Metabolism in the Tumor Microenvironment

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Lau, Allison N. and Vander Heiden, Matthew G. 2020. "Metabolism in the Tumor Microenvironment." 4 (1).

As Published: 10.1146/annurev-cancerbio-030419-033333

Publisher: Annual Reviews

Persistent URL: https://hdl.handle.net/1721.1/136998

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license
Metabolism in the Tumor Microenvironment

Allison N. Lau1 and Matthew G. Vander Heiden1,2

1Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; email: anlau@mit.edu, mvh@mit.edu
2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA

Keywords
cancer metabolism, stroma, microenvironment

Abstract
Experiments in culture systems where one cell type is provided with abundant nutrients and oxygen have been used to inform much of our understanding of cancer metabolism. However, many differences have been observed between the metabolism of tumors and the metabolism of cancer cells grown in monoculture. These differences reflect, at least in part, the presence of nonmalignant cells in the tumor microenvironment and the interactions between those cells and cancer cells. However, less is known about how the metabolism of various tumor stromal cell types differs from that of cancer cells, and how this difference might inform therapeutic targeting of metabolic pathways. Emerging data have identified both cooperative and competitive relationships between different cell types in a tumor, and this review examines how four abundant stromal cell types in the tumor microenvironment, fibroblasts, T cells, macrophages, and endothelial cells, contribute to the metabolism of tumors.
INTRODUCTION

The word “stroma” comes from the Greek word for layer or covering, speaking to the role of stroma in defining the structure of tissues. In cancer biology, “stroma” refers to the nonmalignant cells present in the tumor microenvironment. Although there is a wide range of stromal cell types, here we discuss the metabolism of four abundant types of stromal cells in tumors: fibroblasts, T cells, macrophages, and endothelial cells (Figure 1).

Most insights into tumor metabolism come from studies of bulk tumors and therefore represent an average of the metabolism of all cells present in the tumor. Metabolic gene expression measured by RNA sequencing (RNA-seq) in bulk tumors is different from expression measured by single-cell RNA-seq, suggesting that conclusions based on bulk tumor metabolism may not capture all aspects of cancer metabolism and may ultimately oversimplify the complex, heterogeneous composition of tumors (Xiao et al. 2019). In some tumors, such as those found in pancreatic cancer, a minority of the tumor is composed of cancer cells; as much as 90% of the tumor is composed of stroma (Feig et al. 2012).

Increased consumption of glucose and production of lactate in the presence of oxygen, known as aerobic glycolysis or the Warburg effect, has long been appreciated as a prominent metabolic phenotype of cancer (Cori & Cori 1925, Warburg 1925). Glutamine consumption and metabolism can also be an important characteristic of cancer cells (Coles & Johnstone 1962, Deberardinis et al. 2007, Rabinovitz et al. 1956, Reitzer et al. 1979); accordingly, glucose and glutamine are the two most consumed nutrients by many cancer cells in culture (Hosios et al. 2016). These metabolic characteristics have long been attributed to the cancer cells within the tumor; however, recent studies have suggested that some aspects of tumor metabolism can be quite different from the metabolism of cancer cells in culture. For example, glutamine is an important nutrient...
Nutrient sharing

Makes

Needs

Nutrient competition

Figure 2
Metabolic interactions in the tumor microenvironment. In a nutrient sharing model (a), one cell type, such as a stromal fibroblast, secretes a metabolite that is needed by a second cell type, such as a cancer cell or other stromal cell type. In a nutrient competition model (b), cancer and stromal cells are competing for a limited amount of a metabolite available in the surrounding environment.

for most cancer cells in culture, but it is used less by some tumors in vivo (Biancur et al. 2017, Davidson et al. 2016, Muir et al. 2017, Sellers et al. 2015), and nutrients such as alanine, lactate, or ammonia have been reported to be important contributors to tumor metabolism in some contexts (Faubert et al. 2017, Hensley et al. 2016, Hui et al. 2017, Sousa et al. 2016, Spinelli et al. 2017).

CHALLENGES TO STUDYING METABOLIC INTERACTIONS IN THE TUMOR MICROENVIRONMENT

Environmental context, differences in nutrient use among cell populations, and metabolic cooperation or competition between cell types can all influence tumor phenotypes (Figure 2). Symbiotic (Lineras et al. 2017, Sousa et al. 2016, Valencia et al. 2014) and competitive (Chang et al. 2015, Ho et al. 2015, Zecchin et al. 2017) metabolic interactions between cell types have been reported in various cancers. Although cancer cells and stromal cells can experience the same local environment with respect to extracellular nutrients, these cells may have different metabolic demands. For cancer cells to metastasize to a new distant site, an ability to adapt to a new microenvironment is needed, including both symbiotic and competitive interactions with cell types within that tissue. Some data support that stromal cells may facilitate this process (Whatcott et al. 2015), although the exact role of stroma in metastasis development is an ongoing area of study (Aiello et al. 2016, Hessmann et al. 2018).

Studies of metabolism in cultured cells are limited in that they do not model the contribution of tissue context, including the presence of multiple cell types within a tumor, the heterogeneity of both malignant and nonmalignant cells, and nutrient delivery in different regions of the tumor in vivo. The establishment of cell lines selects for fast-growing cancer cell clones that proliferate in supraphysiological nutrient and oxygen levels, abolishing population and nutrient heterogeneity known to exist in tumors (Hynds et al. 2018, Mayers & Vander Heiden 2015, Wilding & Bodmer 2014). When grown outside of their physiological context, crucial parameters such as metabolic interactions between cell types are also lost. Furthermore, it is thought that cell sorting can drastically alter the metabolism of cells from their unperturbed state (Llufrio et al. 2018), which adds another layer of difficulty in separating the metabolisms of different cell populations in tumors or...
in cocultures of cancer cells and stroma. Of note, most metabolic reactions occur on timescales that are much faster than the time needed to separate and analyze cells (Shamir et al. 2016), complicating the use of existing tools to assess metabolism (Figure 3a).

Alternative in vitro culture systems are being developed to circumvent some limitations of two-dimensional (2D) monolayer cultures and better model the differences in metabolism observed in tumors (Muir et al. 2018) (Figure 3b). For example, use of 3D organoid systems can mimic aspects of tumor biology present in human and mouse tissue, and stromal cells can be added to these organoid cultures to model some aspects of tumor heterogeneity (Boj et al. 2015, Huang et al. 2015, Li et al. 2014, Öhlund et al. 2017, Walsh et al. 2016). Tissue slice cultures, a technique previously used by Warburg in early studies of tumor metabolism (Warburg et al. 1927), can also recapitulate some of the metabolic features and cellular diversity of tumors (Fan et al. 2016, Sellers et al. 2015). Finally, efforts to more effectively study the metabolism of different cell populations in vivo and the development of media with physiological levels of nutrients can lend insights into the interactions between cells in tumors that are not possible using standard cell culture approaches (Cantar et al. 2017, Muir et al. 2017, Sullivan et al. 2019, Vande Voorde et al. 2019). Advances in
in vitro systems aimed at better mimicking tumor heterogeneity and nutrient availability will help us further understand the metabolism of tumor stromal cell types.

FIBROBLAST METABOLISM

Fibroblasts are a type of mesenchymal cell found in most tissues of the body that have a role in synthesizing extracellular matrix (ECM) proteins (Figure 1). ECM forms the structure of connective tissue, and production of ECM plays a key role in wound healing. These normal tissue fibroblasts can become activated during tumorigenesis, and it has been argued that they promote tumor growth and progression both by acting as a barrier to immune surveillance and drug delivery and by secreting prosurvival factors (Jacobetz et al. 2013, Neesse et al. 2013, Olive et al. 2009, Provenzano et al. 2012). Fibroblasts within tumors, commonly termed tumor-or cancer-associated fibroblasts (CAFs), are a common tumor stromal cell type that have been widely investigated to understand their effects on tumor growth.

Of note, fibroblasts can exhibit phenotype heterogeneity based on tissue location and other factors. A common fibroblast used to study interactions of cancer cells and fibroblasts is the pancreatic stellate cell (PSC), a type of pancreatic resident fibroblast that becomes activated during cancer progression and is thought to further support the tumor’s growth and progression. Quiescent PSCs are characterized by the presence of lipid droplets containing vitamin A (Watari et al. 1982). Once activated, PSCs express the activation marker alpha smooth muscle actin (αSMA) and the lipid droplets disappear. These activated PSCs can secrete lipids, such as lysophosphatidylcholines, which can support tumor growth (Auciello et al. 2019). Once activated by cancer cells, these PSCs can differentiate into CAFs in the tumor microenvironment and contribute to the ECM that is found in pancreatic cancers (Bynigeri et al. 2017).

Coinjection of cancer cells with either proliferating or irradiated fibroblasts in mice has been shown to enhance tumor growth, including in contexts where cancer cells will not form tumors when transplanted alone (Camps et al. 1990, Gleave et al. 1991, Olumi et al. 1999, Picard et al. 1986, Pritchett et al. 1989). Culturing cancer cells with fibroblast-conditioned media enhances their growth (Pritchett et al. 1989), and injecting mice with fibroblast-conditioned media is sufficient to enhance tumor growth (Picard et al. 1986, Pritchett et al. 1989). Recently, fibroblasts have been shown to enhance pancreatic cancer organoid growth (Öhlund et al. 2017). However, mouse studies where fibroblasts have been genetically ablated in pancreatic tumors (Özdemir et al. 2014) or where sonic hedgehog, a ligand that stimulates fibroblasts, is deleted (Lee et al. 2014, Rhim et al. 2014) have resulted in worse tumor progression and growth, suggesting that stromal cells can also restrain progression of pancreatic cancer in certain cases. A clinical trial of a hedgehog pathway inhibitor in pancreatic cancer failed to show any benefit (Kim et al. 2014), and a recent trial showed that the addition of hyaluronidase, which degrades hyaluronic acid in the ECM, to standard chemotherapy in pancreatic cancer resulted in worse overall survival (Ramanathan et al. 2019). These studies highlight the complexity of interactions between cancer cells, the ECM present within tumors, and different stromal cell populations in tumor growth and progression.

Several possibilities for how to reconcile the pro- and anticancer properties of fibroblasts have emerged over the past few years. First, the use of autochthonous mouse models and methods where fibroblasts and cancer cells are mixed in cocultures or in vivo may yield different results (Figure 3b). Furthermore, the effect of depleting fibroblasts from the tumor microenvironment is likely different from the effects of stromal reprogramming, whereby stromal cells are intact but adopt a metabolically or transcriptionally altered phenotype (Hessmann et al. 2018, Sherman et al. 2014). Additionally, multiple studies have found that there are different fibroblast subsets in the...
tumor microenvironment with differential abilities to affect cancer cell proliferation in different cancers (Costa et al. 2018, Costea et al. 2013, Franco-Barraza et al. 2017, Öhlund et al. 2017, Su et al. 2018). Each of these studies highlights the importance of delineating fibroblast subpopulations in analysis of cancer cell–fibroblast interaction, and more work is needed to understand the different fibroblasts associated with each cancer type. Better functional assays are also needed to test the effect of different populations of fibroblasts on tumor growth in vivo, as fibroblasts do not persist in transplanted tumors after cotransplantation with cancer cells, suggesting an effect on tumor initiation or engraftment rather than on later stages of tumor progression (Sousa et al. 2016). Studying the facilitative role of fibroblasts in intact tumors is challenging, and understanding the contribution of different fibroblast subtypes to tumor metabolism may require better tools such as lineage tracing techniques to differentiate between different fibroblast populations in vivo.

One of the primary functions of fibroblasts is to produce and secrete ECM. Collagen, a protein rich in glycine and proline, is one of the primary proteins comprising the ECM (Kalluri 2016). It is estimated that up to 5–10% of all protein synthesis in fibroblasts is dedicated to the production of collagen (Green & Goldberg 1965, Kamine & Rubin 1977, Priest & Davies 1969). To meet the demand for production of ECM proteins, both quiescent and proliferating fibroblasts have high flux through glycolysis (Lemons et al. 2010, Nigdelioglu et al. 2016, Vincent et al. 2008, Zhao et al. 2019), although this finding has been challenged in some systems (Sousa et al. 2016, Yang et al. 2016). Fibroblasts also maintain a high rate of collagen production independent of cellular proliferation rate (Breul et al. 1980, Kamine & Rubin 1977), and several studies have suggested that glycine and proline availability may be important metabolic requirements of fibroblasts. A reduction in glycine production in fibroblasts through inhibition of phosphoglycerate dehydrogenase (PHGDH), an enzyme involved in serine and glycine synthesis, resulted in reduced collagen production and reduced fibrosis in a pulmonary fibrosis model (Hamanaka et al. 2018, Nigdelioglu et al. 2016). Proline availability from extracellular sources or from proline synthesis can be limiting for collagen synthesis, suggesting that acquisition of this amino acid is a biosynthetic demand of fibroblasts (Finerman et al. 1967, Kershenobich et al. 1970, Phang et al. 1971, Rojkind & Diaz de León 1970). ECM proteins such as collagen produced by fibroblasts can also be taken in by cancer cells and catabolized into amino acids, serving as an alternative nutrient source (Davidson et al. 2017, Muranen et al. 2017, Olivares et al. 2017). Therefore, targeting these metabolic demands of fibroblasts could be a way to limit a source of nutrients for cancer cells.

A primary source of proline for collagen synthesis by fibroblasts in culture is glutamine, suggesting that glutamine metabolism could be an important pathway in fibroblasts (Bellon et al. 1987, Lehtinen et al. 1978). A recent study demonstrated that glutaminase expression was higher in CAFs than in cancer cells in pancreatic tumors and that the CAFs were more sensitive to glutamine withdrawal than cancer cells (Knudsen et al. 2016). Proliferating fibroblasts were more dependent on glutamine metabolism relative to quiescent fibroblasts, which may rely more on pyruvate carboxylase than on glutamine metabolism to support production of tricarboxylic acid (TCA) cycle intermediates (Lemons et al. 2010).

Glutamine synthesis and secretion have also been implicated in fibroblast biology. Compared to normal PSCs, CAFs secrete higher levels of glutamate and glutamine in culture, supporting the growth of pancreatic cancer cells in both coculture and conditioned media experiments (Francescone et al. 2018). Higher levels of glutamine synthetase have also been reported in CAFs as compared to normal fibroblasts or cancer cells (Francescone et al. 2018, Yang et al. 2016), and inhibiting glutamine anabolism in fibroblasts can result in tumor regression (Yang et al. 2016). Further investigation into the role of glutamine metabolism in fibroblasts is needed.

Symbiotic metabolic interactions have been suggested to occur between fibroblasts and cancer cells that favor tumor growth in various cancer types including pancreatic cancer, breast cancer,
and prostate cancer (Linares et al. 2017, Pavlides et al. 2012, Sousa et al. 2016, Valencia et al. 2014). In these models, tumor epithelium induces stromal fibroblasts to become activated CAFs, which then release factors or metabolites important for cancer cell proliferation and metabolism (Figure 2a). For example, in prostate cancer, loss of the scaffolding/adaptor protein p62 in the stroma led to resistance to glutamine deprivation, ultimately resulting in asparagine production by the stroma to support prostate cancer growth (Linares et al. 2017, Valencia et al. 2014). There is also evidence that cancer cells can directly acquire amino acids secreted from fibroblasts that were derived from stromal cell autophagy. Conditioned media from PSCs were found to contain high levels of alanine, which was dependent on PSC autophagy (Sousa et al. 2016). Labeled alanine was incorporated into TCA metabolites and lipids in pancreatic cancer cells, suggesting that alanine secreted by PSCs may contribute to the metabolism of pancreatic cancer cells (Sousa et al. 2016). Stromal cell autophagy has also been shown to supply amino acids to support cancer cell proliferation in a Drosophila model (Katheder et al. 2017). Exosomes, vesicles that are secreted from CAFs, are yet another route whereby metabolites can be taken up by cancer cells (Zhao et al. 2016), although the amount of material that can be packaged into exosomes is likely small relative to what is derived from the circulation.

There is accumulating evidence that stromal cells can confer resistance to the chemotherapeutic agent gemcitabine, a deoxycytidine analog that incorporates into DNA and can inhibit DNA synthesis. It has been known for many years that fibroblast-conditioned media can inhibit nucleoside uptake, DNA repair, and cancer cell proliferation (Downes et al. 1983). Gemcitabine has been shown to accumulate more in fibroblasts than in cancer cells in vitro, suggesting a role for drug sequestration by fibroblasts in gemcitabine resistance (Hessmann et al. 2018). In addition, deoxycytidine secretion into conditioned media by fibroblasts (Dalin et al. 2019), as well as by macrophages (Halbrook et al. 2019), can also contribute to cancer cell gemcitabine resistance. Deoxycytidine prevents activation of gemcitabine to the form active in cells, and this reduces the toxicity of cytidine analogs (Buchman et al. 1979).

The so-called reverse Warburg effect is another proposed way that cancer cells and fibroblasts can be metabolically coupled through the sharing of lactate and pyruvate (Pavlides et al. 2009). In this model, cancer cells induce fibroblasts to increase glycolysis and secretion of lactate and pyruvate, which can then be taken up by the cancer cells and used in the TCA cycle to generate energy (Pavlides et al. 2009). This idea was based on the finding that CAFs exhibit aerobic glycolysis and that TGF-β, a known inducer of fibroblast activation, promotes lactate secretion (Racker et al. 1985). This led to a provocative hypothesis that the Warburg effect is in fact a stromal phenomenon (Pavlides et al. 2009). However, this hypothesis is supported primarily by gene or protein expression data of glycolytic enzymes, or pyruvate and lactate transporters, or by inhibiting glycolysis or pyruvate and lactate transport in fibroblasts (Bonuccelli et al. 2010, Migneco et al. 2010, Rae et al. 2009, Whitaker-Menezes et al. 2011, Witkiewicz et al. 2012). The indirect methods used to study this phenomenon highlight the challenges associated with studying nutrient sharing in tumors or culture systems containing mixtures of multiple cell types, and new approaches to test this hypothesis are needed.

When two or more cell types are present in a culture system, it becomes impossible to distinguish the origin of metabolites secreted into the media or stored inside cells. This has led some researchers to focus on the effects of fibroblast-conditioned media on cancer cells, although this approach may not reflect how metabolites are shared when all cell types can simultaneously interact with nutrients in their environment. Isotope labeling studies to trace the fate of nutrients in cells can be challenging to interpret when only one cell type is present, and this is complicated further by the presence of multiple cell types. In the absence of information on net metabolite uptake and secretion, it can be difficult to distinguish between metabolite use and label exchange.
into the system despite net excretion of a labeled metabolite (Buescher et al. 2015, Muir et al. 2018). New approaches to delineate metabolism in shared cocultures will be helpful in determining how nutrients are shared between cancer cells and fibroblasts, as well as among any mixtures of cell populations in tumors and other tissues.

T CELL METABOLISM

T lymphocytes, or T cells, are part of the adaptive immune system and orchestrate responses to eliminate cells expressing non-self-antigens. T effector (Teff) cells comprise several subsets of T cells including helper, killer, and regulatory T cells (Tregs), which respond to antigen stimulation. A subset of these cells can differentiate into memory T cells that help to mount a rapid immune response should the same antigen be encountered in the future. Helper T cells are a subset of CD4+ T cells that stimulate cytotoxic T cells and macrophages to eliminate infected cells, while Tregs are another subset of CD4+ T cells that suppress T helper cells to limit the extent of immune responses and prevent autoimmune disease. Cytotoxic, or killer, T cells, also known as CD8+ T cells, are responsible for killing virus-infected cells and cancer cells. Tumors can evade targeting by activated T cells via various mechanisms, including T cell exclusion by the matrix and stromal cells in the tumor microenvironment (Joyce & Fearon 2015), as well as by immune editing, whereby nonimmunogenic cancer cells are selected as the tumor grows (Schreiber et al. 2011).

While aerobic glycolysis is often associated with cancer cell metabolism, it has been appreciated for decades that activated T cells also exhibit aerobic glycolysis (Wang et al. 1976). Upon stimulation, T cells increase nutrient uptake and increase both glycolysis and lactate production (Brand et al. 1988, Frauwirth et al. 2002, MacIver et al. 2008). In fact, lymphocytes are thought to transition from oxidative to glycolytic metabolism during the intense period of proliferation that accompanies T cell activation, and then return to oxidative metabolism when they become quiescent memory T cells (Michalek & Rathmell 2010).

Because both T cells and cancer cells can be highly glycolytic, it has been hypothesized that cancer cells compete with T cells for glucose in the tumor microenvironment (Figure 2b). Glucose has been shown to be depleted in the interstitial fluid of some tumors compared to plasma or healthy tissue (Burgess & Sylvén 1962, Gullino et al. 1964, Ho et al. 2015, Sullivan et al. 2019); however, not all studies have found glucose depletion in tumors (Siska et al. 2017). This suggests that competition for glucose could be limiting for T cells that require high glucose uptake rates in some contexts, and it potentially explains why some cancers can evade the immune response. Low glucose levels can limit T cell function, and enhancing glucose uptake in T cells supports activation (Jacobs et al. 2008). Glucose depletion leads to suppression of T cell activation and may limit antitumor responses (Cham & Gajewski 2005, Cham et al. 2008, Chang et al. 2013, Ho et al. 2015), although aerobic glycolysis is not required for T cell proliferation or survival (Chang et al. 2013). In support of metabolic competition for glucose in the tumor microenvironment, increased expression of the glycolytic enzyme hexokinase 2 (HK2) in cancer cells can result in improved evasion of T cell immune surveillance and increased tumor growth, suggesting a role for the glycolytic intermediate PEP (phosphoenolpyruvate) in promoting Teff cell functions (Ho et al. 2015). Injecting a bolus of glucose into mice has been shown to enhance T cell function, and programmed death ligand 1 (PD-L1), which is expressed on cancer cells and helps cancer cells evade antitumor immunity, can also promote glycolysis (Chang et al. 2015). Studies suggest that artificially restoring PEP levels in T cells could improve antitumor immune response (Ho et al. 2015). They also suggest that targeting glycolysis in cancer could have the disadvantageous effect of blunting the T cell response in tumors. While these data illustrate how competition between
cells in a tumor might affect antitumor immune responses, more work is needed to determine the level of glucose that is limiting for both cancer cells and T cells in vivo, as depleted levels of glucose in interstitial fluid can still be relatively high, in the low-millimolar range (Sullivan et al. 2019).

While Teff cells primarily rely on aerobic glycolysis, Tregs instead rely on oxidative phosphorylation (OXPHOS). Inhibition of OXPHOS in Tregs inhibits their functions. For example, Tregs are more prone to apoptosis in response to oxidative stress and reduced Nrf2 activity (Maj et al. 2017). Induction of apoptosis in Tregs can result in adenosine release, which can bind to receptors on antigen-presenting cells, Teff cells, and cytotoxic T cells to sustain immunosuppression even when these cells are eliminated (Maj et al. 2017). Foxp3, an important transcription factor in Tregs, has been shown to regulate expression of metabolic pathway genes in these cells (Angelin et al. 2017, Gerriets et al. 2016, Howie et al. 2017). Foxp3 reprograms CD4+ T cells and allows them to maintain suppressive function in tumors where there are low glucose concentrations and high lactate concentrations (Angelin et al. 2017). Lactate produced from cancer cells in the tumor microenvironment can also affect immunosurveillance by T cells, as reducing lactate dehydrogenase levels in cancer cells in tumors can result in increased numbers of active CD8+ T cells, whereas increased lactate reduces activation and numbers of CD8+ T cells (Brand et al. 2016). The tumor microenvironment can induce tumor-infiltrating CD8+ T cells to have reduced mitochondrial function and mass, and supporting mitochondrial function in these cells results in improved T cell function (Scharping et al. 2016).

Tregs can also suppress proliferation of Teff cells through effects on complex I of the mitochondrial electron transport chain. Knockout of a component of complex I decreased the suppressive activity of Tregs (Angelin et al. 2017). Foxp3 is also known to upregulate expression of electron transport chain complexes (Howie et al. 2017). Mitochondrial complex III is required for Treg function as well, as knockout of complex III in Tregs results in the development of a lethal inflammatory disorder without affecting T cell numbers or proliferation (Weinberg et al. 2019), further highlighting the importance of the mitochondrial electron transport chain in Treg function.

Amino acids also have important roles in T cell function. Lymphocytes can metabolize glutamine at high rates (Ardawi & Newsholme 1983). Serine plays an important role in T cell expansion, producing glycine and one-carbon units for nucleotide synthesis (Ma et al. 2017). Arginine is another amino acid that has been shown to be important for T cell survival and antitumor activity (Geiger et al. 2016). The dependence of lymphocytes on extracellular asparagine has been known for some time (Berenbaum et al. 1973, Ohnuma et al. 1977, Schrek et al. 1967), as has the role of tryptophan metabolism in regulating immune responses (Moffett & Namboodiri 2003, Routy et al. 2016). Therefore, depletion of amino acids from the tumor microenvironment by cancer cells may be a way to diminish T cell function and contribute to evasion of an anticancer immune response. Since T cell metabolism has many similarities to cancer cell metabolism, fully understanding the nuances of the relationship between these two cell types may lead to insights for the development of novel metabolic therapies that eliminate cancer cells without impacting anticancer immunity, or that improve the immune response to cancer cells.

MACROPHAGE METABOLISM

Macrophages are phagocytic cells that are terminally differentiated and do not have the demands of rapid proliferation like T cells, cancer cells, and some fibroblast populations in tumors. Traditionally, macrophages have been divided into two states based on results from experiments where precursors are stimulated in culture: classically activated (M1) macrophages and alternatively activated (M2) macrophages. Macrophage activation with interferon-gamma (IFN-γ) or
lipopolysaccharide (LPS) leads to the generation of M1-like macrophages that are important for killing, while M2-like macrophages are traditionally derived by exposure to different cytokines and are important for wound healing. M1-like macrophages are the subtype thought to be important for inflammation and killing cancer and bacterial cells, whereas M2-like macrophages are more important for immunosuppression and protumoral activity. However, recently it has become apparent that, similar to other stromal cell types, there is extensive macrophage heterogeneity in vivo and that macrophage cell states exist along a spectrum that depends on the tissue environment and local signals (Lavin et al. 2014, Xue et al. 2014). Therefore, new nomenclature has been proposed in which macrophages are described by a combination of identifying characteristics including source, production method, activating signals, culture conditions, and expression of cell surface markers (Murray et al. 2014). The term “tumor-associated macrophages” (TAMs) is commonly used to refer to macrophages in the tumor microenvironment.

There is contradictory data about whether macrophages are tumor promoting or tumor restricting. Early studies provided evidence that macrophages can restrict tumor growth and led to the idea that macrophages were part of an anticancer immune response. An inverse correlation between tumor macrophage content and the extent of metastasis was found in some tumors (Eccles & Alexander 1974, Wood & Gillespie 1975), and the depletion of macrophages in a tumor was shown to increase metastasis (Wood & Gillespie 1975). Macrophages coinjected subcutaneously with tumor cells can inhibit growth in mice (Picard et al. 1986) as well as metastasis formation (Fidler 1974, Liotta et al. 1977). Conversely, more recent studies have shown that macrophages can also be protumorigenic (Chittezhath et al. 2014). TAMs are proposed to promote a proinflammatory environment to support tumor growth. TAMs can promote metastasis in some contexts, as deleting the macrophage growth factor colony-stimulating factor 1 (Csf-1) in a mouse model of breast cancer did not affect primary tumor growth but delayed the development of invasive and metastatic cancer, whereas overexpression of Csf-1 led to the acceleration of cancer progression (Lin et al. 2001). CSF-1 deletion in pancreatic neuroendocrine cancer inhibits tumor formation (Pyonteck et al. 2012). TAMs have also been suggested to enhance cancer cell survival via AKT signaling (Chen et al. 2011) or to promote metastasis via induction of epithelial-to-mesenchymal transition (Su et al. 2014). Studies on whether macrophage content is correlated with better or worse prognosis are mixed depending on the study and cancer type (Zhang et al. 2012), although more studies indicate that macrophage content is associated with poor prognosis (Bingle et al. 2002). These contradictory results likely reflect differences in both cancer type and macrophage phenotypes. Thus, macrophages appear to play a dual role in the tumor microenvironment, being important for cancer cell removal or tumor growth depending on the context.

Metabolism is remodeled during macrophage activation. It is thought that there is a switch from oxidative metabolism to higher glucose consumption and lactate production during M1-like macrophage activation, whereas the opposite is true of M2-like macrophage activation (Derlindati et al. 2015, Rodriguez-Prados et al. 2010). A proteomics study revealed that glycolytic enzymes are more highly expressed in TAMs compared to bone marrow–derived macrophages (Liu et al. 2017). It has been reported that lactate can polarize macrophages to an M2-like state as measured by gene expression changes (Colegio et al. 2014), and classic studies showed that macrophages can also use glutamine at high rates (Newsholme et al. 1986, 1987).

As noted above, macrophages can secrete deoxycytidine into the tumor microenvironment (Chan et al. 1983, Chan & Lakheaura 1982, Halbrook et al. 2019) and confer resistance to gemcitabine, providing a mechanism that explains why depletion of TAMs can sensitize tumors to this drug (Halbrook et al. 2019). Iaconate is another metabolite produced by macrophages that has only recently been appreciated for its role in metabolism and immunity. The enzyme responsible for producing itaconate, IRG1, was identified as being upregulated after LPS
treatment of macrophages but had unknown functions for many years (Lee et al. 1995) before several groups identified its role as an enzyme in macrophage itaconate production (Shin et al. 2011, Strelko et al. 2011, Sugimoto et al. 2012). IRG1 produces itaconate by decarboxylating the TCA cycle intermediate cis-aconitate (Michelucci et al. 2013), and itaconate inhibits bacterial growth (Michelucci et al. 2013) by inhibiting isocitrate lyase, an enzyme used in the glyoxylate shunt that is not found in mammals (McFadden & Purohit 1977, Patel & McFadden 1978). Reduction of IRG1 in macrophages can reduce tumor growth (Weiss et al. 2018). Iaconate has also been reported to inhibit succinate dehydrogenase and succinate production (Lampropoulou et al. 2016) and can alkylate KEAP1 to activate NRF2 (Mills et al. 2018). Isotope tracing data have revealed that M1 macrophages redirect citrate to itaconate synthesis (Jha et al. 2015). Finally, inhibition in macrophages of branched-chain amino transferase 1 (BCAT1), the enzyme responsible for transamination of branched-chain amino acids, was shown to block itaconate production (Ko et al. 2017). Further work is needed to fully understand the variety of roles that itaconate plays in macrophages and in other immune cells in the tumor microenvironment.

Due to its expression in M2 murine macrophages, the enzyme arginase has been used as a macrophage-specific marker. Arginase catalyzes the conversion of arginine to ornithine and urea. Ornithine can be used to synthesize polyamines, the function of which is incompletely understood but can be important for cell growth (Miller-Fleming et al. 2015). Overexpression of arginase in macrophages increases the growth of cancer cells in coculture, possibly through the production of polyamines (Chang et al. 2001). Transplantation of cancer cells into mice with arginase-deficient macrophages resulted in reduced tumor growth (Colegio et al. 2014). Another possible fate of ornithine is proline production, which can be used for collagen synthesis, as discussed above. It has also been hypothesized that arginase activity and the production of proline via ornithine could be important for collagen production, and there is evidence that collagen is indeed produced by macrophages (Schnitt et al. 2008, Vaage & Harlos 1991, Weitkamp et al. 1999). Macrophages can also be indirectly profibrotic through the secretion of TGF-β, which can activate fibroblasts to induce collagen production. However, depleting arginase in macrophages increases inflammation and fibrosis in mice following pathogen infection, leading to the hypothesis that arginase-expressing macrophages suppress inflammation and fibrosis (Pesce et al. 2009). Another possible role of arginase in macrophages is to reduce the levels of arginine in the tumor environment, which may impair T cell function (Rodriguez et al. 2004). Arginase can also be used to synthesize nitric oxide (NO), an important effector molecule in macrophages (Hibbs et al. 1988, Marletta et al. 1988). Inducible NO synthase (iNOS) catalyzes arginine to NO and citrulline in a reaction that requires NADPH. NO has many reported consequences for the tumor microenvironment, from antimicrobial effects to promoting fibroblast activation. Some cancer cells are arginine auxotrophs (Delage et al. 2010, Ochoki et al. 2018), and thus arginase production by macrophages could similarly restrain the proliferation of cancer cells, particularly as arginine depletion in circulation can restrain the growth of some tumors (Poisbet-Perez et al. 2018).

While arginase and NOS have been used as markers of murine macrophages, there is a lack of consensus about whether human macrophages express arginase and produce NO (Thomas 2014). Some studies find evidence for arginase or NOS activity in human monocytes or macrophages (Denis 1991, Kobayashi et al. 2010, Nicholson et al. 1996, Rouzaut et al. 1999), while others do not (Cameron et al. 1990, Munder et al. 2005, Raes et al. 2005, Weinberg et al. 1995). These discrepancies may reflect differences in whether the macrophages were differentiated in vitro from bone marrow or blood monocyte-derived precursors, whether they were isolated from tissue, whether RNA or protein expression or enzyme activity was measured, and whether healthy macrophages or macrophages isolated from diseased or injured tissue were used (Thomas 2014).
Further work is needed to clarify potential differences in arginine metabolism between mouse and human macrophages. Differences between human and mouse macrophages have also been reported in the response to Toll-like receptor 4 (TLR4) signaling and LPS stimulation (Dorresteijn et al. 2015, Schroder et al. 2012, Vijayan et al. 2019). One study specifically focused on differences in metabolism following LPS stimulation, finding that human macrophages did not switch from oxidative to glycolytic metabolism as measured by oxygen consumption rate and extracellular acidification rate following stimulation (Vijayan et al. 2019).

Another debate surrounding macrophage metabolism centers on the role of fatty acid oxidation in M2 macrophages. Fatty acid oxidation requires carnitine palmitoyltransferase enzymes 1 and 2 (CPT1 and CPT2). In mice, fatty acid oxidation has been shown to be important for the IL-4-induced macrophage response (Vats et al. 2006) via uptake of lipids by the CD36 receptor followed by lipolysis (Huang et al. 2014). However, studies in human macrophages found that fatty acid oxidation was dispensable for the response to IL-4 (Namgaladze & Brüne 2014), and inhibition of fatty acid oxidation with the CPT1 inhibitor etomoxir had a minimal effect on IL-4-induced activation of human or mouse macrophages (Van den Bossche et al. 2016). Myeloid Cpt2 deletion using $\text{Cpt2}^{\text{fl/fl}}$ mice had no effect on IL-4-induced macrophage polarization despite loss of both Cpt2 and fatty acid oxidation (Nomura et al. 2016). Consistent with this finding, etomoxir has been suggested to affect macrophage polarization through CPT-independent metabolic effects, including inhibition of mitochondrial complex I, inhibition of mitochondrial adenine nucleotide transporters, and disruption of coenzyme A homeostasis (Divakaruni et al. 2018, Yao et al. 2018). Similarly, the effects of etomoxir on T cells can also be CPT independent (O’Connor et al. 2018, Raud et al. 2018), highlighting the pitfalls of using this compound to draw conclusions about dependence on fatty acid oxidation. Given the disagreement about the role of arginine metabolism, LPS-stimulated responses, and the importance of fatty acid oxidation in human macrophages, additional studies will be needed to uncover and characterize the metabolic differences between mouse and human macrophages and how this might affect tumor growth in each organism.

ENDOTHELIAL CELL METABOLISM

Endothelial cells line blood vessels and lymphatics, and the generation of new vessels and lymphatics (angiogenesis and lymphangiogenesis, respectively) is important for tumor growth (Dudley 2012). As a tumor grows, it requires new vessels to form and supply the growing tumor with nutrients and oxygen. Accordingly, antiangiogenesis therapies have long been proposed as an anticancer therapy (Folkman 1971); however, although there are several approved antiangiogenic drugs inhibiting the vascular endothelial growth factor (VEGF), they have limited effect on overall patient survival and, in some cases, have resulted in increased metastases (Ebos & Kerbel 2011). Work is ongoing to test whether antiangiogenic drugs can be more effective in some cancers when combined with other therapies such as immunotherapy (Ranjawian et al. 2017).

It is difficult to isolate pure populations of tumor endothelial cells, as endothelial cell preps are easily contaminated with cancer cells and fibroblasts due to cell nonspecific surface marker expression and the fact that culture conditions for tumor endothelial cells are not well defined (Dudley 2012). Instead, many recent studies have focused on better understanding the metabolic requirements involved when new vessels form, called sprouting.

There are three main categories of endothelial cells: migratory tip cells positioned at the leading edge in vessel sprouting during angiogenesis or lymphangiogenesis, highly proliferative stalk cells that follow the tip cells, and quiescent phalanx cells that line the perfused vessels. Because these different endothelial subtypes have varying proliferative and biosynthetic requirements, they...
are also associated with different metabolic states and demands. Endothelial cells are reported to generate most of their ATP from glycolysis (De Bock et al. 2013b). VEGF upregulates PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), which then drives glycolysis in endothelial cells and regulates sprouting (De Bock et al. 2013b). Endothelial cells also rely on the serine synthesis pathway. Loss of PHGDH has been shown to reduce angiogenesis in vivo, as well as reduce nucleotide and heme synthesis (Vandekeere et al. 2018). However, while endothelial metabolism has been described as largely glycolytic, mitochondrial complex III is required for endothelial cells to proliferate during angiogenesis, suggesting that mitochondrial respiration is also a vital part of endothelial cell metabolism (Diebold et al. 2019).

Glutamine can play a role in vessel sprouting, as glutamine deprivation or glutaminase inhibition decreases vessel sprouting (Huang et al. 2017). Fatty acid oxidation was also found to be important in proliferating endothelial cells during sprouting (Schoors et al. 2015), as loss of CPT1A decreased vessel sprouting in vitro and in vivo (Schoors et al. 2015). CPT1A knockout also impairs lymphatic vessel development (Wong et al. 2017). Less is known about the quiescent phalanx endothelial cells that line vessels other than that they have lower glycolytic flux compared to proliferating endothelial cells (De Bock et al. 2013b). However, it is hypothesized that since they are exposed to higher oxygen concentrations in the circulation, a major metabolic need would be to limit reactive oxygen species production to lower oxidative damage (De Bock et al. 2013a).

Similar to how cancer cells can induce endothelial cells to begin sprouting, there is evidence that cancer cells can stimulate endothelial cells to increase their glucose uptake for proliferation. For example, conditioned media from hypoxic glioma cells induced endothelial cells to upregulate the expression of the glucose transporter GLUT1 (Yeh et al. 2008). Lactate is also thought to be proangiogenic (Porporato et al. 2012, Ruan & Kazlauskas 2013). TAMs can influence endothelial cells in the tumor microenvironment by regulating tumor blood vessel growth and metastasis. Enhancement of glycolysis in TAMs promoted normalization of blood vessels and inhibited metastasis formation in several tumor models (Wenes et al. 2016). In addition to glucose metabolism, glutamine metabolism may also be involved in metabolic cross talk or competition between endothelial cells and other cells in the tumor microenvironment. Inhibiting glutamine synthetase and glutamine synthesis in TAMs co-injected with cancer cells inhibited endothelial network formation, inhibited metastasis, and reprogrammed macrophages toward an M1-like state (Palmieri et al. 2017). These results support a model in which there is metabolic competition between endothelial cells, macrophages, and cancer cells for glucose in the tumor microenvironment (Zecchin et al. 2017); however, as discussed previously, more work is needed to determine the range of glucose and other nutrients that is limiting for different cells in vivo.

Glycan metabolism has also been implicated in endothelial cell metabolism. Endothelial cells from highly metastatic melanomas were found to secrete the proteoglycan biglycan, which promotes metastasis of cancer cells (Maishi et al. 2016). Metabolomics of ovarian and colon cancer cells cocultured with endothelial cells also revealed alterations in glycan synthesis in cancer cells (Halama et al. 2017).

CONCLUSIONS

Interactions between cancer and stromal cells are difficult to study but can yield valuable insights into the biology and metabolism of tumors. Various culture and in vivo models are moving beyond monocultures of cancer cells to better understand the complex relationships between cancer and stromal cells in the tumor microenvironment. Further understanding the metabolism of tumor stromal cells could lead to the development of novel therapies targeting tumor metabolism. Immunotherapy approaches are one example of non-cancer-cell-autonomous biology being
exploited to prevent tumor growth and demonstrate that therapeutically targeting tumor stromal cells can be an effective strategy to treat cancer. In the future, therapies aimed at modulating the metabolic interactions between cancer cells and various tumor stromal cells may provide additional therapeutic benefit to patients.

SUMMARY POINTS
1. Each stromal cell type is a collection of several different cell subtypes characterized by unique marker expression and function.
2. Tumor heterogeneity and stromal content are often not reflected in metabolic studies using in vitro culture systems.
3. Aerobic glycolysis is a characteristic of not only cancer cells; stromal cells can also exhibit high rates of glycolysis and share other metabolic phenotypes with cancer cells.
4. Fibroblasts in cancer are characterized by high rates of glycolysis and ECM production.
5. T cell subsets exhibit different rates of glycolysis and oxidative metabolism.
6. Metabolism can influence the activation state of macrophages.
7. Endothelial cells rely on several nutrients and pathways for vessel sprouting.

FUTURE ISSUES
1. New approaches are needed to tease apart the metabolism of individual cell types in heterogeneous cell mixtures.
2. New approaches are needed to understand symbiotic relationships between various tumor cell types.
3. How different or similar are mouse and human stromal cells?
4. Under what contexts do various stromal cell types restrain versus promote tumor growth and progression?
5. What metabolic characteristics are unique to cancer cells or specific stromal cells?
6. What metabolites are limiting in the tumor microenvironment, resulting in metabolic competition between cell types that affects their function?

DISCLOSURE STATEMENT
M.G.V.H. is a consultant and scientific advisory board member for Agios Pharmaceuticals, Aeglea Biotherapeutics, and Auron Therapeutics.

ACKNOWLEDGMENTS
We would like to thank all of the members of the Vander Heiden lab for discussion and critical reading and editing of the manuscript, and Brooke Bevis for generating and designing the figures. A.N.L. was a Robert Black Fellow of the Damon Runyon Cancer Research Foundation (DRG-2241-15) and was supported by a NIH (National Institutes of Health) Pathway to Independence
Award (K99/R00), K99CA234221. M.G.V.H. acknowledges support from the Lustgarten Foundation, SU2C (Stand Up to Cancer), the MIT Center for Precision Cancer Medicine, the Ludwig Center at MIT, a faculty scholars award from the Howard Hughes Medical Institute, and the National Cancer Institute.

LITERATURE CITED

Aiello NM, Bajor DL, Norgard RJ, Sahmoud A, Bhagwat N, et al. 2016. Metastatic progression is associated with dynamic changes in the local microenvironment. Nat. Commun. 15:12819

Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, et al. 2017. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25(6):1282–87

Ardawi MSM, Newsholme EA. 1983. Glutaminemetabolisminlymphocytesoftherat. Biochem. J. 212(3):835–42

Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, et al. 2019. A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9:617–27

Bellon G, Monboisse J-C, Randoux A, Borel J-P. 1987. Effects of preformed proline and proline amino acid precursors (including glutamine) on collagen synthesis in human fibroblast cultures. Biochim. Biophys. Acta 930(1):39–47

Berenbaum MC, Cope WA, Jeffery W. 1973. Differential asparaginase sensitivity of T-cell and B-cell responses. Clin. Exp. Immunol. 15(4):565–72

Biancur DE, Paulo JA, Malachowska B, Quiles Del Rey M, Sousa CM, et al. 2017. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8:15965

Bingle L, Brown NJ, Lewis CE. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196(3):254–65

Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–38

Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, et al. 2010. The reverse Warburg Effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–71

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, et al. 2016. LDHa-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24(5):657–71

Brand K, Aichinger S, Forster S, Kupper S, Neumann B, et al. 1988. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. Eur. J. Biochem. 172(3):695–702

Breul SD, Bradley KH, Hance AJ, Schafer MP, Berg RA, Crystal RG. 1980. Control of collagen production by human diploid lung fibroblasts. J. Biol. Chem. 255(11):5250–60

Buchman VM, Belyanchikova NI, Mkheidze DM, Litovchenko TA, Lichinertser MR, et al. 1979. 2′-Deoxyxycytidine hydrochloride protection of mice against the lethal toxicity of cytosine arabinoside. Cancer Chemother. Pharmacol. 3(4):229–34

Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, et al. 2015. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34:189–201

Burgess EA, Sylvéen B. 1962. Glucose, lactate, and lactic dehydrogenase activity in normal interstitial fluid and that of solid mouse tumors. Cancer Res. 22:581–88

Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, et al. 2017. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol. 23(3):382–405

Cameron ML, Chang SM, Hsu TC, Freeman MR, Hong SJ, et al. 1990. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. PNAS 87(1):75–79

Cantor JR, Abu-Ramieh M, Kanarek N, Freinkman E, Gao X, et al. 2017. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169(2):258–72.e17
Cham CM, Driessens G, O’Keefe JP, Gajewski TF. 2008. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8 T cells. *Eur. J. Immunol.* 38(9):2438–50

Cham CM, Gajewski TF. 2005. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8 effector T cells. *J. Immunol.* 174(8):4670–77

Chan TS, Lakhehura BD. 1982. Deoxycytidine excretion by mouse peritoneal macrophages: its implication in modulation of immunological functions. *J. Cell. Physiol.* 111(1):28–32

Chen Q, Zhang X-H-F, Massagué J. 2011. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. *Cancer Cell* 20(4):538–49

Cori CF, Cori GT. 1925. The carbohydrate metabolism of tumors. II. Changes in the sugar, lactic acid, and CO₂-combining power of blood passing through a tumor. *J. Biol. Chem.* 65(2):397–405

Costea DE, Hills A, Osman AH, Thurlow J, Kalna G, et al. 2013. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. *Cancer Res.* 73(13):3888–901

Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, et al. 2010. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. *Int. J. Cancer* 126(12):2762–72

Denis M. 1991. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent *Mycobacterium avium* and to kill avirulent *M. avium*: killing effector mechanism depends on the generation of reactive nitrogen intermediates. *J. Leukoc. Biol.* 49(4):380–87

Deimling D, Einsele H, Montanini B, Spigoni V, Curella V, et al. 2015. Transcriptomic analysis of human polarized macrophages: More than one role of alternative activation? *PLOS ONE* 10(3):e0119751
Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS. 2019. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1(1):158–71

Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, et al. 2018. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28(3):490–503.e7

Dorresteijn MJ, Paine A, Zilian E, Fenten MGE, Frenzel E, et al. 2015. Cell-type-specific downregulation of heme oxygenase-1 by lipopolysaccharide via Bach1 in primary human mononuclear cells. Free Radiac. Biol. Med. 78:224–32

Downes CS, Johnson RT, Yew FF. 1983. Effects of conditioned medium on nucleoside uptake, cell cycle progression and apparent DNA repair. J. Cell Sci. 59(1):145–58

Dudley AC. 2012. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2(3):a006536

Ebos JML, Kerbel RS. 2011. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8(4):210–21

Eccles SA, Alexander P. 1974. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature 250(5468):667–69

Fan TWM, Lane AN, Higashi RM. 2016. Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio Protoc. 6(3):e1730

Faubert B, Li KY, Cai L, Hensley CT, Kim J, et al. 2017. Lactate metabolism in human lung tumors. Cell 171(2):358–59

Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. 2012. The pancreas cancer microenvironment. Clin. Cancer Res. 18(16):4266–76

Fidler IJ. 1974. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res. 34(5):1074–78

Finerman GA, Downing S, Rosenberg LE. 1967. Amino acid transport in bone. II. Regulation of collagen synthesis by perturbation of proline transport. Biochim. Biophys. Acta 135(5):1008–15

Folkman J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21):1182–86

Franco-Barraza J, Francescone R, Luong T, Shah N, Madhani R, et al. 2017. Matrix-regulated integrin αvβ5 maintains α5β1-dependent desmoplastic traits prognostic of neoplastic recurrence. eLife 6:e20600

Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, et al. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–77

Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, et al. 2016. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829–42.e13

Gerriets VA, Kishston RJ, Johnson MO, Cohen S, Siska PJ, et al. 2016. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17:1459–66

Gleave M, Hsieh J-T, Gao C, von Eschenbach AC, Chung LWK. 1991. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51(14):3733–61

Green H, Goldberg B. 1965. Synthesis of collagen by mammalian cell lines of fibroblastic and nonfibroblastic origin. PNAS 53(6):1360–65

Gullino PM, Clark SH, Grantham FH. 1964. The interstitial fluid of solid tumors. Cancer Res. 24(5):780–97

Halama A, Guerrouahen BS, Pasquier J, Satheesh NJ, Suhre K, Rafii A. 2017. Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism. Sci. Rep. 7:39999

Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, et al. 2019. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29(6):1390–99.e6

Hamanaka RB, Nigdelioglu R, Meliton AY, Tian Y, Witt JJ, et al. 2018. Inhibition of phosphoglycerate dehydrogenase attenuates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58(5):585–93

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Lin E, et al. 2016. Metabolic heterogeneity in human lung tumors. Cell 164(4):681–94

Hessmann E, Patzak MS, Klein L, Chen N, Kari V, et al. 2018. Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut 67(3):497–507
Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM. 1988. Nitric oxide: a cytotoxic activated macrophage effector molecule. *Biochem. Biophys. Res. Commun.* 157(1):87–94

Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, et al. 2015. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. *Cell* 162(6):1217–28

Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, et al. 2016. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. *Dev. Cell.* 36(5):540–49

Howie D, Cohbold SP, Adams E, Ten Bokum A, Necula AS, et al. 2017. Fosf3 drives oxidative phosphorylation and protection from lipotoxicity. *JCI Insight* 2(3):e89160

Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, et al. 2017. Role of glutamine and interlinked asparagine metabolism in vessel formation. *EMBO J.* 36(16):2334–52

Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, et al. 2015. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. *Nat. Med.* 21(11):1364–71

Huang SC-C, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, et al. 2014. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. *Nat. Immunol.* 15(9):846–55

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, et al. 2017. Glucose feeds the TCA cycle via circulating lactate. *Nature* 551(7678):115–18

Hynds RE, Vladimirov E, Janes SM. 2018. The secret lives of cancer cell lines. *Dis. Model. Emb.* 11(11):dmm037366

Jacobetz MA, Chan DS, Neese A, Bapire TE, Cook N, et al. 2013. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. *Gut* 62(1):112–20

Jacobs SR, Herman CE, Maclver NJ, Wofford JA, Wieman HL, et al. 2008. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. *J. Immunol.* 180(7):4476–86

Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity* 42(3):419–30

Joyce JA, Fearon DT. 2015. T cell exclusion, immune privilege, and the tumor microenvironment. *Science* 348(6230):74–80

Kalluri R. 2016. The biology and function of fibroblasts in cancer. *Nat. Rev. Cancer* 16(9):582–98

Kamene G, Rubin H. 1977. Coordinate control of collagen synthesis and cell growth in chick embryo fibroblasts and the effect of viral transformation on collagen synthesis. *J. Cell. Physiol.* 92(1):1–11

Katohara NS, Khezri R, O’Farrell F, Schultz SW, Jain A, et al. 2017. Microenvironmental autophagy promotes tumour growth. *Nature* 541(7637):417–20

Kershenobich D, Fierro FJ, Rujkind M. 1970. The relationship between the free pool of proline and collagen content in human liver cirrhosis. *J. Clin. Invest.* 49(12):2246–49

Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, et al. 2014. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. *Clin. Cancer Res.* 20(23):5937–45

Knudsen ES, Balaji U, Freinkman E, McCabe P, Wirtkiewicz AK. 2016. Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. *OncoTargets* 7(48):78396–411

Ko J-H, Imprialou M, Bagnati M, Srivastava PK, Vu HA, et al. 2017. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. *Nat. Commun.* 8:16040

Kobayashi M, Jeschke MG, Shigematsu K, Asai A, Yoshida S, et al. 2010. M2b monocytes predominated in peripheral blood of severely burned patients. *J. Immunol.* 185(12):7174–79

Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. *Cell Metab.* 24(1):158–66

Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell* 159(6):1312–26
Reference	Title	Citation
Lee CGL, Jenkins NA, Gilbert DJ, Copeland NG, O’Brien WE. 1995.	Cloning and analysis of gene regulation of a novel LPS-inducible cDNA.	*Immunogenetics* 41(5):263–70
Lee JJ, Perera RM, Wang H, Wu D-C, Liu XS, et al. 2014.	Stromal response to Hedgehog signaling restrains pancreatic cancer progression.	*PNAS* 111(30):E3091–100
Lehtinen P, Takala I, Kulonen E. 1978.	Dependence of collagen synthesis by embryonic chick tendon cells on the extracellular concentrations of glutamine.	*Connect. Tissue Res.* 6(3):155–59
Lemons JMS, Feng X-J, Bennett BD, Legesse-Miller A, Johnson EL, et al. 2010.	Quiescent fibroblasts exhibit high metabolic activity.	*PLOS Biol.* 8(10):e1000514
Li X, Nadauld L, Ootani A, Corney DC, Pai RK, et al. 2014.	Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.	*Nat. Med.* 20(7):769–77
Lin EY, Nguyen AV, Russell RG, Pollard JW. 2001.	Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy.	*J. Exp. Med.* 193(6):727–40
Linares JF, Cordes T, Duran A, Reina-Campos M, Valencia T, et al. 2017.	NRF4-induced metabolic reprogramming is a synthetic vulnerability of the p62-deficient tumor stroma.	*Cell Metab.* 26(6):817–29.e6
Liotta LA, Gattozzi C, Kleinerman J, Saidel G. 1977.	Reduction of tumour cell entry into vessels by BCG-activated macrophages.	*Br. J. Cancer* 36(5):639–41
Liu D, Chang C, Lu N, Wang X, Lu Q, et al. 2017.	Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment.	*J. Proteome Res.* 16(1):288–97
Llufrio EM, Wang L, Naser FJ, Patti GJ. 2018.	Sorting cells alters their redox state and cellular metabolome.	*Redox Biol.* 16:381–87
Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, et al. 2017.	Serine is an essential metabolite for effector T cell expansion.	*Cell Metab.* 25(2):345–57
MacLver NJ, Jacobs SR, Wieman HL., Wofford JA, Coloff JL, Rathmell JC. 2008.	Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival.	*J. Leukoc. Biol.* 84(4):949–57
Maishi N, Ohba Y, Akiyama K, Ogha N, Hamada J-L, et al. 2016.	Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan.	*Sci. Rep.* 6:28039
Maj T, Wang W, Crespo J, Zhang H, Wang W, et al. 2017.	Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor.	*Nat. Immunol.* 18(12):1332–41
Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. 1988.	Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate.	*Biochemistry* 27(24):8706–11
Mayers JR, Vander Heiden MG. 2015.	Famine versus feast: understanding the metabolism of tumors in vivo.	*Trends Biochem. Sci.* 40(3):130–40
McFadden BA, Purohit S. 1977.	Itaconate, an iso-citrate lyase-directed inhibitor in *Pseudomonas indigfera*.	*J. Bacteriol.* 131(1):136–44
Michalek RD, Rathmell JC. 2010.	The metabolic life and times of a T-cell.	*Immunol. Rev.* 236(1):190–202
Micheliucci A, Cordes T, Ghelji F, Paulot A, Reiling N, et al. 2013.	Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.	*PNAS* 110(19):7820–25
Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, et al. 2010.	Glycolytic cancer-associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.	*Cell Cycle* 9(12):2412–22
Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. 2015.	Remaining mysteries of molecular biology: the role of polyamines in the cell.	*J. Mol. Biol.* 427(21):3389–406
Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, et al. 2018.	Itaconate is an anti-inflammatory metabolite that activates Nr1f2 via alklylation of KEAP1.	*Nature* 556(7699):113–17
Moffett JR, Namboodiri MA. 2003.	Tryptophan and the immune response.	*Immunol. Cell Biol.* 81(4):247–65
Muir A, Danai LV, Gui DY, Waingarten CY, Lewis CA, Vander Heiden MG. 2017.	Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition.	*eLife* 6:e27713
Muir A, Danai LV, Vander Heiden MG. 2018.	Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies.	*Dis. Models Mech.* 11(8):dmm035758
Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, et al. 2005. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105(6):2549–56

Muranen T, Iwanicki MP, Curry NL, Hwang J, DuBois CD, et al. 2017. Starved epithelial cells uptake extracellular matrix for survival. Nat. Commun. 8:13989

Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht MD, et al. 2013. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. PNAS 110(30):12325–30

Newsholme P, Curi R, Gordon S, Newsholme E.A. 1986. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 239(1):121–25

Newsholme P, Gordon S, Newsholme E.A. 1987. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem. J. 242(3):631–36

Nicholson S, Bonecini-Almeida MG, Lapa e Silva JR, Nathan C, Xie QW, et al. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 181(5):2293–302

Nigdelioglu R, Hamanaka RB, Melton AY, O’Leary E, Witt LJ, et al. 2016. Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production. J. Biol. Chem. 291(53):27239–51

Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, et al. 2016. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17(3):216–17

Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, et al. 2018. Arginase 2 suppresses renal carcinoma progression via biosynthetic cofactor pyridoxal phosphate depletion and increased polyamine toxicity. Cell Metab. 27(6):1263–66

O’Connor RS, Guo L, Ghassemi S, Snyder NW, Worth AJ, et al. 2018. The CPT1α inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci. Rep. 8(1):6289

Ohnma T, Holland JF, Arkin H, Minowada J. 1977. l-Asparagine requirements of human T-lymphocytes and B-lymphocytes in culture. J. Natl. Cancer Inst. 59(4):1061–63

Olivares O, Mayers JR, Gourand V, Torrence ME, Gicquel T, et al. 2017. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Immunol. 8:16031

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, et al. 2009. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–61

Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tsutdy TD, Cunha GR. 1999. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59(19):5002–11

Öhland D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, et al. 2017. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 7:579–96

 Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, et al. 2014. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–34

Palmerini EM, Menga A, Martín-Pérez R, Quinto A, Riera-Domingo C, et al. 2017. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 20(7):1654–66

Patel TR, McFadden BA. 1978. Caenorhabditis elegans and Ascaris suum: inhibition of isocitrate lyase by itaconate. Exp. Parasitol. 44(2):262–68

Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, et al. 2012. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth through oxidative stress, mitophagy, and aerobic glycolysis. Antioxid. Redox Signal. 16(11):1264–84

Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, et al. 2009. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001
Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, et al. 2009. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. *PLOS Pathog.* 5(4):e1000371

Phang JM, Finerman GA, Singh B, Rosenberg LE, Berman M. 1971. Compartamental analysis of collagen synthesis in fetal rat calvaria. I. Perturbations proline transport. *Biochim. Biophys. Acta* 230(1):146–59

Picard O, Rollandy P, Poupon MF. 1986. Fibroblast-dependent tumorigenicity of cells in nude mice: implication for implantation of metastases. *Cancer Res.* 46(7):3290–94

Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, et al. 2018. Autophagy maintains tumour growth through circulating arginine. *Nature* 563(7732):569–73

Porporato PE, Payen VL, De Saedeleer CJ, Préat V, Thissen J-P, et al. 2012. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. *Angiogenesis* 15(4):581–92

Priest RE, Davies LM. 1969. Cellular proliferation and synthesis of collagen. *Lab. Invest.* 21(2):138–42

Pritchett TR, Wang JKM, Jones PA. 1989. Mesenchymal-epithelial interactions between normal and transformed human bladder cells. *Cancer Res.* 49(10):2750–54

Provenzano PP, Cuevas C, Chang AE, Goel VK, von Hoff DD, Hingorani SR. 2012. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. *Cancer Cell* 21(3):418–29

Pyonteck SM, Gadea BB, Wang H-W, Gocheva V, Hunter KE, et al. 2012. Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. *Oncogene* 31(11):1459–67

Rabinovitz M, Olson ME, Greenberg DM. 1956. Role of glutamine in protein synthesis by the Ehrlich ascites carcinoma. *J. Biol. Chem.* 222(2):879–93

Racker E, Resnick RJ, Feldman R. 1985. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transformed with ras or myc oncogenes. *PNAS* 82(11):3535–38

Rae C, Nasrallah FA, Bröer S. 2009. Metabolic effects of blocking lactate transport in brain cortical tissue slices using an inhibitor specific to MCT1 and MCT2. *Neurochem. Res.* 34(10):1783–91

Raes G, Brey L, Dahl BK, Brandt J, Grooten J, et al. 2005. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. *J. Leukoc. Biol.* 77(3):321–27

Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, et al. 2019. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. *J. Clin. Oncol.* 37(13):1062–69

Ramijawan RR, Griffioen AW, Duda DG. 2017. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? *Angiogenesis* 20(2):185–204

Raud B, Boy DG, Divakaruni AS, Tarasenko TN, Franke R, et al. 2018. Exomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. *Cell Metab.* 28(3):504–7

Reitzer LJ, Wice BM, Kennell D. 1979. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. *J. Biol. Chem.* 254(8):2669–76

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, et al. 2014. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. *Cancer Cell* 25(6):735–47

Rodríguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, et al. 2004. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-Cell receptor expression and antigen-specific T-cell responses. *Cancer Res.* 64(16):5839–49

Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, et al. 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. *J. Immunol.* 185(1):605–14

Rojkind M, Díaz de León L. 1970. Collagen biosynthesis in cirrhotic rat liver slices: a regulatory mechanism. *Biochim. Biophys. Acta* 217(2):512–22

Routy J-P, Routy B, Graziani GM, Mehrj V. 2016. The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: implications for immunotherapy. *Int. J. Trypanotrop. Res.* 9:67–77

Rouzaud A, Subirà ML, de Miguel C, Domingo-de-Miguel E, González A, et al. 1999. Co-expression of inducible nitric oxide synthase and arginases in different human monocyte subsets. Apoptosis regulated by endogenous NO. *Biochim. Biophys. Acta* 1451(2):319–33
Ruan G-X, Kazlauskas A. 2013. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288(29):21161–72

Scharping NE, Menk AV, Moreci RS, Whetstone RD, Daday RE, et al. 2016. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–88

Schoo R, Bruning U, Missiaen R, Queiroz KCS, Borges G, et al. 2015. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520(7546):192–97

Sellers K, Fox MP, Bousamra M II, Slone SP, Higashi RM, et al. 2015. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125(2):687–98

Sherman MH, Yu RT, Engle DD, Ding N, Arkins AR, et al. 2014. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159(1):80–93

Shin J-H, Yoon H, Jeon B-Y, Yoon VJ, Cho S-N, et al. 2011. 1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J. Proteome Res. 10(5):2238–47

Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, et al. 2017. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2(12):e93411

Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536(7617):479–83

Su S, Liu Q, Chen J, Chen F, et al. 2014. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25(5):605–20

Thomas AC. 2014. “Of mice and men”: arginine metabolism in macrophages. Front. Immunol. 5:479

Vande Voorde J, Ackermann T, Pfetzer N, Sumpton D, MacKay G, et al. 2019. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5(1):eaau7314
Vandekeere S, Dubois C, Kalucka J, Sullivan MR, Garcia-Caballero M, et al. 2018. Serine synthesis via PHGDH is essential for heme production in endothelial cells. *Cell Metab.* 28(4):573–87.e13

Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, et al. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. *Cell Metab.* 4(1):13–24

Vijayan V, Pradhan P, Braud L, Fuchs HR, Guler F, et al. 2019. Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide—a divergent role for glycolysis. *Redox Biol.* 22:101147

Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP. 2008. Human skin keloid fibroblasts display bioenergetics of cancer cells. *J. Investig. Dermatol.* 128(3):702–9

Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. 2016. Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. *Pancres* 45(6):863–69

Wang T, Marquardt C, Foker J. 1976. Aerobic glycolysis during lymphocyte proliferation. *Nature* 261(5562):702–5

Warburg O. 1925. Über den Stoffwechsel der Carcinomzelle. *Klin. Wochenschr.* 4(12):534–36

Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. *J. Gen. Physiol.* 8(6):519–30

Watari N, Hotta Y, Mabuchi Y. 1982. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration TI. *Okajimas Folia Anat. Jpn.* 58(4–6):837–57

Weinberg JB, Misukonis MA, Shami PJ, Mason SN, Sauls DL, et al. 1995. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. *Blood* 86(3):1184–95

Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, et al. 2019. Mitochondrial complex III is essential for suppressive function of regulatory T cells. *Nature* 565(7740):495–99

Weiss JM, Davies LC, Karwan M, Ileva L, Ozaki MK, et al. 2018. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. *J. Clin. Investig.* 128(9):3794–805

Weitkamp B, Cullen P, Plenz G, Robenek H, Rauterberg J. 1999. Human macrophages synthesize type VIII collagen in vitro and in the atherosclerotic plaque. *FASEB J.* 13(11):1445–57

Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Pérez R, et al. 2016. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. *Cell Metab.* 24(5):701–15

Whatcott Cj, Diep CH, Jiang P, Watanabe A, LoBello J, et al. 2015. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. *Clin. Cancer Res.* 21(15):3561–68

Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, et al. 2011. Evidence for a stromal-epithelial "lactate shuttle" in human tumors. *CellCycle* 10(11):1772–83

Wilding JL, Bodmer WF. 2014. Cancer cell lines for drug discovery and development. *Cancer Res.* 74(9):2377–84

Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, et al. 2012. Using the “reverse Warburg effect” to identify high-risk breast cancer patients. *Cell Cycle* 11(6):1108–17

Wong BW, Wang X, Zecchin A, Thienpont B, Cornelissen I, et al. 2017. The role of fatty acid β-oxidation in lymphangigenisis. *Nature* 542(7639):49–54

Wood GW, Gillespie GY. 1975. Studies on the role of macrophages in regulation of growth and metastasis of murine chemically induced fibrosarcomas. *Int. J. Cancer* 16(6):1022–29

Xiao Z, Dai Z, Locasale JW. 2019. Metabolic landscape of the tumor microenvironment at single cell resolution. *Nat. Commun.* 10:3763

Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. *Immunity* 40(2):274–88

Yang L, Achreja A, Yeung T-L, Mangala LS, Jiang D, et al. 2016. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. *Cell Metab.* 24(5):685–700

Yao CH, Liu G-Y, Wang R, Moon SH, Gross RW, Patti GJ. 2018. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. *PLOS Biol.* 16(3):e2003782

Yeh W-L, Lin C-J, Fu W-M. 2008. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. *Mol. Pharmacol.* 73(1):170–77
Zecchin A, Kalucka J, Dubois C, Carmeliet P. 2017. How endothelial cells adapt their metabolism to form vessels in tumors. *Front. Immunol.* 8:873–78

Zhang Q-W, Liu L, Gong C-Y, Shi H-S, Zeng Y-H, et al. 2012. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. *PLOS ONE* 7(12):e50946–14

Zhao H, Yang L, Baddour J, Achreja A, Bernard V, et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. *eLife* 5:e10250

Zhao X, Psarianos P, Ghoraie LS, Yip K, Goldstein D, et al. 2019. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. *Nat. Metab.* 1:147–57
Contents

AMP-Activated Protein Kinase: Friend or Foe in Cancer?
Diana Varas-Ciruelos, Madhumita Dandapani, and D. Grahame Hardie 1

Metabolism in the Tumor Microenvironment
Allison N. Lau and Matthew G. Vander Heiden ... 17

Mitophagy and Mitochondrial Dysfunction in Cancer
Kay F. Madeo .. 41

Targeting MYC Proteins for Tumor Therapy
Elmar Wolf and Martin Eilers ... 61

Metabolic Drivers in Hereditary Cancer Syndromes
Marco Sciacovelli, Christina Schmidt, Eamonn R. Maher, and Christian Frezza 77

Investigating Tumor Heterogeneity in Mouse Models
Tuomas Tammela and Julien Sage ... 99

Engineering T Cells to Treat Cancer: The Convergence
of Immuno-Oncology and Synthetic Biology
Joseph H. Choe, Jasper Z. Williams, and Wendell A. Lim .. 121

Lactate and Acidity in the Cancer Microenvironment
Scott K. Parks, Wolfgang Mueller-Klieser, and Jacques Pouysségur 141

Reactivation of Endogenous Retroelements in Cancer Development
and Therapy
Charles A. Isbok and Daniel D. De Carvalho ... 159

WNT and β-Catenin in Cancer: Genes and Therapy
Rene Jackstadt, Michael Charles Hodder, and Owen James Sansom 177

The Epithelial-to-Mesenchymal Transition in Development
and Cancer
Alexandre Francou and Kathryn V. Anderson ... 197

RNA Modifications in Cancer: Functions, Mechanisms,
and Therapeutic Implications
Huilin Huang, Hengyou Weng, Xiaolan Deng, and Jianjun Chen 221
Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma?
Benoit J. Van den Eynde, Nicolas van Baren, and Jean-François Barain 241

Deregulation of Chromosome Segregation and Cancer
Natalie L. Curtis, Gian Filippo Ruda, Paul Brennan, and Victor M. Bolanos-Garcia .. 257

Acquired Resistance in Lung Cancer
Asmin Tulpule and Trever G. Bivona ... 279

Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy
Gemma L. Kelly and Andreas Strasser ... 299

Nongenetic Mechanisms of Drug Resistance in Melanoma
Vito W. Rebecca and Meenhard Herlyn .. 315

Biomarkers for Response to Immune Checkpoint Blockade
Shridar Ganesan and Janice Mehnert ... 331

Immune-Based Approaches for the Treatment of Pediatric Malignancies
Kristopher R. Bosse, Robbie G. Majzner, Crystal L. Mackall, and John M. Maris 353

The Neural Regulation of Cancer
Shawn Gillespie and Michelle Monje .. 371

Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression
Anup K. Biswas and Swarnali Acharyya .. 391

The Pleiotropic Role of the KEAP1/NRF2 Pathway in Cancer
Warren L. Wu and Thales Papagiannakopoulos .. 413

The Role of Translation Control in Tumorigenesis and Its Therapeutic Implications
Yichen Xu and Davide Ruggero ... 437

Regulatory T Cells in Cancer
George Plitas and Alexander Y. Rudensky ... 459

Errata

An online log of corrections to Annual Review of Cancer Biology articles may be found at http://www.annualreviews.org/errata/cancerbio