Facial width-to-height ratio relates to dominance style in the genus *Macaca*

Marta Borgi, Bonaventura Majolo

Background. Physical, visual, chemical, and auditory cues signalling fighting ability have independently evolved in many animal taxa as a means to resolve conflicts without escalating to physical aggression. Facial width-to-height ratio (fWHR, i.e. the relative width to height of the face) has been associated with dominance-related phenotypes both in humans and in other primates. In humans, faces with a larger fWHR are perceived as more aggressive. **Methods.** We examined fWHR variation among 11 species of the genus *Macaca*. Macaques have been grouped into four distinct categories, from despotic to tolerant, based on their female dominance style. Female dominance style is related to intra- and inter-sexual competition in both males and females and the result of different evolutionary pressure across species. We used female dominance style as a proxy of intra-/inter-sexual competition to test the occurrence of correlated evolution between competitive regimes and dominance-related phenotypes. fWHR was calculated from 145 2D-photographs of male and female adult macaques. **Results.** We found no phylogenetic signal on the differences in fWHR across species in the two sexes. However, fWHR was greater, in females and males, in species characterised by despotic female dominance style than in tolerant species. **Discussion.** Our results suggest that dominance-related phenotypes are related to differences in competitive regimes and intensity of inter- and intra-sexual selection across species.
Facial width-to-height ratio relates to dominance style in the genus *Macaca*

Marta Borgia, b and Bonaventura Majoloa

aSchool of Psychology, University of Lincoln, Lincoln LN6 7TS, Great Britain

bSection of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Corresponding author:

Marta Borgi

Section of Behavioral Neuroscience

Department of Cell Biology and Neurosciences

Istituto Superiore di Sanità

Viale Regina Elena 299, I-00161

Rome, Italy

Tel: +39 06 4990 2107

Fax: +39 06 4957821

E-mail: marta.borgi@iss.it
ABSTRACT

Background. Physical, visual, chemical, and auditory cues signalling fighting ability have independently evolved in many animal taxa as a means to resolve conflicts without escalating to physical aggression. Facial width-to-height ratio (fWHR, i.e. the relative width to height of the face) has been associated with dominance-related phenotypes both in humans and in other primates. In humans, faces with a larger fWHR are perceived as more aggressive.

Methods. We examined fWHR variation among 11 species of the genus *Macaca*. Macaques have been grouped into four distinct categories, from despotic to tolerant, based on their female dominance style. Female dominance style is related to intra- and inter-sexual competition in both males and females and the result of different evolutionary pressure across species. We used female dominance style as a proxy of intra-/inter-sexual competition to test the occurrence of correlated evolution between competitive regimes and dominance-related phenotypes. fWHR was calculated from 145 2D-photographs of male and female adult macaques.

Results. We found no phylogenetic signal on the differences in fWHR across species in the two sexes. However, fWHR was greater, in females and males, in species characterised by despotic female dominance style than in tolerant species.

Discussion. Our results suggest that dominance-related phenotypes are related to differences in competitive regimes and intensity of inter- and intra-sexual selection across species.
INTRODUCTION

In animals, aggressive conflicts may bear significant fitness costs for the opponents (e.g. chronic stress, severe injuries, limited access to resource, House et al. 1988), that can potentially outweigh the benefits of winning a conflict. Because of such potential costs, visual, chemical, tactile and auditory cues, as well as physical traits, have independently evolved in various taxa to signal the fighting ability of opponents and to allow animals to resolve conflicts without escalating to physical aggression (Arnott & Elwood 2009; Parker & Rubenstein 1981). For example, animals can maintain their dominance rank in a social group by signals of dominance/submission and displacements that do not involve overt aggression (Preuschoft & van Schaik 2000).

In humans, facial phenotype, specifically the facial width-to-height ratio (fWHR), is a cue of aggression, dominance and fighting ability: fWHR is positively related to the acquisition of status and resources, antisocial tendencies, dominance status and propensity to be aggressive (Carré & McCormick 2008; Carré et al. 2009; Haselhuhn & Wong 2012; Lefevre et al. 2014a; Sell et al. 2009). Preliminary evidence on the association between circulating testosterone and fWHR in men (Lefevre et al. 2013), as well as the association between individual differences in amygdala reactivity, fWHR and self-reported aggression (Carré et al. 2013), suggests a possible path through which fWHR may have evolved to signal aggressive attitude. The association between facial phenotype and aggression might reflect the common influence of pubertal testosterone on cranial growth and the development of neural circuitry underlying aggressive behaviour (Carré & McCormick 2008; Carré et al. 2013). High fWHR may thus work as a marker of “masculine” tendencies, in particular in species with a sex-biased frequency of aggression. Previous studies on humans indicate that the correlation between fWHR and dominance-related behaviours, as well as the modulator effect of fWHR on the relationship
between amygdala reactivity and self-reported aggression, are either specific to or more robust in men (Carré & McCormick 2008; Carré et al. 2013; Geniole et al. 2014; Goetz et al. 2013; Haselhuhn & Wong 2012; Stirrat & Perrett 2010; but see: Lefevre et al. 2014a).

Similarly to what happens in humans, non-human primates rely extensively on non-verbal communication and on a variety of facial displays to signal aggression/submission and to modulate social interactions (Maestripieri 1997). Therefore, facial phenotypes, such as the fWHR, can have a homologous function and a shared phylogenetic history in non-human primates and in the human lineage. In support to this hypothesis, two recent studies have shown that, in brown capuchin monkeys (Sapajus apella) fWHR is positively related to alpha status and to a dominance-related personality trait (Lefevre et al. 2014b; Wilson et al. 2014).

To date, research on the relationship between fWHR and behaviour has rarely been conducted on non-humans and it has mostly focused on within-species variation. If fWHR is a signal of aggression and fighting abilities, we predict correlated evolution between fWHR and social traits at the species level. In other words, we predict different evolutionary pressure on fWHR depending on the species-specific differences in aggressiveness, competitive regime and dominance style. We tested this hypothesis in the genus Macaca, comprising 22 species with similar group composition (i.e. multimale-multifemale social groups) but differing in female dominance style and intra-group social relationships, according to a four-grade scale ranging from despotic (grade 1) to tolerant (grade 4) (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000; Thierry et al. 2008; Thierry et al. 2000). Despotic, grade 1, species are characterised by steep linear dominance hierarchies among females, whereby the outcome of dyadic competitive interactions, as well as access to resources, strongly depend on the dominance rank of the contestants (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000; Thierry et al. 2008; Thierry et al. 2000). Despotic, grade 1, species are characterised by steep linear dominance hierarchies among females, whereby the outcome of dyadic competitive interactions, as well as access to resources, strongly depend on the dominance rank of the contestants (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000; Thierry et al. 2008; Thierry et al. 2000).
Competitive interactions can quickly escalate into overt aggression and result in injuries if a subordinate animal does not display submission to a dominant individual (Thierry et al. 2000). In tolerant, grade 4, species, dominance hierarchies are shallow among females, that is, the outcome of dyadic competitive interactions depends on context as much as it does on the dominance rank of the contestants (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000). Low intensity aggressive interactions and counter-aggression are more frequent in tolerant species than in despotic species, but conflicts less frequently result in injuries, and access to resources is less rank-dependent (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000; Thierry et al. 2008; Thierry et al. 2000). Species in-between the two extremes of this grading system (grade 2 and 3), show a mixture of dominance style traits of tolerant and despotic species (Balasubramaniam et al. 2012a). Differences in dominance style across macaque species have a strong phylogenetic signal (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b).

In female macaques, we predict correlated evolution between dominance-related phenotypes and species-specific differences in dominance style: fWHR should be greater in females from despotic species than in those from tolerant species. In despotic species, displays of dominance, aggression and submission among females should be more important than in tolerant species as in the former the risk of escalated aggression is expected to be higher. Over evolutionary time, therefore, there should have been stronger pressure for the evolution of dominance-related phenotypes in female macaques in despotic species than in tolerant species, other things being equal (relative dominance rank of the individuals). We predict a significant relationship between fWHR and female dominance style across species in male macaques. However, we cannot predict whether such relationship is positive or negative, as it is currently not known if male
macaques show a similar or opposite pattern of inter-specific differences in dominance style as observed in females. Our prediction for male macaques is based on the fact that competitive regimes among females are related to male-male competition and dominance style (Schulke & Ostner 2008; Schulke & Ostner 2012) and can affect intra- and inter-sexual selection in both sexes. For example, male reproductive skew is more pronounced in female tolerant species (Schulke & Ostner 2008; Schulke & Ostner 2012; Van Noordwijk & Van Schaik 2004). To test our predictions we used the four-grade scale of dominance style in female macaques as a proxy of differences across species in the level of inter- and intra-sexual selection in the two sexes. We calculated fWHR from 145 two-dimensional images (a measure previously shown to correlate with 3D scans and facial anthropometry, Kramer et al. 2012) of male/female faces of macaques from 11 species representing the four grades of female dominance style - as in Thierry’s classification (2000). We analysed the correlation between fWHR and female dominance style using phylogenetic-controlled analyses and standard (i.e. without phylogenetic control) multiple regression.

MATERIALS & METHODS

Images and measurements

We collected frontal images of the face of as many macaque species as possible following two different approaches. First, we used pictures taken by one of us (BM) and requested pictures taken by colleagues working on macaques in the wild or in captivity. Second, in order to expand our sample size in terms of number of pictures and species, we searched for images on the Google Images web search engine by submitting the scientific name of each species as a key-word. In order to be included in our dataset, images had to be frontal, full-faced photographs
depicting male and female adult macaques (i.e. ≥ 5 years old for females and ≥ 7 years old for males) with a neutral expression (closed mouth) and with a resolution of at least 400 x 300 pixels per inch. For the images collected from the web, information on the sex and age of the animal in the image was often not available (sex and age of the animals was known for images taken by BM or obtained from colleagues). Therefore, these images were independently scored for age and sex by one of us (BM) and an expert on macaques (who was unaware of the aims of the study). Correlation between the two scores was positive and significant (Spearman correlation; age rho=0.70, p<0.001; sex: rho=0.57, p<0.001). However, we discarded all of the images for which scores for sex and/or age were in disagreement between the two scorers in order to avoid biasing the analyses due to incorrect data on the sex/age of the animals. Moreover, since macaques often present individual physical traits which are easily identifiable, all images taken from the web were checked for independence by two researchers, in order to reduce the risk that the same animal could be depicted in two or more images included in the dataset (if that was the case, we only kept one image, with the highest resolution). Following this procedure, our dataset comprised a total of 145 images from 11 species of genus *Macaca*, 73 images of adult female macaques (40 images collected from the web) and 72 of adult male macaques (41 images collected from the web; **Table 1**).

Using Adobe Photoshop (Adobe Systems, San Jose, California), pictures were digitized at 72 dpi and were two-dimensionally rotated (horizontally aligned) and scaled to the same inter-pupillary distance, in order to standardise face size and head position across images. Facial measurements were taken using the ruler tool with pixels as a unit. In accordance with previous work (Kramer et al. 2012; Lefevre et al. 2014b; Wilson et al. 2014), fWHR was calculated by dividing the bi-zygomatic width (maximum horizontal distance from the left to the right zygion) by the upper-
One of us (MB) took all of the measures; at the time of taking the measures MB was blind to the dominance style of the different macaque species in the dataset. In order to test the consistency of the facial measures taken across time, MB re-took the measures for the bi-zygomatic width and the upper-face height for a subset of images (N = 39), randomly selected for each species (2.4 images per species), six months after the same measures were first taken on those images. Consistency across the two measures was very high (Spearman correlation; bizygomatic width: rho=0.93, p<0.001; upper-face height: rho=0.99, p<0.001).

Data Analysis

Each species included in our dataset was assigned to one of the four grades of dominance style (from 1=despotic up to 4=tolerant species; Table 1) following the classification of macaque species available in Thierry 2000 (Table 6.2, p.112). We square-root transformed fWHR (dependent variable) to improve normality and used two distinct analytical approaches to test our hypothesis. First, we averaged the square-root transformed fWHR values per species and sex and ran a phylogenetically controlled generalized least square regression model (PGLS) independently for male and female macaques. Since the number of images available on each species and sex varied significantly in our dataset (Table 1), we entered the number of images for females (or males) as a control variable in the two PGLSs. We estimated Pagel’s lambda (Pagel, 1999) using maximum likelihood. In the results we present the estimated lambda for each model and the p values of the likelihood ratio tests comparing the estimated lambda to the upper (lambda = 1) and lower bounds (lambda = 0). We ran these two PGLSs in R 3.1.0 (R Development Core Team 2011), using the CAPER 0.4 package (Orme et al. 2012).
downloaded a consensus phylogenetic tree, with the chronogram branch option using the
Genbank taxonomy, from the 10ktree primate phylogeny version 2
(http://10ktrees.fas.harvard.edu, Arnold et al. 2010). Second, since no phylogenetic signal was
detected in the two PGLSs (see results), we ran a standard (i.e. without phylogenetic control)
linear mixed model on the two sexes together. The fWHR values of each image (our dependent
variable) were our data points (N=145); dominance style and sex (females or males) were
entered as fixed factors, species ID was our random factor. We ran this linear mixed model using
Stata v.12.1 (Stata Corp 2011).

RESULTS

We had no significant result for the predicting variables in the two PGLSs run separately on
females and males; the two full models were also not significant (PGLS on females: F(2, 8) =
2.01, adjusted R-squared = 0.17, N = 11, p = 0.20; PGLS on males: F(2, 8) = 3.21, adjusted R-
squared = 0.31, N = 11, p = 0.10). Dominance style was negatively related to fWHR in the two
sexes (i.e. fWHR was greater in despotic than in tolerant species) but this relationship was not
significant (females: coefficient ± SE = -0.02 ± 0.01, t = -1.69, p = 0.13; males: coefficient ± SE
= -0.02 ± 0.01, t = -1.71, p = 0.13; Figure 2). The number of images available for each species
and sex did not have a significant effect in any of the two PGLSs (females: coefficient ± SE= -
0.01 ± 0.01, t = -1.20, p = 0.26; males: coefficient ± SE = 0.01 ± 0.01, t = 1.19, p = 0.09). Pagel’s
lambda values (Pagel, 1999) were equal to zero in the two PGLSs on males (likelihood ratio test:
upper bound p = 1.00; lower bound p = 0.12) and females (upper bound p = 1.00; lower bound p
< 0.01), indicating a weak phylogenetic signal for the relationship between fWHR and female
dominance style.
A linear mixed model on the effect of female dominance style and sex of the animal, as fixed factors, on fWHR (species ID entered as a random factor) showed that fWHR was significantly greater in despotic species than in tolerant species (coefficient ± SE = -0.20 ± 0.01, z = -1.90, p < 0.05; Figure 3). However, fHWR did not significantly differ between female and male macaques (coefficient ± SE = -0.00 ± 0.01, z = -0.09, p = 0.93).

DISCUSSION

Our study is the first to analyse the relationship between species-specific differences in dominance style and fWHR. The four-grade scale of female dominance style was significantly related to fWHR (female despotic species having greater fWHR than tolerant species) in male and female macaques, but not when fWHR was averaged per species and sex. Moreover, we found no phylogenetic signal for differences in fWHR across macaque species.

fWHR is a signal of aggression and fighting ability that might facilitate the resolution of conflicts of interest without the need for these to escalate into overt aggression (Carré & McCormick 2008; Carré et al. 2009; Lefevre et al. 2014a; Sell et al. 2009). As such, fWHR may affect decision-making in competitive interactions (e.g. fight or flight) and can minimize the costs of competition to contestants for both won/lost and unresolved conflicts, including chronic stress, severe injuries and deaths (Arnott & Elwood 2009; Blanchard et al. 2011). In humans, fWHR predicts aggressive behaviour (e.g. Carré & McCormick 2008; Goetz et al. 2013), especially in males, and it may operate as a signal of physical dominance evolved under sexual selection (Weston et al. 2004; Weston et al. 2007). Our study suggests that fWHR may have a similar function and be related to sexual selection and sexual dimorphism in non-human primates.
Analyses on female macaques support our prediction that species-specific differences in dominance style are related to fWHR, possibly because physical and behavioural traits have been under similar evolutionary pressure (Balasubramaniam et al. 2012a; Balasubramaniam et al. 2012b; Thierry 2000; Thierry et al. 2008). We found a similar pattern in male macaques. However, the interpretation of our findings in males is difficult, since scarce data are available on dominance style difference across species in male macaques and on how such differences are related to female dominance style. Male reproductive skew is thought to be higher in species where female-female relationships are classified as being tolerant than in species where female-female relationships are despotic (Schulke & Ostner 2008; Schulke & Ostner 2012), other things being equal (e.g. operational sex ratio). Male reproductive skew is positively related to the degree of paternal relatedness in a species (Ostner et al. 2008; Widdig 2013) but negatively related to female oestrous synchrony and mate choice (Dubuc et al. 2011; Soltis et al. 1997). Because of the limited data on male-male relationships, a parsimonious interpretation of our findings is that differences in female dominance style are related to species-specific differences in intra- and inter-sexual selection in the two sexes. Female dominance style can be used as a proxy of inter-specific differences in selection and competitive regimes. However, the exact nature of the cause-effect relationship between male fWHR and dominance style differences in males and females cannot be analysed until data are available. Because of the scarcity of data on males, since our results from phylogenetic analyses and multiple regression differed in their significance level (this could be due, at least partially, to the small number of species available in our dataset) and given that we cannot completely rule out the possibility that we had in the
dataset more than one image for each animal (see methods), our findings have to be interpreted
with caution.

Three areas of research require additional data and study testing alternative hypotheses. First, we
know very little on the developmental trajectory of fWHR, the role of hormones, of the brain and
of sexual maturation. In humans and other anthropoid primates, fWHR has been described as a
sexually dimorphic trait that arises around puberty (coincident with the rise in pubertal
testosterone) and that is, at least to some extent, not explained by sex differences in body size
(Carré & McCormick 2008; Weston et al. 2004; Weston et al. 2007). Preliminary evidence has
shown a positive correlation between fWHR and circulating testosterone in men (Lefevre et al.
2013). Moreover, the association between fWHR and dominance-related behaviour may be more
evident among individuals low in status (Carré 2014; Goetz et al. 2013; Welker et al. 2015). If so,
life-history variables such as age at sexual maturation, degree of social instability (e.g. frequency
of rank reversals) and of stress (due to competition, e.g. Crockford et al. 2008) could inter-play
with dominance rank in affecting fWHR throughout an animal’s life.

Second, intra-species variance across populations/groups in dominance style is expected to be
high but the causes of behavioural flexibility are still little understood (Kamilar & Baden 2014).
The scarcity of images of macaque faces for which data were also available on the dominance
rank of each animal, as well as on individual- and group-specific social traits (e.g. conciliatory
tendency, steepness of the hierarchy or frequency of counter-aggression), forced us to enter in
the analyses the four-grade system of dominance style instead of more specific measures of
social style. Ideally, additional data are needed to analyse the relative role of each social trait
contributing to the species/population/individual dominance style, the degree of inter- and intra-
species variation in fWHR, and to what extent such variation is explained by shared phylogenetic history or current socio-ecological factors (e.g. level of competition in a group).

A third limitation of our study, and an area that requires further investigation, is whether two-dimensional images used to calculate facial measurements reliably ‘represent’ how non-human primates see faces of their conspecifics, especially in the case of pictures taken in the absence of controlled conditions.

CONCLUSIONS

In conclusion, our research makes a novel contribution to the study of dominance-related phenotypes, by showing that fWHR is related with female dominance style in male and female macaques. This study has to be considered as one of the first steps towards understanding whether and how sexual selection, socio-ecological variables, reproductive strategies and life-history variables affect dominance-related phenotypes.

ACKNOWLEDGEMENTS

We would like to thank Rebecca Ayre for help to collect the images used in this study. We are extremely grateful to Simone Giancontieri and Christopher Young for their help with the fWHR measures and data analysis, and to friends and colleagues who shared their images of macaques with us. We would like to thank Gabriele Schino for useful comments on our study. We are extremely grateful to Lauren Brent and the Caribbean Primate Research Center for sharing their pictures of *Macaca mulatta*. We would also like to thank Emily Bethell, Jerome Micheletta and
Bernard Thierry, for kindly agreeing to share their images of macaques with us, Juliane Kaminski, Jerome Micheletta and James Higham for very useful comments on previous drafts of our manuscript.

REFERENCES

Arnold C, Matthews L, and Nunn C. 2010. The 10kTrees Website: A new online resource for primate phylogeny. *Evol Anthropol* 19:114-118. 10.1002/evan.20251

Arnott G, and Elwood R. 2009. Assessment of fighting ability in animal contests. *Anim Behav* 77:991–1004. 10.1016/j.anbehav.2009.02.010

Balasubramaniam K, Dittmar K, Berman C, Butovskaya M, Cooper M, Majolo B, Ogawa H, Schino G, Thierry B, and de Waal F. 2012a. Hierarchical steepness and phylogenetic models: phylogenetic signals in Macaca. *Anim Behav* 83:1207-1218. 10.1016/j.anbehav.2012.02.012

Balasubramaniam KN, Dittmar K, Berman CM, Butovskaya M, Cooper MA, Majolo B, Ogawa H, Schino G, Thierry B, and De Waal FB. 2012b. Hierarchical steepness, counter-aggression, and macaque social style scale. *Am J Primatol* 74:915-925. 10.1002/ajp.22044

Blanchard DC, Griebel G, Pobbe R, and Blanchard RJ. 2011. Risk assessment as an evolved threat detection and analysis process. *Neurosci Biobehav Rev* 35:991-998. 10.1016/j.neubiorev.2010.10.016

Carré JM. 2014. Social status, facial structure, and assertiveness in brown capuchin monkeys. *Front Psychol* 5:567. doi: 10.3389/fpsyg.2014.00567.

Carré JM, and McCormick CM. 2008. In your face: facial metrics predict aggressive behaviour in the laboratory and in varsity and professional hockey players. *Proc Biol Sci* 275:2651-2656. 10.1073/pnas.0705435104

Carré JM, McCormick CM, and Mondloch CJ. 2009. Facial structure is a reliable cue of aggressive behavior. *Psychol Sci* 20:1194-1198. 10.1111/j.1467-9280.2009.02423.x

Carré JM, Murphy KR, and Hariri AR. 2013. What lies beneath the face of aggression? *Soc Cogn Affect Neurosci* 8:224-229. 10.1093/scan/nsr096

Crockford C, Wittig RM, Whitten PL, Seyfarth RM, and Cheney DL. 2008. Social stressors and coping mechanisms in wild female baboons (Papio hamadryas ursinus). *Horm Behav* 53:254-265. 10.1016/j.yhbeh.2007.10.007

Dubuc C, Muniz L, Heistermann M, Engelhardt A, and Widdig A. 2011. Testing the priority-of-access model in a seasonally breeding primate species. *Behav Ecol Sociobiol* 65:1615-1627.
Geniole S, Keyes A, Carré J, and McCormick C. 2014. Fearless dominance mediates the relationship between the facial width-to-height ratio and cheating. *Pers Individ Dif* 57:59-64. 10.1016/j.paid.2014.05.019

Goetz SM, Shattuck KS, Miller RM, Campbell JA, Lozoya E, Weisfeld GE, and Carre JM. 2013. Social status moderates the relationship between facial structure and aggression. *Psychol Sci* 24:2329-2334. 10.1177/0956797613493294

Haselhuhn MP, and Wong EM. 2012. Bad to the bone: facial structure predicts unethical behaviour. *Proc Biol Sci* 279:571-576. 10.1098/rspb.2011.1193

House JS, Landis KR, and Umberson D. 1988. Social relationships and health. *Science* 241:540-545. 10.1126/science.3399889

Kamilar J, and Baden A. 2014. What drives flexibility in primate social organization? *Behav Ecol Sociobiol* 68:1677-1692. doi:10.1007/s00265-014-1776-x

Kramer RS, Jones AL, and Ward R. 2012. A lack of sexual dimorphism in width-to-height ratio in white European faces using 2D photographs, 3D scans, and anthropometry. *PLoS One* 7:e42705. 10.1371/journal.pone.0042705

Lefevre C, Lewis G, Perrett D, and Penton-Voak IS. 2014a. Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. *Biol Lett* 10:20140729. 10.1098/rsbl.2014.0729

Lefevre CE, Wilson VA, Morton FB, Brosnan SF, Paukner A, and Bates TC. 2014b. Facial width-to-height ratio relates to alpha status and assertive personality in capuchin monkeys. *PLoS One* 9:e93369. 10.1371/journal.pone.0093369

Leutenegger W, and Kelly JT. 1977. Relationship of sexual dimorphism in canine size and body size to social, behavioral, and ecological correlates in anthropoid primates. *Primates*, 18(1):117-136.

Maestripieri D. 1997. Gestural communication in macaques: usage and meaning of nonvocal signals. *Evolution of communication* 1:193-222. 10.1075/eoc.1.2.03mae

Orme C, Freckleton R, Thomas G, Petzoldt T, Fritz S, and Isaac N. 2012. CAPER: comparative analyses of phylogenetics and evolution in R. Package version 0.5. ed.

Ostner J, Nunn CL, and Schulke O. 2008. Female reproductive synchrony predicts skewed paternity across primates. *Behav Ecol* 19:1150-1158. 10.1093/beheco/arn093

Pagel M. 1999. Inferring the historical patterns of biological evolution. *Nature*, 401(6756): 877-884. 10.1038/44766

Parker G, and Rubenstein D. 1981. Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. *Anim Behav* 29:221-240. 10.1016/S0003-3472(81)80170-4

Plavcan JM, and van Schaik CP. 1992. Intrasexual competition and canine dimorphism in anthropoid primates. *Am J Phys Anthropol* 87(4):461-477. 10.1002/ajpa.1330870407
Preuschoft S, and van Schaik C. 2000. Dominance and communication: Conflict management in various social settings. In: Aureli F, and de Waal FBM, eds. *Natural conflict resolution*. Berkeley: University of California Press, 106-128.

R Development Core Team. 2011. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.

Schulke O, and Ostner J. 2008. Male reproductive skew, paternal relatedness, and female social relationships. *Am J Primatol* 70:695-698. 10.1002/ajp.20546

Schülke O, and Ostner J. 2012. Ecological and social influences on sociality. In: Mitani J, Call J, Kappeler P, Palombit R and Silk J, eds. *The Evolution of Primate Societies*. Chicago: University of Chicago Press, 193-219.

Sell A, Cosmides L, Tooby J, Szynier D, von Rueden C, and Gurven M. 2009. Human adaptations for the visual assessment of strength and fighting ability from the body and face. *Proc Biol Sci* 276:575-584. 10.1098/rspb.2008.1177

Soltis J, Mitsunaga F, Shimizu K, Nozaki M, Yanagihara Y, Domingo-rous X, and Takenaka O. 1997. Sexual selection in Japanese macaques II: female mate choice and male-male competition. *Anim Behav* 54:737-746.

Stata Corp. 2011. *Stata statistical software: Release 12*. Texas: Stata Press.

Stirrat M, and Perrett DI. 2010. Valid facial cues to cooperation and trust: male facial width and trustworthiness. *Psychol Sci* 21:349-354. 10.1177/0956797610362647

Thierry B. 2000. Covariation of conflict management patterns across macaque species. In: Aureli F, and de Waal FBM, eds. *Natural conflict resolution*. Berkeley: University of California Press, 106-128.

Thierry B, Aureli F, Nunn CL, Petit O, Abegg C, and De Waal F. 2008. A comparative study of conflict resolution in macaques: insights into the nature of trait covariation. *Anim Behav* 75:847-860. 10.1016/j.anbehav.2007.07.006

Thierry B, Iwaniuk AN, and Pellis SM. 2000. The influence of phylogeny on the social behaviour of macaques (Primates: Cercopithecidae, genus Macaca). *Ethology* 106:713-728. 10.1046/j.1439-0310.2000.00583.x.

Van Noordwijk M, and Van Schaik C. 2004. Sexual selection and the careers of prime males: paternity concentration, dominance-acquisition tactics and transfer decisions. In: Kappeler P, and Van Schaik C, eds. *Sexual selection in primates: New and comparative perspectives*. Cambridge: Cambridge University Press, 208.

Welker K, Goetz S, and Carré J. 2015. Perceived and experimentally manipulated status moderates the relationship between facial structure and risk-taking. *Evol Hum Behav*.

Weston EM, Friday AE, Johnstone RA, and Schrenk F. 2004. Wide faces or large canines? The attractive versus the aggressive primate. *Proc Biol Sci* 271 Suppl 6:S416-419. 10.1098/rsbl.2004.0203

Weston EM, Friday AE, and Lio P. 2007. Biometric evidence that sexual selection has shaped the hominin face. *PLoS One* 2:e710. 10.1371/journal.pone.0000710
Widdig A. 2013. The Impact of male reproductive skew on kin structure and sociality in multi-male groups. *Evol Anthropol* 22:239-250. 10.1002/evan.21366

Wilson VAD, Lefevre CE, Morton FB, Brosnan SF, Paukner A, and Bates TC. 2014. Personality and facial morphology: Links to assertiveness and neuroticism in capuchins (Sapajus [Cebus] apella). *Pers Individ Dif* 58:89-94. 10.1016/j.paid.2013.10.008
Table 1 (on next page)

Table 1

Number of images used for the analyses and mean fWHR (square root transformed) divided by species, sex and dominance style
Table 1. Number of images used for the analyses and mean fWHR (square root transformed) divided by species, sex and dominance style

Scientific name	Common name	Dominance style*	Number of pictures	Mean fWHR				
M. cyclopis	Formosan rock macaque		1	2	4	6	1.18	1.10
M. fuscata	Japanese macaque		1	14	4	18	1.05	1.06
M. mulatta	Rhesus macaque		1	9	11	20	1.13	1.15
M. nemestrina	Pig-tailed macaque		2	2	12	14	1.04	1.05
M. fascicularis	Long-tailed macaque		2	4	4	8	1.10	1.16
M. sinica	Toque macaque		3	6	5	11	1.15	1.10
M. arctoides	Stump-tailed macaque		3	5	4	9	1.08	1.09
M. sylvanus	Barbary macaque		3	10	7	17	1.08	1.09
M. radiata	Bonnet macaque		3	8	5	13	1.09	1.07
M. nigra	Crested black macaque		4	6	7	13	0.99	0.97
M. tonkeana	Tonkean macaque		4	7	9	16	1.07	1.10

73 72 145

* Category #1 defines female despotic species - Grade #1 in Thierry’s classification (Thierry 2000) - and category #4 defines female tolerant species - Grade #4 in Thierry’s classification
Macaque faces

On the left. An example illustrating how fWHR was calculated from images (Barbary macaque). Bizygomatic width was measured as the horizontal distance between the left and right zygion (vertical lines); upper-face height as the vertical distance between the highest point of the eyelids and the highest point of the upper lip (horizontal lines). The fWHR was calculated as width divided by height. In the middle: a male rhesus macaque (dominance style 1). Photo by Lauren Brent (modified). On the right: a male Tonkean macaque (dominance style 4). Photo by Bernard Thierry (modified).
Relationship between female dominance style and fWHR (data averaged per species).

Scatter plot and line of best fit for the relationship between dominance style (y axis) and fWHR (x axis) in female (top) and male (bottom); grade 1 defines despotic species and grade 4 tolerant species (Thierry 2000).
Relationship between female dominance style and fWHR (data points represent each image in the dataset).

Scatter plot and line of best fit for the relationship between dominance style (y axis) and fWHR (x axis) in female (top) and male (bottom); grade 1 defines despotic species and grade 4 tolerant species (Thierry 2000).