EXPANDERS ARE ORDER DIAMETER NON-HYPERBOLIC

ANTON MALYSHEV

Abstract. We show that expander graphs must have Gromov-hyperbolicity at least proportional to their diameter, with a constant of proportionality depending only on the expansion constant and maximal degree. In other words, expanders contain geodesic triangles which are $\Omega(\text{diam } \Gamma)$-thick.

1. Introduction

An expander graph is a finite graph of bounded degree in which all sets of vertices have large boundary (see e.g., [HLW]). A hyperbolic graph is a graph which behaves like a tree on large scales (see e.g., [Bo]).

It is shown in [Be] that sufficiently large graphs cannot be both expanders and hyperbolic. More precisely, expander graphs Γ satisfy

$$\delta_{\Gamma} = \Omega \left(\frac{\log |\Gamma|}{\log \log |\Gamma|} \right),$$

where δ_{Γ} is the Gromov-hyperbolicity constant of the graph Γ, i.e., the minimal δ such that all geodesic triangles in Γ are δ-thin.

We modify the argument slightly to improve this result to

$$\delta_{\Gamma} = \Omega (\log |\Gamma|).$$

For a more precise statement, see Theorem 3.2.

One new consequence of this result is that a family of expanders cannot have a tree as an asymptotic cone.

A similar result is known for vertex-transitive graphs, that is, if Γ is a finite vertex-transitive graph, then

$$\delta_{\Gamma} = \Omega (\text{diam } \Gamma).$$

See, e.g., [BS]. This fact can be used to give an elementary argument that hyperbolic groups only have finitely many finite subgroups, up to conjugacy [Br].

There is also a similar result for random graphs. A random d-regular graph with n vertices is asymptotically almost surely an expander, and expanders share many properties with random graphs. In [B+], it is shown that random graphs have large almost-geodesic cycles. (It is open whether the same holds for true geodesic cycles.) Another consequence of their argument is that a random d-regular graph with n vertices, Γ, asymptotically almost surely satisfies

$$\delta_{\Gamma} = \frac{1}{2} \text{diam}(\Gamma) - O(\log \log |\Gamma|) = \frac{1}{2} \text{diam}(\Gamma)(1 - o(1)).$$

The constant $1/2$ is the best possible, since for any graph Γ, the hyperbolicity constant δ_{Γ} is bounded above by $\text{diam}(\Gamma)/2$.

While an expander cannot be hyperbolic, it is possible that it has a high proportion of thin geodesic triangles. In [LT], Li and Tucci construct a family of expanders...
in which a positive proportion of geodesics pass through a particular vertex. It follows that a positive proportion of geodesic triangles are tripods, i.e., 0-thin. Indeed, their argument constructs expander families in which this proportion is arbitrarily close to 1, at the cost of worse expansion. This leaves the question: is there a fixed \(\delta \) and an expander family \((\Gamma_i)_i \), in which geodesic triangles are \(\delta \)-thin asymptotically almost surely, i.e., in which the probability that a randomly chosen geodesic triangle in \(\Gamma_i \) is \(\delta \)-thin tends to 1 as \(|\Gamma_i| \to \infty \)?

2. Conventions

A graph is a finite undirected graph, which may have loops and repeated edges. We abuse notation and use \(\Gamma \) to denote both a graph and its set of vertices. A graph \(\Gamma \) is an \(h \)-expander if for every set \(S \subseteq \Gamma \) with \(|S| \leq |\Gamma|/2 \), there are at least \(h|S| \) vertices in \(\Gamma \setminus S \) adjacent to \(S \). A graph has valency bounded by \(d \) if every vertex in the graph has degree at most \(d \). We let \(B_{\Gamma,p}(r) \) denote the ball in \(\Gamma \) with center \(p \) and radius \(r \).

A \(\delta \)-hyperbolic space is a geodesic metric space in which all geodesic triangles are \(\delta \)-thin. That is, each side of a triangle is contained in a \(\delta \)-neighborhood of the other two sides. If \(X \) is a geodesic metric space, and \(p, q \in X \), we let \(\overline{pq} \) denote a geodesic segment between \(p \) and \(q \). This is a slight abuse of notation because such a path need not be unique, but this does not cause any issues in our arguments.

A graph can be thought of as a geodesic space in which each edge is a segment of length 1. A finite graph \(\Gamma \) is always \(\delta \)-geodesic for some \(\delta \), e.g., \(\delta \) equal to the diameter of the graph. We write \(\delta_\Gamma \) for the minimal such \(\delta \).

3. Proof of Main Result

In [Be], the argument proceeds by showing that, in an expander, removing a ball does not significantly affect expansion, so the diameter of the graph does not increase much. On the other hand, removing a ball in a hyperbolic graph increases distances by an amount exponential in the radius of the ball.

More precisely, let \(D \) be the diameter of an expander \(\Gamma \), i.e., the maximal distance between two points \(p, q \in \Gamma \). Note that \(D = \Theta(\log |\Gamma|) \). Removing a ball of radius \(\Theta(D) \) between \(p \) and \(q \) shrinks boundaries of balls centered at \(p \) and \(q \) by an additive amount \(\exp(\Theta(D)) \), which increases \(d(p,q) \) by at most a constant factor. However, in a \(\delta \)-hyperbolic graph, removing such a ball must increase \(d(p,q) \) by \(\exp(\Omega(D/\delta)) \). Hence,

\[
D + \exp(\Omega(D/\delta)) = O(D),
\]

and therefore

\[
\delta = \Omega(D/\log D).
\]

The \(\log D \) factor arises because we compare a multiplicative increase of \(d(p,q) \) in an expander to an additive increase of \(d(p,q) \) in a hyperbolic graph. We eliminate this factor by using a \(\Theta(D) \)-neighborhood of a \(\Theta(D) \)-length path between \(p \) and \(q \), instead of a ball of radius \(\Theta(D) \). With an appropriate choice of constants, removing such a cylinder from an expander still changes \(d(p,q) \) by at most a constant factor. However, in a \(\delta \)-hyperbolic graph, removing such a cylinder increases \(d(p,q) \) by a multiplicative factor of \(\exp(\Omega(D/\delta)) \). So we obtain

\[
D \exp(\Omega(D/\delta)) = O(D),
\]
and therefore
\[\delta = \Omega(D). \]

The key lemma, then, is the increase of distances in a hyperbolic graph caused
by removing a cylinder. We prove this lemma using some elementary facts about
hyperbolic spaces, whose statements and proofs we defer to section 4.

Lemma 3.1. Let \(X \) be a \(\delta \)-hyperbolic space, and let \(p, q \in X \). Define \(D = d(p, q) \),
and choose \(p', q' \) on the geodesic segment \(\overline{pq} \) so that the points \(p, p', q', q \) are evenly spaced, that is,
\[d(p, p') = d(p', q') = d(q', q) = D/3. \]
Let \(\gamma \) be a path in \(X \) which does not intersect the \(R \)-neighborhood of the geodesic
segment \(\overline{p'q'} \). Then
\[\ell(\gamma) \geq DB^{2R/\delta} \]
where \(B \) is a universal constant, and \(R/\delta, D/\delta \) are taken sufficiently large.

Proof of Lemma 3.1. Consider the set of all pairs \((x, r)\) with \(x \) on the path \(\gamma \) and \(r \) on the geodesic \(\overline{pq} \), for which
\[d(x, r) = \min_{s \in \overline{pq}} d(x, s), \]
i.e., \(r \) is the nearest point of \(\overline{pq} \) to \(x \). By Lemma 4.2, there is a constant \(C \) such
that every interval of length \(C\delta \) in \(\overline{pq} \) contains some such \(r \). If we let
\[N = \left\lfloor \frac{D/3}{C\delta + K_0\delta} \right\rfloor, \]
we can find \(N \) intervals of length \(C\delta \) in \(\overline{p'q'} \), spaced more than \(K_0\delta \) apart, and pick
such a point \(r \) in each interval. So, there is a collection of \(N \) such pairs \((r_i, x_i)\) for
which the \(r_i \) are more than \(K_0\delta \) apart from each other. We may rearrange these
pairs so that the \(x_i \) occur in order of appearance on \(\gamma \).

Since the \(r_i \) are sufficiently far apart, Lemma 4.3 guarantees that each geo-
desic \(\overline{x_ix_{i+1}} \) passes within \(K_1\delta \) of \(\overline{p'q'} \). However, the path \(\gamma \) does not pass within \(R \)
of \(\overline{p'q'} \). Hence, some point on \(\overline{x_ix_{i+1}} \) is at distance at least \(R - K_1\delta \) from \(\gamma \). So, by
Lemma 4.3, the segment of \(\gamma \) between \(x_i \) and \(x_{i+1} \) has length at least \(\delta 2^{R/\delta - K_1} \).

There are \(N - 1 \) such segments, so the total length of \(\gamma \) is at least
\[(N - 1) \delta 2^{R/\delta - K_1} \geq D \left(\frac{1}{3(C + K_0)} - \frac{2}{D/\delta} \right) 2^{R/\delta}. \]
Taking, e.g., \(B = (4(C + K_0))^{-1} \) gives us
\[\ell(\gamma) \geq DB^{2R/\delta}, \]
for sufficiently large \(D/\delta \). \qed

We can now prove our result by arguing that in an expander, removing such a
cylinder does not increase distances too much.

Theorem 3.2. For any positive real number \(h \) and any positive integer \(d \), there is
a constant \(C_{d,h} \) such that for any \(h \)-expander \(\Gamma \) which has valency bounded by \(d \), we have
\[\delta \Gamma > C_{d,h} \log |\Gamma|. \]
Proof. Choose α small enough that
\[(1 + h)^{1/3 - \alpha} < d^\alpha\]

Pick $p, q \in \Gamma$ such that $d(p, q)$ is divisible by 3 and as large as possible, and let $D = d(p, q)$. Let p', q' be points on the geodesic segment from p to q such that p, p', q, q' are equally spaced, i.e.
\[d(p, p') = d(p', q') = d(q', q) = D/3.\]

Let C be the (αD)-neighborhood of the geodesic segment $\overline{p'q'}$, and let $\tilde{\Gamma} = \Gamma \setminus C$ be the graph Γ with this cylinder removed.

We consider the growth of the balls $B_{\tilde{\Gamma}, p}(r)$ in $\tilde{\Gamma}$ centered at p. Roughly speaking, by the time these balls reach the cylinder C, they are large enough that their growth is not significantly slowed down by the cylinder.

As long as $|B_{\tilde{\Gamma}, p}(r - 1)| < |\tilde{\Gamma}|/2$, the ball $B_{\tilde{\Gamma}, p}(r - 1)$ has a large boundary in $\tilde{\Gamma}$. When $r < D/3 - \alpha D$, the ball has not yet reached the cylinder C, so this boundary lies entirely in $\tilde{\Gamma}$, and we have
\[|B_{\tilde{\Gamma}, p}(r)| \geq |B_{\tilde{\Gamma}, p}(r - 1)|(1 + h)\]
and in particular, by the time the ball reaches the cylinder, we have
\[|B_{\tilde{\Gamma}, p}(D/3 - \alpha D - 1)| \geq (1 + h)^{D/3 - \alpha D - 1}.\]

For larger r, the growth of the ball in $\tilde{\Gamma}$ is reduced by at most the size of the cylinder, so we have
\[|B_{\tilde{\Gamma}, p}(r)| \geq |B_{\tilde{\Gamma}, p}(r - 1)|(1 + h) - |C|.\]

Hence, as long as we still have $|B_{\tilde{\Gamma}, p}(r - 1)| < |\tilde{\Gamma}|/2$, and the cylinder is small enough compared to the ball, say,
\[(1) \quad |C| < |B_{\tilde{\Gamma}, p}(r - 1)|h/2,
the balls continue to grow:
\[(2) \quad |B_{\tilde{\Gamma}, p}(r)| \geq |B_{\tilde{\Gamma}, p}(r - 1)|(1 + h/2),\]

To see the necessary inequality (1), observe that the cylinder cannot be too large,
\[|C| \leq (D/3 + 1)d^\alpha D,\]
and as we noted earlier, for $r \geq D/3 - \alpha D$, the ball has size at least
\[|B_{\tilde{\Gamma}, p}(r)| \geq (1 + h)^{D/3 - \alpha D - 1}.\]

Hence,
\[|C|/|B_{\tilde{\Gamma}, p}(r - 1)| \leq (D/3 + 1)d^\alpha D(1 + h)^{-D/3 + \alpha D} = (D/3 + 1) \left(d^\alpha (1 + h)^{-1/3 + \alpha} \right)^D\]

By our choice of α, this goes to 0 as $D \to \infty$. So when D is sufficiently large, we have
\[|C|/|B_{\tilde{\Gamma}, p}(r - 1)| < h/2,\]
as desired.
From equation (2), we have that
\[|B_{\Gamma,p}(r)| \geq \min \left((1 + h/2)^r, |\Gamma|/2 \right), \]
and hence if \(r \geq \log |\Gamma|/\log(1 + h/2) \), we have
\[|B_{\Gamma,p}(r)| \geq |\Gamma|/2. \]
The same holds for \(|B_{\Gamma,q}(r)| \), so \(B_{\Gamma,p}(r) \) and \(B_{\Gamma,q}(r) \) intersect. Hence,
\[d_{\Gamma}(p, q) \leq 2 \log |\Gamma|/\log(1 + h/2). \]
However, by Lemma 3.1, if \(\Gamma \) is \(\delta \)-hyperbolic we have two possibilities. Either \(D/\delta \) is not sufficiently large, in which case and \(\delta \) is bounded below by a constant times \(D \),
\[d_{\Gamma}(p, q) \leq DB2^{\alpha D/\delta}. \]
And therefore,
\[\frac{D}{\delta} \leq \frac{1}{\alpha \log 2} \log \left(\frac{1}{B \log(1 + h/2)} \frac{\log|\Gamma|}{D} \right) \]
However, \(D \) is bounded below by \(\log|\Gamma|/\log d \), so the right hand side is bounded above by a constant. Hence, there are constants \(K, K' > 0 \) such that when \(|\Gamma| \) is sufficiently large we have
\[\delta \geq KD \geq K' \log|\Gamma|. \]

4. Elementary Lemmas about Hyperbolic Spaces

We now state and prove the necessary basic lemmas about \(\delta \)-hyperbolic spaces. These results appear in the literature, but we include proofs for completeness.

Lemma 4.1. Let \(X \) be a \(\delta \)-hyperbolic space, and let \(x, y, z \in X \) such that
\[d(z, x) = d(z, y) = \min_{w \in [xy]} d(z, w), \]
that is, \(x \) and \(y \) are both points of minimal distance to \(z \) on a geodesic segment \(xy \) between them. Then \(d(x, y) < K\delta \), where \(K \) is some universal constant.

Proof. Since every point on \(xy \) is within \(\delta \) of either \(x \) or \(y \), by continuity, there must be a point \(w \) on \(xy \) within \(\delta \) of both \(x \) and \(y \).
\[d(z, x) \geq d(z, w) + d(w, x) - 2\delta \geq d(z, x) + d(w, x) - 2\delta. \]
Hence \(d(w, x) \leq 2\delta \). Similarly, \(d(w, y) \leq 2\delta \), so \(d(x, y) \leq 4\delta. \)

Lemma 4.2. There is a universal constant \(C \) such that the following is true.
Let \(X \) be a \(\delta \)-hyperbolic space, and let \(p, q \) be points in \(X \). Let \(\beta \) be some path from \(p \) to \(q \). For any interval of length \(C\delta \) in the geodesic segment \(pq \), there is a pair \((x, r) \) such that \(r \) is in that interval, \(x \) is on the path \(\beta \), and \(r \) is the closest point on \(pq \) to \(x \).
Proof. We write $\alpha : [0, L] \to X$ for the parametrization of pq by arclength. We reparametrize β if necessary so we have $\beta : [0, 1] \to X$, with

$$\alpha(0) = \beta(0) = p \quad \text{and} \quad \alpha(L) = \beta(1) = q.$$

Consider the set of pairs

$$S = \left\{ (t, s) \in [0, 1] \times [0, L] \mid d(\beta(t), \alpha(s)) = \min_{s' \in [0, L]} d(\beta(t), \alpha(s')) \right\}$$

The set S is closed, hence compact. By lemma 4.1, each set

$$S_t = \{ s : (t, s) \in S \}$$

has diameter at most $K\delta$. Given any $s \in [0, L]$, the sets

$$\{ t \in [0, 1] : S_t \cap [0, s] \neq \emptyset \} \quad \text{and} \quad \{ t \in [0, 1] : S_t \cap [s, L] \neq \emptyset \}$$

are closed, nonempty, and cover $[0, 1]$. So some t belongs to both, that is, there is a value t such that S_t intersects both $[0, s]$ and $[s, L]$. Since S_t has diameter at most $K\delta$, it contains some element of $[s - K\delta, s + K\delta]$. Thus, some element of $[s - K\delta, s + K\delta]$ belongs to S_t.

So, every closed interval of length $2K\delta$ in $[0, L]$ intersects some S_t, as desired. □

Lemma 4.3. Let X be a δ-hyperbolic space and let γ be a path from p to q in X. If some point r on pq is at distance R from γ, then $\ell(\gamma) \geq \delta 2^{R/\delta}$.

Proof. We prove this by induction on $|R/\delta|$. By assumption, some point on pq is at distance R from both p and q, so $\ell(\gamma) \geq d(p, q) \geq 2R$. In particular, if $|R/\delta| = 0$, then $\ell(\gamma) \geq 2R \geq \delta 2^{R/\delta}$.

For the inductive step, let x be the point on γ which is halfway between p and q. Then $r \in pq$ is within δ of either qx or xp. We may suppose without loss of generality that it is qx. Then some point on qx has distance at least $R - \delta$ from γ. It follows that $\ell(\gamma)/2 \geq \delta 2^{(R-\delta)/\delta}$, and therefore $\ell(\gamma) \geq \delta 2^{R/\delta}$. □

Lemma 4.4. There are universal constants K_0 and K_1 such that the following is true.

Let X be a δ-hyperbolic space, and let p, q, x, y be points in X, where we suppose $d(p, q) > K_0\delta$. If the nearest points on pq to x and y are p and q, respectively, then pq passes within $K_1\delta$ of pq.

Proof. We take $K_0 = 12$ and $K_1 = 2$.

The geodesic pq stays within a δ-neighborhood of $pq \cup pq$, and the geodesic pq stays within a δ-neighborhood of $pq \cup pq$, hence pq stays within a 2δ-neighborhood of $pq \cup pq \cup pq$. If pq does not pass within $K_1\delta = 2\delta$ of pq, then there must be a point z on pq which is within 2δ of both pq and pq.

In particular, $d(x, z) \leq d(x, p) - d(z, p) + 4\delta$. There is a point r on pq which is within δ of both pq and pq, so $d(z, r) \leq d(z, p) - d(r, p) + 2\delta$. Hence,

$$d(x, r) \leq d(x, z) + d(z, r)$$

$$\leq d(x, p) - d(z, p) + 4\delta + d(z, p) - d(r, p) + 2\delta$$

$$= d(x, p) - d(r, p) + 6\delta$$

$$\leq d(x, r) - d(r, p) + 6\delta.$$

Hence, $d(r, p) \leq 6\delta$. Similarly, $d(r, q) \leq 6\delta$ so $d(p, q) \leq 12\delta = K_0\delta$. So, if pq does not pass within $K_1\delta$ of pq then $d(p, q) \leq K_0\delta$, as desired. □
References

[Be] I. Benjamini, Expanders are not hyperbolic, Israel J. Math 108 (1998), 33–36.

[BS] I. Benjamini and O. Schramm, Finite transitive graph embedding into a hyperbolic metric space must stretch or squeeze, Geometric Aspects of Functional Analysis, Springer, Berlin-Heidelberg, 2012, 123–126.

[B+] I. Benjamini, C. Hoppen, E. Ofek, P. Pralat and N. Wormald, Geodesics and almost geodesic cycles in random regular graphs, J. Graph Theory 66 (2011), 115–136. [arXiv:math/0610089]

[Bo] B.H. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, Group Theory from a Geometrical Point of View, World Scientific, Singapore, 1991, 64–137.

[Br] N. Brady, Finite subgroups of hyperbolic groups, Internat. J. Algebra Comp. 10 (2000), 399-405.

[HLW] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 43 (2006), 439–561.

[LT] S. Li and G. Tucci, Traffic congestion in expanders and \((p,\delta)\)-hyperbolic spaces, Internet Mathematics, forthcoming. [arXiv:1303.2962]