MYCL promotes iPSC-like colony formation via MYC Box 0 and 2 domains

Chiaki Akifuji, Mio Iwasaki, Yuka Kawahara, Chiho Sakurai, Yu-Shen Cheng, Takahiko Imai & Masato Nakagawa

Human induced pluripotent stem cells (hiPSCs) can differentiate into cells of the three germ layers and are promising cell sources for regenerative medicine therapies. However, current protocols generate hiPSCs with low efficiency, and the generated iPSCs have variable differentiation capacity among different clones. Our previous study reported that MYC proteins (c-MYC and MYCL) are essential for reprogramming and germline transmission but that MYCL can generate hiPSC colonies more efficiently than c-MYC. The molecular underpinnings for the different reprogramming efficiencies between c-MYC and MYCL, however, are unknown. In this study, we found that MYC Box 0 (MB0) and MB2, two functional domains conserved in the MYC protein family, contribute to the phenotypic differences and promote hiPSC generation in MYCL-induced reprogramming. Proteome analyses suggested that in MYCL-induced reprogramming, cell adhesion-related cytoskeletal proteins are regulated by the MB0 domain, while the MB2 domain regulates RNA processes. These findings provide a molecular explanation for why MYCL has higher reprogramming efficiency than c-MYC.

Human induced pluripotent stem cells (hiPSCs) are generated from somatic cells and can differentiate into cells of all three germ layers. They are functionally identical to human embryonic stem cells (hESCs) but do not require the destruction of the embryo, which has made them attractive sources for regenerative medicine. The original reprogramming was induced by four factors, OCT3/4, SOX2, KLF4, and c-MYC (OSKM). Since then, several new methods have been developed to improve the yield and quality of iPSCs, but the cost remains high and the production remains technically difficult. Further complicating the application of hiPSCs is the wide variability in the differentiation capacity of different hiPSC clones.

We have shown that excluding c-MYC from the reprogramming factors significantly lowers the reprogramming and differentiation efficiencies of the resulting iPSCs. The MYC family consists of the oncogenes c-MYC, MYCN, and MYCL in humans. c-MYC was the first MYC gene discovered in human and has been a topic of cancer research ever since. Tumorigenesis depends on high transformation activity derived from the N-terminus region of c-MYC protein. Consequently, OSKM-based reprogramming may not be appropriate for the clinical application of iPSCs. Many groups have reported reprogramming methods that exclude c-MYC overexpression but at the cost of lower reprogramming efficiency. MYCL is about 30 amino acids shorter in the N-terminus region than c-MYC and has lower transformation activity. We found that substituting c-MYC for MYCL in reprogramming can increase the number of iPSC colonies and maintain the ability to differentiate into the cells of three germ layers. Furthermore, fewer chimeric mice died by tumorigenesis after the transplantation of MYCL-iPSCs, whereas the transplantation of c-MYC-iPSCs caused lethal tumorigenesis in more than 50% of mice during two years of observation. Despite these observations, little is known about the molecular function of MYCL and the different mechanisms between c-MYC and MYCL to promote reprogramming.

MYC proteins have six MYC Box (MB) domains: MB0, 1, 2, 3a, 3b, and 4 in the N-terminus and a basic helix-loop-helix leucine zipper (bHLHLZ) in the C-terminus, but MYCL does not have MB3a. The C-terminus of c-MYC and MYCL is essential in reprogramming due to its binding with MAX protein, allowing MYC to access the DNA. The N-terminus is mainly known as a transactivation domain (TAD), which regulates the target gene, but its function in reprogramming is less clear. We found that a mutant of c-MYC lacking the N-terminal showed low transformation activity and promoted reprogramming. However, which domain on the N-terminal side is essential for reprogramming and what function it performs were not resolved. In addition, MYC proteins act as transcription factors upon interacting with several binding proteins. Although MYCL-binding proteins are important for MYC function, there are no reports about MYCL-binding proteins during reprogramming.

Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan. Email: nakagawa@ci-ra.kyoto-u.ac.jp
MYCL promotes reprogramming more efficiently than c-MYC. To compare the reprogramming phenotypes of MYCL and c-MYC, we used Sendai virus (SeV)-based reprogramming (CytoTune-iPS) and StemFit AK03N medium without bFGF (Fig. 1A). The SeV method has high reprogramming efficiency without genome integration, and c-MYC and MYCL SeV kits are already available15. The bFGF exclusion is based on the data in Supplementary Fig. S1. DMEM supplemented with 10% FBS (DMEM + 10%FBS) is the standard medium to induce reprogramming. We used DMEM + 10%FBS when introducing the reprogramming factors, but after 7 days of reprogramming, we replated the cells and used StemFit AK03N without bFGF (03N (-)) from that point on. The MOI (multiplicity of infection) of each SeV was 20. To improve the reprogramming efficiency, we compared three media combinations (Supplementary Fig. S1A). The highest number of colonies was obtained using 03N (-) during reprogramming and 03N (+) after reprogramming (Supplementary Fig. S1B). These results indicated that the 03N (-) reprogramming condition in the first 7 days enhances the reprogramming efficiency compared to 03N (+). We then examined the optimal MOI of SeV for the reprogramming (Supplementary Fig. S1C). A lower MOI induced more colonies (Supplementary Fig. S1D), indicating a higher reprogramming efficiency. Following these results, we applied SeV for the transduction at an MOI of 4.3 using 03N (-) during reprogramming.

Next, we conducted immunostaining to analyze the expression of TRA-1-60 from days 1 to 7 after the transduction (Fig. 1A). TRA-1-60 is a glycoprotein and major cell surface marker of hiPSCs and hESCs16. We quantified the results using a high-content imaging system, ArrayScan, because the cell number was small during SeV reprogramming for the first seven days, making flow cytometry challenging. On day 7, we observed that c-MYC and MYCL induced a small cell mass to form colonies, but only the colonies induced by MYCL expressed TRA-1-60 (+) cells. The percentage of TRA-1-60 (+) cells increased more in MYCL-transduced HDFs on day 21. Mean ± SD values are shown. *p < 0.05 and **p < 0.01 by paired t-test. (D) Schematic representation of HDF reprogramming with episomal plasmid vector (EpiP). HDFs were transduced with EpiP carrying SOX2, KLF4, OCT3/4-shp53, LIN28A, EBNA1, and c-MYC or MYCL. StemFit AK03N without bFGF was used during the transfection and subsequent induction of iPSC-like colonies. We performed flow cytometry of the reprogramming HDFs three days from 1 to 19 days plus day 21 after the transduction. (E) Representative immunostaining images of reprogramming HDFs stained by anti-TRA-1-60 antibody (green) and Hoechst (blue) 21 days after the transduction. Scale bar, 300 μm. Ph, phase contrast. (F) Proliferation and expression of TRA-1-60 (+) cells during reprogramming were analyzed by flow cytometry. HDFs were transduced with EpiP including c-MYC or MYCL. Flow cytometry was performed every three days from 1 to 19 days plus day 21. Mean ± SD for n = 3, *p < 0.05 and **p < 0.01 by paired t-test. (G) The number of iPSC-like and non-iPSC-like colonies derived from 1 x 10^4 HDFs transduced with EpiP including c-MYC or MYCL on day 21. Mean ± SD values are shown. n = 3, *p < 0.01 by unpaired t-test. (H) Percentage of CD13 (+) cells during EpiP reprogramming determined by flow cytometry. Mean ± SD values are shown. n = 3, *p < 0.05 and **p < 0.01 by paired t-test.
A

![c-MYC and MYCL Box domain identity](image)

B

![Graphs showing iPSC-like colony number and Non-iPSC-like colony number](image)

C

![Graphs showing TRA-1-60% and CD13%](image)

D

![Flow cytometry for CD13 and TRA-1-60%](image)

E

![Graph showing cell number over time](image)
was larger with MYCL reprogramming (Supplementary Fig. S4). These results suggested that MYCL promotes reprogramming than MYCL reprogramming, but the CD13 (-) TRA-1-60 (+) population from days 16 to 21 c-MYC or MYCL, but the number of CD13 (-) cells rapidly increased in c-MYC compared to MYCL (Fig. 1H and 1I). On the other hand, the bHLHLZ domain in the C-terminus region is a well-known binding transactivation domain of the N-terminal region, W135E (Fig. 2A and Supplementary Fig. S5). We previously showed that a c-MYC mutant lacking transformation activity enhances the formation of iPSC-like colonies. This mutant has a point mutation in the MYC Box 0 and 2 domains are crucial for colony formation during reprogramming. Figure 2A shows that c-MYC-ΔMB1 promoted iPSC-like colony formation like c-MYC-ΔMB0, but it also led to the formation of non-iPSC-like colonies. The formation of iPSC-like colonies by MYCL were more flattened and showed a monolayered colony morphology, with each cell tightly packed and expressing TRA-1-60. The non-iPSC-like colonies produced by c-MYC showed a cell aggregation-like morphology, in which individual cells were irregularly aggregated and did not express TRA-1-60. We counted the number of iPSC-like and non-iPSC-like colonies on day 21 and found that c-MYC induced iPSC-like colonies as well as many non-iPSC-like colonies, but MYCL induced almost only iPSC-like colonies and more of them than c-MYC (Fig. 1G and Supplementary Fig. S3).

It has been reported that before the increase in the expression of TRA-1-60, a decrease in the expression of CD13, a marker of fibroblasts, is observed in somatic cell reprogramming. Therefore, we confirmed the expression of CD13 during reprogramming. The percentage of CD13 (+) cells increased in HDFs transduced with c-MYC or MYCL, but the number of CD13 (+) cells rapidly increased in c-MYC compared to MYCL (Fig. 1H and Supplementary Fig. S4). In particular, the CD13 (-) TRA-1-60 (+) population was larger on day 10 with c-MYC reprogramming than MYCL reprogramming, but the CD13 (-) TRA-1-60 (+) population from days 16 to 21 was larger with MYCL reprogramming (Supplementary Fig. S4). These results suggested that MYCL promotes TRA-1-60 (+) cells more than c-MYC, but c-MYC suppresses CD13 expression more than MYCL.

Figure 2B shows that c-MYC-ΔMB1 promoted iPSC-like colony formation like c-MYC-ΔMB0, but it also led to the formation of non-iPSC-like colonies. The formation of iPSC-like colonies by MYCL-ΔMB1 was about a quarter that by MYCL-WT. Unlike c-MYC-WT, c-MYC-ΔMB2 did not induce non-iPSC-like colonies, but it did induce a rate of iPSC-like colonies similar to c-MYC-WT. MYCL-ΔMB2 showed little ability to form iPSC-like colonies, resembling MYCL-ΔMB0. c-MYC-ΔMB3a, ΔMB3b, and ΔMB4 had similar colony-forming activities as c-MYC-WT. MYCL-ΔMB3b showed the same reprogramming efficiency as MYCL-WT, but MYCL-ΔMB4 formed about the same small number of iPSC-like colonies as MYCL-ΔMB1. The ΔbHLHLZ mutants of both c-MYC and MYCL failed to induce colonies and were therefore considered to have lost MYC function completely. Thus, the results indicate that in c-MYC, the MB0 and MB2 domains are repressive for iPSC-like colony formation, but in MYCL, they are promotive. Other domains also influenced the colony formation efficiency, but the effect was small.

Next, we analyzed the effect of the MYC-deletion mutants on the expression of TRA-1-60 and CD13 by flow cytometry 16 days after the start of reprogramming (Fig. 2C). Mutants that increased the number of iPSC-like colonies also increased the expression of TRA-1-60, while those that reduced the number of iPSC-like colonies lowered the TRA-1-60 expression (Fig. 2C and Supplementary Fig. S9). c-MYC-WT showed little TRA-1-60 expression. It has been reported that before the increase in the expression of TRA-1-60, a decrease in the expression of CD13, a marker of fibroblasts, is observed in somatic cell reprogramming. Therefore, we confirmed the expression of CD13 during reprogramming. The percentage of CD13 (+) cells increased in HDFs transduced with c-MYC or MYCL, but the number of CD13 (+) cells rapidly increased in c-MYC compared to MYCL (Fig. 1H and Supplementary Fig. S4). In particular, the CD13 (-) TRA-1-60 (+) population was larger on day 10 with c-MYC reprogramming than MYCL reprogramming, but the CD13 (-) TRA-1-60 (+) population from days 16 to 21 was larger with MYCL reprogramming (Supplementary Fig. S4). These results suggested that MYCL promotes TRA-1-60 (+) cells more than c-MYC, but c-MYC suppresses CD13 expression more than MYCL.

MYC Box 0 and 2 domains are crucial for colony formation during reprogramming. Next, we prepared domain deletion mutants to identify which domains in the N-terminus of MYC proteins influence colony formation, but in MYCL, they are promotive. Other domains also influenced the colony formation efficiency, but the effect was small.

Next, we analyzed the effect of the MYC-deletion mutants on the expression of TRA-1-60 and CD13 by flow cytometry 16 days after the start of reprogramming (Fig. 2C). Mutants that increased the number of iPSC-like colonies also increased the expression of TRA-1-60, while those that reduced the number of iPSC-like colonies lowered the TRA-1-60 expression (Fig. 2C and Supplementary Fig. S9). c-MYC-WT showed little TRA-1-60 expression. It has been reported that before the increase in the expression of TRA-1-60, a decrease in the expression of CD13, a marker of fibroblasts, is observed in somatic cell reprogramming. Therefore, we confirmed the expression of CD13 during reprogramming. The percentage of CD13 (+) cells increased in HDFs transduced with c-MYC or MYCL, but the number of CD13 (+) cells rapidly increased in c-MYC compared to MYCL (Fig. 1H and Supplementary Fig. S4). In particular, the CD13 (-) TRA-1-60 (+) population was larger on day 10 with c-MYC reprogramming than MYCL reprogramming, but the CD13 (-) TRA-1-60 (+) population from days 16 to 21 was larger with MYCL reprogramming (Supplementary Fig. S4). These results suggested that MYCL promotes TRA-1-60 (+) cells more than c-MYC, but c-MYC suppresses CD13 expression more than MYCL.
expression, whereas c-MYC-ΔMB0 upregulated the expression. MYCL-ΔMB0, unlike MYCL-WT, failed to upregulate the expression of TRA-1-60. The CD13 expression was also correlated with colony formation. In c-MYC, a significant decrease in CD13 expression was observed for mutants that promoted non-iPSC-like colony formation. As for MYCL, only a slight decrease in CD13 expression was observed for mutants that promoted iPSC-like colony formation. From these results, we concluded that the MB0 domain is essential for the function of MYC in reprogramming but functions differently between c-MYC and MYCL.

To analyze the function of the MB0 domain in more detail, we analyzed the expression of TRA-1-60 and CD13 on days 10 and 21 after the start of reprogramming by flow cytometry (Fig. 2D). In the case of c-MYC-WT, there was a strong decrease in CD13 expression on day 10, and most cells were CD13 negative on day 21. In the cases of c-MYC-ΔMB0 and MYCL-WT, there was a slight decrease in CD13 expression on day 10, and more than half of cells were expressing TRA-1-60 on day 21. Finally, in the case of MYCL-ΔMB0, there was no change in CD13 or TRA-1-60 expression. More study is needed to determine how CD13 is regulated by c-MYC and MYCL.

Additionally, c-MYC-WT showed higher cell proliferation on day 10, but c-MYC-ΔMB0 resulted in a lower cell proliferation comparable more with MYCL-WT than with c-MYC-WT on day 10 (Fig. 2E). We attributed this effect to the lost transformation activity of c-MYC-ΔMB0. From days 10 to 21, the cell proliferation increased significantly in c-MYC-ΔMB0 and MYCL-WT, and a concomitant increase in the CD13 (-) population was observed (Fig. 2D, E). These observations suggest that the number of cells that were reprogrammed increased rapidly with c-MYC-ΔMB0 and MYCL-WT. With c-MYC-WT, the cell proliferation continued until day 21. However, the CD13 (-) population hardly increased (Fig. 2D), indicating that these cells were not reprogramming but changing to other highly proliferative cell types. From these results, we concluded that the MB0 domain functions negatively in c-MYC and positively in MYCL for reprogramming.

MYCL regulates cytoskeleton- and cell adhesion-related proteins during reprogramming via the MB0 domain. To confirm which genes are regulated by the MYCL MB0 domain in reprogramming, we analyzed protein expressions during reprogramming because it was reported that gene expressions do not correlate well with protein expression during reprogramming. We performed an enrichment analysis of expressed proteins during reprogramming induced by c-MYC and MYCL WT and ΔMB0 mutants. We used SeV-reprogramming HDFs on days 3, 5, and 7 and EpiP-reprogramming HDFs on day 10 as samples for mass spectrometry (MS) reprogramming induced by c-MYC and MYCL WT and ΔMB0 mutants. We used SeV-reprogramming HDFs because the percentage of TRA-1-60 (+) cells was much higher with SeV than with EpiP for observations days 3, 5, and 7 days and EpiP-reprogramming HDFs on day 10 as samples for mass spectrometry (MS) reprogramming induced by c-MYC and MYCL WT and ΔMB0 mutants. We used SeV-reprogramming HDFs because the percentage of TRA-1-60 (+) cells was much higher with SeV than with EpiP for observations days. Next, we performed SeV-reprogramming HDFs on days 3, 5, and 7 and EpiP-reprogramming HDFs on day 10 as samples for mass spectrometry (MS) reprogramming induced by c-MYC and MYCL WT and ΔMB0 mutants. We used SeV-reprogramming HDFs because the percentage of TRA-1-60 (+) cells was much higher with SeV than with EpiP for observations days. We hypothesized that this domain in MYCL has reprogramming function. We therefore produced a mutant in which tryptophan 96 was substituted with glutamate (W96E). This tryptophan is equivalent to tryptophan 135 in c-MYC (Fig. 4A and Supplementary Fig. S5B). We confirmed the expression of MYCL-W96E by western blotting (Supplementary Fig. S12). Next, we analyzed the expression of MYCL-W96E for reprogramming. HDFs were transfected with reprogramming factors including MYCL-WT or -W96E. MYCL-W96E could not induce iPSC-like colonies, suggesting tryptophan 96 is crucial for reprogramming (Fig. 4B). It has been reported that the c-MYC MB2 domain is involved in transformation activity, and tryptophan 135 within its MB2 domain is necessary for this activity. MYCL also has a tryptophan residue within its MB2 domain but little transformation activity. We hypothesized that this domain in MYCL has reprogramming function. We therefore produced a mutant in which tryptophan 96 was substituted with glutamate (W96E). This tryptophan is equivalent to tryptophan 135 in c-MYC (Fig. 4A and Supplementary Fig. S5B). We confirmed the expression of MYCL-W96E by western blotting (Supplementary Fig. S12). Next, we examined the effect of MYCL-W96E for reprogramming. HDFs were transfected with reprogramming factors including MYCL-WT or -W96E. MYCL-W96E could not induce iPSC-like colonies, suggesting tryptophan 96 is crucial for reprogramming. (Fig. 4B, C). We thus hypothesized that the residue might be important for MYCL to bind to other proteins. To identify the binding proteins, we produced GST-fusion recombinant proteins of the MYCL MB2 domain (Fig. 4A). GST-MYCL-MB2-WT or -W96E proteins were immobilized on glutathione Sepharose, and affinity columns were prepared. Cell lysates were applied to the column, and, after washing, the bound proteins were eluted. We used the cell lysates from reprogramming HDFs, but since it was difficult to collect a large amount, we also used cell lysates from hiPSCs. The reason for using the hiPSC lysates is that many of the proteins expressed in reprogramming HDFs are highly expressed in hiPSCs as well. We identified 31 candidate proteins that bind to the MB2 domain of MYCL-WT but not of MYCL-W96E during reprogramming in the HDF lysates (Fig. 4D and Table 4). Of those 31 proteins, 25 proteins were also identified using hiPSC lysates, and 23 were RNA-binding proteins (RBPs; Fig. 4D, genes written in blue). Six proteins (Supplementary Fig. S11).

MYCL regulates RNA processing-related proteins during reprogramming via the MB2 domain. Our analysis also revealed that, along with the MYCL MB0 domain, the MYCL MB2 domain is important for reprogramming (Fig. 2B). It has been reported that the c-MYC MB2 domain is involved in transformation activity, and tryptophan 135 within its MB2 domain is necessary for this activity. MYCL also has a tryptophan residue within its MB2 domain but little transformation activity. We hypothesized that this domain in MYCL has reprogramming function. We therefore produced a mutant in which tryptophan 96 was substituted with glutamate (W96E). This tryptophan is equivalent to tryptophan 135 in c-MYC (Fig. 4A and Supplementary Fig. S5B). We confirmed the expression of MYCL-W96E by western blotting (Supplementary Fig. S12). Next, we examined the effect of MYCL-W96E for reprogramming. HDFs were transfected with reprogramming factors including MYCL-WT or -W96E. MYCL-W96E could not induce iPSC-like colonies, suggesting tryptophan 96 is crucial for reprogramming. (Fig. 4B, C). We thus hypothesized that the residue might be important for MYCL to bind to other proteins. To identify the binding proteins, we produced GST-fusion recombinant proteins of the MYCL MB2 domain (Fig. 4A). GST-MYCL-MB2-WT or -W96E proteins were immobilized on glutathione Sepharose, and affinity columns were prepared. Cell lysates were applied to the column, and, after washing, the bound proteins were eluted. We used the cell lysates from reprogramming HDFs, but since it was difficult to collect a large amount, we also used cell lysates from hiPSCs. The reason for using the hiPSC lysates is that many of the proteins expressed in reprogramming HDFs are highly expressed in hiPSCs as well. We identified 31 candidate proteins that bind to the MB2 domain of MYCL-WT but not of MYCL-W96E during reprogramming in the HDF lysates (Fig. 4D and Table 4). Of those 31 proteins, 25 proteins were also identified using hiPSC lysates, and 23 were RNA-binding proteins (RBPs; Fig. 4D, genes written in blue). Six
Figure 3. MYCL regulates cytoskeleton- and cell adhesion-related proteins during reprogramming via the MB0 domain. (A) Schematic of the mass spectrometry (MS) and GO analysis (DAVID). (B) Venn diagram of upregulated proteins during iPSC-like colony formation. (C) Molecular functions from the GO analysis of the four groups in (B). (D) KEGG pathways from the GO analysis of the four groups in (B).
(i) Proteins enriched more than two-fold in MYCL-WT compared with c-MYC-WT (SeV)

Proteins
NRP1
PMEL
IQCH
ZNF507
C1QTNF3
GLIPR2
ING1
THOC7
RPA1N
DGCRI8
KRAS
PIPOX
CCNL2
ACOT8
KCNA1
TTC38
MR11
DLGAP5
CHPF2
P4HA1
HMCNI
STRA13
SMG5
FAM83D
MTFR1L
TSPYL1
CROT
PLPP1
PRKACB
FSD1
REPIN1
MKLN1
CPS1
MDPI
ZWILCH
ST5GAL1
MCL1
SRR
FAM134A
USP34
CEP41
MATN2
AQP1
PLL
SON
ARL14EP
ACCS3
KHLH11
FAIM
MCMBP
COL1A1
MOCS3
SFC1
DPT
VCP1P1
TPM2
CLDN7
C18orf32
SAG
POSTN
AKAP11
AMDHD2
AHCYL2
MASTL
MAP3K2
COP2Z
ARFGF3
HBA1,HBA2
S100P
CENYL1
RALGAP8
ACTR1B
PIAS4
PFKFB3
FAM134C
SDSL
PPC1
NR3C1
FYN
SPAST
MAP4K2
COQ3
CENPV
HERC2
CDS2
TADA28
XPC
MX1
PCSK9
SDPR
CEP1J1
FEMA1
ACTG1
TNC
ITPR3
GNPTG
SH3BRL2
QSOX1
LSM4
FBXL18
SH3BP5L
FARF2
ZIC5
FASK
FLYWCH2
TMEM119
FAP
AGTPBP1
ANKIR1
EDEM3
PANXI
CDCDC28A
DDX58
FOXK2
ERIICH1
KIAA1211
ZMYM4
FN1
ARSA
CSNk1E
MTTR
NCOA3
PATZ1
UBE2S
DDB2
CCDG6B
POLG2
C18orf76
ADIRF
CALD1
RALGAPA1
NUTD9
YAEID1
C18orf412
TSPAN14
PTGIS
FAM208A
PANK1
TCN2
TAGLN
ALG8
THAP11
NFIC
TMEM1165
BLOC1S6
FAM21A
NOD2
COL12A1
TGBP1
CRELD1
MARH5
CNOT8
RANGRF
MED16
CDA
GULP1
WDR54
MET
NOA1
PRKGI
CHMP1A
SHARP1
RRPP
TBC1D7
CPQ
IFIT1
THBS1
HSDL2
GORAB
TRAF6
AHDCl
DDX60
NUDFB6
ARHGEPF6
CERCAM
NPEPL1
GPR107
MAP3K15
MSR2
ELP3
TPM1
COMMD8
MED4
HAC1L
IGBP3
HTRA1
CDD9L2
PEX16
GINS4
DSCR3
UE2E1G1
EIF4EBP1
DYNCH12
ACTN1
YPEL5
SMG6
ITGB4
PTGES
TPK1
REEP6
PFM1
PTBP2
IFIT2
PUM1
DYNC2H1
KDELRL3
VIPAS39
KIF1B
EMILIN2
GRIP2
HIGD2A
C7orf26
DNMI2
MMP2
KANK2
DIX30
RAPIB
DNBAS
MRPL33
SPANX2-OT1
PIR
SDCBP
HMGXB4
POLG
FOXK1
PEX1
LGALS8
LAMC1
DNAH6
PDIA4
MTMR14
S100A14
CNTLN
SLC25A3
TEMDE4
SPARC
GBP1
CNN2
GCC1
CTHRC1
STAU2
SUPY3L1
DNAIC16
KIAA0430
CASP4
NID2
FAM69C
TIMP2
OGFOD3
EED
DCX
PRNP
KCTD15
GSPT2
PCNT
STARD4
OTUD7B
PPP3CC
WRD35
CTSS
SLCl5A4
BASP1
SLC4A1
AKR1C2
COA3
RAB2B
GNA12
OPA3
INPP5A
GAP43
CAAPA
VW8A
PALM
KRT17
MIEF2
IKBKB
Clor198
BUB1
ZBTB7A
CD248
ACOX1
DNAI4A
CNN1
ANAPC4
LOX
LAMA5
COL2A1
KRT6A
LRRRC1
COLE6A3
CABIN1
ECM1
MED8
KIF21A
NOL8
SLC30A5
COL16A1
TWISTNB
GREM1
ICAM1
OSBP1L
TBC1D15
HORMD2
EPHA2
MRPL51
B3GALT6
USP9Y
VKORC1
ETNK1
MACF1
STAG3
SHKBP1
BCA1R
KHDBR5S3
TLE3
IGF2
STARD3NL
CTDSPL2
FHRP
RANBP10
IFT74
SERPINB2
SAMD9
FDZ7
LGALS1
CSRFP1
FBLN1
SERPINF1
SHCBP1
TUBG1
CAPN5
PTK7
PLAUR
ZNF185
SGP9
RASA3
ACSF3
DNA2
PRSS23
PKP3
GAP1A
CAV2

Continued
(i) Proteins enriched more than two-fold in MYCL-WT compared with c-MYC-WT (SeV)

Protein	MYCL-WT	c-MYC-WT
FBXO2	CCND1	SLC34A3
MAP2	MLC13	IFH4
GATC	TANGO6	MITD1
MYL9	COL6A2	PPIL2
TGSI	CDYL	KRT10
LAMB3	CSRNP2	MON2
KLRK1	CDC4	ASAP2
TFM4	PPPA1	KRT16
CPLX1	SUN1	WDR73
CCRCD2	MYCL	DES12
TIMP3	PKD1L3	COL5A1
SERPINB8	FBXO3	RNF31
HSPB1	CXB2	IFIT3
NDS8	COL11A2	ISG15
PARP2	GOLT1B	FOSL1
HSPB6	ABR	NID1
COL5A2	AURKA	GSDMD
MRGBP	EP300	MAU2
FARP3	ANPEP	ARHGDI1B
DTX3L	HAUS7	LTB2P
ARL5A	RNF113A	CRBN
NTSE	CILP	MROH2B
STX3	NOTCH3	PLCG2
SLC2A1	S100A6	CDC5
F13A1	COMMID9	REN
AHNKAK2	RDH10	CLIC3
S100A4	ZCCHC6	CD9
UAP1L1	MED12	PXN
ITGGA2	OASL	CTSK

(ii) Proteins enriched more than two-fold in MYCL-WT compared with c-MYC-WT (EpiP)

Protein	MYCL-WT	c-MYC-WT
IGFBP3	GLIPR2	GBP1
CN2N	NNTR1	ITGA11
NEGR1	LAMA5	IFIT2
TPM2	HSPB1	EHD2
TPM1	TGF8B1	S100A11
MOXD1	SLFN5	NME2P1
ZFYVE16	HSBNP1	DGKA
TC3F	PLCB4	SLC3A4A3
PTGES	OSBP1L9	LRRFIP1
ST6GALNAC1	SMPD1	SETMAR
RNF14	TNXB	AHNAK2
TERF2P	ARMC8	PRCC1
MYCL	BCAT2	ELN
HABP2	TXNIP	RMND5A
CHH1	COL6A3	IMPACT
DDR2	KRT5	PLEKH02
GREM1	COL5A1	HNRNPD1
QRT2R	ARID1A	KRT17
MT1X	CTNSNA2	KRT6A
VPS37A	STM2	CTSL
MTPAP	CDK2	

(iii) Proteins enriched more than two-fold in c-MYC-ΔMB0 compared with c-MYC-WT (EpiP)

Protein	MYCL-WT	c-MYC-WT
ITGGA1	PSMF1	FNBPI

Bold value: $p < 0.05$
Table 1. MS analysis of identified proteins in cells reprogrammed by MYCL- or c-MYC-ΔMB0. Four groups are described: (i) proteins whose peptide counts increased more than two-fold in MYCL-WT/HDFs compared with c-MYC-WT/HDFs using SeV on day 3, 5, or 7; (ii) proteins whose peptide counts increased more than two-fold in MYCL-WT compared with c-MYC-WT using EpiP; (iii) proteins whose peptide counts increased more than two-fold in c-MYC-ΔMB0 compared with c-MYC-WT using EpiP; and (iv) commonly identified proteins. Bold fonts in the group (ii) indicate identified proteins with \(p < 0.05 \) (two-sample paired \(t \)-test). \(n = 3 \) for EpiP reprogramming.
(i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)

- ATXN7L3B
- TIMM21
- SLC2A3
- CA14
- CRLF3
- SYT6
- TMEM161A
- MTM1
- METTL315
- NKA
- CDS2
- MRS2
- MAR2S
- ERCC2
- TDP1
- MFAP4
- ANAPC16
- CARS2
- NOLC1
- IGHMBP2
- MRPL34
- FECH
- PARP2
- ING1
- ADNP2
- STEAP3
- AK6
- PDZD8
- EPB41L5
- PEX16
- ZER1
- CSNK1B
- GGPS1
- DBNDD1
- MIEF1
- FUGA1
- ADSL1
- POTEJ
- TMEM209
- CCNL2
- TOP3A
- ULK1
- MGA
- FAM162A
- AMMEC1R1
- ISG20L2
- CEP78
- NOM1
- PAPD4
- PROC
- IFRD2
- LLRC41
- UBR3
- PHF3
- RIN1
- SPL2B
- ARAF
- DNM2
- HP5
- PSEN1
- PAR3D
- ARHGGEF16
- RHNP2
- PRPF18
- SEMA4C
- RPUSD3
- NYNRIN
- ARHGGEF7
- VRTN
- PHF10
- DMD
- RPL26L1
- RANBP6
- CNOT4
- TSPY5
- CDC25C
- REEP4
- FADD
- INPP5F
- ZBTP7A
- GPN3
- RBPS2
- BRAF
- ORC6
- CACNA2D2
- APK1B
- NACP3
- RRPS8
- MASTL
- POLR2M
- CASC3
- NCL
- C1orf174
- LRRC14
- SLC27A3
- ACSF3
- DHR511
- RBB23
- WDR55
- CAMK4
- NDGR3
- ALS2
- NOVA1
- SOX3
- CLCN7
- EHHMT1
- C1orf26
- NSN5
- NMRAL1
- STK25
- NFKB2
- OSPL1A
- VPS37B
- RAD2A3
- HS2ST1
- LYAR
- PHKA1
- SDC4
- MGRT2
- SN1B1
- MEN1
- WDR4
- DDX28
- C1orf98
- AKA9
- COQ9
- STYX
- PHF5A
- PCDH1
- TMSB4X
- API92
- MYO1G
- UCKL1
- APC
- TBC1D15
- FASTKD1
- APOC1D1L
- MARH5
- ULK3
- LONP2
- SECD1A
- ETFD1
- ANKS1A
- LRP8
- PALD1
- ANAPC5
- CARMIL1
- GATM
- PANX1
- NME3
- UBA52
- ZNF806
- NROC2
- DVL2
- CTDPI
- PHKB
- GINS5
- DNP1
- CDC5
- BCKDK
- TTF1
- TGFBRAP1
- HAUS2
- TLYK
- PDCA1
- TBP
- AP1M2
- E2F4
- AFAPI1L1
- ZMYM6NB
- NBP2
- TRT1
- CCDC13
- ATL1
- INTS6
- CHD8
- SPINT2
- RASA2
- NCK2
- MAL2
- ATAD3A
- SLC25A32
- LSAMP
- ACOT8
- KIFAP3
- JARID2
- CLSTN1
- USP36
- PTGIS
- PIAS4
- TMEM41B
- SEC14L1
- TUBGCP4
- GEMIN8
- VWA9
- RPP25L
- NBP2
- DOLP1
- WAR2S
- PLEKHA6
- MRGBP
- ZCCHC6
- ZEP36L1
- SLC4A7
- SCARBI
- ARID1B
- PMF1
- XXYL1
- ANKRD50
- MT-C01
- MET
- RMB47
- LNB2B
- EXD2
- GORAB
- GCSH
- PPT
- PRKAR1
- CUTC
- SDSL
- FARS2
- LLRCC8E
- ARHGAP12
- BFSX2
- PMS2
- NAA30
- STA3
- FASTKC5
- ZCCHC10
- TTK
- BNC2
- COX16
- BCSIL
- NDE1
- STX3
- LARP18
- PTCD1
- TPD52
- SMG1
- ACBD7
- TRIP12
- PTPTM1
- ASB3
- MTG1
- ANKRD12
- STK33
- HEXIM1
- RBM45
- ATG9A
- ANKB1
- B3GALNT2
- C12orf43
- SLC25A15
- NDUF1A5
- BAG4
- NOA1
- SFRP2
- VPRBP
- FOXX1
- GMS68
- POLE
- TRADD
- AMFR
- RP66KA1
- PLA2G4A
- SELO
- PROM1
- CHF18
- BOD1
- SPC24
- KAT7
- RAB17
- IGFBP6
- PNPL4A
- AGTRAP
- UBE2Q1
- HIGD2A
- RAPH1
- SDF2
- ARHGAP4
- ODR4
- MRPS18C
- QSOX1
- COX17
- CHUK
- RAPGEP2
- GINS1
- DEFA
- CENPV
- PTPN9
- FUT11
- ERMPI
- SOGA1
- DHX32
- GEMIN6
- HDHD2
- GLE1
- PTPRZ1
- CRG1
- GATC
- PDXP
- MID1
- WRAP53
- POU2F1
- CA2
- APPL1
- TMEM14C
- TXNIP
- SLC7A3
- FABP6
- FITG2
- CWCC22
- MPDZ
- PIGG
- ACTB
- INCENP
- CARNMT1
- RHDD2
- MRPL38
- PUM1
- HPDL
- NME4
- CDKN2A
- TRIM27
- ARHGEP10L
- B3H1
- CDC26
- CTU1
- ATF7
- HMGX84
- LSMBT13
- MAP1LC3A
- ISLR
- URB1
- MRPL21

Continued
| (i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV) |
|-----------------------------|-----------------------------|
| CAMK1 | RILPL1 |
| FCP1 | ANKRD29 |
| DNA2 | CENPM |
| SLC35A2 | PMS1 |
| USP19 | LAMA4 |
| NHEJ1 | RPP40 |
| IFT7 | ARMCX3 |
| ARID3A | MRPL13 |
| Cl1or98 | RRP7A |
| DCAKD | ASB6 |
| GAA | PDK1 |
| ARAP3 | CHKB |
| NAA40 | IQSEC1 |
| ZMYM3 | MED30 |
| MRPL10 | NDUFAF7 |
| ITPR2 | PRPF39 |
| GTP2H4 | MRPL16 |
| USPF9 | SYNE2 |
| UBE2V2 | CDH1 |
| COMMD9 | HMBS |
| HIST1H1E | MAP3K4 |
| PTDS22 | TATDN2 |
| SCAF1 | UBE2J2 |
| FAM213A | MFF |
| NFBY | PDSSB |
| SCAF11 | RAPGEF1 |
| SEPH51 | BRD8 |
| SLC29A1 | MBD3 |
| ARL14EP | MRPL40 |
| MRPS18B | ACY1 |
| RSL1D1 | PAK1 |
| QIRC1 | CISD1 |
| TRABD | SON |
| ZG3HC3 | NDUFC1 |
| CYP2S1 | NSMCE3 |
| KANK1 | PHF14 |
| LIMK2 | CWF19L1 |
| SLC7A5 | VPS25 |
| P5P1 | CELF2 |
| TUBB4A | BOPI |
| UTP18 | CHST14 |
| ADAM15 | NUDCD2 |
| HRBNPR | MIS2 |
| URI1 | SLC7A8 |
| MRPS34 | RMND5A |
| RCC2 | POLRMT |
| BEN3 | BRAT1 |
| ARL5B | GFM2 |
| CHD2 | MRPL45 |
| CBX3 | SIRT7 |
| NANOOG | SLBP |
| HIST1H1A | KPN2A |
| HSP90AA4P | CMS51 |
| MED10 | PFAS |
| CECR2 | NCOA5 |
| CHD1 | SBN01 |

Continued...
Protein	Protein	Protein	Protein	Protein
CHD1L	MLH1	MNA1T1	DDX47	SRPK1
XPC	NELFCD	MPP6	HAU6	TANC1
MRPL33	PUM2	MRPL15	FAM65A	ER13
TIMM13	SPRYD4	MICU1	HMGN5	XPO4
DDX20	YTHDC2	SLC25A22	CACUL1	FC11
DNAAF2	ACTA1	BDWD14	DHPS	PFKM
MTMR2	GP1	SMARCA4	EI24	SCFD2
RNASeqH2A	GTF2E2	SMARCD1	ADCK3	TRMT1
CD97	GLT8D1	UBR5	HLT8	TXNRD2
CCNY	NCPA2	USP48	LRCH2	UBQLN1
MCM3	HSISA1	ZBTB80S	MAP2K7	APOBEC3C
DYSF	MINA	BAK1	HERC2	POLG2
EXOSC7	RCL1	CI7orf62	PUS7	CAP6
THYNI	MYI6	CBR4	RFC3	SRSF10
HIRADH	UHRF1	DHX57	MCC6	UBL4A
TIFC	GALK2	MK167	CEBPZ	CHAR1C
METTL3	GSTZ1	UBE2O	LRSAM1	NSA2
MRPS5	MAP3K7	ZNF350	MLLT11	HK2
PCGA	LTLPL1A	CPSF2	PEX3	INPP4A
SLC35F2	MRPL23	GNL3	WBP11	SAP30
TRC1D9B	MRPS31	GMPS	IMPDH2	SSRP1
TRIM28	NELFB	LDAH	DDX21	TWSG1
NDUFAF1	PHF6	TF2BM	EBNA1BP2	ZMYM2
UROD	PKP3	NUPB2	FANC1	ARIH2
USP11	ARRP1	PKN1	EAR1	MYBBP1A
CHMP7	COASY	SAP18	GTF3C4	SMARCD1
CTAGE5	GART	UBE2I	MRPL27	ENY2
RUVBL1	PEAK1	WDR6	MEF2F	WPP4
EXOSC4	FRA10AC1	ADAD2	NARS2	FAM64A
GTF2E1	DDX51	BMS1	OGRF	MRPL3
PE51	IGF2BP3	LDHB	ORC3	MSH6
HEATR1	KATNA1	PTMA	SLC52A2	NLE1
POLD1	MCM2	CXorf56	SMAD5	GAP4CH4
FLVCR1	MYH14	DAXX	ZCCHC8	TAMM41
LGALS3BP	PARN	KIF1BP	C5orf22	TP53RK
MRPS50	TK1	ELAC2	PRKCI	PDCD11
MTMR12	SUPV3L1	DARS2	RAVER1	SGMAR1
SLC3A2	BTAF1	HSDLI1	EIF3C	TP8L1
MRPS28	CADMI	MRPL37	SRI	BZ2W2
PCCB	DNTTIP2	PCB2D	TRIM2	CPSF1
RFC5	ECT2	AGTPBP1	TRIM22	ECM29
C11orf73	MCMAM	THUMP1D	WDR18	RNP51
TIMM17B	INTS8	TUSC3	DCAF16	GT2A1
UTP6	MRPL11	XRN1	DCTPP1	HSPBP1
WDR92	PIR	ACA2A	DNAJC2	NPM3
CERS6	NUDT12	APTX	DSG2	NTHL1
DDX24	NUP35	AT2L	NOL11	DDX31
GCDH	RCHY1	CI10orf10	HSLR1	PRPS2
WDR75	RHOT1	KIAA1211	DDX34	RSPRY1
NOP16	TAC01	GLMN	HOOKI	WNK1
PHLRA	TBL3	GNA1I	KIAA2013	C7orf50
GUF1	TIMM17A	GRWD1	LBH	CCNK
SMYD5	AGL	POR	LG3	CMTR1
WDR5	TOMM5	ARL8A	PCK2	PDCD4
ACO1	TSC2	GN1L3	MTFF1	AIT1
ANKRD28	UBTF	STK3	SCAP	PPAT

Continued
Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)

APOA1BP, WDR54, SYT1, SCRIB, PTBP3, RNASEH2C
APOO, ASFI1A, GSPT2, SDHB, SUIP16H, DBR1
PSME3, PPWD1, UBQLN4, CHAF1A, TRMT10C, SACS
BYSL, CDH13, USP24, ARID1A, GJB2, TEX10
UBA2, CIULH, ARL2, ASMT, ARCC1, MRPL57
DDX56, EIF2D, ATP1B3, DCAF8, AGK, AIF1L
RBM42, FEN1, CCDC12, ELOVL6, EFNB1, NCPAPG2
SARS2, OSIPL2, CDC48, GNA13, ATF7IP, CDC50
AD1, HUA85, CiorH31, GOLM1, DEK, DTD1
MCL1, INT51, AHCY, GSTS1, PAc5, DTWD1
CCDC59, MAK16, RUVBL2, ISY1, ECT2L, GTPBP10
ZNF593, RBM26, FDXR, MR11, HS1P3, LSM6
DNAJC8, SALL4, AATF, LETM1, LAS1L, MRPS11
SMARCA5, TMPO, LTA4H, MYCBP, MRPL19, NEPRO
PCBP2, WBCR22, CCHN1, DLAG5, NDUF5, NOP58
HDAC2, WDR48, GLTSRC2, PELP1, HARS2, NT5DC1
HIST1H1B, TOX4, TP1, LUC7L, ATP11C, NFX1
HRNRNRC, VRK1, KDM2A, COMMID8, CACNA2D1, RAD21
HRNRPU, WIPI1, USP9, SSB, CDC47L, SNF8
LARS, ASH2L, VPS36, ZNF346, CRNK1, TEO2
LRRC57, AASDHPPT, CNP3, GLUL, CWC27, TNPO3
CHORDC1, CKAP2, CXADR, ILF2, PEG10, TTI2
MANBA, DCAF13, PLS1, LVRN, CIQBP, UBE2A
MEMO1, EIF4A3, EXTL2, MED24, GLYR1, UBXN1
MRPS18A, EIF5B, NIFK, POLR2H, HMOX2, ABCB6
NDUF84, FNB1P1, NOL10, KIF5C, EXOSC9, ATP2B1
TOMM40, RBM28, GSTP1, TATD1N, FTS3, DAGLB
PLCG1, IFI16, HSPA4, TME192, MPI, SMPD4
POLE4, KDM1A, NUP188, TFSM, DLAT, FAM210A
POLR2D, NOL6, PRPF40A, UAP2, MTO1, GT2I
SHPK, NUP133, RYMB2, DAR2IP, SAFB, LARP1
SPCS1, PHDA1, STX18, PPEA1, NUP50, METTL13
SAA1, QRTTD1, SUPT6H, ADSL, QSER1, POLR3C
TRMT1L, ASUN, BMP1, AFG3L2, GEMIN5, NEU1
PHEX, HDAC3, NDC60, MRRF, HMGN1, TIMM44
REEP6, OTX2, LPCAT1, MTPAP, SNU13, UMP5
TRAP1, TUT1, GSFL1, NAA20, ACSS3, NCK1
ERBB2, CCDC28B, XRN2, NDUFAP4, MIT, PPP2R5A
SGSH, CRADD, MT-ND4, GATAD2A, MRPL9, RAD50
OSGEP1, ADGR12, MTUS2, NRBF2, FAM192A, DNPPEP
THAP11, HEATR5B, RAB3E1, POP1, HEATR3, SRRM2
CACTIN, PRKD1, MRPL50, PRMT1, NIPBL, STK4
SLCA2A35, ECE2, RPL13A, SDCBP, NTMT1, TBRG4
ZIFAN6, DSEL, SDAD1, RPL21, PDCD5, PPIG
RALGAPB, MYOC5, TRMT6, RYMB2, GULP1, DCP1A
IGSF6, POLG, UBE3A, SLC30A1, RFC4, TUBAL3
MGRN1, TPK1, KCTD10, SMAP, ACIN1, UBXN7
TMEF41A1, DNAL1, F8A1,F8A2,F8A3, TKFC, BSG, ARHGEF40
FBPI, FBXL6, DFFB, TRIM33, EHHB1, ATPS5
CDC20, PLEKHA7, WDR73, CD70, EMC3, SLC9A3R1
COBL1, TRIM9, SP1, YARS2, RYMB1, CKMT1A, CKMT1B
HSP90AB1P, MRPL53, CCNA2, HICDC2, KDM3B, PPA1
SMARCAR1, MAL5U1, AURKB, PPM1G, EARS2, HSP90AA1
SH3GL3, MPPHOSPH, NACC2, HMGB2, GTPBP4, ABC810
CYP2U1, BSDC1, TLK1, LE01, MPAF1, GIT1
FLCN, TYRO3, SH3PD2A, EMC4, CPS1, INT59

Continued
(i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)

Protein	Protein	Protein	Protein	Protein
IRS2	SIRT3	FUT8	CDK2	TNFAIP6
KITLG	ALDH3A1	GPR180	CFAF36	ANK3
RBBP9	EML2	POLR3G1	FN3K	VWA5A
ATXN7L3B	TIMM21	SLC2A3	CA14	CRLF3
TMEM161A	MTM1	METTL15	NKP	CD52
MAR52	ERCC2	TDP1	MFAP4	ANAPC16
NOCL1	KGHMBP2	MRPL34	FECH	PARP2
ADNP2	STEAP3	AK6	PDZD8	EPB41L5
ZER1	CKS1B	GGP51	DBND1	MIEF1
ADSS1L	POT1EJ	TMEM209	CCNL2	TOP3A
MGA	FAM162A	AMMERC1	ISG20L2	CEP78
PAPD4	PROC1	IFRD2	LRRC41	UB3
RIN1	SPPL2B	ARAF	DNM2	HPS5
PAR3	ARHGEF16	RHPN2	PRPF18	SEMA4C
NVNRRN	ARHGEF7	VRTN	PHF10	DMD
RANBP6	CNOT4	TSPY1L5	CDC25C	REEP4
INPP5F	ZBTB7A	GPN3	RBPM2	BAPF
CAGNA2D2	APJ1B1	NCPAD3	RRP8	MASTL
CASC3	NCL	Clorf174	LRRC14	SLC27A3
DHR51	RBM23	WDR55	CAMK4	NDRG3
NOA1	SOX3	CLCN7	EHMT1	C7orf26
NMRL1	STK25	NFKB2	OSBPL1A	VPS37B
HS2ST1	LYAR	PHKA1	SDC4	MGST2
MEN1	WDR4	DDX28	Clorf198	AKAP9
STYX	PHF5A	PCDH1	TMSB4X	AP1G2
UCKL1	APC	TBC1D15	FASTKD1	APCCD1L
ULK3	LONP2	SETD1A	EFTFDH	ANK51A
PALD1	ANAPC5	CARM1L	GATM	PANX1
UBA52	ZNF806	NCO2	DVL2	CTPD1
GINS3	DNP8H1	CDC5A	BCKDK	TTF1
HAUS2	HMGR8	SNCA	KLHDC4	TPB
EF4	AFAP1L1	ZMYM6NB	N4BP2	TRIT1
ATL1	INTS6	CHD8	SPINT2	RASA2
MAL2	ATAD3A	SLC2A3	LSAMP	ACOT8
TARID2	CLSTN1	USP36	PTGIS	PIA54
SEC14L1	TUBGCP4	GEMIN8	VWA9	RPP25L
DOLPP1	WARS2	PLEKHa6	MRGBP	ZCCH6
SLC4A7	SCARB1	ARID1B	PMFI	XXYL1
MT-CO1	MET	RBM47	LIN28B	EXD2
GC5H	PLTP	PRKAB1	CUTC	SDSL
LRRC8E	ARHGA12	FBXW9	PMS2	NAA30
FASTKD5	ZCCHC10	TTK	BNG2	COX16
NDE1	STX3	LARP1B	PTC1D1	TPD52
ACRD7	TRIP12	PTPMT1	ASB3	MTG1
STK33	HEXIM1	RBM45	ATG9A	ANKBI1
CI2orfF3	SLC25A15	NDUFAF5	BAG4	NOA1
VPRBP	FOX1K1	GPA68	POLE	TRADD
RP56Ka1	PLA2G4A	SELO	PROM1	CHTF18
SCC24	KAT7	RAB17	IGBP6F6	PNPLA4
UBE2Q1	HIG2D2	RAPH1	SDF2	ARHGAP4
MRPS18C	QSOX1	COX17	CHUK	RAPGEF2
DFEA	CENPV	PTPN9	FUT1I	ERMP1
DHX32	GEMIN6	HDDH2	GLE1	PTPRZ1
GATC	PDOX	MID1	WRAP53	POUF1F1
APPL1	TMEM14C	TXNIP	SLC7A3	FABP6
CWC22	MDZD	PIGG	ACTB	INCENP

Continued
(i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)

| Protein | TRIM27 | HMGX84 | CAMK1 | FCX1 | DNA2 | SLC35A2 | USP19 | NHEJ1 | IFT5 | ARID3A | C11orf98 | DCAKD | GAA | ARAP3 | NAA40 | ZMIM3 | MRPL10 | ITPR2 | GTP2H4 | USP9Y | UBE2V2 | COMMD9 | HIST1H1E | PEDSS2 | SCAF1 | SCAF1 | SEPHS1 | SLC29A1 | ARL14EP | MRPS18B | RSL1D1 | QRICH1 | TRABD | ZC3HC1 | SLC7A5 | TUBB4A | UTP18 | ADAM15 | HNRNPR | HSP90AA4P |
|---------|--------|--------|--------|------|------|--------|-------|-------|------|--------|---------|--------|------|-------|-------|-------|--------|--------|--------|-------|--------|---------|--------|------|-------|-------|-------|--------|--------|-------|-------|-------|--------|--------|-----|--------|--------|---------|
| RBD2 | ARHGEP10L | LMBTL3 | RILP1L | ANKRDS9 | CENPM | PMS1 | LAMA4 | RPP40 | ARMCX1 | MRPL13 | TRIM24 | MED30 | NDUFAF7 | PRP9 | SYNE2 | RPL16 | VCP1P1 | MRPL39 | SYNE2 | CDH1 | HMBS | MAP3K4 | PATJ1 | MRPL10 | TATCN2 | CISD1 | SON | TTLL12 | FXN | PDSPB | MRPL40 | CD320 | PP2 | NR4D1 | CENP10 | TCEANC2 |
| MRPL38 | BDH1 | MAP1LC3A | WDR37 | ANAPC13 | CEPI70B | SLC5A6 | DNM1L | TNC | RAP7A | MRPL13 | CLASP2 | NDUF47 | VCP1P1 | TPRF9 | M11H1P | BAZ1A | GFCF2 | RPPF38B | MID1P1 | GI1A | SQLE | NHU6 | HSPA4L | MRPL40 | CD320 | PP2 | NR4D1 | CENP10 | TCEANC2 |
| PUM1 | HPDL | ISLR | IGF2BP1 | CDIEAP | GCA | COQ5 | INTS2 | SPNS1 | AKAP1 | CLASP2 | PRPF38B | HSPB11 | HSPB11 | PRPF39 | G12H1P | HSPB11 | AGPAT5 | CHMP6 | MCO2 | TREG2 | HSPB1 | HSPA4L | MRPL40 | CD320 | PP2 | NR4D1 | CENP10 | TCEANC2 |
| HPDL | CTU1 | URB1 | NAPEPLD | WDR89 | CSTF2T | SPR | BCA3 | RPRD1A | ANAPC1 | CDIEAP | TMEM236 | CASP7 | CASP7 | GCFC2 | METTL5 | CASP7 | ARFGEF2 | IGFBP2 | DIAPH2 | RPS2 | VPS8 | HSPB1 | HSPA4L | HSPA4L | CD320 | PP2 | NR4D1 | CENP10 | TCEANC2 |
| NM4 | ATF7 | MRPL21 | DPH6 | WDR89 | CSTF2T | BMR1A | KIF22 | DDH2 | ANAPC1 | DPH6 | GTF3C2 | TAPZ1 | KIF22 | KIF22 | PRUNE | TAPZ1 | MRPL41 | POLR3B | MCO2 | VPS4 | HSPB1 | HSPA4L | HSPA4L | CD320 | PP2 | NR4D1 | CENP10 | TCEANC2 |
| CDKN2A | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Continued
| (i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV) |
|--------------------------|----------------|----------------|----------------|----------------|
| MED10 | PFA5 | BRIX1 | QRS1 | THNSL1 | ADRM1 |
| CECR2 | NCOA5 | ABRACL | WIPF2 | USP28 | GEMIN4 |
| CHD1 | SBNO1 | LSM12 | COG2 | TARS2 | KIF11 |
| CHD1L | MLH1 | MNAT1 | DDX47 | SRPK1 | NAPC1 |
| XPC | NELFCD | MP56 | HAUS6 | TANC1 | PPAN |
| MRPL33 | PUM2 | MRPL15 | EAM65A | ERJ3 | TOM1L2 |
| TIMM33 | SPRYD4 | MICU1 | HMGN5 | XPO4 | WDR43 |
| DDX20 | YTHDC2 | SLC25A2 | CACUL1 | PCF11 | PRC1 |
| DNAAF2 | ACAT1 | RWDD4 | DHPS | PFKM | NUDT16L1 |
| MTMR2 | GPN1 | SMARCA4 | E124 | SCFD2 | PPP3CB |
| RNASEH2A | GTTF2E2 | SMARC1D | ADCK3 | TRMT1 | RABEP1 |
| CD97 | GLT8D1 | UBR5 | HLTF | TXNRD2 | TDP2 |
| CCNY | NCPAD2 | USP48 | LRCH2 | UBQLN1 | TRIP10 |
| MCM3 | HSPA14 | ZFTB80S | MAP2K7 | APOBEC3C | TTC27 |
| DYSF | MINA | BAK1 | HERC2 | POLG2 | TRAP1 |
| EXOSC7 | RCL1 | CI7orf62 | PUS7 | CASP6 | I50C1 |
| THYNI | MYL6 | CBR4 | RFC3 | SRSF10 | LCLAT1 |
| HIBADH | UHRF1 | DHH57 | MCM6 | UBL4A | MRPS17 |
| TFRC | GALK2 | MK167 | CEBPZ | CHRAC1 | TTC4 |
| METTL3 | GSTZ1 | UBE20 | LRSAM1 | NSA2 | AGPAT4 |
| MP55 | MAP3K5 | ZNF330 | MLLT11 | HK2 | BLMH |
| PCCA | LYPLAL1 | CPSF2 | PEX3 | INPP4A | SORD |
| SLC35F2 | MRPL23 | GNL3 | WBP11 | SAP30 | INPL1 |
| TBC1D9B | MRPS31 | GMPS | IMPDH2 | SSRP1 | LBR |
| TRIM28 | NELFB | LDAH | DDX21 | TWSG1 | RBMX |
| NDUFAF1 | PHF6 | TFB2M | EBNA1BP2 | ZMYM2 | MLYCD |
| UROD | PKP3 | NUBP2 | FANC1 | ARHI2 | ZNF22 |
| USP11 | ARFRP1 | PKN1 | EAR1 | MYBBP1A | PD55A |
| CHMP7 | COASY | SAP18 | GTF3C4 | SMARCA1D | DNAAF5 |
| CTAGE5 | GART | UBE21 | MRPL27 | ENY2 | PDK3 |
| RUVBL1 | PEAK1 | WDR6 | MYEF2 | PWP2 | RPA2 |
| EXOSC4 | FRA10AC1 | ADAD2 | NARS2 | FAM64A | XRC4 |
| GTF2E1 | DDX31 | BMS1 | OGF1R | MRPL3 | CHAC2 |
| PES1 | IGF2BP3 | LDHB | ORC3 | MSH6 | DYSPL5 |
| HEATR1 | KATNA1 | PTMA | SLC52A2 | NLE1 | MCM7 |
| POLD1 | MCM2 | Cxorf56 | SMAD5 | GPATCH4 | STOML2 |
| PLCR1 | MYH14 | DAXX | ZCCHC8 | TAMM41 | TOMM34 |
| LGAL53BP | PARN | KIF1BP | Cstorf22 | TP53RK | NACC1 |
| MRPS30 | TKT | ELAC2 | PRCK1 | PDCD11 | DNAJB4 |
| MTRMR12 | SUPV3L1 | DARS2 | RAVER1 | SIGMAR1 | DHODH |
| SLCA32 | BTAIF1 | HSDL1 | EIF3C | TBPL1 | NOC2L |
| MRPS28 | CADM1 | MRPL37 | SRI | BZW2 | NDUF2C |
| PCCB | DNTTIP2 | PCBD2 | TRIM2 | CPSF1 | RABGCTB |
| RFC5 | ECT2 | AGTPBP1 | TRIM22 | ECM29 | PANK4 |
| C11orf73 | MCAM | THUMPD1 | WDR18 | RNPS1 | SCAO1 |
| TIMM17B | INTS8 | TUSC3 | DCAF16 | GTF2A1 | SIRT1 |
| UTP6 | MRPL11 | XRN1 | DCTPP1 | HSPBP1 | TUFM |
| WDR92I | PIR | ACA2A | DNAJC2 | NPM3 | ADNP |
| CERS6 | NUDT12 | APTX | DSG2 | NTHL1 | BOLA3 |
| DDX24 | NUP35 | ATL2 | NOL11 | DDX31 | ATRAP1 |
| GCCD9 | RCHY1 | C12orf10 | HIP1R | PRPS2 | MCM5 |
| WDR75 | RHOT1 | KIAA1211 | DDX34 | RSPRY1 | CDC123 |
| NOP16 | TACO1 | GLMN | HOOK1 | WNK1 | NUP155 |
| POLR1A | TBL3 | GNA1H | KIAA2013 | C7orf50 | GUSB |
| GUF1 | TIMM17A | GRWD1 | LH1 | CENK | ILKAP |
| SMTYD5 | AGL | POR | LIG3 | CMTR1 | LRRA |
| Continued | | | | | |
(i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)
WDRC5
ACO1
ANKRD28
APOAIBP
APOO
PSMF3
B2LS
UBA2
DDX56
RRM42
SARS2
AD14
MCL1
CCDC59
ZNF593
DNAJC8
SMARC5
PCB2
HDAC2
HIST1H1B
HNRPDC
HNRNPC
L5S
LRRC57
CHORDC1
MANBA
MEMO1
MRPS18A
NDUB84
TOMM40
PLCG1
POLE4
POLR2D
SHPK
SPC51
SALL1
TRMT1L
PEX6
REEP6
TRIP1
ERBB2
SGSH
OSGEPL1
THAP11
CACTN
SLC25A35
ZFAND6
RALGAP8
IGSF1
MGRN1
TMEM141A
FBP1
CDC20
COBLL1
HSP90AB3P
SMARCAL1

Continued
(i) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (SeV)

SH1GL3 MPHOSP16 NACC2 HMG22 GTPBP4 ABCB10
CYP2U1 BSDC1 TLK1 LEO1 MFAPI GIT1
FLCN TYRO3 SH3PX2D2A EMC4 CPS1 INT59
IRS2 SIRT3 FUT8 CDK2 TNFAIP6 SDHAF4
KITLG ALDH3A1 GPR180 CFAP36 ANK3 CBX2
RBBP9 EML2 POLR3GL FN3K YWA5A RAVR2

(ii) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (EpiP)

FIGNL2 MCEE NDUFB7 BCCIP CLDCA6 HSPA4L
URB1 INTS14 MRPS10 PDHX SNCA RP2L61
NRN DNAJC2 NDUFAF2 WDR36 UBE2G1 INT53
NDUFB1 EIF3C WAR52 SUPV3L1 TOP2A ANKZ1
PCCA AKAP9 NOP16 EHMT2 MRPL3 KAT7
POLR3D MAPKAP1 PAIP1 GK INTS13 MT-ATP6
NF1 NAPB2 OSBPL11 IMPDH2 DIXF WDR73
BRD2 MCM7 SEXN4 HSPD1 REXO4 GEMIN4
NCAPD3 NDFIP1 BOP1 PM20D2 TRM5 TEAP3
SRR2 MTA3 TOMM40 PDSSA SLC25A17 RIDA
GTF2A2 DCUN1D5 ORC5 CDKN2APNL SET TFAM
CORO7 THTPA POLR1B HSPE1 APOO NDUF57
UBE2G2 WRAP53 HARS2 POLRMT IRF9 RBM19
PPP4R3B DPCD FBXO22 CLUH TSK1 ZNF740
ATP7A HIGD2A TIMM17A COA7 ALKBH5 TTI1
ATR ITPA PABPN1 TYMS RARS2 PHC2
MIFTNP1 FAM234A LPCAT3 BMS1 INTS11 UBE2S
VAMP3 TTC12 TNPO2 NOC3L TBL3 POLR1A
PPFB3 CARS2 PBL LSAMP ABHD11 ORC2
SH3PX2D2A INCENP SMN1,SMN2 GNL3 MRPS15 MRPL17
ZNF318 ITM2C NIP7 SYF2 UCK2 MAR8
CWF19L1 INTS9 CDK1 STK26 IRF2BP2 PTC1D
RBX1 POLR3B SLC4A7 DNF1 DMT1 DUS3L
ULK3 IFT57 NDUFAF4 NGDN PCB2 CEPT1
TTC33 ARMEX1 HDDC3 PPP1A MDC1 PES1
CWC27 TRAP1 BRX1 TOMM6 NCAPG PWP2
NOL11 DDX41 GCA DDX20 HEAT1 NT5DC2
KDM3B TASOR NCL MGST1 GTF2H4 SNA1
ZC3HC1 PALD1 EE1E1 TRMT10C NUDT3 COIL
VRK2 SYNPO2 PSMF1 PTBP3 TGS1 NOL10
DDX60 HIGD1A RAB11FIP5 CIQBP BCS1L POLD3
PHACTR4 SIK3 TRIM65 DNMT1 LYAR YY1
ASPMM CAIN1 WDR43 POLD2 WDR3 DCAF1
GPDIL MAP3K4 MYC FAM162A DDX18 WDHD1
GTPF3C MYBBP1A URB2 HMGN5 BAZ1A MDP1
STAG1 DDX21 VRK1 GUCYR2 SLC1A3 MTMR6
COX6A1 TMEM33 UBE2D3 RFC5 RRP1 NEDD4
SAAL1 NPM3 TEX10 CDK2AP1 POLR2F RSL1D1
EDC3 PL2AG4A HMG1 DDX24 TRRAP SELFNO
DTDD2 MED23 PBX1 UTP4 H1-4 FANCI
SLC35E1 PEG10 GRPEL1 DPH2 DNAJA3 HAUS1
CCDC115 NOLC1 GNL2 POLD1 MRPS2 ZNF565
PVR AKAP1 PRRX1 NDUFAF3 PARP12 STRIP1
ZCCHC3 NELFCD PODXL2 PRR35 KDM1B BMI1
TRAPP8C SPNS1 BLOC1S4 UMODL1 KIF21B C8orf33
NFIX ACP TTN RAVER2 NFATC2IP CHD1
UBE2D1 DHX38 CDK5RAP1 IDUA IRAK1 ORMD3
Continued
(ii) Proteins enriched more than two-fold in c-MYC-WT compared with MYCL-WT (EpiP)

Protein	Protein	Protein	Protein	Protein	Protein
GPAA1	B3GALT6	XPC	LIN7C	VWA1	MET
METTL1	COA	CTIF	SHPK	PNKP	

(iii) Proteins enriched more than two-fold in c-MYC-WT compared with c-MYC-ΔMB0 (EpiP)

Protein	Protein	Protein	Protein	Protein	Protein
FAM83G	JFT20	DOP1R	NOC3L	POLR2F	EXOC8
STK25	ASPM	WIP2	LSAMP	KHNYN	SI0A3
BTAF1	GDP1L	OARD1	ARF1	HACD2	VWA1
URB1	STAG2	SLC25A15	SYF2	R1DA	METTL1
PDCDHGA12	CCNYL1	IKBKG	GXYLT1	CEP250	SMARCA4
TGFB1	NECA1P	MAP3K4	NLE1	RBM19	PRIM2
SERPINE2	PPHLN1	UTP3	PTBP3	LMF2	SHPK
SP1	STAG1	CD320	YTHDF2	ORC2	F8A1,F8A2,F8A3
GLUL	SREKL	ARM9C	C7orf50	MRPL17	BM1
PHKG2	COX6A1	RPL3A	DNMT1	MARS2	C8orf33
NFI	BR13BP	LAS1L	FAM162A	PTCD1	CCDC93
BRD2	LPIN2	PLAG2A4	HMGN5	CEPT1	MET
ATP6V0C	ZNF622	PEG10	CDK2AP1	LIMD2	COA4
NCAIPD3	SNX21	CCDC58	NUP50	ORC4	TT5
SSR2	NUPT16	LRYM7	SLC16A1	LAGE3	CCDC63
PRIM1	SAA1L	WARS2	ERCC4	RMC1	PODXL2
GTF2A2	DTD2	ZNF24	UTP4	NOL10	BLOC1S4
EPHB3	WASF2	NAA16	BUD23	POLD3	CDK5RAP1
UBE2G2	CCDC115	BOP1	SELENB1	H2AC21	SPATA5L1
PLCB3	HAPLN3	TFNFRS10B	SNCA	CNBP	XPC
ATP7A	DNAIC2	ORC5	VPS33A	CAMLG	MPC1
PTK2	AKAP9	HAR52	CTSC	DOCK1	MIEPE
HSPA14	THTPA	TIMM17A	INT513	SPR	PVR
ATR	CEP41	PABPN1	REX04	Csnk2A1	AKAP1
VAMP3	XPO4	NOLC1	PDF	CCDC51	SRC
PFKFB3	CSTF2T	SMN1,SMN2	APOO	CLPB	AFP
DOCK11	QRSL1	WRNIP1	MSH3	YY1	RAVER2
ZFYVE27	TCT12	HDDC3	JGFP5	HEATR5A	CRLF3
RNASEH2B	CAR52	STARD4	SMYD3	WDH1D1	DDX60
SH3PD2A	C17orf75	GCA	RPL16L	NSD2	HIGD1A
TNS2	CRB2	TRIM65	INT511	MPD1	EXOG
ATG16L1	TFRS10F2	PBX1	IMP3	GLE1	POLRMT
TTI2	INCNENP	UQCC1	AATF	MTRR6	MRPS90
ULK3	INTS9	NDUAFA1	MRPS15	THNSL1	RFP1
TTC33	MTRR	EHMT2	LIG1	RBFOX2	CDC16
KDM3B	TRAP1	HSPD1	POLA2	PKMTY1	KIF21B
TTC21B	PTBP2	UBR5	CCDC171	MAP3K7	NFATC2P
HEATR3	PALD1	CDKN2AIPN	TGS1	RSL1D1	TER2
ZC3HC1	ISY1	NAF1	RAZ1A	FANCI	RIFI

(iv) Commonly enriched proteins in (i) and (ii) and (iii)

Protein	Protein	Protein	Protein	Protein	Protein
KDM3B	HMGN5	URB1	LSAMP	MET	DNAJC2
RBM19	AKAP1	INTS9	SNCA	MARS2	

Continued
proteins were identified only in the reprogramming HDFs lysates: HNRNPK, DDX17, C1QBP, KBTBD3, COPG2, and SIKE1, of which HNRNPK, DDX17, and C1QBP are RBPs. From these results, there were 26 RBPs identified in the HDF lysates in total. We confirmed the function of the 31 proteins using a public database (https://www.nextprot.org)28 and found 16 of them are involved in RNA processing. A GO analysis using DAVID also showed that the 31 proteins are related to controlling pre-mRNA splicing, capping, and polyadenylation, suggesting functions in mRNA export, turnover, localization, and translation (Fig. 4E). These results suggested that MYCL interacts with RBPs via its MB2 domain and promotes reprogramming by post-transcriptional regulation.

Discussion

Here we described the molecular function of MYCL during reprogramming and compared it to the c-MYC function by focusing on MYC Box domains. We found that the MB0 and MB2 domains are important for reprogramming, and deleting either region compromised the reprogramming ability of MYCL. Proteomic analysis revealed that MYCL regulates the expression of cell adhesion-related proteins during reprogramming via the MB0 domain (Fig. 3C, D). We also found the possibility that the same domain is regulated by post-translational modifications (PTM), as discussed below. It is known that cell-substrate adhesion is closely related to the mesenchymal-epithelial transition (MET)30–32 and that MET occurs during the reprogramming process30–32. We speculate that MYCL promotes iPSC-like colony formation via the MET process by upregulating cell adhesion-related genes. Furthermore, we identified that the MB2 domain is required for MYCL to promote reprogramming by binding to RBPs, especially RNA processing-related proteins (Fig. 4D, E). It has been reported that RBPs regulate MET through post-transcriptional regulation. For example, heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates the alternative splicing of Rac1 to control MET33. These findings suggest that MYCL regulates the RNA processing of cell adhesion-related genes transcribed by MYCL itself or other genes. Therefore, we hypothesize...
(i) Proteins enriched more than two-fold in MYCL-WT compared with MYCL-ΔMB0 (EpiP)

Protein 1	Protein 2	Protein 3	Protein 4	Protein 5
UBQLN2	DYNLRB1	EXOC2	KRT17	NANS
REEP5	RAB11B	ARPC2	TPM1	UTP15
SGC6	WDR46	CD47	SLC44A3	RASA1
TUBB2A	ALDH6A1	STRN3	FBXV10	BAP18
HMGFB1	POTEF	PDHA1	CAMK2D	TM9SF3
PPIG	COMMD4	SCP2	MT-ATP6	YIPF5
HMGFB3	TUSC3	COL3A1	ARF4	ATP5PB
PCNP	MYD88	GNB2	NUCK5I	LIMS1
SYAP1	RAC1	CGG6	TMED2	LRBA
CHMP4B	MACF1	SOX2	PRKACA	MAPK14
UTP3	SRF511	SSR1	MID1	DUSP12
BLOC1S1	EXOC5	CSTF3	PCID2	THOC3
ST6GALNAC1	DNAJC9	CACNA2D1	TRIP12	SRSF5
MAP3K20	MICAL1	NRDC	GADD45P1	VAC14
KNTC1	POLR2L	MSRB3	GTF2I	PDXDC1
BAG5	SFXN3	NOL11	ERLIN2	ZNF462
CD320	CRIP1	OSTC	DBNL	ITGB1
MRPL11	NAA10	RPL37A	STT3A	CTN
TFG	ARF6	IZIC	PAFAH1B1	EEF1B2
THYN1	CCDC43	BMP1	SLC25A24	UGP2
NDRG3	NEK7	PDCL3	HOOK3	LSM2
TMX4	TUBB4B	UGP2	LAS1L	ACTB
SEPHS1	MYO1E	TNS3	HLA-H	RABL3
RPL36A	FNTA	VPS268	DCN	RVDD1
MYDGF	SRBD1	EHD1	PUM1	TOMM20
OPTN	DB1	ANKY1F	PUS7	CRABP2
GNAQ	SUGP2	KRTBD3	KPNA4	VDAC3
ACSL4	MTAI	SCPEP1	METTL26	EDIL3
ATP5ME	MAP7D1	FBLN2	B4GALT4	PLAG4A
AB3BP	ACTG1	LDR1	MBD5	CTNNA1
ASAH1	HINT1	EXOSC7	CSRPI	RPL23A
GNS	HMGN1	DIP2B	GNB1	TEME165
WDR61	PTGR1	PIRTM1	SNRBP2	DNAH6
ARL8A	TM8B4X	METTL14	CNN2	DPP9
MAP3K20	FAM114A1	TM8B10	PPB1	ENOD1
NDRG1	FTH1	CNPY3	S100A10	NDUFB11
PITPNA	SGTA	HABP2	Clorfr198	NAA30
NIF3L1	SGPL1	SRF9	MARCKSL1	DNAJC8
NME2	CD59	NDUBF9	TOR1AI1P	NXX
PFDN1	DHR54	RBP1	NDUF4A4	MRPS17
ATG3	GSP1T1	DCTN5	ACS82	REXO2
ACIN1	BLOC1S3	TEMD1	GSTK1	PEBP1
RAB14	RFC3	AKR1B1	ISLR	S100A13
SNAP23	CD55	TALDO1	NOP14	SLC25A6
EMC2	RPS15A	DSTD	POLR2A	OSBPL3

(ii) Proteins enriched more than two-fold in c-MYC-ΔMB0 compared with MYCL-ΔMB0 (EpiP)

Protein 1	Protein 2	Protein 3	Protein 4	Protein 5
UBQLN2	ACIN1	NEK7	PIRTM1	PDLM5
HMGFB1	SRF511	RAB11B	ITGA1	H3-3A,H3-3B
REEP5	OPTN	ANKY1F1	ISLR	Clorfr198
NDRG1	KNTC1	CD47	SRF55	LUZP1
SGC6	PAIP1	PRKACA	ERLIN2	IDH1
MAP3K20	NIF3L1	SCR3N	MRPS17	HABP2
TUBB2A	POTEF	FAM114A1	TOMM20	PAFAH1B1
CCDC43	COG6	NOLC1	UGP2	ITGA5
PCNP	TSPYL5	COMMD4	LSM2	CHIC3
TMX4	DFNLRB1	EHD1	UTP15	SMTN

Continued
(ii) Proteins enriched more than two-fold in c-MYC-ΔMB0 compared with MYCL-ΔMB0 (EpiP)

BLOC51S	STRN3	PPP4C	PUM1	DUSP12	VPS26B
SYAP1	ASAH1	FNTA	MYO1E	MEAP6	APP
PPIC	ATP5ME	GNAQ	TP53RK	NMT1	GALNT1
NME2	OVCA2	SEMA7A	POLR2L	NDUF4A	SSR1
ACSL4	RAC1	RPL36A	MYO6	LIMS1	YIF1A
HMGB3	OSTC	FTH1	PUS7	CLASP2	UGP2
FBXW10	DBI	PTGR1	PIK3R4	ILF3	USP48
MAP3K20	PDHA1	KRT17	MYD88	RASA1	PPIB
NDRG5	SFXN3	ARPC2	REXO2	GALE	METTL26
GNS	TNS3	ABI1	DBNL	TXLNG	MYO1D
UTP3	DHR54	PAIP1	USP15	PPL3	NDUF6
SEPHS1	MIPD1	PCD2	SRBD1	RFC3	PPIF
BAG5	DNAJC9	SEC24A	ACTG1	SCLY	SMARCC2
ATG3	MAPK14	UBQLN1	LZIC	MPV17	STAM2
SCPEP1	MRPS24	MTA1	TRIP12	VAC14	BMP1
TFG	PLA2G4A	BAP18	THOC3	DCTN5	PGM2
MT-ATP6	NOL11	METTL1	SCP2	COG7	CERS2
MRPL11	SUGP2	EXOC5	POLR2A	MCRIP1	SLT3
CHMP4B	TUSC3	BLOC1S3	CSTF3	CTNNA1	HOOK3
SGPL1	DIP2B	DUSP23	GNB2	SENP3	COL3A1
MICAL1	PFDN1	SOX2	GSPT1	EIF2B1	ITGB1
DCN	NRDCl	LDLR	GADD45G	SETD7	AGK
CUL4A	SGTA	CNP43	KPA4	DNASE2	MPSOSPH10
ARF6	PODXL	MPI	FADS2	RAI14	BOLA2,BOLA2B
HLA-H	ARL8A	HINT1	NAA2	TPMT	IMPACT
MACF1	PDXDC1	GSTK1	ATAD1	EDIL3	USP9X
THYN1	CD20	CD59	METAP1	IGFR2	OC1AD2
MYDGF	PITPNA	FBLN2	TPM1	NAA50	CAGNA2D1
NACA4P	MAP7D1	NANS	MBD5	EEF1B2	YIF5
NAA10	WDR46	TM9SF3	DCTD	EEA1	TMSB10
NDUF9B	LRRC17	YAP1	GTF2I	CD55	SNAP23
ABI3BP	WDR61	RAL3	PRKRA	DNAJC8	EIF3H
SNW1	LMCDD1	KLF4	PSMD4	S100A10	KBTBD3
SNRPB2	COL4A2	CFL2	LMS5	FBXO22	ACYP1
ARF4	VDAC3	ALDH6A1	CYS51A1	CBX3	SNX27
ATP5MG	CNI1	CLINT1	ACS52	EEF2B3	SLC2SA24
CTTN	CALD1	DYNC1LI1	NDUF4F2	S100A13	CDC42BPB
TEMPO	EWSR1	ANTXR2	TP53BP1	RBM17	IDH3G
RPL37A	SPAT2L	PHLD1B1	CARHS1	CEFAP74	EMC2
PLS1	HSD17B7	FAP	NNX	TUBB4B	SF3A3
MTR	OSTF1	TMSB4X	SRP9	VASP	EXOC2
NCBP1	SFXN4	NUCKS1	RPS29	MANF	COPS6
VPS4B	AHNAK	CSR1P1	SLC25A6	CARM1	FKBP2
TMOD3	RBP	TALDO1	ATP5PB	PRPF4B	TBCC1D15
GFOX	B4GALT4	MSRB3	DNAH6	COX7C	OGRF
ALDH11L2	CRIPI	AP3M1	SCAMP2	Cieorf50	ELN
TSN	TOR1B	PDS5A	PDA4	RWDD1	GABA
DYNNL1	USP47	ENDO1	NUCB2	GINS4	DRI
FKBP5	OAS2	MRTO4	NF51	NPC2	ABI2
SERPINE2	NDUF4F	ZYX	HACD3	EXOSC7	

(iii) Commonly enriched proteins in (i) and (ii)

WDR46	TUSC3	RBP	NIF1	NIF3L1	DNAJC8
MYO1E	MYD88	FBXW10	ARF4	TM9SF3	TEMPO
RAC1	SFXN3	CAMK2D	MPDU1	CTNNA1	EEF1R2
TMSB10	MACF1	NUCKS1	OVCA2	CHMP4B	COL3A1
LDLR	DBNL	PRKACA	ANP32B	PCNP	S100A10

Continued
that transcriptional and post-transcriptional regulation by MYCL promotes MET, which increases the efficiency of reprogramming and leads to higher quality iPSCs.

Western blotting revealed that MYCL protein has a unique expression pattern (Supplementary Fig. S8 and S12). The calculated molecular weight of MYCL is about 40 kDa (364 aa), but we detected three strong bands at around 60 kDa, which we verified with second antibody (Supplementary Fig. S13). Since the expression of MYCL-ΔMB0 showed a strong single band, we speculate that the MYCL MB0 domain is the PTM site (Supplementary Fig. S8). Such a phenomenon was not observed in c-MYC (Supplementary Fig. S7). One possible type of relevant PTM is phosphorylation. Phosphorylation is crucial for protein function. For example, RNA polymerase II (Pol II) is required for transcription pauses in a promoter-proximal position during transcription initiation. In order to initiate transcription, the C-terminal domain of Pol II must be phosphorylated by P-TEFb34. In addition, the phosphorylation of c-MYC on threonine 58 in the MB1 domain promotes c-MYC binding to F-box and WD repeat domain containing 7 (FBXW7), causing the ubiquitination of c-MYC, which triggers c-MYC degradation35. Similarly, MYCL might undergo phosphorylation to change its activity and interaction with binding proteins. However, this hypothesis requires further study.

Comprehensive proteomic analysis suggested that the MYCL MB0 domain influences the expression of cell adhesion-related proteins, and MYCL shows an up-regulation of phosphorylated cytoskeletal proteins (Fig. 3C, D, and Supplementary Fig. S11A). Cell adhesion is mediated by adhesion molecules, such as integrins and cadherins, which function in the extracellular matrix (ECM) and cell–cell adhesion and are important for cell

Table 3. MS analysis of identified proteins in cells reprogrammed with MYCL-WT and c-MYC-ΔMB0 compared with MYCL-ΔMB0. Three groups are described: (i) proteins whose peptide counts increased more than two-fold in MYCL-WT compared to MYCL-ΔMB0; (ii) proteins whose peptide counts increased more than two-fold in c-MYC-ΔMB0 compared to MYCL-ΔMB0; and (iii) commonly identified proteins. n = 3.
Figure 4. MYCL regulates RNA processing-related proteins during reprogramming via the MB2 domain. (A) W96 and W135 in the MB2 domain of MYCL and c-MYC, respectively. The structure with the recombinant protein of the MB2 domain of MYCL-WT/W96E is shown below. The numbers on the right indicate amino acid lengths. (B) The number of iPSC-like and non-iPSC-like colonies derived from 1 × 10^5 HDFs transduced with EpiP including MYCL-WT or MYCL-W96E on day 21. Mean ± SD values are shown. n = 3, *p < 0.05 by unpaired t-test. (C) Representative images of reprogramming HDFs 21 days after the transduction of EpiP, including MYCL-WT or MYCL-W96E. Scale bars, 100 µm. (D) Venn diagram of enriched proteins between reprogramming HDFs and hiPSCs by AP-MS. A list of the 25 commonly enriched proteins is shown below. Blue indicates RBP (23 in total). (E) Molecular function from the GO analysis of the 25 commonly identified proteins in (D).
communication and the regulation of fundamental physiological processes such as tissue development and maintenance through focal adhesion localization, and appropriate adhesion to the ECM is required to regulate reprogramming via MET and maintain pluripotency. Accordingly, our study supports MYCL regulating cell-substrate adhesion through its MB0 domain to promote reprogramming. In other words, MYCL might regulate proteins involved in cell adhesion and the cytoskeleton directly or indirectly to cause MET and promote reprogramming. In c-MYC, loss of the MB0 domain positively affects iPSC-like colony formation, suggesting that this domain has a different function compared to MYCL. This functional difference is somewhat surprising since the domain is well conserved. We would like to clarify this point in the future.

We also found that the MB2 domain has an important function in MYCL-reprogramming (Fig. 2B,C). Deleting the MB2 domain completely compromised the reprogramming ability of MYCL. In c-MYC, the MB2 domain has an important function in transformation activity, and tryptophan 135 in the MB2 domain is essential for this activity. The equivalent tryptophan residue in MYCL is tryptophan 96. MYCL has little transformation activity, but we showed that the mutation of tryptophan 96 completely lost the reprogramming ability of MYCL. To further investigate the function, we sought interacting proteins by affinity column chromatography. We found 31 proteins, including 26 RBPs, that interact with the MYCL MB2 domain (Table 4, genes written in blue). A GO analysis suggested that some of the 31 proteins are involved in RNA processing (Table 4). It has been reported that altered RNA processing affects somatic cell reprogramming. Therefore, we hypothesize that MYCL also promotes MET in reprogramming by regulating RNA processing via interactions with RBPs at its MB2 domain. An illustrative summary of how MYCL regulates cell reprogramming through these two domains is shown in Fig. 5.

Table 4. AP-MS analysis of identified proteins in MYCL-MB2-WT using cell lysates from reprogrammed HDFs and hiPSCs. Three groups are described: (i) protein interactors whose peptide counts increased in reprogramming HDFs more than two-fold in MYCL-MB2-WT compared with MYCL-MB2-W96E; (ii) protein interactors whose peptide counts increased in hiPSCs more than two-fold in MYCL-MB2-WT compared to MYCL-MB2-W96E; and (iii) commonly identified proteins. n = 1.

| Table 4 | AP-MS analysis of identified proteins in MYCL-MB2-WT using cell lysates from reprogrammed HDFs and hiPSCs. Three groups are described: (i) protein interactors whose peptide counts increased in reprogramming HDFs more than two-fold in MYCL-MB2-WT compared with MYCL-MB2-W96E; (ii) protein interactors whose peptide counts increased in hiPSCs more than two-fold in MYCL-MB2-WT compared to MYCL-MB2-W96E; and (iii) commonly identified proteins. n = 1. |
Further elucidation of the function of MYCL in reprogramming will improve the quality and efficiency of iPSC generation.

Material and methods

Cell culture. HDFs (106-05f.) were purchased from Cell Applications, Inc. HDFs were cultured in DMEM (08459-64, Nacalai Tesque) supplemented with 10% FBS (10439-024, gibco) and 1% penicillin and streptomycin (15140-122, Pen/Strep, gibco). The hiPSC clone 201B7 was used in this study. iPSCs were cultivated on iMatrix-511 (NP892-012, Nippi)-coated (0.5 μg/cm²) cell culture plates with StemFit (AK03N, Ajinomoto) supplemented with bFGF and passaged via dissociation into single cells using TrypLE Select (A12859-01, Life Technologies) on day 7 following a previously reported protocol.

Generation of iPSCs. A frozen stock of HDFs was thawed and cultured for four days, and then 1 × 10⁶ cells were collected by trypsinization. With SeV, HDFs were transduced with the CytoTune-iPS 2.0 (c-MYC) or CytoTune-iPS 2.0L (MYCL) Sendai Reprogramming Kit (DV-0304, DV-0305, ID Pharma). With Epip, HDFs were electroporated with 1.2 μg of plasmid mixtures with the Neon Transfection System (MPK1096 and MPK10096, Invitrogen). The plasmid mixtures included pCXLE-SOX2, -KLF4, -OCT3/4-shp53, -LIN28A, and pCXWB-EBNA1 with wild-type or mutant pCXLE-c-MYC or -MYCL. The mixing ratio of SOX2, KLF4, OCT3/4-shp53, LIN28A, EBNA1, and c-MYC/MYCL was 1:1:2:1:0.5:2. After that, the cells were plated in a 6-well plate and cultured in StemFit AK03N without bFGF at 0.25 μg/cm² in SeV or 0.125 μg/cm² in Epip. The culture medium was changed the next day and every three days after that. The colonies were counted 21 days after plating.

Immunostaining. Stained cells were imaged using a BZ-9000 imaging system (KEYENCE) or ArrayScan High-Content Systems (Thermo Fisher Scientific). HCS Studio 2.0 Cell Analysis Software (Thermo Fisher Scientific) was used to quantify cell counts and signal intensities. The Cellomics BioApplication system (Thermo Fisher Scientific) was programmed to capture and analyze 25 images per well. The total cell number was calculated by dividing this number by the total cell number.

Flow cytometry. Transduced cells were harvested with 0.25% trypsin/1 mM EDTA (25200-056, gibco) each day after the transduction for the analysis. At least 5 × 10⁴ cells were stained with the following antibodies in FACS buffer (2% FBS, 0.36% glucose (16806-25, Nacalai Tesque), 50 μg/μL Pen/Strep in PBS) for 30 min at room temperature: BV510-conjugated anti-TRA-1-60 (1:40, 563188, BD Biosciences) and PE-Cy7-conjugated anti-CD13 (1:40, 561599, BD Pharmingen, and 1:500, 09-0068, Stemgent) and Alexa 488-conjugated goat anti-mouse IgG, IgM (H + L) (1:250, A10680, Invitrogen) were used as the antibodies.

Western blotting. Proteins on an SDS-PAGE gel were transferred to a PVDF membrane (IPVH00010, Immobilon-P, Millipore) and probed with the following antibodies using an iBind Flex system (SLF2000, SLF2010 and SLF2020, Invitrogen): anti-human MYCL (1:250, AF4050, R&D) (1:250, C-20, sc-790, Santa Cruz), anti-human c-MYC (1:500, 9E10, sc-40, Santa Cruz, and 1:500, D84C12, CST), anti-β-actin (1:1000, A5441, Sigma), anti-Goat (1:3000, ab6741-1, abcam), anti-mouse (1:3000, 7076S, CST), and anti-rabbit (1:3000, 7074S, CST) antibodies.
Preparation of recombinant proteins and affinity purification (AP). The MB2 region of MYCL-WT or -W96E was cloned into pGEX-6P-1. The plasmids were transformed into BL21 E. coli (DE3) (Promega) competent cells. The fusion proteins, GST-MYCL-WT-MB2 and GST-MYCL-W96E-MB2, were induced by treatment with 0.5 mM IPTG (19742-94, Nacalai Tesque) for 4 h at 37 °C. The proteins were purified using glutathione Sepharose beads (17-0756-01, GE Healthcare). Human iPSCs or reprogramming HDFs were lysed in RIPA buffer (20 mM Tris/HCl (pH 7.6) (35436-01, Nacalai Tesque), 1% NP-40 (25223-75, Nacalai Tesque), 0.1% SDS, 150 mM NaCl (31320-05, Nacalai Tesque), and protease inhibitor (25955-11, Nacalai Tesque)) and then centrifuged. Cell lysates (supernatant) were transferred into a column (29922, Thermo Fisher Scientific) packed with beads conjugated with GST-MYCL-WT or -W96E proteins. After washing, binding proteins were eluted in lysis buffer (12 mM sodium deoxycholate (190-08313, Wako), 12 mM sodium lauroyl sarcosinate (192-10382, Wako), and 100 mM Tris-HCl (pH9.0) (314-90381, NIPPON GENE)) for the MS analysis. The iPSC lysates were prepared 6 days after passaging in two 10-cm dishes (n = 1), and reprogramming HDF lysates were prepared 3 days after SeV transduction in two 10-cm dishes (n = 1).

GO analysis by DAVID. The Database for Annotation, Visualization, and Integrated Discovery (DAVID Bioinformatics Resources 6.8) was used to identify enriched biological GO terms and KEGG pathway. For more information, please visit the DAVID website (https://david.ncifcrf.gov/home.jsp) and KEGG Database website (https://www.kegg.jp/kegg/kegg1.html). The methods for MS are described in the Supplementary methods.
8. Balaipuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat. Rev. Mol. Cell Biol. 21, 255–267 (2020).
9. Varmus, H. E. The molecular genetics of cellular oncogenes. Annu. Rev. Genet. 18, 553–612 (1984).
10. Oster, S. K., Mao, D. Y. L., Kennedy, J. & Penn, L. Z. Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 22, 1998–2010 (2003).
11. Beaulieu, M.-E., Castillo, F. & Soucek, L. Structural and biophysical insights into the function of the intrinsically disordered myc oncoprotein. Cells 9, 1038 (2020).
12. Amati, B. et al. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359, 423–426 (1992).
13. Zhang, Q. et al. MB0 and MBI are independent and distinct transactivation domains in MYC that are essential for transformation. Genes 8, 134 (2017).
14. Kalkat, M. et al. MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis. Mol. Cell 72, 836–848.e7 (2018).
15. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B 85, 348–362 (2009).
16. Tanabe, K., Nakamura, M., Narita, M., Takahashi, K. & Yamanaka, S. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc. Natl. Acad. Sci. 110, 12172–12179 (2013).
17. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).
18. Xing, Q. R. et al. Diversification of reprogramming trajectories revealed by parallel single-cell transcriptionite and chromatin accessibility sequencing. Sci. Adv. 6, ea6a1990 (2020).
19. Wolf, E. & Eilers, M. Targeting MYC proteins for tumor therapy. Annu. Rev. Cancer Biol. 4, 61–75 (2020).
20. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
21. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
22. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl. Acids Res. 37, 1–13 (2009).
23. Wasylishen, A. R. et al. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Metab. 25, 1103–1117.e6 (2017).
24. Maekawa, M. et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Gli1. Nature 474, 225–229 (2011).
25. Zahn-Zabal, M. et al. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucl. Acids Res. 48, D328–D334 (2020).
26. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).
27. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).
28. Sakurai, K. et al. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell 14, 523–534 (2014).
29. Pei, D., Shu, X., Gassama-Diagne, A. & Thiery, J. P. Mesenchymal–epithelial transition in development and reprogramming. Nat. Cell Biol. 21, 44–53 (2019).
30. Bonomi, S. et al. HnRNP A1 controls a splicing regulatory circuit promoting mesenchymal-to-epithelial transition. Nucl. Acids Res. 41, 8665–8679 (2013).
31. Price, D. H. Regulation of RNA polymerase II elongation by c-Myc. Cell 141, 399–400 (2010).
32. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. 101, 9085–9090 (2004).
33. Tamkun, J. W. et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271–282 (1986).
34. Hynes, R. Integrins: A family of cell surface receptors. Cell 48, 549–554 (1987).
35. Narva, E. et al. A strong contractile actin fence and large adhesions direct human pluripotent colony morphology and adhesion. Stem Cell Rep. 9, 67–76 (2017).
36. Santoro, R., Perrucci, G. L., Gowran, A. & Pompilio, G. Unchain My heart: integrins at the basis of iPSC cardiomyocyte differentiation. Stem Cells Int. 2019, 1–20 (2019).
37. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).
38. Ohta, S., Nishida, E., Yamanaka, S. & Yamamoto, T. Global splicing pattern reversion during somatic cell reprogramming. Cell Rep. 5, 357–366 (2013).
39. Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 5394 (2014).
40. Kanekura, K. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
41. Kanekura, K. et al. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
42. Kanekura, K., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Yamanaka, S. KEGG: integrating viruses and cellular organisms. Nucl. Acids Res. 49, D545–D551 (2021).

Acknowledgements
This research was supported by AMED under Grant Number JP21bm0104001 and a grant from the Fujiwara Memorial Incorporated Foundation. We thank Dr. C. Okubo, Dr. H. Kagawa, Dr. T. Yamakawa, Dr. K. Okita, and Dr. K. Takahashi for scientific discussions; Dr. A. Ohta and Dr. Y. Nishi for technical assistance with the ArrayScan analysis; and Dr. P. Karagiannis for reading the manuscript.

Author contributions
C.A. and M.N. wrote the main manuscript text. C.A. mainly prepared all figures (supported by C.S., Y.C., T.I., and M.N.). Proteome analysis was done by Y.K. and M.I.L. All authors reviewed the manuscript.
Competing interests
M.I. is a scientific adviser (without salary) of xFOREST therapeutics. Other authors do not provide a competing interest statement.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-03260-5.

Correspondence and requests for materials should be addressed to M.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021