Some new Features and Algorithms for the Study of DFA

A.N. Trahtman

Bar-Ilan University, Dep. of Math. and CS, 52900, Ramat Gan, Israel
email:trakht@macs.biu.ac.il

Abstract. The work presents some new algorithms realized recently in the package TESTAS. They decide whether or not deterministic finite automaton (DFA) is synchronizing, several procedures find relatively short synchronizing words and a synchronizing word of the minimal length. We check the existence of a coloring of directed graph that turns the graph into a synchronizing DFA. The algorithm finds the coloring (better known as the road coloring) if it exists. Otherwise, the k-synchronizing road coloring can be found. We use a linear visualization of the graph of an automaton based on its structural properties.

Keywords: finite automaton, synchronizing word, algorithm, visualization.

Introduction

The problem of synchronization of a DFA is natural and various aspects of this problem were touched upon the literature. Synchronization makes the behavior of an automaton resistant against input errors since, after detection of an error, synchronizing word resets the automaton back to its original state, as if no error had occurred [4]. Synchronizing word stops propagation of errors in prefix code.

The early version of the package TESTAS was described in [18] in 2003. There exists some interest in the original algorithms of the package, sometimes even quite exotic [6]. The features of the package are considered also favorably for educational purposes: "The Road Coloring Conjecture makes a nice supplement to any discrete mathematics course" [15].

A problem with a long story is the estimation of the minimal length of a synchronizing word, (Černý’s conjecture). Jan Černý found in 1964 [8] n-state complete DFA with shortest synchronizing word of length $(n - 1)^2$ for alphabet size $q = 2$. The problem can be reduced to automata with strongly connected graph. Černý’s conjecture together with the road coloring problem belong to the most fascinating problems in the theory of finite automata [9, 11, 13].

The package decides whether or not DFA is synchronizing, several procedures find relatively short synchronizing words ($O(n^3d)$ time complexity in the worst case) and a synchronizing word of the minimal length (non-polynomial
algorithm) [23]. The space complexity is quadratic. These procedures were successfully checked, in particular, in the program that has studied all transition graphs of automata with 10 states or less in a search of long synchronizing words. The size of the set of studied objects was about 10^{20}.

Imagine a map with roads which are colored in such a way that fixed sequence of colors, called a synchronizing sequence, leads to fixed place whatever is the starting point. Finding such a coloring is called road coloring problem. The roads of the map are considered as edges of a directed graph.

The road coloring conjecture [1], [2], [14] was stated over forty years ago for a complete strongly connected directed finite graph with constant outdegree of all its vertices where the greatest common divisor (gcd) of lengths of all its cycles is one. The edges of the graph being unlabelled, the task is to find a labelling that turns the graph into a deterministic finite automaton possessing a synchronizing word.

The problem was mentioned in "Wikipedia" on the list of the interesting unsolved problems in mathematics many years ago. The positive solution of the road coloring problem [20], [21] is a basis of a polynomial-time implemented algorithm of $O(n^3)$ complexity in the worst case. The space complexity is quadratic.

For arbitrary complete graph the program finds k-synchronizing (or generalized [7]) road coloring [23].

The visualization of the transition graph of an automaton is an important tool for the study of automata. A tool for the visualization of the inner structure of a digraph is without any doubt an interesting matter, not only for the road coloring problem but also for a wide range of applications on directed graphs with labels on edges. For these reasons, the visual perception of the structural properties of an automaton is important.

The visualization algorithm is linear in the size of the automaton [22]. This feature of the package is handy.

1 Preliminary

As usual, we regard a directed graph (digraph) with letters assigned to its edges as a finite automaton, whose input alphabet Σ consists of these letters. The graph is called a transition graph of the automaton. The letters from Σ can be considered as colors and the assigning of colors to edges will be called coloring.

A path in a digraph G is a sequence of edges $e_1, ..., e_k$ such that the end vertex of e_i is the start vertex of e_{i+1} for $i = 1, 2, ..., k - 1$. The path is called a cycle if $e_1 = e_k$.

A digraph is strongly connected if for every pair of vertices q, p there exists a path from q to p. An arbitrary digraph consists of some strongly connected components (SCC). An SCC is sink if from every vertex of digraph there exists a path to vertex of the SCC.

A finite directed strongly connected graph with constant outdegree of all its vertices where the gcd of lengths of all its cycles is one will be called an AGW graph (as introduced by Adler, Goodwyn and Weiss).
An automaton is **deterministic** if no state has two outgoing edges of the same color. In **complete** automaton each state has outgoing edges of any color.

If there exists a path in an automaton from the state \(p \) to the state \(q \) and the edges of the path are consecutively labelled by \(\sigma_1, ..., \sigma_k \), then for \(s = \sigma_1...\sigma_k \in \Sigma^+ \) we shall write \(q = ps \).

Let \(Ps \) be the set of states \(ps \) for \(p \in \Sigma^+ \). For the transition graph \(\Gamma \) of an automaton let \(\Gamma s \) denote the map of the set of states of the automaton.

A word \(s \in \Sigma^+ \) is called a **synchronizing** word of the automaton with transition graph \(\Gamma \) if \(|\Gamma s| = 1 \).

A coloring of a directed finite graph is **synchronizing** if the coloring turns the graph into a deterministic finite automaton possessing a synchronizing word.

Let the integer \(q \) denote the size of alphabet and let \(n \) be the number of nodes.

2 Algorithms for finding synchronizing word

The package TESTAS presents three distinct versions of polynomial time algorithm for synchronizing word based on different approaches [19], [23]. The algorithms have \(O(n^3d) \) time complexity in the worst case.

All synchronizing words obtained in a lot of experiments have lengths near minimal. In particular, no synchronizing word of length greater than \(n^2 \) was found.

2.1 The algorithm for synchronizing word of minimal length

The algorithm is a revision of an algorithm for finding the syntactic semigroup of an automaton on the base of its transition graph [24]. Let us notice that the size of the semigroup is not polynomial in the graph size and the problem to find synchronizing word of minimal length is NP-hard [11].

We find first some synchronizing word \(s \) of length \(L \) using mention above algorithms. For every left subword \(s_i \) of \(s \) of length \(i \) let us keep the set \(\Gamma s_i \) with its size \(|\Gamma s_i| \). The subsets of states of \(\Gamma \) are presented by vectors of units and zeroes, the units correspond to the subset states.

The let us consider the mappings of the graph of the automaton induced by the letters of the alphabet of the labels are considered. They correspond to semigroup elements. For every letter \(\alpha \) (and a word \(t \Gamma \alpha \) (and \(\Gamma t \)) is a subset of states can be presented by vector of units and zeroes where the units correspond to the states of subset.

Let us consider the sequence of these mappings (or vectors). First vector \(v_0 \) of the sequence consists of units and presents all states of \(\Gamma \). For every vector \(v_i \) of the set of states \(S_{v_i} \) from the sequence we consider the set \(S_{v_i},\alpha \) for every letter \(\alpha \) of the alphabet and the corresponding vector \(v_i,\alpha \).

With every vector \(v_i \) we connect the former vector, the letter that has created it, size of \(S_{v_i} \) and the length \(l(v_i) \) of the word \(u \) such that \(\Gamma u = S_{v_i} \). So for \(v_i,\alpha \) the former vector is \(v_i \), the letter is \(\alpha \) and \(l(v_i,\alpha) = l(v_i) + 1 \).
The vector $v_i\alpha$ is excluded from the study if $l(v_i\alpha) > L$ because the corresponding word could not be a part of a minimal synchronizing word.

We compare the vector $v_i\alpha$ with every vector w of the sequence if $l(v_i\alpha) \leq L$. If $S_w \subseteq S_{v_i\alpha}$ the vector $v_i\alpha$ also is excluded from the study. We compare the vector $v_i\alpha$ with every vector of the set s_j for $j < i$ if $l(v_i\alpha) \leq L$. If $S_{s_j} \subseteq S_{v_i\alpha}$ for some j then the vector $v_i\alpha$ also is excluded from the study.

Otherwise, $v_i\alpha$ is added to the sequence. Thus for vector v_i we need $(i - 1)d + |s|d$ operations and together with former vectors one has $i(i - 1 + |s|)d$ operations. Every vector of the sequence is studied once.

The size of the syntactic semigroup of the automaton is in general not polynomial in the size of the transition graph. Therefore the time and space complexity of the algorithm is not polynomial in the size of the graph in the worst case.

With any vector let us connect the previous vector and its letter. On this way, the path on the graph of the automaton can be constructed. Any synchronizing mapping of the set of vertices presents a synchronizing word. The word can be restored from letters connected with vectors.

The algorithm founds a list of all words (elements of syntactic semigroup) of length k where k is growing. The first synchronizing word of the list is a synchronizing word of the minimal length.

The algorithm is valid for both complete and non-complete graphs. The time complexity of the considered procedure is $O(|\Gamma|d|N|^2)$ with $O(|\Gamma||N|)$ space complexity. N is here syntactic semigroup of the graph Γ over alphabet of size d.

3 The algorithm for synchronizing coloring

The positive solution of the road coloring problem [20], [21] is a basis of a polynomial-time implemented algorithm of $O(n^3)$ complexity in the worst case. The study uses the following theorems.

Theorem 1 [20] Let every vertex of a strongly connected directed graph Γ have the same number of outgoing edges. Then Γ has synchronizing coloring if and only if the greatest common divisor of lengths of all its cycles is one.

Theorem 2 [9] [20] Let us consider a coloring of an AGW graph Γ. Let ρ be the transitive and reflexive closure of the stability relation on the obtained automaton. Then ρ is a congruence relation, Γ/ρ is also an AGW graph and a synchronizing coloring of Γ/ρ implies a synchronizing recoloring of Γ.

The input of the algorithm is a graph with an arbitrary coloring. The algorithm changes some colors of edges of the graph. At the end of the work of the implemented version, on the screen appears the layout of the graph without coloring and then in few seconds of artificial delay the desired coloring appears.

The work [5] presented an algorithm of $O(n^2)d$ time complexity. We still have no information about its implementation.
3.1 The algorithm for k-synchronizing coloring

A k-synchronizing word of a deterministic automaton is a word in the alphabet of colors at its edges that maps the state set of the automaton at least on k-element subset. A coloring of edges of a directed strongly connected finite graph of a uniform outdegree (constant outdegree of any vertex) is k-synchronizing if the coloring turns the graph into a deterministic finite automaton possessing a k-synchronizing word.

The solution of the problem of k-synchronizing coloring based on the method from [20] appeared first in [5] and repeated later independently in [7]. Some consequences for coloring of an arbitrary finite digraph as well as for coloring of such a graph of uniform outdegree are a matter of the algorithm. The minimal value of k for k-synchronizing coloring is found by the algorithm for any finite digraph. The value of k is equal to the great common divisor of lengths of cycles of the digraph. So we obtain a partially synchronizing coloring. The polynomial-time algorithm for k-synchronizing coloring has also $O(n^3)$ time complexity at worst and quadratic space complexity [23].

4 The approach to the visualization of digraph

The visualization of the transition graph of the automaton is an important help tool of the study of automata. The visibility of inner structure of a digraph without doubt is a matter of interest not only for the road coloring, the range of the application may be significantly wider and includes all directed graphs with labels on edges.

Crucial role in the visualization plays the correspondence of the layout to the human intuition, the perception of the structure properties of the graph and the rapidity of the appearance of the image. The automatically drawn graphical image must resemble the last one of a human being and present the structure of the graph. We use and develop for this goal some known approaches [17], [25].

Our main objective is a visual representation of a directed graph with labels on its edges and, in particular, of the transition graph of a deterministic finite automaton based on the structure properties of the graph. Among the important visual objects of a digraph one can mention paths, cycles, strongly connected components, cliques, bunches etc. These properties reflect the inner structure of the digraph. The pictorial diagram demonstrates the graph structure highlighting strongly connected components, paths and cycles. So this kind of visualization can be considered as a structure visualization. This algorithm successfully solves a whole series of tasks of the disposal of the objects.

We choose here a cyclic layout [17], [25]. According to this approach the vertices are placed at the periphery of a circle. Our modification of the approach considered two levels of circles, the first level consists of strongly connected components, the second level corresponds to the whole graph with SCC at the periphery of the circle. The visual placement is based on the structure of the graph considered as a union of the set of strongly connected components.
Clearly, the curve edges (used, for instance, in the package GraphViz [10], [16]) hinder to recognize the cycles and paths. Therefore, we use only direct and, hopefully, short edges. We have changed some priorities of the layout and, in particular, eliminate the goal of reducing the number of intersections of the edges as it was an important aim in some algorithms [16]. The intersections of the edges are even not considered in our algorithm. This approach gives us an opportunity to simplify essentially the procedure and to reduce its complexity. Our main intent is only not to stir by the intersections of the edges to conceive the structure of the graph. The intersections are placed in our algorithm far from the vertices due to the cyclic layout [25], [17] we use. The area of vertices differs of the area of the majority of intersections.

The algorithm for the visualization is linear in the size of the automaton. Thus the linearity of the algorithm is comfortably and important.

4.1 Visualization algorithm

The layout of the deterministic graph is demonstrated by a high-speed linear program.

The strongly connected components (SCC) are of special significance in the algorithm. Thus our first step is the eduction and selection of the SCC. The quick linear algorithm for finding SCC [3] is implemented in the program.

According to the cyclic approach, all SCC are placed on the periphery of a big circle and are ordered according to the size [22]. The vertices of SCC are arranged in a circle of SCC in the graph layout. So strongly connected components can be easily recognized by the observer.

The periphery of a circle of SCC is the most desirable area for placing the edges because the edges in this case are relatively short. We choose the order of the vertices of the SCC on the circle according to this purpose. The length of some edges can be reduced in a such way. It also helps to recognize paths and cycles on the screen.

From the other hand, the edges between distinct SCC are relatively longer than the inner edges of strongly connected components.

The problem of the placing of the labels near corresponding edges is sometimes very complicated and frequently the connection between the edge and its label is not clear. Our solution is to use colors on the edges instead of labels and exclude the placing of labels.

The set of loops of arbitrary vertex is placed around the vertex with some shift that depends on the size of the set. The problem of parallel edges is solved analogously, the origins of the edges must belong to the vertex. The complexity of the algorithm shows the following

Lemma 41 The time and space complexity of the visualization algorithm described above is linear in the sum of states and edges of the transition graph of the automaton.
The transition graph of any deterministic finite automaton is accepted by the visualization algorithm. The transitions graphs of non-complete automata also can be reproduced.

5 Input of data in the package

The input file is an ordinary txt file for all algorithms used in the package TESTAS. We open the source file and then check different properties from menu bar. The graph is shown on the display by help of a rectangular table. More precisely, transition graph of an automaton as well as an arbitrary directed graph with distinct labels on outgoing edges of every vertex is presented by the matrix (Cayley graph):

vertices	X labels	
vertex 0	letter a	letter b
vertex 1	1	0
vertex 2	2	1
vertex 3	0	3
vertex 4	5	2
vertex 5	3	2

First two numbers in input file are the size of alphabet of labels and the number of vertices. The integers from 0 to n-1 denote the vertices. i-th row is a list of successors of i-th vertex according to the label in the column (number of the vertex from the end of edge with label from the j-th column and beginning in i-th state is placed in the (i,j) cell).

The User defines the data: the number of nodes, size of the alphabet of edge labels and the values in the matrix. For example, the input 2 6 1 0 2 1 0 3 5 2 3 2 4 5 presents the Cayley graph with 2 labels and 6 vertices and the next input 2 5 1 0 2 1 ; 3 5 ; 3 ; presents the Cayley graph with 2 labels and 5 vertices. The values are divided by a gap. The semicolon corresponds to empty cell of the table.

vertex	letter a	letter b
vertex 0	1	0
vertex 1	2	1
vertex 2	0	3
vertex 3	5	2
vertex 4	3	2
vertex 5	4	5

An important verification tool of the package is the possibility to study the semigroup of an automaton. The program finds syntactic semigroup of the automaton, its size and generators. The semigroup is presented by a quadratic table of the form elements X generators (letters). In the cell (i,j) is a product of element i and generator j. The first line of the table presents the size of the semigroup and the number of generators.
References

1. R.L. Adler, L.W. Goodwyn, B. Weiss. 1977, Equivalence of topological Markov shifts, Israel J. of Math. 27, 49-63.
2. R.L. Adler, B. Weiss. 1970, Similarity of automorphisms of the torus, Memoirs of the Amer. Math. Soc. 98, Providence, RI.
3. A. Aho, J. Hopcroft, J. Ullman. The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
4. Béal M.P., Czeizler E., Kari J., Perrin D. 2008, Unambiguous automata. Math. Comput. Sci., 1, 625-638.
5. M.P. Béal, and D. Perrin, A quadratic algorithm for road coloring, arXiv: 0803.0726v2 [cs.DM], 2008.
6. Robert C. Berwick, Kazuo Okanoya3, Gabriel J.L. Beckers and Johan J. Bolhuis. 2011, Songs to syntax: the linguistics of birdsong. Trends in Cognitive Science, V15, I.3, 113-121
7. G. Budzhan and Ph. Feinsilver, 2011, The generalized road coloring problem and periodic digraphs. Appl. Alg. in Eng., Comm. and Comput., V 22, N 1, 21-35.
8. J. Černy. 1964, Poznámka k homogeným eksperimentom s konečnými automatami, Math.-Fyz. Čas., 14(1964), 208-215.
9. K. Culik II, J. Karhumaki, J. Kari. A note on synchronized automata and Road Coloring Problem. Developments in Language Theory (5th Int. Conf., Vienna, 2001), J. of Found. Comput. Sci., 13(2002), 459-471.
10. J. Ellson, E. Gansner, L. Koutsofios, et al. 2002, GraphViz - open source graph drawing tools, Graph Drawing, 2265, 483-484.
11. A. Mateescu, A. Salomaa, 1999, Many-Valued Truth Functions, Černy’s Conjecture and Road Coloring. Bull. of European Ass. for TCS, 68, 134-148.
12. D. Perrin, M.P. Schützenberger. 1992, Synchronizing prefix codes and automata, and the road coloring problem, In Symbolic Dynamics and Appl., Contemp. Math., 135, 295-318.
13. Pin J.E. On two combinatorial problems arising from automata theory, Annals of Discrete Mathematics, 1983, 17: 535-548.
14. B.A. Rubshtein. 1974, Generating partitions of Markov endomorphisms. Func. Anal. Appl., vol. 8, 84-85.
15. J. V. Rauff, 2009, Way back from anywhere: exploring the road coloring conjecture. Math. and Comput. Education. 01.
16. M.Simonato, 2004, An Introduction to GraphViz.
17. JM. Six, IG. Tollis, 1999, A framework for user-grouped circular drawings Lect. Notes in Comp. Sci., 1731, 107-116.
18. A.N. Trahtman, 2003, A package TESTAS for checking some kinds of testability. Lect. Notes in Comput. Sci., 2608, 228-232.
19. A.N. Trahtman, 2006, An efficient algorithm finds noticeable trends and examples concerning the Cerny conjecture. Lect. Notes in Comp. Sci, Springer, MFCS 4162(2006), 789-800.
20. A.N. Trahtman. 2008, Synchronizing Road Coloring. 5-th IFIP WCC-TCS, Springer, 273, 43-53.
21. A.N. Trahtman The road coloring problem. 2009, Israel Journal of Math., 172(1), 51-60.
22. A.N. Trahtman, Bauer T., Cohen N. 2010, Linear visualization of a Road Coloring. Proc of 9 Cologne Twente workshop on graphs and Comb. Optim., 13-16.
23. Trahtman A. N. A Partially Synchronizing Coloring. CSR-2010, LNCS 6072, Springer, 2010, 362-370
24. A.N. Trahtman, 2003, Verification of algorithms for checking some kinds of testability. In Algebraic Methods in Language Processing, TWLT 21, eds. F.Spoto, G. Scollo, A. Nijholt. 253-263.
25. R. Wiese, M. Eiglsperger, M. Kaufmann. 2002, A framework for circular drawings of networks. Lect. Notes in Comp. Sci., 2265, 453-454.