Expression cloning human and rat renal cortex Na/Pi cotransporters: behind the scenes in the Murer laboratory

Simona Magagnin1 · Andreas Werner2

Received: 5 June 2018 / Revised: 9 August 2018 / Accepted: 15 August 2018 / Published online: 3 September 2018
© The Author(s) 2018

Abstract

In the pre-genomic era, the cloning of a cDNA represented a significant achievement, particularly if the gene of interest encoded a membrane protein. At the time, molecular probes such as partial peptide sequences, suitable nucleic acid sequences, or antibodies were unavailable for most proteins and the "sodium-phosphate transporter" was no exception. In contrast, brush-border membrane vesicles and epithelial cell culture experiments had established a reliable set of functional hallmarks that described Na-dependent phosphate transport activity in some detail. Moreover, aspects of hormonal regulation of phosphate homeostasis could be recapitulated in these model systems. Expression cloning elegantly combined functional protein expression in *Xenopus laevis* oocytes with molecular biology to overcome the lack of molecular probes.

Keywords

Sodium-dependent phosphate transporter · Expression cloning · Kidney · Proximal tubule · Solute transport

Introduction

The importance of inorganic phosphate (Pi) to human health and the hormonal feedback loops to maintain homeostasis were well established when the two authors, Simona Magagnin and Andreas Werner, joined the Murer lab in 1991 and 1987, respectively. Detailed studies using brush-border membrane vesicles (BBMVs) from kidney and intestine had established functional characteristics of the “Na-Pi cotransporters” such as apparent affinities for Pi and Na$^+$ as well as the different pH dependence of intestinal and renal transport activities. Moreover, experiments with opossum kidney (OK) cells elegantly confirmed the regulatory impact of hormonal and metabolic factors on Na-dependent Pi transport activity [18]. At that point, the molecular identity of the Na/Pi cotransporter became a pressing question and different strategies were initiated to identify the protein. Approaches comparing protein signals on 2D gels with or without stimulation of Na-Pi transport activity were pursued, though with limited success: The resulting protein pattern was too complex and not reproducible enough to identify differentially expressed signals that would warrant peptide sequencing [26, 35]. In summer 1987, Heini Murer organized a meeting in the Swiss Alps (Füriegen) on epithelial Pi transport that was attended by many of the key figures in the field. On this occasion, Ernest Wright and Michael Coady (UCLA) presented the cDNA sequence and primary structure of the intestinal Na/glucose transporter SGLT1 achieved by expression cloning [11]. Michael Coady paid a brief visit to the laboratory in Zürich afterwards and presented us with his winner’s perspective on how easy and straightforward this cloning strategy was. The reality was to prove considerably more tedious and less straightforward than predicted—for example, it took us an entire year to confirm the stunningly clear, first demonstration of Na-dependent Pi cotransport in *Xenopus* oocytes injected with rabbit kidney mRNA. Eventually, protein expression in oocytes proved rather straightforward and then became an essential tool in the Murer lab to clone and characterize Pi and other solute transporters.

Expression cloning

The expression of proteins in *Xenopus laevis* oocytes was pioneered by John Gurdon (University of Cambridge) who was awarded the 2012 Nobel Prize in Medicine and

This article is part of the special issue on Phosphate transport in Pflügers Archiv – European Journal of Physiology
Physiology for his ground-breaking work [9]. In an application of the original strategy in the mid-1980s, Tasuku Honjo (Kyoto University) and his group injected in vitro-transcribed RNA from a T cell cDNA library and used the oocyte supernatant to stimulate growth and colony formation of B cells. By subdividing the library into smaller and smaller pools, eventually, a single clone was isolated—encoding interleukin 4—that conferred biological activity [24]. This strategy was quickly applied by two groups to the cloning of membrane proteins: Shigetada Nakanishi’s lab (Kyoto University) used electrophysiology to isolate a cDNA that induced membrane depolarization upon administration of substance K in Xenopus oocytes [20]. At the same time, Ernest Wright’s group (UCLA) measured the flux of a radioactive glucose analogue to isolate and characterize a clone encoding the Na-glucose cotransporter SGLT1 [11]. These three seminal papers provided the corner stones for the expression cloning strategy using Xenopus oocytes that would become the golden bullet for the cloning of membrane proteins in the pre-genomic era (Fig. 1) [28].

In essence, the technique involves the injection of a few nanoliters of mRNA into the cytoplasm of oocytes harvested from frogs (Xenopus laevis) using a pulled glass capillary. The cells translate the RNA and integrate the resulting protein into the plasma membrane where its function can be analyzed. Initially, poly-A-selected mRNA, often length fractionated using preparative gel electrophoresis, was injected [12, 19]. Interestingly, the mRNAs usually gave robust functional signals despite the Na-phosphate transporter encoding message only representing a minimal fraction of the total mixture. In fact, it is the signal from mRNAs that predicts success or failure of an expression cloning strategy. Once this key experiment proves successful [31], a cDNA library is constructed from the relevant mRNA (Fig. 1a). The mix of clones is then singled out on agar plates, and in a fiddly process using circular nylon membranes, two exact replicas are taken. The bacterial clones from the first replica are then pooled, grown, and the plasmids are extracted. From the plasmid mix, RNA is synthesized in vitro and then tested in Xenopus oocytes. The goal is to find one (or more) RNA samples from individual plates (pools of clones) that significantly induce the uptake of substrate (Pi) over water-injected controls. The second replica filter of the “positive” plate is then cut into about 25 squares containing smaller pools of bacteria and the screening process is repeated. Eventually, single colonies are picked from the square that stimulates uptake and tested for function. With some luck and perseverance, a single clone will eventually be identified that reliably induces the expected function after expression in Xenopus oocytes (Fig. 1b).

“Straight forward and easy”—you wish!

Despite its power, expression cloning remained a daunting task that required cross-discipline methodology and was often done in collaborations with other laboratories. The first attempt in the Murer laboratory to clone the “Na-Pi, transporter”
involved a key collaboration with molecular biologists, Marilyn Moore, Ned Mantei, and Giorgio Semenza at the ETH in Zürich. The cDNA library was prepared in their lab and the resulting in vitro-transcribed RNA was then coded and tested blindly in Heini Murér’s laboratory. Ironically, despite taking all precautions to rule out experimental bias during the screening steps, NaPi-I turned out to be the wrong clone [33]. It was later shown that the alleged Pi transporter displayed anion permeability and was related to neuronal vesicular glutamate transporters [1,29]. NaPi-I did induce phosphate uptake in oocytes, though many of the previously established features of Na-phosphate transport were not convincingly reproduced by NaPi-I [33]. For example, the cloned cDNA was about 0.5 kb shorter than the mRNA fraction that induced highest Pi transport in oocytes [31]. Could this be the consequence of poly-A tail shortening or was it a gel artifact? Moreover, minimal amounts of injected NaPi-I RNA saturated Na-dependent Pi uptake in oocytes, contradicting observations made with SGLT1 and fractionated mRNA where a linear dose to signal relation was found to 10 ng RNA per oocyte or even higher [31,33]. Could it be that the oocytes did not tolerate a Pi overload and inhibit further expression of the injected RNA? Nobody could tell at that point. To test a putative role of NaPi-I in maintaining Pi homeostasis, rabbits were fed high and low Pi diets and NaPi-I RNA and protein levels were assessed [6]. To our frustration, no regulatory effect of Pi on NaPi-I was detected and it became undeniable that we had put our bets on the wrong clone: In default of a [149,9] tested blindly in Heini Murér’s laboratory. Iron-}
frogs never developed wound infections despite minimal effort to keep the surgical tools sterile and the absence of post-operative precautions. Similar observations had prompted Michael Zasloff to investigate the phenomenon that leads to the discovery of a novel family of antimicrobial peptides from frog skin, the so-called magainins [36].

In addition to the often unpredictable nature of frogs and oocytes, the equipment used to inject the cells was—at least initially—primitive and did little to control variability. For the first injections, we used a 50-ml syringe connected to the pulled glass capillary with a narrow silicone tube to which a vacuum (to aspirate the RNA) and positive pressure (for injections) was applied. The injected volume was controlled by visually inspecting the meniscus of the RNA solution moving along a stripe of graph paper glued to the back of the capillary. Another matter of concern were impurities in the RNA or sticky material from the injected oocytes that easily blocked the capillary tip. In such a no-win situation, one could either break the tip of the needle with negative consequences to oocyte survival and signal variability or change the capillary and risk losing the precious RNA. With time, the injection equipment significantly improved; nowadays, there are precise, purpose-built oocyte injection systems, and even automated devices are available. Moreover, in the pre-kit era of molecular biology, the RNA preparations often contained traces of salts or organic solvents and the purity of the injected RNA significantly affected oocyte performance. Despite the many technical improvements, the rather varied expression of NaPi-II proteins in individual oocytes persisted and is likely to depend on the particular NaPi-II isoform (species of origin) and how efficiently the particular protein is integrated into the oocyte membrane.

Molecular biology

At the beginning of the 1990s, molecular biology was still perceived as a scientific discipline in its own right; the development of specialized kits for complex procedures had only just begun. One of the early kits, the unidirectional cDNA library construction system, SuperScript from Gibco-BRL, proved a real game changer; the protocol yielded high-quality cDNA libraries with 10^5 clones or more (far exceeding the number of clones that could realistically be screened) without the requirement of advanced molecular biology skills (Fig. 1b). Another substantial help were kits to synthesize RNA using T7 and SP6 RNA polymerases including a Cap analogue, the mMessage mMACHINE from Ambion becoming the favored option; however, the latter kits were not available for the original cloning of rat and human NaPi-II (NaPi-2 and NaPi-3). Though, the challenges did not end with the successful isolation of a single, functional cDNA. Sequencing of kilobases of DNA posed a significant challenge, even with the reliable Sanger method. To illustrate the scale of the task, Heini Murer spent a sabbatical semester 1989 in Joseph Handler’s lab at the NIH (National Institute of Health, Bethesda) sequencing the renal aldose reductase cDNA of approximately 1.3 kilobases (kb) [7]. With polyacrylamide-urea sequencing gels resolving at best 400 bases and primers costing about 25 times of today’s price, sequencing was time consuming and expensive. The method of choice at the time was to chop the insert into small fragments using two or three frequently cutting restriction enzymes. The resulting pieces were cloned and Sanger sequenced using vector-encoded primer binding sites. The resulting patchwork of sequences was complemented with few sequencing reactions using specific primers. Assembling the snippets and establishing a consensus sequence with an open reading frame was the next task, achieved by pattern recognition. For lack of computer-driven algorithms, consensus sequences were combined by eye and intuition, sliding lines of A, T, C, and G along each other, and searching for noticeable sequence motifs on different fragments to establish an overlap. A compression on a sequencing gel, caused by CG-rich regions or repeats, could easily shift the reading frame and it only took a compensatory misinterpretation downstream of the original error to get back in frame. Such a mistake resulted in a stretch of erroneous amino acids that would be easily spotted if homologous sequences had been available. Though, without reference, the possibility of major sequencing errors was real: Whereas the originally published sequences from rat (NaPi-2/Slc34a1) and human (NaPi-3/SLC34A1) were correct, the flounder transporter (NaPi-5/Slc34a2) cloned in collaboration with the Kinne laboratory (Dortmund) was published with a stretch of 98 amino acids in the wrong reading frame. The mistake was only recognized and corrected 2 years later [15, 34].

NaPi-IIa, Slc34A1

The cloning of NaPi-I, as disappointing the outcome may have been, meant that the crucial procedures in expression cloning such as cDNA library construction, in vitro transcription, and the functional assay in *Xenopus* oocytes had been extensively tried and tested. For the novel expression cloning approach, the entire experimental processes including the

1 Initially, the clones were named and numbered in order of appearance; NaPi-1, NaPi-2, NaPi-3 and so forth. The increasingly confusing mix of NaPiIs with clearly distinct structures from various species was later organized into the protein families NaPi-I (NaPi-1; Slc17A) and NaPi-IIa (NaPi-2 and NaPi-3, for example; Slc34A1), NaPi-IIb (NaPi-5; Slc34A2), NaPi-IIc (Slc34A3). The NaPi-III protein families include the Na-dependent Pi cotransporters Pit1 and Pit2 (Slc20A1 and Slc20A2).
molecular biology techniques were performed in the Murer lab. This endeavor was helped by novel kits which facilitated the molecular biology arm of expression cloning significantly. In addition, it was a fortunate coincidence that a second transporter-oriented laboratory in Zurich with Bruno Hagenbuch, Bruno Stieger, and Peter Meier embarked on the expression cloning of bile acid transporters at the same time we started hunting for NaPi-II [10]. One positive input was certainly the stimulating exchange about oocytes and technical pitfalls, more practically, Peter Meier’s group had an electroporator that gave fabulous transfection rates and significantly improved the coverage of our cDNA libraries.

Another fortunate coincidence provided us with an excellent internal control to monitor every aspect of the screening process: Juan Bertran and Manuel Palacin, at that time guests in the Murer laboratory, had just characterized an amino acid transport activity with renal mRNA. The elicited flux of 3H arginine was consistently high and virtually without variability between individual oocytes [5]. Hence, we screened our human kidney cDNA library for both phosphate and arginine transport and the latter proved an excellent indicator for the quality of the oocytes and confirmed the biological activity of the injected material. Thanks to the collaborative atmosphere in the Murer lab and the fact that other cloning projects ran in parallel, the screening of both rat and human kidney cDNA libraries progressed without major events. At the end of the process, we not only isolated clones for rat and human NaPi-IIa (then NaPi-2 and NaPi-3) [16] but also, quasi as a bonus, the human amino acid transporter rBAT [4]. Moreover, the obvious sequence similarities between the rat and the human clone helped the assembly of the final sequences and suggested a distinct structure-function relationship.

Got a clone, now what?

After barking up the wrong tree with NaPi-1, we were cautious with the introduction of the “real” NaPi transporters and performed a series of experiments to establish the physiological relevance of the isolated genes. From the start, the P_i flux induced by the cloned cDNA/RNA was impressive; no sign of “P_i overload” was observed (Fig. 2a). Moreover, transport activity was highest at neutral pH and decreased when the uptake solution was acidified, much like the P_i transport activity established with renal BBMV's (Fig. 3). The apparent affinities for P_i, and Na^+ were also in agreement with data from BBMV experiments, and the high expression in kidney, the signal being most prominent in cortex, concurred with P_i re-absorption along the renal proximal tubule (Figs. 2 and 3) [16, 23]. The faint band of about 5 kb with mRNA from lung on a northern blot probed with the human NaPi-IIa cDNA was the first sign of human NaPi-Iib, the “intestinal isoform”. Despite this appearance, it should take another 5 years until this cDNA was eventually cloned (Fig. 2b) [13].

An essential question remained unanswered, whether the identified gene/protein would respond to mediators of P_i homeostasis such as P_i availability and parathyroid hormone (PTH). An elegant strategy to test the specific contribution of NaPi-IIa to

![Fig. 2 Characterization of the human cDNA. a Functional test of in vitro-transcribed RNA expressed in oocytes. The expressed transporter is specific for P_i and does not accept neither sulfate nor arginine. b Northern blot including RNA from different human tissues (top) or RNA isolated from renal cortex of different species (bottom). The faint band of approximately 5 kb in human lung is likely to reflect the highly expressed SLC34A2 (intestinal) isoform. Mouse appears to express two different renal isoforms derived from alternative polyadenylation. The figure is composed of original material published by Magagnin et al. [16].](image-url)
Fig. 3 Functional characterization of NaPi-3, the human Na-Pi cotransporter. In vitro-transcribed RNA was expressed in Xenopus oocytes and transport activity measured by radiotracer flux under different experimental conditions. a Varying concentrations of Pi were included and transport showed hyperbolic saturation kinetics indicating that one Pi molecule was transported per cycle (apparent Kₘ 0.170 mM). b Na overall Pi transport in a mix of renal cortical RNA was adopted using RNaseH-mediated hybrid depletion [22]. Kidney RNA samples were hybridized with NaPi-II-specific DNA oligonucleotides and treated with RNase H, an endonuclease that specifically hydrolyses RNA hybridized to DNA. The hybrid-depleted samples were then analyzed by northern blotting and functional expression in Xenopus oocytes. To our delight, RNase H treatment significantly reduced both the NaPi-II-specific band on northern blots as well as Pi transport in injected oocytes. Moreover, we could show that a low Pi diet stimulated the abundance of NaPi-II mRNA and also Pi uptake in oocytes [32]. The so-called Hyp mouse suffers from a proximal tubular Pi reabsorption defect and proved an excellent system to further scrutinize the contribution of NaPi-II to maintaining Pi homeostasis. NaPi-IIa was indeed reduced in Hyp mice [30], though the Hyp gene was previously shown to encode a humoral factor (but not PTH) rather than the renal phosphate transporter itself [21]. PTH was found to have little effect on NaPi-II mRNA levels but to cause a striking reduction of transport protein at the apical membrane and an intracellular, punctate accumulation of the transporter [14]. The physiological role was further corroborated by the phenotypic characteristics of NaPi-IIa KO mice that showed renal Pi wasting, increased VitD₃ levels, and a mild bone phenotype [3]. All these reports firmly established NaPi-IIa/Slc34A1 as a key player in balancing body Pi levels. Interestingly, it would take almost 10 years (and probably the invention of high-throughput DNA sequencing) until the first human mutations in SLC34A1 (human NaPi-IIa) were identified in patient cohorts with renal stones [17, 25].

All these findings convincingly established the mechanism of Pi reabsorption at the apical membrane of renal proximal tubules; how Pi crossed the basolateral membrane to reach the renal interstitium remained an unsolved question. Recently, a promising candidate, Xpr1 (xenotropic and polytropic retroviral receptor 1), has been suggested [2, 8]. Shortly after cloning the apical transporter, we attempted to express a Pi-efflux activity in oocytes by injecting proximal tubular mRNA, but failed. The injected oocytes were loaded with ³²P, washed, and incubated in Pi-free solution which was analyzed for leaked counts, though only insignificant amounts of radioactivity were detected. These experiments indicated that firstly, NaPi-II-mediated transport was unidirectional under standard uptake conditions (100 mM Na, 1 mM Pi), and secondly, that an expression cloning approach would unlikely succeed in cloning “the basolateral transporter.”

The laboratory

The Murer lab was a thriving environment, home to a mix of international young scientist from Italy (Simona Magagnin, Tiziano Verri), Spain (Juan Bertran, Manuel Palacin, and Victor Sorribas), Australia (Daniel Markovich), the USA (Chip Montrose, Steve Reshkin), Croatia (Branka Mrkic), Germany (Cornina Helmle-Kolb, Susanne Quabius, Gerti Stange), and Switzerland (Jutka Forgo, Andreas Werner, François Wuarin) including the more senior Juerg Biber and Heini Murer. The lab space was huge by current standards; we had dedicated rooms for RNA research, cloning, an oocyte room, a protein lab, an extended radioactive area, and even PhD students had proper office space. Quite outrageously according to current standards, smoking was permitted in offices and the coffee corner, also in the “protein lab” but not in DNA and RNA labs. The rationale was that cigarette fumes could induce mutations when working with nucleic acids”—though it was not specified whether the samples or the researcher were at risk. The heart of the lab was arguably the coffee corner strategically placed between the two wings of the lab; passing it without interacting with other lab members could hardly be avoided usually resulting in scientific exchange and banter. The coffee corner also featured the latest issue of the daily national newspaper “Tages-Anzeiger” adding reference to the real world outside the lab. Importantly, the coffee corner...
was located next to the scintillation counter (probably in blatant violation of any current health and safety standards); this meant that everyone was immediately informed when a new clone was born. Since many guest scientists visited the laboratory in Zürich to learn and apply expression cloning, the “baptism” of new clones was quite frequent event. These successes were celebrated in style, with sparkling wine, Swiss cheese tartlets, and meaty delicacies and compensated for the long hours in the lab, the setbacks, and frustration with oocytes.

Funding This work was supported by the Northern Counties Kidney Research Fund (to AW).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, Takeda J (2000) Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 74:2622–2625

2. Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, Nikolaeva S, Haenzi B, Katanavae N, Gauthchi I, Katanave Y, Rotman S, Koesters R, Schild L, Pradervand S, Bonny O, Firsov D (2017) Renal Fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol 28:1073–1078

3. Beck L, Karapis AS, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A 95:5372–5377

4. Bertran J, Werner A, Chillaron J, Nunes V, Biber J, Testar X, Zorzano A, Estivill X, Murer H, Palacin M (1993) Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J Biol Chem 268:14842–14849

5. Bertran J, Werner A, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H (1992) Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem J 281(Pt 3):717–723

6. Biber J, Caderas G, Stange G, Werner A, Murer H (1993) Cellular cloning and cDNA sequencing of the Na+/glucose co-transporter. J Membr Biol 117:201–221

7. Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3:1866–1873

8. Gurdon JB (1973) The translation of messenger RNA injected in living oocytes of Xenopus laevis. Acta Endocrinol Suppl (Copenh) 180:225–243

9. Hagenbuch B, Stieger B, Boguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatoocyte Na+/bile acid cotransporter system. Proc Natl Acad Sci U S A 88:10629–10633

10. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

11. Hediger MA, Ikeda T, Coady M, Gundersen CB, Wright EM (1987) Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 84:2634–2637

12. Hilfliger H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95:14564–14569

13. Kempson SA, Litscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transport mRNA and protein in rat renal proximal tubules. Am J Phys 268:5984–5969

14. Kohl B, Herter P, Hulseweh B, Elger M, Hentschel H, Hinter R, Werner A (1996) Na-Pi cotransport in flounder: same transport system in kidney and intestine. Am J Physiol 270:F937–F944

15. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A 90:5979–5983

16. Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe JY, Zelikovic I, Skorecki K (2010) A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362:1102–1109

17. Malmanström K, Murer H (1987) Parathyroid hormone regulates phosphate transport in OK cells via an irreversible inactivation of a membrane protein. FEBS Lett 216:257–260

18. Markovich D (2008) Expression cloning and radiotracer uptake in Xenopus laevis oocytes. Nat Protoc 3:1975–1980

19. Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329:836–838

20. Meyer RA Jr, Tenenhouse HS, Meyer MH, Klugereman AH (1989) The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidec- tomy. J Bone Miner Res Off J Am Soc Bone Miner Res 4:523–532

21. Meyerhof W, Richter D (1990) Identification of G protein-coupled receptors by RNase H-mediated hybrid depletion using Xenopus laevis oocytes. Nat Protoc 3:1975–1980

22. Meyerhof W, Richter D (1990) Identification of G protein-coupled receptors by RNase H-mediated hybrid depletion using Xenopus laevis oocytes. Nat Protoc 3:1975–1980

23. Murer H, Werner A, Reshkin S, Wuarin F, Biber J (1991) Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Physiol 260:C885–C899

24. Noma Y, Sideras P, Naito T, Bergstedt-Lindquist S, Azuma C, Severinson E, Tanabe T, Kinashi T, Matsuda F, Yaoita Y et al (1986) Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature 319:640–646

25. Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, Hulin J, Murer H, Reshkin S, Zelikovic I, Skorecki K (2010) A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362:1102–1109

26. Reshkin SJ, Wuarin F, Biber J, Murer H (1990) Parathyroid hormone-induced alterations of protein content and phosphorylation in enriched apical membranes of opossum kidney cells. J Biol Chem 265:10633–10640

27. Rungger D (2002) Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 117:201–221
29. Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

30. Tenenhouse HS, Werner A, Biber J, Ma S, Martel J, Roy S, Murer H (1994) Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest 93:671–676

31. Werner A, Biber J, Forgo J, Palacin M, Murer H (1990) Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem 265:12331–12336

32. Werner A, Kempson SA, Biber J, Murer H (1994) Increase of Na/Pi-cotransport encoding mRNA in response to low Pi diet in rat kidney cortex. J Biol Chem 269:6637–6639

33. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A 88:9608–9612

34. Werner A, Murer H, Kinne RK (1994) Cloning and expression of a renal Na-Pi cotransport system from flounder. Am J Phys 267:F311–F317

35. Wuarin F, Wu K, Murer H, Biber J (1989) The Na+/Pi-cotransporter of OK cells: reaction and tentative identification with N-acetylimidazole. Biochim Biophys Acta 981:185–192

36. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453