The role of SOX9 in non-small cell lung cancer progression is histopathology-selective

Jie Bao¹, Katja Närhi¹², Ana Teodòsio³, Annabrita Hemmes¹, Nora M Linnavirta¹, Mikko I Mäyränpää⁴⁵, Kaisa Salmenkivi⁵, John Le Quesne³⁶ and Emmy W Verschuren¹,*

¹ Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
² GlaxoSmithKline, Espoo, Finland
³ MRC Toxicology Unit, University of Cambridge, United Kingdom
⁴ HUSLAB, Division of Pathology, Helsinki University Hospital, Helsinki, Finland
⁵ Department of Pathology, University of Helsinki, Helsinki, Finland
⁶ Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom

*Correspondence to: EW Verschuren, Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland. E-mail: emmy.verschuren@helsinki.fi

Running title: Histopathology-selective roles of SOX9 in lung cancer progression

No conflicts of interest were declared

Word count for the main text: 3880
Histopathology-selective roles of SOX9 in lung cancer progression

Abstract

The transcription factor SOX9 is a key regulator of multiple developmental processes, and is frequently re-expressed in non-small cell lung cancer (NSCLC). Its precise role in the progression of NSCLC histopathologies has however remained elusive. We show that SOX9 expression relates to poor outcome and invasive histopathology in human adenocarcinomas, and is absent in murine early minimally invasive and human in situ adenocarcinoma. Interestingly, despite wide SOX9 expression across advanced NSCLC histotypes, its genetic deletion in the murine \(Kras^{G12D};Lkb1^{-/-} \) model selectively disrupted only the growth of papillary NSCLC, without affecting the initiation of precursor lesions or growth of mucinous or squamous tissue. Spatial tissue phenotyping indicated a requirement of SOX9 expression for the progression of surfactant protein C-expressing progenitor cells, which gave rise to papillary tumours. Intriguingly, while SOX9 expression was dispensable for squamous tissue formation, its loss in fact led to enhanced squamous tumour metastasis, which was associated with altered collagen IV deposition in the basement membrane. Our work therefore demonstrates histopathology-selective roles for SOX9 in NSCLC progression, namely a requirement for papillary adenocarcinoma progression, but opposing metastasis-suppressing function in squamous histotype tissue. This attests to a pleiotropic SOX9 function, linked to the cell of origin and microenvironmental tissue contexts.

Keywords: SOX9, non-small cell lung cancer, histopathology, cell of origin, metastasis, extracellular matrix, collagen IV, *in vivo* models
Histopathology-selective roles of SOX9 in lung cancer progression

Introduction

Lung cancer remains the leading cause of cancer-related mortality, the majority of which represent non-small cell lung cancer (NSCLC; 85%). NSCLC is subdivided via its two major histotypes, adenocarcinoma (AC) and squamous cell carcinoma (SCC), of which the AC group is most heterogeneous [1-4]. ACs are further subdivided based on the tissue’s predominant histotype structure, particularly papillary AC (PAC), mucinous AC (MAC), and acinar AC (AAC) [5]. Certain driver mutations are selectively enriched in these AC subtypes. For example, *KEAP1* mutation or *NRF2* overexpression occurs more frequently in PACs when compared to total NSCLCs, and *KRAS, EGFR* or *ALK* mutations have respectively been associated with mucinous, lepidic growth, or signet ring structure [6, 7]. Molecular and genetic functions therefore need to be interpreted within these histopathology-specific tissue contexts.

The transcription factor SOX9 is a member of the SOX (sex-determining region Y-related) family [8], and regulates a variety of developmental processes [9-11]. During murine lung development, SOX9 is expressed in a timed manner to coordinate lung branching morphogenesis and alveolar differentiation [12, 13]. SOX9 is silenced in adult tissues but frequently re-expressed in cancer, where it has been associated with increased cell proliferation, transcriptional reprogramming and self-renewal of stem cells, and increased cell invasiveness and drug resistance [14-17]. The *SOX9* gene resides on the long arm of chromosome 17 (17q24.3), which is frequently gained in non-smokers with lung AC [18]. In patients, elevated SOX9 expression has been associated with poor survival and advanced clinical NSCLC stage, and its expression was shown to promote the proliferation of AC cells *in vitro* through affecting the CDKN1A and CDK4 cell cycle regulators [19, 20]. However, while many studies find oncogenic roles for SOX9, supporting its therapeutic targeting, also the downregulation of SOX9 has been linked to relapse of prostate cancer [21] and stage II colon cancer [22], indicating that SOX9 has pleiotropic functions. Despite NSCLC constituting a heterogeneous
Histopathology-selective roles of SOX9 in lung cancer progression

set of diseases, the potential histopathology-selective role of SOX9 in NSCLC progression has thus far not been studied.

Distinct sets of developmental signals and transcription factors are expressed in different lung progenitor cells, and thereby exert lineage-specific functions [23]. In recent years, the ways in which different cells of origin influence NSCLC progression have been addressed by applying genetically engineered mouse models [24]. Using adenovirus-mediated Cre-recombination, we previously showed that conditional \(\text{Kras}^{G12D} \) expression combined with loss of \(\text{Lkb1} \) in bronchial progenitors expressing Clara cell antigen 10 (CC10) gives rise to a wide NSCLC histotype spectrum encompassing minimally invasive AC (IAC), MAC, AAC, PAC as well as adenosquamous carcinoma (ASC) [25], a rare NSCLC subtype exhibiting both SCC and AC features [26]. To the contrary, in alveolar type II (AT2) progenitors expressing surfactant protein C (SPC), the same genetic alterations mainly lead to IAC and PAC formation [25]. To study the histopathology-selective roles of SOX9 expression in NSCLC, we established heterozygous and homozygous conditional \(\text{Sox9} \) null \(\text{Kras}^{G12D},\text{Lkb1}^{-/-} \) cohorts, and examined how \(\text{Sox9} \) loss influenced the progression of lesions of distinct histotypes. We describe opposing histopathology-selective roles of SOX9 in NSCLC progression and metastasis, and link these to the cell of origin and tumour microenvironment contexts, with ramifications for future directions in therapeutic intervention.
Histopathology-selective roles of SOX9 in lung cancer progression

Materials and Methods

Human and murine tumour tissues
Breeding of $\text{Kras}^{G12D/+};\text{Lkb1}^{flox/flox}$ (Kras$^{G12D};\text{Lkb1}^{-/-}$) mice, genotyping, and lung tumour initiation by intranasal infection with progenitor cell-directed Ad5-Cre viruses were performed as previously described [23]. Kras$^{G12D};\text{Lkb1}^{-/-};\text{Sox9}^{+/-}$ and Kras$^{G12D};\text{Lkb1}^{-/-};\text{Sox9}^{-/-}$ cohorts were generated by crossing Kras$^{G12D};\text{Lkb1}^{-/-}$ and Sox9flox mice (B6.129S7-Sox9tm2Crm/J, The Jackson Laboratory). Sox9 genotypes were determined using the supplied protocol 29713 (standard PCR Assay - Sox9<tm1Crm>, The Jackson Laboratory). Animal handlings and studies were performed according to the guidelines from the Finnish National Board of Animal Experimentation, approved by the Experimental Animal Committee of the University of Helsinki and the State Provincial Office of Southern Finland (ESAVI/6365/2019). Formalin fixed paraffin embedded (FFPE) samples of human NSCLC SCC, ASC and PAC lesions were collected from the Helsinki Biobank’s pathology sample archive (Helsinki Biobank project number HBP2016002), and a tissue microarray (TMA-1) was constructed as previously described [27]. Tumour stages were determined by a certified thoracic pathologist, following American Joint Committee on Cancer (AJCC) criteria. Detailed information and raw data from the murine and human NSCLC sample analyses are provided in the supplementary material, Table S2 and S3. The large human adenocarcinoma TMA collection (TMA-2; 970 samples) was obtained from a continuous retrospective cohort of archival human lung adenocarcinoma tissue from University Hospital Leicester, under research ethics committee approval. Clinicopathological and follow-up data was obtained from regional and national databases, and all morphological assessments were performed by a subspecialty consultant diagnostic histopathologist.
Histopathology-selective roles of SOX9 in lung cancer progression

Tissue processing, immunohistochemistry (IHC) and image acquisition

Murine lung tumours were processed and embedded in paraffin as previously described [23]. FFPE tissue blocks containing whole murine lung or TMA blocks were cut as 4 µm thick sections. Two sequential sections were placed on one glass slide (SUPERFROST® PLUS, Thermo scientific, Ref J1800AMNZ), and labelled to mark the sectioning order. Adjacent tissue sections were each stained with one antibody. Standard IHC was performed with the primary antibodies listed in supplementary material, Table S1. For routine signal development, BrightVision poly-HP conjugated goat anti-rabbit IgG (Immunologic B.V., no dilution) was incubated at room temperature for 30 min. For developing the SOX2 signal, DaG-HRP (Santa Cruz Biotechnology sc2020, 1:100) was incubated at room temperature for 30 min. For signal detection, Bright-DAB Substrate Kit (Immunologic B.V.) was used. Whole slide bright-field scans of stained murine and clinical tissue sections were acquired by a digital slide scanner (Pannoramic 250, 3DHISTECH Ltd) using a 20x objective. 3 µm sections from the TMA-2 human adenocarcinoma cohort were duplex stained using a Ventana autostainer with antibodies for cytokeratin AE1/AE3 (1:250, #NCL-L-AE1/AE3, Leica detected with Roche discovery yellow chromogen) and SOX9 (1:10000, AP5535, Millipore detected with Roche discovery purple chromogen). Up to three 1 mm cores per tumour were analysed. Images of haematoxylin-counterstained images were acquired using a Hamamatsu nanozoomer.

Region-of-interest (ROI)-specific image analysis

Histopathology classification was performed in conjunction with an expert pathologist as previously described [23, 24]. The sizes of individual tumours and lung tissues were measured using Pannoramic CaseViewer (3DHISTECH Ltd). For image analysis, TIFF images of murine lungs with hematoxylin and eosin (H&E) and biomarker stainings on whole slide scans were exported using the Pannoramic CaseViewer (3DHISTECH Ltd) at a magnification of 1:2.
Histopathology-selective roles of SOX9 in lung cancer progression

Individual tumours on H&E-stained images were then outlined and annotated by their histotypes using ImageJ/Fiji [28] (‘Analyze’ -> ‘Tools’ -> ‘ROI manager’) to generate a ROI library for each murine sample. Images of serial sections stained with SOX9, Ki67, pAKT and pERK were registered to the nearby H&E images using our previously reported open-source software Spa-R [29], which allows ROI libraries to be applied to marker-stained images (with slight adjustments). For quantifying Ki-67 and SOX9-positive nuclei, individual tumours were exported as inverted 8-bit grayscale images and processed with a CellProfiler pipeline (www.cellprofiler.org) [30] built with nuclei segmentation, intensity measurement, threshold-based filtration, and percentage calculation modules. The parameters in the pipeline were specified for each staining. To measure pERK and pAKT staining in individual tumours, a workflow using Spa-R and ImageJ/Fiji, and thresholds decided by three independent immunohistochemistry experts, were implemented as before [29]. All raw results can be found in the supplementary material, Table S3. To mark Collagen IV fibres with red pseudo-colour, our in-house open-source Spa-Q software [29] was applied, using identical thresholds for all samples.

Image analysis of human adenocarcinoma cohort (TMA-2)

SOX9 duplex core images were quantified with a purpose-made Visiopharm app. In brief, images were segmented into epithelial and stromal elements using the yellow channel with manual assistance where necessary. Tumour cell nuclei were categorised as weak, negative, moderate or strong for purple SOX9 staining using human-defined cut-offs, and an H-score was calculated for each core (%weak + 2x%moderate + 3x%strong nuclei, yielding a score from 0-300). Ki-67 staining was performed with the Ventana pre-diluted ready-to-use kit, and assessed by a trained histopathologist.
Histopathology-selective roles of SOX9 in lung cancer progression

Statistical analysis
For clinical sample (TMA-1) and murine sample analysis, data visualisation and statistical analyses were performed with GraphPad Prism 8 (GraphPad Software, Inc. San Diego, USA). For statistical comparisons, one-way ANOVA multiple comparison (Kruskal-Wallis test, nonparametric test), unpaired t test (non-parametric Mann-Whitney test), or Fisher’s exact test was used. Statistical significance of survival was assessed with a Log-rank (Mantel-Cox) test. P values < 0.05 were considered significant. For the TMA-2 human adenocarcinoma cohort all statistics were performed in R. The cut-off for binarisation of SOX9 was obtained by a published method that has a greater power and lower bias than logrank optimisation in large data sets [31]. The proportional hazards assumption was tested by examination of log-log plots.
Histopathology-selective roles of SOX9 in lung cancer progression

Results

The correlation between SOX9 expression and NSCLC staging is histopathology-selective

To evaluate SOX9 expression in NSCLC histotypes according to their stages, we performed IHC analyses of TMAs encompassing 28 human lung SCCs, 13 human lung ASCs and 25 human lung PACs. SOX9 expression was not seen in normal lung tissues but observed in the tumour regions in most of all samples (SCC: 96%, ASC: 100%, PAC: 88%). This significantly contrasts with the expression of SOX2, a well-established genetic driver of SCC, which was more commonly detected in SCCs and ASCs than PACs (SCC: 85%, ASC: 100%, PAC: 8%) (Figure 1A). The SOX9 protein was mainly located in the nucleoplasm, but cytoplasmic/membranous expression was also observed, particularly in PACs (Figure 1A-B).

Based on visual scoring, we assigned each sample to a ‘SOX9-negative’, ‘SOX9-moderate’ or ‘SOX9-high’ category and grouped them by their clinical stages (Figure 1B-C). Among the three NSCLC histotypes, PACs contained the most SOX9-negative or -moderate cases, particularly in the lowest stage tumours (6/6 cases in stage I and 5/7 cases in stage II), whereas in SCCs and ASCs absence of SOX9 was only detected in one sample and at least half of all stage I-II cases were SOX9-high. Thus, a positive correlation between SOX9 expression and clinical stage was detected in PACs, but not in ASCs or SCCs.

To more deeply explore the relationship between SOX9 and the phenotype of human lung adenocarcinoma, we quantified the expression of SOX9 expression in epithelial tumour cell nuclei in a large cohort of 970 resected primary lung adenocarcinomas in tissue microarrays (Figure 1D). Interestingly, nuclear SOX9 levels were higher in mucinous than non-mucinous tumours (p<0.001), and cores with invasive growth patterns showed a non-significant trend towards higher levels of SOX9 expression selectively in non-mucinous samples (p=0.09 in non-mucinous; p=0.58 in mucinous) (Fig 1D-E). Finally, corroborating previous studies [19-
Histopathology-selective roles of SOX9 in lung cancer progression

20, 32], epithelial tumour cell proliferation assessed by the percentage of tumour nuclei expressing Ki-67 was significantly related to SOX9 expression (p=0.003) (Fig 1E), and in analysis of patient survival time after surgery higher median levels of SOX9 related to relatively poor outcome (Cox model HR=1.2, p=0.044) (supplementary material, Figure S1).

SOX9 is commonly expressed in advanced murine KrasG12D;Lkb1−/− tumours

We subsequently applied animal models to study the role of SOX9 in NSCLC histotype formation. As a first step, we examined SOX9 expression in tumours from KrasG12D;Lkb1−/− mice (KL mice characterised in [25], in this study named KLSwt). Most KLSwt histotypes, including ASC, MAC and PAC, displayed high SOX9 expression, but its expression was fully absent or low in IACs which are small and represent the least aggressive lesion type with low proliferation and oncogenic signalling activities (Figure 2; supplementary material, Figure S2A). Therefore, SOX9 expression levels in murine NSCLC histotypes were comparable to those in clinical NSCLC, showing absent or low expression in IAC or in situ non-mucinous adenocarcinomas and wide expression across all advanced NSCLC histotypes.

SOX9 expression is essential for papillary structure formation in KrasG12D;Lkb1−/− murine tumours

To investigate the impact of Sox9 loss on histotype formation, we established Sox9-deficient KrasG12D;Lkb1−/− cohorts, including KLShet (losing one floxed Sox9 allele) and KLSnull (losing two floxed alleles), following infection with either Ad5-CC10-Cre or Ad5-SPC-Cre viruses (Figure 3A).
Histopathology-selective roles of SOX9 in lung cancer progression

Kaplan-Meier survival analysis showed significantly longer survival of KLShet-SPC and KLSnull-SPC mice, as well as KLSnull-CC10 mice, compared to the relative KLSwt controls (Figure 3B). The increased life span of KLShet-SPC and KLSnull-SPC cohorts corresponded to a reduced PAC burden (Figure 3C), and no papillary tissue structure was observed in SOX9-negative tumours in these mice (Figure 3C; supplementary material, Figure S2C). In Ad5-CC10-Cre cohorts, Sox9 loss was associated with a shift in the major tumour burden from ASC to SCC tissue with large necrotic regions (Figure 3D). These SCC tumours were positive for the AC marker NKX2-1 and lacked SOX2 expression (supplementary material, Figure S2B), suggesting that these were derived from ASCs, and hence called SCC-like from here onwards.

Interestingly, only the formation of ASC with papillary AC cores, but not those with mucinous AC cores, was disrupted (Figure 3D and supplementary material, Figure S2C). Additionally, PAC was the only AC subtype normally present in KLSwt-CC10 mice that was absent following Sox9 loss (Figure 3D and supplementary material, Figure S2C).

Together, this data suggested that SOX9 expression was selectively required for the growth of papillary histotype tissue. In support of this conclusion, SOX9-positive tumours in both the Sox9null-SPC and -CC10 cohorts, explained by recombination escape known to arise in three-allelic compound mice [33], always showed a papillary tissue structure (supplementary material, Figure S3). As expected, based on the obligate role of LKB1 as a tumour suppressor in this model, we found no evidence for escape of Lkb1 recombination (IHC staining; data not shown). Importantly, in both the CC10- and SPC-infected cohorts, KLShet resembled KLSnull mice in terms of survival, histopathology spectra and tumour burden (Figure 3B-D; supplementary material, Figure S3C-D), together indicating that both heterozygous and homozygous Sox9 loss selectively disrupted papillary NSCLC histotype formation.
SOX9 expression is essential for the oncogenic transformation of cancer-initiating SPC+ cells

To understand why SOX9 selectively regulated the formation of papillary tissue structure, we studied the spatial expression of cell lineage markers and SOX9 in different tumour histotypes. In the Ad5-SPC-Cre cohorts, SPC, which marks AT2 progenitor cells and differentiated AT2 cells, was highly expressed in IACs, while SPC was absent or expressed at low levels in PACs (Figure 4A-B). Also in the Ad5-CC10-Cre cohorts, IACs were positive for SPC whereas PACs and papillary AC cores of ASCs showed negative to low SPC expression (Figure 4C-D; supplementary material, Figure S4A), indicating that also CC10-Cre induced the transformation of SPC+ cells. Other tumour histotypes found in Ad5-CC10-Cre cohorts that were not affected by Sox9 loss (Figure 3D), particularly mucinous and squamous tissue, were always SPC-negative (Figure 4D and supplementary material, Figure S4A). Interestingly, we further found that SPC expression was mutually exclusive with SOX9 expression in PACs as well as papillary AC cores of larger ASC tumours, and marked tumour subregions that lacked prominent papillary structure (Figure 4B and D). The concomitant appearance of papillary structure together with SPC loss upon SOX9 expression, together with the absence of PAC and papillary AC cores following Sox9 loss as shown in the section above, suggested that SOX9 was a driving force for papillary tumour progression from SPC+ progenitor cells (illustrated in Figure 4E).

SOX9 expression differently regulates AC and SCC tissue metastases

Given the previous links between SOX9 expression and invasion, we next asked how Sox9 loss affected the metastatic potential of NSCLC histotypes by analysing the mediastinal lymph nodes (supplementary material, Figure S4B-C). Metastases in KLS^{wt}-SPC (observed in 3/8
Histopathology-selective roles of SOX9 in lung cancer progression

KLSwt-SPC mice) were similar to those previously described \cite{32} and represented AC histotype tissue with papillary structure (supplementary material, Figure S4C). Metastases that eventually developed in KLSnull-SPC mice (4/19 mice, including 2 minimal metastases) were always SOX9-positive, suggesting that they had originated from PACs that had escaped \textit{Sox9} recombination (Figure 5A and C). Also, the KLShet-SPC mice developed frequent metastasis (12/17 mice, including 6 minimal metastasis), which could however not be linked to SOX9 status due to the heterozygous SOX9 expression. Importantly, as previously reported \cite{32}, squamous metastases were never detected in KLSwt-CC10 mice, but observed in 2/11 KLShet-CC10 and 2/13 KLSnull-CC10 mice (Figure 5B and D; supplementary material, Figure S4D). Three of the four mice carrying squamous metastases succumbed to their disease relatively early and within the survival range of control KLSwt mice. This analysis therefore suggested an overall reduction in AC metastases following \textit{Sox9} loss, linked to a block in PAC progression, mirrored by a notable increase in SCC-like metastases following \textit{Sox9} loss in murine NSCLC.

As SOX9 is known to regulate extracellular matrix (ECM) deposition, we next examined ECM features following Sox9 loss by staining of collagen IV (COLIV), a central component of the tumour basement membrane. COLIV was expressed in both IAC and PAC, but only in the latter it formed a linear structure, which was also observed in papillary SOX9-expressing tissue at metastatic sites (Figure 6A-B). This suggested that a precise alignment of COLIV, regulated by SOX9 expression, might be required for the actual growth and later invasiveness of PACs. On the other hand, in \textit{Sox9}wt ASCs, COLIV formed continuous boundaries around squamous tumour cell pockets (Figure 6C), while \textit{Sox9}null SCC-like tumours and the SCC regions of ASCs with mucinous AC cores showed thinner parallel COLIV fibres as well as granular and focal depositions (Figure 6D). A similar alteration in COLIV rearrangement was also observed in
Histopathology-selective roles of SOX9 in lung cancer progression

the SCC-like LN metastases (Figure 6D). Taken together, in murine PACs, Sox9 loss reduced primary papillary tumour progression and consequently their invasion, possibly related to an alteration in ECM deposition, while in squamous histotype the altered COLIV deposition following Sox9 loss in fact associated with an increase in tumour invasiveness and metastasis (illustrated in Figure 6E).
Histopathology-selective roles of SOX9 in lung cancer progression

Discussion

Re-expression of the lung developmental transcription factor SOX9 specifically in malignant lung tissues, in conjunction with the reported positive correlation of SOX9 expression levels with clinical NSCLC staging, renders SOX9 a good candidate for prognostic and therapeutic interrogation. We here studied the previously unexplored expression and role of SOX9 in NSCLC histotypes. We identified a trend towards elevated SOX9 expression in non-mucinous clinical invasive AC compared to in situ samples, as well as in murine PAC compared to IAC, with IAC constituting an early form of PAC. SOX9 was widely expressed across multiple invasive stage murine and clinical NSCLC histotypes, yet murine Sox9 loss only affected papillary structure formation, not the initiation or progression of other histotype lesions. The overarching conclusion of our work is therefore that the role of SOX9 in NSCLC is to be interpreted in a histotype-selective manner.

The expression of \(\text{Kras}^{G12D} \) combined with \(\text{Lkb1} \) loss in alveolar AT2 or bronchial Clara lung progenitor cells gives rise to a range of NSCLC histotype tumours. While the alveolar differentiation marker SPC was uniformly expressed in SOX9- IAC, its downregulation coincided with the appearance of papillary tissue structure, and SPC was completely absent in mature SOX9-expressing papillary tumour regions. A transition from alveolar de-differentiation to gradual SOX9 expression was similarly seen following oncogenic KRAS expression in organoids [34], and corroborates data showing that ectopic expression of SOX9 in embryonic lungs prevented AT2 cell differentiation [12,13], overall indicating that SOX9 expression intrinsically associates with AT2 lineage exit. Use of a conditional \(\text{Sox9} \) null model to address the role of SOX9 in NSCLC progression showed that \(\text{Sox9} \) loss disrupted the formation of PAC and papillary AC cores of ASC lesions, but not IAC or histotypes derived
Histopathology-selective roles of SOX9 in lung cancer progression

from bronchial progenitors. This therefore suggests that SOX9 expression is specifically required to drive the progression of lesions developed from a SPC+ cell of origin, leading to papillary NSCLC formation. Precisely how SOX9 drives AT2 lineage exit remains unclear, and an intriguing future direction would hence be to identify the lineage-specific SOX9 transcriptional network, and particularly its interplay with transcription factors known to regulate alveolar differentiation, such as FOXA2 [35-37]. Our study thus reveals a role of SOX9 in NSCLC progression that is selectively linked to the SPC+/AT2 lineage of cancer-initiating lung progenitor cells.

We showed that Sox9 loss decreased AC metastasis, which is consistent with a reported pro-metastatic role of SOX9 in multiple cancer types [38-40]. But surprisingly, the incidence of SCC metastasis increased following Sox9 loss. One mechanism in which SOX9 is involved in tumour metastasis is through regulating the expression and deposition of ECM components, including multiple collagens and laminins [14]. Our findings importantly suggest that SOX9-regulated ECM re-arrangements affect tumour invasiveness in different and microenvironmental context-dependent manners. We identified differential COLIV deposition, which marks tumour basement membranes, across NSCLC histotypes. Linear COLIV was observed in SOX9-expressing primary PACs and papillary metastatic LNs, but not in non-metastatic SOX9-negative IACs, suggesting that it is part of a supportive structure for papillary growth and metastasis upon SOX9 expression. On the other hand, in the SOX9-expressing squamous regions COLIV formed pocket structures surrounding the tumour islets, and these became discontinuous and granular in SOX-negative squamous region. Similar COLIV discontinuity has been previously linked to the progression of oral SCC [41], suggesting that disrupted squamous pocket structure is commonly associated with increased squamous invasiveness. Our study therefore depicts functional heterogeneity of SOX9 in NSCLC
Histopathology-selective roles of SOX9 in lung cancer progression

metastasis, namely a requirement for SOX9-associated matrix deposition in papillary histotype metastasis, but an opposing metastasis-suppressing function in squamous histotype tissue.

Analysis of Sox9 heterozygous null mice showed that loss of one Sox9 allele already disrupted papillary tissue formation. While Sox9 haploinsufficiency has not been previously described in cancer studies, loss of one Sox9 allele has been associated with defects in beta-cell development during murine pancreas organogenesis [42], as well as with defects in murine chondrocyte differentiation [43]. In humans, Sox9 haploinsufficiency caused by de novo heterozygous Sox9 mutation leads to a rare but severe form of skeletal dysplasia called campomelic dysplasia (CD) [44], and CD mutations can act in a dominant negative manner by disrupting the capacity of SOX9 to dimerise [45]. While our study demonstrates a similar allelic dosage effect of Sox9 in regulating NSCLC progression and metastasis, further studies are needed to understand whether this is associated with defective SOX9 dimerisation, and which are the target genes that essentially regulate histotype-selective effects during NSCLC progression.

Targeting transcription factors in cancer has been a long-standing challenge, yet the tumour cell-specific SOX9 expression renders it an attractive therapeutic target in NSCLC. Our results indicate that the inhibition of SOX9 could hamper the progression of early-stage ACs with SPC+/AT2 identity. Further study should address the effect of Sox9 loss subsequent to PAC formation, for example using a flippase-FRT and Cre-loxP dual-recombinase system [46], to learn whether SOX9 is similarly required for the progression or metastasis of already established PACs. If so, then this would provide additional support favouring development of SOX9 inhibitors to treat PAC progression. Small molecules that disrupt the protein-interaction function of the SOX18 vascular development regulator have recently become available [47]. A similar strategy could possibly be applied to identify small molecules that disrupt SOX9
Histopathology-selective roles of SOX9 in lung cancer progression

dimerisation or its binding to other lineage-specific transcription factors. However, while our study implies SOX9 as a potential anti-cancer target in papillary histotype NSCLC, Sox9 loss also associated with enhanced squamous tissue metastasis, emphasising that therapeutic considerations ought to consider the tumour’s histotype context and cannot simply adopt SOX9 positivity as a biomarker for response.

In conclusion, we demonstrate opposing requirements for SOX9 in different NSCLC histotypes, and shed light on a pleiotropic SOX9 function that links to different tumour progenitor cells and extracellular microenvironmental features. This provides a strong motivation to evaluate the prognostic value and therapeutic application of SOX9 in the context of NSCLC histopathology types.
Histopathology-selective roles of SOX9 in lung cancer progression

Acknowledgements

We thank the Digital and Molecular Pathology Unit supported by the University of Helsinki and Biocenter Finland, and the Laboratory Animal Centre for husbandry support. We thank Zhangyi He for performing statistical analysis on the TMA-2 dataset. Katja Välimäki is thanked for material support, Ashwini Nagaraj for advice, and Iris Lähdeniemi for reviewing the manuscript. Samples/data used for the research were obtained from the Helsinki Biobank, and we warmly thank all patients for consenting to archive their samples in the Biobank. Research was supported by the University of Helsinki Doctoral Programme in Biomedicine (JB); The Finnish Medical Foundation (MIM); MRC Toxicology Unit core funding (JLQ); Innovative Medicines Initiative Joint Undertaking grant agreement no. 115188, the resources of which are composed of a financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution (EWV); and the Academy of Finland grant 307111 (EWV).

Author contributions

JB, KN and EWV designed the study and planned the experiments. KN established the animal cohorts and started the experiments. JB conducted further experiments and performed histopathology-selective analyses. AT performed immunohistochemistry and quantification on the large clinical adenocarcinoma cohort. AH and NML assisted with animal health checks, genotyping, and tissue processing. AH performed image scanning. KS provided histopathological review of the murine tumours. MIM provided the grade information of clinical NSCLC samples. JLQ supervised the large clinical adenocarcinoma cohort analysis. JB and EWV wrote the manuscript, and EWV provided supervision.
Histopathology-selective roles of SOX9 in lung cancer progression

Data availability statement

The data that support the findings of this study, including murine tumour and TMA-1 analyses, are available as supplementary materials, Table S2-3. Data generated with TMA-2 is accessible by contacting the authors.
Histopathology-selective roles of SOX9 in lung cancer progression

References

1. Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. *J Clin Oncol* 2013; **31**: 992-1001.

2. Campbell JD, Alexandrov A, Kim J, *et al.* Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. *Nat Genet* 2016; **48**: 607-616.

3. Yanagisawa K, Shyr Y, Xu BJ, *et al.* Proteomic patterns of tumour subsets in non-small-cell lung cancer. *Lancet* 2003; **362**: 433-439.

4. Bhattacharjee A, Richards WG, Stauton J, *et al.* Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. *Proc Natl Acad Sci U S A* 2001; **98**: 13790-13795.

5. Travis WD, Brambilla E, Noguchi M, *et al.* International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. *J Thorac Oncol* 2011; **6**: 244-285.

6. Li QK, Singh A, Biswal S, *et al.* KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. *J Hum Genet* 2011; **56**: 230-234.

7. Kadota K, Yeh YC, D'Angelo SP, *et al.* Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. *Am J Surg Pathol* 2014; **38**: 1118-1127.

8. Wegner M. From head to toes: the multiple facets of Sox proteins. *Nucleic Acids Res* 1999; **27**: 1409-1420.
Histopathology-selective roles of SOX9 in lung cancer progression

9. Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* 2002; **16**: 2813-2828.

10. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. *Nature* 1994; **372**: 525-530.

11. Guven A, Kalebic N, Long KR, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. *Elife* 2020; **9**: e49808.

12. Chang DR, Martinez Alanis D, Miller RK, et al. Lung epithelial branching program antagonizes alveolar differentiation. *Proc Natl Acad Sci* 2013; **110**: 18042-18051.

13. Rockich BE, Hrycaj SM, Shih HP, et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. *Proc Natl Acad Sci* 2013; **110**: 4456-64.

14. Larsimont JC, Youssef KK, Sanchez-Danes A, et al. Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. *Cell Stem Cell* 2015; **17**: 60-73.

15. Aguilar-Medina M, Avendano-Felix M, Lizarraga-Verdugo E, et al. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. *J Oncol* 2019; **2019**: 6754040.

16. Sharma A, Cao EY, Kumar V, et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. *Nat Commun* 2018; **9**: 4931-4948.

17. Lin SC, Chou YT, Jiang SS, et al. Epigenetic Switch between SOX2 and SOX9 Regulates Cancer Cell Plasticity. *Cancer Res* 2016; **76**: 7036-7048.

18. Wong MP, Fung LF, Wang E, et al. Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. *Cancer* 2003; **97**: 1263-1270.
Histopathology-selective roles of SOX9 in lung cancer progression

19. Zhou CH, Ye LP, Ye SX, et al. Clinical significance of SOX9 in human non-small cell lung cancer progression and overall patient survival. *J Exp Clin Cancer Res* 2012; 31:18-27.

20. Jiang SS, Fang WT, Hou YH, et al. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. *Clin Cancer Res* 2010; 16: 4363-4373.

21. Burdelski C, Bujupi E, Tsourlakis MC, et al. Loss of SOX9 expression is associated with PSA recurrence in ERG-positive and PTEN deleted prostate cancers. *PLoS One* 2015; 10: e0128525.

22. Marcker Espersen ML, Linnemann D, Christensen IJ, et al. SOX9 expression predicts relapse of stage II colon cancer patients. *Hum Pathol* 2016; 52: 38-46.

23. Asselin-Labat ML and Filby CE. Adult lung stem cells and their contribution to lung tumourigenesis. *Open Biol* 2012; 2: 120094.

24. Ferone G, Song JY, Surtherlabd K, et al. Cells of origin of lung cancers: lessons from mouse studies. *Genes Dev* 2020; 34:1017-1032.

25. Nagaraj AS, Lahtela J, Hemmes A, et al. Cell of Origin Links Histotype Spectrum to Immune Microenvironment Diversity in Non-small-Cell Lung Cancer Driven by Mutant Kras and Loss of Lkb1. *Cell Rep* 2017; 18: 673-684.

26. Tochigi N, Dacic S, Nikiforova M, et al. Adenosquamous carcinoma of the lung: a microdissection study of KRAS and EGFR mutational and amplification status in a western patient population. *Am J Clin Pathol* 2011; 135: 783-789.

27. Narhi K, Nagaraj AS, Parri E, et al. Spatial aspects of oncogenic signalling determine the response to combination therapy in slice explants from Kras-driven lung tumours. *J Pathol* 2018; 245: 101-113.
Histopathology-selective roles of SOX9 in lung cancer progression

28. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. *Nat Methods* 2012; 9: 676-682.

29. Bao J, Walliander M, Kovács F, et al. Spa-RQ: an image analysis tool to visualise and quantify spatial phenotypes applied to non-small cell lung cancer. *Sci Rep* 2019; 9: 17613.

30. McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: Next-generation image processing for biology. *PLoS Biol* 2018; 16: e2005970.

31. Contal C and O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. *Computational Statistics & Data Analysis* 1999; 30(3): 253-70.

32. Aldaz P, Otaegi-Ugartemendia M, Saenz-Antoñanzas A, et al. SOX9 promotes tumour progression through the axis BMI1-p21 CIP. *Sci Rep* 2020; 10(1):1-2

33. Eichner LJ, Brun SN, Herzig S, Young NP, et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models. *Cell metabolism* 2019; 29: 285-302.

34. Dost AFM, Moye AL, Vedaie M, et al. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. *Cell Stem Cell* 2020; 27: 1-16.

35. Chung C, Kim T, Kim M, et al. Hippo-Foxa2 signaling pathway plays a role in peripheral lung maturation and surfactant homeostasis. *Proc Natl Acad Sci* 2013; 110: 7732-7737.

36. Tan Z, Niu B, Tsang KY, et al. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. *PLoS Genet* 2018; 14: e1007346.
Histopathology-selective roles of SOX9 in lung cancer progression

37. Jiang SS, Fang WT, Hou YH, et al. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. *Clin Cancer Res* 2010; **16**: 4363-4373.

38. Yang H, Geng YH, Wang P, *et al.* Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. *Oncogene* 2020; **39**: 5795-810.

39. Mateo F, Arenas EJ, Aguilar H, *et al.* Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. *Oncogene* 2017; **36**: 2737-49.

40. Malladi S, Macalinao DG, Jin X, *et al.* Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. *Cell* 2016; **165**: 45-60.32. Dubois CL, Shih HP, Seymour PA, *et al.* Sox9-haploinsufficiency causes glucose intolerance in mice. *PLoS One* 2011. **6**: e23131.

41. Agarwal P, Ballabh R. Expression of type IV collagen in different histological grades of oral squamous cell carcinoma: an immunohistochemical study. *J Cancer Res Ther* 2013; **9**: 272-275.

42. Dubois CL, Shih HP, Seymour PA, *et al.* Sox9-haploinsufficiency causes glucose intolerance in mice. *PLoS One* 2011; **6**(8): e23131.

43. Kohn A, Rutkowski TP, Liu Z, *et al.* Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9. *Bone research* 2015; **3**: 15021.

44. Bi W, Huang W, Whitworth DJ, *et al.* Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. *Proc Natl Acad Sci* 2001; **98**: 6698-6703.

45. Sock E, Pagon RA, Keymolen K, *et al.* Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. *Hum Mol Genet* 2003; **12**: 1439-1447.
Histopathology-selective roles of SOX9 in lung cancer progression

46. Schönhuber N, Seidler B, Schuck K, et al. A next-generation dual-recombinase system for time-and host-specific targeting of pancreatic cancer. *Nature medicine* 2014; 20(11):1340-7.

47. Fontaine F, Overman J, Moustaqil M, et al. Small-Molecule Inhibitors of the SOX18 Transcription Factor. *Cell Chem Biol* 2017; 24: 346-359.

Figure legends

Figure 1. Histopathology-selective correlation between SOX9 expression and NSCLC progression. (A) Schematic summary of SOX9 and SOX2 expression, evaluated by visual scoring, in TMA panels representing clinical SCCs, ASCs and PACs. (B) Representative images illustrating SOX9 expression in normal and malignant epithelial lung tissues. Scale bar: 20 µm. (C) Contingency bar plots show percentages of SOX9-negative, -moderate and -high cases in each histotype, and for NSCLC staging categories determined following American Joint Committee on Cancer (AJCC) criteria. Sample sizes are indicated above each bar. (D) Representative images of duplex-stained *in situ* or invasive adenocarcinoma tumour tissues in TMA-2. Yellow = cytokeratin, purple = SOX9, blue = haematoxylin. Cores are 1 mm across. Scale bars: 200 µm for original or 500 µm for magnified images. (E) Violin plots showing the relationship between SOX9 and mucinous phenotype and local invasiveness in stained tissue cores (left), and between SOX9 status and tumour cell proliferation quantified by nuclear Ki-67 expression (right).

Figure 2. SOX9 expression is highest in advanced *Kras^{G12D;Lkb1^{-/-};SOX9^{+/+}* murine NSCLC tumours. (A) Scatter dot plot showing SOX9 expression in individual tumours,
Histopathology-selective roles of SOX9 in lung cancer progression

grouped by histotype and calculated as percentages of SOX9-positive cells in total number of
tumour cells, from six KLS^{wt}-CC10 and eight KLS^{wt}-SPC mice. Numbers above scatter plots
indicate total tumour numbers. Statistical significance was assessed with One-way Anova (non-
parametric Kruskal-Wallis test): ****p < 0.0001. (B) Representative H&E images and SOX9
stainings, illustrating SOX9 expression in each histotype. Areas depicted in higher
magnification are outlined with black squares in the H&E images. Red dashed lines outline the
whole tumour regions, or separate SCC and AC regions within an ASC. Scale bars: 500 µm
for original or 10 µm for magnified images.

Figure 3. Sox9 loss disrupts the formation of papillary histotype tissue in Kras<sup>G12D;Lkb1^{-/-} NSCLC tumours. (A) Murine Sox9 loss-of-function and control cohorts established for this
study. (B) Kaplan-Meier survival curves for the indicated cohorts. Statistical significance was
assessed with Log-rank (Mantel-Cox) test: *p < 0.05, **p < 0.01. (C) Left: representative
images illustrating whole lung sections of individual mice from the indicated Ad5-SPC-Cre
cohorts, depicting H&E staining and corresponding SOX9 expression. Scale bars: 1000 µm.
Right: bar chart showing the histotype-selective tumour burden (% total histotype-specific
tumour region per lung) in the indicated cohorts. Numbers of mice that carry the specified
histotype are listed above each bar. In the KLS^{null}-SPC cohort, only SOX9-negative tumours
were plotted. Statistical significance was assessed with One-way Anova and non-parametric
Kruskal-Wallis test: *p < 0.05, ***p < 0.001. (D) Left: representative images illustrating whole
lung sections of individual mice from the indicated Ad5-CC10-Cre cohorts, depicting H&E
staining and corresponding SOX9 expression. Scale bars: 1000 µm. Right: bar chart showing
the histotype-selective tumour burden (% total histotype-specific tumour region per lung) in
Histopathology-selective roles of SOX9 in lung cancer progression

the indicated cohorts. Numbers of mice that carry the specified histotype are listed above each bar. In the KLS_{null}-CC10 cohort, only SOX9-negative tumours were plotted.

Figure 4. SOX9 expression drives the oncogenic transformation of SPC+ progenitors. (A) Representative images illustrating SOX9 and SPC stainings in the lung of a KLS^{wt}-SPC and a KLS_{null}-SPC mouse. More IACs were observed in the KLS_{null}-SPC mouse, which all expressed SPC. Scale bars: 1000 µm. (B) Upper: representative images of a tumour from a KLS_{null}-SPC mouse that had partially escaped Sox9 recombination. The papillary area outlined by the red dashed line contained SOX9-positive regions that were SPC-negative; the remaining IAC-like region was SPC-positive. Lower: representative images of a PAC from a KLS^{wt} mouse, depicting mutual exclusive expression of SOX9 and SPC. Scale bars: 100 µm. (C) Representative images illustrating SOX9 and SPC stainings in the lung of a KLS^{wt}-CC10 and a KLS_{null}-CC10 mouse. Arrowheads point to SPC-positive tumour regions. Scale bars: 1000 µm. (D) Representative images showing spatial SOX9 and SPC expression in tumours of the indicated histotypes detected in KLS^{wt}-CC10 mice. The red dashed line separates the SCC and AC regions within an ASC tumour. Arrowheads point to SOX9-negative, SPC-positive regions in a PAC and a papillary AC core region of an ASC. Scale bars: 100 µm. (E) Schematic explaining how SOX9 regulates murine NSCLC progression in a histotype-selective manner. Left: in KLS^{wt} mice, SPC+ AT2 cells, targeted by Ad5-SPC-Cre virus, give rise to SPC+ IACs. These IAC lesions gradually start to express SOX9 and this is essential for papillary tumour progression; the SPC+ identity is gradually lost when papillary tissue structure appears. Upon Ad5-CC10-cre infection, SPC+ IACs again develop, either from AT2 cells that are targeted by the CC10-cre virus or from trans-differentiated Clara or dual positive SPC+/CC10+ cells. SOX9 expression in papillary tissue corresponds with loss of SPC expression, giving rise to
Histopathology-selective roles of SOX9 in lung cancer progression

PACs or the papillary AC core of ASC. Lastly, transformation of CC10+ progenitor cells, which are mostly Clara cells, gives rise to MAC, AAC and ASC with mucinous AC core. Right: Sox9 loss selectively disrupts papillary histotype tissue formation in which transformed cells exhibit progression from a SPC+ to a SPC- status.

Figure 5. SOX9 expression differently regulates AC and SCC metastases. (A) Bar chart illustrating the proportion of total animals exhibiting no metastasis, minimal metastasis, or overt metastasis in the mediastinal lymph nodes (LNs) in the indicated Ad5-SPC-Cre cohorts. Total numbers of mice are listed above each bar. Metastases were all SOX9-positive, and all were adenocarcinoma. (B) Bar chart illustrating the proportion of total animals exhibiting no, minimal, or overt metastasis in the mediastinal LNs, subgrouped by SOX9 status, in the indicated Ad5-CC10-Cre cohorts. Total numbers of mice are listed above the bars. (C) Representative images illustrating minimal metastasis (only a small LN region infiltrated with tumour cells) and overt metastasis (LN structure severely disrupted) in Ad5-SPC-Cre cohorts; NKX2-1 indicates AC histotype tissue. Areas depicted in higher magnification are outlined with red dashed squares. Scale bars: 500 µm for original images or 100 µm for magnified images. (D) Representative images illustrating SCC-like metastases in Ad5-CC10-Cre cohorts; p63 indicates SCC histotype tissue. Areas depicted in higher magnification are outlined with red dashed squares. Scale bars: 500 µm for original images or 100 µm for magnified images.

Figure 6. Loss of SOX9 affects collagen IV deposition in a histotype-selective manner. (A) Representative images showing SOX9 and collagen IV (COLIV) expression in a KLS^{null}-SPC tumour with both PAC and IAC features. The red dashed line marks the papillary region. Squares mark the areas depicted in higher magnification. Scale bars: 100 µm for original
Histopathology-selective roles of SOX9 in lung cancer progression

images or 20 µm for magnified images. (B) Representative images showing SOX9 and COLIV expression in a LN metastasis with PAC features. Squares mark the areas depicted in higher magnification. Scale bars: 100 µm for original images or 20 µm for magnified images. (C) Representative images depicting the COLIV arrangement in a Sox9wt ASC with papillary AC core and a Sox9wt ASC with mucinous AC core. Squares mark the areas depicted in higher magnification. Scale bars: 1000 µm for original images or 20 µm for magnified images. (D) Representative images depicting the COLIV arrangement in a Sox9null ASC with mucinous AC core, a Sox9null SCC-like tumour, and a Sox9null SCC metastasis in the mediastinal LN (p63 staining of the same LN metastasis is shown in Fig. 5D). Altered COLIV deposition is detected selectively in SCC of ASC with mucinous AC core and SCC-like tissue. Squares mark the areas depicted in higher magnification. Scale bars: 1000 µm for original images or 20 µm for magnified images. (E) Schematic illustrating how SOX9 may regulate histotype-specific metastasis by influencing ECM (marked by COLIV) secretion/deposition. Linearised COLIV backbones form during IAC to PAC progression, which requires SOX9 expression. Sox9 loss disrupts PAC formation, and hence their subsequent metastasis. To the contrary, while COLIV fibres form continuous boundaries around squamous tumour cell pockets in Sox9wt SCC of ASC that may confine tumour invasiveness, they are re-oriented, or become granular/discontinuous following Sox9 loss, in SCC-like tumours or SCCs of ASCs with mucinous AC cores. This associates with an increase in the incidence of SCC-like metastasis, and these metastases similarly show altered COLIV deposition.
Figure 1

A

SOX9 96% SOX2 85%

Clinical SCC (28)

SOX9 100% SOX2 100%

Clinical ASC (13)

Clinical PAC (25)

B

SOX9 staining:
- Negative
- Moderate
- High
* Cytoplasmic/membranous

Normal lung

PAC

SOX9

SOX9

Moderate

Moderate*

High

High*

* Cytoplasmic/membranous

C

TMA of SCCs

Samples (%)

I II III IV

TMA of ASCs

Samples (%)

I II III IV

TMA of PACs

Samples (%)

I II III IV

SOX9 staining:
- Negative
- Moderate
- High

D

Multiplex IHC:
- Cytokeratin AE1/AE3
- SOX9

E

Pattern:
- In situ
- Invasive

Nuclear SOX9 expression

328 2053 33 148

p=0.09 p=0.58

Non-mucinous Mucinous

Tumour type

1732 585

p=0.003
Figure 2

A

SOX9-positive nuclei (%)

IAC MAC PAC ASC

**** ****

Individual KLS⁺⁺ tumour

B

Sample images showing different histological features:

- IAC
- PAC
- MAC
- SOX9
- Papillary core
- SCC of ASC
- Mucinous core
- SCC of ASC
Figure 3

A

Ad5-SPC/CC10-Cre virus

\[\text{Kras}^{G12D}, \text{Lkb}^{--}, \text{Sox}^{++} \]

\[\text{Kras}^{G12D}, \text{Lkb}^{--}, \text{Sox}^{++} \]

\[\text{Kras}^{G12D}, \text{Lkb}^{--}, \text{Sox}^{++} \]

\[\text{KLS}^{\text{wt}}-\text{SPC} \]

\[\text{KLS}^{\text{wt}}-\text{SPC} \]

\[\text{KLS}^{\text{null}}-\text{SPC} \]

\[\text{KLS}^{\text{wt}}-\text{CC10} \]

\[\text{KLS}^{\text{wt}}-\text{CC10} \]

\[\text{KLS}^{\text{null}}-\text{CC10} \]

\[\text{KLS}^{\text{null}}-\text{CC10} \]

B

Survival (%)

\[\text{KLS}^{\text{wt}}-\text{SPC} (8) \]

\[\text{KLS}^{\text{wt}}-\text{SPC} (17) \]

\[\text{KLS}^{\text{null}}-\text{SPC} (19) \]

\[\text{KLS}^{\text{wt}}-\text{CC10} (6) \]

\[\text{KLS}^{\text{wt}}-\text{CC10} (11) \]

\[\text{KLS}^{\text{null}}-\text{CC10} (13) \]

C

\[\text{KLS}^{\text{wt}}-\text{SPC} \]

\[\text{KLS}^{\text{wt}}-\text{SPC} \]

\[\text{KLS}^{\text{null}}-\text{SPC} \]

SOX9

SOX9

SOX9

D

\[\text{KLS}^{\text{wt}}-\text{CC10} \]

\[\text{KLS}^{\text{wt}}-\text{CC10} \]

\[\text{KLS}^{\text{null}}-\text{CC10} \]

SOX9

SOX9

SOX9

E

Tumour area in the lung (%)

\[\text{KLS}^{\text{wt}}-\text{SPC} (n=8) \]

\[\text{KLS}^{\text{wt}}-\text{SPC} (n=14) \]

\[\text{KLS}^{\text{null}}-\text{SPC} (n=13) \]

\[\text{IAC} \]

\[\text{PAC} \]

\[\text{IAC} \]

\[\text{MAC} \]

\[\text{PAC} \]

\[\text{ASC-papillary core} \]

\[\text{ASC-mucinous core} \]

\[\text{SCC-like} \]

\[\text{MAC} \]

\[\text{PAC} \]

\[\text{ASC-papillary core} \]

\[\text{ASC-mucinous core} \]

\[\text{SCC-like} \]

\[\text{MAC} \]

\[\text{PAC} \]

\[\text{ASC-papillary core} \]

\[\text{ASC-mucinous core} \]

\[\text{SCC-like} \]
Figure 5

A

Fraction of total mice (%)

	KLSind-SPC	KLSind-SPC	KLSind-SPC
No AC mets	8	17	19
AC minimal mets (SOX9+)	0	0	0
AC overt mets (SOX9+)	50	50	50

B

Fraction of total mice (%)

	KLSind-CC10	KLSind-CC10	KLSind-CC10
No mets	6	11	13
AC minimal mets (SOX9+)	0	0	0
SCC-like mets (SOX9+)	50	50	50
SCC-like mets (SOX9-)	50	50	50

C

AC mets in the LNs of Ad5-SPC-Cre mice

Minimal metastasis

- NKX2-1
- SOX9

Overt metastasis

- NKX2-1
- SOX9

D

SCC-like mets in the LNs of Ad5-CC10-Cre mice

- KLSind-CC10
 - p63
 - SOX9

- KLSind-CC10
 - p63
 - SOX9
Figure S1. Cox proportional hazards model of patient survival after surgery related to SOX9 expression. Higher median nuclear SOX9 expression is significantly associated with relatively poor overall survival in patients with lung AC after surgery.

Figure S2. Altered histopathology and tumour burden following heterozygous or homozygous Sox9 loss. (A) Three scatter dot plots summarising the size (left), proliferation rate (centre) and MAPK/AKT oncogenic signalling activities (right) in murine NSCLC histotypes. Stainings were performed on serial tissue sections and analysed by histopathology-guided analyses of individual tumours. Statistical significance was assessed with One-way Anova (non-parametric Kruskal-Wallis test): *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Representative images depicting marker stainings for murine ASC and SCC-like histotypes. NKX2-1: AC marker; p63: SCC marker. Scale bars: 100 µm. (C) Representative images depicting murine NSCLC histotype tissues from KLSwt and KLSnull cohorts that express or lack detectable SOX9. Scale bars: 10 µm. The red dashed line separates the AC and SCC regions within an ASC. PACs or ASCs with papillary AC cores were not detected in the absence of SOX9 expression.

Figure S3. Papillary histotype formation as a result of escaping Sox9 recombination in KLSnull cohorts. (A) Representative images of PAC tumours that developed following escape from Sox9 recombination in a KLSnull-SPC mouse. The red dashed line separates the papillary histotype region from its precursor IAC lesion. Scale bars: 1000 µm for full images and 20 µm for magnified images. (B) Representative images showing the appearance of an ASC with papillary AC core (left) and a PAC (right) that developed following escape from Sox9 recombination in two KLSnull-CC10 mice. Scale bars: 1000 µm for full images and 20 µm for
magnified images. (C) Contingency bar plot showing histotype-specific tumour burdens (% area of each histotype per lung) in eight KLS^{wt}-SPC, 14 KLS^{het}-SPC, and 13 KLS^{null}-SPC mice. All tumours, including those that escaped Sox9 recombination, are plotted. PACs found in KLS^{null}-SPC mice were always SOX9-positive. (D) Contingency bar plot showing histotype-specific tumour burdens (% area of each histotype per lung) in six KLS^{wt}-CC10, 11 KLS^{het}-CC10, and 12 KLS^{null}-CC10 mice. All tumours, including those that escaped Sox9 recombination, were plotted. PACs and ASCs with papillary AC cores detected in KLS^{null}-CC10 mice were always SOX9-positive.

Figure S4. The histopathology-selective effect of SOX9 on the progression and metastasis of murine NSCLC tumours. (A) Left: representative images of a KLS^{wt} lung lobe collected six weeks post Ad5-CC10-Cre infection. One small lesion was SOX9+/SPC- and had papillary structure, while another was SOX9-/SPC+ with IAC histotype features. Right: representative images of a KLS^{null} lung lobe collected six weeks post Ad5-CC10-Cre infection, where the highlighted small lesion was SOX9-/SPC- and SCC-like. Scale bars: 1000 µm for the lung overview image and 100 µm for the magnified images. (B) Representative H&E images showing resting and reactive mediastinal LNs (outlined with a red dashed line) and the macroscopic location of LNs collected in this study. The tissue under the resting LN represents the thymus. No metastasis was found in resting and reactive LNs, confirmed by staining with the AC marker NKX2-1 and SCC marker p63. Scale bars: 200 µm. (C) Representative images illustrating AC metastasis in a KLS^{wt}-SPC mouse. The metastatic tissue is NKX2-1+, SOX9+ and p63- in epithelial regions. Scale bars: 200 µm. (D) Representative images showing a mucinous minimal metastasis positive for the SCC marker p63, and an AC minimal metastasis positive for the AC marker NKX2-1 observed in KLS^{het}-CC10 mice. SOX9 staining was
positive in both cases. Outlined regions are represented in the magnifications. Scale bars: 500 µm for images showing entire LNs and 100 µm for magnifications.
Overall survival

Nuclear SOX9 expression

- Low
- High

Logrank $p=0.044$

Number at risk: n (%)

Months after surgery	Low (n)	High (n)
0	627 (100)	343 (100)
6	552 (88)	292 (85)
12	497 (79)	264 (77)
18	445 (71)	234 (68)
24	417 (67)	206 (69)
30	377 (60)	183 (53)
36	329 (52)	150 (44)
42	287 (46)	121 (35)
48	287 (46)	121 (35)
54	213 (34)	85 (25)
60	192 (31)	63 (18)
Figure S4

A. 6 weeks post Ad5-CC10-Cre infection

B. Reactive LNs

C. AC met in a KLS^{het}-SPC mouse

D. AC met in KLS^{het}CC10 cohort-mucinous feature

AC met in KLS^{het}CC10 cohort-papillary feature
Table S1. Primary antibodies used in the study (for TMA-1 and murine samples)

Antibody	Reference	Dilution	Validation method
Rabbit anti-SOX9	Millipore 5535	1:10000	positive and negative reference tissues (Kras^{GI2D};Lkb^{1−/−}; Sox9^{−/−} driven mouse lung tumours and normal murine epithelium)
Rabbit anti-Prosurfactant Protein C	Millipore 3786	1:2000	positive and negative reference tissues (normal murine epithelium and Kras^{GI2D};Lkb^{1−/−} driven IAC tumours, Kras^{GI2D};Lkb^{1−/−};Sox9^{−/−} driven SCC-like tumours)
Rabbit anti-Collagen IV	Ab 6586	1:1500	positive reference tissue (Kras^{GI2D};Lkb^{1−/−} ASC tumour)
Goat anti-SOX2	Santa Cruz Biotechnology sc 17320	1:200	positive reference tissue (TMA of clinical NSCLC SCC sample)
Rabbit anti-NKX2-1 (TTF-1)	Ab 133638	1:2000	positive reference tissue (Kras^{GI2D};Lkb^{1−/−} ASC tumour)
Rabbit anti-p63	Ab124762	1:10000	positive reference tissue (Kras^{GI2D};Lkb^{1−/−}, ASC tumor)
Rabbit anti-pAKT (S473)	CST 4058	1:400	PI3K/AKT inhibition (BEZ235) in murine NSCLC slice
Rabbit anti-p44/22 (Erk1/2)	CST 4370	1:1000	MEK inhibition in murine NSCLC slice; blocking peptide (from CST); positive reference tissue (embryonic lung day 14)
Rabbit anti-Ki67	Thermo Scientific RM-9106-S0	1:500	Positive reference tissue (murine embryonic tissue, Kras lung tumors)

For all the antibodies except anti-SPC (which did not require antigen retrieval), antigen retrieval was performed using 10mM sodium citrate pH 6.0. All antibodies except anti-SOX2 were incubated 1.5 h at room temperature while anti-SOX2 antibody was incubated overnight at 4°C.

CST = Cell Signaling Technology, Danvers, MA, USA

Ab = Abcam, Cambridge, UK
Supplementary Material, Table S2_Human_NSCLC_TMA_analyses

Figure 1A-C

Spot ID	SOX9	SOX2	Grade
SCC1	++	+	IA
SCC2	+	-	IA
SCC3	+	NA	IIA
SCC4	+	+	IA
SCC5	+	+	IA
SCC6	++	++	IA
SCC7	++	+	IA
SCC8	++	+	IA
SCC9	+	+	IIB
SCC10	++	+	IA
SCC11	+*	++	IA
SCC12	++	++	IIA
SCC13	+	+	IIB
SCC14	+	++	IV
SCC15	+	+	IIA
SCC16	++*	-	IIIA
SCC17	++	+	IIA
SCC18	+	++	IIA
SCC19	++	-	IIA
SCC20	+	+	IA
SCC21	+	+	IA
SCC22-A	++	+	IIB
SCC22-B	++	+	IIB
SCC23	++	++	IA
SCC24	++	+	IIA
SCC25	-	-	IIB
SCC26	++*	++	IA
SCC27	++*	++	IIIA
SCC28-A	++	++	IIIA
SCC28-B	++	++	IIIA

ASC-TMA

Spot ID	SOX9	SOX2	Grade
ASC1-A	++	+	IB
ASC1-B	+	+	IB
ASC2-A	+*	+	IIIA
ASC2-B	+*	+	IIIA
ASC3	++*	+	IIB
ASC4-A	+*	+	IIIB
ASC4-B	+	+	IIIB
ASC5	++	++	IA
ASC6	+*	++	IA
ASC7	+*	++	IIB
ASC8-A	+	++	IIA
ASC8-B	++	++	IIA
ASC8-C	+	++	IIA
ASC9	++*	+	IIA
ASC10-A	+*	+	IIB
ASC10-B	+*	+	IIB
ASC11	+	+	IV
ASC12	+*	++	IIIA
ASC13	+	++	IIB

PAC-TMA

Spot ID	SOX9	SOX2	Grade
PAC1	+*	-	IIA
PAC2	-	-	IA
PAC3-A	+	-	IB
PAC3-B	+	-	IB
PAC4-A	+	-	IIIA
PAC4-B	+	-	IIIA
PAC5	+*	-	IIA
PAC6	+*	-	IIA
PAC7	+*	-	IIIA
PAC8	+*	+	IIA
PAC9	+*	-	IIIA
PAC10	++	-	IIIA
PAC11	-	-	IIIA
PAC12	+*	-	IB
PAC13	++*	-	IIB
PAC14	+*	-	IIB
PAC15	++*	-	IIIA
PAC16	+*	-	IIB

Grade	mors an) -negativ-moderaX9-high		
I	15	8 (53.3)	7 (46.7)
II	9	1 (11.1)	3 (33.3)
III	3	1 (100)	
IV	1	1 (100)	

ASC-TMA

Grade	mors an) -negativ-moderaX9-high				
I	15	8 (53.3)	7 (46.7)		
II	9	1 (11.1)	3 (33.3)		
III	3	3 (100)			
IV	1	1 (100)			
Grade	# of tumors analyzed	SOX9-negative (%)	SOX9-moderate (%)	SOX9-high (%)	Replicate / Triplicate cores of the same sample
-------	----------------------	-------------------	-------------------	--------------	---
I	4	1(25.0)	3(75.0)		IB
II	5	3(60.0)	2(40.0)		IV
III	3	2(66.7)	1(33.3)		IIA
IV	1	1(100)			IB

PAC-TMA

Grade	# of tumors analyzed	SOX9-negative (%)	SOX9-moderate (%)	SOX9-high (%)	Replicate / Triplicate cores of the same sample
I	6	2(33.3)	4(66.7)		IIA
II	7	5(71.4)	2(28.6)		IIIA
III	11	2(18.2)	7(63.6)	3(27.3)	IB
IV	1	1(100)			IIA

* cytoplasmic/membranous expression detected

(+): High expression
(+): Moderate expression
(-): Absence of expression (negative)
Supplementary material, TableS3_Murine_tumour_analyses

Figure 2 and supplementary material, Fig.S2A

%SOX9 and %Ki67: % staining-positive tumour nuclei in total tumour nuclei

%pERK and pAkt: % staining-positive tumour region in total tumour regions

Tumour	Size(mm²)	%SOX9	%Ki67	%pERK	%pAKT
IAC-1	0.603	0.86	12.27	4.73	0
IAC-2	0.475	24.84	14.41	1.58	0
IAC-3	0.278	32.07	9.76	8.9	0
IAC-4	0.364	15.49	NA	16.26	0
IAC-5	0.167	24.84	10.09	2.16	0
IAC-6	0.493	26.71	7.5	0.78	0
IAC-7	0.273	9.15	6.7	1.34	0
IAC-8	0.535	20.12	NA	4.34	0
IAC-9	0.213	8.91	20.09	18.61	0
IAC-10	0.404	5.08	8.11	2.68	0
IAC-11	0.167	1.36	9.26	1.21	0
IAC-12	0.168	5.26	4.33	24.58	0
IAC-13	0.443	3.77	NA	NA	0
IAC-14	0.404	1.6	15.51	14.89	0
IAC-15	0.412	11.5	12.1	17.82	0
IAC-16	0.267	5.1	14.06	13.92	0
IAC-17	0.126	3.54	9.28	16.69	0
IAC-18	0.239	2.91	9.36	2.98	0
IAC-19	1.308	5.46	11.24	8.68	0
IAC-20	0.134	2.77	13.04	14.31	0
IAC-21	0.62	2.73	11.55	2.52	0
IAC-22	0.188	NA	NA	8.07	0
IAC-23	0.74	5.24	11.43	11.28	0
IAC-24	0.256	NA	NA	NA	NA
IAC-25	0.28	NA	NA	NA	NA
IAC-26	0.458	15.87	5.79	15.87	0
IAC-27	0.592	21.09	23.47	21.09	0
IAC-28	0.468	26.93	23.94	26.93	0
IAC-29	0.586	16.55	19.41	16.55	0
IAC-30	0.168	4.54	9.26	4.54	0
IAC-31	0.183	11.24	4.21	11.24	0
IAC-32	0.478	15.64	8.11	15.64	0
IAC-33	0.32	9.25	2.23	9.25	0
IAC-34	0.381	6.79	0.59	6.79	0
IAC-35	0.305	3.04	10.5	0.96	0
IAC-36	0.186	2.59	9.3	3.916	0
IAC-37	0.116	2.29	14.81	1.34	0
IAC-38	0.105	6.16	12	4.9	0
IAC-39	0.145	22.34	11.19	39.5	0
-----	-----	-----	-----	-----	-----
IAC-40	0.134	3.81	12.6	28.68	0
IAC-41	0.123	3.2	17.69	3.47	0
IAC-42	0.09	10.26	14.07	6.89	0
IAC-43	0.128	3.67	10.17	0.97	0
IAC-44	0.089	10.43	14.02	2.03	0
IAC-45	0.104	3.69	12.66	4.8	0
IAC-46	0.42	2.4	12.77	1.8	0
IAC-47	0.06	2.9	12.78	3.28	0
IAC-48	0.149	33.03	11.35	2.22	0
IAC-49	0.135	29.28	10.04	5.45	0
IAC-50	0.111	49.81	8.06	15.58	0
IAC-51	0.232	NA	12.76	0.01	0
IAC-52	0.114	21.15	16.77	17.76	0
IAC-53	0.269	NA	NA	2.93	0
IAC-54	0.193	0.78	NA	8.75	0
IAC-55	0.241	3.46	NA	3.51	0
IAC-56	0.113	NA	11.51	19.57	0
IAC-57	0.508	0.52	4.11	27.72	0
IAC-58	0.085	5.83	7.17	27.69	0
IAC-59	0.231	2.28	8.14	11.49	0
IAC-60	0.092	1.12	3.71	20.62	0
IAC-61	0.146	1.9	3.89	17.71	0
IAC-62	0.101	NA	NA	NA	NA
IAC-63	0.152	7.95	10.91	11.96	0
MAC-1	0.017	61.35	25.64	49.96	0
MAC-2	1.1	56.5	8.69	34.1	0
MAC-3	1.7	63.2	15.28	40.6	0
MAC-4	0.651	73.36	14.47	32.9	0
MAC-5	0.451	82.55	22.28	51.37	0
MAC-6	0.06	78.28	46.78	NA	NA
MAC-7	0.206	81.07	9.04	48.8	0
MAC-8	0.087	75.55	54.55	21.23	0
MAC-9	1.5	90.59	NA	NA	NA
MAC-10	0.527	76.35	7.76	38.78	0
MAC-11	0.673	80.39	20.76	13.21	0
MAC-12	0.591	80.36	16.77	18.15	0
MAC-13	0.307	82.16	15.73	42.64	0
MAC-14	1.5	82.16	15.73	42.64	0
MAC-15	0.448	85.18	24.27	41.58	0
MAC-16	0.597	85.56	15.14	29.34	0
MAC-17	0.58	89.08	19.99	48.65	0
MAC-18	0.322	77.24	16.23	28.95	0
MAC-19	0.329	87.35	19.08	27.99	0
MAC-20	5.3	85.25	11.74	71.69	0
	MAC-21				
---	--------	---	---	---	---
	0.222	91.6	43.85	NA	NA
MAC-22	0.333	NA	1.35	NA	NA
MAC-23	0.815	72.45	19.99	NA	NA
MAC-24	0.29	53.39	18.19	NA	NA
MAC-25	0.359	61.81	24.32	NA	NA
MAC-26	0.839	79.94	24.54	NA	NA
MAC-27	0.524	70.47	18.82	NA	NA
PAC-1	3.6	27.62	13.14	68.99	0
PAC-2	0.104	5.78	16.08	48.39	0
PAC-3	0.663	60.29	34.19	80.51	0
PAC-4	0.531	68.7	17.93	83.03	0
PAC-5	0.121	66.67	40.05	52.12	0
PAC-6	2.79	NA	10.63	20.21	0
PAC-7	0.625	NA	17.72	59.05	0
PAC-8	3.25	NA	12.19	18.97	0
PAC-9	0.912	27.58	35.23	61.75	0
PAC-10	1.003	59.85	23.85	51.18	0
PAC-11	0.088	57.79	32.54	64.4	0
PAC-12	0.31	75.64	22.79	45.25	0
PAC-13	0.157	75.82	31.03	70.78	0
PAC-14	11.422	NA	24.28	9.07	0
PAC-15	1.87	NA	38.65	23.72	0
PAC-16	0.665	75.19	25.54	16.65	0
PAC-17	0.202	53.3	34.92	58.07	0
PAC-18	0.239	68.7	31.79	72.01	0
PAC-19	0.356	NA	32.98	NA	NA
PAC-20	0.507	68.7	32.6	47.04	0
PAC-21	0.381	77.03	23.73	47.88	0
PAC-22	0.812	NA	34.89	36.1	0
PAC-23	1.725	65.06	20.69	4.77	0
PAC-24	0.144	NA	14.15	NA	NA
PAC-25	0.166	71.15	34.27	45.32	0
PAC-26	0.105	NA	24.19	NA	NA
PAC-27	0.237	82.73	27.11	87.27	0
PAC-28	0.172	71.5	20	53.03	0
PAC-29	0.519	86.17	NA	69.93	0
PAC-30	9.615	72.46	21.25	49.54	0
PAC-31	1.3	80.36	27.34	21.54	0
PAC-32	0.378	NA	NA	25.67	0
PAC-33	0.431	85.09	30.37	21.12	0
PAC-34	0.472	83.59	31.61	57.9	0
PAC-35	4.234	72.32	NA	34.37	0
PAC-36	1.231	54.96	NA	NA	0
PAC-37	1.539	68.24	NA	76.66	0
PAC	Value1	Value2	Value3	Value4	Value5
-------	--------	--------	--------	--------	--------
PAC-38	0.103	64.4	NA	71.5	0
PAC-39	0.14	80.47	13.9	NA	0
PAC-40	0.104	33.98	26.28	45.44	0
PAC-41	0.093	22.57	11.02	79.27	0
PAC-42	0.213	89.1	20.94	89.97	0
PAC-43	2.008	74.71	11.34	57.27	0
PAC-44	1.627	70.32	17.56	21.81	0
PAC-45	4.205	54.52	7.14	26.36	0
PAC-46	1.111	NA	10.37	37.48	0
PAC-47	0.133	79.11	NA	47.65	0
PAC-48	3.25	NA	NA	50.34	0
PAC-49	0.56	38.07	NA	32.06	0
PAC-50	0.56	72.39	NA	29.61	0
PAC-51	3.708	71.08	29.94	40.67	0
PAC-52	48.362	69.11	20.35	28.09	0
PAC-53	2.002	75.13	41.79	63.24	0
PAC-54	3.629	47.87	38.6	28.86	0
PAC-55	2.312	32.69	27.17	74.19	0
PAC-56	1.824	65.49	25.94	36.63	0
PAC-57	22.344	53.8	21.17	23.17	0
PAC-58	9.427	66.78	16.3	21.82	0
PAC-59	6.7	76.04	15.53	11.82	0
PAC-60	0.815	38.96	8.65	55.75	0
PAC-61	9.673	35.9	26.77	35.9	0
PAC-62	2.528	25.63	25.87	25.63	0
PAC-63	1.051	14.77	19.55	14.77	0
PAC-64	0.826	23.66	30.41	23.66	0
PAC-65	4.247	57.7	27.79	57.7	0
PAC-66	5.524	52.71	24.74	52.71	0
PAC-67	1.812	29.08	11.23	29.08	0
PAC-68	1.444	45.37	23.77	45.37	0
PAC-69	4.305	63.38	28.68	36.82	0
PAC-70	5.228	75.22	19.23	39.44	0
PAC-71	0.161	56.27	32.56	46.97	0
PAC-72	0.503	54.02	26.97	41.35	0
PAC-73	0.677	70.57	29.83	35.28	0
PAC-74	0.357	73.9	31.42	56.56	0
PAC-75	14.7	62.25	22.87	72.15	0
PAC-76	8.9	76.03	25.9	42.27	0
PAC-77	0.279	81.95	51.62	65.93	0
PAC-78	0.556	85.98	42.08	74.7	0
PAC-79	0.99	75.44	34.98	51.48	0
PAC-80	1.051	88.7	25.58	59.66	0
PAC-81	0.206	95.58	44.1	87.4	0
-----	---------	-----	-----	-----	-----
PAC-82	16.625	73.47	12.54	37.37	0
PAC-83	3.4	85.39	17.19	63.72	0
PAC-84	2.502	48.29	16.54	60.32	0
PAC-85	2.97	16.69	15.66	26.40	0
PAC-86	5.648	58.81	8.92	51.07	0
PAC-87	4.409	NA	16.45	39.72	0
PAC-88	2.429	58.85	14.59	45.49	0
PAC-89	4.126	27.9	12.83	29.42	0
PAC-90	0.738	69.78	14.4	27.03	0
PAC-91	11.1	58.38	13.15	45.21	0
PAC-92	0	71.5	NA	73.55	0
PAC-93	0.178	57.47	NA	66.31	0
PAC-94	0.0158	52.86	NA	78.72	0
PAC-95	1.4	50.09	9.68	67.2	0
PAC-96	2.97	36.02	11.39	59.97	0
PAC-97	1.4	70.03	16.29	44.95	0
PAC-98	2.97	53.66	14.52	45.01	0
ASC-1	9.7	52.96	24.32	17.01	0.98
ASC-2	1.7	62.78	28.83	57.32	1.32
ASC-3	5.6	65.98	41.84	11.79	12.05
ASC-4	20.6	42.13	26.16	23.39	0.86
ASC-5	0.3007889	26.15	47.25	52.251	7.6
ASC-6	20.7	52.9	38.31	13.56	4.63
ASC-7	8	60.35	28.58	51.78	4.23
ASC-8	26.1	56.64	32.35	50.9	1.7
ASC-9	22	65.51	27.89	34.08	7.46
ASC-10	17.8	69.79	23.49	38.17	11.46
ASC-11	0.9655288	69.01	46.86	71.46	0.09
ASC-12	21.2	NA	41.4	9.54	5.35
ASC-13	7.5	28.41	41.89	56.18	1.13
ASC-14	15.5	50.07	29.67	28.61	0.35
ASC-15	22	64.79	NA	19.67	NA
ASC-16	22.8	69.09	NA	7.54	NA
ASC-17	5.8	65.83	42.18	2.22	4.02
ASC-18	35.8	70.81	34.95	43.99	0.04
ASC-19	5.1	64.93	50	15.65	3.43
ASC-20	4.8	68.54	45.47	68.3	4.8
ASC-21	8.7	63.59	32.78	3.96	11.84
ASC-22	96	70.3	35.05	17.89	21.13
ASC-23	5.8	48.64	7.16	22.24	NA
ASC-24	2.3	60.53	28.23	NA	NA
ASC-25	1.3	47.04	15	33.85	5.8
ASC-26	27.7	50.79	7.61	0.02126	14.68
ASC-27	36.7	32.75	8.71	29.95	15.97
Animal	Survival (days)	Metastasis			
--------------	----------------	------------			
KLS^{wt}-SPC-1	142				
KLS^{wt}-SPC-2	105	Overt			
KLS^{wt}-SPC-3	123				
KLS^{wt}-SPC-4	105				
KLS^{wt}-SPC-5	120				
KLS^{wt}-SPC-6	88				
KLS^{wt}-SPC-7	122	Overt			
KLS^{wt}-SPC-8	125	Overt			
KLS^{het}-SPC-1	150				
KLS^{het}-SPC-2	135				
KLS^{het}-SPC-3	177	Overt			
KLS^{het}-SPC-4	161				
KLS^{het}-SPC-5	143	Minimal			
KLS^{het}-SPC-6	114	Overt			
KLS^{het}-SPC-7	133	Overt			
KLS^{het}-SPC-8	90	Overt			
KLS^{het}-SPC-9	160				
KLS^{het}-SPC-10	129	Minimal			
KLS^{het}-SPC-11	223	Overt			
KLS^{het}-SPC-12	89	Overt			
KLS^{het}-SPC-13	128				
KLS^{het}-SPC-14	166	Minimal			
KLS^{het}-SPC-15	131	Minimal			
KLS^{het}-SPC-16	124	Minimal			
KLS^{het}-SPC-17	104	Minimal			
KLS^{null}-SPC-1	130				
KLS^{null}-SPC-2	125				
KLS^{null}-SPC-3	103				
KLS^{null}-SPC-4	131				
KLS^{null}-SPC-5	159				
KLS^{null}-SPC-6	163				
KLS^{null}-SPC-7	118				
KLS^{null}-SPC-8	134				
KLS^{null}-SPC-9	138				
----------	----------	----------			
KLS^{null}-SPC-10	133				
KLS^{null}-SPC-11	148	Overt			
KLS^{null}-SPC-12	122	Overt			
KLS^{null}-SPC-13	118				
KLS^{null}-SPC-14	184	Minimal			
KLS^{null}-SPC-15	132				
KLS^{null}-SPC-16	142				
KLS^{null}-SPC-17	87	Minimal			
KLS^{null}-SPC-18	199				
KLS^{null}-SPC-19	111				
KLS^{wt}-CC10-1	96				
KLS^{wt}-CC10-2	103				
KLS^{wt}-CC10-3	76				
KLS^{wt}-CC10-4	80				
KLS^{wt}-CC10-5	113				
KLS^{wt}-CC10-6	86				
KLS^{het}-CC10-1	92				
KLS^{het}-CC10-2	75				
KLS^{het}-CC10-3	179	SCC-like			
KLS^{het}-CC10-4	171	AC			
KLS^{het}-CC10-5	115				
KLS^{het}-CC10-6	97				
KLS^{het}-CC10-7	66				
KLS^{het}-CC10-8	114				
KLS^{het}-CC10-9	103	AC			
KLS^{het}-CC10-10	195				
KLS^{het}-CC10-11	97	SCC-like			
KLS^{null}-CC10-1	128				
KLS^{null}-CC10-2	114				
KLS^{null}-CC10-3	133				
KLS^{null}-CC10-4	126				
KLS^{null}-CC10-5	102				
KLS^{null}-CC10-6	95	SCC-like			
KLS^{null}-CC10-7	115				
KLS^{null}-CC10-8	95				
KLS^{null}-CC10-9	163				
Several animals in survival analysis were not included in histopathology analysis due to partial tissues frozen for expression analysis.

Animal	%IAC	%MAC	%PAC
\(KLS^{null}\)-CC10-10	136		
\(KLS^{null}\)-CC10-11	87		
\(KLS^{null}\)-CC10-12	103		SCC-like
\(KLS^{null}\)-CC10-13	103		

Figure 3 C-D and supplementary material, Fig.S3C-D

% each histotype: % total histotype-specific tumour region per lung

Seems like there's some missing data or numbers, but that's the general idea.
Sample Type	Sample ID	Value 1	Value 2	Value 3
KLS^{null}-SPC-6	8.31			
KLS^{null}-SPC-7	17.79			
KLS^{null}-SPC-8	27.413			
KLS^{null}-SPC-9	14.78			
KLS^{null}-SPC-10	15.92			
KLS^{null}-SPC-11	22.57			
KLS^{null}-SPC-12	16.2			
KLS^{null}-SPC-13	24.95			
KLS^{wt}-CC10-1		1.75		
KLS^{wt}-CC10-2		2.99		
KLS^{wt}-CC10-3		2.55		
KLS^{wt}-CC10-4		0.25		
KLS^{wt}-CC10-5		0.5	0.07	3.59
KLS^{wt}-CC10-6		3.18		
KLS^{het}-CC10-1		0.16		
KLS^{het}-CC10-2		0.11	0.33	
KLS^{het}-CC10-3		1.59	0.86	2.99
KLS^{het}-CC10-4		0.43	12.51	4.99
KLS^{het}-CC10-5		0.81	2.36	4.22
KLS^{het}-CC10-6		0.15	1.17	
KLS^{het}-CC10-7		4.59	24.09	
KLS^{het}-CC10-8		0.04	1.35	
KLS^{het}-CC10-9		0.1	0.063	
KLS^{het}-CC10-10		3.24	7.3	
KLS^{het}-CC10-11				
KLS^{null}-CC10-1				
KLS^{null}-CC10-2		0.08	0.7	
KLS^{null}-CC10-3		0.21	2.75	
KLS^{null}-CC10-4		1.42		
KLS^{null}-CC10-5		3.87	0.03	
KLS^{null}-CC10-6		0.13	1.27	
KLS^{null}-CC10-7		0.19	0.83	
KLS^{null}-CC10-8		0.13		
KLS^{null}-CC10-9		1.44	0.19	1.07
KLS^{null}-CC10-10		0.19	0.62	
KLS^{null}-CC10-11		0.59		
Animal	%ASC-papillary	%ASC-mucinous	SCC-like	
---------------	----------------	---------------	----------	
KLSnull-CC10-12	0.13	0.04		