Functional central limit theorems for vicious walkers

Makoto Katori and Hideki Tanemura

Chuo University and Chiba University

Dedicated to Professor Tokuzo Shiga on his 60th birthday.

Abstract. We consider the diffusion scaling limit of the vicious walker model that is a system of nonintersecting random walks. We prove a functional central limit theorem for the model and derive two types of nonintersecting Brownian motions, in which the nonintersecting condition is imposed in a finite time interval $[0, T]$ for the first type and in an infinite time interval $(0, \infty)$ for the second type, respectively. The limit process of the first type is a temporally inhomogeneous diffusion, and that of the second type is a temporally homogeneous diffusion that is identified with a Dyson’s model of Brownian motions studied in the random matrix theory. We show that these two types of processes are related to each other by a multi-dimensional generalization of Imhof’s relation, whose original form relates the Brownian meander and the three-dimensional Bessel process. We also study the vicious walkers with wall restriction and prove a functional central limit theorem in the diffusion scaling limit.

AMS 2000 subject classifications. 82B41, 82B26, 82D60, 60G50,
Key words and phrases. vicious walkers, random matrices, Dyson’s Brownian motion, Imhof’s relation.

1 Introduction

The system of one-dimensional symmetric simple random walks, in which none of walkers have met others in a given time period, is called the vicious walker model. (See Fisher’s paper [8], in which it was introduced as a model of statistical mechanics.) The purpose of this paper is to study the scaling limit of vicious walkers as a stochastic process. Since each random walk tends to a Brownian motion in the diffusion scaling limit, an interacting system of N Brownian motions will be constructed as the scaling limit of vicious walkers with an arbitrary finite number of walkers N. We show that a functional central limit theorem for vicious walkers holds and the limit process $X(t) = (X_1(t), X_2(t), \ldots, X_N(t))$ is a temporally inhomogeneous diffusion, that is, its transition probability depends on the time interval $(0, T]$ in which the nonintersecting condition is imposed. We claim that when $N = 2$, the process $(X_2(t) - X_1(t))/\sqrt{T}$ is a one-dimensional Brownian motion conditioned to stay positive during a finite time interval $(0, T]$, which is called a Brownian meander in [35, 40].

We also study the temporally homogeneous diffusion process $Y(t) = (Y_1(t), Y_2(t), \ldots, Y_N(t))$, which is obtained from the previous process by taking $T \to \infty$. The process $Y(t)$ is the Doob h-transform [5] of the absorbing Brownian motion in a Weyl chamber with harmonic function $h_N(x) = \prod_{1 \leq i < j \leq N} (x_j - x_i)$, and can be regarded as a system of Brownian motions with the drift terms acting as the repulsive two-body forces proportional to the inverse of distances between particles [11]. In other words, if we set $T \to \infty$, the scaling limit of vicious walkers can realize a Dyson’s Brownian motion model studied in the random matrix theory [7, 26]. We show the following relation between the processes $X(t)$ and $Y(t)$:

$$P(X(\cdot) \in dw) = \tau_N(T) P(Y(\cdot) \in dw) \frac{1}{h(w(T))},$$

where $\tau_N(T)$ is the normalization constant. This equality is a generalization of Imhof’s formula, which relates the Brownian meander and the three-dimensional Bessel process [13].

The Gaussian ensembles of random matrices can be regarded as the thermodynamical equilibrium of Coulomb gas system and that is the reason why Dyson introduced a one-dimensional model of interacting Brownian particles with (two-dimensional) Coulomb repulsive potentials [7, 26]. Similar relations between our processes and random matrix ensembles can be seen. The distribution of $Y(t)$ is described by using the probability density of eigenvalues of random matrices in the Gaussian unitary ensemble (GUE) with variance t. Pandey and Mehta [27, 33] introduced a Gaussian ensemble of Hermitian matrices depending on a parameter $\alpha \in [0, 1]$. When $\alpha = 0$, the ensemble is the Gaussian orthogonal ensemble (GOE), and when
\(\alpha = 1 \), it is the GUE. We will find that the probability density function of \(\sqrt{T/(2T-t)}X(t) \) coincides with that of eigenvalues of matrices in the Pandey-Mehta ensemble with \(\alpha = \sqrt{(T-t)/T} \).

We also study vicious walkers with wall restriction and prove the functional central limit theorem in the diffusion scaling limit. In this case the obtained temporally inhomogeneous diffusion process is a system of nonintersecting Brownian meanders, which is related to the nonstandard classes of random matrices [20, 21].

2 Statement of Results

2.1 Vicious walkers without wall restriction

Let \((\{S_j\}_{j \geq 0}, P^z) \) be the \(N \)-dimensional Markov chain starting from \(z = (z_1, z_2, \ldots, z_N) \), such that the coordinates \(S_j^k, k = 1, 2, \ldots, N \), are independent simple random walks on \(\mathbb{Z} \). We always take the starting point \(z \) from the set

\[
\mathbb{Z}_N^\prec = \{z = (z_1, z_2, \ldots, z_N) \in (2\mathbb{Z})^N : z_{k+1} - z_k \in 2\mathbb{Z}_+, k = 1, \ldots, N - 1\},
\]

where \(\mathbb{Z}_+ \) is the set of positive integers. Now we consider the condition that any of walkers does not meet other walkers up to time \(m \), i.e.

\[
S_j^1 < S_j^2 < \cdots < S_j^N, \quad 0 \leq j \leq m. \tag{2.2}
\]

We denote by \(Q^z_m \) the conditional probability of \(P^z \) under the event \(\Lambda_m = \{S_j^1 < S_j^2 < \cdots < S_j^N, 0 \leq j \leq m\} \). The process \((\{S_j\}_{j \geq 0}, Q^z_m) \) is called the vicious walkers (up to time \(m \)) (see Fisher [8]).

![Figure 1: An example of vicious walks without wall restriction.](image)

For \(T > 0 \) and \(z \in \mathbb{Z}_N^\prec \), we consider probability measures \(\mu_{L,T}^z, L \geq 1 \), on the space of continuous paths \(C([0,T] \to \mathbb{R}^N) \) defined by

\[
\mu_{L,T}^z(\cdot) = Q_{L^2T} \left(\frac{1}{L} \mathbf{S}(L^2t) \in \cdot \right),
\]

where \(\mathbf{S}(t), t \geq 0 \), is the interpolation of the random walk \(\mathbf{S}_j, j = 0, 1, 2, \ldots \). We study the limit distribution of the probability \(\mu_{L,T}^z, L \to \infty \).

We put \(\mathbb{R}_N^\prec = \{x \in \mathbb{R}^N : x_1 < x_2 < \cdots < x_N\} \), which is called the Weyl chamber [9]. By virtue of the Karlin-McGregor formula [15, 16], the transition density function \(f_N(t, y|x) \) of the absorbing Brownian motion in \(\mathbb{R}_N^\prec \) and the probability \(\mathcal{N}_N(t, x) \) that the Brownian motion started at \(x \in \mathbb{R}_N^\prec \) does not hit the boundary of \(\mathbb{R}_N^\prec \) up to time \(t > 0 \) are given by

\[
f_N(t, y|x) = \det_{1 \leq i, j \leq N} \left((2\pi t)^{-1/2} e^{-(x_i - y_j)^2/2t} \right), \quad x, y \in \mathbb{R}_N^\prec, \tag{2.4}
\]
and

\[N_N(t, x) = \int_{\mathbb{R}_+^n} dy f_N(t, y|x). \] (2.5)

For an even integer \(n \) and an antisymmetric \(n \times n \) matrix \(A = (a_{ij}) \) we put

\[\text{Pf}_{1 \leq i < j \leq n}(a_{ij}) = \frac{1}{(n/2)!} \sum_{\sigma} \text{sgn}(\sigma) a_{\sigma(1)\sigma(2)} a_{\sigma(3)\sigma(4)} \cdots a_{\sigma(n-1)\sigma(n)}, \] (2.6)

where the summation is extended over all permutations \(\sigma \) of \((1, 2, \ldots, n) \) with restriction \(\sigma(2k-1) < \sigma(2k), \) \(k = 1, 2, \ldots, n/2. \) This expression is known as the Pfaffian (see Stembridge [39]). Then we have the following lemma, which is a consequence of the identity given by de Bruijn [4] as shown in Section 4.

Lemma 2.1 For \(t > 0, x \in \mathbb{R}^N_+ \),

\[N_N(t, x) = \begin{cases} \text{Pf}_{1 \leq i < j \leq N} F_{ij}(t, x), & \text{if } N \text{ is even} \\ \text{Pf}_{1 \leq i < j \leq N+1} F_{ij}(t, x), & \text{if } N \text{ is odd} \end{cases} \] (2.7)

where

\[F_{ij}(t, x) = \begin{cases} \Psi \left(\frac{x_j - x_i}{2\sqrt{t}} \right), & \text{if } 1 \leq i, j \leq N \\ 1, & \text{if } 1 \leq i \leq N, j = N + 1 \\ -1, & \text{if } i = N + 1, 1 \leq j \leq N \\ 0, & \text{if } i = N + 1, j = N + 1 \end{cases} \] (2.8)

and \(\Psi(u) = (2/\sqrt{\pi}) \int_0^u e^{-v^2} dv. \)

We put

\[h_N(x) = \prod_{1 \leq i < j \leq N} (x_j - x_i). \] (2.9)

The first main result is the following theorem.

Theorem 2.2 (i) For any fixed \(z \in \mathbb{Z}_+^N \) and \(T > 0 \), as \(L \to \infty \), \(\mu^T_{L,T} (\cdot) \) converges weakly to the law of the temporally inhomogeneous diffusion process \(X(t) = (X_1(t), X_2(t), \ldots, X_N(t)), t \in [0, T], \) with transition density \(g^T_N(s, x, t, y) \):

\[g^T_N(0, 0, t, y) = c_N T^{-N(N-1)/4} \Gamma^{-N^2/2} e^{\left(\frac{|y|^2}{2t} \right)} h_N(y) N_N(T-t, y), \] (2.10)

\[g^T_N(s, x, t, y) = \frac{f_N(t-s, y|x) N_N(T-t, y)}{N_N(T-s, x)} \] (2.11)

for \(0 \leq s < t \leq T, x, y \in \mathbb{R}_+^N \), where \(c_N = 2^{-N/2} / \prod_{j=1}^N \Gamma(j/2). \)

(ii) The diffusion process \(X(t) \) solves the following equation:

\[X_i(t) = B_i(t) + \int_0^t b^T_i(s, X(s)) ds, \quad t \in [0, T], \quad i = 1, 2, \ldots, N, \] (2.12)

where \(B_i(t), i = 1, 2, \ldots, N, \) are independent one-dimensional Brownian motions and

\[b^T_i(t, x) = \frac{\partial}{\partial x_i} \ln N_N(T-t, x), \quad i = 1, 2, \ldots, N. \]
Then we have the following lemma, which is proved in Section 4 as a consequence of the identity given by

\[\Lambda \]

the absorbing Brownian motion in \(C \) and \(m \) with wall restriction (up to time \(N \)).

We study the limit distribution of the probability

\[\hat{\mu}(x) = \int_{0}^{t} \frac{1}{y} ds, \quad t \in [0, \infty), \quad i = 1, 2, \ldots, N. \]

2.2 Vicious walkers with wall restriction

In this subsection, we impose the condition

\[S_j^1 \geq 0, \quad 1 \leq j \leq m, \]

in addition to (2.2) and take the starting point \(z \) from the set

\[\{ (z_i) \in (2N)^N; z_{k+1} - z_k \in 2Z, k = 1, \ldots, N - 1 \}, \]

where \(N \) is the set of non-negative integers. That is, there assumed to be a wall at the origin and all walkers can walk only in the region \([0, \infty)\). We denote by \(\tilde{\mu}_{L,T}^z \) the conditional probability of \(I^z \) under the event \(\tilde{\Lambda}_m = \{ 0 \leq S_j^1 < S_j^2 < \cdots < S_j^N, 0 \leq j \leq m \} \). The process \((\{S_j\}_{j \geq 0}, \tilde{\mu}_{L,T}^z) \) is regarded as the vicious walkers with wall restriction (up to time \(m \)) [22].

For \(T > 0 \) and \(z \in \mathbb{N}^N \), we consider probability measures \(\hat{\mu}_{L,T}^z \) defined by

\[\hat{\mu}_{L,T}^z(\cdot) = \tilde{\mu}_{L,T}^z \left(\frac{1}{L^2} S(L^2 t) \in \cdot \right). \]

We study the limit distribution of the probability \(\hat{\mu}_{L,T}^z, \) \(L \to \infty \).

We put \(\mathbf{R}^N_+ = \{ x \in \mathbb{R}^N; 0 \leq x_1 < x_2 < \cdots < x_N \} \). Then the transition density function \(\tilde{f}_N(t, y|x) \) of the absorbing Brownian motion in \(\mathbf{R}^N_+ \) and the probability \(\tilde{N}_N(t, x) \) that the Brownian motion started at \(x \in \mathbf{R}^N_+ \) does not hit the boundary of \(\mathbf{R}^N_+ \) up to time \(t > 0 \) are given by

\[\tilde{f}_N(t, y|x) = \det_{1 \leq i, j \leq N} \left((2\pi t)^{-1/2} \left(e^{-\frac{(x_i-y_i)^2}{2t}} - e^{-\frac{(x_j+y_j)^2}{2t}} \right) \right), \quad x, y \in \mathbf{R}^N_+, \]

and

\[\tilde{N}_N(t, x) = \int_{\mathbf{R}^N_+} dy \tilde{f}_N(t, y|x). \]

Then we have the following lemma, which is proved in Section 4 as a consequence of the identity given by de Bruijn [4].
Figure 2: An example of vicious walks with wall restriction.

Lemma 2.4 For \(t > 0, x \in \mathbb{R}_+^N \),

\[
\hat{N}_N(t, x) = \begin{cases}
\mathsf{P}_{1 \leq i < j \leq N} \hat{F}_{ij}(t, x), & \text{if } N = \text{even}, \\
\mathsf{P}_{1 \leq i < j \leq N+1} \hat{F}_{ij}(t, x), & \text{if } N = \text{odd},
\end{cases} \tag{2.21}
\]

where

\[
\hat{F}_{ij}(t, x) = \begin{cases}
\hat{\Psi} \left(\frac{x_i}{\sqrt{2t}}, \frac{x_j}{\sqrt{2t}} \right), & \text{if } 1 \leq i, j \leq N, \\
\Psi \left(\frac{x_i}{\sqrt{2t}} \right), & \text{if } 1 \leq i \leq N, j = N + 1, \\
-\Psi \left(\frac{x_i}{\sqrt{2t}} \right), & \text{if } i = N + 1, 1 \leq j \leq N, \\
0, & \text{if } i = N + 1, j = N + 1,
\end{cases} \tag{2.22}
\]

and

\[
\hat{\Psi}(u_1, u_2) = \frac{2}{\pi} \left[\int_0^{u_1} dv_1 \int_{u_1-u_2}^{u_2-u_1} dv_2 \exp\left\{ -v_1^2 - (v_1 - v_2)^2 \right\}
- \int_{u_1}^{u_2} dv_1 \int_{u_2-u_1}^{u_1+u_2} dv_2 \exp\left\{ -v_1^2 - (v_1 - v_2)^2 \right\} \right]. \tag{2.23}
\]

We put

\[
\hat{h}_N(x) = \prod_{1 \leq i < j \leq N} (x_j^2 - x_i^2) \prod_{i=1}^{N} x_i. \tag{2.24}
\]

Then we can obtain the following result.

Theorem 2.5 (i) For any fixed \(z \in \mathbb{N}_+^N \) and \(T > 0 \), as \(L \to \infty \), \(\hat{\rho}_{L,T}^z(\cdot) \) converges weakly to the law of the temporally inhomogeneous diffusion process \(\hat{X}(t) = (\hat{X}_1(t), \hat{X}_2(t), \ldots, \hat{X}_N(t)) \), \(t \in [0, T] \), with transition density \(\hat{g}_{N}^L(s, x, t, y) \):

\[
\hat{g}_{N}^L(0, 0, t, y) = \hat{c}_N T^{N^2/2} t^{-N(2N+1)/2} \exp \left\{ -\frac{|y|^2}{2t} \right\} \hat{h}_N(y) \hat{N}_N(T - t, y), \tag{2.25}
\]

5
\(\hat{g}_N^T(s, x, t, y) = \hat{N}(t - s, y|x) \hat{N}_N(T - t, y), \) \hspace{1cm} (2.26)

for \(0 \leq s < t \leq T, x, y \in \mathbb{R}^N_+, \) where \(\hat{c}_N = 1/ \prod_{j=1}^N \Gamma(j). \)

(ii) The diffusion process \(\hat{X}(t) \) solves the following equation:

\[
\hat{X}_i(t) = B_i(t) + \int_0^t \hat{b}_i^T(s, \hat{X}(s))ds, \quad t \in [0, T], \quad i = 1, 2, \ldots, N,
\]

where

\[
\hat{b}_i^T(t, x) = \frac{\partial}{\partial x_i} \ln \hat{N}_N(T - t, x), \quad i = 1, 2, \ldots, N.
\]

Next we consider the case that \(T = T_L \) goes to infinity as \(L \to \infty. \)

Corollary 2.6

(i) Let \(T_L \) be an increase function of \(L \) with \(T_L \to \infty \) as \(L \to \infty. \) For any fixed \(z \in \mathbb{N}^N_+, \)

as \(L \to \infty, \) \(\bar{\rho}_L(t, \cdot, \cdot) \) converges weakly to the law of the temporally homogeneous diffusion process \(\hat{Y}(t) = (\hat{Y}_1(t), \hat{Y}_2(t), \ldots, \hat{Y}_N(t)), \) \(t \in [0, \infty), \)

with transition density \(\rho_N(s, x, t, y); \)

\[
\rho_N(0, 0, t, y) = \hat{c}_N t^{-(2N+1)/2} \exp \left\{ -\frac{|y|^2}{2t} \right\} \hat{h}_N(y)^2,
\]

\[
\rho_N(s, x, t, y) = \frac{1}{\hat{h}_N(x)} \hat{f}_N(t - s, y|x) \hat{h}_N(y),
\]

for \(0 \leq s < t < \infty, x, y \in \mathbb{R}^N_+, \) where \(\hat{c}_N = (2/\pi)^{N/2} / \prod_{j=1}^N \Gamma(2j). \)

(ii) The diffusion process \(\hat{Y}(t) \) solves the following equation:

\[
\hat{Y}_i(t) = B_i(t) + \int_0^t \frac{1}{Y_i(s)} ds + \sum_{1 \leq j \leq N, j \neq i} \left\{ \int_0^t \frac{1}{Y_i(s) - Y_j(s)} ds + \int_0^t \frac{1}{Y_i(s) + Y_j(s)} ds \right\},
\]

\(t \in [0, \infty), i = 1, 2, \ldots, N. \)

2.3 Remarks

(i) The process \(X(t) \) (resp. \(\hat{X}(t) \)) represents the system of \(N \) Brownian motions (resp. \(N \) Brownian meanders) started from the origin conditioned not to collide up to time \(T. \) A limit theorem for one-dimensional random walk conditioned to stay positive was firstly observed by Spitzer [37] and then studied and generalized by many probabilists [1, 12, 3, 6]. For two-dimensional random walk conditioned to stay in a cone, a limit theorem was proved by Shimura [36]. Our theorems are multi-dimensional versions of these limit theorems.

(ii) The process \(Y(t) \) (resp. \(\hat{Y}(t) \)) represents the system of \(N \) Brownian motions (resp. \(N \) three-dimensional Bessel processes) conditioned never to collide. The function \(h_N(x) \) (resp. \(\hat{h}_N(x) \)) is a strictly positive harmonic function for the absorbing Brownian motions in the Weyl chamber \(\mathbb{R}^N_+ \) (resp. \(\mathbb{R}^N_+ \)). The process \(Y(t) \) (resp. \(\hat{Y}(t) \)) is the corresponding *Doob h-transform* [5, 11]. A functional central limit theorem to the process \(Y(t) \) was also discussed in a recent paper by O’Connell and Yor [31].

(iii) The relation between the Brownian meander and the three-dimensional Bessel process was discussed in Imhof [13]. From our results Imhof’s relation is generalized as follows:

(Without wall restriction) For any \(t_0 = 0 < t_1 < \cdots < t_\ell = T, \) \(\ell \in \mathbb{Z}_+, \)

\[
\prod_{i=1}^\ell g_N^T(t_{i-1}, y_{i-1}, t_i, y_i) = \tau_N T^{N(N-1)/4} \prod_{i=1}^\ell p_N(t_{i-1}, y_{i-1}, t_i, y_i) \frac{1}{h_N(y_\ell)},
\]

(2.31)
for any \(y_i \in \mathbb{R}_+^N, i = 1, 2, \ldots, \ell \), where \(y_0 = 0 \) and
\[
\tau_N = \frac{c_N}{c_N'} = \pi^{N/2} \frac{1}{\prod_{j=1}^N \Gamma(j/2)}.
\]

(With wall restriction) For any \(t_0 = 0 < t_1 < \cdots < t_\ell = T, \ell \in \mathbb{Z}_+ \)
\[
\prod_{i=1}^\ell \tilde{g}_N^T(t_{i-1}, y_{i-1}, t_i, y_i) = \tilde{c}_N T^{N/2} \prod_{i=1}^\ell \tilde{p}_N(t_{i-1}, y_{i-1}, t_i, y_i) \frac{1}{h_N(y_i)},
\]
for any \(y_i \in \mathbb{R}_+^N, i = 1, 2, \ldots, \ell \), where \(y_0 = 0 \) and
\[
\tilde{c}_N = \frac{\tilde{c}_N}{c_N'} = \left(\frac{\pi}{2} \right)^{N/2} \frac{1}{\prod_{j=1}^N \Gamma(2j)}.
\]

(iv) Consider an ensemble of \(N \times N \) complex Hermitian matrices \(\{H\} \). The Gaussian unitary ensemble (GUE) is the ensemble with the probability density function
\[
\mu^{\text{GUE}}(H, \sigma_1^2) = c_1 \exp \left\{ -\frac{1}{2 \sigma_1^2} \text{Tr} H^2 \right\},
\]
where \(\sigma_1^2 \) is variance and \(c_1 = 2^{-N/2}(\pi \sigma_1^2)^{-N^2/2} \). The Gaussian orthogonal ensemble (GOE) is defined as the ensemble of \(N \times N \) real symmetric matrices \(\{A\} \) with the probability density function
\[
\mu^{\text{GOE}}(A, \sigma_2^2) = c_2 \exp \left\{ -\frac{1}{2 \sigma_2^2} \text{Tr} A^2 \right\},
\]
where \(\sigma_2^2 \) is variance and \(c_2 = 2^{-N/2}(\pi \sigma_2^2)^{-N(N+1)/2} \). It is known that the distributions of eigenvalues \(x = (x_1, x_2, \ldots, x_N) \) of these matrix ensembles are given as
\[
g^{\text{GUE}}(x, \sigma_1^2) = \frac{c_N}{N!} \sigma_1^{-N^2} \exp \left\{ \frac{|x|^2}{2 \sigma_1^2} \right\} h_N(x)^2,
\]
and
\[
g^{\text{GOE}}(x, \sigma_2^2) = \frac{c_N}{N!} \sigma_2^{-N(N+1)/2} \exp \left\{ \frac{|x|^2}{2 \sigma_2^2} \right\} h_N(x),
\]
respectively [26]. Theorem 2.2 and Corollary 2.3 give the relation
\[
g_N^T(0, 0, T, y) = N! g^{\text{GOE}}(y, T), \quad y \in \mathbb{R}_+^N,
\]
and
\[
p_N(0, 0, t, y) = N! g^{\text{GUE}}(y, t), \quad y \in \mathbb{R}_+^N, \quad t > 0.
\]

In order to study a Gaussian ensemble of complex Hermitian matrices intermediate between GUE and GOE, Pandey and Mehta considered the following probability density functions with a parameter \(\alpha \in [0, 1] \)
\[
\mu^{PM}(H, \alpha) = \int dA \mu^{\text{GUE}}(H - A, 2\alpha^2 v^2) \mu^{\text{GOE}}(A, 2(1 - \alpha^2) v^2),
\]
where \(v^2 = 1/\{2(1 + \alpha^2)\} \) [27, 33]. They have studied a transition from the GOE to the GUE observed as \(\alpha \) changes from 0 to 1. Let \(g^{PM}(x, \alpha) \) be the probability density function of eigenvalues in this ensemble in Pandey and Mehta. We can show the equality \[18\]
\[
\left(\frac{t(2T-t)}{T} \right)^{N/2} g_N^T\left(0, 0, t, \sqrt{\frac{t(2T-t)}{T}} x \right) = N! g^{PM}\left(x, \sqrt{\frac{T-t}{T}} \right).
\]
It is shown in [19] that as a consequence of this equality, the Harish-Chandra formula for an integral over the unitary group can be obtained. Similar argument concerning the relation between the process $\tilde{X}(t)$ and the nonstandard classes of random matrices is given in [20].

(v) Spohn [38] constructed nonintersecting Brownian motions on a torus and discussed the infinite volume limit to an infinite system of Dyson-type Brownian motions, which was also constructed by Dirichlet form technique in Osaka [32]. For the present N nonintersecting Brownian motion $X(t)$ in a finite time interval $(0, T)$, two types of temporally inhomogeneous infinite particle systems are obtained by setting $T = T(N)$ and taking $N \to \infty$. If we set $T(N) = 2N$ and observe the bulk configuration of particles at time $t = T(N) + s, -\infty < s \leq 0$, a spatially homogeneous but temporally inhomogeneous system is derived in the infinite particle limit, whose multitime correlation functions have the quaternion determinant expressions with sine-kernel. If we set $T(N) = 2N^{1/3}$ and the particle configuration at time $t = T(N) + s, -\infty < s \leq 0$ around the position $2N^{2/3} - s^2/4$ is observed, a spatially and temporally inhomogeneous system is derived in $N \to \infty$, in which multitime correlation functions are given by the quaternion determinants with Airy-kernel [30, 17]. It is easier to prove the limit theorems for Dyson’s Brownian motion model $Y(t)$ corresponding to the above two kinds of infinite particle limits. The former limit provides a homogeneous infinite system, which coincides with the system studied by Spohn [38], Osaka [32] and Nagao and Forrester [29], and the latter does a temporally homogeneous but spatially inhomogeneous infinite system, which is related with the process recently studied by Prähofer and Spohn [34] and Johansson [14]. See Nagao [28] for $N \to \infty$ limit of the process $\tilde{X}(t)$.

3 Proof of Theorems

3.1 Proof of Theorem 2.2

Let $N_N(m, v|u)$, $u, v \in \mathbb{Z}^N$, be the total number of the vicious walks, in which the N walkers start from $u_i, i = 1, 2, \ldots, N$, and arrive at the positions $v_i, i = 1, 2, \ldots, N$, at time m. Then the probability that such vicious walks with fixed end-points are realized in all possible random walks started from the given initial configuration is $N_N(m, v|u)/2^{mN}$, which is denoted by $V_N(m, v|u)$. We also put

$$V_N(m|u) = \sum_{v \in \mathbb{Z}^N} V_N(m, v|u).$$

Define a subset of the square lattice \mathbb{Z}^2,

$$L_m = \{(x, y) \in \mathbb{Z}^2 : x + y = \text{even}, \ 0 \leq y \leq m\},$$

and E_m be the set of all oriented edges which connect the nearest-neighbor pairs $((x, y), (x', y'))$ of vertices with $y' = y + 1$ in L_m. Then each walk of the i-th walker can be represented as a sequence of successive edges connecting vertices $(u_i, 0)$ and (v_i, m) on (L_m, E_m), which we call the lattice path running from $(u_i, 0)$ to (v_i, m). If such lattice paths share a common vertex, they are said to intersect. Under the vicious walk condition, what we consider is a set of all N-tuples of nonintersecting lattice paths. Let $\pi_0 \{ (u_i, 0) \}_{i=1}^N \to \{(v_i, m)\}_{i=1}^N$ be the set of all N-tuples (π_1, \ldots, π_N) of nonintersecting lattice paths, in which π_i runs from $(u_i, 0)$ to (v_i, m), $i = 1, 2, \ldots, N$. $N_N(m, v|u) = |\pi_0 \{ (u_i, 0) \}_{i=1}^N \to \{(v_i, m)\}_{i=1}^N|$ and the Karlin-McGregor formula [15, 16] gives

$$N_N(m, v|u) = \det_{1 \leq i, j \leq N} \left| |\pi((u_j, 0) \to (v_i, m))| \right|,$$

where $|A|$ denotes the cardinality of a set A and $\pi((u_j, 0) \to (v_i, m))$ the set of lattice paths from $(u_j, 0)$ to (v_i, m). (Such a determinantal formula is also known as the Lindström-Gessel-Viennot formula in the enumerative combinatorics, see [23, 10, 39]). Since $|\pi((u_j, 0) \to (v_i, m))| = \binom{m}{(m + u_j - v_i)/2}$, we have the binomial determinant

$$V_N(m, v|u) = 2^{-mN} \det_{1 \leq i, j \leq N} \left(\binom{m}{(m + u_j - v_i)/2} \right).$$

(3.1)
For \(L > 0 \) we introduce the following functions:
\[
\phi_L(x) = 2 \left[\frac{Lx}{2} \right], \quad x \in \mathbb{R}, \text{ and } \phi_L(x) = (\phi_L(x_1), \phi_L(x_2), \ldots, \phi_L(x_N)), \quad x \in \mathbb{R}^N,
\]
where \([a] \) denotes the largest integer not greater than \(a \). We show the following lemmas.

Lemma 3.1

(i) For \(t > 0, x \in \mathbb{Z}_N^N \) and \(y \in \mathbb{R}_N^N \)
\[
\left(\frac{L}{2} \right)^N V_N(\phi_L(t), \phi_L(y)|x) = c_N t^{-N/2} \frac{1}{L} \left(\frac{x}{L} \right)^N \left(1 + O \left(\frac{|y|}{L} \right) \right), \quad (3.2)
\]
as \(L \to \infty \), where \(c_N = (2\pi)^{-N/2} / \prod_{j=1}^{N} \Gamma(j) \).

(ii) For \(t > 0 \) and \(x \in \mathbb{Z}_N^N \)
\[
V_N(\phi_L(t)|x) = \frac{1}{c_N} h_N \left(\frac{x}{L\sqrt{t}} \right) \left(1 + O \left(\frac{1}{L} \right) \right), \quad (3.3)
\]
as \(L \to \infty \), where \(\tau_N = \pi^{N/2} \prod_{j=1}^{N} (\Gamma(j)/\Gamma(j/2)) \).

Proof. It is enough to consider the case that \(x = 2u, \phi_L(y) = 2v, u, v \in \mathbb{Z}_N^N \) and \(\phi_L(t) = 2\ell, \ell \in \mathbb{Z}_+ \). Then
\[
N_N(\phi_L(t), \phi_L(y)|x) = N_N(2\ell, 2v|2u) = \det_{1 \leq i, j \leq N} \left(\frac{2\ell}{\ell + u_j - v_i} \right),
\]
and
\[
\left(\frac{2\ell}{\ell + u_j - v_i} \right) = \frac{(2\ell)!}{(\ell + u_j - v_i)! (\ell - u_j + v_i)!} = \frac{(2\ell)!}{(\ell - v_i)! (\ell + v_i)!} A_{ij}(\ell, v, u),
\]
with
\[
A_{ij}(\ell, v, u) = \frac{(\ell + v_i - u_j + 1) u_j}{(\ell - v_i + 1) u_j},
\]
where \((a)_0 \equiv 1, (a)_k = a(a+1) \cdots (a+k-1), k \geq 1\). Then
\[
N_N(\phi_L(t), \phi_L(y)|x) = \prod_{i=1}^{N} \left(\frac{(2\ell)!}{(\ell - v_i)! (\ell + v_i)!} \right)^{1 \leq i, j \leq N} \det_{1 \leq i, j \leq N} (A_{ij}(\ell, v, u)). \quad (3.4)
\]
The leading term of \(\det_{1 \leq i, j \leq N} (A_{ij}(\ell, v, u)) \) in \(L \to \infty \) is
\[
D_1(v, u) = \det_{1 \leq i, j \leq N} \left(\frac{\ell + v_i}{\ell - v_i} \right)^{u_j} = (-1)^{N(N-1)/2} \det_{1 \leq i, j \leq N} \left(\frac{\ell + v_i}{\ell - v_i} \right)^{u_{N-j+1}}.
\]
Let \(\xi(u) = (\xi_1(u), \ldots, \xi_N(u)) \) be a partition specified by the starting point \(2u \) defined by
\[
\xi_j(u) = u_{N-j+1} - (N - j), \quad j = 1, 2, \ldots, N. \quad (3.5)
\]
Noting that the Vandermonde determinant \(\det_{1 \leq i, j \leq N}(z_i^{N-j}) = \prod_{1 \leq i < j \leq N}(z_i - z_j)\), we have

\[
D_1(v, u) = (-1)^{N(N-1)/2} \det_{1 \leq i, j \leq N} \left(\frac{\ell + v_i}{\ell - v_i} \right)^{N-j} s_{\xi(u)}(\ell + v_1, \ell - v_1, \ldots, \ell + v_N, \ell - v_N)
\]

\[
= (-1)^{N(N-1)/2} \prod_{1 \leq i < j \leq N} \left(\frac{\ell + v_i}{\ell - v_i} \right)^{N-j} s_{\xi(u)}(\ell + v_1, \ell - v_1, \ldots, \ell + v_N, \ell - v_N)
\]

\[
= \prod_{1 \leq i < j \leq N} \frac{2(\ell(v_j - v_i))}{(\ell - v_i)(\ell - v_j)} s_{\xi(u)}(\ell + v_1, \ell - v_1, \ldots, \ell + v_N, \ell - v_N),
\]

where \(s_{\lambda}(z_1, \ldots, z_N)\) is the Schur function associated to a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_N)\) defined by

\[
s_{\lambda}(z_1, \ldots, z_N) = \frac{\det_{1 \leq i, j \leq N} \left(\frac{z_i^{\lambda_j + N-j}}{z_i^{\lambda_j}} \right)}{\det_{1 \leq i, j \leq N} \left(\frac{z_i^{N-j}}{z_i^j} \right)}.
\]

(See Macdonald [25].) It is a symmetric polynomial of degree \(\sum_{i=1}^{N} \lambda_i\) in \(z_1, \ldots, z_N\) and it is known that (see p.44 in [25])

\[
s_{\lambda}(1, 1, \ldots, 1) = \prod_{1 \leq i < j \leq N} \frac{\lambda_i - \lambda_j + j - i}{j - i}.
\]

Then the leading term of \(D_1(v, u)\) in \(L \to \infty\) is

\[
D_2(v, u) = \prod_{1 \leq i < j \leq N} \frac{2(\ell(v_j - v_i))}{\ell} s_{\xi(u)}(1, 1, \ldots, 1)
\]

\[
= \ell^{-N(N-1)/2} 2^N(N-1)!/2 h_N(v)h_N(u) \prod_{1 \leq i < j \leq N} \frac{1}{j - i}.
\]

By Stirling’s formula we see that

\[
\prod_{i=1}^{N} \frac{(2\ell)!}{(\ell - v_i)!(\ell + v_i)!} = (\ell \pi)^{-N/2} 2^{2Nt} N(N-1)!/2 \prod_{i=1}^{N} \left(1 - \frac{v_i^2}{\ell^2} \right)^{-1/2} \left(\frac{1 - v_i/\ell}{1 + v_i/\ell} \right)^{v_i} \left(1 + \mathcal{O}\left(\frac{1}{\ell} \right) \right).
\]

From (3.4), (3.8) and (3.9)

\[
V_N(\phi_{L^2}(t), \phi_L(y)|x) = 2^{-2Nt} N N_N(\phi_{L^2}(t), \phi_L(y)|x)
\]

\[
= c_N \left(\frac{2}{L} \right)^N h_N \left(\frac{x}{L} \right) h_N \left(\frac{2u}{L} \right) \exp \left\{ -\frac{|y|^2}{2t} \right\} h_N(y) \left(1 + \mathcal{O}\left(\frac{|y|}{L} \right) \right).
\]

Then we obtain (3.2).

By (3.2) and simple calculation we have

\[
V(\phi_{L^2}(t)|x) = c_N t^{-N^2/2} \frac{1}{\Gamma(N+1)} h_N \left(\frac{x}{L} \right) \int_{\mathbb{R}^N} dy e^{-|y|^2/2t} h_N(y) \left(1 + \mathcal{O}\left(\frac{1}{L} \right) \right),
\]

(3.10)
as $L \to \infty$. The last integral is the special case ($\gamma = 1/2$ and $a = 1/2t$) of

$$\int_{\mathbb{R}^N} du \, e^{-a|u|^2} \prod_{1 \leq i < j \leq N} |u_j - u_i|^{2\gamma} = (2\pi)^{N/2}(2a)^{-N(\gamma(N-1)+1)/2} \prod_{i=1}^N \frac{\Gamma(1+i\gamma)}{\Gamma(1+\gamma)}$$

(3.11)

found in Mehta (eq.(17.6.7) on page 354 in [26]), whose proof was given in [24]. Then we have (3.3) by elementary calculation. This completes the proof. [1]

Lemma 3.2 Let $t > 0$ and $x, y \in \mathbb{R}_+^N$. Then

$$\left(\frac{L}{2}\right)^N V_N(\phi_L(t), \phi_L(y)|\phi_L(x)) = f_N(t, y|x) \left(1 + \mathcal{O}\left(\frac{|x-y|}{L}\right)\right),$$

(3.12)
as $L \to \infty$.

Proof. From (3.1)

$$\left(\frac{L}{2}\right)^N V_N(\phi_L(t), \phi_L(y)|\phi_L(x))$$

$$= 2^{-N\phi_L(t)} \left(\frac{L}{2}\right)^N \det_{1 \leq i,j \leq N} \left(\frac{\phi_L(x_j) + \phi_L(y_i)}{2}\right)$$

$$= \det_{1 \leq i,j \leq N} \left(2^{-\phi_L(t)-1} L \frac{\phi_L(x_j) + \phi_L(y_i)}{2}\right).$$

Application of Stirling’s formula yields the lemma. [1]

By Donsker’s theorem (see, for instance, Billingsley [2]) we see that $\mathcal{N}_N(t, x)$ is the probability that N Brownian motions do not collide until time t. We have the following asymptotic behaviours of the function $\mathcal{N}_N(t, x)$ as $|x|/\sqrt{t} \to 0$.

Lemma 3.3 Let $t > 0$ and $x \in \mathbb{R}_+^N$. Then

$$\mathcal{N}_N(t, x) = \frac{1}{\pi_N^N} h_N \left(\frac{x}{\sqrt{t}}\right) \left(1 + \mathcal{O}\left(\frac{|x|}{\sqrt{t}}\right)\right), \quad \frac{|x|}{\sqrt{t}} \to 0,$$

(3.13)

where $\pi_N = \pi^{N/2} \prod_{j=1}^N \{\Gamma(j)/\Gamma(j/2)\}$.

Proof. First note that

$$f_N(t, y|x) = (2\pi t)^{-N/2} \exp \left\{ -\frac{1}{2t} \sum_{i=1}^N (x_i^2 + y_i^2) \right\} \det_{1 \leq i,j \leq N} \left(e^{x_i y_j/t} \right).$$

We rewrite the determinant as

$$\det_{1 \leq i,j \leq N} \left(e^{x_i y_j/t} \right) = \frac{\det_{1 \leq i,j \leq N} \left((e^{x_i/t})^{y_N-j+1} \right) \times \det_{1 \leq i,j \leq N} \left((e^{x_i/t})^{N-j} \right)}{\det_{1 \leq i,j \leq N} \left((e^{x_i/t})^{N-j} \right)}$$

$$= s_\xi(y) \left(e^{x_1/t}, e^{x_2/t}, \ldots, e^{x_N/t} \right) \prod_{1 \leq i < j \leq N} (e^{x_j/t} - e^{x_i/t}),$$

where $\xi(y) = y_{N-i+1} - (N-i), i = 1, 2, \ldots, N$. Using it

$$f_N(t, y|x) = (2\pi t)^{-N/2} s_\xi(y) \left(e^{x_1/t}, e^{x_2/t}, \ldots, e^{x_N/t} \right)$$

$$\times \exp \left\{ -\frac{|x|^2 + |y|^2}{2t} \right\} \prod_{1 \leq i < j \leq N} (e^{x_j/t} - e^{x_i/t}).$$

(3.14)
Since
\[\lim_{\delta \to 0} s_{\xi(y)}(e^{x_{1}/t}, \ldots, e^{x_{N}/t}) = s_{\xi(y)}(1, 1, \ldots, 1) = h_N(y) \prod_{j=1}^{N} \frac{1}{\Gamma(j)}, \]
and
\[\prod_{1 \leq i < j \leq N} (e^{x_{i}/t} - e^{x_{j}/t}) = h_N \left(\frac{x}{t} \right) \left(1 + \mathcal{O} \left(\frac{|x|}{t} \right) \right), \quad \frac{|x|}{t} \to 0, \]
the function is asymptotically
\[
N_N(t, x) = (2\pi)^{-N/2}t^{-N(N+1)/4}h_N \left(\frac{x}{\sqrt{t}} \right) \prod_{j=1}^{N} \frac{1}{\Gamma(j)} \times \int_{\mathbb{R}^N} dyh_N(y) \exp \left\{ -\frac{|y|^2}{2t} \right\} \left(1 + \mathcal{O} \left(\frac{|x|}{\sqrt{t}} \right) \right), \quad \frac{|x|}{\sqrt{t}} \to 0.
\]
By (3.11) we have (3.13). \(\blacksquare \)

Lemma 3.4 For \(z \in \mathbb{Z}_+^N \) and \(T > 0 \) \(\{ \mu_{L,T}^z, L \geq 1 \} \) is tight.

Proof. By the Kolmogorov’s tightness criterion it is enough to prove that for any \(\varepsilon > 0 \)
\[
\lim_{\delta \to 0} \sup_{L \geq 1} \mu_{L,T}^z \left(\max_{0 \leq u, v \leq T, |u - v| < \delta} |w(u) - w(v)| \geq \varepsilon \right) = 0. \tag{3.15}
\]
(See, for example, Billingsley [2].) Since \(\mu_{L,T}^z \) is the probability measure of a linearly interpolated random process, (3.15) is derived from the following estimates: as \(\delta \to 0, \)
\[
\lim_{L \to \infty} \sup_{L \geq 1} \mu_{L,T}^z \left(\max_{0 \leq u \leq \delta} |w(u) - w(0)| \geq \varepsilon/2 \right) = o(\delta), \tag{3.16}
\]
\[
\lim_{L \to \infty} \sup_{L \geq 1} \mu_{L,T}^z \left(\max_{0 \leq u \leq \delta} |w(t + u) - w(t)| \geq \varepsilon/2 \right) = o(\delta), \quad t \in [\delta/2, T - \delta]. \tag{3.17}
\]
Under the nonintersecting condition, for any \(i = 1, 2, \ldots, N \)
\[
|w_i(u) - w_i(0)| \leq |w_N(0) - w_i(0)| + (w_i(u) - w_i(0)) - (w_N(u) - w_N(0))_+, \tag{3.18}
\]
where \(a_+ = \max\{a, 0\} \) and \(a_- = \max\{-a, 0\} \). Then the set
\[
\left\{ \max_{0 \leq u \leq \delta} |w(u) - w(0)| \geq \varepsilon/2 \right\}
\]
is included in the set
\[
\left\{ \max_{0 \leq u \leq \delta} (w_1(u) - w_1(0)) - \frac{\varepsilon}{4} - \frac{2N - z_1}{2L} \right\} \cup \left\{ \max_{0 \leq u \leq \delta} (w_N(u) - w_N(0))_+ \geq \frac{\varepsilon}{4} - \frac{2N - z_1}{2L} \right\}.
\]
Noting that \((w_1(u) - w_1(0))_- \) and \((w_N(u) - w_N(0))_+ \) are nonnegative submartingales, we can apply Doob’s theorem (see, for instance, Revuz and Yor [35]) to obtain
\[
\mu_{L,T}^z \left(\max_{0 \leq u \leq \delta} |w(u) - w(0)| \geq \varepsilon/2 \right) \leq \left(\frac{8}{\varepsilon} \right)^p E_{L,T}^z \left(|w_1(\delta) - w_1(0)|^p + |w_N(\delta) - w_N(0)|^p \right) \tag{3.19}
\]
for any $p > 1$ and $L > 4(z_N - z_1)/\varepsilon$, where $E_{L,T}^\pi$ represents the expectation with respect to the probability measure $\mu_{L,T}^\pi$.

From Lemmas 3.1, 3.2 and 3.3

$$\limsup_{L \to \infty} E_{L,T}^\pi \left(|w_1(\delta) - w_1(0)|^p + |w_N(\delta) - w_N(0)|^p \right)$$

$$\leq C_1 \limsup_{L \to \infty} \int_{\mathbb{R}^N_+} dy \left(\frac{L}{2} \right)^N V_N(\phi_L(\delta), \phi_L(y)z) V_N(\phi_L(T \delta)|z) (y_1^p + y_N^p)$$

$$\leq C_2 c_N \delta^{-N^2/2} \int_{\mathbb{R}^N_+} dy \exp \left\{ -\frac{|y|^2}{2\delta} \right\} h_N(y)^2 (y_1^p + y_N^p)$$

$$\leq C_3 \delta^{p/2} \int_{\mathbb{R}^N_+} dx \exp \left\{ -\frac{|x|^2}{2} \right\} h_N(x)^2 (x_1^p + x_N^p)$$

$$= O(\delta^{p/2}).$$

Taking $p > 2$, we obtain (3.16).

Fix $t \in [\delta/2, T - \delta]$. By the Markov property

$$\mu_{L,T}^\pi \left(\max_{0 \leq u \leq \delta} |w(t + u) - w(t)| \geq \varepsilon/2 \right)$$

$$= Q_{L^2T}^\pi \left(\max_{0 \leq u \leq \delta} \frac{|S(L^2(t + u)) - S(L^2t)|}{L} \geq \varepsilon/2 \right)$$

$$\leq \frac{1}{P^\pi(\Lambda_{L^2T})} E^\pi \left(\Lambda_{L^2T}, P^{S(L^2t)} \left(\max_{0 \leq u \leq \delta} \frac{|S(L^2u) - S(0)|}{L} \geq \varepsilon/2 \right) \right),$$

(3.20)

where $\Lambda_m = \{S_j^1 < S_j^2 < \cdots < S_j^N, 0 \leq j \leq m\}$ and E^π represents the expectation with respect to the probability measure P^π. By Doob’s inequality for any $x \in \mathbb{Z}^N$ and $p > 1$

$$P^\pi \left(\max_{0 \leq u \leq \delta} \frac{|S(L^2u) - S(0)|}{L} \geq \varepsilon/2 \right) \leq \left(\frac{2}{\varepsilon} \right)^p \left(\frac{S(L^2\delta) - S(0)}{L} \right) \leq C_4 \delta^{p/2}.$$

(3.21)

From Lemma 3.1 (ii)

$$\limsup_{L \to \infty} \mu_{L,T}^\pi \left(\max_{0 \leq u \leq \delta} |w(t + u) - w(t)| \geq \varepsilon/2 \right)$$

$$\leq C_4 \delta^{p/2} \limsup_{L \to \infty} \frac{P^\pi(\Lambda_{L^2T/2})}{P^\pi(\Lambda_{L^2T})} = O(\delta^{p/2 - N(N - 1)/4}).$$

(3.22)

Taking $p > N(N - 1)/2 + 2$, we obtain (3.17). This completes the proof. \[\square \]

Lemma 3.5 Let $z \in \mathbb{Z}^N_<$, $0 = t_0 < t_1 < \cdots < t_k = T$ and $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^{nk}$. Then

$$\lim_{L \to \infty} E_{L,T}^\pi \left(\exp \left\{ -\frac{1}{2} \sum_{j=1}^k \theta_j \cdot w(t_j) \right\} \right)$$

$$= \int_{(\mathbb{R}^N_+)^k} dy_1 dy_2 \cdots dy_k \prod_{j=1}^k \phi_N(t_j-1, y_j-1, t_j, y_j) \exp \left\{ -\frac{1}{2} \sum_{j=1}^k \theta_j \cdot y_j \right\},$$

(3.23)

where $y_0 = 0$. \[13 \]
Proof. By Lemmas 3.2 and 3.1

\[
\lim_{L \to \infty} \mathbb{E}_{L,T}^T \left(\exp \left\{ -\frac{1}{2} \sum_{j=1}^{k} \theta_j \cdot w(t_j) \right\} \right)
\]

\[
= \lim_{L \to \infty} \frac{1}{P^*_{\alpha}(L^T)} \sum_{x_1 \in \mathbb{Z}^2_+} \cdots \sum_{x_k \in \mathbb{Z}^N_+} E^x \left[\Lambda_{L^T}, S(\phi_{L^T}(t_1)) = x_1, \right.
\]

\[
\times E^{x_1} \left[\Lambda_{L^T(t_2-t_1)}, S(\phi_{L^T}(t_2 - t_1)) = x_2, \right.
\]

\[
\times \cdots \times E^{x_{k-1}} \left[\Lambda_{L^T(t_{k-k-1})}, S(\phi_{L^T}(t_k - t_{k-1})) = x_k, \exp \left\{ \sqrt{-1} \sum_{j=1}^{k} \theta_j \cdot \frac{x_j}{L} \right\} \right] \right]\]

\[
= \lim_{L \to \infty} \frac{1}{P^*_{\alpha}(L^T)} \int_{\mathbb{R}^2_k} dy_1 dy_2 \cdots dy_k \left(\frac{L}{2} \right)^{Nk} V_N(\phi_{L^T}(t_1), \phi_{L^T}(y_1)) \cdots
\]

\[
\times V_N(\phi_{L^T}(t_k - t_{k-1}), \phi_{L^T}(y_k)) \exp \left\{ \sqrt{-1} \sum_{j=1}^{k} \theta_j \cdot y_j \right\}
\]

\[
= \int_{\mathbb{R}^2_k} dy_1 dy_2 \cdots dy_k \prod_{j=1}^{k} g_{L^T}(t_{j-1}, y_{j-1}, t_j, y_j) \exp \left\{ \sqrt{-1} \sum_{j=1}^{k} \theta_j \cdot y_j \right\}.
\]

This completes the proof. \[\square\]

Proof of Theorem 2.2. From Lemmas 3.4 and 3.5 we see that \(\mu^T_{L,T}(\cdot)\) converges weakly to the law of the time inhomogeneous diffusion process \(X(t)\) with transition density \(g_N^T(s, x, t, y)\). Noting that \(N_N(T - t, x)\) is a solution of the heat equation, we see that \(g_N^T(s, x, t, y)\) satisfies the following backward equation:

\[
\frac{\partial}{\partial t} g_N^T(s, x, t, y) = \frac{1}{2} \Delta_x g_N^T(s, x, t, y) + b^T(t, x) \cdot \nabla_x g_N^T(s, x, t, y).
\]
(3.24)

Then the process \(X(t)\) solves (2.12). This completes the proof of Theorem 2.2.

Proof of Corollary 2.3. By simple observation we see that the estimates concerning the probability \(\mu^T_{L,T}\) in the lemmas are uniform with respects to \(T\). Then (i) is obtained from the properties

\[
\lim_{T \to \infty} g_N^T(0, 0, t, y) = p_N(0, 0, t, y),
\]

\[
\lim_{T \to \infty} g_N^T(s, x, t, y) = p_N(s, x, t, y),
\]

which are derived from Lemma 3.3. Noting that \(h_N(x)\) is a harmonic function, we see that \(p_N(s, x, t, y)\) satisfies the following backward equation:

\[
\frac{\partial}{\partial t} p_N(s, x, t, y) = \frac{1}{2} \Delta_x p_N(s, x, t, y) + \nabla_x \ln h_N(x) \cdot \nabla_x p_N(s, x, t, y).
\]
(3.25)

Then the process \(Y(t)\) solves (2.15). This completes the proof of Corollary 2.3. \[\square\]

3.2 Proof of Theorem 2.5

Let \(\tilde{N}_N(m, \nu | u)\), \(u, v \in \mathbb{N}_+^N\), be the total number of the vicious walks with wall restriction, in which the \(N\) walkers start form the positions \(u_i, i = 1, 2, \ldots, N\), and arrive at the positions \(v_i, i = 1, 2, \ldots, N\), at time \(m\).
Then the probability that such vicious walks with fixed end-points are realized in all possible random walks started from the given initial configuration is \(\tilde{N}_N(m, v|u)/2^{mN} \), which is denoted by \(\tilde{V}_N(m, v|u) \). We also put
\[
\tilde{V}_N(m|u) = \sum_{v \in \mathbb{N}_+^N} \tilde{V}_N(m, v|u).
\]

By the Karlin-McGregor (Lindström-Gessel-Viennot) formula, we have [22]
\[
\tilde{V}_N(m, v|u) = 2^{-mN} \det_{1 \leq i, j \leq N} \left(\begin{array}{c} m \\ \left(m + u_j - v_i \right)/2 \end{array} \right) - \left(\begin{array}{c} m \\ \left(m + u_j + v_i \right)/2 + 1 \end{array} \right). \tag{3.26}
\]

Let
\[
sp_\lambda(z_1, \ldots, z_N) = \frac{\det(z_i^{\lambda_j + N-j+1} - z_i^{-(\lambda_j + N-j+1)})}{\det(z_i^{N-j+1} - z_i^{-(N-j+1)})}, \tag{3.27}
\]
for a partition \(\lambda = (\lambda_1, \ldots, \lambda_N) \). Remark that \(sp_\lambda(z_1, \ldots, z_N) \) is the character of the irreducible representation corresponding to a partition \(\lambda \) of the symplectic Lie algebra (see, for example, Lectures 6 and 24 in Fulton and Harris [9]). By using the function \(sp_\lambda \) instead of the Schur function, we can show the following lemma by a similar way to the proof of Lemma 3.1.

Lemma 3.6

(i) For \(t > 0, x \in \mathbb{N}_+^N \) and \(y \in \mathbb{R}_+^N \)
\[
\left(\frac{\lambda}{2} \right)^N \tilde{V}_N(\phi_{\lambda t}(t), \phi_{\lambda}(y)|x) = \tilde{c}_N t^{-N(2N+1)/2} \tilde{h}_N \left(\frac{x}{L} \right) \exp \left\{ - \frac{|y|^2}{2t} \right\} \tilde{h}_N(y) \left(1 + O \left(\frac{|y|}{L} \right) \right), \tag{3.28}
\]
as \(L \to \infty \), where \(\tilde{c}_N = (2/\pi)^{N^2/2} \prod_{j=1}^{\infty} \Gamma(2j) \).

(ii) For \(t > 0 \) and \(x \in \mathbb{N}_+^N \)
\[
\tilde{V}_N(\phi_{\lambda t}(t), \phi_{\lambda}(y)|x) = \frac{1}{c_N} \tilde{h}_N \left(\frac{x}{L \sqrt{t}} \right) \left(1 + O \left(\frac{1}{L} \right) \right), \tag{3.29}
\]
as \(L \to \infty \), where \(\tilde{c}_N = (\pi/2)^{N^2/2} \prod_{j=1}^{\infty} \Gamma(2j)/\Gamma(j) \).

Proof. Again we consider the case that \(x = 2u, \phi_{\lambda}(y) = 2v, u, v \in \mathbb{N}_+^N \) and \(\phi_{\lambda t}(t) = 2\ell, \ell \in \mathbb{Z}_+ \). By the equation (3.26)
\[
\tilde{V}_N(\phi_{\lambda t}(t), \phi_{\lambda}(y)|x) = 2^{-2\ell N} \prod_{i=1}^{\ell} \frac{(2\ell)!}{(\ell - v_i)!((\ell + v_i)!) \det_{1 \leq i, j \leq N} \left(\tilde{A}_{ij}(\ell, v, u) \right)}, \tag{3.30}
\]
with
\[
\tilde{A}_{ij}(\ell, v, u) = \left(\frac{\ell + v_i - u_j + 1}{\ell - v_i + 1} \right)_{u_j} - \left(\frac{\ell - v_i - u_j + 1}{\ell + v_i + 1} \right)_{u_j+1}.
\]

Then the leading term of \(\det_{1 \leq i, j \leq N}(\tilde{A}_{ij}(\ell, v, u)) \) as \(L \to \infty \) is
\[
\tilde{D}_1(v, u) = \det_{1 \leq i, j \leq N} \left(\begin{array}{c} \ell + v_i \\ \ell - v_i \end{array} \right)^{u_j} - \left(\begin{array}{c} \ell - v_i \\ \ell + v_i \end{array} \right)^{u_j} = (-1)^{N(N-1)/2} \det_{1 \leq i, j \leq N} \left(\begin{array}{c} \ell + v_i \\ \ell - v_i \end{array} \right)^{u_{N-j+1}} - \left(\begin{array}{c} \ell - v_i \\ \ell + v_i \end{array} \right)^{u_{N-j+1}} = \det_{1 \leq i, j \leq N} \left(\begin{array}{c} \ell - v_i \\ \ell + v_i \end{array} \right)^{N-j+1} - \left(\begin{array}{c} \ell + v_i \\ \ell - v_i \end{array} \right)^{N-j+1} \right)^{sp_\xi(u)} \left(\begin{array}{c} \ell + v_i \\ \ell - v_i \end{array} \right)^{N-j+1},
\]
where $\xi(u) = (\xi_1(u), \ldots, \xi_N(u))$ with $\xi_j(u) = u_{N-j+1} - (N-j+1), j = 1, 2, \ldots, N$. Note that

$$
\det_{1 \leq i, j \leq N} \left(z_i^{N-j+1} - z_i^{-j} \right) = \prod_{j=1}^{N} \left(z_j - \frac{1}{z_j} \right) \prod_{1 \leq i < j \leq N} \left(z_j - z_i \right) \left(\frac{1}{z_i z_j} - 1 \right).
$$

Then by simple calculation we have

$$
\det_{1 \leq i, j \leq N} \left(\left(\frac{\ell - v_i}{\ell + v_i} \right)^{N-j+1} - \left(\frac{\ell + v_i}{\ell - v_i} \right)^{N-j+1} \right)
= \prod_{j=1}^{N} \frac{4\ell v_j}{\ell^2 - v_j^2} \prod_{1 \leq i < j \leq N} \frac{4f^2(v_j^2 - v_i^2)}{(\ell^2 - v_i^2)(\ell^2 - v_j^2)}.
$$

(3.31)

It is known that

$$
sp_a(1, \ldots, 1) = \prod_{1 \leq i < j \leq N} \frac{\ell_j^2 - \ell_j^2}{m_j^2 - m_j^2} \prod_{j=1}^{N} \frac{v_j}{m_j}
$$

(3.32)

with $\ell_j = \lambda_j + N - j + 1, m_j = N - j + 1$ [9]. Then

$$
sp_{\xi(u)}(1, \ldots, 1) = \prod_{1 \leq i < j \leq N} \frac{u_j^2 - u_i^2}{j^2 - i^2} \prod_{j=1}^{N} \frac{u_j}{j} = \hat{h}_N(u) \prod_{j=1}^{N} \frac{1}{\Gamma(2j + 1)}.
$$

(3.33)

Then the leading term of $\hat{D}_2(v, u)$ in $L \to \infty$ is

$$
\hat{D}_2(v, u) = \hat{h}_N(u) \prod_{j=1}^{N} \frac{1}{\Gamma(2j)} \prod_{j=1}^{N} \frac{4v_j}{\ell} \prod_{1 \leq i < j \leq N} \frac{4(v_j^2 - v_i^2)}{\ell^2}
= \prod_{j=1}^{N} \frac{2}{\Gamma(2j)} \hat{h}_N \left(\frac{u}{\ell} \right) \hat{h}_N(2v).
$$

(3.34)

From (3.9), (3.30) and (3.34) we have

$$
\hat{V}_N(\phi_L(t), \phi_L(y)|x)
= \prod_{j=1}^{N} \frac{1}{\Gamma(2j)} \left(\frac{4}{\ell^n} \right)^{N/2} \hat{h}_N \left(\frac{y}{\ell} \right) \hat{h}_N(2u) \exp \left\{ -\frac{|y|^2}{\ell} \right\} \left(1 + O \left(\frac{|y|}{\ell} \right) \right)
= \left(\frac{2}{L} \right)^N \partial_N t^{-N(2N+1) / 2} \hat{h}_N \left(\frac{X}{L} \right) \hat{h}_N(y) \exp \left\{ -\frac{|y|^2}{2L} \right\} \left(1 + O \left(\frac{|y|}{L} \right) \right).
$$

Then we obtain (3.28).

By (3.28) and simple calculation we have

$$
\hat{V}(\phi_L^2(t)|x) = \partial_N t^{-N(2N+1) / 2} \hat{h}_N \left(\frac{X}{L} \right) \int_{\mathbb{R}^N} dy \ e^{-|y|^2 / 2L} \hat{h}_N(y) \left(1 + O \left(\frac{1}{L} \right) \right)
= \frac{\partial_N}{\Gamma(N+1)} \hat{h}_N \left(\frac{X}{L} \right) \left(1 + O \left(\frac{1}{L} \right) \right),
$$

as $L \to \infty$. The last integral is the special case ($\gamma = 1/2$ and $a = 1$) of

$$
\int_{\mathbb{R}^N} dxe^{-|u|^2 / 2} \prod_{1 \leq i < j \leq N} |u_j|^2 - |u_i|^2 \prod_{j=1}^{N} |u_j|^2 - a
= 2^{aN + \gamma(N-1)} \prod_{j=1}^{N} \frac{\Gamma(1 + j\gamma)\Gamma(a + \gamma(j - 1))}{\Gamma(1 + \gamma)},
$$

(3.35)
Following the same calculation as was done in the proof of Lemma 3.2, we have the following lemma.

Lemma 3.7 Let $t > 0$ and $x, y \in \mathbb{R}^N_+ <$. Then

\[
\left(\frac{L}{2} \right)^N \tilde{V}_N (\phi_{L^2}(t), \phi_L(y) | \phi_L(x)) = \tilde{f}_N(t, y|x) \left(1 + O \left(\frac{||x|| + ||y||}{L} \right) \right),
\]

as $L \to \infty$.

We rewrite $\tilde{f}_N(t, y|x)$ as

\[
\tilde{f}_N(t, y|x) = (2\pi t)^{-N/2} s_p \tilde{\xi}_{(y)} \left(e^{x_i/t}, \ldots, e^{x_N/t} \right) \exp \left\{ -\frac{||x||^2 + ||y||^2}{2t} \right\} \times \prod_{j=1}^N \left(e^{x_j/t} - e^{-x_j/t} \right) \left(\prod_{1 \leq i < j \leq N} (e^{x_i/t} - e^{x_j/t}) (e^{(x_i + x_j)/t} - 1) \right) \left\{ \prod_{j=1}^N e^{x_j/t} \right\}^{-N+1}.
\]

Then we can obtain the following lemma by a similar way to prove Lemma 3.3 by virtue of the equations (3.32) and (3.35).

Lemma 3.8 Let $t > 0$ and $x \in \mathbb{R}^N_+ <$. Then

\[
\tilde{N}_N(t, x) = \frac{1}{\tilde{c}_N} \tilde{h}_N \left(\frac{x}{\sqrt{t}} \right) \left(1 + O \left(\frac{||x||}{\sqrt{t}} \right) \right), \quad ||x||/\sqrt{t} \to 0,
\]

where $\tilde{c}_N = (\pi/2)^{N/2} \prod_{j=1}^N \{ \Gamma(2j)/\Gamma(j) \}$.

From the above lemmas and the same argument as in the previous subsection we can obtain Theorem 2.5 and Corollary 2.6.

4 Proof of Lemmas 2.1 and 2.4

We use the following identity, which is shown in de Bruijn [4]. (See also Appendix in [18].) Lemmas 2.1 and 2.4 are easy consequences of this result as shown below.

Lemma 4.1 Let z be a square integrable piecewise continuous function on \mathbb{R}^2. Then

\[
\int_{\mathbb{R}^2_N} dy \det_{1 \leq i, j \leq N} (z(x_i, y_j)) = Pf_{1 \leq i < j \leq N} (F_{ij}(x)),
\]

where

\[
\hat{N} = \begin{cases} N, & \text{if } N \text{ is even} \\ N + 1, & \text{if } N \text{ is odd} \end{cases}
\]

\[
I_z(x_i) = \int_{-\infty}^{\infty} z(x_i, y) dy,
\]

\[
I_z(x_i, x_j) = \int_{-\infty}^{\infty} \det \begin{pmatrix} z(x_i, y_1) & z(x_i, y_2) \\ z(x_j, y_1) & z(x_j, y_2) \end{pmatrix} dy_1 dy_2,
\]
and
\[
F_{ij}(x) = \begin{cases}
I_z(x_i, x_j), & \text{if } 1 \leq i < j \leq N, \\
-I_z(x_i, x_j), & \text{if } 1 \leq j < i \leq N, \\
I_z(x_i), & \text{if } 1 \leq i \leq N, j = N + 1, \\
-I_z(x_j), & \text{if } i = N + 1, 1 \leq j \leq N, \\
0, & \text{if } 1 \leq i = j \leq N + 1.
\end{cases}
\]

Proof of Lemma 2.1. From the above lemma and integration by substitution, it is enough to show
\[
I_{z_1}(x_i) = 1, \quad I_{z_1}(x_i, x_j) = \Psi \left(\frac{x_j - x_i}{\sqrt{2}} \right),
\]
for \(z_1(x, y) = e^{-(x-y)^2}/\sqrt{\pi} \). The first equation in (4.2) is trivial. Let \(z_0(x) = e^{-x^2}/\sqrt{\pi} \). Then
\[
I_{z_1}(x_i, x_j) = \int_{-\infty}^{\infty} dy_1 \int_{x_i-x_j}^{x_j-x_i} dy_2 \, z_0(y_1) z_0(y_1 + y_2)
= \frac{1}{\pi} \int_{x_i-x_j}^{x_j-x_i} d y_2 \, e^{-y_2^2/2} \int_{-\infty}^{\infty} d y_1 \, e^{-2(y_1+y_2)^2}
= \frac{1}{\sqrt{2\pi}} \int_{x_i-x_j}^{x_j-x_i} d y_2 \, e^{-y_2^2/2} = \Psi \left(\frac{x_j - x_i}{\sqrt{2}} \right).
\]
This completes the proof. ■

Proof of Lemma 2.4. It is enough to show
\[
I_{z_2}(x_i) = \Psi(x_i), \quad I_{z_2}(x_i, x_j) = \hat{\Psi}(x_i, x_j),
\]
for \(z_2(x, y) = \left\{ \left(e^{-(x-y)^2} - e^{-(x+y)^2} \right)/\sqrt{\pi} \right\} \chi \{ x \geq 0, y \geq 0 \} \). The first equation in (4.3) is obtained easily. To show the second equation we put
\[
G((a_1, a_2], (b_1, b_2]) = \int_{a_1}^{b_2} \int_{b_1}^{b_2} \, z_0(y_1) z_0(y_1 - y_2),
\]
for \(a_1, a_2, b_1, b_2 \in \mathbb{R} \cup \{ -\infty, \infty \} \). Then
\[
I_{z_2}(x_i, x_j) = G((-\infty, \infty), (-\infty, x_j - x_i]) - G((-\infty, \infty), (-\infty, -x_j + x_i])
- G((x_i, \infty), (-\infty, x_j + x_i]) + G((x_i, \infty), (-\infty, -x_j + x_i])
- G((-\infty, x_j), (-\infty, x_i - x_j]) + G((-\infty, x_j), (-\infty, -x_j - x_i])
+ G((x_j, \infty), (-\infty, x_i + x_j]) - G((x_j, \infty), (-\infty, -x_i + x_j])
= G((-\infty, x_i], (x_i - x_j, x_j - x_i]) - G((x_i, x_j], (x_j - x_i, x_i + x_j])
- G((-\infty, x_i], (-x_i - x_j, x_i - x_j])
= \hat{\Psi}(x_i, x_j).
\]
This completes the proof. ■

Acknowledgments MK would like to thank John Cardy for his hospitality and useful discussion during his stay in Department of Physics, Theoretical Physics, University of Oxford, where the present work was done. HT is partially supported by JSPS Grant-in-Aid for Scientific Research Kiban (C) (No. 11640101) of Japan Society of the Promotion of Science.
References

[1] B. Belkin, An invariance principle for conditioned recurrent random walk attracted to a stable law, Z. Wahrscheinlichkeitstheorie verw. Geb. 21, (1972), 45-64.
[2] P. Billingsley, Convergence of Probability Measures, John Willey & Sons, New York, 1999 (2nd ed.).
[3] E. Bolthausen, On a functional central limit theorem for random walks conditioned to stay positive, Ann. Probab. 4, (1976), 480-485.
[4] N. G. de Bruijn, On some multiple integrals involving determinants, J. Indian Math. Soc. 19, (1955), 133-151.
[5] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, 1984.
[6] R. Durrett, Conditioned limit theorems for some null recurrent Markov processes, Ann. Probab. 6, (1978), 798-828.
[7] F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3, (1962), 1191-1198.
[8] M. E. Fisher, Walks, walls, wetting, and melting, J. Stat. Phys. 34, (1984), 667-729.
[9] W. Fulton and J. Harris, Representation Theory, Springer, New York, 1991.
[10] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58, (1985), 300-321.
[11] J. P. Imhof, Density factorizations for Brownian motion, meander and the three-dimensional Bessel processes, J. Appl. Prob. 21, (1984), 500-510.
[12] I. Gohm, Discrete polynuclear growth and determinantal processes, math.PR/0206208.
[13] S. Karlin and L. McGregor, Coincidence probabilities, Pacific J. Math. 9, (1959), 1141-1164.
[14] S. Karlin and L. McGregor, Coincidence probabilities, Pacific J. Math. 9, (1959), 1109-1140.
[15] M. Katori, T. Nagao, and H. Tanemura, Infinite systems of non-colliding Brownian particles, to be published in Adv. Stud. in Pure Math. “Stochastic Analysis on Large Scale Interacting Systems”, Mathematical Society of Japan, 2003.
[16] M. Katori and H. Tanemura, Scaling limit of vicious walkers and two-matrix model, Phys. Rev. E 66, (2002), 011105.
[17] M. Katori and H. Tanemura, Noncolliding Brownian motions and Harish-Chandra formula, Elect. Comm. in Prob. 8, (2003), 112-121.
[18] M. Katori, H. Tanemura, T. Nagao, and N. Komatsuda, Vicious walkers with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices, Phys. Rev. E 68, (2003), 021112.
[19] W. König, and N. O’Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel processes, Elect. Comm. in Prob. 6, (2001), 107-114.
[20] C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, J. Phys. A: Math. Gen. 33, (2000), 8835-8866.
[21] B. Lindström, On the vector representations of induced matroids, Bull. London Math. Soc. 5, (1973), 85-90.
[22] I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13, (1982), 988-1007.
[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995 (2nd ed.).
[24] M. L. Mehta, Random Matrices, Academic Press, London, 1991 (2nd ed.).
[25] M. L. Mehta, and A. Pandey, On some Gaussian ensemble of Hermitian matrices, J. Phys. A: Math. Gen. 16, (1983), 2655-2684.
[26] T. Nagao, Dynamical correlations for vicious random walk with a wall, Nucl. Phys. B658[FS], (2003), 373-396.
[27] T. Nagao and P. J. Forrester, Multilevel dynamical correlation function for Dyson’s Brownian motion model of random matrices, Phys. Lett. A247, (1998), 42-46.
[28] T. Nagao, M. Katori, and H. Tanemura, Dynamical correlations among vicious random walkers, Phys. Lett. A307, (2003), 29-35.
[29] N. O’Connell and M. Yor, A representation for non-colliding random walks, Elect. Comm. in Prob. 7, (2002), 1-12.
[30] H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes, Commun. Math. Phys. 176, (1996), 117-131.
[31] A. Pandey and M. L. Mehta, Gaussian ensembles of random Hermitian intermediate between orthogonal and unitary ones, Commun. Math. Phys. 87, (1983), 449-468.
[32] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108, (2002), 1071-1106.
[33] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1998 (3rd ed.).
[36] M. Shimura, A limit theorem for two dimensional random walk conditioned to stay a cone, *Yokohama Math. J.* 39, (1991), 21-36.

[37] F. Spitzer, A Tauberian theorem and its probability interpretation, *Trans. Amer. Math. Soc.* 94, (1960), 150-169.

[38] H. Spohn, Interacting Brownian particles: a study of Dyson’s model, in *Hydrodynamic Behavior of Interacting Particle Systems*, IMA Volumes in Mathematics and its Applications 9, ed. G. Papanicolaou, Springer, Berlin, 1987.

[39] J. R. Stembridge, Nonintersecting paths, pfaffians, and the plane partitions, *Adv. in Math.* 83, (1990), 96-131.

[40] M. Yor, *Some Aspects of Brownian Motion, Part I: Some Special Functionals*, Birkhäuser, Basel, 1992.

Makoto Katori

Department of Physics,
Faculty of Science and Engineering,
Chuo University,
Kasuga, Bunkyo-ku,
Tokyo 112-8551, Japan

e-mail: katori@phys.chuo-u.ac.jp

Hideki Tanemura

Department of Mathematics and Informatics,
Faculty of Science,
Chiba University,
1-33 Yayoi-cho, Inage-ku,
Chiba 263-8522, Japan

e-mail: tanemura@math.s.chiba-u.ac.jp