Dark Matter from the Inflaton Field

A. de la Macorra

Instituto de Física, Universidad Nacional Autonoma de Mexico, 04510, México D.F., México
Part of the Collaboration Instituto Avanzado de Cosmologia

We present a model where inflation and Dark Matter takes place via a single scalar field ϕ. Without introducing any new parameters we are able unify inflation and Dark Matter using a scalar field ϕ that accounts for inflation at an early epoch while it gives a Dark Matter WIMP particle at low energies. After inflation our universe must be reheated and we must have a long period of radiation dominated before the epoch of Dark Matter. Typically the inflaton decays while it oscillates around the minimum of its potential. If the inflaton decay is not complete or sufficient then the remaining energy density of the inflaton after reheating must be fine tuned to give the correct amount of Dark Matter. An essential feature here, is that Dark Matter-Inflaton particle is produced at low energies without fine tuning or new parameters. This process uses the same coupling g as for the inflaton decay. Once the field ϕ becomes non-relativistic it will decouple as any WIMP particle, since n_ϕ is exponentially suppressed. The correct amount of Dark Matter determines the cross section and we have a constraint between the coupling g and the mass m_ϕ of ϕ.

The unification scheme we present here has four free parameters, two for the scalar potential $V(\phi)$ given by the inflation parameter λ of the quartic term and the mass m_ϕ. The other two parameters are the coupling g between the inflaton ϕ and a scalar filed φ and the coupling h between φ with standard model particles ψ or χ. These four parameters are already present in models of inflation and reheating process, without considering Dark Matter. Therefore, our unification scheme does not increase the number of parameters and it accomplishes the desired unification between the inflaton and Dark Matter for free.

I. INTRODUCTION

Inflation has now become part of the standard model of cosmology [1]. With new data coming soon, and in particular with the Planck satellite mission, the different inflationary models will need to pass a strong test. Existing observational experiments involve measurement on CMB [4] or large scale structure "LSS" [2] or supernovae SN1a [5], and new proposals are carried out. It has been established that our universe is flat and dominated at present time by Dark Energy "DE" and Dark Matter "DM" with $\Omega_{DE} \approx 0.73$, $\Omega_{DM} \approx 0.27$ and curvature $\Omega_k \approx -0.017$ [3]. Inflation sets up the initial perturbations from which gravity forms the large scale structures, including Baryon Acoustic Oscillation, in the universe [2]. Structure formation requires the existence of Dark Matter and therefore the nature and dynamics of inflation and Dark Matter are essential building blocks to understand the current observations.

Inflation is associated with a scalar field, the "inflaton", and the energy scale at which inflation occurs is typically of the order of $E_I = 10^{16} GeV$ [1] but it is possible to have consistent inflationary models with E_I as low as $O(100) MeV$ [6]. On the other hand Dark Matter is described by an energy density which redshifts as $\rho_{DM} \sim a(t)^{-3}$ and is described by particles where its mass $m \gg T$, with T its temperature. These particles can be either fermions or scalar fields. In the case of scalar fields the scalar potential must be $V(\phi) = m^2 \phi^2 / 2$ and independently on the value of the its mass the classical equation of motion ensures that $\rho_\phi \sim V \sim a(t)^{-3}$.

Here, since we want to unify inflation with Dark Matter we will assume that DM is made out of the same field which we denote by ϕ. A scalar field can easily give inflation and DM if the potential is flat at high energies and at low energies the potential approaches the limit $V(\phi) \rightarrow m^2 \phi^2 / 2$ [13]. However, most of the time our universe was dominated by radiation. Therefore, any realistic model must not only explain the two stages of inflation and Dark Matter but must reheate the universe and allow for a long period of radiation domination. Typically the inflaton decays while it oscillates around the minimum of its potential [1]. If the inflaton decay is not complete or efficient then the remaining energy density of the inflaton after reheating must be fine tuned to give the correct amount of Dark Matter [6].

To reheat the universe we couple ϕ to a relativistic field φ via an interaction term L_{int}. This field φ may be a standard model "SM" particle, as for example neutrinos, but it could also be an extra relativistic particle not contained in the SM. Here we will assume for simplicity that φ is an auxiliary scalar field and extra relativistic degrees of freedom are fine with the cosmological data [7]. After inflation the interaction term between ϕ and φ that we use is the standard $V_{int} \sim g^2 \phi^2 \varphi^2 / 2$. This process has been widely studied [8,11] and we know that after a period of preheating and parametric resonance the term V_{int} dominates over the inflationary potential $V(\phi)$ and one produces φ particles with $n_\varphi \approx n_\phi$, and there is then not a complete decay of ϕ [8] and has also been confirmed an numerically calculated in lattice [11]. To achieve an efficient decay one needs to couple ϕ or φ to other fields using a trilinear term L_{int} [9,10]. We introduce a trilinear term $h \varphi \psi \psi$ between φ and fermion fields ψ and we obtain an efficient decay for φ and ϕ which stops at $\Omega_\phi \approx 10^{-23}$. At a much later stage we show that the fields φ and ϕ are produced using the same interaction
terms as for the reheating process. This is a main difference between other unification schemes where one needs to fine tune the amount of Dark Matter at the end of reheating and initial radiation domination epoch. However in our scheme the regeneration of \(\phi \) takes place naturally without fine tuning and only once the field \(\phi \) becomes non-relativistic, when its mass \(m_o > T \), \(\phi \) will decouple since \(n_\phi \) is exponentially suppressed. The correct amount of Dark Matter determines the cross section of Dark Matter at decoupling (as any WIMP particle) giving a constraint between the coupling \(g \) and the mass \(m_o \).

We will work out the inflation-Dark Matter unification through a simple example and we show in Fig[\ref{fig:example}] the evolution of the energy densities \(\rho_\phi \) and radiation. Of course, the whole scheme is much more general and other inflaton-Dark Matter potentials \(V(\phi) \) or interaction terms may be used, however in all cases \(V(\phi) \rightarrow m_o^2 \phi^2 / 2 \) at late times to have Dark Matter. The unification scheme we present here has four free parameters, two for the scalar potential \(V(\phi) \) given by the inflaton parameter \(\lambda \) of the quartic term and the mass \(m_o \) given by the quadratic term in \(V(\phi) \). The other two parameters are the coupling \(g \) between the inflaton \(\phi \) and a scalar filed \(\varphi \) and the coupling \(h \) between \(\varphi \) with standard model particles \(\psi \) or \(\chi \). Density perturbations normalized to COBE fixes the value for \(\lambda \) and the correct amount of Dark Matter at late times. Inflation with a single scalar field can be classified in small or large field models [?]. Small fields are potentials that inflate for values of the inflaton \(\phi \ll m_{pl} \) as in new inflation models, e.g. \(V = V_o (\phi^2 - \mu^2)^2 \), while large field models are when inflation occurs for \(\phi > m_{pl} \) as in chaotic models, e.g. \(V = V_o \phi^4 \). Here we will assume the simplest chaotic potential because we are interested in showing how the inflaton-Dark Matter unification scheme takes place in the context of \(\phi \) regeneration process. However, more general potentials and interaction terms may be used in the context of Dark Matter regeneration scheme presented here.

We take as the inflaton-Dark Matter potential

\[
V(\phi) = \frac{1}{2} m_o^2 \phi^2 + \frac{1}{4} \lambda \phi^4
\]

and we will assume a massless \(\varphi \), with \(B(\varphi) = 0 \), so that \(\varphi \) may have only an effective mass due to its interactions with other fields. The interaction term that we choose is as standard four leg between \(\phi \) and \(\varphi \), which has been widely studied in the literature in the context of reheating and preheating [\ref{ref:preheating}] and we also couple \(\varphi \) to standard model "SM" particles \(\chi, \psi \), since at high energies the universe must be dominated by SM particles. The interaction we use is

\[
V_{int} = \frac{1}{2} g^2 \phi^2 \varphi^2 + \frac{1}{2} h^2 \varphi^2 \chi^2 + h \varphi \psi \chi
\]

where \(g, h \) are constant couplings. The mass of the different fields are

\[
m_\phi^2 = V''(\phi) + V''_{int} = m_o^2 + 3 \lambda \phi^2 + g^2 \varphi^2,
\]

\[
V_{int} = \frac{d^2}{d\varphi^2} + \frac{d^2 V_{int}}{d\varphi^2} = g^2 \varphi^2
\]

\[
m_\chi^2 = h^2 \varphi^2
\]

\[
m_\psi = h \varphi
\]

II. GENERAL FRAMEWORK

Our starting point is a flat FRW universe with the inflaton-dark matter field \(\phi \) coupled to a scalar \(\varphi \). We take the lagrangian \(L = L_{SM} + \bar{L} \), where \(L_{SM} \) is the standard model SM lagrangian,

\[
\bar{L} = \frac{1}{2} \partial_{\mu} \phi \partial^\mu \phi + \frac{1}{2} \partial_{\mu} \varphi \partial^\mu \varphi - V(\phi) - B(\varphi) + L_{int}(\phi, \varphi, SM),
\]

\(V(\phi), B(\varphi) \) are the scalar potentials for \(\phi, \varphi \) and \(V_{int} = -L_{int} \) is the interaction potential. The classical evolution of \(\phi \) and \(\varphi \) are given by the equations of motion,

\[
\ddot{\phi} + 3H \dot{\phi} + V' = 0
\]

\[
\ddot{\varphi} + 3H \dot{\varphi} + B + V_{int,\varphi} = 0
\]

with \(H^2 \equiv (\dot{a}/a)^2 = \rho/3 \), a prime denotes derivative w.r.t. \(\phi \), \(B_{\varphi} \equiv \partial B/\partial \varphi \) and we take natural units \(m_{pl}^2 = 1/8\pi G \equiv 1 \).

There are many potentials \(V(\phi) \) that lead to an inflation epoch at early times and as Dark Matter at late times. Inflation with a single scalar field can be classified in small or large field models [?]. Small fields are potentials that inflate for values of the inflaton \(\phi \ll m_{pl} \) as in new inflation models, e.g. \(V = V_o (\phi^2 - \mu^2)^2 \), while large field models are when inflation occurs for \(\phi > m_{pl} \) as in chaotic models, e.g. \(V = V_o \phi^4 \). Here we will assume the simplest chaotic potential because we are interested in showing how the inflaton-Dark Matter unification scheme takes place in the context of \(\phi \) regeneration process. However, more general potentials and interaction terms may be used in the context of Dark Matter regeneration scheme presented here.

We take as the inflaton-Dark Matter potential

\[
V(\phi) = \frac{1}{2} m_o^2 \phi^2 + \frac{1}{4} \lambda \phi^4
\]
1. Inflaton Potential $V(\phi)$

The potential $V(\phi)$ must satisfy at the inflation scale the slow roll conditions $|V'|/V < 1, |V''/V| < 1$ and the constraint on the energy density perturbation normalized to COBE [11]

$$\frac{\delta \rho}{\rho} = \frac{1}{\sqrt{75\pi^2}} \frac{V^{3/2}}{V'} = 1.9 \times 10^{-5}. \quad (10)$$

For example for the chaotic potential $V_4 \equiv \lambda \phi^4$ inflation occurs for $\phi > \phi_o = \sqrt{8m_{pl}}$ and the dimensionless parameter λ and the scale of inflation $E_I \equiv V(\phi_o)^{1/4}$ are

$$V_4 \equiv \frac{1}{4}\lambda \phi^4, \quad (11)$$

$$\lambda = 2.5 \times 10^{-13}, \quad E_I = 3 \times 10^{15} \text{GeV.} \quad (12)$$

If we take $V_2 \equiv m_o^2 \phi^2/2$ as the inflationary potential then one has $E_I = 6 \times 10^{15} \text{GeV}$ with a mass $m_o \approx 10^{13} \text{GeV}$. However, since we are interested in Dark Matter at low energies we need a much smaller mass $m_o < 10^{13} \text{GeV}$ (c.f. eq. 11), since we have to produce them for $T < T_h \approx 10^6 \text{GeV}$, and with $m_o = O(\text{GeV})$ the quadratic term is subdominant compared to the quartic term in the potential in eq. (4) at the inflationary epoch.

2. Dark Matter Potential $V(\phi)$

The field ϕ should give us Dark Matter at low energies, and its energy density ρ_ϕ must then redshifting as a^{-3}, with an equation of state "EOS" $w_\phi = 0$. A scalar field with only gravitational interactions with other fields and with a potential $V(\phi) = V_0 \phi^n$ redshifts as $a^{-3(1+w)}$ with $w = (n-2)/(n+2)$ (for n-even) and only for $n = 2$ do we have a energy density redshifting as matter, $V_2 \propto \phi^2 \propto a^{-3}$ while for $V_4 \propto \phi^4 \propto a^{-4}$ and $w = 1/3$. Therefore, the scalar potential $V(\phi)$ must have the limit at low energies

$$V(\phi) \to V_2 \equiv \frac{1}{2}m_o^2 \phi^2 \quad (13)$$

with m_o a constant mass term as in eq. (4). The constraint on V_2 is that at present time (from here on the subscript o gives present time quantities)

$$\rho_\phi(t_o) = \frac{1}{2}m_o^2 + V_2(t_o) = 2V_2(t_o) = m_o^2 \phi_o^2 = \rho_{dm} \quad (14)$$

where we used that the pressure vanishes $p = \phi^2/2 - V_2 = 0$ and ρ_{dm} is the present time Dark Matter density. At low energies the mass of the Dark Matter particle is given by m_o and CDM requires a mass of ϕ to be $m_\phi \geq O(\text{GeV})$ while warm DM has a smaller mass with $m_o > O(10-100) \text{keV}$ [12].

FIG. 1: We show the evolution of the inflaton-Dark Matter field ϕ (black) and of the relativistic (yellow) energy densities. Notice that between N_{RH} and N_{gen} there is no ρ_ϕ (no ϕ particles) and that the evolution of ρ_ϕ goes from relativistic to Dark Matter type at N_{dec}.

3. Potentials $V_2 = V_4$

The potential $V(\phi) = V_2 + V_4 = \frac{1}{2}m_o^2 \phi^2 + \frac{1}{4}\lambda \phi^4$ is dominated by the quartic term if the oscillations of ϕ are larger than

$$\phi \geq \phi_{24} = \sqrt{\frac{2}{\lambda}} m_o = 2.8 \times 10^6 m_o \quad (15)$$

and we define the epoch where $V_2(\phi) = V_4(\phi)$ at $\phi = \phi_{24}$ and $V_{24} = V_2 = V_4$ with

$$E_{24} \equiv V_2(\phi_{24})^{1/4} = \left(\frac{m_o^2 \phi_{24}^2}{2}\right)^{1/4} = \frac{m_o}{\lambda^{1/4}} = 1.4 \times 10^3 m_o \quad (16)$$

where we have taken $\lambda = 2.5 \times 10^{-13}$ from eq. 12 in the r.h.s. of eqs. (14) and (15). The potential V_4 dominates at high energies, during inflation, while V_2 at low energies, when Dark Matter prevails.

III. INTERACTION TERM $V_{int}(\phi, \varphi, SM)$

The aim of this section is to show how a single scalar field ϕ can account for inflation at early times and as Dark Matter at a late time, without any fine tuning of the parameters. In order to achieve this we must have a sufficient decay of the ϕ field to reheat the universe with SM particles and at a much later stage to regenerate ρ_ϕ such that it gives the Dark Matter today. We will show that the interaction term in eq. (5) does indeed allow for a sufficient decay of ϕ at high energies, but at the same time it will allow for generating ρ_ϕ at much lower energies without the need to introduce any extra parameters. The generation of ρ_ϕ then allows to have ϕ as Dark Matter. By sufficient decay we mean that the universe at the end of reheating and the beginning of radiation dominated
universe has at most a remnant of ρφ which is subdominant compared to the amount of Dark Matter given by ρdm = ρdmo(ao/a)i3 at that time.

We will now discuss the different interactions and decays but first we present our definition of sufficient decay in more detail.

A. Sufficient Decay

The inflaton decay can have a complete decay into other particles giving a ρφ ∼ 0 after reheating. However, we may have a remnant of ρφ which may or may not be cosmologically relevant, depending on the value of Ωφ.

Since the reheating process gives a radiation dominated universe the dominant energy density is ρ ∼ a−4 while a remnant of φ has ρφ ∼ a−3, taking that V2 dominates over V3 and that the interaction is now subdominant, i.e. for φ ≪ φ24 and the evolution of a noninteracting fluid with V2 is ρφ ∼ a−3.

The amount of Dark Matter at a scale Ei = Eo(ao/ai), with E ≡ ρ1/4, is given by

\[\frac{\Omega_{dmi}}{\Omega_{ri}} = \frac{\rho_{dmi}}{\rho_{ri}} = \frac{\rho_{dmi}}{\rho_{ri}} \left(\frac{a_{d}}{a_{o}} \right) = \frac{\Omega_{\phi o}}{\Omega_{\phi o}} \left(\frac{E_{o}}{E_{i}} \right) = 6.3 \times 10^{-23} \left(\frac{10^{13}\text{GeV}}{E_{i}} \right) \]

with Ωϕo = Ωdmo = 0.22, Ωφo h2 = 4.15 × 10−5 the present time relativistic energy density and Eo = 2.4 × 10−13 GeV. If after reheating we have a reheating energy Ei with Ωφ(Ei) ≪ Ωdmi then we say the decay was sufficient. A sufficient decay would clearly not allow ρφ to account for Dark Matter since it would not give the correct amount of DM. Of course having Ωφ(Ei) = Ωdmi giving the exact amount of Dark Matter at a high energy Ei would require a fine tuning in the parameters of the model and we want to avoid this scenario.

We can estimate the amount of Dark Matter required at Ei = E24 = mφ/λ1/4 and using eq. (12) we find

\[\Omega_{dm}(E_{24}) = 4.5 \times 10^{-13} \left(\frac{\text{GeV}}{m_{o}} \right) \]

where we have taken eq. (12) and Ωri ∼ 1. If the φ field is present at energies E24 its classical evolution requires that Ωφ is fine tuned to given the value in eq. (13) to account for Dark Matter, unless it is produced again at a later stage.

B. Inflaton Decay and Universe Reheating

Let us now discuss the interaction term g2φ3φ2/2 between φ and ψ with a scalar potential V(φ) given in eq. (4). This interaction has been widely studied in the context of preheating and reheating [8]. We will present here the main results and we refer to the original work for details [8]. Soon after inflation, the inflaton field φ oscillates with large amplitude φ ≫ φ24 and the λφ4 term in the potential V dominates. The first stage of reheating is a period of preheating and parametric resonance with φ producing ψ particles in a very efficient process and in a short amount of time [8]. However, the back reaction of φ is important and one ends up with an incomplete decay of φ [8]. In fact it is the term g2φ3φ2/2 that dominates over V4 = λφ4/4, since the coupling λ ≃ 10−13 ≫ g2, and one ends with nφ ≈ nψ and φ2 ≈ φ2. So, taking only the interaction term g2φ3φ2/2 we cannot achieve a complete decay of φ [8].

In order to have a complete decay one can introduce trilinear terms such as h2φχ2 or hϕψψ, with σ an energy scale which can be related to the v.e. of the field φ [9, 10]. These trilinear terms do produce a complete decay of φ and we will end up with a universe dominated by SM particles (if χ, ψ are SM particles or coupled to the SM).

The dominant process at late time is the perturbative decay of φ → ψψ into fermions which dominates over the scattering φφ → ψψ [8, 10]. This decay takes place as long as the decay rate Γϕψ = h2mφ/8π is larger than H and the mass of φ satisfies mφ > √2mψ = √2h|ϕ|. where mφ is the mass of the scalar field. Even though, we can reheat the universe with the trilinear term between φ and the fermions ψ, this same term will not allow φ to play the role of Dark Matter at late times. This is because the mass of φ at low energies is given by the constant m0 and we would then have a constant decay rate Γϕψ = h2mφ/8π, but since H decreases, we will have Γϕψ/H ≫ 1 and the decay will not stop and φ will decay completely.

In order to avoid a complete decay of φ we choose to couple φ to fermions ψ with a trilinear term hϕψψ as in eq. (15). In this case it will be φ decaying into ψψ with a decay rate

\[\Gamma_{\phi \psi \psi} = \frac{h^{2}m_{\phi}}{8\pi} \]

and masses mψ = g|φ| and mψ = h|φ|. The trilinear term hϕψψ allows φ to decay into fermions ψ in a perturbative process if the mass condition mψ2 = g2φ2 > 2m2ψ = 2h2φ2 and Γϕψψ/H > 1 are satisfied. The mass condition gives the constraint 2h2 ≥ g2 if we take φ2 ≈ φ2. The decay of φ will then drag the inflaton field φ in the chain reaction φ ↔ ψ → ψ + ψ. The decay rate is

\[\left(\frac{\Gamma_{\phi \psi \psi}}{H} \right)^{2} = \frac{3h^{4}m_{\phi}^{2}m_{\psi}^{2}}{64\pi^{2}\rho} \equiv \frac{\rho_{R}}{\rho} \]

where we have set 3H2m2ψ = ρ and we define

\[\rho_{R} = \frac{3h^{4}m_{\phi}^{2}m_{\psi}^{2}}{64\pi^{2}} \]

and Γϕψψ/H ≥ 1 requires ρ < ρR and therefore ρR sets the initial stage of the decay. However, ρR is a function of
and if we take the upper limit for
\[\Omega \]
with \(\phiRf \) and \(\rho \), which implies a lower limit for \(\Omega \)

\[\rho \equiv \frac{3h^2g^4m_\phi^4}{1024\pi^4 \lambda} \approx \left(\frac{2h^2}{g^2} \right)^2 \left(\frac{m_\phi}{\text{GeV}} \right)^6 \left(2.5 \times 10^{14}\text{GeV} \right)^4 \]

and we have used \(2h^2 = g^2 \) and eq.\((11) \) in last expression of eq.\((22) \). We have a decay if \(\Gamma_{\psi\psi}/H > 1 \) which implies a lower limit for \(\Omega \) given by \(\Omega < \rho/\rhoRi \). Clearly since \(\Omega \) \(\lesssim \) \(1 \) the upper limit to the initial decay rate is given by \(\rhoRi \) with a decay energy \(E_{\text{Ri}} \equiv \rho^{1/4}_{\text{Ri}} \approx \left(2h^2/g^2 \right)(m_\phi/\text{GeV})^{1/4}10^{14}\text{GeV} \). The eq.\((22) \)
gives a balance between \(\rho \) and \(\rho \) with \(\rho \) \approx \(\rho^2/\rhoRi \) and \(\Gamma_{\psi\psi}/H \approx 1 \), which implies that \(\Omega \phi \) dilutes as \(\rho \) and the decay does not stop. If \(\rho \) dilutes smaller than \(\rho^2 \) then \(\Gamma_{\psi\psi}/H \approx 1 \) gives a decay but if \(\rho \) \(\rho \) dilutes faster than \(\rho^2 \) then \(\Gamma_{\psi\psi}/H < 1 \) stopping the decay.

So, let us consider the case when \(V_2 \) dominates \(V \). In this case we can use \(m^2 = g^2\phi^2 = 2g^2V_2/m_\phi^2 \) with \(\rho \phi = 2V_2 \) and eq.\((22) \) becomes

\[\left(\frac{\Gamma_{\psi\psi}}{H} \right)^2 = \frac{3h^2g^4m_\phi^4}{64\pi^2 m_\phi^2} \frac{\rho_\phi}{\Omega_{\phi Rf}} \]

where we defined

\[\Omega_{\phi Rf} \equiv \frac{64\pi^2 m_\phi^2}{3g^2 h^4 m_\phi^2} = \left(\frac{g^2}{2h^2} \right) \left(\frac{m_\phi}{\text{GeV}} \right) 3 \times 10^{-23} \]

and we have take a \(2h^2 = g^2 \) and eq.\((11) \) to evaluate the last expression in eq.\((25) \). Notice that \(\Omega_{\phi Rf} \) is independent of \(\phi \) and \(\rho \), so once the ratio \(\Omega \phi \) becomes smaller than \(\Omega_{\phi Rf} \approx 10^{-23} \) the decay stops. We can estimate the energy at the end of the decay given by \(\rhoRi = \rho/\Omega_{\phi Rf} \) and if we take the upper limit for \(\rho \phi = 2V_2 = 2V_2 \) we have

\[\rhoRi \equiv \frac{3g^2 h^4 m_\phi^4 m_\phi^2}{32\pi^2} \approx \left(\frac{2h^2}{g^2} \right)^2 \left(\frac{m_\phi}{\text{GeV}} \right)^5 \left(6.8 \times 10^6 \text{GeV} \right)^4 \]

We conclude that range of energies where the \(\phi \) decay takes place is given by the upper limit \(E_{\text{Ri}} = \rho^{1/4} \) and the lower limit \(E_{\text{RF}} = \rho^{1/4}_{\text{RF}} \) given by eqs.\((23) \) and \((26) \), i.e.

\[E_{\text{Ri}} \equiv \rho^{1/4}_{\text{Ri}} = \left(\frac{2h^2}{g^2} \right) \left(\frac{m_\phi}{\text{GeV}} \right)^{1/6} 2.5 \times 10^{14}\text{GeV} \]

\[E_{\text{RF}} \equiv \rho^{1/4}_{\text{RF}} = \sqrt{\frac{2h^2}{g^2}} \left(\frac{m_\phi}{\text{GeV}} \right)^{5/4} 6.8 \times 10^6\text{GeV} \]

We can compared eq.\((25) \) with the amount of Dark Matter in eq.\((17) \) for different energies. For example for

\[E_i = E_{\text{RF}} \approx 10^{14}\text{GeV} \]

we have \(\Omega_{\text{dm}}(E_{\text{RF}}) = 6 \times 10^{-24} < \Omega_{\phi Rf} \approx 10^{-23} \) and following the discussion below eq.\((24) \), as long as \(V_4 \) dominates there is decay, but as soon as \(V \) is dominated by \(V_3 \) the decay will stop since \(\Omega \phi \approx \Omega_{\phi Rf} \). From eq.\((24) \) for \(E_i = E_{\text{RF}} \approx 10^{9}\text{GeV} \) we have \(\Omega_{\text{dm}}(E_{\text{RF}}) = 6 \times 10^{-19} \) which is much larger than \(\Omega_{\phi Rf} \approx 10^{-23} \). We see that the decay rate \(\Gamma_{\psi\psi} \) gives a sufficient decay of \(\phi \) and if we want to have \(\rho_\phi \) as Dark Matter the field \(\phi \) must be produced at a later stage.

C. Production of \(\phi \) and \(\varphi \) at low scales

If the field \(\phi \) decays completely (or sufficiently) after inflation then there will no residual \(\rho_\phi \) left to account for Dark Matter, as seen in then last section in eqs.\((15) \) and \((23) \). In order to produce the field \(\phi \) at lower energies we use the same interaction terms given in eq.\((4) \), i.e. \(g^2\phi^2/2 \) and \(h\phi\psi\psi \), as for the inflaton decay but at a very different energy scale and where the properties of the fields are different.

We have seen in Sec.\((11) \) that the reheating scale is of the order of \(T_R \approx 10^8 - 10^{12}\text{GeV} \), the fields \(\varphi \) does no longer decay into \(\psi \) and that the fields \(\varphi \) and \(\phi \) are subdominant, at best. So we expect that at low scales \(T \ll T_R \), but still above \(T \gg T_e\text{V} \) and \(m_\phi \), that the particles \(\varphi, \phi, \psi \) are all relativistic. This is certainly true for all standard model particles and since the mass of \(\varphi \) depends on the value of \(\phi, m^2 = h^2\varphi^2, \) \(0 \leq \rho \phi \sim \varphi^2 \leq 0 \) when the parameters \(\psi, \varphi, \phi \) are relativistic the interaction terms in eq.\((5) \) give \(2 \leftrightarrow 2 \) scattering processes. The interaction rate for the \(2 \leftrightarrow 2 \) perturbative scattering process for relativistic particles is

\[\Gamma_{22} = \frac{|M_{ab}|^2 n_a}{32\pi^2 E_a^2} = \langle \sigma v \rangle n_a. \]

where \(|M_{ab}|^2 \) is the transition amplitude of the process, \(E_a \) the energy of the incident particle and \(\langle \sigma v \rangle \) is the cross section times the relative velocity \(v \) of the initial particles with

\[\langle \sigma v \rangle = \frac{|M_{ab}|^2}{32\pi^2 E_a^2}. \]

Since the particles are relativistic the number density is given by \(n_a = g_a\zeta(3/2)T^3/30 = c_a E^3 \) with \(c_a = g_a\zeta(3)/\pi^2 T^3, E = vT \) and \(\zeta \equiv (\rho/\rho N) = \pi^4/30(3) \approx 2.7 \) and eq.\((29) \) becomes

\[\Gamma_{22} = c_{22} |M_{ab}|^2 E_a \]

with \(c_{22} = \zeta(3)/(32\pi^3 T^3) \). In the case of the interaction term \(h\psi\psi\phi \phi \) the \(2 \leftrightarrow 2 \) process given by \(\psi + \psi \leftrightarrow \phi + \phi \) has \(|M_{ab}|^2 = h^4 \) and

\[\Gamma_{\psi\phi\phi} = c_{22} h^4 E. \]
This interaction takes place if \(\Gamma_{\psi \psi \phi \phi} > H \) and taking \(H = \sqrt{\rho_r/(3m_{\text{pl}}^2\Omega_r)} \equiv c_H E^2/m_{\text{pl}} \) we have

\[
\frac{\Gamma_{\psi \psi \phi \phi}}{H} = \frac{c_d h^4 m_{\text{pl}}}{E} = \frac{E_h}{E}, \quad (33)
\]

\[
E_h \equiv c_d h^4 m_{\text{pl}} = \left(\frac{2h^2}{g^2} \right)^2 \left(\frac{m_o}{\text{GeV}} \right)^2 2 \times 10^6 \text{GeV} \quad (34)
\]

where \(c_d \equiv c_{22}/c_H \), \(c_H^2 \equiv g_r \pi^2/(90 T_c^4) \) and we have take a \(2h^2 = g^2 \) and eq. (44) to evaluate the last expression in eq. (33). We see from eq. (33) that as long as all particles involved, (i.e. \(\psi, \phi \)), are relativistic and \(E < E_h \) we will produce relativistic \(\phi \) particles and \(\psi \) and \(\phi \) will be in thermal equilibrium for \(E \leq E_R \). For \(E > 10^2 \text{GeV} \) we have \(g_r \sim 106, \Omega_c \sim 1 \) and \(c_d \sim 10^{-4} \).

At the same time, once the relativistic field \(h \) has been produced the interaction term \(g^2 \phi^2 \phi^2 / 2 \) that couples \(\phi \) to \(\phi \) will produce relativistic \(\phi \) particles as long as \(T \gg m_\phi \). This interaction term also gives a \(2 \leftrightarrow 2 \) perturbative process and from eq. (34) with \(|M_{\phi \phi}|^2 = g^4 \) we have

\[
\Gamma_{\phi \phi \phi \phi} = c_{22} g^4 E, \quad H = \sqrt{\frac{\rho_c}{3m_{\text{pl}}^2 \Omega_r}} = c_H E^2, \quad (35)
\]

\[
\frac{\Gamma_{\phi \phi \phi \phi}}{H} = \frac{c_d g^4 m_{\text{pl}}}{E} = \frac{E_g}{E}, \quad (36)
\]

with \(c_d \equiv c_{22}/c_H \) as in eq. (33). The process takes place when \(\Gamma_{\phi \phi \phi \phi}/H > 1 \) or

\[
E \leq E_g \equiv c_d g^4 m_{\text{pl}} = \left(\frac{m_o}{\text{GeV}} \right)^2 8 \times 10^6 \text{GeV} \quad (37)
\]

and we have take eq. (44) to evaluate the last expression in eq. (33). For \(E < E_g, E_h \) as long as all the particles are relativistic they are in thermal equilibrium with and \(T_\phi = T_\psi \sim T_\Omega \). From eqs. (33) \(\) and (37) we have \(E_h = (h^4/g^4)E_g \leq E_g/4 \) since \(2h^2 \geq g^2 \). Therefore, the field \(\phi \) is produced as soon as \(\phi \) are produced. As long as \(\phi \) is relativistic, i.e. \(T \gg m_\phi \), we have \(\Omega_\phi = \Omega_\phi \), but once we reach the region with \(T \approx m_\phi \) the two fields will decouple since \(n_\phi \) will be exponentially suppressed.

D. Non-relativistic \(\phi \) Decoupling: \(E_{\text{dec}} \)

If two relativistic particles \((\phi, \phi) \) are in thermal equilibrium and one (in our case \(\phi \)) becomes non-relativistic then the density number \(n_\phi \) is exponentially suppressed and \(\phi \) and \(\phi \) decouple. This is just the standard WIMP particle decoupling. The transition rate for a \(2 \leftrightarrow 2 \) process is given by eq. (36)

\[
\Gamma_{\text{dec}} = \langle \sigma v \rangle n_\phi, \quad (38)
\]

In order to have the correct amount of Dark Matter a WIMP must decouple with a \(\langle \sigma v \rangle \) such that (12)

\[
\Omega_{\phi \phi} h^2 = 3 \times 10^{-27} \text{cm}^3 \text{s}^{-1} \langle \sigma v \rangle. \quad (39)
\]

For the \(2 \leftrightarrow 2 \) transition with \(\Omega_{\phi \phi} \sim 0.22, h_o = 0.7 \) eq. (39) implies a cross section

\[
\langle \sigma \rangle = \frac{g^4}{32\pi m_o^2} = 0.1 \text{pb} \quad (40)
\]

with \(pb = 10^{-36} \text{cm}^2 = \left(5 \times 10^{-5}/\text{GeV} \right)^2 \) and \(v \approx c \), giving a value for \(g^2 \)

\[
g^2 = 1.6 \times 10^{-4} \left(\frac{m_o}{\text{GeV}} \right). \quad (41)
\]

Eq. (40) gives a constraint for \(g \) in terms of the mass \(m_o \). The freeze out takes place at \(x_F = m_o/T_F \approx 10^{-12} \) giving a decoupling constant energy \(E_{\text{dec}} \) with

\[
E_{\text{dec}} = c_{\text{dec}} T_F = c_{\text{dec}} \frac{m_o}{x_F} \approx 0.12 m_o, \quad (42)
\]

and \(c_{\text{dec}} = (\pi^2 g_{\text{rel}}/30)^{1/4} \approx 1 \) taking \(g_{\text{rel}} = g_{\text{sm}} + g_\psi = 5.3 \) at \(E < O(\text{MeV}) \). For energies \(E < E_{\text{dec}} \) the fields \(\phi \) and \(\phi \) are no longer coupled and \(\phi \) evolves classically as matter with \(\rho_\phi = \rho_\phi (a_o/a)^3 \). The constraint on warm Dark Matter sets a lower scale \(m_o > O(10 - 100 \text{keV}) \) (4).

1. Dark Matter Decay?: \(E_{\text{Ddm}} \)

We have seen that at \(E_{\text{dec}} \) the field \(\phi \) ceases to maintain thermal equilibrium with \(\phi \) through the \(2 \leftrightarrow 2 \) process. However, the field \(\phi \) may decay into \(\phi \) since \(m_\phi > m_\phi \). Of course, we do not want \(\phi \) to decay since it must account for Dark Matter. In this case the decay \(\phi \rightarrow \phi \) has a decay rate \(\Gamma_{\phi \phi} \) for the interaction term \(g^2 \phi^2 \phi^2 / 2 \) is

\[
\Gamma_{\phi \phi} = \frac{g^4 \phi^2}{8\pi m_o}. \quad (43)
\]

Using that \(\phi^2 = 2V_2/m_o^2 = \rho_\phi/m_o^2 \) and \(H^2 = \rho_\phi/3m_{\text{pl}}^2 \), in matter dominated region, we have

\[
\left(\frac{\Gamma_{\phi \phi}}{H} \right)^2 = \frac{g^8 \phi^2}{64\pi^2 m_o^6 H^2} = \frac{3g^8 \phi}{64\pi^2 m_o^6} \quad (44)
\]

and \(\Gamma_{\phi \phi}/H < 1 \) if

\[
\rho_\phi < \frac{64\pi^2 m_o^6}{3g^4} \left(\frac{m_o}{\text{GeV}} \right)^{2/3} (3.6 \times 10^{13} \text{GeV})^4 \quad (45)
\]

where we have used eq. (41) on the r.h.s. of eq. (45). Eq. (45) clearly shows that \(\phi \) will not decay into \(\phi \) at energies \(E \lesssim 10^{13} \text{GeV} \) where Dark Matter is relevant.

IV. SUMMARY AND CONCLUSIONS

We have presented a model where inflation and Dark Matter takes place via a single scalar field \(\phi \). The unification scheme presented here has four free parameters,
two for the scalar potential $V(\phi)$ given by the inflation parameter λ of the quartic term and the mass m_ϕ given in the quadratic term in V. The other two parameters are the coupling g between the inflaton ϕ and a scalar field ψ and the coupling h between ϕ with standard model particles ψ or χ. These four parameters are the usual ones used previously for a scalar potential and interaction couplings describing the inflaton potential and the reheating process K. At the same time, the parameters m_ϕ and g are also present in Dark Matter models of WIMP particles. The novel feature here is that without the introduction of any new parameters we are able to unify inflation and Dark Matter using a single field ϕ that accounts for inflation at an early epoch while it gives a Dark Matter WIMP particle at low energies.

We begin with an inflaton field ϕ with a scalar potential $V(\phi)$ and interaction term V_{int}. After a period of inflation our universe must be reheated and we must account for a long period of radiation dominated epoch. Typically the inflaton decays while it oscillates around the minimum of its potential K. If the inflaton decay is not complete or sufficient then the remaining energy density of the inflaton after reheating must be either subdominant and play no cosmological roll or must be fine tuned to give the correct amount Dark Matter. An essential feature is that the transition between the radiation dominated to the Dark Matter phase is related to a late production of the scalar field ϕ, which takes place naturally without fine tuning, instead to a remnant of Dark Matter energy density which needs to be fine tuned. The scalar potential V has two terms a quartic and a quadratic one. The quartic term $V_4 = \lambda \phi^4/4$ gives inflation at high energies $E_I \approx 10^{15} GeV$ and via the coupling term $g^2 \phi^2 \varphi^2/2$ the large oscillations of ϕ in a preheating stage, with parametric resonances, produce large number of φ particles but since $\lambda \ll g^2$ the term $g^2 \phi^2 \varphi^2/2$ dominates over the potential term $\lambda \phi^4/4$ and one ends up with $n_\varphi \approx n_\phi$, $\varphi^2 \approx \phi^2$ and $\Omega_\varphi \approx \Omega_\phi$. To have a complete decay of the inflaton field, we must couple ϕ or φ to other fields with a trilinear term. Here we use the coupling $h_\phi \bar{\psi} \psi$ and the massive φ decays into two light ψ fields. At the same time, this φ decay drags the ϕ field via the chain reaction $\phi \leftrightarrow \varphi \leftrightarrow \bar{\psi} + \psi$. We calculate the end of this process and it has $\Omega_\varphi \approx 10^{-23}$ giving a sufficient (efficient) decay. Once ϕ and φ are subdominant the universe has been reheated and we have a standard hot universe filled with relativistic particles. At much lower energies, the same trilinear interaction term $h_\phi \bar{\psi} \psi$ produce light φ particles, via the reaction $\bar{\psi} + \psi \leftrightarrow \varphi + \varphi$ below the energy $E_h = c_d h^4 m_{pl}$, while the $g^2 \phi^3 \varphi^2/2$ term also produces light ϕ particles, through the reaction $\varphi + \varphi \leftrightarrow \phi + \phi$.

![Graph 1](image1.png)

FIG. 2: We show the dependence of $\Omega_{dm}(E_{Rf})$ and $\Omega_\phi(E_{Rf})$ (blue, dashed-black, respectively) at E_{24} as a function of m_ϕ. We notice that $\Omega_{dm}(E_{Rf}) \gg \Omega_\phi(E_{Rf})$ giving a sufficient inflaton decay.

![Graph 2](image2.png)

FIG. 3: We show the dependence of the different energies densities as a function of m_ϕ in GeV, with E_{Rf}, E_{Ri}, E_h, E_g and E_{dec} (dashed-red,dashed-green, dotted-blue, black, dotted-orange, respectively). Since $E_h \sim E_R$ both lines overlap and we cannot distinguish them.

\[
\begin{array}{|c|c|c|c|c|}
\hline
m_\phi & g^2 & \Omega_{dm}(E_{Rf}) & \Omega_\phi(E_{Rf}) & E_{24} \\
\hline
10^{-4} & 1.6 \times 10^{-8} & 4.6 \times 10^{-8} & 3.5 \times 10^{-19} & 1.4 \times 10^{-4} \\
10^{-2} & 1.6 \times 10^{-6} & 4.6 \times 10^{-10} & 3.5 \times 10^{-21} & 1.4 \times 10^{-2} \\
1 & 1.6 \times 10^{-4} & 4.6 \times 10^{-12} & 3.5 \times 10^{-23} & 1.4 \times 10^{-4} \\
10^2 & 1.6 \times 10^{-2} & 4.6 \times 10^{-14} & 3.5 \times 10^{-25} & 1.4 \times 10^2 \\
10^4 & 1.610^0 & 4.6 \times 10^{-16} & 3.5 \times 10^{-27} & 1.4 \times 10^7 \\
\hline
\end{array}
\]

TABLE I: We show the values of $\Omega_{dm}(E_{24})$, $\Omega_\phi(E_{24})$ at the scale E_{24} in GeV as a function of $m_\phi(GeV)$ and the value of the dimensionless coupling g^2.

\[
\begin{array}{|c|c|c|c|c|}
\hline
m_\phi & E_{Ri} & E_{Rf} & E_h & E_{dec} \\
\hline
10^{-4} & 1.10^{-3} & 8 \times 10^{-7} & 2 \times 10^{-8} & 1.6 \times 10^{-7} \\
10^{-2} & 1.10^{-11} & 8 \times 10^{-9} & 2 \times 10^{-8} & 1.6 \times 10^{-3} \\
1 & 1.10^{-14} & 8 \times 10^{-6} & 2 \times 10^{-6} & 1.6 \times 10^{-1} \\
10^2 & 1.10^{-7} & 8 \times 10^{-10} & 2 \times 10^{-10} & 1.6 \times 10^1 \\
10^4 & 1.10^{-20} & 8 \times 10^{-14} & 2 \times 10^{-14} & 1.6 \times 10^3 \\
\hline
\end{array}
\]

TABLE II: We show the values of the energies of E_R, E_d, E_{gen} and E_{dec} in GeV as a function of $m_\phi(GeV)$.
below $E_q = c_d g^4 m_{pl}$ and once the ϕ have been produced. We see that the coupling terms $g^2 \phi^2 \psi^2 / 2$ and $h \phi \psi \psi$ play two different roles namely they allow for ϕ, ψ to decay and reheat the universe at large energy scales, while they also allow to regenerate these two fields at a much later stages where both fields are relativistic and we have $n_\phi = n_\psi$. As a final step, since the mass of ϕ is different than zero, $m_\phi \neq 0$, the field ϕ will become non-relativistic at $T \approx m_\phi$, n_ϕ will be exponentially suppressed and ϕ decouples from ψ, as any WIMP field.

To conclude, the unification scheme we present here has four free parameters, two for the scalar potential $V(\phi)$ and two couplings g, h between the different fields. These four parameters are already present in models of inflation and reheating process, without considering Dark Matter, and in WIMP models without inflation. Therefore, our unification scheme does not increase the number of parameters and it accomplishes the desired unification between inflaton and Dark Matter for free.

ACKNOWLEDGMENTS

We would like to thank Luis A. Urena for useful discussions and comments. We thank for partial support Conacyt Project 80519, IAC-Conacyt Project.

Appendix A: Summary of Energies

We present the different energy scales relevant in the process of our inflation-Dark Matter uniification scheme. Concerning the inflaton-Dark Matter uniification scheme we have 4 different parameters λ, m_o in the potential V and a coupling g between ϕ and ψ and h the coupling between ϕ and ψ.

The energies in eqs. (A2) - (A12) are given in terms of these four parameters. Inflation fixes one parameter, λ, and the amount of Dark Matter today gives a constraint between g and m_o. We are left with one single free parameter which we take it to be the mass m_o. We show in figs. [2] and [3] the dependence of the E's on m_o and in tables [I] and [II] we give the values for $10^{-4} \text{GeV} < m_o < 10^4 \text{GeV}$. We see that $E_{dec} > E_q = O(eV)$ and that the values of g and all other energies are phenomenologically viable. This implies that it is feasible to implement the inflation-Dark Matter uniification. We resume the definitions and values of these energies

\begin{align}
E_1 &= \lambda^1 \phi_c = 3 \times 10^{15} \text{GeV} \tag{A2} \\
E_{Ri} &= \frac{1}{3} \rho_{Ri} = \frac{1024 \pi^4 \lambda}{9 g^2} \tag{A3} \\
E_R &= \phi_c \frac{1}{3} \rho_R \equiv \frac{1}{3} \rho_R \equiv \frac{1}{3} \rho_R \equiv \frac{3 \pi^2 m_o^2}{3g^2 h^4 m_{pl}^2} \tag{A4} \\
\Omega \phi_R f &\equiv \frac{1}{g^2} \left(\frac{m_o}{\text{GeV}} \right)^{4/3} \left(2.5 \times 10^{14} \text{GeV} \right) \tag{A5} \\
E_h &= c_d h^4 m_{pl} \tag{A6} \\
E_q &= c_d g^4 m_{pl} \tag{A7} \\
E_{dec} &= e^{-g_{ct}} \frac{1}{x_F} \text{GeV} \tag{A8} \\
E_{24} &= \frac{m_o^2 \phi_c^2}{2} \equiv \frac{4}{\lambda} \tag{A9} \\
\end{align}

[1] A. Mazumdar and J. Rocher, Phys. Rept. 497, 85 (2011) [arXiv:1001.0993 [hep-ph]]. D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999) [arXiv:hep-ph/9807278].
[2] K. Abazajian et al. Astrop. J.Suppl.182:543-559,2009. [arXiv:0812.0649v2 [astro-ph]]. M. Tegmark et al. Phys.Rev.D 74:123507 (2006), [arXiv:astro-ph/0608632]. SDFS Collaboration:Jennifer K. Adelman-McCarthy et al., Astrop. J.Suppl.175:297-313,2008; The 2dFGRS Collaboration,Shaun Cole et al.,Mon.Not. Roy.Astron.Soc.362:505-534,2005
[3] ESSENCE Collaboration, W. Michael Wood-Vasey et al., Astrop. J.666:694-715,2007; SNLS Collaboration, Pierre Astier et al., Astrop. Astrophys.447:31-48,2006.; Supernova Search, Adam G. Riess et al., Astrop. J.607:665-687,2004
[4] WMAP Collaboration, E. Komatsu et al. Astrop. J.Suppl.180:330-376,2009. M. Tegmark et al. Phys.Rev.D74:123507 (2006); A. G. Riess et al. Astro-
phys. J. 607, 665 (2004); G. Miknaitis et al., Astrophys. J. 666, 674 (2007); P. Astier et al., Astron. Astrophys. 447, 31 (2006)

[5] G. German, G.G. Ross, S. Sarkar, Nucl. Phys. B 608:423-450 (2001); G. German, A. de la Macorra, M. Mondragon, Phys. Lett. B494:311-317, 2000, \texttt{hep-th/0006200}

[6] A. R. Liddle, C. Pahud and T. A. Urena-Lopez, Phys. Rev. D 77, 121301 (R) (2008); R. Allahverdi, Bhaskar Dutta, Anupam Mazumdar, Phys. Rev. Lett. 99:261301, 2007;

[7] G. German, A. de la Macorra, M. Mondragon, Phys. Lett. B 494:311-317, 2000, \texttt{hep-th/0006200}

[8] J. H. Traschen and R. H. Brandenberger, Phys. Rev. D 42, 2491 (1990).

[9] L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994) \texttt{arXiv:hep-th/9405187}

[10] J. F. Dufaux, G. N. Felder, L. Kofman, M. Peloso and D. Podolsky, JCAP 0607, 006 (2006) \texttt{arXiv:hep-ph/0602144}

[11] G. Mangano, A. Melchiorri, O. Mena, G. Miele and A. Slosar, JCAP 0703, 006 (2007)

[12] T. Prokopec and T. G. Roos, Phys. Rev. D 55, 3768 (1997) \texttt{arXiv:hep-ph/9610400}

[13] G. N. Felder and L. Kofman, Phys. Rev. D 63, 103503 (2001) \texttt{arXiv:hep-ph/0011160}

[14] R. Micha and I. I. Tkachev, Phys. Rev. D 70, 043538 (2004) \texttt{arXiv:hep-ph/0403101}

[15] R. Micha and I. I. Tkachev, Phys. Rev. Lett. 90, 121301 (2003) \texttt{arXiv:hep-ph/0210202}

[16] G. N. Felder and I. Tkachev, “LATTICEEASY: A Program for lattice simulations of scalar fields in an \texttt{arXiv:hep-ph/0011159}.

[17] For a review see: G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267 (1996) 195; G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405:279-390, 2005 \texttt{arXiv:hep-ph/0404175}

[18] A. de la Macorra and G. Piccinelli, Phys. Rev. D 61, 123503 (2000) \texttt{hep-ph/9909459}; A. de la Macorra, C. Stephan-Otto, Phys. Rev. D 65, 083520 (2002) \texttt{astro-ph/0110460}

[19] P. Colin, V. Avila-Reese, Octavio Valenzuela, Astrophys. J. 542:622-630, 2000; A.D. Dolgov, S.H. Hansen, Astropart. Phys. 16:339-344, 2002; Matteo Vilc, Julien Lesgourgues, Martin G. Haechnelt, Sabino Matarrese, Antonio Riotto, Phys. Rev. D71:063534, 2005.