Chronic kidney disease and cerebral small vessel disease: A casual or causal cerebrorenal relationship?

Marx Rivera-Zambrano, Adrià Arboix, María-José Sánchez

ABSTRACT

Abstract is not required for Editorial
Chronic kidney disease and cerebral small vessel disease: A casual or causal cerebrorenal relationship?

Marx Rivera-Zambrano, Adrià Arboix, María-José Sánchez

Recent studies show that individuals with progressive chronic kidney disease have a greater risk of cardiovascular events, hospitalization and death [1]. Chronic kidney disease (CKD) is prevalent in acute stroke patients with rates varying from 20–35% in ischemic stroke and from 20–46% in intracerebral hemorrhage [2, 3]. Previously, a higher four to ten times, prevalence of stroke in dialysis patients have been reported [3]. It can therefore be concluded that CKD is an established and emergent risk factor for cardiovascular disease in general and for cerebrovascular disease in particular.

Chronic kidney disease is defined either by a decrease in the estimated glomerular filtration rate (eGFR) below 60 ml/min/1.73 m² or by the presence of albuminuria as a marker of an increased glomerular permeability [4]. It represents also a poor prognosis factor in patients with acute stroke and its presence has been associated with stroke severity and poor outcomes in ischemic and hemorrhagic stroke. A study reported that patients with CKD had a 49% greater risk of neurological deterioration during hospital stay and in-hospital mortality, and higher degree of disability at discharge according to the modified Rankin scale score of 2 or more than patients without CKD [5]. Greater risk of recurrence of non-cardioembolic stroke in CKD patients has also been reported [3].

Worse neurological prognosis may be caused by the presence in these patients of proteinuria and albuminuria, and both conditions are significantly associated with high levels of inflammatory cytokines and oxidative stress, inflammation and conditions promoting coagulation, potentially causing excessive vascular damage at stroke onset. These factors are also associated with accelerated atherosclerosis and endothelial dysfunction. Albuminuria is also predictive of hemorrhagic transformation of stroke [2].

We must also point out that CKD patients have both high thromboembolic and high bleeding risks and this has implications for deciding the optimal therapeutic strategy for primary or secondary prevention in these clinical conditions. Thus, non-vitamin K antagonist oral anticoagulants (novel oral anticoagulants) seem to be safer and more effective for patients with nonvalvular atrial fibrillation than warfarin, but cannot be given to patients with advanced CKD because the activity of these drugs is greatly affected by renal function [2, 6]. Intravenous thrombolysis is not contraindicated for patients with CKD but experts have limited experience with this treatment in these patients [6].

It is worth mentioning that kidney impairment is strongly associated with cerebral small vessel diseases (SVDs), which occur as asymptomatic lacunar infarcts (Figure 1) often resulting in classical lacunar syndromes (pure motor hemiparesis, pure sensory syndrome, sensorimotor stroke, ataxic hemiparesis or dysarthria-clumsy hand) or, less frequently, in atypical lacunar syndromes [7,8]. They also result in leukoaraiosis or white matter hyperintensities, silent lacunes, prominent or enlarged perivascular spaces and cerebral microbleeds [9].

One study reported that the volume of white matter lesions increased when eGFR decreased [10], and another showed that proteinuria had strong relation with both the presence and number of microbleeds [11].

This special relationship between CKD and cerebral SVDs is still unclear and warrant further investigation but is probably due to the fact that the vasoregulation of the microvasculature of the two organs (kidney and
brain) is similar anatomically and functionally [12]. Afferent glomerular arterioles of the juxtamedullary nephrons and the cerebral perforating small vessels share common anatomical and functional characteristics. They are short arterioles arising directly from large high-pressure arteries and so they are exposed to high pressure and they have to maintain a strong vascular tone. These would be “strain vessels” together with the coronary microcirculation and retinal arteries [13, 14]. Distinctively hypertensive vascular damage occurs first and severely in such strain vessels. Kidney impairment is, therefore, characterized by glomerular endothelial dysfunction and lipohyalinosis both of which are features of cerebral small-artery diseases (Figure 2) [13–15]. Cerebral SVDs and white matter hyperintensities are mediated by ischemic arteriolosclerosis, low perfusion, endothelial dysfunction and blood-brain barrier damage [9].

Other relevant clinical observations reaffirm this causal association. For example, albuminuria—component of CKD that reflects glomerular damage distal to the juxtamedullary glomerular arterioles—also seems to reflect an early stage of damage of cerebral SVDs [16–18]. In a meta-analysis, the presence of proteinuria was associated with a 71% increased risk for stroke compared with those without proteinuria [17], and another study also reported albuminuria as an independent predictor of ischemic stroke recurrence [18].

It should finally be pointed out that patients with CKD have a higher risk of developing cognitive impairment and dementia than the general population, which might be explained by a triple mechanism: first, by direct neuronal toxicity by uremic toxins; second, by the effects of vascular risk factors on cerebral parenchyma (mainly chronic hypertension); and third, by the high prevalence of silent lacunar infarcts, white matter hyperintensities and cerebral microbleeds.

In short, CKD, retinopathy, and cognitive impairment, share common vascular pathology with cerebral SVDs [19–22]. Patients with CKD may probably develop more cerebral cortical atrophy, as observed in patients with ischemic lacunar stroke subtype (Figure 3), but we do not yet have data on this subject in the CKD patients’ subgroup, aspect that should be considered as a promising and exciting future research area [23].
CONCLUSION

Chronic kidney disease (CKD) and stroke have a strong relationship. CKD is a predictor of stroke, subclinical cerebrovascular abnormalities and cognitive impairment. Cerebrorenal main interaction is between CKD and SVD. They share arteriolar anatomy, and traditional cardiovascular risk factors (hypertension, diabetes, obesity, dyslipidemia, and smoking) including age, are commons to CKD and stroke promoting its pathological association. Research should be dedicated to increasing the awareness and understanding of the cerebrorenal interaction in order to reduce the risk of stroke in patients with CKD and improve health care management.

How to cite this article

Rivera-Zambrano M, Arboix A, María-José S. Chronic kidney disease and cerebral small vessel disease: A casual or causal cerebrorenal relationship? Int J Case Rep Images 2015;6(8):526–529.
doi:10.5348/ijcri-201503-ED-10003

Acknowledgements

To Joan Massons MD, Montserrat Oliveres MD and Emili Comes MD, for the care of many patients with lacunar stroke included in the Sagrat Cor Hospital of Barcelona Stroke Registry.

Author Contributions

Marx Rivera-Zambrano – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Adrià Arboix – Substantial contributions to conception and design, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
María-José Sánchez – Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 Marx Rivera-Zambrano et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004 Sep 23;351(13):1296–305.
2. Toyoda K, Ninomiya T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol 2014 Aug;13(8):823–33.
3. Toyoda K. Cerebral small vessel disease and chronic kidney disease. J Stroke 2015 Jan;17(1):31–7.
4. Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011 Jul;80(1):17–28.
5. Kuma Y, Kamouchi M, Hata J, Ago T, et al. Proteinuria and clinical outcomes after ischemic stroke. Neurology 2012 Jun 12;78(24):1909–15.
6. Hirano T. Thrombolysis and hyperacute reperfusion therapy for stroke in renal patients. Contrib Nephrol 2013;179:110–8.
7. Arboix A, García-Plata C, García-Eroles L, et al. Clinical study of 99 patients with pure sensory stroke. J Neurol 2005 Feb;252(2):156–62.
8. Arboix A, Bell Y, García-Eroles L, et al. Clinical study of 35 patients with dysarthria-clumsy hand syndrome. J Neurol Neurosurg Psychiatry 2004 Feb;75(2):231–4.
9. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010 Jul;9(7):689–701.
10. Khatri M, Wright CB, Nickolas TL, et al. Chronic kidney disease is associated with white matter hyperintensity volume: the Northern Manhattan Study (NOMAS). Stroke 2007 Dec;38(12):3121–6.
11. Shima H, Ishimura E, Naganuma T, et al. Cerebral microbleeds in predialysis patients with chronic kidney disease. Nephrol Dial Transplant 2010 May;25(5):1322–30.
12. Thompson CS, Hakim AM. Living beyond our physiological means: small vessel disease of the brain is an expression of a systemic failure in arteriolar function: a unifying hypothesis. Stroke 2009 May;40(5):e322–30.
13. Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res 2009 Feb;32(2):115–21.
14. Arboix A. Retinal microvasculature in acute lacunar stroke. Lancet Neurol 2009 Jul;8(7):596–8.
15. Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 2002 Mar;13(3):806–16.
16. Schreiber S, Bueche CZ, Garz C, et al. Kidney pathology precedes and predicts the pathological cascade of cerebrovascular lesions in stroke prone rats. PloS One 2011;6(10):e26287.
17. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ 2010 Sep 30;341:c4249.
18. Ninomiya T, Perkovic V, Verdon C, et al. Proteinuria and stroke: a meta-analysis of cohort studies. Am J Kidney Dis 2009 Mar;53(3):417–25.
19. Kokubo Y. Carotid atherosclerosis in kidney disease. Contrib Nephrol 2013;179:35–41.
20. Ninomiya T. Risk of stroke in kidney disease. Contrib Nephrol 2013;179:58–66.
21. O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 2005 Jul;46(1):200–4.
22. Yao H, Takashima Y, Hashimoto M, Uchino A, Yuzuriha T. Subclinical cerebral abnormalities in chronic kidney disease. Contrib Nephrol 2013;179:24–34.
23. Grau-Olivares M, Arboix A, Junqué C, Arenaza-Urquijo EM, Rovira M, Bartrés-Faz D. Progressive gray matter atrophy in lacunar patients with vascular mild cognitive impairment. Cerebrovasc Dis 2010;30(2):157–66.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment
Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.