Spectral and temporal analysis of the joint Swift/BAT–Fermi/GBM GRB sample

Francisco J. Virgili,1,2* Ying Qin,3 Bing Zhang2 and Enwei Liang3

1Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD
2Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
3Department of Physics and Astronomy, Guangxi University, Nanning 530004, China

Accepted 2012 May 29. Received 2012 May 29; in original form 2011 December 19

ABSTRACT

Using the gamma-ray bursts (GRBs) simultaneously detected by Swift/Burst Alert Telescope (BAT) and Fermi/Gamma-ray Burst Monitor (GBM), we performed a joint spectral and temporal analysis of the prompt emission data and confirmed the rough correlation between the BAT-band photon index Γ^{BAT} and the peak spectral energy E_{peak}. With the redshift-known subsample, we derived the isotropic gamma-ray energy $E_{\gamma,\text{iso}}$ and also confirmed the $E_{\gamma,\text{iso}}-E_{\text{peak,rest}}$ relation, with a larger scatter than the Amati sample but consistent with GBM team analyses. We also compare the T_{90} values derived in the GBM band with those derived in the BAT band and find that for long GRBs the BAT T_{90} is usually longer than the GBM T_{90}, while for short GRBs the trend reverses. This is consistent with the soft/hard nature of long/short GRBs and suggests the importance of an energy-dependent temporal analysis of GRBs.

Key words: methods: data analysis – gamma-rays bursts: general.

1 INTRODUCTION

Since the launch of the Fermi satellite in 2008, a significant number of gamma-ray bursts (GRBs) have been observed by both the Fermi Gamma-ray Burst Monitor (GBM, 8 keV to 40 MeV) and Swift (Gehrels et al. 2004). Since the energy band of Swift BAT is narrow (15–150 keV) and the peak of the spectrum is often outside the observed energy window (Sakamoto et al. 2009), the joint BAT–GBM sample is valuable for Swift science by providing important information about the prompt emission, especially the characteristic peak energy of the νF_{ν} spectrum, E_{peak}. Using the Fermi/GBM–Swift/BAT joint sample, we performed a two-part analysis on the prompt emission data. First, a joint spectral analysis where we fitted the data from both detectors and investigated several empirical correlations. Secondly, a temporal analysis where we rigorously derived T_{90} in the 8–1000 keV band and compared it to the published BAT values.

A variety of empirical relations have been discussed in the literature (Amati et al. 2002; Amati 2003; Ghirlanda, Ghisellini & Lazzati 2004; Sakamoto et al. 2004, 2006; Yonetoku et al. 2004; Liang & Zhang 2005), many of which utilize E_{peak}. Since E_{peak} cannot be well measured for most Swift GRBs, efforts have previously been made to look for indicators of E_{peak} based on the available observed quantities. In particular, the effective photon power law (PL) index in the BAT band, Γ^{BAT}, has been found to be broadly correlated with E_{peak}. Two versions of this relation are found in the literature: one presented in Sakamoto et al. (2009) using the simulations of BAT spectra and E_{peak} measurements from broad-band detectors (e.g. Konus-Wind), and another presented in Zhang et al. (2007b) with E_{peak} estimates based on the hardness ratio in the BAT band itself (Zhang et al. 2007a; see also Cui, Liang & Lu 2005). In Section 3.2, we re-calibrate this correlation with the GBM–BAT joint sample. The $E_{\gamma,\text{iso}}-E_{\text{peak,rest}}$ relation (or Amati relation; Amati et al. 2002; Amati 2003) is one of the most widely studied, and hotly debated, empirical correlations that may connect to GRB physics (e.g. Band & Preece 2005; Nakar & Piran 2005, Kocevski 2012). In Section 3.3, we test the Amati relation with the redshift-known subsample of the GBM–BAT joint sample.

Finally, traditionally long and short GRBs were defined in the BATSE band with a separation of about 2 s in the observed frame (Kouveliotou et al. 1993). When applied to Swift GRBs and combined with multiwavelength afterglow data, this definition creates confusion when used for GRB classification (e.g. Zhang et al. 2007b, 2009). Since the energy band of GBM is similar to that of BATSE, a comparison between the measured T_{90} durations in the two detectors is of great interest and is performed in Section 4.

2 SAMPLE AND DATA REDUCTION

We conducted our analysis on the sample of GRBs that were observed simultaneously with the Swift/BAT and Fermi/GBM detectors. The sample was chosen from bursts that were consistent both temporally [similar trigger times in Swift Mission Elapsed Time (MET)] and in sky placement (RA/Dec.) between 2008 June and 2011 May. Our final sample consists of 75 bursts whose spectra

*E-mail: fjv@astro.livjm.ac.uk
were fitted individually to check consistency with the literature and then fitted jointly. Some bursts were removed because they were a *Swift* ground detection (e.g. 100427A; partial data) or a false detection [e.g. 080822B, which has been classified as an soft gamma-ray repeater (SGR flare)].

The *Fermi*-GBM GRB data were downloaded from the online *Fermi* GRB Catalogue found on the NASA HEASARC website and the time-integrated spectra were fitted with the GBM software RMFIT. The *Swift*-BAT data were downloaded from the *Swift* data table, also located on the NASA HEASARC website. The resulting data were processed using the typical *Swift*-BAT products (BATGRBPRODUCT) after updating the current calibration data base (BATECONVERT) to create the burst light curves and spectra.

3 Spectral Analysis

3.1 Results

We performed spectral fits for the GBM GRBs with RMFIT using the built-in PL, PL with exponential cutoff (CPL, 100 keV normalization energy) and Band function (Band et al. 1993) models over the entire burst temporal and spectral (8 keV to 40 MeV) interval in order to determine the best-fitting model. The goodness of the fit is measured with the C statistic (C stat). If the C stat was comparable to the previous results (e.g. Preece et al. 2000; Nava et al. 2011; Zhang et al. 2011), the *E*_peak distribution is roughly log-normal but is somewhat wider than that of the bright BATSE GRB sample (Preece et al. 2000). Our sample includes GRBs in a broader *E*_peak range, broadening the observed *E*_peak range. The low-energy spectral index α peaks around 1 as suggested by previous works. We do not present the distribution of the high-energy photon index β due to the small sample size (most spectra can be fitted by a CPL model). Although they form a limited part of our sample, the distribution for short bursts shows behaviour consistent with previous samples, namely a harder median *E*_peak and similar or slightly shallower pre-break slope.

Since the GBM energy band covers the energy band of BAT, we also derive *E*_peak with the GBM data only and compare the values with the joint fit values. Fig. 2 shows the relationship between the separately derived GBM and joint sample *E*_peak Values with a line of slope 1 drawn for reference, showing the generally small differences between the samples.

3.2 *Γ*\(^{\text{BAT}}\)−*E*_peak Relation

With our spectral analysis results, we examine the empirical relations between the PL slope of the BAT spectrum, *Γ*\(^{\text{BAT}}\), and *E*_peak proposed by Sakamoto et al. (2009) and Zhang et al. (2007b):

\[
\log E_{\text{peak}} = 3.258 - 0.829 \Gamma^{\text{BAT}}
\]

and

\[
\log E_{\text{peak}} = (2.76 \pm 0.07) - (3.61 \pm 0.26) \log \Gamma^{\text{BAT}},
\]

respectively. Both Zhang et al. (2007a,b) and Sakamoto et al. (2009) indicate that the relation is valid between the slopes of roughly 1.2 < *Γ*\(^{\text{BAT}}\) < 2.3. Here we aim to present the entire data set of the joint sample and see how the relation fares over the entire

1 http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
2 http://fermi.gsfc.nasa.gov/ssc/data/analysis/
3 http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl
4 Sakamoto et al. (2009) derive 1σ error levels which are based on the value of Γ (see their table 1): lower limit: \(-20.684 + 43.464 \Gamma^{2} - 5.185 \Gamma^{3}\); upper limit: \(-5.198 + 16.568 \Gamma - 6.360 \Gamma^{2} + 2.034 \Gamma^{3}\).
Table 2. Bursts whose time-integrated spectra are best fitted by either a CPL or a Band function model. Spectra were fitted using data in the 15–150 keV (BAT)+8 keV to 40 MeV (GBM) energy range. Errors are to the 90 per cent level.

GRB name	GBM ID	Spectral Model	Δ^b (s)	α	β	E_{peak} (keV)	χ^2/d.o.f.
080714A	080714745	CPL	28.672	1.221	0.13	0.015	0.31
080725A	080725435	CPL	36.864	1.120	0.07	0.008	0.57
080727C	080727964	CPL	77.825	1.130	0.08	0.009	0.28
080804A	080804972	CPL	26.62	0.560	0.12	0.013	0.23
080810A	080810549	CPL	69.633	1.230	0.06	0.007	0.40
080905A	080905499	CPL	1.152	0.250	0.37	0.050	0.182
080901A	080916406	CPL	69.633	1.240	0.11	0.011	0.19
081008A	081008832	CPL	60.417	1.190	0.11	0.011	0.367
081012A	081012549	CPL	18.432	0.050	0.18	0.008	0.24
090912A	090912660	CPL	123.902	0.80	0.8	0.010	0.40
090712A	090712160	CPL	53.248	1.06	0.06	0.010	0.16
090102A	090102122	CPL	37.888	0.980	0.04	0.010	0.39
091208A	091208410	CPL	12.288	1.290	0.10	0.010	0.39
090709B	090709630	CPL	15.36	1.530	0.09	0.010	0.40
090423A	090423330	CPL	14.336	0.870	0.73	0.010	0.37
090424A	090424592	Band	19.971	0.950	0.02	0.010	0.55
090509A	090509215	CPL	26.624	0.95	0.23	0.010	0.58
090510A	090510016	CPL	0.896	0.840	0.05	0.010	0.58
090519A	090519881	CPL	18.432	0.510	0.28	0.010	0.58
090531B	090531775	CPL	3.072	0.930	0.16	0.010	0.58
090621B	090621922	CPL	0.128	0.470	0.34	0.010	0.58
090708B	090708152	CPL	14.336	0.86	0.51	0.010	0.58
090709B	090709630	CPL	20.48	0.920	0.22	0.010	0.58
090712A	090712160	CPL	53.248	1.060	0.12	0.010	0.58
090813A	090813174	CPL	9.725	1.510	0.13	0.010	0.58
090904B	090904058	CPL	74.663	1.280	0.08	0.010	0.58
090912A	090912660	CPL	123.902	0.85	0.22	0.010	0.58
090926A	090926914	CPL	64.513	0.25	0.14	0.010	0.58
091023A	091023077	CPL	28.672	1.030	0.17	0.010	0.58
091123A	091123760	Band	11.006	1.210	0.13	0.010	0.58
091208B	091208410	CPL	13.312	1.360	0.09	0.010	0.58
091221A	091221870	CPL	35.841	1.070	0.07	0.010	0.58
091111A	100111176	CPL	16.374	1.59	0.21	0.010	0.58
091113A	100113789	CPL	0.192	1.40	0.99	0.010	0.58
091026A	100206563	CPL	0.256	0.640	0.21	0.010	0.58
100504A	100504806	CPL	28.672	1.030	0.22	0.010	0.58
100522A	100522157	CPL	41.985	1.540	0.18	0.010	0.58
100615A	100615083	Band	40.574	0.910	0.29	0.010	0.58
100625A	100625773	CPL	0.32	0.690	0.11	0.010	0.58
100704A	100704149	CPL	23.552	0.910	0.19	0.010	0.58
Table 2. – continued

GRB name	GBM ID	Model	Δt^b (s)	α	β	E_{peak} (keV)	χ^2/d.o.f.
100728A	100728095	CPL	191.487	0.80^{+0.03}_{-0.03}	–	313^{+19}_{-17}	538/411
100728B	100728439	CPL	10.237	0.91^{+0.18}_{-0.32}	–	105^{+22}_{-15}	537/501
100802A	100802240	CPL	41.985	0.57^{+0.37}_{-0.41}	–	83^{+25}_{-12}	684/650
100814A	100814160	CPL	158.722	1.06^{+0.10}_{-0.12}	–	147^{+23}_{-21}	566/526
100816A	100816026	CPL	4.542	0.50^{+0.11}_{-0.12}	–	139^{+11}_{-11}	437/364
100906A	100906576	Band	121.347	1.44^{+0.11}_{-0.59}	1.99^{+0.23}_{-0.2}	106^{+35}_{-34}	589/526
100924A	100924165	CPL	8.061	1.16^{+0.16}_{-0.17}	–	172^{+26}_{-36}	472/437
101008A	101008697	CPL	14.336	1.24^{+0.27}_{-0.22}	–	701^{+397}_{-297}	422/410
101011A	101011707	CPL	27.645	1.06^{+0.23}_{-0.28}	–	389^{+190}_{-190}	520/524
101024A	101024486	CPL	13.312	0.91^{+0.43}_{-0.45}	–	48^{+5}_{-5}	543/504
101213A	101213451	CPL	47.105	1.26^{+0.12}_{-0.12}	–	423^{+143}_{-143}	380/411
101219B	101219686	CPL	51.201	0.08^{+0.39}_{-0.45}	–	72^{+1}_{-1}	738/650
110102A	110102788	CPL	148.486	1.46^{+0.06}_{-0.07}	–	476^{+95}_{-96}	403/411
110106B	110106893	CPL	35.84	1.4^{+0.18}_{-0.2}	–	111^{+29}_{-26}	509/528
110119A	110119931	CPL	68.609	1.15^{+0.11}_{-0.12}	–	224^{+190}_{-190}	555/527
110201A	110201399	CPL	12.288	0.93^{+0.12}_{-0.15}	–	730^{+911}_{-911}	612/595
110213A	110213220	CPL	43.009	1.56^{+0.09}_{-0.1}	–	85^{+18}_{-12}	411/410
110318A	110318552	Band	20.48	0.83^{+0.16}_{-0.19}	2.3^{+0.4}_{-0.18}	82^{+13}_{-11}	446/394
110402A	110402009	CPL	38.526	1.4^{+0.11}_{-0.13}	–	914^{+295}_{-295}	618/649
110412A	110412315	CPL	20.48	0.64^{+0.24}_{-0.26}	–	84^{+19}_{-19}	532/528

aCPL = Cutoff powerlaw or powerlaw = exponential. 100 keV normalization energy.

bDuration of time bin for the evaluation of the time-integrated spectra. This is determined by the duration of the signal of the GBM bursts in RMFIT.

cSeveral bursts in the table (080727C, 081221, 081222, 090424, 091127, 091208B, 100728A) have χ^2 values larger than about 1.3. These bursts are usually long ($\Delta t > \Delta t_{\text{GBM}} > 200$ s) and/or have multipeak structure, and show significant spectral evolution over the duration of the burst. Doing a simple time-dependent analysis shows that the fits improve but the spectral evolution likely drives the larger residuals for the full time interval.

Figure 1. Distributions of E_{peak} and α for the best-fitting joint sample bursts. Both are generally consistent with the literature (e.g. Preece et al. 2000; Nava et al. 2011; Zhang et al. 2011). The solid (black) and dashed (red) histograms are for long and short GRBs, respectively.

It is also interesting to explore whether using the joint spectra is consistent with the derivation of E_{peak} from using only the GBM sample and a motivation for investigating the combined constraints of the two detectors.

Using only the 53 joint sample bursts that had BAT spectra best fitted with a PL function and the joint spectra E_{peak}, regardless of whether they are from a CPL or a Band function, we derive relations that are steeper than the values above (Fig. 3). The ordinary least-squares method gives shallower slopes more consistent with the values of Sakamoto et al. (2009) and the bisector fits are steeper and more consistent with the values presented in Zhang et al. (2007b). Below we summarize the bisector fits, assuming these...
The relationship between the best-fitting E_{peak} for the joint sample and the GBM spectra. The line superimposed is the line with slope 1. This shows that adding the BAT data into the fit does not significantly change the values of E_{peak}.

Figure 2.

The $\Gamma_{\text{BAT}} - E_{\text{peak}}$ relation in both log–log (a) and log–linear (b) space created from 53 best-fitting spectra. 15 bursts were removed from the original sample of 75 because the BAT best-fitting model was a CPL and not a simple PL. An additional seven bursts were removed because the joint spectrum is described by a simple PL. As shown below, the difference in E_{peak} between the CPL and Band model fits for the joint spectra is negligible, so the best-fitting model value was used. The lines superimposed on the plots are the best-fitting lines generated using an ordinary least-squares fit (red, solid) and a least-squared linear bisector fit (blue, dash) that considers some of the scatter in the relation. The latter procedure’s parameters are summarized in the text.

produce more reliable fits that take into account the intrinsic scatter of the distribution:

$$\log E_{\text{peak}} = (4.40 \pm 0.509) - (1.31 \pm 0.148)\Gamma_{\text{BAT}},$$

$$= (3.05 \pm 0.359) - (3.79 \pm 0.554)\log \Gamma_{\text{BAT}}.$$

Using the values of E_{peak} from either a CPL or a Band function fit is a valid assumption, as shown in Fig. 4. This figure shows the values of E_{peak} derived from both models together with the best-fitting line, which has a slope very close to 1.

Next, we look at all the bursts in the sample, including those whose BAT spectra are fitted with a CPL model. Since the relations above deal with the PL slope of the BAT spectrum, we forced
Figure 4. The relationship between the joint E_{peak} values for CPL and Band models for all 75 GRBs in our sample. The best-fitting line (solid, black) has a slope of nearly 1, as shown by the reference line (dashed, red), with very few outliers from this relation. Such small changes in the value are negligible in the global analysis of spectral properties and we, therefore, always take the best-fitting model value of E_{peak}. Some Band function fits are not well constrained and are reflected in the large horizontal error bars for some bursts.

Figure 5. The $\Gamma_{\text{BAT}} - E_{\text{peak}}$ relation in both log–log (a) and log–linear (b) space created from all the bursts in our sample. We refit the Swift bursts that are described as a CPL with a simple PL model and use this value of Γ, regardless of the increase in the χ^2. The lines superimposed on the plots are the best-fitting lines generated using an ordinary least-squares fit (red, solid) and a least-squared linear bisector fit (blue, dash) that considers some of the scatter in the relation. The latter procedure’s parameters are summarized in the text.

The remaining CPL bursts to be fit with a PL model to see if the relationships changed in any way (Fig 5). The results are similar, with the slopes becoming slightly steeper than the previous values:

\[
\log E_{\text{peak}} = (4.34 \pm 0.475) - (1.32 \pm 0.129) \Gamma_{\text{BAT}}
\]

\[
\log E_{\text{peak}} = (3.00 \pm 0.332) - (3.88 \pm 0.469) \log \Gamma_{\text{BAT}}.
\]

Lastly, Fig. 6 shows the relationship between Γ_{BAT} and the joint CPL/Band fit spectral slope α. All the data lie below the reference line of $\alpha = \Gamma_{\text{BAT}}$. This is understandable, since the effective photon index Γ_{BAT} has to compensate for the curved spectrum around E_{peak} and is, therefore, generally steeper. The scatter in the relative steepness is related to the location of E_{peak}. The larger the E_{peak}, the closer the Γ_{BAT} to α. If E_{peak} is relatively low, then the
3.3 The Amati relation

A subsample of 25 GRBs in the GBM–BAT joint sample have measured redshifts. With this value, we can calculate the isotropic energy released that, combined with the rest-frame peak spectral energy \(E_{\text{peak, rest}} \), can be used to test the empirical Amati relation (Amati et al. 2002; Amati 2003). Since our spectral fits are derived from time-integrated spectra, we can derive the mean energy flux \(\mathcal{F} \) during the extracted time-scale \(\Delta t \) (which is essentially \(T_{90} \)) in a desired energy band, which we uniformly adopt as the rest-frame 1–10^4 keV energy flux. We worked on only bursts whose time-integrated spectra are fitted by a Band function of CPL; therefore, three bursts that are fitted with a simple PL in the \(z \)-known subsample are excluded. We then derived the broad-band isotropic gamma-ray energy \(E_{\text{iso}} = 4\pi d_L^2 \mathcal{F} \Delta t / (1 + z) \), where \(\Delta t \) is the time interval over which the spectral fit was derived, \(d_L \) is the luminosity distance and the factor of \((1 + z) \) is the correction for cosmological time dilation. If the spectrum is best described by a CPL, then the best-fitting pre-break slope \((\alpha) \) is used with the assumption of a typical \(\beta \) of \(-2.3\) to construct a Band function. Otherwise, the best-fitting Band function parameters are used. In Fig. 7, we present the differences between deriving the flux from a CPL as opposed to a Band function. The calculated fluence (and therefore \(E_{\text{iso}} \)) is systematically underestimated by a mean factor of \(1.4 \) and a maximum of \(2 \) for this sample. For the bursts that are best fitted with a CPL, we also refit the spectra with a Band function and use those spectral parameters, even though this model has a larger \(\chi^2 \), to derive \(E_{\text{iso}} \). These results are also included in Fig. 7 and show that the bursts tend to follow a similar, although not identical, distribution as the CPL fits.

We fit the Amati relation sample with two different methods: ordinary least-squares fit and ordinary least-squares bisector fit, the latter is an accepted method to fit linear models while taking into account some of the scatter of the data set. We provide both fits for comparison, although the bisector method is likely a more accurate depiction of the true relation. For the joint sample, these methods give differing solutions that we explore below. First, using the ordinary least-squares method, our results are generally consistent with slopes for the \(E_{\text{peak, rest}} - E_{\text{iso}} \) relation presented in the literature (Amati et al. 2008; Ghirlanda et al. 2009; Zhang et al. 2009; Amati 2010; Ghirlanda, Nava & Ghisellini 2010; Gruber et al. 2011), having a slope of \(0.5 \) but a larger normalization (see Fig. 8). Using the bisector fit, we find that the slope steepens significantly to \(0.76 \), with a lower intercept. This steepening, however, is due to a selection effect in the data owing to a lack of bursts above an energy of about \(10^{54} \) erg. The highest energy bursts reported by Fermi (e.g. 080916C, 090323) are not simultaneously detected by Swift and are not included in our sample. Adding in the three highest energy Fermi bursts by hand to simulate a more unbiased sample (data from D. Gruber, private communication), the relation drops down to \(0.57 \), which is fully consistent with previous estimates and serves as a consistency check for our sample. In general, we derive a larger scatter in the Amati relation than the sample presented in works such as Amati et al. (2008, 2010). The results are consistent, however, with another independent analysis of the GBM bursts (Gruber et al. 2011). The mean and median of the \(E_{\text{iso}} \) distribution of our sample are \(8.4 \times 10^{52} \) and \(6.07 \times 10^{52} \) erg, respectively. Fig. 8 shows the \(E_{\text{peak, rest}} - E_{\text{iso}} \) relationship for the 20 bursts of the joint sample with known redshift with the linear bisector fit as well as

\[\alpha \text{ (Joint)} \]

\[\Gamma_{\text{BAT}} \]

Figure 6. Relationship between the BAT PL spectral slope \(\Gamma_{\text{BAT}} \) and the joint fit CPL/Band \(\alpha \) for short (red, triangle) and long (black, square) bursts. The line superimposed is a reference line of slope \(= 1 \).

BAT-band spectra are severely bent and the effective \(\Gamma_{\text{BAT}} \) could be very different from \(\alpha \).
Figure 7. Alternative methods for calculating the relationship between $E_{\text{iso,rest}}$ and $E_{\text{peak,rest}}$. In both panels, the black (square) icons and the solid black line are identical to those presented in Fig. 8. The dashed line represents the best linear bisector fit to the second data set for reference. Short burst 090510 is labelled but not included in the calculations. (a) Rest-frame fluxes are calculated assuming a CPL spectrum (red/circle) instead of a Band function (black/square, identical to Fig. 8). This systematically underestimates the isotropic energy by a mean factor of about 1.4. (b) Rest-frame fluxes calculated using Band function parameters, even if a CPL gives a better fit (i.e., lower χ^2; blue/triangle). If β cannot be constrained, a typical value of -2.3 is assumed. This gives a similar distribution to that produced in Fig. 8 (black/square).

Figure 8. Relationship between the isotropic equivalent energy release and the peak energy of the time-integrated spectrum of the joint sample bursts. Isotropic energies are derived using a Band function spectrum. If the spectrum is best described by a CPL, then the best-fitting pre-break slope (α) is used with the assumption of a typical β of -2.3 to construct a Band function. Superimposed are the best ordinary least-squares bisector fit of the joint sample (black/dash–dotted, slope = 0.76) and the approximate best-fitting lines and 2σ regions reported in Amati et al. (2008; red/dashed; slope = 0.57) and Gruber et al. (2011; blue/solid; slope = 0.52). The shift to steeper slopes is produced from a lack of bursts above $E_{\text{iso}} \sim 10^{54}$ erg, which is attributed to a selection effect of the sample. These bursts are the highest energy bursts detected and are Fermi Large Area Telescope (LAT) triggers, and therefore do not show up in our sample of joint GBM–BAT bursts. If these highest energy bursts are introduced to create a more complete sample, we show consistency with both slope values presented in the literature. We also confirm the larger scatter and slightly harder spectra presented by Gruber et al. (2011). Differences in the absolute values of E_{peak} are likely due to the derivation of the parameter using the joint BAT–GBM data. The obvious outlier in the distribution is GRB 090510 (labelled), the only short burst ($T_{90} < 2$ s) in the redshift-known subsample. This burst is not used in calculating the best-fitting line. Previous works (Amati et al. 2008; Ghirlanda et al. 2009; Zhang et al. 2009) have shown that these bursts follow a different relationship in the $E_{\text{peak,rest}}$–E_{iso} plane and are not considered in the fitting of the slope of the relation.
an approximation of the fits by Gruber et al. (2011, blue/solid) and Amati et al. (2008, red/dashed) with their respective 2σ regions. The outlier of the distribution, having an $E_{\text{peak, res}}$ of about 8000 keV, is GRB 090510. It is the only redshift-known short burst in the sample. Previous works have shown that short ($T_{\text{90}} < 2$ s) bursts follow a different relationship and are not included in the slope determination of the longer bursts (Amati et al. 2008; Ghirlanda et al. 2009; Zhang et al. 2009; Amati 2010).

4 COMPARISON OF BURST DURATIONS IN THE BAT AND GBM BANDS

We calculate the T_{90} values observed in the GBM band for the bursts in our sample by using a Bayesian Block method (Richardson et al. 1996; Scargle 1998). The light curves we use are in 64 ms bins and are extracted from the brightest NaI detector. With the Bayesian Block method, we derive T_5 and T_{95}, the epochs when 5 and 95 per cent of the total fluence were registered, respectively. We then derive T_{90} by $T_{\text{90}} = T_5 - T_9$ with the errors of T_5 and T_{95} estimated with the bootstrap method and assuming that the observed errors

GRB name	GBM ID	T_{90} (s)	T_{90} (s)	Referenced
080714	GBR080714745	6.34 ± 0.36	25.81	bat2
080725	GBR080724353	22.21 ± 0.23	92.74	bat2
080727C	GBR080727964	35.55 ± 0.59	77.61	bat2
080804	GBR080804972	73.41 ± 0.93	37.19	bat2
080910	GBR080810549	49.34 ± 0.63	107.67	bat2
090105A	GBR090105499	1.06 ± 0.30	1.02	bat2
090105B	GBR090105705	192.8 ± 1.15	101.62	bat2
091106A	GBR091106406	44.26 ± 0.72	61.35	bat2
091109A	GBR091109293	27.46 ± 0.65	221.49	bat2
091121	GBR091121858	17.98 ± 0.42	17.67	bat2
091126	GBR091126899	35.36 ± 0.46	57.65	bat2
091222	GBR0912221681	45.82 ± 0.99	33.91	bat2
091222	GBR091222204	26.79 ± 0.53	33	bat2
091226A	GBR091226044	0.48 ± 0.20	0.44	bat2
091212	GBR091212222	29.02 ± 0.54	29.3	bat2
091113	GBR091137787	8.58 ± 0.29	9.1	bat2
091129	GBR091129880	14.02 ± 0.23	17.66	bat2
090124	GBR090124250	–	8.47	bat2
090123	GBR090123330	12.35 ± 0.50	9.77	bat2
090124	GBR090124592	45.79 ± 0.61	49.47	bat2
090509	GBR090509215	261.18 ± 1.08	336.38	bat2
090510	GBR090510016	0.38 ± 0.05	0.56	bat2
090516A	GBR090516353	85.28 ± 0.54	208	bat2
090518	GBR090518080	7.97 ± 0.44	85.82	bat2
090519	GBR090519881	42.88 ± 0.57	58.26	bat2
090531B	GBR090531775	2.016 ± 0.39	55	bat2
090618	GBR090618353	130.24 ± 1.05	113.34	bat2
090621B	GBR090621922	0.29 ± 0.16	0.14	bat2
090708	GBR090708152	12.48 ± 0.89	8.7	bat2
090709B	GBR090709830	11.14 ± 0.32	27.02	bat2
090712	GBR090712160	31.68 ± 0.62	186.68	bat2
090813	GBR090813174	8.96 ± 0.55	7.14	bat2
090904B	GBR090904058	52.35 ± 0.59	64	bat2
090912	GBR090912654	126.72 ± 0.54	135.52	bat2
090926B	GBR090926914	41.34 ± 0.62	99.28	bat2
090927	GBR090927422	3.2 ± 0.3	2.16	bat2
091020	GBR091020090	44.67 ± 0.65	38.92	bat2
091024	GBR091024372	48.26 ± 0.62	112.28	bat2
091026	GBR091026550	15.74 ± 0.46	174	bat2
091102	GBR091120607	7.58 ± 0.46	6.65	bat2
091112	GBR091127373	50.85 ± 0.82	19.59	bat2
091127	GBR091127976	9.15 ± 0.26	7.42	bat2
091208B	GBR091208410	11.39 ± 0.14	14.8	bat2
091221	GBR091221870	30.432 ± 0.62	68.49	bat2
09111A	GBR100111176	11.01 ± 0.46	12.9	10322
09117A	GBR10017879	0.51 ± 0.39	0.3	10338
09206A	GBR100206563	0.19 ± 0.13	0.12	10379
09212	GBR100212588	8.10 ± 0.46	136	10404
091313A	GBR100413732	78.11 ± 1.07	191	10600
091427A	GBR100427356	10.43 ± 0.41	–	10716
091504A	GBR100504906	24.51 ± 0.73	97.3	10716
091522A	GBR100522157	37.38 ± 0.59	35.3	10788

dReferences for BAT T_{90}: bat2 – second BAT catalogue (Sakamoto et al. 2011). Other numbers in this column correspond to GCN reports, see bibliography for full record information.

Table 3. GBM and BAT T_{90} values in the 8–1000 and 15–150 keV energy ranges, respectively. GBM values are derived with the method described in Section 2.2, and BAT figures are referenced from the literature (see the reference column for appropriate citations).
Figure 9. T_{90} measures for the joint sample bursts as derived with the BAT (15–150 keV) and GBM (8–1000 keV) data and corresponding distributions. The diagonal solid line is the line of slope $= 1$, while the dashed lines indicate a duration of 2 s. Note the typically longer durations in the Swift band for the long and generally softer bursts, while the trend reverses for the shorter, typically softer, bursts.

in the light curves are log-normal. We generate 1000 mimic light curves from the error distributions and calculate their T_{90} for a given burst. We make a Gaussian fit to the T_{90} distributions and then derive the value of T_{90} and its 1σ error. T_{90} in the BAT band is taken from the second BAT catalogue (Sakamoto et al. 2011, bursts before 2010) and GCN reports (bursts after 2010; see Table 3 for specific references).

A comparison of the T_{90} in the BAT and GBM bands along with their distributions is shown in Fig. 9. It is found that the distributions are still bimodal. The T_{90} measured in the BAT band for long GRBs is usually larger than that in the GBM band. However, the T_{90} measured in the BAT band for short GRBs is even shorter than that in the GBM band. Since BAT is more sensitive to softer emission than GBM, this fact is consistent with the soft/hard nature of long/short GRBs, respectively. In particular, fainter, softer emission can be picked up by BAT but not by GBM, so that the BAT T_{90} can be much longer than the GBM T_{90} in some bursts. Conversely, since short GRBs are typically hard, BAT may not be sensitive enough to pick up some emission episodes that GBM can. As a result, T_{90} of short GRBs can be longer in the GBM band than in the BAT band.

The difference in T_{90} for different detectors may also affect the derivation of the isotropic energy. This is because some long bursts having shorter T_{90} in the GBM band than the BAT band may be sampling only the hardest and brightest part of the spectrum. For the small sample of six bursts above the Amati et al. 2σ region in Fig. 8, we find that all have longer durations in the BAT bands with half of them significantly longer (difference > 30 per cent), which may indicate the existence of this spectrum sampling effect. This suggests that in order to fully characterize the durations, and hence the physical origin of the bursts, multiband data and a careful energy-dependent temporal analysis are essential (see Qin et al. 2012).

5 CONCLUSIONS AND DISCUSSION

Using the data available from Fermi and Swift, we performed an analysis of the jointly detected GRB sample. The spectral analysis indicates that fitting the joint spectra shows consistency with values reported in the literature based solely on GBM data (Bissaldi et al. 2011; Nava et al. 2011), and is able to reproduce a variety of empirical relations presented in the literature, including the $\Gamma_{\text{BAT}} - E_{\text{peak}}$ and Amati relations. The joint fits do not, in general, give substantially different values for the spectral parameters from the GBM-only analyses.

The updated sample of peak energies shows agreement with the relation between the PL slope of the BAT spectrum and E_{peak} derived previously by Sakamoto et al. (2009) and Zhang et al. (2007b) and indicates the relation’s ability to estimate the value of the observed E_{peak} from a fit to the rather narrow Swift band. The relation shows a fair amount of scatter, however, and we caution against using it for robust measurements of E_{peak}, especially when compared to spectra from Fermi or other missions that often contain the spectral peak within the energy range of the detectors. It may be suited, for example, to give a rough estimate of the values of E_{peak} for Swift bursts that have no additional observations.

The redshift-known subsample of bursts reproduces the general relationship in the $E_{\text{iso}} - E_{\text{peak, rest}}$ plane and further confirms the conclusions of Gruber et al. (2011) that show generally harder spectra and a larger scatter around the relation than previously believed. Li (2007) proposed the argument that the $E_{\text{iso}} - E_{\text{peak, rest}}$ relation might evolve with redshift. We believe that the sample of bursts with known redshift, especially the subsample of joint bursts, is still too small to test such a claim. The necessary binning to test the hypothesis would thin out the sample sufficiently to make firm conclusions tenuous at best.
Finally, the interesting discrepancy between the T_{90} derived in the GBM and BAT detectors confirms the soft/hard nature of long/short GRBs, respectively, and suggests the need for a detailed energy-dependent temporal analysis of GRBs.

ACKNOWLEDGMENTS

The authors would like to thank Taka Sakamoto, Valerie Connaughton, Sylvia Zhu and Binbin Zhang for helpful discussions, David Gruber for providing his E_{iso} and E_{peak} data for comparison with our fits and the anonymous referee for comments and suggestions that helped improve our paper. BZ and FJV acknowledge support from NASA (NNX10AD48G) and NSF (AST-0908362), EWL and YQ acknowledge the support by the National Natural Science Foundation of China (grants 10903002 and 10873002), National Basic Research Program (‘973’ programme) of China (grant 2009CB824800) and Guangxi Science Foundation (2010GXNSFC013011, 2011-135).

REFERENCES

Amati L., 2003, Chinese J. Astron. Astrophys., 3, 455
Amati L., 2010, preprint (arXiv:1002.2232)
Amati L. et al., 2002, A&A, 390, 81
Amati L., Guidorzi C., Frontera F., Della Valle M., Finelli F., Landi R., Montanari E., 2008, MNRAS, 391, 577
Band D. L., Preece R. D., 2005, ApJ, 627, 319
Band D. L. et al., 1993, ApJ, 413, 281
Barthelmy S., Sakamoto T., Holland S., 2010a, GCN Circ., 10600, 1
Barthelmy S. et al., 2010b, GCN Circ., 10788, 1
Barthelmy S. et al., 2010c, GCN Circ., 10891, 1
Barthelmy S. et al., 2010d, GCN Circ., 11023, 1
Barthelmy S. et al., 2010e, GCN Circ., 11234, 1
Barthelmy S. et al., 2010f, GCN Circ., 11296, 1
Barthelmy S. et al., 2011, GCN Circ., 11946, 1
Barthelmy S. et al., 2010g, GCN Circ., 11964, 1
Barthelmy S. et al., 2010h, GCN Circ., 11818, 1
Gruber D. et al., 2011, A&A, 531, A20
Kocevski D., 2012, ApJ, 747, 146
Kouveliotou C. et al., 1993, ApJ, 413, 101
Krimm H. et al., 2010a, GCN Circ., 10322, 1
Krimm H. et al., 2010b, GCN Circ., 11094, 1
Krimm H. et al., 2010c, GCN Circ., 11624, 1
Li L.-X., 2007, MNRAS, 379, L55
Liang E. W., Zhang B., 2005, ApJ, 633, 611
Markwardt C. et al., 2010a, GCN Circ., 10338, 1
Markwardt C. et al., 2010b, GCN Circ., 11111, 1
Markwardt C. et al., 2010c, GCN Circ., 11332, 1
Markwardt C. et al., 2010d, GCN Circ., 11486, 1
Markwardt C. et al., 2010e, GCN Circ., 11946, 1
Nakar E., Piran T., 2005, MNRAS, 360, L73
Nava L., Ghirlanda G., Ghisellini G., Ceolini A., 2011, A&A, 530, A21
Palmer D. et al., 2010a, GCN Circ., 10716, 1
Palmer D. et al., 2010b, GCN Circ., 10850, 1
Palmer D. et al., 2010c, GCN Circ., 11664, 1
Palmer D. et al., 2010d, GCN Circ., 11818, 1
Preece R. D., Briggs M. S., Mallozzi R. S., Paciesas W. S., Band D. L., 2000, ApJS, 126, 19
Qin Y. et al., 2012, preprint (arXiv:1205.1188)
Richardson G., Koshyt T., Paciesas W., Kouveliotou C., 1996, in Kouveliotou C., Briggs M., Fishman G. J., eds, AIP Conf. Proc. Vol. 384, Gamma-ray Burst: 3rd Huntsville Symposium. Am. Inst. Phys., New York, p. 87
Sakamoto T. et al., 2004, ApJ, 602, 875
Sakamoto T. et al., 2006, ApJ, 636, L73
Sakamoto T. et al., 2009, ApJ, 693, 922
Sakamoto T. et al., 2010a, GCN Circ., 10379, 1
Sakamoto T. et al., 2010b, GCN Circ., 11511, 1
Sakamoto T. et al., 2011, PASJ, 63, 215
Scargle J. D., 1998, ApJ, 504, 405
Stamatikos M. et al., 2010a, GCN Circ., 10864, 1
Stamatikos M. et al., 2010b, GCN Circ., 11001, 1
Stamatikos M. et al., 2010c, GCN Circ., 11367, 1
Stamatikos M. et al., 2010d, GCN Circ., 11866, 1
Ukwatta T. et al., 2010a, GCN Circ., 10404, 1
Ukwatta T. et al., 2010b, GCN Circ., 11018, 1
Ukwatta T. et al., 2010c, GCN Circ., 11374, 1
Ukwatta T. et al., 2010d, GCN Circ., 11533, 1
Yonetoku D. et al., 2004, ApJ, 571, 876
Zhang B. et al., 2007a, ApJ, 655, 989
Zhang B. et al., 2007b, ApJ, 655, L25
Zhang B. et al., 2009, ApJ, 703, 1669
This paper has been typeset from a \TeX file prepared by the author.