Growth response of pepper (*Piper nigrum* L.) on application Arbuscular Mycorrhizal Fungi (AMF) and the shallot filtrate

A Sahur, Nasaruddin and Muthma'innah
Department of Agronomy, Faculty of Agriculture, Universitas Hasanuddin, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia

E-mail: asmiatyasmiaty@gmail.com, asmiaty.sahur@unhas.co.id

Abstract. This study aimed to determine the effect of Arbuscular Mycorrhiza Fungi (AMF) and shallot filtrate on the growth of pepper plant. The study was conducted in the district of Tompobulu, Bantaeng Regency, South Sulawesi Province from November 2018 to March 2019. The trial was conducted in the form of two factors factorial experiment (F2F) based on randomized block design (RBD) with AMF as the first factor consisted of 4 levels: 0, 2, 4, and 6 g/polybag and shallot filtrate as second factor consisted of 4 levels of 0, 10, 20, 30%. The experimental results show that the interaction of AMF 2 g/polybag + 10% of shallot filtrate resulted in the highest average plant height (60.19 cm) at 18 weeks after planting. Treatment of AMF 6 g/polybag + shallot filtrate of 10% produced the highest chlorophyll b (390.41 μmol.m$^{-2}$), total chlorophyll (818.64 μmol.m$^{-2}$), and stomatal density (24.63 mm2). Application of AMF 4 g/polybag + 30% of shallot filtrate resulted in the largest stomatal aperture area (26.28 mm2). AMF 6 g resulted in the highest average of root length (31.17 cm) and percentage of root infected with mycorrhizal (7.82%).

1. Introduction

Indonesia is one of the largest pepper producer in the world, especially black pepper (Lampung black paper) produced in Lampung and white pepper (Muntok white paper) that comes from Bangka Balitung [1]. Pepper production in Indonesia tends to increase in the last 4 years. In 2015, 81.50 thousand tons, up 1.57% in 2016 ie 82.80 thousand tons and in 2017 reached 84.50 thousand tons, up 2.01% from the previous year, then in 2018 again experienced an increase of 0, 82% amounting to 85.20 thousand tons [1].

Pepper grown in planting material from cuttings which can be done directly or indirectly. Planting cuttings pepper origin require longer periods of time. Provision of plant growth regulator (PGR) can be used to accelerate the development of plant organs [2]. One of the natural plant growth regulator that can be used is the shallot filtrate. Shallot contain allicin and vitamin B1 which can accelerate the growth of new shoots, riboflavin can help the process of plant growth and auxin, and rhizokalin to stimulate root growth [3].

Planting pepper has several problems, among which pepper has a shallow root and flourish only in the area of the soil surface, so that the absorption of nutrients and nutrients are not optimal. Pepper has the ability nutrient absorption and fixation of the car in the soil that is low enough, so that the necessary control efforts to overcome it.
Mechanical control can be done by the use of biological agents. Application of arbuscular mycorrhiza fungi (AMF) can be an alternative to improve plant nutrient uptake [4]. Mycorrhiza is a kind of fungus symbiosis with the roots of plants to improve the uptake of nutrients N, P, and K and improve the efficiency of the use of groundwater, increasing the osmotic pressure of plant cells on the ground that the water level is low enough, so that the plant can continue life and able to increase the rate of vegetative growth and crop production [5].

2. Methodology

The study was conducted in the district of Tompobulu, Bantaeng Regency, South Sulawesi Province, located at an altitude of 400 m above sea level, temperatures ranging from 23 – 29 °C and monthly rainfall of about 282.34 mm. The study was carried out from November 2018 to March 2019.

The tools used were spades, meter, water hoses, sprayer, hoes, paranet 70%, cutter, knife, scissors, stationery, cameras, rope, plastic, blender, electron microscopy, CCM-200 plus, glass preparation and analytical balance.

The materials used are pepper 4 months old, polybags (20 x 35 cm), mycorrhizal fungi arbuscular (granular form), shallot, decoprima, goat manure, rice husks, bamboo, paper labels, water, soil layer of top soil, and distilled water.

2.1. Experimental design

The experiment was arranged in the form of two factors factorial experiment based on a randomized block design (RBD). This experiment consisted of two factors: the first factor was the application of arbuscular mycorrhiza fungi (AMF) with 4 levels ie 0 g AMF as a control (M0), 2 g of AMF per polybag (M1), 4 g of AMF per polybag (M2), and 6 g of AMF per polybag (M3) while the second factor was the application shallot filtrate with 4 levels ie 0 g shallot + 100 ml of distilled water as a control (B0), 10 g shallot + 100 ml of distilled water (B1), 20 g shallot + 100 ml of distilled water (B2), and 30 g shallot + 100 ml of distilled water (B3). So there were 16 combinations of treatments. Each treatment was repeated 3 times, and each experimental unit consisted of 3 plants. If there is a treatment that significantly, then followed by a further test of Honestly Significance Difference (HSD) test with α = 0.05.

2.2. Implementation of the research

2.2.1. Preparation of the shallot filtrate. Making the filtrate onion, prepared 10 g, 20 g and 30 g shallot and added to each 100 ml of distilled water, then crushed using a blender, and filtered to obtain a filtrate.

2.2.2. Selection of planting material. The planting material used was 4 months old pepper seedlings, derived from local varieties of plants cultivated by previously acquired from local farmers.

2.2.3. Applications arbuscular mycorrhiza fungi (AMF). Application of the AMF according to the dose to be used (2 g, 4 g, 6 g) and given to the planting medium by mixing in the planting hole in polybags. Application was done at planting time.

2.2.4. Applications of the shallot filtrate. The shallot filtrate on the pepper seedlings was done by spraying on each plant. Spraying was done every two weeks.

3. Results

3.1. Number of leaves

The measurement results the average number of leaves for four-time observation (P1, P2, P3, P4) show that the AMF and the shallot filtrate as well as their interaction effect had no significant effect on
the number of leaves. Number of leaves increased with the increased of AMF dose and concentration of shallot filtrate (Figure 1).

![Figure 1. The number of leaves starting from the first measurement up to four measurements at (A) treatment Arbuscular Mycorrhiza Fungi (AMF) and (B) shallot filtrate.](image)

3.2. Plant height

The observation on the average height of the plants show that the treatment of AMF was not significant, but the treatment of the shallot filtrate and interaction with AMF treatment gave significant effect.

Observation	Mycorrhizal (M)	The shallot filtrate (B)	HSD 0.05	
	b0	b1	b2	b3
8 WAP				
m0	29.39ab	29.17ab	27.80b	30.36ab
m1	32.76ab	39.27a	35.89ab	26.94b
m2	32.39ab	32.96ab	36.33ab	26.83b
m3	31.67ab	36.06ab	32.67ab	35.86ab
12 WAP				
m0	42.44abcd	41.94abcd	38.20bcd	42.54abcd
m1	45.83abcd	60.19a	53.89ab	33.26d
m1	50.92abc	45.42abc	46.63abcd	36.19c
m3	46.11abcd	47.39abcd	42.00bcd	46.56abcd

Numbers followed by the same letter are not significantly different at HSD test α =0.05. WAP = Weeks After Planting.

Table 1 shows that treatment with AMF 2 g per polybag and shallot filtrate of 10% (M1B1) produces an average of the largest plant height (60.19 cm) and the average of the lowest plant height (33.26 cm) in the treatment of AMF 2 g and filtrate onion 30% (M1B3).
3.3. **Leaf chlorophyll index**

The observation of the average leaf chlorophyll index showed that the AMF and the filtrate onion effect no significant effect on leaf chlorophyll index, but significant interaction. Table 2 shows that treatment with filtrate AMF 4 g of onion 10% (M2B1) produced an average of the largest leaf chlorophyll index (160.85) and the average of the lowest chlorophyll index (135.99) in the treatment of AMF 2 g and the shallot filtrate of 10% (M1B1).

Table 2. Average of leaf chlorophyll index at different doses of Arbuscular Mycorrhizae Fungi (AMF) and different concentration of shallot filtrate.

Mycorrhizal (M)	The shallot filtrate (B)	HSD 0.05			
	b0	b1	b2	b3	
m0	142.75ab	139.94b	146.29ab	148.72ab	
m1	147.02ab	135.99b	152.58ab	148.58ab	20.53
m2	143.31ab	160.85a	145.00ab	150.61ab	
m3	145.03ab	154.38ab	145.21ab	150.14ab	

Numbers followed by the same letter are not significantly different at HSD test $\alpha = 0.05$.

3.4. **Chlorophyll a, b, and total chlorophyll**

The observation of the average chlorophyll a, chlorophyll b, and total chlorophyll showed that the AMF and the filtrate onion effect is not significant, but the interactions significantly affected chlorophyll a and total chlorophyll. There was no effect on observations of chlorophyll b.

Table 3 shows that the treatment M2B1 (AMF 4 g + shallot filtrate 10%) resulted in the largest average of chlorophyll a (544.34 μmol.m$^{-2}$) and the smallest average was shown by M1B1 (514.73 μmol.m$^{-2}$). The highest average value for the chlorophyll b parameter was shown by M2B1 (390.41 μmol.m$^{-2}$) and the smallest was M1B1 (342.07 μmol.m$^{-2}$), the largest average for total chlorophyll was M2B1 (818.64 μmol.m$^{-2}$) and the smallest was M0B0 (783.53 μmol.m$^{-2}$).

Table 3. Average chlorophyll a, chlorophyll b and total chlorophyll at different doses of Arbuscular Mycorrhizae Fungi (AMF) and different concentration of shallot filtrate

Chlorophyll	Mycorrhizal (M)	The shallot filtrate (B)	HSD 0.05			
		b0	b1	b2	b3	
Chl a	m0	523.59ab	526.67ab	528.01ab	531.27ab	
	m1	528.85ab	514.73b	535.44ab	530.77ab	
	m2	524.30ab	544.34a	526.43ab	533.13ab	
	m3	526.47ab	537.54a	526.67ab	532.56ab	
Chl b	m0	355.41	360.54	362.34	367.63	
	m1	363.75	342.07	374.56	366.81	
	m2	356.51	390.41	381.75	370.74	
	m3	359.88	370.76	360.23	369.83	
Chl Tot	m0	783.53b	788.74ab	790.93ab	796.43ab	
	m1	792.35ab	768.76b	803.47ab	798.73ab	
	m2	784.72b	818.64a	788.29ab	799.57ab	
	m3	788.35ab	807.01ab	788.69ab	798.61ab	

Numbers followed by the same letter are not significantly different at HSD test $\alpha = 0.05$.

```
3.5. **Leaf area**

The observation of the average leaf area show that the treatment of AMF, the shallot filtrate, and its interaction had no significant effect on leaf area.

![Leaf area graph](image)

**Figure 2.** Leaf area at different doses of Arbuscular Mycorrhizae Fungi (AMF) and different concentration of shallot filtrate.

3.6. **Stomata density**

The observation of the average of stomatal density show that the shallot filtrate treatment had a very significant effect as well as AMF treatment and interaction between the treatments which significantly affected the density of stomata.

| Mycorrhizal (M) | The shallot filtrate (B) | HSD 0.05 | | | |
|---|---|---|---|---|---|
|                | b0                      | b1       | b2       | b3       |
| m0             | 21.23abc                | 21.66ab  | 22.08ab  | 16.14bc  |
| m1             | 18.26abc                | 19.53abc | 17.41abc | 15.29bc  | 7.24     |
| m2             | 14.01c                  | 16.99bc  | 16.56bc  | 18.26abc |
| m3             | 15.71bc                 | 24.63a   | 17.83abc | 15.71bc  |

Numbers followed by the same letter are not significantly different at HSD test $\alpha = 0.05$.

3.7. **Stomatal aperture**

The observation of an average area of stomatal aperture show that the shallot filtrate treatment had a highly significant effect, while treatment of AMF and the interaction between the two factors significantly affected the stomatal aperture.

| Mycorrhizal (M) | The shallot filtrate (B) | HSD 0.05 | | | |
|---|---|---|---|---|---|
|                | b0                      | b1       | b2       | b3       |
| m0             | 0.00025c                | 0.00027c | 0.00024c | 0.00044bc|
| m1             | 0.00029c                | 0.00031c | 0.00024c | 0.00062a  | 0.000276 |
| m2             | 0.00023c                | 0.00042bc| 0.00037c | 0.00070a  |          |
Table 5 shows that treatment with AMF 4 g/polybag and shallot filtrate of 10% (M2B3) produced the largest average area of stomata openings (26.28 mm²), while the smallest average stomatal aperture size (14.82 mm²) in the treatment of AMF 6 g/polybag and the shallot filtrate of 20% (M3B2).

3.8. The root length
The observation of the average length of the roots show that the AMF treatment had a highly significant effect and the shallot filtrate treatment had significantly effect. On the contrary, interaction between the two factors had no significant effect on root length.

Table 6 shows that treatment of AMF 6 g (M3) produces an average of the highest root length (31.17 cm) and the average of the lowest root length (22.72 cm) in the treatment of AMF 0 g (M0). While the treatment of the filtrate onion produce an average of the highest root length B1 (10%) with a 27.33 cm root length and average root length was lowest for the treatment B3 (30%) with a length of 23.25 cm root.

Table 6. Average length of roots at different doses of Arbuscular Mycorrhizae Fungi (AMF) and different concentration of shallot filtrate

| Mycorrhizal (M) | The shallot filtrate (B) | Average | HSD 0.05 | | |
|---|---|---|---|---|---|
|                | b0 | b1 | b2 | b3 |       |
| m0             | 23.39 | 24.20 | 19.86 | 23.44 | 22.72b |
| m1             | 24.17 | 26.41 | 22.98 | 19.08 | 23.16b |
| m2             | 28.78 | 27.06 | 21.50 | 21.33 | 24.67b |
| m3             | 32.66 | 31.67 | 31.22 | 29.13 | 31.17a |
| Average        | 27.25a | 27.33a | 23.89a | 23:25a |
| HSD 0.05       | 4.41 |       |       |        |

Numbers followed by the same letter are not significantly different at HSD test α =0.05.

3.9. Percentage of infected root
The observation of the average of the infected root percentage by the AMF show that the treatment had a highly significant effect on the percentage of mycorrhizal infected roots. On the other hand, the shallot filtrate and its interaction with AMF did not affect the parameter.

Table 7. Average Percentage of infected roots by Mycorrhizal fungi at different doses of Arbuscular Mycorrhizae Fungi (AMF)

| Mycorrhizal (M) | Average | HSD 0.05 |
|----------------|---------|----------|
| m0             | 0.71c   |          |
| m1             | 5.14b   |          |
| m2             | 6.68a   | 1.69     |
| m3             | 7.82a   |          |

Numbers followed by the same letter are not significantly different at HSD test α =0.05. Data transformation result (√x + 0.5).
Table 7 shows that treatment of AMF 6 g/polybag (M3) produced an average of the highest percentage of infected root (7.82%), while the lowest average percentage of infected root (0.71%) was shown in the treatment of AMF 0 g/polybag (M0).

4. Discussion
Mycorrhizal symbiosis with the roots of plants can increase the absorption of nutrients N, P and K and improve the efficiency of the use of groundwater, increasing the voltage value osmotic plant cells on the ground that the water level is low enough, so that the plant could go on and be able to increase the rate of vegetative growth and crop production. Nasaruddin [6] stated that good soil structure makes the roots are well developed and the more comprehensive as well as increasing the field of absorption of the nutrients, because the AMF can extend and expand the reach of the roots, then the uptake of plant nutrients increases and crop yields will also rise because of mycorrhizae not only to take phosphorus in soil with low nutrient content but also on perbuhanu unavailable becomes available. AMF association with plants to make efficient use of fertilizers. This is in accordance with the opinion Sudiarti [7], which states that the granting of mycorrhizal fungi were able to save 50% use of nitrogen fertilizers, phosphate fertilizers by 27% and 20% potassium fertilizer.

The filtrate red onions contain growth regulators have a role like Indol Acetic Acid (IAA). This is in accordance with the statement Masitoh [8], that the IAA is the most active auxin for various plants and play an important role in the growth of the optimal pacing. The filtrate onion as a natural growth regulator was instrumental in the growth and development of the pepper plant. According Rahayu and Berlian [9], onion bulbs contain vitamin B1, thiamine, riboflavin, nicotinic acid, and contains plant growth regulator auxin, gebirelin and rhizokalin to stimulate root growth.

Mycorrhiza and shallot filtrate containing hormones that play a role in the physiological processes of the pepper plant. Auxin and gibberellin are hormones that alleged role in extending the road between books pepper seedlings. Auxin plays an active role in encouraging the enlargement of cells stem segments, while the more active gibberellins as controlling plant growth, especially in the division and stimulate and promote the magnification stem segments cells and the formation of chlorophyll in the leaves [10].

5. Conclusions
Based on the results obtained, it can be summed up as follows:
1) Treatment of shallot filtrate show good effect on root length parameter.
2) Arbuscular mycorrhiza fungus (AMF) treatment effect on both the parameters of the number of roots, root length, and the percentage of mycorrhizal infected roots.
3) Interaction between arbuscular mycorrhiza fungi and filtrate shallots show good influence on parameters of plant height chlorophyll a, chlorophyll b, and total chlorophyll, stomatal density and stomatal aperture area.

References
[1] BPS Indonesia 2019 Data Produksi Perkebunan Rakyat Menurut Jenis Tanaman (ribu ton), 2000-2018 https://www.bps.go.id [21 July 2019].
[2] Ulfa M, Marlina, and Marian 2017 Respon pertumbuhan stek lada (Piper nigrum L.) akibat pemberian hormon auxsin Agrotropika Hayati IV 332-341.
[3] Rahayu E and Berlian N 1999 Pedoman Bertanam Bawang Merah (Jakarta: Penebar Swadaya).
[4] Iskandar D 2002 Pupuk Hayati Mikoriza Untuk Pertumbuhan dan Adaptasi Tanaman di Lahan Marginal (Denpasar: Jurusan Tanah. Fakultas Pertanian. Universitas Udayana).
[5] Idhan A and Nursjamsi 2016 Aplikasi mikoriza dan pupuk organik terhadap pertumbuhan tanaman kakao (Theobroma cacao L.) di Kabupaten Gowa Jurnal Perspektif I.
[6] Nasaruddin 2012 Efektifitas Pemanfaatan Azotobacter chroococcum dan Mikoriza Arbuskular (Glomus Sp) Terhadap Pertumbuhan dan Keteresediaan Hara Tanaman Kakao [Thesis]
(Makassar: Program Pasca Sarjana, Universitas Hasanuddin).

[7] Sudiarti D 2018 Pengaruh pemberian cendawan Mikoriza Arbuskular (AMF) terhadap pertumbuhan Kedelai Edamame (Glycine max) J. SainHealth II.

[8] Masitoh S 2016 Pengaruh Konsentrasi Ekstrak Bawang Merah Terhadap Pertumbuhan Stek Batang Buah Naga Merah (Hylocereus costaricensis (Web). Britton & Rose (Bandar Lampung: Fakultas Pertanian, Universitas Lampung).

[9] Rahayu E and Berlian N 2004 Mengenal Variaetas Unggul Dan Cara Budidaya Secara Kontinu Bawang Merah (Jakarta: Penebar Swadaya).

[10] Salisbury F and Ross C 1995 Fisiologi Tumbuhan Jilid I (Bandung: ITB).