UNIFIED SKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

Tianbao Xie∗1, Chen Henry Wu∗2, Peng Shi3, Ruqi Zhong4, Torsten Scholak5, Michihiro Yasunaga6, Chien-Sheng Wu7, Ming Zhong8, Pengcheng Yin9, Sida I. Wang10, Victor Zhong11, Bailin Wang11, Chengzu Li12, Connor Boyle17, Ansong Ni13, Ziyu Yao14, Dragomir Radev13, Caiming Xiong7, Lingpeng Kong11,12, Rui Zhang15, Noah A. Smith16,17, Luke Zettlemoyer10,17, Tao Yu1,17

1 The University of Hong Kong 2 Carnegie Mellon University 3 University of Waterloo 4 UC Berkeley 5 ServiceNow Research 6 Stanford University 7 Salesforce Research 8 UIUC 9 Google Research 10 Facebook AI Research 11 University of Edinburgh 12 Shanghai AI Lab 13 Yale University 14 George Mason University 15 Penn State University 16 Allen Institute for Artificial Intelligence 17 University of Washington

Abstract

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UNIFIED SKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UNIFIED SKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UNIFIED SKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UNIFIED SKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UNIFIED SKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.¹

1 Introduction

Structured knowledge (e.g., web tables, knowledge graphs, and databases) stores large amounts of data in organized structures, forming a basis for a wide range of applications, e.g., medical diagnosis, personal assistants, and customer relations management. Accessing and searching data in structured knowledge typically requires mastering query languages through professional training. To promote the efficiency of data access, structured knowledge grounding (SKG) systems ground user requests in structured knowledge and produce various outputs, including computer programs (e.g., SQL and SPARQL), table cell values, and natural language responses (Figure 1). For example, semantic parsing (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005) converts natural language questions into formal programs; knowledge-base question answering (Berant et al., 2013) derives answers from tables or knowledge graphs.

SKG has attracted significant interest and has been studied through different tasks defined by different communities. Recent developments in tasks, models, and datasets for SKG have led to task-specific modeling advances, making each task’s progress seemingly unique and incompatible. A main reason is that SKG tasks are heterogeneous. Different types of structured knowledge, such as databases or knowledge graphs, lead to highly specialized encoders (Lin et al., 2019; Herzig et al., 2020; Wang et al., 2020; Yasunaga et al., 2021). Some SKG tasks, e.g., semantic parsing, use customized decoders to generate programs (Yin and Neubig, 2018; Ren et al., 2021). Therefore, instead of solving common challenges in SKG research, improvements in SKG have been prone to be exclusive to a single task, domain, or dataset.

In this paper, we propose the UNIFIED SKG framework to advocate for a unifying view of 21 SKG tasks across six task families and multiple data domains (Table 1). UNIFIED SKG standardizes datasets, models, code, experiments, and evaluation metrics into a single framework. By casting user requests, structured knowledge, and outputs...
Structured Knowledge Grounding (SKG) leverages structured knowledge to complete user requests. By casting inputs and outputs into the text-to-text format, **UNIFIEDSKG** standardizes datasets, models, code, experiments, and metrics for 21 SKG tasks.

In summary, we 1) unify and benchmark 21 SKG tasks under the **UNIFIEDSKG** framework to evaluate diverse grounding goals and structured knowledge sources, 2) demonstrate (near) sota performance of T5 on all the unified SKG tasks, using a single, general-purpose approach, 3) show the benefit of knowledge sharing across SKG tasks via multi-task prefix-tuning, and 4) analyze recent modeling contributions (zero-shot, few-shot, and structured knowledge encoding) on these tasks. We hope **UNIFIEDSKG** enables the design of new models and learning algorithms that generalize to diverse SKG tasks and to identify their challenges.

2 Related Work

SKG with PLMs PLMs have been applied to several SKG tasks. To encode structured knowledge, prior work linearized the structured knowledge and concatenated it with the text (Hwang et al., 2019; Liu et al., 2020; Hosseini-Asl et al., 2020; Liu et al., 2021), which has been augmented by positional encoding (e.g., row/column embedding) (Herzig et al., 2020; Yin et al., 2020a) and template-based linearization (Chen et al., 2020a,b; Oguz et al., 2021), and planning (Su et al., 2021). Recently, cell-column alignment is modeled by manipulating...
Table 1: We unify 21 SKG tasks with different knowledge input, user input, and output, covering six task families.

Task Family	Task	Knowledge Input	User Input	Output
Semantic Parsing	Spider (Yu et al., 2018)	Database	Question	SQL
	GrailQA (Gu et al., 2021)	Knowledge Graph	Question	s-Expression
	WebQSP (Yih et al., 2016)	Knowledge Graph	Question	s-Expression
	MTOP (Li et al., 2021)	API Calls	Question	TOP Representation
Question Answering	WikiSQL (Zhong et al., 2017)	Table	Question	Answer
	WikiTQ (Pasupat and Liang, 2015)	Table	Question	Answer
	CompWebQ (Talmor and Berant, 2018)	Knowledge Graph	Question	Answer
	HybridQA (Chen et al., 2020c)	Table + Text Passage	Question	Answer
	MultiModaQA (Talmor et al., 2021)	Table + Text + Image	Question	Answer
	FeTaQA (Nan et al., 2021a)	Table	Question	Free-Form Answer
Data-to-Text	DART (Nan et al., 2021b)	Triple	None	Text
	ToTTo (Parikh et al., 2020)	Highlighted Table	None	Text
Conversational	MultiWoZ (Budzianowski et al., 2018)	Ontology	Dialog	Dialog State
	KVRET (Eric et al., 2017)	Table	Dialog	Response
	SParC (Yu et al., 2019b)	Database	Multi turn	SQL
	CosSQL (Yu et al., 2019a)	Database	Dialog	SQL
	SQA (Iyyer et al., 2017)	Table	Multi turn	Answer
Fact Verification	TabFact (Chen et al., 2020b)	Table	Statement	Boolean
	FEVEROUS (Aly et al., 2021)	Table + Text	Statement	Boolean
Formal-Language-to-Text	SQL2Text (Shu et al., 2021)	Optional Database	SQL	Text
	Logic2Text (Chen et al., 2020d)	Table Schema	Python-like program	Text

The attention matrix of transformers (Zhang et al., 2020; Eisenschlos et al., 2021). Hierarchical encoding is another way to represent the structure, e.g., Wang et al. (2021b) used tree-based transformers to represent the structure of the tables; Iida et al. (2021) used transformers to encode row and column representations; Chen et al. (2021b) used hierarchical transformers to encode KG triples. SKG’s outputs include, but are not limited to, structured meaning representations (e.g., logic forms, SQL), dialogue states, natural language, answer sets, and Boolean values. Among them, structured meaning representation is challenging for PLMs because they are originally trained on natural language. To bridge this gap, Shin et al. (2021) adopted the insights from Berant and Liang (2014) and Marzoev et al. (2020) and proposed to convert formal language into an English-like representation, decode with GPT-3, and map back to formal language automatically. We do not focus on these techniques in this work; instead, we unify all tasks and systematically compare them.

Task format unification Recent years witnessed the trend of unifying related but different tasks into a shared format. McCann et al. (2018) unified various tasks as question answering. Yin et al. (2020b) and Wang et al. (2021a) unified few-shot learning as textual entailment. PLUR (Chen et al., 2021c) unified program learning, understanding, and repair tasks into a graph-to-sequence format. In this paper, we focus on the text-to-text format (Raffel et al., 2020) due to its flexibility. Different from unifying tasks that only take text as input, a core challenge in unifying SKG tasks into the text-to-text format is to linearize structured knowledge. Notably, UnifiedQA (Khashabi et al., 2020) unified QA tasks, while UNIFIEDSKG covers a broader scope of six task families for systematic exploration.

Cross-task generalization with PLMs Multi-task learning and transfer learning go beyond task boundaries, view different tasks as related, and have been shown to outperform single-task learning (Aghajanyan et al., 2021a; Vu et al., 2021). Large PLMs show potential for zero-shot and few-shot learning, e.g., GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020), which can be improved by multi-task learning (Zhong et al., 2021), e.g., FLAN (Wei et al., 2021), T0 (Sanh et al., 2021), and CrossFit (Ye et al., 2021a). ExT5 (Aribandi et al., 2021) shows that scaling up multi-task learning helps improve pretraining efficiency and downstream performances. UNIFIEDSKG facilitates the investigation of multi-task, zero-shot, and few-shot learning on SKG tasks.

3 The UNIFIEDSKG Framework

3.1 Task Unification

The guiding principle of UNIFIEDSKG’s task selection is diversity. We unify 21 SKG tasks across six task families and multiple domains (Table 1). Our task families include:

- **Semantic parsing** converts questions to logical forms (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005).

- **Question answering** derives answers to natural language questions based on structured data (Berant et al., 2013).

- **Data-to-text generation** describes structured data in natural language (Novikova et al., 2017).

- **Fact verification** checks if a statement is true based on the structured data (Chen et al., 2020b).

- **Conversational tasks** require understanding of not only the user’s last request but also the full interaction history between users and machines (Budzianowski et al., 2018; Eric et al., 2019; Yu et al., 2019a).

- **Formal language to text translation** describes formal language in natural language (Chen et al., 2020d).

All these tasks take as input x a user request, a structured knowledge input, and an optional (dialogue) context to predict an output y. Figure 2 illustrates how we convert the input x to an input sequence \tilde{x} and the output y to an output sequence \tilde{y} by means of “linearization” (Liu et al., 2021), enabling the unification of diverse forms of structured knowledge. We provide more details, examples, and input length analysis in the Appendices F and G. Our code implementation uses Hugging Face’s Transformers (Wolf et al., 2020) and Datasets (Lhoest et al., 2021) toolkits.

3.2 Modeling

The simplest usage of UnifiedSKG is to train on individual tasks. In this case, we minimize the negative log-likelihood loss averaged over tokens in each batch. For decoding, we use beam search by default. UnifiedSKG also facilitates exploration of multi-task learning, few-shot, and zero-shot learning with PLMs, and details are presented in the corresponding parts in Section 4.

4 Experiments and Analysis

4.1 Results on Individual Tasks

We apply T5 models (Raffel et al., 2020) on each individual task in UnifiedSKG. For model training, we set the maximum number of epochs as 50–200, depending on the dataset size. We use early stopping and model selection on the development set. More details are shown in Appendix D.1. For each task, we report one commonly used metric in Table 2. See Appendix B for all metrics.

Comparison with previous sota Table 2 shows that vanilla T5-3B outperforms most previous sota models not trained on extra unsupervised in-domain data. Some semantic parsing sota models, denoted as $^+$ in Table 2, are also T5 with constrained decoding (Scholak et al., 2021) or reranking (Ye et al., 2021b). This shows that a generalist architecture like T5, when scaled up to a certain size, can be as good as task-specific architectures for SKG, suggesting the potential of larger PLMs.

Model scalability In general, T5 performance increases with the model size, but this trend varies across task families. Semantic parsing, QA, and fact verification tasks get large benefits from increased sizes, while text generation does not. See Section 4.5 for a human evaluation for text generation tasks. Also, the gap between T5-base (220M) and T5-large (770M) is larger than the gap between T5-large (770M) and T5-3B (3B).

Effect of pretraining on structured knowledge Some smaller models pretrained on structured knowledge (Liu et al., 2021) show competitive performance as T5-3B, suggesting that pretraining with structured data is beneficial for SKG. This result calls for structured knowledge pretraining that generalizes to different SKG tasks across domains, which can be systematically explored using UnifiedSKG.
Metric	T5-base	T5-large	T5-3B	Previous sota (w/o extra)	Previous sota (w/ extra)
Spider (dev.)	Match	58.12	66.63	71.76	75.5
					(Scholak et al., 2021)
GraiQA	Match	62.39	67.30	70.11	83.8
					(Ye et al., 2021b)
WebQSP	F1	78.83	79.45	80.70	83.6
					(Ye et al., 2021b)
MTOP	Match	85.49	86.17	86.78	86.36
					(Papapetrou et al., 2021)
WikiTQ	Acc	35.76	43.22	49.29	44.5
					(Wang et al., 2019)
WikSQL	Acc	82.63	84.80	85.96	85.8
					(Liu et al., 2021)
CompWebQ	Acc	68.43	71.38	73.26	70.4
					(Das et al., 2021)
HybridQA (dev.)	Acc	54.07	56.95	59.41	60.8
					(Eisenschlos et al., 2021)
MultiModalQA (dev.)	F1	75.51	81.84	85.28	82.7
					(Yoran et al., 2021)
FcTaQA	BLEU	29.91	32.45	33.44	30.54
					(Nan et al., 2021a)
DART	BLEU	46.22	46.89	46.66	46.89
					(Nan et al., 2021b)
ToTTo (dev.)	BLEU	48.29	48.95	48.95	48.95
					(Kale and Rastogi, 2020)
MultiWoZ2.1	Joint Acc	54.64	54.45	55.42	60.61
					(Dai et al., 2021)
KVRET	Micro F1	66.45	65.85	67.88	63.6
					(Gou et al., 2021)
SPaRC (dev.)	Match	50.54	56.69	61.51	54.1
					(Hui et al., 2021)
CoSQL (dev.)	Match	42.30	48.26	54.08	56.9
					(Scholak et al., 2021)
SQA	Overall Acc	52.91	61.28	62.37	58.6
					(Liu et al., 2021)
TabFact	Acc	76.13	80.85	83.68	74.4
					(Yang et al., 2020)
FEVEROUS (dev.)	Acc	75.05	79.81	82.40	82.38
					(Aly et al., 2021)
SQL2Text	BLEC	93.52	93.68	94.78	93.7
					(Shu et al., 2021)
LogicText	BLEC	90.66	90.57	91.39	88.6
					(Shu et al., 2021b)

Table 2: Test or development (dev.) set performance of models trained on individual tasks. Vanilla T5 or T5 with simple modifications (e.g., constrained decoding or reranking) achieve sota on nearly all tasks. The best result without extra pretraining is shown in bold. More detailed results and result variances can be found in Tables 11 and 12 in Appendix. Human evaluation for generation tasks is in Section 4.5. w/ (w/o) extra means with (without) extra pretraining on unsupervised structured data (e.g., web tables).

Metric	T5-base	T5-large	T5-3B	Previous sota (w/o extra)	Previous sota (w/ extra)
T0-3B	71.76	50.65	50.38	58.46	82.38
	68.09	60.61	58.11	60.61‡	83.8‡
T5-3B	50.65	50.38	58.46	82.38‡	83.8‡
	60.61	60.61‡	58.46	82.38‡	83.8‡

Table 3: Comparison between T5-3B and T0-3B. T0-3B is initialized from LM-adapted T5 and further pretrained on a large number of non-SKG tasks. We fine-tune both models on individual tasks. T0-3B under-performs T5-3B on semantic parsing (Spider) and outperforms T5-3B on dialogue state tracking (MWoZ) and fact verification (TabFact). We report results on the dev. set.

Effect of pretraining on non-SKG tasks T0-3B (Sanh et al., 2021) is initialized from T5-3B and pretrained on multiple tasks that (in most cases) do not use structured knowledge as input (non-SKG tasks). Exploring the performance of T0-3B on SKG tasks helps us understand the relationship between SKG tasks and non-SKG tasks. Table 3 shows that T0-3B under-performs T5-3B on semantic parsing and outperforms T5-3B on dialogue state tracking and fact verification. We note that T0-3B is pretrained on dialogue QA, dialogue summarization, and NLI tasks; therefore, pretraining on non-SKG tasks might not be useful for SKG unless we add similar SKG tasks to pretraining.

4.2 Multi-Task Learning

UNIFIEDSKG facilitates the exploration of multi-task learning. In this part, we systematically study multi-task learning on all 21 unified tasks. We find that SKG benefits from multi-task prefix-tuning on both T5-base and T5-large, showing that the benefits from multi-task learning is scalable in terms of the model size. The baselines we use include:

- Single-task finetuning (ST-F), which is finetuning on individual tasks, same as Section 4.1.
- Single-task prefix-tuning (ST-P; Li and Liang, 2021), which learns lightweight task-specific pa-
parameters while keeping the PLM fixed. We set the prefix length as 10. Clive et al. (2021) also used prefix-tuning on T5 for data-to-text generation.

Multi-task finetuning (MT-F), which combines the training data of all tasks with temperature mixing (Raffel et al., 2020; after hyperparameter tuning with a few steps, we set the temperature as 2). We select model weights based on the average metric on all tasks’ development set.

Table 4 shows that ST-P is comparable to ST-F on nearly all tasks. However, we find that it takes about 5–10 times as many training steps (See Appendix E), which is similarly observed for prompt-tuning (Lester et al., 2021). We also observe that MT-F leads to mixed results. For many tasks, MT-F is even worse than ST-F.

Multi-task prefix-tuning (MT-P). Our explanation for the mixed results of MT-F is that the inputs of SKG tasks contain different structured knowledge from diverse domains, making it difficult to learn shared parameters effectively. To address this challenge, we first pretrain a prefix on all tasks, freezing T5 and using the same temperature mixing as MT-F. In the second step, we initialize each task’s prefix with this pretrained prefix and optimize the prefix while freezing T5. This initialization step is similar to the prompt transfer explored in Vu et al. (2021). Following ST-P, we set the prefix length as 10.

Table 4 shows that multi-task prefix-tuning outperforms single-task finetuning and single-task prefix-tuning on most tasks, and it largely outperforms the naive multi-task learning baseline. It demonstrates that SKG tasks can be studied together to share data and knowledge.

Exploring task knowledge transfer. UnifiedSKG facilitates studying knowledge transfer between SKG tasks. Given two tasks, task A and task B, we first train the model on task A and then continue training on task B. Table 5 shows that tasks benefit from other tasks with the same data source (e.g., tasks that all use Wikipedia tables as structured knowledge). We do not observe positive transfer between parallel tasks (e.g., semantic parsing tasks with different structured knowledge and different output) and subtask (e.g., question answering can be viewed as the execution semantic parses) when data sources are different. Compared to the positive results in Table 4, results in this part indicate that manually selecting source and target tasks may not be efficient for multi-task learning.

4.3 Zero-Shot and Few-Shot Learning

The text-to-text unification of UnifiedSKG enables us to investigate zero/few-shot learning on SKG with large PLMs.

Zero-shot learning setting. Zero-shot learning enables models to solve tasks with natural language descriptions without training samples. We follow T0 (Sanh et al., 2021) to create similar natural language instructions for the unseen tasks. Our instructions are provided in Appendix D.3.

Few-shot learning settings. Brown et al. (2020) showed that large PLMs could be few-shot learners.
by encoding a few training samples as “context” to learn without gradient updates. We use GPT-3 (Brown et al., 2020) and Codex (Chen et al., 2021a) to explore such few-shot learning for SKG. To stay within our budget, for GPT-3, we report the performance on 100 random dev. set samples. We explore two settings for few-shot learning.

In the first setting, we randomly sample few-shot examples from the training set; these examples are shared by all dev. set samples, denoted as random in Table 6. For sequences that are too long for Codex (4096) and GPT-3 (2048), we use as many examples as possible and make sure that there is at least one example (truncated if needed).

In the second setting, we follow Gao et al. (2021) to select few-shot examples from the training set. We call this setting few-shot with example selection, denoted as select in Table 6. We use the pretrained SBERT (Reimers and Gurevych, 2020) for sentence embeddings of the user request input (for tasks that only have structured input, we embed the linearized structured input) and sample five most similar examples measured by cosine similarity. Further details (e.g., prompts and task instructions) are provided in Appendix D.4.

SKG is challenging for zero/few-shot learning. Table 6 shows that zero-shot performance is very poor on most tasks (Spider and MultiWoZ are even 0). It also shows a large gap between few-shot learning and finetuning for Spider, WikiTQ, MWoZ, and TabFact, while the gap is smaller for generation tasks. For few-shot learning, example selection based on similarity outperforms random selection, but the gap is usually smaller than 10 points out of 100. It is also interesting to compare the results between synthesis tasks (Spider), which requires predicting programs, and induction tasks (WikiTQ and TabFact), where a model directly outputs answers (Devlin et al., 2017). We find that PLMs generally struggle more when adapting to induction tasks (e.g., close to random-guess on the binary classification task TabFact), reminiscent of recent attempts in program synthesis and induction using PLMs (Austin et al., 2021). For GPT-3 and Codex, better zero-shot performances can be expected by better prompt design.

4.4 Structured Knowledge Encoding

Structured knowledge encoding has been widely explored (Bogin et al., 2019; Lin et al., 2019; Agarwal et al., 2020; Saxena et al., 2020; Yasunaga and Liang, 2020; Yasunaga et al., 2022; and others detailed in Section 2). We hope that UNIFIEDSKG can promote systematic study of general structured knowledge encoding. To this end, this part focuses on the linearization of structured knowledge.

Does the order of user input, structured knowledge, and context matter? To explore the effect of the order of user input, structured knowledge, and context, we rerun the single-task experiments while switching the order of these components in both the training and development set. Table 7 shows that placing the text before structured knowledge (rs) is better than the opposite (sr), which is consistent across SKG tasks. Our explanation is that the position of the text is relatively fixed in rs,
helping the decoder to learn stable attention over the text. Also, placing the context in between the text and structured knowledge yields better results.

Is T5 sensitive to structured knowledge ordering? Order-insensitivity is common for most structured knowledge, e.g., permutation of columns in a table preserves the meaning. To study this insensitivity, we evaluate T5-large on a manipulated development set where the order of schema (for database), column (for table), or slots and values (for ontology) is reversed. Table 8 shows that tasks with cross-domain tables and databases are less order-sensitive, while models are very sensitive to the order of ontology. Other types of robustness (e.g., robustness to cell values irrelevant to the answer) remain an open question in UNIFIEDSKG.

Is it beneficial to represent structured knowledge as natural language? SKG data is not typically used to pretrain PLMs. Given ample training data, PLMs adapt well to SKG tasks, as shown in Table 2. However, under the low-resource setting, converting structured data to natural language might be helpful. For Spider, we use a shared template to convert structured data to natural language. For TabFact and WikiSQL, we randomly selected 236 tables shared by both datasets and manually labeled templates to convert each row into a sentence. Examples of the templates are shown in Appendix I. These templates produce about 1000 samples for each task, divided into training and test sets. We find that, in WikiSQL, the conversion to natural language stabilizes and accelerates the training process. Table 9 shows that conversion to natural language improves the performance on WikiSQL, has no significant influence on TabFact, and slightly degrades the performance on Spider.

4.5 Human Evaluation for Generation Tasks

For each generation task, we randomly sample 100 development set samples and ask human annotators to judge the correctness of each output, using a 0-1 score. Details are provided in Appendix D.5. Table 10 shows that automatic metrics do not always reflect human evaluation, calling for better automatic metrics to truly reflect the model’s ability on generation tasks. Larger models are not always better, and detailed error analysis is provided below.

4.6 Error Analysis

Error analysis based on output validity Unconstrained decoding from PLMs may generate invalid outputs. For semantic parsing, we divide wrong outputs into invalid outputs (i.e., not executable when the output is SQL, and not parse-able when the output is s-expression or TOP-representation) and valid but wrong answers. Figure 3 shows that, for SQL semantic parsing, a large number of errors are caused by invalid outputs, and the number of invalid outputs gradually decreases with the increase of model size. This phenomenon is also observed by Scholak et al. (2021), who used constrained decoding to improve the validity, largely improving the parsing performance. For s-expression semantic parsing, invalid outputs take up 30–50% of all wrong outputs, and increasing the model size does not reduce invalidity significantly. For fact verification tasks, valid outputs are “entailed” and “refuted”. We observe that T5 always generates valid outputs. For question answering, we do not include the validity analysis since the validity check for an answer is non-trivial and could be imprecise.

Error analysis for text generation tasks For generation tasks, we consider four types of errors: missing information (required information is not
shown in the output), *contradiction* (the output is contradictory to the input), 3) *hallucination* (the output contains information that cannot be verified by the input), and 4) *ungrammatical*. Figure 3 shows that the proportion of ungrammatical outputs is generally less than 5%. Missing information and contradiction are common errors made by T5, and performance gains generally come from reducing contradiction. Hallucination is not a common error made by T5 except for the highlighted-table-to-text task (ToTTo), where T5 tends to output information of non-highlighted cell values.

Case study We summarize some interesting observations about the model output (more in Appendix H). Compared with T5-base and T5-large, T5-3B’s outputs for text generation tasks tend to be more diverse and creative as shown in Appendix H.2 and H.7. Also, T5-3B sometimes leverages domain knowledge to summarize facts in some tasks such as DART (e.g., describing rating 5 out of 5 as low), while the other two copy the original expressions in the input, as shown in Appendix H.5 and H.6. However, this ability puts T5-3B in the risk of manipulating information and meaning of user request as shown in Appendix H.3.2 and H.4.

5 Conclusions

In this paper, we propose the **UNIFIEDSKG** framework to promote systematic research on structured knowledge grounding by unifying 21 SKG tasks. Using **UNIFIEDSKG** as a benchmark, we demonstrate that finetuning T5 on individual tasks achieves state-of-the-art results on almost all 21 tasks. We show that multi-task prefix-tuning benefits most SKG tasks, largely improving the overall performance. For structured knowledge encoding, we find that the effectiveness of encoding variations varies across tasks. Moreover, **UNIFIEDSKG** is a challenging testbed for zero-shot and few-shot learning, shown by the poor results of large PLMs.

6 Limitations

UNIFIEDSKG establishes a powerful and reproducible starting point for SKG research. New models can be easily applied to diverse SKG tasks, and new tasks can be easily framed based on our standardized abstraction. **UNIFIEDSKG** promotes a systematic study on more general and robust advances in structured knowledge encoding, multi-task learning, zero-shot learning, and few-shot learning for SKG tasks. It also would be interesting to explore general pretraining methods within **UNIFIEDSKG**, which potentially benefit all the unified tasks. When the structured knowledge is too large for GPU memory, we truncate them based on heuristic rules, calling for future study on 1) incorporating retrieval component in SKG, 2) designing sparse attention in T5 for structured knowledge or other means to improve model efficiency.

UNIFIEDSKG currently provides the correct type of structured knowledge for each task. However, how a system searches for the correct structured knowledge resources, takes appropriate action, and integrates information and results from multiple structured sources given a user request is still underexplored, which are a prerequisite for building a unified multi-purpose SKG system.

Since we select popular tasks from each task family, we risk disproportionality in terms of the data language, domain and population, and we actively welcome diverse, multi-lingual tasks to be added into **UNIFIEDSKG**. Also, the error analysis of SKG can more fine-grained, and we hope our findings can promote future work on systematically studying and decomposing the behavior of PLMs on SKG tasks. Furthermore, training and evaluation data should reflect the intents and linguistic phenomena in the real world (de Vries et al., 2020), suggesting more realistic tasks to be added into **UNIFIEDSKG**.
References

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. 2020. Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training. arXiv preprint arXiv:2010.12688.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. 2021a. Muppet: Massive multi-task representations with pre-finetuning. In Proceedings of EMNLP 2021, pages 5799–5811, Online and Punta Cana, Dominican Republic.

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke Zettlemoyer. 2021b. Htln: Hyper-text pre-training and prompting of language models.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Christos Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. 2021. The fact extraction and VERIfication over unstructured and structured information (FEVEROUS) shared task. In Proceedings of the Fourth Workshop on Fact Extraction and VERIfication (FEVER), pages 1–13.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Honglei Zhuang, Vinh Q. Tran, Dara Bahrain, Jianmo Ni, Jai Gupta, Kai Hui, Sebastian Ruder, and Donald Metzler. 2021. Ext5: Towards extreme multi-task scaling for transfer learning.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program synthesis with large language models. ArXiv, abs/2108.07732.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In EMNLP 2013, pages 1533–1544.

Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In Proceedings of ACL 2014, pages 1415–1425.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Global reasoning over database structures for text-to-sql parsing. In Proceedings of EMNLP 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Inigo Casanueva, Ultes Stefan, Ramadan Osman, and Milica Gašić. 2018. Multiwoz - a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlafa, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebeguss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021a. Evaluating large language models trained on code.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. 2021b. HiTER: Hierarchical transformers for knowledge graph embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10395–10407.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. 2020a. Logical natural language generation from open-domain tables. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7929–7942, Online. Association for Computational Linguistics.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang Wang. 2020b. Tabfact: A dataset of multi-hop question answering over tabular and textual data. In International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang. 2020c. Hybridqa: A dataset of multi-hop question answering over tabular and textual data. Findings of EMNLP 2020.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou, Yunkai Zhang, Sairam Sundaresan, and William Yang Wang. 2020d. Logic2Text: High-fidelity natural language generation from logical forms. In Findings of the Association for Computational Linguistics: EMNLP 2020.
Zimin Chen, Vincent Josua Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra. 2021c. PLUR: A unifying, graph-based view of program learning, understanding, and repair. In Thirty-Fifth Conference on Neural Information Processing Systems.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Control prefixes for parameter-efficient text generation.

Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei Huang, Luo Si, and Xiaodan Zhu. 2021. Preview, attend and review: Schema-aware curriculum learning for multi-domain dialogue state tracking. In Proceedings ACL-IJCNLP 2021 (Volume 2: Short Papers), pages 879–885, Online.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum. 2021. Case-based reasoning for natural language queries over knowledge bases. In Proceedings of EMNLP 2021, pages 9594–9611, Online and Punta Cana, Dominican Republic.

Harm de Vries, Dzmitry Bahdanau, and Christopher D. Manning. 2020. Towards ecologically valid research on language user interfaces. ArXiv.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under noisy i/o. In ICMCL.

Julian Martin Eisenschlos, Maharshi Gor, Thomas Müller, and William W Cohen. 2021. Mate: Multi-view attention for table transformer efficiency. arXiv preprint arXiv:2109.04312.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-Tur. 2019. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines. arXiv preprint arXiv:1907.01669.

Mihail Eric, Lakshmi. Krishnan, François Charette, and Christopher D. Manning. 2017. Key-value retrieval networks for task-oriented dialogue. In SIGDIAL Conference.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making pre-trained language models better few-shot learners. In Association for Computational Linguistics (ACL).

Yanjie Gou, Yinjie Lei, Lingqiao Liu, Yong Dai, and Chunxi Shen. 2021. Contextualize knowledge bases with transformer for end-to-end task-oriented dialogue systems. In Proceedings of the EMNLP 2021, pages 4300–4310, Online and Punta Cana, Dominican Republic.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid: three levels of generalization for question answering on knowledge bases. In Proceedings of the Web Conference 2021.

Jonathan Herzig, P. Nowak, Thomas Müller, Francesco Piccinno, and Julian Martin Eisenschlos. 2020. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of ACL.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. 2020. A simple language model for task-oriented dialogue. In Proceedings of Conference on Neural Information Processing Systems (NeurIPS).

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li, Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid relation network for cross-domain context-dependent semantic parsing.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. 2019. A comprehensive exploration on wikisql with table-aware word contextualization. ArXiv, abs/1902.01069.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. Tabbie: Pretrained representations of tabular data. arXiv preprint arXiv:2105.02584.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017. Search-based neural structured learning for sequential question answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1821–1831, Vancouver, Canada.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text pre-training for data-to-text tasks. In Proceedings of INLG 2020, Dublin, Ireland, December 15-18, 2020, pages 97–102.

D. Khashabi, S. Min, T. Khot, A. Sabhwaral, O. Tafjord, P. Clark, and H. Hajishirzi. 2020. Unifield QA: Crossing format boundaries with a single QA system. EMNLP - findings.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 2021. Dialogue state tracking with a language model using schema-driven prompting. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4937–4949.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. In Proceedings of EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 3045–3059.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jermite, Abhishekh Thakur, Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid,
Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online.

Bill Yucheng Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. 2019. Kagnet: Knowledge-aware graph networks for commonsense reasoning. In Proceedings of EMNLP-IJCNLP.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu, Andrea Madotto, Eunjun Cho, and Rajen Subba. 2021. Leveraging slot descriptions for zero-shot cross-domain dialogue state tracking. In Proceedings of NAACL 2021, pages 5640–5648.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian guang Lou. 2021. Tapex: Table pre-training via learning a neural sql executor.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. 2020. K-bert: Enabling language representation with knowledge graph. In AAAI.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung. 2018. Mem2seq: Effectively incorporating knowledge bases into end-to-end task-oriented dialog systems. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1468–1478.

Alana Marzoev, Samuel Madden, M Frans Kaashoek, Michael Cafarella, and Jacob Andreas. 2020. Unnatural language processing: Bridging the gap between synthetic and natural language data. arXiv preprint arXiv:2004.13645.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The natural language decathlon: Multitask learning as question answering. CoRR, abs/1806.08730.

Linyong Nan, Chaichun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech Kryściński, Nick Schoelkopf, Riley Kong, Xiangru Tang, Murori Mutuma, Ben Rosand, Isabel Trindade, Renusree Bandaru, Jacob Cunningham, Caiming Xiong, and Dragomir Radev. 2021a. Fetaqa: Freeform table question answering. TACL.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto, Jessica Pan, Faiyaz Rahman, Ahmad Zaidi, Murori Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chen Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani. 2021b. Dart: Open-domain structured data record to text generation. In NAACL.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser. 2017. The E2E dataset: New challenges for end-to-end generation. In SIGDial 2017, pages 201–206.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. 2021. Unik-qa: Unified representations of structured and unstructured knowledge for open-domain question answering. arXiv preprint arXiv:2012.14610.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhawan Dhangra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A controlled table-to-text generation dataset. In Proceedings of EMNLP.

Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1470–1480, Beijing, China.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021. Controllable semantic parsing via retrieval augmentation. In Proceedings of EMNLP 2021, pages 7683–7698, Online and Punta Cana, Dominican Republic.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brussels.

Libo Qin, Xiao Xu, Wanxiang Che, Yue Zhang, and Ting Liu. 2020. Dynamic fusion network for multi-domain end-to-end task-oriented dialog. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6344–6354, Online.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.
Nils Reimers and Iryna Gurevych. 2020. Making monolingual sentence embeddings multilingual using knowledge distillation. In Proceedings of EMNLP 2020.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure Leskovec, and Denny Zhou. 2021. Legos: Latent execution-guided reasoning for multi-hop question answering on knowledge graphs. In International Conference on Machine Learning (ICML).

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive bottom-up semantic parsing. In Proceedings of NAACL 2021, pages 311–324, Online.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. 2021. Multitask prompted training enables zero-shot task generalization.

Apoorv Saxena, Aditya Tripathi, and Partha Talukdar. 2020. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In Association for Computational Linguistics (ACL).

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD: Parsing incrementally for constrained auto-regressive decoding from language models. In Proceedings of EMNLP 2021, pages 9895–9901.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. 2021. Compositional generalization and natural language variation: Can a semantic parsing approach handle both? In ACL/IJCNLP.

Richard Shin, Christopher H Lin, Sam Thomson, Charles Chen, Subhro Roy, Emmanouil Antonios Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin Van Durme. 2021. Constrained language models yield few-shot semantic parsers. arXiv preprint arXiv:2104.08768.

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi, Tao Yu, and Rui Zhang. 2021. Logic-consistency text generation from semantic parses. In Findings of the Association for Computational Linguistics: ACL-IJCNLP.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier. 2021. Plan-then-generate: Controlled data-to-text generation via planning. In EMNLP.

A. Talmor and J. Berant. 2018. The web as a knowledge-base for answering complex questions. In North American Association for Computational Linguistics (NAACL).

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco, Hannaneh Hajishirzi, and Jonathan Berant. 2021. Multimodal{qa}: complex question answering over text, tables and images. In International Conference on Learning Representations.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. 2021. Spot: Better frozen model adaptation through soft prompt transfer.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers. In ACL.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019. Learning semantic parsers from denotations with latent structured alignments and abstract programs. In Proceedings of EMNLP-IJCNLP 2019, pages 3774–3785, Hong Kong, China.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. 2021a. Entailment as few-shot learner. CoRR, abs/2104.14690.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. 2021b. Tuta: Tree-based transformers for generally structured table pre-training. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1780–1790.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. 2021. Finetuned language models are zero-shot learners. arXiv preprint.

Jason D Williams, Antoine Raux, and Matthew Henderson. 2016. The dialog state tracking challenge series: A review. Dialogue & Discourse, 7(3):4–33.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of EMNLP 2020: System Demonstrations, pages 38–45, Online.
Chien-Sheng Wu, Richard Socher, and Caiming Xiong. 2019. Global-to-local memory pointer networks for task-oriented dialogue. In Proceedings of the International Conference on Learning Representations (ICLR).

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhi-gang Chen, and Xiaodan Zhu. 2020. Program enhanced fact verification with verbalization and graph attention network. In Proceedings of EMNLP 2020, pages 7810–7825, Online.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D. Manning, Percy Liang, and Jure Leskovec. 2022. Deep bidirectional language-knowledge graph pretraining. In Neural Information Processing Systems (NeurIPS).

Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program repair from diagnostic feedback. In International Conference on Machine Learning (ICML).

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. 2021. QA-GNN: Reasoning with language models and knowledge graphs for question answering. In North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL). Association for Computational Linguistics.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. Crossfit: A few-shot learning challenge for cross-task generalization in nlp. In Proceedings of EMNLP.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. 2021b. Rng-kbqa: Generation augmented iterative ranking for knowledge base question answering. arXiv preprint arXiv:2109.08678.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. 2016. The value of semantic parser labeling for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).

Pengcheng Yin and Graham Neubig. 2018. TRANX: A transition-based neural abstract syntax parser for semantic parsing and code generation. In EMNLP 2018: System Demonstrations, pages 7–12.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020a. TaBERT: Pretraining for joint understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.

Wenpeng Yin, Nazneen Fatema Rajani, Dragomir R. Radev, Richard Socher, and Caiming Xiong. 2020b. Universal natural language processing with limited annotations: Try few-shot textual entailment as a start. In Proceedings of EMNLP 2020, Online, November 16–20, 2020, pages 8229–8239.

Ori Yoran, Alon Talmor, and Jonathan Berant. 2021. Turning tables: Generating examples from semi-structured tables for endowing language models with reasoning skills. arXiv preprint arXiv:2107.07261.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter Lasecki, and Dragomir Radev. 2019a. CoSQL: A conversational text-to-SQL challenge towards cross-domain natural language interfaces to databases. In Proceedings of EMNLP 2019, pages 1962–1979, Hong Kong, China.

Tao Yu, Rui Zhang, Oleksandr Polozov, Christopher Meek, and Ahmed Hassan Awadallah. 2021. SCoRE: Pre-training for context representation in conversational semantic parsing. In International Conference on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In Proceedings of EMNLP 2018, Brussels, Belgium.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Irene Li Heyang Er, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Vincent Zhang Jonathan Kraft, Caiming Xiong, Richard Socher, and Dragomir Radev. 2019b. Sparc: Cross-domain semantic parsing in context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Advances in Neural Information Processing Systems, volume 33, pages 17283–17297.

John M. Zelle and Raymond J. Mooney. 1996. Learning to parse database queries using inductive logic programming. In AAAI 1996, pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. UAI.
Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. 2021. Adapting language models for zero-shot learning by meta-tuning on dataset and prompt collections. In Findings of EMNLP.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic evaluation for text-to-sql with distilled test suite. In EMNLP 2020.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating structured queries from natural language using reinforcement learning. CoRR, abs/1709.00103.
A Contributions

Code implementation
Tianbao Xie and Chen Henry Wu implemented the code base of the UNIFIEDSKG framework and experiment pipeline. The code of PICARD and advice from Torsten Scholak sped up the implementation.

Task unification
Tianbao Xie, Peng Shi, Michihiro Yasunaga, Chen Henry Wu, and Ming Zhong implemented the 21 tasks into the text-to-text format, adapted the metrics, and verified the performances.

Paper writing
Chen Henry Wu and Tianbao Xie finished most part of the paper. Michihiro Yasunaga, Peng Shi, and Chengzu Li added results and analysis for their corresponding parts. Peng Shi drafted related work on SKG with PLMs. Torsten Scholak, Pengcheng Yin, Rui Zhang, Ruiqi Zhong, Victor Zhong, Michihiro Yasunaga, Connor Boyle, Chien-Sheng Wu, Sida Wang, Bailin Wang, Ansong Ni, Ziyu Yao, Lingpeng Kong, Caiming Xiong, Dragomir Radev, Noah A. Smith, and Luke Zettlemoyer carefully reviewed the paper and gave feedback for multiple rounds.

Experiments
Chen Henry Wu, Tianbao Xie, and Chien-Sheng Wu conducted experiments on individual tasks and multi-task learning. Tianbao conducted the zero-shot learning experiments. Chengzu Li and Tianbao Xie conducted the few-shot learning experiments. Tianbao Xie conducted experiments on the ordering of sequence inputs and order-sensitivity. Chengzu Li, Connor Boyle, and Peng Shi conducted the experiments on converting structured knowledge into natural language.

Human evaluation
Chen Henry Wu organized the human evaluation. Torsten Scholak, Rui Zhang, Chengzu Li, Connor Boyle, Tianbao Xie, Peng Shi, Tao Yu, and Chen Henry Wu were the human participants.

Error analysis and case study
Tianbao Xie, Chen Henry Wu, and Michihiro Yasunaga designed and conducted the error analysis for semantic parsing and generation tasks. Authors who participated in the human annotation selected the cases for case study.

Discussion
We had three separate weekly meetings, and everyone in the project attended one of them. Torsten Scholak, Ruiqi Zhong, Pengcheng Yin, Victor Zhong, Peng Shi, Rui Zhang, Sida Wang, and Lingpeng Kong actively provided advice. Torsten Scholak provided signals that prefix-tuning would be comparable to fine-tuning. Ruiqi Zhong gave advice on analyzing the effect of model size, Pengcheng Yin and Peng Shi gave advice on analysis on converting structured knowledge into natural language. Pengcheng Yin helped interpret experimental results. Ziyu Yao suggested that we report both sota (w/ extra) and sota (w/o extra) for a fair comparison. Victor Zhong and Bailin Wang gave valuable suggestions on multi-task learning and task transfer analysis. Luke Zettlemoyer, Noah A. Smith, Caiming Xiong, and Dragomir Radev gave valuable comments on research questions and experimental design.

Computing resources
We thank Salesforce Research, an Amazon Research Award, ServiceNow Research, and Yale NLP for providing computing resources generously.

Tao Yu designed and led the research.

Acknowledgments
We thank Yifei Min and Libo Qin for their early-stage discussion. We thank Panupong Pasupat and William W. Cohen for their valuable feedback on our initial draft. We thank Qian Liu for his TAPEX code and advice on question answering tasks. We thank wandb for free logging and OpenAI for free Codex usage.
B Results with Full Metrics

Metric	T5-base	T5-large	T5-3B	
Spider	Match	58.12	66.63	71.76
	Exec	60.06	68.28	74.37
	Test suite	56.22	64.12	68.38
GraiQA	Match	60.00	67.00	69.00
WebQSP	F1	72.50	73.96	75.97
MTOP	Match	83.89	84.70	84.88
	Template	88.85	88.32	88.86
WikiTQ	Acc	36.94	43.30	50.65
WikiSQL	Acc	84.50	86.27	87.34
CompWebQ	Acc	66.71	68.85	70.27
	F1	80.02	81.05	81.43
	Hits@1	83.64	85.49	86.20
HybridQA	Acc	54.07	56.95	59.41
	F1	61.85	64.62	66.76
MMQA	Acc	67.29	74.08	78.48
	F1	75.51	81.84	82.28
FeTaQA	BLEU	29.00	30.94	31.73
DART	BLEU	50.62	51.72	50.38
ToTTo	BLEU	48.29	48.95	48.95
MultiWoZ2.1	Joint Acc	57.52	58.23	58.46
KVRET	BLEU	20.04	18.84	17.75
SParC	Match	50.54	56.69	61.51
	Exec	53.95	60.60	67.33
	Match (interact)	31.28	37.44	41.94
	Exec (interact)	34.36	41.23	46.45
CoSQL	Match	42.30	48.26	54.08
	Exec	49.26	56.01	62.23
	Match (interact)	12.63	16.72	22.78
	Exec (interact)	16.04	20.14	26.16
SQA	Overall Acc	49.49	59.12	60.93
TabFact	Acc	76.34	81.40	83.97
FEVEROUS	Acc	75.05	79.81	82.40
SQL2Text	BLEC	93.69	93.35	92.71
Logic2Text	BLEC	92.15	92.88	91.69

Table 11: Development set performance with full metrics. We do three experiments with different random seeds on representative task of each family and report their averages and standard variances format as \(\mu \pm \sigma \).

For the KVRET dataset, instead of the version used in our main tables, we re-run another more widely used pre-processed version (Madotto et al., 2018; Wu et al., 2019; Qin et al., 2020) on T5-base, T5-large and T5-3b. Results are shown in Table 13.

C Input and Output Length Analysis

Linearization of large structured knowledge input (e.g., large tables and KGs) can be arbitrarily long, which needs to be truncated to fit in GPUs with a limited size. The input and output are tokenized by T5Tokenizer in Huggingface’s Transformers.\(^3\)

We visualize the length distribution in Figure 5, and details are presented in Table 14. Among the datasets with very long inputs, we choose WikiTableQuestion to study the impact of input length. We visualize the table length distribution and performances with different input truncation lengths in Figure 6. We observe that the accuracy increases as the input becomes longer, motivating future work to study how to effectively encode large structured input, e.g., leveraging sparse attention (Zaheer et al., 2020).

\(^3\)https://huggingface.co/t5-base/tree/main

Table 12: Test set performance with full metrics (for tasks with a publicly available test set). We do three experiments with different random seeds on representative task of each family and report their averages and standard variances format as \(\mu \pm \sigma \).
We use batch size 32 as default, except WikiTQ, for which we use a batch size of 128 because we found it to work significantly better. We use the AdaFactor optimizer for T5-base and T5-large, and AdamW for T5-3b. We evaluate on the development set for each 500 steps and use the average development set metric for best check-

Table 13: Baselines results are higher in pre-processed KVRET dataset. It doesn’t change our conclusion on T5 with simple modification when necessary achieves sota on almost all tasks.

Metric	T5-base	T5-large	T5-3B
BLEU(dev)	22.80	23.07	22.71
BLEU(test)	21.21	22.36	20.40
F1 micro all(test)	67.49	68.03	70.07
F1 micro schedule(test)	79.39	79.47	78.54
F1 micro navigate(test)	62.87	63.59	65.34
F1 micro weather(test)	61.43	62.61	66.74
F1 macro all(test)	65.91	64.87	66.07
F1 macro schedule(test)	78.73	77.23	76.02
F1 macro navigate(test)	59.53	58.99	60.47
F1 macro weather(test)	64.05	62.58	65.78

Figure 5: Input token distribution(<4096) in train set from different tasks. We exclude MTOP since it concentrates on a relatively small field which would make this figure unreadable. In general, 1024 is a good length for practice, and for most tasks, 2048 can hold all its inputs.

Figure 4: Error analysis. For semantic parsing, we show the number of invalid/valid-but-wrong predictions. For generation tasks, we show the proportion of missing-information/contradiction/hallucination/ungrammatical predictions among all predictions (one prediction may have multiple errors).

D Experimental Setup

D.1 Implementation Details

We use T5 (Raffel et al., 2020) as our backbone language model. Each experiment for T5-3B experiments, we use Deepspeed⁴ to save memory. We use batch size 32 as default, except WikiTQ, for which we use a batch size of 128 because we found it to work significantly better. We use the AdaFactor optimizer for T5-base and T5-large, and AdamW for T5-3b. We evaluate on the development set for each 500 steps and use the average development set metric for best check-
Table 14: Input and output length for each task's train set.

Distribution(%)	Structure Input Tokens	Text Input Tokens	Structure Input + Text Input Tokens	Sequence Output Tokens
[0, 512)	[512, 1024)	[1024, \infty)	[0, 512)	[128, 256)
-----------------	------------------------	------------------	-------------------------------------	------------------------
Spider	97.01	8.17	1.17	100.00
GRAILQA	100.00	0.00	0.00	0.00
WebQSP	5.36	12.9	1.52	100.00
MTOP	100.00	0.00	0.00	0.00
WikiTableQuestions	49.56	28.65	21.79	100.00
WikiSQL	63.90	55.28	10.22	100.00
ComWebQ	0.28	15.79	83.93	100.00
HybridQQA	58.37	52.63	9.00	100.00
MultiModalQQA	66.22	25.72	8.06	100.00
FeTQA	67.03	27.47	5.49	100.00
DART	95.82	2.92	1.26	100.00
MultiWoZ	100.00	0.00	0.00	0.00
SPaC	100.00	0.00	0.00	0.00
CoSQL	100.00	0.00	0.00	0.00
SQLText	100.00	0.00	0.00	0.00
Logic2Text	100.00	0.00	0.00	0.00

Table 15: Input and output length for each task's development set.

Distribution(%)	Structure Input Tokens	Text Input Tokens	Structure Input + Text Input Tokens	Sequence Output Tokens
[0, 512)	[512, 1024)	[1024, \infty)	[0, 512)	[128, 256)
-----------------	------------------------	------------------	-------------------------------------	------------------------
Spider	97.01	8.17	1.17	100.00
GRAILQA	100.00	0.00	0.00	0.00
WebQSP	5.36	12.9	1.52	100.00
MTOP	100.00	0.00	0.00	0.00
WikiTableQuestions	49.56	28.65	21.79	100.00
WikiSQL	63.90	55.28	10.22	100.00
ComWebQ	0.28	15.79	83.93	100.00
HybridQQA	58.37	52.63	9.00	100.00
MultiModalQQA	66.22	25.72	8.06	100.00
FeTQA	67.03	27.47	5.49	100.00
DART	95.82	2.92	1.26	100.00
MultiWoZ	100.00	0.00	0.00	0.00
SPaC	100.00	0.00	0.00	0.00
CoSQL	100.00	0.00	0.00	0.00
SQLText	100.00	0.00	0.00	0.00
Logic2Text	100.00	0.00	0.00	0.00

D.2 Metric Details

For most semantic parsing tasks, we report the exact match accuracy of logical forms, and for task has test suite (Zhong et al., 2020), we add test suite metric to represent model’s performance; an exception is WebQSP, for which we follow previous work to execute the parses and report the F1 score. For QA, we report the exact match accuracy of answer sets. For data-to-text generation, we report sacre-BLEU (Post, 2018).\(^5\) We use each task’s representative metric used by previous works. For fact verification, we report the accuracy. For high-fidelity NLG, we report BLEC (Shu et al., 2021), which is the exact match between keywords in the formal language and the natural language. Unless specified, we use T5-large and report the development set performance.

D.3 To Zero-shot Experimental Details

For each task in UNIFIEDSKG we search Sanh et al. (2021) for the most similar instructions if there is no one for use, we create one follow their writing

\(^5\)Signature: BLEU + case.lc + numrefs.1 + smooth.exp + tok.13a + version.1.4.0
Paraphrase "[SQL]" to natural language:

D.4 GPT3 and Codex Details

D.4.1 Hyperparameter Settings

Temperature For GPT3 and Codex, we set the decoding temperature to 0 (i.e., greedy decoding without sampling) for Spider, WikiTQ, MultiWoZ and TabFact. We observe a drop of 10% in the exact match metric when set the temperature to 1 by default in OpenAI. For Codex, we tune the temperature from 0 to 1 in a step of 0.1 for DART, SQL2Text, and no significant difference is observed. For GPT3, we do not tune on that to stay within our budget.

Max output length We set max output length to 256 for Spider, WikiTQ, MultiWoZ and SQL2Text, while 4 for TabFact to contain more length in the input side (the concept of max length in GPT3 and Codex is the sum of input tokens length and output tokens length). We set "\n" as the stop token.

D.4.2 Prompts

We use simple prompt words for each task to concatenate the request, linearized structured knowledge, and context together. For example, for each example in WikiTQ, we format it as “*examples*\n\n[linearized table] \nWrite a answer for \n[request] \nThe answer is:”, and make GPT3 and Codex make the completion as prediction. We do experiments on Spider with different format of forming structured knowledge (e.g., linearization, description), but get a similar result. Better us-
D.5 Human Evaluation

Participants of our human evaluation are eight of the authors of this paper. They are familiar with the tasks being evaluated. The human evaluation guideline is shown below.

General Guideline
1. Each line is a dev set sample, with some inputs (detailed below), a human reference (seq_out) shown in blue, and three model outputs named model1, model2, and model3.
2. Each model output receives a 0-1 score (0 stands for incorrect, and 1 stands for correct).
 - By "correct" we mean "responding to the user request properly and correctly, without grammar or wording mistakes".
3. When an output is incorrect, you specify the type(s) of error, e.g., 1) missing information, 2) contradiction, 3) hallucination, and 4) ungrammatical.

Task-Specific Details

DART
1. Task: triples-to-text generation.
2. struct_in: a set of relation-triples joined by `/grave.ts1/grave.ts1`. Each relation-triple is of form `/grave.ts1/grave.ts1 entityA : relation : entityB`.

FeTaQA
1. Task: free-form QA
2. question: a question about the table.
3. table: a table represented as a dictionary:
   ```
   {"header": [header item, ...], "rows": [[cell value, ...], ...]}
   ```
4. meta: table_page_title | table_section_title

KVRET
1. Task: dialogue system
2. dialogue: a dialogue represented as a dictionary:
   ```
   {"driver": [request1, ...], "assistant": [response1, ...]}, the last response of the assistant is the human reference.
   ```
3. kb: a knowledge base represented as a dictionary:
   ```
   {"header": [header item, ...], "rows": [[cell value, ...], ...]}
   ```

Logic2Text
1. Task: logic expression to text translation
2. table: a table represented as a dictionary:
   ```
   {"caption": table caption, "header": [header item, ...], "rows": [[cell value, ...], ...]}
   ```
3. logic_str: logic expression of a statement.

SQL2Text
1. Task: SQL to text translation
2. query: SQL.

ToTTo
1. Task: highlighted-table-to-text generation.
2. table_page_title and section: table meta information.
3. Visualization of highlighted tables is provided in `/grave.ts1/grave.ts1 toto_vis/`.

D.6 Hyperparameters

Shown in Table 17. For semantic parsing tasks, the decoding was done under the greedy search, where we set the beam size to 1 specially. For tasks with a long linearized sequence, we used 1024 as input length to hold the maximum of input; reasons are explained in App. C.

E Training Details

Here we show comparisons of finetuning and prefix-tuning on aspect of training. For prefix-tuning, we use random initialization as done by Li and Liang (2021). In general, prefix-tuning needs more steps than finetuning but has the ability to reach comparable results with continued training.

F Task Unification

F.1 Term Definition

Highlighted tables A highlighted table contains a table, table metadata (such as the title), and a set of highlighted cells which entails the text description (Parikh et al., 2020).

Relation-triples Relation triples are a set of subject-predicate-object triples to capture rich relationships in the data. Many data-to-text tasks such as DART (Nan et al., 2021b) take these relation triples as inputs and generate natural language from them.

Knowledge Graph A knowledge graph is a multi-relational graph composed of entities (nodes) and relations (different types of edges). Each edge is represented as a triple of the form (head entity, relation, tail entity), also called a fact, indicating that two entities are connected by a specific relation (Wang et al., 2017).

Dialogue State and Ontology A dialogue state s_t at any turn t in a dialogue comprises the summary of the dialogue history until turn t, such that s_t contains all sufficient information for the system to choose the next action. (Williams et al., 2016)

Specifically, it captures the user goals in the conversation in the form of (slot, value) pairs. The set of possible slots is predefined in the ontology O, typically domain-dependent, while the values assumed by each slots are provided by the user as a dialogue goal.
F.2 Linearization

- **Tables.** Following Liu et al. (2021), we linearize the table into a sequence. By inserting several special tokens to indicate the table boundaries, a linearized table can be represented as “col: c_1, \ldots, c_N row 1 : r_1 row 2 : r_2, \ldots, r_M ”, where N and M are the number of columns and rows.

- **Highlighted tables.** Following Parikh et al. (2020), we represent each highlighted cell by concatenating its value, column headers, and row headers. The table is represented as the concatenation of the page title, section title, and representations of all highlighted cells.

- **Relation-triples and knowledge graphs.** Following Nan et al. (2021b), each relation-triple is linearized as “sub : rela : obj”, and different triples are joined by “ $|$ ”. The subgraph retrieved from the knowledge graph is treated as a list of relation-triples and we use the same formulation.

- **Ontology.** Following Hosseini-Asl et al. (2020) and Lin et al. (2021), for each slot in ontology, each slot along with all its possible values is formatted as “slot : value$_1$, \ldots, value$_{slot_n}$ ”, different slot-values are joined by “ $|$ ”.

F.3 Output Format

When the output is natural language or formal language we do not modify it because it is already in sequence format; a set of answers, we use a comma followed by a space to join the answers; a Boolean value, we map True to “entailed” and False to “refuted”; a dialogue state, we follow Hosseini-Asl et al. (2020) to place its slot-value pairs sequentially.

G Input and Output Examples for Each Task

G.1 Spider

Structured Input:

| concert_singer | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , year , singer_in_concert : concert_id , singer_id |

Request Input:

How many singers do we have?

Sequence Output:

select count(*) from singer

G.2 GRAILQA

Structured Input:

soviet red army: m.06drr9 | organization. organization_founder | government. governmental_body.jurisdiction.organization. organization_founder.organsations.founded
Table 18: The comparison of approximate training steps finetuning and prefix-tuning used to reach the decent performance on T5 base. >250000 means we stop the training due to time limitation. Prefix-tuning needs more steps to converge and converges to comparable performances.

Task	Finetune	Prefix-tuning
Spider	16500	100000
GraiQA	17000	78000
WebQSP	1500	8000
MTOP	30000	60000
WikiSQL	8500	80000
WikiTQ	1500	16000
CompWebQ	3500	27000
HybridQA	7000	30000
MultiModalQA	6000	40000
FctTQQA	11000	20000
DART	7000	250000
ToTTo	12000	>250000
MultiWoZ2.1	6000	40000
KRET	4000	40000
SParC	2000	6400
CoSQL	38000	100000
SQA	27000	>250000
TabFact	8000	210000
FEVEROUS	12000	40000
SQL2Text	3000	10000
Logic2Text	3500	10000

military.military_service.military_person
government.political_party_tenure government.
national_anthem_of_a_country visual_art.
art_subject.artwork_on_the_subject government.
government_agency government.
governmental_jurisdiction.government people.
deceased_person.place_of_burial people.
deceased_person.date_of_death people.person.
children people.person.parents people.person.
human.height_meters government.
government_position_held.office_holder government.government people.person.
person.sibling_s people.person.quotations people.person.gender

Request Input:
the person who founded the soviet red army also founded what government agency?

Sequence Output:
(AND government.government_agency (JOIN organization.organization.founders (JOIN (R organization.organization.founders) m.06dr9)))

G.3 CompWebQ
Structured Input:
Liam Hemsworth celebrities.celebrity.
sexual_relationships..celebrities.
romantic_relationship.celebrity Liam Hemsworth | Liam Hemsworth type.object.type tv.tv_actor | Liam Hemsworth film.actor.film.performance.character Billy The Kid | Liam Hemsworth film.actor.film.performance.film The Hunger Games |

G.4 WebQsp
Structured Input:
Spain: m.06mkj | m.06mkj location.location.
contains m.0g3ggy | m.06mkj location.location.
contains m.02q5f5eh | m.0j5_3sv government.
government_position_held.
office_position_or_title m.0j5_3sz | m.06mkj location.location.contains.m.02zb43k | (omitted to save space) | m.06mkj government.governmental_jurisdiction.
governing_officials.m.01wswhic | m.06mkj location.location.contains.m.09k5hy | m.010wswhjc government.government_position_held.
office_position_or_title m.0j5_3sz | m.06mkj location.location.contains.m.02z98t5 | m.06mkj location.location.contains.m.03qcr00

Request Input:
what is the king of spain's name?

Sequence Output:
(JOIN (R government.government_position_held. office_holder) (AND (JOIN government.government_position_held.time_macro 2015"http://www.w3.org/2001/XMLSchema#date") (AND (JOIN government.government_position_held. office_position_or_title m.0j5_3sz) (JOIN (R government.governmental_jurisdiction. governing_officials) m.06mkj))))

G.5 MTOP
Structured Input:
IN:GET: MESSAGE, WEATHER, ALARM, INFO_RECIPES, STORIES_NEWS, REMINDER, RECIPES, EVENT, CALL_TIME, LIFE_EVENT, INFO_CONTACT, CONTACT, TIMER, REMINDER_DATE_TIME, AGE, SUNRISE, EMPLOYER, EDUCATION_TIME, JOB, AVAILABILITY, (omitted to save space)
IN:PREVIOUS: TRACK_MUSIC | IN:HOLD: CALL | IN: SKIP: TRACK_MUSIC | IN:LIKE: MUSIC | IN:RESTART: TIMER | IN:RESUME: TIMER, CALL, MUSIC | IN: MERGE: CALL | IN:REPLAY: MUSIC | IN:LOOP: MUSIC | IN:STOP: MUSIC, SHUFFLE_MUSIC | IN:UNLOOP: MUSIC | IN:CANCEL: MESSAGE, CALL | IN:REWIND: MUSIC | IN:REPEAT: ALL_MUSIC, ALL_OFF_MUSIC | IN:FAST: FORWARD_MUSIC | IN:DISLIKE: MUSIC | IN: DISPREFER: | IN:HELP: REMINDER | IN:FOLLOW: MUSIC

624
Request Input:
call Nicholas and Natasha

Sequence Output:
[IN:CREATE_CALL [SL:CONTACT Nicholas] [SL:
CONTACT Natasha]]

G.6 WikiSQL
Structured Input:
col : player | no. | nationality | position | years in toronto | school/club team row 1 : antonio lang | 21 | united states | guard-forward | 1999-2000 | duke row 2 : voshon lenard | 2 | united states | guard | 2002-03 | minnesota row 3 : martin lewis | 32, 44 | united states | guard-forward | 1996-97 | butler cc (ks) row 4 : brad lohaus | 33 | united states | forward-center | 1996 | iowa row 5 : art long | 42 | united states | forward-center | 2002-03 | cincinnati row 6 : john long | 25 | united states | guard | 1996-97 | detroit row 7 : Kyle Lowry | 3 | united states | guard | 2012-present | villanova

Request Input:
what position does the player who played for butler cc (ks) play?

Sequence Output:
guard-forward

G.7 WikiTableQuestions
Structured Input:
col : team | county | wins | years won row 1 : greystones | wicklow | 1 | 2011 row 2 : ballymore eustace | kildare | 1 | 2010 row 3 : maynooth | kildare | 1 | 2009 row 4 : ballyroan abbey | laois | 1 | 2008 row 5 : fingal ravens | dublin | 1 | 2007 row 6 : confey | kildare | 1 | 2006 row 7 : crettyard | laois | 1 | 2005 row 8 : Wolfe tones | meath | 1 | 2004 row 9 : dundalk gaels | louth | 1 | 2003

Request Input:
which team won previously to crettyard?

Sequence Output:
wolfe tones

G.8 HybridQA
Structured Input:
col : position | athlete | nationality | time row 1 : 1 | patrick makau musyoki | kenya | 2:03.38 row 2 : 2 | stephen kwelio chemlany | kenya | 2:07.55 row 3 : 3 | edwin kihimiyo | kenya | 2:09.50 row 4 : 4 | felix limo | kenya | 2:10.38 row 5 : 5 | scott overall | united kingdom | 2:10.55 row 6 : 6 | ricardo serrano | spain | 2:13.32 row 7 : 7 | pedro nimo | spain | 2:13.34 row 8 : 8 | simon munyutu | france | 2:14.20 row 9 : 9 | driss el himer | france | 2:14.46 row 10 : 10 | hendrick ramaala | south africa | 2:16.00 passages: ricardo serrano (athlete): at the 2011 iaaf world cross country championships he was 89th overall. his marathon debut followed later that year and he was sixth at the 2011 berlin marathon with a time of 2:13.32 hours. le spain: with an area of 505,990 km2 (195,360 sq mi), spain is the largest country in southern europe, the second largest country in western europe and the european union, and the fourth largest country in the european continent. by population (about 47 million), spain is the sixth largest in europe and the fifth in the european union.

Request Input:
what place was achieved by the person who finished the berlin marathon in 2:13.32 in 2011 the first time he competed in a marathon?

Sequence Output:
sixth

G.9 MultiModalQA
Structured Input:
ben piazza | filmography col : year | title | role | notes row 1 : 1957 | a dangerous age | david | role | notes row 2 : 1959 | the hanging tree | rune | row 3 : 1962 | no exit | camarero | row 4 : 1970 | tell me that you love me, junie moon | jesse | role | notes row 5 : 1972 | the outside man | desk clerk | row 6 : 1973 | the candy snatchers | avery | role | notes row 7 : 1976 | the bad news bears | bob whitewood | role | notes row 8 : 1977 | i never promised you a rose garden | jay blake | row 9 : 1979 | nightwing | roger piggott | row 10 : 1979 | the concorde ... airport '79 | associate | tv version, uncredited

Request Input:
for which film did ben piazza play the role of mr. simms?

Sequence Output:
mask

G.10 FeTaQA
Structured Input:
andy karl | awards and nominations col : year | award | category | work | result row 1 : 2013 | drama desk award | outstanding featured actor in a musical | the mystery of Edwin Drood | nominated row 2 : 2013 | Broadway.com audience awards | favorite onstage pair (with jessie mueller) | the mystery of Edwin Drood | nominated row 3 : 2014 |
when did andy karl win the olivier award and for which of his work?

for his performance in groundhog day, andy karl received the 2017 olivier award for best actor in a musical.

Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.

hotel pricerange none, hotel type none, hotel parking none, hotel book day today, hotel book people 1, hotel book stay 1, hotel area east, hotel stars 4, hotel internet none, hotel name warkworth, train destination bishops stortford, train day friday, train departure cambridge, train arriveby none, train book people none, taxi destination none, taxi book time none, taxi book arrivalby none

ball pricerange cheap, dontcare, expensive, moderate; hotel-type guesthouse, hotel; hotel parking dontcare, free, no, yes; hotel-book day: monday, saturday, sunday, thursday, tuesday, wednesday; hotel-book people: 1, 2, 3, 4, 5, 6, 7, 8; hotel-book stay: 1, 2, 3, 4, 5, 6, 7, 8; hotel-area centre, dontcare, east, north, south, west; hotel-stars: 0, 1, 2, 3, 4, 5, dontcare; hotel-internet: dontcare, no, yes; hotel-name: none; train-destination: none; train day: dontcare, monday, saturday, sunday, thursday, tuesday, wednesday; train-departure: none; train-arriveby: none; train-book people: 0, 1, 10, 15, 2, 3, 4, 5, 6, 7, 8, 9; taxi-destination: none; taxi-departure: none; taxi-leaveat: none; train-leaveat: none; attraction-area: cambridge, dontcare, east, north, south, west; restaurant-pricerange: cheap, dontcare, expensive, moderate; restaurant-area: centre, east, north, south, west; restaurant food: none; attraction-name: none; restaurant-name: none; attraction-type: architecture, boat, church, cinema, college, concert hall, entertainment, hotspot, multiple sports, museum, nightclub, park, special, swimming pool, theatre; restaurant-book day: monday, saturday, sunday, thursday, tuesday, wednesday; restaurant-book people: 1, 2, 3, 4, 5, 6, 7, 8; restaurant-book time: none; taxi-arriveby: none
col : poi	poi_type	address	distance	traffic_info																												
sigona farmers market	grocery store	638 amherst st	3 miles	car collision nearby row 2 : cafe venetia	coffee or tea place	269 alger dr	1 miles	car collision nearby row 3 : 5672 barringer street	certain address	5672 barringer street	5 miles	no traffic row 4 : valero	gas station	200 alester ave	2 miles	road block nearby row 5 : stanford childrens health	hospital	899 ames ct	5 miles	moderate traffic row 6 : valero	gas station	200 alester ave	2 miles	road block nearby row 7 : teavana	coffee or tea place	145 amherst st	1 miles	road block nearby row 8 : willows market	grocery store	409 bollard st	5 miles	no traffic

Request Input:
ok, please give me directions via a route that avoids all heavy_traffic.

Context:
valero is located at 200_alester_ave. | address to the gas_station

Sequence Output:
since there is a road_block_nearby, i found another route for you and i sent it on your screen

G.15 SParC

Structured Input:
| flight_2 | airlines : uid , airline , abbreviation , country | airports : city , airportcode , airportname , country , countryabbrev | flights : airline , flightno , sourceairport , destairport |

Request Input:
What is the country corresponding it?

Context:
Of these, which is Jetblue Airways? | What are all the airlines?

Sequence Output:
select country from airlines where airline = "JetBlue Airways"

G.16 CoSQL

Structured Input:
| car_1 | continents : contid , continent | countries : countryid , countryname , continent | car_makers : id , maker , fullname , country | model_list : modoid , maker , model | car_names : makeid , model , make | cars_data : id , mpg , cylinders , edispl , horsepower , weight , accelerate , year |

Request Input:
Which models are the most popular?

Context:
How many car models are produced by each maker? List the count and the maker full name.

Sequence Output:
select t1.model from model_list as t1 join car_makers as t2 on t1.maker = t2.id group by t2.id order by count (*) desc limit 1

G.17 SQA

Structured Input:
col : date	number	type	captain	casualties	sunk by																											
4 may 1943	u-209	viic	heinrich brodda	46	catalina flying-boat of no. 5 squadron																											
5 may 1943	u-638	viic	oskar staudinger	44	hms sunflower row 3 : 5 may 1943	u-531	ixc/40	herbert neckel	54	hms vidette row 4 : 6 may 1943	u-192	ixc/40	werner happe	55	hms loosestrife row 5 : 6 may 1943	u-125	ixc	ulrich folkers	54	"hms oribi	hms snowflake "	row 6 : 6 may 1943	u-630	viic	werner winkler	47	hms vidette row 7 : 6 may 1943	u-438	viic	heinrich hensohn	48	hms pelican

Request Input:
which captain was not oskar staudinger?

Context:
who were the captains of those boats? | what boats were lost on may 5?

Sequence Output:
herbert neckel

G.18 TabFact

Structured Input:
| col : round | clubs remaining | clubs involved | winners from previous round | new entries this round | leagues entering at this round row 1 : first round | 156 | 86 | none | 86 | tff third league & turkish regional amateur league row 2 : second round | 113 | 108 | 43 | 65 | süper lig & tff first league & tff second league row 3 : third round | 59 | 54 | 54 | none | none row 4 : fourth round | 32 | 32 | 27 | 5 | süper lig & tff first league & tff second league row 5 : fifth round | 16 | 16 | 16 | none | none row 6 : group stage | 8 | 8 | 8 | none | none row 7 : semi - finals | 4 | 4 | 4 | none row 8 : final | 2 | 2 | 2 | none | none |

Request Input:
during the third round of the turkish cup, there be no new entry during that stage

Sequence Output:
entailed
G.19 FEVEROUS

Structured Input:

col : no. | title | narrator | aired between |
original air date | us viewers row 1 : 1 | "magic is coming" | giancarlo esposito | "a land without magic" | september 30, 2012 (2012-09-30) | 6.04 row 2 : 2 | "the price of magic" | alan dale | "selfless, brave and true" lacey | april 14, 2013 (2013-04-14) | 5.17 row 3 : 3 | "journey to neverland" | alfred molina | "and straight on 'til morning" "the heart of the | (omitted to save space)
"dark swan rises: a once upon a time fan" | howard parker | "operation mongoose, part 2" "the | september 27, 2015 (2015-09-27) | 3.20 row 8 : 8 | "evil reigns once more" | howard parker | "an untold story" "the savior" | september 25, 2016 (2016-09-25) | 2.86 row 9 : 9 | "the final battle begins" | howard parker | "the song in your heart" "the final battle" | may 14, 2017 (2017-05-14) | 2.82

Request Input:
list of once upon a time (debuted october 23, 2011) episodes consists of 10 specials, one of the narrators alan dale.

Sequence Output:
refuted

G.20 SQL2Text

Structured Input:

None

Request Input:
SELECT Fname FROM FACULTY WHERE Rank = "Professor" ORDER BY Fname

Sequence Output:
What are the first names for all faculty professors, ordered by first name?

G.21 Logic2Text

Structured Input:

Caption: list of tallest structures in the world - 300 to 400 metres | planned pinnacle height, expected year of completion, structural type, country, town

Request Input:
eq { count { filter_eq { all_rows ; expected year of completion ; 2006 } } ; 3 } = true

Sequence Output:
three of the tallest structures will be completed in 2006 .

H Case study

H.1 Spider case

H.1.1 Case 1:

Structured Input:

| concert_singer | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id |

Request Input:
What are the names of all stadiums that did not have a concert in 2014?

Sequence Output:
select name from stadium except select t2.name from concert as t1 join stadium as t2 on t1.stadium_id = t2.stadium_id where t1.year = 2014

T5-base prediction (incorrect):
select name from stadium except select stadium_name from concert where year = 2014

T5-large prediction (correct):
select name from stadium except select t2.name from concert as t1 join stadium as t2 on t1.stadium_id = t2.stadium_id where t1.year = 2014

T5-3B prediction (correct):
select name from stadium except select t2.name from concert as t1 join stadium as t2 on t1.stadium_id = t2.stadium_id where t1.year = 2014

H.1.2 Case 2:

Structured Input:

| concert_singer | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id |

Request Input:
What is the name and capacity for the stadium with highest average attendance?

Sequence Output:
select name, capacity from stadium order by avg(amount) desc limit 1

T5-base prediction (incorrect):
select name, capacity from stadium order by average desc limit 1

T5-large prediction (correct):
select name, capacity from stadium order by average desc limit 1
T5-3B prediction (correct):
```
select name, capacity from stadium order by average desc limit 1
```

H.1.3 Case 3:
Structured Input:
```
| pets_1 | student : stuid, lname, fname, age, sex, major, advisor, city_code | has_pet : stuid, petid | pets : petid, pettype (cat, dog), pet_age, weight
```

Request Input:
Find the first name of students who have cat or dog pet.

Sequence Output:
```
select distinct t1.fname from student as t1 join has_pet as t2 on t1.stuid = t2.stuid join pets as t3 on t3.petid = t2.petid where t3.pettype = 'cat' or t3.pettype = 'dog'
```

T5-base prediction (incorrect):
```
select t1.fname from student as t1 join has_pet as t2 on t1.stuid = t2.stuid where t2.pettype = 'cat' or t2.pettype = 'dog'
```

T5-large prediction (incorrect):
```
select t1.fname from student as t1 join has_pet as t2 on t1.stuid = t2.stuid where t2.pettype = 'cat' or t2.pettype = 'dog'
```

T5-3B prediction (correct):
```
select t1.fname from student as t1 join has_pet as t2 on t1.stuid = t2.stuid join pets as t3 on t2.petid = t3.petid where t3.pettype = 'cat' or t3.pettype = 'dog'
```

H.2 FeTaQA case
Structured Input:
```
te aroha (new zealand electorate) | 1890 election col : party | party | candidate | votes |
| | % | [non utf-8 token] row 1 : - | independent | william shepherd allen | 786 | 56.34 | - row 2 : - | liberal | william fraser | 609 | 43.65 | - row 3 : majority | majority | majority | 175 | 12.54 | - row 4 : turnout | turnout | turnout | 1,395 | 48.60 | - row 5 : registered electors | registered electors | registered electors | 2,870 | - | -
```

Request Input:
what were the voting results in the te aroha election by the candidate?

Sequence Output:
```
votes for allen and fraser were 786 and 609 respectively.
```

T5-base prediction (correct):
```
it will be raining on saturday and hailing on sunday in alhambra.
```

T5-large prediction (incorrect):
```
it will not rain in alhambra this weekend.
```

T5-3B prediction (incorrect):
```
there will be no rain this weekend in alhambra.
```

H.3 KVRET case
H.3.1 Case 1:
Structured Input:
```
col : location | monday | tuesday | wednesday | thursday | friday | saturday | sunday | today
| | | | | | | | |
row 1 : danville | clear skies, low of 30f, high of 50f | cloudy, low of 20f, high of 40f | raining, low of 80f, high of 100f | dew, low of 80f, high of 90f | clear skies, low of 70f, high of 80f | frost, low of 40f, high of 60f | overcast, low of 60f, high of 80f | wind, low of 80f, high of 100f | rain, low of 80f, high of 90f | stormy, low of 70f, high of 80f | rain, low of 60f, high of 70f | hail, low of 40f, high of 60f | Monday ...
```

Request Input:
alhambra please.

Context Input:
```
what city are you inquiring about? | is it going to be raining this weekend
```

Sequence Output:
```
it will be raining on saturday and hailing on sunday in alhambra.
```

T5-base prediction (correct):
```
it will be raining on saturday and hailing on sunday in alhambra.
```

T5-large prediction (incorrect):
```
it will not rain in alhambra this weekend.
```

T5-3B prediction (incorrect):
```
there will be no rain this weekend in alhambra.
```

H.3.2 Case 2:
Structured Input:
```
col : event | time | date | room | agenda |
| | | | | |
row 1 : tennis activity | 5pm | wednesday | | - | - | mother |
row 2 : taking medicine | 9am | the 3rd | - | - | sister |
row 3 : swimming activity | 11am | friday | | - | - | father |
row 4 : conference | 6pm | the 8th | 100 conference room | go over budget | infrastructure team row 5 : meeting | 4pm | the 10th | conference room | go over quarterly report | infrastructure team row 6 : dentist appointment | 10am | the 13th | - | - | jeff |
row 7 : jeff |
row 8 : lab appointment | 2pm | the 4th | - | - | sister
```

T5-base prediction (correct):
```
the te aroha election was won by william shepherd allen with a majority of 175.
```

T5-large prediction (incorrect):
```
in the te aroha election, allen won with a majority of 175 votes.
```

T5-3B prediction (correct):
```
in the 1890 te aroha election, the result was a victory for the independent candidate, william shepherd allen, who received 786 votes against 609 for the liberal candidate, william fraser.
```

629
Request Input:
when is the date and time of my
dentist_appointment?

Context Input:
None

Sequence Output:
your dentist_appointment is at 10am on the_13th.

T5-base prediction (correct):
you have two dentist_appointments scheduled. one on the_5th at 11am and another on the_13th at 10am.

T5-large prediction (correct):
your dentist_appointment is on the_13th at 10 am.

T5-3B prediction (incorrect):
you have three dentist_appointments scheduled. one on the_5th at 11am, another on the_13th at 10am, and the last is on the_5th at 11am.

H.4 SQL2Text case

Query:
SELECT company , main_industry FROM company
WHERE headquarters != 'USA'

Sequence Out:
Show the company name and the main industry for all companies whose headquarters are not from USA.

T5-base prediction (incorrect):
What are the companies and main industries of companies whose headquarters are not "USA"?

T5-large prediction (correct):
What are the companies and main industries of the companies whose headquarters are not located in the United States?

T5-3B prediction (correct):
What are the main industries of companies whose headquarters are not in the USA?

H.5 DART case

Structured Input:
Cotto : eattype : coffee shop | Cotto : food : English | Cotto : pricerange : more than [non utf-8 token]30 | Cotto : customer rating : high | Cotto : area : city centre | Cotto : near : The Portland Arms

Sequence Output:
The Cotto is a highly rated English coffee shop in the city centre near The Portland Arms, and prices range more than [non utf-8 token]30.

T5-base prediction (correct):

Cotto is a coffee shop providing English food in the more than [non utf-8 token]30 price range. It is located in the city centre. Its customer rating is high.

T5-large prediction (correct):

Cotto is a coffee shop providing English food in the more than [non utf-8 token]30 price range. It is located in the city centre. It is near The Portland Arms. Its customer rating is high.

T5-3B prediction (correct):

Cotto is a coffee shop located in the city centre near The Portland Arms. It serves English food with a price range of more than [non utf-8 token]30 and has a high customer rating.

H.6 Logic2Text case

Structured Input:
Caption: 2008 san diego chargers season | week, date, time, opponent, result, game site, nfl recap, record

Request Input:
eq { count { filter_eq { filter_eq { all_rows ; game site ; qualcomm stadium } ; time ; 5:15 pm } } ; 3 } = true

Sequence Output:
in the 2008 san diego chargers season, among the games that were played in qualcomm stadium, 3 of them started at 5:15 pm.

T5-base prediction (incorrect):
in the 2008 san diego chargers season, when the game was at qualcomm stadium, there were three times the time was 5:15 pm.

T5-large prediction (incorrect):
in the 2008 san diego chargers season, when the game was at qualcomm stadium, there were 3 times the time was 5:15 pm.

T5-3B prediction (correct):
in the 2008 san diego chargers season, among the games played at qualcomm stadium, 3 of them started at 5:15 pm.

H.7 ToTTo case

Structured Input: See Figure 7.

Sequence Output:
Alisson Perticheto placed 18th at the 2013 Junior Worlds, 17th at the 2014 Four Continents and 16th at the 2015 Four Continents.

T5-base prediction (incorrect):
Alisson Perticheto finished 18th at the Junior Worlds and 17th at the Four Continents.
Figure 7: Visualized highlighted table for ToTTo case 1.

T5-large prediction (incorrect):
Alisson Perticheto placed 17th at the 2014 Four Continents and 16th at the 2015 Junior Worlds.

T5-3B prediction (correct):
Alisson Perticheto finished 17th at the 2014 Four Continents, 16th at the 2015 Four Continents, and 18th at the 2013 Junior Worlds.

I Natural Language Template Examples

I.1 Spider Template

Overall Description Template:
{db id} contains tables such as {table1 name}, {table2 name}

Primary Key Template:
{primary key} is the primary key.

Table Description Template:
Table {table name} has column such as {column 1 name}, {column 2 name}, ...

Foreign Keys Description Template:
The {column1 name} of {table 1} is the foreign key of {column2 name} of {table 2}

I.2 TabFact Template

Template Examples:
Table 1-24143253-5:
{name} lost his spouse {deceased spouse} to {cause of death} on {date of spouses death} after {length of marriage} of marriage; they had {children together} together; he is currently {current marital status}

I.3 WikiSQL Template

Template Example:
Table 1-14240688-1:
in {year} were in division {division}, {league} ranked {regular season}, made it to {playoffs} of the playoffs, made it to <{open cup}> in the open cup, and kept an average attendance of {avg attendance}

Table 2-12997882-1:
On {date} in 2008 European Figure Skating, the home team {home team} and away team {away team} had a game at venue {venue} with a crowd of {crowd}; the home team score is {home team score} and the away team score is {away team score}

Table 1-13740746-1:
Episode number {ep no} of gerry anderson 's new captain scarlet with a title of {title} is directed by {director} and written by {written by}; its original air date is {original air date }; the production number is {production no}