Isolation and Molecular Characterization of Shigatoxigenic O157 and Non-O157 *Escherichia coli* in Raw Milk Marketed in Chittagong, Bangladesh

Md. Kauser-Ul Alam, Nazmul Sarwar, Shireen Akther, Monsur Ahmad, Paritosh Kumar Biswas

ABSTRACT

Background: Quality and microbial safety of milk is demanding day by day as it is considered as a host for pathogenic and spoilage microorganisms. In this study, isolation and molecular characterization of shigatoxigenic O157 and non-O157 *Escherichia coli* in raw milk marketed in Chittagong, Bangladesh were done on 186 raw milk samples in Bangladesh.

Methods: MacConkey agar was initially used to screen for the presence of *E. coli* and the suspected growth as evidenced by large pink colonies on MacConkey agar. Finally the organism was verified by plating through Eosin Methylene Blue (EMB) agar (a selective medium for *E. coli* where it produces metallic sheen) and applying standard biochemical tests for *E. coli*. The presence of virulent genes, Shiga-like toxin (*stx*1 and *stx*2), intimin (*eaeA*), O157 antigen (*rfbE*) and Enterohemorrhagic *Escherichia coli* (EHEC) Hemolysin (*EHEC* hlyA) in the contaminating *E. coli* population was determined by polymerase chain reaction (PCR) run on a thermocycler (Applied Biosystem, 2720 thermal cycler, Singapore).

Result: Among the raw milk samples, 33 samples were identified as *E.coli* positive and among the isolates, 6 (18.18%) were identified as possible EHEC O157 and rest of the isolates (81.82%) were considered as probable non EHEC O157. About, 3.23% (186 samples) EHEC O157 was isolated from raw milk samples. Then all the 33 isolates were taken under PCR assay for the identification of five virulent genes *Stx*1, *Stx*2, *eaeA*, *rfbE* and *hlyA*. No virulent genes were found in non-EHEC O157 isolates, but 4 *stx2* (66.67%) and 1 *hlyA* (16.67%) gene were observed in another 4 EHEC O157 isolates out of 6, but one isolates contained the both genes and hence the prevalence of STEC was 2.15% in raw milk. Result indicated poor hygienic standard of raw milk from uncontrolled environments and the increased public health risk of those consuming raw milk from such uncontrolled sources.

Key words: Bacterial spores, Milk, Dairy products, Public health.

INTRODUCTION

E. coli is a normal inhabitant of the intestines of animals and humans. The most reported human infections are with enterohemorrhagic *E. coli* (EHEC O157), asymptomatic reservoirs and excretors of which are ruminants, particularly cattle. Recovery of EHEC O157 from food should be of public health concern because it can lead to severe intestinal and extra-intestinal diseases when consumed. Cattle, especially the young ones, have been conceived as a principal reservoir of *E. coli* O157:H7 (Zhao et al., 1995). Therefore, insufficient heat-treatment of raw milk possess a potential risk for infection (Betts, 2000) while processing conditions are very crucial for the survival of the bacterium in milk.

E. coli has acquired specific virulence attributes associated with diarrhoeal disease and extra-intestinal infections (Kaper et al., 2004; Nataro and Kaper, 1998; Russo and Johnson, 2000). Among the intestinal *E.coli* there are six well-described categories: enteropathogenic *E. coli* (EPEC), enterohaemorrhagic *E. coli* (EHEC), enterotoxigenic *E. coli* (ETEC), enteraggregative *E. coli* (EAEC), enteroinvasive *E. coli* (EIEC) and diffusely adherent *E. coli* (DAEC) (Nataro and Kaper, 1998). The group of extra-intestinal pathogenic *E. coli* comprises uropathogenic *E. coli* (UPEC), neonatal meningitis-associated *E. coli* (NMEC) and sepsis-causing *E. coli* (SEPEC) (Johnson and Russo, 2002, 2005; Russo and Johnson, 2000; Smith et al., 2007). Enterohaemorrhagic *E. coli* (EHEC) groups are verotoxin-producing *E. coli* (VTEC) that able to induce haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS).

How to cite this article: Kauser-Ul Alam, Md., Sarwar, N., Akther, S., Ahmad, M. and Biswas, P.K. (2021). Isolation and Molecular Characterization of Shigatoxigenic O157 and Non-O157 *Escherichia Coli* in Raw Milk Marketed in Chittagong, Bangladesh. Asian Journal of Dairy and Food Research. 10.18805/ajdfr.DR-178

Submitted: 22-05-2020 **Accepted:** 28-11-2020 **Online:** 23-01-2021
Isolation and Molecular Characterization of Shigatoxigenic O157 and Non-O157 Escherichia Coli in Raw Milk Marketed in...

(Levine, 1987; Griffin and Tauxe, 1991). Report indicate that consumption of raw milk and various milk products related with occurrence of 1 to 5% of food infections and among that 53% of cases produced by enteropathogenic E. coli (EPEC) (Schrade and Yager, 2001).

The Stx (verocytotoxin-producing) family contains two subgroups: Stx1 and Stx2(Paton and Paton, 1998). The production of Stx alone may not be sufficient for VTEC to cause disease (Beutin et al., 1995). Other virulence factors may play a role in VTEC pathogenicity, including intimin (encodedby the eaeA gene), which is required for intimate adherence of these pathogens to tissue culture cells and formation of the attaching and effacing (A/E) lesion (Mckee and O’Brien, 1996). The formation of A/E lesions is mediated by multiple genes called the Locus of EnteroCyte Effacement (LEE) (McDaniel et al., 1995). Another virulence factor that contributes to VTEC pathogenicity is the 60-MDa plasmid borne enterohaemolysin A gene (encoded by the E-hlyA gene) (Paton and Paton, 1998). A gene, known as rfbE more specific for the O157 serotype has been identified (Desmarchelier et al., 1998). The various pathotypes of E. coli tend to be clonal groups that are characterized by shared O (lipopolysaccharide, LPS) and H (flagellar) antigens that define Serogroups (O antigen only) or Serotypes (O and H antigens) (Nataro and Kaper, 1998 and Whittam, 1996). Serotypes include in EHEC groups are E. coli O157:H7, the non-motive organism E. coli O157:H- and members of other serogroups, particularly O26, O103, O111 and O145 but also O91, O104, O113, O117, O118, O121, O128 and others. The predominant serotype associated with human infection and death is O157:H7 (Levine, 1987; Griffin and Tauxe, 1991). MacConkey agar containing 1% sorbitol (SMAC), often with cefixime and potassium tellurite (CTSMAC) (Zadik et al., 1993), is frequently used to identify EHEC based on lack of β-glucuronidase activity and the inability of rapid sorbitol fermentation. Plasmid profiling may aid in the genetic characterization and molecular screening of different serotypes of EHEC, e.g; E. Coli O157 (Radu et al., 2001) and Non-O157 (Nazmul et al., 2012).

There are several milk-based commercial companies in Bangladesh and the demand for safe-fresh milk is increasing day by day. Taking into account this consideration, there are groups of milk vendors seen to collect raw liquid milk directly from the farmers and to sell it at the markets – may be local or city-based, or directly to the households. The producers themselves are also seen to do so. If the proper hygienic approaches are not followed through and/or the collected milk is adulterated with different means, or unconventional materials are used to enhance its shelf life, there is every possibility that milk can be contaminated with zoonotic pathogens, such as E. coli with its serious pathotypes: O157 serotype or non-O157 and shiga toxin producing ones and with many more organisms like as Campylobacter jejuni, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Yersinia enterocolitica etc. In view of the these particulars, the present study was carried out to isolate and unravel the cultural/biochemical characteristics of E. coli from collected raw milk samples and to determine the molecular characterization of E. coli O157 and E. coli non-O157 using universal, specific, Stx1, Stx2, eaeA, rfbEand hlyApromers.

MATERIALS AND METHODS

Selection of Sample Collection Points

186 fluid raw milk samples (250 ml) were collected where 169 Samples were from fluid-milk marketing points of Chittagong city: Shikalbaha, Sholoshahar Railway Station, Jalalabad Market, Chittagong City Gate, Halishahar, Chittagong Port and Chittagong Batali Road and other 17 samples were from a dairy farm located in Shikalbaha September 2013 to March 2014.

Procedure of Sampling

The samples were directly collected from the bulk sources of incoming fluid raw milk through proper mixing with the help of a plunger and dipper aseptically in a clean sterile bottle. Soon after collection the sample was kept into a cool box for ceasing the growth and activity of acid producing organisms and for shipment to the Department of Microbiology and Veterinary Public Health laboratory of Chittagong Veterinary and Animal Sciences University (CVASU), where the samples were kept at 0°C until investigation.

Bacteriological Investigation

Serial dilution was carried out for the initial screening of E. coli of the collected samples. 100µl of each milk sample was transferred to 900 µl sterile peptone water (0.1%) and thoroughly mixed to give 1:10 dilution, the “first dilution”; serial dilutions were prepared by transferring one ml from first dilution (10-1) to 9 ml peptone water, (10-2) and so on (10-3, 10-4, …) as described by Harrigan and McCance (1976). Then each diluted milk sample (100 µl) was inoculated onto MacConkey agar medium (Oxoid, Basingstoke, Hampshire, UK), where E. coli produces large pink colour colony after incubation of 24 hrs at 37 oC.

MacConkey agar medium was prepared according to the manufacturer instructions. Five large pink coloured cross-sectional colonies from MacConkey agar medium were homogenized and inoculated onto an Eosin Methylen Blue (EMB) (Oxoid, Basingstoke, Hampshire, UK) agar plate, incubated at 37°C for 24 h to verify whether such population produced colonies with metallic sheen, a diagnostic criterion for E. coli. (Dyes Eosin Y and Methylen Blue react with products released by E. coli from lactose or sucrose as carbon and energy source, forming metallic green sheen.) The isolates from MacConkey produced metallic sheen on EMB were considered as probable E.coli. A portion of a colony displaying characteristic metallic sheen on EMB was inoculated into TSB (Trypticase Soya Broth) broth, incubated at 37°C for 20 h and finally tested for standard biochemical tests for E. coli, e.g Catalase test, Indole, Methyl red, Voges-
Screening the E. coli Isolates of Milk Origin for the Virulence Genes - hlyA, stx1, stx2, eaeA and rfbE

The diversity of all the probable EHEC isolates as found producing colorless colonies on CT-SMAC were investigated based on the presence of five virulent genes – hlyA, stx1, stx2, eaeA and rfb by Polymerase Chain Reactions (PCR). The sequences of five oligonucleotide sets of primers, respectively, used for hlyA, stx1, stx2, eaeA and rfbE genes are shown in Table 1. The reagents used for their PCR amplifications are listed in Table 2.

After thawing in room temperature, the preserved isolates were inoculated onto 5% citrated bovine blood agar and then incubated at 37°C for 24 hours. After that, 200 μl deionized water was taken in 1.5 ml Eppendorf tube for each isolate. With the help of an inoculating loop, a loop-full of fresh colonies were picked up and transferred to the Eppendorf tube. A homogeneous cell suspension was made. It was vortexed, boiled at 99°C for 15 minutes and then immediately placed upon ice. Bacterial cell wall breaks down during boiling and DNA is released. A ventilation hole was made in the lid of the Eppendorf tube using a needle. The boiled suspension was then centrifuged at 15000 rpm for 2 minutes and 100 μl of supernatant was taken in another Eppendorf tube. This collected supernatant was used as DNA template. According to the manufacturer’s instructions, a stock solution containing 100 Pmol of each primer was prepared by adding molecular grade water. Working solution

Table 1. Oligonucleotide primers used to detect hlyA, stx1, stx2, eaeA and rfbE genes.

Primer	Primer Sequence (5’– 3’)	Target gene	Annealing temp. (°C)	Size of product (bp)	References
hly F	ACG ATG TGG TTT ATT CTG GA	hly	58	~165	desRosier et al., 2001
hly R	CTT CAC GTG ACC ATA CAT AT				
stx1 F	ACA CTG GAT GAT CTC AGT GG	stx1	58	~614	desRosier et al., 2001
stx1 R	CTG AAT CCC CCT CCA TTA TG				
stx2 F	CCA TGACAA CGG AGA GCA GTT	stx2	58	~779	Manna et al., 2006
stx2 R	CCT GTCAAC TGA GCA GCA CTT T				
eae F	CCCGAATTCGGCACACAAGCATAGGC	eae	59	~881	Oswald et al.,2000
eae R	CCGGGATCGCTCGGCGCATATTCG				
rfb F	CGG ACA TCC ATG TGATAT GG	rfb	58	~259	Desmarchelier et al., 1998
rfb R	TTG CTT ATG TAG AGC TAA TCC				

Table 2: Reagents used for PCR amplifications of the five genes - hlyA, stx1, stx2, eaeA and rfbE in the probable EHEC isolates as produced colorless colonies on CT-SMAC.

Name	Manufacturer
Molecular Marker	Thermo scientific O’GeneRuler 1 Kb plus
Ethidium bromide solution (1%)	Fermantas
6x Loading dye	Fermantas
Electrophoresis buffer 50x TAE	Fermentas
Agarose	Seakem® Le agarose-Lonza
10x dream Taq buffer	Fermentas
dNTP set (100μM)	Fermentas
Dream Taq DNA polymerase (500 IU)	Fermentas
Nuclease free Water pure	Thermo scientific
having 20 Pmol concentrations of the primers were used in PCR.

The master mix for PCR of a gene was prepared according to the number of samples to be tested at a time. The proportions of different reagents used to prepare master mix for five different genes are shown in Table 3. Each PCR reaction was run with a final volume of 50 μl where 49 μl of master mix was added to 1 μl of DNA template. The readymade master mix containing Dream Taq DNA polymerase, dNTPs set, Dream Taq buffer (containing 20 mM MgCl2) was also used to prepare PCR reaction mixture for PCR assay.

PCR assays

PCR was run on a thermocycler (Applied Biosystem, 2720 thermal cycler, Singapore). The reactions conditions for the hlyA, stx1 and stx2 genes are listed in Table 4. The same reaction conditions were also used for the eaeAand rfbE genes.

After the PCR amplification gel electrophoresis was performed. For gel electrophoresis a gel tray was prepared and proper set up was made by placing comb in position. Then 1% agarose solution (Seakem® Le agarose-Lonza) was prepared in 1x TE buffer by boiling on a microwave oven for 2 minutes. To make 1% agarose solution 50 μg of agarose powder was added to 50 ml of 1x TE buffer. The agarose was cooled to 40-50°C in a water bath and 1 drop of ethidium bromide with a concentration of 5 μg/ml ethidium bromide was added. Finally, the agarose was poured into the gel tray and allowed 20 minutes to solidify the gel.

An electrophoresis tank which was filled up with 1x TE buffer and then the gel was placed into it with the gel tray. Then the comb was removed carefully so that it might also be contaminated with any other enteric objects is contaminated with materials of fecal origins. E. coli, particularly those belonging to the shiga toxin producing O157 serotype or non-O157 but Shiga toxin producing ones themselves are pathogenic. Life threatening diseases may be resulted because of consuming milk contaminated with Shiga toxin producing E. coli/belonging to O157:H7 or O157:H- (Tarr et al., 2000 and Grant et al., 2011). This is not the only danger; the presence of E. coli in milk does indicate that it might also be contaminated with any other enteric

Table 3: Preparation of PCR master mix used for the identification of virulent genes.

Reagent	Amount for number of samples
Mq water (Nuclease free)	40.8 μl
10 X Dream Taq buffer (containing 20 mM MgCl2)	204 μl
dNTPs set (40 μM)	408 μl
Forward primer (20 Pmol/μl)	5 μl
Reverse Primer (20 Pmol/μl)	25 μl
Dream Taq DNA polymerase (0.4 u/μl)	50 μl
Total volume	10 μl

Table 4: Cycling conditions used for the detection of three genes hly, stx1 and stx2 with the recommended primer sets (Nadine et al., 2003)

Step	hlyA	stx1 and stx2
Initial denaturation	95°C for 3 minutes	95°C for 3 minutes
Final denaturation	95°C for 20 sec	95°C for 30 sec
Annæaling	58°C for 40 sec	58°C for 40 sec
Initial extension	72°C for 1 minutes	72°C for 1 minutes
Final extension	72°C for 8 minutes	72°C for 8 minutes
Final holding	4°C	4°C
Isolation and Molecular Characterization of Shigatoxigenic O157 and Non-O157 *Escherichia Coli* in Raw Milk Marketed in...

Table 5: Results of biochemical tests with each *E. coli* isolate from the study.

Name of biochemical test	Test-result
Lactose fermentation	+
Catalase	+
Citrate utilization	-
Indole production	+
Nitrate reduction	+
Methyl Red	+
Voges- Proskauer	-
Urease	-
Acid from sugar	
Glucose	+
Mannitole	+
Lactose	+
Salicin	+
Sucrose	+

pathogens, such as any members of shigella, vibrio and others, indicating if such contaminated milk is taken, it can lead to the development of any enteric disease.

While examining the fluid milk destined to be marketed at the chittagong metropolitan area it can be concluded that a substantial proportion, i.e one in every five milk samples is seemingly contaminated with *E. coli* here. Milk is usually taken, having boiled in Bangladesh. However, if it is taken raw without any heat-treatment it might pose a serious health-risk to the public health because of its contamination with any enteric pathogens of animal or human origins.

Presence of probable EHEC O157

E. coli from only six (18.2%) of the 33 positive samples yielded colorless colonies across the CT-SMAC, suggesting the probable presence of populations belonging to the serotype O157. Growth of probable *E. coli* O157, as evidenced by the colorless colonies on CT-SMAC compared to coloured colonies from other bacteria is shown in Fig 3. The yielding of colorless colonies on CT-SMAC from a milk sample in this study was considered as the probable presence of *E. coli* O157. This cannot be its confirmation until agglutination test is done using specific antiserum. Because of resource limitation this was not done in the study. Very virulent combination in Shiga toxin producing *E. coli* is the presence of both stx1 and stx2 genes plus the eaeA gene (Eelco *et al.*; 2007). The findings of this study indicate that the presence of Shiga toxin producing *E. coli* in the fluid milk being marketed at Chittagong is very low and only four isolates from the study carried the stx2 gene. None of the 33 isolates resulted from the study neither had the stx1 nor the eaeA gene.

Shiga toxin producing *E. coli*

Of the probable *E. coli* O157 isolates only 4 (66.7%) had Stx2. The 779 bp sized amplicons indicating the presence of Stx2 are shown in Fig 4. None of the other virulent genes,
such as Stx1, eaeA, hlyA and rfbE was found in any of the isolates investigated.

Therefore, although a substantial portion of milk samples carried E. coli the danger of having infections with Shiga toxin producing E. coli, by consuming fluid milk at Chittagong is low. While saying this low risk, however, the risk for infection with any other enteric pathogen(s) cannot be overlooked or underestimated because presence of E. coli in milk indicates the presence of any enteric pathogens.

CONCLUSION
About 18% of fluid milk marketed in Chittagong contains E. coli. Most virulent combination of genes: stx1, stx2 and eaeA in the contaminating E. coli seems to be absent; however, Shiga toxin 2 (stx2) producing E. coli could be found at a very low proportion, thus indicating some public health risk directly from the presence of E. coli in fluid milk. Its presence also indicates the presence of any other enteric pathogens. PCR based molecular epidemiological studies are required for detection of all types of pathogenic as well as zoonotic potential strains of E. coli isolates for future research.

ACKNOWLEDGEMENT
The authors gratefully acknowledge to the Poultry Research and Training Institute (PRTC), Chittagong Veterinary and Animal Sciences University, Bangladesh for providing the facilities to carry out this research and the Office of the University Grant Commission (UGC) of Bangladesh for funding this research.

REFERENCES
Betts, G.D. (2000). Controlling E. coli O157. Nutrition and Food Science. 30(4): 183-186.
Desmarchelier, P.M., Bilge, S.S., Fegan, N., Mills, L., Vary, J.C., Tarr, P.J. (1998). A PCR specific for Escherichia coli O157 based on the rfb locus encoding O157 lipopolysaccharide. Journal of Clinical Microbiology. 36(6): 1801-1804.
DesROSiers, A.N.N.I.E., Fairbrother, J.M., Johnson, R.P., Desautels, C., Letellier, A. and Quessy, S. (2001). Phenotypic and genotypic characterization of Escherichia coli verotoxin-producing isolates from humans and pigs. Journal of food protection. 64(12): pp.1904-1911.
Dewangan, P., Shakya*, S., Patyal, A., Gade, N. and Bhoomika, E. (2017). Prevalence and molecular characterization of extended-spectrum b-Lactamases (blaTEM) producing Escherichia coli isolated from humans and foods of animal origin in Chhattisgarh, India. Indian Journal of Animal Research. (51): 310-315.
Elco, F., Klerks, M.M., De Vos, O.J., Termorshuizen, A.J. and van Bruggen, A.H. (2007). Prevalence of Shiga toxin-producing Escherichia coli stx1, stx2, eaeA and rfbE genes and survival of E. coli O157: H7 in manure from organic and low-input conventional dairy farms. Applied and Environmental Microbiology. 73(7): pp.2180-2190.
Franz, E., Klerks, M.M., De Vos, O.J., Termorshuizen, A.J., Van Bruggen, A.H. (2007): Prevalence of Shiga toxin-producing Escherichia coli stx1, stx2, eaeA and rfbE genes and survival of E. coli O157: H7 in manure from organic and low-input conventional dairy farms. Applied and Environmental Microbiology. 73(7): 2180-2190.
Grant, M.A., Hedberg, C., Johnson, R., Harris, J., Logue, C.M., Meng, J., Sofos, J.N., Dickson, J.S. (2011): The Significance of Non-O157 Shiga Toxin-producing Escherichia coli in Food. Food Protection Trends. 33-45.
Griffin, P.M., Tauxe, R.V. (1991): The epidemiology of infections caused by Escherichia coli O157: H7, other enterohemorrhagic E. coli and the associated hemolytic uremic syndrome. Epidemiologic Reviews. 13(1): 60-98.
Gupta, P.K., Rai, D.C., Paswan, V.K., Panta, R. and Yadav, A.K. (2020). Study on Physico-chemical and microbial quality of raw milk collected from different places of assi region Food Research. 39(1): 1-9.
Harrigan, W.F., MacCance, M.E. (1976). Laboratory Methods in Food and Dairy Microbiology. 1st edn. Academic Press, London. 221-238.
Johnson, J.R. and Russo, T.A. (2002). Extraintestinal pathogenic Escherichia coli the other bad E. coli. Journal of Laboratory and Clinical Medicine. 139(3): 155-162.
Johnson, J.R. and Russo, T.A. (2005). Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. International Journal of Medical Microbiology. 295(6-7): pp.383-404.
Kaper, J.B., Nataro, J.P. and Mobley, H.L. (2004). Pathogenic Escherichia coli. Nature reviews microbiology. 2(2): pp.123-140.
Levine, M.M. (1987). Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic and enterohaemorrhagic. Journal of Infectious Diseases. 155:377-389.
Manna, S.K., Brahmane, M.P., Das, R., Chandana, M. and Batabyal, S. (2006). Detection of Escherichia coli O157 in foods of animal origin by culture and multiplex polymerase chain reaction. Journal of Food Science and Technology-Mysore. 43(1): 77-79.
McDaniel, T.K., Jarvis, K.G., Donnenberg, M.S. and Kaper, J.B. (1995). A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proceedings of the National Academy of Sciences. 92(5): pp.1664-1668.
McKee, M.L. and O’Brien, A.D. (1996). Truncated enterohemorrhagic Escherichia coli (EHEC) O157: H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infection and Immunity. 64(6): 2225-2233.

Nataro, J.P. and Kaper, J.B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews. 11(1):142-201.

Nazmul, M., Fazlul, M. and Rashid, M. (2012). Plasmid profile analysis of non-O157 diarrheagenic Escherichia coli in Malaysia. Indian Journal of Science. 1(2): 130-132.

Oswald, E., Schmidt, H., Morabito, S., Karch, H., Marches, O. and Caprioli, A., 2000. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infection and immunity. 68(1). pp.64-71.

Paton, A.W. and Paton, J.C. (1998). Detection and Characterization of Shiga Toxigenic Escherichia coli by using Multiplex PCR Assays for stx1, stx 2, eaeA, Enterohemorrhagic E. coli hlyA, rfb O111 and rfb O157. Journal of Clinical Microbiology. 36(2): 598-602.

Radu, S., Ling, O.W., Rusul, G., Karim, M.I.A. and Nishibuchi, M. (2001). Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods. 46(2): 131-139.

Russo, T.A. and Johnson, J.R. (2000). Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. The Journal of Infectious Diseases. 181(5): 1753-1754.

Schrade, J.P., Yager, J. (2001). Implication of milk and milk products in food disease in France and in different industrialized countries. International Journal of Food Microbiology. 67: 1-17.

Smith, J.L., Fratamico, P.M. and Gunther, N.W., (2007). Extraintestinal pathogenic Escherichia coli. Foodborne pathogen and disease. 4(2): pp.134-163.

Smith, J.L., Fratamico, P.M., Gunther, N.W. (2001). Extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease. 4: 34-163.

Surve, V.V., Patil, M.U. and Gaikwad, S. (2011). Microbiological quality of milk marketed in Goa state. Asian Journal of Dairy and Food Research. 30(1): 75-76.

Tarr, P.I., Bilge, S.S., Vary, J.C., Jelacic, S., Habeeb, R.L., Ward, T.R., Baylor, M.R. and Besser, T.E., (2000). Iha: a novel Escherichia coli O157: H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infection and Immunity. 68(3): 1400-1407.

Whittam, T.S. (1996). Escherichia coli and Salmonella. ASM Press, Washington DC, USA. 2708–2720.

Zadik, P.M., Chapman, P.A. and Siddons, C.A. (1993). Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. Journal of Medical Microbiology. 39(2): 155-158.

Zhao, T., Doyle, M.P., Shere, J. and Garber, L. (1995). Prevalence of enterohemorrhagic Escherichia coli O157: H7 in a survey of dairy herds. Applied and Environmental Microbiology. 61(4): 1290-1293.