REVIEW

Understanding neuromuscular disorders in chronic fatigue syndrome [version 1; peer review: 2 approved]

Yves Jammes¹, Frédérique Retornaz²

¹C2VN Inserm Inra, Faculty of Medicine, Aix Marseille University, Marseille, France, France
²Department of Internal Medicine, European Hospital, Marseille, France, France

Abstract
Muscle failure has been demonstrated in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological tools demonstrate the existence of both central and peripheral fatigue in these patients. Central fatigue is deduced from the reduced amplitude of myopotentials evoked by transcranial magnetic stimulation of the motor cortex as well as by the muscle response to interpolated twitches during sustained fatiguing efforts. An impaired muscle membrane conduction velocity assessed by the reduced amplitude and lengthened duration of myopotentials evoked by direct muscle stimulation is the defining feature of peripheral fatigue. Some patients with ME/CFS show an increased oxidative stress response to exercise. The formation of lipid hydroperoxides in the sarcolemma, which alters ionic fluxes, could explain the reduction of muscle membrane excitability and potassium outflow often measured in these patients. In patients with ME/CFS, the formation of heat shock proteins (HSPs) is also reduced. Because HSPs protect muscle cells against the deleterious effects of reactive oxygen species, the lack of their production could explain the augmented oxidative stress and the consecutive alterations of myopotentials which could open a way for future treatment of ME/CFS.

Keywords
myalgic encephalomyelitis, chronic fatigue syndrome, central fatigue, peripheral fatigue, oxidative stress, heat shock proteins, neurophysiology, physiology, neuromuscular disorders

Open Peer Review

Approval Status ✓ ✓

version 1
28 Nov 2019

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Brett A Lidbury, The Australian National University, Canberra, Australia
2. Christopher R Snell, Workwell Foundation, Ripon, USA

Any comments on the article can be found at the end of the article.
Introduction

Chronic fatigue syndrome (CFS), also called myalgic encephalomyelitis/CFS (ME/CFS), is a multisystem disease with immune dysfunction and autonomic abnormalities characterized by an intense fatigue worsened by physical/mental activity. It is often associated with post-exertional malaise (PEM) and cognitive symptoms. Its pathogenesis appears to have a number of factors; different stressors (such as physical exertion, severe infections, or emotional stress or a combination of these) are continually reported in the medical history of patients with ME/CFS. An altered skeletal muscle function has been observed in ME/CFS pathogenesis. In our studies, alterations of the muscle membrane excitability in response to exercise was found in 86% of patients with ME/CFS (that is, 65%). Several ME/CFS studies have also reported an enhanced oxidative stress in response to exercise. This mini-review focuses on the neurophysiological disorders found in patients with ME/CFS and changes in biochemical markers of exercise, such as the potassium outflow, oxidative stress, and heat shock protein (HSP) response.

The general mechanisms of muscle fatigue

Muscle fatigue results primarily from the incapacity of the muscle fibers to contract. Muscle failure called “peripheral fatigue” may result from a failure of different metabolic processes such as the imbalance between oxygen demand and supply, the reduced excitation-contraction coupling involving altered intracellular calcium release and mobilization, and the impaired muscle membrane excitability due to the altered flux of potassium through the sarcolemma. “Peripheral fatigue” is generally preceded by the reduced recruitment of motoneurons which drive the highly fatiguing motor units. This phenomenon, called “central fatigue”, tends to delay the occurrence of “peripheral fatigue” (the “muscle wisdom” phenomenon). In humans, non-invasive tools are used to explore “peripheral” and “central” fatigue. Peripheral fatigue is assessed by the reduction of the contractile response (twitch) to direct electrical muscle stimulation. On the other hand, central fatigue is present when the interolation of twitches elicited by repetitive electrical muscle stimulation or transcranial magnetic stimulation (TMS) of cortical motor areas restores a contractile response during fatiguing efforts. Muscle fatigue is closely linked to an excessive production of reactive oxygen species (ROS). The sensory pathways carried by the group III and IV motor neurons which drive the highly fatiguing motor units. The key role played by these muscle afferents in central fatigue (muscle wisdom phenomenon) could also explain the numerous observations of a diminished central activation, documented in ME/CFS.

In patients with myalgic encephalomyelitis/chronic fatigue syndrome, central and peripheral fatigue coexist

Central fatigue

Some physiological studies using the twitch interpolation technique and analyzing the maximal voluntary contraction cannot support the hypothesis of central fatigue in patients with ME/CFS. By contrast, numerous studies support the existence of central fatigue in these patients. Kent-Braun et al. showed that the voluntary contraction of the tibialis muscle during maximal isometric exercise was lowered. In patients with post-infectious CFS, Sacco et al. reported a reduced amplitude of motor potentials evoked by TMS of the motor cortex in the biceps brachii muscle. The authors also reported an increased interpolated twitch amplitude during sustained fatiguing efforts in patients with ME/CFS. The same observations were made by Schillings et al. Davey et al. correlated day-to-day changes in ME/CFS symptomatology with the changes in simple reaction times (SRTs) and movement times of myopotentials evoked in muscles by TMS of the motor cortex, and corticospinal excitability was assessed by measuring the threshold TMS intensity. The authors reported slowed SRTs and increased threshold intensity, supporting the existence of a deficit in motor preparatory cortical areas. Siemionow et al. reported a modification of the central motor command to muscles during isometric handgrip and measured an increased relative power of electroencephalography theta frequency band in patients with ME/CFS compared with healthy volunteers. These observations suggest that ME/CFS pathology may be associated with an altered central nervous system command to muscles.

Peripheral fatigue

Delayed recovery from fatiguing exercise in patients with ME/CFS may be due to peripheral muscle fatigue and pain. During incremental cycling leg exercise approaching the maximal oxygen uptake (VO2max), marked alterations of myopotentials in response to direct muscle stimulation (M-wave) have been observed in a number of patients with ME/CFS. These M-wave changes began early in exercise and culminated at the end of a 30-min recovery. This suggests the existence of peripheral fatigue due to impaired muscle membrane excitability. Similar M-wave alterations are absent in healthy subjects, for whom the amplitude of myopotentials either does not vary or even increases with the incremental pedaling force.

Biological events accompanying the electrophysiological disorders

Reduced ionic fluxes through the muscle membrane

Alteration of ionic fluxes through the sarcolemma could explain the altered muscle membrane excitability reported in patients with ME/CFS. In healthy subjects, muscle biopsies demonstrated a physiological contraction-induced loss in myoplasmic...
Reduced heat shock protein production/expression

The HSPs protect cells against the deleterious effects of ROS produced during exercise, reducing the generation of ROS through the activation of anti-oxidants. The oxidant levels, in turn, increase the level of plasma HSP. In patients with ME/CFS, the responses of plasma HSP27 and HSP70 to exercise can be delayed and often reduced, and resting levels of plasma HSP70 are lower in these patients than in healthy volunteers. The lack of HSP response to exercise might explain the augmented oxidative stress measured in these patients. As already suggested, a downregulation of HSP production in some individuals could be caused by the repetition of exercise bouts at high energetic levels. As cited above, the activation of the group III or IV muscle afferents triggers the HSP production in working and resting muscles as well as in the brain and different organs. It may be hypothesized that the prolonged activation of these muscle afferents by the oxidative stress could induce a reduction of HSP production in patients with ME/CFS. Further studies, including in high-intensity sport programs and military training, are needed to show that the repetition of exercise bouts at high levels might depress the expression of the inducible factors of HSP. However, HSP malfunction was also reported in different pathologies and may have origins other than the repetition of stressors. Thus, in patients with multiple sclerosis and systemic lupus erythematosus, Elfaitouri et al. measured an IgM to specific cross-reactive epitopes of human HSP60 compatible with infection-induced autoimmunity. HSP dysfunction was also reported in patients with chronic fatigue in primary Sjögren’s syndrome. Because antibodies to a microbial HSP60 may cross-react with human HSP60, it may be that infectious diseases often reported in patients with ME/CFS alter their HSP function.

The role played by history of severe infections in the neuromuscular disorders of patients with myalgic encephalomyelitis/chronic fatigue syndrome

In a previous study, it was reported that the history of infection in patients with ME/CFS was associated with a marked significant increase in M-wave alterations and a reduced exercise-induced potassium efflux. The post-exercise changes in M-wave amplitude were correlated to a significant reduction of the maximal potassium outflow measured at the end of the exercise and to the baseline TBARS level. A further study highlights the importance of infectious stressors in ME/CFS pathogenesis and biological expression. A significant reduction of muscle excitability during work and increased blood oxidant status disorders at rest were measured in ME/CFS patients who reported a recent severe infection due to H1N1 influenza, pneumonia, encephalomyelitis, or sepsis. It is well documented that acute infection constitutes a trigger for an oxidative stress. A review by Rasa et al. compiles all of the studies carried out so far to investigate various viral agents that could be associated with ME/CFS. However, the role played by viral infection in ME/CFS pathogenesis is not clear. Recent observations by Bouquet et al. do not support immune cell dysregulation or viral reactivation in ME/CFS patients after exercise bouts inducing PEM.

Conclusions

This review focuses on the neurophysiological modifications that associate central and peripheral fatigue, reduced potassium outflow from exercising muscles, altered equilibrium between...
References

1. Fukuda K, Straus SE, Hickie I, et al.: The chronic fatigue syndrome: a comprehensive approach to its definition and study; International Chronic Fatigue Syndrome Study Group. Ann Intern Med 1994; 121(12): 953–9.
2. Institute of Medicine of the National Academies: Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Board on the Health of Select Populations. National Academies Press, 2003.
3. Carruthers BM: Evidence that myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a neuroimmune-mediated systemic illness with both an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/antioxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability (peripheral dysregulation of the oxidant/anti-oxidant status might result in an altered muscle membrane excitability). J Intern Med 2005; 257(3): 289–310.
4. Prins JB, van der Meer JWM, Bleijenberg G: The mechanisms of the widespread production of phosphorylated HSP25 after fatiguing muscle stimulation. J Exp Biol. 2013; 216(Pt 19): 3620–6.
5. Jammes Y, Steinberg JG, Olivier M, et al.: The mechanisms of the widespread production of phosphorylated HSP25 after fatiguing muscle stimulation. J Exp Biol. 2013; 216(Pt 19): 3620–6.
6. Jammes Y, Steinberg JG, Gateau-Baby C, et al.: Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise. J Intern Med. 2012; 272(1): 74–84.
7. Fenouillet E, Vigouroux A, Steinberg JG, et al.: Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2016; 14: 251.
8. Jammes Y, Guillaume Steinberg J, Guieu R, et al.: Chronic fatigue syndrome with history of severe infection combined altered blood oxidant status, and reduced potassium efflux and muscle excitability at exercise. QJM. 2013; 03(3): 98–105.
9. Sami A, Wassermann EM, Ikoma K, et al.: Decreased postexercise facilitation of motor evoked potentials in patients with chronic fatigue syndrome or depression. Neurology. 1996; 47(6): 1410–4.
10. Etnaik RM, Stuart DG: Neurobiology of muscle fatigue. J Appl Physiol. 1992; 72(5): 1631–48.
11. Juel C: Muscle fatigue and reactive oxygen species. J Physiol. 2006; 576(Pt 1): 1.
12. Ling LJ, Honda T, Shimada Y, et al.: Central projection of unmyelinated (C) primary afferent fibers from gastrocnemius muscle in the guinea pig. J Comp Neurol. 2003; 461(2): 140–50.
13. Sugid SK, Weavil JC, Mangum TS, et al.: Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol. 2017; 128(1): 44–55.
14. Rotto DM, Kaufman MP: Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol (1985). 1988; 64(6): 2306–13.
15. Decherchi P, Danzes JL, Jammes Y: Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigued. J Peripher Nerv Syst. 1998; 3(4): 267–76.
16. Dellaux S, Rebro-Baby C, Steinberg JG, et al.: Reactive oxygen species activate the group IV muscle afferents in resting and exercising muscle rats. Pflugers Arch. 2009; 459(1): 143–50.
17. Jammes Y, Steinberg JG, Olivier M, et al.: The mechanisms of the widespread production of phosphorylated HSP25 after fatiguing muscle stimulation. J Exp Biol. 2013; 216(Pt 19): 3620–6.
18. Lloyd AR, Gandevia SC, Hales JP: Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome. Brain. 1991; 114(Pt 1A): 85–98.
19. Stokes MJ, Cooper RG, Edwards RH: Normal muscle strength and fatigability in patients with effort syndromes. BMJ. 1988; 297(6655): 1014–7.
20. Kent-Braun JA, Sharma KR, Weiner MW, et al.: Central basis of muscle fatigue in chronic fatigue syndrome. Neurology. 1999; 43(1): 125–31.
21. Sacco P, Hope PA, Thickbroom GW, et al.: Corticomotor excitability and perception of effort during sustained exercise in the chronic fatigue syndrome. Clin Neurophysiol. 2013; 125: 1883–91.
22. Schillings ML, Kalkman JS, van der Werf SP, et al.: Diminished central activation during maximal voluntary contraction in chronic fatigue syndrome. Clin Neurophysiol. 2004; 115(11): 2518–24.
23. Davey NJ, Puri BK, Catley M, et al.: Deficit in motor performance correlates with changed corticospinal excitability in patients with chronic fatigue syndrome. Int J Clin Pract. 2003; 57(4): 262–4.
24. Siemionow V, Yang Y, Calabrese L, et al.: Altered central nervous system signal during motor performance in chronic fatigue syndrome. Clin Neurophysiol. 2004; 115(10): 2372–81.
25. Gerwyn M, Mass M: Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings. Curr Rheumatol Rep. 2017; 19(1): 1.
26. Paul L, Wood L, Behan WM, et al.: Demonstration of delayed recovery from fatiguing exercise in chronic fatigue syndrome. Eur J Neurol. 1999; 6(1): 63–9.
27. Sprengard G: Exercise-induced muscle fatigue: the significance of potassium. Acta Physiol Scand Suppl. 1990; 603: 1–63.
28. Marcos E, Ribas J: Kinetics of plasma potassium concentrations during exhausting exercise in trained and untrained men. J Exp Appl Physiol Occup Physiol. 1995; 71(2–3): 207–14.
29. Fulle S, Belia S, Vecchiet J, et al.: Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. *Neuromuscul Disord.* 2003; 13(6): 479–84. [PubMed Abstract](#)| [Publisher Full Text](#)
30. Fulle S, Meccuci P, Fanò G, et al.: Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. *Free Radic Biol Med.* 2000; 29(12): 1252–9. [PubMed Abstract](#)| [Publisher Full Text](#)
31. Kennedy G, Spence VA, McLaren M, et al.: Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. *Life Sci.* 2001; 68(17): 2037–49. [PubMed Abstract](#)| [Publisher Full Text](#)
32. Manuel y Keenoy B, Moorkens G, Vertommen J, et al.: Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. *Neurosci Lett.* 2003; 335(3): 151–4. [PubMed Abstract](#)| [Publisher Full Text](#)
33. Richards RS, Roberts TK, McGregor NR, et al.: Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. *Redox Rep.* 2000; 5(1): 35–41. [PubMed Abstract](#)| [Publisher Full Text](#)
34. Steinberg JG, Ba A, Brégeon F, et al.: Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. *Med Sci Sports Exerc.* 2007; 39(6): 964–8. [PubMed Abstract](#)| [Publisher Full Text](#)
35. Jammes Y, Steinberg JG, Brégeon F, et al.: The oxidative stress in response to routine incremental cycling exercise in healthy sedentary subjects. *Respir Physiol Neurobiol.* 2004; 144(1): 81–90. [PubMed Abstract](#)| [Publisher Full Text](#)
36. Mullen R, Campbell IT, Wearden AJ, et al.: Prediction of peak oxygen uptake in chronic fatigue syndrome. *Br J Sports Med.* 1999; 33(5): 352–6. [PubMed Abstract](#)| [Publisher Full Text](#)| [Free Full Text](#)
37. Inbar O, Dlin R, Rotstein A, et al.: Physiological responses to incremental exercise in patients with chronic fatigue syndrome. *Med Sci Sports Exerc.* 2001; 33(9): 1463–70. [PubMed Abstract](#)| [Publisher Full Text](#)| [Free Full Text](#)
38. Bouquet J, Li T, Gardy JL, et al.: Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. *PLoS One.* 2019; 14(3): e0212193. [PubMed Abstract](#)| [Publisher Full Text](#)| [Free Full Text](#)| [F1000 Recommendation](#)
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Christopher R Snell
 Workwell Foundation, Ripon, CA, USA
 Competing Interests: No competing interests were disclosed.

2. Brett A Lidbury
 National Centre for Epidemiology and Population Health, RSPH, College of Health and Medicine, The Australian National University, Canberra, ACT, 2601, Australia
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com