High intrinsic ZT in InP$_3$ monolayer at room temperature

Shenghui Zhang1,2, Xiaobin Niu2, Yiqun Xie1*, Kui Gong3, Hezhu Shao4*, Yibin Hu5 and Yin Wang6

1 Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, People’s Republic of China
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
3 Hongzhiwei Technology (Shanghai) CO. LTD., 1888 Xinjinqiao Road, Pudong, Shanghai 201206, People’s Republic of China
4 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
5 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People’s Republic of China
6 Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China

E-mail: yqxie@shnu.edu.cn, hzshao@nimte.ac.cn and ybhu@mail.sitp.ac.cn

Received 29 April 2019
Accepted for publication 24 May 2019
Published 20 June 2019

Abstract

Two-dimensional thermoelectric (TE) materials which have the figure of merit ZT that is greater than 1.5 at room temperature would be highly desirable in energy conversion since the efficiency is competitive to conventional energy conversion techniques. Here, we report that the indium triphosphide (InP$_3$) monolayer shows a large ZT of 1.92 at 300 K, based on the quantum calculations within the ballistic thermal transport region. A remarkably low and isotropic phononic thermal conductivity is found due to the flat lattice vibration modes, which takes a major responsibility for the impressively high ZT at room temperature. Moreover, a large ZT of 1.67 can still be achieved even under a 1% mechanical tension on the lattice. These results suggest that the InP$_3$ monolayer is a promising candidate for low dimensional TE applications.

Keywords: indium triphosphide, thermoelectric properties, NEGF-DFT

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermoelectric (TE) materials can directly convert between thermal and electrical energy, and therefore have important applications such as in power generation and heat pumping [1]. The efficiency of TE materials is determined by the dimensionless figure of merit, $ZT = \frac{\sigma S^2 T}{\kappa_e + \kappa_p}$, where σ is the electrical conductivity, S the seebeck coefficient, T the absolute temperature and $\kappa_p(e)$ the phononic (electronic) thermal conductivity [2]. Great efforts have been put into finding TE materials with the high ZT value. A remarkable ZT of 2.6 has been reported for the single-crystal SnSe [3], and it can be improved to 2.8 in the n-type SnSe crystal [4]. At the nanoscale, quantum confinement can reduce substantially the phononic thermal conductivity, and thus leads to a considerable enhancement of the TE efficiency in nanostructures. The TE properties of the low-dimensional materials have attracted great research interest since the ground-breaking experiment which demonstrated that the rough silicon nanowires were efficient TE materials [5].

Currently, there is intense focus on the thermoelectricity of the 2D materials, such as graphene, silicene, black phosphorus and transition-metal dichalcogenides, for their attractive electrical and thermal transport properties [6–14]. For example,
theoretical calculations have shown that the ZT of the silicene nanoribbons is close to 2.5 at 90 K [9], and also a large ZT of 2.8 at 800 K has been predicted for the monolayer SnS [15]. In reality, a high ZT at room temperature will largely facilitate the utilization of the 2D TE materials in various fields, including electricity generation and cooling. Unfortunately, most of the pristine 2D materials show a poor TE efficiency at room temperature, which results essentially from their limited electrical transport properties, while the relatively high thermal conductivity. For instance, graphene has a small ZT about 0.01 [16], and the 2D black phosphorene and blue phosphorene show the ZT around 0.2 and 1.0, respectively [8]. Besides, the 2D MX$_2$ (M = Mo, W; X = S, Se) monolayers have the $ZT < 2$ at 300 K, as predicted by the theoretical calculations [7].

Recently, the high ZT at room temperature has been predicted for several 2D materials. For example, the buckled antimonene [17] has a ZT of 2.15, and moreover the TiS$_3$ calculations [7].

ZT of the mechanical strain on the structure with the phonon blocking materials [21]. Besides, the 2D MX$_2$ (M = Mo, W; X = S, Se) monolayers show a small ZT about 0.01 [16], and the 2D black phosphorene and blue phosphorene show the ZT around 0.2 and 1.0, respectively [8].

Besides, the 2D MX$_2$ (M = Mo, W; X = S, Se) monolayers have the $ZT < 2$ at 300 K, as predicted by the theoretical calculations [7].

For instance, the ZT of graphene was enhanced impressively by strain engineering, chemical doping and heterostructuring [20]. Specifically, there are several bands including both the heavy-hole and light-hole bands located at the Γ point near the Fermi energy. The light bands contribute to the high mobility, and the heavy bands indicate the large effective masses, which leads to a high Seebeck coefficient since the S is proportional to the effective mass. Besides, there are several heavy-hole bands with similar energy value at the Γ, M and K points, which exhibits converged characteristics and multi-valley transport behavior. Moreover, the top valance bands close to the Fermi energy ($\mu = 0$) are very flat and intensive, which means a high density of states and thus a large transmission coefficient. All these features indicate a high ZT, and therefore motivate us to study the TE performance of the InP$_3$ monolayer.

On the other hand, the TE performance of the 2D materials can be effectively improved by various methods, including strain engineering, chemical doping and heterostructuring [20]. For instance, the ZT of graphene was enhanced impressively to around 3.2 at room temperature by constructing a layered structure with the phonon blocking materials [21]. Besides, the ZT of the antimonene was improved largely from less than 0.1 to about 0.6 at room temperature by n-type doping [22]. Therefore, it is also of importance to investigate the influence of the mechanical strain on the ZT of InP$_3$ monolayer.

In this work, we investigated the TE properties of the InP$_3$ monolayer, by using first-principles calculations combined with the non-equilibrium Green’s functional formalisms (NEGF-DFT) [23]. A large ZT of 1.92 at 300 K is achieved, which benefits from the unique electronic properties and also the low thermal conductivity of the InP$_3$ monolayer.

2. Model and methods

The primitive cell of the InP$_3$ monolayer is presented in figures 1(a) and (b), which has a hexagonal structure and is composed of two In atoms bonded with six P atoms via the covalent interactions. The lattice constant of the InP$_3$ monolayer is 7.55 Å optimized by VASP code [24], which agrees well with the previous theoretical result [19]. Using this primitive cell, we calculated both the electronic and thermal transport properties of the InP$_3$ monolayer, based on which the TE properties is then obtained. The details of the simulation methods are described in the following.

The lattice constant is optimized and the force-constant were calculated using VASP code [24] to construct the dynamic matrix for the phonon spectrum calculation. During the optimization, the atoms were fully relaxed until the maximum force is less than 0.005 eV Å$^{-1}$. The plane wave was used for wave function expansion with a cutoff energy of 550 eV. The projector augmented-wave method [25] was used for describing core electrons. The PW91 version of the generalized gradient approximation (GGA) was used for the electron exchange and correlation functional [26]. In structure relaxing, a $9 \times 9 \times 1$ k sampling was used. For calculating the force-constant, a $3 \times 3 \times 1$ supercell was used with a $3 \times 3 \times 1$ k sampling. Both the electronic and thermal transport properties were carried out using Nanodcad code [27] within the NEGF-DFT theoretical method. In the calculation, 150 \times 150 \times 1 k points were adopted for electronic transmissions. A double-zeta polarized (DZP) atomic orbital basis was implemented to expand all physical quantities, and the GGA-PW91 exchanges and correlation functional was used, and the atomic cores were defined using the standard norm-conserving nonlocal pseudopotentials. After self-consistent calculation was finished, a scissor correction [28, 29] was applied to eliminate the underestimation of energy gap for GGA functional. These calculation details were verified to provide the accurate results.

Within the linear response limit, the electrical current and electrical thermal current can be defined by

$$ I = \frac{2e}{h} \int T_\varepsilon(E)(f_L(E) - f_K(E))dE, $$

where $T_\varepsilon(E)$ is the electronic transmission function, which can be calculated by the standard nonequilibrium Green’s function method, and $f(E, \mu) = \frac{1}{\exp[(E - \mu)/k_B T] + 1}$ is the Fermi–Dirac distribution function at the chemical potential μ.

For ballistic electronic transport, the electronic transmission function $T_\varepsilon(E)$ can be calculated as

$$ T_\varepsilon(E) = \text{Tr}(G_\varepsilon^L \Gamma_{\varepsilon} G_\varepsilon^R \Gamma_{\varepsilon}), $$

where G_ε^L and G_ε^R are the left and right Green’s functions, respectively.
\[\Gamma_L = i(\Sigma'_L - \Sigma''_L), \Gamma_R = i(\Sigma'_R - \Sigma''_R), \]

(4)

\[\Gamma_L = i(\Sigma'_L - \Sigma''_L), \Gamma_R = i(\Sigma'_R - \Sigma''_R), \]

(11)

\[G''_e = [ES - H - \Sigma'_L - \Sigma'_R]^{-1}. \]

(5)

Here, \(G''_e \) is the retarded Green’s function, \(H \) and \(S \) are the hamiltonian and overlap matrix, \(\Sigma'_L \) and \(\Sigma'_R \) are self-energy from left and right semi-infinite leads, respectively.

From the above equations, we can obtain the electrical conductivity \(\sigma \), Seebeck coefficient \(S \) and the thermal conductivity \(\kappa_e \) \cite{2, 30}:

\[\sigma = e^2L_0/l, \]

(6)

\[S = -\frac{L_1}{eTL_0}, \]

(7)

\[\kappa_e(T) = \frac{1}{T_L} \left(L_2 - \frac{L_1^2}{L_0} \right), \]

(8)

where \(l \) is the device length, and \(L_{mn}(\mu) \) is given by

\[L_{mn}(\mu) = \frac{2}{\hbar} \int_{-\infty}^{\infty} d\varepsilon T_e(\varepsilon)(\varepsilon - \mu)^m \left(\frac{\partial f(\varepsilon, \mu)}{\partial \varepsilon} \right). \]

(9)

For the ballistic thermal transport, the phonon transmission \(T_p(\omega) \) is obtained using the similar methods, except that the \(T_p(\omega) \) is calculated from the dynamic matrix \(D \) instead of the Hamiltonian matrix. Specifically,

\[T_p(\omega) = \text{Tr}(G''_p\Gamma_L G''_p\Gamma_R). \]

(10)

The phononic thermal conductivity can then be achieved by \cite{2, 30}

\[\kappa_p(T) = \frac{\hbar^2}{2\pi K_B T^2} \int_0^\infty d\omega \omega^2 T_p(\omega) \frac{e^{\hbar\omega/k_B T}}{(e^{\hbar\omega/k_B T} - 1)^2}. \]

(13)

In the simulation, the unit of electronic conductivity is \(\text{kAV}^{-1}\text{M}^{-1} \), the unit of Seebeck coefficient is \(\text{mVK}^{-1} \), the unit of thermal conductivity is \(\text{WV}^{-1}\text{M}^{-1} \), and \(A \) is ampere, \(V \) is volt, \(W \) is watt, \(K \) is kelvin, \(M \) is meter.

3. Results and discussion

The origin energy gap for GGA functional is 0.73 eV, and the energy gap for HSE functional is 1.21 eV. So we apply a scissor correction on hamiltonian to revise the energy gap.

The electronic band structure of the InP3 monolayer is given in figure 1(c). It can be seen that the valence band maximum (VBM) \(E_{\text{vbm}} \) is \(-0.62\) eV, and the conduction band minimum (CBM) \(E_{\text{cbm}} \) is 0.59 eV. The corresponding electronic transmission spectrum along the zigzag direction is shown in figure 1(d). Moreover, the transmission coefficient for the valence bands (\(\mu < 0 \)) is evidently higher than that for the conduction bands (\(\mu > 0 \)), which should be attributed to the flatter
shape and denser energy bands near the VBM, as compared to that around the CBM.

The electrical conductivity σ vanishes in the bandgap at the zero temperature. As the temperature is sufficiently high, transport is mediated by activated electrons and/or holes. Therefore, the nonzero conductivity appears inside the bandgap due to the finite temperature. The electrical conductivity σ varying with the chemical potential μ is shown in figure 2(a) at 200 K, 300 K and 350 K, respectively. The σ below the Fermi energy is evidently larger than above the Fermi energy, and shows several peaks corresponding to the peaks in the transmission spectrum (figure 1(d)). Figure 2(b) gives the Seebeck effect S as a function of the chemical potential μ, which increases with increasing temperature.

Having known the electronic transport properties of the InP$_3$ monolayer, we now investigate its thermal transport properties. The phonon dispersion curves are shown in figure 3(a), which are symmetrical with respect to the Γ point for the $\Gamma \rightarrow K$ and $\Gamma \rightarrow M$ directions, suggesting an approximately isotropic thermal properties between the zigzag and armchair directions. There are twenty four curves in the phonon band structure, which are contributed by the vibration modes of the two In atoms and six P atoms in the primitive cell. The three lowest curves correspond to the three acoustic branches, which are the z-direction acoustic (ZA) mode, in-plane transverse acoustic (TA) mode, and the longitudinal acoustic (LA) mode, respectively. These three types of the acoustic phonon modes have the highest group velocities among all the phonon modes, and therefore contribute most importantly to the thermal conductivity. The group velocities can be calculated by $\frac{\partial \omega}{\partial k}$, which are 0.93 K ms^{-1}, 0.45 K ms^{-1} and 0.16 K ms^{-1} for the LA, TA, and ZA phonon modes, respectively. These group velocities are about one order lower than those of the monolayer black phosphorous [31]. Moreover, the whole phonon dispersions are very flat and exhibit highly localized properties, as shown in figure 3(a), which indicates the low group velocities for most of the band branches. Since a low
phonon group velocity leads to a weak thermal transport capability and thus a lower thermal conductivity, a higher ZT is then to be expected.

The phonon transport spectrum is given in figure 3(b). The thermal transmission has a larger value for the modes with the energy lower than 0.02 eV. Importantly, these low energy phonon modes will give the major contribution to the κ_p for the temperature below 300 K. The thermal conductivity contributed from the electrons (κ_e) is also given in the figure. The κ_p is approximately 3.1 times larger than the κ_e at 300 K, indicating that the phonon thermal conductivity has a larger influence on the TE properties than the κ_e. Figure 3(d) gives the figure of merit ZT at 200 K, 300 K and 350 K, as a function of the chemical potential.

We now investigate the influence of the mechanical strain on the figure of merit ZT of the InP$_3$ monolayer, as shown in figure 5(a). Under the compression, large imaginary frequency appears and hence the system is unstable, whereas upon the mechanical tension no imaginary frequency exists, indicating a stable structure, as shown in figure 5(b). However, the ZT drops evidently with the increased mechanical tension, and is reduced to 1.67 at 300 K for the 1% tension strain, as shown in figure 5(a). This can be understood from the variation in both the thermal conductivity and the power factor σ_S^2. Figure 5(c) shows that under the 1% tension strain the power factor decreases significantly, whereas the thermal conductivity increases instead (figure 5(d)). Such behaviors thus lead to a decreased ZT.

It should be noted that the thermal properties are calculated within the ballistic transport region. This means that the phonon–phonon scattering effects and electron–phonon scattering effects, which have a critical influence on the thermal transport at a higher temperature (>300 K) are not considered. These factors can be safely eliminated below the Debye temperature $\Theta_D(T)$. The Θ_D is about 380 K, which is obtained by fitting the Debye formula [34],

$$C_v = 9Nk_B \left(\frac{T}{\Theta_D} \right)^3 \int_0^{\Theta_D/T} \frac{x^4e^x}{(e^x-1)^2}dx,$$ \hspace{1cm} (14)$$

where $x = \hbar\omega/k_B T$. The isometric heat capacity C_v can be obtained by
where \hbar is the reduced Planck constant, k_B is Boltzmann constant, T is temperature, and $\omega_n(q)$ is phonon frequency of the nth branch with the wave vector q. By solving the equation (14) numerically, we obtained the Θ_D at the T where the heat capacity is equal to the half of Dulong and Petit value.

Above the Θ_D, all the phonon modes are activated, and the phonon–phonon scattering plays a major role in determining the thermal conductivity. This effect however can now be safely neglected at room temperature due to the high Θ_D of 380 K. More importantly, in the 2D system the phonon-surface scattering is dominant in decreasing the thermal conductivity instead of the phonon–phonon scattering [35]. This means that the anharmonic effects are of the limited importance, and thus the ballistic transport is reasonable in describing the

![Figure 4](image-url)
Figure 4. The variation of the maximum ZT with temperature for the zigzag and armchair directions, respectively.

![Figure 5](image-url)
Figure 5. The ZT (a), phonon bands (b), power factor (c), and the thermal conductivity $\kappa_e + \kappa_p$ (d) for the mechanical tension of 0% and 1%, respectively.
behavior of thermal conductivity of the InP$_3$ monolayer at room temperature.

4. Conclusions

In summary, we have studied the intrinsic TE properties of the InP$_3$ monolayer by using the quantum transport calculations within the ballistic transport region. A large ZT of 1.92 is obtained at room temperature, which is contributed significantly by the lower thermal conductivity and also the larger power factor. Moreover, even if a mechanical tension of 1% is applied on the lattice, a large ZT of 1.67 can also be obtained at room temperature. Such remarkable TE performance of the InP$_3$ monolayer benefits largely from its unique electronic band structure, which has the multi-valley and flat shape around the VBM. Our results show that the InP$_3$ monolayer is a promising TE material, and moreover give an insight to the thermoelectric performance of rough silicon nanowires (31 J. Phys.: Condens. Matter 124710 140).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11404348, 11504395, 51871156 and 11674231), Key Research and Development Program of Zhejiang province (No. 2019C01060), National Key Research and Development Program of China (No. 2018YFA0306100) and Natural Science Foundation of Zhejiang Province (No. LY17A040012).

ORCID iDs

Yiqun Xie https://orcid.org/0000-0001-6189-6929
Hezhu Shao https://orcid.org/0000-0002-8945-6973
Yibin Hu https://orcid.org/0000-0002-4497-6123

References

[1] Rowe D M 1995 CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press)
[2] Markussen T, Jauho A P and Brandbyge M 2009 Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics Phys. Rev. Lett. 103 055502
[3] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C,沃尔顿C, Dravid V P and Kanatzidis M G 2014 Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals Nature 508 373
[4] Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K and Chen Y 2018 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals Science 360 778
[5] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarina M, Majumdar A and Yang P 2008 Enhanced thermoelectric performance of rough silicon nanowires Nature 451 163
[6] Wen H, Da H and Liang G 2013 Thermoelectric performance of MX$_2$ monolayers J. Appl. Phys. 113 104304
[7] Wickramarathne D, Zahid F and Lake R K 2014 Electronic and thermoelectric properties of few-layer transition metal dichalcogenides J. Chem. Phys. 140 124710
[8] Sevik C and Sevincli H 2016 Promising thermoelectric properties of phosphorenes Nanotechnology 27 355705
[9] Zhberecki K, Wierzbicki M, Barnas J and Swirkowicz R 2013 Thermoelectric effects in silicene nanoribbons Phys. Rev. B 88 115404
[10] Yang K, Cahanigov S, Cantarero A, Rubio A and D’Agosta R 2014 Thermoelectric properties of atomically thin silicene and germanene nanostructures Phys. Rev. B 89 125403
[11] Sandonas L M, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G and Cumberi G 2016 Anisotropic thermoelectric response in two-dimensional puckered structures J. Phys. Chem. C 120 18841
[12] Kedar H, Wang Y, Ye Y, Diana Y Q, Zhu H, Wang Y, Moore J, Steven G L and Zhang X 2017 High thermoelectric power factor in two-dimensional crystals of MoS$_2$ Phys. Rev. B 95 115407
[13] Wu P et al 2018 Investigation of the electronic structure and lattice dynamics of the thermoelectric material Na-doped SnS Phys. Rev. B 98 094305
[14] Sadeghi H 2018 Theory of electron, phonon and spin transport in nanoscale quantum devices Nanotechnology 29 373001
[15] Hu Z Y, Li K Y, Lu Y, Huang Y and Shao X H 2017 High thermoelectric performances of monolayer SnSe allotropes Nanoscale 9 16093
[16] Wang X M, Mo D C and Lu S S 2013 On the thermoelectric transport properties of graphyne by the first-principles method J. Chem. Phys. 138 204704
[17] Chen K X, Lyu S S, Wang X M, Fu Y, Yi D C and Dong-Chuan M 2017 Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study J. Phys. Chem. C 121 13035
[18] Zhang J, Liu X, Wen Y, Shi L, Chen R, Liu H and Shan B 2017 Titanium trisulfide monolayer as a potential thermoelectric material: a first-principles-based Boltzmann transport study ACS Appl. Mater. Interfaces 9 2509
[19] Miao N, Xu B, Bristowe N C, Zhou J and Sun Z 2017 Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer J. Am. Chem. Soc. 139 11125
[20] Zhang G and Zhang Y W 2017 Thermoelectric properties of two-dimensional transition metal dichalcogenides J. Mat. Chem. C 5 7684
[21] Olaya D, Morales M H, Gomez D, Uribe O A C, Juang Z Y and Hernandez Y 2018 Large thermoelectric figure of merit in graphene layered devices at low temperature 2D Mater. 5 011004
[22] Sharma S, Kumar S and Schwingenschlogl U 2017 Arsenene and antimonene: two-dimensional materials with high thermoelectric figures of merit Phys. Rev. Appl. 8 044013
[23] Taylor J, Guo H and Wang J 2001 Ab initio modeling of quantum transport properties of molecular electronic devices Phys. Rev. B 63 245407
[24] Kresse G and Furthmuller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
[25] Blochl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation Phys. Rev. B 46 6671
[27] Nanodcal software www.hzwtech.com
[28] Hughes J L P and Sipe J E 1996 Linear optical response in silicon and germanium including self-energy effects Phys. Rev. Lett. 63 1719
[30] Takahiro Y and Kazuyuki W 2006 Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes Phys. Rev. Lett. 96 255503

[31] Jiang J W 2015 Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology 26 055701

[32] Kuang Y D, Lindsay L, Shi S Q and Zheng G P 2016 Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene Nanoscale 8 3760

[33] Wang F Q, Zhang S, Yu J and Wang Q 2015 Thermoelectric properties of single-layered SnSe sheet Nanoscale 7 15962

[34] Shao H, Tan X, Jiang J and Jiang H 2016 First-principles study on the elastic properties of Cu2GeSe3 Europhys. Lett. 113 26001

[35] Tritt T (ed) 2003 Thermal Conductivity: Theory, Properties and Applications (Dordrecht: Kluwer)