Quantifying the impacts of future gravitational-wave data on constraining interacting dark energy

Hai-Li Li, a Dong-Ze He, a Jing-Fei Zhang a and Xin Zhang a,b,c,1

aDepartment of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
bMinistry of Education’s Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110819, China
cCenter for High Energy Physics, Peking University, Beijing 100080, China
E-mail: 1329750467@qq.com, hedongze1992@163.com, jfzhang@mail.neu.edu.cn, zhangxin@mail.neu.edu.cn

Received May 17, 2020
Revised May 28, 2020
Accepted May 28, 2020
Published June 19, 2020

Abstract. In this work, we investigate the impacts of the future gravitational-wave (GW) standard siren observation by the Einstein Telescope (ET) on constraining the interacting dark energy (IDE) models. We simulate 1000 GW events in the redshift range of \(0 \lesssim z \lesssim 5\) based on the 10-year observation of the ET. We combine the simulated GW data with the current mainstream cosmological electromagnetic observations including the cosmic microwave background anisotropies, the baryon acoustic oscillations, and the type Ia supernovae to constrain the IDE models. We consider typical IDE models in the context of a perturbed universe. To avoid the large-scale instability problem for IDE models, we apply the extended parameterized post-Friedmann approach to calculate the cosmological perturbations. We find that the addition of the GW standard siren data could significantly improve the constraint accuracies for most of the cosmological parameters (e.g., \(H_0\), \(w\), and \(\Omega_m\)). For the coupling parameter \(\beta\), the constraint errors could also be slightly improved when adding the GW data in the cosmological fit.

Keywords: dark energy experiments, dark energy theory, gravitational waves / experiments

ArXiv ePrint: 1908.03098

1Corresponding author.
1 Introduction

The accelerated expansion of the universe, discovered by the observations of type Ia supernovae [1, 2] and further confirmed by the observations of cosmic microwave background [3, 4] and large scale structure [5, 6], has become a fact. In order to explain the cosmic acceleration, the concept of “dark energy”, which is an exotic form of energy with negative pressure, has been proposed [7–15]. At present, dark energy (DE) occupies about 68% of the total energy density of the cosmos, dominating the evolution of the current universe.

The cosmological constant Λ, proposed by Einstein in 1917, has always been regarded as the simplest candidate of DE until now. The combination of cosmological constant Λ (or vacuum energy) and cold dark matter (CDM) constitute a concordant cosmological model, called the ΛCDM model. The equation of state (EoS) parameter of vacuum energy is \(w_\Lambda \equiv p_\Lambda/\rho_\Lambda = -1 \). Although the ΛCDM model is in excellent agreement with current cosmological observations with the least parameters [16], the cosmological constant Λ has always been plagued by some severe theoretical puzzles, such as the “fine-tuning” and “cosmic coincidence” problems [17, 18]. Thus, it is hard to say that the cosmological constant model with only six free parameters is the eventual scenario of our universe, which implies that the ΛCDM model is necessary to be further extended and some new parameters concerning new physics are thus introduced into the extensions.

To extend the ΛCDM cosmology in the aspect of DE, there are mainly two possible theoretical orientations, i.e., dynamical dark energy and modified gravity (MG) theories. If Einstein’s general relativity (GR) is valid on all the scales of universe, an alternative proposal of Λ is the dynamical dark energy, which suggests that the energy form with negative pressure can be provided by a spatially homogeneous scalar field evolving slowly down a proper potential, dubbed quintessence. On the other hand, if GR breaks down on the cosmological scales, some models of MG can mimic the “effective dark energy” at the cosmological background level to explain the cosmic accelerated expansion. In general, a dynamical dark energy model, compared to the cosmological constant, can yield a different expansion history of the universe but a similar growth history of structure. On the contrary, the MG models can yield a similar expansion history but a quite different structure growth history. Discriminating the scenarios of dynamical dark energy and MG has become one of the most critical issues in modern cosmology.
However, it must be emphasized that there is another important theoretical possibility that dark energy and dark matter can directly interact with each other, through mediating some unknown scalar field degrees of freedom, also called “the fifth force”. Inspired by this possibility, a large number of models featuring the interaction between dark matter and dark energy have been constructed and researched [19–98]. Although the interaction between dark matter and dark energy is mild, we still cannot exclude it within 1σ confidence region [99–106]. What is important is that the models of interacting dark energy can successfully solve (or alleviate) the cosmic coincidence problem through the attractor solution. Recently, the models of interacting dark energy have been considered to help alleviate the Hubble constant tension between the early and late universe measurements [107], and it was also shown that they are helpful in partially explaining the excess of 21 cm absorption signal related to the epoch of cosmic dawn (at z ∼ 17) detected in the EDGES experiment [98, 108, 109]. Thus, the research on interacting dark energy models is expected to be significant and valuable.

Currently, the major cosmological probes include the cosmic microwave background (CMB) anisotropies, baryon acoustic oscillations (BAO), type Ia supernovae (SN), direct determination of the Hubble constant (H0), weak gravitational lensing (WL), redshift space distortions (RSD), etc. Some important cosmological parameters have been precisely measured by the combination of these electromagnetic (EM) probes. But for the parameters beyond the standard model, such as the EoS of dark energy, the sterile neutrino mass, the tensor-to-scalar ratio and so forth, we still cannot measure them accurately up to now. In fact, there are strong degeneracies between these parameters, and some conflicts also exist among various observations. The reason for the situation is that the current observations are still not accurate enough, so that we cannot precisely measure the cosmological parameters beyond the standard model. In order to better constrain these parameters, we also need some new cosmological probes other than the traditional EM cosmological probes.

As proposed by Schutz in 1986 [110] and subsequently discussed by Holz and Hughes [111], the observations of gravitational waves (GW) can be used as the standard sirens in cosmology. The detection of GW event GW170817 [112] from the merger of binary neutron star and its EM counterpart GRB170817A [113] have pronounced the arrival of the multi-messenger astronomy era. With the help of the multi-messenger observation, we can measure the absolute luminosity distance dL of the source from the gravitational wave signal as well as the redshift z from the observation for its electromagnetic counterpart. Then, we can establish a true distance-redshift relation which can be used to infer the expansion history of universe and constrain the cosmological parameters such as the Hubble constant [114]. For measuring the Hubble constant, the main advantage of the standard siren method is that it avoids using the cosmic distance ladder. The GW standard sirens would become a promising new cosmological probe in the future, and would play a significant role in the cosmological parameter measurements [115, 116].

Actually, in the 2030s, a proposed third-generation ground-based GW observatory, the Einstein Telescope (ET), will be brought into operation [117]. This impressive facility will have 10 km-long arms and three detectors. Compared with the advanced LIGO, it has a much wider detection frequency range and a much better detection sensitivity. Thus, there will be much more binary neutron star merger events in much deeper redshifts detected by ET. As a conservative estimation, at least 1000 useful standard siren events will be observed with ET’s ten-year operation [118]. In the literature [115, 118–133], some authors have utilized the simulated future GW standard siren observations to estimate the cosmological parameters in various cosmological models of dark energy. For example, in ref. [118] the authors
have investigated the capabilities of future GW standard siren observation for improving the parameter estimation in cosmology and for breaking the parameter degeneracies formed in traditional EM observations. Taking ET as an example, they simulated 1000 data based on the ten-year observation and found that the simulated GW data could effectively break the parameter degeneracy in the \(\Lambda \)CDM and \(\omega \)CDM models, significantly improving the parameter constraints in the cosmological fit. In ref. [124], the authors have also investigated the Chevallier-Polarski-Linder (CPL), \(\alpha \) dark energy (\(\alpha \)DE), generalized Chaplygin gas (GCG) and new generalized Chaplygin gas (NGCG) models with the simulated GW standard siren data, and it was shown that the GW data could also improve the constraints on the cosmological parameters for all these DE models. Likewise, the similar conclusion can also be drawn for the holographic dark energy models, as shown in ref. [120]. In addition to the DE models, the GW standard siren observations can also exert significant influences on the studies of the MG models. The impacts of the future GW observations on the MG models have been recently intensively discussed in the literature (e.g., refs. [127–131]).

As for the interacting dark energy (IDE) models, ref. [122] has recently investigated how the future GW data could help improve the limits on the parameters in two specific IACDM models, finding that the addition of GW data to the CMB data can reduce the current uncertainty by a factor of 5. However, it is well-known that for the IDE scenario there is a problem of early-time perturbation instability, and thus in ref. [122] the authors have to set the coupling constant \(\xi \) to be positive and introduce a factor \((1+w_x) \) into the interaction term \(Q \) to ensure the stability for these models. In the present work, to treat the large-scale instability problem for the cosmological perturbations in the IDE scenario, we adopt the extended parameterized post-Friedmann (PPF) method [94, 95, 106, 134–137] to calculate the cosmological perturbations. Using the extended PPF method, without assuming any specific ranges of the EoS parameter \(w \) and the coupling constant \(\beta \), the cosmological perturbations can be calculated safely in the whole parameter space of an interacting dark energy model. We will further explore the impacts of the future GW data on improving the parameter constraints by breaking the parameter degeneracies for the IDE models. We consider two cases of interaction term, i.e., \(Q = \beta H \rho_c \) and \(Q = \beta H_0 \rho_c \), where \(\rho_c \) is the energy density of cold dark matter. This work will make the analysis of impacts of GW standard sirens on improving cosmological parameter estimation more complete.

This paper is organized as follows. In section 2, we give a brief description for the extended PPF approach to the interacting dark energy models. In section 3, we introduce the current cosmological data and briefly describe the method to simulate the GW data. In section 4, we report the constraint results and make some relevant discussions. Conclusion is given in section 5.

2 A brief description of the extended PPF approach for interacting dark energy models

If there is a direct, non-gravitational interaction between dark energy and dark matter, we will have the following energy continuity equations

\[
\rho_{\text{de}}' = -3\mathcal{H}(1+w)\rho_{\text{de}} + aQ_{\text{de}}, \\
\rho_c' = -3\mathcal{H}\rho_c + aQ_c, \\
Q_{\text{de}} = -Q_c = Q,
\]

(2.1)

(2.2)

where \(\rho_{\text{de}} \) and \(\rho_c \) are the energy densities of dark energy and dark matter, respectively, a prime is the derivative with respect to the conformal time \(\eta \), \(\mathcal{H} = \frac{a'}{a} \) is the conformal
Hubble expansion rate, a denotes the scale factor, w is the EoS parameter, and Q is the phenomenological interaction term. Generally, the form of Q is assumed to be proportional to the density of dark sectors, and it can include the Hubble parameter H or the Hubble constant H_0. In this paper, we consider two forms of the interaction term Q, e.g., $Q = \beta H_0 \rho_c$ and $Q = \beta H_0 \rho_c$, with β being a dimensionless coupling parameter used to describe the interaction strength between dark energy and dark matter. From eqs. (2.1) and (2.2), we can clearly see that if $\beta > 0$, dark matter would decay into dark energy, and vice versa for $\beta < 0$. Here, $\beta = 0$ denotes no interaction between the two sectors.

The covariant conservation law of the dark sectors can be expressed as

$$\nabla_i T^\mu_{\nu i} = Q^\mu_i, \quad \sum_i Q^\mu_i = 0,$$

where $T^\mu_{\nu i}$ is the energy-momentum transfer tensor, and Q^μ_i is the energy-momentum transfer vector. In this paper, we choose $Q^\mu_{de} = -Q^\mu = Q u^\mu$, where u^μ is the four-velocity of dark matter. The energy-momentum transfer vector Q^μ_i can be split into two parts as

$$Q^\mu_i = a(-Q_i(1 + AY) - \delta Q_i Y, [f_i + Q_i(v - B)]Y_i),$$

where δQ_i is the energy transfer perturbation and f_i is the momentum transfer potential of the i fluid. A and B are the scalar metric perturbations. Y is the eigenfunctions of the Laplace operator ($\nabla^2 Y = -k^2 Y$) and Y_i is the covariant derivative ($Y_i = (-k)\nabla Y$).

In the interacting dark energy models, we can give the following conservation equations for the I fluid according to eqs. (2.3) and (2.4),

$$\delta \rho'_I + 3H(\delta \rho_I + \delta p_I) + (\rho_I + p_I)(k v_I + 3H_0 Y) = a(\delta Q_I + A Q_I),$$

$$\left[(\rho_I + p_I)(v_I - B)\right]' + 4H(\rho_I + p_I)(v_I - B) - k \delta p_I + \frac{2}{3} k c_K p_I \Pi_I - k(\rho_I + p_I)A = a[Q_I(v - B) + f_I].$$

In the equations above, $\delta \rho_I$ is the energy density perturbation, δp_I is the isotropic pressure perturbation, v_I is the velocity perturbation, and $c_K = 1 - 3K/k^2$ with K being the spatial curvature, and Π_I is the anisotropic stress perturbation.

When considering the interaction between dark matter and dark energy, dark energy is treated as a nonadiabatic fluid and the calculation of δp_{de} is in terms of the adiabatic sound speed and the rest-frame sound speed. Under such circumstances, the interacting dark energy models will be plagued with the problem of large-scale instability. Hence, we should treat the dark energy perturbations with the extended PPF framework [134]. For clarity, in the following discussion, we will use some new symbols, i.e., $\zeta \equiv H_L$, $\xi \equiv A$, $\rho \Delta \equiv \delta \rho$, $\Delta p \equiv \delta p$, $V \equiv v$, and $\Delta Q_I \equiv \delta Q_I$, to denote the corresponding quantities of the comoving gauge, except the two gauge-independent quantities Π and f_I.

On the large scales, the direct relationship between $V_{de} - V_T$ and V_T can be established, and it can be parametrized by a function $f_\zeta(a)$ as [138, 139]

$$\lim_{k_H \ll 1} \frac{4\pi G a^2}{\mathcal{H}^2} (\rho_{de} + p_{de}) \frac{V_{de} - V_T}{k_H} = -\frac{1}{3} c_K f_\zeta(a) k_H V_T,$$

where $k_H = k / \mathcal{H}$. The equation of motion for the curvature perturbation ζ on the large scales can be obtained by combining this equation with Einstein equations,

$$\lim_{k_H \ll 1} \zeta' = \mathcal{H} \xi - \frac{K}{k} V_T + \frac{1}{3} c_K f_\zeta(a) k V_T.$$
On the small scales, one can describe the evolution of curvature perturbation by using the Poisson equation, \(\Phi = 4\pi G a^2 \Delta_T \rho_T / (k^2 c_K) \), with \(\Phi = \zeta + V_T / k_H \). These two limits can be linked by the introduction of a dynamical function \(\Gamma \),

\[
\Phi + \Gamma = 4\pi G a^2 \frac{k^2 c_K}{\Delta_T \rho_T}, \tag{2.9}
\]

which is satisfied for all the scales.

Compared with the small-scale Poisson equation, eq. (2.9) gives \(\Gamma \to 0 \) at \(k_H \gg 1 \). Combining the derivative of eq. (2.9) with the conservation equations and the Einstein equations, the equation of motion for \(\Gamma \) on the large scales can be expressed as follows,

\[
\lim_{k_H \ll 1} \Gamma' = S - \mathcal{H} \Gamma, \tag{2.10}
\]

with

\[
S = \frac{4\pi G a^2}{k^2} \left\{ \left[(\rho_{de} + p_{de}) - f_\xi (\rho_T + p_T) \right] k V_T
+ \frac{3a}{k_H c_K} [Q_c (V - V_T) + f_c] + \frac{a}{c_K} (\Delta Q_c + \xi Q_c) \right\},
\]

where \(\xi \) can be obtained from eq. (2.6),

\[
\xi = -\Delta p_T - \frac{2}{3} \Pi_T + \frac{2}{k_T} [Q_c (V - V_T) + f_c]. \tag{2.11}
\]

By the transition scale parameter \(c_T \), we can take the equation of motion for \(\Gamma \) on all scales to be \([138, 139]\)

\[
(1 + c_T^2 k_H^2) [\Gamma' + \mathcal{H} \Gamma + c_T^2 k_H^2 \mathcal{H} \Gamma] = S. \tag{2.12}
\]

From eq. (2.12) we can see that in the equation of motion for \(\Gamma \), all of the perturbation quantities contain only matters and do not include dark energy. So, we can also solve eq. (2.12) without using any information related to the dark energy perturbations. As long as we know the evolution of \(\Gamma \), we can get the energy density and velocity perturbations immediately,

\[
\rho_{de} \Delta_{de} = -3(\rho_{de} + p_{de}) \frac{V_{de} - V_T}{k_H} - \frac{k^2 c_K}{4\pi G a^2} \Gamma, \tag{2.13}
\]

\[
V_{de} - V_T = \frac{-k}{4\pi G a^2 (\rho_{de} + p_{de}) F} \times \left[S - \Gamma' - \mathcal{H} \Gamma + f_\xi \frac{4\pi G a^2 (\rho_T + p_T)}{k} V_T \right], \tag{2.14}
\]

with \(F = 1 + 12\pi G a^2 (\rho_T + p_T) / (k^2 c_K) \).

3 Data and method

In this section we will first describe the current observational data used in this paper, and then introduce the simulated future GW data.
The current observational data sets we used in this work include CMB, BAO and SN. For the CMB data, we use the Planck temperature and polarization power spectra of the full range of multipoles \[140\], denoted here as “Planck TT, TE, EE+lowTEB”. For the BAO data, we use the measurements from 6dFGS \((z_{\text{eff}} = 0.106)\) \[141\], SDSS-MGS \((z_{\text{eff}} = 0.15)\) \[142\], and BOSS DR12 \((z_{\text{eff}} = 0.38, 0.51, \text{and } 0.61)\) \[143\]. For the SN data, we use the Pantheon sample, which is comprised of 1048 data points \[144\].

Next, we shall introduce the method to generate the GW standard siren data specifically. Each data point consists of a triple \((z_i, d_L(z_i), \sigma_i)\). Here, \(z_i\) is the redshift of the GW source, \(d_L(z_i)\) is the luminosity distance at \(z_i\), and \(\sigma_i\) is the error. The simulation method is the same as described in refs. \[118, 145–147\]. The GW sources considered in this work include the merger events from black hole-neutron star (BHNS) systems and binary neutron star (BNS) systems, both are expected to exhibit afterglows in the electromagnetic (EM) radiation after they emit a burst of GW. Thus, BNS and NSBH could be observed as not only a transient GW event, but also an EM counterpart. The consideration of NSBH is likely to exert a beneficial effect on the determination of cosmological parameters \[146\]. But for NSBH, the intrinsic coalescence rate is expected to be considerably lower than that for BNS as indicated in the Conceptual Design Study of the Einstein Telescope \[117\] (see table 2 on Page 31). Thus, for the GW standard siren data simulation, we mainly consider the coalescence events of BNS and only consider a small number of NSBH coalescence events. According to the prediction of the Advanced LIGO-Virgo network \[148\], the radio between NSBH and BNS is set to be 0.03 so as to make BNS the majority of GW sources for standard sirens, which is also in accordance with refs. \[118, 120, 124, 145, 147\].

The redshift distribution of the observable sources is given by \[146, 147\]

\[
P(z) \propto \frac{4\pi d_C^2(z)R(z)}{H(z)(1 + z)}, \tag{3.1}
\]

where \(d_C(z)\) is the comoving distance at the redshift \(z\), and \(R(z)\) denotes the redshift evolution of the burst rate that takes the form as \[147, 149, 150\]

\[
R(z) = \begin{cases}
1 + 2z, & z \leq 1, \\
\frac{3}{4}(5 - z), & 1 < z < 5, \\
0, & z \geq 5.
\end{cases} \tag{3.2}
\]

Furthermore, we can get the catalogue of the GW sources by choosing a fiducial model. Theoretically, the fiducial model could be any well motivated cosmological model. In this paper, we take the best-fit interacting dark energy models (i.e., the IACDM model and the IwCDM model) constrained by the current observations as the fiducial models to produce the simulated GW data. For the base 6-parameter ΛCDM model, the cosmological parameters are \(\{\omega_b, \omega_c, 100\theta_{\text{MC}}, \tau, n_s, \ln(10^{10} A_s)\}\), where \(\omega_b = \Omega_b h^2\) and \(\omega_c = \Omega_c h^2\) are the present densities of baryons and cold dark matter, respectively, \(\theta_{\text{MC}}\) is the ratio between the sound horizon and the angular diameter distance at the decoupling epoch, \(\tau\) is the reionization optical depth, \(n_s\) is the scalar spectral index, and \(A_s\) is the amplitude of primordial scalar perturbation power spectrum. As an extension of the ΛCDM model, the wCDM model has an additional parameter \(w = \text{constant}\) relative to the ΛCDM model. Similarly, the IACDM model has an additional coupling parameter \(\beta\) relative to the ΛCDM model, and the IwCDM model has an additional coupling parameter \(\beta\) relative to the wCDM model.
The comoving distance $d_C(z)$ can be calculated by the function

$$d_C(z) = \frac{1}{H_0} \int_0^z \frac{dz'}{E(z')},$$

(3.3)

where $E(z) = H(z)/H_0$ is given by a cosmological model. Therefore, according to the redshift distribution of the GW sources, we can generate a catalog of the GW sources by eq. (3.3), which means that the relation between z and d_L can be given for each fiducial model.

Since the GW amplitude depends on the luminosity distance d_L, the information of d_L and σ_{d_L} can be obtained from the waveform. The strain $h(t)$ in the GW interferometers can be written as

$$h(t) = F_+^{(1)}(\theta, \phi, \psi) + F_+^{(1)}(\theta, \phi, \psi) + F_+^{(1)}(\theta, \phi, \psi),$$

(3.4)

where F_+ and F_\times are the beam pattern functions, ψ is the polarization angle, θ and ϕ describe the location of the GW source relative to the GW detector. The antenna pattern functions of the ET can be written as [146]

$$F_+^{(1)}(\theta, \phi, \psi) = \sqrt{\frac{3}{2}} \left[\frac{1}{2} (1 + \cos^2(\theta)) \cos(2\phi) \cos(2\psi) - \cos(\theta) \sin(2\phi) \sin(2\psi) \right],$$

$$F_\times^{(1)}(\theta, \phi, \psi) = \sqrt{\frac{3}{2}} \left[\frac{1}{2} (1 + \cos^2(\theta)) \cos(2\phi) \sin(2\psi) + \cos(\theta) \sin(2\phi) \cos(2\psi) \right].$$

(3.5)

Obviously, the antenna pattern functions of the other two interferometers can also be easily calculated due to fact that the three interferometers are placed in an equilateral triangle shape, with the angles with each other being 60°.

Next, we compute the Fourier transform $H(f)$ of the time domain waveform $h(t)$,

$$H(f) = A f^{-7/6} \exp[i(2\pi f t_0 - \pi/4 + 2\Psi(f/2) - \varphi_{(2,0)})].$$

(3.6)

Here, the functions $\Psi(f)$ and $\varphi_{(2,0)}$ are

$$\Psi(f) = -\psi_0 + \frac{3}{256\eta} \sum_{i=0}^{7} \psi_i (2\pi M f)^{i/3},$$

(3.7)

$$\varphi_{(2,0)} = \tan^{-1} \left(-\frac{2 \cos(i) F_\times}{(1 + \cos^2(i)) F_+} \right),$$

(3.8)

with the parameters ψ_i provided in ref. [151]. The Fourier amplitude A can be expressed as

$$A = \frac{1}{d_L} \sqrt{F_+^2 (1 + \cos^2(i))^2 + 4F_\times^2 \cos^2(i)} \sqrt{5\pi/96} \pi^{7/6} M_{c}^{5/6},$$

(3.9)

where $M_c = M\eta^{3/5}$ is the “chirp mass” related to the total mass M of the coalescing binary system, $\eta = m_1 m_2 / M^2$ is the symmetric mass ratio, and m_1 and m_2 are the component masses. The masses quoted here refer to the redshifted masses in observation, and the relation between the observed mass and the intrinsic mass (in the source frame) is $M_{obs} = (1+z)M_{int}$.

In eq. (3.9), \(\iota \) denotes the angle of inclination of the binary’s orbital angular momentum with the line of sight. Since the short gamma ray bursts (SGRBs) are strongly beamed, the binaries should be orientated nearly face on (i.e., \(\iota \simeq 0 \)) as implied by the coincidence observations of SGRBs, and the maximal inclination is about \(\iota = 20^\circ \).

Once the waveform of the GW is known, the signal-to-noise ratio (SNR) for the network of three independent interferometers can be calculated by

\[
\rho = \sqrt{\frac{3}{\sum_{i=1}^{3}(\rho^{(i)})^2}},
\]

where \(\rho^{(i)} = \sqrt{\langle \mathcal{H}^{(i)}, \mathcal{H}^{(i)} \rangle} \), and here the inner product of \(a(t) \) and \(b(t) \) is defined as

\[
\langle a, b \rangle = 4 \int_{f_{\text{lower}}}^{f_{\text{upper}}} \frac{\tilde{a}(f)\tilde{b}^*(f) + \tilde{a}^*(f)\tilde{b}(f)}{2} S_h(f) \, df,
\]

where “\(\sim \)” above the function represents the Fourier transform of the each quantity and \(S_h(f) \) is the one-side noise power spectral density. Note here that we have taken \(S_h(f) \) of the ET to be the same as that in ref. [146].

The Fisher information matrix can be used to estimate the instrumental error on the measurement of \(d_L \),

\[
\sigma_{d_L}^{\text{inst}} \simeq \sqrt{\frac{\partial \mathcal{H}}{\partial d_L} \mathcal{D} \frac{\partial \mathcal{D}}{\partial d_L}}^{-1}.
\]

Because \(d_L \) is independent of other parameters, according to the relation \(\mathcal{H} \propto d_L^{-1} \), we can easily get \(\sigma_{d_L}^{\text{inst}} \simeq d_L/\rho \). When considering the effect of the inclination angle \(\iota \) (\(0^\circ < \iota < 90^\circ \)), we need to add a factor 2 in front of the error, namely,

\[
\sigma_{d_L}^{\text{inst}} \simeq \frac{2d_L}{\rho}.
\]

In addition, we have to consider the error from weak lensing, which can be expressed as \(\sigma_{d_L}^{\text{lens}} = 0.05z d_L \) [147]. Therefore, the total error of the luminosity distance is

\[
\sigma_{d_L} = \sqrt{(\sigma_{d_L}^{\text{inst}})^2 + (\sigma_{d_L}^{\text{lens}})^2} = \sqrt{\left(\frac{2d_L}{\rho}\right)^2 + (0.05z d_L)^2}.
\]
Table 1. Fitting results (68.3% confidence level) for the IΛCDM models using CBS and CBS+GW. Here, CBS stands for CMB+BAO+SN.

Data	IΛCDM1 (Q = βHρc)	IΛCDM2 (Q = βH0ρc)		
CBS	CBS+GW	CBS	CBS+GW	
Ωm	0.3050+0.0080−0.0081	0.3050 ± 0.0029	0.3000+0.0150−0.0170	0.3002±0.0075−0.0074
H_0 [km/s/Mpc]	68.05+0.65−0.64	68.05 ± 0.22	68.06 ± 0.80	68.04 ± 0.33
β	0.00120 ± 0.00120	0.00120 ± 0.00088	0.031100 ± 0.04400	0.03100 ± 0.03000

Table 2. Fitting results (68.3% confidence level) for the IwCDM models using CBS and CBS+GW. Here, CBS stands for CMB+BAO+SN.

Data	IwCDM1 (Q = βHρc)	IwCDM2 (Q = βH0ρc)		
CBS	CBS+GW	CBS	CBS+GW	
Ωm	0.3073+0.0081−0.0082	0.3071+0.0028−0.0029	0.3320+0.0250−0.0280	0.3240+0.0180−0.0200
H_0 [km/s/Mpc]	68.13+0.84−0.83	68.13 ± 0.18	68.00 ± 0.82	68.02 ± 0.40
β	−0.0005 ± 0.0015	−0.0005 ± 0.0013	−0.0950 ± 0.0930	−0.0670 ± 0.0780
w	−1.036 ± 0.040	−1.036 ± 0.026	−1.105+0.093−0.075	−1.075+0.074−0.062

The central value of the coupling constant $β$ being around zero, we take the fiducial value as $β = 0$ for this parameter. Next, we will consider the simulated GW standard sirens data in our analysis and combine them with the current cosmological data (i.e., CMB+BAO+SN+GW) to constrain the IDE models again, investigating whether the addition of the GW data can improve the constraints on the parameters of IDE models.

The $χ^2$ function for the GW observation can be written as

$$
χ^2_W = \sum_{i=1}^{N} \left[\frac{\bar{d}_L^i - d_L^i(z_i; \bar{Ω})}{\bar{σ}_{d_L}^i} \right]^2 ,
$$

(3.15)

where z_i, \bar{d}_L^i, and $\bar{σ}_{d_L}^i$ are the ith redshift, luminosity distance, and error of luminosity distance, respectively, and $\bar{Ω}$ denotes the set of cosmological parameters.

For the combination of the conventional EM observations and the GW standard siren observation, the total $χ^2_{\text{tot}}$ function is

$$
χ^2_{\text{tot}} = χ^2_{\text{CMB}} + χ^2_{\text{BAO}} + χ^2_{\text{SN}} + χ^2_{\text{GW}}.
$$

(3.16)

4 Results and discussion

The main constraint results are summarized in figures 1–4 and tables 1–4. In figures 1–4, the constraint results for the IΛCDM1 model with $Q = βHρc$, the IΛCDM2 model with $Q = βH0ρc$, the IwCDM1 model with $Q = βHρc$, and the IwCDM2 model with $Q = βH0ρc$ are shown, respectively. In these figures, one-dimensional marginalized posterior distributions and the two-dimensional contours (68.3% and 95.4% confidence level) from CMB+BAO+SN and CMB+BAO+SN+GW are colored by blue and green, respectively. The fit values of the cosmological parameters for the IDE models are given in tables 1 and 2. The constraint
errors of the cosmological parameters are given in table 3, and the constraint accuracies are given in table 4. Here, for a parameter ξ, the accuracy $\varepsilon(\xi)$ is defined as $\varepsilon(\xi) = \sigma(\xi)/\xi$, which is the relative error. For convenience, the data combination “CMB+BAO+SN” is also abbreviated as “CBS” in the following.

At first glance, we can easily find that the addition of the GW standard siren data can tighten the constraint on H_0 and Ω_m significantly (except the case in the $IwCDM2$ model

Table 3. Constraint errors for cosmological parameters of the $I\LambdaCDM$ models and the $IwCDM$ models using CBS and CBS+GW. Here, CBS stands for CMB+BAO+SN.

Model	$I\LambdaCDM1$ ($Q = \beta H \rho_c$)	$I\LambdaCDM2$ ($Q = \beta H_0 \rho_c$)	$IwCDM1$ ($Q = \beta H \rho_c$)	$IwCDM2$ ($Q = \beta H_0 \rho_c$)				
Data	CBS	CBS+GW	CBS	CBS+GW	CBS	CBS+GW	CBS	CBS+GW
$\sigma(\Omega_m)$	0.0081	0.0029	0.0160	0.0075	0.0082	0.0029	0.0265	0.0190
$\sigma(H_0)$	0.645	0.220	0.800	0.330	0.835	0.180	0.820	0.400
$\sigma(\beta)$	0.00120	0.00088	0.04400	0.03000	0.00150	0.00130	0.09300	0.07800
$\sigma(w)$	–	–	–	–	0.0400	0.0260	0.0845	0.0683

Figure 1. Observational constraints (68.3% and 95.4% confidence level) on the $I\LambdaCDM1$ model with $Q = \beta H \rho_c$ by using the CMB+BAO+SN and CMB+BAO+SN+GW data.
Figure 2. Observational constraints (68.3% and 95.4% confidence level) on the IΛCDM2 model with \(Q = \beta H_0 \rho_c \) by using the CMB+BAO+SN and CMB+BAO+SN+GW data.

Table 4. Constraint accuracies for cosmological parameters of the IΛCDM models and the IwCDM models using CBS, and CBS+GW. Here, CBS stands for CMB+BAO+SN.

with \(Q = \beta H_0 \rho_c \), which will be discussed in the following), and for the other parameters the constraints are slightly weaker.

The constraint results for the IΛCDM1 model with \(Q = \beta H_0 \rho_c \) are shown in figure 1. We find that the CBS data provide a 0.95% measurement for \(H_0 \), whereas the combined CBS+GW data provide a 0.32% measurement. For the parameter \(\Omega_m \), the CBS data can give a constraint accuracy of 2.66%. When adding the GW data, the constraint accuracy for
Ω_m is improved to 0.95% (using the CBS+GW data). Obviously, both parameters can be constrained more stringent with the help of the GW data. Note here that since the central value of the coupling constant β in IDE models is around zero, the relative error for this parameter will be immensely influenced by the statistic fluctuations. Therefore, the absolute error is more reliable for quantifying the improvement for constraining this parameter. The addition of the GW data will tighten the constraint on the coupling constant β, with the absolute error improved from $\sigma(\beta) = 1.2 \times 10^{-3}$ to $\sigma(\beta) = 8.8 \times 10^{-4}$.

The constraint results for the IwCDM2 model with $Q = \beta H_0 \rho_c$ are shown in figure 2. For this model, the CBS data can provide a 1.18% measurement for H_0, while the CBS+GW data can measure H_0 at the 0.49% level. With respect to the parameter Ω_m, the CBS+GW data can give a 2.50% constraint accuracy on Ω_m, better than the constraint using the CBS data of a 5.33% accuracy. For the coupling constant β, the result is similar to the case of the IwCDM1 model, and the constraint error could be improved from $\sigma(\beta) = 4.4 \times 10^{-2}$ to $\sigma(\beta) = 3 \times 10^{-2}$ with the addition of the GW data.

The results for the IwCDM1 model with $Q = \beta H_0 \rho_c$ are shown in figure 3. From this figure, we find that the situation is similar to that of the IwCDM models. We can see that

Figure 3. Observational constraints (68.3% and 95.4% confidence level) on the IwCDM1 model with $Q = \beta H_0 \rho_c$ by using the CMB+BAO+SN and CMB+BAO+SN+GW data.
the CBS data can only provide a 1.23% measurement for H_0, while the combined CBS+GW data constrain H_0 to a 0.26% accuracy. As for the measurement of Ω_m, we find that the constraint result using the CBS+GW data is also better than that using the CBS data. When adding the GW data, the constraint accuracy of Ω_m will be improved from 2.67% to 0.94%. For the parameter w, there is a slight improvement when adding the GW data, with the accuracy enhanced from 3.86% to 2.51%. For the coupling parameter β, the constraint errors are $\sigma(\beta) = 1.5 \times 10^{-3}$ and $\sigma(\beta) = 1.3 \times 10^{-3}$ using CBS and CBS+GW, respectively. The improvement in this case is not evident.

Finally, we investigate the $I\omega$CDM2 model with $Q = \beta H_0 \rho_c$, of which the constraint results are shown in figure 4. We find that the constraint accuracy on Ω_m is worse compared with the cases in the above three models. When adding the GW data, the constraint on Ω_m is at a 5.86% accuracy (using CBS+GW data), slightly better than that using the CBS data at a 7.98% accuracy. In addition, we also find that the CBS data provide a 1.21% measurement for H_0, and the combined CBS+GW data provides a 0.59% measurement for H_0. Similar to the case of $I\omega$CDM1 model with $Q = \beta H \rho_c$, the accuracy of w is only slightly improved, from 7.65% to 6.35%. For the coupling parameter β, when we add the GW data, the constraint error is slightly decreased, from $\sigma(\beta) = 9.3 \times 10^{-2}$ to $\sigma(\beta) = 7.8 \times 10^{-2}$.

Figure 4. Observational constraints (68.3% and 95.4% confidence level) on the $I\omega$CDM2 model with $Q = \beta H_0 \rho_c$ by using the CMB+BAO+SN and CMB+BAO+SN+GW data.
Figure 5. The evolutions of $Q/H_0\rho_{c0}$ (with 1σ errors) in the IΛCDM1 model with $Q = \beta H_0\rho_c$ (left) and in the IΛCDM2 model with $Q = \beta H_0\rho_c$ (right), respectively. The black dashed lines denote the noninteracting case ($Q=0$).

In addition, we also plot the reconstructed evolutions of the interaction term $Q(z)$ in the IΛCDM1 and IΛCDM2 models in figure 5. Here we show $Q/H_0\rho_{c0}$ versus z, where $\rho_{c0} = 3M^2_{pl}H^2_0$ is the present-day critical density of the universe. The best-fit line and the 1σ region are shown in the figure, and the two panels are for the IΛCDM1 and IΛCDM2 models, respectively. It is clear to see that the addition of the GW data could significantly shrink the uncertainty in the reconstruction of the interaction term.

Note here that, as another third-generation ground-based GW observatory in addition to the ET (in the Europe), the Cosmic Explorer (CE) has also been proposed to be built in the United States. This project is scheduled to start its observation in the mid-2030s. Some forecast studies on constraining cosmological parameters using the GW standard sirens observed by the CE have been made in the literature. The cosmological parameter constraining capability of the CE is slightly better than that of the ET, as shown in refs. [152, 153].

In summary, for all the IDE models considered in this paper, the future GW standard siren data observed by the ET can indeed improve the constraint accuracies of cosmological parameters (e.g., Ω_m, H_0, and w). Specifically, for the coupling parameter β, when adding the GW data, the constraint error is also evidently decreased.

5 Conclusion

In this paper, we have investigated how the future GW standard sirens observed by the next-generation ground-based GW detectors would impact on the cosmological parameter estimation for the IDE models. We consider four typical IDE models, i.e., the IΛCDM1 ($Q = \beta H_0\rho_c$) model, the IΛCDM2 ($Q = \beta H_0\rho_c$) model, the IwCDM1 ($Q = \beta H_0\rho_c$) model, and the IwCDM2 ($Q = \beta H_0\rho_c$) model. To study the impacts of the GW data, we also consider the conventional EM observations in this paper including the Planck 2015 CMB data, the BAO measurements, and the SN data of Pantheon compilation. For the GW data, we simulate 1000 GW multi-messenger events based on the ET’s ten-year observation. In order to quantify the constraint capability of the GW data, we consider two data combinations, i.e., CBS and CBS+GW, to constrain the cosmological models.

We find that the future GW standard sirens can significantly improve the constraints on most of the cosmological parameters for all the IDE models. When adding the GW standard siren data, the constraint accuracy of H_0 can be remarkably improved, from 0.95%, 1.18%,
1.23%, and 1.21% to 0.32%, 0.49%, 0.26%, and 0.59% for the IΛCDM1, IΛCDM2, IwCDM1, and IwCDM2 models, respectively. Moreover, as for the parameter Ω_m, the constraint accuracy is improved from 2.66%, 5.33%, 2.67%, and 7.98% to 0.95%, 2.50%, 0.94%, and 5.86%, for the four considered models, respectively. For the coupling constant β, when adding the GW data, the constraint error $\sigma(\beta)$ can also be decreased, from 1.2×10^{-3}, 4.4×10^{-2}, and 9.3×10^{-2} to 8.8×10^{-4}, 3.0×10^{-2}, and 7.8×10^{-2} for the IACDM1, IACDM2, and IwCDM2 models, respectively. While for the IwCDM1 model, the improvement is not so evident for this parameter, from $\sigma(\beta) = 1.5 \times 10^{-3}$ to $\sigma(\beta) = 1.3 \times 10^{-3}$. For the parameter w in the IwCDM models, the constraint accuracy could also be improved when adding the GW data, from 3.86% to 2.51% for the IwCDM1 model and from 7.65% to 6.35% for the IwCDM2 model.

It is shown in this paper that for the IDE models the constraint precisions for cosmological parameters can be promoted effectively with the consideration of future GW observations. The results presented here are consistent with the previous studies on other dark energy models. We conclude that the GW standard sirens would be developed into a powerful cosmological probe in the future. Due to the fact that the GW observations can measure the absolute distance scale in cosmology, the standard sirens can be used to break the cosmological parameter degeneracies inherent in the conventional EM observations. The next-generation ground-based GW detectors and the future space-based GW detectors would observe a large number of GW events in multi-frequency bands, providing a large sample of standard sirens that will greatly promote the development of cosmology. We need more detailed studies on the standard siren cosmology.

Acknowledgments

We thank Jing-Zhao Qi, Ze-Wei Zhao, and Ling-Feng Wang for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants Nos. 11975072, 11875102, 11835009, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), and the Fundamental Research Funds for the Central Universities (Grant No. N2005030).

References

[1] Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [esPIRE].
[2] Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [esPIRE].
[3] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [esPIRE].
[4] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207] [esPIRE].
[5] SDSS collaboration, Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [esPIRE].
[6] SDSS collaboration, The Second data release of the Sloan digital sky survey, Astron. J. 128 (2004) 502 [astro-ph/0403325] [esPIRE].
[7] V. Sahni and A. Starobinsky, *Reconstructing Dark Energy*, *Int. J. Mod. Phys. D* 15 (2006) 2105 [astro-ph/0610026] [inSPIRE].

[8] K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, *Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests*, *Astrophys. Space Sci.* 342 (2012) 155 [arXiv:1205.3421] [inSPIRE].

[9] S. Weinberg, *The Cosmological Constant Problem*, *Rev. Mod. Phys.* 61 (1989) 1 [inSPIRE].

[10] P.J.E. Peebles and B. Ratra, *The Cosmological Constant and Dark Energy*, *Rev. Mod. Phys.* 75 (2003) 559 [astro-ph/0207347] [inSPIRE].

[11] E.J. Copeland, M. Sami and S. Tsujikawa, *Dynamics of dark energy*, *Int. J. Mod. Phys. D* 15 (2006) 1753 [hep-th/0603057] [inSPIRE].

[12] J. Frieman, M. Turner and D. Huterer, *Dark Energy and the Accelerating Universe*, *Ann. Rev. Astron. Astrophys.* 46 (2008) 385 [arXiv:0803.0982] [inSPIRE].

[13] V. Sahni, *Reconstructing the properties of dark energy*, *Prog. Theor. Phys. Suppl.* 172 (2008) 110 [inSPIRE].

[14] M. Li, X.-D. Li, S. Wang and Y. Wang, *Dark Energy*, *Commun. Theor. Phys.* 56 (2011) 525 [arXiv:1103.5870] [inSPIRE].

[15] M. Kamionkowski, *Dark Matter and Dark Energy*, in *Amazing Light: Visions for Discovery*, An International Symposium in Honor of the 90th Birthday Years of Charles H. Townes, 6, 2007, arXiv:0706.2986 [inSPIRE].

[16] PLANCK collaboration, *Planck 2015 results. XIII. Cosmological parameters*, *Astron. Astrophys.* 594 (2016) A13 [arXiv:1502.01589] [inSPIRE].

[17] V. Sahni and A.A. Starobinsky, *The Case for a positive cosmological Lambda term*, *Int. J. Mod. Phys. D* 9 (2000) 373 [astro-ph/9904398] [inSPIRE].

[18] R. Bean, S.M. Carroll and M. Trodden, *Insights into dark energy: interplay between theory and observation*, astro-ph/0510059 [inSPIRE].

[19] L. Amendola, *Coupled quintessence*, *Phys. Rev. D* 62 (2000) 043511 [astro-ph/9908023] [inSPIRE].

[20] L. Amendola, *Scaling solutions in general nonminimal coupling theories*, *Phys. Rev. D* 60 (1999) 043501 [astro-ph/9904120] [inSPIRE].

[21] D. Tocchini-Valentini and L. Amendola, *Stationary dark energy with a baryon dominated era: Solving the coincidence problem with a linear coupling*, *Phys. Rev. D* 65 (2002) 063508 [astro-ph/0108143] [inSPIRE].

[22] L. Amendola and D. Tocchini-Valentini, *Baryon bias and structure formation in an accelerating universe*, *Phys. Rev. D* 66 (2002) 043528 [astro-ph/0111535] [inSPIRE].

[23] D. Comelli, M. Pietroni and A. Riotto, *Dark energy and dark matter*, *Phys. Lett. B* 571 (2003) 115 [hep-ph/0302080] [inSPIRE].

[24] L.P. Chimento, A.S. Jakubi, D. Pavon and W. Zimdahl, *Interacting quintessence solution to the coincidence problem*, *Phys. Rev. D* 67 (2003) 083513 [astro-ph/0303145] [inSPIRE].

[25] R.-G. Cai and A. Wang, *Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem*, *JCAP* 03 (2005) 002 [hep-th/0411025] [inSPIRE].

[26] X. Zhang, F.-Q. Wu and J. Zhang, *A New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter*, *JCAP* 01 (2006) 003 [astro-ph/0411221] [inSPIRE].

[27] F. Ferrer, S. Rasanen and J. Valiviita, *Correlated isocurvature perturbations from mixed inflaton-curvaton decay*, *JCAP* 10 (2004) 010 [astro-ph/0407300] [inSPIRE].

– 16 –
[28] W. Zimdahl, *Interacting dark energy and cosmological equations of state*, *Int. J. Mod. Phys. D* 14 (2005) 2319 [arXiv:gr-qc/0505056] [SPIRE].

[29] X. Zhang, *Statefinder diagnostic for coupled quintessence*, *Phys. Lett. B* 611 (2005) 1 [arXiv:astro-ph/0503075] [SPIRE].

[30] B. Wang, J. Zang, C.-Y. Lin, E. Abdalla and S. Micheletti, *Interacting Dark Energy and Dark Matter: Observational Constraints from Cosmological Parameters*, *Nucl. Phys. B* 778 (2007) 69 [arXiv:astro-ph/0607126] [SPIRE].

[31] H. Sadjadi and M. Alimohammadi, *Cosmological coincidence problem in interactive dark energy models*, *Phys. Rev. D* 74 (2006) 103007 [arXiv:gr-qc/0610080] [SPIRE].

[32] J.D. Barrow and T. Clifton, *Cosmologies with energy exchange*, *Phys. Rev. D* 73 (2006) 103520 [arXiv:gr-qc/0604063] [SPIRE].

[33] M. Sasaki, J. Valiviita and D. Wands, *Non-Gaussianity of the primordial perturbation in the curvaton model*, *Phys. Rev. D* 74 (2006) 103003 [arXiv:astro-ph/0607627] [SPIRE].

[34] E. Abdalla, L.W. Abramo, L. Sodre Jr. and B. Wang, *Signature of the interaction between dark energy and dark matter in galaxy clusters*, *Phys. Lett. B* 673 (2009) 107 [arXiv:0710.1198] [SPIRE].

[35] R. Bean, E.E. Flanagan and M. Trodden, *Adiabatic instability in coupled dark energy-dark matter models*, *Phys. Rev. D* 78 (2008) 023009 [arXiv:0709.1128] [SPIRE].

[36] Z.-K. Guo, N. Ohta and S. Tsujikawa, *Probing the Coupling between Dark Components of the Universe*, *Phys. Rev. D* 76 (2007) 023508 [arXiv:0702015] [SPIRE].

[37] O. Bertolami, F. Gil Pedro and M. Le Delliou, *Dark Energy-Dark Matter Interaction and the Violation of the Equivalence Principle from the Abell Cluster A586*, *Phys. Lett. B* 654 (2007) 165 [arXiv:0703462] [SPIRE].

[38] C.G. Boehmer, G. Caldera-Cabral, R. Lazkoz and R. Maartens, *Dynamics of dark energy with a coupling to dark matter*, *Phys. Rev. D* 79 (2009) 063518 [arXiv:0812.1827] [SPIRE].

[39] J.-H. He and B. Wang, *Effects of the interaction between dark energy and dark matter on cosmological parameters*, *JCAP* 06 (2008) 010 [arXiv:0801.4233] [SPIRE].

[40] G. Caldera-Cabral, R. Maartens and L. Urena-Lopez, *Dynamics of interacting dark energy*, *Phys. Rev. D* 79 (2009) 063518 [arXiv:0812.1827] [SPIRE].

[41] R. Bean, E.E. Flanagan, I. Laszlo and M. Trodden, *Constraining Interactions in Cosmology’s Dark Sector*, *Phys. Rev. D* 78 (2008) 123514 [arXiv:0808.1105] [SPIRE].

[42] M. Szydlowski, A. Krawiec, A. Kurek and M. Kamionka, *AIC, BIC, Bayesian evidence against the interacting dark energy model*, *Eur. Phys. J. C* 75 (2015) 5 [arXiv:0801.0638] [SPIRE].

[43] X.-m. Chen, Y.-g. Gong and E.N. Saridakis, *Phase-space analysis of interacting phantom cosmology*, *JCAP* 04 (2009) 001 [arXiv:0812.1117] [SPIRE].

[44] J. Valiviita, E. Majerotto and R. Maartens, *Instability in interacting dark energy and dark matter fluids*, *JCAP* 07 (2008) 020 [arXiv:0804.0232] [SPIRE].

[45] E. Couderc and S. Klein, *Coherent rho0 photoproduction in bulk matter at high energies*, *Phys. Rev. Lett.* 103 (2009) 062504 [arXiv:0901.1161] [SPIRE].

[46] L.P. Chimento, *Linear and nonlinear interactions in the dark sector*, *Phys. Rev. D* 81 (2010) 043525 [arXiv:0911.5687] [SPIRE].

[47] G. Caldera-Cabral, R. Maartens and B.M. Schaefer, *The Growth of Structure in Interacting Dark Energy Models*, *JCAP* 07 (2009) 027 [arXiv:0905.0492] [SPIRE].
[48] E. Majerotto, J. Valiviita and R. Maartens, Adiabatic initial conditions for perturbations in interacting dark energy models, *Mon. Not. Roy. Astron. Soc.* **402** (2010) 2344 [arXiv:0907.4981] [inSPIRE].

[49] J. Valiviita, R. Maartens and E. Majerotto, Observational constraints on an interacting dark energy model, *Mon. Not. Roy. Astron. Soc.* **402** (2010) 2355 [arXiv:0907.4987] [inSPIRE].

[50] J.-H. He, B. Wang and Y.P. Jing, Effects of dark sectors’ mutual interaction on the growth of structures, *JCAP* **07** (2009) 030 [arXiv:0902.0660] [inSPIRE].

[51] J.-H. He, B. Wang and P. Zhang, The Imprint of the interaction between dark sectors in large scale cosmic microwave background anisotropies, *Phys. Rev. D* **80** (2009) 063530 [arXiv:0906.0677] [inSPIRE].

[52] K. Koyama, R. Maartens and Y.-S. Song, Velocities as a probe of dark sector interactions, *JCAP* **10** (2009) 017 [arXiv:0907.2126] [inSPIRE].

[53] M. Li, X.-D. Li, S. Wang, Y. Wang and X. Zhang, Probing interaction and spatial curvature in the holographic dark energy model, *JCAP* **12** (2009) 014 [arXiv:0910.3855] [inSPIRE].

[54] J.-Q. Xia, Constraint on coupled dark energy models from observations, *Phys. Rev. D* **80** (2009) 103514 [arXiv:0911.4820] [inSPIRE].

[55] R.-G. Cai and Q. Su, On the Dark Sector Interactions, *Phys. Rev. D* **81** (2010) 103514 [arXiv:0912.1943] [inSPIRE].

[56] J.-H. He, B. Wang, E. Abdalla and D. Pavon, The Imprint of the interaction between dark sectors in galaxy clusters, *JCAP* **12** (2010) 022 [arXiv:1001.0079] [inSPIRE].

[57] J. Cui and X. Zhang, Cosmic age problem revisited in the holographic dark energy model, *Phys. Lett. B* **690** (2010) 233 [arXiv:1005.3587] [inSPIRE].

[58] B. Li and J.D. Barrow, On the Effects of Coupled Scalar Fields on Structure Formation, *Mon. Not. Roy. Astron. Soc.* **413** (2011) 262 [arXiv:1010.3748] [inSPIRE].

[59] M.B. Gavela, L. Lopez Honorez, O. Mena and S. Rigolin, Dark Coupling and Gauge Invariance, *JCAP* **11** (2010) 044 [arXiv:1005.0295] [inSPIRE].

[60] M. Martinelli, L. Lopez Honorez, A. Melchiorri and O. Mena, Future CMB cosmological constraints in a dark coupled universe, *Phys. Rev. D* **81** (2010) 103534 [arXiv:1004.2410] [inSPIRE].

[61] J.-H. He, B. Wang and E. Abdalla, Testing the interaction between dark energy and dark matter via latest observations, *Phys. Rev. D* **83** (2011) 063515 [arXiv:1012.3904] [inSPIRE].

[62] Y. Chen, Z.-H. Zhu, L. Xu and J.S. Alcaniz, $\Lambda(t)$CDM Model as a Unified Origin of Holographic and Agegraphic Dark Energy Models, *Phys. Lett. B* **698** (2011) 175 [arXiv:1105.2511] [inSPIRE].

[63] T.-F. Fu, J.-F. Zhang, J.-Q. Chen and X. Zhang, Holographic Ricci dark energy: Interacting model and cosmological constraints, *Eur. Phys. J. C* **72** (2012) 1932 [arXiv:1112.2350] [inSPIRE].

[64] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens and J. Valiviita, Interacting Dark Energy — constraints and degeneracies, *Phys. Rev. D* **85** (2012) 043007 [arXiv:1109.6234] [inSPIRE].

[65] Y.-H. Li and X. Zhang, Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?, *Eur. Phys. J. C* **71** (2011) 1700 [arXiv:1103.3185] [inSPIRE].

[66] X.-D. Xu and B. Wang, Breaking parameter degeneracy in interacting dark energy models from observations, *Phys. Lett. B* **701** (2011) 513 [arXiv:1103.2632] [inSPIRE].
[67] Z. Zhang, S. Li, X.-D. Li, X. Zhang and M. Li, Revisit of the Interaction between Holographic Dark Energy and Dark Matter, *JCAP* 06 (2012) 009 [arXiv:1204.6135] [inSPIRE].

[68] X.-D. Xu, B. Wang, P. Zhang and F. Atrio-Barandela, The effect of Dark Matter and Dark Energy interactions on the peculiar velocity field and the kinetic Sunyaev-Zel’dovich effect, *JCAP* 12 (2013) 001 [arXiv:1308.1475] [inSPIRE].

[69] M.-J. Zhang and W.-B. Liu, Observational constraint on the interacting dark energy models including the Sandage-Loeb test, *Eur. Phys. J. C* 74 (2014) 2863 [arXiv:1312.0224] [inSPIRE].

[70] Y. Wang, D. Wands, L. Xu, J. De-Santiago and A. Hojjati, Cosmological constraints on a decomposed Chaplygin gas, *Phys. Rev. D* 87 (2013) 083503 [arXiv:1301.5315] [inSPIRE].

[71] V. Salvatelli, A. Marchini, L. Lopez-Honorez and O. Mena, New constraints on Coupled Dark Energy from the Planck satellite experiment, *Phys. Rev. D* 88 (2013) 023531 [arXiv:1304.7119] [inSPIRE].

[72] W. Yang and L. Xu, Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data, *Phys. Rev. D* 89 (2014) 083517 [arXiv:1401.1286] [inSPIRE].

[73] W. Yang and L. Xu, Testing coupled dark energy with large scale structure observation, *JCAP* 08 (2014) 034 [arXiv:1401.5177] [inSPIRE].

[74] S. Wang, Y.-Z. Wang, J.-J. Geng and X. Zhang, Effects of time-varying β in SNLS3 on constraining interacting dark energy models, *Eur. Phys. J. C* 74 (2014) 3148 [arXiv:1406.0072] [inSPIRE].

[75] V. Faraoni, J.B. Dent and E.N. Saridakis, Covariantizing the interaction between dark energy and dark matter, *Phys. Rev. D* 90 (2014) 063510 [arXiv:1405.7288] [inSPIRE].

[76] J.-L. Cui, L. Yin, L.-F. Wang, Y.-H. Li and X. Zhang, A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure, *JCAP* 09 (2015) 024 [arXiv:1503.08948] [inSPIRE].

[77] Y. Fan, P. Wu and H. Yu, Cosmological perturbations of non-minimally coupled quintessence in the metric and Palatini formalisms, *Phys. Lett. B* 746 (2015) 230 [arXiv:1505.04443] [inSPIRE].

[78] T. Yang, Z.-K. Guo and R.-G. Cai, Reconstructing the interaction between dark energy and dark matter using Gaussian Processes, *Phys. Rev. D* 91 (2015) 123533 [arXiv:1505.04443] [inSPIRE].

[79] D.G.A. Duniya, D. Bertacca and R. Maartens, Probing the imprint of interacting dark energy on very large scales, *Phys. Rev. D* 91 (2015) 063530 [arXiv:1502.06424] [inSPIRE].

[80] L. Feng and X. Zhang, Revisit of the interacting holographic dark energy model after Planck 2015, *JCAP* 08 (2016) 072 [arXiv:1607.05567] [inSPIRE].

[81] R. Murgia, S. Gariazzo and N. Fornengo, Constraints on the Coupling between Dark Energy and Dark Matter from CMB data, *JCAP* 04 (2016) 014 [arXiv:1602.01765] [inSPIRE].

[82] J. Solà, A. Gómez-Valent and J. de Cruz Pérez, First evidence of running cosmic vacuum: challenging the concordance model, *Astrophys. J.* 836 (2017) 43 [arXiv:1602.02103] [inSPIRE].

[83] J. Solà Peracaula, J. de Cruz Pérez and A. Gómez-Valent, Dynamical dark energy vs. \(\Lambda = \text{const} \) in light of observations, *EPL* 121 (2018) 39001 [arXiv:1606.00450] [inSPIRE].

[84] J. Solà, Cosmological constant vis-a-vis dynamical vacuum: bold challenging the \(\Lambda \)CDM, *Int. J. Mod. Phys. A* 31 (2016) 1630015 [arXiv:1612.02449] [inSPIRE].

[85] A. Pourtsidou and T. Tram, Reconciling CMB and structure growth measurements with dark energy interactions, *Phys. Rev. D* 94 (2016) 043518 [arXiv:1604.04222] [inSPIRE].
[86] A.A. Costa, X.-D. Xu, B. Wang and E. Abdalla, Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data, *JCAP* 01 (2017) 028 [arXiv:1605.04138] [inSPIRE].

[87] D.-M. Xia and S. Wang, Constraining interacting dark energy models with latest cosmological observations, *Mon. Not. Roy. Astron. Soc.* 463 (2016) 952 [arXiv:1608.04545] [inSPIRE].

[88] C. van de Bruck, J. Mifsud and J. Morrice, Testing coupled dark energy models with their cosmological background evolution, *Phys. Rev. D* 95 (2017) 043513 [arXiv:1609.09855] [inSPIRE].

[89] S. Kumar and R.C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, *Phys. Rev. D* 94 (2016) 123511 [arXiv:1608.02454] [inSPIRE].

[90] S. Kumar and R.C. Nunes, Echo of interactions in the dark sector, *Phys. Rev. D* 96 (2017) 103511 [arXiv:1702.02143] [inSPIRE].

[91] L. Santos, W. Zhao, E.G.M. Ferreira and J. Quintin, Constraining interacting dark energy with CMB and BAO future surveys, *Phys. Rev. D* 95 (2017) 043529 [arXiv:1707.06827] [inSPIRE].

[92] J. Solà Peracaula, J. de Cruz Pérez and A. Gomez-Valent, Possible signals of vacuum dynamics in the Universe, *Mon. Not. Roy. Astron. Soc.* 478 (2018) 4357 [arXiv:1703.08218] [inSPIRE].

[93] R.-Y. Guo, Y.-H. Li, J.-F. Zhang and X. Zhang, Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach, *JCAP* 05 (2017) 040 [arXiv:1702.04189] [inSPIRE].

[94] X. Zhang, Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach, *Sci. China Phys. Mech. Astron.* 60 (2017) 050431 [arXiv:1702.04564] [inSPIRE].

[95] L. Feng, Y.-H. Li, F. Yu, J.-F. Zhang and X. Zhang, Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach, *Eur. Phys. J. C* 78 (2018) 865 [arXiv:1807.09322] [inSPIRE].

[96] M. Zhao, R. Guo, D. He, J. Zhang and X. Zhang, Dark energy versus modified gravity: Impacts on measuring neutrino mass, *Sci. China Phys. Mech. Astron.* 63 (2020) 230412 [arXiv:1810.11658] [inSPIRE].

[97] W. Yang, S. Pan, E. Di Valentino, R.C. Nunes, S. Vagnozzi and D.F. Mota, Tale of stable interacting dark energy, observational signatures and the H_0 tension, *JCAP* 09 (2018) 019 [arXiv:1805.08252] [inSPIRE].

[98] C. Li, X. Ren, M. Khurshudyan and Y.-F. Cai, Implications of the possible 21-cm line excess at cosmic dawn on dynamics of interacting dark energy, *Phys. Lett. B* 801 (2020) 135141 [arXiv:1904.02458] [inSPIRE].

[99] A.A. Costa, X.-D. Xu, B. Wang, E.G.M. Ferreira and E. Abdalla, Testing the Interaction between Dark Energy and Dark Matter with Planck Data, *Phys. Rev. D* 89 (2014) 103531 [arXiv:1311.7380] [inSPIRE].

[100] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri and D. Wands, Indications of a late-time interaction in the dark sector, *Phys. Rev. Lett.* 113 (2014) 181301 [arXiv:1406.7297] [inSPIRE].

[101] R.C. Nunes, S. Pan and E.N. Saridakis, New constraints on interacting dark energy from cosmic chronometers, *Phys. Rev. D* 94 (2016) 023508 [arXiv:1605.01712] [inSPIRE].

[102] E.G.M. Ferreira, J. Quintin, A.A. Costa, E. Abdalla and B. Wang, Evidence for interacting dark energy from BOSS, *Phys. Rev. D* 95 (2017) 043520 [arXiv:1412.2777] [inSPIRE].
[103] W. Yang, S. Pan and D.F. Mota, Novel approach toward the large-scale stable interacting dark-energy models and their astronomical bounds, *Phys. Rev. D* **96** (2017) 123508 [arXiv:1709.00006] [inSPIRE].

[104] W. Yang, S. Pan and J.D. Barrow, Large-scale Stability and Astronomical Constraints for Coupled Dark-Energy Models, *Phys. Rev. D* **97** (2018) 043529 [arXiv:1706.04953] [inSPIRE].

[105] H.-L. Li, L. Feng, J.-F. Zhang and X. Zhang, Models of vacuum energy interacting with cold dark matter: Constraints and comparison, *Sci. China Phys. Mech. Astron.* **62** (2019) 120411 [arXiv:1812.00319] [inSPIRE].

[106] W. Yang, S. Pan and J.D. Barrow, Large-scale Stability and Astronomical Constraints for Coupled Dark-Energy Models, *Phys. Rev. D* **97** (2018) 043529 [arXiv:1706.04953] [inSPIRE].

[107] H.-L. Li, L. Feng, J.-F. Zhang and X. Zhang, Exploring neutrino mass and mass hierarchy in interacting dark energy models, *Sci. China Phys. Mech. Astron.* **63** (2020) 220401 [arXiv:1903.08848] [inSPIRE].

[108] R.-Y. Guo, J.-F. Zhang and X. Zhang, Can the H₀ tension be resolved in extensions to ΛCDM cosmology?, *JCAP* **02** (2019) 054 [arXiv:1809.02340] [inSPIRE].

[109] L. Xiao, R. An, L. Zhang, B. Yue, Y. Xu and B. Wang, Can conformal and disformal couplings between dark sectors explain the EDGES 21-cm anomaly?, *Phys. Rev. D* **99** (2019) 023528 [arXiv:1807.05541] [inSPIRE].

[110] B.F. Schutz, Determining the Hubble Constant from Gravitational Wave Observations, *Nature* **323** (1986) 310 [inSPIRE].

[111] D.E. Holz and S.A. Hughes, Using gravitational-wave standard sirens, *Astrophys. J.* **629** (2005) 15 [astro-ph/0504616] [inSPIRE].

[112] LIGO SCIENTIFIC and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, *Phys. Rev. Lett.* **119** (2017) 161101 [arXiv:1710.05832] [inSPIRE].

[113] LIGO SCIENTIFIC, Virgo, Fermi-GBM and INTEGRAL collaborations, Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, *Astrophys. J. Lett.* **848** (2017) L13 [arXiv:1710.05834] [inSPIRE].

[114] LIGO SCIENTIFIC, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE and MASTER collaborations, A gravitational-wave standard siren measurement of the Hubble constant, *Nature* **551** (2017) 85 [arXiv:1710.05836] [inSPIRE].

[115] X. Zhang, Gravitational wave standard sirens and cosmological parameter measurement, *Sci. China Phys. Mech. Astron.* **62** (2019) 110431 [arXiv:1905.11122] [inSPIRE].

[116] Y. Xu and X. Zhang, Cosmological parameter measurement and neutral hydrogen 21 cm sky survey with the Square Kilometre Array, *Sci. China Phys. Mech. Astron.* **63** (2020) 270431 [arXiv:2002.00572] [inSPIRE].

[117] Einstein gravitational wave Telescope conceptual design study, http://www.et-gw.eu/index.php/etdsdocument.

[118] X.-N. Zhang, L.-F. Wang, J.-F. Zhang and X. Zhang, Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope, *Phys. Rev. D* **99** (2019) 063510 [arXiv:1804.08379] [inSPIRE].

[119] M. Du, W. Yang, L. Xu, S. Pan and D.F. Mota, Future constraints on dynamical dark-energy using gravitational-wave standard sirens, *Phys. Rev. D* **100** (2019) 043535 [arXiv:1812.01440] [inSPIRE].
[120] J.-F. Zhang, H.-Y. Dong, J.-Z. Qi and X. Zhang, Prospect for constraining holographic dark energy with gravitational wave standard sirens from the Einstein Telescope, *Eur. Phys. J. C* **80** (2020) 217 [arXiv:1906.07504] [inSPIRE].

[121] W. Yang, S. Pan, E. Di Valentino, B. Wang and A. Wang, Forecasting Interacting Vacuum-Energy Models using Gravitational Waves, *JCAP* **05** (2020) 050 [arXiv:1904.11980] [inSPIRE].

[122] W. Yang, S. Vagnozzi, E. Di Valentino, R.C. Nunes, S. Pan and D.F. Mota, Listening to the sound of dark sector interactions with gravitational wave standard sirens, *JCAP* **07** (2019) 037 [arXiv:1905.08286] [inSPIRE].

[123] R.R.A. Bachega, A.A. Costa, E. Abdalla and K.S.F. Fornazier, Forecasting the Interaction in Dark Matter-Dark Energy Models with Standard Sirens From the Einstein Telescope, *JCAP* **05** (2020) 021 [arXiv:1906.08909] [inSPIRE].

[124] J.-F. Zhang, M. Zhang, S.-J. Jin, J.-Z. Qi and X. Zhang, Cosmological parameter estimation with future gravitational wave standard siren observation from the Einstein Telescope, *JCAP* **09** (2019) 068 [arXiv:1907.03238] [inSPIRE].

[125] Z. Chang, Q.-G. Huang, S. Wang and Z.-C. Zhao, Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation “standard rulers” and the gravitational wave “standard sirens”, *Eur. Phys. J. C* **79** (2019) 177 [arXiv:1903.11254] [inSPIRE].

[126] J.-h. He, Accurate method to determine the systematics due to the peculiar velocities of galaxies in measuring the Hubble constant from gravitational-wave standard sirens, *Phys. Rev. D* **100** (2019) 023527 [arXiv:1903.11254] [inSPIRE].

[127] C.M. Will, Testing scalar-tensor gravity with gravitational wave observations of inspiraling compact binaries, *Phys. Rev. D* **50** (1994) 6058 [gr-qc/9406022] [inSPIRE].

[128] W. Zhao, B.S. Wright and B. Li, Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae, *JCAP* **10** (2018) 052 [arXiv:1804.03066] [inSPIRE].

[129] T. Liu, X. Zhang and W. Zhao, Constraining f(R) gravity in solar system, cosmology and binary pulsar systems, *Phys. Lett. B* **777** (2018) 286 [arXiv:1711.08991] [inSPIRE].

[130] E. Berti, K. Yagi and N. Yunes, Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (I) Inspiral-Merger, *Gen. Rel. Grav.* **50** (2018) 46 [arXiv:1801.03208] [inSPIRE].

[131] T. Liu et al., Waveforms of compact binary inspiral gravitational radiation in screened modified gravity, *Phys. Rev. D* **98** (2018) 083023 [arXiv:1806.05674] [inSPIRE].

[132] L.-F. Wang, Z.-W. Zhao, J.-F. Zhang and X. Zhang, A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin, arXiv:1907.01838 [inSPIRE].

[133] Z.-W. Zhao, L.-F. Wang, J.-F. Zhang and X. Zhang, Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji, arXiv:1912.11629 [inSPIRE].

[134] Y.-H. Li, J.-F. Zhang and X. Zhang, Parametrized Post-Friedmann Framework for Interacting Dark Energy, *Phys. Rev. D* **90** (2014) 063005 [arXiv:1404.5220] [inSPIRE].

[135] Y.-H. Li, J.-F. Zhang and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, *Phys. Rev. D* **90** (2014) 123007 [arXiv:1409.7205] [inSPIRE].

[136] Y.-H. Li, J.-F. Zhang and X. Zhang, Testing models of vacuum energy interacting with cold dark matter, *Phys. Rev. D* **93** (2016) 023002 [arXiv:1506.06349] [inSPIRE].
L. Feng, D.-Z. He, H.-L. Li, J.-F. Zhang and X. Zhang, *Constraints on active and sterile neutrinos in an interacting dark energy cosmology*, *Sci. China Phys. Mech. Astron.* **63** (2020) 290404 [arXiv:1910.03872] [nSPIRE].

W. Hu, *Parametrized Post-Friedmann Signatures of Acceleration in the CMB*, *Phys. Rev. D* **77** (2008) 103524 [arXiv:0801.2433] [nSPIRE].

W. Fang, W. Hu and A. Lewis, *Crossing the Phantom Divide with Parameterized Post-Friedmann Dark Energy*, *Phys. Rev. D* **78** (2008) 087303 [arXiv:0808.3125] [nSPIRE].

L.-F. Wang, X.-N. Zhang, J.-F. Zhang and X. Zhang, *Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology*, *Phys. Lett. B* **782** (2018) 87 [arXiv:1802.04720] [nSPIRE].

W. Zhao, C. Van Den Broeck, D. Baskaran and T.G.F. Li, *Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations*, *Phys. Rev. D* **83** (2011) 023005 [arXiv:1009.0206] [nSPIRE].

R.-G. Cai and T. Yang, *Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope*, *Phys. Rev. D* **95** (2017) 044024 [arXiv:1608.08008] [nSPIRE].

B.S. Sathyaprakash and B.F. Schutz, *Physics, Astrophysics and Cosmology with Gravitational Waves*, *Living Rev. Rel.* **12** (2009) 2 [arXiv:0903.0338] [nSPIRE].

W. Zhao and L. Wen, *Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology*, *Phys. Rev. D* **97** (2018) 064031 [arXiv:1710.05325] [nSPIRE].