Study protocol: long-term effect of the New Nordic Renal Diet on phosphorus and lipid homeostasis in patients with chronic kidney disease, stages 3 and 4: a randomised controlled trial

Nikita Misella Hansen, Marianne Rix, Anne-Lise Kamper, Bo Feldt-Rasmussen, Christina Christoffersen, Arne Astrup, Louise Salomo

INTRODUCTION

Chronic kidney disease (CKD) is defined by the chronic state of a wide range of kidney diseases. It is associated with a marked risk of cardiovascular disease (CVD) compared with the general population. The excess cardiovascular morbidity in CKD mainly owes to hyperphosphatemia and changes in mineral metabolism, but also traditional risk factors, such as dyslipidaemia, hypertension and insulin resistance are important parameters.

As CKD progresses, normophosphatemia is maintained by increasing the per nephron urinary phosphorus excretion. This is stimulated by an increase in fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH) leading to progressively increasing plasma levels of FGF23 and secondary hyperparathyroidism. This adaptive compensatory mechanism is obtained until the threshold of toxicity where it becomes maladaptive and
manifested, hyperphosphatemia develops along with high levels of FGF23 and PTH. Clinically, hyperphosphatemia is associated with high mortality, vascular calcification, endothelial dysfunction and progression of left ventricular hypertrophy.

The daily dietary intake of phosphate exceeds the recommended level of 850 mg in many western countries. The main source of phosphorus is protein-rich food; and in a typical western diet, more than half of the protein load originates from animal protein where the bioavailability is high compared with vegetable sources. Our group has previously developed the New Nordic Renal Diet (NNRD) with a reduced phosphorus content and tested the short-term effect on phosphorus homeostasis in moderate CKD. NNRD is a modification of the New Nordic Diet (NND), which was developed in 2004 in Copenhagen, Denmark. NND was designed as a Scandinavian counterpart to the Mediterranean diet and has been investigated in large studies regarding parameters on weight loss among obese individuals, blood pressure, lipid metabolism and blood sugar. The result from the 26-week NND study was a significant greater weight loss in the intervention group (−4.7 kg) compared with the control group, who followed their habitual diet (−1.5 kg). Moreover, the intervention group had a significant reduction in systolic and diastolic blood pressure.

NNRD is compared with other well-established international diets as shown in table 1. The main principles of the NNRD whole food approach are the following:

- Maximum of 850 mg phosphorus/day.
- Protein: 0.8 g/kg/day.
- 80% vegetable products; 20% animal products.
- Maximum of 5 g NaCl/day (table salt).
- Fresh raw products.
- Season oriented.
- Primarily organic food products.
- Fish: at least once a week.
- Vegetarian: at least once a week.
- Wide range of fruits and vegetables.
- Easy to follow in daily practice.
- Rich in flavours.
- Sufficient content of micronutrients and macronutrients.

In a randomised cross-over study of 18 participants with stable CKD stages 3 and 4, 1-week of the NNRD diet was compared with a 1-week control period of habitual diet. NNRD was handed out as packaged meals every third day and it was found that the NNRD reduced the daily phosphate intake with approximately 650 mg/day compared with habitual diet. The 24-hour urine phosphorus excretion was reduced by almost 40% and a significant 29% reduction in the 24-hour urinary fractional excretion of phosphorus (FePi). Plasma intact FGF23 was reduced by 18%. Lipids were not measured in the pilot study.

Dyslipidaemia in CKD includes low plasma levels of high-density lipoprotein-cholesterol and low-density lipoprotein (LDL)-cholesterol; whereas levels of triglycerides, apolipoprotein B, lipoprotein(a) (Lp(a)), intermediate-density and very low-density lipoprotein are often increased. Total cholesterol levels are generally not elevated. The plasma levels of LDL are well-established risk markers for CVD. However, some investigators challenge this assertion, and have not been able to sustain a link between saturated fatty acids (SFAs) from the diet and CVD risk. Until recently, SFAs in the diet have been associated with an increased risk of CVD in the general population. However, a recent study suggests that a diet rich in SFA may not in itself increase the risk of CVD, whereas an increase in carbohydrate (primarily from starch and sugar) might be a potential risk factor. The Mediterranean diet has been shown to reduce the risk of CVD without significantly reducing LDL. Moreover, a significant reduction in CVD risk by the inhibition of the sodium-glucose cotransporter type 2 has been shown despite a simultaneous increase in LDL levels. Prospective cohorts have demonstrated that biomarkers of very long chain SFAs were not associated with an overall risk of CVD. It even suggests that high levels of plasma/serum SFAs might be inversely associated with coronary heart disease. Therefore, further studies beyond the traditional lipid biomarkers for CVD risk are needed. The NNRD consists of 80% fruits and vegetables and 20% animal products, thus having a low content of SFA. Moreover, NNRD has a low content of refined starch and added sugar, which are considered to be risk factors for atherosclerotic events in the general population. It is, therefore, expected that this interventional diet will have a lipid-lowering effect.

The study is developed in collaboration with experts in clinical nutrition and phosphorus and lipid disturbances. The overall objective of this present study is to evaluate the impact of NNRD in patients with moderate CKD over a period of 6 months on the following parameters: (1) phosphorus homeostasis, (2) lipid metabolism and (3) to investigate feasibility, dietary satisfaction and quality of life, measured by the validated questionnaire, EuroQoL 5-Dimension 5-Level (EQ-5D-5L) and in compliance with the diet. To support this, we will also use a validated five-level scale (five-point Likert scale) questionnaire. Participants are able to give five different standardised answers to each question regarding dietary satisfaction and quality of life. If the study is successful, this intervention might reduce the high cardiovascular morbidity in patients with moderate CKD.

**METHODS AND ANALYSIS**

**Patient and public involvement**

Patients contributed to the design of this study protocol. The project group has conducted interviews with several patients in terms of creating the recipes for the intervention and planning the follow-up visits. The research group designed this study using patients’ experiences from the previous mentioned pilot study. Moreover, the patients will be central during the feasibility state and dissemination upon obtaining results.
**Study design and randomisation**

This study is a randomised controlled trial performed at the Department of Nephrology Rigshospitalet, Copenhagen, Denmark. Sixty patients will be randomised to either 26 weeks on the NNRD (intervention) or 26 weeks on their habitual diet (control) (see online supplemental appendix 1). A simple random sample without replacement will be selected by a non-study team member using the lottery method. The study participants can leave the trial at any time during the study period, without any explanation. The investigator can at any time remove a subject from the trial, if there is concern for the patient’s safety or if there is a breach in terms of following the protocol. The principal investigator is required to document and report dropouts from the study. Thirty participants will be recruited in each randomisation arm, and a minimum of 21 in each arm must complete the study according to the power calculation.

**Study population**

Sixty patients with moderate CKD (stages 3 and 4, estimated glomerular filtration rate (eGFR) 20–45 mL/

| Dietary pattern | Population | Nutrient based | Food based (servings or grams) |
|----------------|------------|----------------|---------------------------------|
| **DASH** | General population, hypertension | Total fat (E%): 27  
Saturated fat (E%): <6  
Protein (E%): 18  
Potassium (mg): 4700  
Calcium (mg): 1200  
Magnesium (mg): 450 | Fish (non-fried): >2 servings/week  
Meat: <2 servings/day  
Nuts/legumes: ½ serving/day  
Dairy: 2–3 servings/day  
Vegetables: 4–5 servings/day  
Fruits: 4–5 servings/day  
Cereals: (½ serving whole grain) |
| **Mediterranean** | General population, cardiovascular disease | Not defined | Olive oil with meals  
Fish (non-fried): >2 servings/week  
Red meat: <2 servings/week  
White meat: 2 servings/week  
Legumes: >2 servings/day  
Dairy: 2 servings/day  
Eggs: 2–4 servings/week  
Nuts: 1–2 servings/day  
Vegetables: >2 servings/day  
Fruits: >3 servings/day  
Cereals: 1–2 servings/meal |
| **NND** | General population | Total fat (E%): 32  
Saturated fat (E%): 10  
Monounsaturated fatty acids (E%): 13  
Polyunsaturated fatty acids (E%): 8  
Protein (E%): 17  
Total carbohydrate (E%): 51  
Added sugar (E%): <10  
Fibre (g): 41  
Phosphorus (mg): 1910  
Potassium (mg): 5100  
Calcium (mg): 1400  
Magnesium (mg): 480  
Sodium (g): 3 | Fruits (g/day): >300  
Vegetables (g/day): >400  
Nuts (g/day): >30  
Fish (g/day): >43  
Meat (g/day): >85–100 |
| **NNRD** | Chronic kidney disease stages 3 and 4 | Total fat (E%): <35  
Saturated fat (E%): 7  
Monounsaturated fatty acids (E%): 15  
Polyunsaturated fatty acids (E%): 5  
Protein (E%): 11  
Total carbohydrate (E%): 54  
Added sugar (E%): <10  
Fibre (g): 20–30  
Phosphorus (mg): 850  
Potassium (mg): <3000  
Calcium (mg): 800–1000  
Magnesium (mg): 300–370  
Sodium (g): <5 | Fruits (g/day): 300  
Vegetable products (%/week): 80  
Animal products (%/week): 20  
Nuts (g/day): <20  
Fish (non-fried): >2 servings/week  
White meat: >2 servings/week  
Red meat: 0 g  
Egg yolk: 2 servings/week  
Vegetarian days: 1–2 servings/week  
>95% organic food products  
Seasonal food products |

DASH, Dietary Approach to Stop Hypertension; NND, New Nordic Diet; NNRD, New Nordic Renal Diet.
min/1.73 m²) will be recruited from the outpatient clinic at the Department of Nephrology, Copenhagen University, Rigshospitalet. We expect to enrol all 60 participants within 24 months and to complete the study by month 33.

Inclusion criteria
► Age >18 years.
► eGFR 20–45 mL/min/1.73 m² as judged by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.
► Medically stable for 2 months prior to start of the study.
► Informed consent form signed after receiving oral and written information.
► Read, speak and understand Danish.

Exclusion criteria
► Current treatment with phosphate binders.
► Metabolic disorders that require specific dietary regulation.
► Treatment with chemotherapy within the past 6 months.
► Pregnancy and breast feeding.
► Food allergies.
► Vegans.

Intervention
The project group has entered a cooperation agreement with the Danish chef Claus Meyer and Meyers Madhus. A team of highly talented chefs will create the recipes for the intervention. The recipes will be created in close collaboration with the principal investigator who will use her expertise within clinical nutrition to combine the international nutrients guidelines and culinary experiences. Moreover, the agreement holds that the raw food items and recipes will be delivered in boxes to the participants’ homes once a week, throughout the study period. There will be no financial costs for the participants. The intervention group is expected to follow the recipes for 5 consecutive days of the week, the 2 remaining days they must plan their own meals following the guidelines of the NNRD whole food approach.

A 48-hour food record is obtained once a month to control for adherence, and once a week the primary investigator will be in contact by phone providing support and advice on practical questions regarding the diet and checking adherence.

Methods to determine phosphorus intake and homeostasis
The 24-hour urine collection is the gold standard method for measuring dietary phosphorus.19

Measuring urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium and potassium helps us to assess adherence, and determine progression of CKD and other possible spin-off effects.

The use of FePi in place of normal plasma phosphate can give early information of the kinetics of phosphorus and it is a relatively cheap measurement. FePi expresses the phosphate excreted in percentage of the total filtered phosphate. In subjects with healthy kidneys, a FePi under 20% is normal and FePi increases as GFR falls. This is based on the hypothesis that although the diseased kidney contains fewer nephrons, the remaining nephrons are functionally normal. The excretion rate of each functioning nephron increases to maintain phosphorus homeostasis.20 21

FePi will be calculated according to the following formula:

\[
\text{FePi} = \frac{\text{urine phosphorus (mmol/L)} \times \text{plasma phosphorus (mmol/L)}}{\text{urine creatinine (mmol/L)} \times 100.}\]

Trial visits and examinations
Baseline (day 0)
After oral and written consent has been obtained, randomisation to either the intervention group or control group will be performed by a non-study team member (see online supplemental appendix 2 for an overview of the study timeline). Moreover, the following data will be registered:
► Patient history: gender, age, disease history, current medical record, diagnoses.
► Comorbidities: for example, cardiovascular diseases, chronic obstructive lung disease, diabetes, hyperlipidaemia, hypertension.
► Smoking (years) and alcohol consumption (average per week).
► Level of physical activity (average per week).
► Blood samples: creatinine, eGFR, leucocytes, haemoglobin, lipids, electrolytes, urea, C reactive protein (CRP), CO₂, HbA1C, FGF23, PTH and vitamin D.
► 24-hour urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium, potassium, creatinine clearance.
► DEXA scan.
► ECG.
► Office blood pressure.
► Weight, body mass index (BMI), hip and waist circumference.
► Ankle oedema by subjective clinical assessment.
► Quality of life measured by EQ-5D-5L questionnaire.
► Dietary record: the patients are asked by the study investigator to describe their daily nutritional intake in detail; follow-up questions will be asked in order to get more details regarding the intake.

Day 14
► Blood samples and 24-hour urine collection.
► Blood samples: creatinine, eGFR, leucocytes, haemoglobin, blood lipids, electrolytes, urea, CRP, CO₂, FGF23.
► 24-hour urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium, potassium, creatinine clearance.
► 48-hour dietary record.

Days 30, 60, 90, 120, 150
Every fourth week during the study period of 26 weeks (a total of six times), all participants will be evaluated at the
Department of Nephrology, University Hospital, Copenhagen. During these first five visits, the following data will be gathered:

- 24-hour urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium, potassium, creatinine clearance.
- Blood samples: creatinine, eGFR, leucocytes, haemoglobin, blood lipids, electrolytes, urea, CRP, CO₂, FGF23, PTH and vitamin D (HbA1C and vitamin D will be measured at day 90).
- Blood pressure.
- Weight, BMI, hip and waist circumference.
- Assessment of ankle oedema by subjective clinical assessment.
- 48-hour dietary record.

**Once a week**

Once every week, the principal investigator will offer all the participants a telephone meeting of maximum 20-minute duration evolving on dietary intake and overall conditions. The principal investigator is in close collaboration with the others in the research group who are all medical doctors and will discuss any clinical problem if needed.

**Day 180 (study completion)**

During the last day of the study period, the participants will be asked to meet at Rigshospitalet one more time. Data on days 30, 60, 90, 120 and 150 will be gathered, moreover the following information will be obtained:

- 24-hour urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium, potassium, creatinine clearance.
- Blood samples: creatinine, eGFR, leucocytes, haemoglobin, blood lipids, electrolytes, urea, CRP, CO₂, FGF23, HbA1C PTH and vitamin D,
- DEXA scan and ECG.
- Weight, BMI, hip and waist circumference.
- Assessment of ankle oedema by subjective clinical assessment.
- Quality of life measured by EQ-5D-5L questionnaire.
- Dietary satisfaction in the intervention group using a five-level Likert scale.
- Assessment of quality of life in both groups using a five-level Likert scale in combination with the validated EQ-5D-5L questionnaire.
- 48-hour dietary record.

**Follow-up visit**

Three months after study completion, there will be an end-of-trial visit with 24-hour urine collection and blood samples (the same markers mentioned at the previous visits). Information about dietary intake will be assessed through 48-hour dietary records. The purpose of this visit is to explore whether the intervention group has been able to follow the guidelines for NNND after study completion and to examine if there have been any dietary changes in the control group within this period also evaluated by biochemistry analyses of 24-hour urinary collection and blood samples.

**Research biobank**

For each blood and urine sample, the research group will take out 2 mL to establish a research biobank. There will be a total of nine blood samples and nine urine samples, which make a total of 18 mL of blood and 18 mL of urine for the research biobank (see online supplemental appendix 3). The research biobank will be located at Rigshospitalet. After study completion, the research group wish to explore a series of secondary outcomes, those are described in the Secondary endpoints section.

In case of new research from the blood and urine samples, a new approval from the Scientific Ethical Committee will be needed. Materials in the research biobank will be destroyed after 5 years (approximately 30 July 2025). The materials are only for use within the country and the principal investigator is the main responsible for these.

The trial participants are required to give separate written consent to the research group to store the biological materials in the research biobank (see online supplemental appendix 4).

**Outcome measures and analysis methods**

**Primary endpoint**

Differences in change in 24-hour urine phosphorus excretion from baseline to week 26 between the two study groups.

**Secondary endpoints**

Differences in changes from baseline to week 26 between study groups in the following:

- 24-hour urinary excretion of phosphorus, calcium, urea, protein, magnesium, sodium, potassium, creatinine clearance.
- Blood samples: blood lipids and electrolytes.
- 24-hour urinary FePi.
- eGFR.
- Weight, hip and waist circumference, and body composition by using DEXA scanning.
- Electrical activity from the heart using ECG.
- Office blood pressure.
- Dietary satisfaction in the intervention group measured by a validated five-level scale (5-point Likert scale) questionnaire.
- Quality of life measured by EQ-5D-5L questionnaire and 5-point Likert scale.
- From the research biobank, the research group wish to explore the following secondary endpoints:
  - FGF23.
  - Apolipoprotein A1, apolipoprotein B100, apolipoprotein M and Lp(a) as part of a substudy on cardiovascular risk.

**Sample size calculation and statistical analysis**

The sample size calculation is based on results from previous studies performed by this study group. Within 6
months of participating in this study, we expect a decrease in eGFR to be about 1 mL/min/1.73 m². This will have no influence on the total amount of 24-hour urine phosphorus excretion (primary endpoint), as CKD progresses and normophosphatemia is maintained by increasing the per nephron urinary phosphorus excretion stimulated by an increase in FGF23 and PTH leading to progressively increasing plasma levels of FGF23 and secondary hyperparathyroidism (SHP).

In a randomised controlled study with a type-1 error risk of 0.05 (alpha, two tailed) and a power of 80% (beta) with an SD of 24-hour urine phosphorus excretion of 200mg and a minimum clinical relevant difference of 300mg, the study population is estimated at 21 in each group. There will be dropouts so we will include 30 participants in each group. The total number of participants to be included in this study is 60.

Data analysis
To compare the biological material (blood and urine) between the two groups over time, we will use a linear mixed model. When comparing the overall results between the intervention and control group, we will use a paired t-test (prerequisite that the data are normally distributed). Non-parametric data will be analysed by the X² test.

In case that data collection is not complete or in case of insufficient compliance, both intention-to-treat analysis and per-protocol analysis will be performed.

ETHICS AND DISSEMINATION
Research ethics approval
In this trial, we expect no serious adverse events or risks. Weight loss is always a concern in nutritional interventions, so the participants will be weighed once a month and DEXA scanning will be performed both at baseline and at the end of the study. The nutritional intervention is not suspected to affect any other medical treatment. All participants participate voluntarily and may at any time withdraw from the trial without it affecting their current or subsequent treatment. The research group can withdraw a patient from the trial at any time if there is a concern for the patient’s well-being or if there is a breach in terms of following the protocol. Data on participants who withdraw and protocol breach will be documented. The trial will be performed in accordance with the Helsinki Declaration and national guidelines. The study is approved by the Danish Data Protection Agency and approved by the Ethical Committee of the Capital Region of Denmark. The study is registered on wwwclinicaltrials.gov.

The results of this study will be published in an international journal. The study will have the quality, regardless of a negative or positive result, of being published in a more general high-impact scientific journal. The results will be presented as they are generated at national and international scientific meetings including clinical nutrition and nephrology.
school involving doctors, nurses and dietitians focusing on dietary prevention in moderate CKD in Denmark.

Uncertainties
Solid data on long-term treatment effects in CKD stages 3 and 4 regarding the association between dietary intervention and phosphorus homeostasis and lipid metabolism are sparse, therefore the power calculation of the study is associated with uncertainty. The major concern of the present study could be the recruitment of patients and adherence to lifestyle changes. However, according to the study groups’ experience from previous clinical trials, patients with CKD are generally highly motivated for participation in studies aimed at improving the knowledge on prevention of progression and treatment of CKD.

Contributors
LS, NMH, A-LK and MR designed the study and have taken part in all parts of the protocol. NMH and LS wrote the paper and had primary responsibility for final content. BF-R took part in finalising background and hypothesis, provided support clinically during the study, and critically evaluated the first draft and final version of the manuscripts. He served as the principal supervisor in relation to the Clinical Institute, University of Copenhagen. BF-R, A-LK, MR, AA and CC are all part of the steering committee and contributed to the revision and gave final approval of the paper.

Funding
The project has received financial funding from Augustinus Foundation (N/A), Gangsted Foundation (N/A), the Capital Region of Denmark’s research foundation (N/A) and the Danish Kidney Association (N/A). The project is fully funded.

Competing interests
None declared.

Patient consent for publication
Not required.

Provenance and peer review
Not commissioned; externally peer reviewed.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and responsibility arising from any reliance placed on the content. The content includes any translated material, BMJ does not warrant the accuracy and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and responsibility arising from any reliance placed on the content.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Nikita Misella Hansen http://orcid.org/0000-0002-6009-5617

REFERENCES
1. Chen J, Budoff MJ, Reilly MP, et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol 2017;2:635–43.
2. Mikolasevic I, Žuteija M, Mavrinac V, et al. Dyslipidaemia in patients with chronic kidney disease: etiology and management. Int J Nephrol Renovasc Dis 2017;10:35–45.
3. Wahl P, Wolf M. Fgf23 in chronic kidney disease. Adv Exp Med Biol 2012;728:107–25.
4. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79:1370–8.
5. Kuro-O M. The FGF23 and klotho system beyond mineral metabolism. Clin Exp Nephrol 2017;21:64–9.
6. Salomo L, Kamper A-L, Poulsen GM, et al. Habitual dietary phosphorus acid-rich diet in secondary prevention in chronic kidney disease patients: a 3-day observational study. Eur J Clin Nutr 2017;71:798–800.
7. Institute of Medicine (US), Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academies Press (US), 1997.
8. Salomo L, Poulsen SK, Rix M, et al. The new Nordic diet: phosphorus content and absorption. Eur J Nutr 2016;55:991–6.
9. Salomo L, Rix M, Kamper A-L, et al. Short-term effect of the new Nordic renal diet on phosphorus homeostasis in chronic kidney disease stages 3 and 4. Nephrol Dial Transplant 2019;34:1691–9.
10. Poulsen SK, Due A, Jordy AB, et al. Health effect of the new Nordic diet in increased waist circumference: a 6-month randomized controlled trial. Am J Clin Nutr 2014;99:35–45.
11. Sciailia JJ, Lin P-H. Revamping the ‘renal’ diet: using foods to control phosphorus physiology. Nephrology Dialysis Transplantation 2019;34:1619–22.
12. Meerpohl JP, Zock PL, Kester ADM, et al. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003;77:1146–55.
13. de Longhi M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolin PUFA-rich diet in secondary prevention of coronary heart disease. Lancet 1994;343:1454–9.
14. Fito M, Guexens M, Corella D, et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 2007;167:1195–200.
15. Scheen AJ. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ Res 2018;122:1439–59.
16. Mente A, Dehghan M, Rangarajan S, et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the pure study. Lancet Diabetes Endocrinol 2017;5:774–8.
17. Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 2011;20:1727–36.
18. van Hout B, Janssen MF, Feng Y-S, et al. Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value Health 2012;15:708–15.
19. Sakuma M, Morimoto Y, Suzuki Y, et al. Availability of 24-h urine collection method on dietary phosphorus intake estimation. J Clin Biochem Nutr 2017;60:125–9.
20. Kaneko I, Tatsunami S, Segawa H, et al. Control of phosphate balance by the kidney and intestine. Clin Exp Nephrol 2017;21:21–6.
21. Slatopolsky E, Robson AM, Elkan I, et al. Control of phosphate excretion in uremic man. J Clin Invest 1968;47:1865–74.
22. Farrow EJ, White KE. Recent advances in renal phosphate handling. Nat Rev Nephrol 2010;6:207–17.
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Assessed for eligibility

Ineligible: Not meeting the inclusion criteria/decline participation

Randomisation
Baseline examinations

Allocation to intervention group n=30

Weekly food delivery for 26-weeks

Two-weeks follow-up

Follow-up day: 30, 60, 90, 120, 150

Study completion: Six months follow-up

Final follow-up: Three months after study completion

Allocation to control group n=30

Habitual diet, no dietetic intervention

Two-weeks follow-up

Follow-up day: 30, 60, 90, 120, 150

Weekly phone conversation during the 26-weeks. Dietary records will be assessed weekly

Study completion: Six months follow-up

Final follow-up: Three months after study completion

Hansen NM, et al. BMJ Open 2021; 11:e045754. doi: 10.1136/bmjopen-2020-045754
- **Intervention group:** Weekly food delivery for 5 days each week during the 26-weeks study period.
- **Intervention and control group:** Weekly phone conversation.
Appendix 3 – Research biobank

Biological material
Blood samples and 24-h urine will be taken from the patients 9 times during the study period, in order to determine different biochemical parameters (approx. 8 ml each time). The total amount of blood that is taken during the 26-weeks study period is approx. 75 ml.
The patients will also be asked to hand in 24-h urine 9 times during the trial in which 2x2 ml will be used for analysis, the rest will be discarded. The samples will be analyzed at the department of clinical biochemistry at Rigshospitalet.

Research biobank
For each blood- and urine sample, the research group will take out 2 ml to establish a research biobank. There will be a total of 9 blood samples and 9 urine samples, which makes a total of 18 ml blood and 18 ml of urine for the research biobank. The research biobank will be located at Rigshospitalet, Clinic P, 2131 after being approved from DPA. Data Protection Regulation and Data Protection Law, which will be complied throughout the study. Thus, creating an opportunity for future unspecified research. In case of new research from the blood and urine samples, a new approval from the science ethical will be needed. Materials in the research biobank will be destroyed after 5 years (approx. 30.07.2025). The materials are only for use within the country and the principal investigator is the main responsible.
The trial participants are required to give separate written consent for the research group to store the biological materials in the research biobank.
Appendix 4 – Informed consent to participate in a health research project

Title: Long-term effect of the New Nordic Renal Diet on phosphorus and lipid homeostasis in patients with chronic kidney disease, stages 3 and 4

Statement from the subject:
I have received written and oral information and I know enough about the purpose, method, benefits and disadvantages of saying yes to participating. I know that participation is voluntary and that I can always withdraw my consent without losing my current or future rights to treatment.

I give my consent to participate in the research project and to have my biological material taken out for storage in a research biobank. I have received a copy of this consent sheet as well a copy of the written information about the project for my own use.

Subjects name: ________________________________________________________

Date: _______________   Signature: ____________________________________________

If new important health information emerges about you in the research project, you will be informed. If you do not wish to receive new important health information that appears in the research project, please mark here: __________ (x)

Do you want to be informed about the result of the research project and any consequences for you?:
Yes _____ (x)         No _____ (x)

Statement from the person providing the information:
I hereby declare that the subject has received oral and written information about the experiment.

In my opinion, sufficient information has been provided to enable a decision to be taken on participation in the trial. Name of the person who has provided the information:

Date: _______________   Signature: ____________________________________________

Project identification number: H-20026376

Version: 2
Date for approval by Ethical Committee Denmark: 18th September 2020