Choose your own story: combining interactive voting technology and high-fidelity patient simulations in the lecture theatre, for large group preclinical medical education

Clare Guilding

INTRODUCTION
A major challenge faced by undergraduate medical students is application and integration of their basic science knowledge into clinical practice. Such integration forms a crucial component in the effective evaluation and management of patients. However, medical schools often struggle to provide sufficient early clinical experience to facilitate this process, particularly in the first, predominantly preclinical, years. High-fidelity patient simulation provides a unique opportunity for students to apply learned principles in a safe, controlled learning environment, and can encourage a deeper level of understanding through active and experiential learning. Yet, medical student use of simulation in the UK is primarily conducted in small groups in the later, largely clinical, years. A limited number of institutions use lecture theatre-based simulations with the class principally observing. This paper describes the development of interactive lecture theatre-based simulations which enable large cohorts of preclinical medical students to apply their scientific knowledge to clinical scenarios.

SimMan is a high-fidelity patient simulator who can be programmed to display a wide range of physiological and pathophysiological signs and respond appropriately to treatment, be it physical, for example, cardiopulmonary resuscitation, or therapeutic, for example, administration of drugs. This project aimed to incorporate SimMan into preclinical pharmacology teaching, to build a deeper level of understanding of the subject and place the patient at the heart of the learning experience. However, with over 200 students in each year group, a number of challenges arose. First, the classic small group simulation approach was hampered by lack of capacity, mainly timetabling constraints and access to SimMan. Consequently, simulations were developed to be delivered en masse to the whole year group. Using this approach, we had to mitigate a potential lack of engagement from the whole class if only the tutor and/or a few students controlled the scenario.

METHODS
A range of interactive simulated medical emergencies were created for delivery in the lecture theatre. All scenarios ran for approximately 15 min within 1 h sessions, with the remainder of the session dedicated to traditional lecture style delivery of learning outcomes. To enable the entire class to engage in clinical decision-making, split screen and interactive voting technologies were employed. One of the screens projected the physiological readouts from SimMan such as his blood pressure, ECG heart trace and oxygen saturation; the other screen was linked to a TurningPoint interactive quiz (figure 1). Each student was supplied with a TurningPoint handset. At a series of key clinical points throughout the scenario the students were asked to vote individually and anonymously on the most appropriate course of action (eg, initial patient management steps, which drug should be administered). The option with the most votes (whether or not this was the correct management option) was applied to SimMan and the students then observed the physiological effects this had in real time.

Scenarios developed and delivered to date include an acute asthma attack, anaphylaxis and sepsis. Clinical teaching fellows portrayed the emergency doctors, paramedics and nurses. A microphone was attached to SimMan to project his breathing throughout the lecture theatre and a colleague off-stage provided a voice for SimMan in response to questioning. The simulations were followed by a short debrief in class where the consequences of the choices were explained along with explanations as to the correct course of action. A detailed debrief handout was distributed to support independent and further study. There were many learning opportunities afforded by this approach outside of learning the basic pharmacology principles. For first year students, it was the first time they had seen a vital signs monitor, so we orientated them to the screen with questions such as ‘What does SpO2 stand for? What are the normal levels for this?’ The scenarios then incorporated general life support principles such as the ABCDE approach to patient management.

RESULTS
Online end of unit evaluation of this innovation has been positive. Three hundred and ninety-five of the 511 respondents (76%) agreed/strongly agreed with the statement ‘The use of SimMan enhanced my learning experience’ measured on a five-point Likert scale (96% response rate). Thematic analysis of free-text qualitative feedback uncovered two main themes:

1. The simulations demonstrated the effects of drugs in a patient-centred manner.
2. The simulations enabled students to see how the content of
the course applied to clinical practice.
An example of feedback illustrating this latter point is: ‘The
lecture using SimMan at the end was really good, especially
using TurningPoint so that we could try to ‘treat’ SimMan. It
kept the lecture clinically focussed and enabled us to see how
the information would come in useful in practice’. Simulations
where SimMan died, for example, after administration of 5 mL
1:1000 intravenous epinephrine for anaphylaxis, provided par-
ticularly memorable learning experiences. Feedback on this par-
ticular encounter included: ‘SimMan…cemented my learning
on this topic and it made the entire lecture very memorable, I
can still remember the entire SimMan session a year on’.

DISCUSSION
A number of practical learning points have been drawn through
development of this project. It is essential to conduct a full
rehearsal in situ in advance of each session to troubleshoot elec-
tronic or software issues. Success also depends on training of
the clinical teaching fellow assistants. They should be briefed on
the prior level of knowledge of the students so as to highlight
the pertinent clinical factors without overcomplication.
Development of individual SimMan-based revision sessions, not
linked to a particular lecture, would allow more time to be
spent debriefing in class to enable greater exploration of the
clinical learning points in the scenarios. For institutions without
access to a SimMan, the scenarios could work well with a highly
affordable patient monitor app such as SimMon.

In conclusion, engagement of students from the very first
years of their medical education with realistic clinical scenarios
will contextualise the importance of basic science principles.1, 2
The more frequently students are guided through the clinical
decision-making processes surrounding the application of drugs
the more prepared they will be for practice and the more likely
they are to provide a higher quality of care when they encounter
real patients.

Acknowledgements The author wishes to extend many thanks to Dr Joanna
Matthan and her team of anatomy clinical teaching fellows for their input into the
clinical fidelity of the simulations and for helping to run the simulation sessions. She
thanks Dr Deb’s Partner for allowing the removal of SimMan from his home
environment in Clinical Skills. She also acknowledges and thanks Garry Mackenzie
for his expert technical ability in wiring up SimMan and all associated technology
within the lecture theatre

Competing interests None declared.

Ethics approval Faculty of Medical Science Ethics Committee, Newcastle
University.

Provenance and peer review Not commissioned; internally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the
Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

REFERENCES
1. Kulasegaram KM, Martimianakis MA, Mylopoulos M, et al. Cognition before
curriculum: rethinking the integration of basic science and clinical learning. Acad
Med 2013;88:1578–85.
2. Finnerty EP, Chauvin S, Bonamino G, et al. Flexner revisited: the role and value of
the basic sciences in medical education. Acad Med 2010;85:349–55.
3. Dornan T, Littlewood S, Margolis SA, et al. How can experience in clinical and
community settings contribute to early medical education? A BEME systematic review.
Med Teach 2006;28:3–18.
4. Motola I, Devine LA, Chung HS, et al. Simulation in healthcare education: a best
evidence practical guide. AMEE Guide No. 82. Med Teach 2013;35:e1511–30.
5. Issenberg SB, McGaghie WC, Petrusa ER, et al. Features and uses of high-fidelity
medical simulations that lead to effective learning: a BEME systematic review. Med
Teach 2005;27:10–28.