Graphene-supported SnO₂ nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries

Bei Wang¹, Dawei Su¹, Jinsoo Park², Hyojun Ahn² and Guoxiu Wang¹,2*

Abstract

SnO₂ nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO₂ nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO₂ was determined to be around 5 nm. The as-synthesized SnO₂/graphene nanocomposite exhibited an enhanced electrochemical performance in lithium-ion batteries, compared with bare graphene nanosheets and bare SnO₂ nanoparticles. The SnO₂/graphene nanocomposite electrode delivered a reversible lithium storage capacity of 830 mAh g⁻¹ and a stable cyclability up to 100 cycles. The excellent electrochemical properties of this graphene-supported nanocomposite could be attributed to the insertion of nanoparticles between graphene nanolayers and the optimized nanoparticles distribution on graphene nanosheets.

Keywords: SnO₂, Graphene nanosheets, Nanocomposite, Lithium-ion batteries

Background

Graphene has been emerged as a rising star in materials science and as an excellent candidate for many applications due to its unique two dimensional (2D) nanostructure [1], outstanding electrical properties [2], and ultrahigh specific surface area [3]. The applications of graphene include gas molecule adsorption [4], quantum dots [5], transistors [6], lithium-ion batteries [7], supercapacitors [8], lithium air batteries [9], and drug delivery [10]. In particular, graphene has attracted worldwide attention for energy storage and conversion. With the formation of sandwich-like three dimensional (3D) nanostructured composite materials, the restacking of graphene nanosheets (GNS) can be effectively prevented and therefore the electrochemical properties of the nano-composite electrodes could be significantly improved by using nanocrystallines to insert between layers of graphene nanosheets [3,11].

SnO₂ has been examined as an anode material for lithium-ion batteries with a high theoretical capacity of 782 mAh g⁻¹ [12]. SnO₂ forms metal alloys when reacting with lithium, leading to reversible transformations between lithium tin alloys (LiₓSn) and tin metal when the lithiation and delithiation proceed. However, the capacity of bulk SnO₂ electrode fades quickly during prolonged cycling [13]. To further improve the electrochemical performance and the cycle life of SnO₂ electrodes for long-term cycling, one approach is to synthesize nanosized SnO₂ crystals with different morphologies, such as nanowires [14], nanotubes [15], and mesoporous structure [16]. These nanostructured SnO₂ materials were reported to deliver greatly enhanced specific capacities with durable cycling stabilities. In order to mechanically buffer the volume expansion associated with the charge/discharge processes in the lithium-ion cells, the formation of SnO₂/graphene nanocomposites has also been proved to be feasible. Many methods have been implemented to distribute SnO₂ nanocrystals on graphene nanosheets, including in situ chemical preparation [13,17], reassembling process [18], gas–liquid interfacial synthesis [19], as well as hydrothermal and solvothermal methods [20,21].
In this paper, we employ a facile solvothermal technique to disperse SnO2 nanoparticles with a controlled size on graphene nanosheets. The as-prepared SnO2/GNS nanocomposite showed uniform SnO2 nanoparticles distribution and significantly improved electrochemical properties, compared with bare graphene nanosheets and SnO2 nanoparticles. The solvothermal approach developed in this investigation could be used for the synthesis of other metal oxide/graphene nanocomposites.

Methods

Graphene oxide (GO) powders were prepared via a chemical approach derived from Hummers’ method [22], according to the previously reported procedure [7]. In a typical synthesis process, 40 mg GO was firstly dispersed in 40 mL ethylene glycol by ultrasonification for 1 h, followed by the addition of 0.1 mmol SnCl2·2H2O powders. The mixture was vigorously stirred for half an hour, and then transferred to a 50 mL Teflon lined autoclave, which was sealed and maintained in an oven at 160°C for 6 h.

Afterwards, the black precipitates (SnO2/GNS) were collected, washed with deionized water and ethanol to remove the impurities, and isolated by vacuum filtration. The product was then dried in a vacuum oven at 60°C, and further sintered at 300°C for 4 h in argon to increase the crystallinity. For the comparison, bare SnO2 nanoparticles were also synthesized by the same experimental procedure without the presence of GO in the mixture solution.

The X-ray diffraction (XRD) pattern of the as-synthesized material was measured using a Siemens D5000 X-ray diffractometer (Siemens Company, Wittelsbacherplatz 2, Munich, Germany) from 10° to 80° under a scan rate of 1°·min⁻¹. The Raman measurement of the SnO2/GNS nanocomposite was conducted on a confocal Micro Raman Spectrometer with LabRAM HR system (HORIBA Korea Ltd., Pucheon, Kyunggido Korea) using a 632.8 nm He-Ne laser source. The spectra were recorded in the range of 200 to 2,000 cm⁻¹ with accumulated scans for an enhanced resolution. Field emission scanning electron microscope (FESEM) observations were performed using a Zeiss Supra 55VP FESEM with an Oxford energy dispersive spectrometry system (Carl Zeiss Nanotechnology Center, Oberkochen, Germany). The transmission electron microscopy (TEM) analysis was carried out using a Jeol 2011 TEM facility (JEOL Ltd., Tokyo, Japan). The graphene (carbon) content in the composite material was determined by thermogravimetric analysis (TGA) on a TGA/DTA analyzer (TA Instruments, SDT 2960 module, New Castle, DE, USA) in air at 10°C·min⁻¹ ranging from room temperature to 1,000°C.

CR2032 coin cells were assembled in an argon-filled glove box (Unilab, M Braun Inertgas-Systeme GmbH, Garching, Germany) in which the levels of moisture and oxygen were controlled to be less than 0.1 ppm. The electrodes were made by mixing 80 wt% SnO2/GNS active materials, 10 wt% carbon black, and 10 wt% polyvinylidene fluoride binder in the N-methyl-2-pyrrolidone solvent to form a slurry. Then, the slurry was coated on copper foil substrate. Lithium foils were used as the negative electrodes. The electrolyte was 1 M LiPF6 in ethylene carbonate and dimethyl carbonate (1:1). Cyclic voltammetry (CV) tests were carried out on an electrochemistry workstation (CHI660D, CH Instrument, Inc., Austin, TX, USA) at a scan rate of 0.1 mV·s⁻¹ vs. Li/Li⁺ reference electrode in the voltage range of 0.01 to 3 V. Galvanostatic charge/discharge measurements were conducted on the Neware battery tester (Neware Co., Ltd., Shenzhen, China) with a current rate of 0.1 C for 100 cycles. Electrochemical impedance spectroscopy was performed on the same electrochemistry workstation. The frequency was set in 0.01 Hz–100 kHz with the amplitude of 5 mV. The charge/discharge performance was also investigated for bare graphene nanosheets and SnO2 nanoparticles as a comparison.

Results and discussion

Figure 1 shows a schematic diagram of the formation of the SnO2/GNS nanocomposite. Firstly, Sn²⁺ ions were attracted to GO nanosheets in the ethylene glycol (EG) solution. Then, the anchored Sn⁰ ions were reduced by EG via the following two-step reactions:

\[
2\text{HOCH}_2 - \text{CH}_2\text{OH} \rightarrow 2\text{CH}_3\text{CHO} + 2\text{H}_2\text{O} \quad (1)
\]

\[
2\text{CH}_3\text{CHO} + \text{SnCl} \rightarrow \text{CH}_3\text{CO} - \text{COCH}_3 + \text{Sn} + 2\text{HCl} \quad (2)
\]

Simultaneously, GO nanosheets were also gradually reduced by EG to form graphene nanosheets. As EG is a mild reducing agent, the reduction processes take a long time (6 h) to complete at the high temperature (160°C). Then, the formed Sn nanoparticles were further oxidized by oxygen to become SnO2 nanoparticles during the cooling period. Consequently, the SnO2/GNS nanocomposite was obtained under the assistance of EG which acted not only as a dispersing agent but also as a reducing agent.

XRD patterns of the SnO2/GNS nanocomposite and graphene were shown in Figure 2. In Figure 2a, X-ray diffraction lines of well-crystallized SnO2 were indexed to the tetragonal rutile SnO2 phase, which is consistent with the Joint Committee on Powder Diffraction

Figure 1 Schematic diagram of the formation of SnO2/GNS nanocomposite.
Standards card 01–0657. The weak peak of graphene is also visible at 42° in the composite, which matches the diffraction peak (1 0 0) marked on the XRD pattern of bare graphene nanosheets (as shown in Figure 2b). XRD confirmed the coexisting phases of rutile SnO₂ and graphene and the formation of SnO₂/GNS nanocomposite.

Raman spectra of the as-prepared SnO₂/GNS nanocomposite and bare GNS are shown in Figure 3. It can be seen that both of them show high-intensity D band and G band at around 1,327 and 1,587 cm⁻¹, respectively. The D band is stronger than the G band, and the D/G intensity ratio increased significantly compared to pristine graphite [23], which confirmed the existence of graphene nanosheets in the composite material. The D/G intensity ratio of the SnO₂/GNS nanocomposite is higher than that of the bare GNS, indicating the decrease of the sp² carbon domains when SnO₂ nanoparticles were inserted between graphene nanosheets [24]. The inset in Figure 3 displayed magnified Raman spectra in the range of 400 to 900 cm⁻¹ of both SnO₂/GNS and bare GNS. Two weak peaks were found at 465 and 620 cm⁻¹ in the Raman spectrum of the SnO₂/GNS nanocomposite, which can be assigned to the E_g and A_1g active modes of SnO₂ crystallines [25]. For the bare GNS, no Raman peak in this range was observed. TGA was employed to determine the weight composition of the SnO₂/GNS nanocomposite (as shown in Figure 4). The dramatic weight loss from 500°C to 630°C is associated with the burning of graphene in air. SnO₂ in the nanocomposite was stable up to 1,000°C. Therefore, the composition of the SnO₂/GNS nanocomposite was calculated to be 36.3 wt% SnO₂ and 63.7 wt% graphene.

Figure 5 displays FESEM images of the SnO₂/GNS nanocomposite. Corrugated graphene nanosheets are well expanded and form flower-like nanostructure (Figure 5a). A magnified scanning electron microscope (SEM) view further revealed details of a large, flat graphene nanosheet (Figure 5b). Tiny SnO₂ nanoparticles were found anchored on this graphene flake. Figure 6 shows a TEM image of the SnO₂/GNS nanocomposite. A large amount of SnO₂ nanoparticles were homogeneously distributed on the graphene nanosheets as shown in Figure 6a. The inset shows the selected area electron diffraction pattern (SAED). The diffraction rings were indexed as the crystal planes (1 1 0), (1 0 1), (2 0 0), (2 1 1), (2 1 0) of SnO₂, which clearly confirms the presence of SnO₂ in the nanocomposite material. High resolution TEM (HRTEM) was performed on a few SnO₂ nanoparticles (Figure 6b). SnO₂ nanocrystals were densely packed on the surface of graphene nanosheets. Two crystal planes were indexed to be
(1 0 0) and (1 1 0) of SnO$_2$. The particle size of SnO$_2$ was determined to be around 5 nm.

Figure 7 presents typical CV characteristics related to the lithiation and delithiation processes of the SnO$_2$/GNS nanocomposite in the lithium-ion cell. A small cathodic peak appears at 0.8 V in the first cycle which can be attributed to the formation of the solid electrolyte interphase layer. Another small reduction peak located around 0.06 V could be due to the reactions between lithium and SnO$_2$ nanoparticles to form Li$_x$Sn alloys, while the insertion of lithium in graphene nanosheets could be identified as the reduction peak at 0.01 V. There are three oxidation peaks located around 0.13, 0.55, and 1.3 V, respectively. They correspond to different oxidation reactions during the charge process. The first anodic peak at 0.13 V represents the lithium extraction from graphene nanosheet. The 0.55 V oxidation peak can be assigned to the dealloying of Li$_x$Sn, showing a reversible process. The third weak oxidation at 1.3 V could be resulted from the partial transformation of Sn metal to SnO$_2$ [26,27]. The high reversibility of the CV curves further confirmed the reversible redox reactions occurring in the lithium-ion cell between lithium and SnO$_2$/GNS nanocomposite.

Figure 8 shows the charge/discharge profiles of the SnO$_2$/GNS nanocomposite electrode in different cycles at a current rate of 0.1 C. It can be seen that the SnO$_2$/GNS electrode delivered a discharge capacity of 1,542 mAh g$^{-1}$ in the first cycle. From the second cycle, the nanocomposite electrode exhibited highly reversible charge and discharge processes.
discharge capacities. The maximum reversible discharge capacity of 830 mAh g\(^{-1}\) was achieved in the second discharge cycle. Specific discharge capacities of 588 and 561 mAh g\(^{-1}\) were obtained in the 50th and 100th cycle respectively, which indicates a very stable cycling performance. Significant improvement on the specific capacities has been achieved. Figure 9 shows the long-term cycling properties of the SnO\(_2\)/GNS nanocomposite, bare graphene nanosheets and SnO\(_2\) nanoparticles at a 0.1 C current rate. The SnO\(_2\)/GNS nanocomposite electrode demonstrated the highest reversible capacities and the best cycling stability. The nanocomposite electrode delivered a discharge capacity of 1,542 mAh g\(^{-1}\) in the first cycle and maintained stable capacities from the second cycle for 100 cycles with an excellent capacity retention. On the other hand, the bare GNS electrode showed a large irreversible capacity with lower reversible discharge capacities in 100 cycles. The capacities of SnO\(_2\) nanoparticles decrease quickly upon cycling. The retained capacity was less than 30 mAh g\(^{-1}\) in the 100th cycle. Figure 10 demonstrates multiple-step cycling characteristics of the SnO\(_2\)/GNS nanocomposite electrode at 0.05 to 0.1, 0.2, 0.5, and 1 C and then reversing back to 0.1 and 0.05 C. The nanocomposite electrode was capable to deliver stable specific capacities at various current rates and recover substantial capacities without obvious capacity decline when returning to lower current rates. This indicated a fully reserved microstructure of the nanocomposite electrode after cycling at higher current rates.

The alternating current (AC) impedance spectra of the SnO\(_2\)/GNS nanocomposite electrode before cycling, after 5 cycles and after 100 cycles and the equivalent circuit model (inset). The intercept on the Z’ axis at high frequency region represents the resistance of the electrolyte (R\(_e\)), which is 56.2Ω for a fresh cell. The electrolyte resistance slightly decreased to 35Ω after 5 cycles and remained nearly unchanged after 100 cycles (36.2Ω).
The diameters of the semicircles on the spectra implied the charge transfer resistances (R_ct) at the electrolyte/electrode interface. It should be noted that the initial charge transfer resistance was 575.9 Ω then gradually decreased to 242.5 Ω (after 5 cycles) and 95.25 Ω (after 100 cycles) upon prolonged cycling. The significantly decreased charge transfer resistance could benefit for an enhanced cycle life of the SnO$_2$/GNS nanocomposite electrode. The overall electrochemical performance of the SnO$_2$/GNS nanocomposite was improved as graphene nanosheets supported SnO$_2$ nanoparticles on their layered nanostructure. The inserted SnO$_2$ nanoparticles reduce the stacking degree of graphene nanosheets and also contribute to the reversible lithium storage. Graphene nanosheets in the nanocomposite not only accommodate the volume change associated with the reactions between lithium and SnO$_2$ nanoparticles, but also provide electrical conductance for the electrodes. For the SnO$_2$/GNS nanocomposite prepared by the solvothermal method, the electrochemical properties were further improved due to the optimized nanoparticle distribution and small particle size of SnO$_2$. The well-dispersed SnO$_2$ nanoparticles effectively prevent the formation of agglomerates on graphene nanosheets, which induces an enhanced electrochemical performance.

Conclusions

A facile solvothermal preparation method has been developed to synthesize the SnO$_2$/GNS nanocomposite with a uniform nanoparticle distribution. The as-prepared SnO$_2$/GNS nanocomposite exhibited an improved lithium storage capacity and cycling performance compared to bare GNS and bare SnO$_2$ nanoparticles. The presence of GNS in the nanocomposite could increase the electrical conductivity and buffer the volume expansion associated with the lithiation and delithiation processes, leading to a significantly enhanced electrochemical performance. The solvothermal approach might be applicable for rapid and effective synthesis of other metal oxide/graphene nanocomposites.

Abbreviations

GNS, Graphene nanosheets; GO, Graphene oxide.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BW designed and carried out the experimental work, conducted basic characterizations of the sample, undertook all the electrochemical tests, analyzed all the data, and wrote the manuscript. DS performed the TEM observations. JP obtained the Raman spectra of the samples. AH and GW supervised the research work and GW critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgment

This work was financially supported by the Australian Research Council (ARC) through the ARC Discovery Project (DP1093855). We also acknowledge the support from the National Research Foundation of Korea through the World Class University program (R32-2008-000-20093-0).

Received: 13 December 2011 Accepted: 9 March 2012

References

1. Geim AK, Novoselov KS: The rise of graphene. Nature Mater 2007, 6:183–191.
2. Castro Neto AH, Guinea F, Peres NM, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81:109–162.
3. Stankovich S, Dikin DA, Dommett GH, Kohlihas KM, Zimney EJ, Stach EA, Piner R, Nguyen ST, Ruoff RS: Graphene-based composite materials. Nature 2006, 442:282–286.
4. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS: Detection of individual gas molecules adsorbed on graphene. Nature Mater 2007, 6:625–655.
5. Ponomasenko LA, Schedin F, Katseleono MI, Yang R, Hill EW, Novoselov KS, Geim AK: Chaotic dirac billiard in graphene quantum dots. Science 2008, 320:356–358.
6. Schwier F: Graphene transistors. Nature Nanotech 2010, 5:497–496.
7. Wang GX, Shen XP, Yao J, Park J: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2010, 48:2009–2053.
8. Stoller MD, Park S, Zhu Y, An J, Ruoff RS: Graphene-based ultracapacitors. Nano Lett 2008, 8:3498–3502.
9. Sun B, Wang B, Su D, Xiao L, Ahn H, Wang GX: Graphene nanosheets as cathode catalysts for lithium-air batteries. Carbon 2012, 50:727–733.
10. Sun XM, Liu Z, Welscher K, Robinson JT, Goodwin A, Zarin S, Dai HJ: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 2010, 3:203–212.
11. Xu C, Wang X, Zhu JW: Graphene-metal particle nanocomposites. J Phys Chem C 2008, 112:19841–19845.
12. Idota Y, Kubota T, Matsuufuji A, Maekawa Y, Miyasaka T: Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 1997, 276:1395–1397.
13. Yao J, Shen XP, Wang B, Liu HK, Wang GX: In situ chemical synthesis of SnO$_2$-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 2009, 11:1849–1852.
14. Park MS, Wang GX, Kang YM, Wexler D, Do 5X, Liu HK: Preparation and electrochemical properties of SnO$_2$ nanowires for application in lithium-ion batteries. Angew Chem Int Ed 2007, 46:759–753.
15. Wang Y, Lee JY, Zeng HC: Polycrystalline SnO$_2$ nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 2005, 17:3899–3903.
16. Wang F, Yao G, Xu MW, Zhao MS, Sun ZB, Song XP: Large-scale synthesis of macroporous SnO$_2$ with/without carbon and their application as anode materials for lithium-ion batteries. J Alloys Compd 2011, 509:5969–5973.
17. Li YM, Lv XJ, Lu J, Li JH: Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 2010, 114:21770–21774.

18. Paek SM, Yoo E, Honma I: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 2009, 9:72–75.

19. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH: High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 2011, 56:4532–4539.

20. Ding SJ, Luan DY, Boey FYC, Chen JS, Lou XW: SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 2011, 47:7155–7157.

21. Huang XD, Zhou XF, Zhou LA, Qian K, Wang YH, Liu ZP, Yu CZ: A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries. Chem Phys Chem 2011, 12:278–281.

22. Hummers WS, Offeman RE: Preparation of graphitic oxide. J Am Chem Soc 1958, 80:1339–1340.

23. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J: Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 2008, 112:8192–8195.

24. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45:1558–1565.

25. Sun SH, Meng GW, Zhang GX, Gao T, Geng BY, Zhang LD, Zuo J: Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem Phys Lett 2003, 376:103–107.

26. Poizat P, Lanuelle S, Grugel S, Dupont L, Tarascon JM: Nano-sized transition–metal oxides as negative–electrode materials for lithium-ion batteries. Nature 2000, 407:496–499.

27. Memir-Cakan R, Hu YS, Antonieff M, Maier J, Titríč M: Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 2008, 20:1227–1229.

doi:10.1186/1556-276X-7-215

Cite this article as: Wang et al.: Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries. Nanoscale Research Letters 2012 7:215.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Immediate publication on acceptance
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com