Two SMARCAD1 Variants Causing Basan Syndrome in a Canadian and a Dutch Family

Youssef Elhaji\(^1\), Tessa M.A. van Henten\(^2\), Claudia A.L. Ruivenkamp\(^3\), Mathew Nightingale\(^4\), Gijs WE Santen\(^3\), Lydia E. Vos\(^5\) and Peter R. Hull\(^1\)

Basan syndrome is an autosomal dominant genodermatosis characterized by congenital adermatoglyphia, transient congenital facial milia, neonatal acral bullae, and absent or reduced sweating. Basan syndrome is rare and has been reported in only 10 kindreds worldwide. It is caused by variants in the skin-specific isoform of SMARCAD1, which starts with an alternative exon 1. All reported variants, except for one large deletion, are point mutations within the donor splice site of the alternative exon 1. In this paper, we report two families with Basan syndrome and describe two SMARCAD1 variants. In one family, we have identified a complex structural variant (a deletion and a nontandem inverted duplication) using whole-genome optical mapping and whole-genome sequencing. Although this variant results in the removal of the first nine exons of SMARCAD1 and exon 1 of the skin-specific isoform, it manifested in the typical Basan phenotype. This suggests that unlike the skin-specific isoform, a single copy of full-length SMARCAD1 is sufficient for its respective function. In the second family, whole-exome sequencing revealed a deletion of 12 base pairs spanning the exon–intron junction of the alternative exon 1 of the skin-specific SMARCAD1 isoform. In conclusion, we report two additional families with Basan syndrome and describe two SMARCAD1 pathogenic variants.

JID Innovations (2021);1:100022 doi:10.1016/j.xjidi.2021.100022
Table 1. Summary of Clinical Features of Basan Syndrome Described in Previous Literature

Phenotype and Genotype	Baird (1964)	Basan (1965)	Reed and Schreiner (1983)	Límová et al. (1993)	Gagey-Caron et al. (2009)	Luna and Larralde (2012)	Marks et al. and Adra (2014)	Chang et al. (2018)	Valentin et al. (2018)	This study
	N = 13	N = 8	N = 4	N = 3	N = 3	N = 3	N = 5	N = 2	N = 4	N = 12
Adematoglyphia	+ (13/13)	+ (6/8)	+ (4/4)	+ (3/3)	+ (3/3)	+ (5/5)	+ (7/7)	+ (2/2)	+ (1/1)	C: + (12/12)
Hypohidrosis	+ (13/13)	+ (2/8)	+ (4/4)	+ (3/3)	+ (3/3)	− (5/5)	+ (2/7)	+ (8/8)	n/a	D: + (3/3)
Absence of acrosyringia	+ (1/13)	n/a	+ (1/4)	+ (1/3)	n/a	− (5/5)	n/a	n/a	n/a	
Acral bullae	n/a	− (8/8)	+ (2/4)	+ (3/3)	+ (2/3)	+ (1/5)	+ (4/7)	+ (8/8)	2 + (1/2)	C: + (12/12)
Congenital milia	+ (13/13)	n/a	+ (2/4)	− (3/3)	+ (2/3)	+ (2/5)	+ (7/7)	+ (8/8)	2 + (1/2)	D: + (3/3)
Contracts of digits	+ (7/13)	+ (1/8)	− (4/4)	+ (3/3)	− (3/3)	n/a	n/a	n/a	2 + (1/2)	C: − (12/12)
Hyperkeratosis	+ (1/13) 1	+ (2/8)	n/a	+ (1/3)	n/a	n/a	n/a	n/a	n/a	D: + (3/3)
Calluses	+ (2/13)	+ (4/8)	+ (3/4)	+ (4/5)	+ (2/7)	+ (1/8) leather like texture	n/a	n/a	C: − (12/12)	
Nail involvement	− (13/13)	+ (3/8)	n/a	+ (4/5)	+ (2/7)	+ (1/8) nail plate dystrophy	n/a	+ (3/8)	+ (1/8) Nail plate dystrophy	D: + (3/3)
Transverse palmar crease	− (13/13)	n/a	+ (3/4)	n/a	− (3/3)	n/a	n/a	+ (1/8)	n/a	C: − (12/12)
Additional symptoms	Sensitive to cold and hot weather. Bilateral webbing of the toes (5/13)	n/a	Increased tolerance to heat (3/4)	Fine grasping difficulties (3/3)	Hypopigmented macules at the sites of previous blisters on hands and feet (2/3)	Bilateral syndactyly of fingers and toes (3/5)	Hyperpigmented macules (5/8)	Hyperpigmented macules (1/1)	D: Susceptibility to heat strokes (3/3)	C: − (12/12)
SMARCAD1 mutation	n/a	n/a	n/a	n/a	n/a	c.378+3A>T	c.378+1G>T	c.378+2T>G	C: complex rearrangement	

Abbreviations: C, Canadian; D, Dutch; del, deletion; kb, kilobase; n/a, not applicable.

1Family members available for examination.
2Descendants from the original Baird kindred.
3Second unrelated family.
Heterozygous variants in the skin-specific isoform are associated with three allelic autosomal dominant syndromes: Basan syndrome, isolated adermatoglyphia (Online Mendelian Inheritance in Man #136000), and Huriez syndrome (Online Mendelian Inheritance in Man #81600) (Burger et al., 2011; Lee et al., 2000; Marks et al., 2014; Nousbeck et al., 2011; Valentin et al., 2018). The three syndromes are characterized by adermatoglyphia and overlap in other clinical features (Günther et al., 2018). Huriez syndrome is characterized by a more severe phenotype, including congenital scleroatrophy of the hands and feet, palmoplantar keratoderma, nail changes, and an increased risk of cutaneous squamous cell carcinoma in affected areas of the skin (Günther et al., 2018; Lee et al., 2000). These data indicate a critical role for SMARCAD1 skin isoform in the formation of dermatoglyphs. This also indicates that this isoform is expressed in early embryogenesis because dermatoglyphs are fully formed and become permanent by the 24th week of gestation (Babler, 1991).

To date, only five variants have been identified in patients with Basan syndrome. These variants involve the same conserved donor splice site at the 3’ end of exon 1 of the skin-specific isoform and result in haploinsufficiency for this isoform (Chang et al., 2018; Li et al., 2016; Luna and Larralde, 2012; Marks et al., 2014; Valentin et al., 2018). Four of the reported variants are point mutations located within the splice site consensus: c.378+1G>T, c.378+2T>G, c.378+3A>T, and c.378+5G>A (Figure 1c). The fifth variant is a large (116 kilobase [kb]) deletion spanning the same splice site (Chang et al., 2018).

In this study, we report two additional families with Basan syndrome: a Canadian and a Dutch family. We describe two SMARCAD1 variants causing Basan phenotype in these families: a deletion of 12 base pairs (bps) affecting the skin-specific isoform and a complex rearrangement involving the full length and skin-specific isoforms.

RESULTS

Two unrelated families—a Canadian family and a Dutch family—have been diagnosed with Basan syndrome (Figure 2). The probands of the Canadian family (V:2 and V:3) were dizygotic twin neonates and presented with congenital adermatoglyphia and multiple milia on the chin (Figure 3). Both developed blistering near the ankles at birth that healed within days. A five-generation detailed family history revealed >10 affected members from the maternal side (Figure 2a). In addition to adermatoglyphia, all affected members (n = 12) had transient milia on the face and blisters at birth and suffered from lack of sweat and susceptibility to heat strokes (Table 1). Four affected members (II:1, II:3, IV:2, IV:3) had webbing of the fingers. All affected individuals had normal nails, hair, teeth, and skin pigmentation.

The Dutch family consists of a mother and her two children (Figure 2b). In 2017, the mother, aged 39 years, presented at the dermatology clinic with palmoplantar adermatoglyphia and complaints of dry skin (Figure 4a). The patient also
noticed a frequent onion-like smell due to the dry skin. At birth, she had transient milia, which spontaneously disappeared in the first year of life, and hypopigmented macules that faded over the course of several years. In addition, painful palmoplantar punctate keratoderma and hyperkeratosis in combination with calluses have been (and still are) present since birth. She has never had acral bullae. Physical examination showed adermatoglyphia, hypohidrosis, tapered fingertips and palmar and plantar xerosis, and punctate hyperkeratosis. Onychorrhexis with deep longitudinal ridges and Beau lines were also seen. The fingernails showed clubbing on the second and fifth digit of the right hand. No
transverse crease of the palm was observed. Her hair, nipples, mouth, and teeth revealed no abnormalities. The daughter and son, aged 10 and 7 years, respectively, were also affected and showed similar clinical features: adermatoglyphia; congenital milia; xerosis; punctate hyperkeratosis; hypo-pigmented macules on both hands, wrists, and feet; tapered fingertips; and the line of Beau on the toenails (Figure 4b–e).

In addition, callosities were observed on their palms, wrists, and soles of the feet. Sharply-to-moderate demarcated skin to pink colored dry scaly soft papules were present on the dorsal side of the proximal interphalangeal joints (knuckle pads), and sharply-to-moderate demarcated skin-colored flat soft papules were present on the dorsal side of the proximal interphalangeal phalanx and metacarpophalangeal joints, and moderate to poorly demarcated irregularly formed hypopigmented maculea on the dorsal side of the hand; son’s foot showing moderate to poorly demarcated hypopigmented maculea on the dorsal side of the toes and Beau’s lines on toenail I; and son’s foot showing sharply-to-moderate demarcated regularly formed hypopigmented maculea on the medial side of the edge and sole and dry scaly skin and punctate hyperkeratosis on the toes and sole. Consent for the publication of these images was obtained from the proband.

Identification of two SMARCAD1 variants

Whole-exome and whole-genome sequencing and structural variant analysis revealed two variants: a complex rearrangement in a Canadian family and a 12-bp deletion in a Dutch family. To our knowledge, both variants have not been previously reported.

A complex SMARCAD1 rearrangement causing Basan syndrome in the Canadian family

Targeted Sanger sequencing of the region spanning SMARCAD1 hotspot, the donor splice site of exon 1 of SMARCAD1 skin-specific isoform, was performed for one of the probands, and it revealed no variant. We then investigated other possible variants by performing a Trio Whole-Exome Sequencing (proband V:2, affected mother IV:2, and unaffected father IV:1). No candidate pathogenic variants were identified. This raised the possibility of a noncoding or a structural variant as the underlying cause of Basan phenotype in this family. To assess this, we performed Whole-Genome Sequencing and Whole-Genome Optical Mapping (BioNano Saphyr platform; Bionano Genomics, San Diego, CA) for one of the probands.

BioNano Optical Mapping data analysis predicted a heterozygous deletion of ~28.1 kb located within the region hg38 chr4:94,165,620-chr4:94,255,257 (Figure 5a). This region is mapped to the 5’ end of SMARCAD1 and its upstream sequences. Further copy number variation analysis using genome sequencing data revealed a more complex structural rearrangement within this region (a deletion of ~50.9 kb and a duplication of ~23.4 kb) (Figure 5b). The predicted structural variants were confirmed first by PCR using primers specific for each of the predicted variants and then by Sanger sequencing to determine all the breakpoints (Figure 5c and
Table 2). The deletion comprises ~50.9-kb region (hg38 chr4:94,203365-94,254,728). It encompasses exons 1–9 of SMARCAD1 long isoform and exon 1 of the short isoform and includes the known mutational hotspot at the donor splice site of the alternative exon 1. The deletion also includes the first exon of a long noncoding RNA (LOC101929210) located upstream of SMARCAD1. The duplication, comprising ~23.4-kb region, is located in intron 1 of the long noncoding RNA (hg38 chr4:94,175,790-94,199,182). The duplication is an inverted nontandem duplication. The inverted copy is inserted downstream at position chr4:94,203365, replacing the 50.1-kb deletion. The size of the duplication (~23.4 kb) may account for and explain the difference between the optical mapping predicted deletion (~28 kb) and the actual deletion size (~51 kb).

A deletion in SMARCAD1 short isoform causing Basan syndrome in the Dutch family

Whole-exome sequencing for the Dutch proband revealed a 12-bp deletion (c.374_378+7del) spanning the exon/intron junction of SMARCAD1 short isoform (Figure 6). The deletion was confirmed by Sanger sequencing and includes the last five nucleotides of the exon and the first seven nucleotides of the intron, thus abolishing the donor splice site.

DISCUSSION

Pathogenic variants in SMARCAD1 skin-specific isoform are associated with three syndromes with overlapping features: isolated adermatoglyphia, Basan syndrome, and Huriez syndrome (Burger et al., 2011; Lee et al., 2000; Marks et al., 2014; Nousbeck et al., 2011; Valentin et al., 2018). All reported SMARCAD1 skin-specific isoform variants involve the donor splice site of exon 1 and result in a complete loss of expression of the skin-specific isoform (Figure 1c) (Günther et al., 2018; Nousbeck et al., 2011). These data indicate that haploinsufficiency for the skin-specific isoform is the common underlying cause for isolated adermatoglyphia, Basan, and Huriez phenotypes. Interestingly, the same SMARCAD1 variant may result in different syndromes in different families. For example, one variant, c.378+1G>T, has been reported in a family with Basan syndrome and in
another with isolated adermatoglyphia (Li et al., 2016; Nousbeck et al., 2011). Another variant, c.378+2T>C, has been associated with isolated adermatoglyphia and with Huriez syndrome (Günther et al., 2018; Nousbeck et al., 2011). In addition, whereas the 12-bp deletion (c.374_378del) identified in this study is associated with Basan syndrome, an overlapping 18-bp deletion (c.363_378del) was previously reported in a family with Huriez syndrome (Günther et al., 2018). Recently, Valentin et al. (2018) suggested that adermatoglyphia and Basan syndromes are variable expressions of a single syndrome for which they proposed the name SMARCAD syndrome (SMARCAD1-associated, congenital facial milia, adermatoglyphia, reduced sweating, contractures, acral bullae, and dystrophy of the nails syndrome). We suggest that Huriez syndrome belongs to the same group and may represent the severe end of the same phenotypic spectrum.

The markedly different manifestations of SMARCAD1 variants raise the possibility of a modifier polymorphism in SMARCAD1 or in other genes. However, it is important to note that no single family has been reported with >1 of these syndromes, implying that the modifying factor cosegregates with the causative variant. We suggest that if modifier polymorphism(s) exist, they should therefore be located within the mutant SMARCAD1 allele or in its linked flanking region.

The complex structural rearrangement identified in the Canadian family is intriguing. Although the loss of function affects both SMARCAD1 isoforms as well as the adjacent long noncoding RNA (LOC101929210), the variant resulted in the typical Basan phenotype with no additional manifestations or increased severity. A similar finding was reported by Chang et al. (2018) where a large deletion involving both isoforms was associated with the typical Basan phenotype. Thus, unlike the skin-specific isoform, a single copy of SMARCAD1 full length appears to be sufficient for its respective function.

SMARCAD1 is located on chromosome 4 (4q22) within a common fragile site (FRA4F) (Rozier et al., 2004). Frailty sites are chromosomal loci where spontaneous rearrangements are common and have been associated with different diseases (Rozier et al., 2004). It is surprising that rearrangements in SMARCAD1 have not been reported previously. One speculation is that many cases of isolated adermatoglyphia and Basan syndromes are not reported, given the benign nature of these syndromes. In addition, the structural variants that occur at the 5’ portion of SMARCAD1 may be asymptomatic because the skin-specific isoform would be spared.

In conclusion, we report two new families with Basan syndrome and describe their clinical phenotypes. We have identified two SMARCAD1, to our knowledge, previously unreported variants associated with Basan syndrome. Most of the previously reported SMARCAD1 variants are point mutations; in this study, we describe a complex structural variant (a deletion, a nontandem duplication, and an inversion) in a Canadian family and a 12-bp deletion overlapping the donor splice site of exon 1 of the skin-specific isoform in a Dutch family.

MATERIALS AND METHODS

The study and research protocols were approved by the Dalhousie University (Halifax, Nova Scotia, Canada) Research Ethics Board. Family history was obtained from the probands’ mother for the Canadian family and from the proband for the Dutch family. All participating members or their legal guardians signed informed written consent to perform the analysis and to publish the results, including family pedigrees. Consent for the publication of the images was obtained from the guardians. Saliva and/or blood samples were collected from eight affected and eight unaffected members of the Canadian family and from the proband of the Dutch family.

For the Canadian family, whole-exome and whole-genome sequencing were performed at Genewiz (South Plainfield, NJ). Data analysis was performed at the genomics core facility at Dalhousie University on the basis of GRCh38 and/or University of California Santa Cruz hg38 assembly and following the Best Practices workflow from the Broad Institute (Cambridge, MA) using Burrows-Wheeler Alignment, Picard, and the Genome Analysis Toolkit. Variants were annotated and filtered using a combination of snpEff and GEMINI. PCR and Sanger sequencing of SMARCAD1 hotspot region, the donor splice site of exon 1 of the skin-specific isoform, was performed as previously described (Valentin et al., 2018). Primers used to define the exact junctions for SMARCAD1 rearrangement in the Canadian family are shown in Table 2.

For the Dutch family, whole-exome sequencing was performed at GenomeScan (Leiden, The Netherlands), Agilent SureSelectXT Human all Exon, version 5 (Agilent Technologies, Santa Clara, CA), and Hiseq4000 (Illumina, San Diego, CA). Data analysis was performed at the Clinical Genetics department (Leiden University Medical Center, The Netherlands) using an in-house sequence analysis pipeline (Modular Genome Analysis Toolkit-Based Variant Calling Pipeline) on the basis of read alignment using Burrows-Wheeler Alignment, variant calling using Genome Analysis Toolkit, and

Primer	Sequence	Start	Strand	PCR Product
smrcd-5Jun-F	GACTCACAATCGTTTTCCCA	94202893	+	973 bp
smrcd-5Jun-R	GGGCCGAGATCAACAAGA	94198687	+	—
smrcd-5Jun-SeqR	AGCGAAATCTGCCAGATTTACC	94199030	+	—
smrcd-3Jun-F	AGACAGGCCCACCTAGCTAGA	94176571	—	1,415 bp
smrcd-3Jun-R	ACTTTTTACCGGGCTCAAGT	94255319	—	—

Abbreviation: bp, base pair.

Primers’ locations on the reference genome (hg38) and the variant-specific PCR product sizes are listed.
variant annotation using the Variant Effect Predictor. LOVDplus (Leiden Genome Technology Center, Leiden University Medical Center) was used for filtering and interpretation of the variants.

Whole-genome optical mapping was performed at HistoGenetics LLC (Ossining, NY) using the BioNano Saphyr platform (Bionano Genomics). Optical mapping utilizes enzymes to label high molecular-weight DNA and generates high-resolution physical genome maps (Mantere et al., 2020). Changes in patterning or spacing of the labels are detected to identify copy number variations, translocations, and inversions. To isolate a high molecular DNA, a fresh blood sample was collected from the Canadian probands’ mother (IV:2, Figure 1a). The sample was immediately placed on ice and shipped to HistoGenetics LLC laboratory. Visualization and analysis of mapping data were performed with BioNano Access software (Bionano Genomics).

Data availability statement

Datasets related to this article can be found at https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA698009 hosted at the National Center for Biotechnology Information for the Canadian variant and at https://www.deciphergenomics.org/patient/429056 for the Dutch variant.

ORCIDs

Youssef Elhaji: http://orcid.org/0000-0002-3379-923X

Figure 6. A 12-bp del in SMARCAD1 (c.374_378+7del) was identified in the Dutch family. (a) The del (red) spans the exon–intron junction of exon 1 of SMARCAD1 short isoform. (b, c) BAM file visualization using Alamut Visual software and Sanger sequencing confirmation of the del. bp, base pair; chr, chromosome; del, deletion.

1 Mantere T, Neveling K, Pehrel-Richard C, Benoist M, van der Zande G, Kater-Baats E, et al. Next generation cytogenetics: genome-imaging enables comprehensive structural variant detection for 100 constitutional chromosomal aberrations in 85 samples. isoRxiv 2020.
Gagey-Caron V, Stalder JF, Barbarot S. Basan’s syndrome: congenital absence of dermatoglyphs and milia. Ann Dermatol Venereol 2009;136:419–21.

Tessa M.A. van Herten: http://orcid.org/0000-0003-4347-9771
Claudia A.L. Ruvenkamp: http://orcid.org/0000-0003-1450-4376
Mathew Nightingale: http://orcid.org/0000-0003-1465-7911
Gis Santen: http://orcid.org/0000-0003-1959-3267
Lydia E. Vos: http://orcid.org/0000-0002-2374-7364
Peter R. Hull: http://orcid.org/0000-0002-3896-9373

AUTHOR CONTRIBUTIONS
Conceptualization: YE, PRH, TMAVH, GWES, LEV; Data Curation: YE, MN; Formal Analysis: YE, CALR, MN, LEV, PRH; Funding Acquisition: PRH; YE; Investigation: PRH, YE, TMAVH, LEV, GWES; Methodology: YE, PRH; Project Administration: YE, PRH, GWES; Resources: PRH, YE, MN, LEV; Software: YE, MN; Supervision: PRH, YE, LEV; Validation: YE, PRH, MN; Visualization: YE, PRH; Writing - Original Draft Preparation: YE; Writing - Review and Editing: PRH, YE, TMAVH, LEV, GWES

ACKNOWLEDGMENTS
This study was supported by grants from the Canadian Dermatology Foundation, Canada and the LEO Foundation, Denmark (#LF17014). We thank members of the families who participated in this study. We also thank Wigard P. Kloosterm (University Medical Center Utrecht, The Netherlands) for his valuable input.

CONFLICT OF INTEREST
The authors state no conflict of interest.

REFERENCES
Adra CN, Donato JL, Badovinac R, Syed F, Kheraj R, Cai H, et al. SMARCAD1, a novel human helicase family-defining member associated with genetic instability; cloning, expression, and mapping to 4q22-q23, a band rich in breakpoints and deletion mutants involved in several human diseases. Genomics 2000;69:162–73.

Babler WJ. Embryologic development of epidermal ridges and their configurations. Birth Defects Orig Artic Ser 1991;27:95–112.

Baird HW 3rd. Kindred showing congenital absence of the dermal ridges (fingertips) and associated anomalies. J Pediatr 1964;64:621–31.

Basan M. Ectodermal dysplasia. Missing papillary pattern, nail disorders and associated features (Baird, 1964). J Pediatr 1964;64:621–31.

Bour J. Mutations in a skin-specific isoform of SMARCAD1 cause autosomal-dominant adermatoglyphia. Am J Hum Genet 2011;89:302–7.

Bouker MC, Banks WR 3rd, Cunningham D, Witman PM, Herman GE. Analysis of two candidate genes for Basan syndrome. Am J Med Genet A 2014;164A:1188–9.

Boursjeck J, Burger B, Fuchs-Telem D, Pavlovsky M, Fenig S, Sarig O, et al. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia. Am J Hum Genet 2011;89:302–7.

Chang X, Li D, Tian L, Liu Y, March M, Wang T, et al. Heterozygous deletion impacting SMARCAD1 in the original kindred with absent dermatoglyphs and associated features (Baird, 1964). J Pediatr 2018;194:248–52.e2.

Costelloe T,Louge R,Tomimatsu N,Mukherjee B,Martini E,Khadaroo B,et al. The yeast Fun30 and human SMARCAD1 chromatin remodelers promote DNA end resection. Nature 2012;489:581–4.

Gagey-Caron V, Stalder JF, Barbarot S. [Basan’s syndrome: congenital absence of dermatoglyphs and milia]. Ann Dermatol Venereol 2009;136:419–21.

Günther C, Lee-Kirsch MA, Eckhard J, Matanovic A, Kerscher T, Rüschenendorf F, et al. SMARCAD1 haploinsufficiency underlies Huriez syndrome and associated skin cancer susceptibility. J Invest Dermatol 2018;138:1428–31.

Lee YA, Stevens HP, Delaporte E, Wahn U, Reis A. A gene for an autosomal dominant scleratrophic syndrome predisposing to skin cancer (Huriez syndrome) maps to chromosome 4q23. Am J Hum Genet 2000;66:326–30.

Li M, Wang J, Li Z, Zhang J, Ni C, Cheng R, et al. Genome-wide linkage analysis and whole-genome sequencing identify a recurrent SMARCAD1 variant in a unique Chinese family with Basan syndrome. Eur J Hum Genet 2016;24:1367–70.

Limovan M, Blacker KL, LeBoit PE. Congenital absence of dermatoglyphs. J Am Acad Dermatol 1993;29:355–8.

Luna PC, Larralde M. Profuse congenital familial milia with absent dermatoglyphs (Basan’s Syndrome): description of a new family. Pediatr Dermatol 2012;29:527–9.

Marks KC, Banks WR 3rd, Cunningham D, Witman PM, Herman GE. Analysis of two candidate genes for Basan syndrome. Am J Med Genet A 2014;164A:1188–91.

Nousbeck J, Burger B, Fuchs-Telem D, Pavlovsky M, Fenig S, Sarig O, et al. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia. Am J Hum Genet 2011;89:302–7.

Okazaki N, Ikeda S, Ohara R, Shimada K, Yanagawa T, Nagase T, et al. The novel protein complex with SMARCAD1/XIAA122 binds to the vicinity of TSS. J Mol Biol 2008;382:257–65.

Reed T, Schreiner RL. Absence of dermal ridge patterns: genetic heterogeneity. Am J Med Genet 1983;16:81–8.

Rozier L, El-Achkar E, Apiou F, Debatissse M. Characterization of a conserved aphidicolin-sensitive common fragile site at human 4q22 and mouse 6C1: possible association with an inherited disease and cancer. Oncogene 2004;23:6872–80.

Schoor M, Schuster-Gossler K, Roopenen D, Gossler A. Skeletal dysplasias, growth retardation, reduced postnatal survival, and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech Dev 1999;85:73–83.

Valentin MN, Solomon BD, Richard G, Ferreira CR, Kirkorian AY. Basan gets a new fingerprint: mutations in the skin-specific isoform of SMARCAD1 cause ectodermal dysplasia syndromes with adermatoglyphia. Am J Med Genet A 2018;176:2451–5.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/