Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species

Zhi-Feng Zhang1,2,3 · Shi-Yue Zhou1,3 · Lily Eurwilaichitr4 · Supawadee Ingsriswang4 · Mubashar Raza1,3 · Qian Chen1 · Peng Zhao1 · Fang Liu1 · Lei Cai1,3

Received: 1 March 2020 / Accepted: 29 June 2020 / Published online: 26 July 2020
© MUSHROOM RESEARCH FOUNDATION 2020

Abstract
Karst caves are characterized by darkness, low temperature, high humidity, and oligotrophic organisms due to its relatively closed and strongly zonal environments. Up to now, 1626 species in 644 genera of fungi have been reported from caves and mines worldwide. In this study, we investigated the culturable mycobiota in karst caves in southwest China. In total, 251 samples from thirteen caves were collected and 2344 fungal strains were isolated using dilution plate method. Preliminary ITS analyses showed that these strains belonged to 610 species in 253 genera. Among these species, 88.0% belonged to Ascomycota, 8.0% Basidiomycota, 1.9% Mortierellomycota, 1.9% Mucoromycota, and 0.2% Glomeromycota. The majority of these species have been previously known from other environments, and some of them are known as mycorrhizal or pathogenic fungi. About 52.8% of these species were discovered for the first time in karst caves. Based on morphological and phylogenetic distinctions, 33 new species were identified and described in this paper. Meanwhile, one new genus of Cordycipitaceae, Gamszarea, and five new combinations are established. This work further demonstrated that Karst caves encompass a high fungal diversity, including a number of previously unknown species. Taxonomic novelties: New genus: Gamszarea Z.F. Zhang & L. Cai; Novel species: Amphichorda cavernicola, Aspergillus limoniformis, Aspergillus phialiformis, Aspergillus phialosimplex, Auxarthron chinense, Auxarthron guangxiense, Auxarthronopsis globiasca, Auxarthronopsis pedicellaris, Auxarthronopsis pulverea, Auxarthronopsis stericola, Chrysosporium flavus, Chrysosporium globicum, Chrysosporium laticomatum, Chrysosporium pulvatum, C. testudinea, C. wallacei, Gamszarea indonesiaca (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea kalimantanensis (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea restricta (Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, and Gamszarea testudinea (Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai.

Keywords Fungal diversity · Karst cave · Morphology · Phylogeny · Troglobitic fungi · 39 new taxa

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13225-020-00453-7) contains supplementary material, which is available to authorized users.

Lei Cai cail@im.ac.cn
1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
Introduction

Caves are strongly zonal environment with unique characteristics determined by the karst morphology, subterranean water and surrounding rocks (Kuzmina et al. 2012; Gabriel and Northup 2013). Caves thus have distinctly characteristics, such as darkness, constantly low temperature, high humidity, and oligotrophy (Gabriel and Northup 2013; Zhang et al. 2017, 2018). As a relatively closed space, caves usually have one or several entrances and the environments may be affected by various factors, such as the air currents, chemolithoautotrophy, visitors, and water movements (streams or water seeps; Hose et al. 2000; Barton and Jurado 2007; Gabriel and Northup 2013; Ortiz et al. 2014). Meanwhile, caves are totally dark and lack photosynthesis thus believed to be generally oligotrophic in nature (Hose et al. 2000; Barton and Jurado 2007; Gabriel and Northup 2013; Ortiz et al. 2014; Jiang et al. 2017a). The microbial flora in caves might be shaped by these above affecting factors and oligotrophic environment (Ogórek et al. 2013; Ortiz et al. 2014).

Fungi play important roles in cave ecosystem, such as bio-mineralization or serving as food of cave fauna (Northup and Lavoie 2001; Barton and Northup 2007; Nováková 2009; Li et al. 2015). While, most of the previous studies were focused on cave fauna and fungal diversity has rarely been documented (Zhang et al. 2017). The studies on culturable fungi in caves can be divided into three periods, namely, early stage, developing stage, and explosive stage.

Early stage: before 1980s. The earliest description of fungi in caves was published as early as 1794 by Humboldt, as described in Dobat (1967), and the first ecological literature of caves was that by Megušar (1914). In 1913, Lagarde investigated the fungal diversity in several caves in Europe and described a new species, Ombrophila speluncarum Lagarde. During 1950s–1980s, studies on cave fungi were mostly about animal pathogens, e.g., Histoplasm capsulatum Darling (Ajello et al. 1960a, b; Al-Doory and Rhoades 1968; Di Salvo et al. 1969; Zamora 1977), Trichophyton mentagrophytes (C.P. Robin) Sabour and other dermatophytes (Lurie and Borok 1955; Lurie and Way 1957; Kajihiro 1965).

Developing stage: During 1980s to early 2010s, a number of studies on fungal diversity in caves were reported. Cunningham et al. (1995) investigated the microorganisms in Lechuguilla Cave in New Mexico and obtained nine fungal genera, of which, Aspergillus P. Micheli ex Haller and Penicillium Link were most common. Koilraj et al. (1999) isolated 35 sporulating fungi, belonging to 18 genera and seven sterile fungi from six different caves in India. In the investigation on mycobiota in caves in Slovakia, 195 species belonging to 73 genera, including 92 species were obtained from bat droppings and guano (Novákova 2009).

Explosive stage: since bat White Nose Syndrome (WNS) outbreak in America in 2006. WNS was caused by pathogenic fungus Pseudogymnoascus destructans (Blehert & Gargas) Minnis & D.L. Lindner (Syn: Geomyces destructans Blehert & Gargas), a species isolated from many caves in Europe and North America (Blehert et al. 2009; Martínková et al. 2010; Kubátová et al. 2011; Minnis and Lindner 2013), and resulted in 6 million deaths of bat and ca. 3.7 billion dollars loss in America in 2011 (Boyles et al. 2011). Studies on P. destructans signigicantly improved our knowledge on mycobiota in caves. According to our statistics, about 110 research papers on fungi in caves have been published since 2006 worldwide, indicating a high fungal diversity in caves. In total, about 1000 species of fungi in 550 genera have been documented from caves and mines worldwide by 2012 (Vanderwolf et al. 2013). Common genera are mostly cosmopolitans, i.e. Aspergillus, Penicillium, Mucor Fresen, Fusarium Link, Trichoderma Pers., etc. The most common species are also widespread, i.e. Aspergillus versicolor (Vuill.) Tirab., A. niger Tiegh., Penicillium chrysogenum Thom, Cladosporium cladosporioides (Fresen.) G.A. de Vries, A. fumigatus Fresen., etc. (Vanderwolf et al. 2013).

The Karst landform covers more than 1/3 of the total land area of China and there are more than half million karst caves scattered in China (Ran and Chen 1998; Chen 2006; Zhang and Zhu 2012). However, most studies on cave microorganisms in China were focus on bacteria, and the investigation on fungal diversity was rare, with only several documentations (Hsu and Agoramoorthy 2001; Man et al. 2015; Jiang et al. 2017a; Zhang et al. 2017). In Zhang et al. (2017), 563 fungal strains belonging to 246 species in 116 genera were reported from two unnamed karst cave in Guizhou, China, including 20 new species. Using oligotrophic carbon free silica gel medium, Jiang et al. (2017a, b) studied the oligotrophic fungi from a carbonate cave in China. 169 oligotrophic strains belonging to at least 84 taxa were isolated and four new species were described. With the development of tourism, more and more caves have been heavily affected by human activities. The fungal diversity and resources in caves are thus urgent to be investigated. The objective of this study was to systematically investigate the culturable fungal resources from karst caves in China. In response to this, 13 caves in five provinces were visited and sample of organic litter, rock, soil and water were collected for isolation. Novel species were identified and described based on morphological characters and phylogenetic affinities.
Material and methods

Sampling collection

Southwest China, including Yunnan-Guizhou Plateau, the center of East Asia developing Karst area, is the largest and most complex developing karst area in the world (Zhou et al. 2007). Thirteen accessible caves in Southwest China were selected for this study (Figs. 1 and 2, Table 1).

Samples of rock, soil and water were collected along these thirteen caves and preserved at 4 °C before isolation. From the entrance of the caves, the distance of each two adjacent sampling sites was same and depend on the length of caves (Table 1).

Seeping, stream and pool water was collected for 10 mL, respectively, and kept in 15 mL sterile centrifuge tubes. Ten grams of soil samples were collected at shallow depth (0.5–5.0 cm) after removing surface layer (ca. 0.5 cm) from three sites of each location. Rock samples were collected and packed in zip-locked plastic bags following Ruibal et al. (2005). At each sample site, 5 pieces of rock in different orientations were collected. Rocks that were apparently being colonized by fungi were also chipped off and collected along the caves. Organic litter, when discovered, were collected, including bat droppings, guano, animal dung, animal carcass, and plant debris (Zhang et al. 2017).

![Fig. 1](https://example.com/fig1.png) Locations of the 13 visited caves in southwest China. Cave names are abbreviated and full names are in Table 1.
Isolation

Fungi were isolated following the dilution plate method (Zhang et al. 2015). One gram of each collected sample was suspended in 9 mL sterile water in a 15 mL sterile centrifuge tube. The tubes were shaken with Vortex vibration meter thoroughly. The suspension was then diluted to a series of concentrations, i.e. 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} and 10^{-6}. Diluted concentration of 10^{-3} and 10^{-4} appeared to be most convenient for colony pickup in the isolating process from organic litters, while that for water and soil samples were 10^{-1} and 10^{-2} respectively. Two hundred microliters suspensions from each concentration were spread onto 1/4 PDA containing ampicillin (50 µg/mL) and streptomycin (50 µg/mL) with three replicates.

Rock samples were processed following the protocol of Ruibal et al. (2005) with some modifications. Firstly, the rock surface was washed with 95% ethanol to eliminate the contamination from dust and airborne spores, and washed once with sterile water containing 0.1% of Tween 20. The small pieces of rocks were then ground into powder using a sterilized mortar and pestle. Suspensions were made by adding sterilized water to the concentration of 10^{-1}. Three different volumes of the rock powder suspension, i.e. 300, 500, and 1000 µL, were respectively placed onto three 1/4 PDA plates supplemented with ampicillin (50 µg/mL) and streptomycin (50 µg/mL) (Ruibal et al. 2005; Selbmann et al. 2007b; Collado et al. 2007; Zhang et al. 2017).

All the plates were incubated at room temperature ($25 \pm 2 ^\circ C$) for 3–4 weeks, and from which the single colonies were picked up and inoculated onto new PDA plates every two days. All fungal strains were stored at 4 °C for further studies.

Molecular analyses

Total fungal genomic DNAs were extracted following a modified CTAB method of Doyle (1987). The internal transcribed spacer regions and intervening 5.8S nrRNA gene (ITS), the large subunit (LSU) rDNA, the small subunit (SSU) rDNA, the translation elongation factor 1-alpha (EF-1α), RNA polymerase II subunit (RPB2), Twenty S rRNA accumulation (Tsr1), and β-tubulin (TUB) regions were amplified using primer pairs ITS1/ITS4 (White et al. 1990), LR0R/LR5 (Vilgalys and Hester 1990), NS1/NS4 (White et al. 1990), 983F/2218R (Rehner and Buckley 2005), RPB2-5F2/IRPB2-7cR (Liu et al. 1999; Sung et al. 2007b) F1526Pc/R2434 (Houbraken and Samson 2011) and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. Amplification reactions were performed in a 25 µL reaction volume including 2.5 µL 10 × PCR Buffer (Dingguo, Beijing, China), 2 mM MgCl2, 50 µM dNTPs, 0.1 µM of each forward and reverse primer, 0.5 U Taq DNA polymerase and 1–10 ng genomic DNA in amplifier (Dongsheng, EDC-810, China). PCR parameters were as follows: 94 °C for 10 min, followed by 35 cycles of 94 °C for 30 s, 54 °C for 30 s, 72 °C for 30 s and a final elongation step at 72 °C for 10 min. Annealing temperature for each gene were 50 °C for LSU and Tsr1, 54 °C for ITS, RPB2 and SSU, and 57 °C for EF-1α and TUB. Sequencing reactions were performed by OmegaGenetics Company Limited, Beijing, China.

All obtained strains were BLASTn searched in NCBI and assigned to potential genera and species. The strains whose ITS sequences had closest similarities below 97% were recognized as potential new species and further identified through morphological characterization and phylogenetic analyses.

To reveal the order placements of new species described in this paper, a LSU tree was constructed. To reveal the phylogenetic relationships and taxonomic distinctions of novel species, analyses were performed based on ITS, LSU and genetic markers recommended in recent publications, such as EF1-α, Tsr1 and TUB. All sequences of different loci were aligned using MAFFT (http://www.ebi.ac.uk/Tools/msa/mafft/) (Katoh and Toh 2010) and edited manually using MEGA v. 7 (Kumar et al. 2016) separately. Individual alignments were then concatenated and used for phylogenetic analysis next step. Ambiguously aligned regions were excluded from all analyses.

Maximum Likelihood (ML) and Bayesian inference (BI) methods were used to construct the phylogenetic trees. The ML analyses were implemented using RAxML-HPC v. 8.2.7 (Stamatakis 2014) with 1000 replicates under the GTR-GAMMA model. The robustness of branches was assessed by bootstrap analysis with 1000 replicates. For Bayesian analysis, the best model of evolution was estimated using jModelTest v. 2.1.7 (Guindon and Gascuel 2003; Darriba et al. 2012). Posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were calculated by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.2.1 (Huelsenbeck and Ronquist 2001), using the estimated evolutionary models. Six simultaneous Markov chains were run for 1,000,000 generations, and trees were sampled every 1000th generations (resulting 10,000 trees totally). The first 2000 trees, representing the burn-in phase of the analyses, were discarded and the remaining 8000 trees were used to calculate posterior probabilities (PP) in the majority rule consensus tree. The final trees were visualized in TreeView (Page 1996). All the sequences generated were deposited in GenBank (Table 2), typifications in Index
Fungi (http://www.indexfungorum.org), novel taxonomic descriptions in Faces of Fungi (Jayasiri et al. 2015), and the multi-locus alignments and trees in TreeBASE (submission number: 26362).

Morphological studies

Strains of potentially new species were transferred to new plates of PDA, OA and synthetic nutrient-poor agar (SNA; Nirenberg 1976) and were incubated at room temperature (25 ± 2 °C). Growth rates were measured after 7 days, while slow growing strains were measured after 10 days or even 8 weeks. Colony morphologies were determined after 10 days and colony colors on the surface and reverse of inoculated petri dishes were assessed according to the Methuen handbook of colour (Kornerup and Wanscher 1978). Cultures were examined periodically for the development of reproductive structures. Photomicrographs were taken using a Nikon 80i microscope with differential interference contrast. Measurements for each structure were made according to methods described by Liu et al. (2012). The dry cultures were deposited in the Herbarium of Microbiology, Academia Sinica (HMAS), while living cultures were deposited in the China General Microbiological Culture Collection Center (CGMCC) and LC Culture Collection (personal culture collection held in the lab of Dr Lei Cai).

Results

In this study, 251 samples from these thirteen caves were collected and 2344 fungal strains were isolated. These strains belong to 253 genera, 610 species by employing a BLASTn search in GenBank using the ITS sequences (Table S1). Among these species, 88.0 % (i.e., 536 species, 2115 strains) belong to 213 genera of Ascomycota; 8.0 % (i.e., 49 species, 133 strains) belong to 33 genera of Basidiomycota; 1.9 % (i.e., 12 species, 22 strains) belong to five genera of Mucoromycota, 1.9 % (i.e., 12 species, 73 strains) belong to one genera of Mortierellomycota; 0.2 % (i.e., 1 species, 1 strains) belong to one genera of Glomeromycota (Fig. 3a, Table S1). The most common genera included: Penicillium (12.0 %), Aspergillus (5.7 %), Trichoderma (3.4 %), Arthrinium Kunze (2.3 %), Fusarium (2.1 %), Microascus Zukal (2.1 %), Mortierella Coem. (2.0 %), Cephalotrichum Link (1.3 %), Clonostachys Corda (1.1 %), and Simplicillium Zare & W. Gams (1 %) (Fig. 3c, Table 3). The most common species included Purpureocillium lilacinum (Thom) Luangsa-ard (59 strains), Mortierella alpine Peyronel (56 strains), Penicillium (Pe.) citrinum Thom (55 strains), Pe. simplicissimum (Oudem.) Thom (53 strains), Acremonium sp. 6 (51 strains), Cladosporium cladosporioides (Fresen.) G.A. de Vries (45 strains), Amphichorda cavernicola Z.F.
Species name	Strain No\(^T\)	Cave	Substrate	Genbank accession number								
				ITS	LSU	TUB	TEF	SSU	RPB2	Tsr		
Amphichorda cavernicola	CGMCC3.19571\(^T\)	Feng cave	Bird faeces	MK329056	MK328961	MK336083	MK335997	–	–	–		
	LC12481	Sanwang cave	Soil	MK329057	MK328962	MK336084	MK335998	–	–	–		
	LC12485	Yuguang cave	Soil	MK329058	MK328963	MK336085	MK335999	–	–	–		
	LC12553	Tianliang cave	Animal faeces	MK329059	MK328964	MK336086	MK336000	–	–	–		
	LC12554	Feng cave	Bird faeces	MK329060	MK328965	MK336087	MK336001	–	–	–		
	LC12560	Bijia cave	Animal faeces	MK329061	MK328966	MK336088	MK336002	–	–	–		
	LC12577	Feng cave	Bird faeces	MK329062	MK328967	MK336089	MK336003	–	–	–		
	LC12593	Liujiang cave	Bird faeces	MK329063	MK328968	MK336090	MK336004	–	–	–		
	LC12638	Liujiang cave	Bat guano	MK329064	MK328969	MK336091	MK336005	–	–	–		
	LC12674	E’gu cave	Plant debris	MK329065	MK328970	MK336092	MK336006	–	–	–		
Aspergillus limoniformis	CGMCC3.19323\(^T\)	Mingjiu cave	Bat guano	MK329066	MK328971	MK336093	MK336007	–	–	–		
	LC12610	Mingjiu cave	Bat guano	MK329067	MK328972	MK336094	MK336008	–	–	–		
Aspergillus phialiformis	CGMCC3.19314\(^T\)	Sanjiao cave	Rock	MK329068	MK328973	MK336095	MK336009	–	–	–		
	LC12537	Sanjiao cave	Rock	MK329069	MK328974	MK336096	MK336010	–	–	–		
Aspergillus phialosimplex	CGMCC3.19637\(^T\)	Liujiang cave	Plant debris	MK329070	MK328975	MK336097	MK336011	–	–	–		
	LC12625	Nuomo cave	Plant root	MK329071	MK328976	MK336098	MK336012	–	–	–		
	LC12658	E’gu cave	Animal faeces	MK329072	MK328977	MK336099	MK336013	–	–	–		
Auxarthron chinense	CGMCC3.19572\(^T\)	Luotian cave	Soil	MK329076	MK328981	MK336102	MK336017	–	–	–		
	LC12463	Mingjiu cave	Soil	MK329073	MK328978	–	MK336014	–	–	–		
	LC12473	E’gu cave	Soil	MK329074	MK328979	MK336100	MK336015	–	–	–		
	LC12474	E’gu cave	Soil	MK329075	MK328980	MK336101	MK336016	–	–	–		
	LC12477	Luotian cave	Soil	MK329077	MK328982	MK336103	MK336018	–	–	–		
	LC12550	Luotian cave	Soil	MK329078	MK328983	MK336104	MK336019	–	–	–		
	LC12580	Luotian cave	Animal faeces	MK329079	MK328984	MK336105	MK336020	–	–	–		
Auxarthron guangxiense	CGMCC3.19634\(^T\)	E’gu cave	Soil	MK329080	MK328985	MK336106	MK336021	–	–	–		
	LC12465	E’gu cave	Soil	MK329081	MK328986	MK336107	MK336022	–	–	–		
Auxarthronopsis globiasca	CGMCC3.19305\(^T\)	Luotian cave	Soil	MK329082	MK328987	MK336108	–	–	–			
	LC12667	E’gu cave	Soil	MK329083	MK328988	MK336109	–	–	–			
Auxarthronopsis pedicellaris	CGMCC3.19318\(^T\)	Erwang cave	Rock	MK329084	MK328989	MK336110	–	–	–			
	LC12576	Erwang cave	Rock	MK329085	MK328990	MK336111	–	–	–			
Auxarthronopsis pulvereae	CGMCC3.19312\(^T\)	Liujiang cave	Plant debris	MK329086	MK328991	MK336112	–	–	–			
	LC12522	Liujiang cave	Plant debris	MK329087	MK328992	MK336113	–	–	–			
Auxarthronopsis stercicola	CGMCC3.19639\(^T\)	Mingjiu cave	Animal faeces	MK329088	MK328993	MK336114	MK336023	–	–	–		
	LC12611	Mingjiu cave	Animal faeces	MK329089	MK328994	MK336115	MK336024	–	–	–		
Chrysosporium pallidum	CGMCC3.19575\(^T\)	E’gu cave	Animal faeces	MK329090	MK328995	–	MK336025	–	–	–		
	LC12670	E’gu cave	Animal faeces	MK329091	MK328996	–	MK336026	–	–	–		
Species name	Strain Noa	Cave	Substrate	Genbank accession number	ITS	LSU	TUB	TEF	SSU	RPB2	Tsrb	
-----------------------------	--------------	--------------	---------------	--------------------------	-----------	-----------	-----	-----------	---------	----------	------	
Gamszarea humicola	CGMCC3.19303T	E’gu cave	Soil	MK329092 MK328997 – MK336027 MK311230 MK335979 –								
	LC12462	E’gu cave	Soil	MK329093 MK328998 – MK336028 MK311231 MK335980 –								
Gamszarea lunata	CGMCC3.19315T	E’gu cave	Rock	MK329094 MK328999 – MK336029 MK311232 MK335981 –								
	LC12546	E’gu cave	Rock	MK329095 MK329000 – MK336030 MK311233 MK335982 –								
Gamszarea microspora	CGMCC3.19313T	Tianliang cave	Rock	MK329096 MK329001 – MK336031 MK311234 MK335983 –								
	LC12531	Tianliang cave	Rock	MK329097 MK329002 – MK336032 MK311235 MK335984 –								
Gymnoascus flavus	CGMCC3.19574T	Feng cave	Soil	MK329098 MK329003 MK336116 MK336033 –								
	LC12511	Tianliang cave	Soil	MK329099 MK329004 MK336117 MK336034 –								
Jattaea reniformis	CGMCC3.19311T	Luotian cave	Water	MK329100 MK329005 MK336118 MK336035 –								
	LC12510	Luotian cave	Water	MK329101 MK329006 MK336119 MK336036 –								
Lecanicillium magnisporum	CGMCC3.19304T	Erwang cave	Soil	MK329102 MK329007 – MK336037 MK311236 MK335985 –								
	LC12469	Erwang cave	Soil	MK329103 MK329008 – MK336038 MK311237 MK335986 –								
	LC12470	Erwang cave	Soil	MK329104 MK329009 – MK336039 MK311238 MK335987 –								
	LC12647	Sanwang cave	Soil	MK329105 MK329010 – MK336040 MK311239 MK335988 –								
	LC12663	Sanwang cave	Soil	MK329106 MK329011 – MK336041 MK311240 MK335989 –								
Microascus collaris	CGMCC3.19321T	Sanshan cave	Plant debris	MK329109 MK329012 MK336120 MK336042 –								
	LC12599	Sanshan cave	Plant debris	MK329110 MK329013 MK336121 MK336043 –								
Microascus levis	CGMCC3.19308T	Luotian cave	Soil	MK329108 MK329015 MK336123 MK336045 –								
	LC12447	Luotian cave	Soil	MK329107 MK329014 MK336122 MK336044 –								
Microascus sparsimycelialis	CGMCC3.19307T	Sanshan cave	Soil	MK329111 MK329016 MK336124 MK336046 –								
	LC12680	Sanshan cave	Soil	MK329112 MK329017 MK336125 MK336047 –								
Microascus superficialis	CGMCC3.19638T	Sanshan cave	Animal faeces	MK329113 MK329018 MK336126 MK336048 –								
	LC12600	Sanshan cave	Animal faeces	MK329114 MK329019 MK336127 MK336049 –								
	LC12601	Sanshan cave	Animal faeces	MK329115 MK329020 MK336128 MK336050 –								
Microascus trigonus	CGMCC3.19636T	Luotian cave	Soil	MK329117 MK329022 MK336130 MK336052 –								
	LC12513	Luotian cave	Soil	MK329116 MK329021 MK336129 MK336051 –								
	LC12559	E’gu cave	Animal faeces	MK329118 MK329023 MK336131 MK336053 –								
	LC12586	E’gu cave	Animal faeces	MK329119 MK329024 MK336132 MK336054 –								
	LC12631	E’gu cave	Animal faeces	MK329120 MK329025 MK336133 MK336055 –								
Nigrospora globosa	CGMCC3.19633T	Luotian cave	Soil	MK329121 MK329026 MK336134 MK336056 –								
	LC12441	Luotian cave	Soil	MK329122 MK329027 MK336135 MK336057 –								
Paracremoneum apiculatum	CGMCC3.19309T	Sanjiao cave	Soil	MK329123 MK329028 MK336136 MK336058 –								
	LC12502	Sanjiao cave	Soil	MK329124 MK329029 MK336137 MK336059 –								

a Strain No: CGMCC, China General Microbiological Culture Collection; Tsr, Tolcamicilin.
Species name	Strain No\(^a\)	Cave	Substrate	Genbank accession number						
				ITS	LSU	TUB	TEF	SSU	RPB2	Tsr
Paracrenonium ellipsoideum	CGMCC3.19316\(^T\)	Sanjiao cave	Sewage	MK329125	MK329030	MK336138	MK336060	–	–	–
	LC12552	Sanjiao cave	Sewage	MK329126	MK329031	MK336139	MK336061	–	–	–
Paraphaeosphaeria hydei	CGMCC3.19317\(^T\)	Sanjiao cave	Plant debris	MK329127	MK329032	MK336140	MK336062	–	–	–
	LC12565	Sanjiao cave	Plant debris	MK329128	MK329033	MK336141	MK336063	–	–	–
Pseudoscopulariopsis asperispora	CGMCC3.19302\(^T\)	Luotian cave	Soil	MK329129	MK329034	MK336142	MK336064	–	–	–
	LC12446	Luotian cave	Soil	MK329130	MK329035	MK336143	MK336065	–	–	–
Setophaeosphaeria microspora	CGMCC3.19301\(^T\)	Sanshan cave	Soil	MK329131	MK329036	MK336144	MK336066	–	–	–
	LC10444	Sanshan cave	Soil	MK329132	MK329037	MK336145	MK336067	–	–	–
Simplicillium album	CGMCC3.19635\(^T\)	Sanshan cave	Soil	MK329133	MK329038	–	MK336068	–	–	–
	LC12543	E’gu cave	Animal faeces	MK329134	MK329039	–	MK336069	–	–	–
	LC12557	E’gu cave	Animal faeces	MK329135	MK329040	–	MK336070	–	–	–
Simplicillium humicola	CGMCC3.19573\(^T\)	E’gu cave	Soil	MK329136	MK329041	–	MK336071	–	–	–
	LC12494	E’gu cave	Soil	MK329137	MK329042	–	MK336072	–	–	–
Wardomyces dolichi	CGMCC3.19310\(^T\)	E’gu cave	Soil	MK329138	MK329043	–	MK336073	–	–	–
	LC12504	E’gu cave	Soil	MK329139	MK329044	–	MK336074	–	–	–
Wardomyces ellipsoconidiophora	CGMCC3.19322\(^T\)	Sanshan cave	Animal faeces	MK329141	MK329046	MK336147	MK336076	–	–	–
	LC12588	Sanshan cave	Animal faeces	MK329140	MK329045	MK336146	MK336075	–	–	–
Wardomyces fusca	CGMCC3.19306\(^T\)	Luotian cave	Soil	MK329142	MK329047	MK336148	MK336077	–	–	–
	LC12526	Luotian cave	Soil	MK329143	MK329048	MK336149	MK336078	–	–	–
	LC12607	Mingjiu cave	Animal faeces	MK329144	MK329049	MK336150	MK336079	–	–	–
	LC12636	E’gu cave	Animal faeces	MK329145	MK329050	MK336151	MK336080	–	–	–
	LC12643	Sanjiao cave	Soil	MK329146	MK329051	MK336152	MK336081	–	–	–
	LC12661	Mingjiu cave	Animal faeces	MK329147	MK329052	MK336153	MK336082	–	–	–

\(^a\)Ex-type strains are indicated with \(^T\)
Fig. 3 Statistics of fungi in caves in this study (a–d) and worldwide (e–f). a The number of fungal genera, species and strains in different phyla obtained in this study; b the number of fungal genera, species and strains isolated from different substrates in this study; c most abundant fungal genera observed in this study; d venn diagram of fungal genera obtained from different substrates in this study. e the number of fungal genera and species reported in caves worldwide; f fungal genera with highest diversity reported in caves worldwide.

Table 3 Most common genera (≥ 5 species) obtained from Karst caves in this study

Genus	Species	Strains	Genus	Species	Strains
Penicillium	73	456	Simplicillium	6	14
Aspergillus	35	206	Arthroderma	5	10
Trichoderma	21	90	Aasarthon	5	26
Acremonium	14	103	Chaetomium	5	21
Fusarium	13	49	Phoma	5	15
Microascus	13	48	Talaromyces	5	8
Mortierella	12	73	Tolyposcadium	5	6
Cephalotrichum	8	105	Coprinellus	5	7
Clonostachys	7	25	Mucor	5	13

Zhang & L. Cai (42 strains), Trichoderma harzianum Rifai (40 strains), Cephalotrichum asperulum (J.E. Wright & S. Marchand) Sand.-Den., Guarro & Gené (36 strains), Aspergillus versicolor (Vuill.) Tirab. (32 strains), Parenzyodonium album (Limber) C.C. Tsang, et al. (30 strains), and Plectosphaerella cucumerina (Lindf.) W. Gams (30 strains).

For the isolations of substrate, 1137 strains from soil samples belong to 377 species in 170 genera; 803 strains from organic litters belong to 270 species in 129 genera; 300 strains from rock samples belong to 133 species in 74 genera; 104 strains from water samples belong to 60 species in 46 genera (Fig. 3b). Seventeen genera were found in these four types of substrate, i.e., Acremonium Link, Arthrinium Kunze, Aspergillus, Beauveria Vuill., Cephalotrichum, Chaetomium Kunze, Cladosporium Link, Cutaneotrichosporon Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout, Didymella Sacc, Fusarium, Leptosphaeria Ces. & De Not., Mortierella, Mucor, Penicillium, Plectosphaerella Kleb, Purpureocillium Luangsard, Hywel-Jones, Houbaken & Samson, Trichoderma (Fig. 3d).

Meanwhile, we summarized data on the fungi of caves from 56 papers published in the peer-reviewed literatures (Table 4) since 2013 in English based on Vanderwolf et al. (2013). Following the newest records in Index Fungorum (http://www.indexfungorum.org/Names/Names.asp), we revised the fungal names documented in caves. By February 2020, 1626 species in 644 genera of fungi have been reported from caves and mines worldwide. In our study, 76 of the 253 genera and 247 of the 468 identified species (52.8 %) were reported for the first time from caves. With our data, totally, 1923 fungal species in 720 genera were documented from caves and mines (Table 4). Of the fungal taxa reported from caves and mines, nine phyla were observed (Fig. 3e), Ascomycota (1474 species in 502 genera), Basidiomycota (339 species in 189 genera), Mucoromycota (64 species in 17 genera), Mortierellomycota (33 species in 1 genus), Entomophthoromycota (4 species in 3 genera), Chytridiomycota (3 species in 3 genera), Zoopagomycota (3 species in 3 genera), Kickxellomycota (2 species in 1 genus) and Glomeromycota (1 species in 1 genus). Twenty-two genera have more than 10 species reported in caves worldwide, most of which belong to Ascomycota (Fig. 3f).

Thirty-three new species were described and illustrated in this paper, based on the morphological characteristics and phylogenetic analyses. The LSU phylogenetic tree (Fig. 4) showed that these 33 new species (marked with bold font) scattered in seven different orders, i.e., Calosphaeriales, Eurotiales, Hypocreales, Microascales, Onygenales, Pleosporales, and Xylariales. Significant ML bootstrap values (≥ 70 %) and Bayesian posterior probabilities (≥ 90 %) are shown in the phylogenetic tree.

Taxonomy

Phylum Ascomycota Cav..-Sm.
We follow the latest treatment of Ascomycota (Wijayawardene et al. 2018, 2020), with classes, subclasses, orders, families, genera and species listed below in alphabetical order.

Class Dothideomycetes O.E. Erikss. & Winka
Based on molecular dating evidence, Liu et al. (2017) updated the multi-locus phylogeny of Dothideomycetes and unraveled the evolutionary relationships. In this paper, the classification of families in Dothideomycetes follow Liu et al. (2017) and Wijayawardene et al. (2018, 2020).

Subclass Pleosporomycetidae C.L. Schoch, Spatafora, Crous & Shoemaker

Pleosporales Lutr. ex M.E. Barr
The order Pleosporales was introduced by Luttrell (1955) to accommodate a highly diverse fungal group of Dothideomycetes having perithecioid ascomata and asci with pseudoparaphyses (Zhang et al. 2009). More details see Zhang et al. (2012) and Hyde et al. (2013).

Didymosphaeriaceae Munk
We follow the treatment of Ariyawansa et al. (2014), Hyde et al. (2017) and Wijayawardene et al. (2020) in the study.
Table 4 Fungi documented from caves and mines worldwide with references. New species described in this study are in bold

Genus	Species	Chinaa	This studyb	References
Ascomycota				
Acidea	Acidea extrema			Burow et al. (2019)
Acaulium	Acaulium caviariforme			Vanderwolf et al. (2013, 2015, 2019)
Acidomyces	Acidomyces acidothermus			Brad et al. (2018)
Acremoniella	Acremoniella atra			Pusz et al. (2018a)
Acremonium	Acremonium alternatum	Y	Y	Vanderwolf et al. (2013)
	A. antarcticum	Y		Vanderwolf et al. (2013)
	A. atrogriseum			Vanderwolf et al. (2013)
	A. biseptum			Vanderwolf et al. (2013)
	A. cereale			Vanderwolf et al. (2013)
	A. charticola	Y		Vanderwolf et al. (2013, 2015), Popkova and Mazina (2019), Zhang (2019)
	A. furcatum	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b)
	A. hennebertii	Y		Zhang (2019)
	A. longisporum	Y	Y	Vanderwolf et al. (2013)
	A. marorum	Y	Y	Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Zhang et al. (2017), Pusz et al. (2018a)
	A. persicinum	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
	A. polychromum			Vanderwolf et al. (2013)
	A. roseolatum			Vanderwolf et al. (2013)
	A. rutulatum			Vanderwolf et al. (2013, 2019)
	A. verruculosum			Vanderwolf et al. (2013)
	A. vitis			Vanderwolf et al. (2013)
	Acremonium sp.	Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013, 2015, 2019), Man et al. (2015), Jiang et al. (2017a, b), Zhang et al. (2017), Leplat et al. (2018), Popkova and Mazina (2019)
Acrocalymma	Acrocalymma vagum	Y		Vanderwolf et al. (2013)
Acrocylindrium	Acrocylindrium sp.			Vanderwolf et al. (2013)
Acrodontium	Acrodontium crateriforme	Y		Vanderwolf et al. (2013, 2017)
Acrodontium sp.				Vanderwolf et al. (2013, 2019)
Acrophialophora	Acrophialophora fiaspora			Vanderwolf et al. (2013)
Acrostalagmus	Acrostalagmus luteolbus	Y	Y	Vanderwolf et al. (2013, 2015), Zhang et al. (2017)
Adelphella	Adelphella babingtonii			Vanderwolf et al. (2013)
Ajellomyces	Ajellomyces capsulatus			Vanderwolf et al. (2013)
Ajellomyces sp.		Y	Y	Vanderwolf et al. (2013)
Akanthomyces	Akanthomyces lecanii	Y	Y	Vanderwolf et al. (2013)
Allibifmbria	Allibifmbria verrucaria	Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013), Nováková et al. (2018)
Allantophomopsisella	Allantophomopsisella pseudosugae			Leplat et al. (2018)
Allantophomopsisella				Pusz et al. (2017)
Allophoma	Allophoma sp.	Y		Jiang et al. (2017a, b)
Alternaria	Alternaria abundans			Pusz et al. (2015), Ogórek et al. (2017, 2018), Ogórek (2018a)
	Al. alternata	Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013), Ogórek et al. (2014a, b, c, 2016b, c, d), Man et al. (2015), Pusz et al. (2015, 2017, 2018a, b), Kokurewicz et al. (2016), Jiang et al. (2017a, b), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a), Popkova and Mazina (2019)
	Al. alternariae			Ogórek et al. (2013)
	Al. atra			Vanderwolf et al. (2013)
	Al. botrytis			Vanderwolf et al. (2013), Kokurewicz et al. (2016), Pusz et al. (2018a, b)
	Al. brevicola			Vanderwolf et al. (2013)
	Al. chartarum			Vanderwolf et al. (2013)
	Al. humicola			Vanderwolf et al. (2013)
	Al. infectoria			Connell and Staudigel (2013)
	Al. longipes			Nováková et al. (2018)
	Al. mali	Y		Zhang (2019)
	Al. mouchaccaes			Vanderwolf et al. (2013)
	Al. oudemansi			Vanderwolf et al. (2013)
Genus	Species	Chinaa	This studyb	References
---------------	--------------------------	-----------	----------------	---
Al. radicina				Vanderwolf et al. (2013)
Al. solani		Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Al. tamaricis		Y		Vanderwolf et al. (2013, 2015), Popović et al. (2015), Pusz et al. (2015), Zhang et al. (2017), Nováková et al. (2018)
Al. tenuissima		Y	Y	Vanderwolf et al. (2013), Popović et al. (2015), Pusz et al. (2015), Zhang et al. (2017), Nováková et al. (2018)
Alternaria sp.				Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Popović et al. (2015), Belyagoubi et al. (2018), Bercea et al. (2018), Nováková et al. (2018), Leplat et al. (2018), Zhang (2019)
Amauroascus	Amauroascus albicans			Vanderwolf et al. (2013)
Amauroascus				Vanderwolf et al. (2013)
Amauroascus sp.		Y		Vanderwolf et al. (2013), Zhang (2019)
Amblyosporium	Amblyosporium botrytis			Vanderwolf et al. (2013)
Amesia	Amesia nigricolor	Y	Y	Zhang et al. (2017)
Ampelomyces	Ampelomyces hamuli	Y	Y	Vanderwolf et al. (2013)
Amphicorda	Amp. cavernicola	Y		Vanderwolf et al. (2013), Zhang et al. (2017), Belyagoubi et al. (2018)
Amphicorda felina		Y	Y	Zhang et al. (2017)
Annulohypoxylon	Annulohypoxylon sp.	Y	Y	Vanderwolf et al. (2013)
Aphanocladium	Aphanocladium album			Vanderwolf et al. (2013, 2019) Nováková et al. (2018)
Arachniotus	Arachniotus dankaudiensis			Vanderwolf et al. (2013)
Ar. ruber				Vanderwolf et al. (2013)
Ar. verruculosus		Y	Y	Vanderwolf et al. (2013)
Arachniotus sp.				Vanderwolf et al. (2013)
Arachnomyces	Arachnomyces glareosus			Vanderwolf et al. (2013)
Arachnomyces sp.		Y		Vanderwolf et al. (2013), Zhang (2019)
Arachnotheca	Arachnotheca albicans			Vanderwolf et al. (2013)
Arcopilus	Arcopilus aureus			Vanderwolf et al. (2013)
Arthopyrenia	Arthopyrenia salicis	Y	Y	Vanderwolf et al. (2013), Man et al. (2015), Jiang et al. (2017a, b), Mitova et al. (2017), Zhang et al. (2017)
Art. kogelbergense				Ogérek et al. (2017), Ogérek et al. (2018)
Art. malaysianum		Y		Zhang et al. (2017)
Art. marii		Y		Zhang et al. (2017)
Art. phoeospermum		Y	Y	Vanderwolf et al. (2013), Popović et al. (2015), Zhang et al. (2017)
Art. sacchari				Zhang et al. (2017)
Art. sphaeospermum				Vanderwolf et al. (2013)
Arthrinium	Arthrinium arundinis	Y	Y	Vanderwolf et al. (2013), Man et al. (2015), Jiang et al. (2017a, b), Mitova et al. (2017), Zhang et al. (2017)
Art. kogelbergense				Ogérek et al. (2017), Ogérek et al. (2018)
Arthr. curreyi		Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Arthr. melis				Vanderwolf et al. (2013)
Arthr. quadrifidum		Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Arthr. silverae				Vanderwolf et al. (2013, 2015, 2019)
Arthr. tuberculatum		Y	Y	Vanderwolf et al. (2013)
Arthr. uncinatum				Vanderwolf et al. (2013)
Arthr. curreyi		Y	Y	Vanderwolf et al. (2013, 2015, 2019)
Arthr. hispanica				Zhang et al. (2017)
Arthr. nycteribiae				Vanderwolf et al. (2013)
Arxiella	Arxiella sp.	Y	Y	Vanderwolf et al. (2013)
Asaphomyces	Asaphomyces tubanticus			Vanderwolf et al. (2013)
Table 4 (continued)

Genus	Species	China^a	This study^b	References
Ascobolus	Ascobolus sp.			Vanderwolf et al. (2013)
Aspergillus	Aspergillus aculeatus			Nováková et al. (2018)
As. affinis				Nováková et al. (2018)
As. alliaceus				Taylor et al. (2013), Vanderwolf et al. (2013)
As. amstelodami				Vanderwolf et al. (2013)
As. amylivorus				Vanderwolf et al. (2013)
As. asperescens				Vanderwolf et al. (2013)
As. aureolatus	Y	Y		Vanderwolf et al. (2013), Ogórek et al. (2017), Tavares et al. (2018)
As. aurorus	Y	Y		Vanderwolf et al. (2013)
As. awamori				Vanderwolf et al. (2013), Nováková et al. (2018)
As. baeticus				Vanderwolf et al. (2013)
As. brunneoviolaceus		Y		Taylor et al. (2013), Vanderwolf et al. (2013)
As. caespitosus	Y			Jiang et al. (2017a, b), Nováková et al. (2018)
As. cavernicola	Y	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
As. candidus	Y	Y		Vanderwolf et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2017)
As. carneo	Y			Vanderwolf et al. (2013)
As. chevalieri				Vanderwolf et al. (2013)
As. claftus	Y			Vanderwolf et al. (2013), Vanderwolf et al. (2013), Popović et al. (2015)
As. conjunctus				Vanderwolf et al. (2013)
As. creber	Y			Zhang et al. (2017), Nováková et al. (2018)
As. cremeus				Vanderwolf et al. (2013)
As. crustossas				Vanderwolf et al. (2013)
As. deflectus	Y	Y		Vanderwolf et al. (2013)
As. elegans				Ogórek (2018a, b)
As. europaeus				Nováková et al. (2018)
As. fijensis	Y	Y		Vanderwolf et al. (2013)
As. fischni				Vanderwolf et al. (2013)
As. flavipes				Vanderwolf et al. (2013), Popkova and Mazina (2019)
As. flavus				Vanderwolf et al. (2013)
As. flavifurcatus				Taylor et al. (2013), Vanderwolf et al. (2013), Pusz et al. (2014), Man et al. (2015), Yoder et al. (2015), Jiang et al. (2017a, b), Zhang et al. (2017), Nováková et al. (2018), Ogórek (2018a)
As. foetidus				Vanderwolf et al. (2013), Ogórek et al. (2016b)
As. fumagatus	Y	Y		Vanderwolf et al. (2013), Pusz et al. (2015), Yoder et al. (2015), Ogórek et al. (2016b, c, d), Zhang et al. (2017), Dylag et al. (2019), Popkova and Mazina (2019)
As. giganteus				Vanderwolf et al. (2013)
As. glaucus				Vanderwolf et al. (2013)
As. granulosus				Vanderwolf et al. (2013)
As. hongkongensis		Y		Vanderwolf et al. (2013)
As. humicola				Vanderwolf et al. (2013)
As. icukae				Nováková et al. (2018)
As. inflatus	Y	Y		Vanderwolf et al. (2013)
As. insuenus				Vanderwolf et al. (2013)
As. jonas				Vanderwolf et al. (2013)
As. japonicus	Y	Y		Taylor et al. (2013), Vanderwolf et al. (2013)
As. jensennii				Nováková et al. (2018)
As. kanagavaensis				Vanderwolf et al. (2013)
As. keveii				Tavares et al. (2018)
As. limoniformis		Y		Nováková et al. (2018)
As. movilensis				Vanderwolf et al. (2013)
As. neolivaceus				Taylor et al. (2013), Vanderwolf et al. (2013)
As. nidulans				Vanderwolf et al. (2013)
As. niger	Y	Y		Ogórek et al. (2013, 2014a, b, c, 2016c, d, 2017, 2018), Taylor et al. (2013), Vanderwolf et al. (2013), Pusz et al. (2014, 2015, 2017), Popović et al. (2015), Yoder et al. (2015), Jiang et al. (2017a, b), Zhang et al. (2017), Ogórek (2018a, b), Pusz et al. (2018a), Popkova and Mazina (2019)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
As. niveoglaucus	Y			Zhang et al. (2017)
As. nomius	Y	Y		
As. ochraceus	Taylor et al. (2013), Vanderwolf et al. (2013), Popović et al. (2015), Jacobs et al. (2017), Popkova and Mazina (2019)			
As. parasiticus	Vanderwolf et al. (2013)			
As. penicilioides	Connell and Staudigel (2013), Vanderwolf et al. (2013)			
As. persii	Y	Y		
As. phialiformis	Y	Y		
As. phialosimplex		Y		
As. phoenicis	Vanderwolf et al. (2013)			
As. polyphorica	Y	Y		
As. pragensis	Y	Y		Zhang et al. (2017)
As. prolifera	Vanderwolf et al. (2013)			
As. protuberus	Novákova et al. (2018)			
As. pseudodeflectus				
As. pseudoglaucus				
As. puniceus	Vanderwolf et al. (2013)			
As. puulaauensis	Novákova et al. (2018)			
As. reptans	Y			Vanderwolf et al. (2013), Zhang (2019)
As. repens	Y			Jiang et al. (2017a, b), Zhang et al. (2017)
As. restrictus	Y			Taylor et al. (2013), Vanderwolf et al. (2013), Zhang (2019), Popkova and Mazina (2019)
As. ruber	Y			Zhang et al. (2017)
As. rugulosus	Taylor et al. (2013), Vanderwolf et al. (2013)			
As. sclerotiorum	Taylor et al. (2013), Vanderwolf et al. (2013)			
As. silvicatus	Vanderwolf et al. (2013)			
As. speluncicus	Y	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
As. stellatus	Y			
As. sulphureus	Vanderwolf et al. (2013)			
As. sydowii	Y	Y		Taylor et al. (2013), Vanderwolf et al. (2013), Jiang et al. (2017a, b), Novákova et al. (2018), Tavares et al. (2018)
As. tabacinus	Y	Y		Novákova et al. (2018)
As. tamarisci	Vanderwolf et al. (2013)			
As. templicola	Novákova et al. (2018)			
As. tennesseensis	Y	Y		Zhang et al. (2017), Novákova et al. (2018)
As. terreus	Y	Y		Vanderwolf et al. (2013), Popkova and Mazina (2019)
As. thesausicus	Y	Y		Vanderwolf et al. (2013), Zhang et al. (2017), Novákova et al. (2018)
As. tubingenensis	Y	Y		Zhang et al. (2017)
As. unguis	Vanderwolf et al. (2013)			
As. ustus	Y	Y		Taylor et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2017), Novákova et al. (2018), Paula et al. (2019), Popkova and Mazina (2019)
As. versicolor	Y			Taylor et al. (2013), Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Man et al. (2015), Jacobs et al. (2017), Jiang et al. (2017a, b), Mitova et al. (2017), Zhang et al. (2017), Popkova and Mazina (2019)
As. wentii	Y			Taylor et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2017), Belyagoubi et al. (2018)
As. westerdijkiae	Jacobs et al. (2017), Novákova et al. (2018)			
Aspergillus sp.	Y	Y		Connell and Staudigel (2013), Taylor et al. (2013), Vanderwolf et al. (2013), Busquets et al. (2014), Popović et al. (2015), Yoder et al. (2015), Kookancz et al. (2016), Jiang et al. (2017a, b), Zhang et al. (2017), Belyagoubi et al. (2018), Berceanu et al. (2018), Novákova et al. (2018), Leplat et al. (2018), Paula et al. (2019)
Asperisporium	Vanderwolf et al. (2013)			
Athelia	Pusz et al. (2018b)			
Aureobasidium	Connell and Staudigel (2013), Vanderwolf et al. (2013), Popović et al. (2015), Brad et al. (2018), Pusz et al. (2018a), Popkova and Mazina (2019)			
Aureobasidium sp.	Connell and Staudigel (2013), Vanderwolf et al. (2013), Leplat et al. (2018)			
Auxarthron	Man et al. (2015)			
Au. californiense	Vanderwolf et al. (2015), Novákova et al. (2018)			
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Au. chinense	Y	Y		Vanderwolf et al. (2013)
Au. guangxiense	Y	Y		
Au. thaxteri				Vanderwolf et al. (2013)
Au. umbraunum	Y			Zhang et al. (2017)
Auxarthron sp.	Y	Y		Vanderwolf et al. (2013), Zhang et al. (2014)
Auxarthronopsis	Auxarthronopsis globiasticas	Y		
Aux. guizhouensis	Y			Zhang et al. (2017)
Aux. pedicellaris	Y	Y		Vanderwolf et al. (2013)
Aux. pulveira	Y	Y		Vanderwolf et al. (2013)
Aux. stercicola	Y	Y		Vanderwolf et al. (2013)
Barnettozyma	Barnettozyma californica	Y	Y	Vanderwolf et al. (2013)
Bartalinia	Bartalinia robillardoides	Y	Y	
Basipetospora	Basipetospora sp.			Vanderwolf et al. (2013)
Beauveria	Beauveria bassiana	Y	Y	Ogórek et al. (2013, 2014a), Vanderwolf et al. (2013), Zhang et al. (2014), Yoder et al. (2015), Pusz et al. (2018a)
B. bronniartii	Y	Y		Vanderwolf et al. (2013)
B. caledonica	Y	Y		Yoder et al. (2015)
Beauveria sp.				Vanderwolf et al. (2013, 2019), Leplat et al. (2018)
Beltrania	Beltrania sp.			Vanderwolf et al. (2013)
Bieneccaria	Bieneccaria ochroleuca	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014), Jacobs et al. (2017), Zhang et al. (2017)
Bl. rosmaniae	Y	Y		Mitova et al. (2017)
Bl. solani	Y			Nováková et al. (2018)
Bieneccaria sp.				Zhang (2019)
Bipolaris	Bipolaris sorokiniana			Vanderwolf et al. (2013)
Bipolaris sp.				Vanderwolf et al. (2013)
Biscogniauxia	Biscogniauxia petrensis	Y	Y	Zhang et al. (2017)
Biscogniauxia sp.	Y	Y		Zhang et al. (2017)
Bisfusarium	Bisfusarium delphinoidea	Y	Y	Vanderwolf et al. (2013)
Bispora	Bispora antennata			Vanderwolf et al. (2013)
Bis. bendicina				Vanderwolf et al. (2013)
Bis. effusa				Vanderwolf et al. (2013)
Bispora sp.				Vanderwolf et al. (2013)
Bisporella	Bisporella citrina			Vanderwolf et al. (2013)
Blastobotrys	Blastobotrys chiropertorum			Vanderwolf et al. (2013)
Bl. malaysiensis				Vanderwolf et al. (2013)
Bl. persicus				Vanderwolf et al. (2013)
Blastobotrys sp.				Vanderwolf et al. (2013)
Blastoischichium	Blastoischichium sp.			Vanderwolf et al. (2013)
Boeremia	Boeremia exigua	Y		Vanderwolf et al. (2013), Zhang (2019)
Boeremia sp.				Jiang et al. (2017a, b)
Botryosporium	Botryosporium longibrachiatum			Vanderwolf et al. (2013)
Botryotinia	Botryotinia fuckeliaena	Y		Vanderwolf et al. (2013), Zhang et al. (2014), Zhang (2019)
Botryotrichium	Botryotrichium murorum	Y	Y	Vanderwolf et al. (2013)
Botrytis	Botrytis cinerea	Y		Vanderwolf et al. (2013), Ogórek et al. (2014a, b, c, 2016b, d, 2017), Man et al. (2015), Pusz et al. (2017, 2018a, b), Nováková et al. (2018), Ogórek (2018a, b), Ogórek et al. (2018), Pusz et al. (2018a), Popkova and Marina (2019)
Boeadiera	Boudiera sp.			Vanderwolf et al. (2013)
Brachiosphaera	Brachiosphaera jamaicensis			Vanderwolf et al. (2013)
Brachyconidiella	Brachyconidiella monitspora			Brad et al. (2018)
Brachysporium	Brachysporium echinoides			Vanderwolf et al. (2013)
Brunnemycyes	Brunnemycyes brunnescens	Y		Zhang (2019)
Bulgaria	Bulgaria inquinans			Vanderwolf et al. (2013)
Bysschlamys	Bysschlamys fulva			Vanderwolf et al. (2013)
Bysschlamys sp.				Vanderwolf et al. (2013)
Cadophora	Cadophora fastigia			Out et al. (2016), Zhang (2019)
C. malorum				Nováková et al. (2018)
Genus	Species	Chinaa	This studyb	References
--------------	----------------------------------	--------	-------------	--
C. melinii	Vanderwolf et al. (2013)			
Cadophora sp.	Zhang et al. (2014), Vanderwolf et al. (2019)			
Calcarisporiella	Calcarisporiella sp.	Vanderwolf et al. (2013)		
Calcarisporum	Calcarisporum sp.	Y	Taylor et al. (2013), Zhang et al. (2017)	
Camarosporium	Camarosporium aerovirulens	Vanderwolf et al. (2013)		
Candida	Candida albicans	Ogórek et al. (2013, 2016c, d), Vanderwolf et al. (2013), Kokurewicz et al. (2016)		
Ca. deformans	Vanderwolf et al. (2013)			
Ca. fimitaria var. fimetaria	Vanderwolf et al. (2013)			
Ca. glabrata	Vanderwolf et al. (2013)			
Ca. guilliermondii	Vanderwolf et al. (2013)			
Ca. laxianiae	Vanderwolf et al. (2013)			
Ca. norvegica	Vanderwolf et al. (2013)			
Ca. palmiolephila	Vanderwolf et al. (2013)			
Ca. parapsilosis	Vanderwolf et al. (2013)			
Ca. pseudoglaebosa	Zhang et al. (2014)			
Ca. saitoana	Vanderwolf et al. (2013)			
Ca. tropicalis	Vanderwolf et al. (2013)			
Ca. viswanathi	Vanderwolf et al. (2013)			
Ca. zeylanoides	Connell and Staudigel (2013), Vanderwolf et al. (2013)			
Candida sp.	Vanderwolf et al. (2013), Jiang et al. (2017a, b), Burow et al. (2019)			
Capnodium	Capnodium sp.	Zhang et al. (2017)		
Cenococcum	Cenococcum sp.	Vanderwolf et al. (2013)		
Cephalosporium	Cephalosporium atrum	Vanderwolf et al. (2013)		
Ce. lanoosiovum	Vanderwolf et al. (2013)			
Cephalotrichum sp.	Vanderwolf et al. (2013)			
Cephalotheca	Cephalotheca sp.	Y		
Cephalotrichiella	Cephalotrichiella penicillata	Y		
Cephalotrichum asperulum	Vanderwolf et al. (2013)			
Cep. castaneum	Vanderwolf et al. (2013)	Y		
Cep. columnare	Vanderwolf et al. (2013)	Y		
Cep. dendrocephaeum	Zhang (2019)			
Cep. guizhouense	Jiang et al. (2017a, b)	Y		
Cep. leve	Jiang et al. (2017a, b)	Y		
Cep. medium	Vanderwolf et al. (2013)	Y		
Cep. microsorum	Vanderwolf et al. (2013)	Y		
Cep. nanum	Vanderwolf et al. (2013), Zhang et al. (2017)			
Cep. oligotrichicum	Jiang et al. (2017a, b)			
Cep. purpureofuscum	Vanderwolf et al. (2013)			
Cep. stemonitis	Vanderwolf et al. (2013, 2015, 2019), Nováková et al. (2018)			
Cep. verrucisporum	Vanderwolf et al. (2017)			
Cephalotrichum sp.	Vanderwolf et al. (2019)			
Ceratocystis	Ceratocystis autographa	Vanderwolf et al. (2013)		
Ceratocystis sp.	Vanderwolf et al. (2013)			
Cercophora	Cercophora solanis	Y		
Cer. sparsa	Vanderwolf et al. (2013)	Y		
Cercophora sp.	Vanderwolf et al. (2013)	Y		
Cercospora	Cercospora sp.			
Chaetomidium	Chaetomidium arxii	Zhang et al. (2017)		
Ch. fineti	Vanderwolf et al. (2013)			
Chaetomidium sp.	Vanderwolf et al. (2019), Zhang (2019)			
Chaetomium	Chaetomium uncistrocioidum	Zhang (2019)		
Cha. crispatum	Vanderwolf et al. (2013), Zhang et al. (2014), Ogórek et al. (2017), Zhang et al. (2017)			
Cha. elatum	Vanderwolf et al. (2013)	Y		
Cha. fineti	Vanderwolf et al. (2013)			
Cha. globosum	Vanderwolf et al. (2013), Kokurewicz et al. (2016), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a), Popkova and Mazina (2019)			
Cha. heterothallicum	Vanderwolf et al. (2013)			
Genus	Species	China	This study	References
--------------	------------------------------	-------	------------	---
Chaetomium	sp.	Y	Y	Taylor et al. (2013), Vanderwolf et al. (2013), Mitova et al. (2017), Zhang et al. (2017), Leplat et al. (2018), Popkova and Mazina (2019)
Chaetosphaeria	*inaequalis*			Vanderwolf et al. (2013)
Cha. murorum		Y		Y Zhang et al. (2017)
Cha. piluliferum		Y		Y Vanderwolf et al. (2013), Mitova et al. (2017)
Cha. spinosum				Vanderwolf et al. (2013)
Cha. succineum				Vanderwolf et al. (2013)
Cha. thermophilum				Vanderwolf et al. (2013)
Cha. trigomosporum		Y		Zhang et al. (2017)
Cha. udagawae		Y		Zhang et al. (2017)
Chloridium	*minus*	Y		Vanderwolf et al. (2013)
Chloridium	sp.	Y		Vanderwolf et al. (2013, 2019)
Ch. holubovae		Y		Vanderwolf et al. (2013)
Ch. inaequalis				Vanderwolf et al. (2013)
Ch. microspora				Vanderwolf et al. (2013)
Ch. succineum				Vanderwolf et al. (2013)
Ch. thermophilum				Vanderwolf et al. (2013)
Ch. trigomosporum		Y		Vanderwolf et al. (2013)
Ch. udagawae		Y		Vanderwolf et al. (2013)
Ch. vermicularioides		Y		Vanderwolf et al. (2013)
Ch. carmichaelii		Y		Vanderwolf et al. (2013)
Ch. chiropterorum		Y		Vanderwolf et al. (2013)
Ch. lobatum				Vanderwolf et al. (2013)
Ch. merdarium				Vanderwolf et al. (2013, 2019)
Ch. pallidum		Y	Y	Vanderwolf et al. (2013)
Ch. pannicola				Vanderwolf et al. (2013)
Ch. pseudomerdarium		Y		Vanderwolf et al. (2013, Zhang et al. (2017)
Ch. speluncarum				Vanderwolf et al. (2013)
Ch. tropicum				Vanderwolf et al. (2013)
Ch. tropicarum				Vanderwolf et al. (2013)
Ch. undulatum				Vanderwolf et al. (2013)
Cladosporium	*allicinum*			Vanderwolf et al. (2013)
Cl. angustisporum		Y		Nováková et al. (2018)
Cl. anthropophilum		Y		Jiang et al. (2017a, b)
Cl. asperulatum		Y		Nováková et al. (2018)
Cl. cladosporioides		Y	Y	Taylor et al. (2013), Vanderwolf et al. (2013), Ogórek et al. (2014b, c, 2016c, d, 2017, 2018), Zhang et al. (2014), Pusz et al. (2015, 2018a, b), Yoder et al. (2015), Kokurewicz et al. (2016), Jiang et al. (2017a, b), Zhang et al. (2017), Novákůvá et al. (2018), Ogórek (2018a, b), Popkova and Mazina (2019)
Cl. colombiae		Y		Zhang (2019)
Cl. cucumerinum		Y		Vanderwolf et al. (2013)
Cl. grevilleae		Y		Connell and Staudigel (2013)
Cl. halotolerans		Y	Y	Ogórek et al. (2013, 2014a, b, 2016b, c), Taylor et al. (2013), Vanderwolf et al. (2013), Ogórek et al. (2016), Jiang et al. (2017a, b), Ogórek et al. (2017, 2018), Novákůvá et al. (2018), Ogórek (2018a), Pusz et al. (2018a), Popkova and Mazina (2019)
Cl. herbarum		Y		Ogórek et al. (2013, 2014a, b, 2016b, c), Taylor et al. (2013), Vanderwolf et al. (2013), Ogórek et al. (2017, 2018), Novákůvá et al. (2018), Ogórek (2018a), Pusz et al. (2018a), Popkova and Mazina (2019)
Cl. linicola				Vanderwolf et al. (2013)
Cl. macrocarpum		Y		Vanderwolf et al. (2013), Ogórek et al. (2017, 2018), Novákůvá et al. (2018), Ogórek (2018b)
Cl. oxysporum		Y		Vanderwolf et al. (2013), Popović et al. (2015), Novákůvá et al. (2018), Zhang (2019)
Cl. paracladosporioides		Y		Novákůvá et al. (2018)
Cl. perungustum		Y		Jiang et al. (2017a, b)
Cl. pseudocladosporioides		Y		Belyagoubi et al. (2018)
Cl. rectoides		Y		Jiang et al. (2017a, b)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References	
Cl. scabrellum		Y		Jiang et al. (2017a, b)	
Cl. sphaerospermum		Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013), Popović et al. (2015), Zhang et al. (2017), Nováková et al. (2018), Popkova and Mazina (2019)	
Cl. spongiosum				Vanderwolf et al. (2013)	
Cl. subaliforme		Y		Zhang (2019)	
Cl. tenuissimum		Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b)	
Cl. uredinicola		Y		Man et al. (2015), Pusz et al. (2015)	
Cl. variabile				Mitova et al. (2017), Nováková et al. (2018)	
Cladosporium sp.		Y		Connell and Staudigel (2013), Vanderwolf et al. (2013, 2015, 2019), Martin-Sanchez et al. (2014), Popović et al. (2015), Oot et al. (2016), Jiang et al. (2017a, b), Bereza et al. (2018), Leplat et al. (2018)	
Clavariopsis	Clavariopsis azlanii			Vanderwolf et al. (2013)	
Claviceps	Claviceps purpurea			Vanderwolf et al. (2013)	
Claviceps sp.		Y	Y	Connell and Staudigel (2013)	
Clavispora	Clavispora lusitaniae			Vanderwolf et al. (2013)	
Clonostachys	Clonostachys candelabrum	Y		Vanderwolf et al. (2013)	
Clo. intermedia		Y	Y	Taylor et al. (2013), Vanderwolf et al. (2013), Kokurewicz et al. (2016), Ogórek et al. (2016b, d), Jiang et al. (2017a, b), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a)	
Clo. phyllophila		Y		Vanderwolf et al. (2013)	
Clo. rhizophaga		Y	Y	Zhang et al. (2017)	
Clo. rogerstoniana		Y		Vanderwolf et al. (2013)	
Clo. rosea		Y	Y	Vanderwolf et al. (2013, 2015), Jiang et al. (2017a, b), Zhang et al. (2017)	
Clonostachys sp.		Y	Y	Vanderwolf et al. (2013, 2015), Jiang et al. (2017a, b), Zhang et al. (2017)	
Cocidioides	Cocidioides immittis			Vanderwolf et al. (2013)	
Cochliomyces	Cochliomyces trinitais			Vanderwolf et al. (2013)	
Collariella	Collariella bostrychodes	Y		Vanderwolf et al. (2013), Man et al. (2015), Zhang et al. (2017)	
Co. quadrum		Y		Zhang et al. (2017)	
Colletotrichum	Colletotrichum acutatum	Y		Vanderwolf et al. (2013)	
Col. fioriniae		Y		Vanderwolf et al. (2013)	
Col. gloeosporioides		Y	Y	Zhang et al. (2017)	
Col. karstii		Y		Zhang et al. (2017)	
Col. pisi		Y	Y	Vanderwolf et al. (2013)	
Colletotrichum sp.		Y		Vanderwolf et al. (2013, 2015), Jiang et al. (2017a, b), Zhang et al. (2017)	
Compsonymes	Compsonymes lestevi			Vanderwolf et al. (2013)	
Coniochaeta	Coniochaeta hoffmannii	Y	Y	Vanderwolf et al. (2013)	
Con. mutabilis		Y		Vanderwolf et al. (2013)	
Coniochaeta sp.		Y		Vanderwolf et al. (2013)	
Coniothyrium	Coniothyrium sp.			Martin-Sanchez et al. (2014)	
Conoideocrella	Conoideocrella lateorostrata	Y		Vanderwolf et al. (2013)	
Corallinopsis	Corallinopsis ptilulfera	Y		Vanderwolf et al. (2013)	
Cordyceps	Cordyceps cicadae	Y	Y	Vanderwolf et al. (2013)	
Cor. militaris		Y	Y	Vanderwolf et al. (2013)	
Cor. odynieri				Vanderwolf et al. (2013)	
Cor. polyarthra		Y		Vanderwolf et al. (2013)	
Cor. riverae				Vanderwolf et al. (2013)	
Cor. sphingum				Vanderwolf et al. (2013)	
Cor. tenupes		Y	Y	Vanderwolf et al. (2013, 2015)	
Cordyceps sp.		Y		Vanderwolf et al. (2013, 2015)	
Corynespora	Corynespora sp.	Y		Zhang et al. (2017)	
Cosmopora	Cosmopora berkeleyana	Y		Vanderwolf et al. (2013)	
Cos. butyri				Vanderwolf et al. (2013)	
Cos. diminata		Y	Y	Burrow et al. (2019)	
Cos. viridescens				Vanderwolf et al. (2013, 2015), Jiang et al. (2017a, b)	
Cosmopora sp.		Y	Y	Vanderwolf et al. (2013)	
Creosphaeria	Creosphaeria asafoafra	Y		Zhang (2019)	
Cryomyces	Cryomyces sp.		Y		Vanderwolf et al. (2015)
Ctenomyces	Ctenomyces serratus				Vanderwolf et al. (2015)
Genus	Species	China	This study	References	
------------------	---------------------------------------	-------	------------	--	
Ct. vellereus	Vanderwolf et al. (2013)				
Calcinomyces	Calcinomyces sp.			Vanderwolf et al. (2019)	
Cumuliphoma	Cumuliphoma omnivirens	Y	Y	Vanderwolf et al. (2013)	
Curryea	Curryea sp.	Y	Y	Vanderwolf et al. (2013)	
Curvularia	Curvularia brachyspora			Vanderwolf et al. (2013)	
Curvularia	Cu. eragrostidis	Vanderwolf et al. (2013)			
Curvularia	Cu. hawaiiensis	Vanderwolf et al. (2013)			
Cu. lunata	Y	Y		Vanderwolf et al. (2013), Connell and Staudigel (2013)	
Cu. senegalensis	Vanderwolf et al. (2013)				
Cu. trifolii	Vanderwolf et al. (2013)	Y	Y		
Cu. sp.	Taylor et al. (2013), Vanderwolf et al. (2013)				
Cylindrocarpon	Cylindrocarpon didymum	Vanderwolf et al. (2013), Nováková et al. (2018)			
Cylindrocarpon	Cy. obtusisculum	Nováková et al. (2018)			
Cylindrocarpon	Cy. olidum	Jiang et al. (2017a, b), Zhang et al. (2017)			
Cylindrocarpon	Cy. sp.	Vanderwolf et al. (2013, 2019), Zhang et al. (2017)			
Cylindrocephalum	Cylindrocephalum stellatum	Vanderwolf et al. (2013)			
Cylindrocladiella	Cylindrocladiella lanceolata	Y	Y	Vanderwolf et al. (2013)	
Cyl. stellenschenis	Vanderwolf et al. (2013)	Y	Y		
Cylindrocladium	Cylindrocladium scoparium	Vanderwolf et al. (2013)			
Cylindrocladium	Cylindrocladium sp.	Vanderwolf et al. (2013)			
Cylindrodendrum	Cylindrodendrum album	Vanderwolf et al. (2013)			
Cyli. alicantinum	Vanderwolf et al. (2013)	Y	Y		
Cylindrocladium	Cylindrocladium scoparium	Vanderwolf et al. (2013)			
Cylindrocladium	Cylindrocladium sp.	Vanderwolf et al. (2013)			
Cyphellophora	Cyphellophora laciniata	Connell and Staudigel (2013)			
Dactylaria	Dactylaria lanosa	Vanderwolf et al. (2013)			
Dactylaria	Dactylaria sp.	Y	Y	Vanderwolf et al. (2013)	
Dactylella	Dactylella sp.	Vanderwolf et al. (2013)			
Dactylonecctria	Dactylonecctria macrodidyma	Vanderwolf et al. (2013)			
Dactylorosporium	Dactylorosporium sp.	Vanderwolf et al. (2013)			
Daldinia	Daldinia concentrica	Vanderwolf et al. (2013)			
Dasysscyphella	Dasysscyphella sp.	Vanderwolf et al. (2013)			
Debaromyces	Debaromyces hansenii	Vanderwolf et al. (2013)			
D. marmus	Zhang et al. (2014)				
D. napelensis	Vanderwolf et al. (2013)				
D. prosopidis	Vanderwolf et al. (2013)				
D. psychrophorus	Vanderwolf et al. (2013)				
D. s. r.	Vanderwolf et al. (2013)				
D. sp.	Vanderwolf et al. (2013)				
Delitschia	Delitschia sp.	Vanderwolf et al. (2013)			
Dematioscypha	Dematioscypha catenata	Vanderwolf et al. (2013)			
Dendrosporium	Dendrosporium lobatum	Vanderwolf et al. (2013)			
Dendryphion	Dendryphion sp.	Vanderwolf et al. (2013)			
Didalonecctria	Didalonecctria sp.	Y	Y	Vanderwolf et al. (2013)	
Diaporthe	Diaporthe eres	Zhang (2019)			
Di. jukashii	Zhang (2019)				
Di. melosis	Jiang et al. (2017a, b)				
Diaporthe nobilis	Zhang (2019)	Y	Y		
Di. phaseolorum	Zhang (2019)				
Di. phoenicicola	Zhang et al. (2017)				
Di. vaccini	Zhang (2019)				
Diaporthe sp.	Y	Y			
Di. vaccini	Vanderwolf et al. (2013)				
Di. phoenicicola	Zhang et al. (2017)				
Diaptyre	Diarytype palmicola	Zhang (2019)			
Dia. phoenicicola	Zhang (2019)	Y	Y		
Dia. vaccini	Zhang (2019)				
Dia. phoenicicola	Zhang et al. (2017)				
Dichomopilus	Dichomopilus funicola	Vanderwolf et al. (2013)			
Dic. indicus	Vanderwolf et al. (2013)				
Genus	Species	China^a	This study^b	References	
------------------	----------------------------------	-------------------	------------------------	---	
Dictyosporium	Dictyosporium elegans			Vanderwolf et al. (2013)	
	Dictyosporium sp.			Vanderwolf et al. (2013)	
	Dictyosporium toruloides			Vanderwolf et al. (2013)	
Didymella	Didymella bellidis	Y	Y	Vanderwolf et al. (2013)	
	Did. glomerata			Vanderwolf et al. (2013)	
	Did. macrostoma	Y		Vanderwolf et al. (2013), Zhang et al. (2017)	
	Did. pinodella	Y	Y	Vanderwolf et al. (2013)	
	Did. rhei	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b)	
Didymospheria	Didymospheria variabilis	Y	Y	Zhang (2019)	
	Didymospheria sp.				
Diplococcium	Diplococcium sp.			Vanderwolf et al. (2015)	
Diplocodia	Diplocodia sp.			Vanderwolf et al. (2013)	
Diplosporidium	Diplosporidium callipodos			Vanderwolf et al. (2013)	
Dipodascus	Dipodascus fermentans			Vanderwolf et al. (2013)	
	Dip. geotrichum	Y	Y	Vanderwolf et al. (2013), Yoder et al. (2015), Zhang et al. (2017), Nováková et al. (2018)	
Discosia	Discosia pseudoartocreas			Ogórek et al. (2017, 2018a), Ogórek (2018a, b)	
	Discosia sp.				
Discostroma	Discostroma corticola	Y	Y	Vanderwolf et al. (2013)	
Diutina	Diutina catenulata			Vanderwolf et al. (2013)	
	Diu. rugosa			Vanderwolf et al. (2013)	
Doratomyces	Doratomyces microsporus			Mitova et al. 2017	
	Doratomyces sp.	Y		Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Zhang et al. (2014, 2017), Leplat et al. (2018)	
Doffidella	Doffidella ulmi	Y	Y		
Drechslera	Drechslera avenueca			Vanderwolf et al. (2013)	
	Drechslera sp.			Vanderwolf et al. (2013), Leplat et al. (2018)	
Echinobryum	Echinobryum parasitans			Vanderwolf et al. (2013)	
	E. subterraneum			Vanderwolf et al. (2013)	
	Echinobryum sp.			Vanderwolf et al. (2013)	
Emericella	Emericella sp.			Vanderwolf et al. (2013)	
Emericellopsis	Emericellopsis minima	Y	Y	Vanderwolf et al. (2013)	
	Em. terricola				
Emmonsia	Emmonsia sp.		Y	Man et al. (2015)	
Endophoma	Endophoma elongata			Vanderwolf et al. (2013)	
Endophagmiella	Endophagmiella sp.			Vanderwolf et al. (2013)	
Engyodontium	Engyodontium aranearum			Vanderwolf et al. (2013)	
	En. parvisporum			Vanderwolf et al. (2013)	
	En. recidentatum			Vanderwolf et al. (2013)	
	Engyodontium sp.			Vanderwolf et al. (2013), Leplat et al. (2018)	
Epicoccum	Epicoccum draconis	Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Ogórek et al. (2014a, b, c, 2016b, e, d, 2017, 2018), Pusz et al. (2015), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a), Tavares et al. (2018)	
	Ep. nigrum	Y	Y		
	Ep. plurivorum		Y	Vanderwolf et al. (2013), Leplat et al. (2018)	
Eremomyces	Eremomyces sp.			Vanderwolf et al. (2013, 2015)	
Erysiphe	Erysiphe polygoni			Connell and Staudigel (2013)	
Eupenicillium	Eupenicillium sp.			Vanderwolf et al. (2013)	
Eutypella	Eutypella citricola	Y	Y	Jiang et al. (2017a, b)	
	Eu. scoparia				
Eurotium	Eurotium sp.		Y	Vanderwolf et al. (2013), Zhang (2019)	
Exophiala	Exophiala castellani			Vanderwolf et al. (2013)	
	Ex. moniliae			Vanderwolf et al. (2013)	
	Ex. pisciphila	Y	Y		
Table 4 (continued)

Genus	Species	China	This study	References
Ex. salmonis	Mitova et al. (2017)			
Ex. xenobiotica	Ogórek (2018a, b)			
Esophilus sp.	Vanderwolf et al. (2013)	Y		
Farrowia	Vanderwolf et al. (2013)			
Forlioniymces	Leplat et al. (2018)			
Fusariella	Vanderwolf et al. (2013)			
Fusarium	Vanderwolf et al. (2013)			
F. avenaceum	Vanderwolf et al. (2013)			
F. chlamydosporum	Vanderwolf et al. (2013)	Y		
F. coerulescens	Vanderwolf et al. (2013)			
F. culmorum	Vanderwolf et al. (2013)			
F. dimerum	Vanderwolf et al. (2013)			
F. equiseti	Vanderwolf et al. (2013)			
F. fujikuroi	Vanderwolf et al. (2013)			
F. graminearum	Ogórek et al. (2013), Jiang et al. (2017a, b), Zhang et al. (2017)	Y		
F. incarnatum	Vanderwolf et al. (2013)			
F. lateritium	Vanderwolf et al. (2013), Ogórek (2018b)	Y		
F. merismoides	Zhang et al. (2017)	Y		
F. nematophilum	Jiang et al. (2017a, b)			
F. oxysporum	Vanderwolf et al. (2013), Ogórek et al. (2013, 2014b, c), Taylor et al. (2013), Vanderwolf et al. (2013), Kokurewicz et al. (2016), Jiang et al. (2017a, b), Nováková et al. (2018), Pusz et al. (2018b), Popkova and Mazina (2019)	Y		
F. poae	Ogórek et al. (2014c)			
F. proliferatum	Vanderwolf et al. (2013)	Y		
F. roseum	Vanderwolf et al. (2013)			
F. sacchari	Vanderwolf et al. (2013)	Y		
F. solani	Taylor et al. (2013), Vanderwolf et al. (2013), Man et al. (2015), Jiang et al. (2017a, b), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018b), Popkova and Mazina (2019)	Y		
F. sporotrichoides	Vanderwolf et al. (2013), Ogórek et al. (2014c), Popkova and Mazina (2019)	Y		
F. subglutinans	Vanderwolf et al. (2013)			
F. thapsinum	Jiang et al. (2017a, b)	Y		
F. tricinctum	Vanderwolf et al. (2013)			
Fusarium sp.	Vanderwolf et al. (2013, 2015, 2019), Yoder et al. (2015), Zhang et al. (2017), Nováková et al. (2018), Leplat et al. (2018), Pusz et al. (2018a), Popkova and Mazina (2019)	Y		
Fusicolla	Vanderwolf et al. (2013)			
Fu. merismoides	Vanderwolf et al. (2013)	Y		
Gabarnaudia	Leplat et al. (2018)			
Gamsia	Gamsia aggregata	Y		
	G. columbina	Y		
	G. simplex	Y		
Gamszarea	Ga. kalimantanensis	Y		
	Ga. lunata	Y		
	Ga. microspora	Y		
Geomyces	Vanderwolf et al. (2013)			
Ge. vinaces	Vanderwolf et al. (2013)	Y		
Geomyces sp.	Vanderwolf et al. (2013), Zhang et al. (2014), Man et al. (2015), Leplat et al. (2018), Burow et al. (2019), Pfendler et al. (2019)	Y		
Geosmithia	Vanderwolf et al. (2013)			
Geo. putterillii	Vanderwolf et al. (2013)			
Geo. namyslowski	Vanderwolf et al. (2013)			
Geotrichum	Taylor et al. (2013), Vanderwolf et al. (2013)	Y		
Glibella	Vanderwolf et al. (2013)			
Gibellulopsis	Connell and Staudigel (2013), Vanderwolf et al. (2013), Zhang (2019)	Y		
Gilmaniella	Vanderwolf et al. (2013)			
Glicephalotrichum	Vanderwolf et al. (2013)			
Glicadlospis	Zhang (2019)	Y		
Genus	Species	Chinaa	This studyb	References
---------------	--------------------------------	--------	-------------	-----------------------------------
Gliocladium	Gliocladium atrum			Vanderwolf et al. (2013)
	Gl. cibitii			Vanderwolf et al. (2013)
	Gl. roseum	Y		Jiang et al. (2017)
	Gliocladium sp.			Vanderwolf et al. (2013)
Gliomastix	Gliomastix laezulae	Y	Y	Vanderwolf et al. (2013)
	Gliomastix sp.	Y	Y	Vanderwolf et al. (2013)
	Gl. murorum	Y		Jiang et al. (2017)
Gnemonopis	Gnomonopis sp.			Vanderwolf et al. (2013)
Graphiophyllum	Graphiophyllum sp.			Vanderwolf et al. (2013)
Graphium	Graphium penicillioides	Y	Y	Vanderwolf et al. (2013)
Gymnascella	Gymnascella citrina			Vanderwolf et al. (2013)
	Gy. hyalinospora			Vanderwolf et al. (2013)
	Gymnascella sp.			Vanderwolf et al. (2013)
Gymnoascoides	Gymnoascus exasperatus	Y	Y	Zhang et al. (2017)
	Gym. flavus	Y		Vanderwolf et al. (2013)
	Gym. intermedius			Vanderwolf et al. (2013)
	Gym. reessii	Y	Y	Vanderwolf et al. (2013, 2019)
	Gym. udagnueae	Y		Mitova et al. (2017)
	Gymnoascus sp.			Zhang et al. (2017)
Gymnostellatospora	Gymnostellatospora sp.			Vanderwolf et al. (2013)
Gyrothrix	Gyrothrix sp.	Y		Zhang et al. (2017)
Halenospora	Halenospora varia			Vanderwolf et al. (2013)
Hanseniaaspera	Hanseniaaspera ostophila			Vanderwolf et al. (2013)
Hanseniaspora	Hanseniaspora sp.			Vanderwolf et al. (2013)
Hansenfossia	Hansenfossia sp.			Connell and Staudigel (2013)
Harzia	Harzia acromenioides			Vanderwolf et al. (2013)
Helicogermilia	Helicogermilia sp.			Vanderwolf et al. (2013)
Helicoma	Helicoma sp.			Vanderwolf et al. (2013)
Helicomyces	Helicomyces sp.			Vanderwolf et al. (2013)
Helminthosporium	Helminthosporium sp.			Vanderwolf et al. (2013)
	H. trichellum			Vanderwolf et al. (2013)
Heloium	Helodium sp.			Vanderwolf et al. (2013)
Herpomyces	Herpomyces arietinus			Vanderwolf et al. (2013)
Herpotrichia	Herpotrichia sp.			Vanderwolf et al. (2013)
Hirutella	Hirutella dipterigena			Vanderwolf et al. (2013)
	H. guignardi			Vanderwolf et al. (2013)
	Hirutella sp.			Vanderwolf et al. (2013)
				Martin-Sanchez et al. (2014)
Hormiactis	Hormiactis candida			Vanderwolf et al. (2013)
Hormiascium	Hormiascium sp.			Vanderwolf et al. (2013)
Hormodendrum	Hormodendrum sp.			Vanderwolf et al. (2013)
Hormographiella	Hormographiella sp.			Vanderwolf et al. (2015)
Humaria	Humaria jeannelii			Vanderwolf et al. (2013)
Humicola	Humicola brunnea	Y	Y	Vanderwolf et al. (2013)
	Hu. fuscosta			Vanderwolf et al. (2013)
	Hu. grisea			Vanderwolf et al. (2013)
	Hu. limonisporum	Y		Zhang et al. (2017)
	Hu. nigrescens			Vanderwolf et al. (2013)
	Humicola sp.	Y	Y	Vanderwolf et al. (2013)
Hyalopus	Hyalopus cartipes			Vanderwolf et al. (2013)
Hyaloseta	Hyaloseta sp.	Y	Y	Vanderwolf et al. (2013)
Hydropisphaera	Hydropisphaera sp.			Vanderwolf et al. (2013)
Hyphopichia	Hyphopichia burtonii			Vanderwolf et al. (2013)
Hyphocyma	Hyphocyma sp.			Vanderwolf et al. (2015, 2019)
Hypocrea	Hypocrea lactea	Y		Zhang (2019)
Table 4 (continued)

Genus	Species	China	This study	References
Hy. pachybasioides		Y		Zhang et al. (2014), Pusz et al. (2015), Zhang (2019)
Hypocrea				Vanderwolf et al. (2013)
Hypomyces	*Hypomyces rosellus*			Vanderwolf et al. (2013)
	Hypomyces sp.			Vanderwolf et al. (2013)
Hypoxylon	*Hypoxylon fragiforme*	Y	Y	Vanderwolf et al. (2013)
	Hy. monticulosum			Vanderwolf et al. (2013)
	Hy. perforatum	Y		Zhang et al. (2017)
	Hypoxylon sp.			Vanderwolf et al. (2013)
Idriella	*Idriella lunata*	Y	Y	Vanderwolf et al. (2013)
	Idriella sp.	Y	Y	Vanderwolf et al. (2013)
Ilyonectria	*Ilyonectria destructans*	Y	Y	Vanderwolf et al. (2013)
	L. radicicola	Y		Zhang et al. (2017)
	Ilyonectria sp.			Zhang et al. (2017)
Inaequalispora	*Inaequalispora prestonii*	Y		Zhang (2019)
	Inaequalispora sp.	Y		Zhang (2019)
Infundichalara	*Infundichalara microchona*			Vanderwolf et al. (2013)
Isaria	*Isaria amoene-rosea*			Vanderwolf et al. (2013)
	Is. cataniamulata	Y		Zhang (2019)
	Is. farinosa	Y		Vanderwolf et al. (2013, 2015), Zhang et al. (2017), Pusz et al. (2018a)
	Is. fumosorosea	Y	Y	Vanderwolf et al. (2013, 2015), Jiang et al. (2017a, b), Zhang et al. (2017)
	Isaria sp.			Vanderwolf et al. (2013, 2019), Leplat et al. (2018)
Isthmolongispora	*Isthmolongispora quadricellularis*			Vanderwolf et al. (2013)
Jackrogersella	*Jackrogersella sp.*	Y	Y	Vanderwolf et al. (2013)
Jattaea	*Jattaea reniformis*	Y	Y	Vanderwolf et al. (2013)
Juxtiphoma	*Juxtiphoma eupyrena*	Y	Y	Vanderwolf et al. (2013)
Keissleriella	*Keissleriella sp.*			Vanderwolf et al. (2013)
Kernia	*Kernia columnaris*	Y		Zhang (2019)
	Kernia sp.	Y		Vanderwolf et al. (2013, 2014, 2019)
Kretzschmaria	*Kretzschmaria deusta*			Vanderwolf et al. (2013)
Lambertella	*Laboulbenia arawaka*	Y		Zhang (2019)
Laboulbenia	*Laboulbenia arawaka*			Vanderwolf et al. (2013)
	L. bolivarii			Vanderwolf et al. (2013)
	L. bordoni			Vanderwolf et al. (2013)
	L. cantabrica			Vanderwolf et al. (2013)
	L. coiffaitii			Vanderwolf et al. (2013)
	L. flagellata			Vanderwolf et al. (2013)
	L. leccoreri			Vanderwolf et al. (2013)
	L. nebritae			Vanderwolf et al. (2013)
	L. orghidanii			Vanderwolf et al. (2013)
	L. picardii			Vanderwolf et al. (2013)
	L. polyphaga			Vanderwolf et al. (2013)
	L. shordomii			Vanderwolf et al. (2013)
	L. shanorii			Vanderwolf et al. (2013)
	L. stilicicola			Vanderwolf et al. (2013)
	L. subterranea			Vanderwolf et al. (2013)
	L. vignae			Vanderwolf et al. (2013)
	L. vulgaris			Vanderwolf et al. (2013)
	Laboulbenia sp.			Vanderwolf et al. (2013)
Lachancea	*Lachancea kluyveri*			Vanderwolf et al. (2013)
	La. thermotolerans			Vanderwolf et al. (2013)
Lachnea	*Lachnea spelaea*			Vanderwolf et al. (2013)
Lachnellula	*Lachnellula resinaria*			Vanderwolf et al. (2013)
Lachnum	*Lachnum brevipilosum*			Vanderwolf et al. (2013)
Latorua	*Latorua caligans*	Y	Y	Zhang et al. (2017)
Leccanicillium	*Leccanicillium antillanum*			Vanderwolf et al. (2013)
	Le. aphanoecladii	Y		Tavares et al. (2018), Cardoso et al. (2019), Zhang (2019)
	Le. dimorphum			Nováková et al. (2018)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Le. fusisporum	Y Y Vanderwolf et al. (2013), Zhang et al. (2017)			
Le. magnisporum	Y Y Vanderwolf et al. (2013)			
Le. muscarium	Y Vanderwolf et al. (2013)			
Le. psiloiota	Y Vanderwolf et al. (2013), Nováková et al. (2018)			
Lecaniium sp.	Y Vanderwolf et al. (2013), Man et al. (2015), Leplat et al. (2018)			
Lectera	Lectera colletotrichoides	Connell and Staudigel (2013)		
Lecithophora	Lecithophora sp.	Vanderwolf et al. (2019)		
Lepidosphaeria	Lepidosphaeria sp.	Vanderwolf et al. (2013)		
Leptobacillium	Leptobacillium leptobactrum	Vanderwolf et al. (2013), Martin-Sanchez et al. (2014), Zhang et al. (2014), Leplat et al. (2018), Burow et al. (2019)		
Leptodontidium	Leptodontidium trabilinum	Vanderwolf et al. (2013)		
Leptosphaeria	Leptosphaeria fuscella	Y Vanderwolf et al. (2013)		
L. maculans	Y Vanderwolf et al. (2013)			
L. psalliota	Y Vanderwolf et al. (2013), Jiang et al. (2017a, b), Zhang et al. (2017)			
Leptosphaerulina	Leptosphaerulina chartarum	Y Jiang et al. (2017a, b)		
Leptosphaerulina	Leptosphaerulina sp.	Vanderwolf et al. (2013)		
Letendreae	Letendreae helminthica	Y Zhang (2019)		
Leuconospora	Leuconospora capsici	Y Vanderwolf et al. (2013, 2015, 2019), Malloch et al. (2016)		
Leu. pulcherrima	Leu. pulcherrima	Vanderwolf et al. (2013)		
Leuconeurospora	Leuconeurospora	Y Vanderwolf et al. (2013)		
Leucocentum	Leucocentum emdenii	Y Vanderwolf et al. (2013)		
Linderina	Linderina pennispora	Vanderwolf et al. (2013)		
Lophiotrema	Lophiotrema sp.	Y Vanderwolf et al. (2013)		
Malbranchea	Malbranchea aurantiaca	Vanderwolf et al. (2013)		
Malbranchea sp.	Y Vanderwolf et al. (2013)			
Mammaria	Mammaria echinobryoides	Vanderwolf et al. (2013, 2019)		
Mammaria sp.	Y Vanderwolf et al. (2015)			
Mariannaea	Mariannaea camptospora	Vanderwolf et al. (2013)		
Ma. elegans	Y Vanderwolf et al. (2013)			
Ma. nipponica	Y Vanderwolf et al. (2013)			
Massarina	Massarina igniaria	Y Vanderwolf et al. (2013), Zhang et al. (2017)		
Massarina sp.	Y Y Vanderwolf et al. (2013), Zhang et al. (2017)			
Melanconium	Melanconium sp.	Y Vanderwolf et al. (2013)		
Melanocarpus	Melanocarpus albomyces	Vanderwolf et al. (2013)		
Melanospora	Melanospora sp.	Vanderwolf et al. (2013)		
Mel. zamiae	Mel. zamiae	Vanderwolf et al. (2013)		
Memnoniella	Memnoniella sp.	Y Vanderwolf et al. (2013)		
Metispora	Metispora coealiina	Vanderwolf et al. (2013)		
Metacordycopsis	Metacordycopsis chlamydosporia	Y Vanderwolf et al. (2013), Man et al. (2015), Nováková et al. (2018)		
Metapochonia	Metapochonia bulbillosa	Y Y Zhang et al. (2017)		
Met. rubescens	Y Zhang et al. (2017)			
Met. subhispuria	Y Vanderwolf et al. (2013), Martin-Sanchez et al. (2014)			
Met. variabilis	Y Y Zhang et al. (2017)			
Metapochonia sp.	Metapochonia sp.	Mitova et al. (2017)		
Metarhizium	Metarhizium anisopliae	Y Y Vanderwolf et al. (2013), Zhang et al. (2017), Nováková et al. (2018)		
Met. marquandii	Y Y Vanderwolf et al. (2013), Man et al. (2015), Jiang et al. (2017a, b), Nováková et al. (2018)			
Met. rileyi	Y Vanderwolf et al. (2013), Zhang (2019)			
Met. robertsi	Y Zhang (2019)			
Metarhizium sp.	Y Y Vanderwolf et al. (2013), Jiang et al. (2017a, b), Leplat et al. (2018), Bercea et al. (2018)			
Metchnikowia	Metchnikowia pulcherrima	Vanderwolf et al. (2013)		
Meyerozyma	Meyerozyma caribbica	Jacobs et al. (2017)		
Microascus	Microascus anfractus	Y Y Zhang et al. (2017)		
M. boulangeri	Yang et al. (2017)			
M. borealis	Vanderwolf et al. (2013)			
Genus	Species	Chinaa	This studyb	References
---------------------	-----------------------------	--------	-------------	---
Mi. brevicaulis	Y	Y	Y	Vanderwolf et al. (2013), Yoder et al. (2015), Pusz et al. (2018a)
Mi. chartarum	Y	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Mi. cirrosus	Y	Y	Y	Vanderwolf et al. (2013)
Mi. collaris	Y	Y	Y	Vanderwolf et al. (2013)
Mi. croci	Y	Y	Y	Vanderwolf et al. (2013)
Mi. globulosus	Y	Y	Y	Zhang et al. (2017)
Mi. levis	Y	Y	Y	Vanderwolf et al. (2013)
Mi. longirostris	Y	Y	Y	Vanderwolf et al. (2013)
Mi. murinus	Y	Y	Y	Yoder et al. (2015)
Mi. paisii	Y		Y	Vanderwolf et al. (2013)
Mi. sparsimycelialis	Y	Y	Y	Vanderwolf et al. (2013)
Mi. superficialis	Y	Y	Y	Vanderwolf et al. (2013)
Mi. trigonus	Y	Y	Y	Vanderwolf et al. (2013)
Microascus sp.	Vanderwolf et al. (2013, 2019)			Vanderwolf et al. (2013)
Microdiploidia	Microdiploidia miyakei	Y	Y	Zhang (2019)
Microdochium	Microdochium bolleyi	Y	Y	Vanderwolf et al. (2013)
Microdochium	Y	Y	Y	Vanderwolf et al. (2013)
Mycosphaeropsis	Mycosphaeropsis arundinis	Y	Y	Zhang et al. (2017)
MycolCentrula	MycolCentrula granulatum		Y	Vanderwolf et al. (2013)
Mycosporum	Mycosporum canis		Y	Vanderwolf et al. (2013)
Mycosporum	Y	Y	Y	Vanderwolf et al. (2013)
Monascus	Monascus ruber		Y	Vanderwolf et al. (2013)
Mo. purpureus	Y		Y	Man et al. (2015)
Monocillium	Monocillium grunatum		Y	Vanderwolf et al. (2013)
Monocillium	Y	Y	Y	Vanderwolf et al. (2013)
Monographella	Monographella sp.		Y	Zhang (2019)
Monosporium	Monosporium sp.		Y	Vanderwolf et al. (2013)
Montagnula	Montagnula sp.	Y	Y	Vanderwolf et al. (2013)
Myceliophthora	Myceliophthora sp.		Y	Vanderwolf et al. (2013, 2015), Nováková et al. (2018)
Mycoarthris	Mycoarthris sp.		Y	Vanderwolf et al. (2013)
Mycogone	Mycogone nigra		Y	Vanderwolf et al. (2013)
Mycogone	Y	Y	Y	Vanderwolf et al. (2013)
Mycosphaerella	Mycosphaerella polygoni-			Zhang (2019)
Mycorhizaeae	Mycosphaerella sp.			Zhang (2019)
Myriodontium	Myriodontium keratinophilum	Y	Y	Man et al. (2015), Zhang et al. (2017), Nováková et al. (2018)
Myriodontium	Myriodontium sp.	Y	Y	Leplat et al. (2018)
Myrmecridium	Myrmecridium salutarii	Y	Y	Vanderwolf et al. (2013)
Myrothecium	Myrothecium sp.	Y	Y	Vanderwolf et al. (2013)
Myxotrichum	Myxotrichum chartarum		Y	Vanderwolf et al. (2013)
Myxotrichum	Y	Y	Y	Vanderwolf et al. (2013)
Myxotrichum	Y	Y	Y	Vanderwolf et al. (2013)
Myxotrichum	Y	Y	Y	Vanderwolf et al. (2013)
Nannizzia	Nannizzia fulva			Vanderwolf et al. (2013)
Nectria	Nectria ellisi			Vanderwolf et al. (2013)
Nectria	N. ramulareae			Zhang et al. (2014)
Nectria	Nectria sp.	Y	Y	Vanderwolf et al. (2013)
Nectria	N. pseudotrachia	Y	Y	Jiang et al. (2017a, b)
Nemanis	Nemanis bipapillata	Y	Y	Zhang et al. (2017)
Ne. diffusa	Y	Y	Y	Zhang et al. (2017)
Ne. serpens	Y		Y	Zhang (2019)
Ne. sparsimycelialis	Y	Y	Y	Vanderwolf et al. (2013)
Neosociochyta	Neosociochyta paspali	Y	Y	Zhang (2019)
Neosociochyta	Neosociochyta sp.		Y	Jiang et al. (2017a, b)
Table 4 (continued)

Genus	Species	China^a	This study^b	References
Neoconiothyrium	Neoconiothyrium sp.	Y	Y	Zhang et al. (2014)
Neoconiospora	Neoconiospora ipomoeae	Y		
Neobulgaria	Neobulgaria sp.			Zhang et al. (2014)
Neogymnomyces	Neogymnomyces sp.	Y	Y	Vanderwolf et al. (2013)
Neogymnomyces	Neo. virgineus			Vanderwolf et al. (2013)
Neomassarina	Neomassarina thailandica	Y	Y	Out et al. (2016)
Neomectria	Neomectria obtusispora			Vanderwolf et al. (2013)
Neophragonella	Neophragonella inflorescentiae	Y	Y	Vanderwolf et al. (2013)
Neurospora	Neurospora crassa			Vanderwolf et al. (2013)
Neurospora	Neu. intermedia	Y		Zhang et al. (2017)
Neurospora	Neu. tetrasperma			Pusz et al. (2015)
Neurospora	Neurospora sp.			Vanderwolf et al. (2013)
Nigrograna	Nigrograna cangshanensis	Y		Zhang (2019)
Nigrograna	Nigrograna mackinonii	Y		Vanderwolf et al. (2013)
Nigrograna	Nigrograna sp.	Y		Vanderwolf et al. (2013)
Nigrospora	Nigrospora globosa	Y	Y	Vanderwolf et al. (2013)
Nigrospora	Ni. oryzae	Y	Y	Vanderwolf et al. (2013)
Nigrospora	Ni. sphaericcia			Vanderwolf et al. (2013)
Nigrospora	Nigrospora sp.			VanderWolf et al. (2013), Bercea et al. (2018)
Nomuraea	Nomuraea rileyi			VanderWolf et al. (2013)
Ochroconis	Ochroconis sp.	Y	Y	VanderWolf et al. (2013)
Ochroconis	O. tannicus			VanderWolf et al. (2013)
Oedoccephalum	Oedoccephalum sp.			VanderWolf et al. (2013)
Oidiocordyceps	Oidiocordyceps entomorrhiza			VanderWolf et al. (2013)
Oidiocordyceps	Op. sinensis	Y		VanderWolf et al. (2013)
Oidiocordyceps	Op. solubilis	Y	Y	VanderWolf et al. (2013)
Ophiocordyceps	Ophiocordyceps ischnostyla	Y		Zhang (2019)
Ophiostoma	Ophiostoma polyoporica			VanderWolf et al. (2013)
Ophiostoma	Oph. stenoceras			VanderWolf et al. (2013)
Ovadendron	Ovadendron sulphureocharaceum			VanderWolf et al. (2013)
Paecilomyces	Paecilomyces divaricatus			VanderWolf et al. (2013)
Paecilomyces	P. fumosoroseus			Pusz et al. (2015), Kokurewicz et al. (2016)
Paecilomyces	P. hepiali	Y	Y	VanderWolf et al. (2013)
Paecilomyces	P. lilacinus			VanderWolf et al. (2013)
Paecilomyces	P. tenuis	Y	Y	Taylor et al. (2013), VanderWolf et al. (2013), Kokurewicz et al. (2016)
Paecilomyces	P. varioti			VanderWolf et al. (2013), Man et al. (2015), Popović et al. (2015), Yoder et al. (2015), Zhang et al. (2017), Leplat et al. (2018)
Paecilomyces	Paecilomyces sp.	Y		VanderWolf et al. (2013)
Pallidocercospora	Pallidocercospora heimioides	Y	Y	VanderWolf et al. (2013)
Papulaspora	Papulaspora rubida			VanderWolf et al. (2013)
Papulaspora	Papulaspora sp.			VanderWolf et al. (2013)
Parabotryospora	Parabotryospora oligotrophica	Y		Jiang et al. (2017a, b)
Paracamarosporium	Paracamarosporium hawaiense	Y	Y	VanderWolf et al. (2013)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Paracoccidioides	Paracoccidioides brasiensis			Vanderwolf et al. (2013)
Paraconiothyrium	Paraconiothyrum brasiense	Y	Y	
	Ps. estuarium	Y	Y	
Paraconiothyrum	sp.	Y		Zhang (2019)
Paracremonium	Paracremonium apiculatum	Y	Y	
	Par. ellipsoideum	Y	Y	
	Par. variiforme	Y		Zhang et al. (2017)
Paramicrothyrum	Paramicrothyrum sp.	Y	Y	
Paramyrothecium	Paramyrothecium roridum	Y	Y	Vanderwolf et al. (2013)
Paranomuraea	Paranomuraea carneae			Vanderwolf et al. (2013)
Paraphaeosphaeria	Paraphaeosphaeria hydei	Y	Y	
	Para. michotii	Y	Y	
	Para. neglecta	Y		Zhang (2019)
	Para. sporulosa	Y	Y	Vanderwolf et al. (2013), Man et al. (2015), Pusz et al. (2015)
Paraphaeosphaeria	sp.	Y		Zhang (2019)
Paraphoma	Phytophoma chrysanthemicola	Y	Y	Vanderwolf et al. (2013)
	Paraph. fimeti			Ogórek et al. (2016b, c)
Paraphyton	Paraphyton Cookei			Ogórek et al. (2019)
Parastagonospora	Parastagonospora nodorum	Y	Y	Vanderwolf et al. (2013), Nováková et al. (2018)
Parengyodontium	Parengyodontium album	Y	Y	Vanderwolf et al. (2013), Nováková et al. (2018)
	Parengyodontium sp.	Y		Zhang (2019)
Pectinotrichum	Pectinotrichium chinesis	Y		Zhang et al. (2017)
Penicillium	Penicillium dipartitectorus	Y	Y	
	Penicillium ademetzioides	Y	Y	Vanderwolf et al. (2013)
Pe. admetzii				
Pe. aeneum		Y	Y	Vanderwolf et al. (2013)
Pe. albidum		Y		
Pe. astrolabium		Y		
Pe. atramentosum		Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Nováková et al. (2018)
Pe. atrosanguineum		Y		Nováková et al. (2018)
Pe. aurantiogriseum		Y		Vanderwolf et al. (2013), Mitova et al. (2017), Nováková et al. (2018), Ogórek (2018b), Popkova and Mazina (2019)
Pe. bialowiecense				Visagie et al. (2019)
Pe. bilaiense		Y		
Pe. biourgeianum		Y		Ogórek et al. (2017), Pusz et al. (2017), Zhang (2019)
Pe. brasiliense				Nováková et al. (2018), Zhang (2019)
Pe. brevicipactum		Y	Y	Taylor et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2014), Pusz et al. (2015), Oút et al. (2016), Jiang et al. (2017a, b), Ogórek et al. (2017, 2018), Belyagoubi et al. (2018), Nováková et al. (2018), Ogórek (2018a, b)
Pe. brevispitatum				Visagie et al. (2019)
Pe. buchwaldii		Y		Zhang et al. (2017)
Pe. bussumense		Y		
Pe. cairensense		Y		Zhang (2019)
Pe. camemberti		Y		Vanderwolf et al. (2013), Zhang et al. (2017)
Pe. canariense		Y		
Pe. canescens		Y		Vanderwolf et al. (2013), Nováková et al. (2018)
Pe. capsulatum				Vanderwolf et al. (2013)
Pe. cavernicola				Vanderwolf et al. (2013)
Pe. chalabuade		Y		Vanderwolf et al. (2013)
Pe. chermesinum		Y		
Pe. chrysogenum		Y		Ogórek et al. (2013, 2014a, b, c, 2016b, c, d, 2017), Taylor et al. (2013), Vanderwolf et al. (2013, 2019), Pusz et al. (2014, 2015, 2018a, b), Jacobs et al. (2017), Jiang et al. (2017a, b), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a), Dylag et al. (2019), Popkova and Mazina (2019), Visagie et al. (2019)
Pe. citreonigrum		Y		Vanderwolf et al. (2013), Pusz et al. (2018a)
Pe. citrinum		Y		Taylor et al. (2013), Vanderwolf et al. (2013), Ogórek et al. (2014a, b, c), Pusz et al. (2014, 2018a, b)
Genus	Species	China	This study	References
-----------	-----------------	-------	------------	---
Pe. commune	Y Y	Vanderwolf et al. (2013), Pusz et al. (2014, 2017), Oút et al. (2016), Jacobs et al. (2017), Mitova et al. (2017), Ogórek et al. (2017, 2018)		
Pe. concentricum	Y Y	Vanderwolf et al. (2013), Mitova et al. (2017), Visagie et al. (2019)		
Pe. consobrinum		Visagie et al. (2019)		
Pe. contaminatum	Y	Zhang (2019)		
Pe. coprobiacum	Y Y	Mitova et al. (2017), Zhang et al. (2017)		
Pe. coprophilum	Y Y	Visagie et al. (2019)		
Pe. corylophilum		Visagie et al. (2019)		
Pe. daleae	Y Y	Vanderwolf et al. (2013)		
Pe. decumbens		Taylor et al. (2013), Vanderwolf et al. (2013)		
Pe. dierckxii	Y	Vanderwolf et al. (2013), Man et al. (2015), Zhang et al. (2017)		
Pe. digitatum	Y Y	Vanderwolf et al. (2013)		
Pe. dipodomyicola	Y	Zhang (2019)		
Pe. dipodomys	Y Y	Visagie et al. (2019)		
Pe. echinulatum	Y Y	Vanderwolf et al. (2013), Oút et al. (2016)		
Pe. expansum	Y Y	Ogórek et al. (2013, 2014a, b, c), Taylor et al. (2013), Vanderwolf et al. (2013, 2015), Pusz et al. (2014), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a), Dyląg et al. (2019), Visagie et al. (2019)		
Pe. flavigenum	Y Y	Nováková et al. (2018), Tavares et al. (2018)		
Pe. funiculosum	Y Y	Vanderwolf et al. (2013)		
Pe. glabrum	Y Y	Taylor et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2014), Pusz et al. (2015), Ogórek et al. (2017), Zhang et al. (2017), Visagie et al. (2019)		
Pe. gladioli	Y Y	Vanderwolf et al. (2013)		
Pe. glandicola	Y Y	Vanderwolf et al. (2013), Ogórek et al. (2016a), Nováková et al. (2018)		
Pe. glaucoalbidum		Vanderwolf et al. (2013, 2015, 2019), Pusz et al. (2017), Nováková et al. (2018), Visagie et al. (2019)		
Pe. granulatum		Ogórek et al. (2016b, c)		
Pe. griseofulvum	Y	Taylor et al. (2013), Vanderwolf et al. (2013, 2019), Pusz et al. (2014), Zhang et al. (2014), Ogórek et al. (2016b, c, d), Jacobs et al. (2017), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a)		
Pe. griseolum		Vanderwolf et al. (2013)		
Pe. guanacastense	Y Y	Vanderwolf et al. (2013)		
Pe. halotolerans	Y Y	Vanderwolf et al. (2013)		
Pe. herquei	Y Y	Vanderwolf et al. (2013)		
Pe. hirsutum		Vanderwolf et al. (2013)		
Pe. hordei		Vanderwolf et al. (2013)		
Pe. implicatum		Vanderwolf et al. (2013), Pusz et al. (2018a)		
Pe. inflatum	Y	Zhang et al. (2017)		
Pe. italicum		Vanderwolf et al. (2013)		
Pe. jacksonii	Y Y	Vanderwolf et al. (2013)		
Pe. janczewskii		Vanderwolf et al. (2013)		
Pe. javanicum		Vanderwolf et al. (2013)		
Pe. jenseni		Vanderwolf et al. (2013)		
Pe. jagerheimii		Vanderwolf et al. (2013)		
Pe. jonassonii	Y Y	Vanderwolf et al. (2013)		
Pe. jovanus		Vanderwolf et al. (2013)		
Pe. jividum	Y Y	Vanderwolf et al. (2013)		
Pe. ludwigii	Y Y	Vanderwolf et al. (2013)		
Pe. madritii	Y Y	Vanderwolf et al. (2013)		
Pe. magneliptisporum	Y Y	Mitova et al. (2017), Zhang et al. (2017)		
Pe. malachitriacum	Y Y	Mitova et al. (2017), Zhang et al. (2017)		
Pe. mollsohxii	Y Y	Man et al. (2015), Pusz et al. (2018a)		
Pe. melagrinum	Y Y	Vanderwolf et al. (2013)		
Pe. melanocomodium		Vanderwolf et al. (2013)		
Pe. melinii		Vanderwolf et al. (2013)		
Pe. mexicanum	Y Y	Vanderwolf et al. (2013)		
Pe. miczynskii		Vanderwolf et al. (2013)		
Pe. niglovense	Y Y	Vanderwolf et al. (2013)		
Table 4 (continued)

Genus	Species	China^a	This study^b	References
Pe. notatum		Y		Jiang et al. (2017a, b), Pusz et al. (2018a)
Pe. ochrochloron		Y		Vanderwolf et al. (2013)
Pe. olsonii		Y		Connell and Staudigel (2013), Taylor et al. (2013), Vanderwolf et al. (2013),
				Busquets et al. (2014), Popovic et al. (2015), Yoder et al. (2015), Kokurewicz et al. (2016),
				Jiang et al. (2017a, b), Zhang et al. (2017), Belyagoubi et al. (2018), Novaková et al. (2018),
				Leplat et al. (2018), Pusz et al. (2018a)
Pe. oxalicum		Y		Vanderwolf et al. (2013)
Pe. palitans				Vanderwolf et al. (2013)
Pe. pannosumium		Y		Mitova et al. (2017), Zhang et al. (2017)
Pe. parvulum		Y		Zhang et al. (2017)
Pe. paxilli		Y		Vanderwolf et al. (2013), Jiang et al. (2017a, b), Pusz et al. (2018a)
Pe. phoeniceum				Novaková et al. (2018)
Pe. piceum				Vanderwolf et al. (2013)
Pe. pimeliteiense		Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Ogorek et al. (2017), Novaková et al. (2018)
Pe. polonicum		Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Ogorek et al. (2017), Novaková et al. (2018)
Pe. polystictum				Vanderwolf et al. (2013)
Pe. purpurascens				Vanderwolf et al. (2013), Pusz et al. (2018a)
Pe. purpurogenum				Taylor et al. (2013), Vanderwolf et al. (2013), Novaková et al. (2018)
Pe. raperi		Y		Vanderwolf et al. (2013)
Pe. raphiae		Y		Vanderwolf et al. (2013)
Pe. restrictum		Y		Vanderwolf et al. (2013)
Pe. roxsamsonii		Y		Vanderwolf et al. (2013)
Pe. roqueforti				Vanderwolf et al. (2013)
Pe. roseopurpureum		Y		Vanderwolf et al. (2013), Ogorek et al. (2016b, d)
Pe. rubens		Y		Visagie et al. (2019)
Pe. rubrum		Y		Jiang et al. (2017a, b)
Pe. sacculum				Vanderwolf et al. (2013)
Pe. sanguifluum		Y		Vanderwolf et al. (2013)
Pe. scabrosum		Y		Vanderwolf et al. (2013)
Pe. sclerotiorum		Y		Vanderwolf et al. (2013)
Pe. simplicissimum		Y		Taylor et al. (2013), Vanderwolf et al. (2013), Mitova et al. (2017), Ogorek et al. (2017),
				Zhang et al. (2017), Novaková et al. (2018), Popkova and Mazina (2019)
Pe. sizovae		Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Mitova et al. (2017), Ogorek et al. (2017, 2018)
Pe. solitum		Y		Visagie et al. (2019)
Pe. spathulatum				Visagie et al. (2019)
Pe. speluncae				Visagie et al. (2019)
Pe. spinulosum		Y		Vanderwolf et al. (2013), Pusz et al. (2015, 2017), Ogorek et al. (2017), Zhang (2019)
Pe. sumatraense		Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Mitova et al. (2017), Ogorek et al. (2017, 2018)
Pe. twecickii		Y		Ogorek (2018a, b)
Pe. tardochryssogenum		Y		Visagie et al. (2019)
Pe. thomii		Y		Zhang et al. (2014), Pusz et al. (2017)
Pe. tulairens				Taylor et al. (2013), Vanderwolf et al. (2013, 2019), Ogorek et al. (2017), Zhang et al. (2017)
Pe. ubiquetum		Y		Visagie et al. (2019)
Pe. virgatum		Y		Zhang et al. (2014)
Pe. viticola		Y		Vanderwolf et al. (2013), Ogorek et al. (2014b), Pusz et al. (2014), Pusz et al. (2018a)
Pe. vulpinum		Y		Vanderwolf et al. (2013), Zhang et al. (2014), Zhang (2019)
Pe. waksmanii				Vanderwolf et al. (2013), Ogorek et al. (2014b), Pusz et al. (2014), Pusz et al. (2018a)
Pe. westlingii				Visagie et al. (2019)
Penicillium sp.		Y		Vanderwolf et al. (2013, 2015, 2019), Martin-Sanchez et al. (2014), Zhang et al. (2014),
				Man et al. (2015), Popovic et al. (2015), Yoder et al. (2015), Kokurewicz et al. (2016), Jacobs
				et al. (2017), Jiang et al. (2017a, b), Mitova et al. (2017), Zhang et al. (2017), Belyagoubi
				et al. (2018), Novaková et al. (2018), Pusz et al. (2018a), Leplat et al. (2018), Burew et al.
				(2019), Pfendler et al. (2019), Popkova and Mazina (2019)
Genus	Species	China	This study	References
-------------	----------------------------------	-------	------------	---------------------------------
Periconia	Periconia macrospinosa	Y	Y	Vanderwolf et al. (2013), Brad et al. (2018)
Periconia sp.		Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017), Novákůvá et al. (2018)
Peroneutypa	Peroneutypa scoparia	Y	Y	Zhang et al. (2017)
Peroneutypa sp.		Y	Y	
Pestalotia	Pestalotia cocculi	Y	Y	Vanderwolf et al. (2013)
Pestalotiopsis	Pestalotiopsis cocculi	Y		Zhang (2019)
	Pes. guepinii	Y		Zhang et al. (2017)
	Pes. hainanensis	Y		Zhang (2019)
	Pes. maculiformans	Y		Vanderwolf et al. (2013)
	Pes. mangiferae	Y	Y	
	Pes. microspora	Y	Y	Zhang et al. (2017)
	Pes. palmarum	Y		Vanderwolf et al. (2013)
	Pes. uvicola	Y		Zhang (2019)
	Pes. viensis	Y	Y	
	Pestalotiopsis sp.	Y		Vanderwolf et al. (2013)
Petriella	Petriella setifera	Y		Vanderwolf et al. (2013)
Petriella sp.		Y	Y	Vanderwolf et al. (2013)
Peziza	Peziza micropus	Y		Vanderwolf et al. (2013)
	Peziza sp.	Y		Vanderwolf et al. (2013)
Phaeoacremonium	Phaeoacremonium argentinense	Y		Zhang et al. (2017)
	Ph. iraniam	Y		Zhang (2019)
	Ph. minimum	Y		Zhang (2019)
	Ph. novae-zealandiae	Y	Y	
	Ph. occidentale	Y		Zhang (2019)
	Ph. rubiginum	Y		Jiang et al. (2017a, b)
	Ph. viticola	Y		Zhang (2019)
	Phaeoacremonium sp.	Y		Jiang et al. (2017a, b), Vanderwolf et al. (2019)
Phaeococcomyces	Phaeococcomyces nigricans	Y		Connell and Staudigel (2013)
Phaeocystostroma	Phaeocystostroma ambiguum	Y	Y	
	Phaeocystostroma sp.	Y		
Phaeoisaria	Phaeoisaria clematitidis	Y		Zhang (2019)
Phaeosphaeria	Phaeosphaeria annulata	Y		Vanderwolf et al. (2013)
	Phaeosphaeria fassipora	Y		Vanderwolf et al. (2013)
	Phaeosphaeria microsporica	Y		Vanderwolf et al. (2013)
	Phaeosphaeria nodorum	Y		Vanderwolf et al. (2013)
	Phaeosphaeria oryzae	Y		Zhang (2019)
	Phaeosphaeria sp.	Y		Connell and Staudigel (2013), Zhang (2019)
Phaeosphaeriopsis	Phaeosphaeriopsis sp.	Y		Zhang (2019)
Phaeostilbella	Phaeostilbella sp.	Y		Vanderwolf et al. (2013)
Phaeotrichum	Phaeotrichum hystricinum	Y		Vanderwolf et al. (2013, 2015, 2019)
	Phaeotrichum sp.	Y		Vanderwolf et al. (2015)
Phialemoniopsis	Phialemoniopsis sp.	Y	Y	Jiang et al. (2017a, b)
Phialemonium	Phialemonium dimorphosporum	Y	Y	Vanderwolf et al. (2013)
	Phialemonium sp.	Y	Y	Zhang et al. (2017)
Phialocepha	Phialocepha humicola	Y	Y	Vanderwolf et al. (2013)
Phialophora	Phialophora cinerecens	Y		Vanderwolf et al. (2013)
	Phia. fastigiata	Y		Vanderwolf et al. (2013)
	Phia. foetens	Y	Y	Vanderwolf et al. (2013)
	Phia. hyalina	Y		Vanderwolf et al. (2013)
	Phia. olivacea	Y	Y	Pusz et al. (2018a)
	Phia. verrucosa	Y		Vanderwolf et al. (2013, 2019), Leplat et al. (2018)
Phoma	Phoma herbarum	Y	Y	Ogórek et al. (2014c), Zhang et al. (2017)
	Pho. insulana	Y	Y	Zhang et al. (2017)
	Pho. leveillei	Y		Ogórek et al. (2016d)
Table 4 (continued)

Genus	Species	China	This study	References
Pho	radicina			Vanderwolf et al. (2019)
Pho	senecionis	Y	Y	Zhang et al. (2017)
Phoma	sp.	Y	Y	Vanderwolf et al. (2013, 2015), Man et al. (2015), Kokurewicz et al. (2016), Zhang et al. (2017), Leplat et al. (2018)
Phomopsis	Phomopsis vaccinii	Y		Zhang (2019)
Phylacia	Phylacia bomba			Vanderwolf et al. (2013)
Phyllachora	Phylachora sp.	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Phymatotrichopsis	Phymatotrichopsis omnivora			Vanderwolf et al. (2013)
Pidoplichkiowej	Pidoplichkiowej terricola			Vanderwolf et al. (2013)
Pilidiun	Pilidiun concavum	Y		Zhang (2019)
Pirostoma	Pirostoma sp.			Vanderwolf et al. (2013)
Pitioascus	Pitioascus ater	Y	Y	
	Pt. platysporus	Y	Y	
Pitomyces	Pitomyces chartarum			Vanderwolf et al. (2013)
	Pitomyces sp.			Vanderwolf et al. (2013), Leplat et al. (2018)
Plagiosoma	Plagiosoma pulchellum	Y		Zhang (2019)
Plagiosoma	Plagiosoma sp.	Y		Zhang (2019)
Plectosphaerella	Plectosphaerella cucumerina	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b), Zhang et al. (2017)
	Pl. niemeyeri	Y		Zhang (2019)
	Pl. oligotrophica	Y	Y	Jiang et al. (2017a, b)
	Plectosphaerella sp.	Y		Zhang et al. (2017)
Pleospora	Pleospora sp.			Vanderwolf et al. (2013)
Pleotrichocladium	Pleotrichocladium opacum			Vanderwolf et al. (2013)
Pochonia	Pochonia sp.	Y		Vanderwolf et al. (2013), Zhang (2019)
Podospora	Podospora sp.	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014)
Polycephalomyces	Polycephalomyces usaricus	Y	Y	
	Po. ramosus			Vanderwolf et al. (2013)
Polythrinicum	Polythrinicum sp.			Vanderwolf et al. (2013)
Preussia	Preussia aemulans	Y	Y	Zhang et al. (2017)
	Pr. funiculata	Y		Vanderwolf et al. (2015), Zhang (2019)
Preussia	Preussia sp.	Y	Y	Vanderwolf et al. (2013, 2015, 2019)
	Pr. terricola	Y		
Prosthecium	Prosthecium sp.	Y	Y	
Protocrea	Protocrea farinosa	Y		Zhang et al. (2017)
Pseudallescheria	Pseudallescheria boydii	Y	Y	Vanderwolf et al. (2013)
	Ps. fimeti	Y	Y	Zhang et al. (2017)
Pseudallescheria	Pseudallescheria sp.	Y	Y	Vanderwolf et al. (2013)
Pseudoarachniotus	Pseudoarachniotus trochle-			Vanderwolf et al. (2013)
	oxoporus			
Pseudocercosporella	Pseudocercosporella fraxini	Y		Zhang (2019)
	Pseudocercosporella sp.	Y		Vanderwolf et al. (2013), Jiang et al. (2017a, b)
Pseudocoleophoma	Pseudocoleophoma sp.	Y	Y	
Pseudocosmospora	Pseudocosmospora rogersonii	Y	Y	
Pseudogymnoascus	Pseudogymnoascus destructans			
	Pseu. pannorum	Y	Y	Zhang et al. (2014), Vanderwolf et al. (2015, 2019), Kokurewicz et al. (2016), Burow et al. (2019)
	Pseu. roeseus			
	Pseudogymnoascus sp.			
Pseudopestalotiopsis	Pseudopestalotiopsis theae	Y	Y	Vanderwolf et al. (2013, 2015, 2019), Zhang et al. (2014), Out et al. (2016), Jiang et al. (2017a, b), Mitova et al. (2017), Ogórek et al. (2017), Popkova and Mazina (2019)
Pseudopithomyces	Pseudopithomyces chartarum			
Pseudocroupulariopsis	Pseudocroupulariopsis asperi-	Y	Y	
	ispore			
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Pseudo. hibernica		Y Y		Jiang et al. (2017a, b)
Purpureocillium	Purpureocillium lavendula	Y Y		Taylor et al. (2013), Zhang et al. (2017), Nováková et al. (2018), Pusz et al. (2018a)
Pu. lilacinum		Y Y		
Purpureocillium sp.		Y		Jiang et al. (2017a, b)
Pynostysanus	Pynostysanus sp.			Vanderwolf et al. (2013)
Pyrenocheata	Pyrenocheata sp.			Vanderwolf et al. (2013)
Pyrenocheatopsis	Pyrenocheatopsis decipiens			Zhang (2019)
	Pyrenocheatopsis sp.	Y Y		Jiang et al. (2017a, b)
Pyrenopeziza	Pyrenopeziza dilatella			Vanderwolf et al. (2013)
Pyrenophora	Pyrenophora tritici-repentis	Y Y		
Radulum	Radulum sp.			Vanderwolf et al. (2013)
Ramichloridium	Ramichloridium indicum			Vanderwolf et al. (2013)
	Ramichloridium sp.	Y Y		Vanderwolf et al. (2013)
Ramophialophora	Ramophialophora globispora			Zhang et al. (2017)
	R. petraea	Y		Zhang et al. (2017)
	Ramophialophora sp.	Y Y		
Readeriella	Readeriella eucalypti			Belyagoubi et al. (2018)
Rhachomyces	Rhachomyces alliaudii			Vanderwolf et al. (2013)
	Rh. anophthalmi			Vanderwolf et al. (2013)
	Rh. aphaenopsis			Vanderwolf et al. (2013)
	Rh. beronii			Vanderwolf et al. (2013)
	Rh. boliviari			Vanderwolf et al. (2013)
	Rh. bucciarellii			Vanderwolf et al. (2013)
	Rh. canariensis			Vanderwolf et al. (2013)
	Rh. capucinus			Vanderwolf et al. (2013)
	Rh. deyi			Vanderwolf et al. (2013)
	Rh. girardi			Vanderwolf et al. (2013)
	Rh. gratiellae			Vanderwolf et al. (2013)
	Rh. hypogaeus			Vanderwolf et al. (2013)
	Rh. ilerdensis			Vanderwolf et al. (2013)
	Rh. maublancii			Vanderwolf et al. (2013)
	Rh. middelhoekii			Vanderwolf et al. (2013)
	Rh. orotrechorum			Vanderwolf et al. (2013)
	Rh. pucei			Vanderwolf et al. (2013)
	Rh. peyerimhoffii			Vanderwolf et al. (2013)
	Rh. profijerans			Vanderwolf et al. (2013)
	Rh. pyreneanus			Vanderwolf et al. (2013)
	Rh. quetzalcoati			Vanderwolf et al. (2013)
	Rh. reveilletii			Vanderwolf et al. (2013)
	Rh. reymondi			Vanderwolf et al. (2013)
	Rh. richardi			Vanderwolf et al. (2013)
	Rh. spadiceus			Vanderwolf et al. (2013)
	Rh. speluncalis			Vanderwolf et al. (2013)
	Rh. stipitatus			Vanderwolf et al. (2013)
	Rh. urbaini			Vanderwolf et al. (2013)
	Rh. vauxsierei			Vanderwolf et al. (2013)
	Rh. venetianus			Vanderwolf et al. (2013)
	Rh. vignae			Vanderwolf et al. (2013)
	Rhachomyces sp.			Vanderwolf et al. (2013)
Rhinocladiella	Rhinocladiella sp.			Vanderwolf et al. (2013)
Rhytidhysteron	Rhytidhysteron Rufulum	Y Y		Vanderwolf et al. (2013)
Rosellinia	Rosellinia arcauta			Vanderwolf et al. (2013)
Rousoella	Ro. siamensis	Y Y		
	Rousoella sp.	Y Y		
Saccharomyces	Saccharomyces bayanus			Vanderwolf et al. (2013)
	S. carlsbergensis			Vanderwolf et al. (2013)
	S. cerevisiae			Connell and Staudigel (2013), Vanderwolf et al. (2013)
	S. paradoxus			Vanderwolf et al. (2013)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Saccharomyces	Saccharomyces fibuligera	Y	Y	Vanderwolf et al. (2013)
Sagenomella	Sagenomella sp.			
Sarocladium	Sarocladium bacillosporum			Vanderwolf et al. (2013)
	Sa. bactrocephalum			Vanderwolf et al. (2013)
	Sa. glaucum			Vanderwolf et al. (2013)
	Sa. implicatum			Connell and Staudigel (2013), Vanderwolf et al. (2013)
	Sa. kilimense	Y	Y	Vanderwolf et al. (2013)
	Sarocladium sp.	Y	Y	Jiang et al. (2017a, b)
	Sa. strictum	Y	Y	Ogórek et al. (2013, 2014a, b), Vanderwolf et al. (2013), Kokurewicz et al. (2016), Pusz et al. (2018a, dylag et al. (2019)
	Sa. zeae			Mitova et al. (2017)
Scedosporium	Scedosporium sp.	Y	Y	
Schizothecium	Schizothecium inaequale	Y	Y	Jiang et al. (2017a, b)
Sclerotinia	Sclerotinia sclerotiorum			VanderWolf et al. (2013)
	Sclerotinia sp.			VanderWolf et al. (2013)
Scolobasidium	Scolobasidium anellii			VanderWolf et al. (2013)
	Sc. anomalous			VanderWolf et al. (2013)
	Sc. constrictum			VanderWolf et al. (2013)
	Sc. lascauxense			VanderWolf et al. (2013), Martin-Sanchez et al. (2014), Pfendler et al. (2019)
	Sc. terreum			VanderWolf et al. (2013)
Scopulariopsis	Scopulariopsis asperula	Y	Y	VanderWolf et al. (2013)
	Sco. brumptii			VanderWolf et al. (2013)
	Sco. candida			VanderWolf et al. (2013), Dylag et al. (2019)
	Sco. crassa	Y		Zhang et al. 2017
	Sco. flavus	Y	Y	VanderWolf et al. (2013)
	Sco. fusca			VanderWolf et al. (2013)
	Sco. lamosa			VanderWolf et al. (2013)
	Scopulariopsis sp.			VanderWolf et al. (2013)
	Sco. sphacopsis	Y	Y	VanderWolf et al. (2013)
Scutellinia	Scutellinia sp.	Y		Zhang et al. 2017
Scytalidium	Scytalidium cuboideum			VanderWolf et al. (2013)
	Scy. liglicola	Y	Y	VanderWolf et al. (2013)
	Scytalidium sp.			VanderWolf et al. (2015)
Seimatosporium	Seimatosporium sp.	Y	Y	VanderWolf et al. (2013)
Selinia	Selinia sp.			VanderWolf et al. (2013)
Sepedonium	Sepedonium sp.			VanderWolf et al. (2013)
Septonema	Septonema secedens			VanderWolf et al. (2013)
Septoria	Septoria arundinae	Y	Y	VanderWolf et al. (2013), Jiang et al. (2017a, b)
Septoriella	Septoriella oudemansii	Y	Y	VanderWolf et al. (2013)
Setophaeosphaeria	Setophaeosphaeria hemeroscul- latis	Y	Y	
	Se. microspora	Y	Y	Zhang (2019)
	Setophaeosphaeria sp.	Y	Y	Zhang (2019)
Setophoma	Setophoma terrestris	Y	Y	Jiang et al. (2017a, b)
	Set. vernoniae	Y		Zhang (2019)
	Setophoma sp.	Y		Zhang (2019)
Shanorella	Shanorella sp.			VanderWolf et al. (2013)
Simplicillium	Simplicillium album	Y	Y	
	Si. aogashimaense	Y	Y	Zhang et al. (2017)
	Si. calcicola	Y		Zhang et al. (2019)
	Si. cylindrosporum	Y		Zhang (2019)
	Si. humicola	Y	Y	VanderWolf et al. (2013), Nováková et al. (2018)
	Si. lamellicola	Y	Y	Zhang et al. (2014)
	Si. lamosinivum			

a Presence of genus in China

b Presence of species in this study
Genus	Species	Chinaa	This studyb	References
Si. minatense	Y	Y	Mitova et al. (2017)	
Si. subtropicum	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b), Leplat et al. (2018)	
Simplicillium sp.	Y		Vanderwolf et al. (2013)	
Siraxstachys	*Siraxstachys longisporns*	Y	Zhang et al. (2017)	
Sir. phaseospora	Y	Y	Vanderwolf et al. (2013), Ogórek et al. (2014a, b), Jiang et al. (2017a, b), Pusz et al. (2017)	
Sordaria	*Sordaria fmicola*	Y	Vanderwolf et al. (2013)	
	Sordaria sp.	Y	Vanderwolf et al. (2013)	
Spegazzinia	*Spegazzinia sp.*	Y	Vanderwolf et al. (2013)	
Sphaeroides	*Sphaeroides fmicola*	Y	Vanderwolf et al. (2013)	
Sphaerostilbella	*Sphaerostilbella penicillioides*	Y	Vanderwolf et al. (2013)	
Sporidesmium	*Sporidesmium atrum*	Y	Vanderwolf et al. (2013)	
Sporocybe	*Sporocybe sp.*	Y	Vanderwolf et al. (2013)	
Sporormia	*Sporormia subicinensis*	Y	Nováková et al. (2018)	
	Sp. minima	Y	Vanderwolf et al. (2013)	
	Sp. minimoides	Y	Vanderwolf et al. (2013)	
	Sporormiella sp.	Y	Vanderwolf et al. (2013)	
Sporothrix	*Sporothrix catenata*	Y	Vanderwolf et al. (2013)	
	Spo. inflata	Y	Burow et al. (2019)	
	Spo. schenckii	Y	Vanderwolf et al. (2013)	
	Sporothrix sp.	Y	Vanderwolf et al. (2013), Leplat et al. (2018), Burow et al. (2019)	
Stachybotrys	*Stachybotrys chartarum*	Y	Vanderwolf et al. (2013), Zhang et al. (2017), Nováková et al. (2018)	
	St. chlorohalonatus	Y	Vanderwolf et al. (2013)	
	St. cylindrosporus	Y	Vanderwolf et al. (2013), Pusz et al. (2017)	
	St. echinatus	Y	Vanderwolf et al. (2013)	
	St. parvisporus	Y	Vanderwolf et al. (2013), Leplat et al. (2018)	
	Stachybotrys sp.	Y	Vanderwolf et al. (2013)	
Stachylidium	*Stachylidium sp.*	Y	Vanderwolf et al. (2013)	
Stagonospora	*Stagonospora sp.*	Y	Jiang et al. (2017a, b), Leplat et al. (2018)	
Stagonosporopsis	*Stagonosporopsis cucurbitacearum*	Y	Jiang et al. (2017a, b)	
Staphylotrichum	*Staphylotrichum boninense*	Y	Zhang et al. (2017)	
	Sta. coccosporum	Y	Vanderwolf et al. (2013)	
	Staphylotrichum sp.	Y	Zhang et al. (2017)	
Stemphylium	*Stemphylium botryosum*	Y	Vanderwolf et al. (2013)	
	Ste. vescarium	Y	Vanderwolf et al. (2013)	
	Stemphylium sp.	Y	Vanderwolf et al. (2013)	
Stephanonectria	*Stephanonectria keithii*	Y	Jiang et al. (2017a, b), Zhang et al. (2017)	
Stigmatomyces	*Stigmatomyces ooecothae*	Y	Vanderwolf et al. (2013)	
Stilbellia	*Stilbellia sp.*	Y	Vanderwolf et al. (2013), Man et al. (2015)	
Spiriathotrypsis	*Spiriathotrypsis eucylindrosporus*	Y	Vanderwolf et al. (2013), Leplat et al. (2018)	
Styloanus	*Styloanus amyli*	Y	Vanderwolf et al. (2013)	
	Styloanus sp.	Y	Vanderwolf et al. (2013)	
	Sy. typhoides	Y	Vanderwolf et al. (2013)	
Sydowia	*Sydowia polyspora*	Y	Martin-Sanchez et al. (2014), Ogórek et al. (2017), Pusz et al. (2017)	
Symplectomyces	*Symplectomyces sp.*	Y	Vanderwolf et al. (2013)	
	Sy. vulgaris	Y	Vanderwolf et al. (2013)	
Synnematium	*Synnematium sp.*	Y	Vanderwolf et al. (2013)	
Talaromycetes	*Talaromycetes aculeatus*	Y	Vanderwolf et al. (2015), Zhang (2019)	
	T. brinnea	Y	Paula et al. (2019)	
	T. cellulolyticus	Y	Zhang (2019)	
	T. diversus	Y	Vanderwolf et al. (2013)	
	T. duclauxii	Y	Vanderwolf et al. (2013)	
	T. flavus	Y	Vanderwolf et al. (2015), Pusz et al. (2014), Ogórek et al. (2017), Pusz et al. (2018a), Popkova and Mazina (2019)	
	T. funiculosus	Y	Vanderwolf et al. (2013)	
	T. islandicus	Y	Taylor et al. (2013)	
	T. kendeckii	Y	Nováková et al. (2018)	
Genus	Species	China^a	This study^b	References
-------------	-----------------------------	-------------------	------------------------	---
T. loliensis	Vanderwolf et al. (2013)			
T. luteus	Vanderwolf et al. (2013), Pusz et al. (2014), Pusz et al. (2018a)			
T. minioluteus	Vanderwolf et al. (2013)			
T. pinophilus	Taylor et al. (2013), Vanderwolf et al. (2013), Zhang et al. (2017), Nováková et al. (2018)	Y		
T. purpureogenus	Popková and Mazina (2019)	Y		
T. radicus	Jiang et al. (2017a, b)			
T. rugulosus	Vanderwolf et al. (2013), Pusz et al. (2018a)	Y		
T. sublevisporus	Vanderwolf et al. (2013)	Y		
T. thermophilus	Vanderwolf et al. (2013)			
T. variabilis	Taylor et al. (2013), Vanderwolf et al. (2013)			
T. varians	Vanderwolf et al. (2013)			
T. verruculosus	Vanderwolf et al. (2013)			
T. wortmannii	Vanderwolf et al. (2013)			
Talaromyces sp.	Vanderwolf et al. (2013), Popović et al. (2015), Zhang et al. (2017), Nováková et al. (2018)	Y		
Tapesia	Vanderwolf et al. (2013)			
Tapesia fusca	Vanderwolf et al. (2013)			
Tarzetta	Vanderwolf et al. (2013)			
Teichospora	Vanderwolf et al. (2013)	Y		
Tetracladium	Vanderwolf et al. (2013)			Connell and Staudigel (2013), Zhang et al. (2014), Out et al. (2016)
Tetracoecosporium	Vanderwolf et al. (2013)			
Thelebolus	Vanderwolf et al. (2013, 2015)			
Th. ellipsoideus	Out et al. (2016)	Y		
Th. globosus	Vanderwolf et al. (2013)			
Th. microsporus	Brad et al. (2018)			
Th. sp.	Vanderwolf et al. (2013), Out et al. (2016), Brad et al. (2018)	Y		
Thielopsis	Vanderwolf et al. (2013)			
Thermomyces	Vanderwolf et al. (2013)			
Thermothelomyces	Vanderwolf et al. (2013)			
Thiellavia	Vanderwolf et al. (2013)			
Th. hyalocarpa	Vanderwolf et al. (2013)	Y		
Th. terricola	Vanderwolf et al. (2013)			
Th. sp.	Vanderwolf et al. (2013), Zhang et al. (2017), Leplat et al. (2018)	Y		
Thysanopora	Vanderwolf et al. (2013, 2019)			
Thysanorea	Vanderwolf et al. (2013)			
Tilachlidium	Vanderwolf et al. (2013)			
Togninia	Vanderwolf et al. (2013)			
Tolypocladium	Vanderwolf et al. (2013)			
Tolyposporum	Vanderwolf et al. (2013)			
Tol. inflatum	Vanderwolf et al. (2013, 2015)			
Tolypocladium sp.	Vanderwolf et al. (2013, 2019), Man et al. (2015), Zhang et al. (2017)	Y		
Torrubiella	Vanderwolf et al. (2013)			
Tor. minusatissa	Vanderwolf et al. (2013)			
Torrubiella sp.	Vanderwolf et al. (2013)			
Torula	Vanderwolf et al. (2013), Zhang et al. (2017), Pusz et al. (2018a), Zhang (2019)	Y		
Torula sp.	Vanderwolf et al. (2013)			
Torulasporea	Mitova et al. (2017)			
Torulomyces	Vanderwolf et al. (2013)			
Toxicocelosporium	Connell and Staudigel (2013), Vanderwolf et al. (2013)			
Trematia	Vanderwolf et al. (2013)			
Tricellula	Vanderwolf et al. (2019)			
Trichobotrys	Vanderwolf et al. (2013)			
Genus	Species	China^a	This study^b	References
---------------------	------------------------	-------------------	-------------------------	---
Trichobotrys	sp.	Y		Zhang (2019)
Trichocladium	asperum	Y		Zhang et al. (2017)
Trichocladium	sp.	Y		Vanderwolf et al. (2013)
Trichoderma	asperelloides			Nováková et al. (2018)
Trichoderma	sp.	Y		
Trichoderma	asperellum			Vanderwolf et al. (2013), Zhang et al. (2017), Nováková et al. (2018)
Trichoderma	aureoviride	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
Trichoderma	brevicompactum	Y		Zhang (2019)
Trichoderma	citrinoviride	Y		Zhang et al. (2017), Ogórek (2018a, b)
Trichoderma	deliquecens			Vanderwolf et al. (2013)
Trichoderma	gamsii	Y		
Trichoderma	hamatum	Y		Vanderwolf et al. (2013), Zhang et al. (2017), Popkova and Mazina (2019)
Trichoderma	harzianum	Y		Ozórek et al. (2013, 2016c), Vanderwolf et al. (2013), Kokurewicz et al. (2016), Jiang et al. (2017a, b), Mitová et al. (2017), Pusz et al. (2017), Nováková et al. (2018), Popkova and Mazina (2019)
Trichoderma	koningii			Vanderwolf et al. (2013), Nováková et al. (2018)
Trichoderma	koningiopsis	Y		Pusz et al. (2017), Zhang et al. (2017)
Trichoderma	lixii	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
Trichoderma	longibrachiatum	Y		Vanderwolf et al. (2015), Ogórek et al. (2017, 2018), Zhang et al. (2017)
Trichoderma	paraerseii	Y		
Trichoderma	paraviridescens	Y		Zhang et al. (2014), Zhang (2019)
Trichoderma	piliferum			Vanderwolf et al. (2013)
Trichoderma	polysporum	Y		Vanderwolf et al. (2015), Popkova and Mazina (2019)
Trichoderma	reesei	Y		Man et al. (2015)
Trichoderma	rossicum	Y		Zhang et al. (2017)
Trichoderma	samuelii	Y		
Trichoderma	saturnisporm	Y		
Trichoderma	spirale	Y		
Trichoderma	stramineum	Y		
Trichoderma	strictipile	Y		
Trichoderma	tomentosum	Y		Jiang et al. (2017a, b)
Trichoderma	velutinum	Y		Vanderwolf et al. (2013), Popović et al. (2015), Nováková et al. (2018)
Trichoderma	viride	Y		Taylor et al. (2013), Vanderwolf et al. (2013), Pusz et al. (2017, 2018a), Burow et al. (2019), Popkova and Mazina (2019)
Trichoderma	viridescens	Y		
Trichoderma	sp.	Y		Vanderwolf et al. (2013, 2015, 2019), Martin-Sanchez et al. (2014), Yoder et al. (2015), Minova et al. (2017), Zhang et al. (2017), Nováková et al. (2018), Leplat et al. (2018)
Trichophyton	ajelloi			Vanderwolf et al. (2013)
Trichophyton	mentagrophytes			Vanderwolf et al. (2013)
Trichophyton	rubrum	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
Trichophyton	schoenleinii			Vanderwolf et al. (2013)
Trichophyton	terrestrae	Y		Vanderwolf et al. (2013), Zhang et al. (2014)
Trichophyton	sp.	Y		Vanderwolf et al. (2013, 2019), Martin-Sanchez et al. (2014)
Trichosporiella	cerebriformis			Vanderwolf et al. (2013)
Trichosporiella	multisporum			Vanderwolf et al. (2013)
Trichosporiella	sp.			Vanderwolf et al. (2013, 2015, 2019)
Trichothecium	roseum			Vanderwolf et al. (2013), Pusz et al. (2018a, b)
Trichothecium	crotocinigenum	Y		
Trichures	terrophilus	Y		Vanderwolf et al. (2013)
Trichures	sp.			Vanderwolf et al. (2013)
Tricladium	brunneum			Vanderwolf et al. (2013)
Tripospermum	sp.			Vanderwolf et al. (2013)
Tritirachium	cinnamomeum			Vanderwolf et al. (2013)
Tritirachium	dependens			Vanderwolf et al. (2013)
Tritirachium	isariae			Vanderwolf et al. (2013)
Tritirachium	oryzae			Vanderwolf et al. (2013)
Tritirachium	sp.			Vanderwolf et al. (2013)
Genus	Species	China^a	This study^b	References
------------------	--	-------------------	------------------------	--
Troglomyces	Troglomyces bilabiatus			Enghoff and Santamaria (2015)
	Tro. manfredi			Vanderwolf et al. (2013)
	Tro. pusillus			Enghoff and Santamaria (2015)
	Tro. triandrus			Enghoff and Santamaria (2015)
Truncatella	Truncatella angustata			Vanderwolf et al. (2013), Burow et al. (2019)
	Truncatella sp.			Burow et al. (2019)
Tubercularia	Tubercularia sp.			Vanderwolf et al. (2013)
Ulocladium	Ulocladium sp.			Vanderwolf et al. (2013)
Uncinocarpus	Uncinocarpus ancimatus			Vanderwolf et al. (2013)
Varicosporium	Varicosporium giganteum			Vanderwolf et al. (2013)
	Varicosporium sp.			Vanderwolf et al. (2013)
Venturia	Venturia sp.			Vanderwolf et al. (2013)
Veronaea	Veronaea compacta	Y	Y	Vanderwolf et al. (2013), Zhang (2019)
	Veronaea sp.	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b)
Verticillium	Verticillium albo-atrum	Y	Y	Vanderwolf et al. (2013), Zhang (2019)
	V. dahliae			Connell and Staudigel (2013), Vanderwolf et al. (2013)
	V. insectorum	Y		Vanderwolf et al. (2013), Zhang (2019)
	V. nanum			Vanderwolf et al. (2013)
	V. terrestre			Vanderwolf et al. (2013)
	V. tricornus	Y	Y	Jiang et al. (2017a, b)
	Verticillium sp.	Y	Y	Vanderwolf et al. (2013, 2019), Yoder et al. (2015), Zhang et al. (2017), Leplat et al. (2018)
Vibrissea	Vibrissea truncorum			Vanderwolf et al. (2013)
Virgaria	Virgaria nigra	Y		Zhang et al. (2017)
Volatella	Volatella aeria	Y	Y	Zhang et al. (2017)
	Vo. ciliata	Y	Y	Vanderwolf et al. (2013), Jiang et al. (2017a, b)
	Vo. citrinella	Y	Y	Vanderwolf et al. (2013)
	Vo. roseola			Vanderwolf et al. (2013)
	Volatella sp.			Vanderwolf et al. (2013)
Volatellonectria	Volatellonectria consors	Y	Y	Vanderwolf et al. (2013)
Wardomyces	Wardomyces anomalus			Vanderwolf et al. (2013)
	W. giganteus			Vanderwolf et al. (2019)
	W. humicola			Vanderwolf et al. (2013, 2015)
	W. inflatus	Y		Vanderwolf et al. (2013, 2015, 2019), Zhang (2019)
	W. sp.			Vanderwolf et al. (2013, 2015, 2019), Leplat et al. (2018)
Wardomycesopsis	Wardomycesopsis dolichii	Y	Y	Vanderwolf et al. (2013)
	Wa. ellipsospondiophora	Y	Y	Vanderwolf et al. (2013)
	Wa. fusca	Y	Y	Vanderwolf et al. (2013)
	Wa. humicola	Y	Y	Vanderwolf et al. (2013)
	Wa. longicatenata	Y		Zhang et al. (2017)
Whalleya	Whalleya microplaca	Y	Y	Vanderwolf et al. (2013)
Wickerhamomyces	Wickerhamomyces anomalus			Vanderwolf et al. (2013)
	Wi. subpelliculosus			Vanderwolf et al. (2013)
Xenosporium	Xenosporium anomalus			Vanderwolf et al. (2013)
Xepicula	Xepicula sp.	Y	Y	Vanderwolf et al. (2013)
Xylaria	Xylaria arbuscula	Y		Zhang et al. (2017)
	X. anisopleura			Vanderwolf et al. (2013)
	X. coriniformis			Vanderwolf et al. (2013)
	X. hypoxylon	Y		Vanderwolf et al. (2013), Zhang (2019)
	X. kegeliana			Vanderwolf et al. (2013)
	X. longipes			Vanderwolf et al. (2013)
	X. palmicola	Y	Y	Vanderwolf et al. (2013)
	X. polymorpha			Vanderwolf et al. (2013)
	X. schweinitzii	Y		Zhang et al. (2017)
	X. venosula	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Yarrowia	Yarrowia bubula			Burow et al. (2019)
Yunnania	Yunnania carbonaria	Y	Y	Vanderwolf et al. (2013)
	Yunnania penicilliata	Y	Y	Yoder et al. (2015), Zhang et al. (2017), Leplat et al. (2018)
Genus	Species	Chinaa	This studyb	References
--------------------	-------------------------------	--------------------	-------------	--
Zakatosha	Zakatosha sp.			Vanderwolf et al. (2013)
Zalerion	Zalerion sp.			Vanderwolf et al. (2019)
Zasmidium	Zasmidium cellare			Vanderwolf et al. (2013)
	Z. xyzygii	Y		Zhang (2019)
Zopfella	Zopfella pleurospora			Vanderwolf et al. (2013, 2015)
	Z. tubulata	Y Y		
Zygosaccharomyces	Zygosaccharomyces microel-			Vanderwolf et al. (2013)
	lipsoides			
Basidiomycota				
Abortiporus	Abortiporus biennis			Vanderwolf et al. (2013)
	Abortiporus sp.			Busquets et al. (2014)
Agaricus	Agaricus sp.			Vanderwolf et al. (2013)
Agrocybe	Agrocybe sp.			Vanderwolf et al. (2013)
Alysidium	Alysidium sp.			Vanderwolf et al. (2013)
Amyloporia	Amyloporia sinuosa			Vanderwolf et al. (2013)
Antrodia	Antrodia xantha			Vanderwolf et al. (2013)
Apiostrichium	Apiostrichium dehoogii	Y Y		Burow et al. (2019)
	Api. dulcitum	Y Y		Vanderwolf et al. (2013, 2019), Burow et al. (2019)
	Api. lithbachii	Y Y		Vanderwolf et al. (2013), Zhang et al. (2017)
	Api. lignicola			Vanderwolf et al. (2013)
	Apiotrichium sp.	Y Y		Vanderwolf et al. (2013, 2015)
Armillaria	Armillaria mellea			Vanderwolf et al. (2013)
Asterotremella	Asterotremella sp.			Vanderwolf et al. (2013, 2015, 2019)
Atheniella	Atheniella flavoalba			Vanderwolf et al. (2013)
Auricularia	Auricularia auricularis-judae			Vanderwolf et al. (2013)
	Aur. fuscosuccinea			Vanderwolf et al. (2013)
	Aur. polytricha			Vanderwolf et al. (2013)
Baeospora	Baeospora myosura			Vanderwolf et al. (2013)
	Ba. myriadophylla			Vanderwolf et al. (2013)
	Baeospora sp.			Vanderwolf et al. (2013, 2015)
Bjerkandera	Bjerkandera adusta	Y Y		Vanderwolf et al. (2013), Man et al. (2015), Ogorek (2018a, b)
Boletus	Boletus sp.			Vanderwolf et al. (2013)
Bovista	Bovista sp.			Vanderwolf et al. (2013)
Bridgeoporus	Bridgeoporus nobilessimus			Vanderwolf et al. (2013)
Buglossoporus	Buglossoporus pulvinus			Vanderwolf et al. (2013)
Bulleribasidium	Bulleribasidium variabile			Vanderwolf et al. (2013)
Bulleromyces	Bulleromyces albus			Martin-Sanchez et al. (2014)
Byssomerulius	Byssomerulius corium			Vanderwolf et al. (2013)
Calvatia	Calvatia sp.			Vanderwolf et al. (2013)
Ceratobasidium	Ceratobasidium sp.	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
Cerioporus	Cerioporus mollis	Y		Zhang et al. (2017)
	Ceri. varius			Vanderwolf et al. (2013)
Ceriporia	Ceriporia lacerata	Y		Man et al. (2015)
Ceriporiopsis	Ceriporiopsis subvermispor			Connell and Staudeg (2013)
Cerrena	Cerrena unicolor			Vanderwolf et al. (2013)
Clavaria	Clavaria sp.			Vanderwolf et al. (2013)
Climacocystis	Climacocystis borealis			Vanderwolf et al. (2013)
Clitocybe	Clitocybe sp.			Vanderwolf et al. (2013)
Clitopilus	Clitopilus kamaka	Y		Zhang et al. (2017)
	Cli. prunulus	Y		Vanderwolf et al. (2013)
	Cli. scyphoides	Y		Vanderwolf et al. (2013)
	Cli. sp.	Y Y		Vanderwolf et al. (2013)
Collybia	Collybia sp.			Vanderwolf et al. (2013)
Coniophora	Coniophora cerebella			Vanderwolf et al. (2013)
Coni. puteana	Coniophora sp.			Vanderwolf et al. (2013)
Coniophora	Coniophora subtilis			Vanderwolf et al. (2013)
Coprinarius	Coprinarius disseminatus			Vanderwolf et al. (2013)
Coprinellus	Coprinellus subtilis			Vanderwolf et al. (2013)
				Vanderwolf et al. (2013), Ogorek (2018b)
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Coprinellus	domesticus	Vanderwolf et al. (2013)		
	ephemerus	Vanderwolf et al. (2013)		
	micaceus	Y Y	Vanderwolf et al. (2013)	
	radians	Y Y	Vanderwolf et al. (2013), Zhang et al. (2017)	
	truncorum	Vanderwolf et al. (2013)		
	xanthothrix	Y Y	Vanderwolf et al. (2013), Man et al. (2015)	
Coprinopsis	atramentaria	Vanderwolf et al. (2013), (Zhang 2019)		
	cinerea	Vanderwolf et al. (2013)		
	radiata	Vanderwolf et al. (2013)		
Coprinus	sterculinus	Vanderwolf et al. (2013)		
	sp.	Vanderwolf et al. (2013)		
Coriolopsis	gallica	Vanderwolf et al. (2013)		
Cortinarius	sp.	Vanderwolf et al. (2013)		
Cotylidia	aurantia	Vanderwolf et al. (2013)		
Craterellus	minimus	Vanderwolf et al. (2013)		
Crepidotus	applanatus	Vanderwolf et al. (2013)		
	mollis	Vanderwolf et al. (2013)		
Crucibulum	crucibuliforme	Vanderwolf et al. (2013)		
Cryptococcus	festucosus	Y Y	Vanderwolf et al. (2013)	
	macerans	Vanderwolf et al. (2013)		
	neoformans	Vanderwolf et al. (2013)		
	tephrensis	Y	Zhang (2019)	
Cryptococcus sp.		Burow et al. (2019)		
Cutaneotrichosporon	curvatum	Ogórek et al. (2017, 2018), Ogórek (2018a, b)		
	cutaneum	Vanderwolf et al. (2013)		
	dermatis	Y Y	Vanderwolf et al. (2013)	
	guehose	Y Y	Vanderwolf et al. (2013)	
	jirovecii	Mitova et al. (2017)		
	moniliforme	Y Y	Burow et al. (2019)	
	mucoides	Vanderwolf et al. (2013)		
	smithiae	Y Y	Vanderwolf et al. (2013)	
Cylindrobasidium	evolvens	Vanderwolf et al. (2013)		
Cystobasidium	minuta	Vanderwolf et al. (2013)		
	sloeoffiae	Y	Zhang (2019)	
Cystoflibasidium	macerus	Connell and Staudigel (2013)		
	sp.	Vanderwolf et al. (2013, 2015)		
Daudalea	quercina	Vanderwolf et al. (2013)		
Deconica	hartii	Vanderwolf et al. (2013)		
Delicatula	integrella	Vanderwolf et al. (2013)		
	microscopica	Vanderwolf et al. (2013)		
Donkioporia	expansa	Vanderwolf et al. (2013)		
Duportella	lassa	Vanderwolf et al. (2013)		
Effuseotrichosporon	vanderwaltii	Vanderwolf et al. (2013)		
Elmerina	carvae	Vanderwolf et al. (2013)		
Entomocorticium	sp.	Vanderwolf et al. (2013)		
Exidia	glandulosa	Connell and Staudigel (2013)		
Exobasidium	sp.	Connell and Staudigel (2013)		
Favolus	tenaculus	Vanderwolf et al. (2013)		
Fayodia	grucilpes	Vanderwolf et al. (2013)		
	sp.	Vanderwolf et al. (2013)		
Fibroporia	vaillantii	Vanderwolf et al. (2013)		
Filobasidium	floriforme	Connell and Staudigel (2013)		
Filov.	magnun	Vanderwolf et al. (2013)		
	wieringae	Connell and Staudigel (2013)		
Fistulina	hepatica	Vanderwolf et al. (2013)		
Flaviporus	brownii	Vanderwolf et al. (2013)		
Flavodon	flavus	Y Y	Vanderwolf et al. (2013)	
Genus	Species	China\(^a\)	This study\(^b\)	References
---------	-----------------------------	-------------	------------------	-------------------------------------
Fomes	*Fomes fomentarius*		Vanderwolf et al. (2013), Ogórek et al. (2017, 2018)	
	Fomes sp.		Vanderwolf et al. (2013)	
Fomitopsis	*Fomitopsis pinicola*		Vanderwolf et al. (2013)	
Galerina	*Galerina camerina*		Vanderwolf et al. (2013)	
	Ga. pratitcola		Vanderwolf et al. (2013)	
	Ga. pumila		Vanderwolf et al. (2013)	
	Galerina sp.		Vanderwolf et al. (2013)	
Ganoderma	*Ganoderma applanatum*	Y	Y	Connell and Staudigel (2013)
	Gan. carnosum		Vanderwolf et al. (2013)	
	Gan. gibbosum	Y	Vanderwolf et al. (2017)	
	Gan. lipsiense		Vanderwolf et al. (2013)	
	Gan. lucidum		Vanderwolf et al. (2013)	
	Gan. resinaceum		Vanderwolf et al. (2013)	
	Ganoderma sp.		Vanderwolf et al. (2013)	
Geastrum	*Geastrum minimum*		Vanderwolf et al. (2013)	
	Ge. saccatum		Vanderwolf et al. (2013)	
Glaciozyma	*Glaciozyma antarctica*		Brad et al. (2018)	
	Gla. watsonii		Connell and Staudigel (2013)	
Gloeohypochnicium	*Gloeohypochnicium analogum*		Vanderwolf et al. (2013)	
Gloeophyllum	*Gloeophyllum abietinum*		Vanderwolf et al. (2013)	
	Glo. odoratum		Vanderwolf et al. (2013)	
	Glo. sepiarium		Vanderwolf et al. (2013)	
	Glo. trabeum		Vanderwolf et al. (2013)	
	Gloeophyllum sp.		Vanderwolf et al. (2013)	
Golubevia	*Golubevia pallescens*	Y	Y	Vanderwolf et al. (2013)
Gymnopus	*Gymnopus johnstonii*		Vanderwolf et al. (2013)	
Hennaelea	*Hennaelea luteola*		Vanderwolf et al. (2013)	
	Ha. oryzae	Y	Y	Vanderwolf et al. (2013)
Hemimycena	*Hemimycena cucullata*		Vanderwolf et al. (2013)	
	He. lactea		Vanderwolf et al. (2013)	
Heterobasidion	*Heterobasidion annosum*		Vanderwolf et al. (2013), Nováková et al. (2018)	
Hexagonia	*Hexagonia hydroides*		Vanderwolf et al. (2013)	
Hohenbuehelia	*Hohenbuehelia petalooides*		Vanderwolf et al. (2013)	
Holtermanniella	*Holtermanniella watticus*		Zhang et al. (2014)	
Hydnopolyporus	*Hydnopolyporus palmae*		Vanderwolf et al. (2013)	
Hydnum	*Hydnum spinuliferum*		Vanderwolf et al. (2013)	
Hygrophorus	*Hygrophorus* sp.		Vanderwolf et al. (2013)	
Hymenochaete	*Hymenochaete corrugata*		Vanderwolf et al. (2013)	
	Hymenochaete sp.		Vanderwolf et al. (2013)	
Hymenogaster	*Hymenogaster vulgaris*		Vanderwolf et al. (2013)	
	Hymenogaster sp.		Vanderwolf et al. (2013)	
Hyphodermella	*Hyphodermella corrugata*	Y	Zhang et al. (2017)	
	Hyphodermella sp.	Y	Zhang et al. (2017)	
Hyphodontia	*Hyphodontia arguta*		Vanderwolf et al. (2013)	
	Hyp. hastata		Vanderwolf et al. (2013)	
Hypholoma	*Hypholoma dispersum*		Vanderwolf et al. (2013)	
	Hyph. fasciculare		Vanderwolf et al. (2013)	
	Hyph. radicosum		Vanderwolf et al. (2013)	
	Hypholoma sp.		Vanderwolf et al. (2013)	
Hypochnicium	*Hypochnicium punctulatum*		Vanderwolf et al. (2013)	
Inocybe	*Inocybe* sp.		Vanderwolf et al. (2013)	
Irpex	*Irpex lacteus*	Y	Y	Connell and Staudigel (2013)
Junghuhnia	*Junghuhnia nitida*		Vanderwolf et al. (2013)	
Laccaria	*Laccaria laccata*		Vanderwolf et al. (2013)	
Lentinus	*Lentinus* sp.		Vanderwolf et al. (2013)	
Lenzites	*Lenzites betulae*		Vanderwolf et al. (2013)	
Lepiota	*Lepiota* sp.		Vanderwolf et al. (2013)	
Table 4 (continued)

Genus	Species	Chinaa	This studyb	References
Leucogyrophana	Leucogyrophana mollusca			Vanderwolf et al. (2013)
	Leu. pinastri			Vanderwolf et al. (2013)
Leucosporidium	Leucosporidium fellii			Vanderwolf et al. (2013)
Lycoperdon	Lycoperdon perlatum	Y	Y	Vanderwolf et al. (2013)
	Lycoperdon sp.	Y	Y	Vanderwolf et al. (2013)
Malassezia	Malassezia furfur			Vanderwolf et al. (2013)
	Mal. globosa			Connell and Staudigel (2013)
	Mal. restricta			Connell and Staudigel (2013)
Marasmiellus	Marasmiellus ramealis			Vanderwolf et al. (2013)
Marasmius	Marasmius atrorubens			Vanderwolf et al. (2013)
	Mar. epiphyllus			Vanderwolf et al. (2013)
Meira	Meira nashicola	Y	Y	Vanderwolf et al. (2013)
Merulius	Merulius melanoceras			Vanderwolf et al. (2013)
	Merulius sp.			Vanderwolf et al. (2013)
Moeziomyces	Moeziomyces antarcticus			Vanderwolf et al. (2013)
Mrakia	Mrakia gelida			Brad et al. (2018)
	Mra. frigida			Brad et al. (2018)
Mycena	Mycena acicula			Vanderwolf et al. (2013)
	Myc. amicta			Vanderwolf et al. (2013)
	Myc. capillaris			Vanderwolf et al. (2013)
	Myc. galericulata			Vanderwolf et al. (2013)
	Myc. metata			Vanderwolf et al. (2013)
	Myc. mucor			Vanderwolf et al. (2013)
	Myc. polyadelphana			Vanderwolf et al. (2013)
	Myc. polygramma			Vanderwolf et al. (2013)
	Myc. strebilicola			Vanderwolf et al. (2013)
	Myc. stylobates			Vanderwolf et al. (2013)
	Myc. sapina			Vanderwolf et al. (2013)
	Myc. virilis			Vanderwolf et al. (2013)
	Mycena sp.			Connell and Staudigel (2013), Vanderwolf et al. (2013)
Naganishia	Naganishia albida			Vanderwolf et al. (2013)
	Na. diffuens			Vanderwolf et al. (2013)
Naucoria	Naucoria sp.			Vanderwolf et al. (2013)
Neoantrodia	Neoantrodia serialis			Vanderwolf et al. (2013)
Neolentinus	Neolentinus sulphurens			Vanderwolf et al. (2013)
Omphalina	Omphalina sp.			Vanderwolf et al. (2013)
Omnia	Omnia tomentosa			Vanderwolf et al. (2013)
Osteina	Osteina obducta			Vanderwolf et al. (2013)
Ozonium	Ozonium aureum			Vanderwolf et al. (2013)
	Oc. auricomum			Vanderwolf et al. (2013)
	Oc. stuposum			Vanderwolf et al. (2013)
Panellus	Panellus stipiticus			Vanderwolf et al. (2013)
Panus	Panus neostriatus			Vanderwolf et al. (2013)
	Panus sp.			Vanderwolf et al. (2013)
Piptidostrema	Piptidostrema flavescens	Y	Y	Vanderwolf et al. (2013)
	Pup. laurentii	Y	Y	Vanderwolf et al. (2013)
Parasola	Parasola plicatilis			Vanderwolf et al. (2013)
Paxillus	Paxillus sp.			Vanderwolf et al. (2013)
Peniophora	Peniophora cinerea	Y		Zhang et al. (2017)
	Pen. incarnata	Y		Zhang (2019)
	Pen. limitata	Y		Zhang et al. (2017)
	Pen. fuscus			Connell and Staudigel (2013)
	Pen. quercina			Vanderwolf et al. (2013)
	Peniophora sp.	Y	Y	Zhang et al. (2017)
Perenniporia	Perenniporia medulla-panis	Y	Y	Vanderwolf et al. (2013)
Phaeocollybia	Phaeocollybia sp.	Y	Y	Vanderwolf et al. (2013)
Phaeomarasmius	Phaeomarasmius sp.			Vanderwolf et al. (2013)
Genus	Species	China^a	This study^b	References
----------------	--------------------------------	-------------------	------------------------	---
Phanerochaete	Phanerochaete sordida	Y		Zhang et al. (2017)
	Phanerochaete sp.			Connell and Staudigel (2013), Vanderwolf et al. (2013)
Phanerodontia	Phanerodontia chrysosporium			Vanderwolf et al. (2013)
Phellinus	Phellinus ferruginosus			Vanderwolf et al. (2013)
	Phe. gigas			Vanderwolf et al. (2013)
	Phe. punctatus			Vanderwolf et al. (2013)
Phlebia	Phlebia livida	Y	Y	Vanderwolf et al. (2013)
	Phl. rufa			Vanderwolf et al. (2013)
	Phl. tremella			Vanderwolf et al. (2013)
Phlebiopsis	Phlebiopsis gigantea		Y	Ogórek (2018b)
	Phlebiopsis sp.		Y	Vanderwolf et al. (2013)
Phloeomana	Phloeomana alta			Vanderwolf et al. (2013)
	Philo. minutula			Vanderwolf et al. (2013)
Pholiota	Pholiota multicingulata			Vanderwolf et al. (2013)
Physiophorinus	Physiophorinus vitreus		Y	Vanderwolf et al. (2013)
Plateus	Plateus sp.			Vanderwolf et al. (2013)
Podoscypha	Podoscypha sp.			Vanderwolf et al. (2013)
Polyporus	Polyporus sp.			Connell and Staudigel (2013), Vanderwolf et al. (2013)
	Poly. venetus			Vanderwolf et al. (2013)
Poria	Poria sp.			Vanderwolf et al. (2013)
Postia	Postia balsamea			Vanderwolf et al. (2013)
	Poz. caesia			Vanderwolf et al. (2013)
	Poz. floreformis			Vanderwolf et al. (2013)
	Poz. stipitata			Vanderwolf et al. (2013)
Psathyrella	Psathyrella corrugis			Vanderwolf et al. (2013)
Psathyrella	Psathyrella candolleana	Y		Vanderwolf et al. (2013), Zhang et al. (2017)
	Psa. corrugis	Y		Zhang et al. (2017)
	Psathyrella sp.			Vanderwolf et al. (2013)
Pseudonoinotus	Pseudonoinotus dryadeus			Vanderwolf et al. (2013)
Pseudocyma	Pseudocyma sp.			Vanderwolf et al. (2013)
Psilocybe	Psilocybe sp.		Y	Vanderwolf et al. (2013)
Puccinia	Puccinia sp.		Y	Vanderwolf et al. (2013)
Ramaria	Ramaria sp.			Vanderwolf et al. (2013)
Resinicium	Resinicium bicolor			Connell and Staudigel (2013)
Resinoporia	Resinoporia crassa			Vanderwolf et al. (2013)
Rhizoctonia	Rhizoctonia solani			Pusz et al. (2018a)
Rhizomarasmius	Rhizomarasmius setosus			Vanderwolf et al. (2013)
Rhizomorpha	Rhizomorpha sp.			Vanderwolf et al. (2013)
Rhodofomes	Rhodofomes roseus			Vanderwolf et al. (2013)
Rhodonia	Rhodonia placenta			Vanderwolf et al. (2013)
Rhodotomula	Rhodotomula dairenensis			Vanderwolf et al. (2013)
	Rho. glutinis			Vanderwolf et al. (2013), Ogórek et al. (2013, 2016b, d)
	Rho. mucilaginosus	Y	Y	Connell and Staudigel (2013), Vanderwolf et al. (2013)
	Rho. rubra			Ogórek et al. (2013, 2016c, d), Kokurewicz et al. (2016)
	Rhodotomula sp.			Vanderwolf et al. (2013)
Rigidoporus	Rigidoporus lineatus			Vanderwolf et al. (2013)
	Ri. microporus			Vanderwolf et al. (2013)
	Ri. xanganolentus			Vanderwolf et al. (2013)
	Ri. undatus			Vanderwolf et al. (2013)
	Ri. vincent	Y		Zhang (2019)
	Rigidoporus sp.	Y		Zhang et al. (2017)
Rusula	Ruxula sp.			Vanderwolf et al. (2013)
Saitozyma	Saitozyma podzolica	Y	Y	Vanderwolf et al. (2013)
Sampaiozyma	Sampaiozyma ingeniosa	Y	Y	Vanderwolf et al. (2013)
Schizophyllum	Schizophyllum commune	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
Schizopora	Schizopora paradoxa			Vanderwolf et al. (2013)
Scleroderma	Scleroderma sp.			Vanderwolf et al. (2013)
Genus	Species	Chinaa	This studyb	References
-----------	-----------------------------	--------	-------------	--
Serpula	Serpula himantioides			Vanderwolf et al. (2013)
	Ser. lacrymans			Vanderwolf et al. (2013)
Sistotrema	Sistotrema brinkmannii			Connell and Staudigel (2013)
Skeletocatis	Skeletocaris crysella			Connell and Staudigel (2013)
Sporabolomyces	Sporabolomyces coprosmae			Vanderwolf et al. (2013)
	Spor. roseus			Vanderwolf et al. (2013), Martin-Sanchez et al. (2014)
	Spor. ruberrimus			Martin-Sanchez et al. (2014)
Sporabolomyces sp.	Sporabolomyces sp.			Connell and Staudigel (2013), Martin-Sanchez et al. (2014)
Sporotrichum	Sporotrichum flavissimum			Vanderwolf et al. (2013)
	Sporotrichum sp.			Vanderwolf et al. (2013)
Steccerinum	Steccerinum sp.	Y		Zhang (2019)
Stereum	Stereum hirsutum			Vanderwolf et al. (2013)
	Ster. sanguinolentum			Connell and Staudigel (2013)
	Stereum sp.			Connell and Staudigel (2013), Vanderwolf et al. (2013)
Strobilarius	Strobilarius esculentus			Vanderwolf et al. (2013)
Tapinella	Tapinella panuoides			Vanderwolf et al. (2013)
Taxonixa	Taxonixa palliata			Vanderwolf et al. (2013), Zhang et al. (2014)
Tetrapyrgos	Tetrapyrgos nigripes			Vanderwolf et al. (2013)
Thanatephorus	Thanatephorus cucumeris			Vanderwolf et al. (2013)
Thelephora	Thelephora penicillata			Vanderwolf et al. (2013)
Tilletia	Tilletia sp.			Vanderwolf et al. (2013)
Tinctoporellus	Tinctoporellus epimitinus	Y		Zhang et al. (2017)
Tomentella	Tomentella lapida			Vanderwolf et al. (2013)
	Tomentella sp.			Vanderwolf et al. (2013)
Trametes	Trametes cubensis			Connell and Staudigel (2013)
	Tra. gibbosa			Vanderwolf et al. (2013)
	Tra. hirsuta	Y		Vanderwolf et al. (2013), Man et al. (2015), Ogórek et al. (2017, 2018a)
	Tra. ochracea			Vanderwolf et al. (2013)
	Tra. pubescens			Vanderwolf et al. (2013)
	Trametes sp.			Vanderwolf et al. (2013)
	Tra. trogii	Y	Y	Vanderwolf et al. (2013)
	Tra. versicolor	Y		Vanderwolf et al. (2013), Zhang et al. 2017
Trechispora	Trechispora alnicola			Vanderwolf et al. (2013)
Tremella	Tremella mesenterica			Vanderwolf et al. (2013)
	Tremella sp.			Vanderwolf et al. (2013)
Trichaptum	Trichaptum sp.			Connell and Staudigel (2013)
Tricholoma	Tricholoma saponaceum			Vanderwolf et al. (2013)
Tricholomopsis	Tricholomopsis aurea			Vanderwolf et al. (2013)
Trichosporon	Trichosporon aggregataiens			Novákůvá et al. (2015)
	Tricho. akiyoshidatsum	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2017)
	Tricho. dallicum			Zhang et al. (2014), Vanderwolf et al. (2015)
	Tricho. cavernicola	Y	Y	Vanderwolf et al. (2013)
	Tricho. chiroptororium	Y	Y	Vanderwolf et al. (2013)
	Tricho. coprophilum			Vanderwolf et al. (2013)
	Tricho. ovoides			Vanderwolf et al. (2013)
	Tricho. porosum			Vanderwolf et al. (2013), Mitova et al. (2017)
	Tricho. shinodae	Y	Y	Novákůvá et al. (2015)
	Tricho. speluncum			Vanderwolf et al. (2013, 2015, 2019), Man et al. (2015), Bercea et al. (2018), Burow et al. (2019)
Tubaria	Tubaria furfuracea			Vanderwolf et al. (2013)
Ustilago	Ustilago tritici			Connell and Staudigel (2013), Vanderwolf et al. (2013)
	Ustilago sp.			Connell and Staudigel (2013)
Vishniacozyma	Vishniacozyma dimenae			Martin-Sanchez et al. (2014)
Vanrija	Vanrija fragicola			Zhang et al. (2014)
Volvariella	Volvariella sp.			Vanderwolf et al. (2013)
Wallemia	Wallemia mellicola	Y	Y	Vanderwolf et al. (2013)
	Wal. sebi			Vanderwolf et al. (2013)
Table 4 (continued)

Genus	Species	China^a	This study^b	References	
Xylodon	Xylodon rimosissimus			Connell and Staudigel (2013)	
Mortierellomycotina	Mortierella alliacea			Vanderwolf et al. (2013)	
	Mo. alpina	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014), Man et al. (2015), Zhang et al. (2017), Dyląg et al. (2019), Popkova and Mazina (2019)	
	Mo. amoeboides			Zhang et al. (2014)	
	Mo. baumieri			Vanderwolf et al. (2013)	
	Mo. cheni			Vanderwolf et al. (2013)	
	Mo. clonocystis	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014)	
	Mo. dichotoma	Y	Y	Vanderwolf et al. (2013)	
	Mo. elongata			Vanderwolf et al. (2013)	
	Mo. epilacia	Y	Y	Vanderwolf et al. (2013)	
	Mo. exigua			Vanderwolf et al. (2013)	
	Mo. fimbricystis			Out et al. (2016)	
	Mo. gamasia			Vanderwolf et al. (2013), Zhang et al. (2014)	
	Mo. histoplasmatoides			Zhang et al. (2014)	
	Mo. horticola	Y		Zhang et al. (2017)	
	Mo. humilis			Vanderwolf et al. (2013)	
	Mo. hyalinia	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014), Pusz et al. (2015), Out et al. (2016), Pusz et al. (2017), Zhang et al. (2017)	
	Mo. hypnichladia	Y	Y	Zhang et al. (2017)	
	Mo. indolii	Y	Y	Zhang et al. (2017)	
	Mo. jenkinsi			Zhang et al. (2014)	
	Mo. minatissima	Y		Zhang et al. (2017)	
	Mo. nantahalensis			Vanderwolf et al. (2013)	
	Mo. oligospora			Vanderwolf et al. (2013)	
	Mo. parvispora			Ogórek et al. (2017), Burow et al. (2019)	
	Mo. polycephala			Vanderwolf et al. (2013), Zhang et al. (2014), Out et al. (2016)	
	Mo. pulchella			Vanderwolf et al. (2013)	
	Mo. reticulata	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014)	
	Mo. sarnyensis			Vanderwolf et al. (2013), Zhang et al. (2014)	
	Mo. sclerotialla			Out et al. (2016)	
	Mo. selenospora	Y		Man et al. (2015)	
	Mo. stylospora			Zhang et al. (2014)	
	Mo. verticillata	Y	Y	Vanderwolf et al. (2013)	
	Mo. zonata	Y	Y	Vanderwolf et al. (2013)	
	Mortierella sp.	Y	Y	Vanderwolf et al. (2013, 2015, 2019), Martin-Sanchez et al. (2014), Zhang et al. (2014), Yoder et al. (2015), Out et al. (2016), Mitova et al. (2017), Zhang et al. (2017), Novák, Novákova et al. (2018), Leplat et al. (2019), Burow et al. (2019)	
Mucoromycotina	Absidia caerulea			Vanderwolf et al. (2013)	
	Ab. cylindrospora			Vanderwolf et al. (2013), Popkova and Mazina (2019)	
	Ab. glauca			Vanderwolf et al. (2013), Kokurewicz et al. (2016), Ogórek et al. (2016b)	
	Ab. repens			Vanderwolf et al. (2013)	
	Ab. spinosa			Vanderwolf et al. (2013), Novákova et al. (2018)	
	Absidia sp.			Vanderwolf et al. (2013), Leplat et al. (2018), Dylag et al. (2019), Popkova and Mazina (2019)	
Actinomucor	Actinomucor elegans			Vanderwolf et al. (2013, 2015, 2019), Novákova et al. (2018)	
	Actinomucor sp.	Y		Jiang et al. (2017a, b)	
Choanephora	Choanephora cucurbitarum			Vanderwolf et al. (2013)	
Circinella	Circinella muscae			Vanderwolf et al. (2013)	
	Ci. simplex			Vanderwolf et al. (2013)	
	Ci. umbellata	Y	Y	Vanderwolf et al. (2013)	
	Circinella sp.	Y	Y	Vanderwolf et al. (2013)	
Cunninghamella	Cunninghamella echinulata	Y	Y	Vanderwolf et al. (2013, 2015, 2019), Novákova et al. (2018)	
	Can. elegans			Vanderwolf et al. (2013, 2015, 2019), Novákova et al. (2018)	
	Cunninghamella sp.	Y	Y	Vanderwolf et al. (2013)	
Gongronella	Gongronella sp.	Y	Y	Vanderwolf et al. (2013)	
Genus	Species	China	This study	References	
-------------	------------------------	-------	------------	---	
Helicostylum	*Helicostylum elegans*			Vanderwolf et al. (2013), Zhang et al. (2014)	
	Hel. pulchrum			Zhang et al. (2014)	
	Helicostylum sp.			Vanderwolf et al. (2013)	
Lichtheimia	*Lichtheimia blakesleeanana*			Vanderwolf et al. (2013)	
	L. corymbifera			Vanderwolf et al. (2013)	
Mucor	*Mucor abundans*			Burow et al. (2019)	
	M. aligarensis			Mitova et al. (2017), Ogórek et al. (2017), Dylag et al. (2019)	
	M. bacilliformis	Y	Y	Vanderwolf et al. (2013)	
	M. circinelloides	Y		Vanderwolf et al. (2013), Jacobs et al. (2017), Mitova et al. (2017)	
	M. corticola			Vanderwolf et al. (2013)	
	M. flavus	Y		Vanderwolf et al. (2013), Zhang et al. (2014), Kokurewicz et al. (2016),	
				Jacobs et al. (2017), Jiang et al. (2017a, b), Zhang et al. (2017), Burow	
				et al. (2019)	
	M. fragilis	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014), Puṣz et al. (2015), Kokure-	
				wicz et al. (2016), Ogórek et al. (2016b, c, 2017, 2018), Puṣz et al. (2017),	
				Zhang et al. (2017), Popkova and Mazina (2019)	
	M. fuscus	Y		Vanderwolf et al. (2013), Man et al. (2015)	
	M. hiemalis	Y	Y	Vanderwolf et al. (2013), Zhang et al. (2014), Puṣz et al. (2015), Kokure-	
				wicz et al. (2016), Ogórek et al. (2016b, c, 2017, 2018), Puṣz et al. (2017),	
				Zhang et al. (2017), Popkova and Mazina (2019)	
	M. indicus			Vanderwolf et al. (2013)	
	M. irregularis	Y		Zhang et al. (2017)	
	M. luteus			Kokurewicz et al. (2016), Zhang et al. (2014), Puṣz et al. (2015)	
	M. moelleri	Y		Zhang et al. (2017)	
	M. mucedo			Ogórek et al. (2013, 2014a), Vanderwolf et al. (2013)	
	M. piriformis	Y		Vanderwolf et al. (2013)	
	M. plumbeus	Y		Vanderwolf et al. (2013), Dylag et al. (2019)	
	M. racemosus	Y		Vanderwolf et al. (2013), Out et al. (2016), Kokurewicz et al. (2016), Zhang	
				et al. (2017)	
	M. ramossissimus	Y		Vanderwolf et al. (2013)	
	M. rouxi	Y		Jiang et al. (2017a, b), Popkova and Mazina (2019)	
	M. silvaticus	Y		Vanderwolf et al. (2013)	
	M. strictus	Y		Out et al. (2016)	
	M. subtilissimus	Y		Vanderwolf et al. (2013)	
	M. troglrophilus	Y		Vanderwolf et al. (2013)	
Macor sp.		Y	Y	Taylor et al. (2013), Vanderwolf et al. (2013, 2015, 2019), Ogórek et al.	
				(2014b, c), Zhang et al. (2014), Popović et al. (2015), Yoder et al. (2015),	
				Jiang et al. (2017a, b), Mitova et al. (2017), Zhang et al. (2017), Leplat	
				et al. (2018), Burow et al. (2019)	
Phycomyces	*Phycomyces sp.*	Y		Vanderwolf et al. (2013)	
Pilobolus	*Pilobolus sp.*	Y		Vanderwolf et al. (2013)	
Rhizomacor	*Rhizomacor pusillus*			Vanderwolf et al. (2013)	
Rhizopus	*Rhizopus arrhizus*			Vanderwolf et al. (2013)	
	Rhi. microsporus			Vanderwolf et al. (2013)	
	Rhi. oryzae	Y		Zhang et al. (2017)	
	Rhi. stolonifer	Y		Ogórek et al. (2013, 2014a, 2016b, c, d), Vanderwolf et al. (2013), Kokure-	
				wicz et al. (2016), Jiang et al. (2017a, b), Novákóvá et al. (2018), Popkova	
				and Mazina (2019)	
Rhizopus sp.		Y		Taylor et al. (2013), Vanderwolf et al. (2013), Ogórek et al. (2014a, b),	
				Yoder et al. (2015)	
Syncphalastrum	*Syncphalastrum racemosum*			Vanderwolf et al. (2013)	
Syncephalastrum	*Syncephalastrum sp.*			Vanderwolf et al. (2013)	
Thamnidium	*Thamnidium elegans*			Vanderwolf et al. (2013, 2015)	
Thamnostylus	*Thamnostyllum piriforme*			Vanderwolf et al. (2013)	
Umbelopsis	*Umbelopsis angularis*			Burow et al. (2019)	
	Um. dimorpha	Y	Y	Vanderwolf et al. (2013)	
	Um. isabellina	Y	Y	Vanderwolf et al. (2013)	
	Um. ramanniana			Vanderwolf et al. (2013), Zhang et al. (2014)	
Entomophthoromycotina	*Conidiobolus coronatus*			Burow et al. (2019)	
Conidiobolus	*Conidiobolus sp.*			Vanderwolf et al. (2013)	
Genus	Species	China	This study	References	
-------------	-----------------------	-------	------------	--------------------------	
Entomophaga	Entomophaga grylli	Y	Y	Vanderwolf et al. (2013)	
Entomophthora	Entomophthora dextruens			Vanderwolf et al. (2013)	
Chytridiomycota	Batrachochytrium dendrobatis	Y	Y	Vanderwolf et al. (2013)	
Cladochytrium	Cladochytrium tenue	Y	Y	Vanderwolf et al. (2013)	
Rhizophydium	Rhizophydium sp.	Y	Y	Vanderwolf et al. (2013)	
Zoopagomyctina	Rholamomyces elegans	Y	Y	Vanderwolf et al. (2013)	
Syncephalis	Syncephalis sp.	Y	Y	Vanderwolf et al. (2013)	
Kickxella	Kickxella alabastrina	Y	Y	Vanderwolf et al. (2019)	
Kickxellomyctina	Coemansia aciculifera	Y	Y	Vanderwolf et al. (2013)	
Glomeromycota	Entrophospora sp.	Y	Y	Vanderwolf et al. (2013)	

Paraphaeosphaeria O.E. Erikss.

Paraphaeosphaeria was introduced by Eriksson (1967) to accommodate four species with oblong-cylindric ascospores, and placed in *Didymosphaeriaceae* (= Montagulaceae) by Ariyawansa et al. (2014) based on multi-locus phylogeny. Currently there are 33 species in *Paraphaeosphaeria* (Wijayawardene et al. 2020). Here, we introduce a new species of *Paraphaeosphaeria* named as *P. hydei* isolated from plant debris (Fig. 5).

Paraphaeosphaeria hydei Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556392, *Facesoffungi number:* FoF 08425, Fig. 6

Etymology: “hydei” named for in honour of Prof. Kevin D. Hyde for his contribution to ascomycetes taxonomy.

Holotype: HMAS 247988.

Hyphae hyaline to brown, septate, branched, sometimes swollen to chlamydospore-like cell, brown, thick-walled, up to 12 µm diam. *Asexual morph* *Conidiotoma* pycnidial, erumpent, single, or eustromatic and more complex, mostly superficial, globose, glabrous, dark brown, up to 200 µm diam, with central ostiole. *Pycnidial wall* composed of an outer layer of yellow-brown, thick-walled textura angularis, and an inner layer with hyaline, thin-walled cells. *Conidiogenous cells* lining the inner cavity, ampulliform or flask-shaped, smooth, hyaline, 4.0–7.5 × 5.0–8.0 µm. *Conidia* abundant, solitary, unicellular, ovoid or ellipsoidal with obtuse ends, smooth, thick-walled, brown, 6.0–8.0 × 4.0–6.0 µm (± SD = 7.1 ± 0.55 × 5.2 ± 0.45 µm, n = 60), average L/W ratio 1.36 ± 0.15. *Sexual morph* not observed.

Culture characteristics—Colonies on PDA attaining 45 mm diam. after 21 days, flat, felty, margin entire, dark olive (27F2) at margin, pale gray (28B1) at middle, olive (27D3) in center with pale gray (28B1) patches, aerial mycelia sparse. Reverse dark olive (27F2). Colonies on OA attaining 45 mm diam. after 21 days, flat, black to dark olive (26F5), aerial mycelia sparse, with abundant black conidiomata scattered. Reverse black. Colonies on SNA attaining 45 mm diam. after 21 days, aerial mycelia sparse, colorless. Reverse colorless. Sporulation within 20 days on PDA and OA.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on plant debris, May 2016, Z.F. Zhang, HMAS 247988 (holotype designated here), ex-type living culture CGMCC3.19317 = LC12564; ibid., LC12565.

Notes: In the multi-locus phylogenetic analysis, this new species clustered with *Paraphaeosphaeria arecacearum* Verkley, Göker & Stielow in a distinct clade (Fig. 5). However, conidia of *P. arecacearum* are longer than that of *P. dispersa* (3.5–6.0 µm vs. 3.0–4.0 µm, 2.0 ± 0.04 vs. 1.36 ± 0.15 for average L/W ratio). In addition, *P. dispersa* growing on OA (45 mm/14 days) is much slower than *P. arecacearum* (70–75 mm/10 days).

Setophaeosphaeria Crous & Y. Zhang ter

Setophaeosphaeria was established by Crous et al. (2014) to accommodate ascomycetes that are dissimilar to *Phaeosphaeria* in the absence of ascomatal setae, and with phoma-like anamorphs. *Setophaeosphaeria* currently comprises six species, with *S. hemerocallidis* Crous & Y. Zhang ter as type, and one new species described herein as *S. microsporai* (Fig. 7).

Setophaeosphaeria microspora Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556393, *Facesoffungi number:* FoF 08426; Fig. 8

Etymology: Referring to its smaller conidia than other species in this genus.
Fig. 4 Maximum likelihood (ML) tree based on LSU sequences showing the order placements of new species described in this study. 122 strains belong to eight orders are used. The tree is rooted with Sarcoscypha coccinea (FF176859). Tree topology of the ML analysis was similar to the BI. The Best scoring RAxML tree with a final likelihood value of –9721.274792. The matrix had 422 distinct alignment patterns, with 7.98% of undetermined characters or gaps. Base frequencies estimated by jModelTest were as follows, A = 0.1940, C = 0.2411, G = 0.3481, T = 0.2168; substitution rates AC = 0.9460, AG = 3.5105, AT = 1.8719, CG = 0.5969, CT = 8.3876, GT = 1.0000; gamma shape = 0.5390. ML, bootstrap values (≥70%) and Bayesian posterior probability (≥90%) are indicated along branches (ML/PP). Novel species are indicated in bold font and the orders are shown on the right side of the figure.
Sporulation within 15 d on OA and SNA. Cottony, margin entire, beige (3B3). Reverse beige (3B3). Nies on SNA attaining 39–40 mm diam. after 10 days, flat, from margin to center. Reverse white to olive (28E5). Colonial diam. after 10 days, flat, ulotrichy, white to pale gray (3B1) to olive (2E3). Colonies on OA attaining 34–37 mm diam. from margin to center. Reverse beige (3B3).

Sexual morph not observed.

Conidia abundant, unicellular, cylindrical, Phialides arising laterally on vegetative hyphae. Asexual morph Conidiomata pycnidial, single or eustromatic, superficial or immersed, globose, brown to pale brown, up to 260 µm diam, with central ostiole.

Pycnial wall of 2–3 layers of the brown texture angularis. Setae slightly flexuous, septate, unbranched, smooth, thick-walled, brown to pale brown from base to apex, more abundant surrounding ostiole, with obtuse ends, 45–130 µm long, 2.0–4.0 µm wide. Conidiogenous cells lining the inner cavity, ampulliform, proliferating several times percurrently at apex, smooth, hyaline, 7.0–10.0 × 2.5–4.0 µm. Conidia abundant, unicellular, cylindrical, guttulate, with obtuse ends, smooth, brown, 3.0–4.5 × 1.5–2.0 µm (± SD = 4.0 ± 0.25 × 1.7 ± 0.13 µm, n = 60). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 30–34 mm diam. after 10 days, flat, margin entire, beige (2B4) to olive (2E3) from margin to center. Reverse beige (2B4) to olive (2E3). Colonies on OA attaining 34–37 mm diam. after 10 days, flat, ulotrichy, white to pale gray (3B1) from margin to center. Reverse white to olive (2B8E5). Colonies on SNA attaining 39–40 mm diam. after 10 days, flat, cottony, margin entire, beige (3B3). Reverse beige (3B3). Sporulation within 15 d on OA and SNA.

Material examined: CHINA, Guangxi, Laibin, Sanshan Cave, N 23.41°, E 108.931°, on soil, May 2016, Z.F. Zhang, HMAS 247990 (holotype designated here), ex-type living culture CGMCC3.19301 = LC9240; ibid., LC10444.

Notes: Our strains form a distinct clade with Setophaeosphaeria species based on ITS, LSU and TUB sequences (Fig. 7), but can be distinguished from known species by its smaller conidia (> 6.0 µm long and 2.0–3.0 µm wide in other species) and larger conidiogenous cells (< 7.0 µm wide in other species).

Class Eurotiomycetes

Eurotiomycetes is one of the most diverse classes in the subphylum Pezizomycotina. We follow the latest classification of Gueidan et al. (2014) and Geiser et al. (2015).

Subclass Eurotiomycetidae

Eurotiomycetidae comprises some of the most commonly encountered microfungi, including the well known genera Aspergillus and Penicillium, some species of which can survive at extreme environments, such as deep water and high temperature (Geiser et al. 2015).

Aspergillaceae Link

Aspergillaceae was established by Link (1826), and re-instated by Houbraken and Samson (2011) based on multi-locus phylogeny. Species belonging to this family have diverse physiological properties; some could tolerate extreme conditions, such as high sugar or salt concentrations, low or high temperatures, low acidity or low oxygen levels (Houbraken et al. 2014). Aspergillaceae species are predominantly saprobic, while a few species are pathogenic (Houbraken et al. 2014).

Aspergillus P. Micheli ex Haller

Aspergillus is one of the most economically important genera of fungi. The aspergillum-like sporebearing structure is the defining characteristic of Aspergillus. Currently, 4 subgenera and 19 sections are accepted in Aspergillus (Houbraken et al. 2014). In this study, three new species are described as A. limoniformis, A. phialiformis and A. phialosimplex (Fig. 9).

Aspergillus limoniformis Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556394, Facesoffungi number: FoF 08427; Fig. 10

Etymology: Referring to the shape of its limoniform conidia.

Holotype: HMAS 248014.

Hyphae hyaline, septate, smooth, branched, 1.0–2.5 µm wide. Asexual morph Conidiogenous cells simple phialides arising laterally on vegetative hyphae. Phialides cylindrical, ampulliform, or tapering with enlarged base, smooth, hyaline,
variable in length, 4.0–10.0 µm long, 1.5–5.0 µm diam. at base, tapering to 1.0–2.0 µm diam. at apex. Conidia formed in long chains, limoniform or subglobose, obviously apiculate, thick-walled, rough initially, then becoming smooth with age, hyaline, 3.0–4.5 × 2.5–4.0 µm (\(\bar{x} \pm SD = 3.7 \pm 0.33 \times 3.3 \pm 0.25 \mu m, n = 60\)). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 25–31 mm diam. after 4 weeks, flat, felty to pulverulent, margin entire, beige (5B3) at fruiting region, white to dark brown (5F8) from middle to aging region. Reverse cream yellow (3A2) to dark brown (6D8). Colonies on OA attaining 24–35 mm diam. after 4 weeks, flat, margin entire, white to pale brown (5A2), aerial mycelia extremely sparse. Reverse pale brown (5A2) to brown (6D8). Colonies on SNA attaining 29–39 mm diam. after 4 weeks, flat, pulverulent, whitesmoke. Reverse whitesmoke. Sporulation within 3 weeks.

Material examined: CHINA, Yunnan, Mengzi, Mingjiu old Cave, N 23.487°, E 103.619°, on bat guano, May 2016, Z.F. Zhang, HMAS 248014 (holotype designated here), ex-type living culture CGMCC3.19323 = LC126098; ibid., LC12610.

Notes: Phylogenetic analyses based on ITS, RPB2, Tsr and TUB sequences showed that our new species should be classified in *Aspergillus* subgenus *Polypaecilum* (Fig. 9), which were also supported by the phialosimplex-like morphologies. *Aspergillus limoniformis* is phylogenetically closely related...
Asexual morph

Conidiogenous cells simple phialides arising laterally on vegetative hyphae. Phialides cylindrical or tapering with enlarged base, occasionally branched, smooth, hyaline, variable in length, 4.0–12.0 μm long, 1.0–4.0 μm diam at base, tapering to 1.0–2.0 μm diam. at apex. Conidia formed in long chains, limoniform, subglobose or globose, apiculate, thick-walled, rough initially, then becoming smooth with age, hyaline, 2.5–4.0 μm \((x \pm SD = 3.3 \pm 0.28, n = 60)\).

Sexual morph

not observed.

Culture characteristics—Colonies on PDA attaining 36–41 mm diam. after 4 weeks, flat, margin undulate, aerial mycelia sparse, pulverulent in center, white. Reverse orangeyellow (4A2). Colonies on OA attaining 31–36 mm diam. after 4 weeks, flat, margin undulate, aerial mycelia sparse. Reverse cream-yellow (4A2) to brown (5C7). Colonies on SNA attaining 43–47 mm diam. after 4 weeks, flat, margin undulate, aerial mycelia sparse, pulverulent in center, white. Reverse floralwhite (4A2). Sporulation within 3 weeks.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on rock, May 2016, Z.F. Zhang, HMAS 248017 (holotype designated here), ex-type living culture CGMCC3.19314 = LC12536; ibid., LC12537.

Notes: Aspergillus phialiformis is phylogenetically closely related to A. phialosimplex (Fig. 9). While, phialides of A. phialiformis are cylindrical or basal enlarged, which are mostly cylindrical in A. phialosimplex. Meanwhile, limoniform conidia are not observed in A. phialosimplex and color of A. phialosimplex and A. phialiformis on PDA and OA are different.

Aspergillus phialosimplex Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556395, Facesoffungi number: FoF 08429; Fig. 11

Etymology: Referring to its phialidic conidiogenous cells.

Holotype: HMAS 248017.

Hyphae hyaline, septate, smooth, branched, 1.0–2.5 μm wide. Asexual morph Conidiogenous cells simple phialides arising laterally on vegetative hyphae. Phialides cylindrical or tapering with enlarged base, occasionally branched, smooth, hyaline, variable in length, 4.0–12.0 μm long, 1.0–4.0 μm diam at base, tapering to 1.0–2.0 μm diam. at apex. Conidia formed in long chains, limoniform, subglobose or globose, apiculate, thick-walled, rough initially, then becoming smooth with age, hyaline, 2.5–4.0 μm \((x \pm SD = 3.3 \pm 0.28, n = 60)\). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 36–41 mm diam. after 4 weeks, flat, margin fimbriate, cream yellow (4A2) at fruiting region, white to pale brown (5A2) from middle to aging region, with brown, radially striate and lobate ring, aerial mycelia sparse. Reverse cream-yellow (4A2) to brown (5C7). Colonies on OA attaining 31–36 mm diam. after 4 weeks, flat, margin undulate, aerial mycelia sparse, pulverulent in center, white. Reverse floralwhite (4A2). Colonies on SNA attaining 43–47 mm diam. after 4 weeks, flat, pulverulent, white. Reverse white. Sporulation within 3 weeks.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on rock, May 2016, Z.F. Zhang, HMAS 248017 (holotype designated here), ex-type living culture CGMCC3.19314 = LC12536; ibid., LC12537.

Notes: Aspergillus phialiformis is phylogenetically closely related to A. phialosimplex (Fig. 9). While, phialides of A. phialiformis are cylindrical or basal enlarged, which are mostly cylindrical in A. phialosimplex. Meanwhile, limoniform conidia are not observed in A. phialosimplex and color of A. phialosimplex and A. phialiformis on PDA and OA are different.
Hyphae hyaline, septate, smooth, branched, 1.0–3.5 μm wide, sometimes swollen, up to 7.0 μm. Asexual morph Conidiogenous cells simple phialides arising laterally on vegetative hyphae. Phialides cylindrical, occasionally ampulliform, variable in length, smooth, hyaline, 2.5–8.5 μm long, 1.0–2.0 μm diam. Conidia formed in long chains, subglobose to globose, thick-walled, rough initially, then becoming smooth with age, hyaline, 3.5–5.5 μm (x ± SD = 4.7 ± 0.42, n = 60). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 20–29 mm diam. after 4 weeks, flat, felty to pulverulent, margin slightly undulate, brown (7C5) to dark brown (7F7) from margin to center. Reverse pale brown (6B3) to dark brown (7F8). Colonies on OA attaining 20–28 mm diam. after 4 weeks, flat, margin entire, white to pale lavender (6B2), aerial mycelia sparse. Reverse white to pale brown. Colonies on SNA attaining 42–46 mm diam. after 4 weeks, flat, pulverulent, margin unclear, white. Reverse white. Sporulation within 3 weeks.

Material examined: CHINA, Sichuan, Huaying, Liujia Cave, N 30.41°, E 106.878°, on plant debris, May 2016, Z.F. Zhang, HMAS 248007 (holotype designated here), ex-type living culture CGMCC3.19637 = LC12578; Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on animal faeces.
May 2016, Z.F. Zhang, LC12658; Yunnan, Yuxi, Niumo Cave, N 28.192°, E 102.842°, on plant root, May 2016, Z.F. Zhang, LC12625.

Notes: Aspergillus phialosimplex is phylogenetically allied to A. phialiformis (Fig. 9), but they can be easily distinguished (see notes of A. phialiformis).

Onygenales Cif. ex Benny & Kimbr.

The Onygenales in Eurotiomycetes is characterized by smooth or appendiculate ascomata, with pseudoparenchymatous, membranous cleistoperidium or filamentous gymnoperidium of loosely interwoven hyphae, centrum of globose, irregularly disposed, pseudoprototunicate asci, and one-celled, hyaline or pale coloured ascospores (Currah 1985, Doveri et al. 2012). Species of Onygenales are usually keratinophilic, keratinolytic, cellulolytic or chitinoclastic (Doveri et al. 2012).

Gymnoascaceae Baran.

The family Gymnoascaceae was firstly established by Baranetzky 1872, with Gymnoascus and G. reesi as type genus and species respectively. Members of this family are often isolated from soil, plant debris, dung or animal components (Doveri et al. 2012).

Gymnoascus Baran.

The genus Gymnoascus was classified in Gymnoascaceae, Onygenales, with G. reesi as generic type (Baranetzky 1872). In the most recent treatment, genera Arachniotus Arachniotus J. Schröt., Gymnascella Peck, Gymnoascoides G.F. Orr, K. Roy & G.R. Ghosh and Narasimhella Thirum. & P.N. Mathur have been synonymized with Gymnoascus based on the morphological and molecular evidences, marking Gymnoascus one of the largest genera in the order Onygenales (Solé et al. 2002). Gymnoascus is characterized by spherical, yellowish to brownish ascomata with peridium composed of a loose network of hyaline or pigmented hyphae, with or without appendages, and by oblate and pigmented ascospores and chrysosporium-like conidia (von Arx 1977; Solé et al. 2002; Sharma and Singh 2013; Zhou et al. 2016). The genus currently comprises 22 species (Zhou et al. 2016). In this study, one new species is described as Gymnoascus flavus (Fig. 13).
Gymnoascus flavus Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556397, Facesoffungi number: FoF 08430; Fig. 14

Etymology: Referring to the color of its conidia, yellow.

Holotype: HMAS 248010.

Hyphae pale yellow to yellow, septate, branched, smooth or slightly rough, 1.5–5.0 μm diam.; racquet hyphae present, ‘racquet’ up to 11.0 μm wide. Asexual morph—Fertile mycelia usually gathered into special, superficial yellow structure, where conidia borne mostly. Conidia mostly terminal or lateral, occasionally intercalary, sessile or borne on short protrusions or side branches, unicellular, pyriform, ellipsoidal or globose, smooth, thick-walled, hyaline initially, then becoming yellow, 4.5–7.0 × 4–6 μm (x ± SD = 6.0 ± 0.62 × 5.1 ± 0.64 μm, n = 60), with truncated base. Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 26–34 mm diam. after 3 weeks, coriaceous, plicated in center, margin entire, beige (1A2) to salmon (6A3), aerial mycelia sparse. Reverse beige (1A2) to orange (6A3). Colonies on OA not growing. Colonies on SNA attaining 24–27 mm diam. after 10 days, powdery, margin rhizoids, white initially, becoming light yellow (2A3-2A5) when sporulation, aerial mycelia sparse. Reverse white to pale yellow (2A3). Sporulation within 2 weeks on SNA.

Material examined: CHINA, Sichuan, Xingwen, Feng Cave, N 28.186°, E 105.148°, on soil, May 2016, Z.F. Zhang, HMAS 248010 (holotype designated here), ex-type living culture CGMCC3.19574 = LC12500; Sichuan, Xingwen, Tianliang Cave, N 28.19°, E 105.139°, on soil, May 2016, Z.F. Zhang, LC12511.

Notes: Phylogenetically, Gymnoascus flavus forms a distinct clade sister to G. exasperates Z.F. Zhang, F. Liu & L. Cai, G. reessii and G. uncinatus Eidam based on ITS and LSU sequences (Fig. 13). However, dissimilar to G. reessii and G. uncinatus, the sexual morph of G. flavus was not observed despite repeated attempts using OA, PDA and SNA media, as well as horse hair and chicken feather as inducers.
Conidia of *Gymnoascus flavus* are mostly terminal or lateral, as compared to the abundant intercalary conidia of *G. exasperates*. The *Onygenaceae* is characterised by pseudoparenchymatous cleistothecia or hyphal gymnothecia with a structure similar to *Gymnoascaceae*. The ascospores of *Onygenaceae* are oblate, discoidal, or spherical, sometimes reniform or allantoid, punctate, pitted or pitted- reticulate, and the anamorphs are predominantly one-celled arthro- and aleu- riconidium (Doveri et al. 2012).

Auxarthron G.F. Orr & Kueh

The *Auxarthron* was placed in *Gymnoascaceae* when established (Orr et al. 1963), while subsequent studies based on molecular data showed its actual affinity to *Onygenaceae* (Sugiyama et al. 1999; Sigler et al. 2002). Hitherto, *Auxarthron* encompasses 18 species. In this study, two new species are described as *Auxarthron chinense* and *A. guangxiense* (Fig. 15).

Auxarthron chinense Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556412, Facesoffungi number: FoF 08431; Fig. 16

Etymology: Referring to the country where this fungus was firstly isolated.

Holotype: HMAS 247999.
Hyphae hyaline, septate, branched, smooth, 1.5–3.5 μm wide, sometimes swollen, up to 10.0 μm wide; racquet hyphae present, ‘racquet’ 4–5 μm wide. **Asexual morph Conidia** arthroconidial, abundant, mostly intercalary, few lateral and terminal, unicellular, cylindrical, ellipsoidal or clavate with one or two truncated bases, smooth, hyaline, 4.0–7.0 (–8.0) × 2.0–3.5 μm (̄x ± SD = 5.3 ± 0.92 × 2.6 ± 0.25 μm, n = 50), frequently separated by 1–3 autolytic connective cells. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA 18–23 mm diam. after 4 weeks, flat, annular, margin dentate, cottony and white at center, pulverulent to felty and light yellow (1A2) at margin. Reverse orange (5A5) to pale orange (4A5). Colonies on OA 18–23 mm diam. after 4 weeks, flat, pulverulent, margin unclear, white, aerial mycelia sparse. Reverse beige (28A3). Colonies on SNA 21–25 mm diam. after 4 weeks, flat, powdery, margin crenate, cream-yellow. Reverse cream-yellow (1A2) to white. Sporulation within 3 weeks.

Material examined: CHINA. Guangxi, Guilin, Luotian Cave, N 24.948°, E 110.524°, on soil, May 2016, Z.F. Zhang, HMAS 247999 (holotype designated here), ex-type living culture CGMCC3.19572 = LC12475; ibid., LC12477; ibid., LC12550; ibid., LC12580 (animal faeces); Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on soil, May 2016, Z.F. Zhang, LC12473; ibid., LC12474; Yunnan, Mengzi, Mingjiu old Cave, N 23.487°, E 103.619°, on soil, May 2016, Z.F. Zhang, LC12463.

Notes: Morphological and phylogenetic data (Figs. 15, 16) support our strains as new species of *Auxarthron*. *Auxarthron chinense* is phylogenetically closely related to *A. alboluteum* Sigler, Hambl. & Flis, *A. compactum* G.F. Orr & Plunkett and *A. zuffianum* (Morini) G.F. Orr & Kuehn (Fig. 15). However, *A. chinense* can be distinguished from *A. alboluteum* by less lateral and terminal conidia; from *A. compactum* by the hyaline conidia rather than pale yellow of *A. compactum*; from *A. zuffianum* by wider conidia (2.0–3.5 μm vs. 1.2–1.6 μm).
Culture characteristics—Colonies on PDA attaining 26–31 mm diam. after 4 weeks, flat, margin crenate, cottony, cream-white (2A1) to yellow (2A3) at fruiting region, floral white at aging region. Reverse pale yellow (2A3) to goldenrod (2A3) at margin, dark brown (4D8) at center. Colonies on OA attaining 32–40 mm diam. after 4 weeks, flat, annular, cottony at middle, white to pale yellow (2A3) from margin to center. Reverse pale yellow (2A3). Colonies on SNA attaining 28–32 mm diam. after 4 weeks, flat, white to pale yellow (1B3), aerial mycelia sparse, with ascomata scattered. Reverse white to pale yellow (1B3). Sporulation within 3 weeks on SNA.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on soil, May 2016, Z.F. Zhang, HMAS 247993 (holotype designated here), ex-type living culture CGMCC3.19634 = LC12464; ibid., LC12465.

Notes: Phylogenetically, Auxarthron guangxiense is close to A. pseudauxarthron G.F. Orr & Kuehn (Fig. 15), but differs in the absence of ascomatal appendages.

Auxarthron guangxiense Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556413, Facesoffungi number: FoF 08432; Fig. 17

Etymology: Referring to the province where the type strain was isolated.

Holotype: HMAS 247993.

Hyphae hyaline, septate, branched, smooth, 1.5–2.5 µm diam. Sexual morph Ascomata abundant, solitary or in clusters, subglobose to globose, white at first, becoming orange-brown at maturity, 250–380 µm diam. Peridial hyphae rough, thick-walled, septate, pale brown, branched and anastomosed to form a reticuloperidium, terminated by spine-like or blunt prominences, sometimes dichotomously branched, 1.5–2.5 µm diam, appendages not observed. Asci 8-spored, pyriform, subglobose or globose, hyaline, 8.5–12.0 × 6.5–9.0 µm. Ascospores oblate, smooth, hyaline, 2.5–3.5 µm (x ± SD = 3.1 ± 0.22 µm, n = 40). Asexual morph not observed.

Culture characteristics—Colonies on PDA attaining 26–31 mm diam. after 4 weeks, flat, margin crenate, cottony, cream-white (2A1) to yellow (2A3) at fruiting region, floral white at aging region. Reverse pale yellow (1A2) to goldenrod (2A3) at margin, dark brown (4D8) at center. Colonies on OA attaining 32–40 mm diam. after 4 weeks, flat, annular, cottony at middle, white to pale yellow (2A3) from margin to center. Reverse pale yellow (2A3). Colonies on SNA attaining 28–32 mm diam. after 4 weeks, flat, white to pale yellow (1B3), aerial mycelia sparse, with ascomata scattered. Reverse white to pale yellow (1B3). Sporulation within 3 weeks on SNA.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on soil, May 2016, Z.F. Zhang, HMAS 247993 (holotype designated here), ex-type living culture CGMCC3.19634 = LC12464; ibid., LC12465.

Notes: Phylogenetically, Auxarthron guangxiense is close to A. pseudauxarthron G.F. Orr & Kuehn (Fig. 15), but differs in the absence of ascomatal appendages.
Morphologically, *A. guangxiense* is similar to *A. zuffianum*, whereas, the asci of *A. guangxiense* are larger than those of *A. zuffianum* (8.5–12.0 × 6.5–9.0 µm vs. 7.0–8.4 × 5.6–7.0 µm). In addition, sexual stage of *A. guangxiense* is absent.

Auxarthronopsis Rahul Sharma, Y. Gräser & S.K. Singh

The genus *Auxarthronopsis* was established by Sharma et al. (2013) and previously comprises only two species, *A. bandhavgarhensis* Rah. Sharma, Y. Gräser & S.K. Singh and *A. guizhouensis* Z.F. Zhang & L. Cai (Zhang et al. 2017). Species of *Auxarthronopsis* are characterized by interlaced peridium, tapering appendages with multiple swollen septa, oblate ascospores with finely punctate walls, and asexual morphs of terminal and intercalary arthro- and aleurioco-nidia (Sharma et al. 2013). In this study, four new species *A. globiasca*, *A. pedicellaris*, *A. pulverea* and *A. stercicola* are described (Fig. 15).

Auxarthronopsis globiasca Z.F. Zhang & L. Cai, *sp. nov.*

Index Fungorum number: 556414, *Facesoffungi number*: FoF 08433; Fig. 18

Etymology: Referring to its globose asci.

Holotype: HMAS 247994.

Hyphae hyaline, septate, branched, smooth, 1.5–3.0 µm diam., sometimes cross connected, racquet hyphae present, up to 6 µm wide. **Sexual morph** *Ascomata* abundant, solitary or in clusters, surface powdery, subglobose to globose, pale yellow, 270–450 µm diam. *Peridial hyphae* septate, rough, thick-walled, pale brown, branched and anastomosed to form a reticuloperidium, terminated by short blunt prominences, 1.5–3.0 µm diam. *Asci* 8-spored, subglobose or globose, hyaline, 5.5–8.0 × 5.5–7.5 µm. *Ascospores* oblate, ellipsoidal, subglobose or globose in front view, smooth, hyaline, 2.5–3.5 × 2.0–3.0 µm (x ± SD = 2.9 ± 0.21 × 2.0 ± 0.24 µm, n = 50). **Asexual morph** *Arthroconidia* presented, abundant, mostly intercalary, few terminal and lateral, unicellular, cylindrical, ellipsoidal or clavate with truncated base, smooth, hyaline, 3.5–6.5 × 2.0–3.5 µm (x ± SD = 4.8 ± 0.73 × 2.7 ± 0.34 µm, n = 50), frequently separated by 1–3 autolytic connective cells.
Culture characteristics—Colonies on PDA attaining 31–36 mm diam. after 4 weeks, flat, felty, annular, margin fimbriate, seashell (5A2) to light yellow (4A3) from margin to center. Reverse cream-yellow (4A2) to orange at margin, brown (6D8) at middle, black (6F1) at center. Colonies on OA attaining 46–48 mm diam. after 4 weeks, flat, beige (4A1), aerial mycelia extremely sparse. Reverse beige (3A2). Colonies on SNA attaining 23–30 mm diam. after 4 weeks, margin rhizoids, aerial mycelia sparse, with floralwhite (30A2) ascomata scattered. Reverse ivory. Sporulation within 25 days on SNA.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.942°, E 110.524°, on soil, May 2016, Z.F. Zhang, HMAS 247994 (holotype designated here), ex-type within 25 days on SNA.

Notes: Our strains form a well supported distinct clade with *Auxarthronopsis* species (Fig. 15). *Auxarthronopsis*...
globiasca is phylogenetically allied with A. bandhavgarhensis, A. guizhouensis and A. pedicellaris. Ascomata of A. bandhavgarhensis are white and much larger than those of A. globiasca (500–1000 μm vs. 270–450 μm). A. globiasca differs from A. guizhouensis by the presence of asexual morph. In contrast to A. globiasca, conidia of A. pedicellaris are lateral or terminal.

Auxarthronopsis pedicellaris Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556415, *Facesoffungi number*: FoF 08434; Fig. 19

Etymology: Referring to the stalk-bearing arthroconidia.

Holotype: HMAS 248012.

Hyphae hyaline, septate, branched, smooth, 1.5–3.0 μm diam. *Asexual morph* Conidiophore-like stalk cylindrical, erect, straight or curved, septate, branched, smooth, thick-walled, hyaline, various in length, 1.0–2.5 μm wide. *Arthroconidia* abundant, lateral or terminal, stalked, occasionally sessile, unicellular, pyriform, ellipsoidal or globose with truncate base, smooth, hyaline, 3.5–6.5 × 2.0–3.5 μm (x ± SD = 4.8 ± 0.73 × 2.7 ± 0.34 μm, n = 50). *Sexual morph* not observed.

Culture characteristics—Colonies on PDA attaining 26–32 mm diam. after 4 weeks, flat, felty, annular, margin dentate, floralwhite (30A2). Reverse floralwhite (30A2) to bisque (7A2). Colonies on OA attaining 30–33 mm diam. after 4 weeks, flat, margin lobate, white. Reverse white. Colonies on SNA attaining 26–29 mm diam. after 4 weeks, margin entire, white, aerial mycelia sparse. Reverse white. Sporulation within 3 weeks.

Material examined: CHINA, Chongqing, Wulong, Erwang Cave, N 29.585°, E 108.001°, on rock, May 2016, Z.F. Zhang, HMAS 248012 (holotype designated here).
Notes: Auxarthronopsis pedicellaris is phylogenetically allied to A. bandhavgarhensis, A. guizhouensis and A. globiasca (Fig. 15), but can be distinguished by its lateral or terminal conidia and absence of intercalary conidia.

Auxarthronopsis pulverea Z.F. Zhang & L. Cai, sp. nov.
Index Fungorum number: 556416, Facesoffungi number: FoF 08435; Fig. 20
Etymology: Referring to the powdery conidia on OA medium.
Holotype: HMAS 248008.

Hyphae hyaline, septate, branched, smooth. Asexual morph Arthroconidia abundant, mostly intercalary or terminal, few lateral, unicellular, solitary, straight or slightly curved, hyaline, intercalary conidia cylindrical, terminal and lateral conidia cylindrical or ellipsoidal with truncated base, sessile or short stalked, frequently separated by 1–3 autolytic connective cells, 3.0–6.0 × 2.0–3.5 μm (x ± SD = 4.5 ± 0.76 × 2.6 ± 0.36 μm, n = 50). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 25–28 mm diam. after 4 weeks, flat, felty, annular, margin radially striate with lobate edge, beige (2A2) at margin, yellow (3A3-3B5) at middle, white to pale orange (3A2) in center. Reverse beige (2A2) to brown (4B8), with pale yellow (3A5) ring at middle. Colonies on OA attaining 29–34 mm diam. after 4 weeks, flat, felty, annular, margin radially striate with lobate edge, beige (2A2) at margin, yellow (3A3-3B5) at middle, white to pale orange (3A2) in center. Reverse beige (2A2) to brown (4B8), with pale yellow (3A5) ring at middle. Colonies on OA attaining 29–34 mm diam. after 4 weeks, flat, felty, annular, margin radially striate with lobate edge, beige (2A2) at margin, yellow (3A3-3B5) at middle, white to pale orange (3A2) in center. Reverse beige (2A2) to brown (4B8), with pale yellow (3A5) ring at middle. Colonies on OA attaining 29–34 mm diam. after 4 weeks, flat, felty, annular, margin radially striate with lobate edge, beige (2A2) at margin, yellow (3A3-3B5) at middle, white to pale orange (3A2) in center. Reverse beige (2A2) to brown (4B8), with pale yellow (3A5) ring at middle. Colonies on OA attaining 29–34 mm diam. after 4 weeks, flat, felty, annular, margin radially striate with lobate edge, beige (2A2) at margin, yellow (3A3-3B5) at middle, white to pale orange (3A2) in center. Reverse beige (2A2) to brown (4B8), with pale yellow (3A5) ring at middle.

Fig. 17 Auxarthron guangxiense (from ex-holotype CGMCC3.19634). a–c Upper and reverse views of cultures on PDA, OA and SNA 4 weeks after inoculation; d ascomata; e, f peridial hyphae; g–i ascii; j ascospores. Scale bars: e 50 μm; f 20 μm; g–j 10 μm
Fig. 18 Auxarthronopsis globiasca (from ex-holotype CGMCC3.19305). a–c Upper and reverse views of cultures on PDA, OA and SNA 4 weeks after inoculation; d ascomata; e peridial hyphae; f–i asci; j ascospores; k–m arthroconidia; n racquet hyphae; o connected hyphae. Scale bars: e–o 10 μm
Auxarthronopsis pulverea is phylogenetically closely related to *A. stercicola* (Fig. 15). However, terminal and lateral conidia of *A. stercicola* are much more abundant than those of *A. pulverea*.

Material examined: CHINA, Sichuan, Huaying, LiuJia Cave, N 30.41°, E 106.878°, on plant debris, May 2016, Z.F. Zhang, HMAS 248008 (holotype designated here), ex-type living culture CGMCC3.19312 = LC12521; ibid., LC12522.

Notes: *Auxarthronopsis pulverea* is phylogenetically closely related to *A. stercicola* (Fig. 15). However, terminal and lateral conidia of *A. stercicola* are much more abundant than those of *A. pulverea*.

Auxarthronopsis stercicola Z.F. Zhang & L. Cai, *sp. nov.*

Index Fungorum number: 556417, Facesoffungi number: FoF 08436; Fig. 21

Etymology: Referring to the substrate in which this species was isolated.

Holotype: HMAS 248015.

Hyphae hyaline, septate, branched, smooth, 1.0–3.0 μm wide. **Asexual morph** Arthroconidia abundant, intercalary, terminal, or lateral, unicellular, solitary, straight or curved, hyaline, intercalary conidia cylindrical, terminal and lateral conidia cylindrical or ellipsoidal with truncated base, sometimes irregularly swollen, sessile or short stalked, 2.5–5.0 × 2.0–3.0 μm (\(\bar{x} \pm SD = 3.7 \pm 0.56 \times 2.4 \pm 0.24 \mu m \), n = 60), frequently separated by 1–3 autolytic connective cells. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 21–26 mm diam. after 4 weeks, flat, felty, annular, margin undulate, beige (30A2) at margin, white to pale orange (3A2) in center. Reverse annular, beige (30A2) to pale brown (4B6). Colonies on OA attaining 25–28 mm diam.
after 4 weeks, flat, pulverulent, margin undulate, white. Reverse floralwhite (1A2). Sporulation within 3 weeks on OA. Colonies on SNA attaining 16–18 mm diam. after 4 weeks, radially striate with rhizoid margin, white. Reverse white.

Material examined: CHINA. Yunan, Yiliang Sanjiao Cave, N 25.134°, E 103.383°, on animal faeces, May 2016, Z.F. Zhang, HMAS 248015 (holotype designated here), ex-type living culture CGMCC3.19639 = LC12635; Guilin, Luotian Cave, N 24.948°, E 110.524°, on animal faeces, May 2016, Z.F. Zhang, LC12611.

Notes: Auxarthronopsis stercicola is phylogenetically closely related to A. pulverea (Fig. 15), but can be easily distinguished (see notes of A. pulverea).

Chrysosporium Corda

Chrysosporium was introduced by Corda (1833), and revealed to be polyphyletic based on ITS phylogeny (Vidal et al. 2000). The genus currently comprises 66 species (Wijayawardene et al. 2020), most of which are saprophytic and keratinolytic isolated from various habitats such as air, sea, sludge, waste water (Zhang et al. 2016). In this study, one new species is described as Chrysosporium pallidum (Fig. 15).

Chrysosporium pallidum Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556418, Facesoffungi number: FoF 08437; Fig. 22

Etymology: Referring to the color of ascomata, white to pale yellow.

Holotype: HMAS 247992.

Hyphae hyaline, septate, branched, smooth, 2.0–3.0 μm diam., racquet hyphae present, up to 6 μm wide. Sexual
morph Ascomata abundant, solitary, or in clusters, cottony, globose, white initially, becoming pale yellow when aging, with conidia produced on surface, up to 750 μm diam. Peridial hyphae difficult to distinguished from aerial hyphae, septate, branched and anastomosed, terminated by short blunt prominences, smooth, thick-walled, hyaline, 2.5–4.0 μm diam. Asci 8-spored, pyriform, subglobose or globose, hyaline, 8.0–13.0 × 7.5–10.5 μm. Ascospores oblate, globose in front view, hyaline, smooth, 2.5–3.5 μm (x ± SD = 3.0 ± 0.21 μm, n = 70). Sexual morph Arthroconidia abundant, intercalary, lateral or terminal, unicellular, hyaline; intercalary conidia cylindrical or ellipsoidal with truncated base, 3.5–6.5 × 2.0–3.5 μm (mean = 6.6 ± 1.28 × 2.9 ± 0.46 μm, n = 40); lateral or terminal conidia arising from aerial hyphae directly, pyriform or clavate with truncate base, 4.0–7.0 × 2.5–4.0 μm (mean = 5.3 ± 0.73 × 3.4 ± 0.43 μm, n = 40).

Culture characteristics—Colonies on PDA attaining 28–34 mm diam. after 4 weeks, flat, felty, annular, margin with fimbriate, ivory (1A1) to white from margin to center. Reverse ivory (1A1) to yellow (2A2) from margin to center. Colonies on OA attaining 27–30 mm diam. after 4 weeks, flat, felty, annular, white. Reverse white to beige (30A2). Colonies on SNA attaining 26–29 mm diam. after 4 weeks, margin rhizoids, floralwhite (1A2), aerial mycelia sparse. Reverse floralwhite (1A2). Sporulation within 3 weeks on SNA.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on animal faeces, May 2016, Z.F. Zhang, HMAS 247992 (holotype designated here), ex-type living culture CGMCC3.19575 = LC12583; ibid., LC12670.

Notes: Chrysosporium pallidum is phylogenetically allied to C. carmichaelii Oorschot and Myriodontium keratinophilum Samson & Polon (Fig. 15). C. pallidum differs from C. carmichaelii by its more abundant intercalary conidia and sessile lateral conidia. Conidia of Myriodontium keratinophilum are lateral with short stem (conidiogenous cell), comparing with sessile lateral conidia and the presence of intercalary, lateral or terminal of C. pallidum. In addition,
neither C. carmichaelii nor myriodontium keratinophilum produces sexual stage.

Class Sordariomycetes O.E. Erikss. & Winka

The classification of Sordariomycetes follow the latest treatment by Hongsanan et al. (2017) and Wijayawardene et al. (2017, 2018, 2020)

![Fig. 22 Chrysosporium pallidum (from ex-holotype CGMCC3.19575).](image)

Subclass Hypocreomycetidae O.E. Erikss. & Winka

Hypocreales Lindau

Hypocreales is characterized by pigment producing, brightly coloured perithecial ascomata, and typically ostiolate perithecial fruiting body (Rehner and Samuels 1995). Asexual morphs of _Hypocreales_, the form most frequently
encountered in nature, are moniliaceous and phialidic (Lombard et al. 2015). Hypocreales are highly diverse and currently comprise 14 families (Wijayawardene et al. 2020).

Cordycipitaceae Kreisel ex G.H. Sung et al.

Cordycipitaceae was validated by Sung et al. (2007a) to accommodate species of *Cordyceps* forming brightly coloured, fleshy stromata. Species of *Cordycipitaceae* are known as obligate saprotrophs, parasites and symbionts with insects and fungi or grasses, rushes or sedges (Phookamsak et al. 2019).

Amphichorda Fr.

Amphichorda was established by Fries (1825) with *A. felina* (DC.) Fr. as type. The genus is morphologically similar to *Beauveria* except its regular conidiogenous cells without elongate denticulate rachis. Currently there are two species in *Amphichorda*, and both of them are coprophilous (Zhang et al. 2017; Xu et al. 2018). We described *Amphichorda cavernicola* sp. nov. in this study (Fig. 23).

Amphichorda cavernicola Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 556419, Facesoffungi number: FoF 08438; Fig. 24

- **ARSEF 3405** *Beauveria pseudobassiana* CBS 250.34
- **ARSEF 7032** *Amphichorda cavernicola* IMI 228343
- **ARSEF 3436** *Beauveria varroae* CBS 607.80
- **ARSEF 2922** *Tolypocladium tundrense* ARSEF 4755
- **ARSEF 8257** *Amphichorda cavernicola* ARSEF 2694
- **ARSEF 2684** *Beauveria velata* CBS 541.81
- **ARSEF 5050** *Cordyceps militaris* CBS 607.80
- **ARSEF 5050** *Beauveria malwiensis*
- **ARSEF 1685** *Beauveria sunigi* ARSEF 250.34
- **ARSEF 4384** *Beauveria asiatica* ARSEF 7542
- **ARSEF 4598** *Beauveria australis* ARSEF 2694
- **ARSEF 4850** *Beauveria brongniartii* ARSEF 11741
- **ARSEF 611** *Beauveria brongniartii* ARSEF 2922
- **ARSEF 2641** *Beauveria amorpha* ARSEF 3405
- **ARSEF 1564** *Beauveria bassiana* ARSEF 1555
- **ARSEF 300** *Beauveria bassiana* ARSEF 2694
- **ARSEF 1711** *Beauveria australis* ARSEF 2641
- **ARSEF 1711** *Beauveria australis* ARSEF 2694
- **ARSEF 11741** *Beauveria australis* ARSEF 2641
- **ARSEF 300** *Beauveria bassiana* ARSEF 2641
- **ARSEF 1711** *Beauveria australis* ARSEF 2641
- **ARSEF 11741** *Beauveria australis* ARSEF 2641

Fig. 23 Maximum likelihood (ML) tree of *Amphichorda* and allied genera based on ITS sequences. Forty-nine strains are used. The tree is rooted with *Parengyodontium album* (IFM 57481 and IFM 64296). Tree topology of the ML analysis was similar to the BI. The Best scoring RAxML tree with a final likelihood value of -3338.441281. The matrix had 298 distinct alignment patterns, with 16 % of undetermined characters or gaps. Base frequencies estimated by jModelTest were as follows, $A = 0.2103, C = 0.3352, G = 0.2666, T = 0.1878$; substitution rates $AC = 1.0000, AG = 2.2239, AT = 1.0000, CG = 1.0000, CT = 3.4151, GT = 1.0000$; gamma shape = 0.4260. ML bootstrap values ($\geq 70 \%$) and Bayesian posterior probability ($\geq 90 \%$) are indicated along branches (ML/PP). Novel species are in bold font and “T” indicates type derived sequences.
Etymology: Referring to the cavernicolous habitat it was isolated.

Holotype: HMAS 248011.

Hyphae hyaline, septate, smooth-walled, 1.5–2.5 μm diam. Asexual morph Synnemata arising in the center part of colonies on OA or PDA with peptone, cylindrical with apical apex, tomentose, white. Conidiophores arising laterally from hyphae, cylindrical, straight or slightly curved, occasionally branched, hyaline. Conidiogenous cells borne on conidiophores or mycelia, fusiform or ellipsoidal, straight or irregularly bent, 4.5–8.0 × 2.0–3.0 μm. Conidia holoblastic, solitary or clumped, unicellular, broadly ellipsoidal to sub-globose, smooth, hyaline, 2.5–4.0 × 2.0–3.5 μm (x ± SD = 3.4 ± 0.36 × 2.8 ± 0.24 μm, n = 60). Chlamydospores and Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 9–15 mm diam. after 14 days, irregular, compact, extremely plicated and crack, cream-yellow (4A1) to seashell (30A2) in fruiting zone and tan (5A2) in aging zone, aerial mycelia sparse. Reserve compact and crack, cream-yellow (1A2) to brown from fruiting zone and tan (4E8) in aging zone. Colony on OA attaining 18–22 mm diam. after 14 days, dense, compact and plicated, margin radially striate with lobate edge, white to milk-white, with synnemata in center. Reserve pale yellow (4A2) with yellow-brown (4B8) margin. Colonies on SNA slowly growing, attaining 9–13 mm diam. after 14 days, margin entire, white, mycelia sparse, with white hyphae body. Reverse white. Sporulation within 10 days on OA and SNA.

Material examined: CHINA, Sichuan, Xingwen, Feng Cave, N28.186°, E105.148°, on bird faeces, May 2016, Z.F. Zhang, HMAS 248011 (holotype designated here), ex-type living culture CGMCC3.19571 = LC12448; ibid., LC12554; ibid., LC12577; Chongqing, Wulong, Sanwang Cave, N29.591°, E108.001°, on soil, May 2016, Z.F. Zhang, LC12481; Guangxi, Guilin, E’gu Cave, N24.942°,

Fig. 24 Amphichorda cavernicola (from ex-holotype CGMCC3.19571). a A. cavernicola on bird faeces; b–d upper and reverse views of cultures on PDA, OA and SNA 14 days after inoculation; e synnemata; f–j conidiophores, conidiogenous cells and conidia; k conidia. Scale bars: f–k 10 μm.
is polyphyly (Sung et al. 2007a; Lecanicillium showed that Cordycipitaceae based on multi-locus phylogeny studies of 2007a; Park et al. 2015; Huang et al. 2018). While, previous Pers and L. lecanii Microhilum H.Y. Yip & A.C. Rath, with, tinctly septate. approximately the same length as the ascus, slender, indis-

Ascospores hyaline, filiform, spirally twisted in the ascus, prominently cap, narrowly cylindrical with an inflated vase. hyaline, delicate, wallacei only observed. only observed in Sexual morph ellipsoidal, falcate, lunate or reniform. Crystals occasion-

Asexual morph Conidiophores commonly arising from aerial hyphae, erect, hyaline. Conidiogenous cells discrete aculeate phialides, usually solitary or verticillate, sometimes branched. Conidia adhering in more or less globose slimy heads and of two types, macroconidia first usually and then microconidia, aseptate. Macroconidia fusiform or falcate with more or less pointed ends; microconidia ellipsoidal, falcate, lunate or reniform. Crystals occasionally observed. Sexual morph only observed in Gamszarea wallacei on the pupal host. Perithecium hyaline, delicate, smooth, obclavate to naviculate. Asci 8-spored, with a prominent cap, narrowly cylindrical with an inflated vase. Ascospores hyaline, filiform, spirally twisted in the ascus, approximately the same length as the ascus, slender, indistinctly septate.

Type: Gamszarea wallacei (H.C. Evans) Z.F. Zhang & L. Cai

Notes: Lecanicillium was introduced by Gams and Zare (2001) to accommodate the taxa with aculeate phialides that cannot be classified in the genera such as Beauveria, Isaria Pers and Microhilum H.Y. Yip & A.C. Rath, with L. lecanii (Zimm.) Zare & W. Gams as the generic type (Sung et al. 2007a; Park et al. 2015; Huang et al. 2018). While, previous studies of Cordycipitaceae based on multi-locus phylogeny showed that Lecanicillium is polyphyle (Sung et al. 2007a; Sanjuan et al. 2014; Chiriví-Salomón et al. 2015; Kepler et al. 2017), and several species of Lecanicillium, including the type L. lecanii, were transferred to genus Akanthomyces Lebert (Kepler et al. 2017). Nevertheless, several distinctly separate clades remained (Figs. 25, 26). Three of our new species clustered with L. wallacei (H.C. Evans) H.C. Evans & Zare (teleomorph synonym: Torrubiella wallacei H.C. Evans), L. kalimantanense Kurihara & Sukarno, Verticillium indonesiacum Kurihara & Sukarno and several new Lecan-

cillum species published recently in a single clade in Cordycipitaceae, which represented a new genus, herein named as Gamszarea (Figs. 25, 26). The most closely related genus to Gamszarea is Simplicillium Zare & W. Gams. Species of Simplicillium usually have discrete solitary phialides arising from prostrate hyphae and short-ellipsoidal to subglobose or obclavate conidia (Zare and Gams 2008). On contrary, phialides of Gamszarea are aculeate, solitary or verticillate and the dimorphic conidia are lunate, fusiform or falcate.

Gamszarea wallacei (H.C. Evans) Z.F. Zhang & L. Cai, comb. nov.

Index Fungorum number: 556421, Facesoffungi number: FoF 08440
Basionym: Simplicillium wallacei H.C. Evans, Nova Hedwigia 73 (1–2): 43 (2001).
Synonym: Torrubiella wallacei H.C. Evans, Nova Hedwigia 73 (1–2): 46 (2001).
Lecanicillium wallacei (H.C. Evans) H.C. Evans & Zare, Mycological Research 112 (7): 816 (2008).
Holotype: Indonesia, Sulawesi, Dumoga Bone forest, on lepidopteran larva, IMI 331549, ex-type living culture, CBS 101237.

Notes: This species was first described as Simplicillium wallacei by Gams and Zare (2001) based on morphological features, and then transferred to Lecanicillium based on ITS analyses (Zare and Gams 2008). While, in the cladogram of Zare and Gams (2008), Lecanicillium wallacei clustered in a distinct clade between Lecanicillium and Simplicillium, which was consistent with our multi-locus analyses (Figs. 25, 26). Therefore, a new combination is proposed here, as Gamszarea wallacei.

Gamszarea indonesiacum (Kurihara & Sukarno) Z.F. Zhang & L. Cai, comb. nov.

Index Fungorum number: 556422, Facesoffungi number: FoF 08441
Basionym: Verticillium indonesiacum Kurihara & Sukarno, Mycoscience 50 (5): 377 (2009).
Holotype: Indonesia, East Kalimantan, Kutai National Park, on synnemata growing on a spider, BO22577, ex-type living culture, BTCC-F36 = NBRC 105408 = ID06-F0380.
ever, ITS-based phylogeny suggested a close affinity to
Verticillium indonesiacum was introduced as a
member of the Volutella aeria (CGMCC3.17945 and CGMCC3.17946).

Fig. 25 Maximum likelihood (ML) tree of Gamszarea, Lecanicillium
and allied genera in Cordycipitaceae based on ITS, LSU, SSU, EF1-α,
and RPB1 and RPB2 sequences. Seventy-six strains are used. The tree
is rooted with Volutella aeria (CGMCC3.17945 and CGMCC3.17946).
Tree topology of the ML analysis was similar to the BI. The Best scor-
ing RAxML tree with a final likelihood value of −41813.806368. The
ML substitution rates AC = 1.4660, AG = 3.7913, AT = 0.9486, CG =
0.9281, CT = 7.8283, GT = 1.0000; gamma shape = 0.5830. ML
bootstrap values (≥ 70 %) and Bayesian posterior probability (≥ 90 %)
are indicated along branches (ML/PP). Novel species are in bold font
and "T" indicates type derived sequences

Notes: Verticillium indonesiacum was introduced as a
species of Verticillium Nees (Plectosphaerellaceae) based
on morphological characters (Sukarno et al. 2009). How-
ever, ITS-based phylogeny suggested a close affinity to
Lecanicillium (Sukarno et al. 2009), despite its verticillate
phialides with branches that is more similar to
Verticillium (Sukarno et al. 2009). In our phylogenetic tree of Cordycipi-
taceae, V. indonesiacum clustered within Gamszarea clade
and its solitary or verticillate phialides and the mostly falcate conidia fit well to the general features of *Gamszarea*, which are distinctly different from *Verticillium* species with mainly verticillate phialides arising below the transverse septum along conidiophores and the cylindrical to oval conidia (Inderbitzin et al. 2011). Although macroconidia and microconidia can be easily distinguished in Fig. 2i, j (Sukarno et al. 2009), conidia were too few to measure the size. *Gamszarea indonesiaca* can be easily distinguished from other *Gamszarea* species by its more abundant verticillate phialides on the erect, septate and branched hyphae. (Figs. 25, 26), and its solitary or verticillate phialides and the mostly falcate conidia fit well to the general features of *Gamszarea*, which are distinctly different from *Verticillium* species with mainly verticillate phialides arising below the transverse septum along conidiophores and the cylindrical to oval conidia (Inderbitzin et al. 2011). Although gaps. Base frequencies estimated by jModelTest were as follows, A = 0.2220, C = 0.3155, G = 0.2645, T = 0.1980; substitution rates AC = 2.3755, AG = 2.4987, AT = 1.5316, CG = 0.9389, CT = 5.6398, GT = 1.0000; gamma shape = 0.5370. ML bootstrap values (≥ 70 %) and Bayesian posterior probability (≥ 90 %) are indicated along branches (ML/PP). Novel species are in bold font and “T” indicates type derived sequences.
Gamszarea kalimantanensis (Kurihara & Sukarno) Z.F. Zhang & L. Cai, **comb. nov.**

Index Fungorum number: 556423, *Facesoffungi number:* FoF 08442

Basionym: Lecanicillium kalimantanense Kurihara & Sukarno, Mycoscience 50 (5): 376 (2009).

Holotype: Indonesia, East Kalimantan, Kutai National Park, on exoskeleton of staphylinid-like beetle, BO22579, ex-type living culture, BTCC-F23 = NBRC 105406 = ID06-F0406.

Notes: Although the conidia of *Lecanicillium kalimantanense* varied significantly in size (Sukarno et al. 2009), macroconidia and microconidia can be easily distinguished (Fig. 2e–g in Sukarno et al. 2009). Based on the provided scale bars, we managed to measure the conidial size using Fig. 2g in Sukarno et al. (2009), 9.0–12.0 × 1.0–2.0 µm for macroconidia, and 4.5–7.5 × 1.0–2.0 µm for microconidia, which fitted well to the generic features of *Gamszarea*. Combining with phylogenetic data (Figs. 25, 26), we proposed this species as a new combination, *G. kalimantanensis*. It differs from other *Gamszarea* species in its longer conidia and more abundant verticillate phialides along the prostrate aerial hyphae.

Gamszarea restricta (Hubka, Kubáto, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, **comb. nov.**

Index Fungorum number: 557629, *Facesoffungi number:* FoF 08443

Basionym: Lecanicillium restrictum Hubka, Kubáto, Nonaka, Čmoková & Řehulka, Persoonia 40: 291 (2018).

Holotype: Czech Republic, Starý Bohumín, surface of the wooden barrel found during archaeological excavations, PRM 946543, ex-type living culture, CCF 5252 = CBS 143072.

Notes: *Lecanicillium restrictum* and *L. testudineum* Hubka, Schauflerová, Děniel & Jany were published by Crous et al. (2018), while only *Lecanicillium* species and two loci, ITS and EF1-α, were used in their study phylogenetic study. However, both the single and six-locus phylogeny (Figs. 25, 26) presented a highly support clade of *L. restrictum* and *L. testudineum* within the new genus *Gamszarea*. Meanwhile, morphological features of *L. restrictum*

Fig. 27 *Gamszarea hunicola* (from ex-holotype CGMCC3.19303). a–c Upper and reverse views of cultures on PDA, OA and SNA 4 weeks after inoculation; d–e conidiophores and phialides; f–g conidia in globose heads; h germinated conidia; i macroconidia and microconidia. Scale bars: d–i 10 µm
and *L. testudineum*, such as solitary or verticillate phialides produced on aerial hyphae, dimorphic conidia, fusiform or falcate macroconidia with pointed ends, and curved reniform with rounded ends, were consistent with the generic concept of *Gamszarea*. Therefore, they were proposed as new combinations, *G. restricta* and *G. testudinea*. *G. restricta* can be distinguished from other *Gamszarea* species by its larger macroconidia but smaller microconidia.

Gamszarea testudinea (Hubka, Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, *comb. nov.*

Index Fungorum number: 557630, *Facesoffungi number:* FoF 08444

Basionym: *Lecanicillium testudineum* Hubka, Kubátová, Schauflerová, Déniel & Jany, Persoonia 40: 293 (2018).

Synonym: *Lecanicillium coprophilum* Lei Su, Hua Zhu & C. Qin, Phytotaxa 387 (1): 58 (2019).

Holotype: Czech Republic, Prague, scales from the carapace of the captive red-eared slider, PRM 935078, ex-type living culture, CCF 5201 = CBS 141096.

Notes: See note of *Gamszarea restricta*. Blastn search with ITS sequence gave an almost 100% similarity between *Lecanicillium testudineum* and *L. coprophilum*, which was supported by our phylogenetic analyses (Figs. 25, 26). Morphological features of *L. testudineum* and *L. coprophilum* were very similar, except macroconidia, pointed ends in *L. testudineum* but rounded ends in *L. coprophilum*. However, it can be clearly noticed in Fig. 2e, g, h in Su’s article that the end of macroconidia *L. coprophilum* were slightly pointed more than that rounded. *L. coprophilum* was introduced by Su et al. in (2019), a bit later than *L. testudineum* (Crous et al. 2018). Therefore they were combined to *Gamszarea testudinea* here. *G. testudinea* morphological differed from other species of *Gamszarea* by its smaller conidia (macroconidia 3.5–6 × 1.0–1.5 μm, microconidia 2.5–3 × 1.0–1.5 μm for *G. testudinea*; 8.5–10.5 × 1.0–1.5 μm and 4.0–5.5 × 0.7–1.2 μm for *G. wallacei*; 9.0–12.0 × 1.0–2.0 μm and 4.5–7.5 × 1.0–2.0 μm for *G. kalimantanensis*; 9.0–13.0 × 1.5–2.5 μm and 3.5–6.5 × 1.0–1.5 for *G. humicola*; 7.0–9.5 × 1.5–2.5 μm and 3.0–5.0 × 1.5–2.0 μm for *G. lunata*; 6.0–10 × 1.0–1.5 μm and 2.5–3 × 1.0–1.5 μm for *Gamszarea restricta*) and the present of prismatic crystals (Crous et al. 2018; Su et al. 2019).

Gamszarea humicola Z.F. Zhang & L. Cai, *sp. nov.*

Index Fungorum number: 557631, *Facesoffungi number:* FoF 08445; Fig. 27

Etymology: Referring to the substrate where this fungus was isolated.

![Fig. 28 Gamszarea lunata (from ex-holotype CGMCC3.19315). a–c Upper and reverse views of cultures on PDA, OA and SNA 4 weeks after inoculation; d–f phialides and conidia in globose heads; g conidiophores and phialides; h macroconidia and microconidia. Scale bars: d–h 10 μm](image-url)
Holotype: HMAS 247987.

Hyphae hyaline, septate, smooth, 1.5–2.5 μm wide. Asexual morph Conidiophores arising from prostrate aerial hyphae, erect, hyaline, 1.0–2.5 μm diam. Phialides arising from prostrate aerial hyphae solitary, or in whorls of 2–6 at the apex of conidiophores, erect, aculeate, tapering to the apex, hyaline, 14.0–34.0 μm long, 1.0–2.5 μm diam. at base. Conidia unicellular, long fusiform, or curved to falcate, smooth, hyaline, each phialide producing one macroconidia and several microconidia, variable in size, aggregated in slimy head; macroconidia 9.0–13.0 × 1.5–2.5 μm (\(\bar{x} \pm SD = 10.7 \pm 1.1 \times 2.0 \pm 0.19 \mu m, n = 35 \)); microconidia 3.5–6.5 × 1.0–1.5 μm (\(\bar{x} \pm SD = 5.1 \pm 0.88 \times 1.3 \pm 0.15 \mu m, n = 50 \)). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 31–40 mm diam. after 4 weeks, flat, cottony, margin slightly undulate, white. Reverse plicate, cream yellow (4A1) to light yellow (3A3). Colonies on OA attaining 44–48 mm diam. after 4 weeks, flat, cottony, margin entire, white. Reverse cream-white. Colonies on SNA attaining 46–50 mm diam. after 4 weeks, flocculent, margin unclear, white. Reverse white. Sporulation within 20 days.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on soil, May 2016, Z.F. Zhang, HMAS 247987 (holotype designated here), ex-type living culture CGMCC3.19303 = LC12461; ibid., LC12462.

Notes: Gamszarea humicola is phylogenetically close to G. kalimantanensis, G. lunata and G. wallacei (Fig. 25). Morphologically, G. humicola differs from G. kalimantanensis by its mostly solitary phialides; from G. lunata by its longer macroconidia (9.0–13.0 μm vs. 7.0–9.5 μm); from G. wallacei in its wider phialides (1.0–2.5 μm vs. 0.7–1.2 μm) and macroconidia (1.5–2.5 μm vs. 1.0–1.5 μm).

Gamszarea lunata Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557632, Facesoffungi number: FoF 08446; Fig. 28

Etymology: Referring to the shape of its microconidia. Holotype: HMAS 247996.
Hyphae hyaline, septate, smooth, 1.0–2.5 μm wide. **Asexual morph** Conidiophores arising from prostrate aerial hyphae, erect, hyaline, 1.0–2.0 μm diam. Phialides arising from prostrate aerial hyphae solitary, or in whors of 2–4 at the apex of conidiophores, straight or slightly curved, tapering toward the apex, smooth, hyaline, 15.0–28.0 μm long, 1.0–2.0 μm diam. at base. Conidia unicellular, smooth, hyaline, each phialide producing one macroconidia and several microconidia, variable in size, aggregated in slimy head; microconidia, variable in size, aggregated in slimy head; macroconidia, 1.0–1.5 μm diam. at base. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 45–48 mm diam. after 4 weeks, cottony to pulverulent, slightly convex, margin entire, white. Reverse plicate, cream white to pale brown (7B4). Colonies on OA attaining 42–47 mm diam. after 4 weeks, flat, felty, white. Reverse cream-white to pale salmon (6A2). Colonies on SNA attaining 44–48 mm diam. after 4 weeks, flat, colorless, aerial mycelia extremely sparse. Reverse colorless. Sporulation within 3 weeks on PDA and OA.

Material examined: CHINA, Sichuan, Xingwen, Tianliang Cave, N 28.19°, E 105.139°, on rock, May 2016, Z.F. Zhang, HMAS 248009 (holotype designated here), ex-type living culture CGMCC3.19315 = LC12545; ibid., LC12546.

Notes: *Gamszarea microspora* can be easily distinguished from most species of *Gamszarea* by its significantly smaller conidia and the occasionally branched phialides. *G. microspora* differs from *G. indonesiaca* in the phialides which are mostly produced on prostrating aerial hyphae, while that of *G. indonesiaca* are mostly at the apex of the erect hyphae (Sukarno et al. 2009).

Lecanicillium W. Gams & Zare

See short notes of *Gamszarea*.

Lecanicillium magnisporum Z.F. Zhang & L. Cai, **sp. nov.**

Index Fungorum number: 557634, Facesoffungi number: FoF 08448; Fig. 30

Etymology: Referring to its larger conidia than other species in this genus.

Holotype: HMAS 248013.

Hyphae hyaline, septate, smooth, 0.5–2.5 μm wide. **Asexual morph** Conidiophores arising from aerial hyphae, erect, smooth, hyaline, 1.0–1.5 μm diam. Phialides arising from aerial hyphae solitary, or in whors of 2–5 at the apex of conidiophores, straight or slightly curved, tapering to the apex, smooth, hyaline, 17.0–37.0 μm long, 1.0–1.5 μm diam. at base. Conidia rare, unicellular, smooth, hyaline, variable in size; macroconidia long fusiform or falcate, 9.0–16.0 × 1.0–3.5 μm (x ± SD = 2.7 ± 0.33 × 1.6 ± 0.12 μm, n = 60). **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 42–47 mm diam. after 4 weeks, plicated, flocculent to pulverulent, margin entire, white. Reverse plicated, cream white to pale brown (7B4). Colonies on OA attaining 43–47 mm diam. after 4 weeks, flat, felty, white. Reverse cream-white to pale salmon (6A2). Colonies on SNA attaining 44–48 mm diam. after 4 weeks, flat, colorless, aerial mycelia extremely sparse. Reverse colorless. Sporulation within 3 weeks on PDA and OA.

Material examined: CHINA, Sichuan, Xingwen, Tianliang Cave, N 28.19°, E 105.139°, on rock, May 2016, Z.F. Zhang, HMAS 248009 (holotype designated here), ex-type living culture CGMCC3.19313 = LC12530; ibid., LC12531.

Notes: *Gamszarea microspora* can be easily distinguished from most species of *Gamszarea* by its significantly smaller conidia and the occasionally branched phialides. *G. microspora* differs from *G. indonesiaca* in the phialides which are mostly produced on prostrating aerial hyphae, while that of *G. indonesiaca* are mostly at the apex of the erect hyphae (Sukarno et al. 2009).
Material examined: CHINA, Chongqing, Wulong, Erwang Cave, N 29.585°, E 108.001°, on soil, May 2016, Z.F. Zhang, HMAS 248013 (holotype designated here), ex-type living culture CGMCC3.19304 = LC12468; ibid., LC12469; ibid., LC12470; Chongqing, Wulong, Sanwang Cave, N 29.591°, E 108.001°, on soil, May 2016, Z.F. Zhang, LC12647; ibid., LC12663.

Notes: *Lecanicillium magnisporum* is phylogenetically allied to *L. antillanum* (R.F. Castañeda & G.R.W. Arnold) Zare & W. Gams, which belongs to one of the remaining clades of *Lecanicillium* (Fig. 25), but can be distinguished by the larger conidia (2.0–3.0 µm vs. 0.5–1.5 µm wide for marcoconidia, 5.0–7.0 × 1.5–2.5 µm vs. 2.0–3.5 × 0.5–1.5 µm for microconidia) and low sequence similarities (96% similarity, 23 bp difference in 524 bp of ITS; 99% similarity, 6 bp difference in 823 bp of LSU; 91% similarity, 73 bp difference in 820 bp of RPB2; 96% similarity, 38 bp difference in 912 bp of EF1-α). However, further revisions of the remaining species of *Lecanicillium* are required (see notes of Gamszarea).

Simplicillium W. Gams & Zare

The genus *Simplicillium* was introduced by Zare and Gams (2001) with *S. lanosoniveum* (J. F. H. Beyma) Zare & W. Gams as the type species. The genus is characterised by predominantly solitary phialides, conidial masses either in globose slimy heads, short chains, or in sympodial succession (Zare and Gams 2001; Nonaka et al. 2013). *Simplicillium* species are widely distributed and considered as mammal- and plant-parasitic, symbiotic, entomopathogenic, fungicolous and nematophagous fungi (Wei et al. 2019). In this study, two new species are described as *Simplicillium album* and *S. humicola* (Fig. 31).
Simplicillium album Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557740, *Facesoffungi number:* FoF 08449; Fig. 32

Etymology: Referring to the color of its white colonies on plates.

Holotype: HMAS 248003.

Hyphae hyaline, separtate, smooth, 1.5–3.5 µm wide. **Asexual morph** Conidiophores simple, erect, cylindrical, smooth, hyaline. Phialides arising from prostrate aerial hyphae solitary, or in whorls of 2–3 at the apex of conidiophores, erect, tapering to the apex with basal septum, smooth, hyaline, 13.0–40.0 µm long, 1.5–3.0 µm wide at base. Conidia variable in size and shape, 1-celled, smooth, hyaline; *microconidia* oblong or ellipsoidal, 3.0–4.0 × 1.5–2.0 µm (x ± SD = 3.6 ± 0.37 × 1.7 ± 0.18 µm, n = 40), *macroconidia* fusiform or falcate, 8.0–11.0 (~13.0) × 2.0–3.5 µm (x ± SD = 9.7 ± 0.86 × 2.9 ± 0.31 µm, n = 20). Octahedral crystals present. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 27–29 mm diam. after 10 days, flat, cottony, margin entire, white, light yellow secretions exuded. Reverse plicate, beige (1A1) to bisque (4A2). Colonies on OA attaining 28–31 mm diam. after 10 days, flat, cottony, margin entire, white. Reverse seashell (5A3) to wheat. Colonies on SNA attaining 30–34 mm diam. after 10 days, cottony, margin entire, white, aerial mycelia sparse. Reverse white. Sporulation within 10 days.

Material examined: CHINA, Guangxi, Laibin, Sanshan Cave, N 23.41°, E 108.931°, on soil, May 2016, Z.F. Zhang, HMAS 248003 (holotype designated here), ex-type living culture CGMCC3.19635 = LC12442; Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on animal faeces, May 2016, Z.F. Zhang, LC12543; ibid., LC12557.

Notes: *Simplicillium album* is phylogenetically close to *S. calcicola* Z.F. Zhang, F. Liu & L. Cai, *S. lanelllica* (F.E.V. Sm.) Zare & W. Gams and *S. sympodiophorum* Nonaka, Kaifuchi & Masuma (Fig. 31), while *S. sympodiophorum* is distinguishable in producing monomorphic sympodial conidia. *S. album* shares similar morphological characters with *S. calcicola* and *S. lanelllica* in producing dimorphic...
conidia. However, *S. album* produces larger macroconidia (8.0–11.0 (–13.0) × 2.0–3.5 μm) than *S. calcicola* (4.5–8.0 × 1.0–2.0 μm) and *S. lamellicola* (4.5–9.0 × 0.8–1.2 μm). In addition, the octahedral crystals of *S. calcicola* are absent.

Simplicillium humicola Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557741, Facesoffungi number: FoF 08450; Fig. 33

Etymology: Referring to the substrate in which this fungus was isolated.

Holotype: HMAS 247991.

Hyphae hyaline, septate, smooth, 1.5–3.5 μm wide. **Asexual morph** **Phialides** arising from prostrate aerial hyphae solitary, or up to 2–3 in whorls, sometimes with short stalks, erect, tapering to the apex, straight or slightly curved, with basal septum, smooth, hyaline, 20.0–35.0 (–47.0) μm long, 1.5–3.0 μm wide at base. **Conidia** 1-celled, oblong or ellipsoidal, smooth, hyaline, 3.0–5.0 × 1.5–3.0 μm (x± SD = 3.7 ± 0.56 × 2.3 ± 0.3 μm, n = 60). Octahedral crystals presented. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 28–31 mm diam. after 15 days, plicate, felty, margin entire, white, light yellow secretions exuded. Reverse plicate, light yellow (4A2) to brown (5C8). Colonies on OA attaining 30–36 mm diam. after 15 days, aerial mycelia abundant, fluffy, cottony, margin entire, white. Reverse floral white (4A2) to pale brown (7B4). Colonies on SNA attaining 30–38 mm diam. after 15 days, flat, ulotrichy, margin entire, white. Reverse white. Sporulation within 10 days.

Material examined: CHINA, Guangxi, Guilin, E’gu Cav, N 24.942°, E 110.511°, on soil, May 2016, Z.F. Zhang, HMAS 247991 (holotype designated here), ex-type living culture CGMCC3.19573 = LC12493; ibid., LC12494.

Notes: *Simplicillium humicola* is phylogenetically allied to *S. formicae* Nonaka, Kaifuchi & Masuma and *S. obclavatum* Nonaka, Kaifuchi & Masuma (Fig. 31), but morphologically differs in conidial shape and size (globose to ellipsoidal, 2.0–3.5 μm long in *S. formicae*; 2.5–3.5 μm long in *S. obclavatum*). Meanwhile, phialides of *S. obclavatum* are always solitary.

Nectriaceae Tul. & C. Tul.

The family *Nectriaceae* is characterised by uniloculate, white, yellow, orange-red or purple ascomata that change colour in KOH. The asexual morphs of *Nectriaceae* are phialidic, producing amerosporous to phragmosporous conidia.
The majority of species are soil-borne saprobes or weak to virulent, facultative or obligate plant pathogens (Lombard et al. 2015).

Paracremonium L. Lombard & Crous

The genus *Paracremonium* was established to accommodate *Acremonium recifei* and could be distinguished from other acremonium-like genera by the formation of sterile coils from which conidiophores radiate with inconspicuously swollen septa in the hyphae (Lombard et al. 2015). However, among the currently accepted six species, *P. binewijzendii* Houbraken, van der Kleij & L. Lombard, *P. contagium* L. Lombard & Crous, *P. inflatum* L. Lombard & Crous, *P. moubasheri* Al-Bedak & M.A. Ismail, *P. pembeum* S.C. Lynch & Eskalen and *P. variiforme* Z.F. Zhang, F. Liu & L. Cai, only *P. inflatum* produces sterile coils (Lombard et al. 2015; Lynch et al. 2016; Crous et al. 2017; Zhang et al. 2017; Al-Bedak et al. 2019). Sterile coils is thus no longer a significant distinguishing character of the genus from allied genera. In this study, two new species named as *Paracremonium apiculatum* and *P. ellipsoideum* are described (Fig. 34).

Paracremonium apiculatum Z.F. Zhang & L. Cai, *sp. nov.*

Index Fungorum number: 557742, Facesoffungi number: FoF 08451; Fig. 35

Etymology: Referring to its terminally apiculate conidia.

Holotype: HMAS 248078.

Hyphae hyaline, smooth, thick-walled, septate, branched, 2.0–7.0 µm diam. *Asexual morph* Conidiophores arising from vegetative hyphae solitary or tightly aggregated in cream-white, slimy sporulation, erect, simple or mostly branched, septate, bearing whorls of 2–6 conidiogenous cells. *Conidiogenous cell* terminal or lateral, straight, acicular, tapering towards apex, smooth, hyaline, 14–24 µm long, 1.5–3.0 µm wide at base, with prominent periclinal thickening and inconspicuous collarette, 1.0–1.5 µm diam. *Conidia* abundant, unicellular, subglobose to globose, apiculate, smooth, thick-walled, hyaline, 3.5–5.0 µm (x ± SD =

Fig. 33 *Simplicillium humicola* (from ex-holotype CGMCC3.19573). a–c Upper and reverse views of cultures on PDA, OA and SNA 15 days after inoculation; d–f conidiophores and phialides; g conidia. Scale bars: d–g 10 µm
phylogenetically allied species (Fig. 34), living culture CGMCC3.19309 = LC12501; ibid., LC12502. Zhang, HMAS 248078 (holotype designated here), ex-type jiao Cave, N 25.134°, E 103.383°, on soil, May 2016, Z.F. (1A2). Sporulation within 10 days.

sporulation scattered. Reverse annular, white to floralwhite to floralwhite, aerial mycelia extremely sparse with slimy mm diam. after 15 days, flat, annular, margin entire, white to floralwhite, aerial mycelia extremely sparse with slimy sporulation in center. Reverse floralwhite (1A2). Colonies on SNA attaining 28–33 cream-white (1A1), aerial mycelia sparse. Reverse white to 25–30 mm diam. after 15 days, flat, felty, margin entire, not observed.

4.13 ± 0.3 µm, n = 60). Chlamydospores and Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 25–30 mm diam. after 15 days, flat, felty, margin entire, cream-white (1A1), aerial mycelia sparse. Reverse white to beige (30A1). Colonies on OA attaining 24–33 mm diam. after 15 days, flat, margin unclear, aerial mycelia extremely sparse, with cream-white and slimy sporulation in center. Reverse floralwhite (1A2). Colonies on SNA attaining 28–33 mm diam. after 15 days, flat, annular, margin entire, white to floralwhite, aerial mycelia extremely sparse with slimy sporulation scattered. Reverse annular, white to floralwhite (1A2). Sporulation within 10 days.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on soil, May 2016, Z.F. Zhang, HMAS 248078 (holotype designated here), ex-type living culture CGMCC3.19309 = LC12501; ibid., LC12502. Notes: P. apiculatum can be easily distinguished from phylogenetically allied species (Fig. 34), P. variiforme, by its smaller ellipsoidal conidia with apiculate bases, which are ovoid or elliptical in P. variiforme (3.5–5.0 µm vs. 9.0–14.5 µm). Moreover, its conidiogenous cells are much shorter than those of P. variiforme (14–24 µm vs. 18–41 µm).

Paracremonium ellipsoideum Z.F. Zhang & L. Cai, sp. nov. Index Fungorum number: 557743, Facesoffungi number: FoF 08452; Fig. 36

Etymology: Referring to the ellipsoidal conidia of this species.

Holotype: HMAS 248016.

Hyphae hyaline, smooth, thick-walled, septate, branched. Asexual morph Sporulation abundant, white, slimy. Conidiophores arising from vegetative hyphae solitary or in clusters, erect, branched, septate, thick-walled, hyaline, apex slightly swollen. Conidiogenous cells borne on aerial hyphae solitary or in whorls of 2–6 at apex of conidiophores, straight, acicular, tapering towards apex, smooth, hyaline, 22–38 µm long, 2.5–3.5 µm wide at base, with prominent

 Springer
periclinal thickening and inconspicuous collarette, 1.5–2.0 µm diam. Conidia in slimy head, abundant, unicellular, ellipsoidal with apiculate bases, smooth, thick-walled, hyaline, 5.5–8.0 × 3.5–5.0 µm (X ± SD = 6.5 ± 0.62 × 4.2 ± 0.28 µm, n = 60). Chlamydospires and not observed.

Culture characteristics—Colonies on PDA attaining 33–37 mm diam. after 15 days, flat, felty, margin entire, white to cream-yellow (30A2), aerial mycelia sparse. Reverse white to bisque (5A2). Colonies on OA attaining 33–37 mm diam. after 15 days, flat, margin unclear, aerial mycelia extremely sparse, with cream-white and slimy sporulation in center. Reverse light yellow (1A2). Colonies on SNA attaining 32–39 mm diam. after 15 days, flat, annular, margin entire, white to light yellow (1A2), aerial mycelia extremely sparse, with slimy sporulation scattered. Reverse annular, white to light yellow (1A2). Sporulation within 10 days.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on sewage, May 2016, Z.F. Zhang, HMAS 248016 (holotype designated here), ex-type living culture CGMCC3.19316 = LC12551; ibid., LC12552.

Notes: Phylogenetic analysis based on ITS, LSU and TUB sequences showed that new species Paracremonium...
ellipsoideum was closely related to Paracremonium inflatum and P. moubasheri (Fig. 34), but could be easily differentiated by its ellipsoidal conidia with apiculate bases, rather than the curved ellipsoidal to fusiform conidia in P. inflatum. In addition, conidiophores of P. inflatum are unbranched or rarely branched, differed from other species in Paracremonium by its branched conidiophores and ellipsoidal conidia with apiculate bases.

Microascales Luttr. ex Benny & Kimbr.

The order is characterized by nonstromatic black perithecial ascomata with long necks or rarely with cleistothecial ascomata that lack paraphyses, and globose and evanescent asci, developing singly or in chains (Réblová et al. 2011). Currently, Microascales comprise four families, i.e. Ceratocystidaceae, Chadefaudiellaceae, Halosphaeraceae, and Microascaceae (Kirk et al. 2008; Réblová et al. 2011).

Fig. 36 Paracremonium ellipsoideum (from ex-holotype CGMCC3.19316). a–c Upper and reverse views of cultures on PDA, OA and SNA 15 days after inoculation; d sporulation on PDA under stereomicroscope; e–g conidiophores, phialides and conidia; h phialides borne on aerial hyphae and conidia in globose head. i conidia. Scale bars: e–i 10 µm
Microascaceae Luttr. ex Malloch

Microascaceae was established by Luttrel (Malloch 1970) to accommodate a morphologically heterogeneous group of fungi. Species of the family are characterized by the presence of mostly annelidic asexual morphs with dry aseptate conidia and by sexual morphs that form cleistothelial or perithecial, carbonaceous ascomata producing reniform, lunate or triangular ascospores with or without germ pores. Most species of Microascaceae are reported as saprobiont or plant pathogens, and others are opportunistic pathogens of humans and show intrinsic resistance to antifungal agents (Sandoval-Denis et al. 2016b).

Microascus Zukal

The genus Microascus was established by Zukal (1985) with M. longirostris Zukal as the type species, and the asexual morphs were traditionally included in Scopulariopsis Bainier. Several authors subsequently demonstrated by culturing, mating studies and molecular methods, that the sexual morphs of Scopulariopsis belong to the ascomycete genus Microascus (Morton and Smith 1963; Issakainen et al. 2003). Sandoval-Denis et al. (2016a) refined the generic delimitations in Microascaceae and updated their circumscriptions based on multi-locus phylogeny. Members of the newly refined Microascus were characterized by dark-coloured colonies, mostly brown to green-brown mycelia, solitary conidiogenous cells (annelides) with long and narrow annelated zone, smooth to roughened conidia, solitary ascocarps with or without germ pores. Most species of Microascaceae are reported as saprobiont or plant pathogens, and others are opportunistic pathogens of humans and show intrinsic resistance to antifungal agents (Sandoval-Denis et al. 2016b).

Microascus collaris Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557744, Facesoffungi number: FoF 08453; Fig. 38

Etymology: Referring to its long neck of ascomata.

Holotype: HMAS 248018.

Hyphae hyaline to pale brown, septate, branched, thin- and smooth-walled 1.5–2.5 µm. Sexual morph Ascomata abundant, ostiolate, immersed or semi-immersed, subglobose or globose, black, 190–280 µm diam., 200–340 µm high, glabrous, with 1–2 cylindrical ostiolar neck, up to 250 µm, peridium with a textura angularis. Asci 8-spored, ovate to globose, hyaline, 9.0–13.5 × 8.5–12.5 µm. Ascospores triangular to lunate, smooth, thick-walled, pale yellow, 4.5–7.0 × 3.5–5.5 µm (x ± SD = 6.0 ± 0.59 × 4.4 ± 0.54 µm, n = 50). Asexual morph conidiophores indistinctive or simple, cylindrical, smooth-walled, pale yellow. Conidiogenous cells solitary on aerial hyphae, or clustered on conidiophores, cylindrical to ampulliform, slightly curved, smooth, pale yellow, 7.5–14.0 × 2.5–3.5 µm, with conspicuous collarette. Conidia aggregated in slimy head, ellipsoidal, smooth, hyaline to pale yellow, 4.0–6.0 × 3.0–4.0 µm (x ± SD = 4.9 ± 0.56 × 3.4 ± 0.32 µm, n = 50), with truncated base.

Culture characteristics—Colonies on PDA attaining 10–13 mm diam. after 4 weeks, compact, convex with papillate surface, margin dentate, black, aerial mycelia extremely sparse. Reverse crack, black. Colonies on OA attaining 25–26 mm diam. after 4 weeks, surface undulate, margin entire, dark brown (5A8) to black, with black ascomata scattered. Reverse cream-colored. Colonies on SNA attaining 18–22 mm diam. after 4 weeks, flat, margin entire with rhizoids, white to grey-yellow (4A2), with black ascomata scattered. Sporulation within 20 days.

Material examined: CHINA, Guangxi, Laibin, Sanshan Cave, N 23.41°, E 108.931°, on plant debris, May 2016, Z.F. Zhang, HMAS 248018 (holotype designated here), ex-type living culture CGMCC3.19321 = LC12598; ibid., LC12599.

Notes: Phylogenetically, our strains nested within the Microascus clade based on ITS, LSU, TUB and EF1-α sequences (Fig. 37) and its morphological characteristics fit well to this genus, i.e. ampulliform or lageniform conidiogenous cells and smooth- and thin-walled or finely rough- and thick-walled conidia (Sandoval-Denis et al. 2016a).

Microascus collaris is phylogenetically closely related to M. trautmannii Woudenb. & Samson (Fig. 37). However, M. collaris can be distinguished from M. trautmannii by the presence of sexual stage, shorter conidiogenous cells (7.5–14.0 µm vs. 16.0–22.0 µm) and wider conidia (3.0–4.0 µm vs. 2.5–3.0 µm). In morphology, M. pyramidus resembles M. collaris but can be differentiated by its longer asci (13.0–18.0 µm vs. 9.0–13.4 µm) and wider ascospores (5.0–6.5 µm vs. 3.5–5.5 µm).

Microascus levis Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557745, Facesoffungi number: FoF 08454; Fig. 39

Etymology: Referring to its smooth conidia.

Holotype: HMAS 248002.

Microascus levis was described (Fig. 37). However, M. levis can be distinguished from M. trautmannii by the presence of sexual stage, shorter conidiogenous cells (7.5–14.0 µm vs. 16.0–22.0 µm) and wider conidia (3.0–4.0 µm vs. 2.5–3.0 µm). In morphology, M. pyramidus resembles M. levis but can be differentiated by its longer asci (13.0–18.0 µm vs. 9.0–13.4 µm) and wider ascospores (5.0–6.5 µm vs. 3.5–5.5 µm).
Hyphae pale brown to brown, septate, branched, smooth-or rough-walled, 1.5–3.5 μm diam. **Asexual morph** Conidiophores simple, cylindrical, smooth, hyaline to pale brown. **Conidiogenous cell** borne laterally on aerial hyphae, or lateral or at the apex of conidiophores, ampulliform or irregular shapes, sometimes curved, smooth-walled, pale brown, 6.0–12.5 × 2.5–5.0 μm. **Conidia** arranged in chains, sub-globose to globose, smooth-walled, pale brown, 5.5–8.5 (–9.5) × 5.0–8.5 μm (x ± SD = 6.8 ± 0.83 ± 6.2 ± 0.79 μm, n = 55). **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 23–25 mm diam. after 3 weeks, felt, compact, plicated, convex, margin entire to undulate, gray-yellow (4A2) to dark green (28E2) from margin to center, with light-colored margin. Reverse plicated, sunken, gray-yellow (4A2) to dark green (28E2). Colonies on OA attaining 32–40 mm diam. after 3 weeks, flat, white to cream-colored, margin entire, aerial mycelia sparse. Reverse white to cream-colored. Colonies on SNA attaining 30–34 mm diam. after 3 weeks, flat, margin entire, pale grey (30B2) to grey-yellow (30B3). Reverse pale grey (30B2) to grey-yellow (30B3). Sporulation within 15 days.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.94°, E 110.52°, on soil, May 2016, Z.F. Zhang, HMAS 248002 (holotype designated here), ex-type living culture CGMCC3.19308 = LC12495; ibid., LC12447.

Notes: *Microascoctus levis* is phylogenetically closely related to *M. cirrosus* Curzi. Whereas, the conidia of *M. levis* are subglobose to globose, rather than subglobose to obovate in *M. cirrosus*. In addition, the sexual stage of *M. levis* is absent. In morphology, *M. levis* is similar to *M. restrictus* Sand.-Den., Gené & Deanna A. Sutton and *M. verrucosus* Sand.-Den., Gené & Cano. While *M. levis* has larger conidia than *M. restrictus* (5.5–8.5 (–9.5) × 5.0–8.5 vs. 4.5–6.0 × 4.0–5.5) and the conidiogenous cell of *M. levis* is smooth-walled rather than typically warty in *M. verrucosus*. Meanwhile, colonies of these three closely related species on OA are obviously different (white to cream-colored with entire and flat margin for *M. levis*, olive brown to brown with an irregular undulate margin for *M. restrictus*, olive grey with an immersed and slightly undulated margin for *M. verrucosus*).

Microascoctus sparsimycelialis Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557746, **Facesoffungi number:** FoF 08455; Fig. 40

Etymology: Referring to its sparse aerial mycelia on media.

Holotype: HMAS 248006.

Hyphae pale brown to brown, septate, branched, thick-walled, 1.5–3.5 μm diam, swollen to globose sometimes, up to 10 μm diam., aerial hyphae becoming dark brown and clustered when aging. **Asexual morph** Conidiophores simple, cylindrical to ellipsoidal, smooth, pale brown to brown. **Conidiogenous cells** solitary on aerial hyphae, or in whorls of 2–3 at apex of conidiophores, ellipsoidal, ampulliform or irregular shapes, straight or slightly curved, smooth or finely roughened, pale brown to brown, 5.0–10.0 (–14.0) × 3.0–5.0 μm, with conspicuous collar. **Conidia** in long chains, ovoid to globose, smooth or finely roughened, thick-walled, pale brown, 3.5–6.0 × 3.0–5.5 μm (x ± SD = 4.8 ± 0.58 × 4.31 ± 0.55 μm, n = 60), with apical base. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 9–13 mm diam. after 3 weeks, compact, convex with crack surface, margin crenate, cream-white to grey-yellow (29D3), aerial mycelia sparse. Reverse crack, pale yellow-green (29A2) with dark green (29B2) to grey-yellow (29B3). Colonies on OA are obviously different (white to cream-colored with entire and flat margin for *M. levis*, olive brown to brown with an irregular undulate margin for *M. restrictus*, olive grey with an immersed and slightly undulated margin for *M. verrucosus*).

Microascoctus sparsimycelialis is phylogenetically and morphologically closely related to *M. restrictus* and *M. verrucosus* (Fig. 37). Colonies of *M. sparsimycelialis* on OA are dark green with entire margin, while these of *M. restrictus* are olive green with irregular margin. *M. sparsimycelialis* differs from *M. verrucosus* by its smooth conidiogenous
cells, rather than sparsely warted in *M. verrucosus*. Moreover, conidia of *M. sparsimycelialis* are pale brown with apical base, comparing to that being dark brown with truncate base in *M. restrictus* and *M. verrucosus*. In addition, both of *M. restrictus* and *M. verrucosus* produce solitary conidia laterally from vegetative hyphae, which is not the case in *M. sparsimycelialis*.

Microascus superficialis Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557747, *Facesoffungi number*: FoF 08456; Fig. 41

Etymology: Referring to its superficial ascomata.

Holotype: HMAS 248005.

Hyphae hyaline to pale brown, septate, branched, smooth. **Sexual morph** *Ascomata* black, superficial or semi-immersed, glabrous, ostiolate, subglobose to globose, 215–350 µm diam., with a short cylindrical ostiolar neck, peridium with a textura angularis. *Asci* hyaline, 8-spored, irregularly ellipsoidal to subglobose, 12.0–15.0 × 9.0–11.5 µm. *Ascospores* triangular, yellow-brown, smooth, thick-walled, 5.5–7.0 × 4.0–5.5 µm (\(\bar{x} \pm SD = 6.4 \pm 0.41 \times 4.8 \pm 0.34 \mu m, n = 50\)). **Asexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 12–17 mm diam. after 4 weeks, compact, rugged, margin undulate, cream-yellow (5A2) to red-brown (6C8), aerial mycelia sparse. Reverse crack, cream-yellow (5A2) to pale red-brown (6B5). Colonies on OA attaining 30–32 mm diam. after 4 weeks, plicated, margin undulate, white to beige (4A1) with dark-grey (7C1) circle, aerial mycelia sparse. Reverse white to pale salmon (5A2). Colonies on SNA attaining 17–19 mm diam. after 4 weeks, flat, compact, margin fimbriate, beige (30A2) to pale grey (30C4). Reverse beige to pale grey. Sporulation within 20 days on OA and SNA.

Material examined: CHINA, Guangxi, Laibin, Sanshan Cave, N 23.41°, E 108.931°, on animal faeces, May 2016, Z.F. Zhang, HMAS 248005 (holotype designated here), ex-type living culture CGMCC3.19638 = LC12597; ibid., LC12600; ibid., LC12601.

Notes: *Microascus superficialis* is phylogenetically closely related to *M. croci* (J.F.H. Beyma) Sand.-Den., Gené & Guarro (Fig. 37), while in contrast to *M. superficialis*, no sexual morph was observed in *M. croci*. Morphologically, *M. superficialis* shares similar sexual morph with *M. pyramidus* G.L. Barron & J.C. Gilman. However, ascospores of *M. pyramidus* have attenuated ends and often acquire a nearly square shape (Sandoval-Denis et al. 2016a). Meanwhile, *M. pyramidus* grows faster (40–50 mm in 4 weeks) than our new species on PDA (Barron et al. 1961).

Microascus trigonus Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557748, *Facesoffungi number*: FoF 08457; Fig. 42

Etymology: Referring the shape of the ascospores.

Holotype: HMAS 248001.

Hyphae hyaline, septate, branched, smooth, thin-walled, 1.5–3.0 µm diam. **Sexual morph** *Ascomata* abundant, black, superficial, glabrous, subglobose to globose, 182–294 µm diam, with a short cylindrical ostiolar neck; peridium with a textura angularis. *Asci* short clavate, subglobose to globose, hyaline, 8-spored, 9.0–17 × 8.0–12 µm. *Ascospores* triangular, smooth, thick-walled, pale brown, 4.5–6.0 × 3.5–5.5 µm (\(\bar{x} \pm SD = 5.7 \pm 0.43 \times 4.3 \pm 0.53 \mu m, n = 50\)). **Asexual morph** conidiophores simple, straight, septate, occasionally branched, hyaline. *Conidiogenous cells* solitary on aerial hyphae, or in whorls of 2–3 on apex of conidiophores, lageniform to ampulliform, straight or slightly curved, pale brown, 4.5–10.0 (–14.5) × 2.5–4.5 µm. *Conidia* in long chains, ellipsoidal to globose, smooth, thick-walled, hyaline to pale brown, 3.5–5.5 × 3.0–4.5 µm (\(\bar{x} \pm SD = 4.5 \pm 0.47 \times 3.8 \pm 0.29 \mu m, n = 70\)).

Culture characteristics—Colonies on PDA attaining 26–30 mm diam after 3 weeks, felty, compact, plicated, convex, margin undulate, beige (30A2) to whitesmoke (4A2) with lightgrey (1C4) ring. Reverse plicated, crack, beige (30A2) to oldlace (5A2) with lightgray ring (1C4). Colonies on OA attaining 34–36 mm diam after 3 weeks, flat, margin entire, white to dark brown (5F8). Reverse white to pale brown (5B3). Colonies on SNA attaining 28–36 mm diam after 3 weeks, flat, margin fimbriate, floralwhite (1A2) to yellow-green (2A2). Reverse floralwhite (1A2) to pale yellow-green (2A2). Sporulation within 15 days.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.948°, E 110.524°, on soil, May 2016, Z.F. Zhang, HMAS 248001 (holotype designated here), ex-type living culture CGMCC3.19636 = LC12520; ibid., LC12600; ibid., LC12601.

Notes: *Microascus superficialis* is phylogenetically closely related to *M. croci* (J.F.H. Beyma) Sand.-Den., Gené & Guarro. **Microascus superficialis** shares similar sexual morph with *M. pyramidus* G.L. Barron & J.C. Gilman.
faeces, May 2016, Z.F. Zhang, LC12559; ibid., LC12586; ibid., LC12631.

Notes: *Microascus trigonus* is phylogenetically closely allied to *M. chartarus* (G. Sm.) Sand.-Den. (Fig. 37), but can be distinguished by the absence of sexual morph with ovate, green-brown, and frequently pointed conidia. Morphologically, *M. alveolaris* resembles *M. trigonus*. However, the conidia in *M. alveolaris* are ellipsoidal, navicular or bullet-shaped rather than ellipsoidal to globose in *M. trigonus*.

Pseudoscopulariopsis Sand.-Den., Gené & Guarro

Pseudoscopulariopsis was established to accommodate species that are generally similar to *Scopulariopsis*, but differs in the gray or olivaceous colonies, ampulliform annelides and navicular to fusiform ascospores without germ
pores (Sandoval-Denis et al. 2016a). Currently, this genus contains only two species. *Pseudoscopulariopsis asperispora* sp. nov. is described below (Fig. 37).

Pseudoscopulariopsis asperispora Z.F. Zhang & L. Cai, *sp. nov.*

Index Fungorum number: 557749, Facesoffungi number: FoF 08458; Fig. 43

Etymology: Referring to its rough-walled conidia.

Holotype: HMAS 247989.

Hyphae pale brown to brown, septate, branched, rough-and thick-walled, 1.5–3.5 µm diam. **Asexual morph** **Conidiophores** arising from hyphae, irregularly cylindrical,
branched 1–3 times, smooth or slightly rough, thick-walled, hyaline to pale brown, 2.0–4.0 µm diam. at base, swollen at apex, up to 6.5 µm diam. Conidiogenous cells in whorls of 2–6 at apex of conidiophores, ampulliform or cylindrical, straight or slightly curved, smooth, thin-walled, pale brown, 5.5–10.0 (−12.0) × 2.5–4.5 µm, with inconspicuous annelidic. Conidia in long chains, subglobose to globose, rough, thick-walled, brown, 4.5–7.5 × 4.5–7.0 µm (̄x ± SD = 6.0 ± 0.67 × 5.6 ± 0.66 µm, n = 60), with truncated base. Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 21–25 mm diam. after 3 weeks, low convex, margin erose, pale yellow-green (29D5) to olive (29F4), with ivory (29A2) margin. Reverse yellow-green (29D5) to olive (29F4) with ivory (29A2) margin. Colonies on OA attaining 42–45 mm diam. after 3 weeks, flat, slightly raised

Fig. 40 Microascus sparsimycelialis (from ex-holotype CGMCC3.19307). a–e Upper and reverse views of cultures on PDA, OA and SNA 3 weeks after inoculation; d–g conidiogenous cells and conidia in chains; h conidia; i swollen hyphae. Scale bars: d–i 10 µm
at center, margin erose, dark-brown (5F8) to black, aerial mycelia sparse. Reverse yellow-green (29A5). Colonies on SNA attaining 18–22 mm diam. after 3 weeks, flat, margin radially striate with lobate edge, dark olive with yellow-green (29C4) margin. Reverse dark olive (29E5) with yellow-green (29C4) margin. Sporulation within 15 days.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.948°, E 110.524°, on animal faeces, May 2016, Z.F. Zhang, HMAS 247989 (holotype designated here), ex-type living culture CGMCC3.19302 = LC12445; ibid., LC12446.

Notes: Pseudoscopulariopsis asperispora clustered within Pseudoscopulariopsis in a distinct clade with high support value based on the ITS, LSU, TUB, and EF1-α sequence analysis (Fig. 37). P. asperispora can be easily distinguished from P. schumacheri (E.C. Hansen) Sand.-Den., Gené & Guarro by its subglobose to globose conidia rather than obovate or short clavate in P. schumacheri; from P.

![Fig. 41 Microascus superficialis](from ex-holotype CGMCC3.19638). a–e Upper and reverse views of cultures on PDA, OA and SNA 3 weeks after inoculation; d, e ascoma; f peridium; g–i asci; j ascospores. Scale bars: e 100 µm; f–j 10 µm
Wardomycopsis Udagawa & Furuya

Wardomycopsis was introduced as one of the anamorph-typified genera related to *Microascus*, characterised by dark, globose, thick-walled conidia with germ slits that form short chains on annellidic conidiogenous cells (Udagawa and Furuya 1978; Silvera-Simón et al. 2008). Recent phylogenetic analyses demonstrated that *Wardomycopsis* is monophyletic (Sandoval-Denis et al. 2016a; Zhang et al. 2017). Currently, *Wardomycopsis* comprises five species and we herein add three new species named as *W. dolichi*, *W. ellipsoconidiophora* and *W. fusca* (Fig. 37).

Wardomycopsis dolichi Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557750, *Facesoffungi number:* FoF 08459; Fig. 44

Etymology: Referring to its long conidiophore.

Holotype: HMAS 247998.

Hyphae hyaline to pale olive, septate, smooth or finely verrucose, thick-walled, 1.5–3.5 µm diam., sometimes swollen, up to 7.0 µm diam. *Asexual morph* Conidiophores cylindrical or long ellipsoidal, septate, branched 1–3 times, smooth, hyaline. Conidiogenous cells solitary on aerial hyphae, or in whorls of 1–3 at apex of conidiophores, ellipsoidal or clavate, thick-walled, olive-brown, 4.0–6.0 × 2.5–3.0 µm. *Conidia* mostly borne from conidiogenous cells, occasionally observed on aerial hyphae directly, ellipsoidal or clavate, thick-walled, olive-brown, 4.0–6.0 (− 7.5) × 2.5–4.0 µm (̅ ± SD = 5.1 ± 0.68 × 3.3 ± 0.30 µm, n = 30), with truncated base and median longitudinal germ slit. *Sexual morph* not observed.

Culture characteristics—Colonies on PDA attaining 24–28 mm diam. after 3 weeks, compact, slightly plicated, margin entire, white at margin, black at center. Reverse cream-yellow (4A2) to pale yellow (2A1) from middle to center. *Conidia* mainly borne from conidiogenous cells, occasionally observed on aerial hyphae directly, ellipsoidal or clavate, thick-walled, brown, 4.5–7.0 × 2.5–4.0 µm (̅ ± SD = 5.7 ± 0.72 × 3.3 ± 0.33 µm, n = 50), with truncated base and median longitudinal germ slit.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 23.41°, E 108.931°, on animal faeces, May 2016, Z.F. Zhang, HMAS 248004 (holotype designated here), ex-type living culture CGMCC3.19322 = LC12606; ibid., LC12607.

Notes: Our strains clustered within *Wardomycopsis* and formed a distinct clade with high support value based on the multi-locus analysis (Fig. 37). *W. dolichi* is phylogenetically closely allied to *W. fusca* and *W. humicola* (Fig. 37), while they are morphologically distinguishable. Conidiophores of *W. ellipsoconidiophora* are ellipsoidal and branched, comparing to ellipsoidal to globose and unbranched in *W. fusca*. *W. ellipsoconidiophora* differs from *W. fusca* (G.L. Barron) Udagawa & Furuya in its slightly wider conidium (2.5–3.0 µm vs. 1.5–2.5 µm) and conidia (2.5–4.0 µm vs. 1.5–2.5 µm), color on PDA and SNA media, and the absence of sexual morph, which is observed in *W. longicatena*.

Wardomycopsis ellipsoconidiophora Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557751, *Facesoffungi number:* FoF 08460; Fig. 45

Etymology: Referring to its ellipsoidal conidiophores.

Holotype: HMAS 248004.

Hyphae hyaline, septate, smooth, thick-walled, 1.5–2.5 µm diam. *Asexual morph* Conidiophores arising from hyphae, ellipsoidal, septate, branched 1–3 times, smooth, thick-walled, hyaline to pale olive. Conidiogenous cells solitary on aerial hyphae, or in whorls of 1–5 at apex of conidiophores, ellipsoidal, smooth, thick-walled, pale olive, 3.0–6.0 × 2.5–3.0 µm. *Conidia* mostly borne from conidiogenous cells, occasionally observed on aerial hyphae, or in whorls of 1–5 at apex of conidiophores, ellipsoidal, smooth, thick-walled, olive-brown, 4.0–6.0 (− 7.5) × 2.5–4.0 µm (̅ ± SD = 5.1 ± 0.68 × 3.3 ± 0.30 µm, n = 30), with truncated base and median longitudinal germ slit.

Material examined: CHINA, Guangxi, Laibin, Sanshan Cave, N 23.41°, E 108.931°, on animal faeces, May 2016, Z.F. Zhang, HMAS 248004 (holotype designated here), ex-type living culture CGMCC3.19322 = LC12606; ibid., LC12588.

Notes: *Wardomycopsis ellipsoconidiophora* is phylogenetically closely allied to *W. fusca* and *W. humicola* (Fig. 37), while they are morphologically distinguishable. Conidiophores of *W. ellipsoconidiophora* are ellipsoidal and branched, comparing to ellipsoidal to globose and unbranched in *W. fusca*. *W. ellipsoconidiophora* differs from *W. fusca* (G.L. Barron) Udagawa & Furuya in its slightly wider conidium (2.5–3.0 µm vs. 1.5–2.5 µm) and low sequence similarities (98% similarity, 7 bp difference in 416 bp of ITS; 99% similarity, 5 bp difference in 842 bp of LSU; 96% similarity, 35 bp difference in 928 bp of EF1-α; 95% similarity, 22 bp difference in 475 bp of TUB).

Wardomycopsis fusca Z.F. Zhang, F. Liu & L. Cai, sp. nov.

Index Fungorum number: 557752, *Facesoffungi number:* FoF 08461; Fig. 46

Hyphae hyaline, septate, smooth, thick-walled, 1.5–2.5 µm diam. *Asexual morph* Conidiophores arising from hyphae, ellipsoidal, septate, branched 1–3 times, smooth, thick-walled, hyaline to pale olive. Conidiogenous cells solitary on aerial hyphae, or in whorls of 1–5 at apex of conidiophores, ellipsoidal, smooth, thick-walled, pale olive, 3.0–6.0 × 2.5–3.0 µm. *Conidia* mostly borne from conidiogenous cells, occasionally observed on aerial hyphae directly, ellipsoidal or clavate, thick-walled, olive-brown, 4.0–6.0 (− 7.5) × 2.5–4.0 µm (̅ ± SD = 5.1 ± 0.68 × 3.3 ± 0.30 µm, n = 30), with truncated base and median longitudinal germ slit.

Material examined: CHINA, Guangxi, Guilin, E’gu Cave, N 23.41°, E 108.931°, on animal faeces, May 2016, Z.F. Zhang, HMAS 248004 (holotype designated here), ex-type living culture CGMCC3.19322 = LC12606; ibid., LC12588.
Fig. 42 *Microascus trigonus* (from ex-holotype CGMCC3.19636). a–c Upper and reverse views of cultures on PDA, OA and SNA 3 weeks after inoculation; d, e ascoma; f peridium; g–i asci; j ascospore; k–n conidiogenous cells and conidia; o conidia. Scale bars: e 100 µm; h 20 µm; f, g, i–o 10 µm.

Etymology: Referring to the brown color of its conidia.

Holotype: HMAS 247997.

Hyphae hyaline to pale olive, septate, smooth, thin-walled, 1.5–2.5 µm diam. **Asexual morph** **Sporulation** abundant on SNA, brown, slimy. **Conidiophores** arising from hyphae, ellipsoidal to globose, occasionally branched one times, smooth, thick-walled, pale olive-brown, 3.0–7.5 × 2.5–5.0 µm. **Conidiogenous cells** solitary on aerial hyphae, ellipsoidal, or clustered on conidiophores, ampulliform, smooth, thick-walled, pale olive-brown, 3.0–5.0 (–6.0) × 2.5–3.5 µm. **Conidia** ellipsoidal, thick-walled, brown, 4.0–6.5 × 2.5–3.5 µm (× ± SD = 5.1 ± 0.62 × 3.0 ± 0.32 µm, n = 30), with truncated base and median longitudinal germ slit. **Sexual morph** not observed.

Culture characteristics—Colonies on PDA attaining 25–31 mm diam. after 3 weeks, felty, compact, convex,
margin entire, pale olive (29A3) to grey (28B3), with light colored margin. Reverse sunken in center, cream-yellow (29A3) to olive (29D4). Colonies on OA attaining 26–28 mm diam after 3 weeks, flat, margin entire, white to dark olive (29F5), with olive rings (29F5). Reverse white to pale olive (29B2). Colonies on SNA attaining 23–28 mm diam after 3 weeks, flat, slightly plicated, margin entire, beige (28A2) to pale olive (29D4). Reverse beige (28A2) to dark olive (29F6). Sporulation within 15 days.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.948°, E 110.524°, on soil, May 2016, Z.F. Zhang, HMAS 247997 (holotype designated here), ex-type living culture CGMCC3.19306 = LC12476; ibid., LC12526; Guangxi, Guilin, E’gu Cave, N 24.942°, E 110.511°, on animal faeces, May 2016, Z.F. Zhang, LC12636; Yunnan, Mengzi, Mingju old Cave, N 23.487°, E 103.619°, on animal faeces, May 2016, Z.F. Zhang, LC12607; ibid., LC12661; Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on soil, May 2016, Z.F. Zhang, LC12643.

Notes: Wardomyces fusca is phylogenetically and morphologically closely related to W. ellipsoconidiophora and W. humicola (Fig. 37), but differs in ellipsoidal or globose and mostly unbranched conidiophores. Contrast to W. fusca, W. ellipsoconidiophora and W. humicola have cylindrical to ellipsoidal and branched conidiophores.

Subclass Sordariomycetidae O.E. Erikss. & Winka

Calosphaeriales M.E. Barr

The Calosphaeriales is an order of perithecial ascomycetous fungi with allantoid to suballantoid ascospores and
characteristic ascogenous hyphae, ascogenous cells and centrum, considered unique among the ascomycetes (Réblová et al. 2015). The order traditionally comprises wood-inhabiting perithecial ascomycetes that occupy specialized habitats between wood and periderm (Réblová et al. 2015).

Calosphaeriaceae Munk

The family was introduced by Munk (1957), followed by several recent revisions (Damm et al. 2008). Members of the **Calosphaeriaceae** share a set of typical characters such as globose to subglobose dark ascomata with a central neck, hyaline, non-septate or one to several transverse septa, 8-spored, clavate, tapering, stipitate asci. The asci have a conspicuous, symmetrical thickening at the apex, which lacks a visible discharge mechanism (Réblová et al. 2015). **Calosphaeriaceae** members are typical inhabitants of wood and bark of a broad spectrum of trees and shrubs worldwide, including *Prunus* wood (Barr 1985).

Jattaea Berl.

Berlese (1900) introduced genus *Jattaea* with *J. algeriensis* Berl. as generic type. *Jattaea* was recently revised based on a five-locus phylogeny (Réblová et al. 2015) and 18 species are currently accepted (Réblová et al. 2015; Dayarathne et al. 2017). The members of *Jattaea* are characterized by non-stromatic perithecial ascomata, clavate and stipitate asci with a thickened apex and distinct sporiferous part, persistent paraphyses and allantoid, 1-septate, hyaline ascospores. Asexual morphs of *Jattaea* are phialophora-like, i.e. short-ampulliform to elongate-ampulliform phialides or adelophialides with funnel-shaped collarettes (Réblová et al. 2015; Dayarathne et al. 2017). In this study, one new species *Jattaea reniformis* is described (Fig. 47).

Jattaea reniformis Z.F. Zhang & L. Cai, sp. nov., Fig. 48

Index Fungorum number: 557753, *Facesoffungi number*: FoF 08462; *Fig. 48*

Etymology: Referring to its reniform conidia.

Fig. 45 *Wardomycopsis ellipsoconidiophora* (from ex-holotype CGMCC3.19322). a–c Upper and reverse views of cultures on PDA, OA and SNA 14 days after inoculation; d–f, h conidiophores and conidiogenous cells; g conidia borne on hyphae; i conidia. Scale bars: d–i 10 µm
Holotype: HMAS 247995.

Hyphae hyaline, septate, branched, smooth, 1.5–3.5 μm wide. Asexual morph Conidiophores micronematous, reduced to conidiogenous cells. Phialides arise from prostrate aerial hyphae solitary, lateral, monophialidic, long ampulliform to tapering, smooth to slightly granulate, hyaline, various in length, 4.5–11.5 μm long, 1.5–3.0 μm diam. at base, with conspicuous collarette, tapering to 1.0–1.5 μm below the collarette; adelophialides subcylindrical or ampulliform, 1.5–3.0 μm × 1.0–2.0 μm. Conidia aggregated in globose heads, cylindrical to reniform, unicellular, smooth, hyaline, various in size, 3.0–6.0 × 1.0–2.0 μm (\(\bar{x} \pm SD = 4.2 \pm 0.66 \times 1.5 \pm 0.21 \mu m, n = 60 \)). Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 32–38 mm diam. after 4 weeks, plicated, margin entire, pale linen (5A2), aerial mycelia sparse. Reverse plicated, cream-white to yellow (4A7). Colonies on OA attaining 32–36 mm diam. after 4 weeks, flat, margin entire, white at margin, light gray (4B2) at middle, gainsboro (4A2) in center, aerial mycelia sparse. Reverse white to gainsboro (4B2) with gray ring (4B2). Colonies on SNA attaining 35–38 mm diam. after 4 weeks, flat, margin erose, white, aerial mycelia extremely sparse. Reverse white. Sporulation within 3 weeks.

Material examined: CHINA, Yunnan, Yiliang, Sanjiao Cave, N 25.134°, E 103.383°, on soil, May 2016, Z.F. Zhang, HMAS 247995 (holotype designated here), ex-type living culture CGMCC3.19311 = LC12509; ibid., LC12510.

Notes: This species should be classified into genus Jattaea, because it fits well to the asexual morphs of Jattaea, i.e. short-ampulliform to elongate-ampulliform to cylindrical phialides or adelophialides, tapering, with a more or less conspicuous funnel-shaped collarette (Réblová 2011; Réblová et al. 2015). Meanwhile, our strains are phylogenetically allied with Jattaea species based on ITS, LSU and TUB sequences (Fig. 47). Jattaea reniformis is currently known only for its asexual morph and comparable with J.
aphanospora Rébluvá & J. Fourn., J. ribicola Rébluvá & Jaklitsch and J. tumidula (Sacc.) Rébluvá. While J. reniformis differs from J. aphanospora and J. ribicola by the presence of phialides and adelophialides, whereas only adelophialides are observed in J. aphanospora and J. ribicola. J. reniformis differs from J. tumidula by its subcylindrical or ampulliform adelophialides and wider conidia (1.0–2.0 µm vs. 1.0–1.2 µm); meanwhile only subcylindrical adelophialides was observed in J. tumidula. Generally J. reniformis is well distinguishable from other species in Jatteae by the absence of conidiophores.

Subclass Xylariomycetidae O.E. Erikss. & Winka

Xylariales Nannf.
The order Xylariales was established by Nannfeldt (1932), and have been revised in several recent studies (Daranagama et al. 2018; Voglmayr et al. 2018; Wendt et al. 2018), with three families Barrmaeliaceae Voglmayr & Jaklitsch, Graphostromataceae M.E. Barr, J.D. Rogers & Y.M. Ju and Hypoxylaceae DC. included and revised. Xylariales is one of the largest order of the subclass Xylariomycetidae, which currently comprises 22 families (Wijayawardene et al. 2020).

Apiosporaceae K.D. Hyde, J. Fröhl., Joanne E. Taylor & M.E. Barr

Apiosporaceae was introduced by Hyde et al. (1998) and confirmed as a family within Xylariales, closely related to Amphisphaeriaceae (Crous and Groenewald 2013).

Nigrospora Zimm.

Nigrospora was introduced by Zimmerman (1902) and most recently revised by Wang et al. (2017). Nigrospora is characterized by branched micronematous or semimacronematous conidiophores, monoblastic conidiogenous cells and black, shiny, aseptate conidia. Sexual morphs comprise perithecial ascomata, short-stalked asci with biseriated ascospores (Wang et al. 2017). Species of Nigrospora are cosmopolitans with wide host range, and reported as endophytes, saprobes, or pathogens on crops or humans (Wang et al. 2017; Raza et al. 2019). In this study, one new species Nigrospora globosa is described based on ITS, EF1-α and TUB phylogeny (Fig. 49).

Nigrospora globosa Z.F. Zhang & L. Cai, sp. nov.

Index Fungorum number: 557754, Facesoffungi number: FoF 08463; Fig. 50

Etymology: Referring to its globose conidia.

Holotype: HMAS 248000.

Hyphae hyaline to pale brown, septate, branched, smooth, 1.5–8.0 µm wide. Asexual morph Conidiophores reduced to conidiogenous cells. Conidiogenous cells arising from aerial hyphae solitary or aggregated in clusters, cylindrical, ampulliform, ellipsoidal or subglobose, straight or curved, smooth, hyaline to pale brown, 8.5–22.0 × 5.0–9.0 µm. Conidia solitary, unicellular, subglobose to globose, smooth, dark brown to black, shiny, 11.0–14.5 × 9.0–13.0 µm (̅x ± SD = 13.0 ± 0.84 × 11.3 ± 1.0 µm, n = 60). Sterile cells and Sexual morph not observed.

Culture characteristics—Colonies on PDA attaining 38–41 mm diam. after 6 days, flat, floccose, radially striate with lobate edge, white initially, becoming pale gray with age. Reverse white to light yellow (2A2) initially, becoming pink (5A2) to brown (5B3) with age. Colonies on OA attaining 50 mm diam. after 4 days, flat, aerial mycelia abundant, floccose, margin entire, white initially, becoming gray (4B2) with age. Reverse white initially, becoming pink (5A2) with age. Colonies on SNA attaining 38–41 mm diam. after 6 days, flat, margin entire, white to pale yellow (3A3) initially, then becoming pale gray with gray (4B2) sporulation patches. Reverse white to pale yellow (4A1–4A2). Sporulation within 7 days.

Material examined: CHINA, Guangxi, Guilin, Luotian Cave, N 24.948°, E 110.524°, on soil, May 2016, Z.F. Zhang, HMAS 248000 (holotype designated here), ex-type living culture CGMCC3.19633 = LC12440; ibid., LC12441.

Notes: Our two strains representing N. globosa clustered with N. chinensis Mei Wang & L. Cai in a distinct clade (Fig. 49). Morphologically, N. globosa differs from N. chinensis by its larger conidiogenous cells (8.5–22.0 × 5.0–9.0 µm vs. 5.0–9.5 × 4.0–7.0 µm), and the absence of sterile cells in N. globosa.

Discussion

Karst area covers ca. 20% of the terrestrial area on the earth (Ford and Williams 2013), and there are more than a half million karst caves in China (Chen 2006; Zhang and Zhu 2012). According to Hawksworth and Lücking (2017), there are more than 120,000 hitherto described fungal species, but the estimation of global fungal diversity on the earth is 2.2 to 3.8 million. However, only 1626 fungal species were documented from caves and mines worldwide. Our study revealed that karst caves encompass a high fungal diversity, with a number of undescribed species.

Up to now, nine phyla have been reported in cave environments, and five phyla were obtained in this study. The proportion of species of Ascomycota, 88.0 % in this study, and 75.8 % in caves worldwide, is much higher than other phyla including Basidiomycota (Fig. 3a, e). In addition, the majority of genera with high species diverse (> 10 species) in caves are Ascomycota (Fig. 3f). In cave Basidiomycota is rare possibly because they are difficult to culture and often need to be associated with nutrient rich substrates such as
wood and dung (Vanderwolf et al. 2013), while these organic matters are much exiguous compared to a regular terrestrial environment. Glomeromycota, a phylum of arbuscular mycorrhizal (AM) fungi (Schüßler et al. 2001) never reported from caves in previous studies, was obtained in this study from soil sample of Sanjiao Cave (Table S1). Meanwhile, in our another study on fungal community based on high-throughput sequencing (HTS), Glomeromycota accounts for ca. 0.3% of all fungal OTUs in caves, and soil and water samples encompass more abundant reads of Glomeromycota than air and rock samples (Zhang and Cai 2019), which might due to the higher nutrient concentrations in soils (Vanderwolf et al. 2013) and a better link of water sample inside caves and the forest reservoir outside the caves (Voříšková and Baldrian 2013).

The most commonly recorded fungal genera in worldwide caves are cosmopolitan ones, especially *Penicillium* and *Aspergillus*, two genera discovered in all the caves investigated (Fig. 3c, f). Due to their diverse physiological features, species of *Penicillium* and *Aspergillus* are ubiquitous and can grow on almost all types of habitat, including the subsurface environments (Houbraken et al. 2014). Although *Mortierella* and *Mucor* had been reported from many caves, Vanderwolf et al. (2013) suggested that the incidence of *Zygomycota*, mainly *Mortierella* and *Mucor*, in caves might be overestimated due to the bias of detecting method. However, several studies using metabarcoding method did detect high relative abundance of *Zygomycota* (up to 49.8% when endogenous carbon available) in tourism caves and pristine caves (Cloutier et al. 2017; Pfendler et al. 2019; Zhang and Cai 2019). Therefore, the culture-based method may not be as biased as previously speculated (Zhang and Cai 2019). Several studies demonstrated that fungi in caves with fast growth and abundant spore production, including...
Penicillium, Aspergillus, Mortierella and Mucor, were sensitive to the changes of organic matters or human activates (Min 1988; Docampo et al. 2010, 2011; Jurado et al. 2010; Vanderwolf et al. 2013), indicating a predominantly saprobic lifestyle and potentially exogenous origin. According to the summary of Vanderwolf et al. (2013), Rhachomyces was widespread and thirty-two species, as insect coloniners, had been reported in caves, which was however, not recorded here possibly because only very few insect samples were collected in this study.

Cave systems were suggested to be a good harbour for the development and preservation of allochthonous microorganisms, such as mycorrhizal and pathogenic fungi (Kuzmina et al. 2012; Vanderwolf et al. 2013; Zhang et al. 2017; Zhang and Cai 2019). Many fungi obtained in this study are plant endophytic or pathogenic. For example, Entrophospora R.N. Ames & R.W. Schneid., isolated from soil in Sanjiao Cave, was reported as an AM fungi (Schüßler et al. 2001; Palenzuela et al. 2010). Fusarium graminearum Schwabe, a plant pathogen that causes head blight of wheat (Bai and Shaner 2004), was isolated from soil and water samples of Mingjiu Old Cave and Tianliang Cave. Many species of Colletotrichum Corda, Diaporthe Nitschke, Fusarium and Phoma Sacc. complexes obtained in this study.

Fig. 48 Jattaea reniformis (from ex-holotype CGMCC3.19311). a–c Upper and reverse views of cultures on PDA, OA and SNA 4 weeks after inoculation; d–j phialides and conidia in globose heads; k conidia. Scale bars: d–k 10 μm
Fig. 49 Maximum likelihood (ML) tree of Nigrospora based on ITS, EF1-α and TUB sequences. Twenty-three strains are used. The tree is rooted with Arthrinium vietnamense (IMI 99670). Tree topology of Nigrospora is indicated along branches (ML/PP). Novel species are in bold font and “T” indicates type derived sequences

are also known as plant pathogenic fungi. Myriodontium keratinophilum, an occasional human and animal pathogen widely spread in nature (Maran et al. 1985; Domsch et al. 2007), was isolated not only in this study, but also from several other caves in previous studies (Man et al. 2015; Zhang et al. 2017; Nováková et al. 2018). Many of these fungi may not grow in the cave environment, but are present rarely or regularly as spores, carried in by water, air currents, or animals (Vanderwolf et al. 2013; Zhang et al. 2017).

Studies had revealed that fungi in caves might be originated from outside environments, since the majority of fungi documented in caves have been reported from other environments such as soil and forest (Vanderwolf et al. 2013; Zhang et al. 2017). All genera and most species recorded in this study have also been reported from other environments. Although there are several suspected obligate troglobitic fungi exist in caves, and several were also observed in this study, such as Aspergillus spelunceus (Vanderwolf et al. 2013; Zhang et al. 2017, 2018). Although a number of new species have been discovered in caves, no new genera or families were reported (Zhang et al. 2017). Zhang et al. (2018) estimated the divergence time of suspected obligate troglobitic fungi and found that they were obviously much older than the cave formation geologic age. In other words, the geologic age of caves is too short for fungal speciation and these fungi are unlikely troglobitic fungi but travelers from other environments.

Caves are special environments with a number of potentially highly valuable fungal species that have been the targets for drug discovery (Cheeptham 2012; Rawat et al. 2017). According to Vanderwolf et al. (2013), there are still 14 potential troglobitic cave fungi. Four new oligotrophic fungi using carbon free silica gel medium (SGM) and 20 new fungal taxa from two caves in Guizhou, China were published by Jiang et al. (2017a, b) and Zhang et al. (2017), respectively. Amphinecta felina (syn. Beauveria felina (DC.) J.W. Carmich., Isaria felina (DC.) Fr.), a species known in producing insecticidal cyclodepsipeptide (Baute et al. 1981; Langenfeld et al. 2011; Seifert et al. 2011) and Cyclosporin C (Xu et al. 2018), is widely distributed in caves (Vanderwolf et al. 2013; Zhang et al. 2017; Belyagoubi et al. 2018), as well as this study. Meanwhile, the other two coprophilous species in Amphinecta were isolated in this study, and they may have good potential for the investigation of bioactive natural products. Trichoderma harzianum, a species that has been used as biocontrol agents against fungal diseases of plants (Elad et al. 1982; Felse and Panda 1999), was isolated from soil and organic matters. Another example is Beauveria bassiana (Bals.-Criv.) Vuill. isolated from four caves in this study and several times in other studies (Ogórek et al. 2013, 2014b, Vanderwolf et al. 2013; Zhang et al. 2014; Yoder et al. 2015), is a species widely used as insecticide (Feng et al. 1994; Zimmermann 2007; Xiao et al. 2012).

Conclusions

Our investigation reveals that karst caves from southwest China encompass a high fungal diversity, with a number of previously undescribed species. Most species identified in this study have been reported from other environments, indicating that the outside environment is likely a major source of mycobiota in caves. Based on morphological and phylogenetic distinctions, 33 new species scattered in seven different orders were identified and described. One new genus is proposed. This study significantly improved our understanding on fungal species diversity in caves. Further studies incorporating metagenomics and culture method could possibly provide broader and more comprehensive overview on fungal communities and their ecological roles in caves.
Acknowledgements This study was financially supported by NSFC (31725001), the Science and Technology Partnership Program, MOST (KY201701011), Gansu Foundation of Ecological Conservation & Remediation (No. 2018-20) and Gansu Foundation of Inducing Scientific Innovation for Development (No. 2017zx-10). Prof. Yuan-Hai Zhang in Institute of Karst Geology, Chinese Academy of Geological Sciences is thanked for providing caves’ information in Southwest China. Dr. Ya-Li Xi in Gansu Engineering Laboratory of Applied Mycology, Hexi University is thanked for help with sample collection. We also thank other members who provided technical support, valuable and constructive suggestions in our lab.

Author contributions ZFZ: Designed the work, conducted the experiment, and drafted the manuscript; SYZ: Part of the fungal isolation, and data submission; LE, SI, MR, and FL: Revised the manuscript; PZ, and QC: Help for the sample collection; LC: Conceived the work, and revised manuscript.

References

Ajello L, Briceño-Maaz T, Campins H, Moore JC (1960a) Isolation of Histoplasma capsulatum from an oil bird (Steatornis caripensis) cave in Venezuela. Mycopath Mycol Appl 12:199–206
Clement CR, Cmokova A, Conceicao LB, Cruz RHSF, Damm U, Da Silva BDB, Da Silva GA, Da Silva RMF, De ASantiago ALCM, De Oliveira LF, De Souza CAF, Deniel F, Dima B, Dong G, Edwards J, Felix CR, Fournier J, Gibertoni TB, Hosaka K, Iturriaga T, Jadan M, Jany M, Jaluriev Z, Kolarik M, Kusan I, Landell MF, Cordeiro TRL, Lima DX, Loizides M, Luo S, Machado AR, Madrid H, Magalhaes OMC, Marinoho P, Matocce N, Mesic A, Miller AN, Morozova OV, Neves RP, Nonaka K, Novaková A, Oberlies NH, Oliveiraraitho JRC, Oliveira TGL, Papp V, Pereira OL, Perrone G, Peterson SW, Pham THG, Raja HA, Raudabaugh DB, Rehulka J, Rodriguezzandrade E, Saba M, Schaufflerova RV, Simonov G, Siqueira JPZ, Sousa JO, Stajsic V, Svetasheva TY, Tan YT, Tkalcec Z, Ullah S, Valente P, Valenzuelalopez N, Abrinbana M, Marques DAV, Wong PTW, De Lima VX, Groenewald IZ (2018) Fungal Planet description sheets: 716–784. Persoonia 40:240

Cunningham KL, Northup DE, Pollastro RM, Wright WG, LaRock EJ (1995) Bacteria, fungi and bioKarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25:2–8

Currah RS (1985) Taxonomy of the

Damaragama DA, Hyde KD, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samara-Damm U, Crous PW, Fourie PH (2008) A fissitunicate ascus mechanism in the Calosphaeriaceae, and novel species of

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

Damm U, Crous PW, Fourie PH (2008) A fissitunicate ascus mechanism in the Calosphaeriaceae, and novel species of *Jattaea* and *Calosphaeria* on *Prunus* wood. Persoonia 20:39–52

Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, McKinnon HE, Jayasiri SC, Tiplromma S, Bhat JD, Liu XZ, Stanler M (2018) Towards a natural classification and backbone tree for *Graphostromataceae*. *Hypoxylaceae*. *Lopadosporomataceae* and *Xylariaceae*. Fungal Divers 88:1–165

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

Dayaratne MC, Abeywickrama P, Jones EBG, Bhat DJ, Chimmunti P, Hyde KD (2017) Multi-gene phylogeny of *Jattaea bruguierae*, a novel asexual morph from *Bruguierea cylindrica*. Stud Fungi 2:235–245

Di Salvo AF, Ajjello L, Palmer JW Jr, Winkler WG (1969) Isolation of *Histoplasma capsulatum* from *Arizona* bats. Am J Epidemiol 89:606–614

Dobat K (1967) Ein bisher unveröffentlichtes botanisches manuskript Alexander von Humboldt’s: *Plantae subterraneae Europ*. cum Iconibus. Akademie Der Wissenschaften und der Literatur Alexander von Humboldts: Plantae subterranae Europ (1794) cum Iconibus. Akademie Der Wissenschaften und der Literatur Alexander von Humboldts: Plantae subterranae Europ (1794)

Docampo S, Trigo MM, Recio M, Melgar M, Garcia Sanchez J, Calde-ronquezaro MC, Cabezudo B (2010) High incidence of *Aspergillus* and *Penicillium* spores in the atmosphere of the cave of Nerja (Malaga, southern Spain). Aerobiologia 26:89–98

Docampo S, Trigo MM, Recio M, Melgar M, Garcia Sanchez J, Cabe-zudo B (2011) Fungal spore content of the atmosphere of the cave of Nerja (southern Spain): diversity and origin. Sci Total Environ 409:835–843

Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd edn. IHG Verlag, Eching

Doveri F, Pecchia S, Vergara M, Sarrocco S, Vannacci G (2012) A comparative study of *Neogymnomycetes virgineus*, a new keratinolytic species from dung, and its relationships with the *Onygenales*. Fungal Divers 52:13–34

Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochem* Bull 19:11–15

Dylag M, Sawicki A, Ogórek R (2019) Diversity of species and susceptibility phenotypes toward commercially available fungicides of cultivable fungi colonizing bones of ursus spelaeus on display in Niedźwiedzia Cave (Kletno, Poland). Diversity 11:224

Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by *Trichoderma harzianum*. Can J Microbiol 28:719–725

Enghoff H, Santamaria S (2015) Infectious intimacy and contaminated caves—three new species of ectoparasitic fungi (Ascomycota: *Laboulbeniales*) from blaniulid millipedes (*Diplopodus Julida*) and inferences about their transmittal mechanisms. Org Divers Evol 15:249–263

Eriksson O (1967) On graminicolous pyrenomycetes from Fennoscandia I. Dictyosporous species (339–380). II. Phragmosporous and scolecosporous species (381–440). III. Aemerosporous and didymosporous species (441–466). Arkiv för Botanik 6:339–466

Felse PA, Panda T (1999) Self-directing optimization of parameters for extracellular chitinase production by *Trichoderma harzianum* in batch mode. Process Biochem 34:563–566

Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus *Beauveria bassiana* for insect control: current status. Biocontrol Sci Technol 4:3–34

Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, Chichester

Fries EM (1825) Systema orbis vegetabilis: Plantæ homonemeæ. Typographia academica, Pars

Gabriel CR, Northup DE (2013) Microbial ecology: caves as an extreme habitat. In: Cheeptham N (ed) Cave microbiomes: a novel resource for drug discovery. Springer, New York, pp 85–108

Gams W, Zare R (2001) A revision of *Verticillium* sect. Prostrata. III. Generic classification. Nova Hedwigia 72:329–337

Geiser DM, LoBuglio KF, Gueidan C (2015) 5. *Penicillium* spp. *Eurotium* spp. In: *Systematics and evolution*. Springer, Berlin, pp 121–141

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330

Gueidan C, Apte A, da Silva Cáceres ME, Basadiali H, Stenroos S (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:990

Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5

Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R (2017) An updated phylogeny of *Sordariomycetes* based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, Duchene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich Karst environment. Chem Geol 169:399–423

Houbreken J, Samson RA (2011) Phylogeny of *Penicillium* and the segregation of *Trichocomaceae* into three families. Stud Mycol 70:1–51

Houbreken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important *Aspergillus* and *Penicillium* species. Adv Appl Microbiol 86:199–249

Hsu MJ, Agarawal D, Zhuang Z, Kuo SJ (2001) Occurrence and diversity of thermophilic soil microfungi in forest and cave ecosystems of Taiwan. Fungal Divers 7:27–33

Huang S, Maharachchikumbura SNS, Jeewon R, Bhat DJ, Phookamsak P, Hyde KD, Alsadi AM, Kang J (2018) *Leccanilium subprimulinum* (Cordycipitaceae, Hypocreales), a novel species from *Baoshan*, Yunnan. Phytotaxa 348:99–108

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

Hyde KD, Fröhlich J, Taylor JE (1998) Fungi from palms. XXXVI. Reflections on ununiculate ascomycetes with aspiosores. Sydowia 50:21–80
Maran AGD, Milne LJ, Lamb D, Lamb D (1985) Frontal sinusitis caused by Myriodontium keratinophilum. Brit Med J 290:207
Martinová N, Bačkor P, Bartonička T, Blažková P, Čerwený J, Faltisek L, Gaisler J, Hanzal V, Horacek D, Hrubovcak Z, Jalovecka H, Kolarič K, Korytar L, Kubatova A, Lehotska B, Lehotsky R, Lucan R, Majek O, Matejů J, Rehák Z, Safař J, Tajek P, Tkadlec E, Uhrin M, Wagner J, Weinfurtova D, Zima J, Zukal J, Horacek I (2010) Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5:e13853
Martin-Sanchez PM, Jurado V, Porca E, Bastian F, Lacanette D, Alabouvette C, Sazijimenez C (2014) Airborne microorganisms in Lascaux cave (France). Int J Speleol 43:295–303
Megašič F (1914) Oekologischen Studien an Höhleniteren. Carniola 5:63–83
Min KH (1988) Fungus flora of Seongrya Cave in Korea. Trans Mycol Soc Jpn 29:479–487
Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascaceae destructans, comb. nov, in bat hibernacula of eastern North America. Fungal Biol 117:638–649
Mitova MM, Iliev M, Novakova A, Gorgushina AA, Groudeva V (2017) Diversity and biosiciste susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria. Int J Speleol 46:67–80
Morton FJ, Smith G (1963) The genera Scopulariopsis Bainier, Microascus Zukal, and Doramycetes Corda. Mycol Pap 86:1–96
Munk A (1957) Danish Pyrenomycetes. A preliminary flora. Dansk botanisk Arkiv 17:1–491
Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nichtlichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Scientiarum Upsaliensis 8:1–368
Nirenberg HI (1976) Untersuchungen über die morphologische und biologische differenzierung in der Fusarium-Sectio Liseola. Mitt Biol Bundesanst Land- u Forstwirtsch Berlin-Dahlem 169:1–117
Nonaka K, Kaiuchi S, Omura S, Masuma R (2013) Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54:42–53
Northup ED, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222
Nouri H, Moghimi H, Vaghei MG, Nasr S (2017) Blastobotrys persicus Northup ED, Lavoie KH (2001) Geomicrobiology of caves: a review. Fungal Diversity (2021) 106:29–136
Ogórek R, Dyląg M, Kozak B (2016a) Dark stains on rock surfaces in Dark stains on rock surfaces in Demänovská Ice Cave (Low Tatras, Slovakia). J Cave Karst Stud 78:89–99
Ogórek R, Pusz W, Kožak B, Buják H (2017) Abundance and diversity of psychrotolerant cultivatable mycobiota in winter of a former aluminous shale mine. Geomicrobiol J 34:823–833
Ogórek R, Kožak B, Višňovská Z, Tančinová D (2018) Phenotypic and genotypic diversity of airborne fungal spores in Demánovská Cave (Low Tatras, Slovakia). Aerobiologia 34:13–28
Ogórek R, Dyląg M, Višňovská Z, Tančinová D, Zalewski D (2016c) Speleomycology of air and rock surfaces in Driny Cave (Lesser Carpathians, Slovakia). J Cave Karst Stud 78:119–127
Ogórek R, Višňovská Z, Tančinová D (2016d) Mycobiota of underground habitats: case study of Harramecké Cave in Slovakia. Microb Ecol 71:843–99. Orr GF, Kuehn HH, Plunkett OA (1963) A new genus of the Gymnoascaceae with swollen peridial septa. Can J Botany 41:1439–1456
Ogórek R, Pusz W, Zagozdzon PK, Kožak B, Buják H (2017) Abundance and diversity of psychrotolerant cultivatable mycobiota in winter of a former aluminous shale mine. Geomicrobiol J 34:823–833
Ogórek R, Kožak B, Višňovská Z, Tančinová D (2018) Phenotypic and genotypic diversity of airborne fungal spores in Demánovská Ice Cave (Low Tatras, Slovakia). Aerobiologia 34:13–28
Ogórek R, Dyląg M, Višňovská Z, Cal M, Niedźwiecki K (2019) First report on the occurrence of dermatophytes of Microascus cookei clade and close affinities to paraphyton cookei in the Harramecké Cave (Veľká Fatra Mts, Slovakia). Diversity 11:191
Orr GF, Kuehn HH (1972) Notes on Gymnoascaceae. II. Some Gymnoascaceae and keratinophilic fungi from Utah. Mycologia 64:55–72
Ortiz M, Legatzki A, Neilson JW, Frysie B, Nelson W, Wing RA, Soderlund C, Pryor BM, Maier RM (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491
Out B, Boyle S, Cheeptham N (2016) Identification of fungi from soil in the Nakimu caves of Glacier National Park. J Exp Microbiol Immunol 2:26–32
Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
Palenzuela J, Barea JM, Ferrol N, Fryslie B, Azconaguilar C, Oehl F (2010) Entrophosphora nevadensis, a new arbucular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia 102:624–632
Parker M, Hong S, Shin H (2015) Lecanicillium uredinophilum sp. nov. associated with rust fungi from Korea. Mycotaxon 130:997–1005
Paula CCD, Montoya QV, Meirelles LA, Farinas CS, Rodrigues A, Selegheim MHR (2019) High cellulosytic activities in filamentous fungi isolated from an extreme oligotrophic subterranean environment (Catão cave) in Brazil. An Acad Bras Cienc 91:e20180583
Pfender S, Karimi B, Alaou-Sosse L, Bousta F, Alaoui-Sossé B, Abdeldaim MM, Aleya L (2019) Assessment of fungal proliferation and diversity in cultural heritage: Reactions to UV-C treatment. Sci Total Environ 647:905–913
Phookamsak R, Hyde KD, Jeeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspré O, Karunarathna SC, Wanasighe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Nophpanhoun C, Senwanna C, Wei

Fungal Diversity (2021) 106:29–136
Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 31: 816–823

Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4: 23–38

Saiz-Jimenez C, Miller AZ, Martin-Sanchez PM, Hernandez-Marine M (2012) Uncovering the origin of the black stains in Lascaux Cave in France. Environ Microbiol 14: 3220–3231

Sandoval-Denis M, Gené J, Sutton DA, Cano-Lira JF, de Hoog GS, Decock C, Wiederhold NP, Guarro J (2016a) Redefining Microascus, Scopulariopsis and allied genera. Persoonia 36: 1–36

Sandoval-Denis M, Guarro J, Cano-Lira JF, Sutton DA, Wiederhold NP, de Hoog GS, Abbott SP, Decock C, Sigler L, Gene J (2016b) Phylogeny and taxonomic revision of Microascales with emphasis on synnematous fungi. Stud Mycol 83: 193–233

Sanjuan T, Tabima J, Restrepo S, Lasse T, Spatafora JW, Franchomano AE (2014) Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto). Mycologia 106: 260–275

Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromyzota: phylogeny and evolution. Mycol Res 105: 1413–1421

Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht

Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51: 1–32

Sharma R, Sk Singh (2013) A new species of Gymnosascus with verruculose ascospores. IMC Fungus 4: 177–186

Sharma R, Gräser Y, Singh SK (2013) A. auriformitectum, a new genus of Onygenales isolated from the vicinity of Bandhavgarh National Park, India. IMC Fungus 4: 89–102

Sigler L, Hambleton S, Flis AL, Paré JA (2002) A. auriformitectum for Malbranchea filamentosa and Malbranchea albolutea and relationships within A. auriformitectum. Stud Mycol 47: 111–122

Silvera-Simón C, Gené J, Cano J, Guarro J (2008) Wardomyces litoralis, a new soil-borne hypomyces from Spain. Mycota 105: 195–202

Solé M, Cano J, Pitarch LB, Stichig AM, Guarro J (2002) Molecular phylogeny of Gymnosascus and related genera. Stud Mycol 47: 141–152

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313

Su L, Zhu H, Guo Y, Du X, Guo J, Zhang L, Qin C (2019) Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 387: 55–62

Sugiyama M, Ohara M, Mikawa T (1999) Molecular phylogeny of onygenalean fungi based on small subunit ribosomal DNA (SSU rDNA) sequences. Mycoscience 40: 251–258

Sukarno N, Kurihara Y, Park JY, Inaba S, Ando K, Hayaraya S, Ilyas M, Mangunwardoyo W, Samsuridzal W, Yuniarti E, Saraswati R, Widastuti Y (2009) Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Mycologia 50: 369–379

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007a) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57: 5–59

Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007b) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol Phylogen Evol 44: 1204–1223

Tavares DG, Barbosa BV, Ferreira RL, Duarte WF, Cardoso PG (2018) Antioxidant activity and phenolic compounds of the extract from pigment-producing fungi isolated from Brazilian caves. Biocatal Agric Biotechnol 16: 148–154

DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kusam I, Cano J, Gené J, Li JF, Das K, Achariya K, Raj KNA, Latha KPD, Madhava AN, Miura T, Guo HN, Wang Y, Liu ZY, Jiang SH, Zhang LZ, Khan S, Zhang H, Promputtha I, Cai L, Diao YZ, Hyde KD, Acharya K, Raj KNA, Latha KPD, Chethana N, Matočec N, de Silva NL, Pereira OL, Singh PN, Manimohan Prasad R, Widyastuti Y (2009) Microbiota of hypogean habitats in Popkova AV, Mazina SE (2019) Microbiota of hypogean habitats in Popkova AV, Mazina SE (2019) Microbiota of hypogean habitats in

Pusz W, Ogórek R, Knapik R, Kozak B, Bujak H (2015) The occurrence of fungi in biofilm from Božana Cave (Serbia). Int J Speleol 24: 1–14

Pusz W, Baturo-Cieśniewska A, Zwijacz-Kozica T (2017) Culturable fungi in Brown Bear Cave Dens. Pol J Environ Stud 27: 1247–255

Ran JC, Chen HM (1998) A survey of speleobiological studies in China. Carsologica Sinica 17: 151–159

Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43: 304–311

Rawat S, Rawat A, Johri BN (2017) Fungal world of cave ecosystem. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 99–124

Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L (2019) Culturable plant pathogens associated with sugarcane in southern China. Fungal Divers 95: 1–273
Taylor ELS, Stoianoff MADR, Ferreira RL (2013) Mycological study for a management plan of a neotropical show cave (Brazil). Int J Speleol 42:267–277

Udagawa SI, Furuya K (1978) New species of Microascus and its peculiar conidial state. Mycotacon 7:91–96

Vanderwolf KJ, Malloch D, McAlpine DF, Forbes GJ (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42:77–96

Vanderwolf KJ, Malloch D, McAlpine DF (2015) fungi associated with over-wintering tricolored bats, perimyotis subflavus, in a white-nose syndrome region of eastern Canada. J Cave Karst Stud 77:145–151

Vanderwolf KJ, Malloch D, McAlpine DF (2019) No change detected with the introduction of Pseudogymnoascus destructans. Diversity 11:222

Vidal P, Vinuesa MDLA, Sánchez-Puelles JM, Guarrro J (2000) Phylogenetic analysis of the anamorphic genus Chrysosporium and related taxa based on DNA internal transcribed spacer sequences. Rev Iberoam Micol 17:22–29

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

Visagie CM, Yilmaz N, Vanderwolf K, Renaud JB, Sumarah MW, Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

Voříšková J, Baldrich P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

Wang M, Liu F, Croux PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 39:118–142

Wei DP, Wanasinghe DN, Hyde KD, Mortimer PE, Xu JC, Xiao Y, Bhumjun CS, Toanun C (2019) The genus Simplinicum. MycoKeys 60:69–92

Wendt L, Sir EB, Kuhntt E, Heitkämper S, Lambert C, Hladki AI, Lucking R, Kurtzman CP, Yurkov A, Lumbsch HT, Bensch K, Kirk PM, Kolaříková Z, Sharma B, Khare R, Gaikwad S, Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Gams W (2008) A revision of the fungus Lecanicillium. IV. The genera Lecanicillium and Purpureocillium. Mycol Progress 18:115–154

White TJ, Bruns T, Lee S, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic inferences. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, pp 315–322

Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SS, Ekanayake AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota. Fungal Divers 88:167–263

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Aptroot A, Lumbsch HT, Bensch K, Kirk PM, Koláříková Z, Oehl F, da Silva GA, Blaszewski J, Castaïeda-Ruiz RF, Becerra AG, Stadler M, Hawksworth DL, Thines M, Rajeshkumar KC, Zhao RL, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Mukwa M, Issi IV, Harih R, Philips AJL, Selbmann L, Pfleigler WP, Horvath E, Rajah HA, Radek K, Papp V, Dima V, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suertong S, Timdal M, Fryar SC, Delgado G, Reblova M, Doolm M, Dolatabadi S, Pavlovskaja JZ, Humber RA, Kodubre S, Sanchez-Castro I, Goto BT, Silva DKA, de Souza FA, Silva IR, Jobim K, Maia LC, Barbosa FR, Fiurou PA, Divakar PK, Sheny BD, Somritsop S, Lateev AA, Karunarathna SC, Tichromba S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kusan I, Matocce N, Mesic A, Tkalcce Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Warchow F, Bakhshi M, Boehm E, Youssef N, H lustard VP, Lawery JD, Santiago ALCMA, Becerra JDP, Souza- Cotta M, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissenyaje AK, Monteiro JS, Grossart HP, Ju, A, Weerakoon G, Etayo J, Turykau A, Vazquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Kendrick B, Brearley FQ, Motiejunait J, Sharma B, Khaare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhanbenko MP, McKenzie EHC, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdogdu M, Yurkov A, Schnittler M, Shception ON, Novozhilov YK, Silva-Filho AGS, Gentakaki E, Liu P, Cavender JC, Kang Y, Mohamed S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Nanithaye S, Fan XL, Dissenyaje LS, Kuhnt E (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie X, Shang Y, Leger RJJS, Zhao G, Wang C, Feng M (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

Xu L, Li Y, Biggins JB, Bowman BR, Verdine GL, Gloer JB, Alspaugh RJS, Zhao G, Wang C, Feng M (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

Yoder JA, Benoit JB, Hobbs HH III, Nelson BW, Main LR, Gibas CFC (2015) The entomopathogenic fungus Beauveria caledonica, a newly identified pathogen of cave crickets (Orthoptera: Phrodrophoridae). Speleobiology Notes 7:1–9

Zamora JRC (1977) Isolation of Histoplasma capsulatum from the air in the Agua’s Buenas caves, Aguas Buenas, Puerto Rico. Mycopathologia 60:163–165

Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112:811–824

Zhang ZF (2019) Diversity of fungi in karst caves in Southwest China. Ph.D. thesis, University of Chinese Academy of Sciences, China.
Zhang ZF, Cai L (2019) Substrate and spatial variables are major determinants of fungal community in karst caves in Southwest China. J Biogeogr 46:1504–1518

Zhang YH, Zhu DH (2012) Large karst caves distribution and development in China. J Guilin Univ Technol 32:20–28

Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary reevaluation. Stud Mycol 64:85–102

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53:1–221

Zhang T, Victor TR, Rajkumar SS, Li X, Okoniewski JC, Hicks AC, Davis AD, Broussard K, Ladeau SL, Chaturvedi S, Chaturvedi V (2014) Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans. PLoS ONE 9:e108714

Zhang Y, Liu F, Wu W, Cai L (2015) A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera Acrophialophora and Taifanglania. Mycologia 107:768–779

Zhang YW, Chen WH, Zeng GP, Zou X, Wen TH, Han YF, Qiu SY, Liang ZQ (2016) Two new Chrysosporium (Onygenaceae, Onygenales) from China. Phytotaxa 270:210–216

Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31

Zhang ZF, Zhao P, Cai L (2018) Origin of cave fungi. Front Microbiol 9:1407

Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. Genomics 3:1–15

Zhou J, Gu Y, Zou C, Mo M (2007) Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China. J Microbiol 45:105–112

Zhou N, Zhang Y, Liu F, Cai L (2016) Halophilic and thermotolerant Gymnoascus species from several special environments, China. Mycologia 108:179–191

Zimmerman A (1902) Ueber einige an tropischen Kulturpflanzen beobachtete Pilze III. Zentralblatt für Bakteriologie, Parasitenkunde 8:216–221

Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596