Antitumor effects of duvelisib on Epstein–Barr virus-associated lymphoma cells

Jun-ichi Kawada1, Shotaro Ando1, Yuka Torii1, Takahiro Watanabe2, Yoshitaka Sato2, Yoshinori Ito1 & Hiroshi Kimura2

1Departments of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
2Departments of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan

© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

Epstein–Barr virus (EBV) is a ubiquitous oncogenic virus that is associated with B cell lymphomas, including Burkitt lymphoma and Hodgkin lymphoma. Previous studies have shown that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in EBV-associated lymphomas and can be a novel therapeutic target. An oral dual inhibitor of PI3Kγ and PI3Kδ, duvelisib, is in clinical trials for the treatment of lymphoid malignancies. In this study, we evaluated how duvelisib affects the activity of the PI3K/Akt signaling pathway and if it has antitumor effects in EBV-associated lymphoma cell lines. We found that the PI3K/Akt signaling pathway was activated in most of the B and T cell lymphoma cell lines tested. Additionally, duvelisib treatment inhibited cellular growth in the tested cell lines. Overall, B cell lines were more susceptible to duvelisib than T and NK cell lines in vitro regardless of EBV infection. However, the additional influence of duvelisib on the tumor microenvironment was not assessed. Duvelisib treatment induced both apoptosis and cell cycle arrest in EBV-positive and -negative B cell lines, but not in T cell lines. Furthermore, duvelisib treatment reduced the expression of EBV lytic genes (BZLF1 and gp350/220) in EBV-positive B cell lines, suggesting that duvelisib suppresses the lytic cycle of EBV induced by B cell receptor signaling. However, duvelisib did not induce a remarkable change in the expression of EBV latent genes. These results may indicate that there is therapeutic potential for duvelisib administration in the treatment of EBV-associated B cell lymphomas and other B cell malignancies.
Antitumor Effects of Duvelisib on EBV-Lymphoma

J.-i. Kawada et al.

Duvelisib is a molecule previously found to inhibit the PI3K/Akt signaling pathway, thereby inhibiting BCR signaling, diminishing chemotaxis, and inhibiting cytokine-induced CLL cell proliferation with minimal apoptosis [20, 21]. The duvelisib molecule closely resembles the chemical structure of idelalisib, but biochemically targets PI3Kγ in addition to PI3Kδ [22]. It is expected that dual inhibition of PI3Kγ and PI3Kδ by duvelisib may be another therapeutic target for the treatment of CLL and may overcome resistance formed against idelalisib [23]. Furthermore, clinical studies of duvelisib in indolent non-Hodgkin lymphoma and CLL have shown clinical activity [20, 24]. However, the effects of PI3Kγ or PI3Kδ inhibitors on EBV-associated lymphoma cells have not been investigated. In this study, we evaluated the activity of the PI3K/Akt signaling pathway and antitumor effects of duvelisib on EBV-associated lymphoma cell lines.

Materials and Methods

Cell lines and reagents

The cell lines used in this study are summarized in Table 1. Lymphoblastoid cell line (LCL) was generated by infection of B cells with EBV (B95-8 strain). Akata (+) [25], Mutu I [26], Raji [27], and P3HR1 [28] are EBV-positive B cell lines, and BJAB [29] and Akata (-) [30] are EBV-negative B cell lines. SNT16 [31] is an EBV-positive T cell line, and Jurkat [32] and MOLT4 [33] are EBV-negative T cell lines. KAI3 [34] is an EBV-positive, and KHYG1 [35] is an EBV-negative NK cell line. Duvelisib was obtained from Infinity Pharmaceuticals (Cambridge, MA) and was dissolved in DMSO. Idelalisib was purchased from Tokyo Chemical Industry (Tokyo, Japan) and was dissolved in DMSO.

Table 1. Characteristics of cell lines.

Cell type	Cell line	EBV (latency pattern)	Cell origin
B cell lines	BJAB	-	Burkitt lymphoma
	Akata (-)	-	EBV-negative clones from Akata
	Akata (+)	+ (I)	EBV-related Burkitt lymphoma
	Mutu I	+ (I)	EBV-related Burkitt lymphoma
	P3HR1	+ (II)	EBV-related Burkitt lymphoma
	LCL	+ (III)	Primary B cells transformed with EBV
	Raji	+ (III)	EBV-related Burkitt lymphoma
T cell lines	Jurkat	-	Acute T lymphoblastic leukemia
	MOLT4	-	Acute T lymphoblastic leukemia
	SNT16	+ (II)	Chronic active EBV disease
	KHYG1	-	Aggressive NK cell leukemia
	KAI3	+ (II)	Chronic active EBV disease

LCL, lymphoblastoid cell line.
Cell proliferation

Cells (2 × 10^5/mL) were cultured for 48 and 72 h in the presence of duvelisib or idelalisib at concentrations from 0.1 to 5 μmol/L. Viable cells were determined using a Countess™ Automated Cell counter (Invitrogen, Carlsbad, CA). Subsequent experiments were performed in triplicate at minimum.

Detection of PI3K/Akt signaling by immunoblotting

Collected cell extracts were diluted in sample buffer, and prepared for SDS-PAGE. Equal amounts of cellular protein extracts were loaded on 4–15% polyacrylamide gel. β-actin was used as a loading control. The separated protein bands were transferred to PVDF membranes, prior to antibody incubation. Membranes were incubated with primary antibodies at 4°C with gentle shaking, overnight. The primary antibodies were as follows: Akt, phospho-Akt (Thr308), PI3Kγ, PI3Kδ, and caspase-3 (Cell Signaling Technology, Beverly, MA), poly ADP ribose polymerase (PARP) and β-actin (Sigma-Aldrich, St. Louis, MO).

Apoptosis detection with Annexin V by flow cytometry

Apoptosis was assessed using an Annexin V-PE/7-AAD Apoptosis Detection Kit (BD Pharmingen Biosciences, San Diego, CA), following manufacturer’s instructions. Briefly, cells (2 × 10^5/mL) were seeded in 24-well plates and treated with 5 μmol/L of duvelisib or DMSO for 48 h. Cells were then washed in PBS and incubated with Annexin V-phycocerythrin (PE) in a buffer containing 7-aminoactinomycin D (7-AAD). Apoptotic cells (7-AAD negative, PE Annexin V positive) were analyzed using flow cytometry.

Cell cycle analysis

Cells (2 × 10^5/mL) were treated with 5 μmol/L of duvelisib or DMSO for 48 h. Cells were then fixed with ice-cold 70% ethanol, and then washed with PBS. Fixed cells were re-suspended in 50 μg/mL propidium iodide (PI) solution (Sigma-Aldrich) with DNase-free RNase, and then analyzed using flow cytometry. Experiments were performed in triplicate.

Real-time RT-PCR

RNA was extracted from 1 × 10^6 cells from the culture medium with the QIAamp RNeasy Mini Kit (Qiagen, Hilden, Germany). Contaminating DNA was removed using the RNase-Free DNase set (Qiagen). The expression of two lytic (BZLF1 and glycoprotein 350/220) and six latent (EBNA1, EBNA2, LMP1, LMP2, EBER1, and BARTs) EBV genes was quantified by one-step multiplex real-time RT-PCR using QuantiFast Multiplex RT-PCR kits (Qiagen) and an Mx3000P instrument (Stratagene, La Jolla, CA) as described previously [36–38]. The relative expression of EBV genes were determined by normalization to β2-microglobulin mRNA.

Results

Duvelisib suppresses growth of EBV-positive and -negative B cell lines

To determine the effects of duvelisib on EBV-negative B cell lines [BJAB and Akata (-)], EBV-positive B cell lines [Akata (+), Mutu I, LCL, Raji, and P3HR1], EBV-negative T cell lines (MOLT4 and Jurkat), EBV-negative T cell line (SNT16), EBV-negative NK cell line (KHYG1), and EBV-positive NK cell line (KAI3), cell lines were treated with 0.1–5 μmol/L of duvelisib and viable cells were counted after 48 and 72 h. We found that duvelisib inhibited cell growth in EBV-positive and -negative B cell lines, except in P3HR1, in a dose-dependent manner (Fig. 1A and B). Cell growth inhibition of EBV-negative T cell lines Jurkat, MOLT4, and EBV-positive NK cell line KAI3, was also observed at 1 or 5 μmol/L of duvelisib. However, no growth inhibition was observed in EBV-positive SNT16 and EBV-negative KHYG1. Overall, B cell lines were more susceptible to duvelisib than T and NK cell lines, and further experiments with duvelisib were focused on EBV-positive and -negative B cell lines.

Effect of idelalisib on EBV-positive and negative cell lines

To confirm the effects of the selective PI3Kδ inhibitor idelalisib on B, T, and NK cell lines, 0.1–5 μmol/L of idelalisib was used to treat cells. Viable cells were counted after 72 h of treatment (Fig. 2). Growth of EBV-positive and -negative B cell lines was inhibited by idelalisib in a dose-dependent manner. On the other hand, no or modest growth inhibition was observed in T and NK cell lines.

Duvelisib inhibits activation of the PI3K/Akt signaling pathway in EBV-positive (+) and -negative (−) B cell lines

To confirm activation of the PI3K/Akt signaling pathway, we examined the status of PI3Kγ, PI3Kδ, and phospho-Akt (Thr308) in cell lines (Fig. 3). PI3Kγ expression
was low in Raji cells, but was detected in all other cell lines tested. PI3Kδ was detected in all the cell lines that were tested. Duvelisib treatment decreased the expression level of PI3Kγ or PI3Kδ in Akata (−), Akata (+), and Jurkat. Conversely, the phosphorylated form of Akt was detected in all cell lines tested, indicating activation of Akt regardless of EBV status. Duvelisib treatment induced the inhibition of Akt phosphorylation in five of eight tested cell lines [BJAB, Akata (+), Mutu I, LCL, and Jurkat] (Fig. 3).

Duvelisib induces apoptosis in EBV-positive and -negative B cell lines

To investigate whether duvelisib induces apoptosis, Annexin V/7-AAD staining of various duvelisib-treated cells was evaluated. Duvelisib treatment increased the number of apoptotic cells (Annexin V-positive and 7-AAD-negative), compared to DMSO control-treated cells in six of seven tested B cell lines (Fig. 4A). However, duvelisib did not induce apoptosis in B cell line P3HR1 and T cell lines (Jurkat and MOLT4).
The cleavage of caspase-3 and PARP was also investigated in B and T cell lines to identify apoptosis after duvelisib treatment for 48 h. Duvelisib treatment induced cleavage of PARP in BJAB, Akata (+), and Mutu I (Fig. 4B). Decreased levels of full-length caspase-3 were observed in BJAB and Akata (−), whereas cleaved caspase-3 was not observed in any cell lines. The combined results of flow cytometry and immunoblotting suggest that duvelisib induces apoptosis in EBV-negative and -positive B cell lines, whereas it induces no apoptosis in T cell lines.

Duvelisib induces G1 cell cycle arrest in B and T cell lines

We next examined the effect of duvelisib on cell cycle distribution in EBV-positive and -negative B cells using flow cytometry analysis with PI staining. Duvelisib treatment induced an increase in cells in the G1 phase and a decrease in cells in the S and G2/M phases in all cell lines tested except P3HR1 (Fig. 5). These results indicate that duvelisib induces G1 cell cycle arrest in B and T cell lines resulting in inhibition of proliferation.

Duvelisib suppresses the expression of lytic EBV genes in B cell lines

We next investigated the effect of duvelisib on the expression of eight viral genes in B cell lines. The expression of BZLF1, which is an immediate-early lytic EBV gene, significantly decreased after duvelisib treatment in all EBV-positive B cell lines tested (Fig. 6). Furthermore, the expression of the late lytic EBV gene gp350/220 decreased...
significantly in Akata (+), Mutu I, and P3HR1. In contrast, the expression of LMP1, a latent oncogene of EBV, was decreased in Mutu I. However, this effect was not observed in other cell lines (Fig. 6). Duvelisib treatment did not induce remarkable change in the expression of the other five latent genes (EBNA1, EBNA2, LMP2, EBER1, and BARTs) (data not shown). Taken together, these results suggest that duvelisib suppresses the lytic cycle of EBV, but has little effect on the latent cycle.

Discussion

In this study, we evaluated the antitumor effects of duvelisib on EBV-associated lymphoma cell lines and found that B cell lines appeared to be more susceptible to duvelisib than T and NK cell lines regardless of the presence of EBV. It was expected that the presence of EBV might be associated with susceptibility to duvelisib because activation of the PI3K/Akt pathway via LMP1 is considered...
to be one of the key elements of EBV associated malignancies. Compared to EBV-negative Akata cell lines, inhibition of Akt phosphorylation by duvelisib was more clearly observed in EBV-positive cell lines. However, no remarkable differences were observed in susceptibility to duvelisib between EBV-positive and negative B cell lines. It might be possible that LMP1 or other EBV proteins have only a small effect on PI3K/Akt pathway activation in these cell lines.

LCL, which is classified as type III EBV latency, was the most susceptible to duvelisib among B cell lines tested. However, the association between latency pattern and susceptibility was not clear in this study. Interestingly, P3HR1 was insensitive to duvelisib despite that fact that it harbors an EBNA2-deficient EBV strain. One study has shown that EBNA2 upregulates Akt activation by inducing miR-21 expression [39]. Although the phosphorylated form of Akt was detected in P3HR1 by immunoblotting, cellular proliferation of P3HR1 might be less dependent on the PI3K/Akt signaling pathway than other EBV-positive B cell lines.

Most of the B cell lines used in this study were cells originating from Burkitt lymphoma. To our knowledge, this is the first study to show the antitumor effects of duvelisib on Burkitt lymphoma cell lines because antitumor effects of duvelisib have been exclusively investigated in CLL [20, 21, 23]. Regarding idelalisib, a selective PI3Kδ inhibitor, a recent study has shown that antiproliferative effects on EBV-positive and -negative Burkitt lymphoma cell lines (Namalwa and Ramos, respectively) were equivalent to its effects on CLL cell lines [40]. While c-MYC deregulation is a hallmark of Burkitt lymphoma, synergy between constitutive PI3K/Akt signaling pathway activation and c-MYC has been shown. This suggests that the PI3K/Akt signaling pathway can be a therapeutic target in Burkitt lymphoma [41].

It was expected that duvelisib would have antitumor effects on T or NK cell lines as well as B cell lines because duvelisib is a dual inhibitor of PI3Kγ and PI3Kδ. Compared to idelalisib, a selective PI3Kδ inhibitor, duvelisib showed slightly more cell growth inhibition of T cell lines such as Jurkat or MOLT4. However, cell growth inhibition by duvelisib was modest in T or NK cell lines. Overall, the antitumor effects of idelalisib and duvelisib were similar in the cell lines that were tested. Furthermore, duvelisib did not induce apoptosis in T cell lines. On the other hand, G1 cell cycle arrest was observed in all B and T cell lines tested except P3HR1. Duvelisib treatment could inhibit T cell proliferation by inducing cell cycle arrest. However, its antitumor effects on T cells were limited because apoptosis was not induced.

We found that duvelisib treatment reduced the expression of BZLF1 and gp350/220 mRNA in EBV-positive B cell lines, suggesting that duvelisib suppresses the lytic cycle of EBV. In EBV-positive B cell lines, BCR signaling induces BZLF1 activation, and previous studies have shown that PI3K inhibitors such as wortmannin and idelalisib inhibit the EBV lytic cycle [42, 43]. Our results are in line with these previous studies, and duvelisib may have specific effects on EBV-positive B cell lines. In general, the EBV latent cycle is associated with tumorigenesis, and among EBV latent proteins, LMP1 is considered to be a major EBV oncoprotein [5]. Induction of the EBV lytic cycle by agents like proteasome inhibitors or histone deacetylase inhibitors could be therapeutically beneficial to EBV-associated malignancies [44, 45]. Furthermore, previous reports have shown that induction of the EBV lytic cycle by chemotherapeutic agents enhanced antiviral nucleoside drug susceptibility to EBV positive tumor cells, suggesting that combination of chemotherapy and antiviral drug may provide a new therapeutic approach for EBV-associated malignancy [46, 47]. Conversely, some reports have shown that the EBV lytic cycle may play a role in tumorigenesis in EBV-associated malignancies [48, 49]. However, it is unclear whether inhibition of the EBV lytic cycle could be a therapeutic target of EBV-associated malignancies. In this study, suppression of the EBV lytic cycle was observed in P3HR1, which was insusceptible to duvelisib, and EBV-negative B cell lines showed similar susceptibility to duvelisib. It might be possible that inhibition of the EBV lytic cycle does not play an important role in antitumor effects of duvelisib on EBV-positive cell lines.

In conclusion, we demonstrated that the PI3K/Akt signaling pathway was activated in EBV-positive and -negative B cell lines. Further, duvelisib treatment induced apoptosis and cell cycle arrest. Although some progress has been achieved with treatments for EBV-associated lymphomas such as anti-CD20 antibody and adoptive EBV-specific cytotoxic T lymphocyte transfer, the effects of these new therapies are still restricted. Our results may indicate that duvelisib has therapeutic potential for the treatment of EBV-associated B cell lymphomas.

Acknowledgments

We thank Norio Shimizu (Tokyo Medical and Dental University, Tokyo, Japan) for the SNT16 cell line and Infinity Pharmaceuticals for providing duvelisib. This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [to J.K. (17K10107)] and for the Practical Research Project for Rare/Intractable Diseases from Japan Agency for Medical Research and Development [to H.K. (15ek0109098)].
Conflict of Interest

None declared.

References

1. Cohen, J. I. 2000. Epstein-Barr virus infection. N. Engl. J. Med. 343:481–492.
2. Young, L. S., and A. B. Rickinson. 2004. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4:757–768.
3. Cohen, J. I., H. Kimura, S. Nakamura, Y. H. Ko, and E. S. Jaffe. 2009. Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting. 8–9 September 2008. Ann. Oncol. 20:1472–1482.
4. Kimura, H., Y. Ito, S. Kawabe, K. Gotoh, Y. Takahashi, S. Kojima, et al. 2012. EBV-associated T/NK-cell lymphoproliferative diseases in non-immunocompromised hosts: prospective analysis of 108 cases. Blood 119:673–686.
5. Huen, D. S., S. A. Henderson, D. Croom-Carter, and M. Rowe. 1995. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10:549–560.
6. Zou, P., J. Kawada, L. Pesnicak, and J. I. Cohen. 2007. Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J. Virol. 81:10029–10036.
7. Dawson, C. W., G. Tramountanis, A. G. Eliopoulos, and L. S. Young. 2003. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J. Biol. Chem. 278:3694–3704.
8. Shair, K. H., C. I. Schnegg, and N. Raab-Traub. 2008. EBV latent membrane protein 1 effects on plakoglobin, cell growth, and migration. Cancer Res. 68:6997–7005.
9. Mainou, B. A., D. N. Jr Everly, and N. Raab-Traub. 2005. Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 24:6917–6924.
10. Shair, K. H., K. M. Bendt, R. H. Edwards, E. C. Bedford, J. N. Nielsen, and N. Raab-Traub. 2007. EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas. PLoS Pathog. 3:e166.
11. Kawada, J., Y. Ito, S. Iwata, M. Suzuki, Y. Kawano, T. Kanazawa, et al. 2014. mTOR inhibitors induce cell-cycle arrest and inhibit tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Clin. Cancer Res. 20:5412–5422.
lymphocytic leukemia cells to venetoclax (ABT-199). Leukemia 31:1872–1881.
25. Takada, K., K. Horinouchi, Y. Ono, T. Aya, T. Osato, M. Takahashi, et al. 1991. An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 5:147–156.
26. Gregory, C. D., M. Rowe, and A. B. Rickinson. 1990. Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. J. Gen. Virol. 71(Pt 7):1481–1495.
27. Epstein, M. A., B. G. Achong, Y. M. Barr, B. Zajac, G. Henle, and W. Henle. 1966. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J. Natl Cancer Inst. 37:547–559.
28. Hinuma, Y., M. Konn, J. Yamaguchi, D. J. Wudarski, J. R. Jr Blakeslee, and J. T. Jr Grace. 1967. Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J. Virol. 1:1045–1051.
29. Menezes, J., W. Leibold, G. Klein, and G. Clements. 1975. Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional. EBV-genome-negative African Burkitt’s lymphoma. Biomedicine 22:276–284.
30. Shimizu, N., A. Tanabe-Tochikura, Y. Kuroiwa, and K. Takada. 1994. Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68:6069–6073.
31. Zhang, Y., H. Nagata, T. Ikeuchi, H. Mukai, M. K. Oyoshi, A. Demachi, et al. 2003. Common cytological and cyogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br. J. Haematol. 121:805–814.
32. Kaplan, J., J. Tilton, and W. D. Jr Peterson. 1976. Identification of T cell lymphoma tumor antigens on human T cell lines. Am. J. Hematol. 1:219–223.
33. Minowada, J., T. Onuma, and G. E. Moore. 1972. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J. Natl Cancer Inst. 49:891–895.
34. Tsuge, I., T. Morishima, M. Morita, H. Kimura, K. Kuzushima, and H. Matsuoka. 1999. Characterization of Epstein-Barr virus (EBV)-infected natural killer (NK) cell proliferation in patients with severe mosquito allergy; establishment of an IL-2-dependent NK-like cell line. Clin. Exp. Immunol. 115:385–392.
35. Yagita, M., C. L. Huang, H. Umehara, Y. Matsuo, R. Tabata, M. Miyake, et al. 2000. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 14:922–930.
36. Kubota, N., K. Wada, Y. Ito, Y. Shimoyama, S. Nakamura, Y. Nishiyama, et al. 2008. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection. J. Virol. Methods 147:26–36.
37. Iwata, S., T. Saito, Y. Ito, M. Kamakura, K. Gotoh, J. Kawada, et al. 2012. Antitumor activities of valproic acid on Epstein-Barr virus-associated T and natural killer lymphoma cells. Cancer Sci. 103:375–381.
38. Ando, S., J. Kawada, T. Watanabe, M. Suzuki, Y. Sato, Y. Torii, et al. 2016. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. Oncotherapeut 7:76793–76805.
39. Rosato, P., E. Anastasiadou, N. Garg, D. Lenze, F. Boccellato, S. Vincenti, et al. 2012. Differential regulation of miR-21 and miR-146a by Epstein-Barr virus-encoded EBNA2. Leukemia 26:2343–2352.
40. Liu, X., A. Wang, X. Liang, J. Liu, F. Zou, C. Chen, et al. 2016. Simultaneous inhibition of Vps34 kinase would enhance PI3Kdelta inhibitor cytotoxicity in the B-cell malignancies. Oncotarget 7:53515–53525.
41. Sander, S., D. P. Calado, L. Srinivasan, K. Kochert, B. Zhang, M. Rosolowski, et al. 2012. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22:167–179.
42. Iwakiri, D., and K. Takada. 2004. Phosphatidylinositol 3-kinase is a determinant of responsiveness to B cell antigen receptor-mediated Epstein-Barr virus activation. J. Immunol. 172:1561–1566.
43. Kosowicz, J. G., J. Lee, B. Peiffer, Z. Guo, J. Chen, G. Liao, et al. 2017. Drug modulators of B cell signaling pathways and Epstein-Barr virus lytic activation. J. Virol. 91:e00747-14.
44. Iwata, S., S. Yano, Y. Ito, Y. Ushijima, K. Gotoh, J. Kawada, et al. 2011. Bortezomib induces apoptosis in T lymphoma cells and natural killer lymphoma cells independent of Epstein-Barr virus infection. Int. J. Cancer 129:2263–2273.
45. Ghosh, S. K., S. P. Perrine, R. M. Williams, and D. V. Fallner. 2012. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 119:1008–1017.
46. Feng, W. H., B. Israel, N. Raab-Traub, P. Busson, and S. C. Kenney. 2002. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 62:1920–1926.
47. Lee, H. G., H. Kim, E. J. Kim, P. G. Park, S. M. Dong, T. H. Choi, et al. 2015. Targeted therapy for
Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation. Oncotarget 6:31018–31029.

48. Hong, G. K., M. L. Gulley, W. H. Feng, H. J. Delecluse, E. Holley-Guthrie, and S. C. Kenney. 2005. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J. Virol. 79:13993–14003.

49. Sato, Y., T. Kamura, N. Shirata, T. Murata, A. Kudoh, S. Iwahori, et al. 2009. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog. 5:e1000530.