Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes [ReCl(CO)₃(4′-An-terpy-κ²N)]

Magdalena Malecka, Agata Szlapa-Kula, Anna M. Maroń, Przemysław Ledwon, Mariola Siwy, Ewa Schab-Balcerzak, Karolina Ślusowska, Sebastian Maćkowski, Karol Erfurt, and Barbara Machura*

Cite This: Inorg. Chem. 2022, 61, 15070−15084

ABSTRACT: Rhenium(I) complexes with 2,2′:6′,2″-terpyridines (terpy) substituted with 9-anthryl (1) and 2-anthryl (2) were synthesized, and the impact of the anthryl linking mode on the ground- and excited-state properties of resulting complexes [ReCl(CO)₃(4′-An-terpy-κ²N)] (An—anthryl) was investigated using a combination of steady-state and time-resolved optical techniques accompanied by theoretical calculations. Different attachment positions of anthracene modify the overlap between the molecular orbitals and thus the electronic coupling of the anthracene and {ReCl(CO)₃(terpy-κ²N)} chromophores. Following the femtosecond transient absorption, the lowest triplet excited state of both complexes was found to be localized on the anthracene chromophore. The striking difference between 1 and 2 concerns the triplet-state formation dynamics. A more planar geometry of 2-anthryl-terpy (2), and thus better electronic communication between the anthracene and {ReCl(CO)₃(terpy-κ²N)} chromophores, facilitates the formation of the 3An triplet state. In steady-state photoluminescence spectra, the population ratio of 3MLCT and 3An was found to be dependent not only on the anthryl linking mode but also on solvent polarity and excitation wavelengths. In dimethyl sulfoxide (DMSO), compounds 1 and 2 excited with λexc > 410 nm show both 3MLCT and 3An emissions, which are rarely observed. Additionally, the abilities of the designed complexes for 1O₂ generation and light emission under the external voltage were preliminary examined.

INTRODUCTION

Since the first report on Re(I) carbonyl diamine complexes by Wrighton and Morse,¹ a large number of experimental and theoretical studies have been carried out to understand the ground- and excited-state properties of [Re(CO)₃X(N²N)]³⁻ (X—ancillary ligand, n = 0 or 1). Structural modifications of the chelating organic ligand (N²N) and variations of the ancillary one (X = halogens, carboxylates, phosphines, nitriles, isonitriles, etc.) have been found to be effective tools for fine-tuning the metal-to-ligand charge-transfer (MLCT) state of these systems or switching it to ligand-to-ligand charge transfer (LLCT), halogen-to-ligand charge transfer (XLCT), intraligand charge transfer (ILCT), intraligand (IL), and σ-bond-to-ligand charge transfer (SBLCT) ones.²⁻⁵ Relatively simple synthetic procedure, thermal stability, and photophysical properties make Re(I) carbonyl polypyridyl complexes very promising agents for bioimaging and photodynamic therapy (PDT) of cancer,⁶⁻¹⁸ organic light-emitting diodes (OLED),¹⁹⁻二十五 and photocatalysis for selective reduction of CO₂ to CO.²⁴⁻²⁹ The control of electronically excited states in [Re(CO)₃X(N²N)]³⁻ systems, and thus the ability to tune their photophysical properties in the context of such many applications, is generally realized by the manipulation of the diimine core, substitution of the diimine ligand with π-conjugated organic chromophores, electron-donating or withdrawing substituents, and variations of the ancillary X ligand.²⁻²⁹ More specifically, Re(I) carbonyl chromophores with prolonged excited-state lifetimes have been successfully obtained using two popular concepts: (i) via the attachment of π-conjugated organic chromophores to the diimine ligand and formation of bichromophoric systems featuring the triplet-state equilibrium between ³MLCT and ³ILCT and (ii) via introduction of electron-rich groups into the diimine unit and switching the emitting state from ³MLCT to ³ILCT.¹³,³⁴ Excellent examples of such systems are Re(I) complexes with N-(1,10-phenanthroline)-4-(1-piperidinyl)naphthalene-1,8-dicarboximide⁳⁰ and 1,10-phenanthroline substituted with triphenylamine at the 5-position,³³ with approximately 3000-fold and 30-fold longer excited-state lifetimes compared to the parent complex [ReCl(CO)₃(phen)], respectively. Dramatic enhancement of the excited-state lifetime has also been reported among terpyridine Re(I) systems. As a result of the

Received: June 21, 2022
Published: September 14, 2022
Scheme 1. Structural Formulas of Re(I) Complexes Investigated in This Study

![Structural Formulas of Re(I) Complexes](image)

The decoration of C₆H₆-terpy with the dimethylamine group and formation of the ¹ILCT excited state in [ReCl(CO)₃(Me₂N-C₆H₆-terpy-κ²N)], the lifetime of the resulting complex became ca. 260 times longer than that for [ReCl(CO)₃(C₆H₆-terpy-κ²N)] with the lowest triplet state of the ³MLCT character.

In our recent work, we investigated the impact of selected π-conjugated aryl chromophores on the photophysical behavior of [ReCl(CO)₃(4'-Ar-terpy-κ²N)]. We demonstrated that Re(I) complexes with 2,2':6',2'-terpyridines (terpy) substituted with 1-naphthyl-, 2-naphthyl-, and 9-phenanthryl are typical ³MLCT emitters, and naphthyl- and phenanthryl substituents have a negligible effect on the energies of the ¹MLCT absorption and ³MLCT emission bands. On the contrary, the attachment of the electron-rich pyrenyl group leads to a bathochromic shift of the visible absorption accompanied by a significant increase in its intensity relative to the parent complex [ReCl(CO)₃(terpy-κ²N)], as well as substantial enhancement of the room-temperature (RT) photoluminescence lifetime of [ReCl(CO)₃(4'-pyrenyl-terpy-κ²N)] (4.4 μs) in comparison to [ReCl(CO)₃(terpy-κ²N)] (3 ns) due to the establishment of the triplet-state equilibrium between the pyrenyl and Re(I) coordination framework. Further, we demonstrated that the excitation of [ReCl(CO)₃(4'-pyrenyl-terpy-κ²N)] populates predominately the ¹ILCT state, which undergoes the energy transfer to the ¹MLCT* state via the Förster resonance energy transfer (FRET) mechanism. The ¹MLCT state formed in this process is transformed into ³MLCT* by femtosecond intersystem crossing (ISC). In the next step, triplet–triplet energy transfer occurs from the relaxed ³MLCT state to a lower energy ³IL/²ILCT state localized on the pyrenyl-terpy ligand.

Continuing exploration of this field, two Re(I) complexes with 2,2':6',2'-terpyridines (terpy) substituted with 9-anthryl (1) and 2-anthryl (2) were synthesized to investigate the impact of the anthryl group and its linking mode on the ground- and excited-state properties of resulting complexes [ReCl(CO)₃(4'-An-terpy-κ²N)] (Scheme 1). In similarity to pyrene, the anthracene chromophore (An) is well known for its valuable optical and electronic properties. Its attachment to polyppyridyl ligands may lead to the energy transfer from ³MLCT to a long-lived ¹IL excited state or, if ¹MLCT and ³IL states have similar energies, formation of an excited-state equilibrium in metal complexes. Anthracene is also a rare example of a compound, which shows ISC via the upper excited state, that is T₂, which is isoeenergetic to the S₁ state.

Most remarkably, the only difference between designed complexes 1 and 2 is the relative orientation of anthracene and (ReCl(CO)₃(terpy-κ²N)) chromophores, which was achieved by appending anthracene via its 9-position or 2-position to the terpy ligand. Therefore, by elimination of additional structural factors, this unique pair gives the opportunity to explore the impact of the mutual chromophore orientation and thus their electronic communication on light-triggered processes in such bichromophoric systems. The optimization of the photophysical properties of transition metal complexes by spatial effects still remains a great challenge, and comprehensive studies in this area are strongly desirable for the rational design of new photoluminescent materials with predefined photophysical properties.

In the present work, an insight into the ground- and excited-state properties of 1 and 2 was achieved using a combination of steady-state and time-resolved optical techniques accompanied by theoretical calculations. In addition, the abilities of the designed complexes for ¹O₂ generation and light emission under the external voltage were preliminary examined.

EXPERIMENTAL SECTION

Materials
The ligands 9-anthryl-terpy and 2-anthryl-terpy were prepared according to the literature method. Re(CO)₃Cl, solvents for synthesis (of reagent grade) and for spectroscopic studies (of high-performance liquid chromatography (HPLC) grade), diphénylselenou (DPBF), [Ru(bipy)₂(PF₆)₂], poly(9-vinylcarbazole) (PVK, Mₙ = 25 000–50 000; Sigma-Aldrich), poly(3,4-ethylenedioxy)thiophene-poly-(styrenesulfonate) (PDDT:PSS) (0.1–1.0 S·cm⁻¹), and substrates with pixilated indium tin oxide (ITO) anodes (Ossila) were all commercially available and used without further purification.

Preparation of [ReCl(CO)₃(4'-An-terpy-κ²N)] (1) and [ReCl(CO)₃(4'-2-anthryl-terpy)] (2)

The corresponding 4'-anthracen-9-yl-2,2':6',2'-terpyridine (9-anthryl-terpy) or 4'-anthracen-2-yl-2,2':6',2'-terpyridine (2-anthryl-terpy) ligand (0.27 mmol) was added to a suspension of [ReCl(CO)₃Cl] (0.27 mmol) and toluene (35 mL). The reaction mixture was heated at reflux for 8 h under an argon atmosphere. The formed precipitate was filtered off and washed with diethyl ether, dried in the air, and then purified by repeated recrystallization from toluene.
[ReCl(CO)(4′-9-anthryl)-terpy-N\(\text{N}\)] (1). Yield: 80%. 1H NMR (400 MHz, dimethyl sulfoxide (DMSO-\(d_6\))) \(\delta\) 9.14 (d, \(J = 5.2\) Hz, 1H, H\(^1\)), 9.06 (s, 1H, H\(^3\)), 8.90–8.84 (m, 2H, H\(^{4\text{C}},4\text{B}\)), 8.78 (d, \(J = 4.5\) Hz, 1H, H\(^{4\text{A}}\)), 8.31–8.21 (m, 3H, H\(^{3\text{O}},3\text{D},3\text{D}\)), 8.07–7.97 (m, 3H, H\(^{1\text{B},2\text{D}},2\text{D},2\text{D}\)), 7.79–7.75 (m, 1H, H\(^{1\text{A}}\)), 7.73 (d, \(J = 8.9\) Hz, 1H, H\(^{3\text{A}}\)), 7.65–7.47 (m, 4H, H\(^{2\text{O}},2\text{D},2\text{D},2\text{D}\)), 7.42 (s, 1H, H\(^{5\text{C}}\)), 7.33–7.23 (m, 6H, H\(^{1\text{C}},2\text{B},2\text{B},2\text{B},2\text{B},2\text{B}\)), 7.05–6.88 (m, 1H, H\(^{6\text{D}}\)), 6.78–6.49 (m, 1H, H\(^{7\text{D}}\)), 5.96–5.78 (m, 1H, H\(^{7\text{A}}\)), 5.62–5.44 (m, 1H, H\(^{7\text{B}}\)), 4.69–4.53 (m, 1H, H\(^{8\text{A}}\)), 4.48–4.32 (m, 1H, H\(^{8\text{B}}\)), 3.91–3.75 (m, 1H, H\(^{9\text{C}}\)), 3.38–3.22 (m, 1H, H\(^{9\text{B}}\)), 3.13–2.97 (m, 1H, H\(^{9\text{A}}\)), 2.83–2.66 (m, 1H, H\(^{10\text{A}}\)), 2.62–2.46 (m, 1H, H\(^{10\text{B}}\)), 2.19–2.03 (m, 1H, H\(^{10\text{C}}\)), 2.01–1.85 (m, 1H, H\(^{10\text{D}}\)), 1.80–1.64 (m, 1H, H\(^{10\text{E}}\)), 1.62–1.46 (m, 1H, H\(^{10\text{F}}\)), 1.45–1.29 (m, 1H, H\(^{10\text{G}}\)), 1.24–1.08 (m, 1H, H\(^{10\text{H}}\)).

Inorganic Chemistry

Femtosecond Transient Absorption (fsTA). Femtosecond TA spectra were recorded with a pump–probe transient absorption spectroscopy system (Ultrafast Systems, Helios) described in our previous work.63 EXAFS experiments were carried out for the solution samples (in CHCl\(_3\), MeCN, and DMSO), stirred during the experiments to avoid photoproduct interference. The absorbance range was equal to 0.20–0.70 in the pumping wavelengths (corresponding to a concentration of 2.5 \(\times\) 10\(^{-5}\) mol dm\(^{-3}\)). The 405 and 355 nm pump pulses were used to excite the samples. Transient absorption decays were analyzed using Surface Xplorer (Ultrafast Systems) and OPTIMUS software.51,52 A more detailed description of the fsTA studies is given in Figures S20–S25 in the Supporting Information (SI).

Computational Details. Theoretical calculations were performed using the Gaussian 09 program package53 at the density functional theory (DFT) or time-dependent (TD)-DFT level with the PBE1PBE54,55 hybrid exchange–correlation functional, the def2-TZVPD basis set for rhenium, and the def2-TZVPD basis set for other elements. In all calculations, the acetonitrile solvent environment was simulated using the polarizable continuum model (PCM).56,57

RESULTS AND DISCUSSION

Synthesis, Molecular Structures, and Stability. The complexes [ReCl(CO)\(_3\)(4′-anthracene-N\(\text{N}\))] (An = 9-anthryl (1) and 2-anthryl (2)) were obtained in satisfactory yields by reacting 4′-anthryl with [Re(CO)\(_3\)] under reflux in toluene. The identity and purity of 1 and 2 were determined by NMR spectroscopy (Figures S1 and S2), FTIR technique (Figures S3 and S4), HRMS (Figures S5 and S6), and elemental analysis. 1H NMR spectra of complexes 1 and 2 demonstrate the splitting of signals for the protons of the peripheral pyridine rings, which confirms the \(\kappa^3\)N coordination of the 4′-anthryl ligand. For 1, the full assignment of 1H and 13C NMR signals was provided with the aid of two-dimensional techniques 1H–1H correlated spectroscopy (COSY), 1H–13C heteronuclear multiple quantum correlation (HMQC), and 1H–13C heteronuclear multiple bond correlation (HMBC) (Figures S1 and S2). The facial geometry of carbonyl ligands in 1 and 2 was evidenced by solid-state IR spectroscopy, where the characteristic band pattern for CO vibrations was observed. Namely, a sharp intense \(\nu\text{C}=\text{O}\) stretching band (2024 cm\(^{-1}\) for 1 and 2021 cm\(^{-1}\) for 2) was present in the spectra along with two poorly resolved bands in the lower energy range (1927 and 1897 cm\(^{-1}\) for 1 and 1916 and 1893 cm\(^{-1}\) for 2; Figures S3 and S4).56,57

Both Re(1) complexes are stable in solution (Figure S7) and show acceptable photostability (Figure S8).

Regarding the thermal properties, the complexes showed melting temperatures of 177 and 217 °C for 1 and 2, respectively, as detected using the differential scanning calorimetry (DSC) (Figure S9).
calorimetry (DSC) technique. These values are relatively high. After rapid cooling, the compounds form a stable amorphous phase with glass transition registered during the second heating scan at 206 and 193 °C for 1 and 2, respectively.

Ground-State Properties. To determine the impact of the anthryl molecular geometry on the ground-state properties of [ReCl(CO)](4′-An-terpy·κ^N)_2, complexes 1 and 2 were investigated by cyclic voltammetry and absorption spectroscopy.

The basic electrochemical parameters, such as oxidation onset potential (E^ox onsets), reduction onset potential (E^red onsets), ionization potential (IP), and electron affinity (EA) are summarized in Table 1. Cyclic voltammetry curves of 1 and 2 are shown in Figure 1. Bu_NPF_4/CH_2Cl_2 was chosen as an electrolyte due to the good solubility of the studied compounds in this solvent. Both complexes present multistage oxidation and reduction characteristics. For both compounds, the lowest unoccupied molecular orbital (LUMO) or the addition of an electron to the highest occupied molecular orbital (HOMO) or the removal of an electron from the highest occupied molecular orbital (HOMO) in the range of 330–390 nm is typical of that of anthracene, while 1MLCT (Re → terpy*) charge transfer contribution is visible in the form of a low-energy shoulder above 390 nm. These observations are supportive of the weak electronic coupling between the 9-anthryl and terpy units owing to the strong steric hindrance of the rotation about the C–C linker in 9-anthryl-terpy. On the contrary, complex 2 does not show typical anthracene-like absorption with clear vibronic progression. In agreement with a more coplanar geometry and thus more extended delocalization of 2-anthryl group, which is well recognized for rhenium(I) tricarbonyl diimine complexes, the absorption in this region is in principle a sum of 9-AnH → π^*Anthracene transitions (Figure S9). Intensive bands in the high-energy region of 1 and 2 are attributed to π → π*(terpy) and π → π*(anthracene) transitions (Figure S9).

The impact of the anthryl group directly attached to the terpy core via its 9-position (1) and 2-position (2) on the electronic structure of [ReCl(CO)](4′-An-terpy·κ^N)_2 was also investigated theoretically at the DFT/PBE0/def2-TZVP/def2-TZVP level. The geometry optimization shows good agreement with previously reported experimental X-ray data for structurally related Re(I) complexes. The 9-anthryl and 2-anthryl groups introduced in the terpy ligand do not generate any noticeable structural changes in the ReCl,N,C_2 coordination core. The bond lengths and bond angles around the Re(I) ion are almost the same for 1 and 2 (Table S2). Also, the electrochemical data of 1 and 2 are satisfactorily reproduced by the calculated ionization potentials and electronic affinities (Table S3). The striking difference between 1 and 2 concerns the dihedral angle between the plane of the anthryl group and the central pyridine ring (72° for 1 and 32° for 2).

For both complexes, the lowest unoccupied molecular orbital (LUMO) largely resides on the terpy core and the highest occupied molecular orbital (HOMO) is localized on the anthryl substituent, while HOMO–1, HOMO–2, and HOMO–3 orbitals spread over the (Re=CO)Cl moiety (Figures 3 and S10). Depending on the anthryl linking mode, no clear energy variations are observed for HOMO–HOMO–1.
1, HOMO−2, and HOMO−3 energy levels between compounds 1 and 2. When considering the LUMO levels of 1 and 2, the replacement of 9-anthryl by 2-anthryl leads to a slight stabilization of the LUMO and thus causes a decrease in the HOMO−LUMO gap of 2 (3.28 eV) relative to 1 (3.37 eV). These changes can be rationalized as resulting from a more coplanar geometry of 2-anthryl-terpy, which leads to a stronger coupling between the 2-anthryl group and the terpy core. As a result of more extended overlapping orbitals of the 2-anthryl and terpy moieties, molecular orbitals LUMO+1 and

Figure 2. UV−vis absorption spectra of 1 and 2 in solutions (a) and as thin films (b).

Figure 3. Partial molecular orbital energy-level diagrams for compounds 1 and 2.

Figure 4. Photoluminescence spectra of 1 and 2 in different environments upon excitation at the red side of the lowest energy absorption (a) and 355 nm (b).
LUMO+2 of 2 also have higher contributions of the 2-anthyl orbitals and are better energetically stabilized compared to those of 1. Most importantly, the HOMO–LUMO energy gaps of compounds 1 and 2 become noticeably lower in comparison to the previously reported [ReCl(CO)3(4′-Ar-terpy-κN)] complex bearing the structural isomer 4′-(phenanthren-9-yl)-2,2′:6′,2″-terpyridine (Figure S11). In contrast to 1 and 2, the HOMO of [ReCl(CO)3(4′-Ar-terpy-κN)] with 9-phenanthryl-terpy is distributed over the {ReCl(CO)3} unit,25 which also confirms a pivotal role of the molecular configuration of the appended aryl group. In contrast to linear anthracene, phenanthrene is nonlinear.

To examine the nature of electronic transitions of obtained complexes, time-dependent DFT (TD-DFT) calculations were performed using optimized structures of 1 and 2. The calculated transitions along with the experimental spectra and natural transition orbitals for the lowest energy band of 1 and 2 are presented in Figure S12. For both complexes, the transition S0 → S1 can be assigned to the intraligand π→π*terpy and πAn → π*An/π*terpy transition for 1 and 2, respectively. A twist of the 2-anthyl group, which is smaller than that of the 9-anthryl one, results in an increase in the oscillator strength of the S0 → S1 transition for complex 2, which correlates with the stronger absorptivity (ε) of 2 relative to that of 1 in the visible region. The character πAn → π*terpy/π*An can also be assigned to the S0 → S1 transition, while the transitions S0 → S2 and S0 → S3 are of metal-to-ligand charge transfer (MLCT) nature (Table S4).

Excited-State Properties. Photoluminescence spectra of 1 and 2 are displayed in Figures 4 and S13–S19. Upon excitation into the red side of the lowest energy absorption, with λexc > 400 nm, the complexes in acetonitrile solution show broad and unstructured emission with maximum at 627 nm for 1 and 609 nm for 2 (Table 2). With reference to previously reported compounds [ReCl(CO)3(4′-Ar-terpy-κN)] incorporating 2,2′:6′,2″-terpyridines functionalized with 1-naphthyl, 2-naphthyl, and 9-phenanthryl groups, it can be derived that the emission of 1 and 2 in MeCN originates predominately from the 3MLCT excited state (Figure S15). However, as shown in Figure S15, the emission bands of 1 and 2 are not completely superimposed over those for [ReCl(CO)3(terpy-κN)] and [ReCl(CO)3(4′-Ar-terpy-κN)] substituted with 1-naphthyl, 2-naphthyl, and 9-phenanthryl. Both maxima and onsets of the 3MLCT emission of 1 and 2 are slightly blue-shifted relative to those previously reported, which may suggest some contribution of residual fluorescence due to any incomplete FRET from 1IL to 1MLCT, as reported previously for other bichromophoric systems.31,32,35,77

The contribution of the residual fluorescence becomes more noticeable when acetonitrile solutions of 1 and 2 are excited at the blue side of the lowest energy absorption. Irradiation with λexc = 355 nm predominantly populates the 1An state. Higher energy excitation results in dual fluorescence–phosphorescence emission for 1 and a significant hypsochromic shift of the structureless emission band for 2 (Figure 4 and Table S5). The replacement of acetonitrile by less polar chloroform induces noticeable changes in the photophysical properties of 1 and 2. In this case, the emission of 1 excited at 355 nm and λexc > 410 nm appears at significantly shorter wavelengths (~510 nm), and it can be assigned to 1IL/1MLCT fluorescence. The phosphorescence of the 3MLCT origin of 1 may be effectively masked by brighter and faster fluorescence or even quenched by the lower-lying triplet state localized on the anthracene moiety, which is well recognized for bichromophoric systems with the anthracene unit.32,41,78,79

The structureless emission band of 2 in CHCl3 upon excitation λexc > 410 nm appears at ~580 nm, which is bathochromically shifted by ~30 nm. This allows us to assume that the photophysics of 2 in CHCl3 is determined by both the 1IL/1MLCT fluorescence and 3MLCT phosphorescence. The presence of two components is clearly noticeable upon excitation of 2 in CHCl3 at 410 nm (Figure S14). In DMSO, two emission bands are observed for both complexes 1 and 2 excited with λexc > 410 nm. The broad and weak component at higher energies falls in the range of 3MLCT phosphorescence, while the structured emission at longer wavelengths (>680 nm) can be safely assigned to 3An. Regarding excited-state lifetimes of 3MLCT and 3An, it can be assumed that they decay independently, there is no evidence of formation of the triplet-state equilibrium between the anthracene and [ReCl(CO)3(terpy-κN)] chromophores.

Higher energy excitation (λexc = 355 nm) of 1 in DMSO results in dual fluorescence–phosphorescence ligand-centered emission for 1, while the emission spectrum of 2 still shows both 3MLCT and 3An components. However, compared to the spectra measured for lower energy excitation (λexc = 430 nm), the relative contribution of the 3MLCT component is considerably enhanced. Most importantly, the anthracene-related room-temperature phosphorescence is rarely observed. For the first time, this was reported for Pt(II) biscyclacetate complexes,40 and its presence was rationalized by the enhanced effect of the heavy atom on anthracene.

To obtain further insights, the photoluminescence of [ReCl(CO)3(4′-An-terpy-κN)] was examined at a low temperature (77 K). The frozen-state emission spectra also revealed noticeable differences between 1 and 2 (Figure 4). For compound 1, the emission spectrum at 77 K consists of two components: a broad and slightly structured emission band in the range of 480–670 nm, which overlaps with the phosphorescence of [ReCl(CO)3(4′-An-terpy-κN)] incorporating 2,2′:6′,2″-terpyridines functionalized with 1-naphthyl, 2-

Table 2. Summary of the Photoluminescence Properties of Complexes 1 and 2a

	CHCl3	MeCN	DMSO	CH3OH:CH2OH (77 K)							
	λexc (nm)	λem (nm)	τem (ns)	Φ							
1	445	511	4.91	3.85	430	1′627	2.83 ns	0.02	430	1′587	3.6
2	450	580	7.30	1.78	430	1′593	5.75 ns	1.40	470	1′707	22.71 μs

aτem: average lifetime of multiexponential fits of decay curves (see Figure S11 in the SI). Φ: luminescence quantum yield.

10.1021/acsiorgchem.2c02160
Inorg. Chem. 2022, 61, 15070–15084
http://pubs.acs.org/IC

15075
naphthyl, and 9-phenanthrenyl groups (Figure S17), and a well-structured emission, which is superimposed over the phosphorescence of the free ligand and anthracene (Figure S18). A weak vibronic structure of the high-energy emission is assigned to a small contribution of \(\text{IL}_{\text{terpy}} \), as reported for Re(I) carbonyl complexes with naphthyl- and phenanthrenyl-substituted terpyridine ligands.\(^{35}\) In contrast, complex 2 shows mainly the emission band with a well-resolved vibronic structure in the range of 680–830 nm, originating from the \(\text{IL}_{\text{An}} \) excited state. Relative to complex 1, \(\text{IL}_{\text{An}} \) emission of 2 appears in a lower energy region, which can be rationalized by the negligible population of the \(\text{MLCT} \) excited state, contrary to complex 1 (Figure 4). The formation of the \(\text{MLCT} \) state upon excitation of 2 was evidenced more clearly by time-resolved emission spectra (TRES) recorded at 77 K. As demonstrated in Figure 5, the \(\text{MLCT} \) excited state of 2 almost immediately undergoes triplet–triplet energy transfer into \(\text{IL} \) localized on the 2-anthryl-terpy ligand. Another striking difference between 1 and 2 concerns the relative contributions of the residual fluorescence, which is significantly larger for complex 1.

The nature of the triplet excited state of \([\text{ReCl(CO)}_3(4'-\text{An-terpy-κ2N})]\) was also investigated theoretically. In this regard, structures of 1 and 2 were optimized in their triplet states (\(\text{T}_1 \)). The character of the lowest energy triplet excited state was assigned using the spin density surfaces generated from the lowest energy triplet state, and the phosphorescence energies were determined as the difference between the ground singlet and triplet states \(\Delta E_{\text{T}_1-\text{S}_0} \).

As shown in Figure 6, the spin density surfaces of both 1 and 2 were distributed on the anthyl substituent and central pyridine of terpy, supporting the \(\text{An} / \text{An}(\text{An-terpy}) \) character of the lowest energy triplet state. Calculated phosphorescence energies, 905 nm for 1 and 886 nm for 2, correlate well with the lowest energy shoulder of the structured triplet emission band of anthracene.\(^{81}\)

Femtosecond Transient Absorption—The Nature of the Lowest Triplet-State and Excited-State Dynamics. The nature of the lowest triplet-state and excited-state dynamics of 1 and 2 was investigated by applying pump–probe transient absorption with femtosecond (fSTA) reso-

Figure 5. (a) Time-resolved emission spectra for 1 and 2 in the BuCN rigid matrix at 77 K (excitation wavelength: 405 nm and time window: 80 ms for 1, and excitation wavelength: 405 nm and time window: 20 ms for 2). (b) Decay curves for the maxima of emission bands observed in time-resolved emission spectra for 1 and 2 in the BuCN rigid matrix at 77 K.
Regarding the spectral changes occurring at early time delays show regions of positive and negative spin density values, respectively (see also Table S6 in the SI).

Previous reports on related systems, corresponding to the T 1 → T n transitions of the anthracene chromophore. The ESA band starts rising almost immediately after photoexcitation and persists up to the end of the delay stage, as the anthracene in the UV region is attributed to the absorption of polypyridine anion radicals, while ESA in the visible part corresponds to ligand-to-metal charge transfer (LMCT, Cl/\(\text{L}^*\) → Re) transitions. As reported by Yang, spectral features attributable to T 1(\text{An}) → T n(\text{An}) transitions are expected in the range of 500–600 nm, partly overlapping with the ESA of LMCT.

Time constants determined from global fit analysis are summarized in Table 3, and decay-associated spectra (DAS) are shown in column C in Figure 7. The ultrafast intersystem crossings, which occur in the time range shorter than the instrument response, are not included in Table 3. Besides the discarded ultrafast time constants, which can be safely assigned to the ultrafast ISC from the initially populated \(^1\text{MLCT}\) to \(^3\text{MLCT}\), four components are involved in the fsTA kinetics of 1. The lifetimes \(t_2\), \(t_3\), and \(t_4\) can be attributed to \(S_1(\text{An}) \rightarrow T_1(\text{An})\), \(T_2(\text{An}) \rightarrow T_1(\text{An})\), and \(^3\text{MLCT} \rightarrow \text{An}\) processes, respectively. DAS\(_2\) (with \(t_2 = \text{inf}\)) corresponds to the absorption spectrum of the fully relaxed lowest triplet state \(^3\text{An}\), which does not completely decay within the time scale of the measurement. The photophysical processes occurring upon photoexcitation of 1 are summarized in Scheme 2.

Excitation of 2 at both 355 and 405 nm results in an instant appearance of excited-state absorption (ESA) with the main peak at 460 nm and a minor one at 640 nm. Within about 2–5 ps, the intensity of the ESA at 460 nm increases and then starts to slowly decrease. The rise of the higher energy band is accompanied by a slight intensity decrease of the minor peak within this time scale. In analogy to 1, the dominant ESA corresponding to the T 1 → T n transitions of the anthracene unit does not completely decay within the time scale of the measurements, but a more planar geometry of 2-anthryl-terpy, and thus stronger electronic communication between the anthracene and \(\{\text{ReCl(CO)}_3(\text{terpy-κ^N})\}\) chromophores, facilitates substantial population of the \(^3\text{An}\) triplet state. Compared to 1, however, T 1 → T n absorption band shows noticeable red shift and broadening, which can be attributed to the stronger electronic coupling between An and terpy moieties in complex 2.

For the best fitting of transient spectra kinetics of 2 upon excitation at 355 and 405 nm, three time constants were required (Table 3). Over the course of the first time constant (Table 3), the vibrationally hot \(^1\text{An}\) excited state is formed. DAS\(_1\) (corresponding to \(t_1\)), which is positive in the region corresponding to the fully relaxed lowest triplet state \(^3\text{An}\), reflects the vibrational relaxation of the lowest triplet state \(^3\text{An}\), comprising reorganization within the \(\{\text{ReCl(CO)}_3(4’-\text{An-terpy-κ^N})\}\) bichromophore and interacting solvent molecules. DAS\(_2\) with infinite lifetime corresponds to ground state recovery.

Abilities for \(^1\text{O}_2\) Generation and Light Emission under the External Voltage. Since both complexes have long excited-state lifetimes (14 \(\mu\)s for 1 and 22 \(\mu\)s for 2 in DMSO), it can be anticipated that they are suitable for transferring the excited-triplet-state energy to molecular oxygen, generating singlet oxygen. The ability of Re(I) complexes for photosensitized generation of singlet oxygen was examined by an indirect method with the use of diphenylisobenzofuran (DPBF), which is highly sensitive to \(^1\text{O}_2\). Reacting with \(^1\text{O}_2\), diphenylisobenzofuran forms endoperoxide, which spontaneously decomposes to 1,2-dibenzoylbenezene. As shown in Figure 9, both complexes 1 and 2 exhibit singlet oxygen sensitizing ability. The insignificantly enhanced singlet oxygen sensitizing ability of 2 (\(\Phi_{\Delta\Phi} = 0.45\)) in relation to 1 (\(\Phi_{\Delta\Phi} = 0.42\)) correlates with its longer triplet excited-state lifetime in DMSO at room temperature (Table 2). For both complexes, the values of \(\Phi_{\Delta\Phi}\) are lower than that for anthracene (0.57) but ~2 times greater than those for free ligands (0.21 for 9-anthryl-terpy and 0.23 for 2-anthryl-terpy; Figures S27 and S28). Relative to the efficient \([\text{Ru(bipy)}_3]^-\) (PF\(_6\))\(_2\) photosensitizer (\(\Phi_{\Delta\Phi} = 0.66\)), however, the absorbance plots of DPBF in the presence of 1 and 2 display lower slopes, indicating their weaker abilities for \(^1\text{O}_2\) generation.
To perform preliminary tests of [ReCl(CO)$_3$(An-terpy-κ^2N)] ability for light emission induced by voltage, two types of diodes with structures of ITO/PEDOT:PSS/complex/Al and ITO/PEDOT:PSS/PVK:PBD:complex/Al were fabricated. The matrix consisting of poly(9-vinylcarbazole) (PVK, 50 wt %) and (2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole) (PBD, 50 wt %) was applied due to its effective charge carrier transport of ambipolar character. Moreover, diodes with such a guest−host configuration were also utilized in our previous investigations concerning Re(I) complexes.

As can be seen in Figure 3b, absorption of 1 and 2 partially overlaps with the emission spectrum of the host (matrix PVK:PBD), thus Förster energy transfer can be expected. However, only the diode with complex 1 as an active layer showed weak emission with the maximum electroluminescence (EL) band (\(\lambda_{\text{EL}}\)) at 715 nm under 20 V, contrary to the device based on 2, which was nonemissive. With reference to the discussion in the previous section, this weak emission can be assigned to anthracene phosphorescence.

In the case of diodes with guest−host structures, the emission was dependent on the applied voltage, and an increase of the applied voltage resulted in an increase in the...
light emission. Nevertheless, rather high voltages were required to detect light emission (Figure 10).

Most importantly, the electroluminescence (EL) band of guest-host diodes covers a broad range from the visible (500 nm) to near-infrared region (750–900 nm), with λ_{EL} located at about 638 and 705 nm for 1 and 600, 705, and 778 for 2. The addition of another component, emitting blue light from 400 to 500 nm, may yield a diode, which emits white light (WORED). The EL spectra are similar to the photoluminescence spectra of 1 and 2 registered in DMSO at RT and a rigid matrix at 77 K in BuCN (Figure 4). Regarding the complex content, the addition of 1 wt % gives the most intense emission. In turn, taking into consideration the anthryl linking mode, significantly more intense EL showed a device based on the complex with 2-anthryl substituent (2), which well correlates with the higher PL quantum yield of 2 in DMSO relative to 1. To the best of our knowledge, such broad and structured emission, ranging to 900 nm with two or three maxima, was observed for the first time in diodes based on $[\text{ReCl}(\text{CO})_3(4'-\text{Ar-terpy-κ}^2\text{N})]$ compounds. 35–37,67,68,70,71,73,82,89 Indeed, diodes reported previously by our research group, Re(I) complexes based on $2,2':6',2''$-terpyridines substituted with conjugated aryl groups such as 1-naphthyl, 2-naphthyl, 9-phenanthrenyl, and 1-pyrenyl applied as guests in the PVK:PBD matrix (1, 2, and 15 wt %), exhibited λ_{EL} in ranges of 595–600, 595–610, 585–610, and 640–650 nm, respectively. 35 In addition, devices with molecularly dispersed Re(I) complexes bearing electron-donating amine units also showed emission in a significantly narrower spectral range. 72,91

CONCLUSIONS

In summary, in-depth studies of the electrochemical and optical properties of two Re(I) complexes with $2,2':6',2''$-terpyridines (terpy) substituted with the 9-anthryl (1) and 2-anthryl (2) confirmed a noticeable impact of the anthryl

Figure 8. Time traces for representative wavelengths of 426 nm (maximum of $T_1(3\text{An}) \rightarrow T_n(3\text{An})$ ESA), 510 nm (red edge of 3MLCT ESA), and 570 nm (maximum of $T_2(3\text{An}) \rightarrow T_n(3\text{An})$ ESA) for 1 in MeCN excited at 355 nm.

Table 3. Summary of the Time Constants (ps) from Global Fit Analysis

t (ps)	405 nm	355 nm			
	CHCl$_3$	CHCl$_3$	MeCN	DMSO	
1	t_1	0.18	0.18	0.18	0.18
	t_2	1.53	1.61	1.93	2.18
	t_3	92.9	97.37	52.0	269.6
	t_4	1964	1360	1730	1621
	t_5	inf	inf	inf	inf
2	t_1	0.58	0.23	0.18	0.29
	t_2	168.8	172.5	105.1	465.3
	t_3	inf	inf	inf	inf

Scheme 2. Representative Energy-Level Diagram along with Photophysical Processes Occurring upon Photoexcitation of 1

"The energies of 1LC and 1MLCT were estimated from onsets of the lowest energy absorption bands of the corresponding ligand and parental $[\text{ReCl(CO)}_3(\text{terpy-κ}^2\text{N})]$ in CHCl$_3$, respectively, while 1LC and 3MLCT energies were obtained from onsets of 77 K phosphorescence of the organic ligand and the room-temperature emission of $[\text{ReCl(CO)}_3(\text{terpy-κ}^2\text{N})]$ in CHCl$_3$, respectively."
linking mode on the ground- and excited-state properties of resulting [ReCl(CO)$_3$(4′-An-terpy-$κ^2$N)]. As a result of the more extended overlapping orbitals of 2-anthryl and terpy moieties, the absorption band of 2 is shifted to lower energy and becomes slightly more intense compared to that of 1 with a clearly twisted geometry of 9-anthryl-terpy. The stronger electronic coupling between the anthracene and {ReCl(CO)$_3$(terpy-$κ^2$N)} chromophores also facilitates the population of the 3An triplet state. Following the femtosecond transient absorption, the excitation of 2 results in an instant appearance of excited-state absorption (ESA) corresponding to the $T_1 → T_n$ transitions of the anthracene unit, while the 3An ESA of 1 is formed significantly slower, and its rise occurs via two independent channels. It is worth noticing that complexes 1 and 2 in DMSO excited with $λ_{ex} > 410$ nm show both 3MLCT and 3An emission bands, there was no evidence of formation of the equilibrium between the triplet states localized on anthracene and {ReCl(CO)$_3$(terpy-$κ^2$N)} chromophores. The excited states 3MLCT and 3An decay independently with different excited-state lifetimes. The presence of both 3MLCT and 3An emissions was also observed in the electroluminescence band of guest–host diodes based on investigated Re(I) complexes. Having long excited-state lifetimes in DMSO, the examined carbonyls were found to be suitable for transferring the excited triplet-state energy to molecular oxygen, generating singlet oxygen. We strongly believe that reported findings will be useful for understanding and controlling the excited-state nature of transition metal complexes and thus designing photoluminescent materials with predefined photophysical properties.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c02160.

NMR (1H, 13C, and 2D); IR and HRMS spectra; stability and photostability; UV–vis spectra; DFT and TD-DFT calculations; steady-state and time-resolved emission spectra; spin density surface plots; femtosecond transient absorption spectra; and global fitting results (PDF)

AUTHOR INFORMATION

Corresponding Author
Barbara Machura – Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland; orcid.org/0000-0001-7688-6491; Phone: +48 32 3591718; Email: barbara.machura@us.edu.pl

Figure 9. UV–vis absorption spectra of diphenylisobenzofuran (DPBF) in DMSO (c: 50 $μ$M) treated with complex 1 (c: 50 $μ$M) upon exposure to visible light at 420 nm recorded over 240 s (a) and relative changes in the absorbance of DPBF at 417 nm (A_{A0}) with time (b).

Figure 10. Electroluminescence spectra of diodes based on investigated Re(I) complexes with anthryl groups.
Inorganic Chemistry

Authors
Magdalena Malecka — Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
Agata Szałapa-Kuła — Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland; orcid.org/0000-0001-6539-5419
Anna M. Maroń — Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland; orcid.org/0000-0001-8245-5532
Przemysław Ledwon — Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland; orcid.org/0000-0001-6769-8739
Mariola Siwy — Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
Ewa Schab-Balcerzak — Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; orcid.org/0000-0002-7219-8664
Karolina Sulowska — Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 87-100 Toruń, Poland
Sebastian Maćkowski — Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 87-100 Toruń, Poland; orcid.org/0000-0003-1560-6315
Karol Erfurt — Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.2c02160

Author Contributions
M.M. and A.M.M.: formal analysis, investigation, methodology, data curation, and visualization; A.S.-K.: investigation, methodology, formal analysis, resources, visualization, and data curation; P.L., M.S., K.S., and K.E.: investigation; S.M.: formal analysis, methodology, resources, and writing—original draft; B.M.: conceptualization, formal analysis, funding acquisition, methodology, project administration, resources, supervision, validation, writing—original draft, and writing—review and editing.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The research was cofinanced by the National Science Centre of Poland grant no. DEC-2017/25/B/ST5/01611 (B.M.) and funds granted under the Research Excellence Initiative of the University of Silesia in Katowice. The calculations were carried out at Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl). M.M. thanks to PIK—Programme for new interdisciplinary elements of education at the doctoral level for a field of chemistry, POWR.03.02.00-00-1010/17.

REFERENCES
(1) Wrighton, M. D.; Morse, D. L. Nature of the Lowest Excited State in Tricarboxylchloro-1,10-Phenanthrolinerhenium(I) and Related Complexes. J. Am. Chem. Soc. 1974, 96, 998–1003.
(2) Stufken, D. J.; Vlček, A. Ligand-Dependent Excited State Behaviour of Re(I) and Ru(II) Carbonyl–Diimine Complexes. Coord. Chem. Rev. 1998, 177, 127–179.
(3) Striplin, D. R.; Crosby, G. A. Photophysical Investigations of Rhenium(I)Cl(CO)3(Phenanthroline) Complexes. Coord. Chem. Rev. 2001, 211, 163–175.
(4) Vlček, A.; Zališ, S. Modeling of Charge-Transfer Transitions and Excited States in D6 Transition Metal Complexes by DFT Techniques. Coord. Chem. Rev. 2007, 251, 258–287.
(5) Coleman, A.; Brennan, C.; Vos, J. G.; Pryce, M. T. Photophysical Properties and Applications of Re(I) and Re(II)−Ru(II) Carbonyl Poly(pyridyl) Complexes. Coord. Chem. Rev. 2008, 252, 2585–2595.
(6) Kumar, A.; Sun, S.-S.; Lees, A. J. Photophysics and Photochemistry of Organometallic Rhenium Diimine Complexes. In Photophysics of Organometallics; Lees, A. J., Ed.; Springer: Berlin, Heidelberg, 2010; pp 37–71.
(7) Ko, C.-C.; Cheung, A. W.-Y.; Lo, L. T.-L.; Siu, J. W.-K.; Ng, C.-O.; Yiu, S.-M. Syntheses and Photophysical Studies of New Classes of Luminescent Isocyanido Rhenium(I) Diimine Complexes. Coord. Chem. Rev. 2012, 256, 1546–1555.
(8) Daniel, C. Photochemistry and Photophysics of Transition Metal Complexes: Quantum Chemistry. Coord. Chem. Rev. 2015, 282–283, 19–32.
(9) Lee, C.; Lee, K.; K.; Lo, K. K.-W. Recent Development of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Cellular Imaging Reagents, Anticancer Drugs, and Antibacterial Agents. Dalton Trans. 2017, 46, 16357–16380.
(10) Yang, J.; Zhao, J.-X.; Cao, Q.; Hao, L.; Zhou, D.; Gan, Z.; Ji, L.-N.; Mao, Z.-W. Simultaneously Inducing and Tracking Cancer Cell Metabolism Repression by Mitochondria-Immobilized Rhenium(I) Complex. ACS Appl. Mater. Interfaces 2017, 9, 13900–13912.
(11) Hostachy, S.; Pociar, C.; Delsuc, N. Re(I) Carbonyl Complexes: Multimodal Platforms for Inorganic Chemical Biology. Coord. Chem. Rev. 2017, 351, 172–188.
(12) Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and Coordination Rhenium Compounds and Their Potential in Cancer Therapy. Coord. Chem. Rev. 2019, 393, 79–117.
(13) Zhang, Q.; Wong, K. M.-C. Photophysical, Ion-Sensing and Biological Properties of Rhodamine-Containing Transition Metal Complexes. Coord. Chem. Rev. 2020, 416, No. 213336.
(14) Liew, H. S.; Mai, C.-W.; Zulkefeli, M.; Madheswaran, T.; Kiew, L. V.; Delsuc, N.; Low, M. L. Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy. Molecules 2020, 25, No. 4176.
(15) Pan, Z.-Y.; Cai, D.-H.; He, L. Dinuclear Phosphorescent Rhenium(I) Complexes as Potential Anticancer and Photodynamic Therapy Agents. Dalton Trans. 2020, 49, 11583–11590.
(16) Marker, S. C.; King, A. P.; Granja, S.; Vaughn, B.; Woods, J. J.; Boros, E.; Wilson, J. J. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg. Chem. 2020, 59, 10285–10303.
(17) Karges, J.; Kalaj, M.; Gembicky, M.; Cohen, S. M. R. Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease. Angew. Chem. 2021, 133, 10811–10818.
(18) Gong, J.; Zhang, X. Coordination-Based Circularly Polarized Luminescence Emitters: Design Strategy and Application in Sensing. Coord. Chem. Rev. 2022, 453, No. 214329.
(19) Evans, R. C.; Douglas, P.; Winscom, C. J. Coordination Complexes Exhibiting Room-Temperature Phosphorescence: Evaluation of Their Suitability as Triplet Emissors in Organic Light Emitting Diodes. Coord. Chem. Rev. 2006, 250, 2093–2126.
(20) Werrett, M. V.; Huff, G. S.; Muzzioli, S.; Fiorini, V.; Zacchini, S.; Skelton, B. W.; Maggiore, A.; Malicka, J. M.; Cocchi, M.; Gordon, K. C.; Stagni, S.; Massi, M. Methylated Re(I) Tetrazolato Complexes: Photophysical Properties and Light Emitting Devices. Dalton Trans. 2015, 44, 8379–8393.
(21) Zhao, G.-W.; Zhao, J.-H.; Hu, Y.-X.; Zhang, D.-Y.; Li, X. Recent Advances of Neutral Rhenium(I) Tricarbonyl Complexes for Application in Organic Light Emitting Diodes. Synth. Met. 2016, 212, 131–141.
(22) Hu, Y.-X.; Zhao, G.-W.; Dong, Y.; Lii, Y.-L.; Li, X.; Zhang, D.-Y. New Rhenum(1) Complex with Thiazidazole-Anneled 1,10-Phenanthroline for Highly Efficient Phosphorescent OLEDs. *Dyes Pigm.* 2017, 137, 569–575.

(23) Li, X.; Zhao, G.-W.; Hu, Y.-X.; Zhao, J.-H.; Dong, Y.; Zhou, L.; Lv, Y.-L.; Chi, H.-J.; Su, Z. Rational Design and Characterization of Novel Phosphorescent Rhenum(1) Complexes for Extremely High-Efficiency Organic Light-Emitting Diodes. *J. Mater. Chem. C* 2017, 5, 7629–7636.

(24) Takeda, H.; Ishitani, O. Development of Efficient Photocatalytic Systems for CO2 Reduction Using Mononuclear and Multinuclear Metal Complexes Based on Mechanistic Studies. *Coord. Chem. Rev.* 2010, 254, 346–354.

(25) Grills, D. C.; Fujita, E. New Directions for the Photocatalytic Reduction of CO2: Supramolecular, ScCO2 or Biphasic Ionic Liquid–scCO2 Systems. *J. Phys. Chem. Lett.* 2010, 1, 2709–2718.

(26) Doherty, M. D.; Grills, D. C.; Muckerman, J. T.; Polansky, D. E.; Fujita, E. Toward More Efficient Photochemical CO2 Reduction: Use of ScCO2 or Photogenerated Hydrides. *Coord. Chem. Rev.* 2010, 254, 2472–2482.

(27) Zarkadoulas, A.; Koutsouri, E.; Kefalidou, C.; Mitsopoulou, C. A. Rhenum Complexes in Homogeneous Hydrogen Evolution. *Coord. Chem. Rev.* 2015, 304–305, 55–72.

(28) Nganga, J. K.; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Sacedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M. Electrochemical Reduction of CO2 Catalyzed by Re(Pyridine-Oxazoline)(CO)3Cl Complexes. *Inorg. Chem.* 2017, 56, 3214–3226.

(29) Nandil, N.; Jain, S. L. A Review on Progress and Perspective of Molecular Catalysis in Photoelectrochemical Reduction of CO2. *Coord. Chem. Rev.* 2022, 451, No. 214271.

(30) Yarnell, J. E.; Deaton, J. C.; McCusker, C. E.; Castellano, F. N. Bidirectional "Ping-Pong" Energy Transfer and 3000-Fold Lifetime Enhancement in a Re(1) Charge Transfer Complex. *Inorg. Chem.* 2011, 50, 7820–7830.

(31) Yarnell, J. E.; Wells, K. A.; Palmer, J. R.; Breaux, J. M.; Castellano, F. N. Excited-State Triplet Equilibria in a Series of Re(1)-Naphthalimide Bichromophores. *J. Phys. Chem. B* 2019, 123, 7611–7627.

(32) Wells, K. A.; Yarnell, J. E.; Palmer, J. R.; Lee, T. S.; Papa, C. M.; Castellano, F. N. Energy Migration Processes in Re(1) MLCT Complexes Featuring a Chromophoric Ancillary Ligand. *Inorg. Chem.* 2020, 59, 8259–8271.

(33) Shillito, G. E.; Hall, T. B. J.; Preston, D.; Traber, P.; Wu, L.; Reynolds, K. E. A.; Horvath, R.; Sun, X. Z.; Lucas, N. T.; Crowley, J. D.; George, M. W.; Kuperfer, S.; Gordon, K. C. Dramatic Alteration of 3ILCT Lifetimes Using Ancillary Ligands in [Re,L(CO)3(Phen)]+ Complexes: An Integrated Spectroscopic and Theoretical Study. *J. Am. Chem. Soc.* 2018, 140, 4534–4542.

(34) Fernández-Terán, R.; Sévery, L. Living Long and Prosperous: Productive Intraligand Charge-Transfer States from a Rhenium(I) Terpyridine Photosensitizer with Enhanced Light Absorption. *Inorg. Chem.* 2021, 60, 1334–1343.

(35) Szlapa-Kula, A.; Malecka, M.; Maroń, A. M.; Janeczek, H.; Siwy, M.; Schab-Balcerak, E.; Szalkowski, M.; Maćkowski, S.; Pedaszki, T.; Erfurt, K.; Machura, B. In-Depth Studies of Ground- and Excited-State Properties of Re(1) Carbonyl Complexes Bearing 2,2’-6,2’-Terypirdine and 2,6-Bis(Pyrizin-2-Yl)Pyridine Coupled with π-Conjugated Aryl Chromophores. *Inorg. Chem.* 2021, 60, 18726–18738.

(36) Maroń, A. M.; Szlapa-Kula, A.; Matusiuk, M.; Kruszynski, R.; Siwy, M.; Janeczek, H.; Grzelak, J.; Maćkowski, S.; Schab-Balcerak, E.; Machura, B. Photoluminescence Enhancement of Re(I) Carbonyl Complexes Bearing D–A and Dπ–A Ligands. *Dalton Trans.* 2020, 49, 4441–4453.

(37) Choroba, K.; Kotowicz, S.; Maroń, A.; Świtlicka, A.; Szlapa-Kula, A.; Siwy, M.; Grzelak, J.; Sulowska, K.; Maćkowski, S.; Schab-Balcerak, E.; Machura, B. Ground- and Excited-State Properties of Re(I) Carbonyl Complexes—Effect of Trinime Ligand Core and Appended Heteroaromatic Groups. *Dyes Pigm.* 2021, 192, No. 109472.

(38) Wang, X.-Y.; Del Guerzo, A.; Schmelh, R. H. Photophysical Behavior of Transition Metal Complexes Having Interacting Ligand Localized and Metal-to-Ligand Charge Transfer States. *J. Photochem. Photobiol., C* 2004, 5, 55–77.

(39) McElrath, M. N.; Lynch, P. A.; Martell, E.; Still, J. D.; Ragona, F.; Saavedra, H. H.; Goto, D.; Chou, H.-L.; Deciphering the Ligand's Geometric Effect on the Photophysical Properties and Applications. *Coord. Chem. Rev.* 2020, 417, No. 213371.

(40) de la Torre, E.; Biskup, T.; Ren, S.; Wang, Z.; Bussotti, L.; Russo, N.; Fogg, F.; Zhang, Z.; Zhao, J. Recent Development of the Transition Metal Complexes Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited State: From Molecular Structure Design to Photophysical Properties and Applications. *Coord. Chem. Rev.* 2022, 417, 128229.

(41) Ragone, F.; Biskup, T.; Ren, S.; Wang, Z.; Bussotti, L.; Russo, N.; Fogg, F.; Zhang, Z.; Zhao, J. Recent Development of the Transition Metal Complexes Showing Strong Absorption of Visible Light and Long-Lived Triplet Excited State: From Molecular Structure Design to Photophysical Properties and Applications. *Coord. Chem. Rev.* 2020, 417, No. 213371.

(42) Yuan, Z.; He, J.; Mahmood, Z.; Xing, L.; Li, X.; Goto, D.; Zhang, Z.; Zhao, J.; Tang, G.; Li, X.; Grazda, Y. G. Direct Observation of Long-Lived Upper Excited Triplet States and Intersystem Crossing in Anthracene-Containing PII Complexes. *J. Phys. Chem. Lett.* 2019, 10, 7767–7773.

(43) Yuan, Z.; He, J.; Mahmood, Z.; Xing, L.; Li, X.; Grazda, Y. G. Direct Observation of Long-Lived Upper Excited Triplet States and Intersystem Crossing in Anthracene-Containing PII Complexes. *J. Phys. Chem. Lett.* 2019, 10, 7767–7773.
Tricarbonylchlororhenium(I) Carboxaldimine Derivatives: Synthesis, Croce, G.; Milanesio, M.; Rosenberg, E.; Ross, J. B. A. CH-Anthracene-CH. β-Liu, S. H. Synthesis, Characterization, and Properties of Anthracene-Inorg. Chem. Halotricarbonyl(Polypyridine)Rhenium(I) Complexes. Synthesis and Photophysical and Electrochemical Properties of New Acceptor Dyads Showing Different Geometry and Electronic Selectivity in Anthracene-Naphthalimide Compact Electron Donor. 104. − E. Aryl Substituted 2,6-Di(Thiazol-2-Yl)Pyridines of Hybrid Organic Ancillary Ligand Modification on Emissive Properties of New Iridium of Ionic Solutions by a Polarizable Continuum Dielectric Model. 1988, 27, 3297. Dutkiewicz, M.; Grzelak, I.; Hoffmann, M.; Nawrocik, J.; Krajewski, Glowacki, I.; Kownacki, I.; Jankowska, K.; Kubicki, M.; Gierczyk, B.; (64) Choroba, K.; Kula, S.; Maron (66) Juris, A.; Campagna, S.; Bidd, I.; Lehn, J. M.; Ziessel, R. Background and Applications to Isotropic and Anisotropic Dielectrics. Formalism for the Polarizable Continuum Model: Theoretical Design and Assessment of Accuracy. Gaussian 16. Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; (54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Functionalized 2,2′:6′,2″-Terypyridines. RSC Adv. 2016, 6, 56335–56352. (68) Klemens, T.; Świtlicka-Olszewska, A.; Machura, B.; Grucela, M.; Schab-Balcerzak, E.; Smolarek, K.; Mackowski, S.; Szlapa, A.; Kula, S.; Krompiec, S.; Łedowski, P.; Chrobok, A. Rhenium(I) Terypyridine Complexes — Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices. Dalton Trans. 2016, 45, 1746–1762. (69) Klemens, T.; Czerwińska, K.; Szlapa-Kula, A.; Kula, S.; Świtlicka, A.; Kotowicz, S.; Siwy, M.; Bednarczyk, K.; Krompiec, S.; Smolarek, K.; Mackowski, S.; Danikiewicz, W.; Schab-Balcerzak, E. Machura, B. Synthesis, Spectroscopic, Electrochemical and Computational Studies of Rhenium(I) Tricarbonyl Complexes Based on Bidentate-Coordinated 2,6-Di(Thiazol-2-Yl)Pyridine Derivatives. Dalton Trans. 2017, 46, 9605–9620. (70) Klemens, T.; Świtlicka, A.; Machura, B.; Kula, S.; Krompiec, S.; Laba, K.; Korzec, M.; Siwy, M.; Janeczek, H.; Schab-Balcerzak, E.; Szłakowski, M.; Grzelak, J.; Mackowski, S. A Family of Solution Processable Ligands and Their Re(I) Complexes towards Light Emitting Applications. Dyes Pigm. 2019, 163, 86–101. (71) Klemens, T.; Świtlicka, A.; Szlapa-Kula, A.; Krompiec, S.; Łedowski, P.; Chrobok, A.; Godlewksa, M.; Kotowicz, S.; Siwy, M.; Bednarczyk, K.; Libera, M.; Mackowski, S.; Pędziośki, T.; Schab-Balcerzak, E.; Machura, B. Experimental and Computational Exploration of Photophysical and Electro luminescence Properties of Modified 2,2′:6′,2″-Terypyridine, 2,6-Di(Thiazol-2-Yl)Pyridine and 2,6-Di(Pyrain-2-Yl)Pyridine Ligands and Their Re(I) Complexes. Appl. Organomet. Chem. 2018, 32, No. e4611. (72) Klemens, T.; Świtlicka, A.; Szlapa-Kula, A.; Łapok, L.; Obloza, M.; Siwy, M.; Szłakowski, M.; Mackowski, S.; Libera, M.; Schab-Balcerzak, E.; Machura, B. Tuning Optical Properties of Re(I) Carbonyl Complexes by Modifying Push–Pull Ligands Structure. Organometallics 2019, 38, 4206–4223. (73) Choroba, K.; Maroń, A.; Świtlicka, A.; Szlapa-Kula, A.; Siwy, M.; Grzelak, J.; Mackowski, S.; Pędziośki, T.; Schab-Balcerzak, E.; Machura, B. Carbazole Effect on Ground- and Excited-State Properties of Rhenium(I) Carbonyl Complexes with Extended Tery-like Ligands. Dalton Trans. 2021, 50, 3943–3958. (74) Adem, R. E.; Borges, B. G. A. L.; Álvarez, H. C.; von Kiersztynk, F.; Hellberg, J.; Koeehler, M.; Cremona, M.; Roman, L. S.; Araujo, C. M.; Rocco, M. L. M.; Marchiori, C. F. N. On the Energy Gap Determination of Organic Optoelectronic Materials: The Case of Porphyrin Derivatives. Mater. Adv. 2022, 3, 1791–1803. (75) Tyson, D. S.; Luman, C. R.; Zhou, X.; Castillo, F. N. New Ru(II) Chromophores with Extended Excited-State Lifetimes. Inorg. Chem. 2001, 40, 4063–4071. (76) Yarnell, J. E.; McCusker, C. E.; Leeds, A. J.; Breaux, J. M.; Castellano, F. N. Exposing the Excited-State Equilibrium in an Ir(II) Bichromophore: A Combined Time Resolved Spectroscopy and Computational Study. Eur. J. Inorg. Chem. 2016, 2016, 1808–1818. (77) Yarnell, J. E.; Chaubraborty, A.; Myahkostupov, M.; Wright, K. M.; Castellano, F. N. Long-Lived Triplet Excited State in a Platinum(II) Perylene Monooimide Complex. Dalton Trans. 2018, 47, 15071–15081. (78) Walther, M. E.; Weng, S. Energy Transfer from Rhenium(I) Complexes to Covalently Attached Anthracenes and Phenanthrenes. Dalton Trans. 2008, 44, 6311–6318. (79) Liyanage, N. P.; Yang, W.; Guertin, S.; Roy, S. S.; Carpenter, C. A.; Adams, R. E.; Schneel, R. H.; Delcamp, J. H.; Jurs, J. W. Photochemical CO2 Reduction with Mononuclear and Dinuclear Rhenium Catalysts Bearing a Pendant Anthracene Chromophore. Chem. Commun. 2019, 55, 993–996. (80) Li, Q.; Guo, H.; Ma, L.; Wu, W.; Liu, Y.; Zhao, J. Tuning the Photophysical Properties of NanoPt(II) Bisacytide Complexes with Fluorene Moiety and Its Applications for Triplet–Triplet Annihilation Based Upconversion. J. Mater. Chem. 2012, 22, 5319–5329. (81) Reineke, S.; Baldo, M. A. Room Temperature Triplet State Spectroscopy of Organic Semiconductors. Sci. Rep. 2015, 4, No. 3797.
(82) Maria Maron, A.; Choroba, K.; Pedzinski, T.; Machura, B. Towards Better Understanding of the Photophysics of Platinum(II) Coordination Compounds with Anthracene- and Pyrene-Substituted 2,6-Bis(Thiazol-2-Yl)Pyridines. Dalton Trans. 2020, 49, 13440−13448.

(83) Chen, K.; Hussain, M.; Razi, S. S.; Hou, Y.; Yildiz, E. A.; Zhao, J.; Yaglioglu, H. G.; Donato, M. D. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet−Triplet Annihilation Upconversion. Inorg. Chem. 2020, 59, 14731−14745.

(84) El Nahhas, A.; Cannizzo, A.; van Mourik, F.; Blanco-Rodríguez, A. M.; Zális, S.; Vlček, A.; Chergui, M. Ultrafast Excited-State Dynamics of [Re(L)(CO)3(Bpy)] n Complexes: Involvement of the Solvent. J. Phys. Chem. A 2010, 114, 6361−6369.

(85) El Nahhas, A.; Consani, C.; Blanco-Rodríguez, A. M.; Lancaster, K. M.; Braem, O.; Cannizzo, A.; Towerie, M.; Clark, I. P.; Zális, S.; Chergui, M.; Vlček, A. Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)3(N,N)]+ and [Re-(Imidazole)(CO)3(N,N)]+: Diimine Effects. Inorg. Chem. 2011, 50, 2932−2943.

(86) Sanasam, B.; Raza, M. K.; Musib, D.; Pal, M.; Pal, M.; Roy, M. Photodynamic Applications of New Imidazo[4,5-f][1,10]-Phenanthroline Oxidovanadium(IV) Complexes: Synthesis, Photochemical, and Cytotoxic Evaluation. ChemistrySelect 2020, 5, 13824−13830.

(87) Seth, S. K.; Purkayastha, P. Unusually Large Singlet Oxygen (1O2) Production by Very Weakly Emissive Pyrene-Functionalized Iridium(III) Complex: Interplay between Excited 3ILCT/3IL and 3MLCT States. Eur. J. Inorg. Chem. 2020, 2020, 2990−2997.

(88) Sanasam, B.; Raza, M. K.; Musib, D.; Roy, M. Photochemical and Photocytotoxic Evaluation of New Oxovanadium (IV) Complexes in Photodynamic Application. J. Chem. Sci. 2021, 133, No. 42.

(89) Klemens, T.; Switlicka, A.; Kula, S.; Siwy, M.; Łaba, K.; Grzelak, J.; Szalkowski, M.; Mačkowsk, M.; Schab-Balcerzak, E.; Machura, B. The Effect of 2-, 3- and 4-Pyridyl Substituents on Photophysics of Fac-[ReCl(CO)3(n-PtPy-K2N)] Complexes: Experimental and Theoretical Insights. J. Lumin. 2019, 209, 346−356.

(90) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence. Appl. Phys. Lett. 1999, 75, 4−6.

(91) Maroń, A. M.; Szlapa-Kula, A.; Matuszek, M.; Kruszynski, R.; Siwy, M.; Janeczek, H.; Grzelak, J.; Mačkowsk, S.; Schab-Balcerzak, E.; Machura, B. Photoluminescence Enhancement of Re(I) Carbonyl Complexes Bearing D−A and D−π−A Ligands. Dalton Trans. 2020, 49, 4441−4453.