A REVIEW ON NANOEMULSIONS: FORMULATION, COMPOSITION, AND APPLICATIONS

KHAN MOHAMMAD HAMID*, MOHAMMAD WAIS, GAURANG SAWANT

Department of Pharmaceutics, H.K. College of Pharmacy, Oshiwara, Mumbai, India. Email: mondhamid181@gmail.com

Received: 22 January 2021, Revised and Accepted: 09 March 2021

ABSTRACT

Nanoemulsions are sub-micron sized emulsions that are undergoing detailed assessment as potential drug carriers for enhancing the delivery of therapeutic agents. These are to date the most developed nanoparticulate systems for the systemic delivery of active pharmaceutical for controlled drug delivery as well as targeting. These are the thermodynamically durable isotropic system, in which two incompatible liquids (water and oil) are blended to form a single homogenous phase by utilizing a required quantity of surfactants to achieve mixing with a droplet diameter approaching roughly in the range of 0.5–100 μm. They find applications in various fields such as cosmetics as well as are adopted in various routes of administration.

Keywords: Nanoemulsion, Nanoparticle, Droplet size, Cosmetics.

INTRODUCTION

Nanoemulsions (NEs) are known as oil-in-water (o/w) emulsions with average droplet sizes falling from 50 to 1000 nm. Normally, the mean droplet size is between 100 and 500 nm, for which terminologies such as sub-micron emulsion (SME) and mini-emulsion are adopted instead. The NEs play the role as a base for manufacturing polymer latex particles, nonporous polymeric solids, etc. In addition, the NEs with pharmaceutically established excipients are used in the manufacturing of drug formulations for oral drug delivery. The NEs are also called by other names such as mini emulsions, ultrafine emulsions as well as SMEs. Phase behavior studies have demonstrated that the dimensions of the droplets are decided by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point brought about by either temperature or composition. Investigations on NE formation by employing the phase inversion temperature method have conveyed a relationship between minimum droplet size and full solubilization of the oil in a microemulsion bicontinuous phase irrespective of even if the primitive phase equilibrium exists in single or multiphase. Due to their small droplet size, NEs provide stability against sedimentation or creaming with Ostwald ripening being the pivotal pathway of NE degradation. The principal application of NEs in the formulation of nanoparticles by employing a polymerizable monomer serving as the disperse phase (the so-called miniemulsion polymerization method) where NE droplets function as nanoreactors. Another fascinating application is formulating NEs containing active pharmaceutical ingredients (APIs), namely, for controlled drug delivery as well as targeting [1].

Formulation of microemulsions

Many different methods have been utilized for the formulation of NEs examples being high-pressure homogenization, microfluidization, phase inversion, spontaneous emulsification, solvent evaporation as well as hydrogel formation each having unique process [2-5]. Multiple emulsions are normally prepared by utilizing the double emulsion method high-pressure homogenizer or piston homogenizer is adopted for the manufacturing of NEs with extremely small particle size (up to 1 nm) as shown in Fig. 1. In this method, a mixture is pushed forcefully through an orifice at exorbitant pressure ranging from 500 up to 5000 psi. The final product is further exposed to powerful turbulence and hydraulic shear ultimately forming an emulsion with extremely fine particles. This has been demonstrated to be the most promising method for NE formulation but the only limitation accompanying this technique is greater energy utilization and an elevation in temperature of the emulsion during preparation. For getting lesser particle size, there is also a need for more runs of homogenization cycles. Yilmaz et al. prepared phytosphingosine O/W NEs using a high-pressure

Brute force method

This method involves the adoption of brute forces for breaking down the oil droplets into the nano range. Instruments that have been employed for the preparation of NEs are high-pressure homogenizer, high-speed mixer, small pore membrane, and high-frequency ultrasonic device. NE properties such as its small size, optical transparency, and high kinetic stability rely not only on the make-up of variables in addition to the processing variables such as emulsification time, degree of mixing, energy input, and emulsifying path. High-pressure homogenization and microfluidization methods are adopted at industrial as well as laboratory scale for achieving a very small size of NE by employing high-pressure equipment. Many other methods are also being used for the formulation of NE such as ultrasonication and in situ emulsification.

High-pressure homogenization

For the formulation of NE high shear force is needed; hence, in this procedure high-pressure homogenizer or piston homogenizer is adopted for the manufacturing of NEs with extremely small particle size (up to 1 nm) as shown in Fig. 1. In this method, a mixture is pushed forcefully through an orifice at exorbitant pressure ranging from 500 up to 5000 psi. The final product is further exposed to powerful turbulence and hydraulic shear ultimately forming an emulsion with extremely fine particles. This has been demonstrated to be the most promising method for NE formulation but the only limitation accompanying this technique is greater energy utilization and an elevation in temperature of the emulsion during preparation. For getting lesser particle size, there is also a need for more runs of homogenization cycles. Yilmaz et al. prepared phytosphingosine O/W NEs using a high-pressure
homogenization technique and found out that droplet size was lessened after going through eight homogenization cycles and the NE so formed was stable for more than 6 months when stored [24].

Microfluidization

This technique adopted a device called as microfluidizer that makes use of a high-pressure positive displacement pump (500–40,000 psi) that propels the product out through the interaction chamber made up of stainless steel microchannels on the impaction area which resulted in the formation of very small particles of sub-micron range as shown in Fig. 2. The mixture is again and again flowed through the microfluidizer until the desired particle size is obtained. The final product is also made to proceed through the filter to divide smaller droplets from larger ones and to attain a homogenous NE. Uluata et al. prepared octadecane O/W NEs by utilizing a microfluidizer and saw that on enhancing the number of passes and homogenization pressure; the droplet size became reduced [26]. Goh et al. formulated tocotrienol-rich fraction NEs by two-step homogenization wherein a key coarse emulsion was made by employing a stirrer; which was further underwent processing utilizing a microfluidizer. They announced that the droplet size fell from 120 to

![High-pressure homogenization method](https://example.com/high-pressure-homogenization.png)

Fig. 1: High-pressure homogenization method. (i) Adapted from Reference [25]. (ii) Copyright obtained under Creative Commons attributed 3.0 (https://creativecommons.org/licenses/by/3.0/)

![Microfluidization process](https://example.com/microfluidization.png)

Fig. 2: Microfluidization process. (i) Adapted from reference [28]. (ii) Copyright obtained under Creative Commons Non-Commercial unported 3.0 (https://creativecommons.org/licenses/by-nc/3.0/)
Hamid et al.
Asian J Pharm Clin Res, Vol 14, Issue 4, 2021, 22-28

65.1 nm after making the formulation pass through ten homogenization cycles at elevated pressure [27].

Ultrasonication

In this method, the premixed emulsion is subjected to agitation at an ultrasonic frequency of 20 kHz which shrinks the droplets to nanosize. The emulsion so formed is then made to pass through the high shear area to make droplets with the same size distribution. A water jacket is adopted in this technique to control the temperature. Sonotrodes which are also known as the sonicator probe are constructed of piezoelectric quartz crystals which serve as the energy suppliers during ultrasonic emulsification. On the passage of alternating electric voltage through these sonotrodes, they shrink and expand. Mechanical vibrations are emanated due to this mechanism at the sonicator tip which when touches the liquid results in cavitation, which further leads to the breakdown of vapor cavities formed within the liquid. This method is chiefly used when the droplet size requirement is less than 0.2 μ. Shi et al. prepared emodin-loaded NE by adopting ultrasonic emulsification method with a frequency set at 25 kHz and attained an average diameter of 10–30 nm [29].

Spontaneous emulsification

This method requires the formulation of NE in three steps. The first step involves the preparation of an organic solution, consisting of oil, and lipophilic surfactant dissolved in a water-soluble solvent as well as hydrophilic surfactant after which the O/W emulsion is prepared by introducing this organic phase into the aqueous phase under magnetic stirring by means of a syringe. The organic solvent is then abolished in the third stage by evaporation. Sugumar et al. prepared stable eucalyptus oil NEs by employing the spontaneous emulsification method after which the average droplet size was discovered to be in the range of 50–100 nm [30].

Following are the types of NEs formed depending on the composition:

1. **O/W NE**: Here, the oil droplets are dispersed in the continuous aqueous phase.
2. **W/O NEs**: Here, the water droplets are dispersed in the continuous oil phase.
3. **Bi-continuous NEs**: Here, the microdomains of oil and water are inter-dispersed within the system.

In all three categories of NEs, the interface is made stable by a required blend of surfactants and/or co-surfactants [31].

COMPONENTS OF NEs

Three pivotal ingredients are necessary for NE preparation which are:

1. **Oil**
2. **Surfactant**
3. **Co-surfactant**

NEs are basically colloidal systems that consist of three phases namely oil phase, aqueous phase, surfactant, and co-surfactant at acceptable ratios. As contrast to coarse emulsions which are micronized with the aid of outside energy source, NEs are prepared on the basis of low interfacial tension. This is attained by incorporating a cosurfactant, which leads to the spontaneous development of a thermodynamically stable NE. The droplet diameter in the dispersed phase is very less, normally below 140 nm in diameter, which is responsible for transparency in NE, NEs can be employed to administer drugs to the patients through many routes, but the topical application of NEs has shown increasing promise [32]. The three key parameters influencing the transdermal penetration of drugs are the flexibility of the drug in the vehicle, release of the drug from the vehicle, and penetration of the drug into the skin. NEs enhance the transdermal delivery of many drugs over the traditional topical formulations such as emulsions [33,34] as well as gels [35,36]. The flexibility of drugs in NEs is easier [34,36,37] when compared against the NE containing gel former which will elevate its viscosity and further reduce the penetration in the skin [35]. The better transdermal flux from NEs has been demonstrated to be chiefly due to their great solubilization ability for hydrophobic as well as hydrophilic drugs. This creates an enhanced thermodynamic activity toward the skin [36-38]. NEs can influence the penetration of the drug into the skin. In this case, the ingredients of NEs play the role of permeation enhancers. Many compounds employed in NEs have been announced to elevate the transdermal penetration by changing the configuration of the stratum corneum. For example, short-chain alkanols are extensively adopted as permeation enhancers [39-41]. It is recognized that oleic acid, a fatty acid with a single double bond in its chain structure, disturbs the lipid barrier in the stratum corneum by forging different domains which act as a barrier with the continuity of the multimolecular stratum corneum and can bring about vastly permeable alleles in the stratum corneum [42-44]. Isopropyl myristate (IPM) is employed as a permeation enhancer in transdermal preparations, but the way it acts is not well understood [45]. Nonionic surfactants are extensively employed in topical preparations which also serve as solubilizing agents but some current conclusions demonstrate that they may also influence the skin barrier function [46]. It is noteworthy to inspect the consequences of these ingredients in the organized NE structures. A quirky venture was taken up to emulsify coconut oil with the aid of polyoxyethylene 2-cetyl ether (Brij 52) as well as isopropyl or ethanol, resulting in the emergence of stable isotropic dispersion thus setting up the stage for adoption of the plant as well as vegetable oil to be employed as oil phase in NE preparations [47].

The surfactants adopted to stabilize such systems can be:

1. **Non-ionic**
2. **Zwitterionic**
3. **Cationic**
4. **Anionic surfactants**.

A blend of these, specifically ionic, and nonionic, can be extremely useful at elevating the expansion of the NE region. Examples: (i) Non-ionic surfactants are polyoxyethylene such as Brij 35 (C12E5) or surfactogesters, namely, sorbitan monoleate (Span 80). (ii) Zwitterionic surfactant list includes phospholipids which are a crucial example and demonstrate outstanding biocompatibility. (iii) Cationic surfactants list includes Lecithin grades from many different sources such as soybean and egg are accessible commercially and comprise of dipalmitoylphosphatidylcholine as its key ingredient [48-51]. Quaternary ammonium alkyl salts are one of the exceptional appreciated classes of cationic surfactants, where hexadecyltrimethylammonium bromide (CTAB) and the double-tailed surfactant didodecylmethylammonium bromide (DDAB) are among the most recognized. (iv) Anionic surfactant examples are sodium bis-2-ethyl hexyl sulfosuccinate (AOT) is a double-tailed surfactant that is mainly utilized as a successful stabilizer for w/o microemulsions [52]. Endavors have been taken to justify surfactant behavior with respect to the hydrophilic-lipophilic balance (HLB) [53], and the critical packing parameter (CPP) [54,55]. Both viewpoints are reasonably real but can serve as a convenient guide towards surfactant selection. The HLB value decides the relative credit of hydrophilic as well as hydrophobic pieces of the surfactant molecule. It is normally recognized surfactants possessing less HLB (3–6) are recommended for the preparation of w/o NEs while surfactants with high HLBs (8–18) are advised for the preparation of o/w NE systems. Ionic surfactants, namely, sodium dodecyl sulfate which carries HLB values higher than 20, often need the existence of a cosurfactant to lessen their functional HLB to a value within the window desired for NE preparation. Conversely, the CPP points to the property of surfactant to make specific aggregates to the configuration of the molecule itself. In nearly all cases, single-chain surfactants when employed singly are not capable to lessen the oil/water interfacial tension to a point to allow a microemulsion to form, an issue highlighted in many existing microemulsions reviews [56-60]. Medium-chain length alcohols which are traditionally incorporated as cosurfactants have the consequences of additionally lessening the interfacial tension while enhancing the mobility of the interface which elevates the entropy of the system [57,58]. Medium-chain length alcohols also enhance the mobility of the hydrocarbon tails as well as also permitting higher permeation of the oil into this region.
Table 1: Various methods adopted in the preparation of nanoemulsions [7-23]

Method	Formulation	Inference	References
High-pressure homogenization	Oral nanoemulsion (primaqnine)	Better oral bioavailability, 10-200 nm particle size	[7]
Pseudo ternary phase	Ramipril nanoemulsion	Upgraded bioavailability, droplet size 80.9 nm	[8]
diagram + spontaneous			
emulsification method			
Spontaneous emulsification	O/W nanoemulsions	Boosted skin hydration as well as elasticity	[9]
Ultrasonic emulsification	O/W nanoemulsions (aceclofenac)	Nanoemulsion with a promising likelihood of transdermal delivery of aceclofenac	[10]
High-pressure homogenizer	Celecoxib nanoemulsion	Elevated physical and chemical stability of celecoxib in nanoemulsion	[11]
Microfluidization method	Lechthin-based nanoemulsions	Enhanced permeation rates of progesterone offering long-term stability	[12]
High-pressure homogenization+ultrasound	Prednicarbate nanoemulsion	Enhanced chemical stability of the drug in the formulation	[13]
Phase inversion temperature	Acyclovir-loaded multiple W/O/W nanoemulsions	Very good physicochemical stability for 6 months at RT, mean droplet size of 100 nm	[14]
method			
Spontaneous nanoemulsification	Clotrimazole nanoemulsion	Enhanced solubility of clotrimazole, mean globule size lesser than 25 nm	[15]
method	Basil oil nanoemulsion	Nanoemulsions with a droplet size of 29.6 nm, used as food preservatives	[16]
High-pressure homogenizer	Dimethyl silicone dry	Useul in acute lung injury, the particle size of 19.8 nm	[17]
Microfluidization method	Pitavastatin-containing	Boosted permeation	[18]
High-pressure homogenization	Nanoemulsion	Less energy required for emulsification, fewer particle dimensions, and greater stability	[19]
homogenization + ultrasound		No instability is seen for 45 days at RT, mean particle size of 52±10 nm	[20]
Sonication method	Saponin-stabilized		
method	quercetin-loaded o/w nanoemulsion		
High-pressure homogenization	Pachitexal-baicalen nanoemulsion	Scheme to tame multidrug resistance	[21]
Nanoemulsion templating	PLGA nanoparticles	Imaging agents for biomedical applications	[22]
method	Chitosan films with	Offer Adequate UV barrier properties	[23]
Spontaneous emulsification	cinnamaldehyde nanoemulsions		

Table 2: NEs utilized as adjuvants [81-87]

Adjuvant utilized	Ingredients	Uses	References
MF59®	O/W Squalene containing emulsion	Influenza	[81,82]
AS03	SB62 adjuvant and twice diluted form of O/W squalene	H5N1 and H1N1	[83]
AS02	Immune-stimulatory agents, for example, MPL, and triterpenoid saponin molecules	Malaria, HIV, tuberculosis	[84]
MPL®SE	Blend of monophosphoryl lipid and a stable squalene emulsion	Leishmaniasis	[85]
AF03	Thermoreversible O/W nanoemulsions	Leishmaniasis	[86]
DETOX®	Composed of bacterial cell wall and monophosphoryl lipid (MPL) dissolved in squalane and Tween 8	Melanoma	[87]

APPLICATIONS

Ophthalmic and pulmonary delivery

For the therapy of eye diseases, drugs are mainly administered topically in the form of O/W NEs which have been studied for ocular delivery, to solubilize poorly soluble drugs, in an effort to enhance absorption, and to achieve prolonged release effect. The NEs comprising pilocarpine were prepared using lecithin, propylene glycol, and PEG 200 as cosurfactant and IPM acting as the oil phase. The preparations were found to be less viscous with a refractive index acceptable toward ophthalmologic applications [31]. Morsi et al. formulated a new NE of acetazolamide where the particle size ranged from 23 nm to 90 nm [61].

Cosmetics

The advantage of using NEs in cosmetics is the tiny droplet size and omission of creaming as well as flocculation, which pave the way for the uptake by antigen-presenting cells and results into a pure product formulation [62]. Ribeiro et al. [63] prepared O/W NEs containing Opuntia ficus-indica (L) Mill hydroycoholic extract as well as xanthan gum with droplet sizes ranging from 9.22 to 2.23 nm. The O/W NEs comprising 1% of 0. ficus-indica (L) Mill extract was absent from any stability issues for 60 days. Furthermore, this formulation enhanced the water content of stratum corneum, demonstrating its moisturizing ability to be a superior product for cosmetics. NEs were prepared by Pengon et al. [64] by utilizing coconut oil NEs and diversed amounts of surfactants including polyethylene glycol octyl phenyl ether (PGO) as well as polyethylene glycol hydrogenated castor oil (PHC). The droplet size of NEs comprising 5% (w/w) PHC was found to be 0.162 µm. An even lesser size of coconut oil NEs could be obtained by elevating the concentration of PHC. NE formulations were formulated from the hydroalcoholic extracts of Vellozia squamata leaves as well as stems with inflated antioxidant activity by utilizing the phase inversion method. Stable formulations were achieved from both extracts from leaves as well as stems. Antioxidants are popular as anti-aging agents and therefore are acceptable for cosmetics formulation [65]. NEs have also been utilized as a vehicle for controlled delivery and as an effective transport vehicle in cosmetics. NEs will lessen trans-epidermal water loss. The Kemira nano gel-made up of NEs serving as a carrier is a patented formulation intended for cosmetic uses; which will enhance skin cell production as well as the penetration of API to give a good skin sensation [66]. Thananya et al. formulated a mixture of essential oils in

25
NEs dosage form for an anti-tyrosinase activity where the droplet size was found to be ranging from 29 nm to 35 nm and showed well in vitro anti-tyrosinase activity plus these formulations were also found to be stable even after 3 months of storage [67].

Asthma

Yasser et al. formulated NE of montelukast sodium where the mean droplet size ranged from about 65 to 85 nm and drug release from this formulation was found to be 93% after a period of 30 min [68].

Anti-inflammatory

The blending of oils and emulsifiers improved the absorption of two phytochemicals that are now utilized in treating two major chronic inflammatory diseases which are periodontitis [68] and bowel disease (Crohn’s disease and ulcerative colitis) [69]. Periodontitis is a long-term inflammatory disease that attacks the supporting structures of the teeth with many factors such as microbial, genetic, environmental, and host factor play a role in the beginning of that condition. A state of long-term inflammation will take place with the release of oxygen-free radicals by inflammatory cells (polymorphonuclear lymphocytes). Enzymes and toxic by-products given out by the periodontal pathogenic microflora further enhance this destructive activity by breaking down affected cell membranes and extracellular matrices to get nutrients very important for their sustenance [70]. In Crohn’s disease, the entire intestinal wall may be attacked by inflammation and is normally transmural and non-continuous, meanwhile in ulcerative colitis, it is many a times continuous, primarily affecting only on the mucosal lining of the colon and rectum [71]. Multiple reasons might reside behind the origin of the diseases including complicated interplays between oxidative stress, immunoregulation, altered inflammatory mediator levels, microbial pathogens, as well as genetic reasons [72]. Phytochemicals have been announced by fresh investigations to be hand-in-hand in recovering both diseases. Quercetin, a class of flavonoids that have treated periodontitis [73], and diterpenoid extracted from *Andrographis paniculata* to remedy bowel diseases [74], have shown possible antimicrobial activity, lessening inflammatory markers, as well as demonstrating anti-inflammatory, antioxidative [75], as well as anticancer activities [76]. But, both ingredients have less aqueous solubility (0.07 mg/mL in water), which has resulted in lesser bioavailability, and due to rapid and large scale metabolism, they have lesser oral absorption. Absorption of both phytochemicals can be enhanced with the blending of oils and emulsifiers serving as carriers for the active components [77]. Hence, for lipophilic drug loading, NEs could be a proper drug delivery vehicle. The speed of absorption is good and changes in in absorption rates is bypassed completely and NEs also make way in solubilizing lipophilic drug, enhancing bioavailability, and authorize rapid and systematic puncturing of the drug molecule. In situ nanoemulgels could be made when NEs are added into the polymer solution, which pertains sustained as well as controlled drug delivery and pave way for administration, thus patient compliance with drug will be further enhanced [69].

Vaccine delivery

NEs being served as a vaccine carrier are b usily being investigated. The present affective and well-organized procedure is to administer an inactivated organism to a mucosal surface so that an immune response will be activated by the body. Studies have demonstrated that genital mucosa immunity can be generated with vaccines that are delivered into the nasal mucosa as required [78]. Proteins were administered to the mucosal surface by utilizing NEs to act as an adjuvant and govern the absorption of antigen-presenting cells. The antigen can be trapped in the nanocarrier by many mechanisms including physical adsorption, encapsulation, encapsulation with coating, encapsulation with targeting, chemical linking, and conjugation along with a targeting mechanism. The physical adsorption of the antigen onto a nanocarrier can be attained either by a charge or hydrophobic interaction, which demonstrates a weak interaction that leads to the braking of the antigen and nanocarrier bond in the body thus releasing the antigen. As far as the encapsulation is concerned, antigens are blended with nanocarrier precursors during their synthesis, which leads in the entrapment of antigen into the nanocarrier [79]. The very first application that is currently getting clinical trials is the nanocarrier for influenza and HIV protein. Furthermore, a recombinant HIV gp 120 antigen mix in NEs has been injected into mice as well as guinea pigs through intranasal immunization that show robust serum anti-gp 120 IgG levels [80]. Another noteworthy example is the pandemic flu vaccine AS03, which has been accepted as a constituent of Prepara® [81].

CONCLUSION

As described NEs provide a platform on which drugs that are less water-soluble can be delivered successfully. They utilize oils and surfactants to solubilize the drug in the aqueous phase which then serves as a carrier. The various methods of preparation of NEs along with their composition followed by their subsequent applications were discussed in this review. NEs are a new frontier in novel drug delivery systems and will continue to progress ahead with new advancements in the future.

ACKNOWLEDGMENT

The authors are thankful toward the staff of H.K. College of Pharmacy for guiding toward the preparation of this manuscript.

AUTHORS CONTRIBUTION

Manuscript framing and the concept has been presented by Khan Mohammad Hamid. Literature search and preparation have been done by Gaurang Sawant. Reviewing and editing have been done by Mohammad Waiz.

CONFLICT OF INTERESTS

The authors have declared no conflicts of interest.

AUTHORS FUNDING

As this is a review article, no funding was provided for this study.

REFERENCES

1. Abuja A, Ali J, Baboota S, Faisal M, Shafeeq F, Shafiq S. Stability evaluation of celecoxib nanoemulsion containing Tween 80. Thai J Pharm Sci 2008;32:4-9.
2. Nigade PM, Patil SL, Tiwari SS. Self-emulsifying drug delivery system (SEDDS): A Review. Int J Pharm Biol Sci 2012;2:42-52.
3. Kumar S. Role of nano-emulsion in pharmaceutical sciences—a review. Asian J Res Pharm Sci Biotech 2014;2:1-15.
4. Bhosale RR, Osmani RA, Ghodake PP, Shaikh SM, Chavan SR. Nanoemulsion: A review on novel profusion in advanced drug delivery. Indian J Pharm Biol Res 2014;2:122-7.
5. Jaiswal M, Dadhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015;5:123-7.
6. Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018;80:781-9.
7. Singh KK, Vingkar SK. Formulation, antimarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 2008;347:136-43.
8. Shafiq S, Shakeel F, Talegoankar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007;66:227-43.
9. Yilmaz E, Borchert HH. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—an in vivo study. Int J Pharm 2006;307:232-8.
10. Shakeel F, Baboota S, Abuja A, Ali J, Ajil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 2007;8:E104.
11. Shakeel F, Baboota S, Abuja A, Ali J, Ajil M, Shafiq S. Accelerated stability testing of celecoxib nanoemulsion containing cremophor-EL. Afr J Pharm Pharmacol 2008;2:179-83.
12. Klang V, Matsko N, Zimmermann AM, Vojnikovic E, Valenta C. Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm 2010;393:152-60.
13. Baspinar Y, Keck CM, Borchert HH. Development of a positively...
charged prednicarbate nanoemulsion. Int J Pharm 2010;383:201-8.
14. Schwarz JC, Klang V, Karali S, Mahnuraus D, Resch GP, Valenta C. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of actovein. Int J Pharm 2012;435:69-75.
15. Borhade V, Pathak S, Sharma S, Patavalle V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation. Int J Pharm 2012;431:138-48.
16. Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasound emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasound Sonochem 2013;20:338-44.
17. Zhu L, Li M, Dong J, Yin Y. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect. Int J Pharm 2015;491:292-2.
18. Basuwar D, Gündoğdu E, Küskül C, Karasulu E. Pitavastatin-containing nanoemulsions: Preparation, characterization and in vivo cytotoxicity. J Drug Deliv Sci Technol 2015;29:17-24.
19. Calligaris S, Plazzotta S, Bot F, Grasselli S, Malchiodi A, Anese M. Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Res Int 2016;83:25-30.
20. Kaar K, Kumar R, Mehta SK. Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light. Ultrasound Sonochem 2016;31:29-38.
21. Meng L, Xia J, Yang Y, Ye J, Dong W, Ma P, et al. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int J Pharm 2016;513:8-16.
22. Fornaguera S, Grau J, Gracia N, Caldero G, Garcia-Celma MJ, Solans C. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes. Colloids Surf B Biointerfaces 2016;147:201-9.
23. Chen H, Xu X, Chen E, Wu S, McClements DJ, Liu S, et al. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids 2016;61:662-71.
24. Yilmaz E, Borhade V. Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. Eur J Pharm Biopharm 2005;60:91-8.
25. Cho SC, Yoo H, Oh C, Lee CG, Seo YC, Kim JS, et al. Enhanced permeation of lipid extraction from marine microalgae, Scenedesmus associated with high-pressure homogenization process. J Biomed Biotechnol 2012;2012:359432.
26. Uhuta S, Decker EA, McClements DJ. Optimization of nanoemulsion fabrication using microfluidization: role of surfactant concentration on formation and stability. Food Biophys 2016;11:52-9.
27. Goh PS, Ng MH, Choo YM, Amru NB, Chua CH. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules 2015;20:23164-46.
28. Ganesan P, Karthivasagan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nano delivery systems and applications in chronic disease treatments. Int J Nanomedicine 2013;8:6109-21.
29. Shi Y, Li H, Li J, Zhi D, Zhang X, Liu H, et al. Development, optimization and emulsion loading nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015;27:46-55.
30. Sugumar S, Mukherjee A, Chandrasekaran N. Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on Listeria monocytogenes. Asian J Pharm 2015;9:23-8.
31. Shinoda K, Lindman B. Organised surfactant systems: Microemulsions. Langmuir 1987;3:135-49.
32. Tenjara S, Chellapa P, Ariffin FD, Eid AM, Almahgoubi AA, Mohamed AT. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isocyanate myristate and either an alkanoic acid, amine, alkanedial, polyethylene glycol alkyl ether or alcohol as cosurfactant. Int J Pharm 1995;114:63-72.
33. Uluata S, Decker EA, McClements DJ. Optimization of nanoemulsion fabrication using microfluidization: role of surfactant concentration on formation and stability. Food Biophys 2016;11:52-9.
34. Goh PS, Ng MH, Choo YM, Amru NB, Chua CH. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules 2015;20:23164-46.
35. Ganesan P, Karthivasagan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nano delivery systems and applications in chronic disease treatments. Int J Nanomedicine 2013;8:6109-21.
36. Shi Y, Li H, Li J, Zhi D, Zhang X, Liu H, et al. Development, optimization and emulsion loading nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015;27:46-55.
37. Sugumar S, Mukherjee A, Chandrasekaran N. Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on Listeria monocytogenes. Asian J Pharm 2015;9:23-8.
38. Shinoda K, Lindman B. Organised surfactant systems: Microemulsions. Langmuir 1987;3:135-49.
39. Tenjara S, Chellapa P, Ariffin FD, Eid AM, Almahgoubi AA, Mohamed AT. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isocyanate myristate and either an alkanoic acid, amine, alkanedial, polyethylene glycol alkyl ether or alcohol as cosurfactant. Int J Pharm 1995;114:63-72.
30. Uluata S, Decker EA, McClements DJ. Optimization of nanoemulsion fabrication using microfluidization: role of surfactant concentration on formation and stability. Food Biophys 2016;11:52-9.
31. Goh PS, Ng MH, Choo YM, Amru NB, Chua CH. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules 2015;20:23164-46.
32. Ganesan P, Karthivasagan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nano delivery systems and applications in chronic disease treatments. Int J Nanomedicine 2013;8:6109-21.
33. Shi Y, Li H, Li J, Zhi D, Zhang X, Liu H, et al. Development, optimization and emulsion loading nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015;27:46-55.
34. Sugumar S, Mukherjee A, Chandrasekaran N. Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on Listeria monocytogenes. Asian J Pharm 2015;9:23-8.
38. Shinoda K, Lindman B. Organised surfactant systems: Microemulsions. Langmuir 1987;3:135-49.
39. Tenjara S, Chellapa P, Ariffin FD, Eid AM, Almahgoubi AA, Mohamed AT. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isocyanate myristate and either an alkanoic acid, amine, alkanedial, polyethylene glycol alkyl ether or alcohol as cosurfactant. Int J Pharm 1995;114:63-72.
40. Uluata S, Decker EA, McClements DJ. Optimization of nanoemulsion fabrication using microfluidization: role of surfactant concentration on formation and stability. Food Biophys 2016;11:52-9.
41. Goh PS, Ng MH, Choo YM, Amru NB, Chua CH. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules 2015;20:23164-46.
42. Ganesan P, Karthivasagan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nano delivery systems and applications in chronic disease treatments. Int J Nanomedicine 2013;8:6109-21.
43. Shi Y, Li H, Li J, Zhi D, Zhang X, Liu H, et al. Development, optimization and emulsion loading nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015;27:46-55.
44. Sugumar S, Mukherjee A, Chandrasekaran N. Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on Listeria monocytogenes. Asian J Pharm 2015;9:23-8.
nanoemulsions for pharmaceutical or cosmetic applications. Rev Bras Farmacogn 2013;23:101-7.
66. Guglielmini G. Nanostructured novel carrier for topical application. Clin Dermatol 2008;26:341-6.
67. Nantarit TH, Chansakaow SU, Leelapornpisid Pl. Optimization, characterization and stability of essential oils blend loaded nanoemulsions by PIC technique for anti-tyrosinase activity. Int J Pharm Pharm Sci 2015;7:308-12.
68. Almajidi YQ, Zainab HM, Marnie NK. Preparation and in vitro evaluation of montelukast sodium oral nanoemulsion. Int J Appl Pharm 2018;10:49-53.
69. Aithal GC, Nayak UY, Mehta C, Narayan R, Gopalkrishna P, Pandiyar S, et al. Localized in situ nanoemulgel drug delivery system of quercetin for periodontitis: Development and computational simulations. Molecules 2018;23:1363.
70. Yen CC, Chen YC, Wu MT, Wang CC, Wu YT. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomedicine 2018;13:669-80.
71. Javed S, Kohli K. Local delivery of minocycline hydrochloride: A therapeutic paradigm in periodontal diseases. Curr Drug Deliv 2010;7:398-406.
72. Podolsky DK. Inflammatory bowel disease. N Engl J Med 1991;325:928-37.
73. Colitis-Pathophysiology U. Inflammatory bowel disease part I: Ulcerative colitis-pathophysiology and conventional and alternative treatment options. Altern Med Rev 2003;8:247-83.
74. Geoghagan F, Wong RW, Rabie AB. Inhibitory effect of quercetin on periodontal pathogens in vitro. Phytother Res 2010;24:817-20.
75. Madav S, Trpalha HC, Mishra SK. Analgesic, antipyretic and antiulcerogenic effects of andrographolide. Indian J Pharm Sci 1995;57:121.
76. Shen T, Yang WS, Yi YS, Sung GH, Rhee MH, Poo H, et al. AP-1/IRF-3 targeted anti-inflammatory activity of andrographolide isolated from Andrographis paniculata. Evid Based Complement Alternat Med 2013;2013:210736.
77. Wang J, Tan XF, Nguyen VS, Yang P, Zhou J, Gao M, et al. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis. Mol Cell Proteomics 2014;13:876-86.
78. Berkowitz AC, Goddard DM. Novel drug delivery systems: future directions. J Neurosci Nurs 2009;41:115-20.
79. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine 2014;32:327-37.
80. Akhter S, Jain GK, Ahmad FJ, Khar RK, Jain N, Khan ZI, Talegaonkar S. Investigation of nanoemulsion system for transdermal delivery of domperidone: Ex-vivo and in vivo studies. Current Nanosci 2008;4:381-90.
81. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009;30:23-32.
82. Pellegrini M, Nicolay U, Lindert K, Groth N, Della Cioppa G. MF59-adjuvanted versus non-adjuvanted influenza vaccines: Integrated analysis from a large safety database. Vaccine 2009;27:6959-65.
83. Mosca F, Tritto E, Muzzi A, Monaci E, Bagntoli F, Iavarone C, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci U S A 2008;105:10501-6.
84. Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 2012;11:349-66.
85. Garçon N, Di Pasquale A. From discovery to licensure, the adjuvant system story. Hum Vaccin Immunother 2017;13:19-33.
86. Fox CB, Anderson RC, Dutilh TS, Goto Y, Reed SG, Vedvick TS. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids Surf B Biointerfaces 2008;65:98-105.
87. Klucker MF, Dalençon F, Proebke P, Haensler J. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci 2012;101:4490-500.