A CONCORDANCE ANALOGUE OF THE 4-DIMENSIONAL LIGHT BULB THEOREM

MAGGIE MILLER

Abstract. We prove a concordance analogue of Gabai’s 4-dimensional light bulb theorem. That is, we show that when R and R' are homotopically embedded 2-spheres in a 4-manifold X^4 where $\pi_1(X^4)$ has no 2-torsion and one of R or R' has a transverse sphere, then R and R' are concordant. When $\pi_1(X^4)$ has 2-torsion, we give a similar statement with extra hypotheses as in the 4-dimensional light bulb theorem. We also give similar statements when R and R' are orientable positive-genus surfaces.

1. Introduction

In this paper, we will study surfaces smoothly embedded in 4-manifolds. For ease of notation, we will always work in the smooth category – “embedding” or “immersion” should be taken to mean “smooth embedding,” or “smooth immersion,” respectively. Similarly, “isotopy” or “homotopy” should be taken to mean “smooth ambient isotopy,” or “smooth ambient homotopy,” respectively.

We will prove an analogue of Gabai’s recent 4-dimensional light bulb theorem \cite{G} in the setting of concordance. We discuss the 4-dimensional light bulb theorem in length in Section 3; for now it suffices to say that the 4-dimensional light bulb theorem regards when homotopic surfaces embedded in a 4-manifold are actually isotopic (given some other hypotheses).

Definition 1.1 (Concordance). Let M^m and N^m be m-dimensional submanifolds of X^n. We say that M^m and N^m are concordant if there exists an $(m+1)$-dimensional submanifold H of $X^n \times I$ so that $H \cap (X^n \times 0) = M^m$, $H \cap (X^n \times 1) = N^m$, and $H \cong M^m \times I$. We call H a concordance from M^m to N^m.

The author of this paper previously wrote a note showing how the 4-dimensional light bulb theorem in $S^2 \times S^2$ can be used to construct concordances in $S^2 \times S^2$ \cite{M}. That is, how to construct a concordance from R to R' when R, R' are genus-g surfaces in the homology class $[S^2 \times \text{pt}]$ in $S^2 \times S^2$. In this setting, the existence of such a concordance is already known from the following theorem of Sunukjian \cite{Su}.

Theorem 1.2 (\cite{Su} Thm. 6.1). Let X^4 be a simply connected 4-manifold. Then surfaces S, S' in X^4 are concordant if and only if they have the same genus and $[S] = [S']$ in $H_2(X^4)$.

In this paper, we extend the construction of \cite{M} to a more general 4-dimensional manifold, as in the 4-dimensional light bulb theorem. In particular, we do not
assume the ambient manifold is simply connected, so our first main theorem does not follow from Theorem 1.2 (unless $\pi_1(X^4) = 0$).

Theorem 1.3. Let X^4 be an orientable 4-manifold so that $\pi_1(X^4)$ has no 2-torsion. Let R, R', and G be embedded 2-spheres in X^4 so that the following conditions hold:

- G has trivial normal bundle,
- $R \cap G = \text{pt}$, where the intersection is transverse.
- R' is homotopic to R.

Then R and R' are concordant.

Definition 1.4. Let R be a surface embedded in a 4-manifold X^4. We say G is a transverse sphere to R if G has trivial normal bundle and intersects R in one point (transversely).

Schwartz [Sc] has shown that the 2-torsion assumption of Theorem 1.3 is necessary. In [Sc], Schwartz constructs a pair of homotopic spheres R, R' with a common transverse sphere G in 4-manifold X^4 so that R and R' are not concordant. (The main purpose of this example is to show that a 2-torsion hypothesis is necessary in the 4-dimensional light bulb theorem to conclude that R and R' are isotopic, but this simultaneously obstructs the more general relation of concordance.) Schwartz has infinitely many distinct examples of such pairs (specifically, a finite number of examples in each of infinitely many ambient 4-manifolds). In these examples, the 4-dimensional light bulb theorem does not apply because $\pi_1(X^4)$ has 2-torsion.

In fact, the counterexamples of [Sc] also show that Theorem 6.2 of [Su] is not true. This theorem implies concordance of surfaces S_0 and S_1 in 4-manifold X^4 given three conditions:

- $\pi_1(S_i) \to \pi_1(X^4)$ is trivial for each i (e.g. S_i is a sphere),
- $[S_0] = [S_1]$ in $H_2(X^4; Z[\pi_1])$ (i.e. the lifts of S_0, S_1 to the universal cover of X^4 are componentwise homologous)
- There exists a third surface S in X^4 so that $\pi_1(S) \to \pi_1(X)$ is trivial, $[S] = [S_0]$ in $H_2(X^4; Z[\pi_1])$, and the meridian of S is nullhomotopic in $X - S$ (e.g. $S = S_0$ if S_0 has a transverse sphere).

However, Schwartz’s spheres R and R' (taking the place of S_0 and S_1) satisfy all three of these conditions but are not concordant. (The first condition is obviously satisfied and the third follows from R and R' having transverse spheres. The second condition appears during the construction of [Sc]; the lifts of R and R' to the universal cover of X^4 are in fact isotopic.)

Otherwise, Theorem 6.2 of [Su] would imply Theorem 1.3. In the long term, we hope that some modification in the presence of 2-torsion might correct this theorem. Theorem 1.3 (and Theorem 1.5, which has yet to be stated) cover the cases in which S_0 and S_1 are homotopic and S_0 has a transverse sphere.

Our second main theorem applies when $\pi_1(X^4)$ has 2-torsion.

Theorem 1.5. Let X^4 be an orientable 4-manifold. Let R and R' be 2-spheres embedded in X^4 so that R has a transverse sphere G and R' is homotopic to R.
Then up to an obstruction related to how a homotopy from \(R' \) to \(R \) interacts with 2-torsion elements in \(\pi_1(X^4) \), \(R' \) is concordant to \(R \).

Theorem 1.5 generalizes Theorem 1.3. We state Theorem 1.5 precisely in Section 3.3 after giving several necessary definitions.

Finally, applying an argument of Sunukjian [Su, Thm. 7.5], we obtain the following corollary.

Corollary 1.6. Let \(X^4 \) be a 4-manifold. Let \(R \) and \(R' \) be 2-spheres smoothly embedded in \(X^4 \) satisfying the hypotheses of Theorem 1.5.

Assume that \(\pi_1(X^4) \) is a good group (as in [FQ]) and that a meridian of \(R' \) is nullhomotopic in \(X^4 \setminus R' \).

There there is a homeomorphism from the pair \((X^4, R') \) to \((X^4, R) \).

This corollary is our only foray outside of the smooth category.

Proof. We repeat the argument almost verbatim. In Theorem 1.5, we construct a concordance \(H \) from \(R' \) to \(R \). Lift \(H \subset X \times I \) to the universal cover \(\tilde{X} \times I \) of \(X \times I \) to find a cobordism \(\tilde{H} \) from \(\tilde{R}' \) to \(\tilde{R} \) (which are the lifts of \(R' \) and \(R \), respectively.) Each component of \(\tilde{R} \) has a transverse sphere in the lift \(\tilde{G} \) of \(G \), so every meridian of a component of \(\tilde{H} \) bounds a disk in \(\tilde{H}' := (\tilde{X} \times I) \setminus \tilde{H} \). Therefore, \(H' \) is the universal cover of \(H' := (X^4 \times I) \setminus H \). The Mayer-Vietoris sequence says that \(H' \) is an \(h \)-cobordism (here using the fact that \(X^4 \setminus \tilde{R}' \), \(\tilde{X}^4 \setminus \tilde{R} \), and \(H' \) are simply connected), so \(H' \) is also an \(h \)-cobordism. By additivity of Whitehead torsion (note \(H \) and \(H \cup H' = X^4 \times I \) are products), \(H' \) is actually an \(s \)-cobordism. Since \(\pi_1(X^4 \setminus R) \cong \pi_1(X^4) \) is good, \(H' \) is topologically a product. This product structure yields the desired homeomorphism. \(\square \)

Organization. We organize the paper as follows.

Section 2: We discuss the 3-dimensional light bulb theorem as lower-dimensional motivation. We give the proof of [Y] of a concordance analogue of the 3-dimensional light bulb theorem (also proved by [DNPR]).

Section 3: We discuss the 4-dimensional light bulb theorem and the statement of the main theorems.

Subsection 3.1: We state the 4-dimensional light bulb theorem and Theorem 1.3 for 4-manifolds with no 2-torsion in \(\pi_1 \).

Subsection 3.2: We remind the reader of important facts about homotopy and regular homotopy of surfaces in 4-manifolds.

Subsection 3.3: We state the general 4-dimensional light bulb theorem and Theorem 1.5. To do this, we give many definitions from [G].

Subsection 3.4: We recall the definition of a tubed surface from [G].

Section 4: We give the proofs of Theorems 1.3 and 1.5.

Acknowledgements. The author thanks her graduate advisor, David Gabai, for helpful conversations. Thanks to Danny Ruberman for useful discussion on regular homotopy and understanding Theorem 3.3 (by Hirsch [H]) and Nathan Sunukjian for interesting comments, including suggesting Corollary 1.6.
Figure 1. Left to right, top to bottom: the 3-dimensional light bulb trick. If \(K \) is a knot in \(S^1 \times S^2 \) intersecting \(pt \times S^2 \) in a single point, then we can effect crossing changes in \(K \) by sweeping a strand of \(K \) over the 2-sphere \(pt \times S^2 \).

The author is a fellow in the National Science Foundation Graduate Research Fellowship program, under Grant No. DGE-1656466.

2. A DIMENSION DOWN: THE LIGHT BULB THEOREM IN DIMENSION THREE

Theorem 2.1 (3-dimensional light bulb theorem (folklore)). Let \(K \) be a circle embedded in \(S^1 \times S^2 \) so that \(K \) intersects \(pt \times S^2 \) geometrically once (and that intersection is transverse). Then \(K \) is isotopic to \(S^1 \times pt \).

Proof. Note that \(K \) is regularly homotopic to \(S^1 \times pt \) via a finite sequence of isotopies and crossing changes. The effect of each crossing change can be achieved via isotopy, by sweeping a strand of \(K \) parallel to \(pt \times S^2 \) (see Fig. 1; this is called the “light bulb trick”). Thus, \(K \) is in fact isotopic to \(S^1 \times pt \). \(\square \)

The statement of the 3-dimensional light bulb theorem requires that \(K \) have a transverse sphere. In this dimension, we mean that there must be a 2-sphere \(G \) (in this setting, \(pt \times S^2 \)) so that \(K \cap G = pt \). When we only know the algebraic intersection of \(K \) and \(G \), then the theorem does not necessarily hold (for example, the knot \(K \) in the leftmost frame of Fig. 2 is not isotopic to \(S^1 \times pt \), since \(\pi_1((S^1 \times S^2) \setminus K) \neq \mathbb{Z} \)). However, one can still construct a concordance from \(K \) to \(S^1 \times pt \).

Theorem 2.2 (Concordance analogue of 3-dimensional light bulb theorem \[Y\] \[DNPR\]). Let \(K \) be a circle embedded in \(S^1 \times S^2 \) so that \([K] = [S^1 \times pt] \) in \(H_1(S^1 \times S^2) \). Then \(K \) is concordant to \(S^1 \times pt \).

Proof. We illustrate this proof in Figure 2. This argument is due to Yildiz \[Y\].

As in the 3-dimensional light bulb theorem, \(K \) is regularly homotopic to \(S^1 \times pt \). This regular homotopy is a finite sequence of isotopies and crossing changes. We
build a concordance from K (in this dimension, this means we build an annulus) in $(S^1 \times S^2) \times I$. Because visualizing submanifolds via movies is an important concept in paper, we attempt to give this easy example in detail.

Say K is regularly homotopic to $S^1 \times pt$ via homotopy $f : S^1 \times I \to S^1 \times S^2 \times I$. Perturb f so that all crossing changes happen at the same time, far from each other. Say there are n crossing changes. Then take $f(S^1 \times t)$ to be smoothly embedded for $t \neq 1/2 + \epsilon$, and $f(S^1 \times (1/2 + \epsilon))$ to have n self-intersections consisting of double-points (for some small $\epsilon > 0$).

Now we build an annulus A in $(S^1 \times S^2) \times I$. Obtain A' from $f(S^1 \times [0, 1/2])$ by attaching 2-dimensional 1-handles (bands) b_1, \ldots, b_n to $f(S^1 \times 1/2)$. Specifically, attach one band for each crossing change of f. Each band lives in a neighborhood of the corresponding crossing change in $f(S^1 \times 1/2)$ and is embedded as in Figure 2 (second image).

Let $K' = (f(S^1 \times 1/2) \setminus (\cup_i b_i)) \cup ((\cup_i \partial b_i) \setminus f(S^1 \times 1/2))$. (In words, K' is obtained from $f(S^1 \times 1/2)$ by deleting the intersection with ∂b_i and adding in the rest of the boundary of b_i; this is normal band surgery.) View K' as a subset of $S^1 \times S^2$ by identifying $S^1 \times S^2 \times 1/2$ with $S^1 \times S^2$. Note that K' is a disjoint union of $n + 1$ circles. One of these components C is isotopic to $S^1 \times pt$, while other n components U_1, \ldots, U_n are meridians of C. Each U_i bounds a disk D_i which does not intersect K' in its interior (with $D_i \cap D_j = \emptyset$ for $i \neq j$).

Now let $A'' := A' \cup (C' \times [1/2, 3/4])$ in $S^1 \times S^2$. Attach the 2-dimensional 2-handle (disk) D_i to $(U_i \times 3/4) \subset \partial A''$ for $i = 1, \ldots, n$; call the result A'''. (See Fig. 2, sixth image.) Finally, let $A = A''' \cup_{t \in [0, 1]} (g_t(S^1) \times (3 + t)/4)$, where $g : S^1 \times I \to S^1 \times S^2 \times I$ is an isotopy from C to $S^1 \times pt$.

Thus, we have constructed a surface A in $S^1 \times S^2 \times I$. See Figure 2 for a clear schematic of the above construction. We remark that as described, A is not smoothly embedded, but rather has corners (A is in horizontal-vertical position). We can standardly smooth these corners and take A to be smoothly embedded. We won't remark on this distinction later in the paper.
By construction, \(A \cap (S^1 \times S^2 \times 0) = K \) and \(A \cap (S^1 \times S^2 \times 1) = S^1 \times \text{pt} \). Moreover, \(A \) is obtained from \(K \times [0, 1/2] \) by attaching \(n \) geometrically cancelling pairs of 1- and 2-handles, so \(A \) is an annulus. Therefore, \(A \) is a concordance from \(K \) to \(S^1 \times \text{pt} \).

3. THE LIGHT BULB THEOREM IN DIMENSION FOUR

Now we move up a dimension, to consider the 4-dimensional light bulb theorem.

3.1. When the ambient 4-manifold has no 2-torsion in its fundamental group.

Theorem 3.1 (4-dimensional light bulb theorem, [G, Thm. 1.2]). Let \(X^4 \) be an orientable 4-manifold so that \(\pi_1(X^4) \) has no 2-torsion. Let \(R \) and \(R' \) be 2-spheres embedded in \(X^4 \) so that \(R \) and \(R' \) have a mutual transverse sphere \(G \) and \(R \) is homotopic to \(R' \). Then \(R \) and \(R' \) are isotopic.

In fact, the above theorem also states that the isotopy from \(R \) to \(R' \) can be taken to fix a neighborhood of \(G \) if \(R \) and \(R' \) coincide near \(G \).

To compare the 4-dimensional light bulb theorem with the 3-dimensional light bulb theorem, one should notice that \(G \) takes the role of \(\text{pt} \times S^2 \), \(R \) takes the role of \(S^1 \times \text{pt} \) and \(R' \) take the role of \(K \). The proof of the 4-dimensional light bulb theorem is considerably more involved than the proof of the 3-dimensional light bulb theorem.

In Section 2, we discussed a concordance analogue of the 3-dimensional light bulb theorem. In this paper, we give a concordance analogue of the 4-dimensional light bulb theorem.

Theorem 1.3. Let \(X^4 \) be an orientable 4-manifold so that \(\pi_1(X^4) \) has no 2-torsion. Let \(R \) and \(R' \) be 2-spheres embedded in \(X^4 \) so that \(R \) has a transverse sphere \(G \) and \(R \) is homotopic to \(R' \). Then \(R \) and \(R' \) are concordant.

Gabai [G] produces a more general version of the 4-dimensional light bulb theorem that may apply even when \(\pi_1(X^4) \) has 2-torsion. To state this theorem, we must first understand regular homotopy of surfaces.

3.2. Regular homotopy of surfaces in 4-manifolds. In the 4-dimensional light bulb theorem, one need not distinguish between homotopy and regular homotopy due to the following celebrated theorem of Smale [Sm].

Theorem 3.2 ([Sm, Thm. D]). Two smooth embedded 2-spheres in an orientable 4-manifold \(X^4 \) are homotopic if and only if they are regularly homotopic.

The above theorem is actually stated more generally for immersions of 2-spheres in \(X^4 \) (with an extra restriction), but we need only concern ourselves with the statement for homotopy between embedded surfaces in this paper. A similar result of Hirsch [H] holds for homotopic positive-genus surfaces.
A CONCORDANCE ANALOGUE OF THE 4-DIMENSIONAL LIGHT BULB THEOREM

Figure 3. Top row: a finger move along arc γ, as in Def. 3.4. Bottom row: a Whitney move along disk W, as in Def. 3.5. We may take N_∂ to point out of the page.

Theorem 3.3 ([H, Thm. 8.3]). Two smooth embedded orientable genus-g surfaces in an orientable 4-manifold X^4 are homotopic if and only if they are regularly homotopic.

The cited theorem is actually stated for immersed k-spheres in $2k$-manifolds, but the proof carries through in this setting as well – we first isotope the surfaces to agree outside of a disk, and then apply the arguments of [H] Lemma 8.1 and Theorem 8.3 to regularly homotope the remaining disk.

See [FQ] for more exposition on the following definitions and well-known proposition about regular homotopy.

Definition 3.4. Let S be a surface smoothly immersed in 4-manifold X^4. Let γ be an arc in X^4 with endpoints on S so that $\hat{\gamma} \cap S = \emptyset$. Take $\partial \gamma$ to be far from self-intersections of S. A finger move along γ is the regular homotopy of S which homotopes one disk component of $\nu(\gamma) \cap S$ along γ to create a new pair of oppositely-signed transverse intersections of S. See top of Figure 3.

We will usually name this finger move f_i, for some index i. Then we will write γ_i to indicate the arc γ along which the finger move takes place.

Definition 3.5. Let S be a surface smoothly immersed in 4-manifold X^4. Let x and y be two distinct self-intersections of S, of opposite sign. Let α and β be arcs embedded in S from x to y so that $\hat{\alpha}$ and $\hat{\beta}$ do not meet self-intersections of S, and near x and y the arcs α, β live in different sheets of S. Assume there exists a disk...
A Whitney move along W is the regular homotopy of W which homotopes the sheet of S containing β along W to remove the self-intersections x and y. See bottom of Figure 3. (The extension of N_β to the normal bundle of W is a technical requirement to make this move possible.)

We will usually name this Whitney move w_i for some index i. Then we will write W_i to indicate the Whitney disk along which this Whitney move takes place.

Remark 3.6. The finger move and Whitney move are inverse operations. That is, let f be a finger move, so f is a regular homotopy from surface S to surface S', where S has n self-intersections and S' has $n+2$ self intersections. Let f' be the inverse of f, so f' is a regular homotopy from S' to S which cancels the two self-intersections introduced by f. The homotopy f' is a Whitney move, as implicitly illustrated in Figure 3.

Similarly, when w is a Whitney move from S to S', then the inverse homotopy \overline{w} is a finger move from S' to S.

Notation. Usually, we will write a Whitney move from S to S' as w_i for some index i. Then we will refer to the path along which the finger move $\overline{w_i}$ takes place as η_i. Recall that η_i is an arc in X^4 with endpoints on S' with $\eta_i \cap S' = \emptyset$.

Proposition 3.7. Let S and S' be smoothly embedded surfaces in the smooth 4-manifold X^4. Suppose S is regularly homotopic to S'. Then up to isotopy, the regular homotopy can be obtained by a finite sequence of finger moves followed by a finite sequence of Whitney moves, with intermediate isotopy at each step.

Notation. Let h be a regular homotopy of a surface R' which consists of finger moves f_1, \ldots, f_n followed by Whitney moves w_1, \ldots, w_n with intermediate isotopy. By slight abuse of notation, we will always refer to f_i as a finger move of R' for any i.

We will always denote the surface obtained from R' by doing only the finger moves f_1, \ldots, f_n by S. For $i = 2, \ldots, n$, we let S_i denote the surface obtained from S by performing Whitney moves w_1, \ldots, w_{i-1}. Then w_i is a regular homotopy of S_i, so $\partial W_i \subset S_i$. Note by dimensionality that W_i does not intersect η_j for any $j < i$.

3.3. When the ambient 4-manifold has nontrivial 2-torsion in its fundamental group. We now move onto specific definitions required to parse the statement of the generalized 4-dimensional light bulb theorem. From now on, let A abstractly be the 2-sphere. Given a sphere Y embedded or immersed in X^4, let $\pi_Y : A \to X^4$ be the actual embedding or immersion.

Remark 3.8. Let S be a 2-sphere embedded in X^4. Fix points x and y in S. Let γ be an arc in X^4 from x to y with $\gamma \cap S = \emptyset$. Fix a point z in S. Let γ_{xz}, γ_{yz} be arcs in S from z to x and y to z, respectively. Then γ uniquely determines the
element of $\pi_1(X^4, z)$ represented by $\gamma_{xz} \gamma \gamma_{yz}$. We write $[\gamma]$ to indicate this element of $\pi_1(X^4, z)$.

Definition 3.9. Let R and R' be regularly homotopic 2-spheres in X^4. Say that some regular homotopy h from R' to R consists of the finger moves f_1, \ldots, f_n followed by the Whitney moves w_1, \ldots, w_n (with intermediate isotopies). Let S be the surface obtained from R' after performing the finger moves f_1, \ldots, f_n, so S is a 2-sphere immersed in X^4 with $2n$ points of self-intersection.

Let $(x_1, y_1), \ldots, (x_{2n}, y_{2n})$ be pairs of distinct points in A mapping to distinct self-intersections of S, so $\pi_S(x_i) = \pi_S(y_i)$. We take $\pi_S(x_i) = \pi_S(y_i)$ if $\pi_S(x_i) = \pi_S(y_i)$ is not cancelled by one of the Whitney moves w_1, \ldots, w_{j-1}. For each finger move f_i, there exist two distinct i_1, i_2 so that $\pi_S(x_{i_1}, x_{i_2}, y_{i_1}, y_{i_2})$ lie in the support of f_i (i.e. are the two self-intersections introduced by f_i). Choose the labelings of each pair (x_j, y_j) so that x_{i_1} and x_{i_2} lie in the same sheet of S in this support, while y_{i_1} and y_{i_2} lie on the other.

We now refer to $L = (L_x, L_y)$ as a labeling of h, where $L_x = \{x_1, \ldots, x_n\}, L_y = \{y_1, \ldots, y_n\}$. There are 2^n distinct labelings of h.

Definition 3.10 (\cite{G} Def. 5.15). Let R and R' be regularly homotopic 2-spheres in X^4. Let h be a regular homotopy from R' to R consisting of the finger moves f_1, \ldots, f_n followed by the Whitney moves w_1, \ldots, w_n (with intermediate isotopies). Let $L = (L_x, L_y)$ be a labeling of h, where $L_x = \{x_1, \ldots, x_n\}, L_y = \{y_1, \ldots, y_n\} \subset A$.

Let W_i be the Whitney disk associated to Whitney move w_i, as in Definition 3.5 Then $\pi_S^{-1}(\partial W_i)$ consists of two arcs ∂^1_i and ∂^2_i, whose four boundary points collectively consist of two points in L_x and two points in L_y. If one of $\partial^1_i, \partial^2_i$ connects two points in L_x while the other connects two points in L_y, then we say that w_i is uncrossed with respect to L. If each of $\partial^1_i, \partial^2_i$ meet both L_x and L_y, then we say that w_i is crossed with respect to L.

Now we are able to state the general 4-dimensional light bulb theorem.

Theorem 3.11 (4-dimensional light bulb theorem, \cite{G} Thm. 1.3). Let X^4 be an orientable 4-manifold. Let R and R' be 2-spheres embedded in X^4 so that R and R' have a mutual transverse sphere G and R is homotopic to R'.

Let h be a regular homotopy (via Thm. 3.2) from R' to R which consists of a sequence of finger moves f_1, \ldots, f_n followed by Whitney moves w_1, \ldots, w_n (with intermediate isotopies). Choose a labeling L of h.

Let η_i be the path along which the finger move w_i takes place, as in Remark 3.6. By Remark 3.8, each η_i represents an element $[\eta_i]$ of $\pi_1(X^4)$ with basepoint on R. Let \mathcal{H} be the multiset $\{[\eta_i] \mid w_i$ is crossed with respect to $L\}$.

If each 2-torsion element of $\pi_1(X^4)$ appears an even number of times in \mathcal{H}, then R' is isotopic to R.

From now on, when we refer to the “4-dimensional light bulb theorem,” we mean the statement of Theorem 3.11. When $\pi_1(X^4)$ has no 2-torsion, this restricts to the statement of Theorem 3.1.

The statement we give here of Theorem 3.11 does not exactly match the statement given in \cite{G}; we imagine a reader referring from this paper to \cite{G} for the first time.
might be confused by the difference. Gabai states Theorem 3.11 in terms of putting R' into a normal form with respect to R and then later gives the exact obstruction to this normally positioned surface being isotopic to R. Here, we have pulled back the whole result into one statement to make later discussion easier.

We extend Theorem 1.3 accordingly.

Theorem 1.5. Let X^4 be an orientable 4-manifold. Let R and R' be 2-spheres embedded in X^4 so that R has a transverse sphere G and R is homotopic to R'.

Let h be a regular homotopy (via Thm. 3.2 from R' to R which consists of a sequence of finger moves f_1,\ldots,f_n followed by Whitney moves w_1,\ldots,w_n (with intermediate isotopies). Choose a labeling L of h.

Let η_i be the path along which the finger move $\overline{w_i}$ takes place, as in Remark 3.6. By Remark 3.8 each η_i represents an element of $\pi_1(X^4)$ with basepoint on R. Let H be the multiset $\{[\eta_i] | w_i \text{ is crossed with respect to } L\}$.

If each 2-torsion element of $\pi_1(X^4)$ appears an even number of times in H, then R' is concordant to R.

To prove Theorem 1.5, we must understand some details of the proof of the 4-dimensional light bulb theorem.

3.4. Tubed surfaces

In [G], Gabai defines the class of tubed surfaces, which are defined by attaching tubes to embedded surfaces in a prescribed way.

Definition 3.12 ([G Def. 5.4]). A framed embedded path is a smooth embedded path $\tau : I \to X^4$ with a framing $(\nu_1(t),\nu_2(t),\nu_3(t))$ of its normal bundle. Let $C(t)$ be a circle bounding a disk centered at $\tau(t)$ in the plane spanned by $\nu_1(t),\nu_2(t)$. Take each $C(t)$ to have small radius. We call the annulus $\bigcup_{t \in [0,1]} C(t)$ the cylinder from $C(0)$ to $C(1)$.

Remark 3.13. In the definition of a finger move f along γ of an immersed surface S, the path γ is actually a framed embedded path. The framing on γ is chosen so that $C(0) \subset S$ and $C(1)$ intersects S in two points. The result S' of the finger move can be obtained from S by deleting the disk in S bounded by $C(0)$ which contains $\gamma(0)$, then attaching the cylinder from $C(0)$ to $C(1)$ and a small disk D bounded by $C(1)$ chosen so that $D \cap S = \emptyset$ and the resulting surface has transverse self-intersections.

Definition 3.14 ([G Def. 5.5]). Let S be an immersed surface in X^4. Fix a transverse sphere G for S. Say S has n points of self-intersection, so there are $2n$ distinct points $x_1,\ldots,x_n,y_1,\ldots,y_n \in A$ with $\pi_S(x_i) = \pi_S(y_i)$ for each i. Let $z_0 = \pi_S^{-1}(z)$. A tubed surface S_T on S consists of the following data:

i) The immersion $\pi_S : A \to X^4$.

ii) For each $i = 1,\ldots,n$, an immersed path $\sigma_i \subset A$ from x_i to z_0.

iii) Immersed paths α_1,\ldots,α_r in A with both endpoints at z_0 and for each $i = 1,\ldots,r$, pairs of points (p_i,q_i) in A with $p_i \in \alpha_i$ and a framed embedded path $\tau_i \subset X^4$ from $\pi_S(p_i)$ to $\pi_S(q_i)$ with $\bar{\tau}_i \cap (G \cup S) = \emptyset$.

iv) Pairs of immersed paths $(\beta_1,\gamma_1),\ldots,(\beta_s,\gamma_s)$ in A where β_i goes from z_0 to b_i and γ_i goes from g_i to z_0 (for some $b_i, g_i \in A$) and framed embedded paths η_i from $\pi_S(b_i)$ to $\pi_S(g_i)$ with $\bar{\eta}_i \cap (G \cup S) = \emptyset$.
The union of all arcs $\sigma_i, \alpha_j, \beta_k, \gamma_l, \tau_p, \eta_q$ is called the tube guide locus of S_T.

We require that the $\sigma_i, \alpha_j, \beta_k, \gamma_l$ curves be self-transverse and transverse to each other, and that their interiors not meet any points of the form x_i, y_j, b_k, g_l, and also be disjoint from z_0 and the p_i points except as specified. At crossings of these curves, one sheet should be labeled as above or below the other sheet (as in a crossing in a standard knot diagram). The points of the form $x_i, y_j, p_k, q_l, b_m, g_n$ are all distinct (and distinct from z_0).

The curves τ_i and η_j are pairwise disjoint. We require they be normal to S near their boundaries. Recall that for each framed arc τ_i or η_j, we defined circles $C(0)$ and $C(1)$ near their boundaries in Definition 3.12. We restrict the allowed framings on τ_i and η_j, but do not state this condition until Construction 3.15.

We say that S is the underlying surface of S_T.

From a tubed surface S_T on S we can construct an embedded surface.

Construction 3.15 (Construction 5.7). Let S_T be a tubed surface on S. From S_T, we construct an embedded surface S_R called the realization of S_T as follows (see Fig. 4 for an illustration that is likely more helpful than the ensuing wall of text):

i) For each i, remove from S a disk $\pi_S(\nu(y_i))$. Attach to this new boundary component a disk $D(\sigma_i)$ consisting of a tube that follows $\pi_S(\sigma_i)$ and connects to a copy of $G \setminus \nu(z)$, pushed slightly off G.

ii) For each α_i arc, let $P(\alpha_i)$ be a 2-sphere obtained by attaching a copy of $G \setminus \nu(z)$ to each end of a tube following $\pi_S(\alpha_i)$, and pushing the copies of G slightly off G (and each other). The restriction on the framing of τ_i mentioned in Definition 3.14 is that if $C(0)$ and $C(1)$ are the circles near $\tau_i(0)$ and $\tau_i(1)$ as in Definition 3.12, then we require $C(0)$ to lie in $P(\alpha_i)$ and $C(1)$ to lie in S. Delete open disks in $P(\alpha_i)$ and S bounded by $C(0)$ and $C(1)$ respectively and glue the resulting punctured surfaces together via the cylinder from $C(0)$ to $C(1)$ (as in Def. 3.12). This yields an embedded surface \hat{S}. We call the cylinders around τ_i a single tube.

iii) Now for each η_i arc, construct disks $D(\beta_i)$ and $D(\gamma_i)$ consisting of copies of $G \setminus (\nu(z))$ (pushed slightly off G and each other) with collars parallel to $\pi_S(\beta_i)$ and $\pi_S(\gamma_i)$ respectively, so the boundary of $D(\beta_i)$ lies in a disk normal to S at $\pi_S(b_i)$ and the boundary of $D(\gamma_i)$ lies in a disk normal to S at $\pi_S(g_i)$. Fix 4-balls N_{b_i} and N_{g_i} about $\pi_S(b_i)$ and $\pi_S(g_i)$ so that $\partial N_{b_i} \cap (S \cap D(\beta_i))$ is a Hopf link in the 3-sphere ∂N_{b_i}, and similarly $\partial N_{g_i} \cap (S \cap D(\gamma_i))$ is a Hopf link in the 3-sphere ∂N_{g_i}.

The restriction on the framing of η_i mentioned in Definition 3.14 is that if $C(0)$ and $C(1)$ are the circles near $\eta_i(0)$ and $\eta_i(1)$ as in Definition 3.12, then we require $C(0)$ to lie in $\partial N_{b_i} \cap S$ and $C(1)$ to be $\partial D(\eta_i)$. Let $x(t) \in C(0)$ be the point in direction $\nu_1(t)$ in the framing of η_i. (see Def. 3.12)

Connect the specified Hopf links by two tubes parallel to η_i. One tube is the cylinder from $C(0)$ to $C(1)$ and connects $\partial N_{b_i} \cap S$ to $\partial D(\eta_i)$. The other tube is centered around $\cup_t x(t)$ and connects $\partial D(\beta_i)$ to $\partial N_{g_i} \cap S$. We call
these two tubes together a double tube. The resulting embedded surface is S_R. At each stage, whenever two tube segments correspond to arcs of the tube guide locus which intersect in A, take the tube corresponding to the “under” segment to have smaller radius and thus lie closer to S, to avoid self-intersections of S_R. This is a slight abuse of notation, as one arc of the tube guide locus in A may cross itself – but simply take the piece of the tube corresponding to the “under” segment to be narrow.

We illustrate this construction in Figure 4.

A major part of the proof of the 4-dimensional light bulb theorem is the following proposition.

Proposition 3.16 (G). Let S_T be a tubed surface on S, where S is a 2-sphere embedded in X^4. Suppose that for each element $[\gamma]$ of 2-torsion in $\pi_1(X^4)$, $[\gamma]$ appears an even number of times in the list $[\eta_1],\ldots,[\eta_k]$ where η_1,\ldots,η_k are as in Definition 3.14 (in words, η_1,\ldots,η_k are the arcs yielding double tubes of S_R; recall by Remark 3.8 that $[\eta_i]$ is an element of $\pi_1(X^4)$ with basepoint in S). Then S_R is isotopic to S.

4. Proof of Theorems 1.3 and 1.5

A very basic outline for the proof of Theorems 1.3 and 1.5 is as follows:

1. In $X^4 \times I$, build a cobordism from R' to a positive-genus surface S_+'' by attaching 3-dimensional 1-handles to $R' \times I$.

2. Attach geometrically cancelling 3-dimensional 2-handles to the above cobordism to find a concordance from R' to R'', where R'' is a sphere homotopic to R' (and R) and $R'' \cap G = \emptyset$.

3. Argue that R'' is the realization of a tubed surface on R.

4. Apply Proposition 3.16 to conclude that R'' is isotopic to R given the hypotheses of Theorem 1.5.

4.1. Construction of a concordance from R'. Let $z := R \cap G$. Recall that h is a regular homotopy from R' to R consisting of finger moves f_1,\ldots,f_n followed by Whitney moves w_1,\ldots,w_n (with intermediate isotopies), and with labeling L.

Let S be the surface obtained from R' by performing only the finger moves f_1,\ldots,f_n, so S is an immersed 2-sphere in X^4 with $2n$ points of self-intersection.

Recall that γ_i is the path along which the finger move f_i takes place, where γ_i is an arc in X^4 with $\partial \gamma_i \subset R'$ and $\gamma_i \cap R' = \emptyset$ as in Definition 3.4. Recall also that W_i is the Whitney disk associated to w_i, so that W_i is a disk in X^4 with $\partial W_i \subset S_i$ and $W_i \cap S_i = \emptyset$ as in Definition 3.5. Again, S_i denotes the surface obtained from S after performing Whitney moves w_1,\ldots,w_{i-1}.

Let $L = (L_x,L_y)$ be a labeling of h as in Definition 3.9 so $L_x = \{x_1,\ldots,x_n\}, L_y = \{y_1,\ldots,y_n\}$ are disjoint subsets of A with $\pi_S(x_i) = \pi_S(y_i)$. The map π_S^{-1} takes $S \cap (\text{support of } f_i)$ to two disjoint disks; in the definition of a labeling we require
that two points in L_x be contained in one of these disks and two points in L_y be in the other.

Let S_+ be the genus-n embedded surface in X^4 obtained from S by attaching a tube T_i between the two self-intersections of S created by f_i, as in Figure 3 (left two images). Specifically, if $\pi_S(x_j)$ and $\pi_S(x_k)$ are in the support of γ_i (for $j \neq k$), fix an arc σ_i in A from x_j to x_k. Take $\sigma_1, \ldots, \sigma_n$ to be disjoint. Then for $i = 1, \ldots, n,$
Although we have described Remark 4.1. Parallel to delete $\pi_S(\nu(y_i))$ from S. Attach n tubes T_1, \ldots, T_n to this bounded surface, with T_i parallel to $\pi_S(\sigma_i)$.

Remark 4.1. Although we have described S_+ as being obtained from S by attaching tubes T_i ($i = 1, \ldots, n$), we can alternatively obtain S_+ from R' by attaching tubes \bar{T}_i' ($i = 1, \ldots, n$). See Figure 3 (right two images). The tube \bar{T}_i' lies in the support of γ_i. For each $i = 1, \ldots, n$, let $\bar{\gamma}_i : [0, 1 + \epsilon]$ be an extension of γ_i, so that $\bar{\gamma}_i|_{[0,1]} = \gamma_i$, $\bar{\gamma}_i|_{[1,1+\epsilon]} \cap R' = \emptyset$, $\bar{\gamma}_i \cap \bar{\gamma}_j = \emptyset$ for $i \neq j$, and $\bar{\gamma}_i$ intersects R' transversely at $\bar{\gamma}_i(1)$.

Let $D_i := \bar{\gamma}_i \times I$ be contained in a small neighborhood of $\bar{\gamma}_i$, where the product direction is chosen so that $\bar{\gamma}_i(0) \times I \subset R'$ and $(\bar{\gamma}_i(0, 1 + \epsilon) \times I) \cap R' = \gamma_i(1)$. Let $\gamma_i' := \partial D_i \setminus (\bar{\gamma}_i(0) \times I)$ and frame γ_i' so that $C(0)$ and $C(1)$ are both contained in R'. Then let T_i' be the cylinder from $C(0)$ to $C(1)$. We obtain S_+ from R' by deleting the interiors of small disks bounded by $C(0)$ and $C(1)$ and then attaching T_i', for $i = 1, \ldots, n$.

For each γ_i, let H_i be a narrow solid tube $\gamma_i' \times D^2$, where the product direction is taken so that $\partial H_i = (2$ disks in $R') \cup T_i'$. Let $M_1^3 \subset X^4 \times I$ be a cobordism from R' to S_+ given by

$$M_1^3 = R' \times [0, 1/2] \cup \bigcup_{i=1}^n H_i \times 1/2 \cup S_+ \times [1/2, 1].$$

We fix the above handle description of M_1^3, so that “the 1-handles of M_1^3” will always refer to H_1, \ldots, H_n.

Remark 4.2. Recall that S_+ is obtained from S by attaching the tubes T_1, \ldots, T_n, where $T_i = \pi_S(\sigma_i) \times S^1$ for an arc σ_i in A from x_j to x_k (for some $j \neq k$). We refer to $\pi_S(\sigma_i(1/2)) \times S^1$ as the belt sphere of T_i. This belt intersects the belt sphere of the 1-handle H_i in exactly one point, and does not intersect the belt sphere of H_i ($l \neq i$) at all. Then attaching n 3-dimensional 2-handles to M_1^3 along annular neighborhoods of the belt spheres of T_1, \ldots, T_n would geometrically cancel the 1-handles of M_1^3.

Figure 5. Left: the immersed surface S is obtained from R' by doing finger moves f_1, \ldots, f_n. **Second:** We obtain S_+ from S by surgery along tubes T_1, \ldots, T_n, where T_i lies in the support of finger move f_i. **Third:** We obtain S_+ from R' by surgery along tubes T_i', where T_i' lies in the support of finger move f_i. **Right:** The embedded surface R'.

[Image of the figure]
Recall that w_i is a finger move of R, and η_i is the path along which this finger move takes place. Then η_i is an arc in X^4 with $\partial \eta_i \subset R$ and $\bar{\eta}_i \cap R = \emptyset$. Take $z = R \cap G$ to be far from $\partial \eta_i$ for each i.

Isotope and homotope $S_+ \cup S$ (respectively) near each Whitney disk W_i as in Figure 6 to be contained in a small neighborhood of $R \cup \eta_1 \cup \cdots \cup \eta_n$. (Perform these moves in order of i. By dimensionality, W_j is disjoint from tubes \tilde{T}_k in the pictured support of w_i for $i \leq j$. In this support, the tubes \tilde{T}_k that are not parallel to R are parallel to η_i.) Call the resulting surfaces \bar{S}_+ and \bar{S}, respectively. The isotopy of $S_+ \cup S$ to $\bar{S}_+ \cup \bar{S}$ takes tube T_i to a tube \tilde{T}_i. Now \bar{S}_+ is obtained from \bar{S} by attaching tubes $\tilde{T}_1, \ldots, \tilde{T}_n$. The belt sphere of T_i is carried to a curve B_i on \tilde{T}_i. We call B_i the belt sphere of T_i. Up to reparametrization of σ_i, B_i bounds a disk perpendicular to \bar{S}_+ which is centered at $b_i \subset \bar{S}_+ \cap R$. For $i \neq j$, take $b_i \neq b_j$.

For each $i = 1, \ldots, n$, let α_i be an arc embedded in R from b_i to z. Take the arcs α_i, α_j to be disjoint when $i \neq j$, and take α_i to be far from the endpoints of η_1, \ldots, η_n. Also take $\alpha_i \cap b_j = \emptyset$ for all i and j.

For $i = 1, \ldots, n$, we now find a disk \bar{C}_i whose boundary is the belt sphere B_i of \tilde{T}_i. See Figure 7 for an illustration of \bar{C}_i.

Figure 6. **Top:** the neighborhood of a crossed or uncrossed Whitney disk W_i. We draw $S_+ \cap S$ in bold black, with the tubes T_i in thin colored curves. In general, a tube T_i may intersect this neighborhood many times. **Bottom:** We isotope S_+ and homotope S in a neighborhood of each W_i to obtain \bar{S}_+ and \bar{S}, respectively. Now $\bar{S}_+ \cap \bar{S}$ (in bold black) is contained in R.

Figure 7. The disk C_i has boundary the belt sphere B_i of \bar{T}_i, then follows the path of $\alpha_i(t)$ before being capped off by a disk in G. We push C_1, \ldots, C_n off of G and each other to obtain $\bar{C}_1, \ldots, \bar{C}_n$. Here, we draw a movie of \bar{C}_i. At each time slice, we draw a 3-dimensional cross-section of $\nu(\alpha_i)$.

Let $T(\alpha_i)$ be a cylinder around α_i, where α_i is framed so that $C(0) = B_i$ and $C(1) \subset G$. Let \bar{C}_i be the disk obtained by capping off $T(\alpha_i)$ with a disk in G which does not contain z. Take $T(\alpha_i)$ increasingly narrow so that \bar{C}_i does not intersect itself, \bar{T}_j for any j, or $T(\alpha_k)$ for any $k \neq i$. The disks C_1, \ldots, C_n all mutually intersect in a disk in G. Since G has trivial normal bundle, we can push the disks C_1, \ldots, C_n slightly off of G in different directions to obtain disjoint disks $\bar{C}_1, \ldots, \bar{C}_n$ where $\partial \bar{C}_i = \partial C_i = B_i$. Note that the interior of \bar{C}_i does not intersect S_+.

Let $H'_i = \bar{C}_i \times I$, where the product direction is chosen so that $(\partial \bar{C}_i) \times I \subseteq \bar{T}_i$. Let R'' be the sphere obtained from S_+ by compressing along each C_1, \ldots, C_n, so $\partial (\bar{C}_i \times I) \subset S_+ \cup R''$.

Let $\phi_s : X^4 \to X^4|_{s \in [0,1]}$ be the ambient isotopy of X^4 taking S_+ to \bar{S}_+. Let M_2^3 be a cobordism from S_+ to R'' in $X^4 \times I$ given by

$$M_2^3 = \cup_{s \in [0,1]} (\phi_s(S_+) \times s/2) \cup_{i=1}^n (H'_i \times 1/2) \cup (R'' \times [1/2, 1]).$$

We illustrate M_2^3 in Figure 8.

Let N^3 be the cobordism from R' to R'' in $X^4 \times I$ obtained by concatenating M_1^3 and M_2^3. In words, N^3 is obtained from M_1^3 by attaching the 2-handles H'_1, \ldots, H'_n. By Remark 4.2, these 2-handles geometrically cancel the 1-handles of M_1^3. Therefore, N^3 is a concordance from R' to R''.
The sphere R'' intersects G in exactly the point z. Now we will prove that R'' is isotopic to R, using the 4-dimensional light bulb theorem.

4.2. Proof that the concordance goes from R' to R. We will show that R'' is the realization of a tubed surface on R.

Recall that S_+ is obtained from S by attaching tubes T_1, \ldots, T_n, where T_i runs parallel to $\pi_S(\sigma_i)$ for an arc σ_i between x_j and x_k (for some $j \neq k$), and that the isotopy ϕ_s from S_+ to \tilde{S}_+ takes T_i to tube \tilde{T}_i. Let B_1, \ldots, B_{2n} denote the components of $\tilde{T}_1, \ldots, \tilde{T}_n$ after compressing each \tilde{T}_i along C_i. Each B_i is a disk, and R'' is obtained from S by deleting disks bounded by ∂B_i and then attaching \tilde{B}_i for each $i = 1, \ldots, 2n$. (The disks deleted from S each meet a sheet of one of the $2n$ self-intersections of \tilde{S}; the sphere R'' is embedded.)

Let $X_i = \phi_1(\text{support of } w_i)$. See Figure 8 (top three rows) for illustrations of S, S_+, and R'' in X_i.

For each $i = 1, \ldots, n$, say $\pi^{-1}_S(W_i) = \partial_i^1 \cup \partial_i^2$ where ∂_i^1 and ∂_i^2 are arcs in A. If w_i is uncrossed, take ∂_i^2 to have both endpoints in L_y. We perform the following operation to R'', illustrated in Figure 9 (bottom). For $i = 1, \ldots, n$:

- If w_i is crossed, then take $R'' \cap X_i$ as in Figure 9 (third row, left).
- If w_i is uncrossed, suppose σ_l crosses ∂_i^2 for some l. (See Fig. 9 second row, rightmost.) Then some segment of $\tilde{B}_r \cap X_i$ runs parallel to η_i as in Figure 9 (third row, third picture). For some $m \neq s$, \tilde{B}_m and \tilde{B}_s both have ends in X_i. Assume $r \neq s$ (by perhaps allowing $r = m$) and slide this segment of \tilde{B}_r over the disk \tilde{B}_s and out of X_i, as in Figure 9 (third row, rightmost). Repeat for each intersection of a σ_l curve (for any l) with ∂_i^2.

Now we see that R'' is the realization of a tubed surface on R. The tube guide locus curves for R'' in A are all of the form α_i, β_i, and γ_i. Every \tilde{B}_j lies in a small neighborhood of R. Near the boundary of the disk \tilde{B}_j, we find one of the two following situations:
• The ends of two \tilde{B}_j’s join at a single tube parallel to η_k where w_k is uncrossed (recall from Remark 3.13 that η_k is a framed path).

• The ends of two \tilde{B}_j’s meet opposite ends of a double tube parallel to η_k where w_k is crossed.

Thus, the curves of the form τ_i for R'' are exactly $\{\eta_k \mid w_k \text{ uncrossed}\}$ while the curves of the form η_i for R' are exactly $\{\eta_k \mid w_k \text{ crossed}\}$.

Assume L is as in the hypothesis of Theorem 1.5. That is, each 2-torsion element of $\pi_1(X^4, z)$ appears an even number of times in the multiset $\{[\eta_k] \mid w_k \text{ crossed}\}$. Then by Proposition 3.16, R'' is isotopic to R. Thus, R' is concordant to R. This completes the proof of Theorem 1.5 (and hence also Theorem 1.3).

5. Concordance of surfaces of positive genus

When R and R' are positive-genus surfaces rather than spheres, Gabai [G] proves the following extension of the light bulb theorem.

Theorem 5.1 (G, Thm. 9.7). Let X^4 be an orientable 4-manifold so that $\pi_1(X^4)$ has no 2-torsion. Let R and $R' \subset X^4$ be orientable genus-g surfaces embedded in X^4 so that R and R' have a mutual transverse sphere and R' is homotopic to R. Moreover, assume the maps $\pi_1(R \setminus G) \to \pi_1(X^4 \setminus G)$ and $\pi_1(R' \setminus G) \to \pi_1(X^4 \setminus G)$ induced by inclusion are both trivial.

Then R and R' are isotopic.

Note that when $g = 0$, Theorem 5.1 specializes to Theorem 3.1. The analogous extension of Theorem 1.3 is thus as follows.

Theorem 5.2. Let X^4 be an orientable 4-manifold so that $\pi_1(X^4)$ has no 2-torsion. Let R and $R' \subset X^4$ be orientable genus-g surfaces embedded in X^4 so that R has a mutual transverse sphere and R' is homotopic to R. Moreover, assume the map $\pi_1(R \setminus G) \to \pi_1(X^4 \setminus G)$ induced by inclusion is trivial.

Then R and R' are concordant.

Proof. By Theorem 3.3, R and R' are regularly homotopic. We repeat the argument of Theorem 1.3 to construct an embedded surface R'' which is the realization of a tubed surface on R so that R'' is concordant to R' and $R \cap G = \text{pt}$. (In exactly the same fashion as in Theorem 1.3 we build a concordance from R to R'' by attaching a 1-handle to $R \times I$ for each finger move in the regular homotopy, and then attach cancelling 2-handles using the transverse sphere G.)

Note that R'' is built from R' by surgery along immersed 3-balls (1- and 2-handle pairs) which meet R' in a disk and can thus be homotoped to be trivial (see Figure 10 for an illustration). Therefore, R'' is homotopic to R' and hence R. Moreover, every loop in R'' can be isotoped off the tubes attached to R and into R itself, so the map $\pi_1(R'' \setminus G) \to \pi_1(X^4 \setminus G)$ induced by inclusion is trivial. Then by Theorem 5.1 R'' is isotopic to R, so R' is concordant to R. □
Figure 9. **Top row:** The Whitney disk W_i with boundary in S. **Second row:** we attach tubes T_1, \ldots, T_n to S to obtain S_+. In the leftmost picture, the Whitney move w_i is crossed. In the middle and left pictures, w_i is uncrossed. In the rightmost picture, some σ_l intersects ∂_2. (Here, the green tube is parallel to $\pi_S(\sigma_l)$). **Third row:** We isotope S_+ to \tilde{S}_+ and then compress along disks C_i (not visible in this diagram) to obtain R''. In the third picture, some \tilde{B}_r corresponds to the previously pictured segment of T_l. There are two \tilde{B}_m, \tilde{B}_s with ends pictured, with $m \neq s$. So without loss of generality, take $r \neq s$ and slide \tilde{B}_r over \tilde{B}_s. **Bottom row:** We find that R'' is the realization of a tubed surface on R. We give schematics for the tube guide locus arcs contained in A.

Figure 10. Left to right: Part of a homotopy from R'' to R. Here we draw R' and a schematic of a 1-handle and the (collar of a) core of the 2-handle which geometrically cancels it, projected to one $X^4 \times t$. The cancelling 2-handle and other 2-handle may intersect the 1-handle. The 1-handle and cancelling 2-handle together form an immersed 3-ball, which we shrink over time during the homotopy. To obtain R', we repeat for each 1-handle of M^3_0.

References

[DNPR] C. W. Davis, M. Nagel, J. Park, and A. Ray, Concordance of knots in $S^1 \times S^2$, arXiv:1707.04542 [math.GT] Jul. 2017 (to appear in J. London Math. Soc.).

[FQ] M. H. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Math. Ser., 39, Princeton Univ. Press, Princeton, NJ, 1990.

[G] D. Gabai, The 4-dimensional light bulb theorem, arXiv:1705.09989 [math.GT] May 2017.

[H] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93:2 (1959), 242–276.

[M] M. Miller, Concordances from the standard surface in $S^2 \times S^2$, arXiv:1709.07176 [math.GT] Sep. 2017.

[Sc] H. R. Schwartz, Equivalent non-isotopic spheres in 4-manifolds, arXiv:1806.07541 [math.GT] Jun. 2018.

[Sm] S. Smale, A classification of immersions of the two-sphere, Trans. AMS (1957), 281–290.

[Su] N. Sunukjian, Surfaces in 4-manifolds: concordance, isotopy, and surgery, Int. Math. Res. Notices (2015):17, 7950–7978.

[Y] E. Z. Yildiz, A note on knot concordance, Algebra. Geom. Topol. 18 (2018), 3119–3128.