Exploring Machine Learning for Classification of QUIC Flows over Satellite

Raffaello Secchi†, Pietro Cassarà†, and Alberto Gotta†
†School of Engineering, University of Aberdeen, UK
†National Research Council (CNR), Information Science and Technologies Institute (ISTI), Pisa, Italy

Abstract—Automatic traffic classification is increasingly important in networking due to the current trend of encrypting transport information (e.g., behind HTTP encrypted tunnels) which prevent intermediate nodes to access end-to-end transport headers. This paper proposes an architecture for supporting Quality of Service (QoS) in hybrid terrestrial and SATCOM networks based on automated traffic classification. Traffic profiles are constructed by machine-learning (ML) algorithms using the series of packet sizes and arrival times of QUIC connections. Thus, the proposed QoS method does not require explicit setup of a path (i.e. it provides soft QoS), but employs agents within the network to verify that flows conform to a given traffic profile. Results over a range of ML models encourage integrating ML technology in SATCOM equipment. The availability of higher computation power at low-cost creates the fertile ground for implementation of these techniques.

I. INTRODUCTION

The recently standardised QUIC protocol (Quick UDP Internet Connections) is set to replace the traditional HTTP-over-TCP web architecture [1]. QUIC introduces a single connection to multiplex data streams carrying different parts of a web page (a multi-streaming protocol). This provides great flexibility to mitigate the problems of head-of-line blocking and bidirectional transmission present in previous versions of HTTP [2]. In addition, QUIC encrypts both the transport and the user application headers preventing intermediate nodes from accessing transport information. While encryption provides strong guarantees of end-to-end security and confidentiality, systematic encryption of end-to-end information limits drastically network management functions and leads to performance degradation in contexts, such as the satellite network, in which QUIC may not be optimised for [3], [4].

Several authors have highlighted the drawbacks of encrypting transport headers in satellite networking [5], [6]. Access to transport information allows header compression/suppression when capacity is scarce, allows to adapt the protocol behaviour to the characteristics of the satellite link (eg. HTTP acceleration, split-connections, etc.), and to implement multi-class per-hop behaviour in absence of other IP signalling. To avert losing these benefits when QUIC or other HTTP tunnels will be prevalent, a solution is urgently needed.

This paper proposes an architecture for supporting Quality of Service (QoS) in hybrid terrestrial and SATCOM networks based on automated traffic classification. Traffic profiles are constructed by machine-learning (ML) algorithms using the series of packet sizes and arrival times in QUIC connections.

A QoS architecture for satellite networks based on ML was first proposed in [7]. The paper featured methods of feature selection, training of classifiers, and integration with the satellite resource management. Their results show that high accuracy can be achieved with a wide variety of classifiers and for a large range of traffic classes. However, feature extraction and training was still performed using transport header information (e.g. the TCP port) and training samples were taken from traces over the satellite link.

When using QUIC, no transport information is available to identify a connection (even the initial connection ID might be rotated as a result of a negotiation within the encrypted HTTP tunnel). This makes hard for Internet routers to track through deep packet inspection [8].

Our paper shows that a high degree of accuracy can be achieved also when the transport header’s information is not accessible from the classifier and the training is not done in satellite conditions (eg. with large delay or delay variance). This is good news because opens the possibility of training ML models on terrestrial networks or in laboratory conditions and then exporting the models in SATCOM equipment. Also, our results anticipate the use of satellite-connected nodes in collaborative learning environments or federated learning.

This paper also suggests a practical implementation of the QoS architecture using a Provisioning Domain (PvD) [9], which is a recent IETF standard for distribution of network configuration in trusted domains. A PvD-enabled router can include PvD containers in IPv6 router advertisements (RAs). In this paper we argue that PvD containers can be used to include QoS information to associate IPv6 address prefixes to certain categories of traffic. Using PvD is advantageous because does not require explicit setup of a path (i.e. it provides soft QoS). Rather it employs agents within the network to verify that flows conform to a given traffic profile.

The rest of the paper is organized as follows. In Section II the related works are presented. Section IV discusses the general motivation of machine learning approach in the satellite context. Section III provide details on the set up of the test-bed. The performance evaluation is shown in Section V. Conclusions and recommendations are reported in Section VII.
II. RELATED WORK

The literature on Internet traffic classification using machine learning is vast (see [10] for a recent survey on ML analysis of traffic). The proliferation of encrypted traffic in recent years resulted in an increasing use of flow-based methods that rely on the analysis of statistical or time series features using ML. These include Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbours (KNN) [7], [11]–[13]. More recently, approaches based on deep learning and deep neural networks have appeared to classify encrypted traffic [14], [15].

Most of the methods in literature, however, collect features from TCP and TLS headers (eg. the TCP port), while in QUIC transport header fields are encrypted or obfuscated. A few recent papers, however, attempt to classify directly QUIC traffic.

Reference [16] echoes previous authors in saying that the most burdensome task in building an ML model for traffic classification is data labelling, which requires human intervention, whereas capture of large traces is readily available. Their approach is to use a semi-supervised method, where only a subset of flows need to be labelled to enable accurate predictions. This approach was fine tuned in [8] where a deep convolutional generative adversarial network (DGCAN) was used to classify QUIC connections. Their approach provides an accuracy of 89% when only 10% of the dataset was labelled.

In [17] authors investigate a convolutional neural network (CNN) classifier to analyse LAN traffic. The classifier is able to detect several QUIC services including Google Hangout™, File transfer, YouTube™ and Google Play Music™ with good accuracy. While the initial analysis considers 1400 features, it is shown that through a method of features reduction, the significant set can be reduced to only three features.

In [18] traffic analysis is used to show that QUIC is prone to website fingerprinting attacks. To build the model, an adversary can use both the vector of the number of packets for each direction and flow level statistical features including the number, size and inter-arrival time of packets. Five ML models (Random Forest, Extra Trees, K-Nearest Neighbours, Naive Bayes and SVM) are compared.

Some authors [19] have successfully used ML to generate accurate user-perceived QoE (Quality of Experience) metrics for video services transported by QUIC. The accuracy of these results is an indication that ML is an adequate tool to categorise QUIC traffic.

III. A SOFT QoS ARCHITECTURE

In order to exploit the advantages of ML-based classification, we propose an architecture for soft coordination of end-hosts and network nodes based on Provisioning Domains (PvDs) [9]. End-hosts are informed about the availability of network access through Router Advertisements (RA) propagated by the local IPv6 router. RAs contain a list of network addresses that can be associated with network paths beyond the local gateway. An end-host uses one of the network addresses to forward traffic to the destination. Since the advertised addresses can be associated to descriptors of path characteristics, the end-host is made aware of the network configuration and can decide to forward traffic that matches the services offered by the network using a set of transport parameters suited for that path.

As the network nodes receive traffic from a certain address, they enforce the required treatment, but, at same time, verify that the traffic profile used by the source is consistent with the QoS definition of the path. Passive traffic analysis and identification is used to verify that the traffic generated by end-hosts effectively matches the expected set of characteristics. For instance, if a path is expected to carry progressive video streaming with a given average bitrate (e.g. DASH), the gateway should verify that the pattern of traffic resemble video streaming and the bitrate matches the expect one for that network.

A similar concept of soft QoS is used in DiffServ. In a DiffServ domain, edge routers are informed that the network supports a number of traffic classes. Edge routers initialise the DSCP (DiffServ Code Point) in the IP header before forwarding packets in the domain. The DSCP initialisation is based on a set of rules based on the IP and transport headers. Once that the packets are DSCP labelled, the internal routers use the DSCP information to enforce QoS treatments (Per Hop Behaviours). If traffic in a class exceeds the traffic envelope associated to that class, packets can be dropped or remarked (usually at the domain boundary in the policy enforcement function). In any case, no explicit negotiation is foreseen between end-hosts and network nodes.

The first difference between DiffServ and the present proposal is that DiffServ uses traffic classes identified by DSCPs while our architecture considers “paths” identified by IP addresses (and more precisely network identifiers) to which QoS descriptors are associated. The second difference is that, whereas there is a finite set of standard DSCPs, our architecture can associate a range of properties with paths on a much broader set using IPv6. Associating IP prefixes with QoS classes is particularly appealing when the lower layers support virtual circuits or networks. In this case, we can identify a mapping between a L2 network and an L3 traffic class. The great flexibility of IPv6 can be exploited to define networks with equivalent QoS characteristics.

This proposal employs more accurate techniques than classical token-bucket filters to characterise the traffic. For example, progressive video streaming over satellite is difficult to characterise by means of a “sustainable bit rate” due to the high burstiness. Albeit a rate-limited application, progressive video-streaming cannot be easily compared to broadcasting with constant committed information rate, which causes problems with bandwidth allocations. In addition, as the encrypted transport connections, such as QUIC, become more common, the efficacy of deep-packet inspection (DPI) is diminished as intermediaries miss critical information (such as well-known port numbers) to determine traffic classes.
IV. METHODOLOGY

To determine the resilience of ML models to operating in a satellite environment, we considered a testbed for collection of two kinds of QUIC encapsulated streaming: YouTube™ using progressive streaming over HTTP and Google Meet™ real-time video-conferencing using MPEG-4. The two classes of traffic were chosen not to be easily classified using deterministic features, such as the average packet size or the connection length, and therefore allow us to evaluate classifiers’ ability to detect patterns in traffic.

The flows were streamed from Google servers to a local computer equipped with Wireshark 3.5, able to decrypt QUIC traces. The two streams had comparable average bitrates (about 1.2 Mb/s). A network emulator (Netem) was placed between the server and the client to change the delay, the link capacity and the delay variation. This was used to simulate three network scenarios: A geostationary satellite with around 250 ms propagation delay in both directions, a Low-Earth-Orbit (LEO) satellite with 50 ms constant delay and 50 ms random uniform delay, and a terrestrial network without delay.

The datasets for classification were prepared by extracting from the pcap-ng traces IP throughput samples every 100 ms. Contiguous sequences of 50 or 100 samples were used as sample patterns for the ML classification. This allowed to evaluate the performance with observation periods of 5 or 10 seconds. All the ML implementations were taken from the Python library Scikit-Learn vers. 0.24 [20].

Before training the ML models, the inputs were normalised dividing each sample by the difference between the minimum and maximum of the samples sequences (label “minmax” in graphs) or by using a standard normalisation (“stdnorm”). The accuracy score was chosen as metric for comparison since class datasets (video-conferencing and progressive streaming) were roughly balanced. In a binary classification, considering a class as the positive and the other as the negative, the accuracy can be written as:

$$accuracy = \frac{TP + TN}{TN + TP + FP + FN}$$ \hspace{1cm} (1)

where TP and FP are the number of correct and incorrect classifications of the positive class, and TN and FN are the correct and incorrect classifications of the negative class.

Performance evaluation was carried using the classical Monte Carlo cross-validation method [21]. A single step in this method consists in randomly splitting the dataset into a training and a validation set (in our paper we used a proportion of 5 to 1). Then, the training set is used to fit the ML model and the validation set to calculate a sample of accuracy score. This step is repeated multiple times (200 in our setup) to estimate the distribution of accuracy scores.

A. Preliminary Tests

An initial analysis was carried out to confirm that ML models are valid tools for traffic classification. Fig. 2 shows the box-plot of the accuracy score for different ML models with associated hyper-parameters in the three scenarios (respectively without delay, delay, and delay jitter). In particular, we considered the Support Vector Classifier (SVC), the Random Forest classifier (RF), multi-layer Neural Network (NN), and K-Nearest Neighbours (KNN) (definitions can be found in [10]).

The selected hyper-parameters control the computational complexity of the algorithms. More specifically, we varied the number of layers and nodes for each layer in NN (each of the
arguments in $NN(\cdot)$ is the size of a hidden layer), the depth of the trees (param. n) and the number of leaves (param. m) in RF, and the number of neighbours in KNN.

Fig. 2 shows that opportune tuning the hyper-parameters, the accuracy scores can be made very high (>97%) in all scenarios. This is not surprising as reflects previous analysis [7] that shows good performance as long as the model is not under-fitting. On the other hand, as complexity is increased, cross-validation usually exhibits incrementally higher performance [10], but these might be due to the model over-fitting rather than learning the data. The next section shows how the results can generalise when the models are trained and tested in different conditions.

V. PERFORMANCE GENERALISATION

In order to generalise the results we consider in Fig. 3 the case where the ML algorithms were trained without satellite delay but tested with delay. Both graphs refer to a link capacity of 5 Mb/s. The top graph considers the case where the dataset is normalised using minmax, while the bottom refers to a standard normalisation.

Since we have used a homogeneous set of features, we expected the type of normalisation to play a minor role. Instead, while the performance is only slightly reduced with respect to Fig. 2 with minmax, the accuracy drops drastically with Random Forest when we preprocess the data using stdnorm. This suggests that tree-based methods could over-fit the data when using throughput samples as inputs.

A similar result is also obtained when the algorithm are trained without delay and tested in the LEO scenario. In addition to the one displayed, we tested several other ML configurations, observing only marginal improvement when the complexity is further increased, but poor performance of RF. It is also worth noting that extending the observation period from 5 to 10 seconds yields limited benefits.

An even starker picture appears when the satellite capacity undergoes a significant reduction. In Fig. 4, we train the ML algorithms with satellite delay and a link capacity of 5 Mb/s but we test them at 2 Mb/s. While the reduction was not such to trigger changes in transmission quality of YouTube flows, packets timings of the congestion responsive flows were significantly changed as each of the chunks took longer to clear. As a consequence, the shape of the throughput profile is considerably distorted in progressive streaming but a only milder distortion is present in videoconf.

The top graph referring to minmax, the drop in performance is significant across all tested configurations. For stdnorm instead, neural networks and SVC models are still able to detect the two classes of traffic, while RF and KNN performance collapse.

VI. FEATURE SELECTION DISCUSSION

The previous analysis considered the performance of the ML algorithms as well as their generation with a generic set of features. This section analyses a potentially more descriptive set of features and their evaluation. In particular, we used the MATLAB library MIToolbox to calculate the mutual information and conditional entropy to estimate the minimum set of features that prevent the model from over-fitting.

The mutual information $I(X,Y)$ [22], [23] between two random variables X and Y measures the amount of information that the two variable shares. This means that $I(X,Y)$ measures how much knowledge from one variable can be used to reduce the error in predicting the other variable. Conversely, the conditional entropy $H(X|Y)$ [22], [23] measures the amount of information needed to describe the value of the random variable X knowing the value of the random variable Y. This suggests that tree-based methods could over-fit the data when using throughput samples as inputs.
TABLE I: Extracted Features Set

Feature	Description	Weight	Rank
1) \(N_{UDP}\)	Average number UDP packets sent within the window of flow	0.0534	5
2) \(T_W\)	Interval time in sec. of the window of flow	0.0044	10
3) \(\ln_{25-th}\)	Percentile 25-th of the UDP packet length distribution	0.088	4
4) \(\ln_{50-th}\)	Percentile 50-th of the UDP packet length distribution	0.2392	2
5) \(\ln_{75-th}\)	Percentile 75-th of the UDP packet length distribution	0.0027	11
6) \(\ln_{90-th}\)	Percentile 90-th of the UDP packet length distribution	0.0016	12
7) \(\Delta T_{25-th}\)	Percentile 25-th in sec. of the UDP interarrival time distribution	0.0324	6
8) \(\Delta T_{50-th}\)	Percentile 50-th in sec. of the UDP interarrival time distribution	0.0196	7
9) \(\Delta T_{75-th}\)	Percentile 75-th in sec. of the UDP interarrival time distribution	0.0072	9
10) \(\Delta T_{90-th}\)	Percentile 90-th in sec. of the UDP interarrival time distribution	0.0119	8
11) \(N_{UDP}\)	Number of UDP packets sent from the client toward the server	0.3944	1
12) \(N_{UDP}\)	Number of UDP packets sent from the server toward the client	0.1452	3

The results in Table I show the normalized weight and the ranking, respectively, evaluated through the analysis described above for the features in the table. The results are analyzed assuming the features clustered in the following sets time-based \(\{T_W; \Delta T_{25-th}; \Delta T_{50-th}; \Delta T_{75-th}; \Delta T_{90-th}\}\), packet-based \(\{N_{UDP}; \ln_{25-th}; \ln_{50-th}; \ln_{75-th}; \ln_{90-th}\}\), and flow-based \(\{N_{UDP}; N_{TCP}; \ln_{25-th}\}\). We face the numerical analysis aimed at showing how the clustered features belonging to the essential set affect the classifiers’ performance. Precisely, we computed the possible subsets with \(i\) essential features, and we removed them from the initial set. Hence, we calculate the percentage of the loss of accuracy for each classifier due to the deletion of the features. The analysis results are shown in Table II. Numerical results show that filtering flow-based features impact much more than other features on degrading the classifier performance. This means that flow-based features have higher correlation with the class label, instead packet-based are weakly correlated and finally the time-based appear to be poorly correlated. The high correlation between the class label and the flow-based features is due to the more unique values these features have for the given class label than the other features. Precisely, classifier performance worsens when both the flow-based features are deleted, instead when just one of them is deleted the packet-based features are able to compensate this lack of information.

VI. CONCLUSION

We proposed a QoS architecture where end-hosts connected to the satellite network forward traffic over available paths and internal nodes verify that traffic is conforming to the characteristic of the path. Our goal is not to determine the exact
TABLE II: Percentage Decrease in Accuracy vs. Filtered Essential Features

Deleted Features	∆SVC(%)	∆RF(%)	∆KNN(%)	∆NN(%)
{N_{GS}}	0.03	0	0	15
{L_{n50-th}}	0	0	0	0.5
{N_{SC}}	0.03	0	0	15
{L_{n25-th}}	0	0	0	0.5
{N_{GS},L_{n50-th}}	0.04	0	0	15
{N_{SC},L_{n25-th}}	71	75	72	15
{N_{GS},L_{n25-th}}	0.03	0	0	15
{L_{n25-th},N_{SC}}	0	0	0	0.5
{N_{GS},L_{n25-th}}	0.04	0	0	15
{N_{SC},L_{n25-th}}	73	70	72	15
{N_{GS},L_{n50-th},L_{n25-th}}	0.04	0	0	15
{N_{SC},N_{SC},L_{n25-th}}	66	69	83	15
{L_{n25-th},N_{SC},L_{n25-th}}	0.04	0	0	15
{N_{GS},L_{n50-th}-th,N_{Sc},L_{n25-th}}	84	87	84	60

application originating the traffic (i.e. an exact fingerprinting), but rather to categorise the traffic into classes (e.g. real-time, quasi real-time, and delay tolerant) that can receive similar QoS treatment. For example, if the flow is characterised by small packets at regular intervals, it could be identified as a real-time flow (such as audio or gaming) and should receive a specific low-latency treatment.

The results show that several ML learning algorithms can generalise performance to the satellite network even if they were trained in non-satellite conditions. The results can be further strengthened by selecting a more descriptive set of features using information metrics. All this analysis is an encouraging to integrate ML classification within SATCOM technology.

ACKNOWLEDGMENT

This work is partially funded by the European Space Agency, ESA-ESTEC, Noordwijk, The Netherlands, under contract n. 4000130962/20/NL/NL/FE (“SatNEx V—Satellite Network of Experts V”). The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Transport,” RFC 9000, May 2021.
[2] L. Cavagnile, N. Celandroni, M. Collina, H. Cruickshank, G. Fairhurst, E. Ferro, A. Gotta, M. Luglio, C. Roseti, A. Abdel Salam et al., “A deep analysis on future web technologies and protocols over broadband geo satellite networks,” International Journal of Satellite Communications and Networking, vol. 33, no. 5, pp. 451–472, 2015.
[3] M. Kühlewind and al., “Challenges in Network Management of Encrypted Traffic,” CoRR, vol. abs/1810.09272, 2018.
[4] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating Transport with QUIC: Design Approaches and Research Challenges,” IEEE Internet Computing, vol. 21, no. 2, pp. 72-76, 2017.
[5] N. K. et al., “QUIC: Opportunities and threats in SATCOM,” in Proc. of ASMS/SPSC, 2020, pp. 1–7.
[6] P. A. Aranda-Gutiérrez, D. R. López, and T. Fossati, “Analysis and Consideration on Management of Encrypted Traffic,” CoRR, vol. abs/1812.04834, 2018.
[7] F. Pacheco, E. Exposito, and M. Gineste, “A framework to classify heterogeneous internet traffic with machine learning and deep learning techniques for satellite communications,” Computer Networks, vol. 173, pp. 107–213, 2020.
[8] A. S. Ilyas and H. Deng, “Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks,” IEEE Access, vol. 8, pp. 118–126, 2020.
[9] D. Anipko, “Multiple Provisioning Domain Architecture,” RFC 7556, Jun. 2015.
[10] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards the deployment of machine learning solutions in network traffic classification: A systematic survey,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1988–2014, 2019.
[11] A. Dainotti, A. Pescapé, and K. C. Claffy, “Issues and future directions in traffic classification,” IEEE Network, vol. 26, no. 1, pp. 35–40, 2012.
[12] G.-L. Sun, Y. Xue, Y. Dong, D. Wang, and C. Li, “An Novel Hybrid Method for Effectively Classifying Encrypted Traffic,” in Proc. of GLOBECOM 2010, 2010, pp. 1–5.
[13] P. Velan, M. Čermák, P. Celeda, and M. Drašar, “A survey of methods for encrypted traffic classification and analysis,” Newt., vol. 25, no. 5, p. 355–374, Sep. 2015.
[14] M. Lottolihai, M. Jafari Siavoshani, R. Shirali Hossein Zade, and et al., “Deep packet: a novel approach for encrypted traffic classification using deep learning,” Soft Comput., no. 24.
[15] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datamat: Deep learning based encrypted traffic classification in sdn home gateway,” IEEE Access, vol. 6, pp. 55 380–55 391, 2018.
[16] S. Rezaei and X. Liu, “How to Achieve High Classification Accuracy with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets,” in in proc. of ICDM 2019, 2019.
[17] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, “A novel quic traffic classifier based on convolutional neural networks,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
[18] J.-P. Smith, P. Mittal, and A. Perrig, “Website Fingerprinting in the Age of QUIC,” Proc. on PETS, vol. 2, pp. 48–69, 2021.
[19] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience monitoring for https and quic,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 1331–1339.
[20] F. Pedregosa and al., “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[21] R. R. Picard and R. D. Cook, “Cross-validation of regression models,” Jrl. of the Am. Stat. Assoc., vol. 79, no. 387, pp. 575–583, 1984.
[22] J. Cover, T.M. Thomas, Elements of Information Theory. New York, NY, USA: John Wiley and Sons, Inc, 1991.
[23] R. McEliece, In The Theory of Information and Coding: A Mathematical Framework for Communication, ser. Encyclopedia of Mathematics and Its Applications. MA, USA: Addison-Wesley Publishing Company: Reading, 1977, vol. 3.
[24] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, “A novel quic traffic classifier based on convolutional neural networks,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
[25] P. Zhan, L. Wang, and Y. Tang, “Website fingerprinting on early quic traffic,” 2021.
[26] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions,” Trans. on Inform. Forensics and Security, vol. 8, no. 1, pp. 5–13, 2013.
[27] P. Cassarà, A. Gotta, and L. Valerio, “Federated feature selection for cyber-physical systems of systems,” arXiv preprint arXiv:2109.11323, 2021.