PlantRNA 2.0: an updated database dedicated to tRNAs of photosynthetic eukaryotes

Valérie Cognat*, Gael Pawlak*, David Pflieger, and Laurence Drouard#

Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France.

#To whom correspondence should be addressed. Tel: +33 3 67 15 53 98; Email: laurence.drouard@ibmp-cnrs.unistra.fr.

* The two first authors should be regarded as joint first authors.

ABSTRACT

PlantRNA (http://plantrna.ibmp.cnrs.fr/) is a comprehensive database of transfer RNA (tRNA) gene sequences retrieved from fully annotated nuclear, plastidial and mitochondrial genomes of photosynthetic organisms. In the first release (PlantRNA 1.0), tRNA genes from 11 organisms were annotated. In this second version, the annotation was implemented to 51 photosynthetic species covering the whole phylogenetic tree of photosynthetic organisms, from the most basal group of Archeplastida, the glaucophyte Cyanophora paradoxa, to various land plants. Transfer RNA genes from lower photosynthetic organisms such as streptophyte algae or lycophytes as well as extremophile photosynthetic species such as Eutrema parvulum were incorporated in the database. As a whole, circa 37 000 tRNA genes were accurately annotated. In the frame of the tRNA genes annotation from the genome of the Rhodophyte Chondrus crispus, non-canonical splicing sites in the D- or T- regions of tRNA molecules were identified and experimentally validated. As for PlantRNA 1.0, comprehensive biological information including 5'- and 3'-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences and tRNA mitochondrial import are included.

INTRODUCTION

Beyond their major role in translation as carriers of amino acids, transfer RNAs (tRNAs) have many non-canonical functions and are involved in a multitude of biological processes, as already emphasized in PlantRNA 1.0 database (1) or in more recent reviews (e.g.(2) (3)). For instance, the key role played by tRNAs in the production of tRNA-derived small RNAs (tDRs) (4) involved in diverse functions is expanding rapidly (5). Furthermore, there is growing evidence that not only tRNAs but also tRNA genes appear to play important roles. In particular, tRNA genes can be involved in the organization of the nuclear genome and affect the chromatin structure (e.g. (6) (7) (8) (9)). These genes are either scattered or clustered throughout the genomes (10) (11). Their number greatly varies between the nuclear genomes of eukaryotes (8), and likely their genomic distribution varies as well but this remains poorly
explored. To better decipher how tRNA genes contribute to genome evolution it is therefore essential to retrieve complete sets of tRNA genes with the highest possible accuracy. Photosynthetic organisms, with the presence of three genomes (i.e. nuclear, plastidial, and mitochondrial) represent the most complex model of eukaryotic cells to visualize the evolution of the tRNA genes population in terms of gene content, organization and expression. In 2011, we thus decided to develop a tRNA database dedicated to photosynthetic organisms and the first version of PlantRNA (12) has provided information on 11 eukaryotes of the photosynthetic lineage. Although covering evolutionary distinct branches of the photosynthetic lineage, this database was rather limited. During the last decade, the number of completed nuclear, plastidial and mitochondrial genome sequences has considerably increased. This recent accumulation of knowledge has now made it possible to include the tRNA gene sequences of about 40 additional species representative of the phylogenetic tree of the Archeplastida lineage. This includes species representative of terrestrialisation, vascularisation, flowers emergence, or growth in extreme environments as well as two rhodophytes whose genomes contain permuted tRNA genes or peculiar intronic sites. The genomes of a cryptophyte, a haptophyte and two heterokontophytes were also annotated. The recently optimized version of tRNAscan-SE program (13) was used to predict and annotate tRNA genes as accurately as possible. Nevertheless, manual curation was still essential at different levels, for example, to avoid false annotations due to contamination from external (e.g. bacterial) or organellar DNA during nuclear genome sequencing programs, to eliminate remaining tRNA pseudogenes that escape detection, or to identify missing plastidial tRNA genes containing group II introns. Biological information relevant to tRNA biology (e.g. intron sequences, flanking sequences controlling tRNA gene expression, tRNA mitochondrial import) is also made available. As a whole, circa 37 000 novel tRNA genes were annotated, thus providing the largest curated tRNA database of photosynthetic organisms.

DATABASE CONTENT AND WEB INTERFACE

The current release incorporates data sources of the previous version for 7 species (12), novel data sources for 4 updated genomes, and a choice of 40 new data sources selected on the basis of the interest of the species regarding their position in the phylogenetic tree of the photosynthetic lineage. For instance, they cover 7 genomes of streptophyte algae belonging to the lineage being at the transition step from aquatic algae to land plants, the genomes of a lycophyte (Selaginella moellendorffii) the first non-seed vascular plant genome reported (14), a fern (Azolla filiculoides), one of the fastest-growing plants, or Amborella trichopoda, representative of the sister lineage of all flowering plants. Plant species were also chosen because of their growth in peculiar environments such as the cave plant Primulina huajiensis (15) or the halophytic plant Eutrema parvulum (also called Schrenkiella parvula or Thellungiella parvula) (16,17). The quality of the genome annotations was also taken into account whenever possible. In addition, when available, plastidial and mitochondrial genomes were also used as sources. Whole nuclear, plastidial, and mitochondrial genomes were
scanned by tRNAscan-SE 2.0 (13) and automatically processed by a homemade workflow (available at https://github.com/ibmp-bip/tRNAflow) and then manually curated and annotated as in (18). Figure 1 shows the phylogenetic tree of the photosynthetic organisms from which the tRNA genes were retrieved. The sources of genome sequences listed in Supplemental Table S1 are accessible via the entry point “Species” on the PlantRNA website. As in version 1.0 (12), additional data including linear secondary structure, A and B boxes, flanking sequences controlling tRNA gene expression, intronic sequences, mitochondrial tRNA import either experimentally proven or predicted, are indicated. Regarding intronic sequences, introns predicted at non-canonical positions in the red alga, *Chondrus crispus*, were experimentally verified. To this end, total RNA was extracted from *C. crispus* alga provided by the ‘Centre national de ressources biologiques marine’ (EMBRC France) according to (19) and analyzed by RT-PCR or cRT-PCR (circular RT-PCR) as described in (20) and using oligonucleotides found in Supplementary Table S2.

We also annotated some of the sequences as tRNA-like sequences. This tRNA-like group comprises true tRNA pseudogenes but likely also highly divergent tRNA molecules which functions remain to be elucidated. Without experimental studies, it is difficult to discriminate between the two categories. In addition, numerous mitochondrial or plastidial tRNA gene sequences inserted into nuclear genomes, and reported so far not be expressed and functional (18), or contaminating the nuclear DNA preparations are recognized as true tRNA genes by tRNAscan-SE. They were annotated and can be downloaded in xls format. Finally, tRNA genes of bacterial origin likely due to DNA contamination were also discarded.

All tRNA sequences, annotations, and biological information are stored in a database implemented in PostgreSQL version 12 (https://www.postgresql.org/). To increase the traceability, we added the genome resources (genome assembly version and source) and the software and versions used for automatic annotation. The web application querying the underlying database is running in a Java-based Apache Tomcat 8.5 environment (https://tomcat.apache.org/). To manage the increasing number of genomes to process and improve the data quality, some automation and systematic data checks are included in a private area of the application.

RESULTS AND FUTURE DIRECTION

In total, 34403, 1661, and 911 tRNA genes were registered from the nuclear, plastidial, and mitochondrial genomes. Among the 51 photosynthetic organisms, 4 plastidial and 13 mitochondrial genome sequences are not available.

At the level of nuclear genomes analysis, the level of curation was variable (Figure 2). tRNA genes of bacterial origin retrieved on scaffolds (i.e. not localized in chromosomes) by tRNAscan-SE 2.0 were deleted: 47 in *Coffea canefora*, 40 in *Mesotaenium endlicherianum*, 35 in *Mesostigma viride*, and 20 in *Chondrus crispus*. Similarly, many plastidial or mitochondrial tRNA genes were detected; their number greatly fluctuates from 0 in the hornwort *Anthoceros angustus* to 1978 in the fern *Azolla filiculoides*. When located on chromosomes, the presence of these tRNA genes is due to organellar DNA insertion into the nuclear genomes; when unplaced (i.e. on non-assembled scaffolds), it is difficult to discriminate between organellar
DNA insertion and organellar DNA contamination, in particular when genomes have not been assembled into chromosomes. Finally, depending on the quality of the genome assembly and annotation, the number of tRNA-like/tRNA pseudogenes is highly variable. More than 10,000 sequences from the nuclear genomes of the fern _A. filiculoides_ or of the gymnosperm _Pinus taeda_ belong to this category as well as _circa_ 6,000 sequences in the genome of the streptophyte alga, _Chara braunii_. As shown in Figure 2, the remaining true tRNA genes may represent not more than 10% (e.g. in _P. taeda_ or in _C. braunii_) of the initial sequences retrieved thanks to tRNAscan-SE. The presence of numerous tRNA-like/tRNA pseudogenes may be explained by genome size expansion for example by whole-genome duplication as is the case in ferns or in gymnosperms for instance (21) (22). In gymnosperms, the high proportion of tRNA pseudogenes is in agreement with the numerous pseudogenes observed in conifer genomes and is correlated with the accumulation of transposable elements (23).

All photosynthetic organisms studied here possess intron-containing nuclear tRNA genes. In embryophytes (Figure 1), around 5% of them possess a classical intronic sequence between positions 37 and 38 and correspond to two tRNA gene families (tRNA^TV_ and tRNA^eMEL_). This proportion increases up to 13.8% in Brassicaceae, such as _A. thaliana_, where a cluster of tRNA^TV_ genes exist (11). In _Ginkgo biloba_, tRNA^TH_(TAT) genes also contain classical intronic sequences. In streptophyte algae and chlorophytes, the number and identity of intron-containing nuclear tRNA genes is more variable and usually higher. The permuted tRNA genes identified in the rhodophyte _Cyanidioschyzon merolae_ (24) were also annotated as well as the intronic sequences located at non-canonical positions in the D-, T- or variable loops (25).

Similarly, scanning the nuclear genome of another rhodophyte, _Chondrus crispus_, several essential tRNA genes were considered as pseudogenes when using tRNAscan-SE. Manual inspection allowed us to identify introning sequences in either the D-loop between positions 20 and 21, or in the T-loop between positions 58 and 59 of these tRNA genes. Interestingly, the introns in the D- or T-loops are always at the same position and tRNA^TV_ and tRNA^eMEL_ genes have two introns, the canonical one in the anticodon region plus a second one in either the D- or T-loop (Figure 3). The expression of these _C. crispus_ tRNAs and the splicing of their introns were supported by RT-PCR and cRT-PCR experiments conducted for three of them, tRNA^Cys_ (with an intron in the D-loop), tRNA^Trp_ (with an intron in the T-loop), and tRNA^TV_ (with two introns in the D- and anticodon loops). In the three cases, correctly spliced tRNAs ending with a CCA triplet were obtained (Supplementary Figure S1).

Regarding mitochondria-encoded tRNAs, the novel annotated genomes extend our knowledge on the number and identity of this population of tRNA molecules. Interestingly, even only considering embryophytes, there is a great fluctuation in their number: from 0 in the lycophyte _Selaginella moellendorfii_ to 126 in the basal angiosperm _Amborella trichopoda_. To compensate for the lack of mitochondria-encoded tRNAs, this likely implies mitochondrial import of a full set of nuclear-encoded tRNAs in the lycophyte, a process experimentally demonstrated in several photosynthetic organisms (26). Conversely, the high number of mitochondria-encoded tRNAs in _A. trichopoda_ reflects the presence of numerous horizontal transfers of foreign mitochondrial DNA from green algae, mosses and angiosperms (27).
with the existence of 126 mitochondria-encoded tRNA genes, the only tRNA\textsubscript{Thr}(GGT) is likely not sufficient to decode the four threonine ACN codons, thus likely requiring the need to import at least one nuclear-encoded tRNA\textsubscript{Thr}. Based on the lack of mitochondria-encoded tRNA species, imported tRNAs were proposed in the PlantRNA database for all sequenced mitochondrial genomes.

Nuclear tRNA genes are transcribed by RNA polymerase III (pol III). The high number of available nuclear tRNA sequences now allow studying in more detail the important characteristics of pol III transcription. In particular, it will be possible to follow how conserved are the TATA-like elements and CAA motifs found upstream of tRNA gene sequences in photosynthetic organisms and whether their presence is linked to plant evolution or adaptation to the environment. Similarly, stretches of T residues normally involved in pol III transcription termination are not always present or are variable in length or number. Whether this variability reflects differences in genome organization and expression remains to be elucidated.

In PlantRNA 2.0, no emphasis has been given on related biological information such as aminoacyl-tRNA synthetases or modification enzymes and work needs to be done to fill this gap. From an informatics point of view, many steps required to implement the PlantRNA database have now been automatized. The main bottleneck in updating more regularly the database remains the manual curation. We now plan, with the large number of curated tRNA sequences, to implement a neural network so that any new genome is accurately annotated and the data quickly incorporated into the database. Finally, the incorporation into the database of tRNA and tDR expression profiles as well as the modified nucleotide composition of each tRNA species is biologically relevant but will first require more experimental work.

DATABASE AVAILABILITY
PlantRNA is accessible freely at http://PlantRNA.ibmp.cnrs.fr. All published data performed with the help of the PlantRNA database should refer to this article.

SUPPLEMENTARY DATA
Supplementary data are available at NAR online.

ACKNOWLEDGEMENTS
We would like to thank Marie Bernhard and Thalia Salinas-Giegé for technical support, and Alexandre Berr for critical discussion.

AUTHOR CONTRIBUTIONS
LD conceived the project, curated manually the data, and wrote the manuscript. VC developed the workflow to annotate tRNA, processed all the genomes, and contributed to the design of the database and the data integration. GP implemented the PlantRNA database and the web interface and DP adapted the tRNAscan import R package to split the tRNA sequences. All authors contributed to the final manuscript.
FUNDING
This work was supported by the Centre National de la Recherche Scientifique (CNRS) and by the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm supported by IdEx Unistra (ANR-10-IDEX-0002), and EUR IMCBio (ANR-17-EURE-0023) under the framework of the French Investments for the Future Program.

REFERENCES
1. Cognat, V., Pawlak, G., Duchene, A.M., Daujat, M., Gigant, A., Salinas, T., Michaud, M., Gutmann, B., Giege, P., Gobert, A. et al. (2013) PlantRNA, a database for tRNAs of photosynthetic eukaryotes. *Nucleic Acids Res*, 41, D273-279.
2. Su, Z., Wilson, B., Kumar, P. and Dutta, A. (2020) Noncanonical Roles of tRNAs: tRNA Fragments and Beyond. *Annu Rev Genet*, 54, 47-69.
3. Tosar, J.P., Ivanov, P., Ribas de Pouplana, L. and Torres, A.G. (2021) Editorial: Understanding the importance of non-canonical tRNA Function. *Front Mol Biosci*, 8, 769784.
4. Holmes, A., Chan, P.P., Chen, Q., Ivanov, P., Drouard, L., Polacek, N., Kay, M.A. and Lowe, T.M. (2022) A Standardized Ontology for Naming tRNA-derived RNAs Based on Molecular Origin. *bioRxiv*, doi.org/10.1101/2022.05.06.490965.
5. Krishna, S., Raghavan, S., DasGupta, R. and Palakodeti, D. (2021) tRNA-derived fragments (tRFs): establishing their turf in post-transcriptional gene regulation. *Cell Mol Life Sciences* 78, 2607-2619.
6. Van Bortle, K. and Corces, V.G. (2012) tDNA insulators and the emerging role of TFIIIC in genome organization. *Transcription*, 3, 277-284.
7. Hamdani, O., Dhillon, N., Hsieh, T.S., Fujita, T., Ocampo, J., Kirkland, J.G., Lawrimore, J., Kobayashi, T.J., Friedman, B., Fulton, D. et al. (2019) tRNA Genes Affect Chromosome structure and function via local effects. *Mol Cell Biol*, 39, e00432-18.
8. Hummel, G., Warren, J. and Drouard, L. (2019) The multi-faceted regulation of nuclear tRNA gene transcription. *IUBMB Life*, 71, 1099-1108.
9. Ehrlich, R., Davyt, M., Lopez, I., Chalar, C. and Marin, M. (2021) On the track of the missing tRNA genes: A source of non-canonical Functions? *Front Mol Biosci*, 8, 643701.
10. Bermudez-Santana, C., Attolini, C.S., Kirsten, T., Engelhardt, J., Prohaska, S.J., Steigele, S. and Stadler, P.F. (2010) Genomic organization of eukaryotic tRNAs. *BMC genomics*, 11, 270-284.
11. Hummel, G., Barr, A., Graindorge, S., Cognat, V., Ubrig, E., Pfieger, D., Molinier, J. and Drouard, L. (2020) Epigenetic silencing of clustered tRNA genes in Arabidopsis. *Nucleic Acids Res*, 48, 10297-10312.
12. Cognat, V., Pawlak, G., Duchène, A.M., Daujat, M., Gigant, A., Salinas, T., Michaud, M., Gutmann, B., Giegé, P., Gobert, A. et al. (2013) PlantRNA, a database for tRNAs of photosynthetic eukaryotes. *Nucleic Acids Res*, 41, D273-279.
13. Chan, P.P., Lin, B.Y., Mak, A.J. and Lowe, T.M. (2021) tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. *Nucleic Acids Res*, 49, 9077-9096.
14. Banks, J.A., Nishiyama, T., Hasebe, M., Bowman, J.L., Gribskov, M., dePamphilis, C., Albert, V.A., Aono, N., Aoyama, T., Ambrose, B.A. et al. (2011) The Selaginella genome
identifies genetic changes associated with the evolution of vascular plants. *Science, 332*, 960-963.

15. Feng, C., Wang, J., Wu, L., Kong, H., Yang, L., Feng, C., Wang, K., Raisher, M. and Kang, M. (2020) The genome of a cave plant, *Primulina huaijiensis*, provides insights into adaptation to limestone karst habitats. *New Phytol*, 227, 1249-1263.

16. Wang, X., Bi, C., Xu, Y., Wei, S., Dai, X., Yin, T. and Ye, N. (2016) The whole genome assembly and comparative genomic research of *Thellungiella parvula* (Extremophile Crucifer) mitochondrion. *Int J Genomics*, 2016, 5283628.

17. Dassanayake, M., Oh, D.H., Haas, J.S., Hernandez, A., Hong, H., Ali, S., Yun, D.J., Bressan, R.A., Zhu, J.K., Bohnert, H.J. *et al.* (2011) The genome of the extremophile crucifer *Thellungiella parvula*. *Nature genetics*, 43, 913-918.

18. Michaud, M., Cognat, V., Duchène, A.M. and Maréchal-Drouard, L. (2011) A global picture of tRNA genes in plant genomes. *The Plant J*, 66, 80-93.

19. Salinas-Giege, T., Cavaiuolo, M., Cognat, V., Ubrig, E., Remacle, C., Duchène, A.M., Vallon, O. and Maréchal-Drouard, L. (2017) Polycytidylation of mitochondrial mRNAs in *Chlamydomonas reinhardtii*. *Nucleic Acids Res*, 45, 12963-12973.

20. Salinas-Giégé, T., Ubrig, E. and Drouard, L. (2021) *Cyanophora paradoxa* mitochondrial tRNAs play a double game. *Plant J*, 106, 1105-1115

21. Li, F.W., Brouwer, P., Carretero-Paulet, L., Cheng, S., de Vries, J., Delaux, P.M., Eily, A., Koppers, N., Kuo, L.Y., Li, Z. *et al.* (2018) Fern genomes elucidate land plant evolution and cyanobacterial symbioses. *Nat Plants*, 4, 460-472.

22. Zimin, A.V., Stevens, K.A., Crepeau, M.W., Puflu, D., Wegryn, J.L., Yorke, J.A., Langley, C.H., Neale, D.B. and Salzberg, S.L. (2017) An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. *Gigascience*, 6, 1-4.

23. Nystedt, B., Street, N.R., Wetterbom, A., Zuccolo, A., Lin, Y.C., Scofield, D.G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A. *et al.* (2013) The Norway spruce genome sequence and conifer genome evolution. *Nature*, 497, 579-584.

24. Soma, A., Onodera, A., Sugahara, J., Kanai, A., Yachie, N., Tomita, M., Kawamura, F. and Sekine, Y. (2007) Permuted tRNA genes expressed via a circular RNA intermediate in *Cyanidoschyzon merolae*. *Science*, 318, 450-453.

25. Kawach, O., Voss, C., Wolff, J., Hadfi, K., Maier, U.G. and Zauner, S. (2005) Unique tRNA introns of an enslaved algal cell. *Mol Biol Evol*, 22, 1694-1701.

26. Warren, J.M., Salinas-Giege, T., Triant, D.A., Taylor, D.R., Drouard, L. and Sloan, D.B. (2021) Rapid shifts in mitochondrial tRNA import in a plant lineage with extensive mitochondrial tRNA gene loss. *Mol Biol Evol*, 38, 5735-5751.

27. Rice, D.W., Alverson, A.J., Richardson, A.O., Young, G.J., Sanchez-Puerta, M.V., Munzinger, J., Barry, K., Boore, J.L., Zhang, Y., dePamphilis, C.W. *et al.* (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. *Science*, 342, 1468-1473.

28. Wang, S., Liang, H., Xu, Y., Li, L., Wang, H., Sahu, D.N., Petersen, M., Melkonian, M., Sahu, S.K. and Liu, H. (2021) Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes. *Commun Biol*, 4, 412.

29. Rensing, S.A. (2020) How Plants Conquered Land. *Cell*, 181, 964-966.

30. Burki, F., Roger, A.J., Brown, M.W. and Simpson, A.G.B. (2020) The New Tree of Eukaryotes. *Trends Ecol Evol*, 35, 43-55.

31. Amborella Genome, P. (2013) The Amborella genome and the evolution of flowering plants. *Science*, 342, 1241089.
FIGURE LEGENDS

Figure 1. Phylogeny of Archaeplastida with the species included in this study. Two heterokontophytes belonging to the SAR (Stramenopiles, Alveolates, Rhizaria) clade are included. The tree has been constructed from various published studies, in particular (28-31). LECA: Last Eukaryotic Common Ancestor. For each species, a three letters abbreviation is indicated in bold.

Figure 2. Histogram showing the percentage of nuclear tRNA genes, as estimated from our study. Species are indicated by the three letters code presented in Figure 1. Note that two *Chlamydomonas reinhardtii* strains (Cre-503 and Cre-4532) have been studied. The color code is as followed: true tRNA genes in blue, tRNA-like/tRNA pseudogenes in orange, tRNA genes inserted into the nuclear genome or due to contamination by mitochondrial or plastidial DNA in grey, and tRNA genes corresponding to external bacterial contamination in yellow.

Figure 3. Insertion points introns in *Chondrus crispus* tRNA genes. The typical secondary structure of a mature tRNA is presented. The anticodon is represented with an orange circle. Insertion points of canonical introns in the anticodon loop, and of non-canonical introns in either the D or the T-loops are indicated by arrows. The tRNAs possessing introns are listed by their cognate amino acid, their anticodon in parenthesis, and the number of isodecoders.
Amino Acid	Count
Ala (AGC), Ala (CGC)	2
Arg (ACG)	3
eMet (CAT)	2
Ser (CGA), Ser (TGA)	1
Thr (TGT), Tyr (GTA)	2
Ala (TGC), Asp (GTC), Cys (GCA), Leu (TAA), Lys (TTT), Thr (TGT)	1
Arg (CCT), eMet (CAT), Pro (TGG), Ser (GCT), Ser (TGA), Trp (CCA)	1

[Diagram showing the amino acids and their counts]