REMARKS ON GLOBAL ATTRACTORS FOR THE 3D NAVIER–STOKES EQUATIONS WITH HORIZONTAL FILTERING

LUCA BISCONTI
Università degli Studi di Firenze
Dipartimento di Matematica e Informatica “U. Dini”
Via S. Marta 3, I-50139 Firenze, Italia

DAVIDE CATANIA
Università degli Studi di Brescia
Sezione Matematica (DICATAM)
Via Valotti 9, I-25133 Brescia, Italia

(Communicated by José A. Langa)

Abstract. We consider a Large Eddy Simulation model for a homogeneous incompressible Newtonian fluid in a box space domain with periodic boundary conditions on the lateral boundaries and homogeneous Dirichlet conditions on the top and bottom boundaries, thus simulating a horizontal channel. The model is obtained through the application of an anisotropic horizontal filter, which is known to be less memory consuming from a numerical point of view, but provides less regularity with respect to the standard isotropic one defined as the inverse of the Helmholtz operator.

It is known that there exists a unique regular weak solution to this model that depends weakly continuously on the initial datum. We show the existence of the global attractor for the semiflow given by the time-shift in the space of paths. We prove the continuity of the horizontal components of the flow under periodicity in all directions and discuss the possibility to introduce a solution semiflow.

1. Introduction. Incompressible fluids with constant density are described by the Navier–Stokes equations

\[
\begin{align*}
\partial_t u + \nabla \cdot (u \otimes u) - \nu \Delta u + \nabla \pi &= f, \\
\nabla \cdot u &= 0,
\end{align*}
\]

supplemented with initial and boundary conditions, where \(u(t, x) = (u_1, u_2, u_3)\) is the velocity field, \(\pi(t, x)\) denotes the pressure, \(f(t, x) = (f_1, f_2, f_3)\) is the external force, and \(\nu > 0\) the kinematic viscosity.

In the recent years, the so called “\(\alpha\)-models” have been proposed to perform numerical simulations of the 3-dimensional fluid equations (1)–(2). These models are

2010 Mathematics Subject Classification. Primary: 76D05; Secondary: 35Q30, 76F65, 76D03.
Key words and phrases. Navier–Stokes equations, anisotropic filters, global attractor, time-shift semiflow, Large Eddy Simulation (LES), turbulent flows in domains with boundary, Approximate Deconvolution Methods (ADM).
based on a filtering obtained through the application of the inverse of the Helmholtz operator

\[A = I - \alpha^2 \Delta, \]

(3)

where \(\alpha > 0 \) is interpreted as a spatial filtering scale.

In this paper, we are concerned with a regularized model for the 3D Navier–Stokes equations derived by the introduction of a suitable horizontal (anisotropic) differential filter and we prove the existence of a global attractor for the corresponding time-shift dynamical system in path-space. Let us consider

\[\mathbf{x} = (x_1, x_2, x_3), \quad \mathbf{x}_h = (x_1, x_2), \]

\[\partial_j = \partial_{x_j}, \quad \Delta_h = \partial_1^2 + \partial_2^2, \quad \nabla_h = (\partial_1, \partial_2), \]

where “h” stays for “horizontal” and, instead of choosing the filter given by (3), we take into account the horizontal filter given by (see [5])

\[A_h = I - \alpha^2 \Delta_h \text{ with } \alpha > 0. \]

(4)

As discussed in [2, 14, 15], from the point of view of the numerical simulations, this filter is less memory consuming with respect to the standard one. Another significant advantage of this choice is that there is no need to introduce artificial boundary conditions for the Helmholtz operator.

The idea behind anisotropic differential filters can be traced back to the approach used by Germano [14]. Recently, the Large Eddy Simulation (LES) community has manifested interest in models involving such a kind of filtering (e.g., [2, 4, 12, 19]) and the connection with the family of \(\alpha \)-models has been highlighted and investigated by Berselli in [5]: exploiting the smoothing provided by the horizontal filtering (4), the author of [5] proved global existence and uniqueness of a proper class of weak solutions to the considered regularized model (see the system of equations (5)–(6) below). Again, motivated by [5], the authors of [6, 7] gave a considerable mathematical support to the well-posedness of initial-boundary value problems, in suitable anisotropic Sobolev spaces, to the 3D Boussinesq equations with horizontal filter for turbulent flows.

In the sequel, we mainly consider the domain

\[D = \{ \mathbf{x} \in \mathbb{R}^3 : -\pi L < x_1, x_2 < \pi L, -d < x_3 < d \}, \]

\(L > 0 \), with \(2\pi L \) periodicity with respect to \(\mathbf{x}_h \) (i.e. with respect to \(x_1, x_2 \)), and homogeneous Dirichlet boundary conditions on

\[\Gamma := \{ \mathbf{x} \in \mathbb{R}^3 : -\pi L < x_1, x_2 < \pi L, x_3 = \pm d \}. \]

Observe that the filter given by (4) is acting just on the horizontal variables, so it makes sense to require the periodicity only in \(\mathbf{x}_h = (x_1, x_2) \).

We consider the approximate model

\[\partial_t w + \nabla \cdot (w \otimes w)^h - \nu \Delta w + \nabla q = \mathbf{f}^h, \]

(5)

\[\nabla \cdot w = 0, \]

(6)

in terms of the filtered quantities \(w = \mathbf{w}^h = A_h^{-1} u \) and \(q = \pi^h = A_h^{-1} \pi \), so that \(u = A_h w \). Here, we assume homogeneous Dirichlet boundary conditions on \(\Gamma \) for the filtered fields as well as for the unfiltered ones, in order to prevent the introduction of artificial boundary conditions, and impose the initial datum \(w|_{t=0} = w_0 \) for the filtered velocity field \(w \). This model was first introduced by Berselli in [5].
Let us note that this model represents a special case of Approximate Deconvolution LES Model (ADM), see Adams–Stolz [1], when the order of deconvolution is zero. We refer to [5, 2, 10, 8] for some recent results in this context concerning general orders of deconvolution.

Our aim is to prove the existence of an attractor in the class of regular weak solutions (see below for details) to the horizontally filtered model (5)–(6). However, the present case does not seem to fit the classical theory of attractors (see, e.g., [3]) and a different scheme is needed to carry out our analysis. In fact, despite the smoothing created by the horizontal filter, the regularity of the considered weak solutions does not ensure the continuous dependence on their initial data, even in the fully periodic setting (the dependence on the initial data is only weakly continuous). Hence, the standard dynamical theory fails to apply to this situation since the strong continuity on the initial data is needed to get the continuity of the solution semiflow.

To overcome this problem, we follow the approach proposed by Sell [17]: in this case, the dynamics becomes the time-shift in the space of paths, and the attractor is a suitable compact set that attracts the regular weak solutions under the action of the time-shift $S(t)w(\cdot) = w(t + \cdot)$.

Let W be the space of the regular weak solutions to (5)–(6), denote by H and V the usual function spaces of fluid dynamics (see Section 2), and set

$$V_h = \{ \phi \in H : \nabla_h \phi \in L^2(D) \},$$

$$H^2_h = \{ \phi \in V_h : \nabla_h \nabla \phi \in L^2(D) \}.$$

We prove the following result (see Section 4).

Theorem 1.1. Given $w_0 \in V_h$ and $f = f(x) \in (V \cap H^2_h)^*$, the time-shift $S(t)$ in W has a unique global attractor.

Here, for the sake of simplicity, we assume that the forcing term f is independent of time.

In the last part of the paper, we consider problem (5)–(6) in the fully space-periodic setting. We want to discuss the possibility to obtain an analogous result for the semigroup $(S(t))_{t \geq 0}$ on V_h, where $S(t) : V_h \to V_h$ is given by $S(t)w_0 = w(t, \cdot)$, $w_0 \in V_h$, and $w(t, \cdot)$ is the solution at time t to (5)–(6) corresponding to the initial datum w_0. In such a case, the main issue is to prove that $S(t)$ effectively defines a semiflow (the solution semiflow) and, in particular, that $S(t)$ is a continuous operator. In fact, the regular weak solutions to (5)–(6) depend just in a weakly continuous way on their initial data, giving no guarantees on the continuity of $S(t)$.

In Section 5, we show that the horizontal components of the flow, i.e. w_h, depend continuously on the initial datum, proving the following.

Proposition 1. If w is a regular weak solution to (5)–(6) under the periodic setting, then $w_h \in C^0([0, T]; V_h)$ for each $T > 0$.

Observe that the continuity of the solution operator $S(t)$ could be shown by proving that $\partial_t \nabla_h w \in L^2(V^*)$; nevertheless, we only have that $\partial_t \nabla_h w_h \in L^2(V^*)$. However, since the considered problem admits a unique regular weak solution, we may wonder whether it is possible to get more regularity for such a solution, also in the vertical component, by exploiting again the special features of the fully periodic space-domain. To this end, we give an improved regularity result (see Theorem 5.3).
below) which actually shows that, although the regularization created by the filter is strong in the horizontal components (and in the derivatives with respect to the horizontal components), this smoothing is not so effectively transported to the vertical component, even in the space-periodic case. Though Theorem 5.3 is not directly useful to prove the continuity of $S(t)$ (in fact, it might be more appropriate in order to get compactness properties of $S(t)$), it seems interesting by itself and we report it, at the end of Section 5, for the reader’s convenience.

Because of all the above facts, different techniques seem necessary to get the continuity of the solution operator $S(t)$ associated to (5)–(6), and to prove the existence of the global attractor in such a case. We will address these issues in a future paper, in which we will study more thoroughly the dynamics associated to problem (5)–(6), possibly supplemented with homogeneous Dirichlet boundary conditions.

Plan of the paper. In Section 2 we describe the functional setting, the horizontal filter and the notion of regular weak solution, and we recall a known result concerning the existence and uniqueness of such solutions. In Subection 2.2, we recall the notion of global attractor and describe the main results. Section 3 is devoted to the proof of some basic estimates that will be used subsequently. In Section 4, under horizontal periodicity and homogeneous Dirichlet boundary conditions on Γ, the existence of the global attractor defined through the shifting semiflow is given. Finally, in Section 5, when the domain is periodic in all directions, we prove the continuity of the horizontal components of the flow, and we also provide an improved regularity result for the solutions to (5)–(6), i.e. Theorem 5.3.

2. Functional setting and anisotropic filtering. We introduce the following function spaces:

$$L^2(D) := \{ \phi : D \to \mathbb{R} \text{ measurable, } 2\pi L \text{ periodic in } x_h, \int_D |\phi|^2 \, dx < +\infty \},$$

$$L_0^2(D) := \{ \phi \in L^2(D) \text{ with zero mean with respect to } x_h \},$$

$$H := \{ \phi \in (L_0^2(D))^3 : \nabla \cdot \phi = 0 \text{ in } D, \phi \cdot n = 0 \text{ on } \Gamma \},$$

where n is the outward normal to Γ, all with L^2 norm denoted by $\|\cdot\|$, and scalar product (\cdot, \cdot) in L^2. Moreover, we set

$$V_h := \{ \phi \in H : \nabla_h \phi \in (L^2(D))^6 \},$$

$$V := \{ \phi \in H : \nabla \phi \in (L^2(D))^9 \text{ and } \phi = 0 \text{ on } \Gamma \},$$

$$H_h^2 := \{ \phi \in V_h : \nabla_h \nabla \phi \in (L^2(D))^{18} \},$$

where the definitions of V_h and H_h^2 have been recalled for the reader’s convenience, and denote by V^* the topological dual space to V. We denote by L^p and H^m classical Lebesgue and Sobolev spaces. Continuous and weakly continuous functions are denoted respectively by the symbols C and C_w.

In the sequel, we often use the notation $[\phi]_h$ and $[\phi]_3$ to indicate, respectively, the horizontal component, ϕ_h, and vertical component, ϕ_3, of the vector field ϕ. Also, in the sequel, in order to keep the notation compact, we use the same symbol for scalar and vector valued functions (the same convention is used also for the related spaces), distinguishing the different cases only when it is required by the context.

Given a Banach space X with norm $\|\cdot\|_X$ and $p \in [1, +\infty]$, we denote by $L^p_{\text{loc}}(0, \infty; X)$ the usual Bochner space formed by functions $\phi : [0, \infty[\to X$ such
that, for all $0 < a \leq b < +\infty$, the $L^p(a, b)$ norm of $\|\phi(\cdot)\|_X$ is finite. We will also denote by $L^p_{\text{loc}}(0, \infty; X)$ the space of functions in $L^p_{\text{loc}}(0, \infty; X)$ such that the $L^p(0, b)$-norm of $\|\phi(\cdot)\|_X$ is finite for every $b \in [0, +\infty]$, and analogously for $H^m_{\text{loc}}(0, \infty; X)$ (see, e.g., [18]).

2.1. Basic results for the filtered model. The precise notion of solution of the approximate model (5)–(6) is given by the following definition.

Definition 2.1. We say that $w: [0, T[\times D \to \mathbb{R}^3$ is a regular weak solution (omitting the pressure term q) to (5)–(6), with $f \in (V \cap H^2_0)^*$ independent of time (for simplicity), and $w(0) = w_0 \in V_h$ in weak sense, when the following properties are verified.

- **Regularity:**

 $w \in L^\infty(0, T; V_h) \cap L^2(0, T; V \cap H^2_0) \cap C_w(0, T; V_h)$,

 $w_3 \in L^\infty(0, T; H^1) \cap L^2(0, T; H^2)$,

 $\partial_tw \in L^2(0, T; V^*)$.

- **Weak formulation:**

 \[
 \int_{t_0}^{t_1} \left\{ (w, \partial_t \varphi) - \nu(\nabla w, \nabla \varphi) + (w \otimes w, \nabla \varphi^h) \right\} (s) \, ds
 = -\int_{t_0}^{t_1} (f, \varphi)(s) \, ds + (w(t_1), \varphi(t_1)) - (w(t_0), \varphi(t_0))
 \]

 for each $\varphi \in (C_c^\infty(D \times [0, T[))^3$ such that $\nabla \cdot \varphi = 0$ and for each $0 \leq t_0 \leq t_1 < T$.

Remark 1. Since $w \in L^2(0, T; V)$ and $\partial_tw \in L^2(0, T; V^*)$, we deduce by classical interpolation results that $w \in C([0, T[; H)$ (see [16, 18]).

We state the following existence theorem, proved in [5, Theorem 4.1] (and generalized, with some different estimates, in [6]). It is based on the Galerkin approximation method (see also the proof of Theorem 3.1 below) combined with a compactness argument, which uses the Aubin–Lions lemma, and suitable a priori estimates.

Theorem 2.2. Let be given $w_0 \in V_h$, $f = f(x) \in (V \cap H^2_0)^*$ and $\nu > 0$. Then there exists a unique regular weak solution to (5)–(6), with $w(0) = w_0$, depending in a weakly continuous way on the data. Moreover, the solution satisfies the energy (of the model) identity

\[
\frac{1}{2} \left(\|w(t)\|^2 + \alpha^2 \|\nabla_h w(t)\|^2 \right) + \nu \int_0^t \left(\|\nabla w(s)\|^2 + \alpha^2 \|\nabla_h \nabla w(s)\|^2 \right) ds
= \frac{1}{2} \left(\|w(0)\|^2 + \alpha^2 \|\nabla_h w(0)\|^2 \right) - \int_0^t (f, A_h w(s)) \, ds.
\]

(7)

Notice that, the regularity of f implies $\bar{f}^h \in L^2(D)$.
2.2. Attractors and main results. Let \((W,d)\) be a metric space. A semigroup on \((W,d)\) is a family of operators \((S(t))_{t \geq 0}\), \(S(t): W \to W\), that satisfies \(S(0)w = w\) and \(S(s)S(t)w = S(t + s)w\) for each \(w \in W\) and for every \(s,t \geq 0\).

A semiflow on \((W,d)\) is a mapping \(\sigma: [0, \infty[\times W \to W\) defined by \(\sigma(t,w) = S(t)w\), where \((S(t))_{t \geq 0}\) is a semigroup, and such that the restriction \(\sigma: [0, \infty[\times W \to W\) is continuous.

We say that \(\mathcal{A} \subset W\) is a global attractor for the semiflow if \(\mathcal{A}\) is nonempty and compact, \(S(t)\mathcal{A} = \mathcal{A}\) for all \(t \geq 0\) (i.e. \(\mathcal{A}\) is invariant), and for all bounded sets \(B \subset W\), we have \(\lim_{t \to +\infty} \delta(S(t)B, \mathcal{A}) = 0\), where \(\delta(X,Y) := \sup_{x \in X} \inf_{y \in Y} d(x,y)\) is the Hausdorff semidistance between the pair of sets \(X, Y \subset W\). A global attractor is necessarily unique (and it coincides with the omega-limit of an absorbing set, see Section 4).

Let us note that, for each \(T > 0\), a regular weak solution to (5)–(6) in \([0, T[\times D\) is defined, so that, by uniqueness, we get a unique solution \(w\) defined in \([0, \infty[\times D\), and, in particular, \(w \in L^\infty_{\text{loc}}(0, \infty; V_h) \cap L^2_{\text{loc}}(0, \infty; V \cap H^1_0)\). Indeed, we can prove that \(w \in L^\infty(0, \infty; V_h) \cap L^2(0, \infty; V \cap H^1_0)\), as shown in Theorem 3.1.

Here, the role of \(W\) will be played by the set \(\mathcal{W}\) of regular weak solutions to (5)–(6) in \(L^\infty(0, \infty; V_h) \cap L^2_{\text{loc}}(0, \infty; V \cap H^1_0)\), with the metric \(d\) induced by \(L^2_{\text{loc}}(0, \infty; V_h)\):

\[
d(w_1, w_2) = \sum_{n=0}^{\infty} 2^{-n} \min\{1, \|w_1 - w_2\|_{L^2(0, \infty; V_h)}\}. \tag{8}\]

We recall that a set \(B\) in a linear topological space \(Z\) is called bounded if for every neighborhood \(U\) of the origin in \(Z\) there exists an \(r > 0\) such that \(B \subset \{ ru : u \in U \}\). In the case of the Fréchet space \(L^2_{\text{loc}}(0, \infty; V_h)\), this reduces to ask that

\[\sup \{\|\phi\|_{L^2(0, \infty; V_h)} : \phi \in B\} < +\infty, \ \forall n = 0, 1, 2, \ldots \tag{9}\]

Let us observe that every set \(B \subset L^2_{\text{loc}}(0, \infty; V_h)\) has finite diameter with respect to the metric \(d\), but this does not mean that \(B\) is bounded in the sense described by (9), which is the notion of boundedness we will always refer to in the following.

Notice that \(\mathcal{W}\) is closed in \(L^2_{\text{loc}}(0, \infty; V_h)\), which is complete with respect to \(d\), thus \((\mathcal{W}, d)\) is a complete metric space; this is one of the consequences of the proof of Proposition 4 below.

We use the time-shift operator to define the semigroup and hence the semiflow: \(S(t)w = w_{-t} := w(\cdot + t)\), for each \(w \in W\). The existence of the global attractor for the time-shift \(S(t)\), i.e. Theorem 1.1, is proved in Section 4.

3. Preliminary estimates. We set \(\lambda_1 > 0\) equal to the first eigenvalue of the Stokes operator with periodic boundary conditions and homogeneous Dirichlet boundary conditions on \(F\), projected on the space of divergence free functions. We recall that \(\lambda_1\) can be used as the constant in the Poincaré inequality. Moreover, we set \(\Lambda_h = (-\Delta_h)^{1/2}\) with domain \(H^1_0\) and the same mixed periodic-Dirichlet conditions as above \((\Lambda_h)\) is a positive self-adjoint operator, and

\[
k_0(t) = \|w(t)\|^2 + \alpha^2 \|\nabla_h w(t)\|^2, \quad K_1 = \min\left\{\frac{\|\Lambda_h^{-2} f\|^2}{\nu \alpha^2}, \frac{\|\Lambda_h^{-1} f\|^2}{\nu}\right\}, \quad k_1(t) = k_0(t) + \frac{K_1}{\nu \lambda_1} \tag{10}\]

where \(\alpha > 0\) is a parameter.
for each \(t \geq 0 \).

Theorem 3.1. If \(w \) is the regular weak solution to (5)–(6) in the time interval \([0, \infty], t \geq 0 \) and \(r > 0 \), then we have

\[
\|w(t + r)\|^2 + \alpha^2 \|\nabla_h w(t + r)\|^2 \\
\leq k_0(t) e^{-\nu \lambda_1(t + r)} + \frac{K_1}{\nu \lambda_1} (1 - e^{-\nu \lambda_1(t + r)}) \leq k_1(t),
\]

(11)

\[
\int_t^{t+r} \left(\nu \|\nabla w(s)\|^2 + \nu \alpha^2 \|\nabla_h \nabla w(s)\|^2 \right) ds \leq rK_1 + k_1(t).
\]

(12)

In particular, we have \(w \in L^\infty(0, \infty; V_h) \cap L^2_{\text{loc}}(0, \infty; V \cap H^2) \).

Proof. Let us consider the Galerkin approximate solutions \(w_m(t, x) = \sum_{j=1}^m g_j^n(t) E_j(x) \), where \(E_j \) are smooth eigenfunctions of the Stokes operator on \(D \), with periodicity in \(x \). If \(P_m \) denotes the projection on \(\text{span} \{ E_1, \ldots, E_m \} \), then \(w_m \) solves the Cauchy problem

\[
\begin{align*}
\frac{d}{dt} (w_m, E_i) + \nu (\nabla w_m, \nabla E_i) - (w_m \otimes w_m, \nabla E_i^h) &= (f, E_i), \\
w_m(0) &= P_m(w(0)),
\end{align*}
\]

(13)

for \(i = 1, \ldots, m \). As shown in [5, Theorem 4.1], we have that, up to considering a subsequence,

\[w_m \rightarrow w \quad \text{in} \quad L^2(0, T; L^2(D)) \]

as \(m \rightarrow +\infty \), where \(w \) is the regular weak solution to (5)–(6), and this convergence is enough in order to pass to the limit in the nonlinear term in (13). However, the regularity of such a solution \(w \) does not allow us to test (5) directly against \(A_h w \) (other than formally). Thus, in order to conclude the proof, we still proceed through the use of the Galerkin approximate solutions \(w_m \), and following the well established path given by the use of a priori estimates and a suitable compactness criterion.

We test the first equation in (13) with \(A_h w_m \) and use (see [5])

\[
-(w_m \otimes w_m, \nabla A_h w_m^h) = (\nabla \cdot (w_m \otimes w_m)^h, A_h w_m) = 0
\]

to get

\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \left(\|w_m\|^2 + \alpha^2 \|\nabla_h w_m\|^2 \right) \\
+ \nu \left(\|\nabla w_m\|^2 + \alpha^2 \|\nabla_h \nabla w_m\|^2 \right) &= (f^h, A_h w_m) = (f, w_m).
\end{align*}
\]

We estimate the right-hand side by

\[
|\langle f, w_m \rangle| \leq \left\{ \begin{array}{l}
\|A_h^{-2} f\| \|\Delta_h w_m\| \\
\|A_h^{-1} f\| \|\Delta_h w_m\|
\end{array} \right\} \leq \left\{ \begin{array}{l}
\frac{\|A_h^{-2} f\|^2}{2} + \frac{\nu \alpha^2 \|\Delta_h w_m\|^2}{2} \\
\frac{\|A_h^{-1} f\|^2}{2} + \frac{\nu \|\Delta_h w_m\|^2}{2}
\end{array} \right\}
\]

\[
\frac{\|A_h^{-2} f\|^2}{2} + \frac{\nu \alpha^2 \|\Delta_h w_m\|^2}{2} \\
\frac{\|A_h^{-1} f\|^2}{2} + \frac{\nu \|\Delta_h w_m\|^2}{2}
\]
\[
\begin{aligned}
&\leq \left\{ \frac{\|\Lambda^{-2}_h f\|^2}{2\nu \alpha^2} + \frac{\nu \alpha^2 \|\nabla_h \nabla w_m\|^2}{2} \\
&\quad + \frac{\|\Lambda^{-1}_h f\|^2}{2\nu \alpha^2} + \nu \|\nabla_h w_m\|^2 \\
&\leq \frac{1}{2} \left(K_1 + \nu \|\nabla_h w_m\|^2 + \nu \alpha^2 \|\nabla_h \nabla w_m\|^2 \right)
\end{aligned}
\]
by Cauchy–Schwarz inequality and definition of \(K_1 \). We deduce
\[
\frac{d}{dt} \left(\|w_m\|^2 + \alpha^2 \|\nabla_h w_m\|^2 \right) + \nu \left(\|\nabla w_m\|^2 + \alpha^2 \|\nabla \nabla w_m\|^2 \right) \leq K_1
\] (14)
and, thanks to the Poincaré inequality,
\[
\frac{d}{dt} \left(\|w_m\|^2 + \alpha^2 \|\nabla_h w_m\|^2 \right) + \nu \lambda_1 \left(\|w_m\|^2 + \alpha^2 \|\nabla_h w_m\|^2 \right) \leq K_1;
\]
an application of Gronwall’s lemma in the interval \([t, t + r]\) yields
\[
\|w_m(t + r)\|^2 + \alpha^2 \|\nabla_h w_m(t + r)\|^2 \leq \left(\|w_m(t)\|^2 + \alpha^2 \|\nabla_h w_m(t)\|^2 \right) e^{-\nu \lambda_1 (t+r)} + \frac{K_1}{\nu \lambda_1} (1 - e^{-\nu \lambda_1 (t+r)})
\]
and, taking the limit as \(m \to +\infty \), we obtain (11) and in particular
\[
\|w(t + r)\|^2 + \alpha^2 \|\nabla_h w(t + r)\|^2 \leq k_1(t),
\]
which implies
\[
w \in L^\infty(0, \infty; V_h)
\]
by taking \(t = 0 \) and using the fact that \(k_1(0) \) is finite (and independent of time), since \(w_0 \in V_h \).

Integrating (14) over \(s \in [t, t + r] \), taking \(m \to +\infty \) and using (11) yields (12), and consequently \(w \in L^2_{\text{loc}}(0, \infty; V \cap H^2_h) \).

4. Global attractor for the time-shift semiflow. This section is devoted to the proof of Theorem 1.1. First, we recall some notions concerning semiflows and a fundamental result that we will exploit in order to prove the existence of the global attractor.

A bounded subset \(B \subset W \) is called an absorbing set if for every \(w \in W \), there exists \(t_1 = t_1(w) \) such that \(S(t)w \in B \) for all \(t \geq t_1 \). A semiflow is said compact if, for every bounded set \(B \subset W \) and for every \(t > 0 \), \(S(t)B \) lies in compact subset of \(W \). We recall that, in the following, boundedness is always intended in the sense illustrated in Subsection 2.2.

We have the following result [17, 20].

Theorem 4.1. Let \(S(t) \) define a compact semiflow admitting an absorbing set \(B \) on a complete metric space \(W \). Then \(S(t) \) has a global attractor \(\mathcal{A} \) in \(W \) and it coincides with the omega-limit set of \(B \):
\[
\mathcal{A} = \bigcap_{\tau \geq 0} \bigcup_{t \geq \tau} S(t)B,
\]
where the closure is taken in \(W \).
Here, we stress the fact that the notion of regular weak solution (cf. Definition 2.1) is somehow more complicated than the classical one of weak solution (although natural in the present context), since the former involves anisotropic Sobolev spaces. Thus, the main difficulty in adapting the theory developed by Sell [17], which is well established in the case of isotropic Banach spaces as in the case of the standard spaces H and V, is related to the fact that the regular weak solutions have certain derivatives (especially the vertical one of the vertical component of the velocity field) which are less regular than the others. As a direct consequence of this fact, by Theorem 3.1, we have that the energy dissipation occurs just in the V_h-norm (in particular, in the horizontal derivatives of the velocity field), but as we will prove in the sequel this is enough in order to retrieve the needed semigroup theory for the considered case.

In order to prove Theorem 1.1, we show that the time-shift operator $S(t)$ verifies the hypotheses of Theorem 4.1; this is the content of the next results.

Proposition 2. The mapping σ given by $S(t)w = w(\cdot + t)$ is a semiflow.

The proof of this proposition follows closely the one of [17, Lemma 7]; however, we give it here for the sake of completeness.

Proof of Proposition 2. Clearly, $S(t)$ is a semigroup. We need to prove that the mapping $(\tau, w) \mapsto S(\tau)w = w_{+\tau}$ is continuous for $(\tau, w) \in [0, +\infty) \times L^2_{\text{loc}}[0, \infty; V_h]$. It is sufficient to show that, if τ_n and w^n are sequences such that $\tau_n \to \tau$ in $[0, +\infty[$ and $w^n \to w$ in $L^2_{\text{loc}}[0, \infty; V_h]$, then $d(w^n_{+\tau_n}, w_{+\tau}) \to 0$ as $n \to +\infty$, which holds provided

$$\int_a^b \|w^n_{+\tau_n} - w_{+\tau}\|^2_{V_h} \to 0$$

for given $0 \leq a < b \leq \infty$, where $\|w\|^2_{V_h} = \|w\|^2 + \alpha^2\|\nabla_h w\|^2$. Here and in the following, we omit “ds” in several integrals to keep the notation more compact.

Following the same steps of the proof of [17, Lemma 7], the main difference consists in the use of the norm $\|\cdot\|_{V_h}$ in place of $\|\cdot\|$. Let us note that, since $\tau > 0$, we can assume $0 < \frac{1}{2} \tau \leq \tau_n \leq 2\tau$.

It is sufficient to prove that

$$d(w^n_{+\tau_n}, w_{+\tau}) \to 0$$

when $n \to +\infty$.

Since $w^n \to w$ in $L^2_{\text{loc}}[0, \infty; V_h]$ as $n \to +\infty$, we have

$$\int_a^b \|w^n_{+\tau_n} - w_{+\tau_n}\|^2_{V_h} = \int_{a+\tau_n}^{b+\tau_n} \|w^n - w\|^2_{V_h} \leq \int_{a+\frac{1}{4}\tau}^{b+2\tau} \|w^n - w\|^2_{V_h} \to 0$$

this implies the first relation in (15).

In order to prove the second relation in (15), let us fix $\varepsilon > 0$ and take $\psi \in L^2([a + \frac{\tau}{2}, b; V_h]) \cap C^1([a + \frac{\tau}{2}, b + 2\tau]; V_h)$. Let us note that

$$\int_a^b \|w_{+\tau} - \psi_{+\tau}\|^2_{V_h} \leq \varepsilon$$

(16)

for all $\sigma \in [\tau/2, 2\tau]$ (this is possible since C^1 is dense in L^2).
Moreover, if K denotes an upper bound for $\|\partial_t \psi(s)\|_{V_h}$ for $a + \frac{1}{2} \tau \leq s \leq b + 2\tau$, we have

$$\|\psi(\tau_n + t) - \psi(\tau + t)\|_{V_h} \leq \int_{\tau_n}^{\tau} \|\partial_t \psi(s + t)\|_{V_h} \, ds \leq K|\tau_n - \tau|,$$

therefore

$$\int_a^b \|\psi_{\tau_n} - \psi_{\tau}\|_{V_h}^2 \leq K^2(b - a)|\tau_n - \tau|^2 \leq \varepsilon$$

for $n \geq N$ sufficiently large.

Using the triangular inequality, (16) and (17), we infer that

$$\int_a^b \|w_{\tau_n} - w_{\tau}\|_{V_h}^2 \leq \int_a^b \|w_{\tau_n} - \psi_{\tau_n}\|_{V_h}^2 + \|\psi_{\tau_n} - \psi_{\tau}\|_{V_h}^2 + \|w_{\tau} - \psi_{\tau}\|_{V_h}^2 \leq 3 \int_a^b \|w_{\tau_n} - \psi_{\tau_n}\|_{V_h}^2 + \|\psi_{\tau_n} - \psi_{\tau}\|_{V_h}^2 + \|w_{\tau} - \psi_{\tau}\|_{V_h}^2 \leq 9\varepsilon$$

for all $n \geq N$, which proves that $d(w_{\tau_n}, w_{\tau}) \to 0$, as $n \to +\infty$, and ends the proof.

Proposition 3. There exists an absorbing set $\mathcal{B} \subset \mathcal{W}$ that is bounded in \mathcal{W}.

Proof. We define \mathcal{B} as the subset of \mathcal{W} such that the inequality

$$\|w(t)\|^2 + \alpha^2 \|\nabla_h w(t)\|^2 \leq \frac{2K_1}{\nu\lambda_1}$$

is satisfied for every $t \geq 0$. According to relation (9), \mathcal{B} is bounded in \mathcal{W}.

We need to prove that, if $w \in \mathcal{W}$, then $S(t)w \in \mathcal{B}$ for each t sufficiently large. Actually, from (11), there exists $t_1 > 0$ such that the inequality (18) holds for all $t \geq t_1$. Thus $S(t)w$ belongs to \mathcal{B} for each $t \geq t_1$, and \mathcal{B} is an absorbing set.

Proposition 4. The semiflow defined by $S(t)$ on the metric space \mathcal{W} is compact, i.e. for each bounded set \mathcal{B} in \mathcal{W} and for each $t > 0$, then $S(t)\mathcal{B}$ lies in a compact subset of \mathcal{W}.

Proof. Let \mathcal{B} be a bounded subset of \mathcal{W}. Thanks to the semigroup property of $S(t)$, if $S(t)\mathcal{B}$ is contained in a compact set of \mathcal{W} for some $t > 0$, then $S(t + s)\mathcal{B}$ lies in a compact set of \mathcal{W} too. Then, to prove the claim, it suffices to prove that $S(t)\mathcal{B}$ lies in a compact set of \mathcal{W} for $0 < t \leq 1$.

Let $\{w^n\}$ be a bounded sequence in \mathcal{W}. Thus, there exists a positive constant M_0 such that $\int_0^1 (\|w^n(s)\|^2 + \alpha^2 \|\nabla_h w^n(s)\|^2) \, ds \leq M_0^2$. Recalling that $S(t)w^n(\tau) = w^n_{\tau+1}(\tau) = w^n(\tau + t)$, by the estimate in (11), for $s_0 \in]0, t[\text{ and } s \geq 0$, it follows that

$$\|w^n_{\tau+t}(s)\|^2 + \alpha^2 \|\nabla_h w^n_{\tau+t}(s)\|^2 = \|w^n(s + t)\|^2 + \alpha^2 \|\nabla_h w^n(s + t)\|^2 \leq k_0(s_0)e^{-\nu\lambda_1(t+s-s_0)} + \frac{K_1}{\nu\lambda_1}(1 - e^{-\nu\lambda_1(t+s-s_0)})$$

$$\leq k_0(s_0) + \frac{K_1}{\nu\lambda_1}\lambda_1$$
and, integrating on $]0, 1[$ in s_0, we reach

$$|w^n_{+t}(s)|^2 + \alpha^2|\nabla_h w^n_{+t}(s)|^2 \leq \int_0^1 (k_0(s_0) + \frac{K_1}{\nu \lambda_1}) \, ds_0$$

$$\leq M_0^2 + \frac{K_1}{\nu \lambda_1}.$$

Hence, we get

$$|w^n_{+t}(\cdot)|^2 + \alpha^2|\nabla_h w^n_{+t}(\cdot)|^2 \leq M_0^2 + \frac{K_1}{\nu \lambda_1},$$

for all n. Further, by (7)–(12) we have that

$$\nu \int_m^{m+1} (||\nabla w^n_{+t}(s)||^2 + \alpha^2||\nabla_h \nabla w^n_{+t}(s)||^2) \, ds$$

$$= \nu \int_m^{m+1} (||\nabla w^n(s + t)||^2 + \alpha^2||\nabla_h \nabla w^n(s + t)||^2) \, ds$$

$$\leq (||w^n(t)||^2 + \alpha^2||\nabla_h w^n(t)||^2) + (1 + \frac{1}{\nu \lambda_1}) K_1$$

$$\leq (||w^n(s_0)||^2 + \alpha^2||\nabla_h w^n(s_0)||^2) e^{-\nu \lambda_1 (t - s_0)} + (1 + \frac{2}{\nu \lambda_1}) K_1$$

$$\leq k_0(s_0) + (1 + \frac{2}{\nu \lambda_1}) K_1$$

for $s_0 \in]0, t[$. Therefore, integrating the above inequality on the interval $]0, 1[$ in s_0, we get

$$\int_m^{m+1} (||\nabla w^n_{+t}(s)||^2 + \alpha^2||\nabla_h \nabla w^n_{+t}(s)||^2) \, ds \leq \frac{M_0^2}{\nu} + \frac{2}{\nu \lambda_1} \frac{K_1}{\nu}$$

(19)

for all n and for each $m = 0, 1, 2 \ldots$. The above estimates imply that $\{S(t)w^n\}$ is bounded in $L^\infty(0, \infty; V_h) \cap L^{2}_{loc}(0, \infty; V \cap H^2_{0})$. Following the same line of reasoning as in the proof of existence in [5], one can also prove that $S(t)w^n \in H^1_{loc}(0, \infty; V^*)$.

Indeed, in this case, to control $\int_m^{m+1} ||\partial_t w^n_{+t}(s)||^2_{H^{1,2}} \, ds$, the only relevant term to be estimated is the nonlinear one. Hence, we have that, for all $\varphi \in V$,

$$\int_m^{m+1} (\nabla \cdot (w^n_{+t} \otimes w^n_{+t})^{s_h}(s), \varphi) \, ds \leq C \left[\int_m^{m+1} ||w^n_{+t}(s)||^{1/2} ||\nabla w^n_{+t}(s)||^{3/2} \, ds \right] ||\nabla \varphi||$$

$$\leq C \lambda_1^{-1/4} \left[\int_m^{m+1} ||\nabla w^n_{+t}(s)||^2 \, ds \right] ||\nabla \varphi||$$

and the conclusion follows easily by exploiting the estimate in (19).

Here, we have the inclusions

$$H^2_{0} \subset V_h \subset L^2 \subset V^*,$$

with the embedding $H^2_{0} \subset V_h$ being compact and the embedding $V_h \subset L^2$ being continuous. Therefore, by using Aubin–Lions compactness theorem we have that, up to a subsequence, $S(t)w^n$ converges strongly to $\gamma(t)$ in $L^{2}_{loc}(0, T; V_h)$ and weakly in $L^{2}_{loc}(0, T; H^2_{0})$, as $n \to +\infty$, with $\gamma(t) \in L^\infty(0, \infty; V_h) \cap L^{2}_{loc}(0, \infty; V \cap H^2_{0})$.

Now, since $S(t)w^n(\tau) = w^n(\tau + t)$, the same compactness argument also yields, up to a subsequence, that w^n converges strongly to w in $L^{2}_{loc}(0, T; V_h)$ and weakly in $L^{2}_{loc}(0, T; H^2_{0})$, as $n \to +\infty$, with $w \in L^\infty(0, \infty; V_h) \cap L^{2}_{loc}(0, \infty; V \cap H^2_{0})$. By the continuity of $(\tau, w) \mapsto S(t)w$ in $]0, +\infty[\times L^{2}_{loc}(0, \infty; V_h)$ we also obtain that
$S(t)w^n \to S(t)w$ and the uniqueness of the limit implies that $\gamma(t) = S(t)w \in \mathcal{W}$. This concludes the proof.

5. The fully space-periodic case. In this section, in order to improve the regularity of the solutions, we consider a torus as a space domain, i.e. a domain periodic in all directions: $D = \{x \in \mathbb{R}^3: -\pi L < x_1, x_2, x_3 < \pi L\}$, $L > 0$, with $2\pi L$ periodicity with respect to x. This setting enables us to perform some computations (more precisely, the usage of some test functions) that are not allowed in the presence of Dirichlet boundary conditions; in such a way we retrace some additional information on the horizontal components of velocity field, w_h, and on the pressure, q.

Function spaces are defined accordingly to our periodic setting, in particular

\[
L^2(D) = \{\phi: D \to \mathbb{R} \text{ measurable, } 2\pi L \text{ periodic in } x, \int_D |\phi|^2 \, dx < +\infty\},
\]

\[
L_0^2(D) = \{\phi \in L^2(D) \text{ with zero mean with respect to } x\}.
\]

We can still consider the horizontal filtering and thus problem (5)–(6), and prove the existence of a unique regular weak solution (defined like in Section 2) essentially as done in the presence of Dirichlet boundary conditions on the top and bottom boundary Γ.

Also in this case, we use the notations $\|\cdot\| := \|\cdot\|_{L^2(D)}$ and $(\cdot, \cdot) := (\cdot, \cdot)_{L^2(D)}$ for the $L^2(D)$ norm and scalar product respectively.

5.1. Continuity of the horizontal flow. To prove the claimed continuity of w_h, we need the following two lemmas.

Lemma 5.1. A pressure term q in (5) corresponding to a regular weak solution to (5)–(6) satisfies $\nabla_h q \in L^2(0, T; L^2(D))$ for each $T > 0$.

Proof. Taking the divergence operator in (5) and using (6), we obtain

\[-\Delta q = \nabla \cdot \left(\nabla \cdot (w \otimes w^h)\right) - \nabla \cdot f^h,\]

and, by applying the operator A_h, we deduce

\[-\Delta A_h q = \nabla \cdot (\nabla \cdot (w \otimes w)) - \nabla \cdot f,\]

so that

\[
\|A_h q\|_{H^{-1}(D)} \leq C \left(\|w \otimes w\|_{H^{-1}(D)} + \|f\|_{H^{-2}(D)}\right)
\]

\[
\leq C \left(\|w\| \|\nabla w\| + \|f\|_{H^{-2}(D)}\right)
\]

(20)

by elliptic estimates used along with $\|w \otimes w\|_{H^{-1}(D)} \leq C \|w\| \|\nabla w\|$. This last control follows from the Hölder and the Gagliardo–Nirenberg inequalities: taking $\varphi \in H^1(D)$, we have that

\[|w \otimes w, \varphi| \leq \|w\|_{L^3}^2 \|\varphi\|_{L^3} \leq C \|w\| \|\nabla w\| \|\varphi\|_{H^1(D)},\]

which proves the bound. Thus, from relation (20) we get

\[\|A_h q\|_{L^2H^{-1}} \leq C(\|w\|_{L^\infty L^2} \|\nabla w\|_{L^2L^2} + \|f\|_{L^2H^{-2}}),\]

and hence $A_h q \in L^2H^{-1}$, so that $\nabla_h q \in L^2L^2$, where L^2L^2 denotes $L^2(0, T; L^2(D))$. \qed
Lemma 5.2. If \(w \) is a regular weak solution to (5)–(6), then \(\partial_t \nabla_h w_h \in L^2(0,T;V^*) \) for every \(T > 0 \).

Proof. From (5), we have
\[
\partial_t \nabla_h w_h = \nabla_h f_h^0 + \nu \Delta \nabla_h w_h - \nabla_h^2 q - \left(\nabla_h \nabla \cdot (\overline{w} \otimes \overline{w}) \right)_h. \tag{21}
\]
Considering the last term in the right-hand side of the above equation, and recalling that the filter improves the regularity by two horizontal derivatives, we have
\[
\left\| \nabla_h \nabla \cdot (\overline{w} \otimes \overline{w}) \right\|_{H^{-1}(D)} \leq C\|\nabla \cdot (w \otimes w)\|_{L^2(D)} \leq C\||w|\|^{1/2}\|\nabla w\|^{3/2}
\]
by the Gagliardo–Nirenberg inequality.

Using Lemma 5.1, the previous estimate, the regularity of \(f \) and of the regular weak solution \(w \), we deduce that all terms in the right-hand side of (21) have the same regularity \(L^2H^{-1} \), therefore \(\partial_t \nabla_h w_h \in L^2V^* \).

Now, we are ready to prove Proposition 1 (continuity of \(w_h \)).

Proof of Proposition 1. Since \(w \in L^2(V \cap H^1_h) \), thus \(\nabla_h w \in L^2V \), and \(\partial_t \nabla_h w_h \in L^2V^* \), we obtain by interpolation (see [16, 18]) that \(\nabla_h w_h \in C^0H \), i.e. \(w_h \in C^0V_h \). This implies the continuity of the map \(w_0 \mapsto w_h(t) \), with \(w_0 \in V_h \).

5.2. A higher order estimate. We refer to the beginning of Section 3 for the definitions of \(\Lambda_h, k_1(t) \), and set \(\lambda_1 = L^{-2} \) (first eigenvalue of the Laplace operator \(-\Delta\) on \(D \) fully periodic, and Poincaré constant) and
\[
k_2(t) = \|\nabla w(t)\|^2 + \alpha^2\|\nabla \nabla_h w(t)\|^2, \\
K_2 = \frac{3}{\nu} \min \left\{ \frac{\|\Lambda_h^{-1} f\|^2}{\alpha^2}, \|f\|^2 \right\}, \\
k_3(t) = K_2 + \frac{Ck_1(t)^3}{\alpha^2\nu^3} \left(\frac{1}{\alpha^4\lambda_1^4} + \frac{k_1(t)^2}{\nu^4} \right), \\
k_4(t) = k_2(t) + \frac{k_3(t)}{\nu\lambda_1}.
\tag{22}
\]

We state and prove the following result.

Theorem 5.3. Let \(w \) be a regular weak solution to (5)–(6) in the time interval \([0,\infty[\), then we have that
\[
\|\nabla w(t+r)\|^2 + \alpha^2\|\nabla \nabla_h w(t+r)\|^2 \\
\leq k_2(t)e^{-\nu\lambda_1(t+r)} + \frac{k_3(t)}{\nu\lambda_1}(1 - e^{-\nu\lambda_1(t+r)}) \leq k_4(t),
\tag{23}
\]
for each \(t, r > 0 \).

Proof. In the space periodic setting we can use \(-\Delta A_h w\) as test function for Equation (5), because the periodic boundary conditions are preserved by the operator \(\Delta A_h \), differently from the Dirichlet conditions, and hence integration by parts can be easily performed. Note that we proceed formally (since we lack the needed regularity to test directly), but the procedure actually goes through the Galerkin approximation, as done in Theorem 3.1.
First, observe that

\[
\|(f, \Delta w)\| \leq \begin{cases}
\|A_h^{-1}f\| \|A_h \Delta w\| & \leq \left(\frac{\|A_h^{-1}f\|^2}{\nu \alpha^2} + \frac{\nu \alpha^2 \|\Delta \nabla_h w\|^2}{4} \right) \\
\|f\| \|\Delta w\| & \leq \frac{3\|f\|^2}{2\nu} + \frac{\nu \|\Delta w\|^2}{6} \\
\end{cases}
\]

Thus, testing the equation (5) against \(-\Delta A_h w\), we get

\[
\frac{1}{2} \frac{d}{dt} \left(\|\nabla w\|^2 + \alpha^2 \|\nabla \nabla_h w\|^2 \right) + \nu \left(\|\Delta w\|^2 + \alpha^2 \|\Delta \nabla_h w\|^2 \right)
\leq \left| (f, A_h \Delta w^h) \right| + \left| (\nabla \cdot (w \otimes w), A_h \Delta w^h) \right|
\leq \frac{1}{2} K_2 + \frac{\nu \alpha^2}{4} \|\Delta \nabla_h w\|^2 + \frac{\nu}{6} \|\Delta w\|^2 + \left| (w \cdot \nabla) w, \Delta w \right| .
\]

Take into account the nonlinear term in the right-hand side of the above estimate. We have that

\[
\left| ((w \cdot \nabla) \nabla_h w, \nabla_h w) \right| = \left| \left(\nabla \left([(w \cdot \nabla) w], \nabla w \right) \right) \right|
\leq \left| \begin{array}{l}
\left(\nabla_h \left([(w \cdot \nabla) w], \nabla_h w \right) \right) + \left(\partial_3 \left([(w \cdot \nabla) w], \partial_3 w \right) \right) \right|
\end{array} \right|
\]

\[
= \left| \begin{array}{l}
\left(\left(\nabla_h w \cdot \nabla \right) w, \nabla_h w \right) + \left(\left(\partial_3 w \cdot \nabla \right) w, \partial_3 w \right) \right|
\end{array} \right|
\]

\[
=: A + B ,
\]

where in the last step we used the following relations

\[
\left((w \cdot \nabla) \nabla_h w, \nabla_h w \right) = 0 \quad \text{and} \quad \left((w \cdot \nabla) \partial_3 w, \partial_3 w \right) = 0 .
\]

Therefore, exploiting components, we obtain

\[
A = \left(\left(\nabla_h w \right)_h \cdot \nabla_h w + \left| \nabla_h w \right|_3 \partial_3 w , \nabla_h w \right)
\leq \left(\left(\nabla_h w \cdot \nabla_h w \right) , \nabla_h w \right) + \left(\nabla_h w_3 \partial_3 w , \nabla_h w \right)
\]

\[
=: A_1 + A_2 ,
\]

where \([\cdot]_h\) and \([\cdot]_3\) indicate, respectively, the horizontal and vertical components of the considered vector fields.

Next, we estimate the nonlinear terms \(A_1, A_2\) and \(B\) defined above. First, we estimate \(A_1\) and we get

\[
A_1 \leq \int_D \left| \nabla_h w \right| \left| \nabla_h w \right|^2
\leq \|\nabla_h w\|^2 \|\nabla_h w\|
\leq \|\nabla \nabla_h w\|^2 \|\nabla_h w\|^2 \|\nabla_h w\|
\leq \frac{1}{4} \nu \alpha^2 \lambda_1 \|\nabla \nabla_h w\|^2 + \frac{C}{\nu^3 \alpha^6 \lambda_1^2} \|\nabla_h w\|^2 \|\nabla_h w\|^4
\leq \frac{1}{4} \nu \alpha^2 \|\Delta \nabla_h w\|^2 + \frac{C}{\nu^3 \alpha^6 \lambda_1^2} \|\nabla_h w\|^6 .
\]
For the term A_2 we have the following control

\[
A_2 \leq \int_D |\nabla_h w| |\partial_3 w| |\nabla_h w_3| \\
\leq \int_D |\nabla w|^2 |\nabla_h w_3| \\
\leq \|\nabla w\|_{L^4}^2 \|\nabla_h w_3\| \\
\leq C\|\Delta w\|^{7/4} \|w\|^{1/4} \|\nabla_h w_3\| \\
\leq \frac{1}{6} \nu \|\Delta w\|^2 + \frac{C}{\nu^2} \|w\|^2 \|\nabla_h w_3\|^8, \tag{27}
\]

where we used the Gagliardo–Nirenberg inequality $\|D^j w\|_{L^p} \leq C \|D^m w\|_{L^r} \|w\|^{1-\alpha}$, with $j = 1$, $p = 4$, $m = r = q = 2$ and $\alpha = 7/8$, and Young’s inequality.

Let us now consider the term B in (25). We have that

\[
B = \left| \left([\partial_3 w_h] \cdot \nabla_h \right) w + [\partial_3 w_3] \partial_3 w, \partial_3 w \right| \\
\leq \left| \left([\partial_3 w_h] \cdot \nabla_h \right) w \right| + \left| \left([\partial_3 w_3] \partial_3 w, \partial_3 w \right) \right|.
\]

Now, arguing as in the case of A_2, the term B can be controlled as follows.

\[
B \leq \int_D |\partial_3 w_h| |\partial_3 w| |\nabla_h w| + \int_D |\partial_3 w_3| |\partial_3 w|^2 \\
\leq \|\partial_3 w_h\|_{L^4}^2 \|\nabla_h w\| + \|\partial_3 w_3\|_{L^4}^2 \|\partial_3 w\| \\
\leq \|\nabla w\|_{L^4}^2 (\|\nabla_h w\| + \|\partial_3 w_3\|) \\
\leq C\|\Delta w\|^{7/4} \|w\|^{1/4} (\|\nabla_h w\| + \|\partial_3 w_3\|) \\
\leq \frac{1}{6} \nu \|\Delta w\|^2 + \frac{C}{\nu^2} \|w\|^2 (\|\nabla_h w\| + \|\partial_3 w_3\|)^8. \tag{28}
\]

Collecting (24), (26), (27), and (28), we obtain

\[
\frac{1}{2} \frac{d}{dt} \left(\|\nabla w\|^2 + \alpha^2 \|\nabla_h \nabla w\|^2 \right) + \nu \alpha \left(\|\Delta w\|^2 \right) + C \frac{1}{\nu^2} \|\Delta w\|^2 \|\nabla_h w\|^2 + C \frac{1}{\nu^2} \|w\|^2 \|\nabla_h w_3\|^8 \\
+ \frac{K_2}{2} \left(\|\nabla_h w\| + \|\partial_3 w_3\| \right) + \frac{K_2}{2} \left(\|\nabla_h w\| + \|\partial_3 w_3\| \right) \\
\leq \frac{1}{2} \nu \left(\|\Delta w\|^2 \right) + \alpha^2 \left(\|\Delta \nabla_h w\|^2 \right) + \frac{C}{\nu^2} \left(\|\nabla_h w\|^6 + \frac{C}{\nu^2} \|w\|^2 \|\nabla_h w_3\|^8 \right) \\
+ \frac{C}{\nu^2} \|w\|^2 \left(\|\nabla_h w\| + \|\partial_3 w_3\| \right)^8 + \frac{K_2}{2} \left(\|\nabla_h w\| + \|\partial_3 w_3\| \right), \tag{29}
\]

where in the last step we have used (11) and $\partial_3 w_3 = -\nabla_h \cdot w_h$ (which imply $w \in L^\infty(0, \infty; V_h)$ as well as $w_3 \in L^\infty(0, \infty; H^1)$). Thanks to the Poincaré inequality, we easily reach

\[
y'(t) + \nu \lambda_1 y(t) \leq k_3(t), \tag{30}
\]

having set

\[
y(t) = \|\nabla w(t)\|^2 + \alpha^2 \|\nabla_h w(t)\|^2. \tag{31}
\]

Hence, by applying Gronwall’s inequality in the interval $[t, t + r]$, we infer that

\[
\|\nabla w(t + r)\|^2 + \alpha^2 \|\nabla_h w(t + r)\|^2 \leq k_2(t) e^{-\nu \lambda_1 (t + r)} + \frac{k_3(t)}{\nu \lambda_1} (1 - e^{-\nu \lambda_1 (t + r)}).
\]
and finally

\[||\nabla w(t + r)||^2 + \alpha^2||\nabla_h w(t + r)||^2 \leq k_4(t), \]

by definition of \(k_4(t) \). Thus, the conclusion follows. \(\Box \)

Acknowledgments. The authors thank both the anonymous referees for their careful reading of the manuscript and many valuable comments and suggestions. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

REFERENCES

[1] N. A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, in Modern Simulation Strategies for Turbulent Flow (ed. B. J. Geurts), R. T. Edwards, 2001, 21–44.

[2] H. Ali, Approximate deconvolution model in a bounded domain with vertical regularization, J. Math. Anal. App., 408 (2013), 355–363.

[3] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

[4] L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Springer, 2006.

[5] L. C. Berselli, Analysis of a Large Eddy Simulation model based on anisotropic filtering, J. Math. Anal. Appl., 386 (2012), 149–170.

[6] L. C. Berselli and D. Catania, On the well-posedness of the Boussinesq equations with horizontal filter for turbulent flows, to appear in Z. Anal. Anwend.

[7] L. C. Berselli and D. Catania, On the equations with anisotropic filter in a vertical pipe, to appear in Dyn. Partial Differ. Equ.

[8] L. C. Berselli, D. Catania and R. Lewandowski, Convergence of approximate deconvolution models to the mean magnetohydrodynamics equations: Analysis of two models, J. Math. Anal. Appl., 401 (2013), 864–880.

[9] H. Bessaih and F. Flandoli, Weak attractor for a dissipative Euler equation, J. Dynamics Diff. Equations, 12 (2000), 713–732.

[10] L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, to appear in Mathematical Methods in the Applied Sciences, published online, (2014).

[11] D. Catania and P. Secchi, Global existence and finite dimensional global attractor for a 3D double viscous MHD-α model, Commun. Math. Sci., 8 (2010), 1021–1040.

[12] J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 41 (1970), 453–480.

[13] C. Foias, D. Holm and E. S. Titi, The three dimensional viscous Camassa–Holm equations and their relation to the Navier–Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1–35.

[14] M. Germano, Differential filters for the large eddy simulation of turbulent flows, Phys. Fluids, 29 (1986), 1755–1757.

[15] W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions, App. Math. Letters, 16 (2003), 1205–1209.

[16] J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Dunod, Paris, 1968.

[17] G. R. Sell, Global attractor for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1–33.

[18] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, 2002.
[19] A. Scotti, C. Meneveau and D. K. Lilly, Generalized Smagorinsky model for anisotropic grids, *Phys. Fluids*, 5 (1993), 2306.

[20] R. Temam, *Infinite Dimensional Dynamical Systems in Mechanics and Physics*, Applied Mathematical Sciences, 68, Springer, 1988.

Received February 2014; revised June 2014.

E-mail address: luca.bisconti@unifi.it
E-mail address: davide.catania@unibs.it