2.45 GHz wearable rectenna array design for microwave energy harvesting

Syahirah Shawalil¹, Khairul Najmy Abdul Rani², Hasliza A Rahim³
¹,²Faculty of Engineering Technology, Universiti Malaysia Perlis, Malaysia
²,³Bioelectromagnetics Research Group, Universiti Malaysia Perlis, Malaysia
³School of Computer and Communications Engineering, Universiti Malaysia Perlis, Malaysia

Article Info

ABSTRACT
This paper presents a design of a wearable textile microstrip patch rectifying antenna (rectenna) array operating for wireless body area network (WBAN) at the center frequency, f_c of 2.45 GHz. Precisely, jeans or denim with the relative permittivity, $\varepsilon_r = 1.70$ and thickness of 1.00 mm is chosen as a substrate attached to SheildIt Super as a conductive material with the thickness, h of 0.17 mm and conductivity of 6.67×10^5 S/m, respectively. In the first stage, a microstrip patch antenna array layout with the inset fed technique is designed and simulated by using the Keysight Advanced Design System (ADS) software. In the second stage, a wearable textile microstrip patch antenna array is fabricated, integrated, and hidden inside the jeans fabric. In the third stage, the rectifier circuit layout on the flame retardant-4 (FR-4) printed circuit board (PCB) with the dielectric constant, $\varepsilon_r = 4.7$, thickness, $h = 1.6$ mm, and loss tangent, $\delta = 0.018$ that can generate radio frequency-direct current (RF-DC) conversion is designed and simulated using the ADS software. Each simulation result and fabrication measurement shows that the designed antenna array characteristics are suitable for an industrial, scientific, and medical radio (ISM) band by having the reflection coefficient, S_{11} less than -10 decibel (dB) at the respective resonant frequency, f_r. Moreover, through simulation, the output DC voltage for the bridge rectifier circuit is from 132 mV to 5.01 V with the corresponding power conversion efficiency (PCE) between 3.48% and 50.20% whereas for the voltage doubler rectifier, the output DC voltage is from 417 mV to 2.91 V with the corresponding PCE between 34.78% and 53.56%, respectively.

Corresponding Author:
Khairul Najmy Abdul Rani,
Bioelectromagnetics Research Group,
Faculty of Engineering Technology,
Universiti Malaysia Perlis,
02100 Padang Besar, Malaysia
Email: khairulnajmy@unimap.edu.my

1. INTRODUCTION
Nowadays, wireless body area network (WBAN) plays an important role in linking various electronic devices in and on the human body. The application of WBAN has been intensifying in various fields including medical, military, navigation, entertainment, and sport. Several frequency bands have been assigned for WBAN systems known as the Medical Implant Communication System band (MICS: 400 MHz), the Industrial Scientific Medical band (ISM: 2.40 GHz and 5.80 GHz), and the Ultra-wideband (UWB: 3.00-10.00 GHz), respectively [1].

In order to support the WBAN, many research efforts being focused on wearable antenna development. Precisely, wearable antennas are becoming more and more lightweight that can be integrated...
into or hidden inside clothing [2] or attached to clothing e.g. jacket to improve wireless communication links [3]. In this case, a microstrip antenna with a textile material as a substrate, which is flexible, low profile, and small size is considered to be more suitable for WBAN antenna design [4].

Wearable electronics generally are powered by a battery system, which require frequent charging. However, power supply sometimes is not easily available to charge these electronic devices. Hence, it becomes as a significant setback for users. This problem can be overcome by applying energy harvesting techniques, which capture energy from available natural sources, such as solar, wind, thermal, microwave and radio frequency (RF) energy to be as the alternative power source [5]. Precisely, in rectenna design, the main function of the rectifier circuit is converting the captured RF energy to direct current (DC) with minimum loss and supplying the DC to wearable electronic devices. In other words, rectenna will not only be deployed to transmit and receive RF and microwave signal for communications but also for powering and charging low-power electronic devices, such as sensors [6].

2. ANTENNA STRUCTURE AND DESIGN

2.1. Types of Textile Material

ShieldIt Super is a rugged rip-stop fabric manufactured by LessEM Incorporated, USA basically deployed as the antenna conductive element and ground plane [7]. ShieldIt Super has a weight, w of 230 g/m2, a thickness, t, of 0.17 mm, conductivity of 6.67×10^5 S/m and a surface resistivity, Rs less than 0.5 Ω/sq. This study chooses ShieldIt Super as the conductive textile because it has an adhesive backing that can be easily attached to a substrate by using clothes iron. Furthermore, it has a good conductivity or low resistivity, less corrosion, and more hydrophobic [8]. In this study, jeans fabric is used as the substrate material since it is cheap, lightweight, and flexible. The jeans fabric has the thickness, h of 1.00 mm, dielectric constant or relative permittivity, ε_r of 1.716, and dissipation factor or loss tangent, tan δ of 0.025, respectively [9]. By having the $\varepsilon_r < 2.00$, the wearable microstrip patch antenna can produce an acceptable efficiency and a high gain [2]. Table 1 show the specifications of textile materials used as the conductive and substrate in this study. Microstrip Patch Antenna Structure as shown in Figure 1.

![Figure 1. Microstrip Patch Antenna Structure](image)

Material Type	Thickness (mm)	Permittivity (ε_r)	Conductivity (S/m)
Jeans Fabric	1.00	1.716	-
ShieldIt Super	0.17	-	6.67×10^5

2.2. Patch Antenna Design

a. Calculation of Microstrip Patch Antenna

Figure 1 shows the rectangular microstrip patch antenna structure consists of conductive, substrate and ground planes. The patch size is generally dependent upon the resonant frequency, f_r and substrate dielectric constant, ε_r [10]. The f_r is the center frequency, $f_c = 2.45$ GHz where the width of the patch, W is calculated using (1):

$$W = \frac{c}{2f_r\left(\frac{1}{\varepsilon_r}+\frac{1}{\varepsilon_s}\right)}$$
According to (1), \(c \) is the speed of light where the increment of \(\varepsilon_r \) will decrease the size of the antenna patch. The actual length of the patch is computed as in (2):

\[
L = \frac{c}{2f\sqrt{\varepsilon_{\text{reff}}}} - 2\Delta L
\]

(2)

Based on (2), the effective dielectric constant, \(\varepsilon_{\text{reff}} \) is defined as in (3):

\[
\varepsilon_{\text{reff}} = \left(\frac{\varepsilon_r+1}{2} \right) + \left(\frac{\varepsilon_r-1}{2} \right) + \left(1 + \frac{12h}{W} \right)^{-\frac{1}{2}}
\]

(3)

Moreover, the length extension, \(\Delta L \) is calculated as shown in (4) below:

\[
\Delta L = 0.412h \left[\frac{\varepsilon_{\text{reff}}+0.3}{\varepsilon_{\text{reff}}-0.258} \right] \left[\frac{W}{h}^{0.264} \right]
\]

(4)

Due to fringing, the size of antenna is increased by an amount of \(\Delta L \). Thus, the actual length, \(L \) of the patch can be calculated as follow:

\[
L = \frac{c}{2f\sqrt{\varepsilon_{\text{reff}}}} - 2\Delta L
\]

(5)

b. Calculation of the Antenna Ground Plane

The length and width of the substrate is equal to that of the ground plane. Therefore, the length of ground, \(l_g \) and width of the ground, \(W_g \) are calculated using (6) and (7):

\[
l_g = 6h + l \tag{6}
\]

\[
W_g = 6h + W \tag{7}
\]

c. Calculation of Microstrip Line Feed

Then, the microstrip synthesis, \(H \) with characteristic impedance, \(Z_0 \) equals to 50 \(\Omega \) is calculated using (8):

\[
H = \left[\frac{2vZ2(\varepsilon_r+1)}{119.9} \right] + \frac{1}{2} \frac{\varepsilon_r-1}{\varepsilon_r+1} \left[\ln \left(\frac{\varepsilon_r+1}{\varepsilon_r-1} \right) + \frac{1}{\varepsilon_r} \ln \left(\frac{\varepsilon_r+1}{\varepsilon_r-1} \right) \right]
\]

(8)

Based on (8), the width of microstrip line feed, \(W_f \) is computed deploying (9):

\[
W_f = \left[\frac{eH}{b} - \frac{1}{4eH} \right]^{-1} \times 1.6 \text{ mm}
\]

(9)

Furthermore, the length of microstrip line feed, \(L_f \) is obtained through (10):

\[
L_f = \theta \times \frac{\lambda_g}{360^\circ}
\]

(10)

where,

\[
\lambda_g = \frac{c}{f\sqrt{\varepsilon_{\text{reff}}}}
\]

(11)

The design of the wearable microstrip patch antenna schematic and layout is made using the Keysight Advanced Design System (ADS) software based on the microstrip patch antenna, ground dimension, and line feed values through calculations using (1) - (11).

In this study, the edge inset-feeding technique is applied on a microstrip patch. Compared to other direct contact and non-contact microstrip feeding technique, the inset-fed technique has an advantage in a power distribution scheme that is easy to be fabricated. Hence, the inset-fed network and radiating patches will be etched on the same conductive textile material, which is the ShieldIt Super.

Figure 2 shows the schematic design of the microstrip patch antenna in the first stage using the ADS microstrip line (MLIN), microstrip line open-circuited stub (MLOC), and microstrip asymmetric coupled line
The MACLIN is added in the design to create the inset-fed line. In this case, width 1, \(W_1 \) and width 3, \(W_3 \) are equal and calculated based on the width of the substrate, \(W \) as in (12):

\[
W_1 = W_3 = \frac{W - 9}{2}
\]

(12)

On the other hand, the width 2, \(W_2 \) is equal to the width of microstrip line feed, \(W_f \) as in (9). Moreover, \(S_1 \) and \(S_2 \) are the gaps of the inset-fed where both are equal to \(W_f \).

Figure 2. Microstrip Patch Antenna Schematic Design

Figure 3 shows the designed inset-fed microstrip patch antenna parameters, which are recalculated after some troubleshooting processes using the Keysight ADS software to achieve the resonant at \(f_c = 2.45 \) GHz and simulated return loss, \(S_{11} \) less than -10 decibel (dB), respectively. It is assumed that the input impedance is 50 \(\Omega \), the width of microstrip feed line, \(W_f \), the length of inset, \(F_i \) and the gap between the patch and the inset-fed line, \(G_{pf} \), respectively. Figure 4 shows the respective layout of the designed patch antenna using the inset-fed edge technique.

In the next stage, the microstrip patch antenna array is designed using the ADS microstrip curve (MCURVE) and microstrip T-junction (MTEE). The schematic and layout design of the microstrip patch antenna array are shown in Figure 5 and Figure 6, respectively.
Afterwards, the microstrip patch antenna array is fabricated where the ShieldIt Super as a textile conductive is attached to the jeans fabric as a textile substrate using clothes iron. The wearable textile microstrip patch antenna array is then soldered with a 50 Ω impedance subminiature version A (SMA) probe connector so that the antenna can be connected to a vector network analyzer (VNA) via a radio frequency (RF) coaxial cable for performance measurements. Figure 7 shows the fabricated inset-fed textile microstrip patch antenna array.
2.3. Rectifier Circuit Design

In this project, the RF-DC conversion system is designed using the bridge rectifier and voltage doubler. The receiving antenna for the energy harvesting system is designed to be operated at 2.45 GHz with the output impedance of 50 Ω. Therefore, the input impedance of the rectifier is designed to match the output impedance to maximize the power transfer and to minimize the signal reflection from the load. Figure 8 and Figure 9 shows the schematic design of the bridge rectifier circuit and the voltage doubler, respectively. The rectifier circuit is constructed using four HSMS-8101 microwave Schottky diodes that form a bridge. As for the voltage doubler, two HSMS-2852 zero bias Schottky detector diodes are used. The Schottky diode is chosen because it has a low turn on voltage between 0.2 V and 0.3 V, high detection sensitivity up to 35 mV/μW at 2.45 GHz and can operate at high frequencies up to 5.8 GHz compared to PN junction diode.

![Figure 8. Bridge Rectifier Circuit Schematic Design](image1)

![Figure 9. Voltage Doubler Schematic Design](image2)

The following equation shows the input impedance, \(Z_{in} \), of the bridge rectifier and the impedance matching is designed by adding two microstrip lines in the T-network.

\[
Z_{in} = \frac{R_L + 2R_{diode}}{2}
\]

where,

- \(Z_{in} \) = Input impedance
- \(R_L \) = Load resistance = 500 Ω
- \(R_{diode} \) = Dynamic resistance of diode = 9.64 Ω
3. RESULT AND DISCUSSION

In this section, both simulation and actual measurements of the inset-fed microstrip patch antenna array performance in the free space is discussed. The simulation is performed by using the Keysight Advanced Design System (ADS) software whereas the measurement is done using the Keysight E5071C Vector Network Analyzer (VNA). The antenna performance is simulated and measured precisely in terms of return loss or S11 parameter, gain, directivity and efficiency, and three-dimensional (3D) radiation pattern.

S11 in an antenna is a parameter that states the total of power that is lost or delivered to the load and does not return as a reflection. Ideally, the antenna should achieve the S11 of the antenna lower than -10 dB to obtain a good performance [2]. Figure 10 depicts the simulation of S11 parameter in terms of magnitude in decibel (dB) and phase in degree of the designed textile microstrip patch antenna array. Based on the ADS software simulation, the microstrip patch antenna array located on the free space has the linearly fitted S11 parameter of -16.962 dB at the resonant frequency, \(f_r = 2.437 \text{ GHz} \).

![Figure 10. Microstrip Patch Antenna Array Return Loss Simulation](image)

Figure 11 shows the S11 measurement on the fabricated textile microstrip patch antenna array, which is -24.10 dB at the fr of around 2.355 GHz. This is better than the single element of microstrip patch antenna using jeans as the substrate fabric and ShieldIt Super used as the conductive textile with S11 of -15.522 dB at the fr of 2.24 GHz [11]. This result is comparable with jeans used as the substrate textile and WECF adhesive copper sheet used as the conductive metal in [9], which has S11 of -13.66 dB at the fr of 1.59 GHz and also comparable with the Cuming Microwave C-Foam PF-4 foam used as the substrate and the silver-coated nylon rip-stop fabric used as the textile conductive in [12], which has S11 of near -8 dB at the fr of 2.45 GHz. Overall, the S11 measurement in this study is acceptable since it is below than the -10 dB threshold.

![Figure 11. Microstrip Patch Antenna Array Return Loss Measurement](image)
It is found that the gain of the designed antenna array is 8.422 decibel isotropic (dBi) at the fr of 2.437 GHz, which is a good antenna performance indicator. The designed antenna array also emits a significant directivity of 9.755 dBi with a high efficiency of 73.574 %. Radiation pattern is the directional dependence of the strength of radio waves from the antenna. Figure 12 clearly shows that the designed antenna array generates an isotropic radiation pattern. In other words, the designed antenna array emits equal electromagnetic radiation in all directions.

![Microstrip Patch Antenna Array 3D Radiation Pattern](image)

The simulated performances of the bridge rectifier and the voltage doubler are compared in this study. The performances of both rectifier circuits are discussed in terms of the \(S_{11} \) characteristic of matching network and RF-DC power conversion efficiency (PCE). Figure 13 shows that the designed bridge rectifier is matched at 2.45 GHz with \(S_{11} \) measurement of \(-20.512\) dB and the normalized impedance equals to \(1.128 - j0.155\) Ω. Moreover, Figure 14 depicts that the designed voltage doubler is matched at 2.46 GHz with \(S_{11} \) parameter of \(-11.660\) dB and the normalized impedance equals to \(0.997 + j0.764\) Ω. Both designed rectifier circuits have enough maximum power transferred from the antenna to the load.

![Reflection Coefficient \((S_{11}) \) of Bridge Rectifier at 2.45 GHz](image)
The RF-DC PCE, η of the rectifier circuits is defined as follow:

$$\eta = \frac{P_{\text{DC Power}}}{P_{\text{RF Power}}} = \frac{P_{\text{out}}}{P_{\text{in}}}$$ \hspace{1cm} (14)

Where,

$$P_{\text{out}} = \frac{\text{Output DC Voltage}}{\text{Load Resistance}} = \frac{V_{\text{out}}^2}{R_L}$$ \hspace{1cm} (15)

Figure 15 shows the comparison of RF-DC PCE simulation between both rectifier circuits. It is found that the bridge rectifier design has the minimum of PCE of 3.48% with Vout of 132 mV and input power of 0 dBm or 1 mW whereas the voltage doubler has the maximum of PCE of 20.40% with Vout of 5.68 V and input power of 25 dBm or 316.23 mW. Furthermore, the bridge rectifier has the maximum of PCE of 50.20% with Vout of 5.01 V and input power of 20 dBm or 100 mW whereas the voltage doubler has the maximum of PCE of 53.56% with Vout of 2.91 V and input power of 15 dBm or 31.62 mW, respectively.

4. CONCLUSION

In sum, jeans fabric can be as an alternative substrate whereas ShieldIt Super as an alternative conductive layer in the wearable microstrip patch antenna array design. This is based on the antenna performance adequate measurements. Both, the simulated and actual S11 measurements are acceptable, which are below than the required -10 dB threshold. Precisely, jeans relative permittivity, thickness, and ShieldIt Super conductivity are critical in affecting the dimension values of microstrip patch and inset-fed line. Moreover, the designed microstrip patch antenna array with two elements performs better than the counterpart with only one element using the same substrate and conductive material in terms of return loss.
Besides, both the bridge rectifier and voltage doubler design matched at the resonant frequency, f_r near to 2.45 GHz with simulated $S11$ parameters below -10 dB threshold. The simulated impedance matching magnitude for the bridge rectifier circuit is 56.93 Ω and the voltage doubler is 62.80 Ω. These are quite acceptable since near to the characteristic impedance, Z_0 of 50 Ω. The bridge rectifier generates significant simulated DC Vout ranges from 132 mV to 5.01 V with the corresponding PCE between 3.48% and 50.20% whereas for the voltage doubler, the DC Vout is from 417 mV to 2.91 V with the respective PCE between 34.78% and 53.56%.

In the future, it is recommended to use substrate that is water proof instead of jeans fabric that easily absorbs water, hence affect antenna performance. In addition, there will be a fabrication of rectifier circuits so that the 2.45 GHz wireless local area network (WLAN) or Wi-Fi signal can be harvested and converted to considerable DC voltage. Besides, it is suggested to apply the complete fabrication of wearable rectenna in a specific position in clothing and test it in a real environment where factors, such as weather condition, friction with other wearing fabric and scratch due to the surrounding object will be considered in the antenna performance analysis.

ACKNOWLEDGEMENTS

This work is supported by the Universiti Malaysia Perlis (UniMAP) Short Term Grant (STG) scheme, under the grant 9001-00525. The authors would like to express their highest gratitude to UniMAP.

REFERENCES

[1] E. G. Lim, et al., “Compact Size of Textile Wearable Antenna” in Proc. of the Int. MultiConf. of Engr. and Comp. Sc. (IMECS), vol. 2, 2014.
[2] C. Parmar & S. Joshi, “Wearable Textile Patch Antenna for On-Body Communications”, in Proc. of Global Conf. on Comm. Tech. (GCCT), 2015.
[3] S. R. Mohd Zaini & K. N. Abdul Rani, “Wearable Inset-Fed FR4 Microstrip Patch Antenna Design”, in Proc. of Malaysian Technical Univ. Conf. on Engr. and Tech. (MUCET), vol. 318 (012050), pp. 1-9, March 2018.
[4] M. I. Ahmed, et al., “Investigation and Comparison of 2.4 GHz Wearable Antennas on Three Textile Substrates and its Performance Characteristics”, Open Journal of Antennas and Propagation, vol. 5, pp. 110-120, Sep 2017.
[5] B. Naresh, et al., “Dual Band RF Energy Harvester for Wearable Electronic Technology”, in Proc. of 3rd Int. Conf. on Advances in Electrical, Electronics, Info., Comm. and Bio-Informatics (AEEICB), pp. 274-277, 2017.
[6] S. E. Adam, et al., “A 2.45 GHz Rectenna Screen-Printed on Polycotton for On-Body RF Power Transfer and Harvesting”, in Proc. of IEEE Wireless Power Transfer Conf. (WPTC), pp. 1-4, 2015.
[7] H. A. Rahim, et al., “On-body Textile Monopole Antenna Characterisation for Body-centric Wireless Communications”, in Proc. of the Prog. in Electromagnetics Res. Symp. (PIERS), pp. 1377-1380, Aug. 2012.
[8] M. S. Shakhirul, et al., “1.575 GHz Circular Polarization Wearable Antenna with Three Different Substrate Materials”, in Proc. of the IEEE Asia-Pacific Conf. on Applied Elect. (APACE), Dec. 2014.
[9] I. Gil. & R. Fernández-García, “Wearable GPS Patch Antenna on Jeans Fabric”, in Proc. of Progress in Elect. Res. Symp. (PIERS), pp. 2019-2022, Aug. 2016.
[10] S. D. Murali, et al., “Development of Wearable Antennas with Different Cotton Textiles”, International Journal of Engineering Res. and App., vol. 4(7), pp. 8-14, July 2014.
[11] E. N. F. S. Engku Embong, et al., “The Wearable Textile-Based Microstrip Patch Antenna Preliminary Design and Development”, in Proc. of IEEE 3rd Int. Conf. on Engineering Technologies and Social Sciences (ICETSS), pp. 1-5, March 2018.
[12] J. S. Chen, et al., “Wearable Textile Microstrip Patch Antenna for Multiple ISM Band Communications”, in Proc. of the IEEE Antennas and Propag. Society Int. Symp. (APSURSI), July 2013.

BIOGRAPHIES OF AUTHORS

Syahirah Shawalil had received her B. Degree in Electronic Engineering Technology (Electronic Telecommunication Design) (Hons) from Universiti Malaysia Perlis (UniMAP) in 2017. Currently, she is tutoring SPM students in Ipoh, Malaysia. She is planning to further her studies in telecommunication engineering. Her passion and willingness of exploring new things has become the courage for her to pursue her dreams.
Khairul Najmy Abdul Rani received his B.Sc. in Electrical (Electronic) Engineering from the University of Missouri-Kansas City (UMKC), USA in 1996, and M.Sc. in Information Technology from the Universiti Utara Malaysia (UUM) in 2000, and Ph.D. in Communications Engineering from the Universiti Malaysia Perlis (UniMAP) in 2015, respectively. He is a professional technologist (Ts.) of Malaysian Board of Technologists (MBOT) and a graduate engineer of Board of Engineers Malaysia (BEM). Currently, he is involving in the Bioelectromagnetics (BioEM) Research Group, UniMAP. His research areas are radio frequency (RF), microwave, millimeter wave, antenna design, fifth generation (5G) communications and beyond, massive multiple input multiple output (MIMO) signal processing, multi user detection (MUD), and artificial intelligence (AI) optimization. He has authored and co-authored about few peer reviewed high impact International Scientific Indexing (ISI) and Elsevier's Scopus journal publications and conference proceedings.

Hasliza A Rahim received the Bachelor degree in Electrical Engineering from University of Southern California, Los Angeles, USA in 2003. Later, she received the Master degree in Electronics Design System from the Universiti Sains Malaysia, Transkrian, Pulau Pinang, Malaysia in 2006 and Ph.D in Communication Engineering from the Universiti Malaysia Perlis, Perlis, Malaysia in 2015. She joined the School of Computer and Communication Engineering, UniMAP in 16th August 2006 as lecturer and now as senior lecturer. Currently, she is the Programme Chairperson of Postgraduate Studies under School of Computer and Communication Engineering. She is Excellence Research Group (BioEM). Her extensive research area covers a range of applied engineering including advanced technologies for 4G/5G, antennas, wireless body area networks (WBAN), effects of RF on health, and bioelectromagnetics. Several research funds were granted nationally and internationally such as Fundamental Research Grant Scheme, National ScienceFund, and Malaysian Communications and Multimedia Commission. She has authored and coauthored about 72 peer reviewed scientific publications, including 3 articles in Nature Publishing Group journal (Scientific Reports), 3 patents, and 2 book chapters. As advisor, her supervised projects have also won prizes such as the Third Place in IEEE Malaysia Section Final Year Project Competition (Telecommunication Track) in 2017. She is a member of the IEEE and IEEE MTT-S, and a Graduate Member of Board of Engineers Malaysia (BEM). She has been awarded with the Excellence Woman Inventor by the Universiti Malaysia Perlis in 2011, and Silver medal at the International Invention, Innovation & Technology Exhibition (ITEX 2018).