Development and Validation of an GC-MS Method to Quantify Phytoconstituents by Using Entada pursaetha DC

Valarmathi S1*, K. Raju1, Arul Kumar Murugesan2

1P.G. and Research Department of Botany, Kandaswami Kandar's College, India
2Department of Botany, Bharathidasan University, Tiruchirappalli, India

Received November 11, 2019; Revised December 18, 2019; Accepted December 25, 2019

Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Medicinal plants have rich source of secondary metabolites, which can be screened either qualitatively or quantitatively. It is an important procedure for qualifying the plant drug and their potentialities. The active phytomolecules present in a plant reflect the therapeutic values of medicinal species. In order to discover a new bioactive compounds from plant resources which could become new leads or new drugs, plant extracts should be simultaneously evaluated by appropriate screening methods by either biological or pharmacological targets. For the extraction procedures, solvent extraction is commonly employed for extraction of most active principles from the plants. Entada sp. showed more than 27 different components of phytochemicals with a rich source of polysaccharides whereas polysaccharides only have major drug potential which was carried out by GC-MS analysis. In the recent studies, the bioactive components of seed of Entada pursaetha using GC-MS were investigated using Perkin-Elmer Gas Chromatography-Mass Spectrometry, while the Mass spectra of the compounds found in the extract was matched with previous literature.

Keywords Stem, Leaf, Compounds, Retention Time, Chemical Formula, GC-MS

1. Introduction

Medicinal plants are being the main resource of secondary metabolites which can be used as potent drugs. They have been an important source of medicine for curing innumerable ailments since thousands of years. Mainly old traditional remedies as world history of wisdom, they had been used as popular folk medicines (Sathyaprabha et al., 2010). Based on the in-vitro screening of phytochemical method has supported to conceive the preliminary knowledge to elect crude plant extracts with useful properties for future studies and analysis research towards secondary phytochemical and pharmacological investigations (Mathekaga and Meyer, 1998).

Kalimuthu and Prabakaran (2013) reported that the medicinal plants are increasingly valuable importance for extracting principal resources of nutraceuticals, traditional medicines and food supplements. The official values of medicinal plants are depending on their bioactive phytoconstituents. These phytoconstituents are being identified in medicinal plants can be used to cure many diseases and disorders and can be studied for their definite physiological activity in the human body. The isolation, identification and screening of chemical constituents present in herbal medicines have been of great interest to the scientists for discovering novel therapeutic drugs, and the effective in remedy for several diseases (Sylvestrea et al., 2006).

Currently, Gas Chromatography-Mass Spectrometry (GC-MS) has become firmly established as a key technological platform for secondary metabolite profiling in both plant and non-plant species (Robertson, 2005). More recently, detailed studies on phytochemical constituents and their pharmacological properties of E. africana have been elucidated by Yusuf and Abdullahi (2019). Entada phaseoloides is an important medicinal species in China and Taiwan, which has been detected the two new derivatives of Dihydroxyphenylacetic acid (Chen et al., 2013) and phenolic acid glucosides (Singh et al., 2011). Entada abyssinica is also having rich sources of phehnolic saponins and antioxidant glycosides which have been carried out antimicrobial and antioxidant properties (Teke et al., 2011). The study revealed major bioactive compounds present in the plant part extract. Identification of these compounds in the plant serves as the basis in
determining the possible health benefits of the plant leading to further biologic and pharmacologic studies (Denwick, 2002).

2. Materials and Methods

2.1. Collection of Plant Material

The entire herb of Entada purseaetha DC plant was collected from the nearby area of Kollihills, Namakkal District fields (Tamil Nadu). The shade tried plant parts of E. purseaetha were pulverized to powder in a mechanical grinder. The required quantity of powder was weighed and extracted with a standard procedure.

2.2. Preparation of Extracts

A portion of dried aerial parts (100 g) of Entada purseaetha DC was placed in a soxhlet apparatus. Extraction was performed with 700 ml of methanol for 48 hours at a temperature not exceeding the boiling point of the solvent. The collected extract was filtered through a 45μm filter (Hsouina et al., 2011). The filtered solute was concentrated in vacuum to dryness to give methanol extract. And then, the extract was stored in a refrigerator at 4°C for further use and the sample extract was then subjected to GC-MS analysis.

2.3. GC-MS Analysis

Gas-Liquid Chromatography coupled to Mass Spectrometry (GC-MS) was performed to identify the chemical constituents of essential oils (Yang et al., 2007). For that, the Clarus 680 GC was used in the analysis, a fused silica column packed with Elite-5MS (5% biphenyl 95% dimethylpolysiloxane) (30 m x 25μm film thickness) and the individual component was separated by using Helium as carrier gas at a constant flow of 1 ml/min. The 1μL of essential oil injected into the instrument the oven temperature was as follows: Initial temperature 60°C for 2 min, ramp 10°C/min−1 to 300°C, hold 6 min. Injection auto temperature 260°C; and Split injection flow ratio, 10:1. The mass detector Conditions were: transfer line temperature 240°C and ion source temperature were 240°C; and ionization mode electron impact at 70 eV, with a scan time 0.2 sec and scan interval of 0.1 sec the fragments from 40 to 600 Da. In this, one micro litre of the samples was loaded for the analysis. The sample was detected at different retention time by The South Indian Textile Research Association (Coimbatore, India). The retention factors in the spectrum were then compared with the library.

2.4. Identification of Phytocomponents

Interpretation on mass-spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The spectrum of the unknown components was compared with the spectrum of known components stored in the NIST library. The name of phyto compounds, molecular weight, and percentage of distribution of the test materials were tabulated.

3. Results

Gas Chromatography-Mass Spectrometry (GC-MS) is a combined technique which is used for identifying different compounds or biochemical substances sample extracts. It works on the separation of the individual compound by gas chromatography (GC). According to their retention time (RT), the separated compounds were further analyzed at a molecular level by mass spectrometry (MS). The GC-MS analysis revealed the presence of phytochemical constituents from which some are higher hydrocarbon alkanes, ester, terpenes, flavonoids, organic compounds, steroids, and fatty acids.

The GC-MS Chromatogram (Fig. 1) showed 7 distinct peaks on the basis of RT and each peak depicted a phyto compound with specific molecular weight in leaf extract of E. purseaetha. It can be identified along with their chemical structure MS spectrum. The name of phytochemical compounds, molecular formula, molecular weight, probability percentage at retention time (RT), and corresponding peak area % were listed in Table 1. The compounds are identified by the GC-MS analysis and their chemical formula viz, Triethoxysilanol (C15H30O3Si), Benzoic acid, 2-hydroxy-methyl ester (C10H8O), 2-nitro-1,3-propanediol (C6H10), 1,1-Difluoro-2-(2,4-difluorophenyl)-1-(2-quinoxinyl)-3-(1,2,4-triazol-1-yl)-2-propanol (C20H14F4N2O) Hexadecanoic acid (CAS) (C16H32O2), Octadecanoic acid (C18H36O2), 2,5-bis(4′-Methoxynaphthyl) thiophene (C26H20O2S) respectively. The major compounds observed namely Benzoic acid and 1,1-Difluoro-2-(2,4-difluorophenyl)-1-(2-quinoxinyl)-3-(1,2,4-triazol-1-yl)-2-propanol. Other 5 compounds are trace in amount of distribution such as 2-hydroxy-, methyl ester (CAS), 2-nitro-1,3-propanediol, Hexadecanoic acid (CAS), Octadecanoic acid, and 2,5-bis(4′-Methoxynaphthyl) thiophene.
Development and Validation of an GC-MS Method to Quantify Phytoconstituents by Using *Entada pursaetha* DC

Figure 1. GC-MS Analysis of Ethanolic Leaf Extract of *Entada pursaetha*

Table 1. Phyto-Chemical Constituents from ethanolic extract of leaf and stem of *E. pursaetha*

S.No	RT	Name of Phyto-Chemical Constituents	Molecular Formula	Molecular Weight	Area %
1	4.84	Triethoxysilanol	C₆H₁₆O₄Si	180	1.23
2	8.95	Benzoic acid, 2-hydroxy-methyl ester	C₈H₈O₃	152	14.4
3	15.88	2-nitro-1,3-propanediol	C₁₃H₁₆	121	0.23
4	17.87	1,1-Difluoro-2-(2,4-difluorophenyl)-1-(2-quinolyl)-3(1,2,4-triazol-1-yl)-2-propanol	C₂₀H₁₄F₄N₄O₄	402	62.8
5	22.77	Hexadecanoic acid (CAS)	C₁₆H₃₂O₂	256	1.75
6	26.62	Octadecanoic acid	C₁₈H₃₀O₂	284	0.57
7	31.10	2,5-bis(4'-Methoxynaphthyl)thiophene	C₂₉H₄₈O₅S	396	1.78
8	4.84	(+)-trans-Ethoxy-2-(prop-1-ynyl) cyclohexane	C₁₃H₂₁O	166	0.90
9	8.96	Benzoic acid, 2-hydroxy-methyl ester	C₈H₈O₃	152	16.40
10	15.95	6-Hepten-3-one, 4-methyl.	C₈H₁₄O	126	0.68
11	17.91	24-Oxaloisil A	C₂₀H₃₄O₉	476	63.25
12	21.78	Thiophene, tetrahydro-2-methyl.	C₈H₁₀S	102	4.54
13	25.57	Eicosanebicoic acid, dimethyl ester.	C₂₀H₃₂O₄	370	0.38
14	32.80	Hexadecanoic acid, 2-hydroxy-1(hydroxymethyl) ethylester.	C₁₉H₃₈O₄	330	0.23

Among all the extracts were identified only limited number of phytochemicals from GC-MS profiling. Whereas only one phytocompound such as Benzoic acid methyl ester exhibited the common occurrence in all selected plant part extracts and is also a major constituent of all samples. Other major compounds are diverse nature of nitrogenous compound, some monoterpenes and diterpenes in trace to considerable percentage. The overall GC-MS analysis did not show that much varied the metabolite composition in *E. pursaetha* which stored unique metabolite which are responsible for their medicinal and pharmacological properties. The major compounds from *E. pursaetha* observed namely (+)-trans-Ethoxy-2-(prop-1-ynyl) cyclohexane (C₁₃H₂₁O), Benzoic acid, 2-hydroxy-methyl ester (C₈H₈O₃), 6-Hepten-3-one, 4-methyl (C₈H₁₄O), 24-Oxaloisil A (C₂₀H₃₄O₉), Thiophene, tetrahydro-2-methyl (C₈H₁₀S), Eicosanebicoic acid, dimethyl ester (C₂₀H₃₂O₄) and Hexadecanoic acid, 2-hydroxy-1(hydroxymethyl) ethylester (C₁₉H₃₈O₄) (Fig. 2 & Table 2).
Figure 2. GC-MS Analysis of Ethanolic Stem Extract of *Entada pursaetha*

S.No	Name of Phyto-Chemical Constituents	Molecular Formula	References
1	Triethoxysilanol	C₆H₁₆O₄Si	Shalini *et al.*, 2016
2	Benzoic acid, 2-hydroxy-methyl ester	C₈H₈O₃	Kalpana *et al.*, 2012
3	2-nitro-1,3-pnpanediol	C₁₀H₁₄	Björn and Alexander, 2011
4	1,1-Difluoro-2-(2,4-difluorophenyl)-1-(2-quinolinylo)-3-(1,2,4-triazolyl)-1-yl-2-pnpanol	C₂₀H₁₄F₄N₄O	-
5	Hexadecanoic acid (CAS)	C₁₆H₃₂O₂	Radha *et al.*, 2016
6	Octadecanoic acid	C₁₈H₃₆O₂	Altameme *et al.*, 2015
7	2,5-(4′-Methoxyphenoxy)thiophene	C₁₄H₁₀O₂S	-
8	(+)-trans-Ethoxy-2-(prop-1-ynyl) cyclohexane	C₁₁H₁₂O	Karthikeyan & Dhanapal, 2016
9	Benzoic acid, 2-hydroxy-methyl ester	C₈H₈O₃	Zhang & Zhou, 2011
10	6-Heptan-3-one, 4-methyl	C₈H₁₂O	Schmeda Hirschmann, 2014
11	24-Okolaisol A	C₂₅H₃₄O₄S	Wagner *et al.*, 2002
12	Thiophene, tetrahydro-2-methyl	C₆H₁₀S	Thamburaj *et al.*, 2013
13	Eicosanebic acid, dimethyl ester	C₂₀H₃₂O₄	Ponnaiah & Yokeswari, 2018
14	Hexadecanoic acid, 2-hydroxy-1(hydroxymethyl) ethylester	C₁₅H₂₆O₄	Esen & Bilal, 2018

4. Discussion

Entada pursaetha is rich sources of phytochemical and it has been elucidated from the GC-MS analysis of the plant part extracts that enlisted about 20 different phytomolecules with varied proportions (Tables 1–2). The major compounds are observed two in each plant part extracts and similar observation was made from the same plant seed extract (Kalpana *et al.*, 2012; Bhogireddy *et al.*, 2015). Benzoic acid is major phytocompound reported in the current study. Whereas in allied species of *E. africana* is also noted the same compound but due to geographical isolation and toptype of the species may varied the percentage of proportions of active constituents (Dong *et al.*, 2012; Singh *et al.*, 2011). Various parts of the *E. africana* was reported different chemicals such as polysaccharides (Diallo *et al.*, 2001), betulin (Kwaji *et al.*, 2018), saponins (Yusuf *et al.*, 2019) and glycosides (Kwajiet *et al.*, 2017). However, in *E. pursaetha* needs further study for extraction, isolation and characterization of
tagged phytomolecules with specific geographical chemotype. *E. rheedi* is conspecific to *E. pursaetha* even though many researchers worked on that plant species and reported several chemical components which are active in antimicrobial, antioxidants, antiproliferative and other pharmacological properties (Nzowa et al., 2009; Chen et al., 2013).

Entadamide-A is a phenolic terpenoids isolated from the seeds of *E.rheedi* (Sufian et al., 2015) which has been investigated for biological activities. The seed extract of present results showed the corresponding chemical moiety such as terpenoid derivatives obtained from GC-MS (Table 1). Many other studies are also noted the phytochemical profile of the *Entada* species and the phytocompounds are corresponding the pharmacological activities like antimicrobial and antioxidants (Rahman et al., 2013; Nathan, 2017). Nzowa et al., (2013) have been reported the tryptophan derivatives in seed kernel of *E. rheedi*. The present results are also on par with above investigation that has been enumerated many pyridine and purine compounds in *E. pursaetha* plant part extract (Tables 1-2).

The GC-MS results obtained from the study outlay on interesting with narrow array of phytocompounds. *Entada pursaetha* possess a good store of biochemical constituents which provides the basis of medicinal potential. The combined effects of those secondary compounds are responsible for the medicinal and therapeutic values. The prime phytochemical potential indulged in the *E. pursaetha* has been successfully explored as an outcome of this study.

5. Conclusions

The present findings were carried out to determine the possible bioactive components phytochemical of leaves and stem of *E. pursaetha* using GC-MS. However, isolation of individual phytochemical constituents of of leaves and stem of *E. pursaetha* using GC-MS and subjecting it to the biological activity will be definitely giving fruitful results and will open a new area of investigation of individual components and their pharmacological potency. From these results, it could be concluded that *E. pursaetha* contains various bio-active compounds. Evaluation of pharmacological actions of Entadaafricana Guill. &Perr. Heliony on 5(9): e02323.

[2] Altameeme, Huda, Hussein, Ameera, Hameed, Imad, Kareem, Muhammed. (2015) Determination of alkaloid compounds of Ricinus communis by using gas chromatography- mass spectroscopy (GC-MS). Journal of Medicinal Plant Research, 9, 349-359.

[3] Bhogireddy, N., Mathi, P., Ambatipudi, N., Talluri, V. and Bokka, V. R. (2015) In vitro anti-inflammatory and biofractionation of *E. pursaetha* DC ethanol seed extract in LPS induced RAW 264.7 macrophage cells. Adv. Biol. Res. 9:109-116.

[4] Björn Andreeßen and Alexander Steinbüchel. (2011) Serinol: small molecule - big impact. AMB Express, 1:12.

[5] Chen, L., Zhang, Y., Ding, G., Ba, M., Guo,Y. and Zou, Z. (2013) Two new derivatives of 2.5-Dihydroxyphenylactic acid from the kernel of *Entadaphaseoloides*. Molecules 18: 1477-1482.

[6] Chen, L., Zhang, Y., Ding, G., Ba, M., Guo,Y. and Zou, Z. (2013) Two new derivatives of 2.5-Dihydroxyphenylactic acid from the kernel of *Entadaphaseoloides*. Molecules 18: 1477-1482.

[7] Denwick, P. M. (2002) Natural Products: A Biosynthetic Approach. 2nd ed. England: John Wiley and Sons Ltd.

[8] Diallo, D., Paulsen, B.S., Liljeback, T.H.A. and Michaelsen, T.E. (2001) Polysaccharides from the roots of Entadaafricana Guill. etPerr., Mimosaeaceae, with complement fixing activity. J. Ethnopharmacology 74: 159-171.

[9] Dong, Y., Shi, H., Yang, H. And Peng, Y. (2012) Antioxidant phenolic compounds from the stem of *Entadaphaseoloides*. Chemistry &Biodiversity 9(1): 68-79.

[10] Esen Sezen Karaoglan, and Bilal Yilmaz. 2018 Identification of bioactive compounds of Alchemilla caucasica using gas chromatography-mass spectrometry. International Journal of Pharmacognosy., 5(5): 287-293.

[11] Hsouna, A.B., Trigui, M., Mansour, R. B., Jarraya, R. M., Damak, M. and Jaoua, S. (2011) Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol., 148:66-72.

[12] Kalimuthu, K. and Prabakaran, R. (2013) Preliminary phytochemical screening and GC-MS analysis of methanol extract of Ceropogia pusilla. Int. J. Res. Appl. Nat. Soc. Sci. 1(3):49-58.

[13] Kaipana, D.V., Shammugasundaram, R. and Mohan, V.R. (2012) GC-MS analysis of ethanol extract of *Entadaphaseoloides* seed. Bioscience Discovery. 3(1): 30-33.

[14] Karthikeyan K. and C. K. Dhanapal. (2016) GC-MS analysis of methanol extract of Alysicarpus monilifer-whole plant. Der Pharma Chemica, 8(19):563-571.

[15] Kwaji, A., Adamu, H.M. and Chindo, I.Y. (2017) Phytochemical analysis, antibacterial and antioxidant activities of Entadaafricana Guill. And Perrott stem bark extracts. Res. J. Chem. Sci. 7(10): 10-155.
Advances in Zoology and Botany 8(2): 58-63, 2020

[16] Kwaji, A., Adamu, H.M., Chindo, I.Y. and Atiko, R. (2018) Isolation, characterization and biological properties of betulin from Entada africana Guill. and Perr. (Mimosaceae). J. Appl. And Adv. Res. 3(1): 28-31.

[17] Mathieka, A. D. and Meyer, J. J. M. (1998) Antibacterial activity of South African Helichrysum species. South Afr. J. Bot. 64:293-5.

[18] Nathan, V.K. (2017) Phytochemical evaluation and antimicrobial efficacy of Entada rheedii Spreng. Global J. Res. Analysis 6(2): 624-625.

[19] Nzowa, L.K., Barbonii, L., Teponno, R.B., Ricciutelli, M., Lupidi, G., Quassinti, L., Bramucci, M. and Tapondjou, L.A. (2009) Rheedinosides A and B, two antiproliferative and antioxidant triterpenesaponins from Entada rheedii. Phytochem. 71(2-3): 254-261.

[20] Nzowa, L.K., Teponno, R.B., Tapondjou, Z.A., Veroota, L., Liao, Z., Graham, D., Zink, M.C. and Barboni, L. (2013) The new tryptophan derivatives from the seed kernel of Entadarheedii effects on cell viability and HIV infectivity. Fitoterapia 87: 37-42.

[21] Ponnaiah Pillai, Yokeswari Nithya. (2018) Assesment of bio-active components present in the whole plant extract of Catharanthus pusillus. International Journal of Creative Research Thoughts, 6 (1), 604-612.

[22] Radha Krishnan K., F. James and A. Mohan. (2016) Isolation and characterization of n-hexadecanoic acid from Canthium parviflorum leaves, Journal of Chemical and Pharmaceutical Research, 8(8):614-617.

[23] Rahman, M., Dey, S.K., Hira, A. and Ahmed, A. (2013) Phytochemical screening and pharmacological activities of Entadascandens seeds. Int. J. Appl. Res. Nat. Prod. 6(1): 20-26.

[24] Robertson, D.G. (2005) Metabonomics in toxicology: A review. Toxicol. Sci. 85: 809-22.

[25] Sathyaprabha, G., Kumaravel, S., Ruffina, D. and Praveenkumar, P. (2010) A comparative study on antioxidant, proximate analysis, antimicrobial activity and phytochemical analysis of Aloe vera and Cissus quadrangularis by GC-MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. Journal of Pharmaceutical and Biomedical Analysis 43, 73–82.

[26] Schmidt-Hirschmann, G. (2014) 4-Methyl-1-hepten-3-one, the Defensive Compound from Agathemera elegans (Philippi) (Phasmatidae) Insecta. Zeitschrift für Naturforschung C, 61(7-8), 592-594.

[27] Shalini Sharma, Amita Kumari, Mamta Sharma. (2016) Comparative GC-MS Analysis of Bioactive Compounds in Methanolic Extract of Calotropis gigantea (L) W.T. Aiton Leaf and Latex, International Journal of Pharmacognosy and Phytochemical Research, 8(11); 1823-1827.

[28] Singh, O., Ali, M. and Akhtar, N. (2011) Phenolic acid glucosides from the seeds of Entadaphaseoloides Merill. J. Asan Nat. Prod. Res. 13(8): 1080-1084.

[29] Sufian, M.A., Shafaat.-Al-Mehedi, M., Rashid, M.A. and Haque, M.R. (2015) Biological investigation of Entadarheedii Spreng and isolation of Entadamide-A from its seed. Int. J. Phram. 6(7): 411-414.

[30] Sylvestrea, M., Pichettea, A., Longtina, A., Nagaub, F. and Legaulta, J. (2006) Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. Journal of Ethnopharmacology 103: 99-102.

[31] Teke, G.N., Lunga, P.K., Wab, H.K., Kuiccate, J.R., Vilarem, G., Giacinti, G., Kikuchi, H. And Oshima, Y. (2011) Antimicrobial and antioxidant properties of methanol extract fractions and compounds from the stem bark of Entadabyssinica Stend. ex A. Satabie. BMC Complementary and Alternative Medicine 57: 121-127.

[32] Thamburaj, Suman & R, Elango & Chakkavarthi, K. (2013) Phyto-chemical profiling of Cleiastanthus collinus leaf extracts using GC-MS analysis. Research Journal of Pharmacy and Technology, 6, 1173-1177.

[33] Wagner E.G.H., S. Altuvia, P. Romby. 2002. Antisense RNAs in bacteria and their genetic elements, Adv. Genet. 46, 361–398.

[34] Yang, F.Q., Li, S.P., Zhao, J., Lao, S.C., Wang, Y.T., 2007. Optimization of GC–MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. Journal of Pharmaceutical and Biomedical Analysis 43, 73–82.

[35] Yusuf, A. and Abdullahi, M.I. (2019) The phytochemical and pharmacological actions of Entadaafricana Guill. & Perr. Helyon 5(9): e02323.

[36] Zhang, Z., F. & Zhou, X. Y. (2011) GC/MS analysis on benzene/alcohol extractives of Manglietia Glauca leaves for biomedicine engineering. Advanced Materials Research, 213, 475–478.