A Facet Enumeration Algorithm for Convex Polytopes

Yaguang Yang

NASA, Goddard Space Flight Center
8800 Greenbelt Rd, Greenbelt, 20771 MD, USA.
yaguang.yang@nasa.gov

Abstract. This paper proposes a novel and simple facet enumeration algorithm for convex polytopes. The algorithm is implemented in Matlab. Some simple polytopes with known H-representations and V-representations are used as the test examples. The preliminary numerical test shows the effectiveness and efficiency of the proposed algorithm. Due to the duality between the vertex enumeration problem and facet enumeration problem, we expect that this method can also be used to solve the vertex enumeration problem.

Keywords: Algorithm · convex polytope · facet enumeration.

1 Introduction

For convex polytopes, there are two different but equivalent representations: (a) H-representation, and (b) V-representation. H-representation uses a set of closed half-spaces to define a convex polytope, i.e., a polytope is given as $\mathbf{A}\mathbf{x} \leq \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times d}$ and $\mathbf{b} \in \mathbb{R}^{m}$ are given, and $\mathbf{x} \in \mathbb{R}^{d}$ satisfying the inequality constraints is the set of points in the convex polytope. A k-face of a polytope is the set of \mathbf{x} that meet two conditions: (1) $\mathbf{A}\mathbf{x} \leq \mathbf{b}$, and (2) for some $d-k$ independent rows of \mathbf{A}_k, $\mathbf{A}_k\mathbf{x} = \mathbf{b}$. For $k = 0$, a 0-face of the polytope is a vertex; for $k = 1$, a 1-face of the polytope is an edge; for $k = d-2$, a $(d-2)$-face of the polytope is a ridge; for $k = d-1$, a $(d-1)$-face of the polytope is a facet. In the remainder of the paper, we use vertex, edge, and facet explicitly, but we do not make distinction for other k-faces in general. V-representation uses a set of vertices $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ to define a convex polytope as a convex hull of \mathcal{V}. Given one of the representations, there is a need, in many applications [1, 7, 9], to know what the other corresponding representation is. The transformation from (a) to (b) is known as the vertex enumeration and the other from (b) to (a) is known as the facet enumeration.

Vertex enumeration is clearly related to the simplex method of linear programming. The so-called double-description method can be dated back to Fourier (1827) [17] and was reinvented by Motzkin [12]. This method constructs the polytope sequentially by adding one constraint at a time. All new vertices produced must lie on the hyperplanes bounding the constraint currently being inserted. A
more popular vertex enumeration method is based on pivoting, which was discussed by Chand and Kapur [6], Dyer [10], Swart [13], among others. The most popular method in this category is the reverse search method proposed by Avis and Fukuda [2]. Their method starts at an “optimum vertex” and traces out a tree in depth order by “reverse” Bland’s rule [4].

Noticing that the dual problem of a vertex (resp. facet) enumeration problem is the facet (resp. vertex) enumeration problem for the same polytope where the input and output are simply interchanged, Bremner, Fukuda and Marzetta [5] pointed out that the vertex enumeration methods can be used for the facet enumeration problem. They suggested using a primal-dual approach proposed in [11] that includes two purely combinatorial algorithms for enumerating all faces of a d-polytope based on the combinatorial vertices’ description and some information on edges. Very recently, Avis and Jordan [3] published a scalable parallel vertex/facet enumeration code. Avis and Jordan’s paper is also a good source to find the related works.

In this paper, we consider the facet enumeration problem without using duality of the vertex enumeration. To our best knowledge, this is the first “direct” method which avoids converting back and forth primal and dual problems. Given the vertices of a convex polytope, the idea is to first find all edges of the polytope, which provides a vertex/edge diagram that connects any vertex to its neighbor vertices. The information is stored in a matrix D, which can be represented as a connected tree. For any vertex, using matrix D, one can create a branch with depth of d. If vertices in the branch of the tree from a root vertex to an end vertex form a hyperplane, one can check if all vertices in \mathcal{V} are in the half space defined by the hyperplane. If the answer is true, the hyperplane contains a facet of the polytope, otherwise, it does not. Repeating these steps for all vertices will find all half spaces whose intersection forms the polytope. Using the duality between the vertex enumeration problem and facet enumeration problem, we expect that this method can also be used to solve the vertex enumeration problem with some minor tweaks but that is not the purpose of this paper.

The remainder of the paper is organized as follows: Section 2 discusses the edge detection. Section 3 provides details of the proposed algorithm. Section 4 presents some numerical examples to show the effectiveness and efficiency of the algorithm. Concluding remarks are summarized in Section 5. All mathematical proofs are placed in the Appendix.

2 Edge detection

Assume that a d-dimensional polytope has n vertices. Each vertex v_i is represented as a **row vector**, and the n vertices are stored in a matrix $V \in \mathbb{R}^{n \times d}$. To have an efficient algorithm, we set the centroid of the polytope v_0 as the origin which is an interior point of the polytope. Let

$$u_i = v_i - v_0, \quad i = 1, \ldots, n.$$ \hfill (1)
We will denote by \(U = \{u_1, \ldots, u_n\} \) the set of vertices which form a polytope with its center as the origin of the coordinate system. We also use a matrix

\[
U = \begin{bmatrix}
 u_1 \\
 \vdots \\
 u_n
\end{bmatrix} \in \mathbb{R}^{n \times d}
\]

to store these vertices. Our idea is to calculate a column vector \(h_i \in \mathbb{R}^d \), or the hyperplane \(h_i^T x = 1 \), where \(x \in \mathbb{R}^d \) is the set of \(d \)-dimensional column vectors that spans the hyperplane, so that the \(m \) half spaces (associated with the \(m \) hyperplanes)

\[
Hx := [h_1, \ldots, h_m]^T x \leq 1
\]

defines the polytope, where \(e \) is a column vector of all 1’s.

The algorithm first establishes a vertex/edge diagram that describes all vertex/edge relations of a given polytope. The process is as follows: given any vertex \(u_i \) on the polytope, the proposed algorithm identifies its neighbor vertices which are connected by edges. Let \(u_i \) and \(u_j \) be two vertices of the polytope. The line pass both \(u_i \) and \(u_j \) can be defined by

\[
L = \{u_i + t(u_j - u_i) \mid t \in \mathbb{R}\}.
\]

Assuming that a point \(z \) is on the line of \(L \) and the row vector \(z - 0 = z \) (where \(0 \) is the origin and the center of the polytope) is perpendicular to the line \(L \), then \(z \) satisfies the following equations:

\[
z = u_i + t(u_j - u_i), \quad \langle z, u_j - u_i \rangle = 0.
\]

Solving (4) for \(t \) yields

\[
t = -\frac{u_i(u_j - u_i)^T}{\|u_j - u_i\|^2},
\]

which gives

\[
z = u_i - \frac{u_i(u_j - u_i)^T}{\|u_j - u_i\|^2}(u_j - u_i).
\]

We have the following claim:

Lemma 1. \(z \neq 0 \) if \(L \) does not cross the centroid (origin).

Proof. Since \(z \) is on \(L \) and \(L \) does not cross \(0 \), it must have \(z \neq 0 \). \(\square\)

Thus, \(z = 0 \) implies that \(u_j \) is not a neighbor vertex of \(u_i \) (this will reduce the computational effort if such a scenario appears). Therefore, we may assume, without loss of generality, that \(z \neq 0 \). Denote a row vector \(a = z/\|z\| \neq 0 \) and a constant \(c = a^T z = \frac{a^T z}{\|z\|} = \|z\| \neq 0 \). Then, a hyperplane \(P \) passing line \(L \) with the normal direction \(a^T \) is given by

\[
a(x - z^T) = ax - c = 0,
\]
where a is a known row vector, c is a constant, and $x \in \mathbb{R}^d$ is any point on the hyperplane \mathcal{P}. Dividing both sides by c and denote $h^T = a/c$, i.e., h is a column vector, we get

$$h^Tx = 1. \tag{8}$$

Intuitively, from the construction of \mathcal{P}, if for all u_k, we have

$$h^Tu_k^T \leq 1 \tag{9}$$

with equality hold for only u_i and u_j, then the segment between u_i and u_j is an edge of the polytope and u_i and u_j are adjacent vertices. We summarize the discussion as the following theorem.

Theorem 1. Let u_i and u_j be two vertices of a convex polytope. Let L be the line as defined in (3). For t given in (5), $z = u_i + t(u_j - u_i)$ is perpendicular L. Denote $a = z/\|z\|$ and $c = az^T$ (a and z are row vectors). Let $h^T = a/c$. Then,

$$h^Tx = 1, \forall x \in \mathbb{R}^d \tag{10}$$

is a hyperplane passing u_i and u_j, and the following claims hold:

(a) If inequality (9) holds for all u_k, and the equality holds for only u_i and u_j, then the segment between u_i and u_j is an edge of the polytope, i.e., u_i and u_j are adjacent vertices.

(b) If inequality (9) holds for all u_k, and the equality holds for more than two but less than d vertices, then the line segment between u_i and u_j is on a k-face which is part of the hyperplane.

(c) If inequality (9) holds for all u_k, and the equality holds for at least d vertices, then the line segment between u_i and u_j is on the hyperplane and a facet of the polytope is part of the hyperplane.

Proof. We show part (a) only because parts (b) and (c) follows similar argument. Since (9) holds for all vertices $k = 1, \ldots, n$, all points of the polytope are inside of the half space $h^Tx \leq 1$. The half space contains the polytope. Since u_i and u_j are on the hyperplane, all points on the line segment between u_i and u_j are on the hyperplane. Since $h^Tu_k^T < 0$ holds for all u_k satisfying $u_i \neq u_k \neq u_j$, for any point in the convex hull such that

$$\sum_{k=1}^{n} \lambda_k u_k$$

with at least one $\lambda_k > 0$ and $k \notin \{i, j\}$, we have

$$h^T \sum_{k=1}^{n} \lambda_k u_k^T < 1$$

because $\sum_{k=1}^{n} \lambda_k = 1$. Therefore, all those points in the convex polytope are not on the hyperplane. Since for all points of the polytope, only line segment between u_i and u_j are on the hyperplane, the line segment between u_i and u_j is an edge of the polytope.

Remark 1. For the purpose of facet enumeration, we are only interested in cases (a) and (c) because case (a) of Theorem 1 implies that u_j is a neighbor vertex of u_i, which is used to construct vertex/edge diagram, and case (c) will be recorded to reduce computational effort.
If inequality (9) does not hold for at least one of \(u_k, k = 1, \ldots, n \), then we need to be a little bit more careful. In this case, we have the following theorem.

Theorem 2. Let \(u_i \) and \(u_j \) be any two vertices of a convex polytope, \(y^* \) and \(f^* \) be the optimal solution of (16) in appendix. Denote that \(c = h^T \left(\frac{u_i+u_j}{2} \right)^T \), then the following claims hold:

(a) If \(f^* < 0 \), then, the line segment connecting \(u_j \) and \(u_i \) is an edge of the polytope.

(b) If \(f^* = 0 \) and \(y^* - r \neq 0 \), then, \(u_j \) and \(u_i \) do not form an edge of the polytope and the hyperplane contains either a \(k \)-face if less than \(d \) vertices are on the hyperplane or a facet if at least \(d \) vertices are on the hyperplane.

(c) If \(f^* > 0 \), then, \(u_j \) and \(u_i \) do not form an edge of the polytope and the hyperplane does not form a \(k \)-face or a facet of the polytope.

Proof. Denote the middle point between \(u_j \) and \(u_i \) as a row vector \(r = \left[r_1, r_2, \ldots, r_d \right] = \frac{u_j+u_i}{2} \), which is also the vector from the origin to the middle point of \(u_j \) and \(u_i \). Therefore, for a row vector \(y \neq r \),

\[
y - r
\]

then, \(y - r \) is a vector starting from the middle point of \(u_j \) and \(u_i \) and pointing to \(y \). We consider all \(y \) such that \(y - r \) is perpendicular to \(u_j - u_i \). Clearly, \(y \) must satisfy

\[
\langle y - r, u_j - u_i \rangle = 0,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the inner product of its arguments. This is equivalent to

\[
y(u_j - u_i)^T = r(u_j - u_i)^T.
\]

We want to find a bounded vector \(y - r \) such that the smallest angle between \(y - r \) and \(u_k - r \), for \(k \notin \{i, j\} \), is maximized, which is equivalent to solving the following mini-max problem:

\[
\min_y \max_{k \notin \{i, j\}} \left(\frac{y - r}{\|y - r\|} \cdot \frac{u_k - r}{\|u_k - r\|} \right).
\]

However, in stead of considering the nonlinear problem (14), we prefer to deal with a simpler problem. Let

\[
f = \max_{k \notin \{i, j\}} \left(\frac{y - r}{\|y - r\|} \cdot \frac{u_k - r}{\|u_k - r\|} \right).
\]

1 If \(\frac{u_j+u_i}{2} = 0 \), then, according to Lemma 1, \(\{u_i, u_j\} \) is not an edge and will not be considered further.

2 Here, we abuse the notation of inner product by not restricting its augments to be column vectors. The only restriction is that they must have the same dimension.
Since $\|y - r\|$ is independent of k, we may consider the following linear programming problem:

$$\begin{align*}
\min_{y,f} & \quad f \\
\text{s.t.} & \quad (u_j - u_i)y^T = r(u_j - u_i)^T, \\
& \quad (u_k - r)(y - r)^T \leq f\|u_k - r\|, \quad k \notin \{i,j\}, \\
& \quad -1 \leq y - r \leq 1,
\end{align*}$$

(16)

where 1 is a row vector of all ones. There are many efficient algorithms [8, 14, 15] for solving the LP problem, which is out of the scope of our discussion here.

Let y^* and f^* be the solution of (16) (y^* is a constant row vector), then the column vector x in the following equation

$$(y^* - r)(x - r^T) = 0$$

(17)

defines a plane that is perpendicular to $y^* - r$ and passes the line segment between u_i and u_j. Substituting $x^T = u_i$ to the left side of (17) and applying (12) gives

$$-\frac{1}{2} \left\langle y^* - r, \quad u_j - u_i \right\rangle = 0.$$

(18)

Therefore, u_i is on the plane defined by (17). Substituting $x^T = u_j$ to the left side of (17) and applying (12) gives

$$\frac{1}{2} \left\langle y^* - r, \quad u_j - u_i \right\rangle = 0.$$

(19)

Therefore, u_j is on the plane defined by (17). Let $h^T = y^* - r$, according to (11), it must have $h \neq 0$. Assuming that the middle point of u_i and u_j is not in the origin, i.e., $r \neq 0$, we can write the plane of (17) as

$$h^T x = h^T r^T = c \neq 0.$$

(20)

If the minimum of (16) $f^* < 0$, it means that all u_k, $k \notin \{i,j\}$, are not on the plane, and they are all on one side of the plane, therefore, the line segment connecting u_j and u_i is an edge of the polytope. If $f^* = 0$, it means that besides u_j and u_i, there are additional vertices u_k, $k \notin \{i,j\}$ on the plane; although all vertices are on the same side of the plane defined by (17), u_j and u_i do not form an edge of the polytope. If $f^* > 0$, it means that it is impossible to find a plane which passes u_j and u_i, such that all u_k are on the same side of the plane. Therefore, u_j and u_i does not form an edge of the polytope.

Remark 2. If $f^* = 0$ and $y^* - r = 0$, this solution of (16) does not give us the necessary information to use Theorem 2, in this case, we may add an additional inequality constraint:

$$\sum_{k=1}^d (y_k - r_k) \geq 1$$

(21)

in the linear programming problem (16) to enforce $y^* - r \neq 0$.
Remark 3. It is worthwhile to point out that the Matlab function `linprog` oftentimes fails to find the optimal solution of (16), while the facet pivot method developed in [16] has no problem for all tested problems.

Remark 4. Assume that $y^* \neq r$ and $f^* = 0$ be the solution of (16). Denote the index set $\mathcal{K} = \{k \mid (u_k - r)(y^* - r)^T = f^*\|u_k - r\|, \; k \notin \{i, j\}\}$. Then, $\mathcal{F} = \{u_i, u_j, u_k\}$ forms a k-face. In addition, if $|\mathcal{F}| \geq d$, then, \mathcal{F} forms a facet. This information will save some computational effort in the next section.

3 Facet enumeration algorithm

Now we discuss the information storage, which is also important for the algorithm design. Let \mathbf{D} be the $n \times n$ adjacency matrix whose (i, j) element is one if the line segment between u_i and u_j is an edge or is zero otherwise. Matrix \mathbf{D} is obtained by the process described in Theorem 1 or Theorem 2. Since \mathbf{D} is symmetric, using this property will reduce the computational effort to find all edges of the polytope.

Let us consider a vertex tree associated with \mathbf{D} and starting from vertex u_1, which connects the adjacent vertices. Clearly the structure of the tree is defined by the matrix \mathbf{D}. To efficiently carry out the iteration, we denote by \mathcal{U}_0 the set of vertices for which all relevant facets have been found, by \mathcal{U}_t the set of vertices in the current iteration for which the associated hyperplanes are to be determined, by \mathcal{U}_r the set of the vertices that are not in \mathcal{U}_c yet and therefore whose facets have not been examined. $\mathcal{U}_0 = \emptyset$ and $\mathcal{U}_c = \{u_1\}$ before the iteration starts. The proposed algorithm has two loops. The outer loop uses breadth-first search. For a vertex $u_i \in \mathcal{U}_c$, the algorithm in the inner loop finds all facets that intersect at u_i, once all facets containing u_i are found, u_i is moved from \mathcal{U}_c to \mathcal{U}_r. While finding facets containing $u_i \in \mathcal{U}_c$, new vertices on each of these facets become members of \mathcal{U}_c. This process is repeated for every $u_i \in \mathcal{U}_c$ until for every vertex, its intersecting facets are found, i.e., the process will terminate when \mathcal{U}_c includes all vertices of $\{u_1, \ldots, u_n\}$.

Having the vertex/edge diagram of \mathbf{D} that connects all the vertices in \mathcal{V}, the inner loop uses the following method to identify all the facets that intersects at $u_i \in \mathcal{U}_c$. Since every facets that contains u_i can be associated with an edge, for each of these edges directly connected to u_i, we can create a branch of length d as follows. Note that nonzero (i, j) elements of the adjacency matrix \mathbf{D} define the branch under the vertex u_i. For each u_i, assuming that u_i is the ith vertex, we look at the ith row of \mathbf{D} to select the next vertex j among all $(i, j) = 1$ such that the jth vertex has not been used in the construction of existing hyperplanes; once vertex j is selected, we look at the jth row of \mathbf{D} to select the next vertex k among all $(j, k) = 1$ such that the kth vertex has not been used in the construction of existing facets; repeat this step until d vertices are found.

Since hyperplane (10) is uniquely defined by \mathbf{h}, we will loosely use $\mathbf{h}_i \in \mathbb{R}^d$ for the ith facet of the polytope if the hyperplane \mathbf{h}_i contains a facet. Let u_{i_1} be one of vertices in the vertex set \mathcal{U}_c in current iteration. We say that $\{u_{i_1}, u_{i_2}, \ldots, u_{i_d}\}$
is a branch of length d in the tree under u_i if for $i_j \in \{i_2, \ldots, i_{d-1}\}$, u_i is connected to only $u_{i_{j-1}}$ and $u_{i_{j+1}}$ in the set of $\{u_{i_1}, u_{i_2}, \ldots, u_{i_d}\}$. Given these d vertices $\{u_{i_1}, \ldots, u_{i_d}\}$ which are on the branch of the tree starting from u_i, if the base matrix formed by $\{u_{i_1}, \ldots, u_{i_d}\}$ is linearly independent, one can solve the linear system

$$\begin{bmatrix} u_{i_1} \\ \vdots \\ u_{i_d} \end{bmatrix} h_i := U_i h_i = e. \quad (22)$$

for a candidate facet h_i. If $h_i^T u_i^T \leq 1$ for $k = 1, \ldots, n$, then h_i is the hyperplane that includes a facet. Since (22) may also create an unwanted hyperplane, these unwanted hyperplanes can be identified using one of the following rules: first, inequality $h_i^T u_i^T \leq 1$ is violated, i.e.,

$$Uh_i \leq e \quad (23)$$

does not hold for some $u_i \in U$; second, the hyperplane has been found earlier in this process (in this case, the hyperplane will not be added to the matrix H). If the newly found hyperplane contains a facet of the convex polytope that is not in the matrix H, it is then added to H. Otherwise, discard the hyperplane and continue the search in the tree.

For $u_i \in U_c$, the idea of the proposed algorithm is to examine all branches u_{i_1}, \ldots, u_{i_d} under $u_i = u_{i_1} \in U_c$ in a systematically method to reduce the effort to find facets associated with u_i that has not been found. However, given the vertex $u_i \in U_c$, we may not need to calculate all hyperplanes associated with it because some facets associated with u_i may be on other hyperplanes defined by some h_j which have been found in current or previous iterations.

We use cross-polytope of Example 4 to describe the process, for which the D matrix is obtained by using the method of the previous section as:

$$D = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}. \quad (24)$$

Assume $U_c = \{u_1\}$, the branches are constructed as follows: In view of the first row of D, u_1 is connected to $u_2, u_3, u_4, u_5, u_6, u_7$. We consider the branch with its first edge between u_1 and u_2 as an example. The second row of D indicates that u_2 is also connected to u_3, u_4, u_5, u_7, u_8, we select the first vertex such that the branch includes u_1, u_2, u_3. The third row of D indicates that u_3 is connected to u_4, u_5, u_7, u_8, again, we select the first vertex such that u_4, u_2, u_3, u_4 forms the first branch with length $d = 4$. Using the aforementioned method, we can examine if this branch forms a hyperplane. If it does, save it; otherwise, discard.
it. To construct the next branch, we move one level up at a time and check if there is any vertex that has not been considered on this level. In this case, u_5 is the first vertex that has not been considered, a new branch u_1, u_2, u_3, u_5 is formed; and the new branch is examined to see if it forms a new hyperplane. Repeating this process, the order of the selected branches is described in Figure 1 that is from the left to the right. After all the branches under u_1 has been examined, 8 facets are found. Set $U_0 = \{u_1\}$. From Figure 1, it is clear that $U_c = \{u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$. The above process can be repeated for every $u_i \in U_c$ until $U_0 = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$.

Denote the number of members of a set U by $|U|$. The proposed algorithm is therefore given as follows:

Algorithm 1

1: Data: Vertex matrix V.
2: Initial step: Calculate centroid v_0 and vertex set U, adjacent matrix D, and initial facet matrix H. Set up initial U_0, U_c, and U_t.
3: while $|U_0| < n$ do
4: set $U_2 = \emptyset$.
5: for $i = 1: |U_c|$ do
6: Step 1: Start from u_{i1}, from row i_1 of D, find the first vertex u_{i2} that has not been considered in the branches under u_{i1} so that the new branch includes u_{i1} and u_{i2}.
7: Step 2: Repeat the process until a new branch u_{i1}, \ldots, u_{id} is formed.
8: Step 3: Solve (22) to get a candidate facet h_i. Test if h_i is indeed a new facet. If it is, add it to H; otherwise discard it.
9: Step 4: Add new vertices to the set U_2 whose members are on the hyperplanes of the new branches but are not in U_c.
10: Step 5: Move one level up at a time in the current branch until either (1) there is a vertex on this level that has not been included in a branch
under \mathbf{u}_i, then repeat Steps 2-4; or (2) all branches under \mathbf{u}_i have been investigated, increase i by 1.

11: \textit{end for}

12: Update $\mathcal{U}_o = \mathcal{U}_o \cup \mathcal{U}_c$. Set $\mathcal{U}_c = \mathcal{U}_2$.

13: \textit{end while}

14: Recover the polytope by shifting the origin $H(x - v_0) \leq e$.

4 Numerical examples

Several examples are provided in this section.

Example 1. The first example is a 2-dimensional convex polytope which is a triangle. Its vertices are given by:

$$
\mathbf{V} = \begin{bmatrix} 0 & 0 \\ 3 & 0 \\ 0 & 3 \end{bmatrix}
$$

The centroid is (1, 1). Algorithm 1 finds the H-representation as

$$
H = \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}
$$

Example 2. The second example is a 3-dimensional convex polytope which is a cubic. Its vertices are given by:

$$
\mathbf{V} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}
$$

The centroid is (0.5, 0.5, 0.5). Algorithm 1 finds the H-representation as

$$
H = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \end{bmatrix}
$$
Example 3. The third example is a 3-dimensional convex polytope which is an octahedron. Its vertices are given by:

\[
V = \begin{bmatrix}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

The centroid is \((0, 0, 0)\). Algorithm 1 finds the H-representation as

\[
H = \begin{bmatrix}
-1 & -1 & 1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & -1 \\
1 & -1 & -1 \\
1 & 1 & -1 \\
-1 & 1 & -1
\end{bmatrix}
\quad b = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

Example 4. The fourth example is a 4-dimensional convex polytope which is a cross-polytope. Its vertices are given by:

\[
V = \begin{bmatrix}
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\]
The centroid is \((0, 0, 0, 0)\). Algorithm 1 finds the \(H\)-representation as

\[
H = \begin{bmatrix}
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{bmatrix}
\quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]

For the above problems, using Theorem 1 can find all the edges of the corresponding polytopes. However, for the following convex polytope, we need Theorem 2 to find some edges.

Example 5. The last example is a 3-dimensional convex polytope. Its vertices are given by:

\[
V = \begin{bmatrix}
1 & 0 & 1 \\
1 & 0 & -1 \\
1.25 & -1 & 1 \\
1.25 & -1 & -1 \\
0.25 & -1 & 1 \\
0.25 & -1 & -1 \\
-1 & 0 & 1 \\
-1 & 0 & -1 \\
-1.25 & 1 & 1 \\
-1.25 & 1 & -1 \\
-0.25 & 1 & 1 \\
-0.25 & 1 & -1
\end{bmatrix}
\]

The centroid is \((0, 0, 0)\). The polytope is depicted as in Figure 2a. Each vertex is numbered and its coordinate is provided in the figure. There are 12 vertices, 8 facets and 18 edges in this polytope. Let \(\{i, j\} \) represent the line segment that connects vertices \(i\) and \(j\). Using Theorem 1, we can determine 14 edges. However, for the rest 4 edges, \(\{1, 2\}, \{5, 6\}, \{7, 8\}, \) and \(\{11, 12\}\), we have to use Theorem 2 to identify them.

The projected figure of the polytope in x-y plane is depicted in Figure 2b which may help us to verify the result to be presented. First, let’s consider the \(\{1, 2\}\) edge. Given \(i = 1\) and \(j = 2\), i.e., \(u_1 = [1, 0, 1]\) and \(u_2 = [1, 0, -1]\), using
Theorem 1, we cannot determine if \(\{1, 2\} \) is an edge. It is not difficult (but tedious) to verify that the corresponding linear programming problem (16) can be written as

\[
\begin{align*}
\min_{y, f} & \quad f \\
\text{s.t.} & \quad \begin{bmatrix} 0.25 & -1 & 1 \\ 0.25 & -1 & -1 \\ -0.75 & -1 & 1 \\ -0.75 & -1 & -1 \\ -2 & 0 & 1 \\ -2 & 0 & -1 \\ -2.25 & 1 & 1 \\ -2.25 & 1 & -1 \\ -1.25 & 1 & 1 \\ -1.25 & 1 & -1 \end{bmatrix} \begin{bmatrix} y_1 - 1 \\ y_2 \\ y_3 \end{bmatrix} \leq f, \\
& \begin{bmatrix} 0, 0, -2 \end{bmatrix}^{T} = 0, \\
& \begin{bmatrix} 0 \\ -1 \end{bmatrix} \leq \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \leq \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]

which has the optimal solution \(y^* = [2, 0.6821, 0] \) and \(f^* = -0.300878 \). According to Theorem 2,(a), the line segment \(\{1, 2\} \) is an edge.

Given \(i = 1 \) and \(j = 5 \), i.e., \(u_1 = [1, 0, 1] \) and \(u_2 = [0.25, -1, 1] \), using Theorem 1, we cannot determine if \(\{1, 5\} \) is an edge. It is not difficult (but tedious) to verify that the corresponding linear programming problem (16) can
be written as

\[
\begin{align*}
\min_{y,f} f &= \begin{bmatrix} 0.375 & 0.5 & -2 \\
0.625 & -0.5 & 0 \\
0.625 & -0.5 & -2 \\
-0.375 & -0.5 & -2 \\
-1.625 & 0.5 & 0 \\
-1.625 & 0.5 & -2 \\
-1.875 & 1.5 & 0 \\
-1.875 & 1.5 & -2 \\
-0.875 & 1.5 & 0 \\
-0.875 & 1.5 & -2 \\
\end{bmatrix} \begin{bmatrix} y_1 - 0.625 \\
y_2 + 0.5 \\
y_3 - 1 \\
\end{bmatrix} \leq f \\
\begin{bmatrix} 2.0954 \\
0.8004 \\
2.1542 \\
2.0954 \\
1.7002 \\
2.625 \\
2.4012 \\
3.125 \\
1.7366 \\
2.6487 \end{bmatrix} \\
\end{align*}
\]

which has the optimal solution \(y^* = [2, 0.6821, 0]\) and \(f^* = -0.300878\). According to Theorem 2.(a), the line segment \([1, 2]\) is not an edge.

Using the same strategy, we can determine that \([5, 6], [7, 8], \) and \([11, 12]\) are also edges. Algorithm 1 finds the H-representation as

\[
H = \begin{bmatrix} 0 & 0 & 1 \\
1 & 0.25 & 0 \\
0 & -1 & 0 \\
-1 & -1.25 & 0 \\
-1 & -0.25 & 0 \\
0 & 1 & 0 \\
1 & 1.25 & 0 \\
0 & 0 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \end{bmatrix}
\]

In summary, for all tested convex polytopes with known H-representations and V-representation, the algorithm is verified to be successful.

5 Conclusion

In this paper, an intuitive and novel facet enumeration algorithm is proposed. The idea is purely based on geometric observation, therefore, it is easy to understand. The outer loop of algorithm is based on breadth-first search which eventually covers all the vertices of the polytope. The inner loop of the algorithm is based on depth-first search which will find the facets associated with the vertex under the consideration. The algorithm is implemented in Matlab and numerical test shows the efficiency and effectiveness of the algorithm. Due to the duality between the vertex enumeration problem and facet enumeration problem, we expect that this method can also be used to solve the vertex enumeration problem with some minor tweaks.
References

1. Avis, D.: http://cgm.cs.mcgill.ca/~avis/C/lrs.html, last accessed 2023/10/25
2. Avis D., Fukuda, K.: A pivoting algorithm for convex hull and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom 8(3), 295 – 313 (1992)
3. Avis D., Jordan, C.: mplrs: A scalable parallel vertex/facet enumeration code. Mathematical Programming Computation, 10(2), 267 – 302 (2018)
4. Bland, R. G.: New Finite Pivoting Rules for the Simplex Method. Mathematics of Operations Research, 2(2), 103 – 107 (1977)
5. Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discrete Comput. Geom., 20(10), 333 – 357 (1998)
6. Chand D. R., Kapur, S.: An algorithm for convex polytopes, J. Assoc. Comput. Mach., 17(1) 78 – 86 (1970)
7. Ceder, G., Garbulsky, G., Avis, D., Fukuda, K.: Ground states of a ternary fcc lattice model with nearest- and next-nearest-neighbor interactions. Phys Rev B Condens Matter 49(1) 1–7 (1994)
8. Dantzig, G.B.: Linear programming and extension. Princeton University Press, New Jersey (1963)
9. Deza, M.M., Laurent, M.: Geometry of cuts and metrics. Springer New York, (1997)
10. Dyer, M.E.: The complexity of vertex enumeration methods. Mathematics of Operations Research, 8(3) 381-402, (1983)
11. Fukuda K., Rosta, V.: Combinatorial face enumeration in convex polytopes. Computational Geometry: Theory and Applications, 4(4) 191-198 (1994)
12. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R. M.: The Double Description Method. Annals of Math. Studies 8, 51-73, Princeton University Press, (1953)
13. Swart, G. F.: Finding the convex hull facet by facet. J. Algorithms, 6(1) 17 – 48 (1985)
14. Wright, S.: Primal-dual interior-point methods. SIAM, Philadelphia (1997)
15. Yang, Y.: Arc-search techniques for interior-point method. CRC Press, Florida (2020)
16. Yang, Y.: On the pivot simplex method for linear programming I, algorithms and numerical test, arXiv:2107.08468v2, (2020)
17. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995)