Review

The Coexistence of Blastocystis spp. in Humans, Animals and Environmental Sources from 2010–2021 in Asia

Adedolapo Aminat Rauff-Adedotun 1©, Farah Haziqah Meor Termizi 1, Nurshafarina Shaari 2 and Li Li Lee 2,*

1 School of Biological Sciences, Universiti Sains Malaysia, Kuala Lumpur 11800, Malaysia; adedotunameenah@gmail.com (A.A.R.-A.); farahhaziqah@usm.my (F.H.M.T.)
2 Kulliyyah of Medicine & Health Sciences, Universiti Islam Antarabangsa Sultan Abdul Halim Mu’adzam Shah, Kuala Ketil 09300, Malaysia; shafirashaari@unishams.edu.my
* Correspondence: leeili@unishams.edu.my

Simple Summary: Blastocystis spp. are unicellular parasites that infect the gastrointestinal tract of humans and animals. Their occurrence in the environment had been detected in water sources, thus causing contamination. The presence of the parasites in humans, animals and environmental sources in Asia were reviewed according to countries in Asia, different categories of human and animal populations, and environmental sources including water samples, food and ambient air. The coexistence of the parasites poses a public health concern as the parasites are commonly found in most studies. Hence, there is a growing interest in the study of Blastocystis spp. Due to the isolation of Blastocystis spp. from living and non-living sources, a collaborative, multi-sectoral and trans-disciplinary approach known as One Health is proposed for future study of Blastocystis spp. in order to achieve optimal health outcomes through the recognition of interconnection between people, animals and their shared environment.

Abstract: Blastocystis spp. are controversial unicellular protists that inhabit the gastrointestinal tract of humans and a wide range of animals worldwide. This review provides an overview of the prevalence and distribution of Blastocystis spp. and their subtypes throughout Asia. Research articles reporting on the presence of Blastocystis spp. in locations within Asia, between 1 January 2010, and 10 May 2021, were obtained from Scopus, PubMed, and Google Scholar. In 427 articles, the prevalence of Blastocystis spp. in 31 countries within the last decade was revealed. Isolates were found in humans, various mammals, birds, reptiles, insects, water sources, vegetables, and ambient air. Prevalence of Blastocystis spp. varied widely across host categories. Subtypes identified throughout Asia were STs 1–14, and ST18–22 (novel subtypes). ST1, ST2, ST3, ST4 were the most frequently isolated in humans; ST5 in pigs; ST10 and ST14 in goats, sheep, and cattle; and ST6 and ST17 in chickens. ST1 and ST3 were most common in water samples. ST1, ST2, ST3, ST4, ST5 and ST6 were shared by humans, animals, and water sources. There is a growing interest in the study of Blastocystis spp. and their subtypes in Asia. Due to the isolation of Blastocystis spp. from biotic and abiotic sources in Asia, the application of the One Health (OH) approach to the study of Blastocystis spp. is proposed for improved perception of this organism.

Keywords: Blastocystis; subtypes; epidemiology; one health; Asia

1. Introduction

Blastocystis spp. are anaerobic unicellular eukaryotes that are widespread among humans and animals around the world [1–3]. They reside in the gastrointestinal tract wherein their role in gut health and disease is unresolved [4]. Several attempts were made at the classification of Blastocystis spp. by means of physiological and morphological characteristics [5], however, its place as a member of the phylum stramenopiles was revealed by Silberman et al. [6] based on phylogenetic analysis of the small subunit ribosomal RNA (SSU rRNA) gene.
Blastocystis spp. exhibit morphological and genetic polymorphism [7]. The six morphological forms described in the literature are vacuolar, granular, amoeboid, cyst, multivacuolar and avacuolar [8]; each of these forms show substantial variations in size [9]. Discerning one Blastocystis spp. isolate from another by morphological means alone poses a big challenge as isolates from different hosts appear similar [1].

Differences in the nucleotide sequences of the SSU rRNA gene of Blastocystis spp. isolates demonstrate the organism’s substantial genetic heterogeneity [10,11]. According to a consensus on the terminology of Blastocystis spp. subtypes proposed by Stensvold et al. [10], Blastocystis spp. isolates are referred to as Blastocystis spp. ‘subtypes’ (STs). These designations are based on the differences among the SSU rRNA gene sequences; and by 2013, 17 different STs (ST1 to ST17) of Blastocystis spp. had been acknowledged [11]. Eleven additional STs (ST18 to ST28) have been proposed since then, although the validity of four of these STs (ST18 to ST20, and ST22) are being contested [12]. Infections with Blastocystis spp. ST1 to ST9 and ST12 have been reported in humans [13,14]. All Blastocystis spp. STs have, however, been widely isolated from non-human hosts, with the exception of ST9, whose first identification in a non-human host was by Noradilah et al. [15] in chickens reared by aborigines of rural Malaysian communities.

Blastocystis spp. are transmitted through the fecal-oral route via the ingestion of feces-contaminated food and water, with the cyst form as the only transmissible form [9,14,16]. Molecular epidemiological studies have revealed possible human-to-human, foodborne, waterborne and zoonotic transmission [17–27]. For example, Eroglu and Koltas [19] reported the isolation of Blastocystis spp. subtype 1 from Blastocystis spp. positive patients, their pets and the tap water they drank from. Likewise, the presence of Blastocystis spp. subtype 4 in humans, the animals they reared and the rivers they visited regularly were observed in a rural community in Nepal by Lee et al. [18]. It is also worth mentioning that Blastocystis spp. are included as waterborne pathogens in the World Health Organization’s publications on drinking water quality [28], implying possible public health concerns.

Globally, increasing interactions between humans and animals (domestic, livestock, wildlife) at close proximity cannot be overemphasized. The rapid growth perceived in areas of agriculture, urbanization, industrialization, and international travel and trade have all contributed greatly to these interactions [29,30]. A human-animal-environment interface has emerged from the dynamic relationships between humans and animals; a clear understanding of the risks at this interface would allow better public health outcomes [29]. This is the One Health (OH) holistic approach, which considers health in the context of human, animal and environmental relationships [31]. It urges the use of interdisciplinary collaborative effort to attain optimal health for humans, animals, plants, and the environment. Bearing in mind that the role of Blastocystis spp. in the host gut, whether as mutualists, commensals, or pathogens, has yet to be ascertained [32]; the study of this organism from an ecological standpoint is required.

Studies abound on the prevalence of Blastocystis spp. from around the world revealing the various host groups and geographic distribution of this intestinal protist. The growing use of polymerase chain reaction (PCR)-based approaches has, equally, broadened the understanding of genetic diversity and transmission of Blastocystis spp. Over the last decade, Blastocystis spp. research in Asia has noticeably intensified. Rauff-Adedotun et al. [33] observed an increase in the studies of Blastocystis spp. infection in animals in Southeast Asia over the last decade. This research direction is deemed timely considering the role of agriculture, industrialization and globalization on the rapid economic growth that is taking place in the Asian region; as well as the resulting large and growing human and livestock populations, high levels of interspecies interaction, and large-scale ecological change.

This article serves as a summary of the prevalence of Blastocystis spp. and the distribution of its subtypes in humans, animals, environmental, and food sources across Asia in the last decade.
2. Materials and Methods

Articles on Blastocystis spp. research carried out within the continent of Asia were searched for in three electronic databases: Scopus, PubMed, and Google Scholar. The search covered articles published between 1 January 2010, and 10 May 2021. Duplicate articles from the three databases were removed; experimental studies, case reports, review articles, articles that did not report a positivity percentage and articles with unclear/confusing information were also excluded. Articles on the prevalence/occurrence and/or subtypes of Blastocystis spp. in both life and non-life sources undertaken within Asia were selected. The information extracted from each article included country of study, method(s) of detection of Blastocystis spp., host(s) of study, number of samples examined, number of samples positive, subtypes identified with corresponding numbers of isolates, author(s) and publication dates. Studies were retrieved on Blastocystis spp. in humans, various animal hosts, water sources, vegetables, and ambient air.

A total of 427 manuscripts met inclusion criteria, these studies were for 31 Asian countries/regions (Bangladesh, Cambodia, China, India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Korea, Laos, Lebanon, Malaysia, Myanmar, Nepal, Pakistan, Philippines, Qatar, Russia, Saudi Arabia, Singapore, Syria, Taiwan, Thailand, Turkey, Cyprus, United Arab Emirates, Uzbekistan, Vietnam, and Yemen). Blastocystis spp. have been identified in humans, different kinds of animals, leafy vegetables, water, and ambient air using conventional microscopy, in vitro cultivation, and molecular methods.

3. Blastocystis spp. Infection in Humans

Investigations on human Blastocystis spp. infections were on children, high school and college students, hospital patients/patients referred to medical laboratories for tests, patients with gastrointestinal disorder (GID) and other conditions, immunocompromised individuals, different categories of workers, and apparently healthy and general populations from urban and rural settings alike. Irrespective of these human host groups, Blastocystis spp. were the common organisms detected in studies describing gastrointestinal tract organisms in humans; and Blastocystis spp. ST1, ST2 and ST3 were the most frequently isolated.

The presence of Blastocystis spp. has been reported in infants, kindergarten, and school-aged children in Asia in the past ten years (Table 1). However, the participants were either asymptomatic or their clinical conditions were not available. The majority of the studies were from Iran, Thailand, Malaysia, Turkey, and Indonesia; prevalence rates reported ranged from 1.2% to 83.7%. Only about 24% of these studies reported on Blastocystis spp. subtypes. Subtypes identified were ST1, ST2, ST3, ST4, ST5, ST6 and ST7.

Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Bangladesh	5679	795 (14.0)	NA	CM, IVC	Barua et al. [34]
Israel	45,978	5422 (11.8)	NA	CM, IVC	Ben-Shimol et al. [35]
China	170	1 (0.5)	NA	MOL	Zhang et al. [36]
China	609	87 (14.3)	ST1, ST2, ST3	MOL	Qi et al. [37]
China	466	71 (15.2)	ST1, ST3, ST6, ST7	IVC, MOL	Ning et al. [38]
Cambodia	308	15 (4.9)	NA	CM	Liao et al. [39]
India	195	32 (16.4)	NA	CN	Rayan et al. [40]
Indonesia	492	147 (29.9)	ST1, ST2, ST3	IVC, MOL	Yoshikawa et al. [41]
Indonesia	99	33 (33.3)	ST1, ST2, ST3	MOL	Zulfa et al. [42]
Indonesia	141	58 (41.1)	ST1, ST3, ST4	IVC, MOL	Sari et al. [43]
Indonesia	219	15 (6.8)	NA	CM	Subahar et al. [44]
Indonesia	157	44 (28.0)	NA	CM	Sari et al. [45]
Iran	124,366	3986 (3.2)	ST1, ST2, ST3	CM, IVC, MOL	Ashtiani et al. [46]
Iran	864	36 (4.1)	ST1, ST2, ST3	CM, IVC, MOL	Niaraki et al. [47]
Iran	366	11 (3.1)	NA	CM	Mahmoudvand et al. [48]
Iran	650	37 (5.7)	NA	CM	Abdi et al. [49]

Table 1. Prevalence and subtype distribution of Blastocystis spp. in children in Asia (2010–2021).
Prevalence and subtypes of Blastocystis spp. in immunocompromised individuals in Asia are summarized in Table 2. This category comprised mostly cancer, HIV/AIDS, and pulmonary tuberculosis patients. Reported prevalence rates were generally not above 30% except 54.8% in immunocompromised children with diarrhea in Indonesia, and 42.2% and 53.6% prevalence in HIV/AIDS cases and pulmonary tuberculosis patients respectively in Uzbekistan. Blastocystis spp. subtypes 1, 2, 3, 4, 5, and 7 were identified.

Table 2. Prevalence and subtype distribution of Blastocystis spp. in immunocompromised individuals in Asia (2010–2021).

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Cancer patients	Iran	52	11 (21.2)	NA	CM	Salehi Kaish et al. [83]
(children)	Iran	200	24 (12.0)	ST1, ST2, ST3, ST7	MOL	Asghari et al. [84]
Cancer patients	Iran	52	11 (21.2)	NA	CM	Salehi Kahyesh et al. [85]
Table 2. Cont.

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Cancer patients (children)	Iran	89	5 (5.6)	NA	CM	Zabolinejad et al. [86]
Cancer patients	Iran	67	16 (23.9)	NA	CM, MOL	Mahmoudvand et al. [87]
Cancer patients	China	381	27 (7.1)	ST1, ST3	MOL	Zhang et al. [88]
Cancer patients	Malaysia	61	13 (21.3)	NA	IVC	Chandramathi et al. [89]
Cancer patients	Saudi Arabia	138	38 (27.5)	ST1, ST2, ST5	MOL	Mohamed et al. [90]
Cancer patients	Turkey	232	25 (10.8)	ST1, ST2, ST3	CM, IVC, MOL	Yersal et al. [91]
Cancer patients	Turkey	201	29 (14.4)	ST1, ST2, ST3	CM, MOL	Mulayim et al. [92]
HIV/AIDS cases	China	324	12 (3.7)	ST1, ST3, ST4, ST7, ST12	MOL	Zhang et al. [98]
HIV/AIDS cases	China	505	21 (4.2)	NA	MOL	Zhu-Hua et al. [99]
HIV/AIDS cases	India	452	13 (2.9)	NA	CM	Ramana et al. [100]
HIV/AIDS cases	India	200	14 (7.0)	NA	CM	Khalil et al. [101]
HIV/AIDS cases	Iran	31	7 (22.6)	NA	CM	Berenji et al. [102]
HIV/AIDS cases	Iran	60	10 (16.7)	NA	CM	Yosefi et al. [103]
HIV/AIDS cases	Iran	356	14 (3.9)	NA	CM	Agholi et al. [104]
HIV/AIDS cases	Iran	102	2 (1.9)	NA	CM	Masoumi-Ash et al. [105]
HIV/AIDS cases	Iran	73	2 (2.7)	NA	CM	Anvari-Taf et al. [106]
HIV/AIDS cases	Iran	268	51 (19.0)	ST1, ST2, ST3, ST4	MOL	Piranshahi et al. [107]
HIV/AIDS cases	Laos	137	36 (26.3)	NA	CM	Paboriboune et al. [108]
HIV/AIDS cases	Nepal	146	9 (6.2)	NA	CM	Sharan et al. [109]
HIV/AIDS cases	Nepal	112	1 (0.9)	NA	CM	Ghimire et al. [110]
HIV/AIDS cases	Turkey	65	7 (10.8)	NA	CM	Zorbozan et al. [111]
HIV/AIDS cases	Uzbekistan	500	211 (42.2)	NA	CM	Davis et al. [112]
Tuberculosis	Iran	161	19 (11.8)	ST1, ST2, ST3	CM, MOL	Taghipour et al. [113]
Tuberculosis	Iran	161	19 (11.8)	NA	CM	Taghipour et al. [114]
Pulmonary tuberculosis	Uzbekistan	300	161 (53.6)	NA	CM, 1VC	Li et al. [115]
Pulmonary tuberculosis	China	369	23 (6.2)	NA	CM, 1VC	Li et al. [116]
Pulmonary tuberculosis	China	369	23 (6.2)	NA	CM, 1VC	Li et al. [116]
Pulmonary tuberculosis	Iran	50	9 (18.0)	NA	CM	Taghipour et al. [117]
Renal transplant recipients	Iran	150	7 (4.7)	NA	CM	Azami et al. [118]
Immunocompromised children with diarrhea	Indonesia	42	23 (54.8)	NA	IVC	Idris et al. [119]
Immunocompromised children with diarrhea	Turkey	62	6 (9.7)	NA	CM	Caner et al. [120]
Immunocompromised patients	Iran	265	11 (4.2)	NA	CM	Rasti et al. [121]
Immunocompromised patients	Iran	204	62 (30.4)	NA	CM	Izadi et al. [122]
Immunodeficient patients	Iran	190	32 (16.8)	NA	CM	Esteghamati et al. [123]
Immunosuppressive drugs recipient	Iran	494	49 (10.3)	NA	CM	Mirzaei et al. [124]
Immunocompromised patients	Saudi Arabia	136	7 (5.2)	NA	CM	Al-Megrin et al. [125]
Common variable immune deficiency (CVID) syndrome patients	Turkey	37	3 (8.1)	NA	CM	Uysal et al. [126]

CM—Conventional microscopy, IVC—in vitro cultivation, MOL—Molecular technique, NA—Not applicable.
It is noted that hematologic and non-hematologic (cranial) cancers with *Blastocystis* spp. infections are most commonly reported in children [82–85]. Whereas, colorectal, stomach, esophagus and non-gastrointestinal cancer such as lung, liver, breast, ovarian, hematologic and other cancers were detected in adults. Among the 10 studies focused on cancer patients, six studies clearly stated that cancer patients were receiving chemotherapy treatment [82–85,87,88]. One study recruited cancer patients who have not received any chemotherapy [89]. While the remaining two were classified as follow-up cases [90] and in- or out-patient cases [91], respectively. It is noted that the highest prevalence of *Blastocystis* spp. infection in cancer patients is detected in those who have not received chemotherapy [89] as compared to the other six studies. This could be due to the existing immunocompromised condition of the cancer patients that allowed an opportunistic infection to occur.

Patients with different gastrointestinal complaints and disorders such as constipation, abdominal pain, diarrhea, irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) have been examined for *Blastocystis* spp. infection with positive results recorded as shown in Table 3. The prevalence rate was as low as 0.5%, with the highest being 67.1% and all isolates belonged to *Blastocystis* spp. subtypes 1, 2, 3, 4, 5, 6, and 7.

Table 3. Prevalence and subtype distribution of *Blastocystis* spp. in humans with gastrointestinal symptoms in Asia (2010–2021).

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Children with diarrhea	China	850	26 (3.1)	ST1, ST2, ST3, ST4	MOL	Zhang et al. [36]
Children with diarrhea	Indonesia	57	36 (63.1)	NA	MOL	Zulfa et al. [42]
Children with diarrhea	Turkey	60	4 (6.7)	NA	CM	Macin et al. [127]
Children with diarrhea	Iran	400	8 (2.0)	NA	CM	Asadi et al. [128]
Children with diarrhea	Qatar	580	27 (4.7)	NA	MOL	Boughattas et al. [129]
Children with diarrhea	Nepal	588	5 (0.9)	NA	CM	Dahal et al. [130]
Children with diarrhea	Iran	160	37 (23.1)	NA	CM	Khalili et al. [131]
Children with GID	Iran	500	81 (16.2)	NA	CM	Kiani et al. [132]
Children with GID	Thailand	82	13 (15.9)	ST1, ST2, ST3, ST4, ST7	CM, IVC	Awe et al. [133]
Children with GID	Russia	1273	62 (4.9)	ST1, ST2, ST3, ST4, ST7	CM, MOL	Sigidaev et al. [134]
Children with GID	Turkey	84	18 (21.4)	ST1, ST3, ST4	MOL	Dogan et al. [82]
Patients with diarrhea	Indonesia	389	22 (5.7)	NA	CM	Oyofe et al. [135]
Patients with diarrhea	China	271	13 (4.8)	NA	MOL	Zhang et al. [136]
Patients with diarrhea	Korea	117	8 (6.8)	NA	MOL	Won et al. [137]
Patients with diarrhea	Iran	134	28 (20.7)	ST1, ST2, ST3	CM, MOL	Jalaliou et al. [138]
Patients with diarrhea	Iran	2023	1357 (67.1)	NA	CM	Najafi et al. [139]
Patients with GID	Iran	1301	350 (26.9)	ST1, ST2, ST3, ST5	NA	Kiani et al. [140]
Patients with GID	Iran	287	65 (22.7)	ST1, ST2, ST3, ST5	IVC, MOL	Moosavi et al. [141]
Patients with GID	Iran	23	23	ST1	CM, MOL	Shahbazi et al. [142]
IBO patients	Iran	71	9 (12.7)	ST1, ST3	IVC, MOL	Mirjalali et al. [143]
Adolescents with IBS	Indonesia	137	50 (36.5)	ST1, ST2, ST3, ST4, ST5	MOL	Kesuma et al. [144]
IBS patients	India	150	50 (33.3)	ST1, ST3	CM, IVC, MOL	Das et al. [145]
IBS patients	Iran	100	15 (15.0)	ST1, ST3, ST4, ST5	NA	Shafiei et al. [146]
IBS patients	Iran	122	24 (19.7)	ST3, ST5	MOL	Khandemvatan et al. [147]
IBS patients	Iraq	78	38 (48.7)	ST3, ST6, ST7	NA	Bayal et al. [148]
IBS patients	Thailand	66	11 (16.7)	NA	IVC	Surangsrirat et al. [149]
Patients with GID	Thailand	579	98 (16.9)	NA	CM, IVC	Merza et al. [150]
Patients with GID	Iran	249	92 (36.9)	NA	CM	Mutlag et al. [151]
Patients with GID	Thailand	5	5 (100.0)	ST3, ST6, ST7	CM, IVC, MOL	Sanpool et al. [152]
Patients with diarrhea	Turkey	272	16 (5.9)	NA	CM, MOL	Koltas et al. [153]
Patients with GID	Turkey	490	89 (18.2)	NA	CM, IVC	Aykur et al. [154]
Patients with GID	Turkey	14,246	689 (4.8)	NA	CM	Uluska et al. [155]
Patients with GID	Turkey	2334	134 (5.7)	NA	CM	Cekin et al. [156]
Patients with GID	Iran	152	16 (10.5)	ST1, ST2, ST3	CM, IVC, MOL	Beiromvand et al. [157]
Patients with diarrhea	Singapore	193	1 (0.5)	NA	CM, MOL	Feurle et al. [158]
Patients with GID	Saudi Arabia	114	15 (13.2)	NA	CM	Hawash et al. [159]
Patients with GID	Turkey	5624	136 (2.4)	NA	CM	Alver et al. [160]
Table 3. Cont.

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Patients with GID	Turkey	17756	778 (4.4)	NA	CM	Inceboz et al. [161]
Patients with GID	Iran	670	38 (5.7)	NA	IVC	Rostami Nejad et al. [162]
Patients with GID	Pakistan	339	59 (17.4)	NA	CM	Haider et al. [163]
Patients with GID	Turkey	29 *	29	ST1, ST2, ST3, ST4	CM, MOL	Sakalar et al. [164]

* Study was carried out on Blastocystis sp. positive hosts, CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable, GID—Gastrointestinal disorder, IBD—Inflammatory bowel disease, IBS—Irritable bowel syndrome.

The occurrence of Blastocystis spp. in mental rehabilitation centers was documented by several authors from Iran only (Table 4). Prevalence ranged from 4% to 55.2%; and out of all nine of these studies, only one reported the use of molecular methods wherein ST1, ST3 and ST9 were identified.

Table 4. Prevalence and subtype distribution of Blastocystis spp. in mental rehabilitation centers in Asia (2010–2021).

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Mentally disabled children	Iran	362	20 (5.5)	NA	CM	Sharif et al. [165]
Mentally disabled children and adults	Iran	225	9 (4.0)	NA	CM	Hazrati Tappeh et al. [166]
Psychiatric patients	Iran	65	15 (23.1)	NA	CM	Khalili et al. [167]
Mentally disabled individuals	Iran	173	29 (16.8)	NA	CM	Saeidinia et al. [168]
Mentally disabled individuals	Iran	133	12 (9.0)	NA	CM	Shokri et al. [169]
Mentally disabled individuals and elderly people	Iran	243	81 (33.3)	NA	CM	Rasti et al. [170]
Mentally disabled individuals	Iran	126	38 (30.2)	NA	CM	Mohammadi-Meskin et al. [171]
Mental retardation center personnel	Iran	37	12 (32.4)	NA	CM	Mohammadi-Meskin et al. [171]
Schizophrenic male patients	Iran	58	32 (55.2)	ST1, ST3, ST9	CM, MOL	Sheikh et al. [172]

CM—Conventional microscopy, MOL—Molecular technique, NA—Not applicable.

Studies on the status of Blastocystis spp. infection in hospital in- and out-patients are shown in Table 5. The diseases/illnesses of these patients were, however, not stated in the reports. Nonetheless, they did not show any gastrointestinal-related symptoms and volunteered as healthy participants in the gastrointestinal studies. As a result of their involvement, though asymptomatic, they were detected positive for Blastocystis spp. infection. Infection rate as low as 0.02% was recorded in 23,278 Saudi Arabian patients, while all (100%) of 15 hospital patients without any gastrointestinal complaints were found positive for Blastocystis spp. Asides Blastocystis spp. subtypes 1, 2, and 3 which were the most commonly observed, STs 6 and 7 were also commonly identified while STs 4 and 5 were few.
Table 5. Prevalence and subtype distribution of *Blastocystis* spp. in patients of health institutions in Asia (2010–2021) who volunteered in gastrointestinal studies.

Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
China	126	3 (2.4)	ST5	MOL	Zhu et al. [173]
China	198	21 (10.6)	ST1, ST3, ST6, ST7	MOL	Kang et al. [174]
Iran	670	23 (3.4)	NA	IVC	Rostami Nejad et al. [162]
Iran	1232	154 (12.6)	NA	CM	Abdipour et al. [175]
Iran	1383	239 (17.3)	ST1, ST2, ST3	CM, MOL	Bahrami et al. [176]
Iran	984	13 (1.3)	NA	CM	Gholipoor et al. [177]
Iran	417	39 (9.4)	NA	CM	Viesi et al. [178]
Iran	511	33 (6.5)	ST2, ST3, ST5	MOL	Badparva et al. [179]
Iran	420	60 (14.3)	ST2, ST3	CM, MOL	Shaker et al. [180]
Iran	802	39 (4.9)	ST1, ST2, ST3, ST7	MOL	Haghighi et al. [181]
Iran	420	60 (14.3)	NA	CM	Shaker et al. [182]
Iran	1120	65 (5.8)	NA	CM	Tork et al. [183]
Iran	4788	247 (5.2)	NA	CM	Asfaram et al. [184]
Iran	210	66 (31.4)	ST1, ST2, ST3, ST4, ST5	MOL	Bafighi et al. [185]
Iran	133	35 (26.3)	ST1, ST2, ST3, ST5	IVC, MOL	Moosavi et al. [141]
Iran	4427	407 (9.2)	NA	IVC	Karimazar et al. [186]
Iraq	300	146 (48.7)	NA	CM	Abdul Ridha and Faiq. [187]
Iran	618	146 (23.6)	ST1, ST2, ST3	CM, IVC, MOL	Salehi et al. [188]
Iran	481	69 (14.4)	ST1, ST2, ST3, ST4, ST5	MOL	Khademvatan et al. [189]
Iran	250	41 (16.4)	ST1, ST2, ST3	CM, IVC, MOL	Sardarian et al. [190]
Iran	200	63 (31.5)	NA	CM, IVC	Hamidi et al. [191]
Iran	5000	784 (1.6)	NA	CM	Javadi et al. [192]
Iran	864	68 (7.9)	ST1, ST2, ST3	CM, IVC, MOL	Delshad et al. [193]
Iran	566	10 (1.8)	NA	CM	Norouzi et al. [194]
Iran	100	13 (13.0)	ST1, ST2, ST6	CM, MOL	Sharifi et al. [195]
Iran	1878	152 (8.1)	ST1, ST2, ST3, ST7	CM, MOL	Salehi et al. [196]
Lebanon	40	23 (57.5)	ST1, ST2, ST3	MOL	Greige et al. [197]
Lebanon	220	42 (19.1)	ST1, ST2, ST3, ST4	CM, MOL	El Safadi et al. [198]
Lebanon	50	27 (54.0)	ST1, ST2, ST3	MOL	Greige et al. [199]
Saudi Arabia	23,278	5 (0.02)	NA	CM	Imam et al. [200]
Saudi Arabia	130	3 (2.3)	NA	CM	Hassen Amer et al. [201]
Saudi Arabia	1262	133 (10.5)	ST1, ST2, ST3	IVC, MOL	Mohamed et al. [202]
Thailand	14,325	199 (1.4)	NA	CM	Laodim et al. [203]
Thailand	562	56 (9.9)	ST1, ST3, ST6, ST7	IVC, MOL	Jantermctor et al. [204]
Thailand	15	15 (100.0)	ST1, ST3, ST6, ST7	CM, IVC, MOL	Sanpool et al. [152]
Turkey	192	6 (3.1)	NA	CM	Cekin et al. [156]
Turkey	20,948	13,245 (63.2)	NA	CM	Polat et al. [205]
Turkey	50,185	275 (0.5)	NA	CM	Beyhan et al. [206]
Turkey	4030	476 (11.1)	ST1, ST2, ST3	CM, MOL	Sarzhanov et al. [207]
Turkey	6,757	160 (2.4)	NA	CM	Selek et al. [208]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.

Table 6 is a summary of *Blastocystis* spp. infection in students and working populations in Asia between 2010 and 2021.
Host	Country/Region	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Adolescents	Indonesia	70	20 (28.6)	ST1, ST3	MOL	Kesuma et al. [144]
High school students foreign	Turkey	192	63 (32.8)	NA		Yaman et al. [209]
College students	China	53 *	53	ST1, ST3, ST4, ST6, ST7	IVC, MOL	Zhan et al. [210]
College students of practical parasitology	Iran	175	9 (5.1)	NA	CM	Fallahi et al. [211]
courses Students who did not take any	Iran	135	5 (3.7)	NA	CM	Fallahi et al. [211]
practical parasitology courses						
University students	Thailand	1025	416 (40.6)	ST1, ST2, ST3	CM, IVC, MOL	Srichaiporn et al. [212]
Working children	Iran	175	57 (32.6)	NA	CM	Salemi et al. [213]
Caregivers in a childcare center	Thailand	25	6 (24.0)	ST1, ST2, ST3	IVC, MOL	Pipatsatithpong et al. [22]
Cattle breeders	Lebanon	40	21 (52.5)	ST1, ST2, ST3	MOL	Greige et al. [197]
Chicken slaughterhouse staff	Lebanon	50	28 (56.0)	ST1, ST2, ST3, ST6	MOL	Greige et al. [199]
Pig handler and individuals who lived	Thailand	154	10 (6.5)	ST1, ST3, ST5	MOL	Pintong et al. [214]
near pig farms						
Pig handler and individuals who	Thailand	117	15 (12.8)	ST1, ST2, ST3	MOL	Udonsom et al. [215]
lived near pig farms						
Food handlers	Iran	210	3 (1.4)	NA	CM	Kheirandish et al. [216]
Food handlers	Iran	1021	40 (3.9)	NA	CM	Motazedian et al. [217]
Food handlers	Iran	1041	29 (2.8)	NA	CM	Kheirandish et al. [222]
Food handlers	Iran	800	194 (24.3)	NA	CM	Heydari-Hengami et al. [219]
Food handlers	Iran	1018	7 (7.2)	NA	CM	Khodabakhsh et al. [220]
Food handlers	Iran	1530	44 (2.9)	NA	CM	Shahnazi et al. [221]
Food handlers	Jordan	816	18 (2.2)	NA	CM	Abdel-Dayem et al. [223]
Food handlers	Iran	901	6 (0.7)	NA	CM	Downs et al. [224]
Military personnel	Iraq	437	36 (8.2)	NA	CM	Kivatanachai and Rhongbuttri [225]
Gardeners	Thailand	253	23 (9.1)	NA	CM	
Immigrant workers	Thailand	600	6 (1.0)	NA	CM	Sangwalee et al. [226]
Immigrant workers	Qatar	608	432 (71.1)	ST1, ST2, ST3	MOL	Abu-Madi et al. [227]
Immigrant workers	Qatar	735	479 (65.2)	NA	CM, MOL	Abu-Madi et al. [228]
Settled immigrant	Qatar	9208	398 (4.3)	NA	CM	Abu-Madi et al. [229]
Newly arrived immigrants	Qatar	2486	137 (5.5)	NA	MOL	Abu-Madi et al. [230]
Settled immigrants	Qatar	29,286	1010 (3.5)	NA	MOL	Abu-Madi et al. [231]
Resident workers	Qatar	772	39 (5.1)	NA	CM	Abu-Madi et al. [232]
Workers	Saudi Arabia	1238	245 (19.8)	NA	CM	Wadik [233]
New employees in a tertiary health care	Saudi Arabia	2490	314 (12.6)	NA		Ahmed et al. [234]
center						
Foreign laborers	Taiwan	7360	190 (2.6)	NA	CM	Hsieh et al. [235]
Foreigners	Taiwan	2875	33 (1.1)	NA	CM	Hsieh et al. [236]
Indonesian immigrant workers	Taiwan	128	28 (21.9)	ST1, ST2, ST3	CM, MOL	Chen et al. [237]
Sanitary and Non-sanitary institutions'	Turkey	2443	175 (7.2)	NA	CM	Karaman et al. [238]
workers						
Migrant workers	Malaysia	220	68 (30.9)	ST1, ST2, ST3	IVC, MOL	Sahimin et al. [239]

* Study was carried out on Blastocystis spp. positive hosts, CM—Conventional microscopy, IVC—in vitro cultivation, MOL—Molecular technique, NA—Not applicable.
Food handlers and immigrant workers were commonly screened in Iran and Qatar, respectively. In addition to *Blastocystis* spp. subtypes 1, 2, and 3; ST6 was isolated from chicken slaughterhouse staff in Lebanon [199], and ST5 in pig handlers in Thailand [214].

The majority of the studies on *Blastocystis* spp. infections in humans in Asia within 2010 and 2021 were on general populations of apparently healthy status; such participants comprised urban dwellers, rural dwellers, and healthy control for immunocompromised persons. As depicted in Table 7, low prevalence rates of less than 5% and rates as high as 50% were reported from the different countries where these studies were undertaken, and various techniques were used for the detection of this protist. *Blastocystis* spp. subtypes reported were STs1-7 and ST10, whose only record was from Lebanon.

Table 7. Prevalence and subtype distribution of *Blastocystis* spp. in apparently healthy general populations in Asia (2010–2021).

Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Bangladesh	140	51 (36.4)	NA	CM	Noor et al. [240]
Cambodia	218	40 (18.4)	NA	CM	Schär et al. [241]
Cambodia	210	116 (55.2)	ST1, ST2, ST3	MOL	Wang et al. [242]
China	497	215 (43.3)	NA	CM	He et al. [243]
China	5939	494 (8.3)	NA	MOL	Chen et al. [244]
China	26,886	2 (0.01)	NA	CM	Umar et al. [245]
China	1023	1 (0.1)	NA	CM	Jiang [246]
China	6710	19 (0.3)	NA	CM	Zhang et al. [247]
China	303	67 (22.1)	NA	IVC	Tian et al. [95]
China	294	64 (21.8)	NA	IVC	Tian et al. [96]
China	149	9 (6.0)	NA	MOL	Zhang et al. [136]
China	366	28 (7.6)	NA	CM, IVC	Li et al. [85]
China	289	13 (4.5)	ST1, ST3, ST4	MOL	Gong et al. [248]
China	507	48 (9.5)	ST1, ST2, ST3, ST4	MOL	Deng et al. [249]
China	1118	390 (34.9)	ST2, ST5	MOL	Ma et al. [250]
Cyprus	230	64 (27.8)	ST1, ST2, ST3, ST4, ST6, ST7	MOL	Seyer et al. [251]
India	279	105 (37.6)	NA	MOL	Padukone et al. [252]
India	200	16 (8.0)	NA	CM	Khalil et al. [101]
India	100	15 (15.0)	ST1, ST3	CM, IVC, MOL	Das et al. [145]
India	23	13 (56.5)	NA	MOL	Lappan et al. [253]
Indonesia	646	15 (2.3)	NA	CM	Wiriya et al. [254]
Indonesia	54	5 (9.3)	NA	IVC	Yuli et al. [255]
Indonesia	424	146 (34.4)	NA	CM	Sungkar et al. [256]
Indonesia	53	9 (17.0)	NA	CM	Hayashi et al. [257]
Iran	5073	368 (7.3)	NA	CM	Turgay et al. [258]
Iran	399	16 (4.0)	NA	CM	Mahmoudi et al. [259]
Iran	130	40 (30.1)	ST1, ST2, ST3	CM, IVC, MOL	Beirmavand et al. [157]
Iran	20	3 (15.0)	NA	CM	Berenji et al. [102]
Iran	166	35 (21.1)	ST1, ST2, ST3	IVC, MOL	Mirjalali et al. [143]
Iran	181	17 (9.4)	NA	CM	Taghipour et al. [114]
Iran	225	5 (2.2)	NA	CM	Azami et al. [118]
Iran	166	35 (21.1)	ST1, ST2, ST3	CM, MOL	Jalallou et al. [138]
Iran	147	0 (0.0)	NA	CM	Anvari-Tafti et al. [106]
Iran	122	21 (17.2)	ST1, ST3, ST4, ST5	MOL	Khademvatan et al. [147]
Iran	100	6 (6.0)	NA	CM	Shafei et al. [146]
Iran	67	6 (9.0)	NA	CM, MOL	Mahmoudvand et al. [97]
Iran	250	41 (16.4)	ST1, ST2, ST3	CM, IVC, MOL	Sardarian et al. [190]
Iran	1410	47 (3.3)	ST3, ST4, ST5, ST7	CM, MOL	Khooshnood et al. [260]
Iran	655	180 (27.5)	NA	CM	Pestehchian et al. [261]
Iran	5743	54 (0.9)	NA	CM	Sadeghi et al. [262]
Iran	5739	30 (0.5)	NA	CM	Sadeghi and Borji [263]
Iran	2838	139 (5.0)	NA	CM	Badparva et al. 2014 [264]
Iran	1060	145 (13.7)	NA	CM	Mahni et al. [265]
Table 7. Cont.

Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Iran	880	55 (6.3)	NA	CM	Tork et al. [266]
Iran	652	48 (7.4)	NA	CM	Jahari et al. [267]
Iran	561	159 (28.4)	NA	CM	Hemmati et al. [268]
Iran	554	93 (16.8)	NA	CM, IVC	Riai et al. [269]
Iran	345	85 (24.6)	ST1, ST2, ST3	CM, IVC, MOL	Mardani Kafaki et al. [270]
Iran	861	114 (13.2)	NA	CM	Abbaspazadeh Afshar et al. [271]
Iran	732	63 (6.3)	NA	CM	Sobati [272]
Iran	184	45 (24.5)	ST1, ST2, ST3	MOL	Shirvani et al. [273]
Iran	283	20 (7.1)	NA	CM	Barati et al. [274]
Iran	2838	129 (4.5)	NA	CM	Badparva et al. [275]
Iran	565	144 (25.5)	NA	CM	Bairamizandeh Azarpotamani et al. [276]
Iran	1025	182 (17.8)	NA	CM	Sarksa et al. [277]
Iran	1000	669 (13.7)	NA	CM	Sharifdini et al. [278]
Iran	184	45 (24.5)	ST1, ST2, ST3	MOL	Pagheh et al. [279]
Iran	283	81 (3.6)	NA	CM	Beiravand et al. [280]
Iran	861	114 (13.2)	NA	CM	Taherkhani et al. [281]
Iraq	78	1 (1.3)	NA	CM, IVC	Sayal et al. [148]
Korea	324	29 (9.0)	ST1, ST2, ST3	MOL	Kim et al. [282]
Laos	669	91 (13.6)	NA	CM	Sayasone et al. [283]
Laos	305	45 (14.8)	NA	CM	Ribas et al. [284]
Laos	60	32 (51.7)	ST1, ST2, ST3, ST7	CM, IVC, MOL	Sanpool et al. [285]
Lebanon	7477	178 (2.3)	NA	CM	Araj et al. [286]
Lebanon	306	195 (63.7)	ST1, ST2, ST3, ST10	MOL	Khaled et al. [287]
Malaysia	77	45 (5.2)	NA	CM	Sinniah et al. [288]
Malaysia	500	102 (20.4)	NA	CM	Anuar et al. [149]
Malaysia	243	45 (18.5)	ST1, ST2, ST3	MOL	Mohammad et al. [290]
Malaysia	466	191 (41.0)	NA	CM, IVC, MOL	Noradilah et al. [291]
Malaysia	253	103 (40.7)	NA	CM, IVC, MOL	Mohammad et al. [292]
Malaysia	473	191 (40.4)	ST1, ST2, ST3, ST4	MOL	Mohammad et al. [293]
Malaysia	466	191 (41.0)	NA	CM, IVC, MOL	Mohammad et al. [294]
Malaysia	253	45 (17.8)	ST1, ST2, ST3	MOL	Mohammad et al. [295]
Malaysia	416	18 (4.3)	NA	CM	Mohammad et al. [296]
Myanmar	172	16 (9.3)	ST1, ST3, ST4	MOL	Mohammad et al. [297]
Nepal	241	63 (26.1)	ST1, ST2, ST4	IVC, MOL	Mohammad et al. [298]
Philippines	110	36 (32.7)	NA	IVC	Santos and Rivera [299]
Philippines	1271	166 (13.0)	ST1, ST2, ST3, ST4, ST5	IVC, MOL	Belleza et al. [300]
Philippines	35	29 (82.9)	ST1, ST3, ST4	MOL	Adao et al. [301]
Philippines	1271	165 (13.0)	NA	IVC	Belleza et al. [302]
Philippines	412	242 (58.7)	NA	MOL	Weerakoon et al. [303]
Saudi Arabia	140	96 (68.6)	NA	CM	AlDahhasi et al. [304]
Saudi Arabia	80	12 (15.0)	ST1, ST2, ST5	MOL	Mohammad et al. [305]
Saudi Arabia	50	4 (8.0)	NA	CM	Hawash et al. [306]
Saudi Arabia	90	2 (2.2)	NA	CM	Hawash et al. [307]
Saudi Arabia	795	131 (16.5)	NA	CM	Alqumber et al. [308]
Saudi Arabia	795	209 (26.3)	NA	CM	Alqumber et al. [309]
Thailand	249	1 (0.4)	NA	CM	Kaewpitoon et al. [310]
Thailand	60	6 (10.0)	NA	IVC	Surangsrirat et al. [311]
Thailand	475	58 (12.2)	NA	CM, IVC	Kaewjai et al. [312]
Table 7. Cont.

Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Thailand	230	25 (10.8)	ST1, ST3, ST4	MOL	Popruk et al. [306]
Thailand	1047	29 (2.8)	NA	CM	Prommi et al. [307]
Thailand	178	41 (23.0)	ST1, ST2, ST3, ST4, ST6, ST7	MOL	Yowang et al. [308]
Thailand	324	13 (4.0)	NA	CM	Punsawad et al. [309]
Thailand	220	13 (5.9)	ST2, ST3, ST6	MOL	Palasuwan et al. [310]
Thailand	247	2 (0.8)	NA	CM	Kitvatanachai et al. [311]
Thailand	253	4 (1.6)	NA	CM	Boonjaraspinyo et al. [312]
Thailand	224	1 (0.4)	NA	CM	Suntaravutun and Dokmaikaw [313]
Thailand	733	57 (7.8)	NA	IVC	Wongthamarin et al. [314]
Thailand	207	77 (37.2)	ST1, ST2, ST3, ST4	MOL	Popruk et al. [315]
Turkey	30	4 (13.0)	NA	CM, MOL	Karasartova et al. [316]
Turkey	150	16 (10.7)	NA	CM	Karadag et al. [317]
Turkey	105	30 (28.6)	NA	IVC	Dogruman-Al et al. [318]
Turkey	27,664	581 (2.1)	ST1, ST2, ST3, ST4	CM	Koksal et al. [319]
Turkey	176	30 (17.0)	NA	CM	Alver et al. [160]
Turkey	16,445	2602 (15.8)	NA	CM	Çetinkaya et al. [320]
Turkey	17,711	1353 (7.6)	NA	CM	Düzyl et al. [321]
Turkey	251	54 (21.5)	NA	CM	Kurt et al. [322]
Turkey	6267	968 (15.4)	NA	CM	Yılmaz et al. [323]
Turkey	87,100	640 (0.7)	NA	CM	Gülmez et al. [324]
Turkey	111,889	306 (0.3)	NA	CM	Kırkoyun Uysal et al. [325]
Turkey	7353	1884 (63.6)	NA	CM	Öncel [326]
Turkey	200	93 (46.5)	ST1, ST2, ST3, ST7	MOL	Malatyali et al. [327]
Turkey	69,633	18,460 (26.5)	NA	CM	Taş Cengiz et al. [328]
Turkey	104	10 (9.6)	ST1, ST2, ST3, ST6	MOL	Gülhan et al. [329]
Turkey	56	28 (50.0)	ST1, ST2, ST3, ST4, ST5, ST6, ST7	MOL	Koltas and Eroğlu [330]
United Arab Emirates	133	59 (44.4)	ST1, ST2, ST3	MOL	AbuOdeh et al. [331]
Uzbekistan	300	31 (10.3)	NA	CM	Toychiev et al. [332]
Uzbekistan	550	99 (18.0)	NA	CM	Davis et al. [112]

CM—Conventional microscopy, IVC—in vitro cultivation, MOL—Molecular technique, NA—Not applicable.

The presence of *Blastocystis* spp. in various other human categories that do not quite fit into those discussed above is summarized in Table 8.

Table 8. Prevalence and subtype distribution of *Blastocystis* spp. in various human categories in Asia (2010–2021).

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Acute appendicitis patients	Turkey	136	8 (5.9)	NA	CM	Hatipoğlu et al. [333]
Adult male prison inmates	Malaysia	294	43 (14.6)	ST1, ST3, ST6	CM, IVC, MOL	Angal et al. [334]
Adults with intestinal parasitic infection	Malaysia	35	17 (48.0)	NA	IVC	Chandramathi et al. [335]
Asymptomatic *Blastocystis* positive patients	Iran	25 *	25	ST1, ST2, ST3, ST7	MOL	Rezaei Riabi et al. [336]
Asymptomatic *Blastocystis* positive patients	Iran	34 *	34	ST2, ST3	CM, MOL	Shahbazi et al. [142]
Chronic spontaneous urticaria (adults)	Turkey	38	7 (18.4)	NA	CM	Vezir et al. [337]
Table 8. Cont.

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Chronic spontaneous urticaria (children)	Turkey	76	13 (17.1)	NA	CM	Vezir et al. [337]
Urticarial patients	Turkey	133	16 (12.0)	ST1, ST2, ST3	CM, MOL	Aydin et al. [338]
Diarrheic and non-diarrheic patients	Iran	400	58 (14.5)	ST1, ST2, ST3	IVC, MOL	Alinaghizade et al. [340]
Dengue patients	Malaysia	89	21 (23.6)	ST1, ST3, ST4, ST6	IVC, MOL	Thergarajan et al. [341]
Dialysis patients	Turkey	142	34 (23.9)	NA	CM	Karadag et al. [317]
Patients suspected to have intestinal parasites	Turkey	918	38 (4.2)	NA	CM	Koltas et al. [345]
Patients with chronic renal failure	Saudi Arabia	50	8 (16.0)	NA	CM	Hawash et al. [302]
Patients with chronic viral Hepatitis C	Russia	327	108 (33.0)	ST3, ST5, ST6	CM, MOL	Sigidaev et al. [134]
Patients with Erythema Nodosum	Turkey	81	2 (2.5)	NA	CM	Ozbagcivan et al. [346]
Patients with gastrointestinal and/or dermatologic symptoms	Turkey	37,108	2537 (6.8)	NA	CM	Tunali et al. [347]
Patients with intestinal protozoan infections	Iran	75	5 (6.7)	NA	CM	Jafari et al. [348]
Patients with systemic lupus erythematosus (SLE)	Malaysia	187	1 (0.5)	NA	not stated	Teh et al. 2018 [349]
Post-traumatic splenectomized patients	Turkey	30	12 (40.0)	ST1, ST3	CM, MOL	Karasartova et al. [316]
Pregnant women with Symptomatic Blastocystis positive patients	Turkey	100	14 (14.0)	ST1, ST2, ST3	CM, IVC, MOL	Malatyali et al. [350]
Ulcerative colitis patients with refractory symptoms	Iran	30(*)	30	ST1, ST2, ST3, ST6	MOL	Rezaei Riabi et al. [336]
Ulcerative colitis patients responsive to treatment	China	49	6 (12.2)	NA	CM	Tai et al. [351]
Visceral Leishmaniasis cases	China	73	1 (1.4)	NA	CM	Tai et al. [351]
* Study was carried out on Blastocystis spp. positive hosts						

4. Blastocystis spp. Infection in Animals

In Asia, Blastocystis spp. infection have been documented in hoofed mammals (Table 9), carnivores (Table 10), non-human primates (NHPs) (Table 11), birds (Table 12), rodents (Table 13), reptiles (Table 14), insects and some other mammalian groups (Table 15).
Table 9. Prevalence and subtype distribution of *Blastocystis* spp. in ungulates in Asia (2010–2021).

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References	
Artiodactyla							
Alpaca	China	14	12 (85.7)	ST10, ST14, ST18	MOL	Zhao et al. [352]	
Alpaca	China	27	4 (14.8)	ST10, ST14	MOL	Li et al. [353]	
Alpaca	China	366	87 (23.8)	ST5, ST10, ST14	MOL	Ma et al. [354]	
Alpaca	China	11	4 (36.4)	ST10, ST14	MOL	Deng et al. [3]	
Blesbuck	China	2	1 (50.0)	ST5	MOL	Li et al. [353]	
Buffalo	India	1	1 (100.0)	NA	CM	Sreekumar et al. [355]	
Buffalo	Nepal	19	4 (21.1)	ST4	IVC, MOL	Lee et al. [18]	
Bushbuck	China	18	8 (61.5)	ST10, ST14	MOL	Zhao et al. [352]	
Camel	China	10	5 (50.0)	ST1, ST10	MOL	Zhao et al. [352]	
Camel	China	40	14 (35.0)	ST2, ST10, ST14	MOL	Zhang et al. [14]	
Camel	Lebanon	254	161 (63.4)	ST5, ST7, ST10, ST14	MOL	Geie et al. [197]	
Deer (Caspian red deer)	Iran	1	1 (100.0)	NA	IVC	Hemalatha et al. [356]	
Deer (Javan rusa)	Malaysia	50	14 (28.0)	ST10	MOL	Mohammad et al. [388]	
Deer (Mousedeer)	Malaysia	4	1 (25.0)	Unknown (Clade IV)	IVC, MOL	Shariﬁ et al. [195]	
Deer (Sambur deer)	Malaysia	14	4 (28.6)	ST5	CM, MOL	Hemalatha et al. [356]	
Deer (Sika deer)	Malaysia	50	16 (32.0)	ST10	MOL	Mohammad et al. [371]	
Deer (Red deer)	China	5	2 (40.0)	ST10	MOL	Li et al. [353]	
Deer (Red deer/Wapiti)	China	3	1 (33.3)	ST10	MOL	Zhao et al. [352]	
Deer (Fallow deer)	China	2	1 (50.0)	ST10	MOL	Zhao et al. [352]	
Deer (White-tipped deer)	China	1	1 (100.0)	ST10	MOL	Zhao et al. [352]	
Deer (Sika deer)	China	8	3 (37.5)	ST10	MOL	Zhao et al. [352]	
Deer (Sika deer)	China	82	12 (14.6)	ST10, ST14	MOL	Wang et al. [373]	
Deer (Sika deer)	China	11	1 (9.1)	ST1	MOL	Deng et al. [3]	
Deer (Sika deer)	China	760	6 (0.8)	ST10, ST14	MOL	Ni et al. [374]	
Deer (Spotted deer)	Bangladesh	30	1 (3.3)	ST14	MOL	Li et al. [375]	
Deer (Water deer)	Korea	125	51 (40.8)	ST4, ST14	MOL	Kim et al. [376]	
Eland	China	9	6 (66.7)	ST10, ST14	MOL	Zhao et al. [352]	
Gayal	Bangladesh	4	1 (25.0)	ST14	MOL	Li et al. [375]	
Giraffe	China	10	2 (20.0)	ST12	MOL	Zhao et al. [352]	
Goat	China	789	458 (58.0)	ST1, ST3, ST4, ST5, ST10, ST14	MOL	Song et al. [377]	
Goat	China	781	2 (0.3)	ST1	MOL	Li et al. [378]	
Goat	China	59	28 (47.5)	ST10, ST14	MOL	Zhang et al. [14]	
Goat	Nepal	400	3 (0.8)	NA	CM	Ghimire and Bhattacharyya [379]	
Host	Country	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (Sts) Identified	Method(s)	References	
--------------	---------------	-------------------------	-----------------------------	--------------------------	-----------	-----------------------------------	
Goat	Malaysia	236	73 (30.9)	ST1, ST3, ST6, ST7	MOL	Tan et al. [380]	
Goat	Malaysia	31	8 (25.8)	ST4, ST8, ST10	MOL	Noradilah et al. [15]	
Goat	Malaysia	65	14 (21.5)	NA	IVC	Abd Razak et al. [357]	
Goat	Malaysia	20	13 (65.0)	NA	IVC	Hemalatha et al. [356]	
Goat	Nepal	29	1 (3.4)	ST4	IVC, MOL	Lee et al. [18]	
Goat	Philippines	6	1 (16.7)	ST14	IVC, MOL	Adao et al. [381]	
Goat	Thailand	38	36 (94.7)	ST10, ST12, ST14	MOL	Udonsom et al. [215]	
Goral (Himalayan)	Nepal	19	1 (5.3)	NA	CM	Adhikari et al. [382]	
Guanaco	China	20	14 (70.0)	ST10, ST22	MOL	Zhao et al. [352]	
Guar	Malaysia	10	3 (30.0)	NA	IVC	Hemalatha et al. [356]	
Oryx	China	2	1 (50.0)	ST10	MOL	Zhao et al. [352]	
Oryx	China	11	1 (9.1)	ST5	MOL	Li et al. [353]	
Pig	Cambodia	73	33 (45.2)	ST5	MOL	Wang et al. [242]	
Pig	China	560	419 (74.8)	ST1, ST3, ST5, ST10	MOL	Song et al. [383]	
Pig	China	68	6 (8.8)	ST5	MOL	Wang et al. [367]	
Pig	China	801	174 (21.7)	ST1, ST3, ST5	MOL	Wang et al. [364]	
Pig	China	866	433 (50.0)	ST1, ST3, ST5	MOL	Han et al. [385]	
Pig	China	396	170 (42.9)	ST1, ST5	MOL	Zou et al. [386]	
Pig	India	1	1 (100.0)	NA	CM	Sreekumar et al. [355]	
Pig	India	90	85 (94.4)	NA	CM	Arpitha et al. [387]	
Pig	Indonesia	93	81 (87.1)	ST1, ST2, ST5, ST17	IVC, MOL	Yoshikawa et al. [41]	
Pig	Indonesia	100	63 (63.0)	NA	CM	Mahendra et al. [388]	
Pig	Indonesia	100	69 (69.0)	NA	CM	Wisidusupatri et al. [389]	
Pig	Korea	646	390 (60.4)	ST1, ST2, ST3, ST5	MOL	Paik et al. [390]	
Pig	Nepal	11	4 (36.4)	ST4	IVC, MOL	Lee et al. [18]	
Pig	Philippines	49	36 (73.5)	ST1, ST2, ST3, ST5	MOL	Adao et al. [391]	
Pig	Philippines	99	20 (20.2)	ST1, ST3, ST7	IVC, MOL	Adao et al. [381]	
Pig	Philippines	122	47 (38.5)	NA	CM, IVC	De La Cruz et al. [392]	
Pig	Philippines	100	14 (14.0)	ST1, ST5	IVC, MOL	Evidor and Rivera [393]	
Pig	Philippines	101	2 (2.0)	NA	CM	Murao et al. [394]	
Pig	Thailand	102	32 (31.4)	ST1, ST3, ST12, ST14	MOL	Sanyanusin et al. [395]	
Pig	Thailand	90	32 (35.6)	ST1, ST3, ST5	MOL	Pintong et al. [214]	
Pig	Thailand	87	40 (46.0)	ST1, ST5	MOL	Udonsom et al. [215]	
Pig	Malaysia	10	10 (100.0)	NA	IVC	Hemalatha et al. [356]	
Pig	Vietnam	12	10 (100.0)	ST5	MOL	Alfellanli et al. [396]	
Sheep	Iran	150	29 (19.3)	ST7, ST10	CM, MOL	Rostami et al. [364]	
Sheep	China	832	50 (6.0)	ST5, ST10, ST14	MOL	Li et al. [378]	
Sheep	China	109	6 (5.5)	ST1, ST5, ST10, ST14	MOL	Wang et al. [367]	
Sheep	China	38	16 (42.1)	ST2, ST10, ST14	MOL	Zhang et al. [14]	
Sheep	China	78	42 (53.8)	ST2, ST10, ST14	MOL	Zhang et al. [14]	
Sheep	United Arab Emirates	11	7 (63.6)	ST10, ST14	MOL	AbuOdeh et al. [369]	
Sheep	Malaysia	38	22 (57.9)	NA	IVC	Hemalatha et al. [356]	
Sheep	Malaysia	20	2 (10.0)	NA	IVC	Abd Razak et al. [357]	
Small ruminants	India	107	15 (14.0)	NA	CM	Arpitha et al. [387]	
Takin	China	49	28 (57.1)	ST10, ST12, ST14	MOL	Zhao et al. [352]	
Waterbuck	China	3	3 (100.0)	ST12, ST14	MOL	Zhao et al. [352]	
Waterbuck	China	2	1 (50.0)	ST21	MOL	Zhao et al. [352]	
Waterbuck	Bangladesh	7	1 (14.3)	ST10	MOL	Li et al. [375]	
Wild boar	South Korea	433	45 (10.4)	ST5	MOL	Lee et al. [397]	
Wild Boar	Iran	25	11 (44.0)	NA	CM	Yaghoubi et al. [398]	
Wild Boar	Iran	1	1 (100.0)	NA	CM	Mirzazapour et al. [370]	
Yak	China	1027	278 (27.1)	ST10, ST12, ST14	MOL	Ren et al. [399]	
Yak	China	102	39 (38.2)	ST2, ST10, ST14	MOL	Zhang et al. [14]	
Yak	China	6	3 (50.0)	ST10, ST14	MOL	Zhao et al. [352]	
Perissodactyla	Horse	China	32	9 (28.1)	ST2, ST10	MOL	Zhang et al. [14]
Perissodactyla	Horse	China	4	1 (25.0)	ST10	MOL	Zhao et al. [352]
Perissodactyla	Wild Ass	China	5	2 (40.0)	ST10, ST12	MOL	Zhao et al. [352]
Perissodactyla	Pony	China	6	1 (16.7)	ST10	MOL	Zhao et al. [352]
Perissodactyla	Zebra	China	7	1 (14.3)	ST10	MOL	Li et al. [353]
Table 9. Cont.

Host	Country	No. of Samples Examined	No. of Positive Samples (%)	No. of Positive Subtypes (STs) Identified	Method(s)	References
Proboscidea						
Elephant	Bangladesh	3	1 (33.3)	ST11	MOL	Li et al. [375]
CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.						

Table 10. Prevalence and subtype distribution of *Blastocystis* spp. in carnivorous animals in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Artic fox	China	213	4 (1.9)	ST1, ST4, ST7	MOL	Wang et al. [373]
Bear	China	12	3 (25.0)	ST17	MOL	Deng et al. [3]
Bear	China	312	45 (14.4)	ST1	MOL	Ni et al. [374]
Cat	China	346	2 (0.6)	ST1	MOL	Li et al. [400]
Cat	Indonesia	90	48 (53.3)	NA	MOL	Patagi et al. [401]
Cat	Iran	140	20 (14.3)	NA	CM	Khademvatan et al. [402]
Cat	Iran	119	21 (17.7)	ST1, ST3, ST4, ST10, ST14	MOL	Mohammadpour et al. [403]
Cat	South Korea	158	1 (0.6)	ST4	MOL	Kwak and Seo [404]
Cat	Malaysia	60	12 (20.0)	ST1	MOL	Farah Nazijah et al. [405]
Cat	Turkey	3	3 (100.0)	ST3	MOL	Eroglu and Koltas [19]
Common raccoon	Iran	30	5 (6.7)	ST1, ST2, ST3	MOL	Mohammad Rahimi et al. [406]
Dog	China	136	4 (2.9)	ST1, ST4	MOL	Wang et al. [373]
Dog	China	651	35 (5.4)	ST1, ST3, ST10	MOL	Liao et al. [407]
Dog	India	80	19 (24.0)	ST1, ST4, ST5, ST6	MOL	Wang et al. [408]
Dog	Iran	301	59 (19.6)	ST1, ST3, ST10	MOL	Mohaghegh et al. [409]
Dog	Iran	552	29 (5.2)	ST2, ST3, ST4, ST7, ST8, ST10	MOL	Mirbadie et al. [410]
Dog	Iran	154	29 (18.8)	ST1, ST2, ST3	MOL	Mohammadpour et al. [403]
Dog	Turkey	4	4 (100.0)	ST1, ST2	MOL	Eroglu and Koltas [19]
Dog	Philippines	145	21 (14.5)	ST1, ST2, ST3, ST4, ST5	IVC, MOL	Belleza et al. [297]
Dog	Malaysia	84	40 (47.6)	ST1, ST3, ST4, ST8, ST10	MOL	Noradilah et al. [15]
Dog	Thailand	13	1 (7.7)	ST3	MOL	Udonsom et al. [215]
Dog	Cambodia	80	1 (1.3)	ST2	MOL	Wang et al. [408]
Dog	China	7	1 (14.3)	ST10	MOL	Li et al. [353]
Leopard	China	3	2 (66.7)	ST1, ST5	MOL	Deng et al. [3]
Meerkat	Iran	1	1 (100.0)	NA	CM	Mirzapour et al. [370]
Meerkat	China	2	1 (50.0)	ST5	MOL	Li et al. [353]
Panda (Giant panda)	China	81	10 (12.3)	ST1	MOL	Deng et al. [411]
Panda (Red panda)	China	23	2 (8.7)	ST1	MOL	Deng et al. [411]
Raccoon dog	China	40	3 (7.5)	ST3	MOL	Wang et al. [373]
Tiger (Siberian tiger)	China	13	1 (7.7)	ST10	MOL	Li et al. [353]
Tiger (White tiger)	China	9	1 (11.1)	ST10	MOL	Li et al. [353]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.
Table 11. Prevalence and subtype distribution of *Blastocystis* spp. in non-human primates in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Primates						
Langur	Bangladesh	5	3 (60.0)	ST1, ST13	MOL	Li et al. [375]
Grey langur	Bangladesh	2	1 (50.0)	ST1	MOL	Li et al. [375]
White-cheeked gibbon	China	4	1 (25.0)	ST1	MOL	Ma et al. [250]
White-cheeked gibbon	China	4	4 (100.0)	ST2, ST3	MOL	Deng et al. [3]
Ring-tailed lemur	China	6	2 (33.3)	ST2, ST4	MOL	Li et al. [355]
Ring-tailed lemur	China	16	7 (43.8)	ST3, ST5, ST9	MOL	Ma et al. [250]
Ring-tailed lemur	China	13	6 (46.2)	ST1, ST2, ST3	MOL	Deng et al. [3]
Macaque	China	97	85 (87.6)	ST1, ST2, ST3	MOL	Zanzani et al. [412]
Macaque (experimental)	China	185	12 (7.0)	ST1, ST2, ST3	MOL	Zhu et al. [173]
Rhesus macaque	Bangladesh	62	20 (32.3)	ST1, ST2, ST3	MOL	Li et al. [375]
Rhesus macaque	China	29	28 (96.6)	ST1, ST2, ST3, ST19	MOL	Zhao et al. [352]
Rhesus macaque	China	17	10 (58.8)	ST1	MOL	Deng et al. [3]
Rhesus macaque	China	18	6 (33.3)	ST2, ST3	MOL	Ma et al. [250]
Japanese macaque	China	33	6 (18.2)	ST2, ST3	MOL	Ma et al. [250]
Macaque	Philippines	50	5 (10.0)	NA	CM	Casim et al. [414]
Long-tailed macaque	Thailand	628	263 (41.9)	ST1, ST2, ST3	IVC, MOL	Vaisusuk et al. [415]
Crab-eating macaque	China	13	3 (23.1)	ST2, ST3	MOL	Ma et al. [250]
Orangutan	Indonesia	262	36 (13.7)	NA	CM	Labes et al. [416]
Orangutan	Malaysia	10	5 (50.0)	NA	IVC	Hemalatha et al. [356]
Vervet monkey	Iran	40	3 (7.5)	NA	CM	Dalimi et al. [417]
Vervet monkey	Bangladesh	7	3 (42.9)	ST2, ST3, ST13	MOL	Li et al. [375]
Hamadryas baboon	Saudi Arabia	823	349 (42.4)	NA	CM	Alqumber [303]
Hamadryas baboon	China	23	13 (56.5)	ST1, ST3	MOL	Zhao et al. [352]
Chimpanzee	China	10	8 (80.0)	ST2	MOL	Zhao et al. [352]
Chimpanzee	China	15	3 (13.3)	ST1, ST5	MOL	Ma et al. [250]
Francois’ leaf monkey	China	1	1 (100.0)	ST2	MOL	Zhao et al. [352]
Francois’ leaf monkey	China	3	2 (66.7)	ST1	MOL	Ma et al. [250]
Mandrill	China	4	1 (25.0)	ST3	MOL	Zhao et al. [352]
Mandrill	China	15	9 (60.0)	ST1, ST4	MOL	Ma et al. [250]
De Brazza’s monkey	China	5	4 (80.0)	ST1, ST10	MOL	Zhao et al. [352]
De Brazza’s monkey	China	5	5 (100.0)	ST1, ST2	MOL	Ma et al. [250]
Golden snub-nosed monkey	China	46	41 (89.1)	ST1, ST13	MOL	Zhao et al. [352]
Snub-nosed monkey	China	22	9 (40.9)	ST1, ST2	MOL	Ma et al. [250]
Golden monkey	China	37	18 (48.6)	ST1, ST2, ST3	MOL	Ma et al. [418]
Squirrel monkey	China	93	19 (20.4)	ST17	MOL	Deng et al. [3]
Common squirrel monkey	China	30	9 (30.0)	ST1, ST5	MOL	Ma et al. [250]
Red-faced spider monkey	China	4	2 (50.0)	ST2, ST3	MOL	Ma et al. [250]
Monkey	Philippines	4	4 (100.0)	ST1, ST2, ST3	MOL	Rivera [21]
Non-human primates	Malaysia	308	5 (1.6)	NA	CM	Adrus et al. [419]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.
Table 12. Prevalence and subtype distribution of *Blastocystis* spp. in birds in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Duck	Philippines	31	3 (9.6)	ST7, *B. pyriformis*	IVC, MOL	Adao et al. [381]
Birds	Turkey	5	5 (100.0)	ST1, ST2	MOL	Eroglu and Koltas [19]
Chicken	China	46	6 (13.0)	ST6, ST7	MOL	Wang et al. [373]
Chicken	Philippines	34	5 (14.7)	ST7, Mixed	IVC, MOL	Adao et al. [381]
Chicken	India	24	20 (83.3)	NA	CM	Sreekumar et al. [355]
Chicken	India	170	50 (29.4)	NA	CM	Arpitha et al. [387]
Chicken	Indonesia	38	13 (34.2)	ST7	IVC, MOL	Yoshikawa et al. [41]
Chicken	Lebanon	223	71 (31.8)	ST6, ST7	MOL	Greige et al. [199]
Chicken	Malaysia	104	27 (26.0)	ST1, ST3, ST6, ST7, ST9	MOL	Noradilah et al. [15]
Chicken	Malaysia	15	1 (6.7)	ST6	MOL	Mohammad et al. [296]
Chicken	Malaysia	107	27 (25.2)	NA	IVC	Farah Haziqah et al. [420]
Chicken	Malaysia	179	47 (26.3)	ST1, ST6, ST7, ST8	IVC, MOL	Farah Haziqah et al. [421]
Crested ibis	China	63	6 (9.5)	NA	CM	Zhang et al. [422]
Crow (Hooded)	Iran	144	64 (44.4)	ST13, ST14	IVC, MOL	Asghari et al. [423]
Duck	Malaysia	20	8 (40.0)	ST1, ST2, ST3, ST7	MOL	Noradilah et al. [15]
Green-naped lorikeet	China	2	1 (50.0)	ST10	MOL	Li et al. [353]
Ostrich	China	9	3 (33.3)	ST5, ST10, ST20	MOL	Zhao et al. [352]
Ostrich	China	19	6 (31.6)	ST5	MOL	Deng et al. [3]
Ostrich	Malaysia	37	37 (100.0)	ST6	IVC, MOL	Chandrasekar et al. [424]
Ostrich	Malaysia	37	37 (100.0)	NA	IVC	Hemalatha et al. [424]
Ostrich	China	3	2 (66.7)	ST5	MOL	Li et al. [353]
Green peafowl	China	12	1 (8.3)	ST3	MOL	Deng et al. [3]
Green peafowl	China	15	1 (6.7)	ST8	MOL	Deng et al. [411]
Indian peafowl	China	20	3 (15.0)	ST7, ST8	MOL	Li et al. [353]
Pigeon	China	34	4 (11.8)	ST8	MOL	Deng et al. [3]
Pigeon	China	47	1 (2.1)	ST6	MOL	Wang et al. [373]
Pigeon	Iran	156	67 (42.9)	ST13	IVC, MOL	Asghari et al. [423]
Poultry	Iran	132	21 (15.9)	ST7, ST10, ST14	CM, MOL	Rostami et al. [364]
Red crowned crane	China	43	6 (14.0)	ST6, ST7	MOL	Wang et al. [373]
Red-crowned crane	China	2	1 (50.0)	ST14	MOL	Li et al. [353]
Ruddy shelduck	China	11	2 (18.2)	ST8	MOL	Deng et al. [411]
Swan	Malaysia	20	7 (35.0)	ST1, ST3	MOL	Noradilah et al. [15]
Black swan	China	38	4 (10.5)	ST8	MOL	Deng et al. [411]
Turkey	India	4	3 (75.0)	NA	CM	Sreekumar et al. [355]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.

Table 13. Prevalence and subtype distribution of *Blastocystis* spp. in rodents in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Flying squirrel	China	207	63 (30.4)	ST1, ST3, ST13	MOL	Xiao et al. [425]
Eastern chipmunk	China	171	8 (4.7)	ST4	MOL	Chai et al. [426]
Eurasian red squirrel	China	72	7 (9.7)	ST4	MOL	Chai et al. [426]
Black great squirrel	China	1	1 (100.0)	ST4	MOL	Deng et al. [3]
Red giant flying squirrel	China	1	1 (100.0)	ST4	MOL	Deng et al. [3]
Indian palm squirrel	United Arab Emirates	4	2 (50.0)	ST4	MOL	AbuOdeh et al. [369]
Shrew-faced squirrel	United Arab Emirates	1	1 (100.0)	ST17	MOL	AbuOdeh et al. [369]
Chinese striped hamster	China	98	12 (12.2)	ST4	MOL	Chai et al. [426]
Chinchilla	China	72	3 (4.2)	ST4, ST17	MOL	Chai et al. [426]
Chinchilla	China	6	4 (66.7)	ST17	MOL	Deng et al. [3]
Guinea pig	China	90	12 (13.3)	ST4	MOL	Chai et al. [426]
Patagonian mara	China	15	3 (20.0)	ST4	MOL	Li et al. [353]
Rat *Mus musculus*	China	108	4 (3.7)	ST4	MOL	Wang et al. [373]
Table 13. Cont.

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Laboratory rats	China	355	29 (8.2)	ST4, ST7	MOL	Li et al. [427]
Rat (Rattus exulans)	Indonesia	77	10 (13.0)	ST4	IVC, MOL	Yoshikawa et al. [41]
Rat	Indonesia	98	6 (6.0)	NA	CM	Prasetyo [428]
Rodents	Indonesia	67	11 (16.4)	ST4	MOL	Katsumata et al. [429]
Rat (Rattus norvegicus)	Iran	127	20 (15.8)	ST1, ST3, ST4	MOL	Mohammadpour et al. [403]
Rat (Rattus norvegicus)	Malaysia	95	48 (51.0)	NA	CM	Premalatha et al. [431]
Rat (Rattus norvegicus)	Malaysia	290	133 (45.9)	ST1, ST4, ST5, ST7	IVC, MOL	Farah Haziqah et al. [432]
Wild rats (Rattus norvegicus)	Japan	48	12 (25.0)	ST4	MOL	Katsumata et al. [429]
Swiss-Webster mice	Iran	50	1 (2.0)	NA	CM	Kalani et al. [433]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.

Table 14. Prevalence and subtype distribution of Blastocystis spp. in reptiles in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Squamata	Iran	1	1 (100.0)	NA	CM	Mirzapour et al. [370]
Cobra snake	Iran	1	1 (100.0)	NA	CM	Mirzapour et al. [370]
Albino python	Iran	1	1 (100.0)	Unknown	CM	Mirzapour et al. [370]
Water monitor lizard	Malaysia	6	1 (1.6)	Unknown (Clade VIII)	IVC, MOL	Mohd Zain et al. [372]
Testudines	United Arab Emirates	19	5 (26.3)	Unknown	MOL	AbuOdeh et al. [369]
African spurred tortoise	United Arab Emirates	2	5 (50.0)	Unknown	MOL	AbuOdeh et al. [369]
Greek tortoise	United Arab Emirates	1	5 (50.0)	Unknown	MOL	AbuOdeh et al. [369]

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.

Table 15. Prevalence and subtype distribution of Blastocystis spp. in insects and other animal groups in Asia (2010–2021).

Host	Country	No. of Samples Examined	Number of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References	
Blattodea	China	116	96 (82.8)	ST2	MOL	Ma et al. [418]	
Cockroach	Thailand	920	9 (1.0)	NA	CM	Chamaviti et al. [434]	
Cockroach	Thailand	450	18 (4.0)	NA	CM	Suntaravith [435]	
Cockroach (Blatella germanica)	Turkey	138	57 (41.0)	NA	CM	Oguz et al. [436]	
Cockroach (Blatella germanica)	Iran	496	5 (1.0)	NA	CM	Motevali-Haghi et al. [437]	
Cockroach (Periplaneta americana)	Malaysia	151	61 (40.4)	ST3	IVC, MOL	Farah Haziqah et al. [438]	
Diprotodontia	China	11	8 (72.7)	ST10	MOL	Zhao et al. [352]	
Gray kangaroo	China	15	2 (13.3)	ST11	MOL	Li et al. [353]	
Red-necked wallaby	Indonesia	100	100 (100.0)	NA	CM, IVC	Natalia et al. [439]	
Sugar glider	New Zealand white rabbit	China	215	7 (3.3)	ST4	MOL	Wang et al. [373]
Rabbit	China	616	6 (1.0)	NA	MOL	Li et al. [440]	
Rabbit	United Arab Emirates	3	1 (33.3)	ST14	MOL	AbuOdeh et al. [369]	
Eulipotyphla	Iran	1	1 (100.0)	NA	CM	Mirzapour et al. [370]	

CM—Conventional microscopy, IVC—In vitro cultivation, MOL—Molecular technique, NA—Not applicable.
The prevalence of *Blastocystis* spp., reported in the last ten years, varied widely among the ungulates. Infection was mostly reported in livestock animals such as cattle, goats, sheep and pigs. *Blastocystis* spp. ST10 and ST14 were the most frequently isolated from deer, alpacas, cattle, yaks, sheep and goats, while ST1 and ST5 were the most common in pigs.

Blastocystis spp. has been isolated from carnivores, both domestic and wild, in Asia. Prevalence ranged from 0.6% to 100%, with STs 1–8 and ST10 being identified. NHPs have been commonly described to harbor *Blastocystis* spp., with a reported prevalence reaching a 100%. Genetic analyses have recognized ST1, ST2, and ST3 as being the most common in this group of mammals. Interestingly, *Blastocystis* spp. ST9 was isolated from ring-tailed lemur from China [250].

Blastocystis spp. infections in birds have been reported. Prevalence varied widely, however, subtype identification revealed ST6, ST7, ST8 as the most frequently isolated. The isolation of *Blastocystis* spp. ST9 in chicken in Malaysia [15] is peculiar. Diverse genera of rodents have been found as hosts to *Blastocystis* spp. Although STs 1, 3, 5, 7 and 13 have been reported, ST4 and ST17 were the most frequently identified.

A few studies have reported on the infection of reptiles with *Blastocystis* spp. with the highest sample size being 19. Prevalence ranged from 26.3% to 100%, no subtype has yet been mentioned. Although studies are still few, cockroaches have been found as hosts to *Blastocystis* spp. Two out of six studies have described infection to the subtype level, ST2 was identified in China [418] while ST3 was identified in Malaysia [438].

Other animals found as hosts to *Blastocystis* spp. are the gray kangaroo, red-necked wallaby, sugar glider, rabbit, and hedgehog.

5. *Blastocystis* spp. in Food and Environmental Sources

In the past decade, the presence of *Blastocystis* spp. has been reported in tap water, river water, seawater, wells, fishponds, wastewater, food and even ambient air in Asia. The prevalence rate ranged from 2.1% to 100% in the various water sources, and 2.8% to 10.2% in leafy vegetables (Table 16). The only study on *Blastocystis* spp. in ambient air reported a prevalence of 1.4%. *Blastocystis* spp. subtype identification is only available for water sources. STs 1, 2, 3, 4, 6, 8, 10 have so far been recorded from water samples; and although the prevalence of ST3 was highest, ST1 was the most widespread subtype.

Table 16. Prevalence and subtype distribution of *Blastocystis* spp. in food and environmental sources in Asia (2010–2021).

Country	Food/Environmental Source	No. of Samples Examined	No. of Positive Samples (%)	Subtypes (STs) Identified	Method(s)	References
Iran	Treated wastewater	12	5 (41.7)	ST2, ST6, ST8	F, MOL	Javanmard et al. [441]
Malaysia	River water	480	133 (27.7)	NA	MB, IVC	Ithoi et al. [442]
Malaysia	Drinking water treatment plants	85	22 (25.9)	NA	IMS, CM	Richard et al. [443]
Malaysia	River water	14	14 (100.0)	ST1, ST2, ST3, ST4, ST8, ST10	MF, MOL	Noradilah et al. [444]
Malaysia	Various water sources	7	3 (42.9)	NA	MF, IVC	Noradilah et al. [23]
Nepal	River water	16	1 (6.3)	ST1, ST4	C, MOL	Lee et al. [18]
Philippines	Wastewater (influent)	31	7 (23.0)	ST1, ST2	C, IVC, MOL Banatica and Rivera [445]	
Turkey	Tap water	25	3 (12.0)	ST1	MOL	Eroglu and Koltas, [19]
Turkey	Streams and drinking water	228	47 (20.6)	NA	CM	Karaman et al. [446]
Turkey	River water	195	9 (4.6)	ST1, ST3	C, MOL	Koloren et al. [447]
Turkey	Sea water	48	1 (2.1)	ST1		
Turkey	Surface water	75	4 (5.3)	ST1, ST3	C, MOL	Koloren and Karaman [448]
Saudia Arabia	Leaty vegetables	470	13 (2.8)	NA	S, CM	Al-Megrin [27]
Iran	Fresh vegetables	240	10 (4.2)	NA	S, CM	Isazadeh et al. [449]
Syria	Fresh vegetables	128	13 (10.2)	NA	MOL	Al Nahhas and Abousalcham [450]
Korea	Ambient air	71	1 (1.4)	NA	MOL	Han et al. [451]

C—Centrifugation, CM—Conventional microscopy, F—Filtration, IMS—Immunomagnetic separation technique, IVC—In vitro cultivation, MB—Membrane filtration, MOL—Molecular technique, S—Sedimentation, NA—Not applicable.
6. Distribution of Blastocystis spp. by Country

From 2010 till now, the identification of Blastocystis spp. has been described for a total of 31 Asian countries. Out of these 31, genetic characterization and Blastocystis spp. subtype identification was available for 22 countries. Figure 1 reveals the distribution of the subtypes of Blastocystis spp. in these countries with a glimpse of subtypes shared by humans, animals, and water sources. Blastocystis spp. ST1 was the most widespread subtype, found in all of the 22 countries.

7. Discussion

Blastocystis spp. have been reported in over 50% of the countries in the continent of Asia. Although the most documented hosts to infection were humans and several animal species, this organism has also been detected in water sources, vegetables, and ambient air.

Variation of prevalence rates was seen within and between the various human host categories. Although authors have described both significant and insignificant differences between Blastocystis spp. infection in patients with and without known disease conditions, this variation could be a result of the methods employed in the detection of Blastocystis spp. Blastocystis spp. STs 1–7 have been identified in humans in Asia. ST1, ST2, ST3 and ST4 were more widespread and more frequently isolated than ST5, ST6 and ST7. This finding is in agreement with studies from other parts of the world [2,13,452,453].

The isolation of Blastocystis spp. STs 1–14, and ST18–22 (novel subtypes) were reported in animal hosts. ST1, ST2, ST3, ST4, ST5, ST6 and ST7 were found common to humans and animals. ST9 was observed in ring-tailed lemurs and chickens in China [250] and Malaysia [15] respectively; however, no article included in this review reported on the identification of ST9 in humans in these countries. The characteristic presence of ST5 in pigs, ST10 and ST14 in goats, sheep and cattle, and ST6 and ST7 in chickens underscore suggestions that these STs are specific to the respective animal hosts. Also, reports of isolation of ST5 in pig handlers [214] and ST6 in chicken slaughterhouse staff [199] are pointers to possible zoonotic transmission.
Where stated, cysts were the *Blastocystis* spp. forms observed in vegetables and water samples. The presence of cysts in the life cycle of *Blastocystis* spp. enable their existence outside of human and animal hosts; also, the chloroform-resistant nature of these cysts probably explains the presence of *Blastocystis* spp. even in treated water.

8. Conclusions

The growing interest in the study of *Blastocystis* spp. as an area of research is very obvious and fundamental to unraveling the much that is hitherto unknown of the epidemiology, biology and pathogenicity of this protist. *Blastocystis* spp. have been isolated from biotic and abiotic sources in Asia. Considering that humans and animals are in constant interactions with their environment, epidemiological studies of *Blastocystis* spp. from an ecological perspective are essential. In essence, continuous surveillance of human and animal hosts alongside their food and water sources and other possible sources of infection such as soil across different geographical locations and climatic conditions is needed. The use of molecular detection methods in epidemiological studies are recommended to provide information on *Blastocystis* spp. STs in as many regions as possible. Incorporating the One Health (OH) method into epidemiological studies will equip researchers and other stakeholders with information on the possible influence of ecosystems on *Blastocystis* spp., it will further elucidate transmission routes and provide clues required to break the transmission of this protist successfully. Morphological studies of *Blastocystis* spp. in various host species and environmental sources are insufficient but essential; electron microscopy could help to accentuate structural details of isolates from various hosts and the differences or similarities between them, and contribute to the understanding of a proper, more detailed *Blastocystis* spp. lifecycle.

Author Contributions: Conceptualization, I.L.L., F.H.M.T. and N.S.; writing-original draft preparation, A.A.R.-A.; writing-review and editing, I.L.L., F.H.M.T. and N.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Short Term Grants of UniSHAMS (100–161(RMU)01/STG/2020 Bil. (62)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this published article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tan, K.S.W. New Insights on Classification, Identification, and Clinical Relevance of *Blastocystis* spp. *Clin. Microbiol. Rev.* 2008, 21, 639–665. [CrossRef] [PubMed]
2. Alfellani, M.A.; Stensvold, C.R.; Vidal-Lapiedra, A.; Onuoha, E.S.U.; Fagbenro-Beyioku, A.F.; Clark, C.G. Variable Geographic Distribution of *Blastocystis* Subtypes and Its Potential Implications. *Acta Trop.* 2013, 126, 11–18. [CrossRef] [PubMed]
3. Deng, L.; Yao, J.; Chen, S.; He, T.; Chai, Y.; Zhou, Z.; Shi, X.; Liu, H.; Zhong, Z.; Fu, H.; et al. First Identification and Molecular Subtyping of *Blastocystis* sp. in Zoo Animals in Southwestern China. *Parasites Vectors* 2021, 14, 11. [CrossRef]
4. Andersen, L.O.; Stensvold, C.R. *Blastocystis* in Health and Disease: Are We Moving from a Clinical to a Public Health Perspective? *J. Clin. Microbiol.* 2016, 54, 524–528. [CrossRef] [PubMed]
5. Stenzel, D.J.; Boreham, P.F.L. *Blastocystis hominis* Revisited. *Clin. Microbiol. Rev.* 1996, 105, 563–584. [CrossRef]
6. Silberman, J.D.; Sogin, M.L.; Leipe, D.D.; Clark, C.G. Human Parasite Finds Taxonomic Home. *Science* 1996, 30, 380, 398. [CrossRef]
7. Yoshikawa, H.; Koyama, Y.; Tsuchiya, E.; Takami, K. *Blastocystis* Phylogeny among Various Isolates from Humans to Insects. *Parasitol. Int.* 2016, 65, 750–759. [CrossRef]
8. Lepczyńska, M.; Białkowska, J.; Dzika, E.; Piskorz-Ogórek, K.; Korycińska, J. *Blastocystis*: How Do Specific Diets and Human Gut Microbiota Affect Its Development and Pathogenicity? *Eur. J. Clin. Microbiol. Infect. Dis.* 2017, 36, 1531–1540. [CrossRef]
9. Parija, S.; Jeremiah, S. *Blastocystis*: Taxonomy, Biology and Virulence. *Trop. Parasitol.* 2013, 3, 17. [CrossRef]
10. Stensvold, C.R.; Suresh, G.K.; Tan, K.S.W.; Thompson, R.C.A.; Traub, R.J.; Viscogliosi, E.; Yoshikawa, H.; Clark, C.G. Terminology for *Blastocystis* Subtypes-a Consensus. *Trends Parasitol.* 2007, 23, 93–96. [CrossRef]
39. Liao, C.-W.; Chiu, K.-C.; Chiang, I.-C.; Cheng, P.-C.; Chuang, T.-W.; Kuo, J.-H.; Tu, Y.-H.; Fan, C.-K. Prevalence and Risk Factors for Intestinal Parasitic Infection in Schoolchildren in Battambang, Cambodia. Am. J. Trop. Med. Hyg. 2017, 96, 583–588. [CrossRef]

40. Rayan, P.; Verghese, S.; McDonnell, P.A. Geographical Location and Age Affects the Incidence of Parasitic Infections in School Children. Indian J. Pathol. Microbiol. 2010, 53, 504–508. [CrossRef]

41. Yoshihikawa, H.; Tokoro, M.; Nagamoto, T.; Arayama, S.; Asih, P.B.S.; Rozi, I.E.; Syafriuddin, D. Molecular Survey of Blastocystis sp. from Humans and Associated Animals in an Indonesian Community with Poor Hygiene. Parasitol. Int. 2016, 65, 780–784. [CrossRef]

42. Zulfa, F.; Sari, I.P.; Kurniawan, A. Association of Blastocystis Subtypes with Diarrhea in Children. J. Phys. Conf. Ser. 2017, 884, 012031. [CrossRef]

43. Sari, I.P.; Benung, M.R.; Wahdini, S.; Kurniawan, A. Diagnosis and Identification of Blastocystis Subtypes in Primary School Children in Jakarta. J. Trop. Pediatr. 2018, 64, 208–214. [CrossRef]

44. Subarah, R.; Susanto, L.; Astuty, W.; Winita, R.; Sari, I.P. Intestinal Parasitic Infections and Hemoglobin Levels among Schoolchildren Participating in a Deworming Program in Jakarta, Indonesia: A Cross-Sectional Study. Open Access Maced. J. Med. Sci. 2020, 8, 589–594. [CrossRef]

45. Sari, I.P.; Audindra, S.; Syarira, A.V.; Wahdini, S. Nutritional Status of School-Aged Children with Intestinal Parasite Infection in South Jakarta, Indonesia. Open Access Maced. J. Med. Sci. 2021, 9, 95–100. [CrossRef]

46. Ashtiani, M.T.H.; Monajemzadeh, M.; Saghi, B.; Shams, S.; Mortazavi, S.H.; Khaki, S.; Mohseni, N.; Kashi, L.; Nikmanesh, B. Prevalence of Intestinal Parasites among Children to Children of Medical Center during 18 Years (1991–2008), Tehran, Iran. Ann. Trop. Med. Parasitol. 2011, 105, 507–512. [CrossRef] [PubMed]

47. Niaraki, S.R.; Hajialilo, E.; Delshad, A.; Alizadeh, S.A.; Alipour, M.; Heydarian, P.; Saraei, M. Molecular Epidemiology of Blastocystis spp. in Children referred to Qods Hospital in Northwestern of Iran. J. Parasit. Dis. 2020, 44, 151–158. [CrossRef] [PubMed]

48. Mahmoudvand, H.; Taei, N.; Faraji Goodarzi, M.; Ebrahimzadeh, F. Prevalence and Risk Factors of Intestinal Protozoan Infections in Children (2–5 yr Old) from Lorestan Province, Western Iran. Trop. Biomed. 2018, 35, 259–266.

49. Abd, J.; Farhadi, M.; Aghae, S. Prevalence of Intestinal Parasites among Children Attending the Daycare Centers of Ilam, Western Iran. J. Med. Sci. 2014, 14, 143–146. [CrossRef]

50. Daryani, A.; Sharif, M.; Nasrolahei, M.; Khalilian, A.; Mohammadi, A.; Barzegar, G. Epidemiological Survey of the Prevalence of Intestinal Parasites among Schoolchildren in Sari, Northern Iran. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 455–459. [CrossRef] [PubMed]

51. Hazzari Tappeh, K.H.; Mostaghim, M.; Hanifian, H.; Khalkhali, H.; Mousavi, J. A Study on the Intestinal Parasitic Infections among Elementary School Students at a District (Silvana) In Urmia, West Azerbaijan. Int. J. Res. Appl. Basic Med. Sci. 2015, 1, 14–19. [CrossRef]

52. Norouzi, R.; Nourian, A.; Hanilo, A.; Kamali, K. Prevalence of Intestinal Parasites among Primary School Students in Zanjan City (2013). J. Zanjan Univ. Med. Sci. Health Serv. 2016, 24, 121–130.

53. Babakhani, M.; Safari, R.; Rajati, F.; Salimi, S.; Omidian doost, A. Prevalence and Risk Factors Associated with Intestinal Parasitic Infection among School Children in Gashky, West of Iran. Int. J. Pediatr. 2017, 5, 5263–5273. [CrossRef]

54. Bahmani, P.; Maleki, A.; Sadeghi, S.; Shahmoradi, B.; Ghahremani, E. Prevalence of Intestinal Protozoa Infections and Associated Risk Factors among Schoolchildren in Sanandaj City, Iran. Iran. J. Parasitol. 2017, 12, 108–116.

55. Saki, J.; Amraee, D. Prevalence of Intestinal Parasites Among the Rural Primary School Students in the West of Ahvaz County, Iran. 2015. Jentashapir J. Health Res. 2017, 8, e40326. [CrossRef]

56. Turki, H.; Hamedi, Y.; Heidari-Hengami, M.; Najafi-Asl, M.; Rafati, S.; Sharifi-Sarasiabi, K. Prevalence of Intestinal Parasitic Infection among Primary School Children in Southern Iran. J. Trop. Pediatr. 2017, 63, 659–665. [CrossRef] [PubMed]

57. Mahdii, N.K.; Al-Saadoon, M.A. Microsporidiosis among Children with Malignant Diseases in Basrah, Iraq. Pak. J. Med. Sci. 2012, 28, 621–624.

58. Osman, M.; El Safadi, D.; Cian, A.; Benamrouz, S.; Nourrisson, C.; Poirier, P.; Pereira, B.; Razakandrainibe, R.; Pinon, A.; Lambert, C.; et al. Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba from Schoolchildren in Tripoli, Lebanon. PLoS Negl. Trop. Dis. 2016, 10, 1–17. [CrossRef]

59. Abd. Ghani, M.K.; Yusof, H. Blastocystis hominis: Kehadirannya Di Dalam Sampel Feses Kanak-Kanak Orang Asli Di Pos Lenjang, Pahang, Malaysia. Sains Malays. 2011, 40, 1123–1127.

60. Abdulalusam, A.M.; Ithoi, I.; Al-Mekhlafi, H.M.; Ahmed, A.; Surin, J.; Mak, J.-W. Drinking Water Is a Significant Predictor of Blastocystis Infection among Rural Malaysian Primary Schoolchildren. Parasitology 2012, 139, 1014–1020. [CrossRef]

61. Al-Harazi, T.; Ghani, M.K.A.; Othman, H. Prevalence of Intestinal Protozoan Infections among Orang Asli Schoolchildren in Pos Senderut, Pahang, Malaysia. J. Egypt. Soc. Parasitol. 2013, 43, 561–568. [CrossRef]

62. Sinniah, B.; Hassan, A.K.R.; Sabaridah, I.; Soe, M.M.; Ibrahim, Z.; Ali, O. Prevalence of Intestinal Parasitic Infections among Communities Living in Different Habitats and Its Comparison with One Hundred and One Studies Conducted over the Past 42 Years (1970 to 2013) in Malaysia. Trop. Biomed. 2014, 31, 190–206.

63. Nithyamathi, K.; Chandramathi, S.; Kumar, S. Predominance of Blastocystis sp. Infection among School Children in Peninsular Malaysia. PLoS ONE 2016, 11, e0136709. [CrossRef]

64. Tang, S.G.H.; Kamel, A.G.M. Intestinal Protozoan Infections of Schoolchildren in an Aboriginal (Orang Asli) Settlement in Perak, Malaysia. Int. Med. J. 2020, 27, 31–35.

65. Adli, M.N.; Mohamed Kamel, A.G. Blastocystosis amongst the Orang Asli (Aborigine) School Children of Sktar Kuala Kubu Bharu, Selangor, Malaysia. Int. Med. J. 2020, 27, 412–414.
Biology 2021, 10, 990

66. Mukhiya, R.K.; Rai, S.K.; Karki, A.B.; Prajapati, A. Intestinal Protozoan Parasitic Infection among School Children. J. Nepal Health Res. Coun. 2012, 10, 204–207. [PubMed]

67. Al-Mohammed, H.I.; Amin, T.T.; Aboulmagd, E.; Hablus, H.R.; Zaza, B.O. Prevalence of Intestinal Parasitic Infections and Its Relationship with Socio-Demographics and Hygienic Habits among Male Primary Schoolchildren in Al-Alsa, Saudi Arabia. Asian Pac. J. Trop. Med. 2010, 3, 906–912. [CrossRef]

68. Bakarman, M.A.; Hegazi, M.A.; Butt, N.S. Prevalence, Characteristics, Risk Factors, and Impact of Intestinal Parasitic Infections on School Children in Jeddah, Western Saudi Arabia. J. Epidemiol. Glob. Health 2019, 9, 81–87. [CrossRef] [PubMed]

69. Suntaravitun, P.; Dokmaikaw, A. Prevalence of Intestinal Protozoan Infections among Schoolchildren in Bang Khla District, Chachoengsao Province, Central Thailand. Asian Pac. J. Trop. Dis. 2017, 7, 523–526. [CrossRef]

70. Sanpraserat, V.; Srichaipon, N.; Bunkasem, U.; Sirirungruang, S.; Nuchprayoon, S. Prevalence of Intestinal Protozoan Infections among Children in Thailand: A Large-Scale Screening and Comparative Study of Three Standard Detection Methods. Southeast Asian J. Trop. Med. Public Health 2016, 47, 1123–1133. [CrossRef]

71. Thuthaisong, U.; Siripattanapipong, S.; Mungthin, M.; Pipatsattipong, D.; Tan-Ariya, P.; Naaglor, T.; Leelavvoo, S. Identification of Blastocystis Subtype 1 Variants in the Home for Girls, Bangkok, Thailand. Am. J. Trop. Med. Hyg. 2013, 88, 352–358. [CrossRef] [PubMed]

72. Pipatsattipong, D.; Leelavvoo, S.; Mungthin, M.; Aunpad, P.; Naaglor, T.; Rangsin, R. Prevalence and Risk Factors for Blastocystis Infection among Children and Caregivers in a Child Care Center, Bangkok, Thailand. Am. J. Trop. Med. Hyg. 2015, 93, 310–315. [CrossRef] [PubMed]

73. Punsawad, C.; Phasuk, N.; Bunratsami, S.; Thongtup, K.; Viriyavejakul, P.; Palipoch, S.; Koomhin, P.; Nongnaul, S. Prevalence of Intestinal Parasitic Infections and Associated Risk Factors for Hookworm Infections among Primary Schoolchildren in Rural Areas of Nakhon Si Thammarat, Southern Thailand. BMC Public Health 2018, 18, 1118. [CrossRef]

74. Assavapongpaiboon, B.; Bunkasem, U.; Sanpraserat, V.; Nuchprayoon, S. A Cross-Sectional Study on Intestinal Parasitic Infections in Children in Suburban Public Primary Schools, Saraburi, the Central Region of Thailand. Am. J. Trop. Med. Hyg. 2018, 98, 763–767. [CrossRef]

75. Boondit, J.; Pipatsattipong, D.; Mungthin, M.; Taamasri, P.; Tan-Ariya, P.; Naaglor, T.; Leelavvoo, S. Incidence and Risk Factors of Blastocystis Infection in Orphans at the Babies’ Home, Nonthaburi Province, Thailand. J. Med. Assoc. Thail. 2014, 97, S52–S59.

76. Kitvatanachai, S.; Rhongbuttsri, P. Intestinal Protozoan Infections in Suburban Government Schools, Lak Hok Subdistrict, Muang Pathum Thani, Thailand. Asian Pac. J. Trop. Med. 2013, 6, 699–702. [CrossRef]

77. Popruk, S.; Thima, K.; Udonsom, R.; Rattaprasert, P.; Sukthana, Y. Does Silent Giardia Infection Need Any Attention? Open Trop. Med. J. 2011, 4, 26–32. [CrossRef]

78. Gündüçoglu, H.; Parlak, M.; Çiçek, M.; Yaman, G.; Oztürk, O.; Cikman, A.; Berktaş, M. Investigation of Intestinal Parasites in Students of Mustafa Cengiz Primary School in Van. [Van Mustafa Cengiz İlköğretim Okulu Öğrencilerinde Bağirsak Parazitlerinin Araştırılması. Turk. Parazitol. J. 2010, 34, 172–175.

79. Hamami, B.; Cetinkaya, U.; Delice, S.; Erçal, B.D.; Güçüyetmez, S.; Yazar, S. Investigation of Intestinal Parasites among Primary School Students in Kayseri-Hacilar. Kayseri-Hacilar’da İlköğretim Okulu Öğrencilerinde Bağırskar Parazitlerinin Araştırılması. Turk. Parazitol. J. 2011, 35, 96–99. [CrossRef]

80. Sankur, F.; Ayturhan, S.; Malatyali, E.; Ertabaklar, H.; Ertug, S. The Distribution of Blastocystis Subtypes among School-Aged Children in Mugla, Turkey. Iran. J. Parasitol. 2017, 12, 580–586. [PubMed]

81. Calik, S.; Karaman, U.; Colak, C. Prevalence of Microsporidium and Other Intestinal Parasites in Children from Malatya, Turkey. Indian J. Microbiol. 2011, 51, 345–349. [CrossRef] [PubMed]

82. Dogan, N.; Aydin, M.; Tuzemen, N.U.; Dinleyici, E.C.; Oguz, I.; Dogruman-Al, F. Subtype Distribution of Blastocystis spp. Isolated from Children in Eskisehir, Turkey. Parasitol. Int. 2017, 66, 948–951. [CrossRef] [PubMed]

83. Salehi Kahyesh, R.; Alghasi, A.; Haddadi, S.; Nasab, M.A.; Mafakhzeradeh, A. The Prevalence of Blastocystis Infection in Pediatric Patients with Malignancy: A Single-Center Study in Ahvaz, Iran. Arch. Pediatr. Infect. Dis. 2021, 9, e104068. [CrossRef]

84. Asghari, A.; Zare, M.; Hatam, G.; Shahabi, S.; Gholidadeh, F.; Motazedian, M. Molecular Identification and Subtypes Distribution of Blastocystis sp. Isolated from Children and Adolescent with Cancer in Iran: Evaluation of Possible Risk Factors and Clinical Features. Acta Parasitol. 2020, 65, 462–473. [CrossRef]

85. Salehi Kahyesh, R.; Alghasi, A.; Haddadi, S.; Sharhani, A. Intestinal Parasites Infection in Children with Cancer in Ahvaz, Southwest Iran. Interdiscip. Perspect. Infect. Dis. 2020, 2020. [CrossRef] [PubMed]

86. Zabolinejad, N.; Berenji, F.; Eskhafatki, E.B.; Badeii, Z.; Banihashem, A.; Afzalaei, M. Intestinal Parasites in Children with Lymphophematopoietic Malignancy in Iran, Mashhad. jundishapur j. Microbiol. 2013, 6, e7765. [CrossRef] [PubMed]

87. Mahmoudvand, H.; Sepahvand, A.; Badparva, E.; Khatami, M.; Niazi, M.; Moayyedkazemi, A. Possible Association and Risk Factors of Blastocystis Infection and Colorectal Cancers in Western Iran. Arch. Clin. Infect. Dis. 2021, 16, e90861. [CrossRef]

88. Zhang, W.; Ren, G.; Zhao, W.; Yang, Z.; Shen, Y.; Sun, Y.; Liu, A.; Cao, J. Genotyping of Enterocytozoon Bieneusi and Subtyping of Blastocystis in Cancer Patients: Relationship to Diarrhea and Assessment of Zoonotic Transmission. Front. Microbiol. 2017, 8, 1835. [CrossRef] [PubMed]

89. Chandramathi, S.; Suresh, K.; Anita, Z.B.; Kuppusamy, U.R. Infections of Blastocystis hominis and Microsporidia in Cancer Patients: Are They Opportunistic? Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 267–269. [CrossRef]

90. Mohamed, A.M.; Ahmed, M.A.; Ahmed, S.A.; Al-Semany, S.A.; Alghamdi, S.S.; Zaglool, D.A. Predominance and Association Risk of Blastocystis hominis Subtype i in Colorectal Cancer: A Case Control Study. Infect. Agent. Cancer 2017, 12, 1–8. [CrossRef]
141. Moosavi, A.; Haghihi, A.; Majarad, E.N.; Zayeri, F.; Alebouyeh, M.; Khazan, H.; Kazemi, B.; Zali, M.R. Genetic Variability of Blastocystis sp. Isolated from Symptomatic and Asymptomatic Individuals in Iran. *Parasitol. Res.* 2012, 111, 2311–2315. [CrossRef] [PubMed]

142. Shahbazi, A.; Aboosalotani, N.; Bazmani, A.; Khannahmohammadi, M.; Aboosalotani, E.; Fallah, E. PCR-Based Subtyping of Blastocystis Isolates from Symptomatic and Asymptomatic Patients in North-West of Iran. *J. Pure Appl. Microbiol.* 2013, 7, 2957–2963.

143. Mirjalali, H.; Abbasi, M.R.; Naderi, N.; Hasani, Z.; Mirsamadi, E.S.; Stensvold, C.R.; Balati, H.; Asadzadeh Aghdæi, H.; Zali, M.R. Distribution and Phylogenetic Analysis of Blastocystis sp. Subtypes Isolated from IBD Patients and Healthy Individuals in Iran. *Eur. J. Clin. Microbiol. Infect. Dis.* 2017, 36, 2335–2342. [CrossRef]

144. Kesuma, Y.; Firmansyah, A.; Bardosono, S.; Sari, I.P.; Kurniawan, A. Blastocystis ST-1 Is Associated with Irritable Bowel Syndrome-Diarrhea (IBS-D) in Indonesian Adolescents. *Parasite Epidemiol. Control* 2019, 6, e00112. [CrossRef] [PubMed]

145. Das, R.; Khalil, S.; Mirdha, B.R.; Makharia, G.K.; Dattagupta, S.; Chaudhry, R. Molecular Characterization and Subtyping of Blastocystis species in Irritable Bowel Syndrome Patients from North India. *PLoS ONE* 2016, 11, e0147055. [CrossRef]

146. Shahie, Z.; Esfandiar, F.; Sarkari, B.; Rezaei, Z.; Fatahi, M.R.; Hosseini Asl, S.M.K. Parasitic Infections in Irritable Bowel Syndrome Patients: Evidence to Propose a Possible Link, Based on a Case-Control Study in the South of Iran. *BMC Res. Notes* 2020, 13, 264. [CrossRef]

147. Khademvatan, S.; Masjedizadeh, R.; Rahim, F.; Mahbodfar, H.; Salehi, R.; Yousefi-Razin, E.; Foroutan, M. Blastocystis and Irritable Bowel Syndrome: Frequency and Subtypes from Iranian Patients. *Parasitol. Int.* 2017, 66, 142–145. [CrossRef]

148. Sayal, R.A.; Hameed, S.; Faisal, M.M. Evaluation of IL-5 Concentration Level in Irritable Bowel Syndrome Patients That Suffering from Blastocystis Infection in Al-Najaf Province. *Eur. J. Mol. Clin. Med.* 2020, 7, 3807–3817.

149. Surangsrirat, S.; Thamrongwittawatpong, L.; Piyaniran, W.; Naaglor, T.; Khoprasert, C.; Taamasri, P.; Mungthin, M.; Leelayoova, W. Genetic Subtypes of Blastocystis Isolated from Thai Hospitalized Patients in Northeastern Thailand. *Southwest Asian J. Trop. Med. Public Health* 2015, 46, 184–190. [PubMed]

150. Koltas, I.S.; Elgun, G.; Erolgu, F.; Demirkazik, M. The Importance of Real-Time Polymerase Chain Reaction Method in Diagnosis of Intestinal Parasites in Patients with Diarrhea. *Trop. Biomed.* 2017, 34, 895–902.

151. Aykur, M.; Calıskan Kurt, C.; Dirim Erdogan, D.; Biray Avcı, C.; Vardar, R.; Aydemir, S.; Girginkardeşler, N.; Gündüz, C.; Dagci, H. Investigation of Dientamoeba fragilis Prevalence and Evaluation of Sociodemographic and Clinical Features in Patients with Gastrointestinal Symptoms. *Acta Parasitol.* 2019, 64, 162–170. [CrossRef] [PubMed]

152. Sanpool, O.; Laoraksawong, P.; Janwan, P.; Intapan, P.; Sawanyawisuth, K.; Changtrakul, Y.; Maleewong, W. Genetic Subtypes of Blastocystis Isolated from Thai Hospitalized Patients in Northeastern Thailand. *Southwest Asian J. Trop. Med. Public Health* 2015, 46, 184–190. [PubMed]

153. Usluca, S.; Inceboz, T.; Over, L.; Tuncay, S.; Yalçın, G.; Arcak, S.S.; Ozköş, S.; Aksoy, U.; Akıści, C. The Distribution of Intestinal Parasites Detected in The Dokuz Eylül University Medical Faculty Hospital between 2005 and 2008. *Parasitol. Res.* 2019, 118, 72–76. [CrossRef]

154. Cekin, A.H.; Cekin, Y.; Adakan, Y.; Tasdemir, E.; Koclar, F.G.; Yolcular, B.O. Blastocystis Infection in Patients Attending Hospitals Of Duhok City, Kurdistan Region, Iraq. *Biochem. Cell. Arch.* 2020, 20, 4421–4425.

155. Mutlag, S.K.; Ahmed, N.A.; Abbas, S.K. Investigation of Blastocystis hominis Effect On The Levels of Il-10, Il-18 And Hematological Parameters. *Biochem. Cell. Arch.* 2019, 19, 3887–3892. [CrossRef]

156. Usluca, S.; Inceboz, T.; Over, L.; Tuncay, S.; Yalçın, G.; Koclar, F.G.; Yolcular, B.O. Blastocystosis in Patients with Gastrointestinal Symptoms. *Emerg. Infect. Dis.* 2021, 27, 932–935. [CrossRef] [PubMed]

157. Hawash, Y.A.; Ismail, K.A.; Saber, T.; Eed, E.M.; Khalifa, A.S.; Alsharif, K.F.; Alghamdi, S.A. Dientamoeba fragilis Infection in Patients with Digestive and Non-Digestive Symptoms: A Case-Control Study. *Korean J. Parasitol.* 2020, 58, 129–134. [CrossRef]

158. Alver, O.; Oral, B.; Töre, O. The Distribution of Intestinal Parasites Detected in the Uludag University Medical School Hospital between 2005 and 2008 Uludag University Tip Fakültesi Araştırma ve Uygulama Hastanesi’nde 2005–2008 Yillari Arasinda Saptanan Bağırsak Pa. *Turg. Parazitoloji Derg.* 2010, 34, 27–31.

159. Cekin, A.H.; Cekin, Y.; Adakan, Y.; Tasdemir, E.; Koclar, F.G.; Yolcular, B.O. Blastocystosis in Patients with Gastrointestinal Symptoms: A Case–Control Study. *BMC Gastroenterol.* 2012, 12, 122. [CrossRef] [PubMed]

160. Beiramvand, M.; Hashemi, S.J.; Arjmand, R.; Sadjadei, N.; Hardanipasand, L. Comparative Prevalence of Blastocystis in Patients with the Irritable Bowel Syndrome and Healthy Individuals: A Case Control Study. *Jundishapour J. Microbiol.* 2017, 10, e13572. [CrossRef]

161. Feurle, G.E.; Moos, V.; Landt, O.; Corcoran, C.; Reischl, U.; Maiwald, M. Trophephryma whipplei in Feces of Patients with Diarrhea in 3 Locations on Different Continents. *Emerg. Infect. Dis.* 2021, 27, 932–935. [CrossRef]

162. Haider, S.S.; Baqai, R.; Qureshi, F.M.; Boorom, K. Blastocystis spp., Cryptosporidium spp., and Entamoeba histolytica Exhibit Similar Symptomatic and Epidemiological Patterns in Healthcare-Seeking Patients in Karachi. *Parasitol. Res.* 2012, 111, 1357–1368. [CrossRef]

163. Sakalar, C.; Kandemir, I.; Uyar, Y.; Kuk, S.; Gürbüz, E.; Yazar, S. Polymerase Chain Reaction Based Subtyping of Blastocystis spp. Isolates from Symptomatic Patients in Turkey | Türkiye’deki Semptomatik Hastalardan Elde Edilen Blastocystis spp. İzolatlarınaın Polimeraz Zincir Reaksiyonu Ile Alt Tiplenirdirilmesi. *Turk. Klin. J. Med. Sci.* 2013, 33, 1064–1068. [CrossRef]

164. Sharif, M.; Daryani, A.; Asgarian, F.; Nasrolaei, M. Intestinal Parasitic Infections among Intellectual Disability Children in Rehabilitation Centers of Northern Iran. *Res. Dev. Disabil.* 2010, 31, 924–928. [CrossRef] [PubMed]
166. Hazrati Tappeh, K.H.; Mohammadzadeh, H.; Nejad Rahim, R.; Barazesh, A.; Khashaveh, S.H.; Taherkhani, H. Prevalence of Intestinal Parasitic Infections among Mentally Disabled Children and Adults of Urmia, Iran. *Iran. J. Parasitol.* 2010, 5, 60–64.

167. Khalili, B.; Imani, R.; Boostani, S. Intestinal Parasitic Infections in Chronic Psychiatric Patients in Sina Hospital Shahr-e-Kord, Iran. *Jundishapur J. Microbiol.* 2013, 6, 252–255. [CrossRef]

168. Saeidinia, A.; Tavakoli, I.; Naghipour, M.R.; Rahmati, B.; Ghashami Lahijji, H.; Salakhori, O.; Ashrafi, K. Prevalence of Strongyloides stercoralis and Other Intestinal Parasites among Institutionalized Mentally Disabled Individuals in Rasht, Northern Iran. *Iran. J. Parasitol.* 2016, 11, 527–533.

169. Shokri, A.; Sarasiabi, K.S.; Teshnizi, S.H.; Mahmoodi, H. Prevalence of Strongyloides stercoralis and Other Intestinal Parasitic Infections among Mentally Retarded Residents in Central institution of Southern Iran. *Asian Pac. J. Trop. Biomed.* 2012, 2, 88–91. [CrossRef]

170. Rasti, S.; Arbabi, M.; Hooshyar, H. High Prevalence of Entamoeba histolytica and Enterobius vermicularis among Elderly and Mentally Retarded Residence in Golabchi Center, Kashan, Iran 2006–2007. *Jundishapur J. Microbiol.* 2012, 5, 585–589. [CrossRef]

171. Mohammadi-Meskin, V.; Hamedi, Y.; Heydarihengami, M.; Eftekhar, E.; Shamseddin, J.; Sharifi-Sarasiabi, K. Intestinal Parasite Infections in Mental Retardation Center of Bandar Abbas, Southern Iran. *Iran. J. Parasitol.* 2019, 14, 318–325. [CrossRef]

172. Sheikh, S.; Asghari, A.; Sadraei, J.; Pirestani, M.; Zare, M. *Blastocystis* sp. Subtype 9: As the First Reported Subtype in Patients with Schizophrenia in Iran. *SN Compr. Clin. Med.* 2020, 2, 633–639. [CrossRef]

173. Zhu, W.; Wei, Z.; Li, Q.; Lin, Y.; Yang, H.; Li, W. Prevalence and Subtype Diversity of *Blastocystis* in Human and Nonhuman Primates in North China. *Parasitol. Res.* 2020, 119, 2719–2725. [CrossRef] [PubMed]

174. Kang, J.-M.; Li, Y.-T.; Chen, R.; Yu, Y.-F.; Li, X.-T.; Wu, X.-P.; Chu, Y.-H.; Chen, J.-X.; Zhang, S.-X.; Tian, L.-G. Prevalence and Risk Factors of *Blastocystis hominis* Infection in Inpatients in Jiangjin District, Chongqing City. *Chin. J. Schistosomiasis Control* 2019, 31, 479–485. [CrossRef]

175. Abdipour, Y.; Khazan, H.; Azargashb, E.; Mahmoudi, M.R.; Farahnak, A.; Rostami, A. Prevalence of Intestinal Parasitic Infections among Individuals Referred to the Medical Centers of Coastal Cities, Guilan Province, Northern Iran, 2015–2017. *Iran. J. Public Health* 2020, 49, 1157–1163.

176. Bahrami, F.; Haghighi, A.; Zamin, G.; Khademian, M. Molecular Evidence for Zoonotic Transmission of *Blastocystis* Subtypes in Kurdistan Province, West of Iran. *Ann. Parasitol.* 2020, 66, 19–25. [CrossRef] [PubMed]

177. Gholiipoor, Z.; Khazan, H.; Azargashb, E.; Youssefi, M.R.; Rostami, A. Prevalence and Risk Factors of Intestinal Parasitic Infections in Mazandaran Province, North of Iran. *Clin. Epidemiol. Glob. Health* 2020, 8, 17–20. [CrossRef]

178. Viesy, S.; Abdi, J.; Rezaei, Z. What Are Hidden Facts behind Intestinal Parasitic Infections in Ilam City? *Infec. Disord. Drug Targets* 2019, 19, 278–281. [CrossRef]

179. Badparva, E.; Sadrnave, J.; Kheirandish, F.; Frouzandeh, M. Genetic Diversity of Human *Blastocystis* Isolates in Khorramabad, Central Iran. *Iran. J. Parasitol.* 2014, 9, 44–49. [PubMed]

180. Shaker, D.; Anvari, D.; Hosseini, S.A.; Fakhar, M.; Mardani, A.; Ziaei Hezarjaribi, H.; Gholam, S.; Gholami, S. Frequency and Genetic Diversity of *Blastocystis* Subtypes among Patients Attending to Health Centers in Mazandaran, Northern Iran. *J. Parasit. Dis.* 2019, 43, 537–543. [CrossRef]

181. Haghighi, L.; Talebnia, S.E.; Mikaeili, F.; Asgari, Q.; Golizadeh, F.; Zomorodian, K. Prevalence and Subtype Identification of *Blastocystis* Isolated from Human in Shiraz City, Southern Iran. *Clin. Epidemiol. Glob. Health* 2020, 8, 840–844. [CrossRef]

182. Shaker, D.; Fakhar, M.; Ziaei, H.; Hosseini, S.A.; Gholami, S. Prevalence of *Blastocystis hominis* in Individuals Attending Sari Health Centers, 2014. *J. Maz. Univ. Med. Sci.* 2017, 27, 143–147.

183. Tork, M.; Yazdani-Charati, J.; Sharif, M.; Dryani, A.; Nazar, I.; Pagheh, A.S.; Hosseini, S.-A. Association between Geographical Risk Factors and Intestinal Parasites in West of Mazandaran Province Using Geographic Information System. *J. Maz. Univ. Med. Sci.* 2017, 27, 124–132.

184. Asfaram, S.; Daryani, A.; Sarvi, S.; Pagheh, A.S.; Hosseini, S.A.; Saberi, R.; Hoseiny, S.M.; Soosaraei, M.; Sharif, M. Geospatial Analysis and Epidemiological Aspects of Human Infectious Diseases with *Blastocystis hominis* in Mazandaran Province, Northern Iran. *Epidemiol. Health* 2019, 41, e2019009. [CrossRef]

185. Bafghi, A.F.; Hosseini, R.; Mollaee, H.R.; Barzegar, K. Geno-Typing and Comparison of Conventional and Molecular Diagnostic Techniques for Detection of *Blastocystis* on Health Centers in Kerman Iran. *Epidemiol. Health* 2021, 8, 10–16.

186. Karimzar, M.; Rezaeean, S.; Ebrahimimipour, M.; Ranjbarpour, A.; Madanipour, H.; Javan, S.; Najari, M. Prevalence and Time-Trend Analysis of Intestinal Parasitic Infections in North-Central Iran, 2012–2016. *Trop. Biomed*. 2019, 36, 103–113.

187. Abdul Ridha, A.A.F.; Faiq, Z.A. Epidemiology and Clinical Characteristics Associated with *Blastocystis hominis* in More Than Ten Years Infections in Wasit Province/Iraq. *J. Infect. Dev. Ctries.* 2021, 1818, 012029. [CrossRef]

188. Salehi, R.; Haghighi, A.; Stensvold, C.R.; Kheirandish, F.; Azargashb, E.; Raugihi, S.; Kohansal, C.; Bahrami, F. Prevalence and Subtype Identification of *Blastocystis* Isolated from Humans in Ahvaz, Southwestern Iran. *Gastroenterol. Hepatol. Bed Bench* 2017, 10, 235–241. [CrossRef] [PubMed]

189. Khademivan, S.; Masjedizadeh, R.; Yousefi-Razin, E.; Mahbodfar, H.; Rahim, F.; Yousefi, E.; Forouatan, M. PCR-Based Molecular Characterization of *Blastocystis* Subtypes in Southwest of Iran. *J. Infect. Public Health* 2018, 11, 43–47. [CrossRef] [PubMed]

190. Sardarian, K.; Hajilooi, M.; Mghosood, A.; Moghimbeigi, A.; Alilkhani, M. A Study of the Genetic Variability of *Blastocystis hominis* Isolates in Hamadan, West of Iran. *Jundishapur J. Microbiol.* 2012, 5, 555–559. [CrossRef]

191. Hamidi, N.; Meamar, A.R.; Akhlagli, L.; Rampsieh, Z.; Razmjou, E. *Entamoeba histolytica* Diagnosis by Fecal Screening: Relative Effectiveness of Traditional Techniques and Molecular Methods. *J. Infect. Dev. Ctries.* 2018, 12, 52–59. [CrossRef] [PubMed]
215. Udonsom, R.; Prasertbun, R.; Mahittikom, A.; Mori, H.; Changbunjong, T.; Komalamisra, C.; Pintong, A.-t.; Sukthana, Y.; Poprunk, S. *Blastocystis* Infection and Subtype Distribution in Humans, Cattle, Goats, and Pigs in Central and Western Thailand. *Infec. Genet. Evol.* 2018, 65, 107–111. [CrossRef]

216. Kheirandish, F.; Tarahi, M.J.; Ezatpour, B. Prevalence of Intestinal Parasites among Food Handlers in Western Iran | La Prevalencia de Parásitos Intestinales Entre Los Manipuladores de Alimentos En El Oeste de Irán. *Rev. Inst. Med. Trop. Sao Paulo* 2014, 56, 111–114. [CrossRef]

217. Motazedian, M.H.; Najjari, M.; Ebrahimimipour, M.; Asgari, Q.; Mojtabavi, S.; Mansouri, M. Prevalence of Intestinal Parasites among Food-Handlers in Shiraz, Iran. *Iran. J. Parasitol.* 2015, 10, 652–657.

218. Sharif, M.; Daryani, A.; Kia, E.; Rezaei, F.; Nasiri, M.; Nasrolaie, M. Prevalence of Intestinal Parasites among Food Handlers of Sari, Northern Iran | Prevalència de Parasitas Intestinais Entre Manipuladores de Alimentos de Sari, Norte Do Irã. *Rev. Inst. Med. Trop. Sao Paulo* 2015, 57, 139–144. [CrossRef]

219. Heydari-Hengami, M.; Hamedi, Y.; Najafi-Asl, M.; Sharifi-Sarasiabi, K. Prevalence of Intestinal Parasites in Food Handlers of Bandar Abbas, Southern Iran. *Iran. J. Public Health* 2018, 47, 111–118. [PubMed]

220. Khodabakhsh Arbat, S.; Hooshyhar, H.; Arbatb, M.; Eslami, M.; Abani, B.; Poor Movayed, R. Prevalence of Intestinal Parasites among Food Handlers in Kashan, Central Iran, 2017–2018. *J. Parasit. Dis.* 2018, 42, 577–581. [CrossRef] [PubMed]

221. Shahnazi, M.; Sadeghi, M.; Saraei, M.; Alipour, M.; Hajialilo, E. Prevalence of Parasitic Intestinal Infections Among Food Handlers in Qazvin, Iran. *Turk. Parazitolajii Derg.* 2019, 43, 16–20. [CrossRef]

222. Kheirandish, F.; Tarahi, M.J.; Haghighi, A.; Nazemalhosseini-Mojarad, E.; Kheirandish, M. Prevalence of Intestinal Parasites in Bakery Workers in Kohramabad, Lorestan, Iran. *Iran. J. Parasitol.* 2011, 6, 76–83.

223. Abdel-Dayem, M.; Al Zou’bi, R.; Hani, R.B.; Amr, Z.S. Microbiological and Parasitological Investigation among Food Handlers in Hotels in the Dead Sea Area, Jordan. *J. Microbiol. Immunol. Infect.* 2014, 47, 377–380. [CrossRef] [PubMed]

224. Downs, J.W.; Putnam, S.D.; Rockabrand, D.M.; Okla, G.E.; Mostafa, M.; Monteville, M.R.; Antosek, L.E.; Herbst, J.; Tribble, D.R.; Riddle, M.S.; et al. A Cross-Sectional Analysis of Clinical Presentations of and Risk Factors for Enteric Protozoan Infections in an Active Duty Population during Operation Iraqi Freedom. *Trav. Dis. Travel Med. Vaccines* 2015, 1, 2. [CrossRef]

225. Kvitatanachai, S.; Rhongbutsri, P. Using Mini Parascope SF to Determine Intestinal Parasitic Infections Comparing to Conventional Methods in Gardner of Chanthaburi Province, Thailand. *Asian Pac. J. Trop. Dis.* 2017, 7, 596–600. [CrossRef]

226. Kheirandish, F.; Tarahi, M.J.; Ezatpour, B. Prevalence of Intestinal Parasites among Food Handlers in Western Iran | La Prevalencia de Parasitas Intestinales Entre Manipuladores de Alimentos de Sari, Norte Do Irã. *Rev. Inst. Med. Trop. Sao Paulo* 2015, 57, 139–144. [CrossRef]

227. Sangwalee, W.; Rattanapitoon, N.; Thanchomnang, T. Intestinal Parasitic Infections and Risk Factors among Myanmar Migrant Workers in Northeast Thailand. *Asian Pac. J. Trop. Med.* 2010, 3, 199–205. [CrossRef]

228. Abu-Madi, M.A.; Behnke, J.M.; Ismail, A.; Boughattas, S. Assessing the Burden of Intestinal Parasites Affecting Newly Arrived Workers in Qatar. *Parasites Vectors* 2011, 4, 108. [CrossRef]

229. Abu-Madi, M.A.; Behnke, J.M.; Doiphode, S.H. Changing Trends in Intestinal Parasitic Infections among Settled Immigrants in Qatar. *Parasites Vectors* 2010, 3, 98. [CrossRef]

230. Abu-Madi, M.A.; Behnke, J.M.; Ismail, A.; Boughattas, S. Assessing the Burden of Intestinal Parasites Affecting Newly Arrived Immigrants in Qatar. *Parasites Vectors* 2016, 9, 619. [CrossRef]

231. Abu-Madi, M.A.; Behnke, J.M.; Doiphode, S.H. A Decade of Intestinal Protozoan Epidemiology among Settled Immigrants in Qatar. *BMCC. Infect. Dis.* 2016, 16, 370. [CrossRef]

232. Abu-Madi, M.A.; Behnke, J.M.; Ismail, A.; Al-Olaqi, N.; Al-Zaher, K.; El-Ibrahim, R. Comparison of Intestinal Parasitic Infection in Newly Arrived and Resident Workers in Qatar. *Parasites Vectors* 2011, 4, 211. [CrossRef]

233. Wakid, M.H. Fecal Occult Blood Test and Gastrointestinal Parasitic Infection. *J. Parasitol. Res.* 2010, 2010, 1–4. [CrossRef]

234. Ahmed, M.A.; Alam-Eldin, Y.H.; Eltaweel, N.A.; Elmorsy, S. Intestinal Parasites Detected During Pre-Employment Stool Examination at Tertiary Health Care Center In Makkah, Kingdom Of Saudi Arabia. *J. Egypt. Soc. Parasitol.* 2015, 45, 367–373. [CrossRef]

235. Hsieh, M.-H.; Lin, Y.-Y.; Dai, C.-Y.; Huang, J.-F.; Huang, C.-K.; Chien, H.-H.; Wang, C.-L.; Chung, W.-L.; Wu, J.-R.; Chen, E.-R.; et al. Intestinal Parasitic Infection Detected by Stool Examination in Foreign Laborers in Kaohsiung. *Kaohsiung J. Med. Sci.* 2010, 26, 136–143. [CrossRef]

236. Hsieh, M.-H.; Lin, Y.-Y.; Hsu, Y.-K.; Yang, J.-F.; Hsu, Y.-C.; Chen, W.-C.; Dai, C.-Y.; Yu, M.-L.; Ho, C.-K. Intestinal Parasitic Infections in Foreigners Detected by Stool Examination in Taiwan. *Open Infect. Dis. J.* 2011, 5, 135–141. [CrossRef]

237. Chen, L.H.; Lee, S.L.; Yang, C.C.; Lee, Y.M. Genetic Variability of *Blastocystis hominis* in Indonesian Immigrant Workers. *J. Intern. Med. Taiwan* 2014, 25, 199–205.

238. Karaman, U.; Turan, A.; Depeck, F.; Gecit, I.; Ozer, A.; Karci, E.; Karadan, M. Frequency of Intestinal Parasites among Administrators and Workers in Sanitary and Non-Sanitary Institutions. *Sihhi ve Gayri Sihhi Müesseselerdeki İşletmeciler ve Çalışanları ve Bağırısak Parazitlerinin Siklisi.* *Turk. Parazitolajii Derg.* 2011, 35, 30–33. [CrossRef] [PubMed]

239. Sahimin, N.; Meor Termizi, F.H.; Rajamanikam, A.; Mohd Nazri, N.A.; Govind, S.K.; Mohd Zain, S.N. Prevalence and Subtypes of *Blastocystis* among Migrant Workers from Different Working Sectors in Peninsular Malaysia. *Parasitol. Res.* 2020, 119, 3555–3558. [CrossRef]

240. Noor, R.; Saha, S.R.; Rahman, F.; Munshi, S.K.; Uddin, M.A.; Rahman, M.M. Frequency of Opportunistic and Other Intestinal Parasitic Infections in Patients Infected with Human Immunodeficiency Virus in Bangladesh. *Tzu Chi Med. J.* 2012, 24, 191–195. [CrossRef]
241. Schär, F.; Inpankaew, T.; Traub, R.J.; Khieu, V.; Dalsgaard, A.; Chimnoi, W.; Chhoun, C.; Sok, D.; Marti, H.; Muth, S.; et al. The Prevalence and Diversity of Intestinal Parasitic Infections in Humans and Domestic Animals in a Rural Cambodian Village. *Parasitol. Int.* 2014, 63, 597–603. [CrossRef]

242. Wang, W.; Owen, H.; Traub, R.J.; Cuttell, L.; Inpankaew, T.; Bielefeldt-Ohmann, H. Molecular Epidemiology of *Blastocystis* in Pigs and Their In-Contact Humans in Southeast Queensland, Australia, and Cambodia. *Vet. Parasitol.* 2014, 203, 264–269. [CrossRef]

243. He, S.S.; Wu, L.Y.; Liu, X.Q.; Shi, H.H.; Chen, Z.; Zhang, H.; Pang, C.Y.; Li, Y.M. Investigation on the Infection of *Blastocystis hominis* in Populations in Bama Yao Autonomous County of Guangxi. *Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi Chin.* J. Parasitol. Parasit. Dis. 2013, 31, 76–77.

244. Chen, S.; Zhang, Y.; Li, H.; Cai, Y.; Chen, J. Analysis on Parasitic Infection of Clinical Samples from Hospitals in Shanghai during 2011–2013. *Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi Chin.* J. Parasitol. Parasit. Dis. 2014, 32, 446–451.

245. Umar, M.; Chen, X.; Osman, Y.; Simayi, A.; Hou, Y.; Maimaitiyiming, Y.; Xiao, N. Epidemiological Survey on Human Intestinal Protozoa in Xinjiang Uygur Autonomous Region in 2015. *Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi Chin.* J. Parasitol. Parasit. Dis. 2016, 34, 361–365.

246. Jiang, L.-Z. Epidemic Status of Human Key Parasitic Diseases in Tongcheng City, Anhui Province. *Chin. J. Schistosomiasis Control* 2018, 30, 68–71. [CrossRef]

247. Zhang, Y.-L.; Zhu, Y.-K.; Chen, W.-Q.; Deng, Y.; Lin, X.-M.; Li, P.; Zhang, H.-W. Survey and Analysis of Epidemic Status of Principal Human Parasitosis in Ecological Region of Huaiyang Hills of Henan Province in 2015. *Chin. J. Schistosomiasis Control* 2017, 29. [CrossRef]

248. Gong, B.; Liu, X.; Wu, Y.; Xu, N.; Xu, M.; Yang, F.; Tong, L.; Zhou, K.; Cao, J.; Liu, A.; et al. Prevalence and Subtype Distribution of *Blastocystis* in Ethnic Minority Groups on Both Sides of the China-Myanmar Border, and Assessment of Risk Factors and Révélation et Distribution Des Sous-Types de *Blastocystis* Dans Les Groupes de Minorités Ethniques Des. *Parasite* 2019, 26, 46. [CrossRef]

249. Deng, Y.; Zhang, S.; Ning, C.; Zhou, Y.; Teng, X.; Wu, X.; Chu, Y.; Yu, Y.; Chen, J.; Tian, L.; et al. Molecular Epidemiology and Risk Factors of *Blastocystis* sp. Infections among General Populations in Yunnan Province, Southwestern China. *Risk Manag. Healthc. Policy* 2020, 13, 1791–1801. [CrossRef]

250. Ma, L.; Qiao, H.; Wang, H.; Li, S.; Zhai, P.; Huang, J.; Guo, Y. Molecular Prevalence and Subtypes of *Blastocystis* sp. in Primates in Northern China. *Transbound. Emerg. Dis.* 2020, 67, 2789–2796. [CrossRef]

251. Seyer, A.; Karasartova, D.; Ruh, E.; Güreser, A.S.; Turgal, E.; Imir, T.; Taylan-Ozkan, A. Epidemiology and Prevalence of *Blastocystis* spp. in North Cyprus. *Am. J. Trop. Med. Hyg.* 2017, 96, 1164–1170. [CrossRef]

252. Padukone, S.; Mandler, J.; Rajkumari, N.; Bhat, B.; Swaminathan, R.; Parija, S. Detection of *Blastocystis* in Clinical Stool Specimens Using Three Different Methods and Morphological Examination in Jones’ Medium. *Trop. Parasitol.* 2018, 8, 33–40. [CrossRef]

253. Lappan, R.; Classon, C.; Kumar, S.; Singh, O.P.; De Almeida, R.V.; Chakravarty, J.; Kumari, P.; Kansal, S.; Sundar, S.; Blackwell, J.M. Meta-Taxonomic Analysis of Prokaryotic and Eukaryotic Gut Flora in Stool Samples from Visceral Leishmaniasis Cases and Endemic Controls in Bihar State India. *PLoS Negl. Trop. Dis.* 2019, 13, e0007444. [CrossRef]

254. Wiria, A.E.; Hamid, F.; Wamases, L.J.; Prasetyani, M.A.; Dekkers, O.M.; May, L.; Kaisar, M.M.M.; Verweij, J.; Guigas, B.; Partono, F.; et al. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity. *PLoS ONE* 2015, 10, e0127746. [CrossRef]

255. Yulfi, H.; Rozi, M.F.; Andriyani, Y.; Darlan, D.M. Prevalence of Cryptosporidium Spp. and *Blastocystis hominis* in Faecal Samples among Diarrheic HIV Patients in Medan, Indonesia. *Med. Glas.* 2016, 63, 76–77. [CrossRef] [PubMed]

256. Mahmoudi, M.R.; Hasan, H.; Tsiam, A.; Ashrafi, K.; Johnson, P.; Sharifdini, M.; Karanis, P. Intestinal Protozoan and Helminthic Infections among Hemodialic HIV Patients in Iran. *Med. Glas.* 2021, 58, 1–7. [CrossRef] [PubMed]

257. Sungkar, S.; Pohan, A.P.N.; Ramadani, A.; Albar, N.; Aizah, F.; Nugraha, A.R.A.; Wiria, A.E. Heavy Burden of Intestinal Parasite Infections in Kalena Rongo Village, a Rural Area in West Sumba, Eastern Part of Indonesia: A Cross Sectional Study. *BMC Public Health* 2015, 15, 1296. [CrossRef] [PubMed]

258. Hayashi, E.; Tuda, J.; Imada, M.; Akaon, N.; Fujita, K. The High Prevalence of Asymptomatic Toxocara Infection among Schoolchildren in Manado, Indonesia. *Southwest Asian J. Trop. Med. Public Health* 2005, 36, 1399–1406. [PubMed]

259. Turgay, N.; Unver-Yolasiğmaz, A.; Oyur, T.; Bardak-Ozçem, S.; Töz, S. Monthly Distribution of Intestinal Parasites Detected in a Part of Western Turkey between May 2009–April 2010-Results of Acid Fast and Modified Trichrome Staining Methods İzmir ve Çevresinde Bir Yilda (Mayıs 2009-Nisan 2010) Saptanan Bağırask Parazit. *Turk. Parazitol. Derg.* 2012, 36, 71–74. [CrossRef] [PubMed]

260. Mahni, M.B.; Rezaeian, M.; Kia, E.B.; Raeisi, A.; Khasabehza, K.; Tarighi, F.; Kamranrashani, B. Prevalence of Intestinal Parasitic Infections in Jiroft, Kerman Province, Iran. *Iran. J. Parasitol.* 2016, 11, 232–238. [CrossRef]
340. Alinaghizade, A.; Mirjalali, H.; Mohebali, M.; Stensvold, C.R.; Rezaeian, M. Inter- and Intra-Subtype Variation of Blastocystis Subtypes Isolated from Diarrheic and Non-Diarrheic Patients in Iran. Infect. Genet. Evol. 2017, 50, 77–82. [CrossRef]

341. Thergarajan, G.; Kumar, S.; Bhassu, S.; Omar, S.F.B.S.; Rampal, S. Effect of Blastocystis sp. In Dengue Patients—Increase in the Treatment Cost and Exacerbation of Symptoms. PLoS ONE 2019, 14, e0211034. [CrossRef]

342. Roy, M.; Singha, B.; Dhar, D.; Roychoudhury, S. Prevalence of Giardia intestinalis with Other Co-Infecting Parasites in Barak Valley, Assam, India: A Molecular Approach. J. Parasit. Dis. 2019, 43, 426–442. [CrossRef]

343. Barazesh, A.; Fouladvand, M.; Tahmasebi, R.; Heydari, A.; Fallahi, J. The Prevalence of Intestinal Parasites in Hemodialysis Patients in Bushehr, Iran. Hemodial. Int. 2015, 19, 447–451. [CrossRef]

344. Pipatsatitpong, D.; Rangsin, R.; Leelayoova, S.; Naaglor, T.; Munthin, M. Incidence and Risk Factors of Blastocystis Infection in an Orphanage in Bangkok, Thailand. Parasites Vectors 2012, 5, 37. [CrossRef]

345. Koltas, I.S.; Akyar, I.; Elgun, G.; Kocagöz, T. Feconomics; A new and More Convenient Method, the Routine Diagnosis of Intestinal Parasitic Infections. Parasitol. Res. 2014, 113, 2503–2508. [CrossRef] [PubMed]

346. Ozbagcivan, O.; Akarsu, S.; Avci, C.; Inci, B.B.; Fetil, E. Examination of the Microbial Spectrum in the Etiology of Erythema Nodosum: A Retrospective Descriptive Study. J. Immunol. Res. 2017, 2017, 8139591. [CrossRef]

347. Tunalı, V.; Öztürk, E.A.; Ünver, A.; Turgay, N. The Prevalence of Blastocystosis among Patients with Gastrointestinal and Dermatologic Complaints and Effects of Blastocystis spp. Density on Symptomatology. Turk. Parazitoloji Derg. 2018, 42, 254–257. [CrossRef] [PubMed]

348. Jafari, R.; Gorgizadeh, H.; Soosaraei, M.; Shokri, A.; Bandalizadeh, Z.; Ahmadi, H.-Y.; Baninostafavi, E.S.; Fakhari, M. Initial Evidences of Salt and Pepper Retinal Lesions (Sprl) in Patients with Intestinal Protozoan Infections in Iran. Infect. Disord. Drug Targets 2021, 21, 60–67. [CrossRef]

349. Teh, C.L.; Wan, S.A.; Ling, G.R. Severe Infections in Systemic Lupus Erythematosus: Disease Pattern and Predictors of Infection-Related Mortality. Clin. Rheumatol. 2018, 37, 2081–2086. [CrossRef] [PubMed]

350. Malatyali, E.; Sankur, F.; Akın, M.N.; Ertabaklar, H.; Ertuğ, S. Subtype Distribution of Blastocystis in Pregnant Women and Analysis of Possible Risk Factors. Turk. Parazitoloji Derg. 2020, 44, 221–225. [CrossRef]

351. Tai, W.-P.; Hu, P.-J.; Wu, J.; Lin, X.-C. Six Ulcerative Colitis Patients with Refractory Symptoms Co-Infective with Blastocystis in Cattle in Turkey. Vet. World 2019, 12, 155–160. [CrossRef]

352. Malatyali, E.; Sankur, F.; Akın, M.N.; Ertabaklar, H.; Ertuğ, S. Subtype Distribution of Blastocystis sp. From Animals an Emerging Zoonosis. Turk. Parazitoloji Derg. 2019, 46, 231–237. [CrossRef] [PubMed]

353. Sreekumar, C.; Selvaraj, J.; Gomathinayagam, S.; Thangapandiyam, G.; Ravi Kumar, G.; Roy, P.; Balachandran, C. Blastocystis sp. from Food Animals in India. J. Parasit. Dis. 2014, 38, 440–443. [CrossRef] [PubMed]

354. Hemalatha, C.; Chandravathani, P.; Suresh Kumar, G.; Premaalatha, B.; Geethamalar, S.; Lilly Rozita, M.; Farah Haziqa, M.T.; Sabapathy, D.; Ramalan, M. The Diagnosis of Blastocystis sp. From Animals an Emerging Zoonosis. Malays. J. Vet. Res. 2014, 5, 15–22. [CrossRef]

355. Abd Razak, N.A.; Yusof, A.M.; Mohammad, M. Identification of Blastocystis sp. Infection from Cattle, Goat and Sheep Isolated from Farms in Pahang, Malaysia. Int. J. Allied Health Sci. 2019, 3, 810. [CrossRef]

356. Kamaruddin, S.K.; Mat Yusof, A.; Mohammad, M. Subtype Distribution and Subtypes of Blastocystis sp. in Cattle from Pahang, Malaysia. Trop. Biomed. 2020, 37, 127–141. [CrossRef]

357. Aynur, Z.E.; Güçlü, Ö.; Yildiz, I.; Ayrñur, H.; Ertabaklar, H.; Bozdoğan, B.; Ertuğ, S. Molecular Characterization of Blastocystis in Cattle in Turkey. Parasitol. Res. 2019, 118, 1055–1059. [CrossRef]

358. Harstutieke, P.; Yuniarti, W.M.; Djaeni, M.; Lastuti, N.D.R.; Suprihati, E.; Suwanti, L.T. Prevalence and Diversity of Gastrointestinal Protozoa in Madura Cattle at Bangkalan Regency, East Java, Indonesia. Vet. World 2019, 12, 198–204. [CrossRef]

359. Yuniarti, W.M.; Djaeni, M.; Lastuti, N.D.R.; Suprihati, E.; Suwanti, L.T. Prevalence and Diversity of Gastrointestinal Parasites in Beef Cattle in Siak Sri Valley, Assam, India: A Molecular Approach. J. Parasit. Dis. 2019, 43, 426–442. [CrossRef]

360. Hastutiek, P.; Yuniarti, W.M.; Djaeri, M.; Lastuti, N.D.R.; Suprihati, E.; Suwanti, L.T. Prevalence and Diversity of Gastrointestinal Parasites in Beef Cattle in Kamal Indrapura, Riau, Indonesia. J. Trop. Infect. Dis. 2019, 7, 155–160. [CrossRef]

361. Suwanti, L.T.; Suwanti, Y.; Harstutieke, P.; Suprihati, E.; Lastuti, N.D.R. Blastocystis spp. Subtype 10 Infected Beef Cattle in Kamal and Socah, Bangkalan, Madura, Indonesia. Vet. World 2020, 13, 231–237. [CrossRef] [PubMed]

362. Badparva, E.; Sadraee, J.; Kheirandish, F. Genetic Diversity of Blastocystis Isolated from Cattle in Khorramabad, Iran. Jundishapur J. Microbiol. 2015, 8, 4–7. [CrossRef] [PubMed]

363. Rostami, M.; Fashi-Harandi, M.; Schiﬁei, R.; Aspatwar, A.; Derakhshan, F.K.; Raeghi, S. Genetic Diversity Analysis of Blastocystis Subtypes and Their Distribution among the Domestic Animals and Pigeons in Northeast of China. Infect. Genet. Evol. 2020, 86, 104591. [CrossRef] [PubMed]

364. Masuda, A.; Sumiyoshi, T.; Ohtaki, T.; Matsumoto, J. Prevalence and Molecular Subtyping of Blastocystis from Dairy Cattle in Kanagawa, Japan. Parasitol. Int. 2018, 67, 702–705. [CrossRef] [PubMed]

365. Zhu, W.; Tao, W.; Gong, B.; Yang, H.; Li, Y.; Song, M.; Lu, Y.; Li, W. First Report of Blastocystis Infections in Cattle in China. Vet. Parasitol. 2017, 246, 38–42. [CrossRef]

366. Wang, J.; Gong, B.; Yang, F.; Zhang, W.; Zheng, Y.; Liu, A. Subtype Distribution and Genetic Characterizations of Blastocystis in Pigs, Cattle, Sheep and Goats in Northeastern China’s Heilongjiang Province. Infect. Genet. Evol. 2018, 57, 171–176. [CrossRef]
368. Lee, H.; Lee, S.-H.; Seo, M.-G.; Kim, H.-Y.; Kim, J.W.; Lee, Y.-R.; Kim, J.H.; Kwon, O.-D.; Kwak, D. Occurrence and Genetic Diversity of Blastocystis in Korean Cattle. Vet. Parasitol. 2018, 258, 70–73. [CrossRef]

369. AbuOdeh, R.; Ezzedine, S.; Madkour, M.; Stensvold, C.R.; Samie, A.; Nasrallah, G.; AlAbsi, E.; ElBakri, A. Molecular Subtyping of Blastocystis from Diverse Animals in the United Arab Emirates. Protis 2019, 170, 125679. [CrossRef]

370. Mirzapour, A.; Kiani, H.; Mobedi, I.; Spatni, A.; Seyyed Tabaei, S.; Rahimi, M. Frequency of Intestinal Parasites among Zoo Animal by Morphometric Criteria and First Report of the Bivitellobilharzia Nairi from Elephant (Elephasmaximus Maximus) in Iran. Iran. J. Parasitol. 2018, 13, 611–617.

371. Mohammad, N.A.; Al-Mekhlafi, H.M.; Moktar, N.; Anuar, T.S. Molecular Detection and Subtyping of Blastocystis in Javan Rusa (Cerus timorensis) and Sika Deer (Cerus nippon) from Peninsular Malaysia. Thai J. Vet. Med. 2018, 48, 295–301.

372. Mohd Zain, S.N.; Farah Haziqah, M.T.; Vickneshwaran, M.; Mohd Khalid, M.K.N.; Arutchelvan, R.; Suresh, K. Morphological and Molecular Detection of Blastocystis in Wildlife from Tioman Island, Malaysia. Trop. Biomed. 2017, 34, 249–255. [PubMed]

373. Wang, J.; Gong, B.; Liu, X.; Zhao, W.; Bu, T.; Zhang, W.; Liu, A.; Yang, F. Distribution and Genetic Diversity of Blastocystis Subtypes in Various Mammal and Bird Species in Northeastern China. Parasites Vectors 2018, 11, 522. [CrossRef]

374. Kim, K.T.; Noh, G.; Lee, H.; Kim, S.H.; Jeong, H.; Kim, Y.; Jheong, W.H.; Oem, J.K.; Kim, T.H.; Kwon, O.D.; et al. Genetic Diversity and Zoontic Potential of Blastocystis in Korean Water Deer, Hydropotes inermis argyropus. Pathogens 2020, 9, 953. [CrossRef]

375. Song, J.K.; Yin, Y.L.; Yuan, Y.J.; Tang, H.; Ren, G.J.; Zhang, H.J.; Li, Z.X.; Zhang, Y.M.; Zhao, G.H. First Genotyping of Blastocystis sp. in Dairy, Meat, and Cashmere Goats in Northwestern China. Acta Trop. 2017, 176, 277–282. [CrossRef] [PubMed]

376. Li, W.C.; Wang, K.; Gu, Y. Occurrence of Blastocystis sp. and Pentatrichomonas hominis in Sheep and Goats in China. Parasites Vectors 2018, 11, 93. [CrossRef]

377. Ghimire, T.R.; Bhattarai, N. A Survey of Gastrointestinal Parasites of Goats in a Goat Market in Kathmandu, Nepal. Philipp. Agric. Sci. 2019, 43, 686–695. [CrossRef] [PubMed]

378. Tan, T.C.; Tan, P.C.; Sharma, R.; Sugnaseelan, S.; Suresh, K.G. Genetic Diversity of Caprine Blastocystis from Peninsular Malaysia. Parasitol. Res. 2013, 112, 85–89. [CrossRef]

379. Adao, D.E.V.; Ducusin, R.J.T.; Padilla, M.A.; Rivera, W.L. Molecular Characterization of Blastocystis Isolates Infecting Farm Animals in Victoria and Pila, Laguna, Philippines. Philipp. Agric. Sci. 2016, 99, 304–310.

380. Adhikari, J.N.; Adhikari, R.B.; Bhattarai, B.P.; Thapa, T.B.; Ghimire, T.R. Short Communication: A Small-Scale Coprological Survey of the Endoparasites in the Himalayan Goral Naemorhedus goral (Hardwick, 1825) in Nepal. Biodiversitas 2021, 22, 1285–1290. [CrossRef] [PubMed]

381. Song, J.K.; Hu, R.S.; Fan, X.C.; Wang, S.S.; Zhang, H.J.; Zhao, G.H. Molecular Characterization of Blastocystis from Pigs in Shaanxi Province of China. Acta Trop. 2017, 173, 130–135. [CrossRef] [PubMed]

382. Wang, R.; Zhang, Y.; Jiang, Y.; Xing, J.; Tao, D.; Qi, M. First Report of Blastocystis Infection in Pigs from Large Farms in Xinjiang, China. J. Eukaryot. Microbiol. 2020, 67, 642–647. [CrossRef]

383. Han, J.Q.; Li, Z.; Zou, Y.; Pu, L.H.; Zhu, X.Q.; Zou, F.C.; Huang, C.Q. Prevalence, Molecular Characterization and Risk Factors of Blastocystis sp. from Farmed Pigs in Yunnan Province, Southwest China. Acta Parasitol. 2020, 65, 1005–1010. [CrossRef]

384. Zou, Y.; Yang, W.B.; Zou, F.C.; Lin, R.Q.; Zhu, X.Q.; Hou, J.L. Molecular Detection and Subtype Distribution of Blastocystis sp. in Sheep, Goats and Pigs in southern China. Microb. Pathog. 2021, 151, 104751. [CrossRef]

385. Arpitha, G.M.; Sreekumar, C.; Latha, B.R.; Vijaya Bharathi, M. Prevalence and Staining Characteristics of Blastocystis Isolates from Food Animals in Tamil Nadu. Vet. Parasitol. Reg. Stud. Rep. 2018, 11, 61–65. [CrossRef] [PubMed]

386. Mahendra, D.; Suwanti, L.T.; Lastutti, N.D.R.; Mufasirin; Suprihati, E.; Yuniarti, W.M.; Widisuputri, N.K.A. Deteksi Molekuler Blastocystis sp. Pada Babi Terinfeksi Di Kabupaten Tabanan Dan Badung, Provinsi Bali, Indonesia. J. Vet. 2020, 21, 227–233. [CrossRef]

387. Widisuputri, N.K.A.; Suwanti, L.T.; Plumeriastuti, H. A Survey for Zoonotic and Other Gastrointestinal Parasites in Pig in Bali Province, Indonesia. Indones. J. Trop. Infect. Dis. 2020, 8, 54–65. [CrossRef]

388. Paik, S.; Jung, B.Y.; Lee, H.; Hwang, M.H.; Han, J.E.; Rhee, M.H.; Kim, T.H.; Kwon, O.D.; Kwak, D. Molecular Detection and Subtyping of Blastocystis in Korean Pigs. Korean J. Parasitol. 2019, 57, 525–529. [CrossRef]

389. Adao, D.E.V.; Ronquillo, I.D.J.; Dela Cruz, Y.K.M.; Pagoso, E.J.A.; Rivera, W.L. Molecular Characterization of Giardia Duodenalis and Blastocystis sp. in Livestock from Animal Farms in Bulacan, Philippines. Southeast Asian J. Trop. Med. Public Health 2019, 50, 450–460.

390. De La Cruz, C.P.P.; Gorospe, M.M.; Paller, V.G.V. Blastocystis Infection among Backyard-Raised Pigs in Bay, Province of Laguna, the Philippines. Asian J. Microbiol. Biotechnol. Environ. Sci. 2016, 18, 487–494.

391. Evidor, F.M.R.; Rivera, W.L. Genetic Subtypes of Blastocystis sp. Isolated from Fecal Materials in the Large Intestines of Slaughtered Swine. Philipp. J. Vet. Med. 2016, 53, 59–64.
442. Ithoi, I.; Jali, A.; Mak, J.W.; Wan Sulaiman, W.Y.; Mahmud, R. Occurrence of *Blastocystis* in Water of Two Rivers from Recreational Areas in Malaysia. *J. Parasitol. Res.* **2011**, **2011**, 123926. [CrossRef]

443. Richard, R.L.; Ithoi, I.; Majid, M.A.A.; Wan Sulaiman, W.Y.; Tan, T.C.; Nissapatorn, V.; Lim, Y.A.L. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia. *Int. J. Environ. Res. Public Health* **2016**, **13**, 641. [CrossRef]

444. Noradilah, S.A.; Lee, I.L.; Anuar, T.S.; Salleh, F.M.; Manap, S.N.A.A.; Mohtar, N.S.H.M.; Azrul, S.M.; Abdullah, W.O.; Moktar, N. Occurrence of *Blastocystis* sp. in Water Catchments at Malay Villages and Aboriginal Settlement during Wet and Dry Seasons in Peninsular Malaysia. *PeerJ* **2016**, **4**, e2541. [CrossRef]

445. Banaticla, J.E.G.; Rivera, W.L. Detection and Subtype Identification of *Blastocystis* Isolates from Wastewater Samples in the Philippines. *J. Water Health* **2011**, **9**, 128–137. [CrossRef] [PubMed]

446. Karaman, Ü.; Kolören, Z.; Seferoğlu, O.; Ayaz, E.; Demirel, E. Presence of Parasites in Environmental Waters in Samsun and Its Districts. *Turk. Parazitoloji Derg.* **2017**, **41**, 19–21. [CrossRef]

447. Kolören, Z.; Gulabi, B.B.; Karanis, P. Molecular Identification of *Blastocystis* sp. Subtypes in Water Samples Collected from Black Sea, Turkey. *Acta Trop.* **2018**, **180**, 58–68. [CrossRef]

448. Kolören, Z.; Karaman, Ü. Investigation of *Blastocystis* Subspecies in Water Samples Collected from Ordu Province. *Turk. Parazitoloji Derg.* **2019**, **43**, 111–117. [CrossRef]

449. Isazadeh, M.; Mirza-Dizgah, I.; Shaddel, M.; Homayouni, M.M. The Prevalence of Parasitic Contamination of Fresh Vegetables in Tehran, Iran. *Turk. Parazitoloji Derg.* **2020**, **44**, 143–148. [CrossRef]

450. Al Nahhas, S.; Aboualchamat, G. Investigation of Parasitic Contamination of Salad Vegetables Sold by Street Vendors in City Markets in Damascus, Syria. *Food Waterborne Parasitol.* **2020**, **21**, e00090. [CrossRef]

451. Han, T.-H.; Park, S.-H.; Chung, J.-Y.; Jeong, H.-W.; Jung, J.; Lee, J.-I.; Hwang, Y.-O.; Kim, I.-Y.; Lee, J.-H.; Jung, K. Detection of Pathogenic Viruses in the Ambient Air in Seoul, Korea. *Food Environ. Virol.* **2018**, **10**, 327–332. [CrossRef] [PubMed]

452. Jiménez, P.A.; Jaimes, J.E.; Ramirez, J.D. A Summary of *Blastocystis* Subtypes in North and South America. *Parasites Vectors* **2019**, **12**, 376. [CrossRef]

453. Zanetti, A.D.S.; Malheiros, A.F.; de Matos, T.A.; Longhi, F.G.; Moreira, L.M.; Silva, S.L.; Castrillon, S.K.I.; Ferreira, S.M.B.; Ignotti, E.; Espinosa, O.A. Prevalence of *Blastocystis* sp. Infection in Several Hosts in Brazil: A Systematic Review and Meta-Analysis. *Parasit. Vectors* **2020**, **13**, 30. [CrossRef] [PubMed]