finally achieved the sharp estimate $\gamma = 2$ in (1.3).

The study of non-surjective ε-isometries has also brought to mathematicians’ attention (see, for instance, \[2\], \[4\], \[5\], \[7\], \[19\], \[20\], \[21\] and \[23\]). Qian \[20\] first proposed the following problem in 1995.

Problem 1.2. Whether for every pair (X, Y) of Banach spaces X and Y there exists $\gamma > 0$ such that every standard ε-isometry $f : X \to Y$ is (α, γ)-stable for some $\alpha > 0$.

Then he showed that the answer is affirmative if both X and Y are L_p spaces. Šemrl and Väisälä \[21\] further presented a sharp estimate of (1.2) with $\gamma = 2$ if both X and Y are L_p spaces for $1 < p < \infty$. However, Qian \[20\] presented a counterexample showing that if a separable Banach space Y contains a uncomplemented closed subspace X then for every $\varepsilon > 0$ there is a standard ε-isometry $f : X \to Y$ which is not stable. Cheng, Dong and Zhang \[4\] showed the following weak stability version.

Theorem 1.3 (Cheng-Dong-Zhang). Let X and Y be Banach spaces, and let $f : X \to Y$ be a standard ε-isometry for some $\varepsilon \geq 0$. Then for every $x^* \in X^*$, there exists $\phi \in Y^*$ with $\|\phi\| = \|x^*\| \equiv r$ such that

$$|\langle \phi, f(x) \rangle - \langle x^*, x \rangle| \leq 4\varepsilon r, \quad \text{for all } x \in X. \quad (1.4)$$

For study of the stability of ε-isometries of Banach spaces, the following two questions are very natural.

Problem 1.4. Is there a characterization for the class of Banach spaces \mathcal{X} satisfying given any $X \in \mathcal{X}$ and Banach space Y, the pair (X, Y) is (α, γ)-, resp.) stable?
Every space X in this class is said to be a universal $((\alpha, \gamma), \text{resp.})$ left-stability space.

Problem 1.5. *Can we characterize the class of Banach spaces \mathcal{Y}, such that given any $Y \in \mathcal{Y}$ and Banach space X, the pair (X, Y) is $((\alpha, \gamma), \text{resp.})$ stable?*

Every space Y in this class is called a universal $((\alpha, \gamma), \text{resp.})$ right-stability space.

In this paper, we study universal stability and universal right-stability of Banach spaces. As a result, with the aim of Qian’s counterexample and Theorem 1.3 incorporating of Lindenstrauss-Tzafriri’s characterization of Hilbert spaces [17], we show that universal stability spaces are spaces of finite dimensions; and up to an isomorphism, a universal right-stability space is just a Hilbert space. By using Theorem 1.3 we then prove that every injective space is universally left-stable; and a Banach space X which is isomorphic to a subspace of ℓ_∞ is universally left-stable if and only if it is isomorphic to ℓ_∞. Finally, applying Zippin’s theorem [25] we verify that a separable space X satisfies that (X, Y) is stable for every separable Y if and only if it is isomorphic to c_0.

All symbols and notations in this paper are standard. We use X to denote a real Banach space and X^* its dual. B_X and S_X denote the closed unit ball and the unit sphere of X, respectively. Given a bounded linear operator $T : X \to Y$, $T^* : Y^* \to X^*$ stands for its conjugate operator. For a subset $A \subset X$, \overline{A} stands for the closure of A, and $\text{card}(A)$, the cardinality of A.

2 Universal (right-) stability spaces for ε-isometries

In this section, we search for some properties of the class of universal left (right)-stability spaces for ε-isometries.

Recall that a Banach space X (Y) is universally left (right)-stable if it satisfies that for every Banach space Y (X) and for every standard ε-isometry $f : X \to Y$, there exist $\alpha, \gamma > 0$ and a bounded operator $T : L(f) \to X$ with $\|T\| \leq \alpha$ so that

\[\|Tf(x) - x\| \leq \gamma \varepsilon, \text{ for all } x \in X. \]

(2.1)

A universal stability space is a Banach space which is both universally left and right stable. As a result, we show inequality (2.1) holds for every Banach
space X if and only if Y is, up to linear isomorphism, a Hilbert space; and universal stability spaces are just finite dimensional spaces.

The following lemma follows from Qian’s counterexample\[20\].

Lemma 2.1. Let X be a closed subspace of a Banach space Y. If $\text{card}(X) = \text{card}(Y)$, then for every $\varepsilon > 0$ there is a standard ε-isometry $f : X \rightarrow Y$ such that

1. $L(f) \equiv \text{span}_f(X) = Y$;
2. X is complemented whenever f is stable.

Theorem 2.2. Let Y be a Banach space. Then the following statements are equivalent.

i) Y is universally right-stable;
ii) Y is isomorphic to a Hilbert space;
iii) Y is universally $(\alpha, 4)$-right-stable for some $\alpha > 0$.

Proof. i) \implies ii). By definition of universal right-stability, every closed subspace of Y is again universally right-stable. Fix any closed separable subspace Z of Y. By Lemma 2.1, universal right-stability of Z entails that every closed subspace of Z is complemented in Z. According to Lindenstrauss-Tzafriri’s theorem \[17\]: ”a Banach space satisfying that every closed subspace is complemented is isomorphic to a Hilbert space”, Z is isomorphic to a (separable) Hilbert space. Hence, Y itself is isomorphic to a Hilbert space.

ii) \implies iii). Suppose that Y is isomorphic to a Hilbert space H. Let $\alpha = \text{dist}(Y, H)$, the Banach-Mazur distance between Y and H. Then every closed subspace of Y is α-complemented in Y. Given $\varepsilon > 0$ and any standard ε-isometry $f : X \rightarrow Y$, according to Theorem 4.8 of \[4\], inequality (2.1) holds for some $T : L(f) \rightarrow X$ with $\|T\| \leq \alpha$ and with $\gamma = 4$, i.e., Y is universally $(\alpha, 4)$-right stable.

iii) \implies i). It is trivial. \qed

Theorem 2.3. A normed space X is universally-stable if and only if it is finite dimensional.

Proof. Sufficiency. Since every finite dimensional normed space is isomorphic to an Euclidean space, Theorem 2.2 entails that it is universally right-stable. While Theorem 3.4 of \[4\] says that n dimensional spaces are universally left-stable with the parameter $\gamma = 4n$.

Necessity. Suppose, to the contrary, that X is infinite dimensional. Since X is also universally right-stable, according to Theorem 2.2 we have just
proven, it is isomorphic to a Hilbert space. Since every closed subspace of a universally right-stable space is again universally right-stable, we can assume that X is separable. Thus, X is isometric to a subspace of ℓ_∞. Since ℓ_∞ is prime \cite{17} (i.e. every complemented infinite dimensional subspace is isomorphic to it), X is uncomplemented in ℓ_∞. Note $\text{card}(X) = \text{card}\ell_\infty$. By Lemma \ref{23} there is an unstable standard ε-isometry $f : X \to \ell_\infty$ for every $\varepsilon > 0$, which is a contradiction to universal stability of X.

\section{Universal left-stability spaces}

In this section, we consider properties of universal left-stability spaces. We shall show that (1) an injective Banach space is universally left-stable; (2) a Banach space isomorphic to a subspace of ℓ_∞ is universally left-stable if and only if it is isomorphic to ℓ_∞ and (3) for a separable Banach space X, (X,Y) is stable for every separable Banach space Y if and only if X is a separably injective Banach space.

A Banach space X is said to be λ-injective (or, simply, injective) if it has the following extension property: Every bounded linear operator T from a closed subspace of a Banach space into X can be extended to be a bounded operator on the whole space with its norm at most $\lambda \|T\|$ (see, for instance, \cite{II}). Goondner \cite{14} introduced a family of Banach spaces coinciding with the family of injective spaces: for any $\lambda \geq 1$, a Banach space X is a P_λ-space if, whenever X is isometrically embedded in another Banach space, there is a projection onto the image of X with norm not larger than λ. The following result is due to Day \cite{6} (see, also, Wolfe \cite{24}, Fabian et al. \cite{9}, p. 242).

\begin{proposition}
A Banach space X is λ-injective if and only if it is a P_λ-space.
\end{proposition}

\begin{remark}
For any set Γ, that $\ell_\infty(\Gamma)$ is 1-injective follows from the Hahn-Banach theorem.
\end{remark}

\begin{theorem}
Every λ-injective space is universally $(\lambda, 4\lambda)$-left-stable.
\end{theorem}

\begin{proof}
Let X be a λ-injective Banach space. We can assume that X is a closed complemented subspace of $\ell_\infty(\Gamma)$; otherwise, we can identify X for its canonical embedding $J(X)$ as a subspace of $\ell_\infty(\Gamma)$, where Γ denotes the closed ball B_{X^*} of X^*. Hence, it is λ-complemented in $\ell_\infty(\Gamma)$. Let $P : \ell_\infty(\Gamma) \to X$ be a projection such that $\|P\| \leq \lambda$. Given any $\beta \in \Gamma$, let $\delta_\beta \in \ell_\infty(\Gamma)^*$ be defined for $x = (x(\gamma))_{\gamma \in \Gamma} \in \ell_\infty(\Gamma)$ by $\delta_\beta(x) = x(\beta)$. Assume
that $f : X \to Y$ is a standard ε-isometry. For every $x^* \in X^*$, by Theorem
[1,3] there is $\phi \in Y^*$ with $\|\phi\| = \|x^*\|$ such that
\begin{equation}
\|\langle \phi, f(x) \rangle - \langle x^*, x \rangle\| \leq 4\varepsilon\|x^*\|, \text{ for all } x \in X.
\end{equation}
In particular, letting $x^* = \delta_\gamma$ in (3.1) for every fixed $\gamma \in \Gamma$, we obtain a
linear functional $\phi_\gamma \in Y^*$ satisfying (3.1) with $\|\phi_\gamma\| = \|\delta_\gamma\|_X \leq 1$. Therefore,
$(\phi_\gamma(y))_{\gamma \in \Gamma} \in \ell_\infty(\Gamma)$ for every $y \in Y$.

Let $T(y) = P(\phi_\gamma(y))_{\gamma \in \Gamma}$, for all $y \in Y$, and note $P|_X = I_X$, the identity
from X to itself. Then $\|T\| \leq \|P\| \leq \lambda$ and for all $x \in X$,
\begin{align*}
\|Tf(x) - x\| &= \|P(\phi_\gamma(f(x)))_{\gamma \in \Gamma} - (\delta_\gamma(x))_{\gamma \in \Gamma}\| \\
&= \|P(\phi_\gamma(f(x)))_{\gamma \in \Gamma} - P((\delta_\gamma(x))_{\gamma \in \Gamma})\| \\
&\leq \|P\| \cdot \|(\phi_\gamma(f(x)))_{\gamma \in \Gamma} - (\delta_\gamma(x))_{\gamma \in \Gamma}\|_\infty \leq 4\lambda\varepsilon.
\end{align*}

\[\Box\]

Theorem 3.4. Let X be a Banach space X isomorphic to an infinite di-
menional subspace of ℓ_∞. Then the following statements are equivalent.

i) X is universally left-stable;

ii) X is isomorphic to ℓ_∞.

iii) X is universally $(\lambda,4\lambda)$-left stable, where $\lambda = \text{dist}(X,\ell_\infty)$.

Proof. i) \implies ii). Since dim $X = \infty$ and since it is isomorphic to a subspace
of ℓ_∞, we have
\begin{equation}
\text{card}(X) \geq \aleph_0 = \aleph_0^\mathbb{N} = \text{card}(\mathbb{R}^\mathbb{N}) = \text{card}(\ell_\infty) \geq \text{card}(X).
\end{equation}
Assume that X is universally left-stable. We can put an equivalent norm
$\|\cdot\|$ on ℓ_∞ such that X is isometric to a closed subspace of $(\ell_\infty,||\cdot||)$.\n
Indeed, Let $T : X \to \ell_\infty$ be a linear embedding and let $|\cdot|$ on $Z \equiv T(X)$
be defined by $|z| = \|x\|$ for all $z = Tx \in Z$. Then, we choose a sufficiently
large $\lambda > 0$ and define $||\cdot||$ on ℓ_∞ by $||u|| = \inf\{|v| + \lambda\|u - v\| : v \in Z\}$.
Clearly, the norm $||\cdot||$ has the property we desired. Applying Lemma
[2,1] we observe that X is complemented in $(\ell_\infty,||\cdot||)$, hence, in ℓ_∞. By
Lindenstrauss' theorem [16], X is isomorphic to ℓ_∞.

ii) \implies iii). Suppose that X is isomorphic to ℓ_∞. Since ℓ_∞ is 1-injective
(Remark [3,2]), X is necessarily λ-injective ($\lambda = \text{dist}(X,\ell_\infty)$). By Theorem
3.3, X is universally $(\lambda,4\lambda)$-left stable.

iii) \implies i). It is trivial. \[\Box\]
A separable Banach space X is said to be separably injective if it has the following extension property: Every bounded linear operator from a closed subspace of a separable Banach space into X can be extended to be a bounded operator on the whole space. In 1941, Sobczyk [22] showed that c_0 is separably injective, and Zippin ([25], 1977) further proved that c_0 is, up to isomorphism, the only separable separably injective space.

With the aim of Zippin’s theorem, we can prove the following theorem, which says that c_0 is (up to isomorphism) the only space satisfying inequality (2.1) for every separable Y.

Theorem 3.5. Let X be a separable Banach space. Then the following statements are equivalent.

i) (X,Y) is stable for every separable Banach space Y;

ii) X is isomorphic to c_0;

iii) (X,Y) is $(2\alpha,8\alpha)$-stable for every separable Banach space Y, where $\alpha = \|T\|\|T^{-1}\|$ for any isomorphism $T : X \to c_0$.

Proof. i) \implies ii). Suppose that X is not isomorphic to c_0. Then by Zippin’s theorem, X is not separably injective. Therefore, there exists a separable Banach space Y, which contains X as an uncomplemented subspace. Clearly, $\text{card}(X) = \text{card}(Y)$. By Lemma 2.1 again, for every $\varepsilon > 0$, there is a standard ε-isometry $f : X \to Y$ which is not stable.

ii) \implies iii). Let X be a Banach space isomorphic to c_0 and $T : X \to c_0$ be an isomorphism. Assume that $(e_n)_{n=1}^{\infty}$ is the canonical basis of c_0 with the standard biorthogonal functionals $(e^*_n)_{n=1}^{\infty} \subset \ell_1$. Let $(x_n) \subset X$ satisfy $Tx_n = e_n$ for all $n \in \mathbb{N}$, and let $T^* : \ell_1 \to X^*$ be the conjugate operator of T. Then

$$Tx = \sum (T^*e^*_n)(x)e_n \text{ and } x = \sum (T^*e^*_n)(x)T^{-1}e_n, \text{ for all } x \in X.$$

Let $\alpha = \|T\|\|T^{-1}\|$, $x^*_n = T^*e^*_n \in \|T\|B_{X^*}$ for all $n \in \mathbb{N}$, and note $x_n = T^{-1}e_n \in X$. By Theorem 1.3 there exists $\phi_n \in \|T\|B_{Y^*}$ with $\|\phi_n\| = \|x_n^*\|$ such that

$$|\langle \phi_n, f(x) \rangle - \langle x^*_n, x \rangle| \leq 4\varepsilon \|T\|, \text{ for all } x \in X. \tag{3.3}$$

Since $e_n^* \to 0$ in the w^*-topology of $\ell_1 = c_0^*$, $x_n^* = T^*e^*_n \to 0$ in the w^*-topology of X^*. Let

$$K = \{\psi \in \|T\|B(Y^*) : |\langle \psi, f(x) \rangle| \leq 4\varepsilon \|T\|, \text{ for all } x \in X\}. \tag{3.4}$$
Then K is a nonempty w^*-closed compact subset of Y^*. Since Y is separable, $(\|T\|_{B_{Y^*}}, w^*)$ is metrizable. Let ρ be a metric such that $(\|T\|_{B_{Y^*}}, \rho)$ is isomorphic to $(\|T\|_{B_{Y^*}}, w^*)$. Since $(\|T\|_{B_{Y^*}}, \rho)$ is a compact metric space and since K is a compact subset of it, $(\phi_n) \subset K$ has at least one ρ-sequentially cluster point. Since (x_n^*) is a w^*-null sequence in X^*, inequality (3.3) entails that any ρ-cluster point ϕ of (ϕ_n) is in K and with $\|\phi\| \leq \|T^*\| = \|T\|$. This further implies that $\text{dist}_\rho(\phi_n, K) \to 0$. Consequently, there is a sequence $(\psi_n) \subset K$ such that $\text{dist}_\rho(\phi_n, \psi_n) \to 0$, or equivalently, $\phi_n - \psi_n \to 0$ in the w^*-topology of Y^*. Hence, for every $y \in Y$,

\[(3.5) \quad Uy \equiv \sum_{n=1}^{\infty} (\phi_n - \psi_n, y)e_n \in c_0\]

and with

\[(3.6) \quad \|Uy\| \leq (\sup_{n \in \mathbb{N}} \|\phi_n - \psi_n\|)\|y\| \leq 2\|T\|\|y\|,\]

that is, $\|U\| \leq 2\|T\|$.

Finally, let

\[(3.7) \quad S(y) = T^{-1}(Uy) = \sum_{n=1}^{\infty} (\phi_n - \psi_n, y)x_n \text{ for all } y \in Y.\]

Then

\[\|S\| = \|T^{-1}U\| \leq 2\|T\| \cdot \|T^{-1}\| = 2\alpha\]

and
\[\|Sf(x) - x\| = \|\sum_{n=1}^{\infty} \langle \phi_n - \psi_n, f(x) \rangle x_n - \sum_{n=1}^{\infty} \langle x_n^*, x \rangle x_n\|\]

\[= \lim_{n \to \infty} \|\sum_{i=1}^{n} \langle \phi_i - \psi_i, f(x) \rangle x_i - \sum_{i=1}^{n} \langle x_i^*, x \rangle x_i\|\]

\[= \lim_{n \to \infty} \|\sum_{i=1}^{n} (\langle \phi_i, f(x) \rangle - \langle x_i^*, x \rangle) x_i - \sum_{i=1}^{n} \langle \psi_i, f(x) \rangle x_i\|\]

\[\leq \limsup_{n \to \infty} \|\sum_{i=1}^{n} (\langle \phi_i, f(x) \rangle - \langle x_i^*, x \rangle) x_i\| + \limsup_{n \to \infty} \|\sum_{i=1}^{n} \langle \psi_i, f(x) \rangle x_i\|\]

\[= \limsup_{n \to \infty} \|T^{-1} \sum_{i=1}^{n} (\langle \phi_i, f(x) \rangle - \langle x_i^*, x \rangle) e_i\| + \limsup_{n \to \infty} \|T^{-1} \sum_{i=1}^{n} \langle \psi_i, f(x) \rangle e_i\|\]

\[\leq \|T^{-1}\| \cdot \limsup_{n \to \infty} (\|\sum_{i=1}^{n} (\langle \phi_i, f(x) \rangle - \langle x_i^*, x \rangle) e_i\| + \|\sum_{i=1}^{n} \langle \psi_i, f(x) \rangle e_i\|)\]

\[\leq \|T^{-1}\| (\sup_{n} |\langle \phi_i, f(x) \rangle - \langle x_i^*, x \rangle| + \sup_{n} |\langle \psi_i, f(x) \rangle|)\]

\[\leq 8\varepsilon \|T\| \cdot \|T^{-1}\| = 8\varepsilon \alpha.\]

Thus, our proof is complete. \(\Box\)

Acknowledgements

The authors would like to thank the referee for his (her) insightful and helpful suggestions on this paper.

References

[1] F. Albiac and N.J. Kalton, *Topics in Banach Space Theory*, Graduate Texts in Mathematics 233, Springer, New York, 2006.

[2] L. Bao, L. Cheng, Q. Cheng and D. Dai, *On universally left-stability of \(\varepsilon\)-isometry*, Acta Math. Sin., Engl. Ser. 29 (2013), no. 11, 2037–2046.

[3] Y. Benyamini and J. Lindenstrauss, *Geometric Nonlinear Functional Analysis I*, Amer. Math. Soc. Colloquium Publications, Vol.48, Amer. Math. Soc., Providence, RI, 2000.

[4] L. Cheng, Y. Dong and W. Zhang, *On stability of Nonsurjective \(\varepsilon\)-isometries of Banach spaces*, J. Funct. Anal. 264 (2013), 713–734.
[5] L. Cheng and Y. Zhou, *On perturbed metric-preserved mappings and their stability*, J. Funct. Anal., to appear.

[6] M.M. Day, *Normed Linear Spaces*, Berlin, 1958.

[7] S.J. Dilworth, *Approximate isometries on finite-dimensional normed spaces*, Bull. London Math. Soc. 31 (1999), 471–476.

[8] Y. Dutriex and G. Lancien, *Isometric embeddings of compact spaces into Banach spaces*, J. Funct. Anal. 255 (2008), 494–501.

[9] M. Fabian, P. Habala, P. Hjek, V. Montesinos and V., *Zizler, Banach Space Theory*, CMS Books in Mathematics, 1st Edition, 2011.

[10] T. Figiel, *On non linear isometric embeddings of normed linear spaces*, Bull. Acad. Polon. Sci. Math. Astro. Phys. 16 (1968), 185–188.

[11] J. Gevirtz, *Stability of isometries on Banach spaces*, Proc. Amer. Math. Soc. 89 (1983), 633–636.

[12] G. Godefroy and N.J. Kalton, *Lipschitz-free Banach spaces*, Studia Math. 159 (2003), 121–141.

[13] P.M. Gruber, *Stability of isometries*, Trans. Amer. Math. Soc. 245 (1978), 263–277.

[14] D.B. Goodner, *Projections in normed linear spaces*, Trans. Amer. Math. Soc. 69 (1950), 89–108.

[15] D.H. Hyers, S. M. Ulam, *On approximate isometries*, Bull. Amer. Math. Soc. 51 (1945), 288–292.

[16] J. Lindenstrauss, *On complemented subspaces of m*, Israel J. Math. 5 (1967), 153–156.

[17] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces (I)*, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

[18] S. Mazur and S. Ulam, *Sur les transformations isométriques d’espaces vectoriels normés*, C.R. Acad. Sci. Paris 194 (1932), 946–948.

[19] M. Omladič and P. Šemrl, *On non linear perturbations of isometries*, Math. Ann. 303 (1995), 617–628.
[20] S. Qian, \textit{ε-Isometric embeddings}, Proc. Amer. Math. Soc. 123 (1995) 1797–1803.

[21] P. Šemrl and J. Väisälä, \textit{Nonsurjective nearisometries of Banach spaces}, J. Funct. Anal. 198 (2003), 268–278.

[22] A. Sobczyk, \textit{Projection of the space (m) on its subspace c_0}, Bull. Amer. Math. Soc. 47 (1941), 938–947.

[23] J. Tabor, \textit{Stability of surjectivity}, J. Approx. Theory 105 (2000) 166–175.

[24] J. Wolfe, \textit{Injective Banach spaces of type $C(T)$}, Israel J. Math. 18 (1974), 133–140.

[25] M. Zippin, \textit{The separable extension problem}, Israel J. Math. 26 (1977), 372–387.