The heat kernel expansion for the electromagnetic field in a cavity

F. Bernasconi(a), G.M. Graf(b), D. Hasler(c)

(a) Department of Mathematics, ETH-Zentrum, 8092 Zürich, Switzerland
(b) Theoretische Physik, ETH-Hönggerberg, 8093 Zürich, Switzerland
(c) Department of Mathematics, University of Copenhagen, 2100 Copenhagen, Denmark

March 28, 2022

Abstract

We derive the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity by relating it to the expansion for the Laplace operator acting on forms. As an application we verify that the electromagnetic Casimir energy is finite.

1 Introduction

The modes of an electromagnetic field in a cavity, taken together with their unphysical, longitudinal counterparts, can be mapped onto the eigenstates of the Laplacian acting on the de Rham complex of a 3-manifold with boundary. The electric and magnetic fields are thereby associated to forms of degree $p = 1$ and $p = 2$ respectively. In this correspondence transverse modes are associated with coexact, resp. exact forms, which permits to further map longitudinal modes to forms of degree $p = 0$ and $p = 3$. We will use this observation, which is explained in detail in Sect. 2 below, to compute the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity. The result is used to show in a simple way that the Casimir energy in an arbitrary cavity with smooth boundaries is finite, a conclusion which has been reached previously \[3\]. In an appendix the derivation of the numerical coefficients of the expansion is presented.

We shall present a Hilbert space formulation of the classical Maxwell equations in a cavity $\Omega \subset \mathbb{R}^3$. In a preliminary Hilbert space $L^2(\Omega, \mathbb{R}^3)$ we define the dense subspaces

$$\mathcal{R} = \{ V \in L^2(\Omega, \mathbb{R}^3) \mid \text{rot} \, V \in L^2(\Omega, \mathbb{R}^3) \} ,$$

$$\mathcal{R}_0 = \{ V \in \mathcal{R} \mid \langle U, \text{rot} \, V \rangle = \langle \text{rot} \, U, V \rangle, \forall U \in \mathcal{R} \}$$
and the (closed) operator

\[R = \text{rot} \quad \text{with domain} \quad \mathcal{D}(R) = \mathcal{R}_0. \]

Its adjoint is then given as \(R^* = \text{rot} \) with \(\mathcal{D}(R^*) = \mathcal{R} \). We remark that \(R \), resp. \(R^* \), is also the closure of \(\text{rot} \) defined on smooth vector fields \(\mathbf{V} \) with boundary condition \(\mathbf{V}_\parallel = 0 \) on the smooth boundary \(\partial \Omega \), resp. without boundary conditions. This is what is meant when we later simply say that a differential operator is defined with (or without) a certain boundary condition.

The subspace

\[\mathcal{H} = \{ \mathbf{V} \in L^2(\Omega, \mathbb{R}^3) \mid \text{div} \mathbf{V} = 0 \} \quad (1) \]

and its orthogonal complement in \(L^2(\Omega, \mathbb{R}^3) \) are preserved by \(R \) and, therefore, by \(R^* \). We will thus view them as operators on the physical Hilbert space \(\mathcal{H} \). The Maxwell equations with boundary condition \(E_\parallel = 0 \) on the ideally conducting shell \(\partial \Omega \) can now be written as

\[i \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} = M \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} \quad (2) \]

with

\[M = \begin{pmatrix} 0 & iR^* \\ -iR & 0 \end{pmatrix} = M^* \quad \text{on} \quad \mathcal{H} \oplus \mathcal{H}, \]

cf. [12]. Since no boundary condition has been imposed on \(\mathbf{B} \), we have \(M(0, \mathbf{B}) = 0 \) for all \(\mathbf{B} = \nabla \psi \) with \(\psi \) harmonic, and hence

\[\dim \text{Ker} \ M = \infty. \quad (3) \]

We shall compute the heat kernel trace

\[\text{Tr}'_{\mathcal{H} \oplus \mathcal{H}}(e^{-tM^2}) = \sum_k' e^{-t\omega_k^2}, \]

where \(' \) means that the contributions of zero-modes, i.e., of eigenvalues \(\omega_k = 0 \) of \(M \), have been omitted. This is necessary in view of [3], but a more physical justification, tied to the application to the Casimir effect to be discussed later, is that zero-modes are not subject to quantization.

The square of \(M \) is

\[M^2 = \begin{pmatrix} R^* R & 0 \\ 0 & RR^* \end{pmatrix} = \begin{pmatrix} -\Delta_E & 0 \\ 0 & -\Delta_B \end{pmatrix}, \quad (4) \]

where \(\Delta_E \), resp. \(\Delta_B \), is the Laplacian on \(\mathcal{H} \) with boundary conditions

\[E_\parallel = 0, \quad \text{resp.} \quad (\text{rot} \mathbf{B})_\parallel = 0. \quad (5) \]

The operators \(RR^* \) and \(R^* R \) have the same spectrum, including multiplicity, except for zero-modes. Incidentally, we note that eigenfunctions \((\mathbf{E}, \mathbf{B}) \) corresponding to \(\omega_k \neq 0 \)
satisfy \(\mathbf{B} = -i\omega_k^{-1}\text{rot} \mathbf{E} \) and hence, by Stokes’ theorem, the boundary condition \(\mathbf{B}_1 = 0 \), which we did not impose, but which is usually also associated with ideally conducting shells. Since \(\partial_t^2 + M^2 = (i\partial_t - M)(-i\partial_t - M) \), each pair of non-zero eigenvalues of \(R^* R \) and \(RR^* \) corresponds to a single oscillator mode for \([2] \). We will thus discuss the heat kernel asymptotics for

\[
\frac{1}{2} \text{Tr}_{\mathcal{H} \oplus \mathcal{H}}(e^{-tM^2}) = \begin{cases}
\text{Tr}_{\mathcal{H}} e^{i\Delta_E} \\
\text{Tr}_{\mathcal{H}} e^{t\Delta_B}
\end{cases}
\]

\[
= \sum_{n=0}^{\infty} a_n t^{\frac{n-3}{2}}, \quad (t \downarrow 0).
\]

The coefficients \(a_n \) are known, see e.g. [5], for general operators of Laplace type. The direct application of such results is prevented by the divergence constraint in \(\mathcal{H} \), see (1). In the next section we indicate how to remove it. First however we present the main result.

Let

\[
L_{ab} = (\nabla e_a e_b, n), \quad (a, b = 1, 2),
\]

be the second fundamental form on the boundary \(\partial \Omega \) with inward normal \(n \) and local orthonormal frame \(\{e_1, e_2, n\} \). We denote by \(|\Omega| \) the volume of \(\Omega \) and set

\[
f[\partial \Omega] = \int_{\partial \Omega} f(y) dy,
\]

where \(dy \) is the (induced) Euclidean surface element on \(\partial \Omega \). The corresponding Laplacian on \(\partial \Omega \) is denoted by \(\nabla^2 \).

Theorem 1 Let \(\Omega \subset \mathbb{R}^3 \) be a compact, connected domain with smooth boundary \(\partial \Omega \) consisting of \(n \) components of genera \(g_1, g_2, \ldots, g_n \). Then

\[
a_0 = 2(4\pi)^{-\frac{3}{2}} |\Omega|,
\]

\[
a_1 = 0,
\]

\[
a_2 = -\frac{4}{3}(4\pi)^{-\frac{3}{2}} (\text{tr } L)[\partial \Omega],
\]

\[
a_3 = \frac{1}{64}(4\pi)^{-1} \left(3(\text{tr } L)^2 - 4 \text{ det } L\right)[\partial \Omega] - \frac{1}{2} \sum_{i=1}^{n} (1 + g_i) + 1,
\]

\[
a_4 = \frac{16}{315}(4\pi)^{-\frac{3}{2}} (2(\text{tr } L)^3 - 9 \text{ tr } L \cdot \text{det } L)[\partial \Omega],
\]

\[
a_5 = \frac{1}{122880}(4\pi)^{-1} \left(2295(\text{tr } L)^4 - 12440(\text{tr } L)^2 \text{ det } L + 13424(\text{det } L)^2 + 1200 \text{ tr } L \cdot \nabla^2 \text{tr } L\right)[\partial \Omega].
\]

We will give two partially independent proofs, based on \([6]\), resp. \([7]\). Their agreement is related to the index theorem, as it may be seen from \([11]\). A further, partial check of these coefficients has been made on the basis of general cylindrical domains and of the sphere, where a separation into TE and TM modes is possible.
The coefficient a_0 was computed in [13] (except for the factor 2 replaced by 3, as the divergence condition [11] was ignored), a_1, a_2 in [1]. The coefficient a_3 is closely related to a result of [3], as discussed in Sect. 3.

2 Proofs

We consider the space of (square integrable) forms, $\Lambda(\Omega) = \bigoplus_{p=0}^{n} \Lambda_p(\Omega)$, on the manifold Ω with boundary, together with the exterior derivative $d_{p+1} : \Lambda_p(\Omega) \rightarrow \Lambda_{p+1}(\Omega)$ defined with relative boundary condition ([11], Sect. 2.7.1)

$$\omega|_{\partial\Omega} = 0,$$

as a form $\omega|_{\partial\Omega} \in \Lambda_p(\partial\Omega)$. For later use we recall that by the de Rham theorem for manifolds with boundary ([9] or [11], Thm. 2.7.3) we have

$$H^p_r(\Omega) \cong H_{n-p}(\Omega) \cong H_p(\partial\Omega),$$

(10)

where $H^p_r(\Omega) = \text{Ker} d_{p+1}/\text{Im} d_p$ is the p-th relative cohomology group, $H_p(\Omega)$ is the p-th homology group, and $H_p(\partial\Omega)$ is the p-th relative homology group, i.e., the homology based on chains mod $\partial\Omega$.

We shall henceforth restrict to $\Omega \subset \mathbb{R}^3$ as in Theorem 1. Using either homology (10), the dimension of $H^p_r(\Omega)$ is seen to be

$$\begin{align*}
0 & \quad (p = 0), \\
 n-1 & \quad (p = 1), \\
\sum_{i=1}^{n} g_i & \quad (p = 2), \\
 1 & \quad (p = 3).
\end{align*}$$

(11)

These are also the dimensions of the spaces of harmonic p-forms.

The space $\Lambda(\Omega) = \bigoplus_{p=0}^{3} \Lambda_p(\Omega)$ may be identified as

$$\Lambda(\Omega) = L^2(\Omega) \oplus L^2(\Omega, \mathbb{R}^3) \oplus L^2(\Omega, \mathbb{R}^3) \oplus L^2(\Omega) \ni (\phi, \mathbf{E}, \mathbf{B}, \psi),$$

where $d : \Lambda(\Omega) \rightarrow \Lambda(\Omega)$ acts as

$$d : L^2(\Omega) \xrightarrow{\text{grad}} L^2(\Omega, \mathbb{R}^3) \xrightarrow{\text{rot}} L^2(\Omega, \mathbb{R}^3) \xrightarrow{\text{div}} L^2(\Omega) \rightarrow 0$$

with boundary conditions $\phi = 0$, $\mathbf{E} \parallel = 0$, $\mathbf{B} \perp = 0$ on $\partial\Omega$. Then

$$d^* : 0 \leftarrow L^2(\Omega) \xleftarrow{\text{-div}} L^2(\Omega, \mathbb{R}^3) \xleftarrow{\text{-rot}} L^2(\Omega, \mathbb{R}^3) \xleftarrow{\text{-grad}} L^2(\Omega)$$
without any boundary conditions. The Laplace-Beltrami operator on forms,
\[-\Delta = \bigoplus_{p=0}^{3}(-\Delta_p) = dd^* + d^*d,\]
is seen to correspond to the Euclidean Laplacian with boundary conditions
\[
\begin{align*}
\phi &= 0 & (p = 0), \\
\mathbf{E}_\parallel &= 0, \quad \text{div} \mathbf{E} = 0 & (p = 1), \\
\mathbf{B}_\perp &= 0, \quad (\text{rot} \mathbf{B})_\parallel &= 0 & (p = 2), \\
(\text{grad} \psi)_\perp &= 0 & (p = 3).
\end{align*}
\]
Each of the four problems admits a heat kernel expansion,
\[
\text{Tr}_{\Lambda_p(\Omega)} e^{\Delta_p t} \simeq \sum_{n=0}^{\infty} a_n^{(p)} t^{n-3/2},
\]
whose coefficients have been computed \((n = 0, \ldots, 3)\) \[\|\] or can be computed using existing results \((n = 4, 5)\) \[\|\]. To this end we note that the boundary conditions for \(p = 1, 2\) can be formulated equivalently as
\[
\begin{align*}
\mathbf{E}_\parallel &= 0, \quad \frac{\partial \mathbf{E}_\perp}{\partial n} - (\text{tr} L) \mathbf{E}_\perp &= 0 & (p = 1), \\
\mathbf{B}_\perp &= 0, \quad \frac{\partial \mathbf{B}_\parallel}{\partial n} - L \mathbf{B}_\parallel &= 0 & (p = 2).
\end{align*}
\]
First approach. We will compute \((\|)\). We observe that \(\Delta_{\mathbf{E}}\) is just the restriction of \(\Delta_1\) to its invariant subspace
\[
\mathcal{H} = \left\{ \mathbf{E} \in L^2(\Omega, \mathbb{R}^3) \mid \text{div} \mathbf{E} = 0 \right\} = \text{Ker} \, d^*.
\]
Hence
\[
\text{Tr}_{\mathcal{H}} e^{t \Delta_{\mathbf{E}}} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t \Delta_1} - \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t \Delta_0},
\]
where the orthogonal complement of \(\mathcal{H}\) in \(L^2(\Omega, \mathbb{R}^3)\) is
\[
\mathcal{H}^\perp = \text{Ran} \, d_1 = \text{Ran} \, d_1 = \left\{ \nabla \phi \in L^2(\Omega, \mathbb{R}^3) \mid \phi = 0 \text{ on } \partial \Omega \right\},
\]
(Ran \(d\) is closed by the Hodge decomposition, see e.g. \[\|\] \[\|\].) By \(d\Delta = \Delta d\), the operators \((\Delta_1)\rfloor_{\mathcal{H}^\perp}\) and \(\Delta_0\) have the same spectrum (in fact \(\nabla \phi = 0\) implies \(\phi = 0\) by the boundary condition). Thus, using also \((\|)\), we find
\[
\text{Tr}_{\mathcal{H}} e^{t \Delta_{\mathbf{E}}} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t \Delta_1} - \text{Tr}_{L^2(\Omega)} e^{t \Delta_0} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t \Delta_1} - \text{Tr}_{L^2(\Omega)} e^{t \Delta_0} - (n-1),
\]
i.e.,
\[
\begin{align*}
a_k &= a_k^{(1)} - a_k^{(0)}, & (k \neq 3), \\
a_3 &= a_3^{(1)} - a_3^{(0)} - n + 1.
\end{align*}
\]
These relations, together with the values of $a_k^{(p)}$ computed in the Appendix, yield the values of the coefficients stated in the Theorem. In particular, we will obtain

$$a_3^{(1)} - a_3^{(0)} = \frac{1}{64}(4\pi)^{-1}\left(3(\text{tr} L)^2 + 28 \det L\right)[\partial \Omega].$$

This matches the stated value of a_3 because of

$$n = \frac{1}{2} \sum_{i=1}^{n} (1 + g_i) + \frac{1}{2} \sum_{i=1}^{n} (1 - g_i)$$

and of the Gauss-Bonnet theorem,

$$\frac{1}{2} \sum_{i=1}^{n} (1 - g_i) = \frac{1}{2}(4\pi)^{-1}(\det L)[\partial \Omega]. \quad (15)$$

Second approach. We now compute (7). As has been noted in the Introduction, eigenmodes of $-\Delta_B$, except for zero-modes, satisfy the boundary condition $B_\perp = 0$, and are thus eigenmodes of $-\Delta_2$ belonging to its invariant subspace \mathcal{H}, cf. (5, 12). The converse is obvious. We conclude that

$$\text{Tr}_{\mathcal{H}} e^{t\Delta_B} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t\Delta_2} - \text{Tr}_{\mathcal{H}} e^{t\Delta_3}.$$

Since

$$\mathcal{H} = \{B \in L^2(\Omega, \mathbb{R}^3) \mid \text{div} B = 0\} = \text{Ker} d_3,$$

we have

$$\mathcal{H}^\perp = \overline{\text{Ran} d_3^*} = \text{Ran} d_3^* = \{-\nabla \psi \in L^2(\Omega, \mathbb{R}^3) \mid \psi \in L^2(\Omega)\}.$$

Using $d^* \Delta = \Delta d^*$, we see that $(-\Delta_2)[\mathcal{H}^\perp]$ and $-\Delta_3$ have the same spectrum, except for a single zero-mode (in fact, $-\nabla \psi = 0$ implies $\psi = \text{const}$). We thus find, using (11),

$$\text{Tr}_{\mathcal{H}} e^{t\Delta_B} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t\Delta_2} - \text{Tr}_{L^2(\Omega)} e^{t\Delta_3} = \text{Tr}_{L^2(\Omega, \mathbb{R}^3)} e^{t\Delta_2} - \text{Tr}_{L^2(\Omega)} e^{t\Delta_3} - \left(\sum_{i=1}^{n} g_i - 1\right),$$

i.e.,

$$a_k = a_k^{(2)} - a_k^{(3)}, \quad (k \neq 3),$$

$$a_3 = a_3^{(2)} - a_3^{(3)} - \sum_{i=1}^{n} g_i + 1.$$

From these relations and from the results of the Appendix we again recover Theorem. In particular,

$$a_3^{(2)} - a_3^{(3)} = \frac{1}{64}(4\pi)^{-1}\left(3(\text{tr} L)^2 - 36 \det L\right)[\partial \Omega]$$

leads to the claim for a_3, because of

$$\sum_{i=1}^{n} g_i = \frac{1}{2} \sum_{i=1}^{n} (1 + g_i) - \frac{1}{2} \sum_{i=1}^{n} (1 - g_i)$$

and of (15).
3 Application to the Casimir effect

For the purpose of this discussion we simply define the Casimir energy by the mode summation method, see e.g. [3]. In particular, we do not address the issue [6] of whether it is the most appropriate physically. We shall however observe that the Casimir energy is finite – a conclusion obtained in [3], but questioned in [10].

Consider the cavity $\Omega \subset \mathbb{R}^3$ enclosed in a large ball Ω_0. As usual we compare the vacuum energy of the electromagnetic field in the domains $\Omega \cup (\Omega_0 \setminus \Omega)$ with that of the reference domain Ω_0. Each eigenmode of either domain contributes a zero-point energy $\omega_k^2 / 2$, resp. $\omega_0^2 / 2$. As a regulator for the eigenfrequencies $\omega_k = \lambda_k^{1/2}$, we choose $e^{-\gamma \lambda_k}$, $(\gamma > 0)$. The corresponding definition of the Casimir energy is

$$E_C = \frac{1}{2} \lim_{\Omega_0 \to \infty} \lim_{\gamma \downarrow 0} \left(\sum_k \lambda_k^{1/2} e^{-\gamma \lambda_k} - \sum_k (\lambda_k^0)^{1/2} e^{-\gamma \lambda_k^0} \right).$$

We shall prove that the limit $\gamma \downarrow 0$ is finite. It will also be clear that the subsequent limit $\Omega_0 \to \infty$ exists, though we shall not make the effort to prove that (see however e.g. [8], Section 12.7 for the necessary tools). Using $\lambda_k^{1/2} = -\frac{1}{\sqrt{\pi}} \int_0^\infty dt \ t^{-\frac{1}{2}} \frac{d}{dt} e^{-t \lambda_k}$ and [8] we find for the regularized sum of the eigenfrequencies

$$\sum_k \lambda_k^{1/2} e^{-\gamma \lambda_k} \approx -\sum_n \frac{n - 3}{2 \sqrt{\pi}} a_n \int_0^\delta dt \ t^{-\frac{1}{2}} (t + \gamma)^{\frac{n-5}{2}}$$

as $\gamma \downarrow 0$. Here $\delta > 0$ is arbitrary, but fixed, and “≈” means up to terms $O(1)$. Using

$$\int_0^\delta dt \ t^{-\frac{1}{2}} (t + \gamma)^{\frac{n-5}{2}} \approx \begin{cases} \frac{4}{3} \gamma^{-2} & (n = 0), \\ \frac{3}{2} \gamma^{-\frac{3}{2}} & (n = 1), \\ 2 \gamma^{-1} & (n = 2), \\ \pi \gamma^{-\frac{1}{2}} & (n = 3), \\ -\log \gamma & (n = 4), \end{cases}$$

we find

$$\sum_k \lambda_k^{1/2} e^{-\gamma \lambda_k} \approx \frac{2}{\sqrt{\pi}} a_0 \gamma^{-2} + \frac{\sqrt{\pi}}{2} a_1 \gamma^{-\frac{3}{2}} + \frac{1}{\sqrt{\pi}} a_2 \gamma^{-1} + 0 \cdot a_3 \gamma^{-\frac{1}{2}} + \frac{1}{2 \sqrt{\pi}} a_4 \log \gamma.$$

Hence a finite Casimir energy requires (cf. [7]) that a_0, a_1, a_2, a_4 (but not necessarily a_3!) agree for $\Omega \cup (\Omega_0 \setminus \Omega)$ and for the reference domain Ω_0. This is indeed so for $a_0 = 2(4\pi)^{-\frac{3}{2}} |\Omega_0|$ and for $a_1 = 0$, but also for a_2, a_4 as the contribution from the two...
sides of $\partial \Omega$ cancel. The same conclusion is obtained if the regulator $e^{-\gamma \lambda_k}$ is replaced by $e^{-(\gamma \lambda_k)^{1/2}}$ (see [7], Eq. (27)):

$$\sum_k \lambda_k^2 e^{-(\gamma \lambda_k)^{1/2}} \approx \frac{24}{\sqrt{\pi}} a_0 \gamma^{-2} + 4 a_1 \gamma^{-\frac{3}{2}} + \frac{2}{\sqrt{\pi}} a_2 \gamma^{-1} + 0 \cdot a_3 \gamma^{-\frac{5}{2}} + \frac{1}{\sqrt{\pi}} a_4 \log \gamma .$$

Since no renormalization is necessary, the value of E_C agrees with that obtained by means of the zeta function.

In the rest of this section we compare our results with those of [2, 3]. To the extent the comparison is done we will find agreement. An important tool there is the mode generating function, Eq. (4.5) in [2],

$$\Phi(k) = \frac{1}{2} \text{Tr} \left(\frac{-\Delta_E}{-\Delta_E - k^2} + \frac{-\Delta_B}{-\Delta_B - k^2} \right) = \frac{k^2}{2} \text{Tr}' \left((-\Delta_E - k^2)^{-1} + (-\Delta_B - k^2)^{-1} \right), \quad (k \in \mathbb{C} \setminus \mathbb{R}) ,$$

where “\doteq” means equality “within addition of some polynomial in k^2”. Since the resolvents in (16) are not trace class, but their squares are, we first consider that replacement. Using $(A + \mu)^{-2} = \int_0^\infty dt \; t \; e^{-t(A+\mu)}$ we obtain, as $\mu \to \infty$,

$$\frac{1}{2} \text{Tr}' \left((-\Delta_E + \mu)^{-2} + (-\Delta_B + \mu)^{-2} \right) \doteq \sum_{n=0}^\infty a_n \int_0^\infty dt \; t^{\frac{n-3}{2}} e^{-t \mu} = \sum_{n=0}^\infty \Gamma(\frac{n+1}{2}) a_n \mu^{-\frac{n+1}{2}}$$

with coefficients a_n given in Theorem I. Integrating w.r.t. μ we find

$$\frac{1}{2} \text{Tr}' \left((-\Delta_E + \mu)^{-1} + (-\Delta_B + \mu)^{-1} \right) \doteq \sum_{n=0}^\infty \Gamma(\frac{n-1}{2}) a_n \mu^{-\frac{n-1}{2}} - a_1 \log \mu$$

and hence, with $\mu^{1/2} = -ik$,

$$\Phi(k) = 2 \sqrt{\pi} a_0 i k^3 - \sqrt{\pi} a_1 k^2 \ln(-k^2) + i \sqrt{\pi} a_2 k - a_3 + O(k^{-1}) .$$

Upon insertion of the mentioned values for a_0, \ldots, a_3 this agrees with Eq. (4.40) in [2], except for a_3 which is there replaced by its local part, see [3],

$$a_3 = \frac{1}{64} (4\pi)^{-1} (3(\text{tr} L)^2 - 4 \det L) [\partial \Omega] = \frac{1}{64} \int_{\partial \Omega} \text{d}\sigma \left(\frac{3}{4} (\kappa_1^2 + \kappa_2^2) - \kappa_1 \kappa_2 \right) ,$$

where κ_1, κ_2 are the principal curvatures. Note however that this discrepancy is implicit in the definition of “\doteq”. It is resolved in [3] by first considering $\delta \Phi(k)$, i.e., the difference of the mode generating functions corresponding to the configurations $\Omega \cup (\Omega_0 \setminus \Omega)$ and Ω_0. Thus

$$\delta \Phi(k) = -2 a_3 + O(k^{-1}) ,$$

8
since the contributions to a_0, a_2 cancel, and those to \tilde{a}_3 double the value. Not ambiguous then is “the number of additional modes of finite frequency created by introducing the conducting surface $\partial \Omega$”:

$$ C = \psi(0+) - \psi(\infty) , $$

where $\psi(y) = \delta \Phi(iy)$. For a connected boundary $\partial \Omega$ of genus g the value of $\psi(0+)$ has been established as $\psi(0+) = -g$ (see [3], Eq. (5.8)), resulting in

$$ C = 2\tilde{a}_3 - g . \quad (17) $$

This result agrees with Theorem 1; the non-local terms in (9) take the values $-\frac{1}{2}(g - 1), -\frac{1}{2}g, \frac{1}{2}$ for $\Omega, \Omega_0 \setminus \overline{\Omega}$ and Ω_0 respectively. Thus,

$$ \delta a_3 = 2\tilde{a}_3 - g , $$

in agreement with (17).

A Appendix

In this appendix we compute the heat kernel coefficients in (13) for $p = 0, \ldots, 3$ and $n = 0, \ldots, 5$ on the basis of Theorems 1 and 4 in [3]. We use the same notation, together with $P = n \otimes n$ denoting the normal projection at the boundary. The vector bundle is $V = \Omega \times \mathbb{R}$ for $p = 0, 3$, resp. $V = T\bar{\Omega}$ for $p = 1, 2$, equipped with the Euclidean connection. The decompositions of $V|_{\partial \Omega} = V_N \oplus V_D \ni (\phi^N, \phi^D)$ (with projections Π_+, resp. Π_-) and boundary conditions $\phi^N + S\phi^N = 0$, resp. $\phi^D = 0$, are specified as follows, cf. (14) and [3]:

\begin{align*}
 p = 0 : & \begin{cases}
 \Pi_+ = 0 , \\
 \Pi_- = 1 ,
 \end{cases} \\
 p = 1 : & \begin{cases}
 \Pi_+ = P , \\
 \Pi_- = 1 - P ,
 \end{cases} \\
 S = -L_{aa} P , \\
 p = 2 : & \begin{cases}
 \Pi_+ = 1 - P , \\
 \Pi_- = P ,
 \end{cases} \\
 S = -L , \\
 p = 3 : & \begin{cases}
 \Pi_+ = 1 , \\
 \Pi_- = 0 .
 \end{cases} \\
\end{align*} \quad (18)
The result is

\[a_0^{(p)} = (4\pi)^{-\frac{3}{2}} c_0^{(p)}|\Omega|, \]

\[a_1^{(p)} = \frac{1}{4} (4\pi)^{-1} c_1^{(p)}|\partial\Omega|, \]

\[a_2^{(p)} = \frac{1}{3} (4\pi)^{-\frac{3}{2}} c_2^{(p)}(\text{tr} L)[\partial\Omega], \]

\[a_3^{(p)} = \frac{1}{384} (4\pi)^{-1} \left(c_{31}^{(p)}(\text{tr} L)^2 + c_{32}^{(p)}(\det L) \right)[\partial\Omega], \]

\[a_4^{(p)} = \frac{1}{315} (4\pi)^{-\frac{3}{2}} \left(c_{41}^{(p)}(\text{tr} L)^3 + c_{42}^{(p)} \text{tr} L \cdot \det L \right)[\partial\Omega], \]

\[a_5^{(p)} = \frac{1}{245760} (4\pi)^{-1} \left(c_{51}^{(p)}(\text{tr} L)^4 + c_{52}^{(p)}(\text{tr} L)^2 \det L + c_{53}^{(p)}(\det L)^2 + c_{54}^{(p)} \text{tr} L \cdot \nabla^2 \text{tr} L \right)[\partial\Omega] \]

with coefficients given by

	\(p = 0 \)	\(p = 1 \)	\(p = 2 \)	\(p = 3 \)
\(c_0^{(p)} \)	1	3	3	1
\(c_1^{(p)} \)	-1	-1	1	1
\(c_2^{(p)} \)	1	-3	-3	1
\(c_{31}^{(p)} \)	3	21	33	15
\(c_{32}^{(p)} \)	-20	148	-220	-4
\(c_{41}^{(p)} \)	4	36	60	28
\(c_{42}^{(p)} \)	-18	-162	-186	-42
\(c_{51}^{(p)} \)	555	5145	8625	4035
\(c_{52}^{(p)} \)	-2840	-27720	-35720	-10840
\(c_{53}^{(p)} \)	2224	29072	29712	2864
\(c_{54}^{(p)} \)	120	2520	4680	2280

These values imply Theorem 1 as explained in its proof.

The computation of the table is based on the general result of [5], which has been
applied to (18) using the following identities:

\[
\begin{align*}
\text{Tr}(P_{:a}P_{:b}) &= 2(L^2)_{ab}, \\
\text{Tr}(P_{:a}P_{:a}P_{:b}P_{:b}) &= (L^4)_{aa} + (L^2)_{aa}(L^2)_{bb}, \\
\text{Tr}(P_{:a}P_{:b}P_{:a}P_{:b}) &= 2(L^4)_{aa}, \\
\text{Tr}(P_{:a}P_{:b}P_{:a}P_{:b}) &= 2L_{acb}L_{bca} + 4(L^4)_{aa} + 4(L^2)_{aa}(L^2)_{bb}, \\
\text{Tr}(P_{:a}P_{:b}P_{:a}P_{:b}) &= 2L_{abc}L_{abc} + 6(L^4)_{aa} + 2(L^2)_{aa}(L^2)_{bb}.
\end{align*}
\]

They can be derived by using \(\nabla_{e_a} n = -L_{ab} e_b \), so that

\[
P_{:a} = -L_{ac} (e_c \otimes n + n \otimes e_c),
\]

and by assuming without loss that \(\nabla_{e_a} e_b \) has no component parallel to \(T_p \partial \Omega \) at the point \(p \) of evaluation, i.e., \(\nabla_{e_a} e_b = L_{ab} n \). Then

\[
P_{:ab} = -L_{acb} (e_c \otimes n + n \otimes e_c) - 2(L^2)_{ab} P + (L_{ac}L_{bd} + L_{ad}L_{bc}) e_c \otimes e_d,
\]

from which the above traces follow. In turn they allow the computation of similar traces with \(P \) replaced by \(\chi = \Pi_+ - \Pi_- \), i.e., by \(\chi = \pm (2P - 1) \) in the cases \(p = 1, 2 \). In these two cases we also have

\[
\begin{align*}
\text{Tr} S_{:a} &= -L_{bca}, \\
\text{Tr} S_{:ab} &= -L_{cc:ab},
\end{align*}
\]

and, moreover, for \(p = 1 \),

\[
\begin{align*}
\text{Tr}(S_{:a}S_{:a}) &= L_{bca}L_{cc:a} + 2L_{bb}L_{cc}(L^2)_{aa}, \\
\text{Tr}(P_{:a}S_{:b}) &= -2(L^2)_{ab}L_{cc}, \\
\text{Tr}(PS_{:a}S_{:a}) &= L_{bca}L_{cc:a} + L_{bb}L_{cc}(L^2)_{aa},
\end{align*}
\]

resp. for \(p = 2 \),

\[
\begin{align*}
\text{Tr}(S_{:a}S_{:a}) &= L_{abc}L_{abc} + 2(L^2)_{aa}, \\
\text{Tr}(P_{:a}S_{:a}) &= 2(L^3)_{aa}, \\
\text{Tr}(PS_{:a}S_{:a}) &= (L^4)_{aa}.
\end{align*}
\]

Furthermore, traces of \(L^k \), \((k \geq 2) \), were reduced to \(\text{tr} L, \det L \) by means of \(L^2 - (\text{tr} L)L + \det L = 0 \). Finally, we used the Codazzi equation, \(L_{abc} = L_{ac:b} \), as well as

\[
L_{abc:a} - L_{abc:a} = L_{aa}(L^2)_{bc} - (L^2)_{aa}L_{bc},
\]

which follows from the Gauss equation.

Acknowledgement. We thank M. Levitin and G. Scharf for discussions. The research of D. Hasler was supported in part under the EU-network contract HPRN-CT-2002-00277.
References

[1] R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces, Ann. Phys. (N.Y.) 64, 271 (1971); Errata, ibid. 84, 559 (1974).

[2] R. Balian, B. Duplantier, Electromagnetic waves near perfect conductors, I. Multiple scattering expansions. Distribution of modes, Ann. Phys. (N.Y.) 104, 300 (1977).

[3] R. Balian, B. Duplantier, Electromagnetic waves near perfect conductors, II. Casimir effect, Ann. Phys. (N.Y.) 112, 165 (1978).

[4] N. Blažić, N. Bokan, P.B. Gilkey, Spectral geometry of the form valued Laplacian for manifolds with boundary, Indian J. Pure Appl. Math. 23, 103 (1992).

[5] T.P. Branson, P.B. Gilkey, K. Kirsten, D.V. Vassilevich, Heat kernel asymptotics with mixed boundary conditions, Nucl. Phys. B 563, 603 (1999).

[6] P. Candelas, Vacuum energy in the presence of dielectric and conducting surfaces, Ann. Phys. (N.Y.) 143, 241 (1982).

[7] G. Cognola, L. Vanzo, S. Zerbini, Regularization dependence of vacuum energy in arbitrarily shaped cavities, J. Math. Phys. 33, 222 (1992).

[8] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators, Springer (1987).

[9] G.F.G. Duff, Differential forms in manifolds with boundary, Ann. Math. 56, 115 (1952).

[10] D. Deutsch, P. Candelas, Boundary effects in quantum field theory, Phys. Rev. D 20, 895 (1978).

[11] P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, CRC (1995).

[12] R. Leis, Initial boundary value problems in mathematical physics, Teubner/Wiley (1986).

[13] H. Weyl, Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spectralgesetzte, J. f. reine u. angew. Math. 143, 177 (1913).