An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem

Rajnikant H. Bhesdadiya1*, Indrajit N. Trivedi2, Pradeep Jangir1, Narottam Jangir3 and Arvind Kumar4

Abstract: The main ambition of utility is to provide continuous reliable supply to customers, satisfying power balance, transmission loss while generators are allowed to be operated within rated limits. Meanwhile, achieving this from fossil fuel fired power plant emission value and fuel cost should be as less as possible. An allowable deviation in fuel cost and feasible tolerance in fuel cost has been additively called as multi objective combined economic emission dispatch (MOCEED) problem. MOCEED problem is applied to newly proposed non dominated sorting genetic algorithm-III (NSGA-III). NSGA-III method is really powerful to handle problems with non-linear characteristics as well as having many objectives. The proposed NSGA-III is firstly applied to unconstraint/constraints multi-objective test functions then applied to solve MOCEED problem with 6-generation unit, IEEE 118 bus 14 generating unit system with a smooth quadratic fuel/emission objective functions and 10-unit with non-smooth/valve point loading effect test system. Statistical results of MOCEED problem obtained by NSGA-III is compared with other well-known techniques proposed in recent literature, validates the effectiveness of proposed approach.

Subjects: Artificial Intelligence; Evolutionary Computing; Power Engineering; Engineering Economics

Keywords: emission constrained economic dispatch; NSGA-III; valve point loading effect; meta-heuristic; multi-objective

1. Introduction
The main ambition of fossil fuel fired power plant management is to optimal scheduling of active power to committed units so as to achieve least possible generation fuel cost as well as emission value. Primarily economic load dispatch problem (ELDP) (Trefny & Lee, 1981) is main objective of electricity generation utilities but with large consciousness towards environment protection and...
passage of the clean air act amendments have forced generation utilities to reduce emission (Le et al., 1995; Talaq, El-Hawary, & El-Hawary, 1994) to a certain level.

Evolutionary techniques are capable to overcome the difficulties associated with classical methods such as multiple run. The target of multi-objective optimization technique is not only to steer the search towards the pareto optimal front but also to preserve population diversity in the set of non-dominated solutions.

Newly proposed NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) is powerful technique to eliminate the drawbacks of NSGA-II such as lack of uniform diversity and absence of lateral diversity preserving operator among the current best non dominated solutions.

In this paper term used emission constrained economic dispatch (ECED) problem is similar to term combined economic emission dispatch (CEED) problem. Various conventional linear optimization methods (Wood, Wollenberg, & Sheble, 2013) were used to solve the ELD problem, (a) lambda-iteration method, (b) gradient-method, (c) linear-programming-method and (c) Newton’s method. Linear programming techniques are fast and reliable but these methods are failed to obtain the optimal solution for solving highly complex non-linear objective functions.

The multi-objective power system dispatch problem can be transformed into single objective by Secularization Methods (Priori Approach) using these techniques:

• Price penalty factor technique and
• Weighted sum method (WSM)
• Goal Attainment method
• Lexicographic method etc.

The ECED problem consists of either single objective or multi-objective is solved using various algorithms such as: After Scalarization technique applied ECED problem can be classified into two forms with and without considering valve point loading effect of generators further classified into the equation used either quadratic and cubic equation to evaluate fuel cost and emission value. ECED problem is solved without considering valve point effect and with price penalty factors based approach is solved with various computational techniques.

ECED problem solved using “Max-Max” price penalty factor approach by various artificial intelligence (AI) techniques (Jacob Raglend, Veeravalli, Sailaja, Sudheera, & Kothari, 2010) consisting of genetic algorithm (GA), Evolutionary Programming (EP), Particle swarm optimizer (PSO) and Differential evolution (DE) is applied on IEEE-30 Bus system. “Max-Max” price penalty factor is also used to solve CEED/ECED problem with Gravitational Search Algorithm (Güvenç, Sönmez, Duman, & Yürükeren, 2012), Parallelized PSO (PPSO) (Hamedi, 2013), Evolutionary programming (EP), GA and Micro GA (MGA) (Venkatesh, Gnanadass, & Padhy, 2003), Assessment of available transfer capability for practical power system with CEED problem for IEEE-30bus system with 6 generating units and Indian utility system 62-Bus (IUS-62) with nineteen generators (Gnanadass, Padhy, & Manivannan, 2004). Analytical solution for CEED problem with IUS-62 with six generators(Palanichamy & Babu, 2008), comparative study (Krishnamurthy & Tzoneva, 2012b) with “Min-Max” price penalty factor using PSO and Lagrange’s algorithm (LA), with LA (Krishnamurthy & Tzoneva, 2011a) and PSO (Krishnamurthy & Tzoneva, 2012a) taking “Min-Max” and “Max-Max” price penalty factors approach ECED problem is solved. Lagrange’s algorithm is used to solve ECED problem with four penalty factors (Krishnamurthy & Tzoneva, 2012d) with the quadratic equation is considered for evaluating fuel cost and emission value, six penalty factors with cubic equation (Krishnamurthy & Tzoneva, 2012c) used for calculation of ECED problem. Scenario based dynamic economic emission dispatch problem is solved by Fuzzy adaptive improved PSO (FAIPSO) (Aghaei, Niknam, Azizipanah-Abarghoee, & Arroyo, 2013).
The ECED problem with valve point effect is solved by using “Min-Max” and “Max-Max” price penalty factors approach with LA (Krishnamurthy & Tzoneva, 2011b), Maclaurin series based Lagrangian method (Simon & Hemamalini, 2009), Opposition based-GSA (OGSA) (Shaw, Mukherjee, & Ghoshal, 2012).

Various types of economic dispatch problem are solved with weighted sum method (WSM) using PSO (Jeyakumar, Jayabarathi, & Raghunathan, 2006). The ECED problem with WSM technique is solved using Artificial Bee Colony with Dynamic Population size (ABCDP) (Aydin, Özyn, Yaşar, & Liao, 2014) and opposition-based harmony search algorithm (OHS) (Chatterjee, Ghoshal, & Mukherjee, 2012). Hybridization of PSO and GSA computational techniques with weighted sum method considering valve point effect (Jiang, Ji, & Shen, 2014) for ECED problem solution. Neural network, Fuzzy system and Lagrange’s algorithm (LA) (Krishnamurthy & Tzoneva, 2011b) for single and multi-area dispatch problem is investigated, Emission Standards (Guttikunda & Jawahar, 2014), Location of Greenhouse gases (GHG) emission from thermal power plant in India (Sethi, 2015), Dispatch problem on different power system using Stochastic algorithm (Dhillon, Parti, & Kothari, 1993; Kothari & Dhillon, 2011), Security constrained economic scheduling of generation considering generator constraints (Chang, 1995; Gaing & Chang, 2006), Integration of solar and coal fired plant (Parvareh et al., 2014).

Finally, the economic environmental emission dispatch problem is multi-objective (such as Fuel Cost, Emission Value, Transmission Loss, ECED fuel cost, Different gases exhalation etc.) considering at a single time to find an actual operating point of generators to fulfil all objectives efficiently. Multi-objective thermal power dispatch (Dhillon, Parti, & Kothari, 1994), considering more than one objective for ECED problem is solved using various computational techniques such as: multi-objective DE (MODE) (Basu, 2011), MOGSA (Mondal, Bhattacharya, & ree Dey, 2013), Modified Non-dominated sorting genetic algorithm-II (MNSGA-II) (Dhanalakshmi, Kannan, Mahadevan, & Baskar, 2011), NSGA-II with valve point effect (Basu, 2008), BB-MOPSO (Zhang, Gong, & Ding, 2012), Hybrid multi-objective optimization algorithm based on PSO and DE (MO-DE/PSO) (Gong, Zhang, & Qi, 2010), Multi-objective particle swarm optimization algorithm proposed by Coello et al. (CMOPSO) (Coello, Pulido, & Lechuga, 2004), Multi objective particle swarm with the sigma method (SMOPSO) (Mostaghim & Teich, n.d.), time variant multi-objective particle swarm optimization (TV-MOPSO) (Tripathi, Bandyopadhayay, & Pal, 2007) and multi-objective harmony search algorithm proposed by Sivasubramani and Swarup (2011) etc.

Combined Economic Emission Dispatch (CEED) problem is also known as Emission Constrained Economic Dispatch (ECED) problem, Combined Economic and Environmental Dispatch, Environmental/Economic dispatch (EED), Multiobjective CEED (MOCEED) and Constraint Environment Dispatch (CED) problem.

Recently proposed nature based and evolutionary algorithms with various applications like energy management of RES in a Microgrid using Cuckoo Search (CS) Algorithm (Bhoye et al., 2016), constrained engineering design problem by Moth-Flame optimizer (MFO) (Jangir et al., 2016), Voltage stability improvement by BAT optimization algorithm (Trivedi et al., 2016), Seyedali Mirjalili et al. algorithms such as Grey wolf optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014), Whale optimizer (WOA) (Mirjalili & Lewis, 2016), Moth-flame optimizer (MFO) (Mirjalili, 2015), swarm based Dragonfly Algorithm (DA) (Mirjalili, 2016), Gai-Ge Wang et al. elephant herding optimization (EOH) (Wang & Suash Deb, in press) and evolution based NSGA-III. Among these algorithms NSGA-III is chosen because it has comparatively better capability of handling many objectives (up to 50 objectives) and it also has a uniform diversity to obtained Pareto optimal front in a set of non-dominated solutions. Overview of this paper is shown in Figure 1.
2. Mathematical formation of emission constrained economic dispatch (ECED) problem

2.1. Without valve-point loading effect

Mathematic equation for ECED problem is designed from (Aghaei et al., 2013; Aydin et al., 2014; Chatterjee et al., 2012; Gnanadass et al., 2004; Güvenç et al., 2012; Hamedi, 2013; Jacob Raglend et al., 2010; Jiang et al., 2014; Krishnamurthy & Tzoneva, 2011a, 2012a, 2012b, 2012d; Palanichamy & Babu, 2008; Simon & Hemamalini, 2009; Venkatesh et al., 2003). Fuel cost equation is given as follows:

\[\text{Min}(F_c) = \sum_{i=1}^{NG} a_i P_i^2 + b_i P_i + c_i (\$/h) \]

(1)

where \(a_i \) = Cost coefficient of ith generator in (\$/MW^2 h), \(b_i \) = Cost coefficient of ith generator in (\$/MWh), \(c_i \) = Cost coefficient of ith generator in (\$/h), \(F_c \) = Generation cost [21] of the ith generator (\$/h), \(NG \) = Number of generators.

Emission standards (Krishnamurthy & Tzoneva, 2011b) and its effect is known as Global warming due to dangerous gases exhalation from power plants, the range of effected area due to GHG (Guttikunda & Jawahar, 2014). Total emission is calculated from quadratic equation given below:

\[E_T = \sum_{i=1}^{n} (\alpha_i P_i^2 + \beta_i P_i + \gamma_i) \text{ (kg/h)} \]

(2)
where, $ET = \text{Total emission value}$, $\alpha_i = \text{Emission coefficient of } i\text{th generator in (kg/MW}^2\text{ h)}$, $\beta_i = \text{Emission coefficient of } i\text{th generator in (kg/MWh)}$, $\gamma_i = \text{Emission coefficient of } i\text{th generator in (kg/h)}$.

2.2. With valve-point loading effect

\[
\text{Min}(F_f) = \sum_{i=1}^{NG} a_i P_i^2 + b_i P_i + c_i + \left| d_i \sin \left(e_i (P_i^{\min} - P_i) \right) \right|
\]

where, $F_f = \text{Total fuel cost }$/h.

\[
\text{Min}(E_f) = \sum_{i=1}^{NG} a_i P_i^2 + \beta_i P_i + \gamma_i + \eta_i \exp(\delta_i P_i)
\]

where, $E_f = \text{Total emission value kg/h}$.

3. Non-dominated sorting algorithm-III

NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) algorithm start randomly initialized population size N, pre-defined more distributed M-dim, with reference points H on plane have hyper with a normal vector that cover entire entire regions RM region. Each reference point in hyper-plane is put such of manner its intersect every objective function arises at one that called Das and Dennis’s technique where $H = \left(\frac{M+p-1}{p} \right)$ each Range have $(p + 1)$ points and N is multiple of 4 greater than H both have desired conditions.

At a generation t, complete population Pt convert in non-dominated solutions in the same way of NSGA-II algorithm Sorting mechanism, after that Pt produces new offspring population Q_t with the help of mutations and recombination operators in which everyone population member associated with each reference point & any selection operator will allow a competition to be set among different reference points. A combined population $R_t = Pt \cup Q_t$ is then formed. So we have get first non-dominated solution $Pt+1$ until every solution cannot be included from whole fronts. Suppose we have denoted some front that cannot be associated to select F_i after that P_{t+1} and F_i perform niching and normalized mechanism after that each member associated with a specific reference point based on shortest perpendicular distance ($d()$) of each population member with a reference line created by joining the origin with a supplied reference point. At finally niching mechanism choose the F_i member that is linked with minimum reference points in P_{t+1}.

The whole process is then expected to find one population member corresponding to each supplied reference point close to the Pareto-optimal front, based on crossover, mutation and recombination operators that are used to develop uniform solutions. The use of a well-spread reference points ensures a well-distributed set of trade-off points at the end.

A better advantage of NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) is that have not required additional parameter compare to NSGA-II. NSGA-III Algorithm step by step representation shown in Figure 2. Main difference of selection mechanism of both NSGA-II & NSGA-III algorithms given below:

1. NSGA-III algorithm cannot have required another selection operator for P_p to create new operator q_*. On the other hand, NSGA-II’s selection operator uses non-dominated rank and a crowding distance value to choose a winner between two feasible individuals from p_*. It is worth noting however that, NSGA-III performs selection if and only if at least one of the two individuals being compared is infeasible. In that case NSGA-III prefers feasible over infeasible, and less violating over more violating individuals.

2. To maintain better Coverage of pareto solutions NSGA-III uses reference point mechanism and other side NSGA-II uses crowding distance operator to maintain uniform coverage.
NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) uses a pre-allocated reference set mechanism to choose better diverse solutions in the size of population in free space, whereas NSGA-II algorithm does not require any pre-allocated methods on the objective space. So, more time taken to generate first solution in spaces, NSGA-III have easily generated first solution so NSGA-III better than NSGA-II algorithm for solving many objective problems. Figure 2 shows step by step procedure of NSGA-III Algorithm has been explained in pseudo code named step 2, step 3 and step 4 respectively.

4. Application and results

The meta-heuristic techniques are implemented to resolve the MOCEED problem for standard test system and for a number of cases with dissimilar objective functions. The software program is written in MATLAB 2014b and applied on a 2.60 GHz i5 PC having 4 GB RAM.
4.1. Unconstraint/constraint test functions
NSGA-III technique has been primarily applied to solve multiobjective unconstraint/constraint test functions such as FON 2, KUR, ZDT 1, ZDT 2, ZDT 3, ZDT 4, ZDT 6, BINH, VNT 3, DTLZ 1, DTLZ 2 and DTLZ 3. Appendix A consisting of objective function of all above multiobjective unconstraint/constraint problems: (a) FON2 (b) KUR (c) ZDT1 (d) ZDT2 (e) ZDT3 (f) ZDT4 (g) ZDT6 (h) BINH (i) VNT3 (j) DTLZ1 (k) DTLZ2 and (l) DTLZ3.
test functions. Statistical value and Pareto front obtained for inverse gradient distance (IGD) and hyper volume (HV) matrices are compared with other techniques (Cheng, Jin, Olhofer, & Sendhoff, 2016) solves same problem like SPEA2, and NSGA-II in Tables 1, 2 and Figure 3 respectively.

4.2. Test systems

NSGA-III technique is applied to three different test systems. In order to represent the effectiveness of proposed algorithm statistical results are compared with NSGA-II (Dhillon et al., 1994), Strength pareto evolutionary algorithm 2 (SPEA2) (Dhillon et al., 1994), pareto differential evolution (PDE) (Dhillon et al., 1994). NSGA-III results are also provided with single objective such as minimum fuel cost and minimum emission value. For each test system internal parameter like population/search agent, maximum/termination count and maximum archive size are 100, 200 and 100 respectively. In the way to check performance of NSGA-III algorithm, it has been tested on: the IEEE 30-bus, the 39-bus New England system network and the IEEE 118-bus test systems. All test systems are used to check the performance of NSGA-III algorithm compare to other algorithms.

4.2.1. Test system 1

In IEEE 30-bus test system contain 30-Buses, 41-Branches, 4-Transformers, 9-Shunt Var Compensators and 6-Generators. Further details, the Cost and emission coefficients, generator data and the minimum and maximum limits for the control variables are given in Table B1. In test system consists of six operational generating unit with simply a quadratic fuel and emission objective function for a power demand of 1,200 MW (Basu, 2011). Input data for operational generating unit loading limits and loss parameters are given in Table B1 of Appendix B. Single line diagram of 6-unit system is shown in Figure 4.
Figure 4. Single line diagram of 6-unit system.

Problem	NSGA-III Mean	NSGA-II (Cheng et al., 2016) Mean	SPEA-2 (Cheng et al., 2016) Mean
	SD	SD	SD
FON 2	6.1532E−5	5.1506E−3	4.1800E−3
KUR	5.9741E−04	4.2322E−2	3.4163E−2
ZDT 1	1.3508E−05	4.8182E−3	4.1795E−3
ZDT 2	1.1212E−07	4.8259E−3	4.1675E−3
ZDT 3	6.4797E−04	5.6881E−3	5.5675E−3
ZDT 4	4.4880E−05	6.5921E−3	6.5020E−3
ZDT 6	3.8151E−06	7.6800E−3	8.3703E−3
Binh	7.0908E−1	3.5E−2	5.8733E−1
VNT 3	1.2343E−04	4.9851E−2	3.2437E−2
DTLZ 1	0.00030305	3.3798E−2	2.2106E−2
DTLZ 2	8.6501E−08	6.8952E−2	5.4307E−2
DTLZ 3	0.0018203	2.6043E+0	1.6749E+0
It is represented in Table 3 that with the objective of least cost objective minimum fuel cost is 6.41E+04 $ and emission value is 1,346 lb. But fuel cost increases to 6.599E+04 $ and emission value reduced to a numeric value 1,241 lb with the objective of emission minimization. Compromise point or true operating point obtained by NSGA-III for MOCEED problem is as fuel cost is 6.4830E+04 $ that is higher than minimum fuel cost 6.41E+04 $ and lower than 6.599E+04 $ obtained during least cost and emission value objectives respectively. So as with emission value for true operating point is 1,285 lb that is lower than 1,346 lb and higher than 1,241 lb obtained during least cost and emission value objectives respectively. Statistical value obtained for compromise point is compared with other techniques solves same MOCEED problem like SPEA2, NSGA-II and PDE in Table 3. Figure 5 shows 100 non-dominated solutions as true pareto front for 6-opertaional generating for PD = 1,200 MW.

4.2.2. Test system 2

In 39-bus New England test system, contain 39-Buses, 46-Branches, and 10-Generators. Further details, the Cost and emission coefficients, generator data and the minimum and maximum limits for the control variables are given in Table B2. This test system consists of ten operational generating unit with a non-smooth/non-convex fuel and emission objective function for a power demand of

Table 3. Statistical performance comparison of NSGA-III for 6-unit system

Parameters	NSGA-III	MODE (Basu, 2011)	PDE (Basu, 2011)	NSGA-II (Basu, 2011)	SPEA (Basu, 2011)		
Economic dispatch	Emission dispatch	EED	EED	EED	EED	EED	
P1 (MW)	84.6285	125	107.9932	108.6284	107.3965	113.1259	104.1573
P2 (MW)	93.4213	150	118.3631	115.9456	122.1418	113.4488	122.9807
P3 (MW)	210	201.4824	206.7969	206.7356	217.4191	214.9553	
P4 (MW)	225	198.8723	206.65	206.0000	203.7047	207.9492	203.1387
P5 (MW)	315	288.5129	306.6592	301.8884	308.1045	304.6641	316.0302
P6 (MW)	325	286.2913	303.8712	304.4127	303.3797	291.5969	289.9396
Cost ($)	64.099	65.992	64.830	64.843	64.920	64.962	64.884
Emission (lb)	1,345.9	1,240.7	1,285	1,286.0	1,281.0	1,281.0	1,285

It is represented in Table 3 that with the objective of least cost objective minimum fuel cost is 6.41E+04 $ and emission value is 1,346 lb. But fuel cost increases to 6.599E+04 $ and emission value reduced to a numeric value 1,241 lb with the objective of emission minimization. Compromise point or true operating point obtained by NSGA-III for MOCEED problem is as fuel cost is 6.4830E+04 $ that is higher than minimum fuel cost 6.41E+04 $ and lower than 6.599E+04 $ obtained during least cost and emission value objectives respectively. So as with emission value for true operating point is 1,285 lb that is lower than 1,346 lb and higher than 1,241 lb obtained during least cost and emission value objectives respectively. Statistical value obtained for compromise point is compared with other techniques solves same MOCEED problem like SPEA2, NSGA-II and PDE in Table 3. Figure 5 shows 100 non-dominated solutions as true pareto front for 6-opertaional generating for PD = 1,200 MW.
2,000 MW (Basu, 2011). Input data for operational generating unit loading limits and loss parameters are given in Table B2 of Appendix B. Single line diagram of 10-unit system is shown in Figure 6.

It is represented in Table 4 that with the objective of least cost objective minimum fuel cost is 1.115E+05 $ and emission value is 4,562 lb. But fuel cost increases to 1.164E+05 $ and emission value reduced to a numeric value 3,932 lb with the objective of emission minimization. Compromise point or true operating point obtained by NSGA-III for MOCEED problem is as fuel cost is 1.1340E+05 $ that is higher than minimum fuel cost 1.115E+05 $ and lower than 1.164E+05 $ obtained during least cost and emission value objectives respectively. So as with emission value for true operating point is
4,105 lb that is lower than 4,562 lb and higher than 3,932 lb obtained during least cost and emission value objectives respectively. Statistical value obtained for compromise point is compared with other techniques solves same MOCEED problem like SPEA2, NSGA-II and PDE in Table 4. Figure 7 shows 100 non-dominated solutions as true Pareto front for 6-operational generating for PD = 2,000 MW.

4.2.3. Test system 3
In IEEE 118-bus test system contain 118-Buses, 186-Branches, 9-Transformers, 14-Shunt Var Compensators and 14-Generators. Further details, the Cost and emission coefficients, generator data and the minimum and maximum limits for the control variables are given in Table B3. The IEEE 118-bus 14-operational generating unit test system with a smooth quadratic fuel and emission objective function neglecting transmission losses for a power demand of 950 MW. Input data for operational generating unit loading limits and loss parameters are given in Table B3 of Appendix B. Single line diagram of 14-unit system is shown in Figure 8.

Parameters	NSGA-III	MODE (Basu, 2011)	PDE (Basu, 2011)	NSGA-II (Basu, 2011)	SPEA 2 (Basu, 2011)		
P₁ (MW)	55	55	54.9324	54.9487	54.9853	51.9515	52.9761
P₂ (MW)	80	79.9782	80	74.5821	79.3803	67.2584	72.8130
P₃ (MW)	106.0514	82.1289	82.8893	79.4294	83.9842	73.6879	78.1128
P₄ (MW)	99.2176	82.3506	83.7835	80.6875	86.5942	91.3554	83.6088
P₅ (MW)	81.5808	160	149.0664	136.8551	144.4386	134.0522	137.2432
P₆ (MW)	85.1964	240	153.8082	172.6393	165.7756	174.9504	172.9188
P₇ (MW)	299.9843	296.1872	299.6631	283.8233	283.2122	289.4350	287.2023
P₈ (MW)	340	206.2329	317.0490	316.3407	312.7709	314.0556	326.4023
P₉ (MW)	340	397.4092	435.7486	448.5923	440.1135	455.6978	448.8814
P₁₀ (MW)	340	392.2266	427.0254	436.4287	432.6783	431.8054	423.9025
Cost (×10⁵$)	1.1150	1.1643	1.1341	1.1348	1.1351	1.1354	1.1352
Emission (lb)	4,562	3,932.5	4,118.6	4,124.90	4,111.40	4,130.20	4,109.10
It is represented in Table 5 that with the objective of least cost objective minimum fuel cost is 4,265 $/h and emission value is 446.5 ton/h. But fuel cost increases to 4,485 $/h and emission value reduced to a numeric value 24.09 ton/h with the objective of emission minimization. Compromise point or true operating point obtained by NSGA-III for MOCEED problem is as fuel cost is 4,335.9 $/h that is higher than minimum fuel cost 4,265 $/h and lower than 4,485 $/h obtained during least cost and emission value objectives respectively. So as with emission value for true operating point is 124.6384 ton/h that is lower than 446.5 ton/h and higher than value 24.09 ton/h obtained during least cost and emission value objectives respectively. Statistical value obtained for compromise point is compared with other techniques solves same MOCEED problem like NSGA-II in Table 5. Figure 9 shows 100 non-dominated solutions as true pareto front for 14-opertaional generating for PD = 950 MW.

In order to check the robustness of the NSGA-III algorithm for solving Multi-Objective Economic/Environmental dispatch problem, different standard benchmark functions and the IEEE 30-bus, the 39-bus New England system network and the IEEE 118-bus test systems used for experimental study. Tables 1 and 2 represents the statistical results on benchmark functions achieved by the NSGA-III, NSGA-II and SPEA-2 algorithms for unconstraint and constraint problem in terms of IGD and HV metrics. From these table clear that NSGA-III algorithm have better value compare to NSGA-II and SPEA-2 in terms of SD and mean value. Tables 3–5 represents the statistical results on the IEEE 30-bus, the 39-bus New England system network and the IEEE 118-bus test systems achieved by the NSGA-III, NSGA-II, MODE, PDE and SPEA-2 algorithms for Economic/Environmental dispatch problem in terms of compromise solution point. From these tables clear that NSGA-III algorithm have better value compare to other algorithm reported on literature survey.

4.3. Performance evaluation study of NSGA-III algorithm

In this Section describe why NSGA-III algorithm Comparison with other published techniques to demonstrate the accuracy and the validity of the NSGA-III technique should be presented in details.
In NSGA-III algorithm does not required any additional adjustable parameters compare to NSGA-II. So experimental study on benchmark and real world problem NSGA-III algorithm have required less computational complexity and less time consuming compare to other algorithms reported in literatures.

NSGA-III algorithm are used to many objective means easily implemented more than 10 objectives that future make more power full NSGA-III algorithm compare to other algorithm.
(c) Results of NSGA-III algorithm in term of IGD and HV metrics in term of SD and mean value on standard unconstrained/constraint benchmark functions shown in Tables 1 and 2 represents NSGA-III algorithm represent better solution quality compare to NSGA-II and SPEA-2 algorithms.

(d) Results of NSGA-III algorithm in terms of best value on economic constraint emission dispatch (ECED) problem with the IEEE 30-bus, the 39-bus New England system network and the IEEE 118-bus test systems represents the better effectiveness of NSGA-III algorithm compare to other algorithm shown in Tables 3–5.

5. Conclusion
In this paper, a new NSGA-III algorithm, an improved version of most popular multi-objective algorithm NSGA-II, is successfully applied to standard benchmark functions and economic constraint emission dispatch (ECED) problem on three test systems, such as IEEE 30-Bus, New England 39-Bus, and IEEE 118-Bus, with different fuel cost curve characteristics such as simple quadratic fuel and non-smooth/non-convex fuel with emission value and various constraints. NSGA-III algorithm removes drawbacks of NSGA-II algorithm such as disability to maintaining the diversity among population members that is avoided by supplying and adaptively updating a number of well-spread reference points in NSGA-III. The obtained results using NSGA-III algorithm have been compared to well recognize NSGA-II, SPEA-2 and other multiobjective techniques reported in literatures. The comparative study among that algorithms represent the solution quality in terms of SD and mean value, superiority in terms of IGD and HV metrics and effectiveness in terms of best values of NSGA-III algorithm over other algorithms on standard unconstraint/constraint test functions and economic constraint emission dispatch (ECED) problem.

In future direction of this research work is to improve the coverage and convergence characteristics of NSGA-III algorithm considering integrated with different oppositional strategy, cross over and mutation schemes.

Funding
The authors received no direct funding for this research.

Author details
Rajnikant H. Bhesdadiya1
E-mail: mblec@gmail.com
ORCID ID: http://orcid.org/0000-0002-0142-8776
Indrajit N. Trivedi2
Pradeep Jangir2
ORCID ID: http://orcid.org/0000-0001-6944-4775
Narottam Jangir2
ORCID ID: http://orcid.org/0000-0003-3536-7841
Arvind Kumar4
E-mail: akbharia8@gmail.com

1 Department of Electrical Engineering, Lukhdhirji Engineering College, Morbi, Gujarat 363641, India.
2 Department of Electrical Engineering, Government Engineering College, Gandhinagar, Gujarat 382007, India.
3 Department of Electrical Engineering, Government Engineering College, Bikaner, Rajasthan 334004, India.
4 University of Western Australia, Australia.

Citation information
Cite this article as: An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem, Rajnikant H. Bhesdadiya, Indrajit N. Trivedi, Pradeep Jangir, Narottam Jangir & Arvind Kumar, Cogent Engineering (2016), 3: 1269383.

References
Aghaei, J., Niknam, T., Azizipanah-Abarghoee, R., & Arroyo, J. M. (2013). Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties. International Journal of Electrical Power & Energy Systems, 47, 351–367. doi:10.1016/j.ijepes.2012.10.069
Aydin, D., Özyon, S., Yaşar, C., & Liao, T. (2014). Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. International Journal of Electrical Power & Energy Systems, 54, 144–153. doi:10.1016/j.ijepes.2013.06.020
Basu, M. (2008). Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. International Journal of Electrical Power & Energy Systems, 30, 140–149. doi:10.1016/j.ijepes.2007.06.009
Basu, M. (2011). Economic environmental dispatch using multi-objective differential evolution. Applied Soft Computing, 11, 2845–2853. doi:10.1016/j.asoc.2010.11.014
Bhave, M., Purohit, S. N., Trivedi, I. N., Pandya, M. H., Jangir, P., & Jangir, N. (2016). Energy management of renewable energy sources in a microgrid using cuckoo search algorithm. In 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECs) (pp. 1–6). IEEE. doi:10.1109/SCEECs.2016.7509294
Chang, C. S. (1995). Security-constrained multiobjective generation dispatch using bicriterion global optimisation. IEEE Proceedings - Generation, Transmission and Distribution, 142, 406–414. doi:10.1049/ip-gtd:19951806
Chatterjee, A., Ghoshal, S. P., & Mukherjee, V. (2012). Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm. International Journal of Electrical Power & Energy Systems, 39, 9–20. doi:10.1016/j.ijepes.2011.12.004
Cheng, R., Jin, Y., Olhofer, M., & Sendhoff, B. (2016). A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 20, 773–791. doi:10.1109/TEVC.2016.2519378

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 256–279. doi:10.1109/TEVC.2004.826067

Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18, 577–601. doi:10.1109/TEVC.2013.2281535

Dhandalakshmi, S., Kannan, S., Mahadevan, K., & Baskar, S. (2011). Application of modified NSGA-II algorithm to combined economic and emission dispatch problem. International Journal of Electrical Power & Energy Systems, 33, 992–1002. doi:10.1016/j.ijepes.2011.01.014

Dhillon, J. S., Parti, S. C., & Kothari, D. P. (1993). Stochastic economic emission load dispatch. Electric Power Systems Research, 26, 179–186. doi:10.1016/0378-7796(93)90011-3

Dhillon, J. S., Parti, S. C., & Kothari, D. P. (1994). Multiobjective optimal thermal power dispatch. International Journal of Electrical Power & Energy Systems, 16, 383–389. doi:10.1016/0142-0615(94)90025-6

Gaing, Z., & Chang, R. (2006). Security-constrained economic dispatch problems using particle swarm optimization and gravitational search algorithm for solving real challenging constrained engineering optimization problems. In 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCECES) (pp. 1–5). IEEE. doi:10.1109/SCECES.2016.7509293

Jeyakumar, D. N., Jayabarathi, T., & Raghunathan, T. (2006). Particle swarm optimization for various types of economic dispatch problems. International Journal of Electrical Power & Energy Systems, 28, 36–42. doi:10.1016/j.ijepes.2005.09.004

Jiang, S., Ji, Z., & Shen, Y. (2014). A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. International Journal of Electrical Power & Energy Systems, 55, 628–644. doi:10.1016/j.ijepes.2013.10.006

Kothari, D. P., & Dhillon, J. S. (2011). Power system optimization. New Delhi: PHI Learning.

Krishnamurthy, S., & Tzneva, R. (2011a). Comparative analyses of Min-Max and Max-Max price penalty factor approaches for multi criteria power system dispatch problem using Lagrange’s method. In 2011 International Conference On Recent Advancements In Electrical, Electronics And Control Engineering (pp. 36–43). IEEE. doi:10.1109/ICONRACEE.2011.6129758

Krishnamurthy, S., & Tzneva, R. (2011b). Comparative analyses of Min-Max and Max-Max price penalty factor approaches for multi criteria power system dispatch problem with valve point effect loading using Lagrange’s method. In 2011 International Conference on Power and Energy Systems (pp. 1–7). IEEE. doi:10.1109/ICPES.2011.6156550

Krishnamurthy, S., & Tzneva, R. (2012a). Application of the particle swarm optimization algorithm to a combined economic emission dispatch problem using a new penalty factor. In IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica) (pp. 1–7). IEEE. doi:10.1109/PowerAfrica.2012.6498644

Krishnamurthy, S., & Tzneva, R. (2012b). Comparison of the Lagrange’s and particle swarm optimisation solutions of an economic emission dispatch problem with transmission constraints. In 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1–8). IEEE. doi:10.1109/PEDES.2012.6484295

Krishnamurthy, S., & Tzneva, R. (2012c). Impact of price penalty factors on the solution of the combined economic emission dispatch problem using cubic criterion functions. In 2012 IEEE Power and Energy Society General Meeting (pp. 1–8). IEEE. doi:10.1109/PESGM.2012.6343512

Krishnamurthy, S., & Tzneva, R. (2012d). Investigation of the methods for single area and multi area optimization of a power system dispatch problem. International Review of Electrical Engineering, 7, 3600. Retrieved from http://connection.ebscohost.com/articles/82403758/investigation-methods-single-area-multi-area-optimization-power-system-dispatch-problem

Le, K. D., Golden, J. L., Stansberry, C. J., Vice, R. L., Wood, J. T., Ballance, J., ... Cauley, G. W. (1995). Potential impacts of clean air regulations on system operations. IEEE Transactions on Power Systems, 10, 647–656. doi:10.1109/59.387899

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249. doi:10.1016/j.knosys.2015.07.006

Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27, 1053–1073. doi:10.1007/s00521-015-2020-1

Mirjalili, S., & Lewis, A. (2016). The Whale optimization algorithm. Advances in Engineering Software, 95, 51–67. doi:10.1016/j.advengsoft.2016.01.008
Appendix A

(1) FON 2

\[F = (f_1(x), f_2(x)), \] where

\[f_1(x) = 1 - \exp \left(-\sum_{i=1}^{n} \left(x_i - \frac{1}{\sqrt{n}} \right)^2 \right), \]

\[f_2(x) = 1 - \exp \left(-\sum_{i=1}^{n} \left(x_i + \frac{1}{\sqrt{n}} \right)^2 \right), \]

Constraints

\[-4 \leq x_i \leq 4 \]

(2) KUR

\[F = (f_1(x), f_2(x)), \] where

\[f_1(x) = \sum_{i=1}^{n} (-10 e^{-0.2 / \sqrt{x_i^2 + 1}}), \]

\[f_2(x) = \sum_{i=1}^{n} (-10 e^{-0.2 / \sqrt{x_i^2 + 1}}), \]
\(f_2(x) = \sum_{i=1}^{n} \left(|x_i|^{0.8} + 5 \sin(x_i)^3 \right) \)

(3) ZDT1

\[F = (f_1(x), f_2(x)), \text{ where} \]
\[f_1(x) = x_1, \]
\[f_2(x, g) = g(x) \left(1 - \sqrt{\frac{f_1}{g(x)}} \right), \]

and,

\[g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i, \]

Constraints

\[0 \leq x_i \leq 1, \]

\[n = 30, \ i = 1, 2, \ldots, 30 \]

(4) ZDT 2

\[F = (f_1(x), f_2(x)), \text{ where} \]
\[f_1(x) = x_1, \]
\[f_2(x, g) = g(x) \left(1 - \left(\frac{f_1}{g(x)} \right)^{\frac{1}{2}} \right), \]

and,

\[g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i, \]

Constraints

\[0 \leq x_i \leq 1, \]

\[n = 30, \ i = 1, 2, \ldots, 30 \]

(5) ZDT 3

\[F = (f_1(x), f_2(x)), \text{ where} \]
\[f_1(x) = x_1, \]
\[
f_2(x, g) = g(x) \cdot \left(1 - \sqrt{\frac{f_1}{g(x)}} - \frac{f_1}{g(x)} \cdot \sin(10 \pi f_1)\right),
\]

and,
\[
g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i,
\]

Constraints

\[0 \leq x_i \leq 1,\]
\[n = 30, \ i = 1, 2, \ldots, 30\]

(6) ZDT 4

\[F = (f_1(x), \ f_2(x)), \text{ where}\]
\[f_1(x) = x_1,\]
\[f_2(x, g) = g(x) \cdot \left(1 - \sqrt{\frac{f_1}{g(x)}}\right),\]

and,
\[
g(x) = 1 + 10(n - 1) + \sum_{i=2}^{n} (x_i^2 - 10 \cos(4 \pi x_i)),
\]

Constraints

\[0 \leq x_i \leq 1,\]
\[-5 \leq x_i \leq 5,\]
\[n = 10, \ i = 1, 2, \ldots, 10\]

(7) ZDT 6

\[F = (f_1(x), \ f_2(x)), \text{ where}\]
\[f_1(x) = 1 - \exp(4x_1) \cdot \sin^6(6\pi x_1),\]
\[f_2(x, g) = g(x) \cdot \left(1 - \left(\frac{f_1}{g(x)}\right)^2\right),\]

and,
\[
g(x) = 1 + \frac{9}{n-1} \left[\frac{\sum_{i=2}^{n} x_i}{9}\right]^{0.25},
\]

Constraints

\[0 \leq x_i \leq 1,\]
\[n = 10, \ i = 1, 2, \ldots, 10\]
(8) BINH

\[F = (f_1(x, y), f_2(x, y)), \]

where

\[f_1(x, y) = x^2 + y^2, \]
\[f_2(x, y) = (x - 5)^2 + (y - 5)^2 \]

Constraints

\[-5 \leq x, y \leq 10\]

(9) VNT 3

\[F = (f_1(x, y), f_2(x, y), f_3(x, y)), \]

where

\[f_1(x, y) = 0.5(x^2 + y^2) + \sin(x^2 + y^2), \]
\[f_2(x, y) = \frac{(3x - 2y + 4)^2}{8} + \frac{(x - y + 1)^2}{27} + 15, \]
\[f_3(x, y) = \frac{1}{(x^2 + y^2 + 1)} + 1.1e^{-x^2 - y^2} \]

Constraints

\[-3 \leq x, y \leq 3\]

(10) DTLZ 1

\[F = (f_1(x), f_2(x), f_3(x)), \]

where

\[f_1(x) = \frac{1}{2}x_1x_2(1 + g(x)), \]
\[f_2(x) = \frac{1}{2}x_2(1 - x_2)(1 + g(x)) \]
\[f_3(x) = \frac{1}{2}(1 - x_1)(1 + g(x)) \]

and,

\[g(x) = 100 \left[10 + \sum_{i=3}^{n}(x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5)) \right], \]

Constraints

\[0 \leq x_i \leq 1, \]
\[n = 12, i = 1, 2, ..., 12 \]

(11) DTLZ 2

\[F = (f_1(x), f_2(x), f_3(x)), \]

where

\[f_1(x) = \cos(\frac{\pi}{2}x_1) \cos(\frac{\pi}{2}x_2)(1 + g(x)), \]
\[f_1(x) = \cos\left(\frac{\pi}{2} x_1\right) \sin\left(\frac{\pi}{2} x_2\right) (1 + g(x)), \]
\[f_2(x) = \sin\left(\frac{\pi}{2} x_1\right) (1 + g(x)) \]
and,
\[g(x) = \sum_{i=3}^{n} (x_i - 0.5)^2, \]
Constraints
\[0 \leq x_i \leq 1, \]
\[n = 12, \ i = 1, 2, \ldots, 12 \]
(12) DTLZ 3
\[F = (f_1(x), f_2(x), f_3(x)), \text{ where} \]
\[f_1(x) = \cos \left(\frac{\pi}{2} x_1\right) \cos \left(\frac{\pi}{2} x_2\right) (1 + g(x)), \]
\[f_2(x) = \cos \left(\frac{\pi}{2} x_1\right) \sin \left(\frac{\pi}{2} x_2\right) (1 + g(x)), \]
\[f_3(x) = \sin \left(\frac{\pi}{2} x_1\right) (1 + g(x)) \]
and,
\[g(x) = 100 \left[10 + \sum_{i=3}^{n} (x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5))\right], \]
Constraints
\[0 \leq x_i \leq 1, \]
\[n = 12, \ i = 1, 2, \ldots, 12 \]

Appendix B
Table B1. Input data for operational generating unit like loading limits and loss parameters of 6-unit system

Unit	\(p_{\text{min}} \) (MW)	\(p_{\text{max}} \) (MW)	\(a_i \) ($/h)	\(b_i \) ($/MWh)	\(c_i \) ($/MW^2h)	\(\rho_i \) (lb/h)	\(\gamma_i \) (lb/ MW^2h)	
1	10	125	756.7988	38.539	0.15247	13.8593	0.32767	0.00419
2	10	150	451.3251	46.1591	0.10587	13.8593	0.32767	0.00419
3	35	210	1,243.531	38.3055	0.03546	40.2669	−0.54551	0.00683
4	35	225	1,049.998	40.3965	0.02803	40.2669	−0.54551	0.00683
5	125	315	1,356.659	38.2704	0.01799	42.8955	−0.51116	0.00461
6	130	325	1,658.57	36.3278	0.02111	42.8955	−0.51116	0.00461
Loss parameters:

\[A_3 = 0 \]

\[A_1 = [0, 0, 0, 0, 0, 0, 0, 0] \]

\[A_1 = [0, 0, 0, 0, 0, 0, 0, 0] \]

Table B2. Input data for operational generating unit like loading limits and loss parameters of 10-unit system

Unit	\(p_{\text{min}} \) (MW)	\(p_{\text{max}} \) (MW)	\(a_i \) ($/h) \)	\(b_i \) ($/MWh) \)	\(c_i \) ($/MW^2h) \)	\(d_i \) ($/h) \)	\(e_i \) (rad/ MW)	\(\beta_i \) (lb/ MWh)	\(\gamma_i \) (lb/ MW^2h)	\(\delta_i \) (lb/h)	\(\omega_i \) (1/ MW)	
1	10	55	1,000.40	40.5407	0.12951	33	0.0174	360.0012	-3.9864	0.04702	0.25475	0.01234
2	20	80	950.606	39.5804	0.10908	25	0.0178	350.0056	-3.9524	0.04652	0.25475	0.01234
3	47	120	900.705	36.5104	0.12511	32	0.0162	330.0056	-3.9023	0.04652	0.25163	0.01215
4	20	130	800.705	39.5104	0.12111	30	0.0168	330.0056	-3.9023	0.04652	0.25163	0.01215
5	50	160	756.799	38.3055	0.03546	20	0.0152	13.8593	0.3277	0.0068	0.2497	0.0129
6	70	240	451.325	46.1592	0.10587	20	0.0163	13.8593	0.3277	0.0042	0.2497	0.012
7	60	300	1,243.531	38.3055	0.03546	20	0.0152	40.2669	-0.5455	0.0068	0.2499	0.01203
8	70	340	1,049.998	40.3965	0.02803	30	0.0128	40.2669	-0.5455	0.0068	0.2499	0.01203
9	135	470	1,658.569	36.3278	0.02111	60	0.0136	42.8955	-0.5112	0.0046	0.2547	0.01234
10	150	470	1,356.659	38.2704	0.01799	40	0.0141	42.8955	-0.5112	0.0046	0.2547	0.01234

Loss parameters:

\[A_3 = 0 \]

\[A_1 = [0, 0, 0, 0, 0, 0, 0, 0] \]

\[A = \begin{bmatrix}
0.000049 & 0.000014 & 0.000015 & 0.000015 & 0.000016 & 0.000017 & 0.000017 & 0.000018 & 0.000019 & 0.000020 \\
0.000014 & 0.000045 & 0.000016 & 0.000016 & 0.000017 & 0.000015 & 0.000015 & 0.000016 & 0.000018 & 0.000018 \\
0.000015 & 0.000016 & 0.000010 & 0.000010 & 0.000012 & 0.000012 & 0.000014 & 0.000014 & 0.000016 & 0.000016 \\
0.000015 & 0.000016 & 0.000010 & 0.000040 & 0.000014 & 0.000010 & 0.000011 & 0.000012 & 0.000014 & 0.000015 \\
0.000016 & 0.000017 & 0.000012 & 0.000014 & 0.000035 & 0.000011 & 0.000013 & 0.000013 & 0.000015 & 0.000016 \\
0.000017 & 0.000015 & 0.000012 & 0.000010 & 0.000011 & 0.000036 & 0.000012 & 0.000012 & 0.000014 & 0.000015 \\
0.000017 & 0.000015 & 0.000014 & 0.000011 & 0.000013 & 0.000012 & 0.000038 & 0.000016 & 0.000016 & 0.000018 \\
0.000018 & 0.000016 & 0.000014 & 0.000012 & 0.000013 & 0.000012 & 0.000016 & 0.000040 & 0.000015 & 0.000016 \\
0.000019 & 0.000018 & 0.000016 & 0.000014 & 0.000015 & 0.000014 & 0.000016 & 0.000015 & 0.000004 & 0.000019 \\
0.000020 & 0.000018 & 0.000016 & 0.000015 & 0.000016 & 0.000015 & 0.000018 & 0.000016 & 0.000019 & 0.000044
\end{bmatrix} \]
Table B3. Input data for operational generating unit like loading limits of IEEE 118 bus 14-unit system.

Unit	P_{min}^i (MW)	P_{max}^i (MW)	a_i ($$/\text{MW}^2$$)	b_i ($$/\text{MW}$$)	c_i ($)	α_i (ton/MW2)	β_i (ton/MW)	γ_i (ton)
1	50	300	0.005	1.89	150	0.016	−1.5	23.333
2	50	300	0.0055	2	115	0.031	−1.82	21.022
3	50	300	0.006	3.5	40	0.013	−1.249	22.05
4	50	300	0.005	3.15	122	0.012	−1.355	22.983
5	50	300	0.005	3.05	125	0.02	−1.9	21.313
6	50	300	0.007	2.75	70	0.007	0.805	21.9
7	50	300	0.007	3.45	70	0.015	−1.401	23.001
8	50	300	0.007	3.45	70	0.018	−1.8	24.003
9	50	300	0.005	2.45	130	0.019	−2	25.121
10	50	300	0.005	2.45	130	0.012	−1.36	22.99
11	50	300	0.0055	2.35	135	0.033	−2.1	27.01
12	50	300	0.0045	1.3	200	0.018	−1.8	25.101
13	50	300	0.007	3.45	70	0.018	−1.81	24.313
14	50	300	0.006	3.89	45	0.03	−1.921	27.119