(Multi-)nucleon transfer in the reactions 16O, 32S+208Pb

M. Evers1, M. Dasgupta1, D. J. Hinde1 and C. Simenel1,2

1 Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
2 CEA, Centre de Saclay, IRFU/Service de Physique Nucleaire F-91191 Gif-sur-Yvette, France

E-mail: maurits.evers@anu.edu.au

Abstract. A detailed analysis of the projectile-like fragments detected at backward angles in the reactions 16O,32S+208Pb at energies below the fusion barrier is presented. Excitation functions corresponding to nucleon transfer with $\Delta Z = 1$ and $\Delta Z = 2$ were extracted, indicating surprisingly large absolute transfer probabilities at sub-barrier energies. A comparison of 2p transfer probabilities with time-dependent Hartree-Fock calculations suggests strong pairing correlations between the two protons. Excitation energies in the projectile-like fragments up to ~ 15 MeV for the 16O and ~ 25 MeV for 32S-induced reactions show the population of highly excited states in the residual nuclei, and indicate substantial dissipation of kinetic energy. A new phenomenological framework explores the effect of energy dissipation through these highly inelastic (large excitation energies) and complex (correlated few-nucleon transfer) processes on the probability for fusion in the reaction 16O+208Pb. Preliminary results show that the suppression of fusion at energies above the barrier in this reaction can be explained within the new framework.

1. Introduction

Heavy-ion collisions provide an interesting field to study the effects of quantum-mechanical properties as well as classical phenomena, and how they emerge in the dynamics of the collision process at different energies. At energies well below and close to the fusion barrier, heavy-ion collisions are driven by quantum mechanics. For example, fusion at sub-barrier energies occurs through tunnelling of the projectile nucleus through the fusion barrier. Furthermore sub-barrier fusion as well as its complementary process, scattering, are affected by the internal structure of the collision partners. The coupled reaction channels formalism which considers the colliding nuclei to be in a coherent superposition of intrinsic states has proven extremely successful in the description of both fusion and scattering at sub- and near-barrier energies [1, 2, 3].

However, at deep sub-barrier energies (e.g. ~ 5 MeV below the fusion barrier energy in the reaction 16O+208Pb) measured fusion cross sections [4, 5, 6, 7] fall below those predicted by coupled reaction channels calculations using standard Woods-Saxon potentials. This deep sub-barrier fusion hindrance has been observed in a range of different reactions. A major question in nuclear physics is to explain the physical mechanisms causing this suppression of the tunnelling probability, as extrapolations of fusion probabilities (and their associated S-factors) to energies typical for astrophysical scenarios show large variations (up to 40 orders of magnitude) for different phenomenological models [8, 9, 10].
Figure 1. (Color online) Typical $\Delta E - E$ spectrum for the reaction $^{16}\text{O} + ^{208}\text{Pb}$ at the indicated beam energy, corresponding to $E_{c.m.}/V_B = 0.98$. Events corresponding to the transfer of $\Delta Z = 0$, 1 and 2 units of charge are labelled. Calculated energy loss curves for ^{16}O, ^{15}N and $^{12,13,14}\text{C}$ are shown by the dashed curves.

At energies above the fusion barrier, measured fusion cross sections also significantly fall below standard coupled-channels calculations [11, 6] using the same Woods-Saxon parametrization for the nuclear potential. A detailed analysis of this above-barrier fusion suppression for different reactions shows an increase of the suppression factor with the charge product of the colliding nuclei. Correlated with increasing above-barrier fusion suppression is increasing dissipation of kinetic energy into nucleonic degrees of freedom, known as deep inelastic collisions (DIC) [12, 11]. This becomes important with increasing matter overlap at energies near and above the fusion barrier. The importance of (multi-) nucleon transfer in these DIC processes at energies well above the fusion barrier has been discussed in a recent review [13]. Transfer processes that lead to high excitation energies in the residual nuclei were suggested [11, 14] as a key to understanding the above-barrier fusion suppression through the onset of irreversible dissipative processes.

In this paper recent results are discussed suggesting that mechanisms used to explain above-barrier fusion suppression may also be responsible for the suppression of fusion through tunnelling at deep sub-barrier energies. Using the reactions $^{16}\text{O},^{32}\text{S} + ^{208}\text{Pb}$, (i) the significance of transfer processes in nuclear collisions at energies well below the fusion barrier is established, (ii) the details (e.g. excitation functions, excitation energies E_x) and underlying mechanisms of these transfer processes are explored, and (iii) for the reaction $^{16}\text{O} + ^{208}\text{Pb}$ a new probabilistic framework for the description of fusion is explored which takes into account energy dissipation through high-E_x transfer.

2. Measurements
All measurements were done with the 14UD electrostatic accelerator of the Heavy-Ion Accelerator Facility at the Australian National University (ANU), using beams of ^{16}O and ^{32}S incident on a ^{208}PbS target with a thickness of 100 μg/cm2, evaporated onto a 15 μg/cm2 C backing. A $\Delta E - E$ detector telescope consisting of a propane gas filled ionization chamber and a Si detector located at a backward angle of $\theta_{lab} = 162^\circ$ was used to record the energy E_{Si}
measurements of the PLFs following the reaction 16O+208Pb. An excitation energy of 2 MeV is highlighted in bold. Predominant processes as determined by our measurements and previous work [15, 16] are positioned at ±1 E gs of the back-scattered projectile-like fragments (PLFs). Two Si monitors positioned at ±30° were used to normalize the back-scattered events to the Rutherford cross section. A typical two dimensional spectrum for a measurement of the reaction 16O+208Pb at a beam energy corresponding to a ratio of the centre-of-mass energy to the fusion barrier energy $E_{c.m.}/V_B = 0.98$ is shown in Fig. 1. The three distinct regions correspond to oxygen, nitrogen and carbon PLFs, which are associated with the transfer of $\Delta Z = 0, 1$ and 2 units of charge. The main events at $E_{Si} \sim 50$ MeV is due to elastically scattered 16O particles, the smaller peak at $E_{Si} \sim 48$ MeV is associated with the excitation of the lowest 3− excited state in 208Pb at an excitation energy of 2.615 MeV. Events resulting from the transfer of three or more charged nucleons ($\Delta Z \geq 3$) are not observed for measurements at sub-barrier energies. Spectra for measurements of the PLFs following the reaction 32S+208Pb show similar features.

Table 1. Reaction ground state Q-values for selected transfer processes in the reaction 16O+208Pb. Processes with a plus sign correspond to pickup, a minus sign indicates stripping. Predominant processes as determined by our measurements and previous work [15, 16] are highlighted in bold.

Reaction	Process	Q_{gs} [MeV]
$208\text{Pb}(16\text{O},^{15}\text{O})^{209}\text{Pb}$	+1n	-3.225
$208\text{Pb}(16\text{O},^{18}\text{O})^{206}\text{Pb}$	+2n	-1.918
$208\text{Pb}(16\text{O},^{15}\text{O})^{209}\text{Pb}$	−1n	-11.727
$208\text{Pb}(^{15}\text{N},^{209}\text{Bi})$	−1p	-8.328
$208\text{Pb}(^{14}\text{N},^{210}\text{Bi})$	−1p − 1n	-14.557
$208\text{Pb}(^{16}\text{O},^{16}\text{N})^{208}\text{Bi}$	−1p + 1n	-13.299
$208\text{Pb}(^{14}\text{C},^{210}\text{Po})$	−2p	-13.553
$208\text{Pb}(^{16}\text{O},^{13}\text{C})^{211}\text{Po}$	−2p − 1n	-17.178
$208\text{Pb}(^{16}\text{O},^{12}\text{C})^{212}\text{Po}$	−2p − 2n	-16.116
$208\text{Pb}(^{16}\text{O},^{15}\text{C})^{209}\text{Po}$	−2p + 1n	-19.993
$208\text{Pb}(^{16}\text{O},^{16}\text{C})^{208}\text{Po}$	−2p + 2n	-22.710

Table 2. Reaction ground state Q-values for selected transfer processes in the reaction 32S+208Pb. For details see Table 1.

Reaction	Process	Q_{gs} [MeV]
$208\text{Pb}(^{32}\text{S},^{33}\text{S})^{207}\text{Pb}$	+1n	+1.274
$208\text{Pb}(^{32}\text{S},^{34}\text{S})^{206}\text{Pb}$	+2n	+5.953
$208\text{Pb}(^{32}\text{S},^{31}\text{S})^{209}\text{Pb}$	−1n	-11.105
$208\text{Pb}(^{32}\text{S},^{31}\text{P})^{209}\text{Bi}$	−1p	-5.065
$208\text{Pb}(^{32}\text{S},^{30}\text{P})^{210}\text{Bi}$	−1p − 1n	-12.772
$208\text{Pb}(^{32}\text{S},^{32}\text{P})^{208}\text{Bi}$	−1p + 1n	-4.589
$208\text{Pb}(^{34}\text{Si},^{35}\text{Si})^{210}\text{Po}$	−2p	-7.378
$208\text{Pb}(^{32}\text{S},^{29}\text{Si})^{211}\text{Po}$	−2p − 1n	-13.437
$208\text{Pb}(^{32}\text{S},^{28}\text{Si})^{212}\text{Po}$	−2p − 2n	-15.902
$208\text{Pb}(^{32}\text{S},^{31}\text{Si})^{209}\text{Po}$	−2p + 1n	-8.449
$208\text{Pb}(^{32}\text{S},^{32}\text{Si})^{208}\text{Po}$	−2p + 2n	-6.214
Figure 2. (Color online) Transfer probabilities P_i for the indicated transfer processes in the reaction $^{16}\text{O}+^{208}\text{Pb}$ as a function of the distance of closest approach (see text). The asymptotic behaviour for $1p$ transfer and predicted sequential $2p$ transfer are shown by the dotted straight lines. TDHF calculations for $1p$ and $2p$ transfer are shown by the solid blue and orange curves. The large open square and diamond are the measurements for N (blue) and C PLFs (black) from Videbaek et al. [15]. The smaller open squares and diamonds are the measurements for N (blue) and C PLFs (black) from Timmers [17].

3. Transfer probabilities
3.1. Z identification of the PLFs
Transfer probabilities for processes with different ΔZ were extracted by gating on the particular region of interest in the $\Delta E - E$ spectra, and normalizing the number of events to the total number of counts in the two forward angle monitor detectors. Overall normalization of the probabilities was obtained from measurements of the total quasi-elastic scattering yields at energies well below the barrier energy, following the procedure detailed in Ref. [3]. For the reaction $^{16}\text{O}+^{208}\text{Pb}$, deduced transfer probabilities for $\Delta Z = 1$ (nitrogen PLFs) and $\Delta Z = 2$ (carbon PLFs) are shown in Fig. 2, plotted as a function of the distance of closest approach r_{min} assuming a trajectory in a Coulomb plus nuclear potential. A Woods-Saxon parametrization of the nuclear potential was used

$$V_N(r) = -\frac{V_0}{1 + \exp \frac{r-r_0}{a_0}},$$

where the parameters V_0, r_0 and a_0 were determined from analyses of the total quasi-elastic (and in the case of the reaction $^{16}\text{O}+^{208}\text{Pb}$ the inelastic $^{208}\text{Pb}(3^-)$) scattering excitation functions within a coupled-channels framework as described in Refs. [18, 2, 3]. At energies well below the fusion barrier, r_{min} approaches the minimum distance assuming a pure Coulomb trajectory

$$r_{\text{min}} \longrightarrow r_{\text{Coul}}$$

$$= \frac{Z_p Z_t e^2}{4 \pi \epsilon_0} \frac{1}{2 E_{c.m.}} \left(1 + \cosec \frac{\theta_{c.m.}}{2}\right).$$
where \(Z_p, Z_t \) are the atomic numbers of projectile and target nucleus, and \(E_{c.m.} \) and \(\theta_{c.m.} \) are the energy and scattering angle in the centre-of-mass frame, respectively. As the energy increases \(r_{\text{min}} \) becomes smaller than \(r_{\text{Coul}}^{\text{min}} \) due to the attractive nuclear potential. The obtained absolute probabilities for transfer both in the reactions \(^{16}\text{O}+^{208}\text{Pb}\) and \(^{32}\text{S}+^{208}\text{Pb}\) show excellent agreement with measurements from Refs. [15, 17].

3.2. Absolute transfer probabilities for transfer processes in the reaction \(^{16}\text{O}+^{208}\text{Pb}\)

Reaction \(Q \)-values for \(\Delta Z = 1 \) transfer processes in the reaction \(^{16}\text{O}+^{208}\text{Pb}\) are well separated, allowing the identification of the predominant contribution to the \(\Delta Z = 1 \) events with the transfer of one proton (1p-stripping). For \(\Delta Z = 2 \) discrete peaks are not prominent in the excitation energy spectra (see top panel of Fig. 4), but an isotopic separation of the different carbon PLFs was possible using the calculated energy loss curves for different carbon isotopes as shown in Fig. 1. The contributions from \(^{12}\text{C}, ^{13}\text{C} \) and \(^{14}\text{C} \) to the integrated \(\Delta Z = 2 \) counts were determined as discussed in Ref. [19, 20]. Extracted transfer probabilities for the two dominant processes 2p-stripping \(^{208}\text{Pb}(^{16}\text{O},^{14}\text{C})^{210}\text{Bi} \) and \(\alpha \)-particle stripping \(^{208}\text{Pb}(^{16}\text{O},^{12}\text{C})^{212}\text{Bi} \) are shown in Fig. 2 by the orange and green triangles, respectively. Transfer probabilities for the 2p1n-stripping process \(^{208}\text{Pb}(^{16}\text{O},^{13}\text{C})^{211}\text{Bi} \) are \(\sim 10 \) times smaller than those for \(\alpha \)-particle transfer and are not shown. Contrary to what was commonly assumed [21, 22, 23, 24], at sub-barrier energies 2p transfer is the dominant process, \(\alpha \)-particle transfer probabilities being smaller by a factor of \(\sim 2 - 3 \). The difference in probabilities between 2p and \(\alpha \) transfer increases with increasing beam energy, and is largest at \(E_{c.m.}/V_B \sim 1.0 \).
3.3. Absolute transfer probabilities for transfer processes in the reaction \(^{32}\text{S}+^{208}\text{Pb} \)

For the reaction \(^{32}\text{S}+^{208}\text{Pb} \), an equivalent analysis also indicates that 2p-stripping is the dominant \(\Delta Z = 2 \) transfer process compared to \(\alpha \)-particle transfer. Due to the similarity in reaction \(Q \)-values of different transfer processes for both \(\Delta Z = 1 \) and \(\Delta Z = 2 \), deduced transfer probabilities may contain contributions from the channels \(-1p\) and \(-1p+1n\) for \(\Delta Z = 1 \) and \(-2p-1n\) and \(-2p+2n\) for \(\Delta Z = 2 \), respectively. Resulting extracted transfer probabilities for \(\Delta Z = 1 \) and \(\Delta Z = 2 \) transfer are shown in Fig. 3.

3.4. Time-dependent Hartree-Fock calculations

TDHF calculations were performed for the reaction \(^{16}\text{O}+^{208}\text{Pb} \) which allow the calculation of transfer excitation functions for \(1p \) and \(2p \) transfer using particle number projection techniques on the PLFs [25]. Since TDHF calculations are based on an independent particle picture, the calculated \(2p \) transfer probabilities comprise sequential transfer of two uncorrelated protons.

Results for the \(1p \) and \(2p \) transfer probabilities are shown by the solid blue and orange curves in Fig. 2. As detailed in Ref. [20] all TDHF results were scaled by a factor of 0.43 to match the experimental \(1p \) transfer probabilities in the interval \(13.2 < r_{\text{min}} < 14.2 \) in which absorptive processes are negligible. The energy dependence of the TDHF calculations agree with the \(1p \) transfer probabilities. The measured \(2p \) probabilities are much higher than the TDHF calculations, indicating that in reality there is a strong pairing correlation between the two transferred protons, which leads to the enhanced \(2p \) transfer probabilities. The TDHF calculations for \(2p \) transfer are in close agreement with the predicted sequential \(2p \) transfer probabilities \((P_{1p})^2 \) (shown by the dotted orange line in Fig. 2), where \(P_{1p} \) is the experimentally measured \(1p \) transfer probability.

Overall, the agreement between TDHF calculations and the energy dependence of the extracted transfer probabilities for \(1p \) transfer at energies below the fusion barrier is good. The calculated \(2p \) transfer probabilities under-predict the extracted \(2p \) transfer probabilities and therefore independently confirm a strong pairing correlation of the two protons in the observed \(2p \) transfer probabilities.

4. Excitation energies

The energies lost to excitation of the residual nuclei following \(\Delta Z = 1 \) and \(\Delta Z = 2 \) transfer were determined using the corresponding dominant transfer reactions leaving the residual nuclei in their ground states as the reference processes. Where populated, the ground-state transfers provided a good check of the energy calibration. From the excitation energy spectra, the differential transfer probabilities \(dP/dE_x \) were determined as

\[
\frac{dP}{dE_x} = \frac{d^2\sigma_{\text{tr}}}{d\sigma_{\text{Ruth}}dE_x},
\]

where \(d\sigma_{\text{tr}}/d\Omega \) and \(d\sigma_{\text{Ruth}}/d\Omega \) are the differential cross sections for transfer and Rutherford scattering, respectively. Fig. 4 shows excitation energy spectra \(dP/dE_x \) as a function of \(E_x \) for energies corresponding to \(E_{\text{c.m.}}/V_B = 0.96, 1.00, 1.05 \) for the PLFs following \(\Delta Z = 2 \) transfer in the \(^{16}\text{O} \) (top panel) and \(^{32}\text{S} \)-induced reactions (bottom panel). As can be seen from the figure, average excitation energies increase with increasing charge product of the colliding nuclei, associated with increasing matter overlap between target and projectile nucleus. All reactions show the population of highly excited states, even at beam energies well below the fusion barrier. At an energy \(\sim 5\text{MeV} \) below the barrier, excitation energies up to \(\sim 15\text{MeV} \) are observed for the \(^{16}\text{O} \)-induced reaction and \(\sim 25\text{MeV} \) for the \(^{32}\text{S} \)-induced reaction.

Simple optimum \(Q \)-value considerations as detailed in Ref. [20] show that there is a significant contribution to the total differential transfer probabilities \(dP/dE_x \) from processes leading to excitation energies higher than those expected from the optimum \(Q \)-value considerations.
Figure 4. (Color online) Excitation energy spectra showing the differential transfer probabilities \(dP/dE_x\) as a function of the excitation energy \(E_x\) \(\text{(i.e. kinetic energy loss taking into account the specific reaction } Q \text{ value)}\) of the PLFs for the indicated energies with respect to the fusion barrier energy \(E_{c.m.}/V_B\) for the \(\Delta Z = 2\) transfer processes \(2p, \alpha\) transfer in the reactions \(^{16}\text{O} + ^{208}\text{Pb}\) (top panel) and \(^{32}\text{S} + ^{208}\text{Pb}\) (bottom panel). The shaded areas show results from GRAZING calculations, see text for details.

4.1. GRAZING calculations
Calculations were performed using the code GRAZING [26, 27], which is based on a semi-classical model. The code allows to include couplings to both single-nucleon transfer channels and collective excited states in the interacting nuclei. Multi-nucleon transfer occurs via a multi-step process, i.e. the calculated \(2p\) transfer probabilities imply sequential transfer of two uncorrelated protons. The resulting coupled equations are solved in the semi-classical approximations for the relative motion of the interacting nuclei. It is important to note that GRAZING calculations give differential transfer cross sections as a function of excitation energy of the PLFs integrated over all impact parameters \(\text{(i.e. angular momenta)}\). A comparison with the measured excitation energy spectra at the angle of \(\theta_{lab} = 160.6^\circ\) is justified since the \(2p\) transfer angular distributions are strongly peaked at backward angles at the measured energies, see Ref. [15].

GRAZING calculations following \(\Delta Z = 2\) transfer in the reactions \(^{16}\text{O}, ^{32}\text{S} + ^{208}\text{Pb}\) are shown in Fig. 4. All GRAZING differential transfer cross sections were scaled by the same factor, which was determined such that GRAZING calculations reproduce the total measured \(2p\) transfer probability in the reaction \(^{32}\text{S} + ^{208}\text{Pb}\) at the lowest measured energy corresponding
to $E_{c.m.}/V_B = 0.96$. The GRAZING differential transfer cross sections were folded with a Gaussian distribution to account for a detector energy resolution of 1 MeV. Overall GRAZING calculations fail to correctly reproduce the observed trend of increasing average excitation energy with increasing charge product of the projectile and target nuclei. Moreover and similar to the previous optimum Q-value considerations, at large excitation energies the calculated differential transfer probabilities fall below those extracted from the measured excitation energy spectra for the reaction $^{32}\text{S} + ^{208}\text{Pb}$. This is consistent with results for the kinetic energy loss spectra of the PLFs following $2p$ transfer in the reaction $^{40}\text{Ca} + ^{208}\text{Pb}$ as shown in Ref. [28], which also show large discrepancies at high excitation energies between the calculated and measured differential transfer cross sections as a function of excitation energy for measurements at beam energies near the fusion barrier.

The failure to properly reproduce the measured large kinetic energy losses in the PLFs following $2p$ transfer (corresponding to large excitation energies in the residual nuclei) indicates dissipative processes in $2p$ transfer which are not included in the GRAZING model.

5. Phenomenological dissipative optical model calculations

A new phenomenological framework has been developed to investigate the effect of energy dissipation on the fusion probability for the reaction $^{16}\text{O} + ^{208}\text{Pb}$. In this approach the probability for fusion is reduced due to dissipative loss of kinetic energy into nucleonic degrees of freedom, which is linked to the measured probability for populating excited states with $E_x \geq E_{x,\text{thresh}}$ following $1p$ and $2p$ transfer. The fusion cross section can then be written as

$$
\sigma_{\text{fus}} = \sum_{\ell} \left(\frac{\pi}{k^2} (2\ell + 1) P_{\ell}(E) \left(1 - \int_{E_{x,\text{thresh}}}^{\infty} dE_x A_\ell(E_x) \right) \right.
+ \left. \frac{\pi}{k^2} (2\ell + 1) \int_{E_{x,\text{thresh}}}^{\infty} dE_x P_{\ell}(E - E_x) A_\ell(E_x) \right),
$$

where $P_{\ell}(E)$ is the usual tunnelling probability for partial wave ℓ with energy E, $A_\ell(E_x)$ is the probability for dissipative loss of kinetic energy by the amount E_x for each partial wave, and k is the usual wave number.

The partial-wave probability for dissipative energy loss is directly obtained from the measured probabilities for $1p$ and $2p$ transfer. This is done by parametrizing the probabilities using the semi-classical calculation for the transfer probability in the first Born approximation [29]. The obtained transfer probabilities (as a function of excitation energy E_x and distance of closest approach r_{min}) are then extrapolated to the partial-wave dependent position of the barrier radius $r_{B,\ell}$

$$
P(E_x, r_{\text{min}}) \rightarrow P(E_x, r_{B,\ell}) \equiv A_\ell(E_x).
$$

The partial-wave probabilities $A_\ell(E_x)$ were normalized using a normalization factor given by the sum of the E_x-integrated probabilities for $i = 1p, 2p$ transfer

$$
N = \sum_i \int_{E_{x,\text{thresh}}}^{\infty} dE_x P_I(E_x).
$$

Tunnelling probabilities $P_{\ell}(E)$ were calculated within a simple optical model framework, using Woods-Saxon-type nuclear potential parameters obtained from an analysis of the quasi-elastic scattering flux: $V_0 = 80\text{ MeV}$, $r_0 = 1.19\text{ fm}$, $a_0 = 0.67\text{ fm}$ [2].

Results of calculations for three different values for the threshold excitation energy $E_{x,\text{thresh}}$ are shown in Fig. 5 by the blue solid curves, together with standard optical model calculations without energy dissipation (dotted black curves). The loss of kinetic energy leads to a suppression of the fusion cross section contribution of higher partial waves to the total fusion probability at above-barrier energies. The degree of suppression at above-barrier energies depends on the amount of kinetic energy lost to internal nucleonic degrees of freedom. This
Figure 5. Fusion cross sections for the reaction 16O+208Pb. Experimental data from Refs. [30, 6]. Optical model calculations are shown by the dotted black line. Calculations taking into account energy dissipation through high-E_x transfer are shown by the solid blue curves for the three indicated threshold excitation energies, see text for details. In all calculations the same Woods-Saxon-type parametrization for the nuclear potential was used: $V_0 = 80$ MeV, $r_0 = 1.19$ fm, $a_0 = 0.67$ fm.

in turn depends on the value of the threshold excitation energy $E_{x,\text{thresh}}$. As $E_{x,\text{thresh}}$ increases, the total transfer probability decreases (see Fig. 4) and so does the amount of fusion suppression at above-barrier energies. The best agreement with the measured fusion cross sections at energies above the barrier is obtained for a threshold of $E_{x,\text{thresh}} = 8.0$ MeV.

6. Conclusion

In conclusion, the following results were obtained from a detailed analysis of the projectile-like fragments detected at a backward angle in the reactions 16O,32S+208Pb:

(i) Transfer of two protons ($2p$-stripping) in the reactions 16O,32S+208Pb occurs with a significant probability already at energies well below the fusion barrier. $2p$ transfer is the predominant $\Delta Z = 2$ transfer process, with absolute probabilities being $\sim 2 - 3$ times larger than those for α-particle transfer.

(ii) The transfer excitation functions for $2p$ transfer in 16O+208Pb suggest a strong pairing correlation of the two transferred protons. This is supported by TDHF calculations based on the independent particle picture.

(iii) The residual nuclei following $2p$ and α-particle transfer are left in highly excited states, with excitation energies up to ~ 15 MeV and ~ 25 MeV for the 16O- and 32S-induced PLFs, respectively. A comparison with Q_{opt} and GRAZING calculations show projectile-like fragments with larger kinetic energy losses than expected based on these semi-classical considerations. This suggests that dissipative and irreversible processes play an important role already at energies well below the fusion barrier.

A new phenomenological and probabilistic approach to calculate fusion cross sections taking into account energy dissipation has been presented. In this approach the irreversible loss of kinetic energy due to the population of highly excited states following transfer leads to a suppression of the fusion probability at energies above the fusion barrier. Excitation energy dependent transfer probabilities were directly obtained from a parametrization of the measured $1p$ and $2p$ transfer probabilities in the reaction 16O+208Pb. Preliminary results using a simple single-channel optical model show that excellent agreement with measured fusion cross sections at energies above the
fusion barrier can be obtained, if transfer leading to the population of excited states above 8.0 MeV is considered to lead to irreversible (and dissipative) loss of kinetic energy.

These considerations strongly support the idea that few-nucleon transfer triggers the onset of dissipative and irreversible processes in the collision of nuclei already at energies well-below the fusion barrier. This would reduce the tunnelling probability, and suppress the fusion yield at these energies in a similar way as was demonstrated within the new empirical framework for the reaction 16O$+^{208}$Pb at above-barrier energies.

References

[1] M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48, 401 (1998).
[2] M. Evers et al., Phys. Rev. C 78, 034614 (2008).
[3] M. Evers et al., Phys. Rev. C 81, 014602 (2010).
[4] C. L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).
[5] C. L. Jiang et al., Phys. Rev. C 71, 044613 (2005).
[6] M. Dasgupta et al., Phys. Rev. Lett. 99, 192701 (2007).
[7] H. Esbensen et al., Phys. Rev. C 76, 054609 (2007).
[8] C. L. Jiang et al., Phys. Rev. C 75, 015803 (2007).
[9] C. L. Jiang et al., Phys. Rev. C 79, 044601 (2009).
[10] L. R. Gasques et al., Phys. Rev. C 76, 035802 (2007).
[11] J. O. Newton et al., Phys. Rev. C 70, 024605 (2004).
[12] C. H. Dasso et al., Phys. Rev. C 39, 2073 (1989).
[13] L. Corradi et al., J. Phys. G: Nucl. Part. Phys. 36, 113101 (2009).
[14] V. Zagrebaev et al., J. Phys. G: Nucl. Part. Phys. 34, 1 (2007).
[15] F. Videbaek et al., Phys. Rev. C 15, 954 (1977).
[16] S. C. Pieper et al., Phys. Rev. C 18, 180 (1978).
[17] H. Timmers, Ph.D. thesis, The Australian National University (1996).
[18] L. R. Gasques et al., Phys. Rev. C 76, 024612 (2007).
[19] M. Evers et al., Phys. Rev. C 84, 054614 (2011).
[20] M. Evers et al., EPJ Web of Conferences 17, 08003 (2011).
[21] R. M. DeVries et al., Phys. Rev. Lett. 35, 835 (1975).
[22] H. Hasan et al., Nucl. Phys. A 318, 523 (1979).
[23] I. J. Thompson et al., Nucl. Phys. A 505, 84 (1989).
[24] T. Tamura et al., Phys. Rep. 65, 345 (1980).
[25] C. Simenel, Phys. Rev. Lett. 105, 192701 (2010).
[26] A. Winther, Nucl. Phys. A 572, 191 (1994).
[27] A. Winther, Nucl. Phys. A 594, 203 (1995).
[28] S. Szilner et al., Phys. Rev. C 71, 044610 (2005).
[29] F. Schindler et al., Nucl. Phys. A 603, 77 (1996).
[30] C. R. Morton et al., Phys. Rev. C 60, 044608 (1999).