The Use of Probiotics in Dental Medicine

Ana Mikulicic¹, Danko Bakarcic²*, Natasa Ivancic Jokic¹, Sandra Hrvatin² and Toni Culav³

¹Department of Paediatric Dentistry, Faculty of Medicine of the University of Rijeka, Clinical Hospital Center Rijeka, Croatia
²Associate Professor, Department of Paediatric Dentistry, Faculty of Medicine of the University of Rijeka, Clinical Hospital Center Rijeka, Croatia
³Student of Dental Medicine, Faculty of Medicine of the University of Rijeka, Croatia

Abstract
The term probiotic was first used in 1965. And it literally holds a meaning “for life” to describe “a matter that microorganisms secret to stimulate the growth of other” thus giving the contrast to the term antibiotics. Probiotics are living microorganisms which reside in gastrointestinal and urogenital mucosa that benefit the health and boost vitality. Most commonly used genera of bacteria are Lactobacillus and Bifidobacteriae. The probiotics most recognized role is in restoring the balance in oral microflora in the situation when pathogen species of bacteria start to surmount. They accomplish that by competing for the adherent space, and for the source of food with pathogen bacteria and by changing oral cavity conditions. Also, they possess antimicrobial and immunomodifying characteristics.

They prove great results fighting periodontal disease, halitosis, candidiasis as well as in preventing caries. Most of commercially available genera of probiotics (yogurt, milk shakes, pills etc.) are considered safe, but there is a certain part of population at risk.

Keywords: Probiotics; Caries; Halitosis; Candidiasis; Parodontitis.

Introduction
The main purpose of this review is a brief update about use of probiotics in dental medicine in the fields of caries prevention and treatment of oral diseases like parodontitis, candidiasis and halitosis. There are many strains that offer health benefits (table 1.) The term probiotic was first used by Lilly and Stilwell in 1965. And it literally holds a meaning “for life” to describe “a matter that microorganisms secret to stimulate the growth of other” thus giving the contrast to the term antibiotics [1].

Table 1. The most common probiotics

Lactobacillus species	Bifidobacterium species	other strains
L. acidophilus	B. bifidum	Saccharomyces boulardii (yeast)
L. casei	B. breve	Streptococcus salivarius
L. paracasei	B. infantis	Weissella cibaria
L. gasseri	B. longum	Streptococcus intermedius
L. rhamnosus	B. lactis	Enterococcus faecium
L. reuteri	B. adolescentis	
L. plantarum		
L. johnsonii		

According to the definition of the World Health Organization the probiotics are “live microorganisms which when administered in adequate amounts confer a health benefit on the host” [2].
We can differentiate probiotics, prebiotics and synbiotics. Probiotic is a non-digestible food ingredient that promotes the growth of beneficial microorganisms in the intestines. Those are carbohydrates that do not get digested in the upper part of gastrointestinal tract (inulin, fructooligosaccharides, gluco oligosaccharides and others). Synbiotics refer to food ingredients or dietary supplements combining probiotics and prebiotics in a form of synergism [1].

The functioning process of probiotics still remains fairly unknown, but there are several possible options. Probiotics produce organic acids which enter the bacterial cell and disrupt the regular metabolism. They also produce the hydrogen peroxide (H₂O₂) which causes rupture of cell wall and bacteriocins which inhibit production of DNA and other protein structures [3]. Attaching to the places of adherence in oral cavity, they overrun probable sites of pathogens adherence. They also compete with pathogens for carbohydrates needed for metabolism. Probiotics stimulate non-specific immunity or modulate humoral (immunoglobulins A i G) or cell immunity (NK cells) [1-2,4]. By producing the fatty acids with toxic effect they remove the gram negative bacteria from organism [3].

Caries prevention

Streptococcus mutans has the highest cariogenic potential and enables colonization of other bacterial sorts in biofilm [1,4]. The most studied probiotic is *Lactobacillus rhamnosus* because it doesn’t ferment saccharose so consequently there is no production of acids and caries lesion formation is inhibited.

Several studies showed the results of statistically lower level of various *Streptococcus* species in the groups which consumed the dairy products with probiotics *Lactobacillus rhamnosus* [5-8]. Taipale et al. concluded that *Bifidobacteria animalis* that they used has no apparent effect on the caries formation except if not used constantly [9].

Halitosis

There are different types of halitosis: physiological, intraoral (spicy food, specific type of food, smoking, alcohol etc.) and extraoral (most often from respiratory tract or stomach) and pseudohalitosis [10].

The main cause of halitosis (more than 85%) is disbalance in oral microflora. Bacteria degrade proteins from saliva, blood and retained food pieces and as a result make volatile sulphuric compounds [4,11,12]. Most often appearing bacteria are: *Atopobium parvulum*, *Eubacterium sulci*, *Fusobacterium periodonticum*. Rarely are found: *Fusobacterium nucleatum*, *Porphyromonas gingivalis*, *Prevotella intermedia*, *Tannarella forsythia* i *Actinobacteria actinomyctemcomitans* are the most common pathogens that cause periodontal disease. Probiotics release reuterin and reutericklin (bacteriocins) which prevent dissemination of pathogens or they change the way the immune system reacts [12].

Decreased gingiva bleeding and reduction of gingivitis are noticed when taking the probiotics [18-19].

The consumption of dairy products on a daily basis results in smaller gaps in periodontal pockets and slower decline in epithelial attachment [18].

Riccia et al. shown an anti-inflammatory effect of *Lactobacillus brevis* probiotics on a group of patients with chronic parodontitis [20]. *Lactobacillus helveticus* creates short peptides which stimulate osteoblasts to grow bones, so that it has his role in bones resorption connected with parodontitis [21].

Koll- Kleiss et al. found out that the resident *Lactobacillus flora* inhibits the growth of *Porphyromonas gingivalis* for 82% and *Prevotella intermedia* for 65% [22].

Comercial Availability

Probiotics are regulated as dietary supplements, not as a pharmacological or biological products, and has no legitimate cause for a review of their credibility, purity and potential before the marketing and distribution of the product. They are commercially available in various forms: yogurts, milk shakes, pills etc [2].

Risks from use of Probiotics

Probiotics have a positive influence on human health and on balance of the microflora. Their use was proven safe for consumption in most of the patients [1,2,4,21].

Most of commercially available genera of probiotics are considered safe, but there is a certain part of population at risk. Major threat during the consumption is the development of infection, or rather sepsis [23].

High risk factor involves children with premature birth or immunodeficiency (including malignancies and weakened state of organism) and elderly. Lower risk factor involves: patients with central venous catether, weakened intestinal epithelial barrier, jejunostoma and gastrostoma, probiotic resistance to wide spectre of prescribed antibiotics, probiotics with substantial mucosa adherency or known pathogen and heart disease (only for *Lactobacillus*) [23-27].
Conclusion

Probiotics have a positive impact on health and balance of the oral microflora, while also considered safe for consumption relative to a high number of patients that use them without side effects.

There is a certain group of patients at risk with whom we have to be careful when recommending the probiotic therapy, especially with prematurely born and children with immunodeficiency (risk of developing sepsis).

Conflicts of Interest: The authors declare no conflicts of interest with this submission.

References

1. Bhushan J, Chachra S. Probiotics - Their Role in Prevention of Dental Caries. J Oral Health Comm Dent. 2010; 4(3): 78-82.
2. Glavina D, Gorseta K, Skrinjaric I, Vranic DN, Mehulic K, Kozul K. Effect of Probiotics on Caries. Int Dent J. 2004; 38: 457-8.
3. Suskovic J et al. The mechanism of action of probiotic lactic acid bacteria. Dairy. 1997; 47(1): 57-73.
4. Agarwal E, Bajaj P, Guruprasad CN, Naik S, Pradeep AR. Probiotics: a novel step towards oral health. AOSR. 2011; 1(2): 108-115.
5. Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JD. The authors declare no conflicts of interest. J Clin Microbiol. 2003; 41: 558-63. doi: 10.1128/JCM.41.2.558-563.2003
6. Tangerman A. Halitosis in medicine: A review. J Periodontol. 2006; 77: 322-36. doi: 10.1111/j.1600-051X.2006.00893.x
7. Elahi S, Pang G, Clancy A, Clancy R. Enhanced clearance of Candida albicans from the oral cavities of mice following oral administration of Lactobacillus acidophilus. Clin Exp Immunol. 2005; 141: 29-36. doi: 10.1111/j.1365-2249.2005.02811.x
8. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. Probiotics reduce the prevalence of oral Candida in the elderly – a randomized controlled trial. J Dent Res. 2007; 86: 125-130. doi: 10.1177/154405910708600204
9. Mendonca HFB, Santos SF, Faria IS, Silva CRG, Joreg AOCP, Leao MVP. Effects of probiotics bacteria on Candida presence and IgA Anti-candida in the oral cavity of lederly. Braz Dent J. 2012; 23: 534-58. doi: 10.1590/S1806-83242012000500011
10. Riccia DN, Bizzini F, Grenier D. Probiotics for Oral Health: Myth or Reality? AOSR. 2011; 1(2): 108-115.
11. Koll-Klais P, Mändar R, Leibur E, Marcotte H, Hammarström L. Mikelsaar Syndrome: A novel step towards oral health. J Med Microbiol. 2013; 62: 875-86. doi: 10.1099/jmm.0.056663-0
12. Tantam M. Probiotics in the Oral Cavity of Leberly. Swed Dent J. 2006; 30(2): 55-60.
13. Koll-klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L. Mikelsaar Syndrome: A novel step towards oral health. J Med Microbiol. 2005; 54(10): 929-34. doi: 10.1099/jmm.0.05667-0
14. Shizamaki Y, Shirato T, Uchida K, Yonemoto K, Kihara Y, Iida M, et al. Intake of dietary products and periodontal disease: the Hisayama study. J Periodontol. 2008; 79: 131-7. doi: 10.1902/jop.2008.070202
15. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Medicina fluminensis. 2007; 3: 306-310.
16. Mendonca HFB, Santos SF, Faria IS, Silva CRG, Joreg AOCP, Leao MVP. Effects of probiotics bacteria on Candida presence and IgA Anti-candida in the oral cavity of lederly. Braz Dent J. 2012; 23: 534-58. doi: 10.1590/S1806-83242012000500011
17. Mendonca HFB, Santos SF, Faria IS, Silva CRG, Joreg AOCP, Leao MVP. Effects of probiotics bacteria on Candida presence and IgA Anti-candida in the oral cavity of lederly. Braz Dent J. 2012; 23: 534-58. doi: 10.1590/S1806-83242012000500011