Hydrogen Embrittlement and Local Characterization at Crack Initiation Associated with Phase Transformation of High-strength Steel Containing Retained Austenite
Taku Nagase, Takaya Ito, Yoshiro Nishimura, Hiroshi Suzuki and Kenichi Takai

Synopsis: States of hydrogen present in high-strength steels for use as bearing steel SUJ2 and hydrogen embrittlement susceptibility were examined using thermal desorption analysis (TDA) and tensile tests. SUJ2 specimens containing retained austenite phase (γ_r) in the martensite phase exhibited three hydrogen desorption peaks in the TDA profile. Two of the peaks desorbed at higher temperatures decreased with a decreasing amount of γ_r, indicating they corresponded to desorption associated with γ_r. Fracture strength in the presence of hydrogen increased with a decreasing amount of γ_r and with an increasing strain rate. When the specimens contained γ_r and hydrogen, a flat facet at the crack initiation site and a quasi-cleavage (QC) fracture in the initial crack propagation area were observed on the fracture surface. Local characterization using electron back-scattered diffraction (EBSD) revealed that the flat facet on the fracture surface corresponded not to γ_r but to stress-induced martensite. In addition, the facet was {112} plane of martensite, which is the slip plane or deformation twin plane of body-centered-cubic metals. The reason for high hydrogen embrittlement susceptibility of the specimens containing γ_r was attributed to the stress-induced phase transformation at the crack initiation site of the flat facet and in the initial crack propagation area of the QC fracture. Furthermore, the strain rate dependency of hydrogen embrittlement susceptibility is presumably ascribable to local plastic deformation, i.e., the interaction between dislocations and hydrogen.

Key words: hydrogen embrittlement; retained austenite; thermal desorption analysis; tensile test; stress induced transformation; quasi-cleavage fracture; intergranular fracture.
2. 実験方法

2.1 供試材

供試材として、焼入れ温度850℃、焼戻し温度160℃、サブゼロ処理温度－60℃で熟処理を施した高速度クロム鉄SUJ2を用いた。化学成分をTable 1に示す。水素分析では直径8 mm、高さ20 mmの円柱試験片、引張試験では平行部の直径3.4 mm、G.L.15 mmの平行部付平滑丸棒試験片を用いた。引張強さは2119 MPaであった。Fig.1 (a)にSEM (Scanning electron microscope) によるSUJ2の金属組織写真、Fig.1 (b)にEBSD (Electron back-scattered diffraction)法によるPhase mapを示す。赤色がマルテンサイト相、緑色がオーステナイト相、黄色が炭化物に対応する。母相のマルテンサイト相中で直径約1μmの球状化したセメタイトの析出が観察される。また、サブゼロ処理を施しているが、微細な残留γの存在も認められる。

SUJ2中の残留γ量を変化させる目的で、上記熟処理を施したSUJ2材、このSUJ2材を液体窒素環境下で引張応力1200 MPaを予負荷し、一部の残留γを応力誘起マルテンサイト変態させたSUJ2+γ材、SUJ2材を300℃にて30分加熱処理を施し、残留γをフェライトとオーステナイトに完全に分解させたSUJ2+300℃材を作製した。以下、3種類の試験片をSUJ2、SUJ2+γ、SUJ2+300℃材と表記する。Fig.2にSUJ2、SUJ2+γ、SUJ2+300℃材のXRD (X-ray diffraction)による回折パターンを示す。Cu管球を用いて、管圧電40 kV、管電流30 mA、回折速度2°・min⁻¹、回折角2θ=30〜90°の範囲で測定を行った。また、3種類の試験片の残留γ量については、Cr管球を用いてマルテンサイト相、オーステナイト相の各回折線を測定し、それらの積分強度から体積分率を算出した。残留γの体積分率はSUJ2材で13.4 vol%、SUJ2+γ材で7.3 vol%、SUJ2+300℃材で0 vol%であった。

2.2 水素添加と水素分析

陰極電解法を用いて、NH₄SCNを1 g・L⁻¹添加した30℃の0.1N NaOH水溶液中で、電流密度10A・m⁻²で試験片中心まで水素が平衡に達する48 hの水素添加を行った。水素添加後、直ちにTDA (Thermal desorption analysis)による水素分析を行った。水素分析には、Ar中で50 vol ppm水分を含んだ標準ガスでキャリブレーションしたガスクロマトグラフィーを検出系とし、室温から800℃まで400℃・h⁻¹で昇温した。

Table 1. Chemical composition of SUJ2 specimen (mass%).

C	Si	Mn	P	S	Cr
0.99	0.22	0.26	0.008	0.006	1.41

Fig. 1. (a) SEM image and (b) phase map obtained by EBSD of SUJ2 specimen: red represents α’, yellow represents carbide and green represents retained γ. (Online version in color.)

Fig. 2. Diffraction patterns of (a) [SUJ2], (b) [SUJ2+σ] and (c) [SUJ2+300°C] specimens analyzed by XRD.
2.3 水素脆化感受性評価

引張試験で得られた破壊強さから、SUJ2の水素脆化感受性を評価した。2・2節と同一の陰極電解条件で水素を添加した。この条件での水素量は約6 mass ppmであった。その後、ひずみ速度を2 × 10^{-6}、2 × 10^{-4}、2 × 10^{-2} s^{-1}、試験温度を−196、−60、30℃と変えて引張試験を行った。なお、引張試験温度30℃においては、引張試験中の水素放出を防ぎ、試験片中の水素濃度を一定に保つため、水素添加時間を同条件で水素添加を続けながら引張試験を行った。比較のため、水素未添加材についても同一のひずみ速度、温度で引張試験した。

また、残留γ量の異なるSUJ2 + σおよびSUJ2 + 300℃材の水素脆化感受性も評価した。3種類の試験片に2・2節と同一の条件で水素を添加し、試験温度を−30℃として、ひずみ速度を2 × 10^{-6} s^{-1}、試験温度30℃で引張試験して試験片を破断させた。破面のき裂発生点およびその近傍をFIB（Focused ion beam）で切り出し、EBSDによる組織解析を行った。

2.4 EBSDによるき裂発生点近傍の局所解釈

【SUJ2】材のき裂発生点について詳細な組織解析を行うため、EBSDを用いてき裂発生点およびその近傍の結晶方位解析、残留γの相変態の有無を調査した。【SUJ2】材に2・2節と同一条件で水素を添加し、ひずみ速度を2 × 10^{-6} s^{-1}、試験温度30℃で引張試験して試験片を破断させた。破面のき裂発生点およびその近傍をFIB（Focused ion beam）で切り出し、EBSDによる組織解析を行った。

3. 実験結果および考察

3.1 残留γの相変態に伴う水素の状態変化

Fig.3に2・2節の条件で水素添加したSUJ2、SUJ2 + σ、SUJ2 + 300℃材のTDAで得られた水素放出温度プロファイルを示す。SUJ2材においては、190℃付近で大きなピーク、このピークの300℃付近に肩部、さらに500℃付近に小さなピークが出現する。SUJ2 + σ材においては、ピークの高さは異なるがSUJ2材と同一の温度域に2つのピークと1つの肩部が認められる。一方、SUJ2 + 300℃材においては、190℃付近に大きな1つのピークのみ認められる。これまでのTRIP鋼においては2つのピーク、軸受鋼SAE52100においては2つのピークと1つの肩部の存在が報告されている。なお、3試験片の総水素量の比は、SUJ2：SUJ2 + σ：SUJ2 + 300℃ = 1:1:1.4であった。

本実験における試験片直径および昇温速度の条件下では、試験片からの水素放出は拡散律速であり、それぞれのピーク温度はトラップサイトからの脱分離温度ではなく、より高温側に現れると考えられる。しかし、SUJ2中に含まれる残留γが熱的不安定であるため、昇温速度を遅くすると昇温過程で徐々に相変態し元の組織から変化してしまう問題点がある。そこで、拡散律速支配であり全体的にピークが高温側へシフトしていることを前提にピーク分離を試みた。

Fig.3で得られた複数のピークを分離するために、ガウス関数によりピークをフィットした結果をFig.4に示す。Fig.4の(a)のSUJ2材においては、190℃ピーク（Peak1水素）、325℃ピーク（Peak2水素）、525℃ピーク（Peak3水素）に分離可能である。この3つのピーク温度を基にして、SUJ2 + σ材およびSUJ2 + 300℃材についてもピーク

Fig. 3. Thermal desorption profiles of [SUJ2], [SUJ2+σ] and [SUJ2+300°C] specimens hydrogen-charged at 10 A·m⁻² in 0.1 N NaOH solution adding 1 g·L⁻¹ NH₄SCN.

Fig. 4. Comparison of thermal desorption profiles between experiment and fitting using Gaussian function of (a) [SUJ2], (b) [SUJ2+σ] and (c) [SUJ2+300°C] specimens.
フィットした結果をFig.4 (b), (c) に示す。[SUJ2+α] 材は [SUJ2] 材とほぼ同一の 3 つのピーク温度のガウス関数でフィットするが、実験結果とよく一致する。また、[SUJ2 +300℃] 材はプロファイル上では一見ピークが 1 つに見えるが、[SUJ2] 材と同じ Peak 1 水素の関数だけではフィットできず、Peak 1 および Peak 2 水素の 2 つのピークを持つ。

ここで、ピークフィットにより分離できた層間に相当する Peak 2 に対応する水素の存在を検証した。水素添加直後（0 d）と水素添加後に 30℃の恒温槽内で 10 d 脱水素した [SUJ2] 材の水素放出温度プロファイルを Fig.5 に示す。10 d の脱水素により、水素量は全体的に減少するが、325℃付近に小さなピークが残存する。これは、ピークフィットにおける Peak 2 水素の温度と一致する。この結果から、Fig.4 においてガウス関数でピークフィットした Peak 2 水素の状態が実験においても存在することが検証された。

従来、炭素水素焼成においての Peak 1 水素の温度域で試験片から放出される水素は、原子空孔、転位、内部の弾性応力場、転位、結晶構造、ひずみを受けていないセメントサイト界面等に吸収された水素であると報告されている。炭素水素マルテンサイトにおいても、Peak 1 水素は拡散性水素であり、同様のトラップサイトから放出された水素と考えられる。

次に、中炭素水素焼成マルテンサイト鋼において、Peak 2 および Peak 3 水素について検討する。[SUJ2] 材は 13.4 vol%の残留γを含む。従来、マルテンサイトのラス境界に存在するフィルム状の残留γは比較的安定で、サブゼロ処理を行っても容易に変態しないと報告されている。また、TEM を用いた SUJ2 の組織観察により、マルテンサイト相の間にブロック状の残留γの存在が報告されていることから、本研究の [SUJ2] 材の残留γも比較的安定であり、－60℃のサブゼロ処理では残留を示さなかったと考えられる。液体窒素下での応力負荷により応力誘起マルテンサイト変態、残留γ量を 7.3 vol% へと減少させた [SUJ2+α] 材の Peak 2 および Peak 3 水素のそれぞれのピーク高さは、[SUJ2] 材と比較して減少する。また、300℃アヌールにより残留γ量を 0 vol% とした [SUJ2 +300℃] 材の Peak 2 水素は、[SUJ2] および [SUJ2+α] 材と比較してさらに減少し、Peak 3 水素はほぼ消滅する。相変態に伴う残留γ量の減少とともに Peak 2 および Peak 3 水素も減少傾向にあることから、Peak 2 および Peak 3 水素は、残留γ起因の水素であることが示唆される。

ここで、残留γ起因と考えられる Peak 2 および Peak 3 水素の存在状態について考察する。残留γを含むことにより高温で水素放出が生じる理由として、(i) 残留γ中での水素拡散、(ii) 固相変態における 280℃付近での残留γの分解・消減（iii）残留γ／マルテンサイトの相変態面での強いトラップの可能性を考えられる。その可能性として、面心立方 (fcc) 格子である残留γは体心立方 (bcc) 格子である焼成マルテンサイトに比べ、見かけの水素拡散係数 (D0) が著しく小さい。同一の引張強さ約 1200 MPa を有する焼成マルテンサイト鋼と残留γを 26.3 vol% 含む鋼の 303 K における D0 は、それぞれ 1.5×10−17 (m²·s⁻¹) と 1.3×10⁻17 (m²·s⁻¹) と约 10 倍の差があると報告されている。SUJ2においても、残留γに固溶した水素、あるいは試験片から水素放出する際に残留γに通電する水素のD0は低下し、拡散係数がより支配的となるため、TDAのプロファイルにおいてより高温での放出となった可能性が考えられる。

次に、(iii) の可能性について考察する。残留γは 200～300℃でフェライト (α) とセメントサイトへ分解消減する。TDAによる昇温過程において、水素の一部は残留γ中に存在し拡散しており、この温度域において熱的に不安定な残留γの分解・消滅が起こり、D0 の大きな中での拡散へと引き続いて、分解温度域である高温域で放出された可能性が考えられる。

(iii) の可能性については、SUS304 および残留γを含む鋼の相変態に伴う水素吸収の機構として、水素固溶度の大き なγ相から固溶度の小さい加工誘起マルテンサイト (α' mart) への相変態時に、γ(α' mart)界面に水素がトラップされ (γ' が生じる可能性が報告されている)。これら試験片中の界面の変化をまとめて、SUJ2 材においては残留γと母相のマルテンサイト (α') 相の残留γ/α' 界面が存在し、[SUJ2+α] 材においては、残留γ/α' 界面が減少してα' mart/α' 界面が現出し、[SUJ2 +300℃] 材においては残留γ/α' 界面が消滅してα' mart 界面が形成される。これらの界面の中で、結晶構造の異なる残留γ (fcc) /α' (bcc) 界面が強い水素トラップサイトとして作用し、Fig.4 のように Peak 2 は Peak 3 水素として高温域に現れた可能性が考えられる。

一般に、TDA で得られる水素放出温度プロファイルにおいて、水素放出温度が高いほどトラップサイト - 水素間の結合エネルギーが大きい。Fig.5においては、逆に、Peak 2
木素の方が残存し、より高温側で放出されるPeak 3木素の方が消失していた。この結果から、Peak 2木素は(ii)の残留γ/マルテンサイトの異相界面でのトラップに対応し、一方、Peak 3木素は強い結合のトラップでなく、(i)の残留γ中での拡散律速に起因する木素拡散の時間遅れ、あるいは(ii)の残留γの分解・消滅にそれぞれ対応している可能性が示唆される。

また、Fig.4 (c) の[SUJ2 + 300°C]材に関しては、300°C加熱しているにも関わらず、Peak 1木素量が増加し、一方で残留γ量は0vol%であるにも関わらず、Peak 2木素をピークフィットすると実験結果と重なる。この理由も、金属組織の変化により対応させることで矛盾なく説明できる。300°Cでの加熱により、材料の転位密度低下の可能性もあるが、残留γはα相とセメンタイトへ分解するため、転位密度低下要因以上にセメンタイト析出に伴うトラップサイトの増加により、Peak 1木素量が増加したと考えられ。それに伴い、Dnも低下し、昇温脱協過程において拡散律速がより支配的となったと考えられる。すなわち、Fig.4 (c)においてPeak 2木素をフィットさせたが、この場合は残留γ再結晶でなく、Peak 1木素の拡散律速再結晶であったと推察される。

3.2 SUJ2の水素脆性感受性

ひずみ速度を2×10^-6 s^-1とし、引張温度を−196, −60, −30, 30°Cと変えた際の[SUJ2]材の応力−変位曲線をFig.6に示す。いずれの試験速度においても水素添加材の破壊強さは、水素未添加材と比較して低下し、引張試験温度に依存する。ひずみ速度を2×10^-6, 2×10^-4, 2×10^-2 s^-1と変化させた際の破壊強さと試験温度の関係をFig.7に示す。水素未添加材の破壊強さは顯著な温度依存性を示さないが、水素添加材の破壊強さはいずれのひずみ速度においても試験温度−30°Cで最小となり、−60°C, −196°Cとより低温ほど急上昇する。

従来、水素脆性感受性の試験温度依存性については、転位発生と水素拡散の関係により説明されることが多い。金属中のDnは温度に依存するため、転位の移動速度と水素拡散速度の大小関係によって、転位と水素の相互作用の程度が変化し、水素脆性感受性は温度依存性を示すと考えられている。bcc金属については、0.2%C, 0.7%Mnを含む材料で熱間圧延後試験温度に依存するという結果が報告されている。

Fig. 6. Stress-displacement curves of [SUJ2] specimen with/without hydrogen in tensile test at a strain rate of 2×10^-6 s^-1 under various temperatures of (a) 30°C, (b) −30°C, (c) −60°C and (d) −196°C.

Fig. 7. Effect of tensile test temperatures on fracture strength of [SUJ2] specimen with/without hydrogen at strain rates of 2×10^-6, 2×10^-4 and 2×10^-2 s^-1.
Fig. 8. Fracture surfaces of [SUJ2] specimen after tensile test at a strain rate of 2×10^{-6} s$^{-1}$ at 30°C. (a) [SUJ2] specimen without hydrogen shows intergranular (IG) fracture. (b) [SUJ2] specimen with hydrogen shows quasi-cleavage (QC) fracture. (c) and (d) show schematic diagrams of distribution of fracture modes for [SUJ2] specimens with/without hydrogen.
＞[SUJ2+σ] 材＞[SUJ2] 材となる。なお，3 種類の試験片の強度が異なるため，水素脆化感受性を水素未添加材と
水素添加材の破壊強さの比でも比較してみたが，同じ順序
となる。一般に，引張強さ1.2 GPaを超えると，引張強さの
上昇とともに水素脆化感受性が高まることが知られている
が，[SUJ2+300°C] 材の強度は最大にも関わらず，逆に
水素添加時の破壊強さ，および比も最大である。さらに，
[SUJ2+300°C] 材はFig.4（c）で示したように約1.4倍の水
素を吸収するにも関わらず，破壊強さが最大である。また，
試験温度を－30℃とし，ひずみ速度を2×10^{–6}，2×10^{–4}
，2×10^{–2} s^{–1}と変えた3種類の試験片の破壊強さをFig.10に
示す。いずれのひずみ速度においても，水素添加材の破壊
強さの順は[SUJ2+300°C] 材＞[SUJ2+σ] 材＞[SUJ2]
材となる。これら3種類の試験片の水素脆化感受性差に関
しては，従来から報告されている引張強さ，水素量，ひず
み速度以外の要因で考察する必要がある。
水素添加材の破壊強さと初期残留γ量の関係をFig.11に
まとめる。初期残留γ量が多いほど，いずれのひずみ速度
においても水素添加材の破壊強さは低下し，SUJ2中の初
期残留γ量と水素脆化感受性には相関があることが示され
た。
残留γ量の異なる3種類の試験片に水素添加し破壊した
際のき裂発生点近傍の破面写真をFig.12に示す。残留γを
含む[SUJ2]および[SUJ2+σ] 材はFig.12（a），（b）に示さ
れるように組織起因と考えられるflat facetをき裂発生点と
し，周辺を拡大開破壊が観測される。なお，従来から，SUJ2に
水素添加し引張試験を行うと非金属介在物をき裂発生点
とした破壊が起こることが報告されているが，本研究で
も，一部の試験片においてき裂発生にflat facetでなく介
在物が観察されるものもあった。一方，残留γを含まない
[SUJ2+300°C] 材においてはFig.12（c）に示されるように，
結晶粒界をき裂発生点（一部，介在物が発生点の場合作あり）
とした粒界破壊であり，flat facetおよびその周辺に拡
大開破壊は観察されなかった。Table 2に残留γ量の異な
る試験片のき裂発生点とその周辺のき裂成長過程における
破壊形態の変化をまとめる。
以上より，SUJ2中に残留γを含むと，水素添加した際の
破壊強さは低下し，破面の特徴として，き裂発生点にflat
facetとその周囲に拡大開破壊が観察されることから，次
節においてき裂発生点およびその周辺を詳細に解析する。
3．4 SUJ2のき裂発生点近傍の局所解析
SUJ2の水素脆化に伴う破壊過程を以下の3つのステー
ジに分けて検討する。
（a）き裂発生（flat facet領域）
(b) 初期き裂成長 (極へき開破壊領域)
(c) 不安定き裂成長 (粒界破壊およびディンプル領域)

(a) のき裂発生ステージにおいて、残留γを含んだ試験片を水素添加して引張試験した場合のみ、き裂発生点にある
flat facetが出現する理由について検討する。水素添加したSUJ2材をひずみ速度2×10^-6s^-1、試験温度30℃で破壊させた
破面のSEMによるき裂発生点近傍の写真をFig.13に、き裂発生点であるflat facetをEBSDによるIPF (Inverse pole figure)
mapをFig.13 (b) に示す。き裂発生点のflat facetはIPF mapよりbcc格子のマルテンサイトであり、破
面に向いた結晶面は[112]であることがわかる。

Fig.13 (c), (d) にflat facetを含むき裂発生点近傍部をFIBにより破面に対して垂直に切り出した断面のEBSD
によるIPF mapおよびPhase mapを示す。四角で囲った箇所がflat facetの断面に対応する。Fig.13 (c)より、flat facet
は特定の方位を持つ結晶面であり、破面には[112]面が対応する。また、Fig.13 (d) のPhase mapにおいて、赤色がマ
ルテンサイト相、緑色がオーステナイト相に対応する。破面直下数ミクロンの範囲ではほとんど残留γが検出され
ない。SUJ2材中の初期残留γ量は13.4 vol%であり、かつ、Fig.1 (b)の示したように均一に分布しており、水素添加し
て-30℃で引張破壊させた後にも、破面から離れた箇所での
残留γ量は5.3 vol%と減少したものの残存することを
確認した。しかし、Fig.13 (d) から、き裂発生点周辺の破面
直下数ミクロンの局所領域に限れば、ほとんどの残留γは
マルテンサイトへ相変態していることが判明した。

flat facetの破面がbcc格子のへき開面[001]ではなく、す
べり面[112]であることから、き裂発生点は水素による原子間
結合力の低下でなく、局所的な転位すべりによる塑性
変形で生じたと考えられる。また、flat facetが[112]面を
形成する理由に関して、巨視的には SUJ2材は水素添
加によって弾性変形下で破壊するが、マルテンサイト相と
残留γ相の強度差が大きいため、残留γ相だけが局所的に大
きく変形して、加工誘起マルテンサイト変態し、局所的な
塑性変形により[112]すべり面がき裂発生点に現れたと考え
られる。したがって、Fig.13 (d) で示したように、[112]
面が観察されることが考えられる。

Fig.13. Crack initiation and propagation areas of [SUJ2] specimen with hydrogen after tensile test at a strain rate
of 2×10^-6 s^-1 at 30℃. (a) image of crack initiation on fracture surface observed by SEM. (b) IPF map of flat facet
at crack initiation on fracture surface analyzed by EBSD. The flat facet is{112} plane of martensite which is
slip plane in bcc lattice. (c) IPF map of cross section near flat facet at crack initiation analyzed by EBSD. The
flat facet is {112} plane of martensite which is slip plane in bcc lattice. (d) Phase map of cross section near flat
facet of crack initiation analyzed by EBSD. The phase of flat facet and near the area is not retained austenite but
martensite. (Online version in color.)

Fig.12. Crack initiation and propagation areas of (a) [SUJ2], (b) [SUJ2+σ] and (c) [SUJ2+300°C] specimens with hydrogen after
tensile test at a strain rate of 2×10^-6 s^-1 at -30℃. (a) [SUJ2] specimen shows quasi-cleavage (QC) fracture around flat facet.
(b) [SUJ2+σ] specimen also shows QC and intergranular (IG) fracture around flat facet. (c) [SUJ2+300°C] specimen shows IG
fracture.

Table 2. Crack initiation and propagation modes of [SUJ2], [SUJ2+σ] and [SUJ2+300°C] specimens with/without hydrogen at tensile
test temperatures of -60, -30 and 30℃.

	[SUJ2] 13.4 vol% γ	[SUJ + σ] 7.3 vol% γ	[SUJ2 + 300°C] 0 vol% γ
without H	crack initiation	G.B. or inclusion	G.B. or inclusion
propagation			G.B. or inclusion
with H	crack initiation	flat facet or inclusion	flat facet or inclusion
propagation			G.B. or inclusion

Table 2. Crack initiation and propagation modes of [SUJ2], [SUJ2+σ] and [SUJ2+300°C] specimens with/without hydrogen at tensile
test temperatures of -60, -30 and 30℃.
えられる。あるいは、高炭素鋼で見られるレンズ状マルテンサイト中の内部双晶も[112]面に沿って生じるため、マルテンサイト中の双晶面で破壊した可能性もある。水素添加したFe-Mn-C鋼において、変形双晶面で破壊が発生することが報告されている21)。

次に、(b)のき裂発生点周りの初期き裂成長ステージについて検討する。残留γを含む[SUJ2]および[SUJ2+δ]材の水素未添加材においては、破壊はき裂発生点(粒界、または介在物)から粒界破壊へと遷移するが、水素添加材においては、き裂発生点(flatt facet、または介在物)から擬べき開破壊を経て粒界破壊へと遷移する。一方、残留γを含まない[SUJ2+300°C]材では、水素添加の有無に関わらず、き裂発生点(粒界、または介在物)から粒界破壊へと遷移する。すなわち、残留γと水素の両者が存在して応力が加わった条件下でのみ、初期き裂成長によって粒内割れの一種である擬べき開破壊が現れる。また、擬べき開破壊面上に複数のflat facetが観察された試験片もあった。

一般に、擬べき開破壊は微視的にぼけらばならない脆性的な破壊形態であるが、低温脆性などで認められる[001]面のべき開とは異なる、[011]面でラス境界に沿ったすべり面での破壊が認められることがTEMによる観察から報告されている22,23)。また、擬べき開破壊破面直下の回折パターンから、塑性変形制限が実験的に明らかにされている24)。EBSDによる方位解析からも、[011]面であることが報告されている25)。さらに、擬べき開破壊面下をFIBで切り出してTEMで直接観察した結果、高軸位密度のすべり帯の存在が見出され、塑性変形制限の割れであることも示されている26,27)。

(2)の安定き裂成長ステージにおいては、[SUJ2]、[SUJ2+δ]、[SUJ2+300°C]の水素未添加材、水素添加材とも同様なディンプル破面を呈していた。水素添加した[SUJ2]材のディンプル破面の2×2 mmの領域をXRDにより解析した結果、残留γは検出されなかった。すなわち、安定き裂成長ステージの急速破壊においては、塑性ひずみの大きいディンプル部中でひずみ誘起マルテンサイト変態が起こるが、flat facetのような脆性的な破壊は示さない。ここまでに説明した。Fig.12および13で得られた破面解析の結果に基づく、残留γを含む[SUJ2]材および残留γを含まない[SUJ2+300°C]材のき裂発生と初期き裂成長をモデル的に示した図をFig.14に示す。

3.5 SUJ2の相変態と水素脆化

Fig.13(c), (d)に示されたように、flat facetは引張方向に垂直に存在する板状の特定の結晶方位を有するもので、さまざまな方向を向いた板状の破面相で、引張方向に垂直に存在する相大の残留γが応力誘起マルテンサイト変態して、優先的にき裂発生点となった可能性が示唆される。なお、本研究においてflat facetと介在物のき裂発生点としての優位性については未検討であるが、それぞれのサイズや分布によって決まる可能性がある。残留γからマルテンサイト変態の際、残留γ中のC量に依存するが約2%の体積膨張が起こることが知られている28)。この局所的な膨張により、界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。ただし、水素が存在しなければflat facetも擬べき開破壊現れず、破壊強さの低下も生じないことから、水素の作用として、

1.水素が加工引張応力変態に伴う限界のMdを上昇させ、相変態を助長することで脆性を促進
2.水素が相変態を助長するのではなく、水素無しでも起こる加工引張変態で形成された界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。ただし、水素が存在しなければflat facetも擬べき開破壊現れず、破壊強さの低下も生じないことから、水素の作用として、

3.4 SUJ2の相変態と水素脆化

Fig.13(c), (d)に示されたように、flat facetは引張方向に垂直に存在する板状の特定の結晶方位を持つことから、さまざまな方向を向いた板状の破面相で、引張強度に垂直に存在する相大の残留γが応力誘起マルテンサイト変態して、優先的にき裂発生点となった可能性が示唆される。なお、本研究においてflat facetと介在物のき裂発生点としての優位性については未検討であるが、それぞれのサイズや分布によって決まる可能性がある。残留γからマルテンサイト変態の際、残留γ中のC量に依存するが約2%の体積膨張が起こることが知られている28)。この局所的な膨張により、界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。ただし、水素が存在しなければflat facetも擬べき開破壊現れず、破壊強さの低下も生じないことから、水素の作用として、

1.水素が加工引張応力変態に伴う限界のMdを上昇させ、相変態を助長することで脆性を促進
2.水素が相変態を助長するのではなく、水素無しでも起こる加工引張変態で形成された界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。

3.4 SUJ2の相変態と水素脆化

Fig.13(c), (d)に示されたように、flat facetは引張方向に垂直に存在する板状の特定の結晶方位を持つことから、さまざまな方向を向いた板状の破面相で、引張強度に垂直に存在する相大の残留γが応力誘起マルテンサイト変態して、優先的にき裂発生点となった可能性が示唆される。なお、本研究においてflat facetと介在物のき裂発生点としての優位性については未検討であるが、それぞれのサイズや分布によって決まる可能性がある。残留γからマルテンサイト変態の際、残留γ中のC量に依存するが約2%の体積膨張が起こることが知られている28)。この局所的な膨張により、界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。ただし、水素が存在しなければflat facetも擬べき開破壊現れず、破壊強さの低下も生じないことから、水素の作用として、

1.水素が加工引張応力変態に伴う限界のMdを上昇させ、相変態を助長することで脆性を促進
2.水素が相変態を助長するのではなく、水素無しでも起こる加工引張変態で形成された界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。

3.4 SUJ2の相変態と水素脆化

Fig.13(c), (d)に示されたように、flat facetは引張方向に垂直に存在する板状の特定の結晶方位を持つことから、さまざまな方向を向いた板状の破面相で、引張強度に垂直に存在する相大の残留γが応力誘起マルテンサイト変態して、優先的にき裂発生点となった可能性が示唆される。なお、本研究においてflat facetと介在物のき裂発生点としての優位性については未検討であるが、それぞれのサイズや分布によって決まる可能性がある。残留γからマルテンサイト変態の際、残留γ中のC量に依存するが約2%の体積膨張が起こることが知られている28)。この局所的な膨張により、界面でのBiot形態が変化し、構成累積変形が試験片に伝わる29)。ただし、水素が存在しなければflat facetも擬べき開破壊現れず、破壊強さの低下も生じないことから、水素の作用として、
⑤の観点から考察する。いずれのひずみ速度においても、残留応力量が少ないほど破壊強さは上昇した。この水素脆化感受性の差はき裂発生ステージにおける残留γ相変態の影響である。上記①～⑤のいずれかの要因が関与していると推察される。ただし、残留γを含むSUJ2およびSUJ2 + σ相において、ひずみ速度の増加とともに破壊強さも増加し、大きなひずみ速度2 × 10⁻⁰⁸ s⁻¹においてもき裂発生点にはflat facetが発生し、初期き裂成長ステージには擬べき開破壊が現れた。このひずみ速度による破壊強さの変化は、残留γ相変態起因でなく、①および⑤の局所領域におけるひずみと水素の相互作用に伴う欠陥生成要因であると考えられる。

以上より、水素存在下で残留γを含むSUJ2に引張応力を負荷すると、flat facetでのき裂増殖への応力誘起マルテンサイト変態の影響、および擬べき開破壊を伴う初期き裂成長による局所の塑性変形による転位と水素の相互作用の複合要因によって、水素脆化感受性が決定すると推察される。

4. 結言

高炭素クロム軸受鋼SUJ2の水素存在下の脆発生状態解析において、ひずみ速度－残留応力量に関する基本的な水素脆化感受性評価、き裂発生および初期き裂成長模様の局所解析から以下の知見が得られた。

(1) 残留γを含むSUJ2のTDAプロファイルは、3つの状態の水素(低温からPeak 1, Peak 2, Peak 3水素)の複合溶液として分離可能である。Peak 2, Peak 3水素は初期残留γ量の減少とともに減少することから残留γ相変態の水素放出であり、一方、Peak 1水素は母相の焼戻しマルテンサイト相中の中性水素の水素放出に対応する。

(2) 水素添加したSUJ2の破壊強さは、ひずみ速度－残留応力量－試験温度依存性を示す。水素脆化感受性は、ひずみ速度の低下、初期残留応力量の増加とともに高くなり、引張試験温度－30°Cで最も高い感受性を示す。

(3) 残留γを含むSUJ2に水素添加した際の引張試験後の破面において、き裂発生点にflat facet、その周辺の初期き裂成長領域において擬べき開破壊が観察される。このflat facetおよび擬べき開破壊の直下にあるミクロクラックの局所領域に限れば、ほぼすべての残留γはマルテンサイト変態に伴う変態する。また、flat facetは特定の方位を呈する結晶面であり、[112]面に対応する。

(4) SUJ2中の残留γは水素存在下で応力誘起マルテンサイト変態することで、新たなき裂発生（flat facet）を引き起こし、水素脆化感受性を高める。ただし、ひずみ速度を増しても応力誘起マルテンサイト変態は起こらず、水素脆化感受性は低減することから、相変態によるき裂発生後のき裂成長領域（擬べき開破壊領域）においては、局所の塑性変形が関与した転位と水素の相互作用に伴う欠陥形成も水素脆化感受性に影響を及ぼすことが考えられる。

文 献

1) H.Uyama, H.Yamada, H.Hidaka and N.Mitamura: Tribol. Online, 6(2011), 123.
2) B.A.Szost and P.E.Rivera-Diaz-del-Castillo: Scr. Mater., 68(2013), 467.
3) H.Harada, T.Mikami, A.Yamamoto and H.Tsubakino: Tetsu-to-Hagané, 91(2005), 567.
4) K.Yamazaki and Y.Mizuyama: Tetsu-to-Hagané, 83(1997), 754.
5) T.Hojo, K.Sugimoto, Y.Mukai, H.Akamizu and S.Ikeda: Tetsu-to-Hagané, 92(2006), 83.
6) T.Hojo, K.Sugimoto, Y.Makai and S.Ikeda: Tetsu-to-Hagané, 93(2007), 234.
7) D.P.Escobar, T.Depover, L.Duprez, K.Verbeken and M.Verhaege: Acta Mater., 60(2012), 2593.
8) J.Yamabe, T.Matsumoto, S.Matsuoka and Y.Murakami: Int. J. Fract., 177(2012), 141.
9) K.Takai: Zairyo-to-Kankyo, 60(2011), 230.
10) 鉄鋼材料, 日本金属学会編, 丸善, 東京, (1985), 39.
11) H.Tsubakino and H.Harada: Tetsu-to-Hagané, 83(1997), 587.
12) S.L.I.Chan, H.L.Lee and J.R.Yang: Metall. Trans. A, 22A(1991), 2579.
13) T.Obura, K.Kobayashi, M.Miyahara and T.Kudo: Zairyo-to-Kankyo, 55(2006), 139.
14) S.Ohmiya and H.Fujii: ISIJ Int., 52(2012), 247.
15) L.Zhang, Z.Li, J.Zheng, Y.Zhao, P.Xu, X.Liu, C.Zhou and X.Li: Int. J. Hydrog. Energy, 38(2013), 11181.
16) H.Shoda, H.Suzuki, K.Takai and Y.Hagihara: ISIJ Int., 50(2010), 115.
17) T.Doshida and K.Takai: Acta Mater., 79(2014), 93.
18) N.Ohtani: Tetsu-to-Hagané, 60(1974), 304.
19) G.Han, J.He, S.Pukuyama and K.Yokogawa: Acta Mater., 46(1998), 4559.
20) T.Ohishi, K.Higashi, N.Inoue and Y.Nakatani: J. Jpn. Inst. Met., 45(1981), 972.
21) M.Wang, E.Akiyama and K.Tsuza: Scr. Mater., 52(2005), 403.
22) M.Oyanagi, T.Suzuki and K.Yamada: J. Soc. Mater. Sci., Jpn., 51(2002), 561.
23) S.Fujita, S.Matsuoka and Y.Murakami: Tetsu-to-Hagané, 95(2009), 870.
24) M.Koyama, E.Akiyama, K.Tsuza and D.Raabe: Acta Mater., 61(2013), 4607.
25) Y.H.Kim and J.W.Morris, Jr.: Metall. Trans. A, 14A(1983), 1883.
26) M.Gao and R.Wei: Acta. Metall., 32(1984), 2215.
27) A.Shibata, H.Takahashi and N.Tsui: ISIJ Int., 52(2012), 208.
28) A.Nagao, C.D.Smith, M.Dudarinia, P.Sofroni and L.M.Robertson: Acta Mater., 60(2012), 5182.
29) M.L.Martin, J.A.Fenske, G.S.Liu, P.Sofronia and L.M.Robertson: Acta Mater., 59(2011), 1601.
30) K.Yokoyama, T.Ogawa, K.Takashima, K.Asaoka and J.Sakai: Mater. Sci. Eng. A, 466(2007), 106.
31) K.Takai, H.Shoda, H.Suzuki and M.Nagumo: Acta Mater., 56(2008), 5158.
32) T.Doshida, M.Nakamura, H.Saito, T.Sawada and K.Takai: Acta Mater., 61(2013), 7755.
33) M.Hatanou, M.Fujinami, K.Arai, H.Fujii and M.Nagumo: Acta Mater., 67(2014), 342.

残留オーステナイトを含む高強度鋼の水素脆化と相変態に起因するき裂発生点の局所解析