Causes of variation in epigenetic aging across the lifespan

Shuai Li1, 2, Tuong L Nguyen1, Ee Ming Wong3, 4, Pierre-Antoine Dugué1, 3, 5, Gillian S Dite1, Nicola J Armstrong6, Jeffrey M Craig7, Karen A Mather8, 9, Perminder S Sachdev8, 9, Richard Saffery11, Joohon Sung12, Qihua Tan13, Anbupalam Thalamuthu8, Roger L Milne1, 3, 5, Graham G Giles1, 3, 5, Melissa C Southey3, 4, 5, John L Hopper1*

1 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia

2 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

3 Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia

4 Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia.

5 Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia

6 Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia

7 Centre for Molecular and Medical Research, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia

8 Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia

9 Neuroscience Research Australia, Sydney, Australia

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
10 Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW, Australia

11 Murdoch Childrens Research Institute, Parkville, Victoria, Australia

12 Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 151-742 Seoul, Korea.

13 Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark

*Corresponding author

Address: Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Parkville, Victoria 3051, Australia

Email: j.hopper@unimelb.edu.au

Word count: 2582

Number of tables: 2

Number of figures: 2
ABSTRACT

Background DNA methylation-based biological age (DNAm age) is potentially an important biomarker for adult health. Studies in specific age ranges have found widely varying results about its causes of variation. We investigated these causes across the lifespan.

Methods We pooled genome-wide DNA methylation data for 4,217 people aged 0-92 years from 1,871 families. DNAm age was calculated using the Horvath epigenetic clock. We estimated familial correlations in DNAm age for monozygotic (MZ) twin, dizygotic (DZ) twin, sibling, parent-offspring, and spouse pairs by cohabitation status. Genetic and environmental variance component models were fitted and compared.

Results Twin pair correlations were -0.12 to 0.18 around birth, not different from zero (all P>0.29). For all pairs of relatives, their correlations increased with time spent living together (all P<0.02) at different rates (MZ>DZ and siblings>parent-offspring; P<0.001) and decreased with time spent living apart (P=0.02) at similar rates. These correlation patterns were best explained by cohabitation-dependent shared environmental factors, the effects of which were 1.41 (95% confidence interval [CI], 1.16 to 1.66) times greater for MZ pairs than for DZ and sibling pairs, and the latter were 2.03 (95% CI, 1.13 to 9.47) times greater than for parent-offspring pairs. Genetic factors explained 13% (95% CI, -10% to 35%) of variation (P=0.27).

Conclusion Variation in DNAm age is mostly caused by environmental factors, including those shared to different extents by relatives while living together and whose effects persist into old age. The equal environment assumption of the classic twin study might not hold for epigenetic aging.

Key words

Aging, epigenetic aging, biological age, epigenetic clock, DNA methylation, twin study
Epigenetic alteration is considered to be a hallmark of aging\(^1\). Several measures of biological age based on DNA methylation (DNAm age) have been developed\(^2,3\), and found to be associated with mortality and disease risk in adulthood\(^2-6\). DNAm age, therefore, is potentially an important biomarker for adult health.

Lifestyle factors, disease risk factors, and genetic variants have been reported to be associated with DNAm age\(^2,4,7-10\). Pedigree-based and single nucleotide polymorphism (SNP)-based studies in specific age ranges, however, have given widely varying estimates of the percentage of variation in DNAm age caused by genetic factors, ranging from 0% to 100% depending on population, age range, and method\(^6,9,11-13\). There is also evidence that environmental factors shared within families explain a substantial proportion of variation\(^14\). Individual studies have typically focused on specific age ranges, so of themselves are not able to provide a comprehensive view of variation over the lifespan during which family members live together and apart at different ages, depending on their relationships.

We previously pooled DNA methylation data from a variety of twin and family studies in which participants were at different life stages, from birth to older age. We found evidence that variation in genome-wide average methylation is caused to a great extent by prenatal environmental factors, as well as by environmental factors shared by relatives (including spouse pairs) when they cohabit, and that these effects can persist at least to some extent across the whole lifetime\(^15\).

We have now applied the same approach to investigate the genetic, shared environmental, and individual-specific environmental causes of variation in DNAm age across the lifespan.
Methods

Study sample

We analyzed genome-wide DNA methylation data from 10 studies, some accessed through public repositories. The total sample included 4,217 people aged 0–92 years from 1,871 families, including monozygotic (MZ) twins, dizygotic (DZ) twins, siblings, parents, and spouses (Table 1). Most studies measured methylation using DNA extracted from peripheral blood and the HumanMethylation450 array (Supplementary Appendix).

DNAm age and epigenetic age acceleration

We used the Horvath epigenetic clock12 to determine DNAm age (https://dnamage.genetics.ucla.edu/new) because it was developed across tissues and ages, and the 353 methylation sites used by this clock are common to the three methylation arrays used by the 10 studies (Table 1). We chose the ‘Normalize Data’ option of the online calculator to normalize each dataset to be comparable to the training data of this epigenetic clock. Epigenetic age acceleration was defined as DNAm age adjusted for the effects of chronological age. Sensitivity analyses were performed using only those studies in which DNA methylation was measured in blood to examine the robustness of results to cell composition (see Supplementary Appendix).

Statistical analysis

Residuals of epigenetic age acceleration adjusted for sex were used in subsequent analyses. We used a multivariate normal model for pedigree analysis17,18 and the program FISHER19 to estimate correlations and to fit variance components models; see below. The likelihood ratio test was used to compare nested models. All P-values were two-sided and P<0.05 was considered significant.

According to the pattern in familial correlations by chronological age, and following previous theoretical and empirical studies15,17,20, the familial correlations for different types of pairs (MZ, DZ, sibling, parent-
offspring and spouse) across the lifespan were modelled as a function of cohabitation status (see Supplementary Appendix).

We then assumed that the variation of DNAm age can be caused by combinations of additive genetic factors (A), shared environmental factors (C), and individual-specific environmental factors (E). We assessed model fits using the Akaike Information Criterion for the following models and assumptions (see Supplementary Appendix):

1) AE model: variation is caused by only A and E, and the effects of A are constant across the lifespan;
2) Cohabitation-dependent AE model: variation is caused only by A and E, and the effects of A depend on cohabitation;
3) Cohabitation-dependent ACE model: variation is caused by A, C and E, and the effects of A and C both depend on cohabitation;
4) Cohabitation-dependent CE model: variation is caused by only C and E, and the effects of C depend on cohabitation.
Results

Sample characteristics

DNAm age was moderately to strongly correlated with chronological age within each dataset, with correlations ranging from 0.44 to 0.84 (Figure S1). The variance of DNAm age increased with chronological age, being small for newborns, greater for adolescents, and relatively constant with age for adults (Figure S2).

Within-study familial correlations

Table 2 shows the within-study familial correlation estimates. There was no difference in the correlation between MZ and DZ pairs for newborns or adults, but there was a difference (P<0.001) for adolescents (Table 2): 0.69 (95% confidence interval [CI], 0.63 to 0.74) for MZ pairs, and 0.35 (95% CI, 0.20 to 0.48) for DZ pairs. For MZ and DZ pairs combined, there was consistent evidence across datasets and tissues that the correlation was around -0.12 to 0.18 at birth and 18 months, not different from zero (all P>0.29), and about 0.3 to 0.5 for adults (different from zero in seven of eight datasets; all P<0.01). Across all datasets, the results suggested that twin pair correlations increased with age from birth up until adulthood and were maintained to older age.

The correlation for adolescent sibling pairs was 0.32 (95% CI, 0.20 to 0.42), and not different from that for adolescent DZ pairs (P=0.89), but less than that for adolescent MZ pairs (P<0.001). Middle-aged sibling pairs were correlated at 0.12 (95% CI, 0.02 to 0.22), less than that for adolescent sibling pairs (P=0.02). Parent-offspring pairs were correlated at 0.15 (95% CI, 0.02 to 0.27), less than that for pairs of other types of 1st-degree relatives in the same study, e.g., DZ pairs and sibling pairs (both P<0.04). The spouse pair correlations were -0.01 (95% CI, -0.25 to 0.24) and 0.12 (95% CI, -0.12 to 0.35).

From the sensitivity analysis, the familial correlation results were robust to the adjustment for blood cell composition (Table S1).
Familial correlations across the lifespan

From modelling the familial correlations for the different types of pairs as a function of their cohabitation status (Table S2), the estimates of θ (see Supplementary Appendix for the definition) ranged from 0.76 to 1.20 across pairs, none different from 1 (all $P>0.1$). We therefore fitted a model with $\theta=1$ for all pairs; the fit was not different from the model above ($P=0.69$). Under the latter model, the familial correlations increased with time living together at different rates ($P<0.001$) across pairs. The decreasing rates did not differ across pairs ($P=0.27$). The correlations for DZ and sibling pairs were similar ($P=0.13$), and when combined their correlation was different from that for parent-sibling pairs ($P=0.002$) even though these pairs are all genetically 1st-degree relatives, and was smaller than that for the MZ pairs ($P=0.001$).

We then fitted a model in which DZ and sibling pairs were combined and the decreasing rates were the same across all pairs. The goodness-of-fit of this model was not inferior to that of the model above ($P=0.14$) and the model included fewer parameters. Under this model, the familial correlations for MZ, DZ and sibling, and parent-offspring pairs all increased with time living together (all $P<0.02$) with different increasing rates ($P<0.001$); most rapidly for MZ pairs ($\lambda=0.041$, 95% CI, 0.035 to 0.048), less rapidly for DZ and sibling pairs ($\lambda=0.026$, 95% CI, 0.020 to 0.031), and least rapidly for parent-offspring pairs ($\lambda=0.011$, 95% CI, 0.002 to 0.0021), and decreased with time living apart ($P=0.02$); see Figure 1.

Causes of variation across the lifespan

Results from modelling the causes of variation across the lifespan are shown in Figure 2 and Table S3. Under the AE model, additive genetic factors explained 52% (95% CI, 48% to 53%) of variation. This, however, was the worst fitting model.

Under the cohabitation-dependent AE model, the effects of genetic factors increased with time living together and decreased with time living apart, and explained minimal variation around birth, ~40% of variation in adolescence and adulthood, and ~50% of variation at age of 18 years.
Under the cohabitation-dependent ACE model, both the effects of genetic factors and the effects of shared environmental factors increased with time living together but did not change with time living apart. The goodness-of-fits of the cohabitation-dependent AE and cohabitation-dependent ACE models were similar.

The best fitting model was the cohabitation-dependent CE model. Under this model, different pairs shared the effects of environmental factors to different extents. The effects for MZ pairs were 1.41 (95% CI, 1.16 to 1.66) times those for DZ and sibling pairs, and the latter were 2.03 (95% CI, 1.13 to 9.47) times those for parent-offspring pairs. For all pairs, the proportion of variation explained by the shared environmental factors increased with time living together (P<0.001) and decreased at a slower rate with time living apart (P=0.02).

Under the above cohabitation-dependent CE model, we further assumed that the variation is additionally caused by genetic factors whose effects are constant across the lifespan (see Supplementary Appendix). Genetic factors were estimated to explain 13% (95% CI, -10% to 35%) of the variation (P=0.27). That is, after taking into account the existence of non-genetic cohabitation-dependent effects, there was no evidence for a substantive role of genetic factors.
Discussion

Our study provides novel insights into the causes of variation in DNA methylation age across the lifespan, which appear to be largely due to environmental (i.e. non-genetic) factors. These include cohabitation-related environmental factors that are evident prior to adulthood, and whose effects persist across the whole of the lifespan. Two longitudinal studies have also found that DNA methylation age is largely set before adulthood21.

Our data suggest that people in the same family are not correlated in DNA methylation age when they start cohabiting; the longer they live together the more similar they become but at a rate that differs substantially depending on their relationship. This is likely due to the different types of relatives sharing environmental factors relevant to DNA methylation age to different degrees. When pairs of relatives live apart, they no longer share the cohabitation environment, and this is reflected by a slow dissipation of the effects of shared environmental factors across adulthood at a rate that appears to be similar for all pairs.

For MZ pairs, some DNA methylation measures have been found to be similar at birth but divergent over the lifetime, a phenomenon called ‘epigenetic drift’15,22. DNA methylation age, however, shows a different pattern; MZ pairs are not similar at birth (and neither are DZ pairs) but become more similar the longer they live together, and do so more rapidly than do DZ or other pairs of relatives. MZ pairs then appear to slowly become less similar in DNA methylation age the longer they live apart in adulthood, at the same rate as for other pairs of relatives, but still maintain a substantial similarity even into late life. These observations suggest that DNA methylation age reflects biological aging processes beyond what is reflected by DNA methylation alone.

Our finding that environmental factors shared while cohabiting play a major role in determining the variation in DNA methylation age is also supported by the observation that the variance of DNA methylation age increased dramatically with age prior to adulthood, and was relatively stable across adulthood (Figure S2). The latter has also been found by previous studies21.

Given DNA methylation age has been found to be associated with the risks of death and various diseases in adulthood, identifying the environmental factors affecting DNA methylation age prior to adulthood might give novel insights into
which, and how, early-life factors impact late-life health outcomes. This would have obvious implications for prevention and its timing. There is some evidence that DNAm age is associated with physical developmental characteristics, and exposures to stress and violence for children, although most studies had a moderate sample size23-27.

The classic twin design assumes that MZ and DZ pairs share environmental effects relevant to the trait of interest to exactly the same extent; i.e., the equal environment assumption. Our study shows that this assumption might not hold for DNAm age because there was strong evidence that MZ and DZ pairs share their pre-adult environmental effects to different extents. Furthermore, DZ and sibling pairs were more correlated than parent-offspring pairs, despite all being genetically 1st-degree relatives of one another. This is not consistent with the correlations predicted by additive genetic factors. Given there is little evidence of genetic effects, our results are not consistent with gene-environment interaction either28; we found that models including genetic effects, no matter whether as constant or cohabitation-dependent, were less consistent with the data compared with the cohabitation-CE model.

Previous twin and pedigree studies have assumed the equal environment assumption holds perfectly, and consequently reported the heritability of DNAm age to be ~40% in adolescence and middle-age6,9,12. Note that, under our cohabitation-dependent AE model (which makes the equal environment assumption) genetic factors would explain ~40% of variation in adolescence and middle-age. This model, however, was not a good fit and was rejected in favor of models that included cohabitation-dependent environmental effects.

Studies have predicted that measured SNPs could explain 0–70% of variation in DNAm age measured from whole blood and brain tissue7-9,11. Those analyses explicitly assumed, however, that all of the phenotypic covariance is due to genetic factors. In particular, one study predicted the SNP-based heritability of DNAm age based on mothers and children increased with the children’s age, being zero when the children were around birth and 37% when the children were 15 years old7 – in line with our data and the estimates under the cohabitation-dependent AE model that was rejected. Without relying on the equal environment assumption, we found that genetic factors explained at most a small, and not statistically significant,
proportion (~10%) of variation. Therefore, studies using the equal environment assumption might have
overestimated the influence of genetic factors on DNAm age variation.

We used the epigenetic clock to determine DNAm age, as this clock is mostly applicable to our multi-tissue
methylation data and study sample including newborns, children and adults. Other DNAm age measures29-
31 were developed using blood methylation data for middle-aged people only.

Our findings should be interpreted with caution given that they are from statistical modelling which alone
cannot prove that a consistent model is a true representation of nature. All that can be said is whether or not
the data “are consistent with” a particular explanation. Nonetheless, statistical modelling is an attempt to
identify the plausible and implausible explanations of data, and our results suggest that cohabitation
environmental factors being shared by pairs of relatives to different extents is more plausible than other
explanations.

Our study has some potential limitations given we pooled data across studies. To minimize heterogeneity,
we normalized methylation data from each study to be comparable to the training data of the epigenetic
clock and used study-specific variances. Some studies had moderate sample sizes, so that failure to detect
differences between some familial correlations at certain ages might be due to a lack of statistical power.
Similarly, we cannot categorically exclude a role for genetic factors.

In conclusion, the variation in epigenetic aging as measured by the epigenetic clock that we observed is
most consistent with having been caused, at least to a large extent, by environmental factors, including
those shared to different extents by relatives while living together. The effects of the cohabitation
environment increase with the time living together, and persist into old age. The equal environment
assumption of the classic twin study might not hold for epigenetic aging. Given the observed relationships
between DNAm age and health outcomes, these findings highlight the importance and potential of pre-
adolescence prevention related to environmental factors for adult diseases.
Acknowledgements

We thank the participants of each studies. We thank the researchers who make these datasets available from public repositories: PETS 27K (GSE36642), PETS 450K (GSE42700), BSGS (GSE56105), E-Risk (GSE105018), DTR (GSE61496), TwinsUK (GSE58045), MuTHER (E-MTAB-1866) and LSDAT (GSE73115). We thank Dr Allan McRae from The University of Queensland for providing additional data of the BSGS.

Funding

This work was supported by grants from the Victorian Cancer Agency (grant number ECRF19020), Cancer Council Victoria (grant number 180626), and National Health and Medical Research Council (NHMRC, grant number 057873).

SL is a Victorian Cancer Agency Early Career Research Fellow (ECRF19020). SL and TLN was supported by the Cancer Council Victoria Postdoctoral Research Fellowship and the Picchi Award from the Victorian Comprehensive Cancer Centre. TLN was supported by the Cure Cancer Australia (APP1159399). MCS is a NHMRC Senior Research Fellow (APP1155163). JLH is a NHMRC Senior Principal Research Fellow.

The PETS was supported by grants from the NHMRC (grant number 1146333 to JC). PETS would like to thank all of the supportive families who participated in the PETS study throughout the years; amazing research staff, Alicia Clifton, Lada Staskova, Declan Bourke, Matt Bisset, Supriya Raj, Kristal Lau; generous volunteers, Jennifer Snowball, Junisha Raj; the phlebotomists from Royal Children’s Hospital pathology department.

The AMDTSS was facilitated through access to Twins Research Australia, a national resource supported by a Centre of Research Excellence Grant (number 1079102) from the NHMRC. The AMDTSS was supported by NHMRC (grant numbers 1050561 and 1079102), Cancer Australia and National Breast Cancer Foundation (grant number 509307).
The OATS was funded by a NHMRC and Australian Research Council (ARC) Strategic Award Grant of the Ageing Well, Ageing Productively Program (grant number 401162) and NHMRC Project Grants (grant numbers 1045325 and 1085606). The OATS was facilitated through Twins Research Australia, a national resource in part supported by a Centre for Research Excellence Grant number 1079102) from the NHMRC. We thank the participants for their time and generosity in contributing to this research. We acknowledge the contribution of the OATS research team (https://cheba.unsw.edu.au/project/older-australian-twins-study) to this study.

The MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further augmented by NHMRC grants numbers 209057 and 396414 and by infrastructure provided by Cancer Council Victoria. Additional support was received from NHMRC project grant numbers 1011618, 1026892, 1027505, 1050198 and 1043616. The research was in part supported by a Program Grant from the NHMRC (grant number 1074383) and an award from Victorian Breast Cancer Research Consortium (PI MCS).

Conflict of interest

GSD receives grant money from Genetic Technologies Ltd. for work that is unrelated to the current paper.

Author contributions

Study conception and design: SL & JLH. Data analysis: SL. Manuscript drafting: SL & JLH. Data collection: PETS – SL, EMW, JMC, RS, MCS & JLH, MCCS – EMW, PAD, GGG, MCS, RLM & JLH, AMDTSS – SL, EMW, TLN, GSD, GGG, MCS & JLH, OATS – NJA, KAM, PSS & AT, DTR & LSDAT – QT. All authors have contributed to manuscript editing and data interpretation.
References

1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-217.
2. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018;19:371-84.
3. Dugué PA, Li S, Hopper JL, Milne RL. DNA Methylation–Based Measures of Biological Aging. In: Tollefsbol TO, ed. Epigenetics in Human Disease: Academic Press; 2018:39-64.
4. Dugué PA, Bassett JK, Joo JE, Baglietto L, Jung CH, Wong EM, et al. Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. Am J Epidemiol 2018;187:529-38.
5. Dugué PA, Bassett JK, Joo JE, Jung CH, Ming Wong E, Moreno-Betancur M, et al. DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. Int J Cancer 2018;142:1611-9.
6. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015;16:25.
7. Simpkin AJ, Hemani G, Suderman M, Gaunt TR, Lyttleton O, McArdrle WL, et al. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum Mol Genet 2016;25:191-201.
8. Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, et al. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun 2016;7:10561.
9. Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun 2018;9:387.
10. Chen M, Wong EM, Nguyen TL, Dite GS, Stone J, Dugue PA, et al. DNA methylation-based biological age, genome-wide average DNA methylation, and conventional breast cancer risk factors. Sci Rep 2019;9:15055.
11. Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany NY) 2015;7:1198-211.

12. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115.

13. Gibson J, Russ TC, Clarke TK, Howard DM, Hillary RF, Evans KL, et al. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet 2019;15:e1008104.

14. Li S, Wong EM, Joo JE, Jung CH, Chung J, Apicella C, et al. Genetic and Environmental Causes of Variation in the Difference Between Biological Age Based on DNA Methylation and Chronological Age for Middle-Aged Women. Twin Res Hum Genet 2015;18:720-6.

15. Li S, Wong EM, Dugue PA, McRae AF, Kim E, Joo JE, et al. Genome-wide average DNA methylation is determined in utero. Int J Epidemiol 2018;47:908-16.

16. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012;13:86.

17. Hopper JL, Mathews JD. Extensions to multivariate normal models for pedigree analysis. II. Modeling the effect of shared environment in the analysis of variation in blood lead levels. Am J Epidemiol 1983;117:344-55.

18. Hopper JL, Mathews JD. A multivariate normal model for pedigree and longitudinal data and the software ‘FISHER’. Aust J Statist 1994;36:153-76.

19. Lange K, Weeks D, Boehnke M. Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE. Genet Epidemiol 1988;5:471-2.

20. Lange K. Cohabitation, convergence, and environmental covariances. Am J Med Genet 1986;24:483-91.

21. Kanannen L, Marttila S, Nevalainen T, Kummola L, Juntila I, Mononen N, et al. The trajectory of the blood DNA methylome ageing rate is largely set before adulthood: evidence from two longitudinal studies. Age (Dordr) 2016;38:65.
22. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005;102:10604-9.

23. Simpkin AJ, Howe LD, Tilling K, Gaunt TR, Lyttleton O, McArdle WL, et al. The epigenetic clock and physical development during childhood and adolescence: longitudinal analysis from a UK birth cohort. Int J Epidemiol 2017;46:549-58.

24. Davis EG, Humphreys KL, McEwen LM, Sacchet MD, Camacho MC, MacIsaac JL, et al. Accelerated DNA methylation age in adolescent girls: associations with elevated diurnal cortisol and reduced hippocampal volume. Transl Psychiatry 2017;7:e1223.

25. Jovanovic T, Vance LA, Cross D, Knight AK, Kilaru V, Michopoulos V, et al. Exposure to Violence Accelerates Epigenetic Aging in Children. Sci Rep 2017;7:8962.

26. Suarez A, Lahti J, Czamara D, Lahti-Pulkkinen M, Girchenko P, Andersson S, et al. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents. Clin Epigenetics 2018;10:96.

27. Binder AM, Corvalan C, Mericq V, Pereira A, Santos JL, Horvath S, et al. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics 2018;13:85-94.

28. Purcell S. Variance components models for gene-environment interaction in twin analysis. Twin Res 2002;5:554-71.

29. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019;11:303-27.

30. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018;10:573-91.

31. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49:359-67.
Figure 1 Familial correlations in DNAm age for the different types of pairs across the lifespan

Lines are the correlation estimates, and shadows are the corresponding 95% confidence intervals. MZ: monozygotic twin; DZ: Dizygotic twin.
Figure 2 Proportion of variation in DNAm age across the lifespan explained by genetic and environmental factors under different models

Lines are the correlation estimates, and shadows are the corresponding 95% confidence intervals. A: additive genetic factors; C: shared environmental factors; E: individual-specific environmental factors; MZ: monozygotic twin; DZ: Dizygotic twin. Model details - AE model: variation was assumed to be caused by only A and E, and the effects of A are constant across the lifespan; Cohabitation-dependent AE model: variation was assumed to be caused by only A and E, and the effects of A depend on cohabitation; Cohabitation-dependent ACE model: variation was assumed to be caused by A, C and E, and the effects of A and C both depend on cohabitation; Cohabitation-dependent CE model: variation is caused by only C and E, and the effects of C depend on cohabitation.
Study*	Biological sample	Microarray	Type of family members	N (females)	Mean chronological age (SD)	Mean DNAm age (SD)	Mean epigenetic age acceleration (SD)	
PETS EPIC	Cord blood	EPIC	MZ	46 (24)	0 (0)	1.1 (0.4)	-0.04 (0.38)	
			DZ	44 (21)	0 (0)	1.2 (0.4)	0.04 (0.43)	
PETS 27K CMBCs	Cord blood mononuclear cells (CMBCs)	27K	MZ	34 (18)	0 (0)	0.1 (0.3)	-0.09 (0.25)	
			DZ	18 (4)	0 (0)	0.3 (0.5)	0.16 (0.50)	
PETS 27K HUVECs	Human umbilical vascular endothelial cells (HUVECs)	27K	MZ	26 (14)	0 (0)	6.2 (4.1)	-0.95 (4.10)	
			DZ	16 (4)	0 (0)	8.6 (5.1)	1.54 (5.07)	
PETS 27K placenta	Placenta	27K	MZ	16 (12)	0 (0)	0.0 (0.2)	0.05 (0.21)	
			DZ	12 (5)	0 (0)	-0.1 (0.2)	-0.07 (0.21)	
PETS 450K birth	Buccal cells	450K	MZ	18 (8)	0 (0)	0.8 (0.4)	0.02 (0.37)	
			DZ	10 (4)	0 (0)	0.8 (0.2)	-0.04 (0.15)	
PETS 450K 18 months	Buccal cells	450K	MZ	12 (6)	1.5 (0)	2.2 (0.7)	0.10 (0.66)	
			DZ	8 (2)	1.5 (0)	2.0 (0.5)	-0.15 (0.46)	
BSGS	Peripheral blood	450K	MZ	134 (62)	13.8 (1.9)	18.4 (3.6)	-0.34 (2.68)	
			DZ	222 (107)	13.2 (2.0)	18.0 (3.7)	0.09 (2.63)	
			Sibling	119 (59)	15.5 (2.8)	21.2 (4.8)	0.22 (2.84)	
			Spouse/parents	139 (73)	46.6 (5.6)	50.8 (5.2)	0.00 (3.52)	
E-Risk	Peripheral blood	450K	MZ	852 (414)	18 (0)	24.1 (3.7)	-0.01 (3.67)	
Study	Tissue Type	Array Type	Zygosity	Sample Size	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
----------------	-------------	------------	----------	-------------	-----------	-----------	-----------	-----------
DTR younger adults	Peripheral blood	450K	DZ	612 (300)	18 (0)	24.1 (4.0)	0.03 (4.02)	
DTR older adults	Peripheral blood	450K	MZ	146 (66)	33.1 (2.0)	32.6 (4.8)	0.00 (4.31)	
DTR older adults	Peripheral blood	450K	DZ	132 (132)	57.0 (7.2)	56.5 (6.0)	0.60 (5.09)	
TwinsUK	Peripheral blood	27K	MZ	66 (66)	58.4 (9.1)	56.0 (8.9)	-0.75 (5.10)	
TwinsUK	Peripheral blood	27K	DZ	86 (86)	56.6 (7.7)	55.6 (8.1)	0.57 (4.14)	
MuTHER	Adipose tissue	450K	MZ	186 (186)	61.0 (9.3)	58.9 (6.1)	-0.19 (3.67)	
MuTHER	Adipose tissue	450K	DZ	306 (306)	57.4 (9.3)	57.3 (6.2)	0.12 (3.57)	
DTR older adults	Peripheral blood	450K	MZ	154 (78)	63.2 (4.1)	60.5 (6.7)	0.00 (5.63)	
OATS	Peripheral blood	450K	MZ	216 (136)	71.2 (6.0)	65.5 (6.6)	0.00 (5.36)	
LSADT 1997	Peripheral blood	450K	MZ	36 (22)	76.3 (2.0)	71.8 (3.7)	-0.25 (3.86)	
LSADT 2007	Peripheral blood	450K	DZ	50 (40)	76.2 (1.6)	72.2 (5.7)	0.18 (5.50)	
LSADT 2007	Peripheral blood	450K	MZ	36 (22)	86.2 (2.0)	79.5 (4.9)	-0.24 (4.85)	
MCCS	Peripheral blood	450K	Spouse	124 (62)	60.1 (6.2)	59.9 (8.1)	0.00 (6.19)	

Abbreviations – EPIC: the HumanMethylationEPIC array; 27K: the HumanMethylation27 array; 450K: the HumanMethylation450 array; MZ: monozygotic twin; DZ: dizygotic twin; N: sample size; SD: standard deviation
*Studies – PETS: Peri/postnatal Epigenetic Twins Study, including three datasets measured using the 27K array (using three biological samples), 450K array (at two points: at birth and age 18 months), and EPIC array, respectively; BSGS: Brisbane System Genetics Study; E-Risk: Environmental Risk Longitudinal Twin Study; DTR: Danish Twin Registry, in two groups: younger and older adults; AMDTSS: Australian Mammographic Density Twins and Sisters Study; MuTHER: Multiple Tissue Human Expression Resource Study; OATS: Older Australian Twins Study; LSDAT: Longitudinal Study of Aging Danish Twins, with samples collected at years 1997 and 2007, respectively; MCCS: Melbourne Collaborative Cohort Study
Table 2 Within-study familial correlations in DNAm age

Study*	Type of pairs	Number of pairs	Mean age	Correlation (95% CI)	P	P for MZ vs DZ
PETS EPIC	MZ	23	0	0.18 (-0.28 to 0.57)	0.45	0.57
	DZ	22	0	0.01 (-0.35 to 0.36)	0.98	
	MZ and DZ	45	0	0.15 (-0.22 to 0.34)	0.64	
PETS 27K	MZ	22	0	0.35 (-0.04 to 0.64)	0.85	0.69
	DZ	11	0	0.00 (-0.46 to 0.46)	0.09	
	MZ and DZ	33	0	0.18 (-0.15 to 0.47)	0.76	
PETS 450K birth	MZ	9	0	-0.05 (-0.51 to 0.43)	0.09	0.29
	DZ	5	0	0.62 (0.01 to 0.89)	0.99	
	MZ and DZ	14	0	-0.08 (-0.54 to 0.41)	0.29	
PETS 450K 18 months	MZ	6	1.5	-0.06 (-0.62 to 0.55)	0.87	0.58
	DZ	4	1.5	-0.52 (-0.91 to 0.40)	0.31	
	MZ and DZ	10	1.5	-0.12 (-0.62 to 0.46)	0.71	
BSGS	MZ	67	13.8	0.69 (0.63 to 0.74)	<0.001	<0.001
	DZ	111	13.2	0.35 (0.20 to 0.48)	<0.001	
	Siblings	260	14.0	0.32 (0.20 to 0.42)	<0.001	
	Parent-offspring	363	13.4	0.15 (0.02 to 0.27)	0.02	
	Spouses	59	46.6	-0.01 (-0.25 to 0.24)	0.96	
E-Risk	MZ	426	18.0	0.46 (0.40 to 0.52)	<0.001	0.28
	DZ	306	18.0	0.40 (0.33 to 0.47)	<0.001	
	MZ and DZ	732	18.0	0.43 (0.39 to 0.48)	<0.001	
DTR younger adults	MZ	73	33.1	0.62 (0.52 to 0.70)	<0.001	
AMDTSS	MZ	66	55.6	0.43 (0.26 to 0.58)	<0.001	0.20
	DZ	66	57.0	0.24 (0.04 to 0.42)	0.02	
	MZ and DZ	132	56.3	0.32 (0.18 to 0.45)	<0.001	
	Siblings	552	56.4	0.12 (0.02 to 0.22)	0.02	
Study	Type	Sample Size	Mean Age	Mean β (95% CI)	Standard Error	p-Value
------------------------	------	-------------	----------	-----------------	----------------	---------
TwinsUK	MZ	33	55.3	0.23 (-0.03 to 0.46)	0.09	0.41
	DZ	43	59.2	0.04 (-0.33 to 0.39)	0.85	
	MZ and DZ	76	57.5	0.12 (-0.07 to 0.37)	0.17	
MuTHER	MZ	93	58.4	0.54 (0.44 to 0.63)	<0.001	0.08
	DZ	153	56.6	0.37 (0.25 to 0.48)	5.8E-08	
	MZ and DZ	246	57.3	0.44 (0.36 to 0.52)	<0.001	
DTR older adults	MZ	77	63.2	0.55 (0.43 to 0.65)	<0.001	
OATS	MZ	108	71.2	0.40 (0.26 to 0.53)	<0.001	
LSADT 1997	MZ	18	76.3	0.04 (-0.66 to 0.70)	0.93	0.36
	DZ	25	76.2	0.39 (0.14 to 0.60)	<0.001	
	MZ and DZ	43	76.2	0.34 (0.09 to 0.55)	0.01	
LSADT 2007	MZ	18	86.2	0.41 (0.05 to 0.68)	0.04	0.95
	DZ	25	86.1	0.40 (0.11 to 0.62)	0.01	
	MZ and DZ	43	86.1	0.40 (0.17 to 0.59)	<0.001	
MCCS	Spouses	62	60.1	0.12 (-0.12 to 0.35)	0.33	

Abbreviations – MZ: monozygotic twin; DZ: dizygotic twin; CI: confidence interval

*Studies – PETS: Peri/postnatal Epigenetic Twins Study, including three datasets measured using the 27K array, 450K array (at two points: at birth and age 18 months), and EPIC array, respectively; BSGS: Brisbane System Genetics Study; E-Risk: Environmental Risk Longitudinal Twin Study; DTR: Danish Twin Registry, in two groups: younger and older adults; AMDTSS: Australian Mammographic Density Twins and Sisters Study; MuTHER: Multiple Tissue Human Expression Resource Study; OATS: Older Australian Twins Study; LSDAT: Longitudinal Study of Aging Danish Twins, with samples collected at years 1997 and 2007, respectively; MCCS: Melbourne Collaborative Cohort Study