Measurement of the Semileptonic CP Asymmetry in B_s-\bar{B}_s Mixing

Laurent Dufour, on behalf of the LHCb collaboration

WHAT

- Flavour eigenstates and mass eigenstates not aligned
- Quantum mechanics: neutral mesons mix over time:
 \[
 \frac{d}{dt} \left(\frac{\langle \phi(t) | M | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} \right) - \left(M_1 - M_2 \right) \frac{\langle \phi(t) | M_1 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} - \left(M_2 - M_3 \right) \frac{\langle \phi(t) | M_2 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} = \frac{\langle \phi(t) | M_3 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle}
 \]
- Diagonalise to get mass eigenstates:
 \[
 \Delta m_3 = m_1 - m_3^2 \]
 \[
 \Delta m_2 = m_2 - m_3^2
 \]
- CP-violation in mixing:
 \[
 P(B_s \rightarrow \bar{B}_s) \neq P(\bar{B}_s \rightarrow B_s)
 \]
- Measure the flavour of the B, at decay by a flavour specific final state: semileptonic decays. No CP violation in decay.
- Production asymmetry negligible: only count the number of final-state D_s^+ μ^+ and D^- μ^+~\cite{1}

\[
\frac{\Gamma(D_s^+ \rightarrow B_s \mu^+ \nu)}{\Gamma(D^- \rightarrow B_s \mu^- \bar{\nu})} \approx \frac{\langle \phi(t) | M_1 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} + \frac{\langle \phi(t) | M_2 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} \cos(\Delta M f t + \phi(0)) + \frac{\langle \phi(t) | M_3 | \phi(t) \rangle}{\langle \phi(t) | \phi(t) \rangle} \sin(\Delta M f t + \phi(0))
\]

- The LHCb detector at CERN
 - High number of produced B- 930000 D_s^+ μ^+ candidates in 1 fb$^{-1}$
 - High momentum resolution, $\Delta p/p = (0.4\pm0.6)\%$
 - Excellent vertex detector to record the B, decay vertex
 - Particle ID: separate K, x, and p charged final state particles
 - Selected D_s^+ decay products, K^+ K^- π^+, are all well identified.
 - Proton-proton collider: production asymmetry
 - Measured as percent-level\(^{[6]}\): $a_0(B_0) = (1.06 \pm 2.69)\%$

WHY

- CP-asymmetry in the Standard Model too small
- Are new particles enhancing CP violation?
- Mixing observables important constraint for Z' models
- CP violation in mixing sensitive to new physics e.g. $B_s \rightarrow \tau \tau$ decays, little experimental constraints
- Other measurement for the B_s system: anomalous result?

PREDICTION

- Standard model prediction: extremely small\(^{[4]}\)
 \[
 a_0^d = (-4.1 \pm 0.6) \times 10^{-4} \quad a_0^u = (1.9 \pm 0.3) \times 10^{-5}
 \]
- Measurements by B-factories\(^{[3]}\) (green) and D0\(^{[3]}\) (blue)
- D_0 dimuon result: 3.6σ deviation from Standard Model\(^{[4]}\)

RESULTS

- 1 fb$^{-1}$ a_0^u published in 2014\(^{[4]}\), 3 fb$^{-1}$ a_0^u result published in 2015\(^{[5]}\)
 \[
 a_0^d = (-0.06 \pm 0.50(\text{stat}) \pm 0.36(\text{syst})) \%
 \]
 \[
 a_0^u = (-0.02 \pm 0.19(\text{stat}) \pm 0.30(\text{syst})) \%
 \]
- In progress: improved a_0^u with 3 fb$^{-1}$ (blinded result):
 \[
 a_0^d = X \times X \% \pm 0.25\% \pm 0.20\%
 \]
- World’s best measurement of both quantities!

DETECTION asymmetries

Magnet bends charged particles: charge asymmetry found in left-right asymmetry... but what if LHCb is not perfectly symmetric?

- Largest correction to the measurement.
- Measure and correct for asymmetries from tracking, trigger and particle ID
- Hadronic tracking asymmetries: prompt D^+-tagged D^0 daughters
- Tag & probe: do we find all the tracks, or do we miss one?
- Average magnet polarities: most detection asymmetry cancel

REFERENCES

1. Nikhef national institute of subatomic physics, The Netherlands. Contact: laurent.dufour@cern.ch

\(^{[1]}\) LHCb collaboration, R. Aaij et al., Phys. Lett. B745 (2015) 30, arXiv:1508.04899

\(^{[2]}\) B-factories collaboration, Y. Abe et al., arXiv:1510.07556

\(^{[3]}\) B-factories collaboration, Y. Abe et al., Phys. Rev. D92 (2015) 092001, arXiv:1507.03703

\(^{[4]}\) B-factories collaboration, Y. Abe et al., Phys. Rev. D95 (2017) 012014, arXiv:1602.08247

\(^{[5]}\) LHCb collaboration, R. Aaij et al., Phys. Lett. B746 (2015) 274, arXiv:1508.04864

\(^{[6]}\) LHCb collaboration, R. Aaij et al., Phys. Lett. B743 (2015) 293, arXiv:1410.7947

\(^{[7]}\) A. Lees and U. Nierste, Theoretical update on B semileptonic, HEPTh prep (2015) 77, arXiv:1502.07187

\(^{[4]}\) J. devries@cern.ch