Can the kisspeptin help us in the understanding of pathology of some neurodegenerative brain diseases?

Authors: N. Melka, A. Pszczolinska, I. Klejbor, B. Ludkiewicz, P. Kowiański, J. Moryś

DOI: 10.5603/FM.a2021.0090

Article type: Review article

Submitted: 2021-08-20

Accepted: 2021-09-10

Published online: 2021-09-15

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Can the kisspeptin help us in the understanding of pathology of some neurodegenerative brain diseases?

N. Melka et al., Can the kisspeptin help us in the understanding of pathology of some neurodegenerative brain diseases?

N. Melka¹, A. Pszczolinska¹, I. Klejbor²:³, B. Ludkiewicz¹, P. Kowiański¹:³, J. Moryś⁵:⁴

¹Department of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdansk, Poland

²Department of Anatomy, Jan Kochanowski University of Kielce, Poland

³Department of Clinical Anatomy and Physiology, Institute of Health Sciences, Pomeranian University of Slupsk, Poland

⁴Department of Normal and Clinical Anatomy, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Poland

Address for correspondence: Prof. J. Moryś, Department of Normal and Clinical Anatomy, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, ul. Powstańców Wielkopolskich 72, 70–111 Szczecin, Poland, e-mail: neurob2010@me.com

ABSTRACT

It is already known that the discovery of kisspeptin was a revolutionary step in the understanding of regulation of neuroendocrine in reproduction. Kisspeptin is one of the main moderators of the gonadotropic axis, but the kisspeptin gene is known to be expressed in various regions of the central nervous system. The activity of kisspeptin is not limited to hypothalamic pituitary gonadal (HPG) axis; it participates in the regulation of multiple neuronal circuits in the limbic system. The limbic system is a part of the brain involved in behavioral and emotional reactions, and disturbances in its functioning may be a source of
some psychiatric as well as degenerative disorders. In the present review, we summarize the current state of knowledge concerning the role of kisspeptin in the limbic system and a new hope for the treatment of disturbances in its functioning.

Key words: kisspeptin, hypothalamus, limbic system, neurodegenerative disease

INTRODUCTION

Kisspeptin (KP), a protein named after the famous chocolates 'Kisses' has revolutionized both our knowledge of hypothalamic pituitary gonadal axis (HPG) and the understanding of neuroendocrine regulation of reproduction. Kisspeptin bases on the principle of feedback which allows for the maintaining of homeostasis in various physiological states of the body. The first information about the kisspeptin protein and its influence on the function of HPG axis appeared at the end of the 20th century during the studies on the function of dynorphin A and neurokinin B. The HPG works mainly due to the interaction and integration of brain and gonadal signals. In the rat, the estrogen’s receptor is not present on gonadotropin-releasing hormone (GnRH) neurons; consequently, gonadal feedback must be realized by the intermediate signaling pathway. The protagonist of this route is kisspeptin. Kisspeptin plays a decisive role in the control of fertility by initiating and regulating the process of puberty and pituitary secretion. Since 2005, it has been known to be the strongest activator of the HPG axis. Depriving kisspeptin or its receptor weakens fertility and reproductive physiology, while enhancement of the mutation function in the KISS1R gene results in premature maturation. In immature rats, administration of kisspeptin induced the onset of maturation, while administration of its antagonist delayed it.

Kisspeptin is encoded by the kisspeptin gene (KISS1). This neuropeptide performs different roles in brain functions. It is dynamically regulated by neuronal activity and increases synaptic transmission for a long time. The kisspeptin gene is expressed in the central nervous system as well as in many other organs. G-protein coupled receptor (GPR54) (receptor for KP13, coupled with G-54 protein) is fully activated by all products of the KISS1 gene and is essential for stimulation of GnRH secretion and induction of puberty. This receptor is highly expressed in the brain areas related to memory and emotions, including the hippocampus and amygdala. The wide distribution of kisspeptin fibers, as well as the kisspeptin receptor in central and peripheral nervous system,
is a reason for these proteins being involved in the regulation of multiple neuronal circuits and have been reported in a large number of physiological, as well as pathophysiological conditions of the reproductive system [19,96,108], diabetes [49,50,96], adiposity [41,45] and suppression of metastasis in various neoplasm [18,62], locomotor activity [101], and anxiety [101].

In all examined mammalian species, the localization of hypothalamic kisspeptin neurons is mostly similar. They are generally placed in the anteroventral periventricular nucleus (AVPV) and the preoptic periventricular nucleus (PeN), dorsomedial nucleus (DMN), and arcuate nucleus (ARN) [1,20,28,67,83]. A studied species contains at least two types of kisspeptin neurons in the hypothalamus [67], and another one in the medial amygdala of rodents [92]. The kisspeptin neurons are observed mainly in the preoptic/rostral hypothalamus in various mammalian species, including rodents [20,38,55,97], sheep [46,83], pigs [53], nonhuman primates [56,104,109] as well as human [88]. Due to different role of kisspeptin neurons, they additionally contain various neurotransmitters/neuromodulators or their precursors like galanin [47,81], enkephalin [81], dopamine [51] or GABA and glutamine [84]. Additionally, in the human, kisspeptin neurons, the co-expression of neuropeptides including neurokinin B [44], substance P [31] and cocaine- and amphetamine-regulated transcript CART were observed. The different co-transmitters present in the kisspeptin neurons suggest its multimodal functions and involvement in various behavioral activities in the brain structures.

Leptin, discovered in 1994, is known to be produced by white fatty tissue (WAT) [112] and to have a major indirect effect on excitation of HPG axis. This stimulatory effect on the HPG axis is performed through the kisspeptin interneurons located in the anterior part of the hypothalamus which also possess the receptors for leptin [13,14,45]. Additionally, many regulatory factors influence the hypothalamic kisspeptin neurons and consequently, the release of kisspeptin. Energy reserves are essential for reproductive success. As a result, metabolic factors tightly control the synthesis and release of kisspeptin [107].

LIMBIC SYSTEM

In 2011 scientists began to examine kisspeptin and its effects outside the hypothalamus more closely. The expression of kisspeptin was also found in other components of the limbic brain structures, like amygdala [2,23,58,61,80,99], hippocampus [6–8,63] and olfactory...
system [80]. There are very few records regarding the expression of KISS1 in the striatum [63,68].

The limbic system is a set of structures in the brain that are involved in memory and emotions as well as in reproductive behaviors [82]. However, the precise link connecting those functions is still elusive and undefined. Defects in the functioning of the limbic system can be a source of many diseases. In the past years, kisspeptins emerged as physiological regulator of GnRH neurons and, hence, of the HPG axis. Some reviews summarized this function of kisspeptin; however, they focused mainly on the presence and role of kisspeptin in the hypothalamus [35,45,48,57,86]. There are some reports presenting other functions of kisspeptin such as decreasing food intake, as well as being one of the new hypothalamic anorexigenic factors [98].

Emotion and sexual responses are fundamental in human behavior. Researchers have shown kisspeptin as a link between the brain and the reproductive axis [23]. Kisspeptin administration enhances limbic and paralimbic system activity [23]. What is more, kisspeptin reduces sexual aversion and noticeably increases brain activity [23]. The author emphasizes kisspeptin participation in limbic system activity, behavior, and modulation of sex hormones [23]. On top of it, kisspeptin administration decrease negative mood [23]. The results indicate that kisspeptin also shows antidepressant-like effects [23]. Kisspeptin administration activates components of the reward system such as the hippocampus, amygdala and the cingulate and enhances the activity of this system [23]. Additional research shows; that kisspeptin increases emotional and sexual processing and decreases sexual aversion. This gives green light to the kisspeptin-based therapies for emotional and psychosexual disorders [22].

The reaction of other species is also interesting. Kisspeptin, via activation of the HPG axis, as well as modulation of releasing testosterone, has indirect effects on aggressive and territorial behavior in male lizards [71].

BEHAVIORAL AND NEURAL REACTIONS TO EMOTIONS

The amygdala, emotional center of the brain, is a part of the limbic system. It is closely related to anxiety, fear, reward, stress, and social behavior [82]. The medial nucleus of amygdala (MeA) is a most important brain region in sexual and emotional reaction [82] in which Kiss1 neurons were first described in male mice in 2004 [70]. Neurons of MeA contain
a lot of steroid hormone receptors which interact with the sex hormones and transfers olfactory information to areas closely related to kisspeptin like hypothalamic nuclei engaged in reproduction and defense [58]. Many studies on the amygdala indicate involvement of this structure in the regulation of females reproductive cycles and sexual behavior [61]. It is known that the kisspeptin neurons present in MeA are the third largest population of these neurons in the brain [70,92]. Today we know that MeA kisspeptin neurons are regulated by sex steroids (E2 via receptor) [92,99] and GABA (via receptor) [72]. MeA kisspeptin neurons send efferent projections to the hypothalamus [80,95] and are also interconnected with the accessory olfactory bulb (AOB) [58,78]. Additionally, they receive projections from vasopressin and TH neurons [80]. All this suggests that kisspeptin plays a much larger role in the regulation and functioning of the nervous system.

Kim and his colleagues [61] were first to test the effect of sex steroids on rodent's MeA KISS1 neurons. In the MeA, as in the AVPV/PeN, KISS1 levels are highly regulated and dependent on the level of sex steroids [61]. According to Stephens and coworkers [99], KISS1 expression in MeA neurons rises at puberty, and it is compatible with developmental level of sex steroids. The author’s showed that Kiss-1 expression in the amygdaloid body is present only in pubertal period and is not expressed in MeA in the neonate or in the prepubertal period [99]. There is a relationship and dependence between amygdala kisspeptin signaling and the HPG axis. This is evidenced by observations on the direct kisspeptin administration into the medial amygdala which stimulate a luteinizing hormone (LH) secretion [21]. In turn, kisspeptin antagonist decreases in LH secretion.

Activation of kisspeptin neurons localized in the posterodorsal part of the medial amygdala (MePD) affects both social interaction and sexual partner preference in males’ mice [2]. Research on the activation of medial amygdala kisspeptin neurons shows increases of time spent by male mice investigating females [2]. It indicates a key role played by MePD kisspeptin in sexual and motivation behavior.

THE MISSING LINK: WHEN THE SMELL MEETS EMOTION

Olfactory bulbs are an important part of the sexual behavioral system due to the presence of direct olfactory pathways to the corticomedial nuclei of the amygdala [59]. Within the olfactory system, two distinct sensory systems can be distinguished; the main olfactory
system and accessory olfactory system [80]. The accessory olfactory bulb projects to MeA kisspeptin neurons [80] which are usually called “vomeronasal” amygdala [59]. This indicates the role of kisspeptin neurons in the processing of and responding to fragrance and pheromone information. Pheromones are detected and processed by accessory olfactory system which has been functionally linked to reproductive behavior [11]. Next, signals triggered by pheromones in the accessory olfactory system are transmitted to hypothalamus [42]. The connection between the olfactory signals and the reproductive neuroendocrine axis is indicated by the latest results obtained by Aggarwal's team [3]. Hellier [42] indicates that a reproductive success is an effect of close relationship of pheromones stimulation. Interestingly, the exact anatomical location of the kisspeptin receptor has not been described in the olfactory system so far.

Results obtained by Yang [111] confirm the effect of kisspeptin on the structures of the limbic system. It is known that kisspeptin receptors are present in brain structures involved in emotions. The administration of kisspeptin significantly affects the reception of aromatic stimuli. The activity of the main olfactory network as well as structures such as the hippocampus and amygdala increase due to the nice smell [111]. In various neurodegenerative diseases, the impairment of olfactory functions is observed [4,29]. In the Alzheimer’s or Parkinson's disease, the loss of olfaction may precede memory or motor disturbances [30]. To administer proper neuroprotective therapies, an early recognition of degenerative symptoms of the nervous system is necessary [91]. According to the role of kisspeptin in the olfactory and limbic structure, we might suspect that kisspeptins are a novel therapeutic potential in neurodegenerative diseases as well as reproductive disturbances.

FUNCTION OF KISSPEPTIN IN HIPPOCAMPUS

The functional role of kisspeptin in the hippocampus is still unknown. Many studies prove that kisspeptin works in the hippocampus as a neuropeptide neuromodulator [6,54,70,102]. GPR54 is strongly expressed in the granular cell of hippocampal dentate gyrus [6–8], which is the first step of the hippocampal trisynaptic circuit. Lee et al. [63] showed that GPR54 density in the hippocampus is very high in the granule cell of the dentate gyrus, whereas it is barely detectable in the pyramidal cells of CA1 and CA3. KISS1 and KISS1R are detected at high density in the hippocampus [6–8,63]. Kisspeptin in the hippocampus rises the synaptic transmission via the activation of a mitogen-activated protein kinases (MAPK)-
related signaling pathway in granular cell of the dentate gyrus [8]. According to some authors, this regulatory system can play a role in the pathogenesis of epilepsy [6,7]. Arai et al. [6–8] indicate that the neuronal activity strongly affects the expression of kisspeptin. They observed the greatest changes in kisspeptin expression after kainate injection [7], which is often used to obtain the model of temporal lobe epilepsy. Arai et al. [7] suggest the existence of positive feedback loop in the hippocampal formation. The excitability of granular cells is increased by the release of kisspeptin, which in turn has the effect of increasing the expression of kisspeptin [7]. The peptide system can play a role in epilepsy.

The dentate gyrus of the hippocampus is one of main neurogenic niches in the adult brain. Neural stem cells are located in this place and produce progenitors that travel near their final location like granular cell layer of the dentate gyrus [15]. The continuous addition of new granule cell population in the dentate gyrus has the potential to make a preferential participation to neural circuit transformation. There is possibility that kisspeptin and GPR54 are recruited to regulate neurogenesis in combination with other neurotrophic factors [64,65]. This is supported by the antimetastatic actions of kisspeptin [64,65]. The observations carried out by Arai et al. [8] show that activation of GPR54 by metastin reversibly increases excitatory synaptic transmission in the granule cells of dentate gyrus.

NEW THERAPEUTIC APPROACH TO THE TREATMENT OF RECOGNITION MEMORY DISORDERS

The Alzheimer's disease (AD) is associated with a loss of cognitive function due to the progressive loss of neurons and their synapses. Given the increasing incidence of AD, finding new effective therapeutic strategies is now of the utmost importance. The GPR54 mRNA is highly expressed in the hippocampus [6], what may indicate that kisspeptin might be engaged in learning and memory processes. Hippocampus has a critical role in control of learning and memory, and its damage causes dysfunction in the processing of memory, memory consolidation and recognition [79]. As the role of kisspeptin and GPR54 in recognition processes was unclear, Jiang and his colleagues [54] were the first to undertake research into the relationship of the kisspeptin/GPR54 system in memory recognition. His research was inspired by a Gyula Telegdy report [102] in which he pointed that kisspeptin makes learning and memory consolidation in mice easier.
In 2012 Milton [69] underlines that Alzheimer's disease involves changes in the functioning of the hypothalamic-pituitary-gonadal (HPG) axis. He shows that kisspeptin might be a factor preventing neurotoxicity of amyloid-β peptide in vitro. Additionally, Milton [17] was the first to show in vitro interaction of kisspeptin with amyloid-β peptide that suggests a potential role of kisspeptin in Alzheimer's disease pathology. Milton [69] is a mastermind of the idea of using kisspeptin peptides in preventing, detecting and treating of diseases including Alzheimer’s, Creutzfeldt-Jakob disease and Type 2 diabetes. Three years later, Jiang [54] shows that injection kisspeptin-13 into the lateral ventricle and hippocampus activates receptors GPR54, prolongs the memory retention, makes easier the creation of object recognition memory, and improves memory deficit.

The pyramidal neurons of the CA1 sector of the hippocampus are particularly damaged during Alzheimer's disease [100]. After the injection of beta amyloid into the hippocampus, kisspeptin-13 shows neuroprotective effects, alleviates disorders, effects positively on improving spatial memory, and significantly prevents neuronal loss [60]. Further research is needed to determine whether the neuroprotective effects of kisspeptin against amyloid-β peptide toxicity are via direct binding to amyloid-β peptide or via the receptor.

The wide expression of kisspeptin in structures involved in memory mechanisms and learning processes suggests interactions with cholinergic systems. Babaei [9] indicates therapeutic function of kisspeptin. The injection of KP-13 into lateral cerebral ventricle had a positive effect on memory and facilitated spatial learning in induced Alzheimer's disease. This endogenous peptide has an important role in alleviating the cognitive deficit by increasing the cholinergic response. As kisspeptin interacts with many neuropeptides involved in learning and memory, its action may be mediated through these receptor systems, which should be further investigated. Gamma-aminobutyric acid (GABA) is an example here. This is a key neurotransmitter and is closely related to behavioral disorders. Studies have shown that administration of kisspeptin highly reduces the level of GABA in the limbic system in humans [24]. Kissorphin, a peptide derived from kisspeptin-10, prevents acute impairment of memory, cognitive functions, and short-term spatial learning due to ethanol administration [36].

However, KISS1 expression is inhibited during metabolic stress [85,90]. It is suggested that an attenuation of kisspeptin signaling reduces metabolism as kisspeptin levels are inversely proportional to insulin secretion [5]. A decrease in KP signaling causes a decrease in brain metabolism [5].
BEHAVIORAL THEORY OF DEPRESSION AND KISSPEPTIN

The limbic system seems to be involved in severe mental illnesses such as schizophrenia and depression. Base for depression is still incompletely understood and little is known about its pathogenesis [75]. One of the reasons is the lack of consensus on the pathology and etiology of depression. Some symptoms characteristics for depression are impossible to be modeled on laboratory animals. As of today, the criteria for identifying animal models of depression are based on actions of antidepressant drugs and responses to stress [110]. Animal models played big roles in the development of antidepressant drugs. Two of the most frequently used examinations are an open field test and forced swimming test. The open field is a very popular animal model of anxiety-like behavior. The forced swim test is a behavioral test for rodents and is one of the most frequently used tests for evaluation of antidepressant drugs [76]. Telegdy [101,102] shows that kisspeptin-13 has strongly influence activity, climbing and swimming times. In this study, kisspeptin-13 displays antidepressant-like effects in a forced swimming test [101]. In open field test, the injection of kisspeptin-13 into lateral cerebral ventricles stimulates the HPA axis which is the most important adaptive neuroendocrine system [37]. Kisspeptin-13 in the open field test has a big impact on behavior in rats. In addition, kisspeptin-13 induces hyperthermia [25]. This suggests a potential role for kisspeptin in thermogenesis.

The observations carried out by Adekunbi et al. [2] focused on kisspeptin neuronal population in MeA which is involved in anxiety response. Adekunbi et al. [2], in contrast to Teledgy’s results [25], showed that the selective activation of MeA kisspeptin neurons reduces anxiety in mice. Injection of kisspeptin-13 in rats reduced time spent in the open arms of the elevated-plus maze. Adekunbi’s mice were less anxious which was evidenced by longer exploratory time in the open arms of the elevated plus maze [2]. Similar results were obtained in another experiment regarding the effect of kisspeptin on anxiety behavior in male mice. Delmas and colleagues [27] focused on the role of KISS1R signaling in anxiety behavior. Research shows a tendency for decreased anxiety behavior in rapport to the elevated plus maze. Such differences in specificity likely result from differences between the two species. Further work is necessary to answer the questions about the role of signaling kisspeptin in anxiety in various species, as kisspeptin has an antidepressant role not only in rodents. Ogawa [73] indicates that interaction between kisspeptin and the serotonergic system plays an
important role in the modulation of fear in zebrafish. Later studies by his team showed that the blockade of serotonin receptors abolished the effect of kisspeptin, which modulated the serotonergic system through glutamatergic neurotransmission [32,33,74]. The role of kisspeptin-based therapy requires further study and explanation as there are clear links between kisspeptin and anxiety.

CONCLUSIONS

Today, kisspeptin is undoubtedly one of the basic proteins regulating not only the mechanisms underlying reproductive functions, but also the neuronal networks that integrate sexual and emotional behavior with reproductive functions. To date, most of the data concentrate on the sexual role of kisspeptin in the central nervous system, so it will be of great interest in the coming years to investigate its role in emotion and memory function in healthy condition as well as in the diseases. The results indicating the therapeutic role of kisspeptin in neuropsychiatric and neurodegenerative diseases represent a promising path for the development of research into this problem. Future studies will, undoubtfully, investigate the influence of kisspeptin on behaviors in various species including humans and attempt to delineate the precise neuronal pathways involved. Furthermore, with a better understanding of these processes, there may emerge potential therapeutic applications to aid patients with various neurodegenerative, emotional or psychosexual diseases.

Acknowledgements

The authors thank Sylwia Scisłowska MSci for assisting in preparation of figures and Aleksandra Arceusz MSci for English proof of the manuscript.

Abbreviations

AD - Alzheimer's disease

AOB - accessory olfactory bulb

AVPV - anteroventral periventricular nucleus
ARC - arcuate nucleus
DMN - dorsomedial nucleus
E2 - estradiol
FSH - follicle-stimulating hormone
GPR54 - G-protein coupled receptor
GABA - gamma-aminobutyric acid
GnRH - gonadotropin-releasing hormone
HPG - hypothalamic pituitary gonadal axis
KISS1 - kisspeptin gene
KISS1R - kisspeptin receptor
KP - kisspeptin
LH - luteinizing hormone
MAPK - mitogen-activated protein kinases
MeA - medial nucleus of amygdala
MePD - posterodorsal part of medial amygdala
PeN - rostral periventricular nucleus
POA - preoptic area
T - testosterone
WAT - white fatty tissue
Figure 1. Diagram summarizing the integrated function of the major populations of kisspeptin neurons.

1) The primary functions of hypothalamic kisspeptin are its roles in stimulating reproduction and mediating sex steroid feedback signaling. Kisspeptin neurons are situated in the anterior ventral periventricular nucleus (AVPV), periventricular nucleus (PeN) and arcuate nucleus (ARC) of the hypothalamus. The diagram shows the effect of kisspeptin neurons on GnRH neurons depending on the place of occurrence. In the case of AVPV / PeN, it is a body cell, while for ARC, it is a median eminence. Sex steroid hormones inhibit the expression of KiSS-1 mRNA in the ARC and induce expression in the AVPV/ PeN. When sex steroids are low, KiSS1 expression increases in ARC and decreases in AVPV / PeN. Major elements having reproductive control are hypothalamic GnRH neurons that release GnRH into the bloodstream system. GnRH influences FSH and LH gonadotropins, which in turn regulate gonadal function [12,57,96,105];
2) Pituitary: synthesize and secrete gonadotropin hormones [luteinizing hormone (LH) and follicle-stimulating hormone (FSH)];

3) Gonads: gamete generation and the production of sex hormones such as estrogen and testosterone;

4) The third big population of kisspeptin neurons (in addition to those present in the hypothalamus) is present in the medial nucleus of amygdala (medial amygdala, MeA) [70];

4a) Kisspeptin neurons from MeA send axons to the preoptic area of hypothalamus (POA) where many GnRH neurons are present [80];

4b) Estradiol (E2) acts on MeA kisspeptin neurons via estrogen receptor α (Erα) [92,99];

4c) Kisspeptin neurons in MeA are reciprocally linked to the accessory olfactory bulb (AOB) [58,80];

4d) Kisspeptin neurons in MeA are downregulated by GABA signaling via gamma-aminobutyric acid B (GABAB) receptor [72];

4e) Kisspeptin neurons in MeA get projections from vasopressin and tyrosine hydroxylase (TH) neurons [80];

5) Leptin, produced by white adipose tissue (WAT), has a stimulating effect on the activity of GnRH hypothalamic neurons. Kisspeptin neurons are present in the group of intermediate neurons that have leptin receptors [90];

6) Effect of external factors on kisspeptin neurons in hypothalamus, like stress, age, nutrition, and pheromones [89,93].
Figure 2. Kisspeptins are a family of small but important peptides that play a key role in the regulation of neuroendocrine reproductive function through the nervous pathways. The diagram demonstrates products of the KISS1 gene. Presented are the precursor kisspeptin-145 and the functional kisspeptin fragments: kisspeptin-54 and shorter peptides such as kisspeptin-14, kisspeptin-13, kisspeptin-10 (suffix showing the number of amino acids).
Figure 3. Summary of therapeutic roles of kisspeptin.

REFERENCES

1. Adachi S, Yamada S, Takatsu Y, et al. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007; :53,: 367–378

2. Adekunbi DA, Li XF, Lass G, et al. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J Neuroendocrinol. 2018; :30,: e12572 Available from: 10.1111/jne.12572

3. Aggarwal S, Tang C, Sing K, et al. Medial Amygdala Kiss1 Neurons Mediate Female Pheromone Stimulation of Luteinizing Hormone in Male Mice. Neuroendocrinology. 2019; :108,: 172–189 Available from: 10.1159/000496106

4. Aguilar Martínez N, Aguado Carrillo G, Saucedo Alvarado PE, et al. Clinical importance of olfactory function in neurodegenerative diseases. Rev Médica del Hosp Gen México. 2018; :81,: 268–275 Available from: 10.1016/J.HGMX.2017.05.007

5. Andreozzi F, Mannino GC, Mancuso E, et al. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals. PLoS One. 2017; :12, Available from: 10.1371/journal.pone.0179834

6. Arai AC. The role of kisspeptin and GPR54 in the hippocampus. Peptides. 2009; :30,: 16–25 Available from: 10.1016/j.peptides.2008.07.023

7. Arai AC, Orwig N. Factors that regulate KiSS1 gene expression in the hippocampus. Brain Res. 2008; :1243,: 10–18 Available from: 10.1016/j.brainres.2008.09.031

8. Arai AC, Xia Y-F, Suzuki E, et al. Cancer Metastasis–Suppressing Peptide Metastin Upregulates
Excitatory Synaptic Transmission in Hippocampal Dentate Granule Cells. J Neurophysiol. 2005; :94,: 3648–3652 Available from: 10.1152/jn.00590.2005

Babaei P, Pourmir M, Babaei P, et al. Kisspeptin-13 ameliorates memory impairment induced by streptozotocin in male rats via cholinergic system. Physiology and Pharmacology, 2016

Bhattacharya M, Babwah A V. Kisspeptin: Beyond the Brain. Endocrinology. 2015; :156,: 1218–1227 Available from: 10.1210/en.2014-1915

Boehm U, Zou Z, Buck LB. Feedback Loops Link Odor and Pheromone Signaling with Reproduction. Cell. 2005; :123,: 683–695 Available from: 10.1016/j.cell.2005.09.027

De Bond J-AP, Smith JT. Kisspeptin and energy balance in reproduction. REPRODUCTION. 2014; : 147,: R53–R63 Available from: 10.1530/REP-13-0509

Brown RE, Imran SA, Ur E, et al. KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol. 2008; :281,: 64–72 Available from: 10.1016/j.mce.2007.10.011

Castellano JM, Bentsen AH, Mikkelsen JD, et al. Kisspeptins: Bridging energy homeostasis and reproduction. Brain Res. 2010; :1364,: 129–138 Available from: 10.1016/j.brainres.2010.08.057

Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol. 2009; :88,: 41–63 Available from: 10.1016/j.pneurobio.2009.02.001

Cheng G, Coolen LM, Padmanabhan V, et al. The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep. Endocrinology. 2010; :151,: 301–311 Available from: 10.1210/en.2009-0541

Chilumuri A, Ashioti M, Nercessian AN, et al. Immunolocalization of Kisspeptin Associated with Amyloid-β Deposits in the Pons of an Alzheimer’s Disease Patient. J Neurodegener Dis. 2013; :2013, :1–11 Available from: 10.1155/2013/879710

Ciaramella V, Della Corte CM, Ciardiello F, et al. Kisspeptin and Cancer: Molecular Interaction, Biological Functions, and Future Perspectives. Front Endocrinol (Lausanne). 2018; :9,: 115 Available from: 10.3389/fendo.2018.00115

Clarke H, Dhillo WS, Jayasena CN. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol Metab (Seoul, Korea). 2015; :30,: 124–141 Available from: 10.3803/EnM.2015.30.2.124

Clarkson J, Herbison AE. Postnatal Development of Kisspeptin Neurons in Mouse Hypothalamus; Sexual Dimorphism and Projections to Gonadotropin-Releasing Hormone Neurons. Endocrinology. 2006; :147,: 5817–5825 Available from: 10.1210/en.2006-0787

Comninos AN, Anastasovska J, Sahuri-Arisoylu M, et al. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct. 2016; :221,: 2035–2047 Available from: 10.1007/s00429-015-1024-9

Comninos AN, Demetriou L, Wall MB, et al. Modulations of human resting brain connectivity by kisspeptin enhance sexual and emotional functions. JCI Insight. 2018; :3, Available from: 10.1172/jci.insight.121958

Comninos AN, Wall MB, Demetriou L, et al. Kisspeptin modulates sexual and emotional brain processing in humans. J Clin Invest. 2017; :127,: 709–719 Available from: 10.1172/JCI89519

Comninos AN, Yang L, O’Callaghan J, et al. Kisspeptin modulates gamma-aminobutyric acid levels in the human brain. Psychoneuroendocrinology. 2021; :129,: 105244 Available from: 10.1016/j.psyneuen.2021.105244

Csabafi K, Jászberényi M, Bagosi Z, et al. Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav Brain Res. 2013; :241,: 56–61 Available from: 10.1016/j.bbr.2012.11.039
26 d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci. 2007; :104,: 10714–10719 Available from: 10.1073/pnas.070411404

27 Delmas S, Porteous R, Bergin DH, et al. Altered aspects of anxiety-related behavior in kisspeptin receptor-deleted male mice. Sci Rep. 2018; :8,: 2794 Available from: 10.1038/s41598-018-21042-4

28 Desroziers E, Mikkelsen J, Simonneaux V, et al. Mapping of Kisspeptin Fibres in the Brain of the Pro-Oestrous Rat. J Neuroendocrinol. 2010; :22,: 1101–1112 Available from: 10.1111/j.1365-2826.2010.02053.x

29 Devere R. Smell and taste in clinical neurology: Five new things. Neurol Clin Pract. 2012; :2,: 208–214 Available from: 10.1212/CPJ.0b013e31826af199

30 Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012; :8,: 329–339 Available from: 10.1038/nrneurol.2012.80

31 E H, BÁ B, K R, et al. Substance P immunoreactivity exhibits frequent colocalization with kisspeptin and neuropeptide B in the human infundibular region. PLoS One. 2013; :8, Available from: 10.1371/JOURNAL.PONE.0072369

32 FM N, S O, IS P. Kisspeptin1 modulates odorant-evoked fear response via two serotonin receptor subtypes (5-HT1A and 5-HT2) in zebrafish. J Neurochem. 2015; :133,: 870–878 Available from: 10.1111/jncc.13105

33 FM N, S O, IS P. Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system. J Neurochem. 2015; :135,: 814–829 Available from: 10.1111/jncc.13273

34 Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab. 2018; :32,: 107–123 Available from: 10.1016/j.beem.2018.01.005

35 Funes S, Hedrick JA, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003; :312,: 312–316

36 Gibula-Tarlowska E, Kotlinska JH. Kissorphin improves spatial memory and cognitive flexibility impairment induced by ethanol treatment in the Barnes maze task in rats. Behav Pharmacol. 2020; :31,: 272–282 Available from: 10.1097/FBP.0000000000000537

37 Goncharova ND. Stress Responsiveness of the Hypothalamic–Pituitary–Adrenal Axis: Age-Related Features of the Vasopressinergic Regulation. Front Endocrinol (Lausanne). 2013; :4,: 26 Available from: 10.3389/fendo.2013.00026

38 Gottsch ML, Cunningham MJ, Smith JT, et al. A Role for Kisspeptins in the Regulation of Gonadotropin Secretion in the Mouse. Endocrinology. 2004; :145,: 4073–4077 Available from: 10.1210/en.2004-0431

39 Han S-K, Gottsch ML, Lee KJ, et al. Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. J Neurosci. 2005; :25,: 11349–11356 Available from: 10.1523/JNEUROSCI.3328-05.2005

40 Handa RJ, Burgess LH, Kerr JE, et al. Gonadal Steroid Hormone Receptors and Sex Differences in the Hypothalamic-Pituitary-Adrenal Axis. Horm Behav. 1994; :28,: 464–476 Available from: 10.1016/0018-506X(94)90179-3

41 Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2018; :238,: R173–R183 Available from: 10.1530/JEO-18-0108

42 Hellier V, Brock O, Candlish M, et al. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun. 2018; :9,: 400 Available from: 10.1038/s41467-017-02797-2

43 Herbison AE, Theodosis DT. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in
the male and female rat. Neuroscience. 1992; :50,: 283–298

Hrabovszky E, Ciofi P, Vida B, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010; :31,: 1984–1998 Available from: 10.1111/j.1460-9568.2010.07239.x

Hussain MA, Song W-J, Wolfe A. There is Kisspeptin – And Then There is Kisspeptin. Trends Endocrinol Metab. 2015; :26,: 564–572 Available from: 10.1016/j.tem.2015.07.008

I F, D L, M C, et al. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett. 2006; :401,: 225–230 Available from: 10.1016/J.NEULET.2006.03.039

I K, P M, B V, et al. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012; :7, Available from: 10.1371/JOURNAL.PONE.0037860

Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KISS-1 mRNA in the Male Rat. Neuroendocrinology. 2004; :80,: 264–272 Available from: 10.1159/000083140

Izzi-Engbeaya C, Comninos AN, Clarke SA, et al. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes, Obes Metab. 2018; :20,: 2800–2810 Available from: 10.1111/diabet.13460

Izzi EC, Comninos AN, Clarke SA, et al. Kisspeptin stimulates insulin secretion and modulates serum metabolites in humans. Endocr Abstr. 2018; Available from: 10.1530/endoabs.59.OC3.1

J C, AE H. Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J Neuroendocrinol. 2011; :23,: 293–301 Available from: 10.1111/J.1365-2826.2011.02107.X

J C, X d’Anglemont de T, WH C, et al. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol. 2009; :21,: 673–682 Available from: 10.1111/J.1365-2826.2009.01892.X

J T, T H, S T, et al. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod. 2010; :82,: 313–319 Available from: 10.1095/BIOLOREPROD.109.079863

Jiang JH, He Z, Peng YL, et al. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1–42 in mice novel object and object location recognition tasks. Neurobiol Learn Mem. 2015; :123,: 187–195 Available from: 10.1016/j.nlm.2015.05.010

JT S, HM D, EA S, et al. Differential regulation of KISS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005; :146,: 2976–2984 Available from: 10.1210/END.2005-0323

JT S, M S, A P, et al. Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod. 2010; :83,: 568–577 Available from: 10.1095/BIOLOREPROD.110.085407

Kauffman AS. Coming of age in the Kisspeptin Era: Sex differences, development, and puberty. Mol Cell Endocrinol. 2010; :324,: 51–63 Available from: 10.1016/j.mce.2010.01.017

Keshavarzi S, Sullivan RKP, Ianno DJ, et al. Functional Properties and Projections of Neurons in the Medial Amygdala. J Neurosci. 2014; :34,: 8699–8715 Available from: 10.1523/JNEUROSCI.1176-14.2014

Kevetter GA, Winans SS. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the vomeronasal amygdala? J Comp Neurol. 1981; :197,: 81–98 Available from: 10.1002/cne.901970107

Khouacha SE, Janahmadi M, Motamedi F. Kisspeptin-13 improves spatial memory consolidation and retrieval against amyloid-β pathology. Iran J Pharm Res. 2019; :18,: 169–181 Available from:
Kim J, Semaan SJ, Clifton DK, et al. Regulation of Kiss1 Expression by Sex Steroids in the Amygdala of the Rat and Mouse. Endocrinology. 2011; :152,: 2020–2030 Available from: 10.1210/en.2010-1498

Kim T-H, Cho S-G. Kisspeptin inhibits cancer growth and metastasis via activation of EIF2AK2. Mol Med Rep. 2017; :16,: 7585–7590 Available from: 10.3892/mmr.2017.7578

Lee DK, Nguyen T, O’Neill GP, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999; :446,: 103–107

Lee JH, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996; :88,: 1731–1737

Lee JH, Welch DR. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int J cancer. 1997; :71,: 1035–1044

Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the Kisspeptin Signaling System in Mammals: Comparative and Developmental Aspects. In: Advances in experimental medicine and biology. 2013: 27–62 Available from: 10.1007/978-1-4614-6199-9_3

Lehman MN, Merkley CM, Coolen LM, et al. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010; :1364,: 90–102 Available from: 10.1016/j.brainres.2010.09.020

Martínez-Fuentes AJ, Molina M, Vázquez-Martínez R, et al. Expression of functional KISS1 and KISS1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10. Eur J Endocrinol. 2011; :164,: 355–362 Available from: 10.1530/EJE-10-0905

Milton NGN, Chilumuri A, Rocha-Ferreira E, et al. Kisspeptin Prevention of Amyloid-β Peptide Neurotoxicity in Vitro. ACS Chem Neurosci. 2012; :3,: 706–719 Available from: 10.1021/cn300045d

ML G, MJ C, JT S, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004; :145,: 4073–4077 Available from: 10.1210/EN.2004-0431

Neuman-Lee L, Greives T, Hopkins GR, et al. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana). Horm Behav. 2017; :89,: 48–54 Available from: 10.1016/j.yhbeh.2016.12.006

NP DG, SJ S, J K, et al. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology. 2014; :155,: 1033–1044 Available from: 10.1210/EN.2013-1573

Ogawa S, Nathan FM, Parhar IS. Habenular kisspeptin modulates fear in the zebrafish. Proc Natl Acad Sci U S A. 2014; :111,: 3841–3846 Available from: 10.1073/pnas.1314184111

Ogawa S, Parhar IS. Biological Significance of Kisspeptin–Kiss 1 Receptor Signaling in the Habenula of Teleost Species. Front Endocrinol (Lausanne). 2018; :9,: 222 Available from: 10.3389/FENDO.2018.00222

Pandya M, Altinay M, Malone DA, et al. Where in the brain is depression? Curr Psychiatry Rep. 2012; :14,: 634–642 Available from: 10.1007/s11920-012-0322-7

Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005; :177,: 245–255 Available from: 10.1007/s00213-004-2048-7

Pineda R, Aguilar E, Pinilla L, et al. Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction. Prog Brain Res. 2010; :181,: 55–77 Available from: 10.1016/S0079-6123(08)81005-9

Pineda R, Plaisier F, Millar RP, et al. Amygdala Kisspeptin Neurons: Putative Mediators of Olfactory Control of the Gonadotropic Axis. Neuroendocrinology. 2017; :104,: 223–238 Available from: 10.1159/000445895
increasing meal intervals in mice. Neuroreport. 2011; :22,: 253 Available from: 10.1097/WNR.0B013E32834558DF

99 Stephens SBZ, Chahal N, Munaganuru N, et al. Estrogen Stimulation of Kissl Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-β. Endocrinology. 2016; :157,: 4021–4031 Available from: 10.1210/en.2016-1431

100 Takamura R, Mizuta K, Sekine Y, et al. Modality specific impairment of hippocampal CA1 neurons of Alzheimer’s disease model mice. J Neurosci. 2021; JN-RM-0208-21 Available from: 10.1523/jneurosci.0208-21.2021

101 Tanaka M, Csabafi K, Telegdy G. Neurotransmissions of antidepressant-like effects of kisspeptin-13. Regul Pept. 2013; :180,: 1–4 Available from: 10.1016/j.regpep.2012.08.017

102 Telegdy G, Adamik Á. The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res. 2013; :243,: 300–305 Available from: 10.1016/j.bbr.2013.01.016

103 Teles MG, Bianco SDC, Brito VN, et al. A GPR54-Activating Mutation in a Patient with Central Precocious Puberty. N Engl J Med. 2008; :358,: 709–715 Available from: 10.1056/nejmoa073443

104 Trujillo MV, Kalil B, Ramaswamy S, et al. Estradiol Upregulates Kisspeptin Expression in the Preoptic Area of both the Male and Female Rhesus Monkey (Macaca mulatta): Implications for the Hypothalamic Control of Ovulation in Highly Evolved Primates. Neuroendocrinology. 2017; :105,: 77–89 Available from: 10.1159/000448520

105 Tsatsanis C, Dermitzaki E, Avgoustinaki P, et al. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones. 2015; :14,: 549–562 Available from: 10.14310/horm.2002.1649

106 Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002; :53,: 865–871

107 VM N. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol. 2020; :16,: 407–420 Available from: 10.1038/S41574-020-0363-7

108 Wahab F, Atika B, Shahab M, et al. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol. 2016; :13,: 21–32 Available from: 10.1038/nrurol.2015.277

109 Y W, Y U, J S, et al. Oestrogen-induced activation of preoptic kisspeptin neurones may be involved in the luteinising hormone surge in male and female Japanese monkeys. J Neuroendocrinol. 2014; :26,: 909–917 Available from: 10.1111/JNE.12227

110 Yan H-C, Cao X, Das M, et al. Behavioral animal models of depression. Neurosci Bull. 2010; :26,: 327–337 Available from: 10.1007/s12264-010-0323-7

111 Yang L, Demetriou L, Wall M, et al. OR06-2 Kisspeptin Enhances Brain Processing of Olfactory and Visual Cues of Attraction in Men. J Endocr Soc. 2019; :3, Available from: 10.1210/js.2019-or06-2

112 Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994; :372,: 425–432 Available from: 10.1038/372425a0