Application of converting HSD to LNG

Muhammad Husnuari*
Indonesia Asahan Aluminium, Kuala Tanjung, Batu Bara 21657 Sumatera Utara, Indonesia
*Email: husnuari@inalum.id

Abstract. Anode baking furnace uses oil as fuel. The baking process is decisive for the quality and cost of an anode, and the environmental impact. Using natural gas as fuel can reduce the cost production of the anode by $9.45, and reduce emission from combustion in the furnace for CO₂ by 28%, NOₓ by 79%, and SOₓ by more than 95%. Emission reduction correlated to the consumption of NaOH that used for wastewater. NaOH can save by $34,000 per year and make more durability of the equipment. The total profit for this improvement is $1,245,345 per year.

1. Introduction
Anode baking process requires a large amount of fuel oil. Green anodes are transformed to graphitized carbon before being used in electrolysis cells. The transformation process that requires anodes heating up to 1,100 °C [1]. Typically one tonne of baked anodes requires approx. 2.3 Gigajoules energy [2]. The energy is supplied by the combustion of injected fuel in the refractory flue walls. A large amount of fuel oil influences the cost of anode production. While emission of combustion like SOₓ, NOₓ has become a major issue in most industries consuming fossil fuels. Therefore, combustion in anode baking furnace supposed to produce clean emissions and low-cost production [1]. Fuel consumption to produce baked anode in 2015 at PT Inalum can be seen in Table 1.

Month	Consumption (Liter)	Energy (MMBtu)	Anode Production (Ton)
January	1,078,946	38,734	14,376
February	910,197	32,676	12,707
March	989,270	35,515	13,587
April	915,136	32,853	13,296
May	943,813	33,883	13,376
June	915,164	32,854	12,839
July	1,050,867	37,726	14,166
August	1,048,165	37,629	14,459
September	1,005,089	36,083	14,044
October	1,012,759	36,358	14,207
November	922,562	33,120	13,712
December	977,256	35,083	13,279
TOTAL	11,769,224	422,514	164,048

A large amount of fuel oil influences anode cost production and affects to the anode sale price. Anode cost production can be seen in Table 2.
Table 2. Anode cost production using oil.

Item	Unit	Price
Coke	USD/T-BB	298.78
CTP	USD/T-BB	100.87
Butt	USD/T-BB	120.13
Oil	USD/T-BB	54
Ceramic Ball	USD/T-BB	2.1
Caustic Soda	USD/T-BB	0.42
Labor	USD/T-BB	4.97
Total Cost	**USD/T-BB**	**581.27**

2. Strategy overview

The goal of any baking furnace optimization program is to minimize anode cost production. Baking optimization to reduce energy consumption by switching fuel oil into natural gas (Liquefied Natural Gas/LNG) [3]. LNG usage can reduce energy consumption, environmental impact, material uses, maintenance cost. Most of the LNG is produced domestically, it thus helps reduce energy import and save foreign currency. LNG can be applied directly to the anode baking furnace. LNG as fuel has the lowest specific emissions of all types of fossil. The investment cost needed to implement this fuel like modified equipment, build storage tank, vaporizer and piping.

LNG price formulation

\[
\text{LNG Price} = (\text{REP} \times \text{Slope}) + \alpha
\]

Remark:
1. Slope, determined in accordance following government regulation.
2. REP (Realized Export Price) is price arithmetic from Realized Export Prices per barrels in USD, FOB Indonesia, from all field that classified as Indonesian Crude Oils that have been sold and exported from Indonesia, and published by Indonesia Government and reported by SKK Migas.
3. Alpha (α) is the cost for LNG transportation from source to Arun, filling station, LNG trucking, and regasification.

2.1. SWOT analysis

- **Strength (S)**
 - Inalum has experience at operating anode baking furnace.
 - Existing furnace and control temperature are compatible with natural gas.
 - LNG is domestically produced from natural gas.
 - Availability of budget.

- **Weakness (W)**
 - Inalum does not have experience at using LNG.
 - Higher safety standards.
 - Investment for a storage tank, modification of equipment and piping are necessary.
 - Anode baking furnace cannot stop more than 4 hours.
- **Opportunity (O)**
 - Natural gas with low carbon and sulfur content has proven as clean and save fuel as well as economic compared with Diesel oil.
 - Natural gas is plentiful in our country.
 - LNG supplied by pipeline, the port load can be reduced
 - Inalum vision to become aluminum company with environmentally friendly.

- **Threat (T)**
 - LNG prices influenced by the oil prices.
 - Continuity of LNG supplied
 - Awareness of the personnel should be improved.

Item	Unit	Oil	LNG	Remark
Caloric value	MMBtu/Liter	0.036	0.024	
Unit Price	$/MMBtu	18	15	
Energy Price	$/TBA	54.00	38.60	
Energy Required	Kg/TBA	59.6	49	
Supply	-	Unstable	Stable	
Environmental	-	Bad	Good	Low Sulfur
Commodity	-	Import	Domestic	
Infrastructure	-	Existing	Modification	
Investment	-	No	Yes	
Burner	-	Burner oil	Burner gas	
Maintenance	-	Moderate	Less	No soot
Chemical Structure	-	C₈ to C₂₅	CH₄ and C₂H₆	
Operational control	-	Controllable	Controllable	
Flash Point	°C	165	-167.7	
Auto Ignition temp	°C	315.5	540	
Low Heat Value (LHV)	MMBtu/Kg	0.040	0.0468	
High Heat Value (HHV)	MMBtu/Kg	0.0439	0.0523	
Physical State	-	Liquid	Cryogenic Liquid	

LNG can be delivered to PT Inalum from the gas station in Belawan with:
1. Tanker ship.
2. Trucking.
3. Pipeline.

Trucking is more possible to do because of economic reasons while waiting for pipeline construction. Using trucking as a delivery unit must be calculated with the required energy in anode baking furnace. Scheduled of trucking used for the arrangement to daily needs. PT Inalum has the experience to arrange it when transferring fuel oil to Baking plant in the past. Daily energy in the Baking plant can be seen in table 4.
Tabel 4. The facility required in baking plant.

Item	Unit	Oil	LNG
Consumption	MMBtu/day	1.173	1.173
Truck Transport	MMBtu/Unit	650	400
Truck Required per day	Unit	~ 2	~ 3
Day Work	Day	22	22
Truck Required per Month	Unit	60	90
Storage tank	m³	200	300
Vaporizer	Nm³/Hour	-	2000
Piping	M	400	400
Burner ramp	Unit	Burner Oil	Burner gas

3. **Application and impact analysis**

3.1. **Application**

The monthly average of solar oil consumption is 980,768 liters. It means average energy consumption is 35,210 MMBtu per month. Truck iso tank capacity is 400 MMBtu/truck. Truck LNG has to be transferred to Baking plant every Monday until Friday. The baking plant needs 3 units of trucks each day. Supply chain LNG to anode baking furnace can be seen on the diagram:

![Figure 1. LNG supply chain to baking plant.](image)

3.1.1. **Modification of burner ramp**

Modification of burner ramp needed because existing nozzle, piping, and regulator are specified for fuel oil. Nozzle burner ramp has to be replaced from oil burner to low-pressure burner for natural gas, addition pressure reducing valve and replacement of oil pipe to gas pipe on the burner is also needed.

3.1.2. **Replacement of piping distribution**

Piping distribution from the storage tank into building for fuel oil is different from gas. It needs to be replaced for safety reasons and to avoid leakage.

3.1.3. **Building storage tank and vaporizer**

Storage tank and vaporizer are needed to be built to ensure stability and continuity of operation. Storage tank with capacity 200 m³ and supported by a vaporizer to change from liquid to gas and distribute to furnace as fuel.
3.2. Impact analysis

3.2.1. Cost production
LNG has a cheaper price than fuel oil. Using LNG as fuel can reduce anode production cost. It means anode sales price has more competitive with the other company producing baked anode. Application LNG as new source energy will reduce anode production cost by 15 USD/ton baked anode.

3.2.2. Emission Reduction
Natural gas is the cleanest of the fossil fuels. One of the main drivers for converting oil to gas operation is to reduce emissions, to save on fees and comply with more stringent environmental regulations. The combustion of natural gas releases virtually no sulfur dioxide and ash or particulate matter, and very small amounts of nitrogen oxides. Natural gas emits 28% less carbon dioxide than oil. NOx is reduced by more than 75% and SOx by more than 95% [4].

![FUEL COMPOSITION COMPARISON](image)

Figure 2. Chemical structure comparison oil and natural gas [5].

3.2.3. Reduce material consumption
The use of LNG will reduce NOx more than 75% and SOx more than a 95% influence of gas emission and affect the degree of acidity of the water. Water pH closed to neutral so the consumption of NaOH will decrease. With fuel oil, water pH is 3 but with LNG reach 6. Consumption NaOH can be reduced by more than 50 %.

3.2.4. Reduce maintenance cost
The acidity of wastewater influence the durability of equipment, because of acidic water is characteristically corrosive. Water pH using LNG closed to neutral cause corrosivity of equipment will be decreased. It means maintenance cost to repair or to replace equipment such as gas cooler, transfer bend, and brick furnace will decrease too. To obtain good anode quality LNG can be used directly as good as fuel oil so that control of operation parameters such as increased temperature, vacuum pressure, and soaking temperature can be applied with the existing system.

3.2.5. Safety operation
Awareness all personnel should be increased because LNG has different characteristics with LPG. LNG is lighter than air. When leaked, it will dissipate more quickly than LPG, because LPG is heavier than air. Besides it will also pool on the ground. LNG facilities should be designed, constructed, and operated
according to international standards for the prevention and controlling of fire and hazardous explosion, including provisions for safe distances between tanks in the facility and between the facility and adjacent buildings. Implementing safety procedures for loading and unloading LNG to transport systems (e.g. rail and tanker trucks, and vessels), including the use of fail-safe control valves and emergency shutdown and detection equipment [5].

3.2.6. Other issues
Natural gas is plentiful. With the steadily increasing demand for gas, availability and infrastructure are rapidly growing all over the world. Through liquefaction, gas can be transported by ship, truck or pipeline all over the world to meet demand wherever it arises [4].

Table 5. Comparison of price, emission, and operational.

Item	Unit	Oil	LNG	Different
Unit Price	USD/MMBtu	18	15	USD 3 (16%)
Energy Cost	USD/MMBtu	54.00	44.56	9.45 (16%)
CO₂	Kg/MMBtu	74.292	53.001	28 %
CO	Kg/MMBtu	14.9	18.1	-21 %
NOx	Kg/MMBtu	202.9	41.7	79 %
SOx	Kg/MMBtu	508.3	0.5	99.9 %
Particulate	Kg/MMBtu	38.1	3.2	91 %
Maintenance	-	Moderate	Less	
Operational control	-	Controllable	Controllable	
Commodity	-	Import	Domestic	

4. Cost and benefit analysis
Cost-Benefit analysis for baked anode can be seen in table 6:

Investment = modify of equipment + storage tank + vaporizer
= 124,000 + 600,000 + 400,000
= 1,124,000

Maintenance cost = 5% x investment
= 5% x 1,124,000
= 56,200

Total profit = total merit per year – maintenance cost
= (1,267,545 +34,000) – 56,200
= 1,245,345

Return of Investment (ROI) = total profit : total investment x 100%
= 1,245,345 : 1,124,000 x 100%
= 112.7 %

Pay Back Period (PBP) = total investment : total profit
= 1,040,000 : 738,743
= 0.90 year
Tabel 6. Cost-benefit analysis using LNG for fuel.

Item	Unit	Oil	LNG	Merit
Investment:				
Modify of Equipment	USD	124,000		
Storage Tank LNG	USD	600,000		
Vaporizer	USD	400,000		
Maintenance 5 %	USD/y	56,200		
Energy Requirement	MMBtu/y	422.515	422.515	1,267,545
Price Value	USD	18/MMBtu	15/MMBtu	1,267,545
Emissions of CO₂	T/y	191	136	Reduce 28%
Emissions of SO₂	T/y	1.306	0.001	Reduce 99%
Emissions of NOₓ	T/y	0.521	0.107	Reduce 79%
NaOH Consumption	T/y	306	152	34,000
Total Profit	USD/y		1,245,345	
ROI	%		112.7	
Pay Back Period	Year		0.90	

Tabel 7. Comparison of anode baking cost using oil and LNG.

Item	Unit	Price Used fuel oil	Price Used LNG	Different
Coke	USD/T-BB	298.78	298.78	-
CTP	USD/T-BB	100.87	100.87	-
Butt	USD/T-BB	120.13	120.13	-
Solar	USD/T-BB	54.00	44.56	9.45
Ceramic Ball	USD/T-BB	2.10	2.10	
Caustic Soda	USD/T-BB	0.42	0.21	0.21
Labor	USD/T-BB	4.97	4.97	
Total Cost	USD/T-BB	581.27	572.37	9.66

A list of anode baking furnace that uses oil and gas as fuel in the world can be seen on the reference from R&D Carbon in Table 8.
Table 8. Anode baking furnace oil and gas based reference around the world.

Year	Client	Furnace	Fire	Fuel
1982-1985	ALUCHEMIE Rotterdam, Holland	6	12	Gas
1989	COMALCO Beli Bay, S.A Australia	1	3	Oil
1992	LAURALCO, Canada	2	4	Gas
1993	ALUCENTRO, Italy	1	2	Gas
1996	ALBA, Bahrain	1	3	Gas
1996	DUBAL Alumunium, U.A.E	1	2	Gas
1998	DUBAL Alumunium, U.A.E	1	2	Gas
1999	ALUSA, South Africa	1	2	Gas
2000	ALMA (Alcan)	2	6	Gas
2001	XIN’AN Carbon Plant, Louyang, China	1	3	Oil
2001	QINGHAI Alumunium Co., Xining, China	1	1	Gas
2002	DUBAL Alumunium, U.A.E	1	2	Gas
2004	XIN’AN Carbon Plant, Louyang, China	1	3	Gas
2002	LANZHOU LIANCHENG, China	1	2	Gas
2002	ALUCHEMIE Rotterdam, Holland	1	2	Gas
2003	SICHUAN Aostar, Chengdu, China	1	2	Gas
2003	NANSAN Alumunium, Longkou, China	1	2	Oil
2004	LANZHOU LIANCHENG, China	1	2	Gas
2004	ALUCHEMIE Rotterdam, Holland	1	2	Gas
2005	HINDALCO, India	1	2	Oil
2006/2008	HORMOZAL, Iran	1	2	Gas
2009/2010	EMAL, Abu Dhabi, U.A.E	2	8	Gas
2009/2010	KAS Alumunium, Kazakhstan	1	3	Oil
2011	TRIMET, Hamburg	1	3	Gas

5. Conclusions

1. Application of LNG as new source energy will reduce the cost of anode production by 9.66 USD/ton baked anode.
2. LNG will reduce SOx by more than 95%, it can save NaOH 50% (34,000 USD/year) and create more durable of equipment life.
3. The application of LNG is necessary for alternative energy and cleaner emission (CO2 emission reduced 54.7 Ton/year).
4. Anode sale has a more competitive price.
5. Total profit at this improvement is USD 1,245,345/year

6. Reference

[1] S. S. Sijabat, Firman Ashad, Ivan Ermisyam, Ade Buandra, Daniel Jimmy P. Hutauruk and Ivan EkoYudho 2019 The Optimization of Soaking Time to Reduce Fuel Consumption While Keeping Good Baked Anode Quality Light Metals 1275-1280.
[2] Mahieu, Pierre, and Patrice Sedmak 2014 Improving fuel gas injection in anode baking furnace Light Metals 1165-1169.
[3] Keller, Felix, Peter O. Sulger, Dr. Markus W. Meier, Dagoberto S. Severo, and Vanderlei
Gusberti 2013 Specific Energy Consumption in Anode Bake Furnaces *Essential Readings in Light Metals* 408-413.

[4] Wartsila Corp 2013 Fuel efficiency in gas conversions More flexibility, less emissions and lower fuel costs.

[5] World Bank 2007 Environmental, Health, and Safety Guidelines for Liquefied Natural Gas (LNG) Facilities.