Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO$_2$ nanoparticles in an ex vivo placental perfusion model

Adèle Guillard, Eric Gaultier, Christel Cartier, Laurent Devoille, Johanna Noireaux, Laurence Chevalier, Mathieu Morin, Flore C. Grandin, Mz Lacroix, Christine Coméra, et al.

To cite this version:
Adèle Guillard, Eric Gaultier, Christel Cartier, Laurent Devoille, Johanna Noireaux, et al.. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO$_2$ nanoparticles in an ex vivo placental perfusion model. C’Nano 2020, Dec 2020, Toulouse, France. hal-02945386

HAL Id: hal-02945386
https://hal.inrae.fr/hal-02945386
Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO2 nanoparticles in an ex vivo placental perfusion model
Adèle Guillard, Eric Gaultier, Christel Cartier, Laurent Devoille, Johanna Noireaux, Laurence Chevalier, Mathieu Morin, Flore Grandin, Mz Lacroix, Christine Coméra, et al.

To cite this version:
Adèle Guillard, Eric Gaultier, Christel Cartier, Laurent Devoille, Johanna Noireaux, et al.. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO2 nanoparticles in an ex vivo placental perfusion model. C’Nano 2020, Dec 2020, Toulouse, France. hal-02945386

HAL Id: hal-02945386
https://hal.inrae.fr/hal-02945386
Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thematic Session: Nano: health, environment & risks
Keywords: Titanium dioxide, nanoparticles, human placenta, E171 food additive

Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO$_2$ nanoparticles in an ex vivo placental perfusion model

Guillard A1, Gaultier E1, Cartier C1, Devoille L2, Noireaux J3, Chevalier L4, Morin M5, Grandin F1, Lacroix MZ6, Coméra C1, Cazanave A1, de Place A5, Gayrard V1, Bach V7, Chardon K7, Bekhti N8, Adel-Patient K8, Vayssière C5,9, Fisicaro P3, Feltin N5, de la Farge F1, Picard-Hagen N1, Lamas B1, Houdeau E1

1. Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENV, INP-Purpan, UPS, Toulouse, France
2. Department of materials, LNE, Trappes, France
3. Department for biomedical and inorganic chemistry, LNE, Paris, France
4. Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
5. Department of Obstetrics and Gynecology, Paul de Viguier Hospital, CHU Toulouse, Toulouse, France
6. INTHERES, Toulouse University, INRAE, ENV, Toulouse, France
7. Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
8. Université Paris Saclay, CEA, INRAE; Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191 Gif-sur-Yvette, France
9. UMR 1027 INSERM, Team SPHERE, Toulouse III University, Toulouse, France

Titanium dioxide (TiO$_2$) is broadly used in common consumer goods, including as a food additive (white pigment, E171 in Europe). The E171 contains TiO$_2$ nanoparticles (NPs), partly absorbed in the bloodstream and accumulating in several systemic organs1,2. Prenatal exposure to TiO$_2$-NPs in rodents resulted in alteration of placental functions and a materno-foetal transfer, with toxic effects on the foetus3. However, no human data are available for the potential materno-foetal transfer of food-grade
TiO\textsubscript{2}-NPs. We analysed Ti(O\textsubscript{2}) content of human placentae at term and meconium (first stool of newborns) using inductively coupled plasma mass spectrometry (ICP-MS) and scanning transmission electron microscopy (STEM) coupled to energy-dispersive X-ray (EDX) spectroscopy. Using an ex vivo placenta perfusion model, we also assessed the transplacental passage of food-grade TiO\textsubscript{2} particles.

ICP-MS analysis evidenced the presence of Ti in all placentae (0.01 to 0.48 mg/kg of tissue) and in 50% of the meconium (0.02-1.50 mg/kg), suggesting a materno-foetal transfer of Ti. STEM-EDX observation confirmed the presence of TiO\textsubscript{2}-NPs in placental tissues and meconium, in addition to iron, tin, aluminium, silicon and zinc. In placenta perfusion experiments, confocal imaging and SEM-EDX analysis of foetal exudate confirmed a low transfer of food-grade TiO\textsubscript{2} particles to the foetal side, barely quantifiable by ICP-MS, with 70% to 100% of the TiO\textsubscript{2} particles < 100 nm.

Altogether, these results show a materno-foetal transfer of TiO\textsubscript{2} particles, food-grade TiO\textsubscript{2} being a potential source for foetal exposure to NPs. These data emphasize the need for risk assessment of chronic exposure to TiO\textsubscript{2}-NPs during pregnancy.

References (max. 5):
1. Pele et al. 2015
2. Heringa et al. 2018
3. Rollerova et al. 2015

Acknowledgment: