Productivity of Field Crops as Influenced by Foliar Spray of Nutrients: A Review

A. Sathishkumar¹, N. Sakhivel², E. Subramanian¹, P. Rajesh³

10.18805/ag.R-1991

ABSTRACT

Foliar application of nutrients plays an important role in changing growth and physiological characteristics of field crops. In optimizing fertilization strategies, inclusion of foliar application improves fertilizer use efficiency and reduces environmental pollution. Foliar application of nutrients during flower and grain formation stages has been shown to be effective in efficient utilization of nutrients by crops and thereby reduce flower shedding and increase the yield. Keeping this in view, the literatures on foliar application of Di-ammonium phosphate and boron on the growth, yield and quality of field crops are reviewed in this paper.

Key words: Boron, Crops, Di-ammonium phosphate, Foliar application, Nutrients, Yield.

Foliar application is a technique of feeding nutrients to plants in the form of liquid directly to their leaves. Nutrients are important and crucial elements, which are required for the plant for its growth and development. The translocation of photosynthates from source to sink is very important for the development of economic part. Foliar application was several times more efficient than the soil treatment (Sastry and Rao, 1958). The plant nutrients which are absorbed through roots can also be absorbed with equal efficiency through foliage (De, 1971). Among the methods of fertilizer application, foliar nutrition is recognized as an important method of fertilization. Since foliar nutrients usually penetrate the leaf cuticle or stomata and enter the cells, it facilitates easy and rapid utilization of nutrients (Latha and Nandanasaababady, 2003). Foliar nutrition is designed to eliminate the problems of fixation and immobilization of soil applied nutrients. Nutrients applied through foliage would be easily absorbed and translocated in the plant without any loss (Manivannan and Thanathan, 2003). Foliar application of fertilizers as a possible means of applying the needed nutrients for successful crop production is gaining considerable interest in recent years (Malaruthi and Thomas Abraham, 2003; Prakash et al., 2003).

It has been well established that most of the plant nutrients are absorbed through the leaves and absorption would be remarkably rapid and nearly complete. Moreover, foliar feeding practice would be more useful in early maturing crops, when it is combined with regular plant protection programmes. If foliar nutrition is applied, it reduces the amount of fertilizer which in turn reduces the cost of cultivation thereby economizing the crop production. Prabhakaran and Lourthuraj (2003) suggested that foliar application of fertilizers offers considerable scope not only for better utilization of nutrients but also for the economy of fertilizer application.

Application of nutrients through foliar spray at appropriate stages of growth is becoming important for their efficient utilization and better performance of the crop.
Importance of Di-Ammonium Phosphate (DAP)
DAP fertilizer is an excellent source of phosphorus (P) and nitrogen (N) for plant nutrition. Nitrogen is an essential and basic macronutrient for plants. It is a component of protoplasm as well as protein. Nitrogen is crucial in the production of vegetative biomass. Phosphorus and potassium also influence the beneficial effects of nitrogen fertilization. Deficiency of nitrogen in the plant slows down the processes of photosynthesis and physiological functions. Nitrogen is a component of proteins and nucleic acids. It stimulates the growth of underground and aboveground parts of plants, giving them intense green colour. Phosphorus is one of the universal nutrients. It is a component of organic compounds and therefore it is used for energy storage and plants metabolism. Transport of phosphorus in the plant is very poor what can cause deficiency of this element. High concentration of this element in plants stimulates intensive root system growth and in effect improves yield. In most cases plants absorb the most of the nutrients supplied to the soil by their root system which leads to the desired growth, plant rooting and to obtainment of high yield. However, sometimes nutrient uptake from soil is difficult due to physiological stresses such as drought, excessive moisture, inadequate soil pH and too low temperature. Insufficient moisture as well as drought in the period of spring and summer cause that plant root systems are not able to absorb from the soil nutrients which are required to achieve satisfactory healthy crop, both in a quantitative and qualitative sense. Foliar fertilizers are completely soluble in water and needed nutrients are fast delivered to plants in the form of foliar fertilization during the growing season. This is especially important in case of high deficiencies in the soil and the difficulty in uptake due to inappropriate weather or mechanical conditions. Both macro and micronutrients can be delivered to plants by foliar fertilization. In foliar application of nutrients the losses of macro and micronutrients are much lower than in case of application of soil fertilization. Foliar application of DAP at critical stages of the crop enhanced better photosynthetic activity as reported by Ganapathy et al. (2008).

Effect of Di-Ammonium Phosphate on growth parameters
Foliar spray of DAP twice with recommended dose of fertilizer recorded the maximum plant height in chickpea (Srivastava and Srivastava, 1994). Foliar application of nutrients with 1% DAP + 0.5% urea + 0.25% magnesium sulphate + 0.25% zinc sulphate recorded higher leaf area index, crop growth rate, net assimilation rate and relative growth rate along with seed treatment with nutrients in blackgram (Subramani and Solaimalai, 2000). In cowpea, application of recommended dose of inorganic fertilizer combined with 2% DAP spray twice recorded the maximum dry matter production of 2818 kg ha⁻¹ (Parasuraman, 2001).

Application of basal dose of fertilizer along with 2% DAP spray twice registered higher plant height (73.5 cm) in greengram (Pandiyan et al., 2001). Foliar application of 2% DAP and 1% potassium chloride (KCl) along with benzyladenine 25 ppm significantly increased the plant height, relative growth rate and net assimilation rate in soybean (Ramesh and Thirumurugan, 2001). Foliar spray of 2% DAP significantly increased the plant height of redgram (Soliappan et al., 2002).

Chandrasekhar and Bangarusamy (2003) observed that foliar application of 2% DAP and 1% KCl along with plant growth regulators significantly increased the total dry matter production (24.7 g plant⁻¹) of mungbean. Foliar application of 2% DAP along with micro nutrients significantly increased the plant height of chickpea (Pathak et al., 2003). Foliar application of 2% DAP + 1% KCl spray increased the plant height, leaf area index and dry matter production of blackgram (Geetha, 2003). Foliar application of 2% DAP on 65 DAS through foliar spray recorded higher plant height (55.72 cm), number of branches plant⁻¹ (29.15) and dry matter plant⁻¹ (33.15 g) of cowpea (Shinde and Bhalare, 2003).

Ramanathan et al. (2004) found in rice fallow blackgram, foliar application of 2% DAP and 1% muriate of potash (MOP) four times (25, 32, 40 and 47 DAS) significantly increased the plant height. Foliar application of 2% DAP and 2% urea along with micronutrients twice significantly increased the leaf area index, crop growth rate and dry matter production of blackgram (Sritharan et al., 2005).

Foliar application of DAP, micronutrient and naphthalene acetic acid (NAA) on mungbean had significant influence in plant height and dry matter production (Dixit et al., 2008). Senthilkumar et al. (2008) observed a significant increase in growth characters like plant height (47.5 cm), dry matter production (2576 kg ha⁻¹) and leaf area index (3.74) of blackgram by foliar application of 2% DAP at flowering and pod development stage as compared to no spray (37.1 cm, 1712 kg ha⁻¹ and 2.76, respectively).

Foliar application of 2% DAP increased the plant height, number of branches plant⁻¹ and dry matter accumulation in per metre row length (114.9 g) of cowpea (Choudhary and Yadav, 2011). Foliar application of 2% DAP + 1% KCl + nutrient mixture significantly increased the periodic plant height, dry weight plant⁻¹ and number of tillers plant⁻¹ in wheat (Latief et al., 2012).

Foliar application of 2% DAP and 2% urea on chickpea increased the number of branches plant⁻¹ (Parimala et al., 2013) Recommended dose of fertilizer + foliar application of 40 ppm NAA + 0.5% chelated micronutrient + 2% DAP significantly increased the plant height (37.11 cm), number of branches plant⁻¹ (8.27), leaf area index (4.18) and total dry matter production plant⁻¹ (15.98 g) in blackgram (Shashikumar et al., 2013).

Effect of Di-Ammonium Phosphate on yield and yield parameters
Foliar spray of 2% DAP significantly increased the grain yield (955 kg ha⁻¹) and 100 grain weight (7.3 g) of blackgram over control (Muthuvel et al., 1986). Solaiappan and Ramiah (1990) studied the effect of basal application of 12.5 kg of P₂O₅ ha⁻¹ combined with foliar application of 1% DAP on
70th day after sowing to increase the seed yield of redgram. Foliar spray of 1% DAP twice at flowering and 20 days after the first spray has shown increased grain yield and seed weight plant⁻¹ of gram (Setty et al., 1992).

Annadurai and Palaniappan (1994) observed that 2% DAP spray at boot leaf stage, 50 per cent flowering and at post milk stage recorded higher grain and straw yield in rice along with recommended dose of 38 kg P₂O₅ ha⁻¹. Foliar application of 2% DAP with 1% humic acid increased the seed cotton yield (Chellaiah and Gopalasamy, 2000). Subramani and Solaimalai (2000) found that foliar application of nutrients with 1% DAP + 0.5% urea + 0.25% magnesium sulphate + 0.25 % zinc sulphate increased the grain yield of blackgram.

Basal application of N and P at 12.5 and 25 kg ha⁻¹, respectively and 2% DAP spray twice at flower initiation stage and 15 days after the first spray increased the 100 seed weight and grain yield to a tune of 165% over conventional method of raising rice fallow greengram (Pandian et al., 2001). Foliar application of benzyl adenine 25 ppm twice with 2% DAP and potassium chloride 1% at flowering and 15 days after flowering increased the yield of soybean (Ramesh and Thirumurugan, 2001).

Basal application of 25 kg and 2% DAP spray at flowering and pod initiation stage increased the number of pods plant⁻¹ and yield of blackgram compared to control (Yakadri and Thatikunta, 2002). Yield attributes in blackgram was favourably influenced by foliar application of 1% DAP + 0.5% urea spray at flowering stage (Subramani et al., 2002). Application of 2% DAP along with biofertilizers significantly increased the growth and yield attributes in chickpea (Pathak et al., 2003). Foliar application of 2% DAP + 1% KCl improved the harvest index of blackgram (Geetha, 2003).

Foliar application of 2% DAP recorded higher harvest index over control in greengram (Ghosh and Joseph, 2008). Manonmani and Srimathi (2009) studied that foliar spray of DAP 2% followed by urea 1% recorded higher 100 seed weight (5.6, 5.5 g) and seed yield (1240, 1040 kg ha⁻¹, respectively) in blackgram. Foliar nutrition of 2% DAP increased the number of seeds pod⁻¹ and seed yield in cowpea (Choudhary and Yadav, 2011).

Foliar application of 2% DAP + 1% KCl + 100 ppm nutrient mixture on wheat increased the grain and straw yield and different yield contributing characters viz., spikes plant⁻¹, spike weight, grains spike⁻¹ and test weight (Latief et al., 2012). Recommended dose of fertiliser + foliar application of 40 ppm NAA + 0.5% chelated micronutrient + 2% DAP increased the grain yield (1298 kg ha⁻¹), number of pods plant⁻¹ (38.73), pod length (6.03 cm) and number seeds pod⁻¹ (6.47) of blackgram (Shashikumar et al., 2013). Foliar application of 2% DAP increased the number of pods plant⁻¹ (62.75), 100 seed weight (14.62 g), grain yield (1460 kg ha⁻¹) and haulm yield (4027 kg ha⁻¹) of soybean (Vinoth Kumar et al., 2013).

Effect of Di-Ammonium Phosphate on nutrient uptake

Foliar application of 2% DAP on blackgram at flowering stage significantly increased the total nutrient uptake (NPK) compared to control (Krishnasamy et al., 1985). Foliar application of 2% DAP and microsol spray recorded the higher nutrient uptake (75, 18 and 70 kg NPK ha⁻¹) of rice fallow blackgram (Manivannan and Thanunathan, 2003). Combined inoculation of biofertilizers and DAP on greengram increased the growth and yield attributes due to increased availability of N and P in the root zone by fixing more atmospheric nitrogen by rhizobium and solubilization of unavailable phosphates in the soil (Ghosh and Joseph, 2008).

Effect of Di-Ammonium Phosphate on economics

Application of basal dose of fertilizer along with 2% DAP spray twice registered higher net return per rupee invested in rice fallow greengram (Pandian et al., 2001). Foliar application of 2% DAP has improved the grain yield and net income with high B:C ratio (2.44) in redgram (Solaiappan et al., 2002). Yakadri and Thatikunta (2002) reported that foliar application of 2% DAP on blackgram recorded the higher B:C ratio of 3.78 compared to control.

Higher cost benefit ratio (3.47) was registered with foliar spray of DAP at 2%, which signifies that, foliar spray with DAP is the cheapest cultural practice in achieving good grain yield with minimum production cost in greengram (Chandrashekar and Bangarurusamy, 2003). Shinde and Bhiare (2003) observed that foliar spray of DAP at 2% on cowpea at two different growth stages recorded higher gross monetary return (Rs. 49726 ha⁻¹), net monetary return (Rs. 32466 ha⁻¹) and benefit cost ratio (2.87) in chickpea.

Foliar application of 2% DAP + 100 ppm salicylic acid + 0.05% sodium molybdate twice proved to be the most promising nutrient management practice for summer greengram in terms of economic returns viz., gross return and net return (Kuttimani and Velayutham, 2011).

Recommended dose of fertilizer + foliar application of 40 ppm NAA + 0.5% chelated micronutrient + 2% DAP on blackgram increased the net return (Rs. 35,431 ha⁻¹) and B:C ratio (3.03) (Shashikumar et al., 2013). The higher net return and B:C ratio obtained under these treatments were due to higher productivity in terms of yield. Foliar application of 2% DAP increased the gross return (Rs. 36,500 ha⁻¹), net return (Rs. 20,090 ha⁻¹) and B:C ratio (2.22) of soybean (Vinoth Kumar et al., 2013).

Importance of boron

Among the micro nutrients, boron is stated to influence many growth parameters and filling up of seeds in sunflower (Blamey, 1976). Garg et al. (1979) found that germination capability, size and fertility of pollen grains of rice were considerably improved as a result of boron application at 2.5 ppm concentration. They also reported that inclusion of boron in the nutrient solution with optimum level has stimulatory effect on the pollen vitality and there by improved the grain yield of rice.

Sugar transport, pollen formation, seed germination and development of nodules are also affected in its absence. Seed and grain production are also reduced with low boron supply (Sillanpae, 1982). Moreover a high proportion of cells in boron deficient seeds tend to become empty or collapse.
Foliar application of boron at 500 g ha\(^{-1}\) leaves under the flowering head should be maintained at 20 and 40 ppm respectively.

Foliar application of 0.2% boron in combination with Fe and Zn to cotton proved its superiority in the production of chlorophyll 'a' and 'b'. Boron is required for reproductive plant parts, cell wall formation and stabilization, membrane integrity, carbohydrate utilization, stomatal regulation and pollen tube formation (Patil and Malewar, 1994). During seed development, the need for boron is higher than the vegetative growth period (Marschner, 1995).

Boron is thought to increase nectar production in flower and this attracts pollinating insects. Additionally, boron has a role in the cell structure. Tissue of boron deficient plants often breaks down permanently causing brown flecks, necrotic spots, cracking and corky areas in fruits and tubers (Dear and Weir, 2004).

Boron is one of the sixteen essential nutrient elements required for proper growth and yield of crop plants (Tariq and Mott, 2006). Foliar spray of boric acid has been reported to be more effective than soil application for fulfilling boron requirements and curing its deficiency in maize. Although correction of boron deficiency can be achieved through soil or foliar application, foliar treatments are more effective under dry conditions due to the low root absorption rates from dry soils (Rufat and Arbones, 2006).

Deficiency of boron can cause reduction in crop yield, impair crop quality or have both of these effects. Protein and soluble nitrogenous compounds are also found decreased in boron-deficient plants (Gupta, 2007). It plays an important role in water relations, cell wall formation, cations and anions absorption, pollen viability and metabolism of N, P, carbohydrates and fats in the plant (Oyinlola, 2007).

Effect of boron on plant height, stem girth and dry matter accumulation of sunflower (Rao and Vidyasagar, 1981a). Foliar application of boron and molybdenum brought significant improvement in plant height of chickpea (Masood Ali and Mishra, 2001). Foliar application of boron (0.2%) on greengram increased the plant height (32.26 cm) and dry weight plant\(^{-1}\) (12.9 g) (Dixit and Elamathi, 2007).

Dixit et al. (2008) found that combined foliar application of 2% DAP with 0.2% boron and 0.05% Mo significantly registered higher plant height and branches in greengram. Application of Zn (15 kg) and B (1.5 kg) ha\(^{-1}\) significantly increased the dry matter production, leaf area index, crop growth rate and net assimilation rate of sunflower (Muzzammil et al., 2009). Foliar application of boron (0.5%) at early, mid and late whorl growth stages increased the plant height (195.05 cm) and stem girth (5.21 cm) of fodder maize compared to soil-applied boron (Soomro et al., 2011).

Dixit and Elamathi (2007) observed that foliar application of boron (0.2%) on greengram increased the number of pods plant\(^{-1}\) (18.1), 100 seed weight (28.7 g), grain yield (7.53 quintal ha\(^{-1}\)) and haalm yield (30.0 quintal ha\(^{-1}\)). Foliar application of boron at booting stage increased the number of grains spike\(^{-1}\) (54.75) and seed yield (4592 kg ha\(^{-1}\)) of wheat. They also reported that foliar application of boron at jointing stage increased the 1000 grain weight (43.83 g) and anthesis stage increased the harvest index (40.11%) of wheat (Muhammad et al., 2009).

Foliar application of zinc and boron on wheat significantly increased the number of spikes m\(^{-2}\), number of
grains spike\(^{-1}\) thousand grain weight, biological yield and grain yield (Sajid Ali et al., 2009). Mohammed et al. (2011) stated that normal irrigation with foliar spray of boron (1%) recorded the higher grain yield (5632 kg ha\(^{-1}\)) of wheat.

Boron application at 3 mg L\(^{-1}\) increased the head diameter, number of seeds head\(^{-1}\), 1000 seed weight and seed yield of sunflower (Ayad and Saad, 2011). Application of nitrogen 200 kg ha\(^{-1}\) and foliar spray of boron 1 kg ha\(^{-1}\) on cotton significantly increased the boll number plant\(^{-1}\), boll weight, seed cotton weight of boll and seed cotton yield and lint yield (Majid Rashidi et al., 2011). Foliar application of boron (0.5%) at early, mid and late whorl growth stages increased the green and dry fodder yield (58.04 t ha\(^{-1}\) and 17.59 t ha\(^{-1}\), respectively) in fodder maize compared to soil-applied boron (Soomro et al., 2011).

Application of boron at 2 kg ha\(^{-1}\) on wheat increased the number of grains spike\(^{-1}\) (52.92) and grain yield (3.14 t ha\(^{-1}\)) as reported by Nadim et al. (2012). Foliar application of boron at 0.5 mg L\(^{-1}\) on barley significantly increased the weight of straw and grains by 5.5% as compared to control (Saad Soliman El-Feky et al., 2012). Combined application of 2.0 kg boron and 5 kg zinc ha\(^{-1}\) produced significant increase on the grain yield and its components i.e., spike length, number of grains spike\(^{-1}\) and 1000 grain weight of wheat (Ali et al., 2013).

Effect of boron on nutrient uptake and economics

Boron when applied to soil resulted in increased N content of leaf, K content of stem and P content of petiole during early vegetative stage, N and P contents of leaves during flowering stage and P contents of leaves and stems and N and K contents of petioles at harvest. Boron when sprayed on foliage helped to increase the mineral composition of leaves, stems and petioles during different growth stages of sunflower. They also noticed that foliar sprayed boron influenced the absorption and preferential translocation of mineral elements into different parts of the plant (Rao and Vidyasagar, 1981b). Uptake of N, P and boron was the highest when fertilized with boronated super phosphate as compared to single super phosphate (SSP) and DAP (Ateeque and Malewar, 1992). Beegle (2002) stated that when boron was given as a foliar application it increased the grain yield and nitrogen uptake in crop. Rhizobium inoculation along with zinc and boron in greengram gave better response in terms of N uptake as compared to rhizobium alone (Jain et al., 2007).

The net return and B:C ratio was higher with 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) combined with 2% DAP and 0.2% borax spray on sunflower (Susheela, 1996). Foliar application of boron (0.2%) in greengram increased the B: C ratio (1.54) as revealed by Dixit and Elamathi (2007). Foliar application of boron at booting stage recorded the maximum net return (Rs. 34132 ha\(^{-1}\)) and B:C ratio (2.07) of wheat (Muhammad et al., 2009).

CONCLUSION

From the above review it can be concluded that, foliar application of DAP and boron twice at pre and post flowering stage of crop growth along with recommended dose of fertilizer would be an ideal practice for getting higher yield and economic returns in field crops.

REFERENCES

Ali, M.A., Tariq, N.H., Ahmed, N., Abid, M. and Rahim, A. (2013). Response of wheat (*Triticum aestivum* L.) to soil applied boron and zinc fertilizers under irrigated conditions. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences. 2: 114-125.

Anandhakrishnaveni, S., Palchamy, A. and Mahendran, S. (2004). Effect of foliar spray of nutrients on growth and yield of greengram (*Phaseolus radiatus*). Legume Research. 27(2): 149-150.

Annadurai, K. and Palaniappan, S.P. (1994). Effect of phosphorus levels and DAP spray on lowland rice field. Madras Agric. J. 11: 632-633.

Ateeque, M. and Malewar, G.U. (1992). Uptake of N, P and boron by sunflower as influenced by sources and levels of phosphorus with and without boron. J. Soils and Crops. 2: 12-14.

Ayad, T.S. and Saad A.M. (2011). Effect of different levels and timing of boron foliar application on growth, yield and quality of sunflower genotypes (*Helianthus annuus* L.). Mesopotamia J. Agric. 3: 16-25.

Beegle, D.B. (2002). Soil fertility management. In E. Martz (ed.) The Penn State agronomy guides. Penn State Univ., College of Agric. Sci., University Park, PA. p. 30.

Blamey, F.P.C. (1976). Boron nutrition of sunflower (*Helianthus annuus* L.) on an Avalon medium sandy loam. Agro chemo.-physica. 8: 5-10.

Brown, P.H. and Hu, H. (1997). Does boron play only a structural role in the growing tissues of higher plants. Plant Soil. 196: 211-215.

Chandrasekhar, C.N. and Bangaruszamy, U. (2003). Maximizing the yield of mungbean by foliar application of growth regulating chemicals and nutrients. Madras Agric. J. 1-3: 142-145.

Chellaiah, N. and Gopalasamy, N. (2000). Effect of intercropping and foliar nutrition on the summer irrigated cotton. Madras Agric. J. 4-6: 267-270.

Choudhary, G.L. and Yadav, L.R. (2011). Effect of fertilizer levels and foliar nutrition on cowpea productivity. J. Food Leg. 1: 67-68.

De, R. (1971). A review of foliar fertilization of crops in India. Fertil. News. 12: 77-81.

Dear, B.S. and Weir, R.G. (2004). Boron deficiency in pastures and field crops. AGFACT P1.AC.1. New South Wales Agriculture.

Dixit, P.M. and Elamathi, S. (2007). Effect of foliar application of DAP, micronutrients and NAA on growth and yield of greengram (*Vigna radiata* L.). Legume Res. 30(4): 305-307.

Dixit, P.M., Elamathi, S., Kishanrao, Z.K. and Choubey, N. (2008). Effect of foliar application of nutrients and NAA in mungbean. J. Food Leg. 4: 277-278.

Dong jinfeng. (1995). The yield increasing ability of spraying cotton with boron. Hevan Nangye Keus, 3, 6. Puyang Agricultrue and Animal Husbandary Bareau.
Elayaraja D. and Angayarkanni, A. (2005). Effect of foliar nutrition on the nodulation and yield of rice fallow blackgram. The Andhra Agric. J. 3: 4; 602-604.

Fernandez, G.P. (1990). Recent developments in use of boron and diagnosis of requirements in the field. In: Behaviour, function and significance of boron in agriculture. Report on an international workshop at St. John’s College, Oxford, England, 23-25.

Ganapathy, M., Baradhan, G. and Ramesh, N. (2008). Effect of foliar nutrition on reproductive efficiency and grain yield of rice fallow pulses. Legume Res. 31(2): 142-144.

Garg, O.K., Sharma, A.N. and Kona, G.R.S.S. (1979). Effect of boron on the pollen vitality and yield of rice plants. (Oryza sativa. L. Var. Jaya). Plant and soil. 52: 591-594.

Geetha, P. (2003). Refinement of nutrient management techniques for rice fallow balckgram, M.Sc (Ag.) Thesis. Tamil Nadu Agricultural University, Coimbatore.

Ghosh, M.K. and Joseph, S.A. (2008). Influence of biofertilizers, foliar application of DAP and sulphur sources on yield and yield attributes of summer greengram (Vigna radiata L. Wilczek). Legume Research. 31(3): 232-233.

Gupta, U.C. (2007). “Boron”, In: Handbook of Plant Nutrition (eds. Barker AV, Pilbeam DJ). Taylor and Francis Group, Boca Raton, FL. pp. 241-276.

Jain, A.K., Sudhir Kumar and Panwar, J.D.S. (2007). Response of mungbean (Vigna radiata) to phosphorus and micronutrients on N and P uptake and seed quality. Legume Res. 30(3); 201-204.

Kalpana, R. and Krishnarajan, J. (2003). Effect of combined application of nutrients and hormones on soybean yield. Legume Res. 26(2): 151-152.

Khan, T.A., Venugopal, K., Chikka Deaviah, S. and Seenappa, K. (1990). Effect of secondary nutrition and boron on some growth characters and yield in sunflower. J. Oilseeds. Res. 7: 136-139.

Krishnasamy, R., Manickan, T.S. and Kothandaraman, G.V. (1985). Influence of phosphorusand micro nutrients yield and economics of blackgram. J. Crop Research. 2: 320-322.

Kuttimani, R. and Velayutham, A. (2011). Foliar application of nutrients and growth regulators on yield and economics of greengram. Madras Agric. J. 4: 6-141-143.

Latha, M.R. and Nadanasababady, T. (2003). Foliar nutrition in crops-A Review. Agric. Rev. 24(3): 229-234.

Latief Ahmad, Kaleem, M. and Bhat, R.A. (2012). Response of nitrogen and foliar spray of nutrient mixture on yield attributes and yield of wheat (Triticum aestivum L.). J. Cereals and Oil seeds. 3: 28-34.

Majid Rashidi, Mohsen Seliepour and Mahammed Gholami (2011). Response of yield, yield components and fibre properties of cotton to different applications rates of nitrogen and boron. J. Agric. and Environ. Sci. 4: 525-531.

Malarmathi, K. and Thomas Abraham. (2003). Effect of different methods and doses of phosphorus on the performance of greengram (Vigna radiata L.) var K-851. Agric. Sci. Digest. 23(4): 239-242.

Manivannan, V. and Thanunathan, K. (2003). Effect of foliar nutrition of major and chelated micronutrients and rhizobium seed treatment on rice-fallow blackgram. Madras Agric. J. 4-6: 344-347.

Manonmani, V. and Srimathi, P. (2009). Influence of mother crop nutrition on seed yield and quality of blackgram. Madras Agric. J. 1-6: 125-128.

Marschner, H. (1995). Mineral Nutrition of Higher Plants. 2nd ed. Academic Press. London. pp. 301-306.

Masood Ali and Mishra, J.P. (2001). Effect of foliar nutrition of boron and molybdenum on chickpea. Indian J. Pulses Res. 1: 41-43.

Mcconnel, J.S., Baker, W.H., Frizzel, B.S. and Vanil (1992). Response of cotton to nitrogen fertilization and early multiple application of mepiquate chloride. J. Plant Nutrition. 15: 457-468.

Muhammad Tahir, Asif Tanveer, Tajamul Hu ssain Shah, Naeem Fiaz and Allah Wasaya (2009). Yield response of wheat (Triticum aestivum L.) to boron application at different growth stages. Pak. J. Life Sci. Soc. Sci. 1: 39-42.

Muhammad Tahir, Sharjeel Ashraf and Muhammad Ibrahim (2013). Effect of foliar application of boron on yield and quality of sunflower (Helianthus annuus L.). Crop and Environment. 1: 23-27.

Muthuvel, P., Sivasamy, R. and Subramanian, V. (1986). Mitigating the adverse effect of drought in rainfed blackgram. Madras Agric. J. 1: 22-24.

Muzzamml Hussain Siddiqi, Fateh Chand Oad. M. Kaleem Abbasi and Allah Wadhayo Gandahi. (2009). Zinc and boron fertility to optimize physiologicalparameters, nutrient uptake and seed yield of sunflower. Sarhad J. Agric. 1: 53-57.

Nadim, M.A., Awan, I.U., Baloch M.S., Khan E.A., Naveed, K. and Khan M.A. (2012). Response of wheat (Triticum aestivum L.) to different micronutrients and their application methods. J. Animal and Plant Sci. 22(1): 113-119.

Oyinlola, E.Y. (2007). Effect of boron fertilizer on yield and oil content of three sunflower cultivars in the Nigerian Savannah. J. Agron. 6(3): 421-426.

Pandian, B.J., Anand Kumar, S., Veerabradran, V. and Ravichandran, V.K. (2001). Growth and yield of rice fallow greengram as influenced by methods of sowing, stubble manage-ment and nutrient application in Tambiraparani command area. Madras Agric. J. 87(7-9): 406-409.

Parasuraman, P. (2001). Effect of seed pelleting with diammonium phosphate and potassium dihydrogen phosphate and foliar spray with diammonium phosphate on growth and yield of blackgram cowpea [Vigna unguiculata (L) Walp.]. Indian J. Agron. 1: 131-134.

Parimala, K., Anitha, G. and Vishnuvardhan Reddy, A. (2013). Effect of nutrient sprays on yield and seedling quality parameters of chickpea (Cicer arietinum L.). Plant Archives. 2: 735-737.

Pathak, S.K., Namdeo, N., Chakrawarti, V.K. and Tiwari, R.K. (2003). Effect of foliar nutrition and biofertilizers on growth and yield of chickpea. Archives of Agron. Soil Sci. 2: 72-78.

Patil, U.D. and Malewar, G.V. (1994). Yield and chlorophyll content of cotton as influenced by micronutrient spray. J. Cotton Res. and Development. 8: 189-192.

Prabahkaran, N.K and Lourthuraj, C.A. (2003). Nutrient management in soybean - A review. Agric. Rev. 3: 223-228.

Prakash, M., Siddhes Kumar, J., Kannan, K., Senthil Kumar, M. and Ganesan, J. (2003). Effect of plant growth regulators on growth, physiology and yield of blackgram. Legume
Productivity of Field Crops as Influenced by Foliar Spray of Nutrients: A Review

Ramanathan, S., Natrajan, K. and Stalin, P. (2004). Effect of foliar nutrition on grain yield of rice fallow blackgram. Madras Agric. J. 3: 183-187.

Ramesh, K. and Thirumurugan, V. (2001). Effect of seed pelleting and foliar nutrition on growth of soybean. Madras Agric. J. 7: 9-465-468.

Rao, H.G. and Vidyasagar, C. (1982). Micronutrients and nutrients status of Soils, a global study. FAO Soils Bulletin, No. 48, Rome.

Rao, H.G. and Vidyasagar, C. (1981a). Effect of nitrogen, phosphorus and potassium along with foliar and soil applied boron on sunflower (Helianthus annus L.) I. Growth, yield, oil content and varietal performance. Andhra Agric. J. 28: 150-155.

Rao, H.G. and Vidyasagar, C. (1981b). Effect of nitrogen, phosphorus and potassium along with foliar and soil applied boron on sunflower (Helianthus annus L.) II. Content of N, P and K in plant at various stages of growth. Andhra Agric. J. 28: 210-214.

Rufat, J. and Arbones, A. (2006). Foliar applications of boron to almond trees in dry land areas. Acta Hort. 721: 219-225.

Sajid Ali Asad Shah, M. Arif, Ghazal Miraj, Imran Ali, M. Sajjad and Farhatullah M. Yasir Khanand Noor Moola Khan. (2009). Enhancement of wheat grain yield and yield components through foliar application of zinc and boron. Sarhad J. Agric. 25(1): 15-19.

Sarkar, R.K. and Sasmal, T.K. (1989). Response of sunflower to application of micronutrients on rice fallow Gangetic alluvial soil. Indian Agriculturalist. 33: 39-44.

Sastry, V.V.K. and Rao, A. (1958). Foliar application of nutrients. Andhra Agric. J. 5: 294-301.

Satyanaryana, T., Varadan, K.M., Badanur, V.P. and Haranagi, G.V. (1997). Note on the effects of secondary and trace elements on sunflower yield. Indian J. Agric. Res. 11: 122-124.

Senthil Kumar, G., Muthurukeshnan, P., Ramaenlamy, S. and Chandaragiri, K.K. (2008). Effect of organic and inorganic foliar spray on growth and yield of blackgram (Vigna mungo L.). Madras Agric. J. 1: 1-6: 57-60.

Setty, R.A., Channabasavanna, A.S. and Patil, S.P. (1992). Response of gram (Cicer arietinum) to the foliar application of dia- mmonium phosphate and single super phosphate. Indian J. Agron: 4: 828-829.

Shashikumar, Basavarajappa, R., Salkinkop, S.R., Manjunatha hebbur., Basavarajappa, M.P. and Patil., H.Y. (2013). Effect of growth regulator, organic and inorganic foliar nutrition on the growth and yield of blackgram (Vigna mungo L.) under rainfed condition. Karnataka J. Agric. Sci. 2: 311-313.

Shinde, S.H. and Bhilare, R.L. (2003). Response of chickpea to soil and foliar application of DAP. Madras Agric. J. 4: 4-6: 352-354.

Sillanpae, M. (1982). Micronutrients and nutrients status of Soils, a global study. FAO Soils Bulletin, No. 48, Rome.

Soad Soliman El-Fekyl, Fatna Aly El-Shintinawy, Eman Mohamed Shaker and Hassan Aly Shams El-Din. (2012). Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Australian J. Crop Sci. 12: 1687-1695.

Soliappan, U. and Ramiah, S. (1990). Effect of seed treatments, soil and foliar fertilization on N and P on yield attributes of pigeonpea grown under rainfed condition. Indian J. Agron. 3: 234-337.

Soliappan, U., Paulpandi, V.K. and Chellaiah, N. (2002). Effect of graded levels of phosphorus and foliar fertilization on short duration redgram in rainfed vertisol. Madras Agric. J. 7-9: 451-454.

Soomro, Z.H., Baloch, P.A. and Gandral, A.W. (2011). Comparative effects of foliar and soil applied Boron on growth and fodder yield of maize. Pak. J. Agri., Agri. Engg. Vet. Sci. 1: 18-26.

Srirathan, Anitha Aravazhi and Mallika Vanangamudi. (2005). Effect of foliar spray of nutrients and plant growth regulators (PGRS) for yield maximization in blackgram Madras Agric. J. 4-6: 301-307.

Srivastava, G.P. and Srivastava, V.C. (1994). Effect of irrigation and foliar spray of nutrients on growth and yield of gram (Cicer arietinum). Indian J. Agric. Sci. 4: 219-222.

Subramani, M. and Solaimalai, A. (2000). Influence of plant popula-tions and methods of nutrient application on growth and yield of blackgram. Legume Res. (23):3: 197-198.

Subramani, M., Solaimalai, A. and Velayutham, A. (2002). Effect of plant population and methods of fertilizer application on yield of blackgram. Legume Res. 25(3): 197-198.

Surendar, K.K., Vincent, S., Mallika, Vanangamudi, H. and Vijayaraghavan (2013). Physiological effects of nitrogen and growth regulators on crop growth attributes and yield of blackgram (Vigna mungo L.). Bulletin of Environment, Pharma-cology and Life Sci. 2: 70-76.

Susheela, C. (1996). Studies on the effect of phosphorus and boron on the yield and seed setting of sunflower (Helianthus annus L.). M.Sc. (Ag.) Thesis. Tamil Nadu Agric. Univ., Coimbatore.

Tariq, M. and Mott, C.J.B. (2006). Effect of applied Boron on the accumulation of cations and their ratios to boron in radish (Raphanus sativus L.). Soil and Environ. 1: 40-47.

Vinoth Kumar, C., Vaijapuri, K., Mohamed Amanullah, M. and Gopalaswamy, G. (2013). Influence of Foliar Spray of Nutrients on Yield and Economics of Soybean (Glycine max L. Merril). J. Biological Sci. 13: 563-565.

Wagan, Zohaib Ahmed, Buririo, Mahmooda, Wagan, Tufail Ahmed, Wagan, Zahoor Ahmed, Jamro, Sikandar Ali, Memon, Qurat Ul Ain, Wagan and Shoaib Ahmed. (2017). Effect of Foliar Applied Urea on Growth and Yield of Wheat (Triticum Aestivium L.). Intern. J. Bioorganic Chem. 2: 185-191.

Wankhade, S.T., Meshram, L.D. and Kene, H.K. (1994). Impact of foliar feeding of nutrients on hybrid seed production. Punjabrao Krishi Vidya Peeth Res. J. 18: 127-128.

Welch, R.M. (1986). Effects of nutrient deficiencies on seed production and quality. Advan. Plant Nutri. 2: 205-247.

Yakadri, M. and Thathikunta, R. (2002). Effect of soil application of potassium and DAP spray in blackgram (Vigna mungo L.). Madras Agric. J. 1-3: 147-149.