ON EXTENSIONS OF THE ALON-TARSI LATIN SQUARE CONJECTURE

DANIEL KOTLAR

Computer Science Department, Tel-Hai College, Upper Galilee 12210, Israel

Abstract. Expressions involving the product of the permanent with the \((n-1)\)th power of the determinant of a matrix of indeterminates, and of \((0,1)\)-matrices, are shown to be related to an extension to odd dimensions of the Alon-Tarsi Latin Square Conjecture. These yield an alternative proof of a theorem of Drisko, stating that the extended conjecture holds for odd primes. An identity involving an alternating sum of permanents of \((0,1)\)-matrices is obtained.

1. Introduction

A Latin square of order \(n\) is an \(n \times n\) array of numbers in \([n] := \{1, \ldots, n\}\) so that each number appears exactly once in each row and each column. Let \(L_n\) be the number of Latin squares of order \(n\). Let \(\text{Sym}(n)\) be the symmetric group of permutations of \([n]\). For a permutation \(\pi \in \text{Sym}(n)\) we denote its sign by \(\epsilon(\pi)\). Viewing the rows and columns of a Latin square \(L\) as elements of \(\text{Sym}(n)\), the row-sign (column-sign) of \(L\) is defined to be the product of the signs of the rows (columns) of \(L\). The sign of \(L\), denoted \(\epsilon(L)\), is the product of the row-sign and the column-sign of \(L\). The parity of a Latin square is even (resp. odd) if its sign is 1 (resp. -1). The row parities and column parities of a Latin square are defined analogously. We denote by \(L_n^{\text{EVEN}}\) (\(L_n^{\text{ODD}}\)) the number of even (odd) Latin squares of order \(n\). The Alon-Tarsi Latin Square Conjecture [1] asserts that for even \(n\), \(L_n^{\text{EVEN}} - L_n^{\text{ODD}} \neq 0\). Values of \(L_n^{\text{EVEN}} - L_n^{\text{ODD}}\) for small \(n\) can be found in [10]. Drisko [2] proved the conjecture for \(n = p + 1\), where \(p\) is an odd prime, and Glynn [4] proved it for \(n = p - 1\). Since for odd \(n\) \(L_n^{\text{EVEN}} = L_n^{\text{ODD}}\) some extensions of this conjecture, that hold for odd \(n\), were proposed, as will be described shortly.

A Latin square is called normalized if its first row is the identity permutation, and unipotent if all the elements of its main diagonal are equal. Let \(U_n^{\text{E}}\) and \(U_n^{\text{O}}\) be the numbers of normalized unipotent even and odd Latin squares, respectively. Zappa [11] defined the Alon-Tarsi constant \(AT(n) := U_n^{\text{E}} - U_n^{\text{O}}\) and introduced the following extension of the Alon-Tarsi conjecture:

Conjecture 1.1. For all \(n\), \(AT(n) \neq 0\)

E-mail address: dannykot@telhai.ac.il.

1991 Mathematics Subject Classification. 68R05, 05B15, 15A15.

Key words and phrases. Alon-Tarsi conjecture, Latin square, Parity of a Latin square, adjacency matrix.

I thank an anonymous reviewer for providing the proofs of Theorem 3.5 and Corollary 3.6.
A Latin square is called reduced if its first row and first column are the identity permutation. Let \(R^E_n \) and \(R^O_n \) denote the numbers of even and odd reduced Latin squares of order \(n \), respectively. Another possible extension of the Alon-Tarsi conjecture is the following (see [6] and [10]):

Conjecture 1.2. For all \(n, R^E_n - R^O_n \neq 0 \)

If \(n \) is even then these two conjectures are equivalent to the Alon-Tarsi conjecture. However, for odd \(n \) it is not clear whether the two conjectures are equivalent, despite the existence of a bijection between reduced Latin squares and normalized unipotent Latin squares of order \(n \) (see [11]). Drisko [3] proved Conjecture 1.1 in the case that \(n \) is an odd prime. Conjecture 1.2 is known to be true for small values of \(n \) (see [10]).

A Latin square \(L \) of order \(n \) determines \(n \) permutation matrices \(P_s, s \in [n] \), defined by \((P_s)_{ij} = 1\) if and only if \(L_{ij} = s\). Let \(S_n \) be the collection of all \(n \times n \) permutation matrices. For \(P \in S_n \) let \(\alpha_p \) be the corresponding permutation in \(\text{Sym}(n) \). The symbol-sign \(\epsilon_{\text{sym}}(L) \) is the product of the \(\epsilon(\alpha_p) \), \(s = 1, \ldots, n \). A Latin square \(L \) is symbol-even if \(\epsilon_{\text{sym}}(L) = 1 \) and symbol-odd if \(\epsilon_{\text{sym}}(L) = -1 \).

Let \(X = (X_{ij}) \) be the \(n \times n \) matrix of indeterminates. The following theorem is due to MacMahon [7]:

Theorem 1.3. \(L_n \) is the coefficient of \(\prod_{i=1}^n \prod_{j=1}^n X_{ij} \) in \(\text{per}(X)^n \),

where \(\text{per}(A) \) denotes the permanent of \(A \). Stones [9] showed that if we replace permanent by determinant in the expression in Theorem 1.3 an expression for the Alon-Tarsi conjecture is obtained, namely

Theorem 1.4. \(L_n^{\text{even}} - L_n^{\text{odd}} \) is the coefficient of \((-1)^{n(n-1)/2} \prod_{i=1}^n \prod_{j=1}^n X_{ij} \) in \(\det(X)^n \).

The idea of taking the \(n^{th} \) power of the determinant was used by Stones [9] to obtain another expression for \(L_n^{\text{even}} - L_n^{\text{odd}} \).

Theorem 1.5. Let \(B_n \) be the set of \(n \times n \) \((0,1)\)-matrices. For \(A \in B_n \) let \(\sigma_0(A) \) be the number of zero elements in \(A \). Then

\[
(1.1) \quad L_n^{\text{even}} - L_n^{\text{odd}} = (-1)^n \sum_{A \in B_n} (-1)^{\sigma_0(A)} \det(A)^n
\]

It will be shown in the Section 2 that when \(n \) is odd, “hybrid” expressions involving one permanent and \(n-1 \) determinants yield analogous results for \(AT(n) \). In Section 3 an alternative proof of Drisko’s result that \(AT(p) \neq 0 \) for odd primes is shown. In Section 4 a formula linking Conjectures 1.1 and 1.2 is presented. Section 5 introduces a formula relating the permanents of all distinct regular \(p \times p \) adjacency matrices of bipartite graphs (up to renaming the vertices of one of the sides).

2. Formulae for \(AT(n) \)

For \(\alpha \in \text{Sym}(n) \) let \(L_n^{SE}(\alpha) \) (resp. \(L_n^{SO}(\alpha) \)) be the number of symbol-even (resp. symbol-odd) Latin squares with \(\alpha = \alpha_p \). Let \(L_n^{CE}(\alpha) \) (resp. \(L_n^{CO}(\alpha) \)) be the number of column-even (resp. column-odd) Latin squares with \(\alpha \) as the first column. Let \(L_n^{CE}(\alpha, \beta) \) (resp. \(L_n^{CO}(\alpha, \beta) \)) be the number of column-even (resp. column-odd) Latin squares with \(\alpha \) as the first row and \(\beta \) as the first column. We have:
Lemma 2.1. If \(n \) is odd then
\[
\sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L^\text{SE}_n(\pi) - L^\text{SO}_n(\pi)) = (-1)^{\frac{n(n-1)}{2}} n!(n-1)! \text{AT}(n)
\]

Proof. Viewing a Latin squares as a set of \(n^2 \) triples \((i,j,k)\), such that \(L_{ij} = k \), and applying the mapping \(\tau : (i,j,k) \rightarrow (i,k,j) \), the \(k^{\text{th}} \) column of \(\tau(L) \) is the permutation \(\alpha_{\pi(k)} \) corresponding to the permutation matrix \(\pi(k) \) in \(L \). Thus \(L^\text{SE}_n(\alpha) = L^\text{CE}_n(\alpha) \) and \(L^\text{SO}_n(\alpha) = L^\text{CO}_n(\alpha) \). We have:
\[
\sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L^\text{SE}_n(\pi) - L^\text{SO}_n(\pi)) = \sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L^\text{CE}_n(\pi) - L^\text{CO}_n(\pi))
\]
By applying \(\pi^{-1} \) to the columns of each Latin squares with \(\pi \) as its first column we see that if \(n \) is odd then \(\epsilon(\pi)(L^\text{CE}_n(\pi) - L^\text{CO}_n(\pi)) = L^\text{CE}_n(\pi(id)) - L^\text{CO}_n(\pi(id)) \). Thus
\[
\sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L^\text{SE}_n(\pi) - L^\text{SO}_n(\pi)) = n!(L^\text{CE}_n(\pi(id)) - L^\text{CO}_n(\pi(id))
\]
Since exchanging columns of a Latin square does not alter the column parity we have that for each \(\beta \in \text{Sym}(n) \) such that \(\beta(1) = 1 \), \(L^\text{CE}_n(\beta(id)) - L^\text{CO}_n(\beta(id)) = L^\text{CE}_n(\beta(id)) - L^\text{CO}_n(\beta(id)) \). Thus
\[
\sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L^\text{SE}_n(\pi) - L^\text{SO}_n(\pi)) = n! \sum_{\beta \in \text{Sym}(n) \atop \beta(1)=1} L^\text{CE}_n(\beta(id)) - L^\text{CO}_n(\beta(id))
\]
\[
= n!(n-1)! L^\text{CE}_n(\pi(id)) - L^\text{CO}_n(\pi(id))
\]
We use the notation \(R_{n}^{(+,-)} \) for the number of reduced Latin squares with even row parity and odd column parity \((R_{n}^{(+,+)}, R_{n}^{(-,+)} \) and \(R_{n}^{(-,-)} \) are defined accordingly). Since \(L^\text{CE}_n(\pi(id)) \) is the number of column-even reduced Latin squares, we have:
\[
L^\text{CE}_n(\pi(id)) - L^\text{CO}_n(\pi(id)) = R_{n}^{(+,+)} + R_{n}^{(-,+)} - R_{n}^{(+,-)} - R_{n}^{(-,-)}
\]
Since
\[
\text{AT}(n) = \begin{cases} R_{n}^{(+,+)} - R_{n}^{(-,-)}, & \text{if } n \equiv 0, 1 \pmod{4} \\ R_{n}^{(-,+)} - R_{n}^{(+,-)}, & \text{if } n \equiv 2, 3 \pmod{4}, \end{cases}
\]
by Section 5 in \cite{1}, the result follows. \(\square \)

We now have a result, analogous to Theorem 1.4 for \(\text{AT}(n) \):

Theorem 2.2. Let \(n \) be odd and let \(X = (X_{ij}) \) be the \(n \times n \) matrix of indeterminates. Then \(\text{AT}(n) \) is the coefficient of \((-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} \prod_{j=1}^{n} X_{ij} \) in \(\frac{1}{n!(n-1)!} \text{per}(X) \text{det}(X)^{n-1} \).

Proof. For \(P \in (S_n)^n \) let \(P = (P_1, P_2, \ldots, P_n) \) and for \(s = 1, \ldots, n \) let \(\alpha_s = \alpha_{P_s} \).
Expanding \(\text{per}(X) \) and \(\text{det}(X) \) we obtain
\[
(2.1) \quad \text{per}(X) \text{det}(X)^{n-1} = \sum_{\pi \in \text{Sym}(n)} \prod_{i} X_{i\pi(i)} \sum_{P \in (S_n)^n} \prod_{s=2}^{n} \epsilon(\alpha_s) \prod_{k=1}^{n} X_{k\alpha_s(k)}.
\]
Now, for each \(\pi \in \text{Sym}(n) \) the number of square-free terms in
\[
\prod_{i=1}^{n} X_{i\pi(i)} \prod_{\pi \in \text{Sym}(n)} \prod_{j=2}^{n} \epsilon(\alpha_j) \prod_{i=1}^{n} X_{i\alpha_j(i)}
\]
is equal to \(\epsilon(\pi)(L_{n}^{\text{SE}}(\pi) - L_{n}^{\text{SO}}(\pi)) \). Hence, by (2.1), the coefficient of \(\prod_{i=1}^{n} \prod_{j=1}^{n} X_{ij} \) in \(\text{per}(X) \text{det}(X) \) is
\[
\sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L_{n}^{\text{SE}}(\pi) - L_{n}^{\text{SO}}(\pi)),
\]
and the result follows from Lemma 2.1.

We also have an analogue of Theorem 1.5 for \(\text{AT}(n) \):

Theorem 2.3. Let \(B_n \) be the set of \(n \times n \) (0,1)-matrices. For \(A \in B_n \) let \(\sigma_0(A) \) be the number of zero elements in \(A \). If \(n \) is odd then
\[
\text{AT}(n) = (-1)^{\frac{n(n-1)}{2}} \frac{1}{n!(n-1)!} \sum_{A \in B_n} (-1)^{\sigma_0(A)} \text{per}(A) \text{det}(A)^{n-1}
\]

Proof. Most of the proof is similar to Stones’ proof of Theorem 1.5. By (2.1),
\[
\sum_{A \in B_n} (-1)^{\sigma_0(A)} \text{per}(A) \text{det}(A)^{n-1} = \sum_{(A,P) \in B_n \times (S_n)^n} Z(A,P)
\]
where
\[
Z(A,P) = (-1)^{\sigma_0(A)} \prod_{i=1}^{n} A_{i\alpha_1(i)} \prod_{s=2}^{n} \epsilon(\alpha_s) \prod_{k=1}^{n} A_{k\alpha_s(k)}.
\]
If for \((A,P) \) there exists \(i,j \in [n] \) such that \((P_s)_{ij} = 0 \) for all \(s = 1, \ldots, n \), then let \(A^c \) be the matrix formed by toggling \(A_{ij} \) in the lexicographically first such coordinate \(ij \). Thus \(Z(A,P) = -Z(A^c,P) \) and these two terms cancel in the sum in (2.3). So, on the right hand side of (2.3) we are left only with with \(\sum_{P \in S^*} \epsilon(P) \), where \(S^* = \{(P_1, \ldots, P_n) : \sum_{s=1}^{n} sP_s \text{ is a Latin square}\} \) and \(A \) is the all-1 matrix.

Now,
\[
\sum_{\pi \in \text{Sym}(n)} \prod_{s=2}^{n} \epsilon(\alpha_s) = \sum_{\pi \in \text{Sym}(n)} \epsilon(\pi) \prod_{\pi_{P_1} = \pi \alpha_s} \prod_{s=1}^{n} \epsilon(\alpha_s)
\]
\[
= \sum_{\pi \in \text{Sym}(n)} \epsilon(\pi) \sum_{P \in S^*} \sum_{\pi_{P_1} = \pi} \epsilon_{\text{sym}} \left(\sum_{s=1}^{n} sP_s \right)
\]
\[
= \sum_{\pi \in \text{Sym}(n)} \epsilon(\pi)(L_{n}^{\text{SE}}(\pi) - L_{n}^{\text{SO}}(\pi)),
\]
and the result follows from Lemma 2.1. \(\square \)
3. An alternative proof of Drisko’s theorem

The main result of this section (Corollary 3.6) was first proved by Drisko [3]. An alternative proof, based on the results of Section 2, is presented here. I am indebted to an anonymous reviewer for suggesting this proof.

In this section the rows and columns of an \(n \times n \) matrix will be indexed by the numbers \(0, 1, \ldots, n - 1 \).

Definition 3.1. Let \(A \) be an \(n \times n \) matrix and let \(B \) be a subset of cells of \(A \). Let \(k \) be an integer. The \(k \)-left shift of \(B \) is the set of cells \(\{ b_{i,(j-k) \mod n} : b_{i,j} \in B \} \). The \(k \)-down shift of \(B \) is the set of cells \(\{ b_{(i+k) \mod n,j} : b_{i,j} \in B \} \).

Definition 3.2. An \(n \times n \) matrix \(A \) will be said to be \(k \)-left row shifted, for \(0 < k < n \), if for all \(i = 1, \ldots, n - 1 \), the \(i^{th} \) row of \(A \) is equal to the \(k \)-left shift of the \((i - 1)^{st}\) row, and the \(0^{th} \) row is equal to the \(k \)-left shift of the \((n - 1)^{st}\) row.

Remark 3.3. If \(p \) is an odd prime and \(A \) is a \(p \times p \) \(k \)-left row shifted matrix, then the set of cells of \(A \) is the disjoint union of \(p \) diagonals, where the elements of each diagonal are all equal. These diagonals will be referred to as the principal diagonals of \(A \).

Lemma 3.4. Let \(p \) be an odd prime. Let \(A \) be a \(p \times p \) \(k \)-left row shifted \((0,1)\)-matrix. Let \(b \) be the first row of \(A \) and let \(|b| \) be the number of 1’s in \(b \). Then

(i) \(\text{per}(A) \equiv |b| \pmod{p} \)

(ii) \(\text{det}(A) \equiv \pm|b| \pmod{p} \)

Proof. Part (i) can be easily obtained from Ryser’s permanent formula ([8], see also http://mathworld.wolfram.com/RyserFormula.html). However, a different approach, that will also apply to Part (ii), is used here. We define a mapping \(s \) on the set of diagonals of \(A \) as follows: For a diagonal \(d \) in \(A \), \(s(d) \) is obtained by taking the \(k \)-left shift of \(d \) and then taking the 1-down shift of the result. Note that the fixed points of \(s \) are exactly the principal diagonals defined in Remark 3.3. The mapping \(s \) is a bijection and, since \(A \) is \(k \)-left row shifted, \(s(d) \) contain the same set of values as \(d \). In particular, if \(d \) consists only of 1’s, so does \(s(d) \). Also note that \(s^{p}(d) = d \) for all \(d \) and thus, since \(p \) is prime, each orbit under \(s \) is of size one or \(p \). As mentioned above, the orbits of size one are those containing the principal diagonal. Thus, \(\text{per}(A) \pmod{p} \) is equal to the number of principal diagonals consisting only of 1’s, and since there are \(|b| \) such diagonal Part (i) follows.

For Part (ii), it remains to show that all principal diagonals correspond to permutations of the same parity and that \(s \) preserves the parity of the permutation corresponding to the diagonal acted upon. Let \(d_{1} \) and \(d_{2} \) be two diagonals, such that \(d_{1} \) is the \(k \)-left shift of \(d_{2} \). This means that if \(\pi_{1} \) and \(\pi_{2} \) are the corresponding permutations, then \(\pi_{2} = \nu^{k} \circ \pi_{1} \) (application from right to left), where \(\nu = (12 \ldots p) \), which is an even permutation, since \(p \) is odd. If \(d_{1} \) and \(d_{2} \) are principal diagonals then \(d_{1} \) is the \(k \)-left shift of \(d_{2} \) for some \(k \). Thus, all fixed diagonals correspond to permutations of the same parity. If \(d_{1} \) is the \(k \)-down shift of \(d_{2} \), then the corresponding permutations satisfy \(\pi_{1} = \pi_{2} \circ \nu^{k} \). Since \(s \) consists of a left shift and a down shift, \(s \) preserves the parity. This proves (ii). □
Theorem 3.5. Let p be an odd prime. Let B_p be the set of $p \times p$ $(0,1)$-matrices. Then
\[
\frac{1}{p} \sum_{A \in B_p} (-1)^{\sigma_0(A)} \text{per}(A) \det(A)^{p-1} \equiv -1 \pmod{p}.
\]

Proof. Define the group $G = \langle \nu \rangle \times \langle \nu \rangle$, where $\nu = (12\cdots p)$. The group G acts on B_p by permuting the rows and columns, so that for each element of G, its first component permutes the order of the rows and the second component permutes the order of the columns. By The Orbit-Stabilizer Theorem, an orbit has size $|G| = p^2$ unless each of its elements has a non-trivial stabilizer in G. If $g = (\nu^i, \nu^j)$ is a stabilizer of $A \in B_p$, so is any of its powers, including (ν, ν^k) for some k, since p is prime. Thus, an orbit has size smaller than p^2 if and only if for each matrix A in that orbit there exists some $0 < k < p$ for which $(\nu, \nu^k)A = A$. Let
\[
D = \{ A \in B_p | (\nu, \nu^k)A = A \text{ for some } 0 < k < p \}.
\]
The action of G preserves σ_0 and, since ν is an even permutation, it also preserves the permanent and the determinant. We have
\[
\frac{1}{p} \sum_{A \in B_p} (-1)^{\sigma_0(A)} \text{per}(A) \det(A)^{p-1} = \frac{1}{p} \sum_{A \in D} (-1)^{\sigma_0(A)} \text{per}(A) \det(A)^{p-1} \pmod{p}.
\]
Hence, it suffices to prove (3.1) with “B_p” replaced by “D”.

Suppose $(\nu, \nu^k)A = A$. Then, after applying ν^k to the ith row the $(i + 1)$st is obtained, for $i = 0, \ldots, p - 2$ and applying ν^k to the $(p - 1)$st row yields the 0th row. This implies that A is a $(p - k)$-left row shifted matrix. Thus, A is uniquely determined by its first row b and the number k. We denote this by $A = A(b, k)$.

Now, suppose $A = A(b, k)$ is not the all-1 matrix and let $a = |b|$. Since p is odd, $\sigma_0(A) \equiv a \pmod{2}$. Then, by Lemma 3.4 and Fermat’s Little Theorem, $(-1)^{\sigma_0(A)} \text{per}(A) \det(A)^{p-1} \equiv (-1)^a a \pmod{p}$. For a fixed $a \in \{1, \ldots, p - 1\}$, the number of distinct matrices $A(b, k)$ with $|b| = a$ is $\binom{p}{a}(p - 1)$. Therefore,
\[
\frac{1}{p} \sum_{A \in D} (-1)^{\sigma_0(A)} \text{det}(A)^{p-1} \equiv \frac{1}{p} \sum_{a=1}^{p-1} \binom{p}{a} (p - 1)(-1)^a a \pmod{p},
\]
where the cases that $a \in \{0, p\}$ have been discarded since they correspond to the all-0 and all-1 matrices, which have zero determinant. The result now follows from the binomial identity
\[
\sum_{a=0}^{p} \binom{p}{a} (-1)^a a = 0
\]
(see http://en.wikipedia.org/wiki/Binomial_coefficient).

The following result was first proved by Drisko [3].

Corollary 3.6. If p is an odd prime, then
\[
AT(p) \equiv (-1)^{\frac{p - 1}{2}} \pmod{p}.
\]

Proof. When $n = p$ is an odd prime we can rearrange (1.1) to obtain
\[
AT(p) = (-1)^{\frac{p - 1}{2}} \times \frac{(-1)}{(n - 1)!} \times \frac{1}{p} \sum_{A \in B_p} (-1)^{\sigma_0(A)} \text{per}(A) \det(A)^{p-1}
\equiv (-1)^{\frac{p - 1}{2}} \times (-1) \times (-1) \pmod{p},
\]
by Theorem 3.3. The result follows. □

4. Linking Conjectures 1.1 and 1.2

Proposition 4.1. Let n be odd and let A_1, A_2, \ldots, A_n be $n \times n$ matrices over a field. Then

\begin{equation}
\sum_{\rho, \sigma \in \text{Sym}(n)^n} \epsilon(\sigma_1) \epsilon(\sigma) \epsilon(\rho) \prod_{i,j=1}^n (A_j)_{\sigma(j), \rho(i)} = (n-1)! (R_n^R - R_n^O) \text{per}(A_1) \prod_{j=2}^n \text{det}(A_j).
\end{equation}

Here ρ_1 and σ_1 are the first components in ρ and σ respectively. Combining Proposition 4.1 with Theorem 2.2 yields the following identity, linking $AT(n)$ and $R_n^R - R_n^O$.

Theorem 4.2. Let $X = (X_{ij})$ be an $n \times n$ matrix of indeterminates. Then $AT(n) \cdot (R_n^R - R_n^O)$ is the coefficient of $(-1)^{n(n-1)/2} \prod_{i=1}^n \prod_{j=1}^n X_{ij}$ in

\begin{equation}
\frac{1}{n!(n-1)!^2} \sum_{\rho, \sigma \in \text{Sym}(n)^n, \rho_1 = \text{id}} \epsilon(\sigma_1) \epsilon(\sigma) \epsilon(\rho) \prod_{i,j=1}^n X_{\sigma(j), \rho(i)}.
\end{equation}

Proof. This follows by taking $A_1 = A_2 = \cdots = A_n = X$ in (4.1) and applying Theorem 2.2. □

Thus, showing that the above coefficient is nonzero would prove both conjectures.

5. On the Permanent of Adjacency Matrices

The evaluation of the permanent of a matrix is a complex problem, even for adjacency matrices of bipartite graphs (0,1-matrices) (see [3]). Theorem 2.3 leads to an interesting identity involving the permanents of (0,1)-matrices:

Theorem 5.1. Let p be an odd prime, let B_p be the set of $p \times p$ (0,1)-matrices, and let $B_p^r = \{ A \in B_p : \text{det}(A) \not\equiv 0 \pmod{p} \}$. Let B_p^r be a set of representatives in B_p of the row permutation classes. Then

\[\sum_{A \in B_p^r \cap B_p^r} (-1)^{\sigma_0(A)} \text{per}(A) \equiv -1 \pmod{p}. \]

Proof. Let B_p^r be the subset of B_p containing the regular matrices. From [11] we have:

\[AT(p) = \frac{(-1)^{\frac{p^2+1}{2}}}{p!(p-1)!} \sum_{A \in B_p^r} (-1)^{\sigma_0(A)} \text{per}(A) \text{det}(A)^{p-1} \]

If A' can be obtained from A by permuting the rows, then per$(A') = \text{per}(A)$ and det$(A')^{p-1} = \text{det}(A)^{p-1}$ (since p is even). Since the rows of each $A \in B_p^r$ are all distinct, each row permutation class in B_p^r contains exactly $p!$ matrices. Let B_p^r be a set of representatives of the row permutation classes in B_p. Then

\[AT(p) = \frac{(-1)^{\frac{p^2+1}{2}}}{(p-1)!} \sum_{A \in B_p^r \cap B_p^r} (-1)^{\sigma_0(A)} \text{per}(A) \text{det}(A)^{p-1}. \]
By Fermat’s little theorem and Wilson’s theorem we have
\[AT(p) \equiv (-1)^{\frac{p-1}{2}} \sum_{A \in B^1_p \cap B^*_p} (-1)^{\sigma_0(A)} \text{per}(A) \pmod{p}. \]

The result follows from Corollary 3.6. \(\square\)

Remark 5.2. If we view an \(n \times n\) \((0,1)\)-matrix \(A\) as the adjacency matrix of a bipartite graph \(G_A\), having two parts of identical size \(n\), then \(\text{per}(A)\) is the number of perfect matchings in \(G_A\). A set \(B^1_p\), as in Theorem 5.1, represents all possible such graphs, up to renaming the vertices of one of the parts.

References

1. N. Alon and M. Tarsi, \textit{Colorings and orientations of graphs}, Combinatorica \textbf{12} (1992), no. 2, 125–134.
2. A. A. Drisko, \textit{On the number of even and odd Latin squares of order \(p+1\)}, Advances in Math. \textbf{128} (1997), 20–35.
3. A. A. Drisko, \textit{Proof of the Alon-Tarsi conjecture for \(n = 2^r p\)}, The Electronic Journal of Combinatorics (1998), no. R28.
4. D. Glynn, \textit{The conjectures of Alon-Tarsi and Rota in dimension prime minus one}, SIAM J. Discrete Math. \textbf{24} (2010), 394–399.
5. M. Jerrum, A. Sinclair, and E. Vigoda, \textit{A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries}, J. ACM \textbf{51} (2004), no. 4, 671–697.
6. D. Kotlar, \textit{A weak case of Rota’s basis conjecture for odd dimensions}, manuscript (arXiv:1110.1830v3) (2011).
7. P. A. MacMahon, \textit{A new method in combinatory analysis, with applications to Latin squares and associated questions}, Trans. Cambridge Phil. Soc. \textbf{16} (1898), 262–290.
8. H. J. Ryser, \textit{Combinatorial mathematics}, The Mathematical Association of America, 1963.
9. D. S. Stones, \textit{Formulæ for the Alon-Tarsi conjecture}, SIAM J. Discrete Math. \textbf{26} (2012), no. 1, 65–70.
10. D. S. Stones and I. M. Wanless, \textit{How not to prove the Alon-Tarsi conjecture}, Nagoya Math. J. \textbf{205} (2012), 1–24.
11. P. Zappa, \textit{The Cayley determinant of the determinant tensor and the Alon-Tarsi conjecture}, Advances in Applied Mathematics \textbf{19} (1997), 31–44.