Editorial

Single-pill combinations: a therapeutic option or necessity for vascular risk treatment?

Niki Katsiki
Vasilios G. Athyros
Asterios Karagiannis
Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocrates Hospital, Thessaloniki, Greece

Address for correspondence:
Asterios Karagiannis, Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocrates Hospital, 44, Tsimiski str, Thessaloniki, 54623, Greece.
Tel.: +30 2310 892071; Fax: +30 2310 992834; astkar@med.auth.gr

Keywords:
Anti-hypertensive – Anti-platelet drugs – Hypolipidemic – Hypoglycemic – Single-pill combinations – Vascular risk

In a recently published paper in the Journal of Drug Assessment, Axthelm et al. reported on the effectiveness of single-pill combination (SPC) aliskiren 300 mg/amlodipine 10 mg in high-risk subgroups of hypertensive patients with uncontrolled blood pressure (BP). Briefly, 4-week’s treatment with SPC aliskiren 300 mg/amlodipine 10 mg resulted in further lowering of both systolic and diastolic BP in elderly (≥65 years), overweight/obese (body mass index ≥25 kg/m²) and diabetic patients as well as individuals with at least one metabolic risk factor (i.e., serum glucose ≥5.56 mmol/l, low density lipoprotein cholesterol ≥4.16 mmol/l or triglycerides ≥2.28 mmol/l) that were inadequately controlled by prior use of SPC olmesartan 40 mg/amlodipine 10 mg. The efficacy and safety of aliskiren/amlodipine SPCs in patients previously on either drug monotherapy were also reported in earlier studies. Of note, adverse effects such as peripheral edema as well as discontinuation rates were fewer in the SPC groups.

Cardiovascular disease (CVD) represents the main cause of death worldwide and thus research still focuses on potential genetic and physiological biomarkers, imaging techniques, healthcare technologies and indices for both CVD prevention and treatment as well as personalized prediction models. There are several CVD risk factors, including hypertension, dyslipidemia, diabetes mellitus (DM), smoking and obesity, as well as platelet dysfunction. Certain drugs are currently available for treating these risk factors, whereas drug combinations are frequently needed to achieve therapeutic goals especially in hypertension, DM and coronary heart disease (CHD).

With regard to hypertension, the 2009 reappraisal of the European guidelines (European Society of Cardiology/European Society of Hypertension) recommends the use of a renin–angiotensin–aldosterone system (RAAS) blocker plus calcium channel blocker (CCB) or RAAS blocker plus diuretic or CCB plus diuretic as possible two-drug combination therapies. Such combinations are available as SPCs. For example, the first SPC of an angiotensin receptor blocker (ARB) and a CCB was valsartan plus amlodipine which, apart from achieving better efficacy than each component, was also shown to significantly decrease the risk of edema, a frequent side-effect of dihydropyridine CCBs. Similarly, olmesartan has been combined with either amlodipine or hydrochlorothiazide in SPCs, as is the case with telmisartan, losartan, irbesartan, candesartan and aliskiren (a direct renin antagonist). Perindopril, an angiotensin converting enzyme (ACE) inhibitor, and amlodipine SPC can be also used to adequately treat hypertensives, whereas perindopril/indapamide fixed-dose combination is effective in reducing both macro- and micro-vascular diabetic complications. Another therapeutic option is SPCs of benazepril (ACE inhibitor) plus amlodipine or hydrochlorothiazide; the former combination decreased the progression of chronic kidney disease to a
greater extent compared with the latter. Amlodipine is also available in a fixed-dose combination with hydrochlorothiazide.

It should be noted that the combination of an ACE inhibitor with an ARB is currently not recommended based on the results of the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study where more adverse effects were reported in the combination group than monotherapy groups. However, a recent study by the ONTARGET investigators showed that ramipril (ACE inhibitor) and telmisartan combination did not raise the rate of stroke, CVD or renal events in patients with DM compared with monotherapy groups.

Dual ACE inhibitor (or ARB) and aliskiren treatment is also currently not recommended based on the results of the Aliskiren Trial In Type 2 Diabetes Using Cardio-Renal Disease Endpoints (ALTITUDE) which was prematurely ended as it did not demonstrate the benefit predicted by the initial protocol; safety issues also presented (i.e., increased incidence of stroke, kidney dysfunction, hyperkalemia and hypotension). However, two other aliskiren trials are still running in patients with heart failure: the Aliskiren Trial of Minimizing OutcomeS for Patients with HEart failure (ATMOSPHERE) and the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT).

The best combination therapy differs with regard to patient populations; for example, African-American individuals and patients with heart failure will benefit more from a RAAS inhibitor plus a diuretic, whereas a RAAS inhibitor combined with a CCB will produce a greater reduction of CVD risk.

SPCs of three antihypertensive drugs are also commercially available including ARBs or aliskiren combined with amlodipine and hydrochlorothiazide. Taking into consideration that almost one-fifth of hypertensive patients will require three antihypertensive drugs to achieve BP goals, this triple fixed-dose combination therapy appears rational with several beneficial effects in terms of compliance, clinical outcomes and economics.

With regard to hypolipidemic drugs, the first fixed-dose combination includes simvastatin and ezetimibe, a useful therapeutic option when lipid goals are not achieved with statin monotherapy as well as in statin intolerant patients. Furthermore, SPCs of statins and fibrates have been developed. Briefly, a statin (atorvastatin, pravastatin or simvastatin) and fenofibrate fixed-dose combination may be used in patients with mixed hyperlipidemia, i.e. those with low density lipoprotein cholesterol (LDL-C) levels on target but with low high density lipoprotein cholesterol (HDL-C) or high triglycerides. In such cases, residual CVD risk should be adequately treated.

Of note, atorvastatin has been also combined with metformin or sitagliptin with similar efficacy and safety as the individual components as well as with amlodipine with this SPC enabling more patients to reach LDL-C and BP targets than single-agent or placebo therapy. Another SPC includes simvastatin and extended release (ER) niacin and it was more effective in lipid-lowering than monotherapies with similar safety profile.

In the field of hypoglycemic drugs, SPCs of metformin and dipeptidyl peptidase (DPP)-IV inhibitors (i.e., sitagliptin, vildagliptin and saxagliptin) are frequently used in daily practice as they achieve sufficient glycemic control with less gastrointestinal adverse events. Other fixed-dose combinations include metformin and glimepiride, metformin and pioglitazone, metformin and repaglinide, sitagliptin and pioglitazone, as well as metformin and voglibose. Such SPCs were shown to improve adherence and clinical outcomes as well as reduce medical costs; diabetic patients on SPCs feel also more satisfied than those taking drugs as separate formulations.

The first available fixed-dose combination of antiplatelet drugs included acetylsalicylic acid (ASA) and extended-release dipyridamole which was both efficient and safe in atherothrombotic events prevention settings. More recently, SPCs of ASA and clopidogrel have become commercially available; their long-term effectiveness and safety remain to be established. In contrast, newer antiplatelet drugs that have proven their clinical efficacy such as prasugrel and ticagrelor are currently not included in SPCs. These drugs were shown to reduce non-fatal ischemic events, as well as CVD and all-cause mortality (only for ticagrelor) in acute coronary syndrome and taking into consideration that several patients may be resistant to aspirin or clopidogrel, their role in daily practice is of particular importance in treating high-risk patients. Antiplatelet drugs may also be combined with proton pump inhibitors to reduce the risk of gastrointestinal ulcers as is the case with the SPC of ASA and esomeprazole.

Fixed-dose combination of aspirin plus low-dose warfarin was proven insufficient to protect from thrombogenesis in patients with chronic atrial fibrillation. Of note, novel anti-coagulant agents are now in the market (i.e., dapigatran, rivaroxaban and apixaban) and thus treatment choice should be individualized based on the more recent guidelines of several international cardiovascular societies and associations. SPCs with such drugs have not yet been developed.

In general, it is more likely to achieve better compliance with the use of SPCs, especially in patients receiving several drugs due to comorbid conditions, thus possibly
reaching therapeutic targets. Furthermore, SPCs include lower doses of each drug than would be necessary to achieve goals with monotherapy, a fact that may explain their better tolerability compared with the higher dose monotherapy. However, SPCs may also have certain disadvantages such as higher cost, less flexibility in altering doses and differences in the duration of action of the combined drugs.73

The use of one poly-pill that will contain different drugs targeting CVD risk including a beta-blocker, diuretic, ACEi, aspirin and statin has also been suggested although long-term data are missing.74–77 Such poly-pills are expected to increase patient compliance, thus resulting in better prevention and therapeutic outcomes78,79; patients with acute myocardial infarction represent a promising population for this treatment strategy.80 Furthermore, the beneficial effects of the poly-pill in terms of cost effectiveness are highly tempting, especially for countries with low national incomes and economical crises.81,82 However, poly-pills were associated with moderately more side-effects than the component drugs, whereas a recent meta-analysis reported a moderately lower tolerability rate in patients on poly-pills compared with those on placebo or one component.26 The results of on-going clinical trials in several countries worldwide in both primary and secondary CVD settings, also comparing the effects of the time of administration (i.e., evening vs. morning), will contribute in evaluating the clinical implications of such ‘multidrugs’.84–86

Overall, the use of SPCs seems both needed and promising in CVD prevention. However, as certain disadvantages may exist, further and larger clinical trials are required to establish their role in daily practice.

Transparency

Declaration of funding
None to declare.

Declaration of financial/other relationships
None to declare; this editorial was written independently. The authors did not receive financial or professional help with the preparation of the manuscript.

Acknowledgments
None to declare.

References

1. Axthelm C, Sieder C, Meister F, et al. Aliskiren/amlodipine as single pill combination in hypertensive patients: subgroup analysis of patients at high age, with metabolic risk factors or high body mass index. J Drug Assess 2013;2:1-10

2. Pfeiffer D, Rennie N, Papat CC, Zhang J. Efficacy and tolerability of aliskiren/amlodipine single-pill combinations in patients who did not respond fully to amlodipine monotherapy. Curr Vasc Pharmacol 2012;10:773-80

3. Gioioso N, Thomas M, Trofa C, et al. Antihypertensive efficacy and tolerability of aliskiren/amlodipine single-pill combinations in patients with an inadequate response to aliskiren monotherapy. Curr Vasc Pharmacol 2012;10:748-55

4. Katsiki N, Athyros VG, Michaelidis DP, et al. Editorial: aliskiren/amlodipine single-pill combinations: more evidence in favour of combination formulations for the treatment of hypertension. Curr Vasc Pharmacol 2012;10:745-7

5. Hartley CJ, Naghavi M, Parodi O, et al. Cardiovascular health informatics: risk screening and intervention. IEEE Trans Inf Technol Biomed 2012;16:791-4

6. Mancia G, Laurent S, Agabiti-Rosei E, et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 2009;27:2121-58

7. Düsting R. Optimizing blood pressure control through the use of fixed combinations. Vasc Health Risk Manag 2010;6:321-5

8. Düsting R. Valsartan/amlodipine single pill combination for the treatment of hypertension. Expert Rev Clin Pharmacol 2010;3:739-46

9. de la Sierra A, Volpe M. Olmesartan-based therapies: an effective way to improve blood pressure control and cardiovascular protection. J Hypertens 2013;31(Suppl 1):S13-17

10. Ley L, Schumacher H. Telmisartan plus amlodipine single-pill combination for the management of hypertensive patients with a metabolic risk profile (added-risk patients).Curr Med Res Opin 2013;29:41-53

11. Rulíope LM, Schumacher H. Telmisartan 80 mg/hydrochlorothiazide 25 mg single-pill combination in the treatment of hypertension. Expert Opin Pharmacother 2012;13:2417-25

12. Miyagawa S, Yamada H, Matusbaba H. Long-term antihypertensive efficacy of losartan/hydrochlorothiazide combination therapy on home blood pressure control. Clin Exp Hypertens 2012;34:439-46

13. Hong BK, Park CG, Kim KS, et al. Comparison of the efficacy and safety of fixed-dose amlodipine/losartan and losartan in hypertensive patients inadequately controlled with losartan: a randomized, double-blind, multicenter study. Am J Cardiovasc Drugs 2012;12:189-96

14. Bobrie G; I-ADD Study Investigators. I-ADD study: assessment of efficacy and safety profile of irbesartan/amlodipine fixed-dose combination therapy compared with irbesartan monotherapy in hypertensive patients uncontrolled with irbesartan 150 mg monotherapy: a multicenter, phase III, prospective, randomized, open-label with blinded-end point evaluation study. Clin Ther 2012;34:1720-34

15. Bobrie G; I-COMBINE Study Investigators. I-COMBINE study: assessment of efficacy and safety profile of irbesartan/amlodipine fixed-dose combination therapy compared with irbesartan monotherapy in hypertensive patients adequately controlled with losartan: a randomized, double-blind, multicenter study. Am J Cardiovasc Drugs 2012;13:2417-25

16. Muggelli A, Nieswandt V. Candesartan plus hydrochlorothiazide: an overview of its use and efficacy. Expert Opin Pharmacother 2012;13:2699-709

17. Yasuno S, Fujimoto A, Nakagawa Y, et al. Fixed-dose combination therapy of candesartan cilexetil and amlodipine besilate for the treatment of hypertension in Japan. Expert Rev Cardiovasc Ther 2012;10:577-83

18. Yan YH, Jarugula V, Sabo R, et al. Pharmacokinetics and pharmacodynamics of aliskiren/hydrochlorothiazide single-pill combination tablets and free combination of aliskiren and hydrochlorothiazide. J Clin Pharmacol 2012;52:645-55

19. Mourad JJ. Which patients benefit the most from the perindopril/amldipe combination. J Hypertens 2011;29 Suppl 1:S23-8

20. Ghiadoni L. Management of high blood pressure in type 2 diabetes: perindopril/indapamide fixed-dose combination and the ADVANCE trial [corrected]. Expert Opin Pharmacother 2010;11:1647-57
22. Patel A, MacMahon S, Chalmers J, et al; ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007;370:829-40

23. Bakris GL, Sarafidis PA, Weir MR, et al; ACCOMPLISH Trial investigators. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 2010;375:1173-81

24. Lacourciere Y, Wright JR JT, Samuel R, et al; EVALUATE study. Effects of force-titrated valsartan/hydrochlorothiazide versus amldipine/hydrochlorothiazide on ambulatory blood pressure in patients with stage 2 hypertension: the EVALUATE study. Blood Press Monit 2009;14:112-20

25. ONTARGET Investigators, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547-59

26. Mann JF, Anderson C, Gao P, et al; ONTARGET investigators. Dual inhibition of the renin-angiotensin system in high-risk diabetes and risk for stroke and other outcomes: results of the ONTARGET trial. J Hypertens 2013;31:414-21

27. Parving HH, Brenner BM, McMurray JJ, et al. Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALITT). rationale and study design. Nephrol Dial Transplant 2009;24:1663-71

28. McMurray JJ, Abraham WT, Dickstein K, et al; ALITT investigators. The single pill triple combination of aliskiren, amlodipine, and valsartan in Type 2 Diabetes: focus on olmesartan/amlodipine/hydrochlorothiazide combination. Drugs Today (Barc) 2011;47:197-206

29. Chrysant SG. Triple-drug, fixed-dose combinations for the treatment of hyper- tension: focus on olmesartan/amldipine/hydrochlorothiazide combination. Clin Drug Investig 2011;31:853-63

30. Huan Y, Townsend R. The single pill triple combination of aliskiren, amldipine, and hydrochlorothiazide in the treatment of hypertension. Expert Op Pharmacother 2012;13:2409-15

31. Volpe M, Tocci G. Rationale for triple fixed-dose combination therapy with an angiotensin II receptor blocker, a calcium channel blocker, and a thiazide diuretic. Vasc Health Risk Manag 2011;7:371-80

32. Panjabi S, Lacey M, Bancroft T, Cao F. Treatment adherence, clinical outcomes, and economics of triple-drug therapy in hypertensive patients. J Am Soc Hypertens 2013;7:46-60

33. Daskalopoulos SS, Mikhailidis DP. Ezetimibe/simvastatin single tablet versus rosvuastatin in patients with hypercholesterolemia. Curr Med Res Opin 2006;22:2037-9

34. Tziomalos K, Athyros VG, Karagiannis A, et al. Management of statin-intol- erant high-risk patients. Curr Vasc Pharmacol 2010;8:632-7

35. Gazi IF, Daskalopoulos SS, Nair DR, et al. Effect of ezetimibe in patients who cannot tolerate statins or cannot get to the low density lipoprotein cholesterol target despite taking a statin. Curr Med Res Opin 2007;23:2183-92

36. Davidson MH, Rowney MW, Drucker J, et al; LCP-AltorFin investigators. Efficacy and tolerability of atorvastatin/fenofibrate fixed-dose combination tablet compared with atorvastatin and fenofibrate monotherapies in patients with dyslipidemia: a 12-week, multicenter, double-blind, randomized, parallel-group study. Clin Ther 2009;31:2824-38

37. Farnier M, Pravastatin and fenofibrate in combination (Pravafenix®) for the treatment of high-risk patients with mixed hyperlipidemia. Expert Rev Cardiovasc Ther 2012;10:565-75

38. Filippatos TD, Elisaf MS. Fenofibrate plus simvastatin (fixed-dose combin- ation) for the treatment of dyslipidaemia. Expert Op Pharmacother 2011;12:1945-58

39. Athyros VG, Tziomalos K, Karagiannis A, et al. Statin-fibrate combination for mixed dyslipidaemia: a limited option? Curr Med Res Opin 2010;26:2137-40

40. Filippatos TG, Tsoukis S, Vlajinac A, et al. Triglycerides: a case for treatment? Curr Opin Cardiol 2012;27:398-404

41. Athyros VG, Tziomalos K, Karagiannis A, et al. Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. Open Cardiovasc Med J 2011;5:24-34

42. Florentin M, Liberopoulos EN, Mikhailidis DP, et al. Emerging options in the treatment of dyslipidemias: a bright future? Expert Op Emerg Drugs 2011;16:247-70

43. Kandhwal K, Dey S, Nazarudeen S, et al. Pharmacokinetics of a fixed-dose combination of atorvastatin and metformin extended release versus concurrent administration of individual formulations: a randomized, open-label, two-treatment, two-period, two-sequence, single-dose, crossover, bioequivalence study. Clin Drug Investig 2011;31:853-63

44. Schein AJ. Pharmacokinetic evaluation of atorvastatin and sitagliptin in combi- nation for the treatment of type 2 diabetes. Expert Op Drug Metab Toxicol 2012;8:475-58

45. Curran NP. Amlodipine/Atorvastatin: a review of its use in the treatment of hypertension and dyslipidaemia and the prevention of cardiovascular disease. Drugs 2010;70:191-213

46. Robinson JG. Management of complex lipid abnormalities with a fixed dose combination of simvastatin and extended release niacin. Vasc Health Risk Manag 2009;5:31-43

47. Sharma M, Sharma DR, Singh V, et al. Evaluation of efficacy and safety of fixed dose lovastatin and niacin (ER) combination in Asian Indian dyslipidemic patients: a multicentric study. Vasc Health Risk Manag 2006;2:87-93

48. Athyros VG, Tziomalos K, Mikhailidis DP, et al. Do we need a statin-nicotinic acid-aspirin mini-polypill to treat combined hyperlipidaemia? Expert Op Pharmacother 2008;7:2267-7

49. Chwieduk OM. Sitagliptin/metformin fixed-dose combination: in patients with type 2 diabetes mellitus. Drugs 2011;71:349-61

50. Guarino E, Nigi L, Patti A, et al. Combination therapy with metformin plus vildagliptin in type 2 diabetes mellitus. Expert Op Pharmacother 2011;12:1377-84

51. Schein AJ. Metformin + saxagliptin for type 2 diabetes. Expert Op Pharmacother 2012;13:139-46

52. Kim KP, Lim KS, Kim BH, et al. Pharmacokinetics of a fixed-dose glimepiride/sulfasalazine combination. Int J Clin Pharmacol Ther 2012;50:142-9

53. Barber JC. Adherence to oral antibiotic agents with pioglitazone and met- formin: comparison of fixed-dose combination therapy with monotherapy and loose-dose combination therapy. Clin Ther 2011;33:1281-8

54. Hoelscher D, Chu PL, Lyness W. Fixed-dose combination tablet of repaglinide and metformin is bioequivalent to concomitantly administered individual tablets of repaglinide and metformin: randomized, single-blind, three-period crossover study in healthy subjects. Clin Drug Invest 2008;28:573-82

55. Bailey CJ, Green BD, Flatt PR. Fixed-dose combination therapy for type 2 diabetes: sitagliptin plus pioglitazone. Expert Op Investig Drugs 2010;19:1017-25

56. Inoue M. Tighter control of postprandial hyperglycaemia with pioglitazone/ogil- base fixed-dose combination in Japanese patients with type 2 diabetes melil- litus. Expert Op Pharmacother 2012;13:2257-68

57. Hughes V, Zhang B, Florence RL, et al. A systematic review of adherence, treatment satisfaction and costs, in fixed-dose combination regimens in type 2 diabetes. Curr Med Res Opin 2011;27:1157-68

58. Bell DS. Combine and conquer: advantages and disadvantages of fixed-dose combination therapy. Diabetes Obes Metab 2013;15:291-300

59. Benford M, Milligan G, Pike J, et al. Fixed-dose combination antibiotic therapy: real-world factors associated with prescribing choices and relation- ship with patient satisfaction and compliance. Adv Ther 2012;29:26-40
63. Lenz Tl, Hilleman DE. Aggrenox: a fixed-dose combination of ASA and dipyridamole. Ann Pharmacother 2000;34:1283-290

64. Crown N, Mysak T. Safety of fixed-dose aspirin-extended-release dipyridamole in patients with ischemic heart disease. Am J Health Syst Pharm 2010;67:729-33

65. Bollati M, Gaia F, Anselmino M. Antiplatelet combinations for prevention of atherothrombotic events. Vasc Health Risk Manag 2011;7:23-30

66. Varenhorst C, James S. Which antiplatelet agent for whom? Which patient populations benefit most from novel antiplatelet agents (ticagrelor, prasugrel)? Curr Cardiol Rep 2012;14:486-92

67. Kowalczyk M, Banach M, Mikhailidis DP, et al. Ticagrelor—a new platelet aggregation inhibitor in patients with acute coronary syndromes. An improvement of other inhibitors? Med Sci Monit 2009;15:MS24-30

68. Kei AA, Florentin M, Mikhailidis DP, et al. Review: Antiplatelet drugs: what comes next? Clin Appl Thromb Hemost 2011;17:9-26

69. Burness CB, Scott LJ. Acetylsalicylic acid/esomeprazole fixed-dose combination. Drugs Aging 2012;29:233-42

70. Li-Saw-Hee FL, Blann AD, Lip GY. Effects of fixed low-dose warfarin, aspirin-warfarin combination therapy, and dose-adjusted warfarin on thrombogenesis in chronic atrial fibrillation. Stroke 2000;31:828-33

71. Skanes AC, Healey JS, Cairns JA, et al. Canadian Cardiovascular Society Atrial Fibrillation Guidelines Committee. Focused 2012 update of the Canadian Cardiovascular Society atrial fibrillation guidelines: recommendations for stroke prevention and rate/rhythm control. Can J Cardiol 2012;28:125-36

72. Kirchhof P, Curtis AB, Skanes AC, et al. Atrial fibrillation guidelines across the Atlantic: a comparison of the current recommendations of the European Society of Cardiology/European Heart Rhythm Association/European Association of Cardiothoracic Surgeons, the American College of Cardiology Foundation/American Heart Association/Heart Rhythm Society, and the Canadian Cardiovascular Society. Eur Heart J. 2013 Jan 25. [Epub ahead of print]

73. Angeli F, Reboldi G, Mazzotta G, et al. Fixed-dose combination therapy in hypertension: cons. High Blood Press Cardiovasc Prev 2012;19:51-4

74. Nguyen C, Cheng-Lai A. The polypill: a potential global solution to cardiovascular disease. Cardiol Rev 2013;21:49-54

75. Wald DS, Morris JK, Wald NJ. Randomized Polypill crossover trial in people aged 50 and over. PLoS One 2012;7:e41297

76. Elley CR, Gupta AK, Webster R, et al. The efficacy and tolerability of “polypills”: meta-analysis of randomised controlled trials. PLoS One 2012;7:e52145

77. Carey KM, Comox MR, Donovan JL, et al. A polypill for all? Critical review of the polypill literature for primary prevention of cardiovascular disease and stroke. Ann Pharmacother 2012;46:688-95

78. Muntner P, Mann D, Wildman RP, et al. Projected impact of polypill use among US adults: medication use, cardiovascular risk reduction, and side effects. Am Heart J 2011;161:719-25

79. Mayor S. Four in one polypill halves predicted cardiovascular risk, international study shows. BMJ 2011;342:d3355

80. Zeymer U, Junger C, Zahn R, et al. Effects of a secondary prevention combination therapy with an aspirin, an ACE inhibitor and a statin on 1-year mortality of patients with acute myocardial infarction treated with a beta-blocker. Support for a polypill approach. Curr Med Res Opin 2011;27:1563-70

81. Bartista LE, Vera-Caia LM, Ferrante D, et al. A ‘polypill’ aimed at preventing cardiovascular disease could prove highly cost-effective for use in Latin America. Health Aff (Millwood) 2013;32:155-64

82. van Gils PF, Over EA, Hamberg-van Reenen HH, et al. The polypill in the primary prevention of cardiovascular disease: cost-effectiveness in the Dutch population. BMJ Open 2011;1:e000363

83. PILL Collaborative Group, Rodgers A, Patel A, et al. An international randomised placebo-controlled trial of a four-component combination pill (“polypill”) in people with raised cardiovascular risk. PLoS One 2011;6:e19857

84. Lafeber M, Grobbee DE, Bots ML, et al. The Evening versus Morning Polypill Utilization Study: the TEMPUS rationale and design. Eur J Prev Cardiol. 2013 Feb 4. [Epub ahead of print]

85. Lafeber M, Spiering W, Singh K, et al; SPACE collaboration. The cardiovascular polypill in high-risk patients. Eur J Prev Cardiol 2012;19:1234-42

86. Thom S, Field J, Poulter N, et al. Use of a Multidrug Pill in Reducing cardiovascular Events (UMPIRE): rationale and design of a randomised controlled trial of a cardiovascular preventive polypill-based strategy in India and Europe. Eur J Prev Cardiol 2012 Oct 4. [Epub ahead of print]