The landscape of immune checkpoint inhibitor therapy in advanced lung cancer

Chengdi Wang1*, Jingwei Li1,2, Qiran Zhang2, Jiayang Wu3, Yuxuan Xiao4, Lujia Song1, Hanlin Gong5* and Yalun Li1*

Abstract

Background: The advent of immune checkpoint inhibitors (ICIs) therapy has resulted in significant survival benefits in patients with non-small-cell lung cancer (NSCLC) without increasing toxicity. However, the utilisation of immunotherapy for small-cell lung cancer (SCLC) remains unclear, with a scarcity of systematic comparisons of therapeutic effects and safety of immunotherapy in these two major lung cancer subtypes. Herein, we aimed to provide a comprehensive landscape of immunotherapy and systematically review its specific efficacy and safety in advanced lung cancer, accounting for histological types.

Methods: We identified studies assessing immunotherapy for lung cancer with predefined endpoints, including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events (TRAE), from PubMed, Embase, Medline, and Cochrane library. A random-effects or fixed-effect model was adopted according to different settings.

Results: Overall, 38 trials with 20,173 patients with lung cancer were included in this study. ICI therapy resulted in a significantly prolonged survival in both patients with NSCLC and SCLC when compared with chemotherapy (hazard ratio [HR] = 0.74; 95% confidence interval [CI], 0.70–0.79) and [HR = 0.82; 95% CI, 0.75–0.90], respectively). The magnitude of disease control and survival benefits appeared superior with ICI plus standard of care (SOC) when compared with SOC alone. OS and PFS advantages were observed only when immunotherapy was employed as the first-line treatment in patients with SCLC.

Conclusion: ICI therapy is a promising therapeutic option in patients with NSCLC and SCLC. ICI plus SOC can be recommended as the optimal first-line treatment for patients with SCLC, and double-target ICIs combined with SOC are recommended in patients with NSCLC as both the first and subsequent lines of treatment. Additionally, non-first-line immunotherapy is not recommended in patients with SCLC.

Keywords: Immune checkpoint inhibitor, Efficacy, Non-small-cell lung cancer, Small-cell lung cancer

* Correspondence: 9463382@qq.com; liyalun@wchscu.cn
5Department of integrated Traditional Chinese and Western Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
1Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction

Lung cancer is the primary cause of cancer-related mortality and incidence, resulting in a significant economic burden [1]. Regarding histological types, lung cancer can be categorised into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). SCLC accounts for only 15% of lung cancers, with first-line treatment mainly restricted to chemotherapy or radiotherapy and presenting a worse prognosis than NSCLC [2]. In contrast, NSCLC constitutes approximately 85% of lung cancers and presents a relatively superior prognosis, given the rapid development of therapeutic techniques, including surgery, chemotherapy, radiotherapy, and targeted therapy [3, 4]; however, the actual 5-year overall survival (OS) of NSCLC remains poor. Standard of care (SOC) therapies include chemotherapy and radiotherapy for patients with lung cancer lacking specific therapeutic targets, whereas targeted therapy can be administered to those with corresponding mutated genes.

One main hypothesis for tumour invasion and metastasis is immune evasion, controlled by a combination of inhibitory or stimulatory receptors and corresponding ligands [5]. Among them, cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death 1 (PD-1) pathways are promising therapeutic targets, also known as immune checkpoints [6, 7]. Tumour cells can escape the immune system attack via forming immune checkpoints. Accordingly, blocking such immune checkpoints can activate the immune system and prevent tumour cell evasion. Currently, immune checkpoint inhibitors (ICIs) developed to treat malignant tumours, including lung cancer, can be classified into anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies.

Accumulating evidence has reported that ICIs have higher efficacy than SOC in both NSCLC and SCLC, indicating their superior therapeutic potential. In patients with advanced NSCLC, anti-PD-1 monotherapy can achieve a median OS of 11.9 months, which was significantly superior to that with a SOC at 9.5 months (hazard ratio [HR]: 0.75; 95% confidence interval [CI]: 0.61–0.93). Furthermore, the incidence of treatment-related adverse events (TRAEs) in the ICI group was reportedly lower than in the SOC group [8]. In patients with SCLC, anti-PD-L1 therapy as first-line treatment has demonstrated a better OS than platinum-etoposide treatment [9].

However, clinical trials evaluating the efficiency and safety of ICI therapy have mainly focused on NSCLC in recent years, neglecting any specific data analysis for SCLC. More importantly, systematic studies comparing ICI therapy among NSCLC patients with SCLC remain scarce.

A pooled analysis not restricted to patients with SCLC or NSCLC could provide valuable clinical information regarding anti-PD-1/PD-L1 and CTLA-4 treatments. In the present study, we aimed to validate whether immunotherapy could result in more manageable TRAEs and better efficacy than SOC in patients with advanced NSCLC or SCLC. Moreover, we compared the distinct benefits and risks of immunotherapy between patients with NSCLC and SCLC. We anticipate that our results could benefit the development of immunotherapy in lung cancer and offer practical solutions for routine clinical practice using immunotherapy in patients with NSCLC or SCLC.

Methods

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [10].

Search strategy and study selection

We performed a search for eligible randomised controlled trials (RCTs) from January 2010 to May 2021 in Medline, PubMed, Embase, and the Cochrane Central Register of Controlled Trials, using the following key words: ICIs (PD-1, PD-L1, or CTLA-4), specific ICI drug names (toripalimab, sintilimab, camrelizumab, tislelizumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, avelumab, ipilimumab, and tremelimumab), and lung cancer. For further identifying unpublished studies, we retrieved abstracts from the American Society of Clinical Oncology, the European Society of Medical Oncology, the American Association for Cancer Research, and the World Conference on Lung Cancer. (Table S1).

Exclusion and inclusion criteria were predefined. Eligible RCTs were required to meet the following criteria: (a) population: diagnosed with lung cancer (NSCLC or SCLC) pathologically; (b) intervention: treatment with PD-1/PD-L1 or CTLA-4 inhibitors (toripalimab, sintilimab, camrelizumab, tislelizumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, avelumab, ipilimumab and tremelimumab); (c) control: treated with chemotherapy or radiotherapy; (d) type of study: phase II and III clinical trials. Exclusion criteria were as follows: (a) the study was not a randomised controlled trial; (b) data regarding PFS/OS measured by HRs, objective response rate (ORR), or TRAEs was unavailable; (c) duplicate articles.

Data extraction and quality assessment

For all included trials, we extracted the name of the trial, year of publication, trial phase, line of treatment, age and number of patients, OS/PFS/ORR, and TRAEs of grade ≥3 and any grade. We adopted the Cochrane Risk of Bias Tool, consisting of allocation concealment, random sequence generation, blinding of outcome assessment, blinding protocol, selective reporting, and
incomplete outcome data, to methodologically assess the quality of the enrolled RCTs [11]. The items adjudged as “low risk” were regarded as applicable. Two authors independently performed data extraction and quality assessment. Discrepancies were resolved by reaching a consensus.

Statistical analysis
Heterogeneity was identified by the Q test and quantified using the I^2 and Q statistics [12]. If I^2 was more than 50%, the random effect model was applied; otherwise, the fixed-effect model was selected [13]. The primary outcomes in the present study were OS and PFS, measured as HRs, 95% CIs, and p-values. ORR, grade ≥ 3 TRAEs, and Grade 1–5 TRAEs were presented as risk ratios (RRs). The Q test was used to detect heterogeneity between the subgroups and assess differences between histological types. Prespecified subgroup analyses were performed to evaluate the potential association between individual or methodological factors and immunotherapy efficacy in each histological type of lung cancer. Egger’s and Begg’s tests were used to assess the publication bias for included RCTs. Stata 16.0 software (Stata Corp, College Station, TX) was used to perform all analyses. Statistical significance was set at p < 0.05.

Result
Literature search results
The initial literature search identified 30,284 related studies (Fig. 1). In total, 38 RCTs, including 41 studies with 20,173 patients with lung cancer, were included for quantitative analyses [6–8, 14–48]. Eight studies explored the efficacy of ICI versus SOC in patients with SCLC (three studies on ipilimumab, two on atezolizumab, one on nivolumab, one about durvalumab, and one assessing tremelimumab plus durvalumab). The remaining 33 studies were performed efficiency and
safety comparisons between ICIs and SOC in patients with NSCLC.

Characteristics of identified trials
The main characteristics of the 38 trials are listed in Table 1. All included trials were performed in patients with relapsed or extensive SCLC and advanced NSCLC. In total, 20,173 patients were included, of which 17,250 (85.5%) were diagnosed with NSCLC and 2923 (14.5%) with SCLC. Regarding age, most patients were ≥70 years old. All eligible trials were phase II or III studies, with 31 phase III trials, 6 phase II, and 1 phase II/III. Among these trials, 22 employed ICIs as first-line therapy, and the remaining trials were in a non-first-line setting. Overall, all studies, except for 17 (44.7%), confirmed improvements in OS in patients receiving immunotherapy when compared with those receiving SOC. Except for PEMBRO-RT and IFCT-1603, all trials reported total TRAEs in patients. Furthermore, several RCTs were uniquely designed, necessitating further explanation. KEYNOTE-010 evaluated the efficiency of different pembrolizumab doses (2 mg/kg and 10 mg/kg), accordingly divided into KEYNOTE-010, a and KEYNOTE-010, b. OAK established two different cohorts, ITT850 and ITT1225, both of which were treated as independent studies. Likewise, ARCTIC and CASPIAN were considered independent studies. CA184–041 was a phase II study focusing on different medication orders, which was considered four studies based on histological type and order of medication. Trials were generated through a random sequence and at low risk of selection bias, presented good quality (Table S2). The reduced selection bias was attributed to low attrition and thorough reporting without missing cases. The funnel plot (Fig. S1), as well as Egger’s and Begg’s tests, all indicated no sign of publication bias.

Efficiency
In summary, ICI treatment presented a significant advantage over SOC, with a reduction in mortality (HR, 0.76; 95% CI, 0.72–0.80) (Fig. 2) and successful control of disease progression in patients with lung cancer (HR, 0.77; 95% confidence interval [CI], 0.71–0.83) (Fig. 3). Furthermore, immunotherapy yielded superior efficacy in terms of objective response in patients with lung cancer when compared with chemotherapy or radiotherapy (RR, 1.21; 95% CI, 1.13–1.30; Fig. 4). Regarding different histological types, greater improvements in PFS following ICI therapy were observed in patients with NSCLC than in patients with SCLC ([HR = 0.74; 95% CI, 0.67–0.80] and [HR = 0.95; 95% CI, 0.77–1.13]; difference p = 0.02; Fig. 3), similar findings were documented in terms of ORR ([RR = 1.28; 95% CI, 1.18–1.39] and [RR = 1.00; 95% CI, 0.92–1.08]; difference p < 0.01; Fig. 4). In contrast, equivalent OS benefits from ICI therapy were observed in both patients with NSCLC and SCLC ([HR = 0.74; 95% CI, 0.70–0.79] and [HR = 0.82; 95% CI, 0.75–0.90]; difference p = 0.07; Fig. 2). Remarkably, disease progression was retarded in patients with NSCLC treated with ICIs when compared with patients treated with SOC ([HR = 0.74; 95% CI, 0.67–0.80], Fig. 3), risk of death ([HR = 0.74; 95% CI, 0.70–0.79], Fig. 2), and increased ORR ([RR = 1.28; 95% CI, 1.18–1.39], Fig. 4). However, the benefit of ICI therapy in patients with SCLC was only indicated by OS ([HR = 0.82; 95% CI, 0.75–0.90], Fig. 2).

Safety
Compared with SOC alone, immunotherapy for patients with lung cancer reduced the risk of Grade 3–5 TRAEs (RR, 0.76; 95% CI, 0.64–0.89, Fig. 5) and Grade 1–5 TRAEs (RR, 0.95; 95% CI, 0.92–0.98, Fig. 6). In terms of Grade 3–5 TRAEs, no significant difference in risk reduction was observed among patients with different subtypes of lung cancer receiving ICI treatment when compared with SOC ([RR = 0.75; 95%, CI, 0.63–0.90] and [RR = 0.76; 95% CI, 0.48–1.18], respectively; difference p = 0.98; Fig. 5). The risk of Grade 1–5 TRAEs was equivalent among patients with different subtypes of lung cancer treated with ICIs and SOC ([RR = 0.95; 95% CI, 0.92–0.98] and [RR = 0.96; 95% CI, 0.87–1.07], respectively; p = 0.78; Fig. 6).

Subgroup analysis
Table 2 and Table S3 display differences in the efficiency of ICI therapy between patients with NSCLC and SCLC. Importantly, as indicated by PFS, patients with NSCLC presented greater benefits following ICI therapy plus SOC than those with SCLC, when corresponding ICI-treated patients were used as a standard for comparison ([HR, 0.63; 95% CI, 0.57–0.69] and [HR, 0.83; 95% CI, 0.76–0.90], respectively, difference p < 0.01); similar results were observed following ICI monotherapy ([HR, 0.82; 95% CI, 0.73–0.91] and [HR, 1.68; 95% CI, 0.90–2.45], respectively; p = 0.03). Moreover, we further assessed differences on efficiency between patients with NSCLC and SCLC when immunotherapy was employed as the first or subsequent line of treatment. We detected an advantage in terms of PFS in patients with NSCLC when compared with patients with SCLC in both the first ([HR, 0.68; 95% CI, 0.60–0.76] and [HR, 0.83; 95% CI, 0.76–0.90], respectively, difference p = 0.01) and subsequent line of therapy ([HR, 0.83; 95% CI, 0.73–0.92] and [HR, 1.68; 95% CI, 0.90–2.45], respectively, p = 0.03). However, further subgroup analyses of sex, age, drug target, and Eastern Cooperative Oncology Group Performance Status (ECOG PS) score showed no statistically significant differences on PFS between patients...
Table 1 Clinical characteristics and outcomes of the included randomized controlled trials

Trials	Trial phase	Line of treatment (No.)	Intervention (No.)	Control (No.)	Age, Median (Range)	Efficiency	TRAEs	Grade 3–5	Grade 1–5
NSCLC									
KEYNOTE-407, 2018	III	1	PEM plus PBC (278)	PBC plus placebo (281)	Int:65 (29–87)	0.64 (0.49–0.85)	0.56 (0.45–0.70)	161/278	194/273
					Con:65 (36–88)				
KEYNOTE-021, 2016	III	1	PEM plus PBC (60)	(63)	Int:62.5 (54–70)	0.56 (0.32–0.95)	0.53 (0.33–0.86)	33/60	24/59
					Con:63.2 (58–70)				
OAK ITT850	III	> 1	ATE (425)	DOC (425)	Int:63.5 (33–77)	0.75 (0.64–0.88)	0.95 (0.82–1.10)	58/425	19/19
2017, 2019					Con:58.5 (34–79)				
CheckMate 026	III	1	NW (271)	PBC (270)	Int:63 (32–89)	1.08 (0.87–1.34)	1.19 (0.97–1.46)	55/211	47/267
2017					Con:65 (29–87)				
OAK ITT1225	III	> 1	ATE (613)	DOC (612)	Int:63 (25–84)	0.80 (0.70–0.92)	0.96 (0.85–1.08)	43/212	263/263
2018					Con:64 (34–85)				
JAVELIN Lung 200	III	> 1	Avelumab (396)	DOC (396)	Int:64 (58–69)	0.99 (0.75–1.08)	1.16 (0.97–1.40)	59/396	39/393
2018					Con:63 (57–69)				
KEYNOTE-189, 2018	III	1	PEM plus PBC (410)	PBC plus placebo (206)	Int:65 (34–84)	0.49 (0.38–0.64)	0.52 (0.43–0.64)	195/410	272/404
					Con:63 (34–84)				
KEYNOTE-042, 2019	III	1	PEM (637)	PBC (637)	Int:65 (57–69)	0.81 (0.71–0.93)	1.07 (0.94–1.21)	174/637	113/399
					Con:63 (57–69)				
KEYNOTE-010, a, 2016	III	> 1	PEM (344)	DOC (172)	Int:63 (56–69)	0.71 (0.58–0.88)	0.88 (0.74–1.05)	43/364	43/215
					Con:62 (56–69)				
KEYNOTE-010, b, 2016	III	> 1	PEM (346)	DOC (171)	Int:63 (56–69)	0.61 (0.49–0.75)	0.79 (0.66–0.94)	64/346	55/243
					Con:62 (56–69)				
POPULAR, 2016	II	> 1	ATE (144)	DOC (143)	Int:62 (42–82)	0.73 (0.53–0.99)	0.94 (0.72–1.23)	21/144	57/142
2017, 2018					Con:62 (36–84)				
PACIFIC	III	> 1	DUR (476)	PBC plus Placebo (237)	Int:64 (31–84)	0.68 (0.47–0.997)	0.52 (0.42–0.65)	126/443	142/460
2017, 2018					Con:64 (23–90)				
KEYNOTE- 024, 2016, 2019	III	1	PEM (154)	PBC (151)	Int:64.5 (33–90)	0.63 (0.47–0.86)	0.50 (0.37–0.68)	69/154	48/154
					Con:66.0 (38–85)				
CheckMate 017	III	> 1	NW (135)	DOC (137)	Int:62 (39–85)	0.59 (0.44–0.79)	0.62 (0.47–0.81)	27/135	9/131
2015					Con:64 (42–84)				
Trials	Trial phase	Line of treatment (No.)	Control (No.)	Age, Median (Range)	Efficiency	TRAEs			
---------------------	-------------	-------------------------	---------------	--------------------	------------	-------			
IMpower110	III	ATE (277)	PBC (277)	Int:64 (30–81)	0.83	97/286			
2020				Com:65 (30–87)	0.77	258/			
					81/	149/			
					277/	286/			
					88/	249/			
					277/	263/			
CheckMate	III	NV (292)	DOC (290)	Int:63 (30–89)	0.73	0.92			
057	> 1			Com:64 (21–85)	0.92	56/			
2015					292/	199/			
					290/	287/			
					268/	236/			
					268/	268/			
IMpower150	III	ATE plus PBC (400)	PBC (400)	Int:63 (31–89)	0.78	0.61			
2018				Com:63 (31–90)	0.61	224/			
					353/	197/			
					331/	394/			
					319/	394/			
CheckMate	III	NV (338)	DOC (166)	Int:60 (27 to 78)	0.75	0.79			
078	> 1			Com:60 (38 to 78)	0.79	338/			
2020					7/	166/			
					166/	337/			
					131/	156/			
IMpower130	III	ATE plus PBC (483)	PBC (240)	Int:64 (18–86)	0.80	0.65			
2019				Com:65 (38–85)	0.65	220/			
					447/	141/			
					72/	215/			
					226/	232/			
ARCTIC, a	III	DUR (62)	Erlotinib, gemcitabine, or vinorelbine (64)	Int:63.5 (35–79)	0.63	0.71			
2020	> 1			Com:62.0 (41–81)	0.42/0.93	22/			
					6/84	60/62			
					63/63				
ARCTIC, b	III	DUR plus TRE (174)	Erlotinib, gemcitabine, or vinorelbine (118)	Int:62.5 (26–81)	0.80	0.77			
2020	> 1			Com:65 (42–83)	0.61/1.05	26/			
					174/	160/			
					57/110	137/			
					105/	110/			
CamEl	III	CAM plus PBC (205)	PBC (207)	Int:59 (54–64)	0.73	0.60			
2020				Com:61 (53–65)	0.53/1.02	124/			
					205/	146/			
					205/	132/			
					207/				
CheckMate	III	NV plus IPI (583)	PBC (583)	Int:64 (26–87)	0.73	0.79			
227				Com:64 (29–87)	0.79	199/			
2019					583/	442/			
					576/	146/			
					576/	146/			
CheckMate	III	NV plus IPI plus PBC (361)	PBC (358)	Int:65 (59–70)	0.69	0.68			
9LA				Com:65 (58–70)	0.80	138/			
2021					361/	327/			
					358/	327/			
					332/	303/			
					349/	349/			
CA184–041, a	II	Concurrent IPI plus PBC (70)	PBC (33)	Int:59 (36–82)	0.99	0.88			
2012				Com:62 (36–82)	0.67/1.46	15/			
					70/	52/71			
					13/32	23/32			
CA184–041, b	II	Phased IPI plus PBC (68)	PBC (33)	Int:61 (36–82)	0.87	0.69			
2012				Com:62 (36–88)	0.59/1.28	22/			
					68/	49/23			
					23/33				
CA184–104	III	IPI plus PBC (388)	PBC plus placebo (361)	Int:64 (28–84)	0.91	0.87			
2017				Com:64 (28–85)	0.77/1.07	171/			
					388/	344/			
					388/	344/			
					292/	292/			
					361/	361/			
IMpower132	III	ATE plus PBC (292)	PBC (286)	Int:64 (31–85)	0.86	0.60			
2020				Com:63 (33–83)	0.71/1.06	137/			
					292/	287/			
					291/	287/			
					286/	274/			
PembroRT	II	PEM plus Radiotherapy (36)	Radiotherapy (40)	Int:62 (35–78)	0.66	0.71			
2019	> 1				0.37/0.42	13/			
					36/	12/35			
					36/	6/37			
Table 1 Clinical characteristics and outcomes of the included randomized controlled trials (Continued)

Trials	Trial phase	Line of treatment	Intervention (No.)	Control (No.)	Age, Median (Range)	Efficiency	TRAEs			
						OS (95% CI)	PFS (95% CI)	ORR	Grade 3–5	Grade 1–5
IMpower131	III	1	ATE plus PBC	PBC	Con/32 (38–78)	1.18	1.18	7/40	231/	316/
2020			(343)	(340)	Int/65 (23–83)	0.88	0.71	170/343	334/195	334/303
					Con/65 (35–86)	0.71	0.60–0.85	139/340	334/	334
						0.85		340	334	
EMPower-Lung 1	III	1	CEM (283)	PBC (280)	Int/63 (58–69)	0.57	0.54	111/283	57/280	50/355
2021					Con/64 (58–70)	0.42–0.77	0.43–0.68	283	342/303	342/342
						0.68		280		
RATIONALE 307, a	III	1	TIS plus PBC	PBC (61)	Int/60 (41–74)	\	0.52	87/120	103/120	99/119
2021			(120)		Con/62 (34–74)	(0.37–0.74)		61	47/59	59/59
						0.74		30/61		
								120		
RATIONALE 307, b	III	1	TIS plus PBC	PBC (60)	Int/63 (38–74)	\	0.48	89/119	99/118	47/58/118
2021			(119)		Con/62 (34–74)	(0.34–0.68)		60	58/58/118	58/58/118
						0.68		30/60		
SCLC								60		
CASPIAN, a	III	1	TRE plus DUR plus PBC (268)	PBC (269)	Int/63 (58–68)	0.82	0.84	156/267	196/264	86/133/129
2021					Con/63 (57–68)	0.70–1.00		267/134	129/133	133
						0.70		134		
CASPIAN, b	III	1	DUR plus PBC	PBC (269)	Int/62 (58–68)	0.75	0.80	182/268	171/260	87/133/129
2021			(268)		Con/63 (57–68)	0.62–0.91		268/135	129/133	133
						0.96		135		
								60		
IFC-1603	II	> 1	ATE (49)	PBC (24)	Int/65.9 (51.1–85.5)	0.84	2.26	1/43	2/48	NA
2019					Con/63.5 (51.8–81.0)	(0.45–1.58)	(1.30–3.39)	2/20	18/24	NA
						1.58				
IMpower133	III	1	ATE plus PBC	PBC plus placebo (202)	Int/64 (28–90)	0.70	0.77	121/201	115/188	198/198
2018			(201)		Con/64 (26–87)	(0.54–0.91)	(0.62–0.96)	201/198	113/181	198/198
						0.96		130/202	181/198	198/198
CA184–041, a	II	1	Concurrent IPI plus PBC (43)	PBC plus placebo (23)	Int/57 (44–80)	0.95	0.93	14/43	19/42	29/42
2013					Con/58 (42–82)	(0.59–1.54)	(0.59–1.48)	43/11/	10/22	18/22
						1.48		11/1		
CA184–041, b	II	1	Phased IPI plus PBC (42)	Placebo plus PBC (22)	Int/59 (43–80)	0.75	0.93	24/42	22/42	33/42
2013					Con/58 (42–82)	(0.46–1.23)	(0.59–1.45)	42/11/	9/22	18/22
						1.23		11/2		
CA184–156,	III	1	IPI plus PBC (478)	Placebo plus PBC (476)	Int/62 (39–85)	0.94	0.85	297/478	231/391	478/314
2016					Con/63 (36–81)	(0.81–1.09)	(0.75–0.97)	478/264	478/361	478/478
						0.97		264/391	361/478	478/478
CheckMate 331	III	> 1	NIV (284)	PBC (285)	Int/62 (37–85)	0.86	1.14	39/284	39/282	156/282
2021			(34–82)		Con/61 (34–82)	(0.72–1.04)	(1.18–1.69)	284/194	282/265	239/265
						1.69		265		

Abbreviations: ATE atezolizumab, AVE avelumab, DOC docetaxel, TRAE treatment-related adverse event, IPI ipilimumab, NIV nivolumab, DUR durvalumab, TRE tremelimumab, CAM camrelizumab, CEMcemiplimab, TIS Tislelizumab, ORR objective response rate, OS overall survival, PBC platinum-based chemotherapy, PEM pembrolizumab, PFS progression-free survival.
Trial	HR with 95% CI
NSCLC	
KEYNOTE-407, 2018	0.64 [0.46, 0.82]
KEYNOTE-021, 2016	0.56 [0.25, 0.88]
OAK ITT850, 2019	0.75 [0.63, 0.87]
CheckMate 026, 2017	1.08 [0.85, 1.32]
OAK ITT1226, 2018	0.80 [0.69, 0.91]
JAVELIN Lung 200, 2018	0.90 [0.73, 1.06]
KEYNOTE-189, 2018	0.49 [0.36, 0.62]
KEYNOTE-042, 2019	0.81 [0.70, 0.92]
KEYNOTE-010, a, 2016	0.71 [0.56, 0.86]
KEYNOTE-010, b, 2016	0.61 [0.46, 0.74]
POPLAR, 2016	0.73 [0.59, 0.96]
PACIFIC, 2017, 2018	0.68 [0.42, 0.94]
KEYNOTE-024, 2016, 2019	0.63 [0.43, 0.83]
CheckMate 017, 2015	0.59 [0.41, 0.76]
IImpower110, 2020	0.83 [0.62, 1.04]
CheckMate 057, 2015	0.73 [0.58, 0.88]
IImpower150, 2018	0.78 [0.62, 0.94]
CheckMate 078, 2020	0.75 [0.59, 0.91]
IImpower130, 2019	0.80 [0.63, 0.97]
ARCTIC, a, 2020	0.63 [0.37, 0.99]
Camel., 2020	0.73 [0.49, 0.98]
ARCTIC, b, 2020	0.80 [0.58, 1.02]
CheckMate 227, 2019	0.73 [0.53, 0.83]
CheckMate 9LA, 2021	0.69 [0.56, 0.81]
CA184-041, a, 2012	0.99 [0.59, 1.39]
CA184-041, b, 2012	0.87 [0.53, 1.22]
CA184-104, 2017	0.91 [0.76, 1.10]
IImpower132, 2020	0.86 [0.69, 1.03]
PEMBRO-RT, 2019	0.66 [0.26, 1.06]
IImpower131, 2020	0.88 [0.72, 1.04]
EMPOWER-Lung 1, 2021	0.57 [0.39, 0.74]
Heterogeneity:	
\(\hat{\theta} = \overline{\theta}, Q(30) = 57.93, p = 0.00\)	
SCLC	
CASPIAN, b, 2021	0.75 [0.60, 0.90]
CASPIAN, a, 2021	0.82 [0.66, 0.98]
IFCCT-1603, 2019	0.84 [0.27, 1.41]
IImpower133, 2018	0.70 [0.51, 0.88]
CA184-041, a, 2013	0.95 [0.47, 1.22]
CA184-041, b, 2013	0.75 [0.36, 1.14]
CA184-156, 2016	0.94 [0.80, 1.10]
CheckMate 331, 2021	0.86 [0.70, 1.02]
Heterogeneity:	
\(\hat{\theta} = \overline{\theta}, Q(7) = 5.98, p = 0.54\)	
Overall	
Heterogeneity:	
\(\hat{\theta} = \overline{\theta}, Q(38) = 68.96, p = 0.00\)	
Test of group differences:	
\(Q_{(1)} = 3.22, p = 0.07\)	

Fig. 2 Forest plots of HRs comparing overall survival of immunotherapy between NSCLC and SCLC.
Trial	HR with 95% CI
NSCLC	
KEYNOTE-047, 2018	0.56 [0.44, 0.69]
KEYNOTE-021, 2016	0.53 [0.28, 0.76]
OAK ITT650, 2019	0.61 [0.61, 0.92]
CheckMate 026, 2017	1.19 [0.95, 1.44]
OAK ITT1225, 2018	0.96 [0.84, 1.07]
JAVELIN Lung 200, 2016	1.16 [0.94, 1.37]
KEYNOTE-189, 2018	0.52 [0.41, 0.62]
KEYNOTE-042, 2019	1.07 [0.94, 1.21]
KEYNOTE-010, a, 2016	0.88 [0.73, 1.03]
KEYNOTE-010, b, 2016	0.79 [0.65, 0.93]
POPLAR, 2016	0.94 [0.69, 1.90]
PACIFIC, 2017, 2018	0.52 [0.40, 0.63]
KEYNOTE-024, 2016, 2019	0.50 [0.34, 0.66]
CheckMate 017, 2015	0.62 [0.45, 0.76]
IMpower110, 2020	0.77 [0.61, 0.92]
CheckMate 057, 2015	0.92 [0.75, 1.10]
IMpower150, 2018	0.61 [0.51, 0.71]
CheckMate 078, 2020	0.79 [0.63, 0.96]
IMpower130, 2019	0.65 [0.53, 0.76]
ARCTIC, a, 2020	0.71 [0.44, 0.98]
Camel, 2020	0.60 [0.43, 0.77]
ARCTIC, b, 2020	0.77 [0.56, 0.98]
CheckMate 227, 2019	0.79 [0.68, 0.90]
CheckMate 9LA, 2021	0.68 [0.56, 0.81]
CA184-041, a, 2012	0.88 [0.55, 1.21]
CA184-041, b, 2012	0.69 [0.43, 0.95]
CA184-104, 2017	0.87 [0.74, 1.00]
IMpower132, 2020	0.60 [0.49, 0.72]
PEMBRO-RT, 2019	0.71 [0.53, 1.00]
IMpower131, 2020	0.71 [0.58, 0.83]
EMPower-Lung 1, 2021	0.54 [0.42, 0.67]
RATIONALE 307, a, 2021	0.52 [0.33, 0.70]
RATIONALE 307, b, 2021	0.48 [0.31, 0.65]

Heterogeneity: $I^2 = 83.29\%$, $H^2 = 5.99$

Test of $\alpha = 0$: $Q(32) = 180.70$, $p = 0.00$

SCLC	
CASPIAN, b, 2021	0.80 [0.65, 0.95]
CASPIAN, a, 2021	0.84 [0.68, 0.99]
IFCT-1603, 2019	2.26 [1.21, 3.31]
IMpower133, 2018	0.77 [0.60, 0.94]
CA184-041, a, 2013	0.93 [0.48, 1.38]
CA184-041, b, 2013	0.93 [0.50, 1.38]
CA184-156, 2016	0.85 [0.74, 0.96]
CheckMate 331, 2021	1.41 [1.15, 1.67]

Heterogeneity: $I^2 = 81.16\%$, $H^2 = 5.31$

Test of $\alpha = 0$: $Q(7) = 26.60$, $p = 0.00$

Overall

Heterogeneity: $I^2 = 84.14\%$, $H^2 = 6.31$

Test of $\alpha = 0$: $Q(40) = 229.72$, $p = 0.00$

Test of group differences: $Q(1) = 5.03$, $p = 0.02$

Random-effects REML model

Fig. 3 Forest plots of HRs comparing progression-free survival of immunotherapy between NSCLC and SCLC
Trial	Treatment Events	Total	Control Events	Total	Risk Ratio with 95% CI	Weight (%)
NSCLC						
KEYNOTE-040, 2018	161 278 108 281	1.32	1.08 1.62	3.80		
KEYNOTE-021, 2016	33 60 18 63	1.60	0.98 2.61	1.52		
OAK ITT850, 2019	58 425 57 425	1.02	0.72 1.43	2.41		
CheckMate 026, 2017	55 211 71 212	0.82	0.60 1.12	2.89		
OAK ITT1255, 2018	84 613 72 612	1.14	0.85 1.54	2.81		
JAVELIN Lung 200, 2018	59 396 44 396	1.30	0.90 1.87	2.23		
KEYNOTE-182, 2018	195 410 39 206	2.02	1.48 2.76	2.69		
KEYNOTE-042, 2019	174 637 169 637	1.02	0.85 1.23	3.97		
KEYNOTE-010, a, 2016	62 344 16 172	1.79	1.05 2.02	1.39		
KEYNOTE-018, b, 2016	64 346 16 171	1.82	1.08 2.07	1.40		
POPLAR, 2016	21 144 21 143	0.99	0.56 1.79	1.23		
PACIFIC, 2017, 2018	126 443 34 123	1.02	0.73 1.43	2.48		
KEYNOTE-024, 2016, 2019	69 154 42 151	1.42	1.02 1.98	2.51		
CheckMate 017, 2015	27 135 12 137	2.07	1.09 3.93	1.01		
IMpower110, 2020	81 277 88 277	0.94	0.72 1.22	3.12		
CheckMate 057, 2015	56 292 36 290	1.46	0.99 2.15	2.07		
IMpower150, 2018	224 353 159 331	1.20	1.02 1.41	4.25		
CheckMate 078, 2020	59 338 7 166	3.67	1.71 7.88	0.75		
IMpower130, 2019	220 447 72 226	1.37	1.09 1.72	3.50		
ARCTIC, a, 2020	22 62 8 64	2.36	1.12 4.97	0.78		
CamL, 2020	124 205 80 207	1.35	1.07 1.71	3.46		
ARCTIC, b, 2020	26 174 8 118	2.05	0.96 4.38	0.76		
CheckMate 227, 2019	199 583 162 583	1.17	0.98 1.40	4.04		
CheckMate 9LA, 2021	138 361 89 358	1.39	1.10 1.75	3.44		
CA184-041, a, 2012	15 70 6 33	1.15	0.48 2.73	0.60		
CA184-041, b, 2012	22 68 6 33	1.59	0.70 3.61	0.66		
CA184-104, 2017	171 388 170 361	0.96	0.80 1.14	4.10		
IMpower132, 2020	137 292 92 286	1.31	1.05 1.64	3.54		
PembroL, 2019	13 36 7 40	1.78	0.78 4.07	0.65		
IMpower131, 2020	170 342 139 340	1.14	0.85 1.39	3.98		
EMPOWER-Lung 1, 2021	111 283 57 280	1.67	1.25 2.21	2.93		
Rationale 307, a, 2021	87 120 30 61	1.27	0.91 1.76	2.49		
Rationale 307, b, 2021	86 119 30 60	1.26	0.92 1.79	2.51		
SCLC						
CASPian, b, 2021	182 268 78 135	1.10	0.90 1.36	3.72		
CASPian, a, 2021	156 267 78 134	1.00	0.81 1.24	3.64		
IFCT-1603, 2018	1 43 2 20	0.25	0.02 2.61	0.09		
IMpower133, 2018	121 201 130 202	0.96	0.79 1.17	3.89		
CA184-041, a, 2013	14 43 11 23	0.76	0.39 1.48	0.95		
CA184-041, b, 2013	24 42 11 22	1.09	0.61 1.95	1.19		
CA184-156, 2016	297 478 296 476	1.00	0.88 1.13	4.67		
CheckMate 331, 2021	39 284 47 285	0.85	0.57 1.27	2.04		
Overall						
Heterogeneity: $\hat{\tau}^2 = 0.00$, $I^2 = 0.00$, $H^2 = 1$		1.00	0.92 1.08		2.04	

Test of $\theta = 0$: $\chi^2(2) = 66.94$, p = 0.00

Test of $\theta = 0$: $\chi^2(7) = 3.74$, p = 0.81

Random-effects REME model

1/32	1/18	1/12	1/2
1/2	1	1	1

Fig. 4 Forest plots of RRs comparing overall response rate of immunotherapy between NSCLC and SCLC
Trial	Treatment Events	Control Events	Risk Ratio with 95% CI	Weight (%)
NSCLC				
KEYNOTE-047, 2018	194	278	1.01 [0.87, 1.18]	2.69
KEYNOTE-021, 2016	24	59	1.34 [0.78, 2.29]	3.12
OAK ITT50, 2019	90	609	0.43 [0.34, 0.53]	2.62
CheckMate 028, 2017	47	267	0.32 [0.25, 0.40]	2.53
OAK ITT1225, 2018	243	609	0.60 [0.60, 0.90]	2.70
JAVELIN Lung 200, 2016	39	353	0.27 [0.20, 0.38]	2.49
KEYNOTE-189, 2018	272	405	1.01 [0.96, 1.07]	2.88
KEYNOTE-042, 2019	113	636	0.52 [0.43, 0.63]	2.85
KEYNOTE-010, a, 2016	43	339	0.43 [0.30, 0.62]	2.43
KEYNOTE-010, b, 2016	55	343	0.63 [0.38, 0.74]	2.47
POPLAR, 2016	57	142	0.83 [0.62, 1.11]	2.54
PACIFIC, 2017, 2018	142	475	1.11 [0.85, 1.45]	2.57
KEYNOTE-024, 2016, 2019	48	154	0.68 [0.50, 0.93]	2.52
CheckMate 017, 2015	9	131	0.18 [0.09, 0.35]	1.90
IMpower110, 2020	87	286	0.70 [0.57, 0.87]	2.63
CheckMate 067, 2015	30	287	0.27 [0.19, 0.39]	2.42
IMpower150, 2018	230	393	1.11 [0.95, 1.29]	2.69
CheckMate 078, 2020	41	337	0.34 [0.24, 0.48]	2.45
IMpower350, 2019	354	473	1.13 [0.97, 1.32]	2.69
ARCTIC, a, 2020	25	62	0.73 [0.48, 1.10]	2.35
Carmel, 2020	78	205	1.18 [0.89, 1.57]	2.54
ARCTIC, b, 2020	74	173	0.88 [0.66, 1.17]	2.54
CheckMate 227, 2019	189	576	0.93 [0.79, 1.11]	2.67
CheckMate 9LA, 2021	168	358	1.16 [0.96, 1.41]	2.65
CA184-041, a, 2012	40	71	1.25 [0.74, 2.10]	2.15
CA184-041, b, 2012	36	87	1.24 [0.73, 2.10]	2.14
CA184-104, 2017	205	588	1.51 [1.09, 1.58]	2.56
IMpower352, 2020	208	291	1.10 [0.94, 1.29]	2.68
Pembro-RT, 2019	12	35	1.83 [0.75, 4.45]	1.52
IMpower131, 2020	231	334	1.11 [0.96, 1.29]	2.69
EMPower-Lung 1, 2021	50	355	0.44 [0.33, 0.58]	2.53
RATIONALE 307, a, 2021	103	120	1.04 [0.81, 1.35]	2.58
RATIONALE 307, b, 2021	99	118	1.02 [0.79, 1.32]	2.56
Heterogeneity	r² = 0.25, I² = 94.80%	H² = 19.23	0.75 [0.63, 0.90]	Test of H0: r² = 0

SCLC

Trial	Treatment Events	Control Events	Risk Ratio with 95% CI	Weight (%)
CASPIAN, b, 2021	171	265	0.99 [0.81, 1.21]	2.54
CASPIAN, a, 2021	196	266	1.08 [0.89, 1.31]	2.65
IFCT-1905, 2019	2	48	0.99 [0.92, 0.98]	2.01
IMpower133, 2018	175	198	1.00 [0.82, 1.24]	1.91
CA184-041, a, 2013	19	42	1.00 [0.53, 1.86]	1.95
CA184-041, b, 2013	22	42	1.18 [0.62, 2.26]	1.93
CA184-156, 2016	231	478	1.05 [0.90, 1.22]	2.69
CheckMate 331, 2021	39	282	0.29 [0.21, 0.37]	2.50

| Heterogeneity** | r² = 0.25, I² = 94.75% | H² = 19.06 | 0.76 [0.48, 1.16] | Test of H0: r² = 0 |

Overall

| Heterogeneity** | r² = 0.25, I² = 94.75% | H² = 19.06 | 0.76 [0.46, 0.95] | Test of H0: r² = 0 |

Test of group differences: Q(g) = 467.28, p = 0.00

Random-effects RMLE model

1/32 1/8 1/2 2

Fig. 5 Forest plots of RRs comparing Grade 3–5 TRAEs of immunotherapy between NSCLC and SCLC
Trial	Treatment	Control	Risk Ratio with 95% CI	Weight (%)		
	Events	Total				
NSCLC						
KEYNOTE-407, 2018	273	278	274	260	1.00 [0.89, 1.13]	3.35
KEYNOTE-021, 2016	55	59	57	62	1.01 [0.77, 1.32]	1.13
OAK ITT80, 2019	390	609	496	578	0.85 [0.76, 0.94]	3.88
CheckMate 026, 2017	190	267	243	263	0.87 [0.75, 1.00]	2.78
OAK ITT225, 2018	574	609	557	578	0.99 [0.91, 1.07]	4.46
JAVELIN Lung 200, 2018	251	393	254	365	0.95 [0.83, 1.09]	2.93
KEYNOTE-186, 2018	404	405	200	202	1.00 [0.89, 1.13]	3.32
KEYNOTE-042, 2019	399	636	553	615	0.81 [0.74, 0.90]	3.98
KEYNOTE-010, a, 2016	215	339	126	155	0.87 [0.73, 1.02]	2.28
KEYNOTE-010, b, 2016	226	343	125	154	0.89 [0.75, 1.05]	2.31
POPULAR, 2016	95	142	119	135	0.86 [0.70, 1.05]	1.73
PACIFIC, 2017, 2018	460	475	222	234	1.01 [0.90, 1.13]	3.47
KEYNOTE-024, 2016, 2019	118	154	135	150	0.92 [0.76, 1.10]	2.01
CheckMate 017, 2015	76	131	111	129	0.79 [0.63, 0.99]	1.48
ImmPower110, 2020	258	286	249	263	0.98 [0.86, 1.11]	3.17
CheckMate 057, 2015	199	287	236	268	0.87 [0.76, 1.01]	2.78
ImmPower150, 2018	371	393	376	394	0.99 [0.90, 1.10]	3.83
CheckMate 078, 2020	219	337	131	156	0.86 [0.73, 1.02]	2.34
ImmPower130, 2019	455	473	215	232	1.02 [0.91, 1.15]	3.42
ARCTIC, a, 2020	60	62	63	63	0.98 [0.77, 1.26]	1.25
Carmel, 2020	146	205	132	207	1.07 [0.89, 1.28]	2.02
ARCTIC, b, 2020	160	173	105	110	0.98 [0.82, 1.17]	2.11
CheckMate 227, 2019	442	576	467	570	0.96 [0.87, 1.06]	4.00
CheckMate 9LA, 2021	327	358	303	349	1.03 [0.92, 1.15]	3.50
CA184-041, a, 2012	52	71	23	32	1.01 [0.70, 1.47]	0.63
CA184-041, b, 2012	49	67	23	33	1.03 [0.70, 1.50]	0.61
CA184-104, 2017	344	389	292	361	1.05 [0.94, 1.18]	3.46
ImmPower132, 2020	287	291	256	274	1.01 [0.90, 1.13]	3.36
ImmPower131, 2020	316	334	303	334	1.02 [0.91, 1.14]	3.50
EMPOWER-Lung 1, 2021	204	355	303	342	0.78 [0.68, 0.89]	2.90
RATIONALE 307, a, 2021	119	120	59	59	1.00 [0.86, 1.24]	1.53
RATIONALE 307, b, 2021	117	118	58	58	1.00 [0.86, 1.24]	1.51
Heterogeneity: $\chi^2 = 0.00$, $I^2 = 40.20\%$, $H^2 = 1.67$	0.95 [0.92, 0.98]					
Test of θ: θ_0; $Q(31) = 46.77$, $p = 0.02$	0.95 [0.92, 0.98]					
SCLC						
CASPIAN, b, 2021	260	265	129	133	1.01 [0.87, 1.17]	2.59
CASPIAN, a, 2021	264	268	129	133	1.01 [0.87, 1.18]	2.60
ImmPower133, 2018	188	198	181	198	1.02 [0.98, 1.18]	2.67
CA184-041, a, 2013	29	42	18	22	0.91 [0.58, 1.41]	0.46
CA184-041, b, 2013	33	42	18	22	0.98 [0.64, 1.50]	0.49
CA184-156, 2016	391	478	361	478	1.05 [0.94, 1.16]	3.69
CheckMate 331, 2021	156	282	239	265	0.75 [0.64, 0.88]	2.48
Heterogeneity: $\chi^2 = 0.01$, $I^2 = 58.62\%$, $H^2 = 2.42$	0.95 [0.87, 1.07]					
Test of θ: θ_0; $Q(6) = 13.26$, $p = 0.04$	0.95 [0.92, 0.98]					
Overall						
Heterogeneity: $\chi^2 = 0.00$, $I^2 = 43.05\%$, $H^2 = 1.76$	0.95 [0.92, 0.98]					
Test of θ: θ_0; $Q(38) = 62.68$, $p = 0.01$	0.95 [0.92, 0.98]					
Test of group differences: $Q(1) = 0.08$, $p = 0.78$	0.95 [0.92, 0.98]					

Random-effects REML model

Fig. 6 Forest plots of RRs comparing Grade 1–5 TRAEs of immunotherapy between NSCLC and SCLC
with NSCLC and SCLC. In addition, we conducted subgroup analyses, including sex, age, smoking status, line of therapy, research methodology, drug target, and ECOG PS score, for OS and found no statistically significant differences in OS among patients with NSCLC and SCLC in all subgroups (Table S3).

Discussion

The present study is the first systematic review and meta-analysis to evaluate the association between ICIs and long-term outcomes in patients with NSCLC and SCLC. We used published data from 38 RCTs of high quality, including more than 20,000 patients with lung cancer, revealing that ICIs were associated with a better therapeutic effect on reducing the risk of death in patients with NSCLC and SCLC without increasing TRAEs when compared with SOC. However, in terms of ORR and control of disease progression, benefits were primarily observed in patients with NSCLC, who showed significant improvements when compared with patients with SCLC. Compared with SOC, immunotherapy resulted in significantly prolonged PFS in patients with NSCLC than in patients with SCLC, with a significant difference noted between the two subgroups. Furthermore, among the treatment strategies, ICIs plus SOC led to a better improvement in PFS than ICI monotherapy in both patients with NSCLC and SCLC patients; accordingly, it is recommended for patients with advanced lung cancer as a preferential option. However, I² > 50% in PFS analyses of NSCLC and SCLC indicated heterogeneity. In terms of NSCLC, we conducted subgroup analysis for drug targets, revealing that I² of CTLA-4 and PD-1/PD-L1 plus CTLA-4 groups was 0 and 10.17% after grouping; however, the heterogeneity for the PD-1/PD-L1 group persisted (Fig. S2). On carefully comparing therapeutic regimens, we observed that the CTLA-4 and PD-1/PD-L1 plus CTLA-4 groups adopted similar ICI regimens among different trials. Nevertheless, the number of ICIs in the PD-1/PD-L1 group reached eight, with some employed in only one trial. Therefore, we believe that variations in ICIs possibly accounted for the heterogeneity. For SCLC, we found only two trials that assessed non-first-line treatment. Accordingly, we conducted a subgroup analysis for the line of therapy and observed that the

Table 2 Differences in PFS benefits of Immunotherapy in NSCLC and SCLC by subgroups

Variable	Study	Test for Difference	NSCLC	SCLC	χ²	P Value
Overall	41		0.74 [0.67; 0.80]	0.95 [0.77; 1.13]	5.03	0.02
Sex						
Male	18		0.63 [0.56; 0.69]	0.87 [0.64; 1.10]	3.16	0.08
Female	18		0.69 [0.57; 0.82]	0.59 [0.37; 0.81]	0.67	0.41
Age						
< 65 yr	18		0.62 [0.54; 0.70]	0.76 [0.54; 0.98]	1.40	0.24
≥ 65 yr	14		0.67 [0.58; 0.77]	0.76 [0.53; 0.99]	0.44	0.51
Line of therapy						
First	26		0.68 [0.60; 0.76]	0.83 [0.76; 0.90]	7.68	0.01
Subsequent	15		0.83 [0.73; 0.92]	1.68 [0.90; 2.45]	4.59	0.03
Research methodology						
ICI vs non-ICI	20		0.82 [0.73; 0.91]	1.68 [0.90; 2.45]	4.66	0.03
ICI + non-ICI vs non-ICI	21		0.63 [0.57; 0.69]	0.83 [0.76; 0.90]	15.28	< 0.01
Drug target						
Anti-PD-1/PD-L1	31		0.73 [0.56; 0.81]	1.16 [0.64; 1.68]	2.61	0.11
Anti-CTLA-4	6		0.84 [0.73; 0.95]	0.86 [0.76; 0.96]	0.07	0.80
Anti-PD-1/PD-L1 + CTLA-4	4		0.75 [0.66; 0.83]	0.84 [0.68; 0.99]	1.12	0.29
ECOG PS						
0	17		0.64 [0.54; 0.75]	0.84 [0.53; 1.15]	1.42	0.23
1	17		0.64 [0.57; 0.71]	0.72 [0.53; 0.92]	0.54	0.46
Trial phase						
II	8		0.75 [0.59; 0.91]	1.23 [0.54; 1.91]	1.17	0.18
III	33		0.73 [0.66; 0.81]	0.92 [0.71; 1.13]	2.65	0.10
i² for first-line treatment became 0; this suggested that the different non-first-line treatments were sources of heterogeneity (Fig. S3).

Furthermore, the current study indicated that the magnitude of immunotherapy treatment effects was related to the ICI drug targets. Based on the checkpoints, ICIs are roughly classified as anti-PD-1/ PD-L1 and anti-CTLA-4 drugs. Some researchers have highlighted that combining anti-PD-1/ PD-L1 with anti-CTLA-4 might lead to additive antitumour effects [16]. Herein, we demonstrated that, among different drug targets, the combination of anti-PD-1/PD-L1 and anti-CTLA-4 decreased the risk of death by 28% in patients with NSCLC, which was only 26% in the anti-PD-1/PD-L1 group and 9% in the anti-CTLA-4 group, consistent with the former hypothesis. Similarly, the magnitude of PFS benefits seemed to favour anti-PD-1/PD-L1 plus anti-CTLA-4 treatment in both patients with NSCLC and SCLC. Nevertheless, the magnitude of OS benefits favoured the anti-PD-1/PD-L1 group most in patients with SCLC, revealing that the combination of anti-PD-1/ PD-L1 and anti-CTLA-4 treatment has better therapeutic effects in patients with NSCLC. Given the limited number of clinical trials, additional research is needed to comprehensively evaluate the efficiency of drug combinations. Nevertheless, there is a potential explanation for the promising effects of combined anti-PD-1/PD-L1 with anti-CTLA-4 treatment. Although the anti-PD-1/PD-L1 and anti-CTLA-4 antibodies are distinct ICIs, they may play a synergistic role. More precisely, anti-PD-1/PD-L1 antibodies restore the antitumour function of T cells, whereas anti-CTLA-4 antibodies activate antitumour T-cell responses and induce the proliferation of T-cells involving memory T cells [49].

In addition, we observed that therapy with ICIs plus SOC conferred greater treatment benefits than ICI monotherapy. This finding was in line with findings reported by Wang and colleagues, which revealed that ICI plus SOC results in significantly prolonged PFS when compared with monotherapy with immunotherapy [50]. However, we compared both NSCLC and SCLC rather than just NSCLC. In theory, chemotherapy or radiotherapy can induce the expression of immune checkpoints on infiltrating immune cells and tumour cells, which might enhance the curative effects of ICI therapy [50]. Thus, a combination of ICIs and SOCs should be adopted as the optimal treatment for SCLC and NSCLC. For NSCLC, we recommended a combination of SOC and anti-PD-1/PD-L1 plus anti-CTLA-4 antibodies. Furthermore, although men and women exhibited distinct immunological responses to antigens, no significant association of sex in terms of survival and disease control advantages was detected in patients with NSCLC and SCLC, in agreement with a previous study by Wallis et al. [51].

Currently, no RCTs comparing the therapeutic effects of ICIs in patients with NSCLC and SCLC patients have been reported. In the past decade, most drugs were found to be ineffective in SCLC management, in contrast to the success in the NSCLC field. In 2018, the IMpower133 trial revealed that the combination of atezolizumab and chemotherapy significantly prolonged OS and PFS when compared with chemotherapy alone for patients with advanced-stage SCLC [19]; this challenged the traditional chemotherapy-based treatment strategies for patients with SCLC. Subsequently, atezolizumab was adopted as the first-line treatment for SCLC. To date, only one study has compared first-line treatment strategies for SCLC, which only included two studies of ICI therapy, while most other trials in the SCLC field were limited in chemotherapy subtypes [52]. Another novelty of our study lies in the subgroup analyses according to individual conditions and treatment methods. Herein, we demonstrated that for patients with SCLC, ICI plus SOC therapy confers superior advantages over SOC, as indicated by OS and PFS. Furthermore, our study revealed that patients with NSCLC presented greater PFS benefits than SCLC patients receiving ICI monotherapy and ICI plus SOC therapy regarding different lung cancer subtypes. In terms of the line of therapy, patients with NSCLC benefited more from ICI treatment than patients with SCLC in both the first and subsequent lines of therapy, with significant differences between groups. These findings indicate that NSCLC might benefit more from ICI treatment than SCLC, regardless of the methodology of drug administration.

Implications of the study

Providing optimal treatment strategies for patients with lung cancer

Our study had several clinical implications. We recommend treatment strategies for patients with lung cancer based on sufficient evidence. With the development and gradual maturity of ICI treatment, it is necessary for oncologists, respiratory physicians, and thoracic surgeons to navigate multiple treatment strategies, including various ICI therapies, and to determine the optimal treatment for patients with lung cancer. Therefore, we recommend that patients with SCLC undergo ICI plus SOC therapy based on findings in the present study. For patients with NSCLC, a combination of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies and SOC could serve as the optimal treatment strategy.

Discovering novel therapeutic regimen for SCLC

In addition, our research provides a new approach for SCLC therapy. The median OS for SCLC, especially for
extensive-stage SCLC, is less than 10 months, emphasising the need for novel promising treatments [2]. However, several clinical trials, including targeted drugs, have declared treatment failure for SCLC in the past few decades. In 2013 and 2016, CA184–041 and CA184–156 were conducted by Reck et al. to evaluate the therapeutic effect of ipilimumab in patients with SCLC patients. The authors reported that ipilimumab had no significant efficacy when compared with traditional chemotherapy [20, 21]. Recently, IMpower133 and CASPIAN assessed anti-PD-1/PD-L1 antibodies with or without anti-CTLA-4 antibodies as the first-line of therapy for patients with SCLC, revealing better therapeutic effects in prolonging OS and PFS in patients with SCLC than chemotherapy [16, 19], which indicated a major development in SCLC therapy. However, IFCT-1603 and CheckMate 331 used anti-PD-1/PD-L1 antibodies as first-line therapy when compared with traditional chemotherapy and observed no significant difference in prolonging OS. In terms of PFS, immunotherapy led to worse results than chemotherapy [17, 18]. In the current study, we systematically analysed data from these RCTs and validated that ICI therapy could prolong OS in patients with SCLC. Considering these discrepancies, we conducted subgroup analyses in line with therapy and drug targets, which recommended ICI treatment as the first-line therapy for SCLC, affording better OS and PFS than with the subsequent line of therapy. Among different drug targets, anti-PD-1/PD-L1 antibodies with or without anti-CTLA-4 antibodies presented a superior advantage in reducing the risk of death; this indicated that anti-PD-1/PD-L1 antibodies with or without anti-CTLA-4 antibodies should be adopted as the first-line therapy for patients with SCLC. Moreover, additional trials should be conducted to further validate the treatment effects of anti-PD-1/PD-L1 antibodies with or without anti-CTLA-4 antibodies as the first-line therapy for SCLC.

Landscape of ICI treatment efficacy among lung cancer

Another clinical implication of our study is that NSCLC might benefit more from ICI therapy than SCLC among different histological subtypes. Currently, available studies are insufficient to compare the treatment effects of ICIs in patients with NSCLC and SCLC. However, we conducted the first analysis to evaluate differences in ICI treatment between patients with NSCLC and SCLC. The results revealed that patients with NSCLC benefited more from immunotherapy than patients with SCLC in almost all subgroups, regardless of treatment methodology and individual patient conditions. Notably, ICI treatment presented a statistically significant advantage in terms of therapeutic efficiency in patients with NSCLC when compared with patients with SCLC, irrespective of first or subsequent line of therapy and treatment methodology (ICIs alone or ICIs plus SOC). In terms of PFS and ORR, patients with SCLC receiving immunotherapy showed no difference from those on SOC regimens, both of which were significantly lower than in patients with NSCLC. Thus, the above results demonstrated that although the OS of patients with SCLC could benefit from immunotherapy, PFS and ORR fail to demonstrate promising effects equivalent to those in patients with NSCLC.

Strengths and weaknesses of this study

First, this is the first study to comprehensively review the relative benefits and risks of ICI treatment between patients with NSCLC and SCLC and indirectly compare the efficiency of treatment methodology in each histological lung cancer subtype, including the largest number of trials and patients. As few studies have analysed the efficiency and safety of ICI treatment in patients with SCLC, and no comparison directly included patients with SCLC versus those with NSCLC, to a certain extent, we bridged the gap in efficiency and safety data for ICI therapy among patients with NSCLC and SCLC. Previously, Maung et al. have shown that ICIs conferred better survival benefits than chemotherapy in both NSCLC and SCLC [53]. However, their conclusions were mainly based on qualitative analysis, without data analysis of clinical trials. In contrast, the quantitative analysis in our study could lead to more accurate and convincing results. Furthermore, our findings confirmed that immunotherapy could better benefit patients with NSCLC in prolonging PFS and increasing ORR than patients with SCLC. Given that the therapeutic effects of ICI treatment for SCLC remain controversial, we conducted a comprehensive assessment to compare its efficacy with chemotherapy. We observed that ICIs could undoubtedly reduce the risk of death in patients with SCLC, with a statistically significant difference, which has compensated for the lack of assessments of immunotherapy in the SCLC field. Second, one of the distinct strengths of our study is the data quality involved in our analyses. We employed 38 well-designed RCTs, gathered data from more than 20,000 patients with lung cancer, and carried out analyses according to predefined primary endpoints of OS and PFS and second endpoints of TRAEs with different grades. Our study was the largest scale of ICI analyses in patients with lung cancer. Under most circumstances, one essential factor in reducing statistical errors in a meta-analysis involves a large-scale quantity of subjects with high quality. Third, this study recommends optimal ICI treatment strategies in patients with NSCLC and SCLC. For NSCLC, the combination of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies plus SOC is recommended for both first and subsequent lines of immunotherapy. In patients with
SCLC, we only recommend the first-line treatment as anti-PD-1/PD-L1 plus SOC with or without anti-CTLA-4 antibodies.

Despite these strengths, several limitations exist in the present study. First, differences in risks and benefits between patients with NSCLC and SCLC were determined and compared through indirect analyses. To date, no RCTs have directly compared the efficiency and safety of immunotherapy between patients with SCLC and patients with NSCLC. Therefore, our results remain suggestive but not conclusive. Second, although our study is based on the largest scale of ICI analysis for lung cancer, more research is needed to comprehensively investigate the efficiency of immunotherapy in SCLC. Third, in selecting immunotherapy, the risk of toxicity is as important as the therapeutic effect, which should be thoroughly investigated. However, we only considered TRAEs of grade ≥3 and any grade, as information regarding TRAEs stratified by predefined subgroups was unavailable. Furthermore, additional factors should be used to evaluate toxicity.

Conclusion
In conclusion, for patients with NSCLC and SCLC, ICI therapies are promising therapeutic options with advantages in terms of survival and toxicity over SOC. Furthermore, ICIs plus SOC are recommended as the optimal first-line therapy for patients with SCLC. Anti-PD-1/PD-L1 plus SOC with anti-CTLA-4 antibodies is recommended for patients with NSCLC without mutated gene targets in both the first and subsequent lines of therapy. In addition, immunotherapy as a subsequent line is not recommended as a standard strategy for patients with SCLC.

Abbreviations
AITE: Atezolizumab; CI: Confidence interval; CTLA-4: Cytotoxic T lymphocyte-associated antigen 4; DOC: Docetaxel; ECOG PS: Eastern Cooperative Oncology Group Performance Status; HR: Hazard ratio; ICI: Immune checkpoint inhibitor; IP: Ipilimumab; IV: Nivolumab; DUR: Durvalumab; TRE: Tremelimumab; CAM: Camrelizumab; CEM: Cemiplimab; TS: Tislelizumab; SCLC: Small-cell lung cancer; NSCLC: Non-small-cell lung cancer; ORR: Objective response rate; OS: Overall survival; PBC: Platinum-based chemotherapy; PD-1: Programmed cell death 1; PD-L1: Programmed cell death 1 ligand 1; PFS: Progression-free survival; RCT: Randomised controlled trial; RR: Risk ratio; TRAEs: Treatment-related adverse events; SOC: Standard of care

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12885-021-08662-2.

Additional file 1: Fig. 51 Funnel plot of the effect size for each trial. Fig. 52 Drug targets analysis for NSCLC. Fig. 53 Therapeutic scheme analysis for SCLC. Table 51 Search strategies. Table 52 The methodological quality of included RCTs. Table 53 Differences in OS benefits of Immunotherapy in NSCLC and SCLC by subgroups.

Acknowledgments
Not applicable.

Authors’ contributions
Y. L. and H. G. designed the study. C. W. and J. L. collected the data and analyzed the data. C. W. and J. L. wrote the initial manuscript. C. W., J. W., Q. Z., Y. X., and L. S. participated in the manuscript correcting and data analyses. All authors participated in the manuscript writing and approved the final manuscript.

Funding
This work was supported by Sichuan Science and Technology Program (No. 2020YF00572); National Guided Science and Technology Development Project of Sichuan Province (No. 2020ZYD009); the Science and Technology Project of Chengdu (No: 2017-CY02--00030-GX); Postdoctoral Program of West China Hospital, Sichuan University (No: 2020HXBH084); Postdoctoral Program of Sichuan University (2021SCU12018); Grant of Innovative Research Project for College Students, Sichuan University, Ministry of Education (No: C2021116604). The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary information files]. All the data were available from the corresponding authors for reasonable request.

Declarations
Ethics approval and consent to participate
All analyses were based on previously published studies, thus no ethical approval and patient consent are required.

Consent for publication
Not applicable.

Competing interests
All authors declared that there was no conflict of interests.

Author details
1Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China. 2West China Medical School of Sichuan University, Chengdu, China. 3West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China. 4West China School of Stomatologic, Sichuan University, Chengdu, China. 5Department of integrated Traditional Chinese and Western Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

Received: 19 April 2021 Accepted: 3 August 2021
Published online: 28 August 2021

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
2. Saban J, Lok BH, Laird JM, Poirier JT, Rudin CM. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14(9):549–61. https://doi.org/10.1038/nrclinonc.2017.71.
3. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikolic M, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet (London, England). 2018;391(10125):1023–75.
4. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with Osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50. https://doi.org/10.1056/NEJMoa1913662.
39. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line Nivolumab in stage IV or recurrent non-small-cell lung Cancer. N Engl J Med. 2017;376(25):2415–26. https://doi.org/10.1056/NEJMoa1613493.

40. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet (London, England). 2017;389(10066):255–65.

41. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37. https://doi.org/10.1016/S1470-2045(19)30167-6.

42. Theelen W, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts J, et al. Effect of Pembrolizumab after stereotactic body radiotherapy vs Pembrolizumab alone on tumor response in patients with advanced non-small cell lung Cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 2019;5(9):1276–82. https://doi.org/10.1001/jamaoncol.2019.1478.

43. Jotte R, Cappuzzo F, Vynnychenko I, Stroyakovskiy D, Rodriguez-Abreu D, Hussein M, et al. Atezolizumab in combination with carboplatin and nabo-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial. J Thorac Oncol. 2020;15(8):1351–60. https://doi.org/10.1016/j.jtho.2020.03.028.

44. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, Wang Z, Zhu Y, Shi J, Hu Y, et al. Camrelizumab plus chemotherapy for first-line treatment of nonsquamous NSCLC: results from the randomized phase 3 IMpower132 trial. J Thorac Oncol. 2021;16(4):653–64.

45. Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label phase 3 trial. Lancet Oncol. 2021;22(2):198–211. https://doi.org/10.1016/S1470-2045(20)30064-1.

46. Sezer A, Kiliçkap S, Gumus M, Bondarenko I, Ozguroglu M, Gogishvili M, et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet Respir Med. 2021;9(3):305–14.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.