ON GROMOV-WITTEN THEORY OF ROOT GERBES

ELENA ANDREINI, YUNFENG JIANG, AND HSIAN-HUA TSENG

Abstract. This research announcement discusses our results on Gromov-Witten theory of root gerbes. A complete calculation of genus 0 Gromov-Witten theory of μ_r-root gerbes over a smooth base scheme is obtained by a direct analysis of virtual fundamental classes. Our result verifies the genus 0 part of the so-called decomposition conjecture which compares Gromov-Witten theory of étale gerbes with that of the bases. We also verify this conjecture in all genera for toric gerbes over toric Deligne-Mumford stacks.

1. Introduction

Orbifold Gromov-Witten theory, constructed in symplectic category by Chen-Ruan [10] and in algebraic category by Abramovich, Graber and Vistoli [1], [2], has been an area of active research in recent years. Calculations of orbifold Gromov-Witten invariants in examples present numerous new challenges, see [13], [11], [24], and [5] for examples.

Étale gerbes over a smooth base are examples of smooth Deligne-Mumford stacks. Let \mathcal{X} be a smooth Deligne-Mumford stack and G a finite group scheme over \mathcal{X}. Intuitively one can think of a G-banded gerbe over \mathcal{X} as a fibre bundle over \mathcal{X} with fibre the classifying stack $B G$. A detailed definition of gerbes can be found in, for example, [17], [7], [14]. Our main goal is to compute Gromov-Witten theory of G-banded gerbes.

For trivial G-banded gerbes $\mathcal{X} \times B G$, the computation of their Gromov-Witten invariants is handled as a special case of a general product formula for orbifold Gromov-Witten invariants of product stacks $\mathcal{X} \times \mathcal{Y}$. We will not discuss this here, see [3] for more details.

Root gerbes provide an interesting class of non-trivial gerbes. Let \mathcal{X} be a smooth Deligne-Mumford stack. Let $\mathcal{L} \rightarrow \mathcal{X}$ be a line bundle over \mathcal{X} and r a positive integer. The stack $\sqrt[1/r]{\mathcal{L}/\mathcal{X}}$ of r-th roots of \mathcal{L} is a smooth Deligne-Mumford stack, and is a μ_r-gerbe over \mathcal{X}. Our study of Gromov-Witten theory of root gerbes is aided by the so-called decomposition conjecture [18] in physics, which states in mathematical terms that Gromov-Witten theory of a root gerbe $\sqrt[1/r]{\mathcal{L}/\mathcal{X}}$ over \mathcal{X} should be equivalent to Gromov-Witten theory of the disjoint union of r copies of \mathcal{X} after a change of variables.

In this note, we present results on computations of genus 0 Gromov-Witten theory of root gerbes over smooth varieties. Our results verify the decomposition conjecture in genus 0 for these root gerbes. We also discuss the case of toric gerbes [2], for which

1 One can also formulate the decomposition conjecture for arbitrary G-gerbes (which is more general than a G-banded gerbe). The conjecture states that Gromov-Witten theory of the G-gerbe is equivalent to certain twist of the Gromov-Witten theory of some étale cover of the base. Details of the conjecture in this generality will be discussed elsewhere.

2 Note that these gerbes are iterated root gerbes over toric Deligne-Mumford stacks [15], [20].
we verify the decomposition conjecture in all genera by applying some sophisticated techniques in toric Gromov-Witten theory. Detailed proofs of results discussed in this note will be given in [4].

Acknowledgments. We thank D. Abramovich, A. Bayer, K. Behrend, B. Fantechi, P. Johnson, A. Kresch, Y. Ruan and A. Vistoli for valuable discussions. H.-H. T. is grateful to T. Coates, A. Corti, H. Iritani, and X. Tang for related collaborations. H.-H. T. is supported in part by NSF grant DMS-0757722.

2. Results on root gerbes

2.1. Root gerbes. Let X be a proper smooth Deligne-Mumford stack, and L a line bundle over X. Let $r > 0$ be an integer. Recall [2], [8] that the stack $\sqrt{L/X}$ of r-th roots of L is defined to be the X-groupoid whose objects over an X-scheme $f : Y \to X$ are pairs (M, φ), with M a line bundle over Y and $\varphi : M^\otimes r \to f^*L$ an isomorphism. An arrow from (M, φ) to (N, ψ) lying over a X-morphism $h : (Y, f) \to (Z, g)$ is an isomorphism $\rho : M \to h^*N$ such that $\varphi = (h^*\psi) \circ \rho^\otimes r$:

$$
\begin{array}{ccc}
M^\otimes r & \xrightarrow{\rho^\otimes r} & h^*N^\otimes r \\
\varphi & \downarrow & h^*\psi \\
\Downarrow f^*L & \cong & h^*g^*L.
\end{array}
$$

Alternatively, the stack $\sqrt{L/X}$ may be presented as the quotient stack $[L^*/C^*]$, where L^* is the complement of the zero section inside the total space of L, and C^* acts via $\lambda \cdot z := \lambda^rz$. Clearly $\sqrt{L/X}$ is a smooth Deligne-Mumford stack. It is also easy to see that $\sqrt{L/X} \to X$ is a μ_r-banded gerbe. See [2] and [8] for more discussions.

In this note we are primarily concerned with the case that the base X is a smooth projective variety $\mathbb{F} X$.

By definition the Chen-Ruan orbifold cohomology groups (see [9], [1] for more details) are cohomology groups of the inertia stacks. Since the root gerbe $\sqrt{L/X}$ is naturally banded by μ_r, its inertia stack $I\sqrt{L/X}$ is a disjoint union of $r\mu_r$-gerbes over X. Thus the Chen-Ruan orbifold cohomology with rational coefficients $H^*_{CR}(\sqrt{L/X}, \mathbb{Q})$ is isomorphic to a direct sum of r copies of $H^*(X, \mathbb{Q})$.

2.2. Moduli of stable maps. One of our results is the construction of moduli stack of twisted stable maps. Let $\beta \in H_2(X, \mathbb{Z})$ and let $\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)$ be the moduli stack of genus zero, n-point twisted stable maps to $\sqrt{L/X}$ of degree β in the sense of Abramovich-Graber-Vistoli [2]. Given $[f : \mathcal{C} \to \sqrt{L/X}] \in \mathcal{K}_{0,n}(\sqrt{L/X}, \beta)$, the stack structures at marked points of \mathcal{C} determine an n-tuple $\vec{g} = (g_1, \cdots, g_n)$ of elements in μ_r. We may write $g_i = e^{2\pi i m_i/r_i}$, where $0 \leq m_i \leq r_i - 1$ and $(m_i, r_i) = 1$. By Riemann-Roch for twisted curves, \vec{g} satisfies the condition

$$
\prod_{1 \leq i \leq n} g_i = e^{2\pi i k/r}, \text{ where } k = \int_\beta c_1(L).
$$

Such n-tuples \vec{g} are called admissible vectors.

3In this case, the stack $\sqrt{L/X}$ is a toric stack bundle introduced in [19].
Let
\[\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \subset \mathcal{K}_{0,n}(\sqrt{L/X}, \beta) \]
be the locus which parametrizes stable maps with admissible vector \(\bar{g} \). Post-composition with the natural map \(\sqrt{L/X} \to X \) gives a map
\[p : \mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \to \overline{\mathcal{M}}_{0,n}(X, \beta), \]
where \(\overline{\mathcal{M}}_{0,n}(X, \beta) \) is the moduli stack of genus zero, \(n \)-point degree \(\beta \) stable maps to \(X \). We prove a structure result for the moduli stack \(\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \). More precisely, we obtain a construction of \(\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \) as follows.

1. construct a stack \(P_{\bar{g}}^{\bar{g}} \) over \(\overline{\mathcal{M}}_{0,n}(X, \beta) \) as a category fibered in groupoids whose objects are certain morphisms of logarithmic structures \([22],[23]\). This construction, which can be seen as a generalization of the root construction, introduces additional automorphisms along the locus in \(\overline{\mathcal{M}}_{0,n}(X, \beta) \) parametrizing maps with singular domains;
2. show that \(\mathcal{K}_{0,n}(\mathfrak{g}, \beta)^{\bar{g}} \) is a \(\mu_r \)-banded gerbe over \(P_{\bar{g}}^{\bar{g}} \) and therefore \(p \) factors through \(P_{\bar{g}}^{\bar{g}} \).

The \(\mu_r \)-gerbe in step (2) is the root gerbe of a line bundle which we can explicitly write down. Our result thus generalizes a result of Bayer and Cadman \([5]\) on the moduli stack of twisted stable maps to the classifying stack \(\mathcal{B}_{\mu_r} \).

Our strategy of computing genus 0 Gromov-Witten invariants of \(\sqrt{L/X} \) is to relate them with invariants of \(X \). To do so, we carry out a comparison with respect to the map \(p \) between the perfect relative obstruction theories on \(\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \) and \(\overline{\mathcal{M}}_{0,n}(X, \beta) \) and deduce from there the following push-forward formula for virtual fundamental classes:

Theorem 2.1.

\[p_*[\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}}]^{\text{vir}} = \frac{1}{r}[\overline{\mathcal{M}}_{0,n}(X, \beta)]^{\text{vir}}. \]

2.3. Gromov-Witten invariants.

Let \(\pi : \mathfrak{g} = \sqrt{L/X} \to X \) be a \(\mu_r \)-root gerbe. Then the inertia stack admits the following decomposition
\[I_{\mathfrak{g}} = \bigsqcup_{g \in \mu_r} \mathfrak{g}_g, \]
where \(\mathfrak{g}_g \) is a root gerbe isomorphic to \(\mathfrak{g} \). Let \(\pi_g : \mathfrak{g}_g \to X \) be the induced morphism. On each component there is an isomorphism between the rational cohomology groups
\[\pi_g^* : H^*(X, \mathbb{Q}) \xrightarrow{\cong} H^*(\mathfrak{g}_g, \mathbb{Q}). \]

Let \(\bar{g} = (g_1, ..., g_n) \) be an admissible vector. There are evaluation maps
\[ev_i : \mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}} \to \mathfrak{g}_{g_i}^{\text{rig}}, \]
where \(\mathfrak{g}_{g_i}^{\text{rig}} \) is a component of the *rigidified inertia stack* \(I_{\mathfrak{g}}^{\text{rig}} = \cup_{g \in \mu_r} \mathfrak{g}_g^{\text{rig}} \) (see \([2]\), Section 4.4 for the definition). Although the evaluation maps \(ev_i \) do not take values in \(I_{\mathfrak{g}} \), as explained in \([2]\), Section 6.1.3, one can still define a pull-back map at cohomology level,
\[ev_i^* : H^*(\mathfrak{g}_g, \mathbb{Q}) \to H^*(\mathcal{K}_{0,n}(\sqrt{L/X}, \beta)^{\bar{g}}, \mathbb{Q}). \]
Given $\delta_i \in H^*(\mathcal{Y}_{g_i}, \mathbb{Q})$ for $1 \leq i \leq n$ and integers $k_i \geq 0, 1 \leq i \leq n$, one can define descendant orbifold Gromov-Witten invariants

$$
\langle \delta_1 \psi_1^{k_1}, \ldots, \delta_n \psi_n^{k_n} \rangle_{0, n, \beta}^\mathcal{Y} := \int_{[\mathcal{X}_0,n,(\mathcal{Y}/\mathcal{X})_{\beta}]} \prod_{i=1}^n ev_i^*(\delta_i) \psi_1^{k_1},
$$

where $\overline{\psi}_i$ are the pullback of the first Chern classes of the tautological line bundles over $\mathcal{M}_{g,n}(\mathcal{X}, \beta)$. See [2] for more discussion on descendant classes.

For classes $\delta_i \in H^*(\mathcal{Y}_{g_i}, \mathbb{Q})$, set $\overline{\delta}_i = (\pi^*_{g_i})^{-1}(\delta_i)$. Descendant Gromov-Witten invariants $\langle \delta_1 \psi_1^{k_1}, \ldots, \delta_n \psi_n^{k_n} \rangle^\mathcal{Y}_{0, n, \beta}$ of \mathcal{X} are similarly defined. Theorem 2.1 implies

Theorem 2.2.

$$
\langle \delta_1 \psi_1^{k_1}, \ldots, \delta_n \psi_n^{k_n} \rangle_{0, n, \beta}^{\mathcal{Y}} = \frac{1}{\mu} \langle \overline{\delta}_1 \overline{\psi}_1^{k_1}, \ldots, \overline{\delta}_n \overline{\psi}_n^{k_n} \rangle_{0, n, \beta}^\mathcal{X}.
$$

Moreover, if \overline{g} is not admissible, then the Gromov-Witten invariants vanish.

In the following we use complex number \mathbb{C} as coefficients for the cohomology. For $\overline{\rho} \in H^*(\mathcal{X}, \mathbb{C})$ and an irreducible representation ρ of μ_r, we define

$$
\overline{\alpha}_\rho := \frac{1}{\mu} \sum_{\gamma \in \mu_r} \chi_\rho(g^{-1}) \pi_\gamma(\overline{\rho}),
$$

where χ_ρ is the character of ρ. The map $(\overline{\rho}, \rho) \mapsto \overline{\alpha}_\rho$ clearly defines an additive isomorphism

$$
\bigoplus_{[\rho] \in \overline{\mu}_r} H^*(\mathcal{X})_{[\rho]} \simeq H^*(\mathcal{Y}, \mathbb{C}),
$$

where $\overline{\mu}_r$ is the set of isomorphism classes of irreducible representations of μ_r, and for $[\rho] \in \overline{\mu}_r$ we define $H^*(\mathcal{X})_{[\rho]} := H^*(\mathcal{X}, \mathbb{C})$.

Theorem 2.2 together with orthogonality relations of characters of μ_r implies the following

Theorem 2.3.

$$
\langle \overline{\alpha}_1^{\rho_1} \overline{\psi}_1^{k_1}, \ldots, \overline{\alpha}_n^{\rho_n} \overline{\psi}_n^{k_n} \rangle^\mathcal{Y}_{0, n, \beta} = \begin{cases} \frac{1}{\mu} \langle \overline{\alpha}_1 \overline{\psi}_1^{k_1}, \ldots, \overline{\alpha}_n \overline{\psi}_n^{k_n} \rangle^\mathcal{X}_{0, n, \beta} \chi_\rho \left(\exp \left(\frac{\text{-}2\pi i \int_{\mathcal{X}} c_1(\mathcal{X})}{\mu} \right) \right) & \text{if } \rho_1 = \rho_2 = \ldots = \rho_n =: \rho, \\ 0 & \text{otherwise}. \end{cases}
$$

We may reformulate this in terms of generating functions. Let

$$
\{ \overline{\phi}_i | 1 \leq i \leq \text{rank} H^*(\mathcal{X}, \mathbb{C}) \} \subset H^*(\mathcal{X}, \mathbb{C})
$$

be an additive basis. According to the discussion above, the set

$$
\{ \overline{\phi}_i | 1 \leq i \leq \text{rank} H^*(\mathcal{X}, \mathbb{C}), [\rho] \in \overline{\mu}_r \}
$$

is an additive basis of $H^*(\mathcal{Y}, \mathbb{C})$. Recall that the genus 0 descendant potential of \mathcal{Y} is defined to be

$$
\mathcal{G}_\mathcal{Y}^0(\{ t_{i\rho,j} \}_{1 \leq i \leq \text{rank} H^*(\mathcal{X}, \mathbb{C}), \rho \in \overline{\mu}_r, j \geq 0 }; Q) := \sum_{n \geq 0, \beta \in H_2(\mathcal{X}, \mathbb{Z})} \frac{Q^\beta}{n!} \prod_{i=1}^n t_{i\rho,k,i} \prod_{k=1}^n \prod_{i_1, \ldots, i_n} \phi_{i_1, \ldots, i_n}^{\rho_1, \ldots, \rho_n} \cdot j_{i_1, \ldots, i_n}^{j_1, \ldots, j_n}.
$$

The descendant potential $\mathcal{G}_\mathcal{Y}^0$ is a formal power series in variables $t_{i\rho,j}, 1 \leq i \leq \text{rank} H^*(\mathcal{X}, \mathbb{C}), \rho \in \overline{\mu}_r, j \geq 0$ with coefficients in the Novikov ring $\mathbb{Q}[\overline{\mathcal{N}}(\mathcal{X})]$, where
\(\overline{NE}(X) \) is the effective Mori cone of the coarse moduli space of \(\mathcal{G} \). Here \(Q^\beta \) are formal variables labeled by classes \(\beta \in \overline{NE}(X) \). See e.g. \([24]\) for more discussion on descendant potentials for orbifold Gromov-Witten theory.

Similarly the genus 0 descendant potential of \(X \) is defined to be

\[
\mathcal{F}_X^0 \left(\{ t_{i,j} \}_{1 \leq i \leq \text{rank} \, H^*(X, \mathbb{C}), j \geq 0}; Q \right) := \sum_{n \in \mathbb{N}} \frac{Q^n}{n!} \prod_{k=1}^{n} t_{ik} \left(\prod_{j=0}^{n} \frac{\phi_{ik}^{-1}}{\partial x_{ik}^{j}} \right) \chi_{ij}.
\]

\(\mathcal{F}_X^0 \) is a formal power series in variables \(t_{i,j}, 1 \leq i \leq \text{rank} \, H^*(X, \mathbb{C}), j \geq 0 \) with coefficients in \(\mathbb{Q}[\overline{NE}(X)] \) and \(Q^\beta \) is (again) a formal variable. Using Theorem 2.3 we prove

Theorem 2.4.

\[
\mathcal{F}_X^0 \left(\{ t_{i,j} \}_{1 \leq i \leq \text{rank} \, H^*(X, \mathbb{C}), \rho \in \mathcal{C}}; j \geq 0}; Q \right) = \frac{1}{r^2} \sum_{|\rho| \in \mathcal{C}} \mathcal{H}_X^0 \left(\{ t_{i,j} \}_{1 \leq i \leq \text{rank} \, H^*(X, \mathbb{C}), j \geq 0}; Q_{\rho} \right),
\]

where \(Q_{\rho} \) is defined by the following rule:

\[
Q_{\rho}^\beta := Q^\beta \chi_{\rho} \left(\exp \left(\frac{-2\pi i \int_{\beta} c_1(\mathbb{L})}{r} \right) \right),
\]

and \(\chi_{\rho} \) is the character associated to the representation \(\rho \).

Theorem 2.4 confirms the decomposition conjecture for genus 0 Gromov-Witten theory of \(\mathcal{G} \).

Remark 2.5.

(1) If \(X \) has generically semi-simple quantum cohomology, then an application of Givental’s formula \([16]\) shows that Theorem 2.4 implies the decomposition conjecture for \(\mathcal{G} \) in all genera.

(2) By definition a gerbe over \(X \) is *essentially trivial* if it becomes trivial after contracted product with the trivial \(O_X \)-gerbe. For a finite abelian group \(G \), any essentially trivial \(G \)-banded gerbe can be obtained as a fiber product over the base of root gerbes. All the results presented here for root gerbes can be easily extended to this more general class of gerbes.

3. Results on toric gerbes

Toric gerbes over toric orbifolds are toric Deligne-Mumford stacks in the sense of Borisov-Chen-Smith \([3]\). Any toric Deligne-Mumford stack can be constructed by taking a sequence of root of line bundles on the toric orbifolds, see \([20], [15]\).

A toric Deligne-Mumford stack is defined in terms of a stacky fan \(\Sigma = (N, \Sigma, \beta) \), where \(N \) is a finitely generated abelian group, \(\Sigma \subset N_{\mathbb{Q}} = N \otimes \mathbb{Q} \) is a simplicial fan and \(\beta : \mathbb{Z}^n \to N \) is a map determined by the elements \(\{ b_1, \cdots, b_n \} \) in \(N \). By assumption, \(\beta \) has finite cokernel and the images of \(b_i \)'s under the natural map \(N \to N_{\mathbb{Q}} \) generate the simplicial fan \(\Sigma \). The toric Deligne-Mumford stack \(\mathfrak{X}(\Sigma) \) associated to \(\Sigma \) is defined to be the quotient stack \([Z/G] \), where \(Z \) is the open subvariety \(\mathbb{C}^n \setminus \bigvee (J_\Sigma) \), \(J_\Sigma \) is the irrelevant ideal of the fan, and \(G \) is the product of an algebraic torus and a finite abelian group. The \(G \)-action on \(Z \) is given by a group homomorphism \(\alpha : G \to (\mathbb{C}^*)^n \), where \(\alpha \) is obtained by applying the functor \(\text{Hom}_Z(\cdot, \mathbb{C}^*) \) to the Gale dual \(\beta^\vee : \mathbb{Z}^n \to N^\vee \) of \(\beta \) and \(G = \text{Hom}_Z(N^\vee, \mathbb{C}^*) \).
Every stacky fan Σ has an underlying \textit{reduced} stacky fan $\Sigma_{\text{red}} = (\overline{\Sigma}, \Sigma, \overline{\beta})$, where $\overline{\Sigma} := N/N_{\text{tor}}$, $\overline{\beta} : \mathbb{Z}^n \to \overline{\Sigma}$ is the natural projection given by the vectors $\{\overline{b}_1, \ldots, \overline{b}_n\} \subseteq \overline{N}$. With these data one gets a toric Deligne-Mumford stack $X(\Sigma_{\text{red}}) = [\mathbb{Z}/\overline{\beta}]$, where $\overline{G} = \text{Hom}_{\mathbb{Z}}(\overline{\Sigma}^\vee, \mathcal{C}^*)$ and $\overline{\Sigma}^\vee$ is the Gale dual $\beta^\vee : \mathbb{Z}^n \to \overline{\Sigma}^\vee$ of the map $\overline{\beta}$. The stack $X(\Sigma_{\text{red}})$ is a toric orbifold\footnote{I.e. the generic stabilizer is trivial.}, and can be obtained by rigidifying $X(\Sigma)$. We assume that $X(\Sigma)$ and $X(\Sigma_{\text{red}})$ are semi-projective (see e.g. \cite{20} for definition).

3.1. Orbifold cohomology

The Chen-Ruan orbifold cohomology ring of a toric Deligne-Mumford stack has been computed\footnote{Strictly speaking what’s computed in \cite{6} is the orbifold Chow ring. The computation for Chen-Ruan orbifold cohomology ring is identical.} in \cite{6}. We recall the answer. Let $M = N^*$ be the dual of N. Let $\mathbb{C}[N]^{\Sigma}$ be the group ring of N, i.e. $\mathbb{C}[N]^{\Sigma} := \bigoplus_{c \in \Sigma} \mathbb{C}y^c$, y is the formal variable. Define the following multiplication

\begin{equation}
y^{c_1} \cdot y^{c_2} := \begin{cases} y^{c_1 + c_2} & \text{if there is a cone } \sigma \in \Sigma \text{ such that } \overline{\tau}_1, \overline{\tau}_2 \in \sigma, \\ 0 & \text{otherwise.} \end{cases}
\end{equation}

Let $I(\Sigma)$ be the ideal in $\mathbb{C}[N]^{\Sigma}$ generated by the elements $\sum_{i=1}^n \theta(b_i)y^{b_i}$, $\theta \in M$. Then there is an isomorphism of \mathbb{Q}-graded algebras:

$$H^*_\text{CR}(X(\Sigma), \mathbb{C}) \cong \frac{\mathbb{C}[N]^{\Sigma}}{I(\Sigma)}.$$
Theorem 3.1. The map
\[\bigoplus_{[\rho] \in N_{\text{tor}}} H^*_\text{CR}(\mathcal{X}(\Sigma_{\text{red}}))_{[\rho]} \longrightarrow H^*_\text{CR}(\mathcal{X}(\Sigma), \mathbb{C}), \quad y^{e,\rho}_\rho \mapsto y^{e,\rho}, \]
is an isomorphism of \(\mathbb{Q} \)-graded algebras.

Theorem 3.1 is easily deduced as a corollary of the calculations in [6].

3.2. Gromov-Witten theory. A detailed discussion of the basics of orbifold Gromov-Witten theory can be found in [21]. We obtain a comparison of Gromov-Witten theory of \(\mathcal{X}(\Sigma) \) and \(\mathcal{X}(\Sigma_{\text{red}}) \). Our result is most conveniently stated in terms of the total descendant potential, which is the generating function of all descendant Gromov-Witten invariants. The main tool is a detailed calculation of Gromov-Witten invariants of toric stacks [12].

Theorem 3.2. The total descendant potential of \(\mathcal{X}(\Sigma) \) is a sum of \(|N_{\text{tor}}| \) copies (indexed by \(\tilde{N}_{\text{tor}} \)) of the total descendant potential of \(\mathcal{X}(\Sigma_{\text{red}}) \), under the following change of variables:

1. the cohomology variables are changed according to the isomorphism in Theorem [7].
2. the Novikov variables in the descendant potential of \(\mathcal{X}(\Sigma_{\text{red}}) \) indexed by \([\rho] \in \tilde{N}_{\text{tor}}\) are rescaled as follows: \(Q^d \mapsto Q^d \chi_\rho(\sum_{i=1}^n a_i \alpha_i) \) for \(d = \sum_{i=1}^n a_i e_i \) in the Mori cone \(\overline{NE}(\mathcal{X}(\Sigma_{\text{red}})) \subset \text{Ker}(\hat{\beta}) \otimes \mathbb{Z} \subset \mathbb{R}^n \);
3. the genus variable \(h \) in the total descendant potential of \(\mathcal{X}(\Sigma_{\text{red}}) \) is rescaled by \(1/|N_{\text{tor}}| \).

This Theorem verifies the decomposition conjecture for the Gromov-Witten theory of the gerbe \(\mathcal{X}(\Sigma) \rightarrow \mathcal{X}(\Sigma_{\text{red}}) \). See [3] for more details.

Remark 3.3.

(1) Our results in fact are valid more generally for toric gerbes over toric Deligne-Mumford stacks which are not necessarily orbifolds. Details will be given in [3].

(2) When the base is a \(\mathbb{P}^1 \)-stack with at most two cyclic stack points, our results have also been proven by P. Johnson [21] by a completely different method.

Example 3.4. We illustrate part of Theorem 3.2 concerning quantum cohomology rings in the example \(\mathbb{P}(4, 6) \rightarrow \mathbb{P}(2, 3) \), which is the \(\mu_2 \)-gerbe obtained as the stack of square roots of \(\mathcal{O}_{\mathbb{P}(2,3)}(1) \).

In [2] the quantum cohomology rings of \(\mathbb{P}(4, 6) \) and \(\mathbb{P}(2, 3) \) (and more generally all weighted projective lines) are computed:

\[
QH^*_\text{orb}(\mathbb{P}(2, 3), \mathbb{C}) \simeq \mathbb{C}[q][x, y]/(xy - q, 2x^2 - 3y^3),
\]

\[
QH^*_\text{orb}(\mathbb{P}(4, 6), \mathbb{C}) \simeq \mathbb{C}[q][u, v, \xi]/(uv - q \xi, 2u^2 \xi - 3v^3, \xi^2 - 1).
\]

For \(i = 0, 1 \) let \(QH^*_\text{orb}(\mathbb{P}(2, 3), \mathbb{C})_i \) be a copy of \(QH^*_\text{orb}(\mathbb{P}(2, 3), \mathbb{C}) \) with generators \(x_i, y_i \) and \(q \) rescaled by \((-1)^i \):

\[
QH^*_\text{orb}(\mathbb{P}(2, 3), \mathbb{C})_i = \mathbb{C}[q][x_i, y_i]/(x_i y_i - (-1)^i q, 2x_i^2 - 3y_i^3).
\]

Let \(1_0 := \frac{1}{2}(1 + \xi), 1_1 := \frac{1}{2}(1 - \xi) \) and \(u_i := (-1)^i u_1, v_i := (-1)^i v_1 \). Then it is easy to check that the additive basis \(\{ 1_i, u_i, v_i, v_i^2 | i = 0, 1 \} \) determines an isomorphism of
algebras:

\[QH^*_{orb}(\mathbb{P}(4,6), \mathbb{C}) \simeq QH^*_{orb}(\mathbb{P}(2,3), \mathbb{C})_0 \oplus QH^*_{orb}(\mathbb{P}(2,3), \mathbb{C})_1, \]

\[1_i \mapsto 1 \in QH^*_{orb}(\mathbb{P}(2,3), \mathbb{C}^*_i), u_i \mapsto x_i, v_i \mapsto y_i. \]

For instance,

\[1_0 1_1 = \frac{1}{4} (1 - \xi^2) = 0, \quad 1_0 1_0 = \frac{1}{2} (1 + \xi) = 1_0, \quad 1_1 1_1 = 1_1, \]

\[u_0 v_1 = 0, \quad u_1 v_0 = 0, \]

\[u_0 v_0 = \frac{1}{2} (uv + uv\xi) = uv 1_0 = q\xi 1_0 = q 1_0, \]

\[u_1 v_1 = \frac{1}{2} (uv - uv\xi) = uv 1_1 = q\xi 1_1 = q 1_1, \]

\[2u_i^2 = 2u_i^2 1_i = 3v_i^3 \xi 1_i = 3v_i^3 (-1)^i 1_i = 3v_i^3, \quad i = 0, 1. \]

References

[1] D. Abramovich, T. Graber and A. Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, *Amer. J. of Math.* 130 (2008), no. 5, 1337–1398, math.AG/0603151.

[2] D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quantum product, in *Orbifolds in mathematics and physics (Madison, WI, 2001)*, 1–24, *Contem. Math.* 310, Amer. Math. Soc., 2002, math.AG/0112004.

[3] E. Andreini, Y. Jiang and H.-H. Tseng, in preparation.

[4] E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of étale gerbes I: root gerbes, in preparation.

[5] A. Bayer and C. Cadman, Quantum cohomology of \([\mathbb{C}^N/\mathbb{Z}_r]\), arXiv:0705.2160.

[6] L. Borisov, L. Chen and G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, *J. Amer. Math. Soc.* 18 (2005), no.1, 193–215.

[7] L. Breen, On the classification of 2-gerbes and 2-stacks, *Astérisque* 225 (1994)

[8] C. Cadman, Using stacks to impose tangency condition on curves, *Amer. J. Math.* 129 (2007), no. 2, 405–427, math.AG/0312349.

[9] W. Chen and Y. Ruan, A new cohomology theory for orbifolds, *Comm. Math. Phys.* 248 (2004), no. 1, 1–31, math.AG/0004129.

[10] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, in *Orbifolds in mathematics and physics (Madison, WI, 2001)*, 25–85, *Contem. Math.* 310, Amer. Math. Soc., 2002, math.AG/0103156.

[11] T. Coates, A. Corti, H. Iritari and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants, to appear in *Duke Math. J.* arXiv:math/0702234.

[12] T. Coates, A. Corti, H. Iritari and H.-H. Tseng, in preparation.

[13] T. Coates, A. Corti, Y.-P. Lee and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces, to appear in *Acta Math.* arXiv:math/0608481.

[14] D. Eddin, B. Hassett, A. Kresch, A. Vistoli, Brauer groups and quotient stacks, *Amer. J. Math.* 123 (2001), no. 4, 761–777.

[15] B. Fantechi, E. Mann and P. Nironi, Smooth toric DM stacks, arXiv:0708.1254.

[16] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, *Mosc. Math. J.* 1 (2001), no. 4, 551–568.

[17] J. Giraud, Cohomologie non abélienne, Springer-Verlag Berlin 1971.

[18] S. Hellerman, A. Henriques, Tony Pantev and Eric Sharpe, Cluster decomposition, T-duality, and gerby CFT’s, *Adv. Theor. Math. Phys.* 11 (2007), no. 5, 751–818, arXiv:hep-th/0606034.

[19] Y. Jiang, The orbifold cohomology of simplicial toric stack bundles, to appear in *Illinois J. Math.* arXiv:math/0504563.

[20] Y. Jiang and H.-H. Tseng, The integral (orbifold) Chow ring of toric Deligne-Mumford stacks, to appear in *Math. Z.* arXiv:0707:2972.

[21] P. Johnson, in preparation.

[22] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988),191-224, Johns Hopkins Univ. Press Baltimore, MD 1989.
[23] K. Matsuki and M. Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, *Math. Res. Letters* 12 (2005), 207–217.

[24] H.-H. Tseng, Orbifold Quantum Riemann-Roch, Lefschetz and Serre, arXiv:math/0506111

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY

E-mail address: andreini.elena@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E JWB 233, SALT LAKE CITY, UT 84112, USA

E-mail address: jiangyf@math.utah.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, VAN VLECK HALL, 480 LINCOLN DRIVE, MADISON, WI 53706-1388, USA

E-mail address: tseng@math.wisc.edu