Antimicrobial Susceptibility Trends Observed in Urinary Pathogens Obtained From New York State

Elliott L. Rank, Thomas Lodise, Lisa Avery, Eve Bankert, Erica Dobson, Chinna Dumyati, Stephen Hassett, Marina Keller, Matthew Pearsall, Teresa Lubowski, and Joseph J. Carreno

1Microbiology, Quest Diagnostics, Teterboro, New Jersey; 2Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York; 3Pharmacy Practice, Wegmans School of Pharmacy/St. John Fisher College, Rochester, New York; 4Island Peer Review Organization, Albany, New York; 5Pharmacy, University of Rochester Medical Center, Rochester, New York; 6Infectious Diseases Division, University of Rochester, Rochester, New York; 7Emergency Medicine, Albany Med Emergency Care, Albany, New York; 8Infectious Disease, Orange Regional Medical Center, Middletown, New York; 9Pharmacy, Glens Falls Hospital, Glens Falls, New York; 10Island Peer Review Organization, Albany, New York

International guidelines recommend using local susceptibility data to direct empiric therapy for acute uncomplicated cystitis. We evaluated outpatient urinary isolate susceptibility trends in New York State. Nitrofurantoin had the lowest resistance prevalence whereas trimethoprim-sulfamethoxazole and fluoroquinolones had higher prevalences. This study highlights the need for local outpatient antimicrobial stewardship programs.

Keywords. antibiogram; antimicrobial resistance; New York State; urinary tract infection.

Acute uncomplicated cystitis is a prevalent outpatient condition [1, 2]. It is estimated that there are approximately 6–8 million annual visits to a physician or clinic by patients for treatment of an acute uncomplicated cystitis event [3, 4]. Treatment guidelines for acute uncomplicated cystitis in premenopausal, non-pregnant women are well defined in international guidelines [2]. In these international guidelines, empiric treatment recommendations are provided, but these empiric recommendations are accompanied by the caveat that empiric antibiotic selection should be guided by local organism susceptibility data and patient-specific risk factors.

Although treatment selection for acute uncomplicated cystitis was straightforward in the past, management of these conditions has been complicated by reports of rising antibiotic resistance rates for several key urinary pathogens. It is important to note that much of the data that describe rising rates of resistance for uncomplicated cystitis pathogens were derived from hospitalized inpatients with urinary tract infections. Data that describe outpatient resistance rates are consistent with published inpatient reports but are limited [5]. It is also unclear if resistance rates among acute uncomplicated cystitis pathogens are applicable to all age groups, and to both men and women. Given these gaps in the literature, this study sought to describe the prevalence and resistance patterns of urinary pathogens in New York State in the outpatient setting. The intent was to use these data to help inform treatment decisions for patients who present with uncomplicated cystitis in the outpatient setting and to assess the appropriateness of empiric treatment recommendations found in national guidelines for New York State.

METHODS

A retrospective analysis was conducted on all urine cultures received from outpatient settings (defined as physician offices or outpatient clinics), with antimicrobial susceptibility testing performed from January 1, 2016, to December 31, 2016, at a major clinical microbiology reference laboratory (Quest Diagnostics Laboratory, Teterboro, NJ). As antimicrobial testing is not routinely recommended for Streptococcus agalactiae and Staphylococcus saprophyticus, these organisms were not included in the analysis. Data from 17 New York State counties were included in the overall sample (Table 1). Urine cultures demonstrating 1 or 2 bacterial isolates at >10⁵ colony-forming units/mL were included (only the first reported isolate from dual infections was included). In accordance with standards for summarizing antimicrobial susceptibilities for antibiograms, each species required a minimum of 30 isolates for inclusion in antimicrobial susceptibility estimates.

Urine pathogens were isolated from bi-plates of Trypticase Soy Agar with 5% Sheep Blood (TSA II) and MacConkey II Agar, followed by identification and automated drug susceptibility testing (Vitek-2). Antimicrobials tested included ampicillin, ceftazidime, cefazolin, ciprofloxacin, nitrofurantoin, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, tetracycline, oxacillin, and vancomycin, as appropriate. Minimum inhibitory concentration (MIC) susceptibility interpretations were derived from CLSI M100 S-25 [6]. Antibiotic sensitivity percentages are reported as number of susceptible isolates divided by number of isolates tested. Susceptibility was reported overall and by sex and age (children: ≤17 years; adults: 18–64 years; and older adults: ≥65 years). Chi-square tests or Fisher exact tests were used to compare the overall prevalence of bacterial resistance
Table 1. Summary of Urinary Isolate Antibiotic Susceptibility From New York State

Microorganism	N	Ampicillin	Ceftazidime	Cefazolin	Ciprofloxacin	Nitrofurantoin	Pip-Tazo	Tobramycin	TMP-SMX	Tetracycline
Overall										
Gram-negative										
Citrobacter diversus	933	100	99	90	99	100	99	99	100	99
Citrobacter freundii	316	93	95	95	94	98	95	95	90	85
Enterobacter aerogenes	785	93	99	90	97	100	99	99	99	99
Enterobacter cloacae	404	91	94	94	96	86				
Escherichia coli	50	93	99	95	78	97	97	90	73	
Klebsiella pneumoniae	7734	100	98	95	42	95	96	96	90	
Proteus mirabilis	3389	79	99	91	90	100	95	95	87	
Providencia retgeri	43	93	85							
Pseudomonas aeruginosa	1051	94	76							
Serratia marcescens	264	100	98							
Stenotrophomonas maltophilia	53									
Gram-positive										
Methicillin-sensitive Staphylococcus aureus	825	85	98							
Methicillin-resistant Staphylococcus aureus	326	25	97							
Vancomycin-sensitive Enterococcus spp.	9281	100								
Vancomycin-resistant Enterococcus faecium	35	94								
Females <18 y ²										
Gram-negative										
Escherichia coli	3872	41	99	97	91	98	91	91	74	
Klebsiella pneumoniae	281	100	97	97	46	98	98	92		
Proteus mirabilis	264	80	100	89	96	94	94	88		
Pseudomonas aeruginosa	71	97	100							
Gram-positive										
Enterococcus spp.	441	100								
Methicillin-sensitive Staphylococcus aureus	61	93	98							
Females 18–64 y ³										
Gram-negative										
Citrobacter diversus	498	100	100	92	100	99	99	99	99	
Citrobacter freundii	91	99	97	96	98	88				
Enterobacter aerogenes	433	96	99	16	100	100				
Enterobacter cloacae	126	91	98	46	98	86				
Escherichia coli	29	57	99	97	84	98	92	75		
Klebsiella pneumoniae	3642	100	97	86	38	87	80			
Proteus mirabilis	1486	84	100	94	96	97	91			
Pseudomonas aeruginosa	109	94	84							
Serratia marcescens	67	100	100							
Gram-positive										
Methicillin-sensitive Staphylococcus aureus	430	92	98							
Microorganism	N°	Ampicillin	Ceftazidime	Cefazolin	Ciprofloxacin	Nitrofurantoin	Pip-Tazo	Tobramycin	TMP-SMX	Tetracycline
---------------------------------------	-----	------------	-------------	-----------	---------------	----------------	----------	------------	---------	-------------
Methicillin-resistant *Staphylococcus aureus*	105	98	98	98	98	98	99	97	100	88
Vancomycin-sensitive Enterococcus spp.	4425	100								
Females >64 y										
Gram-negative										
Citrobacter diversus	190	98								
Citrobacter freundii	140	91	93	97	100	88				
Enterobacter aerogenes	154	88	100	55	100	99				
Enterobacter cloacae	123	92	98	47	96	88				
Escherichia coli	13 156	53	99	92	67	96	88	71		
Klebsiella pneumoniae	2781	76	99	88	84					
Proteus mirabilis	978	76	99	88	84					
Pseudomonas aeruginosa	312	97			85					
Serratia marcescens	37	100			97					
Gram-positive										
Methicillin-sensitive *Staphylococcus aureus*	106	74	98	100	91					
Methicillin-resistant *Staphylococcus aureus*	79	11	99	94	94					
Vancomycin-sensitive Enterococcus spp.	1843	100								
Males <18 y										
Gram-negative										
Escherichia coli	126	52	99	94	91	98	92	72		
Klebsiella pneumoniae	21	100	97	99	46		100	91		
Proteus mirabilis	108	70	100	86	96		93	85		
Gram-positive										
Vancomycin-sensitive Enterococcus spp.	124	99					100			
Males 18-64 y										
Gram-negative										
Citrobacter diversus	96	100			100	95	100	100		
Enterobacter aerogenes	83	87			98	30	100	94		
Enterobacter cloacae	34	97			94	38	97	88		
Escherichia coli	1862	48	99	96	70	97	85	69		
Klebsiella pneumoniae	318	100			99	41	99	94		
Proteus mirabilis	157	72	99	85	83		93	80		
Pseudomonas aeruginosa	139	93			65		93			
Serratia marcescens	54	100			98		89	96		
Gram-positive										
Methicillin-sensitive *Staphylococcus aureus*	68	84			100	97	93			
Methicillin-resistant *Staphylococcus aureus*	990	100					99			
Males >64 y										
Gram-negative										
Citrobacter diversus	104	100	97	88	99	97				
Citrobacter freundii	49	86	96	90	94	72				
Microorganism	No.	Ampicillin	Ceftazidime	Cefazolin	Ciprofloxacin	Nitrofurantoin	Pip-Tazo	Tobramycin	TMP-SMX	Tetracycline
----------------------------	------	------------	-------------	-----------	---------------	----------------	----------	------------	----------	-------------
Enterobacter aerogenes	93	89	97	23			100	99		
Enterobacter cloacae	91	89	85	37			93	81		
Escherichia coli	2704	43	98	92	51	94	82	64		
Klebsiella pneumoniae	691	100	98	95	45		97	92		
Proteus mirabilis	396	74	98	87	75		92	82		
Pseudomonas aeruginosa	405	92		66			93			
Serratia marcescens	90	100		97			90	97		

Gram-positive

Methicillin-sensitive Staphylococcus aureus	145	70			98		94			
Methicillin-resistant Staphylococcus aureus	110	7		99			96	92		

Vancomycin-sensitive Enterococcus spp. 1458 100

Abbreviations: Pip-Tazo, piperacillin-tazobactam; TMP-SMX, trimethoprim/sulfamethoxazole.

*N = total number of antimicrobial testing results.

Data not shown for 1739 coagulase-negative staphylococci.

Organisms not reported due to <30 isolates in the reporting group:

1. Females <18 years: *Citrobacter diversus* (23 isolates), *Citrobacter freundii* (11), *Enterobacter aerogenes* (19), *Enterobacter cloacae* (27), *methicillin-resistant S. aureus* (5), *Providencia rettgeri* (1), *Serratia marcescens* (7), *Staphylococcus haemolyticus* (9), *Staphylococcus hominis* spp. *hominis* (4), *Staphylococcus ludwigenensis* (1), *Staphylococcus simulans* (25), *Stenotrophomonas maltophilia* (2), vancomycin-resistant *Enterococcus faecium* (0).

2. Females 18-64 years: *Providencia rettgeri* (6), *Providencia stuartii* (4), *Staphylococcus hominis* spp. *hominis* (9), *Staphylococcus ludwigenensis* (29), *Stenotrophomonas maltophilia* (9), vancomycin-resistant *Enterococcus faecium* (3).

3. Females >64 years: *Providencia rettgeri* (16), *Providencia stuartii* (2), *Staphylococcus hominis* spp. *hominis* (11), *Staphylococcus ludwigenensis* (7), *Stenotrophomonas maltophilia* (10), vancomycin-resistant *Enterococcus faecium* (11).

4. Males <18 years: *Citrobacter diversus* (15), *Citrobacter freundii* (4), *Enterobacter aerogenes* (3), *Enterobacter cloacae* (3), *Klebsiella pneumoniae* (2), *methicillin-resistant S. aureus* (0), *methicillin-sensitive S. aureus* (1), *Pseudomonas aeruginosa* (15), *Serratia marcescens* (9), *Staphylococcus haemolyticus* (9), *Staphylococcus hominis* spp. *hominis* (9), *Staphylococcus ludwigenensis* (9), *Staphylococcus simulans* (24), *Stenotrophomonas maltophilia* (1), vancomycin-resistant *Enterococcus faecium* (0).

5. Males 18-64 years: *Citrobacter freundii* (21), *methicillin-resistant S. aureus* (27), *Providencia rettgeri* (2), *Providencia stuartii* (2), *Staphylococcus hominis* spp. *hominis* (11), *Staphylococcus ludwigenensis* (7), *Staphylococcus simulans* (11), *Stenotrophomonas maltophilia* (9), vancomycin-resistant *Enterococcus faecium* (2).

6. Males >64 years: *Providencia rettgeri* (18), *Providencia stuartii* (19), *Staphylococcus hominis* spp. *hominis* (26), *Staphylococcus ludwigenensis* (29), *Staphylococcus simulans* (16), *Stenotrophomonas maltophilia* (24), vancomycin-resistant *Enterococcus faecium* (19).
within and between agents tested and between age and sex groups.

RESULTS

A total of 78,078 urine culture susceptibility reports were included (Table 1). The majority of the urine cultures were obtained from female patients. The most frequently recovered isolates were *Escherichia coli*, 65.1%; *Enterococcus* spp., 11.9%; and *Klebsiella pneumoniae*, 10.0%. Among isolates recovered from females, the distribution was consistent with the overall study population. In men, the prevalence of *E. coli* was lower (40.3%) relative to the overall population, whereas the prevalence of *Enterococcus* was higher (22.1%). In children, *E. coli* was the most prevalent isolate (73.7%), followed by *Enterococcus* (10.4%) and *Proteus* species (6.8%). The distribution of pathogens in adult (age 18–64 years) patients was similar to the overall population: *E. coli* (68.5%), *Enterococcus* (11.2%), and *K. pneumoniae* (8.7%). In older adults, the prevalence of *E. coli* was lower (58.7%), whereas the prevalence rates of *Enterococcus* and *Klebsiella* were higher (12.2% and 12.8%, respectively).

Of all the isolates tested for nitrofurantoin sensitivity (n = 73,191), 90.4% were susceptible. Nitrofurantoin resistance was more commonly noted in males as compared with females (10.6% vs 9.1%, \(P < .001 \)) and older adults as compared with all other ages combined (12.3% vs 8.1%, \(P < .001 \)). High overall rates of susceptibility were reported for isolates tested for cefazolin sensitivity (90.4%). However, due to the high prevalence of *Enterococcus* spp. (which is intrinsically resistant to cefazolin), cefazolin only has activity against 68.2% of the isolates. Only 77.2% of all isolates tested (n = 67,711) were trimethoprim-sulfamethoxazole susceptible. Resistance to trimethoprim-sulfamethoxazole was more prevalent in men than women (26.3% vs 22.7%, \(P < .001 \)) and in older adults than all other age groups combined (25.1% vs 22.1%, \(P < .001 \)). Of the isolates tested for ciprofloxacin sensitivity (n = 68,709), 80.2% were susceptible. Resistance to ciprofloxacin was more frequent in males than females (35.0% vs 17.3%, \(P < .001 \)) and in older adults than in all other ages combined (30.3% vs 14.0%, \(P < .001 \)). Additional data on pathogen-specific sensitivity overall and by sex and age groups are presented in Table 1. County-specific data are provided in the Supplementary Data.

DISCUSSION

The current Infectious Disease Society of America (IDSA) guidelines for acute uncomplicated cystitis recommend nitrofurantoin, trimethoprim-sulfamethoxazole, or fosfomycin as first-line agents for treatment [2]. Overall, we found that bacterial isolates in the outpatient setting in New York State were 90% sensitive *in vitro* to nitrofurantoin. The high probability of *in vitro* activity with nitrofurantoin is likely due to the high prevalence and susceptibility rates for *E. coli*. Although the IDSA guidelines do not define a resistance prevalence threshold for assessing the appropriateness of nitrofurantoin for empiric use in treating acute uncomplicated cystitis, if we apply the trimethoprim-sulfamethoxazole threshold (20%, per the IDSA guidelines), our data support the utilization of nitrofurantoin in the New York State outpatient setting for this condition. In contrast, trimethoprim-sulfamethoxazole appears to have more limited utility as an empiric treatment regimen for acute uncomplicated cystitis as the overall prevalence of trimethoprim-sulfamethoxazole resistance exceeded 20%. Unfortunately, fosfomycin susceptibility data were unavailable in this data set as testing was not routinely performed. Given the limited activity of trimethoprim-sulfamethoxazole and ciprofloxacin for acute uncomplicated cystitis, it would be prudent for laboratories to consider testing of fosfomycin in urinary isolates, especially for *Escherichia coli* and *Enterococcus faecalis*. In species other than *Escherichia coli* and *Enterococcus faecalis*, the utility and validity of susceptibility results for fosfomycin have yet to be determined [6]. Importantly, recent data show that 1 day of fosfomycin is inferior to 5 days of nitrofurantoin for acute uncomplicated cystitis [7]. As such, fosfomycin should be used with caution when treating acute uncomplicated cystitis.

Susceptibility results from this study were also unfavorable to the empiric use of fluoroquinolones and \(\beta \)-lactam antibiotics. The overall prevalence of ciprofloxacin resistance was 19.8%, exceeding the IDSA-recommended 10% resistance threshold for empiric use. In light of the relatively high prevalence of fluoroquinolone resistance as well as growing concerns about fluoroquinolone-associated disability, our study supports the recent Food and Drug Administration recommendation to avoid empiric fluoroquinolone use unless no other alternative agents are available [7]. We also examined cefazolin as a surrogate for cephalaxin susceptibility. When only Gram-negative bacterial species were isolated, cefazolin appeared to be an appropriate empiric agent. However, the utility of cefazolin as an empiric agent is less than favorable due to the high prevalence of *Enterococcus*, an organism that is intrinsically resistant to cefazolin. Given that \(\beta \)-lactam medications require longer duration of treatment as compared with other therapies and are associated with lower efficacy [8], our data suggest that \(\beta \)-lactam drugs should be considered as empiric agents only when potential benefits outweigh risks.

These data also indicate that the overall antimicrobial susceptibility percentages of antimicrobials are significantly lower for individuals in the ≥65 age group compared with all other ages combined and among males of all ages compared with females. These findings highlight the need to not rely exclusively on overall susceptibility results and to consider sex, age, and prior urine culture results when selecting an agent for a given patient. As susceptibility rates varied by age and sex, subsequent adjustment of therapy based on individualized culture and susceptibility reports should be performed in an effort to promote use of narrow-spectrum antibiotics where possible.
There are several caveats to be considered with respect to these findings. We did not include coagulase-negative staphylococci in this analysis due to its questionable pathogenicity. However, our conclusions would be affected minimally by the inclusion of coagulase-negative staphylococci because coagulase-negative staphylococci only accounted for 2% of isolates. Another potential limitation of this study is lack of data on clinical presentation of the patients. We did not determine whether these were symptomatic urinary tract infections or asymptomatic bacteriuria. Last, this study may overrepresent antimicrobial resistance rates as practitioners may only send urine cultures for patients with recurrent infections or treatment failure.

Although these data are from New York State, there are several generalizable aspects of this study. First, this project highlights the framework for creating a regional antibiogram. Regional antibiograms are important tools that could be used by health departments and other regional authorities to help influence prescribing and/or track antimicrobial resistance for key pathogens. Second, New York State (especially Kings, Queens, New York, Bronx, and Richmond counties, the 5 New York City counties) is unique in that it has an incredibly high population density [9]. Along with antimicrobial utilization, population density has been shown to be associated with antimicrobial resistance prevalence [10]. Hence, it stands to reason that New York State can be thought of as a regional bellwether for antimicrobial resistance.

In summary, we conducted a 1-year retrospective analysis of outpatient urine isolates collected from patients in New York State. Data indicated that nitrofurantoin has retained activity against many of the urinary pathogens since the publication of the 2011 IDSA guidelines and has a high prevalence of \textit{in vitro} activity. In contrast, we found that the overall prevalence of resistance in bacterial urinary isolates exceeded the predefined IDSA empiric therapy thresholds of 20% for trimethoprim-sulfamethoxazole and 10% for fluoroquinolones, with resistance rates being highest in patients ≥65 years. These data highlight the need in outpatient settings for (1) urinary culture specimen submission, (2) antimicrobial stewardship efforts, and (3) assembly of local susceptibility data to guide empiric therapy in acute uncomplicated cystitis. Finally, these data also support the desperate need for new oral antimicrobials to treat acute uncomplicated cystitis in the outpatient setting.

Supplementary Data

Supplementary materials are available at \textit{Open Forum Infectious Diseases} online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyrighted and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

\textit{Disclaimer.} The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government. The authors assume full responsibility for the accuracy and completeness of the ideas presented.

\textit{Financial support.} The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: The manuscript was produced by the members of the Urinary Tract Advisory panel, which was assembled and supported by Island Peer Review Organization (IPRO), the Centers for Medicare & Medicaid Services–designated Quality Innovation Network - Quality Improvement Organization (QIN - QIO) for New York State and lead for the Atlantic Quality Innovation Network (AQIN) under the 11th Statements of Work. The analyses upon which this publication is based were performed under Contract Number HHSM-500-2014-QIN013I, funded by the Centers for Medicare & Medicaid Services, an agency of the US Department of Health and Human Services.

\textit{Potential conflicts of interest.} All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2014; 28:1–13.
2. Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011; 52:e103–20.
3. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010; 7:653–60.
4. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician 2011; 84:771-6.
5. Sanchez GV, Babiker A, Master RN, Luu T, Mathur A, Bordon J. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob Agents Chemother 2016; 60:2680–3.
6. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement. CLSI Document M-100 S-25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
7. US Department of Health, Human Services Food and Drug Administration. FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together. https://www.fda.gov/Drugs/DrugSafety/ucm500143.htm. Accessed 24 August 2018.
8. Zalmanovici Trestioreanu A, Green H, Paul M, Yaphe J, Leibovici L. Antimicrobial agents for treating uncomplicated urinary tract infection in women. Cochrane Database Syst Rev 2010; 10:CD007182.
9. United States Census Bureau. GCT-PH1—population, housing units, area, and density: 2000 - United States—County by State; and for Puerto Rico. https://factfinder.census.gov/. Accessed 25 October 2018.
10. Bruinsma N, Hutchinson JM, van den Boggaard AE, et al. Influence of population density on antibiotic resistance. J Antimicrob Chemother 2003; 51:385–90.