The usefulness of melatonin supplementation in postmenopausal women with Helicobacter pylori-associated dyspepsia

Cezary Chojnacki
Uniwersytet Medyczny w Lodz

Marta Mędrek-Socha
Uniwersytet Medyczny w Lodz

Paulina Konrad
Uniwersytet Medyczny w Lodz

Jan Chojnacki
Uniwersytet Medyczny w Lodz

Aleksandra Błońska (aleksandra.blonska@umed.lodz.pl)
Uniwersytet Medyczny w Lodz https://orcid.org/0000-0001-6767-5780

Research article

Keywords: menopause, dyspepsia, Helicobacter pylori, melatonin

DOI: https://doi.org/10.21203/rs.3.rs-31148/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Dyspeptic syndrome in the form of epigastric pain are particularly frequent in postmenopausal women. The aim of the study was to assess the role of melatonin in chronic dyspepsia in this group of women, with consideration of Helicobacter infection.

Methods The study comprised 152 subjects including 30 healthy women (group I), 60 women with asymptomatic H. pylori infection (group II), and 64 women H. pylori infected with chronic dyspepsia (group III). Endoscopic examination, histological assessment of gastric end duodenal mucosa, urease breath test (UBT-13C), and serum levels of 17-β-estradiol, follicle stimulating hormone, melatonin and urinary concentration of 6-sulfatoxymelatonin were determined by immunoenzymatic method. In group III – 14-day antibacterial treatment was introduced with pantoprazole, amoxicillin and levofloxacin. Afterward, in 32 women was administered placebo (group IIla), and in 32 women (group IIIb) melatonin at a dose 1 mg/morning and 3 mg/ at bedtime, for six months.

Results No significant differences were assessed between serum level of female hormone. Serum level of melatonin in group I and in group II was similar – 12.5 ± 2.72pg/ml and 10.5±3.73 pg/ml (p>0.05), whereas in group III it was lesser – 5.72±1.42 pg/ml (p<0.001). Eradication of H.pylori was obtained in 75.0% women in group IIla, and in 84.3% in group IIIb (p>0.05). After 6 months dyspeptic symptoms resolved in 43.7% patients in group IIla and in 84.3% in group IIIb (p>0.001).

Conclusion Melatonin supplementation is useful to complex therapy of H. pylori-associated dyspepsia, particularly in postmenopausal women at whom secretion of this hormone is decreased.

Trial registration: NCT04352062, date of registration: 15.04.2020.

Background

Different psychosomatic disorders are observed in postmenopausal women. The severity of climacteric symptoms such as: hot flushes, excessive sweating, sleep disorders, irritability, depressive mood, fatigue, headache, vertigo, myalgia, palpitation and formication can be assessed using the Menopause Rating Scale [1]. This index do not take into account gastrointestinal disorders which frequently cause chronic dyspepsia . Dyspeptic syndrome in the form of epigastric pain, including hunger and nocturnal pain and appetite disorders are particularly frequent. These symptoms are referred to the reduction of estrogen secretion, which exerts a protective effect by inhibiting the secretion of hydrochloric acid and pepsin [2] and motor activity [3], as well as stimulating the secretion of mucus and bicarbonates [4]. Furthermore, estradiol exerts antioxidant activity [5,6] and modulates visceral sensation [7]. Despite this, female sex hormones applied in hormone replacement therapy do not reduce dyspeptic problems [8]. In the postmenopausal period, in addition to estrogens, there is a deficiency of other hormones, including melatonin [9,10]. Experimental studies have shown that melatonin, like estrogens, has an inhibitory effect on the secretion of hydrochloric acid [11] and stimulates the secretion of bicarbonates in the upper gastrointestinal tract [12]. It also demonstrates antioxidant [13], cytoprotective [14], myorelaxant [15] and analgesic [16] properties. Simultaneous estrogen and melatonin deficiency may create adverse conditions in the stomach and trigger dyspeptic discomfort. This assumption is supported, among others, by the results of earlier studies, which showed that in patients with functional dyspepsia melatonin secretion is reduced [17]. The expression of melatonin-synthesizing enzymes in the gastric mucosa [18,19] and the concentration of melatonin in gastric juice [20] may also be reduced.

The aim of the present study was to assess the role of melatonin in the pathogenesis of chronic dyspepsia in postmenopausal women with consideration of Helicobacter pylori infection.

Methods

The study comprised 152 women, aged 49-64 years (mean age 56.3 ± 8.3 years), including 62 women who developed dyspeptic problems for the first time after menopause. The research took place in the years 2011-2018.

Three groups were distinguished: group I - 30 women without dyspeptic complaints and without Helicobacter pylori infection; group II - 60 women with asymptomatic Helicobacter pylori infection; group III - 62 women with chronic dyspepsia and Helicobacter pylori infection.

Diagnosis of H. pylori – associated dyspepsia was based on the Kyoto Global Consensus [21].

Inclusion criteria

Main symptoms in group III were epigastric pain of a hunger nature and pain at night, as well as increased appetite. Severity of dyspeptic symptoms was evaluated using Visual Analogue Scale. All subjects underwent endoscopic examination of the upper gastrointestinal tract and histological assessment was performed using hematoxylin-eosin and Giemsa staining. In order to confirm Helicobacter pylori urea breath test UBT-13C was performed using FANcl-2 System (Fisher Instrumente, GmbH, Hamburg, Germany).

Exclusion criteria

Women with other functional or inflammatory diseases of the gastrointestinal tract, liver and pancreas, as well as metabolic, allergic and mental disease, and with hormone replacement therapy were excluded from the study.

Laboratory tests
Routine laboratory examinations included: blood cells count, C-reactive protein, glycosylated hemoglobin, bilirubin, alanine and aspartate aminotransferase, amylase, lipase, urea, creatinine, cholesterol HDL and LDL, triglyceride.

Moreover, 17-β-estradiol (antibodies Ortho-Clinical Diagnostics, Inc., Raritan, NY, USA), follicle-stimulating hormone (FSH – Vitros Product antibodies – Ortho-Clinical Diagnostics, Inc., Rochester, NY, USA) were determined by immunoenzymatic methods for the research purposes. Serum melatonin level and urinary concentration of 6-sulfatoxymelatonin were measured by the ELISA method applying IBL antibodies (RE-54021 and RE-54031, IBL International GmbH, Hamburg, Germany) and Expert 99 MicroWin 2000 Reader (GmbH, Labtech, Offenburg, Germany).

Blood samples were drawn from the antecubital vein at 9:00 a.m. and then they were frozen at minus 70°C. On the same day, the 24-hour urine collection was performed and the samples with a 20 ml capacity were kept at 4°C. Next morning, the volume of urine was measured and the samples were frozen at minus 70°C.

Seven days prior to the evaluations the subjects were on the same diet. On the day of the study all patients were administered the same liquid diet (Nutridrink – Nutricia) in the amount of 3x400 ml, containing 18,9 g carbohydrate, 6,0 g protein, 5,8 g lipid/ml, of the total caloric value of 1800 kcal, and 1500 ml of isotonic water.

Therapeutic procedure

In group III a 14-day antibacterial treatment was introduced with: pantoprazole (2x40 mg), amoxicillin (2x1000 mg), and levofoxacin (2x500 mg).

Afterward, the patients randomly divided into two equal groups. Group IIIa (n = 32) was administered placebo (LEK – KAM, Poland) 2x 1 tablet, and group IIIb (n = 32) melatonin at a dose 1 mg/morning and 3 mg/at bedtime, for six months. In this period the patients applied the same balanced diet of total caloric value 1600 kcal.

Follow-up clinical examinations were performed after 1,3 and 6 months, and UBT-13C test was performed after 3 and 6 months.

Statistical analysis

Student t-test was used to compare the means for normal distribution and Kruskal – Wallis and Post-hoc tests to compare the data of case non-normality. Data were expressed as mean and standard deviation. Therapeutic effects after melatonin supplementation was performed using chi-squared test. A p-value of < 0.05 was considered statistically significant. Statistica 13.3 (StatSoft, INC, USA) and MS Excel (Microsoft Co., USA) were used for statistical calculations.

Results

General characteristics of the investigated women is shown in Table 1. The groups did not differ in terms of age, body mass index, aminotransferases levels and renal filtration index, except for the result of the UBT-13C test, which excluded H. pylori infection in control group.

Feature	Group I (n= 30)	Group II (n= 40)	Group III (n= 64)
Age (years)	54.6 ± 7.2	57.4 ± 8.2	56.8 ± 7.9
BMI (kg/m²)	23.8 ± 1.6	24.1 ± 2.3	25.6 ± 6.1
UBT – 13 C (ppm)	-	18.4 ± 4.6	21.0 ± 6.1
ALT (IU/L)	21.6 ± 6.2	26.3 ± 4.4	24.2 ± 6.1
AST (IU/L)	20.6 ± 4.0	25.1 ± 3.8	22.8 ± 6.9
GFR (ml/min)	98.5 ± 11.8	97.6 ± 12.1	102.4 ± 11.3

BMI – body mass index, UBT-13C- urease breath test, ALT - alanine aminotransferase, AST - aspartate aminotransferase, GFR - glomerular filtration rate; differences between groups no statistically significant, p>0.05.

Serum level of 17-β-estradiol in group I was 15.1±4.64 pg/ml, and in group II – 14.4±5.27 pg/ml, and group III – 11.9±3.72 pg/ml; differences between groups statistically no significant (Figure 1).

Similarly, no significant differences were assessed between serum level of follicle-stimulating hormone: group I – 72.7±23.6 IU/ml, in group II – 82.3±17.5 IU/ml, and in group III – 89.7±16.9 IU/ml (Figure 2).

Serum level of melatonin in group I and group II was similar – 12.5±2.72 pg/ml and 10.5±3.73 pg/ml, respectively (p > 0.05), whereas in women with symptomatic H. pylori infection was lesser – 5.27±1.42 pg/ml (p< 0.001, Figure 3).

Then differences between urinary 6-sulfatoxymelatonin excretion were statistically significant – in group I – 19.3±6.18µg/24h, in group II – 13,2±4.80 µg/24h (p < 0.001), and in group III – 7.93±2.27 µg/ml (p<0.001, Figure 4).
Eradication of Helicobacter pylori was obtained in 24 women (75.0%) in group IIIa, and in 27 women (84.3%) in group IIIb (p > 0.05).

After 6 month dyspeptic symptoms resolved in 14 women (43.7%) in group IIIa, and in 27 (84.3%) in group IIIb (p < 0.001, Table 2).

Table 2. The results of Helicobacter pylori eradication and dyspeptic symptoms improvement in patients taken placebo (group IIIa) or melatonin (group IIIb)

Patients	Group IIIa	Group IIIb	χ²-value	P-value
	N=32	N=32		
n	%	n	%	
Without H. pylori				
3 mth	24	81.2	0.366	0.545
6 mth	23	84.3	1.459	0.227
Without symptom				
3 mth	12	50.0	1.014	0.314
6 mth	14	84.3	11.489	0.0007

Melatonin was well tolerated, only four women (12.5%) reported increased fatigue in the morning, and two patients (6.2%) headache in the first week of the treatment but without the need of discontinuation of the therapy or dose reduction.

Discussion

Melatonin secretion decreases in humans with age [22]. These changes are observed especially in perimenopausal women [23,24]. Some researchers believe that the reduction in melatonin secretion in women begins around the age of 40 years and may initiate menopause [25]. In this period of women life dyspeptic symptoms are frequently observed. The obtained results indicate that one of them may be a decrease in melatonin secretion. It is interesting that in women with relatively normal melatonin levels, H.pylori infection was asymptomatic. However, dyspepsia occurred in women in whom H.pylori infection coexisted with low melatonin levels. In these cases, there were indications for antibiotic therapy, but eradication of this bacterium eliminated complaints only in some patients. Thus, it can be assumed that dyspeptic symptoms are associated with low secretion of melatonin also in the gastric mucosa. Whereas, in asymptomatic infections, melatonin has a protective effect. Many studies have shown that asymptomatic infection is not indifferent to the body, as it always leads to destructive changes in the gastric mucosa [26,27] and the presence or absence of symptoms depends on many factors. Both gastrotoxic factors and deficiency of enteroprotective factors can trigger dyspeptic symptoms and predispose to the development of peptic ulcers and stomach cancer [28,29]. The beneficial properties of melatonin are used in the combined therapy of many gastrointestinal diseases as esophageal reflux disease [30], functional dyspepsia [31], ulcer disease [32], irritable bowel syndrome [33,34] and ulcerative colitis [35,36]. However, it has not been determined what doses of melatonin should be used for therapeutic effectiveness and good tolerance. An optimal dose which should be administered in different diseases is a debatable issue. Harpose [37] reviewed 392 literature records and found out that the applied doses were from 0.3 mg to 1000 mg/daily. Similar data (from 0.1 to 50 mg/daily) were found by Vural et al. [38]. In order to control the sleep the most frequently recommended dose 1 – 5 mg at night. The dose of 3 mg or 5 mg/daily were usually used in the treatment of alimentary tract diseases [30-35] as well as climacteric disorders in women [39,40]. Goyal et al. [41] used 8 mg melatonin daily in an effective treatment of the metabolic syndrome. Cardinali and Haderland [42] suggested a melatonin dose 50 – 100 mg daily for the regulation of inflammatory and metabolic disorders. Good tolerability and safety of melatonin result from its pharmacokinetic properties. Anderson et al. [43] administered orally 10 mg of melatonin and found its maximum serum concentration of 3550 pg/ml at T½ = 53.7 min. Similar results of the studies on melatonin pharmacokinetics were obtained by other researchers who used oral dose of 0.4 mg or 4 mg [44] and 80 mg [45]. Thus, the administration of a single dose of melatonin raises its level for a few hours. His justifies the administration of melatonin in divided doses (1mg/morning and 3mg/at bedtime) in order to take good advantage of its effect in postmenopausal disorders in women. Nevertheless, its dose should be related to age, severity of symptoms and concomitant disease.

Our study has same limitations, particularly the number of subjects enrolled is not very impressive, but we had relatively homogeneous and well characterized groups.

Conclusion

Melatonin supplementation is useful to complex therapy of H. pylori-associated dyspepsia, particularly in postmenopausal women at whom secretion of this hormone is decreased.

Abbreviations
aMT6s - 6-sulfatoxymelatonin
BMI- Body Mass Index
ALT- Alanine aminotransferase
AST– Aspartate aminotransferase
FSH- Follicle-stimulating hormone
GFR- Glomerular filtration rate
UBT-13C - Urease breath test

Declarations

Acknowledgments
The authors thank the language translator, Janina Grycewicz who participated in languages proofreading.

Funding
This study was supported by the grant of the Ministry of Science and Higher Education of Poland (NN– 4025437/40).

Availability of data and materials
All data is available from the corresponding author on reasonable request.

Authors’ contributions
CC: Conceived the study and carried out the clinical procedures and carried out the clinical procedures. MM-S: Participated in a clinical trials and biochemical procedures. PK: Contributed of the study protocol. JC: Finally designed and realized of the study. AB: coordinator and performed of the study as Principal Investigator. All authors read and approved final manuscript.

Ethics approval and consent to participate
The study was performed in accordance with the Declaration of Helsinki and with the principles of Good Clinical Practice. Written consent was informed and obtained from each subjects enrolled into the study and the protocol was approved by the Bioethics Committee of the Medical University in Lodz (RNN/596/11/KB).

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interests. The sponsors had no role in the design, execution, interpretation, or writing of the study.

Contributor information
1. Chojnacki, Email: cezary.chojnacki@umed.lodz.pl
2. Medrek-Socha, Email: marta.medrek-socha@umed.lodz.pl
3. Konrad, Email: paulina.konrad@umed.lodz.pl
4. Chojnacki, Email: jan.chojnacki@umed.lodz.pl
5. Błońska, Email: aleksandra.blonska@umed.lodz.pl

References
1. Schneider HP, Heinemann LA, Rosemeier P, Potthoff P, Behre HM. The Menopause Rating Scale (MRS): reliability of scores of menopausal complaints. Climacteric. 2000,3(1):59-64. https://doi.org/10.3109/13697130009167600
2. Amure BO, Omole AA. Sex hormones, and acid gastric secretion induced with carbachol, histamine, and gastrin. Gut. 1970,11(8):641-645. http://dx.doi.org/10.1136/gut.11.8.641
3. Hutson WR., Roehrkasse RL, Wald A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology. 1989,96(1):11-17. https://doi.org/10.1016/0016-5085(89)90758-0
4. Tuo B, Wen G, Wei J, Liu, X, Wang X, Zhang Y, Wu H, Dong, X, Chow JY, Vallon V, Dong H. Estrogen regulation of duodenal bicarbonate secretion and sex-specific protection of human duodenum. Gastroenterology, 2011,141(3):854-863. https://doi.org/10.1053/j.gastro.2011.05.044
5. Nie X, Xie R, Tuo B. Effects of Estrogen on the Gastrointestinal Tract. *Dig Dis Sci.* 2018;63(3):583-596. https://doi.org/10.1007/s10620-018-4939-1

6. Zárate S, Stevnsner, T, Greddilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. *Front Aging Neurosci.* 2017, 22:9;430.https://doi.org/10.3389/fnagi.2017.00430

7. Palomba S, Di Cello A, Riccio E, Manguso F, La Sala GB. Ovarian function and gastrointestinal motor activity. *Minerva Endocrinol.* 2011,36(4):295-310. https://www.minervamedica.it/en/journals/minerva-endocrinologica/article.php?c=0707Y2011N04A0295

8. De Villiers, T.J.; Pines, A.; Panay, N.; Gambacciani, M.; Archer, D.F.; Baber, R.J.Davis SR, Gompel AA, Henderson VW, Langer R, Lobo RA, Plu-Bureau G, Sturdee DW. *International Menopause Society.* Updated 2013 International Menopause Society recommendations on menopausal hormone therapy and preventive strategies for midlife health. *Climacteric.* 2013;16(3):316-337. https://doi.org/10.3109/13697137.2013.795683

9. Gursoy AV Kiselii M, Caglar GS. Melatonin in aging women. *Climacteric.* 2015; 18(6):790-796. https://doi.org/10.3109/13697137.2015.1052393

10. Walecka-Kapica E, Chojnacki J, Stepień A, Wachowska-Kelly P, Klupinska G, Chojnacki, C. Melatonin and female hormone secretion in postmenopausal overweight women. *Int J Mol Sci.* 2015; 15(1):1030-1042. https://doi.org/10.3390/ijms15101030

11. Kato K, Murali I, Asai S, Takahashi Y, Matsuno Y, Komuro S, Kurosaka H, Iwasaki A, Ishikawa K, Arakawa Y. Central nervous system action of melatonin on gastric acid and pepsin secretion in pylorus-ligated rats. *Neuroreport.* 1998; 1,9(17):3989-3992. https://insights.ovid.com/crossref?an=00001756-19981220100040

12. Sjöblom M, Flemström G. Melatonin in the duodenal lumen is a potent stimulant of mucosal bicarbonate secretion. *J Pineal Res.* 2003;34(4):288-293. https://doi.org/10.1034/j.1600-079x.2003.00444.x

13. Reiter RJ, Tan DX, Rosales-Coral S, Galano A, Zhou X.J, Xu B. Mitochondria: Central Organelles for Melatonin’s Antioxidant and Anti-Aging Actions. *Molecules.* 2018;24;23(2): pii: E509. https://doi.org/10.3390/molecules23020509

14. Klupitska G, Poplawski T, Sniżelski J, Blasiak J, Chojnacki J. The effect of melatonin on oxidative DNA damage in gastric mucosa cells of patients with functional dyspepsia. *Pol Merkur Lekarski* 2009,26(155):366-369. https://www.ncbi.nlm.nih.gov/pubmed/?term=Chojnacki%20J.+The%20effect%20of%20melatonin%20on%20oxidative%20DNA%20damage%20in%20gastric%20mucosa%20cells%20of%20patients%20with%20functional%20dyspepsia.+Pol+MerLek

15. Pozo MJ, Gomez-Pinilla PJ, Camello-Almaraz C, Martin-Cano FE, Pascua P, Rol A, Acúa-Castroviejo D, Camello PJ. Melatonin, a potential therapeutic agent for smooth muscle-related pathological conditions and aging. *Curr Med Chem.* 2010,17(34):4150-4165. https://doi.org/10.2174/092986710793348536

16. Andersen LP, Gögenur I, Fenger AO, Petersen MC, Rosenberg J, Werner MJ. Analgesic and anti-inflammatory effects of melatonin in a human inflammatory pain model: a randomized, double-blind, placebo-controlled, three-arm crossover study. *Pain.* 2015;156(11):2286-2294. https://doi.org/10.1097/JPA.0000000000000284

17. Chojnacki C, Poplawski T, Klupinska G, Blasiak J, Chojnacki J, Reiter RJ. Secretion of melatonin and 6-sulfatoxymelatonin urinary excretion in functional dyspepsia. *World J Gastroenterol.* 2011,7;17(21):2646-2651. https://doi.org/10.3748/wjg.v17.i21.2646

18. Chojnacki C, Poplawski T, Blasiak J, Chojnacki J, Reiter RJ, Klupinska G. Expression of melatonin synthesizing enzymes in Helicobacter pylori infected gastric mucosa. *Biomed Res Int.* 2013;2013:845032. https://doi.org/10.1155/2013/845032

19. Chojnacki C, Poplawski T, Blasiak J, Chojnacki J, Klupinska G. Does melatonin homeostasis play a role in continuous epigastric pain syndrome? *Int J Mol Sci* 2013;14;14(6):12550-12562. https://doi.org/10.3390/ijms140612550

20. Klupitska G, Stec-Michalska K, Chojnacki C, Wiśniewska-Jarosińska M, Walecka-Kapica E. Melatonin concentration in gastric juice and level of malondialdehyde in gastric mucosa of Helicobacter pylori– positive patients. *Med Sci Tech* 2009, 50(3): RA155-158. https://www.medscape.com/article/abstract/id/881682

21. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, Hurama K, Asaka M, Uemura N, Malferthainer P. Kyoto global consensus report on Helicobacter pylori gastritis. *Gut* 2015;64(9):1353-1367. https://gut.bmj.com/content/64/9/1353

22. Saha DR, Datta S, Chattopadhyay S, Patra R, De R, Rajendran K, Chowdhury A, Ramamurthy T, Mukhopadhyay AK. Indistinguishable cellular changes in gastric mucosa between Helicobacter pylori infected asymptomatic tribal and duodenal ulcer patients. *World J Gastroenterol.* 2009, 15(9), 1105–1112. https://dx.doi.org/10.3748/wjg.v15.i1105

23. Klupitska G, Chojnacki C, Knopik-Dabrowicz A, Wojtuś S, Stec-Michalska K. Estimation of gastric mucosa morphological changes in subjects with asymptomatic Helicobacter pylori infection and family history of gastric cancer. *Merkur. Lekarski* 2004, 17 Suppl 1, 142–144. https://www.ncbi.nlm.nih.gov/pubmed/15603374

24. Arabski M, Klupinska G, Chojnacki J, Kazmierczak P, Wisniewska-Jarosińska M, Drzewoski J, Blasiak J. DNA damage and repair in Helicobacter pylori-infected gastric mucosa cells. *Res. 2005, 570 (1), 129–135.* https://doi.org/10.1016/j.nrffmm.2004.10.006

25. Ford AC, Forman D, Hunt R H, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. *BMJ* 2014, 348 (may20 1), g3174–g3174. https://dx.doi.org/10.1136/bmj.g3174
30. Werbach M R. Melatonin for the treatment of gastroesophageal reflux disease. Ther. Health Med. 14 (4), 54–58. https://www.ncbi.nlm.nih.gov/pubmed/18616070

31. Klupińska G, Poplawski T, Drzewoski J, Harasiuk A, Reiter RJ, Blasiak J, Chojnacki J. Therapeutic effect of melatonin in patients with functional dyspepsia. Clin. Gastroenterol. 2007, 41 (3), 270–274. https://dx.doi.org/10.1097/MCG.0b013e318031457a

32. Celinski K, Konturek PC, Konturek S J, Slomka M, Cichoń-Lach H, Brzozowski T, Bielanski W. Effects of melatonin and tryptophan on healing of gastric and duodenal ulcers with Helicobacter pylori infection in humans. Physiol. Pharmacol. 2011, 62 (5), 521–526. http://www.jpp.krakow.pl/journal/archive/10_11/pdf/521_10_11_article.pdf

33. Chojnacki C, Walecka-Kapica E, Lokieć K, Pawłowicz M, Winczyk K, Chojnacki J, Klupińska G. Influence of melatonin on symptoms of irritable bowel syndrome in postmenopausal women. Pol. 2013, 64 (2), 114–120. https://journals.viamedica.pl/endokrynologia_polska/article/view/34290

34. Siah KTH. Melatonin for the treatment of irritable bowel syndrome. World J. Gastroenterol. 2014, 20 (10), 2492. https://dx.doi.org/10.3748/wjg.v20.i10.2492

35. Jena G, Trivedi PP. A review of the use of melatonin in ulcerative colitis: experimental evidence and new approaches. Bowel Dis. 2014, 20 (3), 553–563. https://dx.doi.org/10.1017/S136030161400042X

36. Esteban-Zubero E, López-Pingarrón L, Alatorre-Jiménez MA, Ochoa-Moneo P, Buisac-Ramón C, Rivas-Jiménez M, Castán-Ruiz S, Antoñanzas-Lombarte Á, Tan D-X, García J J. e. Melatonin’s role as a co-adjuvant treatment in colonic diseases: A review. Life Sci. 2017, 170, 72–81. https://dx.doi.org/10.1016/j.lfs.2016.11.031

37. Harpsøe NG, Andersen L P H, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. J. Clin. Pharmacol. 2015, 71 (8), 901–909. https://dx.doi.org/10.1007/s00228-015-1873-4

38. Vural EMS, van Munster BC, de Rooij SE. Optimal dosages for melatonin supplementation therapy in older adults: a systematic review of current literature. Drugs Aging 2014, 31 (6), 441–451. https://dx.doi.org/10.1007/s40266-014-0178-0

39. Bellipanni G, Di Marzo F, Blasi F, Di Marzo A. Effects of melatonin in perimenopausal and menopausal women: our personal experience. N. Y. Acad. Sci. 2005, 1057 (1), 393–402. https://dx.doi.org/10.1196/annals.1356.030

40. Parandavar N, Abdali K, Keshtgar S, Emamghoreishi M, Amooee S. The Effect of Melatonin on Climacteric Symptoms in Menopausal Women; A Double-Blind, Randomized Controlled, Clinical Trial. J. Public Health 2014, 43 (10), 1405–1416. https://www.researchgate.net/publication/278044343_The_Effect_of_Melatonin_on_Climacteric_Symptoms_in_Menopausal_Women_A_Double-Blind_Randomized Controlled_Clinical_Trial

41. Goya, A, Terry PD, Superak HM, Nell-Dybdahl C L, Chowdhury R, Phillips L S, Kutner MH. Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Metab. Syndr. 2014, 6 (1), 124. https://dx.doi.org/10.1186/1758-5996-6-124

42. Cardinail D P, Hardeland R. Inflammaging, Metabolic Syndrome and Melatonin: A Call for Treatment Studies. Neuroendocrinology 2017, 104 (4), 382–397. https://dx.doi.org/10.1159/000446543

43. Andersen LPH, Werner M U, Rosenkilde M M, Harpsøe N G, Fuglsang H, Rosenberg, J., Gögenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol. 2016, 17 (1), 8. https://dx.doi.org/10.1186/s40360-016-0052-2

44. Gooneratne NS, Edwards A Y Z, Zhou C, Cuellar N, Grandner M A, Barrett J S. Melatonin pharmacokinetics following two different oral surge-sustained release doses in older adults. Pineal Res. 2012, 52 (4), 437–445 https://dx.doi.org/10.1111/j.1600-079X.2011.00958.x

45. Waldhauser F, Waldhauser M, Lieberman H R, Deng M H, Lynch H. J, Wurtman R. J. Bioavailability of oral melatonin in humans. Neuroendocrinology 1984, 39 (4), 307–313. https://dx.doi.org/10.1159/000123997