Two-Way Chemical Communication between Artificial and Natural Cells

Roberta Lentini, †,‡ Noël Yeh Martín, †,‡ Michele Forlin, † Luca Belmonte, ‡ Jason Fontana, † Michele Cornella, † Laura Martini, † Sabrina Tamburini, † William E. Bentley, § Olivier Jousson, † and Sheref S. Mansy*, †

†CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy

§Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States

‡R.L. and N.Y.M. contributed equally to this work.

*Corresponding Author; E-mail: mansy@science.unitn.it.
MATERIAL AND METHODS

Bacterial strains and media. Strains used in this study are listed in Table S4. *E. coli* and *P. aeruginosa* were grown in LB. *V. fischeri* was grown in LBS (10 g/L tryptone, 5 g/L yeast extract, 20 g/L NaCl, 50mM Tris-HCl, 0.3% glycerol) for experiments and either LBS or photobacterium broth (0.3 g/L NH₄Cl, 1 g/L CaCO₃, 5 g/L casein enzymatic hydrolysate, 0.01 g/L FeCl₃, 0.3 g/L MgSO₄•7H₂O, 3 g/L KH₂PO₄, 30 g/L NaCl, 23.5 g/L sodium glycerophosphate, 2.5 g/L yeast extract) to make glycerol cell stocks. *V. harveyi* was grown in marine broth supplemented with 2% casamino acids when glycerol cell stocks were made or in Autoinducer Bioassay (AB) media (17.5 g/L NaCl, 12.3 g/L MgSO₄•7H₂O, 2 g/L casamino acids, 10 mM potassium phosphate pH 7, 1 mM L-ariginine, 1% (v/v) glycerol) for the chemical communication experiments. When necessary, media were supplemented with antibiotic (100 µg/mL ampicillin, 50 µg/mL kanamycin, or 34 µg/mL chloramphenicol).

Genetic constructs. *lsrR, lsrK,* and the intergenic operon region of *lsr* were amplified from the genome of *E. coli* MG1655 by PCR. The gene coding for *Staphylococcus aureus* α-hemolysin (αHL) was synthesized by Genscript. T3 RNA polymerase (BBa_K346000), AiiA (BBa_C0160) and the following devices BBa_K575024, BBa_K575037, and BBa_T9002 were taken from the registry of standard biological parts. The gene encoding firefly luciferase was amplified from pBESTluc (Promega). Sequence information for the exploited constructs can be found in Table S5.

In vitro transcription-translation. The constructs encoding parts of the *E. coli* AI-2 quorum pathway were expressed with the PURE system (New England BioLabs). Each reaction contained
10 µL solution A, 7.5 µL solution B, 20 U RNase inhibitor, and 250 ng DNA, unless specifically stated otherwise. When needed, between 0 µM and 250 µM AI-2 or 0.5 mM of S-adenosyl-L-homocysteine (SAH) was added to the solution. The constructs designed to express parts of the quorum pathways of *P. aeruginosa* and *V. fischeri* used either a cell-free *E. coli* S30 extract for circular DNA (Promega) (20 µL premix, 15 µL S30 extract, 5 µL amino acids mix, 40 U of RNase inhibitor, and 2 µg of DNA) or the *E. coli* S30 T7 High Yield Protein Expression System (Promega) (20 µL S30 premix, 18 µL T7 S30 extract, 40 U of RNase inhibitor, and 1 µg of DNA). When needed, 10 µM of 3OC12 HSL, C8 HSL, 3OC6 HSL, or C4 HSL (Sigma Aldrich or Cayman Chemical) were added to induce expression, or 300 µM of acetyl coenzyme A and 0.5 mM of S-adenosyl-L-methionine (SAM) were added for the synthesis of *N*-Acyl homoserine lactones. Reactions were incubated at 37 °C for 4 h to 6 h. In vitro reactions assembled for the sensing of 3OC12 HSL were shaken (50 s orbital shaking, 1 mm orbital amplitude prior to fluorescence acquisition every min) in 384 microwell plates (781076 Greiner Bio One) during incubation in an Infinite m200 plate reader (Tecan). Negative controls were the same reactions in the absence of quorum molecules. Fluorescence was either measured with a Photon Technology International (PTI) QuantaMaster 40 UV–vis spectrofluorometer or a CFX96 Touch Real-Time PCR Detection System (Bio-Rad).

Enzymatic production of AI-2. AI-2 was enzymatically produced *in vitro* with 12 µM of the purified fusion protein HLPT\(^1\) and 5 mM of S-adenosyl-L-homocysteine. Reactions were incubated overnight at 37 °C, 220 RPM. The protein was then removed by two chloroform extractions. The aqueous phase contained AI-2. Since the enzymatic reaction produces in a 1:1 ratio AI-2 and homocysteine, AI-2 was indirectly quantified using 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB).
The solution for quantification contained 10 µL of sample, 100 µL of Tris-HCl, pH 8, 50 µL of 2 mM DTNB, 50 µM sodium acetate, and 840 µL of water. After 5 min of incubation at room temperature, the absorbance at 412 nm was measured and the concentration of homocysteine was calculated by using the molar extinction coefficient (13,600 M⁻¹ cm⁻¹) of the reaction product 5-thio-2-nitrobenzoic acid (TNB).

Vesicle stability. To test whether bacteria could break phospholipid vesicles, a dye leakage assay was performed. Dehydrated aliquots of 1:2 POPC:cholesterol vesicles were hydrated with 60 µL S30 *E. coli* extract for circular DNA template (Promega) supplemented with 4 µg of DNA (RL081A), 1 mM S-adenosyl methionine, 700 µM acetyl coenzyme A, and 80 mM calcein (Sigma). The vesicles were then extruded through a polycarbonate membrane with 1 µm pores (Whatman) with an Avanti mini-extruder and purified with a sepharose 4B (Sigma-Aldrich) column. Fluorescence was monitored with excitation and emission at 495 nm and 515 nm, respectively. Subsequently, 0.3% (v/v) Triton X-100 was added as a control to break the vesicles.

The effect of cholesterol on chemical communication. Dehydrated aliquots of POPC vesicles with either 0 mol%, 10 mol%, or 66 mol% cholesterol were hydrated with 50 µL S30 *E. coli* extract for circular DNA template (Promega) supplemented with 4 µg of DNA (NY013A), 1 mM S-adenosyl-L-methionine, and 700 µM acetyl coenzyme A. The experiments were run as described below in the cellular Turing test section.
Artificial cells that sense 3OC6 and C8 HSL. Aliquots of 1:2 POPC:cholesterol vesicles were formed as previously described. 100 µL aliquots were rehydrated with 50 µL of S30 *E. coli* extract containing 20 µL S30 premix, 15 µL S30 extract, 5 µL amino acids mixture, 40 U of RNase inhibitor, and 4 µg of DNA (RL082A, RL093A or RL094A, see Table S5 for sequences). Vesicles were diluted 1:1 with LB supplemented with 0.7 mg/mL proteinase K, 0.07 mg/mL RNase A, and 170 U/mL RNase T1 (Thermo Fisher Scientific) to remove any residual activity in the extravesicular solution. Reactions were incubated at 30 °C for 4 h. For sensing of externally added 3OC6 HSL, 1 µM of synthetic 3OC6 HSL or C8 HSL (Cayman Chemical) was added to the artificial cells. For the sensing of *V. fischeri*, bacteria were first grown from 200 µL of a glycerol stock at 30 °C in LBS until OD\text{600 nm} = 1.8. The bacteria were then pelleted, and the supernatant filtered through a 0.2 µm membrane (Sartorius). The supernatant (100 µL) was then mixed with 50 µL of artificial cells. LBS was used as a negative control in place of the *V. fischeri* supernatant. Samples were incubated at 30 °C for 4 h, then the artificial cells were collected and loaded into 96 well plates. 0.3% (v/v) Triton X-100 was added to break the vesicles, and 150 µL of the luciferase assay reagent (Promega) was added to the samples. Luminescence was recorded immediately with a plate reader (Tecan).

Artificial sender cells. Dehydrated aliquots of 1:2 POPC:cholesterol vesicles were hydrated with 50 µL of S30 T7 High-Yield Protein Expression System supplemented with 2 µg of DNA encoding the corresponding synthase behind a T7 promoter (constructs MC001A, MC002A, MC003A, NY018A, NY019A and JF005A, Table S5). For the production of acyl homoserine lactones, 1 mM S-adenosyl-L-methionine and 700 µM acetyl coenzyme A were added. The
production of AI-2 required 1 mM S-adenosyl-L-homocysteine. For the experiment corresponding to Figure 2A, artificial cells were diluted 1:3 in buffer A (50 mM HEPES, 10 mM MgCl₂, 100 mM KCl, pH 7.6) plus 0.7 mg/mL proteinase K. Reactions were incubated at 37 °C for 6 h. In the meantime, the corresponding E. coli reporter strain was grown from one colony in LB supplemented with antibiotic until OD₆₀₀ nm = 0.5. Bacteria were pelleted, resuspended in fresh LB, and added to artificial cells to a final OD₆₀₀ nm = 0.1. Samples were incubated at 37 °C. Aliquots were removed every hour, diluted in PBS, and monitored by flow cytometry with a FACS canto A (BD biosciences). Positive controls contained 0.1 µM of the corresponding quorum molecule. LB was added in place of quorum molecules for the negative control. Parameters for each flow cytometry experiment were: Forward scatter (FSC) signal (Ex.: 488 nm, Type: Area, Voltage: 525); Side scatter (SSC) signal (Ex.: 488 nm, Em.: 488 +/- 10 nm, Type: Area, Width, Voltage: 403)’ Green channel (FITC) signal (Ex.: 488 nm, Em.: 530 +/- 30 nm, Type: Area, Voltage: 600); Threshold parameters (FCS: 200, SSC: 200, Threshold operator: And). For the experiment corresponding to Figure 2B, artificial sender cells were diluted 1:1 with V. fischeri MJ11 at OD₆₀₀=0.2-0.3 and 0.7 mg/mL Proteinase K, 0.07 mg/mL RNase A, and 170 U/mL RNase T1 (Thermo Fisher Scientific) were also added to avoid any residual activity of the S30 reactions outside the artificial cells. Samples were incubated at 30 °C in 96-well plates (Thermo Fischer Scientific, 216305) without shaking. Every hour luminescence was measured with an Infinite M200 plate reader (Tecan). After 3 h of incubation, 5 µL of each sample were serially diluted and 10 µL of the 10⁻⁵ fold dilution were plated on LBS agar following the “track dilution” method to enumerate the colony forming units (CFU) with one plating per sample per experiment. Pictures from luminescent bacteria colonies were captured in a dark room with an Olympus OM-D EM5 camera and a M-Zuiko ED
12-50 mm 1:3.5-6.3 EZ lens using an exposure of 40 s at F 5 and an ISO of 200. Negative control were liposomes encapsulating the S30 extract without DNA. For the experiment corresponding to Figure 2C, AI-2 was detected with V. harveyi BB170, a strain that can naturally sense AI-2 but has been engineered to not sense its own autoinducer N-(3-oxobutanoyl)homoserine lactone. The assay was performed as described by Vilchez et al. Briefly, V. harveyi was grown overnight from a 200 µL glycerol stock in AB medium supplemented with 50 µg/mL kanamycin at 30 °C, 220 RPM. The day after, bacteria were diluted to OD600 nm = 0.7 and grown for 1.5 h (to OD600 nm = 1.1) in AB medium. The culture was then diluted 1:5000 and 90 µL were loaded into a white 96-well plate (Nunc). 10 µL of sample was added to each well. AB medium was used as a blank, and 100 µM of enzymatically produced AI-2 was used as a positive control. AI-2 activity was calculated by dividing the sample value by the blank. Plates were incubated at 30 °C and luminescence was monitored with Infinite M200 plate reader plate reader (Tecan) after 3 h.

Artificial cells that mediate communication with two different cell types. E. coli reporter strains were grown to OD600 nm = 0.5 from one colony in LB supplemented with antibiotic. Bacteria were pelleted and resuspended in fresh LB. Dehydrated aliquots of 1:2 POPC cholesterol vesicles were hydrated with 50 µL E. coli S30 extract for circular DNA supplemented with 4 µg of DNA encoding a 3OC6 HSL sensing device and the corresponding synthase (NY016A, RL079A, or RL080A, Table S5). 1 mM of S-adenosyl-L-methionine and 700 µM of acetyl coenzyme A were added for the synthesis of acyl homoserine lactones and 1 mM of SAH for the production of AI-2. When commercial 3OC6 HSL was used, 1 µM of 3OC6 HSL was added to 50 µL of artificial cells mixed with 50 µL of the corresponding E. coli reporter strain at a final OD600 nm = 0.1. 0.7 mg/ mL
of proteinase K were added, and the samples were incubated at 37 °C. Aliquots were collected after every hour, diluted in PBS, and monitored by flow cytometry. When the presence of _V. fischeri_ 7744 was sensed, bacteria were grown at 28 °C in LBS supplemented with ampicillin until OD$_{600}$ = 1.2. Cells were harvested and the supernatant mixed with 50 µL of artificial cells and 50 µL of the _E. coli_ reporter strain. Samples were incubated at 37 °C. Aliquots were collected each hour, diluted in PBS, and monitored by flow cytometry. Positive controls contained 0.1 mM of 3OC12 HSL. Negative controls were in the absence of supplemental quorum molecules or _V. fischeri_ supernatant. Unspecific fluorescence was determined by adding the supernatant of _V. fischeri_ to the _E. coli_ reporter strain. Samples collected at 6 h were analyzed with BD FACSDiva software. For AI-2 synthesis, samples were mixed with _V. harveyi_ BB170, following the protocol described above for the _V. harveyi_ bioluminescence assay.

Quorum quenching. Dehydrated aliquots of 1:2 POPC:cholesterol vesicles were hydrated with 50 µL of S30 _E. coli_ extract supplemented with 4 µg of DNA encoding AiiA behind a tet promoter or a 3OC6-C8 HSL responsive-AiiA production device. 1 U of DNaseI (Thermo Fisher Scientific), 0.07 mg/mL RNaseA, and 170 U/mL of RNase T1 (Thermo Fisher Scientific) were added to the extravesicular solution to remove any residual activity of the S30 _E. coli_ extract outside of the artificial cells. When necessary, 1 µM of 3OC6 HSL and 1 µM of C8 HSL or an aliquot of a _V. fischeri_ culture at OD$_{600 \text{ nm}}$ = 0.2 were added to the outside of the vesicles. Reactions were incubated at 37 °C for 4 h. _P. aeruginosa_ was grown from 200 µL of a glycerol stock in LB until OD$_{600 \text{ nm}}$ = 0.3 and added to artificial cells in a 1:1 ratio. After 2 h of incubation at 37 °C at 220 RPM, cells were harvested and the supernatants mixed 1:20 with the 3OC12 HSL _E. coli_ sensor strain. Samples
were incubated at 37 °C. 2 μL were collected every hour, diluted 1:100 in PBS, and monitored by flow cytometry. Controls were performed by adding to the reporter strain a culture of *P. aeruginosa* grown in LB and with *V. fischeri* supernatant to monitor unspecific interaction. The positive control was the addition of 0.1 μM 3OC12 HSL to the *E. coli* reporter strain. Negative controls included samples without added quorum molecules. Samples were collected at 2 h and analyzed with BD FACSDiva software. The population distribution was analyzed and plotted with FlowJo software.

Cellular Turing test. Dehydrated aliquots of 1:2 POPC:cholesterol vesicles³ were hydrated with 50 μL S30 *E. coli* extract for circular DNA template (Promega) supplemented with 4 μg of DNA, 1 mM S-adenosyl-L-methionine, and 700 μM acetyl coenzyme A. 200 μL glycerol stock of exponential phase *V. fischeri* MJ11 were grown in 5 mL of LBS (30 °C, 145 rpm) until OD⁶⁰₀nm = 0.2-0.3. Cells were undiluted or mixed in a 1:1 ratio with either functional artificial cells encapsulating DNA plasmids (RL078A, NY009A, NY013A, or NY014A) coding for the different versions of *luxR* and the *luxI* or nonfunctional artificial cells containing DNA plasmid (RL081A) coding for *luxR* and T7 RNA polymerase. Extravesicle solutions contained 0.7 mg/mL Proteinase K, 0.07 mg/mL RNase A, and 170 U/mL RNase T1 (Thermo Fisher Scientific) to avoid any residual activity of the S30 *E. coli* extract outside of the artificial cells. Samples were incubated at 30 °C in 96-well plates (Thermo Fischer Scientific, 216305) without shaking. Every hour luminescence was measured with an Infinite M200 plate reader (Tecan). After 3 h of incubation, 5 μL of each sample were serially diluted and 10 μL of the 10^{-5} fold dilution were plated on LBS agar following the “track dilution” method to enumerate the colony forming units (CFU)⁶ with one plating per
sample per experiment. Pictures from luminescent bacteria colonies were captured in a dark room with an Olympus OM-D EM5 camera and a M-Zuiko ED 12-50 mm 1:3.5-6.3 EZ lens using an exposure of 40 s at F 5 and an ISO of 200. Noise reduction and an exposure setting of +1.0 EV were applied on the JPEG image files in Adobe Photoshop lightroom CC 2016 prior the cell counting. A crop of one of the resulting images is shown in (Figure S10). Single colonies were then counted manually. Subsequently, the rest of the samples were collected for RNA extraction. Total RNA was isolated with the GeneJET RNA Purification Kit (Thermo Fischer Scientific), and 500 ng of RNA was retro transcribed using the RevertAid Reverse Transcriptase kit (Thermo Fischer Scientific). 5 ng of cDNA was mixed with the iQ SYBR Green supermix (Bio-Rad) and supplemented with the appropriate primers. 10 µL reactions were loaded in 96-well plates (HSP9655 Bio-Rad), and the cDNA was quantified with a CFX96 Touch real-time PCR (Bio-Rad) with SYBR green detection. The real-time PCR run protocol was one initial cycle of denaturation at 95 °C for 3 min followed by 40 cycles of denaturation (95 °C, 10 s) and annealing + extension (60 °C, 30 s) followed by one melt curve cycle (55-95 °C with 0.5 °C, 40 s). The primers to quantify the gene expression of luxA and luxB were luxA FW: 5'-cagagtgttctttcacgggaaat-3' (150 nM), luxA REV: 5'-gggtgctgtcggaataac-3' (150 nM), luxB FW: 5'-attaccacccatccctgt-3' (250 nM), luxB REV: 5'-gtcactaaacaagaatgaagcg-3' (250 nM). Gene expression was normalized to the expression of the malate dehydrogenase (mdh) housekeeping gene that was amplified with the following primers mdh FW: 5'-cactctgtgttatcttaacctct-3' and mdh REV: 5'-acttctgttccgcattttgg-3' (300 nM). Primers were designed with Primer3 software.
For RNA-seq analysis, total RNA was treated with DNase (RapidOut DNA Removal kit, Thermoscientific) prior to RNA quantification with a spectrofluorometric detection method using the Quantum-iT RiboGreen RNA assay kit (Life-Technologies). Library preparation and sequencing were performed at Edinburgh Genomics (Ashworth laboratories, University of Edinburgh). Briefly, libraries were prepared using the TruSeq stranded total RNA-seq kit (Illumina) and the depletion of ribosomal RNAs was accomplished with the RiboZero rRNA removal kit for Gram negative bacteria (Illumina). Libraries were then sequenced on one lane of an Illumina HiSeq2500 in high output mode with v4 chemistry to a length of 125 base paired end. The quality of the raw sequence data was assessed with FastQC7. The average number of reads were 10,397,486, 11,006,173, and 11,077,471 for samples containing functional artificial cells, nonfunctional artificial cells, and no artificial cells, respectively. Reads in FASTQ format were mapped to the \textit{V. fischeri} MJ11 genome reference sequence using bowtie8. Transcripts were assembled with cufflink and cuffmerge and the quantification of isoforms was with cuffdiff9–11. The sample size for the RNA-seq experiments was chosen based on the average number of reads per sample (10M), read length (200bp), preliminary results, and prior reports12 showing an effect size of at least two for \textit{lux} operon gene expression from activation by quorum sensing. Therefore, to ensure a statistical power of at least 0.8 at a significance level of 0.05 for a standard two-tailed t-test, the sample size was set to six. Differences in the mean between groups were assessed using an unpaired two-tailed standard t-test. Standard deviations are shown in the bar plots as a measure of variability. RNA-seq differentially expressed genes are determined by cufflinks/cuffdiff after \textit{p} value adjustment for multiple comparisons using FDR (False Discovery Rate). The functional and
clusterization analysis for the three sets of differently expressed coding sequences was with DAVID13. The Benjamini test threshold was set to 10^{-2}.
Figure S1. In vitro sensing of quorum molecules. (a) A schematic illustration of the genetic constructs for the sensing of 3OC6 HSL, 3OC6 HSL and C8 HSL, and C8 HSL is illustrated. (b) LuxR controlled in vitro expression of GFP was monitored by fluorescence spectroscopy for the genetic
constructs shown in panel a (n=3 biological replicates, mean ± s.d.). (c) DNA encoding \textit{lasR} for the sensing of 3OC12 HSL controlled the expression of GFP (n=3 biological replicates, mean ± s.d.). (d) The C4 HSL responsive, \textit{rhlI} encoding construct was expressed \textit{in vitro} (n=2 technical replicates). (e) The genetic circuit for sensing AI-2 was expressed with the PURE system (n=2 technical replicates). (f) CRP was added to the AI-2 sensing genetic circuit (n=2 technical replicates). RFU (Relative Fluorescence Units).

\textbf{Figure S2. Artificial cells sense quorum molecules.} Artificial cells carrying genetic constructs for the sensing of quorum molecules (a) were incubated with the corresponding HSL and monitored by luminescence (b) (n=3 technical replicates, mean ± s.d.). RLU/CFU (Relative luminescence Units/ Colony Forming Units per milliliter).
Figure S3. *In vitro* production of quorum sensing molecules. (a) Genetic constructs for the synthesis of 3OC12 HSL, 3OC6 HSL, and C4 HSL were expressed *in vitro*. After 6 h, samples were incubated with *E. coli* sensor strains and quantified by flow cytometry (*n*=3 technical replicates, mean ± s.d.). (b) Genetic constructs expressing the AI-2 synthesizing, HLPT fusion protein were expressed *in vitro*. After 6 h, samples were incubated with *V. harveyi* BB170 and the luminescence (referred to as AI-2 activity) was measured. Samples were normalized against reactions without a DNA template (*n*=3 technical replicates, mean ± s.d.).
Figure S4. Artificial cell leakage assay. (a) Artificial cells supplemented with the self-quenching fluorophore calcein were incubated with different bacteria and monitored by fluorescence spectroscopy for 6 h. (b) E. coli, V. fischeri, and V. harveyi did not degrade the artificial cells under the same test conditions used for the chemical communication experiments, whereas the presence of P. aeruginosa compromised the integrity of the membrane. * indicates the addition of 0.3% (v/v) Triton X-100. RFU (Relative Fluorescence Units).
Figure S5. Artificial cells failed to produce AI-2 in response to quorum sensing molecules. (a) Artificial cells carrying a genetic construct to produce AI-2 in response to 3OC6 HSL and C8 HSL were incubated at 30 °C for 6 h. (b) Artificial cells were then mixed with V. harveyi BB170 and luminescence was monitored after 3 h (n=3 technical replicates, mean ± s.d.).
Figure S6. Artificial cells quench *P. aeruginosa* quorum sensing. (a) *In vitro* expressed AiiA was sufficient to degrade the 3OC12 HSL released by *P. aeruginosa*. 3OC12 HSL levels were assessed by flow cytometry of an *E. coli* reporter strain (n=3 technical replicates, mean ± s.d.). (b) Artificial cells carrying the same construct in panel a were capable of degrading *P. aeruginosa* secreted 3OC12 HSL (n=3 biological replicates, mean ± s.d.).
Figure S7. Screening of genetic constructs for the cellular Turing test. (a) A schematic illustration of the four genetic constructs tested for their ability to sense and produce 3OC6 HSL. (b) Luminescence data were acquired after 3 h of incubation of artificial cells with V. fischeri (n=1). (c) The number of viable cells per sample was determined by measuring the colony forming units (n=1). RLU/CFU (Relative Luminescence Units/Colony Forming Units per milliliter), CFU/mL (Colony Forming Units per milliliter).
Figure S8. Influence of cholesterol on chemical communication. Artificial cells with different membrane compositions (POPC, 10:1 POPC:cholesterol, 1:2 POPC:cholesterol) containing DNA encoding LuxR* and LuxI* (NY013A) was incubated with _V. fischeri_. (a) The luminescent response per single cell of _V. fischeri_ after 3 h showed a clear dependence on the concentration of cholesterol. (b) The number of viable _V. fischeri_ cells per sample was determined by measuring the colony forming units. The negative control was an unencapsulated S30 reaction containing the same DNA and necessary components for transcription-translation. RLU/CFU (Relative Luminescence Units/Colony Forming Units per milliliter), CFU/mL (Colony Forming Units per milliliter).
Figure S9. RNA sequencing data. (a) The correlation of *V. fischeri* gene expression in response to nonfunctional and functional artificial cells was highly correlated, $r=0.99$. Blue dots depict the genes falling off the correlation trend, including six out of the seven genes of the *lux* operon. (b) Distribution of the difference in FPKM per coding sequence between *V. fischeri*–*V. fischeri* with *V. fischeri*–functional artificial cells (green) and *V. fischeri*–*V. fischeri* with *V. fischeri*–nonfunctional artificial cells (black). FPKM (fragments per kilobase of transcript per million mapped reads), CDS (Coding DNA Sequences).
Figure S10. Determining the viable *V. fischeri* count for the cellular Turing test experiments. (a) A schematic illustration of the samples used for CFU enumeration. The number of cells was determined by track dilution with one plating per sample per experiment. (b) A representative picture of a plated sample of bacterial colonies used to calculate CFU. (c) No significant differences in number of viable cells were observed among the samples. (*n*=6 biological replicates, mean ± s.d.). CFU/mL (Colony Forming Units per milliliter).
SUPPORTING TABLES

Table S1. Enrichment analysis of the 81 differently expressed coding sequences that were commonly found for *V. fischeri* + functional artificial cells and *V. fischeri* + nonfunctional artificial cells with respect to *V. fischeri* + *V. fischeri*. Highlighted in grey are the significantly enriched ten gene sets with $FDR < 10^{-2}$.
Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
GOTERM_BP_FAT	GO:00065 25-arginine metabolic process	8	10	3.3E-09	5096830, 5094984, 5098318, 5095180, 5093155, 5097146, 5095530, 5098218	46	17	2757	28.2	4.92E-07	4.92E-07	3.91E-06	
GOTERM_BP_FAT	GO:000001 03-sulfate assimilation	6	7.5	4.99E-08	5096365, 5094445, 5099740, 5100074, 5099138, 5096397	46	8	2757	44.95	7.48E-06	3.74E-06	5.96E-05	
KEGG_PATHWAY	vfm00920 :Sulfur metabolism	7	8.75	3.251E-07	5096365, 5094445, 5096432, 5099740, 5099138, 5096397	40	14	1634	20.43	1.69E-05	1.69E-05	3.16E-04	
SP_PIR_KEY_WORDS	amino acid biosynthesis	9	11.2	7.588E-07	5099805, 5096830, 5098318, 5097146, 5096342, 5099740, 5099138, 5096397	80	68	7033	11.64	4.25E-05	4.25E-05	7.49E-04	
KEGG_PATHWAY	vfm00330 :Arginine and proline metabolism	9	11.2	9.292E-07	5096830, 5094984, 5098318, 5095180, 5093155, 5097146, 5095530, 5098218	40	36	1634	10.21	4.83E-05	2.42E-05	9.03E-04	
SP_PIR_KEY_WORDS	arginine biosynthesis	5	6.25	1.781E-06	5096830, 5098318, 5097146, 5095530, 5098218	80	9	7033	48.84	9.97E-05	4.99E-05	1.76E-03	
KEGG_PATHWAY	vfm00330 :Arginine and proline metabolism	9	11.2	1.794E-06	5096830, 5094984, 5098318, 5095180, 5093155, 5097146, 5095530, 5098218	40	39	1634	9.43	9.33E-05	3.11E-05	1.74E-03	
GOTERM_BP_FAT	GO:00090 64-glutamine family amino acid metabolic process	8	10	3.955E-06	5096830, 5094984, 5098318, 5095180, 5093155, 5097146, 5095530, 5098218	46	43	2757	11.15	5.93E-04	1.98E-04	4.72E-03	
GOTERM_BP_FAT	GO:00065	5	6.25	4.139E-06	5096830, 5094984, 5098318, 5095180, 5093155, 5097146, 5095530, 5098218	46	8	2757	37.46	6.21E-04	1.55E-04	4.94E-03	
Category	Term	Count	%	PValue	Genes	List	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
--------------	---	-------	-------	---------	-------	------	----------	-----------	-----------------	------------	------------	--------	
_FAT	26-arginine biosynthetic process				5098318, 5097146, 5095530, 5098218	46	57	2757	8.41	4.09E-03	8.20E-04	3.26E-02	
GOTERM_BP	GO:000067 90-sulfur metabolic process	8	10	2.73E-05	5099805, 5096365, 5094445, 5096432, 5099740, 5100074, 5099138, 5096397	46	110	2757	5.45	7.33E-03	1.22E-03	5.85E-02	
GOTERM_BP	GO:000866 52-cellular amino acid biosynthetic process	10	12.5	4.90E-05	5099805, 5096830, 5098318, 5094445, 5097146, 5096432, 5095530, 5098218, 5099138, 5096397	46	113	2757	5.3	9.07E-03	1.30E-03	7.25E-02	
GOTERM_BP	GO:00093 09-amine biosynthetic process	10	12.5	6.08E-05	5099805, 5096830, 5098318, 5094445, 5097146, 5096432, 5095530, 5098218, 5099138, 5096397	46	113	2757	5.3	9.07E-03	1.30E-03	7.25E-02	
SP_PIR_KEY	oxidoreductase	13	16.2	1.11E-04	5099805, 5094200, 5100277, 5095180, 5094467, 5099138, 5097770, 5096140, 5098116, 5094445, 5095530, 5096397, 5093448	40	299	7033	3.82	6.18E-03	2.07E-03	1.09E-01	
KEGG_PATH	vfm00020 Citrate cycle (TCA cycle)	6	7.5	1.17E-04	5094200, 5093157, 5100277, 5097920, 5096543, 5096140	40	22	1634	11.14	6.05E-03	1.52E-03	1.13E-01	
GOTERM_BP	GO:00090 84-glutamine family amino acid biosynthetic process	5	6.25	1.26E-04	5096830, 5098318, 5097146, 5095530, 5098218	46	17	2757	17.63	1.88E-02	2.37E-03	1.51E-01	
GOTERM_BP	GO:00193 44-cysteine biosynthetic process	4	5	2.15E-04	5094445, 5096432, 5099138, 5096397	46	8	2757	29.97	3.17E-02	3.58E-03	2.56E-01	
Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
------------------	---------------------------	-------	------	----------	--------------------------------	------------	----------	-----------	-----------------	------------	------------	--------------	
KEGG_PATH	vfm00920: Sulfur metabolism	5	6.25	2.34E-04	5094445, 5096432, 5099740, 5100074, 5096397	40	14	1634	14.59	1.21E-02	2.43E-03	2.27E-01	
GOTERM_BP_FAT	GO:000000: 97--sulfur amino acid biosynthetic process	5	6.25	3.03E-04	5099805, 5094445, 5096432, 5099138, 5096397	46	21	2757	14.27	4.44E-02	4.53E-03	3.61E-01	
GOTERM_BP_FAT	GO:00463: 94--carboxylic acid biosynthetic process	10	12.5	3.58E-04	5099805, 5096830, 5098318, 5094445, 5097146, 5096432, 5095530, 5098218, 5099138, 5096397	46	142	2757	4.22	5.22E-02	4.87E-03	4.26E-01	
GOTERM_BP_FAT	GO:00160: 53--organic acid biosynthetic process	10	12.5	3.77E-04	5099805, 5096830, 5098318, 5094445, 5097146, 5096432, 5095530, 5098218, 5099138, 5096397	46	143	2757	4.19	5.50E-02	4.70E-03	4.49E-01	
GOTERM_BP_FAT	GO:000000: 96--sulfur amino acid metabolic process	5	6.25	4.38E-04	5099805, 5094445, 5096432, 5099138, 5096397	46	23	2757	13.03	6.35E-02	5.04E-03	5.21E-01	
GOTERM_BP_FAT	GO:00065: 34--cysteine metabolic process	4	5	4.50E-04	5094445, 5096432, 5099138, 5096397	46	10	2757	23.97	6.53E-02	4.81E-03	5.36E-01	
GOTERM_BP_FAT	GO:00090: 70--serine family amino acid biosynthetic process	4	5	8.07E-04	5094445, 5096432, 5099138, 5096397	46	12	2757	19.98	1.14E-01	8.04E-03	9.59E-01	
KEGG_PATH	vfm00650: Butanoate metabolism	5	6.25	8.31E-04	5099833, 5094200, 5100277, 5097920, 5096543	40	19	1634	10.75	4.23E-02	7.18E-03	8.05E-01	
KEGG_PATH	vfm00620: Pyruvate metabolism	6	7.5	1.31E-03	5099833, 5093157, 5100277, 5098542, 5093596, 5096140	40	36	1634	6.81	6.57E-02	9.66E-03	1.26E+00	
SP_PIR_KEY_WORDS	Cysteine biosynthesis	3	3.75	1.82E-03	5096432, 5099138, 5096397	80	6	7033	43.96	9.67E-02	2.51E-02	1.78E+00	
GOTERM_BP	GO:00551:	14	17.5	2.07E-03	5099805, 5099138, 5096397	46	338	2757	2.48	2.67E-01	1.92E-02	2.45E+00	
Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
------------	---	-------	-------	----------	--	------------	----------	-----------	------------------	------------	------------	----------	
_FAT	14-oxidation reduction				5094200, 5100277, 5095180, 5094467, 5099138, 5097770, 5094788, 5098116, 5094445, 5094744, 5095530, 5096397, 5093448	5096365, 5096432, 5099740, 5100074	40	12	1634	13.62	1.17E-01	1.54E-02	2.29E+00
KEGG_PATH	vfm00450 :Selenoamino acid metabolism	4	5	2.38E-03	5096636, 5096432, 5099740, 5100074	5099635, 5100277, 5098542, 5093596, 5096140	46	21	2757	11.42	4.84E-01	3.82E-02	5.13E+00
GOTERM_BP	GO:00090 69-serine family amino acid metabolic process	4	5	4.40E-03	5094445, 5096432, 5099138, 5096397	5093157, 5100277, 5098542, 5093596, 5096140	40	30	1634	6.81	2.24E-01	2.78E-02	4.62E+00
KEGG_PATH	vfm00010 :Glycolysis / Glucose metabolism	5	6.25	4.86E-03	5093157, 5100277, 5098542, 5093596, 5096140	5099635, 5100277, 5098542, 5093596, 5096140	40	30	1634	6.81	2.24E-01	2.78E-02	4.62E+00
KEGG_PATH	vfm00230 :Purine metabolism	7	8.75	6.97E-03	5093686, 5096365, 5099740, 5098542, 5093596, 5096140	5099635, 5100277, 5098542, 5093596, 5096140	40	74	1634	3.86	3.05E-01	3.57E-02	6.57E+00
GOTERM_BP	GO:00442 72-sulfur compound biosynthetic process	5	6.25	7.14E-03	5099805, 5094445, 5096432, 5099138, 5096397	5093157, 5100277, 5098542, 5093596, 5096140	46	48	2757	6.24	6.59E-01	5.80E-02	8.20E+00
SP_PIR_KEY	heme	3	3.75	8.97E-03	5094788, 5096397, 5093448	5094788, 5096397, 5093448	80	13	7033	20.29	3.96E-01	9.60E-02	8.51E+00
GOTERM_BP	GO:00442 72-nitrogen compound biosynthetic process	11	13.7	9.37E-03	5093686, 5099805, 5096830, 5098318, 5094445, 5097146, 5096432, 5095530, 5098218, 5099138, 5096397	5099805, 5094445, 5096432, 5099138, 5096397	46	268	2757	2.46	7.56E-01	7.16E-02	1.06E+01
SMART	SM00116: CBS	3	3.75	1.03E-02	509786, 5098938, 5096473	509786, 5098938, 5096473	7	31	1123	15.53	6.04E-02	6.04E-02	4.85E+00
GOTERM_M	GO:00480 37-cofactor or binding	9	11.2	1.55E-02	5094984, 5098116, 5094200	5094984, 5098116, 5094200	48	224	3173	2.66	8.96E-01	8.96E-01	1.69E+01
Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
----------	------	-------	------	--------	--	------------	----------	-----------	-----------------	------------	------------	--------	
GOTERM_BP_FAT	GO:00060	6	7.5	1.72E-02	5093157, 5096432, 5095530, 5099138, 5096397, 5096140	46	94	2757	3.83	9.26E-01	1.22E-01	1.87E+01	
SP_PIR_KEY WORDS	Acyltransf erase	5	6.25	1.96E-02	5096830, 5096397, 5093157, 5093155, 5097146	80	92	7033	4.78	6.69E-01	1.68E-01	1.77E+01	
KEGG_PATHWAY	vfn00250: Alanine, aspartate and glutamate metabolism	4	5	2.24E-02	5094788, 5094200, 5099357, 5096397, 5096140	40	26	1634	6.28	6.92E-01	1.01E-01	1.97E+01	
KEGG_PATHWAY	vfn00190: Oxidative phosphorylation	4	5	2.48E-02	5096830, 5096397, 5093157, 5093155, 5097146	40	27	1634	6.05	7.28E-01	1.03E-01	2.16E+01	
KEGG_PATHWAY	vfn00682: Benzoate degradation via CoA ligation	3	3.75	2.67E-02	5094788, 5094200, 5097920, 5096543	40	11	1634	11.14	7.55E-01	1.02E-01	2.31E+01	
KEGG_PATHWAY	vfn00250: Alanine, aspartate and glutamate metabolism	4	5	2.73E-02	5094788, 5094200, 5097920, 5096543	40	28	1634	5.84	7.63E-01	9.76E-02	2.36E+01	
GOTERM_MF_FAT	GO:005066: Coenzyme binding	7	8.75	2.89E-02	5098116, 5094200, 5093157, 5095530, 5099138, 5096397, 5096140	48	160	3173	2.89	9.86E-01	8.81E-01	2.94E+01	
SP_PIR_KEY WORDS	nadp	3	3.75	2.93E-02	5095530, 5099138, 5096397	80	24	7033	10.99	8.11E-01	2.12E-01	2.55E+01	
GOTERM_MF_FAT	GO:001641: 07-acetyltransferase activity	5	6.25	2.94E-02	5096114, 5096830, 5099331, 5093157, 5097146	48	80	3173	4.13	9.87E-01	7.64E-01	2.98E+01	
GOTERM_MF_FAT	GO:001666: 07-oxidoreductase activity, acting on	4	5	3.13E-02	5094445, 5094467, 5099138, 5096397	48	47	3173	5.63	9.90E-01	6.85E-01	3.15E+01	
Category	Term	Count	%	PValue	Genes								
-------------	-------------------------------	-------	-------	------------	--								
	sulfur group of donors												
GOTERM_M	GO:00090 55--electron carrier activity	7	8.75	3.22E-02	Genes: 5094788, 5094200, 5094467, 5094744, 5099138, 5096397, 5096140								
F_FAT	SP_PIR_KEYWORDS pyruvate	3	3.75	3.40E-02	Genes: 5093157, 5100277, 5098542								
	GOTERM_M F_FAT GO:00162 09--antioxidant activity	3	3.75	3.44E-02	Genes: 5094467, 5093448, 5097770								
	GOTERM_BF_BP FAT GO:00093 10--amine catabolic process	3	3.75	3.74E-02	Genes: 5095180, 5093155, 5097935								
	GOTERM_BF_BP FAT GO:00090 63--cellular amino acid catabolic process	3	3.75	3.74E-02	Genes: 5095180, 5093155, 5097935								
	INTERPRO IPR:00250 0:Phosphoadenosine phosphosulfate reductase	2	2.5	3.75E-02	Genes: 5096365, 5094445								
	INTERPRO IPR:00036 2:Fumarate lyase	2	2.5	3.75E-02	Genes: 5096830, 5099257								
	SP_PIR_KEYWORDS transferase 15	18.7	4.32E-02	1.73	Genes: 5096114, 5093157, 5093155, 5097146, 5096432, 5099740, 5097432, 5093686, 5096830, 5099833, 5094984, 5096365, 5098542, 5096830, 5099833, 5094984, 5096365, 5098542, 50180074, 50982187								
	GOTERM_M F_FAT GO:00047 83--sulfite reductase (NADPH) activity	2	2.5	4.38E-02	Genes: 5099138, 5096397								
	GOTERM_M F_FAT GO:00047 79--sulfate adenylyltranferase activity	2	2.5	4.38E-02	Genes: 5096365, 5100074								
Category	Term	Count	%	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR	
-------------------	--	-------	------	---------------	----------------------------	------------	----------	-----------	-----------------	------------	------------	------	
GOTERM_MF_FAT	GO:00047 81-sulfate adenylyltransferase (ATP) activity	2	2.5	4.38E-02	5096365, 5100074	48	3	3173	44.07	9.98E-01	6.05E-01	4.12E+01	
COG_ONTOLOGY	Amino acid transport and metabolism / Coenzyme metabolism	2	2.5	4.39E-02	5096365, 5094445	15	4	1257	41.9	3.61E-01	3.61E-01	2.36E+01	
UP_SEQ_FEATURE	domain:N-acetyltransferase	2	2.5	4.39E-02	5096830, 5097146	16	2	676	42.25	8.26E-01	8.26E-01	3.35E+01	
GOTERM_BP_FAT	GO:00194 19-sulfate reduction	2	2.5	4.82E-02	5096365, 5094445	46	3	2757	39.96	9.99E-01	2.86E-01	4.46E+01	
GOTERM_BP_FAT	GO:00160 54-organische acid catabolic process	3	3.75	4.89E-02	5095180, 5093155, 5097935	46	22	2757	8.17	9.99E-01	2.79E-01	4.51E+01	
GOTERM_BP_FAT	GO:00463 95-carboxylic acid catabolic process	3	3.75	4.89E-02	5095180, 5093155, 5097935	46	22	2757	8.17	9.99E-01	2.79E-01	4.51E+01	
SP_PIR_KEYWORDS	arginine metabolism	2	2.5	5.49E-02	5095180, 5093155	80	5	7033	35.17	9.58E-01	2.71E-01	4.28E+01	
INTERPRO	IPR00064 4:Cystathionine beta-synthase, core	3	3.75	5.81E-02	5099786, 5098938, 5096473	71	31	5525	7.53	1.00E+00	9.95E-01	5.22E+01	
GOTERM_BP_FAT	GO:00090 66-aspartate family amino acid metabolic process	3	3.75	7.07E-02	5099805, 5099257, 5093650	46	27	2757	6.66	1.00E+00	3.67E-01	5.83E+01	
GOTERM_MF_FAT	GO:00164 10-N-acetyltransferase activity	4	5	7.55E-02	5096114, 5096830, 5093155, 5097146	48	67	3173	3.95	1.00E+00	7.59E-01	6.06E+01	
KEGG_PATHWAY	vf00450: Selenoamino acid metabolism	3	3.75	8.05E-02	5096432, 5099740, 5100074	40	20	1634	6.13	9.87E-01	2.52E-01	5.58E+01	
GOTERM_BP_FAT	GO:00453 33-cellular respiration	3	3.75	8.49E-02	5094788, 5094200, 5099257	46	30	2757	5.99	1.00E+00	4.13E-01	6.54E+01	
Category	Term	Count	PValue	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR		
---------------	---------------	-------	------------	------------------	------------	----------	-----------	-----------------	------------	-----------	-----------		
INTERPRO	IPR000089	2	8.54E-02	5093157, 5095222	71	7	5525	22.23	1.00E+00	9.95E-01	6.67E+01		
SMART	SM00421:HTH_LU	2	9.26E-02	5097659, 5097215	7	18	1123	17.83	4.42E-01	2.53E-01	3.72E+01		
GOTERM_BP_FAT	GO:0006527	2	9.41E-02	5095180, 5093155	46	6	2757	19.98	1.00E+00	4.35E-01	6.93E+01		
Table S2. Enrichment analysis of the 94 differently expressed coding sequences for *V. fischeri* + nonfunctional artificial cells with respect to *V. fischeri* + *V. fischeri*.

GOTERM_ BP_FAT	GO	FDR	DEG	DEG	P-Value	FDR1	FDR2	FDR3				
~'de novo' IMP biosynthetic process	GO:0006189	4.26	8.40E-05	5097940, 5095472, 5093469, 5098195	6	2757	39.11	1.62E-02	1.62E-02	1.05E-01		
~IMP biosynthetic process	GO:0006188	4.26	2.30E-04	5097940, 5095472, 5093469, 5098195	8	2757	29.33	4.36E-02	2.20E-02	2.86E-01		
~IMP metabolic process	GO:0046040	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	11	2757	21.33	1.19E-01	4.14E-02	8.12E-01		
~purine ribonucleoside monophosphate biosynthetic process	GO:0009168	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	11	2757	21.33	1.19E-01	4.14E-02	8.12E-01		
~purine nucleoside monophosphate metabolic process	GO:0009126	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	11	2757	21.33	1.19E-01	4.14E-02	8.12E-01		
~purine nucleoside monophosphate metabolic process	GO:0009127	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	11	2757	21.33	1.19E-01	4.14E-02	8.12E-01		
~purine nucleoside monophosphate metabolic process	GO:0009161	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	14	2757	16.76	2.37E-01	6.53E-02	1.72E+00		
~ribonucleoside monophosphate metabolic process	GO:0009156	4.26	6.53E-04	5097940, 5095472, 5093469, 5098195	14	2757	16.76	2.37E-01	6.53E-02	1.72E+00		
~nitrogen compound	GO:0044271	12.7	3.59E-03	5097940, 5096595, 5099333	7	268	2.63	5.03E-01	1.30E-01	4.39E+00		
Pathway	Description	Score	P-Value	fold change	q-value	Top Enters	KEGG Pathway IDs					
---------	-------------	-------	---------	-------------	---------	------------	-----------------					
vfm00230	Biosynthetic Process of Urine Metabolism	7.45	4.01E-03	4.29	2.01E-01	2.01E-01	5097940, 5099350, 5099487, 5097435, 5097146, 5099025, 5095472, 5093469, 5100143, 5098195, 5096166					
GO:0009124	Nucleoside Monophosphate Biosynthetic Process	4.26	4.06E-03	11.73	5.46E-01	1.23E-01	5097940, 5095472, 5093469, 5098195					
GO:0009123	Nucleoside Monophosphate metabolic Process	4.26	5.36E-03	10.67	6.48E-01	1.38E-01	5097940, 5095472, 5093469, 5098195					
GO:0034404	Nucleobase, Nucleoside and Nucleotide Biosynthetic Process	6.38	7.48E-03	4.69	7.67E-01	1.66E-01	5097940, 5096595, 5095472, 5093469, 5098195					
GO:0034654	Nucleobase, Nucleoside, Nucleotide and Nucleic Acid Biosynthetic Process	6.38	7.48E-03	4.69	7.67E-01	1.66E-01	5097940, 5096595, 5095472, 5093469, 5098195					
GO:0009152	Purine Ribonucleotide Biosynthetic Process	4.26	1.17E-02	8.09	8.99E-01	2.25E-01	5097940, 5095472, 5093469, 5098195					
GO:0009150	Purine Ribonucleotide metabolic Process	4.26	1.41E-02	7.57	9.36E-01	2.41E-01	5097940, 5095472, 5093469, 5098195					
GO:0009260	Ribonucleotide Biosynthetic Process	4.26	1.54E-02	7.33	9.51E-01	2.39E-01	5097940, 5095472, 5093469, 5098195					
SP_PIR_KEWORDS	Cytoplasm	10.6	1.59E-02	2.53	6.24E-01	1.49E+01	5099350, 5094741, 5099487, 5093882, 5096673, 5096854, 5099676, 5098195					
SP_PIR_KEYWORDS	purine biosynthesis	3	1.62E-02	3.93E-01	1.52E+01	5097146, 5094544, 5097559, 5100143, 5098195						
GOTERM_BP_FAT	GO:0009259	~ribonucleotide metabolic process	4	1.81E-02	5097940, 5095472, 5093469, 5098195							
GOTERM_BP_FAT	GO:0009165	~nucleotide biosynthetic process	5	1.97E-02	5097940, 5096595, 5093469, 5098195							
KEGG_PATHWAY	vft00230: Purine metabolism	6	2.66E-02	3.36	7.79E-01	5.30E-01	2.34E+01					
GOTERM_BP_FAT	GO:0006399	~tRNA metabolic process	5	2.92E-02	4.13	9.97E-01	3.37E-01	3.09E+01				
INTERPRO	IPR014729: Rossmann-like alpha/beta/alpha sandwich fold	4	3.03E-02	5.79	9.98E-01	9.98E-01	3.20E+01					
GOTERM_BP_FAT	GO:0009264	~deoxyribonucleotide catabolic process	2	3.31E-02	58.66	9.99E-01	3.53E-01	3.43E+01				
GOTERM_BP_FAT	GO:0006163	~purine nucleotide biosynthetic process	4	3.57E-02	5.33	9.99E-01	3.57E-01	3.65E+01				
GOTERM_BP_FAT	GO:0004638	~phosphoribosylaminomimidazole carboxylase activity	2	4.93E-02	39.17	9.99E-01	9.99E-01	4.52E+01				
GOTERM_BP_FAT	GO:0006164	~purine nucleotide metabolic process	4	4.94E-02	4.69	1.00E+00	4.39E-01	4.68E+01				
GOTO_BYPARSER	amino-acid biosynthesis	4	6.06E-02	4.4	9.78E-01	7.20E-01	4.67E+01					
GOTO_BYPARSER	5	7.62E-02	3.02	1.00E+00	5.75E-01	6.28E+01						
Gene Ontology	Description	GO Term	p-value	q-value	FDR	Significance	p-value	q-value	FDR			
---------------	-------------	---------	---------	---------	-----	--------------	---------	---------	-----			
BP_FAT	~ncRNA metabolic process	GO:0016042	2.13	8.07E-02	20	2.13	8.07E-02	5	2757	0.00E+00	5.77E-01	6.50E+01
BP_FAT	~l lipid catabolic process	GO:0009262	2.13	8.07E-02	47	2.13	8.07E-02	5	2757	0.00E+00	5.77E-01	6.50E+01
BP_FAT	~d deoxyribo nucleotid metabolic process	GO:0009308	2.13	9.94E-02	83	2.13	9.94E-02	7	5525	0.00E+00	1.00E+00	7.31E+01
BP_FAT	~deoxyribo nucleotid metabolic process	GO:0009308	2.13	9.94E-02	83	2.13	9.94E-02	7	5525	0.00E+00	1.00E+00	7.31E+01
BP_FAT	~f deoxyribo nucleotid metabolic process	GO:0009308	2.13	9.94E-02	83	2.13	9.94E-02	7	5525	0.00E+00	1.00E+00	7.31E+01
BP_FAT	~g deoxyribo nucleotid metabolic process	GO:0009308	2.13	9.94E-02	83	2.13	9.94E-02	7	5525	0.00E+00	1.00E+00	7.31E+01
Table S3. Enrichment analysis of the 26 differently expressed coding sequences for *V. fischeri* + functional artificial cells with respect to *V. fischeri* + *V. fischeri*. Highlighted in grey are the significantly enriched five gene sets with FDR <10^{-2}.

GOTERM_MF_FAT	GO:00161	51–nickel ion binding	17	10	3173	93.32	4.63E-06	4.63E-06	8.65E-05				
SP_PIR_KEYWORDS	Chaperone	6	23.08	9.64E-08	5100389, 5097037, 5098484, 5100141, 5097212	26	34	7033	47.74	3.28E-06	3.28E-06	8.48E-05	
GOTERM_MF_FAT	GO:00431	67–ion binding	17	459	3173	4.88	5.94E-05	2.97E-05	1.11E-03				
GOTERM_MF_FAT	GO:00431	69–cation binding	17	459	3173	4.88	5.94E-05	2.97E-05	1.11E-03				
SP_PIR_KEYWORDS	cytoplasm	9	34.62	5.18E-06	5100389, 5099958, 5097037, 5098484, 5098990, 5095327, 5099644, 5099334, 5099244, 5097212	26	296	7033	8.22	1.76E-04	8.80E-05	4.55E-03	
GOTERM_MF_FAT	GO:00468	72–metal ion binding	17	430	3173	4.77	3.68E-04	1.23E-04	6.87E-03				
GOTERM_BP_FAT	GO:000649	9	34.62	4.412E-05	5100389, 5097037, 5098484, 5098990, 5095327, 5099644, 5099334, 5100141, 5097212	17	306	317	5.49	2.29E-03	5.73E-04	4.29E-02	
SP_PIR_KEYWORDS	Nickel insertion	3	11.54	1.21E-04	5100389, 5097037, 5100141	26	5	7033	162.3	4.09E-03	1.37E-03	1.06E-01	
SP_PIR_KEYWORDS	zinc	4	15.38	3.13E-03	5098990, 5095327, 5099644, 5099334	26	84	7033	12.88	1.01E-01	2.63E-02	2.72E+00	
KEGG_PATHWAY	vfn00641	2	7.69	1.46E-02	5095327, 5099334	9	3	1634	121.04	2.66E-01	2.66E-01	1.08E+01	
KEGG_PATHWAY	vfn00624	2	7.69	1.46E-02	5095327, 5099334	9	3	1634	121.04	2.66E-01	2.66E-01	1.08E+01	
KEGG_PATHWAY	GO:000649	3	11.54	1.55E-02	5099958, 5098484, 5095327	13	45	2757	14.14	6.95E-01	6.95E-01	1.52E+01	
GO:00343	GO:000649	08-monohydric alcohol metabolic process	2	7.69	1.73E-02	5095327, 5099334	13	4	2757	106.04	7.35E-01	4.85E-01	1.68E+01
GO:00196	GO:000649	27-urea metabolic process	2	7.69	1.73E-02	5098484, 5097212	13	4	2757	106.04	7.35E-01	4.85E-01	1.68E+01
GO:00060	GO:000649	69-ethanol oxidation	2	7.69	1.73E-02	5095327, 5099334	13	4	2757	106.04	7.35E-01	4.85E-01	1.68E+01
GO:00060	GO:000649	67-ethanol metabolic process	2	7.69	1.73E-02	5095327, 5099334	13	4	2757	106.04	7.35E-01	4.85E-01	1.68E+01
INTERPRO	IPR01418	3:Alcohol dehydrogenase class III/S-(hydroxy methyl)glutathione dehydrogenase	2	7.69	1.80E-02	5095327, 5099334	26	4	5525	106.25	7.19E-01	7.19E-01	1.71E+01
KEGG_PATHWAY	vfn00980	GO:000649	2	7.69	1.95E-02	5095327, 5099334	9	4	1634	90.78	3.38E-01	1.86E-01	1.41E+01
KEGG PATHWAY	Gene	Description	E-value	ID1	ID2	ID3	ID4	ID5	Proportion	MetaScore	p-value	q-value	
--------------	------	-------------	---------	-----	-----	-----	-----	-----	------------	------------	---------	---------	
vfn00350	2	3.38E-02	5095327, 5099334	9	7	1634	51.87	5.15E-01	2.14E-01	2.33E+01			
metal-binding	4	4.09E-02	5098990, 5095327, 5099644, 5099334	26	218	7033	4.96	7.58E-01	2.47E-01	3.07E+01			
vfn00680	2	4.80E-02	5095327, 5099334	9	10	1634	36.31	6.44E-01	2.28E-01	3.16E+01			
vfn00071	2	5.27E-02	5095327, 5099334	9	11	1634	33.01	6.79E-01	2.03E-01	3.42E+01			
IPR01314	2	5.30E-02	5095327, 5099334	26	12	5525	35.42	9.78E-01	7.19E-01	4.31E+01			
IPR00208	2	5.30E-02	5095327, 5099334	26	12	5525	35.42	9.78E-01	7.19E-01	4.31E+01			
IPR01315	2	5.30E-02	5095327, 5099334	26	12	5525	35.42	9.78E-01	7.19E-01	4.31E+01			
GO:00510	82-unfolded protein binding	2	7.69	6.85E-02	5099958, 5098484	17	14	3173	26.66	9.75E-01	3.69E-01	4.98E+01	
SP_PIR_KEYWORDS	nucleotide-binding	5	19.23	6.96E-02	5096094, 5099958, 5097037, 5099244, 5094048	26	445	7033	3.04	9.14E-01	3.36E-01	4.70E+01	
GO:000065	47-histidine metabolic process	2	7.69	8.38E-02	5098990, 5094537	13	20	2757	21.21	9.99E-01	8.91E-01	6.02E+01	
GO:000090	75-histidine family amino acid metabolic process	2	7.69	8.38E-02	5098990, 5094537	13	20	2757	21.21	9.99E-01	8.91E-01	6.02E+01	
Table S4. Bacterial strains used in this study.

Strain	Plasmid	Use
3OC12 HSL *E. coli* TOP10 reporter	K575024	*E. coli* strain used to sense 3OC12 HSL
3OC12 HSL *E. coli* NEBExpress reporter	K575024	*E. coli* strain used to sense 3OC12 HSL
3OC6 HSL *E. coli* TOP10 reporter	T9002	*E. coli* strain used to sense 3OC6 HSL and leakage experiments
C4 HSL *E. coli* TOP10 reporter	K575037	*E. coli* strain used to sense C4SL
V. fischeri MJ11 (ATCC BAA-1741)		Strain used to perform the cellular Turing test, quorum quenching experiments, to sense 3OC6 HSL, and leakage experiments
V. fischeri 7744 (ATCC 7744)		Strain used to activate artificial cells able to produce 3OC12 HSL
V. harveyi BB170 (ATCC BAA-1117)		Strain used to sense AI-2 and leakage experiments
P. aeruginosa PT5 PAO1 wild-type*		Strain used for quorum sensing experiments and leakage experiments

Table S5. DNA sequences used in this study.

NAME	NOTE	SEQUENCE*
JF005A	PT7- RBS- HLPT- T7 term	TAATAGGACACTCACATAGGGGAATTTGAGGCGAATACATTTCCCTTCGATTAATATTTTTGGTTTAACATTAAAGAAGGAGATATACATATG
pLasB		TACTACGACGTGACGCTGTAAGCTGCAAGGTGAGCGGATAACAATTCCCCTCTAGAAATAATTGGTTTAACTTTGATGTTGTCGGGAA
K575024	pLasB B0030 Bb_a_ J2311- 3b Bb_a_ B0034- lasR	GGGCTGCTGTAGAGATGGAAGGCTGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTATTTTTTGATAGGAGCAGGTTACACGCTGCTGGGCTTCCTCTTATTAGAGCAGGAGGTTGCTGACGCGCAGGATTGCTAAGAATGGCAAAAGGAGATATACATATG

Note: All sequences are designed for specific applications in biological experiments.
CTGCCGTACCTAAACGAGAAGACGACACTACAGTACCGGCTCCGGTGATGTAGATCGAGGAGAAT
CTGCCGTACCTAAACGAGAAGACGACACTACAGTACCGGCTCCGGTGAT
GTTGAAGAACAAAAAACGAGAAGGCTGCTGAGCTGCGTGATG
GAGCAGGCAAATGAGCCGCTCTGCTGAGCTGCGTGATG
CTTGAGTACGAGACAGTACACAGCCGAGTGCTGAGCAGAGGAAAGAGAG
CTTGAGTACGAGACAGTACACAGCCGAGTGCTGAGCAGAGGAAAGAGAG

RL078A

TAAATACGACTCACTATAGAG

GCTACACGAGACCCAACTGGACAAGATGCCTCCGCTTCCGAAGAAAGGAAACCTGAACCTG

RL078A

TCCCATATGGATTTTCTACAGGTTTACGCAAGAAAATGGTTTGTTAT

TCCCATATGGATTTTCTACAGGTTTACGCAAGAAAATGGTTTGTTAT
RL09C

```plaintext
RL092A

```

RL092A

```plaintext
RL092A

```

49
GAAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAACCCTATTTTCATTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACCTCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAAACGGTGAGTTAAGCGCATTGCCTATGATTTCAAGGCTCTAAAACGGCGCGTAGCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCCTTAATCAGAGAGGCAGAATTATGTGTCAGAGGACCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCGCTTGAAGTCTTTAATTAAATACAAAGGATATCAGGTAATGAAGATTTTTACATGCACACACGCTACAATACCTGTAGGTGGCCCCCGCTGAATTGGGGATCGATATTGTTACAACACCCCAACATCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGATGA

T9002

pTEt-	BbA_
B0034-	luxR-
B0015-	BbA_
B0032-	GFPmut
b-	BbA_
B0015	

*Promoters are underlined, start and stop codons are in bold, the RBS is in italics, and linker sequences of encoded fusion proteins are in lowercase. The lrs intergenic region is in red.
REFERENCES

(1) Fernandes, R.; Bentley, W. E. AI-2 biosynthesis module in a magnetic nanofactory alters bacterial response via localized synthesis and delivery. *Biotechnol. Bioeng.* **2009**, *102*, 390–399.

(2) Allen, T. M.; Cleland, L. G. Serum-induced leakage of liposome contents. *Biochim. Biophys. Acta*. **1980**, *597*, 418–426.

(3) Yu, W.; Sato, K.; Wakabayashi, M.; Nakaishi, T.; Ko-Mitamura, E. P.; Shima, Y.; Urabe, I.; Yomo, T. Synthesis of functional protein in liposome. *J. Biosci. Bioeng.* **2001**, *92*, 590–593.

(4) Spencer, A. C.; Torre, P.; Mansy, S. S. The Encapsulation of Cell-free Transcription and Translation Machinery in Vesicles for the Construction of Cellular Mimics. *J. Vis. Exp.* **2013**, e51304.

(5) Vilchez, R.; Lemme, A.; Thiel, V.; Schulz, S.; Sztajer, H.; Wagner-Döbler, I. Analysing traces of autoinducer-2 requires standardization of the Vibrio harveyi bioassay. *Anal. Bioanal. Chem.* **2007**, *387*, 489–496.

(6) Jett, B. D.; Hatter, K. L.; Huycke, M. M.; Gilmore, M. S. Simplified agar plate method for quantifying viable bacteria. *Biotechniques* **1997**, *23*, 648–650.

(7) S., A. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. **2010**.

(8) Langmead, B.; Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **2012**, *9*, 357–359.

(9) Trapnell, C.; Hendrickson, D. G.; Sauvageau, M.; Goff, L.; Rinn, J. L.; Pachter, L. Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nat. Biotechnol.* **2013**,
Roberts, A.; Pimentel, H.; Trapnell, C.; Pachter, L. Identification of novel transcripts in annotated genomes using RNA-Seq. *Bioinformatics* **2011**, *27*, 2325–2329.

(11) Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D. R.; Pimentel, H.; Salzberg, S. L.; Rinn, J. L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* **2012**, *7*, 562–578.

(12) Antunes, L. C. M.; Schaefer, A. L.; Ferreira, R. B. R.; Qin, N.; Stevens, A. M.; Ruby, E. G.; Greenberg, E. P. Transcriptome Analysis of the Vibrio fischeri LuxR-LuxI Regulon. *J. Bacteriol.* **2007**, *189*, 8387–8391.

(13) Soneson, C.; Delorenzi, M.; Mortazavi, A.; Williams, B.; McCue, K.; Schaeffer, L.; Wold, B.; Chen, G.; Wang, C.; Shi, T.; et al. A comparison of methods for differential expression analysis of RNA-seq data. *BMC Bioinformatics* **2013**, *14*, 91.

(14) Cosson, P.; Zulianello, L.; Join-lambert, O.; Faurisson, F.; Gebbie, L.; Benghezal, M.; Delden, C. Van; Curty, L. K.; Cosson, P.; Zulianello, L.; et al. Pseudomonas aeruginosa Virulence Analyzed in a Dictyostelium discoideum Host System. *J. Bacteriol.* **2002**, *184*, 3027–3033.