K-THEORETIC J-FUNCTIONS OF TYPE A FLAG VARIETIES

K. TAIPALE

Abstract. The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds and conjectural formulas for other types. Some K-theoretic tools for computation are also provided. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.

Contents

1. Introduction and preliminaries 1
 1.1. The J-function 2
 1.2. Quasimap spaces and the Quot scheme 4
 1.3. Localization and correspondence of residues 4
 1.4. Functoriality of the J-function for products 6
 1.5. Pushforward 7
2. The J-function of the Grassmannian 9
 2.1. Application: the abelian-nonabelian correspondence 14
3. The J-function of flag varieties of type A 15
 3.1. A simple lemma 15
 3.2. Flag Varieties of Type A 18
4. Directions for further research 21
References 21

1. Introduction and preliminaries

The J-function of a space X is a generating function for one-point genus zero Gromov-Witten invariants with descendants. The (cohomological) J-function was introduced by Givental in solving the quantum differential equation

$$\hbar \frac{\partial F}{\partial t_i} = \partial_i \star F,$$

where \hbar is a constant, the t_i are coordinates for cohomology of X, and $\partial_i := \frac{\partial}{\partial t_i}$. For us, the operation \star refers to multiplication in the small quantum cohomology ring. In “nice” cases the J-function compactly encodes the information necessary for reconstruction of Gromov-Witten theory in genus zero ([LP04]). This makes the J-function useful for relating Gromov-Witten theories of different spaces. In 1998, Givental used this cohomological J-function to prove the Mirror Theorem...
Quantum K-theory is a relatively underexplored extension of Gromov-Witten theory introduced by Givental and Lee ([GL03, Lee04, Giv00]). (More recent foundational work can be found in [GT11].) A K-theoretic Gromov-Witten invariant is the Euler characteristic of a sheaf obtained by pulling vector bundles from X back to the moduli space of stable curves. Now the quantum differential equation solved looks like

$$(1 - e^{-\hbar}) \partial F = T_i \star F.$$

Here the T_i are classes in the Grothendieck group of X, rather than in the cohomology group, and \star is quantum K-theoretic multiplication [Lee04]. Recent work on quantum K-theory of Grassmannians can be found in [BM11, BCMP10].

This paper establishes K-theoretic J-functions for flag varieties of type A by using localization on Grothendieck's Quot scheme. The proofs use many techniques and results from Bertram, Ciocan-Fontanine, and Kim's work on the cohomological J-functions of flag varieties and Grassmannians and the abelian-nonabelian correspondence [BCFK05, BCFK08]. The results extend Givental and Lee's ad hoc computations of the J-function for projective space in [GL03]. Along the way, we prove K-theoretic modifications of many cohomological tools (correspondence of residues, a pushforward lemma, and multiplicativity of the K-theoretic J-function). A K-theoretic J-function version of the abelian-nonabelian correspondence between Grassmannians and products of projective space is also proved.

Acknowledgements. I would like to thank my advisor Ionuţ Ciocan-Fontanine for his mathematical generosity in introducing me to this area. He suggested the problem of the K-theoretic J-function to me, and many of these results appeared in my thesis.

1.1. The J-function. In this paper we consider only homogeneous varieties. Definitions will be simplified with that in mind. In particular we need not consider virtual fundamental classes.

The cohomological and K-theoretic J-functions of a homogeneous variety X are defined as pushforwards of a residue on the graph space of stable maps to X [Ber00a]. We describe the graph space first and the residue next, then discuss implications; see ([GL03]) for another description of the construction.

The graph space $\overline{G}_{0,0}(X, \beta)$ is the space of stable maps $f: C \to X$, C a genus zero curve with no marked points and image $f_*(C) = \beta \in H^*(X)$, with the requirement that C has a distinguished parameterized component $C_0 \cong \mathbb{P}^1$. (For flag varieties whose points are flags $V_1 \subset V_2 \subset \cdots V_l$, let S_i denote the ith tautological bundle. Use the notation $d = (d_1, \ldots, d_l)$ to represent the class in cohomology with degree d_i intersection with $c_1(S_i)$.) Recall that stable maps are at worst nodal.

Endow the distinguished parameterized component C_0 of C with a \mathbb{C}^*-action. This lifts to a \mathbb{C}^*-action on the graph space and gives rise to \mathbb{C}^*-fixed loci in $\overline{G}_{0,0}(X, d)$ indexed by pairs (d^+, d^-), $d^+ + d^- = d$. (Envision trees of \mathbb{P}^1 concentrated on 0 and ∞ of the distinguished \mathbb{P}^1.) The \mathbb{C}^*-fixed locus with the curve concentrated over $0 \in \mathbb{P}^1$ is $\overline{M}_{0,1}(X, d)$, the moduli space of degree d stable maps with one marked point (the point at which the degree d curve meets the distinguished \mathbb{P}^1). In fact, we will think of \hbar as the weight of the \mathbb{C}^*-action at zero in \mathbb{P}^1. To simplify notation, let $M^X_d = \overline{M}_{0,1}(X, d)$ and $G^X_d = \overline{G}_{0,0}(X, d)$.
Let \(ev\) denote the evaluation map taking the marked point \(p_1\) on \(C\) to \(f(p_1) \in X\). Denote the cohomological Euler class of a vector bundle \(N\) on \(X\) by \(e(N)\) and the K-theoretic Euler class by \(\lambda_{-1}(N)\), and when necessary indicate \(T\)-equivariant Euler classes by a superscript \(T\).

The cohomological and K-theoretic J-functions, then, are given by the following formal series:

\[
J^X(t) = \sum_{d=0}^{\infty} e^{dt} J^X_d(h)
\]

\[
J^{X,K}(t) = \sum_{d=0}^{\infty} e^{dt} J^{X,K}_d(e^{-h})
= \sum_{d=0}^{\infty} Q^d J^{X,K}_d(q).
\]

This version of the J-function, used in [LP04], differs by a multiplicative factor from the version in [BCFK05, BCFK08, GL03]. Notice that we write \(q = e^{-h}\) and \(Q^d = e^{d_1 t_1 + d_2 t_2 + \cdots + d_\ell t_\ell}\), where \((d_1, \ldots, d_\ell) \in H_2(X)\). The coefficients of the series are the pushforwards mentioned earlier. The coefficients of the K-theoretic J-function are given by

\[
J^{X,K}_d(e^{-h}) = ev_* \left(\frac{[\mathcal{O}_{M^X_d}]}{\lambda_{-1}(N^X_{M^X_d}/G^X_d)} \right).
\]

The cohomological J-function is a cohomology-valued generating function for one-point descendant Gromov-Witten invariants:

\[
\int_X J^X_d \wedge \gamma = \sum_{a=0}^{\infty} h^{-a-2} \langle \tau_a(\gamma) \rangle_d.
\]

Here \(\gamma \in H^*(X)\) and \(\langle \tau_a(\gamma) \rangle_d\) denotes the \(a\)th descendant Gromov-Witten invariant with degree \(d\) [CK99]. This is a convergent series. In quantum K-theory, something similar is again true:

\[
\chi_X(J^{X,K}_d \otimes [\mathcal{O}_\gamma]) = \sum_{a=0}^{\infty} e^{-ah} \chi(M_{0,n}(X,d); [\mathcal{O}_\gamma] \otimes L^a)
= \sum_{a=0}^{\infty} q^a (\tau_k(\mathcal{O}_\gamma))^{K}_{0,n,d}.
\]

Here \(L\) is the cotangent line bundle at the one marked point [LP04]. The J-function converges in the \(Q\)-adic topology [Lee04].

We use localization to compute \(J^{X,K}_d(q)\), \(P^d\), the Drinfeld or quasimap compactification of Map\(_d(P^1, P^n)\), and Grothendieck’s Quot scheme are alternative compactifications of Map\(_d(P^1, Gr(r,n))\) with more tractable fixed-point loci. Localization computations on \(\overline{M}_{0,n}(X,d)\) transfer to \(P^d\) or Quot via the correspondence of residues, described below. A \(\mathbb{C}^*\)-action on the rational curve \(C\) induces a \(\mathbb{C}^*\)-action on any compactification of the map space. This \(\mathbb{C}^*\) action will be used in localization computations.
1.2. Quasimap spaces and the Quot scheme. \(\mathbb{P}^N_d \) is the quasimap compactification of \(\text{Map}_d(\mathbb{P}^1, \mathbb{P}^N) \). It is the space of \(N+1 \) bilinear forms \((f_0(x:y), \ldots, f_N(x:y)) \). In general each \(f_i \) is of degree \(d \) and the \(f_i \) are relatively prime, but to compactify the space we discard the condition that they be relatively prime. When \(xd \) is a common factor of all the \(f_i \) we get a copy of \(\mathbb{P}^N \) that is fixed under the induced \(\mathbb{C}^* \)-action.

The quasimap compactification of \(\text{Map}_d(\mathbb{P}^1, \text{Gr}(r,n)) \) space is obtained by looking at \(\text{Gr}(r,n) \) embedded into \(\mathbb{P}^N \) via the Plücker embedding. Call this quasimap compactification \(\text{Gr}_d(r,n) \). Then \(\text{Gr}(r,n) \) is obtained as a \(\mathbb{C}^* \)-invariant locus of \(\text{Gr}_d(r,n) \), just as \(\mathbb{P}^N \) is invariant in \(\mathbb{P}^N_d \).

The quasimap space \(\mathbb{P}^N_d \) and the moduli spaces of stable maps to a projective variety \(X \subset \mathbb{P}^N \) are related by the following diagram:

\[
\begin{array}{c}
G^X_d \xrightarrow{c} \mathbb{P}^N_d \\
i \downarrow \quad \downarrow j \\
M^X_d \xrightarrow{ev} X
\end{array}
\]

The quasimap space has rational singularities. The above relationship was exploited to get the cohomological and K-theoretic J-functions of projective space \(\mathbb{P}^n \).

The Quot scheme \(\text{Quot}_{\mathbb{P}^1,d}(\mathbb{C}^n, n-r) \) is a smooth projective variety compactifying the map space \(\text{Map}_d(\mathbb{P}^1, \text{Gr}(r,n)) \), as long as \(n > r \). It is the moduli space of degree \(d \) quotient sheaves \(\mathcal{Q} \):

\[
0 \to S \to \mathbb{C}^n \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{Q} \to 0.
\]

\(S \) is a locally free sheaf of rank \(r \). The fixed point loci of the Quot scheme under various torus actions will be discussed in section 2.

We use orbifold pushforward to move the calculation of the residue to the Quot scheme. Since there is no map from the graph space to the Quot scheme, we rely on the fact that both the Quot scheme and the graph space have maps to the quasimap space. This aspect of the proof is discussed in section 3.1.

1.3. Localization and correspondence of residues. Here we set notation and provide a brief overview of the localization techniques in K-theory used. An excellent introduction to equivariant K-theory can be found in Chapter 5 of Chriss and Ginzburg’s book [CG97] and we direct the reader there for more.

Symplectic and algebraic geometers have used localization in cohomology to obtain the Atiyah-Bott(-Berline-Vergne) residue theorem ([EG05, ES99, Tu08]) and the correspondence of residues ([LLY99, Ber00a]). Let \(X \) be a nonsingular variety endowed with the action of a torus \((\mathbb{C}^*)^n = T\). The ABBV formula allows us to shift integrals over \(X \) to computations over \(X^T \), the torus-fixed locus. A version of the ABBV formula for equivariant K-theory of smooth schemes is given in Chriss and Ginzburg ([CG97]) and virtual localization for K-theory on Deligne-Mumford stacks is discussed in [Jos]. We present a version of the ABBV formula here to fix notation and justify later use.

The K-theoretic analogue of the Euler class of a bundle \(N \) is

\[
\lambda_{-1}(N^\vee) = \sum (-1)^i \wedge^i N^\vee = 1 - N^\vee + \lambda^2 N^\vee - ...
\]

For \(N \) an equivariant bundle, \(\lambda_{-1}(N^\vee) \) can also be considered equivariantly.
Lemma 1 (ABBV for K-theory, [CG97, Jos]). Let X be a nonsingular scheme or smooth Deligne-Mumford stack endowed with the action of $T = (\mathbb{C}^*)^n$. Let $\alpha \in K(X)$ and let $i : W = \coprod W_k \hookrightarrow X$ be the inclusion of the components W_k of X^T into X, with restriction $i_k : W_k \to X$. Then

$$\alpha = i_* \sum_k \frac{i_k^*(\alpha)}{\lambda^{-1}(N^\vee_{W_k/X})}.$$

Correspondence of residues allows us to compare localization contributions of corresponding torus-fixed loci in the Quot scheme and the quasimap space. Proofs for correspondence of residues for complex manifolds and orbifolds were given by Lian-Liu-Yau and Bertram ([LLY99, Ber00a]).

Consider X and Y smooth varieties (or smooth Deligne-Mumford stacks) endowed with a T-action, and $g : X \to Y$ a proper T-equivariant morphism. Label by V a component of the fixed point locus Y^T and consider the diagram

$$\begin{array}{ccc}
W & \xrightarrow{i} & X \\
\downarrow f & & \downarrow g \\
V & \xrightarrow{j} & Y
\end{array}$$

Here $W = \coprod_k W_k$ is the (possibly disconnected) set of components of X^T mapping to V, and i and j are both inclusions. As torus-fixed loci of smooth schemes (or substacks) W and V will also be smooth.

Lemma 2 (Correspondence of residues). Let X, Y nonsingular schemes or smooth Deligne-Mumford stacks with a $T = (\mathbb{C}^*)^n$-action and $g : X \to Y$ a proper equivariant morphism. $W = \{W_k\}$ and V are components in the torus-fixed loci of X and Y respectively. Then for F on X,

$$j^* g_* [F] = \frac{f_* \sum_k i_k^*[F]}{\lambda^{-1}(N^\vee_{V/Y})}.$$

Proof. V and W are both nonsingular and so i and j are regular closed embeddings. We have a Gysin map

$$j^* : K_0(Y) \to K_0(V)$$

defined by

$$j^*[G] = \sum (-1)^i Tor_i^O(V, G),$$

and likewise for i ([CFK09]).

Equivariant localization implies that equivariant coherent sheaves on X can be written as a sum of sheaves over X^T, the torus-fixed part of X. Since $f : \{W_k\} \to V$ kills all terms in the sum not supported on $\{W_k\}$, we assume that a torus-equivariant coherent sheaf F on X can be written $[F] = i_* [H]$ for some $H \in K_0^T(\{W_k\})$.

Given $[F] = i_* [H]$, certainly

$$j^* g_* [F] = j^* g_* (i_* [H]).$$

As $g \circ i = j \circ f$, functoriality of pushforwards implies that the right-hand side then equals $j^*(j_* f_* [H])$. The map j is a regular embedding so $j^* j_* (f_* [H]) = \lambda^{-1}(N^\vee_{V/Y}) \otimes f_* [H]$. Thus we have

$$j^* g_* [F] = \lambda^{-1}(N^\vee_{V/Y}) f_* [H].$$
Now apply the fact that $i^*i_*[H] = [H] \cdot \lambda_1(N_{X/Y}^V |_{W_k})$.

\begin{align}
(4) \quad j^*g_*[\mathcal{F}] &= \lambda_1(N_{V/Y}^V)f_*[H] \\
&= \lambda_1(N_{V/Y}^V)f_*\frac{i^*i_*[H]}{\lambda_1(N_{X/Y}^V |_{W_k})} \\
&= \lambda_1(N_{V/Y}^V)f_*\sum_k \frac{i^*[\mathcal{F}]}{\lambda_1(N_{W_k/Y}^V)}.
\end{align}

Thus
\begin{equation}
\frac{j^*g_*[\mathcal{F}]}{\lambda_1(N_{V/Y}^V)} = f_*\sum_k \frac{i^*[\mathcal{F}]}{\lambda_1(N_{W_k/Y}^V)}.
\end{equation}

\[\square\]

1.4. **Functoriality of the J-function for products.** In [Ber00b], Bertram proved functoriality of multiplication of J-functions; this proof is extended to K-theory below.

Let X_1, X_2 be convex spaces, with $H_2(X_1 \times X_2, \mathbb{C}) = H_2(X_1, \mathbb{C}) \otimes H_2(X_2, \mathbb{C})$. Thus classes $\beta \in H_2(X_1 \times X_2, \mathbb{C})$ can be expressed as $(\beta_1, \beta_2) \in H_2(X_1, \mathbb{C}) \otimes H_2(X_2, \mathbb{C})$. Denote projections by $\pi_1 : X_1 \times X_2 \to X_1$ and $\pi_2 : X_1 \times X_2 \to X_2$. We define the J-functions $J^{X_i,K}(Q_i, q_i)$ as in section 1.1.

Proposition 1. For X_1, X_2 convex spaces,
\begin{equation}
J^{X_1 \times X_2,K}(Q_1, Q_2, q_1, q_2) = \pi_1^*J^{X_1,K}(Q_1, q_1) \times \pi_2^*J^{X_2,K}(Q_2, q_2).
\end{equation}

Proof. Any map $f : X \to Y$ induces a map of moduli spaces,
\begin{equation}
f_{0,m} : \overline{M}_{0,m}(X, \beta) \to \overline{M}_{0,m}(Y, f_*\beta)
\end{equation}
as well as maps between the associated graph spaces. If f is equivariant, these maps will be compatible with the induced group action.

Write N for the normal bundle $N_{M^{X_1 \times X_2}\overline{G}^{X_1 \times X_2}}$ and N_i for the normal bundles $N_{M^{X_i}\overline{G}^{X_i}}$. (Recall that $M^X = \overline{M}_{0,1}(X, \beta)$. We must show that
\begin{equation}
ev_*\frac{1}{\lambda_1(N^V)} = \pi_1^*ev^1_*\frac{1}{\lambda_1(N_1^V)} \otimes \pi_2^*ev^2_*\frac{1}{\lambda_1(N_2^V)}.
\end{equation}

In the following diagram note that when X_1, X_2 are convex, as assumed, Φ is a birational morphism.

\begin{equation}
\begin{array}{ccc}
G^{X_1 \times X_2} & \xrightarrow{\Phi} & G^{X_1}_{\beta_1} \times G^{X_2}_{\beta_2} \\
\downarrow & & \downarrow \\
M^{X_1 \times X_2}_{(\beta_1, \beta_2)} & \xrightarrow{\phi} & M^{X_1}_{\beta_1} \times M^{X_2}_{\beta_2}. \\
& ev_1 \downarrow & ev_1 \times ev_2 \downarrow \\
X_1 \times X_2 & \xrightarrow{\ev} & X_1 \times X_2
\end{array}
\end{equation}

Graph spaces of convex varieties are orbifolds and thus have at worst rational singularities. In K-theory, then,
\begin{equation}
\Phi_*[\mathcal{O}_{G^{X_1 \times X_2}}] = [\mathcal{O}_{G^{X_1}_{\beta_1} \times G^{X_2}_{\beta_2}}].
\end{equation}
Let ρ_i be the projections
\[\rho_i : \overline{M}_{0,1}(X_1, \beta_1) \times \overline{M}_{0,1}(X_2, \beta_2) \to \overline{M}_{0,1}(X_i, \beta_i). \]
Correspondence of residues (Lemma 2) implies
\[\phi_* \left(\frac{1}{\lambda - 1 (N^\vee)} \right) = \rho_1^* \left(\frac{1}{\lambda - 1 (N_1^\vee)} \right) \rho_2^* \left(\frac{1}{\lambda - 1 (N_2^\vee)} \right). \]
By the equality at the bottom of the diagram (11), $ev_* = (ev^1 \times ev^2)_* \phi_*$. This combined with (13) gives
\[ev_* \left(\frac{1}{\lambda - 1 (N^\vee)} \right) = (ev^1 \times ev^2)_* \phi_* \left(\frac{1}{\lambda - 1 (N^\vee)} \right) \]
\[= (ev^1 \times ev^2)_* [\rho_1^* \left(\frac{1}{\lambda - 1 (N_1^\vee)} \right) \otimes \rho_2^* \left(\frac{1}{\lambda - 1 (N_2^\vee)} \right)]. \]
Thus
\[(ev^1 \times ev^2)_* \left[\rho_1^* \left(\frac{1}{\lambda - 1 (N_1^\vee)} \right) \otimes \rho_2^* \left(\frac{1}{\lambda - 1 (N_2^\vee)} \right) \right] = \pi_1^* ev^1_* \frac{1}{\lambda - 1 (N_1^\vee)} \otimes \pi_2^* ev^2_* \frac{1}{\lambda - 1 (N_2^\vee)}. \]
Multiplicativity of the K-theoretic J-function follows from equations (14) and (15).

1.5. **Pushforward.** A lemma on pushforwards, analogous to the many other Gysin map lemmas for cohomology ([BCFK05] [BCFK08] [FP98] [Pra96] [Bri96] [AC87]), is needed for computation at the end of section 2. First recall some properties of homogeneous spaces G/P, for G a Lie group and P a parabolic subgroup in G. Under the action of the maximal torus $T \subset P \subset G$, G/P has finitely many isolated fixed points indexed by permutations w in the Weyl group W/W_P of G/P. Label these fixed points q_w. Inclusion $i_w : q_w \to G/P$ induces pullback $i_w^* : K_0 T(G/P) \to K_0^T (pt)$. The tangent space to G/P at a torus-fixed point q_w is isomorphic to g/p, and the torus acts with weights $w(\alpha)$, where $\alpha \in \Delta^+$ are the positive roots. Moreover, the pullback $i_w^* F$ for a T-equivariant vector bundle F is equivalent to $w[F]$; we write $[F]$ as a polynomial in the L_i (“Chern line bundles”) and let w act on the indices.

We eventually wish to push forward from a flag bundle to a Grassmannian. Consider then parabolic subgroups P and $P', T \subset P' \subset P \subset G$. The pushforward
is \(\pi : G/P \to G/P' \). The Weyl group \(W/W' \) acts on \(K_0^T(G/P) \) and the pullback map \(\pi^* \) identifies \(K_0^T(G/P') \) with \(K_0^T(G/P)^{W/W'} \).

We have a diagram

\[
\begin{array}{ccc}
\Pi_w \{ q_w \} & \xrightarrow{i_w} & G/P \\
\downarrow f & & \downarrow \pi \\
\Pi_w' \{ q_{w'} \} & \xrightarrow{j_{w'}} & G/P'
\end{array}
\]

where \(j_{w'} : \{ p_{w'} \} \hookrightarrow G/P' \) and \(i_w : \{ q_w \} \hookrightarrow G/P \) are the inclusions.

Lemma 3. Let \(X = G/P \) and \(Y = G/P' \), for \(G \) a compact connected Lie group and \(T \subset P' \subset P \subset G \), \(P, P' \) parabolic subgroups. Consider \([F] \in K_0^T(X) \). In \(K_0^T(Y) \),

\[
(16) \quad \pi_*[F] = \sum_{w \in W/W'} (-1)^{\epsilon(w)} \frac{w([F])}{\lambda_{-1}(T_{w'})}.
\]

The right-hand side of the equality is invariant under \(W/W' \), hence may be viewed as a class on \(Y \).

Proof. Start with the correspondence of residues. From lemma [2], we know that

\[
 \frac{j_{w'}^* \pi_*[F]}{\lambda_{-1}(N_{q_{w'}}/Y)} = f_* \sum_w i_{w'}^*[F] \frac{i_{w'}^*[F]}{\lambda_{-1}(N_{q_w}/X)}.
\]

Apply \(j_\circ = \sum w' j_{w'} \circ \) to both sides: then the left hand side reduces to \(\pi_*[F] \) by the ABBV theorem. On the right-hand side, \(i_{w'}^*[F] = w[F] \) as noted above, and \(\lambda_{-1}(N_{q_w}/X) \) evaluated at a given \(w \) is \((-1)^{\epsilon(w)} \lambda_{-1}(N_{q_w}/X) \), where \(N_{q_w}/X \) is the normal/tangent bundle with torus action given by positive weights.

Thus

\[
(17) \quad j_* f_* \sum_{w \in W/W'} \frac{i_{w'}^*[F]}{\lambda_{-1}(N_{q_{w'}}/X)} = j_* f_* \sum_{w \in W/W'} \frac{w[F]}{(-1)^{\epsilon(w)} \lambda_{-1}(N_{q_{w'}}/X)},
\]

\[
(18) \quad = j_* \sum_{w \in W/W'} \frac{w[F]}{(-1)^{\epsilon(w)} \lambda_{-1}(N_{q_{w'}}/X)},
\]

\[
(19) \quad = \sum_{w \in W/W'} \frac{w[F]}{(-1)^{\epsilon(w)} \lambda_{-1}(N_{q_{w'}}/Y)},
\]

\[
(20) \quad = \sum_{w \in W/W'} \frac{w[F]}{(-1)^{\epsilon(w)} \lambda_{-1}(T_{w'})}.
\]

Exactness of pushforward to a point justifies the second equality, and the third equality comes from \(j_* j^*[G] = [G] \otimes \lambda_{-1}(N_{q_{w'}}/Y) \) for \([G] \in K_0^T(Y) \). We rewrite to acknowledge that \(T_{w'} = T_X - \pi^* T_Y \). Summing over \(w \in W/W' \) will automatically sum over all \(w' \in W/W' \), and the sum will be \(W/W' \)-invariant.

\[\square \]

For later use, we compute this explicitly in terms of line bundles for the pushforward from a type A flag manifold \(Fl(m_1, \ldots, m_\ell, m_{\ell+1} = r) \) to a type A Grassmannian \(Gr(r, n) \) with tautological bundle \(S \). Compute \([T_{w}] = [T_{Fl}] - \pi^*[T_{Gr}]\).
Theorem 1. The K-theoretic J-function for the Grassmannian $Gr(r,n)$ is

$$J^{Gr(r,n),K}(Q,q) = \sum_d Q^d J_d^{Gr(r,n),K}(q)$$

where

$$J_d^{Gr(r,n),K}(q) = \sum_{d_1 + \cdots + d_r = d} (-1)^{(r-1)d} \left(\frac{\prod_{1 \leq j < i \leq r} (1 - L_i^\vee \otimes L_j) q^{d_i - d_j}}{\prod_{1 \leq j < i \leq r} (1 - L_i^\vee \otimes L_j) \prod_{i=1}^d (1 - L_i^\vee q^n)^{r_i}} \right).$$

Proof. The proof that follows is quite analogous to the proof by localization for the cohomological version in [BCFK05]. The reader is referred to [BCFK05] for the proofs of the statements of the lemmas 4.1 and 4.3 below on the torus-fixed loci of Quot schemes.

To understand torus-fixed points of $\text{Quot}_{\mathbb{P}^1,d}(\mathbb{C}^n, n-r)$, $\text{Quot}_{\mathbb{P}^1,d}(\mathbb{C}^r,0)$ must be understood. The points of $\text{Quot}_{\mathbb{P}^1,d}(\mathbb{C}^r,0)$ are degree d torsion quotients of...
Denote the projection from P and K so that···

Lemma 5 with the kernel splitting type $\{\text{Quot}\}$ the image. The fixed points of Quot with the property that each fixed point of the Quot scheme’s torus-fixed loci.

allows us to exploit the flag variety structure of the Quot scheme’s torus-fixed loci.

Lemma 4 (1.1 in [BCFK05]). For each splitting type $\{d_i\}$ as above, let $m_1 < m_2 < \cdots m_k$ denote the jumping indices (i.e., $0 \leq d_1 = \cdots d_{m_1} < d_{m_1+1} = \cdots = d_{m_2} < \cdots$). Then there is an embedding of the flag manifold:

$$i_{\{d_i\}} : \text{Fl}(m_1, m_2, \ldots, m_k; r) \hookrightarrow \text{Quot}_{p^1, d}(C^r, 0)$$

with the property that each fixed point of the C^\ast-action with $\text{supp}(Q) = \{0\}$ and with the kernel splitting type $\{d_i\}$ corresponds to a point of the image of $i_{\{d_i\}}$.

Recall from our pushforward example the universal flag on $\text{Fl}(m_1, m_2, \ldots, m_k; r)$:

$$0 \subseteq S_{m_1} \subset S_{m_2} \subset \cdots S_{m_k} \subset S_{m_{k+1}} = C^r \otimes O_{\text{Fl}}.$$ Denote the projection from p^1 to Fl by π. Construct a sheaf \mathcal{K} over $p^1 \times \text{Fl}$ so that $\mathcal{K} := \hat{S}_{m_{k+1}}$ where

$$0 \subset \pi^* S_{m_1} \subset S_{m_2}^{(1)} \subset \cdots \subset S_{m_{i-1}}^{i-1} \subset \cdots \subset S_{m_{k+1}}^{(k)} \subset C^r \otimes O_{p^1 \times \text{Fl}}$$

and

$$S_{m_i}^{(i-1)} / S_{m_{i-1}}^{(i-2)} \cong \pi^* (S_{m_i} / S_{m_{i-1}})(-d_{m_i}z).$$

Lemma 5 (1.2 in [BCFK05]). There is a natural C^\ast-equivariant embedding

$$j : \text{Quot}_{p^1, d}(S, 0) \hookrightarrow \text{Quot}_{p^1, d}(C^n, n - r)$$

such that all the fixed points of the C^\ast-action on $\text{Quot}_{p^1, d}(C^n, n - r)$ are contained in the image. The fixed points of $\text{Quot}_{p^1, d}(C^n, n - r)$ that also satisfy $\text{supp} (\text{tor}(Q)) = \{0\}$ (the support of the torsion part of Q) are precisely the images of flag manifolds

$$i_{\{d_i\}} : \text{Fl}(m_1, m_2, \ldots, m_k; r; n) = \text{Fl}(m_1, m_2, \ldots, m_k; S) \hookrightarrow \text{Quot}_{p^1, d}(S, 0)$$

embedded by the relative version of Lemma 1.1.

Use the following diagram to justify a K-theoretic version of lemma 1.3 from [BCFK05], which shifts the calculation of the residue to the Quot scheme and allows us to exploit the flag variety structure of the Quot scheme’s torus-fixed loci.

\[
\begin{array}{ccc}
\text{Quot}_{p^1, d}(C^n, n - r) & \xrightarrow{v} & \mathbb{P}^{n-1}_d \\
\downarrow & & \downarrow \text{id}^{Gr(r,n)} \\
\Pi_{\{d_i\}} i_{\{d_i\}}(\text{Fl}) & \xrightarrow{p} & \mathbb{P}^{n-1}_d \\
\downarrow & & \downarrow q \\
& \text{Gr}(r,n) & \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Quot}_{p^1, d}(C^n, n - r) & \xrightarrow{v} & \mathbb{P}^{n-1}_d \\
\downarrow & & \downarrow \text{id}^{Gr(r,n)} \\
\Pi_{\{d_i\}} i_{\{d_i\}}(\text{Fl}) & \xrightarrow{p} & \mathbb{P}^{n-1}_d \\
\downarrow & & \downarrow q \\
& \text{Gr}(r,n) & \\
\end{array}
\]
Lemma 6.

\[(26)\]
\[j_d^{Gr,K}(q) = \sum_{\{d_i\}} \rho^* \left(\frac{[O_{i(d_i)}^{Fl}]}{\lambda_{i(d_i)}^G(T_{i(d_i)}^\vee)} \right),\]

where \(\rho : Fl(m_1, \ldots, m_k, r, n) \rightarrow Gr(r, n)\).

Proof. The second row of the diagram consists of \(\mathbb{C}^*\)-fixed loci of the first row. Use correspondence of residues twice and the fact that \(u_* [O_{G^{Gr(r, n)}_d}] = v_* [O_{\text{Quot}^{p_1, d}(\mathbb{C}^n, n-r)}]\) to see that

\[q_* \left(\frac{[O_{M_d^{Gr(r, n)}}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) = \sum_{\{d_i\}} \rho_* \left(\frac{[O_{i(d_i)}^{Fl(d_i)}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right).\]

(See [SS01] for a proof that the image of \(u\) and \(v\), \(Gr(r, n)_d\), has rational singularities.) However, this equality is on \(\mathbb{P}(\mathbb{C})\) rather than \(Gr(r, n)\). Add an additional action by \(T = (\mathbb{C}^*)^n\) with weights \(\lambda_1, \ldots, \lambda_n\) to obtain an injective map induced by the Plücker embedding

\[K_T^*(Gr(r, n)) \rightarrow K_T^*(\mathbb{P}(\mathbb{C})).\]

This allows us to view the following classes in \(K_T(\mathbb{P}(\mathbb{C}))\) as classes in \(K_T(Gr(r, n))\):

\[q_T^* \left(\frac{[O_{M_d^{Gr(r, n)}}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) = \sum_{\{d_i\}} \rho_T^* \left(\frac{[O_{i(d_i)}^{Fl(d_i)}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) \in K_T^*(Gr(r, n)).\]

In particular, their restrictions are also in \(K_T(Gr(r, n))\):

\[ev_T^* \left(\frac{[O_{M_d^{Gr(r, n)}}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) = \sum_{\{d_i\}} \rho_T^* \left(\frac{[O_{i(d_i)}^{Fl(d_i)}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) \in K_T^*(Gr(r, n)).\]

As \(\lambda_i \rightarrow 0\) the \(\mathbb{C}^* \times T\)-equivariant terms go to the \(\mathbb{C}^*\)-equivariant terms:

\[ev^* \left(\frac{[O_{M_d^{Gr(r, n)}}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) = \sum_{\{d_i\}} \rho^* \left(\frac{[O_{i(d_i)}^{Fl(d_i)}]}{\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)} \right) \in K^*(Gr(r, n)).\]

\(\square\)

To find the J-function for the Grassmannian, then, we need to find \(\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee)\) and push it forward using localization. We know that

\[(27)\]
\[\lambda_{i(d_i)}^C(T_{i(d_i)}^\vee) = \lambda_{i(d_i)}^C(T \text{ Quot}^{\vee}_{i(d_i)} F_l / T F^\vee l)\]

\[= \lambda_{i(d_i)}^C((\pi_s \star \mathcal{K}^\vee / \pi_s \star S^\vee)^\vee) \gamma \lambda_{i(d_i)}^C((R^1 \pi_s \star \mathcal{K}^\vee \otimes \mathcal{K})^\vee)\]

\[(28)\]

The second equality comes from the following exact sequences:

\[(29)\]
\[0 \rightarrow \pi_s (\mathcal{K}^\vee \otimes \mathcal{K}) \rightarrow \pi_s \mathcal{K}^\vee \otimes \mathbb{C}^n \rightarrow T \text{ Quot} \rightarrow R^1 \pi_s \mathcal{K}^\vee \otimes \mathcal{K} \rightarrow 0\]

\[(30)\]
\[0 \rightarrow K \rightarrow \rho^* S^\vee \otimes \mathbb{C}^n \rightarrow T F l(m_1, \ldots, m_k, S) \rightarrow 0.\]
The filtration of K worked out in the pushforward example (see section (1.5)) gives

$$[TFl] = n[\rho^* S^\vee] - \sum_{i,j} (S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}}).$$

Once again, the splitting principle gives this in terms of line bundles:

$$\sum_{s=1}^{m_i-m_{i-1}} L_{m_{i-1}+s} = (S_{m_i}/S_{m_{i-1}})^\vee$$

in the Grothendieck group of Fl. Thus

$$[TFl] = n \sum_i \sum_s L_{m_{i-1}+s} - \sum_{i,j} \sum_{s,t} (L_{m_{i-1}+s} \otimes L_{m_{i-1}+t}^\vee).$$

Taking the equivariant Euler class of the dual of the previous,

$$\lambda^*_{\text{et}} (TFl^\vee) = \prod_{t=1}^n \prod_{s=1}^{m_{i-1}} (1 - L_{m_{i-1}+s}^\vee \otimes L_{m_{i-1}+t}).$$

Moving to $T \text{Quot}$, note that we restrict to $\mathbb{P}^1 \times Fl$ from $\mathbb{P}^1 \times \text{Quot}$, and then project by $\pi: \mathbb{P}^1 \times Fl \to Fl$. We will use the fact that

$$[K^\vee \otimes K] = \sum_{i,j=1}^{k+1} [\pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j})].$$

It is easiest to consider the complex $R^\bullet \pi_*(K^\vee \otimes K)$, because many cancellations will occur between the two terms.

Compute by looking at the complex $R^\bullet \pi_*(K^\vee \otimes K)$ fiberwise.

$$[R^\bullet \pi_*(K^\vee \otimes K)] \cong [H^0(\mathbb{P}^1, \oplus_{i,j=1}^{r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j}))]
- [H^1(\mathbb{P}^1, \oplus_{i,j=1}^{r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j}))]
= [H^0(\mathbb{P}^1, \oplus_{1 \leq i < j \leq r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j}))]
- [H^1(\mathbb{P}^1, \oplus_{1 \leq i < j \leq r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j}))]

In the last line we drop the portions of the fiber bundle that don’t contribute because of the twist by $O(d_{m_i} - d_{m_j})$.

Use Serre duality on the H^1 term:

$$H^1(\mathbb{P}^1, \oplus_{1 \leq i < j \leq r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(d_{m_i} - d_{m_j}))]
\cong [H^0(\mathbb{P}^1, \oplus_{1 \leq i < j \leq r+1} \pi^*((S_{m_i}/S_{m_{i-1}})^\vee \otimes (S_{m_j}/S_{m_{j-1}})(-d_{m_i} + d_{m_j} - 2))]^\vee.$$

In order to get equivariant Euler characteristic, rewrite using splitting principle as sum of line bundles:

$$[R^\bullet \pi_*(K^\vee \otimes K)] = [\oplus_{1 \leq i \leq j \leq r+1} (\oplus_s L_{m_{i-1}+s}^\vee \otimes (\oplus_t L_{m_{j-1}+t}^\vee)(d_{m_i} - d_{m_j}))
- [\oplus_{1 \leq i \leq j \leq r+1} (\oplus_s L_{m_{i-1}+s}^\vee \otimes (\oplus_t L_{m_{j-1}+t}^\vee)(-d_{m_i} + d_{m_j} - 2)].$$
Since the dual appears on the line bundle with smaller index on both sides, reindex so that L^\vee has index j, $j < i$.

\[(38) \quad [R^*\pi_*(K^\vee \otimes K)] = [\oplus_{1 \leq i \leq r + 1} (\oplus_s L_{m_{i-1} + s}) \otimes (\oplus_t L_{m_{j-1} + t})(d_{m_i} - d_{m_j})]
- [\oplus_{1 \leq i < j \leq r + 1} (\oplus_s L_{m_{i-1} + s}) \otimes (\oplus_t L_{m_{j-1} + t})(-d_{m_j} + d_{m_i} - 2)].\]

When we take equivariant Euler classes, we decompose according to the character q^k of the S^1-action on \mathbb{P}^1: $\lambda^C_{-1}(\oplus_i \mathcal{L}_i \otimes \mathcal{O}(d)) = \prod_i \prod_{k=0}^d (1 - \mathcal{L}_i q^k)$. Looking at the S^1-action on $H^0(\mathbb{P}^1, F(d))$ and $H^1(\mathbb{P}^1, F(d)) \nu$ tells us that all sections “in the middle” cancel, and we are left with

\[(39) \quad \lambda^C_{-1}((R^0\pi_*(K^\vee \otimes K) \otimes R^1\pi_*(K^\vee \otimes K))^\nu)
= \prod_{i > j, s \leq t}(1 - \mathcal{L}_{m_{i-1} + s} \otimes \mathcal{L}_{m_{j-1} + t})(1 - \mathcal{L}^\vee_{m_{i-1} + s} \otimes \mathcal{L}_{m_{j-1} + t}),\]

where $r_i = m_i - m_{i-1}$ and $d_{ij} = d_i - d_j$. In addition, there is a term with $i = j$ that cancels with an equal contribution from K below.

The rest of the calculation proceeds more easily:

\[(40) \quad \lambda^C_{-1}(K^\nu) = \lambda^C_{-1}((\oplus_{1 \leq i \leq r + 1} (S_{m_i} / S_{m_{i-1}})^\nu \otimes (S_{m_i} / S_{m_{i-1}}))^\nu)
= \prod_{1 \leq i \leq r + 1} \prod_{s,t}(1 - \mathcal{L}_{m_{i-1} + s} \otimes \mathcal{L}_{m_{i-1} + t}).\]

Notice that within is the piece with $i = j$ that cancels exactly the same contribution from $[R^*\pi_*(K^\vee \otimes K)]$.

Finally,\n
\[(41) \quad \lambda^C_{-1}((\pi_* K)^n) = \lambda^C_{-1}((\pi_* (\oplus i \pi^*(S_{m_i} / S_{m_{i-1}})^\nu (d_{m_i})))^n)^\nu
= \prod_{i=1}^{r+1} \prod_{s=1}^{r_i} \prod_{k=0}^{d_{m_i}} (1 - \mathcal{L}_{m_{i-1} + s} q^k)^n.\]

while

\[(42) \quad \lambda^C_{-1}((\pi_* S)^n) = \prod_{i=1}^{r+1} \prod_{s=1}^{r_i} \prod_{k=0}^{d_{m_i}} (1 - \mathcal{L}_{m_{i-1} + s} q^k)^n.\]

Thus

\[(43) \quad \lambda^C_{-1}((\pi_* K / \pi_* S)^n) = \prod_{i=1}^{r+1} \prod_{s=1}^{r_i} \prod_{k=0}^{d_{m_i}} (1 - \mathcal{L}^\vee_{m_{i-1} + s} q^k)^n.\]

Combine all of the above, with a little bit of re-indexing here and there:

\[(44) \quad \lambda^C_{-1}(T_{(d_i)}^\nu) = \prod_{i > j} (-1)^{r_j (d_j - 1)} \prod_{s,t} (1 - \mathcal{L}^\vee_{m_{i-1} + s} \otimes \mathcal{L}_{m_{j-1} + t} q^{d_{ij}})^n / \prod_{i=1}^{r+1} \prod_{s} \prod_{k=0}^{d_{m_i}} (1 - \mathcal{L}^\vee_{m_{i-1} + s} q^k)^n.\]

This is what we now need to push forward, as

\[(45) \quad J_d^{Gr(r,n),K}(h) = \sum_{(d_i)} \rho \left(\prod_{i > j} (-1)^{r_j (d_j - 1)} \prod_{s,t} (1 - \mathcal{L}^\vee_{m_{i-1} + s} \otimes \mathcal{L}_{m_{j-1} + t} q^{d_{ij}})^n / \prod_{i=1}^{r+1} \prod_{s} \prod_{k=0}^{d_{m_i}} (1 - \mathcal{L}^\vee_{m_{i-1} + s} q^k)^n \right).\]
Using the pushforward lemma \(\rho \), we know that

\[
\sum_{\{d_i\}} \rho_* P = \sum_{\{d_i\}} \sum_w \left[\frac{P}{\chi_{-1}(T_w^v)} \right]
\]

for \(w \in S_r/(S_{r_1} \times \cdots \times S_{r_k}) \).

Finally, use the reasoning from [BCFK05] given any partition \(d_i \) of \(d \) with \(k + 1 \) distinct \(d_i \)s and \(r_i \) denoting multiplicity, there is a unique \(w \in S_r/(S_{r_1} \times \cdots \times S_{r_k}) \) such that \(w^{-1} \) arranges \((d_1, \ldots, d_r)\) in nondecreasing order \(d_1 \leq \cdots \leq d_r \) using this to replace the double sum:

\[
J_{d}^{Gr(r,n), K}(q) = \sum_{\{d_i\}} \sum_{w} \left(\frac{\prod_{j<i} \prod_{s,t} (1 - \mathcal{L}_{m_{j-1}+1}^s \otimes \mathcal{L}_{m_{r_j-1}+1}^t q^{d_{ij}})}{\prod_{i=1}^{r+1} \prod_{s=1}^{d_{im_i}} (1 - \mathcal{L}_{m_{r_j-1}+1}^s \otimes \mathcal{L}_{m_{r_j-1}+1}^t)} \right)
\]

\[
= \sum_{d} (-1)^{r-1} d \left(\frac{\prod_{1 \leq j < i \leq r} (1 - \mathcal{L}_{ij}^s \otimes \mathcal{L}_{ij}^t q^{d_{ij}})}{\prod_{1 \leq j < i \leq r} (1 - \mathcal{L}_{ij}^s \otimes \mathcal{L}_{ij}^t)} \prod_{i=1}^{d_{im_i}} (1 - \mathcal{L}_{m_{r_j-1}+1}^s \otimes \mathcal{L}_{m_{r_j-1}+1}^t) \right).
\]

This process will be used in all further computations of K-theoretic J-functions.

2.1. Application: the abelian-nonabelian correspondence

One corollary of this result is the analogue of a result in [BCFK05], a proof of one case of the abelian-nonabelian correspondence. The abelian-nonabelian correspondence is a broad conjectural relationship between the Gromov-Witten theories and Frobenius structures of GIT quotients of a space \(V \) by a group \(G \) and its maximal torus \(T \subset G \).

In this case, we consider \(V = \text{Hom}(\mathbb{C}^r, \mathbb{C}^n) \) and \(G = GL_k \). Then \(V//G = Gr(r,n) \) and \(V//T = (\mathbb{P}^{n-1})^r \). In [BCFK05], it is shown that

\[
J^{Gr(r,n)} = e^{-\sigma_1 (r-1) \pi \sqrt{-1} / h} \mathcal{D}_{\Delta} J^{(\mathbb{P}^{n-1})^r} |_{t_i = t + (r-1) \pi \sqrt{-1} / h},
\]

where

\[
\Delta = \prod_i (x_i - x_j)
\]

\[
\mathcal{D}_{\Delta} = \prod_{i<j} \left(\frac{\partial}{\partial t_i} - \frac{\partial}{\partial t_j} \right),
\]

and \(t_i \) a basis for \(H_2(Gr(r,n), \mathbb{C}) \), \(x_i \) Chern roots of the dual of the tautological bundle \(S^v \), and \(\sigma_1 \) the basis for \(H^2(Gr(r,n), \mathbb{C}) \).

We must make modifications for the K-theoretic version, and take inspiration from [GL03]. Use the operator

\[
q^{\partial/\partial t_i} : t_j \mapsto t_j + \delta_{ij} \ln q
\]

to define

\[
\mathcal{D}_{\Delta} := \prod_{i<j} \left(q^{\partial/\partial t_i} - q^{\partial/\partial t_j} \right).
\]

In addition, we define

\[
\Delta := \prod_{i>j} (\mathcal{L}_{ij}^s - \mathcal{L}_{ij}^t) = \prod_{i>j} (1 - \mathcal{L}_{ij}^s \otimes \mathcal{L}_{ij}^t).
\]

Notice the switch from \(i < j \) to \(i > j \): this is because in K-theory our notion of “positivity” is different. (See work of [GK95, GR04, AGM08] for more on positivity.
Thus the application of \(D^\Delta(J^{(p_n-1)}r,K) \) to the same results in
\[
\left. \frac{D^\Delta(J^{(p_n-1)}r,K)}{\Delta} \right|_{t_i=t+(r-1)\pi\sqrt{-1}} = (L^\nu)^{\ln q} f_{Gr(r,n),K}
\]

Proof. Recall that the K-theoretic J-function for the Grassmannian \(Gr(r,n) \) is
\[
J^{Gr(r,n)}(Q,q) = \sum_d J^d_{Gr(r,n),K}(q)Q^d
\]

where
\[
J^d_{Gr(r,n),K}(q) = \sum_{d_1+\cdots+d_r=d} (-1)^{(r-1)d} \left(\frac{\prod_{1 \leq j < i \leq r} (1 - L_i^\nu \otimes L_j^\nu q^{d_i-d_j})}{\prod_{1 \leq j < i \leq r} (1 - L_i^\nu \otimes L_j^\nu) \prod_{i=1}^d (1 - L_i^\nu q^{d_i})^n} \right).
\]

Applying \(q^{\delta/\Omega} \) to \((L^\nu)^{\ln q} f_{Gr(p_n-1)}r,K \), we get
\[
q^{\delta/\Omega}((L^\nu)^{\ln q} f_{Gr(p_n-1)}r,K) = \sum_{d_1+\cdots+d_r=d} L_i^\nu q^{d_i}((L^\nu)^{\ln q} f_{d,p_n-1}r,K).
\]

Thus the application of \(D^\Delta/\Delta \) to the same results in
\[
\left. \frac{D^\Delta((L^\nu)^{\ln q} f_{Gr(p_n-1)}r,K)}{\Delta} \right|_{t_i=t+(r-1)\pi\sqrt{-1}} = \left(\prod_{i>j} \frac{L_i^\nu q^{d_i} - L_j^\nu q^{d_j}}{(L_i^\nu \otimes L_j^\nu)} \right) \left((L^\nu)^{\ln q} f_{d,p_n-1}r,K) \right)
\]

\[
= \prod_{i>j} \left(1 - L_i^\nu \otimes L_j^\nu q^{d_i-d_j} \right) \left((L^\nu)^{\ln q} f_{d,p_n-1}r,K) \right).
\]

When \(t_i \) is specialized to \(t + (r-1)\pi\sqrt{-1} \), \(Q_i \) goes to \(e^{t} \), so \(e^{t+(r-1)\pi\sqrt{-1}} = (-1)^{(r-1)}Q \), and so
\[
\left. \frac{D^\Delta(J^{(p_n-1)}r,K)}{\Delta} \right|_{t_i=t+(r-1)\pi\sqrt{-1}} = (L^\nu)^{\ln q} f_{Gr(r,n),K}
\]

which is \((L^\nu)^{\ln q} f_{Gr(r,n),K}. \)

\(\square \)

3. The J-function of flag varieties of type A

3.1. A simple lemma.** To calculate the K-theoretic J-function of the flag manifold, more machinery is needed. We will look at the flag manifold as a subvariety of a product of Grassmannians, all embedded in projective space: \(Fl(m_1,\ldots,m_\ell = k,n) \subset \prod_{i=1}^\ell Gr(m_i,n) \subset P^N. \) A more general result can be proved for homogeneous varieties \(X \subset Y \subset P^N. \) In all the following \(Y \) will be a Grassmannian or a product of Grassmannians.

Just as in our calculation of the K-theoretic J-function of projective space itself, we will want to compare \(M^X_d \subset G^X_d \) to some \(X_d \subset P^N_d. \) The equations that cut \(X \) and \(Y \) out of \(P^N \) naturally extend to cut out \(X_d \subset Y_d \subset P^N_d \) because \(X \)
and \(Y \) are homogeneous. We will also need the Quot schemes \(Q_d^Y \subset Q_d^X \), where \(Q_d^Y \) is another smooth compactification of \(\text{Map}_d(\mathbb{P}^1, Y) \). There is an equivariant morphism \(v : Q_d^Y \to \mathbb{P}^N_d \). A sheaf in the Grothendieck group of \(Q_d^Y \) that will enable us to calculate the K-theoretic J-function of \(X \) from the K-theoretic J-function of \(Y \) is desired; we show that \(O_{Q_d^X} \) suffices if \(Q_d^X \) has rational singularities.

For \(Y \) a Grassmannian or product of Grassmannians, \(Y_d \) is the closure of \(\text{Map}_d(\mathbb{P}^1, Y) \subset \text{Map}_d(\mathbb{P}^1, \mathbb{P}^N) \subset \mathbb{P}^N_d \). \(Y_d \) may be singular, but has rational singularities \([SS01]\). There is a birational map \(u : G_d^Y \to Y_d \) so that in cohomology \(u^* [G_d^Y] = [Y_d] \). Since \(G_d^Y \) is a rational desingularization we also have \(u^* [O_{G_d^Y}] = [O_{Y_d}] \) in K-theory.

To prove the lemma below, assume that there exists \(O_{Q_d^X} \in K(Q_d^X) \) satisfying

\[(†) v^*(O_{Q_d^X}) = O_d := u^*(O_{G_d^X}).\]

This is equivalent to knowing that \(Q_d^X \) has rational singularities.

Consider the diagram

\[
\begin{array}{cccc}
G_d^X & \to & \mathbb{P}^N_d & \to & Q_d^Y \\
\downarrow \alpha_d & & \downarrow v & & \downarrow \alpha_F \\
M_d^X & \to & Y & \to & \mathbb{P}^N_d \\
\downarrow j & & \downarrow g & & \downarrow j \\
X & \to & F & \to & \mathbb{P}^N_d \\
\end{array}
\]

Lemma 7. Let \(Y \subset \mathbb{P}^n \) be a homogeneous variety, and \(X \) the zero scheme of a regular section of a \(T \)-equivariant vector bundle \(E \in K_d^0(X) \). (Here \(T = (\mathbb{C}^*)^n \).

Then

\[(61) \quad J_d^{X,K}(q) = k^* g_* \left(\frac{\alpha_F^*[O_{Q_d^Y}]}{\lambda^c_{-1}(N_{E_Y^d}/F)} \right) \]

Proof. We use \(\mathbb{C}^* \)-equivariant K-theory to compute the degree \(d \) component of the \(J \)-function of \(X \). By definition,

\[(62) \quad J_d^{X,K}(Q, q) = ev_* \left(\frac{[O_{M_d^X}]}{\lambda^c_{-1}(N_{M_d^X/G_d^X})} \right) = ev_* \left(\frac{[O_{M_d^X}]}{(1 - q \mathcal{L})} \right) \]

Recall that \(\mathbb{C}^* \) acts on the graph space \(G_d^X \) and has \(M_d^X \) as a component of the fixed locus. Let \(i \) be the composition of inclusions \(k : X \hookrightarrow Y \) and \(j : Y \hookrightarrow \mathbb{P}^N_d \).
Apply i_* to both sides:

$$i_*J^X_d(q) = i_*ev_*\left(\frac{[\mathcal{O}_{M^Y_d}]}{\lambda_{-1}(N_{M^Y_d}^\vee/G^Y_d)}\right) \quad (63)$$

From the diagram preceding the lemma, notice that we can use some version of the correspondence of residues, noticing that $\frac{[\mathcal{O}_{M^Y_d}]}{\lambda_{-1}(N_{M^Y_d}^\vee/G^Y_d)}$ itself is the residue on M^Y_d of the class $[\mathcal{O}_{G^Y_d}]$. Thus

$$i_*ev_*\left(\frac{[\mathcal{O}_{M^Y_d}]}{\lambda_{-1}(N_{M^Y_d}^\vee/G^Y_d)}\right) = \alpha^*_d u_*[\mathcal{O}_{G^Y_d}] \quad (64)$$

The second equality follows from the ($†$) assumption.

We can use correspondence of residues again with another part of the diagram:

$$Q^Y_d \xrightarrow{\nu} \mathbb{P}^N_d$$

$$\alpha^*_F \quad \quad \alpha_d \quad .$$

$$F \xrightarrow{f} \mathbb{P}^N$$

Here F is the fixed component of Q^Y_d; for ease of notation we pretend there is only one component although there may be several. This gives us

$$i_*J^{X,K}_d(q) = \frac{\alpha^*_d u_*[\mathcal{O}_{Q^Y_d}]}{\lambda_{-1}(N_{Q^Y_d}^\vee/P_{Q^Y_d})} \quad (66)$$

$$= f_* \frac{\alpha^*_F[\mathcal{O}_{Q^Y_d}]}{\lambda_{-1}(N_{F/Q^Y_d})} \quad (67)$$

$$= j_* g_* \frac{\alpha^*_F[\mathcal{O}_{Q^Y_d}]}{\lambda_{-1}(N_{F/Q^Y_d})} \quad (68)$$

Notice that f is a composition of g and j.

Since X is cut out of Y as the zero-section of a T-equivariant bundle, $\mathbb{C}^* \times T$-equivariant K-theory is used to obtain the equality

$$J^{X,K}_d(q) = \frac{i^* i_*J^{X,K}_d(q)}{\lambda_{-1}(N_{X/P})} \quad (69)$$

Use (66) to rewrite:

$$J^{X,K}_d(q) = \frac{1}{\lambda_{-1}(N_{X/P})} i^* \left(j_* g_* \frac{\alpha^*_F[\mathcal{O}_{Q^Y_d}]}{\lambda_{-1}(N_{F/Q^Y_d})} \right) \quad (70)$$

For the last time, we use correspondence of residues noticing that i is the composition of j and k.
To compute \(\alpha \rightarrow \bigoplus (76) \),
sequence
Proof. Finding \(d \) Here
\(\text{Flag into the product of Grassmannians} \)
(75)
3.2. Flag Varieties of Type A. Consider, as in [BCFK08], the embedding of the flag into the product of Grassmannians
(73)
The flag variety is cut out as the zero scheme of a section of the vector bundle
(74)
where \(S_i \) is the tautological bundle and \(Q_i \) the quotient bundle for each \(Gr(m_i, n) \).
Look at the corresponding product of Quot schemes of vector bundle subsheaves
\(K \subset C^\ell \otimes O_{P^1} \) of degree \(-d_i \) and rank \(m_i \). We denote by \(HQ_d \) the zero scheme of the section of \(\pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes V/K_{i+1}) \) on this product. This is the fundamental class of the “hyperquot” scheme, and it is smooth and irreducible. Its structure sheaf \(O_{HQ_d} \) satisfies the (f) condition [GL03].

Theorem 2. The K-theoretic J-function for flag varieties \(Fl(m_1, \ldots, m_\ell, n) \) of type A is
(71)
\[
J_d^{Fl,K}(q) = \sum_d J_d^{Fl,K}(q) Q^d
\]
where
(75)
Here \(L_{i,j} \) are the \(j \) Chern line bundles coming from splitting of \(S_i^\vee \) and the sum is over \(d = (d_1, \ldots, d_\ell) \), where \(d_i \) comes from pairing the curve class with \(c_1(S_i^\vee) \).

Proof. Finding \(\lambda_{-1}^\vee(E^\vee) \) is a fairly straightforward computation using the exact sequence
(76)
\[
0 \rightarrow \oplus_{i=1}^\ell S_i^\vee \otimes S_{i+1} \rightarrow \oplus_{i=1}^{\ell-1} S_i^\vee \otimes C^n \rightarrow E \rightarrow 0.
\]
To compute \(\alpha_f^*[O_{HQ_d}] \) we exploit the Koszul complex for \(\pi_* (K_i^\vee \otimes V/K_{i+1}) \), since \(HQ_d \) is cut out of \(Q_d^\vee \) by a regular section \(s \) of this bundle and thus the Koszul
complex gives a finite locally free resolution for $O_{H^Q_d}$ (Recall that π is the projection from $P^1 \times \prod q_i Q_{d_i}^{Gr(m_i,n_i)}$ to $\prod q_i Q_{d_i}^{Gr(m_i,n_i)}$, and for each Quot scheme $Q_{d_i}^{Gr(m_i,n_i)}$, K_i is the universal subsheaf.)

On $P^1 \times \prod q_i Q_{d_i}^{Gr(m_i,n_i)}$, we have

$$(77) \quad 0 \to K_i^\vee \otimes K_{i+1} \to K_i^\vee \otimes V \to K_i^\vee \otimes V/K_{i+1} \to 0.$$

Push forward to the product of Quot schemes, noting that now $\pi_* K_i^\vee \otimes V/K_{i+1}$ is an honest vector bundle:

$$(78) \quad 0 \to \pi_*(K_i^\vee \otimes K_{i+1}) \to \pi_*(K_i^\vee \otimes V) \to \pi_*(K_i^\vee \otimes V/K_{i+1}) \to R^1 \pi_*(K_i^\vee \otimes K_{i+1}) \to 0.$$

Use this exact sequence to explicitly calculate $\lambda^{\vee}_{-1}(\pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes V/K_{i+1}))$, which happens to give the Koszul complex of $O_{H^Q_d}$. From the sequence, (79)

$$\lambda^{\vee}_{-1} \left((\pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes V/K_{i+1}))^\vee \right) = \frac{\lambda^{\vee}_{-1}(R^1 \pi_*(K_i^\vee \otimes K_{i+1}))^\vee \lambda^{\vee}_{-1}(\pi_*(K_i^\vee \otimes V)^\vee)}{\lambda^{\vee}_{-1}(\pi_*(K_i^\vee \otimes K_{i+1})^\vee)}.$$

Now we compute the contribution of each term separately. Computations take place on the fixed locus of Q_d^\vee, whose components are indexed by splittings of d.

First,

$$(80) \quad \lambda^{\vee}_{-1}(\pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes V)^\vee) = \prod_{i=1}^\ell \prod_{j=1}^m \prod_{k=0}^{d_{i,j}} (1 - L_{i,j}^\vee q^m)^n$$

Look then at $R^0 \pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes K_{i+1}) - R^1 \pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes K_{i+1})$. Fiberwise, we can look at this as

$$(81) \quad H^0(P^1, \oplus_{i=1}^\ell \oplus_{j,k} L_{i,j} \otimes L_{i+1,k}^\vee (d_{i,j} - d_{i+1,k})) - H^1(P^1, \oplus_{i=1}^\ell \oplus_{j,k} L_{i,j} \otimes L_{i+1,k}^\vee (d_{i,j} - d_{i+1,k})).$$

Use Serre duality:

$$R^s \pi_* (\oplus_{i=1}^\ell K_i^\vee \otimes K_{i+1}) = H^0(P^1, \oplus_{i=1}^\ell \oplus_{j,k} L_{i,j} \otimes L_{i+1,k}^\vee (d_{i,j} - d_{i+1,k}))$$

$$- H^1(P^1, \oplus_{i=1}^\ell \oplus_{j,k} L_{i,j} \otimes L_{i+1,k}^\vee (-d_{i,j} + d_{i+1,k} + 2))^\vee.$$

For $d_{i,j} - d_{i+1,k} \geq 0$ we get a contribution of

$$(83) \quad \prod_{i=1}^\ell \prod_{j,k}^{d_{i,j}-d_{i+1,k}} \prod_{m=0}^{d_{i,j}-d_{i+1,k}} (1 - L_{i,j}^\vee \otimes L_{i+1,k} q^m).$$

For $d_{i,j} - d_{i+1,k} \leq -2$, we get

$$(84) \quad \prod_{i=1}^\ell \prod_{j,k}^{d_{i+1,k}-d_{i,j}} \prod_{m=1}^{d_{i+1,k}-d_{i,j}} (1 - L_{i,j}^\vee \otimes L_{i+1,k} q^m).$$

For $d_{i,j} - d_{i+1,k} = -1$, we get no contribution. We will see that $\lambda^{\vee}_{-1}(E^\vee)$ will pair nicely with this, so for now write the contribution as

$$(85) \quad \frac{\lambda^{\vee}_{-1}(R^1 \pi_*(K_i^\vee \otimes K_{i+1}))^\vee}{\lambda^{\vee}_{-1}(\pi_*(K_i^\vee \otimes K_{i+1})^\vee)} = \prod_{i=1}^\ell \prod_{1 \leq j \leq m_i, 1 \leq k \leq m_{i+1}} \prod_{m=-\infty}^{d_{i,j}-d_{i+1,k}} (1 - L_{i,j}^\vee \otimes L_{i+1,k} q^m) \prod_{m=-\infty}^{d_{i,j}-d_{i+1,k}} (1 - L_{i,j}^\vee \otimes L_{i+1,k} q^m).$$
The contributions of these terms are then combined to produce (86)
\[
\alpha_F^*(\mathcal{O}_{H_Q}) = \prod_{i=1}^{\ell} \prod_{1 \leq j \leq m_i, 1 \leq k \leq m_{i+1}} \frac{\prod_{m=0}^{d_{i,j}} (1 - \mathcal{L}_{i,j}^\vee q^m)^n}{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i+1,k} q^{d_{i,j} - d_{i+1,k}})(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i+1,k})}.
\]

Since we are trying to compute \(J_{d}^{F_1,K}(q) = k^* g_*(\alpha_F^*(\mathcal{O}_{H_Q}) / \mathcal{L}_C \mathcal{L}_C^\vee) \), we still need \(\mathcal{L}_C \mathcal{L}_C^\vee \).

(87) \[
\mathcal{L}_C \mathcal{L}_C^\vee = \frac{\mathcal{L}_C \mathcal{L}_C^\vee}{\mathcal{L}_C \mathcal{L}_C^\vee}
\]

(88) \[
= \frac{\mathcal{L}_C \mathcal{L}_C^\vee}{\mathcal{L}_C \mathcal{L}_C^\vee}
\]

(89) \[
= \prod_{i=1}^{\ell} \prod_{1 \leq j \leq m_i, 1 \leq k \leq m_{i+1}} \frac{(1 - \mathcal{L}_{i,j}^\vee)^n}{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i+1,k})}
\]

Combine to obtain the numerator:

(90) \[
\frac{\alpha_F^*(\mathcal{O}_{H_Q})}{\mathcal{L}_C \mathcal{L}_C^\vee} = \prod_{i=1}^{\ell} \prod_{1 \leq j \leq m_i, 1 \leq k \leq m_{i+1}} \frac{\prod_{m=0}^{d_{i,j}} (1 - \mathcal{L}_{i,j}^\vee q^m)^n}{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i+1,k} q^{d_{i,j} - d_{i+1,k}})}.
\]

This needs to be pushed forward to the product of Grassmannians via \(g \), along with \(\mathcal{L}_C \mathcal{L}_C^\vee \). See (3) for the formula for pushforward from a flag variety to a Grassmannian, which can be easily extended to the product of Grassmannians. See (46) for calculation of \(\mathcal{L}_C \mathcal{L}_C^\vee \). After pushing forward to the product of Grassmannians, pull back by \(k^* \); since we’re dealing with sums of line bundles, \(k^* \) is injective.

The K-theoretic J-function of the flag variety, then, is given by \(\sum_d Q^d J_{d}^{F_1,K}(q) \) and

(91) \[
J_{d}^{F_1,K}(q) = \prod_{i=1}^{\ell} (-1)^{(m_i-1)d_i} \prod_{1 \leq k < j \leq m_i} \frac{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i,k} q^{d_{i,j} - d_{i,k}})}{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i,k})}
\]

This can be rewritten in a form parallel to that in (BCK08, Giv98):

(92) \[
J_{d}^{F_1,K}(q) = \prod_{i=1}^{\ell} (-1)^{(m_i-1)d_i} \prod_{1 \leq k \neq j \leq m_i} \prod_{m=-\infty}^{0} \frac{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i,k} q^m)}{(1 - \mathcal{L}_{i,j}^\vee \otimes \mathcal{L}_{i,k} q^m)}.
\]
4. Directions for further research

Similar techniques apply to Lie groups of other types. Unfortunately, a direct application of the method of proof requires rationality of certain subschemes of the Quot scheme, which is currently not known. The following conjectures, however, follow:

Conjecture 1. The K-theoretic J-function for the Lagrangian complete flag variety, denoted by $L^\text{Fl}(1, 2, \ldots, n, 2n)$, is

$$J^{L^\text{Fl}, K}(Q, q) = \sum_d J^{L^\text{Fl}, K}_d(q)Q^d$$

where

$$J^{L^\text{Fl}, K}_d = \sum_{i=1}^n (-1)^{(i-1)d} \left(\prod_{1 \leq j < k \leq i} \prod_{m=0}^{d_i + d_k} \frac{(1 - L^\vee_j \otimes L^\vee_k q^m)}{1 - L^\vee_j \otimes L^\vee_k} \right) \cdot \left(\prod_{1 \leq j < k \leq i} \frac{(1 - L^\vee_k \otimes L^\vee_j q^{d_k - d_j})}{1 - L^\vee_k \otimes L^\vee_j} \right) \cdot \left(\prod_{i+1 \leq j \leq i+1} \prod_{1 \leq k \leq i} \frac{1}{(1 - L^\vee_j \otimes L^\vee_k q^{d_j - d_k})} \right).$$

Here $L_i = S^\vee_i / S^\vee_{i-1}$ and d_i is obtained by pairing the curve class with L_i.

Conjecture 2. The K-theoretic J-function for the complete flag varieties of types B and D is

$$J^{I^\text{Fl}, K}(Q, q) = \sum_d J^{I^\text{Fl}, K}_d(q)Q^d$$

where

$$J^{I^\text{Fl}, K}_d = \sum_{d_1 + \cdots + d_n = d} \prod_{i=1}^n (-1)^{(i-1)d} \left(\prod_{1 \leq j < k \leq i} \prod_{m=0}^{d_j + d_k} \frac{(1 - L^\vee_j \otimes L^\vee_k q^m)}{1 - L^\vee_j \otimes L^\vee_k} \right) \cdot \left(\prod_{1 \leq j < k \leq i} \frac{(1 - L^\vee_k \otimes L^\vee_j q^{d_k - d_j})}{1 - L^\vee_k \otimes L^\vee_j} \right) \cdot \left(\prod_{i+1 \leq j \leq i+1} \prod_{1 \leq k \leq i} \frac{1}{(1 - L^\vee_j \otimes L^\vee_k q^{d_j - d_k})} \right).$$

Another natural problem is establishing K-theoretic J-functions for toric varieties, and comparing the K-theoretic J-functions of flag and toric varieties to see whether the abelian-nonabelian correspondence also extends to that situation.

References

[AC87] Ersan Akyıldız and James B. Carrell, *An algebraic formula for the Gysin homomorphism from G/B to G/P*, Illinois J. Math. 31 (1987), no. 2, 312–320. MR 882116 (88f:32071)

[AGM08] Dave Anderson, Stephen Griffeth, and Ezra Miller, *Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces*, 2008.
Aaron Bertram, Ionuţ Ciocan-Fontanine, and Bumsig Kim, *Two proofs of a conjecture of Hori and Vafa*, Duke Math. J. **126** (2005), no. 1, 101–136. MR MR2110629 (2006e:14077)

BCFK08, *Gromov-Witten invariants for abelian and nonabelian quotients*, J. Algebraic Geom. **17** (2008), no. 2, 275–294. MR MR2369087

Anders Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, and Nicolas Perrin, *Finiteness of cominuscule quantum k-theory*, 2010.

Aarón Bertram, *Another way to enumerate rational curves with torus actions*, Invent. Math. **142** (2000), no. 3, 487–512. MR MR1804158 (2001m:14077)

Ber00b, *Some applications of localization to enumerative problems*, Michigan Math. J. **48** (2000), 65–75, Dedicated to William Fulton on the occasion of his 60th birthday. MR MR1786480 (2001i:14075)

Anders Buch and Leonardo C. Mihalcea, *Quantum K-theory of Grassmannians*, Duke Math. J. **156** (2011), no. 3, 501–538. MR MR2772069

Michel Brion, *The push-forward and Todd class of flag bundles*, Parameter spaces (Warsaw, 1994), Banach Center Publ., vol. 36, Polish Acad. Sci., Warsaw, 1996, pp. 45–50. MR MR1481478 (98h:14059)

Ionuţ Ciocan-Fontanine and Mikhail Kapranov, *Virtual fundamental classes via dg-manifolds*, Geom. Topol. **13** (2009), no. 3, 1779–1804. MR MR2496057 (2010e:14012)

Neill Chriss and Victor Ginzburg, *Representation theory and complex geometry*, Boston : Birkhäuser, 1997.

David A. Cox and Sheldon Katz, *Mirror symmetry and algebraic geometry*, Mathematical Surveys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999. MR MR1677117 (2000d:14075)

Dan Edidin and William Graham, *Nonabelian localization in equivariant K-theory and the Riemann-Roch for quotients*, Adv. Math. **198** (2005), no. 2, 547–582. MR MR2183388 (2006h:14014)

Geir Ellingsrud and Stein Arild Strømme, *On the Chow ring of a geometric quotient*, Ann. of Math. (2) **130** (1989), no. 1, 159–187. MR MR1005610 (90h:14019)

William Fulton and Piotr Pragacz, *Schubert varieties and degeneracy loci*, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998, Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR MR1639468 (99m:14092)

Alexander B. Givental, *Equivariant Gromov-Witten invariants*, Internat. Math. Res. Notices (1996), no. 13, 613–663. MR 1408320 (97f:14015)

Alexander Givental, *A mirror theorem for toric complete intersections*, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 141–175. MR MR1653024 (2000a:14063)

Alexander Givental, *On the WDVV equation in quantum K-theory*, Michigan Math. J. **48** (2000), 295–304, Dedicated to William Fulton on the occasion of his 60th birthday. MR MR1786492 (2001j:14076)

Alexander Givental and Bumsig Kim, *Quantum cohomology of flag manifolds and Toda lattices*, Comm. Math. Phys. **168** (1995), no. 3, 609–641. MR MR1328256 (96c:58027)

Alexander Givental and Yuan-Pin Lee, *Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups*, Invent. Math. **151** (2003), no. 1, 193–219. MR MR1943747 (2004g:14063)

Stephen Griffeth and Arun Ram, *Affine Hecke algebras and the Schubert calculus*, European J. Combin. **25** (2004), no. 8, 1263–1283. MR MR2095481 (2005h:14118)

Alexander Givental and Valentin Tonita, *The hirzebruch–riemann–roch theorem in true genus-0 quantum k-theory*, 2011.

Roy Joshua.

Y.-P. Lee, *Quantum K-theory. I. Foundations*, Duke Math. J. **121** (2004), no. 3, 389–424. MR MR2040281 (2005f:14107)

Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, *Mirror principle. II*, Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom., vol. 5, Int. Press, Boston, MA, 1999, pp. 455–509. MR 1772276
[LP04] Y.-P. Lee and R. Pandharipande, *A reconstruction theorem in quantum cohomology and quantum K-theory*, Amer. J. Math. **126** (2004), no. 6, 1367–1379. MR MR2102400 (2006c:14082)

[Pra96] Piotr Pragacz, *Symmetric polynomials and divided differences in formulas of intersection theory*, Parameter spaces (Warsaw, 1994), Banach Center Publ., vol. 36, Polish Acad. Sci., Warsaw, 1996, pp. 125–177. MR MR1481485 (99b:14002)

[SS01] Frank Sottile and Bernd Sturmfels, *A sagbi basis for the quantum Grassmannian*, J. Pure Appl. Algebra **158** (2001), no. 2-3, 347–366. MR MR1822848 (2002a:13027)

[Tu08] Loring Tu, *Computing the gysin map using fixed points*, 2008.