Force-Induced Unzipping Transitions in an Athermal Crowded Environment

David L. Pincus and D. Thirumalai

Institute for Physical Science and Technology,
University of Maryland, College Park, Maryland 20742
(Dated: May 7, 2014)

Abstract

Using theoretical arguments and extensive Monte Carlo (MC) simulations of a coarse-grained three-dimensional off-lattice model of a β-hairpin, we demonstrate that the equilibrium critical force, F_c, needed to unfold the biopolymer increases non-linearly with increasing volume fraction occupied by the spherical macromolecular crowding agent. Both scaling arguments and MC simulations show that the critical force increases as $F_c \approx \varphi^\alpha_c$. The exponent α is linked to the Flory exponent relating the size of the unfolded state of the biopolymer and the number of amino acids. The predicted power law dependence is confirmed in simulations of the dependence of the isothermal extensibility and the fraction of native contacts on φ_c. We also show using MC simulations that F_c is linearly dependent on the average osmotic pressure (P) exerted by the crowding agents on the β-hairpin. The highly significant linear correlation coefficient of 0.99657 between F_c and P makes it straightforward to predict the dependence of the critical force on the density of crowders. Our predictions are amenable to experimental verification using Laser Optical Tweezers.

*Electronic address: thirum@umd.edu
Keywords. Molecular Crowding, Critical Force, Volume Fraction, Carnahan-Starling Equation-of-State.

Introduction

The study of the protein folding problem was galvanized by using concepts from the physics of disordered systems. Using a coarse-grained description of folding, expressed in terms of an uncorrelated distribution of energies of protein conformations corresponding to the values at local minima in a multi-dimensional energy landscape, Bryngelson and Wolynes \cite{1, 2} mapped the problem of equilibrium statistical mechanics of protein folding to a random energy model in which the native state plays a special role. These influential works and subsequent studies \cite{3} showed that most naturally evolved sequences are foldable, which means that they reach the stable native state on biologically relevant time scales. In this picture, foldable sequences are characterized by large differences in the environmental-dependent folding temperature \(T_f\) and the glass transition temperature \(T_g\) at which the kinetics becomes so sluggish that the folded state is inaccessible on biologically relevant time scales. Related ideas rooted in polymer physics further showed that the interplay of \(T_f\), and the equilibrium collapse temperature \(T_{\theta}\) \cite{4} could be used to not only fully characterize the phase diagram of generic protein sequences but also determine their foldability, a prediction that has been experimentally validated very recently \cite{5}. In the intervening years, an impressively large number of important theoretical and experimental works (for a recent collection see \cite{6} and references cited therein), on a variety of seemingly unrelated problems associated with protein folding have appeared, thus greatly expanding the scope and utility of concepts from statistical mechanics and polymer physics. Through these developments an expansive view of protein folding and its role in biophysics has emerged \cite{7} with current applications ranging from assisted folding \cite{8-11} to describing the functions of molecular motors \cite{12-16} using models originally devised to understand protein folding kinetics.

A particularly important problem that has benefited from the focus on protein folding is the role molecular crowding plays in modulating the thermodynamics and kinetics of folding of proteins \cite{17} and RNA \cite{18-20} although its importance was recognized long ago \cite{21}. It is now widely appreciated that the cytosol is a crowded heterogeneous medium containing a variety of macromolecules such as ribosomes, lipids, and RNA. As a result, folding, dif-
fusion, and other biological processes in such an environment could be different from what transpires under infinite dilution conditions. The effects of macromolecular crowding on the stability of synthetic as well as biopolymers have been extensively investigated because of the potential relevance for folding under cellular conditions. In general, several interaction energy and length scales determine whether crowding agents stabilize, have negligible effect, or even destabilize the folded states of proteins. As a result a number of scenarios can emerge depending on the nature of crowding agents, and the choice of proteins. The simplest scenario arises when both the crowder-crowder and crowder-protein interactions are dominated by excluded volume. Although this situation may not accurately characterize even in vitro experiments it has the advantage that folding in this situation can be described using a combination of scaling arguments and simulations. Nonspecific athermal crowders (only the excluded volume interactions between the crowders and the crowder and the protein are relevant) tend to shift the folded ↔ unfolded (or equivalently the zipped ↔ unzipped) equilibrium of a biopolymer towards the folded state by the entropic stabilization theory (EST), because this maximizes the free-volume available (and hence entropy) to the crowding agents. This simple theory is based on the the elegant concept of depletion interaction, which posits that the crowding particles decrease the entropy of the unfolded state to a greater extent than the folded state, thus differentially stabilizing the ordered structure.

The EST can be validated by measuring the dependence of the melting temperature on the volume fraction, \(\varphi_c \), of the crowding particles. If EST is valid then the increase, \(\Delta T_m(\varphi_c) = T_m(\varphi_c) - T_m(0) \), should increase. Indeed, absence of any change in \(\Delta T_m(\varphi_c) \) indicates that enthalpic effects play an important role. Another way to quantify the extent of stabilization is to ask what critical force \(F_c \) would be necessary to unfold a biopolymer at a given volume fraction \(\varphi_c \) of the crowding agents. In this paper, we study the simple case of unzipping a polypeptide chain, which forms a \(\beta \)-hairpin, by applying mechanical force as a function of volume fractions of monodisperse spherical crowding particles. The study of the zipping/unzipping of biopolymers has a rich history, and has even formed the basis of assessing folding mechanisms of proteins.

Surprisingly, there have been very few experimental or theoretical studies investigating the effect of mechanical force on proteins in a crowded environment. The experimental studies have argued that \(F_c \) increases linearly with \(\varphi_c \) whereas the theoretical
arguments predict a non-linear dependence, which was shown to provide a good fit to the experimental data. In this paper, we argue that the unzipping of a biopolymer under constant tension could be consistent with linear dependence only for small φ_c. At higher volume fractions F_c does increase non-linearly with φ_c. The increase in F_c, relative to its value at $\varphi_c = 0$, linked to crowding-induced stability, arises because of a depletion of the crowding particles from the proximity of proteins. This, in turn, results in the crowding agents exerting an osmotic pressure on the biopolymer. Unzipping the biopolymer requires that the imposed tension perform work against this osmotic pressure. Thus, it is natural to assume that F_c should be linearly dependent on the average pressure (P) associated with crowding particles modeled as hard spheres. We have verified this relation using extensive Monte-Carlo simulations and we present a simple method for determining F_c at an arbitrary φ_c once the linear dependence of F_c on P is known.

Methods

Model: In order to explore the effects of crowding on the unzipping of a biopolymer, we chose the 16 residue sequence, which forms a β-hairpin structure, which had been previously used to illustrate the effects of confinement on protein folding [48]. The structure corresponds to the C-terminal β-hairpin of protein G (PDB Accession ID 1GB1), a model system that has been extensively studied using computations [53–59] following an initial pioneering experimental study [50].

In our simulations, we used a coarse-grained representation of the polypeptide chain. We modeled the hairpin as a collection of $N_p = 16$ spheres of diameter $\sigma_p = 0.38$ nm (each representing a residue) with configuration $\{r_i\}_{i=1}^{N_p}$, and crowders as a monodisperse collection of N_c spheres of diameter $\sigma_c = 1.0$ nm with configuration $\{R_i\}_{i=1}^{N_c}$. The Hamiltonian depended on both the positions of the crowders and conformations of the polypeptide chain:

$$H(\{r_i\}, \{R_i\}) \equiv H_{cc}(\{R_i\}) + H_{pp}(\{r_i\}) + H_{pc}(\{r_i\}, \{R_i\}) + H_{bond}(\{r_i\}) + H_{coop}(\{r_i\}).$$

The first three terms on the right hand side (RHS) of Eq. (1) accounted for non-bonded crowder-crowder (cc), protein-protein (pp), and protein-crowder (pc) interactions respectively. The penultimate term on the RHS of Eq. (1) ($H_{bond}(\{r_i\})$) was used to enforce...
chain connectivity, while the final term on the r.h.s. of Eq. (1) \(\mathcal{H}_{\text{coop}}(\{r_i\}) \) was used to ensure that the hairpin underwent a cooperative unzipping transition under tension. The interactions between the crowding particles were taken to be,

\[
\mathcal{H}_{cc}(\{R_i\}) = \sum_{j > i} v_{cc}(|R_i - R_j|),
\]

where

\[
v_{cc}(r) = \begin{cases}
\infty & (r \leq \sigma_c) \\
0 & (r > \sigma_c).
\end{cases}
\]

Similarly, we used hard-sphere potentials to model the interactions between the crowders and the polypeptide (pc):

\[
\mathcal{H}_{pc}(\{r_i\}, \{R_i\}) = \sum_{i,i'} v_{pc}(|R_i - r_i'|),
\]

where

\[
v_{pc}(r) = \begin{cases}
\infty & (r \leq (\sigma_p + \sigma_c)/2) \\
0 & (r > (\sigma_p + \sigma_c)/2).
\end{cases}
\]

The term \(\mathcal{H}_{pp}(\{r_i\}, \{r_i^0\}) \) in Eq. (1) was decomposed into native (N) and non-native (NN) contributions by partitioning the set of residue-residue distances into those that were less than a cutoff \(R_{\text{cut}} = 0.8 \) nm in the crystal structure and those greater than \(R_{\text{cut}} \) (i.e., \(\{|r_i - r_j| \leq R_{\text{cut}}\} \cup \{r_i: |r_i^0 - r_j^0| > R_{\text{cut}}\} \)). Letting \(\eta = \{r_{ij}: |r_i^0 - r_j^0| \leq R_{\text{cut}}\} \) and \(\vartheta = \{r_{ij}: |r_i^0 - r_j^0| > R_{\text{cut}}\} \) we write:

\[
\mathcal{H}_{pp}(\{r_i\}, \{r_i^0\}) = \mathcal{H}^N_{pp}(\eta) + \mathcal{H}^{NN}_{pp}(\vartheta),
\]

\[
\mathcal{H}^N_{pp}(\eta) = \sum_{d \in \eta} v^N_{pp}(d),
\]

with

\[
v^N_{pp}(d) = \begin{cases}
\infty & (d/d^0 < 0.8) \\
-\epsilon & (0.8 \leq d/d^0 < 1.2) \\
0 & (d/d^0 > 1.2)
\end{cases},
\]

where \(d^0 \) is the value of \(d \) in the crystal structure.

Similarly,

\[
\mathcal{H}^{NN}_{pp}(\vartheta) = \sum_{d \in \vartheta} v^{NN}_{pp}(d),
\]
where
\[v_{NN}^{pp}(d) = \begin{cases} \infty & (d \leq \sigma_p) \\ 0 & (d > \sigma_p) \end{cases} \]

Chain connectivity was enforced with a sum of box-like terms:
\[H_{\text{bond}}(\{r_i\}) = \sum_{i<N_p} v_{\text{bond}}(|r_{i+1} - r_i|), \]

where
\[v_{\text{bond}}(r) = \begin{cases} \infty & r/r_0 < 0.8 \\ 0 & 0.8 \leq r/r_0 \leq 1.2 \\ \infty & r/r_0 > 1.2 \end{cases} \]

and \(r_0 \) is an ideal \(C_\alpha - C_\alpha \) ‘bonding’ distance of 0.38 nm.

The cooperativity term \(H_{\text{coop}}(\{r_i\}) \) is a coarse-grained representation of hydrogen-bonding type interactions and has a nearest-neighbor Ising-like character,
\[H_{\text{coop}}(\{r_i\}) = -J \sum_{i=2}^{n_{\text{coop}}} \Theta(d_i^0 - d_I)\Theta(d_{i-1}^0 - d_{I-1}), \]

where \(J = \epsilon/5 \), \(\Theta(x) \) is a Heaviside function, and \(d_i \) (\(d_i^0 \)) is the distance (PDB distance) separating a pair of complementary residues in the strand (\(l \) and \(l-1 \) denote nearest-neighbor pairs). There were \(n_{\text{coop}} = 7 \) pairs of complementary residues in the strand with PDB numbering:
\{\{41, 56\}, \{42, 55\}, \{43, 54\}, \{44, 53\}, \{45, 52\}, \{46, 51\}, \{47, 50\}\} (see Figure 1 for the numbering of the residues as well as the sequence). Note that not all of these residue pairs are hydrogen bonded in the native hairpin. In general, strand pairs exist as parts of larger \(\beta \)-sheets and make some hydrogen bonds between the strands of the pair as well as some hydrogen bonds with other strands of the sheet. The coarse-grained nature of Eq. (13) renders the model sufficiently general to ensure transferability to models of RNA and/or DNA hairpins. Under such circumstances Eq. (13) would mimic the stacking interactions, which are known to stabilize nucleic acids.

Simulation Methods. We used a standard Metropolis algorithm to simulate the model described by Eq. (11) and to obtain thermodynamic quantities of interest. Crowder trial moves were attempted in a ‘single-spin flip’ manner and consisted of random repositioning of a crowder through the generation of three independent and uniformly distributed random
variables (r.v.’s) on the interval \([-L/2, L/2]\), where \(L = 29.7\) nm is the length of a side of the cubic simulation box.

The position of residue 1 of the hairpin was held fixed at the origin throughout all simulations (i.e., \(r_1(t) = 0\ \forall t\)). The remaining \(N_p - 1\) residue trial moves were randomly selected from a set of two possibilities. One type of move corresponded to that used by Baumgärtner and Binder [60] for simulating a freely jointed chain; a random angle \(\gamma\) was chosen from a uniform distribution on \([0, 2\pi]\) and an attempt was made to displace residue \(i\) by \(\gamma\) radians along the circle perpendicular to the line connecting residues \(i - 1\) and \(i + 1\). For the residue at the free-end of the chain two random angles \((\beta, \gamma)\) were chosen and an attempt was made to move the residue to a new point on the sphere centered at residue \(N_p - 1\). The second type of move corresponded to a random change in the bondlength connecting residue \(i\) to residue \(i - 1\) \((i = 2, 3, \ldots, N_p)\); a uniform r.v. \(\aleph\) on \((0.8, 1.2)\) was generated and an attempt was made to map \(r_i \mapsto (r_i - r_{i-1})\aleph + r_{i-1}\). A trial move from \(\mu \rightarrow \nu\) was accepted with probability \((A(\mu \rightarrow \nu))\):

\[
A(\mu \rightarrow \nu) = \begin{cases}
 e^{-(\mathcal{H}_\nu - \mathcal{H}_\mu) / (k_B T)} e^{(1/k_B T) F(z_\nu - z_\mu)} & (\mathcal{H}_\nu - \mathcal{H}_\mu) - F(z_\nu - z_\mu) > 0 \\
 1 & \text{otherwise}
\end{cases}
\]

(14)

where \(T\) is the temperature, \(k_B\) is Boltzmann’s constant, \(\mathcal{H}_\nu\) and \(\mathcal{H}_\mu\) are as above, \(F\) is the constant tension applied to the polymer, and \(z_\nu\) (resp. \(z_\mu\)) is the extension in state \(\nu\) (resp. \(\mu\)) of the polymer in the direction of the applied force.

Data Collection. Time, measured in Monte-Carlo Steps (MCS), corresponded to the attempted displacement of \((N_c + N_p - 1)\) particles, since one end of the chain was always held fixed to the origin. Data from a trajectory were collected every 1000 MCS. Figure 2 reveals that this is significantly longer than the time required for the RMSD of the crowding agents from an equilibrated initial state to plateau at all volume fractions except \(\varphi_c = 0.4\).

Even at \(\varphi_c = 0.4\), the RMSD has increased substantially after 1000 MCS. We used 0, 5000, 10000, 15000, and 20000 crowders to simulate crowder volume fractions of 0.0, 0.1, 0.2, 0.3, and 0.4 respectively. For each \(\varphi_c\), data was collected at tensions between 0 pN and 40 pN at one pN intervals. Snapshots of simulations at each of the non-zero \(\varphi_c\) and in the absence of tension are illustrated in Figure 1. Data at each force and each \(\varphi_c\) was collected from multiple trajectories starting from previously equilibrated configurations (in turn based on trajectories initiated from random initial crowder configurations at both high and low-force hairpin configurations).
Results.

Radial distribution between crowders and the hairpin: Figure 3 is a plot of the radial distribution \(g(r) \) of crowders about the center of mass of the hairpin versus distance \(r \) (i.e., \(g(r) = V / N_c \langle \sum \delta(r - (R_l - r_{cm})) \rangle \)). The maxima in these plots correspond to the average diameter of the region to which the hairpin finds itself confined \(D \). Interestingly, the plots illustrate that the average size of the region is inversely proportional to the crowder density (i.e., \(D \sim \varphi_c^{-1} \)). This suggests that, perhaps, the region in which the hairpin on average is localized is aspherical [61]. If the region were spherical, we would expect that \(D \sim \varphi_c^{-1/3} \).

The observation that \(D \sim \varphi_c^{-1} \) in conjunction with an approximate mapping between crowding and confinement could be used to obtain the expected scaling of the dependence of the critical force required to unfold the \(\beta \)-hairpin, \(F_c \), on \(\varphi_c \). Because the confining region is described by a single length, \(D \), the EST can be used to identify the enhancement in the stability of the ordered state with the loss in entropy of the unfolded state upon confinement. Similar scaling approach, using concepts developed in the context of polymer physics, has been used to study confinements effects on biopolymers [48, 62–64]. Using this inherently mean-field argument we expect

\[
F_c \approx T \Delta S / \Delta x_u^4 \sim (R_g / D)^{1/\nu} k_B T \Delta x_u^4 / A \varphi_c^{1/\nu}. \tag{15}
\]

In the above equation \(T \Delta S \) is the penalty for confining the polypeptide chain with dimension \(R_g \) in a region with size \(D \), \(\Delta x_u^4 \) is the minimum extension needed to unfold the protein, and \(\nu \) is the Flory exponent. Because \(D \sim \varphi_c^{-1} \) we expect that \(F_c \approx \varphi_c^{1/\nu} \sim \varphi_c^{5/3} \) assuming that \(\nu \approx 0.6 \). If \(D \sim \varphi_c^{-1/3} \), as would be the case if the unfolded state were spherical, then it follows that \(F_c \approx \varphi_c^{5/9} \), a result that we derived previously [18] to analyze the experimental data on forced-unfolding of ubiquitin.

Numerical evidence for Eq. (15): Plots of the average extension of the hairpin \(\langle z \rangle \) versus applied tension \(F \) presented in Figure 4 (a) show that the \(\langle z \rangle \) decreases monotonically with \(\varphi_c \) at moderate values of \(F \). This implies that crowding in essence decreases \(\langle z \rangle \) because the entropic penalty to stretch a protein in a crowded environment is far too large. In other words, the probability of finding a region free of crowders decreases exponentially as the extension increases, which explains the observed results in Figure 4 (a). The isothermal extensibility \(\chi \equiv \partial \langle z \rangle / \partial F \) plots in Figure 4(b) reveal that \(F_c \) (i.e., the
value of F at which χ is a maximum) increases monotonically with increasing ϕ_c. A plot of F_c versus ϕ_c (Figure 5(a)) subsequently revealed that the power-law dependence of F_c on ϕ_c is characterized by an exponent $\alpha \approx 1.6$, which is in accord with the scaling predictions in Eq. (15). Data collapse of χ based on a scaling function $X((F - F_c)/F_c)$ that is independent of N_c revealed that $\chi \sim (1 - AN_c^{d_X})$, where $d_X \approx 1.43$ and $A \approx 1.7 \times 10^{-7}$. This shows that the effects of crowding and force can be separated, which to some extent justifies the scaling theory predictions. Thus, when measured in terms of the reduced distance to the critical force, the primary effect of the crowders is to decrease the extensibility of the chain.

We can also obtain the dependence of F_c on ϕ_c using the F-dependent changes in an order parameter that characterizes the folded state. The extent of structure formation can be inferred using the average fraction of native contacts, $\langle Q \rangle$. In Figure 6 we show $\langle Q \rangle$ as a function of F. For all values of F the crowding particles increase $\langle Q \rangle$, which is a reflection of the enhanced stabilization of the native state of β-hairpin at $\phi_c \neq 0$. Let us define F_m using $\langle Q \rangle = 0.5$ at $\phi_c = 0$. At this value of F_m, Figure 6a shows that $\langle Q \rangle \approx 0.75$ at $\phi_c = 0.4$. The critical force F_c can identified with the force at which $|\frac{d\langle Q \rangle}{dF}|$ (Figure 6b) achieves a maximum. It is clear that F_c is an increasing function of ϕ_c (Figure 6c). Just as in Figure 4(a), where F_c is identified with the maximum in the isothermal extensibility, we find that $F_c \sim \phi_c^\alpha$ with $\alpha \approx 1.6$ (Figure 6c). The numerical simulations using different measures confirm the scaling predictions showing the power law increase in the ϕ_c-dependent critical force required to rupture the hairpin.

Osmotic (or disjoining) pressure explains the origin of ϕ_c-dependent F_c: Insights into our results can be obtained by viewing the depletion forces from a different perspective. Because of the repulsive interaction between the crowders and the polypeptide chain the crowding particles are depleted from the surface of the protein. In the process, the crowding particles not only gain translational entropy but they also exert an osmotic pressure on the polypeptide chain, thus forcing it to adopt a compact structure. In other words, the crowders can be viewed as providing an isothermal and isobaric bath for the hairpin. In such a case, it is natural to assume that F_c is proportional to the average pressure (P) associated with a hard sphere fluid at that density and volume fraction:

$$F_c = mP + b. \quad (16)$$

where m and b are constants to be determined.
The disjoining or osmotic pressure can, in turn, be calculated from the contact value
\[g(\sigma) \equiv \lim_{r \to \sigma^+} g(r) \]
of the crowder-crowder radial distribution function using the standard relation,
\[P = \rho k_B T (1 + 4 \varphi_c g(\sigma)). \tag{17} \]
Equation (17) follows from the viral-based expression for hard sphere systems,
\[\frac{P}{\rho k_B T} = 1 - \frac{2\pi \rho}{3k_B T} \int_0^\infty g(r) \frac{dv}{dr} r^3 dr \tag{18} \]
via the substitution \(g(r) = \psi(r) e^{-\beta v(r)} \) and by noting that the Boltzmann factor \(e^{-\beta v} = \theta(r - \sigma) \) for hard spheres where \(\theta(x) \) is the step function.

From the Figure 7(a) showing the crowder-crowder \(g(r) \) at volume fractions \(\varphi_c = 0.1,
0.2, 0.3, \) and \(0.4 \) we computed \(g(\sigma) \), which was subsequently used to determine the average pressure at each \(\varphi_c \). The linear correlation coefficient \(r \) between the two variables \((F \) and \(P) \) was determined to be 0.99657 (Figure 7(b)). The probability that 5 measurements of two uncorrelated random variables would yield a correlation coefficient this high is
\[\frac{2\Gamma(2)}{\sqrt{\pi} \Gamma(3/2)} \int_{0.99657}^1 (1-x^2)^{1/2} dx = 0.00024, \]
where \(\Gamma(x) \) is Euler’s gamma function. In Figure 7(b) we provide the best fit line to the data yielding \(m = 0.24 \) nm\(^2\) and \(b = 13.84 \) pN. Thus, \(F_c \) is linearly related to the osmotic pressure arising from depletion forces, whose strength is a measure of the stabilization of the ordered state.

In order to obtain the dependence of \(F_c \) on \(\varphi_c \) a reliable relationship between \(P \) and \(\varphi_c \) needs to be established. Although \(P \) can be calculated using simulations it would be convenient to obtain approximate analytically calculable estimates of \(P \). The average pressure associated with the hard spheres can be determined at all \(\varphi_c \) using the successful semi-empirical Carnahan-Starling equation of state:
\[\frac{P}{\rho k_B T} = \frac{1 + \varphi_c + \varphi_c^2 - \varphi_c^3}{(1 - \varphi_c)^3}. \tag{19} \]
Figure 7(c) shows \(F_c \) versus \(\varphi_c \) (blue circles) as well as the curve associated with the best-fit linear relation between \(F_c \) and \(P \) calculated using Eq. (19). This linear relation yielded \(m = 0.17 \) nm\(^2\) and \(b = 13.96 \) pN, which are close to the values obtained by fitting \(F_c \) to numerically computed values for \(P \). The stars illustrate \((\varphi_c, F_c)\) ordered pairs associated with the best-fit linear relation between \(F_c \) and \(P \) as calculated from Eq. (17) (as in Figure 7(b)). We surmise that using \(P \) approximated by Eq. (19) can be used to obtain accurate estimates of \(F_c \) given knowledge of the coefficients \(m \) and \(b \).
Finally, the accuracy of the Carnahan-Starling equation is assessed by plotting in Figure 7(d) Eq. (19) as well as several truncated Taylor-series expansions:

\[P \approx \frac{6k_B T}{\pi \sigma^3} \sum_{i=1}^{n} a_i \phi_i^c, \]

(20)

of this equation of state. Note that the relative error associated with the linear approximation \((n = 1)\) of 0.342651 is large at \(\phi_c = 0.1\), while the relative error is only 0.0326804 at \(\phi_c = 0.4\) when \(n = 7\) terms are included in the expansion. The coefficients of the expansions are \(a_1 = 1, a_2 = 4, a_3 = 10, a_4 = 18, a_5 = 28, a_6 = 40,\) and \(a_7 = 54\). The linear relation between \(F_c\) and \(P\) shows that, close to \(\phi_c = 0\), \(F_c\) should depend only linearly on \(\phi_c\) because \(P\) is approximately linearly dependent on \(\phi_c\) for small \(\phi_c\). However, in order to determine the value of \(F_c\) at an arbitrary \(\phi_c\), one should first determine the appropriate linear relation between \(F_c\) and \(P\). The critical force \(F_c\) can then be determined at an arbitrary \(\phi_c\) using the linear relation and approximate estimate of \(P\) given in Eq. (19).

Conclusions.

Using simple theoretical arguments and extensive MC simulations of a three dimensional off-lattice model, we have demonstrated for the first time that the critical force for unzipping a biopolymer under tension obeys a non-linear dependence on the volume fraction of crowding agent. This dependence can be characterized by a power law dependence with an exponent \(\alpha \approx 1.6: F_c \sim \phi_c^\alpha\). The exponent \(\alpha\) is surprisingly close to the scaling prediction \(1/\nu\) with \(\nu \approx 3/5\).

The numerical findings and scaling predictions can be understood by noting that the crowders provide an isobaric environment for the protein. The osmotic pressure arises from the depletion forces due to expulsion of the crowding particles from the protein, and is entropic in origin. Because of the osmotic pressure unzipping requires that the tension imposed on the hairpin perform mechanical work against the isotropic pressure. These arguments are fully confirmed in simulations, which demonstrate that \(F_c\) has a highly significant linear correlation with the pressure \((P)\) of the hard-sphere crowding particle in which it is embedded. To determine \(F_c\) at an arbitrary \(\phi_c\), one should first determine the linear dependence of \(F_c\) on \(P\). The exact relation connecting \(F_c\) to \(\phi_c\) then follows from the Carnahan-Starling equation of state. This relationship shows that \(F_c\) displays an approximately linear dependence on
\(\phi_c \) for volume fractions near \(\phi_c = 0 \). However, when examined over a large range of \(\phi_c \) we expect that \(F_c \) should increase non-linearly with \(\phi_c \) as indicated by the scaling predictions exploiting the relationship between crowding and confinement.

Two comments about the scaling predictions are important to make. (i) The exponent \(\alpha \) relating the increase in \(F_c \) to \(\phi_c \), although related to the Flory exponent (\(\nu \)), is likely to depend both on the nature of the unfolded states of the protein and the shape of the crowding particles. If the overall shape of the unfolded state is non-spherical as is clearly the case for the hairpin (Figure 1) then \(\alpha \approx 1.6 \). On the other hand, if the unfolded state is spherical on an average, as is likely to be the case for larger proteins, then it is likely \(\alpha \approx 5/9 \), as argued previously \[18\]. (ii) The theoretical predictions are based on a mean-field picture in which it is assumed that crowding (modeled with hard spheres) results in the protein being localized to a cavity. Thus, fluctuations in the crowding particles are ignored. These, especially close to the protein, could have significant effects. The good agreement between scaling predictions and simulations suggests that the fluctuation effects are not significant, at least for the case tested here. In principle, the importance of fluctuations can be tested by fixing the locations of the crowding particles. Such quenched simulations are equivalent to the present annealed simulations for the properties of the proteins because in a large sample containing fixed obstacles the protein would sample many distinct environments. This is then the same as performing annealed simulations. Therefore, we expect that the scaling properties predicted and tested here will not change even if the simulations are done by fixing the locations of the crowding particles. Additional simulations on proteins, rather than polypeptide chains forming secondary structures, would be needed to obtain accurate values of \(\alpha \).

There are only very few experiments probing the limits of mechanical stability of proteins in the presence of crowding agents. For example, Atomic Force Microscopy has been used to investigate the effects of dextran on the mechanical stability of proteins \[52\]. These researchers found \(F_c \sim \phi_c \) for \(\phi_c \in [0.0, 0.3] \) and non-linearity only for \(\phi_c > 0.3 \). It is important to note that their experimental setup is of an inherently non-equilibrium character; one end of a protein is extended at a constant speed while the other end is used to probe the chain’s tension. Furthermore, the protein examined (Ubiquitin) is unlikely to be a two-state folder and may undergo distinct unzipping reactions at multiple tensions. In this case, the effects of crowding in an energy landscape with multiple barriers \[65\] may have to be
studied. Because of the non-equilibrium nature of the AFM setup it would be desirable to verify the predictions of the present work using laser optical tweezer experiments in which small constant forces can be applied.

Acknowledgements: We are grateful to the National Institutes of Health (GM089685) for supporting the research. The authors kindly thank the National Energy Research Scientific Computing (NERSC) Center for significant computational time and resources.
[1] Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. *Proc Natl Acad Sci USA* 84:7524–7528.

[2] Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in a random energy-model (with applications to protein folding). *J Phys Chem* 93:6902–6915.

[3] Bryngelson J, Onuchic J, Socci N, Wolynes P (1995) Funnels, Pathways, and the Energy Landscape of Protein-Folding - A Synthesis. *Proteins: Structure, Function and Genetics* 21:167–195.

[4] Camacho CJ, Thirumalai D (1993) Kinetics and Thermodynamics of Folding in Model Proteins. *Proc Natl Acad Sci USA* 90:6369–6372.

[5] Hofmann H, *et al.* (2012) Polymer Scaling Laws of Unfolded and Intrinsically Disordered Proteins Quantified with Single-Molecule Spectroscopy. *Proc Natl Acad Sci* 109:16155–16160.

[6] Wolynes PG, Eaton WA, Fersht AR (2012) Chemical physics of protein folding. *Proc Natl Acad Sci* 109:17770–17771.

[7] Thirumalai D, O’Brien EP, Morrison G, Hyeon C (2010) Theoretical perspectives on protein folding. *Annu Rev Biophys* 39:159–183.

[8] Betancourt MR, Thirumalai D (1999) Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. *J Mol Biol* 287:627–644.

[9] Baumketner A, Jewett A, Shea J (2003) Effects of Confinement in Chaperonin Assisted Protein Folding: Rate Enhancement by Decreasing the Roughness of the Folding Energy Landscape. *J Mol Biol* 332:701–713.

[10] Jewett A, Baumketner A, Shea J (2004) Accelerated Folding in the Weak Hydrophobic Environment of a Chaperonin Cavity: Creation of an Alternate Fast Folding Pathway. *Proc Natl acad Sci* 101:13192–13197.

[11] Hyeon C, Lorimer GH, Thirumalai D (2006) Dynamics of Allosteric Transition in GroEL. *Proc Natl Acad Sci USA* 103:18939–18944.

[12] Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. *Proc Natl Acad Sci USA* 104:2175–2180.

[13] Hyeon C, Onuchic JN (2007) Mechanical control of the directional stepping dynamics of the kinesin motor. *Proc Natl Acad Sci USA* 104:17382–17387.
[14] Tehver R, Thirumalai D (2010) Rigor to Post-Rigor Transition in Myosin V: Link between the Dynamics and the Supporting Architecture. *Structure* 18:471–481.

[15] Koga N, Takada S (2006) Folding-based molecular simulations reveal mechanisms of the rotary motor f_1-atpase. *Proc Natl Acad Sci USA* 103:5367–5372.

[16] Zhang Z, Thirumalai D (2012) Dissecting the Kinematics of the Kinesin Step. *Structure* 20:628–640.

[17] Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. *Annu Rev Biophys* 37:375–397.

[18] Pincus D, Hyeon C, Thirumalai D (2008) Effects of Trimethylamine N-Oxide (TMAO) and Crowding Agents on the Stability of RNA Hairpins. *J Am Chem Soc* 130:7364–7372.

[19] Denesyuk NA, Thirumalai D (2011) Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA. *J Am Chem Soc* 133:11858–11861.

[20] Kilburn D, Roh JH, Guo L, Briber R, Woodson SA (2010) Molecular Crowding Stabilizes Folded RNA Structure by the Excluded Volume Effect. *J Am Chem Soc* 132:8690–8696.

[21] Minton A (1981) Excluded volume as a determinant of macromolecular structure and reactivity. *Biopolymers* 20:2093–2120.

[22] Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme - glyceraldehyde-3-phosphate dehydrogenase. *Biochemistry* 20:4821–4826.

[23] Thirumalai D (1988) Isolated polymer molecule in a random environment. *Phys Rev A* 37:269–276.

[24] Zimmerman SB, Minton AP (1993) Macromolecular crowding - biochemical, biophysical, and physiological consequences. *Ann Rev Biophys Biomol Struct* 22:27–65.

[25] Zimmerman SB, Murphy LD (1996) Macromolecular crowding and the mandatory condensation of dna in bacteria. *FEBS Lett* 390:245–248.

[26] Kidoaki S, Yoshikawa K (1999) Folding and unfolding of a giant duplex-dna in a mixed solution with polycations, polyanions and crowding neutral polymers. *Biophys Chem* 76:133–143.

[27] Sasahara K, McPhie P, Minton AP (2003) Effect of dextran on protein stability and conformation attributed to macromolecular crowding. *J Mol Biol* 326:1227–1237.

[28] Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: Macromolecular crowding and protein stability revisited. *Biophys J* 88:971–985.
[29] Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 102:4753–4758.

[30] Cheung MS, Thirumalai D (2007) Effects of crowding and confinement on the structures of the transition state ensemble in proteins. J Phys Chem B 111:8250–8257.

[31] Stagg L, Zhang SQ, Cheung MS, Wittung-Stafshede P (2007) Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin. Proc Natl Acad Sci USA 104:18976–18981.

[32] Homouz D, Perham M, Samiotakis A, Cheung MS, Wittung-Stafshede P (2008) Crowded, cell-like environment induces shape changes in aspherical protein. Proc Natl Acad Sci USA 105:11754–11759.

[33] Mittal J, Best R (2010) Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders. Biophys J 98:315–320.

[34] Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256.

[35] Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33:183–192.

[36] Vrij A (1976) Polymers at interfaces and interactions in colloidal dispersions. Pure Appl Chem 48:471–483.

[37] Verma R, Crocker J, Lubensky T, Yodh A (1998) Entropic colloidal interactions in concentrated dna solutions. Phys Rev Lett 81:4004–4007.

[38] Crothers DM, Kallenbach NR, Zimm BH (1965) Melting transition of low-molecular-weight dna - theory and experiment. J Mol Biol 11:802–.

[39] Kittel C (1969) Phase transition of a molecular zipper. Amer J Phys 37:917–920.

[40] Fixman M, Freire JJ (1977) Theory of dna melting curves. Biopolymers 16:2693–2704.

[41] Azbel MY (1980) Dna sequencing and helix-coil transition .1. theory of dna melting. Biopolymers 19:61–80.

[42] Anshelevich VV, Vologodskii AV (1986) The effect of sequence heterogeneity on dna melting kinetics. Journal of Biomolecular Structure and Dynamics 4:251–262.

[43] Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of dna. Proc Natl Acad Sci USA 94:11935–11940.

[44] Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model for dna denaturation.
[45] Bockelmann U, Essevaz-Roulet B, Heslot F (1998) DNA strand separation studied by single molecule force measurements. *Phys Rev E* 58:2386–2394.

[46] Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Mechanical stability of single DNA molecules. *Biophys J* 78:1997–2007.

[47] Wu P, Sugimoto N (2000) Transition characteristics and thermodynamic analysis of DNA duplex formation: a quantitative consideration for the extent of duplex association. *Nuc Acids Res* 28:4762–4768.

[48] Klimov DK, Newfield D, Thirumalai D (2002) Simulations of β-hairpin folding confined to spherical pores using distributed computing. *Proc Natl Acad Sci USA* 99:8019–8024.

[49] Hyeon C, Thirumalai D (2005) Mechanical unfolding of RNA hairpins. *Proc Natl Acad Sci USA* 102:6789–6794.

[50] Munoz V, Thompson P, Hofrichter J, Eaton W (1997) Folding Dynamics and Mechanism of Beta-Hairpin Formation. *Nature* 390:196–199.

[51] Ping G, Yang G, Yuan JM (2006) Depletion force from macromolecular crowding enhances mechanical stability of protein molecules. *Polymer* 47:2564–2570.

[52] Yuan JM, et al. (2008) The effects of macromolecular crowding on the mechanical stability of protein molecules. *Prot Sci* 17:2156–2166.

[53] Klimov DK, Thirumalai D (2000) Mechanisms and kinetics of β-hairpin formation. *Proc Natl Acad Sci USA* 97:2544–2549.

[54] Pande V, Rokhsar D (1999) Molecular Dynamics Simulations of Unfolding and Refolding of a Beta-Hairpin Fragment of Protein G. *Proc Natl Acad Sci* 96:9062–9067.

[55] Dinner A, Lazaridis T, Karplus M (1999) Understanding Beta-Hairpin Formation. *Proc Natl acad Sci* 96:9068–9073.

[56] Bryant Z, Pande V, Rokhsar D (2000) Mechanical Unfolding of a Beta-Hairpin Using Molecular Dynamics. *Biophys J* 78:584–589.

[57] Zhou R, Berne B, Germain R (2001) The Free Energy Landscape for Beta Hairpin Folding in Explicit Water. *Proc Natl Acad Sci* 98:14931–14936.

[58] Best RB, Mittal J (2011) Microscopic Events in Beta-Hairpin Folding from Alternative Unfolded Ensembles. *Proc Natl Acad Sci* 108:11087–11092.

[59] Bhattacharya A, Best RB, Mittal J (2012) Smoothing of the GB1 Hairpin Folding Landscape
by Interfacial Confinement. *Biophys J* 103:596–600.

[60] Baumgärtner A, Binder K (1979) Monte carlo studies on the freely jointed polymer chain with excluded volume interaction. *J Chem Phys* 71:2541–2545.

[61] Honeycutt J, Thirumalai D (1989) Static properties of polymer-chains in porous-media. *J Chem Phys* 90:4542–4559.

[62] Mittal J, Best RB (2008) Thermodynamics and Kinetics of Protein Folding Under Confinement. *Proc Natl Acad Sci* 105:20233–20238.

[63] Wang W, Xu WX, Levy Y, Trizac E, Wolynes PG (2009) Confinement Effects on the Kinetics and Thermodynamics of Protein Dimerization. *Proc Natl Acad Sci* 106:5517–5522.

[64] Shental-Bechor D, Levy Y (2011) Folding of glycosylated proteins under confinement. *J Chem Phys* 135:141104.

[65] Hyeon C, Thirumalai D (2012) Multiple Barriers in Forced Rupture of Protein Complexes. *J Chem Phys* 137:055103.

[66] Allen MP, Tildesley DJ (1987) *Computer Simulation of Liquids* (Oxford University Press).
Figure Caption

Figure 1: Snapshots of the simulated system in the absence of mechanical force. (a) \(\varphi_c = 0.1 \) \((N_c = 5000)\), (b) \(\varphi_c = 0.2 \) \((N_c = 10000)\), (c) \(\varphi_c = 0.3 \) \((N_c = 15000)\), and (d) \(\varphi_c = 0.4 \) \((N_c = 20000)\). The hairpin corresponds to the small dark spot at the center of each of the boxes. The center of the figure shows a blowup of the region adjacent to the hairpin. The purpose of showing the four snapshots is to illustrate that the biopolymer is jammed in a sea of crowding particles. The blowup in the center shows structure of the \(\beta \)-hairpin along with the sequence numbering of the 16 residues.

Figure 2: Root Mean Square Deviation (RMSD) of the crowding agents from an equilibrated initial state as a function of time (\(\tau \) - measured in Monte Carlo Steps per free-particle (MCS)) for trajectories at \(\varphi_c = 0.1 \) (blue), \(\varphi_c = 0.2 \) (green), \(\varphi_c = 0.3 \) (orange), and \(\varphi_c = 0.4 \) (red). Note that crowder trial moves are reasonably successful for \(\varphi_c \leq 0.3 \), which implies that the allowed conformations are ergodically sampled. The acceptance ratio for such trial moves is significantly reduced at \(\varphi_c = 0.4 \) although the errors in the results are small as indicated by consistency between different measures. The sampling interval used for collecting the data presented in all figures below was 1000 MCS.

Figure 3: Radial distribution function \((g(r))\) of the crowders about the center of mass of the hairpin at various volume fractions and at \(F = 0 \) pN. Red squares, orange diamonds, green upward triangles, and blue downward triangles respectively correspond to \(\varphi_c = 0.1, 0.2, 0.3 \), and 0.4. The maxima in \(g(r) \) lie at \(r = 15.5, 14.5, 13.5 \), and 12.5 Å respectively. This suggests that the size of the region to which the hairpin is confined \((D)\) is inversely proportional to \(\varphi_c \), implying that this region is aspherical. The symbols represent raw data, curves correspond to smoothing using Eq. (6.48) of Allen and Tildesley [66].

Figure 4: Plot of (a) average extension \((\langle z \rangle)\) as a function of force \((F)\). (b) Isothermal extensibility \((\chi \equiv \partial \langle z \rangle / \partial F|_T)\) versus force \((F)\). Black, red, orange, green, and blue curves respectively correspond to volume fractions \((\varphi_c)\) of \(0, 0.1, 0.2, 0.3\), and 0.4. All curves were calculated using the multiple histogram reweighting method; symbols in (a) correspond to unreweighted data.

Figure 5: (a) Critical force \((F_c)\) of the hairpin versus crowder volume fraction \((\varphi_c)\). \(F_c\) displays a power law dependence on the volume fraction of crowding agent with an exponent
(a) of 1.55. (b) Data collapse of the isothermal extensibility (χ) (Figure 4) shows that $\chi \sim (1 - AN_c^{d_\chi})X((F - F_c)/F_c)$, where the scaling function ($X(x)$) is independent of the number of crowders (N_c). Thus, the dependence of the isothermal extensibility on N_c is characterized by an exponent (d_χ) of 1.43. Black, red, orange, green, and blue curves respectively are for $N_c = 0, 5000, 10000, 15000, \text{and } 20000$.

Figure 6: (a) Average fraction of native contacts ($\langle Q \rangle$) versus applied tension (F). (b) Absolute value of $d\langle Q \rangle/dF$ versus F. The force which maximizes $|d\langle Q \rangle/dF|$ at a particular volume fraction φ_c corresponds to the critical force $F_c(\varphi_c)$ at φ_c. (c) A plot of F_c versus φ_c verifies the results illustrated in Figure 5 (a); $F_c \sim \varphi_c^\alpha$ where $\alpha \approx 1.6$.

Figure 7: (a) Crowder-crowder radial distribution function ($g(r)$) versus separation distance (r/σ). Red squares, orange diamonds, green up triangles, and blue down triangles respectively correspond to $\varphi_c = 0.1, 0.2, 0.3, \text{and } 0.4$. (b) The contact value $g(\sigma) \equiv \lim_{r \to \sigma^+} g(r)$ from (a) was used to calculate the average pressure (P) of the hard spheres at each φ_c using the virial derived equation $P = \rho k_B T(1 + 4\varphi_c g(\sigma))$. A plot of F_c versus P revealed a highly significant correlation with a linear correlation coefficient $r = 0.99657$. Blue circles correspond to measured data and the black solid line corresponds the the best fit line $F_c = mP + b$, where $m = 0.24 \text{ nm}^2 \text{ and } b = 13.84 \text{ pN}$. (c) The dependence of F_c on φ_c. Blue circles correspond to simulation data. The solid black curve corresponds to the best-fit line relating F_c to the pressure ($P(\varphi_c)$) at φ_c, where P was calculated from the semi-empirical Carnahan-Starling equation of state: $P = \rho k_B T(1 + \varphi_c + \varphi_c^2 - \varphi_c^3)/(1 - \varphi_c)^3$. The red stars also correspond to a best-fit line relating F_c to $P(\varphi_c)$, where P was calculated as in (b). (d) P versus φ_c as calculated via the Carnahan-Starling equation of state (black) and after truncating a Taylor-series expansion ($P \approx \frac{6k_BT}{\pi \sigma^3} \sum_{i=1}^{n} a_i \varphi_c^i$) of this equation of state about $\varphi_c = 0$ after $n = 1$ (red), 2 (orange), 3 (yellow), 4 (green), 5 (cyan), 6 (blue), and 7 (purple) terms.
$g(r)$

$D \sim \varphi_c^{-1}$

φ_c
(a) \(F_c \sim \varphi_c^\alpha \)
\[\alpha \approx 1.55 \]

(b) \(\chi \sim \left(1 - A N_c^{d_x} \right) \)
\[d_x \approx 1.43 \]
Figures (a), (b), and (c) show different aspects of the relationship between force F and average quantity $\langle Q \rangle$, as well as the dependence of critical force F_c on the dimensionless parameter φ_c. Figure (a) illustrates the weakening of $\langle Q \rangle$ with increasing force, showing a critical point at φ_c. Figure (b) displays the behavior of $|d\langle Q \rangle/dF|$ as a function of force, again highlighting the critical point φ_c. Figure (c) presents the scaling of F_c with φ_c, with a fit suggesting $F_c \sim \varphi_c^\alpha$, where $\alpha \approx 1.57$. These figures together provide insights into the mechanical properties under study.
\[g(r) \]

\[F_c \sim P
\]

\[P = \rho k_B T \frac{1+4\phi_c g(\sigma)}{(1-\phi_c)^3} \]

\[\phi_c \]

\[F_c \sim P
\]

\[P \approx \frac{6k_B T}{\pi \sigma^3} \sum_{i=1}^n a_i \phi_i
\]