Einmaliges studentisches standardisiertes Training der chirurgischen Händedesinfektion nach EN1500: Quantifizierung des Trainingseffektes, Nutzen der Methode und Vergleich mit klinischen Referenzgruppen

Zusammenfassung

Die standardisierte Schulung klinisch-praktischer Fertigkeiten in sog. Skills Labs ist erst seit wenigen Jahren an deutschen Universitäten verbreitet. Den zumeist umfangreichen und sehr guten Evaluationsergebnissen stehen kaum Untersuchungen zur Effektquantifizierung und Kosten-Nutzen-Analyse gegenüber. In der vorliegenden Studie soll eine Methode zur digitalen Quantifizierung der Güte der chirurgischen Händedesinfektion vorgestellt werden sowie das Skills-Lab-Training der standardisierten Einreibemethode nach EN1500 auf seinen Effekt hin untersucht und mit OP-Pflegepersonal und Operateuren als klinische Referenzgruppen verglichen werden.

Methode: 161 Studierende der Medizin eines 8. Semesters wurden in Kontroll- und Interventionsgruppe randomisiert. Die Interventionsgruppe erhielt ein 45-minütiges standardisiertes Training durch geschulte Mitarbeiter. Studierende zum Verhalten im OP mit dem Teilaspekt der chirurgischen Händedesinfektion nach EN1500. Dem Desinfektionsmittel wurde Fluoreszenzfarbstoff beigemischt. Nach der Desinfektion wurden die Hände eines jeden Probanden digital fotografiert und teilautomatisiert die nicht ausreichend benetzte Handfläche bestimmt. Die Ergebnisse aller studentischen Probanden wurden verglichen, sowie das Kompetenzniveau anhand zweier klinischer Referenzgruppen eingeordnet.

Ergebnisse: Die Interventionsgruppe erreichte nach dem studentisch angeleiteten Training eine durchschnittliche 4,99% (SD 2,34) der gesamten vier Handflächen nicht sicher ausreichend Benetzung und war damit hoch signifikant (p<0,01) besser als die Kontrollgruppe mit 7,33% (SD 3,91). Im Vergleich zu den Referenzgruppen konnte in der Kontrollgruppe kein signifikanter Unterschied gezeigt werden, die Interventionsgruppe zeigte aber im Vergleich zu beiden Referenzgruppen hoch signifikant bessere Ergebnisse: Operateure 9,32% (SD 4,97), OP-Pflege 8,46% (SD 4,66). Der Methodenfehler ist vernachlässigbar gering. In der Subgruppenanalyse hinsichtlich der studentischen Vorerfahrungen zeigten sich gute Trainingseffekte in den Gruppen mit geringer und moderater Vorerfahrung, weniger in den Gruppen ohne bzw. mit großer Vorerfahrung. Alle Probanden zeigten die größten Benetzungslücken an den Handrücken im Vergleich zu den Handflächen.

Diskussion: Ein einmaliges standardisiertes, studentisch angeleitetes Training der Einreibemethode EN1500 ist geeignet, die Benetzungslücken der Teilnehmer nach der chirurgischen Händedesinfektion um ein Drittel zu reduzieren und gleichzeitig das Kompetenzniveau klinischer Referenzgruppen von OP-Pflege und Operateuren zu erreichen oder gar zu übertreffen.

Schlüsselwörter: Händedesinfektion, Skills Lab, Benetzungslücken, Standardisiertes Training, Effektquantifizierung

Andreas Fichtner¹
Elke Haupt²
Tobias Karwath³
Katharina Wullenk⁴
Christoph Pöhlmann⁵
Lutz Jatzwauk⁶

¹ Universitätsklinikum Halle, Klinik für Anästhesiologie und Operative Intensivmedizin, Leiter Erleb Lernzentrum, Halle (Saale), Deutschland
² Universitätsklinikum C.-G. Carus, Institut für Hygiene, Dresden, Deutschland
³ TUDresden, Medizinische Fakultät, Dresden, Deutschland
⁴ Ausbildungszentrum für Gesundheitsfachberufe, Halle (Saale), Deutschland
⁵ Robert-Bosch-Krankenhaus, Abteilung für Labormedizin, Stuttgart, Deutschland
⁶ Universitätsklinikum C.-G. Carus, Leiter Institut für Hygiene, Dresden, Deutschland
Einführung

Mit der Novellierung der Approbationsordnung für Ärzte im Jahr 2002 kam es zur Reform des Medizinstudiums in Deutschland. Der Erwerb klinisch-praktischer Fertigkeiten rückte zunehmend in den Vordergrund und fordert eine Umsetzung mittels adäquater Lernmethoden (vgl. [1]). Nach dem Vorbild niederländischer Modelle wurden innerhalb weniger Jahre nahezu flächendeckend Skills Labs in die Ausbildung integriert (vgl. [2]). Entsprechend einer Bestandsaufnahme aus dem Jahr 2008 besaßen 34 von 36 Medizinischen Fakultäten in Deutschland zu diesem Zeitpunkt ein Skills Lab (vgl. [3], [4]). Nach dieser umfangreichen Umsetzung stellt sich die Frage nach der Effektivität des Trainings. Internationale Untersuchungen und vor allem die durchgehend sehr positiven Evaluationen und Selbsteinschätzungen der Studierenden bestätigten bereits vor Jahrzehnten die positiven Auswirkungen für Lernende (vgl. [5], [6], [1]).

Objektiv-quantitative Untersuchungen der tatsächlichen Kompetenzzuwachs praktischer Fertigkeiten in solchen Trainings- und insbesondere die Kosten-Nutzen-Relation – sind aber bis heute nur spärlich erforscht. Literaturrecherchen zur Studienlage über die Effektquantifizierung von Skills-Lab-Trainings in den einschlägigen Datenbanken führen relevante Treffer unter Aspekten einer quantitativen orientierten Forschungsfrage lediglich im einstelligen Bereich auf. Selbst diese wenigen Untersuchungen quantifizieren die Effekte von medizinischen Skills-Lab-Trainings oft unzureichend oder messen vielmehr Effekte auf dem Gebiet theoretischer anstatt praktischer Kompetenz (vgl. [7]). So bereitet insbesondere die Kategorisierung und Gewichtung der zu erfassenden Schlüsselitems als standardisierte validierte Checkliste Probleme, die weiterhin durch nicht ausreichend genaue oder standardisierte Messinstrumente verstärkt werden. Gängige Messinstrumente sind unstandardisierte Beobachtung, Multiple-Choice-Fragen (welche jedoch keine praktische Kompetenz zu messen in der Lage sind) und Checklisten für praktische Prüfungen (Objective Structured Clinical Examination bzw. Objective Structured Assessment of Technical Skill), welche zwar die standardisierte Bewertung praktischer Leistungen ermöglichen, jedoch kein ausreichend genau Messinstrument für kleine Effekte bieten (vgl. [8], [9]).

Insbesondere hygienische Fertigkeiten sind zwar einfach zu erlernen, erfordern im Klinikalltag allerdings hohes Maß an Genauigkeit, um schwerwiegende Folgen für den Patienten zu verhindern. Die Händedesinfektion zur Vermeidung von Infektionen bei auch gering-invasiven Maßnahmen und Gefäßzugängen ist dabei eine Empfehlung des Evidenzgrades 1A des Robert-Koch-Institutes. In Bezug auf die aktuell klinikrelevanten Problemstellungen zur Thematik bedarf der kontinuierliche Anstieg multiresistenter nosokomialer Infektionen einer standardisierten Ausbildung der Studierenden der Medizin zu hygienischen Aspekten (vgl. [10]), welche auch in den Nationalen Lernzielkatalog Praktischer Fertigkeiten Eingang fanden (vgl. [11]). Sämtliche klinisch-praktischen Fertigkeiten sollen im Blickwinkel geltender Hygienerechtlinien erlernt und gefestigt werden. Zudem gestaltet sich neben dem Erwerb praktischer Fertigkeiten die Überprüfung der Trainingsergebnisse als ein wichtiges Kriterium eines Skills-Lab-Trainings. Insbesondere am Beispiel der hygienischen und auch chirurgischen Händedesinfektion stellt sich neben der korrekten Vermittlung der Durchführung auch die Frage nach dem Einfluss von standardisierten Abläufen auf den Erfolg des Desinfektionsverfahrens (vgl. [12]). Hierzu soll nicht der wenig lokalisierbare Keinnachweis sondern die Identifizierung und genaue Quantifizierung von Benetzungslücken als Maß für die Effektivität der Durchführung die Ziele des handsanitierenden Maßnahmenkulminierend nachweislich erreicht (vgl. [13]).

Zielstellungen

Anhand einer Trainingstation der chirurgischen Händedesinfektion im sog. Skills-Lab-Trainings soll der Kompetenzzuwachs eines ganzen Semesters an Studierenden der Medizin genau quantifiziert und mit der klinischen Referenz (Zielgröße examiniertes OP-Pflegefachpersonal und Operateure) verglichen werden. Daraus ergaben sich folgende Fragestellungen:

1. Wie können Trainingseffekte am Beispiel der chirurgischen Händedesinfektion gemessen werden? Wie können die Güte der chirurgischen Händedesinfektion und eventuelle Benetzungslücken genau quantifiziert werden?

2. Wie gut können Studierende in Abhängigkeit von ihren Vorkenntnissen mit einem einmaligen standardisierten Training die chirurgische Händedesinfektion nach EN1500 (siehe Abbildung 1) erlernen? Reicht dieses Maß für eine sichere Durchführung in der Praxis? Bringt die standardisierte Einreibemethode zusätzliche Effekte hinsichtlich einer suffizienten Händedesinfektion ohne Benetzungslücken?

3. Wie gut sind die Fertigkeiten der Studierenden nach einmalig absolviertem Training im direkten Vergleich zu den Referenzgruppen OP-Pflegefachpersonal und Operateure?

Methodik

Die Pilotstudie erstreckte sich über den Zeitraum von 6 Monaten an der Medizinischen Fakultät der Technischen Universität Dresden in Form einer prospektiven, randomisierten, kontrollierten Interventionsstudie mit einfacher Verblindung. Von der zuständigen Ethikkommission wurde das Positivvotum eingeholt. (Bearbeitungsnummer: EK 202082008) Als Probanden konnten 161 Teilnehmer des 8. Fachseminars Medizin per Online-Einschreibung rekrutiert und elektronisch in eine Interventions- (IG) und Kontrollgruppe (KG) randomisiert werden. Diese wurden nach praktischen Vorerfahrungen für die Auswertung weiteren Subgruppen zugeordnet.
Abbildung 1: Chirurgische Händedesinfektion nach EN1500 (Bode©). Die Methode dient dem Test von Desinfektionsmitteln anhand von Abklatschuntersuchungen und soll eine vollständige und gleichmäßige Benetzung der Hände gewährleisten.

Gleichermaßen konnten als Referenzgruppen 21 OP-Schwestern mit dem Hintergrund der Fachausbildung und langjähriger Berufserfahrung sowie 16 erfahrene Operateure aus verschiedenen Fachdisziplinen für die Untersuchung gewonnen werden (siehe Abbildung 2). Die in allen Gruppen kommunizierten Zielgrößen der chirurgischen Händedesinfektion waren die vollständige Benetzung aller vier Handflächen zur Erzielung der Keimfreiheit (vgl. [13]) sowie die dreimalige Desinfektion und die Desinfektionszeit von 3 Minuten. Allen Gruppen war weiterhin bekannt, dass die Güte der Desinfektion im Nachgang gemessen wurde.

Ablauf des Trainings

Die studentischen Probanden und Teilnehmer des Skills-Lab-Trainings wurden nach erfolgter Zustimmung zufällig in Beide Gruppen, sowohl die Interventions- als auch die Kontrollgruppe, wurden im Nachgang mit Erfahrungshilfe von einer Schülerin die durchgeführten Anzahl der chirurgischen Händedesinfektionen für OP-Assistenten befagt. Erfahrungshilfe hingegen wurde in 5 Subgruppen (<10, < 50, < 100, > 100) mal chirurgische Waschung und Händedesinfektion für OP-Assistent) eingeteilt. Die Kontrollgruppe desinfizierte sich ohne ein vorhergehendes Training die Hände mit Sterillium® (Bode Chemie Hamburg) inklusive dem fluoreszierenden Farbstoff Visi-rub® (Bode Chemie Hamburg) im empfohlenen Mischungsverhältnis. Eine vollständige Benetzung aller Handflächen sollte durch die Desinfektion erreicht werden. Die Interventionsgruppe erhielt ein standardisiertes Training im Skills Lab. Danach erfolgte die Überprüfung der praktischen Kompetenzen zur chirurgischen Händedesinfektion. Die Kontrollgruppe erhielt das Fertigkeiten- training ergänzend nach der Untersuchung. Das praktische Training (siehe Abbildung 3) wurde im Peer-Teaching-Verfahren durchgeführt. Hierfür wird ein studentischer Tutor fachlich und medizindidaktisch zum Thema angelernt und führt die Trainingseinheiten in Kleingruppen von 4 studentischen Teilnehmern mehrfach täglich streng standardisiert durch. Das Training wurde nach studentischer und ärztlicher Befragung des dringendsten Schulungsbedarfs praktischer Kompetenzen an der Medizinischen Fakultät Dresden entwickelt und muss inzwischen vor Betreten eines OP des Universitäts-klinikums Dresden nachgewiesen werden. Die Evaluationsergebnisse sind regelmäßig sehr gut (Durchschnittsnote 1,24 bei Schulnotenskala 1=sehr gut bis 5=mangelhaft) und die Teilnehmer geben einen großen Zuwachs praktischer Kompetenz und Sicherheit an. Die Gesamtkosten beliefen sich auf rund 10 EUR pro Teilnehmer. Nach der Auswertung wurden die Ergebnisse der Kontroll- und Interventionsgruppe sowie der einzelnen kompetenz- adjustierten Subgruppen auf Normalverteilung untersucht und mit den anderen Gruppen mittels t-Test für unabhängige Stichproben verglichen. Zur Definition der optimalen Zielgrößen des Trainingserfolges wurden die Desinfektionsergebnisse von klinischen Referenzgruppen erhoben. Als Referenzgruppe 1 diente erfahrenes OP-Pflegefachpersonal, da dieses bereits in der entsprechenden Fachausbildung die Durchführung der hygienischen und chirurgischen Händedesinfektion sowohl im theoretischen als auch fachpraktischen Unterricht lernt. Eine weitere Referenzgruppe (2) wurde aus der potenziellen zukünftigen Berufsgruppe in Form von langjährig erfahrenen Operateuren aus den verschiedenen Fachdisziplinen rekrutiert.
Auch die Ergebnisse der Referenzgruppen wurden auf Normalverteilung untersucht.

Messmethode

Im empfohlenen Verhältnis wurde in das Händedesinfektionsmittel Sterillium® (Bode Chemie Hamburg) der Fluoreszenzfarbstoff Visirub® (Bode Chemie) gemischt. Damit erfolgte die Händedesinfektion der Probanden. Nach der vorgegebenen Desinfektionszeit von 3 Minuten wurden die luftgetrockneten Handflächen und -rücken unter einer UV-Lampe mit standardisierten Kameraeinstellungen senkrecht fotografiert. Die so gewonnenen
vier Bilder pro Proband (zwei Handflächen und zwei Handrücken) erhielten zur Anonymisierung eine Codierung und wurden durch einen verblindeten Untersucher mittels festgelegtem Verfahren ausgewertet. Dafür wurde eigens ein Algorithmus unter Verwendung der Grafikprogramme Microsoft Office Picture Manager®, Origin Lab®, IBM und SPSS® entwickelt.

Schritt 1 der Auswertung beinhaltete die Bearbeitung der 5 Megapixel großen Fotos mit dem Ziel der Separierung der Handflächen und -rücken mit der linearen Schnittstelle an den radialen und ulnaren Scheitelpunkten zum Unterarm. Diese Flächen bilden vor einem neutralen Hintergrund den prozentualen Anteil der desinfizierbaren Hautfläche zum Gesamtbild und werden über die Pixelanzahl dargestellt (siehe Abbildung 4).

Schritt 2 legt den Farbwert für eine „sicher ausreichende Benetzung“ der Hand mit dem Desinfektionsmittel fest. Die Pixelanzahl dieser sicher desinfizierten Hautflächen in jedem Bild wird von der Gesamt pixelzahl der desinfizierbaren Hautfläche subtrahiert und bestimmte dadurch die verbleibende Fläche als „nicht sicher ausreichend benetzte Haut“ im prozentualen Anteil zur gesamten Handfläche (siehe Abbildung 5). Die Erfassung der Pixelanzahl eines Farbwertes erfolgte mittels Erstellung eines Histogramms aus der auf 256 Farben RGB reduzierten Fotovorlage (OriginLab®).

Die so entstandenen prozentualen Ergebnisse „nicht ausreichend sicher beneteter Flächen“ der 4 Handflächen pro Proband wurden im Schritt 3 in die statistische Auswertung überführt. Nach Prüfung auf Normalverteilung diente der t-Test für unabhängige Stichproben als Analyseinstrument für Mittelwertunterschiede.

Zur Quantifizierung des Methodenfehlers durchliefen verschiedene Rohbilder je zehn Mal den kompletten Auswertungsprozess. Auch die Ergebnisse dieser Analyse wurden auf Normalverteilung untersucht.

Ergebnisse

Nach Einschluss in die Studie sah die Probandenverteilung folgendermaßen aus (siehe Abbildung 6):

Hinsichtlich der Fragestellungen wurden folgende Ergebnisse erhoben:

1. **Wie können Trainingseffekte am Beispiel der chirurgischen Händedesinfektion gemessen werden?** Wie können die Güte der chirurgischen Händedesinfektion und eventuelle Benetzungslücken genau quantifiziert werden?

In der Kontrolle der Fehlerhaftigkeit der gesamten Messmethode ergab sich ein methodenbedingter Standardfehler von +/-0,27% (Standardfehler des Mittelwertes). Damit kann eine relevante Beeinflussung der gemessenen Resultate ausgeschlossen und die hier vorgestellte Methode zur digital-grafischen Quantifizierung der Fluoreszenzmessung der Händedesinfektion als geeignet für die Beantwortung der weiteren Forschungsfragen bestätigt werden.

2. **Wie gut können Studierende in Abhängigkeit von ihren Vorkenntnissen mit einem einmaligen standardisierten Training die chirurgische Händedesinfektion nach EN1500 erlernen?** Reicht dieses Können für eine sichere Durchführung in der Praxis? Bringt die standardisierte Einreibemethode zusätzliche Effekte hinsichtlich einer suffizienten Händedesinfektion ohne Benetzungslücken?

(siehe Abbildung 7) Mittels einmaligem Training zeigte die Interventionsgruppe hochsignifikant geringere Benetzungslücken im Vergleich zur Kontrollgruppe. Darüber hinaus wurde auch die Streubreite reduziert.

In der Subgruppenanalyse, bezogen auf die Vorerfahrungen der studentischen Probanden, zeigten sich in jeder Subgruppe der Interventionsgruppe bessere Ergebnisse im Vergleich zur Kontrollgruppe (siehe Abbildung 8). Auf- fällig ist, dass die Subgruppe ohne jegliche Vorerfahrungen und die Subgruppe mit der größten Vorerfahrung keine signifikanten Unterschiede zwischen Interventions- und Kontrollgruppe zeigen, während diese in den Subgruppen mit geringer und moderater Vorerfahrung hoch signifikant sind.

3. **Wie gut sind die Fertigkeiten der Studierenden nach einmalig absolviertem Training im direkten Vergleich zu den Referenzgruppen OP-Pflegepersonal und Ope rateuren?**

Im Vergleich zu den Referenzgruppen, welche den klinischen Standard des Lernzieles definieren, schnitten die Studierenden der Interventionsgruppe nach dem einmaligen Training signifikant besser ab (siehe Abbildung 9): Zwischen den Referenzgruppen konnte kein signifikanter Unterschied festgestellt werden. Dennoch zeigten die OP-Pflegekräfte durchschnittlich geringfügig bessere Resultate mit einer etwas geringeren Streuung. Anzumerken ist, dass die studentische Kontrollgruppe ebenfalls bessere Resultate zu beiden Referenzgruppen zeigte. Im Vergleich mit der ärztlichen Referenzgruppe wird die Signifikanzgrenze dabei nur knapp verpasst.

Weitere Ergebnisse

In Kontroll- und Interventionsgruppe wie auch in den Referenzgruppen weisen die palmaren Flächen jeweils einen geringeren Prozentsatz nicht sicher ausreichend desinfizierter Flächen auf als die dorsalen Handflächen (siehe Abbildung 10):

Diskussion

Die recht einfache praktische Fertigkeit der chirurgischen Händedesinfektion mit dem Ziel der vollständigen und gleichmäßigen Benetzung sollte allenfalls vereinzelte und sehr kleine Benetzungslücken aufzeigen. Alle Teilnehmer wussten um die Überprüfung des Desinfektionsergebnisses, sodass die Motivation nach dem bestmöglichen Ergebnis in allen – auch den Referenzgruppen – zu erken nen war.
Dennoch konnten an jeder Handfläche – wenn auch minimale – „nicht sicher ausreichend benetzte“ Bereiche detektiert werden, bei denen der Fluoreszenzgrad nicht dem eines dreimaligen Auftragens entsprechend der Vorgehensweise der chirurgischen Händedesinfektion entsprach. Mit der eigens entwickelten Methode der digitalen Fotografie und Auswertung konnten auch diese minimalen Bereiche sicher vermessen werden. Der Methodenfehler stellt sich dabei vernachlässigbar gering dar.

Die standardisierte, studentisch angeleitete Vermittlung der empfohlenen Sechs-Schritt-Einreibemethode nach EN 1500 ist geeignet, um die verbleibende, als nichtausreichend benetzte Handfläche, um ein Drittel zu reduzieren und die Streubreite in der Interventionsgruppe deutlich einzuengen, obgleich sie lediglich als ein kleiner Bestandteil in einem 45-minütigen Training praktischer Fertigkeiten zum Verhalten im OP vermittelt wird. Ähnliche Ergebnisse zur Qualität des studentisch angeleiteten Trainings im Vergleich zum ärztlich angeleiteten Training sind bereits beschrieben worden (vgl. [1], [14]).

Erstaunlicherweise sind die Ergebnisse der studentischen Kontrollgruppe bereits auf dem Niveau der Referenzgruppen von Operateuren und examinierten OP-Pflegepersonal mit langjähriger Berufserfahrung. Zudem sind die Desinfektionserfolge der studentischen Interventionsgruppe signifikant besser als die beider Referenzgruppen. Im Vergleich von Operateuren und OP-Pflege erzielte die Pflege bessere Ergebnisse mit geringerer Streuung. Eine
Abbildung 5: Histogramm der Farbverteilung im standardisiert aufgenommenen und bearbeiteten Foto (X-Achse = Farbwerte von 0-255, Y-Achse = Anzahl Pixel pro Farbwert)

Abbildung 6: Schaubild Kohorteneinteilung inkl. Probandenanzahl in Klammern. Wegen der geringen Anzahl der Probanden in den beiden geplanten Subgruppen mit der größten Vorerfahrung wurden diese Gruppen zusammengelegt.

Erklärung für dieses Ergebnis könnte die zumindest teilstandardisierte praktische Ausbildung der OP-Pflege im Vergleich zu den Operateuren sein, insbesondere im Hinblick auf den hier gezeigten Effekt in der studentischen Interventionsgruppe.

Alle Probanden erreichten schlechtere Ergebnisse an den dorsalen Handflächen (Handrücken) im Vergleich zu den palmaren Flächen. In der Subgruppenanalyse dieser jeweils zwei Handflächen wurden die Gesamtaussagen und
Abbildung 7: Benutzungslücken als Prozentsatz aller 4 addierten Handflächen im Vergleich zwischen der studentischen Kontroll- und Interventionsgruppe.

Abbildung 8: Kompetenzadjustierte Subgruppenanalyse nach Vorerfahrungen von 0, 10-50 bzw. > 50-mal chirurgische Waschung/Händedesinfektion für OP-Assistenz vor Untersuchung.

InderAnalysederstudentischenProbandennachKompetenzniveau zeigten sich signifikante Trainingseffekte indenGruppenmitgeringerundmoderaterVorerfahrung. Die beiden Gruppen mit nicht vorhandener bzw. großer Vorerfahrung profitierten wenig von dem standardisierten Training in der Interventionsgruppe. Mögliche Erklärungen sind der geringe Kompetenzzuwachs durch das Training in der Subgruppe mit großer Vorerfahrung (>50 Mal chirurgische Händedesinfektion) und eine Überforderung durch das gewählte Trainingsniveau in der Gruppe ohne jegliche Vorerfahrung im OP. Dennoch kann für alle Subgruppen der Interventionsgruppe eine Verbesserung zur Kontrollgruppe und eine Einengung der Streuungsbreite beobachtet werden.
Abbildung 9: Studentische Kontroll- und Interventionsgruppe im Vergleich mit den klinischen Referenzgruppen. Die Größenordnung und Streuung des Methodenfehlers im Verlauf des Auswertealgorithmus sind ebenfalls angegeben.

Abbildung 10: Vergleich der Benetzungslücken der jeweils dorsalen und palmaren Handflächen bei Operateure und OP-Fachpersonalsowie der Interventionsgruppe. Angegeben sind die minimalen und maximalen prozentualen, nicht ausreichend benetzten Flächen sowie der jeweilige Mittelwert (MW). Wiederum sind die studentischen Ergebnisse im Vergleich zu den beiden Referenzgruppen signifikant besser (p<0,01), die auch in der getrennten Auswertung der dorsalen und palmaren Handflächen jeweils besseren Werte der OP-Fachpflege erreichen nicht das Signifikanzniveau.

	Summe aller 4 Handflächen	Dorsale Handflächen	Palmare Handflächen						
	Min	max	MW	min	max	MW	min	max	MW
Operateure	2,98%	16,73%	9,32%	3,31%	19,36%	10,34%	1,57%	17,67%	8,40%
OP-Pflege	2,16%	17,18%	8,46%	1,30%	19,82%	9,19%	2,18%	14,92%	7,81%
Studierende	1,80%	14,28%	4,99%	1,91%	20,30%	5,70%	1,05%	13,88%	4,36%

Insgesamt zeigt das Training einen messbaren Effekt und erreicht bzw. übertrifft das Kompetenzniveau der klinischen Referenzen. Bei einer akzeptablen Kosten-Nutzen-Relation von ca. 10 EUR pro Studierenden kann von einer optimalen Trainingssituation der angehenden Mediziner ausgegangen werden. Die im Rahmen der Studie vorgenommene Visualisierung der Desinfektionsergebnisse unter der UV-Lampe trägt verstärkt zur nachhaltigen Sensibilisierung der Studierenden für die Wichtigkeit der gewissenhaften Durchführung der hygienischen und chirurgischen Händedesinfektion bei, um nosokomiale Infektionen zu verhindern. Die Ergebnisse zeigen, dass ein solches Training auch für erfahrene Mediziner sinnvoll ist, denen im Rahmen des sozialen Lernens eine wichtige Vorbildrolle zukommt (vgl. [15]).

Limitation

Einschränkend ist zu erwähnen, dass die Pilotstudie mit geringen Gruppengrößen durchgeführt wurde. Die Referenzgruppe I erreichte eine Anzahl von 21 OP-Pflegefachkräften. Die Referenzgruppe II bestand lediglich aus 16 Operateuren.
Fazit
Das studentisch angeleitete Skills-Lab-Training der chirurgischen Händedesinfektion nach der EN1500, obgleich es sich nur um ein 45-minütiges Training inklusive weiterer praktischer Inhalte handelt, kann als geeignete Methode zur standardisierten Schulung der klinisch-praktischen Fertigkeiten Studierender der Medizin angesehen werden. Im Vergleich zur klinischen Referenz übertrifft Teilnehmer der Interventionsgruppe nach dem einmaligen Training examiniertes Fachpersonal mit langjähriger Berufserfahrung.

Kernaussagen
1. Die vorgestellte Methode der digitalen Farbwertzuordnung erlaubt eine genaue Quantifizierung von Benetzungslücken beim Training der Händedesinfektion.
2. Ein einmaliges standardisiertes Training der chirurgischen Händedesinfektion mit der Methode nach EN1500 kann so effizient sein, dass die Ergebnisse der klinischen Referenzgruppen übertroffen werden.
3. Die Methode EN1500 ist geeignet, Benetzungslücken bei der chirurgischen Händedesinfektion zu reduzieren.

Interessenkonflikt
Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.
Bode hat Visirub® kostenlos zur Verfügung gestellt.

Literatur
1. Nikendei C, Schilling T, Nawroth P, Hensel M, Ho AD, Schwenger V, Zeier M, Herzog W, Schellberg D, Katus HA, Dengler T, Stremmel W, Müller M, Jünger J. Integriertes Skills-Lab-Konzept für die studentische Ausbildung in der inneren Medizin. Dtsch Med Wochenschr. 2005;130:1133-1138. DOI: 10.1055/s-2005-866799
2. Muïjers P. Fertigkeitenunterricht für Pflege- und Gesundheitsberufe: das Skills Lab-Modell. Berlin, Wiesbaden: Ulstein Mosby; 1997.
3. Segarra L, Schwedler A, Weih M, Hahn E, Schmidt A. Der Einsatz von medizinischen Trainingszentren für dieusbildung zum Arzt in Deutschland, Österreich und der deutschsprachigen Schweiz. GMS Z Med Ausbild. 2008;25(2):Doc80. Zugänglich unter/availablefrom: http://www.ejms.de/static/de/journals/zma/2008-25/zma000564.shtml
4. Knoppa E, Jünger J, Nikendei C. Einsatz innovativer Lern- und Prüfungs methoden an den medizinischen fakultäten der bundesrepublik Deutschland. Eine aktuelle bestandsaufnahme. Dtsch Med Wochenschr. 2009;134(7):371-372. DOI: 10.1055/s-0028-1124008
5. Lynchagh M, Burton R, Sassen-Fisher R. A systematic review of medical skills laboratory training: where to from here? Med Educ. 2007;41(8):879-887. DOI: 10.1111/j.1365-2923.2007.02821.x
6. Lund F, Weyrich P, Werner A, Jünger J, Nikendei C. From Simulation to Bed-Side: Effectivity of Undergraduate Skills Lab Training Compared to Classic Bed-Side-Teaching. Posterpräsentation zur 2nd International Conference "Research in Medical Education". Tübingen: Universität Tübingen, Medizinische Fakultät; 2010.
7. Jansen J, Grol R, van der Veuten C, Scherpblcier A, Crebolder H, Rethens J. Effect of a short skills training course on competence and performance in general practice. Med Educ. 2000;34(3):66-71. DOI: 10.1046/j.1365-2923.2000.00401.x
8. Sopka S, Simon M, Beckers S. Assessment drives Learning*: Konzepte zur Erfolgs- und Qualitätskontrolle. In: St. Pierre M, Breuer G (Hrsg). Simulation in der Medizin. Grundlegende Konzepte – Klinische Anwendung. Berlin, Heidelberg: Springer-Verlag; 2013.
9. Lehmann K, Gröne J. Simulation in der Chirurgie. In: St. Pierre M, Breuer G (Hrsg). Simulation in der Medizin. Grundlegende Konzepte – Klinische Anwendung. Berlin, Heidelberg: Springer-Verlag; 2013.
10. Oldhafer K, Jurs U, Kramer A, Martinus J, Weidt K, Mielke M. Prävention postoperativer Infektionen im Operationsgebiet, Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2007;50:377-393.
11. Schnabel KP, Böltz PD, Breuer G, Fichtner A, Karsten G, Kujumdshiev S, Schmidts M, Stosch C. Konsensusstatement "Praktische Fertigkeiten im Medizinstudium" – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/zma000770
12. European Committee for Standardization. European standard EN 1500. Chemical disinfectants and antiseptics. Hygienic handrub. Test method and requirements. Brussels: European Committee for Standardization; 1997.
13. Kampf G, Reichel M, Feil Y, Eggerstede S, Kauflers PM. Influence of rub-in technique on required application time and hand coverage in hygienic hand disinfection. BMC Infect Dis. 2008;8:149. DOI: 10.1186/1471-2334-8-149
14. Weyrich P, Celebi N, Schrauth M, Möltner A, Lammerding-Köppel M, Nikendei C. Peer-assisted versus faculty staff-led skills laboratory training: a Randomised controlled trial. Med Educ. 2009;43(2):113-120. DOI: 10.1111/j.1365-2923.2008.03252.x
15. Haessler S, Bhagavan A, Kleppel R, Visintainer P. Getting doctors to clean their hands: Lead the followers. BMJ Qual Safe. 2012;21(6):499-502. DOI: 0.1136/bmjqs-2011-000396

Korrespondenzadresse:
OA Dr. Andreas Fichtner
Universitätsklinikum Halle, Klinik für Anästhesiologie und Operative Intensivmedizin, Leiter Erxlbeans Lernzentrum, 06120 Halle (Saale), Deutschland, Tel.: +49 (0)345/557-4087/-4020, Fax: +49 (0)345/557-4128 andreas@drfichtner.info

Bitte zitieren als
Fichtner A, Haupt E, Karwath T, Wullenk K, Pöhlmann C, Jatzwauk L. Einmaliges studentisches standardisiertes Training der chirurgischen Händedesinfektion nach EN1500: Quantifizierung des Trainingseffektes, Nutzung der Methode und Vergleich mit klinischen Referenzgruppen. GMS Z Med Ausbild. 2013;30(2):Doc24. DOI: 10.3205/zma000867, URN: urn:nbn:de:0183-zma0008676

GMS Zeitschrift für Medizinische Ausbildung 2013, Vol. 30(2), ISSN 1860-3572
A single standardized practical training for surgical scrubbing according to EN1500: Effect Quantification, value of the standardized method and comparison with clinical reference groups

Abstract

The standardized training of practical competences in skills labs is relatively new among German Medical Faculties. The broad acceptance and outstanding evaluation results do not provide objective data on the efficiency and cost-efficiency of these trainings. This study aims on the quantification of the teaching effect of the surgical scrubbing technique EN1500 and its comparison with clinical references of OR personnel.

Methods: 161 4th year medical students were randomized into intervention and control group. The intervention group received a 45 minute standardized peer-teaching training of practical competences necessary in the OR including the scrubbing according to EN1500. Fluorescence dye was mixed in the disinfectant solution. After hand disinfection, standardized photographs and semi-automated digital processing resulted in quantification of the insufficiently covered hand area. These results were compared with the control group that received the training after the test. In order to provide information on the achieved clinical competence level, the results were compared with the two clinical reference groups.

Results: The intervention group remained with 4,99% (SD 2,34) insufficiently covered hand area after the training compared to the control group 7,33% (SD 3,91), p<0,01. There was no significant difference between control group and reference groups: surgeons 9,32% (SD 4,97), scrub nurses 8,46% (SD 4,66). The student intervention group showed results that were significantly better than the clinical references. The methodic mistake remained negligible. In the sub-group analysis, the students with low or medium experience in surgical scrubbing and hand disinfection derived highest benefit from the training, whereas students with no or high experience did benefit less. All participants showed better results on hand palms compared to back of hand areas.

Discussion: A single standardized peer-teaching of surgical scrubbing and hand disinfection according to EN1500 is sufficient to improve the measurable coverage of hand area and reduce the disinfection gap by 1/3. In absolute measures, the competence level of experienced surgeons and scrub nurses is achieved or even exceeded.

Keywords: Hand Disinfection, Skills Lab, Disinfection Gaps, Standardized Training, Effekt Quantification

Introduction

With the amendment of the medical licensure act in 2002, a reformation of the curriculum for the study of medicine in Germany took place. The acquisition of clinical practical skills increasingly moved into focus and required the implementation of appropriate learning styles (cf. [1]). Following the examples set by the Netherlands, skills labs were integrated into the student education almost nationwide within a few years (cf. [2]). According to a survey from the year 2008, 34 out of 36 medical faculties in Germany held skills labs at that time (cf. [3], [4]). After this comprehensive implementation, the question arose as to the efficacy of the training. International studies and above all the consistently very positive evaluations and self-assessments of the students already confirmed the beneficial effects for learners decades ago (cf. [5], [6], [1]).
However, objective and quantitative studies on both the true competence increment of practical skills in such trainings and especially the cost-benefit ratio have been scarcely conducted to date. Using common databases, a literature research on studies relating to the issue of effect quantification of Skills Lab trainings yielded relevant hits only in the single digit range. Even the few published studies often quantified the effect of medical Skills Lab trainings poorly or rather measured effects in the field of theoretical instead of practical competence (cf. [7]). In particular, the categorization and weighting of key items to be recognised as standardized validated check list caused problems which were further amplified by insufficiently precise or standardized measuring tools. Common instruments were non-standardized observation, multiple-choice questions (which are unable to measure practical competence though), and check lists for practical exams (Objective Structured Clinical Examination and Objective Structured Assessment of Technical Skill, respectively) which enable a standardized evaluation of practical skills but are not precise enough to measure small effects (cf. [8], [9]). Especially hygienic skills are easy to learn, but require a high level of precision in daily clinic routine to prevent serious consequences for one or even more patients. Hand disinfection for prevention of infections from even less invasive measures such as vascular accesses is recommended as level of evidence 1A by the Robert Koch Institute. In the light of current clinically relevant challenges in this field, the steady increase of nosocomial infections with multiresistant bacteria requires a standardized education of medical students in all hygienic aspects incorporated in the national catalogue of learning objectives for practical skills (cf. [10]). The complete clinical-practical skills are to be learned and strengthened in view of the latest hygiene guidelines (cf. [11]). Furthermore, apart from the acquisition of practical skills the verification of the training results represents an important criterion of a Skills Lab training. Besides the correct teaching of the procedure, the question arises regarding the example of hand disinfection as to the influence of standardized processes on the success of the disinfection method (cf. [12]). For this purpose, the identification and precise quantification of disinfection gaps rather than the poorly locatable germ proof shall serve as a measure for the effectiveness of the process since an effective germ reduction is verifiably achieved by sufficient coverage of hand areas (cf. [13]).

Aim of the study

In the setting of a skills lab training, a practical training facility for 4th year medical students shall be established to allow precise quantification of expertise increment and comparison with clinical reference groups (examined OR nurses and surgeons as target reference). Within this scenario the following questions arose:

1. How can training effects in surgical scrubbing and hand disinfection be measured in a standardized manner? How can the quality of surgical hand disinfection and possible disinfection gaps be precisely quantified?
2. How well are 4th year medical students able to learn the procedure of surgical hand disinfection after having completed a single standardized practical training (see Figure 1)? Are these skills sufficient for a safe application in the daily routine? Are there additional effects of the standardized surgical scrubbing technique in terms of efficient hand disinfection without disinfection gaps?
3. How good are the skills of the medical students after a single standardized practical training in direct comparison with the reference groups OR personnel and surgeons?

Study design and methods

The pilot study was conducted over a time period of six months at the Medical Faculty of the Technical University Dresden as a prospective, randomized, single blind controlled intervention trial. Approval was obtained by the ethical board of the Technical University Dresden (processing number EK 202082008). As probands, 161 4“ year medical students were recruited via online registration and were randomized electronically in an intervention group (IG) and a control group (CG). For data analysis, the members of both groups were further divided in sub-groups based on their previous practical experience.

As reference groups, 21 examined OR nurses with long-time work experience as well as 16 experienced surgeons from different medical specialist fields were included in the study (see Figure 2).

In all groups, the communicated target value of surgical hand disinfection was the sufficient coverage of all four hand areas for efficient germ reduction (cf. [13]) as well as a threefold disinfection procedure, each with an exposure time of three minutes. The members of all groups were informed that the quality of the hand disinfection procedure was assessed afterwards.

Training course

The student probands and participants of the skills lab training were randomized after informed consent. Subsequently, both the intervention group and the control group were interviewed by means of a questionnaire regarding their previous experience and number of so far performed surgical hand disinfection during OR assistance. Depending on their practical experience, the members of both groups were divided into five sub-groups (0, <10, <50, <100, >100 fold surgical scrubbing and hand disinfection during OR assistance).

The control group disinfected the hands without preceding training with Sterillium® (Bode Chemie Hamburg) mixed...
Standard scrubbing method for hygienic hand disinfection according to EN1500

1. 2. 3. 4. 5. 6.

Figure 1: Surgical hand disinfection according to EN1500 (Bode©). The method is applied for testing disinfectants by means of contact slide inspection and shall guarantee a complete, all-over coverage of the hands.

with the fluorescent dye Visirub? (Bode Chemie Hamburg) in the manufacturer’s recommended ratio. A complete coverage of all hand areas was supposed to be achieved by the disinfection procedure.

The intervention group received a single standardized practical training in the skills lab. Subsequently, verification of the practical competences in surgical hand disinfection occurred. After the course of the study, the control group was also given the standardized practical training.

The practical training (see Figure 3) was conducted in the peer-teaching technique. A student tutor professionally and didactically trained in the topic carried out training sessions in a strictly standardized form several times per day with small groups consisting of four student participants. After in a survey among students and physicians, correct hand disinfection had been regarded as the most relevant training needs of practical competences, a training program was initiated at the Medical Faculty of the Technical University Dresden. Meanwhile, completing
the training program is mandatory for OR admittance at
the University Hospital Dresden. The evaluation results
for the training program are consistently very good (aver-
age grade 1.24 at a scale from 1=very good to 5=fail),
and the participants state a big gain in practical compe-
tence and safety. The overall cost amounted to approxi-
mately EUR 10 per participant.

After evaluation of the raw data, the results of the control
group, intervention group, and the five competence ad-
justed sub-groups were tested for Gaussian distribution.
For statistical analysis, t-test for independent samples
was performed to compare data between different groups.
Definition of the ideal target value of the training success
was realized by gathering disinfection data from clinical
reference groups.

Reference group 1 consisted of experienced OR nurses
who were instructed during the professional training both
by theoretical and practical lessons in the procedure of
hygienic and surgical hand disinfection.

Members of the second reference group (2) were re-
cruited out of the students’ potential future occupation
group in terms of long-staying surgeons from different
medical specialist fields.

The results of the reference groups were also tested for
Gaussian distribution.

Measuring technique

The hand disinfectant Sterillium® (Bode Chemie Hamburg)
was mixed with the fluorescent dye Visirub® (Bode Chemie
Hamburg) in the ratio recommended by the manufacturer.

This blend was used for hand disinfection of all test per-
sons. After the predefined disinfection time of three
minutes, photos of the air-dried palms and backs of the
hands in upright position were taken under an UV lamp
with a standardized camera setting. The four taken pic-
tures per proband (two palms and two backs of a
proband’s hands) were coded for anonymisation and
subsequently analysed by a blinded examiner in a defined
operation. For that purpose, an algorithm using the
graphics software Microsoft Office Picture Manager®,
Origin Lab®, IBM, and SPSS® was specifically developed.

Step 1 of the analysis involved the processing of the five
megapixel-sized pictures with the aim to separate the
hand’s palm and back areas from the forearm by creating
a linear cut at the radial and ulnar angular points. In front
of a neutral background, the resulting areas represented
the percental amount of disinfectable skin in relation to
the overall picture and were expressed as pixel numbers
(see Figure 4).

In step 2 of the analysis, the tonal value for a sufficient
coverage of the hand with the disinfectant was defined.

In every picture, the pixel number of these sufficiently
disinfected skin areas was subtracted from the overall
pixel number of the disinfectable skin area. Thus, the
area remaining after the subtraction process represented
the insufficiently covered skin as percentage of the
overall hand area (see Figure 5). The pixel number of a
tonal value was illustrated by creating a histogram from
the original which had been scaled down to a palette of
256 RGB colours (OriginLab®).
In step 3 of the analysis, the created percental results for the insufficiently covered areas of a proband’s four hand surfaces were statistically evaluated. After the data had been checked for Gaussian distribution, the t-test for independent samples was used as analysing tool for assessing differences of the means. For quantification of the method error, several raw images underwent ten times each the complete analysing process. The resulting data was also tested for Gaussian distribution.

Results

On study enrollment, the proband distribution was as follows (see Figure 6):

Regarding the key issues of the study, the following results were collected:

1. **How can training effects be measured using the example of surgical hand disinfection? How can the quality of surgical hand disinfection and potential disinfection gaps be precisely quantified?**

The verification of the method’s overall mistake led to an inherent standard error of +/-0.27% (standard error of the mean). Thus, a method-specific, relevant impact on the measured results could be excluded. Moreover, the presented method for documenting the quality of hand disinfection by a quantitative fluorescence detection approach using a tailored graphical software algorithm has proven its suitability for addressing the following scientific questions.
2. How well can medical students learn depending on their background knowledge the surgical hand disinfection according to EN1500 in a single standardized practical training? Are these skills sufficient for a safe application in the routine? Does the standardized scrubbing technique achieve additional effects in terms of a sufficient hand disinfection without disinfection gaps? (see Figure 7)
The single standardized practical training enabled students of the intervention group to produce significantly less disinfection gaps during hand disinfection in comparison to the control group. In addition, the statistical spread of the test results was also reduced in the intervention group.

Weighted according to the previous experiences of the student probands, the sub-group analysis clearly demonstrated better study results for all sub-groups of the intervention group compared to those of the control group (see Figure 8). Strikingly, no significant differences between the intervention and control group could be seen in both the sub-groups with no and high previous experience, respectively. In contrast, the results of the sub-groups with low and medium previous experience were highly significant.

3. How good are the skills of the students after a single standardized practical training in direct comparison to the reference groups OR nurses and surgeons?

In comparison to the reference groups, which represented the clinical standard of the learning objective, the student probands of the intervention group performed significantly better after the single standardized practical training (see Figure 9):

Between the clinical reference groups no significant difference could be observed. However, the OR nurses showed marginally better results on average with slightly less statistical spread.

Of note, the student control group likewise demonstrated better results than both clinical reference groups. When compared to the reference group of surgeons, the threshold of significance was just barely missed.

Further findings

The palms displayed a lower percentage of insufficiently disinfected area than the dorsa of the hands in the control group, intervention group, and in the reference groups, respectively (see Figure 10):

Discussion

The quite simple practical skill of surgical hand disinfection aims at a complete and even coverage of the hand and should at most feature isolated and very small disinfection gaps. All participants knew about the verification of the disinfection result so that the motivation for the best possible result was apparent in all groups, references groups included.

However, at every hand surface insufficiently covered – albeit minimal – areas could be detected whose fluorescence intensity did not correspond to the expected level after a triple application of the disinfectant according to the procedure of surgical hand disinfection. Due to our specifically developed technique of digital photography and analysis, even these minimal sections could be reliably measured. In this process, the method error was negligibly small.

The standardized, peer-teaching training of the recommended six step scrubbing technique according to EN1500 is suitable to reduce the insufficiently covered hand area by one third. Moreover, it led to a distinctly narrowed statistical spread in the intervention group. These results are even more astonishing as the scrubbing is only a small element of the 45-minute training of practical skills for adequate behaviour in the OR. Similar results in the quality of student- versus physician-instructed training have already been published (cf. [1], [14]).

Surprisingly, the results of the student control group are level with those of the reference groups of surgeons and registered OR nurses with long-standing professional experience. Furthermore, the disinfection results of the student intervention group are significantly better than
Figure 8: Competence adjusted sub-group analysis by previous experience of 0-, 10-, 10-50-, and > 50-fold surgical scrubbing / hand disinfection during OR assistance prior to study enrollment (SD = Standard Deviation; n.s. = not significant; h.s. = highly significant).

Experience	CG	IG	CG	IG	CG	IG	CG	IG
0	6.6%	6.0%	7.8%	4.7%	8.1%	3.9%	5.6%	5.4%
SD	4.2	2.3	2.5	2.8	4.9	1.7	2.0	1.6
p	<0.05 (n.s.)	<0.01 (h.s.)						

Figure 9: Student control and intervention group in comparison to the clinical reference groups. The dimension and spread of the method error in the course of the analysis algorithm are also depicted (SD = Standard Deviation; n.s. = not significant; h.s. = highly significant).
those of both reference groups. In comparison to the group of surgeons, the OR nurses achieved better results with less statistical spread. This could be explained by the at least semi-standardized practical education of the OR nurses in relation to the academic qualification of the surgeons, especially when considering the effect demonstrated in the intervention group in this study.

All probands had worse outcomes for the dorsa of the hands compared to the palmar areas. However, in relation to all four hand areas the separate analysis of the dorsal and palmar hand areas left the overall statements and their significance level unchanged.

When analysing student results dependent on the competence level of the probands, significant training effects were demonstrated for the sub-groups with low and medium previous experience. In the intervention group, the sub-groups with no and high previous experience, respectively, had only little benefit from the standardized training. Possible explanations could be the low gain in competence by the training in the sub-group with high previous experience (>50 times surgical hand disinfection) and excessive demands by the chosen training level in the sub-group without any previous experience in the OR. Nevertheless, compared to the control group all sub-groups of the intervention group showed better disinfection results as well as a narrowing of the spreading width. Overall, the training showed a measurable effect and reached or even surpassed the competence level of the clinical references. Considering a reasonable cost-benefit ratio of approximately EUR 10 per student, an optimal training situation for the prospective doctors can be assumed. In this study, visualisation of the disinfection results using a UV lamp strongly contributed to a sustainable sensitisation of the students for the importance of a thorough hygienic and surgical disinfection process to avoid nosocomial infections.

The results clearly demonstrate that such a training is also useful for experienced physicians whom in the context of social learning an important role model is assigned to (cf. [15]).

Limitations

As a shortcoming it has to be mentioned that the pilot study was conducted with small group sizes. Reference group I comprised a total of 21 qualified OR nurses, whereas in reference group II only 16 surgeons could be included.

Conclusions

Though conceived only as a 45-minute training including further practical contents, the peer-teaching skills lab training of surgical hand disinfection according to EN1500 can be considered an appropriate method for the standardized teaching of medical students in clinical-practical skills. In comparison to the clinical reference, the participants of the intervention group, after a single training session, surpassed examined healthcare professionals with long-standing experience.

Key statements

1. The presented method of digital allocation of tonal values allows a precise quantification of disinfection gaps during the training of hand disinfection.
2. A single standardized training of surgical hand disinfection according to EN1500 can be so efficient that the results of the clinical reference groups are out-matched.
3. The EN1500 technique is suitable to reduce disinfection gaps in surgical hand disinfection.

Competing interests

The authors declare that they have no competing interests.

Bode Chemie Hamburg provided Visirub® free of charge.
References

1. Nikendei C, Schilling T, Nawroth P, Hensel M, Ho AD, Schwenger V, Zeier M, Herzog W, Schellberg D, Katus HA, Dengler T, Stremmel W, Müller J. Integriertes Skills-Lab-Konzept für die studentische Ausbildung in der inneren Medizin. Dtsch Med Wochenschr. 2005;130:1133-1138. DOI: 10.1055/s-2005-86799

2. Muijsers P. Fertigkeitenunterricht für Pflege- und Gesundheitsberufe: das Skills Lab"-Modell. Berlin, Wiesbaden: Ulstein Mosby; 1997.

3. Segarra L, Schwedler A, Weih M, Hahn E, Schmidt A. Der Einsatz von medizinischen Trainingszentren für dieusbildung zum Arzt in Deutschland, Österreich und der deutschsprachigen Schweiz. GMS Z Med Ausbild. 2008;25(2):Doc80. Zugänglich unter/available from: http://www.gms.de/static/de/journals/zma/2008-25/zma000564.shtml

4. Kruppa E, Jünger J, Nikendei C. Einsatz innovativer Lern- und Prüfungsmethoden an den Medizinischen Fakultäten der Bundesrepublik Deutschland. Eine aktuelle Bestandsaufnahme. Dtsch Med Wochenschr. 2009;134(7):371-372. DOI: 10.1055/s-0028-1124008

5. Lynagh M, Burton R, Sanson-Fisher R. A systematic review of medical skills laboratory training: where to from here? Med Educ. 2007;41(9):879-887. DOI: 10.1111/j.1365-2923.2007.02821.x

6. Lund F, Weyrich P, Werner A, Jünger J, Nikendei C. From Simulation to Bed-Side: Effectivity of Undergraduate Skills Lab Training Compared to Classic Bed-Side-Teaching. Posterpräsentation zur 2nd International Conference "Research in Medical Education", Tübingen: Universität Tübingen, Medizinische Fakultät; 2010.

7. Jansen J, Groß R, van der Veutten C, Scherp bier A, Crebold H, Rethans J. Effect of a short skills training course on performance and effectiveness in general practice. Med Educ. 2000;34(1):66-71. DOI: 10.1046/j.1365-2923.2000.00401.x

8. Sopka S, Simon M, Beckers S. Assessment drives Learning": Konzepte zur Erfolgs- und Qualitätskontrolle. In: St. Pierre M, Breuer G (Hrsg), Simulation in der Medizin. Grundlegende Konzepte – klinische Anwendung. Berlin, Heidelberg: Springer-Verlag; 2013.

9. Lehmann K, Gröne J. Simulation in der Chirurgie. In: St. Pierre M, Breuer G (Hrsg), Simulation in der Medizin. Grundlegende Konzepte – klinische Anwendung. Berlin, Heidelberg: Springer-Verlag; 2013.

10. Oldhafer K, Jurs Ul, Kramer A, Martius J, Weist K, Mielke M. Prävention postoperativer Infektionen im Operationsgebiet, Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2007;50:377–393.

11. Schnabel KP, Boldt PD, Breuer G, Fichtner A, Karsten G, Kujumd shiev S, Michelis M, Stosch C. Konsensusstatement "Praktische Fertigkeiten im Medizinstudium" – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/zma000770

12. European Committee for Standardization. European standard EN 1500. Chemical disinfectants and antiseptics. Hygienic handrub. Test method and requirements. Brussels: European Committee for Standardization; 1997.

13. Kampf G, Reichel M, Feil Y, Eggerstedt S, Kaufers PM. Influence of rub-in technique on required application time and hand coverage in hygienic hand disinfection. BMC Infect Dis. 2008;8:149. DOI: 10.1186/1471-2334-8-149

14. Weyrich P, Celebi N, Schulz A, Möltner A, Lammersding-Köppel M, Nikendei C. Peer-assisted versus faculty staff-led skills laboratory training: a Randomised controlled trial. Med Educ. 2009;43(2):113-120. DOI: 10.1111/j.1365-2923.2008.03252.x

15. Haessler S, Bhagavan A, Kleppel R, Hinckey K, Visintainer P. Getting doctors to clean their hands: Lead the followers. BMJ Qual Safe. 2012;21(6):499-502. DOI: 0.1136/bmjqs-2011-00396

Corresponding author:
OA Dr. Andreas Fichtner
Universitätsklinikum Halle, Klinik für Anästhesiologie und Operative Intensivmedizin, Leiter Erxleben Lernzentrum, 06120 Halle (Saale), Deutschland, Tel.: +49 (0)345/557-4087/-4020, Fax: +49 (0)345/557-4128 andreas@drfichtner.info

Please cite as
Fichtner A, Haupt E, Karwath T, Wullenk K, Pöhlmann C, Jatzwauk L. Einmaliges studentisches standardisiertes Training der chirurgischen Händedesinfektion nach EN1500: Quantifizierung des Trainingseffektes, Nutzen der Methode und Vergleich mit klinischen Referenzgruppen. GMS Z Med Ausbild. 2013;30(2):Doc24. DOI: 10.3205/zma000867, URN: urn:nbn:de:0183-zma0008676

This article is freely available from http://www.gms.de/en/journals/zma/2013-30/zma000867.shtml

Received: 2012-05-21
Revised: 2013-02-03
Accepted: 2013-02-08
Published: 2013-05-15

Copyright ©2013 Fichtner et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.