The organization of the transcriptional network in specific neuronal classes.

Permalink
https://escholarship.org/uc/item/5xv0r2mx

Journal
Molecular systems biology, 5(1)

ISSN
1744-4292

Authors
Winden, Kellen D
Oldham, Michael C
Mirnics, Karoly
et al.

Publication Date
2009

DOI
10.1038/msb.2009.46

Peer reviewed
The organization of the transcriptional network in specific neuronal classes

Kellen D Winden1,2,3, Michael C Oldham1,2,4, Karoly Mirnics5,6, Philip J Ebert7, Christo H Swan8, Pat Levitt6,7, John L Rubenstein8,9, Steve Horvath4,10 and Daniel H Geschwind1,2,3,4,11

1 Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, CA, USA, 2 Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, 3 Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, 4 Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA, 5 Department of Psychiatry, Vanderbilt University, Nashville, TN, USA, 6 Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA, 7 Department of Pharmacology, Vanderbilt University, Nashville, TN, USA, 8 Department of Psychiatry and Langley Porter Psychiatric Institute, University of California, San Francisco, CA, USA, 9 Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA, USA, 10 Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA, USA and 11 Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA

* Corresponding author. Program in Neurogenetics, Department of Neurology and Semel Institute, David Geffen School of Medicine, Los Angeles, CA 90095, USA. Tel.: +1 310 206 6814; Fax: +1 310 267 2401; E-mail: dhg@ucla.edu

Received 24.12.08; accepted 9.6.09

Genome-wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems-level analysis of microarray data from single neuronal populations using weighted gene co-expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co-expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co-expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin-1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level.

Molecular Systems Biology 5: Article number 291; doi:10.1038/msb.2009.46

Subject Categories: functional genomics; neuroscience

Keywords: development; microarray; mitochondria; neuronal diversity; systems biology

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. Creation of derivative works is permitted but the resulting work may be distributed only under the same or similar licence to this one. This licence does not permit commercial exploitation without specific permission.

Introduction

The mammalian central nervous system comprises a large number of local and regional circuits that are formed by precise connections between neurons, which themselves are quite diverse from the perspective of morphology, physiological activity, and expression of specific neurotransmitters, peptides, calcium-binding proteins, and numerous other molecules (McKay and Hockfield, 1982; McConnell, 1991, 1995; Polleux, 2005). These aspects of neuronal diversity may influence network function or information processing (Yoshimura and Callaway, 2005). Therefore, determining functions of neuronal circuits depends on understanding the differences that are present between specific neurons. Diversity between neurons is often studied from the perspective of genes responsible for various aspects of neuronal specification (Molyneaux et al, 2007). Earlier studies have identified important genes involved in the differentiation of specific subtypes of neurons, such as corticospinal motor neurons (Chen et al, 2005; Molyneaux et al, 2005) and midbrain dopaminergic neurons (Ferri et al, 2007). However, earlier work has not addressed the general issue of diversity in basic cellular or metabolic functions between neurons.

Studies of cellular heterogeneity have used various methods, such as laser capture microdissection (Bonaventure et al, 2002) and fluorescence-activated cell sorting (Arlotta et al, 2005; Lobo et al, 2006) to study neuronal subtypes. Sugino...
et al (2006) used both genetic and tracer manipulations to label 12 specific neuronal populations in the adult mouse, which were sorted to purity and subsequently analyzed using gene expression microarrays. Their work resulted in a basic molecular taxonomy of neuronal populations, in which glutamatergic and GABAergic neurons were distinguished by characteristic gene expression patterns and divergence in expression patterns reflected known biological differences between populations (Sugino et al, 2006). Several of these studies take the important and arduous step of functional validation at the level of single genes (Arlotta et al, 2005; Lobo et al, 2006). However, it has been challenging to attain a systems-level understanding of the transcriptome with clear relationships underlying biological or molecular function.

The use of co-expression networks can circumvent this problem because it allows for the examination of gene expression from a system’s perspective (Stuart et al, 2003; Lee et al, 2004). Weighted gene co-expression network analysis (WGCNA) groups functionally related genes into modules in an unsupervised manner (Zhang and Horvath, 2005; Horvath et al, 2006; Oldham et al, 2006, 2008), based on the self-organizing properties of complex systems (Barabasi and Albert, 1999; Ravasz et al, 2002). The modularity of the system allows us to consider its components independently, and the relationships between genes within modules can be identified, facilitating gene annotation based on network position without any a priori assumptions about gene function.

Here, we provide a systems biology view of gene expression that we relate to cellular diversity and function within the nervous system. We examined the data set generated by Sugino et al (2006) using WGCNA and identified multiple co-expression modules that are related to fundamental phenotypic features of neurons and the proteome, showing a clear correspondence between gene and protein expression on a large scale. For example, we observed several modules related to interneuron development and show that galectin-1, a hub gene in one module, is a marker of a specific interneuron type. We identify modules that correspond to basic cellular functions, such as energy production and synaptic structure. This suggests that quantitative variation in these modules is a major factor in neuronal diversity. Two modules were highly enriched with mitochondrial genes, but had distinct gene expression patterns, leading to the hypothesis that these modules correspond to synaptic and non-synaptic mitochondria.

We tested this hypothesis experimentally, providing a novel molecular basis for examining mitochondrial heterogeneity in neurons. Finally, we used Rgs4 and Dlx1/2 knockout mice to validate predictions based on network organization in vivo, showing that module membership and network position have significant power to predict changes in gene expression. These results provide a systems-level framework for understanding neuronal diversity on a molecular level and its relationship to the physiological and structural aspects of the cell, which can be used to generate hypotheses about processes such as development, neuronal function, and disease (Hood et al, 2004).

Results

Network construction and module detection

We analyzed a unique, high-quality microarray data set that measured gene expression within single neuron classes from Sugino et al (2006). We downloaded data from 36 Affymetrix MOE430A microarrays with 22 690 probe sets from 12 neuronal populations, each with three replicates, from GEO DataSets (GSE2882). The individual neuronal populations analyzed represented a diverse set of excitatory and inhibitory subtypes from multiple brain regions (Supplementary Table 1).

To study how these phenotypic differences were reflected in the transcriptional profile of each neuronal subtype, we performed WGCNA (Zhang and Horvath, 2005), which allows unbiased visualization of the higher-order relationships between genes based on expression. The co-expression network is based on topological overlap (TO) between genes, which simultaneously considers not only the correlation of two genes with each other, but also the degree of their shared correlations within the network (Ravasz et al, 2002; Zhang and Horvath, 2005), providing a more robust measure of relatedness than correlations alone (Yip and Horvath, 2007). Genes are clustered based on TO, and those with similar expression patterns are grouped together (Box 1). The result of clustering can be viewed as a dendrogram, in which each branch corresponds to a group of co-expressed genes (a module) that is designated a color and a number and will be referred to by both its color and number for the rest of this manuscript (Figure 1). We identified 13 modules that had characteristic patterns of gene expression and enrichment for specific gene ontology (GO) categories (Supplementary Tables 2 and 3).

Using these module definitions, we studied the importance of these functionally related groups of genes to the developmental, physiological, and structural characteristics of neuronal populations. We have also included two resources for further exploring this network data set, including a gene neighborhood explorer tool (MultiTOM; http://www.genetics.ucla.edu/labs/horvath/MTOM/) and a table with calculated kME values for all genes in all modules (see Materials and methods). These resources alone, or in combination, can be used to explore the functions of any of the genes in the network, beyond the analyses presented here.

Gene expression within modules

We condensed the gene expression pattern within a module to a ‘module eigengene’ (ME), which is a weighted summary of gene expression in the module (Oldham et al, 2008). The ME also allows us to determine the network position of a gene by calculating the ME-based connectivity (kME), or the absolute value of the correlation between the expression of a gene and a ME. This value can be interpreted as a measure of module membership or intramodular connectivity (Dong and Horvath, 2007; Horvath and Dong, 2008), and genes with high connectivity are hubs or central genes, which are natural targets for testing hypotheses about modular function (Horvath et al, 2006; Oldham et al, 2008).

As multiple genetic strains of mice were used in this analysis (G12, G42, G30, YFPH, and C57/B6), we were concerned that some modules could be artifacts of genetic background. Therefore, we compared each ME to neuronal subtypes or genetic strains of mice using a Pearson correlation. With the exception of the orange (#8) module, each module showed a higher correlation with specific cell types than genetic background (Supplementary Table 4). Importantly, this systematic analysis of the effect of
genetic background was not possible using the standard measures of differential expression, since strain and neuronal sub-type are confounded in some cases (Sugino et al., 2006).

Systematic validation of co-expression relationships

We and others have shown earlier the reproducibility and validity of co-expression modules identified by WGCNA using similarly sized data sets (Drake et al., 2006; Horvath et al., 2006; Oldham et al., 2006, 2008; Fuller et al., 2007; Miller et al., 2008). To provide a level of systematic validation in these data, we confirmed network predictions at the level of both the transcriptome and proteome. First, we assessed the module significance at the statistical level by comparing mean TO (Table I) between the genes within a module to a random group of genes, which provided statistical support for every module identified. As a second systematic validation of the co-expression relationships defined here, we used a large, independent data set to test whether these co-expression relationships might be conserved in other cell types and tissues. We obtained all publicly available expression data collected on the Affymetrix MOE430A platform for the top 100 most highly connected genes in each module from the Celsius database (Day et al., 2007). Using these data, we calculated the mean correlation between the most highly connected genes within each module and compared this value to the mean correlation between a randomly selected group of genes. Each module showed strong conservation of gene co-expression in this data set, providing another level of independent validation of the co-expression relationships identified here (Table I). As a third step of systematic validation of network connectivity, we tested the hypothesis that genes within a module would be functionally related and more likely to interact with each other.
The identification of modules that reiterate earlier identified differences shows that WGCNA can detect known functional distinctions in an unsupervised manner. Moreover, the identification of hub genes within these modules shows the arrangement of gene expression within each module and which genes are most central. However, many modules are not as easily defined because they correspond to subsets of both glutamatergic and GABAergic neurons and are not confined by known anatomical or neurochemical differences (Figure 2; Supplementary Figure 1). An overview of the modules reflects a complex picture of gene expression within multiple neuronal subtypes. The glutamatergic neurons are represented by the green (4) (Figure 2A), pink (9) (Figure 2D), black (1), brown (3), and midnight blue (7) modules, whereas the red (11) (Figure 2B), light yellow (6) (Figure 2C), green yellow (5), orange (8), and yellow (13) modules correspond to GABAergic neurons. The turquoise (12) (Figure 2E), blue (2) (Figure 2F), and purple (10) modules represent subsets of both glutamatergic and GABAergic neurons.

To further evaluate individual modules in a systematic manner, we used the ME and the Allen Brain Atlas (ABA) to observe module expression in vivo (Lein et al., 2007). We were able to accomplish this for the three modules that corresponded to recognizable brain regions (black (#1), brown (#3), and midnight blue (#7)), as only in these areas could RNA in situ hybridization data be reliably used to verify the expression of genes within a module. The black (#1) module corresponded to pyramidal neurons in the hippocampus and amygdala, and we found that 88% (22/25) were expressed in the hippocampal pyramidal layer in the ABA (Supplementary Table 5). Within the amygdala, 80% (20/25) were expressed in the basolateral amygdala, whereas 64% (16/25) were expressed in the lateral amygdala. We repeated this analysis in the brown (#3) module, which corresponded to pyramidal neurons in layer V and in the basolateral amygdala. Among this group of genes, 84% (21/25) were expressed in layer V and 76% (19/25) were expressed in the basolateral amygdala (Supplementary Table 6). Finally, the midnight blue (#7) module corresponds to cortical pyramidal neurons within layer V and layer VI, as well as pyramidal neurons within the basolateral amygdala. Within the genes in the midnight blue (#7) module, 88% (22/25) were expressed in layer V and layer VI and 84% (21/25) were expressed in the basolateral amygdala (Supplementary Table 7). These results provide further evidence that the MEs are reflective of the actual expression of the genes within those modules. Such co-expression relationships may be useful in disease gene identification because specific cell classes have been associated with neuropsychiatric diseases (Howard et al., 2005).

We next annotated the modules systematically using GO analysis and the identity of the hub genes (Table I) to determine the biological functions of each module. Of the five modules that correspond to glutamatergic neurons, four (the black (#1), brown (#3), pink (#9), and midnight blue (#7) modules) were enriched in GO trafficking functions. The black (#1), brown (#3), and pink (#9) modules were all enriched in genes involved in protein transport (P=0.029, P=2.1e−6, and P=0.0098), but the black (#1) module was more highly enriched in genes involved in cellular protein metabolism (P=0.0012), suggesting that these modules have slightly different functions. The midnight blue (#7) module was enriched in genes localized to coated vesicles (P=0.0034), and one of its major hub genes, Syn2, is known to be involved
Using multiple different data types and analyses, we validated the network on the transcriptional and proteomic levels and evaluated the biological functions of each module. To validate the transcriptional level ('transcriptome' column), we examined the top 100 most highly connected genes within each module in a very large, independent data set of many thousands of microarrays (Day et al., 2007). This showed that co-expression relationships identified here are conserved and highly significant compared with a similarly sized group of randomly selected genes (P < 0.004). We validated co-expression relationships on the proteomic level using a database of protein–protein interactions ('proteomics' column) (Peri et al., 2003). Here, genes that are highly connected within the same module (kME > 0.7) were significantly more likely to interact with each other than random groups of genes (P < 0.004). The 'module validation' column shows that the mean TO within each module is significantly greater than what would be expected by chance, showing strong statistical support for every module (P < 0.004). The 'top three hub genes' column displays the top three genes that have the highest kME within each module. The 'gene ontology' column displays the most characteristic category for each module, and the 'cell types' column provides a summary of the associated cell populations for each module.

Table I Systematic validation and characterization of modules

Module	Network validation	Module validation (P-value)	Module characterization			
	Transcriptome (P-value)	Proteome (P-value)	Top three hub genes	Gene ontology (P-value)	Cell types	
1 Black	2.63E-66	8.24E-33	0.002	Diras1, Plk2, Mast3	Cellular protein metabolism (P = 1.2e-3)	Amygdala and hippocampal pyramidal neurons
2 Blue	1.04E-114	2.28E-19	<0.001	Hdbh, Gas6, Ppp1cc	Mitochondria (P = 1.9e-6)	Sst- and Pvalb-positive interneurons; Somatosensory layer V pyramidal neurons Basolateral amygdala, hippocampal, and layers V & VI pyramidal neurons
3 Brown	6.86E-201	1.32E-86	<0.001	Tmod2, Rab2, Ywhaz	Protein transport (P = 2.1e-6)	GABAergic interneurons Telencephalic interneurons
4 Green	3.24E-199	3.62E-107	<0.001	Crym, Dndcl1, Klh2	Synaptic transmission (P = 3.7e-4)	Glutamatergic neurons
5 Green yellow	2.19E-31	9.93E-12	<0.001	Scl38a1, Fliih, Phyhpl	Nonsignificant Signaling/signal transduction (P = 5.3e-4)	Glutamatergic neurons Telencephalic interneurons
6 Light yellow	3.12E-25	5.59E-35	<0.001	Arx, Dlx1, Nxlph1	Coated vesicle (P = 3.5e-3)	GABAergic interneurons Telencephalic interneurons
7 Midnight blue	2.71E-120	3.77E-53	<0.001	Ppp1ca, Scl25a22, Synj2	Basolateral amygdala and layers V & VI pyramidal neurons	
8 Orange	9.99E-7	3.38E-31	0.001	Pdsk, Khl13, Amy1	Apoptosis (P = 9.0e-3)	Cck positive and LGN interneurons
9 Pink	3.16E-16	8.23E-77	<0.001	Bajap2, Skil, Lmo7	Protein transport (P = 9.8e-3)	Glutamatergic neurons Basolateral amygdala and layers V & VI pyramidal neurons
10 Purple	1.01E-158	3.94E-98	<0.001	Uhmkl1, Oaz1, Atp6v1b2	Endoplasmic reticulum (P = 9.0e-3)	Glutamatergic neurons Basolateral amygdala and layers V & VI pyramidal neurons
11 Red	3.30E-4	9.36E-82	<0.001	Tac3r2, Lhx1, Sdsl	Lipid biosynthesis (P = 5.4e-3)	LGN interneurons PVb-positive interneurons; layer V pyramidal neurons
12 Turquoise	8.12E-23	8.65E-28	<0.001	Uqcrfs1, Atpt5b, Idh3a	Mitochondria (P = 2.5e-11)	Glutamatergic neurons Basolateral amygdala and layers V & VI pyramidal neurons
13 Yellow	1.08E-14	1.84E-12	<0.001	Snca, Gpmb6a, Wasf1	Ion transport (P = 5.7e-4)	Glutamatergic neurons Basolateral amygdala and layers V & VI pyramidal neurons

Using different multiple data types and analyses, we validated the network on the transcriptional and proteomic levels and evaluated the biological functions of each module. To validate the transcriptional level ('transcriptome' column), we examined the top 100 most highly connected genes within each module in a very large, independent data set of many thousands of microarrays (Day et al., 2007). This showed that co-expression relationships identified here are conserved and highly significant compared with a similarly sized group of randomly selected genes (P < 0.004). We validated co-expression relationships on the proteomic level using a database of protein–protein interactions ('proteomics' column) (Peri et al., 2003). Here, genes that are highly connected within the same module (kME > 0.7) were significantly more likely to interact with each other than random groups of genes (P < 0.004). The 'module validation' column shows that the mean TO within each module is significantly greater than what would be expected by chance, showing strong statistical support for every module (P < 0.004). The 'top three hub genes' column displays the top three genes that have the highest kME within each module. The 'gene ontology' column displays the most characteristic category for each module, and the 'cell types' column provides a summary of the associated cell populations for each module.
in vesicle formation (Malecz et al., 2000). The green (#4) module corresponded to the difference between glutamatergic and GABAergic neurons and was involved in synaptic transmission ($P=3.7 \times 10^{-4}$).

Modules that were associated with GABAergic neurons had multiple, diverse functions. For example, the light yellow (#6) and red (#11) modules corresponded to developmentally distinct groups of interneurons, and hubs within both of these
modules are known to influence neuronal development, including Arx, Dlx1, and Lhx1 (Shawlot and Behringer, 1995; Anderson et al, 1997a; Kitamura et al, 2002). The yellow (#13) module was likely related to neuronal physiology because it was enriched in genes involved in ion transport ($P=5.6e^{-4}$). The orange (#8) module was enriched in genes involved in apoptosis ($P=0.0089$), but this module also showed a greater correlation with the YFP strain than specific cell types. Therefore, this module might either be related to injury after dissection or strain differences between animals.

Finally, there were three modules that corresponded to subsets of both glutamatergic and GABAergic neurons, and each of these modules represented basic cellular functions. The blue (#2) and turquoise (#12) modules were both enriched in genes localized to the endoplasmic reticulum (ER) ($P=0.0091$). We used these basic classifications to more thoroughly examine how differences in development and basic cellular functions contribute to neuronal diversity.

Developmental diversity

Classically, neuronal diversity has been studied through specific marker genes that correspond to differences in specification or origin. We hypothesized that gene expression would reflect these relationships and used the light yellow (#6) module to examine interneuron development from the network perspective. The light yellow (#6) module contains genes that are specifically expressed or repressed in the subset of interneurons derived from the subpallium (Figure 2E), such as all of the Distalless transcription factors that are expressed in the brain (Panganiban and Rubenstein, 2002). In addition, GO analysis showed that both cell migration ($P=0.03$) and neuron differentiation ($P=0.03$) were overrepresented within the module (Supplementary Table 2). These data suggest that this module relates to interneuron development and the molecular pathways within this cell class that persist into adulthood.

For computational efficiency, the original network was generated using the subset of genes showing the most variance between samples. Therefore, we examined all genes on the array for significant connectivity to the light yellow (#3) module and identified all relevant genes based on their k_{ME} to the light yellow module. We included every gene that had a $k_{ME}>0.63$ ($P<0.001$, FDR correction), creating an expanded light yellow (#3) module with 826 genes. Hierarchical clustering of this larger meta-module based on TO showed submodules representing subtle variants of the original expression pattern, and we examined these submodules for relationships to interneuron development and specification.

The first submodule had an expression pattern that was very similar to that of the original light yellow module. The two most highly connected genes were transcription factors Dlx1 and Arx (Figure 3A) that are critical for the specification of interneuron subtypes and migration from the medial ganglionic eminence (Anderson et al, 1997a; Kitamura et al, 2002). The ME and the known roles of these hubs in development show that this module corresponds to the transcriptional program present in subpallially derived interneurons. The second submodule corresponded to cholecystokinin-positive interneurons (Figure 3B). These interneurons are derived from the caudal ganglionic eminence, and they tend to be born later than their counterparts from the medial ganglionic eminence (López-Bendito et al, 2004; Wonders and Anderson, 2006). In this submodule, Npas1 was highly connected ($k_{ME}=0.91$), which is consistent with recent data showing that Npas1 is expressed in a related subset of interneurons that express calretinin (Erbel-Sieler et al, 2004; Cobos et al, 2006). However, its functional role in this specific subset of interneurons has not been shown earlier. These data predict that Npas1 is a gene central to their development and mature function.

The third submodule had genes specifically regulated in both somatostatin- and parvalbumin-positive interneurons (Figure 3C). Interestingly, these interneuron populations are derived from the medial ganglionic eminence within the subpallium (Wonders and Anderson, 2006). Furthermore, Lhx6 was highly connected within this module ($k_{ME}=0.96$), and it has been shown to play an important role in migration of this class of interneurons from the subpallium to the neocortex (Allfragis et al, 2004; Liodis et al, 2007). In addition to observing genes known to be important for interneuron development, we identified another of the most highly connected genes, galectin-1 (Lgals1) ($k_{ME}=0.95$) within this module, which had no known role in these cell populations. Visualization of this submodule illustrates that galectin-1 and somatostatin are closely related (Figure 3C); because of its hub status, we hypothesized that Lgals1 would be a marker of somatostatin-positive interneurons. We tested this by immunostaining for both galectin-1 and somatostatin in wild-type adult mouse brain and found that galectin-1 was preferentially expressed in the somatostatin-positive interneurons of the cortex. We observed that nearly 80% of the galectin-1-positive
cells were also somatostatin positive and a similar proportion of the somatostatin-positive cells were also galectin-1 positive (Figure 4A). As a control, galectin-1 was occasionally co-expressed with another marker of a different class of interneurons, parvalbumin, with only 3.2% of galectin-1-positive cells being parvalbumin positive and 8.5% of parvalbumin-positive cells being galectin-1 positive (Figure 4B). These data show that galectin-1 is highly enriched in the somatostatin-positive interneurons that are derived from the medial ganglionic eminence and may serve as a useful marker for this class of cells.

Physiological heterogeneity

Neurons differ greatly in their characteristic firing activity, and we hypothesized that some modules would be related to this...
fundamental neuronal phenotype. We tested this by comparing physiological parameters to the gene expression patterns found within the modules. We derived a mean firing rate for each neuronal population (from Sugino et al., 2006; Figure 1) and compared these values to each ME (Supplementary Table 8). After correction for multiple comparisons four MEs had significant correlations, including the blue (#2), yellow (#13), black (#1), and pink (#9) (Supplementary Figure 2). The blue (#2) module had the highest correlation with mean firing rate ($r=0.61$, $P=6.2e^{-5}$), and we observed earlier an enrichment of proteins localized to mitochondria ($P=1.9e^{-6}$) and involved in carboxylic acid metabolism ($P=1.2e^{-4}$). This suggests that the coupling between neuronal activity and oxidative energy production (Kasischke et al., 2004) extends to the transcriptional level and identifies a key set of transcripts involved in this process.

Subcellular diversity and correspondence with the proteome

Neuronal morphology and metabolism are aspects of neuronal phenotypic diversity that we theorized might be reflected at the transcriptional level through variation in organelar composition. We tested this hypothesis by comparing modular organization to proteomic data from a large-scale analysis of subcellular organelles (Foster et al., 2006), and other studies that focused on specific neuronal features, such as the synaptosome (Schrimpf et al., 2005), the postsynaptic density (Collins et al., 2006), a presynaptic fraction (Phillips et al., 2005), and synaptic vesicles (Morciano et al., 2005). We observed significant overrepresentation of many subcellular components within a specific subset of modules (Figure 5A; Supplementary Tables 9 and 10), validating the predictions of the transcriptional network at the level of the proteome. For example, organelles involved in trafficking were overrepresented within the brown (#3) module, including the early endosomes, the ER, the golgi apparatus, the recycling endosomes, and the ER/golgi vesicles. These data support our earlier hypothesis that the brown (#3) module was associated with trafficking within the cell.

Characterization of two classes of neuronal mitochondria

The existence of mitochondrial heterogeneity within neurons has been suggested earlier, with one population localized to the cell body and the other localized to synapses (Lai et al., 1977). However, no clear functional or transcriptional difference between these mitochondria has been shown. Therefore, we hypothesized that genes within these two modules reflect different mitochondrial populations and tested this hypothesis by determining whether hub genes within the modules could be used to differentiate between mitochondrial populations. Using similar methods to those described earlier in the interneuron module, we created submodules within the blue (#2) and turquoise (#12) modules to identify the most specific mitochondrial components. We assessed each submodule for enrichment in genes localized to the mitochondria using GO analysis and identified submodules within the blue (#2) ($P=3.5e^{-26}$) and turquoise (#12) module ($P=4.8e^{-27}$) that were enriched with mitochondrial genes. Given the correlations of the parent modules, we hypothesized that the turquoise submodule corresponded to synaptic mitochondria and that the blue submodule corresponded to non-synaptic mitochondria.

![Figure 4](image)

Figure 4 Galectin-1 is preferentially expressed in somatostatin-positive interneurons. Photomicrographs of galectin-1 (Lgals1) expression in normal adult mouse cortex and counterstaining with interneuron markers. **(A)** Immunostaining of galectin-1 (red) and somatostatin (green) shows frequent colocalization. **(B)** Immunostaining of galectin-1 (red) and parvalbumin (green) shows rare colocalization. Quantification of colocalization is shown in the barplot to the right of each figure (± s.e.m.). Scale bar: 20 μm.
To validate this finding, we chose to examine a well-characterized subset of representative hub genes that were known to localize within mitochondria (Figure 6A). These genes included *Phb* and *Fis1/Ttc11* in the non-synaptic mitochondrial module and *Vdac2* and *Uqcrfs1* in the synaptic mitochondrial module. We used cellular fractionation to obtain the free mitochondrial fraction and synaptosomal fraction from adult mouse brain (Dodd *et al.*, 1981). The identity of these fractions was confirmed by showing enrichment of synaptophysin in the synaptosomal fraction and the presence of cytochrome (c) in all preparations (Figure 6B). By comparing the expression between these fractions, we observed that modular membership correctly predicted enrichment of mitochondrial proteins within each fraction. The expression of hub genes in the non-synaptic mitochondrial module (*Phb* and *Fis1/Ttc11*) was enriched in the mitochondrial fraction, whereas the genes in the synaptic mitochondrial module (*Vdac2* and *Uqcrfs1*) were enriched in the synaptosomal fraction (Figure 6B). We further examined the localization of these proteins in primary culture using confocal microscopy. *Phb*, a gene in the non-synaptic mitochondrial module, was mainly colocalized with mitochondria in the cell body (Figure 6C), whereas *Uqcrfs1*, a gene in the synaptic mitochondrial module, was colocalized with mitochondria in the processes, as well as the cell body (Figure 6D). These data indicate for the first time that mitochondrial heterogeneity in neurons is reflected at the transcriptional level and provides a set of new markers to enable the study of mitochondrial populations and their physiological function within neurons.

Regulation of modular organization in vivo

We have shown that modules represent functionally related gene groupings that are related to important aspects of neuronal function. To provide a further experimental validation, we tested basic network predictions in two strains of knockout mice. Network theory predicts that the disruption of...
a highly connected gene, or hub, will preferentially affect genes within the same module because of their high degree of co-regulation (Albert et al., 2000; Jeong et al., 2001). Such a relationship has been observed in unicellular organisms, such as yeast (Carlson et al., 2006), but has not been shown earlier in multicellular tissues such as the brain.

To test the hypothesis that connectivity predicts co-regulation in vivo, we performed microarray expression analysis on the cortex of mutant mice that had a single large deletion of Dlx1 and Dlx2 (Anderson et al., 1997b) because Dlx1 was a highly connected gene in our analysis. Owing to the perinatal lethality of the mutation, we were only able to obtain gene

Figure 6 Submodules within the blue and turquoise modules represent different mitochondrial populations. We examined the expression of genes known to be localized to the mitochondria in submodules of both the blue and turquoise modules subcellular fractionation. (A) Table showing the most highly connected genes in the synaptic and non-synaptic mitochondrial submodules, sorted by intramodular connectivity. The genes that are in bold (Vdac2, Uqcrfs1, Phb, Fis1/Ttc11) denote those genes that we chose to experimentally validate. Although Phb and Fis1/Ttc11 are not within the most highly connected genes, they have a kME > 0.75. (B) Representative western blots of the synaptosomal and mitochondrial fractions that show the relative enrichment of specific genes within one fraction that was predicted by the network. Control blots of synaptophysin (34 kDa) and cytochrome (c) (14 kDa) show appropriate enrichment in synaptic and mitochondrial fractions, respectively. (C) Three replicate western blots showing the ratios of synaptosomal or mitochondrial enrichment of each of the proteins (± s.e.m.). The genes in the non-synaptic mitochondrial module, Fis1/Ttc11 (17 kDa) and Phb (30 kDa), were enriched 47- and 6-fold in the free mitochondrial fraction versus the synaptosomal fraction, respectively. The genes in the synaptic mitochondrial module, Uqcrfs1 (25 kDa) and Vdac2 (38 kDa), were enriched 8- and 7-fold in the synaptosomal fraction versus the free mitochondrial fraction, respectively. (D) Primary hippocampal neurons after 3 weeks in vitro. MitoTracker (red) was used to label the mitochondria within a neuron, whereas Map2 (blue) was used to label the neuronal processes. Phb (green) is a hub in the non-synaptic mitochondrial module, and it co-localizes with mitochondria mainly within the cell body (arrows). (E) Uqcrfs1 (Green) is a hub in the synaptic mitochondrial module, and it co-localizes primarily with mitochondria in the neuronal processes (arrows), as well as those in the cell body. These data indicate that genes in the synaptic mitochondrial module are enriched in mitochondria that are localized to neuronal processes. Scale Bar: 20 μm.
expression data from mice killed at embryonic day 15.5. Genes were filtered based on reliable presence calls and assessed for differential expression using a Bayesian ANOVA (Baldi and Long, 2001). We hypothesized that the light yellow (#6) module would be enriched for differentially expressed genes because $Dlx1$ is a hub within that module. We observed that the light yellow (#6) module had a significant overrepresentation of differentially expressed genes ($P = 5.3e^{-5}$) (Figure 7A), which included two known targets of $Dlx1$, Arx, and $Dlx5$ (Zerucha et al., 2000; Zhou et al., 2004; Cobos et al., 2005a). We then directly examined the relationship between connectivity and gene expression by comparing the TO that a gene shares with the deleted gene and its chance of being differentially expressed. We observed a significant relationship between connectivity and differential expression in knockout animals because genes in the top quartile of connectivity with $Dlx1$ were more likely to be differentially expressed than genes in lower quartiles (Figure 7C). These data show that $Dlx1$ and $Dlx2$ have functional roles in regulating the expression of genes within the light yellow module, which was predicted by their network centrality. This analysis also provides a set of genes for future exploration of interneuron development and physiology, many of which were not known to have a function in interneuron function.

We tested the robustness of this relationship between connectivity and expression by examining the effects of a deletion of $Rgs4$, which is a regulator of G-protein signaling (Hepler et al., 1997; Ladds et al., 2007) that has been linked to schizophrenia (Mirnics et al., 2001; Chowdari et al., 2002). Although $Rgs4$ was not the most central gene, it was well connected in the green (#4) module ($k_{ME} = 0.80$), providing a stringent validation of network predictions. We generated transgenic mice with a targeted deletion of $Rgs4$ (Supplementary Figure 3), and despite having no $Rgs4$ protein expression in the frontal cortex (Supplementary Figure 4), these mice grow to reproductive age, are fertile, and exhibited no gross abnormalities. In addition, there was no deviation from expected Mendelian frequencies when heterozygotes were interbred and no apparent difference between embryonic, neonatal, or adult lethality between knockout and wild-type strains (data not shown). We collected RNA from the frontal cortex of male adult knockout animals and performed microarray analysis to examine the effects of the $Rgs4$ deletion on gene expression. We observed that $Rgs4$ was called absent in all samples from knockout mice and present in all samples from wild-type mice, further verifying the deletion of $Rgs4$ (Supplementary Figure 4b). We then filtered genes for reliable presence calls and assessed for differential expression using a Bayesian ANOVA (Baldi and Long, 2001), as described for the $Dlx1/Dlx2$ mutant above. We then assessed whether genes differentially expressed between wild type and knockout mice were enriched in a specific module(s) or randomly distributed throughout the network. There was significant enrichment of differentially expressed genes in the green (#4) module, containing $Rgs4$ ($P = 0.004$) (Figure 7B), but no enrichment in any other module. In addition, we examined the relationship
between intramodular connectivity and gene expression, by comparing the extent of TO with the deleted hub gene and differential expression. We observed a clear relationship between the intramodular connectivity of a gene with Rgs4, in terms of TO, and its chance of being differentially expressed (Figure 7C), which was strikingly similar to what was observed in the Dlx1/Dlx2 mutant. These data provide further evidence that relationships detected by the network analysis reflect real relationships between genes and their co-regulation that are present in vivo, providing an additional level of experimental validation of network organization and predictions.

Discussion

The molecular basis of neuronal diversity can be examined from multiple perspectives. Here, we present an unbiased view of transcriptome organization in various neuronal subtypes and show that such data can be used for exploration of neuronal function and diversity. We provide systematic validation of the co-expression relationships observed in these data by comparing with other large, independent transcriptional and proteomic data sets. Furthermore, by elucidating the modular organization of gene co-expression, we show relationships between the transcriptome and several of the core elements that distinguish different neuronal populations, including basic cell types, developmental origins, physiological properties, and metabolic features of the cell. We also show that co-expression on the transcriptional level correlates with functional relationships on the protein level through the correspondence between modules and proteomic data. Finally, we extend these analyses by performing confirmatory, proof-of-principle experiments in vitro and in vivo. For example, we provide evidence for the existence of two transcriptionally distinct mitochondria classes in neurons for the first time, one that is synaptic and clustered in processes, and the other mainly in the cell body.

These data, though providing many specific biological insights, also allow us to contrast WGCNA with more standard analyses of differential gene expression. These approaches are clearly complementary and emphasize different aspects of neuronal cell biology. For example, genes that are differentially expressed between different cell types are likely to be marker genes of specific populations, and therefore, cell-type-specific gene expression is emphasized by analysis of differential expression. Hence, although many hubs within the interneuron submodules were known to be important in interneuron development, such as members of the Distalless family, Arx and Lhx6 (Kitamura et al., 2002; Panganiban and Rubenstein, 2002; Liodis et al., 2007), these results could have been expected knowing the lineage and phenotype similarities between these neurons. For this reason, some of these cell-type-specific expression patterns (Dlx1, Arx) were identified by Sugino et al. (2006). However, in contrast to WGCNA, analysis of differential expression does little to organize the relationships between such markers and other genes that are differentially expressed between cell types. For example, there were hubs within the interneuron modules that were not known to be involved in interneuron function, including Lhx6 and galectin-1, a lectin involved in cell adhesion, which we show by immunohistochemistry to be highly enriched in somatostatin-positive interneurons.

The complementary nature of analysis of differential expression and WGCNA is further emphasized by our observation of only one cell-type-specific module using WGCNA. This is because WGCNA is emphasizing the major sources of variance in gene expression patterns that are shared between more than one cell types. WGCNA suggests that neuronal diversity is created by several quantitative, continuous characteristics and the intersection of these gene co-expression relationships correspond to the major phenotypic differences that are observed. Examination and elucidation of these shared gene expression patterns showed several other biological insights. For example, multiple modules correspond to basic neuronal characteristics, such as energy production, transport, mitochondria, and synaptic structure, showing that these basic aspects of neuronal cell biology are important sources of neuronal diversity, along with widely recognized lineage and developmental differences. We further show how one can use the modular organization of transcriptional network for functional discovery, identifying two mitochondrial modules that correspond to differential localization of mitochondria classes within neurons. Within modules, the extent of connectivity or correlation with the ME can be used as a measure of network centrality (Dong and Horvath, 2007), which allows for the identification of hub genes that are critical to modular function. We used this measure of connectivity to select targets for experimental manipulation that provide evidence showing that network position predicted by WGCNA is reflected in vivo by changes in gene expression. These findings provide further evidence that a systems perspective of the neuronal transcriptome highlights functional co-expression relationships that are involved in fundamental neuronal processes.

We focused on the interneuron module for extended examination of how neuronal diversity created by differentiation was reflected at the transcriptional level in the adult brain. We observed expression patterns that corresponded to known interneuron developmental programs, and although many of fluoroescently labeled populations are known to be heterogeneous (Oliva et al., 2000; López-Bendito et al., 2004), these patterns were consistent between samples, suggesting that there is a predominant cell type within these populations. In addition, we observed that many of the genes central to these modules were known to be crucial for interneuron development. For example, Dlx1 and Arx were hubs of a submodule corresponding to telencephalic interneurons. Dlx1 and Dlx2 are functionally redundant and deleting both leads to failed interneuron development (Anderson et al., 1997a, b; Qiu et al., 1997). Arx is necessary for normal interneuron development and function, and mutations in Arx cause defective interneuron migration, resulting in an epilepsy syndrome in humans and mice (Kitamura et al., 2002). Another example of a gene observed to be central in this analysis and interneuron function was Lhx6 (Alifragis et al., 2004; Liodis et al., 2007). Lhx6 was a hub within a module corresponding to parvalbumin- and somatostatin-positive interneurons, which are derived from the medial ganglionic eminence. In the course of this analysis, Liodis et al showed that mice lacking Lhx6 showed impaired migration of
interneurons from the medial ganglionic eminence and decreased numbers of both parvalbumin- and somatostatin-positive interneurons (Liodis et al., 2007). However, not all of the hubs that we observed were known regulators of interneuron development. For example, Lgals1 was found to be a hub in the same module as Lhx6, but it had not been studied earlier in either interneuron subtypes. We found that it was a reliable marker for a somatostatin-positive interneuron population. This analysis predicts that hub genes identified in this analysis are involved in maintenance of differentiated populations of interneurons, despite the fact that some have clear roles in development. This is consistent with data showing that the expression of many developmental patterning genes are maintained into adulthood (Zapala et al., 2005), as well as examples of genes that have known roles in development and maintenance of neurons, such as Mef2 and NeuroD (Chae et al., 2004; Heidenreich and Linseman, 2004). Dlx1 is similar because interneurons in Dlx1 knockout mice undergo apoptosis during postnatal development (Cobos et al., 2005b). Therefore, it will be interesting to pursue the functions of the hub genes within these modules in the maintenance of interneuron function and phenotype in the adult animal.

Another aspect of neuronal heterogeneity highlighted by this analysis is the difference in basic organelle composition among neurons. We observed that the blue (#2) module was enriched in mitochondrial proteins by both GO analysis and comparison with proteomic data, and expression in this module correlates significantly with the firing rates of the neuronal populations. Although the expression of specific ion channels can dramatically impact neuronal activity (Toledo-Rodriguez et al., 2004), our data indicate that mitochondrial gene expression is associated with activity in a more global manner, which is consistent with the known connection between neuronal firing rate and cellular oxidative energy production (Kasischke et al., 2004). The turquoise (#12) module was also enriched for mitochondrial and synaptic proteins, but it was unrelated to firing rate. We confirmed the network-derived hypothesis that the turquoise (#12) and blue (#2) modules might represent synaptic and nonsynaptic mitochondria by comparing protein expression in the synaptosomal versus free mitochondrial fractions and immunohistochemistry. These data provide a set of genes with which to mark these different mitochondrial classes and probe their function. Recently, it has been shown that synaptic mitochondria are more susceptible to calcium overload and mitochondrial permeability transition (Brown et al., 2006) because of increased expression of Cyclophilin D (Ppif) in mitochondria purified from synaptosomes (Naga et al., 2007). Ppif is present within the synaptic mitochondria submodule \(k_{ME} = 0.77\), providing a systems context in which to interpret these physiological data. In addition, our analysis shows that Vdac2 \(k_{ME} = 0.94\) and Slc25a5 (Ant2) \(k_{ME} = 0.90\) are hubs within the synaptic mitochondria submodule and they are both thought to be involved in mitochondrial permeability transition (Crompton et al., 1998; Kokoszka et al., 2004; Baines et al., 2007). These two mitochondrial submodules that we have identified and studied contain a molecular blueprint for these different mitochondrial populations, which provides a new basis for understanding their roles in neuronal physiology. That these genes, Vdac2, Slc25a5, and Ppif, are hubs, reinforces the idea that susceptibility to mitochondrial permeability transition provides one key functional distinction between these two classes of mitochondria.

We have shown that modules correspond to several phenotypic aspects of neuronal diversity, but within these modules we are also able to identify central genes involved in regulating gene expression within the module. For example, Dlx1 is a central gene within the light yellow (#6) module, and we observed a highly significant enrichment of differentially expressed genes between Dlx1/Dlx2 knockout and control within the light yellow (#6) module \(P = 5.3e^{-5}\). In this case, differential expression is probably caused by the absence of interneurons in the cortex because of disrupted interneuron migration (Anderson et al., 1997a). However, gene expression in knockout animals was assessed at embryonic day 15.5, whereas the data used to construct the network were obtained in adult mice. Thus, this module seems to be stable throughout development, which has interesting implications for the relationship between developmental programs and adult neuronal function and is consistent with other data showing that developmental patterns of gene expression are relevant to adult neuronal function (Zapala et al., 2005).

Despite the robust relationship between connectivity and expression in the Dlx1/Dlx2 knockout mice, this relationship might be expected because these genes are critical transcription factors known to be involved in the differentiation of interneurons (Anderson et al., 1997a). Therefore, we tested this relationship in Rgs4 knockout mice because Rgs4 was a hub, but not as well connected as Dlx1/Dlx2. As was observed in the Dlx1/Dlx2 knockout, genes in the same module as Rgs4 were preferentially perturbed in the knockout mice, and there was a clear relationship between magnitude of TO with Rgs4 and the likelihood of being differentially expressed. These data illustrate that connectivity and module membership are powerful predictors of interaction in vivo, and the deletion of a gene can have specific effects on transcription even if the gene itself does not directly affect transcription, suggesting tight transcriptional regulation using complex feedback systems. Rgs4 is implicated in schizophrenia based on several lines of evidence (Mirmics et al., 2001; Chowdari et al., 2002), and this analysis provides candidate genes that may functionally interact with Rgs4, which could be important in delineating the mechanisms through which this gene functions in health and disease. These data support our hypothesis that central genes are important for modular organization, and therefore are likely to be important drivers of neuronal diversity, whether they are responsible for differentiation or more basic functional aspects of the cell. In addition, poorly characterized genes that are highly connected to hub genes with known function are likely to be similar in participating in similar biological processes, providing a means to annotate gene function.

In summary, we have used WGCNA to elucidate the organization of gene expression within neurons, which is organized into a hierarchical, scale-free network, containing modules of highly co-expressed genes. These modules correspond to multiple aspects of neuronal function and illustrate the relationships between gene expression and the
basic variable features of neurons that give rise to anatomical and physiological diversity. We have systematically validated the identified co-expression relationships using published large-scale proteomic and genomic data sets, as well as by specific in vitro and in vivo experiments. These experiments provide examples of functional discovery by using the network to generate hypotheses that are then tested. Overall, these analyses provide a systems-level framework for understanding the molecular basis of neuronal diversity, which can be used to gain insight into the underlying mechanisms of important biological processes in health and disease.

Materials and methods

Microarray data and network construction

Raw data from all microarrays from Sugino et al (2006) (GSE2882: GSM63015–GSM63050) were imported into R (http://www.r-project.org/), scaled to the same average intensity, and normalized using the quantile normalization method from Bioconductor (http://www.bioconductor.org/) (Choe et al, 2005; Oldham et al, 2006, 2008). Genes with consistent presence in at least one cell type, high coefficient of variation (\(>0.21\)), and high connectivity (\(k>0.11\)) were selected for network construction and resulted in a network size of 4097 genes. The TO between these genes was calculated based on Zhang and Horvath (2005), where the TO between genes is calculated from the adjacency matrix (\(a\)):

\[
\frac{\sum_{k}a_{ik}a_{jk} + a_{ij}}{\min(\sum_{k}a_{ik}, \sum_{k}a_{jk})} - a_{ij} + 1
\]

where we assume that the diagonal elements of \(a\) are equal to zero. These genes were clustered on based on their TO, and modules were identified using an automatic module detection algorithm (with 50 genes being the minimum module size) and assigned both a color and number (Langfelder et al, 2008). Similar modules were identified by calculating the Pearson correlation between MEs, and modules were combined according to Oldham et al (2008). Although the network initially included these genes, the network analysis was subsequently extended to all genes on the array based on their correlation with the initially included these genes, the network analysis was subsequently calculated from the adjacency matrix (\(a\)):

\[
\frac{\sum_{k}a_{ik}a_{jk} + a_{ij}}{\min(\sum_{k}a_{ik}, \sum_{k}a_{jk})} - a_{ij} + 1
\]

Immunohistochemistry

Adult C57/B16 mice were perfused, and their brains were fixed with 4% PFA and sectioned at 30 μm. The anti-galectin-1 antibody was a generous gift from Dr Linda Baum. The anti-somatostatin antibody (CURE.S6) was obtained from Animal Core of CURE, Digestive Diseases Division, UCLA. Anti-galectin-1 was used 1:250 and anti-somatostatin was used 1:50 overnight at 4°C. Donkey secondary antibodies conjugated to Alexa-488 and Alexa-594 were incubated for 1 h at room temperature.

Cellular fractionation

Brains from adult C57/B16 mice were homogenized using a glass dounce homogenizer in mitochondrial buffer (250 mM D-mannitol, 70 mM sucrose, 10 mM HEPES, pH 7.4), and the mitochondrial and synaptosomal fractions were collected according to Dodd et al (1981). Briefly, nuclei and debris were removed by centrifugation at 1000 g, and the supernatant was collected. This material was pelleted by centrifuging at 10 000 g. The pellet was then resuspended in 8 ml of mitochondrial buffer and layered over a 1.2 M sucrose gradient, which was subsequently spun at 39 000 r.p.m. (TH-641 Sorvall rotor) for 30 min. The interphase was collected and re-diluted to 8 ml, and the mitochondrial pellet was collected in a separate tube and re-suspended in mitochondrial buffer. The dilute interphase was then layered over a 0.8 M sucrose gradient, which was spun at 39 000 r.p.m. for 30 min. The synaptosomal pellet was then re-suspended in mitochondrial buffer. The synaptosomes were then lysed in 6 ml Tris–HCl pH 8.1. The mitochondrial and synaptosomal fractions were denatured in SDS loading buffer with DTT, and the samples were run on a 12% acrylamide gel, which was transferred to nitrocellulose membranes. The following antibodies were used to probe the membranes, anti-synaptophysin (Abcam), anti-cytochrome c (Cell Signaling), anti-Vdac2 (Santa Cruz), anti-Uqcrfs1 (Abcam), anti-Fis1/Trcl1 (Abcam), and anti-Pihb (Abcam).

Immunocytochemistry

Primary hippocampal neuronal cultures were established according to established methods (Jahr and Stevens, 1987). Briefly, the hippocampi was dissected from P3 wild-type mice, digested in Papain (10 units/ml) (Worthington) for 35 min, and dissociated by pipetting through fire-polished Pasteur pipets. They were plated onto coverslips coated with poly-ornithine and laminin, and they were grown in neurobasal supplemented with B27. After 3 weeks in vitro, coverslips were incubated with 50 mM MitoTracker for 15 min, and then they were fixed with 4% paraformaldehyde for 10 min. Antigen retrieval was performed by incubating coverslips in 0.1 M Tris–HCl and 5% urea pH 8.0 at 85°C for 20 min. Anti-Pihb and anti-Uqcrfs1 were used at a dilution of 1:200 overnight at 4°C, and donkey secondary antibodies were used at 1:1000 for 1 h at room temperature.

In vivo validation of network predictions

Dlk1/Dlx2 knockout animals were obtained and RNA was obtained using Trizol (GibcoBRL) from wild type and mutant cortex at
embryonic day 15.5 in duplicate. The obtained RNA was amplified and labeled using the GeneChip IVT Labeling kit (Affymetrix), and run on Affymetrix MOE430 2.0 microarrays. Data were normalized as described above and filtered for genes present in both the replicates of either mutant or wild-type samples. Differential expression was assessed using a Bayesian ANOVA (Baldi and Long, 2001) with a threshold of P<0.01.

Rgs4 knockout animals were generated using standard methods of embryonic stem cell electroporation, selection, and screenings (see Supplementary information for details). Briefly, a targeting vector containing homologous regions to the Rgs4 locus and LoxP sites flanking a neomycin resistance cassette and all coding regions except for exon 1 was linearized and electroporated into TL1 [129SvEvTac] cells (Supplementary Figure 3). Resident colonies were selected using PCR and confirmed using a Southern blot (Supplementary Figure 4a), and these cells were injected into blastocysts. Congenic mice with floxed Rgs4 were bred with a CRE deleter line that led to the inheritance of the Rgs4 deletion. Frontal cortex was obtained from animals that were homozygous for the Rgs4 deletion and loss of Rgs4 was confirmed at both the mRNA (Supplementary Figure 4b) and protein level (Supplementary Figure 4c). Microarray analysis was performed as described above.

Data exploration resources
We have only been able to study a few functional insights from this co-expression network. Beyond the analyses presented in this manuscript, we have also included two resources to allow investigators to query the position of specific genes of interest and generate new hypotheses. The Rgs4 table contains the predicted module membership for all genes on the array, allowing direct annotation of specific genes based on the modular functions described here. The second is a network neighborhood tool that allows one to identify the genes that are co-regulated with a gene(s) of interest based on their TO. MultiTOM contains homologous regions to the Rgs4 locus and LoxP sites flanking a neomycin resistance cassette and all coding regions except for exon 1 was linearized and electroporated into TL1 [129SvEvTac] cells (Supplementary Figure 3). Resident colonies were selected using PCR and confirmed using a Southern blot (Supplementary Figure 4a), and these cells were injected into blastocysts. Congenic mice with floxed Rgs4 were bred with a CRE deleter line that led to the inheritance of the Rgs4 deletion. Frontal cortex was obtained from animals that were homozygous for the Rgs4 deletion and loss of Rgs4 was confirmed at both the mRNA (Supplementary Figure 4b) and protein level (Supplementary Figure 4c). Microarray analysis was performed as described above.

Supplementary information
Supplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).

Acknowledgements
We thank Sugino et al for their generous sharing of the data and Sacha Nelson for his valuable comments on an earlier draft of this manuscript. We thank members of the Geschwind lab for their helpful input and Ezra Rosen specifically for testing the network explorer on this data set. We thank Dr Kelsey Martin and members of the Martin lab, Dr Carrie Heusner, and Rachel Jefferey, for valuable discussions and technical expertise. We thank Dr Linda Baum for generous gift of the galexin-1 antibody and the Animal Core of CURE, Digestive Diseases Division, UCLA for the generous gift of the somatostatin antibody (CURE.S6). For her excellent work on generating the microarray data for the Rubenstein lab, we thank Winnie Liang at the NIH Neuroscience Microarray, Translational Genomics Research Institute, Neurogenomics Division. We acknowledge support from NIH grants NIMH #R37 MH0233-06A1 (DHG, KW, MO), NINDS #U24 NS52108 (DHG, SH), NIGMS GM08042 (KW), Neurobehavioral Genetics Training Grant T32MH073526-01A1 (KW), Medical Scientist Training Program UCLA (KW), Aesculapians Fund of the UCLA School of Medicine (KW), the Miriam and Sheldon Adelson Program in Neural Repair and Rehabilitation (DHG, SH), and the JLR from Nina Ireland, NIMH R01 MH94928-01, R01, and K05 MH065670 (JR, CS).

Conflict of interest
The authors declare that they have no conflict of interest.
Oliva Jr AA, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in gabaergic interneurons. J Neurosci 20: 3354–3368

Panganiban G, Rubenstein JLR (2002) Developmental functions of the distal-less/dlx homeobox genes. Development 129: 4371–4386

Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13: 2363–2371

Phillips GR, Florens L, Tanaka H, Khaing ZZ, Fidler L, Yates III JR, Colman DR (2005) Proteomic comparison of two fractions derived from the transsynaptic scaffold. J Neurosci Res 81: 762–775

Polleux F (2005) Genetic mechanisms specifying cortical connectivity: let’s make some projections together. Neuron 46: 395–400

Qiu M, Bullfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, Presley R, Pedersen RA, Rubenstein JL (1997) Role of the dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of dlx-1, dlx-2, and dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol 185: 165–184

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555

Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5: 2531–2541

Shawlot W, Behringer RR (1995) Requirement for lim1 in head-organizer function. Nature 374: 425–430

Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249–255

Sugino K, Hempel CM, Miller MN, Hattoo AM, Shapiro P, Wu C, Huang ZJ, Nelson SB (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9: 99–107

Toledo-Rodriguez M, Blumenfeld B, Wu C, Luo J, Attali B, Goodman P, Markram H (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex 14: 1310–1327

Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7: 687–696

Yip AM, Horvath S (2007) Gene network interconnectness and the generalized topological overlap measure. BMC Bioinformatics 8: 22

Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8: 1552–1559

Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R, Tynan W, Broide RS, Helton R, Stoveken BS, Winrow C, Lockhart DJ, Reilly JF, Young WG, Bloom FE, Lockhart DJ, Barlow C (2005) Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci USA 102: 10357–10362

Zerucha T, Stühmer T, Hatch G, Park BK, Long Q, Yu G, Gambarotta A, Schultz JR, Rubenstein JL, Ekker M (2000) A highly conserved enhancer in the dlx5/dlx6 intergenic region is the site of cross-regulatory interactions between dlx genes in the embryonic forebrain. J Neurosci 20: 709–721

Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: Article17

Zhou QP, Le TN, Qiu X, Spencer V, de Melo J, Du G, Plews M, Fonseca M, Sun JM, Davie JR, Eisenstat DD (2004) Identification of a direct dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Res 32: 884–892

Molecular Systems Biology is an open-access journal published by European Molecular Biology Organization and Nature Publishing Group.

This article is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Licence.