BioMed Central

Virology Journal

Open Access

Short report

Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape
Nicola Imelli1, Zsolt Ruzsics2, Daniel Puntener1, Michele Gastaldelli and Urs F Greber*1

Address: 1Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland and 2Max von Pettenkofer-Institut, Pettenkoferstrasse 9a, 80336 Munich, Germany
Email: Nicola Imelli - imellini@zool.unizh.ch; Zsolt Ruzsics - ruzsics@lmb.uni-muenchen.de; Daniel Puntener - daniel.puentener@zool.unizh.ch; Michele Gastaldelli - michelegastaldelli@gmail.com; Urs F Greber* - ufgreber@zool.uzh.ch

* Corresponding author

Published: 27 October 2009
Received: 12 June 2009
Accepted: 27 October 2009

Virology Journal 2009, 6:174 doi:10.1186/1743-422X-6-174
This article is available from: http://www.virologyj.com/content/6/1/174
© 2009 Imelli et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5) cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L) in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC) gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein), which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for genetic analyses of distinct host requirements for Ad endocytosis and escape from endosomes.

Findings

Human adenoviruses (Ads) cause a wide range of diseases [1-3] but it is incompletely known how virus structure relates to infection. Ad particles consist of an icosahedral capsid enclosing a linear-double stranded DNA genome. The outer capsid is made of hexon (protein II), the penton
base at the vertices (protein III), the protruding trimeric fibers (protein IV), and various minor proteins, IIIa, VI, VIII and IX. The inner core contains the double-stranded DNA with condensing proteins VII, V, and X, two copies of the terminal protein at the 5’ ends of the DNA, the IVa2 core protein, and about 10 copies of the 23 kDa protease L3/p23. L3/p23 is highly conserved across human Ads, and has important roles in virion morphogenesis and entry [4]. It cleaves substrates at glycine and isoleucine-containing consensus sites [5,6], and requires cofactors for optimal activity [7-9]. During virion assembly, L3/p23 cleaves six structural precursor (p) proteins, pIIla, pVI, pVII, pVIII, pX, the preterminal protein (p1TP), and possibly the L1-52/55K scaffolding protein [10]. L3/p23 cleaves V and pVII at putative cleavage sites, and hexon and pVI at degenerate cleavage sites in vitro [11].

The isolation of the temperature-sensitive (ts) Ad2-ts1 suggested that L3/p23 encoded a protease [12]. Ad2-ts1 is defective in protease packaging, and virion processing at the nonpermissive temperature (40°C) [13]. The mutation was mapped to P137L of L3/p23 [14], and eliminated by spontaneous reversions of the C22187T mutation in L3/p23 [15]. Yet, the recombinant P137L protease is catalytically active [16,17], and the ts1-phenotype rescued by adding a protease-activating peptide of the C-terminus of pVI to infected cells [13]. It is unknown if secondary mutations in Ad2-ts1 act synergistically with P137L, and contribute to the phenotype.

To dissect the complex Ad2-ts1 entry phenotype [18,19], we sequenced the structural proteins, the packaging-related proteins and the origins of replication of Ad2-ts1. Comparison of the Ad2-ts1 DNA sequence (GenBank accession numbers EU128936, EU128937, EU1128938) to the Ad2 sequence (GenBank accession number AC_0000027) revealed three mutations within the 5’ untranslated regions (UTRs), and five mutations in the coding sequence (see Additional file 1). Two of the latter mutations were silent, and three affected the protein-coding sequences of Ad2-ts1, including C22187T (P137L substitution in L3/p23). G5043C in IVa2 gave rise to a H130D substitution, which was, however, strictly conserved among all other Ad sequences, and may represent an error in the original Ad2 GenBank entry. A deletion of three nucleotides in Ad2-ts1 protein V (GAT16677-16679) deleted D47. D47 was also missing in an Ad isolate (obtained from Dr. E. White), and Ad2-BAC53 which was generated from Ad2 "adenoid 6". Since D47 is not present in any known species C Ad sequences except the Genbank Ad2 published sequences, and is the last residue of a nonconserved stretch of five aspartate residues, we believe that the GAT triplet (16677-16679) in GenBank is a sequencing or entry error. It is unlikely that protein V contributes to the Ad2-ts1 phenotype, since viruses lacking protein V can be grown in cultured cells [20]. We thus confirmed that the lack of proteolytic processing in Ad2-ts1 is not due to mutations in any of the protease consensus sequences.

To clarify if C22187T is necessary and sufficient for the Ad2-ts1 phenotype, we introduced this mutation into the full length Ad2 genome of Ad2-BAC53 [21] using exopson mutagenesis [22], generating Ad2-BAC46. We then prepared the backmutation T22187C together with a silent marker mutation C22188A yielding Ad2-BAC46_r. Limited DNA sequencing of Ad2 (Ad2-BAC53), Ad2-ts1, Ad2-BAC46 and Ad2-BAC46_r confirmed the introduced mutations (Fig. 1A). Viruses were reconstituted by DNA transfection in 911 human embryonic retinoblasts [23], grown to high titers in human lung epithelial A549 cells, purified by double-CsCl gradients, and assayed for protein concentration [24]. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie-blue analyses confirmed that Ad2-ts1 (grown at 40°C) and Ad2-BAC46 (40°C) contained pVI, pVII, and pVIII, whereas Ad2 sand Ad2-BAC46_r (37°C or 40°C, respectively) showed no signs of precursor proteins (Fig. 1B). The slightly faster migration of protein VI from Ad2-BAC46_r compared to Ad2 has not been observed in other experiments and is most likely due to edge effects in the SDS-PAGE. Note that wild type Ad2 virions grown at 37°C or at 40°C had identical Coomassie-blue stained proteins and were indistinguishable by electron microscopy (EM) negative staining (see Additional file 2A, B). Ad2-BAC46 (32°C) had mostly processed proteins VI, VII and VIII, and traces of nonprocessed precursors (Fig. 1B). These data agreed with endpoint titrations on human lung epithelial A549 cells [25] where both Ad2-ts1 (40°C) and Ad2-BAC46 (40°C) were attenuated by 1-2 logs compared to Ad2, Ad2-BAC46 or Ad2-BAC46_r (not shown).

A hallmark of infectious Ad entry is the activation of cell signalling pathways [26-28]. Ad2-ts1 is defective in signalling downstream of integrins [29], and does not trigger macrophagocytosis [19,30,31]. Macrophagocytosis is an infectious entry route for Ad3 [32], but not Ad2/5 [31]. Ad2-ts1 and Ad2-BAC46 (40°C) did not stimulate uptake of fluorescent dextran, unlike Ad2 (Fig. 1C). Quantitative thin section transmission electron microscopy (TEM) indicated that Ad2, Ad2-ts1 or Ad2-BAC46 particles associated with the cells at broadly similar levels (Fig. 2A, B). Importantly, fewer Ad2-ts1 (40°C) or Ad2-BAC46 (40°C) particles were in the cytosol and more in endosomes 30 min post infection (pi) compared to Ad2 grown at 40°C (Fig. 2A). In contrast, Ad2 and Ad2-BAC46r grown at 37°C had a similar localization at the plasma membrane, endosomes and the cytosol (see Additional file 2C). Kinetic analyses showed that Ad2-ts1 (40°C) was impaired at endosomal escape (Fig. 2C-E). In addition its
half maximal escape time was slightly longer than Ad2, 17 min compared to 15 min, in agreement with earlier measurements of Ad2 sensitivity to lysosomotropic agents [24]. This confirmed that P137L was responsible for the endosomal escape defect of Ad2-ts1.

The best-studied endocytic pathway is clathrin-mediated endocytosis. Clathrin-coated pits support transport of cargo between the plasma membrane, endosomes and the trans-Golgi-network (TGN) [33-35]. They are built around nucleating sites on membranes by adaptors and accessory proteins with multiple functions, including membrane bending and curvature sensing. Endocytic effector proteins like AP180 or CALM (clathrin assembly lymphoid myeloid) bind to both phosphatidylinositol 4,5-bisphosphate and clathrin [36]. Overexpression of the
carboxy-terminal clathrin heavy chain binding domain of AP180 (aa 530-915) prevents the recruitment of clathrin to the plasma membrane [37], and thereby inhibits clathrin-mediated endocytosis in many different cell types [38]. It also inhibits Ad2 and Ad2-ts1 uptake into epithelial cells [39], supporting the notion that Ad2 and Ad2-ts1 enter by clathrin-mediated endocytosis [31,39,40].

We tested if CALM was required for Ad2 and Ad2-ts1 endocytosis. CALM siRNAs reduced CALM protein by 70% (Fig. 3A, B). This inhibited Ad5-mediated GFP expression by about 50%, and also E1A expression from Ad2 but not Ad2-ts1 or Ad2-BAC46 infected HeLa cells (Fig. 3D, E). The number of E1A positive cells infected with Ad2-ts-1 and Ad2-BAC46 were 15 and 13 fold lower than for Ad2, indicating that the mutant viruses are defec-
tive for expression of the immediate early protein E1A. TEM analyses showed that the CALM knock-down cells contained less cytosolic Ad2 and more particles at the plasma membrane, but the distribution of Ad2-BAC46 particles was not significantly affected (p = 0.1, Fig. 3F, G). Since endocytosis is absolutely critical for Ad2 infection [41], and CALM depletion inhibits Ad2 but not Ad2-ts1 or Ad2-BAC46 infections (Fig. 3C-E), this suggests that CALM is involved in either uptake or endosomal escape of Ad2. Although CALM is involved in size regulation of clathrin-coated buds at the plasma membrane, its knock-down was reported not to affect internalization and recycling of transferrin, a well known ligand entering cells by clathrin-mediated endocytosis [42]. This could suggest...
that Ad2-ts1 and Ad2-BAC46 follow an uptake pathway to early endosomes similar to transferrin. Ad2-ts1 then takes a route to late endosomes/lysosomes indicated by LAMP1 colocalization [Fig. 3H, [39]]. Ad2 in contrast requires CALM for infectious endocytosis or endosomal escape. Noteably, CALM but not AP180 is involved in membrane traffic, including endosome-TGN transport [42] and late stages of the secretory pathway [43], and is enriched in AP1-containing endomembranes [44]. This suggests that CALM directly or indirectly supports cytosolic escape of Ad2 from early endosomes or TGN membranes.

This study provides new insights on how adenoviruses escape from endosomes. Both Ad2 and Ad2-ts1 attach to CAR, and use alpha v integrins for endocytic uptake [19,31,45]. Unlike Ad2, Ad2-ts1 fails to shed the fibers on the cell surface [24,30]. We speculate that fiber shedding is critical for viral escape from endosomes either by involvement of penton base [46], or additional factors such as protein VI [45,47]. Our results also provide a tool for genetic analyses of upstream events in clathrin-mediated endocytosis and membrane transport during Ad entry, and virion morphogenesis [48,49]. For example, the P137L mutation of L3/p23 is located in a conserved surface-exposed loop, which may enable to generate Ad2-ts1-like mutants of other serotypes that fail to reach the cytosol, and do not trigger cytosolic DNA-sensing mechanisms in innate immunity [50,51].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NI, ZR, DP carried out the molecular genetic studies, and ZR aligned the sequences with participation of NI, ZR, DP. NI carried out the EM analyses. MG, NI performed the immunoassays and the statistical analysis. UFG and ZR conceived of the study, UFG designed and coordinated the study and wrote the manuscript. All authors read and approved the final manuscript.

Additional material

Additional file 1
Comparison of genomic sequences from Ad2-ts1 and wild type Ad2.
This table lists the differences in the genomes of Ad2-ts1 and wild type Ad2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-422X-6-174-S1.TIFF]

Additional file 2
Characterization of wild type Ad2, Ad2-BAC46 and Ad2-ts1 virions.
This file describes biochemical, morphological and biological features of Ad2 and Ad2-derived virions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-422X-6-174-S2.PDF]

Acknowledgements
We thank Hans-Gerhard Burgert for Ad2-BAC53, and Karin Boucke for expert help with EM analyses. Funding was obtained from the Swiss National Science Foundation, the University of Zurich (to UFG), and the German Research Foundation (DFG SFB 455 to ZR). The authors declare that they have no competing interests.

References
1. Horwitz MS: Adenoviruses. In Fields Virology Volume 1. 3rd edition. Edited by: Fields BN, Knipe DM, Howley PM. Philadelphia, PA, USA: Raven Press; 1996:2149-2171.
2. Faden H, Wynn RJ, Campagna L, Ryan RM: Outbreak of adenovirus type 30 in a neonatal intensive care unit. J Pediatr 2005, 146:523-527.
3. Russell WC: Adenoviruses: update on structure and function. J Gen Virol 2009, 90:1-20.
4. Greber UF: Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev Med Virol 1998, 8:213-222.
5. Webster A, Russell S, Talbot P, Russell WC, Kemp GD: Characterization of the adenovirus steinase: substrate specificity. J Gen Virol 1989, 70:3225-3234.
6. Anderson CW: The proteinase polypeptide of adenovirus serotype 2 virions. Virol 1990, 177:259-272.
7. Webster A, Hay RT, Kemp G: The adenovirus proteinase is activated by a virus-coded disulphide-linked peptide. Cell 1993, 72:97-104.
8. Mangel WF, McGrath WJ, Toledo DL, Anderson CW: Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature (London) 1993, 361:274-275.
9. Brown MT, Mangel WF: Interaction of actin and its 11-amino acid C-terminal peptide as cofactors with the adenovirus proteinase. FEBS Lett 2004, 563:213-218.
10. Hasson TB, Ornelles DA, Shenk T: Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol 1992, 66:6133-6142.
11. Ruzindana-Umunyana A, Imbeault L, Weber JM: Substrate specificity of adenovirus proteinase. Virus Res 2002, 89:41-52.
12. Weber J: Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing of viral proteins. J Virol 1976, 17:462-471.
13. Rancourt C, Keyanianineh H, Sircar S, Labrecque P, Weber JM: Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity. Virology 1995, 209:167-173.
14. Yeh-Kai L, Akusjarvi G, Aleström P, Pettersson U, Tremblay M, Weber J: Genetic identification of an endoproteinase encoded by the adenovirus genome. J Mol Biol 1983, 167:217-222.
15. Weber JM, Houdé A: Spontaneous reversion of a C/T transition mutation in the adenovirus endoproteinase gene. Virology 1987, 156:427-428.
16. Rancourt C, Tihaní K, Bourbonniere M, Weber JM: Identification of active-site residues of the adenovirus endoproteinase. Proc Natl Acad Sci USA 1994, 91:844-847.
17. Ding J, McGrath WJ, Sweet RM, Mangel WF: Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. Embo J 1996, 15:1778-1783.
18. Cotten M, Weber JM: The adenovirus proteinase is required for virus entry into host cells. Virol 1995, 213:494-502.
19. Greber UF, Webster P, Weber J, Helenius A: The role of the adenovirus protease in virus entry into cells. *EMBO J* 1996, 15:5766-1777.

20. Ugal H, Borovjagin AV, Le LP, Wang M, Curiel DT: Thermostability/infectivity defect caused by deletion of the core protein V gene in human adenovirus type 5 is rescued by thermoselectable mutations in the core protein X precursor. *J Mol Biol* 2007, 366:1142-1160.

21. Hilgendorf A, Lindberg J, Ruzsics Z, Honing S, Elsing A, Lofqvist M, Engelman H, Burgert HG: Two distinct transport motifs in the adenovirus E3/10.4-14.5 proteins act in concert to downmodulate apoptosis receptors and the epithelial growth factor receptor. *J Biol Chem* 2003, 278:51872-51884.

22. Ruzsics Z, Wagner M, Osterlehner A, Cook J, Koszinowski U, Burgert HG: Transposon-assisted cloning and traceless mutagenesis of adenoviruses: Development of a novel vector based on species D. *J Virol* 2006, 80:8100-8113.

23. Falaux FJ, Koenig O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC, Van Der Eb AJ: Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. *Hum Gene Ther* 1996, 7:215-222.

24. Greber UF, Willetts M, Webster P, Helenius A: Stepwise dismantling of adenovirus 2 during entry into cells. *Cell* 1993, 75:477-486.

25. Schmitz M, Graf C, Gut T, Sirena D, Peter I, Dummer R, Greber UF, Hemmi S: Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses. *Gene Ther* 2006, 13:893-905.

26. Greber UF: Signalling in viral entry. *Cell Mol Life Sci* 2002, 59:608-626.

27. Greber UF, Gastaldelli M: Junctional gating: the achilles' heel of epithelial cells in pathogen infection. *Cell Host Microbe* 2007, 2:143-146.

28. Stewart PL, Nemerow GR: Cell integrins: commonly used receptors for diverse viral pathogens. *Trends Microbiol* 2007, 15:500-507.

29. Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF: Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. *EMBO J* 2001, 20:1310-1319.

30. Suomalainen M, Nakano MY, Boucke K, Suomalainen M, Sidwell RP, Greber UF: The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. *J Virol* 2000, 74:7085-7095.

31. Meier O, Boucke K, Vig S, Keller S, Sidwell RP, Hemmi S, Greber UF: Adenovirus triggers macrophagocytosis and endosomal leakage together with its clathrin mediated uptake. *J Cell Biol* 2002, 158:1119-1131.

32. Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandel E, Mercer J, Hemmi S, Greber UF: Subversion of CtBP1 controlled macropinocytosis by human Adenovirus serotype 3. *EMBO J* 2008, 27:956-966.

33. Traub LM: Sorting it out: AP-2 and alternate clathrin adaptors. *J Virol* 2003, 163:203-208.

34. Robinson MS: Adaptable adaptors for coated vesicles. *Trends Cell Biol* 2004, 14:167-174.

35. Groves JT: Bending mechanics and molecular organization in biological membranes. *Annu Rev Phys Chem* 2007, 58:697-717.

36. McMahon HT, Mills IG: COP and clathrin-coated vesicle budding: different pathways, common approaches. *Curr Opin Cell Biol* 2004, 16:379-384.

37. Ford MG, Pearse BM, Higgins MK, Vallas Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT: Simultaneous binding of Ptdlns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. *Science* 2001, 291:1051-1055.

38. Motley A, Bright NA, Seaman MN, Robinson MS: Clathrin-mediated endocytosis in AP-2-depleted cells. *Journal of Cell Biology* 2003, 162:909-918.

39. Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF: Infectious adenovirus type 2 transport through early but not late endosomes. *Traffic* 2008, 9:2265-2278.

40. Wang K, Huang S, Kapoor-Munshi A, Nemerow G: Adenovirus internalization and infection require dynamin. *J Virol* 1998, 72:3455-3458.

41. Meier O, Greber UF: Adenovirus endocytosis. *J Gene Med* 2003, 5:451-462.

42. Meyerholz A, Hinrichsen L, Grosos S, Esk PC, Brandes G, Ungewickell EJ: Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. *Traffic* 2005, 6:1225-1234.

43. Bushlin I, Petralia RS, Wu F, Harel A, Mughal MR, Mattson MP, Yao PJ: Clathrin assembly protein AP180 and CALM differentially control axogenesis and dendrite outgrowth in embryonic hippocampal neurons. *J Neurosci* 2008, 28:10257-10271.

44. Borner GH, Harbour M, Hester S, Lilley KS, Robinson MS: Comparative proteomics of clathrin-coated vesicles. *J Cell Biol* 2006, 175:571-578.

45. Wietzoff CM, Wodrich H, Gerace L, Nemerow GR: Adenovirus Protein VI Mediates Membrane Disruption following Capsid Disassembly. *J Virol* 2005, 79:1992-2000.

46. Schoehn G, Fender P, Chroboczek J, Hewat EA: Adenovirus 3 penton dodecahedron exhibits structural changes of the base on fibre binding. *Embo J* 1996, 15:6841-6846.

47. Seth P: Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. *J Virol* 1994, 68:1204-1206.

48. Silvestry M, Lindert S, Smith JG, Maier O, Wietzoff CM, Nemerow GR, Stewart PL: Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. *J Virol* 2009, 83:7375-7383.

49. Perez-Berna AJ, Marabini R, Scheres SH, Menendez-Conejero R, Dhruv Bhuyan IP, Curiel DT, Mangel WF, Flint SJ, San Martin C: Structure and uncoating of immature adenovirus. *J Mol Biol* 2009, 392:547-557.

50. Takaoa A, Wang Z, Choi MK, Yani H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodana T, Honda K, et al.: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. *Nature* 2007, 448:501-505.

51. Feier G, Drechsel L, Liese J, Schleicher U, Ruzsics Z, Imelli N, Greber UF, Keck S, Hildenbrand B, Krug A, et al.: Key role of spleenic myeloid DCs in the IFN-alphabeta response to adenoviruses in vivo. *PLoS Pathog* 2008, 4:e1000208.

52. Huang F, Khvorova A, Marshall W, Sorkin A: Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. *J Biol Chem* 2004, 279:16657-16661.

53. Greber UF, Suomalainen M, Sidwell RP, Boucke K, Ebersold M, Helenius A: The role of the nuclear pore complex in adenovirus DNA entry. *EMBO J* 1997, 16:5998-6007.