Volume 24 (2017)

Supporting information for article:

Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

Fei Zhan, Ye Tao and Haifeng Zhao
Supporting information

Table S0 fit results with FEFF calculation and various optimization algorithms.

Search method	Bond length change Å	Fraction	R factor	Structure	Picture of fit result	Number of FEFF calculations
1Direct_L	0.119	36%	0.00596	Table.S1	Fig.S1	157
2Direct_L Bound	0.116	37%	0.00596	Table.S2	Fig.S2	107
3CRS	0.107	38%	0.00662	Table.S3	Fig.S3	382
4ISRES	0.087	45%	0.00659	Table.S4	Fig.S4	1051
5ESCH	0.040	89%	0.00619	Table.S5	Fig.S5	1992
6BOBYQ A	0.038	90%	0.00660	Table.S6	Fig.S6	22
7COBYLA	0.041	86%	0.00621	Table.S7	Fig.S7	91
8SBPLX	0.067	56%	0.00624	Table.S8	Fig.S8	210

In “Direct_L Bound”, we used [-0.05Å,0.3Å] boundary limitation of bond length change, while in other fit, we used [-0.3Å,0.3Å] boundary limitation of bond length change. R factors of ISRES and Direct_L algorithms are improved compared to previous data in paper. Beyond deterministic global optimization algorithms Direct, heuristics and stochastic global optimization algorithms CRS, ISRES, ESCH, we also added local optimization algorithms such as BOBYQA, COBYLA, SPBLX. Generally, local algorithms use less calculation cycles than global ones. Among them, the deterministic global
optimization algorithms Direct reaches the best objective function value within comparative calculation cycles to local algorithms.

Figure S1. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with DIRECT_L optimization algorithm).
Table S1. Fit result of HS state (FEFF with DIRECT_L)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

	X	Y	Z
Fe	0.000000	0.000000	0.000000
N	0.437000	0.115000	2.023000
N	-1.120000	-1.720000	-0.095000
N	1.372000	-1.490000	-0.792000
N	1.153000	1.615000	-0.530000
N	-1.397000	1.374000	0.670000
N	-0.495000	0.258000	-2.023000
C	-1.234000	1.776000	1.966000
C	-0.249000	1.077000	2.708000
C	-0.442000	-2.899000	-0.267000
C	1.339000	-0.590000	2.699000
H	1.820000	-1.270000	2.243000
-------	---------	----------	----------
C	0.928000	-2.764000	-0.659000
C	0.183000	1.257000	-2.649000
C	1.075000	2.008000	-1.835000
C	-1.351000	-0.468000	-2.753000
H	-1.837000	-1.172000	-2.337000
C	-2.413000	-1.805000	0.269000
H	-2.914000	-1.008000	0.384000
C	-2.349000	1.970000	-0.036000
H	-2.501000	1.689000	-0.931000
C	1.972000	2.318000	0.268000
H	2.055000	2.058000	1.177000
C	2.651000	-1.336000	-1.172000
H	2.992000	-0.455000	-1.272000
C	-0.026000	1.381000	4.057000
C	2.712000	3.417000	-0.186000
H	3.262000	3.902000	0.417000
C	0.041000	1.573000	-4.005000
C	1.799000	3.082000	-2.370000
C	-1.001000	-4.161000	-0.080000
C	-1.977000	2.806000	2.564000
C	1.612000	-0.369000	4.060000
H	2.257000	-0.900000	4.512000
C	-3.144000	3.003000	0.491000
H	-3.813000	3.409000	-0.048000
C	3.496000	-2.414000	-1.421000
Element	X	Y	Z
---------	----	----	----
H	4.392000	-2.260000	-1.698000
C	1.712000	-3.898000	-0.877000
C	-3.034000	-3.035000	0.481000
H	-3.945000	-3.059000	0.748000
C	-1.546000	-0.213000	-4.118000
H	-2.160000	-0.743000	-4.611000
C	3.043000	-3.677000	-1.272000
H	3.623000	-4.413000	-1.431000
C	0.939000	0.623000	4.732000
H	1.126000	0.794000	5.649000
C	-2.956000	3.423000	1.774000
H	-3.485000	4.128000	2.129000
C	-0.782000	2.445000	4.647000
H	-0.631000	2.677000	5.557000
C	-2.352000	-4.205000	0.313000
H	-2.783000	-5.039000	0.458000
C	1.632000	3.375000	-3.765000
H	2.124000	4.090000	-4.154000
C	-1.704000	3.122000	3.932000
H	-2.185000	3.827000	4.349000
C	0.791000	2.656000	-4.530000
H	0.698000	2.879000	-5.448000
C	-0.864000	0.784000	-4.743000
H	-0.998000	0.949000	-5.670000
C	2.638000	3.786000	-1.492000
H	3.153000	4.519000	-1.809000
Figure S2. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with DIRECT_L optimization algorithm and boundary limitation of bound length change).
Table S2. Fit result of HS state (FEFF with DIRECT_L and and boundary limitation of bound length change)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.00000	0.00000	0.00000			
N	0.44000	0.11100	2.01600			
N	-1.12000	-1.72300	-0.09500			
N	1.37200	-1.49300	-0.79200			
N	1.15100	1.61100	-0.52400			
N	-1.39400	1.37000	0.66300			
N	-0.49700	0.25400	-2.01700			
C	-1.23100	1.77200	1.95900			
C	-0.24600	1.07300	2.70100			
C	-0.44200	-2.90200	-0.26700			
C	1.34200	-0.59400	2.69200			
H	1.82300	-1.27400	2.23600			
C	0.92800	-2.76700	-0.65900			
C	0.18100	1.25300	-2.64300			
C	1.07300	2.00400	-1.82900			
C	-1.35300	-0.47200	-2.74700			
H	-1.83900	-1.17600	-2.33100			
C	-2.41300	-1.80800	0.26900			
H	-2.91400	-1.01100	0.38400			
C	-2.34600	1.96600	-0.04300			
H	-2.49800	1.68500	-0.93800			
Element	X-Coordinate	Y-Coordinate	Z-Coordinate			
---------	--------------	--------------	--------------			
C	1.970000	2.314000	0.274000			
H	2.053000	2.054000	1.183000			
C	2.651000	-1.339000	-1.172000			
H	2.992000	-0.458000	-1.272000			
C	-0.023000	1.377000	4.050000			
C	2.710000	3.413000	-0.180000			
H	3.260000	3.898000	0.423000			
C	0.039000	1.569000	-3.999000			
C	1.797000	3.078000	-2.364000			
C	-1.001000	-4.164000	-0.080000			
C	-1.974000	2.802000	2.557000			
C	1.615000	-0.373000	4.053000			
H	2.260000	-0.904000	4.505000			
C	-3.141000	2.999000	0.484000			
H	-3.810000	3.405000	-0.055000			
C	3.496000	-2.417000	-1.421000			
H	4.392000	-2.263000	-1.698000			
C	1.712000	-3.901000	-0.877000			
C	-3.034000	-3.038000	0.481000			
H	-3.945000	-3.062000	0.748000			
C	-1.548000	-0.217000	-4.112000			
H	-2.162000	-0.747000	-4.605000			
C	3.043000	-3.680000	-1.272000			
H	3.623000	-4.416000	-1.431000			
C	0.942000	0.619000	4.725000			
H	1.129000	0.790000	5.642000			
	C	H	C	H	C	H
---	---------	---------	---------	---------	---------	---------
	2.953000	3.419000	1.767000	2.122000	0.779000	4.640000
	-3.482000	4.124000	2.673000	5.550000	-2.352000	0.313000
	-2.783000	5.042000	0.458000	2.122000	-0.628000	3.419000
	1.630000	3.371000	-3.759000	2.122000	2.122000	-4.148000
	-1.701000	3.118000	3.925000	-2.182000	3.118000	3.925000
	0.789000	2.652000	-4.524000	0.696000	2.652000	-5.442000
	-0.866000	0.780000	-4.737000	-1.000000	0.780000	-5.664000
	2.636000	3.782000	-1.486000	3.151000	3.782000	-1.803000
	1.118000	5.174000	-0.674000	1.646000	5.174000	-0.811000
	-0.171000	-5.317000	-0.293000	-0.532000	-5.317000	-0.165000

Figure S3. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with CRS optimization algorithm).
Table S3. Fit result of HS state (FEFF with CRS)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

	Fe	N	N	N
	0.000000	0.606000	-1.130000	1.362000
	0.000000	0.206000	-1.670000	-1.440000
	0.000000	2.035000	0.155000	-0.542000
Element	X-coordinate	Y-coordinate	Z-coordinate	
---------	--------------	--------------	--------------	
N	1.457000	1.354000	-0.629000	
N	-1.228000	1.465000	0.682000	
N	-0.191000	-0.003000	-2.122000	
C	-1.065000	1.867000	1.978000	
C	-0.080000	1.168000	2.720000	
C	-0.452000	-2.849000	-0.017000	
C	1.508000	-0.499000	2.711000	
H	1.989000	-1.179000	2.255000	
C	0.918000	-2.714000	-0.409000	
C	0.487000	0.996000	-2.748000	
C	1.379000	1.747000	-1.934000	
C	-1.047000	-0.729000	2.852000	
H	-1.533000	-1.433000	-2.436000	
C	-2.423000	-1.755000	0.519000	
H	-2.924000	-0.958000	0.634000	
C	-2.180000	2.061000	-0.024000	
H	-2.332000	1.780000	-0.919000	
C	2.276000	2.057000	0.169000	
H	2.359000	1.797000	1.078000	
C	2.641000	-1.286000	-0.922000	
H	2.982000	-0.405000	-1.022000	
C	0.143000	1.472000	4.069000	
C	3.016000	3.156000	-0.285000	
H	3.566000	3.641000	0.318000	
C	0.345000	1.312000	-4.104000	
C	2.103000	2.821000	-2.469000	
---	------	------	------	
C	-1.011000	-4.111000	0.170000	
C	-1.808000	2.897000	2.576000	
C	1.781000	-0.278000	4.072000	
H	2.426000	-0.809000	4.524000	
C	-2.975000	3.094000	0.503000	
H	-3.644000	3.500000	-0.036000	
C	3.486000	-2.364000	-1.171000	
H	4.382000	-2.210000	-1.448000	
C	1.702000	-3.848000	-0.627000	
C	-3.044000	-2.985000	0.731000	
H	-3.955000	-3.009000	0.998000	
C	-1.242000	-0.474000	-4.217000	
H	-1.856000	-1.004000	-4.710000	
C	3.033000	-3.627000	-1.022000	
H	3.613000	-4.363000	-1.181000	
C	1.108000	0.714000	4.744000	
H	1.295000	0.885000	5.661000	
C	-2.787000	3.514000	1.786000	
H	-3.316000	4.219000	2.141000	
C	-0.613000	2.536000	4.659000	
H	-0.462000	2.768000	5.569000	
C	-2.362000	-4.155000	0.563000	
H	-2.793000	-4.989000	0.708000	
C	1.936000	3.114000	-3.864000	
H	2.428000	3.829000	-4.253000	
C	-1.535000	3.213000	3.944000	
	H	C		
---	---------	---------	-------	
	-2.016000	1.095000	-0.560000	
	3.918000	2.395000	0.523000	
	4.361000	-4.629000	-4.842000	
C	-0.694000	2.942000	3.457000	
	0.688000	3.525000	4.258000	
	-5.769000	-1.591000	-1.908000	
H	1.108000	-5.121000	1.108000	
	-5.121000	-5.121000	-5.121000	
	-0.424000	-0.424000	-0.424000	
C	1.636000	-5.899000	-0.181000	
	-5.899000	-5.899000	-5.899000	
	-0.561000	-0.424000	-0.043000	
H	-0.542000	-6.135000	0.085000	
	-6.135000	-5.899000	0.085000	

Figure S4. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with ISRES optimization algorithm).
Table S4. Fit result of HS state (FEFF with ISRES)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.000000	0.000000	0.000000
N	0.598000	0.293000	1.965000
N	-1.167000	-1.699000	0.451000
N	1.325000	-1.469000	-0.246000
N	1.174000	1.613000	-0.467000
N	-1.236000	1.552000	0.612000
N	-0.474000	0.256000	-1.960000
C	-1.073000	1.954000	1.908000
C	-0.088000	1.255000	2.650000
C	-0.489000	-2.878000	0.279000
C	1.500000	-0.412000	2.641000
---	---	---	---
H	1.981000	-1.092000	2.185000
C	0.881000	-2.743000	-0.113000
C	0.204000	1.255000	-2.586000
C	1.096000	2.006000	-1.772000
C	-1.330000	-0.470000	-2.690000
H	-1.816000	-1.174000	-2.274000
C	-2.460000	-1.784000	0.815000
H	-2.961000	-0.987000	0.930000
C	-2.188000	2.148000	-0.094000
H	-2.340000	1.867000	-0.989000
C	1.993000	2.316000	0.331000
H	2.076000	2.056000	1.240000
C	2.604000	-1.315000	-0.626000
H	2.945000	-0.434000	-0.726000
C	0.135000	1.559000	3.999000
C	2.733000	3.415000	-0.123000
H	3.283000	3.900000	0.480000
C	0.062000	1.571000	-3.942000
C	1.820000	3.080000	-2.307000
C	-1.048000	-4.140000	0.466000
C	-1.816000	2.984000	2.506000
C	1.773000	-0.191000	4.002000
H	2.418000	-0.722000	4.454000
C	-2.983000	3.181000	0.433000
H	-3.652000	3.587000	-0.106000
C	3.449000	-2.393000	-0.875000
Element	X-coordinate	Y-coordinate	Z-coordinate
---------	--------------	--------------	--------------
H	4.345000	-2.239000	-1.152000
C	1.665000	-3.877000	-0.331000
C	-3.081000	-3.014000	1.027000
H	-3.992000	-3.038000	1.294000
C	-1.525000	-0.215000	-4.055000
H	-2.139000	-0.745000	-4.548000
C	2.996000	-3.656000	-0.726000
H	3.576000	-4.392000	-0.885000
C	1.100000	0.801000	4.674000
H	1.287000	0.972000	5.591000
C	-2.795000	3.601000	1.716000
H	-3.324000	4.306000	2.071000
C	-0.621000	2.623000	4.589000
H	-0.470000	2.855000	5.499000
C	-2.399000	-4.184000	0.859000
H	-2.830000	-5.018000	1.004000
C	1.653000	3.373000	-3.702000
H	2.145000	4.088000	-4.091000
C	-1.543000	3.300000	3.874000
H	-2.024000	4.005000	4.291000
C	0.812000	2.654000	-4.467000
H	0.719000	2.877000	-5.385000
C	-0.843000	0.782000	-4.680000
H	-0.977000	0.947000	-5.607000
C	2.659000	3.784000	-1.429000
H	3.174000	4.517000	-1.746000
Figure S5. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with ESCH optimization algorithm).
Table S5. Fit result of HS state (FEFF with ESCH)

The coordinates of atoms in Fe(II)(phen)₃ complex for HS state with best fit in unit Å

	x	y	z
Fe	0.000000	0.000000	0.000000
N	0.458000	0.113000	2.005000
N	-1.131000	-1.578000	0.238000
N	1.361000	-1.348000	-0.459000
N	1.186000	1.544000	-0.460000
N	-1.376000	1.372000	0.652000
N	-0.462000	0.187000	-1.953000
C	-1.213000	1.774000	1.948000
C	-0.228000	1.075000	2.690000
C	-0.453000	-2.757000	0.066000
C	1.360000	0.592000	2.681000
H	1.841000	-1.272000	2.225000
C	0.917000	-2.622000	-0.326000
C	0.216000	1.186000	-2.579000
C	1.108000	1.937000	-1.765000
C	-1.318000	0.539000	-2.683000
H	-1.804000	-1.243000	-2.267000
C	-2.424000	-1.663000	0.602000
H	-2.925000	-0.866000	0.717000
C	-2.328000	1.968000	-0.054000
H	-2.480000	1.687000	-0.949000
C	2.005000	2.247000	0.338000
C	H	H	
------	------	------	
2.088000	1.987000	1.247000	
2.640000	-1.194000	-0.839000	
2.981000	-0.313000	-0.939000	
-0.005000	1.379000	4.039000	
2.745000	3.346000	-0.116000	
3.295000	3.831000	0.487000	
0.074000	1.502000	-3.935000	
1.832000	3.011000	-2.300000	
-1.012000	-4.019000	0.253000	
-1.956000	2.804000	2.546000	
1.633000	-0.371000	4.042000	
2.278000	-0.902000	4.494000	
-3.123000	3.001000	0.473000	
-3.792000	3.407000	-0.066000	
3.485000	-2.272000	-1.088000	
4.381000	-2.118000	-1.365000	
1.701000	-3.756000	-0.544000	
-3.045000	-2.893000	0.814000	
-3.956000	-2.917000	1.081000	
-1.513000	-0.284000	-4.048000	
-2.127000	-0.814000	-4.541000	
3.032000	-3.535000	-0.939000	
3.612000	-4.271000	-1.098000	
0.960000	0.621000	4.714000	
1.147000	0.792000	5.631000	
-2.935000	3.421000	1.756000	
	X	Y	Z
---	----	----	-----
H	-3.464000	4.126000	2.111000
C	-0.761000	2.443000	4.629000
H	-0.610000	2.675000	5.539000
C	-2.363000	-4.063000	0.646000
H	-2.794000	-4.897000	0.791000
C	1.665000	3.304000	-3.695000
H	2.157000	4.019000	-4.084000
C	-1.683000	3.120000	3.914000
H	-2.164000	3.825000	4.331000
C	0.824000	2.585000	-4.460000
H	0.731000	2.808000	-5.378000
C	-0.831000	0.713000	-4.673000
H	-0.965000	0.878000	-5.600000
C	2.671000	3.715000	-1.422000
H	3.186000	4.448000	-1.739000
C	1.107000	-5.029000	-0.341000
H	1.635000	-5.807000	-0.478000
C	-0.182000	-5.172000	0.040000
H	-0.543000	-6.043000	0.168000

Figure S6. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with BOBYQA optimization algorithm).
Table S6. Fit result of HS state (FEFF with BOBYQA)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.000000	0.000000	0.000000	
N	0.473000	0.060000	1.925000	
N	-1.120000	-1.713000	0.281000	
N	1.372000	-1.483000	-0.416000	
Element	X	Y	Z	
---------	---	---	---	
N	1.190000	1.513000	-0.425000	
N	-1.361000	1.319000	0.572000	
N	-0.458000	0.156000	-1.918000	
C	-1.198000	1.721000	1.868000	
C	-0.213000	1.022000	2.610000	
C	-0.442000	-2.892000	0.109000	
C	1.375000	-0.645000	2.601000	
H	1.856000	-1.325000	2.145000	
C	0.928000	-2.757000	-0.283000	
C	0.220000	1.155000	-2.544000	
C	1.112000	1.906000	-1.730000	
C	-1.314000	-0.570000	-2.648000	
H	-1.800000	-1.274000	-2.232000	
C	-2.413000	-1.798000	0.645000	
H	-2.914000	-1.001000	0.760000	
C	-2.313000	1.915000	-0.134000	
H	-2.465000	1.634000	-1.029000	
C	2.009000	2.216000	0.373000	
H	2.092000	1.956000	1.282000	
C	2.651000	-1.329000	-0.796000	
H	2.992000	-0.448000	-0.896000	
C	0.010000	1.326000	3.959000	
C	2.749000	3.315000	-0.081000	
H	3.299000	3.800000	0.522000	
C	0.078000	1.471000	-3.900000	
C	1.836000	2.980000	-2.265000	
C	-1.001000	-4.154000	0.296000	
C	-1.941000	2.751000	2.466000	
C	1.648000	-0.424000	3.962000	
H	2.293000	-0.955000	4.414000	
C	-3.108000	2.948000	0.393000	
H	-3.777000	3.354000	-0.146000	
C	3.496000	-2.407000	-1.045000	
H	4.392000	-2.253000	-1.322000	
C	1.712000	-3.891000	-0.501000	
C	-3.034000	-3.028000	0.857000	
H	-3.945000	-3.052000	1.124000	
C	-1.509000	-0.315000	-4.013000	
H	-2.123000	-0.845000	-4.506000	
C	3.043000	-3.670000	-0.896000	
H	3.623000	-4.406000	-1.055000	
C	0.975000	0.568000	4.634000	
H	1.162000	0.739000	5.551000	
C	-2.920000	3.368000	1.676000	
H	-3.449000	4.073000	2.031000	
C	-0.746000	2.390000	4.549000	
H	-0.595000	2.622000	5.459000	
C	-2.352000	-4.198000	0.689000	
H	-2.783000	-5.032000	0.834000	
C	1.669000	3.273000	-3.660000	
H	2.161000	3.988000	-4.049000	
C	-1.668000	3.067000	3.834000	
	H			
-----	-------	-----	-----	-----
	-2.149000	3.772000	4.251000	
	0.828000	2.554000	-4.425000	
	0.735000	2.777000	-5.343000	
	-0.827000	0.682000	-4.638000	
	-0.961000	0.847000	-5.565000	
	2.675000	3.684000	-1.387000	
	3.190000	4.417000	-1.704000	
	1.118000	-5.164000	-0.298000	
	1.646000	-5.942000	-0.435000	
	-0.171000	-5.307000	0.083000	
	-0.532000	-6.178000	0.211000	

Figure S7. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with COBYLA optimization algorithm).
Table S7. Fit result of HS state (FEFF with COBYLA)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.000000	0.000000	0.000000
N	0.474000	0.050000	1.913000
N	-1.131000	-1.693000	0.020000
N	1.361000	-1.463000	-0.677000
N	1.197000	1.510000	-0.446000
N	-1.360000	1.309000	0.560000
N	-0.451000	0.153000	-1.939000
C	-1.197000	1.711000	1.856000
C	-0.212000	1.012000	2.598000
C	-0.453000	-2.872000	-0.152000
C	1.376000	-0.655000	2.589000
H	1.857000	-1.335000	2.133000
---	---	---	---
C	0.917000	-2.737000	-0.544000
C	0.227000	1.152000	-2.565000
C	1.119000	1.903000	-1.751000
C	-1.307000	-0.573000	-2.669000
H	-1.793000	-1.277000	-2.253000
C	-2.424000	-1.778000	0.384000
H	-2.925000	-0.981000	0.499000
C	-2.312000	1.905000	-0.146000
H	-2.464000	1.624000	-1.041000
C	2.016000	2.213000	0.352000
H	2.099000	1.953000	1.261000
C	2.640000	-1.309000	-1.057000
H	2.981000	-0.428000	-1.157000
C	0.011000	1.316000	3.947000
C	2.756000	3.312000	-0.102000
H	3.306000	3.797000	0.501000
C	0.085000	1.468000	-3.921000
C	1.843000	2.977000	-2.286000
C	-1.012000	-4.134000	0.035000
C	-1.940000	2.741000	2.454000
C	1.649000	-0.434000	3.950000
H	2.294000	-0.965000	4.402000
C	-3.107000	2.938000	0.381000
H	-3.776000	3.344000	-0.158000
C	3.485000	-2.387000	-1.306000
H	4.381000	-2.233000	-1.583000
---	---	---	---
C	1.701000	-3.871000	-0.762000
C	-3.045000	-3.008000	0.596000
H	-3.956000	-3.032000	0.863000
C	-1.502000	-0.318000	-4.034000
H	-2.116000	-0.848000	-4.527000
C	3.032000	-3.650000	-1.157000
H	3.612000	-4.386000	-1.316000
C	0.976000	0.558000	4.622000
H	1.163000	0.729000	5.539000
C	-2.919000	3.358000	1.664000
H	-3.448000	4.063000	2.019000
C	-0.745000	2.380000	4.537000
H	-0.594000	2.612000	5.447000
C	-2.363000	-4.178000	0.428000
H	-2.794000	-5.012000	0.573000
C	1.676000	3.270000	-3.681000
H	2.168000	3.985000	-4.070000
C	-1.667000	3.057000	3.822000
H	-2.148000	3.762000	4.239000
C	0.835000	2.551000	-4.446000
H	0.742000	2.774000	-5.364000
C	-0.820000	0.679000	-4.659000
H	-0.954000	0.844000	-5.586000
C	2.682000	3.681000	-1.408000
H	3.197000	4.414000	-1.725000
C	1.107000	-5.144000	-0.559000
	1.635000	-5.922000	-0.696000
---	---------	-----------	-----------
C	-0.182000	-5.287000	-0.178000
H	-0.543000	-6.158000	-0.050000

Figure S8. Experimental difference XANES (EXP) and fit result (FEFF) of HS state (FEFF calculation with SPBLX optimization algorithm).
Table S8. Fit result of HS state (FEFF with SPBLX)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

	x	y	z
Fe	0.000000	0.000000	0.000000
N	0.490000	0.123000	1.995000
N	-1.100000	-1.725000	0.515000
N	1.392000	-1.495000	-0.182000
N	1.171000	1.528000	-0.433000
N	-1.344000	1.382000	0.642000
N	-0.477000	0.171000	-1.926000
C	-1.181000	1.784000	1.938000
C	-0.196000	1.085000	2.680000
C	-0.422000	-2.904000	0.343000
C	1.392000	-0.582000	2.671000
H	1.873000	-1.262000	2.215000
C	0.948000	-2.769000	-0.049000
C	0.201000	1.170000	-2.552000
C	1.093000	1.921000	-1.738000
C	-1.333000	-0.555000	-2.656000
H	-1.819000	-1.259000	-2.240000
C	-2.393000	-1.810000	0.879000
H	-2.894000	-1.013000	0.994000
C	-2.296000	1.978000	-0.064000
H	-2.448000	1.697000	-0.959000
C	1.990000	2.231000	0.365000
H	2.073000	1.971000	1.274000
	X	Y	Z
---	-------	-------	-------
C	2.671000	-1.341000	-0.562000
H	3.012000	-0.460000	-0.662000
C	0.027000	1.389000	4.029000
C	2.730000	3.330000	-0.089000
H	3.280000	3.815000	0.514000
C	0.059000	1.486000	-3.908000
C	1.817000	2.995000	-2.273000
C	-0.981000	-4.166000	0.530000
C	-1.924000	2.814000	2.536000
C	1.665000	-0.361000	4.032000
H	2.310000	-0.892000	4.484000
C	-3.091000	3.011000	0.463000
H	-3.760000	3.417000	-0.076000
C	3.516000	-2.419000	-0.811000
H	4.412000	-2.265000	-1.088000
C	1.732000	-3.903000	-0.267000
C	-3.014000	-3.040000	1.091000
H	-3.925000	-3.064000	1.358000
C	-1.528000	-0.300000	-4.021000
H	-2.142000	-0.830000	-4.514000
C	3.063000	-3.682000	-0.662000
H	3.643000	-4.418000	-0.821000
C	0.992000	0.631000	4.704000
H	1.179000	0.802000	5.621000
C	-2.903000	3.431000	1.746000
H	-3.432000	4.136000	2.101000
---	---	---	---
C	-0.729000	2.453000	4.619000
H	-0.578000	2.685000	5.529000
C	-2.332000	-4.210000	0.923000
H	-2.763000	-5.044000	1.068000
C	1.650000	3.288000	-3.668000
H	2.142000	4.003000	-4.057000
C	-1.651000	3.130000	3.904000
H	-2.132000	3.835000	4.321000
C	0.809000	2.569000	-4.433000
H	0.716000	2.792000	-5.351000
C	-0.846000	0.697000	-4.646000
H	-0.980000	0.862000	-5.573000
C	2.656000	3.699000	-1.395000
H	3.171000	4.432000	-1.712000
C	1.138000	-5.176000	-0.064000
H	1.666000	-5.954000	-0.201000
C	-0.151000	-5.319000	0.317000
H	-0.512000	-6.190000	0.445000

Table S9. Fit result of HS state (FEFF with NOMAD)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.00000000	0.00000000	0.00000000
N	0.36600000	0.04300000	2.00400000
N	-1.22200000	-1.67000000	-0.18700000
N	1.27000000	-1.44000000	-0.88400000
---	---	---	---
N	1.13200000	1.63700000	-0.54900000
N	-1.46800000	1.30200000	0.65100000
N	-0.51600000	0.28000000	-2.04200000
C	-1.30500000	1.70400000	1.94700000
C	-0.32000000	1.00500000	2.68900000
C	-0.54400000	-2.84900000	-0.35900000
C	1.26800000	-0.66200000	2.68000000
H	1.74900000	-1.34200000	2.22400000
C	0.82600000	-2.71400000	-0.75100000
C	0.16200000	1.27900000	-2.66800000
C	1.05400000	2.03000000	-1.85400000
C	-1.37200000	-0.44600000	-2.77200000
H	-1.85800000	-1.15000000	-2.35600000
C	-2.51500000	-1.75500000	0.17700000
H	-3.01600000	-0.95800000	0.29200000
C	-2.42000000	1.89800000	-0.05500000
H	-2.57200000	1.61700000	-0.95000000
C	1.95100000	2.34000000	0.24900000
H	2.03400000	2.08000000	1.15800000
C	2.54900000	-1.28600000	-1.26400000
H	2.89000000	-0.40500000	-1.36400000
	X Coordinate	Y Coordinate	Z Coordinate
---	---------------	---------------	---------------
C	0.09700000	1.30900000	4.03800000
C	2.69100000	3.43900000	-0.20500000
H	3.24100000	3.92400000	0.39800000
C	0.02000000	1.59500000	-4.02400000
C	1.77800000	3.10400000	-2.38900000
C	-1.10300000	-4.11100000	-0.17200000
C	-2.04800000	2.73400000	2.54500000
C	1.54100000	-0.44100000	4.04100000
H	2.18600000	-0.97200000	4.49300000
C	-3.21500000	2.93100000	0.47200000
H	-3.88400000	3.33700000	-0.06700000
C	3.39400000	-2.36400000	-1.51300000
H	4.29000000	-2.21000000	-1.79000000
C	1.61000000	-3.84800000	-0.96900000
C	-3.13600000	-2.98500000	0.38900000
H	-4.04700000	-3.00900000	0.65600000
C	-1.56700000	-0.19100000	-4.13700000
H	-2.18100000	-0.72100000	-4.63000000
C	2.94100000	-3.62700000	-1.36400000
H	3.52100000	-4.36300000	-1.52300000
C	0.86800000	0.55100000	4.71300000
	X	Y	Z
---	-----	-----	-----
H	1.05500000	0.72200000	5.63000000
C	-3.02700000	3.35100000	1.75500000
H	-3.55600000	4.05600000	2.11000000
C	-0.85300000	2.37300000	4.62800000
H	-0.70200000	2.60500000	5.53800000
C	-2.45400000	-4.15500000	0.22100000
H	-2.88500000	-4.98900000	0.36600000
C	1.61100000	3.39700000	-3.78400000
H	2.10300000	4.11200000	-4.17300000
C	-1.77500000	3.05000000	3.91300000
H	-2.25600000	3.75500000	4.33000000
C	0.77000000	2.67800000	-4.54900000
H	0.67700000	2.90100000	-5.46700000
C	-0.88500000	0.80600000	-4.76200000
H	-1.01900000	0.97100000	-5.68900000
C	2.61700000	3.80800000	-1.51100000
H	3.13200000	4.54100000	-1.82800000
C	1.01600000	-5.12100000	-0.76600000
H	1.54400000	-5.89900000	-0.90300000
C	-0.27300000	-5.26400000	-0.38500000
H	-0.63400000	-6.13500000	-0.25700000
Table S10. Fit result of HS state (FDMNES calculation with NOMAD optimization algorithm)

The coordinates of atoms in Fe(II)(phen)$_3$ complex for HS state with best fit in unit Å

Fe	0.00000000	0.00000000	0.00000000					
N	0.41700000	0.14500000	2.07900000					
N	-1.11500000	-1.77900000	0.40500000					
N	1.37700000	-1.54900000	-0.29200000					
N	1.19000000	1.51300000	-0.42500000					
N	-1.41700000	1.40400000	0.72600000					
N	-0.45800000	0.15600000	-1.91800000					
C	-1.25400000	1.80600000	2.02200000					
C	-0.26900000	1.10700000	2.76400000					
C	-0.43700000	-2.95800000	0.23300000					
C	1.31900000	-0.56000000	2.75500000					
H	1.80000000	-1.24000000	2.29900000					
C	0.93300000	-2.82300000	-0.15900000					
C	0.22000000	1.15500000	-2.54400000					
C	1.11200000	1.90600000	-1.73000000					
C	-1.31400000	-0.57000000	-2.64800000					
H	-1.80000000	-1.27400000	-2.23200000					
C	-2.40800000	-1.86400000	0.76900000					
	x	y	z					
---	-----	-----	-----	---				
C	-3.02900000	-3.09400000	0.98100000					
H	-3.94000000	-3.11800000	1.24800000					
C	-1.50900000	-0.31500000	-4.01300000					
H	-2.12300000	-0.84500000	-4.50600000					
C	3.04800000	-3.73600000	-0.77200000					
H	3.62800000	-4.47200000	-0.93100000					
C	0.91900000	0.65300000	4.78800000					
H	1.10600000	0.82400000	5.70500000					
C	-2.97600000	3.45300000	1.83000000					
H	-3.50500000	4.15800000	2.18500000					
C	-0.80200000	2.47500000	4.70300000					
H	-0.65100000	2.70700000	5.61300000					
C	-2.34700000	-4.26400000	0.81300000					
H	-2.77800000	-5.09800000	0.95800000					
C	1.66900000	3.27300000	-3.66000000					
H	2.16100000	3.98800000	-4.04900000					
C	-1.72400000	3.15200000	3.98800000					
H	-2.20500000	3.85700000	4.40500000					
C	0.82800000	2.55400000	-4.42500000					
H	0.73500000	2.77700000	-5.34300000					
C	-0.82700000	0.68200000	-4.63800000					
	H		C		H		C	
---	--------	-----	--------	-----	--------	-----	--------	---
	-0.96100000	0.84700000	-5.56500000		2.67500000	3.68400000	-1.38700000	
	3.19000000	4.41700000	-1.70400000					
	1.12300000	-5.23000000	-0.17400000					
	1.65100000	-6.00800000	-0.31100000					
	-0.16600000	-5.37300000	0.20700000					
	-0.52700000	-6.24400000	0.33500000					