Glycemic targets in critically ill adults: A mini-review

Kay Choong See

ORCID number: Kay Choong See 0000-0003-2528-7282.

Author contributions: See KC collected the data and wrote the paper; See KC read and approved the final manuscript.

Conflict-of-interest statement: See KC has received honoraria from GE Healthcare and Medtronic, and has no other conflicts of interest to disclose.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Endocrinology and metabolism

Country/Territory of origin: Singapore

Peer-review report’s scientific quality classification

Abstract

Illness-induced hyperglycemia impairs neutrophil function, increases pro-inflammatory cytokines, inhibits fibrinolysis, and promotes cellular damage. In turn, these mechanisms lead to pneumonia and surgical site infections, prolonged mechanical ventilation, prolonged hospitalization, and increased mortality. For optimal glucose control, blood glucose measurements need to be done accurately, frequently, and promptly. When choosing glycemic targets, one should keep the glycemic variability < 4 mmol/L and avoid targeting a lower limit of blood glucose < 4.4 mmol/L. The upper limit of blood glucose should be set according to casemix and the quality of glucose control. A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for patients without diabetes mellitus, with traumatic brain injury, or who are postoperative and at risk of surgical site infection. To avoid harm from hypoglycemia, strict adherence to glycemic control protocols and timely glucose measurements are required. In contrast, a higher glycemic target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a default choice for medical-surgical patients and patients with diabetes mellitus. These targets may be modified if technical advances for blood glucose measurement and control can be achieved.

Key Words: Brain injuries; Traumatic; Critical care; Diabetes mellitus; Glycemic control; Insulin infusion systems; Sepsis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for patients without diabetes mellitus, or with traumatic brain injury, or who are postoperative and at risk of surgical site infection. Requirements for targeting a lower range and avoiding hypoglycemia would be availability of intensive glucose monitoring and management, strict adherence to glycemic control protocols, and strict
Illness-induced hyperglycemia can be a double-edged sword. On the one hand, it may be an adaptive response to provide extra metabolic substrate to organs like the brain and to blood cells[1]. On the other hand, hyperglycemia impairs neutrophil function and innate immunity, increases pro-inflammatory cytokines and oxidative stress[2,3], inhibits fibrinolysis[4], and promotes cellular damage[1]. In addition, hyperglycemia in brain-injured patients can lead to microcirculatory damage, blood-brain barrier disruption, and cellular swelling[5]. These pathological derangements potentially lead to complications such as pneumonia and surgical site infections, prolonged mechanical ventilation, increased intensive care unit (ICU) and hospital lengths of stay, and increased mortality.

Unlike hyperglycemia, hypoglycemia is always harmful. For example, hypoglycemia was independently associated with respiratory complications and prolonged ICU and hospital lengths of stay after cardiac surgery[6]. These adverse events may be mediated by hypoglycemia-related neuronal damage and cardiac arrhythmia[7]. Apart from the clear need to avoid blood glucose extremes, there is also a need to avoid excessive blood glucose fluctuations[8], which can be measured in various ways (Table 1). The simplest measure of blood glucose fluctuation is glycemic variability, which is the difference between the maximum and minimum blood glucose measured over a defined time interval. At the cellular level, glycemic variability has been associated with oxidative stress, endothelial dysfunction, and apoptosis[7]. Clinically, glycemic variability has been linked to increased ICU and hospital mortality[9,10].

Blood glucose measurements need to be done accurately, frequently, and promptly[11]. Ideally, blood glucose measurements should be done continuously, though continuous glucose monitoring (CGM) for critically ill patients may not be accurate enough, with wide limits of agreement despite small mean bias[12]. CGM appears unreliable when using minimally-invasive subcutaneous devices that assay interstitial glucose measurements[13-15], and does not seem to improve glucose control[16]. Although invasive (intravascular) CGM devices may have an acceptable accuracy, some drawbacks include vascular and infectious complications (thrombosis, catheter occlusion, biofilm formation, or intravascular catheter-related infection)[17,18].

Accuracy and variation of glucose measurement methods influence the feasibility and adherence to timely glucose measurements. In contrast, a higher glycemic target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a default choice for medical-surgical patients and patients with diabetes mellitus.

INTRODUCTION

To determine clinically optimal glycemic targets for critically ill adult patients, the key questions would therefore be as follows: (1) What should the hyperglycemic threshold be; (2) What should the hypoglycemic threshold be; and (3) How far apart should these thresholds be? This review aims to integrate empirical evidence to answer these questions, and to suggest practical recommendations for choosing glycemic targets.
Table 1: Types of glycemic targets in intensive care unit

Glycemic target	Unit	Definition
Glucose	mmol/L	Concentration of glucose in blood or plasma. To convert to mg/dL, multiply by 18, i.e., 1 mmol/L = 18 mg/dL.
COV	%	Coefficient of variation, a measure of glucose variability. COV = standard deviation divided by mean glucose × 100%.
GG	mmol/L	Glycemic gap. GG = blood glucose - [(1.59 × HbA1c) - 2.59], HbA1c being used to estimate average glucose concentration over the prior 3 mo.
Glucose variability	mmol/L	Maximum – minimum glucose in a given time period.
SHR	Nil	Stress hyperglycemia ratio. SHR = plasma glucose divided by [(1.59 × HbA1c) - 2.59], HbA1c being used to estimate average glucose concentration over the prior 3 mo.

HbA1c: Glycosylated hemoglobin.

EMPIRICAL EVIDENCE FOR GLYCEMIC THRESHOLDS IN ICU

Several trials are inconclusive with respect to intensive (lower) vs conventional (higher) glycemic targets, which may be due to insufficient separation of achieved glucose levels between the intervention and control groups[23-25]. Another reason could be that the impact of glucose control was modified by the main diagnosis (i.e., casemix). In terms of the hyperglycemic threshold, the blood glucose level beyond which clinical complications occur seems to differ by casemix (Table 2). Patients without diabetes mellitus (DM)[26], patients with traumatic brain injury (TBI), and post-surgical patients at risk of wound infection experience adverse effects of hyperglycemia at a relatively low range, with the threshold set at 6.7-8.3 mmol/L[27-30].

The NICE-SUGAR trial showed that undifferentiated medical-surgical ICU patients had decreased 90-d mortality and incident hypoglycemia when the upper limit of blood glucose was set at 10 mmol/L rather than 6.1 mmol/L[31]. Patients who suffered non-TBI-specific injury[32] or who had post-cardiac arrest[33] also experienced better neurological recovery if blood glucose could be kept below 10 mmol/L.

Patients with prior DM were able to tolerate a higher mean blood glucose level (i.e., blood glucose level > 10 mmol/L) without excess complications during critical illness, although these patients benefited from lowering blood glucose below 7.8 mmol/L after coronary artery bypass surgery[34]. Chronic hyperglycemia may have compensatory mechanisms in place that provide protection from acute hyperglycemia-related cellular damage[2]. The upper limit of safety in patients with DM appears to be a blood glucose level of 14 mmol/L[35].

In contrast to the risk of hyperglycemia differing by casemix, the risks of hypoglycemia appear to affect a broad range of patients similarly. Severe hypoglycemia (< 2.2 mmol/L), moderate hypoglycemia (< 3.3 mmol/L), and even mild hypoglycemia (< 4 mmol/L) have been associated with ICU and hospital mortality[36-39]. Targeting lower blood glucose levels resulted in higher rates of severe hypoglycemia[40,41], and no clinical trial has targeted a lower limit of blood glucose < 4.4 mmol/L. The NICE-SUGAR trial demonstrated that the risk of hypoglycemia can be mitigated by avoiding targeting blood glucose below 6.1 mmol/L[31]. Nonetheless, if intensive glucose monitoring and management resources are available, and if glycemic control protocols and timely glucose measurements can be strictly adhered to, the Leuven studies demonstrated advantages of targeting blood glucose below 6.1 mmol/L, with surgical patients deriving clearer survival benefit and morbidity reduction compared to medical patients[23,42].

EMPIRICAL EVIDENCE FOR MINIMIZING GLYCEMIC VARIABILITY IN ICU

In a multicenter observational study, Egi et al[43] first showed that ICU non-survivors had a wider spread of glucose values compared to ICU survivors. Specifically, the standard deviation of blood glucose values was 2.3 mmol/L in non-survivors compared to 1.3 mmol/L in survivors. The association between spread of blood glucose with hospital mortality persisted after controlling for confounders (hospital
Table 2 Glycemic targets in intensive care unit by casemix and thresholds

Casemix	Blood sample	Method	Glycemic target	Evidence
Burns	Not stated	Not stated	Glucose > 7.8 mmol/L	Increased pneumonia, ventilator-associated pneumonia, and urinary tract infection; Obs[72]
Cardiac	Not stated	Not stated	Glucose 4.4-6.1 mmol/L	Decreased 30-d mortality compared to glucose 5.7-8 mmol/L; Obs[73]
DM	Not stated	Portable glucometer, blood gas analyzer	Glucose < 14 mmol/L	Decreased glycemic variability and incident hypoglycemia; before-and-after study[83]
DM	Arterial, venous	Blood gas analyzer	Glucose 10-14 mmol/L	Decreased incident hypoglycemia; before-and-after study[74]. No increased risk of hospital-acquired infectious, cardiovascular, renal or neurological complications; before-and-after study[75]
DM	Not stated	Portable glucometer	Glucose 5.6-7.8 mmol/L	Decreased complications (infection, cardiac events, respiratory failure, kidney failure) after coronary artery bypass graft surgery compared to glucose 7.8-10 mmol/L; RCT[34]
DM	Not stated	Portable glucometer	Glucose 5.7-8 mmol/L	Decreased 30-day mortality compared to glucose 4.4-6.1 mmol/L; Obs[76]
Medical	Capillary	Portable glucometer	Glucose > 7 mmol/L	Increased ICU mortality; Obs[77]
Medical-surgical	Arterial	Point-of-care or blood gas or laboratory analyzers	Glucose 8-10 mmol/L	Decreased 90-d mortality and incident severe hypoglycemia compared to glucose 4.5-6.0 mmol/L; RCT[31]
Medical-surgical	Not stated	Portable glucometer	Glucose 4.4-6.1 mmol/L	Decreased 30-d mortality compared to glucose 5.7-8 mmol/L in patients without DM; Obs[79]
Medical-surgical	Arterial	Point-of-care or blood gas or laboratory analyzers	Glucose 4.4-6.1 mmol/L	Increased incident severe hypoglycemia compared to more liberal control (95%CI of glucose -7.8-9.4 mmol/L; RCT[78])
Medical-surgical	Arterial, capillary	Glucometer	Glucose 10-11.1 mmol/L	Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; RCT[66]
Medical-surgical	Arterial, capillary, venous	Glucometer or blood gas analyzer	Glucose 7.8-10 mmol/L	Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; RCT[79]
Medical-surgical	Arterial	Portable glucometer	Glucose 7-9 mmol/L	Decreased ICU mortality compared to out-of-range glucose; Obs[80]
Medical-surgical	Arterial, capillary	Glucometer or blood gas analyzer	Glucose < 10 mmol/L	Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; RCT[31,81]
Medical-surgical	Arterial	Glucometer	Glucose < 8 mmol/L	Decreased ICU mortality compared to higher glucose levels; Obs[82]
Medical-surgical	Arterial	Blood gas analyzer	Glucose > 8.3 mmol/L	Increased ICU mortality compared to glucose 6.1-8.3; Obs[83]
Medical-surgical	Arterial, capillary	Glucometer	Glucose < 8.2 mmol/L	Decreased ICU mortality compared to higher glucose levels; Obs[84]
Medical-surgical	Arterial, venous	Glucometer	Glucose 4.4-7.8 mmol/L	Decreased ICU and hospital mortality compared to glucose 7.8-10 mmol/L in patients without DM; Obs[26]
Medical-surgical	Not stated	Glucometer	Glucose 3.9-7.8 mmol/L	Time in range associated with decreased ICU mortality in patients without DM; Obs[85]. Time in range associated with decreased ICU mortality in patients receiving insulin; Obs[86]
Medical-surgical	Venous	Laboratory	Low SHR < 1	Decreased hospital mortality compared to SHR > 1 regardless of baseline HbA1c; Obs[87]
Post-CA	Capillary, venous	Not stated	Glucose 3.9-7.8 mmol/L	Higher survival, compared to higher glucose levels; Obs[88]
Post-CA	Not stated	Not stated	Glucose 4-10 mmol/L	Better neurological recovery, compared to higher glucose levels; Obs[33]
Surgical	Arterial	Blood gas analyzer	Glucose 4.4-6.1 mmol/L	Decreased hospital mortality, blood stream infections, acute renal failure, blood transfusion, critical-illness polyneuropathy, prolonged mechanical ventilation, compared to glucose 10-11.1 mmol/L; RCT[42]
Surgical	Not stated	Not stated	Glucose 4.4-6.1 mmol/L	Decreased post-operative renal failure and 30-d mortality compared to glucose > 8.3 mmol/L; Obs[89]

See KC. Glycemic targets in critically ill adults.
CHOOSING LOWER VS HIGHER GLYCEMIC TARGET RANGES

To minimize patient harm, empirical evidence suggests that when choosing glycemic targets, one should keep the glycemic variability < 4 mmol/L and avoid targeting a lower limit of blood glucose < 4.4 mmol/L. The upper limit of blood glucose should then be set according to casemix and the quality of glucose control.

A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for patients without DM, with TBI, or who are postoperative and at risk of surgical site, infection, neurologic diseases, mechanical ventilation, acute physiological and chronic health evaluation II score, age, mean blood glucose level, maximum blood glucose level, and admission blood glucose level. Subsequently, other observational studies have demonstrated that the difference between maximum and minimum blood glucose levels (i.e., glucose variability) should not exceed 4-6 mmol/L, regardless of casemix [10,44,45] (Table 3). In other words, glycemic target ranges should ideally be < 4 mmol/L in width. Such a narrow range seems to be achievable, given that both single-center and multi-center randomized trials using a variety of protocols have successfully constrained glucose levels within standard deviations of < 2 mmol/L [23,31,42,46].

DM: Diabetes mellitus; HbA1c: Glycosylated hemoglobin; ICU: Intensive care unit; Obs: Observational study; RCT: Randomized controlled trial; SHR: Stress hyperglycemia ratio; TBI: Traumatic brain injury.
See KC. Glycemic targets in critically ill adults

Table 3 Glycemic targets in intensive care unit by casemix and variability

Casemix	Blood sample	Method	Glycemic target	Evidence
Medical-surgical	Arterial, venous	Glucometer	Glucose variability (COV ≥ 20%)	Increased ICU and hospital mortality in patients without DM; Obs[26]
Medical-surgical	Arterial, capillary	Glucometer or blood gas analyzer	Glucose variability > 6 mmol/L	Increased ICU and hospital mortality; Obs[44]
Medical-surgical	Arterial	Glucometer or blood gas analyzer	Glucose variability > 4 mmol/L	Increased hospital mortality; Obs[10]
Post-CA	Arterial	Blood gas analyzer	Glucose variability < 5 mmol/L	Decreased hypoglycemia and mortality; Obs[45]
Post-CA	Not stated	Not stated	GG-min < 3.9 mmol/L	Better neurological recovery; Obs[95]

COV: Coefficient of variation; GG: Glycemic gap; GG-min: Minimum glycemic gap = minimum blood glucose - [(1.59 × HbA1c) - 2.59], HbA1c being used to estimate average glucose concentration over the prior 3 mo; ICU: Intensive care unit; Obs: Observational study.

Table 4 Choosing lower vs higher glycemic target ranges

Glycemic target range	Considerations favoring choice of glycemic target range
Lower glycemic target range (i.e., glucose 4.5-7.8 mmol/L)	(1) Patients without DM; (2) Patients with TBI; (3) Post-surgical patients at risk of surgical site infections; (4) Availability of intensive glucose monitoring and management; (5) Strict adherence to glycemic control protocols; and (6) Strict adherence to timely glucose measurements
Higher glycemic target range (i.e., glucose 7.8-10 mmol/L)	(1) Default choice for most patients; (2) Patients with DM; (3) Lack of intensive glucose monitoring and management; (4) Less than strict adherence to glycemic control protocols; and (5) Less than strict adherence to timely glucose measurements

DM: Diabetes mellitus; TBI: Traumatic brain injury.

This review’s recommendations are in line with current guidelines (Table 5). For hospitalized patients in general, the American Diabetes Association recommends a glycemic target range of 7.8-10 mmol/L[47]. The same glycemic range is recommended for post-resuscitation care of cardiac arrest patients by the European Resuscitation Council[48]. For sepsis patients, the Surviving Sepsis Campaign recommends an upper blood glucose limit of 10 mmol/L[49]. Both the American Diabetes Association and Surviving Sepsis Campaign guidelines mention that lower targets may be appropriate for selected patients if they can be achieved without significant hypoglycemia[47,49].

Other guidelines have made less definite recommendations. For surgical patients, the World Health Organization recommends glucose control, though no target range was defined[50]. For patients with TBI, the Brain Trauma Foundation does not mention glycemic control[51]. The findings and recommendations from this review can therefore help fill any gaps in these latter guidelines.

FUTURE DIRECTIONS

To increase the safety of lower glycemic targets, technical advances for blood glucose measurement and control would help. Autocorrecting point-of-care glucose measurement devices can adjust for interfering substances (e.g., ascorbic acid and non-glucose sugars) and abnormal hematocrit in critically ill patients[52], enabling these devices to become as accurate as central laboratory plasma glucose measurements. Monte Carlo simulation suggests that glycemic control in critically ill patients is optimal with a blood glucose measurement interval no longer than 1 h, with incremental benefit using shorter measurement intervals of 15 min[53]. This means that devices that can continuously assay blood glucose would be needed. More accurate and frequent blood glucose measurements can feed into automated and closed-loop glycemic control systems[54-62]. For instance, even when targeting a lower range of 4.4-8.3 mmol/L, one such system limited severe hypoglycemic episodes to only 0.01% of all blood glucose measurements and 0.8% of patients[59].
Optimization of glucose control protocols with respect to the following aspects may also be investigated: (1) Addition of bolus insulin "mid-protocol" during an insulin infusion to reduce peak insulin rates for insulin-resistant patients [63]; (2) transition of insulin administration route from intravenous to subcutaneous [64], and (3) use of DM-specific enteral formula for both DM and non-DM patients [65-67].

Given the influence of casemix on the optimal glycemic target range, further work may be done to personalize recommendations for various conditions [68]. For patients with DM, it remains unclear if the upper limit of blood glucose can be safely pushed beyond 10 mmol/L [69], given the risk of ketoacidosis or ketonemia [70]. To address this uncertainty, the LUCID trial will investigate if liberal blood glucose (target 10.0-14.0 mmol/L) will result in less incident hypoglycemia compared to usual care (target 6.0-10.0 mmol/L), while maintaining good clinical outcomes [71].

CONCLUSION

When choosing glycemic targets, one should keep the glycemic variability < 4 mmol/L and avoid targeting a lower limit of blood glucose < 4.4 mmol/L. The upper limit of blood glucose should be set according to casemix and the quality of glucose control. A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for patients without diabetes mellitus, with traumatic brain injury, or who are at risk of surgical site infection. To avoid harm from hyperglycemia, strict adherence to glycemic control protocols and timely glucose measurements are required. In contrast, a higher glycemic target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a default choice for medical-surgical patients and patients with diabetes mellitus. These targets may be modified if technical advances for blood glucose measurement and control can be achieved.

REFERENCES

1. Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, Mesotten D. Clinical review: Intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab 2009; 94: 3163-3170 [PMID: 19531590 DOI: 10.1210/jc.2009-0663]

2. Honiden S, Inzucchi SE. Metabolic Management during Critical Illness: Glycemic Control in the ICU. Semin Respir Crit Care Med 2015; 36: 859-869 [PMID: 26595046 DOI: 10.1055/s-0035-1565253]

3. Avanzini F, Mafriči R, Riva E, Franzosi MG, Milani V, Giudici V, Marelli G, Mariani G, Piatti PM, Roncaglioni MC; GLICINE-SPIDER Collaborative Group. A multicenter observational study on the management of hyperglycemia in patients with acute coronary syndrome. Nutr Metab Cardiovasc Dis 2015; 25: 916-923 [PMID: 26298425 DOI: 10.1016/j.numecd.2015.07.007]

4. Savioli M, Cugno M, Polli F, Taccone P, Bellani G, Spanu P, Pesenti A, Lapichino G, Gattinoni L. Tight glycemic control may favor fibrinolysis in patients with sepsis. Crit Care Med 2009; 37: 424-431 [PMID: 19114908 DOI: 10.1097/CCM.0b013e31819542da]
5 Meier R, Béchir M, Ludwig S, Sommerfeld J, Keel M, Steiger P, Stocker R, Stover JF. Differential temporal profile of lowered blood glucose levels (3.5 to 6.5 mmol/L vs 5 to 8 mmol/L) in patients with severe traumatic brain injury. *Crit Care* 2008; 12: R98 [PMID: 18680584 DOI: 10.1186/cc974]

6 Stamou SC, Nussbaum M, Carew JD, Dunn K, Skipper E, Robicsek F, Lobdell K.W. Hypoglycemia with intensive insulin therapy after cardiac surgery: predisposing factors and association with mortality. *J Thorac Cardiovasc Surg* 2011; 142: 166-173 [PMID: 21397274 DOI: 10.1016/j.jtcvs.2010.09.064]

7 Tickoo M. The Long and Winding Road to Personalized Glycemic Control in the Intensive Care Unit. *Semin Respir Crit Care Med* 2019; 40: 571-579 [PMID: 31862558 DOI: 10.1056/SRCM-19-1697603]

8 Liu WW, Lin SG, Zhu GQ, Poucke SV, Braddock M, Zhang Z, Mao Z, Shen FX, Zheng MH. Establishment and Validation of GV-SAPS II Scoring System for Non-Diabetic Critically Ill Patients. *PLoS One* 2016; 11: e0166085 [PMID: 27824941 DOI: 10.1371/journal.pone.0166085]

9 Hermannides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoeckstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. *Crit Care Med* 2010; 38: 838-842 [PMID: 20035218 DOI: 10.1097/CCM.0b013e3181cc4be9]

10 Meyfroidt G, Keenan DM, Wang X, Wouters PJ, Veldhuis JD, Van den Bergh G. Dynamic characteristics of blood glucose time series during the course of critical illness: effects of intensive insulin therapy and relative association with mortality. *Crit Care Med* 2010; 38: 1021-1029 [PMID: 20124887 DOI: 10.1097/CCM.0b013e3181c710c]

11 Juneja R, Roudehush CP, Nasraway SA, Golas AA, Jacobi J, Carroll J, Nelson D, Abad VJ, Flanders SJ. Computerized intensive insulin dosing can mitigate hypoglycemia and achieve tight glycemic control when glucose measurement is performed frequently and on time. *Crit Care* 2009; 13: R163 [PMID: 19822000 DOI: 10.1186/cc8129]

12 Sadhu AR, Serrano IA, Xu J, Nisar T, Lucier J, Pandya AR, Patham B. Continuous Glucose Monitoring in Critically Ill Patients With COVID-19: Results of an Emergent Pilot Study. *J Diabetes Sci Technol* 2020; 14: 1065-1073 [PMID: 33063556 DOI: 10.1177/1932296820964264]

13 Gottschalk A, Welp HA, Leser L, Lanckohr C, Wempe C, Elliger B. Continuous Glucose Monitoring in Patients Undergoing Extracorporeal Ventricular Assist Therapy. *PLoS One* 2016; 11: e0148778 [PMID: 26963806 DOI: 10.1371/journal.pone.0148778]

14 Wollersheim T, Engelhardt Lj, Pachulla J, Moegeli R, Koch S, Spies C, Hiesmayr M, Weber-Carstens S. Accuracy, reliability, feasibility and nurse acceptance of a subcutaneous continuous glucose management system in critically ill patients: a prospective clinical trial. *Ann Intensive Care* 2016; 6: 70 [PMID: 27439710 DOI: 10.1186/s13613-016-0167-2]

15 Punke MA, Becker C, Petzoldt M, Reuter DA, Wodack KH, Reichenspurher H, Kubik M, Kluge S. Head-to-head comparison of two continuous glucose monitoring systems on a cardio-surgical ICU. *J Clin Monit Comput* 2019; 33: 895-901 [PMID: 30421152 DOI: 10.1007/s10877-018-0221-3]

16 De Block CE, Gios J, Verheyen N, Manuel-y-Keenoy B, Rogiers P, Jorens PG, Scuiff C, Van Gaal LF. Randomized Evaluation of Glycemic Control in the Medical Intensive Care Unit Using Real-Time Continuous Glucose Monitoring (REGIMEN Trial). *Diabetes Technol Ther* 2015; 17: 889-898 [PMID: 26305390 DOI: 10.1089/dia.2015.0151]

17 Galindo RJ, Umpierrez GE, Rushakoff RJ, Basa A, Lohnes S, Nichols JH, Spanakakis EK, Espinoza J, Palermo NE, Awadjie DG, Bak L, Buckingham B, Cook CB, Freckmann G, Heinemann L, Hovorka R, Mathioudakis N, Newman T, O’Neal DN, Rickert M, Sacks DB, Seley JJ, Wallia A, Shang T, Zhang JY, Han J, Klonoff DC. Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. *J Diabetes Sci Technol* 2020; 14: 1035-1064 [PMID: 32985262 DOI: 10.1177/1932296820954163]

18 van Steen SC, Rijkenberg S, Limpens J, van der Voort PH, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Gaal LF. The Long and Winding Road to Personalized Glycemic Control in the Intensive Care Unit. *Crit Care* 2011; 15: R120 [PMID: 217899004 DOI: 10.1186/cc7017]
Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, Syed SJ, Gridhar HR, Rishu AH, Al-Daker MO, Kahoul SH, Britts RJ, Sakijaha MH. Intensive vs conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. *Crit Care Med* 2008; 36: 3190-3197 [PMID: 18936702 DOI: 10.1097/CCM.0b013e318182121a]

Krichsley JS, Maurer P, Holewinski S, Hayes R, McComsey D, Umpeirrez GE, Nasawaya SA. Glucose Control, Diabetes Status, and Mortality in Critically Ill Patients: The Continuum From Intensive Care Unit Admission to Hospital Discharge. *Mayo Clin Proc* 2017; 92: 1019-1029 [PMID: 28645517 DOI: 10.1016/j.mayocp.2017.04.015]

Schlusel AT, Holt DB, Crawley EA, Lustik MB, Wade CE, Uyehara CF. Effects of hyperglycemia and continuous intravenous insulin on outcomes of surgical patients. *J Surg Res* 2012; 176: 202-209 [PMID: 21920548 DOI: 10.1016/j.jss.2011.07.004]

Ng RR, Myat Oo A, Liu W, Tan TE, Ti LK, Chew ST. Changing glucose control target and risk of surgical site infection in a Southeast Asian population. *J Thorac Cardiovasc Surg* 2015; 149: 323-328 [PMID: 25397770 DOI: 10.1016/j.jtcvs.2014.08.076]

Leibowitz G, Raizeman E, Brezis M, Glaser B, Raz I, Shapira O. Effects of moderate intensity glycemic control after cardiac surgery. *Ann Thorac Surg* 2010; 90: 1825-1832 [PMID: 21095319 DOI: 10.1016/j.athoracsur.2010.07.063]

Hermanides J, Plummer MP, Finnis M, Deane AM, Coles JP, Menon DK. Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis. *Crit Care* 2018; 22: 11 [PMID: 29351760 DOI: 10.1186/s13054-018-1338-3]

NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Herrin J, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JH, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive vs conventional glucose control in critically ill patients. *N Engl J Med* 2009; 360: 1289-1297 [PMID: 19318384 DOI: 10.1056/NEJMoa0810625]

Kutcher ME, Pepper MB, Morabito D, Sunjaya D, Knudson MM, Cohen MJ. Finding the sweet spot: identification of optimal glucose levels in critically injured patients. *J Trauma* 2011; 71: 1108-1114 [PMID: 22079116 DOI: 10.1097/TA.0b013e318232735b]

Borgquist O, Wise MP, Nielsen N, Al-Sabea N, Cranshaw J, Cronberg T, Glover G, Hassager C, Kjaergaard J, Kuiper M, Smid O, Walden A, Friberg H; TTM-Trial Investigators. Dysglycemia, Glycemic Variability, and Outcome After Cardiac Arrest and Temperature Management at 33°C and 36°C. *Crit Care Med* 2017; 45: 1337-1343 [PMID: 28708678 DOI: 10.1097/CCM.0000000000002367]

Umpeirrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, Newton CA, Smiley-Byrd D, Vellangi K, Malik S, Puskar D, Guyon A, Thourani VH. Randomized Controlled Trial of Intensive Versus Conservative Glucose Control in Patients Undergoing Coronary Artery Bypass Graft Surgery: GLUCO-CABG Trial. *Diabetes Care* 2015; 38: 1665-1672 [PMID: 26180108 DOI: 10.2337/dc15-0303]

Kar P, Plummer MP, Bellomo R, Jenkins AJ, Januszewski AS, Chapman MJ, Jones KL, Horowitz M, Deane AM. Liberal Glycemic Control in Critically Ill Patients With Type 2 Diabetes: An Exploratory Study. *Crit Care Med* 2016; 44: 1695-1703 [PMID: 27315191 DOI: 10.1097/CCM.0000000000001815]

NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hébert PC, Heyland DK, Robinson BG. Hypoglycemia and risk of death in critically ill patients. *N Engl J Med* 2012; 367: 1108-1118 [PMID: 22992074 DOI: 10.1056/NEJMoa1209492]

D’Ancona G, Bertuzzi F, Sacchi L, Pirone F, Stringi V, Arcadipane A, Bellazzi R, Pilato M. Iatrogenic hyperglycemia secondary to tight glucose control is an independent determinant for mortality and cardiac morbidity. *Eu J Cardiothorac Surg* 2011; 40: 360-366 [PMID: 21256761 DOI: 10.1097/EJC.0b013e328343d9c8]

Graffagnino C, Gurrum AR, Kolls B, Olson DM. Intensive insulin therapy in the neurocritical care setting is associated with poor clinical outcomes. *Neurocrit Care* 2010; 13: 307-312 [PMID: 20866066 DOI: 10.1007/s12028-010-9469-y]

Durao MS, Marra AR, Moura DF, Almeida SM, Fernandes C, Akamine N, Hidal JT, Santos OF. Tight glucose control vs intermediate glucose control: a quasi-experimental study. *Anaesth Intensive Care* 2010; 38: 467-473 [PMID: 20514954 DOI: 10.1177/0310057X103800309]

Yamada T, Shogima N, Noma H, Yamauchi T, Kadowaki T. Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. *Intensive Care Med* 2017; 43: 1-15 [PMID: 27637719 DOI: 10.1007/s00134-016-4523-0]

Yatabe T, Inoue S, Sakaguchi M, EgI M. The optimal target for acute glycem ic control in critically ill patients: a network meta-analysis. *Intensive Care Med* 2017; 43: 16-28 [PMID: 27686533 DOI: 10.1007/s00134-016-4538-2]

van den Bergh G, Wouters P, Weevers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferardnande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. *N Engl J Med* 2001; 345: 1359-1367 [PMID: 11794168 DOI: 10.1056/NEJMoa111300]

Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and...
short-term mortality in critically ill patients. *Anesthesiology* 2006; 105: 244-252 [PMID: 16871057 DOI: 10.1097/00000542-200608000-00006]

44 Al-Dorzi HM, Tamim HM, Arabi YM. Glycaemic fluctuation predicts mortality in critically ill patients. *Anesth Intensive Care* 2010; 38: 695-702 [PMID: 20715734 DOI: 10.1111/j.1744-8599.2010.02041.x]

45 Cuenci-Villar N, Devigili A, Delodder F, Cianferoni S, Feilih F, Rossetti AO, Eggimann P, Vincent JL, Taccone FS, Oddo M. Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. *Crit Care Med* 2011; 39: 2225-2231 [PMID: 21705888 DOI: 10.1097/CCM.0b013e31822572c9]

46 Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loefller M, Reinhart K; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. *N Engl J Med* 2008; 358: 125-139 [PMID: 18184958 DOI: 10.1056/NEJMoa070716]

47 American Diabetes Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2021. *Diabetes Care* 2021; 44: S211-S220 [PMID: 33298426 DOI: 10.2337/dci21-S015]

48 Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Frierbreg H, Genbrugge C, Haywood K, Lilja G, Moulaert VM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. *Intensive Care Med* 2021; 47: 369-421 [PMID: 33761189 DOI: 10.1007/s00134-021-06366-4]

49 Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Farrer R, Kumar A, Sevinsky JE, Sprung CL, Nunnally ME, Rusch G, Rubinstein D, Bublau J, Bellomo R, Briel M, Fransen S, de Jonge S, de Vries F, Gomes SM, Gans S, Wallert D, van der Velde H, Wu Y, Xie X, Zappe M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loefller M, Reinhart K; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. *N Engl J Med* 2008; 358: 125-139 [PMID: 18184958 DOI: 10.1056/NEJMoa070716]

50 Allegrenzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, Gomes SM, Gans S, Wallert ED, Wu X, Abbas M, Boermester MA, Dellinger EP, Egger M, Gastmeier P, Guirao X, Ren J, Pittet D, Solomkin JS; WHO Guidelines Development Group. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. *Lancet Infect Dis* 2016; 16: e288-e303 [PMID: 27816414 DOI: 10.1016/S1473-3099(16)30402-9]

51 Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ateya M, Jensen A, Arnold P, Bellomo T, Gianchandani R. Improving Hospital Standards of Medical Care in Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. *N Engl J Med* 2008; 358: 125-139 [PMID: 18184958 DOI: 10.1056/NEJMoa070716]

52 Tran NK, Godwin ZR, Steele AN, Wolf SE, Palmieri TL. Clinical Impact of Accurate Point-of-Care Glucose Monitoring for Tight Glycemic Control in Severely Burned Children. *J Diabetes Sci Technol* 2017; 11: 278-284 [PMID: 29031209 DOI: 10.1177/1932296817725263]

53 Emdanjomeh AS, Warren JN, Harper CL, Olin JL. Impact of Initial eGlycemic Management System Dosing Strategy on Time to Target Blood Glucose Range. *J Diabetes Sci Technol* 2021; 15: 242-250 [PMID: 33588608 DOI: 10.1177/1932296821992352]

54 Shelden D, Ateya M, Jensen A, Arnold P, Bellomo T, Gianchandani R. Improving Hospital Glucometers, Workflow, and Outcomes with a Computerized Intravenous Insulin Dose Calculator Built into the Electronic Health Record. *J Diabetes Sci Technol* 2021; 15: 271-278 [PMID: 33355901 DOI: 10.1177/19322968210974767]

55 Valk T, McMorrow C. Managing hyperglycemia during the COVID-19 pandemic: Improving outcomes using new technologies in intensive care. *SAGE Open Med* 2020; 8: 205031210974174 [PMID: 32328306 DOI: 10.1177/20503121210974174]

56 Salinas PD, Mendez CE. Glucose Management Technologies for the Critically Ill. *J Diabetes Sci Technol* 2019; 13: 682-690 [PMID: 30638048 DOI: 10.1177/1932296818822838]

57 Tamura T, Yatabe T, Namikawa T, Hanazaki K, Yokoyama M. Glucose control using a closed-loop device decreases inflammation after cardiovascular surgery without increasing hypoglycemia risk. *J Artif Organs* 2019; 22: 154-159 [PMID: 30456660 DOI: 10.1007/s10407-018-1082-x]

58 Blaha J, Barteczko-Grajek B, Berezowicz P, Charvat J, Chvojka J, Grau T, Holmgren J, Jaschinski U, Kopecky P, Manak J, Moehl M, Paddle J, Pasculli M, Petersson J, Petros S, Radrizanni D, Singh V, Starkopf J. Space GlucoseControl system for blood glucose control in intensive care patients--a European multicentre observational study. *BMC Anesthesiol* 2016; 16: 8 [PMID: 26801983 DOI: 10.1186/s12871-016-0175-4]

59 Yatabe T, Yamazaki R, Kitagawa H, Okabayashi T, Yamashita K, Hanazaki K, Yokoyama M. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose
concentration in intensive care unit patients. Crit Care Med 2011; 39: 575-578 [PMID: 21178768 DOI: 10.1097/CCM.0b013e31820669ad]

61 Pachler C, plank J, Weinhand H, Chassin LJ, Wiilinska ME, Kuikin R, Kaufmann P, Smolle KH, Pilger E, Pieber TR, Ellmerer M, Hovorka R. Tight glycemic control by an automated algorithm with time-variant sampling in medical ICU patients. Intensive Care Med 2008; 34: 1224-1230 [PMID: 18297268 DOI: 10.1007/s00134-008-1033-8]

62 Dorch Mj, Mowery NT, Oxdas A, Dossett L, Cao H, Collier B, Holder G, Miller RA, May AK. A computerized insulin infusion titration protocol improves glucose control with less hypoglycemia compared to a manual titration protocol in a trauma intensive care unit. Jpn J Parenteral Enteral Nutr 2008; 32: 18-27 [PMID: 18165443 DOI: 10.1177/014860710803201118]

63 Marin v, Inzucchi SE, Besterman B. Minimization of Hypoglycemia as an Adverse Event During Insulin Infusion: Further Refinement of the Yale Protocol. Diabetes Technol Ther 2016; 18: 480-486 [PMID: 27257910 DOI: 10.1089/diabetestech.2016.0101]

64 Weant KA, Ladha A. Conversion from continuous insulin infusions to subcutaneous insulin in critically ill patients. Ann Pharmacother 2009; 43: 629-634 [PMID: 19336649 DOI: 10.1345aph.1L629]

65 Mesejo A, Montejo-González JC, Vaquerizo-Alonso C, Lobo-Tamer G, Zaparte-Martinez M, Herrero-Meseguer JI, Acosta-Escribano J, Blesa-Malpica A, Martinez-Lozano F. Diabetes-specific enteral nutrition formula in hyperglycemic, mechanically ventilated, critically ill patients: a prospective, open-label, blind-randomized, multicenter study. Crit Care 2015; 19: 390 [PMID: 26549276 DOI: 10.1186/s13054-015-1108-1]

66 van Steen SC, Rijkenberg S, Sechterberger MK, DeVries JH, van der Voort PHJ. Glycemic Effects of a Low-Carbohydrate Enteral Formula Compared With an Enteral Formula of Standard Composition in Critically Ill Patients: An Open-Label Randomized Controlled Clinical Trial. JPEN J Parenter Enteral Nutr 2018; 42: 1035-1045 [PMID: 30133840 DOI: 10.1002/jpen.10435]

67 Dool a R, Deane AM, Tolkier DM, Pressnell JJ, Barrett HL, Forbes JM, Todd AS, Okano S, Sturgess DJ. The effect of a low carbohydrate formula on glycaemia in critically ill enterally-fed adult patients with hyperglycemia: A blinded randomised feasibility trial. Clin Nutr ESPEN 2019; 31: 80-87 [PMID: 31060838 DOI: 10.1016/j.clnesp.2019.02.013]

68 Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, Chen WJ. Associations between blood glucose level and outcomes of adult in-hospital cardiac arrest: a retrospective cohort study. Cardiovasc Diabetol 2016; 15: 118 [PMID: 27557653 DOI: 10.1186/s12933-016-0445-y]

69 Plummer MP, Bellomo R, Cousins CE, Anmink CE, Sundararajan K, Reddi BA, Raj JP, Chapman MJ, Horowitz M, Deane AM. Dysglycemia in the critically ill and the interaction of chronic and acute glycaemia with mortality. Intensive Care Med 2014; 40: 973-980 [PMID: 24760120 DOI: 10.1007/s00134-014-3287-7]

70 Luehti N, Cioccar i L, Crisman M, Bellomo R, Eastwood GM, Mårtensson J. Prevalence of ketosis, ketonuria, and ketoacidosis during liberal glycemic control in critically ill patients with diabetes: an observational study. Crit Care 2016; 20: 297 [PMID: 27633987 DOI: 10.1186/s13054-016-1462-7]

71 Poole AP, Finnis ME, Anstey J, Bellomo R, Bilardi S, Biradav V, Doherty S, Eastwood G, Finfer S, French CJ, Ghosh A, Heller S, Horowitz M, Kar P, Kruger PS, Maiden MJ, Mårtensson J, McArthur CJ, McGuinness SP, Secombe PJ, Tobin AE, Udy AA, Young PJ, Deane AM; LUCID Study Investigators; ANZICS Clinical Trials Group. Study protocol and statistical analysis plan for the Liberal Glucose Control in Critically Ill Patients with Pre-existing Type 2 Diabetes (LUCID) trial. Crit Care Resusc 2020; 22: 133-141 [PMID: 32389105]

72 Hemmilla MR, Taddonio MA, Arhabi S, Maggio PM, Wahl WL. Intensive insulin therapy is associated with reduced infectious complications in burn patients. Surgery 2008; 144: 629-35; discussion 635 [PMID: 18847648 DOI: 10.1016/j.surg.2008.07.001]

73 Hersh AM, Hirshberg EL, Wilson EL, Orme JF, Morris AH, Lanspa MJ. Lower Glucose Target Is Associated With Improved 30-Day Mortality in Cardiac and Cardiothoracic Patients. Chest 2018; 154: 1044-1051 [PMID: 29705217 DOI: 10.1016/j.chest.2018.04.025]

74 Luehti N, Cioccar i L, Biesenbach P, Luechetta L, Kagaya H, Morgan R, Di Muzio F, Presello B, Gaffar D, Hay A, Crisman M, Toohey R, Russell H, Glassford NJ, Eastwood GM, Ekinci EI, Deane AM, Bellomo R, Mårtensson J. Liberal Glucose Control in ICU Patients With Diabetes: A Before-and-After Study. Crit Care Med 2018; 46: 935-942 [PMID: 29509570 DOI: 10.1097/CCM.0000000000003687]

75 Luehti N, Cioccar i L, Eastwood G, Biesenbach P, Morgan R, Spross S, Young H, Peck L, Knee Chong C, Moore S, Moon K, Ekinci EI, Deane AM, Bellomo R, Mårtensson J. Hospital-acquired complications in intensive care unit patients with diabetes: A before-and-after study of a conventional vs liberal glucose control protocol. Acta Anaesthesiolog Scand 2019; 63: 761-768 [PMID: 30882892 DOI: 10.1111/aas.13354]

76 Lanspa MJ, Hirshberg EL, Phillips GD, Holmen J, Stoddard G, Orme J. Moderate glucose control is associated with increased mortality compared with tight glucose control in critically ill patients without diabetes. Chest 2013; 143: 1226-1234 [PMID: 23238456 DOI: 10.1378/chest.12-2072]

77 Lacherade JC, Jabre P, Bastuji-Garin S, Grimaldi D, Fangio P, Théron V, Outin H, De Jonghe B. Failure to achieve glycemic control despite intensive insulin therapy in a medical ICU: incidence and influence on ICU mortality. Intensive Care Med 2007; 33: 814-821 [PMID: 17431584 DOI: 10.1007/s00134-007-0543-0]

78 COITSS Study Investigators, Amnane D, Cariou A, Maxime V, Azoulay E, D'honneur G, Timsit
See KC. Glycemic targets in critically ill adults
