The role of C-reactive protein levels on the association of physical activity with lung function in adults

Elaine Fuertes1,2,3,4,*, Anne-Elie Carsin1,2,3, Vanessa García-Larsen5, Stefano Guerra1,2,3,6, Isabelle Pin7,8,9, Bénédicte Leynaert10,11, Simone Accordini12, Jesús Martínez-Moratalla13,14, Josep M. Anto1,2,3, Isabel Urrutia15, Audrey Le Gouellec16, Joachim Heinrich17,18, Thorarinn Gislon19, Rán Jögi20, Christer Janson21, Debbie Jarvis4,22, Judith García-Aymerich1,2,3

1 ISGlobal, Barcelona, Spain, 2 Universitat Pompeu Fabra (UPF), Barcelona, Spain, 3 CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain, 4 National Heart and Lung Institute, Imperial College London, London, United Kingdom, 5 Program in Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America, 6 Asthma and Airway Disease Research Center, University of Arizona - Tucson, Arizona, United States of America, 7 Department of Pediatrics, CHU Grenoble Alpes, Grenoble, France, 8 INSERM, Institut for Advanced Biosciences, Grenoble, France, 9 University Grenoble Alpes, Grenoble, France, 10 UMR 1152, Pathophysiology and Epidemiology of Respiratory Diseases, INSERM, Paris, France, 11 UMR 1152, University Paris Diderot Paris, Paris, France, 12 Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy, 13 Servicio de Neumología y Complicaciones del Tabaco, Servicio de Salud de Castilla – La Mancha (SESCAM), Hospital Universitario de Albacete, Albacete, Spain, 14 Facultad de Medicina de Albacete, Universidad de Castilla - La Mancha, Albacete, Spain, 15 Department of Respiratory, Galdakao Hospital, Galdakao, Spain, 16 University Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France, 17 Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany, 18 Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich, Ludwig Maximilians University Munich, Munich, Germany, 19 Department of Respiratory Medicine and Sleep, Landspitali University Hospital Reykjavik, Reykjavik, Iceland, 20 Lung Clinic, Tartu University Hospital, Tartu, Estonia, 21 Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden, 22 MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom

* e.fuertes@imperial.ac.uk

Abstract

Objective

Regular physical activity may be associated with improved lung function via reduced systemic inflammation, although studies exploring this mechanism are rare. We evaluated the role of C-reactive protein in blood, which is a common marker of systemic inflammation, on the association of physical activity with forced expiratory volume in one second and forced vital capacity.

Methods

Cross-sectional data on spirometry, C-reactive protein levels and self-reported physical activity (yes/no; ≥2 times and ≥1hr per week of vigorous physical activity) were available in the European Community Respiratory Health Survey (N = 2347 adults, 49.3% male, 28–56 years-old). A subsample was also assessed 10 years later using the International Physical
Activity Questionnaire, and tertiles of Metabolic Equivalent of Task—minutes per week spent in vigorous, moderate and walking activities were calculated (N = 671, 49.6% male, 40–67 years-old). Adjusted cross-sectional mixed linear regression models and the “mediate” package in “R” were used to assess the presence of mediation.

Results

Despite positive significant associations between nearly all physical activity metrics with forced expiratory volume in one second and forced vital capacity, there was no evidence that C-reactive protein levels played a role. An influence of C-reactive protein levels was only apparent in the smaller subsample when comparing the medium to low tertiles of moderate activity (mean difference [95% CIs]: 21.1ml [5.2, 41.9] for forced expiratory volume in one second and 17.3ml [2.6, 38.0] for forced vital capacity).

Conclusions

In a population of adults, we found no consistent evidence that the association of physical activity with forced expiratory volume in one second or forced vital capacity is influenced by the level of C-reactive protein in blood.

Introduction

The evidence linking regular physical activity and improved lung function is growing and appears to suggest stronger associations among current smokers [1, 2]. Reduced systemic inflammation, induced by the anti-inflammatory effects of regular long-term physical activity, has been proposed as one potential biological pathway [3], but further research into underlying mechanisms is called for [4].

Several studies have reported inverse associations between self-reported physical activity and serum C-reactive protein (CRP) levels [5,6], a commonly used systemic inflammation marker. Higher CRP levels have also been associated with lower lung function and steeper lung function decline [7, 8]. However, no study has explicitly examined whether regular physical activity leads to higher lung function via an effect on systemic inflammation.

We previously reported that regular vigorous physical activity was positively associated with forced expiratory volume in one second (FEV$_1$) and forced vital capacity (FVC) in current smokers participating in the multicentre European Community Respiratory Health Survey (ECRHS) [1]. To continue this work, we here sought to explore underlying mechanisms. Specifically, we tested the hypothetical role of C-reactive protein levels on the association of physical activity with FEV$_1$ and FVC (Fig 1). Our results indicate that, despite a plausible hypothesis based on the scientific literature, there is no consistent evidence to suggest that the numerous positive associations observed between physical activity and lung function are influenced by changes in CRP levels.

Materials and methods

Study population

Over 18,000 participants were originally recruited into the ECRHS from 30 centers in 14 countries in 1991–1993 (ECRHS I) using population-based registers (population-based arm), with
an oversampling of asthmatics (symptomatic arm) [9]. Two follow-ups approximately ten years apart have since taken place: ECRHS II in 1999–2003 and ECRHS III in 2010–2014. Extensive lifestyle and health information was collected using questionnaires and during measurements at clinical visits throughout the ECRHS (I-III). The current analysis uses cross-sectional data obtained during the first (ECRHS II) and second (ECRHS III) follow-ups, during which physical activity and spirometry data were collected [10, 11]. The analysis is limited to the eight centers that collected data on CRP levels at ECRHS II (Albacete, Barcelona, Galdakao, Grenoble, Paris, Reykjavik, Tartu and Uppsala) and the three centers that collected data on CRP levels at ECRHS III (Grenoble, Paris and Uppsala). Ethical approval from the appropriate ethics committees was obtained by all centers participating in the ECRHS and written consent was obtained from all participants.

Lung function

Lung function without bronchodilation was assessed according to American Thoracic Society recommendations at both follow-ups [12]. FEV$_1$ and FVC in absolute values (mL), repeatable to 150 mL from at least two of a maximum of five correct manoeuvres, were used in this analysis. During the lung function testing, body weight and height were measured by trained research staff.

CRP levels

Circulating CRP was measured in frozen stored serum samples which had been taken at both follow-ups, according to standard protocols. Details of the laboratory techniques used in each country to measure the CRP levels are provided in the Supplementary Material (S1 Appendix). The CRP data were log-transformed as it followed a log-normal distribution. Afterward, as the laboratory measurement methods varied across centers, the CRP data were standardized per measurement laboratory prior to conducting the analyses (i.e. z-scores were calculated per laboratory method) to account for any potential heterogeneity. There were more participants with CRP data at the first follow-up (ECRHS II; N = 2347, main population, eight centres) compared to the second follow-up (ECRHS III; N = 671, subsample population, three centres).
Physical activity

At ECRHS II, leisure-time vigorous physical activity data were collected using self-completed questionnaires (www.ecrhs.org/quests.htm). Participants were asked how often (frequency) and for how many hours per week (duration) they usually exercised so much that they got out of breath or sweaty. The responses for frequency were: every day, 4–6 times a week, 2–3 times a week, once a week, once a month, less than once a month and never. For statistical analyses, we grouped together the first two categories, the next two categories and the last three categories. The responses for duration were: 7 hours or more, about 4–6 hours, about 2–3 hours, about 1 hour, about half an hour and none. For statistical analyses, we grouped together the first two categories, the next two categories and the last two categories. Furthermore, as previously done in the ECRHS cohort [1,8], individuals were classified as physically active if they exercised with a frequency of at least two times per week and for a duration of at least one hour a week, and non-active otherwise.

In the subsample assessed ten years later (ECRHS III), more detailed physical activity measures were collected using the self-completed International Physical Activity Questionnaire (IPAQ-7 short form). The IPAQ collects information on time spent doing physical activity in the previous week and has been validated previously in multiple international settings and population groups [13]. Time spent in vigorous, moderate and walking activities, as well as their sum, was derived and expressed in Metabolic Equivalent of Task (METs)-min per week, following the official IPAQ scoring protocol (www.ipaq.ki.se). Tertiles of each IPAQ-variable were calculated and used in the analysis.

Statistical analyses

To test the role of C-reactive protein levels on the association of physical activity with FEV\textsubscript{1} and FVC (Fig 1), we first fit a mediator model, where CRP levels are modelled as a function of physical activity, after adjusting for relevant covariates (sex, age, height, weight, education, occupation, secondhand smoke exposure, smoking habit and a random intercept for center, which are the same as used in our previous analysis [1]). Next, we constructed the outcome model, which models lung function (the outcome) as a function of CRP levels (the mediator), including the same covariates as used in the mediator model. We used cross-sectional mixed linear regression to estimate both the mediator and outcome models.

The mediator and outcome models were then incorporated into the “mediation” package in the statistical program “R”, which estimates the amount of the association between physical activity and lung function that is occurring through changes in CRP. Specifically, the population average causal mediation effect that is occurring through the mediator (i.e. through changing CRP levels, also referred to as the indirect effect), the population average direct effect (remaining effect that is not occurring through changes in CRP levels) and the total effect (the sum of the indirect and direct effects) are calculated using previously developed algorithms [14]. Confidence intervals around these effect estimates are calculated using a quasi-Bayesian Monte Carlo method based on normal approximation, which allowed us to determine whether the estimated effects are statistically significantly different from zero (consistent with no effect). Further details of the statistical procedures have been published [15].

Sensitivity analyses included (1) stratifying by smoking (never, former, current), body mass index (< 25 kg/m2; 25–30 kg/m2; > 30 kg/m2) and asthma, (2) excluding weight from the models (as it could be considered a mediator itself, rather than a confounder), (3) adjusting for body mass index instead of weight, (4) dichotomizing the CRP data based on the highest quartile (≤ 75th vs > 75th percentile) as well as excluding the highest 5th percentile of CRP levels to assess the potential influence of outliers, and finally, (5) testing for potential exposure-
mediator interactions by inserting an interaction term between CRP levels (as a continuous variable) and the physical activity parameters in the “mediator model”.

Finally, we calculated E-values for the indirect, direct and total effects, which are a form of sensitivity analysis which estimates the minimum strength of association that an unmeasured confounder would need to have with both the exposure (physical activity) and the outcome (lung function), conditional on the measured covariates, to explain away any observed associations [16, 17].

Results

Of the 3,640 participants from the eight centers that collected CRP data at ECHRS II, 2,347 had the required lung function, physical activity (i.e. activity status) and CRP information for analysis (main study population). Compared to participants from the eight centers that collected CRP information at ECRHS II but who but did not have the required data for analysis (N = 1,293, characteristics described in Table A in S1 Appendix), the 2,347 who were included were more likely to be male, older, have asthma and be in a management or technical profession.

Of the 1,097 participants from the three centers that collected CRP data at ECRHS III, 671 of those had the necessary information for analysis, including physical activity data derived using the IPAQ questionnaire (subsample). Compared to participants from the three centers that collected CRP information at ECRHS III but who but did not have the required data for analysis (N = 426, characteristics described in Table A in S1 Appendix), the 671 who were included were more likely to be in a management or technical profession.

The main (N = 2,347) and subsample (N = 671) study population characteristics are presented in Table 1. A flow chart depicting the overall derivation of the main study population and subsample is provided in Fig A in S1 Appendix.

There was little indication of a cross-sectional association between the physical activity parameters and continuous CRP levels (Table B in S1 Appendix). CRP was cross-sectionally associated with FEV\textsubscript{1} and FVC in the main population at ECRHS II (-112.3 ml [-134.2, -90.4] and -104.3 ml [-129.4, -79.2] per 1 standard deviation increase in log CRP, respectively) and in the subsample at ECRHS III (-87.4 ml [-127.6, -47.2] and -76.1 ml [-122.7, -28.5] per 1 standard deviation increase in log CRP, respectively).

Despite positive significant associations between nearly all physical activity metrics with FEV\textsubscript{1} and FVC, there was no consistent evidence for a role of CRP in this association in the entire main study population or when restricted to current smokers (Table 2).

When using the IPAQ-physical activity variables available in the subsample assessed ten years later, a role of CRP on the association between physical activity levels and lung function was only apparent when comparing the second to first tertiles of METs in moderate activity (mean difference and 95% confidence intervals of 21.1 [5.2, 41.9] ml and 17.3 [2.6, 38.0] ml for FEV\textsubscript{1}, and FVC, respectively, Table 3).

The role of C-reactive protein in the physical activity and lung function link
Table 1. Characteristics of the study population.

Characteristic	Main study population (ECRHS II, N = 2,347)	Subsample with IPAQ data (ECRHS III, N = 671)			
	n/N or mean	% or (SD)	n/N or mean	% or (SD)	
Male sex	1157/2347	49.3	333/671	49.6	
Symptomatic study arm of ECRHS cohort	422/2347	18.0	82/671	12.2	
Age completed full time education					
< 17 years	504/2334	21.6	43/670	6.4	
17–20 years	732/2334	31.4	213/670	31.8	
> 20 years	1098/2334	47.0	414/670	61.8	
Age in years⁴	42.7	(7.4)	55.3	(7.1)	
Height in cm⁵	170.1	(9.8)	170.2	(9.7)	
Weight in kg⁵	74.0	(15.1)	76.2	(15.6)	
BMI < 25 kg/m²	1188/2344	50.7	304/669	45.4	
25–30 kg/m²	842/2344	35.9	244/669	36.5	
> 30 kg/m²	314/2344	13.4	121/669	18.1	
Smoking habit					
Never	1000/2347	42.6	315/671	46.9	
Ex-smoker, < 15 pack-years	357/2347	15.2	140/671	20.9	
Ex-smoker, > = 15 pack-years	254/2347	10.8	118/671	17.6	
Current smoker, < 15 pack-years	279/2347	11.9	30/671	4.5	
Current smoker, > = 15 pack-years	457/2347	19.5	68/671	10.1	
Secondhand smoke exposure at home or work	1000/2334	42.8	107/671	15.9	
Occupation					
Management/professional/non-manual	754/2347	32.1	338/671	50.4	
Technical/professional/non-manual	395/2347	16.8	155/671	23.1	
Other non-manual	549/2347	23.4	86/671	12.8	
Skilled manual	267/2347	11.4	29/671	4.3	
Semi-skilled/unskilled manual	240/2347	10.2	32/671	4.8	
Other/unknown	142/2347	6.1	31/671	4.6	
Asthma	412/2343	17.6	145/670	21.6	
Pre-bronchodilator FEV₁ in ml⁶	3455.2	(810.1)	2986.5	(748.8)	
Pre-bronchodilator FVC in ml⁶	4320.7	(992.4)	4000.6	(977.8)	
Physically active	≥ 2 times and ≥ 1 hr per week	856/2344	36.5	--	--
Physical activity frequency	Low (< 1 a month)	976/2347	41.6	--	--
	Medium (1–3 times a week)	1016/2347	43.3	--	--
	High (> 4 times a week)	355/2347	15.1	--	--
Physical activity duration	Low (< 30 minutes)	1013/2344	43.2	--	--
	Medium (1–3 hours)	922/2344	39.3	--	--
	High (> 4 hours)	409/2344	17.4	--	--
Total physical activity (MET-min/week)	First tertile	--	--	193/611	31.6
	Second tertile	--	--	228/611	37.3
	Third tertile	--	--	190/611	31.1
Vigorous physical activity (MET-min/week)	First tertile	--	--	320/665	48.1
	Second tertile	--	--	117/665	17.6
	Third tertile	--	--	228/665	34.3
Moderate physical activity (MET-min/week)	First tertile	--	--	223/646	34.5
	Second tertile	--	--	178/646	27.6
	Third tertile	--	--	245/646	37.9
the second to first tertiles of METs in moderate activity), weaker risk ratios with an unknown confounder would be required to explain away the estimates (E-values were 1.19 for FEV\textsubscript{1} and 1.14 for FVC; Table C in S1 Appendix).

Discussion

This study found no consistent evidence to suggest that the association of physical activity on lung function occurs through changes in CRP levels. Only in the subsample with more detailed physical activity data was a potential role for CRP identified for moderate physical activity,

Table 1.

Characteristic	Main study population (ECRHS II, N = 2,347)	Subsample with IPAQ data (ECRHS III, N = 671)		
	n/N or mean	% or (SD)	n/N or mean	% or (SD)
Walking physical activity (MET\textsubscript{\textminus}min/week)	First tertile - - - -	224/633	35.4	
	Second tertile - - - -	190/633	30.0	
	Third tertile - - - -	219/633	34.6	

BMI = body mass index; ECRHS = European Community Respiratory Health Survey; FEV\textsubscript{1} = forced expiratory volume in one second; FVC = forced vital capacity; IPAQ = International Physical Activity Questionnaire; MET = Metabolic Equivalent of Task; n = number of participants with characteristic; N = total number of participants available; SD = standard deviation

* The arithmetic mean and standard deviation are presented for these data which were normally distributed

https://doi.org/10.1371/journal.pone.0222578.t001

Table 2. Mean difference [95% confidence intervals] in lung function (ml) per increase in self-reported physical activity in the main study population at ECRHS II (N = 2347), when restricted to current smokers (N = 736), and when weight is removed from the models.

Physical activity	Effect	Main models\(^a\)	Current smokers\(^b\)	Weight removed\(^c\)	
		FEV\textsubscript{1}	FVC	FEV\textsubscript{1}	FVC
Active	Indirect (via CRP)	-1.2 [-10.2, 7.4]	9.0 [-12.7, 29.2]	-1.0 [-10.5, 8.3]	-1.2 [-11.4, 8.7]
	Direct (not via CRP)	50.8 [49.9, 90.0]	144.3 [71.7, 224.2]	148.7 [65.2, 240.3]	51.3 [7.8, 95.0]
	Total	49.5 [1.6, 91.4]	153.3 [75.4, 238.9]	154.4 [68.0, 248.9]	50.3 [7.0, 95.6]
Frequency	Indirect (via CRP)	-1.0 [-11.0, 8.3]	3.8 [-16.9, 26.4]	1.3 [-17.7, 22.1]	2.4 [-7.5, 12.3]
	Direct (not via CRP)	19.0 [-27.4, 65.5]	86.6 [9.2, 168.0]	113.6 [26.4, 205.5]	41.2 [-13.2, 89.0]
	Total	18.0 [-28.6, 65.4]	104.4 [34.6, 174.2]	114.9 [25.2, 207.0]	42.2 [-12.8, 92.2]
High vs. low	Indirect (via CRP)	-3.6 [-17.0, 9.4]	0.5 [-29.0, 33.9]	-2.9 [-30.8, 27.3]	-7.1 [-20.9, 6.9]
	Direct (not via CRP)	63.3 [1.1, 124.2]	126.9 [15.8, 241.5]	92.3 [36.2, 225.5]	71.9 [24.1, 141.5]
	Total	59.7 [-4.5, 120.5]	132.4 [13.6, 245.2]	98.4 [-38.2, 232.5]	64.0 [-6.7, 135.2]
Duration	Indirect (via CRP)	-2.3 [-12.5, 7.5]	6.8 [-14.1, 29.8]	4.6 [-14.2, 26.0]	-0.5 [-10.6, 9.6]
	Direct (not via CRP)	41.6 [-5.1, 89.3]	152.4 [73.1, 233.1]	165.2 [75.8, 258.4]	42.5 [-3.7, 85.6]
	Total	39.3 [-7.5, 87.2]	159.2 [80.4, 240.6]	169.9 [79.9, 261.5]	53.5 [-1.8, 102.9]
High vs. low	Indirect (via CRP)	-4.4 [-17.2, 7.9]	48.9 [-4.7, 103.3]	159.2 [80.4, 240.6]	169.9 [79.9, 261.5]
	Direct (not via CRP)	61.2 [2.8, 118.7]	142.6 [35.1, 254.8]	94.7 [26.9, 221.6]	63.1 [5.6, 120.0]
	Total	56.8 [-2.2, 113.7]	141.9 [32.4, 254.1]	90.8 [-31.1, 220.9]	58.4 [0.9, 117.0]

CRP = C-reactive protein; ECRHS = European Community Respiratory Health Survey; FEV\textsubscript{1} = forced expiratory volume in one second; FVC = forced vital capacity

* Models are adjusted for sex, age, height, weight, education, occupation, secondhand smoke exposure, smoking habit and include a random intercept for center.

* Models are adjusted for sex, age, height, education, occupation, secondhand smoke exposure, smoking habit and include a random intercept for center.

* Models are adjusted for sex, age, height, education, occupation, secondhand smoke exposure, smoking habit and include a random intercept for center.

https://doi.org/10.1371/journal.pone.0222578.t002
Table 3. Mean difference [95% confidence intervals] in lung function (ml) per increase in self-reported physical activity in the subsample with IPAQ data at ECRHS III (N = 671), when restricted to current smokers (N = 98), and when weight is removed from the models.

Physical activity (IPAQ)	Effect	Main models^a	Current smokers^b	Weight removed^c	
		FEV₁	FVC	FEV₁	FVC
T2 vs T1					
Indirect (via CRP)	9.7	[-6.3, 27.9]	7.0 [-6.1, 23.4]	-22.0 [-93.8, 24.0]	-30.2 [-118.5, 33.7]
Direct (not via CRP)	15.1	[-73.5, 108.7]	90.1 [-147.7, 201]	172.6 [-84.5, 453.2]	254.8 [-32.8, 519.4]
Total	24.9	[-69.0, 120.4]	97.1 [-9.8, 209.1]	150.7 [-92.3, 426.8]	224.6 [-77.6, 486.4]
T3 vs T1					
Indirect (via CRP)	7.0	[-9.8, 25.8]	7.0 [-6.9, 24.6]	-11.9 [-78.1, 31.8]	-20.9 [-120.2, 47.7]
Direct (not via CRP)	86.3	[-15.6, 180.1]	176.5 [55.8, 288.1]	284.0 [-10.6, 553.4]	274.7 [-23.9, 565.9]
Total	93.3	[-7.7, 187.7]	183.5 [63.7, 296.8]	272.0 [-18.7, 539.7]	253.8 [-56.5, 563.4]
Vigorous					
T2 vs T1					
Indirect (via CRP)	6.4	[-11.0, 24.1]	6.0 [-8.6, 23.2]	10.7 [-36.7, 80.8]	19.9 [-46.6, 115.8]
Direct (not via CRP)	24.7	[-73.7, 131.3]	68.3 [-47.6, 193.0]	115.5 [-237.7, 479.9]	251.0 [-119.9, 639.1]
Total	31.0	[-71.8, 140.2]	74.3 [-44.5, 199.2]	126.2 [-224.2, 491.9]	271.0 [-97.2, 669.3]
T3 vs T1					
Indirect (via CRP)	10.4	[-2.6, 26.9]	9.5 [-1.2, 25.2]	7.8 [-22.8, 50.0]	15.9 [-21.3, 69.5]
Direct (not via CRP)	100.7	[14.9, 180.0]	140.0 [38.7, 233.6]	210.4 [-18.0, 425.9]	248.0 [15.5, 462.0]
Total	111.1	[25.6, 191.2]	149.5 [48.8, 243.4]	218.2 [-12.2, 429.4]	264.0 [31.9, 479.3]
Moderate					
T2 vs T1					
Indirect (via CRP)	21.1	[5.2, 41.9]	17.3 [2.6, 38.0]	9.9 [-24.2, 62.6]	15.7 [-45.4, 87.6]
Direct (not via CRP)	60.8	[-32.7, 161.2]	82.0 [-29.3, 199.3]	152.9 [-102.5, 405.6]	195.9 [-65.8, 450.0]
Total	81.9	[-13.7, 179.7]	99.4 [-11.3, 214.0]	162.7 [-83.7, 424.5]	211.6 [-65.5, 466.3]
T3 vs T1					
Indirect (via CRP)	7.9	[-5.5, 24.1]	6.6 [-5.1, 21.8]	-12.3 [-72.0, 20.3]	-21.1 [-115.1, 35.5]
Direct (not via CRP)	68.5	[-25.3, 152.2]	153.3 [43.8, 255.4]	57.1 [-212.2, 314.2]	122.9 [-151.9, 402.0]
Total	76.4	[-16.4, 162.6]	161.9 [51.6, 264.6]	44.8 [-225.0, 297.0]	101.8 [-199.0, 389.5]
Walking					
T2 vs T1					
Indirect (via CRP)	2.5	[-14.6, 19.6]	2.2 [-12.8, 18.4]	3.8 [-26.5, 47.2]	12.9 [-38.9, 80.9]
Direct (not via CRP)	-5.3	[-97.2, 92.2]	5.9 [-100.1, 117.9]	263.3 [-6.8, 536.9]	222.7 [-51.3, 502.8]
Total	-2.8	[-96.9, 97.8]	8.1 [-100.3, 125.2]	267.1 [1.3, 558.2]	235.5 [-32, 533.3]
T3 vs T1					
Indirect (via CRP)	-1.4	[-19.2, 15.8]	-2.1 [-18.7, 13.1]	-18.9 [-104.4, 55.5]	-50 [-161.8, 31.8]
Direct (not via CRP)	-1.1	[-97.6, 88.1]	-2.6 [-115.7, 102.7]	52.4 [-293.8, 363.8]	44.6 [-308.8, 359.3]
Total	-2.5	[-97.7, 89.9]	-4.7 [-117.5, 103.1]	33.4 [-296.6, 333.3]	-5.4 [-335.3, 297.6]

CRP = C-reactive protein; ECRHS = European Community Respiratory Health Survey; FEV₁ = forced expiratory volume in one second; FVC = forced vital capacity; IPAQ = International Physical Activity Questionnaire; T1 = first tertile; T2 = second tertile; T3 = third tertile

^a Models are adjusted for sex, age, height, weight, education, occupation, secondhand smoke exposure, smoking habit and include a random intercept for center.

^b Models are adjusted for sex, age, height, weight, education, occupation, secondhand smoke exposure and include a random intercept for center.

^c Models are adjusted for sex, age, height, education, occupation, secondhand smoke exposure, smoking habit and include a random intercept for center.

https://doi.org/10.1371/journal.pone.0222578.t003
which may represent a true or chance finding. Removing weight from the models did yield
one additional association as evidence for a role of CRP for vigorous physical activity in the
subsample, but this result should be interpreted with caution as it is difficult to conclude
whether this suggests that weight might lie in the causal pathway or that residual confounding
by weight is present.

The current study was motivated by the hypothesis that regular physical activity creates an
anti-inflammatory environment in the long-term [3], which leads to higher lung function. We
chose to use individual-level variations in CRP levels to explore this hypothesis because studies
have shown that higher physical activity is associated with lower CRP levels [5,6] and higher
CRP levels are associated with both lower lung function and steeper lung function decline
[7,8]. Despite this existing literature supporting our choice, CRP levels may not be the ideal
marker as very high values can be observed. However, our results remained consistent in sensi-
tivity analyses in which the CRP data were dichotomized based on the highest quartile (≤ 75th
vs > 75th percentile) and the highest 5th percentile of CRP levels were excluded.

Given our hypothesis of a role of anti-inflammation, the use of “vigorous physical activity”
in the main population may thus not have been optimal, as this type of activity may be partially
pro-inflammatory. However, we have previously found this type of activity to be consistently
associated with higher lung function [1]. In the subsample, we did have more detailed physical
activity measures available collected using the IPAQ questionnaire, which allowed more mod-
erate anti-inflammatory types of physical activity to be considered. However, these associa-
tions risk being underpowered given the smaller sample size available.

Although we included major confounders in our analyses and tested for potential expo-
sure-mediator interactions, we cannot verify that all assumptions were met regarding residual
confounding (e.g. diet data are missing) [18]. Furthermore, participants included in this study
differed from those for whom some necessary data were missing and this non-random reten-
tion may have affected the effect estimates. Notably, individuals in management or technical
professions were over-represented in both the main and subsample study populations. Addi-
tionally, the directionality of any causal pathway cannot be fully assessed as all associations
tested were cross-sectional due to the limited availability of repeated CRP data within centers.
However, we found no indication that reverse causation may be responsible for the observed
association between physical activity and lung function in a previous longitudinal analysis in
the ECRHS [1].

Despite the aforementioned limitations, this study is the first to examine whether reduced
systemic inflammation underlies the association between increased physical activity and
improved lung function using a mediation analysis. The rather null associations observed
leads us to suggest that future studies should evaluate other biomarkers of systemic inflamma-
tion, such as anti-inflammatory cytokines released from contracting skeletal muscle during
exercise, and include more detailed (type and intensity) and repeated data on physical activity.
Furthermore, other mechanisms should be explored, such as the potential for physical activity
to lead to beneficial changes in body composition and fat distribution and changes in respira-
tory muscle endurance and strength, both of which may affect lung function. A better under-
standing of the underlying biological mechanisms is required to strengthen causal inference
between physical activity and lung function. It will also provide a gateway for developing
informed and effective public health policies.

Supporting information
S1 Appendix. Supplemental Material File.

(DOC)
Acknowledgments

ISGlobal is a member of CERCA Programme / Generalitat de Catalunya. An abstract of this work was presented at the European Respiratory Society International Congress in September, 2018. The local investigators and funding agencies for the European Community Respiratory Health Survey (ECRHS II and ECRHS III) are reported in the Supplementary Material (S1 Appendix).

Author Contributions

Conceptualization: Elaine Fuertes, Anne-Elie Carsin, Vanessa Garcia-Larsen, Stefano Guerra, Isabelle Pin, Bénédicte Leynaert, Simone Accordini, Jesús Martínez-Moratalla, Josep M. Antó, Isabel Urrutia, Audrey Le Gouellec, Joachim Heinrich, Thorarinn Gislason, Rain Jógi, Christer Janson, Debbie Jarvis, Judith García-Aymerich.

Data curation: Elaine Fuertes, Debbie Jarvis, Judith García-Aymerich.

Formal analysis: Elaine Fuertes, Judith García-Aymerich.

Funding acquisition: Elaine Fuertes, Debbie Jarvis, Judith García-Aymerich.

Investigation: Elaine Fuertes, Anne-Elie Carsin, Vanessa Garcia-Larsen, Stefano Guerra, Isabelle Pin, Bénédicte Leynaert, Simone Accordini, Jesús Martínez-Moratalla, Josep M. Antó, Isabel Urrutia, Audrey Le Gouellec, Joachim Heinrich, Thorarinn Gislason, Rain Jógi, Christer Janson, Debbie Jarvis, Judith García-Aymerich.

Methodology: Elaine Fuertes, Anne-Elie Carsin, Vanessa Garcia-Larsen, Stefano Guerra, Isabelle Pin, Bénédicte Leynaert, Simone Accordini, Jesús Martínez-Moratalla, Josep M. Antó, Isabel Urrutia, Audrey Le Gouellec, Joachim Heinrich, Thorarinn Gislason, Rain Jógi, Christer Janson, Debbie Jarvis, Judith García-Aymerich.

Resources: Elaine Fuertes, Anne-Elie Carsin, Vanessa Garcia-Larsen, Stefano Guerra, Isabelle Pin, Bénédicte Leynaert, Simone Accordini, Jesús Martínez-Moratalla, Josep M. Antó, Isabel Urrutia, Audrey Le Gouellec, Joachim Heinrich, Thorarinn Gislason, Rain Jógi, Christer Janson, Debbie Jarvis, Judith García-Aymerich.

Software: Elaine Fuertes.

Supervision: Judith García-Aymerich.

Visualization: Elaine Fuertes, Judith García-Aymerich.

Writing – original draft: Elaine Fuertes, Judith García-Aymerich.

Writing – review & editing: Elaine Fuertes, Anne-Elie Carsin, Vanessa Garcia-Larsen, Stefano Guerra, Isabelle Pin, Bénédicte Leynaert, Simone Accordini, Jesús Martínez-Moratalla, Josep M. Antó, Isabel Urrutia, Audrey Le Gouellec, Joachim Heinrich, Thorarinn Gislason, Rain Jógi, Christer Janson, Debbie Jarvis, Judith García-Aymerich.

References

1. Fuertes E, Carsin A-E, Antó JM, Bono R, Corsico AG, Demoly P, et al. Leisure-time vigorous physical activity is associated with better lung function: the prospective ECRHS study. Thorax. 2018; 73(4):376–84. https://doi.org/10.1136/thoraxjnl-2017-210947 PMID: 29306902

2. García-Aymerich J, Lange P, Benet M, Schnohr P, Antó JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007; 175(5):458–63. https://doi.org/10.1164/rccm.200607-896OC PMID: 17158282
3. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011; 11(9):607–15. https://doi.org/10.1038/nri3041 PMID: 21818123
4. Jenkins AR, Holden NS and Jones AW. Pulmonary rehabilitation, exercise, and exacerbations of COPD: known clinical efficacy and the unknown mechanisms. Chest. 2018; 153(5):1281–82. https://doi.org/10.1016/j.chest.2018.01.054 PMID: 29323104
5. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005; 45(10):1563–9. https://doi.org/10.1016/j.jacc.2004.12.077 PMID: 15893167
6. Hamer M, Sabia S, Bath GD, Shiplea MJ, Tabak AG, Singh-Manoux A, et al. Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. 2012; https://doi.org/10.1161/CIRCULATIONAHA.112.103879 PMID: 22891048
7. Fogarty AW, Jones S, Britton JR, Lewis SA, McKeever T. A prospective study of systemic inflammation and decline in lung function in a general population. Thorax. 2007; 62(6):515–20.
8. Shaaban R, Kony S, Driss F, Leynaert B, Soussan D, Pin I, et al. Change in C-reactive protein levels and FEV1 decline: A longitudinal population-based study. Respir Med. 2006; 100(12):2112–20. https://doi.org/10.1016/j.rmed.2006.03.027 PMID: 16650972
9. Janson C, Anto J, Burney P, Chinn S, Heinrich J, Jarvis D, et al. The European Community Respiratory Health Survey: what are the main results so far? Eur Respir J. 2001; 18(3):598–611. https://doi.org/10.1183/09031936.01.00205801 PMID: 11589359
10. Burney PG, Lucznyska C, Chinn S, Jarvis D. The European Community Respiratory Health Survey. Eur Respir J. 1994; 7(5):954–60. https://doi.org/10.1183/09031936.94.07050954 PMID: 8050554
11. The European Community Respiratory Health Survey II Steering Committee. The European Community Respiratory Health Survey II. Eur Respir J. 2002; 20(5):1071–9. https://doi.org/10.1183/09031936.02.00046802 PMID: 1249157
12. Miller M, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005; 26:319–38. https://doi.org/10.1183/09031936.05.00034805 PMID: 16055882
13. Craig CL, Marshall AL, Sjorstrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire:12-country reliability and validity. Med Sci Sport Exer. 2003; 35:1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB PMID: 12900694
14. Imai K, Keele L, Tingley D. A General Approach to Causal Mediation Analysis. Psychol Methods. 2010; 15(4):309–334. https://doi.org/10.1037/a0020761 PMID: 20954780
15. Tingley D, Yamamoto T, Hirose K, Keele L and Imai K. Mediation: R package for causal mediation analysis. 2014.
16. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-Value. Ann Intern Med. 2017; 167(4):268–274. https://doi.org/10.7326/M16-2807 PMID: 28693043
17. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to assess the potential effect of unmeasured confounding in observational studies. JAMA. 2019; 321(6):602–603. https://doi.org/10.1001/jama.2018.21554 PMID: 30676631
18. VanderWeele T. Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press. New York; 2015.