A discrete Farkas lemma

Jean B. Lasserre

LAAS-CNRS
7 Avenue du Colonel Roche, 31077 Toulouse cedex 4, France.
lasserre@laas.fr
http://www.laas.fr/~lasserre

Abstract. Given $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, we consider the issue of existence of a nonnegative integral solution $x \in \mathbb{N}^n$ to the system of linear equations $Ax = b$. We provide a discrete and explicit analogue of the celebrated Farkas lemma for linear systems in \mathbb{R}^n and prove that checking existence of integral solutions reduces to solving an explicit linear programming problem of fixed dimension, known in advance.

1 Introduction

Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and consider the problem of existence of a solution $x \in \mathbb{N}^n$ of the system of linear equations

$$Ax = b,$$

that is, the existence of a nonnegative integral solution of the linear system $Ax = b$.

Contribution. The celebrated Farkas Lemma in linear algebra states that

$$\{x \in \mathbb{R}_+^n \mid Ax = b\} \neq \emptyset \iff [u \in \mathbb{R}^m \text{ and } A'u \geq 0] \Rightarrow b'u \geq 0$$

(2)

(where A' (resp. b') stands for the transpose of A (resp. b)).

To the best of our knowledge, there is no explicit discrete analogue of (2). Indeed, the (test) Gomory and Chvátal functions used by Blair and Jeroslow in [3] (see also Schrijver in [8, Corollary 23.4b]) are defined implicitly and recursively, and do not provide a test directly in terms of the data A, b.

In this paper we provide a discrete and explicit analogue of Farkas Lemma for \mathbb{N} to have a solution $x \in \mathbb{N}^n$. Namely, when A and b have nonnegative entries, that is, when $A \in \mathbb{N}^{m \times n}, b \in \mathbb{N}^m$, we prove that (1) has a solution $x \in \mathbb{N}^n$ if and only if the polynomial $z \mapsto z^b - 1 \,(:= z_1^{b_1} \cdots z_m^{b_m} - 1)$ of $\mathbb{R}[z_1, \ldots, z_m]$, can be written

$$z^b - 1 = \sum_{j=1}^n Q_j(z)(z^{A_{1j}} - 1) = \sum_{j=1}^n Q_j(z)(z_1^{A_{1j}} \cdots z_m^{A_{mj}} - 1)$$

(3)
for some polynomials \(\{Q_j\} \) in \(\mathbb{R}[z_1, \ldots, z_m] \) with nonnegative coefficients. In other words,

\[
\{x \in \mathbb{N}^n \mid Ax = b\} \neq \emptyset \iff z^b - 1 = \sum_{j=1}^n Q_j(z)(z^{A_j} - 1),
\]

for some polynomials \(\{Q_j\} \) in \(\mathbb{R}[z_1, \ldots, z_m] \) with nonnegative coefficients. (Of course, the if part of the equivalence in (4) is the hard part of the proof.)

Moreover, the degree of the \(Q_j \)'s is bounded by \(b^* := \sum_{j=1}^m b_j - \min_k \sum_{j=1}^m A_{jk}. \)

Therefore, checking the existence of a solution \(x \in \mathbb{N}^n \) to \(Ax = b \), reduces to checking whether or not there is a nonnegative solution \(y \) to a system of linear equations where (i) \(y \) is the vector of unknown nonnegative coefficients of the \(Q_j \)'s and (ii), the (finitely many) linear equations identify coefficients of same power in both sides of (3). This is a linear programming (LP) problem with \(ns(b^*) \) variables and \(s(b^* + \max_k \sum_j A_{jk}) \) constraints, where \(s(u) := \binom{m+u}{u} \) denotes the dimension of the vector space of polynomials of degree \(u \) in \(m \) variables. In addition, all the coefficients of the associated matrix of constraints are all 0 or \(\pm 1 \). For instance, checking the existence of a solution \(x \in \mathbb{N}^n \) to the knapsack equation \(a^t x = b \), reduces to solving a LP problem with \(n(b + 1 - \min_j a_j) \) variables and \(b + 1 + \max_j a_j - \min_j a_j \) equality constraints. This result is also extended to the case where \(A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m \), that is, when \(A \) and \(b \) may have nonnegative entries.

We call (4) a Farkas lemma because as (2), it states a condition on the dual variables \(z \) associated with the constraints \(Ax = b \). In addition, let \(z := e^\lambda \) and notice that the basic ingredients \(b^\lambda \) and \(A^\lambda \) of (2), also appear in (4) via \(z^b \) which becomes \(e^{b^\lambda} \) and via \(z^{A_j} \) which becomes \(e^{(A_j)\lambda} \). Moreover, if indeed \(z^b - 1 \) has the representation (4), then whenever \(\lambda \in \mathbb{R}^m \) and \(A^\lambda \geq 0 \) (letting \(z := e^\lambda \))

\[
\begin{split}
e^{b^\lambda} - 1 &= \sum_{j=1}^n Q_j(e^{\lambda_1}, \ldots, e^{\lambda_m}) \left[e^{(A_j)^\lambda} - 1 \right] \geq 0 \\
\end{split}
\]

(because all the \(Q_j \) have nonnegative coefficients), which implies \(b^\lambda \geq 0 \). Hence, we retrieve that \(b^\lambda \geq 0 \) whenever \(A^\lambda \geq 0 \), which is to be expected since of course, the existence of nonnegative integral solutions to (1) implies the existence of nonnegative real solutions.

Methodology. We use counting techniques based on generating functions as described by Barvinok and Pommersheim in [2] and by Brion and Vergne in [4]. To easily obtain a simple explicit expression of the generating function (or, \(\mathbb{Z} \)-transform) \(F : \mathbb{C}^m \to \mathbb{C} \) of the function \(f : \mathbb{Z}^n \to \mathbb{N}, b \mapsto f(b) \), that counts the lattice points \(x \in \mathbb{N}^n \) of the convex polytope \(\Omega := \{ x \in \mathbb{R}_+^n \mid Ax = b \} \). Then \(f \) is the inverse \(\mathbb{Z} \)-transform of \(F \) and can be calculated by a complex integral. Existence of a solution \(x \in \mathbb{N}^n \) to (1) is equivalent to showing that \(f(b) \geq 1 \), and by a detailed analysis of this complex integral, we prove that (3) is a necessary and sufficient condition on \(b \) for \(f(b) \geq 1 \).
2 Notation and preliminary results

For a vector \(b \in \mathbb{R}^m \) and a matrix \(A \in \mathbb{R}^{m \times n} \), denote by \(b' \) and \(A' \in \mathbb{R}^{n \times m} \) their respective transpose. Denote by \(e_m \in \mathbb{R}^m \) the vector with all entries equal to 1. Let \(\mathbb{R}[x_1, \ldots, x_n] \) be the ring of real-valued polynomials in the variables \(x_1, \ldots, x_n \). A polynomial \(f \in \mathbb{R}[x_1, \ldots, x_n] \) is written

\[
x \mapsto f(x) = \sum_{\alpha \in \mathbb{N}^n} f_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n},
\]

for finitely many real coefficients \(\{f_\alpha\} \).

Given a matrix \(A \in \mathbb{Z}^{m \times n} \), let \(A_j \in \mathbb{Z}^m \) denote its \(j \)-th column (equivalently, the \(j \)-th row of \(A' \)); then for every \(z \in \mathbb{C}^m \),

\[
z A_j := z_1^{A_{1j}} \cdots z_m^{A_{mj}} = e(A_j \ln z) = e(A' \ln z)_j.
\]

If \(A_j \in \mathbb{N}^m \) then \(z A_j \) is a monomial of \(\mathbb{R}[z_1, \ldots, z_m] \).

2.1 Preliminary result

Let \(A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m \) and consider the system of linear equations

\[
Ax = b; \quad x \in \mathbb{N}^n,
\]

and its associated convex polyhedron

\[
\Omega := \{ x \in \mathbb{R}^n \mid Ax = b; \ x \geq 0 \}.
\]

It is assumed that the recession cone \(\{ x \in \mathbb{R}^n \mid Ax = 0; \ x \geq 0 \} \) of \(\Omega \), reduces to the singleton \{0\}, so that \(\Omega \) is compact (equivalently, \(\Omega \) is a convex polytope).

By a specialized version of a Farkas Lemma due to Carver, (see e.g. Schrijver in [33, (33), p. 95]), this in turn implies that

\[
\{ \lambda \in \mathbb{R}^m \mid A' \lambda > 0 \} \neq \emptyset.
\]

Denote by \(b \mapsto f(b) \) the function \(f : \mathbb{Z}^m \to \mathbb{N} \) that counts the nonnegative integral solutions \(x \in \mathbb{N}^n \) of the system of linear equations \(\Omega \), that is, the lattice points \(x \in \mathbb{N}^n \) of \(\Omega \). In view of \(\# \), \(f(b) \) is finite for all \(b \in \mathbb{Z}^m \) because \(\Omega \) is compact. Let \(F : \mathbb{C}^m \to \mathbb{C} \) be the two-sided \(\mathbb{Z} \)-transform of \(f \), that is,

\[
z \mapsto F(z) := \sum_{u \in \mathbb{Z}^m} f(u) z^{-u} = \sum_{u \in \mathbb{Z}^m} f(u) z_1^{-u_1} \cdots z_m^{-u_m}
\]

when the above series converges on some domain \(D \subset \mathbb{C}^m \). It turns out that \(F(z) \) is well-defined on

\[
D := \{ z \in \mathbb{C}^m \mid |z_1^{A_{1j}} \cdots z_m^{A_{mj}}| > 1 \quad j = 1, \ldots, n \}.
\]
Proposition 1. Let \(A \in \mathbb{Z}^{m \times n} \), \(b \in \mathbb{Z}^n \) and assume that (7) holds. Then:

\[
F(z) = \frac{1}{\prod_{j=1}^{n} (1 - z^{-A_j})} = \frac{1}{\prod_{j=1}^{n} (1 - z^{-A_{1j}} \cdots z^{-A_{mj}})}
\]

(10)

for all \(z \in \mathbb{Z}^m \) that satisfy

\[
|z^{A_j}| = |z_1^{A_{1j}} \cdots z_m^{A_{mj}}| > 1 \quad j = 1, \ldots, n.
\]

(11)

Moreover,

\[
f(b) = \frac{1}{(2\pi i)^m} \int_{|z|=\gamma} \cdots \int_{|z|=\gamma} \frac{z^b}{\prod_{j=1}^{n} (1 - z^{-A_{1j}} \cdots z^{-A_{mj}})} \, dz
\]

(12)

with \(\Gamma := \{ z \in \mathbb{C}^m \mid |z_j| = \gamma_j \} \), and where \(\gamma \in \mathbb{R}^n_+ \) is fixed and satisfies

\[
\gamma^{A_j} = \gamma_1^{A_{1j}} \cdots \gamma_m^{A_{mj}} > 1 \quad j = 1, \ldots, n.
\]

(13)

Proof. The proof is a verbatim copy of that of Lasserre and Zeron in [7] where the linear system \(Ax \leq b \) (instead of \(Ax = b \)) was considered, but for the sake of completeness we reproduce it here. Apply the definition (8) of \(F \) to obtain:

\[
F(z) = \sum_{u \in \mathbb{Z}^m} z^{-u} \left[\sum_{x \in \mathbb{N}^n, Ax = u} 1 \right] = \sum_{x \in \mathbb{N}^n} \left[\sum_{u = Ax} z_1^{-u_1} z_2^{-u_2} \cdots z_m^{-u_m} \right]
\]

Now observe that

\[
z_1^{-(Ax)_1} z_2^{-(Ax)_2} \cdots z_m^{-(Ax)_m} = \prod_{k=1}^{m} \left(z_1^{-A_{1k}} z_2^{-A_{2k}} \cdots z_m^{-A_{mk}} \right)^{x_k} = \prod_{k=1}^{m} \left(z^{-A_k} \right)^{x_k}.
\]

Hence, when (11) holds we obtain

\[
F(z) = \prod_{k=1}^{n} \sum_{x_k=0}^{\infty} \left(z^{-A_k} \right)^{x_k} = \prod_{k=1}^{n} \left[1 - z^{-A_k} \right]^{-1},
\]

which is (10), and (12) is obtained by a direct application of the inverse \(\mathbb{Z} \)-transform (see e.g. Conway in [6]). It remains to show that, indeed, the domain defined in (11) is not empty. But this follows from (7). Indeed take \(z_k := e^{\lambda_k} \) for all \(k = 1, \ldots, m \), for any \(\lambda \) that satisfies (7).

3 Main result

Before proceeding to the general case \(A \in \mathbb{Z}^{m \times n} \), we first consider the case \(A \in \mathbb{N}^{m \times n} \) where \(A \) (and thus \(b \)) has only nonnegative entries.
3.1 The case $A \in \mathbb{N}^{m \times n}$

In this section $A \in \mathbb{N}^{m \times n}$ and thus, necessarily $b \in \mathbb{N}^m$ (otherwise $\Omega = \emptyset$).

Theorem 1. Let $A \in \mathbb{N}^{m \times n}, b \in \mathbb{N}^m$. Then the following two statements (i) and (ii) are equivalent:

(i) The linear system $Ax = b$ has a solution $x \in \mathbb{N}^n$.

(ii) The real-valued polynomial $z \mapsto z^b - 1 := z_1^{b_1} \cdots z_m^{b_m} - 1$ can be written

$$z^b - 1 = \sum_{j=1}^n Q_j(z)(z^{A_j} - 1)$$

for some real-valued polynomials $Q_j \in \mathbb{R}[z_1, \ldots, z_m], j = 1, \ldots, n$, all of them with nonnegative coefficients.

In addition, the degree of the Q_j's in (14) is bounded by

$$b^* := \sum_{j=1}^m b_j - \min_k \sum_{j=1}^m A_{jk}. \quad (15)$$

For a proof see §4.

3.2 Discussion

(a) Let $s(u) := \binom{m+u}{u}$ the dimension of the vector space of polynomials of degree u in m variables. In view of Theorem 1 and with b^* as in (15), checking the existence of a solution $x \in \mathbb{N}^n$ to $Ax = b$ reduces to checking whether or not there exists a nonnegative solution y to a system of linear equations with:

- $n \times s(b^*)$ variables, the nonnegative coefficients of the Q_j's.
- $s(b^* + \max_k \sum_{j=1}^m A_{jk})$ equations to identify the terms of same power in both sides of (14).

This in turn reduces to solving a LP problem with $ns(b^*)$ variables and $s(b^* + \max_k \sum_{j=1}^m A_{jk})$ equality constraints. Observe that in view of (14), this LP has a matrix of constraints with only 0 and ±1 coefficients.

(b) In fact, from the proof of Theorem 1 it follows that one may even enforce the weights Q_j in (14) to be polynomials in $\mathbb{Z}[z_1, \ldots, z_m]$ (instead of $\mathbb{R}[z_1, \ldots, z_m]$) with nonnegative coefficients (and even with coefficients in $\{0, 1\}$). However, (a) above shows that the strength of Theorem 1 is precisely to allow $Q_j \in \mathbb{R}[z_1, \ldots, z_m]$ as it permits to check feasibility by solving a (continuous) linear program. Enforcing $Q_j \in \mathbb{Z}[z_1, \ldots, z_m]$ would result in an integer program of size larger than that of the original problem.

(c) Theorem 1 reduces the issue of existence of a solution $x \in \mathbb{N}^n$ to a particular ideal membership problem, that is, $Ax = b$ has a solution $x \in \mathbb{N}^n$ if and only if the polynomial $z^b - 1$ belongs to the binomial ideal $I = \langle z^{A_j} - 1 \rangle_{j=1,\ldots,n} \subset \mathbb{R}[z_1, \ldots, z_m]$ and for some weights Q_j all with nonnegative coefficients.
Interestingly, consider the ideal $J \subset \mathbb{R}[z_1, \ldots, z_m, y_1, \ldots, y_n]$ generated by the binomials $z^{A_j} - y_j$, $j = 1, \ldots, n$, and let G be a Gröbner basis of J. Using the algebraic approach described by Adams and Loustaunau in [1, §2.8], it is known that $Ax = b$ has a solution $x \in \mathbb{N}^n$ if and only if the monomial z^b is reduced (with respect to G) to some monomial y^α, in which case $\alpha \in \mathbb{N}^n$ is a feasible solution. Observe that this is not a Farkas lemma as we do not know in advance $\alpha \in \mathbb{N}^n$ (we look for it!) to test whether $z^b - y^\alpha \in J$. One has to apply Buchberger’s algorithm to (i) find a reduced Gröbner basis G of J, and (ii) reduce z^b with respect to G and check whether the final result is a monomial y^α. Moreover, note that the latter approach uses polynomials in $n + m$ (primal) variables y and (dual) variables z, in contrast with the (only) m dual variables z in Theorem [1]

3.3 The general case

In this section we consider the general case $A \in \mathbb{Z}^{m \times n}$ so that A may have negative powers. The above arguments cannot be repeated because of the occurrence of negative powers. However, let $\alpha \in \mathbb{N}^n, \beta \in \mathbb{N}$ be such that

$$\hat{A}_{jk} := A_{jk} + \alpha_k \geq 0; \quad \hat{b}_j := b_j + \beta \geq 0; \quad k = 1, \ldots, n; \ j = 1, \ldots, m. \quad (16)$$

Note that once $\alpha \in \mathbb{N}^n$ is fixed as in (16), we can choose $\beta \in \mathbb{N}$ as large as desired. Moreover, as Ω defined in (6) is compact, we have

$$\max_{x \in \mathbb{N}^n} \left\{ \sum_{j=1}^n \alpha_j x_j \mid Ax = b \right\} \leq \max_{x \in \Omega} \left\{ \sum_{j=1}^n \alpha_j x_j \mid x \in \Omega \right\} =: \rho^*(\alpha) < \infty. \quad (17)$$

Given $\alpha \in \mathbb{N}^n$, the scalar $\rho^*(\alpha)$ is easily calculated by solving a LP problem. Next, choose $\rho^*(\alpha) \leq \beta \in \mathbb{N}$, and let $\hat{A} \in \mathbb{N}^{m \times n}, \hat{b} \in \mathbb{N}^m$ be as in (16). Then the existence of solutions $x \in \mathbb{N}^n$ to $Ax = b$ is equivalent to the existence of solutions $(x, u) \in \mathbb{N}^n \times \mathbb{N}$ to the system of linear equations

$$Q \begin{cases} \hat{A}x + u e_m = \hat{b} \\ \sum_{j=1}^n \alpha_j x_j + u = \beta. \end{cases} \quad (18)$$

Indeed, if $Ax = b$ with $x \in \mathbb{N}^n$, then

$$Ax + e_m \sum_{j=1}^n \alpha_j x_j - e_m \sum_{j=1}^n \alpha_j x_j = b + (\beta - \beta) e_m,$$

or, equivalently,

$$\hat{A}x + \left(\beta - \sum_{j=1}^n \alpha_j x_j \right) e_m = \hat{b},$$
and thus, as \(\beta \geq \rho^* (\alpha) \geq \sum_{j=1}^{n} \alpha_j x_j \) (cf. (17)), we see that \((x, u)\) with \(\beta - \sum_{j=1}^{n} \alpha_j x_j =: u \in \mathbb{N}\), is a solution of (18). Conversely, let \((x, u) \in \mathbb{N}^n \times \mathbb{N}\) be a solution of (18). Then, using the definitions of \(\hat{A}\) and \(\hat{b}\),

\[
Ax + e_m \sum_{j=1}^{n} \alpha_j x_j + u e_m = b + \beta e_m; \quad \sum_{j=1}^{n} \alpha_j x_j + u = \beta,
\]

so that \(Ax = b\). The system of linear equations (18) can be put in the form

\[
B \begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} \hat{b} \\ \beta \end{bmatrix} \quad \text{with} \quad B := \begin{bmatrix} \hat{A} & e_m \\ - \alpha' & 1 \end{bmatrix},
\]

and as \(B \in \mathbb{N}^{(m+1) \times (n+1)}\), we are back to the case analyzed in §3.1.

Theorem 2. Let \(A \in \mathbb{Z}^{m \times n}\), \(b \in \mathbb{Z}^m\) and assume that \(\Omega\) defined in (6) is compact. Let \(\hat{A} \in \mathbb{N}^{m \times n}, \hat{b} \in \mathbb{N}^m, \alpha \in \mathbb{N}^n\) and \(\beta \in \mathbb{N}\) be as in (16) with \(\beta \geq \rho^* (\alpha)\) (cf. (17)). Then the following two statements (i) and (ii) are equivalent:

(i) The system of linear equations \(Ax = b\) has a solution \(x \in \mathbb{N}^n\).

(ii) The real-valued polynomial \(z \mapsto z^\beta (zy)^\alpha - 1 \in \mathbb{R}[z, \ldots, z, y]\) can be written

\[
z^\beta (zy)^\alpha - 1 = Q_0(z, y)(zy - 1) + \sum_{j=1}^{n} Q_j(z, y)(z^{A_j}(zy)^\alpha_j - 1)
\]

for some real-valued polynomials \(\{Q_j\}_{j=0}^{n} \in \mathbb{R}[z, \ldots, z, m, y]\), all with nonnegative coefficients.

In addition, the degree of the \(Q_j\’s\) in (20) is bounded by

\[
(m + 1)\beta + \sum_{j=1}^{m} b_j - \min \left(m + 1, \min_{k=1,\ldots,n} \left((m + 1)\alpha_k + \sum_{j=1}^{m} A_{jk} \right) \right).
\]

Proof. Apply Theorem 1 to the equivalent form (19) of the system \(Q\) in (18) (since \(B \in \mathbb{N}^{(m+1) \times (n+1)}\) and \((\hat{b}, \beta) \in \mathbb{N}^{m+1}\)), and use the definition (16) of \((\hat{b}, \beta)\) and \(\hat{A}\).

4 Proof of Theorem 1

Proof. (ii) \(\Rightarrow\) (i). Assume that \(z^\beta - 1\) can be written as in (14) for some polynomials \(\{Q_j\}\) with nonnegative coefficients \(\{Q_{j\alpha}\}\), that is,

\[
Q_j(z) = \sum_{\alpha \in \mathbb{N}^n} Q_{j\alpha} z^\alpha = \sum_{\alpha \in \mathbb{N}^n} Q_{j\alpha} z_{\alpha_1} \cdots z_{\alpha_m},
\]
for finitely many nonzero (and nonnegative) coefficients \(\{Q_{j\alpha}\} \). By Proposition 1, the number \(f(b) \) of nonnegative integral solutions \(x \in \mathbb{N}^n \) to the equation \(Ax = b \), is given by

\[
f(b) = \frac{1}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k=1}^n (1 - z^{-A_k}) dz.
\]

Writing \(z^{b-e_m} \) as \(z^{-e_m}(z^b - 1) \) we obtain

\[
f(b) = B_1 + B_2,
\]

with

\[
B_1 = \frac{1}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k=1}^n (1 - z^{-A_k}) dz,
\]

and

\[
B_2 := \frac{1}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \sum_{j=1}^n \frac{1}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k \neq j} (1 - z^{-A_k}) dz
\]

\[
= \sum_{j=1}^n \sum_{\alpha \in \mathbb{N}^m} \frac{Q_{j\alpha}}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k \neq j} (1 - z^{-A_k}) dz.
\]

From (12) in Proposition 1 (with \(b := 0 \)) we recognize in \(B_1 \) the number of solutions \(x \in \mathbb{N}^n \) to the linear system \(Ax = 0 \), so that \(B_1 = 1 \). Next, again from (12) in Proposition 1 (now with \(b := A_j + \alpha \)), each term

\[
C_{j\alpha} := \frac{Q_{j\alpha}}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k \neq j} (1 - z^{-A_k}) dz,
\]

is equal to

\[
Q_{j\alpha} \times \text{the number of integral solutions } x \in \mathbb{N}^{n-1}
\]

of the linear system \(\hat{A}^{(j)}x = A_j + \alpha \), where \(\hat{A}^{(j)} \) is the matrix in \(\mathbb{N}^{m \times (n-1)} \) obtained from \(A \) by deleting its \(j \)-th column \(A_j \). As by hypothesis, each \(Q_{j\alpha} \) is nonnegative, it follows that

\[
B_2 = \sum_{j=1}^n \sum_{\alpha \in \mathbb{N}^m} C_{j\alpha} \geq 0,
\]

and so \(f(b) = B_1 + B_2 \geq 1 \). In other words, the system \(Ax = b \) has at least one solution \(x \in \mathbb{N}^n \).

(i) \(\Rightarrow \) (ii). Let \(x \in \mathbb{N}^n \) be a solution of \(Ax = b \), and write

\[
z^b - 1 = z^{A_1 x_1} - 1 + z^{A_2 x_2} - 1 + \cdots + z^{A_{n-1} x_{n-1}} - 1 + z^{A_n x_n} - 1,
\]

for finitely many nonzero (and nonnegative) coefficients \(\{Q_{j\alpha}\} \). By Proposition 1, the number \(f(b) \) of nonnegative integral solutions \(x \in \mathbb{N}^n \) to the equation \(Ax = b \), is given by

\[
f(b) = \frac{1}{(2\pi i)^m} \int |z_1| = \gamma_1 \ldots \int |z_m| = \gamma_m \prod_{k=1}^n (1 - z^{-A_k}) dz.
\]
and
\[z^{A_j x_j} - 1 = (z^{A_j} - 1) \left[1 + z^{A_j} + \cdots + z^{A_j (x_j - 1)} \right] \quad j = 1, \ldots, n, \]
to obtain (14) with
\[z \mapsto Q_j(z) := z \sum_{k=1}^{x_j - 1} A_k x_k \left[1 + z^{A_j} + \cdots + z^{A_j (x_j - 1)} \right], \quad j = 2, \ldots, n, \]
and
\[z \mapsto Q_1(z) := 1 + z^{A_1} + \cdots + z^{A_1 (x_1 - 1)}. \]
We immediately see that each \(Q_j \) has all its coefficients nonnegative (and even in \(\{0, 1\} \)).

Finally, the bound on the degree follows immediately from the expression of the \(Q_j \)'s in the proof of (i) \(\Rightarrow \) (ii).

References

1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American Mathematical Society, Providence, RI, 1994.
2. Barvinok, A.I., Pommersheim J.E.: An algorithmic theory of lattice points in polyhedra. In New Perspectives in Algebraic Combinatorics, MSRI Publications 38 (1999) 91–147.
3. Blair, C.E., Jeroslow, R.G.: The value function of an integer program. Math. Prog. 23 (1982) 237-273.
4. Brion, M., Vergne, M.: Lattice points in simple polytopes. J. Amer. Math. Soc. 10 (1997) 371–392.
5. Brion, M., Vergne, M.: Residue formulae, vector partition functions and lattice points in rational polytopes. J. Am. Math. Soc. 10 (1997) 797–833.
6. Conway, J.B.: Functions of a complex variable I. 2nd ed., Springer, New York, (1978).
7. Lasserre, J.B., Zeron, E.S.: On counting integral points in a convex rational polytope, Technical report #01353, LAAS-CNRS, Toulouse, France, 2001. To appear in Math. Oper. Res.
8. Schrijver, A.: Theory of Linear and Integer Programming, John Wiley & Sons, Chichester, 1986.