New analytical formalisms used in finite element analysis of robots with elastic elements

Sorin Vlase a,b, Iuliu Negrean b,c, Marin Marin d and Maria Luminița Scutaru a

aDepartment of Mechanical Engineering, Transilvania University of Brașov, Brașov, Romania; bTechnical Sciences Academy of Romania, Bukarest, Romania; cTechnical University of Cluj-Napoca, Cluj-Napoca, Romania; dDepartment of Mathematics, Transilvania University of Brașov, Brașov, Romania

ABSTRACT
Obtaining the equations of motion for an element in finite element analysis (FEA) model in the analysis of a multi-body system (MBS) having component elastic elements represents an important (maybe the main) step to build a soft able to solve such a problem numerically. In use FEA in the study of a MBS with elastic elements, the method of Lagrange’s equations is especially used at present. This method presents the advantages of a homogeneous writing and the possibility to follow the operations easier. However, there are also equivalent formulations, developed by analytical mechanics, for approaching such a mechanical system. The earning of these alternative forms will be presented, by comparison.

ARTICLE HISTORY
Received 29 April 2020
Revised 28 August 2020
Accepted 8 September 2020

KEYWORDS
Lagrange; Gibbs-Appell; Hamilton; finite element method (FEM); multibody system (MBS); robotics; nonlinear system; analytical dynamics

1. Introduction
The analysis of complex mechanical systems uses, mainly, methods of analytical mechanics that represent the bestway of approaching such systems. Obviously, there are a lot of equivalent approaches in mechanics that allow obtaining the motion equations of a constraint mechanical system, but in the case of analyzing some elastic systems with the finite element method (FEM), the analytical approaches become the most suitable for studying such problems. The main reason is the complexity of the analyzed systems and the possibility of using a formalism that allows the analysis of a system with a great DOF. To study such systems it is no longer necessary to study each element of the system, but the equations written for a single type of finite element remain valid for all identical finite elements which discretizes the structure. Analytical mechanics represents a form of approach to classical mechanics, using the basic axioms of classical mechanics, through a collection of alternative mathematical formulations, related to each other and equivalent to obtain the final results. If Newtonian mechanics mainly use vectors, analytical mechanics generalizes the presentation mode using kinematic and dynamic scalar elements of motion that define the system. The constraints (due to the liaisons) that exist in a system reduce the number of DOF and the analytical mechanics is the most appropriate framework to describe the effect of these constraints. The coordinates that characterize the movement can be of any type, which is why they are called generalized coordinates. The basic notions in the analytical descriptions are represented by the kinetic energy, the work of the external forces and the internal energy. The formulations offered by the analytical mechanics have the advantage of easy configuration of the equations of motion and the elaboration of algorithms that make it possible to receive the motion equations describing the elastic evolution of the MBS. The paper presents, according our knowledge for the first time for such systems, the Gibbs-Appell equations and the Hamilton equations, in comparison with the classical representation of Lagrange’s equations.

2. FEA of elastic MBS
The method used especially in the study of MBS having elastic elements is represented by the Lagrange’s equations. It is necessary, in a first step, to obtain the evolution equations for one elastic element. The shape functions determine the matrix coefficients of the obtained differential system that describe the dynamic response of an element. If we work in a local coordinate system this step is followed by reporting all the sizes used to the global reference frame, after which one can proceed to assembling the obtained equations systems in a general global system of equations that determines the dynamic response for the entire structure. These procedures are conducted according to the classical methods, applied in the FEA. By introducing the boundary conditions and the applied loads, one can proceed
to solving the obtained equation system. The deforma-
tions are considered small enough so the overall motion
of the system considered as rigid body system is not
influenced.
In the most general case, one, two- or three-
dimensional finite elements can be used to study such a
structure. The first studies on these systems have been
applied to one-dimensional finite elements with plane
motion [1–4]. The research was then extended to two-
dimensional and three-dimensional systems [5, 6]. More
sophisticated models have been developed over the
last two decades [7–12].
To study the evolution equations of an element,
when a one, two or three-dimensional elements is used,
the Lagrange’s equations has been applied in most
studies. This method has proved to be a reliable, useful
and verified calculation method. Its main advantage is
that it uses the expressions of kinetic energy, mecha-
nical work of the external forces and potential energy,
notions with which the researchers are very familiar.

From a theoretical point of view, analytical mechani-
cics offers a variety of methods to obtain the evolu-
tion equations of a mechanical system. Generally these
methods introduce new notions, some of them rarely
used by researchers. However, an analysis of these
methods is required, as they may be useful for cer-
tain special situations. For this reason, in this study
we will focus on three alternative approaches to the
problem. The most common method used in engineer-
ing practice is the Lagrange method. The acceleration
energy method proves to be another method that can
present certain advantages for the MBS with elastic ele-
ments study. Finally is analyzed the Hamilton’s equa-
tions method, which has a real advantage, the second
order differential system of equations is reduced to a
first order differential system but, at the same time, it
has the disadvantage of intricate representations, with
many terms to be considered.

We mention that the Lagrangian contains physi-
cal quantities that the researchers are familiar with
(kinetic energy, potential, work) and, as a result, writing
it is relatively easy. It is one of the main reasons why
the Lagrangian equations method is so widely used.
Another reason is the use of generalized coordinates,
which allows the unitary treatment of the system and
a formal representation that is well suited to numerical
calculation. Eliminating the liaisons forces is also strong
point of the method, so the number of unknowns is
greatly reduced. In the FEA where we work with systems
having a high number of DOF, of the order of thou-
sands or tens of thousands, this property leads to signif-
ificant decrease regarding the computing effort and so,is
useful for users.

The energy of accelerations presents some difficul-
ties for the user, firstly because it is a notion with which
the researchers are less familiar and secondly because
the number of terms in the expression of acceleration
is five, while in the expression of velocity we have only
four terms [13, 14]. It follows that the number of oper-
ations required to obtain the energy of accelerations
is greater than the number of operations necessary to
determine the kinetic energy. This disadvantage, how-
ever, is compensated by the fact that the number of dif-
ferentiations required in the application of the Lagrange
method will be much greater than in the case of the use
of the acceleration energy. From an economical point
of view, the computation time used will be reduced
when applying the Gibbs-Appell equations. Although
the method is less common, we can mention that in
the last decade more researchers apply the method in
their work [15–19]. This fact is due to the ease of obtain-
ing the equations of motion for the studied mechanical
systems. The great advantage of using Lagrange’s equa-
tions is due to the fact that the Lagrangian contains
the expression of kinetic energy and potential energy,
two notions very familiar to the mechanical engineering
researcher.

Regarding Hamilton’s equations, we have no data
showing the use of this method when applying FEA
to MBS with elastic elements. In these circumstances,
the present study represents a first attempt to use this
method in FEA of such systems. Using Hamilton’s equa-
tions may also be an option for analyzing MBS systems
with FEM, but from our knowledge, such an approach
has not been made so far and we will see that this is
mainly due to the large number of calculations to be
made.

3. Kinematics, kinetic energy, momentum,
acceleration energy, Hamiltonian, potential
energy and work of a finite element

3.1. Kinematics
In the following, a three-dimensional finite element
considered as an elastic solid will be analyzed. In the
approximation of the FEM, the displacement of a cer-
tain point of the considered solid is uniquely defined
by a set of independent coordinates, through an inter-
polation function. These coordinates can be the nodal
coordinates, their derivatives or other kinematic sizes.

The element will relate to a mobile coordinate frame.
In the final analysis, all the finite elements will be related
to a global coordinate system. The mobile reference sys-
tem its movement is defined by the angular velocity
and acceleration €ω(ωx, ωy, ωz) respectively €ε(εx, εy, εz),
velocity €v0(X0, Y0, Z0) and acceleration €a0(X0, Y0, Z0) of
the origin of the local reference system. All these vec-
tors are considered known. Since we are working with
two reference systems, one local and the other global,
we will use two L and G indices to show this. The non-
indexed sizes will be considered written in the local
reference frame. In the rigid kinematics, the orthonor-
mal operator [7] is used to change the components of
a vector from the mobile reference frame to the fixed one (global), \(\{ \mathbf{r} \}_G = [T] \{ \mathbf{r} \}_L \). Differentiating the matrix \([T]\), it obtains the angular velocity and operator/vector and the angular acceleration operator/vector ([20]).

Let us now consider a point that belongs to the elastic finite element. Then this point, let’s call it \(\mathbf{M} \), becomes, after deformation \(\mathbf{M}' \) and it will have the position vector \(\{ \mathbf{r}_M \}_G \) defined by:

\[
\{ \mathbf{r}_M \}_G = \{ \mathbf{r}_0 \}_G + [T] (\{ \mathbf{r} \}_L + \{ \mathbf{u} \}_L) \quad (1)
\]

\(\{ \mathbf{r}_M \}_G \) represents the position vector of the point \(\mathbf{M} \), \(\{ \mathbf{u} \}_L \). The displacement vector and \(\{ \mathbf{r}_0 \}_G \) is the position vector of the origin of the local reference frame.

In FEA the continuous vector field of the displacements is approximated, according to the independent coordinates of the finite element, through a linear relation of the type:

\[
\{ \mathbf{u} \}_L = [S] \{ \mathbf{d} \}_L \quad (2)
\]

\(\{ \mathbf{d} \}_L \) is the vector of independent coordinates. The velocity vector of \(\mathbf{M} \)’it is:

\[
\{ \mathbf{v}_M \}_G = \{ \mathbf{r}_M \}_G = \{ \mathbf{r}_0 \}_G + [T] \{ \mathbf{r} \}_L + [T][S][\{ \mathbf{d} \}_L] + [T][S][\{ \mathbf{d} \}_L] \quad (3)
\]

and acceleration vector:

\[
\{ \mathbf{a}_M \}_G = \{ \mathbf{r}_M \}_G = \{ \mathbf{r}_0 \}_G + [T][\{ \mathbf{r} \}_L] + [T][S][\{ \mathbf{d} \}_L] + 2[T][S][\{ \mathbf{d} \}_L] \quad (4)
\]

In the local coordinate system these vector becomes:

\[
\{ \mathbf{v}_M \}_L = [T]^T \{ \mathbf{v}_M \}_G = \{ \mathbf{r}_0 \}_L + [T][\{ \mathbf{r} \}_L] + [T][S][\{ \mathbf{d} \}_L] + [S][\{ \mathbf{d} \}_L] \quad (5)
\]

\[
\{ \mathbf{a}_M \}_L = [T]^T \{ \mathbf{a}_M \}_G = \{ \mathbf{r}_0 \}_L + [T][\{ \mathbf{r} \}_L] + [T][S][\{ \mathbf{d} \}_L] + 2[T][S][\{ \mathbf{d} \}_L] + [S][\{ \mathbf{d} \}_L] \quad (6)
\]

3.2. Kinetic energy

An important element in all the formulations is the kinetic energy, obviously for its role as a prime integral. The expression of kinetic energy in the studied case is:

\[
E_k = \frac{1}{2} \int_V \rho (\{ \mathbf{v}_M \}_G)^T \{ \mathbf{v}_M \}_G dV. \quad (7)
\]

The kinetic energy can also be written in the global coordinate frame. Thus it is known that the transition of the independent coordinate vector \(\{ \mathbf{d} \}_L \) to the global system, when it becomes \(\{ \mathbf{d} \}_G \), is done through an orthogonal matrix \([T]\) (see [6]):

\[
\{ \mathbf{d} \}_G = [P][\{ \mathbf{d} \}_L]. \quad (8)
\]

We have too:

\[
\{ \mathbf{d} \}_L = [P]^T \{ \mathbf{d} \}_G. \quad (9)
\]

It is easy to obtain the new form of the kinetic energy using (8) and (9). The two expressions of kinetic energy are obviously equal.

Some notation will be used in the following:

\[
[m] = \int_V \rho [S]^T [N] S dV \quad (10)
\]

It will also be noted:

\[
[m'_G] = \int_V \rho [S]^T dV; \quad [q'(\varepsilon)]_L
\]

\[
= \int_V \rho [S]^T \{ \varepsilon \}_L \{ \mathbf{r} \}_L dV; \quad [q'(\omega)]_L
\]

\[
= \int_V \rho [S]^T [\omega]_L [\omega]_L \{ \mathbf{r} \}_L dV \quad (11)
\]

\[
[k(\varepsilon)] = \int_V \rho [S]^T \{ \varepsilon \}_L [S] dV; \quad (12)
\]

\[
[k(\omega)] = \int_V \rho [S]^T [\omega]_L [\omega]_L [S] dV; \quad (13)
\]

\[
[c] = \int_V \rho [S]^T [\omega]_L [S] dV; \quad (14)
\]

\[
\{ m_x \} = \int_V \rho (S(\varepsilon))_L^T x dV; \quad \{ m_y \} = \int_V \rho (S(\varepsilon))_L^T y dV; \quad (15)
\]

3.3. Potential energy

The internal work (potential energy) has the well-known form:

\[
E_p = \frac{1}{2} \int_V \{ \sigma \}^T \{ \varepsilon \} dV. \quad (16)
\]

\(\{ \varepsilon \} \) contains the distinct component of the strains tensor; \(-\{ \sigma \}\) contains the distinct component of the stress tensor.

The relation between stress and strain is offered by the Hooke law:

\[
\{ \sigma \} = [H] \{ \varepsilon \}. \quad (17)
\]

The differential relationships linking strains and finite deformations are [6]:

\[
\{ \varepsilon \} = [b][u] = [b][S][\{ \mathbf{d} \}] \quad (18)
\]

Using (17) and (18) the internal work (16) becomes:

\[
E_p = \frac{1}{2} \{ \mathbf{d} \}_L^T \left(\int_V [S]^T [b]^T [H][b] S dV \right) \{ \mathbf{d} \}_L \quad (19)
\]
With $[k]$ is denoted:

$$[k] = \int_V \{S\}^T b^T [H] [b] dV$$

The potential energy takes the traditional form:

$$E_p = \frac{1}{2} \int_V |d|^T [k] |d| dV$$

3.4. Work

There are two types of loads that can cause an external mechanical work: concentrated forces acting in knots, $[q]_L$ and volume forces $[p] = \{\rho(x, y, z)\}$. The concentrated forces $[q]_L$ give a mechanical work:

$$W^c = \{q\}^T [d]_L$$

and the vector of volume forces, the work:

$$W = \int_V \{\rho\}^T \{f\} dV = \left(\int_V \{\rho\}^T \{S\} dV \right) \{d\}_L = \{q^*\}^T [d]_L$$

3.5. Lagrangian

The classical form of the Lagrangian is [21]:

$$L = E_c - E_p + W + W^c$$

Using (7), (21), (22), (23) it obtains:

$$L = \frac{1}{2} \int_V \rho \{r_0\}^T \{r_0\}_L + 2 \{r_0\}^T \{\dot{T}\} \{\dot{T}\}^T \{T\} \{r\}_L$$

$$+ \frac{1}{2} \int_V \rho \{r\}^T \{\dot{T}\} \{\dot{T}\}^T \{T\} \{r\}_L$$

$$+ \frac{1}{2} \int_V \rho \{d\} \{d\} [S] [S] \{d\}_L$$

$$+ 2 \{d\} \{N\} \{\dot{T}\} \{\dot{T}\} [S] \{d\}_L$$

Using the rel. (4) to obtain acceleration, rel. (32) give us:

$$E_a = \frac{1}{2} \int_V \rho \{\dot{\rho}\}_G dV = \frac{1}{2} \int_V \rho \{\sigma_M\}^T \{\sigma_M\} dV$$

$$= \frac{1}{2} \int_V \rho \{\dot{\rho}(\rho)(\hat{\omega}) + \{\dot{\rho}\} \{\hat{\omega}\} + \{\dot{\sigma}_M\}^T \{\hat{\omega}\}^T \{\sigma_M\} \{r\}_L$$

$$+ 2 \{d\} \{S\} \{\dot{T}\} \{\dot{T}\} \{S\} \{d\}_L + \{\dot{T}\} \{r\}_L + \{\dot{T}\} \{T\} \{d\}_L$$

3.6. Momentum

A way to calculate the momentum, if the Lagrangian is known, is to use the formula:

$$[p]_L = \left\{ \frac{\partial L}{\partial \{d\}_L} \right\}$$

From the expression of momentum (26) we can obtain the vector of velocities of the nodal displacement $\{d\}_L$

3.7. Hamiltonian

The expression of Hamiltonian becomes, in our case:

$$H = \left\{ \frac{\partial L}{\partial \{d\}_L} \right\}^T \{d\}_L - L$$

where for the Lagrangian is used the rel.(25).

3.8. Energy of accelerations

Definition: The energy of accelerations is defined, in the case of aN material points, as [22]:

$$E_a = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{\alpha}_i^2$$

If we consider a solid body the definition becomes:

$$E_a = \frac{1}{2} \int_V \rho \alpha^2 dV$$

Using the rel.(4) to obtain acceleration, rel. (32) give us:

$$E_a = \frac{1}{2} \int_V \rho \{\dot{\rho}\}_G dV = \frac{1}{2} \int_V \rho \{\sigma_M\}^T \{\sigma_M\} dV$$

$$= \frac{1}{2} \int_V \rho \{\dot{\rho}(\rho)(\hat{\omega}) + \{\dot{\rho}\} \{\hat{\omega}\} + \{\dot{\sigma}_M\}^T \{\hat{\omega}\}^T \{\sigma_M\} \{r\}_L$$

$$+ 2 \{d\} \{S\} \{\dot{T}\} \{\dot{T}\} \{S\} \{d\}_L + \{\dot{T}\} \{r\}_L + \{\dot{T}\} \{T\} \{d\}_L$$

In [22] a complete expression of this energy is made. This expression seems to be more complicated than the expression of kinetic energy but it has advantages which we will show in the paper.

4. Lagrange's equations

Lagrange's equations applied for a finite element are:

$$\frac{d}{dt} \frac{\partial L}{\partial \{\ddot{d}\}_L} - \frac{\partial L}{\partial \{d\}_L} = 0$$

By $\{\partial E/\partial X\}$ we have denoted:

$$\left\{ \frac{\partial E}{\partial X} \right\} = \left| \begin{array}{c} \frac{\partial E}{\partial X_1} \\ \frac{\partial E}{\partial X_2} \\ \vdots \\ \frac{\partial E}{\partial X_n} \end{array} \right|$$

where $\{X\} = \left\{ \begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_n \end{array} \right\}$

It obtains:

$$[m] \{\ddot{d}\}_L + [c] \{\dot{d}\}_L + ([k][k] + [k] + [k]) \{d\}_L = \{q\}_L$$

$$+ \{q^*\}_L - \{q^o\}_L - [m'] \{\dot{r}_0\}_L$$

We note that we have to make three differentiations $[\partial L/\partial \dot{d}], \{\partial L/\partial \dot{d}\}, \{\partial L/\partial \dot{d}\}$ whereas in the case of
applying the Gibbs-Appell equations it is only necessary to make a single differentiation \(\frac{\partial E_a}{\partial \dot{q}_i} \) [20]. This can reduce the computation time and thus an advantage when applying FEA to MBS with elastic elements.

5. Gibbs-Appell formalism

An alternative form of writing Lagrange’s equations is the Gibbs-Appell equation. To use these, it is necessary to write, first, the energy of acceleration, represented in our paper by the rel.(30). These equations are given by relations [22]:

\[
\frac{\partial E_a}{\partial \dot{q}_i} = Q_j, \quad j = 1, n. \tag{34}
\]

The equations (31) are composed by the following terms [23]:

- quadratic terms \(E_{a2} \) containing the vector of accelerations \(\ddot{d} \)\(_L\), noted with \(E_{a2} \):

\[
E_{a2} = \frac{1}{2} \int_v \rho((\ddot{d})^T_L [S]^T \{S\} [\ddot{d}]_L) \, dV \tag{35}
\]

- linear terms in accelerations \(E_{a1} \):

\[
E_{a1} = \int_v \rho((\ddot{d})^T_L [S]^T \{T\}^T \{r\}_L + [\ddot{d}]^T_L [S]^T \{T\}^T \{r\}_L
+ \rho((\ddot{d})^T_L [S]^T \{T\} \{r\}_L + 2[\ddot{d}]^T_L [S]^T \{T\} \{r\}_L \, dV \tag{36}
\]

- terms without accelerations \(E_{a0} \). They will not play any role in obtaining the equations. These are represented by the rest of the term of the expression (31). Not showing an importance for the calculations that follow, we will not write them explicit.

Equation Gibbs-Appell (35) can be written:

\[
\begin{bmatrix}
\frac{\partial E_a}{\partial d}
\end{bmatrix}_L - [Q]_L = 0 \tag{37}
\]

where:

\[
E_a = E_{a0}(q) + E_{a1}(q, \dot{q}) + E_{a2}(\dot{q}) \tag{38}
\]

and

\[
[Q]_L = [k][d]_L + [q]_L + [q^*]_L. \tag{39}
\]

We have:

\[
\frac{\partial E_{a2}}{\partial [d]_L} = \left(\int_v \rho([N]^T [S] \, dV \right) [\ddot{d}]_L = [m][\ddot{d}]_L; \tag{40}
\]

\[
\frac{\partial E_{a1}}{\partial [d]_L} = -[m^T_o][\ddot{r}]_L - [q^T(\omega)] - [q^T(\varepsilon)] + ([k](\omega)]
+ [k(\omega)] [d]_L + [c][d]_L; \tag{41}
\]

\[
\frac{\partial E_{a0}}{\partial [d]_L} = 0. \tag{42}
\]

Finally, is obtained the motion equations in the form (33).

6. Hamilton’s method

Using Lagrange’s method leads to a second order equations system. The unknowns are the generalized coordinates \(q \). Technically, to solve the system of the second order with \(n \) unknowns, it is necessary to write it as a system the first order, with \(2n \) unknowns, by introducing new unknowns which are the generalized velocities. Hamiltonian mechanics also uses \(2n \) unknowns and the system of differential equations to be solved is a system of \(2n \) equations of the first order. The first \(n \) unknowns in this case are the generalized coordinates, the other \(n \) being canonically conjugated moment, defined by:

\[
[\rho]_L = -\left\{ \frac{\partial H}{\partial \dot{d}} \right\}_L. \tag{43}
\]

The use of canonically conjugate momenta instead of generalized velocities represents an important difference between Lagrange’s method and Hamilton’s method. Hamilton’s equations are given by relations [22]:

\[
[\dot{d}]_L = \left\{ \frac{\partial H}{\partial \rho} \right\}_L; \quad [\dot{\rho}]_L = -\left\{ \frac{\partial H}{\partial \dot{d}} \right\}_L. \tag{44}
\]

Considering the relations (26) - (27) it obtains:

\[
[\dot{d}]_L = [m_o^{-1}(\rho)_L - m[T]^T[T]\{r\}_L
- [T]^T[m_o][d]_L \tag{45}
\]

\[
[\dot{\rho}]_L = [p]^T[m_o^{-1}[T]^T[T]\{r\}_L + \int_v \rho((\{r\}_L)^T[T][S] \, dV
+ \int_v \rho((\{r\}_L)^T[T][S] \, dV + \int_v \rho((\{S\}_L)^T[T][S] \, dV
+ [S]^T[T]^T\{d\}_L \, dV - \int_v [k][d]_L \, dV
+ [q]^T + [q]^T. \tag{45}
\]

7. Conclusions and discussions

The main step in the process of solving MBS systems with elastic elements is to write the motion equation for a chosen finite element. If these equations are written, then the other steps that follow, namely the assembly of the equations of motion and solving them will be done according to the classical methods currently used in the common FEM software. Writing these equations proves to be a difficult thing, given the many terms that appear in these equations. Therefore, finding a formalism that allows the easy writing of these equations is an important goal in this analysis. In the use of FEM in MBS systems with elastic elements, until now, the almost exclusive Lagrangian equation method has been used. This method presents the advantages of a homogeneous writing and the possibility to follow the calculus is easier. In the introduction section, some
of these approaches were presented. From the theoretical point of view, however, there are several equivalent formulations, developed by analytical mechanics, equivalent to Lagrange’s equations. You can use the Gibbs-Appell equations, Hamilton’s equations, Maggi’s equations, Jacob’s equations and other equivalent forms [24–26]. The question arises to what extent these formulations may be more advantageous than using Lagrange’s equations. In the paper it is presented comparative, for the first time, three analytical formulations of this problem to see the advantages and disadvantages of such approaches, which could ultimately lead to a more economical writing of the equations of motion. Lagrange’s equations show the major advantage of a frequent previous use of the method and of a regular use of the researchers with this method. Using the Gibbs-Appell method is proving to be more economical in terms of the time required to obtain the equations and the final results. The last method used, that of Hamilton’s equations, is proving to be the most lucrative, the time required to obtain the equations not being economical and the complexity of the intermediate calculations being high. We do not deny, however, that this method could be useful in a new approach to solving the differential system since the system of differential equations obtained is of first order and thus a calculation step, used in the classical solving of these systems is avoided. If the Gibbs – Appell equations are used, the number of differentiations of the terms that need to be made decreases and the total number of calculations required also decreases compared to Lagrange’s method. Lagrange’s method, however, presents the advantage of using kinetic energy, a notion that we are used to and that we operate with ease. In the Gibbs-Appell case, the energy of accelerations is used, a notion most engineers are less familiar with.

In the future, it is presumed that the equivalent forms developed by the analytical mechanics and which apparently have no practical applicability will be re-evaluated and new fields of applicability will be found in the engineering studies in which they will prove their usefulness [27–37].

Acknowledgments
We want to thank the reviewers who have read the manuscript carefully and have proposed pertinent corrections that have led to an improvement in our manuscript.

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Sorin Vlase http://orcid.org/0000-0001-8679-2579
Iuliu Negrean http://orcid.org/0000-0003-0018-5183
Marin Marin http://orcid.org/0000-0003-1552-3763

References
[1] Bagci C. Elastodynamic response of mechanical systems using matrix exponential mode uncoupling and incremental forcing techniques with finite element method. Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms, India; 1983, p. 472.
[2] Bahgat BM, Willmert KD. Finite element vibrational analysis of planar mechanisms. Mech Mach Theory. 1976;11:47.
[3] Cleghorn WL, Fenton EG, Tabarrok KB. Finite element analysis of high-speed flexible mechanisms. Mech Mach Theory. 1998;16:407.
[4] Vlase S, Marin M, Öchsner A, et al. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Continuum Mech Thermodyn. 2019. doi:10.1007/s00161-018-0722-y.
[5] Vlase S. Dynamical response of a multibody system with flexible elements with a general three-dimensional motion. Rom J Phys. 2012;57(3-4):676–693.
[6] Vlase S, Dănășel C, Scutaru ML, et al. Finite element analysis of a two-dimensional linear elastic systems with a plane “rigid motion. Rom. Journ. Phys. 2014;59(5–6):476–487.
[7] Deü J-F, Galucio AC, Ohayon R. Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput Struct. 2008;86(3-5):258–265.
[8] Hou W, Zhang X. Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J Sound Vib. 2009;319(1-2):570–592.
[9] Neto MA, Ambrosio JAC, Leal RP. Composite materials in flexible multibody systems. Comput Methods Appl Mech Eng. 2006;195(50-51):6860–6873.
[10] Piras G, Cleghorn WL, Mills JK. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech Mach Theory. 2005;40(7):849–862.
[11] Shi YM, Li ZF, HuaHX, et al. The modeling and vibration control of beams with active constrained layer damping. J Sound Vib. 2001;245(5):785–800.
[12] Zhang X, Erdman AG. Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput Struct. 2001;79(13):1265–1274.
[13] Gibbs JW. On the fundamental formulae of dynamics. American J Math. 1879;2:49–64.
[14] Appell P. Sur une forme générale des équations de la dynamique. C.R. Acad. Sci. Paris. 1899;129:146-152.
[15] Mirtaheri SM, Zohoor H. The explicit Gibbs-Appell equations of motion for rigid-body constrained mechanical system. Book Series: RSI International Conference on Robotics and Mechatronics ICROM, 2018, pp 304-309.
[16] Korayem MH, Dehkordi SF. Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs-Appell formulation. Appl Math Model. 2019;65:443–463.
[17] Shaifei AM, Shaifei HR. A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst Dyn. 2017;38(1):21–42.
[18] Korayem MH, Dehkordi SF. Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 2017;89(3):2041–2064.
[19] Marin M, Ellahi R, Chirilă A. On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpathian J Math. 2017;33(2):219–232.
[20] Vlase S, Negrean I, Marin M, et al. Energy of accelerations used to obtain the motion equations of a three-dimensional finite element. Symmetry (Basel). 2020;12(2):321. doi:10.3390/sym12020321.
[21] Vlase S. Elimination of Lagrangian multipliers. Mech Res Commun. 1987;14:17.
[22] Negrean I, Kacso K, Schonstein C, et al. Mechanics. Theory and applications. Cluj-Napoca: UTPRESS; 2012.
[23] Ursu-Fisher N. Elements of analytical mechanics. Cluj-Napoca: House of Science Book Press; 2015.
[24] Negrean I, Crişan A-D. Synthesis on the acceleration energies in the advanced mechanics of the multibody systems. Symmetry (Basel). 2019;11(9):1077.
[25] Negrean I, Crişan A-D, Vlase S. A New approach in analytical dynamics of mechanical systems. Symmetry (Basel). 2020;12(1):95.
[26] Marin M, Vlase S, Ellahi R, et al. On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure, symmetry. Basel. 2019;11(7):1–16. Art. No. 863.
[27] Özkan YS, Yaşar E, Seadawy AR. A third-order nonlinear Schrödinger equation: the exact solutions, group-invariant solutions and conservation laws. J Taibah U Sci. 2020;14(1):585–597.
[28] Hijaz A, Seadawy AR, Tufail A, et al. Analytic approximate solutions for some nonlinear parabolic dynamical wave equations. J Taibah U Sci. 2020;14(1):346–358.
[29] Marin M, Othman MIA, Seadawy AR, et al. A domain of influence in the Moore–gibson–thompson theory of dipolar bodies. J Taibah U Sci. 2020;14(1):653–660.
[30] Iqbal M, Seadawy AR, Lu D. Construction of solitary wave solutions to the nonlinear modified Korteweg-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod Phys Lett A. 2018;33(32):1850183.
[31] Iqbal M, Seadawy AR, Lu D. Dispersive solitary wave solutions of nonlinear further modified Korteweg-de Vries dynamical equation in an unmagnetized dusty plasma. Mod Phys Lett A. 2018;33(37):1850217.
[32] Lu D, Seadawy AR, Iqbal M. Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys. 2018;11:1161–1171.
[33] Lu D, Seadawy AR, Iqbal M. Construction of new solitary wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Holm equations. Open Physics. 2018;16(1):896–909.
[34] Seadawy AR, Lu D, Iqbal M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana – J Phys. 2019;93(1):1183–1189. Article ID 0010.
[35] Iqbal M, Seadawy AR, Lu D. Applications of nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod and new solitary wave solutions. Mod Phys Lett B. 2019;33(18):1950210.
[36] Seadawy AR, Iqbal M, Lu D. Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev–petviashvili modified equal width dynamical equation. Comput Math Appl. 2019;78(11):3620–3632.
[37] Seadawy AR, Iqbal M, Lu D. Propagation of long-wave with dissipation and dispersion in nonlinear media via generalized Kadomtsev–petviashvili modified equal width-Burgers equation. Indian J Phys. 2020;94(5):675–687.