Emergence of anthropogenic fire regimes in the southern boreal of Canada

Adam Erickson¹,†*

¹Department of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

†Current address: Hydrological Sciences Laboratory, Code 617, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA

*Corresponding author: adam.michael.erickson@gmail.com

ORCID: 0000-0002-8730-073X

Twitter: @admercs

Non-peer-reviewed pre-print submitted to EarthArXiv

Keywords: boreal forests; forest fires; human activity; anthropogenic fires; global change
Abstract

While radiative forcing and thus land surface temperatures have been shown to positively correlate with fire severity, precipitation, and lightning strike frequency, the effects of human activity on fire regimes remain difficult to disentangle from geophysical drivers given co-variation between these factors. Here, I analyze fire regimes in the 1919-2012 period across Canada and compare national trends to those of a latitudinal and elevational gradient in a region experiencing exponentially increased anthropogenic activity in recent decades. Located along the Canadian Rocky Mountains, the region is intended to serve as a proxy for future continental conditions under current anthropogenic trajectories. Based on the findings, I argue that, for the first time in millennia, fire regimes in the southern boreal zone have shifted on average from large, lightning-caused fires to frequent, small, human-caused fires adjacent to human transportation corridors. While warming is known to produce more severe fuel conditions, human factors such as frequent fire ignitions, active fire suppression, industrial and recreational activity, and forestry (i.e., stand aging) likely explain the reduction in mean fire size and annual area burned. Here, I provide the first evidence of a southern boreal transition to Anthropocene fire regimes without historical analogue, representing a dramatic departure from the conditions in which these forests evolved. With ~28 Pg carbon stored in Canada’s managed forests and interspecific variation in albedo, these novel fire regimes carry direct implications for the Earth’s climate system.
The evolutionary history and paleorecord of North America’s boreal forests reflect millennia of cold, dry, and fiery conditions (Gavin et al., 2007; He et al., 2012; Hu et al., 2006; Kelly et al., 2013; Tinner et al., 2008). Global change in the Anthropocene (Crutzen and Stoermer, 2000) has shifted each of these three conditions. Over the past half-century, boreal forests warmed at twice the rate of the global mean (Intergovernmental Panel on Climate Change, 2014). In southwestern Canada, recent climatic change produced warmer and wetter conditions, significantly reduced snowfall, and related reductions in cryomass (Intergovernmental Panel on Climate Change, 2014), or total mass of surface and ground water in a frozen state. Warming is projected to accelerate in the near-term (Smith et al., 2015), with the highest rates of warming expected to occur in mountainous regions (Miller, 2013) and higher latitudes. The northernmost regions are experiencing the most severe temperature extremes of the past 600 years through polar amplification (Miller, 2013; Tingley and Huybers, 2013).

The North American boreal is projected to migrate northward under warming, inducing a net terrestrial loss of carbon storage (Koven, 2013; Scheffer et al., 2012). At lower elevations and latitudes, extant tree species are expected to regenerate less frequently following disturbance under warming, due to an increased frequency and magnitude of physiological drought (Barichivich et al., 2014; Intergovernmental Panel on Climate Change, 2014; Nitschke et al., 2010). Together, changes to regeneration and fire regimes may explain diminished recruitment rates observed for Canada in recent years (Boisvert-Marsh et al., 2014; de Lafontaine and Payette, 2011; Zhang et al., 2015). A reduction in area burned, without a compositional shift toward deciduous trees, may further accelerate warming through reduced albedo (Amiro et al., 2006).
Large stand-replacing fires have characterized circumpolar boreal forests for millennia, reflected in the fire-resisting, -avoiding, and -embracing evolutionary strategies of the resident tree species (Kelly et al., 2013; Rogers et al., 2015). Changes to fire regimes carry particular importance in the North American boreal, where fire has been shown to regulate carbon flux (Bond-Lamberty et al., 2007), energy partitioning (Amiro et al., 2006), compositional change, and tree migration (de Lafontaine and Payette, 2011; Gavin et al., 2013). Warming has increased the severity of fuel conditions in the boreal by increasing evaporative demand (Barichivich et al., 2014; Intergovernmental Panel on Climate Change, 2014) and permafrost thaw (Baltzer et al., 2014; Camill, 2005), accelerating carbon loss through an increased depth of ground-layer burning, particularly for peatlands (Turetsky et al., 2011, 2015).

Recent burn rates for the North American boreal have been reported in excess of Holocene (~11.7 kybp) fire regime limits (Kasischke and Turetsky, 2006; Kelly et al., 2013; Marlon et al., 2013). The global area burned rapidly accelerated with the Industrial Revolution before declining over the past century (Marlon et al., 2008, 2013). Unprecedented high burn rates (short fire rotation periods) are evident for the Alaskan boreal in recent years (Kelly et al., 2013; Turetsky et al., 2011). Yet, Alaska shows little agreement with other regions of the North American boreal. The eastern Canadian boreal shows a fire frequency and biomass burning maximum ~ 4.5 kybp and a steady decline thereafter, currently at a 7,000-year low, due to decreased insolation, shorter fire seasons, and increased precipitation (Marlon et al., 2008, 2013).

More recently, early season warming has produced an increase in spring fire size, with variation in fire patterns attributable to climate-related water table changes and post-glacial topography (Ali et al., 2009, 2012). Regions of the western Canadian boreal similarly show declines in area burned linked to increased precipitation over the past century (Meyn et al., 2017).
These studies indicate that co-varying patterns of solar radiation, temperature, precipitation, physiological drought, and human activity explain global variability in the area burned, with human activity playing an increasingly important role post-industrialization (Marlon et al., 2008). The critical role of human activity is shown by a recent analysis of global burned area (Andela et al., 2017). While short-term efficacy of fire suppression was shown for Alberta (Cumming, 2005), long-term efficacy remains poorly understood.

In Scandinavia, boreal fire regimes shifted to their present state in the 17th century due to increased human activity (Niklasson and Granström, 2000). In Niklasson & Granström (2002), the fires-per-unit-area-time metric was used to indicate physical energetic constraints in the configuration of fire regimes, based on fire frequency, size, and area burned per unit time, following research on phase transitions in the classical Forest Fire Model (Drossel and Schwabl, 1992; Malamud et al., 1998). A recent analysis of global fire regimes supports the presence of both physical energetic constraints and human-dominated fire regimes (Archibald et al., 2013). Archibald et al. (2013) estimated energetic constraints from an expanded feature set that includes fire frequency, size, intensity, season length, return interval, and area burned per unit time.

Similar to Niklasson & Granström (2000), Archibald et al. (2013) demonstrate that fire frequency and size are inversely proportional for a given area burned per unit time. Fire frequency strongly regulates fire intensity, while areas with shorter fire return intervals have higher area burned per unit time. Longer fire seasons are related to higher human activity levels, although difficult to uncouple from anthropogenic warming. Maximum fire size is characterized by exponential decay and has a logarithmic relationship with area burned per unit time that quickly approaches an asymptote (Archibald et al., 2013).
These findings reflect fundamental relationships between fire, climate, vegetation, and human activity, supporting the theory of dual energetic controls (fuels and weather) on area burned per unit time along productivity gradients (Archibald et al., 2013; Meyn et al., 2007, 2010). These studies also indicate that human activity poses a third fundamental energetic constraint on fire regimes in the Anthropocene, alongside fuels and weather. Human activity may explain recent changes to fire regimes in actively managed forests of southwestern Canada by providing greater energetic inputs (ignitions), producing many small fires near human hotspots, while reducing energy stores and spread potential (harvest, fuels management, and fire suppression). These past-century changes to management are hypothesized to be evident in the historical fire record.

Following pan-boreal (Bradshaw et al., 2009; Laurance et al., 2014) and regional trends (Braid and Nielsen, 2015; Linke and McDermid, 2012), previous work has shown that increased economic development in western Alberta expanded the road network into formerly remote areas, facilitating increased access and use for economic and recreational purposes. Expanded human activity is further evident in an increase in other linear features, such as oil and gas pipelines, seismic lines, and power lines, as well as point features including one-hectare well-sites (Linke and McDermid, 2012). While a number of studies have assessed disturbance patterns here (Forest et al., 2008; Laberee et al., 2014; Nielsen et al., 2008), existing studies do not explain the drivers of long-term disturbance variability critical to predicting future patterns in simulation studies. Existing datasets may contain valuable information for discerning relationships in space and time between human activity and fire, necessary for simulating disturbance-related changes to understory solar irradiation. In the following sections, the effects of past-century warming and increased human activity on fire regimes are assessed.
Materials and methods

Here, changes in the statistical patterns of historical wildfire data across western Alberta and Canada are analyzed. The analysis focuses on climatic and anthropogenic changes to fire, including variation in elevation, latitude, cause, size, frequency, and area burned along multiple temporal resolutions, including annual, seasonal, monthly, and daily intervals. Fire seasons were calculated as meteorological quarterly seasons. The analysis is structured to focus on proxies of climatic change and human activity, based on known historical changes and the findings of previous studies in the region. Although there exists significant variation in fire regimes across Canada, national fire patterns provide a baseline for separating regional variation from overall trends.

For the regional analysis, three data sources were used: the latest Canadian National Fire Database (NFDB) fire perimeter data, NASA Shuttle RADAR Topography Mission (SRTM) version 2 data processed using standard correction techniques (Reuter et al., 2007), and Natural Regions and Subregions of Alberta for the biogeoclimatic zones (Natural Regions Committee, 2006). The data were subset to western Alberta and zonal statistics calculated for the minimum, mean, and maximum elevation, as well as slope and aspect for each fire. The latitude and longitude for each fire centroid was also calculated. The NFDB contains many relevant fire attributes including the year, month, day, cause, source, and size. Using the year, month, and day values, the ordinal date and season of fires were calculated. Using values for the elevation, latitude, and ordinal date of each fire, foliar moisture content (FMC) was calculated for each fire. To calculate FMC values, standard equations were applied from the Canadian Fire Behavior Prediction (FBP) System (Hirsch, 1993).
Fire rotation period (FRP), or fire cycle, is a commonly applied metric to indicate the rate of burning, with lower values indicating greater severity (Wagner, 1978). FRP is the average time required for the sum of fire sizes within an area to equal the area in size, calculated over a given time interval. FRP is often presented alongside the mean fire return interval (MFRI), the average time interval between fires for a given area or site, as well as time-since-last-fire.

\[
FRP = \frac{\text{time interval}}{(\text{sum of fire sizes burned in area} / \text{area size})}
\]

\[
MFRI = \frac{\text{time interval}}{\text{number of fires in site or area}}
\]

Hence, FRP is the area-normalized MFRI. Applied to individual sites, FRP is equal to MFRI. By normalizing for area, FRP provides more information about fire regimes at scales greater than the individual site. MFRI values calculated for areas of different sizes are not directly comparable, unless normalized for area, which yields FRP. FRP is applied in the historical fire regime analysis. While other changes in the distribution of fires provide additional information, FRP provides a single robust metric for fire regimes.

Fire size distributions were analyzed to detail variation in western Alberta and national patterns, as well as changes to fire regimes between periods. This work follows a study on lightning-caused fires in the boreal mixedwood region of Alberta, using the former LFDB (Cumming, 2001) that showed that fire models should use a truncated exponential distribution to prevent over-predicting large fires. Here, a Weibull distribution was fit to log-transformed fire sizes. A right-tail Anderson-Darling maximum-goodness-of-fit estimation was used to adjust for power-law behavior at the tail of the distribution. Hartigan’s dip test was used to test for bimodality. The expectation-maximization (EM) algorithm and Bayesian Monto Carlo Markov
Chain (MCMC) simulations were used to fit a mixed normal distribution. Changes to fire size distributions were confirmed by Kullback-Leibler divergence and the Earth Mover’s Distance (EMD), or Wasserstein metric, commonly used for comparing empirical probability mass functions (Gottschlich and Schuhmacher, 2014).

Fire regimes were temporally segmented using the binary segmentation algorithm (Scott and Knott, 1974). While other change-point detection algorithms were tested, including pruned exact linear time (Killick et al., 2011), e-divisive (Matteson and James, 2013), and e-divisive with medians (James et al., 2014), binary segmentation showed optimal sensitivity to small variations in the given task. Thus, binary segmentation was applied to classify fire regime periods. First, fire regime periods were classified with \textit{a priori} knowledge on changes to management and climate. Periods of 30 years are used for compatibility with studies using 30-year climate normal data. The four \textit{a priori} fire regime periods are as follows: Pre-Suppression (1923-1952); Early Suppression (1953-1982); Global Change (1983-2012); and, overlapping the Global Change period, the Most Recent Decade (2003-2012). The Global Change period corresponds to an acceleration of global change conditions (Steffen et al., 2007). The most recent decade is included to represent recent trends independent of the three 30-year periods.

Software used to conduct this work includes ArcGIS 10.2 for spatial analysis, ENVI-IDL 5.2 for processing synthetic aperture RADAR data, R 3.1 for statistical analysis, and Python 2.7 for automation. The \texttt{seas} package for R was used for date-time conversion (Toews et al., 2007), while the \texttt{fwi.fbp} package for R was used to calculate FMC values (Wang et al., 2014). The \texttt{changepoint} (Killick and Eckley, 2014), \texttt{ecp} (James and Matteson, 2015), and \texttt{BreakoutDetection} (James et al., 2014) packages for R were used to test change-point algorithms for classifying fire regime periods.
Results

Across the full 90-year period in western Alberta, mean, maximum, and minimum fire sizes declined. Fire frequency initially declined at an inflection point near 1950 before increasing rapidly since approximately 1990. On average, over the 90-year period, fires declined in size by 142.6 ha per year, annual area burned declined by 3,450 ha per year, and fire frequency increased by 5.44 fires per year (Figure 1).

Figure 1. Mean annual trends for fires along western Alberta, 1919 to 2012: (a) log of area burned; (b) fire frequency; (c) log of fire size; (d) latitude in WGS84 (decimal degrees) coordinates; loess smoothing with 95% confidence interval shown
In western Alberta, comprised predominantly of boreal forests, an inflection point in fire regimes is apparent near 1970, with patterns in area burned, mean fire size, and mean fire latitude changing thereafter; a rapid rise in fire frequency began a decade later (Figure 3.1). The abruptness of the ~ 1970 and 1990 inflection points suggest a change in management, the former potentially linked to an increase in oil and gas development in the boreal known to occur at the time. An observed linear decrease in area burned and increase in fire frequency was independent of elevation (high-elevation mean = -4607 ha/year, +3.3 fires/year; low-elevation mean = -29643 ha/year, +2.2 fires/year) and latitude (high-latitude mean = -31211 ha/year, +3.0 fires/year; low-latitude mean = -3039 ha/year, +2.4 fires/year), based on median fire elevation and latitude. FRP increased by 298% between the Pre-Suppression (1923-1952) and Global Change (1983-2012) periods, indicating a three-fold reduction in fire regime severity during a period of warming (Intergovernmental Panel on Climate Change, 2014).

FRP increased by 166% between the Pre-Suppression and Early Suppression (1953-1982) periods, before increasing by another 50% between the Early Suppression and Global Change periods. FRP in the Most Recent Decade (2003-2012) reflects patterns of the Global Change period it overlaps, shorter by 0.1% at 923.9 years (Table 4.2). However, Most Recent Decade fires were approximately twice as frequent and half the size of Global Change period fires (MFRI ∆ = -45%; annual frequency ∆ = +82%; MFS ∆ = -43.3%). The stability of FRP values between the Global Change and Most Recent Decade periods is indicative of the temporal depth of past-decade trends (Table 1).
Table 1. Fire regime statistics by period for western Alberta; mean fire return interval (MFRI) is shown in years for the full region rather than the mean site value, where

\[
\text{Burned} = \frac{1}{\text{MFRI}} \times \text{MFS} \times \text{Years}; \quad \text{FRP} = \frac{\text{Area}}{\text{Burned}} \times \text{Years}
\]

Period	Burned (ha)	Area (ha)	Fire Rotation Period (FRP, years)	Mean Fire Return Interval (MFRI, years)	Mean Fire Size (MFS, ha)
1923-1952	3,224,691	24,972,634	232.3	0.011	1,148.4
1953-1982	1,211,806	24,972,634	618.2	0.020	811.1
1983-2012	809,967	24,972,634	925.0	0.020	545.1
2003-2012	270,287	24,972,634	923.9	0.011	308.9

Differences in the mean and variance of fire size between Early Suppression and Global Change periods were not statistically significant at a \(p \)-value threshold of 0.05 (\(t = 1.69, \ p\)-value = 0.09; \(F = 1.19, \ p\)-value = 0.06). Area burned declined substantially between these periods \((\text{Burned}_{ES} = 1,211,806 \text{ ha}, \text{Burned}_{GC} = 809,967 \text{ ha}, \Delta = -33.1\%) \), even though remote monitoring improved. While MFRI remained stable across the Early Suppression and Global Change periods \((\text{MFRI}_{ES} = 0.0201, \text{MFRI}_{GC} = 0.0202, \Delta = +0.5\%) \), mean fire size (MFS) declined at a rate equivalent to that of area burned \((\text{MFS}_{ES} = 811 \text{ ha}, \text{MFS}_{GC} = 545 \text{ ha}, \Delta = -33\%) \). Thus, a decline in mean fire size best explains the reduction in area burned under warming in western Alberta. This is particularly evident in the Most Recent Decade, where FRP (area burned) was similar to the Global Change period it overlaps \((\Delta = -0.2\%) \) as MFRI (fire frequency) increased by 81.8%.

In western Alberta, the ratio of human- to lightning-caused fires increased from 0.93:1 to 1.39:1 (+33%) between the 1970s and 2000s. A spatial analysis of historical ignitions in western Alberta using NFDB point data demonstrates the proximity of small fires to areas of human activity, typically major roads and river valleys (fire distance from roads: mean = 2.2 km,
standard deviation = 4.8 km; fire distance from roads or surface water: mean = 297 m, standard deviation = 363 m), supporting a human origin (Figure 2).

Figure 2. Fire adjacency to roads by cause overlaid on SRTM 90 m elevation data in the vicinity of Hinton, Alberta in NAD83 UTM 11N coordinates with WGS84 graticules: light blue = human-caused; magenta = lightning-caused; green = roads; top = north

Between the 1980s and 2000s, as Alberta’s population doubled, the mean distance of fires from roads declined by 40%, from 2.3 to 1.4 km. The mean distance of fires from roads or
surface water (rivers and lakes; proxies of human activity) declined by 32% across the same 30-year period, from 318 to 216 meters. Concurrently, annual fire frequency increased by 33%, from 6,035 to 9,054 fires, in the point data. The increasing influence of human activity in Alberta’s fire regimes is apparent in the percentage of the total area burned attributable to sources over the past three decades (Figure 3).

Figure 3. Decadal area burned by fire source for western Alberta; (a) absolute area burned (ha); (b) percent of total area burned (ha); most fires were unknown in origin (not shown); H = human-caused; H-PB = prescribed burn; L = lightning
A decline in the relative influence of lightning on the total area burned in Alberta was offset by an increase in the percentage of area burned explained by human-caused fires. Between the 1970s and 2000s, the area burned increased by 34% in summer, fire frequency increased in spring and summer, and mean fire size increased by 83% in fall and 60% in spring for western Alberta (Tables 2a and 2b).

Table 2a. Fire regime change by season

Season	Area	Number	Mean Size
Spring	-6.8%	+13.5%	-60%
Summer	+7.6%	+1%	+16.6%
Fall	-2.2%	-18.2%	+82.9%

Table 2b. Current fire seasonality

Season	Area	Number	Mean Size
Spring	63.2%	51.2%	123%
Summer	33.8%	39.2%	86%
Fall	2.4%	6.8%	35%

An analysis of fire seasonality related to the ‘spring dip’ in foliar moisture content (FMC) using standard formulations from the Canadian Fire Behavior Prediction System (Forestry Canada Fire Danger Group, 1992; Wotton et al., 2009), shows that the standard FMC equations are not suitable for western Alberta. Here, the modeled spring dip in FMC occurs approximately two months after the peak in fire frequency and size (Figures 4a and 4c) that likely corresponds to the true spring dip (Alexander and Cruz, 2013; Tymstra et al., 2007). The log of fire size shows the strongest density at 138 DOY (late April), followed by a second peak ~ 1 week later at a substantially larger fire size (Figure 4a). Meanwhile, modeled spring dip occurs at 200 DOY (Figure 4c). Across the full time period, fires declined in size following a structural change.
around 1990 (Figure 4b). In recent years, fires were most frequent and concentrated earlier in the season, with longer fire seasons (Figure 4d).

Across Canada, an increasing rate of area burned declined at a similar inflection point around 1990, when mean fire size and latitude declined as fire frequency rapidly increased (Figure 5). Between the 1990s and 2000s, fires nationwide declined in mean latitude at a rate of
14 km/year while fires in western Alberta declined at a rate of 24.4 km/year. Nationwide and in Alberta, lightning-caused fires decreased and human-caused fires increased in mean latitude during the period (nationwide = -6/+1.6 km/year; Alberta = -5.9/+1.5 km/year). Characteristic of the boreal, large lightning-caused fires >= 200 ha increased in mean latitude by 5.4 km/year nationwide and decreased by 10.1 km/year in Alberta. Since 1920, fires >= 200 ha shifted northward at a mean rate of 5.2 km/year ($R^2 = 0.13; p < 0.001$) nationally.

Figure 5. Mean annual trends for fires Canada-wide, 1919 to 2012: (a) log of area burned; (b) fire frequency; (c) log of fire size; (d) latitude in WGS84 (decimal degrees) coordinates; loess smoothing with 95% confidence interval shown; NFDB data prior to 1960 are known to be incomplete.
For the \textit{a priori} classification in western Alberta, the Pre-suppression period (1923-1952) is characterized by frequent fires and the largest annual area burned, while the Early Suppression period (1953-1982) shows a sharp decrease in fire frequency and annual area burned, with the lowest overall rates of each. The Global Change period (1983-2012) exhibits a rapid increase in fire frequency but a relatively flat annual area burned. The Most Recent Decade (2003-2012), shows the most rapid increase in fire frequency and the most rapid decline in mean fire size, accompanied by a decline in area burned.

For western Alberta and Canada, fire regime period classification using the binary segmentation change-point detection algorithm produced fire regime periods distinct from the \textit{a priori} classification. In Alberta, based on time-series of annual area burned and fire frequency (Figures 6a and 6b), the algorithm shows an initial fire regime segmentation from the late 1930s to the early 1960s, followed by another regime from the 1960s to the 1990s, and final regime characterized by an increase in fire frequency from the 1990s to 2012. For Canada-wide fires, the algorithm shows little consistency between fire regimes for the univariate annual area burned and fire frequency time-series (Figures 6c and 6d). Nevertheless, the annual area burned time-series shows approximate agreement with the \textit{a priori} classification, with regime periods falling from the early 1920s to \textasciitilde{} 1950, \textasciitilde{} 1950 to late 1960s, 1960s to late 1970s, and late 1970s to 2012.
Figure 6. Fire regime change-point segmentation using the binary segmentation algorithm: (a) Alberta fire frequency by year; (b) Alberta total area burned by year; (c) Canada-wide fire frequency by year; (d) Canada-wide total area burned by year

Fire regime periods differed for the two scales. Canada-wide, the 1940s through 1970s were characterized by infrequent fires and a steadily increasing area burned, while the inverse was true for Alberta. Nationwide, the first broad shift in fire regimes occurred during the 1970s with a spike in fire frequency and area burned. Yet, area burned was flat from ~ 1980. In western
Alberta, similar to nationwide patterns, fire frequency increased rapidly beginning ~ 1990. Yet, Alberta showed little change in area burned from 1960 to 2012, despite strong variability within the period (Figure 6).

Over the 90-year period, in western Alberta, fire seasons lengthened by ~ 60 days, or two months (mean = +1.2 days/year), due to more frequent human-caused fires (mean = +9.2 fires/year) earlier and later in the season (Figure 7a). The fire season experienced a lower rate of lengthening nationwide (Figure 7b). At both scales, lightning-caused fires were concentrated in summer, while human-caused fires were concentrated in the spring and fall (Figure 7).

Figure 7. Fire regime patterns nationwide and western Alberta changes in seasonality with linear models and 95% confidence intervals: (a) western Alberta fire ordinal date by year and season; (b) Canada-wide ordinal date by year, season, and cause; salmon = human; aqua = lightning; linear regression with 95% confidence interval shown.

Within western Alberta, the largest fire sizes and area burned occurred in the boreal, followed by the foothills and Rocky Mountain regions. Within the boreal region, the lowland
mixedwood subregions experienced a greater area burned than the highland subregions. Yet, mean fire size and annual area burned declined in the boreal across the study period. Canada-wide, the log-transformed fire size distribution for fires > 2 ha showed reasonable fit with a Weibull distribution ($K-S = 0.02; \bar{\alpha} = 1.60; A^2 = 27.34; AIC = 174679.6; BIC = 174696.8$), with fit improving with the right-tail second-order Anderson-Darling (AD2R) statistic due to power-law behavior at the tail. While the distribution of fire sizes nationwide showed unimodality per Hartigan’s dip test ($D = 0.003, p$-value = 0.11) despite visual evidence of bimodality, fire sizes in western Alberta showed significant bimodality ($D = 0.02, p$-value = 0.002). Using a mixed Gaussian model for western Alberta fire size, the two modes centered on μ of 1.2 and 6.2 log ha, with Expectation-Maximization (EM) and Bayesian Markov Chain Monte Carlo (MCMC) algorithms each converging to these values. This implies the presence of two dominant fire regime phases in Alberta.

A further analysis reveals distinct changes in the fire size distribution over time. While previous periods showed approximately Gaussian fire size distributions without skew, fires in the Global Change period were strongly skewed toward smaller values. Bimodality of fire sizes for all years in western Alberta is comprised of two distinct components: (1) frequent large fires in 1923-1952; (2) frequent small fires in 1983-2012. The Most Recent Decade showed the second greatest K-L divergence ($D_{KL} = 0.84$, after the Pre-Suppression period ($D_{KL} = 1.05$), and greatest distance from, the fire size distribution for all years, based on the Earth Mover’s Distance (EMD) or Wasserstein metric ($EMD = 5.15$). Fire regimes in Alberta thus reached a novel state in recent years.

For Canada, monthly aggregations show mean fire size and total area burned were typically largest in June, followed by July and May. Fire frequency peaked in July, followed by
June and May (Figures 8a – c). These findings are supported by daily resolution data. Given increased temporal resolution, Gaussian and splines models indicate a typical fire frequency peak between 184-185 DOY, mean fire size peak between 172-178 DOY, and area burned peak between 171-178 DOY (Figures 8d – f). The splines models show early season spikes in fire frequency and areas burned corresponding with the ‘spring dip’ in foliar moisture content indicated in Figure 3.4c – a sharp early season increase in the frequency and size of fires (Van Wagner, 1967) – as well as a skewed fire frequency distribution. The log of mean daily fire size centers at ~ 5.5 ha, while the log of mean daily area burned centers at ~ 6.5 ha. The log of daily fire frequency shows a negative exponential distribution with a large λ value (Figures 8g – i). This matches the typical model for the probability distribution of time-since-event for Poisson processes, such as the probability of fire events, as in LANDIS-II (Sturtevant et al., 2009; Yang et al., 2004).
Figure 8. Monthly and daily patterns of fire frequency, mean fire size, and total area burned Canada-wide:

(a) total area burned by month; (b) mean fire size by month; (c) fire frequency by month; (d) total area burned by ordinal date; (e) mean fire size by ordinal date; (f) fire frequency by ordinal date; (g) log of daily area burned; (h) log of daily mean fire size; (i) log of daily fire frequency; recorded fire detection dates are used to calculate DOY values; blue and red lines in (d-f) are cubic splines and a Gaussian distribution fit, respectively, while the red line in (i) is an exponential distribution fit.
Discussion

The distribution of fire sizes follows well-documented power-law behavior common to self-organizing systems (Malamud et al., 1998; Reed and McKelvey, 2002), showing a heavy-tailed distribution. Previous theoretical work suggested that fire size distributions should fit a truncated Pareto distribution (Strauss et al., 1989). However, an empirical study of the boreal mixedwood region of Alberta, using the former Large Fire Database for 1980-1998, showed optimal model fit with a truncated exponential distribution (Cumming, 2001). The above results suggest that the use of the AD2R goodness-of-fit statistic yields reasonable model fit with a Weibull distribution for the logarithm of fire sizes.

The results illustrate that western Alberta experienced a sharp rise in human-caused fires and area burned since 1990. This rise in human-caused fires likely combined with warming to facilitate lengthening fire seasons in both early spring and late fall (spring mean = +0.26 days/year; fall mean = +0.67 days/year; $R^2 = 0.83; p < 0.001$), in agreement with previous observations (Kasischke and Turetsky, 2006; Stocks et al., 2002). The combined lengthening of fire seasons by 0.93 days/year is approximately five times faster than the Canada-wide average of 0.2 days/year (spring mean = +0.07 days/year; fall mean = +0.13 days/year; $R^2 = 0.57; p < 0.001$). This difference in fire season lengthening rates is likely attributable to rapidly increasing human activity in western Alberta, as well as data sparsity in early years. From the 1970s to the 2000s, human-caused fires accounted for a growing proportion of both annual fires (+9.8%) and area burned (+38.9%) for fires of known cause.

While the majority of area burned continues to be produced by lightning-caused fires nationally, this work observed a southern boreal shift to human-driven regimes characterized by more frequent, smaller fires near human activity earlier and later in the year. Climatic warming...
and a growing human presence are combining to create longer fire seasons, known to have
challenged managers in recent years (Tymstra et al., 2007). Fire frequency, area burned, and
mean fire size were greatest in spring for all regions, representing 51% of fires and 63% of area
burned, except the Rocky Mountain region, where fire frequency and size are greatest in summer
due to temperature constraints. The largest fires occurred in May, consistent with a ‘spring dip’
in foliar moisture content. Although this episodic decline in foliar moisture content remains
under investigation (Jolly et al., 2014), it is an important physiological phenomenon in these
forests (Alexander, 2010; Finney et al., 2013; Jolly et al., 2014; Little, 1970). Spring dip
typically corresponds to intense crown fire activity, producing the largest and most severe fires
of the fire season, which these data support.

Boreal fire regimes appear to be tracking a northward shift of boreal climatic conditions
(Koven, 2013), reducing the size and severity of fires in western Alberta, as southern boreal
ecosystems transition to Anthropocene fire regimes. Data from southeastern Canada indicate that
the in-migration of temperate species into the southeastern reaches of the American boreal is
already underway (Fisichelli et al., 2014). Fisichelli et al. (2014) proposes that the reduced size
of boreal fires, despite warming, is attributable to four key factors: (1) reduced surface fuel loads
from frequent small human-caused fires; (2) increased fire suppression; (3) reduced crown fuels
and/or forest fragmentation due to extractive industry activities; (4) a northward shift of boreal
climatic conditions, evidenced by changing wildfire patterns and climate-analogue vectors
(Koven, 2013).

A recent study shows demographic ageing for the region (Zhang et al., 2015), which may
further reduce surface fuels prior to gap formation and understory reinitiation. Previous studies
argue little effect of fire suppression on fire regimes in boreal and subalpine systems, as fuel
moisture shows greater importance than fuel load in models, while neither fire frequency nor
crown-fire potential were correlated with stand age (Johnson et al., 2001). Nevertheless, a shift
toward more frequent and smaller fires is evident for fire suppression regions (Kasischke and
Stocks, 2000). Subsequent analyses of Ontario and Alberta provide contrasting views on the
effectiveness of fire suppression in Canada (Bridge et al., 2005; Cumming, 2005).

The increasing extent and magnitude of industrial activity, recreational usage, and road
network expansion in formerly remote areas are combining with record temperature anomalies
(Kamae et al., 2014) to produce frequent ignitions and small fires around areas of human
activity. Harvest operations are widespread in these forests, reducing canopy fuels while
providing new ignition sources. A temporal lag of large fires following periodic pulses in pest
populations (Kurz et al., 2008) may amplify fuel conditions, fire regimes, and forest transition
rates. Increasingly warm and wet conditions may favor deciduous species in the southern boreal
(Terrier et al., 2012), producing a negative climatic feedback through increased summer albedo
(Amiro et al., 2006) while reducing the rate of fire spread (Dash et al., 2016).

An increase in fire suppression corresponds to an increasing human presence in
previously remote forested regions, related to a 619% increase in Alberta’s population during the
1921-2011 period (Statistics Canada, 2011) and economic-related extractive industry activity
(Cross and Bowlby, 2006). The advent of fire suppression is indicated in the historical record by
reduced fire activity in the mid-20th century, following the 1950 Chinchaga wildfire in
northwestern BC and western Alberta, the largest recorded wildfire in North American history.
The disturbance legacy of this large fire is evident in the fire data, with few fires in its recovery
zone since, while surrounding boreal areas have burned frequently. This may partially explain
the observed decline in mean fire size, but it does not explain the accelerated decline in recent
decades. The mean area burned by fires followed a similar trend, only rising in 1998 at the
beginning of an exponential-like increase in fire frequency, as described for other regions of the
boreal (Kasischke and Turetsky, 2006; Kelly et al., 2013). Research for Alberta, conducted
parallel to this work, selected a similar fire exclusion period start date of 1948, chosen for its
correspondence with the establishment of the Eastern Rockies Forest Conservation Board. This
work also shows a general lengthening of fire rotation periods compared to historical burn rates
(Rogeau, 2016).

While one may infer that increased fire detection by satellites in recent decades (e.g.,
Landsat and MODIS) explains the observed rapid increase in fire frequency, decrease in fire size,
and increase in latitude of large lightning-caused fires during this period, an analysis of the
reported detection source rejects this hypothesis. Recent studies elsewhere in the boreal have
shown the effect of human activity on fire frequency (Gaglioti et al., 2016). While disturbance
detection source or instrument (spaceborne remote sensing versus traditional air and ground
methods) shows a statistically significant relationship for fire size ($p < 0.001$) and latitude ($p <
0.001$), it is not enough to explain recent fire regime changes.

Mean decadal fire frequency and area burned show little change due to inclusion of
spaceborne remote sensing over the past three decades (Figures 9a and 9b). Only mean fire
latitude and size were significantly impacted by detection source (Figures 9d and 9c), with the
effect greater for median values; an ANOVA indicates that latitude was more strongly affected
than fire size ($p = 7.39e-05$; $p < 2e-16$). Since the 1970s, spaceborne detection methods appear to
have substituted for traditional methods in northern regions. The mean decadal latitude of
lightning-caused fires > 200 ha peaked in the 1970s, prior to broad use of spaceborne
monitoring. Large lightning-caused fires were 2 degrees further north on average than fires
200 ha, with a maximum of 5.3 degrees higher in the 1970s (WGS84 coordinates).

Figure 9. Fire statistics by reported detection source Canada-wide: (a) fire frequency by decade; (b) area burned
by decade; (c) mean fire size by decade; (d) mean fire latitude by decade in WGS84 (decimal degrees) coordinates;
blue = traditional detection source; red = modern remote sensing instruments
Thus, the contribution of spaceborne instruments to observed fire patterns remains small relative to traditional methods. In the 2000s, spaceborne monitoring was used to detect less than 9% of recorded fires in Canada, despite reliable Landsat and MODIS coverage for the period (Fensholt and Proud, 2012; Wulder et al., 2016). Even though spaceborne detection methods produced a mean fire size twice that of traditional sources during the past decade, likely due to the a combination of the coarse resolution of the MODIS hotspot product (Hantson et al., 2013) and increased coverage in the north, the combined mean fire size sharply declined from 1990 onward. Furthermore, a rapid increase in the frequency of small human-caused fires in recent decades may drive the mean fire latitude southward toward population centers. While this is evident for fires of all sizes, large lightning-caused fires > 200 ha representative of classical boreal fire regimes generally increased in latitude over the past 90 years, indicative of high-latitude warming and an increased human presence in the north; disentangling these two factors, as well as the inherent sampling bias of non-satellite detection methods, presents an opportunity for future research. Nonetheless, a poleward shift of boreal fire regimes may correspond to a northward migration of boreal forests under warming (D’Orangeville et al., 2016; Koven, 2013). Further research leveraging the Landsat and/or AVHRR record is required to confirm this dynamic.

While the inclusion of satellite disturbance detection data in recent decades should increase the apparent area burned, the opposite is observed across regional and national scales. At its peak prior to the current decade, in the 2000-2009 decade, spaceborne observations represented 8% of fire observations and 19.4% of the total area burned; omitting these observations leaves observed patterns generally intact. At its latitudinal peak in the 1990-1999
decade, spaceborne observations were 14% further northward on average compared to traditional
detection methods.

For western Alberta, where recent changes to fire regimes are greater than national
patterns, the detection source of fire observations shows no effect. According to the National Fire
Database, none of the fires in western Alberta were sourced from modern remote sensing
instruments. Hence, the analysis and related conclusions at the national and regional scales
remain valid. At the national scale, while the subtraction of remote sensing detected fires would
further increase FRP (reduce the rate of burning) during the Most Recent Decade, such large
fires were often drawn on a map by hand in previous decades. Absent additional information, I
estimate the historical fire size detection threshold at > 40 ha for western Alberta, based on
strong correspondence to a gamma fire size distribution at this threshold ($K-S = 0.028 \quad \omega = 0.231;
A^2 = 1.621$). Individual fire sizes between periods do not significantly differ in mean, but do
significantly differ in variance ($t = 0.750, p\text{-value} = 0.454; F = 301.180, p\text{-value} < 2.2e-16$).

Despite declines in fire size, latitude, and area burned for lightning-caused fires Canada-
wide between the 1990s and 2000s reported here (mean = -422 ha/year; mean = -15.6 km/year;
mean = -744,674 ha/year), a recent analysis of long-term warming suggests that these changes
are not climatic (Karl et al., 2015). Results for western Alberta show a regime shift toward
human-dominated fires in recent decades. By the 2000s, human-caused fires accounted for
58.1% of fires and 70.8% of area burned in western Alberta, surpassing the millennia-old
dominance of large lightning-caused fires. These findings contrast with Canada-wide changes
during the same period, where human-caused fires declined in contribution to the area burned
from 9% to 6%.
While human activity has long played a role in fire regimes in the boreal (Bowman et al., 2011), Anthropocene conditions have recently combined to produce fire regimes without historical analogue along the southern boreal. By analyzing fires > 200 ha before the 2000s, due to limitations in the former national fire database, previous studies (Kasischke and Turetsky, 2006; Stocks et al., 2002) were unable to detect this regime shift. Fires < 200 ha in size represent 46.6% of fires in western Alberta (0.6% of area burned) and 59.3% of fires Canada-wide (0.9% of area burned). Thus, while large fires continue to explain the area burned, they fail to explain variation in fire frequency. As was shown, large recent changes to fire frequency are not explained by the inclusion of spaceborne detection methods.

Our results for western Alberta contrast to previous studies suggesting that lightning maintains a dominant role in annual area burned throughout the North American boreal (Kasischke and Turetsky, 2006; Stocks et al., 2002). Here, more effective fire suppression (Cumming, 2005) appears overwhelmed by a combination of warming and increased human activity, beginning at an inflection point ~1970. At higher latitudes and elevation in Canada, warming has been shown to increase biomass production (D’Orangervile et al., 2016; Hantson et al., 2015), partially explaining an increased area burned here under the assumption of fuel limitations.

An increased annual rate of fire frequency since 1980 corresponds with population growth and increased economic activity in Alberta (Statistics Canada, 2011) combined with rapid warming (Karl et al., 2015). Regional and national warming is evidenced by IPCC findings (Intergovernmental Panel on Climate Change, 2014), previous fire regime analyses (Tymstra et al., 2007; Wotton and Flannigan, 1993), and indirectly by aforementioned observed changes to fire regimes Canada-wide. Human activity may explain most of the increase in the frequency of
small fires near roads and surface water, while warming also increases the frequency of lightning
strikes and severity of fire weather conditions (Krawchuk et al., 2009).

Although mean annual fire size and area burned declined in western Alberta over the past
decade, the effects of warming on burning appear to have been amplified, rather than attenuated,
by human activity. The data do not appear to support a previously reported non-linear U-shaped
relationship between human activity and the frequency of fire ignitions (Parisien et al., 2012;
Syphard et al., 2007). Due to the relative remoteness of Alberta's burnable land and small urban
areas (compared to populous regions, such as California), there appears to be an approximately
linear, rather than a U-shaped, distribution between fire frequency, area burned, and human
activity. Our results for western Alberta appear similar to findings for the Alaska boreal (Gaglioti
et al., 2016). Successful fire suppression efforts (Cumming, 2005) may partially account for the
decline in mean fire size nationally and in Alberta, as well as a declining national annual area
burned, despite warmer conditions with more frequent human-caused ignitions. High-frequency
small fires and extractive activities have likely also reduced forest fuels, which may together
explain an observed demographic shift in these forests (Zhang et al., 2015).

These patterns differ from other recent studies in the North American boreal including
Alaska (Kasischke and Turetsky, 2006; Stocks et al., 2002), which show a rapid rise in mean fire
size and annual area burned, based on analyses of previous historical fire database versions. The
results presented herein contradict both of these notions across regional and national scales,
showing greater agreement with paleoreconstructions from Alaska (Kelly et al., 2013), studies on
the relationship between human activity and fire frequency in the Alaskan boreal (Gaglioti et al.,
2016), and recent analyses indicating the presence of negative wildfire feedback mechanisms in
the North American boreal (Héon et al., 2014; Rogers et al., 2015).
Future studies should assess whether these trends are prominent across North America and northern forests globally. A coupled climatic-human activity dynamic appears to explain the observed changes in fire distribution. This is supported by a recent study showing a global human-driven reduction in burned area (Andela et al., 2017). Studies should seek to better delineate the causes of these patterns in terms of the precise roles of climatic, human, and forest fuels mechanisms responsible. Of primary interest is the unexplained inflection point observed around 1990, for both western Alberta and Canada, related to a rapid increase in fire frequency, reduction in mean fire size, and reduction in area burned, despite warming. This poorly understood inflection point appears to explain many observed dynamics. While historical landcover and demographic change undoubtedly also play a critical role in explaining variations in fire patterns, a dearth of detailed historical maps makes it difficult to assess, with remote sensing records absent earlier than a few decades into the past. Future studies should investigate the coupling of climatic change and human activity to better understand present and future conditions, until more precise maps of landcover history are available.

Results indicate that the application of historical climate-fire correlations to general circulation model projections, absent anthropogenic trajectories, carries diminished predictive power in the Anthropocene. Short-term boreal ecological forecasts should include spatially explicit dynamics of human-caused ignitions, fire suppression, and structural-demographic changes to forest fuels related to increasing human activity. Long-term forecasts should further include compositional change impacts on fuel conditions (Terrier et al., 2012), as well as coupled climate feedbacks (Amiro et al., 2006).

These requirements may motivate the development of new terrestrial biosphere models incorporating disturbance, succession, and energy partitioning processes, similar to recent hybrid
models (Bond-Lamberty et al., 2005; Scheller et al., 2007). The anthropogenically focused Community Earth System Model (CESM1) revisions (Li et al., 2013) and Human-Earth System Fire (HESFire) model (Le Page et al., 2015) represent such an approach, as do Eulerian grid-based models such as WRF-Fire (Coen et al., 2012) and HIGRAD/FIRETEC (Colman and Linn, 2007).

Limitations

This research relies on the best available fire history data for Canada (Burton et al., 2008; Parisien et al., 2006; Stocks et al., 2002). Yet, the data contain known sampling biases toward lower latitudes, larger fires of longer duration, and years subsequent to ~ 1960, particularly for data on fire seasonality and cause. Thus, one would expect the data to show diminished mean fire size and increased area burned, fire frequency, and mean fire latitude until the 1970s, when the remote sensing record began with Landsat MSS. Yet, changes observed since the 1980s appear robust to these sampling biases, given an increased satellite record. For improved estimates of parameter uncertainty or model error, future studies may rely on hierarchical Bayesian modeling with climate and anthropogenic data. While modern spaceborne imaging systems such as Planet Doves (Hand, 2015) and deep learning techniques (LeCun et al., 2015) are poised to alleviate sampling biases in historical fire maps over time by improving spatiotemporal resolution and detection accuracy, the temporal depth of this remote sensing record remains limited, while the substantial size of the data and neural networks remain cumbersome. Thus, early field observations, airborne mapping, and paleorecords will remain indispensable for understanding historical fire regimes.
Acknowledgements

I would like to thank Dr. Nicholas Coops and Gordon Stenhouse for supporting this work. The work was funded by Foothills Research Association’s Grizzly Bear Program and an NSERC grant to Dr. Coops. I would also like to thank Dr. Steven Cumming at Laval University for reviewing a previous draft of this work. The data used in this study is openly available from Natural Resources Canada (http://cwfis.cfs.nrcan.gc.ca/ha/nfdb), Alberta Parks (https://albertaparks.ca/albertaparksca/library/downloadable-data-sets/), and NASA JPL (https://www2.jpl.nasa.gov/srtm/).

References

Alexander ME (2010) Foliar moisture content input in the Canadian Forest Fire Behavior Prediction System for areas outside of Canada. Proceedings of the 6th International Conference on Forest Fire Research. Coimbra, Portugal, 1–13. Available at: http://nofc.cfs.nrcan.gc.ca/bookstore_pdfs/31990.pdf.

Alexander ME and Cruz MG (2013) Assessing the effect of foliar moisture on the spread rate of crown fires. International Journal of Wildland Fire, 415–427. Available at: http://dx.doi.org/10.1071/WF12008.

Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, et al. (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proceedings of the National Academy of Sciences 109(51): 20966–20970. Available at: http://www.pnas.org/content/109/51/20966.abstract; doi:10.1073/pnas.1203467109.

Ali AA, Carcailllet C and Bergeron Y (2009) Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Global Change Biology.
Amiro BD, Orchansky AL, Barr AG, Black TA, Chambers SD, Chapin III FS, et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. *Agricultural and Forest Meteorology* 140(1–4): 41–50. Available at: http://www.sciencedirect.com/science/article/pii/S0168192306002267: doi:http://dx.doi.org/10.1016/j.agrformet.2006.02.014.

Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, et al. (2017) A human-driven decline in global burned area. *Science* 356(6345): 1356 LP – 1362. Available at: http://science.sciencemag.org/content/356/6345/1356.abstract.

Archibald S, Lehmann CER, Gómez-Dans JL and Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. *Proceedings of the National Academy of Sciences* 110(16): 6442–6447. Available at: http://www.pnas.org/content/110/16/6442.abstract: doi:10.1073/pnas.1211466110.

Baltzer JL, Quinton WL and Sonnentag O (2014) Boreal forests in permafrost landscapes: Changing structure and function in response to climate warming, *AGU Fall Meeting Abstracts* F3.

Barichivich J, Briffa KR, Myneni R, Schrier G van der, Dorigo W, Tucker CJ, et al. (2014) Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. *Remote Sensing* 6(2): 1390. Available at: http://www.mdpi.com/2072-4292/6/2/1390: doi:10.3390/rs6021390.

Boisvert-Marsh L, Périé C and de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. *Ecosphere*. Ecological Society of America
Bond-Lamberty B, Gower ST, Ahl DE and Thornton PE (2005) Reimplementation of the Biome-BGC model to simulate successional change. *Tree Physiology* 25(4): 413–424. Available at: http://treephys.oxfordjournals.org/content/25/4/413.abstract: doi:10.1093/treephys/25.4.413.

Bond-Lamberty B, Peckham SD, Ahl DE and Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. *Nature* 450(7166): 89–92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17972883: doi:10.1038/nature06272.

Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, et al. (2011) The human dimension of fire regimes on Earth. *Journal of Biogeography*. Blackwell Publishing Ltd 38(12): 2223–2236. Available at: http://dx.doi.org/10.1111/j.1365-2699.2011.02595.x: doi:10.1111/j.1365-2699.2011.02595.x.

Bradshaw CJA, Warkentin IG and Sodhi NS (2009) Urgent preservation of boreal carbon stocks and biodiversity. *Trends in Ecology & Evolution* 24(10): 541–548. Available at: http://www.sciencedirect.com/science/article/pii/S016953470900189X: doi:http://dx.doi.org/10.1016/j.tree.2009.03.019.

Braid ACR and Nielsen SE (2015) Prioritizing sites for protection and restoration for grizzly bears (Ursus arctos) in southwestern Alberta, Canada. *PLoS ONE*. Public Library of Science 10(7): e0132501. Available at: http://dx.doi.org/10.1371%2Fjournal.pone.0132501.

Bridge SRJ, Miyanishi K and Johnson EA (2005) A critical evaluation of fire suppression effects in the boreal forest of Ontario. *Forest Science* 51(1).

Burton PJ, Parisien M-A, Hicke J a., Hall RJ and Freeburn JT (2008) Large fires as agents of ecological diversity in the North American boreal forest. *International Journal of Wildland Fire*.
Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. *Climatic Change*. Kluwer Academic Publishers 68(1–2): 135–152. Available at: http://dx.doi.org/10.1007/s10584-005-4785-y.

Coen JL, Cameron M, Michalakes J, Patton EG, Riggan PJ and Yedinak KM (2012) WRF-Fire: Coupled weather–wildland fire modeling with the weather research and forecasting model. *Journal of Applied Meteorology and Climatology*. American Meteorological Society 52(1): 16–38. Available at: http://dx.doi.org/10.1175/JAMC-D-12-023.1.

Colman JJ and Linn RR (2007) Separating combustion from pyrolysis in HIGRAD/FIRETEC. *International Journal of Wildland Fire*, 493–502. Available at: http://dx.doi.org/10.1071/WF06074.

Cross P and Bowlby G (2006) The Alberta economic juggernaut: The boom on the rose. *Canadian Economic Observer* (11–010): 3.1-3.12.

Crutzen PJ and Stoermer EF (2000) The Anthropocene. *IGBP Global Change Newsletter* 41(1): 17–18. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0036873802&partnerID=40.

Cumming SG (2001) A parametric model of the fire-size distribution. *Canadian Journal of Forest Research*. NRC Research Press 31(8): 1297–1303. Available at: http://www.nrcresearchpress.com/doi/abs/10.1139/x01-032: doi:10.1139/x01-032.

Cumming SG (2005) Effective fire suppression in boreal forests. *Canadian Journal of Forest Research*. NRC Research Press 35(4): 772–786. Available at: http://dx.doi.org/10.1139/x04-174: doi:10.1139/x04-174.

D’Orangeville L, Duchesne L, Houle D, Kneeshaw D, Côté B and Pederson N (2016)
Northeastern North America as a potential refugium for boreal forests in a warming climate.

Dash CB, Fraterrigo JM and Hu FS (2016) Land cover influences boreal-forest fire responses to climate change: geospatial analysis of historical records from Alaska. Landscape Ecology 31(8): 1781–1793. Available at: http://dx.doi.org/10.1007/s10980-016-0361-2: doi:10.1007/s10980-016-0361-2.

de Lafontaine G and Payette S (2011) Shifting zonal patterns of the southern boreal forest in eastern Canada associated with changing fire regime during the Holocene. Quaternary Science Reviews 30(7–8): 867–875. Available at: http://www.sciencedirect.com/science/article/pii/S0277379111000175: doi:http://dx.doi.org/10.1016/j.quascirev.2011.01.002.

Drossel B and Schwabl F (1992) Self-organized critical forest-fire model. Physical Review Letters. College Park, MD, USA: American Physical Society 69(11): 1629–1632. Available at: http://link.aps.org/doi/10.1103/PhysRevLett.69.1629: doi:10.1103/PhysRevLett.69.1629.

Fensholt R and Proud SR (2012) Evaluation of earth observation based global long term vegetation trends — comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment 119: 131–147. Available at: http://www.sciencedirect.com/science/article/pii/S003442571200003X: doi:http://dx.doi.org/10.1016/j.rse.2011.12.015.

Finney MA, Cohen JD, McAllister SS and Jolly WM (2013) On the need for a theory of wildland fire spread. International Journal of Wildland Fire, 25–36. Available at: http://dx.doi.org/10.1071/WF11117.
Fisichelli NA, Frelich LE and Reich PB (2014) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. *Ecography*. Blackwell Publishing Ltd 37(2): 152–161. Available at: http://dx.doi.org/10.1111/j.1600-0587.2013.00197.x: doi:10.1111/j.1600-0587.2013.00197.x.

Forest FM, Berland A, Nelson T, Stenhouse G, Graham K, Cranston J, et al. (2008) The impact of landscape disturbance on grizzly bear habitat use in the Foothills Model Forest, Alberta, Canada. *Forest Ecology and Management* 256(11): 1875–1883. Available at: http://www.sciencedirect.com/science/article/pii/S0378112708005719: doi:10.1016/j.foreco.2008.07.019.

Forestry Canada Fire Danger Group (1992) *Development and structure of the Canadian Forest Fire Behavior Prediction System*. Ottowa, ON, Canada. Available at: http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/10068.pdf.

Gaglioti B V., Mann DH, Jones BM, Wooller MJ and Finney BP (2016) High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska. *The Holocene*. Thousand Oaks, CA, USA: Sage Publications, Inc. 26(7): 11. Available at: http://hol.sagepub.com/content/early/2016/03/23/0959683616632893.abstract: doi:10.1177/0959683616632893.

Gavin DG, Brubaker LB and Greenwald DN (2013) Postglacial climate and fire-mediated vegetation change on the western Olympic Peninsula, Washington (USA). *Ecological Monographs*. Ecological Society of America 83(4): 471–489. Available at: http://dx.doi.org/10.1890/12-1742.1: doi:10.1890/12-1742.1.

Gavin DG, Hallett DJ, Hu FS, Lertzman KP, Prichard SJ, Brown KJ, et al. (2007) Forest fire and climate change in western North America: insights from sediment charcoal records. *Frontiers in 40
Gottschlich C and Schuhmacher D (2014) The shortlist method for fast computation of the Earth Mover’s Distance and finding optimal solutions to transportation problems. *PLoS ONE*. Public Library of Science 9(10): e110214. Available at: http://dx.doi.org/10.1371%2Fjournal.pone.0110214.

Hand E (2015) Startup liftoff. *Science* 348(6231): 172 LP – 177. Available at: http://science.sciencemag.org/content/348/6231/172.abstract.

Hantson S, Padilla M, Corti D and Chuvieco E (2013) Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. *Remote Sensing of Environment* 131: 152–159. Available at: http://www.sciencedirect.com/science/article/pii/S0034425712004610: doi:http://dx.doi.org/10.1016/j.rse.2012.12.004.

Hantson S, Pueyo S and Chuvieco E (2015) Global fire size distribution is driven by human impact and climate. *Global Ecology and Biogeography* 24(1): 77–86. Available at: http://dx.doi.org/10.1111/geb.12246: doi:10.1111/geb.12246.

He T, Pausas JG, Belcher CM, Schwilk DW and Lamont BB (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. *New Phytologist*. Blackwell Publishing Ltd 194(3): 751–759. Available at: http://dx.doi.org/10.1111/j.1469-8137.2012.04079.x: doi:10.1111/j.1469-8137.2012.04079.x.

Héon J, Arseneault D and Parisien M-A (2014) Resistance of the boreal forest to high burn rates. *Proceedings of the National Academy of Sciences* 111(38): 13888–13893. Available at: http://www.pnas.org/content/111/38/13888.abstract: doi:10.1073/pnas.1409316111.

Hirsch KG (1993) A brief overview of the Canadian Forest Fire Behavior Prediction (FBP)
Hu F, Brubaker L, Gavin D, Higuera P, Lynch J, Rupp TS, et al. (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: The Holocene perspective. *Mitigation and Adaptation Strategies for Global Change*. Springer Netherlands 11(4): 829–846. Available at: http://dx.doi.org/10.1007/s11027-005-9015-4: doi:10.1007/s11027-005-9015-4.

Intergovernmental Panel on Climate Change (2014) *Climate Change 2013: The Physical Science Basis*. New York, NY, USA: Cambridge University Press. Available at: http://www.ipcc.ch/report/ar5/wg1/.

James N and Matteson D (2015) ecp: An R Package for nonparametric multiple change point analysis of multivariate data. *Journal of Statistical Software* 62(1): 1–25. Available at: https://www.jstatsoft.org/index.php/jss/article/view/v062i07: doi:10.18637/jss.v062.i07.

James NA, Kejariwal A and Matteson DS (2014) Leveraging cloud data to mitigate user experience from Breaking Bad’. *ArXiv e-prints*.

Johnson EA, Miyanishi K and Bridge SRJ (2001) Wildfire regime in the boreal forest and the idea of suppression and fuel buildup. *Conservation Biology*. Blackwell Science Inc 15(6): 1554–1557. Available at: http://dx.doi.org/10.1046/j.1523-1739.2001.01005.x: doi:10.1046/j.1523-1739.2001.01005.x.

Jolly WM, Hintz J, Kropp RC and Conrad ET (2014) *Physiological drivers of the live foliar moisture content ‘spring dip’ in Pinus resinosa and Pinus banksiana and their relationship to foliar flammability*. Coimbra: Imprensa da Universidade de Coimbra. Available at: https://digitalis.uc.pt/en/livro/physiological_drivers_live_foliar_moisture_content_‘spring_dip’_pinus_resinosa_and_pinus.
Kamae Y, Shiogama H, Watanabe M and Kimoto M (2014) Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophysical Research Letters 41(14): 5192–5199. Available at: http://dx.doi.org/10.1002/2014GL061062: doi:10.1002/2014GL061062.

Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, et al. (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science. Washington DC, USA: American Association for the Advancement of Science 348(6242): 1469–1472. Available at: http://www.sciencemag.org/content/early/2015/06/05/science.aaa5632.abstract: doi:10.1126/science.aaa5632.

Kasischke ES and Stocks BJ (2000) Fire, Climate Change, and Carbon Cycling in the Boreal Forest. New York, NY, USA: Springer-Verlag. Available at: http://www.springer.com/de/book/9780387988900: doi:10.1007/978-0-387-21629-4.

Kasischke ES and Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters 33(9). Available at: http://dx.doi.org/10.1029/2006GL025677: doi:10.1029/2006GL025677.

Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB and Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences 110(32): 13055–13060. Available at: http://www.pnas.org/content/110/32/13055.abstract: doi:10.1073/pnas.1305069110.

Killick R and Eckley IA (2014) changepoint: An R Package for changepoint analysis. Journal of Statistical Software; Vol 1, Issue 3 (2014). Available at: http://www.jstatsoft.org/index.php/jss/article/view/v058i03.
Killick R, Fearnhead P and Eckley I~A. (2011) Optimal detection of changepoints with a linear computational cost. ArXiv e-prints.

Koven CD (2013) Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience. Nature Publishing Group 6(6): 452–456. Available at: http://dx.doi.org/10.1038/ngeo1801.

Krawchuk M, Cumming S and Flannigan M (2009) Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest. Climatic Change. Springer Netherlands 92(1–2): 83–97. Available at: http://dx.doi.org/10.1007/s10584-008-9460-7: doi:10.1007/s10584-008-9460-7.

Kurz WA, Dymond CC, Stinson G, Rampley GJJ, Neilson ET, Carroll AL, et al. (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature. Nature Publishing Group 452(7190): 987–990. Available at: http://dx.doi.org/10.1038/nature06777: doi:10.1038/nature06777.

Laberee K, Nelson TA, Stewart BP, McKay T and Stenhouse GB (2014) Oil and gas infrastructure and the spatial pattern of grizzly bear habitat selection in Alberta, Canada. The Canadian Geographer / Le Géographe canadien 58(1): 79–94. Available at: http://dx.doi.org/10.1111/cag.12066: doi:10.1111/cag.12066.

Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, et al. (2014) A global strategy for road building. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 513(7517): 229–232. Available at: http://dx.doi.org/10.1038/nature13717.

Le Page Y, Morton D, Bond-Lamberty B, Pereira JMC and Hurtt G (2015) HESFIRE: A global fire model to explore the role of anthropogenic and weather drivers. Biogeosciences 12(3): 887–
903. Available at: http://www.biogeosciences.net/12/887/2015/: doi:10.5194/bg-12-887-2015.

LeCun Y, Bengio Y and Hinton G (2015) Deep learning. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 521(7553): 436–444. Available at: http://dx.doi.org/10.1038/nature14539.

Li F, Levis S and Ward DS (2013) Quantifying the role of fire in the Earth system; Part 1: Improved global fire modeling in the Community Earth System Model (CESM1).

Biogeosciences 10(4): 2293–2314. Available at: http://www.biogeosciences.net/10/2293/2013/: doi:10.5194/bg-10-2293-2013.

Linke J and McDermid GJ (2012) Monitoring landscape change in multi-use west-central Alberta, Canada using the disturbance-inventory framework. Remote Sensing of Environment 125: 112–124. Available at: http://www.sciencedirect.com/science/article/pii/S0034425712002854: doi:http://dx.doi.org/10.1016/j.rse.2012.07.011.

Little CHA (1970) Seasonal changes in carbohydrate and moisture content in needles of Balsam fir (Abies balsamea). Canadian Journal of Botany. NRC Research Press 48(11): 2021–2028. Available at: http://dx.doi.org/10.1139/b70-295: doi:10.1139/b70-295.

Malamud BD, Morein G and Turcotte DL (1998) Forest fires: An example of self-organized critical behavior. Science 281(5384): 1840–1842. Available at: http://www.sciencemag.org/content/281/5384/1840.abstract: doi:10.1126/science.281.5384.1840.

Marlon JR, Bartlein P, Daniau A-L, Harrison S, Maezumi S, Power M, et al. (2013) Global biomass burning: a synthesis and review of Holocene paleofire records and their controls.

Quaternary Science Reviews 65: 5–25. Available at:
Marlon JR, Bartlein PJ, Carcaillot C, Gavin DG, Harrison SP, Higuera PE, et al. (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience. Nature Publishing Group 1(10): 697–702. Available at: http://www.nature.com/doifinder/10.1038/ngeo313: doi:10.1038/ngeo313.

Matteson DS and James NA (2013) A nonparametric approach for multiple change point analysis of multivariate data. ArXiv e-prints.

Meyn A, Schmidtlein S, Taylor S, Girardin M, Thonicke K and Cramer W (2013) Precipitation-driven decrease in wildfires in British Columbia. Regional Environmental Change. Springer-Verlag 13(1): 165–177. Available at: http://dx.doi.org/10.1007/s10113-012-0319-0: doi:10.1007/s10113-012-0319-0.

Meyn A, Taylor SW, Flannigan MD, Thonicke K and Cramer W (2010) Relationship between fire, climate oscillations, and drought in British Columbia, Canada, 1920–2000. Global Change Biology. Blackwell Publishing Ltd 16(3): 977–989. Available at: http://dx.doi.org/10.1111/j.1365-2486.2009.02061.x: doi:10.1111/j.1365-2486.2009.02061.x.

Meyn A, White PS, Buhk C and Jentsch A (2007) Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Progress in Physical Geography 31(3): 287–312. Available at: http://ppg.sagepub.com/content/31/3/287.abstract: doi:10.1177/0309133307079365.

Miller IR and ES and JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environmental Research Letters 8(2): 24040. Available at: http://stacks.iop.org/1748-9326/8/i=2/a=024040.
Nielsen SE, Stenhouse GB, Beyer HL, Huettmann F and Boyce MS (2008) Can natural disturbance-based forestry rescue a declining population of grizzly bears? *Biological Conservation* 141(9): 2193–2207. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0006320708002164; doi:10.1016/j.biocon.2008.06.020.

Niklasson M and Granström A (2000) Numbers and sizes of fires: Long-term spatially explicit fire history in a Swedish boreal landscape. *Ecology*. Ecological Society of America 81(6): 1484–1499. Available at: http://dx.doi.org/10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2.

Nitschke C, Mathey A and Amoroso M (2010) An integrated assessment of species and ecosystem vulnerability to climate change from the tree- to stand- to landscape-level in the sub-boreal forests of northwest British Columbia, Canada. Smithers, BC, Canada: Government of British Columbia. Available at: https://www.for.gov.bc.ca/hfd/library/fia/2010/FSP_Y103220a.pdf.

Parisien M-A, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, et al. (2012) Spatial variability in wildfire probability across the western United States. *International Journal of Wildland Fire*, 313–327. Available at: http://dx.doi.org/10.1071/WF11044.

Parisien M, Peters VS, Wang Y, Little JM, Bosch EM and Stocks BJ (2006) Spatial patterns of forest fires in Canada, 1980–1999. *International Journal of Wildland Fire*, 361–374. Available at: http://dx.doi.org/10.1071/WF06009.
Reed WJ and McKelvey KS (2002) Power-law behaviour and parametric models for the size-distribution of forest fires. *Ecological Modelling* 150(3): 239–254. Available at: http://www.sciencedirect.com/science/article/pii/S0304380001004835; doi:http://dx.doi.org/10.1016/S0304-3800(01)00483-5.

Reuter HI, Nelson A and Jarvis A (2007) An evaluation of void-filling interpolation methods for SRTM data. *International Journal of Geographical Information Science* 21(9): 983–1008. Available at: http://www.tandfonline.com/doi/abs/10.1080/13658810601169899; doi:10.1080/13658810601169899.

Rogeau M-P (2016) Fire regimes of southern Alberta, Canada. Edmonton, AB, Canada, University of Alberta. Available at: https://sites.ualberta.ca/~wcwfs/Documents/Rogeau_Marie-Pierre_201603_PhD.pdf.

Rogers BM, Soja AJ, Goulden ML and Randerson JT (2015) Influence of tree species on continental differences in boreal fires and climate feedbacks. *Nature Geoscience*. London, UK: Macmillan Publishers Limited 8: 228–234. Available at: http://dx.doi.org/10.1038/ngeo2352.

Scheffer M, Hirota M, Holmgren M, Van Nes EH and Chapin FS (2012) Thresholds for boreal biome transitions. *Proceedings of the National Academy of Sciences* 109(52): 21384–21389. Available at: http://www.pnas.org/content/109/52/21384.abstract; doi:10.1073/pnas.1219844110.

Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, et al. (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. *Ecological Modelling* 201(3–4): 409–419. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0304380006004893; doi:10.1016/j.ecolmodel.2006.10.009.

Scott AJ and Knott M (1974) A cluster analysis method for grouping means in the analysis of
variance. *Biometrics*. [Wiley, International Biometric Society] 30(3): 507–512. Available at:

http://www.jstor.org/stable/2529204: doi:10.2307/2529204.

Smith SJ, Edmonds J, Hartin CA, Mundra A and Calvin K (2015) Near-term acceleration in the rate of temperature change. *Nature Climate Change*. London, UK: Macmillan Publishers Limited 5: 333–336. Available at: http://dx.doi.org/10.1038/nclimate2552:

doi:doi:10.1038/nclimate2552.

Statistics Canada (2011) *Population, urban and rural, by province and territory (Alberta). 2011 Census*. Ottowa, Ontario: Statistics Canada. Available at: http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo62j-eng.htm: doi:98-314-XWE2011051.

Steffen W, Crutzen PJ and McNeill JR (2007) The Anthropocene: Are humans now overwhelming the great forces of nature. *Ambio* 36: 614–621. Available at:

http://dx.doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO.

Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, et al. (2002) Large forest fires in Canada, 1959–1997. *Journal of Geophysical Research: Atmospheres* 107(D1): 8149. Available at: http://dx.doi.org/10.1029/2001JD000484: doi:10.1029/2001JD000484.

Strauss D, Bednar L and Mees R (1989) Do one percent of forest fires cause ninety-nine percent of the damage? *Forest Science* 35(2): 319–328. Available at:

http://www.fs.fed.us/psw/publications/strauss/psw_1989_strauss001.pdf.

Sturtevant BR, Scheller RM, Miranda BR, Shinneman D and Syphard A (2009) Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II. *Ecological Modelling* 220(23): 3380–3393. Available at:

http://www.sciencedirect.com/science/article/pii/S030438000900533X:

doi:http://dx.doi.org/10.1016/j.ecolmodel.2009.07.030.
Syphard AD, Yang J, Franklin J, He HS and Keeley JE (2007) Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. *Environmental Modelling & Software* 22(11): 1641–1653. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1364815207000217: doi:http://dx.doi.org/10.1016/j.envsoft.2007.01.004.

Terrier A, Girardin MP, Périé C, Legendre P and Bergeron Y (2012) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. *Ecological Applications*. Ecological Society of America 23(1): 21–35. Available at: http://dx.doi.org/10.1890/12-0425.1: doi:10.1890/12-0425.1.

Tingley MP and Huybers P (2013) Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. *Nature*. London, UK: Nature Publishing Group 496(7444): 201–205. Available at: http://dx.doi.org/10.1038/nature11969.

Tinner W, Bigler C, Gedye S, Gregory-Eaves I, Jones RT, Kaltenrieder P, et al. (2008) A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. *Ecology*. Ecological Society of America 89(3): 729–743. Available at: http://dx.doi.org/10.1890/06-1420.1: doi:10.1890/06-1420.1.

Toews MW, Whitfield PH and Allen DM (2007) Seasonal statistics: the “seas” package for R. *Computers & Geosciences*. Amsterdam, Netherlands: Elsevier B.V. 33(7): 1895: doi:10.1016/j.cageo.2006.11.011.

Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR and Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. *Nature Geosci*. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 8(1): 11–14. Available at: http://dx.doi.org/10.1038/ngeo2325.
Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, et al. (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. *Nature Geoscience*. Nature Publishing Group 4(1): 27–31. Available at: http://dx.doi.org/10.1038/ngeo1027.

Tymstra C, Flannigan MD, Armitage OB and Logan K (2007) Impact of climate change on area burned in Alberta’s boreal forest. *International Journal of Wildland Fire*, 153–160. Available at: http://dx.doi.org/10.1071/WF06084.

Van Wagner CE (1967) *Seasonal variation in moisture content of eastern Canadian tree foliage and the possible effect on crown fires*. Chalk River, Ontario, Canada: Government of Canada, Department of Forestry and Rural Development. Available at: http://www.cfs.nrcan.gc.ca/bookstore_pdfs/24741.pdf.

Van Wagner CE (1978) Age-class distribution and the forest fire cycle. *Canadian Journal of Forest Research*. NRC Research Press 8(2): 220–227. Available at: http://dx.doi.org/10.1139/x78-034: doi:10.1139/x78-034.

Wang X, Cantin A, Parisien M-A, Wotton M, Anderson K and Flannigan M (2014) *fwifbp*: Fire Weather Index System and Fire Behaviour Prediction System calculations. Available at: http://cran.r-project.org/package=fwi.fbp.

Wotton BM, Alexander ME and Taylor SW (2009) *Updates and Revisions to the 1992 Canadian Forest Fire Behavior Prediction System*. Sault Ste. Marie, ON, Canada: Natural Resources Canada. Available at: https://cfs.nrcan.gc.ca/publications?id=31414.

Wotton BM and Flannigan MD (1993) Length of the fire season in a changing climate. *The Forestry Chronicle*. Ottowa, ON, Canada: Canadian Science Publishing 69(2): 187–192. Available at: http://pubs.cif-ifc.org/doi/abs/10.5558/tfc69187-2.
Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, et al. (2016) The
global Landsat archive: status, consolidation, and direction. Remote Sensing of Environment 185:
271–283. Available at: http://www.sciencedirect.com/science/article/pii/S0034425715302194;
doi:http://dx.doi.org/10.1016/j.rse.2015.11.032.

Yang J, He HS and Gustafson EJ (2004) A hierarchical fire frequency model to simulate
temporal patterns of fire regimes in LANDIS. Ecological Modelling 180(1): 119–133. Available
at: http://www.sciencedirect.com/science/article/pii/S0304380004003783;
doi:http://dx.doi.org/10.1016/j.ecolmodel.2004.03.017.

Zhang J, Huang S and He F (2015) Half-century evidence from western Canada shows forest
dynamics are primarily driven by competition followed by climate. Proceedings of the National
Academy of Sciences 112(13): 4009–4014. Available at:
http://www.pnas.org/content/112/13/4009.abstract: doi:10.1073/pnas.1420844112.