A New Monotone Quantity along the Inverse Mean Curvature Flow in \mathbb{R}^n

Kwok-Kun Kwong* Pengzi Miao†

Abstract

We find a new monotone increasing quantity along smooth solutions to the inverse mean curvature flow in \mathbb{R}^n. As an application, we derive a sharp geometric inequality for mean convex, star-shaped hypersurfaces which relates the volume enclosed by a hypersurface to a weighted total mean curvature of the hypersurface.

1 Statement of the Result

Monotone quantities along hypersurfaces evolving under the inverse mean flow have many applications in geometry and relativity. In [3], Huisken andIlmanen applied the monotone increasing property of Hawking mass to give a proof of the Riemannian Penrose Inequality. In a recent paper [1], Brendle, Hung and Wang discovered a monotone decreasing quantity along the inverse mean curvature flow in Anti-Desitter-Schwarzschild manifolds and used it to establish a Minkowski-type inequality for star-shaped hypersurfaces.

In this note, we provide a new monotone increasing quantity along smooth solutions to the inverse mean curvature flow in \mathbb{R}^n:

Theorem 1. Let Σ be a smooth, closed, embedded hypersurface with positive mean curvature in \mathbb{R}^n. Let I be an open interval and $X : \Sigma \times I \to \mathbb{R}^n$ be a smooth map satisfying

$$\frac{\partial X}{\partial t} = \frac{1}{H'},$$

(1.1)
where H is the mean curvature of the surface $\Sigma_t = X(\Sigma, t)$ and ν is the outward unit normal vector to Σ_t. Let Ω_t be the bounded region enclosed by Σ_t and $r = r(x)$ be the distance from x to a fixed point O. Then the function

$$Q(t) = e^{-\frac{n-1}{n-2}t} \left[n\text{Vol}(\Omega_t) - \frac{1}{n-1} \int_{\Sigma_t} r^2 H d\mu \right]$$

(1.2)

is monotone increasing and $Q(t)$ is a constant function if and only if Σ_t is a round sphere for each t. Here $\text{Vol}(\Omega)$ denotes the volume of a bounded region Ω and $d\mu$ denotes the volume form on a hypersurface.

As an application, we derive a sharp inequality for star-shaped hypersurfaces in \mathbb{R}^n which relates the volume enclosed by a hypersurface to an r^2-weighted total mean curvature of the hypersurface.

Theorem 2. Let Σ be a smooth, star-shaped, closed hypersurface embedded in \mathbb{R}^n with positive mean curvature. Then

$$n\text{Vol}(\Omega) \leq \frac{1}{n-1} \int_{\Sigma} r^2 H d\mu$$

(1.3)

where $\text{Vol}(\Omega)$ is the volume of the region Ω enclosed by Σ, r is the distance to a fixed point O and H is the mean curvature of Σ. Furthermore, equality in (1.3) holds if and only if Σ is a sphere centered at O.

We give some remarks about Theorem 1 and Theorem 2. The discovery of the monotonicity of $Q(t)$ in Theorem 1 is motivated by the recent work of Brendle, Hung and Wang in [1, Section 5]. To prove Theorem 1 we also need a result due to Ros [7] which was proved using Reilly’s formula [6]. Having known $Q(t)$ is monotone increasing, to prove Theorem 2 it may be attempting to ask whether $\lim_{t \to \infty} Q(t) = 0$. We do not know if this is true because both $\text{Vol}(\Omega_t)$ and $\int_{\Sigma_t} r^2 H d\mu$ grow like $e^{\frac{n-1}{n-2}t}$ when $\{\Sigma_t\}$ are spheres while there is only a factor of $e^{-\frac{n-1}{n-2}t}$ in (1.2). Instead, we take an alternate approach by first proving Theorem 2 for a convex hypersurface Σ_t. The proof in that case again makes use of Reilly’s formula. When Σ is merely assumed to be mean convex and star-shaped, we prove Theorem 2 by reducing it to the convex case using solutions to the inverse mean curvature flow provided by the works of Gerhardt [2] and Urbas [8]. If a stronger result of Huisken and Ilmanen in [4] is applied, Theorem 2 indeed can be shown to hold for star-shaped surfaces with nonnegative mean curvature. We will discuss this case in the end.
2 Proof of the Theorems

Given a compact Riemannian manifold \((\Omega, g)\) with boundary \(\Sigma\), we recall that Reilly’s formula [6] asserts

\[
\int_{\Omega} |\nabla^2 u|^2 + \langle \nabla(\Delta u), \nabla u \rangle + \text{Ric}(\nabla u, \nabla u) \, dv = \int_{\Sigma} (\Delta u) \frac{\partial u}{\partial \nu} - \|\nabla \Sigma u, \nabla \Sigma u\| - 2(\Delta \Sigma u) \frac{\partial u}{\partial \nu} - H \left(\frac{\partial u}{\partial \nu} \right)^2 d\mu. \tag{2.1}
\]

Here \(u\) is a smooth function on \(\Omega\); \(\nabla^2, \Delta\) and \(\nabla\) denote the Hessian, the Laplacian and the gradient on \(\Omega\); \(\Delta \Sigma\) and \(\nabla \Sigma\) denote the Laplacian and the gradient on \(\Sigma\); \(\nu\) is the unit outward normal vector to \(\Sigma\); \(\|II\|\) and \(H\) are the second fundamental form and the mean curvature of \(\Sigma\) with respect to \(\nu\); and \(\text{Ric}\) is the Ricci curvature of \(g\).

To prove Theorem 1, we need a result of Ros [7], which was proved by choosing \(\Delta u = 1\) on \(\Omega\) and \(u = 0\) at \(\Sigma\) in the above Reilly’s formula.

Theorem 3 (Ros [7]). Let \((\Omega, g)\) be an \(n\)-dimensional compact Riemannian manifold with nonnegative Ricci curvature with boundary \(\Sigma\). Suppose \(\Sigma\) has positive mean curvature \(H\), then

\[
n \text{Vol}(\Omega) \leq (n - 1) \int_{\Sigma} \frac{1}{H} d\mu. \tag{2.2}
\]

and equality holds if and only if \((\Omega, g)\) is isometric to a round ball in \(\mathbb{R}^n\).

Proof of Theorem 3. We use ‘ to denote differentiation w.r.t \(t\). Some basic formulas along the inverse mean curvature flow (1.1) in \(\mathbb{R}^n\) are

\[
H' = -\Delta_{\Sigma_t} \left(\frac{1}{H} \right) - \frac{\|II\|^2}{H}, \quad d\mu' = d\mu, \quad \text{Vol}(\Omega_t)' = \int_{\Sigma_t} \frac{1}{H} d\mu. \tag{2.3}
\]

Let \(u = r^2\), then \(u\) satisfies

\[
\nabla^2 u = 2g \quad \text{and} \quad \Delta u = 2n, \tag{2.4}
\]

where \(g\) is the Euclidean metric. Now

\[
\left(\int_{\Sigma_t} uH d\mu \right)' = \int_{\Sigma_t} (u'H + uH' + uH) d\mu. \tag{2.5}
\]
Let \(\langle \cdot, \cdot \rangle \) be the Euclidean inner product. By (2.3), (2.4) and the divergence theorem, we have
\[
\int_{\Sigma_t} u' H d\mu = \int_{\Sigma_t} \langle \nabla u, \frac{1}{H} \nu \rangle H d\mu = \int_{\Omega_t} \Delta u dV = 2n \text{Vol}(\Omega_t). \tag{2.6}
\]
By (2.4), we also have
\[
\Delta_{\Sigma_t} u = \Delta u - H \frac{\partial u}{\partial \nu} - \nabla^2 u(\nu, \nu) = 2(n-1) - H \frac{\partial u}{\partial \nu},
\]
which together with (2.3) - (2.4) implies
\[
\int_{\Sigma_t} u H' d\mu = \int_{\Sigma_t} \left(-\frac{\Delta_{\Sigma_t} u}{H} - \frac{u\|\mathbb{I}\|^2}{H} \right) d\mu = \int_{\Sigma_t} \left(-\frac{2(n-1)}{H} + \frac{\partial u}{\partial \nu} - \frac{u\|\mathbb{I}\|^2}{H} \right) d\mu = -\int_{\Sigma_t} \frac{2(n-1)}{H} d\mu + 2n \text{Vol}(\Omega_t) - \int_{\Sigma_t} \frac{u\|\mathbb{I}\|^2}{H} d\mu. \tag{2.7}
\]
Substituting (2.6) and (2.7) into (2.5) yields
\[
\left(\int_{\Sigma_t} u H d\mu \right)' = 4n \text{Vol}(\Omega_t) + \int_{\Sigma_t} \left[-\frac{2(n-1)}{H} - \frac{u\|\mathbb{I}\|^2}{H} + uH \right] d\mu \\
\leq 4n \text{Vol}(\Omega_t) + \int_{\Sigma_t} \left[-\frac{2(n-1)}{H} - \frac{uH}{n-1} + uH \right] d\mu \\
= 4n \text{Vol}(\Omega_t) + \int_{\Sigma_t} \left[-\frac{2(n-1)}{H} + \frac{n-2}{n-1} uH \right] d\mu = 4n \text{Vol}(\Omega_t) + \frac{n-2}{n-1} \int_{\Sigma_t} uH d\mu \\
\leq 4n \text{Vol}(\Omega_t) - 2n \text{Vol}(\Omega_t) + \frac{n-2}{n-1} \int_{\Sigma_t} uH d\mu = 2n \text{Vol}(\Omega_t) + \frac{n-2}{n-1} \int_{\Sigma_t} uH d\mu \tag{2.8}
\]
where we have used \(\|\mathbb{I}\|^2 \geq \frac{1}{n-1} H^2 \) in line 2 and Theorem 3 in line 4. On the other hand, by Theorem 3 again, we have
\[
\text{Vol}(\Omega_t)' = \int_{\Sigma_t} \frac{1}{H} d\mu \geq \frac{n}{n-1} \text{Vol}(\Omega_t). \tag{2.9}
\]
It follows from (2.8) and (2.9) that
\[
\left[n(n - 1)\text{Vol}(\Omega_t) - \int_{\Sigma_t} uHd\mu \right] \geq \frac{n - 2}{n - 1} \left[n(n - 1)\text{Vol}(\Omega_t) - \int_{\Sigma_t} uHd\mu \right]
\]
or equivalently
\[
e^{-\frac{n - 2}{n - 1}t} \left(n\text{Vol}(\Omega_t) - \frac{1}{n - 1} \int_{\Sigma_t} r^2Hd\mu \right) \geq 0. \tag{2.10}
\]
We conclude that \(Q(t) \) is monotone increasing, moreover \(Q(t) \) is a constant function if and only if equalities in (2.8) and (2.9) hold. By Theorem 3, we know these equalities hold if and only if \(\Sigma_t \) is a round sphere for all \(t \). This completes the proof of Theorem 1. \(\Box \)

Next, we prove Theorem 2 in the case that \(\Sigma \) is a convex hypersurface.

Proposition 1. Let \(\Sigma \) be a smooth, closed, convex hypersurface embedded in \(\mathbb{R}^n \). Then
\[
n\text{Vol}(\Omega) \leq \frac{1}{n - 1} \int_{\Sigma} r^2Hd\mu \tag{2.11}
\]
where \(\text{Vol}(\Omega) \) is the volume of the region \(\Omega \) enclosed by \(\Sigma \), \(r \) is the distance to a fixed point \(O \) and \(H \) is the mean curvature of \(\Sigma \). Moreover, equality in (2.11) holds if and only if \(\Sigma \) is a sphere centered at \(O \).

Remark 4. Proposition 1 generalizes an inequality of the first author in [5, Theorem 3.2 (1)].

Proof. Apply Reilly’s formula (2.1) to the Euclidean region \(\Omega \) and choose \(u = r^2 \), we have
\[
4n(n - 1)\text{Vol}(\Omega) = \int_{\Sigma} II(\nabla^{\Sigma}u, \nabla^{\Sigma}u) + 2(\Delta_{\Sigma}u)\frac{\partial u}{\partial \nu} + H \left(\frac{\partial u}{\partial \nu} \right)^2 d\mu
\]
where
\[
\Delta_{\Sigma}u = \Delta u - H \frac{\partial u}{\partial \nu} - \nabla^2 u(\nu, \nu) = 2(n - 1) - H \frac{\partial u}{\partial \nu}.
\]
Therefore,
\[
\int_{\Sigma} H \left(\frac{\partial u}{\partial \nu} \right)^2 d\mu = \int_{\Sigma} II(\nabla^{\Sigma}u, \nabla^{\Sigma}u)d\mu + 4n(n - 1)\text{Vol}(\Omega). \tag{2.12}
\]
Since Σ is convex, $\mathbb{II}(\cdot,\cdot)$ is positive definite. Hence, (2.12) implies

$$n(n-1)\text{Vol}(\Omega) \leq \frac{1}{4} \int_{\Sigma} H\langle \nabla(r^2), \nu \rangle^2 d\mu \leq \int_{\Sigma} Hr^2 d\mu. \quad (2.13)$$

When $n(n-1)\text{Vol}(\Omega) = \int_{\Sigma} Hr^2 d\mu$, we must have $\mathbb{II}(\nabla \Sigma u, \nabla \Sigma u) = 0$, hence $\nabla \Sigma u = 0$. This implies that $u = r^2$ is a constant on Σ, which shows that Σ is a sphere centered at O. \hfill \square

To deform a star-shaped hypersurface to a convex hypersurface through the inverse mean curvature flow, we make use of a special case of a general result of Gerhardt [2] and Urbas [8].

Theorem 5 (Gerhardt [2] and Urbas [8]). Let Σ be a smooth, closed hypersurface in \mathbb{R}^n with positive mean curvature, given by a smooth embedding $X_0 : S^{n-1} \to \mathbb{R}^n$. Suppose Σ is star-shaped with respect to a point P. Then the initial value problem

$$\begin{cases}
\frac{\partial X}{\partial t} = \frac{1}{H} \nu \\
X(\cdot,0) = X_0(\cdot)
\end{cases} \quad (2.14)$$

has a unique smooth solution $X : S^{n-1} \times [0, \infty) \to \mathbb{R}^n$, where ν is the unit outer normal vector to $\Sigma_t = X(S^{n-1}, t)$ and H is the mean curvature of Σ_t. Moreover, Σ_t is star-shaped with respect to P and the rescaled hypersurface $\tilde{\Sigma}_t$, parametrized by $\tilde{X}(\cdot, t) = e^{-\frac{t}{n-1}} X(\cdot, t)$, converges to a sphere centered at P in the C^∞ topology as $t \to \infty$.

Now we can complete the proof of Theorem [2].

Proof of Theorem [2] By Theorem 5, there exists a smooth solution \{\Sigma_t\} to the inverse mean curvature flow with initial condition Σ. Moreover, the rescaled hypersurface $\tilde{\Sigma}_t = \{e^{-\frac{t}{n-1}} x \mid x \in \Sigma_t\}$ converges exponentially fast in the C^∞ topology to a sphere. In particular, $\tilde{\Sigma}_t$ and hence Σ_t, must be convex for large t.

Let T be a time when Σ_T becomes convex. By Proposition [11], we have

$$n\text{Vol}(\Omega_T) \leq \frac{1}{n-1} \int_{\Sigma_T} r^2 H d\mu.$$

6
i.e. $Q(T) \leq 0$. By Theorem 1 we know $Q(t)$ is monotone increasing, hence

$$Q(0) \leq Q(T) \leq 0$$

which proves (1.3).

If the equality in (1.3) holds, then $Q(0) = 0$. It follows from the monotonicity of $Q(t)$ and the fact $Q(t) \leq 0$ for large t that

$$Q(t) = 0, \quad \forall \ t.$$

By Theorem 1 this implies that Σ_t is a sphere for each t. By Proposition 1 Σ_t is a sphere centered at O for large t. Therefore, we conclude that the initial hypersurface Σ is a sphere centered at O.

\[\square \]

3 The case of nonnegative mean curvature

Suppose Σ is a star-shaped hypersurface with nonnegative mean curvature in \mathbb{R}^n. By approximating Σ with star-shaped hypersurfaces with positive mean curvature, it is not hard to see that the inequality (1.3) still holds for Σ. (For instance, such an approximation can be provided by the short time solution to the mean curvature flow with initial condition Σ.)

To see that the rigidity part of (1.3) also holds for such a Σ, we resort to a result of Huisken and Ilmanen in [4, Theorem 2.5]:

Theorem 6 (Huisken and Ilmanen [4]). Let $X_0 : \mathbb{S}^{n-1} \rightarrow \mathbb{R}^n$ be an embedding such that $\Sigma = X_0(\mathbb{S}^{n-1})$ is a C^1, star-shaped hypersurface with measurable, bounded, nonnegative weak mean curvature. Then

$$\frac{\partial X}{\partial t} = \frac{1}{H} \nu$$

has a smooth solution $X : \mathbb{S}^{n-1} \times (0, \infty) \rightarrow \mathbb{R}^n$ such that as $t \rightarrow 0^+$, the hypersurface $\Sigma_t = X(\mathbb{S}^{n-1}, t)$ converges to Σ uniformly in C^0.

Remark 7. In the above theorem, if the initial surface Σ is assumed to be smooth, the same proof in [4] together with the upper estimate of H for smooth solutions (c.f. [3, (1.4)]) shows that as $t \rightarrow 0^+$, Σ_t converges to Σ in $W^{2,p}$ norm for any $1 < p < \infty$. On the other hand, by Theorem 5, Σ_t converges to a sphere in the C^∞ topology after rescaling, as $t \rightarrow \infty$. In particular, Σ_t is convex for large enough $t > 0$.

7
It follows from Theorem 1, Proposition 1, Theorem 6 and Remark 7 that

Theorem 8. Let Σ be a smooth, star-shaped, closed hypersurface embedded in \mathbb{R}^n with nonnegative mean curvature. Then

$$n\text{Vol}(\Omega) \leq \frac{1}{n-1} \int_{\Sigma} r^2 H \, d\mu$$

(3.2)

where $\text{Vol}(\Omega)$ is the volume of the region Ω enclosed by Σ, r is the distance to a fixed point O and H is the mean curvature of Σ. Furthermore, equality in (1.3) holds if and only if Σ is a sphere centered at O.

References

[1] S. Brendle, P.-K. Hung, and M.-T. Wang, *A Minkowski-type inequality for hypersurfaces in the Anti-Desitter-Schwarzschild manifold*, arXiv:1209.0669.

[2] C. Gerhardt, *Flow of nonconvex hypersurfaces into spheres*, J. Differential Geom. **32** (1990), no. 1, 299–314.

[3] G. Huisken and T. Ilmanen, *The inverse mean curvature flow and the Riemannian Penrose inequality*, J. Differential Geom. **59** (2001), no. 3, 353–437.

[4] G. Huisken and T. Ilmanen, *Higher regularity of the inverse mean curvature flow*, J. Differential Geom. **80** (2008), no. 3, 433–451.

[5] K.-K. Kwong, *On convex hypersurfaces in space forms and eigenvalues estimates for differential forms*, arXiv:1207.3999.

[6] R.C. Reilly, *Applications of the Hessian operator in a Riemannian manifold*, Indiana Univ. Math. J. **26** (1977), 459–472.

[7] A. Ros, *Compact Hypersurfaces with Constant Higher Order Mean Curvatures*, Rev. Mat. Iberoamericana **3** (1987), no. 3, 447–453.

[8] J.I.E. Urbas, *On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures*, Math. Z. **205** (1990), no. 3, 355–372.