ON CERTAIN COMBINATORIAL EXPANSIONS OF THE LEGENDRE-STIRLING NUMBERS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

Abstract. The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. In this paper, we provide a combinatorial code for Legendre-Stirling set partitions. As an application, we obtain combinatorial expansions of the Legendre-Stirling numbers of both kinds. Moreover, we present grammatical descriptions of the Jacobi-Stirling numbers of both kinds.

Keywords: Legendre-Stirling numbers; Jacobi-Stirling numbers; Context-free grammars

1. Introduction

Let \(\ell[y](t) = -(1-t^2)y''(t) + 2ty'(t) \) be the Legendre differential operator. Then the Legendre polynomial \(y(t) = P_n(t) \) is an eigenvector for the differential operator \(\ell \) corresponding to \(n(n+1) \), i.e., \(\ell[y](t) = n(n+1)y(t) \). Following Everitt et al. [7], for \(n \in \mathbb{N} \), the Legendre-Stirling numbers \(\text{LS}(n, k) \) of the second kind appeared originally as the coefficients in the expansion of the \(n \)-th composite power of \(\ell \), i.e.,

\[
\ell^n[y](t) = \sum_{k=0}^{n} (-1)^k \text{LS}(n, k)((1-t^2)^k y^{(k)}(t))^{(k)}.
\]

For each \(k \in \mathbb{N} \), Everitt et al. [7, Theorem 4.1] obtained that

\[
\prod_{r=1}^{k} \frac{1}{1-r(r+1)x} = \sum_{n=0}^{\infty} \text{LS}(n, k)x^{n-k}, \quad \left| \frac{x}{k(k+1)} \right| \leq \frac{1}{k(k+1)}, \tag{1}
\]

\[
\text{LS}(n, k) = \sum_{r=0}^{k} (-1)^{r+k} \frac{(2r+1)(r^2+r)^n}{(r+k+1)!(k-r)!}.
\]

According to [2, Theorem 5.4], the numbers \(\text{LS}(n, k) \) have the following horizontal generating function

\[
x^n = \sum_{k=0}^{n} \text{LS}(n, k) \prod_{i=0}^{k-1} (x - i(1+i)). \tag{2}
\]

It follows from (2) that the numbers \(\text{LS}(n, k) \) satisfy the recurrence relation

\[
\text{LS}(n, k) = \text{LS}(n-1, k-1) + k(k+1)\text{LS}(n-1, k),
\]

with the initial conditions \(\text{LS}(n, 0) = \delta_{n,0} \) and \(\text{LS}(0, k) = \delta_{0,k} \), where \(\delta_{i,j} \) is the Kronecker’s symbol.
By using (1), Andrews et al. [2, Theorem 5.2] derived that the numbers \(\text{LS}(n, k) \) satisfy the vertical recurrence relation

\[
\text{LS}(n, j) = \sum_{k=j}^{n} \text{LS}(k-1, j-1)(j(j+1))^{n-k}.
\]

A particular value of \(\text{LS}(n, k) \) is provided at the end of [3]:

\[
\text{LS}(n+1, n) = 2 \binom{n+2}{3}.
\] (3)

In [6, Eq. (19)], Egge found that

\[
\text{LS}(n+2, n) = 40 \binom{n+2}{6} + 72 \binom{n+2}{5} + 36 \binom{n+2}{4} + 4 \binom{n+2}{3}.
\]

Using the triangular recurrence relation \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \), we get

\[
\text{LS}(n+2, n) = 40 \binom{n+3}{6} + 32 \binom{n+3}{5} + 4 \binom{n+3}{4}.
\] (4)

Egge [6, Theorem 3.1] showed that for \(k \geq 0 \), the quantity \(\text{LS}(n+k, n) \) is a polynomial of degree \(3k \) in \(n \) with leading coefficient \(\frac{1}{3^k k!} \).

This paper is a continuation of [6], and it is motivated by the following problem.

Problem 1. Let \(k \) be a given nonnegative integer. Could the numbers \(\text{LS}(n+k, n) \) be expanded in the binomial basis?

The paper is organized as follows. In Section 2, by introducing a combinatorial code for Legendre-Stirling set partitions, we give a solution of Problem 1. Moreover, we get a combinatorial expansion of the Legendre-Stirling numbers of the first kind. In Section 3, we present grammatical interpretations of Jacobi-Stirling numbers of both kinds.

2. **Legendre-Stirling set partitions**

The combinatorial interpretation of the Legendre-Stirling numbers \(\text{LS}(n, k) \) of the second kind was first given by Andrews and Littlejohn [3]. For \(n \geq 1 \), let \(M_n \) denote the multiset \(\{1, \overline{1}, 2, \overline{2}, \ldots, n, \overline{n}\} \), in which we have one unbarred copy and one barred copy of each integer \(i \), where \(1 \leq i \leq n \). Throughout this paper, we always assume that the elements of \(M_n \) are ordered by

\[
\overline{1} = 1 < \overline{2} = 2 < \cdots < \overline{n} = n.
\]

A **Legendre-Stirling set partition** of \(M_n \) is a set partition of \(M_n \) with \(k+1 \) blocks \(B_0, B_1, \ldots, B_k \) and with the following rules:

- (\(r_1 \)) The ‘zero box’ \(B_0 \) is the only box that may be empty and it may not contain both copies of any number;
- (\(r_2 \)) The ‘nonzero boxes’ \(B_1, B_2, \ldots, B_k \) are indistinguishable and each is non-empty. For any \(i \in [k] \), the box \(B_i \) contains both copies of its smallest element and does not contain both copies of any other number.
Let $\mathcal{LS}(n, k)$ denote the set of Legendre-Stirling set partitions of M_n with one zero box and k nonzero boxes. The standard form of an element of $\mathcal{LS}(n, k)$ is written as

$$\sigma = B_1 B_2 \cdots B_k B_0,$$

where B_0 is the zero box and the minima of B_i is less than that of B_j when $1 \leq i < j \leq k$. Clearly, the minima of B_1 are 1 and \mathbf{T}. Throughout this paper we always write $\sigma \in \mathcal{LS}(n, k)$ in the standard form. As usual, we let angle bracket symbol $< i, j, \ldots >$ and curly bracket symbol $\{ k, \mathbf{F}, \ldots \}$ denote the zero box and nonzero box, respectively. In particular, let $<>$ denote the empty zero box. For example, $\{1, \mathbf{T}, 3\} \{2, \mathbf{F}\} < \mathbf{F} > \in \mathcal{LS}(3, 2)$. A classical result of Andrews and Littlejohn \[Theorem 2\] says that

$$\mathcal{LS}(n, k) = \# \mathcal{LS}(n, k).$$

We now provide a combinatorial code for Legendre-Stirling partitions (CLS-sequence for short).

Definition 2. We call $Y_n = (y_1, y_2, \ldots, y_n)$ a CLS-sequence of length n if $y_1 = X$ and

$$y_{k+1} \in \{ X, A_{i, j}, B_s, \overline{B}_s, 1 \leq i, j, s \leq n_x(Y_k), i \neq j \} \quad \text{for} \ k = 1, 2, \ldots, n - 1,$$

where $n_x(Y_k)$ is the number of the symbol X in $Y_k = (y_1, y_2, \ldots, y_k)$.

For example, $(X, X, A_{1, 2})$ is a CLS-sequence, while $(X, X, A_{1, 2}, B_3)$ is not since $y_4 = B_3$ and $3 > n_x(Y_3) = 2$. Let \mathcal{CLS}_n denote the set of CLS-sequences of length n.

The following lemma is a fundamental result.

Lemma 3. For $n \geq 1$, we have $\mathcal{LS}(n, k) = \# \{ Y_n \in \mathcal{CLS}_n \mid n_x(Y_n) = k \}$.

Proof. Let

$$\mathcal{CLS}(n, k) = \{ Y_n \in \mathcal{CLS}_n \mid n_x(Y_n) = k \}.$$

Now we start to construct a bijection, denoted by Φ, between $\mathcal{LS}(n, k)$ and $\mathcal{CLS}(n, k)$. When $n = 1$, we have $y_1 = X$. Set $\Phi(Y_1) = \{1, \mathbf{T}\} < >$. This gives a bijection from $\mathcal{CLS}(1, 1)$ to $\mathcal{LS}(1, 1)$. Let $n = m$. Suppose Φ is a bijection from $\mathcal{CLS}(n, k)$ to $\mathcal{CLS}(n, k)$ for all k. Consider the case $n = m + 1$. Let

$$Y_{m+1} = (y_1, y_2, \ldots, y_m, y_{m+1}) \in \mathcal{CLS}_{m+1}.$$

Then $Y_m = (y_1, y_2, \ldots, y_m) \in \mathcal{CLS}(m, k)$ for some k. Assume $\Phi(Y_m) \in \mathcal{LS}(m, k)$. Consider the following three cases:

(i) If $y_{m+1} = X$, then let $\Phi(Y_{m+1})$ be obtained from $\Phi(Y_m)$ by putting the box $\{m + 1, m + \mathbf{T}\}$ just before the zero box. In this case, $\Phi(Y_{m+1}) \in \mathcal{LS}(m + 1, k + 1)$.

(ii) If $y_{m+1} = A_{i, j}$, then let $\Phi(Y_{m+1})$ be obtained from $\Phi(Y_m)$ by inserting the entry $m + 1$ to the ith nonzero box and inserting the entry $m + \mathbf{T}$ to the jth nonzero box. In this case, $\Phi(Y_{m+1}) \in \mathcal{LS}(m + 1, k)$.

(iii) If $y_{m+1} = B_s$ (resp. $y_{m+1} = \overline{B}_s$), then let $\Phi(Y_{m+1})$ be obtained from $\Phi(Y_m)$ by inserting the entry $m + 1$ (resp. $m + \mathbf{T}$) to the sth nonzero box and inserting the entry $m + \mathbf{T}$ (resp. $m + 1$) to the zero box. In this case, $\Phi(Y_{m+1}) \in \mathcal{LS}(m + 1, k)$.

After the above step, it is clear that the obtained \(\Phi(Y_{n+1}) \) is in standard form. By induction, we see that \(\Phi \) is the desired bijection from \(\mathcal{CLS}(n,k) \) to \(\mathcal{CLS}(n,k) \), which also gives a constructive proof of Lemma 3.

Example 4. Let \(Y_5 = (X, X, A_{2,1}, B_2, \overline{B}_1) \). The correspondence between \(Y_5 \) and \(\Phi(Y_5) \) is built up as follows:

\[
X \leftrightarrow \{1, \overline{1}\} < > ; \\
X \leftrightarrow \{1, \overline{1}\} \{2, \overline{2}\} < > ; \\
A_{2,1} \leftrightarrow \{1, \overline{1, 3}\} \{2, \overline{2, 3}\} < > ; \\
B_2 \leftrightarrow \{1, \overline{1, 3}\} \{2, \overline{2, 3}, 4\} < 4 > ; \\
\overline{B}_1 \leftrightarrow \{1, \overline{1, 3, 5}\} \{2, \overline{2, 3, 4}\} < 4, 5 > .
\]

As an application of the CLS-sequences, we present the following result.

Lemma 5. Let \(k \) be a given positive integer. Then for \(n \geq 1 \), we have

\[
\text{LS}(n+k, n) = 2^k \sum_{t_k=1}^{n} \left(\frac{t_k + 1}{n} \right) \sum_{t_{k-1}=1}^{t_k} \left(\frac{t_{k-1} + 1}{2} \right) \cdots \sum_{t_2=1}^{t_3} \left(\frac{t_2 + 1}{2} \right) \sum_{t_1=1}^{t_2} \left(\frac{t_1 + 1}{2} \right).
\]

Proof. It follows from Lemma 3 that

\[
\text{LS}(n+k, n) = \#\{Y_{n+k} \in \mathcal{CLS}_{n+k} \mid n_x(Y_{n+k}) = n\}.
\]

Let \(Y_{n+k} = y_1y_2 \cdots y_{n+k} \) be a given element in \(\mathcal{CLS}_{n+k} \). Since \(n_x(Y_{n+k}) = n \), it is natural to assume that \(y_i = X \) except \(i = \ell_1 + 1, \ell_2 + 2, \ldots, t_k + k \). Let \(\sigma \) be the corresponding Legendre-Stirling partition of \(Y_{n+k} \). For \(1 \leq \ell \leq k \), consider the value of \(y_{\ell+\ell} \). Note that the number of the symbol \(X \) before \(y_{\ell+\ell} \) is \(t_\ell \). Let \(\hat{\sigma} \) be the corresponding Legendre-Stirling partition of \(y_1y_2 \cdots y_{\ell+\ell-1} \). Now we insert \(y_{\ell+\ell} \). We distinguish two cases:

(i) If \(y_{\ell+\ell} = A_{i,j} \), then we should insert the entry \(t_\ell + \ell \) to the \(i \)th nonzero box of \(\hat{\sigma} \) and insert \(t_\ell + \ell \) to the \(j \)th nonzero box. This gives \(2t_i \binom{t'_i}{2} \) possibilities, since \(1 \leq i, j \leq t_\ell \) and \(i \neq j \).

(ii) If \(y_{\ell+\ell} = B_s \) (resp. \(y_{\ell+\ell} = \overline{B}_s \)), then we should insert the entry \(t_\ell + \ell \) (resp. \(t_\ell + \ell \)) to the \(s \)th nonzero box of \(\hat{\sigma} \) and insert \(t_\ell + \ell \) (resp. \(t_\ell + \ell \)) to the zero box. This gives \(2t'_1 \binom{t'_1}{1} \) possibilities, since \(1 \leq s \leq t_\ell \).

Therefore, there are exactly \(2t_i \binom{t'_i}{2} + 2t'_1 \binom{t'_1}{1} = 2t_i t'_{i+1} \) Legendre-Stirling partitions of \(M_{t_i+\ell} \) can be generated from \(\hat{\sigma} \) by inserting the entry \(y_{\ell+\ell} \). Note that \(1 \leq t_{j-1} \leq t_j \leq n \) for \(2 \leq j \leq k \). Applying the product rule for counting, we immediately get (5). \(\square \)

The following simple result will be used in our discussion.

Lemma 6. Let \(a \) and \(b \) be given integers. Then

\[
\binom{x-b}{2} \binom{x}{a} = \binom{a+2}{2} \binom{x}{a+2} + (a+1)(a-b) \binom{x}{a+1} + (a-b) \binom{x}{2} \binom{x}{a}.
\]
In particular,\[
\binom{x-1}{2} \binom{x}{a} = \binom{a+2}{2} \binom{x}{a+2} + (a^2-1) \binom{x}{a+1} + \binom{a-1}{2} \binom{x}{a}.
\]

Proof. Note that\[
\binom{a+2}{2} \binom{x-a}{2} \binom{x-a-1}{a+1} + (a+1)(a-b) \binom{x-a}{a+1} + \binom{a-b}{2} = \binom{x-b}{2}.
\]
This yields the desired result. \(\square\)

We can now conclude the main result of this paper from the discussion above.

Theorem 7. Let \(k\) be a given nonnegative integer. Then for \(n \geq 1\), the numbers \(\text{LS}(n+k,n)\) can be expanded in the binomial basis as

\[
\text{LS}(n+k,n) = 2^k \sum_{i=k+2}^{3k} \gamma(k,i) \binom{n+k+1}{i},
\]

where the coefficients \(\gamma(k,i)\) are all positive integers for \(k+2 \leq i \leq 3k\) and satisfy the recurrence relation

\[
\gamma(k+1,i) = \left(\binom{i-k-1}{2}\right) \gamma(k,i-1) + (i-1)(i-k-2) \gamma(k,i-2) + \binom{i-1}{2} \gamma(k,i-3),
\]

with the initial conditions \(\gamma(0,0) = 1\), \(\gamma(0,i) = \gamma(i,0) = 0\) for \(i \neq 0\). Let \(\gamma_k(x) = \sum_{i=k+2}^{3k} \gamma(k,i)x^i\). Then the polynomials \(\gamma_k(x)\) satisfy the recurrence relation

\[
\gamma_{k+1}(x) = \left(\frac{k(k+1)}{2} - 2kx + x^2\right) x \gamma_k(x) - \left(k + (k-2)x - 2x^2\right) \gamma'_k(x) + \frac{(1+x)^2x^3}{2} \gamma''_k(x),
\]

with the initial conditions \(\gamma_0(x) = 1\), \(\gamma_1(x) = x^3\) and \(\gamma_2(x) = x^4 + 8x^5 + 10x^6\).

Proof. We prove (6) by induction on \(k\). It is clear that

\[
\text{LS}(n,n) = 1 = \binom{n+1}{0}.
\]

When \(k = 1\), by using the Chu Shih-Chieh’s identity

\[
\binom{n+1}{k+1} = \sum_{i=k}^{n} \binom{i}{k},
\]

we obtain

\[
\sum_{t_1=1}^{n} \binom{t_1+1}{2} = \binom{n+2}{3},
\]

and so (3) is established. When \(k = 2\), it follows from Lemma 5 that

\[
\text{LS}(n+2,n) = 4 \sum_{t_2=1}^{n} \binom{t_2+1}{2} \sum_{t_1=1}^{t_2} \binom{t_1+1}{2} = 4 \sum_{t_2=1}^{n} \binom{t_2+1}{2} \binom{t_2+2}{3}.
\]
Setting \(x = t_2 + 2 \) and \(a = 3 \) in Lemma 6 we get
\[
LS(n + 2, n) = 4 \sum_{t_2=1}^{n} \left(10 \left(\frac{t_2 + 2}{5} \right) + 8 \left(\frac{t_2 + 2}{4} \right) + \left(\frac{t_2 + 2}{3} \right) \right)
\]
\[
= 4 \left(10 \left(\frac{n + 3}{6} \right) + 8 \left(\frac{n + 3}{5} \right) + \left(\frac{n + 3}{4} \right) \right),
\]
which yields (4). Along the same lines, it is not hard to verify that
\[
LS(n + 3, n) = 8 \sum_{t_3=1}^{n} \left(\frac{t_3 + 1}{2} \right) \left(10 \left(\frac{t_3 + 3}{6} \right) + 8 \left(\frac{t_3 + 3}{5} \right) + \left(\frac{t_3 + 3}{4} \right) \right)
\]
\[
= 8 \left(280 \left(\frac{n + 4}{9} \right) + 448 \left(\frac{n + 4}{8} \right) + 219 \left(\frac{n + 4}{7} \right) + 34 \left(\frac{n + 4}{6} \right) + \left(\frac{n + 4}{5} \right) \right).
\]
Hence the formula (6) holds for \(k = 0, 1, 2, 3 \), so we proceed to the inductive step. For \(k \geq 3 \), assume that
\[
LS(n + k, n) = 2^k \sum_{i=k+2}^{3k} \gamma(k, i) \binom{n + k + 1}{i}.
\]
It follows from Lemma 5 that
\[
LS(n + k + 1, n) = 2^{k+1} \sum_{t_{k+1}=1}^{n} \left(\frac{t_{k+1} + 1}{2} \right) \sum_{i=k+2}^{3k} \gamma(k, i) \binom{t_{k+1} + k + 1}{i}
\]
By using Lemma 6, it is routine to verify that the coefficients \(\gamma(k, i) \) satisfy the recurrence relation (7), and so (6) is established for general \(k \). Multiplying both sides of (7) by \(x^i \) and summing for all \(i \), we immediately get (8).

In [2], Andrews et al. introduced the \((unsigned) Legendre-Stirling numbers \(Lc(n, k) \) of the first kind, which may be defined by the recurrence relation
\[
Lc(n, k) = Lc(n - 1, k - 1) + n(n - 1)Lc(n - 1, k),
\]
with the initial conditions \(Lc(n, 0) = \delta_{n,0} \) and \(Lc(0, n) = \delta_{0,n} \). Let \(f_k(n) = LS(n + k, n) \). According to Egge [6 Eq. (23)], we have
\[
Lc(n - 1, n - k - 1) = (-1)^k f_k(n)
\]
for \(k \geq 0 \). For \(m, k \in \mathbb{N} \), we define
\[
\binom{-m}{k} = \frac{(-m)(-m - 1) \cdots (-m - k + 1)}{k!}.
\]
Combining (6) and (9), we immediately get the following result.

Corollary 8. Let \(k \) be a given nonnegative integer. For \(n \geq 1 \), the numbers \(Lc(n - 1, n - k - 1) \) can be expanded in the binomial basis as
\[
Lc(n - 1, n - k - 1) = (-1)^k 2^k \sum_{i=k+2}^{3k} \gamma(k, i) \binom{-n + k + 1}{i},
\]
where the coefficients \(\gamma(k, i) \) are defined by (7).
It follows from (8) that
\[
\gamma(k + 1, k + 3) = \left(\frac{k(k + 1)}{2} - k(k + 2) + \frac{(k + 2)(k + 1)}{2}\right) \gamma(k, k + 2),
\]
\[
\gamma(k + 1, 3k + 3) = \left(1 + 6k + \frac{3k(3k - 1)}{2}\right) \gamma(k, 3k),
\]
\[
\gamma_{k+1}(-1) = -\left(\frac{k(k + 1)}{2} + k + 1\right) \gamma(-1).
\]
Since \(\gamma(1, 3) = 1\) and \(\gamma_1(-1) = -1\), it is easy to verify that for \(k \geq 1\), we have
\[
\gamma(k, k + 2) = 1, \quad \gamma(k, 3k) = (3k)! k! (3!)^k, \quad \gamma_1(-1) = (-1)^k \frac{(k + 1)! k!}{2^k}.
\]
It should be noted that the number \(\gamma(k, 3k)\) is the number of partitions of \(\{1, 2, \ldots, 3k\}\) into blocks of size 3 (see [18, A025035]), and the number \(\frac{(k+1)! k!}{2^k}\) is the product of first \(k\) positive triangular numbers (see [18, A006472]). Moreover, if the number \(\text{LS}(n + k, n)\) is viewed as a polynomial in \(n\), then its degree is \(3k\), which is implied by the quantity \(\binom{n + k + 1}{3k}\). Furthermore, the leading coefficient of \(\text{LS}(n + k, n)\) is given by
\[
2^k \gamma(k, 3k) \frac{1}{(3k)!} = 2^k \frac{(3k)!}{k!(3!)^k} \frac{1}{(3!)^k} = \frac{1}{k!3^k},
\]
which yields [6, Theorem 3.1].

3. Grammatical interpretations of Jacobi-Stirling numbers of both kinds

In this section, a context-free grammar is in the sense of Chen [4]: for an alphabet \(A\), let \(Q[[A]]\) be the rational commutative ring of formal power series in monomials formed from letters in \(A\). A context-free grammar over \(A\) is a function \(G: A \to Q[[A]]\) that replace a letter in \(A\) by a formal function over \(A\). The formal derivative \(D\) is a linear operator defined with respect to a context-free grammar \(G\). More precisely, the derivative \(D = DG: Q[[A]] \to Q[[A]]\) is defined as follows: for \(x \in A\), we have \(D(x) = G(x)\); for a monomial \(u\) in \(Q[[A]]\), \(D(u)\) is defined so that \(D\) is a derivation, and for a general element \(q \in Q[[A]]\), \(D(q)\) is defined by linearity. The reader is referred to [5, 14] for recent progress on this subject.

Let \([n] = \{1, 2, \ldots, n\}\). The Stirling number \(\binom{n}{k}\) of the second kind is the number of ways to partition \([n]\) into \(k\) blocks. Chen [4, Eq. 4.8] showed that if \(G = \{x \to xy, y \to y\}\), then
\[
D^n(x) = x \sum_{k=0}^{n} \binom{n}{k} y^k.
\]
Let \(\mathcal{S}_n\) be the symmetric group of all permutations of \([n]\). Let \(\text{cyc}(\pi)\) be the number of cycles of \(\pi\). The (unsigned) \textit{Stirling number of the first kind} is defined by
\[
\binom{n}{k} = \#\{\pi \in \mathcal{S}_n \mid \text{cyc}(\pi) = k\}.
\]
From [13, Eq. 4.8], we see that if \(G = \{x \to xy, y \to yz, z \to z^2\}\), then
\[
D^n(x) = x \sum_{k=0}^{n} \binom{n}{k} y^k z^{n-k}.
\]
According to [8, Theorem 4.1], the Jacobi-Stirling number $JS_n^k(z)$ of the second kind is defined by

$$x^n = \sum_{k=0}^{n} JS_n^k(z) \prod_{i=0}^{k-1} (x - i(z + i)).$$

(11)

It follows from (11) that the numbers $JS_n^k(z)$ satisfy the recurrence relation

$$JS_n^k(z) = JS_{n-1}^{k-1}(z) + k(k + z)JS_{n-1}^k(z),$$

with the initial conditions $JS_0^0(z) = \delta_{n,0}$ and $JS_0^k(z) = \delta_{0,k}$. It is clear that $JS_n^k(1) = LS(n,k)$. Following [10, Eq. (1.3), Eq. (1.5)], the (unsigned) Jacobi-Stirling number $Jc_n^k(z)$ of the first kind is defined by

$$\prod_{i=0}^{n-1} (x + i(z + i)) = \sum_{k=0}^{n} Jc_n^k(z)x^k,$$

and the numbers $Jc_n^k(z)$ satisfy the following recurrence relation

$$Jc_n^k(z) = Jc_{n-1}^{k-1}(z) + (n - 1)(n - 1 + z)Jc_{n-1}^k(z),$$

with the initial conditions $Jc_0^0(z) = \delta_{n,0}$ and $Jc_0^k(z) = \delta_{k,0}$. In particular, $Jc_n^k(1) = Lc(n,k)$.

Properties and combinatorial interpretations of the Jacobi-Stirling numbers of both kinds were extensively studied in [1, 10, 11, 12, 15, 16, 17]. The Jacobi-Stirling numbers share many similar properties to those of the Stirling numbers. A question arises immediately: are there grammatical descriptions of the Jacobi-Stirling numbers of both kinds? In this section, we give the answer.

As a variant of the CLS-sequence, we now introduce a marked scheme for Legendre-Stirling partitions. Given a Legendre-Stirling partition $\sigma = B_1B_2\cdots B_kB_0 \in LS(n,k)$, where B_0 is the zero box of σ. We mark the box vector (B_1, B_2, \ldots, B_k) by the label a_k. We mark any box pair (B_i, B_j) by a label b and mark any box pair (B_s, B_0) by a label c, where $1 \leq i < j \leq k$ and $1 \leq s \leq k$. Let σ' denote the Legendre-Stirling partition that generated from σ by inserting $n + 1$ and $n + 1$ in the same box, then

$$\sigma' = B_1B_2\cdots B_kB_{k+1}B_0,$$

where $B_{k+1} = \{n + 1, n + 1\}$. This case corresponds to the operator $a_k \rightarrow a_{k+1}b^c$. If $n + 1$ and $n + 1$ are in different boxes, then we distinguish two cases:

(i) Given a box pair (B_i, B_j), where $1 \leq i < j \leq k$. We can put $n + 1$ (resp. $n + 1$) into the box B_i and put $n + 1$ (resp. $n + 1$) into the box B_j. This case corresponds to the operator $b \rightarrow 2b$.

(ii) Given a box pair (B_i, B_0), where $1 \leq i \leq k$. We can put $n + 1$ (resp. $n + 1$) into the box B_i and put $n + 1$ (resp. $n + 1$) into the zero box B_0. Moreover, we mark any barred entry in the zero box B_0 by a label z. This case corresponds to the operator $c \rightarrow (1 + z)c$.

Let $A = \{a_0, a_1, a_2, a_3, \ldots, b, c\}$ be a set of alphabet. Using the above marked scheme, it is natural to consider the following grammars:

$$G_k = \{a_0 \rightarrow a_1c, a_1 \rightarrow a_2bc, \ldots, a_{k-1} \rightarrow a_kb^{k-1}c, b \rightarrow 2b, c \rightarrow (1 + z)c\}$$

(12)

where $k \geq 1$.

Theorem 9. Let G_k be the grammars defined by (12). Then we have

$$D_nD_{n-1} \cdots D_1(a_0) = \sum_{k=1}^{n} JS_n^k(z)a_kb(z)^{c^k}.$$

Proof. Note that $D_1(a_0) = a_1c$ and $D_2D_1(a_0) = a_2bc^2 + (1 + z)a_1c$. Thus the result holds for $n = 1, 2$. For $m \geq 2$, we define $P_m^k(z)$ by

$$D_mD_{m-1} \cdots D_1(a_0) = \sum_{k=1}^{n} P_m^k(z)a_kb(z)^{c^k}.$$

We proceed by induction. Consider the case $n = m + 1$. Since

$$D_{m+1}D_mD_{m-1} \cdots D_1(a_0) = D_{m+1}(D_mD_{m-1} \cdots D_1(a_0)),$$

it follows that

$$D_{m+1}D_m \cdots D_1(a_0) = D_{m+1} \left(\sum_{k=1}^{n} P_m^k(z)a_kb(z)^{c^k} \right)$$

$$= \sum_{k=1}^{n} P_m^k(z) \left(a_{k+1}b(z)^{k+2} + k(k-1)a_kb(z)^{c^k} + (1 + z)k a_kb(z)^{c^k} \right).$$

Therefore, we obtain $P_{m+1}^k(z) = P_{m}^{k-1}(z) + k(k+1)P_{m}^k(z)$. Since the numbers $P_m^k(z)$ and $JS_n^k(z)$ satisfy the same recurrence relation and initial conditions, so they agree.

Combining the marked scheme for Legendre-Stirling partitions and Theorem 9, it is clear that for $n \geq k$, the number $JS_n^k(z)$ is a polynomial of degree $n - k$ in z, and the coefficient z^i of $JS_n^k(z)$ is the number of Legendre-Stirling partitions in $LS(n, k)$ with exactly i barred entries in the zero box, which gives a proof of [10, Theorem 2].

We end this section by giving the following result.

Theorem 10. Let $A = \{a, b_0, b_1, \ldots\}$ be a set of alphabet. Let G_k be the grammars defined by

$$G_k = \{ a \rightarrow (k-1)(k-1+z)a, b_0 \rightarrow b_1, b_1 \rightarrow b_2, \ldots, b_{k-1} \rightarrow b_k \},$$

where $k \geq 1$. Then we have

$$D_nD_{n-1} \cdots D_1(ab_0) = a \sum_{k=1}^{n} JS_n^k(z)b_k.$$

Proof. Note that $D_1(ab_0) = ab_1$ and $D_2D_1(ab_0) = (1 + z)ab_1 + ab_2$. Hence the result holds for $n = 1, 2$. For $m \geq 2$, we define $Q_m^k(z)$ by $D_mD_{m-1} \cdots D_1(ab_0) = a \sum_{k=1}^{m} Q_m^k(z)b_k$. We proceed by induction. Consider the case $n = m + 1$. Since

$$D_{m+1}D_mD_{m-1} \cdots D_1(ab_0) = D_{m+1}(D_mD_{m-1} \cdots D_1(ab_0)),$$

it follows that

$$D_{m+1}D_m \cdots D_1(ab_0) = D_{m+1} \left(a \sum_{k=1}^{m} Q_m^k(z)b_k \right)$$

$$= a \sum_{k=1}^{m} Q_m^k(z)m(m+z)b_k + a \sum_{k=1}^{m} Q_m^k b_{k+1}.$$
Therefore, we obtain $Q_{m+1}^k(z) = Q_{m}^{k-1}(z) + m(m+z)Q_{m}^k(z)$. Since the numbers $Q_n^k(z)$ and $J_n^k(z)$ satisfy the same recurrence relation and initial conditions, so they agree. \square

4. Concluding remarks

Note that the Jacobi-Stirling numbers are polynomial refinements of the Legendre-Stirling numbers. It would be interesting to explore combinatorial expansions of Jacobi-Stirling numbers of both kinds.

Let $\gamma_k(x)$ be the polynomials defined by (8). We end our paper by proposing the following.

Conjecture 11. For any $k \geq 1$, the polynomial $\gamma_k(x)$ has only real zeros. Set

$$\gamma_k(x) = \gamma(k, 3k)x^{k+2} \prod_{i=1}^{2k-2} (x - r_i), \quad \gamma_{k+1}(x) = \gamma(k + 1, 3k + 3)x^{k+3} \prod_{i=1}^{2k} (x - s_i),$$

where $r_{2k-2} < r_{2k-3} < \cdots < r_2 < r_1$ and $s_{2k} < s_{2k-1} < s_{2k-2} < \cdots < s_2 < s_1$. Then

$$s_{2k} < s_{2k-2} < s_{2k-1} < s_{2k-3} < s_{2k-2} < \cdots < r_k < s_{k+1} < s_k < r_{k-1} < \cdots < s_2 < r_1 < s_1,$$

in which the zeros s_{k+1} and s_k of $\gamma_{k+1}(x)$ are continuous appearance, and the other zeros of $\gamma_{k+1}(x)$ separate the zeros of $\gamma_k(x)$.

References

[1] G.E. Andrews, E.S Egge, W. Gawronski, L.L. Littlejohn, The Jacobi-Stirling numbers, *J. Combin. Theory Ser. A*, 120(1) (2013), 288–303.

[2] G.E. Andrews, W. Gawronski, L.L. Littlejohn, The Legendre-Stirling numbers, *Discrete Math.*, 311 (2011), 1255–1272.

[3] G.E. Andrews, L.L. Littlejohn, A combinatorial interpretation of the Legendre-Stirling numbers, *Proc. Amer. Math. Soc.*, 137 (2009), 2581–2590.

[4] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, *Theoret. Comput. Sci.*, 117 (1993), 113–129.

[5] W.Y.C. Chen, A.M. Fu, Context-free grammars for permutations and increasing trees, *Adv. in Appl. Math.*, 82 (2017), 58–82.

[6] E.S. Egge, Legendre-Stirling permutations, *European J. Combin.*, 31(7) (2010), 1735–1750.

[7] W.N. Everitt, L.L. Littlejohn, R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and the left-definite analysis of the Legendre differential expression, *J. Comput. Appl. Math.*, 148 (1) (2002), 213–238.

[8] W.N. Everitt, K.H. Kwon, L.L. Littlejohn, R. Wellman, G.J. Yoon, Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, *J. Comput. Appl. Math.*, 208 (2007), 29–56.

[9] W. Gawronski, L.L. Littlejohn, T. Neuschel, On the asymptotic normality of the Legendre-Stirling numbers of the second kind, *European J. Combin.*, 49 (2015), 218–231.

[10] Y. Gelineau, J. Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, *Electron. J. Combin.*, 17 (2010), #R70.

[11] I.M. Gessel, Z. Lin, J. Zeng, Jacobi-Stirling polynomials and P-partitions, *European J. Combin.*, 33 (2012), 1987–2000.

[12] Z. Lin, J. Zeng, Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials, *Adv. in Appl. Math.*, 53 (2014), 12–27.

[13] S.-M. Ma, Some combinatorial arrays generated by context-free grammars, *European J. Combin.*, 34 (2013), 1081–1091.
[14] S.-M. Ma, J. Ma, Y.-N. Yeh, B.-X. Zhu, Context-free grammars for several polynomials associated with Eulerian polynomials, *Electron. J. Combin.*, 25(1) (2018), #P1.31.
[15] M. Merca, A connection between Jacobi-Stirling numbers and Bernoulli polynomials, *J. Number Theory*, 151(2015), 223–229.
[16] P. Mongelli, Combinatorial interpretations of particular evaluations of complete and elementary symmetric functions, *Electron. J. Combin.*, 19 (2012), #P60.
[17] P. Mongelli, Total positivity properties of Jacobi-Stirling numbers, *Adv. in Appl. Math.*, 48 (2012), 354–364.
[18] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066000, P.R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, P.R. China

E-mail address: majun904@sjtu.edu.cn (J. Ma)

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

E-mail address: mayeh@math.sinica.edu.tw (Y.-N. Yeh)