An Observational Study on Clinical and Epidemiological Profile of Pediatric Patients with Coronavirus Disease 2019 (COVID-19) Presenting With Comorbidities at RIMS, Ranchi

Partha K. Chaudhuri, Anil K. Chaudhary, Kamal N. Prasad, Jagrita Malakar, Apeksha Pathak, Siddalingesha R
Department of Pediatrics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India

Abstract

Introduction: SARS COVID-19 infection leads to wide range of symptoms in comorbid pediatric patient. In view of its susceptibility affecting pediatric age groups with comorbidities and its potential to increase the mortality rate, it may have adverse effects on the outcome of such children. This study aims at better understanding of clinical profile and its outcome of pediatric population. Method: A total of 50 pediatric patients aged 1 to 17 years with comorbidities and laboratory confirmed COVID-19 that were admitted at the RIMS, Ranchi from 1st April 2020 to 31st December 2020 were studied. Result: 34 (68%) resided in the hot spot areas of the region, 8(16%) resided in the non- hot spot areas and 8(16%) had migrated from elsewhere. Higher proportion of males between 11-15 years of age were affected (64%). Our study shows that the majority of the children that were affected were of the age group 11-15 years (52%), 38(76%) of these children presented with fever as their major complaints, cough in 28(56%), sore throat in 2 (4%), diarrhea in 6(12%), vomiting in 11 (22%), breathing difficulty in 20 (50%) and 30 (60%) had other symptoms. Out of 50 patients admitted, 3 died. In our study majority of comorbid condition was thalassemia major. Conclusion: The presenting characteristics, comorbidities, and severity of illness of pediatric patients with COVID-19 were different, and milder, compared with adults.

Keywords: Children, clinical profile, COVID-19

Introduction

In December 2019, infection due to severe acute respiratory syndrome coronavirus disease-19 (SARS COVID-19) emerged in city of Wuhan in China and led to increased morbidity and mortality both in adults and children. A total of 264 million cases are there globally and 5.2 million mortalities were reported till December 2021, WHO designates the pandemic caused by SARS COV 2 as coronavirus disease-19 (COVID-19). In comparison to adults, there are very few studies on pediatric COVID-19. This study will help family care physician to suspect and treat early the COVID-19 infection in pediatric population with comorbidities and understanding the epidemiological and clinical feature will help to control the disease. Whereas, data on pediatric patients suffering with comorbidities affected with COVID-19 and study on its outcomes are lacking. In view of its susceptibility affecting pediatric age groups with comorbidities and its potential to increase the mortality rate, it may have adverse effects on the outcome of such children.

Address for correspondence: Dr. Partha K. Chaudhuri, Department of Pediatrics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India. E-mail: pchaudhuri73@yahoo.com

Received: 19-01-2021 Revised: 14-12-2021 Accepted: 20-12-2021 Published: 18-03-2022

Access this article online

Website: www.jfmpc.com

How to cite this article: Chaudhuri PK, Chaudhary AK, Prasad KN, Malakar J, Pathak A, Siddalingesha R. An observational study on clinical and epidemiological profile of pediatric patients with Coronavirus disease 2019 (COVID-19) presenting with comorbidities at RIMS, Ranchi. J Family Med Prim Care 2022;11:1493-6.
effects on the outcome of such children. It is very difficult to
diagnose and treat children as they are unable to describe their
health status or any exposure history. The child with coexisting
disease is more susceptible to COVID infection\(^6,7\) and its
manifestation are varied so it becomes very important to diagnose
the COVID-19 infection at early stage. This study aims at better
understanding of clinical profile and its outcome of pediatric
population with coexisting disease in respect to epidemiology,
clinical characteristics, fatality rate, and outcome and admitted
at the New Trauma Centre, COVID Ward, Rajendra Institute of
Medical Sciences, Ranchi.

Method

A total of 50 pediatric patients aged 1 to 17 years with
comorbidities and laboratory confirmed COVID-19 that were
admitted at the New Trauma Centre, Corona Isolation Ward,
RIMS, Ranchi from 1st April 2020 to 31st December 2020 was
studied. The diagnosis of COVID-19 was based on guidelines
issued by the Indian Council of Medical Research (ICMR),
New Delhi. The proper informed consent was taken from
their parents/guardian prior to study. Patients were investigated
who had history of close contact to COVID-infected
individual or exposure to containment area of COVID and
presents with symptoms of fever, cough or any radiographical
changes. Confirmation of SARS-COV-2 infection by reverse
transcription–polymerase chain reaction (RT-PCR) of samples
taken from upper nasopharyngeal swabs. Epidemiological study
was based on travel history, close contact with COVID positive
cases, and residing in epidemic areas. Progress during hospital
stay was recorded and their outcome analyzed. Inclusion criteria
included all COVID-19 positive patients aged 1 to 17 years with
coeexisting disease. The study excluded all COVID-19 negative
children, all asymptomatic COVID-19 positive patients, and
children less than 1 year and greater than 17 years of age.

Result

During the study period from 1st April 2020 to 31st December
2020, 50 children meeting the inclusion criteria were admitted
in the Corona Ward, New Trauma Centre, RIMS, Ranchi,
Jharkhand, as per the ICMR guidelines. Out of these children,
34 (68%) resided in the hot spot areas of the region, 8 (16%)
resided in the non-hot spot areas, and 8 (16%) had migrated
from elsewhere. Majority of these children had a positive
history of contact with a COVID-19 positive patient due
to the possible family clustering as being a major route of
transmission for pediatric age group. Our study shows that
the majority of the children that were affected were of the
age group 11 to 15 years (52%), with male child being more
affected as depicted in Tables 1 and 2, respectively; 38 (76%)
of these children presented with fever as their major complaints,
cough in 28 (56%), sore throat in 2 (4%), diarrhea in 6 (12%),
vomiting in 11 (22%), breathing difficulty in 20 (50%), and
30 (60%) had other symptoms shown in Table 3. The children
of this study group included those who were already medically
diagnosed or had a preexisting comorbidity and were tested
positive for corona virus disease 2019 by RT-PCR. Table 4
depicts the various comorbidities and preexisting diseases
associated in the study sample. The median range of the
duration of hospital stay of these children was 12. Out of the

| Table 1: Age group wise distribution of cases of coronavirus disease 2019 |
|-----------------|-----------------|
| **Age** | **Total** |
| 1-5 years | 6 (12%) |
| 6-10 years | 9 (18%) |
| 11-15 years | 26 (52%) |
| >15 years | 9 (18%) |

| Table 2: Gender wise distribution of cases of coronavirus disease 2019 |
|-----------------|-----------------|
| **Gender** | **Total** |
| Male | 32 (64%) |
| Female | 18 (36%) |
| M:F Ratio | 16:9 |

| Table 3: Clinical profile of coronavirus disease 2019 in children |
|-----------------|-----------------|
| **Symptoms** | **No. of patients** |
| Fever | 38 (76%) |
| Cough | 28 (56%) |
| Sore throat | 2 (4%) |
| Diarrhea | 6 (12%) |
| Vomiting | 11 (22%) |
| Breathing difficulty | 20 (50%) |
| Other symptoms | 30 (60%) |

| Table 4: Profile of the comorbidities associated with children with coronavirus disease 2019 |
|-----------------|-----------------|
| **Comorbidities** | **No of patients** |
| Thalessemia Major | 8 (16%) |
| Sickle Cell Disease | 2 (4%) |
| Viral Encephalitis | 7 (14%) |
| Meningitis | 3 (6%) |
| Rheumatic Heart Disease | 2 (4%) |
| Idiopathic Thromboctytopenic Purpura | 1 (2%) |
| Hemophilia A | 1 (2%) |
| Pheochromocytoma | 1 (2%) |
| Pulmonary Tuberculosis | 4 (8%) |
| Hyperactive Airway Disorder | 4 (8%) |
| Meningomyelocele | 2 (4%) |
| Chronic Liver Disease | 2 (4%) |
| Congenital Heart Disease | 2 (4%) |
| SLE | 2 (4%) |
| Nephrotic Syndrome | 3 (6%) |
| Chronic Kidney Disease | 1 (2%) |
| Malaria | 1 (2%) |
| Liver Abscess | 1 (2%) |
| Seizure Disorder | 3 (6%) |
50 children, 3 children had succumbed to the disease and 47 were successfully discharged.

Discussion

Current publication involving children with COVID-19 positive with comorbidities and symptoms, characteristics, and outcomes of these patients is limited. In our study, main clinical feature was fever followed by cough and diarrhea in COVID-infected pediatric population with comorbidities.\[8-10\] There is very limited study of pediatric population with COVID infection with preexisting comorbidities, so we have performed study on epidemiological and clinical feature of such patients. This showed that pediatric population with comorbidities were mainly affected by family clustering. The management of COVID positive pediatric patients are mainly asymptomatic and treatment of comorbidities also.

Children with COVID infection acquire the infection by exposure to close contacts. They tend to have milder disease manifestations and lower mortality compared with adults (Chan et al., 2020).\[11\] Since COVID-19 mainly affects the respiratory tract, this complication is expected for our study as respiratory tract is the main complication in COVID-19 children. This study shows that majority patient were male as may be due to biological difference in immune system among male and female.\[13-16\]

The presenting clinical symptoms of pediatric COVID-19 were often atypical. The main clinical feature was fever, cough, and breathing difficulty with gastrointestinal symptoms like vomiting and diarrhea. The symptoms were mild to moderate and very few cases needed intensive care unit (ICU) admission.

Children with comorbidities are more susceptible to serious complication of COVID-19 disease. In our study, maximum number of patients were of thalassemia major followed by sickle cell disease and viral encephalitis. Out of 50 patients admitted, 3 died, so this study helps us to suspect and treat early COVID infection with comorbid condition in children which will be of much help to family care physician. And this study also shows that comorbid condition associated with COVID infection involve all the systems not necessarily respiratory or cardiac.

Average length of stay of COVID-positive patients were of 12 days as compared with 19 days in adults.

Conclusion

In summary, the presenting characteristics, comorbidities, and severity of illness of pediatric patients with COVID-19 were different, and milder, compared with adults. All ages of children can potentially transmit SARS-CoV-2, but children are less likely than adults to be symptomatic and are more susceptible to coinfection, which make diagnosis and infection source control more challenging if superadded with preexisting comorbidities. Comorbid condition affects immune system, respiratory, and cardiovascular system of child, so they are more susceptible to infection of COVID. Comorbid condition associated with COVID infection involves all the systems not necessarily respiratory or cardiac. We should suspect COVID infection in any children with any comorbid condition presenting with many varied symptoms so as to diagnose and treat it early, thereby preventing morbidity and mortality. We should be cautious about COVID-19 in children with comorbid condition as some of the patients may develop serious complications.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. Coronavirus disease (COVID-19): Situation Report-169. Geneva: WHO; 2020.
2. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020;395:689-97.
3. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis2020;91:264-6.
4. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
5. Ma X, Liu S, Chen L, Zhuang L, Zhang J, Xin Y. The clinical characteristics of pediatric inpatients with SARS-CoV-2 infection: A meta-analysis and systematic review. J Med Virol2021;93:234-40.
6. De Sanctis V, Soliman AT, Elsedfy H, Albu A, Jaouni SA, Yaarubi SA, et al. The ICET—A survey on current criteria used by clinicians for the assessment of central adrenal insufficiency in thalassemia: Analysis of results and recommendations. Mediterr J Hematol Infect Dis2016;8:e2016034.
7. Soliman AT, Vassim M, Majuid NM, Sabt A, Abdulrahman MO, De Sanctis V. Cortisol response to low dose versus standard dose (back-to-back) adrenocorticotropic stimulation tests in children and young adults with thalassemia major. Indian J Endocrinol Metab2013;17:1046-52.
8. Vichinsky EP, Neumayr LD, Earles AN, Williams R, Lennette ET, Dean D, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National acute chest syndrome study group. N Engl J Med2000;342:1855-65.
9. Strouse JJ, Reller ME, Bundy DG, Amoako M, Cancio M, Han RN, et al. Severe pandemic H1N1 and seasonal influenza in children and young adults with sickle cell disease. Blood2010;116:3431-4.
10. Conran N, Belcher JD. Inflammation in sickle cell disease. Clin Hemorheol Microcirc2018;68:263-99.
11. Chan JF, Yuan S, KokKH, To KK, Chu H, Yang J, et al.
A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020;395:514-23.

12. De Luna G, Habibi A, Deux JF, Colard M, Pham Hung d’Alexandry d’Orengiani AL, Schlemmer F. Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. Am J Hematol 2020;95:876-8.

13. Bwire GM. Coronavirus: Why men are more vulnerable to covid-19 than women? SN Compr Clin Med 2020;4:1-3.

14. Ghazeeri G, Abdullah L, Abbas O. Immunological differences in women compared with men: Overview and contributing factors. Am J Reprod Immunol 2011;66:163-9.

15. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016;16:626-38.

16. Karnam G, Rygiel TP, Raaben M, Grinwis GCM, Coenjaerts FE, Ressing ME, et al. CD200 receptor controls sex-specific TLR7 responses to viral infection. PLoS Pathog 2012;8:1-8.