Port-City Shared Areas to Improve Freight Transport Sustainability

Nadia Giuffrida\(^1\), Matteo Ignaccolo\(^1\), Giuseppe Inturri\(^2\) and Vincenza Torrisi\(^1\)

\(^1\) Department of Civil Engineering and Architecture, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
\{nadia.giuffrida,vtorrisi\}@dica.unict.it

\(^2\) Department of Electric, Electronic and Computer Engineering, University of Catania, Via S. Sofia 64, 95123 Catania, Italy

Abstract. The purpose of this work is to propose a methodological framework to evaluate the reuse of areas located close to the port as “retro-port”, in order to reduce the externalities caused by Ro-Ro freight terminal operation and the burden of freight deliveries in urban areas. In this regard, an analysis of the main variables involved in this process is presented, with reference to terminal traffic, terminal capacity, accessibility to the port and freight handling infrastructures. The results of this research constitute the base to support and improve urban logistics activities, rethinking the use of elements and areas that characterize the port and its surroundings. These findings pave the way for further research related to the design and dimensioning of retro-port and the realistic implementation of an urban consolidation centre.

Keywords: Roll-on Roll-off · Urban consolidation centre · Maritime freight transport

1 Introduction

In recent years, maritime transport assumed a relevant role in city planning, moreover in the case of port-cities which are exposed to several externalities due to both operations in the harbour and increase in road transport caused by handling operations in the hinterland [1]. The importance of maritime traffic made that in the past the major industrial areas were installed near the ports, in order to facilitate the transport of raw materials and finished products.

In port-cities, nowadays, such spaces lost their original functions, acquiring a new great potential of transformation due to their closeness to the city and the port and becoming a unique opportunity to redevelop highly degraded or marginal areas: the redesign of these areas with a view to reconciling both the needs of the city and the port represents the opportunity to improve the sustainability of their relationship, making their coexistence possible [2, 3]. This push of sustainable regeneration cannot ignore the logistic needs imposed by the commercial activities of the port, which on the one hand require effective connections with the logistics centres and on the other aim to reduce the terminal operations times to guarantee a rapid delivery of goods in the urban territory.

© Springer Nature Switzerland AG 2020
O. Gervasi et al. (Eds.): ICCSA 2020, LNCS 12255, pp. 67–82, 2020.
https://doi.org/10.1007/978-3-030-58820-5_6
In this context this work frames the possibility of a reuse of large abandoned areas located near the port (with the creation of a so-called retro-port) as new shared logistics spaces that allow a reduction of the externalities connected to the maritime transport of goods. The aim of the paper is to provide with a realistic proposal for the regeneration of abandoned areas: a framework for the planning of a retro-port with urban logistic functions. The framework will be designed for a complete planning of the new facility, in the view of realizing a port-based distribution centre. The proposal will be applied to the case study of Catania and its port and in particular of a former industrial cement production plant adjacent to it.

The remainder of the paper is organized as follows. Section 2 will discuss background of the study with the analysis of the related literature. Section 3 will illustrate the different steps of the methodology, including the conceived framework. The framework will be applied to the case study of Catania in Sect. 4. Finally, conclusions will be presented.

2 Ports as Distribution and Logistics Centres

Ports are important and fundamental transport nodes in the supply chain because they play a critical role in the effective and efficient management of product and information flow [4]. The Port Service Quality constitutes a measure of the satisfaction of port customers, shipping lines and cargo owners and it is influenced by several factors. First, the port terminal capacity is the baseline to assess its potentialities. With reference to Ro-Ro terminal capacity, different methods can be found in literature to analyse it [5]. They are generally related to the waiting time over service time (W/S) [6, 7]; berth occupancy rate [8] and total turnaround time [9, 10]; both simulation [11–13] and analytic models can be used to estimate terminal capacity [14, 15]. However, the failure or unreliability of port services may also depend on other factors related to the transport infrastructures to access the port and the presence of additional services that can help to improve port capacity. In fact, ports undertake a variety of activities: loading/unloading cargo by vessels; providing value-added services such as labelling, packaging, cross-docking; acting as warehouse and distribution centres, and others [16]. Shipments located in the port area are considered most valuable by ports, because they are more integrable in the value chain. In this context, the advent of cross-docking represents a successful strategy to improve logistic operations and reduce the storage space needs, with positive and sustainable effects, allowing ship-owners to optimize the use of their assets while the terminal gains from the provision of value-added services. Among the good practices, there are the Ports of Gothenburg [17], Norrköping [18], Newark [19] and Santos [20]. It is possible to use the combination of cross-docking with a warehousing, in order to stage the goods, moving them from supplier to storage to customer practically without any handling except for truck loading [21, 22]. In the case of port cities, the location and construction of a warehouse in an area close to the port is a key element. In this direction, the regeneration of retro-port areas could act on four main aspects [23]: (i) urbanization of abandoned private areas; (ii) new job opportunities; (iii) change from the paradigm “port-city-industrial areas” to the new paradigm “port-city-logistic retro-port” [24]; (iv) opportunity for Public Private Partnership (PPP) actions.
3 Methodology

3.1 Problem Formulation

Ro-Ro transport developed a significant potential, especially in Europe with the concepts of “Short Sea Shipping (SSS)” and “Motorways of the sea” project, created by the European Commission in order to offer an efficient maritime service as a valid alternative to other types of transport systems. To make SSS competitive, times for loading and unloading cargo at terminal must be significantly reduced, considering the frequency of loads arriving at a terminal and the port terminal capacity. An intervention on the logistics chain of sea freight transport can be a fundamental solution to improve the capacity of the terminal itself and, consequently, improve the efficiency of the SSS.

In this view, in case of low capacity of Ro-Ro terminal in port-cities, we propose the use of abandoned areas located close the port in order to (Fig. 1): (i) expand the spaces supplied to the Ro-Ro terminal; (ii) provide the port and the city with a Urban Freight Centre, allowing the dispatchment of the goods with destination (or origin) in the city centre; (iii) reduce the congestion due to freight heavy vehicles that transport goods between the port (urban), the logistics centre (suburban) and in the city centre.

The design of the new retro-port should go along with the study of the port context, according to the following steps:

- analysis of port traffic and terminal capacity,
- analysis of transport infrastructure to access the port,
- analysis of related infrastructures (e.g. freight centre),
- design and dimensioning of retro-port: Ro-Ro terminal and UCC characteristics.

![Fig. 1. Framework for the reuse of marginal areas (in green) shared between the port and the city (Source: Our elaboration). (Color figure online)](image)

3.2 Analysis of Port Traffic and Terminal Capacity

The first step to take is the analysis of global port freight traffic, in order to understand the role of Ro-Ro transport within port logistics. If this role is of primary importance, priority policies can be adopted to encourage its operations within the port.

Ro-Ro terminals are characterized by a short stay of the goods in the terminal spaces: dock and yard are connected so that the vehicles that are unloaded from the ship
(or should be loaded) can move easily and in a short time; however, the impossibility of stacking the CTUs (Cargo Transport Units) translates into a greater need for space, which is often a weak element of the Ro-Ro terminals. After leaving the yard, vehicles leave the port through the gates, where a series of bureaucratic checks and procedures are provided to allow them to continue towards their destination. The issue of capacity and location on site inside the terminal is one of the most important, as most CTUs arrive before the ship departs. Furthermore, upon arrival of the ships, it takes a certain amount of time to unload the goods, while the CTU waiting for boarding must be parked in a safe area. Conversely, as for the CTUs that disembark from the Ro-Ro ship, they do not immediately leave the terminal and therefore need to be placed in a storage space. For all these reasons, one of the productivity and efficiency indices in Ro-Ro port is precisely the time spent by vehicles inside it: more time means occupied spaces and therefore a general waste of time which translates into economic loss. The frequency of trucks arriving at a terminal (demand) is one of the main criteria for terminal dimensioning: for an existing port, optimization or expansion studies of the terminal area can be carried out in order to increase efficiency. Other variables to be taken into account are the inadequate number of terminal gates and customs control units, the number of vehicles arriving at a terminal, the ship’s capacity, the distance between the terminals and bunkering local traffic in relation to the connection of the terminal.

3.3 Analysis of Transport Infrastructure to Access the Port and Intermodal Chain Related Infrastructures

Ports are strategic access “gates” to urban areas and reference territories. Therefore, accessibility is a key concept for urban planning [25–27] and, in particular, for port design and management [28]. According to [29], the concept of accessibility applied to a port has significant potential in determining and explaining its operational, economic and competitiveness performance: a more competitive port should always be associated with a higher level of accessibility.

In the logistic chain of freight transport, the transport network, the geographical constraints, the available modes of transport, times and costs are among the most important criteria for choosing the route to take. Freight accessibility is characterized by the linear transport infrastructures (roads, railways), internal/external to the port system, the port’s position in relation to the surrounding area, the main transport nodes and the transport infrastructures with logistic functions. In this context, the port is intended as a node of a transport network: a port is competitive if it has an efficient transport network that allows an easy and quick entry-handle-departure of goods; in addition, intermodality with other modes of transport (roads, railways, inland waterways) must be ensured to guarantee adequate connections with the hinterland.

Several infrastructures can be part of the freight logistic chain involving the Ro-Ro terminal. Examples could be:

- Warehouses: unimodal infrastructures operating as storage facilities (i.e. Warehouse), which do not necessarily involve joint operations.
- Freight/logistic centre: Areas involving integrated operation, such as: filling, emptying, consolidation, handling, stocking and other services by typology of
goods and forwarding of wagons for block trains. In particular, in the case of urban areas Urban Consolidation Centres (UCCs), which are logistic facilities placed in the outskirts of a city [30], play an important role to improve city logistic. In UCCs, freight is consolidated and then distributed to the receivers of goods by a different operator. This type of logistics centre will be the one considered in our study.

- Intermodal Freight Terminal (IFT): or transfer point is a place equipped for the transhipment and storage of Intermodal Transport Units (ITU), connecting different transport modes (e.g. road, rail and waterborne) [31]. They usually include vehicle parking and facilities for loads handling, providing not only transport-related activities but also national and international logistics and distribution.

3.4 Design and Dimensioning of Retro-Port: Ro-Ro Terminal and UCC Characteristics

Ro-Ro Terminal Characteristics
The success of the integration of Ro-Ro traffic into logistical transport chains depends on an optimal design of the Ro-Ro-terminal itself; of course, seaside, terminal and land-side external factors play a relevant role in design criteria. As in every terminal, it is possible to sub-partition the Ro-Ro terminal spaces in 3 subsystems [32, 33]:

- Berthing and stevedoring area, consisting of: manipulation areas for cargo handling; short-term storage area and traffic lanes for towing-units;
- Storage area for long-term storage of semi-trailers with traffic lanes for towing-units
- Delivery and receipt area, with gates and parking for trucks with semi-trailers

The CTU must complete several steps before reaching its destination [14]: (1) ticket booking and collection; (2) check-in; (3) entering the terminal gateway; (4) border control formalities; (5) custom clearance; (6) waiting at loading site; (7) boarding the ship; (8) transportation phase; (9) disembarkation; (10) queuing at storage site; (11) border control at arrival; (12) custom clearance at arrival; (13) exiting terminal. Considering the three terminal areas, the main optimal operating features of a Ro-Ro terminal can be assumed the following [34]: (i) optimal scheduling of vessels: fixed departure times and appropriate sailing frequencies; (ii) minimum space consumption and obstacles of vehicles cargo handling (e.g. reduced loading and unloading equipment); (iii) effective traffic management inside the terminal (e.g. use of appropriate signage for circulation and parking); (iv) separate internal traffic with dedicated lanes for delivery/pick-up.

UCC Characteristics
The UCC works as an interface between outbound and inbound freight transports, in order to serve a whole city or parts of it, also by offering value-added logistics in terms of more flexible delivery times, stockholding and unpacking larger consignments [35]. According to [36] and [37], UCC represents one of the most studied city logistics initiatives because it has the potentiality to reduce negative effects associated with freight distribution, with both the social and environmental dimension, by giving an
alternative to current distribution systems. Furthermore, the integration of intelligent
technologies allows to obtain cost-efficient and resource-efficient results, with an
impact not only on environmental sustainability targets but also on citizens’ wellbeing
and financial sustainability [38–40]. The services offered by a UCC can be several:
nightly and off-peak deliveries; request delivery time and frequency; stockholding; pre-
retail services; ordering processes; waste and return management; etc. Therefore,
appropriate ITS systems are required for an optimized management of goods and also
physical spaces for their organization and handling. The warehouse constitutes a
fundamental component of UCC: it is a logistic structure that allows to adjust the
differences between the incoming flows of the goods, i.e. those coming from suppliers
or production centres, to the outgoing flows, i.e. the goods that are sent to production
and sale.

The benefits the UCCs can provide are linked to two different aspects. The first one
is represented by the reduction of negative effects from distribution of goods, because
by consolidating goods close to the city, it is possible to have shorter delivery distances
and freight vehicles entering in the city with higher load factors, with the direct con-
sequence of the reduction in their number [41–43]. The second one regards benefits
aimed at different stakeholders. Authors highlighted the importance of stakeholders’
engagement in several ways to structure transport decision-making processes and
identify improvement solutions towards sustainability [44–48]. In particular, through
the implementation of UCCs, citizens and local can benefit from attaining a more
attractive city with fewer freight vehicles [41].

The UCC can be considered an efficient and effective solution to be implemented in
an urban area, whether it is able to achieve the following results and implications [49]:
(i) Increased cost efficiency of potential customers; (ii) Reliable deliveries; (iii) Reduce
number of freight vehicle in urban area; (iv) Reduce freight handling by workers;
(v) Provide high customer service; (vi) Generate revenue; (vii) More storage.

Designing a Port-City Shared Space
The constant increase in maritime traffic (and also in the Ro-Ro segment) means that
ports must adapt their infrastructure to increasing number, dimensions and speed of
vessels; for example, in the case of Ro-Ro terminals, in order to achieve greater time
performances, the terminal should be provided with shipborne and dock side ramp
systems for loading and unloading processes. One of the major obstacles to these
improvements, especially in the case of ports that are located within cities and near the
historic centre, is essentially the lack of space. Furthermore, the increase in port traffic
also affects the increase in road traffic, affecting the network reliability and with
consequent environmental, social and economic externalities [50, 51].

With this in mind, this study proposes the conversion of abandoned areas near the
ports with the multiple purpose of: (a) increase the spaces of the port terminals dedi-
cated to the transport of goods; (b) provide the city with an urban logistics centre that
will reduce the impact of freight transport on the streets of the city centre.

Based on the characteristics identified in the two previous sections, the new area
must therefore have:
- A portion dedicated to the typical port operations of the Ro-Ro terminals and in particular to those that take place far from the seaside area of the terminal (typically storage, delivery and receipt area);
- A part dedicated to the typical logistics operations of an urban logistics centre and its warehouse (e.g. departure/arrival of unpackaged goods; packaging in load units) (Fig. 2).

Fig. 2. Framework for the design of a retro-port with Ro-Ro facilities and logistic centre (Source: Our elaboration).

4 Application: A New Retro-Port in Catania as Strategic Asset for City Logistic

4.1 Case Study

Catania is a city located in the south of Italy and it is the second largest city of Sicily, with a population of more than 300,000 inhabitants only in the urban area. Thanks to its strategic position in the region, Catania is the main industrial, logistical and commercial centre of Sicily [52]. The harbour is a fundamental resource for Catania’s economy. Located in the centre of the Mediterranean Sea, the Port of Catania, with a total surface of 615,000 m² used for goods storage yards, holds a variety of different activities: a tourist and commercial port (with national and international connections provided by major shipping companies) and a transport interchange with rapid connections to motorways, rail services and the airport. Moreover, being an historic Port, it is sited in an area of greatest contact with the city, deeply inserted in the urban context of Catania and specifically in the area of the historic city centre. The unplanned distribution of these heterogeneous functions and activities results in overlapping and intersecting flows of freights/passengers, with the direct consequence of flows that exceed road capacity and the generation of criticalities for vulnerable users [53, 54]. For this reason, it is fundamental to identify the main urban, landscape, architectural and functional
components of this area with the aim of resolving the major problems inherent in the commercial activities of the Port while considering the port-city relationship.

The Port of Catania has a total area of about one million square meters, with 470,000 m² covered by land areas, 280,000 m² dedicated to goods storage and 26 operating docks with an overall length of berths of 4,200 m. It extends in the North-South direction with the entrance of the Port facing south. It is closed to the east by the outer pier *Molo Levante*; to the south it is bordered by the pier *Molo di Mezzogiorno* and by a newly built area called *Nuova Darsena*. The eastern basin is identified as the “new port” and has a polygonal shape, while to the east of it, separated by the *Spor gente Centrale* there is the “old port”, mainly used for fishing activities (see Fig. 3, left).

In recent years there have been significant developments in containers, Ro-Ro and Ro-Pax ferries volumes, thanks to the location of the Port and its connection with the regional road and motorway network, with the airport and the Bicocca train station and the realization of the *Nuova Darsena*. With its 1,100 m of operational docks, 120,000 m² and 5 new berths, *Nuova Darsena* supplies a precious commercial lung for the storage and handling of containers, Ro-Ro and Ro-Ro/pax traffic which has so far occupied the historical part of the port in close contact with the city. With reference to the total tons of goods (i.e. rolling stocks, containers, parcels, dry and liquid bulks), the Sicilian Port has enlivened altogether a volume of more than 2,9 million tons of goods (+3.5 points with respect to the last five years). In this scenario, the Ro-Ro commercial activities positively increased, with 296,990 units of rolling traffic; considering the container sector, it is less developed respect the others, but also increasing thanks to the connections with transshipment hub-ports, with a total movement of 63,179 container units; cruise traffic isn’t negligible, reaching a 313,138 passengers (Port Authority, 2019).

One the most relevant factors to consider regarding the Port of Catania is its closeness of the area to the functional and historical heart of the city. The Nuova Darsena is already over-saturated and it is difficult to plan its expansion in urban areas.
For these reasons, with reference to the commercial activities of the Ro-Ro terminal (light blue portion shown in Fig. 3, right), the possibility of having a supporting area would be useful to increase the capacity and improve the effectiveness of these activities. This hypothesis is considered of extreme interest because it would allow flexible delivery times, stockholding and unpacking larger consignments. Furthermore, the proximity to the city centre would allow benefits from different points of view: economic (less travelled kilometres and delivery times), environmental (lower emissions), social (decreasing congestion level in the centre). In this regard, right adjacent to the Ro-Ro terminal area there is a former industrial cement production plant (red portion shown in Fig. 3, right). This abandoned area, called in Italian “Cementeria”, could be taken under consideration for a regeneration proposal, through its conversion as a retro-port with urban logistics function. In this regard, next section will provide a more detailed analysis focusing on the relevant characteristics of the Port of Catania (e.g. traffic terminal and related infrastructures) in order to provide a proposal for the design and dimensioning of the retro-port.

4.2 Proposal

Ro-Ro Traffic and Terminal in Catania
The Port of Catania is the first in Sicily as far as the movements of “dry goods” is concerned, thanks to an accurate planning and the use of equipment to work with competitive costs and high productivity.

Ro-Ro is a special type of vessel with special ramps in order to make the loading and the unloading of vehicles and cargo easier and more convenient. Over the years, several technological advancements have taken place in these carrier ships and resultantly, there have emerged into various types of Ro-Ro vessels, e.g. ferries, Ro-Pax, Ro-Con (Rolling Stock + Containers), barges, conventional ships with aft ramp, PCC (Pure Car Carriers) and PCTC (Pure Car and Truck Carriers). Specifically, the latter 2 are characterized by the transport of cars (and heavy construction site vehicles) on ocean routes, transporting an average of 200 trucks, divided on about a dozen internal bridges. Among the Intermodal Loading Units (UTI) most used for the transport of goods between the Mediterranean port (and therefore also for the port of Catania), there are swap bodies and semi-trailers. In particular, about the port commercial activity, it emerged that the Port of Catania is mainly characterized by an increasing Ro-Ro traffic, that is one extra order of magnitude compared to the tons of goods handled through containers. By elaborating the annual statistics collected by the Port Authority of the Eastern Sicily Port System, Fig. 4 shows the different percentage of freight traffic components. From 2014 to 2018, in terms of handled tons, the quantity of liquid bulk and other goods decreased, whereas the container traffic, Ro-Ro and solid bulk increased. Data elaboration (referring to the year 2018) allows to affirm that Ro-Ro constituted the 88.5% of the considered traffic, followed by the 6.5% of containers, 4.9% of solid bulk and the remaining low percentage represented by liquid bulk and other goods.
An analysis of Ro-Ro terminal capacity has been conducted in a previous study developed by the authors [55], which showed that one of the main critical issue regards the size of the terminal, even though the recent opening of Nuova Darsena. The allowable number of CTUs which can use the storage site depends on several variables, e.g. the time of arrival of the ship at the terminal, the number of CTUs disembaring from each docked ship, the average storage time at a terminal site and the part of CTUs using parking at the terminal. The general intensity of CTUs processed at the gateway was determined by considering the number of gateways of the terminal and the time necessary to realize the entire process of unloading the single CTU. Then, from the application of a Poisson law it was estimated that the reliability of the terminal is insufficient because not all the CTUs can be accepted and that the average queue time outside the gateway is excessive. Even more in detail, the number of CTUs that use the Ro-Ro terminal is 600, and the percentage of CTUs remaining in the terminal following the landing was deemed about 90% of the total, i.e. 540 units. Considering that the Ro-Ro terminal of Catania has 450 spaces for CTUs, it implies that the terminal spaces are not sufficient for handling the current Ro-Ro traffic. These findings demonstrate the necessity of a further area to accommodate growing volumes of Ro-Ro cargo and to improve port operations in the Port of Catania.

Intermodal Chain Related Infrastructures in the Case of Catania

The Port of Catania is characterized by a high “centrality” due to its proximity to nodes of the intermodal network system, such as the central railway station, the freight yard, the dry port, the agri-food market, the airport, the “Circumetnea” urban railway station, Bicocca intermodal railway station, the industrial area and its several logistic companies (see Fig. 5).

Bicocca intermodal station is the main freight station, located inside the industrial area of Catania. This terminal has an area of 32,000 m², 4 tracks which have a total length of 2000 m and it is serves by rail links to the southern (i.e. Lamezia) and northern Italy (i.e. Milan). The interport of Catania-Bicocca represents a large intermodal complex in the south of the city of Catania. It is divided into two poles about a kilometre and it is divided
in two parts: the “Intermodal Pole” located near Bicocca station and the “Logistic Centre” inside the industrial area. The area dedicated to the Logistic Centre occupies about 166,000 m², of which approximately 46,000 m² belonging to the “Parking Area” functional lot. It provides the allocation of internal and external infrastructures for logistics operations (e.g. warehouses, service building and parking areas for heavy vehicles).

Finally, always located in the industrial area of Catania, there are numerous logistics centres specialized in offering logistics and freight movement services. As emerged from the descriptions of previous infrastructures, these centres have a considerable distance from the city centre and consequently from the port. Therefore, it often happens that the goods arriving at the port are carried out by heavy vehicles in the industrial area. Subsequently, after logistical operations, the goods directed to the city centre are transported back to the port, with obvious economic and environmental disadvantages. Hence, it arises the importance of an area close to the port to be used as a retro-port, supporting commercial operations of the Port of Catania.

Transport Infrastructure to Access the Port of Catania
The Port of Catania has two main access gates. The first one is located in the northern part and it is intended for the entry of private vehicles and pedestrians; from this gate the port is accessed by an urban arterial road (SS114) which is already very congested, due to the south-north traffic crossing the of the city. The second access is located in the southern part of the port and it is reserved for the entrance of heavy commercial vehicles; in particular, the urban road relating to this access (the same SS114), during the days of departure of the ships, is highly congested because the usual traffic of crossing the city intersects the one related to the commercial vehicles entering/leaving the port. The connection between the port and the interport is guaranteed by the same

Fig. 5. Map of intermodal chain related infrastructure.
road 114, which reaches the industrial area of the city, where most of the logistics operators are present. This area is also connected to the city of Catania via the tangenziale ring road, a highway that circles the city without crossing it.

Design and Dimensioning of the New Retro-Port

First of all, in order to guarantee an easy connection between the port and the retro-port, the area should be connected directly to the Ro-Ro terminal through either an underpass or an overpass that would cross the arterial road 114, the current only physical separation between the port and the cement plant. Following the integrated scheme in Fig. 4 of the retro-port, the following minimum characteristics for the new retro-port in Catania emerge: (i) an area dedicated to the parking of semi-trailers that could host at least 90 vehicles more; (ii) a warehouse for city logistics; (iii) an area dedicated to gate controls. The evaluation of the dimension of the facilities’ equipment would depend on an estimate of the percentage of Ro-Ro traffic in the port of Catania which, rather than continuing to the usual destinations, would be diverted to the new UCC. Knowing the volume transported in a semi-trailer, the number of rolling stock that arrives in the port per year and the possible working days of the warehouse in a year, the total volume worked per day in the warehouse can be estimated. From this, an average daily warehouse’s capacity could be estimated. In the same way, it is possible to calculate the number of ramps needed to allow the semi-trailers to unload the pallets. These could be assessed through assumptions related to the number of hours of work per day and the time required to unload the semi-trailer: in this case, a number of average ramps needed in a day to unload a previously obtained volume of goods can be found.

5 Conclusions

Port city often have to deal with externalities due to port operation and the related traffic congestion [56]; the trend of such issues would inevitably grow together with the constant increase of maritime traffic and the consequent importance of Ro-Ro traffic for freight delivery. In port city, close former industrial zones are often marginal areas; their reuse can be a good opportunity to improve sustainability of port operations. In this paper a framework for the design of a port-city shared space is provided with a twofold aim: improving port operation and enhancing city logistic. The design of the retro-port is based on the evaluation of port’s traffic and terminal’s capacity, in order to guarantee a good efficiency of terminal operation. It is also proposed to use the new available spaces and the proximity to the city to support urban logistics activities, in order to reduce congestion and externalities caused by heavy vehicles travelling between the port, the logistics centres, and the urban area. The application of the methodology to the Catania case study shows design feasibility and its ability to support port operations during rush hour. Further research should focus on the economic feasibility of the Urban Consolidation Centre and policies related to its organization, both in terms of actors to be involved and entities that should manage its operation.
Acknowledgements. This work has been partially financed by the University of Catania within the project “Piano della Ricerca Dipartimentale 2016–2018” of the Department of Civil Engineering and Architecture and the project “Piano per la Ricerca 2016–2018 - Linea di intervento 2” of the Department of Electric, Electronic and Computer Engineering. The work has been partially financed by the project “THALASSA – Technology and materials for safe low consumption and low life cycle cost vessels and crafts” (unique project code CUP B46C18000720005) under the Italian research programme “PON Ricerca e Innovazione 2014–2020”. This study was also supported by the MIUR (Ministry of Education, Universities and Research [Italy]) through a project entitled WEAKI TRANSIT: WEAK-demand areas Innovative TRANsport Shared services for Italian Towns (Project code: 20174ARRHT CUP Code: F74I19001290001), financed with the PRIN 2017 (Research Projects of National Relevance) programme. We authorize the MIUR to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notations thereon. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the MIUR.

References

1. Viana, M., et al.: Impact of maritime transport emissions on coastal air quality in Europe. Atmosph. Environ. 90, 96–105 (2014)
2. Ignaccolo, M., Inturri, G., Giuffrida, N., Cocuzza, E., Torrisi, V.: Framework for the evaluation of the quality of pedestrian routes for the sustainability of port-city shared areas. In: Coastal Cities and their Sustainable Future III, WIT Transactions on the Built Environment, vol. 188. WIT Press (2019). https://doi.org/10.2495/cc190021. ISSN 1743-3509
3. Ignaccolo, M., Inturri, G., Giuffrida, N., Torrisi, V., Cocuzza, E.: Sustainability of freight transport through an integrated approach: the case of the eastern sicily port system. Transp. Res. Procedia 45, 177–184 (2020). https://doi.org/10.1016/j.trpro.2020.03.005
4. Yeo, G.T., Thai, V.V., Roh, S.Y.: An analysis of port service quality and customer satisfaction: the case of Korean container ports. Asian J. Shipp. Logist. 31(4), 437–447 (2015)
5. Morales Fusco, P.: Roll-on/roll-off terminals and truck freight: improving competitiveness in a motorways of the sea context (Doctoral dissertation, Universitat Politècnica de Catalunya) (2016)
6. Fourgeaud, P.: Measuring port performance. The World Bank (2000). http://siteresources.worldbank.org/INTPRAL/Resources/338897-1117630103824/fourgeaud.pdf
7. Unctad (United Nations Conference on Trade and Development), 2006. Review of maritime transport, 2006. Geneva, Switzerland: United Nations Publications. (COMPIT 2006), 8–10 May 2003 Oegsteest, The Netherlands (2006)
8. Bassan, S.: Evaluating seaport operation and capacity analysis—preliminary methodology. Marit. Pol. Manage. 34(1), 3–19 (2007)
9. Ballis, A.: Introducing level-of-service standards for intermodal freight terminals. Transp. Res. Rec. 1873, 79–88 (2004)
10. Mathonnet, C.: Le projet IQ “intermodal quality” une nouvelle approche de la qualité pour les terminaux intermodaux. Transports 400, 108–116 (2000)
11. Özkan, E.D., Nas, S., Güler, N.: Capacity analysis of RO-RO terminals by using simulation modeling method. Asian J. Shipp. Logist. 32(3), 139–147 (2016)
12. Keceli, Y., Aksoy, S., Aydogdu, Y.: A simulation model for decision support in Ro-Ro terminal operations. Int. J. Logist. Syst. Manage. 15(4), 338–358 (2013)

13. Iannone, R., Miranda, S., Prisco, L., Riemma, S., Samo, D.: Proposal for a flexible discrete event simulation model for assessing the daily operation decisions in a Ro–Ro terminal. Simul. Model. Pract. Theor. 61, 28–46 (2016)

14. Maksimavičius, R.: Some elements of the Ro-Ro terminals. Transport 19(2), 75–81 (2004)

15. Malavasi, G., Ricci, S.: The sea-side port capacity: a synthetic evaluation model. WIT Trans. Built Environ. 79, 471–480 (2005)

16. World Bank. World Bank Seaport Toolkit, 2nd edn. World Bank, Washington USA (2007)

17. Port of Gothenburg. https://www.portofgothenburg.com/news-room/news/construction-of-new-crossdocking-terminal-under-way-at-the-port-of-gothenburg/. Accessed 18 June 2020

18. Port of Norrköping. https://www.scmp.com/article/1329515/nordic-and-baltic-hub-readies-cross-docking-facility-surging-trade. Accessed 18 June 2020

19. Port of Newark. https://glenwaydistribution.com/case-study-cross-docking-storage/. Accessed 18 June 2020

20. Port of Santos. https://www.joc.com/port-news/south-american-ports/port-santos/santos-terminal-turns-cross-docking-protect-market-share-amid-recession_20160705.html. Accessed 18 June 2020

21. Boysen, N., Fliedner, M.: Cross dock scheduling: classification, literature review and research agenda. Omega 38(6), 413–422 (2010)

22. Schaffer, B.: Implementing a successful crossdocking operation. IIE Solutions 29(10), 34–36 (1997)

23. Forte, F.: New land values patterns in the space of the Italian metropolitan areas: the case of the logistic retro-port in Naples. Procedia Soc. Behav. Sci. 223, 503–508 (2016)

24. Delponte, I.: Porto-città-retroporto logistico. In: PORTUS (2007). http://retedigital.com/wp-content/themes/rete/pdfs/portus/Portus_16/Porto_citta%C3%A0-retroporto_logistico.pdf Accessed 25 Apr 2020

25. Giuffrida, N., Ignaccolo, M., Inturri, G., Rofè, Y., Calabrò, G.: Investigating the correlation between transportation social need and accessibility: the case of Catania. Transp. Res. Procedia 27, 816–823 (2017)

26. Giuffrida, N., Inturri, G., Capri, S., Spica, S., Ignaccolo, M.: The impact of a bus rapid transit line on spatial accessibility and transport equity: The case of Catania. Transport infrastructure and systems. In: Proceedings of the AIIT International Congress on Transport Infrastructure and Systems, TIS, pp. 753–758 (2017)

27. Ignaccolo, C., Giuffrida, N., Torrisi, V.: The Queensway of New York city. A proposal for sustainable mobility in queens. In: Town and Infrastructure Planning for Safety and Urban Quality, pp. 69–76 (2018). https://doi.org/10.1201/9781351173360-12

28. Ignaccolo, M., Inturri, G., Giuffrida, N., Pira, M.L., Torrisi, V.: Public engagement for designing new transport services: investigating citizen preferences from a multiple criteria perspective. Transp. Res. Procedia 37, 91–98 (2019). https://doi.org/10.1016/j.trpro.2018.12.170

29. Wang, Y., Cullinean, K.: Measuring container port accessibility: an application of the principal eigenvector method (PEM). Maritime Econ. Logist. 10(1–2), 75–89 (2008)

30. Browne, M., Sweet, M., Woodburn, A., Allen, J.: Urban Freight Consolidation Centres Final Report (2005)

31. EC. Intermodal freight terminals. In search of efficiency to support intermodality growth (2006). http://www.socool-logistics.eu/www.socoollogistics.eu/socool3/index.php/en/library/doc_download/Intermodal%20Freight%20Terminals%20-%20In%20search%20of%20efficiency%20to%20support%20intermodality%20growth.pdf_%3B%20modification-date%3D_Fri%2C%202014%20Dec%202012%2011_29_13%20%20B0100_%3B%20size%3D1629735%3B. Accessed 23 Apr 2020
32. Stojaković, M., Twrdy, E.: A decision support tool for container terminal optimization within the berth subsystem. Transport 31(1), 29–40 (2016)
33. Morales-Fusco, P., Saurí, S., Spuch, B.: Quality indicators and capacity calculation for RoRo terminals. Transp. Plann. Technol. 33(8), 695–717 (2010)
34. Todorov, M.: RoRo Handbook: A Practical Guide to Roll-On Roll-off Cargo Ships, 1st edn. Schiffer publishing, Atglen (2016). ISBN: 978-0-7643-5123-5
35. Janievic, M., Kaminsky, P., Ndiaye, A.B.: Downsizing the consolidation of goods-state of the art and transferability of micro-consolidation initiatives. In: European Transport – Trasporti Europei, pp. 1–23 (2013)
36. Lagorio, A., Pinto, R., Golini, R.: Research in urban logistics: a systematic literature review. Int. J. Phys. Distrib. Logist. Manage. 46, 908–931 (2016)
37. Gammelegaard, B., Andersen, C.B.G., Aastrup, J.: Value co-creation in the interface between city logistics provider and in-store processes. Transp. Res. Procedia 12, 787–799 (2016)
38. Torrisi, V., Ignaccolo, M., Inturri, G.: Innovative transport systems to promote sustainable mobility: developing the model architecture of a traffic control and supervisor system. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10962, pp. 622–638. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95168-3_42
39. Torrisi, V., Ignaccolo, M., Inturri, G.: Toward a sustainable mobility through a dynamic real-time traffic monitoring, estimation and forecasting system: the RE.S.E.T. project. In: Town and Infrastructure Planning for Safety and Urban Quality, pp. 241–247 (2018). https://doi.org/10.1201/9781351173360-32
40. Canale, A., Tesoriere, G., Campisi, T.: The MAAS development as a mobility solution based on the individual needs of transport users. In: AIP Conference Proceedings, vol. 2186, no. 1, p. 160005. AIP Publishing LLC, December 2019. https://doi.org/10.1063/1.5138073
41. Browne, M., Woodburn, A., Alle, J.: Evaluating the potential for urban consolidation centres. Eur. Transp. Trasporti Europei 35, 46–63 (2007)
42. Van Rooijen, T., Quak, H.: Local impacts of a new urban consolidation centre – the case of Binnenstadservice.nl. Procedia Soc. Behav. Sci. 2, 5967–5979 (2010)
43. Calabrò, G., Torrisi, V., Inturri, G., Ignaccolo, M.: Improving inbound logistic planning for large-scale real-world routing problems: a novel ant-colony simulation-based optimization. Eur. Transp. Res. Rev. 12(1) (2020). https://doi.org/10.1186/s12544-020-00409-7
44. Ignaccolo, M., Inturri, G., Giuffrida, N., Le Pira, M., Torrisi, V.: Structuring transport decision-making problems through stakeholder engagement: the case of Catania metro accessibility. Transp. Infrastruct. Syst. 919–926 (2017). https://doi.org/10.1201/9781315281896-118
45. Ignaccolo, M., Inturri, G., Giuffrida, N., Le Pira, M., Torrisi, V., Calabrò, G.: A step towards walkable environments: spatial analysis of pedestrian compatibility in an urban context. Eur. Transp. Trasporti Europei 76(6), 1–12 (2020)
46. Moslem, S., Duleba, S.: Sustainable urban transport development by applying a fuzzy-AHP model: a case study from Mersin, Turkey. Urban Sci. 3(2), 55 (2019)
47. Campisi, T., Canale, A., Tesoriere, G.: SWOT analysis for the implementation of spaces and pedestrian paths at the street markets of Palermo. In: AIP Conference Proceedings, vol. 2040, no. 1, p. 140003. AIP Publishing LLC, November 2018. https://doi.org/10.1063/1.5079192
48. Campisi, T., Torrisi, V., Ignaccolo, M., Inturri, G., Tesoriere, G.: University propensity assessment to car sharing services using mixed survey data: the Italian case study of Enna city. Transp. Res. Procedia 47, 433–440 (2020). https://doi.org/10.1016/j.trpro.2020.03.155
49. Quak, H., Tavasszy, L.: Customized solutions for sustainable city logistics: the viability of urban freight consolidation centres. In: van Nunen, J., Huijbregts, P., Rietveld, P. (eds.) Transitions Towards Sustainable Mobility, pp. 213–233. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21192-8_12

50. Torrisi, V., Ignaccolo, M., Inturri, G., Giuffrida, N.: Combining sensor traffic and simulation data to measure urban road network reliability. In: International Conference on Traffic and Transport Engineering (ICTTE) Proceedings, Belgrade, p. 1004, November 2016

51. Macedo, E., Tomás, R., Fernandes, P., Coelho, M.C., Bandeira, J.M.: Quantifying road traffic emissions embedded in a multi-objective traffic assignment model. Transp. Res. Procedia 47, 648–655 (2020)

52. Ignaccolo, M., Inturri, G., García-Melón, M., Giuffrida, N., Le Pira, M., Torrisi, V.: Combining Analytic Hierarchy Process (AHP) with role-playing games for stakeholder engagement in complex transport decisions. Transp. Res. Procedia 27, 500–507 (2017). https://doi.org/10.1016/j.trpro.2017.12.069

53. Torrisi, V., Ignaccolo, M., Inturri, G.: Estimating travel time reliability in urban areas through a dynamic simulation model. Transp. Res. Procedia 27, 857–864 (2017). https://doi.org/10.1016/j.trpro.2017.12.134

54. Torrisi, V., Ignaccolo, M., Inturri, G.: Analysis of road urban transport network capacity through a dynamic assignment model: validation of different measurement methods. Transp. Res. Procedia 27, 1026–1033 (2017). https://doi.org/10.1016/j.trpro.2017.12.135

55. Ignaccolo, M., Inturri, G., Giuffrida, N., Torrisi, V.: Investigating scenarios for freight traffic in the Eastern Sicily port system. In: Presented at the 18th International Conference on Transport Science - ICTS 2018 - Maritime, Transport And Logistics Science - Conference proceedings, pp. 139–145 (2018). ISBN 978-961-7041-03-3

56. Ignaccolo, M., Inturri, G., Giuffrida, N., Torrisi, V.: A sustainable framework for the analysis of port systems. Eur. Transp. Int. J. Transp. Econ. Eng. Law (78) (2020). Article no. 7. ISSN 1825-3997