OPTIMAL APPROXIMANTS AND ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES II: FAMILIES OF POLYNOMIALS IN THE UNIT BALL

MEREDITH SARGENT AND ALAN SOLA

Abstract. We obtain closed expressions for weighted orthogonal polynomials and optimal approximants associated with the function \(f(z) = 1 - \frac{1}{\sqrt{2}}(z_1 + z_2) \) and a scale of Hilbert function spaces in the unit 2-ball having reproducing kernel \((1 - \langle z, w \rangle)^{-\gamma}, \gamma > 0\). Our arguments are elementary but do not rely on reduction to the one-dimensional case.

1. Introduction

This note continues recent work in [12] concerning certain families of polynomials connected with approximation in spaces of analytic functions, and orthogonal polynomials in weighted spaces. In the paper [12], we discussed the notion of optimal approximants to \(1/f \) for a holomorphic function \(f \) belonging to a Hilbert function space in \(\mathbb{C}^n \), and pointed out connections with orthogonal polynomials in certain weighted spaces, with weight determined by the same target function \(f \). We presented some elementary examples of optimal approximants and orthogonal polynomials in several variables, and to obtain concrete closed-form representations of these objects, we relied on one-variable results together with suitable transformations.

In this note, we present a further family of examples of weighted orthogonal polynomials and optimal approximants in several variables. We use a direct, elementary approach to go beyond cases that admit easy reduction to essentially one-variable problems. For simplicity, we focus on two variables, the target function \(f = 1 - \frac{1}{\sqrt{2}}(z_1 + z_2) \), and a scale of spaces of functions in the unit ball \(\mathbb{B}^2 = \{(z_1, z_2) \in \mathbb{C}^2: |z_1|^2 + |z_2|^2 < 1\} \), but some of our arguments potentially extend to higher dimensions, at the price of more cumbersome notation and more involved proofs.

We consider a scale of reproducing kernel Hilbert spaces that have recently featured in work of Richter and Sunkes [11]. For further background on this kind of spaces, see for instance [14] [7] [5] and the references therein. Fix \(\gamma > 0 \) and let \(H_\gamma \) denote the reproducing kernel Hilbert space in \(\mathbb{B}^d \) associated with the reproducing kernel

\[
k_\gamma(z; w) = \frac{1}{(1 - \langle z, w \rangle)^\gamma}, \quad z, w \in \mathbb{B}^d.
\]
The \mathcal{H}_γ include well-known spaces such as the Drury-Arveson space ($H_d^2 = H_1^2$), the Hardy space of \mathbb{B}^2 ($H^2(\partial \mathbb{B}_d) = \mathcal{H}_d$), and the Bergman space of the 2-ball ($A^2(\mathbb{B}_d) = \mathcal{H}_{d+1}$). In two variables, the norm in \mathcal{H}_γ of an analytic function $f = \sum_{m=0}^\infty \sum_{n=0}^\infty \hat{f}(m, n) z_1^m z_2^n$ can be expressed as

$$
\|f\|_\gamma^2 = \sum_{m=0}^\infty \sum_{n=0}^\infty a_{m,n} \hat{f}(m,n) \|z_1^m z_2^n\|^2,
$$

where

$$
a_{m,n} = \begin{cases} 1 & m = n = 0, \\ \frac{m!n!}{(\gamma+m+n-1)\cdot(\gamma+1)} & \text{otherwise.} \end{cases}
$$

We observe that polynomials are dense in all the \mathcal{H}_γ, monomials are orthogonal, and multiplication by the coordinate functions furnish bounded linear operators.

We now state the definition of optimal approximants; see [6, 13, 2, 11, 12] for more comprehensive discussions and references. Enumerating the monomials in two variables in some fixed way, we write χ_j for the jth monomial in this ordering, and set $P_n = \text{span}\{\chi_j : j = 0, \ldots, n\}$. In this note, we work with degree lexicographic order. Monomials are ordered by increasing total degree, and ties between two monomials of the same total degree are broken lexicographically. See [10, 9] and the references therein for background material. Explicitly, we have

$$1 < z_1 < z_2 < z_1^2 < z_1 z_2 < z_2^2 < z_1^3 < z_1^2 z_2 < \cdots,$$

so that $\chi_4 = z_1 z_2$, $\chi_5 = z_2^2$, and so on. For pairs of natural numbers (j, k) and (m, n), we will take $(j, k) \prec (m, n)$ to signify that $z_1^j z_2^k < z_1^m z_2^n$.

Definition 1 (Optimal approximants). Let $f \in \mathcal{H}_\gamma$ be given. We define the nth order optimal approximant to $1/f$ in \mathcal{H}_γ, relative to P_n, as $p_n^* = \text{Proj}_{\gamma,f} P_n \|1/f\|_{\mathcal{H}_\gamma}$, where $\text{Proj}_{\gamma,f} : \mathcal{H}_\gamma \rightarrow f \cdot P_n$ is the orthogonal projection onto the closed subspace $f \cdot P_n \subset \mathcal{H}_\gamma$.

Given some $f \in \mathcal{H}_\gamma$, optimal approximants can be viewed as polynomial substitutes for the function $1/f$, the point being that $1/f$ may fall outside of \mathcal{H}_γ. Optimal approximants arise in several contexts, for instance cyclicity problems and filtering theory, see [13, 12]. The papers [8, 14] discuss some methods for computing optimal approximants, but closed formulas are only known in a few instances. Multi-variable examples have so far only been obtained as a consequence of one-variable results.

Definition 2 (Weighted orthogonal polynomials). Let $f \in \mathcal{H}_\gamma$ be fixed. We say that a sequence $(\phi_j)_{j \in \mathbb{N}} \subset \mathbb{C}[z_1, z_2]$ consists of weighted orthogonal polynomials with respect to f if (ϕ_j) is an orthogonal basis for the Hilbert space $\mathcal{H}_{\gamma,f}$ with inner product given by $\langle g, h \rangle_{\gamma,f} = \langle g f, h f \rangle_{\mathcal{H}_\gamma}$. There is an important connection between optimal approximants and orthogonal polynomials, as is explained in [3, 12]. Namely, if (p_n^*) denote the optimal approximants to $1/f$, $f \in \mathcal{H}_\gamma$, and (ϕ_n) are orthogonal polynomials
in the weighted space $\mathcal{H}_{\gamma,f}$, respectively, then

\begin{equation}
(1.3) \quad p^*_n(z) = \sum_{k=0}^{n} (1, f\psi_k)_{\mathcal{H}_f} \psi_k(z),
\end{equation}

where $\psi_k = \phi_k / \|\phi_k\|_{\gamma,f}$. This means that if we determine $\{\phi_k\}_k$ explicitly for some given weight f, then we also obtain formulas for the optimal approximants to $1/f$. Implementing this strategy in practice in \mathcal{H}_γ and for the function $f = 1 - \frac{1}{\sqrt{2}} (z_1 + z_2)$ is the goal of this note.

2. A FAMILY OF ORTHOGONAL POLYNOMIALS

We begin with an elementary lemma.

Lemma 1. Let $f(z_1, z_2) = 1 - a(z_1 + z_2)$ and let \mathcal{H} be a reproducing kernel Hilbert space in which the monomials are orthogonal. Consider \mathcal{H}_f, the space weighted by f with inner product $(g, h)_{\mathcal{H}_f} := (gf, hf)_{\mathcal{H}}$. For nonnegative integers j, k, m, n, we have

\[
\langle z_1^j z_2^k, z_1^m z_2^n \rangle_f =
\begin{cases}
\|z_1^j z_2^k\|^2 + a^2 \|z_1^{j+1} z_2^k\|^2 + a^2 \|z_1^j z_2^{k+1}\|^2 & \text{if } m = j, n = k, \\
-a \|z_1^j z_2^k\|^2 & \text{if } m = j - 1, n = k, \\
-a \|z_1^{j+1} z_2^k\|^2 & \text{if } m = j, n = k - 1, \\
-a \|z_1^j z_2^{k+1}\|^2 & \text{if } m = j + 1, n = k, \\
a^2 \|z_1^{j+1} z_2^k\|^2 & \text{if } m = j + 1, n = k - 1, \\
a^2 \|z_1^j z_2^{k+1}\|^2 & \text{if } m = j - 1, n = k + 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. This amounts to expanding the inner product and reading off terms. \hfill \Box

Recall the standard definition of the *Pochhammer symbol* for γ real:

\[(\gamma)_n = \gamma \cdot (\gamma + 1) \cdots (\gamma + n - 1), \quad n \geq 0.\]
Throughout the rest of the paper we shall use the notation
\[z^j z^k = \sqrt{\frac{\gamma}{2}} (z^j + z^k), \]
for convenience. For any purely imaginary number \(\gamma > 0 \), set
\[J^k = \sqrt{\frac{\gamma}{2}} z^k, \quad K^k = \sqrt{\frac{\gamma}{2}} z^{\bar{k}}. \]

Theorem 2. In \(H_\gamma \), weighted by \(f(z_1, z_2) = 1 - \sqrt{\frac{\gamma}{2}} (z_1 + z_2) \), let \(\phi_{j,k} \) be the first orthogonal polynomial containing \(z_j^1 z_k^2 \) (with respect to degree lexicographic order). Then \(\phi_{j,k} \) has the form

\[\phi_{j,k}(z_1, z_2) = \sum_{m=0}^{j} \sum_{n=0}^{k} \hat{\phi}_{j,k}(m, n) z_1^m z_2^n \]

where the coefficients \(\hat{\phi}_{j,k}(m, n) \) are given by

\[\hat{\phi}_{j,k}(m, n) = \left(\sqrt{\frac{\gamma}{2}} \right)^{j+k-m-n} \frac{(\gamma)_{m+n+1}}{(\gamma)_{j+k+1}} \frac{j! k!}{m! n! (j-m)! (k-n)!}. \]

Moreover,

\[\| \phi_{j,k} \|_f^2 = \frac{\gamma + j + k + 1}{\gamma + j + k} j! k! \gamma_j^{j+k} \]

Proof. We shall prove this using strong induction. First, \(\phi_{0,0}(z_1, z_2) = 1 \), and by Lemma 1

\[\| \phi_{0,0} \|_f^2 = 1 = \| 1 \|_f^2 + \left(\sqrt{\frac{\gamma}{2}} \right)^2 \| z \|_f^2 + \left(\sqrt{\frac{\gamma}{2}} \right)^2 \| z \|_f^2 = 1 + \frac{1}{2\gamma} + \frac{1}{2\gamma} = \frac{\gamma + 1}{\gamma} \]

as needed. Now consider \(\phi_{j,k} \) and assume that for all \((J, K) \prec (j,k) \), the polynomial \(\phi_{J,K} \) has the desired form, coefficients, and norm. Using the Gram-Schmidt algorithm,

\[\phi_{j,k}(z_1, z_2) = z_j^1 z_k^2 - \sum_{(J,K) \prec (j,k)} \frac{\langle z_j^1 z_k^2, \phi_{J,K} \rangle_\gamma}{\| \phi_{J,K} \|_f^2} \phi_{J,K}. \]

Each \(\phi_{J,K} \) has the form \((2.1) \), and by Lemma 1 we see that there are only three \(\phi_{J,K} \) with \((J, K) \prec (j,k) \) that give a non-zero inner product: \(\phi_{j-1,k}, \phi_{j,k-1}, \) and \(\phi_{j+1,k-1} \). Noting that \(\hat{\phi}_{J,K}(J, K) = 1 \) and applying Lemma 1 gives that

\[\langle z_j^1 z_k^2, \phi_{j,k-1} \rangle_\gamma = -\sqrt{\frac{\gamma}{2}} \frac{j! k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \gamma} \]

(2.5)

\[\langle z_j^1 z_k^2, \phi_{j-1,k} \rangle_\gamma = -\sqrt{\frac{\gamma}{2}} \frac{j! k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \gamma} \]

(2.6)

\[\langle z_j^1 z_k^2, \phi_{j+1,k-1} \rangle_\gamma = \langle z_j^1 z_k^2, z_1^{j+1} z_2^{k-1} \rangle_\gamma + \hat{\phi}_{j+1,k-1}(j, k-1) z_j^1 z_k^2 \]

(2.7)

\[= \langle z_j^1 z_k^2, z_1^{j+1} z_2^{k-1} \rangle_\gamma + \hat{\phi}_{j+1,k-1}(j, k-1) \langle z_j^1 z_k^2, z_1^{j-1} z_2^{k-1} \rangle_\gamma. \]
The right hand side of (2.7) is equal to zero: by Lemma [1]

\[(2.8) \quad \langle z_{j,k}^1, z_{j,k}^{1, j+1,k-1} \rangle_f = \frac{1}{2} \left[\frac{(j + 1)k!}{(\gamma + j + 1 + k - 1) \cdots (\gamma + 1) \cdot \gamma} \right], \]

and by the inductive hypothesis about the norm of \(\phi_{j+1,k-1} \) and Lemma [1]

\[\hat{\phi}_{j+1,k-1}(j,k - 1) \langle z_{j,k}^1, z_{j,k}^{1, j+1,k-1} \rangle_f = \frac{\sqrt{2}}{2} \frac{j + 1}{\gamma + j + k} \cdot \left(-\frac{\sqrt{2}}{2} \right) \frac{j!k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} \]

\[= -\frac{1}{2} \left[\frac{(j + 1)k!}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \right]. \]

Because of this cancellation, which is the key to getting the form the form (2.1), the only preceding orthogonal polynomials that contribute terms to \(\phi_{j,k} \) are \(\phi_{j,k-1} \) and \(\phi_{j-1,k} \), so we have

\[\phi_{j,k}(z_1, z_2) = z_{j,k}^1 z_{j,k}^2 - \frac{\langle z_{j,k}^1, \phi_{j,k-1} \rangle_f \phi_{j,k-1} - \langle z_{j,k}^1 z_{j,k}^2, \phi_{j-1,k} \rangle_f}{\| \phi_{j,k-1}\|^2_f} \phi_{j-1,k} \]

\[= z_{j,k}^1 z_{j,k}^2 + \frac{\sqrt{2}}{2} \frac{j!k!}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \left(\frac{1}{\| \phi_{j,k-1}\|^2_f} \phi_{j,k-1}^2 + \frac{1}{\| \phi_{j-1,k}\|^2_f} \phi_{j-1,k}^2 \right). \]

Using the inductive hypothesis about the norms and simplifying, we obtain

\[(2.10) \quad \phi_{j,k}(z_1, z_2) = z_{j,k}^1 z_{j,k}^2 + \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} (k \phi_{j,k-1} + j \phi_{j-1,k}). \]

This recursive formula can now be used to recover individual coefficients \(\hat{\phi}_{j,k}(m,n) \) using the coefficients \(\hat{\phi}_{j,k-1}(m,n) \) and \(\hat{\phi}_{j-1,k}(m,n) \). We know that \(\hat{\phi}_{j,k}(j,k) = 1 \), and in the case where \(m = j \) (or, similarly, where \(n = k \)) we have \(\hat{\phi}_{j-1,k}(j,n) = 0 \) (similarly, \(\hat{\phi}_{j,k-1}(m,k) = 0 \)). Let us first consider the case where \(m = j \) and \(n = 0, 1, \ldots, k - 1 \), noting that the case where \(n = k \) and \(m = 0, 1, \ldots, j - 1 \) proceeds similarly:

\[\hat{\phi}_{j,k}(j,n) = \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} \left(k \hat{\phi}_{j,k-1}(j,n) + j \hat{\phi}_{j-1,k}(j,n) \right) \]

\[= \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} \left(\frac{\sqrt{2}}{2} \right)^{j+k-1-j-n} \frac{(\gamma + j + n) \cdots (\gamma + 1) \cdot \gamma}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} \]

\[\cdot \left(k \frac{j!k}{(j,n)!} \frac{1}{(j-1,n)!} \right) \]

\[= \frac{\sqrt{2}}{2} \frac{\sqrt{2}^{k-n} (\gamma + j + n) \cdots (\gamma + 1) \cdot \gamma}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \frac{k!}{(k-1-n)!} \]

\[= \frac{\sqrt{2}}{2} \frac{\sqrt{2}^{k-n} (\gamma + j + n) \cdots (\gamma + 1) \cdot \gamma}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \frac{k!}{(k-1-n)!} \frac{1}{n! (k-1-n)!} \]

and this is what is obtained from substituting \(m = j \) in (2.2).
Now we consider the case where \(n < k \) and \(m < j \):

\[
\hat{\phi}_{j,k}(m,n) = \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} \left(k\hat{\phi}_{j,k-1}(m,n) + j\hat{\phi}_{j-1,k}(m,n) \right)
\]

\[
= \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} \left(\sqrt{2} \right)^{j+k-1-m-n} \frac{(\gamma + m + n) \cdots (\gamma + 1) \cdot \gamma}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} \\
\quad \cdot \left(k \left(\frac{j! (k-1)! (j + k - 1 - m - n)!}{m! n! (k-1 - n)!} \right) \\
\quad \quad + j \left(\frac{(j-1)! k! (j - 1 + k - m - n)!}{m! n! (j - 1 - m)! (k - n)!} \right) \right)
\]

\[
= \frac{\sqrt{2}}{2} \left(\frac{j+k-m-n}{2} \right) \frac{(\gamma + m + n) \cdots (\gamma + 1) \cdot \gamma}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \cdot \frac{j! k! (j + k - m - n)!}{m! n! (j - m)! (k - n)!}
\]

as needed. All that remains is to establish \([2,3]\). We use the recursive form \([3]\) and expand the inner product:

\[
\langle \phi_{j,k}, \phi_{j,k} \rangle_f = \left\langle z_1^j z_2^k, z_1^j z_2^k \right\rangle_f + \frac{\sqrt{2}}{2} \frac{k}{\gamma + j + k} \left\langle z_1^j z_2^k, \phi_{j,k-1} \right\rangle_f
\]

\[
+ \frac{\sqrt{2}}{2} \frac{j}{\gamma + j + k} \left\langle z_1^j z_2^k, \phi_{j-1,k} \right\rangle_f + \frac{\sqrt{2}}{2} \frac{k}{\gamma + j + k} \left\langle \phi_{j-1,k}, z_1^j z_2^k \right\rangle_f
\]

\[
+ \frac{\sqrt{2}}{2} \frac{j}{\gamma + j + k} \left\langle \phi_{j,k-1}, z_1^j z_2^k \right\rangle_f + \frac{1}{2} \frac{k^2}{(\gamma + j + k)^2} \|\phi_{j,k-1}\|_f^2
\]

\[
+ \frac{1}{2} \frac{k}{(\gamma + j + k)^2} \left\langle \phi_{j,k-1}, \phi_{j-1,k} \right\rangle_f + \frac{1}{2} \frac{j^2}{(\gamma + j + k)^2} \|\phi_{j-1,k}\|_f^2
\]

\[
+ \frac{1}{2} \frac{k}{(\gamma + j + k)^2} \left\langle \phi_{j-1,k}, \phi_{j-1,k} \right\rangle_f + \frac{1}{2} \frac{j}{(\gamma + j + k)^2} \|\phi_{j-1,k}\|_f^2.
\]
Substituting the inductive values of the norms, (2.5), (2.6), and recalling that the \(\phi \) are orthogonal, we obtain
\[
\langle \phi_{j,k}, \phi_{j,k} \rangle_f = \frac{j!k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} + \frac{1}{2(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} j!(k+1)! + \frac{\sqrt{2}}{2(\gamma + j + k)^2} \left(-\frac{\sqrt{2} j!k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} \right)
\]
and simplifying yields
\[
\langle \phi_{j,k}, \phi_{j,k} \rangle_f = \frac{j!k!}{(\gamma + j + k - 1) \cdots (\gamma + 1) \cdot \gamma} + \frac{j!k!}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \left(\frac{j + 1}{2} + \frac{k + 1}{2} \right) + \frac{j!k!}{(\gamma + j + k) \cdots (\gamma + 1) \cdot \gamma} \left(\frac{j + 1}{2} + \frac{k + 1}{2} \right) \cdot \left(\frac{\gamma + j + k}{\gamma + j + k + 1} \cdot \frac{\gamma}{\gamma + j + k} \right).
\]

\textbf{Corollary 3.} The orthogonal polynomials given in Theorem 2 can be written recursively as
\[
\phi_{j,k} = z^j w^k + \frac{\sqrt{2}}{2} \frac{1}{\gamma + j + k} (k \phi_{j,k-1} + j \phi_{j-1,k}).
\]

3. A FAMILY OF OPTIMAL APPROXIMANTS

Making use of the formula (1.3), we obtain information about optimal approximants to \(1/(1 - 1/\sqrt{2} (z_1 + z_2)) \). We again set \(\psi_{j,k} = \phi_{j,k}/\|\phi_{j,k}\|_{\gamma,f} \).

\textbf{Lemma 4.} Let \(\gamma > 0 \) be fixed. Then for \(j, k \in \mathbb{N} \),
\[
\langle 1, f \psi_{j,k} \rangle_{\gamma} \psi_{j,k} = \frac{\hat{\phi}_{j,k}(0,0)}{\|\phi_{j,k}\|^2} \phi_{j,k} = \left(\frac{\sqrt{2}}{2} \right)^{j+k} \frac{j!k!}{j!k! \gamma + j + k + 1} \hat{\phi}_{j,k}.
\]

\textbf{Proof.} From the power series expression for the norm in \(\mathcal{H}_\gamma \), we have \(\langle 1, f \psi_{j,k} \rangle_{\gamma} = \langle f \psi_{j,k} \rangle(0) = \tilde{\psi}_{j,k}(0,0) = \hat{\psi}_{j,k}(0,0) \), and by definition, \(\hat{\psi}_{j,k}(0,0) = \hat{\phi}_{j,k}(0,0)/\|\phi_{j,k}\|_{\gamma,f} \) which is real by (2.2).
It remains to compute
\[\phi_{j,k}(0, 0) = \left(\frac{\sqrt{2}}{2} \right)^{j+k} \frac{\gamma}{(\gamma)^{j+k+1}} (j+k)! \]
and, simplifying, we obtain
\[\frac{\phi_{j,k}(0, 0)}{\|\phi_{j,k}\|_2^2} = \left(\frac{\sqrt{2}}{2} \right)^{j+k} \frac{(j+k)! \gamma}{j!k! \gamma + j + k + 1}. \]

\[\square \]

Setting \(\Phi_{j,k} = \sum_{n=0}^{j} \sum_{m=0}^{k} \hat{\Phi}_{j,k}(m,n) z_1^m z_2^n \)
where
(3.1) \(\hat{\Phi}_{j,k}(m,n) = \left(\frac{\sqrt{2}}{2} \right)^{2(j+k)-m-n} \gamma^{(j+k)!} \gamma_{m+n+1}^{(j+k-m-n)!} \gamma_{j+k+2}^{(j-m)! (k-n)!} \)
a representation formula for optimal approximants follows from Lemma 4.

Theorem 5. For \(\gamma > 0 \) fixed, we have
\[p_n^*(z_1, z_2) = \sum_{(j,k) \leq (n_1, n_2)} \Phi_{j,k}(z_1, z_2) \]
where \((n_1, n_2)\) is the bidegree of the polynomial \(p_n^* \).

Explicitly, then,
\[p_0^* = \Phi_{0,0}, \quad p_1^* = \Phi_{0,0} + \Phi_{1,0}, \quad p_2^* = \Phi_{0,0} + \Phi_{1,0} + \Phi_{0,1}, \]
\[p_3^* = \Phi_{0,0} + \Phi_{1,0} + \Phi_{0,1} + \Phi_{2,0} \quad p_4^* = \Phi_{0,0} + \Phi_{1,0} + \Phi_{0,1} + \Phi_{2,0} + \Phi_{1,1}, \]
and so on. Some \(p_n^* \)'s for \(\gamma = 1 \) (the Drury-Arveson space) are written out in [12, Section 6.1]. The first few optimal approximants for the Hardy space \(H^2(\mathbb{B}^2) \) (\(\gamma = 2 \)) are as follows:
\[p_0^* = \frac{2}{3}, \quad p_1^* = \frac{3}{4} + \frac{1}{4} \sqrt{2} z_1, \quad p_2^* = \frac{5}{6} + \frac{\sqrt{2}}{4} (z_1 + z_2), \quad p_3^* = \frac{17}{20} + \frac{3\sqrt{2}}{10} z_1 + \frac{\sqrt{2}}{4} + \frac{1}{5} z_2, \]
\[p_4^* = \frac{53}{60} + \frac{7\sqrt{2}}{10} z_1 + \frac{3\sqrt{2}}{10} + \frac{1}{5} z_1 + \frac{2}{5} z_2, \]
while the first optimal approximants in the Bergman space \(A^2(\mathbb{B}^2) \) (\(\gamma = 3 \)) have the form
\[p_0^* = \frac{3}{4}, \quad p_1^* = \frac{33}{40} + \frac{3\sqrt{2}}{10} z_1, \quad p_2^* = \frac{9}{10} + \frac{3\sqrt{2}}{10} (z_1 + z_2), \quad p_3^* = \frac{73}{80} + \frac{7\sqrt{2}}{20} z_1 + \frac{3\sqrt{2}}{10} z_2 + \frac{1}{4} z_2, \]
\[p_4^* = \frac{15}{16} + \frac{2\sqrt{2}}{5} z_1 + \frac{7\sqrt{2}}{20} z_2 + \frac{1}{4} z_2 + \frac{1}{2} z_1 z_2. \]
The symmetric form of \(p_2^* \) above is explained in [12, Section 6].
4. An application

Our results can be applied to study the cyclicity properties of the function $f = 1 - \frac{1}{\sqrt{2}}(z_1 + z_2)$. Recall that f is said to be cyclic in \mathcal{H}_γ if the closure of the invariant subspace $\text{span}\{z_1^j z_2^k f : j, k \in \mathbb{N}\}$ equals \mathcal{H}_γ.

Define the optimal distance $\nu_n^2(f, \mathcal{H}_\gamma) = \|p_n^* f - 1\|_{\mathcal{H}_\gamma}$: then f is cyclic if and only if $\nu_n(f, \mathcal{H}_\gamma) \to 0$ as $n \to \infty$. Combining [3, Corollary 5.3] with our explicit formulas, we obtain the following.

Corollary 6. We have

$$\nu_n^2(f, \mathcal{H}_\gamma) = 1 - \gamma^2 \sum_{(j,k) < (n_1,n_2)} 2^{-(j+k)} \frac{(j+k)!}{(\gamma)_{j+k+2}} \left(\begin{array}{c} j+k \\ j \end{array} \right),$$

where (n_1,n_2) is the bidegree of p_n^*.

The function f was already known to be cyclic in all \mathcal{H}_γ, but the above gives a precise description of how quickly the finite-dimensional subspaces $f \cdot \mathcal{P}_n$ fill up \mathcal{H}_γ. (The trick used to prove [12, Proposition 23] combined with [8, Proposition 3.10] applied to the weight sequence $\omega(k) = k!/\gamma_k \approx k^{\gamma-1}$ shows that the optimal distances have power law decay with exponent $-\gamma$.)

5. Closing remarks

As was highlighted in the course of the proof of Theorem 2, the cancellation in (2.9) simplifies the structure of the orthogonal polynomials, giving rise to a relatively simple recursive relation that in turn allows us to write down an explicit formula for their coefficients; this phenomenon of course reflects the fact that the target function $f = 1 - \frac{1}{\sqrt{2}}(z_1 + z_2)$ is well-adapted to the structure of \mathcal{H}_γ (viz. also [12, Proposition 23]).

In [12], optimal approximants to $1/f$ for the similar function $f = 1 - \frac{1}{2}(z_1 + z_2)$ were examined for the family of Dirichlet-type spaces \mathcal{D}_α on the bidisk $\mathbb{D}^2 = \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1 \}$, as were the corresponding orthogonal polynomials. While an analog of Lemma 1 holds in that setting, cancellation fails for the orthogonal polynomials. Indeed, as is pointed out in [12, Section 6], coefficients appearing in the orthogonal polynomials and optimal approximants in \mathcal{D}_α in the bidisk exhibit sign changes and other complications, suggesting that obtaining a closed formula as well as precise estimates on optimal distances might be a harder problem than for the ball.

Returning to \mathbb{B}^2, we note that an analog of Lemma 1 for the target function $g = \left(1 - \frac{1}{\sqrt{2}}(z_1 + z_2)\right)^2$, and indeed for other powers of f, is readily obtained. One can then proceed as we have done here in order to analyze orthogonal polynomials associated with the weight g. The computations quickly become more involved, but in principle one could attempt to obtain a recursive relation analogous to that in Corollary 6, and then extract a closed formula for coefficients of orthogonal polynomials. As a sample, we invite the reader to verify that for $\gamma = 1$ (the Drury-Arveson space), the
orthogonal polynomials for the weight $g = f^2$ satisfy the relation

$$
\phi_{j,k} = z_1^j z_2^k + \frac{\sqrt{2}}{j + k + 2} (k\phi_{j,k-1} + j\phi_{j-1,k}) - \frac{1}{(j + k + 1)(j + k + 2)} \left(\frac{k(k - 1)}{2} \phi_{j,k-2} + jk\phi_{j-1,k-1} + \frac{j(j - 1)}{2} \phi_{j-2,k} \right).
$$

REFERENCES

[1] Bénétieau, C., Condori, A. A., Liaw, C., Seco, D., and Sola, A. A. Cyclicity in Dirichlet-type spaces and extremal polynomials. J. Anal. Math. 126 (2015), 259–286.

[2] Bénétieau, C., Khavinson, D., Liaw, C., Seco, D., and Simanek, B. Zeros of optimal polynomial approximants: Jacobi matrices and Jentzsch-type theorems. Rev. Mat. Iberoam 35, 2 (2019), 607–642.

[3] Bénétieau, C., Khavinson, D., Liaw, C., Seco, D., and Sola, A. A. Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants. J. London Math. Soc. 94, 3 (2016), 726–746.

[4] Bénétieau, C., Manolaki, M., and Seco, D. Boundary behavior of optimal polynomial approximants. Constr. Approx (to appear).

[5] Cao, G., He, L., and Zhu, K. Spectral theory of multiplication operators on Hardy-Sobolev spaces. J. Funct. Anal. 275 (2018), 1259–1279.

[6] Chui, C. K. Approximation by double least-squares inverses. J. Math. Anal. Appl. 75 (1980), 149–163.

[7] Costea, Ş., Sawyer, E. T., and Wick, B. D. The corona theorem for the Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the unit ball in \mathbb{C}^n. Anal. PDE. 4 (2011), 499–550.

[8] Fricain, E., Mashreghi, J., and Seco, D. Cyclicity in reproducing kernel Hilbert spaces of analytic functions. Comput. Methods Funct. Theory 14, 4 (2014), 665–680.

[9] Geronimo, J. S., and Iliev, P. Fejér-Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle. J. Euro. Math. Soc. 16 (2014), 1849–1880.

[10] Geronimo, J. S., and Woerdeman, H. J. Two variable orthogonal polynomials on the bi-circle and structured matrices. SIAM J. Matrix Anal. Appl. 29 (2007), 796–825.

[11] Richter, S., and Sunke, J. Hankel operators, invariant subspaces, and cyclic vectors in the Drury-Arveson space. Proc. Amer. Math. Soc. 144 (2016), 2575–2586.

[12] Sargent, M., and Sola, A. A. Optimal approximants and orthogonal polynomials in several variables. Preprint (2020).

[13] Seco, D. Some problems on optimal approximants. In Recent progress on operator theory and approximation in spaces of analytic functions, C. Bénétieau, A. A. Condori, C. Liaw, W. T. Ross, and A. A. Sola, Eds. Amer. Math. Soc., Providence, RI, 2016, pp. 193–205.

[14] Zhu, K. Spaces of holomorphic functions in the unit ball. Springer-Verlag, 2005.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARKANSAS, FAYETTEVILLE, AR 72701, U.S.A.
E-mail address: sargent@uark.edu

DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY, 106 91 STOCKHOLM, SWEDEN
E-mail address: sola@math.su.se