From the Core to the Border of Locally Advanced Rectal Cancer: A Novel MRI-based Clinical-Radiomic Model Early Predicts Treatment Response

Andrea Delli Pizzi
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Antonio Chiarelli
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Piero Chiacchiaretta (✉ p.chiacchiaretta@unich.it)
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Martina d’Annibale
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Pierpaolo Croce
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Consuelo Rosa
Department of Radiation Oncology, SS. Annunziata Hospital, “G. D’Annunzio” University of Chieti

Domenico Mastrodicasa
Stanford University School of Medicine, Department of Radiology, Stanford, CA

Stefano Trebeschi
Department of Radiology, Netherlands Cancer Institute, Amsterdam

Doenja Lambregts
Department of Radiology, Netherlands Cancer Institute, Amsterdam

Daniele Caposiena
Unit of Radiology, “San Pio da Pietralcina” Hospital, Vasto

Francesco Serafini
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Raffaella Basilico
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Giulio Cocco
Unit of Ultrasound in Internal Medicine, Department of Medicine and Science of Aging, “G. D’Annunzio” University

Pierluigi Di Sebastian
Department of Innovative Technologies in Medicine & Odontoiatry, “G. D’Annunzio” University

Sebastiano Cinalli
Division of Pathology, ASST of Valtellina and Alto Lario, Sondrio
Antonio Ferretti
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Richard Wise
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Domenico Genovesi
Department of Radiation Oncology, SS. Annunziata Hospital, “G. D’Annunzio” University of Chieti

Regina Beets-Tan
Department of Radiology, Netherlands Cancer Institute, Amsterdam

Massimo Caulo
Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University

Research Article

Keywords: Neoadjuvant chemo-radiotherapy (CRT), total mesorectal excision (TME), tumor core, rectal cancer precision medicine

DOI: https://doi.org/10.21203/rs.3.rs-108041/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. [Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Neoadjuvant chemo-radiotherapy (CRT) followed by total mesorectal excision (TME) represents the standard treatment for patients with locally advanced (³ T3 or N+) rectal cancer (LARC). Approximately 15% of patients with LARC shows a complete response after CRT. The use of pre-treatment MRI as predictive biomarker could help to increase the chance of organ preservation by tailoring the neoadjuvant treatment. We present a novel machine learning model combining pre-treatment MRI-based clinical and radiomic features for the early prediction of treatment response in LARC patients. MRI scans (3.0T, T2-weighted) of 72 patients with LARC were included. Two readers independently segmented each tumor. Radiomic features were extracted from both the “tumor core” (TC) and the “tumor border” (TB). Partial least square (PLS) regression was used as the multivariate, machine learning, algorithm of choice and leave-one-out nested cross-validation was used to optimize hyperparameters of the PLS. The MRI-Based “clinical-radiomic” machine learning model properly predicted the treatment response (AUC=0.793, p=5.6·10⁻⁵). Importantly, the prediction improved when combining MRI-based clinical features and radiomic features, the latter extracted from both TC and TB. Prospective validation studies in randomized clinical trials are warranted to better define the role of radiomics in the development of rectal cancer precision medicine.

Introduction

In recent years, neoadjuvant chemo-radiotherapy (CRT) followed by total mesorectal excision (TME) became the standard treatment for patients with locally advanced (³ T3 or N+) rectal cancer (LARC). This approach increased the chance of a significant downstaging and reduced the risk of recurrence. In this context, Magnetic Resonance Imaging (MRI), thanks to its diagnostic and prognostic relevance, is the gold standard imaging approach for local staging and treatment response assessment. At staging, MRI provides information on the site, the extension and the relation with surrounding organs, thus establishing landmarks for following treatment. Moreover, it reveals prognostic signs such as the mesorectal fascia involvement, the extramural vascular invasion and the distance to the anal sphincter complex. During the treatment and, mostly, at the end of the CRT right before surgery, MRI plays a crucial role for the response assessment. In fact, approximately 15% of patients with LARC shows a complete response to CRT (complete responders) and it has been suggested that surgery could be omitted in selected patients. Moreover, an international multicenter registry study on watch and wait (W&W) strategy revealed a 5-year disease specific survival of 94%. In this context, the use of MR as predictive biomarker in oncology quickly became a hot topic in literature, with the primary aim to select the most appropriate treatment thus pursuing precision medicine. Moreover, the development of organ preservation policies further encouraged the researchers to investigate new MRI-based biomarkers for treatment response. This approach could be extremely beneficial for patients considered good responder, since the neoadjuvant treatment could be intensified to increase the chance of organ preservation. Moreover, for these patients, a longer interval between CRT and surgery (from 8 to 11 weeks) may increase the pathological complete response rates as well. On the other hand, in poor
responders, the treatment could be tailored with an additional boost. Methods extracting mineable data from clinical images, such as those based on automatic extraction of features from radiological images (radiomic features) and machine learning approaches, revealed promising results when combined to visual morphologic and clinical assessment. Moreover, in other tumor types, prognostic information has been obtained not only from the tumor but also in the tumor surrounding tissue (TST). We hypothesized that a combination of MRI-based data, including clinical and computational ones, could be useful for treatment response prediction at an early stage.

We here present a novel machine learning model combining MRI-based clinical and radiomic features, the latter extracted from both the “tumor core” (TC) and the “tumor border” (TB) from baseline T2-weighted (T2w) images, for the early prediction of treatment response in patients with LARC.

Methods

Subjects. The study received formal approval from the Ethical Committee of the University G. D’Annunzio of Chieti-Pescara, Italy; informed consent was waived by the same ethics committee that approved the study. The study was conducted according to ethical principles laid down by the latest version of the Declaration of Helsinki. A total of 164 patients who underwent clinically indicated rectal MRI for primary staging between January 2011 and February 2019 at our institution were retrospectively included (Figure 1). Inclusion criteria were 1) biopsy proved non-mucinous locally advanced rectal cancer, 2) MRI performed using a 3.0T scanner, 3) availability of final clinical outcome (major pathological response or non-major pathological response), 4) long-course CRT. Ninety-two patients were excluded: 12 were mucinous cancers, 24 because the MRI exam was performed on a 1.5T scanner, 33 were transferred in other institutes and we had no information regarding the final clinical outcome. Moreover, 18 patients were considered unfit for long-course CRT because of their clinical fragility and 5 patients had severe susceptibility artifacts in the pelvis (hip replacement). The final study population was composed of 72 patients.

MRI Protocol. All patients in this cohort underwent clinically indicated rectal MRI consisting of a standard T2w and a diffusion weighted imaging (DWI) acquisition performed using a state-of-the-art 3T MR scanner (Achieva, Philips Medical System, Best, the Netherlands) equipped with a phased array surface coil. Both T2w and DWI sequences were axially oriented perpendicular to the tumor major axis defined on a sagittal scan. Patients without contraindications received 20 mg of scopolamine butylbromide (Buscopan, Boehringer Ingelheim, Ingelheim am Rhein, Germany) intravenously to reduce bowel motility. Detailed information regarding the parameters of the MRI protocol are described in Table 1.

Imaging analysis. Whole-volume tumor manual segmentation representing the tumor core (TC) was performed on T2w images for each patient by two independent readers with different degrees of experience in abdominal radiology (a radiologist with 5 years of expertise in rectal MRI and a senior resident). All the segmentations were performed on T2w images of the staging MRI and were used as
masks for following analysis. The software used for the segmentation was an open-source medical image computing platform, 3DSlicer Version 4.8 (www.3dslicer.org). To create the “border” segmentations (tumor border, TB), a “3dmask_tool” (AFNI) was used. Firstly, both a 2mm dilatation (ROI “dilate”) and a 2 mm erosion (ROI “erode”) of the masks of each patient were obtained. Secondly, the two masks were subtracted (ROI “dilate” – ROI “erode”) in order to obtain the “border” mask of 4 mm thickness. All the “border” masks were then checked by the two readers. If necessary, the segmentation was manually corrected in order to include only the outer border of the tumor and adjacent perivisceral fat. TC and TB were shown in Figure 2a and 2b.

Clinical Features. Four weeks after the end of the manual segmentation, the two readers in consensus evaluated, for each patient, nine MRI-based clinical features, namely, tumor location (high=1, middle=2, low rectum=3), whole tumor volume (mm3), cranio-caudal extension (mm), distance from the internal anal sphincter (mm), mesorectal fascia infiltration (absent=0, present=1), extramural vascular invasion (absent=0, present=1), extramural depth of invasion (mm), T-stage (1-4) and N-stage (1-2). These MRI-based features were defined “clinical features” and were used in the machine learning model.

Radiomic Features Extraction. The extraction of the radiomic features from the masked (TB and TC) T2w images was performed using PyRadiomics, a flexible open-source platform capable of extracting a large panel of engineered features from medical images; this radiomic quantification platform enables the standardization of both feature definitions and image processing. The reproducibility assessment of the features extracted by the two readers from the segmentations of all patients was performed. To avoid data heterogeneity bias and to promote reproducibility, the T2w images and masks were resampled using 3 isotropic voxel dimensions (1x1x1 mm, 2x2x2 mm, 5x5x5 mm). For each segmentation and for each image resolution (1 mm, 2 mm and 5 mm) ten built-in filters (Original, wavelet, Laplacian of Gaussian (LoG), square, square root, logarithm, exponential, Gradient, LBP2D, LBP3D) were applied and seven feature classes (first order statistics, shape descriptors, glcm, glrlm, ngtdm, gldm, glszm) were calculated, which resulted in a total of 1688 radiomic features (Figure 2c).

Machine Learning: Partial Least Square (PLS) Regression

Machine learning approaches (also defined multivariate approaches) exploits data multidimensionality to extract useful information. The added value of such approaches is that they identify statistical dependences among variables that are not visible to standard univariate analysis.

However, many radiomic features tend to identify similar image characteristics, generally providing highly redundant information. This means that, when trying to predict an output based on these features, this information redundancy, coupled with the large numerosity of features with respect to samples (e.g. subjects), corrupts the results making the prediction unstable to noise and prone to overfitting and poor generalization. To address this problem, in this work, two main approaches were implemented. The first approach to dampen this effect was to reduce the number of used features by selecting only those that were highly repeatable between the two masks (delineated by the two radiologists) used (r>0.95).
The second approach was to implement a machine learning framework based on a linear regression analysis that employed a space dimension reduction procedure, namely the partial least square (PLS) regression 36,37. The PLS was used to predict the treatment response in patients with LARC at an early stage from the set of clinical and radiomic features. PLS has been extensively proven to be highly effective in reducing overfitting in the presence of collinearity. The underlying assumption of PLS is that the observed data is generated by a system or process which is driven by a small number of latent variables.

PLS allows the construction of regression equations reducing the predictors to a smaller set of uncorrelated components, i.e. a linear combination of the original predictors, and performs regression on these components 36,38. The goal of PLS is to identify components that capture most of the information in the independent variables (e.g. linear combinations of all radiomic features) that is useful for predicting the dependent variable (e.g. treatment response), while reducing the dimensionality of the regression problem by using fewer components than the original number of independent variables. PLS can be conceived as a supervised learning version of the Principal Component Analysis (PCA) 39,40. Of note, the learning process (fitting) of the PLS algorithm provides regression loadings that can be used to retrieve the weights (\(\beta\)-weights) linking the original independent variables with the dependent variable, depicting the importance and sign of the original variables in the prediction process. The PLS has one hyperparameter to be optimized, namely the number of uncorrelated components (linear combinations of the original independent variables) to be used in the regression.

In order to perform hyperparameter optimization and evaluate the generalizable performance of the procedure a possible approach that allows to minimize the loss of samples in the different sets is the nested cross-validation (nCV) 41. In nCV, data are divided in folds and the model is trained on all data except one-fold in an iterative, nested manner. The hyperparameter optimization and performance assessment are performed on the remaining fold and averaged across iterations. If the number of folds equals the number of samples (one-fold per sample) the procedure is defined leave-one-out nCV 42,43. This approach is highly suited for medical applications where each sample represents one subject. In this work, a leave-one-out nCV was implemented to optimize the PLS number of components and to assess the PLS generalization performance.

The leave-one-out nCV PLS analysis was repeated multiple times considering standalone clinical features, standalone radiomic features (with an inter-radiologist repeatability of \(r>0.95\)) and combined clinical and radiomic features. MRI-based clinical and radiomic features were also analyzed multiple times considering TC only, TB only, as well as both TC and TB radiomic features (Figure 2d). The machine learning analyses were implemented in Matlab.

Reference Standard. The major pathologic response, assessed for 69 patients on surgical specimens, was considered to be Tumor Regression Grade (TRG) 1 or 2 scores according to Mandard's classification 44-46. Alternatively, for 3 patients, a sustained complete clinical response with repeated negative MRI
examinations and endoscopy with or without biopsy was considered surrogate for a major pathological response for patients enrolled in watch-and-wait protocols.

Statistical Analysis

The classification performances were assessed through Receiver Operating Characteristic (ROC) analyses considering the inferred (out-of-training-sample) treatment response to therapy. Patients who responded to therapy (major pathological response) were attributed to the “negative” group, whereas patient showing a non-major pathological response were attributed to the “positive” group. The ROC analyses were also performed on random shuffled outcomes to simulate the null hypothesis and evaluate its confidence interval (repeated 10^6 times). The ROC analysis delivered an Area Under the Curve (AUC) which, using the random shuffled outcomes, could be transformed into a z-score for assessing its statistical significance. The Statistical Analysis was performed in Matlab.

Results

Out of the 72 patients included in the study, 48 were male (67%), and the mean age was 65 (IQR: 57.5-73.8) years. 48 (67%) patients showed a major pathological response and 24 (33%) a non-major pathological response (Table 2).

Nine clinical features were available and all of them were considered in the machine learning analysis. Moreover, 1688 radiomic features were extracted for the three image resolutions employed (1 mm, 2 mm and 5 mm) and for TC and TB, leading to a total of 10128 (1688x3x2) features. 1405 of these features showed an inter-reader correlation of $r > 0.95$ and were used for further analysis.

When considering the 9 standalone clinical features an AUC = 0.684 was obtained ($z = 2.53$, $p = 11 \cdot 10^{-3}$, Figure 3a). When employing standalone radiomic features with an $r > 0.95$, i.e. 1405 radiomic features, an AUC = 0.700 was obtained ($z = 2.75$, $p = 5.9 \cdot 10^{-3}$, Figure 3b). Importantly, the highest AUC was obtained when combining the 9 clinical features with the 1405 radiomic features, obtaining an AUC = 0.793 ($z = 4.00$, $p = 5.6 \cdot 10^{-5}$, Figure 3c).

The weights of the PLS (β-weights), when the machinery was trained on both clinical and radiomic features, are shown in Figure 4. Figure 4a reports the distributions of the β-weights for radiomic and clinical features, whereas figure 4b depicts the β-weights associated to the top 1% of features with the largest β-weights in magnitude, i.e. those most impacting the prediction. Importantly, for all except one (tumor location), of the top 1% of features, the weights were positive, that considering the value of “0” attributed to patients with major pathologic response and the value of “1” to the others during the multivariate regression, depicted a worse response to treatment with increasing feature value. Of note, the only important feature with negative weight was tumor location that, considering the labelling value attributed as a function of location (1=High, 2=Middle, 3=Low), delineated a better response to treatment for tumors in the low rectum. Finally, the impact of TC and TB
on the results was assessed. When using the 9 clinical features and 790 radiomic features (with an inter-radiologist repeatability of \(r>0.95\)) extracted only from the TC, an AUC = 0.689 was obtained (\(z = 2.60, p=9.3\cdot10^{-3}\), Figure 5a). When using the 9 clinical features and 626 radiomic features (with an inter-radiologist repeatability of \(r>0.95\)) extracted only from the TB, an AUC = 0.541 was obtained (\(z = 0.56, p=0.57\), Figure 5b). Indeed, a highly synergistic effects was obtained when combining TB and TC features, replicating the results previously found with an AUC = 0.793 (\(z = 4.00, p = 5.6\cdot10^{-5}\), Figure 5c).

Discussion

Our results demonstrated that an MRI-based machine learning “clinical-radiomic” approach was an accurate method to predict, at an early stage, the treatment response of patient with LARC.

Importantly, the addition of novel radiomic features to standard T2w-based clinical features was indeed useful in the improvement of the prognostic model. Moreover, the prediction further improved when both TC and TB radiomic features were included. These results confirm the promising role of baseline T2w-imaging for the prediction of clinical-outcome \(^{21,22,48,49}\). Recent studies have demonstrated the prognostic role of tumor morphology and the adjacent perirectal tissue assessed on T2w-imaging \(^{10,50}\). Furthermore, the importance of the perirectal tissue status for the final clinical outcome was also underlined by the significant reduction of the local recurrences with the introduction of TME thanks to the complete excision of microtumors around the cancer \(^{51}\). To the best of our knowledge our study, apart for the added value of radiomic features to standard MRI-based clinical metrics, is the first demonstrating the synergic role between feature extracted from the tumor core and the tumor border in the early prediction of response to therapy. Since the tumor border naturally include a certain degree of mesorectal compartment, our results confirm that also perirectal tissues contain useful information for the prediction of treatment response, as recently showed by Shaish et al. \(^{52}\).

Other studies based on radiomics were recently proposed in literature. However, different radiomics approaches were used: for example, a delta-radiomics approach was used to analyze the variation of quantitative features over time. In this way, Jeon at al. analyzed the difference in radiomic features before and after CRT. The authors demonstrated that delta radiomics signatures were successful predictors of treatment response and independent prognostic factors \(^{53}\). In other studies, the predictivity of more extensive MRI protocols was explored \(^{54,55}\). For example, Cui et al. investigated the predictive role of a multiparametric radiomics-based approach including T2w, contrast-enhanced T1w and ADC images \(^{54}\). Differently from these approaches, our study was focused only on the primary staging and included only T2w images. In fact, our primary aim was to investigate biomarkers of treatment response at an early stage using the most widely used and recommended MRI imaging \(^7\). Focusing of the important features deemed as such by the machine learning algorithm, in our study the principal predictive features were mainly focused on tumor heterogeneity and clinical, visually assessed, characteristics. For example, tumors with high degree of internal heterogeneity, N+ and with a high clinical T staging were more likely associated to a poor treatment response. Furthermore, cancers located in low rectum were found to have
a more favorable outcome thus confirming the crucial role of neoadjuvant chemo-radiation therapy in this category of patients.56 Since most of the predictive features were extracted by 1-2 mm resolution voxels instead of 5 mm, our results support the recommendations of the last European Society of Gastrointestinal and Abdominal Imaging (ESGAR) consensus meeting.7 In fact, according to these guidelines, the slice thickness of axial T2-weighted images should be equal or inferior to 3 mm7. Similarly to other studies, the accuracy of the prediction improved when a qualitative MRI assessment is added to a quantitative radiomic-based analysis.21,48 In this way we are confident that the development of other “omics” disciplines may further improve the overall accuracy of the treatment response prediction.57,58

Our study has some limitation. First of all, the sample size was limited and we analyzed a large number of predictive features. This was partially due to the strict inclusion criteria that we adopted. However, the PLS algorithm surely dampened this issue by obtaining a good classification performance. However, future studies on larger cohorts are warranted to confirm our findings, and to further increase the classification outcome.

Secondly, ours is a retrospective single-center study. For this reason, further studies, possibly prospective and multicentric need to be warranted to define a potential standardization of our approach.

Third, there were some variations in the patient preparation and acquisition parameters of the MRI sequences used in this study. They reflect the daily practice which is subject to a certain degree of optimization or changes over time and this may have had some effect on the results. On the other hand, this fact may be even be viewed as a positive factor since the results may be more generalizable and less dependent on protocol variation between different centers. Fourth, we only focused our prediction on T2-weighted imaging, without considering other MRI techniques, such as DWI and Dynamic Contrast Enhanced Imaging (DCE). However, since our objective was the prediction at the primary staging, the potential role of DWI and DCE at this time point is controversial. In fact, none of these techniques is routinely recommended in the current guidelines.7

\section*{Conclusion}

A pre-treatment, MRI-based, “clinical-radiomic” machine-learning model accurately predict the treatment response in patients with locally advanced rectal cancer. The prediction improved when combining MRI-based clinical features and radiomic features, the latter extracted from both tumor core and the tumor border. Exploiting the method, patients with locally advanced rectal cancer could benefit from a tailored approach including conservative strategies. Prospective validation studies in randomized clinical trials are warranted to better define the role of radiomics in the development of rectal cancer precision medicine.

\section*{Declarations}
Ethical statement. This study was approved by the local ethics committee. The study used only pre-existing medical data, therefore patient consent was waived.

Data Availability. The datasets generated during and/or analyzed during the current study are not publicly available due to the clinical and confidential nature of the material but can be made available from the corresponding author on reasonable request.

Acknowledgements The authors thank Daniele Petrucci and Darien Calvo Garcia for their insightful contribution on the MRI protocol settings and the acquisition of data.

Author Contributions A.D.P. conceived and developed the research idea with the assistance of S.T., D.M.J.L. and R.C. The study design was performed by A.D.P, D.M., R.B., D.G, A.F., R.G.H.B.T. and M.C. M.d’A. and A.D.P. performed the segmentation task. C.R., S.C., D.C., G.C., F.L.S. and P.D.S. performed data collection. P.CR., P.CH. and A.M.C. performed the computational experiments with guidance from R.G.W. and A.F. The paper was written by A.D.P. with technical content from A.M.C. and P.CH, and extensive editorial input from all authors. All authors have read and approved the final version submitted.

Competing Interests: The authors declare they have no competing interests.

References

1 Nagtegaal, I. et al. Morphological changes in tumour type after radiotherapy are accompanied by changes in gene expression profile but not in clinical behaviour. *J Pathol* **204**, 183-192, doi:10.1002/path.1621 (2004).

2 Heald, R. J. & Ryall, R. D. Recurrence and survival after total mesorectal excision for rectal cancer. *Lancet* **1**, 1479-1482 (1986).

3 Maas, M. et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. *Lancet Oncol* **11**, 835-844, doi:10.1016/S1470-2045(10)70172-8 (2010).

4 Glimelius, B., Tiret, E., Cervantes, A., Arnold, D. & Group, E. G. W. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* **24 Suppl 6**, vi81-88, doi:10.1093/annonc/mdt240 (2013).

5 Krook, J. E. et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. *N Engl J Med* **324**, 709-715, doi:10.1056/NEJM199103143241101 (1991).

6 Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. *N Engl J Med* **351**, 1731-1740, doi:10.1056/NEJMoa040694 (2004).

7 Beets-Tan, R. G. H. et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal
Radiology (ESGAR) consensus meeting. *Eur Radiol* **28**, 1465-1475, doi:10.1007/s00330-017-5026-2 (2018).

8 Delli Pizzi, A. *et al.* Rectal cancer MRI: protocols, signs and future perspectives radiologists should consider in everyday clinical practice. *Insights Imaging* **9**, 405-412, doi:10.1007/s13244-018-0606-5 (2018).

9 Delli Pizzi, A. *et al.* Performance of diffusion-weighted magnetic resonance imaging at 3.0T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy. *Abdom Radiol (NY)* **43**, 2221-2230, doi:10.1007/s00261-018-1457-8 (2018).

10 Lambregts, D. M. J. *et al.* A Pattern-Based Approach Combining Tumor Morphology on MRI With Distinct Signal Patterns on Diffusion-Weighted Imaging to Assess Response of Rectal Tumors After Chemoradiotherapy. *Dis Colon Rectum* **61**, 328-337, doi:10.1097/DCR.0000000000000915 (2018).

11 Beets-Tan, R. G. & Beets, G. L. MRI for assessing and predicting response to neoadjuvant treatment in rectal cancer. *Nat Rev Gastroenterol Hepatol* **11**, 480-488, doi:10.1038/nrgastro.2014.41 (2014).

12 Lambregts, D. M. *et al.* Diffusion-weighted MRI to assess response to chemoradiotherapy in rectal cancer: main interpretation pitfalls and their use for teaching. *Eur Radiol*, doi:10.1007/s00330-017-4830-z (2017).

13 Delli Pizzi, A. *et al.* Tumor detectability and conspicuity comparison of standard b1000 and ultrahigh b2000 diffusion-weighted imaging in rectal cancer. *Abdom Radiol (NY)* **44**, 3595-3605, doi:10.1007/s00261-019-02177-y (2019).

14 Lambregts, D. M. J. *et al.* Long-term imaging characteristics of clinical complete responders during watch-and-wait for rectal cancer-an evaluation of over 1500 MRIs. *Eur Radiol* **30**, 272-280, doi:10.1007/s00330-019-06396-1 (2020).

15 Rosa, C. *et al.* Reproducibility of rectal tumor volume delineation using diffusion-weighted MRI: Agreement on volumes between observers. *Cancer Radiother* **23**, 216-221, doi:10.1016/j.canrad.2018.10.004 (2019).

16 Maas, M. *et al.* Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. *J Clin Oncol* **29**, 4633-4640, doi:10.1200/JCO.2011.37.7176 (2011).

17 van der Valk, M. J. M. *et al.* Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. *Lancet* **391**, 2537-2545, doi:10.1016/S0140-6736(18)31078-X (2018).

18 Haak, H. E. *et al.* Selection of Patients for Organ Preservation After Chemoradiotherapy: MRI Identifies Poor Responders Who Can Go Straight to Surgery. *Ann Surg Oncol* **27**, 2732-2739, doi:10.1245/s10434-020-08334-8 (2020).
19 Burbach, J. P. M. et al. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: A systematic review and meta-analysis. *Radiotherapy and Oncology* **113**, 1-9, doi:10.1016/j.radonc.2014.08.035 (2014).

20 Horvat, N. et al. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. *Radiology* **287**, 833-843, doi:10.1148/radiol.2018172300 (2018).

21 Petkovska, I. et al. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. *Abdom Radiol (NY)*, doi:10.1007/s00261-020-02502-w (2020).

22 van Griethuysen, J. J. M. et al. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. *Abdom Radiol (NY)* **45**, 632-643, doi:10.1007/s00261-019-02321-8 (2020).

23 Trebeschi, S. et al. Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR. *Sci Rep* **7**, 5301, doi:10.1038/s41598-017-05728-9 (2017).

24 Chiacchiaretta, P., Cerritelli, F., Bubbico, G., Perrucci, M. G. & Ferretti, A. Reduced Dynamic Coupling Between Spontaneous BOLD-CBF Fluctuations in Older Adults: A Dual-Echo pCASL Study. *Front Aging Neurosci* **10**, 115, doi:10.3389/fnagi.2018.00115 (2018).

25 Chiacchiaretta, P., Romani, G. L. & Ferretti, A. Sensitivity of BOLD response to increasing visual contrast: spin echo versus gradient echo EPI. *Neuroimage* **82**, 35-43, doi:10.1016/j.neuroimage.2013.05.069 (2013).

26 Cirillo, S., Caulo, M., Pieri, V., Falini, A. & Castellano, A. Role of Functional Imaging Techniques to Assess Motor and Language Cortical Plasticity in Glioma Patients: A Systematic Review. *Neural Plast* **2019**, 4056436, doi:10.1155/2019/4056436 (2019).

27 Metwali, H., Raemaekers, M., Ibrahim, T. & Samii, A. The Fluctuations of Blood Oxygen Level-Dependent Signals as a Method of Brain Tumor Characterization: A Preliminary Report. *World Neurosurg* **142**, e10-e17, doi:10.1016/j.wneu.2020.04.134 (2020).

28 Ren, Y. et al. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. *J Magn Reson Imaging* **49**, 808-817, doi:10.1002/jmri.26240 (2019).

29 Caulo, M. et al. Data-driven grading of brain gliomas: a multiparametric MR imaging study. *Radiology* **272**, 494-503, doi:10.1148/radiol.14132040 (2014).

30 Akinci D’Antonoli, T. et al. CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk. *Acad Radiol* **27**, 497-507, doi:10.1016/j.acra.2019.05.019 (2020).
31 Mazurowski, M. A., Zhang, J., Grimm, L. J., Yoon, S. C. & Silber, J. I. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. *Radiology* **273**, 365-372, doi:10.1148/radiol.14132641 (2014).

32 Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. *Comput Biomed Res* **29**, 162-173, doi:10.1006/cbmr.1996.0014 (1996).

33 van Griethuysen, J. J. M. *et al.* Computational Radiomics System to Decode the Radiographic Phenotype. *Cancer Res* **77**, e104-e107, doi:10.1158/0008-5472.CAN-17-0339 (2017).

34 Traverso, A., Wee, L., Dekker, A. & Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. *Int J Radiat Oncol Biol Phys* **102**, 1143-1158, doi:10.1016/j.ijrobp.2018.05.053 (2018).

35 Magidson, J. in *New Perspectives in Partial Least Squares and Related Methods Springer Proceedings in Mathematics & Statistics* Ch. Chapter 3, 65-78 (2013).

36 Abdi, H. & Williams, L. J. in *Computational Toxicology Methods in Molecular Biology* Ch. Chapter 23, 549-579 (2013).

37 Wold, S., Ruhe, A., Wold, H. & Dunn, I. W. J. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. *SIAM Journal on Scientific and Statistical Computing* **5**, 735-743, doi:10.1137/0905052 (1984).

38 Chiarelli, A. M., Romani, G. L. & Merla, A. Fast optical signals in the sensorimotor cortex: General Linear Convolution Model applied to multiple source-detector distance-based data. *Neuroimage* **85 Pt 1**, 245-254, doi:10.1016/j.neuroimage.2013.07.021 (2014).

39 Barlow, H. B. Unsupervised Learning. *Neural Computation* **1**, 295-311, doi:10.1162/neco.1989.1.3.295 (1989).

40 Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. *Philos Trans A Math Phys Eng Sci* **374**, 20150202, doi:10.1098/rsta.2015.0202 (2016).

41 Liu, R. & Gillies, D. F. Overfitting in linear feature extraction for classification of high-dimensional image data. *Pattern Recognition* **53**, 73-86, doi:10.1016/j.patcog.2015.11.015 (2016).

42 Chiarelli, A. M. *et al.* Electroencephalography-Derived Prognosis of Functional Recovery in Acute Stroke Through Machine Learning Approaches. *International Journal of Neural Systems*, doi:10.1142/s0129065720500677 (2020).

43 Kearns, M. & Ron, D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. *Neural Comput* **11**, 1427-1453, doi:10.1162/089976699300016304 (1999).
44 Mandard, A. M. *et al.* Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. *Cancer* **73**, 2680-2686, doi:10.1002/1097-0142(19940601)73:11<2680::aid-cncr2820731105>3.0.co;2-c (1994).

45 Valentini, V. *et al.* The INTERACT Trial: Long-term results of a randomised trial on preoperative capecitabine-based radiochemotherapy intensified by concomitant boost or oxaliplatin, for cT2 (distal)-cT3 rectal cancer. *Radiother Oncol* **134**, 110-118, doi:10.1016/j.radonc.2018.11.023 (2019).

46 Lupattelli, M. *et al.* Preoperative intensity-modulated radiotherapy with a simultaneous integrated boost combined with Capecitabine in locally advanced rectal cancer: short-term results of a multicentric study. *Radiat Oncol* **12**, 139, doi:10.1186/s13014-017-0870-4 (2017).

47 Lambregts, D. M. *et al.* Long-term follow-up features on rectal MRI during a wait-and-see approach after a clinical complete response in patients with rectal cancer treated with chemoradiotherapy. *Dis Colon Rectum* **54**, 1521-1528, doi:10.1097/DCR.0b013e318232da89 (2011).

48 Bibault, J. E. *et al.* Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. *Sci Rep* **8**, 12611, doi:10.1038/s41598-018-30657-6 (2018).

49 Ma, X. *et al.* MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features. *BMC Med Imaging* **19**, 86, doi:10.1186/s12880-019-0392-7 (2019).

50 Yoon, J., Chung, Y. E., Lim, J. S. & Kim, M. J. Quantitative assessment of mesorectal fat: new prognostic biomarker in patients with mid-to-lower rectal cancer. *Eur Radiol* **29**, 1240-1247, doi:10.1007/s00330-018-5723-5 (2019).

51 Visser, O. *et al.* The influence of total mesorectal excision on local recurrence and survival in rectal cancer patients: a population-based study in Greater Amsterdam. *J Surg Oncol* **95**, 447-454, doi:10.1002/jso.20713 (2007).

52 Shaish, H. *et al.* Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. *Eur Radiol*, doi:10.1007/s00330-020-06968-6 (2020).

53 Jeon, S. H. *et al.* Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. *Radiat Oncol* **14**, 43, doi:10.1186/s13014-019-1246-8 (2019).

54 Cui, Y. *et al.* Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. *Eur Radiol* **29**, 1211-1220, doi:10.1007/s00330-018-5683-9 (2019).
55 Li, Z. Y. et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. *World J Gastroenterol* **26**, 2388-2402, doi:10.3748/wjg.v26.i19.2388 (2020).

56 Glynne-Jones, R. *et al.* Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* **28** Suppl 4, iv22-iv40, doi:10.1093/annonc/mdx224 (2017).

57 Frydrych, L. M. *et al.* Rectal cancer sub-clones respond differentially to neoadjuvant therapy. *Neoplasia* **21**, 1051-1062, doi:10.1016/j.neo.2019.08.004 (2019).

58 Canto, L. M. D. *et al.* Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. *Sci Rep* **9**, 8702, doi:10.1038/s41598-019-45151-w (2019).

Tables

Table 1. MRI protocol parameters.

	T2-Weighted Turbo Spin Echo*	Diffusion-Weighted MRI**
Repetition time (msec)	3000-5000	4500
Echo time (msec)	80	80
Section thickness (mm)	3	3
Section gap (mm)	0	0
Acquisition Matrix Size	188x167	68x66
No. of signals acquired	2	2
Field of view (mm)	150x150	200x200
Sensitivity Encoding (SENSE)	Yes	No
Acquisition Time (min)	2.39	6.03
No. of sections	30	30

* = MRI parameters are referred to axial T2-weighted images.

** = acquired with multiple b-values including 1000 s/mm²

Table 2. Descriptive baseline characteristics of included patients (n=72).
Variable	Value
Gender	
Male	48 (67%)
Female	24 (33%)
Mean Age (IQR*)	65 (57.5-73.8)
MRI Exam	72
Clinical MRI Assessment	
Mean Cancer Volume (Mean ± SD)	21885 ± 20539 mm²
Location	
High	7 (10%)
Middle	33 (46%)
Low	32 (44%)
Craniocaudal Extension (Mean ± SD)	55 ± 22 mm
Distance from IAS (Mean ± SD)	31 ± 27 mm
Depth of Extramural Invasion	7 ± 7 mm
Presence of Mesorectal Fascia Infiltration	44 (61%)
Presence of EMVI	50 (69%)
Primary cT stage**	
T1-T2	14 (19.4%)
T3	55 (76.4%)
T4	3 (4.2%)
Primary cN stage**	
N0	2 (2.7%)
N1	22 (30.6%)
N2	48 (66.7%)
Treatment Response***	
MR	48 (67%)
nMR	24 (33%)
17 TRG3 (71%)	
7 TRG4 (29%)	

*=IQR Inter-Quartile Range; SD Standard Deviation; IAS Internal Anal Sphincter; EMVI Extramural Vascular Invasion; MR Major Pathological Response; nMR non-Major Pathological Response.

**= assessed with MRI and derived from clinical MRI reports in the hospital’s patient database.

***= assessed according to Mandard Tumor Regression Grade (TRG) system on surgical specimen after neoadjuvant treatment in 69/72 patients. In three patients, a sustained complete clinical response (with repeated negative MRI examinations and endoscopy with or without biopsy) was considered surrogate for a complete response; the follow-up (mean ± SD) was 47±11 months.
