Identification and Assessment of Zones with Interfacial Partially Healed Cracks Using Lamb Waves Dispersion

A V Dudchenko

1LLC “PIK-PROJECT”, Rastorguevskij pereulok, d. 3, korp. 16, Moscow, 123557, Russia

E-mail: aleks_dud@mail.ru

Abstract. Requirements of modern technics and technology resulted in development of composite materials that provides higher target properties than individual materials. Then, self-healing technology was proposed to increase the durability of such materials. This technology can be applied to various material types, for instance to cementitious one like concrete and mortar as well as multilayer laminar composites. In the both cases one of the most important issue is to estimate the degree of healing as well as the change in the material mechanical and physical properties like strength, stiffness, permeability, etc. during healing process. Various methods are possible to implement for such assessment including non-destructive ways of evaluation. In the present work ultrasonic diagnostics involving Lamb waves is considered and evaluated to show its applicability for practical testing of multilayer composites. The method is based on Six-dimensional Cauchy formalism developed earlier.

1. Introduction
In modern civil, mechanical, electronic and other branches of engineering the need of lightweight and durable materials has arisen due to development of technics and technology in the last century. As a result, composite materials have been developing to fulfill the requirements of modern engineering. These materials can be a composition of several layers with different mechanical properties e.g. laminar composites or it can be a matrix with inclusions of other materials such as reinforced concrete. In composition these materials demonstrate better required properties rather than individually.

The next development of such materials is connected with the technology which is called self-healing. It includes various methods that can be used for crack closure as well as improving mechanical and permeability properties [1-3]. This can be performed by using various additions including bacteria [4,5], microcapsules with special organic or inorganic agents [6,7], various admixtures [8] etc. to initial material composition. As a result, this provides crack closure and improvement in material properties, thus, prolonging its utilization.

At the same time, one of the most important issues for such materials is to estimate healing degree and improvement in material properties. In [9,10] review of experimental methods to characterize self-healing performance of cementitious materials and polymeric composites is conducted to show different approaches of mechanical and physical property characterization. In work [11], Ahn et al. focus on ultrasonic methods of self-healing characterization and shows the applicability of such methods to evaluate “healed” properties of cementitious materials.
The present study is focused on theoretical analysis of the method of non-destructive testing of self-healing multilayer composites. The approach is based on Lamb-wave dispersion properties. The proposed method of theoretical analysis is developed earlier by Kuznetsov in [12] and consists in calculating and analysis of dispersion curves for multilayer plates by using six-dimensional Cauchy formalism. As a result, the calculated dispersion curves can be analyzed and the patterns corresponding to various healing degrees can be identified. Avershieva et al. in [13] show that analytical solution for Lamb wave velocities calculated using Cauchy formalism is in a good agreement with numerical simulation using finite element method in Abaqus software. Apart from that, many sources confirm applicability of Lamb wave for non-destructive testing e.g. [14-16]. Therefore, it is possible to perform healing assessment through comparing experimentally obtained dispersion curves with the ones obtained theoretically for various stages of internal damage. In this work, change of dispersion curve character for three-layer plate with inner rigid layer after appearance of an interfacial crack and at various stages of self-healing process is calculated and analyzed to show the main patterns characterizing each stage.

2. Lamb waves in diagnostics of internal defects

2.1. Methods of self-healing evaluation

Self-healing process can be estimated through direct measurements or experimental procedures. The most obvious way is to measure crack width through various types of cameras [17-19] and microscopy [20-26]. The experiments in the works [17-26] showed the positive effect of self-healing for surface crack closure. Internal volumes of the cracks can be estimated through tomography [27-31], electrical methods [32-34], etc. One of the key issues for these approaches is sample preparation to detect crack borders accurately. This may include polishing, cleaning with compressed air, drying, etc. Eventually, it is possible to measure crack width in various points, average crack width and crack volume to estimate crack closure during healing process.

Another group of methods of self-healing evaluation includes test of liquid [35-40] and gas-permeability [41-42], sorptivity [43-46], etc. These properties can be measured at different stages of self-healing and related to durability properties of materials. Water permeability properties relates to change in water pressure with time or the volume of water that goes through a sample. Similarly to crack measurements, this method represents change in the specimen continuity due to self-healing, thus, indirectly characterizing crack closure. Correlation between this method, crack closure and ultrasonic pulse velocity tests is studied by Van Tittelboom et al. in [47] showing good agreement. Similar approach is adopted for gases. The results for gas permeability in [41,42] showed a significant change in that property during healing process.

On the other hand, the methods mentioned above do not provide direct measurement of mechanical characteristics like stiffness and residual strength which are the key parameters for structural engineers. As a result, mechanical properties from the measurements can be found using correlation between durability or crack parameters with Young’s modulus and strength.

Direct methods of mechanical properties evaluation include direct mechanical tests that damage specimens and non-destructive ultrasonic wave based methods. Direct mechanical tests may include compression tests [48,49], tensile tests [31,50], splitting tests [51], flexural tests [52-55]. Non-destructive evaluation of mechanical properties is based on acoustic wave propagation and measurements of various wave properties in different points of a sample. Ultrasonic pulse velocity measurement is well-established and extensively used test method [56] showing its effectiveness in internal defect detections. Additionally, it can be used to assess self-healing [53,55,57-58]. However, these approaches are not free from drawbacks because of reinforcement bars, voids, temperature and moisture change that can significantly affect the results making them doubtful. Apart from UPV methods it is possible Rayleigh wave based approaches [59] that also showed its applicability. Lamb waves are frequently used for material testing and the common approach are quite well established [14-16]. Application of nondestructive testing of self-healing composite involving Lamb waves is
performed in [61-63] using array of fiber Bragg grating sensors. The possibility to use Lamb waves to evaluate and detect internal defects is shown.

2.2. Constitutive equations.
Although several types of surface waves can travel in a layered elastic media including Lamb waves, Rayleigh waves, Stoneley and Love waves, Lamb and Love waves can be considered as the most appropriate to study the properties of individual layers because of dispersion properties (the dependency of the phase velocity on the oscillation frequency). Thus, they allow obtaining mechanical characteristics of individual layers. Lamb waves are characterized by elliptical polarization in the plane formed by the normal to the wave front and surface of the layer as well they can propagate in separate layers. In the following text a brief description of the method that is used to calculate dispersion curves for Lamb waves is provided.

Three-dimensional formalism for analysis of wave propagation in an anisotropic half-space was initially developed in [64] for Rayleigh waves. Afterwards, the approach was modified to study Lamb waves travelling in anisotropic plates, e.g. [65-70]. Further development of the formalism was Stroh six-dimensional formalism [71] that was also initially applied to study Rayleigh waves propagating on a free surface of an anisotropic half-space. Then, in [72,73] this approach was used to analyze Lamb waves propagating in anisotropic plates.

Cauchy six-dimensional formalism, that is used in the present work, was initially developed in [74] for analysis of Lamb waves propagating in anisotropic media. In the following text a brief description is provided.

Equation of motion for continuous general anisotropic media has the following form:

$$A(\partial_x, \partial_t)u = \text{div}_x C \cdot \nabla_x u - \rho \ddot{u} = 0$$

where C is an elasticity tensor, u is the vector of displacements and x is a coordinate vector. Equation for Lamb wave travelling in anisotropic elastic media can be written using the following vector function:

$$v(x^n) = \partial_{x^n} \cdot f(x^n).$$

This allows modifying the equation of motion for an anisotropic media (Eq.(1)) to normal Cauchy form:

$$\partial_{x^n} \left(\begin{array}{c} f \\ v \end{array} \right) = G \cdot \left(\begin{array}{c} f \\ v \end{array} \right)$$

In Eq. (3) G is fundamental matrix that can be defined as:

$$G = \begin{pmatrix} 0 & I \\ -A_1 \cdot A_3 & -A_1 \cdot (A_2 + A'_2) \end{pmatrix}.$$

Matrixes A_1, A_2, A_3 in Eq. (4) are calculated as:

$$A_1 = v \cdot C \cdot v, \quad A_2 = v \cdot C \cdot n$$

$$A_3 = n \cdot C \cdot n - \rho c^2 I.$$

Using Eq. (3) allows obtaining solution of Eq. (2) in exponential form:

$$\left(\begin{array}{c} f(x^n) \\ v(x^n) \end{array} \right) = \exp(x^n G) \cdot \tilde{C}_6.$$
In Eq. (6) C_6 is a six-dimensional vector of unknown coefficients that can be calculated from boundary conditions up to a multiplier. In the considered approach the boundary conditions can be formulated in terms of A_1, A_2 as:

$$t_v(x^\prime) = (A_1 \partial_x + A_2) \cdot f(x^\prime),$$

Using this equation for the surface traction vector and combining it with Eq. (2) and Eq. (6) gives surface tractions as well as displacements on the both plate surfaces:

$$
\begin{bmatrix}
 f(\pm irh) \\
 t_v(\pm irh)
\end{bmatrix} = Z \cdot \exp(\pm irhG) \cdot \hat{C}_6,
$$

where $Z = \begin{pmatrix} I & 0 \\ A_2 & A_1 \end{pmatrix}$. Unknown coefficients vector can be excluded by using the relation between the displacements and traction on the one side and with the corresponding vectors on the other boundary producing the equation:

$$
\begin{bmatrix}
 f(-irh) \\
 t_v(-irh)
\end{bmatrix} = T \cdot \begin{bmatrix}
 f(+irh) \\
 t_v(+irh)
\end{bmatrix}
$$

where $T = Z \cdot \exp(-2irhG) \cdot Z^{-1}$. Matrix T can be called the transfer matrix not depending on the used boundary conditions. In more details, the presented approach and its use for calculating dispersion curves in particular problems can be observed in the works [12,74-75].

3. Calculation for model problem

3.1. Problem formulation

Evaluation of the presented method is performed using three-layer model with rigid inner layer (Figure 1). The layer in the middle of the plate is supposed to be 10 times stiffer than the outer ones. Ideal mechanical contact between the layers is considered for initial state of the plate. The surfaces of the plate are free. The parameters of the layers are taken as follows:

$$E_{1,3} = 1.0, \quad E_2 = 10.0, \quad \rho_{1,3} = 1.0, \quad \rho_2 = 2.0, \quad \nu_{1,2,3} = 0.0.$$

Crack is simulated by adding a thin layer between the rigid and soft ones (the thickness of the layer 100 times less than the thickness of the soft and rigid ones) simulating delamination of the plate. The stiffness and density of the crack layer is varied ($E_{cr} = 10^{-5} \div 0.9, \quad \rho_{cr} = 0.001 \div 0.9, \nu_{cr} = 0.0$) to model self-healing process. As a result, dispersion curves are calculated for various states of the plate including: (1) initial state without a crack; (2) damaged state ($E_{cr} = 10^{-5}, \quad \rho_{cr} = 0.001, \nu_{cr} = 0.0$), (3) self-healing stage 1 ($E_{cr} = 0.001, \quad \rho_{cr} = 0.01, \nu_{cr} = 0.0$) (2) self-healing stage 2 ($E_{cr} = 0.1, \quad \rho_{cr} = 0.1, \nu_{cr} = 0.0$). Then, based on the obtained dispersion curves the principal difference for each stage are identified.
Figure 1. Model problem. Three-layer plate with rigid internal layer. Initial state (top scheme).

3.2. Calculation results
Dispersion curves for initial state of the plate are shown in figure 2. Their change due to damage is shown in figure 3. It can be seen that the curve character totally changes with appearance of interfacial crack for each mode and becomes virtually horizontal except for some phase velocity ranges.

Dispersion curves change due to self-healing can be seen in figures 4 and 5 where loss of horizontal character of the curves can be observed due to stiffness recovery at various crack layer properties. Eventually when the recovered stiffness of the crack layer becomes close to the stiffness of the neighbor layers dispersion curve character becomes close to the initial. This allows detecting interfacial cracks and estimating damage degree of the internal layer.

Figure 2. Dispersion curve for the plate in undamaged state.

Figure 3. Dispersion curves for an interfacial crack related to unhealed crack \(E_{cr} = 1 \times 10^{-5} \).
Figure 4. Dispersion curves for an interfacial crack related to unhealed crack \((E_{cr} = 1 \times 10^{-3})\).

Figure 5. Dispersion curves for an interfacial crack related to unhealed crack \((E_{cr} = 0.1)\).

4. Conclusion

Non-destructive test method based on Six-dimensional Cauchy formalism is adopted for analysis of three-layer composite plate with inner rigid layer. The appearance of a crack is modeled using additional thin layer with low Young’s modulus and density.

As a result, it is obtained that it is possible to detect interlayer cracks and evaluate healed degree for this layer by building dispersion curves. Apart from that, comparing theoretically calculated dispersive curves with the experimentally obtained ones allows restoring mechanical properties of the healed layers.

As perspectives of this work, calculation and assessment of dispersion curves for the plates composed of larger number of layers will be performed. This will be used to analyze and determine common patterns in dispersion curves for multilayer plates including identification of crack location.

5. References

[1] De Rooij M, Van Tittelboom K, De Belie N, Schlangen E editors 2013 Self-healing phenomena in cement-Based materials: state-of-the-art report of RILEM technical committee 221-SHC: self-Healing phenomena in cement-Based materials Springer Science & Business Media

[2] Lv Z, Chen D 2014 Overview of recent work on self-healing in cementitious materials Materiales de Construcción 64(316):034

[3] Mihashi H, Nishiwaki T 2012 Development of engineered self-healing and self-repairing concrete-state-of-the-art report Journal of Advanced Concrete Technology 10(5):170-84

[4] Van Tittelboom K, De Belie N, De Muynck W, Verstraete W 2010 Use of bacteria to repair cracks in concrete Cement and Concrete Research 40(1):157-66

[5] Williams S L, Sakib N, Kirisits M J, Ferron R D 2016 Flexural Strength Recovery Induced by Vegetative Bacteria Added to Mortar ACI Materials Journal 113(4)

[6] Wang X, Xing F, Zhang M, Han N, Qian Z 2013 Experimental study on cementitious composites embedded with organic microcapsules Materials 6(9):4064-81

[7] Kanellopoulos A, Giannaros P, Al-Tabbaa A 2016 The effect of varying volume fraction of microcapsules on fresh, mechanical and self-healing properties of mortars Construction and Building Material 122:577-93

[8] Ahn T H, Kishi T 2010 Crack self-healing behavior of cementitious composites incorporating various mineral admixtures Journal of Advanced Concrete Technology 8(2):171-86

[9] Ferrara L, Van Mullem T, Alonso M C, Antonaci P, Borg R P, Cuenca E, Jefferson A, Ng PL, Peled A, Roig-Flores M, Sanchez M 2018 Experimental characterization of the self-healing
capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2 Construction and Building Materials 167:115-42

[10] Bekas D G, Tsirka K, Baltzis D, Paipetis A S 2016 Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques Composites Part B: Engineering 87:92-119

[11] Ahn E, Kim H, Sim S H, Shin S W, Shin M 2017 Principles and applications of ultrasonic-based nondestructive methods for self-healing in cementitious materials Materials 10(3):278

[12] Kuznetsov S V 2013 Cauchy six-dimensional formalism for Lamb waves in multilayered plates International Scholarly Research Notices

[13] Avershieva A V, Goldstein R V, Kuznetsov S V 2016 Limit velocities of lamb waves: Analytic and numerical studies Mechanics of Solids 51(5):571-5

[14] Viktorov I A 2013 Physical foundations of the application of Rayleigh and Lamb ultrasonic waves in technology Ripol Classic

[15] Schreiber D S 1965 Ultrasonic flaw detection (M .: Metallurgy) 392: 29

[16] Vybörnov B I 1985 Ultrasonic flaw detection (Metallurgy)

[17] Pease B J, Geiker M R, Stang H, Weiss J 2006 Photogrammetric assessment of flexure induced cracking of reinforced concrete beams under service loads In Proceedings of the Second International RILEM Symposium: Advances in Concrete through Science and Engineering 2006 Sep 11

[18] Navarro-Gregorri J, Mezquida-Alcaraz E J, Serna-Ros P, Echegaray-Oviedo J 2016 Experimental study on the steel-fibre contribution to concrete shear behaviour Construction and Building Materials 112:100-11

[19] Karaikos G, Tsangouri E, Aggelis D G, Van Tittelboom K, De Belie N, Van Hemelrijck D 2016 Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods Smart Materials and Structures 25(5):055003

[20] Ahn T H, Kishi T 2010 Crack self-healing behavior of cementitious composites incorporating various mineral admixtures Journal of Advanced Concrete Technology 8(2):171-86

[21] Ferrara L, Krelani V, Moretti F Autogenous healing on the recovery of mechanical performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 2- Correlation between healing of mechanical performance and crack sealing Cement and Concrete Composites 73:299-315

[22] Roig-Flores M, Moscato S, Serna P, Ferrara L 2015 Self-healing capability of concrete with crystalline admixtures in different environments Construction and Building Materials 86:1-1

[23] Van Tittelboom K, Wang J, Araújo M, Snoeck D, Gruyaert E, Debbaert B, Derluyn H, Crudeau V, Tsangouri E, Van Hemelrijck D, De Belie N 2016 Comparison of different approaches for self-healing concrete in a large-scale lab test Construction and building materials 107:125-37

[24] Homma D, Mihashi H, Nishiwaki T 2009 Self-healing capability of fibre reinforced cementitious composites Journal of Advanced Concrete Technology 7(2):217-28

[25] Jacobsen S, Marchand J, Hornain H 1995 SEM observations of the microstructure of frost deteriorated and self-healed concretes Cement and Concrete Research 25(8):1781-90

[26] Jonkers H M, Thijsen A, Muyzer G, Copuroglu O, Schlangen E 2010 Application of bacteria as self-healing agent for the development of sustainable concrete Ecological engineering 36(2):230-5

[27] Ranachowski Z, Jóźwiak-Niedźwiedzka D, Ranachowski P, Rejmund F, Dąbrowski M, Kudela Jr S, Dvorak T 2014 Application of X-ray microtomography and optical microscopy to determine the microstructure of concrete penetrated by carbon dioxide Archives of Metallurgy and Materials 59

[28] Snoeck D, De Belie N 2016 Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers Journal of Materials in Civil Engineering 28(1):04015086
[29] Van Belleghem B, De Belie N 2015 Analysis and visualization of water uptake in cracked and healed mortar by water absorption tests and X-ray radiography InConcrete Repair, Rehabilitation and Retrofitting IV: Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR-4) (Leipzig, Germany) p 12

[30] Van Tittelboom K, Snoeck D, Vontobel P, Wittmann FH, De Belie N 2013 Use of neutron radiography and tomography to visualize the autonomous crack sealing efficiency in cementitious materials Materials and structures 46(1-2) 105-21

[31] Wang J, Dewancke J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N 2014 X-ray computed tomography proof of bacterial-based self-healing in concrete Cement and Concrete Composites 53:289-304

[32] Wen S, Chung D D 2007 Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement Carbon 45(4):710-6

[33] Vaidya S, Allouche E N 2011 Strain sensing of carbon fiber reinforced geopolymer concrete Materials and structures 44(8):1467-75

[34] Wen S, Chung D D 2007 Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement Carbon 45(4):710-6

[35] Aldea C M, Shah S P, Karr A 1999 Permeability of cracked concrete Materials and structures 32(5):370-6

[36] Gruyaert E, Debbaut B, Snoeck D, Diaz P, Arizo A, Tziviloglou E, Schlangen E, De Belie N Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests Smart Materials and Structures 25(8):084007

[37] Mechtcherine V, Lieboldt M 2011 Permeation of water and gases through cracked textile reinforced concrete Cement and Concrete Composites 33(7):725-34

[38] Snoeck D, Van Tittelboom K, Steueraert S, Dubrue P, De Belie N 2014 Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers Journal of Intelligent Material Systems and Structures 25(1):13-24

[39] Van Tittelboom K, Adesanya K, Dubrue P, Van Puyvelde P, De Belie N 2011 Methyl methacrylate as a healing agent for self-healing cementitious materials Smart Materials and Structures 20(12):125016

[40] Edvardsen C 1999 Water permeability and autogenous healing of cracks in concrete InInnovation in concrete structures: Design and construction pp 473-487 Thomas Telford Publishing

[41] Mechtcherine V, Lieboldt M 2011 Permeation of water and gases through cracked textile reinforced concrete Cement and Concrete Composites 33(7):725-34

[42] Yang Z, Hollar J, He X, Shi X 2011 A self-healing cementitious composite using oil core/silica gel shell microcapsules Cement and Concrete Composites 33(4):506-12

[43] Araújo M, Van Vlierbergh S, Feiteira J, Graulus G J, Van Tittelboom K, Martins J C, Dubrue P, De Belie N 2016 Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials Materials & Design 98:215-22

[44] Feiteira J, Gruyaert E, De Belie N 2016 Self-healing of moving cracks in concrete by means of encapsulated polymer precursors Construction and Building Materials 102:671-8

[45] Sabir B B, Wild S, O'farrell M 1998 A water sorptivity test for mortar and concrete Materials and Structures 31(8):568

[46] Zaccardi Y A, Alderete N M, De Belie N 2017 Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time Cement and Concrete Research 100:153-65

[47] Van Tittelboom K, De Belie N, De Muynck W, Verstraete W 2010 Use of bacteria to repair cracks in concrete Cement and Concrete Research 40(1):157-66

[48] Achal V, Mukerjee A, Reddy M S 2013 Biogenic treatment improves the durability and remediates the cracks of concrete structures Construction and Building Materials 48:1-5
[49] De Nardi C, Cecchi A, Ferrara L, Benedetti A, Cristofori D 2017 Effect of age and level of damage on the autogenous healing of lime mortars Composites Part B: Engineering 124:144-57
[50] Wang J, Mignon A, Snoeck D, Wiktor V, Van Vliergergehe S, Boon N, De Belie N 2015 Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing Frontiers in microbiology 6:1088
[51] Di Prisco M, Ferrara L, Lamperti M G 2013 Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites Materials and structures 46(11):1893-918
[52] Alghamri R, Kanellopoulos A, Al-Tabbaa A 2016 Impregnation and encapsulation of lightweight aggregates for self-healing concrete Construction and Building Materials 124:910-21
[53] Ferrara L, Krelani V, Carsana M 2014 A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures Construction and Building Materials 68:535-51
[54] Qureshi T S, Kanellopoulos A, Al-Tabbaa A 2016 Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete Construction and Building Materials 121:629-43
[55] Van Tittelboom K, De Belie N, Lehmann F, Grosse CU. Acoustic emission analysis for the quantification of autonomous crack healing in concrete Construction and Building Materials 28(1):333-41
[56] ASTM C 2009 597 Standard test method for pulse velocity through concrete ASTM International, West Conshohocken (PA)
[57] Williams S L, Sakib N, Kirisits M J, Ferron R D 2016 Flexural Strength Recovery Induced by Vegetative Bacteria Added to Mortar ACI Materials Journal 113(4)
[58] Ahn E, Kim H, Sim S H, Shin S W, Shin M 2017 Principles and applications of ultrasonic-based nondestructive methods for self-healing in cementitious materials Materials 10(3):278
[59] Aggelis D G, Shiotani T, Polyzos D 2009 Characterization of surface crack depth and repair evaluation using Rayleigh waves Cement and Concrete Composites 31(1):77-83
[60] Kirkby E, De Oliveira R, Michaud V, Mánson J A 2011 Impact localisation with FBG for a self-healing carbon fibre composite structure Composite Structures 94(1):8-14
[61] Yeum C M, Sohn H, Ihn J B, Lim H J 2012 Instantaneous delamination detection in a composite plate using a dual piezoelectric transducer network Composite Structures 94(12):3490-9
[62] Tian Z, Yu L, Sun X, Lin B 2019 Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging Structural Health Monitoring 18(1):334-44
[63] Wee J, Hackney D, Bradford P, Peters K 2018 Experimental study on directionality of ultrasonic wave coupling using surface-bonded fiber Bragg grating sensors Journal of Lightwave Technology 36(4):932-8
[64] Stoneley R 1949 The seismological implications of aeolotropy in continental structure Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 5(8):343-53
[65] Mitra M 1959 Propagation of elastic waves in an infinite plate of cylindrically aeolotropic material Zeitschrift für angewandte Mathematik und Physik. 10(6):579-83
[66] Solie L P, Auld B A 1973 Elastic waves in free anisotropic plates The Journal of the Acoustical Society of America 54(1):50-65
[67] Dayal V, Kinra V K 1989 Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments The Journal of the Acoustical Society of America 85(6):2268-76
[68] Liu G R, Tani J, Watanabe K, Ohyoshi T 2003 Lamb wave propagation in anisotropic laminates
[69] Neau G 2003 Lamb waves in anisotropic viscoelastic plates Study of the wave fronts and attenuation PhD, University of Bordeaux
[70] Wang L, Yuan F G 2007 Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments Composites science and technology 67(7-8):1370-84
[71] Stroh A N 1962 Steady state problems in anisotropic elasticity *Journal of Mathematics and Physics* 41(1-4):77-103

[72] Shuvalov A L 2000 On the theory of wave propagation in anisotropic plates *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 456(2001):2197-222

[73] Alshits V I, Deschamps M, Maugin G A 2003 Elastic waves in anisotropic plates: short-wavelength asymptotics of the dispersion branches vn (k) *Wave Motion* 37(3):273-92

[74] Kuznetsov S V 2019 Closed form analytical solution for dispersion of Lamb waves in functionally graded plates *Wave Motion* 88:196-204

[75] Ilyashenko A, Kuznetsov S 2018 Dispersive waves in functionally graded plates *In MATEC Web of Conferences 2018* Vol 251, p 04052 (EDP Sciences)

Acknowledgements

The author thanks the Russian Science Foundation Grant 19-19-00616 for financial support.