This is the accepted manuscript made available via CHORUS. The article has been published as:

Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD
Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Höche, D. A. Kosower, H. Ita, D. Maître, and K. Ozeren
Phys. Rev. Lett. 109, 042001 — Published 24 July 2012
DOI: 10.1103/PhysRevLett.109.042001
Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD

Z. Berna, G. Dianab, L. J. Dixonc, F. Febres Corderod, S. Höchee, D. A. Kosowerb, H. Itaa,c, D. Maîtref,g and K. Ozerena

aDepartment of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA
bInstitut de Physique Théorique, CEA–Saclay, F–91191 Gif-sur-Yvette cedex, France
cSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
dDepartamento de Física, Universidad Simón Bolívar, Caracas 1080A, Venezuela
eNiels Bohr International Academy and Discovery Center, NBI, DK-2100 Copenhagen, DK
fDepartment of Physics, University of Durham, Durham DH1 3LE, UK
gPH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

We present the cross sections for production of up to four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. We use the \textsc{BlackHat} library in conjunction with \textsc{Sherpa} and a recently developed algorithm for assembling primitive amplitudes into color-dressed amplitudes. We adopt the cuts used by ATLAS in their study of multi-jet events in \textit{pp} collisions at $\sqrt{s} = 7$ TeV. We include estimates of nonperturbative corrections and compare to ATLAS data. We store intermediate results in a framework that allows the inexpensive computation of additional results for different choices of scale or parton distributions.

PACS numbers: 12.38.-t, 12.38.Bx, 13.87.-a, 14.70.Hp

Pure-jet events are abundant at the Large Hadron Collider (LHC), providing a window onto new strongly interacting physics \cite{1}. The wealth of data being accumulated by the LHC experiments motivates comparisons with precise theoretical predictions from first principles, based on a perturbative expansion in quantum chromodynamics (QCD) within the QCD-improved parton model. The leading order (LO) contribution in the QCD coupling, α_s, does not suffice for quantitatively precise predictions, which require at least next-to-leading-order (NLO) accuracy in the QCD coupling.

The ATLAS \cite{2} and CMS \cite{3} collaborations have recently measured multijet cross sections in \textit{pp} collisions at 7 TeV. In this Letter, we provide NLO QCD predictions for the production of up to four jets, and compare them to ATLAS data. Our study agrees with the earlier two- and three-jet studies performed by ATLAS collaboration \cite{2} using \textsc{Nlojet++} \cite{4}: the four-jet computation is new.

NLO QCD predictions of jet production at hadron colliders have a 20-year history, going back to the original computations of single-jet inclusive and two-jet production \cite{5,6}. These were followed by results for three-jet production \cite{4,7}. A longstanding bottleneck to obtaining NLO predictions for a larger number of jets at hadron colliders, the evaluation of the one-loop (virtual) corrections, has been broken by on-shell methods \cite{8–10}, whose efficiency scales well as the number of external legs increases. Recent years have witnessed calculations with up to five final state objects \cite{11}, among many other new processes \cite{12–14}.

We illustrate the virtual contributions to four-jet production in fig. 1. To evaluate them we have made a number of significant improvements to the \textsc{BlackHat} package \cite{15}. In particular, assembly of the color-summed cross sections for subprocesses from primitive amplitudes \cite{16} has been automated \cite{17}, and the recomputation needed upon detection of numerical instabilities has been reduced \cite{18}. The pure-glue contributions dominate the total cross section, yet would be the most complex to compute in a traditional Feynman–diagram approach because of their high tensor rank. We include all subprocesses and the full color dependence in QCD in all terms. We treat the five light-flavor quarks as massless and drop the small (percent-level) effects of top quark loops.

We use \textsc{Amegic++} \cite{19}, part of \textsc{Sherpa} \cite{20}, to evaluate the remaining NLO ingredients, the real-emission amplitudes and the dipole-subtraction terms used to cancel their infrared divergences \cite{21}. \textsc{Amegic++} was cross-checked with the \textsc{Comix} package \cite{22}. The phase-space integrator exploits QCD antenna structures \cite{23,24}.

We have carried out extensive checks, including numerical stability; independence of the phase-space separation parameter α_{dipole} \cite{4}; and cancellation of infrared singularities. Our results for two- and three-jet production agree with those obtained by running \textsc{Nlojet++} \cite{4}.
TABLE I: Total cross sections in nb for jet production at the LHC at $\sqrt{s} = 7$ TeV, using the anti-k_T jet algorithm with $R = 0.4$. We compare ATLAS results against LO, ME+PS and NLO theoretical predictions. The penultimate column gives nonperturbative corrections estimated using a string fragmentation model. In all cases, numerical integration uncertainties are given in parentheses. The scale dependence shown with LO and NLO predictions is given as superscripts and subscripts. The three uncertainties shown with the ATLAS data are statistical, jet energy scale, and detector unfolding; in addition there is a $\pm 3.4\%$ luminosity uncertainty. The jet-energy scale uncertainty is asymmetric so they are given as subscripts and superscripts.

no. jets	ATLAS	LO $^{+1.3}_{-0.6} \pm 24$	ME+PS $^{+1.16}_{-0.22}$	NLO $^{+1.30}_{-0.13}$	NP factor	NLO+NP $^{+1.12}_{-0.12}$
≥ 2	$620 \pm 1.3^{+1.10}_{-0.66}$	$958(1)^{+0.16}_{-0.22}$	$559(5)$	$1193(3)^{+1.30}_{-0.13}$	$0.95(0.02)$	$1130(19)^{+1.12}_{-0.12}$
≥ 3	$43 \pm 1.3^{+1.12}_{-0.63} \pm 1.7$	$93.4(0.12)^{+0.60}_{-0.54}$	$39.7(0.9)$	$54.5(0.5)^{+0.12}_{-0.12}$	$0.92(0.04)$	$50.2(2.1)^{+0.18}_{-0.18}$
≥ 4	$4.3 \pm 0.04^{+1.14}_{-0.72} \pm 0.24$	$9.88(0.01)^{+0.70}_{-0.95}$	$3.97(0.08)$	$5.54(0.12)^{+0.08}_{-0.24}$	$0.92(0.05)$	$5.11(0.29)^{+0.08}_{-0.32}$

We consider the inclusive production of up to four jets in pp collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV. Jets are defined using the infrared-safe anti-k_T algorithm [33]. We parallel ATLAS in presenting results for jet-size parameters $R = 0.4$ and $R = 0.6$. We order the jets in p_T. We implement the ATLAS cuts from ref. [2]; we require all jets to have $p_T^{\text{jet}} > 60$ GeV and the leading jet to have $p_T^{\text{jet}} > 80$ GeV. Observed jets are also required to have rapidity $|y| < 2.8$. We use the MSTW2008 LO and NLO parton distribution functions (PDFs) [34] at the respective orders. We use a five-flavor running $\alpha_s(\mu)$ and the value of $\alpha_s(M_Z)$ supplied with the parton distribution functions.

We present our predictions for the LO, ME+PS, and NLO parton-level inclusive cross sections for two-through four-jet production in table I. The strong sensitivity of LO cross sections and distributions to the variation of the unphysical renormalization scale μ_R and factorization scale μ_F is significantly reduced at NLO. The wide range of scales probed in distributions requires us to use an event-by-event scale characteristic of the kinematics. We choose $\mu_R = \mu_F = \mu = H_T/2$ as our central scale [13, 14], where $H_T = \sum_i p_T^i$ and the sum runs over all final-state partons i. We use a standard procedure to assess scale dependence, varying the central scale up and down by a factor of two to construct scale-dependence bands as in ref. [11]. The central scale $\mu = H_T/2$ is a characteristic measure of the momentum transfers in the event. It is approximately the jet p_T in the two-jet case, and rises somewhat in the three and four jet cases. Although it was not tuned in any way, for three and four jets it happens to lie near the maximum of the NLO prediction as a function of scale, causing the scale-dependence bands to be largely to the low side of the central value. The lowest value in the band comes from lowering μ to the lower end of its range, $H_T/4$. (We have not varied the scale in the ME+PS calculation, as its choice is linked to the tuning of various parameters in the parton shower and hadronization model. Error sets for these parameters to within 1%. (For this comparison we used the k_T jet algorithm [25] and CTEQ6M partons [26] to match the default choices in NLOJET++.) We have compared the virtual matrix elements for two-, four-, and six-quark processes at selected points in phase space to HELAC-NLO [27]; they agree to 10 digits. In a supplementary file, we provide reference numerical values of the virtual matrix elements at a specific phase-space point.

In the fixed-order perturbative expansion of any observable, it is important to assess whether large logarithms of ratios of physical scales arise in special kinematic regions. Dijet production, in particular, suffers from a well-known instability at NLO [28]. If identical cuts on the transverse momentum p_T of the two jets are used, then soft-gluon radiation is severely restricted when the leading jet is just above the minimum p_T, while the virtual corrections are unaffected. This leads to a large logarithm and a divergence of the NLO corrections at the minimum p_T. Instead of resumming the logarithms [29], we follow ATLAS’s approach [2] of imposing asymmetric cuts, with the minimum p_T of the leading jet larger than that for additional jets. Large logarithms are then mitigated at the price of increased scale dependence for the two-jet prediction: By p_T conservation, the lowest p_T bins for the first two jets can only be populated if there is additional real radiation, and the NLO two-jet prediction effectively becomes LO there. The production of three or more jets, and in particular the new NLO prediction for four-jet production, do not suffer from this problem.

In addition to fixed-order parton-level LO and NLO results, we also present results for a parton-shower calculation matched to fixed-order LO matrix elements (ME+PS) [30]. We obtained the latter results using a RIVET [31] analysis within the SHERPA framework. We also use SHERPA to estimate nonperturbative correction factors which we then apply to our NLO results. These correction factors are obtained by comparing parton-level results, after showering, to fully hadronized predictions including a simulation of the underlying event. We use two different hadronization models, cluster fragmentation as implemented by SHERPA [20] and string fragmentation using the algorithm in PYTHIA 6.4 [32].
are not available.)

In the penultimate column of table I, we give the nonperturbative underlying event and hadronization (NP) correction factor using the PYTHIA-type string fragmentation model. The cluster fragmentation model gives essentially identical results, within our integration uncertainties, so we do not quote them. We use this factor as an estimate for the NP correction to the NLO cross section as well, shown with the correction in the last column. (As NLO parton-shower programs are developed beyond the dijet case [35], it will become possible to carry out estimates of nonperturbative corrections in a manner more compatible with NLO calculations.) These nonperturbative corrections are of order 10% or less for the production of four or fewer jets. For dijet production the LO and NLO theory predictions are not in good agreement with the data; as discussed above, this is not surprising given the kinematic constraints as well as the soft-radiation instability. In contrast, for the three- and four-jet cases, both the NLO and ME+PS predictions agree with the data, within the experimental uncertainties, whether or not we account for the small nonperturbative corrections.

Ratios of cross sections typically reduce both theoretical and experimental uncertainties. In particular, we have compared the ratio of four- to three-jet cross sections appearing in table I to the value obtained by ATLAS:

ATLAS: 0.098 ± 0.001^{+0.004}_{-0.005}

ME+PS: 0.100(0.003),

NLO: 0.102(0.002),

where the quoted ATLAS uncertainties are respectively statistical, jet energy scale and detector unfolding [2]. We display only the statistical integration errors for the theoretical predictions; in the ratio, the (correlated) scale dependence cancels and is not a useful estimate of uncertainty. We have not included the nonperturbative corrections; they also largely cancel in jet ratios. We estimate the residual theoretical uncertainty by comparing ME+PS and NLO results; from here we deduce that the residual theoretical uncertainty is under 5%. This is within our numerical integration uncertainty and also smaller than the experimental uncertainty.

In table II we present the LO, ME+PS and NLO p_T distribution of the fourth-leading jet, comparing to ATLAS data [2]. The penultimate column gives the nonperturbative correction factor, estimated using SHERPA, as discussed above. The final column displays the NLO results including this factor. From this table we see that both ME+PS and NLO results are in good agreement with the data, within uncertainties. The estimated nonperturbative corrections are smaller than current experimental uncertainties.

We also consider the $(n+1)/n$ jet production ratios, $[d\sigma^{n+1}/dp_T]/[d\sigma^n/dp_T]$, as a function of the leading-jet p_T. Fig. 2 displays the 3/2 and 4/3 jet production ratios for $R = 0.6$, comparing the 3/2 ratio with ATLAS data. For the 3/2 ratio we find very good agreement between NLO theory and the ATLAS data [2], except for the first bin, where the denominator is affected by the kinematic constraint and soft-radiation instability mentioned earlier. The agreement remains good even with increasing leading-jet p_T, where the ratios grow to 0.6 and 0.35 for the 3/2 and 4/3 ratios respectively. The ME+PS prediction is also in very good agreement with data and consistent with NLO, implying that these processes are under good theoretical control. It will be interesting to compare our theoretical predictions for the 4/3 ratio to future LHC data.

We have estimated the PDF uncertainty using the 100-element NNPDF 2.1 error sets; the MSTW2008 68% error sets; and the CT10 90% CL sets. With MSTW2008, we find one-sigma uncertainties of 1.2% for two-jet production; 1.6% for three-jet production; and 2.5% for four-jet production. The NNPDF 2.1 and MSTW08 central values agree well within these values, and the NNPDF 2.1 one-sigma uncertainties are comparable. The CT10 PDF uncertainty estimate is about 25% greater than for MSTW2008. However, the CT10 central value for three-jet production is 5.8% low, outside combined two-sigma errors. At high p_T the uncertainty grows somewhat, but remains smaller or comparable to our numerical-integration errors.

We have studied the dependence of the jet cross sections on the jet size parameter R for anti-k_T. LO multi-jet cross sections always decrease with increasing R, because whenever two partons are merged the event is lost.
At NLO, the R dependence is a dynamical question. We find that the NLO three-jet cross section increases with R for our usual range of scale variation. Whether the four-jet cross section increases or decreases with R is sensitive to the choice of scale.

For each event we generate, we record the squared matrix element, the momenta of all partons, and the coefficients of various functions that control the dependence of the final result on the renormalization and factorization scales, as well as on the PDFs. We store this information in ROOT-format n-tuple files [37]. The availability of these intermediate results in a standard format makes it computationally inexpensive to evaluate cross sections and distributions for different scales and PDF error sets. They also offer an easy and reliable way of furnishing our theoretical predictions to experimental collaborations, while allowing them to modify cuts or compute additional distributions [36].

In this study of pure-jet processes, we have imposed cuts typical of Standard-Model measurements at the LHC. The same tools used here can also be used to study backgrounds to new physics signals, such as those arising from colored resonances or higher-dimension effective operators. The improved efficiencies developed in the course of our study should allow us to continue increasing the number of jets accessible to NLO predictions.

We are grateful to Marc-Andre Dufour, Joey Huston, and Brigitte Vachon for providing us with very helpful information about the ATLAS results and their comparisons to NLOJET++. We thank the Kavli Institute for Theoretical Physics, where this work was initiated, for its hospitality. This research was supported by the US Department of Energy under contracts DE–FG03–91ER40662, DE–AC02–76SF00515, and DE–FC02–94ER40818. DAK’s research is supported by the European Research Council under Advanced Investigator Grant ERC–AdG–228301. The work of H.I. and S.H. was partly supported by a grant from the US LHC Theory Initiative through NSF contract PHY–0705682. This research used resources of Academic Technology Services at UCLA.

Table II: LO, ME+PS and NLO predictions for the distribution $dσ/dp_T$ [pb/GeV] in the transverse momentum of the fourth jet, p_T, for $R = 0.4$, compared to ATLAS data. The penultimate column gives the nonperturbative correction factor using the string model. The final column gives the NLO prediction including this factor.

p_T	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
60–80	170 ± 1.6^{+61}_{−21} ± 12	390(1)^{+295}_{−137}	157(4)	219(6)^{+44}_{−100}	0.92(0.06)	202(14)^{+4}_{−91}
80–110	24 ± 0.56^{+5.7}_{−3.9} ± 2.3	57.6(0.1)^{+122}_{−23}	23.7(0.7)	32.6(8)^{+0.3}_{−12.9}	0.93(0.05)	30.3(1.9)^{+0.3}_{−12}
110–160	2.6 ± 0.15^{+0.47}_{−0.31} ± 0.31	5.25(0.01)^{+3.9}_{−2.1}	2.28(0.08)	3.3(0.1)^{+0.0}_{−0.9}	0.89(0.06)	2.9(0.2)^{+0.0}_{−0.9}
160–210	0.15 ± 0.035^{+0.047}_{−0.034} ± 0.026	0.395(0.001)^{+0.29}_{−0.16}	0.18(0.01)	0.24(0.01)^{+0.0}_{−0.06}	0.93(0.08)	0.22(0.02)^{+0.0}_{−0.06}

[1] C. Kilic, T. Okui and R. Sundrum, JHEP 0807, 038 (2008); C. Kilic, S. Schumann and M. Son, JHEP 0904, 128 (2009); Y. Bai and J. Shelton, arXiv:1107.3563 [hep-ph].
[2] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 71, 1763 (2011).
[3] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 702, 336 (2011).
[4] Z. Nagy, Phys. Rev. Lett. 88, 122003 (2002); Phys. Rev. D 68, 094002 (2003).
[5] S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. Lett. 64, 2121 (1990); Phys. Rev. Lett. 69, 1496 (1992).
[6] W. T. Giele, E. W. N. Glover and D. A. Kosower, Nucl. Phys. B 403, 633 (1993); Phys. Rev. Lett. 73, 2019 (1994).
[7] W. B. Kilgore and W. T. Giele, Phys. Rev. D 55, 7183 (1997); hep-ph/0009193.
[8] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425, 217 (1994); Nucl. Phys. B 435, 59 (1995); Phys. Lett. B 394, 105 (1997); Z. Bern and A. G. Morgan, Nucl. Phys. B 467, 479 (1996); Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 513, 3 (1998); R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B 725, 275 (2005); C. Anastasiou et al., Phys. Lett. B 645, 213 (2007); R. Britto and B. Feng, JHEP 0802, 095 (2008).
[9] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005); C. F. Berger et al., Phys. Rev. D 74, 036009 (2006).
[10] G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007); D. Forde, Phys. Rev. D 75, 125019 (2007); W. T. Giele, Z. Kunszt and K. Melnikov, JHEP 0804, 049 (2008); S. D. Badger, JHEP 0901, 049 (2009).
[11] C. F. Berger et al., Phys. Rev. Lett. 106, 092001 (2011); H. Ita et al., Phys. Rev. D 85, 031501 (2012).
[12] A. Breidenstein, A. Denner, S. Dittmaier and S. Pozzorini, JHEP 0808, 108 (2008); Phys. Rev. Lett. 103, 012002 (2009); JHEP 1003, 021 (2010); C. F. Berger et al., Phys. Rev. Lett. 102, 222001 (2009); R. K. Ellis, K. Melnikov and G. Zanderighi, Phys. Rev. D 80, 094002 (2009); G. Bevilacqua et al., JHEP 0909, 109 (2009); K. Melnikov and G. Zanderighi, Phys. Rev. D 81, 074025 (2010); T. Binoth et al., Phys. Lett. B 685, 293 (2010); G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, Phys. Rev. Lett. 104, 162002 (2010); T. Melia, K. Melnikov, R. Rentsch and G. Zanderighi,
[54] C. F. Berger et al., Phys. Rev. D 80, 074036 (2009).
[55] C. F. Berger et al., Phys. Rev. D 82, 074002 (2010).
[56] C. F. Berger et al., Phys. Rev. D 78, 036003 (2008).
[57] Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B 437, 259 (1995).
[58] H. Ita and K. Ozeren, JHEP 1202, 118 (2012).
[59] H. Ita, J. Phys. A 44, 454005 (2011).
[60] F. Krauss, R. Kuhn and G. Soff, JHEP 0202, 044 (2002); T. Gleisberg and F. Krauss, Eur. Phys. J. C 53, 501 (2008).
[61] T. Gleisberg et al., JHEP 0902, 007 (2009); T. Gleisberg et al. JHEP 0402, 056 (2004).
[62] S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997) [Erratum-ibid. B 510, 503 (1998)].
[63] T. Gleisberg and S. Höche, JHEP 0812, 039 (2008).
[64] A. van Hameren and C. G. Papadopoulos, Eur. Phys. J. C 25, 563 (2002).
[65] T. Gleisberg, S. Höche and F. Krauss, arXiv:0808.3672 [hep-ph].
[66] S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406, 187 (1993).
[67] J. Pumplin et al., JHEP 0207, 012 (2002).
[68] G. Bevilacqua et al., arXiv:1110.1499 [hep-ph].
[69] S. Frixione and G. Ridolfi, Nucl. Phys. B 507, 315 (1997).
[70] A. Banfi and M. Dasgupta, JHEP 0401, 027 (2004).
[71] S. Höche, F. Krauss, S. Schumann and F. Siegert, JHEP 0905, 053 (2009).
[72] A. Buckley et al., arXiv:1003.0694 [hep-ph].
[73] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rept. 97, 31 (1983); T. Sjöstrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006).
[74] M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008).
[75] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009).
[76] S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, JHEP 1104, 081 (2011).
[77] G. Aad et al. [ATLAS Collaboration], ATLAS-CONF-2011-060.
[78] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997).