Bioinspired Electro-Thermo-Hygro Reversible Shape-Changing Materials by 4D Printing

Antoine Le Duigou,* Guillaume Chabaud, Fabrizio Scarpa, and Mickael Castro

Hygromorph composites are moisture-induced shape-changing materials that are increasingly studied to develop autonomously actuated deployable structures. The morphing mechanism is based on the high affinity for moisture and the hygroexpansive nature of at least one component, combined with a bilayer microstructure. Among available hygromorphs, those consisting of cellulosic or hydrogel material-based actuators trigger fast responses to moisture. Their stiffness however decreases significantly with the moisture content and that restricts their potential application as soft actuators. This work proposes a novel 4D printed multistimuli-responsive structural material based on conductive carbon reinforcements and combined with a moisture sensitive polymer. These 4D printed materials possess a microstructure that provides the capability of natural actuators like pine cones. The actuation of these functional materials could be either triggered passively by the variation of the ambient moisture, or by electroheating, with the latter leading to the control of the moisture content in initially wet samples via Joule effects. This new class of functional materials shows an increase of the actuation speed by a factor 10 compared to other existing hygromorphs with the same responsiveness. When the electrical heating is turned off, passive cooling and moisture driven actuation is triggered in a full reversible mode.

1. Introduction

Additive manufacturing with 4D printing combines 3D printing techniques and the use of materials with time-dependent properties when an external stimulus is present.[1–3] 4D printing allows an easier manufacturing of smart materials with embedded functionalities, thanks to the capability of creating complex architectures and the design of preprogrammed structures.[4] Two types of stimulus-responsive materials currently exist: shape-changing materials with spontaneous response to stimuli and shape memory materials that return to their shape after the external actuation.[5,6]

Environmentally-driven actuation mechanisms are currently attracting some significant interest to design autonomous deploying systems for which low maintenance, cost, and low energy consumptions are paramount. Current efforts in the 4D printing community are mainly dedicated to exploit the use of thermally activated polymers or related composites.[7] Recent research activities have however been focused on the use of electrical actuation to improve the control of the temperature gradient, in particular for continuous carbon fiber 4D printed composites. Yang et al. have evaluated carbon fiber/polyether-ether-ketone (PEEK) and polylactic acid (PLA) composites with the thermal actuation triggered by electroheating.[8] Real environmental and atmospheric conditions are however more complex, and changes of temperature are always coupled with variations of humidity. The moisture-induced actuation of additive manufacturing materials is rarely discussed aside from cases related to the self-folding hydrogel-based microactuators[9–11] or 2 GPa stiff polymer/acrylated monomers hydrogel systems.[12] In recent time natural fiber hygromorph wood/PLA biocomposites[13,14] with high actuation stiffness and strength have been developed for structural up-scaled applications, in particular for buildings (cladding/ façade, shading systems, and solar tracker). Hygromorph composites are however relatively slow velocity actuators, limited by the moisture transport kinetics that could constitute a real bottleneck in technical applications where actuation control and faster responses are required. Unlike thermally-activated polymers based on the presence of one stimulus, hygromorphs are hygroscopically activated, and they are therefore also temperature dependent. Few studies have however been carried out on materials that exploit the hygroexpansive properties of conductive paper or hydrogels with an electricity-driven actuation.[15–19] In the cited references, the response was manually controlled by electroheating to trigger a faster deployment rate. Dual actuators have also been activated by using UV radiation and moisture variation with laser printed toner-coated paper/biaxially oriented polypropylene actuators[20] and on graphene oxide (GO)/biaxially oriented polypropylene (BOPP) systems.[21] Those materials allowed to reach high curvature deformations (1 cm⁻¹) with a short actuation time (~10–20 s) due to their...
low stiffness. Their applications have been therefore limited to small scale prototypes and their utilization to nonharsh environments. Mao et al. have also developed a shape memory polymer (SMP) “Grey60”/Elastomer “Tangoblack” or “Verowhite”/Hydrogel actuator that enables to combine moisture and temperature to trigger actuation while providing a higher level of stiffness for the material system. The hygroscopic actuation of the hydrogel was influenced by the evolution of the stiffness of the SMP with the temperature. The overall actuation of this hydrogel/SMP system is however not completely controllable and the reactivity is still rather low (10–20 h for a full actuation cycle).

With the present work, we present a novel concept of 4D printed multistimuli-responsive structural material based on the electrothermal actuation of hygromorph composites. Continuous carbon fibers (cCF) along with a moisture sensitive polyamide matrix (PA6) are used here with a specific microstructure that biomimics at microscale natural hydraulic actuators like pine cones. We have first printed polyamide 6-I coated continuous carbon fibers/polyamide 6 bilayers (cCF:PA6-I/PA6). PA6-I shows a higher glass transition temperature (Tg) than PA6, i.e., 123 and 41 °C respectively (evaluated by DSC measurements, not shown here). Then, samples have been stored at different relative humidity (RH) levels (9%, 33%, 50%, 75%, and 98%) and at room temperature (23 °C) to evaluate their autonomous hygromorphic behavior in terms of curvature. Similar composite materials have been prepared then as platforms for electro-thermo-hygromorphs and their actuation mechanism evaluated at different voltages (10 and 15 V) onto saturated samples at 98% RH and 23 °C. We have finally analyzed the influence of the electrical stimulus on the heating of the material, the moisture content and the speed of curvature as well as on the amplitude of the curvature induced by the multiphysics actuation.

2. Results and Discussion

2.1. Concept of 4D Printed Electro-Thermo-Hygromorph Structural Composite Materials

Polyamide and carbon fibers have been selected as components to design this smart composite material.

Current 4D printed smart composites for actuation are mainly based on the coefficient of thermal expansion (CTE) of the polymer (α) that drives the responsiveness and reactivity of the actuator. We use here well-known moisture-sensitive polymers such as polyamide (PA6 and PA6-I). The CTE of the polymers along the longitudinal and transverse directions are however 3800 and 5000 times lower than hygroscopic expansion (β) (see Table 1). This implies that the thermal strain induced by a variation in temperature would be significantly lower than the hygroscopic strain induced by the variation of humidity. There is therefore potential to use the moisture and the hygroscopicity of the material as a driver for the actuation. The direction of the carbon fibers also affects the thermal and the hygroscopic expansions (Table 1). Although along the fibers longitudinal direction the hygroscopic and thermal expansions are negligible, the α and β coefficients of the composites along the transverse direction assume the highest strain expansion potentials due to the anisotropy of the carbon fibers. The orientation of the fibers is therefore a critical parameter to design the microstructure of shape-changing composite materials made with thermally and/or hygroscopically active and passive phases.

Continuous fiber composite materials and a 4D printing process were selected to control the orientation of the fibers and consequently their stiffness, thermal and the hygroscopic anisotropy properties that are key factors to promote the bending actuation.

The hygromorph composite materials possess a bilayer microstructure inspired by the one of natural hydraulic actuators (pine cones for instance[25,26]), printed with two layers having different hygromechanical properties. The layer made with the continuous carbon fibers embedded in a PA6-I matrix is hygroscopically and thermally passive (i.e., with a low thermohygroexpansion) but electrically active. The printed cCF:PA6-I layer is used here as a mechanically resistant lamina with high durable stiffness against moisture, while having at the same time fibers that act as an electrical circuit. The other layer of pure PA6 matrix (Figure 1a) is the hygroscopically and thermally active one. The optimal stacking sequence for a maximal bending actuation is determined via bimetallic strip theory calculations[27] (Equation (1)). The model is based on the thickness ratio between active and passive layers and their hygroelastic properties.[28] An optimized stacking sequence has been used to induce a large displacement of hygromorph materials.[21] An increase of the thickness would geometrically increase the bending stiffness and the actuation force but would lower targeted morphing. Hence, depending on the requirements and the application, compromise shall be found between the stiffness and the actuator’s responsiveness. The differential hygroscopic expansion between layers leads to the bending actuation of the hygromorph composite in various external humid environments (from 10% to 95% RH) (Figure 1a). An autonomous response with large responsiveness is produced (0.088 ± 0.011), however a slow response was also noticed due to the transitory and diffusive water transport within the material.[29,30] This may limit the up-scaling of hygromorph composites structures, and also limit their use for applications like soft robotics, for which passive actuation is less of a requirement than controlled actuation.

To overcome this issue, we have devised a mechanism to actively control the moisture content and the resulting hygroscopic strains and therefore reaching a dedicated position of the shape-changing composite material. The concept is based on the work of Hamedi et al.,[13] who exploited the hygroscopic expansion in an electrically activated paper. We use here a similar approach to develop electro-thermo-hygromorphs through 4D printing for structural and load-bearing composite

| Table 1. Values of coefficients of thermal and hygroscopic expansion for cCF:PA6-I longitudinal, transverse, and for pure PA6. |
|---------------------|---------------------|---------------------|
| Materials | α (10⁻⁶ K⁻¹) | β [-] |
| cCF:PA6-I longitudinal | – | – |
| cCF:PA6-I transverse | 49 ± 4 | 0.26 ± 0.03 |
| PA6 | 90[24] | 0.34 ± 0.04 |

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
materials, rather than in soft solids like paper. The electrical functionality is here embedded within the cCF-PA6-I/PA6 hygromorph composites with the carbon fibers both playing the role of the reinforcement and the electrically conductive path. The adjustment of the pattern of the printed carbon fibers makes it possible to control the stiffness distribution along the sample, i.e., its responsiveness and electrical conductivity, and thus finally the reactivity. Fused filament fabrication (FFF) has been used here to construct the architecture of the electrical circuit and the reinforcement. The layer containing the continuous carbon fibers is printed in a preoptimized U-shape pattern to promote the electrical conductivity while maintaining a degree of freedom for the structure to actuate.

The application of an electrical field to the moisture saturated sample (RH = 98% in Figure 1b) leads to an electrical Joule effect-induced heating and a rise of the temperature that may vary versus the input voltage and the electrical conductivity of the composite layer. The variation of the temperature also leads to a change of the moisture content. The increase in temperature, potentially combined with the thermal expansion of the polymeric material would contribute to a thermal actuation similarly observed by Wang et al.[31]

Contrary to the water diffusion within a polymer or a composite, the thermal diffusion induced by the electroheating effect is a fast kinetics phenomenon.[8] Moisture-driven actuation could be therefore accelerated through the desorption of
the moisture out of the composite material. The stiffness and the hygroscopic shrinkage of each layer is altered by the presence of this mechanism. Once the electrical field is switched off, the autonomous moisture sorption drives back the morphing behavior. In the present concept, the hygroscopic behavior of the bilayer is used for actuation responsiveness, while the electrical stimulus allows to trig and enhance the speed of the actuation.

2.2. cCF:PA6-I/PA6 Bilayers as Hygromorph Actuators

Continuous carbon fiber reinforced polyamide based composites have been manufactured with a rectangular shape (L = 70 mm and w = 20 mm) based on an optimal bilayer architecture designed using an equivalent bimetallic beam model (Equation (1)). The cCF:PA6-I layer has an overall thickness of 0.125 mm and is printed transversally to the length of the sample. The conductive network (not triggered during this step) has a rectangular-type U-shape pattern (Figure 2a) with a L/W ratio of 0.25. The ratio has been selected from previous trials due to its higher responsiveness (see Table S1 in the Supporting Information). When exposed to various humid environments (0%, 9%, 33%, 50%, 75%, and 98% RH) the cCF:PA6-I/PA6 bilayers show a very pronounced actuation authority. Dried samples exhibit a high curvature value at low RH values, then straighten in a humid environment. From image analysis it is possible to measure the relative curvature (ΔK) at the final one Kf. The actuated curvature evolves nonlinearly with the sorption time. A quick reactivity is observed during the initial time of sorption and once the saturation is reached the relative curvature has its maximum. A maximum relative curvature of 0.088 ± 0.011 mm⁻¹ (Figure 2b) is recorded for samples stored at 98% RH and 23 °C; this value is comparable to the one exhibited by natural fibers, paper or hydrogel based hygromorph materials with similar thickness.[12–14] The maximum curvature depends on the moisture content (Figure 2b,c). The higher the content, the larger the actuation responsiveness (Figure 2b). The reactivity however appears not to be affected by the moisture content, and circa 12 h have been necessary for the full and autonomous actuation of the cCF:PA6-I/PA6 bilayers. This timeline corresponds to the moisture sorption, diffusion and complete saturation within the material itself.

After reaching a stable value of the curvature at 98% RH, the cCF:PA6-I/PA6 bilayers are placed in a dry environment (RH = 9%) at room temperature (T = 23 °C). During the drying step, the final value of ΔK is reached even faster (350 mins) than in the case of sorption (1000 mins—see Figure 2c). Compared to the initial weight of the sample stabilized at 9% RH, a close value is observed meaning a reversible moisture transport (Figure 2d). The faster reach of the ΔK value also clearly shows that the mechanisms associated to the moisture transport and the autonomous responsiveness are fully reversible, however the reactivity is different between sorption and desorption phases. This actuation asymmetry has also been observed on natural fiber based hygromorph actuators where the active and the passive layers are based on similar materials.[13,15] The hygromechanical effects within the passive layer are however different if sorption or desorption are occurring. During sorption, the bilayers tend to straighten and the passive layer (cCF:PA6-I) is transversally loaded in compressive mode. On the contrary, during desorption the bilayers tend to bend and the passive layer is transversally loaded in tension. As the transverse compressive stiffness of unidirectional laminates is in general higher than the transverse tensile one,[33] the passive layer results to be easier to bend than to straighten, and this will affect the speed of the actuation.

The global hygromorph behavior (sorption/desorption) is illustrated by the evolution of the relative curvature versus the moisture content for several moist and desorption conditions (from 98% RH to 9% RH—Figure 2e). The relative curvature shows almost linear trends for what it concerns the moisture content over the sorption/desorption processes (R² = 0.99 for sorption step and R² = 0.98 for desorption step). The slopes of the curves are also almost identical in magnitude (0.011 for sorption and 0.010 for desorption), and that indicates that the same mechanisms are very likely to be involved in the two processes. The amplitude of the radius of curvature generated by the actuation of the hygromorph composite materials can be therefore predicted by tracking the relative humidity. This feature also suggests that these smart materials could also be used as moisture sensors.

2.3. cCF:PA6-I/PA6 Bilayers as Electro-Thermo-Hygromorph Actuators

Printed cCF:PA6-I composites are used here as a load-bearing layer with an electrical circuit. The multifunctional composite material provides a passive moisture-induced morphing shape capability and an active electrically-controlled phase. Two input voltages (10 and 15 V) are applied thanks to the U-shaped printed pattern to control the moisture content. Those voltages are chosen to use a low input electric power (0.1 and 0.6 W for 10 and 15 V, respectively), and they are also compatible with analogous values for soft actuators reported in open literature.[15–17] Electroheating leads to a heterogeneous temperature field within 120 s (Figure 3a). With an input of 15 V, the cCF:PA6-I area reaches an average temperature of 40.0 ± 1.8 °C. A similar but less pronounced behavior is observed at the lower applied voltage of 10 V, with an average temperature of 29.2 ± 1.3 °C (Figure 3b). The current circulates through the shortest pathway and prevents in this case the formation of a homogeneous heating field. Furthermore, at the end of one of the arms near the head zone an unusual temperature peak of 65 °C has been observed for the five replicates (yellow spot in Figure 3a). This high value of local temperature is due to printing-induced defects which cause a weak contact and therefore a high resistance between one arm and the head. This point will be further discussed. Those high values of temperature can lead to temperature-induced damages (Figure 3c). The zone of pure PA6 in the middle of the U-shape layer is hardly affected by the electro-heating, and this restrains to the area where the carbon fibers are located the surface for the electroactuation. In our work we have used a commercial printer to make the case for the feasibility study, however printing parameters such as the fiber trajectory have not been fully customized.
Figure 2. a) Bilayer cCF:PA6-I/PA6 U-shape sample with transverse printed pattern and its shape evolution when the relative humidity is increased from dry (9% RH) to a wet environment (98% RH) at 23 °C. b) The evolution of the relative curvature actuation for different humidity levels shows the increase in actuation reactivity and responsiveness with the moisture content during sorption. c) The evolution of the relative curvature of the printed cCF:PA6-I during passive desorption from 98% RH to 9% RH (exponential decay fit of $R^2 = 0.960$) at 23 °C shows the reversibility of the actuation. d) Evolution of the moisture content during desorption from 98% RH to 9% RH fitted with an exponential decay fit ($R^2 = 0.884$). e) Evolution of the relative curvature ΔK over a variation of moisture content during sorption at several RH levels (left) and desorption from 98% RH to 9% RH (right) at 23 °C. The changes of curvature due to sorption and desorption versus the moisture show a linear behavior ($R^2 = 0.99$ for sorption and $R^2 = 0.98$ for desorption) that allows to track the maximum amplitude of the induced curvature knowing the moisture content.
The cCF:PA6-I/PA6 bilayers printed with this pattern nevertheless feature peak temperatures lower than those measured by Amjadi et al.\cite{16} (around 70 °C) and Hamedi et al.\cite{15} (around 80–100 °C) on thin electroactive papers. The electroheating of these hygromorph composite materials did not cause to overcome the glass transition temperature (T_g) of the PA6 (50 °C) of the thermally active layer, nor the one of the PA6-I (135 °C) belonging to the cCF:PA6-I layer.\cite{23} Low chain mobility, low free volume variation of the glassy polymer and therefore a low thermal expansion is observed when a polymer is close or crosses the T_g\cite{36}. During the first actuation step thermal strains are very small, and therefore the contribution of a thermally-induced actuation is negligible. The elastic properties of the composite laminates do evolve with temperature, but only significantly above 60 °C for the transverse cCF:PA6-I, and beyond 80 °C for the longitudinally printed cCF:PA6-I patterns (see the Supporting Information). Therefore, during the electrical stimulus, the elastic properties of the composite could be considered as constant.

The moisture content within the hygromorph materials after the electrical stimulus and the increase of temperature has been quantified with reference to an initial wet state of 98% RH. The moisture content has been decreased exponentially to 9% RH during the electrical heating while the desorption time has been drastically reduced (10 times) from 300 min in environmental conditions to 30 min when the samples have been electroactivated (Figure 4a,b). Higher input voltage (15 V) leads to a higher desorption rate as well as an increase of moisture loss ($7.1 \pm 1.3\%$ for 15 V and $4.2 \pm 0.8\%$ for 10 V—Figure 4a,b). Higher water content at 10 V has been observed after actuation and that is due to a lower temperature reached upon the electrical stimulation (Figure 3b). As a consequence, a slower desorption rate occurs with a pseudoplateau reached after 30 min (Figure 4b). The desorption rate is close to zero and would lead to a full desorption if the samples were subjected to a higher actuation time.

Within the range of moisture content considered in this work, both the PA6 and the cCF:PA6-I layers undergo some important hygroscopic expansions/shrinkages ($\varepsilon_z = 2.8\%$, $\varepsilon_y = 1.1\%$)\cite{23} and a significant variation of stiffness (between 20% and 40%) (see Figure S2 in the Supporting Information). Nevertheless, the lowest stiffness values observed here are larger than those belonging to the previous hygromorph hydrogel and paper-based actuators. The thermal strain (ε_T) of the active layer is 0.2% for a temperature variation (ΔT) of 21.6 °C (Figure 3b), while the hygroscopic strain (ε_h) reaches 2.4% for a moisture content variation (ΔC) of only 7.1%. The hygroscopic strain is 13 times higher than the thermal one in samples subjected to a voltage of 15 V. As a consequence, the hygroscopic functionality of the cCF:PA6-I/PA6 bilayers is more important than the thermal capability for the printed multifunctional material.

We have then verified the global electro-thermo-hygroscopic bending actuation of the 4D hygromorph composite materials.
The actuation authority shows a similar trend for the two levels of voltage used, with a rapid shape change followed by a stabilization of the curvature. A slight twisting is observed for any voltage due to process-induced defects which prevent the sample symmetry (Figure 4c,d). With 15 V of input, the samples transition from a straight configuration at 98% RH (left in Figure 4a) to a curved one ($0.079 \pm 0.010 \text{ mm}^{-1}$) similar to those observed in autonomous hygromorph in dry...
state \((0.083 \pm 0.017 \text{ mm}^{-1}) \). At 10 V we could notice a residual curvature \(\delta K \) of \(0.021 \pm 0.008 \text{ mm}^{-1} \) due to an incomplete desorption \((2.87 \pm 0.38\% \text{ after } 10 \text{ V actuation}) \) caused by the lower value of the electrically induced temperature.

These results show the possibility of using voltage to monitor the temperature, the moisture content and therefore the shape change of the material. The relative curvature versus the moisture content (Figure 4e) during the desorption and subsequent sorption at 98% RH and 23 °C after complete drying with the 15 V actuation clearly show—a gain—the full reversibility of the process. A linear fit between change of curvature and moisture content is also observed in this case during both electroheating and passive sorption \((R^2 = 0.99 \text{ and } R^2 = 0.96, \text{ respectively}) \). The magnitudes of the slopes between electric drying and resorption are quite similar \((a = 0.103 \text{ and } a = 0.107 \text{ for electrical drying and re-sorption steps, respectively}) \). This confirms that the passive hygromorph and the active electrothermo-hygromorph actuations with the present circuit architecture rely on similar actuation principles, although the slope coefficients related to the electroheating case are one order of magnitude larger than the autonomous one. After one electrothermo-hygroactuation and a subsequent storage at 98% RH and 23 °C the samples recover the shape previously observed during the sorption step \((0.093 \pm 0.012 \text{ mm}^{-1}) \) (Figure 2b).

One can therefore assume that no or negligible damage occurs during the electroheating phase. The 4D printed configuration of the cCF:PA6-I/PA6 hygromorph composite bilayers with the embedded electrical functionality demonstrates therefore the capability of speeding up the desorption of water and the change of shape. The variation of the electric input enables to control the morphing.

To underline the potential of this novel class of smart materials made of electro-thermo-hygromorphs over pure passive thermally-actuated morphing structures, similar campaign of tests has been carried out on dried cCF:PA6-I/PA6 bilayers at 9% RH instead that at 98% RH saturated (Figure 5). The initial moisture content in the sample is close to zero to cancel the contribution of the moisture-induced actuation during the electro-thermo-hygromorphing. Once the electrical stimulus is applied \((10 \text{ or } 15 \text{ V}) \), a rapid change of curvature is observed during the first 60 s; this confirms the rapidity of the thermal actuation (Figure 5). The responsiveness (curvature) remains however significantly lower (four times reduced) compared to the electro-thermo-hygromorphing case. This confirms that the novel electro-thermo-hygromorph materials possess a higher degree of hygroexpansion than pure thermal one (Table 1).

Once the electrical stimulus is switched off, the initial curvature is attained with no variation of moisture content.

3. Conclusion

Hygromorphs are class of smart materials continuously developed due to their significant potential for autonomous actuation and large responsiveness. The present work has proposed a novel class of smart multistimuli-responsive 4D printed hygromorph composite materials that overcome the significant limitations of current hygromorphs (lack on efficient control of the actuation and slow response). This new class of smart materials also possess load-bearing capabilities and intrinsic control functionalities due to the embedded electrothermal actuation. The moisture content within the novel materials here presented could vary either autonomously and therefore provide a pure hygromorph actuation, or could be controlled by an electrothermal stimulus to monitor and control the moisture content, and the resulting curvature. A bilayer microstructure inspired from biological hydraulic actuators like pine cones has been used to optimize the out-of-plane displacement. A commercial printer with conventional material filaments has been used in this work to produce the smart hygromorph materials. Aside from the moisture-sensitive PA6 polymer, we have used cCF:PA6-I composites that can maximize the anisotropy of the resulting hygromorph material.

In this work we have developed hygromorph composites designed using bimetallic-type beam model theory adapted to moisture activation. These materials have shown an autonomous response, with a relatively high bending curvature variation sensitive to the variation of the relative humidity between dry and wet state (98% RH). Another class of active hygromorph materials has been developed based on the use of an electrothermal stimulus to control the moisture content inside the materials and the curvature. The electrical induced heating of the conductive cCF:PA6-I layer generates a heterogeneous temperature field due to the features of the 4D printing process. The peak temperatures recorded in the samples do not go beyond the glass transition of the cCF:PA6-I and PA-6 layers, and therefore the thermal strains are low. In these materials we can therefore state that the variation of the moisture and the hygroscopic strains dominate the actuation response. When actuated, the multistimuli-responsive hygromorph composite materials show a very remarkable tenfold increase of the actuation speed during desorption compared to the autonomous (passive) hygromorphs samples; the responsiveness of the two classes of materials remains the same. The control of the moisture content with various electrical voltage inputs is evident,
and therefore the hygroscopic actuation can be actively triggered and controlled. When the electric current is switched off the hygromorph materials return to be autonomous (passive) actuators, and ambient cooling and moisture drive a fully reversible actuation. When electroheating is applied to an initially dried sample one can observe the presence of a fast actuation with a very low responsiveness; this further confirms the potential of this novel electro-thermo-hygromorph material as a new and interesting class of smart solids to be used for ambient sensing, but also architected and deployable structures and mechanical metamaterials by 4D printing with load-bearing capabilities. Moreover, the material reactivity could be further improved through maximizing the hygroscopic expansion gradient between the active and the passive layer in the sample, for instance thanks to the addition of highly moisture sensitive materials such as natural fibers found in hygromorph biocomposites. Additionally, one could also tune the stiffness distribution within the material thanks to 4D printing of anisotropic components (fibrous materials) to develop programmable bioinspired structures. Finally, mechanical instabilities like encountered in biological systems (Dioanea muscipula for instance) could be used in 4D printed structures.

4. Experimental Section

Sample Printing and Design: The 3D printer used in this study was a MarkTwo 3D printer provided by Markforged, which was driven by a web interface (Eiger.io). The filaments, made of multiple strands of carbon fibers coated with PA matrix were also provided by Markforged. Two spools of filaments are available during the printing, i.e., one of neat PA6 filament and one of continuous carbon fiber reinforced PA filament. In the manuscript, one refers to layers printed thanks to continuous carbon fiber reinforced PA filaments as cCF:PA6-I layers. Indeed, the polyamide used in the continuous carbon fiber reinforced filament was identified as a poly hexamethylene isophtalamide (PA6-I) by DSC measurements (not shown here).

Part design was inspired by bilayers biomimetic architectures labeled as cCF:PA6-I:PA6. The active and passive layers are made of pure one PA6 layer oriented at +45° and one cCF:PA6-I layer oriented at 90° respectively with a 100% infill. Remaining area within the second layer was filled with PA6 oriented at -45°, 100% infill.

For each pattern, a degree of freedom has been left to allow binding over actuation. Then, two arms had been designed and electric voltage was applied. Furthermore, two printed configurations have been studied here, i.e., the longitudinal and transverse. For each configuration, three different L/W ratios were studied (0.5; 1; 2). Sample width was set to 20 mm and the length of the arms was 30 mm. Finally, layers thickness ratio was theoretically calculated thanks to Timoshenko model by maximizing theoretical longitudinal curvature variation \(\Delta K \). Equations associated to Timoshenko model are shown here

\[
\Delta K = \frac{\Delta \beta f (m,n)}{t},
\]

\[
f (m,n) = \frac{6(1 + m)^2}{3(1 + m)^2 + (1 + mn)(m^2 + \frac{1}{mn})}
\]

With \(m = \frac{L}{W} \) and \(n = \frac{t_p}{t_a} \) where \(E_p \) and \(E_a \) are the Young’s modulus of the wet passive and active layers respectively. \(\Delta \beta \) is differential of hygroscopic expansion coefficient between active and passive layers, \(\Delta C \) is water loss between wet and dry state, and \(t \) is the total sample thickness. Thus, for longitudinal specimen, active thickness \(t_a \) was set at 0.375 mm and passive thickness \(t_p \) was set at 0.125 mm. For transverse specimen, \(t_a \) was set at 0.125 mm and \(t_p \) at 0.125 mm with a 100% infill.

Samples Storage: Printed bilayers have been previously dried under vacuum (10 mbar) at 60 °C (Vacutherm VT6060 M from Thermo) until steady weight values were obtained. Then, the bilayers have been stored in chambers with relative humidity (RH) controlled by a saturated solution of potassium hydroxide (KOH), magnesium chloride (MgCl₂), sodium chloride (NaCl), and potassium sulphate (K₂SO₄) so as to reach a RH of 10%, 30%, 75%, and 98%, respectively. All samples are stored at room temperature (23 °C). Samples were used after reaching saturation, i.e., when the weight was stabilized.

Expansion Measurement: Hygroscopic expansion and moisture uptake have been evaluated on printed samples 20 mm (L) × 20 mm (W) × 4 mm (t). Volumetric measurements have been performed with a Mitutoyo micrometer IP65 and gravimetric analyses using a Fischer Scientific PAS214C balance (10⁻⁶ g). Coefficient of hygroscopic expansion (\(\beta \)) displays as the slope of the hygroscopic expansion over moisture content evolution.

Thermal expansion was measured on 10 mm (L) × 10 mm (W) × 10 mm (t) samples thanks to thermomechanical analysis (Q800 DMA) from TA Instruments.

Samples have been placed between two parallel plates and held with a blocking force \(F = 0.1 \) N. The samples have been subjected to a 10 K min⁻¹ temperature ramp from 25 to 200 °C and the thermal expansion \(\Delta L \) over temperature variation \(\Delta T \) has been measured thanks to the displacement of one of the parallel plates. The coefficient of thermal expansion \(\alpha \) is expressed as Equation (3)

\[
\alpha = \frac{1}{L_0} \frac{\Delta L}{\Delta T} L_0
\]

where \(L_0 \) represents initial sample length. Thus, coefficient of thermal expansion was graphically determined as the slope of the curve \(\Delta L_0/\Delta T \) against \(\Delta T \).

Hygromorph and Electro-Thermo-Hygroactivation: Electric activation has been performed using an Agilent E31610A DC Power Supply generator. Two voltages have been considered (15 and 10 V) and a passive drying at 9% RH was carried out in parallel. For each sample, the distribution of the thermal field has been observed thanks to a calibrated thermal camera FLIR X6580sc while temperature was measured with a CA 864 thermometer. Mass variation has been measured thanks to a Fisher Scientific PAS214C balance (10⁻⁶ g). Curvature variation was tracked thanks to Logitech HD Pro Webcam C920 with 30 frames per second acquisition speed and image treatment was performed thanks to ImageJ 1.51j8 software (National Institutes of Health, USA). Curvature was measured by fitting the evolution of sample shape to a “circle” function. Bending curvature was calculated using the radius of the fitted circle.

Optical Observations: Electrically induced imperfections have been observed thanks to optical microscopy (Leica MZ16 binocular with 16:1 magnification and 840 LP mm⁻¹ resolution).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors wish to acknowledge “Region Bretagne” and CNRS AAP “Biomimetisme” for financial supports. The authors would also like to acknowledge Edouard Geslain, Thomas Pierre, Thibaut Colinart, and William Berckman for their contribution regarding the infrared thermography analysis.
Conflict of Interest
The authors declare no conflict of interest.

Keywords
4D printing, electroactive, fused filament fabrication, hygromorph, moisture, morphing

Received: April 24, 2019
Revised: June 5, 2019
Published online: July 10, 2019

[1] S. Tibbits, Archit. Des. 2014, 84, 116.
[2] E. Pei, Assem. Autom. 2015, 34, 123.
[3] Z. X. Khoo, J. E. M. Teoh, Y. Liu, C. K. Chua, S. Yang, J. An, K. F. Leong, W. Y. Yeong, Virtual Phys. Prototyping 2015, 10, 103.
[4] G. N. Levy, R. Schindel, J. P. Kruth, CIRP Ann. 2003, 52, 589.
[5] L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang, Mater. Des. 2012, 33, 577.
[6] F. Momeni, S. M. M. Hassani, N. X. Liu, J. Ni, Mater. Des. 2017, 122, 42.
[7] A. Mitchell, U. Lafont, M. Holyrska, C. Semiromoschnig, Addit. Manuf. 2018, 24, 606.
[8] C. Yang, B. Wang, D. Li, X. Tian, Virtual Phys. Prototyping 2017, 12, 69.
[9] L. Ionov, Mater. Today 2014, 17, 494.
[10] A. Sydney Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, Nat. Mater. 2016, 15, 413.
[11] M. C. Mulakkal, R. S. Trask, V. P. Ting, A. M. Seddon, Mater. Des. 2018, 160, 108.
[12] D. Raviv, Z. Wei, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, Sci. Rep. 2014, 4, 1.
[13] A. Le Duigou, M. Castro, R. Bevan, N. Martin, Mater. Des. 2016, 96, 106.