“Decoupling” Indicators for Evaluation of Urban Low-Carbon Economy Development: a Case Study of Shanghai

Jing Zhao1,2, Ting Xu3, Daqiang Yin3, Weihua GU1,2 and Qing Huang1,2
1WEEE Research Centre of Shanghai Polytechnic University, 201209 Shanghai, China
2Shanghai Collaborative Innovation Centre for WEEE Recycling, 201209 Shanghai, China
3Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, 201209 Shanghai, China

E-mail: zhaojing@spu.edu.cn

Abstract. Environment are closely related to energy and they are two of the most important issues this century. So the development of a low-carbon economy and the construction of environmental friendly society are the only way for the further development of China itself. In this study, “decoupling” indicators for evaluation of a low-carbon economy development are proposed. “Decoupling” indicators of energy consumption and economic growth were selected to reflect the response relationship between economic growth and the changes of resources, including weak, strong and expansive/recessive degree of decoupling. Similarly, “decoupling” indicators of carbon dioxide emissions and economic growth were chosen to reflect the response relationship between economic growth and the changes of environment. Shanghai, in the Eastern China, was selected as a special case. The results showed a change from expansive negative coupling to week decoupling regarding both of energy consumption and carbon emissions in Shanghai during the period 1991-2013, indicating that we have achieved some significant outcome in the process of the low-carbon economy development in Shanghai. However, in view of the possibility of expansive negative coupling, we should continue to make efforts for the development of the low-carbon economy.

1. Introduction
Environment are closely related to energy and they are two of the most important issues this century. It is reported that China was responsible for nearly three-quarters of growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 [1, 2]. However, researchers re-evaluated China’s carbon emissions and the results showed that China’s CO2 emissions from fossil fuel combustion and cement production is 14 per cent lower than the emissions reported by other prominent inventories in 2013, which is 2.49 gigatonnes of carbon [1, 3-5]. Anyway, as a responsible country China have an obligation to make strategies for carbon emission reduction as a response to climate change. If China cannot make efforts to reduce carbon emissions, the future economic and social development will be hampered. Given this, the development of a low-carbon economy and the construction of environment friendly society are the only way for the further development of China itself.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
2. A theoretical framework on decoupling to evaluate the development of the low-carbon economy

Although China has developed low-carbon economy in recent years, there were no criteria and indicators to measure it. The “decoupling” indicators of the development of a low-carbon economy was a good try. Referred to the conceptual model of decoupling and coupling [6, 7], “decoupling” indicators of energy consumption and economic growth was selected to reflect the response relationship between economic growth and the changes of resources in this paper, including three indicators: Gross Domestic Product (GDP), the total amount of energy consumption (TEC) and the energy consumption per unit of GDP (TEC/GDP). Similarly, “decoupling” indicators of carbon dioxide emissions and economic growth were chosen to reflect the response relationship between economic growth and the changes of environment, including three indicators: Gross Domestic Product (GDP), the total amount of carbon dioxide emission (CO$_2$) and the carbon dioxide emission per unit of GDP (CO$_2$/GDP).

The category of “decoupling” indicators of carbon dioxide emissions and economic growth is the same as “decoupling” indicators of energy consumption and economic growth (Table 1). In here, take “decoupling” indicators of energy consumption and economic growth as example. Decoupling (TEC/GDP<0)) can be divided to three subcategories: in weak decoupling, GDP and TEC both increase, strong decoupling occurs when GDP grows and TEC decreases and recessive decoupling when GDP and TEC both decrease. Similarly, negative decoupling (TEC/GDP>0) includes three subcategories: in expansive negative decoupling GDP and TEC both increase, in strong negative decoupling GDP decreases and TEC increases and weak negative decoupling occurs when both variables are decreasing.

Degree	△TEC	△CO$_2$	△GDP	△(TEC/GDP)	△(CO$_2$/GDP)
Strong decoupling	<0	<0	>0	<0	<0
Weak decoupling	>0	>0	>0	<0	<0
Recessive decoupling	<0	<0	<0	<0	<0
Strong negative decoupling	>0	>0	<0	>0	>0
weak negative decoupling	<0	<0	<0	>0	>0
Expansive negative decoupling	>0	>0	>0	>0	>0

3. Statistical data on decoupling in Shanghai

Both of GDP and TEC data were from Shanghai statistical yearbook (2014) [8]. In order to eliminate the effect of currency fluctuations GDP in Shanghai was recalculated based on the base price in 1978. Then the comparable price was obtained and used to calculate the growth rate of GDP. The unit of the total energy consumption was ten thousand tons of standard coal, which did not involve the price factor. So these data can be used directly to calculate the growth rate of the total energy consumption.

3.1. The response relationship between economic growth and energy consumption in Shanghai

The results showed a change from expansive negative decoupling to weak decoupling regarding energy consumption during the period 1991-2013 in Shanghai (Table 2, Figure 1). In view of the growth rate of GDP and energy consumption, energy consumption elasticity coefficient was changed between 1991-2013. The energy consumption elasticity coefficient was 1.22 in 1991, indicating that the growth rate of energy consumption growth was faster than that of economic growth. Then in the
following years, the value of energy consumption elasticity coefficient was lower than 1 (for example, the lowest value was 0.11 in 2012, and 0.39 in 2013).

Table 2 The indicators of energy consumption, carbon dioxide emissions and economic growth in Shanghai 1991-2013

Year	ΔTEC	ΔCO₂	ΔGDP	Δ(TEC/GDP)	Δ(CO₂/GDP)
1991	275.46	215.51	46.10	0.07	0.05
1992	190.40	148.96	102.30	-0.41	-0.32
1993	289.81	226.73	120.04	-0.29	-0.22
1994	229.91	179.87	132.59	-0.33	-0.26
1995	289.23	226.28	149.77	-0.26	-0.20
1996	160.34	125.44	156.87	-0.31	-0.25
1997	132.61	103.75	173.23	-0.30	-0.24
1998	115.29	90.20	157.14	-0.22	-0.17
1999	245.08	191.74	175.14	-0.14	-0.11
2000	380.29	297.52	204.61	-0.09	-0.07
2001	395.30	309.26	216.61	-0.08	-0.06
2002	354.56	277.39	257.81	-0.12	-0.10
2003	547.00	427.94	312.09	-0.08	-0.06
2004	609.30	476.68	404.85	-0.11	-0.09
2005	819.41	641.06	371.02	-0.01	-0.01
2006	650.65	509.03	460.50	-0.10	-0.08
2007	794.75	621.77	621.19	-0.12	-0.09
2008	536.91	420.05	456.68	-0.08	-0.06
2009	160.02	125.19	423.40	-0.12	-0.09
2010	833.75	652.28	575.63	-0.04	-0.03
2011	69.35	54.26	505.52	-0.13	-0.10
2012	91.67	71.72	500.06	-0.11	-0.08
2013	341.52	267.19	551.89	-0.07	-0.05

Data resource: 《Shanghai statistical yearbook 2014》[8]

Figure 1 Decoupling of energy consumption from economic growth in Shanghai 1991-2013
Overall, that the low energy consumption growth rate can support rapid economic growth may be due to the following two reasons: one is increased energy efficiency benefited from the technological progress and regime innovation; the other is optimized and upgrading industrial structure. Excluding the impact of price factor, according to the comparable price in 1990, the total energy consumption per ten thousand yuan GDP continued to reduce, and the energy efficiency in Shanghai was significantly higher than the national average value.

3.2. The response relationship between economic growth and environment stress in Shanghai

3.2.1 Calculation of carbon emissions. Because there were no direct monitoring data of carbon emissions in China, most of the researches were based on the energy consumption to obtain the carbon emissions data. Based on the existing research results of carbon emission estimation at home and abroad [9-11], the carbon emissions in China are estimated by the following formula:

\[\text{Ems} = \alpha \times \varepsilon \]

Where Ems is the amount of carbon dioxide emissions (unit: tons of carbon equivalent), \(\alpha \) for carbon dioxide emissions factors and \(\varepsilon \) for the amount of energy consumption (unit: tons of standard coal). According to the calculation method of CO\(_2\) emissions from fossil fuels combustion by Oak Ridge National Laboratory (ORNL), \(\alpha \) is 0.7194.

Based on the hypothesis that there was a positive correlation between carbon emissions and energy consumption, and considering the difference in the energy structure in different areas and the carbon emission factors in different energy types, the carbon emissions in different provinces was estimated by the following equation:

\[\text{Ems}_i = \frac{E_i}{\varepsilon} \times \frac{\gamma_i}{\gamma} \times \text{Ems} \]

Where Ems\(_i\) and E\(_i\) are the amount of carbon dioxide emissions and the amount of energy consumption in \(i \) province respectively; Ems and \(\varepsilon \) are the total carbon dioxide emissions and the total energy consumption in China respectively; \(\gamma_i \) for the average of carbon dioxide emissions factors in \(i \) province and \(\gamma \) for the average of carbon dioxide emissions factors in China. In this paper, \(\gamma \) is 0.8, \(\gamma_{sh} \) is 0.87[12].

![Figure 2](image)

Figure 2 Decoupling of carbon emissions from economic growth in Shanghai 1991-2013

3.2.2 The response relationship between economic growth and energy consumption in Shanghai. The data showed a change from expansive negative decoupling to weak decoupling regarding CO\(_2\) emissions between 1991 and 2013 in Shanghai (Table 2, Figure 2), which was consistent with the results of decoupling of energy consumption from economic growth. With the rapid development of the economy in China, \(\Delta \) (CO\(_2\)/GDP) was greater than 0, indicating that the annual growth rate of CO\(_2\)
was greater than that of GDP in 1991. Fortunately, Shanghai experienced weak decoupling of CO$_2$ emissions from GDP between 1992 and 2013. However, as the growth rate of CO$_2$ emissions in Shanghai increased much more quickly than that of GDP in recent years, there will probably be change from weak decoupling to expansive negative coupling.

4. Conclusions
In summary, the statistics showed a change from expansive negative coupling to weak decoupling regarding both energy consumption and carbon emissions in Shanghai between 1991 and 2013, indicating that we have achieved some significant outcome in the process of the development of the low-carbon economy in Shanghai. The growth rate of energy consumption and carbon emissions were both lower than that of economic growth, and economic growth did not exhibit a positive correlation with energy consumption or environment stress during the period 1992-2013, suggested that weak decoupling from GDP to energy consumption and carbon emissions. However, in view of the possibility of expansive negative coupling, we should continue to make efforts for the development of the low-carbon economy.

Acknowledgements
The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No.21507080 and 41501598), Project for Training of Young Teachers in Colleges and Universities of Shanghai City (No. ZZZZEGD15018), the Key Subject of Shanghai Polytechnic University (WEEE recycling and pollution control, XKKZD1602). The authors also thank the Shanghai Collaborative Innovation Centre for WEEE Recycling for funding and support.

References
[1] Boden T A, Marland G, Andres R J. Global. 2013 Regional, and national fossil fuel CO2 emission. Oak Ridge National Laboratory, US Department of Energy.
[2] Liu Z, Guan D B, Crawford-Brown D et al. 2013 A low-carbon road map for China Nature 500 143-145.
[3] Olivier J G, Janssens-Maenhout G, Peters J A. 2013 Trends in global CO2 emission: 2013 report PBL Netherlands Environmental Assessment Agency.
[4] National development and reform commission. Second national communication on climate change of the People’s Republic of China. Department of climate change (in Chinese).
[5] Liu Z, Guan D B, Wei W, et al. 2015 Reduced carbon emission estimates from fossil fuel combustion and cement production in China Nature 524 335-338.
[6] Tapio P. 2005 Towards a Theory of Decoupling: Degrees of Decoupling in the EU and the Case of Road traffic in Finland Between 1970 and 2001 Transport Policy 12 137-151.
[7] Vehmas J, Kaivo-oja J, Luukkanen J. 2003 Comparative de-linking and re-linking analyses of material flows in the EU-15 member countries. ConAccount Conference “Quo Vadis MFA?”. Wuppertal, Germany.
[8] Shanghai Municipal Statistics Bureau. 2014 Shanghai statistical yearbook. Beijing: China statistics press (in Chinese).
[9] Oak Ridge National Laboratory. Carbon Dioxide Information Analysis Center. Estimates of CO2 emission from fossil fuel burning and cement manufacturing. Oak Ridge: ORNL, 1990.
[10] Guo R, Cao X J, Li Y K et al. 2009 Shanghai’s strategies for carbon emission reduction as a response to climate change. Journal of Tongji University (Natural Science) 37 515-519 (in Chinese).
[11] Qian J. 2004 The study of Metropolis carbon source and carbon pool: a case study in Shanghai. Shanghai: East China normal University (in Chinese).
[12] Wang Z, Zhu Y B. 2008 Study on the Status of Carbon Emission in Provincial Scale of China and Countermeasures for Reducing its Emission. Bulletin of Chinese Academy of Science, 23 109-115 (in Chinese).