Pinning down the linearly-polarized gluons inside unpolarized protons using quarkonium-pair production at the LHC

Jean-Philippe Lansberg, 1 Cristian Pisano, 2, 3 Florent Scarpa, 1, 4 and Marc Schlegel 5

1 IPNO, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
2 Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
3 INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
4 Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
5 Institute for Theoretical Physics, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

We show that the production of J/ψ or Ψ pairs in unpolarized pp collisions is currently the best process to measure the momentum-distribution of linearly-polarized gluons inside unpolarized protons through the study of azimuthal asymmetries. Not only the short-distance coefficients for such reactions induce the largest possible cos 4φ modulations, but analyzed data are already available. Among the various final states previously studied in unpolarized pp collisions within the TMD factorization approach, di-J/ψ production exhibits by far the largest asymmetries, up to 50% in the region studied by the ATLAS and CMS experiments. In addition, we use the very recent LHCb data at 13 TeV to perform the first fit of the unpolarized transverse-momentum-dependent gluon distribution.

Introduction.— Probably one of the most striking phenomena arising from the extension of the collinear factorization –inspired from Feynman’s and Bjorken’s parton model– to Transverse Momentum Dependent (TMD) factorization [1–4] is the appearance of azimuthal modulations induced by the polarization of partons with nonzero transverse momentum – even inside unpolarized hadrons. In the case of gluons in a proton, which trigger most of the scatterings at high energies, this new dynamics is encoded in the distribution $h_1^{∥,⊥}(x, k_T^2)$ of linearly-polarized gluons [5]. In practice, they generate cos 2φ (cos 4φ) modulations in gluon-fusion scatterings where single (double) gluon-helicity flips occur. They can also alter Transverse Momentum (TM) spectra, such as that of a Brout-Englert-Higgs H 0 boson [6, 7], via double gluon-helicity flips. Beside containing crucial information to better understand the dynamics of gluons confined inside protons, their knowledge is also important to advance the precision of kinematical-distribution predictions at the LHC.

In this Letter, we show that di-J/ψ production, which among the quarkonium-associated-production processes has been the object of the largest number of experimental studies at the LHC and the Tevatron [8–12], is in fact the ideal process to access the linearly-polarized gluon distributions since it is observed with large invariant mass but with a small TM. Under TMD factorization (see Fig. 1) and up to corrections induced by the parton TM, generally denoted by k_T^2. It is particularly relevant in scatterings with large momentum transfers where the effect of k_T^2 –on the order of the proton mass– are nevertheless visible. This can usually be achieved when a pair of particles is observed with a large invariant mass but with a small TM. Di-Q production at the LHC falls in this category.

In practice, the gluon TMDs in an unpolarized proton of momentum P and mass M_p are defined through the hadron correlator $\Phi_ε^g(x, k_T^2)$ [5, 13], parametrized in terms of two independent TMDs, the unpolarized distribution $f_1^g(x, k_T^2)$ and the distribution of linearly-polarized gluons $h_1^{∥,⊥}(x, k_T^2)$, as

$$\Phi_ε^g(x, k_T^2) = -\frac{1}{2x} \left(g^{\rho σ} f_1^g - \left(\frac{k_1^ε k_2^ρ}{M_p^2} + g^{ρ σ} k_1^ε k_2^ρ \right) \right) h_1^{∥,⊥}(x, k_T^2),$$

where the gluon four-momentum k_2^{-} is decomposed as $k_2^{-} = xP + k_2^ε + k_2^{-} n$ [n is any light-like vector ($n^2 = 0$) such that $n \cdot P \neq 0$, $k_2^{-} n = g^{\mu ν} - (P^0 n^0 + P^\mu n^\mu)/P.n$]

Under TMD factorization (see e.g. Fig. 1) and up to corrections suppressed by powers of the observed system TM over its invariant mass, the cross section for any gluon-fusion process (here $g(k_1^{-}) + g(k_2^{-}) \rightarrow Q(P_{Q1}) + Q(P_{Q2})$) can be expressed as the convolution of a partonic short-distance contrib-

FIG. 1. Representative Feynman diagram for $p(P_1) + p(P_2) \rightarrow Q(P_{Q1}) + Q(P_{Q2}) + X$ via gluon fusion at LO in TMD factorization.
but with two gluon TMD correlators, i.e.

\[
d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2k_1 d^2k_2 \delta^2(k_{1\perp} + k_{2\perp} - P_{QQ\perp}) M_{pp} (M_{oo})^* \times \Phi_q^{\perp\sigma} (x_1, k_{1\perp}) \Phi_g^{\perp\sigma} (x_2, k_{2\perp}) dR,
\]

where \(s = (P_1 + P_2)^2 \), \(x_{1,2} = P_{QQ\perp} P_{[2,1]} / P_1 P_2 \) with \(P_{QQ} = P_{Q1} + P_{Q2} \) and \(dR \) is the phase space element of the outgoing particles. The partonic hard-scattering amplitude \(M \) for the gluon-initiated subprocess can be calculated in perturbative QCD through a series expansion in \(\alpha_s \) [14].

Owing to process-dependent Wilson lines in the definition of the correlators which they parametrize, the TMDs are in general not universal. Physics wise, these Wilson lines describe the non-perturbative interactions of the active parton –the gluon in our case– with soft spectator quarks and gluons in the nucleon before or after the hard scattering. For the production of di-leptons, \(\gamma\gamma, d\bar{q}Q \) or boson-\(Q \) pairs via a Color-Singlet Transitions (CST) [15–17] – i.e. for purely colorless final states– in \(pp \) collisions, only initial-state interactions (ISI) between the active gluons and the spectators can occur. Mathematically, these ISI can be encapsulated [18] in TMDs with past-pointing Wilson lines –the exchange can only occur before the hard scattering. Such gluon TMDs correspond to the Weiszäcker-Williams distributions relevant for the low-\(x \) region [19, 20]. Besides, in lepton-induced production of colorful final states, like heavy-quark pair or dijet production [21, 22], to be studied at a future Electron-Ion Collider (EIC) [23], only final-state interactions (FSI) take place.

Yet, since \(f_{T}^g \) and \(h_{1^g}^T \) are time-reversal symmetric (\(T \)-even), contrary to other TMDs [24, 25] like the gluon distribution in colorless systems in hadroproduction and of colorful systems in leptoproduction. Extracting them in different reactions is thus essential to test this universality property of the TMDs –akin to the well-known sign change of the quark Sivers effect [18, 27]–, in order to validate TMD factorization.

Di-Q production & TMD factorization.— For TMD factorization to apply, di-\(Q \) production should at least satisfy both following conditions. First, it should result from a Single-Parton Scattering (SPS). Second, FSI should be negligible, which is satisfied when quarkonia are produced via CSTs [14].

Double-parton-scatterings (DPSs) leading to di-\(J/\psi \) are not problematic as they only become significant at large \(\Delta y \) (or large pair invariant masses) –as noted for other observables [28–34]. For small \(\Delta y \), in particular in the D0, CMS and ATLAS samples where a TM cut was applied on the \(J/\psi \), the SPSs are dominant. As for the dominance of CSTs to the SPS yield, we guide the reader to [35–37]. The latter is only challenged in regions where the DPS mechanism is anyhow dominant (large \(\Delta y \)) which we will not consider. We recall that, within Non-Relativistic QCD (NRQCD) [38] (see [39–41] for reviews), the CSTs are leading-order (LO) in the \(v^* \) expansion–\(v^* \) being the heavy-quark velocity in the \(Q \) rest frame– and have been studied up to next-to-leading (NLO) accuracy in \(\alpha_s \) [42–44] in collinear factorization. The feed down from excited states is also not problematic: \(J/\psi + \chi_c \) production is suppressed [35] and \(J/\psi + \psi' \) can be treated exactly like \(J/\psi + J/\psi \). As for di-\(\Upsilon \), the CST should be even more dominant and we could not find any argument why the DPS/SPS ratio could be larger. To conclude, we stress that the current study is in fact the first one in TMD factorization for vector \(QQ \).

Using the notations of [45], the structure of the TMD cross section for \(QQ \) production reads

\[
d\sigma = \frac{dM_{QQ\perp} dY_{QQ\perp} d^3P_{QQ\perp} d\Omega}{(2\pi)^2 8s^2 Q^2} \left\{ F_1 C \left[f_{T}^g f_{T}^g\right] + F_2 C \left[w_1 h_{1^g}^{\perp} h_{1^g}^{\perp}\right] + \cos 2\phi_{CS} \left[F_3 C \left[w_3 f_{T}^g h_{1^g}^{\perp}\right] + F_4 C \left[w_4 h_{1^g}^{\perp} f_{T}^g\right]\right] + \cos 4\phi_{CS} F_4 C \left[w_4 h_{1^g}^{\perp} h_{1^g}^{\perp}\right]\right\},
\]

where \(d\Omega = d\cos \theta_{CS} d\phi_{CS} \) is expressed in terms of Collins-Soper (CS) angles [46] and where \(M_{QQ}, Y_{QQ} \) and \(P_{QQ\perp} \) are the invariant mass, the rapidity and the TM of the pair –the latter two to be measured in the hadron c.m.s.. In the CS frame, the \(Q \) direction is along \(\hat{\epsilon} = (\sin \theta_{CS} \cos \phi_{CS}, \sin \theta_{CS} \sin \phi_{CS}, \cos \theta_{CS}) \). Let us stress that the overall factor is a phase space factor specific to the mass of the final-state particles and the analyzed differential cross sections, and that the hard factors \(F_i \) do not depend neither on \(Y_{QQ} \) nor \(P_{QQ\perp} \). In addition, let us note that –away from threshold– \(\theta_{CS} \sim \pi/2 \) corresponds to \(\Delta y \sim 0 \) in the hadron c.m.s., that is our preferred region to avoid DPS contributions. The TMD convolutions in Eq. (3) are defined as

\[
C[w q g] = \int d^2k_1 d^2k_2 \delta^2(k_{1\perp} + k_{2\perp} - P_{QQ\perp}) \times w(k_{1\perp}, k_{2\perp}) f(x_1, k_1^{\perp\sigma}) g(x_2, k_2^{\perp\sigma}),
\]

with \(w(k_{1\perp}, k_{2\perp}) \) being generic transverse weights and \(x_{1,2} = \exp[\pm i Y_{QQ}] M_{QQ}/\sqrt{s} \). The explicit expressions for the weights in Eq. (3) are identical for all the gluon-induced processes and can be found in [45].

The short-distance coefficients \(F_i \) are calculated process by process and we refer to [45] for details on how to obtain them from specific combinations of the helicity amplitudes of the partonic scattering under consideration. As such, they can be derived from the uncontracted amplitude given in [47]. Their full expressions, which are of limited interest for the following discussions, can be found as supplemental material (SM) [48] along with a short derivation that, for any process, \(F_{2,3,4}^{\Delta y,\Delta M} \leq F_1 \). [For \(QQ \) production, \(F_1 = F_3 \).]

Yet, both the limits of large and small \(QQ \) mass, \(M_{QQ} \), are very interesting. Indeed, when \(M_{QQ} \) is much larger than the quarkonium mass, \(M_q \), one finds that, for \(\cos \theta_{CS} = c_0 \to 0 \),

\[
F_{1,4} \to \frac{256N C_1}{M_q^2 M_{QQ}^2}, \quad F_2 \to \frac{81M_q^2 C_q^2}{2M_q^2}, \quad F_3 \to \frac{-24M_q^2 C_q^2}{M_{QQ}^2}, \quad F_1 \to \frac{-24M_q^2 C_q^2}{M_{QQ}^2},
\]

where \(N = 2^{11} 3^{-4} 2^{11/2} |R_0(0)|^2, R_0(0) \) being the \(Q \) radial wave function at the origin. As in collinear factorization, the Born-order cross section scales as \(\alpha_s^4 \). Computing the one-loop
QCD corrections would introduce the same α_s corrections to all the F_i (see [49] for the Drell-Yan case).

At threshold, $M_{QQ} \rightarrow 2M_Q$, one gets:

$$F_1 \rightarrow \frac{787N}{16M_Q^2}, \quad F_2 \rightarrow \frac{3F_1}{787}, \quad F_{3,4} \rightarrow 0. \quad (6)$$

Beside the $\cos \theta_{CS}$ dependence, which indicates that $F_{2,3}$ are suppressed near $\Delta y \sim 0$, one also observes that F_2 (F_3) scales like M_{QQ}^{-4} (M_{QQ}^{-2}) relative to F_1 and F_4. In other words, the modification of the P_{QQR} dependence due to the linearly-polarized gluons encoded in F_2 vanishes at large scales [From Eq. (6), one notes that it is however already very small even at threshold.] whereas the $\cos 4\phi_{CS}$ modulation (double helicity flip) takes over the cost $2\phi_{CS}$ one (single helicity flip).

The fact that $F_4 \rightarrow F_1$, for $c_0 \rightarrow 0$ away from the threshold, is the most important result of this study and is, to the best of our knowledge, a unique feature of $\text{di}-J/\psi$ and $\text{di}-\Upsilon$ production. As such, and thanks to the possibility to re-analyze collected $\text{di}-J/\psi$ data, it is indeed the ideal one to extract the linearly-polarized gluon distributions. The previously studied $\gamma \gamma$ [50], H^0+jet [51], $Q+\gamma$ [52], $Q+\gamma^*$ or $Q+Z$ [45] processes show significantly smaller values of F_4/F_1, thus correspondingly smaller values of the $\cos 4\phi_{CS}$ modulation for a given magnitude of h_1^{+g}.

Knowing the F_i and an observed differential yield, one can thus extract the various TMV convolutions of Eq. (4) from their azimuthal (in)dependent parts. When the cross section is integrated over ϕ_{CS}, the contribution from $F_{3,4}$ drops out from Eq. (3) and only depends on $C[f_1^+/f_1^-]$ and $C[w_1h_1^{+g}/h_1^{-g}]$. To go further, we define $\cos n\phi_{CS}$ for $n = 2, 4$ weighted differential cross sections normalized to the azimuthally independent term as:

$$\langle \cos n\phi_{CS} \rangle = \frac{\int d\phi_{CS} \cos n\phi_{CS} \frac{d\sigma}{dM_{QQR}dP_{QQR}d\Omega}}{\int d\phi_{CS} \frac{d\sigma}{dM_{QQR}dP_{QQR}d\Omega}}. \quad (7)$$

It is understood that $\langle \cos n\phi_{CS} \rangle$ computed in a range of M_{QQ}, Y_{QQ}, P_{QQR} or $\cos \theta_{CS}$ is the ratio of corresponding integrals. Using Eq. (3), one gets in a single phase-space point:

$$\langle \cos(2\phi_{CS}) \rangle \propto \left\{ F_1 C[w_3f_1^+h_1^{+g} + 1 \rightarrow 2], F_4 C[w_3h_1^{+g}h_1^{-g}] \right\} \quad (8)$$

The TM spectrum.— Before discussing the expected size of the azimuthal asymmetries for $\text{di}-Q$ production, let us have a closer look at the TM dependence of Eq. (3), which is entirely encoded in the four convolutions defined in Eq. (4). These are process independent quantities, unlike the F_i. Since gluon TMDs are still unknown, we need to resort to models in order to predict their impact.

As proposed in e.g. [53], one can assume a simple Gaussian dependence on k_2^\perp for f_i^\pm, namely $f_i^\pm(x, k_2^\perp) = g(x)/\sigma(k_2^\perp) \exp(-k_2^\perp/k_2^\perp)$, where $g(x)$ is the common collinear gluon distribution. Concerning h_1^{+g}, we know that it is constrained by the model-independent positivity bound [5]:

$$|h_1^{+g}(x, k_2^\perp)| \leq (2M_Q^2/k_2^\perp)f_i^\pm(x, k_2^\perp)$$

holding for any value of x and k_2^\perp. As noted in [6], this bound is satisfied by the following form $h_1^{+g}(x, k_2^\perp) = 2M_Q^2/(k_2^\perp) \times (1 - r/x \times g(x)/\sigma(k_2^\perp)) \times \exp(1 - k_2^\perp/r(k_2^\perp))$ with $r < 1$ and we take $r = 2/3$ which maximizes the second moment in h_1^{+g}. With such a choice, all the TMD convolutions can analytically be computed. They are gathered as supplemental material. It is nevertheless also customary to build up a model of the TMD h_1^{+g} by saturating its bound, namely $h_1^{+g}(x, k_2^\perp) = (2M_Q^2/k_2^\perp)f_i^\pm(x, k_2^\perp)$. Such a choice is for instance motivated by recent studies in the high-energy (low-x) limit (see e.g. [19, 54]) where this bound is reached. The corresponding convolutions can easily be calculated numerically and their behavior are also gathered as supplemental material for the interested reader. Having two models at hand is very convenient, not only to obtain a range of the modulations, but also to evaluate how efficient a given measurement is to constrain the TMD h_1^{+g} by comparing its uncertainty to our range. In the following, "Model 1" refers to the Gaussian form with $r = 2/3$ and "Model 2" to the form saturating the positivity bound.

Apart from the functional form, the TMD convolutions, $C[w f g]$ – from which follows the P_{QQR}, spectra– only depend on (k_2^\perp). For the first time, we are able to use experimental data to fix it via $C[f_1 f_1]$ from the P_{QQR}, spectrum recently measured by the LHCb Collaboration at 13 TeV [12] (see Fig. 2a). The LHCb study was made without any TM cuts, thus near threshold where $M_{QQ} \sim 2M_Q$. As such, we can safely neglect any contribution from h_1^{+g} given the size of f_2/F_1 near threshold (cf. Eq. (6)). We further note that, for TMD Ansätze with factorized dependences on x and k_2^\perp, the normalized P_{QQR}, spectrum does not depend on any other kinematical variables. By fitting the P_{QQR}, spectrum up to $M_{QQ}/2$, we obtain $(k_2^\perp) = 4.9 \pm 0.8 \text{ GeV}^2$. To the best of our knowledge, this is the first time that such a process-independent quantity is experimentally determined in a pure gluon-induced process with a colorless final state, for which TMD factorization applies. The fact that the TMD curve undershoots the data for f_2/F_1 near threshold of TM cuts, thus for any of these channels. Unfortunately, the CMS $\text{di}-\Upsilon$ sam-
ple [58] is not large enough (40 events) to check our \(\langle k_T^2 \rangle\) fit. With 100 fb\(^{-1}\) of 13 TeV data, their sample should allow for such a check.

Azimuthal dependences—Having fixed the functional form of the TMDs and \(\langle k_T^2 \rangle\) and having computed the factors \(F_i\), we are now ready to provide predictions for the azimuthal modulations through \(\langle \cos n\theta_{CS} \rangle\) as a function of \(P_{Q\bar{Q}}\), cos \(\theta_{CS}\) or \(M_{Q\bar{Q}}\). Fig. 2b & 2c show \(\langle \cos n\theta_{CS} \rangle\) \((n = 2, 4)\) as a function of \(P_{Q\bar{Q}}\), for both our models of \(h_{1T}^{M}\) for 3 values of \(M_{Q\bar{Q}}\) 8, 12 and 21 GeV for \(|\cos \theta_{CS}| < 0.25\). These values are relevant respectively for the LHCb [12], CMS [10] and ATLAS [59] kinematics. Still to keep TMD factorization applicable, we have plotted the spectra up to \(M_{Q\bar{Q}}/2\) . Let us also note that with our factorized TMD Ansätze, \(\langle \cos n\theta_{CS} \rangle\) do not depend on \(Y_{Q\bar{Q}}\). Indeed, the pair rapidity only enters the evaluation of \(d\sigma/d\nu\) via the momentum fractions \(x_{1,2}\) in the TMDs. It thus simplifies in the ratios.

Compared to previously studied cases, the size of the expected azimuthal asymmetries is particularly large, e.g. for \(P_{Q\bar{Q}}^2 \approx \langle k_T^2 \rangle\). \(\langle \cos 4\phi_{CS} \rangle\) even gets close to 50 % in the \(P_{Q\bar{Q}}\) region probed by CMS and ATLAS for \(|\cos \theta_{CS}| < 0.25\); this is probably the highest value ever predicted for a gluon-fusion process which directly follows from the extremely favorable hard coefficient \(F_4\) as large as \(F_1\). Such values are truly promising to extract the distribution \(h_{1T}^{M}\) of linearly-polarized gluons in the proton which appears quadratically in \(\langle \cos 4\phi_{CS} \rangle\). In view of these results, it becomes clear that the kinematics of CMS and ATLAS, with naturally larger invariant masses, are better suited with much larger expected asymmetries than that of LHCb, not far from threshold.

\(\langle \cos 2\phi_{CS} \rangle\), which would allow one to lift the sign degeneracy of \(h_{1T}^{M}\) in \(\langle \cos 4\phi_{CS} \rangle\), is on the order of a few per cent for \(|\cos \theta_{CS}| < 0.25\) (Fig. 2b). Yet, we have seen that \(F_3\) vanishes for small \(\cos \theta_{CS}\) (Eq. (5)). It would thus be expedient to extend the range of \(|\cos \theta_{CS}|\) pending the DPS contamination. Indeed, in view of recent di-\(J/\psi\) phenomenological studies [35, 60, 61], one expects the DPSs to become dominant at large \(\Delta y\) while these cannot be treated along the lines of our analysis. To ensure the SPS dominance, it is thus judicious to avoid the region \(\Delta y > 2\), and probably \(\Delta y > 1\) to be on the safe side. Even though the relation between \(\Delta y\) –measured in the hadronic c.m.s.– and \(\cos \theta_{CS}\) is in general not trivial, it strongly simplifies when \(P_{Q\bar{Q}} \gg (M_{Q\bar{Q}}^2 P_{Q\bar{Q}})^{1/2}\), such that \(\cos \theta_{CS} = \tanh \Delta y/2 \pm 0.5\). Up to \(|\cos \theta_{CS}| \sim 0.5\), the sample should thus remain SPS dominated in particular with the CMS and ATLAS \(P_{Q\bar{Q}}\) cuts. In fact, in a bin \(0.25 < |\cos \theta_{CS}| < 0.5\), \(\langle \cos 2\phi_{CS} \rangle\) nearly reaches 30 % . On the contrary, \(\langle \cos 4\phi_{CS} \rangle\) exhibits a node close to \(\cos \theta_{CS} \sim 0.3\). [See plots as supplemental material]. As such, measuring \(\langle \cos 4\phi_{CS} \rangle\) for \(|\cos \theta_{CS}| < 0.25\) and \(0.25 < |\cos \theta_{CS}| < 0.5\) would certainly be instructive. If our models for \(h_{1T}^{M}\) are realistic, this is definitely within the reach of CMS and ATLAS, probably even with data already on tape.

Conclusions—We have found out that the short-distance coefficients to the azimuthal modulations of di-\(J/\psi\) and di-\(\Upsilon\) yields equate the azimuthally independent terms, which renders these processes ideal probes of the linearly-polarized gluon distributions in an unpolarized proton, \(h_{1T}^{M}\). This is even more true that experimental data already exist –more will be recorded in the near future– and it only remains to analyze them along the lines discussed above, by evaluating the ratios \(\langle \cos 2\phi_{CS} \rangle\) and \(\langle \cos 4\phi_{CS} \rangle\). In fact, we have already demonstrated the relevance of the LHC data for di-\(J/\psi\) production by constraining, for the first time, the TM dependence of \(f_1^{g}\) at a scale close to \(2M_{Q\bar{Q}}\).

Let us also note that similar studies can be carried out at fixed-target set-ups where luminosities are large enough to detect \(J/\psi\) pairs. The COMPASS experiment with pion beams may also record di-\(J/\psi\) events as did NA3 in the 80’s [63, 64]. Whereas single-\(J/\psi\) production may partly be from quark-antiquark annihilation, di-\(J/\psi\) production should mostly be from gluon fusion and thus analyzable along the above discussions. Using the 7 TeV LHC beams [65] in the fixed-target mode with a LHCb-like detector [66–68], one can expect 1000 events per 10 fb\(^{-1}\), enough to study a possible \(x\) dependence of \(\langle k_T^2 \rangle\) as well as to look for azimuthal asymmetries generated by \(h_{1T}^{M}\). Such studies could also be complemented with target-spin asymmetry studies [69–71], to study the gluon Sivers function \(f_1^{g, \psi}\) as well as the gluon transversity \(h_{1T}^{g}\) or the distribution of linearly-polarized gluons in a transversely polarized proton, \(h_{1T}^{M}\), paving the way for an in-depth gluon tomography of the proton.
Acknowledgements.—We thank D. Boer, M. Echevarria and H.S. Shao for useful comments and L.P. Sun for discussions about [47]. The work of J.P.L. and F.S. is supported in part by the French IN2P3-CNRS via the LIA FCPPL (Quarkonium4AFTER) and the project TMD@NLO.

The work of C.P. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 647981, 3DSPIN). The work of M.S. is supported in part by the Bundesministerium für Bildung und Forschung (BMBF) grant 05P15VTCA1.

[1] J. Collins, Foundations of perturbative QCD. Cambridge University Press, 2013. http://www.cambridge.org/de/knowledge/isbn/item5756723.
[2] S. M. Aybat and T. C. Rogers, “TMD Parton Distribution and Fragmentation Functions with QCD Evolution,” Phys. Rev. D83 (2011) 114042, arXiv:1101.5857 [hep-ph].
[3] M. G. Echevarria, A. Idilbi, and I. Scimemi, “Factorization Theorem For Drell-Yan At Low q^2”, And Transverse Momentum Distributions On-The-Light-Cone,” JHEP 07 (2012) 002, arXiv:1111.4996 [hep-ph].
[4] R. Angeles-Martinez et al., “Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects,” Acta Phys. Polon. B46 no. 12, (2015) 2501–2534, arXiv:1507.05267 [hep-ph].
[5] P. J. Mulders and J. Rodrigues, “Transverse momentum dependence in gluon distribution and fragmentation functions,” Phys. Rev. D63 (2001) 094021, arXiv:hep-ph/0009343 [hep-ph].
[6] D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel, and W. Vogelsang, “Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution,” Phys. Rev. Lett. 108 (2012) 032002, arXiv:1109.1444 [hep-ph].
[7] D. Boer, W. J. den Dunnen, C. Pisano, and M. Schlegel, “Determining the Higgs spin and parity in the diphoton decay channel,” Phys. Rev. Lett. 111 no. 3, (2013) 032002, arXiv:1304.2654 [hep-ph].
[8] LHCb Collaboration, R. Aaij et al., “Observation of J/ψ pair production in pp collisions at √s = 7 TeV,” Phys. Lett. B707 (2012) 52–59, arXiv:1109.0963 [hep-ex].
[9] D0 Collaboration, V. M. Abazov et al., “Observation and studies of double J/ψ production at the Tevatron,” Phys. Rev. D90 no. 11, (2014) 111101, arXiv:1406.2380 [hep-ex].
[10] CMS Collaboration, V. Khachatryan et al., “Measurement of prompt J/ψ pair production in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \),” JHEP 09 (2014) 094, arXiv:1406.0484 [hep-ex].
[11] ATLAS Collaboration, T. Aaltonen, “Measurement of the prompt J/ψ pair production cross-section in pp collisions at \(\sqrt{s} = 8 \text{ TeV} \) with the ATLAS detector,”.
[12] LHCb Collaboration, R. Aaij et al., “Measurement of the J/ψ pair production cross-section in pp collisions at \(\sqrt{s} = 13 \text{ TeV} \),” JHEP 06 (2017) 047, arXiv:1612.07451 [hep-ex].
[13] S. Meissner, A. Metz, and K. Goecke, “Relations between generalized and transverse momentum dependent parton distributions,” Phys. Rev. D76 (2007) 034002, arXiv:hep-ph/0703176 [HEP-PH].
[14] J. P. Ma, J. X. Wang, and S. Zhao, “Transverse momentum dependent factorization for quarkonium production at low transverse momentum,” Phys. Rev. D88 no. 1, (2013) 014027, arXiv:1211.7144 [hep-ph].
[15] C.-H. Chang, “Hadronic Production of J/ψ Associated With a Gluon,” Nucl. Phys. B172 (1980) 425–434.
[16] R. Baier and R. Ruckl, “Hadronic Production of J/ψ and Upsilon: Transverse Momentum Distributions,” Phys. Lett. 102B (1981) 364–370.
[17] R. Baier and R. Ruckl, “Hadronic Collisions: A Quarkonium Factory,” Z. Phys. C19 (1983) 251.
[18] J. C. Collins, “Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering,” Phys. Lett. B536 (2002) 43–48, arXiv:hep-ph/0204004 [hep-ph].
[19] A. Dumitru, T. Lappi, and V. Skokov, “Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy,” Phys. Rev. Lett. 115 no. 25, (2015) 252301, arXiv:1505.04438 [hep-ph].
[20] F. Dominguez, C. Marquet, B.-W. Xiao, and F. Yuan, “Universality of Unintegrated Gluon Distributions at small x,” Phys. Rev. D83 (2011) 105005, arXiv:1101.4715 [hep-ph].
[21] D. Boer, S. J. Brodsky, P. J. Mulders, and C. Pisano, “Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons,” Phys. Rev. Lett. 106 (2011) 132001, arXiv:1011.4225 [hep-ph].
[22] D. Boer, P. J. Mulders, C. Pisano, and J. Zhou, “Asymmetries in Heavy Quark Pair and Dijet Production at an EIC,” JHEP 08 (2016) 001, arXiv:1605.07934 [hep-ph].
[23] A. Accardi et al., “Electron Ion Collider: The Next QCD Frontier,” Eur. Phys. J. A52 no. 9, (2016) 268, arXiv:1212.1761 [nucl-ex].
[24] D. Boer and P. J. Mulders, “Time reversal odd distribution functions in leptonproduction,” Phys. Rev. D57 (1998) 5780–5786, arXiv:hep-ph/9711485 [hep-ph].
[25] D. Boer, P. J. Mulders, and F. Pijlman, “Universality of T odd effects in single spin and azimuthal asymmetries,” Nucl. Phys. B667 (2003) 201–241, arXiv:hep-ph/0303034 [hep-ph].
[26] D. W. Sivers, “Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents,” Phys. Rev. D41 (1990) 83.
[33] ATLAS Collaboration, G. Aad et al., “Measurement of hard double-parton interactions in $W(\rightarrow l\nu)+2$ jet events at $\sqrt{s}=7$ TeV with the ATLAS detector,” New J. Phys. 15 (2013) 033038, arXiv:1301.6872 [hep-ex].

[34] CMS Collaboration, S. Chatrchyan et al., “Study of double parton scattering using $W+2$ jet events in proton-proton collisions at $\sqrt{s}=7$ TeV,” JHEP 03 (2014) 032, arXiv:1312.5729 [hep-ex].

[35] J.-P. Lansberg and H.-S. Shao, “J/ψ-pair production at large momenta: Indications for double parton scatterings and large g_{\perp} contributions,” Phys. Lett. B751 (2015) 479–486, arXiv:1410.8822 [hep-ph].

[36] Z.-G. He and B. A. Kniehl, “Complete Nonrelativistic-QCD Prediction for Prompt Double J/Hadroproduction,” Phys. Rev. Lett. 115 no. 2, (2015) 022002, arXiv:1609.02786 [hep-ph].

[37] S. P. Baranov and A. H. Rezaeian, “Prompt double J/ψ production in proton-proton collisions at the LHC,” Phys. Rev. D93 no. 11, (2016) 114011, arXiv:1511.04089 [hep-ph].

[38] G. T. Bodwin, E. Braaten, and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D51 (1995) 1125–1171, arXiv:hep-ph/9407339 [hep-ph]. [Erratum: Phys. Rev.D55,5853 (1997)].

[39] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from protonproton to heavy-ion collisions,” Eur. Phys. J. C76 no. 3, (2016) 107, arXiv:1506.03981 [nucl-ex].

[40] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities,” Eur. Phys. J. C71 (2011) 1534, arXiv:1010.5827 [hep-ph].

[41] J. P. Lansberg, “J/ψ, Υ and υ production at hadron colliders: A Review,” Int. J. Mod. Phys. A21 (2006) 3857–3916, arXiv:hep-ph/0602991 [hep-ph].

[42] J.-P. Lansberg and H.-S. Shao, “Production of $J/\psi + \eta$ versus $J/\psi + J/\psi$ at the LHC: Importance of Real χg_{\perp} Corrections,” Phys. Rev. Lett. 111 (2013) 122001, arXiv:1308.0474 [hep-ph].

[43] L.-P. Sun, H. Han, and K.-T. Chao, “Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD,” Phys. Rev. D94 no. 7, (2016) 074033, arXiv:1404.4042 [hep-ph].

[44] A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, “Production of $J/\psi + \chi_c$ and $J/\psi + J/\psi$ with real gluon emission at LHC,” Phys. Rev. D94 no. 5, (2016) 054017, arXiv:1606.06677 [hep-ph].

[45] J.-P. Lansberg, C. Pisano, and M. Schlegel, “Associated production of a dilepton and a $\Upsilon(J/\psi)$ at the LHC as a probe of gluon transverse momentum dependent distributions,” Nucl. Phys. B920 (2017) 192–210, arXiv:1702.00305 [hep-ph].

[46] J. C. Collins and D. E. Soper, “Angular Distribution of Dileptons in High-Energy Hadron Collisions,” Phys. Rev. D16 (1977) 2219.

[47] C.-F. Qiao, L.-P. Sun, and P. Sun, “Testing Charmonium Production Mechanism via Polarized J/psi Pair Production at the LHC,” J. Phys. G37 (2010) 075019, arXiv:0903.0954 [hep-ph].

[48] See Supplemental Material.

[49] J. P. Ma and G. P. Zhang, “QCD Corrections of All Structure Functions in Transverse Momentum Dependent Factorization for Drell-Yan Processes,” JHEP 02 (2014) 100, arXiv:1308.2444 [hep-ph].

[50] J.-W. Qu, M. Schlegel, and W. Vogelsang, “Probing Gluonic Spin-Orbit Correlations in Photon Pair Production,” Phys. Rev. Lett. 107 (2011) 062001, arXiv:1103.3861 [hep-ph].

[51] D. Boer and C. Pisano, “Impact of gluon polarization on Higgs boson plus jet production at the LHC,” Phys. Rev. D91 no. 7, (2015) 074024, arXiv:1412.5556 [hep-ph].

[52] W. J. den Dunnen, J. P. Lansberg, C. Pisano, and M. Schlegel, “Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC,” Phys. Rev. Lett. 112 (2014) 212001, arXiv:1401.7611 [hep-ph].

[53] P. Schweitzer, T. Teckentrup, and A. Metz, “Intrinsic transverse parton momenta in deeply inelastic reactions,” Phys. Rev. D81 (2010) 094019, arXiv:1003.2190 [hep-ph].

[54] A. Metz and J. Zhou, “Distribution of linearly polarized gluons inside a large nucleus,” Phys. Rev. D84 (2011) 051503, arXiv:1105.1991 [hep-ph].

[55] M. G. Echevarria, T. Kasemets, P. J. Mulders, and C. Pisano, “QCD evolution of (up)polarized gluon TMDPDFs and the Higgs g_{\perp}-distribution,” JHEP 07 (2015) 158, arXiv:1502.05354 [hep-ph]. [Erratum: JHEP05,073(2017)].

[56] D. Boer and C. Pisano, “Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER,” Phys. Rev. D86 (2012) 094007, arXiv:1208.3642 [hep-ph].

[57] G.-F. Zhang, “Probing transverse momentum dependent gluon distribution functions from hadronic quarkonium pair production,” Phys. Rev. D90 no. 9, (2014) 094011, arXiv:1406.5476 [hep-ph].

[58] CMS Collaboration, V. Khachatryan et al., “Observation of $\Upsilon(1S)$ pair production in proton-proton collisions at $\sqrt{s}=8$ TeV,” JHEP 05 (2017) 013, arXiv:1610.07695 [hep-ex].

[59] ATLAS Collaboration, M. Aaboud et al., “Measurement of the prompt J/ψ pair production cross-section in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector,” Eur. Phys. J. C77 no. 2, (2017) 76, arXiv:1612.02950 [hep-ex].

[60] C. H. Kom, A. Kulesza, and W. J. Stirling, “Pair Production of J/ψ as a Probe of Double Parton Scattering at LHCb,” Phys. Rev. Lett. 107 (2011) 082002, arXiv:1105.4186 [hep-ph].

[61] S. P. Baranov, A. M. Snigirev, and N. P. Zotov, “Double heavy meson production through double parton scattering in hadronic collisions,” Phys. Lett. B705 (2011) 116–119, arXiv:1105.6276 [hep-ph].

[62] In fact, $\Delta y/2$ then coincides with the usual definition of the pseudorapidity of one quarkonium since Δy is not sensitive to the longitudinal boost between the CS and the c.m.s.

[63] NA3 Collaboration, J. Badier et al., “Evidence for $\psi\psi$ Production in π^0 Interactions at 150-GeV/c and 280-GeV/c,” Phys. Lett. 114B (1982) 457–460.

[64] NA3 Collaboration, J. Badier et al., “$\psi\psi$ Production and Limits on Beauty Meson Production From 400-GeV/c Protons,” Phys. Lett. 158B (1985) 85, [401(1985)].

[65] J.-P. Lansberg and H.-S. Shao, “Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC),” Nucl. Phys. B900 (2015) 273–294, arXiv:1504.06531 [hep-ph].

[66] L. Massacrier, B. Trzenicki, F. Fleuret, C. Hadjidakis, D. Kikola, J. P. Lansberg, and H. S. Shao, “Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC),” Adv. High Energy Phys. 2015 (2015) 986348, arXiv:1504.05145 [hep-ex].

[67] L. Massacrier et al., “Studies of Transverse-Momentum-Dependent distributions with A Fixed-Target ExpRiment using the LHC beams...
[68] J. P. Lansberg et al., “Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC),” *EPJ Web Conf.* **85** (2015) 02038, arXiv:1410.1962 [hep-ex].

[69] D. Kikola, M. G. Echevarria, C. Hadjidakis, J.-P. Lansberg, C. Lorc, L. Massacrier, C. M. Quintans, A. Signori, and B. Trzeciak, “Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC),” *Few Body Syst.* **58** no. 4, (2017) 139, arXiv:1702.01546 [hep-ex].

[70] J. P. Lansberg et al., “Single-Transverse-Spin-Asymmetry studies with a fixed-target experiment using the LHC beams (AFTER@LHC),” *PoS DIS2016* (2016) 241, arXiv:1610.05228 [hep-ex].

[71] J.-P. Lansberg et al., “Physics case for a polarised target for AFTER@LHC,” *PoS PSTP2015* (2016) 042, arXiv:1602.06857 [nucl-ex].
SUPPLEMENTAL MATERIAL

A. Bounds on the short-distance coefficients

Instead of using their definition in terms of the helicity amplitudes [45], one can express the short-distance coefficients F_i using the different combinations of the partonic hard-scattering amplitude elements in the CS frame. One then gets that they only depend on the x and y elements of \mathcal{M}:

$$F_1 = |\mathcal{M}_{xx}|^2 + |\mathcal{M}_{yy}|^2 + |\mathcal{M}_{yx}|^2, F_2 = \frac{1}{2} |\mathcal{M}_{xx} + \mathcal{M}_{yy}|^2 - \frac{1}{2} |\mathcal{M}_{xy} - \mathcal{M}_{yx}|^2,$$

$$F_3^{(\nu)} = -|\mathcal{M}_{xx}|^2 + |\mathcal{M}_{yy}|^2 + |\mathcal{M}_{xy}|^2, F_4 = \frac{1}{2} |\mathcal{M}_{xx} - \mathcal{M}_{yy}|^2 - \frac{1}{2} |\mathcal{M}_{xy} + \mathcal{M}_{yx}|^2.$$ \(1\)

It is then straightforward from Eq. (1) to infer the following bound: $F_{2,3,4}^{(\nu)} \leq F_1$. These expressions are valid for any gluon fusion process computed within the framework of TMD factorization.

B. Complete expressions of the short-distance coefficients F_i

As for the F_i we have

$$F_1 = \frac{N}{\mathcal{D} M_Q^2} \left[(6a^6 - 38a^6 + 83a^4 + 480a^2 + 256) + 2(1 - \alpha^2)^2 \left(6a^8 + 159a^6 - 2532a^4 + 884a^2 + 208 \right) c_\theta^2 \right. \]

$$+ 2 \left(1 - \alpha^2 \right)^2 \left(6a^8 + 19a^6 + 7283a^4 - 8448a^2 - 168 \right) c_\theta^4 - 2 \left(1 - \alpha^2 \right)^3 \left(159a^6 + 6944a^4 - 17064a^2 + 3968 \right) c_\theta^6\]

$$+ \left(1 - \alpha^2 \right)^4 \left(4431a^4 - 27040a^2 + 17824 \right) c_\theta^8 + 504 \left(1 - \alpha^2 \right)^5 \left(15a^2 - 28 \right) c_\theta^{10} + 3888 \left(1 - \alpha^2 \right)^6 c_\theta^{12},\]

$$F_2 = \frac{2^{1/2} M_Q^2 N}{\mathcal{D} M_Q^2} \left[a^4 - 2 \left(a^6 + 17a^4 - 126a^2 + 108 \right) c_\theta^2 + (1 - \alpha^2)^2 \left(a^4 + 756 \right) c_\theta^2 - 36 \left(1 - \alpha^2 \right)^2 (a^2 + 24) c_\theta^2 + 324 (1 - \alpha^2)^4 c_\theta^8 \right].\]

$$F_3 = \frac{2^{(3)} M_Q^2 N}{\mathcal{D} M_Q^2} \left[a^2 - 2 \left(16 - 3a^2 \right) + (6a^4 + 159a^2 - 1762a + 1584) c_\theta^2 + (1 - \alpha^2) \left(3a^6 + 19a^4 + 5258a^2 - 6696 \right) c_\theta^4\]

$$- \left(1 - \alpha^2 \right)^2 \left(159a^4 + 5294a^2 - 10584 \right) c_\theta^6 + 18 \left(1 - \alpha^2 \right)^3 \left(99a^2 - 412 \right) c_\theta^8 + 1944 \left(1 - \alpha^2 \right)^4 c_\theta^{10},\]

$$F_4 = \frac{N}{\mathcal{D} M_Q^2} \left[(3a^4 - 32a^2 + 256) - (6a^4 + 36a^2 - 756) a^2 + 4768 \right] c_\theta^2 + (3a^8 + 38a^6 + 1994a^4 - 32208a^2 + 20400) c_\theta^4\]

$$- 2 \left(1 - \alpha^2 \right) \left(105a^6 + 5512a^4 - 23120a^2 + 19520 \right) c_\theta^6 + \left(1 - \alpha^2 \right)^2 \left(3459a^4 - 30352a^2 + 38560 \right) c_\theta^8\]

$$+ 72 \left(1 - \alpha^2 \right)^3 \left(105a^2 - 268 \right) c_\theta^{10} + 3888 \left(1 - \alpha^2 \right)^6 c_\theta^{12},\]

with $c_\theta = \cos \theta_{CS}$, $\alpha = 2M_Q/M_Q$, $N = 2^{11/2} \pi^2 a \left| R_Q(0) \right|^4$, $\mathcal{D} = M_Q^2 \left(1 - (1 - \alpha^2) c_\theta^2 \right)^4$ and where $R_Q(0)$ is the Q radial wave function at the origin. Note that the expressions are symmetric about $\theta_{CS} = \pi/2$ since the process is forward-backward symmetric.

C. TMD convolutions

The TMD convolutions driving the TM (say here g_i) dependence of any gluon fusion process are of four types: $C[f_i f_i']$, $C[w_2 f_i h_i t]$ with $C[w f g] = \left[\int d^2 k_{1r} d^2 k_{2r} \delta^2(k_{1r} + k_{2r} - q_i) w(k_{1r}, k_{2r}) f(x_1, k_{1r}^2) g(x_2, k_{2r}^2) \right]$ and

$$w_2 \equiv \frac{2(k_{1r} - k_{2r})^2 - k_{1r}^2 k_{2r}^2}{4M_p^2}, w_3 \equiv \frac{q_i^2 k_{2r}^2 - 2(q_i k_{2r})^2}{2M_p^2 q_i^2}, w_4 \equiv \frac{q_i^2 k_{1r}^2 - 2(q_i k_{1r})^2}{2M_p^2 q_i^2}, w_4 \equiv 2 \left[k_{1r} k_{2r} - (k_{1r} q_i k_{2r} q_i)^2 \right]^2 - \frac{k_{1r}^2 k_{2r}^2}{4M_p^2}. \ (2)$$
Analytical results for these convolutions can be obtained with a Gaussian modelling of \(f_1^g \) and \(h_1^{\perp g} \) (our Model 1), such as

\[
 f_1^g(x, k_T^2) = \frac{g(x)}{\pi (k_T^2)} e^{-k_T^2/(2k^2)} \quad \text{and} \quad h_1^{\perp g}(x, k_T^2) = \frac{M^2 g(x)}{\pi (k_T^2)^2} \frac{2(1-r)}{r} e^{1-k_T^2/(r(k_T^2))}.
\]

(3)

The convolutions then read

\[
 C[f_1^g f_1^g] = \frac{g(x_1) g(x_2)}{2\pi (k_T^2)} e^{-\frac{q_T^2}{16}} \quad \text{and} \quad C[h_1^{\perp g} h_1^{\perp g}] = \frac{g(x_1) g(x_2)}{2\pi (k_T^2)} e^{-\frac{q_T^2}{16}} \left(\frac{r^2}{2} - \frac{q_T^2}{2(k_T^2)} + \frac{q_T^4}{16(k_T^2)^2} \right),
\]

(4)

and we have \(C[w_3 f_1^g h_1^{\perp g}] = C[w_3 h_1^{\perp g} f_1^g] \).

D. Additional plots

Here we gather a plot (Fig. 3a) of all the TMD convolutions, which we used, normalised to that of the azimuthally independent term. We also show 2 plots (Fig. 3b and 3c) identical to Fig. 2b and 2c but for the \(\cos \theta_{CS} \) range \((0.25 < \cos \theta_{CS} < 0.5)\).

FIG. 3. (a) Various ratios of the TMD convolutions using both our models of \(h_1^{\perp g} \), (b,c) \(\langle \cos n\theta_{CS} \rangle \) for \(n = 2, 4 \) for 3 values of \(M_{qQ} \) (8, 12 and 21 GeV) for both our models of \(h_1^{\perp g} \) for \(0.25 < \cos \theta_{CS} < 0.5 \).