Selectivity of odorant receptors in insects

Jonathan D. Bohbot and Joseph C. Dickens*

Frontiers in Cellular Neuroscience www.frontiersin.org
July 2012 | Volume 6 | Article 29 | 1

Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as "generalists" and "specialists" based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective.

Keywords: olfaction, specialist, generalist, olfactory receptor, semiochemical
Bohbot and Dickens
Odorant receptors in insects

FIGURE 1 | Olfactory coding and disruption of insect behavior through OR modulation. (A) Two models of receptor codes for odorants. In the concept of combinatorial coding, a general odorant (e.g., Odorant 2) is detected by a unique set of generalist ORs (Orka-Orco and Orkb-Orco), while a pheromone is specifically recognized by a specialist OR (Orkc-Orco). Broad-tuning results from promiscuous orthosteric sites on ORs. The specialist coding model assumes that adaptive evolution shapes orthosteric sites to specifically recognize low concentrations of semiochemicals (Sem.), and that apparent broad-tuning is caused by high concentrations of chemicals interacting with orthosteric and allosteric sites on the receptor. (B) Semiochemicals (Sem.) alone or in combination activate labeled-line pathways from OR to glomerulus (orange) in the antennal lobe leading to adaptive physiological or behavioral outputs. Modulation of OR activity, including agonism (orange), antagonism (white), and synergism (red), results in abnormal glomerulus activation leading to disrupted physiological and behavioral responses.

SELECTIVITY OF INSECT REPELLENTS

How can we explain the activation (i.e., change in membrane potential) of ORs by chemicals with little or no resemblance to semiochemical ligands? Insect repellents (Dethier et al., 1960) can specifically activate ORs (Xia et al., 2008; Bohbot and Dickens, 2010; Bohbot et al., 2011), elicit responses from OSNs (Ditzen et al., 2008; Syed and Leal, 2008; Pellegrino et al., 2011) and disrupt behavior (Dobouh et al., 2007; Ditzen et al., 2008). While it is unclear whether the agonist effect of an insect repellent (Xia et al., 2008; Bohbot and Dickens, 2010; Bohbot et al., 2011) results from interactions with the same odorant-recognition site on ORs, their chemical structures provide clues regarding operative mechanisms. For example, based on its structural similarity with octenol, 2-undecanone may interact with the orthosteric site on the octenol receptor (Bohbot and Dickens, 2010), an analysis consistent with OR8-Orco structure–function studies (Bohbot and Dickens, 2009; Grant and Dickens, 2011) showing a correlation between the chemical structure of octenol analogs (e.g., octenone) and their agonist effect on the octenol receptor. Alternatively, other insect repellents sharing little structural similarity with octenol may act as allosteric agonists (Figure 1A; Bohbot et al., 2011), as was clearly shown with Orco agonists (Jones et al., 2011; Bohbot and Dickens, 2012).

CONCENTRATION-DEPENDENT SPECIFICITY

Using a panel of 110 odorants, Hallem and Carlson (2006) noted that broadly tuned ORs were narrowly tuned when potential ligands were delivered at low concentrations, a situation encountered by insects in nature. This observation does not exclude the possibility that ligand-selectivity may depend on odorant concentration (de Bruyne and Baker, 2008). Indeed, analogs of ligands may interact with the same site whereas structurally unrelated compounds may be recognized by topographically distinct sites on the receptor (Figure 1A). This allosteric agonism may have been attributed to interactions with a promiscuous orthosteric site. In functional screens (Hallem et al., 2004; Hallem and Carlson, 2006; Carey et al., 2010; Wang et al., 2010a), high concentrations (micromolar and above) and doses (10−7 dilutions) of natural odorants and synthetic compounds elicit OR agonist (Xia et al., 2008), antagonist (Bohbot and Dickens, 2010; Bohbot et al., 2011), and synergistic (Bohbot and Dickens, 2012) effects, further suggesting
that the breadth of tuning of ORs is amplified by chemical activators of various chemical structures and properties. High doses of benzaldehyde—a common plant compound—activate and inhibit 42% of A. gambiae ORs when expressed in the Drosophila empty neuron system (Carey et al., 2010), an effect that disappears at lower concentrations (Hallem and Carlson, 2006). At high concentrations, benzaldehyde may act as an orthosteric competitor, or as an allosteric agonist, but at low concentration it may be recognized by a specific OR. Indole reception in mosquitoes further illustrates this problem. While micromolar concentrations of compounds with little or no resemblance to indoles (e.g., benzaldehyde) elicit strong responses from OR2 and OR10 (Bohbot et al., 2010), the receptors exhibit nanomolar sensitivity to indole (Bohbot et al., 2010) and skatole (Pfeifer et al., 2010), respectively. Insect repellents exert their agonist effect at millimolar concentrations (Bohbot and Dickens, 2010), which is at least 1000-fold higher than pheromones (Wang et al., 2010b; Wanner et al., 2007, 2010) and other non-pheromonal attractants (Bohbot and Dickens, 2009; Bohbot et al., 2010; Hughes et al., 2010).

ADAPTIVE SELECTIVITY OF ODORANT RECEPTORS

The mosquito attractants, octenol, indole, and skatole are known chemical signals whose interactions with ORs, OR2, and OR10, respectively, are likely adaptive when encountered at low concentrations. Some insect repellents, such as DEET and IR3535 do not occur in nature, while others are naturally occurring compounds, e.g., 2-undecanone (Svarar and Kennedy, 1987) or p-methane-3,8-diol (PMD), but are not known to be experienced by mosquitoes (Dobboun et al., 2007). Insect repellents do not elicit evolutionary adaptive behaviors in mosquitoes, but rather disrupt the final stages of host attraction (Figure 1B). It is therefore important to clarify evolutionary assumptions and the definitions involved in describing the complex relationships observed between ORs and their chemical contingencies. Genetic and biochemical studies characterize ORs as chemodiverse and function in a combinatorial fashion (Malnic et al., 1999) and that only pheromones activate narrowly tuned receptors (Hallem et al., 2004; Hallem and Carlson, 2006). Perhaps the biggest challenge to the study of odorant-selectivity (i.e., the degree of promiscuity of OR orthosteric sites) is matching ORs to their cognate semiochemicals (Bruce and Pickett, 2011). While the number of naturally occurring odorants is unknown, it is likely that only a small fraction of these odorants has been identified. As knowledge of insect chemical ecology increases and the library of odorants expands, so will the odor space of insect ORs narrow (Hallem and Carlson, 2006). In the meantime, the current understanding of OR-semiochemical pairs may be further explored at the pharmacological, physiological, and behavioral levels, and ultimately X-ray crystallography studies and mutagenesis experiments (Pellegrino et al., 2011) will identify ligand recognition sites and functionally characterize them. These advances and modern high throughput screening approaches will guide efforts aimed at the discovery and development of the next generation of chemical agents aiming to alter OR activity and disrupting olfactory-driven behaviors of arthropod disease vectors and agronomic pests (Figure 1B).

ACKNOWLEDGMENTS

The authors are grateful to Drs R. Jason Pitts (Vanderbilt University) and Richard G. Vogt (University of South Carolina) for their critical reading and useful comments of early versions of the manuscript. This work was supported in part by a grant to Joseph C. Dickens from the Deployed War Fighter Protection (DNWP) Research Program, funded by the U.S. Department of Defense through the Armed Forces Pest Management Board (AFPMB).
Carey, A. F., Wang, G., Su, C., Zwiebel, J. C. (1990). Specialized odorant receptors in insects. Proc. Natl. Acad. Sci. U.S.A. 87, 149–154.

Dethier, V. G., Barton Browne, L., and Vennesland, M., Pellegrino, M., and Vooshall, F. (1987). Odorant receptor neurons for pheromones and host plant odors in the bollworm, H. virescens. Cell 50, 177–185.

Ditzen, M., Pellegrino, M., and Vosshall, L. B. (2007). Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett. 581, 5661–5664.

Dittmer, L., Borojevic, M., and Vosshall, L. B. (2008). Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842.

Farrar, R. R., and Kennedy, G. G. (1987). 2-Unenolactone, a constituent of the glandular trichomes of Cucumis sativus L. glabrate effects on Heliothis and Manduca seat growth and survival. Entomol. Exp. Appl. 45, 17–25.

Gealy, J. L., and Dickens, J. C. (2011). Functional characterization of the odorant receptor neuron on the maxillary palps of the yellow fever mosquito, Aedes aegypti. PLoS ONE 6, e22785. doi: 10.1371/journal.pone.0022785

Hallem, E. H., Mo, G., and Carlson, J. R. (2004). The molecular basis of odor coding in the Drosophila antenna. Cell 119, 985–997.

Hallem, E. A., and Carlson, J. R. (2006). Coding of odors by a receptor repertoire. Cell 125, 145–150.

Hughes, D. T., Pelligrini, J., Leal, C. W., and Leal, W. S. (2010). A novel polyprotein with odor-binding and DEET-sensing properties in an insect odorant receptor. Nature 467, 511–514.

Pelligrini, J., Hughes, D. T., Leal, C. W., and Leal, W. S. (2010). An odor receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants. PLoS ONE 5, e10990. doi: 10.1371/journal.pone.010990

Sato, K., Pellegri, M., Nakagawa, T., Vooshall, L. B., and Touhara, K. (2005). Insect odorant receptors are novel seven transmembrane domain proteins that signal independently of heterotrimeric G proteins. Insect Biochem. Mol. Biol. 35, 795–808.

Sedal, Z., and Leal, W. S. (2007). Maxillary palp are broad spectrum odorant detectors in Culex quinquefasciatus. Chem Senses 32, 277–278.

Skakowska, A. G., and Zwiebel, J. L. (2012). Allotopic antigen of insect odorant receptor ion channels. PLoS ONE 7, e30304. doi: 10.1371/journal.pone.0030304

Sol, J.-H., and Bagnoli, F. E. (1973). Pheromones. Annu. Rev. Biochem. 42, 553–584.

Touhara, K. (2008). The molecular basis of olfactory behavior in Aphidinae. Proc. Natl. Acad. Sci. U.S.A. 105, 6431–6434.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.