Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion

Harshita Chodavarapu
Wright State University

Nadja Grobe
Wright State University - Main Campus, nadja.grobe@wright.edu

Hari Krishna Somineni
Wright State University

Esam Said Busah Salem
Wright State University

Malav Navinchandra Madhu
Wright State University

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/ptox

Part of the Chemicals and Drugs Commons

Repository Citation
Chodavarapu, H., Grobe, N., Somineni, H. K., Salem, E. S. B., Madhu, M., & Elased, K. M. (2013). Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion. *PLoS ONE, 8*(4), e62833. http://doi.org/10.1371/journal.pone.0062833

This Article is brought to you for free and open access by the Pharmacology and Toxicology at CORE Scholar. It has been accepted for inclusion in Pharmacology and Toxicology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion

Harshita Chodavarapu, Nadja Grobe, Hari K. Somineni, Esam S. B. Salem, Malav Madhu, Khalid M. Elased*

Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America

Abstract

Alterations within the renal renin angiotensin system play a pivotal role in the development and progression of cardiovascular and renal disease. Angiotensin converting enzyme 2 (ACE2) is highly expressed in renal tubules and has been shown to be renoprotective in diabetes. The protease, a disintegrin and metalloprotease (ADAM) 17, is involved in the ectodomain shedding of several transmembrane proteins including ACE2. Renal ACE2 and ADAM17 were significantly increased in db/db mice compared to controls. We investigated the effect of the insulin sensitizer, rosiglitazone, on albuminuria, renal ADAM17 protein expression and ACE2 shedding in db/db diabetic mice. Rosiglitazone treatment of db/db mice normalized hyperglycemia, attenuated renal injury and decreased urinary ACE2 and renal ADAM17 protein expression. Urinary excreted ACE2 is enzymatically active. Western blot analysis of urinary ACE2 demonstrated two prominent immunoreactive bands at approximately 70 & 90 kDa. The predominant immunoreactive band is approximately 20 kDa shorter than the one demonstrated for kidney lysate, indicating possible ectodomain shedding of active renal ACE2 in the urine. Therefore, it is tempting to speculate that renoprotection of rosiglitazone could be partially mediated via downregulation of renal ADAM17 and ACE2 shedding. In addition, there was a positive correlation between blood glucose, urinary albumin, plasma glucagon, and triglyceride levels with urinary ACE2 excretion. In conclusion, urinary ACE2 could be used as a sensitive biomarker of diabetic nephropathy and for monitoring the effectiveness of renoprotective medication.

Introduction

The prevalence of type 2 diabetes and the incidence of related complications like diabetic nephropathy have increased dramatically worldwide. This pandemic of diabetes is expected to escalate further as the population ages and obesity rates continue to soar. As the most common medical complications of diabetes include a range of progressive, chronic, renal, and cardiovascular problems, there is a great need for clinical tools that would enable the prevention and early diagnosis of such complications. Diabetic nephropathy is one of the major microvascular complications of type 2 diabetes, and a leading cause of end-stage renal disease indicating a failure of current available preventive therapeutic strategies. Microalbuminuria, defined as a urinary albumin excretion between 30 and 300 mg/day, is a commonly considered clinical sign of renal dysfunction and an early predictor of diabetic nephropathy [1]. Despite therapeutic intervention, kidney function progressively worsens in many diabetic patients underscoring the importance of novel and disease-specific biomarkers. The renal renin angiotensin system (RAS), specifically angiotensin II (Ang II), plays a pivotal role in the pathogenesis of diabetic nephropathy [2]. Ang II and angiotensin converting enzyme (ACE) are activated in type 2 diabetes [3], and are involved in the development of microvascular and macrovascular complications of diabetes such as nephropathy, retinopathy and cardiovascular disease [4]. In addition to glycemia control, lowering blood pressure as well as therapeutic approaches aimed at blocking the RAS, are strategies known to improve symptoms of diabetic nephropathy and preserve renal function in individuals with chronic disease due to different causes [5].

Angiotensin converting enzyme 2 (ACE2), a new enzyme within the RAS, is a type I transmembrane glycoprotein, which cleaves the C-terminal amino acid of Ang II to form Ang-(1–7) [6,7]. ACE2 plays an integral role in the protection against renal damage and cardiovascular disease [8–10]. Administration of ACE2 inhibitor (MLN-4760) increases albuminuria, mesangial pathologies and fibronectin deposition in diabetic mice [11,12]. ACE2 delivery in form of recombinant protein or virus ameliorates the progression of diabetes-related complications, such as nephropathy and retinopathy [13–15]. In addition, urinary ACE2 is elevated in patients with diabetic nephropathy, renal disease, or renal transplant suggesting a possible role of urinary ACE2 as a non-invasive disease biomarker [16–18]. A disintegrin and metalloprotease (ADAM) 17, also known as tumor necrosis factor α-converting enzyme (TACE), is involved in the ectodomain shedding of several membrane bound proteins [19–21]. This includes ADAM17-mediated ectodomain shedding of ACE2 in human embryonic kidney cells and airway epithelial cells [22,23]. Loss of tissue inhibitor of metalloproteinase 3 (TIMP3), an
endogenous inhibitor of ADAM17, has been shown to exacerbate diabetic nephropathy [24].

Accumulating evidence suggests that thiazolidinediones (TZDs) exhibit renoprotective effects. TZDs are synthetic ligands with high affinity toward the γ isoform of peroxisome proliferator activated receptor (PPARγ). TZDs used to be among the first line choice medications to control hyperglycemia in type 2 diabetic patients [25]. Although TZDs are very effective in glycemic control, meta-analysis suggests that they can also increase the risk of macrovascular complications [26]. For this reason, the use of TZDs is restricted in the United States in favor of less aggressive treatment options. Clinical studies revealed that chronic treatment with the TZD rosiglitazone markedly reduced urinary albumin excretion in type 2 diabetic patients [27,28]. In addition, TZDs modulate the RAS, in particular ACE [29], Ang II receptors [30], Ang II receptors [31]. However, the effect of TZD’s on ACE2 has not been investigated before.

Our central hypothesis is that renal ACE2 is upregulated to combat the detrimental effects of enhanced Ang II during early stages of diabetic kidney damage. Ang II is known to activate and redistribute ADAM17 [32], causing ACE2 to be shed from the renal tubules into urine. This loss of renal ACE2 function leads to increased renal injury, which can be reversed by anti-diabetic medication with rosiglitazone resulting in reduced renal ADAM17 expression and consequently, decreased urinary ACE2 levels and improved renal ACE2 function.

Materials and Methods

Animals

Male db/db diabetic mice [33] with background strain C57BL/KsJ (BKS.Cg-Dock7m +/+ Lepr^{db}/J) and their age-matched non-diabetic lean control mice (db/m) were obtained from Jackson Laboratories (Bar Harbor, ME, USA). Mice were housed individually with free access to food and water on a 12 hour light/dark cycle.

Study Design

Six week old mice were randomly assigned to four treatment groups: 1) control group fed normal chow, 2) control group fed rosiglitazone diet (20 mg/kg/day; LK laboratories, MN, USA), 3) db/db group fed normal chow and 4) db/db group fed rosiglitazone diet (20 mg/kg/day). Mice were monitored weekly for blood glucose, body weight, food intake, water intake, and urine output over a period of eight weeks. Body composition was measured in conscious mice using 1H magnetic resonance spectroscopy (EchoMRI-100, Echo Medical system, Houston, TX, USA).

After treatment, mice were euthanized by decapitation and trunk blood was collected in ice-chilled heparinized tubes. Blood was centrifuged at 10,000 g for 10 minutes at 4°C. Plasma was separated, aliquoted and stored at −80°C. Tissues were removed from mice, frozen in liquid nitrogen, and stored at −80°C. All experimental procedures were approved by the Wright State University Animal Care and Use Committee.

Blood Glucose Levels and Glucose Tolerance Test

FreeStyle® Blood Glucose Test Strips and FreeStyle Lite® Blood Glucose Monitoring System (Abbott, CA, USA) were used to determine whole blood glucose levels on a drop of tail blood collected between 10 am and midday, or at intervals thereafter as indicated. For glucose tolerance test, mice were fasted overnight for 16 h and injected with glucose (1.5 mg/kg, 15 min after treatment).
Table 1. Age dependent changes in general metabolic parameters of control, control+rosiglitazone, db/db and db/db+rosiglitazone mice.

Mice strain	Control	Control Rosi	db/db Rosi	Control	Control Rosi	db/db Rosi	Control	Control Rosi	db/db	db/db Rosi	
Age (wks)	6	6	6	6	10	10	10	10	14	14	14
Duration of Treatment (wks)	0	0	0	0	4	4	4	4	8	8	8
Body weight (g)	22.1±0.7	21.6±0.6	32.2±1.1*	30.6±1.2*	25.1±0.5	27.8±0.7	40.9±0.7*	54.0±9.7*	27.1±0.4	30.4±0.8	40.3±0.6*
Absolute body fat (g)	ND	ND	ND	ND	4.2±0.3	22.0±0.4	33.1±0.9*	5.1±0.6*	10.3±0.8*	21.3±0.4*	39.5±0.6*
Food intake* (g/day)	3.4±0.2	3.5±0.3	6.3±0.8*	5.8±0.4*	3.8±0.2	4.5±0.8	7.9±0.4*	7.2±0.8*	3.5±0.1*	46±0.2*	68±0.8*
Water intake (ml/day)	8.1±0.2	8.2±0.4	15.4±3.1*	12.5±0.6*	8.8±0.6	8.6±0.4	30.7±2.1*	11.6±0.6*	6.4±0.3*	9.1±0.5*	31.4±3.7*
Urine volume (ml/day)	10.0±0.004	ND	2.6±0.2*	ND	0.8±0.1	ND	12.6±1.6*	12.2±0.2*	0.9±0.01	ND	23.6±1.2*
Plasma insulin (ng/mL)	ND	ND	ND	ND	ND	ND	ND	1.7±0.2	1.6±0.2	5.9±1.7*	43±0.4*
Plasma adiponectin (µg/mL)	ND	ND	ND	ND	ND	ND	ND	2.0±0.1*	5.5±0.4	1.4±0.1*	91±1.5*
Plasma glucagon (pg/mL)	ND	ND	ND	ND	ND	ND	ND	76.0±7.2	69.0±5.7	401.4±16.5*	214.5±9.2*
Plasma triglycerides (mg/dL)	ND	ND	ND	ND	ND	ND	ND	94.5±5.1	86.8±5.9	2740±247*	65.9±62*
Plasma glucose (mg/dL)	ND	ND	ND	ND	ND	ND	ND	172.5±5.0	165.6±9.1	677.6±73.1*	158.8±27.7*

Values represent mean ± SEM. *p<0.05 Vs age-matched control mice, $p<0.05 Vs. age-matched control+rosiglitazone mice and #p<0.05 Vs age-matched db/db mice were considered statistically significant. ND means not determined. * The amount of food spilled was minimal and was not accounted for in the data presented in the table.

doi:10.1371/journal.pone.0062833.t001
Figure 2. Chronic treatment with rosiglitazone attenuated glucose excretion, albuminuria and plasma creatinine levels in db/db mice. (A) Urinary glucose excretion in lean control, db/db and db/db+rosiglitazone mice. One-way ANOVA showed that urinary glucose excretion increased in db/db mice compared to lean controls (*p<0.0001). Eight weeks after treatment commenced there was a significant decrease in urinary glucose excretion of db/db+rosiglitazone mice compared to untreated db/db mice. #p<0.001 Vs untreated db/db mice. Each bar represents mean ± SEM of group size (n=6–8). (B) Urinary albumin excretion in control, rosiglitazone treated and untreated db/db mice 2 wks, 4 wks, 6 wks and 8 wks after the commencement of treatment. Repeated measures two-way ANOVA using a Bonferroni’s posthoc test showed that treatment resulted in a significant decrease in urinary albumin excretion of db/db+rosiglitazone mice [F (1, 20) = 36.004], *p<0.001. Similarly, duration of treatment showed a significant decrease in urinary albumin excretion of db/db+rosiglitazone mice after 2 wks, 4 wks, 6 wks and 8 wks of treatment [F (2, 20) = 7.70], p<0.001. *p<0.05 Vs age-matched lean control mice. †p<0.001 Vs untreated db/db mice. ‡p<0.05 Vs 2 wks untreated db/db mice. §p<0.05 4 wks Vs 8 wks untreated db/db mice. Each bar represents mean ± SEM of group size (n=6–7).

I.P.). Blood samples (5 μl) were collected in heparinized capillary tubes from the tip of the tail at 0, 15, 30, 45, 60, 90, and 120 min after glucose injection and diluted in 10% Lysis M Reagent (Roche Diagnostics, IN, USA). Glucose concentration was determined colorimetrically using a glucose oxidase/peroxidase reagent kit (Sigma, MO, USA). Samples were incubated with 100 μl of assay reagent at 37°C for 30 min. The reaction was stopped by adding 12 N H3SO4 and measured at 540 nm using a Fusion Packard plate reader. Values were expressed in mg/dL. Area under the glucose tolerance curve (0–120 min) was carried out using Prism software.

Urinary Collection
Mice were placed individually in metabolic cages for 24-hour urine collection with free access to food and water. Urine specimens were collected every 12 hour and kept at 4°C until the 24-hour collection period was completed. To prevent protein degradation, a total of 10 μl of protease inhibitor (Roche Diagnostics, IN, USA) was added to the collection tubes during the 24-hour collection period. Urine samples were centrifuged at 10,000×g for 5 min at 4°C to remove debris and supernatants were aliquoted and stored at −80°C for later use.

Urinary Albumin, Creatinine and Glucose Excretion Assay
Quantitative urinary albumin was measured using a mouse ELISA kit purchased from Bethyl Laboratories (Montgomery, TX, USA). Urinary glucose excretion was measured in 2 μl urine samples using a glucose oxidase/peroxidase reagent kit as described above. Urinary creatinine was measured in 2 μl urine samples using a kit purchased from Quidel (San Diego, CA, USA). Final absorbance was read at 450 nm in a Fusion Packard plate reader.

Kidney Histology and Immunofluorescence
Mice were anaesthetized and perfused transcardially with ice cold PBS and 10% formalin. Perfused kidneys were dehydrated, embedded in paraffin, sectioned at 4 μm thickness and mounted on glass slides. Paraffin sections were stained with periodic acid-Schiff (PAS) and Masson’s trichrome and examined under light microscopy.

For immunofluorescence, kidney sections were incubated with goat anti-ACE2 (1:150, R&D Systems, MN, USA), rabbit anti-ADAM17 (1:200, Enzo Life Sciences, NY, USA) or goat anti-nephrin (1:200, R&D Systems) primary antibody followed by incubation with donkey anti-goat or anti-rabbit Cy3-conjugated secondary antibody (1:100, Jackson ImmunoResearch, PA, USA). For double staining, donkey anti-goat fluorescein-conjugated secondary antibody (1:100, Jackson ImmunoResearch, PA, USA) was used. Images were captured using a FV1000 Confocal Microscope (Olympus, PA, USA). Meta-Morph software (Molecular Devices, CA, USA) was used for quantitation.

Western Blot
Renal and urinary protein expressions were determined using western blot analysis. Kidneys were homogenized in Complete Lysis-M EDTA-free buffer (Roche Applied Science, IN, USA) containing 2.5 mmol/L PMSF. Kidney lysates (50 μg protein) or urine samples (10–20 μl) adjusted to creatinine were separated on a 10% SDS-PAGE gel and electroblotted to PVDF membranes (Millipore, MA, USA). After blocking for 1 hour, the membranes were incubated with goat anti-mouse ACE2 (1:1000), rabbit anti-ADAM17 (1:500) or goat anti-TIMP3 (1:200, Santa Cruz Biotechnology) primary antibody overnight at 4°C followed by incubation with HRP-conjugated donkey anti-goat (1:2000 R&D Systems, USA) or donkey anti-rabbit (1:20000, Jackson ImmunoResearch) secondary antibody. Signals were detected using supersignal chemiluminescent substrate (Thermo Scientific, IL, USA) and visualized with a Fujifilm image analyzer (LAS3000, Image Quant, CA, USA).

ACE Activity
ACE activity was measured using an assay kit purchased from ALPCO Diagnostics Ltd. Briefly, 10 μl plasma was incubated with 100 μl of HEPES buffer (pH 8.0) containing the synthetic substrate [3H]-hippuryl glycine glycine ([3H]-Hip-Gly-Gly) at 37°C. After 60 min incubation, the reaction was terminated by adding 50 μl of 1 N hydrochloric acid. Liberated [3H]-hippuric acid, due to ACE activity in samples, was separated from unreacted substrate by addition of 1.5 ml of scintillating fluid and measured in a β-counter. The ACE activity is expressed as units/L.

ACE2 Activity Using Fluorometry
Urinary, renal and plasma ACE2 activity was measured using the synthetic fluorogenic substrate, Mca-APK (Dnp) (Biomol
International, NV, USA), with some modifications. Samples (30–40 μg protein) were incubated with 100 μl of the reaction buffer (50 mM Tris, 5 mM ZnCl₂, 150 mM NaCl, and 10 μM lisinopril) and 50 μM Mca-APK (Dnp) for 0.5–2 h at 37°C. Fluorescence was measured at an excitation of 328 nm and emission of 393 nm using a Fusion Packard plate reader.

ACE2 Activity Using Mass Spectrometry

To further confirm the presence of ACE2 activity in urine, matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used as described before with some modifications [34]. Urine (2 μl) was incubated for 1.5 h at 37°C in 50 mM MES buffer pH 6.75 containing 0.5 μM Ang II, 2 mM PMSF and 20 μM bestatin. The reaction was stopped by acidification with trifluoroacetic acid (TFA, final concentration 1%). Peptides were purified using a C18 Ziptip (Millipore, MA, USA). Mass spectra were obtained using an Autoflex III smartbeam MALDI time-of-flight (TOF)/TOF instrument (Bruker Daltonics, MA, USA) operated with positive polarity in reflectron mode. A total of 3000 laser shots were acquired randomly for each spot in the range of m/z 500–3000 at a laser frequency of 100 Hz. Spectra were mass calibrated using a Bruker peptide calibration standard II.

Plasma Hormone and Lipids Measurement

Samples were measured at the Mouse Metabolic Phenotyping Centre (Cincinnati, OH, USA). Plasma triglycerides were measured using commercially available assay kit (Randox Laboratories, UK). Plasma adiponectin concentration was measured with a mouse adiponectin ELISA kit (Millipore, St. Charles, MI, USA). Plasma levels of insulin and glucagon were measured using the Milliplex® MAP mouse metabolic hormone magnetic bead panel. Absorbance was measured using Luminex 200 (Millipore, Austin, TX). Plasma levels were calculated using standards provided with the Luminex kit.

Statistics

Statistical analysis was performed using GraphPad Prism and Statistica software. All data were expressed as mean ± SEM. Unpaired student’s t-test was used to evaluate the differences between two groups. For more than two groups, one-way ANOVA was used. The difference in blood glucose was assessed by repeated measures two-way ANOVA followed by Bonferroni’s multiple comparison test. A value of p<0.05 was considered statistically significant.

Results

Rosiglitazone Normalizes Hyperglycemia and Improves Glucose Handling in db/db Mice

Compared to control mice, six-weeks old db/db diabetic mice exhibited significantly higher blood glucose levels, which consistently increased throughout the study period (Figure 1a). As shown in Figure 1a, chronic treatment of db/db mice with rosiglitazone significantly decreased blood glucose after one week and normalized hyperglycemia throughout the eight-week duration of treatment. Using an intra-peritoneal glucose tolerance test, db/db mice showed impaired glucose utilization compared to age-matched control mice, which was significantly improved in rosiglitazone-treated db/db mice (Figure 1b, c). These effects were not observed in lean control mice treated with rosiglitazone.

Treatment with Rosiglitazone Affects General Metabolic Parameters in db/db Mice

As summarized in Table 1, body weight, absolute body fat, food intake, water intake, and urine volume of db/db mice consistently increased with age compared to control mice and control mice treated with rosiglitazone. In addition, plasma insulin, glucagon, triglyceride and glucose levels were significantly increased in db/db
mice compared to control mice and control mice treated with rosiglitazone, while plasma adiponectin significantly decreased (p<0.05). Chronic treatment of db/db mice with rosiglitazone demonstrated a significant increase in body weight and absolute body fat compared to untreated db/db mice, but food intake was not different. Furthermore, rosiglitazone treatment of db/db mice resulted in a significant decrease in water intake and urine volume, similar to levels observed in control mice. In contrast, treatment of db/db mice with rosiglitazone increased plasma adiponectin levels and decreased glucagon, triglyceride and glucose levels, but had no effect on plasma insulin levels.

Rosiglitazone Decreases Glucose and Albumin Excretion in db/db Mice

There was a significantly higher urinary glucose excretion in db/db mice compared to control mice. Chronic treatment of db/db mice with rosiglitazone significantly decreased urinary glucose excretion compared to untreated db/db mice (p<0.001, Figure 2a). Figure 2b illustrates a significant difference in the urinary albumin excretion between db/db mice and control mice. Progression of the disease led to worsening of albuminuria. Chronic treatment with rosiglitazone significantly ameliorated urinary albumin excretion in db/db mice after only two weeks of treatment (p<0.001). This reduction of urinary albumin was maintained throughout the duration of the study.

Rosiglitazone Attenuates Renal Injury in db/db Mice

Glomerular tufts of db/db mice revealed a significant increase in mesangial expansion and surface area, which was significantly reduced after treatment with rosiglitazone (p<0.001, Figure 3a). In addition, renal fibrosis in db/db mice was significantly decreased following treatment with rosiglitazone (p<0.001, Figure 3b).

Rosiglitazone Increases Nephrin Expression but Decreases Renal ADAM17 Expression and Urinary ACE2 Protein Excretion in db/db Mice

Immunofluorescence showed that protein expression of nephrin and glomerular ACE2 was decreased in the kidneys of db/db mice, while tubular ACE2 and ADAM17 were increased (Figure 4).

Figure 4. Immunofluorescence of nephrin, ACE2 and ADAM17 after 8 weeks of treatment with rosiglitazone. (A) Immunofluorescence staining for nephrin in the glomeruli of control, untreated and rosiglitazone treated db/db mice at 20× magnification. Nephrin expression was significantly decreased in db/db mice. After eight weeks of treatment with rosiglitazone there was a significant increase in nephrin expression compared to untreated db/db mice. "p<0.01 Vs control mice. "p<0.05 Vs untreated db/db mice. Each bar represents mean ± SEM of group size (n = 11–18). (B) Immunofluorescence staining for ACE2 in cortical tubules and glomeruli of control, untreated and rosiglitazone treated db/db mice at 20× magnification. White arrows indicate glomeruli. While tubular ACE2 expression was increased, glomerular ACE2 expression was significantly decreased in db/db mice. After eight weeks of treatment with rosiglitazone there was a significant increase in glomerular ACE2 expression while tubular ACE2 expression was unchanged compared to untreated db/db mice. "p<0.001 Vs control mice. "p<0.01 Vs untreated db/db mice. Each bar represents mean ± SEM of group size (n = 11–18). (C) Immunofluorescence staining for ADAM17 in cortical tubules of control, untreated and rosiglitazone treated db/db mice at 20× magnification. (D) Immunofluorescence double staining for ACE2 and ADAM17 in cortical tubules of db/db mice at 60× magnification.

doi:10.1371/journal.pone.0062833.g004
These expression profiles were reversed for glomerular ACE2, nephrin and ADAM17 in rosiglitazone treated \(\text{db/db} \) mice, with no effect on tubular ACE2. Western blot analysis detected a strong immunoreactive band for ACE2 at 70 kDa in the urine of \(\text{db/db} \) mice (Figure 5a). Excreted ACE2 levels were significantly higher in \(\text{db/db} \) mice relative to age-matched lean control mice (Figure 5a). Rosiglitazone treatment decreased urinary ACE2 protein excretion compared to untreated \(\text{db/db} \) mice. *\(p<0.01 \) Vs age-matched lean control mice. \(\# \) \(p<0.05 \) Vs untreated \(\text{db/db} \) mice. Each bar represents mean \(\pm \) SEM of group size (n = 6–8).

Renal ACE2 protein expression was significantly increased in \(\text{db/db} \) mice compared to their age-matched lean control mice (Figure 5b). There was no significant difference in the renal ACE2 protein expression of treated \(\text{db/db} \) mice compared to untreated \(\text{db/db} \) mice after eight weeks of treatment. *\(p<0.05 \) Vs age-matched lean control mice. Each bar represents mean \(\pm \) SEM of group size (n = 4–5).

Renal ADAM17 protein expression was significantly decreased in treated \(\text{db/db} \) mice compared to untreated \(\text{db/db} \) mice after eight weeks of treatment. *\(p<0.05 \) Vs age-matched lean control mice. Each bar represents mean \(\pm \) SEM of group size (n = 3–5).

Renal TIMP3 protein expression was significantly decreased in untreated and treated \(\text{db/db} \) mice compared to control mice. *\(p<0.01 \) Vs control mice. Each bar represents mean \(\pm \) SEM of group size (n = 6).

doi:10.1371/journal.pone.0062833.g005

Rosiglitazone Modulates ACE and ACE2 Activities in Urine, Plasma and Kidney of \(\text{db/db} \) Mice

There was a significant increase in urinary and renal ACE2 activity of \(\text{db/db} \) mice compared to control mice (Figure 6a, b, \(p<0.05 \)). Chronic treatment with rosiglitazone significantly reduced urinary ACE2 activity in treated \(\text{db/db} \) mice compared to untreated \(\text{db/db} \) mice (Figure 6a). However, treatment with rosiglitazone had no significant effect on renal ACE2 activity in
treated db/db mice compared with untreated db/db mice (Figure 6b). Quantitative estimation of ACE2 enzyme activity showed that there was no detectable plasma ACE2 activity in control or db/db mice. In contrast, ACE activity was detectable in plasma and markedly increased in untreated and treated db/db mice (Figure 6c).

Figure 6. ACE2 and ACE activity in urine, plasma and kidney of control, db/db and db/db+rosiglitazone mice using a fluorometric enzyme assay. (A) Urinary ACE2 activity in control, db/db and db/db+rosiglitazone mice before and after the commencement of treatment. Two-way ANOVA showed an increase in urinary ACE2 activity of the db/db mice compared to control mice. *p<0.001 Vs control mice. "p<0.001 Vs untreated db/db mice. Each bar represents mean ± SEM of group size (n = 6–7). (B) Plasma and renal ACE2 activity in control, db/db and db/db+rosiglitazone mice. There was no plasma ACE2 activity in control and db/db mice but a significant increase in renal ACE2 activity of db/db mice compared to control mice was observed. Treatment with rosiglitazone had no significant effect on renal ACE2 activity of treated db/db mice compared to untreated db/db mice.*p<0.05 Vs control kidney. Each bar represents mean ± SEM of group size (n = 5–8). (C) Plasma ACE activity in control, db/db and db/db+rosiglitazone mice 8 wks after the commencement of treatment. One-way ANOVA showed an increase in plasma ACE activity of db/db mice compared to control mice. Eight weeks after treatment commenced there was a significant decrease in plasma ACE activity of the db/db+rosiglitazone mice compared to untreated db/db mice. *p<0.05, **p<0.001 Vs control mice. *p<0.05 Vs untreated db/db mice. Each bar represents mean ± SEM of group size (n = 6–7).

doi:10.1371/journal.pone.0062833.g006

Figure 7. Mass spectrometric analysis of ACE2 activity in urine from control, db/db and db/db+rosiglitazone mice. Urine (2 μl) was incubated for 1.5 h at 37 °C in 50 mM MES buffer pH 6.75 containing 0.5 μM Ang II, 2 mM PMSF and 20 μM bestatin. Shown is the conversion of Ang II (m/z 1046) to Ang-(1–7) (m/z 899). (A) Urinary ACE2 activity in control mice. (B) Urinary ACE2 activity in db/db mice. (C) Urinary ACE2 activity in db/db+rosiglitazone mice. (D) Urinary ACE2 activity in db/db mice treated with rosiglitazone. (E) Urinary ACE2 activity in db/db mice in incubations with the ACE2 inhibitor, MLN-4760. (E) MS/MS of enzymatically generated Ang-(1–7) (upper panel) and synthetic Ang-(1–7) (lower panel).

doi:10.1371/journal.pone.0062833.g007
The presence of urinary ACE2 activity was confirmed using a sensitive MALDI MS approach. Urine samples were incubated with the natural ACE2 substrate, Ang II, and the formation of Ang-(1–7) was used as an index of ACE2 activity. Urinary Ang-(1–7) formation in db/db mice was elevated compared to controls and treatment with rosiglitazone restored ACE2 activity to control levels (Figures 7a–c). Formation of urinary Ang-(1–7) was attributed to ACE2 since it was reduced by 82% in the presence of specific ACE2 inhibitor, MLN-4760 (Figure 7d). The chemical nature of the generated peptide was verified by MS/MS showing that the MS/MS spectrum for Ang-(1–7) generated enzymatically in urine was identical to the MS/MS spectrum of synthetic Ang-(1–7) spiked into urine reaction mixtures (Figure 7e).

Linear Regression Analysis between Urinary ACE2 Activity and Urinary Albumin, Plasma Glucagon, Plasma Triglycerides and Blood Glucose Levels

Relationships of urinary ACE2 excretion to urinary glucose excretion and to major metabolic risk factors including blood glucose, plasma glucagon and lipid concentrations were investigated in db/db diabetic mice. Linear regression analysis showed a significant positive correlation between urinary ACE2 activity and albumin excretion, plasma glucagon, plasma triglycerides and blood glucose (Figure 8).

Discussion

This study is the first to demonstrate that shedding of renal ACE2 into urine is increased in db/db diabetic mice. This urinary ACE2 excretion correlated positively with the progression of diabetic renal injury represented by progressive albuminuria, mesangial matrix expansion and renal fibrosis. Overactivation of the RAS in diabetes, especially Ang II and ACE [3], leads to hypertension, fluid retention, and inflammation, causing renal and vascular end-stage disease in the long term [35]. Ang II plays a crucial role in the pathogenesis and progression of diabetic renal disease by affecting intraglomerular capillary pressure, the podocyte skeleton, and components of the slit diaphragm leading to glomerular sclerosis and microalbuminuria [36]. There is evidence that deletion of ACE2 leads to the development of Ang II dependent renal damage, suggesting ACE2 as renoprotective target in diabetes [37]. The ability of ACE2 to inactivate Ang II and generate the putative reno- and cardio-protective metabolite, Ang-(1–7), suggests that ACE2 is an important participant in cardiovascular homeostasis [38,39]. Indeed, we found an activation of renal ACE2 in db/db mice, most likely a part of a mechanism to compensate for elevated Ang II levels. Moreover, our results demonstrated that ADAM17, a protease known to be involved in the ectodomain shedding of several integral proteins, including ACE2 but not ACE [40], was significantly upregulated in the kidneys of db/db mice. Accordingly, treatment with Ang II results in enhanced accumulation of renal ADAM17 [32]. This study is also the first report showing upregulation of renal ACE2.
ADAM17 in db/db mice. Moreover, renal TIMP3 expression was significantly reduced, supporting earlier findings that the loss of endogenous ADAM17 inhibitor exacerbates diabetic nephropathy [24]. Based on these data, we postulate that during early stages of kidney damage, renal ACE2 and sheddase activity of ADAM17 increase in the event of high circulating Ang II, while expression of renoprotective enzyme ACE2 could contribute to kidney damage.

One of the primary goals of managing patients with type 2 diabetes is preventing or delaying the development of diabetic renal disease [41]. Hyperglycemia leads to nephropathy by various mechanisms, such as increased endothelial cell permeability to albumin, hypertrophy and thickening of the basement membrane. We observed a decrease in a slit diaphragm associated protein, nephrin, from the glomeruli of db/db mice. We hypothesize that loss of nephrin from the slit pore may result in the enhanced passage of albumin into urine, which is consistent with previous studies [42]. At five weeks of age, db/db mice exhibited hyperglycemia, as well as microalbuminuria. Our previous studies demonstrated that blood pressure in db/db mice starts to rise after eleven weeks of age [3]. Therefore, we propose that kidney damage in db/db mice is initially triggered by hyperglycemia. With increasing age, disease progresses and kidney function deteriorates further, resulting in a significant rise in albuminuria, mesangial expansion, and renal fibrosis.

Retrospective clinical studies suggest that strict control of hyperglycemia depreciates the progression of diabetic nephropathy and cardiovascular complications [43]. To this end, we explored the effect of normalizing glycemia by rosiglitazone on kidney function, renal ACE2 shedding, ADAM17 and TIMP3 expression in db/db mice. We observed after only one week of treatment of db/db mice a significant decline in blood glucose levels to normal levels, which was associated with decreased urinary albumin and an attenuation of renal pathologies at the end of the study period. These findings clearly demonstrate the significance of glycemic control in preventing diabetic renal injury. Treatment with rosiglitazone attenuated urinary ACE2 protein excretion and activity but had no effect on renal ACE2 in treated db/db mice compared to untreated db/db mice. Unchanged levels of renoprotective tubular ACE2 might complement the positive effects of treatment with rosiglitazone in the diabetic kidney. In addition, rosiglitazone markedly attenuated renal ADAM17 in db/db mice. Thus, rosiglitazone treatment may impart renoprotection via attenuated shedding of ACE2, possibly through its direct influence on ADAM17. Interestingly, treatment with rosiglitazone had no effect on TIMP3 suggesting that hyperglycemia has no control over TIMP3. In addition to the conventional fluorogenic assay, urinary ACE2 activity was further verified by MS, which is known for its high sensitivity, specificity and accuracy [34,44]. In agreement with the Western blot results, both enzymatic test systems confirmed that urinary ACE2 activity increased significantly in db/db mice compared to lean controls. In contrast, rosiglitazone treatment significantly attenuated urinary ACE2 activity in db/db mice. Moreover, plasma ACE levels were significantly reduced in treated db/db mice, supporting the hypothesis that the renoprotective effects of rosiglitazone could be partly mediated by its influence on the RAS. To investigate the source of ACE2 in urine, we measured ACE2 activity in plasma and kidney of db/db mice. ACE2 activity has previously been observed in sheep serum [45] and plasma of diabetic rodent models [15,46]. However, plasma ACE2 activity was not detectable in normal and healthy subjects [47]. In turn, the latter attributed this effect to the presence of endogenous ACE2 inhibitor. Another study showed an elevation in serum ACE2 activity of type 1 diabetic patients with macro- and microvascular complications [48]. Reasons behind this disparity might be differences in species, type of substrate used, incubation time (up to 24 hours) or the method adopted. Concurrent with our previous findings [34], we found that there is neither detectable plasma ACE2 activity in control nor db/db mice, but there is significantly elevated ACE2 activity in the kidneys of db/db mice. In addition, clinical data from CKD and diabetic renal transplant patients [17,18] also support our conclusion that the kidney, not plasma, is the source of urinary ACE2. Thus, urinary ACE2 could be a promising non-invasive biomarker for assessing renal function in diabetic pathologies.

Determining the level of microalbuminuria is still clinically used for the diagnosis and prognosis of diabetic nephropathy. Although blood pressure control was effective for preventing onset and progression of microalbuminuria to macroalbuminuria in type 2 diabetic patients, it did not prevent the development of end stage renal disease, as shown in the ADVANCE trial [49]. Therefore, there is a need for more sensitive and specific urinary markers to early and reliably predict kidney disease. Previous studies in humans suggested RAS components, such as urinary angiotensinogen, for the determination of kidney disease in diabetic as well as CKD patients [50,51]. In rodent models of CKD, pathophysiological changes were associated with an increased overexpression of urinary ACE suggesting that this enzyme could be used as a biological urinary marker in CKD [32]. Moreover, ACE was found in human urine and associated with hypertension [33]. We propose that urinary ACE2 can be used as a potential marker of diabetic nephropathy. Our results show that urinary ACE2 activity is elevated in db/db mice compared to control mice and persistently increased throughout the study period of eight wks. Excretion of urinary albumin followed the same trend and a strong positive correlation was observed between urinary ACE2 activity and albumin excretion among the groups throughout the experiment. These finding are consistent with a recent study comparing urinary ACE2 and albumin excretion in human patients [54]. Interestingly, plasma abnormalities (glucose, glucagon and triglycerides) seen in db/db mice demonstrated a significant positive correlation with urinary ACE2. Correlation between urinary ACE2 excretion and well-established plasma risk factors of diabetes, such as triglycerides and glucagon, suggest urinary ACE2 as a novel surrogate marker for diabetes. Based on these results, it is tempting to hypothesize that urinary ACE2 is an independent risk factor for predicting early onset of diabetes and its related complications in high-risk patients.

In conclusion, our findings suggest that rosiglitazone imparts renoprotection at least partially by decreasing renal ACE2 shedding in db/db mice. In conjunction with other studies in the field of urinary biomarkers for metabolic disease, our results suggest that ACE2 is a promising urinary biomarker to detect early signs of kidney disease.

Acknowledgments
We would like to thank Dr. Mariana Morris for thoughtful discussion and Dr. Greg Boivin for his invaluable assistance in the analysis of the histologic material. We are grateful to Theresa A. Fennell and Dr. Maja Šeselj for editorial assistance.
Author Contributions
Conceived and designed the experiments: HC NG HS MM KE. Performed the experiments: HC NG HS MM KE. Analyzed the data: HC NG HS MM KE. Contributed reagents/materials/analysis tools: KE. Wrote the paper: HC NG HS MM KE.

References
1. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH (1997) Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ 314: 783–788.
2. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathology of hypertension and kidney disease. Pharmacol Rev 59: 251–287.
3. Senador D, Kanakamedala K, Ingoyen MC, Morris M, Elased KM (2009) Cardiomyocyte and kidney phenotype of db/db diabetic mice. Exp Physiol 94: 648–658. expphysiol.2008.064474 [pii];10.1136/expphysiol.2008.064474 [doi].
4. Ribeiro-Oliveira AJ, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA et al. (2008) The renin-angiotensin system and diabetes: an update. Vase Health Risk Manag 4: 674–693.
5. Tan F, Mukherjee J, Lee KO, Lim P, Liew CF (2010) Dual blockade of the renin-angiotensin-aldosterone system is safe and effective in reducing albuminuria in Asian type 2 diabetic patients with nephropathy. Singapore Med J 51: 151–156.
6. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G et al. (2000) A human model of angiotensin-converting enzyme deficiency. Cloning and functional expression of a cDNA from a cestode, Carpospordium intestinalis. J Biol Chem 275: 32271–32278.
7. Vickers C, Hales P, Kaushik V, Dick L, Gavin J et al. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277: 14380–14384.
8. Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD et al. (2006) ACE and ACE2 activity in diabetic kidney disease. Diabetes 55: 2312–2319.
9. Monteiro MB, Senador D, Zhang WF, Morris M, Elased KM (2008) Balance of renal ACE and ACE2 activity in diabetes: Decreased renal ACE2 activity in hypertensive db/db diabetic mice. Hypertension 52: E91.
10. Alghamri MS, Weir NM, Anstadt MP, Elased KM, Gurley SB et al. (2012) Enhanced Angiotensin II-Induced Cardiac and Aortic Remodeling in ACE2 Knockout Mice. J Cardiovasc Pharmacol Ther 18: 138–151. 10.1177/1074248412460124 [doi];10.1177/1074248412460124 [pii].
11. Vickers C, Hales P, Kaushik V, Dick L, Gavin J et al. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277: 14380–14384.
12. Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD et al. (2006) ACE and ACE2 activity in diabetic kidney disease. Diabetes 55: 2312–2319.
13. Harte A, McTernan P, Christensen DJ, Conroy RM, Sturrock ED et al. (2005) Insulin-mediated upregulation of the renin-angiotensin system in human subcutaneous adipocytes is decreased by rosiglitazone. Circulation 111: 1594–1611. 151547 [pii];10.1161/01.CIR.0000185776.11445.69 [doi].
14. Brunette LE, Hausman G, Verano-Braga T, Bader M (2013) Angiotensin II and EGF receptor cross-talk in chronic kidney disease: a new therapeutic approach. Nat Med 11: 867–874. 10.1038/nm.2765 [doi].
15. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X et al. (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db diabetic mice. Cell 84: 491–495.
16. Elased KM, Cunha TS, Gurley SB, Coffman TM, Morris M (2006) New mass spectrometric assay for angiotensin-converting enzyme 2 activity. Hypertension 47: 1010–1017.
17. Cooper ME (2004) The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am J Hypertens 17: 168–208. 0985–7019(04)00958-6 [pii];10.1111/j.1432–1033.2004.04184.x [doi];EJB4184 [pii].
18. Perico N, Benagia A, Remuzzi G (2006) Present and future drug treatments for chronic kidney diseases: evidence in target identification and selection. Nat Rev Drug Discov 7: 935–953. md0265 [pii];10.1038/nrd2665 [doi].
19. Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H et al. (2006) Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 168: 1808–1820. 0002–7860(06)02204-8 [pii];10.2353/ajpath.2006.051591 [doi].
20. Goy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM et al. (2003) Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry 42: 13105–13127.
21. Santos RA, Ferreira AJ, Verano-Braga T, Rader M (2013) Angiotensin-converting enzyme 2, Angiotensin-[1–7] and Mas: new players of the Renin Angiotensin System. J Endocrinol 216: R1–R7. 10.1530/JOE-12-0341 [pii].
22. Allison TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED et al. (2004) The role of ADAM10 and ADAM17 in the extracellular shedding of angiotensin converting enzyme and the angiotensin precursor-protein. Eur J Biochem 271: 2539–2547. 10.1111/j.1432–1033.2004.04184.x [pii];EJB4184 [pii].
23. Larkins RG, Dunlop ME (1992) The link between hyperglycaemia and diabetic nephropathy. Diabetologia 35: 499–504.
24. Fievet JM, Bouzet F, Russel G, Barra WC, Cao Z et al. (2002) Modulation of nephrin in the diabetic kidney: association with systemic hypertension and increasing albuminuria. J Hypertens 20: 985–992.
25. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
26. Grobe N, Elased KM, Cool DR, Morris M (2012) Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. Am J Physiol
Shaltout HA, Westwood BM, Averill DB, Ferrario CM, Figueroa JP et al. (2007) Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol 292: F92-F91.

Yamaleyeva LM, Gilliam-Davis S, Almeida I, Brosnihan KB, Lindsey SH et al. (2012) Differential regulation of circulating and renal ACE2 and ACE in hypertensive mRen2.Lewis rats with early-onset diabetes. Am J Physiol Renal Physiol 302: F1374-F1384. ajprenal.00656.2011 [pii];10.1152/ajprenal.00656.2011 [doi].

Lew RA, Warner JI, Hanchapola I, Yarski MA, Manohar J et al. (2008) Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol 93: 685–693. expphysiol.2007.040352 [pii];10.1113/expphysiol.2007.040352 [doi].

Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J et al. (2012) Circulating ACE2 activity is increased in type 1 diabetes and vascular complications. J Hypertens 30: 375–383. 10.1097/HJH.0b013e32834f04b6 [doi].

de Galan BE, Perkovic V, Ninomiya T, Pillai A, Patel A et al. (2009) Lowering blood pressure reduces renal events in type 2 diabetes. J Am Soc Nephrol 20: 883–892. ASN.2009070667 [pii];10.1681/ASN.2009070667 [doi].

Saito T, Urushihara M, Kotani Y, Kagami S, Kobori H (2009) Increased urinary angiotensinogen is preceded by increased urinary albumin in patients with type 1 diabetes. Am J Med Sci 338: 478–480. 10.1097/MAJ.0b013e3181b90c25 [doi].

Yamamoto T, Nakagawa T, Suzuki H, Ohashi N, Fukasawa H et al. (2007) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol 18: 1538–1563. ASN.2006060554 [pii];10.1681/ASN.2006060554 [doi].

Arita DY, Canha TS, Perez JD, Colucci JA, Ronchi FA et al. (2012) Overexpression of urinary N-domain ACE in chronic kidney dysfunction in Wistar rats. Clin Exp Hypertens 34: 389–396. 10.3109/10641963.2011.649932 [doi].

Maluf-Meiken LC, Fernandes FB, Aragao DS, Ronchi FA, Andreade MC et al. (2012) N-domain isoform of Angiotensin I converting enzyme as a marker of hypertension: populational study. Int J Hypertens 2012: 581780. 10.1155/2012/581780 [doi].

Park SE, Kim WJ, Park JW, Lee N et al. (2013) High Urinary ACE2 Concentrations Are Associated with Severity of Glucose Intolerance and Microalbuminuria. Eur J Endocrinol 168: 203–210. EJE-12–0782 [pii];10.1530/EJE-12–0782 [doi].