Annual Average Internal Dose Based on Alpha Emitters in Milk Sample

Abdalsattar Kareem Hashim¹, Hamza A. Mezher¹, Suha Hadi Kadhim², Ali Abid Abojasim²

¹Department of Physics, College of Science, Kerbala University, Karbala, Iraq.
²Department of Physics, Faculty of Science, University of Kufa, Al Najaf, Iraq.

E-mail: ali.alhameedawi@uokufa.edu.iq

Abstract. Natural radioactivity is common in the environment. As well as in geological formations such as soil, rock, air, water and plants. Which required extensive researches in many countries are due to the global interest in exposure to natural radioactivity. Ten different samples of milk collected from Iraqi markets were evaluated for concentration of alpha radioactivity (uranium concentration, effective radium content and radon concentrations) using CR-39. After exposure, the detectors were etched in a (NaOH) solution of normality (6.25 N) at a temperature of 70 °C for 8 hours. The tracks were calculated by the microscope track-counting system. At a rate of 0.171 ppm, uranium concentrations ranged between 0.079 – 0.263 ppm. While, the effective radium content varied from 53.724 - 178.47 mBq/kg with an arithmetic rate of 116.096 mBq/kg. The variation of the radon exhalation values for the mass unit and for the area unit was also observed between 0.406 - 1.349 mBq/kg.h and 3.076 - 10.217 mBq/m².h, at a mean rate of 0.943 mBq/kg.h and 6.646 mBq/m².h, respectively. The average of annual average internal effective dose (AAIED) due to ingestion of 222Rn in milk samples in children and adults has been found 0.60 nSv/y and 0.2 nSv/y respectively, there are excellent correlation between radium concentrations and radon exhalation rate and uranium concentration(R²=1). Thus, the results of this study do not constitute a health hazard to the lives of people because they are within the limits allowed internationally.

Keywords: Alpha radioactivity; sealed can technique; CR-39; milk

1. Introduction

Heavier than air, Radon gas is called radium emission. Since radon gas has no colour, no odour, no taste and no sight, appropriate detectors should be used to detect its presence. Radon-222 is the natural radioactive gas resulting from the decay of radium-226 in the uranium-238 series. Radium resides in soil rocks and ocean waters sediments. Alpha particles with 5.486 MeV of energy are emitted as the radon atoms decay to produces polonium isotopes “(Po-218 and Po-214)” [1]. In developing radiation protection rules and regulations, it is necessary to know how human exposure to natural and industrial radiation sources is carried out, so many studies on radiation levels and the distribution of radionuclides in the environment are conducted to extract vital radioactive information [2]. The earth contains rudimentary radionuclides, including uranium and radium. Radionuclides are highly important in the nuclear fuel cycle. They are decomposed by three groups of distinct radionuclides such as uranium-238, uranium-235, and thorium-232. They do not only exist in the human body but can be inhaled by gas inhalation from certain nutrients. Radium-226 (half-life of 1600 years), radium-224 and radium-228 (half age have 3.6 days and 5.8 years, respectively, are usually mixed with
uranium ore). Because radium chemically behaves like calcium in the bone, surfaces of metal metabolism, these nuclei are radioactive [3]. Radium-226 concentrations, which are widely dispersed in the environment, vary depending on the sources in which they are presented, with concentrations varying in water, soil, and food [4]. Most substances are excreted rapidly, when radium is ingested. However, because of the similarity of the chemical of radium and calcium, the blood-absorbing radium from the gastrointestinal tract or lungs follows calcium disposal and is deposited mainly in the bones [5]. Radium from radionuclides in the environment is the origin of radon, since it generates alpha rays and has a prolonged half-life is one of the deadliest radionuclides [6]. Milk powder is one of the most important foods that young people and adults eat as an important food meal after mixing it with warm water or water to drink it as liquid at different times of the day. The importance of this food is to study the activity of the natural radiation for α-particles emitted in ten samples of Iraqi powdered milk markets (Karbala governorate) for various brands. This research is aimed at determining uranium concentrations, effective radium content, radon exhalation rate of the mass and surface unit in ten samples of powdered milk to know the health risks associated with the alpha radioactivity emitted from different milk samples.

2. Experimental details

Ten samples for various types of milk available at Iraqi market were collected for this study, where the samples were dried and grinded in the form of soft powder. 90 gm of powder milk samples were taken, and were stored for 30 days to arrive of secular equilibrium. The sealed can technique was used, as shown in Figure 1. To measure effective radium content and exhalation rates of radon in different milk samples, the CR-39 was used with a thickness of 500 μm and dimensions (1.5 x 1.5 cm2) to estimate alpha concentrations emitted from radon-222 [7,8] in ten samples of milk available in Iraqi local markets. 90 grams of each milk sample were taken and placed in the bottom of the cylindrical cup with a height of 6.5 cm and a diameter of 12.3 cm. The distance between the sample surface and the detector surface was 9.3 cm. The detector is installed in a double-sided adhesive on the inner surface of the cup lid. After the exposure (108 day) was completed, the detectors were retrieved and etched for eight hours in 6.25N NaOH solution maintained at a temperature of 70 ± 1 °C in a constant temperature water bath to reveal the tracks. The detectors were washed and dried. Subsequently, α-tracks were calculated using an optical microscope (kruss-mbl 2000) at a magnification of 100X.

![Figure 1. Sealed can technique.](image)
3. Theoretical calculations

The dissolve radon concentration in milk was calculated using the following equation [9-11]:

\[
C_{Rn} = \frac{C_a \lambda T}{L}
\]

(1)

where \(C_a\) = radon concentration in ambient air (Bq/m\(^3\)), \(\lambda\) = decay constant for radon (d\(^-1\)), \(h\) = the distance from the surface of milk to detector (m), \(T\) = time of exposing and \(L\) = the depth of the sample (m).

Effective radium content in milk samples is calculated using the following formula: [12, 13]:

\[
C_{Ra}(mBq/kg) = \frac{hA}{KT_wM}
\]

(2)

where, \((\rho)\) is track density on the surface detectors, \((K)\) is the calibration factor equal to (0.223 Tracks.cm\(^2\).day\(^-1\)/Bq.m\(^3\)) [14] and \((M)\) mass of sample.

The effective exposure time \((T_e)\) with the real exposure time \((T)\) and \(^{222}\text{Rn}\) decay constant \((\lambda)\) are related to the following relationship [15, 16]:

\[
T_e = T - \frac{T}{T} \left(1 - e^{-\lambda T}\right)
\]

(3)

Area exhalation rate of radon \([E_A\ (mBq/ m^2.h)]\) is calculated from the next equation [12, 17]:

\[
E_A(mBq/ m^2.h) = \frac{CV_A}{AT_e}
\]

(4)

here \((A)\) the area of the tube, \(V\) is the effective volume of the can.

Mass exhalation rate of radon\([E_M(mBq/ kg.h)\) \] is calculated by using equation [12, 17]:

\[
E_M(mBq/ kg.h) = \frac{CV_A}{MT_e}
\]

(5)

where, \(M\) is the mass of the milk sample, \(C\) represents the integrated radon exposure (Bq.m\(^-3\).d),

Uranium concentration \((C_u)\) in the powder milk samples can be defined as the ratio between the weight of the uranium in the sample\((W_u)\) and the weight of the sample\((W_s)\) itself according to the following formula and measured in unit of part per million (ppm) [18,19]:

\[
C_u(ppm) = \frac{W_u}{W_s}
\]

(6)

The annual average internal dose (AAIED) by an ingestion of radionuclides has been calculated according to the equation [20,21]:

\[
AAIED(\frac{Sv}{y}) = C_{Rn} \left(\frac{Bq}{kg}\right) \times I^n \left(\frac{Kg}{y}\right) \times C_f \left(\frac{Sv}{Bq}\right)
\]

(7)

where, \(C_{Rn}\) is the activity concentration of radon inside of the ingested sample (Bq/Kg), \(I^n\) is the annual intake of powdered milk (Kg/y) which depends on a given age [22,23] and \(C_f\) is the effective dose conversion factor of the radioactive element (nSv/Bq) \(C_f\) is the ingested dose conversion factor for radionuclides (Sv/Bq), as mentioned in the UNSCEAR2000 report [24]. The average consumption rate of milk for children, in different age groups [22,25,26].

4. Results and Discussion

In the present study, ten samples of powdered milk were selected from various brands available in the Iraqi market. For the purpose of measuring of alpha radioactivity emitted from the milk samples, using CR-39 detector. The values of \(\rho, CS, E_M, E_A,\) and \(C_u\) as well as sample name with origin country are summarized Table 1 to ten different samples of powdered milk in present study. The results of the samples were arranged upward of these results, effective radium content were found to range from 53.724±3.2 to 178.470±8.7 mBq/kg, at an average of 116.096 mBq /kg. While the radon exhalation rate for the mass unit and the area unit was 0.406±0.01 to 1.349±0.09 mBq/kg.h and 3.076±0.09 to 10.217±0.20 mBq/m\(^3\).h. With an average of 0.943 mBq /kg .h and 6.646 mBq /m\(^3\).h, respectively. It was also observed that the highest \(C_u\) was 0.263±0.009 ppm in the sample Li-Vie and the lowest concentration was 0.079±0.001 ppm in the sample AL-Mudhish, at an average of 0.171ppm. The values of AAIED based on ingestion of radon-222 from samples of milk in different age groups such as a children and adults respectively are shown in Figures 2 and 3. From Figure 2, it is found that, the range value of AAIED by ingestion of radon-222 in children groups was 0.266 nSv/y to 0.882 nSv/y.
with an average value of 0.60 nSv/y, while the range of AAIED in adult groups was between 0.091nSv/y and 0.302nSv/y with an average value of 0.20 nSv/y (see Figure 3). In Figure 4, it is found that the percentage of AAIED in children and adults were 75% and 25% respectively. Therefore, AAIED consumption by children is larger than the dose from consumption by adults. This larger value for children is due to the high sensitivity of tissues of children body. They indicate that the AAIED in all milk samples was lower than the action level of 0.29 mSv/y recommended by UNSCEAR in regard to the ingestion exposure that occurred by natural sources [20,21,24]. In this study, we can say that all the results were similar to that of other Iraqi researchers for different food items (dates, rice, vegetables) [18,27,28]. Therefore, there is no danger to human health from the point of view of radiation. In addition, the concentration of uranium in all milk samples for this study was lower than that of milk products in the United States [29] and some Asian countries such as China [30], India [31] and Japan [32], as well as European countries, namely Poland [33] and the United Kingdom [34]. The value of C_{Ra} in the milk under study was higher than the products by America [29], China [30], Japan [32], Italy [35], Poland [33,36] and Romania [37,38] and were within the limits of permitted levels in Germany [39,40] and the United Kingdom [34]. From the concentration of uranium and radium concentrations obtained from that study with levels of uranium and radium concentrations in the United States and many European and Asian countries in milk products, therefore, it can say that these samples do not dangerous on the health of people life because the concentrations of nuclei studied within the levels allowed internationally.

Table 1. The results of ρ, CS, C_{Ra}, E_M, E_A, and C_U for different milk samples under study.

Code	Sample Name	Country	ρ (Trak/cm2)	CS (Bq/m3)	C_{Ra} (mBq/Kg)	E_M mBq/kg.h	E_A mBq/m2.h	C_U (ppm)
M1	Al-Mudhish	Oman	100±6.2	4.152±0.10	53.724±3.2	0.406±0.01	3.076±0.09	0.079±0.001
M2	AL-Munaish	New Zealand	125.8±7.3	5.223±0.12	67.584±4.2	0.511±0.02	3.869±0.09	0.100±0.002
M3	AL-Ajeeb	New Zealand	151.6±8.1	6.295±0.11	81.445±4.6	0.616±0.03	4.663±0.10	0.120±0.002
M4	Dielac 1	Vietnam	177.4±7.8	7.366±0.13	95.306±4.9	720±0.04	5.456±0.12	0.141±0.003
M5	Rawdha-Al-Mudhish	New Zealand	203.2±9.0	8.437±0.14	109.166±5.1	0.825±0.05	6.250±0.14	0.161±0.004
M6	Happy Family	New Zealand	229±10.2	9.508±0.15	123.027±6.7	0.930±0.06	7.043±0.16	0.181±0.005
M7	Rino	UAE-Dubai	254.8±12.8	10.580±0.18	136.888±7.6	1.035±0.07	7.837±0.17	0.202±0.006
M8	Dielac 2	Vietnam	280.6±13.7	11.651±0.19	150.748±7.9	1.139±0.08	8.630±0.18	0.222±0.007
M9	Al-Ryad	UAE-Sharjah	306.4±16.8	12.722±0.2	164.609±8.2	1.244±0.09	9.424±0.19	0.243±0.008
M10	Li-Vie	New Zealand	332.2±16.9	13.793±0.02	178.470±8.7	1.349±0.09	10.217±0.20	0.263±0.009
Minimum			100	4.152	53.724	0.406	3.076	0.079
Maximum			332.2	13.793	178.470	1.349	10.217	0.263
Average			216.1	8.972	116.096	0.943	6.646	0.171
Figure 2. Results of Annual average internal dose in children.

Figure 3. Results of Annual average internal dose in adults.
5. Conclusion

After studying of alpha radioactivity in ten samples of powdered milk, which is widely used in the Iraqi market and through the results we found that the highest concentrations of uranium concentration, effective radium content, radon exhalation rate for mass and surface in sample M10 (Li-Vie, New Zealand), while the lowest values for the same variables were in the sample M1 (Al-Mudhish, Oman). When comparing the results of this study with the results of researchers in previous studies, including different food items, it was found that there is similarity and convergence between these studies. It is conclude from this study that the results have not affected on the health of people because they are within the levels allowed internationally compared to concentrations of uranium and radium nuclei in milk products in many countries of the world, such as the United States of America as well as many European countries and Asia.

Acknowledgements: We would like to thank all those contributed to declaring this issue. Special thanks to the staff of the department of physics at Kerbala and Kufa University.

References

[1] Kaplan I, 1963, Nuclear physics, Addison–Wesley Publishing Company, Inc.
[2] Quindos L S, Fernandez P L, Soto J, Rodenas C and Gomez J 1994 Natural radioactivity in Spanish soils Health physics 66(2), 194-200
[3] Evans R D 1974 Radium in man Health Physics 27(5) 497-510
[4] Abojassim A A and Neama H H 2020 Radiological and chemical risk assessment from uranium concentrations in groundwater samples collected from Al-Kufa area Iraq Water Supply
[5] Fan A and Alexeef G V 1999 Office of Environmental Health Hazard Assessment California Environmental Protection Agency Public Health Goal for Atrazine In Drinking Water 1-44
[6] Brueland O S, Jonasdottir T J, Fisher D R and Larsen R H 2008 Radium-223: From radiochemical development to clinical applications in targeted cancer therapy Current Radiopharmaceuticals 1(3) 203-208
[7] Durrani S A and Bull R K 1987 The Solid State Nuclear Track Detection Principles International Series in Natural Philosophy Volume-III
[8] Gamboa E and Moreno A G JI and Costillo F 1984 Nuclear Tracks and Measurement 1 443-445
[9] Al-Bataina B A, Ismail A M, Kullab M K, Abumurad K M and Mustafa H 1997 Radon
measurements in different types of natural waters in Jordan Radiation Measurements 28(1-6) 591-594
[10] Mohammad A I and Al-Zubaidy N N 2012 Estimation of Natural Radioactivity in Water and Soil in Some Villages of Irbid City Applied physics research 4(3) 39
[11] Somogyi G, Hafez A F, Hunyadi I and Toth-Szilagyi M 1986 Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors, International Journal of Radiation Applications and Instrumentation Part D Nuclear Tracks and Radiation Measurements 12(1-6) 701-704
[12] Abd-Elzaher M 2012 An overview on studying 222 Rn exhalation rates using passive technique solid-state nuclear track detectors American Journal of Applied Sciences 9(10) 1653
[13] Khan M S, Srivastava D S, and Azam A 2012 Study of radium content and radon exhalation rates in soil samples of northern India, Environmental Earth Sciences 67(5) 1363-1371
[14] Hashim A K and Mohammed E J 2016 Natural radioactivity due to radon in dwellings of Karbala city Iraq Int J Adv Res 4(8) 1164-71
[15] Khan M S, Srivastava D S and Azam A 2012 Study of radium content and radon exhalation rates in soil samples of northern India Environmental Earth Sciences 67(5) 1363-1371
[16] Kant K, Upadhyay S B and Chakarvarti S K, 2005 Alpha activity in Indian thermal springs Iranian Journal of Radiation Research 2(4) 197-204
[17] Abu-Jarad F A 1988 Application of nuclear track detectors for radon related measurements, International Journal of Radiation Applications and Instrumentation Part D Nuclear Tracks and Radiation Measurements 15(1-4) 525-534
[18] Abojassim A A and Lawi D J 2018 Alpha particles emissions in some samples of medical drugs (capsule) derived from medical plants in Iraq, Plant arches 18(1) 1137-7
[19] Yousuf R M and Abdullah K O 2011 Measurement of uranium and radon Concentrations in resources of water from Sulaimany Governorate-Kurdistan region-iraq ARPN Journal of Science and Technology 3 (6): 632-638
[20] Al-Omari S, 2015, Radioactivity measurement of 222Rn, 226Ra and 238U in pharmaceuticals and evaluation of cancer risk International Journal of Low Radiation 10(1) 61-73
[21] Abojassim A A and Lawi D J 2018 Alpha particles emissions in some samples of medical drugs (capsule) derived from medical plants in Iraq Plant Archives 18(1) 1137-1143
[22] Abojassim A A, Al-Gazaly H H, Kadhim S H and Guida M 2015 Natural radioactivity and radon activity concentrations in canned milk samples in Iraq Advances in environmental and agricultural science 354-362
[23] Jackson P C 1996 Age-dependent Doses to Members of the Public from intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients ICRP Publication 72
[24] Unscer A 2000 United Nations Scientific Committee on the effect of atomic radiation Sources and Effects of Ionizing Radiation report to the General Assembly with Annexes
[25] United Nations Scientific Committee on the Effects of Atomic Radiation 1994 Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 1994 Report to the General Assembly, with Scientific Annexes (Vol. 49) United Nations Publications
[26] Ababneh Z Q, Alyassim A M, Aljarrah K M, and Ababneh A M 2009 Measurement of natural and artificial radioactivity in powdered milk consumed in Jordan and estimates of the corresponding annual effective dose Radiation protection dosimetry 138(3) 278-283
[27] Hashim A K and Najam L A 2015 Alpha radioactivity in various brands of Rice in Iraqi market International Journal of Environmental Monitoring and Protection 2(5) 70-75
[28] Hashim A K and Najam L A 2015 Radium and Uranium Concentrations Measurements in Vegetables Samples of Iraq Detection 3(04) 21
[29] Fisenne I M, Perry P M, Decker K M and Keller H W 1987 The daily intake of 234 235 238 U 228 230 232 Th and 226 228 Ra by New York City residents Health Physics 53(4) 357-363
[30] Zhu H, Wang S, Meng W, Wang D, Zheng X, Liu Q and Liu P 1993 Determinations of 90 Sr 137 Cs 226 Ra 228 Ra 210 Pb 210 Po contents in chinese diet and estimations of internal doses due to these radionuclides, *Radiation Protection* (Taiyuan) 13(2) 85-92

[31] Dang H S, Pullat V R, Jaiswal D D, Parameswaran M and Sunta C M 1990 Daily intake of uranium by urban Indian population, *Journal of Radioanalytical and Nuclear Chemistry* 138(1) 67-72

[32] Shiraishi K and Yamamoto M 1995 Dietary 232 Th and 238 U intakes for Japanese as obtained in a market basket study and contributions of imported foods to internal doses *Journal of Radioanalytical and Nuclear Chemistry* 196(1) 89-96

[33] Starościak E, and Rosiak L 2015 Determination of uranium reference levels in the urine of Warsaw residents (Poland) *Journal of Radioanalytical and Nuclear Chemistry* 304(1) 75-79

[34] Bradley E J 1993 Contract Report. National radionuclides in environmental media NRPB-M439

[35] Abdelaleem M A 2017 Radionuclides in Foods, In Food Toxicology (pp. 271-310) *Apple Academic Press*

[36] Pietrzak-Flis Z, Chrzanowski E and Dembinska S 1997 Intake of 226Ra 210Pb and 210Po with food in Poland *Science of the Total Environment* 203(2) 157-165

[37] Botezatu E 1994 Contribution of the dietary ingestion to the natural radiation exposure of Romanian population *J Hyg Public Health* 44(1-2) 19-21

[38] Abdellah W M and Diab H M 2012 Determination of Natural Radioactivity in Drinking Water and Consequent Dose to Public *Nature and Science* 10(1)

[39] Dersch G Radioaktivitätsüberwachung und Monitoring an der BfG: Ein Rückblick. Radioaktivität in Forschung und Umwelt–60 Jahre Radiologie in der Bundesanstalt für Gewässerkunde 11

[40] Muth H, Rajewsky B, Hantke H J and Aurand K 1959 The normal radium content and the Ra226/Ca ratio of various foods, drinking water and different organs and tissues of the human body *Health Physics* 2(3) 239-245