Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies

Shimon Ben-Shabat · Ludmila Yarmolinsky · Daniel Porat · Arik Dahan

Published online: 1 December 2019 © Controlled Release Society 2019

Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals.

Keywords Antiviral · Phytomedicine · Herbal extracts · Flavonoid · Solubility · Oral drug delivery

Introduction
Viral infections remain a major worldwide cause of morbidity and mortality. Among the most aggressive viral infections are Ebola, AIDS (acquired immunodeficiency syndrome), influenza, and SARS (severe acute respiratory syndrome). For instance, influenza is responsible for over 3 million new cases of severe disease, and between 300,000–500,000 deaths yearly [1, 2]. Alarming, the number of patients diagnosed with viral infections is increasing every year with more blood transfusions, organ transplantations, and the use of hypodermic syringes.

* Shimon Ben-Shabat
 sbs@bgu.ac.il

* Arik Dahan
 arikd@bgu.ac.il

1 Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel

2 Eastern R&D Center, Kiryat Arba, Israel

Classic antiviral drugs such as interferon and ribavirin are effective in vitro against most viruses, but often are ineffective in patients. Ninety different antiviral agents available today [3, 4] only treat a selection of viruses; these viruses include HIV (human immunodeficiency virus), herpes viruses, including HSV (herpes simplex virus), hCMV (human cytomegalovirus), VZV (varicella zoster virus), influenza viruses, and the hepatitis viruses (Fig. 1). Currently, there is no approved remedy for many types or viruses, and vaccination is limited to hepatitis A virus, mumps, and varicella [2]. In addition, these agents are often costly and ineffective due to viral resistance and cause side effects. With that in mind, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Thus, it is necessary to further examine the topic of antiviral phytochemicals, highlighting drug delivery applications in overcoming the multiple biological barriers existing for antiviral agents to successfully reach their intended site(s) of action. The present review focuses on the antiviral properties of herb extracts and bioactive constituent isolates from medicinal plants, and the efforts to obtain their efficient delivery.
Antiviral medicinal plants and phytochemicals

Various plants have been used in medicine since ancient times and are known for their strong therapeutic effect. In traditional medicine, diseases of possible viral origin have been treated by many of these plants. The main findings related to antiviral plant extracts are collected in Table 1. Included extracts were tested in cell culture, and some extracts were also studied in vivo [11, 23, 31, 39].

Various phytochemicals were isolated, purified, and identified from the crude extracts of alkaloids, terpenes, flavonoids, various glycosides, and proteins (Table 1). Compounds with antiviral activity are present in many plants, e.g., rutin, a flavonoid glycoside common in different plants, is effective against avian influenza virus [48], HSV-1, HSV-2 [18], and parainfluenza-3 virus [49].

Quercetin, an aglycone of rutin, is a phytochemical abundant in plants and may diminish the replication of many viruses: highly pathogenic influenza virus [50], rhinovirus [51], dengue virus type-2 [52], HSV-1 [53], poliovirus [54], adenovirus [53], Epstein-Barr virus [55], Mayaro virus [56], Japanese encephalitis virus [57], respiratory syncytial virus [58], and HCV [59, 60]. Its antiviral activity mode was studied in a few cases. Its ability to inhibit HCV by limiting the activity of some heat shock proteins (HSPs) produced by cells in response to exposure to stress which were involved in NS5A (nonstructural protein 5A)-mediated viral IRES (internal ribosome entry site) translation [60] is one well-known mechanism. Another mechanism involved the inhibition of HCV NS3 protease and HCV replication in a subgenomic HCV RNA replicon cell system [59]. Quercetin also inhibits various steps of the rhinovirus pathogenesis, i.e., endocytosis, viral genome transcription, and protein synthesis [51]. In another case, quercetin was shown to have a more specific mode of action, reducing the replication of dengue virus type-2, but not the processes of viral attachment and entry [52].

In addition, quercetin and three other flavonoids: 3,3′,4′,5,5′,7-hexahydroxyflavone (myricetin), 3,3′,4′,5,6,7-hexahydroxyflavone (quercetagetin), and 5,6,7-trihydroxyflavone (baicalein), all effectively inhibited reverse transcriptases from Rauscher murine leukemia virus (RLV) and HIV; quercetin, myricetin, and quercetagetin were also shown to inhibit different DNA polymerase enzymes [61]. The abovementioned flavonoid, myricetin, is abundant in wild plants, nuts, fruits, berries, and vegetables. Ellagic acid and myricetin (from the aronia fruit) were active in cell cultures against different subtypes of influenza viruses including an oseltamivir-resistant strain, and also effective in vivo [62].

Apigenin (4′,5,7-trihydroxyflavone), an aglycone of the flavone class, is found in many plants and has broad antiviral activities against enterovirus-71 [63], foot and mouth disease virus [64], HCV [65], African swine fever virus (ASFV) [66], and influenza A virus [67]. Of note, many flavonoids of plant origin have known antiviral properties. For example, out of 22 different flavonoids, six phytochemicals (apigenin, baicalein, biochanin A, kaempferol, luteolin, naringenin) were active against the avian influenza H5N1 virus in human lung epithelial (A549) cells through inhibiting nucleoprotein production [67]. Baicalin (the glucuronide of baicalein) was also active against a wide range of viruses, including enterovirus [68], dengue virus [69], respiratory syncytial virus [70], Newcastle disease virus [71], human immunodeficiency virus [72], and hepatitis B virus [73], and different mechanisms were suggested for its antiviral actions. For example, baicalin inhibits the production of HBV, the templates for viral proteins and HBV-DNA synthesis [73], and decreases IL-6 and IL-8 production without affecting IP-10 levels, as shown in a study on avian influenza H5N1 virus [67].

The triterpenoids oleanolic acid and ursolic acid are abundant in the plant kingdom, may be effective against HCV by reducing HCV NS5B RdRp virulence [74], and can also inhibit enterovirus-71 replication [75]. Lastly, Sambucus nigra L. is an active ingredient in a standardized elderberry extract, effectively used in the treatment of fever, colds, and influenza A and B [76–78].

Delivery of herbal extracts and phytochemicals

Introducing pharmaceutical nanotechnology into the field of natural medicine is useful and promising. New strategies for the delivery of poorly soluble phytochemicals and plant extracts allow improved pharmacokinetic and clinical outcomes.
Plant	Kind of extract	Virus	Phytochemicals	References
Achillea	Hydro-alcoholic extract	Poliomyelitis-1 virus (POLIO)	Unknown	[3]
fragrantissima				
Aegle marmelos	Aqueous extract	Human coxsackieviruses B1-B6	Unknown	[4]
Aloe vera	Glycerine extract	HSV-2	Unknown	[5]
Artocarpus	Aqueous extract	(SA-11) and human (HCR3) rotaviruses	Unknown	[6]
integri folia				
Balanites	n-Hexane extract	VSV T2	Unknown	[7]
aegyptiaca				
Camellia	Aqueous extract	HBV	Epigallocatechin-3-gallate	[8]
sinensis				
Capparis	Methanolic extract	HSV-2	Unknown	[9]
spinosa		HIV-1	Protein	
Cassine	Aqueous extract	HIV	Pentacyclic lupane-type triterpenoids	[10]
xylocarpa				
Cistus	Polyphenol-rich extract	Avian and human influenza strains	Unknown	[11, 12]
incanus	(CYSTUS052)	HIV-1 and HIV-2	Unknown	[13]
Curcuma	Aqueous extract	HSV-1	Curcumin	[5]
longa				
Cyperus	Hydro-alcoholic extract	HSV-1	Unknown	[3, 14]
rotundus		HBV	cyperene-3, 8-dione, 14-hydroxy cyperotundone, 14-acetoxy cyperotundone, 3β-hydroxyxycyperenoic acid and sugetriol-3, 9-diacetate	
Daphne	Hydro-alcoholic extract	HIV	Daphnetoxin, gnicidin, gnditirin and excoecariatoxin	[15]
gnidium				
Diospyros	Aqueous extract	Human rotavirus	Licocoumarone, licoflavonol, glyasperin D, 18 β-glycyrrhetinic acid, luteolin, vitexin, apigenin-7-O-glucoside	[6]
kaki				
Dittrichia	Aqueous extract	VSV, HSV-1, poliovirus type 1	Unknown	[16]
viscosa		HSV-1, HIV-2, SIV mac 251		
Euphorbia	Aqueous extracts, methanol extracts		Unknown	[17]
hirta				
Euphorbia	Methanol extract	HSV-1	Unknown	[5]
spinidens				
Ficus	Ethanol extract	HSV-1, HSV-2	Rutin, kaempferol 3-O-rutinoside and kaempferol 3-O-robinobioside	[18]
benjamina				
Ficus	Aqueous extract	HSV-1	Unknown	[19]
carica	The hexanic and hexane-ethyl acetate from latex of fig fruit	HSV-1, ECV-11 and ADV influenza virus		[20]
	Hexanic extract			[21]
Globularia	Hydro-alcoholic extract	Poliomyelitis-1 virus (POLIO)	Unknown	[3]
arabica				
Glycyrrhiza	Methanolic extract	NDV	Unknown	[22]
glabra				
Glycyrrhiza	Metabolic extract	Rotavirus diarrhea	Unknown	[23]
uralensis				
Hyssopus	Methanolic extract	HSV-1	Unknown	[5]
officinalis				
Leucojum	Methanolic extract	HIV-1	Homolycorine and 2-O-acetyllycorine	[24]
vernum				
Lilium	Ethanol extract	HSV-1, HSV-2	Kaempferol	[25]
candidum				
Magnolia	Methanol extract	Dengue virus Type 2	Honokiol	[26]
officinalis				
Maytenus	Aqueous extract	HIV	Pentacyclic lupane-type triterpenoids	[10]
cucujoina			Unknown	[27]
Melissa	Aqueous extract	HSV-1, HSV-2		[28]
officinalis		HIV		[29]
Mentha	Methanolic extract	HSV-1	Unknown	[30]
pulegium				
Moringa	Hydro-alcoholic extract	HSV-1	Unknown	[3]
peregrina				
Myristica	Aqueous extract	Human rotavirus	Unknown	[6]
fragrans				
Olea	Hexanic extract	Influenza virus subtype H9N2	Unknown	[21]
euroepaea				
Panax	Methanolic extract	Human rotavirus	Epigallocatechin gallate, theaflavin digallate, genistein, hesperidin, neohesperidin, diosmin, pectic polysaccharides	[6]
ginseng				
Commonly used approached such as phytosomes, nanoparticles, hydrogels, microspheres, transferosomes and ethosomes, self-microemulsifying drug delivery systems (SMEDDS), and self-nanoemulsifying drug delivery systems (SNEDDS) have been applied for the delivery of antiviral plant agents (Table 2). These antiviral technologies may be preferred over older phytochemical drug formulations due to enhanced solubility and oral absorption, systemic bioavailability, safety, delayed metabolism, and better overall antiviral activity. Yet, very few papers have been published on the topic of antiviral herbal drug delivery, so we wish to display several successful attempts of improving the delivery of phytodrugs with known antiviral activity. Qian et al. [79] attempted to design a self-nanoemulsifying drug delivery system (SNEDDS) to achieve greater apparent solubility and oral bioavailability (< 10%) of myricetin. Overall, four formulations were prepared, F04 (Capryol 90/Cremophor RH 40/PEG 400 in a 4:3:3 ratio), F08 (Capryol 90/Cremophor RH 40/1,2-propanediol 4:3:3), F13 (Capryol 90/Cremophor EL/Transcutol HP 4:3:3), and F15 (Capryol 90/Cremophor RH 40/Transcutol HP 2:7:1), and the solubility of myricetin in different excipients was
Table 2 Summary of the different applied delivery systems for antiviral phytochemicals

Phytochemical	Viruses	Delivery system/method
Myricetin	HIV, RLV, influenza	SNEDDS [79], nanogel [80], mixed micelles [81], nanosuspension [82], cocrystal [83], nanoencapsulation [84]
Apigenin	Enterovirus 71, FMDV, HCV, ASFV, influenza A	W/O/W emulsion [85], O/W microemulsion [86], solid dispersion [87, 88], mixed micelles [89], phospholipid phytosome [90], pellets [91], SMEDDS [92]
Baicalin	Influenza, NDV, enterovirus 71, DENV, RSV, HIV, HBV	Liposome [93], mixed micelles [94, 95], polymeric micelles [96], SNEDDS [97], nanoemulsion [98], inclusion complex [99], solid dispersion [100], nanoparticles [101], nanocrystals [102, 103], SMEDDS [104]
Quercetin	JEV, influenza A, EBV, MAYV, RV, HCV	Nanocrystal [105], nanoparticles [106–110], phytosome [111], nanoliposome [112], mixed micelles [113, 114], SNEDDS [115, 116], nanocarrier [117, 118], nanoemulsion [119], nanosuspension [120]
Fructus Forsythiae extracts	Influenza, RSV	chito-oligosaccharide [121, 122]
Flos Lonicerae extracts	Influenza, RSV, HIV, NDV	chito-oligosaccharide [122]
Andrographolide	DENV, CHIKV, HPV16 pseudovirus, influenza, HBV, HCV, HSV1, EBV, HIV	SMEDDS [123], microspheres [124], nanosuspension [125], self-nanodispersion [126], nanoparticles [127], inclusion complex [128]
Curcumin	Influenza, RSV, HBV, HCV, ZIKV, CHIKV, norovirus, HIV, HPV, CMV, EV71, DENV type-2	Mixed micelles [129, 130], nanoparticles [131, 132], solid dispersion [133, 134], SNEDDS [135], SMEDDS [136], lipid carrier [137], copolymeric micelles [138], exosomes [139]
Naringenin	DENV, HCV	SNEDDS [140], solid dispersion [141], nanoparticles [142, 143], liposome [144], nanosuspension [145, 146], cyclodextrin complex [147]
Honokiol	DENV, HCV	Inclusion complex [148], conjugate micelles [149], nanoparticles [150]
Oleanolic acid	Acute and chronic hepatitis	SMEDDS [151], nanoparticles [152], nanosuspensions [153, 154], SNEDDS [155]

HIV human immunodeficiency virus, RLV rhesus lymphocryptovirus, FMDV foot and mouth disease virus, HCV hepatitis C virus, ASFV African swine fever virus, NDV Newcastle disease virus, DENV dengue virus, RSV respiratory syncytial virus, HBV hepatitis B virus, JEV Japanese encephalitis virus, EBV Epstein–Barr virus, MAYV Mayaro virus, RV rhinovirus, CHIKV Chikungunya virus, HPV human papilloma virus, HSV herpes simplex virus, ZIKV Zika virus, CMV cytomegalovirus, EV enterovirus, SNEDDS self-nanoemulsifying drug delivery system, W/O/W water-in-oil-in-water, O/W oil-in-water, SMEDDS self-microemulsifying drug delivery system

studied. The optimized formulations underwent evaluation of release (dissolution), Caco-2 cell cytotoxicity and intestinal permeability studies in vitro, following by in vivo pharmacokinetics of myricetin-SNEDDS. Three of the four chosen formulations exhibited acceptable cell viability (> 90%), while the fourth formulation was slightly cell-toxic, probably because of high nonionic surfactant content (70%). In vitro drug release testing demonstrated that myricetin alone had limited dissolution of 51% after an hour, whereas drug release for all SNEDDS formulations was over 90% after 1 min. Single-pass intestinal perfusion (SPIP) method in rats showed that in the duodenum, the primary absorption site of myricetin, the effective permeability coefficient was significantly higher (1.2–2.2-fold, p < 0.05) in all SNEDDS formulations relative to free myricetin, via inhibition of myricetin efflux by nonionic surfactants in SNEDDS (Fig. 2). In animal models, the myricetin-loaded SNEDDS formulations exhibited higher plasma myricetin concentrations in all time points compared to the free myricetin. Formulation No. 13 in Fig. 2 had higher intestinal permeability, but showed lower bioavailability attributed to poor lymphatic transport—a main absorption mechanism of myricetin. Formulation No. 4 and 8, on the other hand, achieved small particle size, required for lymphatic transport (Fig. 2).

Kim et al. [85] tried to increase the oral bioavailability of the low solubility flavonoid apigenin. Different water-in-oil-in-water emulsions of apigenin were studied for their physical characteristics, as well as digestibility using in vitro digestion model and in vivo pharmacokinetics in rats. An emulsion of soybean oil-Tween 80 was chosen for pharmacokinetic tests in animal model after proving better stability in terms of particle size and zeta potential. Plasma concentrations of apigenin in the water-in-oil emulsion were markedly higher at different time points and maximal concentration was 9-fold higher compared to apigenin suspension [85].

Zhang et al. [94] aimed to improve the oral absorption of baicalin, which has low solubility and poor permeability, by using a micellar formulation comprised of the carriers Pluronic P123 copolymer and sodium taurocholate. Sustained release profile of baicalin-loaded mixed micelles, in in vitro drug release experiment, held in several pH conditions, showed 14% drug released after 2 h in gastric conditions and 54% release within 48 h in intestinal conditions, compared to 34% and 79% release.
from a baicalin suspension, respectively. This observation suggests improved stability afforded by the designed formulation. In vitro uptake studies, carried out with a caco-2 cell line, determined the absorption of baicalin within the mixed micelles and verified their internalization ability. Baicalin-loaded ST-P123-MMs formulation achieved high oral bioavailability (Fig. 3). These results are believed to derive from the micellar small size and to Pluronic component, which is a P-glycoprotein inhibitor. In addition, the mixed micelle formulation showed a bimodal presentation, presumably attributed to enterohepatic recirculation, further enhancing the drug’s oral bioavailability [94].

Oleanolic acid has low aqueous solubility and systemic bioavailability (0.7% in rats). SMEDDS was developed in an attempt to overcome these limitations. This delivery system consisted of 50% ethyl oleate (oil), 35% Cremophor EL (surfactant), and 15% alcohol (co-surfactant), allowing a great increase in oleanolic acid solubility [151]. In vitro studies showed a sustained release behavior from SMEDDS. Systemic rat bioavailability was significantly higher in SMEDDS than in the marketed tablets of oleanolic acid (Fig. 4). The improved drug’s oral bioavailability was explained by enhanced solubility and permeability through emulsification and small particle sizes, respectively.

Flos Lonicerae Japonicae and _Fructus forsythia_ are used together in Chinese herbal remedies, and both have antiviral, antibacterial, and antiinflammatory properties. An attempt was made to enhance the bioavailability and antiinfluenza properties of the herb combination by chito-oligosaccharide, a chitosan derivative [122]. In a cell culture antiinfluenza assay, chito-oligosaccharide improved the activity of extracts containing _Flos Lonicerae Japonicae_ and _Fructus forsythia_, compared to extracts that do not contain the chito-oligosaccharide. The absorption was studied in vitro using Caco-2 model, and higher experimentally derived apparent permeability values were obtained with increasing concentrations.
of chito-oligosaccharide. In vivo pharmacokinetics showed a significant increase in Flos Lonicerae Japonicae and Fructus forsythiа concentrations when co-delivered with chito-oligosaccharide, relative to herb administration alone (Fig. 5a). In addition, enhanced antiviral effect was achieved in four preparations containing chito-oligosaccharide, which was explained by the higher absorption of caffeic acid derivatives (Fig. 5b). This work was unique because it studied the effects of the delivery system on both the pharmacokinetic properties and the antiviral activity of the herbal drug, directly.

An inclusion complex of honokiol and sulfobutyl ether-β-cyclodextrin was made to enhance the solubility and bioavailability of the herbal drug [148]. In a phase solubility experiment, honokiol solubility linearly increased with growing levels of the cyclodextrin. The in vitro release study showed that the honokiol/cyclodextrin complex allowed enhanced release rate than either honokiol/cyclodextrin physical mixture or honokiol alone. In rat oral pharmacokinetics, AUC and C_{max} values of the inclusion complex were 1.58 and 1.23 times higher relative to honokiol suspension, respectively. Also, honokiol in suspension had 3 times higher body clearance than complexed honokiol.

Andrographolide is sparingly soluble in water, unstable in very acidic and basic conditions, poorly absorbed, and has low oral bioavailability. PLGA (poly(lactic-co-glycolic acid)) was used to form andrographolide loaded microspheres to overcome these limitations [124]. In vitro andrographolide-microsphere formulation exhibited sustained release profile over 9 days, with just 14% andrographolide release over the first 8 h, because of low drug density at the surface of the delivery system, which also allowed a relatively high oral bioavailability of 67.5%. Lastly, fine correlation was obtained between in vitro drug release and in vivo absorption, indicating that the in vitro assay may be a good predictor of drug absorption in vivo.

Curcumin, a polyphenolic compound with various medical applications including known antivirus activity, is poorly water-soluble and has low oral bioavailability. With N-acetyl L-cysteine and different levels (20, 50, and 100 mg) of polyethylene glycol (PEG), nanostructured solid lipid carriers were synthesized to obtain curcumin mucoadhesion and mucus penetration.

![Fig. 4](image1.png)

Fig. 4 Oleanolic acid rat blood levels after oral administration of oleanolic acid-loaded SMEDDS (filled diamonds) and marketed drug product (tablet) (filled squares); upper right: accumulative release of oleanolic acid. Reproduced from [151] with permission.

![Fig. 5](image2.png)

Fig. 5 Effect of COS (chito-oligosaccharide) on the pharmacokinetic (panel a) and pharmacodynamics (inhibition of influenza virus; panel b) of caffeic acid derivative after oral administration of preparation containing Flos Lonicerae Japonicae and Fructus, forsythiа extracts. Black, 1:1:2-fold of Flos Lonicerae Japonicae, Fructus Forsythiа, and Radix Scutellariae, respectively; red, only Radix Scutellariae; green, 2:2:2-fold of Flos Lonicerae Japonicae, Fructus Forsythiа, and Radix Scutellariae, respectively; blue, COS with added Radix Scutellariae only; yellow, COS with added 1:1:2-fold of Flos Lonicerae Japonicae, Fructus Forsythiа, and Radix Scutellariae, respectively (n = 6). Reproduced from [122] with permission.
generally speaking, higher molecular weight substances may be with similar chemicals may be easier. Also, weight; using previously successful formulations to deliver drugs properties include the drug over other oral carriers. Additional important physicochemical which case the use of amorphous formulations may be preferred tochemical in question is not just a matter of trial and error; rather, tailoring the most appropriate formulation to the medicinal phy-
some excipients that can be used to overcome these challenges
 Among the physicochemical properties of importance are log P (a measure of the drug’s lipophilicity) and melting point. These parameters will determine the likelihood of the active substance to precipitate in the gastrointestinal lumen, in which case the use of amorphous formulations may be preferred over other oral carriers. Additional important physicochemical properties include the drug’s chemical structure and molecular weight; using previously successful formulations to deliver drugs with similar chemical structure may be a wise approach. Also, generally speaking, higher molecular weight substances may be better incorporated into lipid-based drug delivery systems. It should be noted that some solubility-enabling formulations may simultaneously decrease the drug’s permeability, and overall absorption may be unimproved. This solubility-permeability interplay was shown for formulations based on cyclodextrins, surfactants, cosolvents, and hydrogels. In amorphous solid dispersions (ASD), on the other hand, the solubility increases (via supersaturation) with unchanged permeability, and thus, ASD may be preferred over other carrier systems, given supersaturation can be achieved and maintained for sufficient time.

Conclusions

Altogether, the evidence presented in this work supports the notion that medicinal plants have promising therapeutic potential, especially in the case of herbal medicinal plants. Further research on the mechanisms by which phytochemicals exhibit their antiviral effect will allow the developing of successful target-specific drug delivery systems. At the moment, we cannot ensure the plant phytochemicals directly reach viruses or the correct structures inside cells. Ideally, we would have more high-quality clinical trials to discern the strength of new herbal antiviral drug delivery systems. It is our hope that in the future more high-quality clinical trials will accumulate in the literature, which will shed light on the full potential of phytochemicals as novel antiviral agents in adequate delivery systems.

References

1. Gasparini R, Amicizia D, Lai PL, Panatto D. Clinical and socio-economic impact of seasonal and pandemic influenza in adults and the elderly. Hum Vaccin Immunother. 2012;8(1):21–8. https://doi.org/10.4161/hv.8.1.17622.
2. Novakova L, Pavlik J, Chrenkova L, Martinec O, Cerveny L. Current antiviral drugs and their analysis in biological materials – part II: antivirals against hepatitis and HIV viruses. J Pharm Biomed Anal. 2018;147:378–99. https://doi.org/10.1016/j.jpba.2017.07.003.
3. Soltan MM, Zaki AK. Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol. 2009;126(1):102–7. https://doi.org/10.1016/j.jep.2009.08.001.
4. Brijesh S, Daswani P, Tetal P, Antia N, Birdi T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: validating its traditional usage. BMC Complement Altern Med. 2009;9:47. https://doi.org/10.1186/1472-6882-9-47.
5. Moradi MT, Rafieian-Kopaei M, Karimi A. A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus. Avicenna J Phytomed. 2016;6(5):506–15.
6. Goncalves JL, Lopes RC, Oliveira DB, Costa SS, Miranda MM, Romanos MT, et al. In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J Ethnopharmacol. 2005;99(3):403–7. https://doi.org/10.1016/j.jep.2005.01.032.
7. Maregesi SM, Pieters L, Ngassapa OD, Apers S, Vingerhoets R, Cos P, et al. Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. J Ethnopharmacol. 2008;119(1):58–66. https://doi.org/10.1016/j.jep.2008.05.033.
8. Karamese M, Aydogdu S, Karamese SA, Altoparlak U, Gundogdu C. Preventive effects of a major component of green tea, epigallocatechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac J Cancer Prev. 2015;16(10):4199–202.
9. Lam SK, Ng TB. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper
(Capparis spinosa) seeds. Phytomedicine. 2009;16(5):444–50. https://doi.org/10.1016/j.phymed.2008.09.006.

10. Callies O, Bedoya LM, Beltran M, Munoz A, Calderon PO, Osorio AA, et al. Isolation, structural modification, and HIV inhibition of pentacyclic lupane-type triterpenoids from Cassine xylcorpa and Maytenus euczoina. J Nat Prod. 2015;78(5):1045–55. https://doi.org/10.1021/np501025r.

11. Droebner K, Ehhrhardt C, Poetter A, Ludwig S, Planz O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Res. 2007;76(1):1–10. https://doi.org/10.1016/j.antiviral.2007.04.001.

12. Ehhrhardt C, Hrinicius ER, Korte V, Mazur I, Droebner K, Poetter A, et al. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res. 2007;76(1):38–47. https://doi.org/10.1016/j.antiviral.2007.03.002.

13. Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, et al. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep. 2016;6:20394. https://doi.org/10.1038/srep20394.

14. Xu HB, Ma YB, Huang XY, Geng CA, Wang H, Zhao Y, et al. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: rhizomes of Cyperus rotundus. J Ethnopharmacol. 2015;171:131–40. https://doi.org/10.1016/j.jep.2015.05.040.

15. Vidal V, Poterat O, Louvel S, Hamy F, Mohjarrab M, Sanglier JJ, et al. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gignidum. J Nat Prod. 2012;75(3):414–32. https://doi.org/10.1021/jp20394.

16. Abad MJ, Guerra JA, Bermejo P, Irurzun A, Carrasco L. Search for antiviral activity in higher plant extracts. Phytother Res. 2000;14(8):604–7.

17. Gyuris A, Sztavik L, Minarovits J, Vassas A, Molnar J, Hohmann J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SVVmac215. In Vivo. 2009;23(3):429–32.

18. Yarmolinsky L, Huleihel M, Zaccai M, Ben-Shabat S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia. 2012;83(2):362–7. https://doi.org/10.1016/j.fitote.2011.11.014.

19. Wang G, Wang H, Song Y, Jia C, Wang Z, Xu H. Studies on anti-HSV effect of Ficus carica leaves. Zhong Yao Cai. 2004;27(10):754–6.

20. Lazreg AE, Hufsaibe B, Fekih A, Mars M, Aouni M, Pierre Chaunon J, et al. In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat Prod Res. 2011;25(3):310–9. https://doi.org/10.1080/14786449.2010.528758.

21. Asl Najari AH, Rajabi Z, Vasfi Marandi M, Dehghan G. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunomodulation of the inactivated avian influenza virus subtype H9N2. Vet Res Forum. 2015;6(3):227–31.

22. Ashraf A, Ashraf MM, Rafique A, Aslam B, Galani S, Zafar S, et al. In vivo antiviral potential of Glycyrrhiza glabra extract against Newcastle disease virus. Pak J Pharm Sci. 2017;30(2 Suppl):567–72.

23. Alfajaro MM, Kim HJ, Park JG, Ryu EH, Kim JY, Jeong YJ, et al. Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virol J. 2012;9:310. https://doi.org/10.1186/1743-422X-9-310.

24. Sztavik L, Gyuris A, Minarovits J, Forgo P, Mohor J, Hohmann J. Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaeae alkaloids. Planta Med. 2004;70(9):871–3. https://doi.org/10.1055/s-2004-827239.
40. Bedoya LM, Sanchez-Palomino S, Abad MJ, Bermejo P, Alcamí J. Anti-HIV activity of medicinal plant extracts. J Ethnopharmacol. 2001;77(1):113–6.

41. Bedoya LM, Sanchez-Palomino S, Abad MJ, Bermejo P, Alcamí J, Sanchez-Palomino S, Abad MJ, Bermejo P, Alcamí J. Anti-HIV activity of medicinal plant extracts. J Ethnopharmacol. 2001;77(1):113–6.

42. Bedoya LM, Abad MJ, Sanchez-Palomino S, Alcamí J, Bermejo P. Ellagitannins from Tuberaria lignosa as entry inhibitors of HIV. Phytomedicine. 2010;17(1):69–74. https://doi.org/10.1016/j.phymed.2009.08.008.

43. Arafa AS, Ahmed SA, Ibrahim AK. Anti-H5N1 virus activity of Lamiaceae species on HIV-1 replication and CD4 expression. J Anti-microb Chemother. 2016;71(12):3435–42. https://doi.org/10.1093/jac/dkw269.

44. Xiong C, Song L, Liu J, Li J, Jia Y, Pei J. Quercetin interferes with HIV entry. Biochemical and Biophysical Research Communications. 2016;477(3):687–92. https://doi.org/10.1016/j.bbrc.2016.08.002.

45. He W, Han H, Wang W, Gao B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol J. 2011;8:538. https://doi.org/10.1186/1743-422X-8-538.

46. Soleimani Farsani M, Behbahani M, Isfahani HZ. The effect of root, shoot and seed extracts of the Iranian Thymus L. (Family: Lamiaceae) species on HIV-1 replication and CD4 expression. Cell J. 2016;18(2):255–61.

47. Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA. Anti-H5N1 virus activity of Lamiaceae species on HIV-1 replication and CD4 expression. J Anti-microb Chemother. 2016;71(12):3435–42. https://doi.org/10.1093/jac/dkw269.

48. Xiong C, Song L, Liu J, Li J, Jia Y, Pei J. Quercetin interferes with HIV entry. Biochemical and Biophysical Research Communications. 2016;477(3):687–92. https://doi.org/10.1016/j.bbrc.2016.08.002.

49. Orhan DD, Ozcelik B, Ozgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids from Capparis sinalica Veill. Nat Prod Res. 2013;27(22):2149–53. https://doi.org/10.1080/17486419.2013.790027.

50. Orhan DD, Ozcetik B, Ozgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res. 2010;165(6):496–504. https://doi.org/10.1016/j.micres.2009.07.002.

51. Wu W, Li R, Li X, He J, Jiang S, Liu S, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;7(1):E6. https://doi.org/10.3390/v7010006.

52. Genesius S, Farris AN, Comstock AT, Wang Q, Nanaa S, Hershenson MR, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res. 2012;94(3):258–71. https://doi.org/10.1016/j.antiviral.2012.03.005.

53. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J. 2011;8:560. https://doi.org/10.1186/1743-422X-8-560.

54. Neznanov N, Kondratov R, Banerjee AK, et al. Quercetin induces apoptosis in A549 cells through the mitochondrial pathway. Antioxid Redox Signal. 2007;9(5):1059–71. https://doi.org/10.1089/ars.2007.1780.

55. Lee M, Son M, Ryu E, Shin YS, Kim JS, Kang BW, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603–24. https://doi.org/10.18632/oncotarget.6387.

56. Lee M, Son M, Ryu E, Shin YS, Kim JS, Kang BW, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603–24. https://doi.org/10.18632/oncotarget.6387.

57. Gewald H, Honda S, Kubota K. Quercetin inhibits influenza A virus entry. Biochem Biophys Res Commun. 2012;422(4):534–8. https://doi.org/10.1016/j.bbrc.2012.05.045.

58. Bedoya LM, Abad MJ, Sanchez-Palomino S, Alcamí J, Bermejo P. Ellagitannins from Tuberaria lignosa as entry inhibitors of HIV. Phytomedicine. 2010;17(1):69–74. https://doi.org/10.1016/j.phymed.2009.08.008.

59. Jia Y, Xu R, Hu Y, Zhu T, Ma T, Wu H, et al. Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro. J Vet Med Sci. 2016;78(5):819–24. https://doi.org/10.1292/jvms.15-0572.

50. Lee M, Son M, Ryu E, Shin YS, Kim JS, Kang BW, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603–24. https://doi.org/10.18632/oncotarget.6387.

51. Lee M, Son M, Ryu E, Shin YS, Kim JS, Kang BW, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603–24. https://doi.org/10.18632/oncotarget.6387.

52. Lee M, Son M, Ryu E, Shin YS, Kim JS, Kang BW, et al. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6(14):12603–24. https://doi.org/10.18632/oncotarget.6387.
102. Shi-Ying J, Jin H, Shi-Xiao J, Qing-Yuan L, Jin-Xia B, Chen HG, et al. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method. Chin J Nat Med. 2014;12(1):71–80. https://doi.org/10.1007/s11875-014-60001-2.

103. Zhang J, Lv H, Jiang K, Gao Y. Enhanced bioavailability after oral and pulmonary administration of baicalin nanocrystal. Int J Pharm. 2011;420(1):180–8. https://doi.org/10.1016/j.ijpharm.2011.08.023.

104. Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, et al. Preparation and evaluation of self-microemulsifying drug delivery system of baicalin. Fitoterapia. 2012;83(8):1532–9. https://doi.org/10.1016/j.fitote.2012.08.021.

105. Lai F, Franceschini I, Corrias F, Sala MC, Sileno C, et al. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study. Carbohydr Polym. 2015;121:217–23. https://doi.org/10.1016/j.carbpol.2014.11.070.

106. Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, et al. Capital IE, Cyrillic valuation of biocompatibility and antioxidant efficiency of chitosan-alginic nanoparticles loaded with quercetin. Int J Biol Macromol. 2017;103:771–82. https://doi.org/10.1016/j.jibiomac.2017.05.062.

107. Anwer MK, Al-Mansoor MA, Jamil S, Al-Shedefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol. 2016;92:213–9. https://doi.org/10.1016/j.jibiomac.2016.07.002.

108. Bagad M, Khan ZA. Polyn-butylocyanocrylate) nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine. 2015;10:3921–35. https://doi.org/10.2147/IJN. S80706.

109. Barbosa AI, Costa Lima SA, Reis S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules. 2019;24(2):E346. https://doi.org/10.3390/molecules24020346.

110. Sedaghat Doost A, Reiss S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules. 2019;24(2):E346. https://doi.org/10.3390/molecules24020346.

111. Riva A, Ronchi M, Petrangolini G, Bosiosis S, Allegrini P. Improved oral absorption of quercetin ftnon quercetin phosphosom(R), a new delivery system based on food grade lecin. Eur J Drug Metab Pharmacokinet. 2019;44(2):169–77. https://doi.org/10.1007/s13188-018-0517-3.

112. Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficiency of delivery of quercetin through nanosoliposomal encapsulation using rice bran phospholipids. J Sci Food Agric. 2019;99(4):1980–9. https://doi.org/10.1002/jsfa.9396.

113. Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, et al. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem. 2018;82(2):238–46. https://doi.org/10.1007/09168451.2017.1491852.

114. Lv L, Liu C, Li Z, Song F, Li G, Huang X. Pharmacokinetics of quercetin-loaded methoxy poly(ethylene glycol)-b-poly(l-lactic acid) micelle after oral administration in rats. Biomed Res Int. 2017;2017:1750895. https://doi.org/10.1155/2017/1750895.

115. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Abdur Rub R, Ahmad FJ. Enhancement of quercetin oral bioavailability by self-nanoemulsifying drug delivery system and their quantification through ultra high performance liquid chromatography and mass spectrometry in cerebral ischemia. Drug Res (Stuttg). 2017;67(10):564–75. https://doi.org/10.1055/s-0043-109564.

116. Tran TH, Gao Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103(3):840–52. https://doi.org/10.1002/jps.23858.

117. Hadrich G, Monteiro SO, Rodrigues MR, de Lima VR, Putaux JL, Bidone J, et al. Lipid-based nanocarrier for quercetin delivery: system characterization and molecular interactions studies. Drug Dev Ind Pharm. 2016;42(7):1165–73. https://doi.org/10.3109/03639045.2015.1118491.

118. Kumar P, Sharma G, Kumar R, Singh B, Malik R, Katre AP, et al. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: biochemical, pharmacokinetic and biodistribution evidences. Int J Pharm. 2016;515(1-2):307–14. https://doi.org/10.1016/j.ijpharm.2016.10.024.

119. Hadrich G, Vaz GR, Maidana M, Kratz JM, Loch-Neckel G, Favarin DC, et al. Anti-inflammatory effect and toxicology analysis of oral delivery quercetin nanosized emulsion in rats. Pharm Res. 2016;33(4):983–93. https://doi.org/10.1007/s11095-015-1844-6.

120. Sun M, Gao Y, Pei Y, Guo C, Li H, Cao F, et al. Development of nanosuspension formulation for oral delivery of quercetin. J Biomed Nanotechnol. 2010;6(4):325–32.

121. Zhou W, Tan X, Shan J, Liu T, Cai B, Di L. Effect of chito-oligosaccharide on the intestinal absorptions of phenylethanol glycosides in Fructus Forsythiae extract. Phytomedicine. 2014;21(12):1549–58. https://doi.org/10.1016/j.phymed.2014.06.016.

122. Zhou W, Yin A, Shan J, Wang S, Cai B, Di L. Study on the rationality for antiviral activity of Flos Lonicerae japonicae-fructus Forsythiae herb chito-oligosaccharide via Integral Pharmacokinetics. Molecules. 2017;22(4):E654. https://doi.org/10.3390/molecules22040654.

123. Sermkaew N, Ketjinda W, Boonme P, Phadoongsumb N, Wiwatthanapatpatee R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur J Pharm Sci. 2013;50(3-4):459–66. https://doi.org/10.1016/j.ejps.2013.08.006.

124. Jiang Y, Wang F, Xu H, Liu H, Meng Q, Liu W. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation. Int J Pharm. 2014;475(1-2):475–84. https://doi.org/10.1016/j.ijpharm.2014.09.016.

125. Quo L, Chen L, Rui T, Wang J, Chen T, Fu T, et al. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-alpha-tocopheryl polyethylene glycol 1000 succinate/sodium laurel sulfate. Int J Nanomedicine. 2017;12:1033–46. https://doi.org/10.2147/IJN.S120887.

126. Xu J, Ma Y, Xie Y, Chen Y, Liu Y, Yue P, et al. Design and evaluation of novel solid self-nanodispersion delivery system for oral andrographolide. AAPS PharmSciTech. 2017;18(5):1572–84. https://doi.org/10.1002/psp.20178.

127. Yang T, Sheng HH, Feng NP, Wei H, Wang ZT, Wang CH. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013;102(12):4414–25. https://doi.org/10.1002/jps.23758.

128. Ren K, Zhang Z, Li Y, Liu J, Zhao D, Zhao Y, et al. Physicochemical characteristics and oral bioavailability of andrographolide complexed with hydroxypropyl-beta-cyclodextrin. Pharmazie. 2009;64(8):515–20.

129. Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MH. Phloridzin-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech. 2018;19(6):2719–39. https://doi.org/10.1002/psp.20178.
130. Duan Y, Zhang B, Chu L, Tong HH, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids Surf B Biointerfaces. 2016;141:345–54. https://doi.org/10.1016/j.colsurfb.2016.01.017.

131. Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389–402. https://doi.org/10.1007/s11095-014-1469-1.

132. Sorasitthiyanukarn FN, Ratnatilaka Na Bhuket P, Muangnoi C, Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from a promising carrier of novel curcumin diethyl diglutarate. Int J Biol Macromol. 2019;131:315–36. https://doi.org/10.1016/j.ijbiomac.2019.03.120.

133. Wang R, Han J, Jiang A, Huang R, Fu T, Wang L, et al. Novel self-nanoemulsifying system for oral delivery of oleanolic acid: a potential nanoplatform for oral delivery of curcumin. Int J Nanomedicine. 2019;14:557–71. https://doi.org/10.2147/IJN.S191337.

134. Tian C, Asghar S, Wu Y, Chen Z, Jin X, Yin L, et al. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Int J Pharm. 2020;581:119468.

135. Xu C, Tang Y, Hu W, Tian R, Jia Y, Deng P, et al. Investigation of inclusion complex of honokiol with sulphobutyl ether-beta-cyclodextrin. Carbohydr Polym. 2014;113:9–15. https://doi.org/10.1016/j.carbpol.2014.06.059.

136. Qiu N, Cai LL, Xie D, Wang G, Wu W, Zhang Y, et al. Synthesis, characterization, and in vitro studies of well-dispersed nonmethoxy-poly(ethylene glycol)-honokiol conjugate micelles. Biomed Mater. 2010;5(6):60506. https://doi.org/10.1088/1748-6041/5/6/06506.

137. Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS PharmSciTech. 2017;18(8):3151–62. https://doi.org/10.1012/s12249-017-0790-5.

138. Feng P, Wu H, Yang P, Li L, Zhao J, et al. Enhanced oral delivery of curcumin by solid dispersion utilizing fourth generation carrier. Adv Drug Deliv Rev. 2017;116:17–25. https://doi.org/10.1016/j.addr.2017.12.021.

139. Goodman D, Marzec E, Fumagalli T, Akiyama H, Garg A, et al. Novel drug delivery systems for increasing the dispersibility, stability, and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. AAPS PharmSciTech. 2018;19(2):730–8. https://doi.org/10.1016/j.aaps.2018.01.022.

140. Wang Y, Wang S, Firempong CK, Zhang H, Wang M, Zhang Y, et al. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech. 2017;18(3):586–94. https://doi.org/10.1208/s12249-016-0537-8.

141. Hou Y, Wang H, Zhang F, Sun F, Xin M, Li M, et al. Novel self-nanoemulsifying solid lipid nanoparticle: in vitro and in vivo evaluations. Drug Deliv. 2017;24(1):1605–12. https://doi.org/10.1155/2017/941506.

142. Qiu N, Cai LL, Xie D, Wang G, Wu W, Zhang Y, et al. Synthesis, characterization, and in vitro studies of well-dispersed nonmethoxy-poly(ethylene glycol)-honokiol conjugate micelles. Biomed Mater. 2010;5(6):60506. https://doi.org/10.1088/1748-6041/5/6/06506.

143. Chaurasia S, Patel RR, Vure P, Mishra B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–16. https://doi.org/10.1016/j.xphs.2017.10.006.

144. Huang P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Deliv. 2016;10:911–25. https://doi.org/10.1080/10703945.2014.902466.
bioactivity of phytochemicals. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.08.004

159. Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech. 2018;19(8):3609–30. https://doi.org/10.1208/s12249-018-1188-8.

160. Dahan A, Hoffman A. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm. 2007;67(1):96–105. https://doi.org/10.1016/j.ejpb.2007.01.017.

161. Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release. 2008;129(1):1–10. https://doi.org/10.1016/j.jconrel.2008.03.021.

162. Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-beta-CD) in oral solubility-enabling formulations: comparison to HPbetaCD and the solubility-permeability interplay. Eur J Pharm Sci. 2015;77:73–8. https://doi.org/10.1016/j.ejps.2015.05.024.

163. Beig A, Miller JM, Dahan A. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off. Eur J Pharm Biopharm. 2013;85(3 Pt B):1293–9. https://doi.org/10.1016/j.ejpb.2013.05.018.

164. Miller JM, Dahan A. Predicting the solubility-permeability interplay when using cyclodextrins in solubility-enabling formulations: model validation. Int J Pharm. 2012;430(1-2):388–91. https://doi.org/10.1016/j.ijpharm.2012.03.017.

165. Amidon GE, Higuchi WI, Ho NF. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71(1):77–84. https://doi.org/10.1002/jps.2600710120.

166. Beig A, Miller JM, Lindley D, Dahan A. Striking the optimal solubility-permeability balance in oral formulation development for lipophilic drugs: maximizing Carbamazepine blood levels. Mol Pharm. 2017;14(1):319–27. https://doi.org/10.1021/acs.molpharmaceut.6b00967.

167. Fine-Shamir N, Dahan A. Methacrylate-copolymer Eudragit EPO as a solubility-enabling excipient for anionic drugs: investigation of drug solubility, intestinal permeability, and their interplay. Mol Pharm. 2019;16(7):2884–91. https://doi.org/10.1021/acs.molpharmaceut.9b00057.

168. Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotrropic solubilization of lipophilic drugs for oral delivery: the effects of urea and nicotinamide on carbamazepine solubility-permeability interplay. Front Pharmacol. 2016;7:379. https://doi.org/10.3389/fphar.2016.00379.

169. Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107. https://doi.org/10.1016/j.addr.2016.04.018.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.