Deterministic physical systems under uncertain initial conditions: the case of maximum entropy applied to projectile motion

Alejandra Montecinos1, Sergio Davis1,2 and Joaquin Peralta1

1Universidad Andres Bello, Departamento de Ciencias Físicas, Sazié 2212 piso 7, Santiago, Chile
2Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile

E-mail: alejandramontecinos@unab.cl

Received 1 December 2017, revised 17 January 2018
Accepted for publication 13 February 2018
Published 17 May 2018

Abstract

The kinematics and dynamics of deterministic physical systems have been a foundation of our understanding of the world since Galileo and Newton. For real systems, however, uncertainty is largely present via external forces such as friction or lack of precise knowledge about the initial conditions of the system. In this work we focus on the latter case and describe the use of inference methodologies in solving the statistical properties of classical systems subject to uncertain initial conditions. In particular we describe the application of the formalism of maximum entropy (MaxEnt) inference to the problem of projectile motion, given information about the average horizontal range over many realizations. By using MaxEnt we can invert the problem and use the provided information on the average range to reduce the original uncertainty in the initial conditions. Also, additional insight into the initial condition’s probabilities, and the projectile path distribution itself, can be achieved based on the value of the average horizontal range. The wide applicability of this procedure, as well as its ease of use, reveals a useful tool with which to revisit a large number of physics problems, from classrooms to frontier research.

Keywords: projectile motion, maximum entropy, inverse problem

(Some figures may appear in colour only in the online journal)
1. Introduction

Classical mechanical systems are completely deterministic, following well-established equations of motion such as Newton’s second law or Hamilton equations. However, uncertainty is still introduced in the lack of control of the initial conditions of a mechanical system. Mechanical systems are usually chaotic; that is, highly sensitive to these initial conditions, with a corresponding loss of predictability. Given a certain statistical distribution of initial conditions, the result is of course a (non-trivial) statistical distribution of outcomes, obtained by propagating the system forwards in time according to the equations of motion. This suggests the opposite situation: given statistical properties of the outcomes of a classical system, can we obtain any information about the initial conditions that produced those outcomes? This is an inverse problem from the point of view of probability theory, which can in principle be addressed using Bayesian inference [1, 2] and/or information theoretical methods [3].

Since the time of Galileo Galilei, projectile motion has been a widely studied phenomenon from a large set of different approaches. These range from including the presence of a resisting medium [4] to highly accurate analytical functions [5]. This particular motion presents an almost endless list of uses in various technological areas, such as ballistics [6-9], sports [10, 11], and rockets [12, 13], among others. In spite of the large body of information on projectile motion, we are not aware of previous work where it is treated as an inverse problem, in which information at later times is known and from which the initial conditions are inferred.

In this work we propose and solve the problem of a large number of realizations of projectile motion with a known average horizontal range \bar{R}, where we infer the most unbiased probability distribution of initial angle θ_0 and speed v_0. This is achieved by the use of the maximum entropy principle (MaxEnt).

Our application to projectile motion is only a guide to the proposed procedure, and its choice is based fundamentally in strengthening statistical methods in students. In particular, the projectile motion is intuitive, widely discussed, and has an explicit, simple analytical solution. By understanding the theoretical foundations that allow the solution of this kind of problem, students will be able to diversify their applicability to many other problems known in physics.

2. The principle of maximum entropy

The principle of maximum entropy [14] (MaxEnt for short), proposed by Edwin T. Jaynes in 1957, is extensively used as a general tool of probabilistic inference [15] applicable to numerical data analysis [16], image reconstruction [17], and inverse problems in general [18]. In its modern formulation, MaxEnt establishes that the most unbiased probability distribution P, given some state of knowledge I, is the one that maximizes the Shannon–Jaynes entropy S [P] (known also as relative entropy or the negative of the Kullback–Leibler divergence), given by [19]

$$S(I_0 \rightarrow I) = -\int dx P(x|I) \ln \frac{P(x|I)}{P(x|I_0)},$$

while being consistent with said knowledge. Here $x = (x_1, ..., x_N)$ is the N-component vector of continuous degrees of freedom of the system and $P(x|I_0)$ represents a prior probability distribution, used as a starting point for the inference.
By maximizing $S(I_0 \rightarrow I)$ in equation (1), we obtain the probabilistic model that contains the least amount of information (i.e. the least biased) while reproducing the features one demands of it. Consider a constraint on the known expectation f_0 of a function $f(x)$ (this knowledge is represented by I). According to MaxEnt, the most unbiased model is given by maximizing S in equation (1) with the constraint $\langle f(x) \rangle = f_0$. We will solve this variational problem by means of the Lagrange multiplier method to impose constraints; that is, we maximize the following functional

$$S = -\int dx P(x|I) \ln \frac{P(x|I)}{P(x|I_0)} - \lambda \left(\int dx P(x|I)f(x) - f_0 \right) + \mu \left(\int dx P(x|I) - 1 \right),$$

where the Lagrange multipliers λ and μ impose the constraint $\langle f(x) \rangle = f_0$ and normalization, respectively. The maximum entropy solution is given by the extremum condition

$$\frac{\delta S}{\delta P(x|I)} = 0,$$

which leads to

$$-\left(1 + \ln \frac{P(x|I)}{P(x|I_0)} \right) - \lambda f(x) + \mu = 0.$$

Then $P(x|I)$ is given by

$$P(x|\lambda) = \frac{1}{Z(\lambda)} \exp(-\lambda f(x))P(x|I_0),$$

where the normalization constant

$$Z(\lambda) = \int dx \exp(-\lambda f(x))P(x|I_0)$$

is known as the partition function, and the Lagrange multiplier λ is fixed by the constraint equation

$$-\frac{\partial}{\partial \lambda} \ln Z(\lambda) = f_0.$$

This is a generalization of the formalism used to derive the canonical ensemble in statistical mechanics [20], in which case a uniform prior $P(x|I_0)$ is considered, f corresponds to the Hamiltonian of the system, and λ is the inverse temperature $\beta = 1/k_B T$.

In this work, we use the knowledge of maximum horizontal distance (range) R of a projectile launched many times as $f_0 = \bar{R}$, with $f(v_0, \theta_0) = R(v_0, \theta_0)$. By using MaxEnt we are able to determine the most unbiased probability distribution of the initial conditions (v_0, θ_0) of the projectile motion. Our results determine for the first time the most probable initial conditions, based on the knowledge of the average range of a large number of projectile throws. We check the validity of our analytical results by comparing with Monte Carlo sampling of compatible trajectories.

The paper is organized as follows. After this introduction, in section 3 we provide a detailed analysis of the use of the maximum entropy principle and how this allows us to connect our known information with a distributed set of probable projectile motions. Section 4 presents the results of Monte Carlo simulations used to validate our exact results. A final discussion of our results alongside insights from the techniques presented are given in section 5.
3. Methodology

3.1. Probability density function

We consider the known two-dimensional motion of a projectile under the action of a constant downwards acceleration, launched from ground level \((y = 0)\) at an initial angle of \(\theta_0\) with an initial speed \(v_0\). The trajectory \(y(x)\) of the projectile in the plane is given by the parabola

\[
y(x) = x \tan \theta_0 - \left(\frac{g}{2v_0^2 \cos^2 \theta_0}\right)x^2,
\]

with \(g = g\hat{y}\) being the acceleration acting on the projectile. From here, it is straightforward that the range, i.e. the maximum value of \(x\) when touching the ground, is

\[
R(v_0, \theta_0) = \frac{v_0^2}{g} \sin(2\theta_0). \tag{8}
\]

For a given initial angle \(\theta_0\) and speed \(v_0\), the kinematics of the projectile are of course deterministic. However, a given horizontal range \(R\) can be obtained by an infinite combination of initial speeds and launch angles. Accordingly, we will now consider a problem where all that is known is the individual values of \(R\) for a large number \(n\) of throws. In fact, we will consider only their average value

\[
\bar{R} = \frac{1}{n} \sum_{i=0}^{n} R_i
\]
as known. As \(n\) becomes large we can identify \(\bar{R}\) with the expected value \(\langle R \rangle\) according to the law of large numbers \([21, 22]\). Our problem now is to find the most unbiased estimate for the probability distribution of initial values \(\theta_0\) and \(v_0\) compatible with a given \(\bar{R}\), and for this we use the MaxEnt formalism.

The probability of obtaining a projectile motion with initial conditions of \(\theta_0\) and \(v_0\) for a specific value of \(\bar{R}\) is, in accordance with equation (5), given by

\[
P(v_0, \theta_0 | \bar{R}) = \frac{1}{Z(\lambda)} P(v, \theta | \bar{R}) e^{-\lambda R(v, \theta)} = P(v, \theta | \lambda), \tag{9}
\]

where \(P(v, \theta | \lambda)\) is the prior probability distribution; that is, the probability of these initial values without considering the average range. Please note that we will use \(P(\lambda | \bar{R})\) and \(P(\lambda)\) indistinctly, because \(\lambda = \lambda(\bar{R})\) by equation (6). The prior probability \(P(v, \theta | \lambda)\) is actually fixed by the geometry of the phase space, as follows. For \(v\) in two-dimensional Euclidean space, \(P(v, \theta | \lambda)\) is a constant, as all points in the plane are equivalent. By using polar coordinates \(v = v\hat{r} + \theta\hat{\theta}\), we can determine the unique distribution \(P(v, \theta | \lambda)\) compatible with flat \(P(v_0, \theta_0 | \lambda)\) as

\[
P(v, \theta | \lambda) = (\delta(||\vec{v}|| - v)\delta(\mathcal{A}(v_0, v_0) - \theta))_{l_0},
\]

where \(\mathcal{A}(v_0, v_0)\) is the angle between \(v\) and the horizontal \((x)\) axis. Due to the circular symmetry of the polar representation, the angles are clearly equivalent. However, as the diameter (and therefore, the number of points) increases linearly with \(v\), the prior probability distribution of \(v\) is not uniform. Therefore, the joint prior probability distribution is described by

\[
P(v, \theta | \lambda) = \frac{1}{k} \int_0^{\pi \max} dv' \delta(v' - v) = \frac{v^{\Theta(v_{\max} - v)}}{\pi v_{\max}^2}, \tag{10}
\]

where \(\Theta(v_{\max} - v)\) is the Heaviside step function and \(k\) is a normalizing constant.
by using a maximum allowed value for \(v \), given by \(v_{\text{max}} \). As we observe in equation (10), the \(\delta \) functions are integrated and become Heaviside step functions \(\Theta \) for \(v \). The final expression for the probability density is

\[
P(v, \theta|I_0) = \frac{v_0^{\Theta(v_{\text{max}} - v)}}{\Delta v_{\text{max}}} \Theta\left(\theta - \frac{\pi}{4} + \Delta\right) \Theta\left(\theta - \frac{\pi}{4} - \Delta\right),
\]

where we have introduced a new parameter \(\Delta \) that allows us to constrain the values of \(\theta \), avoiding the physical singularities at \(\theta = 0 \) and \(\theta = \pi/2 \), where the horizontal range \(R \) vanishes for any initial velocity \(v_0 \). Then, by defining \(\theta \) in such a way that \(\frac{\pi}{4} - \Delta < \theta < \frac{\pi}{4} + \Delta \), we now have the horizontal range given by equation (8) well-defined when \(\Delta < \frac{\pi}{4} \). We use \(\theta_{\pm} = \frac{\pi}{4} \pm \Delta \) to simplify the notation. Using this expression in (9), we have

\[
P(v, \theta|\lambda, I_0) = \frac{1}{Z(\lambda)} \Theta(v) \Theta(v_{\text{max}} - v) \Theta(\theta_{\pm} - \theta) \times \Theta(\theta - \theta_{\pm}) v e^{-\frac{\lambda \cos^2(2\theta)}{2}},
\]

with the partition function \(Z(\lambda) \) being given by

\[
Z(\lambda) = \int_{0}^{v_{\text{max}}} dv \int_{\theta_{\pm}}^{\theta} d\theta e^{-\frac{\lambda \cos^2(2\theta)}{2}}.
\]

Despite the possibility of solving these integrals by numerical methods, we will focus primarily on the analytical forms for these equations, if they exist. To obtain the distribution form, we should consider throws on an unlimited range for \(v \), so we can take the \(v_{\text{max}} \rightarrow \infty \) limit. By using this condition in equation (13), we obtain an explicit form for the partition function,

\[
Z(\lambda) = \frac{g}{4\lambda} \ln \left(\frac{\tan \theta_{\pm}}{\tan \theta_{\pm}}\right).
\]

The value of \(\lambda \) is obtained from the constraint equation (equation (6)) as

\[
-\frac{\partial}{\partial \lambda} \ln Z(\lambda) = \bar{R},
\]

which leads us to \(\lambda = \frac{1}{\bar{R}} \). With this we have completely determined the probability density function of initial conditions as a function of the average range, \(\bar{R} \).

By equations (12) and (14), we can determine the average trajectory, from equation (7) and the standard assumption of \(y(x) \geq 0 \) for the projectile motion. Therefore, a single trajectory with the constraint on \(y(x) \) is given by

\[
y(x) = \Theta\left(\frac{v^2 \sin(2\theta)}{g} - x\right) \left(\tan \theta_{0} x - \frac{g}{2v_{0}^2 \cos^2 \theta_{0}} x^2\right).
\]

Now we can use the probability distribution in equation (12) to compute the average trajectory of the projectile, which is given by

\[
\langle y(x) \rangle_{\bar{R}} = \frac{\tan \theta_{\pm} - \tan \theta}{\ln \left(\frac{\tan \theta_{\pm}}{\tan \theta}\right)} \left(x e^{-x/\bar{R}} - \frac{1}{\bar{R}} x^2 \Gamma\left(0, \frac{x}{\bar{R}}\right)\right),
\]

where the notation \(\Gamma(a, b) \) corresponds to the incomplete gamma function, defined by

\[
\Gamma(a, b) = \int_{b}^{\infty} dt \ e^{-t} t^{a-1}.
\]
Here we note that the average trajectory is no longer a parabola, but has long tails for large values of x. However, it becomes a parabola again in the limit $R \to \infty$. Similarly, we can determine the statistical average of the initial angle θ_0, which corresponds to

$$
\langle \theta_0 \rangle = \frac{2}{\ln \left(\tan \frac{\theta_0}{\tan \theta} \right)} \int_{\theta_0}^{\theta} d\theta \frac{\theta}{\sin 2\theta}.
$$

(18)

From here it is straightforward to obtain the probability distribution of the initial angle θ_0 as

$$
P(\theta | \bar{R}) = \frac{2}{\ln \left(\tan \frac{\theta_0}{\tan \theta} \right)} \sin 2\theta.
$$

(19)

On the other hand, the statistical average of the initial velocity v_0 is given by

$$
\langle v_0 \rangle = \frac{4}{R \ln \left(\tan \frac{\theta_0}{\tan \theta} \right)} \int_0^{\theta_0} dv \int_{\theta_0}^\infty d\theta e^{-\frac{v^2 \sin(2\theta)}{R}}.
$$

(20)

We are able to identify the probability distribution of the velocity, which is given by

$$
P(v | \bar{R}) = \frac{4}{R \ln \left(\tan \frac{\theta_0}{\tan \theta} \right)} v \int_0^{\theta_0} d\theta e^{-\frac{v^2 \sin(2\theta)}{R}}.
$$

(21)

We can also compute the probability distribution of the different values of range R, given its average \bar{R},

$$
P(R | \bar{R}) = \frac{1}{R} e^{-R/\bar{R}},
$$

(22)

which, interestingly, is simply an exponential distribution. We can understand the shape of the R probability distribution by entropic arguments. According to the principle of MaxEnt, the distribution of R has to be the simplest that has the correct average \bar{R}. For instance, we could think of a normal distribution centered around \bar{R} instead of zero, but this has lower entropy because it has an additional (unknown) parameter that fixes the width distribution. Our procedure, by construction, finds in this case the exponential distribution without any ambiguity.

This result implies that the probability of reaching or going beyond a horizontal distance r given \bar{R} decreases with r as

$$
P(R \geq r | \bar{R}) = \exp(-r/\bar{R}),
$$

(23)

so it is zero only at infinity. For instance, in order to have a ‘1 in 20 chance’ (5%) of being reached by a projectile, one has to stand at a distance $r_{20} = \bar{R} \ln 20 \sim 3\bar{R}$, while $r_{1000} \sim 7\bar{R}$ for a ‘1 in 1000 chance’ (0.1%).

With the distribution given by equation (13) and the statistical averages of the initial conditions of the problem (equations (18) to (21)), we can gain some understanding and interpretation of the problem based on this prior information. In order to validate our analytical results, we numerically generated a large dataset of (v, θ) values following the
probability distribution in equation (12) by means of the Metropolis–Hasting algorithm [23]. With this we are able to

(i) correlate angle and speed averages of the data, which we will define as the input value for an average condition trajectory;

(ii) determine the probability distribution of the angles and velocities, to link simulation data with analytical distributions of these parameters; and

(iii) average all trajectories generated in the distribution.

4. Results

We present results for datasets of initial (v, θ) values that are sampled from the probability distribution defined by equation (13) using the Metropolis–Hasting algorithm [23]. For all the cases, we define the known average range $\bar{R} = 1$ m and the acceleration of gravity $g = 9.8$ m s$^{-2}$. The Metropolis–Hastings procedure involved 8 million Monte Carlo steps, but only the last 320 000 were considered for production. We used a value of $\Delta = 0.70$, close to $\pi/4 \sim 0.7854$, allowing a broad number of θ values in the distribution. The samples were generated using an acceptance rate of $\sim 30\%$, as is usually imposed in Metropolis implementations.

Analyses of the probability distributions and trajectories were determined numerically, for comparison with the analytical forms presented in section 3. Figure 1 presents some of the generated trajectories in red. The blue curve corresponds to the trajectory built from the average values of $\langle \theta \rangle$ and $\langle v \rangle$, using equation (7). We see that the obtained range using the averages of θ_0 and v_0 is far from the average value \bar{R}. Alongside this, we present the average curve according to the distribution of trajectories. As is expected from equation (16),

![Figure 1. Trajectories for different realizations of projectile motion. The red lines are a set of curves provided by equation (7) with initial conditions sampled from equation (12). The blue line corresponds to equation (7) using the average of v_0 and θ_0 from the probability distribution. The black line corresponds to the average of all curves given by equation (16), while the green line corresponds to the average using the curves numerically sampled from the distribution.](image-url)
we observe the long-tail behavior coming from the exponential and incomplete gamma function $\Gamma(0, x/R)$. Please note that the long tail in the average curves of figure 1 cannot be realized in real life for single shots, as the physical trajectories are of course parabolas. However, we can use these long-tailed curves as statistical information on the ensemble of projectile shots, which can guide the zones with least probability of impact.

For the ‘ideal’ case, where the projectile hits right into R, the maximum y will always occur at $x = R/2$. By using $(R)_{v_0, \theta_0} \sim 1.09$ we have that $R/2 \sim 0.55$, which is close to the mentioned numerical value. For the case of $R = 1$, the maximums of equations (16) and (21) correspond to 0.61 and 2.74 respectively, which are in excellent agreement with the data provided by the simulations (0.65 and 2.72, respectively). A larger number of curves is displayed in figure 2, by using a color-scale scheme. Here the curves are colored according to their range R: if R is close to 0, R, and $2R$, then the colors will be graduated from blue, red, and green respectively.

The histogram of R compatible with R according to equation (8) is presented in figure 3. We observe a close agreement with the exponential probability distribution in equation (22) (solid line).

Figure 4 shows the histogram of the initial velocity v_0, having in principle values ranged from 0 to ∞. However, it is important to notice that this quantity is still constrained by the average range \bar{R}, as is presented in equation (21). We can see a narrow and well-defined distribution centered at 2.7 ms$^{-1}$. The red line represents the analytical distribution computed using numerical integration, given by equation (21). There is a good agreement between the Monte Carlo data and the predicted numerical distribution.

As a contrast, the angle θ is more confined, for both physical and numerical reasons. From a physics point of view, angles larger than $\frac{\pi}{2}$ do not make sense for the projectile motion, and from a numerical point of view, the singularity of the solutions (equation (11)) is evident for the case of $\theta = 0$ and $\theta = \frac{\pi}{2}$. Figure 5 presents the results of the angular distribution. In the distribution of initial angles, we observe concentrations at around 0 and 90
The reason is a consequence of the distribution of R, in which the range is concentrated around the lower values. Then, equation (8) implies that the most probable values of $\sin^2(\theta)$ are also located around zero, hence θ becomes concentrated around 0 and 90 degrees.

Another interesting point is to evaluate the possible correlations between initial speed and angle, and for this we present in figure 6 the scatter plot of (v_0, θ_0) pairs. We see that for slow
speeds the angle distribution is uniform, while for high speeds it becomes concentrated around $\theta = 0$ and $\theta = \pi/2$. This is expected, as for high speeds the requirement of a low value of \bar{R} constrains the angles to approach $\sin 2\theta \approx 0$.

5. Conclusions

By the use of the maximum entropy formalism, we have shown that the problem of inferring the initial conditions for deterministic physics problems is far from being intractable. MaxEnt
allows us to provide a concise mathematical statement of the inverse kinematic problem, which was solved both analytically and numerically via Monte Carlo simulation. We have described the details of the procedure to infer the probability distribution of initial conditions, using projectile motion as an example. Statistical sampling using Monte Carlo (Metropolis–Hastings) was made in order to check the validity of our analytical results. Our results constitute a proof-of-concept of the maximum entropy formalism applied to solve the initial conditions of deterministic kinematic and dynamical problems, given information of quantities measured at posterior times. By using this methodology, undergraduate and graduate students as well as researchers can introduce and quantify uncertainty into their physical models for particular problems. For instance, it is relatively straightforward to extend this treatment to other mechanical problems such as pendulum motion, planetary orbits, and motion under frictional forces, among others.

Acknowledgments

This work is supported by Proyecto FONDECYT 1140514. JP also acknowledges partial support from Proyecto FONDECYT Iniciación 11130501 and Proyecto UNAB DI-15-17/RG. The authors acknowledge Prof. Alfonso Toro, from Universidad Andrés Bello, for his valuable comments on the work.

ORCID iDs

Alejandra Montecinos @ https://orcid.org/0000-0002-0771-815X

References

[1] Jaynes E T 2003 Probability Theory: The Logic of Science (Cambridge: Cambridge University Press)
[2] Dose V 2003 Bayesian inference in physics: case studies Rep. Prog. Phys. 66 1421–61
[3] Cover T M and Thomas J A 2006 Elements of Information Theory (New York: Wiley)
[4] Stewart S M 2012 On the trajectories of projectiles depicted in early ballistic woodcuts Eur. J. Phys. 33 149
[5] Turkyilmazoglu M 2016 Highly accurate analytic formulae for projectile motion subjected to quadratic drag Eur. J. Phys. 37 035001
[6] Hayen J C 2003 Projectile motion in a resistant medium Int. J. Non-Linear Mech. 38 357–69
[7] Stewart S M 2005 Linear resisted projectile motion and the Lambert W function Am. J. Phys. 73 199–199
[8] Morales D A 2005 Exact expressions for the range and the optimal angle of a projectile with linear drag Can. J. Phys. 83 67–83
[9] Parker G W 1977 Projectile motion with air resistance quadratic in the speed Am. J. Phys. 45 606–10
[10] Erlichson H 1983 Maximum projectile range with drag and lift, with particular application to golf Am. J. Phys. 51 357–62
[11] Linthorne N P and Everett D J 2006 Soccer Sports Biomechanics 5 243–60
[12] Williams K and Bevilacqua M G 2013 Leon Battista Alberti’s bombard problem in ludi matematici: geometry and warfare The Mathematical Intelligencer 35 27–38
[13] Borghi R 2013 Trajectory of a body in a resistant medium: an elementary derivation Eur. J. Phys. 34 359
[14] Jaynes E T 1957 Information theory and statistical mechanics Phys. Rev. 106 620–30
[15] Press S, Ghosh K, Lee J and Dill K A 2013 Principles of maximum entropy and maximum caliber in statistical physics Rev. Mod. Phys. 85 1115
[16] Sakata M and Sato M 1990 Accurate structure analysis by the maximum entropy method Acta Cryst. A 46 263–70
[17] Gull S F and Daniell G J 1978 Image reconstruction from incomplete and noisy data Nature 272 686–90
[18] Smith C R and Grandy W T Jr 2013 Maximum Entropy and Bayesian Methods in Inverse Problems (New York: Springer Science and Business Media)
[19] Sivia D S and Skilling J 2006 Data Analysis: A Bayesian Tutorial (Oxford: Oxford University Press)
[20] Davis S, Peralta J, Navarrete Y, González D and Gutiérrez G 2016 A Bayesian interpretation of first-order phase transitions Found. Phys. 46 350–9
[21] Baum L E and Katz M 1965 Convergence rates in the law of large numbers Transactions of the American Mathematical Society 120 108–23
[22] Judd K L 1985 The law of large numbers with a continuum of i.i.d. random variables Journal of Economic Theory 35 19–25
[23] Gamerman D and Lopes H F 2006 Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (London: Taylor and Francis)