2D speckle-tracking echocardiography as a prognostic imaging modality for COVID-19 adverse outcomes

Ehsan Goudarzi¹, Fateme Yousefimoghaddam¹, Alireza Ramandi²,³ & Isa Khaheshi⁎,¹

¹Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
²School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
³Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran

⁎Author for correspondence: Tel.: +98 21 2208 3106; isa_khaheshi@yahoo.com

Aim: 2D speckle-tracking echocardiography (2D-STE) has been used to assess cardiac recovery during the COVID-19 patient follow-ups within the pandemic. The novel role of STE in predicting adverse outcomes of COVID-19 has received attention due to its high sensitivity in identifying subclinical myocardial dysfunction. We reviewed the studies on using 2D-STE to assess COVID-19 prognosis. Methods: a literature search was conducted on PubMed and Scopus for eligible articles, 24 of which discussed using prognostic 2D-STE for COVID-19 patients. Results: 2D-STE predicts cardiovascular impairments more rapidly and precisely than conventional echocardiography. The 2D-STE technique presents an independent prognostic factor in COVID-19 infection. Conclusion: 2D-STE could be considered a time-efficient and accurate risk predictor of all-cause mortality in COVID-19 patients.

Plain language summary: In this review, we have gathered every article that discusses the association between COVID-19 prognosis and speckle-tracking echocardiography, which is a novel, fast and accurate method and does not need expert operators to perform. We have shown that according to the current literature, we can use this imaging technique on the right and left heart ventricles to estimate the prognosis of the patients infected with COVID-19.

First draft submitted: 19 June 2022; Accepted for publication: 29 September 2022; Published online: 2 November 2022

Keywords: adverse outcomes • COVID-19 • hospitalization • intubation • left atrium • left ventricle • prognosis • right atrium • right ventricle • speckle-tracking echocardiography

Initially known as a respiratory tract infection, coronavirus disease 2019 (COVID-19) is a multi-organ inflammatory disease that has led to high mortality and morbidity rates worldwide [1,2]. Several documents have addressed cardiorespiratory involvement as the most significant predictor of mortality in patients with COVID-19 infection [3]. Myocardial damage and heart failure are more incident in patients with severe COVID-19 infection [2]. Henceforth, early evaluation of lungs and heart function might prompt better disease outcomes.

Cardiovascular involvement in COVID-19 infection may be due to direct myocardial injury, increased systemic inflammatory response, hypoxia or micro-thrombogenesis resulting from a hypercoagulable state [4,5]. Several previous articles have indicated that the multi-systemic inflammation that occurs in COVID-19 infection may lead to multi-organ damage [4,5]. The other proposed mechanism of heart failure is increased right ventricular afterload due to severe respiratory infection [6]. Hence, assessing cardiac structure and function can provide helpful information regarding COVID-19 mortality. Since conventional Two-dimensional echocardiography the most common modality of use lacks information about the intrinsic properties of the myocardium, some other techniques are being used to compensate for shortcomings. Speckle-tracking echocardiography (STE) can identify myocardial dysfunction and subclinical myocardial impairment [7]. STE also detects left ventricular (LV) dysfunction more sensitively than conventional echocardiography [8–10].

We herein aim to examine the role of 2D-STE as novel method in predicting adverse outcomes in COVID-19 patients. We have reported the prognostic value of 2D-STE imaging for each cardiac chamber individually.
Table 1. Association of adverse outcomes with different strains.

Strain (number of articles)	Associated with (number of articles)	Not associated with (number of articles)
LV		
GLS/LS (15)	Mortality (9)	Mortality (4)
	Intubation (1)	Intubation (1)
	Severity (1)	
	Hospitalization (1)	
	ARDS (1)	
GCS (2)		Mortality (1)
		Severity (1)
FWLS (1)	Intubation (1)	Mortality (1)
BLS (1)		Mortality (1)
	ICU admission (1)	Intubation (1)
RV		
RV-LS/GS/LS (12)	Mortality (5)	Mortality (4)
	Intubation (2)	Intubation (2)
	ICU admission (1)	Severity (1)
	Hospitalization (1)	
FWS/FWLS/FWGLS (9)	Mortality (6)	Mortality (2)
	Severity (2)	Severity (1)
	Intubation (1)	Intubation (1)
TWGLS (1)		Severity (1)
LA		
LAS/RA-LS (2)	Atrial fibrillation (1)	Mortality (1)
RA		
RA-LS (1)		Mortality (1)

ARDS: Acute respiratory distress syndrome; BLS: Basal longitudinal strain; FWLS: Free wall longitudinal strain; FWS: Free wall strain; FWGLS: Free wall global longitudinal strain; GS: Global strain; GLS: Global longitudinal strain; GCS: Global circumferential strain; LV: Left ventricle; LA: Left atrium; LS: Longitudinal strain; LAS: Left atrial strain; RV: Right ventricle; RA: Right atrium; TWGLS: Total wall global longitudinal strain.

Methods

A review of the scientific literature was performed to investigate available articles focusing on the application of STE in COVID-19 patients as an imaging predicting parameter. A comprehensive literature search was performed on PubMed and Scopus to identify suitable studies that were published until March 2022. Our search strategy is as follows: Initially, a manual search was applied in PubMed. The resulting articles were used to obtain the list of keywords and Medical Subject Headings (mesh) terms. The search strategy was repeated multiple times in PubMed and Scopus search engines until the keywords list was completed and no further studies were found. Subsequently, a manual search of the bibliography was performed to find other potentially eligible studies. Search results were screened by title and abstract, and potentially eligible studies were further investigated based on full text. Throughout the review, no language restriction was applied. Data extraction was performed using the double data extraction method by two independent reviewers (FY, EG), followed by a scrutinious review of both included and excluded articles by two other members of the team (IK, AR).

Results

We included 24 articles in our study, of which 20 were original, and the remaining 4 were either editorial, letters to the editor, or short communication. (Table 1) The sample size of the studies ranged from 9 to 428 patients. All patients had laboratory-confirmed COVID-19 infection as the inclusion criteria in each original research reviewed. While all of the included articles used 2D-STE, the studies differ in the specific type of strains measured, as shown in Table 2. The most common outcome under investigation was the association between strain measures and mortality.

Left ventricle

Several strains were measured in the left ventricle, namely the global longitudinal strain or left ventricular longitudinal strain (GLS/LS), free wall longitudinal strain (FWLS), global circumferential strain (GCS), and basal longitudinal strain (BLS).
Table 2. Review of literatures on 2D-STE and COVID-19 adverse outcomes.

Study	Sample size	Age (years), mean ± SD/median	Male sex (%)	Strain	Comorbidities (%)	Decreased strain associated with:	Ref.	
						HF, CAD / IHD, COPD / Asthma, CKD		
						All-cause mortality	Other adverse outcome	
Lassen et al.	428	69	54.7	LVGLS, RVLS	10.3	LVGLS was associated (HR = 1.28 per 1% decrease)	NM	
					15.9	RVLS was unclear	[11]	
					15			
Kim et al.	34	NM	NM	LVGLS, RV TWGLS, RV FWGLS	0	LVGLS was associated with severity (OR = 1.99 per 1% increase)	NM	
					0.8	RVFWLS was associated	[12]	
						RVFWLS was not associated with severity		
Janus et al.	31	64	NM	LVGLS	NM	LVGLS was associated (HR = 1.52 per 1% increase)	NM	
					5.5		[13]	
					0.8			
Zhang et al.	128	61.3 ± 13.1	67.7	RVFWLS	14.1†	RVFWLS was associated	NM	
					5.5		[14]	
					0.8			
Xie et al.	132	61 ± 13	51.5	LVGLS, RV FWLS	NM	LVGLS (HR = 1.41) and RVFWLS (HR = 1.29) were associated	NM	
					3.8		[15]	
					0.8			
Tryfou et al.	100	47.2	51	LVGLS, RVGLS	NM	LVGLS and RVFWLS were associated	NM	
					0		[16]	
					NM			
Temperikidis et al.	9	61.6	77.8	RVFWS	0	RVFWS was associated	NM	
					0		[17]	
					0			
Sun et al.	160	62.1 ± 13.4	51.9	LVLS, RVFWLS	16.9†	LVLS and RVFWLS were associated	NM	
					5.6		[18]	
					2.5			
Stockenhuber et al.	34	72 ± 2.6	79	RVLS	NM	RVLS was associated (HR = 3.19)	RVLS was not associated with intubation	[19]
					9			
					9			
					32			
Stöbe et al.	18	64 ± 19.1	78	LVGLS, LVGCS, RVGLS	NM	LVGLS, LVGCS, and RVFWLS were not associated with severity	NM	
					11		[20]	
					5			
					39			
Skaarup et al.	174	68 ± 15	55	LVGLS	14†	LVGLS was associated with ARDS (HR = 1.18)	NM	
					NM		[21]	
					NM			
Sheehan et al.	56	62.5 ± 15.2	66.1	RVGLS, LAGLS, RAGLS	26.8	LAGLS, RVGLS, and RAGLS were not associated	NM	
					17.9		[22]	
					30.4†			
					26.8			
Rothschild et al.	100	64.3 ± 20.7	64	LVGLS, RVFWLS, RVLS	NM	LVGLS was associated with intubation	LVFWLS was associated with intubation	[23]

†Instead of heart failure, cardiac disease was investigated in the literatures.
‡Instead of COPD/Asthma, chronic pulmonary disease was investigated in the literatures.

ARDS: Acute respiratory distress syndrome; BLS: Basal longitudinal strain; CAD: Coronary artery disease; COPD: Chronic obstructive pulmonary disease; CKD: Chronic kidney disease; HF: Heart failure; HR: Hazard ratio; IHD: Ischemic heart disease; LVGLS: Left ventricular global longitudinal strain; LVLS: Left ventricular longitudinal strain; LVGCS: Left ventricular global circumferential strain; LVFWLS: Left ventricular free wall longitudinal strain; LAS: Left atrial strain; LAGLS: Left atrial global longitudinal strain; NM: Not mentioned; OR: Odds ratio; RVGLS: Right ventricular global longitudinal strain; RVGCS: Right ventricular global strain; RVLS: Right ventricular longitudinal strain; RVFWLS: Right ventricular free wall strain; RVFWGLS: Right ventricular free wall global longitudinal strain; RAGLS: Right atrial global longitudinal strain.
Table 2. Review of literatures on 2D-STE and COVID-19 adverse outcomes (cont.).

Study	Sample size	Age (years), mean ± SD/median	Male sex (%)	Strain	Comorbidities (%)	Decreased strain associated with:	Ref.
Park et al.	48	58 ± 16	67	LVGLS	CAD / IHD	HF	[24]
				LVGCS		LVGLS was associated	
				RVGLS	COPD / Asthma	LVGCS, RVGLS, and RVFWS were not	
				RVFWS	CKD	associated	
Minhas et al.	136	62	58	LVGLS		LVGLS was not associated	[25]
Minardi et al.	120	NM	NM	RVFWSLS		RVFWSLS was associated	[26]
Li et al.	120	61 ± 14	48	RVLS		LVGLS was associated	[27]
Baycan et al.	100	56	51	LVGLS		LVGLS (OR = 1.63) and RVLS (OR = 1.58) were associated	[10]
Bagate et al.	67	61	82.1	LVGLS		LVGLS was not associated	[28]
Krishnamoorthy et al.	12	57	41.7	LVGLS		LVGLS and RVFWS were associated	[29]
Khani et al.	207	54.5 ± 14.8	57.5	LVGLS		LVGLS (OR = 0.2) and RVGLS (OR = 0.32) were associated	[30]
Jain et al.	52	59.9	60	LVGLS		LVGLS (OR = 0.29, OR ICU admission = 0.30) and LVGLS (OR = 0.35, OR ICU admission = 0.35) were associated with intubation	[31]
Goerlich et al.	75	61.9 ± 13.5	59	BLs		BLS was not associated	[32]
Beyls et al.	79	NM	NM	LAS		LAS (OR = 1.24) was associated with atrial fibrillation	[33]

*Instead of heart failure, cardiac disease was investigated in the literatures.
‡ Instead of COPD/Asthma, chronic pulmonary disease was investigated in the literatures.
ARDs: Acute respiratory distress syndrome; BLS: Basal longitudinal strain; CAD: Coronary artery disease; COPD: Chronic obstructive pulmonary disease; CKD: Chronic kidney disease; HF: Heart failure; HR: Hazard ratio; IHD: Ischemic heart disease; LVGLS: Left ventricular global longitudinal strain; LVLS: Left ventricular longitudinal strain; LVGCS: Left ventricular global circumferential strain; LVFWLS: Left ventricular free wall longitudinal strain; LAGLS: Left atrial global longitudinal strain; NM: Not mentioned; OR: Odds ratio; RVGLS: Right ventricular global longitudinal strain; RVGS: Right ventricular global strain; RVLS: Right ventricular longitudinal strain; RVFWS: Right ventricular free wall strain; RVTWGLS: Right ventricular total wall global longitudinal strain; RAGLS: Right atrial global longitudinal strain.

The most common strain measured for the left ventricle was GLS/LS, which appeared across 15 studies. Nine articles reported a significant association among the 13 studies focused on GLS/LS and mortality rate. Any associations other than mortality rate would be unconfirmed since current literature lacks sufficient data for other adverse effects (e.g., ICU admission, intubation, hospitalization).
Right ventricle
In the right ventricle, the measured strains were as follows: (1) right ventricular longitudinal strain, or global strain, or longitudinal strain (RV-LS/GS/LS); (2) total wall global longitudinal strain (TWGLS); (3) free wall strain, free wall longitudinal strain, or free wall global longitudinal strain (FWS/FWLS/FWGLS). The most common of which being RV-LS/GS/LS (12-times) and FWS/FWLS/FWGLS (nine-times).

A significant correlation was observed between mortality rates and RV-LS measurements in 5 studies, whereas the other four did not show any associations. In the case of FWS, 6 of 8 articles reported a significant association with mortality rates.

Left & right atrium
LS was measured in both left and right atrium (LA-LS, RA-LS), resulting in a correlation between left atrial longitudinal strain and atrial fibrillation. However, neither left nor right global longitudinal strains were associated with mortality.

Discussion
Multiple factors could exacerbate cardiovascular function in critically ill COVID-19 patients, including systemic inflammatory response, hypoxemia, direct myocardial injury, myocarditis, arterial dysfunction, and pulmonary embolism (34–37). Effective management of patients could be accomplished by using a reliable and straightforward predictor of mortality and adverse outcomes. Considering time efficiency and objective measuring methods of 2D-STE (i.e., Unlike conventional echocardiography, the operator’s skills would not affect 2D-STE), this imaging modality can be used to determine the cardiac function and possible complications in a surge of critically ill patients and limited resources (35,38,39).

Patients evaluated with 2D-STE benefit from a highly sensitive quantitative approach for both global and regional myocardial function. For instance, GLS has a -20% cut-off value in identifying subjects at risk of developing cardiac events (18). 2D-STE would also allow us to detect subclinical cardiac dysfunction, as previously observed in patients with diabetes mellitus, hypertension, and nonobstructive coronary artery disease. 2D STE may ease the diagnosis of acute myocarditis when cardiac magnetic resonance (CMR) or endomyocardial biopsy (EMB) are unavailable (40–43). Although STE has been frequently applied in follow-ups of COVID-19 patients thus far, the role of STE in predicting adverse cardiac outcomes have been undervalued (44–46). We have concluded from this review that 2D-STE is a suitable technique for projecting the prognosis of the patients. But lack of sufficient research impedes us from discussing any correlations between 2D-STE measurements and ventilation rate, ICU admission, or infection severity. The results also show persistent regional abnormalities in the chronic phase of the COVID-19 disease, emphasizing the importance of long-term follow-ups. Nevertheless, the clinical significance of these findings is debatable, and future research is needed in this area.

This review highlights the potentially favorable role of 2D-STE in assessing the cardiovascular system in all COVID-19 patients. The current literature implies that left ventricular global longitudinal strain (LV GLS) and free wall global longitudinal strain (RV FWGLS) seem more reliable independent predictors of mortality rate, providing additional prognostic implications over conventional echocardiographic parameters of COVID-19 patients. Several limitations are applied in this new field of imaging in COVID-19 patients. First, there is a limited number of studies on pediatric patients with COVID-19 infection. In two of the literature, the only association examined was between global and regional strain measurements with the severity of multisystem inflammatory syndrome in children (MIS-C) (47–49).

Moreover, studies have demonstrated the link between co-morbidities such as heart failure, chronic kidney disease, and chronic obstructive pulmonary disease with decreasing strain values (50–55). Because many patients in our included studies were senile and their co-morbid conditions could affect the findings' independence. Third, studies have only investigated 2D-STE among the adult population. The application of 2D-STE as a prognostic factor in pediatric patients needs further investigation.

It is worth mentioning that since STE detects subclinical myocardial dysfunction and impairment sensitively, it may also be a useful imaging modality for predicting outcomes in other multi-system inflammatory infectious diseases.
Conclusion

We have stated that 2D-STE could be considered as an additional risk predictor of all-cause mortality in COVID-19 patients. The significant advantage of 2D-STE is being time-efficient and easy to measure by non-experts. However, the association between 2D-STE results and ICU requirements, intubation rate, hospitalization, and COVID-19 severity has been controversial, according to the present literature.

Future perspective

Future research should consider the potential of 2D-STE in pediatric patients more carefully. Moreover, the role of atrial strains, especially left atrium, in determining COVID-19 outcomes need further research which may lead to promising results. Third, the impact of 2D-STE on prognosing other multi-systemic inflammatory disorders and viral infections with a similar mechanism as COVID-19 may further help us to manage patients other than COVID-19 infection.

Summary points

- 2D-STE is a novel, highly sensitive, fast, and objective modality that may benefit the management of COVID-19 patients.
- Twenty-four articles that studied 2D-STE on each heart chamber were included in this review.
- Thirteen studies focused on the association between measurement of the strain GLS/LS of left ventricle and mortality rate, nine of which found significant association.
- In case of the right ventricle, five studies found significant association between RV-LS measurements and mortality.

Author contributions

E Goudarzi and F Yousefimoghaddam conducted the search, screened the articles and extracted and cleaned the data. A Ramandi and I Khaheshi evaluated the full-text eligibility of the articles, reviewed the search index, assessed the quality of articles and drafted the manuscript.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

References

Papers of special note have been highlighted as: ● of interest

1. Shi S, Qin M, Shen B et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. *JAMA Cardiol.* 5(7), 802–810 (2020).

2. Chen T, Wu D, Chen H et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. *BMJ* 368, m1091 (2020).

3. Guan W-J, Ni Z-Y, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. *N. Engl. J. Med.* 382(18), 1708–1720 (2020).

4. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. *JAMA Cardiol.* 5(7), 831–840 (2020).

5. Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. *Am. J. Emerg. Med.* 38(7), 1504–1507 (2020).

6. Tello K, Gall H, Richter M, Ghofrani A, Schermuly R. Right ventricular function in pulmonary (arterial) hypertension. *Herz* 44(6), 509–516 (2019).

7. Blessberger H, Binder T. Two dimensional speckle tracking echocardiography: basic principles. *Heart* 96(9), 716 (2010).

8. Carluccio E, Biagioli P, Alunni G et al. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. *Circ Cardiovasc Imaging* 11(1), e006894 (2018).
9. Xie M, Li Y, Cheng TO et al. The effect of right ventricular myocardial remodeling on ventricular function as assessed by two-dimensional speckle tracking echocardiography in patients with tetralogy of Fallot: a single center experience from China. *Int. J. Cardiol.* 178, 300–307 (2015).

10. Baycan OF, Barman HA, Atici A et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. *Int. J. Cardiovasc. Imaging* 37(1), 135–144 (2021).

11. Lassen MCH, Skaarup KG, Lind JN et al. Echocardiographic abnormalities and predictors of mortality in hospitalized COVID-19 patients: the ECHOVID-19 study. *ESC Heart Fail.* 7(6), 4189–4197 (2020).

12. Kim M, Nam JH, Son JW et al. Cardiac Manifestations of Coronavirus Disease 2019 (COVID-19): a Multicenter Cohort Study. *J. Korean Med. Sci.* 35(40), e366 (2020).

13. Janus SE, Hajiari J, Karnib M, Tashtish N, Tashtish N, Al-Kindi SG, Hoit BD. Prognostic value of left ventricular global longitudinal strain in COVID-19. *Am. J. Cardiol.* 131, 134–136 (2020).

14. Zhang Y, Sun W, Wu C et al. Prognostic value of right ventricular ejection fraction assessed by 3D echocardiography in COVID-19 patients. *Front Cardiovasc Med.* 8, 641088 (2021).

15. Xie Y, Wang L, Li M et al. Biventricular longitudinal strain predict mortality in COVID-19 patients. *Front Cardiovasc Med.* 7, 632434 (2020).

16. Tryfou ES, Kostakou PM, Chasikidis CG et al. Biventricular myocardial function in Covid-19 recovered patients assessed by speckle tracking echocardiography: a prospective cohort echocardiography study. *Int J Cardiovasc Imaging.* 38(5), 995–1003 (2021).

17. Temperikidis P, Koroneos A, Xourgia E, Kotanidou A, Siempos II. Abnormal right ventricular free wall strain prior to prone ventilation may be associated with worse outcome of patients with COVID-19-associated acute respiratory distress syndrome. *Crit Care Explor.* 4(1), e0620 (2022).

18. Sun W, Zhang Y, Wu C et al. Incremental prognostic value of biventricular longitudinal strain and high-sensitivity troponin I in COVID-19 patients. *Echocardiography* 38(8), 1272–1281 (2021).

19. Stockenhuber A, Vrettos A, Androschuck V et al. A pilot study on right ventricular longitudinal strain as a predictor of outcome in COVID-19 patients with evidence of cardiac involvement. *Echocardiography* 38(2), 222–229 (2021).

20. Stöbe S, Richter S, Seige M, Sthör M, Laufs U, Engelhardt A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. *Clin Res Cardiol.* 109(12), 1549–1558 (2020).

21. Skaarup KG, Lassen MCH, Lind JN et al. Myocardial impairment and acute respiratory distress syndrome in hospitalized patients with COVID-19: the ECHOVID-19 Study. *JACC: Cardiovascular Imaging* 13(11), 2474–2476 (2020).

22. Sheehan MM, Saito Y, Popovic ZB, Faulx MD. Echocardiography in suspected coronavirus infection: indications, limitations and impact on clinical management. *Open Heart.* 8(2), e001702 (2021).

23. Rothschild E, Baruch G, Szekely Y et al. The predictive role of left and right ventricular speckle-tracking echocardiography in COVID-19. *JACC Cardiovasc Imaging* 13(11), 2471–2474 (2020).

24. Park J, Kim Y, Pereira J et al. Understanding the role of left and right ventricular strain assessment in patients hospitalized with COVID-19. *Am Heart J Plus.* 6, 100018 (2021).

25. Minhas AS, Gilotra NA, Goerlich E et al. Myocardial work efficiency, a novel measure of myocardial dysfunction, is reduced in COVID-19 patients and associated with in-hospital mortality. *Front Cardiovasc Med.* 8, 667721 (2021).

26. Minardi J, Marsh C, Sengupta P. Risk-Stratifying COVID-19 Patients the Right Way. *JACC Cardiovasc Imaging* 13(11), 2300–2303 (2020).

27. Li Y, Li H, Zhu S et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. *JACC Cardiovasc Imaging* 13(11), 2287–2299 (2020).

28. Bagate F, Masi P, d’Humières T et al. Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: a prospective cohort study. *Journal of Intensive Care.* 9, 12 (2021).

29. Krishnamoorthy P, Croft LB, Ro R et al. Biventricular strain by speckle tracking echocardiography in COVID-19: findings and possible prognostic implications. *Future Cardiol.* 17(4), 663–667 (2021).

30. Khani M, Tavani S, Tahary M, Nasiri Kivi Z, Khabesha I. Prognostic implications of biventricular strain measurement in COVID-19 patients by speckle-tracking echocardiography. *Clin. Cardiol.* 44(10), 1475–1481 (2021).

31. Jain R, Salinas PD, Kroboth S et al. Comprehensive echocardiographic findings in critically ill COVID-19 patients with or without prior cardiac disease. *J Patient Cent Res Rev.* 8(1), 68–76 (2021).

32. Goerlich E, Gilotra NA, Minhas AS, Bavaro N, Hays AG, Cingolani OH. Prominent Longitudinal Strain Reduction of Basal Left Ventricular Segments in Patients With Coronavirus Disease-19. *J Card Fail.* 27(1), 100–104 (2021).
33. Beyls C, Hermida A, Bobbott Y et al. Automated left atrial strain analysis for predicting atrial fibrillation in severe COVID-19 pneumonia: a prospective study. *Annals of Intensive Care* 11(1), 168 (2021).

34. Dweck MR, Bularga A, Hahn RT et al. Global evaluation of echocardiography in patients with COVID-19. *Eur. Heart J. Cardiovasc Imaging* 21(9), 949–958 (2020).

35. Michard F, Malbrain ML, Martin GS et al. Haemodynamic monitoring and management in COVID-19 intensive care patients: an International survey. *Anesth. Crit. Care Pain Med.* 39(5), 563–569 (2020).

36. Ramandi A, Akbarzadeh MA, Khaheshi I, Khalilian MR. Aortic dissection and Covid-19: a comprehensive systematic review. *Curr. Probl. Cardiol.* 101129 (2022).

37. Szekely Y, Lichter Y, Taieb P et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. *Circulation* 142(4), 342–353 (2020).

38. Karlsen S, Dahlslett T, Grenne B et al. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. *Cardiovasc Ultrasound.* 17(1), 18 (2019).

39. Benyounes N, Lang S, Soulat-Dufour L et al. Can global longitudinal strain predict reduced left ventricular ejection fraction in daily echocardiographic practice? *Arch. Cardiovasc. Dis.* 108(1), 50–56 (2015).

40. Caspar T, Germain P, El Ghannudi S et al. Acute myocarditis diagnosed by layer-specific 2D longitudinal speckle tracking analysis. *Echocardiography.* 33(1), 157–158 (2016).

41. Kasner M, Sinning D, Escher F et al. The utility of speckle tracking imaging in the diagnostic of acute myocarditis, as proven by endomyocardial biopsy. *Int. J. Cardiol.* 168(3), 3023–3024 (2013).

42. Legstrup BB, Nielsen JM, Kim WY, Poulsen SH. Myocardial oedema in acute myocarditis detected by echocardiographic 2D myocardial deformation analysis. *Eur Heart J Cardiovasc Imaging* 17(9), 1018–1026 (2016).

43. Zuo H, Li R, Ma F et al. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline. *Front Med.* 14(3), 284–292 (2020).

44. Italia L, Ingallina G, Napolano A et al. Subclinical myocardial dysfunction in patients recovered from COVID-19. *Echocardiography* 38(10), 1778–1786 (2021).

45. Baruch G, Rothschild E, Sadon S et al. Evolution of right and left ventricle routine and speckle-tracking echocardiography in patients recovering from coronavirus disease 2019: a longitudinal study. *Eur. Heart J. Cardiovasc Imaging* 23(8), 1055–1065 (2021).

46. Ozer S, Candan L, Ozyildiz AG, Turan OE. Evaluation of left ventricular global functions with speckle tracking echocardiography in patients recovered from COVID-19. *Int J Cardiovasc Imaging* 37(7), 2227–2233 (2021).

47. Sirico D, Di Chiara C, Costenaro P et al. Left ventricular longitudinal strain alterations in asymptomatic or mildly symptomatic paediatric patients with SARS-CoV-2 infection. *Eur Heart J Cardiovasc Imaging* 23(8), 1083–1089 (2021).

48. He M, Leone DM, Frye R et al. Longitudinal assessment of global and regional left ventricular strain in patients with multisystem inflammatory syndrome in children (MIS-C). *Pediatr. Cardiol.* 43(4), 844–854 (2022).

49. Sirico D, Basso A, Reffo E et al. Early echocardiographic and cardiac MRI findings in multisystem inflammatory syndrome in children (MIS-C). *Pediatr. Cardiol.* 43(4), 844–854 (2022).

50. Pastore MC, Mandoli GE, Contorni F et al. Speckle tracking echocardiography: early predictor of diagnosis and prognosis in coronary artery disease. *Biomed Res Int.* 2021, 6685378 (2021).