~Supplementary material~

NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses

Shisheng Wang¹, Wenxue Li², Liqiang Hu¹, Jingqiu Cheng¹, Hao Yang¹,* and Yansheng Liu².³,*

¹ West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
² Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
³ Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA

Corresponding Author
*Email address: yanghao@scu.edu.cn; yansheng.liu@yale.edu.

Table of Contents

I. Supplementary notes
1. Data Preparation
2. Import Data
3. NA Overview
4. Methods
5. Results and Assessments
6. Help
7. How to run this tool locally?

II. Supplementary tables and figures
Table S1. Description of 23 missing value imputation methods.
Table S2. The summary of NAguideR tested on different operation systems and browsers.
Table S3. The number of detected peptides/proteins and the proportion of missing values in each data set.
Figure S1. Distribution of the time consumption of each imputation method.
Figure S2. Illustration of major steps of the data analysis process in NAguideR.
Figure S3. Distribution of missing values in all the three example datasets.
Figure S4. Comparisons of original values and imputed values of every peptide from every imputation method on the extracted complete data matrix from PhosDIA.

Figure S5. Systematic evaluation analysis of the pepSWATH dataset.

Figure S6. Systematic evaluation analysis of the ProtSWATH dataset.

Figure S7. Comparisons of original values and imputed values of the correlation coefficients among peptides that are derived under ACC_Charge criterion across every imputation method that was directly applied on the full PhosDIA dataset.

Figure S8. Evaluation of every imputation method across different missing proportions on the three proteomics datasets under the proteomic criteria (A: PhosDIA, B: PepSWATH, C: ProtSWATH).

Figure S9. The score distribution of every imputation methods based on the classic criteria in the three proteomics datasets with different biological replicates (Left: PhosDIA, middle: PepSWATH, right: ProtSWATH).

Figure S10. Comparison of the root mean square error (RMSE) of the average correlation coefficients across sample among each method on the pepSWATH data set.

Figure S11. Volcano plots examples for differential expression analysis in PhosDIA (following Figure 5).

Figure S12. Motif analysis of the differentially expressed peptides in the PhosDIA dataset.

III. References
NAguideR integrates up to 23 commonly used missing value imputation methods (described in Table S1) and provides two categories of evaluation criteria (four classic computational criteria and four empirical proteomics criteria) to assess the imputation performance of various methods. Here we present the detailed introduction and operation of NAguideR, by which users can follow to analyze their own data freely and conveniently.

Users can visit this site: http://www.omicsolution.org/wukong/NAguideR. Then the website homepage can be shown like this:

~~ Dear Users, Welcome to NAguideR ~~

NAguideR is a web-based tool, which integrates 23 commonly used missing value imputation methods and provides two categories of evaluation criteria (4 classic criteria and 4 proteomic criteria) to assess the imputation performance of various methods. We hope this tool could help scientists impute the missing values systematically and present valuable guidance to select one proper method for their own data. In addition, this tool supports both online access and local installation.

Basically, there are four main steps in NAguideR:
1. Uploading proteomics expression data and sample information data;
2. Data quality control;
3. Missing value imputation;
4. Performance evaluation.
After this, NAguideR can provide valuable guidance for users to select one proper method for their own data based on the evaluation results. Detailed introduction can be found in the Help part.

Finally, NAguideR is developed by R shiny (Version 1.3.2), and is free and open to all users with no login requirement. It can be readily accessed by all popular web browsers including Google Chrome, Mozilla Firefox, Safari and Internet Explorer 10 (or later), and so on. We would highly appreciate that if you could send your feedback about any bug or feature request to Shisheng Wang at wsszdande2009@outlook.com.

Optional: For large-scale analysis, enter your email here and come back any time (Note: Please also check junk mail if possible)

^_^ Enjoy yourself in NAguideR ^_^
1. Data Preparation

`NAguideR` supports four basic file formats (.csv, .txt, .xlsx, .xls). Before analysis, users should prepare two required data: (i) Proteomics expression table for quantification; (ii) Sample information. The data required here could be readily generated based on results of several popular tools such as MaxQuant (20), PEAKS (21), Spectronaut (22), DIA-NN (23), OpenSWATH (24), and so on. The users then can upload the two data into `NAguideR` with right formats respectively and start subsequent analysis.

1.1 Expression data

There are currently four types of proteomics expression data supported in `NAguideR` (i.e., 'Peptides+Charges+Proteins', 'Peptides+Charges', 'Peptides+Proteins', 'Proteins'), among which the main differences are the first few columns. In addition, users may upload other kinds of omics data (e.g., genomics, metabolomics), for which they can just need to choose the fifth type ('Others'). Please note, the fifth type cannot generate the results based on the proteomic criteria.

1.1.1 Expression data with peptide sequences, peptide charge states, and protein ids

In this situation, peptide sequences, peptide charge states, and protein ids are sequentially provided in the first three columns of input file. Peptide sequences in the first column can be peptides with any post-translational modification (PTM, written in any routine format) or stripped peptides (sequences without PTM). The second column is peptide charge status. The protein ids in the third column should be UniProt ids. From the fourth column, peptides/proteins expression intensity or signal abundance in every sample should be listed. The data structure is shown as below:
1.1.2 Expression data with peptide sequences and peptide charge states

Similar to the above situation, peptide sequences and peptide charge states are sequentially provided in the first two columns of input file. Peptide sequences in the first column can be peptides with post-translational modification (PTM, written in any routine format) or stripped peptides (without PTM). The second column is peptide charge states. From the third column, peptides/proteins expression intensity or signal abundance in every sample should be listed. The data structure is shown as below:
1.1.3 Expression data with peptide sequences, and protein ids

Under this circumstance, peptide sequences, and protein ids are sequentially provided in the first two columns of input file. Peptide sequences in the first column can be peptides with post-translational modification (PTM, written in any routine format) or stripped peptides (without PTM). The protein ids in the second column should be UniProt ids. From the third column, peptides/proteins expression intensity or signal abundance in every sample should be listed. The data structure is shown as below:

Peptides	Protein IDs
B135881 [Phospho (STY)]	A0LVE8
K122005 [Phospho (STY)]	A0LVE6
EP [Phospho (STY)]	A0LVE8
SSSS112 [Phospho (STY)]	A0LVE8
SQ [Phospho (STY)]	A0LVE8
QDQV [Phospho (STY)]	A0LVE8
R123456 [Phospho (STY)]	A0LVE8
S123456 [Phospho (STY)]	A0LVE8

1.1.4 Expression data with protein ids

In this situation, protein ids are provided in the first two columns of input file. The protein ids here should be UniProt ids. From the second column, peptides/proteins expression intensity or signal abundance in every sample should be listed. The data structure is shown as below:

Peptides	Protein IDs
BLK123 [Phospho (STY)]	A0LVE8
K122005 [Phospho (STY)]	A0LVE6
EP [Phospho (STY)]	A0LVE8
SSSS112 [Phospho (STY)]	A0LVE8
SQ [Phospho (STY)]	A0LVE8
QDQV [Phospho (STY)]	A0LVE8
R123456 [Phospho (STY)]	A0LVE8
S123456 [Phospho (STY)]	A0LVE8

Sample names

Peptide sequences

Protein ids

Intensity matrix
1.1.5 Other kinds of omics data

If users want to use NAguideR for other omics data (i.e. genomics, metabolomics), gene/metabolite ids/names should be provided in the first columns of input file. From the second column, genes/metabolites expression intensity or signal abundance in every sample should be listed. The data structure may be shown as below:
1.2 Samples information data
Sample information here means that users should provide sample group identity information. This information could e.g., enable filtration strategy for different group respectively in a later step (see below). The sample names are in the first column and their orders are same as those in the expression data. Group information is in the second column. The data structure is shown as below:

```
Sample names

| Samples   | Groups |
|-----------|--------|
| Phos_Cyc_1| Cyc    |
| Phos_Cyc_2| Cyc    |
| Phos_Cyc_3| Cyc    |
| Phos_Cyc_4| Cyc    |
| Phos_Cyc_5| Cyc    |
| Phos_Cyc_6| Cyc    |
| Phos_Cyc_7| Cyc    |
| Phos_Cyc_8| Cyc    |
| Phos_Cyc_9| Cyc    |
| Phos_Cyc_10| Cyc  |
| Phos_Noco_1| Noco  |
| Phos_Noco_2| Noco  |
| Phos_Noco_3| Noco  |
| Phos_Noco_4| Noco  |
| Phos_Noco_5| Noco  |
| Phos_Noco_6| Noco  |
| Phos_Noco_7| Noco  |
| Phos_Noco_8| Noco  |
| Phos_Noco_9| Noco  |
| Phos_Noco_10| Noco |
```

1.3 Download example datasets
If users want to download the example datasets to their own computer and check the data format locally, they can download them from here:

First, select “Load example data” and the example data will be shown on the right panel interactively. Users can visually observe what the data looks like.
Second, users can download the example data (expression data and sample information data) by clicking the corresponding button. The data are saved as .csv format and users can open them in other software, such as Excel.
2. Import Data

This is the first step, in which users should upload data here or load the example data with the above data formats. By default, we use the example data to show result of every step.

2.1 Uploading data. When users prepare their data (expression and sample information data set), they can upload these data from here:

There are two main panels: first, parameters panel, users can adjust parameters here; second, results panel, many results after users set the parameters will be shown here and users can also download these results.

In the parameters panel of "Import Data", there are two choices for users:

a. Load experimental data. When users choose this option, they can upload their own data here. Users should select the right format based on their data and then click “Browse” button to import the data;

First row as column names: this means whether the first row is column names. If true, you should choose this parameter.

First column as row names: this means whether the first column is row names. If true, you should choose this parameter.

b. Load example data. As described in part 1.3, users can choose this option and download the example data to check them locally.

In the results panel of “Import Data”, if users don’t upload their data, here will show “NAguideR detects that you did not upload your data. Please upload the expression data (or sample information data), or load the example data to check first” to warn users.

Before uploading expression data, users should also recognize which type their data belongs to and choose the right parameter by adjusting the “The first few column types”. The instruction of the column types can be found above (Data Preparation part).
Step 1: Upload Original Data

- Load experimental data
- Load example data

1. Expression data:
 1.1 File format:
 - .csv/bst
 - .xls
 - .xlsx
 1.2 Import your data:
 - Browse...
 - No file selected

1. Expression data:
 - Peptides + Charges + Proteins
 - Peptides + Charges + Proteins
 - Peptides + Charges
 - Peptides + Proteins
 - Proteins
 - Others

Showing 1 to 1 of 1 entries
3. NA Overview

Users can check the missing value situation of their own data and filter those data with a high proportion of missing value in this step. Note, “NA” is short for Not Available, which means missing value here (see below).

3.1 Parameters

1. Missing value type: what the missing values look like in the expression data, for example, Spectronaut (25,26) software usually export “Filtered” as missing values, so users should change this parameter to “Filtered” if their data contain “Filtered”. NAguideR will recognize these characters and replace them with NAs. Any other characters indicating a missing value can be similarly defined.

2. Count NA by each group or not: if true, NAguideR will count the number of missing values in each group and calculate the NA ratio. Otherwise, it calculates the NA ratio across all groups, for example, as below:
There are 2 groups (10 biological replicates in each group) here, if users select this parameter, NAguideR will calculate 2 NA ratios for this peptide (first group: 1/10=0.1, second group: 5/10=0.5), otherwise, only one NA ratio: 6/20=0.3.

3. **NA ratio**: the threshold of NA ratio. Those peptides/proteins with NA ratio above this threshold will be removed.

4. **Median normalization or not**: if true, NAguideR will process median normalization for original data. (Note, NAguideR was not designed to perform sophisticated normalization analysis. Any normalized datasets with NA can be accepted for analysis).

5. **Log or not**: if true, the data will be transformed to the logarithmic scale with base 2.

6. **CV threshold (raw scale)**: the threshold of coefficient of variation. Those peptides/proteins with NA ratio above this threshold will be removed. "raw scale" here means the CV of each peptide/protein is calculate using the data before logarithm transformation.

7. **Height for figure**: users can adjust the height of figures by changing this parameter.

If users set these parameters well, then click “calculate” button, the results will appear on the right panel.

3.2 results of NA overview

a. NA Distribution. This part contains three sub-parts:

a.1 NA data. Here shows the result where the “Missing value type” defined by “NA” will be shown with a blank cell and users can click “Download” button to download this result to their own computer:
a.2 **Plot by column.** Here shows the result of the NA distribution of every sample.

b. **NA filter.** This part will show the filtered result. That means, on the basis of the preset parameters.
(i.e. NA ratio, CV threshold), those objects (peptides/proteins/genes/metabolites) without meeting these requirements would be removed.

c. **Input data check.** This part will show the checking information as a summary note for input data. By default, if there still remain more than half (>50%) objects in the filtered data, *NAguideR* would think that this is acceptable, and will give users a message like below:

Otherwise, *NAguideR* will give some warnings to users, which means users should pay more attention to their own data and those preset parameters. It is recommended that the users should then make sure that there are no problems before they can proceed to the next step:
Step 2: NA Overview

1. Missing value type:
 - NA

2. Could not be each group or NA?
 - NA

3. NA ratio
 - 0.0

4. Linear normalization or not?
 - NA

5. Log or not?
 - NA

6. CT threshold per scale
 - 0.0

Height for figure
 - NA

--- Check information for input data ---

1. There are 54275 rows and 25 columns in the input expression data.
2. After removing those rows with high proportion of missing values and coefficient of variation (the threshold can be set on the left parameter panel), there are 1346 rows within the filtered data.

Warning: 74% of the input data are removed, we suggest you check or adjust your input data and the parameters again. If you can be sure there are no problems on the input data and parameters, you can proceed to the next step.
4. Methods

In this step, users can select any of 23 missing value imputation methods that are currently supported. All methods have been classified into three categories based on their algorithm (Single value approaches, global structure approaches and local similarity approaches). In order to control the running time, we set these fast methods (17 methods) chosen by default. If users choose those slow methods (6 methods), that means the running time will be longer. If users want to try these slow methods, they just need to select the corresponding methods. The detailed information about each method can be found in Table S1. In addition, we also provide the reference for every method just blow each option on the web:

After selecting suitable methods, users need to click 'Calculate' button, and a popup window will be jumped out to show the selected methods, then click 'OK' button and continue:
5. Results and Assessments

This step will process missing value imputation and performance evaluation of every method that users select in “Methods” step. Click “Results and Assessments”, NAguideR will start to impute these missing value items, a process bar will appear in the bottom right corner to tell users where it goes:

![Image of NAguideR interface showing results and assessments]

The result from every imputation method will be shown on the “Results” panel:

![Image of NAguideR interface with results panel]

a. Parameters for ‘Results’. Herein users can change the parameter “Select one method” on the left panel to check relative result, for example, if users select “zero”, it will show the result derived from zero method:
b. *Parameters for ‘Criteria’*. Users can customize the criteria and relative weighting for specific experimental designs and aims. By default, these parameters are not selected and all criteria weights are equal.

b.1 Customize the classic criteria or not? If true, users can set the classic criteria and relative weight they want, by default, four classic criteria (NRMSE, SOR, ACC_OI, PSS) are chosen and their weights are equal. Please note, the number of criteria and weights should be equal, for example, if users select ‘NRMSE’, ‘SOR’, and ‘PSS’, the weights parameter should be type in ‘1;1;1’, which are separated by semicolons, and in this situation, the three criteria weights are all 0.333 (1/3). If users think ‘NRMSE’ should has a higher weight and type in ‘3;1;1’, this means the weight of ‘NRMSE’ is 0.6 (3/5), ‘SOR’ and ‘PSS’ is 0.2 (1/5), respectively:
b.2 *Customize the proteomic criteria or not?* If true, users can set the proteomic criteria and relative weight they want, by default, four proteomic criteria (Charge, PepProt, CORUM and PPI) are chosen and their weights are equal. Please also note, the number of criteria and weights should be equal and other descriptions are similar to those for classic criteria as above. Note, the b.1 and b.2 options enable users to customize the criteria and set relative weightings for those specific experimental designs (e.g., a mixture of protein standards being measured in which no in-vivo protein complex formation or interactions expected).

Especially for type 'Proteins' dataset (see part 1 above), Charge and PepProt criteria cannot be used (As there are no information about charges and peptides in the data), so users should change the parameters like this if they decide to customize the proteomic criteria:

Next, click "Classic criteria" and "Calculate" button. *NAguideR* will assess every method under the four classic criteria:
The tables and figures are provided here under the four classic criteria.

1. This table shows the comprehensive ranks of every imputation method. By default, all criteria weights are equal, if users change their weights, and the comprehensive ranks would also change correspondingly based on the new criteria and weights;

2-5, the tables show the scores of every imputation method based on 'Normalized root mean squared Error (NRMSE)', 'NRMSE-based sum of ranks (SOR)', 'Procrustes sum of squared errors (PSS)', and 'Average correlation coefficient between original value and imputed value (ACC_OI)', respectively;

6. Figures here show the normalized scores of every imputation method under the four classic criteria. 'Normalized Values' here means that every score is divided by the corresponding max value.
1. Comprehensive rank under classic criteria

Method	NEISE_Rank	SDC_Rank	AICC_SD_Rank	FIS_Rank	Rank_Rank
Method 1	1	1	1	1	1
Method 2	1	1	2	2	2
Method 3	2	2	3	3	3
Method 4	3	3	4	4	4
Method 5	4	4	5	5	5
Method 6	5	5	6	6	6
Method 7	6	6	7	7	7
Method 8	7	7	8	8	8

2. Normalized root mean squared Error (NMSE):

Method	NEISE_Rank	SDC_Rank	AICC_SD_Rank	FIS_Rank	Rank_Rank
Method 11	1	1	1	1	1
Method 12	2	2	2	2	2
Method 13	3	3	3	3	3
Method 14	4	4	4	4	4
Method 15	5	5	5	5	5
Method 16	6	6	6	6	6

3. NMSE-based sum of ranks (SDF):

Method	NEISE_Rank	SDC_Rank	AICC_SD_Rank	FIS_Rank	Rank_Rank
Method 17	1	1	1	1	1
Method 18	2	2	2	2	2
Method 19	3	3	3	3	3
Method 20	4	4	4	4	4
Method 21	5	5	5	5	5

4. Proprietary sum of squared errors (PSE):

Method	NEISE_Rank	SDC_Rank	AICC_SD_Rank	FIS_Rank	Rank_Rank
Method 22	1	1	1	1	1
Method 23	2	2	2	2	2
Method 24	3	3	3	3	3

5. Figures:

[Graphs and charts showing data analysis results]
Then click “Proteomic criteria” and “Calculate” button. NAgideR will assess every imputation method under the four proteomic criteria:

The tables and figures are provided here under the four proteomic criteria.

1. This table shows the comprehensive ranks of every imputation method. By default, all criteria weights are equal, if users change their weights, and the comprehensive ranks would also change correspondingly based on the new criteria and weights;

2-5, the tables show the scores of every imputation method based on ‘Average correlation coefficient between peptides with different charges (ACC_Charge)’, ‘Average correlation coefficient between peptides in a same protein (ACC_PepProt)’, ‘Average correlation coefficient between protein complexes (ACC_CORUM)’, ‘Average correlation coefficient between protein complexes (ACC_PPI)’, respectively;

6. Figures here show the correlation coefficient distribution of the original values and the imputed values from every imputation method under the four proteomic criteria. Figures will be instantly updated for a particular NA method that can be specified in “1.1 Select one method” parameter under Step 4 (left panel). The figure example below shows the results of method “zero”.
1. Comprehensive ranks and proteomic offline:

Methods	Change_Rank	RetPut_Bound	CSMB_Bound	NR_Bound	Total_Rank
method	1	1	2	2	2
method 10	1	2	1	1	2
method 20	1	1	1	1	1
method 30	1	1	1	1	1
method 40	1	1	1	1	1
method 50	1	1	1	1	1
method 60	1	1	1	1	1
method 70	1	1	1	1	1
method 80	1	1	1	1	1
method 90	1	1	1	1	1

2. Average correlation coefficient between peptides with different charges (AUC_Charge):

Methods	AUC_Charge
method	0.95365
method 10	0.95365
method 20	0.95365
method 30	0.95365
method 40	0.95365
method 50	0.95365
method 60	0.95365
method 70	0.95365
method 80	0.95365
method 90	0.95365

3. Average correlation coefficient between peptides in a same protein (AUC_Peptide):

Methods	AUC_Peptide
method	0.95365
method 10	0.95365
method 20	0.95365
method 30	0.95365
method 40	0.95365
method 50	0.95365
method 60	0.95365
method 70	0.95365
method 80	0.95365
method 90	0.95365

4. Average correlation coefficient between protein complexes (AUC_CORP):

Methods	AUC_CORP
method	0.95365
method 10	0.95365
method 20	0.95365
method 30	0.95365
method 40	0.95365
method 50	0.95365
method 60	0.95365
method 70	0.95365
method 80	0.95365
method 90	0.95365

5. Average correlation coefficient between protein complexes (AUC_PPI):

Methods	AUC_PPI
method	0.95365
method 10	0.95365
method 20	0.95365
method 30	0.95365
method 40	0.95365
method 50	0.95365
method 60	0.95365
method 70	0.95365
method 80	0.95365
method 90	0.95365

6. Figures:

- AUC_Charge
- AUC_HighP
- AUC_CORP
- AUC_PPI
Next, click ‘Final check’ for checking final imputation results as a summary note. NAguideR will re-check those scores based on every criterion. If everything is acceptable (see below), NAguideR will show a message like:

```
Step 4: Results and Assessments
1. Parameters for Results
   1.1. Select one method
   2. Parameters for Criteria
      2.1. Customize the criteria or not
      2.2. Customize the peptide or criteria name

Final results
1. Based on the classic criteria, the rank first method is log2(p21) (N=21) > log2(p10) (N=10) > log2(p1) (N=1)
2. Based on the protometric criteria, the rank first method is log2(p21) (N=21) > log2(p10) (N=10) > log2(p1) (N=1)

NAguideR checks the fold change between the maximum score and the minimum score for each criterion, if the fold change is below 2, a fact suggesting that no big difference under the corresponding criterion, i.e., that NAguideR cannot provide a significantly discriminant guidance on NA method selection. NAguideR will give some warnings and possible solutions for users to review/re-calculate these imputation results:
```

Here, NAguideR performs a simple check to report if there is any big difference among these imputation methods under more than half of the criteria (by default, NAguideR checks the fold change between the maximum score and the minimum score for each criterion, if the fold change is below 2, a fact suggesting that no big difference under the corresponding criterion, i.e., that NAguideR cannot provide a significantly discriminant guidance on NA method selection). NAguideR will give some warnings and possible solutions for users to review/re-calculate these imputation results:

```
Step 4: Results and Assessments
1. Parameters for Results
   1.1. Select one method
   2. Parameters for Criteria
      2.1. Customize the criteria or not
      2.2. Customize the peptide or criteria name

Final results
1. Based on the classic criteria, the rank first method is log2(p21) (N=21) > log2(p10) (N=10) > log2(p1) (N=1)
2. Based on the protometric criteria, the rank first method is log2(p21) (N=21) > log2(p10) (N=10) > log2(p1) (N=1)

Warning: NAguideR detects the scores based on more than half of the criteria don’t seem to change much (PSS, ACC_Change, ACC_PepProt, ACC_CORUM, ACC_RPP). The imputation results may not be quite acceptable, please check the results again.

Possible solutions:
1. Please check the input data quality in the step 2;
2. Please check the normalization and logarithmic parameters, your data may need to be normalized and logarithmic, or vice versa.
3. The imputation methods you choose may be incompetent to deduce the input results, please choose more complex methods;
4. Please use targeted check for additional analysis. Even if no discriminative results were obtained, this does not mean the NA imputation method(s) failed. NAguideR just failed to provide a clear guidance.
```

Last but not least, NAguideR implements one optional function, ‘Targeted check’, which is designed for many biologists with specific experimental aims. For example, this feature conveniently allows users to directly visualize the results of a particular peptide or protein item (i.e., spiked-in standard peptides, proteins, or known housekeeping proteins like beta-actin, etc.). Therefore, by following their experimental design, they can type in the peptide sequence or protein id in the text area and click the ‘Check’ button.

Then, NAguideR will locate this peptide or protein id in the input and resultant matrix (if the peptide/protein is not listed in the user’s input data, it will give a message, “Target protein/peptide not found. Please make sure the item is included in the input table”, example 1 as below). If the peptide/protein is searched, NAguideR will show the results before and after imputation by using bar plots and provide a note “Target protein/peptide was missed in N=X samples among all N=Y samples” (example 2 as below). This plot should help the users to inspect results following their particular experimental design. If the target protein/peptide is quantified without the need of NA imputation,
NAguideR will still display the bar plots and provide a note, “Target protein/peptide was not missed in any sample” (example 3 as below).

Example 1 (Target protein/peptide not found. Please make sure the item is included in the input table):

Example 2 (Target protein/peptide was missed in $N=10$ samples among all $N=20$ samples):

Example 3 (Target protein/peptide was not missed in any sample):
Target protein was not missed in any sample.
6. Help
This part provides brief introductions and operation manual about NAguideR for users to quickly learn this tool and start to use this tool.

NAguideR

Detailed description
- NA Summary
- Help

1.1 Abstract
Mass spectrometry (MS)-based quantitative proteomics experiments frequently generate data with missing values, which may profoundly affect downstream analyses. A wide variety of missing value imputation methods have been established to deal with the missing value issue. In this article, there is a surveys of different missing value methods, offering a powerful and easy-to-use tool. NAguideR, with a graphical user interface, allows MS-based proteomics data to be imputed using various methods, including a set of imputation methods that are based on the peaking expression, the peak intensity missing value imputation algorithms, and the missing value imputation methods that are based on the NA expression data. NAguideR further provides an imputation tab that allows the user to select an optimal imputation method that is best fitting the expression data. It is a powerful and easy-to-use tool for the process of data analysis and visualization.

2.1 Input data preparation
NAguideR supports four data files, including txt, csv, xls, and xlsx. Before analysis, users should prepare two required data: (1) Protein expression data and (2) features information data. The data required here could be readily generated based on results of several popular tools such as MaxQuant, PEAKS, SpectrumMatch, and so on. Then, you can upload the two data into the software. NAguideR will run with right formats respectively and start subsequent analysis.

2.1.1 Protein expression data
There are four types of protein expression data supported in NAguideR, among which the main differences are the first few columns.

2.1.1.1 Expression data with peptide sequences, peptide charge status, and protein ids
In this situation, peptide sequence, peptide charge status, and protein ids are sequentially provided as the first three columns of input file. Peptide sequences in the first column are the peptide name in the user's database, and protein ids are sequentially provided as the second three columns of input file. The second column in peptide charge status is a list of protein ids in the third column quality control column. If the fourth column as, they are unavailable peptide expression otherwise in every sample. The data structure is shown as below.
7. How to run this tool locally?

NAguideR is an open source software for non-commercial use and all codes can be obtained on our GitHub: https://github.com/wangshisheng/NAguideR. If users want to run NAguideR on their own computer, they should operate as below:

As this tool was developed with R, you may:

a) Install R. You can download R from here: https://www.r-project.org/.

b) Install RStudio. (Recommendatory but not necessary). You can download RStudio from here: https://www.rstudio.com/.

c) Check packages. After installing R and RStudio, you should check whether you have installed these packages (shiny, shinyBS, shinyjs, shinyWidgets, DT, gdata, ggplot2, ggsci, openxlsx, data.table, DT, raster, Metrics, vegan, tidyverse, ggExtra, cowplot, Amelia, e1071, impute, SeqKnn, pcaMethods, norm, imputeLCMD, VIM, rrcovNA, mice, missForest, GMSimpute, DreamAI). You may run the codes below to check them:

```r
if(!require(pacman)) install.packages("pacman")
pacman::p_load(shiny, shinyBS, shinyjs, shinyWidgets, DT, gdata, ggplot2, ggsci, openxlsx, data.table, DT, raster, Metrics, vegan, tidyverse, ggExtra, cowplot, Amelia, e1071, impute, SeqKnn, pcaMethods, norm, imputeLCMD, VIM, rrcovNA, mice, missForest, GMSimpute, DreamAI)
```

Please note, you may find the SeqKnn package (https://github.com/cran/SeqKnn) cannot be installed rightly as it has not been updated for a long time. If so, please download this package from here: https://github.com/wangshisheng/NAguideR/blob/master/SeqKnn_1.0.1.tar.gz. Then you can install this separate package locally:

```r
setwd("path") #path is where the two packages are.
install.packages("SeqKnn_1.0.1.tar.gz", repos = NULL,type="source")
```

d) Run this tool locally

```r
if(!require(NAguideR)) devtools::install_github("wangshisheng/NAguideR")
library(NAguideR)
NAguideR_app()
```

Then NAguideR will be started as below, and the detailed operation about NAguideR can be found in the Supplementary Notes part 1-6:
Dear Users, Welcome to NAguideR

NAguideR is a web-based tool, which integrates 23 commonly used missing value imputation methods and provides two categories of evaluation criteria (4 classic criteria and 4 proteomic criteria) to assess the imputation performance of various methods. We hope this tool could help scientists impute the missing values systematically and present valuable guidance to select one proper method for their own data. In addition, this tool supports both online access and local installation.

Basically, there are four main steps in NAguideR:
1. Uploading proteomics expression data and sample information data;
2. Data quality control;
3. Missing value imputation;
4. Performance evaluation;

After this, NAguideR can provide valuable guidance for users to select one proper method for their own data based on the evaluation results. Detailed introduction can be found in the Help part.

Finally, NAguideR is developed by R shiny (Version 1.3.2), and is free and open to all users with no login requirement. It can be readily accessed by all popular web browsers including Google Chrome, Mozilla Firefox, Safari and Internet Explorer 10 (or later), and so on. We would highly appreciate that if you could send your feedback about any bug or feature request to Shisheng Wang at wslearning@omicsolution.com.

^_^ Enjoy yourself in NAguideR ^=^
II. Supplementary tables and figures

Table S1. Description of 23 missing value imputation methods.

Class	Abbreviation	Manipulation Method	Algorithm Description	Remarks & Suggestions	Function	Speed	Package/R references
zero	zero	zero	Replaces the missing values by 0.	These algorithms are relatively simple and fast. However, they may introduce severe bias in data.	0	Fast	base (1)
minimum	minimum	minimum	Replaces the missing values by the smallest non-missing value in the data.		min		base (2)
colmedian	Column median	Column median	Replaces the missing values by the median of non-missing value in each column.		impute		e1071 (3)
rowmedian	Row median	Row median	Replaces the missing values by the median of non-missing value in each row.		impute		e1071 (3)
Mindet	Deterministic minimum imputation	Perform the imputation of left-censored missing data using a deterministic minimal value approach. Considering an expression data with n samples and p features, for each sample, the missing entries are replaced with a minimal value observed in that sample. The minimal value observed is estimated as being the q-th quantile of the observed values in that sample.		Fast	impute.MinDet	imputeLCM D (4)	
			Performs the imputation of left-censored missing data by random draws from a Gaussian distribution centred to a				

1. Single value methods (SV methods), which mean replacing missing values by a constant or a randomly selected value.
| Minprob | Probabilistic minimum imputation | minimal value. Considering an expression data matrix with \(n\) samples and \(p\) features, for each sample, the mean value of the Gaussian distribution is set to a minimal observed value in that sample. The minimal value observed is estimated as being the \(q\)-th quantile of the observed values in that sample. The standard deviation is estimated as the median of the feature standard deviations. |
|---------|----------------------------------|---|
| PI | Perseus imputation | Replace missing values from normal distribution |
| SVD | Singular value decomposition imputation | Initializes all missing elements with zero then estimate them as a linear combination of the \(k\) most significant eigen-variables iteratively until reaches certain convergence threshold. |
| BPCA | Bayesian PCA missing value estimation | An iterative method using a Bayesian model to handle missing values. |
| MLE | Imputation based on maximum likelihood estimation | Maximum likelihood-based imputation method using the EM algorithm. |

2. Global structure methods (GS methods), which decompose the data matrix or minimize the determinant of the covariance and then iteratively reconstruct the

		These models assume the existence of a global covariance structure among all samples or objects (i.e., proteins/peptides/genes) in the expression matrix. When this assumption is not appropriate, for example, when the proteins exhibit dominant local similarity structures, their imputation may become less accurate.	svdPca Fast pcaMethod s (6)	
			bpcas Slow pcaMethod s (7)	
			prelim.norm, em.norm, imp.norm Fast norm (8)	
Method	Algorithm Description	Imputer Code	Notes	
-----------------	---	--------------	-------	
Impseq	Sequential imputation of missing values Estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values.	impSeq	rrcovNA (9)	
Impseqrob	Robust sequential imputation of missing values Similar to Impseq, but improved by plugging in robust estimators of location and scatter.	impSeqRob	rrcovNA (10)	
KNN	K Nearest Neighbors imputation K-nearest neighbors in the space of peptides/proteins to impute missing expression values.	impute.knn	impute (6)	
Seq-KNN	Sequential K-nearest neighbor Imputes the missing values sequentially from the peptide/protein having least missing values based on KNN method, and uses the imputed values for the later imputation.	SeqKNN	SeqKnn (11)	
trKNN	Truncation k-nearest neighbors imputation Applies a Newton-Raphson (NR) optimization to estimate the truncated mean and standard deviation. Then, Pearson correlation was calculated based on standardized data followed by correlation-based kNN imputation.	sim_trKNN_wrapper	imput_func_s.R (12)	
Method	Description	Imputation Procedure	Implementation	
--------	-------------	----------------------	----------------	
LLS	Local least squares imputation	K variables (peptides/proteins) are selected by Pearson, spearman or Kendall correlation coefficients. Then missing values are imputed by a linear combination of the k selected variables. The optimal combination is found by LLS regression.	llsImpute	pcaMethods (13)
QR	Quantile regression imputation of left-censored data	A missing data imputation method that performs the imputation of left-censored missing data using random draws from a truncated distribution with parameters estimated using quantile regression.	imputeQRILC	imputeLCMD (14)
IRM	Iterative robust model-based imputation	In each step of the iteration, one variable is used as a response variable and the remaining variables serve as the regressors.	irmi	VIM (15)
GRR	Glmnet Ridge Regression	A prediction model is employed for the prediction of missing values by setting a targeted missing variable as outcome and other variables as predictors. Here Glmnet Ridge Regression model is applied as a prediction model.	imputeRegImpute	DreamAI (16)
GMS	Generalized Mass Spectrum missing peaks	Applies a Lasso model to select subsets of detected peaks to predict the missing values using a two-step procedure, two-step Lasso (TS-Lasso).	GMS.Lasso	GMSimpute (17)
Algorithm	Method	Description		
---------------------	----------------------------	---		
Mice-norm	mice (method='norm')	Generates multiple imputations for incomplete multivariate data by Gibbs sampling. Missing data can occur anywhere in the data. The algorithm imputes an incomplete column (the target column) by generating 'plausible' synthetic values given other columns in the data. Each incomplete column must act as a target column, and has its own specific set of predictors. The default set of predictors for a given target consists of all other columns in the data. For predictors that are incomplete themselves, the most recently generated imputations are used to complete the predictors prior to imputation of the target column. The imputation method depends on Bayesian linear regression.		
Mice-cart	mice (method='cart')	Generates multiple imputations for incomplete multivariate data by Gibbs sampling. Missing data can occur anywhere in the data. The algorithm imputes an incomplete column (the target		

and regression trees (column) by generating ‘plausible’ synthetic values given other columns in the data. Each incomplete column must act as a target column, and has its own specific set of predictors. The default set of predictors for a given target consists of all other columns in the data. For predictors that are incomplete themselves, the most recently generated imputations are used to complete the predictors prior to imputation of the target column. The imputation method depends on classification and regression trees.

Method	Description	
RF	Random forest	Imputes missing values particularly in the case of mixed-type data based on a random forest. It can be used to impute continuous and/or categorical data including complex interactions and nonlinear relations. It yields an out-of-bag (OOB) imputation error estimate.
missForest		
Table S2. The summary of *NAguideR* tested on different operation systems and browsers.

Operation System	Version	Chrome	Firefox	Safari
Windows	7	68.0.3440.106	63.0.3	not tested
Linux	CentOS 7	not tested	52.8.0	not tested
MacOS	HighSierra	70.0.3538.110	not tested	12.0.1
Table S3. The number of detected peptides/proteins and the proportion of missing values in each data set.

Level	Peptide level	Protein level	
Dataset	PhosDIA	PepSWATH	ProtSWATH
Total number	54,076	57,687	4,797
Missing value number	41,262 (76.3)	31,769 (55.1)	981 (20.4)
Number after filtered	13,946	36,363	3,640

Note: ‘Total number’ here means the identified peptides/proteins number in each dataset. ‘Missing value number’ means the number of quantified peptides/proteins with missing value in at least one sample, the number in parentheses is the rate of missing value corresponding to “Total number”. ‘Number after filtered’ means the number of quantified peptides/proteins after removing those with high proportion of missing values and coefficient of variation (e.g., those peptides/proteins with 50% proportion of missing values or coefficient of variation above 30% will be removed).
Figure S1. Distribution of the time consumption of each imputation method. Results were obtained from the ProtSWATH dataset, only for the demonstration of speed difference between methods. We repeated 100 times for every method. Note, the time is just a reference for users because it is also related to data size and internet status (or whether computer hardware configuration if running **NAguideR** locally). Obviously, if the data size is smaller and internet speed is fast, the imputation time will be less.
Figure S2. Illustration of major steps of the data analysis process in NAguideR. We take two groups of samples (five biological replicates in each group, labeled A1, A2, A3, A4, A5, B1, B2, B3, B4, B5 in the original intensity data), just for the illustrative example. “Feature” here denotes the identified proteins/peptides.

Original intensity data with missing values (NAs)

Feature 1	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5
Feature 2	NA									
Feature 3	NA									
Feature 4	NA									
Feature 5	NA									
Feature 6	NA									

Complete data from well performed methods

Feature 1	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5
Feature 2	1	1	1	1	1	1	1	1	1	1
Feature 3	1	1	1	1	1	1	1	1	1	1
Feature 4	1	1	1	1	1	1	1	1	1	1
Feature 5	1	1	1	1	1	1	1	1	1	1
Feature 6	1	1	1	1	1	1	1	1	1	1

Step 1: Data quality control.
1.1: Missing value identification, count and visualization.
1.2: If number of NAs > 0.5 (by default)
1.3: remove this feature
1.4: Median normalization (by default)
1.5: if CV > 0.3 (by default)
1.6: remove this feature
1.7: Logarithmic transformation (by default)
output: Filtered data with normalized and logarithmized intensity, NA rate.

Step 2: Missing value imputation.
2.1: Record the missing value positions
2.2: for i in methods (23 imputation methods)
2.3: deduce values
output: Imputed data from each method and missing value positions.

Step 3: Preparing data for evaluation based on the next two types of criteria:
3.1: remove the features with NA based on the missing value positions, the remain data are marked as "original complete data".
3.2: Generating missing values in the original complete data randomly with same NA rate from Step 1 ("Simulated NA data") and record the NA positions.
3.3: Missing value imputation for the data from 3.2.
3.4: Obtain the feature information (e.g., peptide sequences, charges, protein ID)
output: Data suitable for classic criteria and data suitable for proteomic criteria.

Step 4: Assessments of performance with two types of criteria respectively.
4.1: Calculate assessment score based on each criterion.
4.2: Rank each method according to the scores.
output: Assessment scores in each criterion and result visualization.

Classic criteria
- ACC, NRMSE, PSS, SOR

Proteomic criteria
- ACC_Change, ACC_PepProt, ACC_CORUM, ACC_PPI

Imputation Methods
- zero minimum
- colmedian
- roxmeden
- Missing
- Miniprob
- PI
- KNN, Sack-KNN, INN, LLIS, QR, IRI, GRR, OMK
- Mouse-norm, Mouse-cart, RF
- SVD, BPCA, MLE, Impsaq, Impsaqprob
- Local Similarity
- Global Similarity
- Chao's Similarity
Figure S3. Distribution of missing values in all the three example datasets. (A-B) Missing value distribution of each sample and every feature in PhosDIA dataset. (C-D) Missing value distribution of each sample and every feature in PepSWATH dataset. (E-F) Missing value distribution of each sample and every feature in ProtSWATH dataset. 'Feature' here denotes a peptide or protein.
Figure S4. Comparisons of original values and imputed values of every peptide from every imputation method on the extracted complete data matrix from PhosDIA. The adjusted R squared of each result was also obtained by ‘lm’ function and shown in for each method (except zero and minimum method). We first only extracted the complete data matrix and generated random missing values on it with a similar proportion of missing values existed in the original data matrix. Thus, every imputed data point will have a real reference (i.e., the original value) for correlation analysis.
Figure S5. Systematic evaluation analysis of the pepSWATH dataset (Similar to Figure 2). (A) Pearson correlation analysis of the original intensities and imputed intensities based on 23 methods. Density plots illustrate the correlation in detail between the original values and imputed values from minimum, SVD, and Impseqrob respectively. NA here means 'No Result' because the standard deviations of imputed values from zero and minimum method are equal to 0 and hence the cor function returns NA. (B) Comparison of the distribution of the correlation coefficient among original values and 23 imputation methods under the four proteomic criteria. The comprehensive scores distribution of 23 imputation methods under the four classic criteria (C) and four proteomic criteria (D). 'Normalized Values' here means every score is divided by corresponding maximum value.
Figure S6. Systematic evaluation analysis of the ProtSWATH dataset (Similar to Figure 2). (A) Pearson correlation analysis of the original intensities and imputed intensities based on 23 methods. Density plots illustrate the correlation in detail between the original values and imputed values from minimum, SVD, and Impseqrob respectively. NA here means ‘No Result’ because the standard deviations of imputed values from zero and minimum method are equal to 0 and hence the cor function returns NA. (B) Comparison of the distribution of the correlation coefficient among original values and 23 imputation methods under the four proteomic criteria. The comprehensive scores distribution of 23 imputation methods under the four classic criteria (C) and four proteomic criteria (D). ‘Normalized Values’ here means every score is divided by corresponding maximum value.
Figure S7. Comparisons of original values and imputed values of the correlation coefficients among peptides that are derived under ACC_Charge criterion across every imputation method that was directly applied on the full PhosDIA dataset. The adjusted R squared of each result was also obtained by ‘lm’ function and shown for each imputation method.
Figure S8. Evaluation of every imputation method across different missing proportions on the three proteomics datasets under the proteomic criteria (A: PhosDIA, B: PepSWATH, C: ProtSWATH). The proportion of missing values is from 5% to 70% in step of 5%. The lower right part shows the imputation method names with relative marked colors and the grey arrow facilitates the reading of the relative rank of every method.
Figure S9. The score distribution of every imputation methods based on the classic criteria in the three proteomics datasets with different biological replicates (Left: PhosDIA, middle: PepSWATH, right: ProtSWATH). ‘Normalized Values’ here means every score is divided by corresponding maximum value. ‘10 VS 10’ means there are 10 replicates in each group (marked with darkblue color), and ‘3 VS 3’ means there are 3 replicates in each group (marked with red color).
Figure S10. Comparison of the root mean square error (RMSE) of the average correlation coefficients across sample among each method on the pepSWATH data set. (A) The distribution of the across sample correlation coefficient RMSE among original, Requant and 23 imputation methods under the four proteomic criteria. (B) The normalized RMSE distribution of Requant and 23 imputation methods under the four proteomic criteria. ‘Normalized Values’ here means every RMSE divides by corresponding max value. “Requant” means “Requantification” method in OpenSWATH.
Figure S11. Volcano plots examples for differential expression analysis in PhosDIA (following Figure 5). (A) From original full data (labelled as 'Gold Standard'), imputed data of randomly selected 5 biological replicates (labelled as Random 5) (B-D) and 3 biological replicates (labelled as Random 3) (E-G) in each group from Imseq, Seq-KNN, minimum method, respectively.
Figure S12. Motif analysis of the differentially expressed peptides in the PhosDIA dataset. (A) Venn diagram of the differential peptides identified in the first 3 biological replicates with Seq-KNN method (First 3.seqknn) and zero method (First 3.zero). (B) Venn diagram of identified motifs from the ‘Gold standard’ dataset (Gold.standard) and those peptides identified in First 3.seqknn dataset but not in First 3.zero dataset (First 3.seqknn.zero.diff). (C) Detailed motif illustrations. Note that the last motif seems to be newly identified from First 3.zero or First 3.seqknn.zero.diff, whereas it actually can be derived from the inspection of Gold.standard result.
Figure S12C continued.
III. References

1. Lazar, C., Gatto, L., Ferro, M., Bruley, C. and Burger, T. (2016) Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. *J Proteome Res*, **15**, 1116-1125.

2. Jiang, Y., Sun, A., Zhao, Y., Ying, W., Sun, H., Yang, X., Xing, B., Sun, W., Ren, L., Hu, B. *et al.* (2019) Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. *Nature*, **567**, 257-261.

3. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D. and Weingessel, A. (2008) Misc functions of the Department of Statistics (e1071), TU Wien. *R package*, 1, 5-24.

4. Webb-Robertson, B.-J.M., Wiberg, H.K., Matzke, M.M., Brown, J.N., Wang, J., McDermott, J.E., Smith, R.D., Rodland, K.D., Metz, T.O. and Pounds, J.G. (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. *J Proteome Res*, **14**, 1993-2001.

5. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M. and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nature methods*, **13**, 731-740.

6. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R.B. (2001) Missing value estimation methods for DNA microarrays. *Bioinformatics*, **17**, 520-525.

7. Ibrahim, J.G., Chen, M.-H., Lipsitz, S.R. and Herring, A.H. (2005) Missing-data methods for generalized linear models: A comparative review. *Journal of the American Statistical Association*, **100**, 332-346.

8. Verboven, S., Branden, K.V. and Goos, P. (2007) Sequential imputation for missing values. *Computational Biology and Chemistry*, **31**, 320-327.

9. Templ, M., Kowarik, A. and Filzmoser, P. (2011) Iterative stepwise regression imputation using standard and robust methods. *Computational Statistics & Data Analysis*, **55**, 2793-2806.

10. Wei, R., Wang, J., Jia, E., Chen, T. and Ni, Y. (2018) Missing value imputation approach for mass spectrometry-based metabolomics studies. *Bmc Bioinformatics*, **18**, 114.
17. Li, Q., Fisher, K., Meng, W., Fang, B., Welsh, E., Haura, E.B., Koomen, J.M., Eschrich, S.A., Fridley, B.L. and Chen, Y.A. (2020) GMSimpute: a generalized two-step Lasso approach to impute missing values in label-free mass spectrum analysis. Bioinformatics, 36, 257-263.

18. Buuren, S.v. and Groothuis-Oudshoorn, K. (2010) mice: Multivariate imputation by chained equations in R. Journal of statistical software, 1-68.

19. Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J. and Hanhineva, K. (2019) Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study. Bmc Bioinformatics, 20, 1-11.

20. Tyanova, S., Temu, T. and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc, 11, 2301-2319.

21. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A. and Lajoie, G. (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid communications in mass spectrometry : RCM, 17, 2337-2342.

22. Rost, H.L., Rosenberger, G., Navarro, P., Gillet, L., Miladinovic, S.M., Schubert, O.T., Wolski, W., Collins, B.C., Malmstrom, J., Malmstrom, L. et al. (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nature biotechnology, 32, 219-223.