A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist

Ashaq Ahmad Dar 1,2, Akhtar Hussain Malik 2 & Narayanaswamy Parthasarathy 3,4

1 2 Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Ponducherry 605014, India
2 Centre for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Jammu & Kashmir 190006, India
3 bscahash@gmail.com, 4 ecoakhtar@gmail.com, 5 nparthasarathypu@gmail.com (corresponding author)

Abstract: This study presents a checklist of the flora of three coniferous forests of the Himalayan biodiversity hotspot in Kashmir: low-level blue pine (BP), mixed coniferous (MC) and subalpine (SA) forests. The list includes altitudinal distribution and conservation status of 272 vascular plant species representing 196 genera and 64 families. Excluding neophytes (70 taxa, 62 genera, and 27 families), Magnoliophyta comprised 190 taxa, 139 genera, and 50 families; Pinophyta seven taxa, six genera, and three families; and Pteridophyta three taxa, three genera, and two families. Most speciose families from Magnoliophyta include Compositae, Apiaceae, and Rosaceae. Genera such as Artemisia, Potentilla, Viola, and Saussurea contributed the maximum number of species. In case of Pinophyta, the principal families are Piceaee with four taxa followed by Cupressaceae (2 taxa), whereas genus Juniperus comprised two species. In Pteridophyta, Pteridaceae (2 taxa) formed the most speciose family. The herbs contributed 177 taxa, followed by tress (15 taxa), shrubs (8) and subshrubs (2). The maximum number of taxa belongs to SA (136 taxa) followed by MC (134 taxa) and BP (83 taxa) forests. The species distribution reveals 20, 30, and 46 taxa are exclusive to BP, MC, and SA forests. More than 16% of taxa are categorized in the International Union for Conservation of Nature (IUCN) Red List, and 24 taxa are endemic to the Himalayan landscape. The checklist provides a roadmap for research, protection and conservation of plant diversity, especially the threatened taxa.

Keywords: Compositae, coniferous forest, conservation, elevation, floristic survey, hotspot, Kashmir Himalaya, mountains, threatened taxa.

Abbreviations: Afg.—Afghanistan | Ah—Annual herb | APG—Angiosperm Phylogeny Group | Bh—Biennial herb | BP—Low-level blue pine forest | C—Central | CBD—Convention on Biological Diversity | CR—Critically Endangered | DO—Data Deficient | DS—Deciduous shrub | DT—Deciduous tree | E—Eastern | EC—Eastern-central | EN—Endangered | ES—Evergreen shrub | ET—Evergreen tree | IHR—Indian Himalayan Region | IUCN—International Union for Conservation of Nature | LC—Least Concern | MC—Mixed coniferous forest | Medit.—Mediterranean | Mya.—Myanmar | N—Northern | NA—Not assessed | NC—North-central | NE—North-eastern | NW—North-western | OER—Observed elevation range | Pak.—Pakistan | Ph—Perennial herb | Phip.—Philippines | S = Southern | S—Shrub | SA—Subalpine forest | SC—South-central | SE—South-eastern | SS—Subshrub | SW—South-western | Temp.—Temperate | Thail.—Thailand | TPL—The Plant List | VU—Vulnerable | W—Western.
INTRODUCTION

Research on biodiversity became an essential aspect of biological research immediately after the Convention on Biological Diversity (CBD), with the goal of determining the implications of rapid depletion, management and climate change on species composition and diversity. Biodiversity-related data provide a foundation for species conservation and habitat protection (Cadotte 2006). With only 2.2% of global land area, India houses over 18,000 plant species, including 5,000 endemic flora, and is recognized among the 17 global mega-biodiverse countries (Nayar 1996; Singh et al. 2015). About half of the biodiversity hotspots representing 25% of the known biota are reported from mountain ecosystems (Wester et al. 2019). However, until recently, mountains acquired the attention of researchers, policy-makers, and conservationists.

Currently, diverse habitats supporting distinct flora are experiencing the threat of destruction due to fragmentation, rapid human population growth and climate change (Janssen et al. 2016; IUCN 2017). Consistent reductions in plant diversity call for continuous exploration of the population status of flora using systematic (IUCN) criteria, as this is acknowledged as the most rigorous strategy/technique for evaluating the global status of biodiversity and categorizing plants based on their projected risk of extinction (Maes et al. 2015; Orsenigo et al. 2018; Nowak et al. 2020).

The Himalaya, extending from Afghanistan to Myanmar, is one of 36 biodiversity hotspots harbouring a diverse range of flora and fauna, resulting from the phytogeographical complexity of the region (Zachos & Habel 2011). About half of the known biodiversity in India, particularly endemics, is contributed by the 13% land area of the Indian Himalayan Region (IHR). The phytogeographical complexity in the present Jammu & Kashmir, located on the northwestern side of the Himalaya, contributes significantly to various life forms. On account of its floristic status, the Kashmir Himalaya is a part of Himalayan biodiversity hotspot, and it is also considered to be vulnerable to climate change and thus species extinction (Rashid et al. 2015). Several scholars over the course of time have made significant contributions to floristic knowledge of the Himalayan region: Hooker (1872–1897); Lambert (1933); Javeid (1966, 1978, 1979); Hajra (1983); Polunin & Stainton (1984); Kachroo (1993); Singh & Kachroo (1994); and Malik et al. (2010). However, critical taxonomic knowledge about the Kashmir Himalaya is still poor. In addition, a detailed study on the altitudinal distribution of taxa across the forest types is lacking. Consequently, the present study was undertaken to document the floristic diversity of the area, and to highlight its conservation significance.

MATERIALS AND METHODS

Study area

The study area spans over five districts of the Kashmir valley (33.513–34.659 °N & 74.497–75.019 °E) in the present Jammu & Kashmir, India (Figure 1; Image1). Kashmir valley exhibits a warm summer and humid continental climate (Dfa; Peel et al. 2007) with four distinctive seasons, i.e., spring, summer, autumn, and winter. Climate data from the last 38 years revealed that Kashmir valley experiences an annual mean minimum and maximum temperature of 5.4 ± 0.4 °C and 17.6 ± 0.8 °C (Dad et al. 2021). Furthermore, the mean annual rainfall is 1005.5 ± 197.6 mm (Dad et al. 2021). About 46% of precipitation occurs during pre-monsoon, followed by south-west monsoon (27%), winter monsoon (25%), and post-monsoon (8%). Disturbances posed by the Mediterranean Sea during winter lead to frequent rain and snowfall in the valley. The period of snowfall extends from October–March. Geologically, the study area consists of rocks chiefly composed of slates, phyllites and quartzites (Krishnan 1982). The predominant soil orders are entisols, inceptisols, alfisols, and mollisols (Mahapatra et al. 2000; Sidhu & Surya 2014).

Low-level blue pine (BP) forest ranges from 1,500–2,400 m on gentle to moderate slopes. Even-aged stands of the blue-pine, *Pinus wallichiana* A.B.Jacks intermixed with deodar, *Cedrus deodara* (Roxb. ex D.Don) G.Don and the spruce, *Picea smithiana* (Wall.) Boiss., occur depending upon the aspect. Since the ground surface is covered with litter, understorey herb vegetation is less comprising of *Poa alpina* L., *Fragaria nubicola* (Lindl. ex Hook. f.) Lacaita, *Viola coniceps* Wall. in summer season (Shaheen et al. 2012). Dominant shrub species include *Viburnum grandiflorum* Wall. ex DC., *Berberis lycium* Royle, *Indigofera heterantha* Brandis depending upon aspect and canopy cover. Anthropogenic disturbances include land encroachment (for cultivating *Zea mays* L. and *Solanum tuberosum* L.), non-timber forest product extraction (fruits of *Viburnum grandiflorum* Wall. ex DC., medicinally important herbs, honey, nutritious and medicinally important fungus – *Morchella esculenta* (L.) Pers. etc.), lopping, firewood collection, grazing, and fire.

Mixed coniferous (MC) forest, commonly referred to...
as fir forest, occupies the central and western Himalaya from an elevation of about 2,400–3,000 m. Tree species such as evergreen coniferous (*Abies pindrow* (Royle ex D.Don) Royle, *Picea smithiana* and *Pinus wallichiana*) and deciduous broad-leaved tree species (*Acer caesium* Wall. ex Brandis, and *Prunus cornuta* (Wall. ex Royle) Steud.,) predominate. The regeneration of tree species is low or absent, as indicated by the presence of few saplings and seedlings. Understorey vegetation blossoms after the snowmelt during the spring season and is quite dense and diverse. The dominant shrub and herb species include *Viburnum grandiflorum* and *Stipa sibirica* (L.) Lam., (Dar & Sundarapandian 2016). Epiphytic moss and lichen cover the trunk and lower branches of emergent tree species. Activities such as grazing, extraction of plants and plant materials of economic and medicinal value, firewood collection, illegal logging, etc., contribute to forest degradation.

The subalpine forest (SA) forms a transition between MC forest and alpine scrub or grassland from 2,900–3,500 m. *Abies pindrow* is a characteristic and dominant species intermixed with *Betula utilis* D.Don. *Rhododendron* spp. occur as undergrowth or form individual stands. The species of Primulaceae, Ranunculaceae, and Compositae constitute the main understory herbaceous vegetation. The subalpine forest is equally subjected to anthropogenic disturbances like the other forest types besides heavy winter snowfall as a natural disturbance (Gairola et al. 2009).

Sampling, herbarium preparation, and data analysis

A reconnaissance floristic survey was undertaken in the landscape between the elevation gradient of 1,500 m and 3,800 m to understand the forest types and composition. Three coniferous forests of Kashmir Himalaya: BP, MC, and SA (Champion & Seth 1968) were identified in the region. Botanical explorations were undertaken during 2019 (March–July) and 2020 (May–August) by employing a random sampling approach considering the accessibility and forest types. During the survey, plants such as trees, shrubs and herbs were documented and voucher specimens were collected. Specimens were processed (pressing, drying, chemical treatment, and mounting) following recommended standard techniques (Rao & Sharma 1990), and examined and identified at the Centre for Biodiversity...
and Taxonomy, University of Kashmir. The voucher specimens were deposited at the Department of Ecology and Environmental Sciences Herbarium, Pondicherry University. The Plant List (TPL; http://www.theplantlist.org/) was referred for updated binomial nomenclature and the author names. Angiosperm Phylogeny Group III (APG III) Classification (2009) and Chase & Reveal (2009) for angiosperms and Gymnosperms were followed for categorizing families. Khuroo et al. (2007) was referred for the origin and alien status of flora. Various information sources were explored to acquire Himalayan and global records of inventoried taxa, including Himalayan flora literature (Hooker 1872–1897; Polunin & Stainton 1984), Tropicos (http://www.tropicos.org/), India Biodiversity Portal (https://indiabiodiversity.org/), Flowers of India (http://www.flowersofindia.net/) and Plants of the World online (http://www.plantsoftheworldonline.org/).

RESULTS

Species composition and distribution

A total of 272 taxa belonging to 196 genera and 64 families are present across the three Kashmir Himalayan coniferous forests (Table 1). Of the total vascular plants, neophytes (aliens) represent 70 (25.73%) taxa within 27 and 62 families and genera (Table 2). This includes invasive aliens (IA; 51.42%), naturalised aliens (NZ; 38.57%), casual/naturalised aliens (C/NA; 8.57%) and cultivated unescaped aliens (CU; 1.43%). Among the aliens, woody flora accounted five (7.14%) species (Robinia pseudoacacia L., Syringa emodi Wall. ex Royle, Crataegus songarica K. Koch, Rosa brunonii Lindl., Aesculus indica (Wall. ex Cambess.) Hook.). All the neophytes are excluded hereafter from further analysis.

Most of the native taxa belong to Magnoliophyta (192 taxa, 139 genera, and 50 families), whereas Pinophyta (seven taxa, six genera, and three families) and Pteridophyta (three taxa, three genera, and two families) are less represented (Table 2). Within Magnoliophyta, 177 taxa (92%) belong to Magnoliopsida and 15 (7.8%) to Liliopsida. Among these, there are 177 herb taxa (174 Magnoliophyta and three Pteridophyta), eight shrub taxa (Magnoliophyta only), 15 tree taxa (eight Magnoliophyta and seven Pinophyta) and two subshrubs (Magnoliophyta only). Herbs are dominated by perennials (150 taxa, 85%), followed by annuals (17 taxa, 9.6%), biennials (two taxa, 1.1%) and evergreen (one taxon, 0.56%). Moreover, seven (3.9%) herbaceous taxa are either perennials, annuals or biennials (Table 2). Of the 15 reported tree taxa, most of them are deciduous (8, 59%), followed by evergreen conifers (seven, 41%). Similarly, among the shrubs, seven (88%) are deciduous (including one climber), and one (12.5%) is evergreen.

The images of selected plant taxa are provided (Images 2–7).

Three families in Magnoliophyta with greater contribution to species richness include Compositae (28 taxa, 13.86%) and Apiaceae and Rosaceae (13, 6.44% each). Families with ten or more species (besides above three) include Lamiales, Leguminosae, Poaceae (11, 5.45% each), and Ranunculaceae (10, 4.95%) (Figure 2). Species-rich genera, i.e., Artemisia, Potentilla, Viola, and Saussurea contributed 16 (7.92%) taxa. Majority of families (26, 47.27%) and genera (108, 72.97%) are monotypic with a single taxon. Among Pinophyta, Pinaceae (four taxa) and Cupressaceae (two taxa) are predominant families, whereas Juniperus is the principal genus contributing two taxa. Pteridophyta is represented by Pteridaceae (two taxa) and Equisetaceae (one taxon), and all the three genera (Adiantum, Equisetum, and Pteris) contributed equally, i.e., one species. In contrast to tree and understorey herb vegetation, all shrub families and genera contributed one species each.

The number of taxon varied among the forest types and corresponding elevation due to the uneven distribution of taxa (Table 1). The SA and MC forests represent greater number of taxa, i.e., 136 and 134, followed by BP forest (83 taxa). The species distribution revealed that 20 taxa are exclusive to BP forest, whereas 30 and 46 taxa are limited to MC and SA forests. However, 22.77% of taxa with a wide distributional range are shared among forest types. Furthermore, BP & MC, BP & SA, and MC

Phylum	Taxon	Genera	Family	Trees	Shrubs	Subshrub	Herbs
Magnoliophyta	262	187	59	10	10	3	239
Pinophyta	7	6	3	7	–	–	–
Pteridophyta	3	3	2	–	–	–	3
Total	272	196	64	17	10	3	242

Table 1. Distribution of taxa among various taxonomic groups in three coniferous forests viz., low-level blue pine forest (BP), mixed coniferous forest (MC), subalpine forest (SA) of Kashmir Himalaya, India.
& SA forests shared 16, two, and 43 taxa, respectively. The SA forest harbours greater number of species of Compositae (16.18%) and Caryophyllaceae (5.15%) than to landscape-scale flora (13.86% and 4.46%) in top 10 families. Similarly, Poaceae, and Rosaceae in BP (10.84% & 7.23%) and MC forests (8.21% & 7.46%) contributed greater number of taxa than to the overall landscape (5.45% & 6.44%).

Determination of phytogeographic distribution and taxa status

The distribution of most of the recorded taxa is confined to the northern temperate regions. However, 24 taxa restricted their distribution to the Himalayan landscape (Table 2). Despite the considerable research on plant conservation in Kashmir Himalaya, the analysis of the conservation status of the flora revealed that 169 taxa are not assessed (NA), and the remaining 33 (16.37%) taxa are included under IUCN Red List category (Table 2). Among them, two species Saussurea costus (Falc.) Lipsch. and Aconitum chasmanthum Stapf ex Holmes are Critically Endangered (CR); four species Trillium govanianum Wall. ex D.Don, Aconitum heterophyllum Wall. ex Royle, Taxus wallichiana Zucc. and Atropa acuminata Royle ex Lindl. are Endangered (EN); one species Cypripedium cordigerum D.Don is Vulnerable (VU), two species Asparagus filicinus Buch.-Ham. ex D.Don and Corylus jacquemontii Decne. fall under Data Deficient (DD) category and 24 species are Least Concern (LC). With regard to the forest type and vertical distribution, the maximum number of threatened taxa (VU+EN+CR) occur in SA forest at high altitudinal zones.

DISCUSSION

The floristic survey revealed 272 taxa from 196 genera and 64 families categorized in three life-forms, i.e., trees and understorey shrubs and herbs (Table 1 & 2). The number of taxa reported in the present study was greater than most of the floristic studies in temperate Kashmir Himalaya (Shaheen et al. 2012; Mir et al. 2019; Malik et al. 2021) and other Himalayan studies (Ahmad et al. 2020; Asif et al. 2020; Tiwari et al. 2020) and also elsewhere (Bai et al. 2011). Compositae and Apiaceae constituted species-rich families in this survey. These families were also well represented in other studies of the Kashmir Himalaya: Asif et al. (2020) Betula forests in northwestern Kashmir Himalaya; Dar & Sundarapandian (2016) forests of western Himalaya, and elsewhere Devi et al. (2014) northwestern Himalaya. Variation in species distribution among the forest types/altitudinal zones could be due to micro-climatic heterogeneity resulting from a change in elevation, slope, and other ecological gradients (Körner 2007), besides evolutionary
Table 2. List of plant species in three temperate coniferous forests, viz., low-level blue pine forest (BP), mixed coniferous forest (MC), subalpine forest (SA) of Kashmir Himalaya, India.

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Acanthaceae					
Pteracanthus alatus (Nees) Bremek.	Erect S	BP	2200–2300	PU/EES/KH-1210	E. Afg. to S. China, N. Indo-China & Taiwan
Adoxaceae					
Sambucus wightiana Wall. ex Wight & Am.	Erect Ph	BP/MC/SA	2200–3310	PU/EES/KH-15201	India, Pak., W. Himalayas
Viburnum grandiflorum Wall. ex DC.	DS	BP/MC/SA	1890–3000	PU/EES/KH-1206	Himalayas from Kashmir to SE Tibet
Amaranthaceae					
Achyranthes aspera L.	Ph	MC/SA	2600–3000	PU/EES/KH-15001	Tropical & Subtropical Old World; throughout India
Chenopodium album L.	Ah	MC/SA	2650–2990	PU/EES/KH-15065	C. & S. Europe to Nepal; W. Himalayas in India
Chenopodium folliculosum Asch.	Ah or Ph	SA	2910–3160	PU/EES/KH-15066	
Amaryllidaceae					
Allium humile Kunth.	Bulbous Ph	MC/SA	2700–3015	PU/EES/KH-15013	N. Pak. to C. Himalayas & China
Apiaceae					
Aegopodium alpestre Ledeb.	Ph	MC	2500–2600	PU/EES/KH-15008	Temp. Asia; W. Himalayas in India
Bunium cylindricum (Boiss. & Hohen.) Drude	Ph	SA	3100–3150	PU/EES/KH-15045	Turkey to C. Asia & Pak. to W. Himalayas
Bupleurum falcatum L.	Ph	BP	2120–2130	PU/EES/KH-15103	Himalayas from Pak. to Bhutan
Bupleurum longicaule Wall. ex DC.	Ph	SA	3750–3800	PU/EES/KH-15047	
Carum carvi L.	Ph	BP	2350–2400	PU/EES/KH-15054	Paleartic region; throughout India
Chaerophyllum reflexum Aitch.	Ph	BP/MC	1927–2450	PU/EES/KH-15063	Himalayas from Pak. to SW China
Chaerophyllum villosum Wall. ex DC.	Ph	BP/MC/SA	2050–2920	PU/EES/KH-15064	N. Pak. to China; Himalayas in India
Eryngium billardieri Delile	Ph	BP	2120–2130	PU/EES/KH-15103	EC Turkey to Lebanon & W. Pak.; W. Himalayas in India
Heracleum candidans Wall. ex DC.	Climbing Ph	MC/SA	2400–3810	PU/EES/KH-15119	Himalayas from Pak. to SW China
Pimpinella acuminata (Edgew.) C.B. Clarke	Ph	BP/MC/SA	2200–3120	PU/EES/KH-15170	N. Pak. to China; Himalayas in India
Pimpinella diversifolia DC.	Ph	MC	2460–2770	PU/EES/KH-15171	E. Afg. to China & Indo-China; Himalayas in India
Prangos pabularia Lindl.	Ph	MC/SA	2720–3140	PU/EES/KH-15189	Turkey to C. Asia & W. Himalayas
Sanicula elata Buch.-Ham. ex D.Don	Ph	SA	2910–2930	PU/EES/KH-15202	SE Asia from Pak. to W. China & S. Japan to SE Africa
Scandix pecten-veneris L.	Tall robust Ph	SA	3300–3310	PU/EES/KH-15207	Europe to NW India
Selinium vaginatum C.B. Clarke	Ph	SA	3790–3800	PU/EES/KH-15211	NE Pak. to W. Himalayas
Seseli libanotic (L.) W.D.J.Koch	Ph	MC/SA	2740–2920	PU/EES/KH-15214	Europe, Turkey, Iran, W. Pak. & India
Apocynaceae					
Vincetoxicum cirrhinodoria Medik.	Prostrate erect or climbing Ah	BP/MC	1980–2760	PU/EES/KH-15244	Europe to W. Siberia & N. Turkey, NW Africa, Himalayas
Araceae					
Arisaema jacquemontii Blume	Rhizomatous Ph	BP/MC/SA	2250–2950	PU/EES/KH-15028	Afg. to Mya.
Arisaema propinatum Schott	Ph	MC/SA	2450–2950	PU/EES/KH-15029	Pak. to Himalayas & Tibet
Araliaceae					
Hedera nepalensis K.Koch	Ph	BP/MC	1980–2610	PU/EES/KH-15118	Afg. to Thall.; Himalayas in India
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
---------------------	-----------	-------------	-----	-------------	---
Asparagaceae					
Asparagus filicinus	Erect or twining	BP	1800–1900	PU/EES/KH-15036	Himalayas to C. China
Polygonatum multiflorum (L.) All.	Tufted Ah	BP/MC	2270–2440	PU/EES/KH-15181	Eurasia; W. Himalayas in India
Polygonatum verticillatum (L.) All.	Rhizomatous Ph	BP/MC/SA	1980–3120	PU/EES/KH-15183	Europe to China; Himalayas in India
Balsaminaceae					
Impatiens brochycenta Kar. & Kir.	Ph	BP/MC/SA	2120–3310	PU/EES/KH-15122	Afg. to C. Asia & W. Himalayas
Berberidaceae					
Berberis lycium Royle	Semi-DS	BP	2100–2150	PU/EES/KH-1203	W. Himalayas from Pak. to Nepal
Epimedium elatum C. Morren & Decne.	Rhizomatous Ph	MC/SA	2520–3120	PU/EES/KH-15095	N. Pak. to W. Himalayas
Podophyllum hexandrum Royle	Rhizomatous Ph	BP/MC/SA	2370–3310	PU/EES/KH-15176	NE Afg. to C. China; Himalayas in India
Betulaceae					
Betula utilis D.Don	DT	SA	2910–3300	PU/EES/KH-1004	Afg. to N. & C. China; Himalayas in India
Corylus jacquemontii Decne.	DT	MC	2560–2790	PU/EES/KH-1006	Europe, Himalayas from Afg. to W. Nepal
Boraginaceae					
Arnobia benthami (Wall. ex G. Don) I.M. Johnst.	Rhizomatous Ph	SA	3800–3900	PU/EES/KH-15024	NE Pakistan to W. & C. Himalaya
Cynoglossum glabrumatatum Wall. ex Benth.	Bh	BP/MC/SA	2120–3000	PU/EES/KH-15084	Afg. through Kashmir to Sikkim & W. China
Cynoglossum lanceolatum Forssk.	Bh or Ph	BP/SA	2230–3800	PU/EES/KH-15085	Tropical & S. Africa to Tropical & Subtropical Asia; throughout India
Hackelia uncinata (Benth.) C.E.C. Fisch	Ph	SA	2910–3120	PU/EES/KH-15117	Himalayas from Pak. to SW China
Myosotis alpestris F.W. Schmidt	Ph	SA	3150–3310	PU/EES/KH-15148	Europe, Himalayas from Pak. to Bhutan
Myosotis sylvatica Ehrh. ex Hoffm.	Ph	BP/MC/SA	2260–3150	PU/EES/KH-15149	Temp. Eurasia; W. Himalayas in India
Brassicaceae					
Arabis amplexicaulis Edgew.	Ph	BP/MC	2200–2410	PU/EES/KH-15021	Afg. to Mongolia & Himalayas
Arabis petersperma Edgew.	Ph	MC	2700–2800	PU/EES/KH-15023	Kashmir to China
Capsella bursa-pastoris (L.) Medik.	Erect Ah or Bh	MC/SA	2420–2950	PU/EES/KH-15053	Temp. Eurasia, N. Africa; throughout India
Chorispora tenella (Pall.) DC.	Ah	MC	2750–2770	PU/EES/KH-15067	SE & E. Europe to China; W. Himalayas in India
Lepidium apetalum Wild.	Rhizomatous Ph	BP	2120–2130	PU/EES/KH-15134	E. Europe to temp. Asia; Himalayas in India
Turritis glabra L.	Ah or Bh	BP/MC	2300–2650	PU/EES/KH-15022	Temp. N. Hemisphere; W. Himalayas in India
Campanulaceae					
Companula cashmeriana Royle	Ph	SA	3150–3200	PU/EES/KH-15050	Afg. to W. Himalayas to Nepal
Companula latifolia L.	Ph	MC/SA	2525–2920	PU/EES/KH-15051	SW Siberia, W. Asia to C. Himalayas
Codonopsis ovata Benth.	Ph	MC/SA	2720–3800	PU/EES/KH-15076	C. Asia, Himalayas from Pak. to Kashmir
Codonopsis rotundifolia Benth.	Twining Ph	BP	2200–2340	PU/EES/KH-15077	Pak. to Himalayas & S. Tibet
Cannabaceae					
Cannabis sativa L.	Ah	BP/MC	1920–2650	PU/EES/KH-15052	Native to C. Asia now cosmopolitan
Caprifoliaceae					
Dipsacus inermis Wall.	Ph	MC/SA	2700–3810	PU/EES/KH-15092	Himalayas from Afg. to SW China & Mya.
Lonicera quinquelocularis Hard.	ES	MC	2500–2700	PU/EES/KH-15120	E. Afg. to Himalayas
Morina longifolia Wall.	Ph	MC/SA	2700–2920	PU/EES/KH-15147	N. Pakistan to Himalaya & S. Tibet
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
-------------	-----------	-------------	-----	-------------	------------------------------
Scabiosa speciosa Royle¹	Ah	MC	2720–2730	PU/EES/KH-15208	Himalayas from Pak. to Uttarakhand
Valeriana hardwickii Wall.¹	Dioecious Ph	MC/SA	2570–3140	PU/EES/KH-15238	N. Pak. to S. China & W. Malesia, Himalayas in India
Valeriana jatamansi Jones¹	Ph	MC/SA	2700–3150	PU/EES/KH-15239	Himalayas from Afg. to SW China
Compositae					
Achillea millefolium L.¹	Rhizomatous Ph	BP/MC/SA	2200–3800	PU/EES/KH-15002	Subarctic & temp. N. Hemisphere to Guatemala; W. Himalayas in India
Anaphalis contorta (D.Don) Hook.f.¹	Rhizomatous under-S	BP/MC/SA	1900–3300	PU/EES/KH-15014	Himalayas from Afg. to SW China & Mya.
Anaphalis staintoni Georgiadou¹	Ph	MC	2700–2800	PU/EES/KH-15015	N. Pak. to W. Himalayas
Anaphalis virgata Thomson¹	Ph	BP/MC/SA	2200–3200	PU/EES/KH-15016	Afg. to Xinjiang & Himalayas
Arctium lappa L.¹	Bh	BP/SA	2300–2950	PU/EES/KH-15025	Temp. Eurasia; Himalayas in India
Artemisia absinthium L.¹	Ph	MC/SA	2750–2920	PU/EES/KH-15030	Europe to Siberia & W. Himalayas
Artemisia brevifolia Wall. ex DC.¹	SS	MC	2450–2720	PU/EES/KH-15031	Afg. to W. Tibet & W. Himalayas
Artemisia dubia Wall.¹	SS	BP	2300–2400	PU/EES/KH-15032	Himalayas from Pak. to C. Nepal & China
Artemisia scoparia Waldst. & Kitam.¹	Bh or Ph	MC/SA	2450–3300	PU/EES/KH-15033	Palearctic region; throughout India
Artemisia vesitata Wall. ex Besser¹	SS	SA	3200–3400	PU/EES/KH-15034	Pak. to Mongolia & China, W. Himalayas in India
Artemisia vulgaris L.¹	Ph	SA	2830–2916	PU/EES/KH-15035	Temp. Eurasia to Indo-China & N. Africa
Carduus edelbergii Rech.f.²	Ph	BP/MC	2010–2550	PU/EES/KH-15056	Afg. to Nepal
Caresesomy abrotanoides L.¹	Ph	BP/MC	2200–2570	PU/EES/KH-15057	S. & C. Europe to Japan & Himalayas
Cephalium crenatum L.¹	Ah	MC/SA	2750–2930	PU/EES/KH-15055	Eurasia; W. Himalayas in India
Centaurea ibérica Trevir.²	Ph	BP	2250–2300	PU/EES/KH-15059	SE & E. Europe to Xinjiang & W. Himalayas
Cichorium intybus L.¹	Ph	BP/MC	2050–2490	PU/EES/KH-15068	N. Africa, C & SW Asia & Europe
Cirsium arvense (L.) Scop.¹	Dioecious Ph	BP	2200–2210	PU/EES/KH-15070	Temp. Eurasia, NW Africa; Himalayas in India
Cirsium falconeri (Hook.f.) Petr.¹	Ph	SA	2840–2990	PU/EES/KH-15071	N. Pak. to S. Tibet & N. Mya.
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
---	-----------	-------------	--------------	------------------	---
Cirsium vulgare (Savi) Ten.¹	Bh	SA	2940–2950	PU/EES/KH-15072	Europe to Siberia & Arabian Peninsula; W. Himalayas in India
Cirsium wallichii DC. ²	Ph	BP/MC/SA	1920–3210	PU/EES/KH-15073	Afg. to Indian Subcontinent
Cynara canadensis (L.) Cronquist¹	Ah	BP	2010–2210	PU/EES/KH-15079	Native to Neotropic & Neartic regions
Crepis sancto (L.) Bomm.²	Ah	SA	2910–2920	PU/EES/KH-15081	E. Europe, W. Asia eastwards in Himalayas up to Nepal
Doronicum roylei DC. ¹	Ph	SA	3800–3810	PU/EES/KH-15093	NE Pak. to Himalayas & S. Tibet
Erigeron multifloccatus (Lindl. ex DC.) Benth. ex C. B. Clarke¹					
Lactuca macrorhiza (Royle) Hook. ¹	Ph	MC/SA	2530–3800	PU/EES/KH-15101	Afg. to China
Lactuca dolicophylla Kitam.¹	Ph	MC	2530–2540	PU/EES/KH-15126	Himalayas from Afg. to SW China
Lapsana communis L.¹	Ah	BP/MC/SA	2315–2710	PU/EES/KH-15129	Europe to Siberia & Iran; W. Himalayas in India
Ligularia amplexicaulis DC. ¹	Ph	MC/SA	2790–2930	PU/EES/KH-15137	Himalayas to S. Tibet
Ligularia fischeri (Ledeb.) Turcz.¹	Ph	MC/SA	2570–3540	PU/EES/KH-15138	NE Pak. to S. Siberia & Japan; Himalayas in India
Myriactis nepalensis Less.¹	Ph	BP/MC/SA	1980–3000	PU/EES/KH-15150	Himalayas from Afg. to SW China, & SE Asia
Picris hieracoides Sibth. & Sm.¹	Ph	MC/SA	2430–3000	PU/EES/KH-15169	Temp. Eurasia; Himalayas in India
Saussurea albenscens Hook. f. & Thomson¹	Ph	SA	3050–3060	PU/EES/KH-15204	NW Himalayas
Saussurea taraxacifolia (Lindl.) Wall. ex DC. ¹	Ph	SA	3800–3810	PU/EES/KH-15205	Himalayas from Kashmir to Bhutan, Xizang
Senecio chrysanthemoides DC.¹	Ph	MC/SA	2420–3150	PU/EES/KH-15212	Afg. to SC China & Indo-China
Serrata pallida DC. ¹	Ph	MC	2430–2440	PU/EES/KH-15213	N. Pak. to Nepal
Sigesbeckia orientalis L.²	Tufted Ph	BP	2200–2210	PU/EES/KH-15217	E. Europe to Asia & Australia
Solidago virgo-aurea L.¹	Ph	MC/SA	2670–3810	PU/EES/KH-15220	W. Europe to C. Siberia & Phy.; Himalayas in India
Tanacetum micraulce Sch.Bip.¹	Ph	SA	3010–3810	PU/EES/KH-15229	Kashmir to SW China
Taraxacum officinale (L.) Weber ex F.H.Wigg.²	Semi-prostrate Ph	BP/MC/SA	1920–3410	PU/EES/KH-15230	Cosmopolitan
Tussilago farfara L.¹	Ph	MC/SA	2670–3130	PU/EES/KH-15236	Palearctic region; Himalayas in India
Xanthium spinosum L.¹	Ph	MC/SA	2230–2240	PU/EES/KH-15128	C. & E. Canada to Mexico; Peru to S. South America
Convolvolaceae					
Convolvolus arvensis L.²	Climbing & prostrate Ah or Ph	MC	2440–2460	PU/EES/KH-15078	Eurasia; throughout India
Crassulaceae					
Sedum eversii Ledeb.²	Ph	SA	3790–3810	PU/EES/KH-15210	Siberia to Afg. & N. China; W. Himalayas in India
Cupressaceae					
Juniperus semiglabosa Regel²	Monoecious ET	MC	2450–2500	PU/EES/KH-1008	SE Iran to C. Asia, Himalayas from Pak. to Uttarakhand
Juniperus squamata Buch.-Ham. ex D.Don²	Monoecious bushy, semi-prostrate S/ET	SA	3150–3440	PU/EES/KH-1015	N. Afg. to China
Cyperaceae					
Carex stenophyllo Wahlenb.¹	Rhizomatous creeping Ph	SA	2800–2920	PU/EES/KH-15058	From Caucasus & Iran to Pak., Kashmir & Mongolia
Dioscoreaceae					
Dioscorea deltoidea Wall. ex Griseb.¹	Climbing Ph	BR/SA	1880–2810	PU/EES/KH-15091	Himalayas to SC China & Indo-China
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
-------------	-----------	-------------	-----	-------------	-------------------------------
Elaeagnaceae					
Hippophae rhamnoides L.	Dioecious DT	MC	2400–2500	PU/EES/KH-1204	Paleartic region; W. Himalayas in India
Equisetaceae					
Equisetum arvense L.	Erect or prostrate rhizomatous Ph	BR/SA	2320–3060	PU/EES/KH-15100	Subartic & temp. N. Hemisphere
Euphorbiaceae					
Euphorbia esula L.	Erect Ph	MC	2600–2760	PU/EES/KH-15104	Paleartic; W. Himalayas in India
Euphorbia pilosa L.	Ph	SA	2920–2930	PU/EES/KH-15105	C. Asia, N. Pak. to Himalayas
Euphorbia wallichii Hook.	Ph	SA	3140–3540	PU/EES/KH-15106	Himalayas from Afg. to W. Himalayas to Sikkim
Gentianaceae					
Gentiana carinata (D.Don) Griseb.	Ph	MC/SA	2570–3000	PU/EES/KH-15111	Himalayas from Pak. to Uttarakhand
Gentiana moorecroftana Wall. ex G.Don	Aromatic, dwarf, creeping mat forming herb	SA	3790–3800	PU/EES/KH-15251	Himalayas from Kashmir to Nepal
Gentiana tianschanica Rupr. ex Kusn.	Ah	SA	3790–3800	PU/EES/KH-15112	Himalayas & China
Lomatogonium caeruleum (Royle) Harry Sm. ex B.L. Burtt	Tufted Ph	SA	3790–3810	PU/EES/KH-15140	Himalayas from Kashmir to Nepal
Swertia petalota D.Don	Rhizomatous Ph	BP/MC/SA	2310–3210	PU/EES/KH-15228	E. Afg. to W. & C. Himalayas
Geraniaceae					
Geranium pusillum L.	Ph	BP/MC/SA	1920–2920	PU/EES/KH-15113	Europe to W. Himalayas
Geranium wallichianum D.Don ex Sweet	Ah or Bh	BP/MC/SA	1920–3810	PU/EES/KH-15114	E. Afg. to Himalayas & Tibet
Hamamelidaceae					
Parrotiopsis jacquemontiana (Decne.) Rehder	DS/small DT	BP	2100–2300	PU/EES/KH-1201	E. Afg. to W. Himalayas
Hypericaceae					
Hypericum perforatum L.	Ah or Bh	BP/MC/SA	1980–3450	PU/EES/KH-15121	Europe to China, NW Africa, SW Sudan; W. Himalayas in India
Iridaceae					
Iris hooferiana Foster	Ah	MC/SA	2560–3810	PU/EES/KH-15123	Afg. to W. Himalayas
Juglandaceae					
Juglans regia L.	DT	BP	2000–2390	PU/EES/KH-1007	West Asia, W. China & Himalayas
Lamiaceae					
Clinopodium umbrosum (M.Bieb.) Kuntze	Ph	BP/MC/SA	2200–3000	PU/EES/KH-15074	Caucasus to N. Mya.; W. Himalayas in India
Clinopodium vulgare L.	Ph	BP/MC/SA	1920–3280	PU/EES/KH-15075	Medit., Europe to Siberia & W. Himalayas
Lamium album L.	Ph	MC/SA	2560–2930	PU/EES/KH-15127	Paleartic region; W. Himalayas in India
Nepeta erecta (Royle ex Bentham.) Bentham.	Ph	MC	2700–2770	PU/EES/KH-15151	E. Afg. to W. Himalayas
Nepeta laevigata (D.Don) Hand.-Mazz.	Ph	BP/MC	2200–2410	PU/EES/KH-15152	Himalayas from Afg. to SW China
Nepeta linearis Royle ex Bentham.	Ph	MC/SA	2720–3810	PU/EES/KH-15153	E. Afg. to W. Himalayas
Origanum vulgare L.	Ph	BP/MC/SA	2310–3210	PU/EES/KH-15155	Eurasia; Himalayas in India
Phlomis bracteosa Royle ex Bentham.	Rhizomatous Ph	SA	2920–3800	PU/EES/KH-15166	E. Afg. to Himalayas
Phlomis cashmeriana Royle ex Bentham.	Ph	BP/MC/SA	2310–2910	PU/EES/KH-15167	Afg. to W. Himalayas
Prunella vulgaris L.	Ph	BP/MC/SA	1920–3150	PU/EES/KH-15191	Europe, N. Africa, N. America & Asia
Salvia hians Royle ex Bentham.	Erect Ph	MC	2590–2600	PU/EES/KH-15198	Himalayas from Kashmir to Nepal
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
--------------	-----------	-------------	-----	-------------	-----------------------------
Salvia moorcroftiana Wall. ex Benth.	Aromatic Ph	MC	2720–2730	PU/EES/KH-15199	Himalayas from Pak. to W. Nepal
Salvia nubicola Wall. ex Sweet	Ph	MC/SA	2700–2920	PU/EES/KH-15200	E. Afg. to Himalayas
Stachys floccosa Benth.	Erect Ph	BP/MC/SA	2390–2710	PU/EES/KH-15223	Himalayas from Afg., Pak. to Kashmir
Stachys sericea Wall. ex Benth.	Ph	SA	2920–2930	PU/EES/KH-15224	Kashmir to SE Tibet
Thymus linearis Benth.	Ah	MC/SA	2500–3000	PU/EES/KH-15250	N. Iran to Xinjiang & Himalayas

Leguminosae

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Argyrolobium floccidum (Royle) Jaub. & Spach	Prostrate Ph	MC	2400–2550	PU/EES/KH-15027	India, Nepal & Pak.
Lathyrus humilis (Ser.) Spreng.	Ah or Ph	SA	3110–3120	PU/EES/KH-15130	E. Europe to temp. Asia & W. Himalayas
Lathyrus laevigatus (Waldst. & Kit.) Gren.	Ph	MC/SA	2670–3060	PU/EES/KH-15131	Himalayas, Himalayas from Pak. to W. Nepal
Lathyrus pratensis	Ph	SA	2830–2840	PU/EES/KH-15132	Europe to Mongolia & Himalayas, Morocco, Ethiopia & Yemen
Leonurus cardiaca	Scrambling Ph	SA	2920–2930	PU/EES/KH-15133	Europe, Himalayas from Pak. to Nepal
Lespedeza cuneata (Dum.Cours.) G.Don	Ah	BP	1980–1990	PU/EES/KH-15136	Afg. to Japan & tropical Asia, E. & SE Australia
Medicago sativa	Prostrate or decumbent Ph	BP	1920–1930	PU/EES/KH-15143	Europe to Mongolia & Indian Subcontinent
Medicago lupulina	Erect or procumbent Ph	BP/MC	1880–2720	PU/EES/KH-15144	Asia, Africa & Europe
Medicago minima (L.) L.	Ah or Ph	MC	2770–2780	PU/EES/KH-15145	Temp. Eurasia to India, tropical Africa to SW. Arabian Peninsula
Oxytropis cachemiriana Cambess.	Creeping annual or short-lived Ph	SA	3790–3800	PU/EES/KH-15160	N. Pak. to W. Himalayas
Oxytropis mollis Benth.	Ph	SA	3790–3800	PU/EES/KH-15162	India, Pakistan & Xizang
Robinia pseudoacacia L.*	DT	MC	2330–2340	PU/EES/KH-1012	Native to N. America
Trifolium pratense	Erect or decumbent Ph	BP/MC	1980–2710	PU/EES/KH-15144	Asia, Africa & Europe
Trifolium repens	Erect to decumbent Ph	BP/MC/SA	1920–3540	PU/EES/KH-15235	Macaronesia, NW Africa, Egypt to Zimbabwe, Europe to Mongolia & Himalayas
Trigonella emodi Benth.	Ph	SA	3800–3810	PU/EES/KH-15232	Afg. to Himalayas
Vicia sativa L.*	Ah or Ph	MC/SA	2780–3120	PU/EES/KH-15243	Kashmir to Eurasia

Lilacaeae

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Fritillaria roylei Hook.	Ph	SA	3800–3900	PU/EES/KH-15252	Pak. to C. China
Malvaceae					
Malva neglecta Wallr.	Ph	BP/MC/SA	2310–2940	PU/EES/KH-15142	Canary Islands, Morocco, Europe to C. Asia & W. Himalayas

Meliaceae

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Trillium govanianum Wall. ex D.Don	Erect or spreading Ph	SA	3050–3310	PU/EES/KH-15233	E. Afg. to Himalayas
Oleaceae					
Syringa emodi Wall. ex Royle	DT	MC	2450–2500	PU/EES/KH-1205	Pak. to Nepal & Tibet

Onagraceae

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Circaea alpina	Rhizomatous Ph	BP/MC/SA	2380–3000	PU/EES/KH-15069	Temp. N. Hemisphere
Epilobium hirsutum L.*	Ph	BP/MC/SA	2200–3150	PU/EES/KH-15097	Temp. Eurasia to Africa; W. Himalayas in India
Epilobium laxum Roye	Ph	SA	2980–2990	PU/EES/KH-15098	C. Asia to W. Himalayas
Denothera roose L’Her. ex Aiton	Ph	BP/MC/SA	2230–2930	PU/EES/KH-15154	Native to C. & S. America
Orchidaceae					
Cypripedium cordigerum D.Don	Ph	SA	2950–2960	PU/EES/KH-15087	N. Pak. to Himalayas & S. Tibet
Floristic survey across three coniferous forests of Kashmir Himalaya

Dar et al.

Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
Epipactis helleborine (L.) Crantz¹	Rhizomatous Ph	BP/SA	2230–2960	PU/EES/KH-15096	NW Africa, Europe to China; Himalayas in India
Epipactis royleana Lindl.³	Rhizomatous Ph	MC/SA	2700–2920	PU/EES/KH-15099	E. Afg. to C. Asia & Himalayas in India
Orobanchaceae					
Orobancha alba Stephan¹	Rhizomatous aromatic Ph	MC/SA	2770–3160	PU/EES/KH-15156	Europe, Afg., Pak., W. Himalayas & Tibet
Pedicularis pectinata Wall. ex Benn.¹	Ph	BP/SA	2310–3810	PU/EES/KH-15163	W. Himalayas from Pak. to W. Nepal
Orobanchaeae					
Oxalis acerosella L.¹	Tufted Ph	BP/SA	1880–3120	PU/EES/KH-15158	Europe to Japan; W. Himalayas in India
Oxalis corniculata L.¹*	Rhizomatous Ph	BP/SA	1880–2950	PU/EES/KH-15159	Cosmopolitan
Papaveraceae					
Corydalis stewartii Fedde¹	Rhizomatous Ah or Bh	BP	2200–2210	PU/EES/KH-15080	Afg. to Nepal
Phytolaccaceae					
Phytolaca acinosa Roxb.²	Ph	BP/MC	2270–2500	PU/EES/KH-15168	Kashmir to SW China
Pinaceae					
Abies pindrow (Royle ex D.Don) Royle¹	Coniferous ET	BP/SA	2220–3300	PU/EES/KH-1001	N. Afghanistan to Nepal
Cedrus deodara (Roeb. ex D.Don) G.Don¹	Coniferous ET	BP	1810–2200	PU/EES/KH-1005	NE Afg. to W. Nepal & NW India
Picea smithiana (Wall.) Boiss.¹	Coniferous ET	BP/SA	2000–2960	PU/EES/KH-1509	NE Afg. to C. Himalayas
Pinus wallichiana A.B.Jacks.²	Coniferous ET	BP/SA	1800–3140	PU/EES/KH-1510	Himalayas from Afg. to Tibet
Plantaginaceae					
Plantago lanceolata L.¹*	Ph	BP/SA	1920–2930	PU/EES/KH-15172	Paleartic & Nearctic regions; Himalayas in India
Plantago major L.¹*	Ph	BP/SA	2200–3160	PU/EES/KH-15173	European, N. & C. Asia, introduced all over the world
Veronica laxa Benth.¹	Ph	BP/SA	2120–3150	PU/EES/KH-15240	N. Pak. to Nepal, C. & S. China & Japan; W. Himalayas in India
Veronica persica Poir.¹*	Ph	SA	2950–2960	PU/EES/KH-15241	Native to Iran, now a worldwide weed; Himalayas in India
Poaceae					
Agrostis gigantea Roth¹	Rhizomatous Ph	BP/SA	2250–2850	PU/EES/KH-15010	Paleartic region, introduced in Nearctic; Himalayas in India
Brachypodium sylvaticum (Huds.) P.Beauv.¹	Tufted Ph	BP/SA	2250–2510	PU/EES/KH-15040	Eurasia; throughout India
Bromus inermis Leyss.¹*	Rhizomatous Ph	BP/SA	2050–2760	PU/EES/KH-15041	Paleartic & Nearctic regions; W. Himalayas in India
Bromus japonicus Thumb.¹*	Ah	BP/SA	2250–2950	PU/EES/KH-15042	Medit. to temp. Eurasia; W. Himalayas in India
Bromus pectinatus Thumb.¹	Ah	BP/SA	2250–2300	PU/EES/KH-15043	Europe, Iran & Afg. eastwards through India to China, Pak., Sudan through Ethiopia to Egypt, Sinai & Arabia
Bromus tomentosus Trin.¹	Rhizomatous Ph	BP/SA	2250–2800	PU/EES/KH-15044	Medit. to Xinjiang & Pak.; W. Himalayas in India
Calamagrostis pseudophragmites (Haller) Koeler¹	Creeping rhizomatous tufted Ph	MC/SA	2450–3800	PU/EES/KH-15049	Europe to Japan & Himalaya; Himalayas in India
Cynodon dactylon (L.) Pers.¹	Stoloniferous Ph with rhizomes	BP/SA	1920–2930	PU/EES/KH-15083	Temp. & Subtropical Old World to Australia; throughout India
Elymus dahuricus Grieseb.¹	Tufted Ph	MC	2430–2780	PU/EES/KH-15094	Tem. Asia; Himalayas in India
Koeleria macrantha (Lede.) Schult.¹	Rhizomatous Ph	MC/SA	2460–3810	PU/EES/KH-15124	Temp. N. Hemisphere to Mexico; Himalayas in India
Lolium perenne L.¹	Ph	MC	2420–2430	PU/EES/KH-15139	N. Africa, Europe to Siberia & Himalayas
Oryzopsis gracilis (Mez) Pilg.¹	Ah or Ph	BP/SA	1920–2630	PU/EES/KH-15157	Iran to China
Phleum alpinum L.¹	Trailing or creeping Ph	BP/SA	2250–3140	PU/EES/KH-15165	Paleartic & Nearctic regions; Himalayas in India
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
---------------------	-----------	-------------	-------	-------------	---
Poa alpina L.	Ph	BP/MC/SA	1980–3150	PU/EES/KH-15174	Temp. N. Hemisphere to Mexico; W. Himalayas in India
Poa pratensis L.	Tufted Ph	BP/MC/SA	2070–2990	PU/EES/KH-15175	Paleartic & Nearctic regions; Himalayas in India
Polygonum fugax Nees ex Steud.	Ph	BP/MC/SA	2310–3000	PU/EES/KH-15180	Iraq to Mya. mainly in Himalayas & C. Asia
Setaria viridis (L.) P.Beauv.	Bt or Ph	BP	2360–2370	PU/EES/KH-15215	Paleartic; Himalayas in India
Stipa sibirica (L.) Lam.	Caspitoise or tufted Ah	BP/MC	1920–2770	PU/EES/KH-15227	Temp. Asia to Himalayas
Vulpia myuros (L.) C.C.Gmel.	Prostrate Ph	BP/MC	2260–2450	PU/EES/KH-15249	Europe to Taiwan & Sri Lanka., Arabian Peninsula & Kenya; throughout India
Polemoniaceae					
Polemonium caeruleum L.	Ah	MC/SA	2590–2960	PU/EES/KH-15178	Europe to C. Siberia & Caucasus, Himalayas from Pak. to W. Nepal
Polygonaceae					
Aconogonon alpinum (All.) Schur	Ph	BP	2300–2400	PU/EES/KH-15003	Paleartic; W. Himalayas in India
Bistorta amplexicaulis (D.Don) Greene	Erect Ph	BP/MC/SA	2300–3000	PU/EES/KH-15039	E. Afg. to C. China; Himalayas in India
Oxystigma (L.) Hill	Ph	SA	2830–3160	PU/EES/KH-15161	Paleartic & Nearctic regions; Himalayas in India
Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross	Ph	BP/MC/SA	2200–3150	PU/EES/KH-15164	Indian Subcontinent to S. China & Indo-China
Polygonum aviculare L.	Ph	BP/MC/SA	2210–2950	PU/EES/KH-15177	Paleartic & Nearctic regions; Himalayas in India
Polygonum filiforme Thum.	Ph	SA	3790–3800	PU/EES/KH-15196	Himalayas from Pak. to Nepal
Rheum webbianum Royle	Ph	SA	1920–1930	PU/EES/KH-15179	Himalayas from Pak. to Nepal
Rumex nepalensis Spreng.	Erect Ph	BP/MC/SA	1920–3410	PU/EES/KH-15197	Afg., India, Pak., Persia, SW China, Turkey, N. Africa & Italy
Primulaceae					
Androsace rotundifolia Sm.	Rhizomatous Ph	MC	2600–2750	PU/EES/KH-15017	Afg., Tibet & W. Himalayas
Androsace sarmentosa Wall.	Ph	MC	2700–2800	PU/EES/KH-15018	Indian Himalayas, Nepal & Tibet
Primula macrophylla D. Don	Erect Ph	MC/SA	2720–3150	PU/EES/KH-15190	Himalayas from Afg. to SE Tibet
Pteridaceae					
Adiantum capillus-veneris L.	Epilithic perennial fern	BP/MC/SA	1950–3000	PU/EES/KH-15007	Neartic, Neotropical, Afrotopical, Australasian, Indomalayan & Paleartic regions; throughout India
Pteris cretica L.	Rhizomatous Ph	BP	2370–2380	PU/EES/KH-15192	S. Africa, Europe to E. Asia; throughout India
Ranunculaceae					
Aconitum chasmanthum Stapf ex Holmes	Ph	SA	3200–3800	PU/EES/KH-15004	Himalayas from Pak. to Nepal & Mongolia
Aconitum heterophyllum Wall. ex Royle	Rhizomatous Ph	MC/SA	2700–3810	PU/EES/KH-15005	Himalayas from Pak. to C. Nepal
Actaea spicata L.	Rhizomatous Ph	MC/SA	2500–2931	PU/EES/KH-15006	E. Afg. to Himalaya
Anemone obtusiloba Lindl.	Ph	SA	3200–3300	PU/EES/KH-15019	Himalayas, Mongolia, NC China & Kazakhstan
Aquilegia pubiflora Wall. ex Royle	Ph	MC/SA	2500–3200	PU/EES/KH-15020	Afg., Pak., & W. Himalayas
Caltha palustris L.	Rhizomatous Ph	MC/SA	2800–2950	PU/EES/KH-15048	Paleartic & Nearctic regions; Himalayas in India
Delphinium roylei Munz	Ph	BP	2200–2210	PU/EES/KH-15088	Pak. & Kashmir
Delphinium vestitum Wall. ex Royle	Ph	MC/SA	2520–3120	PU/EES/KH-15089	Himalayas from Pak. to E. Nepal
Ranunculus hirtellus Royle	Rhizomatous Eh	BP/MC	2250–2780	PU/EES/KH-15193	Himalayas from Kashmir to Sikkim, Tibet & W. China
Ranunculus luteus Wall. ex Hook. f. & J.W. Thomson	Ph	BP/MC/SA	2200–2990	PU/EES/KH-15194	Himalayas from Afg. to SW China
Family/Taxon	Life-form	Forest type	OER	Voucher no.	Phytogeographic distribution
-------------	-----------	-------------	-----	-------------	-----------------------------
Ranunculus palmatifidus Riedl.	Erect Ph	BP/MC/SA	2310–2930	PU/EES/KH-15195	W. Himalayas
Thalictrum minus L.	Ph	BP	2310–2340	PU/EES/KH-15231	Himalayas from Pak. to Nepal & temp. Eurasia
Rosaceae					
Agrimonia pilosa Ledeb.					
Alchemilla trollii Rothm.					
Crataegus songarica K. Koch					
Filipendula vestita (Wall. ex G. Don) Maxim.					
Fragaria nubicola (Hook. f.) Lindl. ex Lacaita					
Geum elatum Wall. ex G. Don					
Geum roylei Wall. ex F.Bolle					
Potentilla indica (Andrews) Th.Wolf					
Potentilla anserina L.					
Potentilla eriocarpa Wall. ex Lehm.					
Potentilla nepalensis Hook.					
Prunus curnuata (Wall. ex Royle) Steud.					
Rosa brunonii Lindl.					
Rosa webbiana Wall. ex Royle					
Sorbus lanata (D.Don) S.Schauer					
Rubiaceae					
Galium aparine L.					
Galium boreale L.					
Salicaceae					
Populus alba L.					
Populus ciliata Wall. ex Royle					
Sapindaceae					
Acer caesium Wall. ex Brandis					
Aesculus indica (Wall. ex Cambess.) Hook					
Saxifragaceae					
Berenjia ligulata Engl.					
Scorpiulariaceae					
Scrophularia decomposita Royle ex Benth.					
Verbascum thapsus L.					
Solanaceae					
Atropa acuminata Royle ex Lindl.					
Hyoscyamus niger L.					

Family/Taxon: Family name; Life-form: growth form; Forest type: type of forest; OER: origin of the survey; Voucher no.: voucher number; Phytogeographic distribution: distribution area.
effects (Qian et al. 2015). The variation in microclimate would have enabled the taxa to adjust to a wide range of niches along elevation and a variety of pre-adapted lineages to colonize in the mountain ranges. Therefore, it can be considered that climatic factors differentiate taxa as indicated by resilience developed over their evolutionary past, with these phylogenetic variations, in turn, deciding species heterogeneity (Wiens & Donoghue 2004; Rana et al. 2019).

One of the prerequisites for biodiversity conservation is to determine the areas of particular importance in the context of taxa vulnerability and characteristic habitats and critically evaluate the same, thus enabling them to prioritize these areas for further consideration (Spehn 2011). In the present study, the situation for seven (2.57%) taxa categorized under threatened, i.e., *Saussurea costus* & *Aconitum chasmanthum* (CR), *Trillium govanianum*, *Aconitum heterophyllum*, *Taxus wallichiana*, & *Atropa acuminata* (EN), and *Cypripedium cordigerum* (VU) were found occasionally in the present study and requires immediate conservational priorities across the landscape. Besides climate change and over-grazing, the species in high demand for traditional medicinal and pharmaceutics has led to their extensive collection and illegal trading, thus pushing them closer to extinction (Devi et al. 2014; Nowak et al. 2020).

The sustainability of such flora is imperative across the landscape. Ecological rehabilitation, site-specific in particular should be accomplished by re-vegetating degraded sites with natural vegetation. Existing management regulations must be examined in order to adopt strict guidelines to enhance efficiency in decision-making and avoid fraud. Extensive quantitative plant diversity inventories and biogeographical explorations ought to be directed on the threatened flora to identify its abundance and frequency. Additionally, ex situ management methods must be in place in addition to the in situ conservation programmes. Overall, from our study we infer that all three types of coniferous forests are rich in flora, demonstrating their importance for conservation. We hope that our results will serve as a benchmark for potential future studies on plant ecology of the area. With notable plant diversity, Kashmir Himalaya is probably a suitable site for further investigations. Moreover, because Kashmir Himalayan forests face threats due to various anthropogenic activities, qualitative data of documented flora will help local and regional authorities to propose management and conservation priorities.
Image 1. Study area overview: A,B—Low-level blue pine forest | C,D,E—Mixed coniferous forest | F,G,H—Sub-alpine forest. © Ashaq Ahmad Dar
Image 2. Herbs:
A—Aconitum chasmanthum | B—Morina longifolia | C—Gentiana tianschanica | D—Sambucus wightiana | E—Vincetoxicum hirundinaria | F—Dipsacus inermis. © Ashaq Ahmad Dar
Floristic survey across three coniferous forests of Kashmir Himalaya

Image 3. Herbs: A—Swertia speciose | B—Iris hookeriana | C—Fragaria nubicola | D—Arisaema jacquemontii | E—Gentiana moorcroftiana.
© Ashaq Ahmad Dar
Image 4. Herbs: A—Filipendula vestita | B—Heracleum candicans | C—Cichorium intybus | D—Gentiana carinata | E—Trillium govanianum | E—Geranium wallichianum. © Ashaq Ahmad Dar
REFERENCES

Ahmad, M., S.K. Uniyal, D.R. Batish, H.P. Singh, V. Jaryan, S. Rathee, P. Sharma & R.K. Kohli (2020). Patterns of plant communities along vertical gradient in Dhauladhar Mountains in Lesser Himalayas in North-Western India. Science of The Total Environment 716: 136919. https://doi.org/10.1016/j.scitotenv.2020.136919

Asif, M., Z. Iqbal, J. Alam, A. Majid, F. Ijaz, N. Ali, I.U. Rahman, S. Hussain, A. Khan & G. Qadir (2020). Floristic inventory and biological spectra of Balakot, District Mansehra, Pakistan. Acta Ecologica Sinica 40(3): 197–203. https://doi.org/10.1016/j.chnaes.2019.05.009

Bai, F., W. Sang, & J.C. Axmacher (2011). Forest vegetation responses to climate and environment change: a case study from Changbai Mountain, NE China. Forest Ecology and Management 262: 2052–2060. https://doi.org/10.1016/j.foreco.2011.08.046

Cadotte, M.W. (2006). Dispersal and species diversity: a meta-analysis. American Naturalist 167(6): 913–924. https://doi.org/10.1086/504850

Champion, H.G. & S.K. Seth (1968). A Revised Survey of the Forest Types of India (Delhi: Government of India Press), 600 pp.

Chase, M.W. & J.J. Reveal (2009). A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society 161: 122–127. https://doi.org/10.1111/j.1095-8339.2009.01002.x

Dad, J.M., M. Muslim, I. Rashid & Z.A. Reshi (2021). Time series analysis of climate variability and trends in Kashmir Himalaya. Ecological Indicators 126: 107690. https://doi.org/10.1016/j.ecolind.2021.107690

Dar, J.A. & S. Sundarapandian (2016). Patterns of plant diversity in seven temperate forest types of Western Himalaya, India. Journal of Asia-Pacific Biodiversity 9: 280–292. https://doi.org/10.1016/j.japb.2016.03.018

Devi, U., P. Sharma, J.C. Rana & A. Sharma (2014). Phytodiversity assessment in Sangla valley, Northwest Himalaya, India. Check List 10: 740–760. https://doi.org/10.15560/10.4.740

Gairola, S., R.S. Rawal & U. Dhar (2009). Patterns of litterfall and return of nutrients across anthropogenic disturbance gradients in three subalpine forests of west Himalaya, India. Journal of Forest
Image 6. Trees: A—Juniperus squamata | B—Abies pindrow | C—Picea smithiana | D—Sorbus lanata. © Ashaq Ahmad Dar

Research 14: 73–80. https://doi.org/10.1007/s10310-008-0104-6

Hajra, P.K. (1983). Western Himalayas, pp 49–61. In: Jain S.K. & A.R.K. Sastry (eds.). Materials for a Catalogue of Threatened Plants of India. BSI, Howrah. 69 pp.

Hooker, J.D. (1872–1897). Flora of British India. Vol. 1 to 7. L. Reeve & Company, London.

IUCN (2017). Guidelines for using the IUCN Red List categories and criteria. Version 13. Prepared by the Standards and Petitions subcommittee, http://www.iucnredlist.org.

Jansen, J.A.M., J.S. Rodwell, M. Garcia Criado, S. Gubbay, T. Haynes, A. Nieto, N. Sanders, F. Landucci, J. Loidi, A. Symmank, T. Tahvanainen, M. Valderrabano, A. Acosta, M. Aronsson, G. Arts, F. Attorre, E. Bergmeier, R.-J. Bijlsma, F. Bioret, C. Bilot-Nicolae, I. Biurrun, M. Callix, J. Capelo, A. Carni, M. Chytry, J. Dengler, P. Dimopoulos, F. Essl, H. Gardfjell, D. Gigante, G. Giusso del Galdo, M. Hajek, F. Jansen, J. Jansen, J. Kapfer, A. Mickolajczak, J.A. Molina, Z. Molnar, D. Paternoster, A. Piernik, B. Poulin, B. Renaux, J.H.J. Schaminee, K. Šumberova, H. Toivonen, T. Tonteri, I. Tisiripidis, R. Tzonev & M. Valachovič (2016). European Red List of Habitats. Part 2: Terrestrial and Freshwater Habitats Publications Office of the European Union, Luxembourg. 44 pp.

Javeid, G.N. (1966). Key to the families of flowering plants of Kashmir Himalaya. Kashmir Science 3(1–2): 101–115.

Javeid, G.N. (1978). Forest flora of Kashmir: a checklist, I. Indian Forester 104(11): 772–779.

Javeid, G.N. (1979). Forest flora of Kashmir: a checklist, II. Indian Forester 105(2): 148–170.

Kachroo, P. (1993). Plant diversity in Northwest Himalaya – a preliminary survey, pp 111–132. In: Dhar, U. (ed.). Himalayan Biodiversity: Conservation Strategies. G.B. Pant Institute of Himalayan Environment and Development, Almora. 553 pp.

Khuroo, A.A., I. Rashid, Z. Reshi, G.H. Dar & B.A. Wafai (2007). The alien flora of Kashmir Himalaya. Biological Invasions 9: 269–292. https://doi.org/10.1007/s10530-006-9032-6

Körner, C. (2007). The use of altitude in ecological research. Trends in Ecology & Evolution 22: 569–574. https://doi.org/10.1016/j.tree.2007.09.006

Krishnan, M.S. (1982). Geology of India and Burma, 6th ed. CBS, New
Image 7. Shrubs: A—Syringa emodi | B—Parrotopsis jacquemontiana | C—Rosa webbiana | D—Hippophae rhamnoides. © Ashaq Ahmad Dar

Delhi, 52 pp.
Lambert, W.J. (1933). List of trees and shrubs for the Kashmir & Jammu forest circles, Jammu & Kashmir State. Forest Bulletin 80: 1–36.
Maes, D., N.I.B. Isaac, C.A. Harrower, B. Collen, A.J. van Strien & D.B. Roy (2015). The use of opportunistic data for IUCN Red List assessments. Biological Journal of the Linnean Society 115: 690–706. https://doi.org/10.1111/bij.12530
Mahapatra, S.K., C.S. Walla, G.S. Sindhu, K.P.C. Rana & T. Lal (2000). Characterization and classification of the soils of different physiographic units in the sub-humid ecosystem of Kashmir region. Journal of the Indian Society of Soil Science 48(3): 572–577.
Malik, A.H., A.A. Khuroo, G.H. Dar & Z.S. Khan (2010). The woody flora of Jammu & Kashmir State, India: an updated checklist. Journal of Economic and Taxonomic Botany 34(2): 274–294.
Malik, A.Y., D.P. Singh, M. Yunus, G.A. Bhat, G. Shukla, J. A. Bhat, M.M. Rather & S. Chakravarty (2021). Diversity and structure of plant assemblages in open scrub vegetation patches of Dachigam National Park at Kashmir Himalayas. Trees, Forests and People 3: 100060. https://doi.org/10.1016/j.tfp.2020.100060
Mir, N.A., T.H. Masoodi, S.M. Geelani, A.A. Wani, G.N. Parrey & J.A. Mugloo (2019). Floristic diversity along altitudinal gradient under Betula utilis in North Western Himalayas of Kashmir, India. Acta Ecologica Sinica 39: 362–371. https://doi.org/10.1016/j.chnaes.2019.03.001
Nayar, M.P. (1996). Hot Spots of Endemic Plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 252 pp.
Nowak, A., S. Świerszcz, S. Nowak, H. Hisorev, E. Klichowska, A. Wróbel, A. Nobis & M. Nobis (2020). Red List of vascular plants of Tajikistan – the core area of the Mountains of Central Asia global
biodiversity hotspot. *Scientific Reports* 10: 6235. https://doi.org/10.1038/s41598-020-63333-9

Orsenigo, S., C. Montagnani, G. Fenu, D. Gargano, L. Peruzzi, T. Abeli, A. Alessandrini, G. Bacchetta, F. Bartolucci, M. Bovio, C. Brullo, S. Brullo, A. Carta, M. Castello, D. Cogoni, F. Conti, G. Domina, B. Foggi, M. Gennai, D. Gigante, M. Iberite, C. Lasen, S. Magrini, E. Perrino, F. Prosser, A. Santangelo, A. Selvaggi, A. Stinca, I. Vagge, M. Villani, R. Wagensommer, T. Wilhalm, N. Tartaglioni, E. Dupre*, C. Blasi & G. Rossi (2018). Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. *Biological Conservation* 224: 213–222. https://doi.org/10.1016/J.BIOCON.2018.05.030

Peel, M.C., B.L. Finlayson & T.A. McMahon (2007). Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences* 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Polunin, O. & A. Stainton (1984). *Flowers of the Himalaya*. Oxford University Press, New Delhi. 580 pp.

Qian, H., J.J. Wiens, J. Zhang & Y. Zhang (2015). Evolutionary and ecological causes of species richness patterns in North American angiosperm trees. *Ecography* 38: 241–250. https://doi.org/10.1111/ecog.00952

Rana, S.K., T.D. Price & H. Qian (2019). Plant species richness across the Himalaya driven by evolutionary history and current climate. *Ecosphere* 10(11): e02945. https://doi.org/10.1002/ecs2.2945

Rao, R.R. & B.D. Sharma (1990). *A Manual for Herbarium Collection*. Botanical Survey of India, Calcutta. 20 pp.

Rashid, I., S.A. Romshoo, R.K. Chaturvedi, N.H. Ravindranath, R. Sukumar, M. Jayaraman, T.V. Lakshmi & B. Sharma (2015). Projected climate change impacts on vegetation distribution over Kashmir Himalayas. *Climatic Change* 132: 601–613. https://doi.org/10.1007/s10584-015-1456-5

Shaheen, H., Z. Ullah, S.M. Khan & D.M. Harper (2012). Species composition and community structure of western Himalayan moist temperate forests in Kashmir. *Forest Ecology Management* 278: 138–145. https://doi.org/10.1016/j.foreco.2012.05.009

Siddhu, G.S. & J.N. Surya (2014). Soils of North-Western Himalayan ecosystem and their land use, constraints, productivity potentials and future strategies. *Agropedology* 24: 1–19

Singh, J.B. & P. Kachroo (1994). *Forest Flora of Pir Panjal range (Northwestern Himalaya)*. Bishen Singh Mahendra Pal Singh, Dehradun. 172 pp.

Singh, P., K. Karthikeyan, P. Lakshminarasimhan & S.S. Dash (2015). *Endemic vascular plants of India*. Botanical Survey of India, Kolkata. 339 pp.

Spahn, E. (2011). Mountain Biodiversity: Effects of Climate Change and How to Manage Them; Sustainable Mountain Development 60,. ICIMOD, Kathmandu, Nepal. 40–43 pp.

The Angiosperm Phylogeny Group (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society* 161: 105–121. https://doi.org/10.1111/bot.12385

The Plant List (2013). Version 1.1. Published on the Internet; http://www.thelplantlist.org/ (accessed 15 January, 2021).

Tiwari, O.P., C.M. Sharma & Y.S. Rana (2020). Influence of altitude and slope-aspect on diversity, regeneration and structure of some moist temperate forests of Garhwal Himalaya. *Tropical Ecology* 61: 278–289. https://doi.org/10.1007/s42965-020-00088-4

Wester, P., A. Mishra, A. Mukherji & A.B. Shrestha (2019). The Hindu Kush Himalaya assessment— mountains, climate change, sustainability and people. Springer Nature, Cham. 627 pp.

Wiens, J.J. & M.J. Donoghue (2004). Historical biogeography, ecology, and species richness. *Trends in Ecology and Evolution* 19: 639–644. https://doi.org/10.1016/j.tree.2004.09.011

Zachos, F.E. & J.C. Habel (2011). Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin/Heidelberg. 565 pp.
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Silwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Surendran, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manjula, Vizag, Andhra Pradesh, India
Dr. Eduardo Vives, Museu de Ciências Naturais de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lipopterist's Society, Hong Kong
Dr. K. Sundararajan, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyandanand, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjab University, Punjab, India
Dr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITU TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nith Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiag Ngiang, National Parks Board, Singapore
Dr. Lional Monod, National History Museum of Geneva, Genève, Switzerland
Dr. Asheesh Shivas, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brazil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brazil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Hoong Chin, University Teknologi MARA (UiTM), Selangor, Malaysia
Dr. K. Ji Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharmar Rajan, ATREE, Bengaluru, India
Dr. Phil Aldenre, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hu, National Taiwan Normal University, Taipei City, Taiwan
Dr. A. V. Wolfe, Melbourne, Australia
Dr. Siddharth Kulkarni, The Horgima Lab, The George Washington University, Washington, DC, USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mahla Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharmar Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fish

Dr. Neelesh Daharukan. IJER, Pune, Maharashtra, India
Dr. Topolzin Contreras MacBeath, Universitat Autonoma del sud de Moroles, Mexico
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev N. Raghavan, University of Hyderabad, Hyderabad, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. Robert E. Shiel, University of Adelaide, SA 5005, Australia
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mahla Foldvari, Natural History Museum, University of Oslo, Norway
Dr. Rayanna, University of Mysore, Karnataka, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annamariie Ohler, Museum national d’Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Rajeev Raghavan, St. Albert’s College, Kochi, Kerala, India
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zenkula, University of Zagreb, Zagreb, Croatia
Dr. Biju Kumar, University of Kerala, Thrissur, Kerala, India
Dr. Ashokesh Shivas, Nehru Gram Bharti University, Allahabad, India
Dr. Nith Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiag Ngiang, National Parks Board, Singapore
Dr. Lional Monod, National History Museum of Geneva, Genève, Switzerland
Dr. Asheesh Shivas, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brazil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brazil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Hoong Chin, University Teknologi MARA (UiTM), Selangor, Malaysia
Dr. K. Ji Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharmar Rajan, ATREE, Bengaluru, India
Dr. Phil Aldenre, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hu, National Taiwan Normal University, Taipei City, Taiwan
Dr. A. V. Wolfe, Melbourne, Australia
Dr. Siddharth Kulkarni, The Horgima Lab, The George Washington University, Washington, DC, USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mahla Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharmar Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapat, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajiv Jayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajeev R. Kishi, M.L.N College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Dr. M. Praveen, Bengaluru, India
Dr. Srinivasula, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobotai Sundar, Professor of Ornithology, Ulaanbaatar, Mongolia
Dr. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundur, Wetlands International, Wageningen, The Nethersands
Dr. Carol Iqakk, Bishop Auckland Co., Durham, UK
Dr. Tim Iqakk, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lele, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Praidos, Vila Real, Portugal
Dr. Grant Connelle, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul-Islam, Prince Saif Al Waisal Wildlife Research Center, Taf, Saudi Arabia

Mammals

Dr. Giovanni Amor, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Anupper, Wild Cat Network, Germany
Dr. P. O. Namer, University of Adelaide, SA 5005, Australia
Dr. Ian Redmond, UNEP Convention on Migratory Species, Landau, UK
Dr. Heidi S. Riddle, Riddle’s Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Kari Schwartz, George Mason University, Fairfax, Virginia
Dr. Lala A.K. Singh, Bhujbazar, Orissa, India
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hu, National Taiwan Normal University, Taipei City, Taiwan
Dr. A. V. Wolfe, Melbourne, Australia
Dr. Siddharth Kulkarni, The Horgima Lab, The George Washington University, Washington, DC, USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mahla Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharmar Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows uses unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2022 | Vol. 14 | No. 1 | Pages: 20311–20538
Date of Publication: 26 January 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.1.20311-20538

www.threatenedtaxa.org

Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern India
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
– Asaah Ahmad Dar, Akhtar Hussain Malik & Narayanawsamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
– Jagan Nath Adhikari, Janak Raj Khatiwada, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Pteropus vampyrus) in western Sarawak, Malaysian Borneo
– Jayasimol Mohan-Azlan, Joon Yee Yong, Nabila Norshuhadah Mohd Hazzril, Philoveny Pengiran, Arianilti Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

Macrollichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

New distribution record of globally threatened Ocean Turf Grass Halophila beccarii Ascherson, 1871 from the North Andaman Islands highlights the importance of seagrass exploratory surveys
– Swapnali Gole, Prasad Gaidhani, Swapna Bose, Anant Pande, Jeyaraj Antony Johnson & Kuppusaray Sivakumar, Pp. 20406–20412

An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India
– M. Sulaiman, C. Murugan & M.U. Shariel, Pp. 20413–20425

Abundance and spatial distribution analyses of Stermonopus moonii Thwaites (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka
– K.A.M.R.P. Atapattu, H.D.O.C.K. Perera, H.S. Kathriarachchi & A.R. Gunawardena, Pp. 20426–20432

Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antilope cervicapra L.
– Ashutosh Kumar Upadhyay, A. Andrew Emmanuel, Ansa Sarah Varghese & D. Narasimhan, Pp. 20433–20443

Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: semi-arid biogeographic region suggestions for parametric studies on ecological continuity in Khathiar-Gir Ecoregion, India
– L.A.K. Singh, R.K. Sharma & Udayan Rao Pawar, Pp. 20444–20460

Nesting success of Sharpe’s Longclaw (Macronyx sharpei) Jackson, 1904) around the grasslands of lake O’bolosat Nyandarua, Kenya
– Hamisi Ann Risper, Charles M. Waru & Peter Njorge, Pp. 20461–20468

Population, distribution and diet composition of Smooth-coated Otter Lutrogale perspicillata Geoffroy, 1826 in Housar and Dharmapuri Forest Divisions, India
– Nagarajan Baskaran, Raman Sivaraj Sundarraj & Raveendranathanpilla Shukla, Pp. 20469–20477

Utilization of home garden crops by primates and current status of human-primate interface at Galigamuwa Divisional Secretariat Division in Kegalle District, Sri Lanka
– Charmalie Anuradhee Dona Nahallage, Dahanakge Ayeshka Madushani Dasanayake, Dilan Thissar Hewamanowa & Dissanayakalage Tharaka Harshani Ananda, Pp. 20478–20487

Revival of Eastern Swamp Deer Rucervus duvaucelii ranjitsinhi (Groves, 1982) in Manas National Park of Assam, India
– Nazrul Islam, Aftab Ahmed, Ratnir Barman, Sanatan Deka, Bhaskar Choudhury, Prasanta Kumar Saikia & Jyothishman Deka, Pp. 20488–20493

Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes – molecular diagnosis and therapy
– Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

View Point

COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress
– Evan S.H. Quah, Lee L. Grismer, Perry L. Wood, Jr., Aung Lin & Myint Kyaw Thura, Pp. 20500–20502

Short Communications

Morphological characterization and mt DNA barcode of a tiger moth species, Asota ficus (Fabricius, 1775) (Lepidoptera: Noctuoidea: Erebidae: Aganainae) from India
– Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

Distribution of Smooth-coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
– Swanand Patil & Kranti Yardi, Pp. 20511–20516

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Muzaffar A. Kichloo, Asha Sohil & Neeraj Sharma, Pp. 20517–20522

Notes

Robiquetia gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debta (Convolvulaceae): new records for the Western Ghats and semiarid regions
– Sachin M. Patil, Ajit M. vaseva, Vinay M. Raleo & Kishore S. Rajput, Pp. 20526–20529

Counting the cost: high demand puts Bunionium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
– Sai Sein Lin Oo, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lay Naung, Soe Naing Aye & Swen C. Renner, Pp. 20534–20536

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538