Utilization of waste for building materials – a review

Pandiaraj Karthigai Priya1, Sankararajan Vanitha2 and Palaniappan Meyyappan2

1Research scholar, Department of Civil Engineering, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India
2Associate Professor, Department of Civil Engineering, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India

karthigaipriya@klu.ac.in

Abstract. Since ancient times naturally available materials are being used for the purpose of construction. Due to overutilization of these resources leads to its unavailability or depletion of these materials. On the other hand, lots of industrial wastes, municipal solid wastes are generated which are sent to landfill. The produced industrial and municipal wastes are not disposed properly. If they are not disposed safely or properly it will pose threats to the human community and also to the environment. These wastes need to be managed properly for safe disposal or alternate ways need to be identified for its utilization. This paper reviews the various types of waste that are used in construction and their usage as building material, its various application and the extent they can be used in building materials are discussed. Sugarcane bagasse ash, municipal solid waste incinerator ash, paper pulp, ground granulated blast furnace slag, copper slag are the wastes reviewed in this study. Many past researches have been identified for utilizing these industrial wastes sustainably in construction sector for manufacturing of bricks, concrete, special concrete etc. The general conclusion from the studies were that GGBS is a good alternative pozzolanic material for cement while the copper slag can be used in many forms as a replacement material in concrete. The MSWI ash is most suitable for use in cement and clay bricks whereas the sugarcane bagasse ash can be ideally used both in cement and clay bricks.

Keywords: waste, management, building material, concrete, brick

1. Introduction
Rapid urban development and the increased industrial activities leads to over utilization of natural resources. On the other hand, lot of wastes are produced from industries causing harm to the human community and the environment. There is an urgent need to consider the following aspects like recyclability, maintainability, energy efficiency etc. in order to reduce the impact on environment. The materials with least environmental impact need to be used as building materials. Also, the renewable and recycling of materials are encouraged in recent years [1].

This paper focusses particularly on the effect of utilization of waste from different industries as building materials. Ground Granulated Blast Furnace Slag (GGBS) is a by – product produced from the iron making industry. The slag is initially in the form of granules and it can be converted in to
powdered form to use it as a substitute for Portland Cement as the environmental impact of GGBS is very much less when compared with Portland Cement [2]. Paper pulp is one of the environmentally friendly material that can be completely recycled and it is used in the building material manufacturing [3]. Past studies are carried out successfully using sludge produced from paper recycling process as a replacement in building materials [4].

Sugarcane Bagasse ash (SBA) is a kind of waste material obtained after the combustion of bagasse which are produced from the Sugar factories. The ash is rich in elements such as silica, alumina etc. so that SBA will be good replacement for building materials. A lot of research works are carried out by using SBA as a replacement material [5]. Copper slag (CS) is a by-product produced during the smelting and pyrometallurgy of copper production from the copper industry. It has been noted that per ton of copper production produces 2.2 tons of copper slag and this slag is considered waste [6]. Copper slag can be suitably used in construction sector as a substitute material for fine aggregate and coarse aggregate and it has been verified experimentally [7].

Over dumping of solid waste will results in limited disposal sites and can cause environmental related problems. Incineration is one of the technologies needs to be adopted for treating the municipal solid waste. By this technology the overall volume of the waste gets reduced by 70 – 90% [8]. The ash produced from incineration (Municipal Solid Waste Incinerator Ash (MSWI Ash)) should be treated to remove the high metal concentrations by leaching tests and can be sustainably used in the manufacturing of building materials as well as minimizing disposal in to landfill [9].

In this paper, the utilization of these wastes in building materials is discussed in detail. The level of replacement done, tests carried out to study the effect of the wastes in building materials are studied from past research works and the optimum utilization of waste in the building materials are also summarized.

2. Review from past research
The wastes reviewed in this paper are Ground Granulated blast Furnace Slag (GGBS), Paper Pulp, Sugarcane Bagasse ash (SBA), Copper slag (CS) & Municipal Solid Waste Incinerator Ash (MSWI Ash). Table 1 summarizes in detail about the percentage replacement of various waste materials in different building materials.

S. No	ref.	Type of waste	Building Material	Waste Replaced with	% of Replacement done
1	[10]	GGBS	Concrete	Cement	0, 50, 70, 90%
2	[11]	GGBS	Concrete	Cement	0, 33.3, 50, 66.7%
3	[12]	GGBS & Metakaolin	Concrete	Cement	GGBS – 0 to 80% @ 10% increment
Metakaolin – 0, 10, 20%					
4	[13]	GGBS & Silica Fume	Preplaced Aggregate Concrete (PAC)	Cement	GGBS – 30, 35, 40 Silica Fume – 10%
5	[14]	GGBS	Concrete	Cement	0 to 80% @ 10% increment
6	[15]	GGBS	Geopolymer Recycled Aggregate Concrete (GRAC)	Fly Ash	0, 25, 50, 75%
7	[16]	GGBS & Micro Silica	Concrete	Cement	GGBS – 20, 30, 40, 50% Micro Silica – 5, 10, 15%
8	[17]	GGBS & High Magnesium Nickel Slag (HMNS)	Geopolymer Concrete	Fly Ash	GGBS – 5, 10, 20, 30, 40% HMNS – 5, 10, 15,20%
9	[18]	GGBS	Ultra High-Performance Concrete	Cement	20, 40, 60, 80%
10	[19]	GGBS SO₃, Calcium Carbonate, Anhydrite	Concrete	Cement	GGBS – 60 & 70% Other three materials – 1 to 3 % of weight of GGBS
11	[20]	Ultra fine GGBS & Silica fume	Self Compacting Concrete	Cement	5, 10, 15%
12	[21]	GGBS	Roller Compacted Concrete	Cement	10, 20, 30, 40, 50, 60%
13	[22]	Paper Sludge	Clay Bricks	Clay	0 to 10%
14	[23]	Paper sludge & Waste water	Clay Bricks	Clay	
15	24	Recycle Paper Mill Residue (RPMR), Rice Husk Ash (RHA) & Cement	Bricks	Complete replacement	RPMR – 70, 75, 80% RHA – 10, 15, 20%
16	25	Paper Mill sludge	Clay Bricks	Clay	0, 5, 10, 15, 20%
17	26	Paper Mill waste	Light weight Cement Bricks	Cement	0, 5, 10, 15, 20%
18	27	SBA	Cement Mortar	Cement	0 to 30%
19	28	SBA	Concrete	Cement	10, 20, 30%
20	29	SBA	Concrete	Cement	10, 15, 20, 30, 50, 100%
21	30	SBA	High strength Concrete (HSC)	Cement	10, 20, 30%
22	31	SBA, Fly Ash, Silica Fume	Clay Bricks	Clay	Sugarcane Bagasse Ash – 20, 40% Fly Ash – 10% Silica Fume – 10%
23	32	SBA, Quarry Dust, Lime	Brick	Complete replacement	SBA – 50 to 80% @ 5% increment Quarry Dust – 0 to 30% @ 5% increment Lime – 20%
24	33	SBA	Clay Brick	Clay	0, 5, 10, 15, 20%
25	34	SBA & Rice Husk Ash (RHA)	Clay Brick	Clay	5, 10, 15%
26	35	SBA & Lime	Soil Compacted blocks	Soil	SBA - 10, 20% Lime 10%
27	36	SBA & Fly Ash	Concrete	Cement	SBA – 0, 10, 20% Fly Ash – 20%
28	37	SBA	Concrete	Cement	5 to 25%
29	38	SBA	Concrete	Cement	5 to 50% @ 5% increment
30	39	SBA	High strength concrete	Cement	5 to 20%
31	40	SBA	SCC & Light Weight Concrete	Cement	5, 10, 15, 20, 25%
32	41	CS & Fly Ash (FA)	Concrete	CS for Fine aggregate FA for cement	CS – 0 to 100% @ 20% increment FA – 10, 20, 30%
33	42	CS	Concrete	Cement	20, 40, 60%
34	43	CS, Fly Ash (FA) & Silica Fume (SF)	High performance concrete	Cement	CS – 5, 10, 15, 20% FA – 5, 10, 15, 20% SF – 2.5, 5, 7.5, 10%
35	44	CS	High performance concrete	Sand	0 to 100% @ 10% increment
36	45	CS	High strength concrete	Sand	0 to 100% @ 10% increment
37	46	CS	Binders	Cement	15, 30, 45%
38	47	CS	Bricks Plaster, concrete	River sand	25, 50, 75%
39	48	CS	Concrete	Fine Aggregate	20, 40%
40	49	CS	Concrete	Cement	5, 13.5%
41	50	CS	Ultra High-performance concrete	Fine Aggregate	30 to 100%
42	51	CS	Self Compacting Concrete (SCC)	Fine Aggregate	0 to 60% @ 10% increment
43	52	CS & Silica Fume	High strength concrete	Coarse aggregate	CS - 100% SF – 0, 6, 10%
44	53	CS	Pervious concrete	Coarse aggregate	0, 20, 40, 50, 60, 80, 100%
45	54	CS	Concrete	Cement	0, 5, 10, 15%
46	55	CS	High strength concrete	Sand	0 to 100% @ 20% increment
47	56	MSWI Ash	Bricks	Partial replacement for Brick material	4% weight
48	57	MSWI Ash	Clay Bricks	Clay	10, 20, 30, 40, 50%
49	58	MSWI Ash	Bricks	Clay	0 to 40% by weight
50	59	MSWI Ash	Cement Bricks	Fine Aggregate	Complete replacement for Fine aggregates
51	60	MSWI Ash	Cement Bricks	Cement	Made with different w/c ratio as 0.4, 0.45, 0.5, 0.55
52	61	MSWI Ash	Bricks	Brick material	The specimens are fired at 1120°C & 1140°C
53	62	MSWI Ash	Bricks	None	MSWI ash utilized
54	63	MSWI Ash	Clay bricks	Clay	0, 2.5, 5, 7%
55	64	MSWI Ash	Bricks	Brick	0, 5, 10, 15, 20%
56	65	MSWI Ash	Hot – mix asphalt concrete	Aggregate	0, 5, 10, 15, 20, 30, 40%
57	66	MSWI Ash	Blended cement	Cement	0, 10, 20, 40%
2.1. Production of building materials from waste materials

From Table 1 the usage of various wastes and their percentage utilization in building materials from past research can be observed. Many studies are carried out by utilizing waste materials in to building materials. GGBS is mostly replaced for cement at various percentages of 30-70% and studies are carried out experimentally [10,11,14,16,18,21]. The pozzolanic nature of GGBS is the main reason for replacing with cement. In some studies, in addition to GGBS other materials like Metakaolin, Silica Fume are also added to enhance the property in the cement mortar or in the concrete in which they are utilized. The GGBS application can be seen in wide variety of concretes such as High-performance concrete, Geo Polymer concrete, Self Compacting concrete, Roller compacted concrete etc.

With utilizing the paper pulp in building materials very limited studies are carried out and they are effectively used in bricks up to replacement of 10% [22-26]. The addition of paper pulp residue in clay bricks contributed in energy savings up to 3% [22]. SBA finds its use in different types of concretes as well as in bricks too. In concretes it is replaced for cement due to the nature of ash is similar to cement [27,28,29,30,36,37,38,39,40]. The SBA is replaced for cement at 0-100% in various studies including special concretes such as High strength Concrete, Self Compacting concrete and light weight concrete [30,39,40]. In bricks, the SBA is replaced for clay up to a maximal of 40% and along with this other siliceous material such as Fly ash and silica fume are also added to enhance the property of the bricks [31].

Copper slag was found to be replaced for cement, fine aggregate, coarse aggregate in concrete [41-55] and experiments are carried out by replacing it at various percentages. The CS finds its application in special concretes such as High Strength Concrete, High Performance Concrete, Ultra High-Performance concrete, Self Compacting Concrete and Pervious concrete [43,44,45,50,51,52,53,55]. CS has been completely replaced in concrete and many experiments are carried out based on this [41,44,45,50,52,55]. MSWI ash was utilized in both clay bricks and cement bricks at varying proportion [56-70]. Studies are also carried out by utilizing MSWI ash in Autoclaved aerated Concrete, Hot-mix asphalt concrete, Geopolymer matrix [65,68,70]. With MSWI ash in cement bricks different water-cement ratios are adopted [60] whereas the clay bricks with MSWI ash are fired at different temperatures to evaluate the various properties [61].

3. Results and Discussions

Table 2 discusses the specimen details, experimental studies carried out to determine the strength and other parameters, conditions adopted to proceed the study and the conclusions brought from the study is presented.

ref.	Type of Waste	Specimen Details	Tests Conducted	Condition Adopted	Remarks
[10]	GGBS	Cubes, Cylinders, Prisms	Compressive strength, Flexural and tensile strength	28 days curing at room temperature	70% replacement improved the mechanical properties
[11]	GGBS	Cube	Compressive strength, Permeability, Chloride diffusion	Tested after 28 & 90 days of age.	33.3% replacement accounted for durability
[12]	GGBS & Metakaolin	Cubes, Prisms	Compressive strength, Flexural strength	Specimens are tested for 1, 7, 14, 28 & 90 days	GGBS @ 60% & Metakaolin @ 20% was found optimum
[13] GGBS & Silica Fume	Cubes, Prisms	Compressive strength, RCPT, Drying shrinkage	7 & 28 days	GGBS @ 30% & Silica Fume @ 10%	
[14] GGBS	Cube	Compressive Strength, Efficiency by analytical concept	28 days	50% replacement was efficient	
[15] GGBS	Cube	Compressive strength, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD)	Tested at 7 & 28 days of age under curing temperatures of 20°C, 40°C, 60°C, 80°C, 100°C	GGBS @ 80°C curing temperature showed good results	
[16] GGBS & Micro Silica	Cubes, Cylinders, Prisms	Compressive strength, Flexural and tensile strength	Tested at 7, 28, 90, 180 & 356 days	GBS – 30% Micro Silica – 10% showed good results	
[17] GGBS & HMNS	Cubes, Cylinders	Compressive strength, Split tensile strength, SEM, XRD, Fourier Transform Infrared Spectroscopy (FTIR)	Specimens are tested at 7, 14, 28 days	GBS – 20% HMNS – 10% improved the microstructural property	
[18] GGBS	Cubes, Cylinders, Prisms	Compressive strength, Flexural and tensile strength, RCPT, Water Sorptivity, SEM, XRD	All the specimens are tested for 7, 28, 56, 90 days	60% replacement was found optimal	
[19] GGBS	Cubes, Prisms	Compressive Strength, Flat prism test	Tested @ 3, 7, 28 days	Sulphate resistance was increased at both replacement percentages.	
[20] Ultra fine GGBS & Silica Fume	Cubes	Compressive strength, Water absorption, RCPT, Water Sorptivity, Sulphate attack, acid attack	Tested @ 7, 28, 56 & 90 days	10% addition was optimal and improved the durability	
[21] GGBS	Cubes, Cylinders, Prisms	Compressive strength, Flexural and tensile strength, RCPT, Water Sorptivity, SEM, XRD	Specimens are tested at 3, 7, 28, & 90 days	50% replacement had more resistance	
[22] Paper Sludge	Bricks	Compressive strength, Water absorption, linear shrinkage	Specimens are fired at 750°C	10% replacement was optimal and it also reduced the energy up to 3%	
[23] Paper sludge & Waste water residue	Bricks	Compressive strength, Linear shrinkage, Loss on ignition, Bulk density, Water absorption	Specimens are fired at 950°C for 6 hours	6% replacement was optimal and it also had energy savings	
[24] Recycle Paper Mill Residue (RPMR), Rice Husk Ash (RHA) & Cement	Bricks	Compressive strength, water absorption, efflorescence	Tests are carried as per IS standards	RPMR – 80%, RHA – 10% Cement – 10% was optimal	
[25] Paper Mill sludge	Clay Bricks	Compressive strength, Linear shrinkage, Loss on ignition, Bulk density, Water absorption, efflorescence, Apparent porosity	Specimens are fired at 850°C & 900°C	10% replacement was optimal at 900°C firing temperature	
[26] Paper Mill waste	Bricks	Compressive strength, water absorption, Specific weight, dimension change	Specimens are tested as per standards	10% replacement was optimal	
[27] SBA	Mortar cubes	Compressive strength, Flexural strength, Water permeability, soundness, SEM, XRD, XRF, FTIR	Specimens are tested at 3, 7, 28 days	10% replacement possessed good properties	
[28] SBA	Cylinder	Compressive strength, Water permeability, Heat evolution	Specimens are tested at 28 & 90 days of age	Up to 20% replacement was optimal beyond that the mechanical properties decreases.	
[29] SBA	Cubes, Cylinder	Compressive & tensile strength, water absorption, SEM, XRD	Specimens are tested at 7, 14, 28 days age	20% & 30% was optimal	
[30] SBA	Cylinder	Compressive strength, porosity, Water absorption, RCPT, Chloride diffusion	The specimens are tested at 7, 28 & 90 days	HSC was able to produce up to 30% bagasse ash	
[31] SBA, Fly Ash, Silica Fume	Bricks	Compressive strength, Linear shrinkage, porosity, density	All the specimens are fired at 900°C, 1000°C, 1100°C	Bricks made with 7% clay, 20% SBA & 10% silica fume is considered optimal	
[32] SBA, Quarry Dust, Lime	Bricks	Compressive strength, Flexural strength, Shear bond test, Bond wrench test	All the tests are carried out as per standards	Bricks produced with 50% SBA, 30% Quarry Dust, 20% Lime is the most optimal.	

| [33] SBA | Bricks | Tensile strength, water absorption, Linear shrinkage, Apparent density, SEM | All the specimens were fired at 1000°C | 10% replacement can be adopted in practice.

| [34] SBA & RHA | Bricks | Compressive strength, water absorption, porosity, Sulphate attack | All the specimens were fired at 1000°C for 36 hours | 5% replacement is optimal.

| [35] SBA & Lime | Blocks | Compressive & Flexural strength | The specimens are fired @ 700°C to 900°C and the tests are carried at 3, 7, 14, 28, 90 days | 10% SBA & 10% Lime improved the mechanical properties.

| [36] SBA & Fly Ash | Cubes | Compressive strength | Specimens are tested at 7, 28, 56, 90 & 120 days | 20% replacement improved the mechanical properties.

| [37] SBA | Cubes | Compressive strength, Oxygen permeability, RCPT, Chloride conductivity, Water sorptivity, Water permeability | Tested at 3, 28, 56 days | 25% replacement is considered optimum.

| [38] SBA | Cylinder, Prism | Compressive strength, Modulus of Rupture & elasticity | Tests are done at 7 & 28 days | 20% replacement improved the properties.

| [39] SBA | Cubes | Compressive strength, Chloride resistance, Sorptivity | Tests are carried out as per standards | Replacement of 15% is optimum.

| [40] SBA | Cubes, Cylinder | Compressive & Tensile strength, Impact resistance, SEM, XRD | Tests are carried out as per standards | 5% replacement gave good results.

| [41] CS & Fly Ash (FA) | Cubes, Cylinder, Prism | Compressive strength, Flexural & tensile strength, NDT | Tests are carried out at 7, 28, 56 & 90 days | CS @ 100% & FA @ 30% did not affect any properties.

| [42] CS | Cubes, Cylinder | Compressive & Tensile strength, SEM, XRD, Carbonation | Tests are carried out as per standards | CS addition was suitable in concrete.

| [43] CS, Fly Ash (FA) & Silica Fume (SF) | Cubes, Prism | Compressive & Flexural strength, Sorptivity, RCPT | Tests are carried out as per standards | Copper slag improved the properties and it will be a useful material.

| [44] CS | Cubes, Cylinder, Prism | Compressive strength, Tensile strength, Flexural strength and durability | Specimens are tested at 7 & 28 days | 40% CS can be used to produce HPC with good properties.

| [45] CS | Cubes, Cylinder, Prism | Compressive strength, Tensile strength, Flexural strength and durability | Specimens are tested at 7, 28, 56 days | CS can be replaced by 100% for sand to produce HSC.

| [46] CS | Cubes | Compressive strength, XRD, TG/DTG | Specimens are tested at 3, 7, 28 & 60 days | With increase in CS the properties of the mortar also improved.

| [47] CS | Bricks | Compressive strength, Water absorption | Tests are carried out as per standards | It can be replaced up to 50% effectively.

| [48] CS | Cubes, Cylinder, Prism | Compressive strength, Flexural strength, Water absorption, Carbonation, Alkali silica | Specimens are tested at 7 & 28 days | Copper Slag is suitable for replacement natural sand.

| [49] CS | Cubes, Cylinder, Prism | Compressive strength, Tensile strength, Flexural strength | Specimens are tested at 7 & 28 days. The w/b ratio adopted are 0.5, 0.6, 0.7 | The addition of copper slag has no significant effect on concrete.

| [50] CS | Cubes, Beams | Compressive and Flexural strength | The specimens are tested at 3, 7, 14 & 28 days | Copper slag is a promising material in construction.

| [51] CS | Cubes, Cylinder | Compressive and Tensile strength, Statistical analysis | Tested at 7, 28, 90 days | The 28 & 90 days results showed improvements.

| [52] CS & Silica Fume | Cubes, Cylinder | Compressive and Tensile strength, NDT | w/b ratio adopted is 0.4, 0.35, 0.3 | CS as coarse aggregate replacement is more effective.

| [53] CS | Cubes, Cylinder, Prism | Compressive strength, Tensile strength, Flexural strength, porosity, permeability | Tests are carried out as per standards | 60% replacement was found to be optimal.

| [54] CS | Cubes, Prisms | Compressive strength, | Tests are carried out as | 15% replacement was
3.1. Mechanical properties

From Table 1 it is understood that GGBS replacement varies from 0-90% for cement. An optimum of 60% replacement for cement contributes to long term strength of concrete and along with that 20% of metakaolin for cement imparts early strength to concrete [12]. In plain concrete GGBS addition with 70% replaced for cement improves the mechanical properties at 28 days [10]. It has been experimentally verified that the compressive strength increases with increase in the GGBS content [14]. The microstructure of geopolymer concrete cured at 80°C possessed good results with the addition of GGBS [15]. The addition of paper pulp did not affect the mechanical properties of the bricks but it reduced the energy requirement to produce the brick by 3% [22]. The homogeneous mixture of paper mill sludge with rice husk ash had mechanical strength more than that of control one [24]. In the case of SBA, high strength concrete can be produced with 30% replacement of SBA for cement and it also lowered the chloride penetration at this level [30]. SBA along with silica fume replaced at 20 & 10% for clay improved the properties of the bricks when compared with the control specimen [31]. In clay bricks, the strength was higher up to 10% replacement of SBA for clay [33]. With 5% replacement of SBA it is able to produce Self compacting concrete and light weight concretes possessing good concretes [40].

The mechanical properties of the concrete were not affected when copper slag was replaced at 100% for fine aggregate and fly ash added at 30% for cement [41]. In this study, it was noted that the strength and durability of concrete increased with addition of copper slag [42]. High performance concrete can be manufactured with 40% CS for fine aggregate and it also possess good mechanical properties.
and durability properties [44]. The CS replacement for fine aggregate in Self compacting concrete improved the properties of the concrete after 28 and 90 days [51]. In the case of pervious concrete, the CS is replaced for coarse aggregate at various percentage and among that 60% replacement was found to be optimal [53]. As per Chinese standards, bricks made with MSWI ash replaced at 40% by maintaining the firing temperature at 800°C met the brick quality standards [58]. With increase in the sintering temperature the strength of the bricks also increased thus reducing the pore volume and absorption rate [61]. MSWI ash was used in Hot-mix asphalt concrete and the replacement at 15 & 20% satisfied all the requirements [65]. The geopolymer mortar containing MSWI ash at 20% replacement gave good compressive strength and the microstructure of the mortar also improved with MSWI addition [68]. The mechanical properties of Autoclaved aerated concrete improved with 60% addition of MSWI ash for sand [70].

3.2. Durability properties

GGBS replacement at 33.3% for cement paste had more resistance to chloride penetration than the control specimen and it was found to be durable [11]. The durability of the concrete increases with the combined effect of addition of GGBS with silica fume at 30% and 10% respectively [13]. The durability of ultra high-performance concrete with GGBS content at 60% for cement was found to be higher [18]. The sulphate resistance was less at 60 & 70% replacement of GGBS for cement in concrete [19]. 10% addition of ultra fine GGBS in Self compacting concrete improved the durability of the concrete [20]. The cement bricks made with paper mill residue at 80% and cement at 10% possessed good durability properties [24]. The durability properties of clay bricks were more when paper mill sludge is added at 10% for clay fired at 900°C when compared with standard bricks [25]. High strength concrete can be manufactured with 30% of SBA for cement and thus improving the durability properties of the concrete [30]. The combined effect of SBA and Rice husk ash for clay in clay bricks had good sulphate resistance when the replacement was done at 5% and the specimens are burnt at 1000°C [34]. With SBA at 25% replacement the durability properties such as chloride penetration, water sorptivity was less in plain concrete [37] whereas in another study for high strength concrete with 15% replacement accounted for the durability properties [39].

In addition to CS, fly ash and silica fume are added to cement in the production of High-performance concrete and it improved the durability properties of the concrete [43]. High strength concrete was able to produce with full replacement of CS for sand thus without compromising the durability property of concrete [45]. In pervious concrete the durability is assessed by porosity and permeability. Both the factors showed less values when copper slag was replaced at 60% for aggregates [53]. In plain concrete, the copper slag replacement at 15% for cement had more sulphate resistance than the control mix [54]. It was verified experimentally that the increase in sintering temperature of the bricks increased the durability of the bricks [61]. The clay bricks fired at 1000°C with 2.5% MSWI ash for clay possessed good durability properties [63]. MSWI ash was mostly used in the manufacture of clay and cement bricks and it is replaced for clay and cement. Generally, the durability of the bricks improved with MSWI ash addition [60, 66].

4. Conclusions

In this paper, the utilization of various industrial waste as construction materials has been discussed in detail. A lot of studies are carried out by using various wastes so that to prove that they can be sustainably utilized as construction material. Most commonly the industrial wastes are used in the construction of various types of concretes, brick, pavement material, etc.

- GGBS was found to be a good pozzolanic material and its replacement for cement up to 30% improves the durability properties of concrete.
- The GGBS addition gives good strength, better resistance to concrete and also it provides stiffness to concrete beam when replaced up to 70%.
• The paper sludge finds its application in manufacturing of bricks and when replaced at 10% & fired at controlled temperature it meets the brick quality standard.

• The SBA is a powdered waste that finds its application in both concrete and also in bricks. The mechanical property of concrete gets improved when SBA is replaced at 20-25% whereas in bricks the optimal replacement of 10-20% imparts additional strength.

• Copper slag was found to be used in various percentage replacement in concrete and it has been proven effective to be used as fine & coarse aggregate in concrete.

• The copper slag addition of 40-60% improves the mechanical and durability properties of normal concrete and it also finds its application in special concretes too.

• The MSWI ash is used as replacement material both in clay and cement bricks and when utilized in manufacturing the bricks it meets the brick quality standard. The mechanical property of bricks with MSWI ash up to 40% was found optimal in an average.

• The MSWI ash should be treated by TCLP test in order to remove the toxic contaminants and then it is suitable to use in bricks at various percentage replacement.

From the above discussion it is evident that industrial wastes whichever is suitable can be used in construction material so that over use of natural resource can be prevented and also the waste disposal cost can be saved thus reducing the cost of the construction materials.

5. References

[1] Bipra Gorai, Jana R K and Premchand 2002 Resources, Conservation & Recycling 39 pp 299-313

[2] Caijun Shi, Christian Mayer and Alibehanood 2008 Resources, Conservation & Recycling 52 pp 1115-20

[3] Kuen-Sheng Wang, Kung-Yuh Chiang, Jing-Kae Perng and Chang-Jung Sun 1997 Journal of Hazardous Materials 59 pp 201-10

[4] Chimenos J M, Segarra M, Fernandez M A and Espiell F 1998 Journal of Hazardous Materials 64 pp 211-22

[5] Gurav S P, Bereznitski A, Heidweiller A and Kandachar P V 2003 Composites Science and Technology 63 pp 1325-34

[6] Verweris C, Georghion K, Danielidis D, Hatzenikolaou D G, Santas P, Santas R and Corletti V 2006 Bioresource Technology 98 pp 296-301

[7] Murilo Pereira Moises, Cheison Thiago, Pereira da Silva, Jozian Glimanses managuin, Emerson Marcelo Girotto and Eduardo Radovanovic 2013 Materials Letters 108 pp 243-6

[8] Souza A E, Teixeira S R, Santos G T A, Costa F B and Longo E 2011 Journal of Environmental Management 92 pp 2774-80

[9] Higgins D 2007 Construction materials 160 pp 99-101

[10] Rami A Havileh, Jamal A Abdulla, Fakherdine Fardmanesh, Poya Shabsana and Abdolreza Khalili 2016 Archives of Civil and Mechanical Engineering 17 pp 511-9

[11] Dhir R K, El – Mohr M A K and Dyer T D 1996 Cement and Concrete Research 26 pp 1767-73

[12] Khatib J M and Hibbert J J 2004 Construction and Building Materials 19 pp 460-72

[13] Kunal K Das, Eddie S S Lam and Ho H Tang 2020 Structural Concrete pp 1-8

[14] Ganesh Babu K and Sree Rama Kumar V 2000 Cement and Concrete Research 30 pp 1031-6

[15] Jungie Wang, Jianhe Xie, Chong Hao Wang, Juanba Zhao, Frang Liu and Chi Fang 2020 Construction and Building Materials 247 pp 1-21

[16] Reddy Suda V B and Srinivasa Rao P 2019 Materials Today: Proceeding 27 pp 805-11

[17] Aissa Bouaissi, Long-Yuan Li, Mohd Mustafa Al Bakri Abdullah and Quoc-Bao Bui 2019 Construction and Building Materials 210 pp 198-209

[18] Ganesh P and Ramachandra Murthy A 2019 Construction and Building Materials 197 pp 667-
[19] Higgins D D 2003 Cement & Concrete Composites 25 pp 913-9
[20] Ardra Mohan and Mini K M 2018 Construction and Building Materials 171 pp. 919-28
[21] Krishna Rao S, Sravana P and Chandrasekhar Rao T 2016 Construction and Building Materials 114 pp 925-33
[22] Carlos Mauricio F Vieira, Regina M Pinheiro, Ruben J Sanchez Rodriguez, Veronica S Candido and Sergio N Monteiro 2016 Applied clay science 132-133 pp 753-9
[23] Carmen Martinez, Teresa Cotes and Francisco A Corpus 2011 Fuel processing technology 103 pp 117-24
[24] Raut S, Ralegaonkar R and Mandavgane S 2013 Archives of Civil and Mechanical Engineering 13 pp 269-75
[25] Gaurav Goel and Ajay S Kalam Dhad 2017 Construction and Building Materials 148 pp 333-43
[26] Praveen Kumar S, Sankara Subramanian G and Sindhu S 2019 Construction and Building Materials 238 117691
[27] Nuntachai Chusilp, Chai Jaturapitakkul and Kraiwood Kiattikomol 2009 Construction and Building Materials 23 pp 3352-8
[28] Sumrerng Rubzon and Prinya Chindaprasirt 2012 Materials and Design 34 pp 45-50
[29] Almir Sales and Sofia Araujo Lima 2010 Waste Management 30 pp 1114-22
[30] Venustiano Rios-Parada, Victor Guillermo Jimenez-Quero, Pedro Montes-Garcia and Pedro Monks-Garcia 2020 Construction and Building Materials 234 117314
[31] Venustiano Rios-Parada, Victor Guillermo Jimenez-Quero, Pedro Leobardo Valdez-Tamey and Pedro Montes-Garcia 2017 Construction and Building Materials 157 pp 83-95
[32] Baurudeen A, Deepak Kanraj, Gokul Dev V and Manu Santhanam 2015 Cement and Concrete Composites 59 pp 77-88
[33] Venustiano Rios-Parada, Victor Guillermo Jimenez-Quero, Pedro Leobardo Valdez-Tamey and Pedro Montes-Garcia 2017 Construction and Building Materials 157 pp 83-95
[34] Rajasekar A, Arunachalam K, Kottaisamy M and Saraswathy V 2018 Construction and Building Materials 171 pp 350-6
[35] Seyed Alireza Zareei, Farshad Ameri and Nasrollah Bahrami 2018 Construction and Building Materials 184 pp 258-68
[36] Sumathy Raju and Brindha Dharmar 2016 R Periodica Polytechnica civil engineering 60(3) 313-22
[37] Washington Almeida Moura, Jardel Pereira Goncalves and Monica Batisda Leite Lima 2007 J. Mater. Sci. 42 2226-30
[38] Geetha S and Selvakumar Madhavan 2017 Materials Today: Proceeding 4 pp 3525-33
[39] Khalifa S Al-Jabri, Makoto Hisada, Salem K Al-Oraimi and Abdullah H Al-Saidy 2009 Cement and Concrete Composites 31 pp 483-8
[40] Khalifa S Al-Jabri, Makoto Hisada, Abdullah H Al-Saidy and Al-Oraimi S K 2009 Construction and Building Materials 23 pp 2132-40
[41] Jin Liu, Runhua Guo, Pengcheng Shi and Lei Huang 2019 Journal of Thermal Analysis and
Calorimetry 137 pp 1919-28

[47] Madheswaran C K, Ambily P S, Dattatreya J K and Rajamane N P 2014 J. Inst. Eng. India Ser. A 95(3) pp 169-77

[48] Maria Mavroulidou 2017 Waste biomass valor 8 pp 1841-54

[49] Al-Jabri K S, Taha R A, Al-Hasmi A and Al-Harthy A S 2006 Construction and Building Materials 20 pp 322-31

[50] Ambily P S, Umarani C, Ravisankar K, Prabhat Ranjan Prem, Bharatkumar B H and Nagesh R Iyer 2015 Construction and Building Materials 77 pp 233-40

[51] Nikita Gupta and Rafat Siddique 2019 Construction and Building Materials 224 pp 894-908

[52] Mostafa Khanzadi and Ali Behnood 2009 Construction and Building Materials 23 pp 2183-8

[53] Ali Rezaei Lori, Abolfazl Hassani and Reza Sedghi 2019 Construction and Building Materials 197 pp 130-42

[54] Najimi M, Sobhani J and Pourkhorshidi A R 2011 Construction and Building Materials 25 pp 1895-905

[55] Wei Wu, Weide Zhang and Guowei Ma 2010 Materials and Design 31 pp 2878-83

[56] Taurino R, Karamanova E, Barbieri L, Atanasova-Vladimirova S, Andreola F and Kara Manov 2017 Waste Management and Research 35(10) pp 1055-63

[57] Perez-villarejo L, Eliche-Quesada D, Fco. J Iglesias-Godino, Martinez-Garcio C and Fco. A Corpas-Iglesias 2010 Journal of Environmental Management 95 pp 349-54

[58] Kae Long Lin 2006 Journal of Hazardous Materials 137 pp 1810-6

[59] Jong Hao Park, Young Jun Park and Jong Heo 2006 Waste Management 27 pp 1207-12

[60] Min-Hao Wu, Chiou-Liang Lin, Wei-Chieh Huang and Jung-Wan Chen 2010 Construction and Building Materials 111 pp 618-24

[61] Kuan-Shang Wang, Kung-Yuh Chiang, Jung-Kae Perng and Chang-Jung Sun 1997 Journal of Hazardous Materials 59 pp 201-10

[62] Raul Pena, Ana Guerrero and Sara Goni 2005 Journal of Hazardous Materials 129 pp 151-7

[63] Violeta Voisniena, Olga Kizinievic and Viktor Kizinievic 2019 IOP conf. series: Materials Science and Engineering 603 022058

[64] Arun Kumar and Anupam Mittal Lecture notes in Civil Engineering 31 pp 133-9

[65] Hossam F Hassan 2005 Construction and Building Materials 19 pp 91-8

[66] Kae-Long Lin 2005 Cement and Concrete Research 35 pp 979-86

[67] Kuen-Sheng Wang, Kae-Long Lin and Zuh-Quia Huang 2001 Cement and Concrete Research 31 pp 97-103

[68] Ampol Wongsa, Kornkanok Boonserm, Chattichai Waisurasingha, Vanchai Sata and Prinya Chindaprasirt 2017 Journal of Cleaner Production 148 pp 49-59

[69] Huang T Y and Chuieh P T 2015 Procedia Engineering 118 pp 984-91

[70] Xiang Guo Li, Zhuolin Liu, Yang Lv, Li Xiong Cai, Dong Bing Jiang, Wen Guang Jiang and Shouwei Jian 2018 Construction and Building Materials 178 pp 175-82