The DFAs of Finitely Different Languages

Andrew Badr        Ian Shipman

February 1, 2008

Abstract

Two languages are finitely different if their symmetric difference is finite. We consider the DFAs of finitely different regular languages and find major structural similarities. We proceed to consider the smallest DFAs that recognize a language finitely different from some given DFA. Such f-minimal DFAs are not unique, and this non-uniqueness is characterized. Finally, we offer a solution to the minimization problem of finding such f-minimal DFAs.

1 Preliminaries

A DFA is a quintuple \((Q, \Sigma, \delta, q_0, A)\) following the standard definition [1], where \(Q\) is the set of states, \(\Sigma\) is the alphabet, \(\delta\) is the transition function, \(q_0\) is the starting state, and \(A\) is the set of accepting states.

We extend the transition function \(\delta\) to words in the standard way. We only consider DFAs where all states are reachable. By default, consider \(D\) and \(D'\) to refer to DFAs, with \(D = (Q, \Sigma, \delta, q_0, A)\) and \(D' = (Q', \Sigma, \delta', q_0', A')\), and consider \(L\) and \(L'\) to be their languages. Finally, if \(D\) is a DFA, then \(L(D)\) is the language recognized by \(D\).

2 Results

The first subsection investigates the numerous similarities between DFAs that recognize finitely different languages. It contains the bulk of our results. The second subsection addresses a natural minimization problem – finding f-minimal DFAs. It contains a single theorem and the sketch of an algorithm.

2.1 Main Results

Definition 1 (Finitely Different Languages). If the symmetric difference \(L \triangle L'\) is a finite set, then \(L\) and \(L'\) are finitely different and we write \(L \sim L'\).

This paper investigates the DFAs of finitely different languages. Note that the set of regular languages is closed under finite difference: if \(L\) is regular and \(L \sim L'\), then \(L'\) is regular.

Definition 2 (Equivalence Classes). Finite difference is an equivalence relation. The equivalence classes of this relation are called language-classes. In a natural
way, we extend this relation to DFAs such that $D \sim D'$ if $L(D) \sim L(D')$, and each DFA is likewise a member of some (equivalence) DFA-class.

**Definition 3** (Finite Part and Infinite Part). For any DFA $D = (Q, \Sigma, \delta, q_0, A)$, $Q$ is partitioned into two sets of states: the finite part and the infinite part. To aid understanding, we offer two equivalent definitions of the finite and infinite parts:

1. For every state $q \in Q$, consider the set \( \{ w \in \Sigma^* | \delta(q_0, w) = q \} \). If this set is finite, $q$ is in the finite part of $D$, denoted by $F(D)$. If this set is infinite, $q$ is in the infinite part of $D$, denoted by $I(D)$.

2. A state $q \in Q$ is in the infinite part iff it is either on a cycle (that is, $\exists w \in \Sigma^+ | \delta(q, w) = q$) or reachable from a state which is on a cycle.

**Definition 4** (Infinite Part Isomorphism). Two DFAs $D = (Q, \Sigma, \delta, q_0, A)$ and $D' = (Q', \Sigma, \delta', q'_0, A')$ are said to have *isomorphic infinite parts*, denoted by $D \cong_I D'$, if there exists a bijection $f : I(D) \to I(D')$ such that

1. $(\forall q \in I(D)), q \in A \iff f(q) \in A'$ and

2. $(\forall q \in I(D), \forall c \in \Sigma), f(\delta(q, c)) = \delta'(f(q), c)$.

**Theorem 5** (Infinite Part Isomorphism). If $D$ and $D'$ are minimized and $D \sim D'$, then $D \cong_I D'$.

*Proof.* Let $D$ and $D'$ be minimized DFAs whose languages ($L$ and $L'$) are finitely different. For $D$, there is some length of word above which all input strings “end up in” the infinite part. That is, there exists a $k$ so that $|w| > k \Rightarrow \delta(q_0, w) \in I(D)$. Likewise for $D'$. Furthermore, since the languages have only a finite difference, there is some length of word above which the languages are identical. Let $N$ be the maximum of these three numbers.

With each state $q \in I(D)$, we associate a representative string $w_q$ such that $\delta(q_0, w_q) = q$ and $|w_q| > N$. Strings of sufficient length must exist, since infinitely many strings reach $q$. Now consider the function $f : I(D) \to I(D')$ defined by $f(q) = \delta'(q_0, w_q)$. We will show that $f$ is an infinite part isomorphism.

Let $q_1 \neq q_2 \in I(D)$ and let $w_1$ and $w_2$ be their representative strings. Since $D$ is minimized, there is a string $t$ such that $w_1t \in L$ iff $w_2t \notin L$. Since $|w_1|, |w_2| > N$, obviously $|w_1t|, |w_2t| > N$ and therefore $w_1t \in L'$ iff $w_2t \notin L'$ by the definition of $N$. This means that $\delta'(q'_0, w_1t) \neq \delta'(q'_0, w_2t)$, which implies that $f(q_1) \neq f(q_2)$. Hence, $f$ is an injection. We can interchange $D$ and $D'$, and choose representative strings for $I(D')$ to obtain an injection $f' : I(D') \to I(D)$. Therefore $I(D)$ and $I(D')$ have the same cardinality and $f$ is a bijection. To complete the theorem, we prove that $f$ satisfies the two conditions of Definition 4:

1. We use a proof by contradiction. Consider any $x \in I(D)$ and $c \in \Sigma$. Let $x' = f(x)$. Let $y = \delta(x, c)$ and $z$ be such that $f(z) = \delta'(f(x), c)$. Suppose that $f(y) \neq f(z)$. Then $y \neq z$, so there exists some distinguishing string $d$ between them. If $w_x$ and $w_z$ are representative strings for $x$ and $z$ respectively, then $w_xd \in L$ iff $w_zd \notin L$. But in $D'$, $w_xc$ and $w_zc$ go to the same state $f(z)$, so $w_xd \in L'$ iff $w_zd \in L'$. We are forced to conclude that $D$ and $D'$ disagree on one of $w_xd$ and $w_zd$, but this contradicts our choice of $N$.

2. Let $q \in I(D)$. Since $|w_q| > N$, $w_q \in L$ iff $w_q \in L'$. Hence, by the definition of $f$, $q \in A$ iff $f(q) \in A'$.
Proposition 6. The converse of Theorem 5 is false.

Proof. Consider the minimized DFAs for $0^*$ and $10^*$. Their infinite parts are isomorphic, but the languages differ on infinitely many strings.

Definition 7 (Induced languages). Consider a DFA $D = (Q, \Sigma, \delta, q_0, A)$. The language induced by $q \in Q$ is the language recognized by the DFA $(Q, \Sigma, \delta, q, A)$. This language is denoted by $L(q)$. We extend the finite difference relation to states, where if $L(p) \sim L(q)$ then $p \sim q$, and $p$ and $q$ are members of the same state-class.

Definition 8 ($S(D)$ and $Q_C(D)$). For any DFA $D$, define: $S(D) = \{[L(q)] : q \in Q\}$, where $[L]$ denotes the language-class of $L$. For any language-class $C \in S(D)$, let $Q_C(D)$ denote the set of states of $D$ inducing a language in $C$.

Theorem 9. If $D \sim D'$, then $S(D) = S(D')$.

Proof. Suppose $S(D) \neq S(D')$, with $C \in S(D) \setminus S(D')$. For some $q \in Q_C(D)$, let $w$ be a word such that $\delta(q_0, w) = q$. Let $q' = \delta'(q_0, w)$. $L(q') \notin C$, so $W = L(q) \Delta L(q')$ is an infinite set. Since $D$ and $D'$ disagree on any word of the form $wd$, where $d \in W$, $D \not\sim D'$.

Proposition 10. The converse of Theorem 9 is false.

Proof. Consider DFAs $D$ and $D'$ where $L(D) = \{w : |w|\text{ is odd}\}$ and $L(D') = \{w : |w|\text{ is even}\}$. $S(D) = S(D')$, but the DFAs disagree on infinitely many strings.

Lemma 11. If $D_q$ is the induced DFA of $q \in Q$ in some DFA $D$, then $I(D_q) \subseteq I(D)$.

Proof. Let $w$ be a word such that $\delta(q_0, w) = q$. Then for any state $q' \in Q$, $\delta(q, w') = q' \sim \delta(q_0, w'w') = q'$. Therefore, if any state $q'$ can be reached from $q$ by infinitely many strings, then by prepending $w$ to those strings it is clear that $q'$ can also be reached from $q_0$ by infinitely many strings.

Proposition 12. If $D$ and $D'$ are minimized DFAs, then $S(D) = S(D') \rightarrow D \equiv_1 D'$.

Proof. Suppose $S(D) = S(D')$. Then there must exist some state $q' \in Q'$ such that $q_0 \sim q'$, where $q_0$ is the start state of $D$. Let $D_q'$ be the induced DFA of $q'$. By Lemma 11, $I(D_q') \subseteq I(D')$ hence $|I(D_q')| \leq |I(D')|$. Since $q_0 \sim q'$, $D \sim D_q'$, so by Theorem 4 $D \equiv_1 D_q'$ and $|I(D)| = |I(D_q')|$. Combining the two results obtains $|I(D)| \leq |I(D')|$, and by symmetry $|I(D')| \leq |I(D)|$, so $|I(D)| = |I(D')|$. Therefore, $I(D_q') = I(D')$ and $D \equiv_1 D'$.

Proposition 13. The converse of Proposition 12 is false.

Proof. Consider the minimized DFAs for $0^*$ and $10^*$. Their infinite parts are isomorphic, but no state in the former is in the same state-class as the start state of the latter.
Remark 14. In the results concluding with Proposition 13, we have fully articulated the relationships between finite difference, $S(D)$ equivalence, and infinite-part isomorphism. In summary, $D \sim D' \rightarrow S(D) = S(D') \rightarrow D \cong_{f} D'$, and none of the reverse implications is true. As partitions on the set of all DFAs, each is a proper refinement of the next.

Definition 15 (f-merge). The f-merge operation combines two states of a DFA, given $p, q \in Q$ with $p \sim q$ and $p \in F(D)$. To f-merge $p$ and $q$, delete $p$ and whenever $\delta(x, c) = p$, replace the transition with $\delta(x, c) = q$. Note that since $p \in F(D)$ it is impossible for $\delta(p, c) = p$.

Lemma 16. The f-merge operation makes only a finite difference in a DFA’s language.

Proof. Suppose we are going to apply the f-merge operation to states $p, q$ of DFA $D_1$, turning it into $D_2$. Let $X$ be the set of words that go to $p$, and let $Z$ be the set of words $L(p) \bigtriangleup L(q)$. The presence in $L(D_1)$ of any word not passing through $p$ is unaffected. Considering a word of the form $xw$ for $x \in X$ we see that unless $w \in L(p) \bigtriangleup L(q)$, the status of $xw$ with respect to $L(D_1)$ will not change. Hence we see that $|L(D_1) \bigtriangleup L(D_2)| = |X \ast Z| = |X||Z| < \infty$ since $|X|, |Z| < \infty$. So $D_1 \sim D_2$.

Definition 17 (f-minimal). $D$ is f-minimal if for any $D', D \sim D' \rightarrow |Q| \leq |Q'|$.

Lemma 18. In an f-minimal DFA, each state in the finite part is the sole representative of its state-class. In other words, if $D$ is f-minimal with $p \in F(D)$, then $p \sim q \rightarrow p = q$.

Proof. If $p \in F(D)$, $p \sim q$, and $p \neq q$, then $p$ and $q$ can be f-merged. By Lemma 16, this would result in a smaller DFA of the same DFA-class, meaning $D$ could not be f-minimal.

Definition 19 (Isomorphic Finite Part). $D$ and $D'$ are said to have isomorphic finite parts up to acceptance if there exists a bijective function $f : F(D) \rightarrow F(D')$ such that: $\forall q_x, q_y \in F(D), (\forall c \in \Sigma, \delta(q_x, c) = q_y \rightarrow \delta'(f(q_x), c) = f(q_y))$.

Theorem 20. If $D$ and $D'$ are f-minimal and $D \sim D'$, then their finite parts are isomorphic up to acceptance.

Proof. First, by Theorem 9, $S(D) = S(D')$. Second, since all f-minimal DFAs are minimized, $D \cong_{f} D'$, so the state-classes represented by $I(D)$ are the same as those represented by $I(D')$. So by subtraction, the state-classes represented $F(D)$ are the same as those represented by $F(D')$. By Lemma 20, or by noting that $|Q| = |Q'|$ and $|I(D)| = |I(D')|$, we may conclude that $|F(D)| = |F(D')|$. Therefore, we construct our bijection $f : F(D) \rightarrow F(D')$ by mapping each state in $F(D)$ to the state in $F(D')$ whose induced language is in the same language-class. Consider any $p, q \in F(D)$ and $c \in \Sigma$ where $\delta(p, c) = q$. The languages of $p$ and $f(p)$ differ on only finitely many strings. Since every difference between the induced languages of $\delta(p, c)$ and $\delta'(f(p), c)$ causes a difference between the induced languages of $p$ and $f(p)$ (one that begins with $c$) we conclude that $L(\delta(p, c)) \sim L(\delta'(f(p), c))$. Hence, $f(q) = \delta'(f(p), c)$, as required.

Remark 21 (Non-uniqueness of f-minimal DFAs). Through the finite- and infinite-part isomorphism theorems, we have shown that there must be major structural similarities between any two f-minimal DFAs of the same DFA-class. Only two aspects have not been shown to be equal: the acceptance-values of states in the
finite part and the transitions that go from a finite-part state to an infinite-part state. Indeed, both of these aspects may be altered. The acceptance values of states in the finite part can be altered arbitrarily while affecting neither DFA-class nor f-minimality. As for the finite-part to infinite-part transitions, f-minimal DFAs within a class can differ on this aspect as well. However, an argument similar to that of Theorem 20 shows that these transitions can only swap destinations within a single state-class (i.e., when there are multiple infinite-part states in the same state-class, transitions into that state-class may permute with each other). Furthermore, such a swap will preserve both DFA-class and f-minimality, while any other swap will not, so this is the best possible result.

The previous results may suggest that finite language differences originate with finite-part differences. However, they may also occur when infinite parts have multiple states in the same state-class. The final result of this section demonstrates how extreme this can be.

**Proposition 22.** For any finite set of words \( W \) over an alphabet with at least two characters, there exist minimized DFAs \( D \) and \( D' \) with \( F(D) = \emptyset = F(D') \) and \( L(D) \triangle L(D') = W \).

**Proof.** Let \( W \) be an arbitrary finite subset of \( \Sigma^* \) for some \( |\Sigma| \geq 2 \). Let \( n = \max\{|w| : w \in W\} \). We will prove the hypothesis by construction, and \( D \) and \( D' \) will be identical except for the starting state. The alphabet \( \Sigma \) is already determined. Now, letting \( \Sigma_x \) and \( \Sigma^x \) be the sets of words of length at most \( n \) and exactly \( x \), respectively, we set \( Q = \Sigma_n \times \{0, 1\} \). Fixing a surjection \( \phi : \Sigma^{n+1} \to \{(\varepsilon, 0), (\varepsilon, 1)\} \) such a function must exist since \( |\Sigma| \geq 2 \) – we set \( \delta \) as follows:

\[
\delta((w, i), c) = (wc, i) \quad \text{if } |w| < n, \\
\delta((w, i), c) = \phi(wc) \quad \text{if } |w| = n.
\]

Let \( A = \{(w, i) : i = 1 \text{ and } w \in W\} \). Setting \( D = (Q, \Sigma, \delta, (\varepsilon, 0), A) \) and \( D' = (Q, \Sigma, \delta, (\varepsilon, 1), A) \) completes our construction. It remains to prove that \( F(D) = F(D') = \emptyset \) and \( L(D) \triangle L(D') = W \), and that these properties are preserved by minimization.

To prove the first property, it suffices to show that the starting states are on a cycle. We begin with \( D \). Since \( \phi \) is surjective, let \( w_0 \) be any word with \( \phi(w_0) = (\varepsilon, 0) \). Then we have \( \delta((\varepsilon, 0), w_0) = \phi(w_0) = (\varepsilon, 0) \). Therefore, \( (\varepsilon, 0) \in I(D) \), and state reachable from \((\varepsilon, 0)\) (that is, every state) is also in \( I(D) \), \( F(D) = \emptyset \). Since a DFA’s language is unchanged by minimization, the starting state \( q_0 \) and \( \delta(q_0, w_0) \) still induce the same language. In any minimized DFA, \( L(p) = L(q) \Rightarrow p = q \), so \( q_0 = \delta(q_0, w_0) \) and the starting state is still on a cycle. Therefore, \( F(D) = \emptyset \) before and after minimization. By a symmetrical proof, the same holds for \( F(D') \).

To prove the second property, begin by considering any word \( w \) with \( |w| \leq n \). It should be clear that \( \delta((\varepsilon, i), w) = (w, i) \). Therefore, by the definition of \( A \), \( w \in L(D) \triangle L(D') \) iff \( w \in W \). Continuing, for any word \( w \) with \( |w| = n+1 \) we have \( \delta((\varepsilon, 0), w) = \delta((\varepsilon, 1), w) = \phi(w) \). Since \( D \) and \( D' \) go to the same state on any word of length \( n+1 \), they also go to the same state on any word of length greater than \( n+1 \). Therefore, \( D \) and \( D' \) agree on any word \( w \) if \( |w| \geq n+1 \), so \( L(D) \triangle L(D') = W \), as desired. Finally, since minimization does not change the language of a DFA, this property too is preserved. \( \square \)
2.2 Algorithm

In this section, we address the minimization problem posed by the concept of \(f\)-minimality: given a starting DFA, how can one find an \(f\)-minimal DFA in the same DFA-class?

**Theorem 23** (No Local Minima Under F-Merge). Greedy, repeated application of the \(f\)-merge operation to any minimized initial DFA will result in an \(f\)-minimal DFA of the same DFA-equivalence class as the original.

*Proof.* Let \(D_1\) be the original minimized DFA. Since a DFA has finitely many states, \(f\)-merge can only be applied finitely many times, as each application reduces the number of states. Let \(D_1 \ldots D_n\) be the sequence of DFAs reached by applying \(f\)-merge, such that \(D_{k+1}\) is the result of some single application of \(f\)-merge to \(D_k\), and there is no possible way to \(f\)-merge in \(D_n\). Let \(D_Z\) be an \(f\)-minimal DFA in the same DFA-class as \(D_1 \ldots D_n\). Suppose for contradiction that \(D_Z\) has fewer states than \(D_n\). By Theorem 9, \(S(D_n) = S(D_Z)\). So there must exist some class \(C \in S = S(D_Z)\) such that \(Q_C(D_Z)\) has fewer states than \(Q_C(D_n)\). Consider the number of states from \(F(D_n)\) and \(I(D_n)\) in \(Q_C(D_n)\). If the latter is positive, then the former must be zero, or else any finite-part state in \(Q_C(D_n)\) could be \(f\)-merged with an infinite-part state, contradicting our assumption that no more \(f\)-merges could be performed in \(D_n\). But by Theorem 5, \(D_n \cong_f D_Z\), so the number of states from \(I(D_n)\) in \(Q_C(D_n)\) must equal the number of states from \(I(D_Z)\) in \(Q_C(D_Z)\). Therefore, there can be no states from \(I(D_n)\) in \(C\). But by Lemma 18 there must be exactly one state from \(F(D_n)\) in \(C\). Since \(D_Z\) must have at least one state in \(C\) (by Theorem 9), there is no way it could have fewer states in \(C\) than \(D_n\) does, contradicting our assumption that \(D_n\) was not \(f\)-minimal. \(\Box\)

**Algorithm 24** (F-Minimize). Theorem 23 immediately yields an algorithm for \(f\)-minimizing any DFA — that is, turning it into an \(f\)-minimal DFA in the same DFA-class. This algorithm is surely suboptimal, so we only sketch the proof. The input is a DFA \(D = (Q, \Sigma, \delta, q_0, A)\).

1. Minimize \(D\) using any minimization algorithm
2. Divide \(Q\) into the finite and infinite parts
3. For each pair of states \(p, q\), determine whether \(p \sim q\)
4. Within each state-class, \(f\)-merge any \(p, q\) pair where \(p \in F(D)\)

The first step is standard. The second step can be accomplished by determining for each state \(q\), using either depth- or breadth-first search, the set of all states reachable from \(q\), and then applying the second part of Definition 3. The third step can be accomplished by, for each \(p\) and \(q\), creating a DFA recognizing the language \(L(p) \triangle L(q)\). This is done by using the standard \(Q \times Q\) cross-product construction with \(D_p = (Q, \Sigma, \delta, p, A)\) and \(D_q = (Q, \Sigma, \delta, q, A)\) as inputs, where state \((x, y)\) is accepting if \(x \in A\) xor \(y \in A\). The resultant DFA is \(D_{pq}\), and \(p \sim q\) if after minimization \(D_{pq}\) has infinite part equal to a single non-accepting state with all transitions leading to itself. (DFAs with this property recognize finite languages, and if \(L(D_{pq})\) is finite then by construction \(p \sim q\).) After performing the fourth step, Theorem 23 proves that the resultant DFA will be \(f\)-minimal. Step 3 dominates the running time, as it involves the costly cross-product and minimization over all pairs of states. If \(n = |Q|\), then Step 3 takes \(O(n^4 \log n)\) time — \(n^2\) to go through each pair of states, and \(n^2 \log n\) on each of those to minimize the cross-product DFA.

We hope and believe that there is room for improvement on this algorithm.
References

[1] John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages and Computability*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.