A review of slopes stability challenges and neighbour buildings

Mohammed Shakir Mahmood, Ali Akhtarpour and Zehraa Alsharifi

1Professor, Ph.D., Civil Eng. Dept., University of Kufa, Al-Najaf, Iraq, mohammed.sh.alshakarchi@uokufa.edu.iq
2 Associate Prof., Ph.D., Civil Eng. Dept., Ferdowsi University of Mashhad, Mashhad, Iran, akhtarpour@um.ac.ir
3 MSc. Student, Civil Eng. Dept., University of Kufa, Al-Najaf, Iraq, E-mail: zahraaa.alshreefi@student.uokufa.edu.iq

Abstract. Due to the attraction of the hilly views and lack of flatland in some countries, there are needs to the construction near the slopes. In evaluating slope stability, attention must be considered by geotechnical engineers, particularly to geology, surface drainage, groundwater, and soil shear strength. Slope failures depend on the soil type, soil stratification, groundwater, seepage, and the slope geometry and some failures are sudden and disastrous. The analysis of slope stability is more complicated with the existence of earthquakes, neighbour buildings or structures, unsaturated-saturated soil states. This paper reviews the effect of different parameters on the stability analysis of slopes and neighbour structures. There are distinguished effects from increasing the seismic forces and wetting process on the decreasing of soil shear strength and collapsing of the slopes.

1. Introduction
Flatlands lack and fast urbanization in hilly regions of attractive views are affecting the construction on hill slopes as well as there are many urban excavations process near to existing construction [1].

Slope instability may be attributed to construction activities, erosion, rainfall, seismic forces, and geological features and the slope stability analyses are established on assumptions, where the design of a slope be dependent on experience and accurate investigation (stratification, faults, … etc.) [2].

Slope stability and near foundations are challenging in geotechnical engineering for the reason that the slope stability and bearing capacity of the foundation must be considered [3]. The governing agencies for construction, in some countries, deal with the effects of the building’s height and mass on slopes, but various current standards and codes give emphasis to the design of the buildings in flat areas, with inadequate regulation of buildings design on hill slopes and generally, the existing works on slope stability are for the slopes under distributed loading (oversimplified approach) [4].

Large earthquakes are essential in slope failures [5]. In the recent construction, the reliability of buildings’ stability must be ensured for seismic forces where there is a decrease in soil bearing capacity and an increase in deformation [6].

A lot of earth slopes are in unsaturated condition, with negative pore water pressures (PWP) beyond the water level, which can enhance the stability of slopes [7]. The rainwater infiltration will be lessening the matric suction and the soil’s strength, which may cause slope damage [8].

This paper discusses and reviews the challenges of the above different conditions on the stability of the slopes.
2. Slopes Types and Analysis
The earth slopes can be classified as natural or man-made slopes, and the slopes may be infinite or finite depending on the slope height [9].

2.1 Types and Sources of Slopes Failure
There are five major categories of slope failures, fall, topple (forward rotation of slope mass), slide, spread (by a unexpected movement of sands and silts stratum water-bearing and loaded by fills) and flow (soil mass acts as a viscous fluid) [10]. Numerous failures result from unrevealed geological features. A thin seam of silt (for example, stratified soils), external loading, construction activities and rapid drawdown of reservoirs [2].

2.2 Factor of Safety
The stability of slopes can be evaluated using the following methods 1) the limit equilibrium, 2) limit analysis, 3) the finite difference and 4) the finite element [2]. The factor of safety of slopes is the charge of the geotechnical engineer. Generally, in the limit equilibrium method, the factor of safety is defined as in Eqs. 1 to 9 for planar slip surface [9,11].

\[
F_s = \frac{\tau_f}{\tau_d}
\]
(1)

Where:

\[
\tau_f = c' + \sigma' \tan \phi'
\]
(2)

Where: \(c'\) is the effective cohesion, \(\sigma'\) is the normal effective stress on the surface of rupture, \(\phi'\) is the effective internal friction angle, and:

\[
\tau_d = c'_d + \sigma' \tan \phi'_d
\]
(3)

Where: \(\tau_d\), \(c'_d\) and \(\phi'_d\) are the mobilized soil characteristics in shearing stress, so, the factor of safety will be:

\[
F_s = \frac{c' + \sigma' \tan \phi'}{c'_d + \sigma' \tan \phi'_d}
\]
(4)

and it could be written as:

\[
F_{cr} = \frac{c'}{c'_d}
\]
(5)

and

\[
F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}
\]
(6)

When \(F_{\phi'}\) turn out to be equal to \(F_{cr}\) it will give the factor of safety related to strength. Then we could say \(F_s = F_{cr} = F_{\phi'}\) and when \(F_s\) is equal to 1, the slope will be in an impending failure state.

The factor of safety for infinite slopes in soils is as in Eq. 7.

\[
F_s = \left(\frac{c'}{\gamma \cdot H} \cdot \left(\frac{1}{\cos \beta \cdot \sin \beta}\right) + \frac{\tan \phi'}{\tan \beta}\right)
\]
(7)

Where \(\beta\) is the angle of the slope. For uncedemented, normally consolidated clays and sands, \(c'=0\). For partially saturated soil, \(c'\) will be due to soil suction (i.e., negative pore water pressure) only.

For infinite slope with seepage parallel to slope, the factor of safety as in Eq. 8.

\[
F_s = \left(\frac{c'}{\gamma_{sat} \cdot H} \cdot \left(\frac{1}{\cos \beta \cdot \sin \beta}\right) + \left(\frac{\gamma'}{\gamma_{sat}}\right) \cdot \frac{\tan \phi'}{\tan \beta}\right)
\]
(8)
While for slope with groundwater not at the ground level (flowing partially), the Eq. 8 will be as in Eq. 9.

\[F_s = \left(\frac{c'}{y_{sat.H}} \right) \left(\frac{1}{\cos \beta \sin \beta} \right) + \left(1 - \frac{\gamma w w}{\gamma_{sat.H}} \right) \left(\frac{\tan \beta'}{\tan \beta} \right) \tag{9} \]

For finite extent slope, a two-dimensional rotational slip surface is adopted for the analysis of slope stability. Bishop (1955) assumed a circular slip surface is relating to the moment equilibrium and Janbu (1973) assumed a non-circular slip surface and it is depending on the force equilibrium and a method of slices is adopted to define the location of the slip surface [2]. There are many other methods developed using the moment and force equilibrium where the factor of safety localized at the intersection of the variation of both equilibrium versus lambda, such as Spencer (1967), Morgenstern-Price (1965) and Sarma (1973) [12].

In the numerical analysis of slope stability, the easier method of soil failure modelling is the Mohr-Coulomb model (MC or called “elastic-perfectly plastic”). This method provides lower values than the Modified Cam-Clay model (MCC or called “elastoplastic model”) for all investigated parameters of the dam and foundation soil [13,14,15].

3. Effect of Neighbour Structures

Speedy expansion and the insufficiency of flat land near hilly districts are driving people to construct on or near slopes whereas the foundations are regularly constructed at different levels due to limited and restricted areas [4]. There are a lot of urban excavations which are done adjacent to existing buildings. The stability of such a system needs to be studied due to the reducing effect of the excavation, so, the bearing capacity may decline drastically and as the retaining system is usually neglected in this stage, the foundation and the adjacent building will be unstable [1].

The safety of foundations next to slopes is a challenging issue because both slope stability and bearing capacity have to be considered [3]. Loads on the crest of a slope increase to the gravitational load and may lead to slope failure [2]. For footing-on-slope, the limit equilibrium method is simple and applicable with the different complicated parameters, such as loading, geometry, characteristics of soil, but, this method is less accurate than other methods, such as the slip-line and bounds theorems of limit analysis, while the slip-line is difficult to use in problems with complex loading conditions or geometries, and bounds methods (upper and lower bounds) [3].

There are few studies on the effect of loading on slope stability. Most accomplishment codes endorse the use of pseudo-static procedures and approval of a minimum factor of safety for the stability [16,17,18] and there are codes allowing extra use of displacement-based procedures for the assessment [18,19]. Numerous standards/codes mainly emphasize the design of foundations in flat districts, with only inadequate regulations for the buildings on slopes [4].

Eq. 10 is regularized limit stress as a function of dimensionless factors relating to the stability of the system (foundation near slope), where \(P \) is limit stress (average) under the foundation, \(B \) is the width of the foundation, \(a \) is the distance between the foundation and the slope crest, \(\beta \) is the angle of the slope, \(C \) and \(\varnothing \) are the soil properties [3].

\[\frac{P}{y_B} = f \left(\frac{\beta}{\varnothing_B}, a, \frac{H}{y_B}, \frac{C}{\varnothing_B}, \varnothing \right) \tag{10} \]

4. Effect of Seismic Forces

Different forms of seismic waves are generated when an earthquake happens. Compressed (P), Shear (S), Rayleigh (R) and Love (L) waves are the major seismic wave forms [20]. Earthquakes shear forces decrease the soil stiffness and shear strength where at saturated condition, the pore water pressure could be the same to total stress and the soil will acts as a viscous fluid (liquefaction) due to undrained condition [2].

The features, such as the scale of the earthquake, the frequency and intensity of ground motion and the duration of a heavy shaking are important in input parameters [21]. The tensile stress field causes the normal fault, on the contrary, the compressive stress field creates the reverse fault [22].
The earthquake mainly yields enormous destruction to slopes [23]. Due to variations in external stresses and groundwater levels, shear stress is created in stabilized slopes leading to the slope collapse [24]. One of the most serious events is the 1970 Peru earthquake with 54,000 people were killed and buried in two cities [25]. Many landslides in 1920 due to the Haiyuan earthquake killed at least 100,000 people [26]. In 2017, an earthquake crash into the Iraq Iran border killing more than 530 people and injuring thousands in Iran alone [27].

The slope stability analysis with seismic forces is more complicated than the static analysis [28]. The analytical methods to estimate the seismic slope stability are in three groups: the pseudo-static [29], Newmark’s sliding-block analysis [30], and numerical methods [31]. Pseudo-static is believed to be acceptable for soils of no high pore-water pressure or major strength decrease under cyclic loading or for locations of no sudden variations in geometry and geology [19].

5. Effect of Soil Wetting
There are many soil initial properties that affect the collapse behavior, such as moisture content, soaking pressure, vertical stress and duration of application, void ratio, cementation, and suction [32,33].

Recent research has established that the unsaturated soil state is always present in collapsible soils, and large deformation and volume changes happen as a product of the decrease in the matric suction, in which the main cause of the collapse is the wetting process under constant net pressure [34,35,36]. For an unsaturated stable earth slope, the soil is subjected to frequent cycles of wetting and drying due to infiltration, evaporation and rise and decrease of the groundwater [37]. Long term soaking process can improve the shear strength of the soil [38,39]. The higher collapse potential is due to the higher wetting duration of the soil prior to loading [40,41]. The soil shear strength (τ) is suggested to be related to the unsaturated stress state variables, as in Eq. 11 [42].

\[\tau = c' + (\sigma - u_a)\tan \theta' + (u_a - u_w)\tan \theta_b \]

(11)

where \(u_a \) is the pressure of pore air, \(u_w \) is the pressure of pore water and \((u_a - u_w) \) defines the matric suction. This equation assumes the internal friction angle (\(\theta' \)) remains constant under saturated and unsaturated conditions [43]. The angle \(\theta_b \) represents the suction effect and it is calculated from shear strength (\(\tau \)) versus matric suction \((u_a - u_w) \) plot [44].

A planar slip surface is adopted for an infinite slope model in unsaturated slope stability analysis within the previous decades [45]. But infinite slope analysis is simply true when the depth of the slip is far less than the length of the slip as a result of the neglecting of boundary effects [37]. The theory of slope stability for unsaturated soils can be considered as slope stability theory continue for saturated soil and depending on General Limit Equilibrium (GLE), a method is recommended for estimating the factor of safety with respect to force equilibrium, Eq. 12 generalizes the safety factor in terms of the unsaturated parameters, as in [46].

\[F_s = \frac{l[c' + (\sigma - u_a)\tan \theta' + (u_a - u_w)\tan \theta_b]}{\tau} \]

(12)

Soil suction is varied greatly above the water table in sandy soils [45]. Due to a reduction in soil matric suction, the potential of collapse increases in all soil types [47,48]. The initial saturation degree is the major influencing factor on the collapse activity of soil in an unsaturated state and as well as the collapse potential reduces with an increase in the density of the soil [49]. For the prediction of the soil settlement, the remoulding sizing affects the resulted value and trend of settlement, the cylindrical samples (as in Oedometer) give a strong trend and trusted values [50]. The time required to achieve the zero matric suction increased related to the initial soil dry density increase [51]. For the soaking period of 6hrs, 15–60 % of the settlement ratio of soils occurred during the first minute, whilst only 2–15 % for the treated soils by acrylate liquid within same time [52].

Drawdown of the water table is a condition of drying state where the rapid drawdown is a hazardous condition. The factor of safety against sliding decreased a little within the short period after the start of rapid drawdown of water in the reservoir, then started to increase [53,54].
6. Summary and Conclusions

The present research aims to review the challenges of slope stability and neighbour buildings with the existence of seismic forces and wetting processes in unsaturated soil conditions. The following points are stated:

1. There are many analytical and numerical methods to estimate the safety factor of the slopes and a method of slices is adopted to define the location of the slip surface.
2. In the numerical analysis of slope stability, the easier method of soil failure modelling is the Mohr-Coulomb model (elastic-perfectly plastic) with lower values than the others.
3. The analysis of the stability of the slopes and the adjacent foundation is complicated due to the interaction between overall slope stability and soil bearing capacity. There is a need to develop a detailed code/guider for the design of footings on the slopes.
4. Eq. 10 is regularized limit stress as a function of dimensionless factors relating to the stability of the system (foundation near slope).
5. Due to the different stresses, the analysis of the slope stability with an earthquake is not easy. The analytical methods to estimate the seismic slope stability are in three groups: the pseudo-static, Newmark’s sliding-block analysis and numerical method.
6. The slopes are dry in nature, with the wetting process, the soil well loses the shear strength besides the decrease due to the solution of the bonding materials.
7. Eq. 12 generalizes the safety factor in terms of the unsaturated parameters.

7. References

[1] Mofidi J, Farzaneh O, Askari F and Nozari M A 2017 Stability of buildings near shallow excavations. in ICSMGE - 19th International Conference on Soil Mechanics and Geotechnical Engineering Vol September 1853–1856 (19th ICSMGE Secretariat).
[2] Budhu M 2011 Soil mechanics and foundations, 3rd ed., John Wiley & Sons.
[3] Mofidi R J, Farzaneh O, Askari F 2014 Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis. Civil Engineering Infrastructures Journal 47(1): 89-109. doi:10.7508/ceij.2014.01.007
[4] Raj D, Singh Y, and Kaynia A M 2018 Behavior of slopes under multiple adjacent footings and buildings. International Journal of Geomechanics 18(7).
[5] Nadi B, Askari F and Farzaneh O 2014 Seismic performance of slopes in pseudo-static designs with different safety factors Iranian Journal of Science and Technology - Transactions of Civil Engineering 38(C2) 465-483.
[6] Barmenkova Elena 2019 IOP Conf. Ser.: Mater. Sci. Eng. 661 012093
[7] Fredlund D G and H Rahardjo 1993 Soil mechanics for unsaturated soils. New York: Wiley
[8] Zizzioli D, Meisina C, Valentino R and Montrasio L 2013 Comparison between different approaches to modelling shallow landslide susceptibility: A case history in Oltrepo Pavese, Northern Italy Nat. Hazards Earth Syst. Sci. 13 (3): 559–573. https://doi.org/10.5194/nhess-13-559-2013.
[9] Murthy V N S 2002 Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering, 1st ed., E & FN SPON.
[10] Cruden D M and Varnes D J 1996 Landslide Types and Processes Special Report 247, Transportation Research Board, 36–75.
[11] Das B M and Sobhan K 2014 Principles of Geotechnical Engineering, 8th ed.. Global Engineering.
[12] GeoStudio User's Manual 2012 Sigma/w Modelling 3rd Edition.
[13] Mahmood M Sh, Akhtapour A and Alali A A 2019 Mechanical Behavior of Dam-Vertically Sand Drained Foundation, Case study: Sombre Dam J. Eng. Technol. Sci. 51(3) Indonesia. doi: 10.5614/j.eng.technol.sci.2019.51.3.6
[14] Akhtapour A, Mahmood M Sh and Alali A A 2019 Evaluation of Vertical Drain with Different Materials IOP Conf. Series: Materials Science and Engineering 584 012011 doi:10.1088/1757-899X/584/1/012011
[15] Akhtapour A, Mahmood M Sh and Alali Ameer A A 2020 Stability analysis of geosynthetically piled foundation earth dam; a case study: Sombar dam IOP Conf. Ser.: Mater. Sci. Eng. 888 012003 doi:10.1088/1757-899X/888/1/012003
[16] USACE. 2003 Slope stability, engineer manual.” EM 1110-2-1902, Washington, DC.
[17] BSI (British Standards Institution) 2004 Eurocode 7: Geotechnical design - part 1: General rules EN1997-1, London.
[18] NCHRP (National Cooperative Highway Research Program). 2008 Seismic analysis and design of retaining walls, buried structures, slopes, and embankments Rep. 611, NCHRP, Transportation Research Board, Washington, DC.
[19] BSI (British Standards Institution). 2004 Design provisions for earthquake resistance of structures- part 5: Foundations, retaining structures and geotechnical aspect EN1998-5, London.
[20] Kumar K 2008 Basic geotechnical earthquake engineering. NEW AGE INTERNATIONAL (P) LIMITED.
[21] Snejbjörnsson Jónas and Sighjörnsson Ragnar 2008 The Duration Characteristics Of Earthquake Ground Motions. 14th World Conference on Earthquake Engineering, Beijing, China.
[22] Towhata I 2008 Geotechnical Earthquake Engineering. In Springer Series in Geomechanics and Geoengineering 1 Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35783-4
[23] Zaei M E, Rao K S 2017 Evaluating the Effect of Strong Earthquake on Slope Instability. Procedia Eng. 173, 1771–1778.
[24] Fredlund D G, Scoular R E G 1999 Using limit equilibrium concepts in finite element slope stability analysis. Proceedings of the International Symposium on Slope Stability Engineering, Matsuyama, Japan, 8–11 November, 31–47.
[25] Poisel R, Preh A and Hungr O 2008. Run Out of Landslides–Continuum Mechanics versus Discontinuum Mechanics Models J Geomechanics and Tunnelling 1(5) 358-366.
[26] Kobayashi Y, Harp E and Kagawa T 1990. Simulation of rock falls triggered by earthquakes J Rock Mechanics and Rock Engineering 23(1) 1-20.
[27] Al-Taie A J, Albusoda B S 2019 Earthquake hazard on Iraqi soil: Halabjah earthquake as a case study, Geodesy and Geodynamics, https://doi.org/10.1016/j.geog.2019.03.004
[28] Kramer S L 1996 Geotechnical earthquake engineering 1st ed. Pearson publishing. USA. ISBN-13: 978-0133749434
[29] Seed H B 1979 Considerations in the earthquake-resistant design of earth and rockfill dams J Geotechnique 29 (3) 215–263. https://doi.org/10.1068/geot.1979.29.3.215.
[30] Newmark N M 1965 Effects of earthquakes on dams and embankments J Geotechnique 15 (2) 139–160. https://doi.org/10.1068/geo.1965.15.2.139.
[31] Bourdeau C, Havenith H B, Fleurission J A and Grandjean G 2004 Numerical modelling of seismic slope stability In engineering geology for infrastructure planning in Europe 671–684. Berlin: Springer.
[32] Mansour Z, Chik Z and Taha M. 2008 On the procedures of soil collapse potential evaluation. Journal of Applied Sciences 8(23) 4434-4439.
[33] Rezaei M, Ajallooeian R, Ghafoori M 2012 Geotechnical properties of problematic soils emphasis on collapsible cases. International Journal of Geosciences 3(1) 105.
[34] Al-Obaidi Q, Karim H, Al-Shamoosi A 2020 Collapsibleity of gypseous soil under suction control MS&E 737(1) 012103.2020.
[35] Fattah M Y and Dawood B 2019 Effect of load history on time-dependent collapse behavior of unsaturated collapsible gypseous soils Proc of the 16th Asian regional conference on soil mechanics and geotechnical engineering;
[36] Karim H H, Al-Obaidi Q A and Alshamoosi A A 2020 Variation of Matric Suction as a Function of Gypseous Soil Dry Density Engineering and Technology Journal 38(6A) 861-868.
[37] Wengui H, Eng-Choon L and Harianto R 2018 Upper-Bound Limit Analysis of Unsaturated Soil Slopes under Rainfall Journal of Geotechnical and Geoenvironmental Engineering 144(9) doi = [10.1061/(ASCE)GT.1943-5606.0001946]

[38] Mahmood M Sh 2017 Effect of Time-Based Soaking on Shear Strength Parameters of Sand Soils Applied Research Journal 3(5) 142-149.

[39] Mahmood M Sh, Al-Baghdadi W H, Rabee A M and Almahbobi S H 2020 Reliability of Shear-Box Tests Upon Soaking Process on the Sand Soil in Al-Najaf City J Key Engineering Materials 857 212–220. https://doi.org/10.4028/www.scientific.net/kem.857.212

[40] Mahmood M Sh, Akhtarpour A, Almahmodi R and Abdalhusain M M, 2020 Settlement assessment of gypseous sand after time-based soaking IOP Conference Series: Materials Science and Engineering 737 Turkey DOI: 10.1088/1757-899X/737/1/012080.

[41] Mahmood M Sh, Aziz L J, Al-Gharrawi A 2018 Settlement Behavior of Sand Soil Upon Soaking Process International Journal of Civil Engineering and Technology, India.;9(11) 860–869.

[42] Schwab G O and Frevert R K 1993 Elementary Soil and Water Engineering 3rd ed.. Krieger Pub Co.

[43] Bishop 1959 The Principle of Effective Stress Lectured in Oslo, Norway, Printed in Teknisk, Ukeflad 106(39) 159-183.

[44] Burland J B 1964 Effective Stress in Partly Saturated Soils Discussion of Some Aspect of Effective Stress in Saturated and Partly Saturated Soils J Geotechnique 14 64-68.

[45] Lu N and Godt J 2008 Infinite slope stability under steady unsaturated seepage conditions Water Resources Res 44 W11404 doi:10.1029/2008WR006976.

[46] Fredlund D G and Krahm J 1977 Comparison of slope stability methods of analysis Canadian Geotechnical Journal 14 429–439.

[47] Abdalhussein M M, Akhtarpour A, Mahmood M Sh 2019 Effect of Soaking on Unsaturated Gypseous Sand Soils International Journal of Civil Engineering and Technology 10(5) 550-558.

[48] Abdalhusain M M, Akhtarpour A, Mahmood M Sh 2019 Effect of wetting process with presence of matric suction on unsaturated gypseous sand soils Journal of Southwest Jiaotong University 54(5) 1-11. DOI: 10.35741/issn.0258-2724.54.5.3.

[49] Mahmood M Sh 2018 Effect of Soaking on the Compaction Characteristics of Al-Najaf Sand Soil Kufa Journal of Engineering 9(2) 1-12. DOI: 10.30572/2018/kje/090201.

[50] Mahmood M Sh, Almahbobi S H, Rabee A M, Rahim A M, Naama M A, and Mohammed M F 2020 Reliable prediction of structure settlement in Al-Najaf city using laboratory testing IOP Conf. Ser.: Mater. Sci. Eng. 888 012013 DOI: https://doi.org/10.1088/1757-899X/888/1/012013.

[51] Al-Obaidi A A, Fattah M Y and Al-Dorry M Kh 2018 Variation of Suction during Wetting of Unsaturated Collapsible Gypseous Soils International Journal of Engineering & Technology 7(4.37) 79 85.

[52] Fattah M. Y., Al-Ani M. M. and Al-Lamy M T A 2015 Wetting and Drying Collapse Behaviour of Collapsible Gypseous Soils Treated by Grouting, Arabian Journal of Geosciences, 8(4), pp. 2035 2049, DOI 10.1007/s12517-014-1329-7, Springer.

[53] Fattah M Y, Omran H A and Hassan, M A 2015 Behavior of an Earth Dam during Rapid Drawdown of Water in Reservoir Case Study International Journal of Advanced Research 3(10), 110 -122

[54] Fattah M Y, Omran H A and Hassan M A 2017 Flow and Stability of Al-Wand Earth Dam during Rapid Drawdown of Water in Reservoir Acta Montanistica Slovaca 22(1) 43-57.