IN SILICO STUDY OF CYTOCHROME P450 ALLELES AND PHENOTYPIC DISTRIBUTION IN VIETNAMESE POPULATION

Pham Ngoc Ha1*, Nguyen Phan Tuan1*, Trinh Thi Xuan2, Truong Nam Hai3, Tran Dang Hung4, Nguyen Cuong1

1LOBI Vietnam Limited Liability Company, 27/385 Luong The Vinh Road, Nam Tu Liem District, Hanoi, Vietnam
2Faculty of Information Technology, Hanoi Open University, B101 Nguyen Hien Street, Hai Ba Trung District, Hanoi, Vietnam
3Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
4Faculty of Information Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, Vietnam

*These authors contributed equally to this work

To whom correspondence should be addressed. E-mail: juhuvn@gmail.com

Received: 07.07.2021
Accepted: 05.01.2022

SUMMARY

Cytochrome P450 enzymes play an important role in phase I drug metabolism, accounting for approximately 75% of the enzymatic processes. We investigated the allele and phenotypic distributions of five important CYP genes (CYP2B6, CYP3A5, CYP2C9, CYP2C19, CYP2D6) in the Vietnamese population by using Stargazer and the PharmCAT tool to call star alleles and translating them into phenotypes based on the available dataset of PharmGKB. We compared our computational analysis of the Vietnamese distributions with those of East Asia, Europe, America and other super populations, as well as with previous experimental research. The allele frequencies and phenotypic distributions of the five important CYP genes in the Vietnamese population are similar to those in East Asia while significantly different from other populations. In silico analysis also provided consistent results with previous experimental studies. In addition, the resultant data from our research contributes to the database of genetic variations in pharmacogenetics and constructs the fundamentals for future basic and applied research.

Keywords: CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, drug metabolism, Kinh Vietnamese, PharmCAT, pharmacogenomics, star alleles, Stargazer.

INTRODUCTION

Pharmacogenomics is the study and use of genetic variables pertaining to the drug response of individuals. Its applications are of interest to industry and patient care, for instance, increasing drug development efficiency by detecting drug responders and drug non-responders in clinical trials and identifying those at risk of adverse effects. Pharmacogenomics can, particularly, support clinicians with prescription decision-making and determining the best dosage of a medication for patients. Therefore, this is an effective and potentially cost-saving clinical tool (Hockings et al., 2020).
Cytochrome P450 enzymes are involved in approximately 75% of the enzymatic processes in drug metabolism; therefore, the range of disciplines in which P450s are studied has broadened drug development (Guengerich et al., 2016). Multiple medications and genetic polymorphisms that affect drug-metabolizing cytochrome P450 (CYP) enzyme activity are important causes of drug pharmacokinetics and drug response variability, which are important clinical issues among individuals. Dosage guidelines based on CYP genotype would assist doctors in prescribing the optimal medication treatment and desired drug dose for patients (Samer et al., 2013).

Most of the well-known and widely accepted guidelines, such as those published by CPIC (https://cpicpgx.org/), WHO (https://www.who.int/), FDA (https://www.fda.gov/), and ESC (https://www.escardio.org/), are based on the European and American populations. Although lots of studies have demonstrated their efficiency and safety, there are still cases when the recommended prescriptions do not work effectively (Ma, Chan, 2013; Tesar, Hruskova, 2015). One reason for these variations is the difference in genetic factors between ethnicities. Thus, for a Southeast Asian country like Vietnam, some Western guidelines may not be optimal. If the drug metabolizing abilities of Vietnamese people are different than those in Western countries, clinicians should consider adjusting the medication for better responses.

Several studies have reviewed the pharmacogenomics of Vietnamese people. Veiga et al. (2009) worked on seven genes related to malaria treatment, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5, MDR1, and detected the frequency of common star alleles of these pharmacogenes in the Vietnamese population. Recent studies by many authors have determined the polymorphisms of CYP2C9, CYP2C19, CYP3A5, CYP2D6 genes using genotyping kits, and identified a number of novel SNPs that appeared in 100 Vietnamese people living in Hanoi (Nguyen et al., 2019; Nhung et al., 2020; Vu et al., 2018; 2019). Our study has a similar aim, but different approach was used for determining the allele prevalence.

In this study, we constructed an allele frequency and phenotypic distribution figure of five essential CYP genes (CYP2B6, CYP3A5, CYP2C9, CYP2C19, and CYP2D6) of 99 Kinh people in the Vietnamese population, thereby comparing them with the distributions of East Asian, European, American super populations, and others. Besides, we also compare our results with the experimental results of previous studies to confirm whether in silico analysis is similar to clinical. We expect that our results will determine the need for dose adjustments of the drugs metabolized by the five important CYP genes, as well as provide useful information for further study related to the pharmacogenomics field in the Vietnamese population.

MATERIALS AND METHODS

Subjects

The information about variants was collected from the variant call format (VCF) files of the 1000 Genomes Project (Clarke et al., 2017). A total of 2504 individuals are categorized into 5 groups, including 99 Kinh Vietnamese people (KHAV), 405 East Asians excluding Vietnamese (EAS), 504 Americans (AMR), 503 Europeans (EUR), and 993 other ethnicities (Others), including both South Asian and African people. In the American group, 157 are African descendants.

Calling star alleles

We identified specific regions and selected the corresponding subsets of the VCF files for genotyping. Haplotypes were identified as star alleles using only the previously generated VCF files with two different tools, Stargazer (Lee et al., 2019) and PharmCAT (Klein, Ritchie, 2018). With Stargazer, the two main candidates, one for each haplotype, were combined to form a diplotype. With PharmCAT, if there are multiple diplotypes predicted, the diplotypes with the
highest frequency in the respective region as reported by PharmGKB are chosen. For the KHV population, the PharmGKB-reported frequencies of the East Asian population were used.

Phenotyping

The diplotype was mapped to phenotypes based on the gene-specific table provided by PharmGKB. If the phenotypes “likely intermediate metabolizer” and “likely poor metabolizer” are found, they will be considered as “intermediate metabolizer” and “poor metabolizer”, respectively. For the four genes, CYP2B6, CYP2C9, CYP2C19, and CYP3A5, only consensus phenotypes received from the two tools are used for downstream analysis. For the gene CYP2D6, as only Stargazer covers this gene, its results are used for analysis.

Data analysis

Allele frequencies and phenotypic distributions were calculated using the consensus alleles and phenotypes called by Stargazer and PharmCAT. For CYP2D6, only Stargazer results were utilized as PharmCAT was not able to call star alleles for this gene. Indeterminate phenotypes were excluded from the analysis. The distribution is visualized by R and Microsoft Excel, and their differences are evaluated using the Chi-squared test and Student’s t-test when appropriate.

RESULTS AND DISCUSSION

Allele Frequency

The distributions of allele frequencies between the Vietnamese and East Asian populations are profoundly similar in all five investigated genes. In contrast, other populations show distinctive differences in most allele frequency spectrums, especially with the distributions of CYP2C9 and CYP2D6. The only exception is CYP3A5, as allele CYP3A5*3 is the only variant, besides the reference allele *1, in three groups and the most popular variant in the other two groups. (Fig. 1, Table S1).

Stargazer and PharmCAT have been demonstrated to produce accurate results with the investigated genes (Lee *et al.*, 2019). To predict precisely both the single-nucleotide polymorphism (SNP) and the copy number variation (CNV) of an allele, we would require chromosome structural information, which can be retrieved from BAM files. However, “The 1000 Genome Project” does not provide such a format, and it is impossible to process the pipeline for whole-genome sequencing data of 2504 people due to the limitation of computational resources and time. Therefore, we worked directly with the VCF files, which means we only rely on SNPs to predict genotype and phenotype information of the 5 important pharmacogenes in studied populations. Thus, our result for CYP2D6 does not show the duplication, deletion, and hybrid alleles which were detected in previous studies. These variants were estimated to make up about 5% over all biogeographical groups (Naranjo *et al.*, 2018; Sistonen *et al.*, 2007) and should be taken into consideration for interpretation. Regarding the other four genes, because no large structural variants have been defined by CPIC, the result would be indifferent with or without the information about depth of coverage.

Allele frequencies of the three superpopulations, i.e., American, European, and East Asians, have been reported previously (Zhou *et al.*, 2017) using different algorithms, and their results match ours. The relative frequencies of the three most common CYP2C9 alleles, namely *1, *2, and *3, between the two studies are deeply consistent. With CYP2C19, more than half of its star alleles in the European and American populations is *17, making it the most dominant variant. For East Asia, CYP2C19*2 is the major allele that makes up about three-quarters of all variant alleles, followed by CYP2C19*3 and CYP2C19*17. For the extremely polymorphic gene CYP2D6, there are discrepancies with several uncommon alleles between the two studies; however, the order of the popular variants (*2, *4, and *10) is still the same.

The frequencies of CYP2B6 alleles also show numerous similarities between the two studies.
Figure 1. Distribution of variant alleles of five CYP genes in Kinh-Vietnamese (KHV), East Asian (EAS), American (AMR), European (EUR) and other populations. The reference allele *1 is excluded. Each pole is a stacked bar of proportions of the other alleles identified.
Both studies demonstrate that allele CYP2B6*9 is the most common variant in all three groups, CYP2B6*5 is the second most common allele in Europe and America, and CYP2B6*2 is the second most common in East Asia. However, a discordant observation in our study is the surprisingly high frequency of CYP2B6*9 and the absence of CYP2B6*6, which were estimated to occupy 7–10% of the variants (excluding CYP2B6*1) (Zhou et al., 2017). The allele CYP2B6*6 consists of two SNPs, rs3745274 and rs2279343, and these SNPs alone correspond to alleles CYP2B6*9 and CYP2B6*4, respectively. The 1000 Genome Project did not call the variant rs2279343 at all, so allele CYP2B6*6 might be counted as CYP2B6*9 in the present study and lead to an addition in the frequency of CYP2B6*9.

Our result is also in accordance with several experimental studies conducted on Vietnamese people (see Table 1) (Nguyen et al., 2019; Nhung et al., 2020; Veiga et al., 2009; Vu et al., 2018; 2019). In particular, Vu et al. (2018) have studied the polymorphism of multiple CYP genes in 99 Vietnamese people of the Kinh ethnic group. The reported allele frequencies of CYP2C9*1 and CYP2C9*3 were identical to ours, 96.5% and 3.5%, respectively (Vu et al., 2018). CYP2C9*3 differs from the reference allele by one single nucleotide (rs1057910, 42614A > C). Based on a genetic database constructed from 206 Vietnamese individuals, this substitution occurs with a frequency of approximately 3% (Le et al., 2019). Similarly, CYP3A5*3 is the only identified variant of the respective gene with a prevalence of about 70% in all the relevant studies and the reference allele CYP3A5*1 occupies the other 30% (Nhung et al., 2020).

Table 1. Frequency of the most common star alleles in Kinh – Vietnamese (KHV) population in different studies.

Allele	KHV population in this study (n = 99)	Vu et al. (2020) (n=100)	Veiga et al. (2009) (n=78)
CYP2B6	*2 7.58	-	-
	*6 -	-	27.1
	*9 22.22	-	-
CYP2C9	*3 3.54	3.5	-
CYP2C19	*2 28.28	20.5	30.6
	*3 4.04	2.5	6.3
	*17 2.02	1	-
CYP2D6	*2 8.08	7.35	-
	*4 0.51	0.74	1.4
	*10 65.66	43.75	43.5
CYP3A5	*3 71.21	67.5	66.7

CYP2C19*2 is the most common CYP2C19 variant in all studies, but its frequency varies from 20 to 30%. Though both studies by Veiga et al. (2009) and Vu et al. (2018) showed that the allele frequencies of CYP2C19 were in Hardy-Weinberg equilibrium, it is still possible that a gradual decrease in the allele frequency has occurred. As the present study utilizes “The 1000 Genome Project” data collected from 2008 to 2015 (Clarke et al., 2017), it is reasonable that
our result is closer to that of the Veiga et al. (2009)’s study. Allele CYP2C19*17 is another noteworthy allele, as it is the major allele in other populations but almost absent in Vietnamese and East Asians. This difference may lead to crucial clinical implementation because CYP2C19*2 and CYP2C19*3 are alleles with no function, while CYP2C19*17 has increased metabolic activity. Thus, the metabolism of relevant drugs may be distinctively different between these populations.

In our results, for CYP2D6, there is probably an overestimation of the allele CYP2D6*10 frequency. The frequency of many common alleles (*1, *2, *4) was nearly the same as demonstrated in a previous study (Nguyen et al., 2019). However, in this study, the frequency of CYP2D6*10 was reported to be about 44%, while that of ours is vastly greater (66%). A possible explanation is the absence of structural variants in our results, as duplications of CYP2D6*10 (*10xN) as well as hybrids containing CYP2D6*10 (e.g., *36 + *10) would all be classified as CYP2D6*10 in the present study. However, as most structural variants containing CYP2D6*10 are considered to have decreased function, our phenotypic distribution should not be affected drastically.

We experience a similar discordance with the distribution of CYP2B6 in Vietnam as we did with the previous three super populations. Veiga et al. (2009)’s study reported that the frequency of CYP2B6*6 was 27.1%, but the data from “The 1000 Genome Project” as well as the database provided by Le et al. (2019) did not identify the SNP rs2279343, and consequently, no CYP2B6*6 were found. Therefore, the prevalence of allele CYP2B6*9 might be overestimated while CYP2B6*6 might be underestimated. Fortunately, both have decreased function, and substituting one by another would not interfere with phenotype interpretation. Furthermore, our study also identified the frequency of CYP2B6*2, which was not included in the study of Veiga et al. (2009), and the result is consistent with the variation analysis in Le et al. (2019).

Phenotypic Distribution

The comparison of the CYP2B6, CYP2C9, CYP2C19, and CYP3A5 phenotypic distributions obtained by Stargazer and PharmCAT is shown in Figs. 2 to 6. Since PharmCAT cannot call star alleles for CYP2D6, the comparison for this gene is excluded from the figure. The PharmCAT algorithm provides multiple genotypes but does not score the most reliable. Hence, we select the proper genotypes for downstream phenotype matching using the population allele frequency database provided by PharmGKB. In contrast, Stargazer predicts the most likely genotypes based on the given variants of each individual. Though both tools provide reliable results, the simple setup process, short analysis time, and extensive gene coverage make Stargazer the better genotyping software to call star alleles of these five CYP genes as well as other pharmacogenes in the future.

Phenotypic distribution of the CYP2B6 gene

The CYP2B6 gene is found on chromosome 19’s long arm along with the closely related pseudogene CYP2B7 and numerous other members of the CYP2 gene family. The CYP2B6 gene has at least 38 allelic variations, 25 of which are deemed significant and eight of which are prevalent in at least one racial/ethnic community. The CYP2B6 enzyme metabolizes a broad spectrum of substrates, accounting for roughly 8% of all commercially available medicines (Wang et al., 2019). Therefore, CYP2B6 genetic testing should be considered before prescribing.

Among people suffering from HIV, the frequency of reduced or loss-of-function alleles of the CYP2B6 gene was highest in African ancestry patients (Klein et al., 2005). Our study with healthy individuals showed a similar result; in particular, the two groups with the highest intermediate and poor metabolizer phenotype percentage are the American population, which includes 157/504 African Americans, and the Others group, in which half are African.

The CYP2B6 gene polymorphism significantly affects the pharmacokinetics of
efavirenz, an important antiretroviral agent used to treat HIV. For individuals with a poor metabolic phenotype, plasma efavirenz concentrations are often elevated (the likelihood ratio is 35) and strongly correlated with an increased risk of suicide in patients receiving the drug (Mollan et al., 2017; Rotger et al., 2007). According to the results, 42.9% of Vietnamese people have a poor metabolic phenotype (95% CI 33-52.8) and should use the reduced starting dose when treated with efavirenz. This ratio highlights the importance of individualized treatment for the Vietnamese population.

Figure 2. Phenotypic distribution of the CYP2B6 gene in five populations. The normal metabolizer accounted for the highest percentage of the Vietnamese population, followed by the intermediate metabolizer and the poor metabolizer. The phenotypic distribution of the Vietnamese population is compatible with the East Asian super population. The others have witnessed the presence of rapid and ultrarapid metabolizers at a very low rate.

Phenotypic distribution of the CYP2C9 gene

The CYP2C9 gene is found on chromosome 10q24.1, and there are around 60 different CYP2C9 alleles (Cavallari, Momary, 2019). Numerous medications, such as nonsteroidal anti-inflammatory drugs, losartan, tolbutamide, warfarin, phenytoin, or carbamazepine, are metabolized by the CYP2C9 gene (Lazar et al., 2004). The majority of East Asians are normal Metabolizer, which partially explains the high tolerability of celecoxib in Asians (Essex et al., 2016). Due to the differences in phenotypic distribution, clinical drugs applicable to American or European populations might not be suitable to East Asians, especially Vietnamese people. Therefore, the results above support the strict control of over-the-counter NSAIDs in Vietnam.

In addition, CYP2C9 is the main enzyme responsible for the elimination of various drugs with a narrow therapeutic range, such as warfarin or phenytoin, so the phenotype of CYP2C9 gene has a considerable influence on the efficacy and safety of the drug (Daly et al., 2017). The metabolism of these drugs also depends on other genes which were not analyzed in this study (such as VKORC1, HLA-B), so the phenotypic distribution of the CYP2C9 gene might not accurately reflect the differences in the risk of adverse reactions between populations.
Figure 3. Phenotypic distribution of the CYP2C9 gene in the five populations. For the Vietnamese population, the Normal Metabolizer accounted for the highest percentage, followed by the Intermediate Metabolizer. This phenotypic distribution is compatible with the East Asian super population. The others had witnessed the presence of Poor Metabolizer, at a very low rate.

Phenotypic distribution of the CYP2C19 gene

The CYP2C19 gene is found on chromosome 10q24 and 35 variants are presently known. CYP2C19 is the most important enzyme in the hepatic metabolism of drugs such as antimalarials (proguanil), oral anticoagulants (R-warfarin), chemotherapeutic agents (cyclophosphamide), anti-epileptics (S-mephenytoin, diazepam, phenobarbitone), antiplatelets (clopidogrel), proton pump inhibitors (omeprazole, pantoprazole, lansoprazole, rabeprazole), antivirals (nelfinavir), and antidepressants (amitriptyline, clomipramine) (Gurusamy, Shewade, 2014).

It is worth noting that intermediate and poor metabolizer phenotypes dominate in the East Asian super population as well as the Vietnamese population. In contrast, the percentage of rapid metabolizers in these two super populations is much higher than in the East Asian super population, which is coupled with the presence of the ultrarapid metabolizer phenotype. Doctors should consider genetic testing for the CYP2C19 gene to provide optimal drug doses for patients or even use an alternative therapy.

Phenotypic distribution of the CYP2D6 gene

The CYP2D6 gene, which codes for the CYP2D6 enzyme, is found on chromosome 19. CYP2D6 is one of the most polymorphic CYP genes in humans, with about 80 distinct allelic variants and 130 genetic variations documented (Demkow, 2016). Antidepressants, antipsychotics, beta-blockers, antiviral medicines, antiarrhythmics, morphine derivatives, and tamoxifen are among the medications metabolized by this enzyme, which has a restricted therapeutic window (Vuppalanchi, 2011). CYP2D6 exhibits extraordinary variability, sometimes with complete gene duplication, with over 90 confirmed allelic variations identified. More than 50 drug substrates are known to be metabolized by this route, which accounts for 20% to 30% of all medicines. The CYP2D6 gene has been widely investigated because of these critical characteristics (Schaffenburg et al., 2021).

Previous studies have determined that CYP2D6*10 was determined to be the main variant causing decreased CYP2D6 enzyme activity in the Vietnamese population,
constituting an intermediate metabolizer phenotype (Nguyen et al., 2019; Veiga et al., 2009). Therefore, physicians should consider genetic testing for allele CYP2D6*10 to provide an appropriate drug dose for each patient. Our method could not identify CNVs, so the proportion of CYP2D6 ultrarapid metabolizers was underestimated. In future studies, the identification of CYP2D6 CNVs by algorithms should be considered.

Figure 4. Phenotypic distribution of the CYP2C19 gene in the five populations. For the Vietnamese population, intermediate metabolizers and normal metabolizers accounted for nearly 90% of the population, which is compatible with the East Asian super population. Rapid metabolizers took up a small percentage in the Vietnamese population, whereas there was no presence of ultrarapid metabolizers. By contrast, rapid metabolizers made up a significant proportion in the American and European super populations.

Figure 5. Phenotypic distribution of CYP2D6 gene in the five populations. Normal metabolizer and intermediate metabolizer are predominant in all populations. The normal metabolizer percentage in Vietnamese people is significantly different from the American and European super population (p-value after Bonferroni correction < 0.05).
Phenotypic distribution of the CYP3A5 gene

The CYP3A5 gene, which codes for the CYP3A5 enzyme, is located on chromosome 7q21.1 and involved in the metabolism of medicines used to treat three of the most common infectious diseases: malaria (artemether, lumefantrine, mefloquine, primaquine, chloroquine), HIV/AIDS (efavirenz, saquinavir, maraviroc, indinavir, nelfinavir, ritonavir, lopinavir), and tuberculosis (ritonavir, rifampicin) (Masimirembwa et al., 2014). Kuehl et al. (2001) demonstrated that individuals need to carry at least one CYP3A5*1 allele to express the CYP3A5 protein, whereas CYP3A5*3 (A to G at 6986) in the intron 3 region results in the absence of the CYP3A5 protein.

The proportion of Vietnamese people carrying genotypes *1/*3 and *3/*3 is very high, so the distribution of CYP3A5 genotypes of the Kinh population mainly belongs to intermediate and poor metabolizers, with 40% and 50%. However, drug dose adjustment is not necessary for individuals who are CYP3A5 poor metabolizers because most drugs have been developed from CYP3A5 poor metabolizers. In contrast, individuals with intermediate and normal metabolizer phenotypes required dose adjustment to get effective treatment (Birdwell et al., 2015).

Figure 6. Phenotypic distribution of the CYP3A5 gene in the five populations. Intermediate and poor metabolizers were predominant in all populations. The distribution of intermediate and poor metabolizer phenotypes in the Vietnamese population is similar to other groups, except the Europeans. No drug dose adjustment is required for patients who have the CYP3A5 poor metabolizer phenotype as most drugs are developed from CYP3A5 poor metabolizers.

CONCLUSION

The genotypic and phenotypic distributions of five important pharmacogenes provided useful information about the Kinh population in particular. This result has a high similarity when compared with experimental as well as previous research.

The phenotypic distribution of the Kinh population is significantly different from other populations in the world. These results will provide directions for researchers to target the key points that should be exploited in the field of pharmacogenomics of the Vietnamese population.

However, studies on genetic variation of important pharmacogenes are mainly being carried out with the genomes of the Kinh ethnic
group, while the ethnic minorities of Vietnam appear only in a few previous studies with a small population size: 3 Thai people (Veiga et al., 2009), 275 people from four minority groups (Vu et al., 2019), and 279 people from four other ethnic groups (Vu et al., 2018). Therefore, it is necessary to collect more genomic data from ethnic minorities on a larger scale to have a better overview of the phenotypic distribution of important pharmacological genes of the Vietnamese ethnic groups.

Acknowledgement: This research was supported by LOBI Vietnam’s research and development fund. LOBI Vietnam is a bioinformatics company.

REFERENCES

Birdwell K, Decker B, Barbarino J, Peterson J, Stein C, Sadee W, Wang D, Vinks A, He Y, Swen J, Leeder S, and MacPhee I (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharm Ther 98(1): 19–24.

Cavallari LH, Momary KM (2019) Pharmacogenomics (Second Edition), Academic Press.

Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, Tassé A-M, Flicek P (2017) The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res 45(D1): D854–D859.

Daly AK, Rettie AE, Fowler DM, Miners JO (2017) Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 8(1): 1.

Demkow U (2016) Clinical Applications for Next-Generation Sequencing, Academic Press.

Essex MN, O’Connell MA, Behar R, Bao W (2016) Efficacy and safety of nonsteroidal anti-inflammatory drugs in Asian patients with knee osteoarthritis: Summary of a randomized, placebo-controlled study. Int J Rheum Dis 19(3): 262–270.

Gurusamy U, Shewade DG (2014) Handbook of Pharmacogenomics and Stratified Medicine, Academic Press.

Hockings JK, Pasternak AL, Erwin AL, Mason NT, Eng C, Hicks JK (2020) Pharmacogenomics: An evolving clinical tool for precision medicine. Clev Clin J Med 87(2): 91–99.

Klein TE, Ritchie MD (2018) PharmCAT: A Pharmacogenomics Clinical Annotation Tool. Clin Pharmacol Ther 104(1): 19–22.

Klein K, Lang T, Saussele T, Barbosa-Sicard E, Schunck W-H, Eichelbaum M, Schwab M, Zanger UM (2005) Genetic variability of CYP2B6 in populations of African and Asian origin: Allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genom 15(12): 861–873.

Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkatakrishnan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4): 383–391.

Lazar A, Tomalik-Schade T, Fuhr U (2004) Handbook of Analytical Separations, Elsevier Science BV.

Le VS, Tran KT, Bui HTP, Le HTT, Nguyen CD, Do DH, Ly HTT, Pham LTD, Dao LTM, Nguyen LT (2019) A Vietnamese human genetic variation database. Hum Mutat 40(10): 1664–1675.

Lee S, Wheeler MM, Thummel KE, Nickerson DA, (2019). Calling Star Alleles With Stargazer in 28 Pharmacogenes With Whole Genome Sequences. Clin Pharmacol Ther 106(6): 1328–1337.

Ma RC, Chan JC (2013) Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States. Ann NY Acad Sci 1281(1): 64–91.

Masimirembwa C, Dandara C, Hasler J (2014). Handbook of Pharmacogenomics and Stratified Medicine, Academic Press.

Mollan KR, Tierney C, Hellwege JN, Eron JJ, Budens MG, Gulick RM, Haubrich R, Sax PE, Campbell TB, Daar ES, Robertson KR, Ventura D, Ma Q, Edwards DRV, Haas DW (2017) Race/Ethnicity and the Pharmacogenetics of Reported Suicidality With Efavirenz Among Clinical Trials Participants. J Infect Dis 216(5): 554–564.
Naranjo MG, Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Fariñas H, Rodeiro I, Terán E, Grazina M, Moya GE, López-López M, Sarmiento AP, Calzadilla LR, Ramírez-Roa R, Ortiz-López R, Estévez-Carrizo FE, Sosa-Macías B, Barrantes R, LLerena A; CEIBA-Consortium of the Ibero-American Network of Pharmacogenetics and Pharmacogenomics RIBEF (2018). Interethnic Variability in CYP2D6, CYP2C9, and CYP2C19 Genes and Predicted Drug Metabolism Phenotypes Among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population Pharmacogenomics. *Omics* 22(9): 575–588.

Nguyen HH, Ma TTH, Vu NP, Bach QTN, Vu TH, Nguyen TD, Nong HV (2019) Single nucleotide and structural variants of CYP2D6 gene in Kinh Vietnamese population. *Medicine*: 98(22).

Nhung V, Nguyen DT, Nguyen H (2020) Study of CYP3A5 genetic polymorphism in Vietnamese Kinh ethnic group. *TAP CHI SINH HOC* 42.

Guengerich FP, Waterman MR, Egli M (2016) Recent Structural Insights into Cytochrome P450 Function. *Trends Pharmacol Sci* 37(8): 625–640.

Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Décosterd L, Blievernicht J, Saussele T, Günthard HF, Schwab M, Eichelbaum M, Telenti A, Zanger UM (2007). Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. *Clin Pharm Ther* 81(4): 557–566.

Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA (2013). Applications of CYP450 testing in the clinical setting. *Mol Diagn Ther* 17(3): 165–184.

Schaffenburg WC, Lockshin BN, DeKlotz CMC (2021) Comprehensive Dermatologic Drug Therapy (Fourth Edition), Elsevier.

Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. *Pharmacogenet Genom* 17(2): 93–101.

Tesar V, Hruskova Z (2015) Lupus Nephritis: A Different Disease in European Patients? *Kidney Dis (Basel)* 1(2): 110–118.

Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V, Hai TN, Petzold MG, Björkman A, Ashton M, Gil JP (2009) Pharmacogenomics of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and MDR1 in Vietnam. *Eur J Clin Pharmacol* 65(4): 355–363.

Vu NP, Ma TTH, Tran NTB, Huynh HTT, Nguyen TD, Nguyen DT, Van Nong H, Lee MTM, Nguyen HH (2018) Polymorphic analysis of CYP2C9 gene in Vietnamese population. *Mol Biol Rep* 45(5): 893–900.

Vu NP, Nguyen HTT, Tran NTB, Nguyen TD, Huynh HTT, Nguyen XT, Nguyen DT, Nong HV, Nguyen HH (2019) CYP2C19 genetic polymorphism in the Vietnamese population. *Ann Hum Biol* 46(6): 491–497.

Vuppalanchi R (2011) *Practical Hepatic Pathology: A Diagnostic Approach*, WB Saunders.

Wang PF, Neiner A, Kharasch ED (2019) Efavirenz Metabolism: Influence of Polymorphic CYP2B6 Variants and Stereochemistry. *Drug Metab Dispos* 47(10): 1195–1205.

Zhou Y, Ingelman-Sundberg M, Lauschke V (2017) Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. *Clin Pharmacol Ther* 102(4): 688–700.
SUPPLEMENTS

Table S1. All Allele Frequency of five CYP450 genes in five populations.

	KHV	EAS	AMR	EUR	Others
CYP2B6					
*1	69.19	74.69	48.81	57.65	46.58
*2	7.58	3.58	3.08	5.37	4.38
*5	0.51	0.12	5.06	11.03	3.93
*9	22.22	21.36	37.20	23.56	37.87
*10	0.51	0.00	0.89	0.70	0.05
*11	0.00	0.00	0.00	0.40	0.10
*15	0.00	0.00	0.40	0.40	0.00
*18	0.00	0.00	2.98	0.00	4.33
*22	0.00	0.25	1.59	0.89	2.77
CYP2C9					
*1	96.46	96.54	83.73	79.82	82.23
*2	0.00	0.12	7.84	12.43	1.76
*3	3.54	3.21	2.88	7.26	5.39
*5	0.00	0.00	0.69	0.00	0.81
*6	0.00	0.00	0.10	0.00	0.50
*7	0.00	0.00	0.00	0.00	0.35
*8	0.00	0.00	2.08	0.20	2.57
*9	0.00	0.00	2.18	0.10	4.23
*11	0.00	0.00	0.50	0.20	1.46
*14	0.00	0.12	0.00	0.00	0.70
CYP2C19					
*1	65.66	60.74	70.14	62.82	49.45
*2	28.28	31.98	11.71	14.51	26.64
*3	4.04	5.93	0.10	0.00	0.70
*8	0.00	0.00	0.10	0.30	0.05
*9	0.00	0.00	0.30	0.00	0.55
*13	0.00	0.00	0.89	0.00	0.96
*15	0.00	0.00	0.40	0.00	0.96
*17	2.02	1.36	15.77	22.37	18.53
*34	0.00	0.00	0.00	0.00	0.65
*35	0.00	0.00	0.60	0.00	1.51
CYP2D6					
*1	19.70	30.12	45.34	38.37	34.34
*2	8.08	9.51	18.55	18.89	20.44
*3	0.00	0.00	0.69	1.89	0.10
*4	0.51	0.12	12.10	18.59	7.80
*6	0.00	0.00	0.30	1.99	0.05
Allele	KHV	EAS	AMR	EUR	Others
--------	-------	-------	-------	-------	--------
*7	0.00	0.00	0.00	0.00	0.45
*9	0.00	0.00	0.99	2.58	0.00
*10	65.66	54.81	2.78	1.59	4.44
*14	2.53	0.62	0.00	0.00	0.00
*17	0.00	0.00	6.25	0.20	10.98
*28	0.00	0.00	0.10	0.50	0.00
*29	0.00	0.00	2.38	0.00	5.19
*31	0.00	0.00	0.40	0.20	0.00
*33	0.00	0.12	0.20	0.60	0.10
*34	0.00	0.00	0.00	0.00	0.05
*35	0.00	0.00	2.18	5.07	0.30
*39	0.00	0.12	0.20	0.00	0.91
*40	0.00	0.00	0.10	0.00	0.55
*41	2.53	4.07	5.36	9.34	6.65
*43	0.00	0.00	0.50	0.20	1.31
*45	0.00	0.00	0.89	0.00	2.17
*46	0.00	0.00	0.50	0.00	0.35
*71	1.01	0.49	0.00	0.00	0.00
*86	0.00	0.00	0.00	0.00	0.00
*106	0.00	0.00	0.10	0.00	0.81
*111	0.00	0.00	0.00	0.00	0.40
*113	0.00	0.00	0.00	0.00	0.40
*125	0.00	0.00	0.10	0.00	0.20

Table S2. Absolute frequency of common alleles of five CYP450 genes in five populations.

Allele	KHV	EAS	AMR	EUR	Others
*7	0.00	0.00	3.77	0.00	6.04

Allele	KHV	EAS	AMR	EUR	Others
*1	28.79	28.64	28.47	5.37	44.56
*3	71.21	71.36	63.39	94.33	40.53
*6	0.00	0.00	4.37	0.30	8.86
*7	0.00	0.00	3.77	0.00	6.04

KHV: Kinh Vietnamese population; EAS: East Asian population (without Vietnamese); AMR American population; EUR: European population; Others: Other population included in 1000 Genome Project (African and South Asian populations)

\[\chi^2 = 412.2, p \text{-value} < 2.2e-16 \]
Table S3. Absolute phenotypic frequencies of five CYP450 genes in five populations.

Gene	KHV	EAS	AMR	EUR	Others
CYP2B6					
	CYP2B6				
NM	56	251	169	279	287
IM	40	124	221	172	460
PM	2	22	87	27	180
RM	0	2	7	5	26
UM	0	0	0	0	2
Indet	1	0	12	15	3
CYP2C9					
	CYP2C9				
NM	91	371	369	318	738
IM	6	26	128	169	212
PM	0	1	3	11	11
Indet	0	0	0	0	5

KHV: Kinh Vietnamese population; EAS: East Asian population (without Vietnameses); AMR American population; EUR: European population; Others: Other population included in 1000 Genome Project (African and South Asian populations)
	KHV	EAS	AMR	EUR	Others
CYP2C19					
NM	41	143	257	189	262
IM	46	207	108	137	330
PM	9	50	5	6	101
RM	3	4	102	148	200
UM	0	0	12	22	40
Indet	0	0	0	0	13
CYP2D6					
NM	47	242	343	285	657
IM	50	159	138	180	242
PM	0	0	15	31	31
UM	0	0	0	0	0
Indet	2	4	8	7	77
CYP3A5					
NM	7	33	59	2	220
IM	43	166	155	50	378
PM	49	206	257	451	280
Indet	0	0	0	0	0

KHV: Kinh Vietnamese population; EAS: East Asian population (without Vietnameses); AMR American population; EUR: European population; Others: Other population included in 1000 Genome Project (African and South Asian populations)

NM: Normal metabolizer; IM: Intermediate Metabolizer; PM: Poor Metabolizer; RM: Rapid Metabolizer; UM: Ultrarapid Metabolizer; Indet: Indeterminate