Rubrics for Practical Endodontics

Roula S Abiad

Associate Professor, Endodontics, Director of the Endodontics Division, Department of Restorative Sciences, Faculty of Dentistry, Beirut Arab University, Lebanon.

Corresponding author: Roula S Abiad

r.abiad@bau.edu.lb

Associate Professor, Endodontics, Director of the Endodontics Division, Department of Restorative Sciences, Faculty of Dentistry, Beirut Arab University, Lebanon.

Tel: +961 1 300110

Citation: Abiad RS. Rubrics for Practical Endodontics. J Orthod Endod. 2017, 3:2.

Assessment of acquired knowledge, affective processes and professional skills represents a cornerstone in various educational disciplines and dental education is no exception [1]. A student is not able to refine those skills without acknowledging delinquencies. A well-structured assessment is key for improving quality of dental education.

Assessing students in applied fields such as dentistry represents an ongoing challenge for assessors due to the subjective nature of practical work. One instructor's definition of perfect could be another's definition for disastrous. Therefore, questions related to grading and assessments are common among faculty members due to lack of professional training especially amongst junior clinicians and researchers who are new to this career path.

O’Donnell et al. [2] proposed that one way to objectify the assessment process could be through the use of rubrics: "scaled tools with levels of achievement and clearly defined criteria placed in a grid". Rubrics establish clear rules for evaluation and define the criteria for performance. Such clear rules provide faculty members with guidelines standardizing the grading process. Students on the other hands can understand the rationale behind their mark. Consequently, students can identify the level at which they stand according to the provided rubric and hence can tackle points of weakness. Rubrics can also be utilized by students to self-assess their work. Self-assessment has been shown to enhance active learning and improve practical skills [3]. It is evident that accurate self-acknowledgment of flaws can lead to high dexterity in any subject area especially those requiring high level of practical skills, going about such flaws will only be a matter of time and practice for the student (Figure 1; Tables 1 and 2).

The purpose of this article is to present the rubric implemented at Beirut Arab University, Faculty of Dentistry, Division of Endodontics for assessing dental students’ progress towards competence in practical endodontics which was developed at three grid level and as described in the educational literature.
Figure 1 Access Cavity Assessment [4-8].

Points	Proper (1)	Partial (1/2)	Improper (0)	
SITE				
Ant.				
PM				
Mo U				
Mo L				
SIZE				
Ant. & Post.	+1	Middle M breed (MM3/3) of the Palatal/ Lingual surface.	Occusal surface away from the MM1/3	Any other surface than the Palatal/Lingual
		Center of the Occlusal surface	Occusal Surface but shifted away from the PROPER	Any other surface than the Occlusal
Mo U		Metal rim of the Occlusal surface, slightly shifted to the Buccal.	Metal rim of the Occlusal surface, slightly shifted to the Buccal.	Metal rim of the Occlusal surface, slightly shifted to the Buccal.
Mo L		Metal rim of the Occlusal surface, slightly shifted to the Buccal.	Metal rim of the Occlusal surface, slightly shifted to the Buccal.	Metal rim of the Occlusal surface, slightly shifted to the Buccal.
SHAPE				
U				
Ca				
PM				
Mo				
EXTENSIONS				
Ant				
PM				
Mo U				
Mo L				

- **N.B.:** Perforation that will affect the treatment plan (Un-reparable) will be considered as fatal mistake
- **U:** Upper; **L:** Lower; **Mo:** Molars; **PM:** Premolar; **Ca:** Canine; **I:** Incisor; **MM 1/3:** Middle Middle One Third; **M:** Mesial; **D:** Distal; **B:** Buccal; **Li:** Lingual; **La:** Labial; **C:** Cervical; **RP:** Reference Point; **WL:** Working Length; **EWL:** Estimated Working Length; **IF:** Initial File; **MAF:** Master Apical File; **MC:** Master Cone
Table 1 Mechanical Preparation Assessment [4-8].

Points	Proper (1)	Partial (1/2)	Improper (0)
Working length (WL)	0.5–1 mm short of the radiographic apex	Short up to 2 mm	Short more than 2 mm or Over: beyond the anatomical apex
Reference Point (RP)	Rubber stopper seated perpendicular to a reliable repeatable point	File must be moved to reach the reliable repeatable point	Reference point Not Identified
Apical Seat	Forceful tapping on the MAF up to the W.L., confirms the resistance form.	Forceful tapping on the MAF pushes it beyond the W.L.	Gentle tapping on the MAF pushes it beyond the W.L.
Smoothness of the preparation	Dragging the file along the circumference of the root canal walls, gives the tactile sense of SMOOTHNESS	Dragging the file along the circumference of the root canal walls, gives the tactile sense of ROUGHNESS on One of the side walls.	Dragging the file along the circumference of the root canal walls, gives the tactile sense of ROUGHNESS on Two or More the side walls.
Taper	The spreader of size not less than 25 or B, must be able to enter 1-2 mm short of the working length along the side of the Master cone.	The spreader of size not less than 25 or B, cannot penetrate more than 3 mm short of the working length along the side of the Master cone.	Inability to insert any size of spreader along the side of the master cone more than 3 mm short of the W.L.
Maintaining the original shape of the canal & Curvature	Absence of Canal transportation, zipping, stripping, ledges or perforations.	Ledge or zipping	Stripping, Zipped foramen and or any other type of Perforation.

N.B.: Initial File (IF) is the first file that binds to the apex after coronal flaring; Master Apical File (MAF): Is 2-3 sizes larger than the IF; and Perforations are considered FATAL mistakes

Table 2 Obturation Assessment [4-8].

Points	Proper	Partial	Improper
Master cone selection			
Size	Similar to the MAF	1 size smaller or larger than the MAF	Size is far from the MAF
Visual	The selected MC is clearly marked at the reference point	The mark of selected MC is 0.5-1 mm ahead of the RP.	The selected MC mark is beyond RP, or more than 1 mm ahead.
Tactile	Tug back at the working length	Slight resistance to removal only.	No tug back at all.
Radiographic	The MC is 0.5-1 mm coronal to the radiographic apex	The MC is at the radiographic apex or 1.5 - 2 mm coronal	The MC is beyond the radiographic apex or More than 2 mm coronal to the radiographic apex
Length	The filling is at the W.L	The filling is 1-2 mm shorter or longer than the WL	The filling is more than 2 mm shorter or longer than the WL
Homogeneity	No radiolucencies within the filling	Sight radiolucencies but in non-critical areas.	Many radiolucencies within the filling or Sight radiolucencies but in critical areas. (Like the Apical Foramen)
Condensation	No radiolucencies between the filling and the canal walls & Reflects properly tapered canal preparation	Sight radiolucencies between the filling and one of the canal walls	Many radiolucencies between the filling and the canal walls or Does not reflect properly tapered canal preparation.
Adaptation to the walls	Proper cleaning of the pulp chamber from gutta-percha and sealer	Gutta-percha removed from the pulp chamber but sealer not properly cleaned	Gutta-percha and sealer not removed from pulp chamber at all.

N.B: Final Obturation x-ray must be taken without rubber dam AFTER placement of temporary filling
References

1 Albino ENJ, Young KS, Laura MN (2008) Assessing Dental Students’ Competence: Best Practice Recommendations in the Performance Assessment Literature and Investigation of Current Practices in Predoctoral Dental Education. J Dent Educ 72: 1405-1435.

2 O’Donnell JA, Oakley M, Haney S, O’Neill PN, Taylor D (2011) Rubrics 101: a primer for rubric development in dental education. J Dent Educ 75: 1163-1175.

3 American Dental Education Association (ADEA) (2007) Competencies for the new general dentist (as approved by the 2008 ADEA House of Delegates). J Dent Educ 72: 823-826.

4 Hargreaves KM, Cohen S and Berman LH. Cohen’s Pathways of the pulp, 11 th ed. St. Louis: Mosby/ Elsevier; 2015.

5 Mahmoud Torabinejad, Richard E. Walton. Endodontics Principles and Practice, 5 th ed. Saunders/ Elsevier; 2015.

6 Chong BS. Hart's endodontics in clinical practice. 6th ed. Edinburgh: Churchill livingstone/ Elsevier; 2010.

7 Ingle JI, Bakland LF and Baumgartner JC. Ingle’s Endodontics 6. 6th ed. Shelton: People’s Medical Publishing House; 2008.

8 Weine FS. Endodontic Therapy. 6th ed. N.Y: Mosby; 2004.