CHAPTER 15

AMINOPEPTIDASES

YOLANDA SANZ*
Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain
*yolsanz@iata.csic.es

1. INTRODUCTION

Aminopeptidases hydrolyse peptide bonds at the N-terminus of proteins and polypeptides whereas carboxypeptidases hydrolyse peptide bonds at the C-terminus. Omega peptidase is an additional term referring to special types of aminopeptidases and carboxypeptidases that are capable of removing terminal residues lacking a free α-amino or α-carboxyl group, or include linkages other than the α-peptide type (e.g. pyroglutamyl peptidases; McDonald and Barret, 1986). Aminopeptidases can be subdivided into three groups: aminopeptidases in the strict sense which hydrolyse the first peptide bond in a polypeptide chain with the release of a single amino acid residue (aminoacyl- and iminoacyl peptidases [EC 3.4.11]); those that remove dipeptides or tripeptides (dipeptidyl- and tripeptidyl peptidases [EC 3.4.14]) from polypeptide chains; and those which only hydrolyse di- or tripeptides (dipeptidases [EC 3.4.15] and tripeptidases [EC 3.4.14.4]) (Sanderink et al., 1988). Aminopeptidases are widely distributed among bacteria, fungi, plants and mammals (Gonzales and Robert-Baudouy, 1996; Sanz et al., 2002; Tu et al., 2003; Barret et al., 2004). These enzymes are located in different subcellular compartments including the cytoplasm, lysosomes and membranes, and can also be secreted into the extracellular medium. Based on catalytic mechanism, most of the aminopeptidases are metallo-enzymes but cysteine and serine peptidases are also included in this group. Though some aminopeptidases are monomeric, most show multimeric structures particularly those from eukaryotic organisms (McDonald and Barret, 1986; Jones, 1991; Lowther and Matthews, 2002). The three-dimensional structures of some aminopeptidases have been solved, contributing to the understanding of their catalytic mechanism and
functions (Kim et al., 1993; Bazan et al., 1994; Joshua-Tor et al., 1995; Lowther and Matthews, 2002). Aminopeptidases appear to act in concert with other peptidases to complete diverse proteolytic pathways. Thus, these enzymes can efficiently retrieve amino acids from dietary proteins and endogenous proteins degraded during protein turnover, thereby covering nutritional as well as other biological roles including protein maturation, hormone level regulation and cell-cycle control (McDonald and Barret, 1986; Christensen et al., 1999). Many of the mammalian enzymes play important functions in cellular processes involved in health and disease and, as a consequence, constitute targets for the pharmaceutical industry (Scornik and Botbol, 2001; Holz et al., 2003; Rigolet et al., 2005; Inguimbert et al., 2005). Some aminopeptidases are also of great interest for their biotechnological and agro-industrial applications (Seppo et al., 2003; FitzGerald and O’Cuinn, 2006).

2. CLASSIFICATION AND NOMENCLATURE OF AMINOPEPTIDASES

Aminopeptidases have been classified on the basis of their substrate specificity (broad or narrow), catalytic mechanism (metallo-, cysteine, and serine peptidases) and molecular structure (Gonzales and Robert-Baudouy, 1996; Barret et al., 2004; Rawling et al., this volume). The nomenclature of many (aminoacyl or iminoacyl peptidases) has been determined by their preferences or requirements for a particular N-terminal amino acid. Thus, an enzyme that for instance showed its highest rate of hydrolysis on N-terminal methionyl bonds was named methionyl aminopeptidase or aminopeptidase M. In an attempt to avoid ambiguity, the subcellular location (membrane, microsomal or cytosolic) has also been used to name aminopeptidases having similar specificities. In the cases of di- and tripeptidases their names have been based on substrate size requirements. In addition, the names of dipeptidyl (DPP) and tripeptidyl peptidases (TPP) were followed by a Roman number to differentiate between the various types described and this numbering convention has been retained. In the nomenclature of peptidases identified in lactic acid bacteria the term ‘Pep’ is used when the corresponding peptidase gene sequence is known, followed by a capital letter indicating the specificity and homology to other known peptidases, e.g. PepN for the homologue of aminopeptidase N (Tan et al., 1993). Nevertheless, alternative names and abbreviations often appear in the literature. Recently, the MEROPS peptidase information database (http://www.merops.sanger.ac.uk; see chapter by Rawlings et al. in this volume) created a hierarchical structure-based classification of peptidases into families and clans. Members of a family are homologues, and families that are thought to be homologous are grouped together into clans. Clans consist of families of peptidases that share a single evolutionary origin, evidenced by similarities in their tertiary structures and/or the order of catalytic-site residues and common sequence motifs around the catalytic residues.
3. Aminopeptidase Types and Functions

3.1. Mammalian Aminopeptidases

Aminopeptidases were among the first proteases to be discovered in mammalian tissues and a large number have already been characterized (Barret et al., 2004). The best characterized mammalian aminopeptidases and their biochemical properties are shown in Table 1. On the basis of specificity they can be divided into different groups: (i) aminopeptidases of broad specificity (e.g. leucyl aminopeptidase, and membrane and cytosol alanyl aminopeptidases); (ii) aminopeptidases of narrow specificity with preference for basic amino acid residues (aminopeptidase B), acid amino acid residues (glutamyl and aspartyl aminopeptidases), cysteine (cystinyl aminopeptidase), methionine (methionyl aminopeptidase), or bonds containing proline (prolyl aminopeptidase and aminopeptidase P); and (iii) dipeptidyl peptidases (DPP I, II, III, and IV) and tripeptidyl peptidases (TPP I and II) that release di- and tripeptides; respectively (Cunningham et al., 1997; Sanz et al., 2002; Albiston.

Table 1. Main types and properties of mammalian aminopeptidases

Enzyme	EC number	Catalytic type	Specificity	Family
Aminopeptidase (AP)				
Leucyl AP	3.4.11.1	Metallo	X = Leu	M17
Membrane alanyl AP	3.4.11.2	Metallo	X = Ala, Phe, Tyr, Leu	M1
Cytosol alanyl AP	3.4.11.14	Metallo	X = Ala	M1
Aminopeptidase B	3.4.11.6	Metallo	X = Arg, Lys	M1
Glutamyl AP	3.4.11.7	Metallo	X = Glu, Asp	M1
Cystinyl AP	3.4.11.3	Metallo	X = Cys	M1
Methionyl AP	3.4.11.18	Metallo	X = Met	M24A
Aminopeptidase P	3.4.11.9	Metallo	X and Y = Pro	M24B
Prolyl AP (PIP)	3.4.11.5	Serine	X = Pro	S33
Bleomycin hydrolase	3.4.22.40	Cysteine	X = Met, Leu, Ala	C1B

Dipeptidyl peptidases (DPP)

Enzyme	EC number	Catalytic type	Specificity	Family
DPP I	3.4.14.1	Cysteine	X ≠ Arg or Lys, Y or Z ≠ Pro	C1
DPP II	3.4.14.2	Serine	Y = Ala or Pro	S28
DPP III	3.4.14.4	Metallo	X-Y = Arg-Arg	M49
DPP IV	3.4.14.5	Serine	Y = Pro	S9B

Tripeptidyl peptidases (TPP)

Enzyme	EC number	Catalytic type	Specificity	
TPP I	3.4.14.9	Serine	Gly-Pro-T = hydrophobic Ala-Ala-Phe	S53
TPP II	3.4.14.10	Serine	T or Z ≠ Pro	S8
The characteristics of the main aminopeptidases of broad and narrow specificities and proline-specific peptidases are briefly reviewed.

3.1.1. Mammalian aminopeptidases of broad specificity

Leucyl aminopeptidase (LAP) is a ubiquitous enzyme that has also been referred to as cytosol aminopeptidase and leucine aminopeptidase. It was the first cytosolic aminopeptidase to be identified (Linderstrom-Lang, 1929). LAP preferentially releases Leu located as the N-terminal residue of peptides, and can also release other amino acids including Pro but not Arg or Lys. This enzyme is a hexamer of identical chains and has a molecular mass of 324-360 (Kohno et al., 1986). Human LAP is involved in the breakdown of the peptide products of intracellular proteinases and is one of the enzymes that trims proteasome-produced peptides for presentation by the major histocompatibility complex class I molecules. Expression of the encoding gene is promoted by interferon gamma (Beninga et al., 1998).

Membrane alanyl aminopeptidase has also been referred to as aminopeptidase M due to its membrane localization since there is a cytosolic counterpart, and also as aminopeptidase N due to its preference for neutral amino acids. The amino acid residue preferentially released is Ala, but most amino acids including Pro may be hydrolysed by this enzyme. When a terminal hydrophobic residue is followed by Pro, the two may be released as an intact X-Pro dipeptide (McDonald and Barret, 1986). In most species the native enzyme is a homodimer with a molecular mass of 280-300 and is glycosylated. The mammalian enzyme plays a role in the final digestion of peptides generated from proteins by gastric and pancreatic protease hydrolysis. It is also important for the inactivation in the kidney of blood-borne peptides such as enkephalins and the neuropeptide ‘substance P’. Furthermore, it is a regulator of IL-8 bioavailability in the endometrium and therefore may contribute to the regulation of angiogenesis. This aminopeptidase is also the myeloid leukaemia marker CD13 and serves as a receptor for human coronavirus (Shimizu et al., 2002; Albiston et al., 2004).

3.1.2. Mammalian aminopeptidases of narrow specificity

Glutamyl aminopeptidase is also referred to as aminopeptidase A, angiotensinase A and aspartate aminopeptidase. It releases N-terminal Glu (and to a lesser extent Asp) from a peptide. It is generally a membrane-bound enzyme involved in the formation of the brain heptapeptide angiotensin III which exerts a tonic stimulatory effect on the central control of blood pressure and is a regulator of blood vessel formation (Fournie-Zaluski et al., 2004).

Methionyl aminopeptidase has also been named methionine aminopeptidase and peptidase M. It releases N-terminal amino acids, preferentially methionine, from peptides but only when the second residue is small and uncharged. In eukaryotes, two types of methionyl aminopeptidases exist due to protein synthesis occurring in the mitochondria (type I) and in the cytoplasm (type II). The type I peptidase is similar to the bacterial methionyl aminopeptidase whereas type II resembles the enzyme from archaea (Arfin et al., 1995). The mammalian enzymes are involved in
the regulation of protein synthesis and in the processing of those proteins required for the formation of new blood vessels in normal development, tumour growth and metastasis (Yeh et al., 2000; Selvakumar et al., 2005; Zhong et al., 2006).

3.1.3. Proline-specific peptidases

This group includes two aminopeptidases: prolyl aminopeptidase and X-Pro aminopeptidase. The prolyl aminopeptidase has variously been named Pro-X aminopeptidase, proline aminopeptidase and proline iminopeptidase. It releases N-terminal proline from a peptide. This enzyme was first detected in *E. coli* but is widely distributed in nature and also present in the cytosol of mammalian cells (Matsushima et al., 1991). In contrast to the bacterial form, the mammalian enzyme is not specific for prolyl bonds (Cunningham et al., 1997). X-Pro aminopeptidase has also been termed aminopeptidase P and proline aminopeptidase. It releases any N-terminal amino acid residue, including proline, from oligopeptides and even dipeptide and tripeptides in which the penultimate N-terminal residue is proline. The preferred substrates have a hydrophobic or basic residue at the N-terminus. The mammalian enzyme exists in membrane-bound and cytosolic forms (Cottrell et al., 2000). It appears to contribute to the processing of bioactive peptides involved in the cardiovascular and pulmonary systems, and the degradation of collagen products (Yaron and Naider, 1993; Yoshimoto et al., 1994).

Of the mammalian peptidyl peptidases, dipeptidyl peptidase IV (DPP IV) is the best known. It releases an N-terminal dipeptide from polypeptides in which, the penultimate residue is Pro (preferentially but not exclusively) and provided that the antepenultimate residue is neither Pro nor hydroxyproline (Leiting et al., 2003). This enzyme is anchored to the cell membrane and expressed in various cell types. It has a calculated molecular mass of 88 kDa and the native enzyme is a homodimer. DPP IV plays a key role in various regulatory processes, acting on a number of bioactive oligopeptides including neuropeptides, endomorphins, circulating peptide hormones, glucagon-like peptides (GLP-1 and GLP-2), gastric inhibitory peptide (GIP) and paracrine chemokines, leading to modification of their biological activities or even their inactivation (Augustyns et al., 2005).

3.2. Microbial Aminopeptidases

The first studies on microbial aminopeptidases were carried out over 40 years ago, and since then a large number of aminopeptidases of microbial origin have been characterized (Gonzales and Robert-Baudouy, 1996; Jones, 1991; Kunji et al., 1996; Christensen et al., 1999; Sanz and Toldrà, 2002; Sanz et al., 2002; Barret et al., 2004; Nampoothiri et al., 2005; Savijoki et al., 2006). The main types of microbial activity characterized to date as well as their properties are summarized in Table 2. These enzymes can be divided according to their specificities into groups similar to those described for the mammalian enzymes: (i) general aminopeptidases showing broad specificity (PepN, PepC, LAP and PepS); (ii) aminopeptidases of narrow specificity that selectively hydrolyse certain amino acid residues such
Table 2. Main types and properties of microbial aminopeptidases

Enzyme	EC number/homologous	Catalytic type	Specificity	Family
Aminopeptidases (AP)				
PepN/lysyl aminopeptidase	Mammalian	Metallo	X- Y-(Z)_n	
Lysyl aminopeptidase	AP N		X = Lys, Leu,	
Bleomycin hydrolase	3.4.22.40	Cysteine	X = Arg, Tyr	C1B
GAL6/BLH1/YCP1				
PepC/aminopeptidase C	Bleomycin hydrolase	Cysteine	X = Lys, Glu, Ala, Met, Leu X or Y ≠ Pro	C1B
PepA/aminopeptidase A	-	Metallo	X = Glu, Asp, Ser	M42
PepS	-	Metallo	X = Arg, Trp	M29
CAP/PepA	3.4.11.10	Metallo	X = Leu, Met,	M17
Leucine aminopeptidase				
Aminopeptidase Y/yscl	3.4.11.15	Metallo	X = Arg, Lys, Ala	M28
Aminopeptidase M/MAP	3.4.11.18	Metallo	X = Met	M24A
PepP/AminopeptidaseP	3.4.11.9	Metallo	Y = Pro	M24B
PepI/Proline iminopeptidase	3.4.11.5	Serine	X = Pro	S33
D-stereospecific Dipeptidases	-	Serine	X = D-Ala, D-Ser or D-Thr	S12
aminopeptidase/DppA				
Dipeptidases				
PepV/peptidase V	-	Metallo	X = Lys, Leu, Met	M20A
PepD/PepDA	-	Cysteine	X = Lys, Met, Leu	C69
PepQ/prolinase	3.4.13.19	Metallo	Y = Pro	M24B
PepR/prolinase	-	Serine	X = Pro	-
Tripeptidases				
PepT/Peptidase T	-	Metallo	X-Y-Z	-
Dipeptidyl-peptidases				
PepX/X-Pro-dipeptidyl peptidase	3.4.14.11	Serine	Y = Pro	S15

as acidic residues (PepA) and methionine (MAP), D-amino acid residues (DppA) or peptide bounds containing proline (PepI and PepP); (iii) dipeptidases hydrolysing peptide bounds containing proline (PepQ and PepP); (iv) dipeptidases (PepV and PepDA) and tripeptidases (PepT) of broad specificity that only hydrolyse dipeptides or tripeptides, respectively; and (v) dipeptidyl peptidases showing specificity for N-terminal X-Pro.

Microbial aminopeptidases play important roles in the utilization of exogenous proteins as a source of essential amino acids that can be utilized for protein synthesis, the generation of metabolic energy and the recycling of reduced cofactors ([Christensen et al., 1999]). They are also implicated in the final steps of protein turnover and in more specific cellular functions such as the processing of newly synthesized proteins and high copy number plasmid stabilization ([Gonzales and Robert-Baudouy, 1996]).
3.2.1. Microbial aminopeptidases of broad specificity

PepN aminopeptidases, also known as lysyl aminopeptidases, have been identified in numerous bacterial species (e.g., *E. coli*, *Pseudomonas*, and lactic acid bacteria. [Gonzales and Robert-Baudouy, 1996; Christensen et al., 1999]). In most microorganisms these are monomeric enzymes of about 95 kDa. Their primary sequences are homologous to mammalian aminopeptidase N and conserve the signature sequence of zinc-dependent metallo-peptidases ([Gonzales and Robert-Baudouy, 1996; Kunji et al., 1996]). In lactic acid bacteria this enzyme is involved in the utilization of caseins as an exogenous source of amino acids ([Kunji et al., 1996]).

LAPs (PepA in *E. coli*) are also zinc-metallo aminopeptidases of broad specificity identified in Gram-negative bacteria and fungi ([Gonzales and Robert-Baudouy, 1996; Nampoothiri et al., 2005]). These enzymes show sequence homology with bovine lens leucine aminopeptidase and similar specificity ([Gonzales and Robert-Baudouy, 1996]). Pep L aminopeptidases identified and partially characterized in different species of *Lactobacillus* seem, however, to be serine peptidases ([Sanz et al., 1997; Christensen et al., 1999]). PepC and bleomycin hydrolases are cysteine aminopeptidases of relatively broad specificity identified in lactic acid bacteria and yeast, respectively. Both exhibit similarity to mammalian bleomycin hydrolases ([Kunji et al., 1996]).

3.2.2. Aminopeptidases of narrow specificity

MAPs of microbial origin show high levels of similarity with mammalian MAP, conserving all five metal-binding residues and also maintaining similar specificity. The enzymes from prokaryotes and yeasts seem to be monomers of 29 kDa and 44 kDa, respectively. They play critical biological roles since their inactivation in *E. coli*, *S. typhimurium* and *S. cerevisiae* result in lethal phenotypes ([Gonzales and Robert-Baudouy, 1996]). A homologue to mammalian MAP type 2 is also present in yeast and shows subtle differences in its peptide substrate specificity ([Chen et al., 2002]).

Aminopeptidase A, also referred to as glutamyl aminopeptidase and PepA, was identified in *Lactococcus lactis*. The genetic and physicochemical properties of this enzyme are not related to other aminopeptidases in prokaryotes or eukaryotes of similar specificity except for the enzyme purified from *Streptococcus thermophilus*. It specifically hydrolyses Glu and Asp residues, and to a lesser extent Ser residues, from the N-terminus of oligopeptides. In most cases the native enzyme seems to be a hexamer with a molecular mass of 240 kDa although other values (440–520) have been reported. The lacticoccal enzyme was not demonstrated to be essential for growing on milk caseins but is thought to be important for flavour generation in dairy products ([l’Anson et al., 1995]).

3.2.3. Proline-specific aminopeptidases

A set of peptidases specialised in the hydrolysis of proline-containing peptides has been detected in lactic acid bacteria, and is thought to be necessary for the complete degradation of caseins since they have a high proline content ([Kunji et al., 1996]).
This group includes: two aminopeptidases (PepP and PepI), two dipeptidases (PepQ and PepR) and a dipeptidyl-peptidase (PepX), all of which conserve the consensus signatures of their catalytic types (metallo or serine peptidases). PepX has also been detected in streptococci and is thought to play a role in the pathological processes caused by *Streptococcus gordonii* and *S. agalactiae*, such as endocarditis, neonatal sepsis and meningitis (Rigolet et al., 2005).

3.3. Plant Aminopeptidases

Several aminopeptidases have also been identified in plants. These enzymes are believed to play biological roles in protein turnover, stress responses, protein mobilization from cotyledons after germination, protein maturation and meiosis. The aminopeptidases identified in plants also include enzymes of the broad and narrow specificities previously described. Among them, the LAP from tomato (*Lycopersicon esculentum*) is one of the best characterized aminopeptidases of broad specificity. At least two distinct LAPs have been identified which seem to have different expression patterns and roles. The best-known enzyme (LAPa-A) is a wound-induced metallo aminopeptidase which preferentially hydrolyses substrates having N-terminal Leu, Arg or Met residues and with a homo-hexamer structure (Tu et al., 2003). Aminopeptidase N has also been identified in cucumber (*Cucumis sativus L. suyo*) and *Arabidopsis thaliana*. This is a metalloenzyme with similar specificity and sequence homology to that of aminopeptidases N which is classified into family M1 (Yamauchi et al., 2001). Among the aminopeptidases of narrow specificity, methionine aminopeptidases have also been identified in diverse plant species such as *Arabidopsis thaliana*, and are required for normal plant development (Ross et al., 2005). Aminopeptidase P has been identified in tomato (*Lycopersicon esculentum*) and is more than 40% identical to mammalian aminopeptidase P. It hydrolyses the amino terminal X-Pro bonds of bradykinin and also shows some endoproteolytic activity (Hauser et al., 2001).

4. CATALYTIC MECHANISM AND STRUCTURE OF AMINOPEPTIDASES

4.1. Metalloaminopeptidases

Metalloaminopeptidases, which constitute the largest group of aminopeptidases, are hydrolases in which the nucleophilic attack on a peptide bond is mediated by a water molecule that is activated by a divalent metal cation (Barret et al., 2004). Some aminopeptidases require a single metal ion for catalysis (*e.g.* MAP) while others require two metal ions (*e.g.* LAP from bovine lens; Lowther and Matthews, 2002). The known metal ligands of metallopeptidases are His, Glu, Asp or Lys residues. In addition to these metal ligands at least one additional residue, which can be Glu, Lys or Arg, is required for catalysis (Barret et al., 2004). Despite the differences in structure and metal centres among the metalloaminopeptidases, overall they utilize a
similar reaction mechanism. The carbonyl group of the substrate binds to the active site interacting with metal site 1 and a conserved enzyme residue. The N-terminus of the substrate also interacts either with metal site 2 or with one or more acidic enzyme residues. The scissile peptide bond is attacked by a solvent molecule that has been activated by its interaction with the metal ion and an enzyme residue that functions as a general base. Breakdown of the intermediate is most likely promoted by the addition of a proton to the leaving amino group donated by the general base. Differences in the binding pockets are responsible for the differences in substrate specificity, being broad or restrictive. Conserved amino acid side chains and the backbone atoms that are adjacent to the metal centre also provide key interactions. The oligomeric nature of some of the active enzymes also appears to be important for substrate specificity (Lowther and Matthews, 2002; Holz et al., 2003).

Metalloaminopeptidases have been subdivided into six clans (MA, MF, MG, MH, MN and MQ) on the basis of their folds, their active site architectures and the identities of active metal ions (see Rawling et al. in this volume). The best-known metalloaminopeptidases are found in clans MA (subclan MA(E)) – those enzymes which have only one catalytic metal ion –, and MF and MG, which have co-catalytic metal ions.

Amongst others, subclan MA(E) contains zinc-dependent peptidases which belong to peptidase family M1 and include bacterial lysyl aminopeptidase (PepN) and the mammalian enzymes membrane alanyl aminopeptidase (aminopeptidase N) and leukotriene A4 hydrolase, the latter possessing aminopeptidase and epoxyhydrolase activities. The peptidases of family M1 have a conserved His-Glu-X-X-His (HEXXH) motif involved in catalysis; they are also dependent on a single zinc ion for activity. The catalytic zinc ion is bound by the two histidines in the motif and the glutamate is a catalytic residue. The tertiary structures of members of this family show a two-domain structure with the active site in the cleft between them (Turner et al., 2004). The structure of leukotriene A4 hydrolase has been solved revealing a three-domain protein in which the catalytic domain is the middle one. This domain contains an antiparallel β-sheet and α-helices, similar to that of thermolysin which is the type example of subclan MA(E) (Thunnissen et al., 2001).

Clan MF is comprised of peptidase family M17 that includes LAPs from eukaryotes and bacteria (PepA). These enzymes require co-catalytic metal ions for activity (Barret et al., 2004). The three-dimensional structure of bovine lens LAP has been solved (Burley et al., 1994; Kim et al., 1993; Cappiello et al., 2006), revealing that the protein is a homohexamer and that each monomer contains two domains: the N-terminal and the catalytic C-terminal domain, the latter containing the metal centre. Both domains contain α and β structures, with β-sheets in an $\alpha/\beta/\alpha$ layering. The monomers within the hexamer are arranged as two layers of trimers. The two metal ions Zn1 and Zn2 are coordinated by the side chains of conserved amino acid residues of the enzyme (Lipscomb and Sträter, 1996). Zn2 binds the N-terminus of the substrate; Zn1 is also thought to provide critical binding and stabilizing interactions for the substrate and transition stages (Sträter and Lipscomb, 1995). The three-dimensional structure of the E. coli enzyme (Fig. 1)
has also been solved showing a hexameric quaternary structure similar to that of bovine lens LAP, but containing two manganese ions in the active site (Sträter et al., 1999).

Clan MG includes peptidases of family M24 which is itself split into two subfamilies: M24A which includes the methionyl aminopeptidases and M24B which includes the aminopeptidase P and prolylase (X-Pro dipeptidase or PepQ) type peptidases. They have two cobalt or two manganese ions in their active centres. The narrow specificity of these enzymes is related with a common pitta-bread fold which contains a metal centre flanked by well-defined substrate binding pockets (Bazan et al., 1994). The structure of the *E. coli* enzyme revealed the two metal ions to be sandwiched between two β-sheets surrounded by four α helices, yielding a structure with pseudo-2-fold symmetry (Roderick and Matthews, 1993). The restricted specificity suggests that these enzymes play roles in regulatory processes rather than in general protein degradation (Lowther and Matthews, 2002).

Figure 1. Overall structure of hexameric *E. coli* leucyl aminopeptidase* Sträter et al. 1999*
4.2. Cysteine and Serine Aminopeptidases

Cysteine and serine aminopeptidases have no ionic co-factors associated with their structures. Catalysis requires a highly reactive cysteine or serine residue. In both cases the reaction begins with a nucleophilic attack on the carbon of the carbonyl group involved in the peptide bond of the substrate. In the case of cysteine aminopeptidases the attack is made by the sulphur of the sulphydryl group whereas in the serine aminopeptidases the attack is made by the oxygen of the hydroxyl group. These types of enzymes are less abundant than the metalloaminopeptidases and include cysteine peptidases of relatively broad specificity such as bleomycin hydrolase and PepC, and serine peptidases of narrow specificity such as proline-specific peptidases (PepI or prolyl aminopeptidase, PepX and DPP IV).

Cysteine aminopeptidases are included in clan CA and family C1B. They show the signature sequences of the catalytic site of the papain superfamily, and the amino acid residues important for catalysis (Gln, Cys, His, and Asn/Asp). The crystal structures of yeast bleomycin hydrolase (GAL6) and the human enzyme have been solved and show overall similarity [Zheng et al., 1998; Joshua-Tor et al., 1995; O’Farrell et al., 1999]. The proteins are hexameric, the six identical subunits forming barrel structures with the active sites embedded in a prominent central channel [Zheng et al., 1998]. The monomers have a papain-like polypeptide fold as the core, with additional structural and functional modules inserted into loop regions. The crystallographic model of Lactococcus lactis PepC reveals that it is a homohexamer the subunits of which leave a narrow channel restricting the access to peptides. The projection of the C-terminal arm into the active site is a major difference relative to papain which, together with the overall architecture of the hexamer, limits the access to the active site cleft and may explain why peptidase activity observed in vitro has been restricted to small peptides (Joshua-Tor et al., 1995). This carboxyl-terminal arm, also conserved in bleomycin hydrolases, is critical for oligomerization and aminopeptidase activity but not for endopeptidase activity [Mistou et al., 1994; Joshua-Tor et al., 1995; Mata et al., 1999].

Serine aminopeptidases do not belong to the main group of serine proteolytic enzyme families represented by trypsin and subtilisin. Peptide sequence analysis revealed that both prolyl aminopeptidase (PIP), PepI, DPP IV and PepX contain a catalytic triad which consists of Ser, His and Asp, and are related to prolyl oligopeptidases [Engel et al., 2005]. The three-dimensional structures of the PIPs of several bacteria have been solved [Yoshimoto et al., 1999; Engel et al., 2005]. The PIP protein is folded into two contiguous domains. The larger domain shows the general topology of the α/β hydrolase fold, with a central eight-stranded β-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other. The smaller domain is located above the larger and consists of six helices (Fig. 2). The catalytic triad (Ser 113, His 296, and Asp 268) is located near the large cavity at the interface between the two domains. The residues which make up the hydrophobic pocket line the smaller domain, and the specificity of the exo-type enzyme originates from this smaller domain [Yoshimoto et al., 1999].
Figure 2. Monomer of prolyl aminopeptidase from *Serratia marcescens* showing its two distinct domains: the larger α/β domain in the bottom part of the figure and the smaller one, composed of six helices, on top (Yoshimoto *et al.*, 1999).

The crystal structures of lactococcal PepX and a number of mammalian DPP IV enzymes have also been solved as a result of the interest generated by their key roles in diverse regulatory processes and the therapeutic potential of DPP IV inhibitors (Engel *et al.*, 2003). The mammalian enzyme is an α/β-hydrolase that is secreted as a mature monomer but requires oligomerization to display normal proteolytic activity. Each monomer (Fig. 3) consists of an N-terminal β-propeller domain and an α/β-hydrolase domain enclosing an internal cavity that harbours the active site. The cavity is connected with the external environment through two different openings, the “propeller opening” and a “side opening” (Engel *et al.*, 2005). The lactococcal enzyme is a homodimer with 2-fold symmetry. It folds into four distinct contiguous domains. The α/β-hydrolase fold is the largest domain and contains the catalytic site. The shortest domain is involved in oligomerization and binding specificity (Chich *et al.*, 1995).

5. INDUSTRIAL APPLICATIONS OF AMINOPEPTIDASES

5.1. The Pharmaceutical Industry

Aminopeptidases play important roles in diverse cellular processes. As a consequence, pharmaceutical applications are being directed to control their activity in pathophysiological processes as well as the development of diagnosis tools and markers of physiological pathways (Brown, 2005). Most of the applications
AMINOPEPTIDASES

Figure 3. Mammalian (pig kidney) dipeptidyl peptidase [Engel et al., 2003]. Panel A shows a view of the protein facing the N-terminal β-propeller domain. Panel B represents the protein from a perpendicular orientation showing the β-propeller domain in the upper part and α/β domain harbouring the catalytic site at the bottom.

are oriented to the design of inhibitors for specific aminopeptidases. Selective inhibitors of glutamyl aminopeptidase (aminopeptidase A) constitute potential anti-hypertensive agents due to the role of this enzyme in the conversion of angiotensin II into angiotensin III, which plays an essential role in control of arterial blood
The design of inhibitors of methionine aminopeptidases is also considered to be of therapeutic potential due to the role of these enzymes in angiogenesis and tumour growth (Selvakumar et al., 2005; Zhong and Bower, 2006). Inhibitors of the expression of alanyl aminopeptidase (aminopeptidase N), which is deregulated in inflammatory diseases, cancer, leukaemia, diabetic nephropathy and rheumatoid arthritis, are also being developed to try to control these disorders (Bauvois and Dauzonne, 2006; Ansorge et al., 2006). The design of inhibitors of DPP IV and related proline-specific peptidases is currently under investigation since these enzymes are involved in peptide metabolism of members of the PACAP/glucagon peptide family, neuropeptides and chemokines. The most promising applications of these agents are in the treatment of type 2 diabetes and immunological disorders (Augustyns et al., 2005; Mest, 2006). The inhibition of other aminopeptidases such as PepX (involved in infections by Streptococcus gordonii), the stereospecific DppA aminopeptidase (involved in peptidoglycan synthesis) and methionyl aminopeptidase, also constitute potential pharmaceutical targets to control microbial infections (Holz et al., 2003; Rigolet et al., 2005; Schiffmann et al., 2006).

5.2. Biotechnological and Food Industrial Applications

One of the main industrial applications of aminopeptidases and their microbial producer strains is the manufacture of protein hydrolysates and protein-rich fermented products derived from soy, meat, milk, cereals, etc. (Meyer-Barton et al., 1994; Suchiibun et al., 1993; Chevalet et al., 2001; Scharf et al., 2006). Food protein hydrolysates are manufactured for diverse purposes such as the fortification of foods and beverages, the elaboration of pre-digested ingredients for enteral/parenteral nutrition, and the generation of bioactive peptides and healthcare products (FitzGerald and O’Cuinn, 2006). The use of aminopeptidases in these industrial processes not only contributes to the improvement of nutritional value but also the flavour of the final product by promoting the degradation of hydrophobic peptides which have undesirable tastes and the release of other peptides of agreeable taste characteristics and free amino acids. The application of these strategies to cheese ripening has been thoroughly investigated due to the high content of hydrophobic amino acid residues (e.g. proline) present in milk caseins (Meyer-Barton et al., 1994; Savijoki et al., 2006). The use of proline-specific peptidases together with aminopeptidases of broad specificity (e.g. LAP) has been especially successful in the food industry (Raksakulthai and Haard, 2003). Some of the commercial aminopeptidases that are used to reduce bitterness in food are LAPs from lactic acid bacteria, Rhizopus oryzae, Aspergillus oryze and Aspergillus sojae (Nampoothiri et al., 2003). The use of lactic acid bacteria expressing specific peptidase activities during food protein processing is also being explored for reducing the levels of toxic and allergenic epitopes present in milk and cereal proteins (Di Cagno et al., 2004). A similar approach has also been used for the generation of bioactive peptides with antihypertensive, immunomodulatory and
antimicrobial properties (Meisel, 2004). Recently, the peptidases of *Lactobacillus helveticus* R211 and R389 have been found to generate casein-derived peptides that inhibit the angiotensin converting enzyme and are active *in vivo* (Leclerc *et al.*, 2001; Seppo *et al.*, 2003).

The application of combinations of peptidases to hydrolyse collagen for cosmetic uses has also been developed (Shigeri *et al.*, 2005). In addition, thermostable high-activity aminopeptidases constitute alternatives for biotechnological applications such as the processing of recombinant proteins (Gilboa *et al.*, 2001).

REFERENCES

Albiston, A.L., Ye, S. and Chai, S.Y. (2004) Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept. Lett. 11, 491–500.

Ansorge, S., Bank, U., Nordhoff, K., Taeger, M. and Striggow, F. (2006) Dual alanyl aminopeptidase and dipeptidyl peptidase IV inhibitors for functionally influencing different cells and for treating immunological, inflammatory, neuronal and other diseases. Patent Application WO2005034940.

Arfin, S.M., Kendall, R.L., Hal, L., Weaver, L.H., Stewart, A.E., Matthews, B.W. and Bradshaw, R.A. (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc. Natl. Acad. Sci. U S A. 92, 7714–7718.

Augustyns, K., Van der Veken, P., Senten, K. and Haemers, A. (2005) The therapeutic potential of inhibitors of dipeptidyl peptidase IV (DPP IV) and related proline-specific dipeptidyl aminopeptidases. Curr. Med. Chem. 12, 971–98.

Barret, A.J., Rawlings, N.D. and Woessner (eds) (2004) Handbook of proteolytic enzymes. Elsevier Academic Press, Oxford, UK.

Bauvois, B. and Dauzonne, D. (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med. Res. Rev. 26, 88–130.

Bazan, J.F., Weaver, L.H., Roderick, S.L., Huber, R. and Matthews, B.W. (1994) Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc. Natl. Acad. Sci. U S A. 91, 2473–2477.

Beninga, J., Rock, K.L. and Goldberg, A.L. (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273, 18734–18742.

Brown, N.J. (2005) Biological markers and diagnostic test for angiotensin converting enzyme inhibitor and vasopeptidase inhibitor-associated angioedema. Patent Application US6887679.

Burley, S.K., David, P.R., Taylor, A. and Lipscomb, W.N. (1990) Molecular structure of leucine aminopeptidase at 2.7-A resolution. Proc. Natl. Acad. Sci. U S A. 87, 6678–6882.

Cappiello, M., Alterio, V., Amodeo, P., Del Corso, A., Scaloni, A., Pedone, C., Moschini, R., De Donatis, G.M., De Simone, G. and Mura, U. (2006) Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase. Biochem. 45, 3226–3234.

Chen, S., Vetro, J.A. and Chang, T.H. (2002) The specificity *in vivo* of two methionine aminopeptidases in *Saccharomyces cerevisiae*. Arch. Biochem. Biophys. 398, 87–93.

Chevalet, L., Soupepe, J., De Leseluc, J., Brunet, J. and Warmerdam, M.J. (2001) *Aspergillus niger* aminopeptidase compositions for making bread doughs and cheese. US6271013.

Chich, J.F., Rigolet, P., Nardi, M., Gripon, J.C., Ribadeau-Dumas, B. and Brunie, S. (1995) Purification, crystallization, and preliminary X-ray analysis of PepX, an X-prolyl dipeptidyl aminopeptidase from *Lactococcus lactis*. Proteins 23, 278–281.

Christensen, J.E., Dudley, E.G., Pederson, J.A. and Steel, J.L. (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76, 217–246.

Cogolludo, A., Perez-Vizcaíno, F. and Tamargo, J. (2005) New insights in the pharmacological therapy of arterial hypertension. Curr. Opin. Nephrol. Hypertens. 14, 423–427.
Cottrell, G.S., Hooper, N.M. and Turner, A.J. (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese(II)-dependent enzyme. Biochemistry 39, 15121–15128.

Cunningham, D.F. and O’Connor, B. (1997) Proline specific peptidases. Biochim. Biophys. Acta 1343, 160–186.

Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M., Giovannini, C., D’Archivio, M., Landolfò, F., Parrilli, G., Minervini, F., Arendt, E. and Gobbetti, M. (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl. Environ. Microbiol. 70, 1088–1096.

Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H.U. and Brandstetter, H. (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. U S A. 100, 5063–5068.

Engel, C.K., Pirard, B., Schimanski, S., Kirsch, R., Habermann, J., Klingler, O., Schlotte, V., Weithmann, K.U. and Wendt K.U. (2005) Structural basis for the highly selective inhibition of MMP-13. Chem. Biol. 12, 181–189.

FitzGerald, R.J. and O’Cuinn, G. (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol. Adv. 24, 234–237.

Fournie-Zaluski, M.C., Fassot, C., Valentin, B., Djordjijevic, D., Reaux-Le Goazigo, A., Corvol, P., Roques, B.P, and Llorens-Cortes, C. (2004) Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc. Natl. Acad. Sci. U S A. 101, 7775–7780.

Gilboa, R., Spungin-Bialik, A., Wohlfahrt, G., Schomburg, D., Blumberg, S. and Shoham, G. (2001) Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism. Proteins 44, 490–504.

Gonzales, T. and Robert-Baudouy, J. (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol. 18, 319–344.

Hauser, F., Strassner, J. and Schaller, A. (2001) Cloning, expression, and characterization of tomato (Lycopersicon esculentum) aminopeptidase P. J. Biol. Chem. 276, 31732–31737.

Holz, R.C., Bzymek, K.P. and Swierczek, S.I. (2003) Co-catalytic metallopeptidases as pharmaceutical targets. Curr. Opin. Chem. Biol. 7, 197–206.

l’Anson, K.J., Movahedi, S., Griffin, H.G., Gasson, M.J. and Mulholland, F. (1995) A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiol. 141, 2873–2881.

Inguimbert, N., Coric, P., Dhotel, H., Bonnard, E., Llorens-Cortes, C., Mota, N., Fournie-Zaluski, M.C. and Roques, B.P. (2005) Synthesis and in vitro activities of new non-peptidic APA inhibitors. J. Pept. Res. 65, 175–188.

Jones, E.W. (1991) Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 266, 7963–7966.

Joshua-Tor, L., Xu, H.E., Johnston, S.A. and Rees, D.C. (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269, 945–950.

Kim, H., Burley, S.K. and Lipscomb, W.N. (1993) Re-refinement of the X-ray crystal structure of bovine lens leucine aminopeptidase complexed with bestatin. J. Mol. Biol. 230, 722–724.

Kohno, H., Kanda, S. and Kanno, T. (1986) Immunoaffinity purification and characterization of leucine aminopeptidase from human liver. J. Biol. Chem. 261, 10744–10748.

Kunji, E.R.S., Mierau, I., Hagting, A., Poolman, B. and Konings, W. N. (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek. 70, 187–221.

Leclerc, P.L., Gauthier, S.F., Bachelard, H., Santure, M. and Roy, D. (2001) Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995–1004.

Leiting, B., Pryor, K.D., Wu, J.K., Marsili, F., Patel, R.A., Craik, C.S., Ellman, J.A., Cummings, R.T. and Thornberry, N.A. (2003) Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem. J. 371, 525–532.
Linderstrom-Lang, K. (1929) Über Darmereosin [Concerning intestinal erepsin]. Z. Physiol. Chem. 182, 151–174.
Lipscomb, W.N. and Strüter, N. (1996) Recent Advances in Zinc Enzymology. Chem. Rev. 96, 2375–2434.
Lowther, W.T. and Matthews, B.W. (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem. Rev. 102, 4581–4608.
McDonald, J.K. and Barret, A.J. (eds.) (1986) Mammalian proteases: a glossary and bibliography. Vol 2. Exopeptidases. Academic Press, London.
Mata, L., Grippon, J.C. and Mistou, M.Y. (1999) Deletion of the four C-terminal residues of PepC converts an aminopeptidase into an oligopeptidase. Protein Eng. 12, 681–686.
Matsushima, M., Inoue, H., Ichinose, M., Tsukada, S., Miki, K., Kurokawa, K., Takahashi, T. and Takahashi, K. (1991) The nucleotide and deduced amino acid sequences of porcine liver proline-beta-naphthylamidase. Evidence for the identity with carboxylesterase. FEBS Lett. 293, 37–41.
Meisel, H. (2004) Multifunctional peptides encrypted in milk proteins. Biofactors 21, 55–61.
Mest, H.J. (2006) Dipeptidyl peptidase-IV inhibitors can restore glucose homeostasis in type 2 diabetics via incretin enhancement. Curr. Opin. Investig. Drugs 7, 338–343.
Meyer-Barton, E., Klein, J.R., Henrich, B. and Plapp, R. (1994) X-prolyl-dipeptidyl peptidase from Lactobacillus delbrueckii ssp. lactis, nucleic acids coding for the same and its use in fermented foodstuffs preparation process. Patent Application WO9416082.
Mistou, M.Y., Rigolet, P., Chapot-Chartier, M.P., Nardi, M., Grippon, J.C. and Brunie, S. (1994) Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. J. Mol. Biol. 237, 160–162.
Namoothiri, K.M., Nagy, V., Kovacs, K., Szakacs, G. and Pandey, A. (2005) l-leucine aminopeptidase production by filamentous Aspergillus fungi. Lett. Appl. Microbiol. 41, 498–504.
O’Farrell, P.A., Gonzalez, F., Zheng, W., Johnston, S.A. and Joshua-Tor, L. (1999) Crystal structure of human bleomycin hydrolase, a self-compartmentalizing cysteine protease. Structure 7, 619–627.
Raksakulthai, R. and Haard, N.F. (2003) Exopeptidases and their application to reduce bitterness in food: a review. Crit. Rev. Food Sci. Nutr. 43, 401–445.
Rigolet, P., Xi, X.G., Rety, S. and Chich, J.F. (2005) The structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activity. FEBS J. 272, 2050–2059.
Roderick, S.L. and Matthews, B.W. (1993) Structure of the cobalt dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochem. 32, 3907–3912.
Ross, S., Giglione, C., Pierre, M., Espagne, C. and Meinnel, T. (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol. 137, 623–637.
Sanderink, G.J., Artur, Y. and Siest, G. (1988) Human aminopeptidases: a review of the literature. J. Clin. Chem. Biochem. 26, 795–807.
Sanz, Y. and Toldrá, F. (1997) Purification and characterization of an aminopeptidase from Lactobacillus sakei. J. Agric. Food Chem. 45, 1552–1558.
Sanz, Y. and Toldrá, F. (2002) Purification and characterization of an arginine aminopeptidase from Lactobacillus sakei. Appl. Environ. Microbiol. 68, 1980–1987.
Sanz, Y., Sentandreu, M.A. and Toldrá, F. (2002) Role of muscle and bacterial peptidases in meat fermentation. In Research advances in the quality of meat and meat products. Toldrá F. (ed.). pp 143-155. Research Signpost, Trivandrum, ISBN: 81-7736-125-2, India.
Savijoki, K., Ingmer, H. and Varmanen, P. (2006) Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. April 21; [Epub ahead of print]
Scharf, U., Stolz, P., Huscroft, S.C. and Schmidt-Hahn, K. (2006) Use of aminopeptidase in dough, doughs and bread improvers comprising aminopeptidase. Patent Application. WO2006099447.
Schiffmann, R., Neugebauer, A. and Klein, C.D. (2006) Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J. Med. Chem. 49, 511–522.
Scornik, O.A. and Botbol, V. (2001) Bestatin as an experimental tool in mammals. Curr. Drug Metab. 2, 67–85.
Selvakumar, P., Lakshmikuttyamma, A., Dimmock, J.R. and Sharma, R.K. (2005) Methionine aminopeptidase 2 and cancer. Biochim. Biophys. Acta 1765, 148–154.

Seppö, L., Jauhiainen, T., Pousa, T. and Korpelä, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326–330.

Shigeri, Y., Tsujimoto, Y., Yutaka, M. and Kunihiko, W. (2005) Method for producing degraded material of collagen. Patent Application. JP2005245285.

Shimizu, T., Tani, K., Hase, K., Ogawa, H., Huang, L., Shinomiya, F. and Sone, S. (2002) CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum. 46, 2330–2338.

Sträter N. and Lipscomb, W.N. (1995) Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochem. 34, 14792–14800.

Sträter, N., Sherratt, D.J. and Colloms, S.D. (1999) X-ray structure of aminopeptidase A from *Escherichia coli* and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J. 18, 4513–4522.

Suchibun, S.Y. K., Maikuru, A.M. and Daramu, B.B. (1993) Flavor reinforcing method for natural beef concentrated liquid. Patent Application EP 0505733.

Tan, P.S.T., Poolman, B. and Konings, W.N. (1993) Proteolytic enzymes of *Lactococcus lactis*. J. Dairy Sci. 60, 269–286.

Thunnissen, M.M.G.M., Nordlund, P. and Haeggström, J.Z. (2001) Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 8, 131–135.

Turner, A.J. (2004) Membrane alanyl aminopeptidase. In Handbook of proteolytic enzymes, Barret, A.J., Rawlings, N. D. and Woessner (eds), Vol 1 pp.289–294. Elsevier Academic Press. Oxford, UK.

Tu, C.J., Park, S-Y. and Walling, L.L. (2003) Isolation and characterization of the neutral leucine aminopeptidase (LapN) of tomato. Plant Physiol. 132, 243–255.

Yamauchi, Y., Ejiri, Y. and Tanaka, K. (2001) Purification of an aminopeptidase preferentially releasing N-terminal alanine from cucumber leaves and its identification as a plant aminopeptidase N. Biosci. Biotechnol. Biochem. 65, 2802–2805.

Yaron, A. and Naider, F. (1993) Proline-dependent structural and biological properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol. 28, 31–81.

Yeh, J.R., Mohan, R. and Crews, C.M. (2000) The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proc. Natl. Acad. Sci. U S A. 97, 12782–12787.

Yoshimoto, T., Orawski, A.T. and Simmons, W.H. (1994) Substrate specificity of aminopeptidase P from *Escherichia coli*: comparison with membrane-bound forms from rat and bovine lung. Arch. Biochem. Biophys. 311, 28–34.

Yoshimoto, T., Kabashima, T., Uchikawa, K., Inoue, T., Tanaka, N., Nakamura, K.T., Tsuru, M. and Ito, K. (1999) Crystal structure of prolyl aminopeptidase from *Serratia marcescens*. J. Biochem. (Tokyo) 126, 559–565.

Zheng, W., Johnston, S.A. and Joshua-Tor, L. (1998) The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93, 103–109.

Zhong, H. and Bowen, J.P. (2006) Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr. Med. Chem. 13, 849–862.