Protective effects of recombinant human growth hormone on cirrhotic rats

Shuang Chen, Hong-Tao Wang, Bin Yang, Yu-Ru Fu, Qing-Jia Ou

Department of General Surgery, Sun Yat-Sen Memorial Hospital, the Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China

Yu-Ru Fu. Medical Research Center, Sun Yat-Sen Memorial Hospital, the Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China

Supported by the Natural Science Foundation of Guangdong Province, No. 984213 and Academic Foundation of Sun Yat-Sen University and Ministry of Public Health for Project 211, No. F000099075

Correspondence to: Dr. Shuang Chen, M.D., Ph.D., Department of General Surgery, Sun Yat-Sen Memorial Hospital, the Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China. mdchens@yahoo.com

Abstract

AIM: To investigate the effects and molecular mechanisms of recombinant human growth hormone (rhGH) on protecting liver function and alleviating portal hypertension of liver cirrhotic rats.

METHODS: Liver cirrhosis of male Sprague-Dawley rats was induced by administration of thioacetamide. The rats with or without liver cirrhosis were randomly divided into four groups. Group A consisted of the normal rats was treated with normal saline (NS), group B consisted of the normal rats was treated with rhGH, group C consisted of cirrhotic rats treated with NS and group D consisted of cirrhotic rats treated with rhGH. The rats of different groups were subcutaneously injected with 0.5 mL of NS or 333 ng/kg of rhGH daily for 7 d. After treatments, the following parameters were examined, including GH-binding capacity (Rc) by 125I-hGH binding, growth hormone receptor mRNA (GHR mRNA) expression by RT-PCR, relative content of collagen (RCC) by histomorphometry, and level of malon-dialdehyde (MDA) and superoxide dismutase (SOD) in liver tissue by thiobarbituric acid reaction and pyrogallic acid self-oxidation, respectively. Serum albumin (ALB), alanine transaminase (ALT) and portal vein pressure (PVP) were also examined.

RESULTS: rhGH up-regulated both the GH-binding capacity (Rc) and the expression of GHR mRNA in vivo. Rc in group A (72±12 fmol/mg protein) was significantly higher than that in group C (31±4 fmol/mg protein) (P<0.05). Rc in group B (80±9 fmol/mg protein) increased markedly compared to group A (P<0.05). Rc in group D (40±7 fmol/mg protein) raised remarkably compared with group C (P<0.05), but less than that in group A, and there was no significant GH binding affinity contrast (Kd) change. The GHR mRNA level (IOD, pixel) in group A (29±3) was significantly higher than that in group C (23±3) (P<0.05). GHR mRNA levels were significantly raised in group B (56±4) and group D (42±8) compared with groups A and C (29±3 and 23±3, respectively) (P<0.05). Compared with the normal liver, MDA level was higher and SOD level was lower in cirrhotic livers. After rhGH treatment, MDA level was significantly declined to 12.0±2.2 nmol/mg protein and SOD was raised to 1029±76 U/mg protein in group D (P<0.05). ALB levels in groups B and D (42±7 g/L and 37±7 g/L, respectively) were significantly raised compared with those in groups A and C (35±5 g/L and 29±4 g/L, respectively) (P<0.05). ALT level was markedly lower in group D (69±7 U/L) compared to group C (89±15 U/L) (P<0.05), and close to group A (61±10 U/L). RCC in group C (22.30±3.86%) was significantly higher than that in group A (1.14±0.21%) and group D (14.70±2.07%) (P<0.05). In addition, rhGH markedly alleviated portal hypertension in liver cirrhotic rats (group D vs C, 9.3±1.5 cmH₂O vs 14.4±2.0 cmH₂O) (P<0.05).

CONCLUSION: Pharmacological doses of rhGH can increase Rc and GHR mRNA expression, ameliorate liver functions, repress fibrosis and decline portal hypertension, suggesting it has potentially clinical usage as a hepatotropic factor.

Chen S, Wang HT, Yang B, Fu YR, Ou QJ. Protective effects of recombinant human growth hormone on cirrhotic rats. World J Gastroenterol. 2004;10(19):2894-2897

http://www.wjgnet.com/1007-9327/10/2894.asp

INTRODUCTION

Liver cirrhosis is a common pathway of a variety of chronic liver diseases(10), and is associated with high protein catabolism, low anabolism and negative nitrogen balance(11), resulting in hypoproteinemina which contributes to ascites, dysfunction of coagulation and suppression of immune response(12). Early reports showed that cirrhotic patients undergone emergency abdominal surgery exhibited a higher mortality(13). In retrospective studies of liver transplant recipients, protein-calorie malnutrition has been associated with adverse outcomes in patients with end-stage liver diseases(14). A prospective study showed that cirrhotic patients with hypermetabolism and emaciation had a much higher mortality rate after liver transplantation than those with normal metabolism(15). It is critical for patients with hepatic cirrhosis to correct malnutrition. To date, studies have shown that nutritional support is always not effective enough to prevent protein loss and optimize the care of these patients in severe catabolic illnesses, including cirrhosis(16,17).

Growth hormone (GH) is essential for body growth in children. In adults, GH continues to stimulate many anabolic processes. GH secreted by the pituitary gland is pulsatile, and its action depends on its binding to growth hormone receptor on cell membrane(18-21). New insights have initiated new applications and a growing potential for GH replacement therapy in adults. Recombinant human growth hormone (rhGH) has been clinically used in many states, such as after abdominal operation(14), organ transplantation(15), major trauma(16) and severe burns(17), to enable the patients to survive an aggressive surgery(18). After treatment with rhGH, donor site healing rate
in children with severe burns was enhanced and hospitalization time was decreased[19-21]. It significantly enhanced cell-mediated immunity and decreased wound infection rates and length of hospitalization in a large group of postoperative patients[22]. Some clinical trials reported that growth hormone enhanced nitrogen retention of patients with chronic obstructive lung diseases[23], severe sepsis[24-25] and emaciated AIDS[26,27], in addition to fasted adult volunteers. Although there are many controversies[28-32], it has been confirmed that rhGH is an effective drug to accelerate protein anabolism[33] and plays a central role in metabolic intervention with a significant cost-effect benefit[34].

In this study, we investigated the effects and molecular mechanism of pharmacological doses of recombinant human growth hormone (rhGH) on expression of growth hormone receptor (GHR) in liver tissue, liver function and portal vein pressure in a rat cirrhotic model with portal hypertension.

MATERIALS AND METHODS

Induction of liver cirrhosis
Male SD rats were purchased from Medical Animal Center of Sun Yat-Sen University. Rat liver cirrhosis was induced by daily intraperitoneal injection of 30 g/L thioacetamide (TAA, 50 mg/kg for 9 to 12 wk). Twenty normal rats (body mass 200-300 g) were randomly divided into two groups: group A (n = 10) was treated with normal saline (NS), and group B (n = 10) was treated with rhGH. Twenty cirrhotic rats (body mass, 200-300 g) were randomly divided into two groups: group C (n = 10) was treated with NS and group D (n = 10) was treated with rhGH. The rats were injected subcutaneously with 0.5 mL of NS or 333 ng/kg of rhGH daily for 7 d.

Experimental methods and observation indexes
Rats were anesthetized with pentobarbital (30 mg/kg, subcutaneous injection), weighed, antisepsised. Then peritoneum was incised to explore the liver.

Measurement of portal vein pressure (PVP)
After the portal vein was punctured, PVP was measured directly.

Estimation of liver function
Blood samples from inferior vena cava were collected to measure serum albumin (ALB) and alanine transaminase (ALT) levels by biochemical autoanalyzers. Tissue sampling Partial liver tissue samples were frozen in liquid nitrogen immediately, then stored at -80°C.

Partial liver tissue samples were frozen in liquid nitrogen immediately, then stored at -80°C. The rest part was fixed in 100 g/L formaldehyde solution and stained with Masson trichrome stain for regular pathological examination.

GH binding capacity (R T) analysis
One hundred µL (approximately 20 000 cpn) of 125I-hGH (NEN inc, USA) with a specific activity of about 108 µCi/µg, 100 µL of unlabelled hGH with various concentrations (0-3 nmol/L) was divided into 7-9 concentration gradients, standard samples were bought from Northern Biological Technical Company), and 100 µL of liver membrane microsomes (preparation with gradient centrifugation technique) were mixed and incubated at 4°C overnight. Dissociated ligands were eliminated by filtration. The precipitates were subjected to a radioactive counter, and then 125I-GH binding capacity (Kd, nmol/L) were calculated by Scatchard analysis.

Expression of GHR mRNA in liver tissue
Self-designed primers were as follows: forward, 5'-AGTGGAGATCCAGACAACG-3', and reverse, 5'-ATGTCAGGGTCATAACAGC-3'. The amplification segment containing introns was supposed to be 499 bp in length. Total RNA of the rats' liver tissues was extracted with Trizol following the manufacturer’s instructions. RT-PCR was performed with RT-PCR kits (Epicendue inc. USA) as previously described[35]. After thirty amplification cycles were performed, the PCR products were detected by gel electrophoresis. The level of GHR mRNA was expressed as iOD (pixel, the integral optical density of amplification segment).

Measurement of malondialdehyde (MDA) and superoxide dismutase (SOD)
For the degradation products of peroxide lipid in liver and the activity of SOD, respectively.

Statistical analysis
The data were processed with duplex factor χ² analysis by software statistica 5.0. Least significant difference (LSD) was adopted to compare the inter-group variance. Values were expressed as mean±SD. P<0.05 was considered statistically significant.

RESULTS

GH-binding capacity (R T) analysis
As shown in Table 1, R T in group A was significantly higher than in group C (P<0.05). R T in group B increased markedly compared with group A (P<0.05). It significantly increased in group D compared with group C (P<0.05), but was lower than that in group A. There was no significant difference in Kd.

GHR mRNA expression in liver tissue
As shown in Table 1 and Figure 1, the expression of GHR mRNA (iOD, pixel) in group A was significantly higher than that in group C (P<0.05). In group B increased markedly compared with group A (P<0.05). It significantly increased in group D compared with group C (P<0.05), but was lower than that in group A. There was no significant difference in Kd.

Table 1 Effects of rhGH treatment on various parameters (mean±SD)

Group	R T (fmol/mg protein)	GHR mRNA (iOD)	ALB (g/L)	ALT (U/L)	MDA (nmol/mg protein)	SOD (U/mg)	RCC (%)	PVP (cmH 2o)
A	72±12	29±4	35±5	61±10	10.2±1.4	1078±185	1.14±0.21	5.6±0.7
B	80±9*	56±4*	42±7*	55±11	9.4±1.2	1057±159	1.13±0.18	5.8±0.7
C	31±4*	23±3*	29±4*	89±15*	18.7±3.2*	824±108*	22.30±3.86	14.4±2.0*
D	40±7*	42±8*	37±7*	69±7*	12.0±2.2*	1029±76*	14.70±2.07*	9.3±1.5*

*P<0.05 vs control groups A and B, **P<0.05 vs before rhGH treatment (group A or C).
was significantly lower than that in normal rats (group A), and ALT in cirrhotic rats was markedly higher than that in normal rats (P<0.05) (Table 1). After rhGH administration, ALB in groups B and D increased significantly (P<0.05), ALT in group D decreased remarkably (P<0.05), which was close to normal rats (Table 1).

DISCUSSION

In cirrhotic patients, nutritional status was an important predictor of morbidity, mortality, and survival after transplantation[38]. The poor status of these patients was associated with the state of acquired GH resistance[37,38], which is common in conditions associated with malnutrition and protein catabolism, trauma or surgery, organ failure and critical illness. Much has been done regarding the expression of GHR and signal transduction[10-13], but the expression of GHR and GHR mRNA in some pathological states such as cirrhotic hepatocytes, malignant cells, remains to be established. Chang et al.[39] reported that 125I-rhGH binding activity in 6 cases of hepatocellular carcinoma and adjacent cirrhotic liver tissues could not be detected and they believed that GHR in cirrhotic hepatic tissues disappeared although the study only examined one aspect of the GHR and GH binding. Another study[40] showed that specific binding of 125I-hGH in liver tissues from liver transplant of 17 patients with end-stage liver diseases was lower than that in normal controls, but only in 3 cirrhotic livers Scatchard analysis was performed for calculation of GH binding capacity and affinity. In this setting of tissue-based GH binding assay, there was still a controversy about the expression of GHR on cirrhotic liver cells.

Our study showed that rhGH could significantly increase serum ALB and SOD levels, decrease ALT and MAD to nearly the normal level in liver cirrhotic rats. In addition, after rhGH treatment, both the liver fibrosis level and PVP were remarkably decreased.

In our study, the expression of GHR mRNA in cirrhotic liver tissue was lower than that in normal liver tissue, suggesting that liver cirrhosis could down-regulate GHR gene transcription and result in decrease of GHR, which might be an important reason of malnutrition in liver cirrhosis.

Simultaneously, we found that rhGH up-regulated GHR and its mRNA in both cirrhotic and normal liver tissues. In normal liver, the changes before and after rhGH treatment were not obvious. We hypothesized that the up-regulation of GHR and its mRNA in cirrhotic rats could improve liver function, and decrease liver fibrosis levels and PVP. This implied that the effects of rhGH on the expression of GHR and GHR mRNA in cirrhotic liver tissues might play an important role in ameliorating the sensibility of cirrhotic liver tissues to rhGH, thereby exerting a therapeutic effect on liver cirrhosis.

In conclusion, rhGH can up-regulate the expression of GHR and its mRNA in livers, particularly in cirrhotic livers, which can increase the sensibility of cirrhotic liver tissue to growth hormones. Thus, rhGH can protect liver function, repress fibrosis, alleviate portal hypertension of cirrhotic livers.

REFERENCES

1 Strong RW. Liver transplantation: current status and future prospects. J R Coll Surg Edinb 2001; 46: 1-8
2 Dichi JB, Dichi I, Maio R, Correa CR, Angellesi AY, Bicudo MH, Rezende TA, Burini RC. Whole-body protein turnover in malnourished patients with child class B and C cirrhosis on diets low to high in protein energy. Nutrition 2001; 17: 239-242
3 Sobhonslidsuk A, Roongpisuthipong C, Nantiriru K, Kulapongs S, Songchitsomboon S, Sumalnop K, Bussagorn N. Impact of liver cirrhosis on nutritional and immunological status. J Med Assoc Thai 2001; 84: 982-988
4 Mauli KI, Turnage B. Trauma in the cirrhotic patient. South Med J 2001; 94: 205-207
5 Moukarzel AA, Najm I, Vargas J, McDiarmid SV, Busuttil RW, Ament ME. Effect of nutritional status on outcome of orthotopic liver transplantation in pediatric patients. Transplant Proc 1990; 22: 1560-1563
6 Harrison J, Mckierman J, Neuberger JM. A prospective study on the effect of recipient nutritional status on outcome in liver transplantation. Transplant Int 1997; 10: 369-374
7 Muller MJ, Lautz HU, Plogmann B, Burger M, Korber J, Schmidt FW. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging...
and nutritional state. *Hepatology* 1992; 15: 782-794
8 Streit SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. *J Trauma* 1987; 27: 262-266
9 Le Cornu KA, McKiernan FJ, Kapadia SA, Neuberger JM. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. *Transplantation* 2000; 69: 1364-1369
10 Carter-Su C, Schwartz J, Smit LS. Molecular mechanism of growth hormone action. *Anna Rev Physiol* 1996; 58: 187-207
11 Hoqueyte JF, Postel-Vinay MC, Kayser C, de Hemptinne B, Amar-Costescu A. The human liver growth hormone receptor. *Endocrinology* 1989; 125: 2167-2174
12 Husman B, Anderson G, Norstedt G, Gustafsson JA. Characterization and subcellular distribution of somatogenic receptor in rat liver. *Endocrinology* 1985; 116: 2605-2611
13 van Neste L, Husman B, Moller C, Anderson G, Norstedt G. Cellular distribution of somatogenic receptors and insulin-like growth factor-I mRNA in the rat liver. *J Endocrinol* 1988; 119: 69-74
14 Wong WK, Soo KC, Nambiar R, Tan YS, Yo SL, Tan IK. The effect of recombinant growth hormone on nitrogen balance in malnourished patients after major abdominal surgery. *Aust N Z J Surg* 1995; 65: 109-113
15 Rodeck B, Kardoff R, Melter M, Ehrich JH. Improvement of growth after growth hormone treatment in children who undergo liver transplantation. *J Pediatr Gastroenterol Nutr* 2000; 31: 286-290
16 Petersen SR, Holaday NJ, Jeevanandam M. Enhancement of protein synthesis efficiency in parenterally fed trauma victims by adjuvant recombinant human growth hormone. *J Trauma* 1994; 36: 726-733
17 Singh KP, Prasad R, Chari PS, Dash RJ. Effect of growth hormone therapy in burn patients on conservative treatment. *Burns* 1998; 24: 733-738
18 Iglesias P, Diez JJ. Clinical applications of recombinant human growth hormone in adults. *Expert Opin Pharmacother* 1999; 1: 97-107
19 Herndon DN, Hawkins HK, Nguyen TT, Pierre E, Cox R, Barrow RE. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. *Ann Surg* 1995; 221: 649-656
20 Alli Low JF, Barrow RE, Mittendorfer B, Jeshke MG, Chinkes DL, Herndon DN. The effect of short-term growth hormone treatment on growth and energy expenditure in burned children. *Burns* 2001; 27: 447-452
21 Hart DW, Herndon DN, Klein G, Lee SB, Celis M, Mohan S, Chinkes DL, Wolf SE. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. *Ann Surg* 2001; 233: 927-934
22 Vara-Thorbeck R, Guerrero JA, Rosell J, Ruiz-Requena E, Capitan JM. Exogenous growth hormone: effects on the catabolic response to surgically produced acute stress and on postoperative immune function. *World J Surg* 1993; 17: 530-537
23 Pape GS, Friedman M, Underwood LE, Clemmons DR. The effect of growth hormone on weight gain and pulmonary function in patients with chronic obstructive lung disease. *Chest* 1991; 99: 1495-1500
24 Koea JB, Breier BH, Douglas RG, Gluckman PD, Shaw JH. Anabolic and cardiovascular effects of recombinant human growth hormone in surgical patients with sepsis. *Br J Surg* 1996; 83: 196-202
25 Li W, Li J, Xu B, Yin L, Wang L, Gu J, Ren J, Quan Z. Effect of recombinant human growth hormone with total parenteral nutrition on albumin synthesis in patients with periportal sepsis. *Zhonghua Waike Zazhi* 1998; 36: 643-645
26 Schambelan M, Mulligan K, Grunfeld C, Daar ES, LaMarca A, Kofler DP, Wang J, Bozetta SA, Breitmejer JB. Recombinant human growth hormone in patients with HIV-associated wasting. A randomized, placebo-controlled trial. *Serostim Study Group. Ann Intern Med* 1996; 125: 873-882
27 Waters D, Danska J, Hardy K, Koster F, Qualls C, Nickell D, Nightingale S, Gesundheit N, Watson D, Schade D. Recombinant human growth hormone, insulin-like growth factor 1, and combination therapy in AIDS-associated wasting. A randomized, double-blind, placebo-controlled trial. *Ann Intern Med* 1996; 125: 865-872
28 O’Leary MJ, Ferguson CN, Rennie M, Hinds CJ, Coakley JH, Preedy VR. Effect of growth hormone on muscle and liver protein synthesis in septic rats receiving glutamine-enriched parenteral nutrition. *Crit Care Med* 2002; 30: 1099-1105
29 Losada F, Garcia-Luna PP, Gomez-Cia T, Garrido M, Pereira JL, Marin F, Astorga R. Effects of human recombinant growth hormone on donor-site healing in burned adults. *World J Surg* 2002; 26: 2-8
30 Carroll PV, Van den Berge G. Safety aspects of pharmacological GH therapy in adults. *Growth Horm IGF Res* 2001; 116: 166-172
31 Takala J, Ruokonen E, Webster NR, Nielson MS, Zandstra DF, Vundelinckx G, Hinds CJ. Increased mortality associated with growth hormone treatment in critically ill adults. *N Engl J Med* 1999; 341: 785-792
32 Jeschke MG, Barrow RE, Herndon DN. Recombinant human growth hormone treatment in pediatric burn patients and its role during the hepatic acute phase response. *Crit Care Med* 2000; 28: 1578-1584
33 Raguso CA, Genton L, Kyle U, Pichard C. Management of catabolism in metabolically stressed patients: a literature survey about growth hormone application. *Curr Opin Clin Nutr Metab Care* 2001; 4: 313-320
34 Wilmore DW. Postoperative protein sparing. *World J Surg* 1999; 23: 545-552
35 Zhao J, van Tol HT, Taverne MA, van der Weijden GC, Bevers MM, van den Hurk R. The effect of growth hormone on rat preantral follicles in vitro. *Zygote* 2000; 8: 273-283
36 Mendenhall CL, Tosch T, Weesner RE, Garcia-Pont P, Goldberg SJ, Kiernan T, Seeff LB, Sorell M, Tamburro C, Zetterman R. VA cooperative study on alcoholic hepatitis. II: Prognostic significance of protein-calorie malnutrition. *Am J Clin Nutr* 1986; 43: 213-218
37 Moller S, Becker U, Gronbaek M, Juul A, Winkler K, Skakkebaek NE. Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis. *J Hepatol* 1994; 21: 710-717
38 Donaghy A, Ross R, Gimson A, Hughes SC, Holly J, Williams R. Growth hormone, insulin like growth factor-1, and insulin like growth factor binding proteins 1 and 3 in chronic liver disease. *Hepatology* 1995; 21: 680-688
39 Chang TC, Lin JJ, Yu SC, Chang TJ. Absence of growth-hormone receptor in hepatocellular carcinoma and cirrhotic liver. *Hepatology* 1990; 11: 123-126
40 Shen XY, Holt RI, Miell JP, Justice S, Portmann B, Postel-Vinay MC, Ross RJ. Cirrhotic liver expresses low levels of the full-length and truncated growth hormone receptors. *J Clin Endocrinol Metab* 1998; 83: 2532-2538

Edited by Kumar M and Wang XL. Proofread by Xu FM