CASE REPORT

Use of Ilizarov Device to Gain Early Range of Motion in the Treatment of Pediatric Talus Body Fractures: A Series of Four Cases and Literature Review

WenTao Zhu, MD, PhD1&, ShuJuan Chu, MD2&, Qi Li, MD3, Saroj Rai, MD, PhD4, WenQi Liu, MD5#, Xin Tang, MD, PhD6#

Department of 1Orthopaedics, Tongji Hospital, Tongji Medical College, 2Anesthesiology, Union Hospital, Tongji Medical College, 5Tongji Medical College and 6Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan and 3Shanghai Housheng Medical Co.Ltd., Shanghai, China and 4Department of Orthopaedics and trauma Surgery, National Academy of Medical Sciences, Kathmandu, Nepal

Abstract

Background: Talus fractures are rare in children but can lead to severe outcomes if untreated. The Ilizarov external fixator has been used in the treatment of a variety of lower extremity pathologies. The purpose of this study was to investigate the clinical outcomes of talus body fractures treated with the Ilizarov external fixator.

Case Presentation: Four male pediatric patients (age range, 5–11 years) with talus body fractures who were treated by open reduction and internal fixation combined with Ilizarov external fixator between November 2015 and April 2016 were reviewed. Mean follow-up period was 4 years (range, 4–5). Clinical outcome was evaluated using the clinical rating scale of the American Orthopaedic Foot and Ankle Society (AOFAS). All four patients achieved good to excellent results at the last follow-up. None of the patients developed avascular necrosis. One patient developed automatic fusion of tibiotalar joint.

Conclusion: Use of the Ilizarov external fixator to gain early range of motion is a valuable option for treatment of talus body fractures in children.

Key words: children; Ilizarov device; internal fixation; open reduction; talus body fracture

Introduction

Talus is the second largest tarsal bone that transmits the axial force. It articulates with the tibia and fibula supralaterally, the navicular bone distally, and the calcaneus inferiorly1. Talus fractures are uncommon, especially in children2,3. These account for approximately 1% of all fractures, and 3%–6% of all foot fractures4. Talus fractures are divided into two major types (talus body fractures and talus neck...
fractures) according to the anatomical site of the fracture. Talus body fractures account for 6%–23% of all talus fractures, and 0.1%–0.85% of all fractures.

The Ilizarov external fixator is a multipurpose modular procedure used for many kinds of post-traumatic ankle reconstruction. It has been used for limb lengthening as its use allows the transmission of the axial force to the fixator rather than the bone. Talus body fractures may potentially cause significant disability, and their rarity only adds to the importance of this disease. Thus, the application of the Ilizarov external fixator in talus body fractures is worth studying. The purpose of our study was to evaluate the use of the Ilizarov external fixator for talus body fractures in children.

Case presentation

This was a single-center case-series with prospective data collection. Children with talus body fractures who were

Cases	Sex	Age	Sneppen Classification	Injury Side	Follow-up (year)	AOFAS Scores
1	M	11	II	R	4	93
2	M	9	V	L	4	93
3	M	5	II	R	4.5	97
4	M	11	V	R	5	97

Fig. 1 Preoperative three-dimensional reconstruction of computed tomography images of a 9-year-old boy with Sneppen type V fracture of left talus body sustained after a fall (A, B). Postoperative anteroposterior (C) and lateral (D) X-ray views showing open reduction with combined screws and K-wires fixation with a Ilizarov frame to reduce the longitudinal pressure on left talus. Anteroposterior (E) and lateral (F) X-ray views at 5 months postoperative. The Ilizarov frame had been removed at 3 months after operation and talus fracture shows union with no signs of avascular necrosis. At 4 years after operation, anteroposterior (G) and lateral (H) X-ray views show a bone bridge of distal medial tibia with varus ankle; however, there are no signs of avascular necrosis or osteoarthritis after removal of the screws and K-wires at 10 months after surgery.
treated using the Ilizarov external fixator at the authors’ institute between November 2015 and April 2016 were included. The study was approved by ethical review board (No: IORG0003571) at the author’s institution. Written informed consent was obtained from the parents of all patients.

Patients
All four patients were boys (left side: one patient; right side: three patients) (Table 1). The age of the patients at the time of operation was 5, 9, 11, and 11 years, respectively. The average time from injury to surgery was 4.3 days (range, 2–6 days). One patient had associated right calcaneal fracture and osteofascial compartment syndrome of the right lower leg. One patient had concomitant dislocation of the right ankle joint and subtalar joint. One patient had concomitant L2 vertebral fracture and right calcaneal fracture.

Surgical Technique
All patients were placed in the supine position under general anesthesia on a radiolucent operating table. After open reduction, internal fixation was applied. In two patients, hollow tension screws were used for internal fixation. Kirshner wires were used in one patient. In one patient, both hollow tension screws and Kirshner wires were used. Bone graft was applied in one patient. The Ilizarov external fixator was applied after these fractures were identified as talus body fractures. Two of the fractures were Sneppen type II (shearing fractures), while the other two were Sneppen type V crush fractures (Figure 1(A),(B))⁹. The preoperative appearances and functional images of all patients, including three-dimensional reconstruction of computed tomography images and X-rays, were obtained. Because of the bulkiness of the frame, the wound was closed before the placement of the frame. Four rings were attached to one another with connecting rods (two tibial rings, one foot ring, and one forefoot ring) (Figure 2). The tibial segment and the foot segment were connected with two straight/flexure devices at the level of the ankle joint, so as to transmit the axial force through Ilizarov device and avoid pressure on the talus (Figure 1(C),(D)).

Postoperative Management
Parents were guided about pin-site care. Patients were monitored postoperatively with serial radiographs and clinical examination. Gentle ankle mobilization without weight bearing was allowed post-operation and the ankle range of motion was expected to restore to 80% at 3 weeks post-operation. Subsequently, rehabilitation exercises, such as weight bearing, were performed at the clinical department under the guidance of a rehabilitation doctor. The Ilizarov device was removed after 6–8 weeks when the radiological evidence of talus union was present (Figure 1(E),(F)). All patients were followed up for 4–5 years (4, 4, 4.5, and 5, average 4.4 years). At the most recent follow-up, the clinical rating scale of the American Orthopaedic Foot and Ankle Society (AOFAS) was used to assess clinical outcomes⁹.

Results
None of the patients developed avascular necrosis. But the patient who suffered from multiple fractures including the vertebral fracture developed a bone bridge of distal medial tibia with varus ankle (Figures 1(G),(H) and 2). Thus, excision of the bone bridge was performed. One patient developed automatic fusion of the tibiotalar joint. According to the AOFAS rating scale, all four patients had good to excellent clinical results (Figure 3). The average total score was 95, ranging from 93 to 97 (individual scores: 93, 93, 97, and 97). (Table 1).

Discussion
The reported incidence of talus fractures in children and adults is 0.01%–0.08% and 1.3%, respectively¹⁰. However, the increasing participation of children in high-impact...
sports is likely to lead to an increase in the incidence of talus fractures in children. Three out of four patients in this case series had associated injuries adjacent to the talus, such as calcaneal fractures. Similar results have been reported in a previous study. All four patients were under the age of 12 years. Smith et al. suggested that children are less vulnerable to displaced talus fractures because of the thick periosteum and abundant malleable cartilage. Eberl et al. compared the talus fractures in children aged <12 years with those in adolescents (age > 12 years) and concluded that adolescents sustained more severe fractures.

Although all four patients in this series showed good to excellent clinical results, outcomes of talus fracture are not always good. Rather than muscular or tendinous attachments, two-thirds of the talus surface is covered with articular cartilage. The talus is supplied by the posterior tibial artery, the dorsalis pedis artery, and the perforating peroneal artery. Ebraheim et al. found less favorable outcomes of crush fractures of the talar body, open fractures, and talar neck fractures. Vallier et al. found that comminuted fractures were also related to worse outcomes. Sneppen et al. concluded that subluxation and articular damage to the subtalar and talotibial joints may contribute to poor prognosis. Sneppen type II (shearing fractures) fractures were reported to be associated with diagnostic and treatment delay because of the rarity, thus leading to poor outcomes. Avascular necrosis refers to ischemia-induced bone death. This may result from lack of post-traumatic hyperemia reaction in the talus, or the missed initial diagnosis of fractures. The reported incidence of avascular necrosis ranges from 0% to 66%. Compared with talus neck fractures, talus body fractures are associated with a greater risk of avascular necrosis. This is because of the presence of an anastomotic ring around the inferior neck of the talus, formed by

Fig. 3 At 4-year follow up after surgery, mild varus of left ankle is observed (A, B), with moderate restriction of left ankle joint flexion (C, D)
the canal artery and the tarsal sinus artery. In contrast, talus body has only limited intraosseous anastomosis of the artery. Even though non-displaced talus body fractures can be dealt with using conservative treatment, the great majority of displaced fractures require surgery. The surgical intent is mostly about restoration of the articular surface and alignment, both in children and adults. Traditional surgery such as open reduction and internal fixation is indicated in most of the cases, but most patients may develop osteonecrosis or post-traumatic arthritis.

The use of Ilizarov device has been reported in other fractures. A key advantage of the Ilizarov external fixator is that it transmits the axial force preventing pressure on the limbs during the healing. Thus, its use allows early weight-bearing. No association between fracture type and clinical outcomes was found in our series. One patient developed a bone bridge of distal medial tibia with varus ankle. Another patient developed automatic fusion of tibiotalar joint. None of the cases developed avascular necrosis. However, this may be attributable to the small number of patients in our series. A relatively low incidence of avascular necrosis was also observed by Eigafy. This may be attributable to early anatomical reduction and stabilization of the fracture. In this case series, good functional results were achieved with use of Ilizarov device for the treatment of talus body fractures, as assessed by AOFAS rating scale.

Conclusion

Another limitation of our study is the lack of comparison between the Ilizarov external fixator and other modes of internal or external fixation. Thus, although the outcome of our application was good to excellent, we can only suggest the Ilizarov external fixator as a valuable option for talus body fractures in children.

Authorship declaration

All authors listed meet the authorship criteria according to the latest guidelines of the International Committee of Medical Journal Editors, and all authors are in agreement with the manuscript.

Author contributions

Qi Li and Shujuan Chu were involved in data collection and follow-up assessments. Xin Tang and WenQi Liu were responsible for literature search, study design. WenTao Zhu and Shujuan Chu drafting the manuscript. WenTao Liu and Xin Tang finalized the manuscript.

Financial disclosure

No financial biases exist for any author.

References

1. Pearce DH, Mongiardi CN, Fornasier VL, Daniels TR. Avascular necrosis of the talus: a pictorial essay. Radiographics. 2005;25:399–410.
2. English CJ, Merriman DJ, Austin CL, Thompson SJ. Open reduction and internal fixation of a pediatric talar body fracture using a medial malleolar osteotomy—A case report. J Orthop Case Rep. 2021;11:30–2.
3. Wohler AD, Ellington JK. Operative management of a pediatric talar body and neck fracture: a case report. J Foot Ankle Surg. 2020;59:399–402.
4. Dale JD, Ha AS, Chew FS. Update on talar fracture patterns: a large level I trauma center study. AJR Am J Roentgenol. 2013;201:1087–92.
5. Vallier HA, Nork SE, Benirschke SK, Sangeorzan BJ. Surgical treatment of talar body fractures. J Bone Joint Surg Am. 2004;86-A Suppl 1 1:180–92.
6. Paley D, Lamm BM, Katsuens D, Bhave A, Herzenberg JE. Treatment of malunion and nonunion at the site of an ankle fusion with the Ilizarov apparatus. Surgical technique. J Bone Joint Surg Am. 2006;88 Suppl 1 Pt 1:119–34.
7. Sakurakichi K, Tsuchiya H, Uehara K, Kabata T, Yamashiro T, Tomita K. Ankle arthrodesis combined with tibial lengthening using the Ilizarov apparatus. J Orthop Sci. 2003;8:20–5.
8. Snoepen O, Christensen SB, Krogsoe O, Lorentzen J. Fracture of the body of the talus. Acta Orthop Scand. 1977;48:317–24.
9. Kitaka HB, Alexander U, Adelaar RS, A. Nunley J, Myerson MS, Sanders M, et al. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1997;18:187–8.
10. Linhart WE, Höllwarth ME. Fractures of the child’s foot. Orthopade. 1986;15:242–50.
11. Draijer F, Havemann D, Bleibstein D. Injury analysis of pediatric talus fractures. Unfallchirurg. 1995;98:130–2.
12. Smith JT, Curtis TA, Spencer S, Kasser JR, Mahan ST. Complications of talus fractures in children. J Pediatr Orthop. 2010;30:779–84.
13. Eberl R, Singer G, Schalamon J, Hausbrandt P, Hoellwarth ME. Fractures of the talus—differences between children and adolescents. J Trauma. 2010;68:126–30.
14. Kelly PJ, Sullivan CR. Blood supply of the talus. Clin Orthop Relat Res. 1963;30:37–44.
15. Ebraheim NA, Patil V, Owens C, Kandimalia Y. Clinical outcome of fractures of the talar body. Int Orthop. 2008;32:773–7.
16. Abrahams TG, Gallup L, Avery FL. Nondisplaced shear-type talar body fractures. Ann Emerg Med. 1994;23:891–3.
17. Crate G, Robertson A, Martin A, Marlow NJ, Gurey E, Trompeter A. Talar neck and body fracture outcomes: a multicentre retrospective review. Eur J Orthop Surg Traumatol. 2021;22.
18. Jensen I, Wester JU, Rasmussen F, et al. Prognosis of fracture of the talus in children. 21 (7-34)-year follow-up of 14 cases. Acta Orthop Scand. 1994;65:398–400.
19. Inokuchi S, Ogawa K, Usami N. Classification of fractures of the talus: clear differentiation between neck and body fractures. Foot Ankle Int. 1996;17:748–50.
20. Tehranzadeh J, Stufmann E, Ross SD. Partial Hawkins sign in fractures of the talus: a report of three cases. AJR Am J Roentgenol. 2003;181:1559–63.
21. Wijers O, Demirci H, Sanders FRK, et al. Functional outcome and quality of life in surgically treated talar neck and body fractures; how is it affected by complications. Injury. 2022;12:5002–13.
22. Abdelkhalek M, El-Alfy B, Ali AM. Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children. J Pediatr Orthop. 2016;25:556–60.
23. Eigafy H, Ebraheim NA, Tile M, Stephen D, Kase J. Fractures of the talus: experience of two level 1 trauma centers. Foot Ankle Int. 2000;21:1023–9.