Effect of supplementing total mixed ration with ajwain (Trachyspermum ammi) oil on the performance of buffalo calves

M WADHWA¹ and M P S BAKSHI²

Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab 141 004 India

Received: 22 August 2018; Accepted: 24 September 2018

ABSTRACT

This study was taken up to assess the impact of different levels of ajwain oil (rich in essential oils) on the nutrient utilization by *in vitro* gas production technique. The best level of ajwain oil obtained was tested on the performance of buffalo calves. Ajwain oil was supplemented at 0.05, 0.1, 0.15 and 0.2% of total mixed ration (TMR; concentrate: green fodder: wheat straw in 40:48:12 ratio on DM basis). The results revealed that supplementation of incremental levels of ajwain oil to the TMR resulted in linear decrease in net gas production (NGP), digestibility of true OM and NDF; ME availability and methane production. Supplementing the TMR with ajwain oil beyond 0.05% resulted in significant depression in total and individual volatile fatty acids (VFAs) and acetate to propionate ratio. The protozoa numbers declined linearly with increase in level of ajwain oil supplementation. Hence 0.05% level of ajwain oil was selected for assessing its impact on performance of growing buffalo calves. In the first experiment, a 146-day feeding trial was conducted on 20 male buffalo calves divided into 2 groups, offered a TMR-1 (concentrate: green fodder: wheat straw ratio of 40:48:12 on DM basis) or TMR-1 supplemented with 0.05% ajwain oil. After completion of this trial, another 138-day feeding trial was conducted on 18 male buffalo calves divided into 2 groups and were offered a TMR-2 (concentrate: wheat straw ratio of 50:50 on DM basis) or TMR-2 supplemented with 0.05% ajwain oil. In the first growth trial, supplementing the control diet with ajwain oil did not show any impact on daily DM intake, digestibility of nutrients and N-retention, but in the second experiment the digestibility of all the nutrients, except that of crude protein was improved significantly in the ajwain oil supplemented group. The daily DM intake and N-retention was comparable in both the groups. The blood profile, urinary purine derivatives excretion and microbial biomass synthesis was not affected by ajwain oil supplementation during both the experiments. The average daily gain was comparable between control and ajwain oil supplemented group in both the feeding trials. It was concluded that supplementing ajwain oil to the TMR suppressed the *in vitro* methane production; improved the digestibility of nutrients in wheat straw based TMR supplemented with 0.05% ajwain oil, but did not show any significant beneficial effect on the performance of buffalo calves.

Key words: Ajwain oil, Blood profile, Buffalo calves, Growth, *In vitro*, Nutrient utilization, Protozoa numbers

Ajwain (*Trachyspermum ammi* L.) is an important medicinal, aromatic and spice plant. Its seeds possess number of phytochemical, pharmacological and therapeutic properties like antibacterial, antifungal, antiprotozoal, antioxidant, anti-inflammatory, anti-filarial, nematocidal, anthelmintic, hypotensive, analgesic and anti-nociceptive, antitussive and bronchodilatory, antihypertensive, antispasmodic, bronchodilator, diuretic and anti-lithiasis and hepatoprotective activities (Gilani et al. 2005, Murthy et al. 2009, Sabar 2010, Awadhes et al. 2011, Kamal Jeet et al. 2012, Chatterjee et al. 2013, Hasan et al. 2016, Sarfraz et al. 2016, Chahal et al. 2017). Ajwain seeds generally contain 2.5–5% essential oil (EO), which is made up of thymol (87.75%) and carvacrol (11.17%) as major constituents and major non-phenolic components quantified were p-cymene (60.78%) and small proportions of γ-terpinene (22.26%), α-pinene, β-pinene and α-terpinene (Pruthi 1992, Nagalakshmi et al. 2000, Minija and Thoppil 2002, Singh et al. 2004, Raghavan 2007, Chahal et al. 2017). The composition of essential oil varied with season and geographical location.

Amongst the pure essential oils like cinnamaldehyde, carvacrol, carvone and limonene; only carvacrol or limonene supplementation beyond 1% level reduced the *in vitro* methane production, nutrient utilization and ME availability from the substrate significantly (Hundal et al. 2016). However, no information is available on the herbal feed additives containing essential oil on the enteric methane production and nutrient utilization in livestock. This study was therefore, taken up to assess the impact of different levels of ajwain oil on the nutrient utilization by *in vitro* gas production technique. The best level of ajwain oil obtained was then tested on the performance of buffalo calves.

Present address: ¹Senior Nutritionist–cum–Head (mw_7in@yahoo.co.in), ²Former Senior Nutritionist-cum-Head (bakshimps@yahoo.com), Department of Animal Nutrition.
MATERIALS AND METHODS

In vitro studies: Three buffalo calves fitted with permanent rumen fistulae were offered concentrate mixture (wheat 10, maize 20, mustard cake 15, cotton seed cake 10, soybean meal 5, rice bran 15, wheat bran 12, deoiled rice bran 5, full fat soya 5, mineral mixture 2 and common salt 1% each), green fodder and wheat straw in 40:48:12 ratio on DM basis as per ICAR (2013) feeding standard for dairy cattle. The rumen contents were collected before feeding at 0900 in a thermos flask flushed with CO2 and maintained at 39° C. The rumen contents were blended for 2–3 min in a blender and strained through four layers of muslin cloth. The solution, containing 960 ml distilled water, 0.16 ml micro mineral solution, 660 ml bicarbonate buffer, 330 ml macro mineral solution and 1.6 ml resazurine (0.1%) were mixed in a Woulff flask (3 l) with magnetic stirrer in a water bath at 39° C (Menke et al. 1979, Menke and Steingass 1988). The mixture was continuously flushed with CO2. Strained rumen liquor (SRL) was added to the buffer media in the ratio of 1:2. Glass syringes (100 ml; Haberle Labortecnich, Germany) containing 375±5 mg TMR supplemented with different levels of ajwain oil (0, 0.05, 0.10, 0.15 or 0.20%) and buffered rumen liquor were incubated in triplicate in a water bath at 39°C and swirled every 60 min over a 24 h incubation period. If the volume of gas in the syringe exceeded 70 ml after 8 h the volume was recorded and the gas was expelled. After 24 h, the volume of gas produced in each syringe was recorded and the contents of syringes were transferred to spout less beaker, boiled with neutral detergent solution for assessing the true OM and NDF digestibility. Each in vitro gas production set was repeated to check any variation in the net gas production and other parameters. Estimation of volatile fatty acid: After 24 h of incubation, a 5 ml aliquot of fluid from each syringe was mixed with 1 ml of 25% meta phosphoric acid and kept for 1 h at ambient temperature (Erwin et al. 1961). Thereafter, it was centrifuged at 5,500 rpm for 10 min and clear supernatant was collected and stored at 20°C until analyzed. The volatile fatty acids were estimated using Netchrom 9100 gas chromatograph equipped with glass column (packed with chromosorb 101) and flame ionization detector (Cottyn and Boucque 1968). Temperature of injection port, column and detector was set at 250, 175 and 270°C, respectively. The flow rate of carrier gas (N) through the column was 15 ml/min; and the flow rate of H2 and air through FID was 30 and 300 ml/min, respectively. Sample (2 ml) was injected through the injection port using a 10 ml Hamilton syringe. Individual VFA's of the samples were identified on the basis of their retention time and their concentration (mmol) and calculated by comparing the retention time as well as the peak area of standards after deducting the corresponding blank values. Methane estimation: Methane produced during fermentation of the feeds was estimated using the equation based on VFA proportions as described by Widiawati and Thalib (2009).

In vivo studies on buffalo calves: In the first experiment, a 146 day feeding trial was conducted on 20 male buffalo calves (average BW 83.6±3.43 kg) divided into 2 equal groups. The calves were offered TMR-1 (concentrate: green fodder: wheat straw ratio of 40:48:12 on DM basis) or TMR-1 supplemented with 0.05% ajwain oil as per ICAR (2013) feeding standard. The animals were weighed at fortnightly interval and the feeding schedule was adjusted accordingly. At the termination of feeding trial a 7-day metabolism trial was conducted.

In the second experiment, a 138-day feeding trial was conducted on 18 male buffalo calves (average BW 161.88±5.69 kg) divided into 2 groups. The animals were offered a TMR-2 (concentrate: wheat straw ratio of 50:50 on DM basis) or TMR-2 supplemented with 0.05% ajwain oil as per ICAR (2013) feeding standard. The ingredient composition of the concentrate mixture in both the feeding trials was similar to the one used in the in vitro studies. The animals were weighed at fortnightly interval and the feeding schedule was adjusted accordingly. At the termination of feeding trial a 7-day metabolism trial was conducted. Blood profile: The blood samples were taken from the jugular vein of all animals at 4 h post parandial on the last day of both the metabolic trials. The blood samples were collected in heparin; and in vials containing sodium fluoride and oxalate for blood glucose. The serum was separated and stored at 0°C till analyzed. Analytical methods: The finely ground samples of feedstuffs (in triplicate), orts and faeces were analyzed for DM, CP and total ash (AOAC 2000), cellulose (Crampton and Maynard 1938) and other cell wall constituents like NDF, ADF, and ADL (Robertson and Van Soest 1981). Hemicellulose was determined by difference in NDF and ADF. The urine samples were analysed for total-N (AOAC, 2000), purine derivatives (PD); allantoin (Young and Conway 1942), and uric acid (Trivedi et al. 1978). Purines absorbed were calculated from the daily urinary PD excreted using the equation of Pimpa and Liang (2002). The microbial nitrogen synthesis was calculated from purines derivatives excretion (Chen and Gomes 1995). Serum samples were analysed for albumin (Doumas et al. 1971), urea (Evans 1968), triglycerides (McGowan et al. 1983) and cholesterol (Allain et al. 1974). The analysis was conducted on Erba (Mannheim) Chem 5X (Transasia). The serum collected with sodium fluoride and oxalate was used for assay of blood glucose (Trinder 1969). The data of in vitro and in vivo studies were analyzed by simple ANOVA (Snedecor and Cochran 1994) by using SPSS (2007) version 16.0 and the means were tested for the significant difference by Tukey’s b-test.

RESULTS AND DISCUSSION

In vitro gas production studies: The results revealed that supplementation of graded levels of ajwain oil to the TMR resulted in linear decrease (P<0.01) in net gas production, digestibility of true OM and NDF; and ME availability and...
methane production (Table 1). The decrease in these parameters could be due to suppressing effect of ajwain oil on the rumen microbes. Hundal et al. (2016) also reported that irrespective of the pure EO supplemented, the NGP, digestibility of NDF and TOM, total and individual VFA and methane production were depressed linearly with the increase in dose of EOs. Similar trend in reduction in methane production with depression in the digestibility of nutrients was observed, when peppermint or clove oil extract were added to the substrate (Patra et al. 2006, Agarwal et al. 2009). It is likely that the use of high doses of plant extracts and/or their secondary metabolites with antimicrobial activity decreased total microbial activity and diet fermentability (Cardozo et al. 2004).

The total volatile fatty acids production and acetate production was improved (P<0.01) when the control diet was supplemented with 0.05% ajwain oil, while the production of other VFAs was comparable in the 2 groups. Suplementing the TMR with ajwain oil beyond 0.05% resulted in significant depression in total, individual VFAs and acetate to propionate ratio (Table 2). Earlier studies revealed that higher doses of cinnamon oil and cinnamaldehyde decreased total VFA and ammonia-N concentrations, although cinnamaldehyde had stronger effects compared with cinnamon oil (Busquet et al. 2005, Patra and Yu 2012). The relative proportion of acetate was not affected by different levels of ajwain oil, except that it was improved (P<0.01) at 0.5% level of supplementation. The relative proportion of propionate and isobutyrate was depressed, while that of butyrate was improved and there was no effect on that of isovalerate and valerate proportion by supplementing the diet with ajwain oil. There was a significant decline in protozoa numbers in all the ajwain oil supplemented groups, confirming the earlier reports (Awadhesh et al. 2011, Hasan et al. 2016). The per cent decline in comparison to control TMR increased with the increase in level of ajwain oil supplementation.

Effect of ajwain oil on the performance of buffalo calves:

The chemical composition of the total mixed ration fed to the buffalo calves in the first experiment was almost comparable with that of TMR fed during second experiment, except that TMR of the first experiment had numerically

Table 1. Effect of supplementing different levels of ajwain oil on the in vitro nutrient digestibility, ME availability and methane production from total mixed ration

Parameter	Control	Ajwain oil (%)	PSE	P value			
	0.05	0.10	0.15	0.20			
NGP	186.89c	173.11d	82.89c	73.11b	34.00a	15.94	0.002
TOMD (%)	61.98 d	48.13c	35.51b	35.71b	33.02a	3.64	0.007
NDFD (%)	36.95c	12.86b	12.38ab	8.81a	7.86c	3.10	0.005
PF	1.91a	2.06b	4.46c	4.92d	10.79c	1.07	0.000
ME (MJ/kg DM)	7.98c	7.54d	4.48c	4.22b	2.93c	1.04	0.003
Methane (mM)	1.93d	2.02c	1.57c	1.51b	1.20a	0.15	0.004

NGP, Net gas production (ml/24h/gDM); NDFD, neutral detergent fiber digestibility; TOMD, true OM digestibility; PF, partitioning factor; ME, metabolizable energy. Figures with different superscripts a,b,c in a row differ significantly; PSE, pooled standard error.

Table 2. Effect of supplementing different levels of ajwain oil on in vitro volatile fatty acid production (mM/day) from total mixed ration.

Parameter	Control	Ajwain oil (%)	PSE	P value			
	0.05	0.10	0.15	0.20			
TVFA	6.27c	6.50d	4.60b	4.67b	3.68a	0.36	0.007
Acetate (A)	4.38c	4.58b	3.28b	3.38b	2.64a	0.24	0.001
Propionate (P)	1.19c	1.19c	0.59b	0.55ab	0.51a	0.11	0.003
Isobutyrate	0.069c	0.071c	0.043b	0.034b	0.020a	0.007	0.006
Butyrate	0.518b	0.540b	0.596c	0.616c	0.428a	0.022	0.001
Isovalerate	0.057c	0.058c	0.044b	0.041b	0.031a	0.003	0.001
Valerate	0.062c	0.064c	0.046b	0.045b	0.034a	0.004	0.003
A:P	3.68a	3.83a	5.54bc	6.16c	5.18b	0.51	0.002

Relative proportion (%)

Parameter	Control	Ajwain oil (%)	PSE	P value			
	0.05	0.10	0.15	0.20			
Acetate	69.79a	70.38ab	71.25ab	72.48b	71.66ab	0.54	0.037
Propionate	18.95c	18.36c	12.88ab	11.77b	13.84b	1.50	0.000
Isobutyrate	1.11c	1.08c	0.94b	0.72ab	0.55a	0.07	0.009
Butyrate	8.26c	8.30c	12.96c	13.19c	11.64c	1.15	0.005
Isovalerate	0.91c	0.90c	0.86	0.88	0.84	0.9	0.506
Valerate	0.98	0.98	1.01	0.96	0.92	-	0.058

TVFA, Total volatile fatty acids. Figures with different superscripts a,b,c in a row differ significantly; PSE, pooled standard error.
higher CP, NDF and hemicelluloses than that of TMR fed during second experiment (Table 3).

In the first growth trial, supplementing the control diet with ajwain oil did not show any significant impact on daily DM intake and digestibility of nutrients (Table 4), confirming the earlier reports that essential oil/blend of essential oils did not affect the digestibility of nutrients (Sallam et al. 2009, Santos et al. 2010). In the second experiment supplementing the control diet with ajwain oil improved the digestibility of all the nutrients significantly, except that of crude protein which was comparable between two groups. The daily DM intake was comparable in both the groups. Similar results on daily DM intake have been reported earlier also, when the diet of lamb or sheep was supplemented with essential oils either individually or in different combinations (Lin et al. 2013, Ma et al. 2015). The digestibility of nutrients clearly indicated that ajwain oil had positive effect in high roughage diet. The daily N–intake, total N–excretion and N–retention was comparable in control group with that of ajwain oil supplemented group in both the experiments.

Supplementing the green fodder based diet (experiment 1) as well as wheat straw based diet (experiment 2) with ajwain oil did not have any adverse effect on the blood profile of buffalo calves, except that cholesterol and calcium levels were improved significantly in the second experiment (Table 5). Plasma concentrations of glucose, cholesterol, triglyceride, urea-N, β-hydroxybutyrate, alanine aminotransferase and aspartate aminotransferase were not changed by supplementing the diet with thyme and cinnamon essential oils in calves (Vakili et al. 2013). The level of all the parameters of blood profile was within the normal physiological range.

The effect of ajwain oil supplementation on the urinary excretion of purine derivatives revealed that during experiment 1 the uric acid excretion in the urine of calves was depressed significantly in ajwain supplemented group, while allantoin excretion was comparable in both the groups (Table 6). But in the second experiment both uric acid and allantoin excretion was depressed significantly in both the groups. However, the total purine derivatives excretion was not affected by ajwain oil supplementation during both the

Parameter	Ash (%)	OM (%)	CP (%)	NDF (%)	ADF (%)	Cellulose (%)	HC (%)
Experiment 1							
Concentrate mixture	8.3	91.7	19.75	41.6	22.9	13.7	18.7
Green fodder	8.08	91.93	10.04	75.9	47.25	37.4	28.65
Wheat straw	7.78	92.23	3.33	82.4	57.9	44.2	24.5
TMR-1	8.13	91.87	13.12	62.96	38.79	28.74	24.17
Experiment 2							
Concentrate mixture	8.7	91.3	19.9	42.5	22.55	11.8	19.95
Wheat straw	7.65	92.35	3.11	80.6	57.2	44.7	23.4
TMR-2	8.18	91.83	11.51	61.55	39.88	28.25	21.68

TMR-1, Concentrate: green fodder: wheat straw (in 40:48:12 ratio on DM basis); TMR-2, Concentrate: wheat straw (in 50:50 ratio on DM basis)

Parameter	Ash (%)	OM (%)	CP (%)	NDF (%)	ADF (%)	Cellulose (%)	HC (%)
Experiment 1							
DMI (kg/d)	4.28	4.28	–	1.00	5.74	5.74	–
Digestibility of nutrients (%)							
DM	57.60	58.31	1.45	0.745	48.14a	60.93b	2.65a
OM	60.34	61.26	1.35	0.667	51.47a	63.74b	2.54a
Cellulose	78.37	79.00	–	0.646	48.29a	60.15b	2.48a
Experiment 2							
DMI (kg/d)	4.28	4.28	–	1.00	5.74	5.74	–
Digestibility of nutrients (%)							
DM	57.60	58.31	1.45	0.745	48.14a	60.93b	2.65a
OM	60.34	61.26	1.35	0.667	51.47a	63.74b	2.54a
Cellulose	78.37	79.00	–	0.646	48.29a	60.15b	2.48a
Nitrogen retention (g/day)							
N–Intake	93.32	93.32	–	1.00	108.09	108.09	1.73a
Faecal–N	22.80	22.77	–	1.5	32.01	31.00	1.39a
Urinary–N	25.43	24.74	–	1.23	41.15	41.06	1.12a
N–Retained	45.09	45.80	–	1.08	34.95	36.03	1.01a

TMR-1, Concentrate: green fodder: wheat straw (in 40:48:12 ratio on DM basis); TMR-2, Concentrate: wheat straw (in 50:50 ratio on DM basis); AO, Ajwain oil; Figures with different superscriptsab,c in a row differ significantly; PSE, pooled standard error.
Table 5. Effect of supplementing ajwain oil to the total mixed ration on the blood profile (mg/dl) of buffalo calves

Parameter	Experiment 1	PSE	P value	Experiment 2	PSE	P value		
	TMR-1	TMR-1 + AO		TMR-2	TMR-2 + AO			
Glucose	73.50	68.50	2.16	0.277	62.25	64.6	2.74	0.244
TP	6.55	6.60	0.10	0.829	5.72	6.45	0.22	0.104
ALB	2.95	2.70	0.09	0.182	2.97	2.72	0.09	0.204
GLB	3.6	3.9	0.13	0.289	3.5	3.72	0.35	0.776
A:G	0.82	0.70	–	0.202	0.80	0.74	–	0.849
Cholesterol	58.25	72.00	3.81	0.021	60.93b	76.09b	3.52	0.014
TG	23.95	24.69	3.14	0.920	27.18	21.26	6.06	0.661
Ca	9.05	8.72	0.15	0.303	6.75a	10.42b	0.87	0.018
P	8.62	8.85	0.24	0.681	8.45	8.25	0.33	0.787
BUN	19.25	20.00	0.75	0.656	19.75	21.75	0.86	0.276

TMR-1, Concentrate: green fodder: wheat straw (in 40:48:12 ratio on DM basis); TMR-2, Concentrate: wheat straw (in 50:50 ratio on DM basis); AO, ajwain oil; TP, total protein; ALB, albumin; GLB, globulin; A:G, albumin: globulin ratio; TG, triglycerides; Ca, calcium; P, phosphorus; BUN, blood urea nitrogen. Figures with different superscripts a,b,c in a row differ significantly; PSE, pooled standard error.

Table 6. Effect of supplementing ajwain oil to the total mixed ration on the urinary excretion of purine derivatives in buffalo calves

Parameters	Experiment 1	PSE	P value	Experiment 2	PSE	P value		
	TMR-1	TMR-1 + AO		TMR-2	TMR-2 + AO			
UA (mM/d)	1.00b	0.49a	–	0.021	0.55b	0.14a	–	0.025
ALL (mM/d)	19.85	18.88	1.70	0.798	37.57b	31.90a	5.22	0.626
PD (mM/d)	20.86	19.37	1.70	0.699	38.81	32.20	5.27	0.604
UA (%)	5.11b	2.56a	0.95	0.048	1.56b	0.46a	0.78	0.039
ALL (%)	94.89b	97.44b	0.95	0.048	98.44b	99.54b	0.78	0.039
PA (mM/d)	86.49	75.59	14.02	0.728	212.87	162.49	43.80	0.605
MNS (g/d)	62.88	54.96	10.20	0.728	154.77	118.13	31.84	0.605

TMR-1, Concentrate: green fodder: wheat straw (in 40:48:12 ratio on DM basis); TMR-2, Concentrate: wheat straw (in 50:50 ratio on DM basis); AO, ajwain oil; UA, uric acid; All, allantoin; PD, purine derivatives; PA, purines absorbed; MNS, microbial nitrogen synthesized. Figures with different superscripts a,b,c in a row differ significantly; PSE, pooled standard error.

Table 7. Effect of supplementing ajwain oil to the total mixed ration on the performance of buffalo calves

Parameters	Experiment 1	PSE	P value	Experiment 2	PSE	P value		
	TMR-1	TMR-1 + AO		TMR-2	TMR-2 + AO			
Initial BW (kg)	83.11	84.11	3.43	0.889	162.25	161.51	5.69	0.950
Final BW (kg)	155.67	157.22	5.50	0.892	242.85	246.55	7.01	0.801
Gain in BW (kg)	72.56	73.11	2.46	0.914	80.59	85.04	2.05	0.292
ADG (g)	496.96	500.76	16.84	0.914	584.0	616.21	14.87	0.292

TMR-1, Concentrate: green fodder: wheat straw (in 40:48:12 ratio on DM basis); TMR-2, Concentrate: wheat straw (in 50:50 ratio on DM basis); AO, ajwain oil; BW, body weight; ADG, average daily gain; PSE, pooled standard error.

The urinary acid excretion expressed as percent of total purines excretion was higher in unsupplemented control diet as compared to that observed in ajwain oil supplemented group. Reverse trend (P<0.01) was observed in allantoin expressed as percent of total purines excreted in both the experiments. The purines absorbed and microbial biomass synthesized was depressed slightly in ajwain supplemented group as compared to those fed unsupplemented control diet in both the experiments. But the differences were statistically nonsignificant.

The average daily gain in weight was numerically higher in the ajwain oil supplemented group as compared to control diet in both the experiments (Table 7). The effect of ajwain oil on ADG was more pronounced in the wheat straw based diet (experiment 2) than that of green fodder based diet (experiment 1). However, the differences were statistically nonsignificant in both the experiments. It was concluded that supplementing ajwain oil to the TMR suppressed the in vitro methane production; improved the digestibility of nutrients in wheat straw based TMR supplemented with 0.05% ajwain oil, but did not show any significant beneficial effect on the performance of buffalo calves.
REFERENCES

Agarwal N, Shekhar C, Kumar R, Chaudhary L C and Kamra D N. 2009. Effect of peppermint oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology 148: 321–27.

Allain C C, Poon L S, Chan C S, Richardson W and Fu P C. 1974. Enzymatic determination of total serum cholesterol. Clinical Chemistry 20: 470–75.

AOAC. 2000. Official Methods of Analysis. 7th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA.

Awadhesh K, Mishra R K, Srivastava S, Tiwari A K, Pandey A and Shukla A C. 2011. Role of phylogenetic analysis for anti bacterial activity of essential oil of Trachyspermum ammi L. against water borne pathogens. Advances in Environmental Research 5: 1271–78.

Busquet M, Calsamiglia S, Ferret A, Cordozo P W and Kamel C. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science 88: 4393–04.

Cordozo P W, Calsamiglia S, Ferret A and Kamel C. 2004. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science 82: 3230–36.

Chahal K K, Dhaival K, Kumar A, Kataria D and Singla N. 2017. Chemical composition of Trachyspermum ammi L. and its biological properties: A review. Journal of Pharmacognosy and Phytochemistry 6: 131–40.

Chatterjee S, Goswami N and Kothari N. 2013. Evaluation of antioxidant activity of essential oil from Ajwain (Trachyspermum ammi) seeds. International Journal of Green Pharmacy 7: 140–44.

Chen X B and Gomes M J. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives– An Overview of the Technical details. Occasional Publication. Rowette Research Institute, Aberdeen. pp. 1–21.

Cotyn B G and Bouque C V. 1968. Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. Journal of Agricultural and Food Chemistry 16: 105 07.

Crampton E W and Maynard L A. 1938. The release of cellulose and lignin content to the nutritive value of animal feeds. Journal of Nutrition 15: 383–95.

Doumas B T, Watson W A and Briggs H G. 1971. Albumin standards and the measurements of serum albumin with bromocresol green. Clinical Chemistry Acta 31: 87–96.

Erwin E S, Marco G J and Emery E M. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44: 1768–71.

Evans R T. 1968. Technical methods–Manual and automated methods for measuring urea based on a modification of its reaction with diacetyl monoxime and thiosemicarbazide. Journal of Clinical Pathology 21: 527–29.

Gilani A H, Jabeen Q, Ghayur M N, Janbaz K H and Akhtar M S. 2005. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum carvi seed extract. Journal of Ethnopharmacology 98: 127–35.

Hassan W, Gul S, Reham S, Norcen H and Shah Z. 2016. Chemical composition, essential oil characterization and antimicrobial activity of Carum carvi. Vitamin Mineral 5: 139.

Hundal J S, Wadhwa M and Bakshi M P S. 2016. Effect of supplementing essential oils on the in vitro methane production and digestibility of wheat straw. Journal of Animal Nutrition USA 1: 14.

ICAR. 2013. Nutrient Requirements of Cattle and Buffalo. Indian Council of Agricultural Research, New Delhi.

Kamal J, Nisha D, Thakur N, Tomar S, Shalta L and Thakur R. 2012. Trachyspermum ammi (Ajwain): A comprehensive review. International Research Journal of Pharmacy 3: 133–38.

Lin B, Lu Y, Salem A Z M, Wang J H, Liang Q and Liu J X. 2013. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Animal Feed Science and Technology 184: 24–32.

Ma T, Chen D D, Tu Y, Zhang N F, Si B W, Deng K D and Diao Q Y. 2015. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. Journal of Animal Physiology and Animal Nutrition 99: 676–83.

McCowan M W, Artiss J D, Strandbergh D R and Zak B. 1983. A peroxidase–coupled method for the colorimetric determination of serum triglycerides. Clinical Chemistry 29: 538–42.

Menke K H and Steingass H. 1988. Estimation of the energetic feed value obtained by chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 755.

Menke K H, Rabl L, Salewski A, Steingass H, Fritz D and Schneider W. 1979. The estimation of the digestibility and ME content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science Cambridge 93: 217–22.

Minija J and Thoppil J E. 2002. Essential oil composition of Trachyspermum ammi L. sprague from South India. Indian Journal of Pharmaceutical Sciences 64: 250–51.

Murphy P S, Borse B B, Khanum H and Sinivas P. 2009. Inhibitory effects of Ajwain (Trachyspermum ammi) ethanolic extract on A. orchaceus growth and ochratoxin production. Turkish Journal of Biology 33: 211–17.

Nagalakshmi G, Shankar Acharya N B and Puranaik J. 2000. Studies on chemical and technological aspects of ajwain (Trachyspermum ammi) syn (Carum carvi Hiren) seeds. Journal of Food Science and Technology 37: 277–81.

Patra A K and Yu Z. 2012. Effects of essential oils on methane production and fermentation by and abundance and diversity of rumen microbial populations. Applied and Environmental Microbiology 78: 4270–80.

Patra A K, Kamra D N and Agarwal N. 2006. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. International Congress Series 1293: 176–79.

Pimpal O and Liang J B. 2002. Estimation of microbial protein supply of lactating dairy cows under small–holder farms in north–east Thailand using urinary purine derivatives technique. Paper presented at the joint IAEA/FAO 4th RCM, 6–10 May.

Pruthi J S. 1992. Spices and Condiments. National Book Trust Publisher, New Delhi (India), 1–195.

Raghavan S. 2007. Handbook of Spices, Seasoning and Flavourings. 107–119, 2nd edn. CRC Press, Taylor & Francis group, Boca Raton, FL, New York.

Robertson J B and Van Soest P J. 1981. The detergent system of dietary fibre in food. (Eds) James, W.P.T. and Theander, O. Marcel Dekker, Inc. New York. pp 123–58.

Sahar A G. 2010. Lithotripsy of different urinary tract stones by
using seeds of *Carum copticum*. *Iraqi Journal of Pharmaceutical Sciences* 19: 38–41.
Sallam S M A, Bueno I C S, Brigide P, Godoy P B, Vitti D M S S and Abdalla A L. 2009. Efficacy of eucalyptus oil on *in vitro* rumen fermentation and methane production. *Options Méditerranéennes* 85: 267–72.
Santos M B, Robinson P H, Williams P and Losa R. 2010. Effect of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. *Animal Feed Science and Technology* 157: 64–71.
Sarfraz A, Bhattacharyya S, Sengupta A, Singh S, Kumar D and Anjum N. 2016. Study of inhibitory effect of extract of ajwain (*trachyspermum ammi*) on *candida albicans*. *International Journal of Contemporary Medical Research* 3: 2851–52.
Singh G, Maurya S, Catalan C and De Lampasona M P. 2004. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. *Journal of Agriculture and Food Chemistry* 52: 3292–96.
Snedecor G W and Cochran W G. 1994. *Statistical Methods*. 7th Edn. Oxford and IBH Publications, New Delhi.
SPSS. 2007. Statistical Packages for Social Sciences. Version 16, SPSS Inc., Illinois, USA.
Trinder P. 1969. Determination of glucose in blood using glucoseoxidase with an alternate oxygen acceptor. *Annals of Clinical Biochemistry* 6: 24–27.
Trivedi R C, Rebar L and Berka E. 1978. New enzymatic method for serum uric acid at 500nm. *Clinical Chemistry* 24: 1908–11.
Vakili R, Khorrami B, Danesh Mesgaran M and Parand E. 2013. The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. *Asian Australasian Journal of Animal Science* 7: 935–994.
Widiawati Y and Thalib A. 2009. Comparison of fermentation kinetics (*in vitro*) of grass and shrub legume leaves: The pattern of VFA concentration, estimated CH₄ and microbial biomass production. *Indonesian Journal of Agriculture* 2: 21–27.
Young E G and Conway C F. 1942. On the estimation of allantoin by Rimini–Schryver reaction. *Journal of Biological Chemistry* 142: 839–52.