Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS$_2$ Heterostructures

Wenjing Zhang1, Chih-Piao Chuu1, Jing-Kai Huang1,2, Chang-Hsiao Chen1, Meng-Lin Tsai3, Yung-Huang Chang4, Chi-Te Liang4, Yu-Ze Chen5, Yu-Lun Chueh5, Jr-Hau He3, Mei-Yin Chou1,4,6 & Lain-Jong Li1,7,8

1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 11529, Taiwan, 2Department of Photonics, National Chiao Tung University, HsinChu 300, Taiwan, 3Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 4Department of Physics, National Taiwan University, Taipei, Taiwan, 5Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, 6School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA, 7Department of Physics, National Tsing Hua University, HsinChu 300, Taiwan, 8Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.

Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS$_2$) is also known as light-sensitive. Here we show that a large-area and continuous MoS$_2$ monolayer is achievable using a CVD method and graphene is transferable onto MoS$_2$. We demonstrate that a photodetector based on the graphene/MoS$_2$ heterostructure is able to provide a high photogain greater than 108. Our experiments show that the electron-hole pairs are produced in the MoS$_2$ layer after light absorption and subsequently separated across the layers. Contrary to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS$_2$ due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tunable photoresponsivity.

Two-dimensional (2d) nanomaterials, such as graphene and MoS$_2$, hold great promise in next-generation electronic and photonic applications because of their unique properties inherited from the ultrathin planar structures, such as strong electron-hole confinement, extreme bendability, and high transparency, which allow for the fabrication of thinner, more flexible and more efficient devices1,2. Graphene has attracted substantial attention in optoelectronic applications due to its high carrier mobility, broad absorption spectrum, and fast response time. Graphene can absorb light and turn it into a photocurrent, and a recent study has shown that graphene serves as an excellent light-to-current converter with a quantum efficiency reaching close to 100% owing to its long mean-free path and high Fermi velocity3. However, graphene absorbs only 2.3% of light in the wide range of visible spectra4. Although various approaches such as graphene plasmons3,5, microcavities6,8 and metallic plasmons9 have been employed to enhance light absorption in graphene, the photogain of graphene-based photodetectors still has more room to improve. The photoresponse mechanisms in various types of graphene-based devices have been identified, including the photovoltaic effect$^{10-15}$, the thermoelectric Seebeck effect$^{15-19}$ and the bolometric effect20. Although the fast recombination of photoexcited carriers in graphene may not be advantageous for photoresponsivity, the high carrier mobility in graphene offers a great possibility to show high photoresponsivity if a proper graphene device structure is built21,22.

Assembling graphene with various 2d layers into artificial heterostructures to demonstrate new or tailored properties has been proposed23 and realized in tunneling field-effect transistors$^{24-26}$ very recently. The photoresponse efficiency of graphene devices, in principle, can be greatly enhanced by exploiting a vertical geometry, for instance, graphene/2d semiconductor heterostructural stacking, where the whole graphene area can be used as a junction. The layered MoS$_2$ is a newly emerging 2d nanomaterial with a direct and finite band gap. Recent reports have demonstrated a gigantic photoluminescence (PL) from the MoS$_2$ monolayer, 4-fold higher than that in its bulk, owing to the quantum confinement effect associated with the transition from an indirect band gap in...
the bulk to a direct band gap in the monolayer27–33. The photodetectors based on MoS\textsubscript{2} thin layers have shown reasonably high photoresponsivity in ambient ranging from 7.5 mA/W to 780 A/W34–36. Very recently, the graphene/WS\textsubscript{2}/graphene heterostructural device with a WS\textsubscript{2} thickness of 5–50 nm has also been demonstrated to exhibit a photoresponsivity \sim0.1 A/W37. In this work, we fabricate a photodetector based on a graphene-on-MoS\textsubscript{2} heterostructure, where the MoS\textsubscript{2} monolayer grown by chemical vapor deposition (CVD) is used to absorb light and produce electron-hole pairs. The photo-excited electron-hole pairs are separated at the MoS\textsubscript{2} and graphene interfaces, where the electrons move to graphene due to the presence of a perpendicular effective electric field created by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates. The photodetector based on the graphene/MoS\textsubscript{2} heterostructure is able to reach a photoresponsivity value higher than 107 A/W and a photogain of about 108 at room temperature.

Results

Preparation of stacking layers. In our previous work38, we have reported the direct growth of MoS\textsubscript{2} monolayer crystal flakes on a sapphire or SiO\textsubscript{2} substrate by the vapour-phase reaction of MoO\textsubscript{3} and S powders in a hot-wall chemical vapour deposition (CVD) system. Here we report that this method can be further extended to grow on SiO\textsubscript{2} a continuous MoS\textsubscript{2} layer composed of randomly oriented crystalline MoS\textsubscript{2} domains with an average domain size around several microns. High purity MoO\textsubscript{3} (0.3 g; from Aldrich; 99% purity) was placed in a ceramic boat at the heating center of the furnace. A SiO\textsubscript{2}/Si Substrate was placed in the downstream side adjacent to the ceramic boat. Sulfur powder was heated by heating tape (160°C) and carried by Ar (Ar5 70 sccm at 10 torr) to the furnace heating center. The furnace was gradually heated from room temperature to 650°C with a rate of 25°C/min. After keeping at 250°C for 10 minutes, the furnace was naturally cooled down to room temperature. The experimental set-up for the growth is shown in the supporting Figure S1. The as-grown MoS\textsubscript{2} was mostly monolayer although we also noticed that the growth of small-sized second layer of MoS\textsubscript{2} was initiated at the center of some monolayer domains. Large-area monolayer graphene was grown on copper foils at 1000°C by a CVD method using a mixture of methane and hydrogen gases as reported elsewhere39–40. To stack the graphene monolayer on MoS\textsubscript{2}, a layer of PMMA thin film was coated on the graphene/Cu foil as a transfer supporting layer41–42. After the wet etching of Cu by an aqueous solution containing Fe3+ ions, the PMMA-supported graphene film was transferred to the top of the as-grown MoS\textsubscript{2} film, followed by the removal of PMMA using acetone. The photograph in Figure 1a is the top view of the graphene/MoS\textsubscript{2} heterostructure simply formed by a manual stacking of a large-area CVD graphene monolayer onto MoS\textsubscript{2}.

Spectroscopic characterizations. In Figure 1a, monolayer MoS\textsubscript{2} film was directly grown on the right hand side of the SiO\textsubscript{2}/Si wafer followed by the transfer of graphene to the bottom half; therefore, we can see a clear difference in the optical contrast at four quadrants. Figure 1b schematically illustrates the device structure adopted in the study, where the top view of the comb-shaped source and drain metals is also shown below. We have performed the TEM cross-section study for the graphene/MoS\textsubscript{2} device. Figure 1c shows the TEM cross-section view, where the graphene/MoS\textsubscript{2} is capped with a passivation layer of SiO\textsubscript{2}, and the intensity profile on the right hand side shows that the thicknesses of graphene and MoS\textsubscript{2} are as expected, 0.36 nm and 0.7 nm. There is no PMMA residue in between graphene and MoS\textsubscript{2} layers. Figure 1d displays the Raman spectrum and (e) photoluminescence spectra for MoS\textsubscript{2} and MoS\textsubscript{2} covered by CVD monolayer graphene taken from the sample shown in (a). Note that the Raman intensity of Graphene/MoS\textsubscript{2} in (d) has been multiplied by a factor of 10 for better comparison.

![Figure 1](https://www.nature.com/scientificreports)
of the MoS$_2$ monolayer on SiO$_2$/Si and that of MoS$_2$ covered by graphene, taken from the sample shown in Figure 1a. The energy difference between the Raman E$_{2g}^\prime$ and A$_{1g}$ peaks is \sim19.0 cm$^{-1}$, indicating that the MoS$_2$ film is monolayer$^{28-30}$. The optical micrograph of a MoS$_2$ film on a SiO$_2$ substrate is shown in supporting Figure S2a. The Raman mapping in supporting Figure S2b shows that the distribution of the energy difference between the Raman E$_{2g}^\prime$ and A$_{1g}$ peaks is uniform across the sample. The AFM cross-sectional height shown in supporting Figures S2c and S2d confirms that the film is monolayer. The peaks at about 2695.9 cm$^{-1}$ and 1581.5 cm$^{-1}$ are the characteristics of 2D and G bands, respectively for monolayer graphene46. Figure 1e illustrates that the photoluminescence (PL) spectrum for MoS$_2$ covered by graphene (graphene/MoS$_2$) maintains a similar shape as its pristine form (without graphene on top) except that the intensity is decreased.

Photoelectron movement. Before discussing the photocurrent behavior, we examine the carrier properties when graphene contacts with MoS$_2$ in dark. First, we obtain the carrier concentrations and resistances of the graphene and graphene/MoS$_2$ sheets on SiO$_2$ by the Hall-effect measurements in dark at room temperature. All the samples are the same size (0.5 cm \times 0.5 cm), and each sample has been measured four times. Since MoS$_2$ is much less conductive compared with graphene, the carrier properties obtained are mainly from graphene. Note that significant numbers of reports have shown that CVD graphene is p-doped in ambient caused by the doping effect from transfer process, adsorbed moisture/oxygen and the substrate impurities$^{44-46}$. Supporting Figures S3a and S3b demonstrate that the hole concentration in graphene decreases from 6×10^{12} cm$^{-2}$ to 2×10^{11} cm$^{-2}$ and the resistance significantly increases when graphene is in contact with MoS$_2$, suggesting that electrons possibly move from MoS$_2$ to graphene. Second, we prepared the graphene and graphene/MoS$_2$ transistors on a SiO$_2$/Si substrate with the same device fabrication processes. The electrical transfer curves in supporting Figure S3c demonstrate that the charge neutral point (V_{CNP}) of the graphene/MoS$_2$ transistor shifted to the left compared with that of a graphene transistor, indicating that the graphene/MoS$_2$ transistor was less hole-doped, consistent with the conclusion from Hall-effect measurements.

The Raman spectra in Figure 2a show that the G band of monolayer graphene on SiO$_2$/Si is at 1585.4 cm$^{-1}$ and it is broadened with a downshift to 1581.7 cm$^{-1}$ when a MoS$_2$ layer is present underneath at room temperature. Since the increase in G band peak width could be related to the increase in disorder or other reasons, both the changes in G band peak width and position should be used in order to characterize the doping in graphene. Note that the integrated intensity of D band for the graphene on SiO$_2$/Si is not significantly different from that on MoS$_2$ (Figure S4). Therefore, we do not have evidence to show that the G band broadening is attributed to the increase in disorder. Because the graphene transferred by PMMA is known as p-doped, the red shift and broadening of the G band indicate that the Fermi level of graphene is raised (or an increase in the electron concentration) with the light exposure45. These results suggest that the photoelectrons generated by the Raman laser are injected into graphene. The Raman mappings of the G band energy and the FWHM are also shown to consolidate the conclusion. To further reveal the effect of adding graphene on MoS$_2$, Raman features for MoS$_2$ with and without graphene coverage are examined. The Raman spectra and mappings in Figure 2b show that the A$_{1g}$ peak is up-shifted by \sim1 cm$^{-1}$ in energy and the peak width is narrowed after being covered by graphene, indicating that the MoS$_2$ layer becomes less n-doped (or a decrease in the electron concentration)46. Recent research has shown that the peak at \sim3 \times 1011 cm$^{-2}$ p-doping on MoS$_2$ leads to \sim1 cm$^{-1}$ of up-shift for the A$_{1g}$ peak46, where we can estimate the photogenerated holes by Raman laser in the order of 1012 cm$^{-2}$. For comparison, we have also fabricated a stacking structure MoS$_2$/graphene by transferring MoS$_2$ monolayer onto a p-type graphene layer on SiO$_2$ substrates at room temperature. The Raman spectra and mappings shown in supporting Figure S5 demonstrate that when the MoS$_2$/graphene stack is exposed to light, the graphene layer also receives electrons from MoS$_2$. Both structures consistently show that the photoexcited electrons move from MoS$_2$ to graphene, and the photo-excited holes are trapped in the MoS$_2$ layer.

High photoresponsivity and photogain. To quantify the photocarriers, we study the dependence of the photocurrent on light power for the graphene/MoS$_2$ transistor at room temperature. Figure 3a shows the transfer curves for the graphene/MoS$_2$ transistor exposed to the 650-nm light with various power densities (device structure shown in Figure 1b). The voltage of the charge neutral point V_{CNP} for the transfer curve in dark is at around 10 V, indicating that graphene is p-doped. The shape of the transfer curve is very similar to that for pristine graphene on SiO$_2$, suggesting that the carrier transport in the graphene/MoS$_2$ photodetector is dominated by graphene. The result is reasonable because graphene is much more conductive than the MoS$_2$ layer. The graphene/MoS$_2$ transistor is extremely sensitive to light. When light is illuminated on the graphene/MoS$_2$ transistor, the drain current (I_d) in the p-channel decreases and the I_d in the n-channel increases as shown in Figure 3a, indicating that the photogenerated electrons are injected into graphene. The photocurrent dependence on gate voltage is plotted in Figure 3b. At the same time, the V_{CNP} largely shifted to
a more negative voltage even with very weak light exposure (Figure 3c). The negative shift of V_{CNP} indicates that the photoexcited holes were trapped in the MoS$_2$, acting as an additional positive gate voltage for graphene. The carrier concentration of the trapped holes can be extracted using the formula $D_n = \frac{C_g - \Delta V_{\text{CNP}}}{e}$ for graphene, where $C_g = 1.15 \times 10^{-8} \text{ F/cm}^2$ for the dielectric film of 300 nm SiO$_2$, and e is the electron charge. The internal quantum efficiency (IQE), a measurement of a photodetector's electrical sensitivity to light, can be estimated by the equation: IQE = (the number of photoexcited electron-hole pairs)/(absorbed number of photons) = $\Delta n \times A/(P_e/\hbar \nu)$, where A, P_e, \hbar, and ν represent the total channel area, absorbed light power by graphene and MoS$_2$, the Planck constant, and the frequency of the incident laser, respectively. (Note that the absorbance of the graphene/MoS$_2$ heterostructure is $\sim 6.8\%$ at 650 nm based on our absorption measurement.) As shown in Figure 3d, the IQE decreases with the increasing light power and the largest IQE for the system is $\sim 15\%$. We further estimate the photoresponsivity and photogain to quantify the photo sensitivity of the graphene/MoS$_2$ photodetector.
ratio between the photocurrent ($I_{\text{ph}} = I_{\text{light}} - I_{\text{dark}}$) and the light power absorbed by the photodetector, and, remarkably, the photoresponsivity can reach 1.2×10^5 A/W (at $V_g = -10$ V; $V_{\text{ds}} = 1$ V; light power density ~ 0.01 W/m2) as shown in Figure 3e. The photogain can be calculated by the formula $G = I_{\text{ph}}/\langle e \times (\text{the number of photoexcited electron-hole pairs}) \rangle = I_{\text{ph}}/(e \times \Delta n \times A)$, and the gain is up to 10^6 (Figure 3f).

In our device structure, the metals only contact to the top layer graphene, not the MoS$_2$ layer. Meanwhile, as described in text, the measured current is actually dominated by graphene. Hence, it is also crucial to examine whether the CVD graphene itself contributes to the observed large photocurrent. Our measured results in Figures 3g and 3h (and in supporting Figure S6) are consistent with those reported by Avouris’ group15 in that the intrinsic photoresponse in biased graphene transistors was dominated by the photovoltaic effect and a photoinduced bolometric effect, while the thermoelectric effect was insignificant. However, the photocurrent generated from the pure graphene transistors is several orders of magnitude smaller than that observed in our graphene/MoS$_2$ photodetector, indicating that the observed large photocurrent from graphene/MoS$_2$ is not contributed by the aforementioned processes in graphene. On the other hand, we fabricated the CVD monolayer MoS$_2$ photodetector in the same device configuration, and found that the highest photoresponsivity for the pristine monolayer MoS$_2$ is around 780 A/W36. In the present experiment, the graphene-based photodetector with an ultrahigh photo sensitivity $\sim 10^7$ A/W is realized simply by stacking it onto an atomically thin MoS$_2$ layer.

Discussion

In addition to the move of photoelectrons to graphene, the negative shift of V_{CNP} upon photoexcitation may also be attributed to other extrinsic effects such as thermal desorption of absorbed dopants or thermoelectric effect. Figure 4a shows the dependence of photoresponsivity of the graphene/MoS$_2$ transistor on the wavelength of light at room temperature. It is observed that photoresponsivity only becomes pronounced when the excitation energy is higher than the absorption band gap of MoS$_2$ (1.8 eV)35, with the optical absorption feature of the as-grown MoS$_2$ layer shown in Figure 4b. These results suggest that the photocurrent is originated from the light absorption in MoS$_2$: the electron-hole pairs are produced in MoS$_2$, followed by the separation of them between MoS$_2$ and graphene layers. If the photocurrent were from the thermal effect, the photocurrent would have been induced even when the photon energy is smaller than the band gap of monolayer MoS$_2$.

To further exclude the thermal effect, we measured the time-resolved photocurrent driven by different drain voltages at a low laser power density at room temperature, which ensures that the fast current self-heating effect becomes more prominent for the thermal desorption process or thermoelectric effect. Detailed results of time-resolved photoresponse and arguments were presented in the supporting Figure S7 to show that the photocurrent of the graphene/MoS$_2$ photodetector is not from the thermal effects. In brief, the normalized photocurrent-time profiles for the graphene/MoS$_2$ transistor in ambient air shown in Figure S7a reveals that the current-time curve obtained at $V_{\text{ds}} = 0.002$ V overlaps with that at $V_{\text{ds}} = 0.01$ V. The photocurrent becomes smaller when V_{ds} is set at 1 V (current $I_{\text{ds}} = -2 \times 10^{-2}$ A). If the thermal desorption of dopants or thermoelectric effect from the film was a dominant process, a higher V_{ds} would have given rise to a larger photocurrent36. The measurement results in vacuum also consistently lead to the same conclusion that the thermal effect is not a dominant process.

After monolayer graphene and monolayer MoS$_2$ contact with each other, the electrons are injected into graphene. Thus, the conventional theory of ideal metal-semiconductor contacts predicts an energy-band bending at the interface as shown in supporting Figure S8, and the direction of the built-in electric field is from MoS$_2$ to graphene. With illumination on the graphene/MoS$_2$ transistors, the photo-generated electrons should flow into MoS$_2$. However, this is opposite to our experimental results. Different from the conventional metal-semiconductor contact, the semimetal and semiconductor of the 2d heterostructure are atomically thin layers, and the depletion region of the 2d heterostructure is so thin that the charge concentration and polarity at the interface of graphene/MoS$_2$ should be liable to be affected by the charge impurities on the surfaces of graphene and MoS$_2$, or the applied electrostatic field. The applied electric field and the external electric field that is from the charge impurities on the surface of graphene and MoS$_2$ form an effective electric field at the graphene/MoS$_2$ interface. The effective electric field determines the flowing direction and the amount of the photoexcited electrons. As mentioned above in Figure 2 and Figure S5, the MoS$_2$ donates electrons to graphene for both the structures of graphene/MoS$_2$ and MoS$_2$/graphene, indicating that the direction of the effective electric field of the 2d heterostructure in ambient air is from graphene to MoS$_2$. When the sample is in high vacuum ($\sim 5 \times 10^{-7}$ mbar), the graphene accepts electrons when shining light on the devices as presented in Figure 5, which means that the direction of the effective electric field is still from graphene to MoS$_2$. However, the photocurrent is much smaller than that in ambient air at the same laser power density, suggesting that the effective electric field decreases in high vacuum. As shown in Figure 5a, the V_{CNP} of the second device shifted to the left by ~ 23 V, indicating that the many adsorbates or charged impurities are desorbed in high vacuum, and the graphene reverts it polarity from p- to n-type. Our previous result has shown that the monolayer MoS$_2$ film still remains n-doped in high vacuum36. Thus it is intuitive to derive that the effective electric field at the graphene/MoS$_2$ interface in air is larger than that in vacuum.

Figure 4 | Wavelength dependence. (a) Photoresponsivity as a function of the energy of the excitation light source. (b) Optical absorption spectrum for monolayer MoS$_2$.

SCIENTIFIC REPORTS | 4 : 3826 | DOI: 10.1038/srep03826
To exploit the alignment of the Fermi level between the heterostructure, first-principles calculations are performed based on density functional theory (DFT)49,50 using the Vienna \textit{ab initio} simulation package (VASP)51,52. The details are described in Methods. A modulated electric field (E_{ext}) is applied to simulate the doping effect and align the energy bands in graphene/MoS\textsubscript{2}. The band structure corresponding to the bilayer in air is shown in Figure 6a with p-doped graphene and n-doped MoS\textsubscript{2}. After pumping that removes p-dopants, the band structure of the bilayer in vacuum is shown in Figure 6b with n-doped graphene and n-doped MoS\textsubscript{2}. The corresponding schematic illustration of the photoelectron transfer process is also shown in Figure 6. From the Figure 6, we find that the effective electric field of the p-doped graphene/MoS\textsubscript{2} heterostructure would be larger than that of the n-doped graphene, so the photogenerated electron-hole pairs would be separated more easily by this effective electric field. The more n-doped graphene, the smaller effective electric field, and leading to the smaller photogain. So the photoresponsivity of the graphene/MoS\textsubscript{2} photodetector can be tuned by the modulation of the doping level of graphene and MoS\textsubscript{2}. As the monolayer MoS\textsubscript{2} has a band gap ≈ 1.8 eV, and the graphene is semimetal, the photoresponsivity is more sensitive to the graphene doping level.

Figure 5 | Comparison of photoresponses in air and in vacuum. (a) Transfer curves for the graphene/MoS\textsubscript{2} transistor measured in air and in vacuum. (b) Photocurrent as a function of the light power density in air and in vacuum at $V_{g} - V_{\text{CNP}} = \pm 20$ V. The 532-nm laser was used to measure the photocurrent, and the spot size was ≈ 2 mm.

Figure 6 | Schematic illustration of the photoelectron transfer process in the graphene/MoS\textsubscript{2} bilayer. The corresponding band structures for an n-doped MoS\textsubscript{2} layer topped with (a) slightly p-doped graphene and (b) n-doped graphene corresponding to the experimental situation in air and in vacuum, respectively. The electronic states associated with graphene and MoS\textsubscript{2} are represented in red and gray in the band structure plots, respectively. The effective electric field is created by charged impurities or adsorbed (see text).
The high photogain process in the graphene/MoS$_2$ bilayer can now be described as follows. Light absorption in MoS$_2$ generates electron-hole pairs; the electrons can move to the graphene layer due to an effective electric field created by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, while the holes are trapped in the MoS$_2$ layer. It is noted that the V_{th} shift is a direct result of electron transfer from MoS$_2$ to graphene. In addition to the electron-hole separation, the high electron mobility in graphene and the long charge-trapping lifetime of the holes result in multiple recirculation of electrons in graphene, leading to a very high photogain. This high-photogain mechanism is similar to what was reported by Yan and Konstantatos et al. for bilayer graphene where a thick layer of PbS quantum dots was used as the light absorber, albeit the controlling scheme for charge separation there is intrinsically different from that in the current heterostructure formed by 2d layered materials. It is noted that the graphene/MoS$_2$ stacking is with a high photogain but not a high on/off photocurrent ratio since the graphene layer is intrinsically with a low on/off current. To achieve a better on/off switching ratio in the stacking structure, graphene nanoribbons or gapped graphene may be used in the future.

Conclusions

In conclusion, we have constructed a graphene/MoS$_2$ bilayer by manually stacking graphene on a CVD MoS$_2$ layer. The advantage of using this structure for photodetection is that the whole surface area can be used as a junction, where electron–hole pairs can be separated at the interface. The photodetector based on this graphene/MoS$_2$ heterostructure is able to reach a photoresponsivity value higher than 107 A/W while maintaining its unique ultrathin character. The present work demonstrates the significance of charge movement in the emerging field of 2d heterostructures. The heterostructures of 2d layers exhibit novel materials properties beyond the structural 2d materials are thus anticipated.

Methods

Characterizations. The AFM images were performed in a Veeco Dimension-Icon system. Raman and photoluminescence (PL) spectra were collected in a confocal Raman optical microscope equipped with a solid state laser. The wavelength of laser is 473 nm (2.63 eV), and the system. Raman and photoluminescence (PL) spectra were collected in a confocal setup. In addition, the PL spectra were collected in a monochromator at room temperature.

2. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7, 699–712 (2012).

3. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

4. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2010).

5. Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

6. Thongrattanasiri, S., Koppens, F. H. L. & Garcia de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401–047405 (2012).

7. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

8. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906; DOI: 10.1038/ncomms1912 (2011).

9. Eckermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458; DOI:10.1038/ncomms1464 (2011).

10. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotechnol. 3, 486–490 (2008).

11. Marti, T., Xie, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 79, 245430–245436 (2009).

12. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

13. Peters, E. C., Lee, E. J., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene p–n junction. Appl. Phys. Lett. 97, 193102–193104 (2010).

14. Rao, G., Freitag, M., Chiu, H.-Y., Sundaram, R. S. & Avouris, P. Raman and Photocurrent Imaging of electrical stress-induced p–n junctions in graphene. ACS Nano 5, 5848–5854 (2011).

15. Freitag, M. et al. Photocconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

16. Xu, X., Gabor, N. M., Alden, J. S., Van der Zande, A. M. & McEuen, P. L. Photothermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

17. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 11, 4314–4317 (2011).

18. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

19. Gabor, N. M. et al. Hot Carrier-activated intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

20. Mack, K. F. et al. Dual-gated bilayer graphene hot electron bolometer. Nature Nanotechnol. 7, 427–478 (2012).

21. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnol. 7, 363–368 (2012).

22. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

23. Novoselov, K. S. & Neto, A. H. Castro Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

24. Dean, C. et al. Graphene based heterostructures. Solid State Commun. 152, 1275–1282 (2012).

25. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 24, 947–950 (2012).

26. Wu, Y. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Mater. 12, 246–252 (2013).

27. Daisaevicjus, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS$_2$ transistors. Nature Nanotechnol. 6, 147–150 (2011).

28. Zhang, Y., Ye, J., Matsumah, Y. & Iwasa, Y. Ambipolar MoS$_2$ thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

29. Liu, K. et al. Growth of large-area and highly crystalline MoS$_2$ thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

30. Lin, T.-C. et al. Wafer-scale MoS$_2$ thin layers prepared by MoO$_3$ sulfuration. Nano Lett. 14, 6637–6641 (2014).

31. Eda, G. et al. Photoluminescence from chemically exfoliated MoS$_2$. Nano Lett. 11, 5111–5116 (2011).

32. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS$_2$: a new direct-gap semiconductor. Phys. Rev. lett. 105, 136805–136808 (2010).

33. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS$_2$ monolayers by optical pumping. Nature Nanotechnol. 7, 499–493 (2012).

34. Yin, Z. et al. Single-layer MoS$_2$ phototransistors. ACS Nano 6, 74–80 (2012).

35. Tsai, D. S. et al. Few-Layer MoS$_2$ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano; DOI: 10.1021/ nn305301b (2013).

36. Zhang, W. J. et al. High-Gain Phototransistors Based on a CVD MoS$_2$ Monolayer. Adv. Mater. 25, 3456–3461 (2013).

37. Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2013).

38. Lee, Y.-H. et al. Synthesis of large-area MoS$_2$ atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

39. Lu, A.-Y. et al. Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv. 2, 3008–3103 (2012).

40. Chen, C.-H. et al. Electrical probing of submicrometre liquid using graphene strip transistors built on a nanopipette. Small 8, 43–48 (2012).
Acknowledgments
This research was supported by Academia Sinica (IAMS and Nano program) and National Science Council Taiwan (NSC-99-2112-M-001-021-MY3).

Author contributions
W.Z. performed the major part of the experiments. C.P.C. performed simulation studies. J.K.H., C.H.C. and Y.H.C. helped to grow graphene and MoS$_2$ samples. M.L.T., C.T.L., J.H. He provide facilities. Y.Z.C. and Y.L.C. helped on TEM measurement. All authors discussed the simulation results. L.J.L., M.Y.C. and W.Z. wrote the manuscript. Correspondence for experiments and simulation should be addressed to L.J.L. (lanceli@gate.sinica.edu.tw) and M.Y.C. (mychou6@gate.sinica.edu.tw) respectively.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, W.J. et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS$_2$ Heterostructures. Sci. Rep. 4, 3826; DOI:10.1038/srep03826 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0