Further Remarks On Somewhere Dense Sets

*Khadiga Ali Arwini¹, Huda Almqtouf Mira²

¹Mathematics Department, Faculty of Science, Tripoli University, Tripoli-Libya
²Mathematics Department, Faculty of Education, Zawia University, Zawia-Libya

Keywords: Topological space and generalizations, somewhere dense sets, subspaces, covers, cardinality, equivalent relation

ABSTRACT

In this article, we prove that a topological space X is strongly hyperconnected if and only if any somewhere dense set in X is open, in addition we investigate some conditions that make sets somewhere dense in subspaces, finally, we show that any topological space defined on infinite set X has SD-cover with no proper subcover.

Introduction:

Using the closure and the interior operators in topological space, different types of generalized open sets have been defined as; α-set, semi-open set, preopen set, β-open set, b-open set and somewhere dense [1,2,3,4,5,6]. The concept of somewhere dense set was due to Pugh [6], where a set A is somewhere dense if the interior of its closure is non-empty, clearly somewhere dense set is a generalization of both open set and dense set. In 2017, Alshami [7] provided the properties of somewhere dense sets, and he introduced the axiom of SD_1, then with Noiri they defined the notion of SD-cover and use it to introduced compactness and Lindelöfness via somewhere dense sets, see [8,9].

A space is hyperconnected [10], if every two non-empty open sets intersect; equivalently if any non-empty open set is dense, while a space is submaximal [11] if any dense set is open, and in 1994 Rose and Mahmoud [12] showed that a space is submaximal if and only if every preopen set is open, for more details see [13,14,15,16,17,18,19,20,21]. Recently, Alshami [7,8] defined strongly hyperconnected space as a hyperconnected submaximal space, and he charactrized this space using the notion of somewhere dense sets [8].

The main goal of this article, is to continue studying further properties on somewhere dense sets, and imporve some of the results given by Alshami and Noiri [7,8] regarding strongly hyperconnected space. Here we give solutions to the following questions, equiped with some examples:

Question 1. Find the necessary and sufficient condition under which every somewhere dense set is open?.

Question 2. If (X,τ) is a topological space and $Y \subseteq X$: find conditions under which set in the subspace Y is somewhere dense in X?.

Question 3. If (X,τ) is a topological space where X is infinite set: find a cover for X by somewhere dense sets (SD-cover) which has no proper subcover.

The article is divided into four sections: somewhere dense sets in strongly hyperconnected space, somewhere dense sets in subspaces, SD-covers and conclusion.

*Corresponding author:
E-mail addresses: Kalrawini@yahoo.com , (H. Mira) h.almqtouf@zu.edu.ly

Article History : Received 20 November 2021 - Received in revised form 15 February 2022 - Accepted 04 Mach 2022
represents topological space and for a subset \(A \) of a space \(X, \overline{A} \) and \(A^{o} \) denote the closure and the interior of \(A \); respectively. Moreover, \(X/A \) (or \(A' \)), \(A/B \) and \(P(X) \) denote the complement of the set \(A \) in \(X \), the difference of \(A \) and \(B \), and the power set of \(X \); respectively, while \(\sim \) denotes the equivalence relation, and \(\alpha, \chi \) are the cardinality of the natural numbers \(\mathbb{N} \) and the real numbers \(\mathbb{R} \); respectively.

2. Somewhere Dense Sets In Strongly Hyperconnected Spaces

This section, consists basic definitions, theorems and some properties regarding somewhere dense sets needed in this work, and then we give a complete answer for question 1, by studying the statement when any somewhere dense set is open.

Definition 2.1. [7] A subset \(B \) of a topological space \((X, \tau)\) is called somewhere dense (briefly \(s\)-dense) if the interior of its closure is non-empty, i.e. \(\overline{B} \neq \emptyset \). The complement of \(s\)-dense set is called closed somewhere dense (briefly \(cs\)-dense), and the collection of all \(s\)-dense sets in \(X \) is denoted by \(S(\tau) \).

Corollary 2.1. [7] In a topological space \((X, \tau)\), we have:

\[i. \text{ any open set is } s\text{-dense.} \]
\[ii. \text{ any dense set is } s\text{-dense} \]
\[iii. \text{ any set in } X \text{ that contains a } s\text{-dense set is } s\text{-dense.} \]

Theorem 2.1. [7] Every subset of a space \((X, \tau)\) is \(s\)-dense or \(cs\)-dense.

Theorem 2.2. For a non-discrete topological space \((X, \tau)\), the following are equivalent:

1. \(S(\tau) = \{ \emptyset \} \).
2. \(D(\tau) = \{ \emptyset \} \), where \(D(\tau) \) denotes the collection of all dense sets in \((X, \tau)\).

Proof.

1) \(\implies \) 2) Let \((X, \tau)\) be a non-discrete space that satisfies \(S(\tau) = \{ \emptyset \} \), and suppose that \(D(\tau) = \{ \emptyset \} \). From corollary 2.1.(i) any dense set is \(s\)-dense, then from assumption any dense set is open so \(D(\tau) = \tau \). Suppose that \(A \) is a non-empty open set but not dense in \(X \), hence \(\overline{A} \neq X \), therefore \(\overline{A} \neq \emptyset \). Now if \(x \in X \), then \(x \notin \overline{A} \) or \(x \notin \overline{A} \). In the case when \(x \in \overline{A} \), we have \(A \) is open so it is \(s\)-dense, and since \(\overline{A} \subseteq A \) from corollary 2.1.(iii) we obtain \(\overline{A} \) is also \(s\)-dense, so it is open. Since \(\overline{A} \) is open, so it is \(s\)-dense, then \(\overline{A} \cup \{ x \} \) is also \(s\)-dense, so it is open, and the intersection of two open sets is open, hence \(\{ x \} = \overline{A} \cap (\overline{A} \cup \{ x \}) \) is open. In the second case when \(x \notin \overline{A} \), and by similar reasons the sets \(\overline{A} \) and \(\overline{A} \cup \{ x \} \) are both open, then their intersection is also open, hence \(\{ x \} = \overline{A} \cap (\overline{A} \cup \{ x \}) \) is open. Thus \(\{ x \} \) is open for any \(x \in X \), hence \(\tau \) is the discrete topology on \(X \), which contradicts the assumption. Thus complete the prove, and \(D(\tau) = \{ \emptyset \} \).

2) \(\implies \) 1) Let \((X, \tau)\) be a non-discrete space that satisfies \(D(\tau) = \{ \emptyset \} \), and suppose \(A \) is a \(s\)-dense in \(X \), then \(\overline{A} \) is a non-empty open set in \(X \), therefore \(\overline{A} \) is dense in \(X \), but \(\overline{A} \) is open and \(\overline{A} \cap \overline{A} = \emptyset \), since \(\overline{A} \) is dense we have \(\overline{A} = \emptyset \), so \(\overline{A} \) is dense, as it is open, hence it is \(s\)-dense. Since, any open set is \(s\)-dense, we obtain \(S(\tau) = \{ \emptyset \} \).

Definition 2.2. [10,11] A topological space \((X, \tau)\) is called:

1) Submaximal if any dense set in \(X \) is open.
2) Hyperconnected if any non-empty open set in \(X \) is dense.

Corollary 2.2. If \((X, \tau)\) is submaximal and hyperconnected, then \(D(\tau) = \{ \emptyset \} \).

Definition 2.3. [7] A topological space \((X, \tau)\) is called strongly hyperconnected if non-empty open sets are coincide with dense sets, equivalently if \(D(\tau) = \{ \emptyset \} \).

Corollary 2.3. For a space \((X, \tau)\) the following are equivalent:

1) \(X \) is strongly hyperconnected space.
2) \(X \) is submaximal and hyperconnected space.
3) Any \(s\)-dense set in \(X \) is open.
4) \(D(\tau) = \{ \emptyset \} \).
5) \(S(\tau) = \{ \emptyset \} \).

Examples 2.1.

\[i. \text{ If } (X, \tau) \text{ is a trivial topological space where } X \text{ has more than one element, then } X \text{ is not strongly hyperconnected since } S(\tau) = P(X) \text{ and } D(\tau) = \{ \emptyset \}. \]

\[ii. \text{ If } (X, \tau) \text{ is a topological space where } \tau = \{ \emptyset \} \text{ and } X \text{ is a strongly hyperconnected, then } X \text{ is a strongly hyperconnected.} \]

\[iii. \text{ The topological space } (X, \tau) \text{ where } \tau = \{ \emptyset \} \text{ is submaximal but not strongly hyperconnected space, since } S(\tau) = P(\emptyset) \text{ and } D(\tau) = \{ \emptyset \}. \]

3. Somewhere Dense Sets In Subspaces

Here we answer question 2 by investigating some conditions in topological space \(X \) that make a set in a subspace somewhere dense in \(X \).

Corollary 3.1. [11] Let \((X, \tau)\) be a topological space, \(Y \) be a subspace of \(X \) and \(A \subseteq Y \), then:

1) \(\overline{A} \subseteq \overline{A} \cap Y \) (where \(\overline{A} \) is the closure of \(A \) with respect to the subspace \(Y \)).
2) \(A^{o} \subseteq A^{o} \cap Y \) and \(A^{o} = A^{o} \cap Y \) (where \(A^{o} \) is the interior of \(A \) with respect to the subspace \(Y \)).

Lemma 3.1. Let \((X, \tau)\) be a topological space, \(Y \) be a subspace of \(X \), then:

1) If \(A \subseteq Y \) and \(Y \) is closed, then \(\overline{A} \cap Y = \overline{A} \cap Y \).
2) If \(Y \) is open and \(A \subseteq Y \), then \(A^{o} \cap Y = A^{o} \cap Y \).
3) If \(A \subseteq Y \) and \(Y \) is clopen, then \(\overline{A} \cap Y = \overline{A} \cap Y \) and \(A^{o} = A^{o} \cap Y \).

Proof.

1) Since \(A \subseteq Y \) and \(Y \) is closed, then \(\overline{A} \cap Y = \overline{A} \cap Y \). Since \(A \subseteq Y \) and \(Y \) is closed, then \(A = A^{o} \cap Y \).
2) Since \(A \subseteq Y \) and \(Y \) is open, then \(A^{o} \subseteq A^{o} \cap Y \) and \(A^{o} = A^{o} \cap Y \).
3) Since \(A \subseteq Y \) and \(Y \) is clopen, then \(\overline{A} \cap Y = \overline{A} \cap Y \) and \(A^{o} = A^{o} \cap Y \).

Example 3.1. In the space \((\mathbb{R}, \tau) \) where \(\tau = \{ \emptyset \} \), we have \(S(\tau) = \{ \emptyset \} \) and \(D(\tau) = \{ \emptyset \} \).

Remark 3.2. If \(Y \) is a closed subset of \(X \) and \(A \subseteq Y \), then \(A \subseteq Y \). Note that, any \(s\)-closed set is closed.

Theorem 3.2. Let \((X, \tau)\) be a topological space, \(Y \) be a \(r\)-closed subspace of \(X \), then \(A \subseteq Y \) if \(A \subseteq Y \).

Proof. Suppose \(Y \) is a subspace of \(X \), then \(A \subseteq Y \). Suppose \(Y \) is a \(r\)-closed subspace of \(X \), then \(A \subseteq Y \). Since \(Y \) is a \(r\)-closed subspace of \(X \), then \(A \subseteq Y \). Suppose \(Y \) is a \(r\)-closed subspace of \(X \), then \(A \subseteq Y \). Hence, \(A \subseteq Y \).
In the present section, we answer question 3 by proving that any somewhere dense subsets is called SD dense subsets is called SD. However, in infinite sets, and we have obtained few results; as follows:

Theorem 4.1. If \(A \) is an SD cover, but the converse is not true.

Proof: By the mathematical induction, we have:

1. If \(\|A\|=\aleph_0 \), then \(Z \sim N \sim E \sim E^c \), where \(N \) and \(E \) are the natural numbers and the even numbers, respectively. Hence, there exists a bijection function \(F: \mathbb{N} \to \mathbb{N} \), so that \(|A| = |\mathbb{N}| = \aleph_0 \), and \(A = \mathbb{N} \) is a subset of \(Z \).

2. If \(\|A\|=\aleph_1 \), then \(Z \sim R \sim R^* \sim (R^*)^c \); where \(R \) and \(R^* \) are the real numbers and the positive real numbers, respectively. Hence, there exists a bijection function \(F: R \to Z \).

3. Suppose \(|A|=\aleph_2 \) and \(A \) is a subset of \(Z \) such that \(|A| = |\mathbb{N}| = \aleph_0 \). Let \(Y \) be a set with cardinal number \(\aleph_0+1 \), then \(P(Z) \sim Y \), and if \(P(Z) \sim P(A) \sim P(A^c) \), then \(F \) is a bijection function \(F: \mathbb{N} \to \mathbb{N} \). Then \(B = P(A) \sim Y \). Now since \(P(A^c) \subseteq P(A^c) \), and \(P(A^c) \subseteq B \), then \(F(P(A^c)) \subseteq B \). Hence, \(|A|=\aleph_2 \) is the SD cover for \(X \) with no proper subcover. Similarly, in the case when \(A^c \) is s-dense, we have \(|A \cup X| \) is SD cover for \(X \) with no proper subcover.

In the case when the subspace \(Y \) is open (closed) in \(X \), if \(A \) is somewhere dense in \(Y \), then \(A \) is somewhere dense in \(X \), while in the case when the subspace \(Y \) is regular closed in \(X \), \(A \) is somewhere dense in \(Y \) if and only if \(A \) is somewhere dense in \(X \).

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, Beta-Open Sets and Beta-Continuous Mappings. Bull. Fac. Sci. Assiut Univ., 12 (1983) 79-90.

[2] H. H. Corson and E. Michael, Metrizability of Certain Countable Unions. Illinois J. Math., 8 (2) (1964) 351-360.

[3] D. Andrijevic, On b-Open Sets. Matematicki Vesnik, 48 (1996) 59-64.

[4] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On Precontinuous and Weak Precontinuous Mappings. Proc. Math. Phys. Soc. Egypt, 53 (1982) 47-53.

[5] O. Njastad, On Some Classes of Nearly Open Sets. Pacific Journal of Mathematics, 15 (1965) 961-970.

[6] C. C. Pugh, Real Mathematical Analysis. Springer Science and Business Media, 2003.

[7] M. T. Al-shami, Somewhere Dense Sets and ST\(_1\)-Spaces. Punjab University, Journal of Mathematics, 49 (2) (2017) 101-111.

[8] M. T. Al-shami and T. Noiri, Compactness and Lindelöfness Using Somewhere Dense and cs-Dense Sets. Accepted in Novi Sad J. Math. (2021).

[9] M. T. Al-shami and T. Noiri, More Notions and Mappings via Somewhere Dense Sets. Afrika Matematika, 30 (2019) 1011-1024.

[10] T. Noiri, A Note on Hyperconnected Sets. Mat. Vesnik, 3 (16) (1979) 53-60.

[11] N. Bourbaki, General Topology. Addison-Wesley, Mass (1966).

[12] D. A. Rose and R. A. Mahmoud, On Spaces via Dense Sets and SMPC Functions. Kyungpook mathematical journal, 34 (1) (1994) 109-116.

[13] P. M. Mathew, On Hyperconnected Spaces. Indian J. Pure and Applied Math, 19 (12) (1998) 1180-1184.

[14] Vinod Kumar and Devender Kumar Kamboj, On Hyperconnected Topological Spaces. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), Toml LXII, 2 (1) (2016) 275-283.

[15] T. Noiri, Properties of Hyperconnected Spaces. Acta Mathematica Hungarica, 66 (1995) 147-154.

[16] N. Ajmal and J. K. Kohli, Properties of Hyperconnected Spaces, Their Mappings into Hausdorff Spaces and embeddings into Hyperconnected Spaces. Acta Math. Hungar, 60 (1992) 41-49.

[17] T. Noiri, Functions Which Preserve Hyperconnected Spaces. Rev. Roumaine Math. Pures Appl., 25 (1980)1091-1094.

[18] T. Noiri, Hyperconnected and Preopen Sets. Rev. Roumaine math. pures Appl., 29 (1984) 329-334.

[19] J. Dontchev, On Submaximal Spaces. Tamkang Journal of mathematics, 26 (3) (1995) 243-250.

[20] A. V. Arhangel skil and P. J. Collins, On Submaximal Spaces. Topology and its Applications, 64 (1995) 219-241.

[21] Jiling Cao, Maximilian Ganster and Ivan Reilly, Submaximality, Extremal Disconnectedness and Generalized closed sets. Hston Journal of Mathematics, 24 (4) (1998) 618-688.

[22] M. H. Stone, Applications Of The Theory Of Boolean Rings To General Topology. Trans. Am. Math. Soc., 41(1937) 375-481.