Biobriquette Characteristics of Mixture of Coal-Biomass Solid Waste Agro

Mandasini*1, Sungkono2, Takdir Syarif4

1Department of Chemical Engineering, Faculty of Industrial Technology. Universitas Muslim Indonesia Jalan Urip Sumoharjo Km 05, Makassar 90231, Indonesia.
2Department of Mechanical Engineering, Faculty of Engineering, Universitas Muslim Indonesia. Jl. Urip Sumoharjo Km. 05 Makassar
Email: mdsini56@yahoo.com

Abstract. Bio-briquettes are solid fuel made from a mixture of coal with biomass, solid fuel is an alternative fuel replacement for kerosene and gas are the cheapest. Biomass (coconut shells, sawdust and bark durian) chemically has a high carbon content and flammability. Biobriket made from a mixture of coal - biomass using taro flour as an adhesive and a solution of 50% alcohol as an additive can be used as an alternative fuel economic value. Based on the analysis Proximate and Ultimate, this research data obtained karakterik bio-briquettes with three variations of a mixture of a mixture of coal-coconut shell charcoal, coal-charcoal sawdust and coal-charcoal leather durian, of the three variations campurana which gives the best results is a mixture of coal-coconut shell charcoal at a ratio of 1: 4 with characteristics, Ash = 2.51%, Moisture = 4.83%, Volatile matter = 28.81%, Sulfur = 0.5445%, and calorific value = 6494 kcal / kg, main gas emissions in all SO2 = 103 ppm NOx = 3 ppm

Keywords: Characteristics, Biobriquette, Coal, Biomass

1. Introduction

One attempt from South Sulawesi use of coal as a fuel is in the form of bio-briquette. However, in using relatively small compared with the use of other energy such as gas and oil. This is due to the low quality of coal, the difficulty of ignition in the combustion process early, so that combustion is less than perfect can cause harmful exhaust emissions (Kuncoro, 2003). As an agricultural country, Indonesia has the wastes produced abundant agricultural and plantation, the community is regarded as useless material, the material contains a high component of volute matter so flammable and burns (Naruse 1999). If both types of fuel are combined into a bio-briquette the which is a solid fuel to form a Certain size made from a mixture of coal and biomass with little material that serves as an adhesive additive such as paraffin, tapioca flour undergone a process of compression with a specific press power Bio-briquettes as an alternative fuel capable of replacing most of the use of fuel oil and gas are now increasingly reduced.

This study aims to determine the effect of composition of the mixture of coal and biomass to bio-briquette characteristics. The expected contribution of this research is bio-briquette produced can be used as fuel for the secondary industry, small and household especially in Makassar. For local governments are expected as input to increase revenue, but it can provide benefits to scisnce.
2. Research Methodology

2.1. Material

The main material used in this study comes from coal mining coal in the village of the District Pattukku Lappaija Bone regency of South Sulawesi and biomass obtained from around the city of Makassar.

Proximate and Ultimate analyzes performed in the Laboratory SUCOPINDO Makassar, and as for the results of the analysis are presented in Table 1 below:

Parameter	Value / Price
Proximate	
Ash (%)	5.55, 1.56, 3.38, 15.93
Moisture (%)	12.09, 2.00, 2.28, 4.13
Volatile Matter (%)	43.96, 21.30, 25.59, 26.50
Fixed Carbon (%)	38.40, 74.17, 67.51, 51.36
Ultimate	
Total Sulfur (%)	3.15, 0.032, 0.341, 0.027
Heating Value (kcal/kg)	6040, 7282, 6941, 6299

BB= Coal, ATK= Coconut Shell Charcoal, ASG= Charcoal Sawdust, AKD = Charcoal Leather Durian

2.2 Observation Research

The variables were observed in this study are: Variations adhesive composition with a mixture of coal-biomass (K :): 0%; 20%; 40%; 50%; 60%; 80%; 100% of the bio-briquette characteristics.

2.3 Research Procedure: Preparation and Characterization of Mixed Coal - Biomass

At this stage the coal prior digrinding then sieved to obtain a uniform particle size with a grain size between 50-100 mesh or (100 m) by filtration. While biomass (coconut shells, sawdust and bark durian) that have been drained, performed carbonization process. then crushed and sieved to obtain a uniform particle size as well as the coal is between 50-100 mesh. then further characterized coal and biomass that include: proximate analysis (moisture content, ash, volatile matter and fixed carbon), ultimate analysis (composition C, H, O, N, S), sulfur content, heating value and specific gravity. This method follows the standard procedure of the American Sociaty for Testing and Materials (ASTM, 1980).

2.3 Mixing Coal with Biomass

After all materials (coal, biomass and adhesive) further characterized the mixing is done with a certain ratio which further characterized return include: proximate analysis (moisture content, ash, volatile matter and fixed carbon), ultimate analysis (composition C, H, O, N, S), sulfur content (total, pyrite, sulfate and organic), calorific value and specific gravity.
2.4 Briquetting

Container inserted into a coal-biomass flour mixture with a certain ratio, the mixture is added into the adhesive 10-15% of the total mixture, given the warm water temperature of +60 °C, stirring until becoming homogeneous. Then the mixture is put into a mold and then pressed/pushed until it reaches a certain pressure for 5 minutes. Furthermore, the briquettes are terbetuk removed from the mold and then dried, the drying can with sunlight or other dryer.

3 RESULT AND DISCUSSION

Bioquette characterization process, a mixture of coal-biomass briquette is based on two analyzes that Proximate analysis (Ash, Moisture, Volatile matter and Fixed Carbon) and Ultimate analysis (Sulfur, Heating Value).

3.1 Proximate Analysis Bio-briquette

3.1.1. Levels of Ash Bio-briquette As a Function of Composition the Coal-Biomass Mixture

![Graph showing levels of ash in bio-briquettes as a function of composition of the coal-biomass mixture.](image)

Figure 1a: Profile Levels Ash Bio-briquette As a function of composition Mixed Coal – Biomass

In the graph (figure-1a) is apparent that the ash bio-briquette increase with the composition of the coal in the mix, it is due to the chemical composition in the form of ash/ash in the biomass is lower than the coal that is less than 1%. While coal - quite the contrary durian skin charcoal ash/ash bio-briquette decreased with increasing the composition of the coal in the mix, this occurs probably due to the chemical composition of the durian skin is generally dominated by the carbon component in the form of compounds cellulose highly flammable, so that when the process is not properly controlled charcoal then consequently more durian skin burned, so that the ash produced bio-briquettes will increase, in addition to the increased levels of ash occurs because at no additional adhesive bio-briquette of 15% of the total weight of the mixture of coal – biomass.

In this study, the levels of ash low of 2.51% for the mixture of coconut shell charcoal, 3.47% charcoal sawdust to mix these conditions obtained on the composition of 20% coal and 80% biomass charcoal while ash/ash which is the highest obtained at 4.37% for the mixture of coconut shell charcoal, 4.61% for the mixture of sawdust charcoal, and this condition is obtained on the composition of 80% coal
and 20% biomass charcoal. As for the mixture of coal - durian skin, ash / ash a low of 6.79% was obtained at a composition of 80% coal and 20% charcoal durian skin and ash / ash is highest of 12.20% was obtained in 20% of coal composition and 80% biomass charcoal. Based on the standard specification of solid fuels for households that Nasinal Industry Standard (SNI) No. 01-6235-2000 namely ash / ash bio-briquette in mixture of coal - biomass is less than 8%, only bio-briquette from a mixture of coal-skin durian higher than 8%.

3.1.2. **Moisture Bio-briquette As a Function of Composition Mixed Coal - Biomass**

![Figure 1b: Profile Moisture Bio-briquette As a function of composition Mixed Coal - Biomass](image)

In the graph (Figure 2b) shows the water content / moisture on three types of bio-briquette increase with the composition of the coal in the mix. In this study, the levels of water / moisture a low of 4.83% for the mixture of coconut shell charcoal, charcoal mixture 5.02% to 6.32% sawdust and charcoal to mix durian skin, this condition is obtained on the composition of the mixture of coal 20% and 80% biomass charcoal. While the content of water / moisture highest of 10.09% was obtained for the mixture of coconut shell charcoal, 10.14% for mixed charcoal sawdust and 10.46% for durian skin and this condition is obtained on the composition of 80% coal and 20% biomass charcoal. Based on the standard specification of solid fuels for households that Nasinal Industry Standard (SNI) No. 01-6235-2000 the water content / moisture on the three types bio-briquette all meet the reservations is moister less than 8%.

3.1.3. **Levels of Volatile Matter Bio-briquette As a function of composition Mixed Coal – Biomass**

Volatile matters in the solid fuel serves as stabilisai flame and accelerate the initial combustion. The greater the volatile matter content in the fuel the faster burning fire and ignition time is getting shorter and conversely the smaller the volatile matter content of it will be difficult in the initial ignition.
On the graph shows that the volatile matter in the three types of bio-briquette, increases linearly with increasing the composition of the coal in the mix. This phenomenon occurs because the volatile matter of coal is larger than the three types of biomass.

In this study, a low volatile matter content amounting to 28.81% for the mixture of coconut shell charcoal, charcoal mixture of 35.45% to 36.02% sawdust and charcoal to mix durian skin, the condition is obtained on the composition of 20% coal and biomass charcoal 80%. When viewed from the reservations for solid fuels according to StandartNasinalIndustriss (SNI) No. 01-6235-2000 then the value is not yet meet the standards which must be less than 15%.

3.2 Analysis of Ultimate Bio-briquette

3.2.1. Levels of Sulfur Bio-briquette as a Function of Coal-Biomass Mixture Composition
In the graph (Figure 3a) shows the levels of sulfur in all three types of bio-briquettes are increased with the composition of the coal in the mix, it is because coal is used in this study has a high sulfur content is 3.14%, while blending with biomass Low sulfur, then automatically bio-briquette sulfur content will increase with the increase in the composition of the coal in the mix. Sulfur bio-briquettes obtained lows of 0.54 (%) for bio-coal briquettes mix - coconut shell charcoal, 0.57% for bio-coal briquettes mix - sawdust charcoal and 0.51% for bio-coal briquettes mix - charcoal durian skin, the condition is obtained on the composition of 20% coal and 80% biomass. While the highest levels of sulfur bio-briquette obtained at 2.10% for coal mixture bio-briquette - coconut shell charcoal, 2.042% for coal mixture bio-briquette - sawdust charcoal and 2.00% for coal mixture bio-briquette - charcoal durian skin and this condition is obtained on the composition of the coal 80% and 20% biomass charcoal. Under the second condition of a mixture of coal - biomass can be concluded that the most suitable for use as raw material for the manufacture of bio-briquette fuel is a mixture of K2 is 20% coal and 80% biomass charcoal on the grounds that the levels of sulfur was taken 1%.

3.2.2. Value Caloriss Bio-briquettes As Mixture Ratio Function Coal - Biomass

![Figure 3b: Profile Value Caloriss Bio-briquettes as a function of composition Mixed Coal - Biomass](image)

From the graph shows that the calorific value of the bi-obriket third -biomassa coal mixture decreases with the increase of coal composition. Decrease the calorific value due to fixed carbon content in the biomass charcoal third higher than coal, biomass charcoal in addition there is also a third component that is bonded carbon in the form of chemical compounds in the form of compounds cellulose and carbohydrates. Differences in the chemical composition of coal with biomass charcoal is clearly the third carbon content in coal is lower than the third charcoal biomass and thus the calorific value of coal is also lower than in the biomass charcoal respectively calorific value of coal 6040.41 kcal / kg, coconut shell charcoal coconut 7281.98 kcal / kg, charcoal sawdust 6941.00 kcal / kg and charcoal leather durian 6298.67 kcal / kg.

In this study, obtained the highest bio-briquette caloric value of 6493.69 kcal / kg that is bio-coal briquettes from a mixture of coconut shell charcoal in the composition (K2) yatiu 20% coal and 80% coconut shell charcoal and a low of 5688.75 kcal / kg is bio-coal briquettes from a mixture of charcoal durian skin on the composition (K6) or 80% coal and 20% charcoal durian skin.
4 CONCLUSION

Based on the analysis Proximate and Ultimate bio-briquette characteristics obtained with the composition of the mixture of 20% coal and 80% biomass as follows

4.1. Proximate:

4.1.1. *Mixture of coal - coconut shell charcoal*
Ash = 2.51%; Moisture = 4.83%; volatile matter = 28.81%; Fixed Carbon = 62.82%

4.1.2. *The mixture of coal - sawdust charcoal*
Ash = 3.47%; Moisture = 5.02%; Volatile Matter = 35.45%; Fixed Carbon = 55.26%

4.1.3. *The mixture of coal - charcoal leather durian*
Ash% = 12.20%; Moisture = 6.32%; Volatile Matter = 36.02%; Fixed Carbon = 44.02%

4.2. Ultimate:

4.2.1. *Mixture of coal - coconut shell charcoal*
Total Sulfur = 0.55%; Calorific value = 6494 kcal/kg

4.2.2. *The mixture of coal - sawdust charcoal*
Total sulfur = 0.58%; Calorific value = 6270 kcal /kg

4.2.3. *The mixture of coal - charcoal leather durian*
Total sulfur = 0.51% ; Calorific value = 5824 kcal /kg

Based on the standard specification of solid fuels for households that Nasional Industry Standard (SNI) No. 01-6235-2000 that greater caloris values to 5000 kcal / kg, so the bio-briquettes from a mixture of coal - biomass charcoal is very fit for use as a solid fuel for the above calorific value of 5000 kcal / kg.

5. Reference

[1] Agung Setiawan, Okvi Andrio,Pamilia Coniwanti., Pengaruh Komposisi Pembuatan Bio-briquette dari Campuran Kulit Kacang dan Serbuk Gergaji Terhadap Nilai Pembakaran.,, Jurnal Teknik Kimia No. 2 vol. 18., 2012

[2] Beritaitptek.com,2008,"Beriket Sebagai Alternatif Pengganti Minyak Tanah" Jakarta 12780

[3] BP Statistical Revisw of World Energy June 2004. “Energy in Focus”, http://www.bp.com/dttstatisticalrevisw 2004 October 2004

[4] Hamiudin “PembautanBriketArang” February 19, 2007. Available at : http://selatan.jakarta.go.id/bangunpraja/index.php?option.com.content&task=visw&id=89&item id=1. Accessed: January 30. 2010

[5] Kementerian KordinatorBidangEknomiRepublik Indonesia, “Era KebangkitanEnergi Indonesia” September 2008 http://energialternatif.ekon.go.id. , 2008,

[6] Krevelen, D. W. V., 1993, “ Coal; Typology –Physics – Chemistry – Constitution “, Third edition, ElsevisrScisnce Publishers B.V., Amsterdam.

[7] Mandasini., 2010, “Analisa Emisi Gas Hasil Pembakaran Bio-briket dari Campuran Batubara, Sekam Padi”., Jurnal Teknologi dan Industri, Vol. 8, No. 2 2010, hal. 104 - 108
[8] Mandasini dan Andi Pawennari, 2012 “Pengaruh Rasio Campuran Bahan Perekat dengan Batubara, Sekam Padi terhadap Kekuatan Daya Rekat Bio-briket”, Prosiding Seminar Nasional Teknik Kimia Indonesia 2012., Fakultas Teknik - UI Depok Jawa Barat

[9] Paisal., Muhammad Said Karyani., Analisa Kualitas Briket Arang Kulit Durian Dengan Campuran Kulit Pisang Pada Berbagai Komposisi Sebagai Bahan Bakar Alternatif., Proceeding SNTMUT., Teknik Mesin-FTI USAKTI 20014

[10] Pambudi N. A., “Artikel Energi Alternatif itu Bernama Biomassa” Saturday, March 01, 2008., Available at: http://netsains.com/2008/03/energy-alternatif-itu-bernama-biomassa., Accessed: November 17,2009.

[11] Robert, P., et al, 1980, “Annual Book Of ASTM Standards” Part 26, American Society For Testing and Materials.

[12] Roesyadi, A. dan Aladin, A., 2003, “Bahan Bakar Dan Energi Batubara Masa Depan”, Prosiding Seminar Nasional Perkembangan Riset dan Teknologi di Bidang Industri, UGM Yogyakarta 13 Mei 2003. Proses, Vol. 2 , 2008.

[13] Siti Jamilatun., 2008, ”Sifat-sifat Penyalaan dan Pembakaran Briket Biomassa, Briket Batubara dan Arang Kayu”, Jurnal Rekayasa Proses, Vol. 2, No.2. 2008

[14] Sukandarrumidi, 1995, “Batubara dan Gambut”, ed. 1, GadjahMada University Press, Yogyakarta.

[15] Suyartono and Indria, B., 2000, “The Future of Coal and its Industry in Indonesia”, Indonesian Mining Journal, Vol.6, October-2000, pp.78-85.

[16] Triono A., 2006 KarakteristikBriketArang Dari Campuran Serbuk Gergaji Kayu Afrika dan Sengon dengan PenambahanTempurung Kelapa.,Departemen Hasil Hutan Fakultas Kehutanan, IPB, 2006