Scaling growth rates for perovskite oxide virtual substrates on silicon

Jason Lapano1, Matthew Brahlek1,5, Lei Zhang2, Joseph Roth1, Alexej Pogrebnyakov1 & Roman Engel-Herbert1,3,4

The availability of native substrates is a cornerstone in the development of microelectronic technologies relying on epitaxial films. If native substrates are not available, virtual substrates - crystalline buffer layers epitaxially grown on a structurally dissimilar substrate - offer a solution. Realizing commercially viable virtual substrates requires the growth of high-quality films at high growth rates for large-scale production. We report the stoichiometric growth of SrTiO3 exceeding 600 nm hr\(^{-1}\). This tenfold increase in growth rate compared to SrTiO3 grown on silicon by conventional methods is enabled by a self-regulated growth window accessible in hybrid molecular beam epitaxy. Overcoming the materials integration challenge for complex oxides on silicon using virtual substrates opens a path to develop new electronic devices in the More than Moore era and silicon integrated quantum computation hardware.
Successful implementation of epitaxial thin film technologies hinges upon the availability of an economical single-crystal substrate. These substrates must be both chemically and structurally compatible with the desired film to prevent unwanted interfacial defect formation, and must be economically feasible for large-scale production. When no native single crystalline substrate that satisfies these requirements is available, virtual substrates, i.e., the growth of buffer layers allowing a change in lattice parameter, structure or even chemistry of the available substrate, can provide a solution. In such cases robust and cost effective, while scalable, material integration schemes that suffice stringent economic requirements are in demand to realize new device generations with improved performance at lower cost, weight, and size. Such metamorphic epitaxial materials also represent a route to expand the application space of existing devices, and to realize completely new technologies by stabilizing material phases with otherwise unattainable properties. The technical challenges, such as scalability, high-throughput and compatibility of the material with otherwise unattainable properties. The technical challenges, such as scalability, high-throughput and compatibility of the individual fabrication steps to exploit such advancements and deploy them into the market impose stringent conditions for the entire materials integration process.

Metamorphic buffer layers have proven their usefulness at an industrial scale for SiGe, III–V compound semiconductors, and group III-nitrides, setting record performance in a wide application space from photovoltaics using a metamorphic multijunction solar cell with efficiencies up to 46%3–4. III–V based lasers monolithically integrated on Si5,6, high-electron mobility transistors7–9, and heterojunction tunnel field effect transistors for high-performance low-power logic10. Metamorphic epitaxial materials have allowed for more cost effective and larger non-native substrates for electronic devices11,12, and are being considered key to realize and advance the existing quantum computing materials platform of Si/SiGe heterostructures towards all-electrical control of Si-based qubits13.

A metamorphic buffer technology for complex perovskite oxides on Si is highly desirable given their wide range of properties, which can even be expanded utilizing epitaxial strain14. Although epitaxial integration of SrTiO$_3$ on Si has been successfully demonstrated15 and has been scaled up to 200 mm Si wafers using an industry-scale molecular beam epitaxy (MBE) system16, typical film growth rates of about 50 nm h$^{-1}$ or lower16–19 impede high-throughput required for profitability. MBE systems have been operated on an industrial scale since the 1980s20 primarily for the growth of high-quality binary semiconductor structures with controlled stoichiometry and desired composition at growth rates in excess of 1000 nm h$^{-1}$12,21,22. Metamorphic buffers have been developed for nonoxide materials using this growth technology23,24. The key feature permitting such high-quality material by MBE is the adsorption-controlled growth kinetics. The more volatile element is supplied in excess and desorbs in a self-regulated fashion if not incorporated into the film, which dramatically simplifies the flux calibration and enhances reproducibility of the growth process25,26. Therefore, the roadblock to integrate perovskites oxide materials by MBE or any other thin film growth technique in a scalable, economic way is the lack of an adsorption-controlled growth mechanism at high film growth rate. Specifically in the case of SrTiO$_3$ deviations from ideal stoichiometry result in a lattice parameter expansion to accommodate defects formed in the film when grown under nonstoichiometric conditions27,28.

Commonly employed thin film growth techniques can in principle be scaled up to achieve wafer size conformity for complex perovskite oxides and has been demonstrated for pulsed laser deposition (PLD)29, sputtering, metal-organic chemical vapor deposition30, atomic layer deposition, and MBE16. However, scaling up growth rates have resulted in nonstoichiometric SrTiO$_3$ films. Figure 1 compiles the degree of stoichiometry control, quantified by the intrinsic SrTiO$_3$ film lattice parameter expansion, as a function of growth rate for different thin film growth methods. Further details can be found in Supplementary Figs. 1 and 2. Sputtering and PLD utilize targets where the indirect control of deposition parameters makes stoichiometry control more challenging with increasing film growth rate. Conventional solid-source MBE growth for perovskite oxides requires precise calibration of the Sr and Ti fluxes, however, the level of oxygen pressure needed for high-growth rates adversely affect diffusion cell flux stability due to unintentional oxidation of the source material in the crucible31, thus limiting this technique to low growth rates16,17 and precluding it as a cost-effective production tool for virtual perovskite oxide substrates17,32.

![Fig. 1 Growth rates and control of film stoichiometry. Intrinsic SrTiO$_3$ film lattice parameter reported for different growth rates using scalable oxide thin film growth techniques: pulsed laser deposition (PLD), sputtering, metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), and hybrid molecular beam epitaxy (hMBE). In all cases except hybrid MBE the degree of film nonstoichiometry increased with growth rate. The number close to data points shown refer to references detailed in Supplementary Fig. 1. The defect concentration δ of Sr-rich (Sr$_{m+1}$TiO$_3$) and Ti-rich (Sr$_{m-1}$TiO$_3$) films due to nonstoichiometric growth condition was determined from the intrinsic film lattice parameter expansion using a calibration curve given in Supplementary Fig. 2. A growth rate of 0.6 μm h$^{-1}$ for stoichiometric SrTiO$_3$ by hybrid MBE was achieved for the growth on LSAT substrates.](image-url)
Results

Mapping the stoichiometric growth window at high-growth rate. The conditions to access the self-regulated growth of stoichiometric SrTiO$_3$ were determined for a range of growth rates by observing specific surface reconstructions in real-time using in situ RHEED34,35. This method avoids multiple film growths and time-consuming lattice parameter measurements using ex situ XRD36,37, and makes accessing the self-regulated growth window a production-line-compatible process. This accelerated mapping of growth conditions is key to ensure proper growth condition in a single calibration run in a timely manner, as shown in Fig. 2. In this method, a SrTiO$_3$ film was grown on a (La$_{0.18}$Sr$_{0.82}$)$_2$TiO$_5$O$_3$ (LSAT) single-crystal substrate. The Sr flux supplied from the effusion cell was held constant at 2.50 × 1013 cm$^{-2}$ s$^{-1}$ during the entire calibration run, measured using a quartz crystal monitor at the sample position prior to growth. The TTIP flux, given by the beam equivalent pressure (BEP) p_{TTIP} measured at the sample position using an ion gauge, was altered throughout the growth by changing the gas inlet pressure. The color code in Fig. 2a indicates whether stoichiometric (green), Sr-rich (blue), or Ti-rich (purple) growth condition were present. Stoichiometric growth conditions were initially chosen and Sr and TTIP were co-supplied for 10 min, resulting in a 12 nm-thick template layer. The TTIP flux was then increased and growth was continued for 5 min. This procedure was repeated and RHEED images were taken in real-time. Figure 2a, b shows the growth sequence along with atomic-resolution STEM micrographs of the calibration sample in cross-section, respectively. STEM imaging revealed that for layers grown under Ti-rich growth conditions small Ti excess was incorporated as point defects, which gave rise to a gradual increase in background intensity relative to the stoichiometric regions of the calibration sample. For growth conditions with larger Ti excess the formation of a Ti-rich second phase was observed. In the case of Sr-rich growth conditions STEM images revealed the local formation of SrO Ruddlesden–Popper stacking faults propagating throughout the film. SrTiO$_3$ layers were grown within the self-regulated window subsequently on both types of nonstoichiometric layers to determine the minimum thickness required to outgrow the local nonstoichiometry. While stoichiometric SrTiO$_3$ could be repeatedly achieved on layers grown under Ti-rich conditions irrespective of its thickness and degree of Ti-excess, the thickness needed to recover a stoichiometric growth front on layers grown under Sr-rich conditions was about 15 nm. The STEM images further showed that defects from Ti-rich and Sr-rich regions propagated up to about 5 nm into the subsequently grown layer, shown by regions of higher intensity protruding from the fifth layer into the subsequently grown stoichiometric layer shown in Fig. 2b. This marks the minimum growth duration needed to ensure that growth conditions were accurately assessed by surface sensitive RHEED and subsequent layers were not influenced by potential nonstoichiometries of the preceding layer. The RHEED pattern taken in situ during iterative deposition cycles are shown in Fig. 2c, and in more detail in the Supplementary Fig. 3. In the Sr-rich regime the RHEED pattern was diffuse with a 2-fold reconstruction along the 110 azimuth, which can be easily distinguished from the stoichiometric growth conditions, characterized by a sharp RHEED pattern and loss of the 2-fold reconstruction along the 110 azimuth. Therefore, the growth conditions correlated with the surface reconstruction seen in RHEED and can be used to map the self-regulated growth window on a single calibration sample. The entire growth calibration procedure contained ten different TTIP fluxes and a recovery growth (“reset” layer) after mapping the edge of the growth window towards the Ti-rich growth conditions. The growth of the
Scaling growth window. A Titanium tetraisopropoxide (TTIP) beam equivalent pressures \(p_{\text{TTIP}} \) as a function of film growth rate for which a growth window was accessed. The Sr flux was kept fixed while the TTIP flux was modulated. The black bars represent \(p_{\text{TTIP}} \) values within the growth window, while the upper red and lower blue triangles indicate the edges of the growth window determined by reflection high-energy electron diffraction (RHEED). The red and blue bar above and below the respective triangles are the first \(p_{\text{TTIP}} \) values for Ti-rich and Sr-rich growth conditions, respectively. B Absolute growth window width \(\Delta p_{\text{TTIP}} \) as a function of growth rate. The triangles mark the edges of the growth window, while the bars are the values at which a nonstoichiometric growth front was observed in RHEED. C Relative growth window width \(\Delta p_{\text{TTIP}}/p_{\text{TTIP}} \) as a function of growth rate, where \(p_{\text{TTIP}} \) is the TTIP beam equivalent pressures at the growth window center. The line is extrapolated based on the existing data set, projecting that a growth rate of (9.1 ± 1.6) μm h\(^{-1}\) can be achieved at a given Sr flux stability of 1%.

Accelerated growth rate of SrTiO\(_3\). Rapid growth condition mapping as shown in Fig. 2 was applied to find the self-regulated growth window for Sr-fluxes ranging from 1.25 × 10\(^{13}\) cm\(^{-2}\) s\(^{-1}\) up to 2.50 × 10\(^{14}\) cm\(^{-2}\) s\(^{-1}\). The width and position of the growth window as a function of growth rate is shown in Fig. 3. For a Sr flux of 1.25 × 10\(^{13}\) cm\(^{-2}\) s\(^{-1}\) (growth rate 25.6 nm h\(^{-1}\)), the TTIP BEP at the growth position had to be kept between 4.28 and 7.10 × 10\(^{-7}\) Torr to maintain self-regulated growth, which shifted to 1.52–1.65 × 10\(^{-5}\) Torr as the Sr flux was increased to 2.50 × 10\(^{14}\) cm\(^{-2}\) s\(^{-1}\) (growth rate 600.5 nm h\(^{-1}\)) supplied from two Sr effusion cells operated in tandem. The actual position of the growth window changed linearly with growth rate, which was determined by the Sr flux supplied. The calibration curve of TTIP BEP \(p_{\text{TTIP}} \) and gas inlet pressure is shown in Supplementary Fig. 4, while the change in growth rate with supplied Sr flux is shown in Supplementary Fig. 5. The absolute width of the growth window \(\Delta p_{\text{TTIP}} \) increased at higher growth rates (Fig. 3b), whereas the relative width \(\Delta p_{\text{TTIP}}/p_{\text{TTIP}} \) (Fig. 3c) decreased. The latter trend can be extrapolated to determine the growth rate at which unintentional drifts from the Sr effusion cell can still be compensated via the self-regulated adsorption mechanism. Assuming a Sr flux drift of about 1% the growth window would be sufficiently wide up to a growth rate of (9.1 ± 1.6) μm h\(^{-1}\), as shown in Fig. 3c. This growth rate does not mark the highest possible growth rate that can be achieved using hybrid MBE, since the growth window width has been found to increase with growth temperature.

To confirm stoichiometric growth conditions from film lattice parameter and surface morphology measurements using ex situ XRD and AFM, nominally 45-nm-thick SrTiO\(_3\) films were grown on LSAT(100) substrates. Films grown within the growth window showed a step-like terrace structure, a root mean square surface roughness of less than 1 nm and absence of crystalline islands irrespective of growth rate (Supplementary Fig. 6). Figure 4a shows high-resolution 20–ω X-ray scans around the 002 SrTiO\(_3\) film and LSAT substrate peaks. The out-of-plane lattice parameter was found to be 3.930 ± 0.003 Å irrespective of growth rate, which matches values previously reported for stoichiometric SrTiO\(_3\) films grown on LSAT\(^{39}\). While critical film thickness of SrTiO\(_3\) on LSAT substrates was only 180 nm\(^{40}\), a ~500-nm-thick SrTiO\(_3\) film was grown homoepitaxially within the growth window for a growth rate of 600 nm h\(^{-1}\). 2θ–ω X-ray scans of the 002 SrTiO\(_3\) film and substrate peak shown in Fig. 4b revealed that they are indistinguishable, as expected for a homoepitaxially grown stoichiometric film\(^{41}\). RHEED intensity oscillations are shown in Fig. 4c, d for SrTiO\(_3\) films grown at 40 and 600 nm h\(^{-1}\) on LSAT, respectively. In both film growths RHEED intensity oscillations were visible which dampened out with time, indicating an initial layer-by-layer growth which transitioned into a step-flow growth mode. The growth of 10 monolayers of SrTiO\(_3\) took only 23.8 s, in excellent agreement with the growth rate determined from film thickness measurements. Details of the X-ray fits to determine physical film thickness and intrinsic film lattice parameter are detailed in Supplementary Fig. 7.

Integration on silicon for virtual substrates. To directly prove the compatibility of high SrTiO\(_3\) film growth rates with the integration on Si wafers 125-nm-thick SrTiO\(_3\) thin films were grown and the results are shown in Fig. 5. Two different Sr sources were used in tandem; a Sr effusion cell with low flux (2.50 × 10\(^{13}\) cm\(^{-2}\) s\(^{-1}\)) to nucleate and initialize the growth on Si using a buffer layer\(^{37}\), while a second Sr cell calibrated to a much higher flux (1.00 × 10\(^{14}\) cm\(^{-2}\) s\(^{-1}\)) for the film growth at a high rate of 240 nm h\(^{-1}\). The film thickness was chosen to avoid film cracking due to the thermal mismatch between Si and SrTiO\(_3\). Wide range XRD scans confirmed single crystalline (001) oriented SrTiO\(_3\) films with an out-of-plane lattice parameter of 3.889 Å, consistent with stoichiometric SrTiO\(_3\) films grown on Si at 850 °C, albeit at much lower growth rates of only 50 nm h\(^{-1}\).\(^{35,37}\) Figure 5b, c shows the rocking curve of the 002 SrTiO\(_3\) film peak with a full width at half maximum of 0.28° along with the reciprocal space map of SrTiO\(_3\) 103 in excellent agreement with those reports\(^{35,37}\). Figure 5d shows the film surface morphology of SrTiO\(_3\) on Si grown at 240 nm h\(^{-1}\), which showed a stepped terrace morphology with a root mean square surface roughness value less than 1 nm, making it an ideal starting surface for subsequent epitaxial growth, thus fulfilling yet another requirement of a metamorphic buffer layer. Excellent film thickness uniformity across the entire 3-in wafer was evident.
from optical inspection (Fig. 5e) and the SrTiO$_3$ film thickness variation was determined across the entire wafer using spectroscopic ellipsometry, see Fig. 5f. A less than 1% change in SrTiO$_3$ thickness was extracted using an optical model detailed in Supplementary Fig. 8. Cross-sectional STEM and energy dispersive spectroscopy in Supplementary Fig. 10 show a single-crystalline SrTiO$_3$ film on the silicon substrate, separated by a 2–4 nm amorphous SiO$_2$ interfacial layer. Secondary ion mass spectrometry (SIMS) of SrTiO$_3$ on silicon is given in Supplementary Fig. 11, revealing carbon incorporation from the metallicorganic precursor is limited primarily to the interface due to the decreased cracking efficiency of the metallicorganic precursor at low temperatures. Carbon contamination is minimized for the bulk of the deposition at higher temperatures, in agreement with previous studies.

Discussion

These growth experiments demonstrate that it is possible to integrate functional oxides in a scalable and economic way on Si, addressing a long-standing challenge to synthesize high-quality perovskite materials on an industrial scale. The accessibility of the self-regulated growth window at high-growth rates afforded by hybrid MBE and the compatibility of this growth process with Si enables functional diversification of electronic devices in the current More than Moore era. The wide-ranging properties of perovskite oxides will open up routes to augment additional functions to existing devices. The scalability of growth rates enables the development of a metamorphic buffer technology for virtual perovskite oxide substrates. Rather than being limited to single crystal substrates with sizes of up to only two inches using bulk crystal growth techniques such as Czochralski or Bridgman–Stockbarger methods, perovskite oxides on Si wafers with excellent crystalline quality and epi-ready surface morphologies provide more cost effective substrates and thus will enable more growth experiments. The availability of virtual substrates will drive innovation at the fundamental level and speed up the process development from basic scientific discoveries to system level maturity, thus boosting research productivity and technological significance of functional epitaxial oxide thin films. While accessing a self-regulated growth window at high growth rates was demonstrated for SrTiO$_3$ as a prototypical perovskite oxide, many ABO$_3$ perovskites (ABO$_3$, A = Ca43, Sr40, Ba44, Gd45, Nd46, Sm47 with B = Ti; A = Sr48, Ca49, La50 with B = V; as well as LaAlO$_3$25, BaSnO$_3$51, and SrRuO$_3$52) have already been successfully grown by hybrid MBE. This suggests that scaling growth rates is a general feature of this growth approach rather than being limited to SrTiO$_3$, indicating that the development of virtual substrates for perovskite oxides can be expanded to other perovskite oxides in an economic, scalable way as well.
Methods
Thin film growth. SrTiO3 films were grown on LSAT, SrTiO3, and Si substrates using a DCA M660 MBE deposition system equipped with 2 Sr dual filament solid source thermal effusion cells with 60 crucibles. A gas delivery system was used to supply Ti in form of the volatile metallicorganic molecule TTP without a carrier gas. Sr fluxes were calibrated prior to growth using a quartz crystal monitor located at the sample growth position. The TTP gas inlet pressure was monitored using a capacitance manometer in the injector system coupled to a linear leak valve to adjust and maintain the flow of TTP to the substrate. Molecular oxygen was supplied and maintained at an oxygen background pressure of ~3.0 x 10^-3 Torr. Growth windows were mapped out for fixed Sr fluxes between 1.25 - 25 x 10^13 cm^-2 s^-1, which were achieved by operating the Sr e-gun between 410 and 580 °C. A single Sr effusion cell was placed at the edge of the sample along with a linear electron beam to adjust and maintain the flux of TTP to the substrate. The thickness values and refractive index for the SrTiO3 films were extracted by

Transmission electron microscopy. Cross-sectional high-resolution STEM was carried out using a FEI Titan operated at 200 kV accelerating voltage. TEM sample preparation of films on LSAT substrates consisted of mechanical polishing at wedge angle of 2° to a thickness of 5 μm, followed by thinning to electron transparency using a Gatan PIPSII Ar-ion milling along [100]. Samples on silicon were prepared using the Scios DualBeam focused ion beam using Ga2+ ions. Accelerating voltage was scaled from 30 keV for the initial lamella preparation, and scaled down to 2 keV for the final sample thinning.

Spectroscopic ellipsometry. Ellipsometric data, i.e., phase difference Δ and amplitude ratio Ψ in the spectral range from 0.75 - 3.0 eV were collected from 25 different locations across the wafer (see details in Supplementary Fig. 8) using a J. A. Woollam Co., Inc. M-2000XI single rotating compensator spectroscopic ellipsometer in reflection mode at 3 different angles of incidence, 50°, 60°, and 70°. The thickness values and refractive index for the SrTiO3 film were extracted by means of a least squares regression analysis employing the Levenberg-Marquardt algorithm. An optical model consisting of a Si substrate (semi-infinite)/native silicon oxide interface layer/SrTiO3 film/SrTiO3 film surface roughness was used to extract the physical parameters. The surface roughness was represented by a Bruggeman effective medium approximation of 0.5 void + 0.5 film material fractions. For the substrate and silicon native oxide layer, the silicon29 and silicon dioxide34 material parameters were used. The parameterization of the refractive index of the SrTiO3 film included a combination of the high-frequency dielectric constant and two Sellmeier oscillators. Oscillator parameters as well as thicknesses of the SrTiO3 film, the native oxide film, and the surface roughness layer were used as fitting parameters.

Secondary ion mass spectrometry. SIMS of SrTiO3 on silicon was performed using a PHI nano TOF. A primary 30 keV Bi+ ion beam was rastered over an area of 100 x 100 μm. The etch rate was approximately 3 nm cycle^-1.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 24 October 2018 Accepted: 12 April 2019
Published online: 05 June 2019

References
1. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
2. France, R. M. et al. Design flexibility of ultrahigh efficiency four-junction inverted metamorphic solar cells. IEEE J. Photovolt. 6, 578–583 (2016).
3. Dimroth, F. et al. Four-junction wafer-bonded concentrator solar cells. IEEE J. Photovolt. 6, 343–349 (2016).
4. Green, M. A. et al. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017).
5. Tourani, E. et al. Metamorphic III–V semiconductor lasers grown on silicon. MRS Bull. 41, 218–223 (2016).
6. Cerba, T. et al. Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition. Thin Solid Films 645, 5–9 (2018).
7. Bennett, B. R., Magno, R., Boos, J. B., Kruppa, W. & Ancona, M. G. Antimonide-based compound semiconductors for electronic devices: a review. Solid. State Electron. 49, 1875–1895 (2005).
8. Lee, K. E. & Fitzgerald, E. A. Metamorphic transistors: building blocks for hetero-integrated circuits. MRS Bull. 41, 210–217 (2016).
9. Ng, G. I., Radhakrishnan, K. & Wang, H. Are we there yet? A metamorphic HEMT and HBT perspective. Eur. Gall. Arsenide Other Semicond. Appl. Symp. GAAS 2005, 13–19 (2005).
10. Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4, 143–164 (2015).
11. Tian, P. et al. Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates. J. Appl. Phys. 115, 033112 (2014).
12. Weiss, B. et al. Monolithically-integrated multilevel inverter on lateral GaN-on-Si technology for high-voltage applications. In 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) 1–4 (IEEE, New Orleans, LA, 2015).
13. Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1502114–e1502114 (2015).
14. Schlim, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).
15. McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).
16. Gu, X. et al. Growth, characterization, and uniformity analysis of 200 mm wafer-scale SrTiO3. J. Vac. Sci. Technol. B 28, C3A12–C3A16 (2010).
17. Brooks, C. M. et al. Growth of homoeptaxial SrTiO3 thin films by molecular-beam epitaxy. Appl. Phys. Lett. 94, 162905 (2009).
18. Yamaguchi, H., Matsubara, S. & Miyasaka, Y. Reactive coevaporation synthesis and characterization of SrTiO3 thin films. Jpn. J. Appl. Phys. 30, 2197–2199 (1991).
19. Fisher, P. et al. Stoichiometric, nonstoichiometric, and locally stoichiometric SrTiO3 films grown by molecular beam epitaxy. J. Appl. Phys. 103, 013159 (2008).
20. Cho, A. Y. How molecular beam epitaxy (MBE) began and its projection into the future. J. Cryst. Growth 201, 1–7 (1999).
21. Sonoda, T. et al. Ultra-high throughput of GaAs and (AlGa)As layers grown by MBE with a specially designed MBE system. J. Cryst. Growth 95, 317–321 (1989).
22. Heyn, C., Franke, T., Anton, R. & Harsdorff, M. Correlation between island-forming and material fraction in inverted metamorphic solar cells. Jpn. J. Appl. Phys. 37, 253–256 (1998).
23. Chen, S. C. et al. Metamorphic GaSb/Si heterojunction solar cells. Jpn. J. Appl. Phys. 37, 578–583 (1998).
24. Richardson, C. J. K. & Lee, M. L. Metamorphic epitaxial materials. J. Appl. Phys. 94, 5379–5388 (2003).
25. Fathpour, S. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4, 143–164 (2015).
26. Jalan, B., Moetakef, P. & Stemmer, S. Molecular beam epitaxy of SrTiO3 with a nonstoichiometric SrTiO3 growth window. Appl. Phys. Lett. 97, 032906 (2009).
27. Ambwani, P. et al. Defects, stoichiometry, and electronic transport in SrTiO3-based epi-layers: a high pressure oxygen sputter deposition study. J. Appl. Phys. 120, 055704 (2016).
