AUSLANDER-REITEN TRANSLATIONS IN MONOMORPHISM CATEGORIES

BAO-LIN XIONG PU ZHANG∗ YUE-HUI ZHANG

Abstract. We generalize Ringel and Schmidmeier’s theory on the Auslander-Reiten translation of the submodule category $S_2(A)$ to the monomorphism category $S_n(A)$. As in the case of $n = 2$, $S_n(A)$ has Auslander-Reiten sequences, and the Auslander-Reiten translation τ_S of $S_n(A)$ can be explicitly formulated via τ of A-mod. Furthermore, if A is a selfinjective algebra, we study the periodicity of τ_S on the objects of $S_n(A)$, and of the Serre functor F_S on the objects of the stable monomorphism category $S_n(A)$. In particular, $\tau_S^{m(n+1)}X \cong X$ for $X \in S_n(\Lambda(m,t))$; and $F_S^{m(n+1)}X \cong X$ for $X \in S_n(\Lambda(m,t))$, where $\Lambda(m,t)$, $m \geq 1$, $t \geq 2$, are the selfinjective Nakayama algebras.

Key words and phrases. monomorphism category, Auslander-Reiten translation, triangulated category, Serre functor

Introduction

Throughout this paper, $n \geq 2$ is an integer, A an Artin algebra, and A-mod the category of finitely generated left A-modules. Let $S_n(A)$ denote the monomorphism category of A (it is usually called the submodule category if $n = 2$).

The study of such a category goes back to G. Birkhoff [B], in which he initiates to classify the indecomposable objects of $S_2(\mathbb{Z}/(p^t))$ (see also [RW]). In [Ar], $S_n(R)$ is denoted by $C(n,R)$, where R is a commutative uniserial ring; the complete list of $C(n,R)$ of finite type, and of the representation types of $C(n,k[x]/(x^t))$, are given by D. Simson [S] (see also [SW]). Recently, after the deep and systematic work of C. M. Ringel and M. Schmidmeier ([RS1] - [RS3]), the monomorphism category receives more attention. X. W. Chen [C] shows that $S_2(A)$ of a Frobenius abelian category A is a Frobenius exact category. D. Kussin, H. Lenzing, and H. Meltzer [KLM] establish a surprising link between the stable submodule category with the singularity theory via weighted projective lines of type $(2,3,p)$. In [Z], $S_n(X)$ is studied for any full subcategory X of A-mod, and it is proved that for a cotilting A-module T, there is a cotilting $T_n(A)$-module $m(T)$ such that $S_n(-T) = (-m(T))$, where $T_n(A) = \begin{pmatrix} A & A & \cdots & A \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & A \end{pmatrix}_{n \times n}$ is the upper triangular matrix algebra.

∗The corresponding author.

2010 Mathematical Subject Classification. 16G10, 16G70, 18E30.

Supported by the NSF of China (10725104), and STCSM (09XD1402500).
of A, and $\perp T$ is the left perpendicular category of T. As a consequence, for a Gorenstein algebra A, $\mathcal{S}_n(\perp A)$ is exactly the category of Gorenstein-projective $T_n(A)$-modules.

Ringel and Schmidmeier construct minimal monomorphisms, and then prove that $\mathcal{S}_2(A)$ is functorially finite in $T_2(A)$-mod. As a result, $\mathcal{S}_2(A)$ has Auslander-Reiten sequences. Surprisingly, the Auslander-Reiten translation τ_S of $\mathcal{S}_2(A)$ can be explicitly formulated as $\tau_S X \cong \text{Mimo} \tau \text{Cok}X$ for $X \in \mathcal{S}_2(A)$ ([RS2], Theorem 5.1), where τ is the Auslander-Reiten translation of A-mod. Applying this to selfinjective algebras, among others they get $\tau_S^g X \cong X$ for indecomposable nonprojective object $X \in \mathcal{S}_2(A)$, where A is a commutative uniserial algebra.

A beautiful theory should have a general version. The aim of this paper is to generalize Ringel and Schmidmeier’s work on $\mathcal{S}_2(A)$ to $\mathcal{S}_n(A)$. As in the case of $n = 2$, $\mathcal{S}_n(A)$ has Auslander-Reiten sequences, and τ_S of $\mathcal{S}_n(A)$ can be formulated in the same form as above; these can be achieved by using the idea in [RS2]. For selfinjective algebras, Sections 3 and 4 of this paper contain new considerations. In order to express the higher power of τ_S, we need the concept of a rotation of an object in $\text{Mor}_A(A\text{-mod})$, which is defined in [RS2] for $n = 2$. In the general case, such a suitable definition needs to be chosen from different possibilities, and difficulties need to be overcome to justify that it is well-defined. Also, the Octahedral Axiom is needed in computing the higher power of the rotations, which is the key step in studying the periodicity of τ_S and the Serre functor on the objects.

We outline this paper. In Section 1 we set up some basic properties of the categories $\text{Mor}_n(A)$, $\mathcal{S}_n(A)$ and $\mathcal{F}_n(A)$, and of the functors m_i, p_i, Ker, Cok, Mono, Epi; and the construction of Mimo. Section 2 is to transfer the Auslander-Reiten sequences of $\text{Mor}_n(A)$ to those of $\mathcal{S}_n(A)$; and to give a formula for τ_S of $\mathcal{S}_n(A)$ via τ of $A\text{-mod}$ (Theorem 2.4).

In Section 3, A is a selfinjective algebra, and hence the stable category $A\text{-mod}$ is a triangulated category ([H]), and τ is a triangle functor of $A\text{-mod}$. Using the rotation and the Octahedral Axiom, we get a formula for $\tau_S^{j(n+1)} X \in \text{Mor}_n(A\text{-mod})$ for $X \in \mathcal{S}_n(A)$ and $j \geq 1$ (Theorem 3.4). This can be applied to the study of the periodicity of τ_S on objects. In particular, $\tau_S^{2m(n+1)} X \cong X$ for $X \in \mathcal{S}_n(\Lambda(m,t))$ (Corollary 3.6), where $\Lambda(m,t)$, $m \geq 1$, $t \geq 2$, are the selfinjective Nakayama algebras.

In Section 4, A is a finite-dimensional self-injective algebra over a field. By [Z], $\mathcal{S}_n(A)$ is exactly the category of Gorenstein projective $T_n(A)$-modules, and hence the stable monomorphism category $\mathcal{S}_n(A)$ is a Hom-finite Krull-Schmidt triangulated category with Auslander-Reiten triangles. By Theorem I.2.4 of I. Reiten and M. Van den Bergh [RV], $\mathcal{S}_n(A)$ has a Serre functor F_S. We study the periodicity of F_S on the objects of $\mathcal{S}_n(A)$ (Theorem 4.3). In particular, $F_S^{m(n+1)} X \cong X$ for $X \in \mathcal{S}_n(\Lambda(m,t))$ (Corollary 4.4).

In order to make the main clue clearer, we put the proofs of Lemmas 1.5 and 1.6 in Appendix 1.
Note that \(S_{n,2}, S_{2,3}, S_{2,4}, S_{2,5}, S_{3,3} \) and \(S_{4,3} \) are the only representation-finite cases among all \(S_{n,t} = S_n(k[x]/(x^t)), n \geq 2, t \geq 2 \) ([S], Theorems 5.2 and 5.5). The Auslander-Reiten quivers of \(S_{2,t} \) with \(t = 2, 3, 4, 5 \) are given in [RS3]. In Appendix 2, we give the remaining cases. We also include the AR quivers of \(S_n(A(2,2)) \) with \(n = 3 \) and 4.

1. Basics of morphism categories

We set up some basic properties of several categories and functors, which will be used throughout this paper.

1.1. An object of the morphism category \(\text{Mor}_n(A) \) is \(X_{(\phi_i)} = \left(\begin{array}{c} X_1 \\ \vdots \\ X_n \end{array} \right) \), where \(\phi_i : X_{i+1} \to X_i \) are \(A \)-maps for \(1 \leq i \leq n - 1 \); and a morphism \(f = (f_i) : X_{(\phi_i)} \to Y_{(\psi_i)} \) is \(\left(\begin{array}{c} f_1 \\ \vdots \\ f_n \end{array} \right) \), where \(f_i : X_i \to Y_i \) are \(A \)-maps for \(1 \leq i \leq n \), such that the following diagram commutes

\[
\begin{array}{cccccccc}
X_n & \phi_{n-1} & X_{n-1} & \cdots & X_2 & \phi_1 & X_1 \\
\downarrow f_n & & \downarrow f_{n-1} & & \downarrow f_2 & \downarrow f_1 & \\
Y_n & \psi_{n-1} & Y_{n-1} & \cdots & Y_2 & \psi_1 & Y_1.
\end{array}
\]

(1.1)

We call \(X_i \) the \(i \)-th branch of \(X_{(\phi_i)} \), and \(\phi_i \) the \(i \)-th morphism of \(X_{(\phi_i)} \). It is well-known that \(\text{Mor}_n(A) \) is equivalent to \(T_n(A)\text{-mod} \) (see e.g. [Z], 1.4). Let \(Z_{(\phi_i)} \overset{f}{\to} Y_{(\psi_i)} \overset{g}{\to} X_{(\phi_i)} \) be a sequence in \(\text{Mor}_n(A) \). Then it is exact at \(Y_{(\psi_i)} \) if and only if each sequence \(Z_i \overset{f_i}{\to} Y_i \overset{g_i}{\to} X_i \) in \(A\text{-mod} \) is exact at \(Y_i \) for each \(1 \leq i \leq n \).

By definition, the monomorphism category \(\text{S}_n(A) \) is the full subcategory of \(\text{Mor}_n(A) \) consisting of the objects \(X_{(\phi_i)} \), where \(\phi_i : X_{i+1} \to X_i \) are monomorphisms for \(1 \leq i \leq n - 1 \). Dually, the epimorphism category \(\text{F}_n(A) \) is the full subcategory of \(\text{Mor}_n(A) \) consisting of the objects \(X_{(\phi_i)} \), where \(\phi_i : X_{i+1} \to X_i \) are epimorphisms for \(1 \leq i \leq n - 1 \). Since \(\text{S}_n(A) \) and \(\text{F}_n(A) \) are closed under direct summands and extensions, it follows that they are exact Krull-Schmidt categories, with the exact structure in \(\text{Mor}_n(A) \).

The kernel functor \(\text{Ker} : \text{Mor}_n(A) \to \text{S}_n(A) \) is given by

\[
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_{n-1} \\
X_n \\
\phi_1 \\
\phi_2 \\
\vdots \\
\phi_{n-1} \\
(\phi_i)
\end{pmatrix}
\mapsto
\begin{pmatrix}
X_n \\
\phi_1 \cdots \phi_{n-1} \\
\phi_2 \cdots \phi_{n-1} \\
\vdots \\
\phi_{n-1} \\
(\phi_i')
\end{pmatrix}
\]

where \(\phi_i' : \text{Ker}(\phi_1 \cdots \phi_{n-1}) \to X_n \), and \(\phi_i' : \text{Ker}(\phi_1 \cdots \phi_{n-1}) \to \text{Ker}(\phi_1 \cdots \phi_{n-1}) \), \(2 \leq i \leq n - 1 \), are the canonical monomorphisms. For a morphism \(f : X \to Y \) in \(\text{Mor}_n(A) \), \(\text{Ker}f : \text{Ker}X \to \text{Ker}Y \) is naturally defined via a commutative diagram induced from
(1.1). We also need the cokernel functor $\text{Cok} : \text{Mor}_n(A) \to \mathcal{F}_n(A)$ given by

$$
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_{n-1} \\
X_n
\end{pmatrix}
\mapsto
\begin{pmatrix}
\text{Coker} \phi_1 \\
\text{Coker} (\phi_1 \phi_2) \\
\vdots \\
\text{Coker} (\phi_1 \cdots \phi_{n-1}) \\
\phi''_i
\end{pmatrix},
$$

where $\phi''_i : \text{Coker}(\phi_1 \cdots \phi_{i+1}) \to \text{Coker}(\phi_1 \cdots \phi_i), 1 \leq i \leq n - 2$, and $\phi''_{n-1} : X_1 \to \text{Coker}(\phi_1 \cdots \phi_{n-1})$ are the canonical epimorphisms. It is clear that the restriction of the kernel functor $\text{Ker} : \mathcal{F}_n(A) \to \mathcal{S}_n(A)$ is an equivalence with quasi-inverse the restriction of the cokernel functor $\text{Cok} : \mathcal{S}_n(A) \to \mathcal{F}_n(A)$.

1.2. For each $1 \leq i \leq n$, the functors $m_i : A\text{-mod} \to \mathcal{S}_n(A)$ and $p_i : A\text{-mod} \to \mathcal{F}_n(A)$ are defined as follows. For $M \in A\text{-mod}$,

$$(m_i(M))_j = \begin{cases} M, & 1 \leq j \leq i; \\ 0, & i + 1 \leq j \leq n; \end{cases} \\ (p_i(M))_j = \begin{cases} 0, & 1 \leq j \leq n - i; \\ M, & n - i + 1 \leq j \leq n. \end{cases}$$

The j-th morphism of $m_i(M)$ is id_M if $1 \leq j < i$, and 0 if $i \leq j \leq n - 1$; and the j-th morphism of $p_i(M)$ is 0 if $1 \leq j < n - i + 1$, and id_M if $n - i + 1 \leq j \leq n - 1$. For an A-map $f : M \to N$, define

$$m_i(f) = \begin{pmatrix} f \\
\vdots \\
\vdots \\
0
\end{pmatrix} : \begin{pmatrix} M \\
M \\
\vdots \\
0
\end{pmatrix} \to \begin{pmatrix} N \\
N \\
\vdots \\
N
\end{pmatrix}; \\ p_i(f) = \begin{pmatrix} 0 \\
\vdots \\
\vdots \\
0
\end{pmatrix} : \begin{pmatrix} 0 \\
0 \\
\vdots \\
0
\end{pmatrix} \to \begin{pmatrix} 0 \\
0 \\
\vdots \\
0
\end{pmatrix}.$$

We have

$$\text{Ker} p_i(M) = m_{n-i+1}(M), \quad \text{Cok} m_i(M) = p_{n-i+1}(M), \quad 1 \leq i \leq n. \quad (1.2)$$

Lemma 1.1. (i) If P runs over all the indecomposable projective A-modules, then $m_1(P), \cdots, m_n(P)$ are the all indecomposable projective objects in $\text{Mor}_n(A)$.

(ii) If I runs over all the indecomposable injective A-modules, then $p_1(I), \cdots, p_n(I)$ are the all indecomposable injective objects in $\text{Mor}_n(A)$.

(iii) The indecomposable projective objects in $\mathcal{S}_n(A)$ are exactly those in $\text{Mor}_n(A)$.

(iv) If I runs over all the indecomposable injective A-modules, then $m_1(I), \cdots, m_n(I)$ are the all indecomposable injective objects in $\mathcal{S}_n(A)$.

(v) If P runs over all the indecomposable projective A-modules, then $p_1(P), \cdots, p_n(P)$ are the all indecomposable projective objects in $\mathcal{F}_n(A)$.

(vi) The indecomposable injective objects in $\mathcal{F}_n(A)$ are exactly those in $\text{Mor}_n(A)$.

(vii) Let \mathcal{N}_A and \mathcal{N} be the Nakayama functor of $\text{Mor}_n(A)$ and of $A\text{-mod}$, respectively. Then for a projective A-module P, $\mathcal{N}_A m_i(P) = p_{n-i+1}(NP), 1 \leq i \leq n$.

Proof. For convenience, we include a justification. (i) can be seen from the equivalence Mor_{n}(A) \cong T_{n}(A)\text{-mod.} For (ii), see e.g. Lemma 1.3(ii) in [Z]. (iii) follows from (i), and (vi) follows from (ii). Using the equivalence Ker : \mathcal{F}_{n}(A) \to \mathcal{S}_{n}(A) together with (vi) and (1.2), we see (iv). Using the equivalence Cok : \mathcal{S}_{n}(A) \to \mathcal{F}_{n}(A) together with (iii) and (1.2), we see (v). To see (vii), note that if P is indecomposable, then \mathcal{N}_{M_{i}}(P) is an indecomposable injective \mathcal{T}_{n}(A)\text{-module, hence by (ii) it is of the form }p_{j}(I).\text{ Thus}

\[
\begin{pmatrix}
0 \\
\vdots \\
soc(I) \\
0
\end{pmatrix} = soc(p_{j}(I)) = soc(N_{M_{i}}(P)) = top(m_{i}(P)) = \begin{pmatrix}
0 \\
\vdots \\
0 \\
top(P)
\end{pmatrix}.
\]

Thus \(n - j + 1 = i, soc(I) = top(P),\) which means \(N_{M_{i}}(P) = p_{n-i+1}(NP).\) \(\Box\)

1.3. Recall the functors \textbf{Mono} : Mor_{n}(A) \to \mathcal{S}_{n}(A) and \textbf{Epi} : Mor_{n}(A) \to \mathcal{F}_{n}(A). The first one is given by

\[
\begin{pmatrix}
X_{1} \\
X_{2} \\
\vdots \\
X_{n-1} \\
X_{n}
\end{pmatrix}
\mapsto
\begin{pmatrix}
X_{1} \\
\text{Im } \phi_{1} \\
\vdots \\
\text{Im } (\phi_{1}\cdots \phi_{n-2}) \\
\text{Im } (\phi_{1}\cdots \phi_{n-1})
\end{pmatrix},
\]

where \(\phi_{i}^{t} : \text{Im } \phi_{1} \hookrightarrow X_{1},\) and \(\phi_{i}^{t} : \text{Im } (\phi_{1}\cdots \phi_{i}) \hookrightarrow \text{Im } (\phi_{1}\cdots \phi_{i-1}),\ 2 \leq i \leq n - 1,\) are the canonical monomorphisms. The second one is given by

\[
\begin{pmatrix}
X_{1} \\
X_{2} \\
\vdots \\
X_{n-1} \\
X_{n}
\end{pmatrix}
\mapsto
\begin{pmatrix}
\text{Im } (\phi_{1}\cdots \phi_{n-1}) \\
\text{Im } (\phi_{2}\cdots \phi_{n-1}) \\
\vdots \\
\text{Im } (\phi_{n-1}) \\
X_{n}
\end{pmatrix},
\]

where \(\phi_{i}^{t} : \text{Im } (\phi_{i+1}\cdots \phi_{n-1}) \twoheadrightarrow \text{Im } (\phi_{i}\cdots \phi_{n-1}),\ 1 \leq i \leq n - 2,\) and \(\phi_{n-1}^{t} : X_{n} \twoheadrightarrow \text{Im } \phi_{n-1}\) are the canonical epimorphisms. Then

\[
\textbf{Epi} \cong \text{Cok Ker}, \quad \textbf{Mono} \cong \text{Ker Cok}, \tag{1.3}
\]

and hence \(\textbf{Mono}X \cong X\) for \(X \in \mathcal{S}_{n}(A),\) and \(\textbf{Epi}Y \cong Y\) for \(Y \in \mathcal{F}_{n}(A).\)

For an A-map \(f : X \to Y,\) denote the canonical A-maps \(X \to \text{Im } f\) and \(\text{Im } f \hookrightarrow Y\) by \(\tilde{f}\) and incl, respectively. The following lemma can be similarly proved as in [RS2] for \(n = 2.\)

Lemma 1.2. Let \(X = X_{\{\phi_{i}\}} \in \text{Mor}_{n}(A).\) Then

(i) The morphism \(\begin{pmatrix}
1_{X_{1}} \\
\phi_{1} \\
\vdots \\
\phi_{1}\cdots \phi_{n-1}
\end{pmatrix} : X \to \textbf{Mono}X\) is a left minimal approximation of \(X\) in \(\mathcal{S}_{n}(A).\)
Lemma 1.3.

(i) The morphism:

\[
\begin{pmatrix}
\begin{bmatrix}
incl \\ \vdots \\
incl \\ 1_X
\end{bmatrix}
\end{pmatrix} : \text{Epi} X \to X
\]
is a right minimal approximation of \(X \) in \(\mathcal{F}_n(A) \).

1.4. For \(X_{(\phi_i)} \in \text{Mor}_n(A) \), we define \(\text{Mimo} X_{(\phi_i)} \in \mathcal{S}_n(A) \) and \(\text{Mepi} X_{(\phi_i)} \in \mathcal{F}_n(A) \) as follows (see [Z]). For each \(1 \leq i \leq n - 1 \), fix an injective envelope \(\varepsilon_i' : \text{Ker} \phi_i \to \text{I} \text{Ker} \phi_i \). Then we have an \(A \)-map \(\varepsilon_i : X_{i+1} \to \text{I} \text{Ker} \phi_i \), which is an extension of \(\varepsilon_i' \). Define \(\text{Mimo} X_{(\phi_i)} \) to be

\[
\begin{pmatrix}
X_1 \oplus \text{I} \text{Ker} \phi_1 \oplus \cdots \oplus \text{I} \text{Ker} \phi_{n-1} \\
X_2 \oplus \text{I} \text{Ker} \phi_2 \oplus \cdots \oplus \text{I} \text{Ker} \phi_{n-1} \\
\vdots \\
X_{n-1} \oplus \text{I} \text{Ker} \phi_{n-1} \\
X_n
\end{pmatrix}
\]

where \(\theta_i = \begin{pmatrix}
\phi_i & 0 & 0 & \cdots & 0 \\
\varepsilon_i & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}_{(n-i+1) \times (n-i)} \).

By construction \(\text{Mimo} X_{(\phi_i)} \in \mathcal{S}_n(A) \). Since \(e_1, \cdots, e_{n-1} \) are not unique, we need to verify that \(\text{Mimo} X_{(\phi_i)} \) is well-defined. This can be seen from Lemma 1.3(i) below.

The object \(\text{Mepi} X_{(\phi_i)} \) is dually defined. Namely, for each \(1 \leq i \leq n - 1 \), fix a projective cover \(\pi'_i : \text{P} \text{Coker} \phi_i \to \text{Coker} \phi_i \), then we have an \(A \)-map \(\pi_i : \text{P} \text{Coker} \phi_i \to X_i \), which is a lift of \(\pi'_i \), and define \(\text{Mepi} X_{(\phi_i)} \in \mathcal{F}_n(A) \) to be

\[
\begin{pmatrix}
X_1 \\
X_2 \oplus \text{P} \text{Coker} \phi_1 \\
\vdots \\
X_{n-1} \oplus \text{P} \text{Coker} \phi_{n-2} \oplus \cdots \oplus \text{P} \text{Coker} \phi_1 \\
X_n \oplus \text{P} \text{Coker} \phi_{n-1} \oplus \cdots \oplus \text{P} \text{Coker} \phi_1
\end{pmatrix}
\]

where \(\sigma_i = \begin{pmatrix}
\phi_i & \pi_i & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{pmatrix}_{i \times (i+1)} \).

Remark. (i) \(\text{Mimo} X = X \) for \(X \in \mathcal{S}_n(A) \), and \(\text{Mepi} Y = Y \) for \(Y \in \mathcal{F}_n(A) \).

(ii) If each \(X_i \) has no nonzero injective direct summands, then \(\text{Mimo} X_{(\phi_i)} \) has no nonzero injective direct summands in \(\mathcal{S}_n(A) \). If each \(X_i \) has no nonzero projective direct summands, then \(\text{Mepi} X_{(\phi_i)} \) has no nonzero projective direct summands in \(\mathcal{F}_n(A) \). These can be seen from Lemma 1.1(iv) and (v), respectively.

Lemma 1.3. Let \(X \in \text{Mor}_n(A) \). Then

(i) The morphism:

\[
\begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix} : \text{Mimo} X \to X
\]
is a right minimal approximation of \(X \) in \(\mathcal{S}_n(A) \).

(ii) The morphism:

\[
\begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix} : X \to \text{Mepi} X
\]
is a left minimal approximation of \(X \) in \(\mathcal{F}_n(A) \).
For a proof of Lemma 1.3 we refer to [RS2] for $n = 2$, and to [Z] in general case. By Lemmas 1.2 and 1.3, and by Auslander and Smalø [AS], we get the following consequence

Corollary 1.4. The subcategories $S_n(A)$ and $F_n(A)$ are functorially finite in $\text{Mor}_n(A)$ and hence have Auslander-Reiten sequences.

This corollary is the starting point of this paper. From now on, denote by τ, τ_M, τ_S and τ_F the Auslander-Reiten translations of A-mod, $\text{Mor}_n(A)$, $S_n(A)$ and $F_n(A)$, respectively.

1.5. Let A-mod (resp. A-mod) denote the stable category of A-mod modulo projective A-modules (resp. injective A-modules). Then $\tau = \text{DT}r$ induces an equivalence A-mod $\rightarrow A$-mod with quasi-inverse $\tau^{-} = \text{Tr}D$ ([ARS], p.106). Let $\text{Mor}_n(A$-mod) denote the morphism category of A-mod. Namely, an object of $\text{Mor}_n(A$-mod) is $X_{(\phi_i)} = X(\phi_i) = (X_1, \ldots, X_n)$ with $\phi_i : X_{i+1} \rightarrow X_i$ in A-mod for $1 \leq i \leq n - 1$; and a morphism from $X_{(\phi_i)}$ to $Y_{(\psi_i)} = (Y_1, \ldots, Y_n)$, such that the corresponding version of (1.1) commutes in A-mod. Similarly, one has the morphism category $\text{Mor}_n(A$-mod), in which an object is denoted by $X_{(\phi_i)} = X(\phi_i)$.

The following two lemmas will be heavily used in Sections 2 and 3. In order to make the main clue clearer, we put their proofs in Appendix 1.

Lemma 1.5. Let $X_{(\phi_i)} \in \text{Mor}_n(A)$.

(i) Let I_2, \ldots, I_n be injective A-modules such that $X'_{(\phi_i)} = \begin{pmatrix} X_1 \oplus I_2 \oplus \cdots \oplus I_n \\ \vdots \\ X_{n-1} \oplus I_n \\ X_n \end{pmatrix} \in S_n(A)$, where each ϕ_i is of the form $\begin{pmatrix} \phi_i & \ast & \cdots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ \ast & \cdots & \ast & \ast \end{pmatrix} (n-i+1) \times (n-i)$. Then $X'_{(\phi_i)} \cong \text{Mimo}X_{(\phi_i)} \oplus J$, where J is an injective object of $S_n(A)$.

(ii) Let P_1, \ldots, P_{n-1} be projective A-modules such that $X''_{(\phi_i)} = \begin{pmatrix} X_1 \\ X_2 \oplus P_1 \\ \vdots \\ X_{n-1} \oplus P_{n-1} \oplus \cdots \oplus P_1 \end{pmatrix} \in F_n(A)$, where each ϕ_i is of the form $\begin{pmatrix} \phi_i & \ast & \cdots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ \ast & \cdots & \ast & \ast \end{pmatrix} (n-i+1) \times (n-i)$. Then $X''_{(\phi_i)} \cong \text{Mepi}X_{(\phi_i)} \oplus L$, where L is a projective object of $F_n(A)$.

Lemma 1.6. Let $X_{(\phi_i)}$, $Y_{(\psi_i)} \in \text{Mor}_n(A)$.

(i) If all branches X_i and Y_i have no nonzero injective direct summands, then $\text{Mimo}X_{(\phi_i)} \cong \text{Mimo}Y_{(\psi_i)}$ in $S_n(A)$ if and only if $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\text{Mor}_n(A$-mod).
(ii) If all X_i and Y_i have no nonzero projective direct summands, then $\text{Mepi}X_{(\phi_i)} \cong \text{Mepi}Y_{(\psi_i)}$ in $\mathcal{F}_n(A)$ if and only if $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\text{Mor}_n(A\text{-mod})$.

2. The Auslander-Reiten translation of $\mathcal{S}_n(A)$

In this section, we first transfer the Auslander-Reiten sequences of $\text{Mor}_n(A)$ to those of $\mathcal{S}_n(A)$ and $\mathcal{F}_n(A)$; and then give a formula of the Auslander-Reiten translation τ_S of $\mathcal{S}_n(A)$ via τ of $A\text{-mod}$. Results and methods in this section are generalizations of the corresponding ones in the case of $n = 2$, due to Ringel and Schmidmeier [RS2].

2.1. The following fact is crucial for later use.

Lemma 2.1. Let $0 \to X_{(\phi_i)} \stackrel{f}{\to} Y \stackrel{g}{\to} Z \to 0$ be an Auslander-Reiten sequence of $\text{Mor}_n(A)$.

(i) If $\text{Ker}Z$ is not projective, then $0 \to \text{Ker}X \stackrel{\text{Ker}f}{\to} \text{Ker}Y \stackrel{\text{Ker}g}{\to} \text{Ker}Z \to 0$ is either split exact, or an Auslander-Reiten sequence of $\mathcal{S}_n(A)$.

(ii) If $\text{Cok}X$ is not injective, then $0 \to \text{Cok}X \stackrel{\text{Cok}f}{\to} \text{Cok}Y \stackrel{\text{Cok}g}{\to} \text{Cok}Z \to 0$ is either split exact, or an Auslander-Reiten sequence of $\mathcal{F}_n(A)$.

Proof. We only prove (i). Put $g' = \text{Ker}g$ and $f' = \text{Ker}f$. By Snake Lemma, $0 \to \text{Ker}X \stackrel{f'}{\to} \text{Ker}Y \stackrel{g'}{\to} \text{Ker}Z$ is exact. Assume that g' is not a split epimorphism. We claim that g' is right almost split. Let $v : W \to \text{Ker}Z$ be a morphism in $\mathcal{S}_n(A)$ which is not a split epimorphism. Applying Cok, we get $t' = \text{Cok}v : \text{Cok}W \to \text{Cok} \text{Ker}Z = \text{Epi}Z$, which is not a split epimorphism, and hence the composition $t : \text{Cok}W \stackrel{t'}{\to} \text{Epi}Z \stackrel{\sigma}{\to} Z$ is not a split epimorphism. So, there is a morphism $s : \text{Cok}W \to Y$ such that $t = gs$. Applying Ker, we get $\text{Kert} = g'\text{Kers}$ with $\text{Kers} : W \to \text{Ker}Y$. Since $\text{Ker}\sigma = \text{id}_{\text{Ker}Z}$, we see $v = g'\text{Kers}$. This proves the claim.

Since g' is right almost split and $\text{Ker}Z$ is not projective, it follows that g' is epic, and hence f' is not a split monomorphism. We claim that f' is left almost split. For this, let $p : \text{Ker}X \to B$ be a morphism in $\mathcal{S}_n(A)$ which is not a split monomorphism. Take an injective envelope $(e_i) : (B_1/B_2, \cdots, B_{n-1}/B_n)_{(\pi_j)} \hookrightarrow (I_1, \cdots, I_{n-1})_{(\beta_j)}$ in $\text{Mor}_{n-1}(A)$. Put $B' = \left(\begin{array}{c} I_1 \\ \vdots \\ I_{n-1} \\ B_1 \end{array}\right)_{(\beta_j)}$ in $\text{Mor}_n(A)$, where b_{n-1}' is the composition $B_1 \stackrel{e_{n-1}}{\to} B_1/B_n \hookrightarrow I_{n-1}$. By construction we get a morphism $e_{n-1} : \text{Cok}B \to B'$, and $\text{Cok}B = \text{Epi}B'$. Hence $\text{Ker}B' = B$.

Put $r' = (r_1') = \text{Cok}p : \text{Epi}X \to \text{Cok}B$. Then we have a morphism $\left(\begin{array}{c} e_1r_1' \\ \vdots \\ e_{n-1}r_{n-1}' \end{array}\right)$:
Clearly, \(r \) is not a split monomorphism (otherwise, \(\text{Epi} = r' : \text{Epi}X \to \text{Epi}B' = \text{Cok}B \) is a split monomorphism, and hence \(p = \text{Ker} r' \) is a split monomorphism). So there is a morphism \(h : Y \to B' \) such that \(r = hf : X \to B' \). Applying \(\text{Ker} \), we get \(\text{Ker} r' = (\text{Ker} h)f' \), where \(\text{Ker} h : \text{Ker} Y \to \text{Ker} B' = B \). Since \(\text{Ker} r = \text{Ker} \text{Epi} = \text{Ker} r' = \text{Ker} \text{Cok}p = p \), we get \(p = (\text{Ker} h)f' \). This proves the claim, and completes the proof. \(\blacksquare \)

Proposition 2.2. Let \(0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0 \) be an Auslander-Reiten sequence of \(\text{Mor}_n(A) \).

(i) If \(Z \in \mathcal{F}_n(A) \), and \(Z \) is not projective in \(\mathcal{F}_n(A) \), then

\[
0 \to \text{Epi}X \xrightarrow{\text{Epi}f} \text{Epi}Y \xrightarrow{\text{Epi}g} Z \to 0 \tag{2.1}
\]
is an Auslander-Reiten sequence of $\mathcal{F}_n(A)$; and

$$0 \to \text{Ker} X \xrightarrow{\text{Ker} f} \text{Ker} Y \xrightarrow{\text{Ker} g} \text{Ker} Z \to 0$$

(2.2)

is an Auslander-Reiten sequence of $\mathcal{S}_n(A)$.

(iii) If $X \in \mathcal{S}_n(A)$, and X is not injective in $\mathcal{S}_n(A)$, then

$$0 \to X \xrightarrow{\text{Mono} f} \text{Mono} Y \xrightarrow{\text{Mono} g} \text{Mono} Z \to 0$$

is an Auslander-Reiten sequence of $\mathcal{S}_n(A)$; and

$$0 \to \text{Cok} X \xrightarrow{\text{Cok} f} \text{Cok} Y \xrightarrow{\text{Cok} g} \text{Cok} Z \to 0$$

is an Auslander-Reiten sequence of $\mathcal{F}_n(A)$.

Proof. We only show (i). Since $\text{Ker} : \mathcal{F}_n(A) \to \mathcal{S}_n(A)$ is an equivalence, and Z is not projective in $\mathcal{F}_n(A)$, it follows that $\text{Ker} Z$ is not projective, and hence by Lemma 2.1 (2.2) is either split exact, or an Auslander-Reiten sequence in $\mathcal{S}_n(A)$. Applying the equivalence $\text{Cok} : \mathcal{S}_n(A) \to \mathcal{F}_n(A)$, and using $\text{Epi} \cong \text{Cok} \text{Ker}$ and $Z \in \mathcal{F}_n(A)$, we see that (2.1) is either split exact, or an Auslander-Reiten sequence in $\mathcal{F}_n(A)$. While $\text{Epi} Y \to Z$ is the composition of the canonical monomorphism $\text{Epi} Y \to Y$ and the right almost split morphism $Y \to Z$, so $\text{Epi} Y \to Z$ is not a split epimorphism, hence (2.1) is an Auslander-Reiten sequence in $\mathcal{F}_n(A)$, so is (2.2). \hfill \blacksquare

2.2. We have the following relationship between τ_S and τ_M.

Corollary 2.3. (i) If $Z \in \mathcal{S}_n(A)$, then $\tau_S Z \cong \text{Ker} \tau_M \text{Cok} Z$, and $\tau^-_S Z \cong \text{Mono} \tau^-_M Z$.

(ii) If $Z \in \mathcal{F}_n(A)$, then $\tau_F Z \cong \text{Epi} \tau_M Z$, and $\tau^-_F Z \cong \text{Cok} \tau^-_M \text{Ker} Z$.

Proof. We only prove the first formula of (i). Assume that Z is indecomposable. If Z is projective, then $Z = m_i(P)$ by Lemma 1.1(iii), where P is an indecomposable projective A-module. By the definition of τ_M and a direct computation, we have $\tau_M \text{Cok} Z = \tau_M \text{Cok} m_i(P) = \tau_M p_{n-i+1}(P) = \begin{pmatrix} \ast \\ \vdots \\ 0 \end{pmatrix}$, it follows that $\text{Ker} \tau_M \text{Cok} Z = 0 = \tau_S Z$.

Assume that $Z \in \mathcal{S}_n(A)$ is not projective. Since $\text{Cok} : \mathcal{S}_n(A) \to \mathcal{F}_n(A)$ is an equivalence, $\text{Cok} Z \in \mathcal{F}_n(A)$ is not projective. By Lemma 1.1(i) and (v), $\text{Cok} Z$ is an indecomposable nonprojective object in $\text{Mor}_n(A)$. Replacing Z by $\text{Cok} Z$ in (2.2), we get the assertion by $\text{Ker} \text{Cok} Z \cong Z$. \hfill \blacksquare

2.3. Example. Let k be a field, $A = k[x]/(x^2)$, and S be the simple A-module. Denote by $i : S \hookrightarrow A$ and $\pi : A \to S$ the canonical A-maps. Then we have the Auslander-Reiten
sequence in $\text{Mor}_3(A)$

\[
0 \rightarrow \left(\begin{array}{c}
\frac{0}{S} \\ (i,0)
\end{array} \right) \rightarrow \left(\begin{array}{c}
\frac{0}{S} \\ (0,1)
\end{array} \right) \oplus \left(\frac{S}{A} \right) (\varphi_0,\pi) \rightarrow \left(\begin{array}{c}
\frac{0}{S} \\ (1,\pi)
\end{array} \right) \rightarrow 0.
\]

By (2.1), we get an Auslander-Reiten sequence in $\mathcal{F}_3(A)$

\[
0 \rightarrow \left(\frac{S}{S} \right)_{(1,0)} \rightarrow \left(\frac{0}{S} \right)_{(0,1)} \oplus \left(\frac{S}{A} \right)_{(1,\pi)} \rightarrow \left(\frac{S}{A} \right)_{(\pi,1)} \rightarrow 0.
\]

By (2.2), we get an Auslander-Reiten sequence in $\mathcal{S}_3(A)$

\[
0 \rightarrow \left(\frac{S}{S} \right)_{(0,1)} \rightarrow \left(\frac{S}{S} \right)_{(1,1)} \oplus \left(\frac{A}{S} \right)_{(0,\pi)} \rightarrow \left(\frac{A}{S} \right)_{(1,\pi)} \rightarrow 0.
\]

2.4. In Corollary 2.3(i), τ_S is formulated via τ_M of $\text{Mor}_n(A)$. However, τ_M is usually more complicated than τ. The rest of this section is to give a formula of τ_S via τ.

Before stating the main result, we need a notation. For $X_{(\phi_i)} \in \text{Mor}_n(A,\text{-mod})$, define

\[
\tau X_{(\phi_i)} = \left(\begin{array}{c}
\tau X_1 \\ \vdots \\ \tau X_n
\end{array} \right)_{(\phi_i)} \in \text{Mor}_n(A,\text{-mod}).
\]

Consider the full subcategory given by

\[
\{ Y_{(\psi_i)} = \left(\begin{array}{c}
\tau X_1 \\ \vdots \\ \tau X_n
\end{array} \right)_{(\psi_i)} \mid Y_{(\psi_i)} \cong \tau X_{(\phi_i)} \}.
\]

Any object in this full subcategory will be denoted by $\tau X_{(\phi_i)}$ (we emphasize that this convention will cause no confusions). So, for $X_{(\phi_i)} \in \text{Mor}_n(A)$ we have $\tau X_{(\phi_i)} \cong \tau X_{(\phi_i)}$.

By Lemma 1.6(i), Mimo $\tau X_{(\phi_i)}$ is a well-defined object in $\text{S}_n(A)$, and there are isomorphisms Mimo $\tau X_{(\phi_i)} \cong \tau X_{(\phi_i)} \cong \tau X_{(\phi_i)}$ in $\text{Mor}_n(A,\text{-mod})$. If A is selfinjective, then $\text{Mor}_n(A,\text{-mod}) = \text{Mor}_n(A,\text{-mod})$, so the isomorphism above is read as follows, which is needed in the next section

\[
\text{Mimo } \tau X_{(\phi_i)} \cong \tau X_{(\phi_i)} \cong \tau X_{(\phi_i)}.
\]

Similarly, one has the convention $\tau^{-1} X_{(\phi_i)}$, and Mepi $\tau^{-1} X_{(\phi_i)} \in \mathcal{F}_n(A)$ is well-defined.

The following result is a generalization of Theorem 5.1 of Ringel and Schmidmeier [RS2].
Theorem 2.4. Let $X_{(\phi)} \in S_n(A)$. Then

(i) $\tau_S X_{(\phi)} \cong \text{Mimo } \tau \text{ Cok} X_{(\phi)}$.

(ii) $\tau^- S X_{(\phi)} \cong \text{Ker } \text{Mepi } \tau^- X_{(\phi)}$.

Proof. We only prove (i). Recall $\text{Cok} X_{(\phi)} = \left(\begin{array}{c} \text{Coker } \phi_1 \\ \text{Coker } (\phi_1 \phi_2) \\ \vdots \\ \text{Coker } (\phi_1 \cdots \phi_{n-1}) \\ X_1 \end{array} \right)$ (ϕ'_i).

Fix a minimal projective presentation $Q_n \xrightarrow{d_i} P \xrightarrow{e} X_1 \to 0$. Then we get the following commutative diagram with exact rows

\[
\begin{array}{ccccccc}
Q_n & \xrightarrow{d_n} & P & \xrightarrow{e} & X_1 & \xrightarrow{} & 0 \\
\downarrow{s_{n-1}} & \downarrow{d_{n-1}} & \downarrow{\phi_{n-1}'} & \downarrow{\phi_{n-1}} & \downarrow{} & \downarrow{} & \\
Q_{n-1} & \xrightarrow{\phi_{n-1}'} & \text{Coker } (\phi_1 \cdots \phi_{n-1}) & \xrightarrow{0} & \\
\vdots & \vdots & \vdots & \vdots & \downarrow{} & \downarrow{} & \\
Q_1 & \xrightarrow{d_1} & \phi_{1}' \cdots \phi_{n-1}' & \xrightarrow{\phi_1'} & \text{Coker } (\phi_1) & \xrightarrow{0} & \\
\end{array}
\]

where $Q_i \to \text{Ker } (\phi_1' \cdots \phi_{n-1}')$ is a projective cover, and d_i is the composition $Q_i \to \text{Ker } (\phi_1' \cdots \phi_{n-1}') \to P$. Applying the Nakayama functor $N = D \text{Hom}_A(-, AA)$, we get the following commutative diagram

\[
\begin{array}{ccccccc}
0 & \xrightarrow{} & \tau X_1 & \xrightarrow{\sigma_n} & NQ_n & \xrightarrow{N\phi} & NP \\
\downarrow{\alpha_{n-1}} & \downarrow{} & \downarrow{} & \downarrow{\alpha_{n-1}} & \downarrow{N\phi_{n-1}} & \downarrow{N\phi_{n-1}} & \downarrow{} \\
0 & \xrightarrow{} & \tau \text{Coker } (\phi_1 \cdots \phi_{n-1}) & \xrightarrow{\sigma_{n-1}} & NQ_{n-1} & \xrightarrow{N\phi_{n-1}} & NP \\
\vdots & \vdots & \vdots & \vdots & \downarrow{N\phi_{n-2}} & \downarrow{} & \downarrow{} \\
0 & \xrightarrow{} & \tau \text{Coker } (\phi_1 \phi_2) & \xrightarrow{\sigma_2} & NQ_2 & \xrightarrow{N\phi_2} & NP \\
\downarrow{\alpha_1} & \downarrow{} & \downarrow{} & \downarrow{\alpha_1} & \downarrow{N\phi_1} & \downarrow{N\phi_1} & \downarrow{} \\
0 & \xrightarrow{} & \tau \text{Coker } \phi_1 & \xrightarrow{\sigma_1} & NQ_1 & \xrightarrow{N\phi_1} & NP. \\
\end{array}
\]

Step 1. By (2.4), we get a projective presentation

\[
\bigoplus_{i=1}^n m_i(Q_i) \xrightarrow{(d_1, \ldots, d_n)} m_n(P) \xrightarrow{(\phi_1' \cdots \phi_{n-1}') \phi_{1}' \cdots \phi_{n-1}'} \text{Cok} X_{(\phi)}, \xrightarrow{} 0
\]

(the exactness can be seen as follows: by (2.4) we have $\text{Im } d_n \subseteq \text{Im } d_{n-1} \subseteq \cdots \subseteq \text{Im } d_1$, and hence $Q_i \oplus \cdots \oplus Q_n \xrightarrow{(d_i, \ldots, d_n)} P \xrightarrow{\phi_1' \cdots \phi_{n-1}'} \text{Coker } (\phi_1 \cdots \phi_{n-1}) \to 0$ is exact). In order to
obtain a minimal projective presentation from (2.6), we have to split off a direct summand of \(\bigoplus_{i=1}^{n} m_i(Q_i) \). By Lemma 1.1(i), this direct summand is of the form \(\bigoplus_{i=1}^{n-1} m_i(Q_i') \) where \(Q_i' \) is a direct summand of \(Q_i \), \(1 \leq i \leq n - 1 \), since \(\left(\begin{array}{c} \phi_1' \\ \vdots \\ \phi_{n-1}'e \end{array} \right) \) is already minimal and \(Q_n \xrightarrow{d_n} P \xrightarrow{\theta} X_1 \to 0 \) is already a minimal projective presentation. Applying the Nakayama functor \(\mathcal{N}_M \), we get the exact sequence

\[
0 \to \tau_M \text{Cok} X_{(\phi_i)} \oplus \mathcal{N}_M \left(\bigoplus_{i=1}^{n-1} m_i(Q_i') \right) \to \mathcal{N}_M \left(\bigoplus_{i=1}^{n} m_i(Q_i) \right) \to \mathcal{N}_M m_n(P).
\]

By Lemma 1.1(vii) this exact sequence can be written as

\[
0 \to \tau_M \text{Cok} X_{(\phi_i)} \oplus \bigoplus_{i=1}^{n-1} P_{n-i+1}(\mathcal{N}Q_i) \to \bigoplus_{i=1}^{n} P_{n-i+1}(\mathcal{N}Q_i) \xrightarrow{d} P_1(\mathcal{N}P) \tag{2.7}
\]

where \(d = \left(\begin{array}{c} \begin{array}{ccc} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{array} \end{array} \right) \).

Step 2. Write \(Y_{(\theta_i)} = \tau_M \text{Cok} X_{(\phi_i)} \oplus \bigoplus_{i=1}^{n-1} P_{n-i+1}(\mathcal{N}Q_i). \) By taking the \(i \)-th branches and the \(n \)-th branches of terms in (2.7), we get the following commutative diagram with exact rows

\[
\begin{array}{cccccccc}
0 & \to & Y_n & \xrightarrow{(a)} & \bigoplus_{j=1}^{i} \mathcal{N}Q_j & \oplus & \bigoplus_{j=i+1}^{n} \mathcal{N}Q_j & \xrightarrow{(N\mathcal{N}d_1, \cdots, N\mathcal{N}d_i, (N\mathcal{N}d_{i+1}, \cdots, N\mathcal{N}d_n))} & NP \\
\theta_1 \cdots \theta_{n-1} & \downarrow & & & & & & \downarrow & (1,0) \\
0 & \to & Y_i & \xrightarrow{\cong} & \bigoplus_{j=1}^{i} \mathcal{N}Q_j & \to & 0.
\end{array}
\]

In particular, \(Y_n = \text{Ker}(N\mathcal{N}d_1, \cdots, N\mathcal{N}d_n). \) The upper exact sequence means that

\[
Y_n \xrightarrow{-b} \bigoplus_{j=i+1}^{n} \mathcal{N}Q_j \xrightarrow{a} \bigoplus_{j=1}^{i} \mathcal{N}Q_j \xrightarrow{\cong} \mathcal{N}P
\]

is a pull back square, for each \(1 \leq i \leq n - 1 \). It follows that

\[\text{Ker}(\theta_1 \cdots \theta_{n-1}) = \text{Ker} a = \text{Ker}(N\mathcal{N}d_{i+1}, \cdots, N\mathcal{N}d_n), \ 1 \leq i \leq n - 1,\]

and hence \(\text{Ker} Y_{(\theta_i)} = \left(\begin{array}{c} \text{Ker}(N\mathcal{N}d_{i+1}, \cdots, N\mathcal{N}d_n) \\ \vdots \\ \text{Ker}(N\mathcal{N}d_{n-1}, N\mathcal{N}d_n) \end{array} \right) \). We explicitly compute \(\text{Ker} Y_{(\theta_i)} \) below.
Step 3. By (2.5) we get the following commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \tau X_1 & \rightarrow & \gamma_n & \rightarrow & NQ_n & \rightarrow & NP \\
\beta_{n-1} & \downarrow & & & & & (0) & \downarrow & (N_{d_{n-1}}, N_{d_n}) \\
0 & \rightarrow & \tau \text{Coker}(\phi_1 \cdots \phi_{n-1}) \oplus NQ_n & \rightarrow & NQ_{n-1} \oplus NQ_n & \rightarrow & NP \\
\beta_{n-2} & \downarrow & & & & & (0) & \downarrow & (E_2) \\
\vdots & & & & & & \vdots & & \vdots \\
0 & \rightarrow & \tau \text{Coker}(\phi_1 \phi_2) \oplus \bigoplus_{i=3}^n NQ_i & \rightarrow & NQ_2 \oplus \bigoplus_{i=3}^n NQ_i & \rightarrow & NP \\
\beta_1 & \downarrow & & & & & (0) & \downarrow & (E_{n-1}) \\
0 & \rightarrow & \tau \text{Coker} \phi_1 \oplus \bigoplus_{i=2}^n NQ_i & \rightarrow & NQ_1 \oplus \bigoplus_{i=2}^n NQ_i & \rightarrow & NP \\
\end{array}
\]

where \(E_i \) is the identity matrix, \(\gamma_i = \left(\begin{array}{c} \sigma_i \\ \sigma_{i+1} \\ \vdots \\ \sigma_n \\ 0 \\ -N(s_1) \\ \vdots \\ -N(s_{i-1}) \\ 0 \\ -N(s_{i+1}) \\ \vdots \\ -N(s_{n-1}) \end{array} \right) \) for \(1 \leq i \leq n \), \(\beta_i = \left(\begin{array}{c} \alpha_i \\ \alpha_{i+1} \\ \vdots \\ \alpha_n \\ 0 \\ -N(s_1) \\ \vdots \\ -N(s_{i-1}) \\ 0 \\ -N(s_{i+1}) \\ \vdots \\ -N(s_{n-1}) \end{array} \right) \) for \(1 \leq i \leq n-1 \). From (2.8) we see \(\text{Ker} Y(\theta_i) \cong \tau \text{Cok} X(\phi_i) \oplus J \), where \(J \) is an injective object in \(\mathcal{S}_n(A) \). Thus

\[
\text{Mimo} \tau \text{Cok} X(\phi_i) \oplus J \cong \text{Ker} Y(\theta_i) \cong \text{Ker} \tau \mathcal{M} \text{Cok} X(\phi_i) \oplus \text{Ker} \left(\bigoplus_{i=1}^{n-1} p_{n-i+1}(NQ'_i) \right)
\]

\[
\cong \tau_S X(\phi_i) \oplus \text{Ker} \left(\bigoplus_{i=1}^{n-1} p_{n-i+1}(NQ'_i) \right) \cong \text{Mimo} \tau \text{Cok} X(\phi_i)
\]

Since \(\text{Mimo} \tau \text{Cok} X(\phi_i) \) and \(\tau_S X(\phi_i) \) have no nonzero injective direct summands in \(\mathcal{S}_n(A) \) (cf. Remark (ii) in 1.4), and \(\mathcal{S}_n(A) \) is Krull-Schmidt, we get \(\tau_S X(\phi_i) \cong \text{Mimo} \tau \text{Cok} X(\phi_i) \).

2.5. Example. Let \(A, S, i, \) and \(\pi \) be as in 2.3. Then there are 6 indecomposable non-projective objects in \(\mathcal{S}_3(A) \). By Theorem 2.4 we have

\[
\tau_S \left(\begin{array}{c} A \\ 0 \end{array} \right) (0_i) = \text{Mimo} \tau \left(\begin{array}{c} S \\ A \end{array} \right) (1, \pi) = \text{Mimo} \left(\begin{array}{c} S \\ 0 \end{array} \right) (0,0) = \left(\begin{array}{c} S \\ 0 \end{array} \right) (0,0)
\]

\[
\tau_S \left(\begin{array}{c} S \\ 0 \end{array} \right) (0,0) = \text{Mimo} \tau \left(\begin{array}{c} S \\ S \end{array} \right) (1,1) = \text{Mimo} \left(\begin{array}{c} S \\ S \end{array} \right) (1,1) = \left(\begin{array}{c} S \\ S \end{array} \right) (1,1)
\]
The distinguished triangles of A are exactly triangles isomorphic to those given by all nonzero injective direct summands.

We have to take up pages to justify that it is well-defined. The n we get a formula for n. The definition of a rotation of an object in Mor_A the short exact sequences in $\text{Mod-}A$. Throughout this section, A is a selfinjective algebra. Then $A=\text{Mod-}A$ is a triangulated category with the suspension functor Ω^{-1} ([H], p.16), where Ω^{-1} is the cosyzygy of A.

The following result will be used in the next section, whose proof is omitted, since it is the same as the case of $n=2$ (see [RS2], Corollary 5.4).

Corollary 2.5. Every object in $\mathcal{S}_n(A)_I$ has the form $\text{Mimo}X$, where each X_i has no nonzero injective direct summands.

The following result will be used in the next section, whose proof is omitted, since it is the same as the case of $n=2$ (see [RS2], Corollary 5.4).

Corollary 2.6. The canonical functor $W : \mathcal{S}_n(A)_I \to \text{Mor}_n(\text{Mod-}A)$ given by $X(\phi_i) \mapsto X(\phi_i)$ is dense, preserves indecomposables, and reflects isomorphisms.

Theorem 2.7. Let $X \in \mathcal{F}_n(A)$. Then $\tau_X X \cong \text{Cok} \text{Mimo} \tau X$, and $\tau_X \cong \text{Mepi} \tau^{-1} \ker X$.

3. Applications to selfinjective algebras

Throughout this section, A is a selfinjective algebra. Then $A=\text{Mod-}A$ is a triangulated category with the suspension functor Ω^{-1} ([H], p.16), where Ω^{-1} is the cosyzygy of A. The distinguished triangles of $\text{Mod-}A$ are exactly triangles isomorphic to those given by all the short exact sequences in $\text{Mod-}A$. Note that Ω and \mathcal{N} commute and $\tau \cong \Omega^2 \mathcal{N} \cong \mathcal{N} \Omega^2$ is an endo-equivalence of $\text{Mod-}A$ ([ARS], p.126), and that τ is a triangle functor.

A rotation of an object in $\text{Mor}_2(\text{Mod-}A)$ is introduced by Ringel and Schmidmeier [RS2]. The definition of a rotation of an object in $\text{Mor}_n(\text{Mod-}A)$ needs new considerations. We have to take up pages to justify that it is well-defined. Then we get a formula for
\[\tau_S^j X \in \text{Mor}_n(A\text{-mod}) \text{ for } X \in S_n(A) \text{ and } j \geq 1. \] This is applied to the study of the periodicity of \(\tau_S \) on the objects of \(S_n(A) \). In particular, for the selfinjective Nakayama algebras \(\Lambda(m,t) \) we have \(\tau_S^{2m(n+1)} X \cong X \) for \(X \in S_n(\Lambda(m,t)) \).

3.1. Let \(X_{(\phi_i)} \in \text{Mor}_n(A\text{-mod}) \). Just choose \(\phi_i \) as representatives for the morphisms \(\phi_i \) in \(A\text{-mod} \). Let \(h_{i+1} : X_{i+1} \rightarrow I_{i+1} \) be an injective envelope with cokernel \(\Omega^{-1}X_{i+1} \), \(1 \leq i \leq n-1 \). Taking pushout we get the following commutative diagram with exact rows

\[
\begin{array}{ccccccc}
0 & \longrightarrow & X_{i+1} & \xrightarrow{h_{i+1}} & I_{i+1} & \xrightarrow{\phi_1 \cdots \phi_i} & X_1 & \xrightarrow{g_{i+1}} & Y_{i+1}^1 & \xrightarrow{\psi_i} & 0 \\
\phi_1 \cdots \phi_i & \downarrow & \downarrow & \downarrow & j_{i+1} & & & \downarrow & & \\
0 & \longrightarrow & X_1 & \xrightarrow{g_{i+1}} & Y_{i+1}^1 & \longrightarrow & \Omega^{-1}X_{i+1} & 0.
\end{array}
\]

This gives the exact sequence

\[
0 \longrightarrow X_{i+1} \xrightarrow{(\phi_1 \cdots \phi_i)} X_1 \oplus I_{i+1} \xrightarrow{(g_{i+1}, -j_{i+1})} Y_{i+1}^1 \longrightarrow 0,
\]

and induces the following commutative diagram with exact rows, \(1 \leq i \leq n-2 \)

\[
\begin{array}{ccccccc}
0 & \longrightarrow & X_{i+2} & \xrightarrow{(\phi_1 \cdots \phi_{i+1})} & X_1 \oplus I_{i+2} & \xrightarrow{(g_{i+2}, -j_{i+2})} & Y_{i+2}^1 & \longrightarrow & 0 \\
\phi_{i+1} & \downarrow & \downarrow & \downarrow & \downarrow & & \downarrow & & \\
0 & \longrightarrow & X_{i+1} & \xrightarrow{(\phi_1 \cdots \phi_i)} & X_1 \oplus I_{i+1} & \xrightarrow{(g_{i+1}, -j_{i+1})} & Y_{i+1}^1 & 0.
\end{array}
\]

By (3.2) we have \(g_{i+1} = \psi_i g_{i+2}, 1 \leq i \leq n-2 \). Put \(\psi_{n-1} = g_n \). Then \(g_{i+1} = \psi_i \cdots \psi_{n-1}, 1 \leq i \leq n-1 \). By the construction of a distinguished triangle in \(A\text{-mod} \), we get distinguished triangles from (3.1)

\[
X_{i+1} \xrightarrow{\phi_1 \cdots \phi_i} X_1 \rightarrow Y_{i+1}^1 \rightarrow \Omega^{-1}X_{i+1}, 1 \leq i \leq n-1,
\]

and by (3.2) we get the following commutative diagram, where the rows are distinguished triangles from (3.3)

\[
\begin{array}{ccccccc}
X_n & \longrightarrow & X_1 & \xrightarrow{\psi_{n-1}} & Y_n^1 & \longrightarrow & \Omega^{-1}X_n \\
\phi_{n-1} & \downarrow & \downarrow & \downarrow & \downarrow & & \downarrow \\
X_{n-1} & \longrightarrow & X_1 & \xrightarrow{\psi_{n-2}} & Y_{n-1}^1 & \longrightarrow & \Omega^{-1}X_{n-1} \\
\phi_{n-2} & \downarrow & \downarrow & \downarrow & \downarrow & & \downarrow \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\
X_2 & \xrightarrow{\phi_1} & X_1 & \xrightarrow{\psi_1} & Y_2^1 & \longrightarrow & \Omega^{-1}X_2.
\end{array}
\]

The rotation \(\text{Rot}_X(\phi_i) \) of \(X_{(\phi_i)} \) is defined to be

\[
(X_1 \xrightarrow{\psi_{n-1}} Y_n^1 \longrightarrow \cdots \longrightarrow Y_2^1) \in \text{Mor}_n(A\text{-mod})
\]
(here and in the following, for convenience we write the rotation in a row). We remark that $\text{Rot} X_{(\phi_i)}$ is well-defined: if $X_{(\phi_i)} \cong Y_{(\theta_i)}$ in $\text{Mor}_n(A\text{-mod})$ with all X_i and Y_i having no nonzero injective direct summands, then $\text{Mimo} X_{(\phi_i)} \cong \text{Mimo} Y_{(\theta_i)}$ by Lemma 1.6(i), and hence $\text{Rot} X_{(\phi_i)} \cong \text{Rot} Y_{(\theta_i)}$, by Lemma 3.1 below.

Lemma 3.1. Let $X_{(\phi_i)} \in \text{Mor}_n(A)$. Then $\text{Rot} X_{(\phi_i)} \cong \text{Cok Mimo} X_{(\phi_i)}$ in $\text{Mor}_n(A\text{-mod})$.

Before proving Lemma 3.1, for later convenience, we restate Claim 2 in §4 of [RS2] in the more explicit way we will use.

Lemma 3.2. Let $0 \to A \xrightarrow{f} B \oplus I \xrightarrow{\phi} C \to 0$ be an exact sequence with I an injective A-module. Then there is an injective A-module J such that $I = \text{I Ker} f \oplus J$, and that the following diagram with exact rows commutes

$$
\begin{array}{cccc}
0 & \to & A & \xrightarrow{f} & B \oplus \text{I Ker} f \oplus J \xrightarrow{\phi} C' \oplus J \to 0 \\
0 & \xrightarrow{h} & A & \xrightarrow{h'} & B \oplus \text{I Ker} f \oplus J & \to & C & \to & 0,
\end{array}
$$

where $h = (f_i', \phi_i: A \to \text{I Ker} f$ is an extension of the injective envelope $\text{Ker} f \hookrightarrow \text{I Ker} f$, $h': A \to J$ satisfies $h' \text{Ker} f = 0$, and $C' = \text{Coker} (f_i')$.

Proof of Lemma 3.1. We divide the proof into three steps.

Step 1. Recall $\text{Mimo} X_{(\phi_i)} = \left(\begin{array}{c} X_1 \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l \\ X_1 \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l \end{array} \right)_{(\phi_i)}$ with $\theta_i = \left(\begin{array}{c} \phi_i \\ e_i \\ 0 \\ \vdots \\ e_{i-1} \end{array} \right)_{(\phi_i)}$, $\text{Coker} X_{(\phi_i)} = \left(\begin{array}{c} \text{Coker}(\phi_1) \\ \vdots \\ \text{Coker}(\phi_n) \\ X_1 \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l \end{array} \right)_{(\phi_i)}$. $e_i: X_{i+1} \to \text{I Ker} \phi_i$ is an extension of the injective envelope $\text{Ker} \phi_i \hookrightarrow \text{I Ker} \phi_i$, and

$$
\text{Cok Mimo} X_{(\phi_i)} = \left(\begin{array}{c} \text{Coker}(\phi_1) \\ \vdots \\ \text{Coker}(\phi_{n-1}) \\ X_1 \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l \end{array} \right)_{(\phi_i)}.
$$

Since $\theta_1 \cdots \theta_i = \text{diag}(\alpha_i, E_{n-i-1}) : X_{i+1} \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l \to X_1 \oplus \bigoplus_{l=1}^{n-1} \text{I Ker} \phi_l$, where $\alpha_i = \left(\begin{array}{c} \phi_1 \cdots \phi_i \\ e_1 \phi_2 \cdots \phi_i \\ \vdots \\ e_{i-1} \phi_i \\ e_i \phi_i \end{array} \right)$, $X_{i+1} \to X_1 \oplus \bigoplus_{l=1}^{i} \text{I Ker} \phi_l$, and E_{n-i-1} is the identity matrix, we get the
following commutative diagram with exact rows, $2 \leq i \leq n - 1$,}

\[
\begin{array}{ccc}
0 & \longrightarrow & X_{i+1} \\
\phi_i & \downarrow & \downarrow (E_i,0) \\
0 & \longrightarrow & X_i \\
\end{array}
\]

\[
\begin{array}{ccc}
0 & \longrightarrow & X_{i+1} \oplus \bigoplus_{l=1}^{i} \text{IKer}\phi_l \\
\phi_i & \downarrow & \downarrow \pi_i \\
0 & \longrightarrow & X_i \oplus \bigoplus_{l=1}^{i-1} \text{IKer}\phi_l \\
\end{array}
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_{i-1}) \longrightarrow 0
\]

with $\pi_{n-1} = \theta'_{n-1}$.

Applying Lemma 3.2 to the upper exact sequence of (3.5) for $1 \leq i \leq n - 1$, we get injective A-modules J_{i+1} such that $\bigoplus_{l=1}^{i} \text{IKer}\phi_l = \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_{i+1}$ and that the following diagram with exact rows commutes

\[
\begin{array}{ccc}
0 & \longrightarrow & X_{i+1} \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_{i+1} \\
\phi_i & \downarrow & \downarrow \beta_i \\
0 & \longrightarrow & X_i \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_i \\
\end{array}
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_{i-1}) \longrightarrow 0
\]

where $\alpha_i = \left(\phi_1 \cdots \phi_i \atop a_i \right)$, $a_i : X_{i+1} \rightarrow \text{IKer}(\phi_1 \cdots \phi_i)$ is an extension of the injective envelope $\text{Ker}(\phi_1 \cdots \phi_i) \hookrightarrow \text{IKer}(\phi_1 \cdots \phi_i)$, $d_i : X_{i+1} \rightarrow J_{i+1}$ satisfies $d_i \text{Ker}(\phi_1 \cdots \phi_i) = 0$, and $Z_{i+1} = \text{Coker}(\phi_1 \cdots \phi_i)$. Thus by (3.6) and (3.5) we get the following commutative diagram with exact rows for $2 \leq i \leq n - 1$ (where the two rows in the middle come from (3.5)):

\[
\begin{array}{ccc}
0 & \longrightarrow & X_{i+1} \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_{i+1} \\
\phi_i & \downarrow & \downarrow (E_i,0) \\
0 & \longrightarrow & X_i \oplus \text{IKer}(\phi_1 \cdots \phi_{i-1}) \oplus J_i \\
\end{array}
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_{i-1}) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow 0
\]

Taking the first and the last rows, we get the following commutative diagram with exact rows:

\[
\begin{array}{ccc}
0 & \longrightarrow & X_{i+1} \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_{i+1} \\
\phi_i & \downarrow & \downarrow \beta_i \\
0 & \longrightarrow & X_i \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J_i \\
\end{array}
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_{i-1}) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_{i-1}) \longrightarrow 0
\]

\[
0 \longrightarrow \text{Coker}(\theta_1 \cdots \theta_i) \longrightarrow 0
\]
where for later convenience we write

\[
\beta_{i-1}^{-1} \theta_i' \beta_i = (f_i^{-1})^*, \quad 2 \leq i \leq n - 1. \tag{3.7}
\]

Taking off \(J_i \) and \(J_{i+1} \), we get the following commutative diagram with exact rows, \(2 \leq i \leq n - 1 \),

\[
\begin{array}{cccccccccc}
0 & \xrightarrow{\phi_i} & X_{i+1} & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_i}{a_i} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_i) & \xrightarrow{(b_1^1, b_1^2)} & Z_{i+1} & \xrightarrow{f_{i-1}} & 0 \\
0 & \xrightarrow{\phi_i} & X_i & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_{i-1}}{a_{i-1}} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_{i-1}) & \xrightarrow{(b_{i-1}^1, b_{i-1}^2)} & Z_i & \xrightarrow{f_{i-1}} & 0.
\end{array}
\tag{3.8}
\]

Step 2. Now we consider the rotation \(\text{Rot} X_{\langle \beta \rangle} \). Recall from the beginning of this subsection that \(h_{i+1} : X_{i+1} \to I_{i+1} \) is an injective envelope. For \(1 \leq i \leq n - 1 \), applying Lemma 3.2 to (3.1), we get injective \(A \)-modules \(J'_{i+1} \) such that \(I_{i+1} = \text{I Ker}(\phi_1 \cdots \phi_i) \oplus J'_{i+1} \) and that the following diagram with exact rows commutes (cf. (3.6))

\[
\begin{array}{cccccccccc}
0 & \xrightarrow{\phi_i} & X_{i+1} & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_i}{a_i} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_i) \oplus J'_{i+1} & \xrightarrow{(b_1^1, b_1^2, 0, 0, 1)} & Z_{i+1} \oplus J'_{i+1} & \xrightarrow{f_{i-1}} & 0 \\
0 & \xrightarrow{\phi_i} & X_i & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_{i-1}}{a_{i-1}} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_{i-1}) \oplus J'_{i+1} & \xrightarrow{(g_{i+1}, -j_{i+1})} & Y^1_{i+1} & \xrightarrow{f_{i-1}} & 0,
\end{array}
\tag{3.9}
\]

where \(h_{i+1} = \left(\frac{a_i}{d'_i} \right) \), and \(d'_i : X_{i+1} \to J'_{i+1} \), satisfying \(d'_i \text{Ker}(\phi_1 \cdots \phi_i) = 0 \). Thus by (3.9) and (3.2) we get the following commutative diagram with exact rows for \(2 \leq i \leq n - 1 \) (where the two rows in the middle come from (3.2)):

\[
\begin{array}{cccccccccc}
0 & \xrightarrow{\phi_i} & X_{i+1} & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_i}{a_i} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_i) \oplus J'_{i+1} & \xrightarrow{(b_1^1, b_1^2, 0, 0, 1)} & Z_{i+1} \oplus J'_{i+1} & \xrightarrow{f_{i-1}} & 0 \\
0 & \xrightarrow{\phi_i} & X_{i+1} & \xrightarrow{\left(\frac{\phi_1 \cdots \phi_{i-1}}{a_{i-1}} \right)} & X_1 \oplus \text{I Ker}(\phi_1 \cdots \phi_{i-1}) \oplus J'_{i+1} & \xrightarrow{(g_i, -j_i)} & Y^1_i & \xrightarrow{f_{i-1}} & 0,\end{array}
\]

Taking the first and the last rows, we get the following commutative diagram with exact rows:
\[\begin{align*}
0 \rightarrow X_{i+1} & \xrightarrow{(\phi_1 \ldots \phi_i)} X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus J'_{i+1} \xrightarrow{(b^1_i, b^2_i)} Z_{i+1} \oplus J'_{i+1} \rightarrow 0 \\
\phi_i \downarrow & \downarrow (\phi_1 \cdots \phi_{i-1}) \downarrow (\frac{1}{c^1_{i1}}, \frac{1}{c^2_{i2}}) \downarrow (b^1_{i-1}, b^2_{i-1}) \\
0 \rightarrow X_i & \xrightarrow{(\phi_1 \cdots \phi_{i-1})} X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_{i-1}) \oplus J'_i \xrightarrow{(b^1_{i-1}, b^2_{i-1})} Z_i \oplus J'_i \rightarrow 0,
\end{align*}\]

where for later convenience we write

\[\beta^1_{i-1}'\psi^i_{i-1}'\beta^i_i = \left(\begin{array}{c}
\beta^1_{i-1}' \\
\psi^i_{i-1}' \\
\end{array}\right), \quad 2 \leq i \leq n - 1.\quad (3.10)\]

Taking off \(J'_i\) and \(J'_{i+1}\), we get the following commutative diagram with exact rows for \(2 \leq i \leq n - 1\):

\[\begin{align*}
0 \rightarrow X_{i+1} & \xrightarrow{(\phi_1 \cdots \phi_i)} X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_i) \oplus Z_{i+1} \rightarrow 0 \\
\phi_i \downarrow & \downarrow \left(\begin{array}{c}
\frac{1}{c^1_{i1}} \\
\frac{1}{c^2_{i2}} \\
\end{array}\right) \\
0 \rightarrow X_i & \xrightarrow{(\phi_1 \cdots \phi_{i-1})} X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_{i-1}) \oplus Z_i \rightarrow 0.
\end{align*}\]

Comparing the above diagram with (3.8), by a computation we easily see that \(f_i - f'_i\) factors through an injective \(A\)-module for each \(1 \leq i \leq n - 2\).

Step 3. Now we get the following diagram, where the first row can be considered as \(\text{Cok Mimo} X_{(\phi_i)}\) (we identify \(X_1 \oplus \bigoplus_{l=1}^{n-1} \text{IKer}(\phi_l)\) with \(X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_{n-1}) \oplus J_n\); and identify \(X_1 \oplus I_n\) with \(X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_{n-1}) \oplus J'_n\):

\[\begin{align*}
&X_1 \oplus \bigoplus_{l=1}^{n-1} \text{IKer}(\phi_l) \xrightarrow{\theta^0_{n-1}} \text{Coker}(\theta_1 \cdots \theta_{n-1}) \xrightarrow{\theta^0_{n-2}} \cdots \xrightarrow{\theta^0_1} \text{Coker}(\theta_1 \theta_2) \rightarrow \text{Coker} \theta_1 \\
&\downarrow \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}\right) \\
&X_1 \oplus \text{IKer}(\phi_1 \cdots \phi_{n-1}) \oplus J_n \xrightarrow{\beta^{-1}_{n-1} \bigoplus J_n} \text{Coker}(\theta_1 \cdots \theta_{n-1}) \xrightarrow{\theta^0_{n-2}} \cdots \xrightarrow{\theta^0_1} \text{Coker}(\theta_1 \theta_2) \rightarrow \text{Coker} \theta_1 \\
&\downarrow \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}\right)
\end{align*}\]

(Note that the squares in the first two rows commute in \(A\)-mod: the left square comes from (3.6); and the remaining commutative squares come from (3.7). Also, note that the squares in the last two rows commute in \(A\)-mod: the left square comes from (3.9); and the remaining commutative squares come from (3.10)). However, the squares in the middle may **not** commute in \(A\)-mod; and the point is that they commute in \(A\)-mod, as we explain below.)
Note that the left square in the middle commutes by a direct computation. Since $f_i - f'_i$ factors through an injective A-module, $1 \leq i \leq n - 2$, we realize that the remaining $n - 2$ squares in the middle commute in $A\text{-mod}$. It follows that the above diagram commutes in $A\text{-mod}$. It is clear that the vertical morphisms are isomorphisms in $A\text{-mod}$. Regarding the above diagram in $A\text{-mod}$, the first row is exactly $\text{Cok Mimo} \mathcal{X}(\phi_i)$, and the last row is exactly $\text{Rot} \mathcal{X}(\phi_i)$. Thus, $\text{Rot} \mathcal{X}(\phi_i) \cong \text{Cok Mimo} \mathcal{X}(\phi_i)$ in $\text{Mor}_n(A\text{-mod})$. This completes the proof.

3.2. Let $\mathcal{X}(\phi_i) \in \text{Mor}_n(A)$. For $1 \leq k < i < j \leq n$, by (3.3) and the Octahedral Axiom we get the following commutative diagram with first two rows and the last two columns being distinguished triangles in $A\text{-mod}$:

\[
\begin{array}{cccccc}
\Omega Y^j & \xrightarrow{\phi_i} & X_i & \xrightarrow{\phi_{i-1}} & Y^i_j \\
\Omega Y^k & \xrightarrow{\phi_i} & X_k & \xrightarrow{\phi_{i-1}} & Y^k_i \\
\end{array}
\]

(3.11)

For $1 \leq m \leq n$ we prove the following formula by induction

\[
\text{Rot}^m \mathcal{X}(\phi_i) = (\Omega^{-(m-2)}Y^m_{m-1} \rightarrow \Omega^{-(m-2)}Y^m_{m-2} \rightarrow \ldots \rightarrow \Omega^{-(m-2)}Y^1_m \rightarrow \Omega^{-(m-1)}X_m \rightarrow \\
\Omega^{-(m-1)}Y^m_n \rightarrow \Omega^{-(m-1)}Y^m_{n-1} \rightarrow \ldots \rightarrow \Omega^{-(m-1)}Y^m_{m+1})
\]

(3.12)

Convention about (3.12): $\Omega^{-(m-1)}X_m$ is the $(n - m + 1)$-st branch of $\text{Rot}^m \mathcal{X}(\phi_i)$.

By definition (3.12) holds for $m = 1$. Assume that it holds for $1 \leq m \leq n - 1$. Consider the following commutative diagram with rows of distinguished triangles

\[
\begin{array}{cccccccc}
\Omega^{-(m-2)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-2)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\Omega^{-(m-2)}Y^1_m & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\Omega^{-(m-1)}X_m & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} & \rightarrow & \Omega^{-(m-1)}Y^m_{m-1} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\Omega^{-(m-1)}Y^m_n & \rightarrow & \Omega^{-(m-1)}Y^m_{m+1} & \rightarrow & \Omega^{-(m+1)}Y^m_{m+1} & \rightarrow & \Omega^{-(m+1)}Y^m_{m+1} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\Omega^{-(m-1)}Y^m_{m+2} & \rightarrow & \Omega^{-(m-1)}Y^m_{m+2} & \rightarrow & \Omega^{-(m+1)}Y^m_{m+2} & \rightarrow & \Omega^{-(m+1)}Y^m_{m+2} \\
\end{array}
\]
where the \(l \)-th row \((1 \leq l \leq m - 1)\) is from the fourth column of (3.11) by taking \(j = m + 1, i = m, k = m - l \), and then applying \(\Omega^{-(m - 1)} \); the \(m \)-th row is from the first row of (3.11) by taking \(j = m + 1, i = m \), and then applying \(\Omega^{-(m - 1)} \); the \(l \)-th row \((m + 1 \leq l \leq n - 1)\) is from the fourth column of (3.11) by taking \(j = n + m + 1 - l, i = m + 1, k = m \), and then applying \(\Omega^{-(m)} \). By the definition of the rotation (cf. (3.4)), this proves (3.12) for \(m + 1 \).

3.3. For \(X_{(\phi_i)} \in \text{Mor}_n(A\text{-mod}) \), define \(\Omega^{-1}X_{(\phi_i)} \) to be \(\begin{pmatrix} \Omega^{-1}X_1 \\ \vdots \\ \Omega^{-1}X_n \end{pmatrix}_{(\Omega^{-1}\phi_i)} \in \text{Mor}_n(A\text{-mod}). \)

Lemma 3.3. Let \(X_{(\phi_i)} \in \text{Mor}_n(A) \). Then \(\text{Rot}^{j(n+1)}X_{(\phi_i)} = \Omega^{-j(n-1)}X_{(\phi_i)}, \forall j \geq 1. \)

Proof. By taking \(m = n \) in (3.12), we get

\[
\text{Rot}^nX_{(\phi_i)} = (\Omega^{-(n-2)}Y_{n}^{n-1} \to \Omega^{-(n-2)}Y_{n}^{n-2} \to \cdots \to \Omega^{-(n-2)}Y_{1}^{1} \to \Omega^{-(n-1)}X_{n}).
\]

We have the following commutative diagram with rows being distinguished triangles

\[
\begin{array}{cccc}
\Omega^{-(n-2)}Y_{n}^{n-1} & \rightarrow & \Omega^{-(n-2)}X_{n} & \rightarrow \Omega^{-(n-1)}X_{n-1} & \rightarrow \Omega^{-(n-1)}Y_{n}^{n-1} \\
\downarrow & & \downarrow & & \downarrow \\
\Omega^{-(n-2)}Y_{n}^{n-2} & \rightarrow & \Omega^{-(n-1)}X_{n} & \rightarrow \Omega^{-(n-1)}X_{n-2} & \rightarrow \Omega^{-(n-1)}Y_{n}^{n-2} \\
\downarrow & & \downarrow & & \downarrow \\
\vdots & & \vdots & & \vdots \\
\Omega^{-(n-2)}Y_{n}^{2} & \rightarrow & \Omega^{-(n-1)}X_{n} & \rightarrow \Omega^{-(n-1)}X_{n-2} & \rightarrow \Omega^{-(n-1)}Y_{n}^{2} \\
\downarrow & & \downarrow & & \downarrow \\
\Omega^{-(n-2)}Y_{n}^{1} & \rightarrow & \Omega^{-(n-1)}X_{n} & \rightarrow \Omega^{-(n-1)}X_{n-1} & \rightarrow \Omega^{-(n-1)}Y_{1} \\
\end{array}
\]

where the \(l \)-th row \((1 \leq l \leq n - 1)\) is from the first row of (3.11) by taking \(j = n, i = n - l, \) and then applying \(\Omega^{-(n-1)} \) (note that \((-1)^{(n-1)} \) arises from applying \(\Omega^{-(n-1)} \)). Using (3.4) we get that \(\text{Rot}^{n+1}X_{(\phi_i)} \) is

\[
(\Omega^{-(n-1)}X_{n} \xrightarrow{(-1)^{(n-1)}\phi_{n-1}} \Omega^{-(n-1)}X_{n-1} \xrightarrow{(-1)^{(n-1)}\phi_{n-2}} \cdots \xrightarrow{(-1)^{(n-1)}\phi_{1}} \Omega^{-(n-1)}X_{1})
\]

\[
\cong (\Omega^{-(n-1)}X_{n} \xrightarrow{\Omega^{-(n-1)}\phi_{n-1}} \Omega^{-(n-1)}X_{n-1} \xrightarrow{\Omega^{-(n-1)}\phi_{n-2}} \cdots \xrightarrow{\Omega^{-(n-1)}\phi_{1}} \Omega^{-(n-1)}X_{1})
\]

\[
= \Omega^{-(n-1)}X_{(\phi_i)}.
\]

From this and induction the assertion follows.

3.4. Since \(\tau \) is a triangle functor, by construction we see

\[
\text{Rot} \tau X_{(\phi_i)} \cong \tau \text{Rot} X_{(\phi_i)}. \quad (3.13)
\]

We have the following important result.
Theorem 3.4. Let A be a selfinjective algebra, $X_{(\phi_i)} \in S_n(A)$. Then there are the following isomorphisms in $\text{Mor}_n(A\text{-mod})$

(i) $\tau^j_S X_{(\phi_i)} \cong \tau^j \text{Rot}^j X_{(\phi_i)}$ for $j \geq 1$. In particular, $\tau_S X_{(\phi_i)} \cong \tau \text{Cok} X_{(\phi_i)}$.

(ii) $\tau^{s(n+1)} S X_{(\phi_i)} \cong \tau^{s(n+1)} \Omega^{s(n-1)} X_{(\phi_i)}$, \forall $s \geq 1$.

Proof. (i) First, we claim that there are the following isomorphisms in $\text{Mor}_n(A\text{-mod})$:

$(\text{Cok Mimo} \tau)^j Y_{(\psi_i)} \cong \tau^j \text{Rot}^j Y_{(\psi_i)}$, \forall $Y_{(\psi_i)} \in \text{Mor}_n(A\text{-mod})$, \forall $j \geq 1$. (3.14)

In fact, by Lemma 3.1 and induction we have

\[
(\text{Cok Mimo} \tau)^j Y_{(\psi_i)} \cong \tau^j \text{Rot}^j Y_{(\psi_i)} \quad \text{Lemmas 3.1, 3.3 and (2.3) Induction}
\]

Now, we have the following isomorphisms in $\text{Mor}_n(A\text{-mod})$:

$\tau^j_S X_{(\phi_i)} \cong \text{Mimo} \tau^j S X_{(\phi_i)}$ Theorem 2.4

\[
\cong \text{Mimo} \tau (\text{Cok Mimo} \tau)^j \text{Cok} X_{(\phi_i)} \quad \text{Lemma 3.1}
\]

\[
\cong \tau (\text{Cok Mimo} \tau)^j \text{Cok} X_{(\phi_i)} \quad \text{Lemma 3.3, (3.14)}
\]

\[
\cong \tau^j \text{Rot}^{j-1} \text{Cok} X_{(\phi_i)} \quad \text{Lemma 3.1}
\]

where we have used $\text{Mimo} X_{(\phi_i)} = X_{(\phi_i)}$ since $X_{(\phi_i)} \in S_n(A)$.

(ii) This follows from Lemma 3.3 and (i) by taking $j = s(n + 1)$. ■

3.5. Now we pass from $\text{Mor}_n(A\text{-mod})$ to $\text{Mor}_n(A\text{-mod})$. Before stating the main result, we need a notation. Let $X_{(\phi_i)} \in \text{Mor}_n(A)$. For positive integers r and t, the object $\tau^r \Omega^{-t} X_{(\phi_i)} \in \text{Mor}_n(A\text{-mod})$ is already defined (cf. 2.4 and 3.3). As in 2.4, we consider
the full subcategory of \(\text{Mor}_n(A) \) given by

\[
\{ Y_{(\psi)} = \left(\begin{array}{c} \tau^r X_1 \\ \vdots \\ \tau^r X_n \end{array} \right) \}_{(\psi)} \in \text{Mor}_n(A) \mid Y_{(\psi)} \cong \tau^r \Omega^{-t} X_{(\phi_i)} \}.
\]

Any object in this subcategory will be denoted by \(\tau^r \Omega^{-t} X_{(\phi_i)} \) (we emphasize that this convention will cause no confusions). So, we have \(\tau^r \Omega^{-t} X_{(\phi_i)} \cong \tau^r \Omega^{-t} X_{(\phi_i)} \). By Lemma 1.6(i), \(\text{Mimo} \tau^r \Omega^{-t} X_{(\phi_i)} \in \mathcal{S}_n(A) \) is a well-defined object, and there are the following isomorphisms in \(\text{Mor}_n(A-\text{mod}) \)

\[
\text{Mimo} \tau^r \Omega^{-t} X_{(\phi_i)} \cong \tau^r \Omega^{-t} X_{(\phi_i)} \cong \tau^r \Omega^{-t} X_{(\phi_i)}.
\] (3.15)

Theorem 3.5. Let \(A \) be a selfinjective algebra, and \(X_{(\phi_i)} \in \mathcal{S}_n(A) \). Then we have

\[
\tau_s^{(n+1)} X_{(\phi_i)} \cong \text{Mimo} \tau_s^{(n+1)} \Omega^{-s(n-1)} X_{(\phi_i)}, \quad s \geq 1.
\] (3.16)

Proof. By Theorem 3.4(ii) we have

\[
\tau_s^{(n+1)} X_{(\phi_i)} \cong \tau_s^{(n+1)} \Omega^{-s(n-1)} X_{(\phi_i)} \cong \text{Mimo} \tau_s^{(n+1)} \Omega^{-s(n-1)} X_{(\phi_i)}.
\] Since \(\text{Mimo} \tau_s^{(n+1)} \Omega^{-s(n-1)} X_{(\phi_i)} \in \mathcal{S}_n(A) \) (cf. Remark (ii) in 1.4), the assertion follows from Corollary 2.6.

3.6. We apply Theorem 3.4 to the algebra \(\Lambda(m, t) \), which is defined below. Let \(\mathbb{Z}_m \) be the cyclic quiver with vertices indexed by the cyclic group \(\mathbb{Z}/m\mathbb{Z} \) of order \(m \), and with arrows \(a_i : i \rightarrow i + 1, \forall i \in \mathbb{Z}/m\mathbb{Z} \). Let \(k\mathbb{Z}_m \) be the path algebra of the quiver \(\mathbb{Z}_m \), \(J \) the ideal generated by all arrows, and \(\Lambda(m, t) := k\mathbb{Z}_m/J^t \) with \(m \geq 1, t \geq 2 \). Any connected selfinjective Nakayama algebra over an algebraically closed field is Morita equivalent to \(\Lambda(m, t) \), \(m \geq 1, t \geq 2 \). Note that \(\Lambda(m, t) \) is a Frobenius algebra of finite representation type, and that \(\Lambda(m, t) \) is symmetric if and only if if \(m \mid (t - 1) \). For the Auslander-Reiten sequences of \(\Lambda(m, t) \) see [ARS], p.197. In the stable category \(\Lambda(m, t) \)-mod, we have the following information on the orders of \(\tau \) and \(\Omega \) (see 5.1 in [CZ])

\[
o(\tau) = m; \quad o(\Omega) = \begin{cases} m, & t = 2; \\
\frac{2m}{(m,t)}, & t \geq 3,
\end{cases}
\] (3.17)

where \((m, t) \) is the g.c.d of \(m \) and \(t \). By (3.16) and (3.17) we get the following

Corollary 3.6. For an indecomposable nonprojective object \(X_{(\phi_i)} \in \mathcal{S}_n(\Lambda(m, t)) \), \(m \geq 1, t \geq 2 \), there are the following isomorphisms:

(i) If \(n \) is odd, then \(\tau_s^{m(n+1)} X_{(\phi_i)} \cong X_{(\phi_i)} \);

(ii) If \(n \) is even, then \(\tau_s^{2m(n+1)} X_{(\phi_i)} \cong X_{(\phi_i)} \).
3.7. Example. Let $A = kQ/\langle \delta \alpha, \beta \gamma, \alpha \delta - \gamma \beta \rangle$, where Q is the quiver $2 \bullet \xrightarrow{\alpha} 1 \bullet \xrightarrow{\beta} 3 \bullet$

Then A is selfinjective with $\tau \cong \Omega^{-1}$ and $\Omega^6 \cong \text{id}$ on the object of A-mod. The Auslander-Reiten quiver of A is

Let $X_{(\phi)}$ be an indecomposable nonprojective object in $S_n(A)$. By (3.16), for $s \geq 1$ we have $\tau_S^{s(n+1)} X_{(\phi)} \cong \text{Mimo} \tau^{s(n+1)} \Omega^{-s(n-1)} X_{(\phi)} \cong \text{Mimo} \Omega^{-2sn} X_{(\phi)}$ in $S_n(A)$. Then by Remark (i) in 1.4 we get

(i) if $n \equiv 0$, or $3 \pmod{6}$, then $\tau_S^{n+1} X_{(\phi)} \cong X_{(\phi)}$; and

(ii) if $n \equiv \pm 1$, or $\pm 2 \pmod{6}$, then $\tau_S^{3(n+1)} X_{(\phi)} \cong X_{(\phi)}$.

4. Serre functors of stable monomorphism categories

Throughout this section, A is a finite-dimensional selfinjective algebra over a field. We study the periodicity of the Serre functor F_S on the objects of the stable monomorphism category $\underline{S}_n(A)$. In particular, $F_S^{n(n+1)} X \cong X$ for $X \in \underline{S}_n(\Lambda(m,t))$.

4.1. Let \mathcal{A} be a Hom-finite Krull-Schmidt triangulated k-category with suspension functor $[1]$. For the Auslander-Reiten triangles we refer to [H]. In an Auslander-Reiten triangle $X \rightarrow Y \rightarrow Z \rightarrow X[1]$, the indecomposable object X is uniquely determined by Z. Write $X = \tau_A Z$, and extend the action of τ_A to arbitrary objects, and put $\tau_A 0 = 0$. In general, τ_A is not a functor. By Theorem I.2.4 of [RV], \mathcal{A} has a Serre functor F if and if \mathcal{A} has Auslander-Reiten triangles; if this is the case, F and $[1] \tau_A$ coincide on the objects of \mathcal{A}. If $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is an Auslander-Reiten triangle, then so is $X[1] \xrightarrow{-f[1]} Y[1] \xrightarrow{-g[1]} Z[1] \xrightarrow{-h[1]} X[2]$. It follows that

$$FX \cong ([1] \tau_A)Z \cong (\tau_A [1])Z, \ \forall \ Z \in \mathcal{A}. \quad (4.1)$$

4.2. Since A is self-injective, by Corollary 4.1(ii) of [Z], $\underline{S}_n(A)$ is exactly the category of Gorenstein projective $T_n(A)$-modules, hence it is a Frobenius category whose projective-injective objects are exactly all the projective $T_n(A)$-modules. Thus, the stable category $\underline{S}_n(A)$ of $\underline{S}_n(A)$ modulo projective objects is a Hom-finite Krull-Schmidt triangulated
category with suspension functor $\Omega_S^{-1} = \Omega_{S_n(A)}^{-1}$. Since $S_n(A)$ has Auslander-Reiten sequences, it follows that $S_n(A)$ has Auslander-Reiten triangles, and hence it has a Serre functor $F_S = F_{S_n(A)}$, which coincides with $\Omega_S^{-1} \tau_S$ on the objects of $S_n(A)$.

In order to make the following computation more clear, we denote by $Q : S_n(A) \to S_n(A)$ the natural functor. Then

$$\tilde{\tau}_S QZ = Q \tau_S Z = \tau_S Z, \forall Z \in S_n(A). \quad (4.2)$$

4.3. In 2.6 we have considered the canonical functor $W : S_n(A)_I \to \text{Mor}_n(A_{\text{-mod}})$ given by $X_{(\phi_i)} \mapsto X_{(\phi_i)}$.

Lemma 4.1. The functor W induces a functor $\tilde{W} : S_n(A) \to \text{Mor}_n(A_{\text{-mod}})$ satisfying $\tilde{W} Q|_{S_n(A)_I} = W$; and \tilde{W} reflects isomorphisms.

Proof. The definition of \tilde{W} is clear by the requirement $\tilde{W} Q|_{S_n(A)_I} = W$. We need to check that it is well-defined. If $X_{(\phi_i)}$ and $Y_{(\psi_i)}$ are indecomposable and nonprojective in $S_n(A)$, and $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\underline{S_n(A)}$, then $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $S_n(A)$, and hence $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\text{Mor}_n(A_{\text{-mod}})$, i.e., \tilde{W} is well-defined on objects. For any morphism $f = (f_i) : X_{(\phi_i)} \to Y_{(\psi_i)}$ in $S_n(A)$ which factors through a projective object of $S_n(A)$, by Lemma 1.1(iii), the morphism $(f_i) = 0$ in $\text{Mor}_n(A_{\text{-mod}})$. Thus \tilde{W} is well-defined.

Assume that $\tilde{W} X \cong \tilde{W} Y$ in $\text{Mor}_n(A_{\text{-mod}})$ for $X, Y \in S_n(A)$. We may write $X = QX', Y = QY'$ with $X', Y' \in S_n(A)_I$. Then $WX' \cong WY'$ in $\text{Mor}_n(A_{\text{-mod}})$. By Corollary 2.6, W reflects isomorphisms, thus $X' \cong Y'$ in $S_n(A)_I$, and hence $X \cong Y$ in $S_n(A)$.

Lemma 4.2. For $X = X_{(\phi_i)} \in S_n(A)$, we have the following isomorphism in $\text{Mor}_n(A_{\text{-mod}})$

$$\tilde{W} \Omega_S X \cong \Omega \tilde{W} X. \quad (4.3)$$

Proof. Let $0 \to \Omega_S X \to P \to X \to 0$ be an exact sequence in $S_n(A)$ with P projective. Taking the i-th branches we see that $(\Omega_S X)_i = \Omega X_i \oplus P'_i$ for some projective A-module P'_i. It follows that $(\Omega_S X)_i = \Omega X_i$ in $A_{\text{-mod}}$. Write $\Omega_S X$ as $(\Omega_S X)(\psi_i)$. By the following commutative diagram with exact columns

$$
\begin{array}{cccccccc}
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
(\Omega_S X)_n & \rightarrow & (\Omega_S X)_{n-1} & \rightarrow & \cdots & \rightarrow & (\Omega_S X)_2 & \rightarrow \psi_1 (\Omega_S X)_1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
P_n & \rightarrow & P_{n-1} & \rightarrow & \cdots & \rightarrow & P_2 & \rightarrow P_1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
X_n & \rightarrow & X_{n-1} & \rightarrow & \cdots & \rightarrow & X_2 & \rightarrow \phi_1 X_1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & = & 0 & = & 0 & = & 0 & = \\
\end{array}
$$

we see $\psi_i = \Omega \phi_i$, and hence the assertion follows.
4.4. For positive integers a and b, let $[a, b]$ denote the l.c.m of a and b. The main result of this section is

Theorem 4.3. Let A be a selfinjective algebra, and F_S be the Serre functor of $S_n(A)$. Then we have an isomorphism in $S_n(A)$ for $X(\phi_i) \in S_n(A)$ and for $s \geq 1$

$$F_S^{s(n+1)} X(\phi_i) \cong \text{Mimo} \tau^{s(n+1)} \Omega^{-2sn} X(\phi_i). \quad (4.4)$$

Moreover, if d_1 and d_2 are positive integers such that $\tau^{d_1} M \cong M$ and $\Omega^{d_2} M \cong M$ for each indecomposable nonprojective A-module M, then $F_S^{N(n+1)} X(\phi_i) \cong X(\phi_i)$, where $N = \frac{d_1}{(n+1,d_1)} \cdot \frac{d_2}{(2n,d_2)}$.

Proof. We have isomorphisms in $\text{Mor}_n(A\text{-mod})$ for $s \geq 1$:

\[
\begin{align*}
\widetilde{W} F_S^{s(n+1)} X(\phi_i) & \cong \widetilde{W} \Omega_S^{s(n+1)} \tilde{\tau}^{s(n+1)} X(\phi_i) \\
& \cong \Omega^{-s(n+1)} \tilde{W} \tilde{\tau}^{s(n+1)} X(\phi_i) \\
& \cong \Omega^{-s(n+1)} \tilde{W} Q \tau^{s(n+1)} X(\phi_i) \\
& \cong \Omega^{-s(n+1)} \tilde{W} Q \text{Mimo} \tau^{s(n+1)} \Omega^{-s(n+1)} X(\phi_i) \\
& \cong \Omega^{-s(n+1)} \tau^{s(n+1)} \Omega^{-s(n-1)} X(\phi_i) \\
& \cong \Omega^{-s(n+1)} \tau^{s(n+1)} \Omega^{-s(n-1)} X(\phi_i) \\
& \cong \tau^{s(n+1)} \Omega^{-2sn} X(\phi_i) \\
& \cong \text{Mimo} \tau^{s(n+1)} \Omega^{-2sn} X(\phi_i).
\end{align*}
\]

Now (4.4) follows from Lemma 4.1. Since $d_1|N(n+1)$, $d_2|(2Nn)$, taking $s = N$ in (4.4) we get $F_S^{N(n+1)} X(\phi_i) \cong \text{Mimo} \tau^{N(n+1)} \Omega^{-2Nn} X(\phi_i) \cong \text{Mimo} X(\phi_i) = X(\phi_i)$. ■

Note that the conditions on τ and Ω in Theorem 4.3 hold in particular for representation-finite selfinjective algebras.

4.5. Applying Theorem 4.3 to the selfinjective Nakayama algebras $\Lambda(m, t)$, we get

Corollary 4.4. Let F_S be the Serre functor of $S_n(\Lambda(m, t))$ with $m \geq 1$, $t \geq 2$, and X be an arbitrary object in $S_n(\Lambda(m, t))$. Then

(i) If $t = 2$, then $F_S^{N(n+1)} X \cong X$, where $N = \frac{m}{(m,n-1)}$.

(ii) If $t \geq 3$, then $F_S^{N(n+1)} X \cong X$, where $N = \frac{m}{(m,t,n+1)}$.
Proof.

(i) In this case $\tau = \Omega$, and $o(\tau) = m = o(\Omega)$, by (3.17). Put $N = \frac{m}{(m,n-1)}$. It follows from (4.1) that

$$F_S^{N(n+1)} X \cong \text{Mimo } \tau^{N(n+1)} \Omega^{-2Nn} X \cong \text{Mimo } \Omega^{-N(n-1)} X \cong \text{Mimo } X.$$

(ii) This follows from Theorem 4.3 by taking $d_1 = m$ and $d_2 = \frac{2m}{(m,t)}$. By a computation in elementary number theory, we get

$$\left[\frac{d_1}{(n+1,d_1)}, \frac{d_2}{(2n,d_2)} \right] = \left[\frac{m}{(n+1, m)}, \frac{2m}{(2n, \frac{2m}{(m,t)})} \right] = \left[\frac{m}{(m,t,n+1)} \right].$$

5. Appendix 1: Proofs of Lemmas 1.5 and 1.6

We give proofs of Lemmas 1.5 and 1.6.

Lemma 5.1. Let $X_{(\phi_i)} \in \text{Mor}_n(A)$, I_2, \ldots, I_n be injective A-modules such that $X'_{(\phi_i')} = X_{(\phi_i)}$.

\[
\begin{pmatrix}
X_1 \oplus \cdots \oplus I_n \\
\vdots \\
X_{n-1} \oplus I_n \\
X_n
\end{pmatrix}
\in \mathcal{S}_n(A), \text{ where } \phi_i' =
\begin{pmatrix}
\phi_i & 0 & \cdots & 0 \\
0 & \ddots & \cdots & \cdots \\
0 & \cdots & \ddots & \cdots \\
0 & \cdots & \cdots & 1
\end{pmatrix}_{(n-i+1) \times (n-i)}.
\]

Then $X'_{(\phi_i')} \cong \text{Mimo } X_{(\phi_i)} \oplus J$, where J is an injective object of $\mathcal{S}_n(A)$. Moreover, $J = \bigoplus_{i=1}^{n-1} m_i(Q_i)$, where Q_i is an injective A-module such that $Q_i \oplus \text{IKer} \phi_i \cong I_{i+1}$, $1 \leq i \leq n-1$.

Proof. It is clear that the morphism

$$X'_{(\phi_i')} \rightarrow X_{(\phi_i)}$$

is a right approximation of $X_{(\phi_i)}$ in $\mathcal{S}_n(A)$ (this can be proved as Lemma 1.3(i), see [Z], Lemma 2.3). By Lemma 1.3(i), there is an object $J \in \mathcal{S}_n(A)$ such that $X'_{(\phi_i')} \cong \text{Mimo } X_{(\phi_i)} \oplus J$. Comparing the branches we get $J_n = 0$ and

$$I_{i+1} \oplus \cdots \oplus I_n \cong \text{IKer} \phi_i \oplus \cdots \oplus \text{IKer} \phi_{n-1} \oplus J_i, \forall 1 \leq i \leq n-1.$$

(5.1)

Put $Q_{n-1} = J_{n-1}$. From $I_n \cong \text{IKer} \phi_{n-1} \oplus J_{n-1}$ we see that Q_{n-1} is an injective A-module. Since $J \in \mathcal{S}_n(A)$, Q_{n-1} is a submodule of J_{n-2}, thus $J_{n-2} = Q_{n-2} \oplus Q_{n-1}$. By $I_{n-1} \oplus I_n \cong \text{IKer} \phi_{n-2} \oplus \text{IKer} \phi_{n-1} \oplus J_{n-2}$ in (5.1), we see $I_{n-1} \cong \text{IKer} \phi_{n-2} \oplus Q_{n-2}$. Repeating this process we see that J_i is of the form $J_i = Q_i \oplus \cdots \oplus Q_{n-1}$ with Q_i being injective A-modules, and $Q_i \oplus \text{IKer} \phi_i \cong I_{i+1}$, $1 \leq i \leq n-1$. Thus $J = \bigoplus_{i=1}^{n-1} m_i(Q_i)$ is an injective object of $\mathcal{S}_n(A)$.

Now we can prove Lemma 1.5 (cf. Claim 2 in §4 of [RS2] for the case of $n = 2$).

Proof of Lemma 1.5. We just prove (i). Since the A-map $\phi_i' : X_{i+1} \oplus I_{i+2} \oplus \cdots \oplus I_n \rightarrow X_i \oplus I_{i+1} \oplus I_{i+2} \oplus \cdots \oplus I_n$ is monic, the restriction of ϕ_i' on $I_{i+2} \oplus \cdots \oplus I_n$ is also monic,
and hence it is a split monomorphism. Hence \(X'_{(\phi'_i)}\) is isomorphic to

\[
X''_{(\phi''_i)} = \left(\begin{array}{c}
X_1 \oplus I_2 \oplus \cdots \oplus I_n \\
\vdots \\
X_{n-1} \oplus I_n \\
X_n
\end{array} \right) \in S_n(A), \quad \text{where} \quad \phi''_i = \left(\begin{array}{cccc}
\phi_i & 0 & 0 & \cdots & 0 \\
* & 0 & 0 & \cdots & 0 \\
* & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
* & 0 & 0 & \cdots & 1
\end{array} \right)_{(n-i+1) \times (n-i)}.
\]

Then the assertion follows from Lemma 5.1.

Lemma 5.2. Let \(X_{(f_i)}, X_{(g_i)} \in \text{Mor}_n(A)\) such that \(f_i - g_i\) factors through an injective \(A\)-module, \(1 \leq i \leq n - 1\), and \(h_i : X_i \to I_i\) be an injective envelope, \(2 \leq i \leq n\). Set

\[
X'_{(f'_i)} = \left(\begin{array}{c}
X_1 \oplus I_2 \oplus \cdots \oplus I_n \\
\vdots \\
X_{n-1} \oplus I_n \\
X_n
\end{array} \right) \quad \text{where} \quad f'_i = \left(\begin{array}{cccc}
f_i & 0 & 0 & \cdots & 0 \\
h_{i+1} & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array} \right)_{(n-i+1) \times (n-i)}
\]

and

\[
X'_{(g'_i)} = \left(\begin{array}{c}
X_1 \oplus I_2 \oplus \cdots \oplus I_n \\
\vdots \\
X_{n-1} \oplus I_n \\
X_n
\end{array} \right) \quad \text{where} \quad g'_i = \left(\begin{array}{cccc}
g_i & 0 & 0 & \cdots & 0 \\
h_{i+1} & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array} \right)_{(n-i+1) \times (n-i)}.
\]

Then \(X'_{(f'_i)} \cong X'_{(g'_i)}\) in \(S_n(A)\).

Proof. For \(1 \leq i \leq n - 1\), it is clear that \(f_i - g_i : X_{i+1} \to X_i\) factors through the injective envelope \(h_{i+1} : X_{i+1} \to I_{i+1}\), and hence there is an \(A\)-map \(u_i : I_{i+1} \to X_i\) such that \(g_i - f_i = u_i h_{i+1}\). The following commutative diagram shows \(X'_{(f'_i)} \cong X'_{(g'_i)}\).

The matrices \(\alpha_i = \left(\begin{array}{cccc}
1 & u_i & & \\
0 & 0 & h_{i+1} u_{i+1} & \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & h_{n-1} u_{n-1}
\end{array} \right)_{(n-i+1) \times (n-i+1)}\) are defined in Lemma 5.1, where \(1 \leq i \leq n\).

Lemma 5.3. Let \(X_{(f_i)}, X_{(g_i)} \in \text{Mor}_n(A)\) such that \(f_i - g_i\) factors through an injective \(A\)-module, \(1 \leq i \leq n - 1\). If each \(X_i\) has no nonzero injective direct summands, then \(\text{Mimo} X_{(f_i)} \cong \text{Mimo} X_{(g_i)}\) in \(S_n(A)\).

Proof. Consider \(X'_{(f'_i)}\) and \(X'_{(g'_i)}\) defined in Lemma 5.2 which are isomorphic in \(S_n(A)\). By Lemma 5.1 there exist injective \(A\)-modules \(Q_{f,i} \oplus Q_{f,i} \cong I_{i+1} \cong \text{IKer} g_i \oplus Q_{g,i}\), \(1 \leq i \leq n - 1\), and

\[
\text{Mimo} X_{(f_i)} \oplus \bigoplus_{i=1}^{n-1} m_i(Q_{f,i}) \cong X'_{(f'_i)} \cong X'_{(g'_i)} \cong \text{Mimo} X_{(g_i)} \oplus \bigoplus_{i=1}^{n-1} m_i(Q_{g,i}).
\]
By Claim 3 in §4 of [RS2], we have IKerf_i ≅ IKerg_i, 1 ≤ i ≤ n − 1. Thus $Q_{f,i}$ ≅ $Q_{g,i}$, and
\[\bigoplus_{i=1}^{n-1} m_i(Q_{f,i}) \cong \bigoplus_{i=1}^{n-1} m_i(Q_{g,i}) , \]
from which the assertion follows. \[\square \]

Now we can prove Lemma 1.6 (cf. Theorem 4.2 of [RS2] for the case of n = 2).

Proof of Lemma 1.6 We only prove (i). If $\text{Mimo}X_{(\phi_i)} \cong \text{Mimo}Y_{(\psi_i)}$ in $S_n(A)$, then by the construction of Mimo, $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\text{Mor}_n(A\text{-mod})$. Conversely, assume that $X_{(\phi_i)} \cong Y_{(\psi_i)}$ in $\text{Mor}_n(A\text{-mod})$. Since all X_i and Y_i have no nonzero injective direct summands, there are A-isomorphisms $x_i : X_i \to Y_i$, such that each $x_i\phi_i - \psi_i x_{i+1}$ factors through an injective A-module, 1 ≤ i ≤ n − 1. Then each $\phi_i - x_i^{-1}\psi_i x_{i+1}$ factors through an injective A-module, 1 ≤ i ≤ n − 1. By Lemma 5.3, $\text{Mimo}X_{(x_i^{-1}\psi_i x_{i+1})} \cong \text{Mimo}X_{(\phi_i)}$. Since $Y_{(\psi_i)} \cong X_{(x_i^{-1}\psi_i x_{i+1})}$, we get $\text{Mimo}Y_{(\psi_i)} \cong \text{Mimo}X_{(\phi_i)}$. \[\square \]

6. **Appendix 2: Auslander-Reiten quivers of some monomorphism categories**

We include the Auslander-Reiten quivers of some representation-finite monomorphism categories.

6.1. By Simson [S2], $S_{n,2}$, $S_{2,3}$, $S_{2,4}$, $S_{2,5}$, $S_{3,3}$ and $S_{4,3}$ are the only representation-finite cases among all $S_{n,t} = S_n(k[x]/(x^t))$, n ≥ 2, t ≥ 2. In [RS3], Ringel and Schmidmeier give the Auslander-Reiten quivers of $S_{2,t}$, t = 2, 3, 4, 5. In the following we give the remaining cases, namely, $S_{n,2}$ (n ≥ 3), $S_{3,3}$, and $S_{4,3}$.

(i) There are n indecomposable projective objects and $\frac{n(n+1)}{2}$ indecomposable nonprojective objects in $S_{n,2}$. For the Auslander-Reiten quivers of $S_{3,2}$ see 2.5. The Auslander-Reiten quiver of $S_{4,2}$ is as follows, where $A = k[x]/(x^2)$ and S is the simple A-module.

(ii) Let $A = k[x]/(x^3)$. Denote by M and S the two indecomposable nonprojective A-modules, where S is simple. There are 3 indecomposable projective objects and 24
indecomposable nonprojective objects in $\mathcal{S}_{3,3}$, whose Auslander-Reiten quiver is as follows.

(iii) Let A, M, S be as in (ii). There are 4 indecomposable projective objects and 80 indecomposable nonprojective objects in $\mathcal{S}_{4,3}$, whose Auslander-Reiten quiver looks like.

6.2. Consider the selfinjective Nakayama algebra $\Lambda = \Lambda(2,2)$, whose indecomposable modules are denoted by $S_1 = k \begin{array}{c} 1 \\ 0 \end{array}$, $S_2 = 0 \begin{array}{c} 1 \\ k \end{array}$, $P_1 = k \begin{array}{c} 1 \\ 0 \\ k \end{array}$, $P_2 = k \begin{array}{c} 0 \\ 1 \\ k \end{array}$.
There are 4 indecomposable projective objects and 6 indecomposable nonprojective objects in $S_2(\Lambda)$, with the Auslander-Reiten quiver as follows.

There are 6 indecomposable projective objects and 12 indecomposable nonprojective objects in $S_3(\Lambda)$, with the Auslander-Reiten quiver as follows.

References

[Ar] D. M. Arnold, Abelian groups and representations of finite partially ordered sets, Canad. Math. Soc. Books in Math., Springer-Verlag, New York, 2000.

[ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Adv. Math. 36., Cambridge Univ. Press, 1995.

[AS] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981), 426-454.

[B] G. Birkhoff, Subgroups of abelian groups, Proc. Lond. Math. Soc. II, Ser. 38(1934), 385-401.

[C] X. W. Chen, Stable monomorphism category of Frobenius category, available in arXiv: math. RT 0911.1987, 2009.

[CZ] C. Cibils, P. Zhang, Calabi-Yau objects in triangulated categories, Trans. Amer. Math. Soc. 361(2009), 6501-6519.

[H] D. Happel, Triangulated categories in representation theory of finite dimensional algebras, Lond. Math. Soc. Lecture Notes Ser. 119, Cambridge Univ. Press, 1988.

[KLM] D. Kussin, H. Lenzing, H. Meltzer, Nilpotent operators and weighted projective lines, available in arXiv: math. RT 1002.3797.

[RV] I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15(2)(2002), 295-366.

[RW] F. Richman, E. A. Walker, Subgroups of p^n-bounded groups, in: Abelian groups and modules, Trends Math., Birkhäuser, Basel, 1999, 55-73.
[RS1] C. M. Ringel, M. Schmidmeier, Submodules categories of wild representation type, J. Pure Appl. Algebra 205(2)(2006), 412-422.

[RS2] C. M. Ringel, M. Schmidmeier, The Auslander-Reiten translation in submodule categories, Trans. Amer. Math. Soc. 360(2)(2008), 691-716.

[RS3] C. M. Ringel, M. Schmidmeier, Invariant subspaces of nilpotent operators I, J. rein angew. Math. 614(2008), 1-52.

[S] D. Simson, Representation types of the category of subprojective representations of a finite poset over $K[t]/(t^n)$ and a solution of a Birkhoff type problem, J. Algebra 311(2007), 1-30.

[SW] D. Simson, M. Wojewodzki, An algorithmic solution of a Birkhoff type problem, Fundamenta Informaticae 83(2008), 389-410.

[Z] P. Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules, preprint (2009). Available in arXiv: math. RT 1101.3872, 2011.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

xiongbaolin@gmail.com, pzwang@sjtu.edu.cn, zyh@sjtu.edu.cn