Testing for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in a European family-based study

Vitor Hugo Teixeira1,2, Celine Pierlot1, Paola Migliorini3, Alejandro Balsa4, René Westhovens5, Pilar Barrera6, Helena Alves7, Carlos Vaz7, Manuela Fernandes7, Dora Pascual-Salcedo4, Stefano Bombardieri3, Jan Dequeker5, Timothy R Radstake6, Piet Van Riel6, Leo van de Putte6, Antonio Lopes-Vaz7, Thomas Bardin8, Bernard Prum9, François Cornélis1,8,10,11, Elisabeth Petit-Teixeira1 for the European Consortium on Rheumatoid Arthritis Families

1GenHotel-EA3886, Evry University – Paris 7 University Medical School, AutoCure European Consortium member, 2 rue Gaston Crémieux, 91057 Evry-Genopole, France2Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal3Pisa University, Lungarno Pacinotti 43, 56126 Pisa, Italy4La Paz Hospital, Paseo Castellana 261, 28046 Madrid, Spain5KUL Leuven University, Naamsestraat 63, BE-3000 Leuven, Belgium6Nijmegen University, Geert Grooteplein 10, 6500HB Nijmegen, The Netherlands7Porto San Joao Hospital, Estrada Interior da Circunvalação, 4200 Porto, Portugal8Rheumatology Federation in Pôle Appareil Locomoteur, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris, France9Laboratoire Statistique et Génome, Genopole, Tour Evry 2, 91000 Evry, France10Clinical Genetics Unit in Pôle Laboratoire–Imagerie–Pharmacie Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010 Paris, France11Adult Genetics Unit, Centre Hospitalier Sud Francilien, Evry-Corbeil, 59 bd H Dunant, 91106 Corbeil-Essonnes, France

Abstract

Introduction A candidate gene approach, in a large case–control association study in the Dutch population, has shown that a 480 kb block on chromosome 4q27 encompassing KIAA1109/Tenr/IL2/IL21 genes is associated with rheumatoid arthritis. Compared with case–control association studies, family-based studies have the added advantage of controlling potential differences in population structure. Therefore, our aim was to test this association in populations of European origin by using a family-based approach.

Methods A total of 1,302 West European white individuals from 434 trio families were genotyped for the rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553 polymorphisms using the TaqMan Allelic discrimination assay (Applied Biosystems). The genetic association analyses for each SNP and haplotype were performed using the Transmission Disequilibrium Test and the genotype relative risk.
Results We observed evidence for association of the heterozygous rs4505848-AG genotype with rheumatoid arthritis ("p = 0.04"); however, no significance was found after Bonferroni correction. In concordance with previous findings in the Dutch population, we observed a trend of undertransmission for the rs6822844-T allele and rs6822844-GT genotype to rheumatoid arthritis patients. We further investigated the five SNP haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. We observed, as described in the Dutch population, a nonsignificant undertransmission of the AATGG haplotype to rheumatoid arthritis patients.

Conclusions Using a family-based study, we have provided a trend for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in populations of European descent. Nevertheless, we failed to replicate a significant association of this region in our rheumatoid arthritis family sample. Further investigation of this region, including detection and testing of all variants, is required to confirm rheumatoid arthritis association.

Introduction Rheumatoid arthritis (RA) is a common autoimmune inflammatory disease of unknown cause, in which both genetic and environmental risk factors have been implicated [1]. Since the genetic contribution to RA has been estimated to be between 50% and 60%, identification of genes contributing to disease is important for the understanding of underlying biological mechanisms [2].

In addition to human leucocyte antigen (HLA) [3] – the first identified genetic risk factor – and four other replicated regions – including the protein tyrosine phosphatase N22 gene (PTPN22) [4], the TNF receptor-associated factor 1 gene (TRAF1)/complement component factor 5 (C5) locus [5]-7], the 6q23 locus near the TNF-α-induced protein 3 gene (TNFAIP3) [8,9], and the signal transducer and activator of transcription 4 (STAT4) gene [10,11] – a new genetic region associated with RA was described in the Dutch population [12]. This region encompassing KIAA1109/Tenr/IL2/IL21 is contained in a large block (480 kb) of linkage disequilibrium located on chromosome 4q27 and includes the IL2 and IL21 genes, which are both plausible functional candidate loci for RA. Five SNPs (rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553) of the block were investigated in a sample set consisting of 1,047 RA patients and 929 controls, showing a significant association of the rs6822844-T allele and the rs6822844-GT genotype ("p = 0.0002, odds ratio (OR) = 0.72, 95% confidence interval (CI) = 0.61 to 0.86; and P = 0.0009, OR = 0.71, 95% CI = 0.58 to 0.87, respectively) and of a specific haplotype (AATGG) ("p = 0.00025, OR = 0.70, 95% CI = 0.57 to 0.85) with RA [12].

Furthermore, in the North American Rheumatoid Arthritis Consortium and in the Epidemiological Investigation of Rheumatoid Arthritis populations, rs6822844 and rs1398553 SNPs were significantly associated with RA ("p = 0.01, OR = 0.84, 95% CI = 0.74 to 0.96; and P = 0.003, OR = 1.17, 95% CI = 1.05 to 1.30, respectively) [6]. In addition, the last meta-analysis performed with the North American Rheumatoid Arthritis Consortium, the Epidemiological Investigation of Rheumatoid Arthritis and the Wellcome Trust Case Control Consortium studies, with 3,393 RA patients and 12,462 controls, observed evidence of association of 4q27 with RA in an independent replication, suggesting that 4q27 is a true-positive association [13].

Given that association studies compare the frequencies in patients versus healthy individuals, unknown biases in control frequencies may lead to spurious associations. Family-based association studies therefore remain important to definitively establish association, especially when small effect sizes as well as variability in allele frequency in different populations are observed. With the aim to further substantiate the association at the KIAA1109/Tenr/IL2/IL21 gene region, we therefore took advantage of one of the largest reported European family resources dedicated to RA family-based studies.

Materials and methods Study design and study population DNA was available from 434 white trio families from Western Europe through the European Consortium on Rheumatoid Arthritis Families collection followed by the selection of individuals fulfilling the American College of Rheumatology 1987 criteria for RA [14], according to the rheumatologist in charge of the patient. Each family consisted of one RA patient and both parents, with the ethnicity as determined by grandparental origin.

Characteristics of the 434 RA European Caucasian families are reported in Table 1. The 434 families included 308 families from France, 51 families from Italy, 32 families from Spain, 20 families from Belgium, nine families from the Netherlands and 14 families from Portugal. Families with an additional affected sibling and with RA patients...
aged <18 years were excluded. All individuals provided written informed consent and the study was approved by the Ethics Committee of Hôpital Kremlin-Bicêtre (Paris, France).

Genotyping

All samples were genotyped using the TaqMan allelic discrimination assay according to the manufacturer's instructions (Applied Biosystems, Foster City, CA, USA). Centre d’Étude du Polymorphisme Humain DNA samples were co-genotyped with all our samples, with no inconsistencies detected. The genotyping success rate in the 434 trio families was 100% (parents and probands included).

Statistical analysis

Using the previously reported frequencies for the rs6822844-T allele in Dutch RA patients (14.1%) and in controls (18.5%) [12], the power to detect an association was calculated using the method described by Garnier and colleagues [15]. The Hardy–Weinberg equilibrium was checked in the control group (constituting the nontransmitted parental chromosomes from the trio) prior to analysis. The association analysis relied on the Transmission Disequilibrium Test, which for a given allele compares its transmission from heterozygous parents to RA patients with the transmission expected from Mendel’s law (that is, 50%) [16].

Secondly, we used the genotype relative risk, which compares the affected offspring’s genotype with the control genotype derived from nontransmitted parental chromosomes [17]. ORs were calculated and 95% CIs were approximated using Woolf’s method [18], with Haldane’s correction [19]. Haplotypes were generated using GENEHUNTER software [20]. We then carried out multi-locus tests of association testing haplotypes of SNPs using the Transmission Disequilibrium Test and haplotype relative risk. P values were adjusted with Bonferroni correction [21] for each independent test performed.

Results

Power calculation

Using the previously reported frequencies for the rs6822844-T allele in Dutch RA patients (14.1%) and in controls (18.5%) [12], association analysis of 434 trio families provides an 80% power to reach statistical significance (P <0.05).

Hardy–Weinberg equilibrium check

The five SNPs in the sample investigated were in Hardy–Weinberg equilibrium in the control group.

Test for association in RA trio families

A total of 1,302 European individuals from 434 trio families (one RA case and both parents) were analyzed. Three hundred and eight families were of French origin and 126 were from other continental Western European countries.

With the rs6822844 (G/T) SNP we observed deviation from Mendel’s first law, with a nonsignificant undertransmission of 45.3% of the T allele to the patients in the 434 families (P = 0.24) (Table 2). No significant association with RA was detected for the four other SNPs (Table 2).

Since RA is a heterogeneous disease and distinct subsets of patients are characterized by the presence of autoantibodies such a rheumatoid factor and anti-citrullinated protein antibodies, we also performed a stratified analysis for the presence or absence of rheumatoid factor or anti-citrullinated protein antibodies; no associations were detected (data not shown). Furthermore, the same tests were performed in subgroups stratified for the presence of the HLA-DRB1 shared epitope, PTPN22-1858T and TRAF1/C5 rs10818488-A variant, and no associations were detected (data not shown). One of the advantages of family trio data is that they provide perfectly matched controls for each patient investigated. Each patient chromosome, transmitted by a given parent, is perfectly matched for the population of origin with the untransmitted chromosome of each heterozygous parent. The genotype relative risk

Table 1

Characteristics of rheumatoid arthritis (RA) index cases

Characteristic	RA families (n = 434)
Females (n (%))	375 (86%)
Mean age at disease onset (years) (± standard deviation)	31.1 (9.7)
Mean disease duration (years) (± standard deviation)	9.8(8.5)
With bone erosions (n (%))	336 (77%)
Seropositive for rheumatoid factor (n (%))	323 (76%) (out of 425 RA patients)
Seropositive for anti-cycle citrullinated peptides antibodies (n (%))	214 (76%) (out of 282 RA patients)
Carrying at least one HLA-DRB1 shared epitope allele (n (%))	152 (77%) (out of 197 RA patients)
Carrying at least one PTPN22-1858T allele (n (%))	115 (27%)
Carrying the TRAF1/C5 rs10818488-A variant (n (%))	277 (64%)

DRB1^a*0101, *DRB1*^a*0102, *DRB1*^a*0401, *DRB1*^a*0404, *DRB1*^a*0405, *DRB1*^a*0408, *DRB1*^a*1001.
analysis of the rs4505848 (A/G) SNP showed an association of the heterozygous AG genotype with RA ($P = 0.04$, $OR = 1.32$, $95\% CI = 1.01$ to 1.72) (Table 3). The significance threshold was not reached, however, after Bonferroni correction. In the four other SNPs, no association with RA was detected (Table 3). In concordance with previous findings in the Dutch population, we observed an undertransmission of the rs6822844-T allele and the rs6822844-GT genotype, but without significance (Tables 2 and 3).

We further investigated the five SNP (rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553) haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. These seven haplotypes of the combined five SNPs of the block have a pooled frequency of 96%. We observed a nonsignificant undertransmission of the AATGG haplotype ($P = 0.19$) (Table 4), which was reported as associated with RA in the Dutch study [12]. No relative risk was detected for any haplotype genotype (data not shown). There were no differences between families of French origin and other continental Western Europe families, as well as no differences between paternal transmission and maternal transmission for all statistical analyses performed (data not shown).

Discussion

A recent case–control study in the Dutch population has shown association of RA, celiac disease and type 1 diabetes with the 4q27 gene region. In that study the rs6822844-T allele was reported to be a perfect proxy for a haplotype that is highly associated with autoimmune diseases with frequencies of 0.13 in cases versus 0.19 in North European controls [12].

In addition, a study from the Wellcome Trust Case Control Consortium identified this 4q27 region in a search for risk factors for type 1 diabetes [22]. In a follow-up study, some support for this association with type 1 diabetes was provided [23]. The last meta-analysis of data from three genome-wide association studies of type 1 diabetes – testing 305,090 SNPs in 3,561 type 1 diabetes cases and 4,646 controls of European ancestry – obtained further support for 4q27 type 1 diabetes association ($P = 1.9 \times 10^{-8}$), indicating that this is a true type 1 diabetes locus [24]. The same region was studied in inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis. Four SNPs

Table 2
Family-based association of the chromosome 4q27 gene region with rheumatoid arthritis: Transmission Disequilibrium Test

4q27 region SNP	Allele	Transmitted allele	Untransmitted allele	Transmission (%)	P value
rs4505848	A	185	189	49.5	0.84
rs11732095	A	96	78	55.2	0.17
rs6822844	T	97	114	45.3	0.24
rs4492018	G	183	174	51.3	0.63
rs1398553	G	182	182	50	1

*Percentage of transmission from heterozygous parents.

Table 3
Family-based association of the chromosome 4q27 gene region with rheumatoid arthritis: genotype relative risk

SNP	Genotype	RA cases (n)	Controls (n)	Odds ratio (95% confidence interval)	P value
rs4505848	GG	38	51	0.72 (0.46 to 1.12)	0.18 (GG vs. AA + AG)
	AG	213	183	1.32 (1.01 to 1.72)	0.04 (AG vs. GG + AA)*
	AA	182	199	0.85 (0.65 to 1.11)	0.28 (AA vs. AG + GG)
rs11732095	GG	7	9	0.77 (0.28 to 2.09)	0.8 (GG vs. AA + AG)
	AG	87	101	0.83 (0.6 to 1.15)	0.28 (AG vs. GG + AA)
	AA	340	324	1.23 (0.9 to 1.68)	0.23 (AA vs. AG + GG)
rs6822844	TT	8	11	0.72 (0.29 to 1.81)	0.64 (TT vs. GG + TG)
	TG	99	110	0.87 (0.64 to 1.19)	0.43 (TG vs. TT + GG)
	GG	327	313	1.18 (0.87 to 1.6)	0.32 (GG vs. TT + TG)
rs4492018	GG	235	232	1.03 (0.79 to 1.35)	0.89 (GG vs. AA + AG)
	AG	174	171	1.03 (0.78 to 1.35)	0.89 (AG vs. GG + AA)
	AA	25	31	0.79 (0.46 to 1.36)	0.49 (AA vs. AG + GG)
rs1398553	GG	204	214	0.91 (0.7 to 1.19)	0.54 (GG vs. AA + AG)
	AG	195	175	1.2 (0.92 to 1.57)	0.20 (AG vs. GG + AA)
	AA	35	45	0.77 (0.49 to 1.21)	0.30 (AA vs. AG + GG)

*P value was not significant after Bonferroni correction.
were genotyped in three cohorts concerning 4,782 cases (3,194 ulcerative colitis, 1,588 Crohn's disease) and 2,616 controls. All four SNPs were strongly associated with ulcerative colitis and moderately associated with Crohn's disease [25]. The 4q27 locus was also reported to be associated with celiac disease [26]. Recent evidence is also provided of a role for this region in psoriasis and psoriatic arthritis [27]. Finally, a genetic association with systemic lupus erythematosus and two SNPs located within the IL-21 gene was found in a case–control study (1,318 cases and 1,318 controls) [28]. All of these studies provide evidence that 4q27 seems to be a common locus for multiple forms of autoimmune diseases.

In our family-based study, compared with the Dutch study, we have detected a similar undertransmission of the rs6822844-T allele, the rs6822844-GT genotype and the AATGG haplotype, but without significance. Furthermore, we observed evidence of association between RA and the rs4505848-AG genotype, but no significance was found after Bonferroni correction. These results exclude the 4q27 locus from being a major RA genetic region, but a minor association should be not excluded and needs to be tested in a larger RA trio sample. Furthermore the already cited last RA meta-analysis, suggesting a 4q27 true-positive association, was performed in a large number of individuals. For the rs4572894 SNP tested, there was only a 2% variation between RA and non-RA minor allele frequency (27% versus 29%, respectively) with a P value of 1.1% [13]. The putative effect of the 4q27 locus in RA is therefore very small and difficult to replicate in our RA family sample. In addition, a two-stage genome-wide association study of RA in the Spanish population did not found 4q27 as a RA susceptibility gene region [29].

Table 4

Haplotype	Transmitted	Untransmitted	Transmission (%)	P value
GAGGA	113	112	50	0.95
AAGAG	133	126	52	0.69
AATGG	76	93	45	0.19
AAGGG	110	102	52	0.58
AGGGG	67	67	50	1
GAGGG	81	64	56	0.16
AAGAG	53	43	55	0.31

rs4505848 (G/A) – rs11732095 (G/A) – rs6822844 (T/G) – rs4492018 (G/A) – rs1398553 (G/A). Percentage of transmission from heterozygous parents.

The long region of linkage disequilibrium at chromosome 4q27 contains several genes: testis nuclear RNA-binding protein, a gene encoding a protein of unknown function (KIAA1109), and genes encoding the IL-2 and IL-21 cytokines. Testis nuclear RNA-binding protein is expressed primarily in the testis and KIAA1109 transcripts are ubiquitous, hence their roles in autoimmunity are not particularly compelling. Both IL-2 and IL-21 belong to the type 1 cytokine family, share a large degree of homology, and possess pleotropic functions in immune cells [26]. These two genes are both plausible functional candidates as genetic modifiers of autoimmunity, and thus have particular interest to RA.

IL-2 exerts its effects on many cell types, the most prominent of which is the T lymphocyte. Accordingly, a major function of IL-2 is to promote proliferation and expansion of both antigen-specific clones of CD4+ and CD8+ T cells as well as to induce production of other cytokines. In CD4+ T cells, IL-2 plays a nonredundant role in the development of CD4+ CD25+ regulatory T cells. Accumulating evidence supports CD4+ CD25high regulatory T cells playing an essential role in controlling and preventing autoimmunity [30]. In addition, the IL2 receptor (CD25) susceptibility locus has recently been reported to be associated with RA [22].

IL-21 is involved in both cell-mediated and humoral responses and has a pleiotropic effect on a variety of immune and nonimmune cells. In RA, the synovial fluid and tissue have enhanced inflammatory responses to IL-21 and elevated IL-21 receptor expression. In two animal models – collagen-induced arthritis and adjuvant-induced arthritis – treatment with an IL-21-blocking agent ameliorated disease and/or reversed established disease, and also lowered levels of IL-6 and IL-17 [31].

Conclusions

In the present study, using a family-based approach, we have provided a trend for the association of the KIAA1109/Tenr/IL2/IL21 gene region with RA in European descent populations. Nevertheless, we failed to replicate a significant association of this region in our RA family sample. Further investigation of this region, including detection and testing of all variants, is required to confirm RA association.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VHT carried out the molecular genetic studies. VHT and EP-T carried out the design of the study and drafted the manuscript. VHT, EP-T, BP and CP performed analysis of the data. PM, AB, RW, PB, HA, CV, MF, DP-S, SB, JD, TRR, PVR, LvDP, AL-V, TB and FC contributed to the recruitment of families and to the acquisition of clinical data. All authors read and approved the final manuscript.

Authors’ information
The European Consortium on Rheumatoid Arthritis Families initiated with funding from the European Commission (BIOMED2) is coordinated by FC.

Acknowledgements
The present work was supported by Association Française des Polyarthrites, Société Française de Rhumatologie, Association Rhumatisme et Traduction, European Union for AutoCure, Association Polyarctique, Groupe Taitbout, Genopole®. VHT’s work was supported by the Foundation for Science and Technology, Portugal (grant SFRH/BD/23304/2005). The authors are grateful to the RA patients, their family and rheumatologists for their participation in this study. The authors thank Dr Sandra Lasbleiz and Dr Pierre Fritz for reviewing clinical data.

References
1. Firestein GS: Evolving concepts of rheumatoid arthritis [review]. Nature 2003, 423:356-361.
2. Helm-van Mil AH Van der, Wesoly JZ, Huizinga TW: Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol 2005, 17:299-304.
3. Huizinga TW, Amos CI, Helm-van Mil AH van der, Chen W, van Gaalen FA, Jawaheer D, Schreuder GM, Wener M, Breedveld FC, Ahmad N, Lum RF, de Vries RR, Gregersen PK, Toes RE, Criswell LA: Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA–DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005, 52:3243-3248.
4. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardill KG, Huang Q, Smith AM, Spoerke JM, McAllister LB, Jeffery DA, Lee AT, Batliwalla F, Remmers E, Gutiérrez-Opín Rheumatol 2007, 20:1241-1246.
5. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper A, Healey B, Burren OS, Coleman G, Maisuria M, Meadows W, Smink LJ, Zeitels L, Yang JH, Vella A, Nutland S, Schuilenburg H, Hunder G: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988, 31:315-324.
6. Gueguern S, Dieudé P, Michoud L, Barber S, Tan A, Lasbleiz S, Bardin T, Prum B, Cornelis F: IRFS rs204640-40 allele, the new genetic factor for systemic lupus erythematosus, is not associated with rheumatoid arthritis. Ann Rheum Dis 2007, 66:828-831.
7. Spielman R, McGinnis E, Ewens W: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993, 52:506-526.
8. Ladhrop GM: Estimating genotype relative risks. Tissue Antigens 1983, 22:160-182.
9. Woolf B: On estimating the relation between blood group and disease. Ann Hum Genet 1955, 19:251-253.
10. Haldane JB: The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 1956, 20:309-311.
11. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996, 58:1347-1363.
12. Bonferroni CE: Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 1936, 83-62.
13. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661-678.
14. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szabo JS, Haffner JP, Ziegels L, Yang JH, Vella A, Nutland S, Stephens HE, Schuilenburg H, Coleman G, Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ovington NR, Allen J, Adlem E, Leung HT, et al.: Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007, 39:857-864.

http://arthritis-research.com/content/11/2/R45

Page 6 of 7 (page number not for citation purposes)
24. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, Downes K, Barrett JC, Healy BC, Mychaleckyj JC, Warram JH, Todd JA: Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. *Nat Genet* 2008, 40:1399-1401.

25. Festen EA, Goyette P, Scott R, Annese V, Zhernakova A, Brant SR, Cho JH, Silverberg MS, Taylor KD, Stokkers PC, McGovern D, Palmieri O, Achkar JP, Xavier RJ, Duerr RH, Daly MJ, Wijmenga C, Weersma RK, Rioux JD: Genetic variants in the region harbouring IL2/IL21 associated to ulcerative colitis. *Gut* 2009 in press.

26. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, Wapenaar MC, Barnard MC, Bethel G, Holmes GK, Feigery C, Jewell D, Kelleher D, Kumar P, Travis S, Walters JR, Sanders DS, Howdle P, Swift J, Playford RJ, McLaren WM, Mearin ML, Mulder CJ, McManus R, McGinnis R, Cardon LR, Deloukas P, Wijmenga C: A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. *Nat Genet* 2007, 39:827-829.

27. Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, Wise C, Miner A, Malloy MJ, Pullinger CR, Kane JP, Saccone S, Worthington J, Bruce I, Kwok PY, Menter A, Krueger J, Barton A, Saccone NL, Bowcock AM: A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. *PLoS Genet* 2008, 4:e1000041.

28. Sawalha AH, Kaufman KM, Kelly JA, Adler AJ, Aberle T, Kilpatrick J, Wakeland EK, Li QZ, Wandstrat AE, Karp DR, James JA, Merrill JT, Lipsky PE, Harley JB: Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. *Ann Rheum Dis* 2008, 67:458-461.

29. Julià A, Ballina J, Cañete JD, Balsa A, Tornero-Mollina J, Naranjo A, Alperi-López M, Erra A, Pascual-Salcedo D, Barceló P, Camps J, Marsal S: Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. *Arthritis Rheum* 2008, 58:2275-2286.

30. Chistiakov DA, Voronova NV, Chistiakov PA: The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies [review]. *Immunol Lett* 2008, 118:1-5.

31. Spolski R, Leonard WJ: The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer [review]. *Curr Opin Immunol* 2008, 20:295-301.