RAPID COMMUNICATION

Immunocytochemical Demonstration of M₁ Muscarinic Acetylcholine Receptors at the Presynaptic and Postsynaptic Membranes of Rat Diaphragm Endplates

A. I. MALOMOUZH¹, S. S. ARKHIPOVA¹, E. E. NIKOLSKY¹,², F. VÝSKOČIL³,⁴

¹Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia, ²Kazan Medical University, Kazan, Russia ³Department of Animal Physiology, Faculty of Sciences, Charles University, Prague, Czech Republic, ⁴Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Received November 30, 2010
Accepted January 25, 2011

Summary
M₁-muscarinic acetylcholine (ACh) receptors (M₁R) were directly demonstrated immunocytochemically in electronmicroscopic images of rat diaphragm neuromuscular junctions (NMJ). Specific electron-dense granules were located at presynaptic nerve ending membranes and in the sarcolemma in the depths of postsynaptic folds. This first visualization of M₁R on both sides of the NMJ is in agreement with previous pharmacological data on the regulatory role of M₁R in quantal and non-quantal ACh release.

Key words
Mammalian neuromuscular junction • Skeletal muscle • M₁ muscarinic receptor

Two groups of cholinergic receptors mediate the neurotransmitter function of acetylcholine (ACh): ionotrophic nicotinic and metabotropic muscarinic receptors (MRs). MRs are monomeric proteins coupled to G-proteins. In vertebrates, there are M₁R, M₃R, and M₅R that activate the G₄/₁₁ family, and M₂R and M₄R connected with the pertussis-toxin-sensitive Gᵢ/Gₑ family. For a long time, the existence of MRs at the typically nicotinic NMJ was doubted (Magazanik and Vyskocil 1969). From the seventies onwards, data has accumulated on the modulation of nicotinic transmission at the NMJ by various MRs (Das et al. 1978, Somogyi et al. 1987, Alves-do-Prado et al. 1992, Urazaev et al. 2000, Furlan and Godinho 2005, Garcia et al. 2005, Malomouzh et al. 2007, Dudel 2007, Oliveira et al. 2009, Wright et al. 2009). M₁R agonists increase but M₂R agonists decrease the number of released ACh quanta during nerve stimulation (Santafe et al. 2003), particularly when cholinesterases were inhibited or absent (Minic et al. 2002). Also, non-quantal ACh release at the rat NMJ was lowered when M₁R were activated. In this case, ACh modulates its own release by negative feedback via the activation of postsynaptic M₁ receptors, Ca²⁺-calmodulin-dependent postsynaptic stimulation of NO synthesis and its release from the muscle, whereupon it acts to inhibit the secretion of non-quantal ACh from nerve terminals (Malomouzh et al. 2007). Postsynaptical M₁R were also suggested to form part of the ACh/NO/Cl⁻ transporter cascade that stabilizes the muscle resting membrane potential and protects it via non-quantal ACh from early postdenervation depolarization (Urazaev et al. 2000, Vyskocil 2003, Vyskocil et al. 2009). However, to date there has been no direct ultrastructural evidence of MRs at the presynaptic or postsynaptic membranes. In this paper, we demonstrate the ultrastructural distribution of
M1R on both sides of the rat diaphragm NMJ.

Immunocytochemistry was performed on the diaphragms of 6 Wistar rats of both sexes in accordance with the European Communities Council Directive (86/609/EEC). The diaphragm was dissected from ether-anesthetized rats and fixed with 4 % paraformaldehyde in phosphate buffer solution (PBS, 0.1 M NaH2PO4, 0.1 M Na2HPO4, pH 7.2) followed by 0.2 % glutaraldehyde in PBS (2 h). Small rectangular pieces from the diaphragm were post-fixed with 0.5 % osmium tetroxide for 1 h. The samples were then embedded in LR White resin (Ted Pella, Redding, CA, USA). For immunolocalization, ultrathin sections (90 nm) were: (a) blocked (15 min) in Tris-buffered saline (TBS, 0.25 M Tris-HCl, pH 7.5) with 0.05 % Triton X-100 plus 5 % normal goat serum (Sigma, Cat. No. M9808) diluted 1:200 with TBS plus 5 % normal goat serum; (b) incubated (2 h) with primary anti-muscarinic (M1) acetylcholine receptor rabbit antibodies (Sigma, Cat. No. M9808) diluted 1:200 with TBS plus 5 % normal goat serum; (c) washed three times in TBS; (d) incubated (2 h) with secondary goat anti-rabbit antibodies coupled to 5 nm colloidal gold (Sigma), diluted 1:100 with TBS plus 0.2 % bovine serum albumin; and (e) washed in TBS (pH 8.2) and purified water. Silver enhancement of gold particles conjugated to the secondary antibodies was carried out using the BB International Silver Enhancing Kit (Ted Pella). Control experiments were performed by omitting primary antibodies. After washing in purified water, sections were contrasted in 5 % uranyl acetate and 30 % lead citrate. The samples were then observed under a JEOL 1200 SX electron microscope (Tokyo, Japan).

On all 38 slices from 6 stained endplates, immunocytochemical labeling gave a positive reaction with antibodies to M1R (Fig. 1). Electron-dense granules of colloidal gold were located close to the plasma membrane, being almost completely absent from subcellular particles. They were found presynaptically close to the membrane of nerve endings and at postsynaptic muscle sarcolemma, along the synaptic clefts. Granules were absent perisynaptically and outside the synaptic contact. None were seen at the nerve ending membranes 30-50 µm from the synaptic contacts or in extrasynaptic regions of the sarcoplasm (checked on 14 slices from 3 endplates, not shown). Postsynaptically, the granules were mostly located in the depths of postsynaptic folds, where voltage-sensitive Na+ channels and ankyrin G molecules have also been found (Bailey et al. 2003). Very few were at the tops of the fold crests. The appearance of granules at the postsynaptic membrane was more frequent than at the presynaptic terminal and we estimated approx. 8 granules per 5 µm length on the presynaptic membrane and approx. 25 granules on the postsynaptic membrane and folds adjacent to 5 µm of presynaptic membrane (Fig. 1). It has been shown using

---

Fig. 1. Distribution of M1R at neuromuscular junction of rat diaphragm. A, B, electron microscopic pictures from two NMJ of two rats. Inset, main ultrastructure features of the NMJ. Pre, presynaptic membrane; SC, synaptic cleft; Post, postsynaptic membrane with folds (F). Immunogold particles are located close to the presynaptic membrane of the nerve terminal (NT) and to the postsynaptic membrane of skeletal muscle (SM), where they are mostly present in the depths of junction folds. Scale bars: 0.5 µm.
radioisotopic ligands that MRs are present in the membrane fraction from cultured rat muscle, in denervated diaphragms and in myoblasts from newborn rats (Reyes and Jaimovich 1996, Furlan and Godinho 2005). Using Western blot analysis, chemiluminescent immunological assay and immunocytochemistry, some authors demonstrated several MR subtypes at the adult and newborn rat diaphragm in the vicinity of the NMJ, without determining their precise ultrastructural distribution. Here we demonstrated the presence of M1R at both pre- and postsynaptic membranes and this can help to resolve some of the controversies concerning the effects of muscarinic drugs at the NMJ, which can be considered either to be acting non-specifically, on nicotinic receptors (Hong and Chang 1990) or on muscarinic autoreceptors (Das et al. 1978, Hong and Chang 1990, Alves-do-Prado et al. 1992). This data also supports our conclusions about the role of presynaptical and postsynaptical M1R in the regulation of non-quantal ACh release and the “trophic” action of motor nerves on skeletal muscle (Urazaev et al. 2000, Vyskocil 2003, Malomouzh et al. 2007). Postsynaptic evidence of M1R also strengthens other hypotheses concerning how these receptors are involved in the action of reactive oxygen species (McAr’dle et al. 2004, Shakirzyanova et al. 2009) and retrograde mediators such as NO (Stamler and Meissner 2001, Malomouzh et al. 2007) and CO (Sitdikova et al. 2007).

The density of M1R appears low when compared with the density of nicotinic receptors at the fold crests and voltage-dependent Na+ channels inside the endplate folds (Madhavan and Peng 2005). However, even low levels of MRs can be highly effective physiologically, because they are coupled to an amplifying cascade of G-proteins and could be localized to caveolae, omega-shaped invaginations of the plasma membrane. Caveolae provide a scaffold for multiple G-protein receptors and membrane-bound enzymes, thereby orchestrating signaling into the cell's interior. It would be interesting to study whether M1R are associated with structural proteins, e.g. caveolin 1 or 3, as was demonstrated for M2R and M3R in the heart, urinary bladder and airway smooth muscles (Schlenz et al. 2009).

Conflict of Interest

There is no conflict of interest.

Acknowledgements

Supported by grants from RFBR, Science School No. 64631.2010.7, Young PhD No. 8017.2010.4. FV was supported by IAA500110905, GAČR 202/09/0806 and AV0Z 0110509.

References

ALVES-DO-PRADO W, CORRADO AP, PRADO WA: Effects of atropine, pirenzepine, imipramine and phenothiazines on the mammalian neuromuscular junction. Gen Pharmacol 23: 125-129, 1992.

BAILEY SJ, STOCKSLEY MA, BUCKEL A, YOUNG C, SLATER CR: Voltage-gated sodium channels and ankyrinG occupy a different postsynaptic domain from acetylcholine receptors from an early stage of neuromuscular junction maturation in rats. J Neurosci 23: 2102-2111, 2003.

DAS M, GANGULY DK, VEDASIROMONI JR: Enhancement by oxotremorine of acetylcholine release from the rat phrenic nerve. Br J Pharmacol 62: 195-198, 1978.

DUDEL J: The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors. Eur J Neurosci 26: 2160-2168, 2007.

FURLAN I, GODINHO RO: Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems. Br J Pharmacol 146: 389-396, 2005.

GARCIA N, SANTAFE MM, SALON I, LANUZA MA, TOMAS J: Expression of muscarinic acetylcholine receptors (M1-, M2-, M3- and M4-type) in the neuromuscular junction of the newborn and adult rat. Histol Histopathol 20: 733-743, 2005.

HONG SJ, CHANG CC: Nicotinic actions of oxotremorine on murine skeletal muscle. Evidence against muscarinic modulation of acetylcholine release. Brain Res 534: 142-148, 1990.

MADHAVAN R, PENG HB: Molecular regulation of postsynaptic differentiation at the neuromuscular junction. JUBMB Life 57: 719-730, 2005.

MAGAZANIK LG, VYSKOCIL F: On the possible existence of muscarinic cholinoreceptors on the postsynaptic membrane of the frog muscle. Experientia 25: 606-607, 1969.
MALOMOUZH AI, MUKHTAROV MR, NIKOLSKY EE, VYSKOCIL F: Muscarinic M1 acetylcholine receptors regulate the non-quantal release of acetylcholine in the rat neuromuscular junction via NO-dependent mechanism. J Neurochem 102: 2110-2117, 2007.

MCARDLE A, VAN DER MEULEN J, CLOSE GL, PATTWELL D, VAN REMMEN H, HUANG TT, RICHARDSON AG, EPSTEIN CJ, FAULKNER JA, JACKSON MJ: Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol 286: C1152-C1158, 2004.

MINIC J, MOLGO J, KARLSSON E, KREJCI E: Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 15: 439-448, 2002.

OLIVEIRA L, TIMOTEO MA, CORREIA-DE-SA P: Negative crosstalk between M1 and M2 muscarinic autoreceptors involves endogenous adenosine activating A1 receptors at the rat motor endplate. Neurosci Lett 459: 127-131, 2009.

REYES R, JAIMOVICH E: Functional muscarinic receptors in cultured skeletal muscle. Arch Biochem Biophys 331: 41-47, 1996.

SANTAFE MM, SALON I, GARCIA N, LANUZA MA, UCHITEL OD, TOMAS J: Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. Eur J Neurosci 17: 119-127, 2003.

SCHLENZ H, KUMMER W, JOSITSCH G, WEES J, KRASTEVA GT: Muscarinic receptor-mediated bronchoconstriction is coupled to caveolae in murine airways. Am J Physiol Lung Cell Mol Physiol: 2009 (in press).

SHAKIRZYANOVA AV, MALOMOUZH AI, NAUMENKO NV, NIKOLSKY EE: The effect of hydrogen peroxide on spontaneous quantal and nonquantal acetylcholine release from rat motor nerve endings. Dokl Biol Sci 424: 18-20, 2009.

SITDIKOVA GF, ISLAMOV RR, MUKHAMEDYAROV MA, PERMYAKOVA VV, ZEFIROV AL, PALOTAS A: Modulation of neurotransmitter release by carbon monoxide at the frog neuro-muscular junction. Curr Drug Metab 8: 177-184, 2007.

SOMOGYI GT, VIZI ES, CHAUDHRY IA, NAGASHIMA H, DUNCALF D, FOLDES FF, GOLDINER PL: Modulation of stimulation-evoked release of newly formed acetylcholine from mouse hemidiaphragm preparation. Naunyn Schmiedebergs Arch Pharmacol 336: 11-15, 1987.

STAMLER JS, MEISSNER G: Physiology of nitric oxide in skeletal muscle. Physiol Rev 81: 209-237, 2001.

URAZAEV A, NAUMENKO N, MALOMOUGH A, NIKOLSKY E, VYSKOCIL F: Carbachol and acetylcholine delay the early postdenervation depolarization of muscle fibres through M1-cholinergic receptors. Neurosci Res 37: 255-263, 2000.

VYSKOCIL F: Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter. Neurochem Res 28: 575-585, 2003.

VYSKOCIL F, MALOMOUZH AI, NIKOLSKY EE: Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58: 763-784, 2009.

WRIGHT MC, POTLURI S, WANG X, DENTCHEVA E, GAUTAM D, TESSLER A, WEES J, RICH MM, SON YJ: Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci 29: 14942-14955, 2009.