Cosmic Strings and Weak Gravitational Lensing

Sergei Dyda1,2) and Robert H. Brandenberger1)
1) Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada
2) Department of Physics, University of Toronto, Toronto, ON, Canada
(Dated: February 2, 2008)

We study the deflection of light in the background of a "wiggly" cosmic string, and investigate whether it is possible to detect cosmic strings by means of weak gravitational lensing. For straight strings without small-scale structure there are no signals. In the case of strings with small-scale structure leading to a local gravitational attractive force towards the string, there is a small signal, namely a preferential elliptical distortion of the shape of background galaxies in the direction corresponding to the projection of the string onto the sky. The signal can be statistically distinguished from the signal produced by a linear distribution of black holes by employing an ellipticity axis distribution statistic.

PACS numbers: 98.80.Cq

\section{I. INTRODUCTION}

There has been renewed interest in cosmic strings1) as a contributing factor to cosmological structure formation. This resurgence of interest is due firstly to the realization that in many supersymmetric particle physics models, cosmic strings are formed after inflation, and thus contribute to but not completely replace inflationary perturbations as the seeds for structure formation. Secondly, it has recently been realized that models with cosmic superstrings3) may well be viable3). They could, for example, be generated as the remnant of brane annihilation processes in brane inflation models3), or they may play an important role in inflationary models in warped backgrounds4). Cosmic superstrings may also be left behind after the initial Hagedorn phase in string gas cosmology5), where they would add an additional component to the spectrum of fluctuations produced by thermal string gas fluctuations6). Unlike in the original cosmic string models of structure formation (see e.g.7 and8) for reviews), where it was assumed that the strings were the sole source of structure formation, in the context of the current models in which cosmic strings arise at the end of inflation, the strings contribute only a small fraction of the total power to the density fluctuations. The most stringent constraints on the fraction of the power which cosmic strings can contribute come from measurements of the angular power spectrum of coordinates cosmic microwave background (CMB) anisotropies. A large fraction $\frac{f}{c}$ of the power being due to strings is inconsistent with the observed acoustic oscillations in the angular power spectrum. The best current limits on f are $f < 10^{-4}$. Recent work9,10 points to the possibility that statistical analyses searching for the line discontinuities11 in the microwave temperature maps produced by cosmic strings might lead to even tighter limits.

Given their interest from the point of view of particle physics and superstring theory, it is of great interest to develop statistics to search for strings in observational data. There has been a substantial amount of work on identifying distinctive signals for strings in CMB temperature maps. In this paper we wish to take first steps at exploring another avenue - weak gravitational lensing. Weak gravitational lensing (see e.g.12 for a general review of the applications of gravitational lensing to cosmology) is emerging as a powerful tool in observational cosmology to search for the distribution of matter in the universe. One of the advantages of weak gravitational lensing over, for example, galaxy redshift surveys, is that light deflection depends on the total mass, not just the luminous mass. As a consequence, cosmic strings (which are also dark in the sense of not emitting light) also lead to gravitational lensing. In fact, due to conical structure of the metric of space-time in the plane perpendicular to a long string13, the specific lensing pattern produced by a string can lead to interesting strong lensing patterns, e.g. double images (see14,15 for claims to have detected such events, claims which were subsequently shown to be incorrect16)). In this short paper, we take a first step at searching for weak lensing signals from strings.

Cosmic strings1) are one-dimensional topological defects which arise during phase transitions in the very early universe. Since they carry energy, they will lead to density fluctuations and CMB anisotropies. Causality implies that the network of strings which forms during the phase transition contains infinite strings. Once formed in the early universe, the network of strings will approach a "scaling solution" which is characterized by of the order one infinite string segment in each Hubble volume, and a distribution of cosmic string loops which are the remnants of the previous evolution. In particular, this implies that in any theory which admits cosmic strings, a network of strings will be present at the current time. The network will consist of a small number of strings crossing out entire Hubble volume (these are commonly called the "infinite" strings). The mean curvature radius R_c of these strings will be comparable to the Hubble radius. Thus, for observations on smaller angular and distance scales, these strings can be approximated as straight. In addition, there is a distribution of string loops with radii R between R_c and a lower scale...
set by the strength of the gravitational radiation which
the loops emit [16]:
\[G \mu R_c \leq R \leq R_c. \] (1)

String loops with smaller radius live for less than one
Hubble expansion time. In the above, \(\mu \) is the mass per
unit length of the string and \(G \) is Newton’s gravitational
constant.

The distinctive signatures of strings in observational
data are a consequence of the specific form of the metric
produced by a cosmic string: space perpendicular to a
cosmic string is a cone with deficit angle given by [16]
\[\alpha = 8\pi G \mu. \] (2)

In this paper we study the specific signature of this
cosmic string metric on weak gravitational lensing. We
consider a cosmic string lens and investigate the shape
distortions this lens induces for a screen of background
galaxies as source objects.

To our knowledge, this is the first investigation of weak
gravitational lensing from cosmic strings. Strong lensing
signatures (lines of double images) have been studied ex-
tensively [20, 21, 22, 23, 24, 25, 26] theoretically, and looked
for in observational data sets [27, 28].

The outline of this paper is as follows: we first derive
the metric of a straight string within small-scale structure (no “wiggles”) which is charac-
terized by a string tension \(T \) which is equal in magnitude
to the mass per unit length \(\mu \). In cylindrical coordinates,
the metric of a such a straight string which we take to
be oriented along the \(z \)-axis is
\[ds^2 = -dt^2 + dr^2 + dz^2 + (1 - 8G\mu)r^2 d\theta^2, \] (3)

where \(G \) is the gravitational constant and \(\mu \) is the mass
per unit length of the string [16]. This is nothing but the
Minkowski metric with a deficit angle \(\alpha = 8\pi G \mu \). Since
the metric is locally flat, no shape distortion is induced
by such a string.

Thus, we go on and consider a wiggly cosmic string
(tension \(T \) smaller than the mass per unit length \(\mu \)) lying
perpendicular to the optical axis, and derive the conse-
quences for weak gravitational lensing in this space-time.
We will use standard notation where \(D_o \) is the distance from
observer to source plane and \(D_L \) the distance from
observer to lens. For convenience, in cylindrical coordi-
nates the \(z \) axis will lie along the direction of the string.
The optical axis is chosen as the \(x \) direction. Conse-
quently, the source and image planes will be parallel to
the \(y-z \) plane, consistent with this choice of coordinates.

The deflection angle is defined as in the Schwarzschild
case, namely as the deviation of a null geodesic from a
source at infinity to an observer at infinity but propagat-
ing in the wiggly string metric. The deflection due to the
small scale structure of the string is then defined as the
deviation from null geodesics propagating in a straight
string space-time.

II. COSMIC STRING LENSING

The deflection of light from distant sources by interpos-
ing masses is well understood in the context of General
Relativity (GR). There are a variety of lensing phenom-
enas, beginning with strong lensing effects, in which case
multiple images of a given source are observed. Other
phenomena are microlensing, an increase in the luminos-
ity of a source as a lensing mass passes close to the line
of sight between observer and source, and weak lensing
which is the shape distortion in the images of an extended
source. Since all mass and not only visible matter lead to
lensing, weak gravitational lensing [20] offers the hope of
providing a tool for mapping out the distribution of dark
matter in the universe, amongst other applications. Here,
we will study weak lensing imprints of cosmic strings, a
specific class of dark objects.

In the usual theory of weak gravitational lensing [20],
lenses are characterized by their shear \(\gamma \) and their mag-
nification \(\mu \). These correspond, roughly speaking, to
the distortion and magnification produced in the image.
Since weak lensing effects are small and the source distri-
bution is a priori unknown, searching for weak lensing
relies on a statistical approach to discriminate between
weakly lensed and un-lensed regions of the sky. The suc-
cess of a weak lensing survey is therefore dependent on
the statistic chosen to analyze the data.

In the following, we imagine a screen of background
galaxies, modelled as extended ellipsoidal objects. The
light from these galaxies is lensed by a foreground cosmic
string.

Let us first consider the metric of a straight string with-
out small-scale structure (no “wiggles”) which is charac-
terized by a string tension \(T \) which is equal to the optical
axis, and derive the consequences for weak gravitational lensing in this space-time.

We will use standard notation where \(D_o \) is the distance from
observer to source plane and \(D_L \) the distance from
observer to lens. For convenience, in cylindrical coordi-
nates the \(z \) axis will lie along the direction of the string.
The optical axis is chosen as the \(x \) direction. Conse-
quently, the source and image planes will be parallel to
the \(y-z \) plane, consistent with this choice of coordinates.

The deflection angle is defined as in the Schwarzschild
case, namely as the deviation of a null geodesic from a
source at infinity to an observer at infinity but propagat-
ing in the wiggly string metric. The deflection due to the
small scale structure of the string is then defined as the
deviation from null geodesics propagating in a straight
string space-time.

A. Null Geodesics

For an infinite string lying along the \(z \)-axis the linear-
ized wiggly string metric in cylindrical coordinates is
\[ds^2 = -(1 + h_{00})dt^2 + dr^2 + (1 - h_{00})dz^2 + \omega^2 r^2 d\theta^2, \] (4)

where
\[h_{00} = 4G(\mu - T)\ln(r/r_0), \] (5)
\[\omega^2 \equiv 1 - 4G(\mu + T), \] (6)

\(G \) is the gravitational constant, and \(r_0 \) an integration
constant [16] which will not be relevant in our analysis.

Using the Lagrangian
\[\mathcal{L} = \frac{1}{2}g_{\mu\nu}\dot{x}^\mu\dot{x}^\nu \] (7)
and the corresponding Euler-Lagrange equations we find the constants of motion

\[L = \omega^2 r^2 \dot{\theta}, \]
\[K = (1 + h_{00}) \dot{t}, \]
\[M = (1 - h_{00}) \dot{\varphi}. \]

Making use of (8), (9) and (10) we can find an effective Lagrangian

\[\mathcal{L}_{eff} = \frac{1}{2} \left(-\frac{K^2}{1 + h_{00}} + \dot{r}^2 + \frac{M^2}{1 - h_{00}} + \frac{L^2}{\omega^2 r^2} \right). \]

Using the condition \(2\mathcal{L}_{eff} = 0 \) for null geodesics, we obtain the equation of motion in terms of the radial variable,

\[\ddot{r} = \frac{K^2}{1 + h_{00}} - \frac{M^2}{1 - h_{00}} - \frac{L^2}{\omega^2 r^2}. \]

We now reparametrize in terms of \(\theta \), defining \(r' = r/\dot{\theta} \). Using the change of variables \(r \to 1/u \) and differentiating once, (11) can be rewritten

\[u'' = -\omega^2 u - \frac{2G(\mu - T)\omega^4}{L^2 u} \left[\frac{K^2}{(1 + h_{00})^2} + \frac{M^2}{(1 - h_{00})^2} \right], \]

where \(h_{00} = 4G(\mu - T)\ln(u_0/u) \).

B. Zeroth Order Solution (Straight String Contribution)

Now proceed perturbatively by setting

\[u = u(0) + u(1), \]

where the subscript denotes the power in our expansion parameter, namely the magnitude of the small scale structure, \(G(\mu - T) \).

At zeroth order, (13) reduces to

\[u''(0) = -\omega^2 u(0). \]

The initial conditions are specified by demanding \(u(0) \equiv b^{-1} \), where \(b \) is the impact parameter. Solving (15) yields

\[u(0)(\theta) = b^{-1}\cos(\omega \theta). \]

C. First Order Solution (Contribution of Wiggles)

Expanding (13) to first order and substituting the zeroth order result (16), we find

\[u''(0) = -\omega^2 u(0) + \frac{C}{\cos(\omega \theta)}, \]

where

\[C = -\frac{2G(\mu - T)\omega^4 b(K^2 + M^2)}{L^2}. \]

This has the general solution

\[u(1)(\theta) = C_1 \cos(\omega \theta) + C_2 \sin(\omega \theta) \]
\[+ \frac{C}{\omega^2} (\omega \theta \sin(\omega \theta) + \cos(\omega \theta) \ln(\cos(\omega \theta))), \]

where \(C_1, C_2 \) are integration constants. Applying the boundary conditions

\[u(1)(0) = u(1)(0) = 0 \]

at the point of nearest approach we find

\[u(1)(\theta) = \frac{C}{\omega^2} (\omega \theta \sin(\omega \theta) + \cos(\omega \theta) \ln(\cos(\omega \theta))). \]

D. Deflection Angle

To calculate the deflection angle we consider the deviation

\[\Delta \theta \equiv \frac{\pi}{2} - \theta \]

at small values of \(u \) \((r \to \infty) \). This quantity is then doubled since the deflection angle is defined as the deviation due to light propagating from \(-\infty \to \infty \).

First, consider the deflection angle for a straight string without small-scale structure, i.e. working with the unperturbed solution \(u_0 \). Setting \(u_0(\theta) = 0 \) and expanding by using the fact that \(\Delta \theta < 1 \) we find a deflection angle

\[\alpha_s = 2\Delta \theta = 2\pi G(\mu + T), \]

the standard result.

Next, we move on to the case of the wiggly string. As above, we set \(u = u_0 + u(1) = 0 \) for \(\theta \approx \frac{\pi}{2} \) and solve for \(\Delta \theta \) (defined above). In this approximation \(\sin(\omega \theta) \approx 1 \) and \(\cos(\omega \theta) \approx \omega \Delta \theta \). Hence \(u_0(\theta) = b^{-1} \omega \Delta \theta \) and the leading term for the first order perturbation is

\[u(1) \approx \frac{C}{2\omega} \]

This yields a deviation

\[\Delta \theta = -\frac{C b \pi}{2\omega}, \]

and a deflection angle

\[\alpha_w = 2\Delta \theta \approx -2G(\mu - T)\omega^2 b^2 \pi \left(\frac{K^2 + M^2}{L^2} \right). \]

Using the null condition and evaluating the constants of the motion at \(\theta = 0 \) yields the deflection angle due to string structure

\[\alpha_w = \frac{2\pi G(\mu - T)}{\omega^2} \left(2 \left(\frac{\pi}{b \theta} \right)^2 + 1 \right). \]

This is a constant deflection term, plus a term that is position dependent which may lead to some shearing.
E. Initial Conditions

We evaluate the initial conditions for the zeroth order geodesic, and use these to calculate the first order deflection. At zeroth order, geodesics are straight lines so we will work in Cartesian coordinates. Parametrizing the geodesic for $0 < \lambda < 1$, where $\lambda = 0$ corresponds to the source position and $\lambda = 1$ corresponds to the observer yields

\begin{align}
 x &= (D_L - D_S) + \lambda D_S, \\
 y &= y_0 - \lambda y_0, \\
 z &= z_0 - \lambda z_0.
\end{align}

From the geometry (Fig. 1) we find

\begin{equation}
 \theta = \Psi - \tan^{-1}\left(\frac{y}{x}\right),
\end{equation}

where $\Psi(b, D_L)$. Differentiation with respect to λ yields

\begin{equation}
 \dot{\theta} = \frac{y \dot{x} - \dot{y} x}{x^2 + y^2}.
\end{equation}

Substituting (30) and evaluating at $\theta = 0$ yields

\begin{equation}
 \dot{\theta} = \frac{D^2_S + y_0^2}{D_L y_0}.
\end{equation}

Substituting into (27) yields

\begin{equation}
 \alpha_w = \frac{2\pi G(\mu - T)}{\omega^2} \left(\frac{2z_0^2}{D^2_S + y_0^2} + 1 \right).
\end{equation}

III. Results

A. Ellipticity Axis Distribution as a Weak Lensing Statistic

In order to search for cosmic string lensing we propose using the ellipticity axis distribution (EAD) defined as follows. Consider an elliptical object in the image plane with ellipticity $\epsilon \equiv b/a$ where b, a are the semi-minor and semi-major axes respectively. Define the ellipticity vector $\vec{\epsilon}$ as a unit vector lying in direction of the major axis of the ellipse. Now define the ellipticity axis angle (EAA) ϕ via

\begin{equation}
 \phi = \cos^{-1}(\vec{\epsilon} \cdot \vec{z}),
\end{equation}

where we have chosen to measure the angle with respect to the unit vector \vec{z}. The ellipticity axis angle is hence a measure of the orientation of an ellipse’s major axis in the image plane. We will call the distribution of EAA for a set of objects the ellipticity axis distribution (EAD).

In an un-lensed region, one would expect a uniform EAD due to isotropy. However, we will show that cosmic string lensing is predicted to produce a peak in the EAD for a subset of sources.

B. Shearing of a nearly circular source

We now examine how (34) leads to a specific signature in the EAD of nearly circular sources. We will call a source nearly circular if it is to first order circular in shape (i.e. $z^2 + y^2 \approx r^2$), but unlike a circle has a well defined EAA. The radius of this source is r.

Consider such a source in Cartesian coordinates centered at $(D_S, 0, D_S)$. Points on the surface of the object have coordinates

\begin{equation}
 (D_S, y, D_S + z) = (D_S, r \sin(\phi), D_S + r \cos(\phi)),
\end{equation}

for $0 < \phi < 2\pi$. We want to find the point where the radius change of the image is maximized. Expanding (34) to first order in r we find the non-constant part of the deflection to be

\begin{equation}
 \alpha_\Delta = kr \cos(\phi),
\end{equation}

where $k = \frac{8\pi G(\mu - T)}{\omega^2 D_S}$. The radius of the image point is then approximately $R^2 = z^2 + (y + \alpha_\Delta D_S)^2$ where we
have used the fact that the z coordinate is unaffected by the lens and the non-constant shift in the y direction is Δy ≈ αΔDS. Expanding to first order in α yields

\[R^2 = r^2 + 2kr^2DS\sin(\phi)\cos(\phi), \]

(38)

where we have used the nearly circular property of the source. Differentiating we find

\[R\frac{dR}{d\phi} = k(\cos^2(\phi) - \sin^2(\phi))r^2. \]

(39)

Hence R is extremized at \(\phi = \pi/4 \), and it is easy to check that this is a maximum. For nearly circular sources this admits the possibility that the EAD will have a sharp peak because the EAA of the images will preferentially be at \(\phi = \pi/4 \) since this is the angle at which the greatest shearing occurs. In contrast, an object centered at the position \((D_S, 0, -D_S)\) would experience a shear which would lead to an EAD peaked at \(\phi = -\pi/4 \).

C. Lensing simulation

The goal was to determine the threshold ellipticity of galaxies which would produce a detectable signal in the EAD. We begin with a short description of the code.

The source plane is created by forming a regularly spaced lattice and placing a galaxy centered at each lattice point. The lensing map is applied to each galaxy in the source plane to produce the image plane. The ellipticity angle of each galaxy is measured by identifying the major axis and using Eq. (35). These results are compiled to the upper range allowed by the current constraints on the source plane to produce the image plane. The ellipticity magnitude \(\epsilon \) is uniformly distributed along the z direction, the lensing mass is not uniformly distributed along the z direction, the lensing angle distribution would be less regular, thus allowing a discrimination between the signals from a string and from a line of Schwarzschild lenses. Hence, because of the huge degeneracy of this problem, it seems premature to attempt an analysis without actual data. We conclude that this lensing signature be used as a first step in subsequent analyses of weak lensing surveys, and that more rigorous analysis, in particular searching for the strong lensing effect caused by the deficit cone, be used to pin-

FIG. 2: EAD of the source plane corresponding to a random choice of ellipticity axes in the interval \([-\pi/2, \pi/2]\) (uniform measure).

a corresponding increase in \(t \), the threshold ellipticity. At fixed \(t \), decreasing the value of \(z \) caused the signal to gradually vanish.

D. Search Strategy

To search for this effect one might first divide the sky into a grid and find the EAD of sources with ellipticity \(\epsilon \in [t, 1] \) in each grid square. Then determine the peak in the EAD of each grid square and search for a linear distribution of grid squares where the EAD peak varies from \(-\pi/4\) to \(\pi/4\) across the distribution. This would signal the presence of a cosmic string stretching across the linear distribution of grid squares.

Searching for this lensing effect can therefore be used to set bounds on the small scale structure of any potential cosmic strings in our Hubble volume. In the optimistic case that this effect is observed, it would provide a motivation and starting point to search for the unique strong lensing signature of a straight cosmic string.

It is important to point out that a combination of ordinary Schwarzschild lenses could in principle produce a similar EAD signature. Since the lensing mass is not uniformly distributed along the z direction, the lensing angle distribution would be less regular, thus allowing a discrimination between the signals from a string and from a line of Schwarzschild lenses. However, because of the huge degeneracy of this problem, it seems premature to attempt an analysis without actual data. We conclude that this lensing signature be used as a first step in subsequent analyses of weak lensing surveys, and that more rigorous analysis, in particular searching for the strong lensing effect caused by the deficit cone, be used to pin-
point the exact location of the string.

IV. CONCLUSIONS

In this work we have studied the gravitational lensing by a straight cosmic string containing small-scale structure which leads to a string tension which is less than the mass per unit length of the string, and thus induces a net gravitational force towards the string which test particles feel.

Next, we studied potential weak lensing signatures of such wiggly strings. We found a shape distortion which is proportional to $G(\mu - T)$ but depends on the location of the source relative to the line of sight between the observer and the string. Only objects which are displaced in direction of the string relative to the line of sight give rise to a shape distortion. The shape distortion increases linearly as the distance in string direction increases.

The specific distribution of the weak lensing distortion in the image plane in principle can be used to provide a signature for cosmic strings. However, in practise the signal appears to be too small to be useful. Even for optimal choices of parameters (galaxy redshifts comparable to those of galaxies in the largest current redshift surveys), distance from the line of sight comparable to the distance of the string from the observer, large amount of small scale structure and string tension close to the current observational bounds, the intrinsic ellipticity of the background galaxies needs to be very close to one (i.e. the shape needs to be very close to spherical) in order for the cosmic string signal to stand out.

Acknowledgments

This work is supported in part by a NSERC Discovery Grant, by funds from the Canada Research Chair Program, and by a FQRNT Team Grant.

[1] T. W. B. Kibble, “Topology Of Cosmic Domains And Strings,” J. Phys. A 9, 1387 (1976);
Y. B. Zeldovich, “Cosmological fluctuations produced near a singularity,” Mon. Not. Roy. Astron. Soc. 192, 663 (1980);
A. Vilenkin, “Cosmological Density Fluctuations Produced By Vacuum Strings,” Phys. Rev. Lett. 46, 1169 (1981) [Erratum-ibid. 46, 1496 (1981)].
[2] R. Jeannerot, “A Supersymmetric SO(10) Model with Inflation and Cosmic Strings,” Phys. Rev. D 53, 5426 (1996) [arXiv:hep-ph/9509365];
R. Jeannerot, J. Rocher and M. Sakellariadou, “How generic is cosmic string formation in SUSY GUTs,” Phys. Rev. D 68, 103514 (2003) [arXiv:hep-ph/0308134].
[3] E. Witten, “Cosmic Superstrings,” Phys. Lett. B 153, 243 (1985).
[4] E. J. Copeland, R. C. Myers and J. Polchinski, “Cosmic F- and D-strings,” JHEP 0406, 013 (2004) [arXiv:hep-th/0312067].
[5] S. Sarangi and S. H. H. Tye, “Cosmic string production towards the end of brane inflation,” Phys. Lett. B 536, 185 (2002) [arXiv:hep-th/0204074].
[6] C. P. Burgess, “Inflatable string theory?,” Pramana 63, 1269 (2004) [arXiv:hep-th/0408037];
J. M. Cline, “Inflation from string theory,” [arXiv:hep-th/0501179].
[7] A. Linde, “Inflation and string cosmology,” eConf C040802, L024 (2004) [arXiv:hep-th/0503196].
[8] R. H. Brandenberger and C. Vafa, “Superstrings In The Early Universe,” Nucl. Phys. B 316, 391 (1989).
[9] A. Nayeri, R. H. Brandenberger and C. Vafa, “Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology,” Phys. Rev. Lett. 97, 021302 (2006) [arXiv:hep-th/0511140];
R. H. Brandenberger, A. Nayeri, S. P. Patil and C. Vafa, “String gas cosmology and structure formation,” arXiv:hep-th/0608121.
[10] N. Turok and R. H. Brandenberger, “Cosmic Strings And The Formation Of Galaxies And Clusters Of Galaxies,” Phys. Rev. D 33, 2175 (1986);
H. Sato, “Galaxy Formation by Cosmic Strings,” Prog. Theor. Phys. 75, 1342 (1986);
A. Stebbins, “Cosmic Strings and Cold Matter”, Ap. J. (Lett.) 303, L21 (1986).
[11] A. Vilenkin and E.P.S. Shellard; Cosmic Strings and Other Topological Defects, (Cambridge Univ. Press, Cambridge, 1994); M. B. Hindmarsh and T. W. Kibble, “Cosmic strings,” Rept. Prog. Phys. 58, 477 (1995) [arXiv:hep-th/9411342].
R. H. Brandenberger, “Topological defects and structure formation,” Int. J. Mod. Phys. A 9, 2117 (1994) [arXiv:astro-ph/9310041].

[11] L. Pogosian, S. H. H. Tye, I. Wasserman and M. Wyman, “Observational constraints on cosmic string production during brane inflation,” Phys. Rev. D 68, 023506 (2003) [Erratum-ibid. D 73, 089904 (2006)] [arXiv:hep-th/0304188];
M. Wyman, L. Pogosian and I. Wasserman, “Bounds on cosmic strings from WMAP and SDSS,” Phys. Rev. D 72, 023513 (2005) [Erratum-ibid. D 73, 089905 (2006)] [arXiv:astro-ph/0503364];
A. A. Fraisse, “Constraints on topological defects energy density from first year WMAP results,” arXiv:astro-ph/0503402.

[12] S. Amsel, J. Berger and R. H. Brandenberger, “Detecting Cosmic Strings in the CMB with the Canny Algorithm,” arXiv:0709.0982 [astro-ph].

[13] A. A. Fraisse, C. Ringeval, D. N. Spergel and F. R. Bouchet, “Small-Angle CMB Temperature Anisotropies Induced by Cosmic Strings,” arXiv:0708.1102 [astro-ph].

[14] N. Kaiser and A. Stebbins, “Microwave Anisotropy Due To Cosmic Strings,” Nature 310, 391 (1984).

[15] P. Schneider, J. Ehlers and E. Falco, Gravitational Lenses (Springer, New York, 1992); P. Schneider, “Cosmological Applications of Gravitational Lensing,” arXiv:astro-ph/9512047.

[16] A. Vilenkin, “Gravitational Field Of Vacuum Domain Walls And Strings,” Phys. Rev. D 23, 852 (1981).

[17] L. Cowie and E. Hu, “The formation of families of twin galaxies by string loops,” Astrophys. J. (Lett.) 318, L33 (1987).

[18] M. Sazhin et al., “CSL-1: a chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?,” Mon. Not. Roy. Astron. Soc. 343, 353 (2003) [arXiv:astro-ph/0302547].

[19] M. V. Sazhin, M. Capaccioli, G. Longo, M. Paolillo and O. S. Khovanskaya, “The true nature of CSL-1,” arXiv:astro-ph/0601494.

[20] A. Vilenkin, “Cosmic Strings As Gravitational Lenses,” Astrophys. J. 282, L51 (1984).

[21] C. Hogan and R. Narayan, “Gravitational lensing by cosmic strings”, MNRAS 211, 575 (1984).

[22] J. R. I. Gott, “Gravitational lensing effects of vacuum strings: Exact solutions,” Astrophys. J. 288, 422 (1985).

[23] B. Paczynski, “Will cosmic strings be discovered using the Space Telescope?”, Nature 319, 567 (1986).

[24] C. C. Dyer and F. R. Marleau, “Complete model of a selfgravitating cosmic string. 1: A New class of exact solutions and gravitational lensing,” Phys. Rev. D 52, 5588 (1995) [arXiv:astro-ph/9411087].

[25] A. A. de Laix and T. Vachaspati, “Gravitational lensing by cosmic string loops,” Phys. Rev. D 54, 4780 (1996) [arXiv:astro-ph/9605171].

[26] K. J. Mack, D. H. Wesley and L. J. King, “Observing cosmic string loops with gravitational lensing surveys,” arXiv:astro-ph/0702648.

[27] M. Hindmarsh, “Searching For Cosmic Strings,” In *Cambridge 1989, Proceedings, The formation and evolution of cosmic strings* 527-542. (see HIGH ENERGY PHYSICS INDEX 29 (1991) No. 7720)

[28] Y. Shirasaki et al., “Searching for a long cosmic string through the gravitational lensing effect,” arXiv:astro-ph/0305353.

[29] M. Bartelmann and P. Schneider, “Weak Gravitational Lensing,” Phys. Rept. 340, 291 (2001) [arXiv:astro-ph/9912508].