Smoothness of moduli space of stable torsion-free sheaves with fixed determinant in mixed characteristic

Inder Kaur

March 9, 2018

Abstract

Let R be a complete discrete valuation ring with fraction field of characteristic 0 and algebraically closed residue field of characteristic $p > 0$. Let $X_R \to \text{Spec}(R)$ be a smooth projective morphism of relative dimension 1. We prove that, given a line bundle L_R the moduli space of Gieseker stable torsion-free sheaves of rank $r \geq 2$ over X_R, with determinant L_R, is smooth over R.

1 Introduction

Notation 1.1. Let R be a complete discrete valuation ring with maximal ideal m. Denote by K its fraction field of characteristic 0 and by k its residue field of characteristic $p > 0$. Assume k is algebraically closed. Let $X_R \to \text{Spec}(R)$ be a smooth fibred surface and X_k its special fibre. Fix a line bundle L_R on X_R. Let P be a fixed Hilbert polynomial. Throughout this note, semistability always refers to Gieseker semistability (see [6, Definition 1.2.4]).

In [8, Theorem 0.2], Langer proves that the moduli functor of semi(stable) torsion-free sheaves with fixed Hilbert polynomial P on X_R is uniformly (universally) corepresented by a R-scheme $M_{X_R}(P)$ (respectively $M_{X_R}^s(P)$). Recall the definition of the moduli functor of flat families of (semi)stable torsion free sheaves with fixed Hilbert polynomial P and determinant L_R on X_R (see Definition 2.2). We denote this functor by M_{X_R,L_R}^s. In this note we prove the following:

Theorem 1.2 (see Proposition 2.3, Remark 2.4 and Theorem 4.5). We have the following:

1. The moduli functor M_{X_R,L_R} is uniformly corepresented by a projective R-scheme of finite type denoted M_{R,L_R}. The open subfunctor M_{X_R,L_R}^s for stable sheaves is universally corepresented by a R-scheme of finite type, denoted M_{R,L_R}^s.

2. The morphism $M_{R,L_R}^s \to \text{Spec}(R)$ is smooth.
Part 1 is proven analogously to [2, Theorem 3.1]. For part 2, we prove that the deformation functor at a point in the moduli space $M_{R,L,R}^s$ is unobstructed (see Theorem 3.19).

Note that Theorem 1.2 is proven by Langer in the case when R is a k-algebra (see [7, Proposition 3.4]). However, the proof does not generalize to our setup. This is because it relies on [1, Proposition 1], the proof of which does not hold in mixed characteristic. The main difficulty is that even in the case of vector bundles it uses the structure of R as a k-algebra in a fundamental way (see [1, Section 3]). We use the same philosophy as [1, Proposition 1] (of using Cech cohomology) but take a more direct approach since we are working on a family of curves.

The setup is as follows: in §2 we recall the basic definitions and results needed for this note. We also prove the existence of the moduli space of stable torsion free sheaves with fixed determinant over $\text{Spec}(R)$. In §3 we show that the deformation functor at a point in the moduli space $M_{R,L,R}^s$ is unobstructed. Finally in §4 we prove that this moduli space is smooth over $\text{Spec}(R)$.

Acknowledgements: The author thanks Prof. A. Langer for a discussion during the conference ‘Topics in characteristic $p > 0$ and p-adic Geometry’. The author is grateful to the Berlin Mathematical School for financial support.

2 Basic Definitions and results

Keep Notations 1.1

In this section we define the moduli functor of (semi)stable sheaves with fixed determinant. We prove that it is uniformly corepresented by an R-scheme of finite type.

Definition 2.1. Let $X_R \to \text{Spec}(R)$ be as in Notation 1.1

1. Let $\mathcal{M}_{X_R/\text{Spec}(R)}(P)$ (as in [2, Theorem 3.1]) of pure Gieseker semistable sheaves. For simplicity we will denote this functor by \mathcal{M}_R and the corresponding moduli space by M_R. Denote by $\mathcal{P}ic_{X_R}$ the moduli functor for line bundles. By assumption $X_R \to \text{Spec}(R)$ is flat, projective with integral fibres, therefore by [3, Theorem 9.4.8] the functor $\mathcal{P}ic_{X_R}$ is representable. We denote this moduli space by $\text{Pic}(X_R)$.

2. By assumption X_R is smooth over R. By [1, Theorem 2.1.10], every coherent sheaf \mathcal{E} on X_R admits a locally free resolution

$$0 \to \mathcal{E}_n \to \mathcal{E}_{n-1} \to \cdots \to \mathcal{E}_0 \to \mathcal{E} \to 0.$$

Then $\det(\mathcal{E}) := \otimes \text{det}(\mathcal{E}_i)(-1)^i$.

Therefore we can define a natural transformation $\det : \mathcal{M}_R \to \mathcal{P}ic_{X_R}$. This induces a morphism between the schemes corepresenting these functors $M_R \to \text{Pic}(X_R)$.

2
Now we define the moduli functor for families of pure Gieseker semistable sheaves with fixed determinant.

Definition 2.2. Let $X_R \to \text{Spec}(R)$ be a smooth, projective morphism and L_R a line bundle on X_R. For a fixed Hilbert polynomial, we define the moduli functor $\mathcal{M}_{X_R,L_R}^X(P)$, denoted \mathcal{M}_{R,L_R} for simplicity, on X_R of sheaves with fixed determinant L_R. Let $\mathcal{M}_{X_R,L_R}^X : (\text{Sch}/R)^o \to (\text{Sets})$ be such that for an R-scheme T,

$$
\mathcal{M}_{X_R,L_R}^X(T) := \left\{ \begin{array}{l}
\text{S-equivalence classes of families of pure Gieseker semistable sheaves } F \text{ on } X_T \\
\text{with the property that } \det(F) \simeq \pi_X^* L_R \otimes \pi_T^* Q,
\end{array} \right\} / \sim
$$

where $\pi_{X_R} : X_T \to X_R$ and $\pi_T : X_T \to T$ are the natural projection maps and $F \sim F'$, if and only if there exists a line bundle L on T, such that $F \simeq F' \otimes \pi_T^* L$.

We denote by \mathcal{M}_{X_R,L_R}^s the subfunctor for the stable sheaves.

We note that the moduli space M_{R,L_R}^s is a projective R-scheme.

Proposition 2.3. The functor \mathcal{M}_{R,L_R}^s is universally corepresented by a R-scheme of finite type. We denote this scheme by M_{R,L_R}^s.

Proof. We know from the proof of [2, Theorem 3.1], there exists a subset of the Quot scheme denoted R^s, such that M_R^s is a universal categorical quotient of this subset by the action of a certain general linear group. Let $\alpha : R^s \to M_R^s$ denote this quotient.

The natural transformation $\mathcal{M}_{R,L_R}^s \to \text{Pic}(X_R)$ which induces the determinant morphism $\det : M_R^s \to \text{Pic}(X_R)$. By composing the morphism det with α we obtain, a morphism $\det R^s : R^s \to M_R^s$. Since the quotients $R^s \to M_R^s$ and $R^s \to M_R^s$ are $\text{PGL}(V)$-bundles in the fppf topology (see [3, Lemma 6.3]), it implies $\det R^s$ is an isomorphism. Therefore, we have the following diagram,

$$
\begin{array}{ccc}
M_R^s & \simeq & N_{R,L_R} \\
\downarrow \text{det} & & \downarrow \text{det} \\
\text{Spec}(R) & \to & \text{Pic}(X_R)
\end{array}
$$

Finally by [3, Theorem 4.3.1] we conclude that the functor \mathcal{M}_{R,L_R}^s is universally corepresented by the R-scheme M_{R,L_R}^s. \qed
Remark 2.4. Note that the functor \(\mathcal{M}_{R,L_R} \) is corepresented by a projective \(R \)-scheme, denoted \(M_{R,L_R} \) of finite type. Recall the proof of [2, Theorem 3.1]. Since \(X_R \) is smooth, using [6, Theorem 2.1.10], we can define a morphism \(\det' : \text{Quot}_{X_R}(\mathcal{H}, P) \to \text{Pic}(X_R) \) mapping a coherent sheaf on \(X_R \) to its determinant bundle. Denote by \(A \) the (scheme-theoretic) intersection of \(\det^{-1}(L_R) \) and \(Q \), where \(Q \) as in the proof of [2, Theorem 3.1]. Then the statement follows after replacing \(Q \) by \(A \) in the proof of [2, Theorem 3.1].

3 Deformation of moduli spaces with fixed determinant

Keep Notations 1.1. We have seen in the proof of Proposition 2.3 how \(M_{R,L_R} \) can be considered as the fiber of the determinant morphism \(\det : \mathcal{M}_{R} \to \text{Pic}(X_R) \) over the point corresponding to \(L_R \). Using the trace map (see Definition 3.13), we relate the obstruction theory of the deformation functor at a point in the moduli space \(M_{R}^* \) to the obstruction theory of the deformation functor at a point in the moduli space \(\text{Pic}(X_R) \). We use this (see Theorem 3.19) to show that the deformation functor at a point in the moduli space \(M_{R,L_R}^* \) is unobstructed.

We begin by recalling some basic definitions.

Notation 3.1. We denote by \(\text{Art}/R \) the category of local artinian \(R \)-algebras with residue field \(k \). Denote by \(X_k := X_R \times_{\text{Spec}(R)} \text{Spec}(k) \) and \(X_A := X_R \times_{\text{Spec}(R)} \text{Spec}(A) \). Let \([F_k] \) denote a closed point of \(M_{R}^* \). As \(M_{R}^* \to \text{Spec}(R) \) is a morphism of finite type, the closed points of the moduli space \(M_{R}^* \) are \(k \)-points. Since \(k \) is algebraically closed, by [2, Theorem 3.1] we have a bijection

\[
\theta(k) : \mathcal{M}_R(k) \to \text{Hom}_R(k, M_R).
\]

Therefore to a closed point of \(M_{R}^* \) say \([F_k]\), we can associate a Gieseker stable sheaf \(\mathcal{F}_k \) on the curve \(X_k \). Since the curve \(X_k \) is smooth, the torsion-free sheaf is in fact locally free.

We define a covariant functor at the point \([F_k]\) in \(M_{R}^* \).

Definition 3.2. We define the deformation functor \(\mathcal{D}_{[F_k]} : \text{Art}/R \to (\text{Sets}) \), such that for \(A \in \text{Art}/R \)

\[
\mathcal{D}_{[F_k]}(A) := \left\{ \begin{array}{l} \text{coherent sheaves } \mathcal{F}_A \text{ with Hilbert polynomial } P \\
\text{on } X_A \text{ flat over } A \text{ such that its pull-back to } X_k \\
\text{is isomorphic to } \mathcal{F}_k. \end{array} \right\}
\]

Similarly, we define a covariant functor at the point \([\text{det}(\mathcal{F}_k)]\) of the moduli space \(\text{Pic}(X_R) \).
Definition 3.3. Let $D_{\det(F_k)} : \text{Art}/R \to (\text{Sets})$ be a covariant functor such that for $A \in \text{Art}/R$

$$D_{\det(F_k)}(A) := \left\{ \text{coherent sheaves } F_A \text{ with Hilbert polynomial the same as } \det(F_k) \text{ on } X_A \text{ flat over } A \text{ such that its pull-back to } X_k \text{ is isomorphic to } \det(F_k) \right\}$$

The following theorem gives the obstruction theories of $D_{[F_k]}$ and $D_{\det(F_k)}$.

Using this we prove the following corollary.

Remark 3.4. By [5, Theorem 7.3] the functors $D_{[F_k]}$ and $D_{\det(F_k)}$ have obstruction theories in the groups $H^2(\text{Hom}_{X_k}(F_k, F_k) \otimes_k I)$ and $H^2(\text{Hom}_{X_k}((\det(F_k), \det(F_k)) \otimes_k I)$ respectively. For X_k a curve, by Grothendieck vanishing theorem, $H^2(\text{Hom}_{X_k}(F_k, F_k) \otimes_k I)$ and $H^2(\text{Hom}_{X_k}((\det(F_k), \det(F_k)) \otimes_k I)$ vanish. Therefore, $D_{[F_k]}$ and $D_{\det(F_k)}$ are unobstructed.

Now we define a natural transformation between the two deformation functors.

Definition 3.5. By assumption F_k is a locally-free O_{X_k} module. Moreover, by [5, Exercise 7.1] any coherent sheaf F_A on X_A satisfying the property $F_A \otimes_{O_{X_k}} O_{X_k} \simeq F_k$ is a locally free O_{X_A}-module. Therefore, the notion of determinant is well-defined for any coherent sheaf on X_A which pulls back to F_k.

We define a natural transformation $\text{Det} : D_{[F_k]} \to D_{\det(F_k)}$ such that for $A \in \text{Art}/R$,

$$\text{Det}_A : D_{[F_k]}(A) \to D_{\det(F_k)}(A), \quad E_A \mapsto \det(E_A).$$

Using this we define a deformation functor at a point in the moduli space M^k_{R, \mathcal{L}_R}.

Definition 3.6. Let \mathcal{L}_R be as in Notation [11]. For A a R-algebra, denote by \mathcal{L}_A the pullback $p_A^* \mathcal{L}_R$ under the natural morphism $p_A : X_A \to X_R$.

We define a functor $D_{[F_k], \det(F_k)} : \text{Art}/R \to (\text{Sets})$, such that for $A \in \text{Art}/R$,

$$D_{[F_k], \det(F_k)}(A) := \text{Det}_A^{-1}(\mathcal{L}_A).$$

3.7. Group action on the torsors: By [5, Theorem 7.3], the set $D_{[F_k]}(A')$ (respectively $D_{\det(F_k)}(A')$) is a torsor under the action of $H^1(\text{Hom}_{X_k}(F_k, F_k) \otimes_k I)$ (respectively $H^1(\text{Hom}_{X_k}((\det(F_k), \det(F_k)) \otimes_k I)$).

Since X_k is noetherian, we can identify the sheaf cohomology $H^1(X_k, \text{Hom}(F_k, F_k) \otimes_k I)$ with the Cech cohomology $\check{H}^1(\mathcal{U}, \text{Hom}(F_k, F_k) \otimes_k I)$, where \mathcal{U} is an affine open covering of X_k. Then an element, say ξ of the cohomology group $H^1(\text{Hom}(F_k, F_k) \otimes_k I)$ can be seen as a collection of elements $\{\phi_{ij}^k\} \in \Gamma(U_i \cap U_j, \text{Hom}(F_k^i, F_k^j))$ satisfying the cocycle condition i.e. for any i, j, k, we have $\phi_{ij}^k|_{U_i \cap U_j} = \phi_{ij}^k|_{U_i \cap U_k} + \phi_{ij}^k|_{U_i \cap U_k}$. Since I is a k-vector space, $\check{H}^1(\mathcal{U}, \text{Hom}(F_k, F_k) \otimes_k I) \simeq \check{H}^1(\mathcal{U}, \text{Hom}(F_k, F_k) \otimes_k I)$. Therefore, $\{\phi_{ij}^k\}_{i,j}$
is of the form \(\{ \phi_{ij}'' \otimes a \}_{i,j} \) for \(a \in I \) not depending on \(i, j \) and \(\phi_{ij}'' \in \Gamma(U_i \cap U_j, \text{Hom}(\mathcal{F}_k, \mathcal{F}_k)) \) satisfying \(\phi_{ik}''|_{U_{ij}k} = \phi_{jk}''|_{U_{ij}k} + \phi_{ij}''|_{U_{ij}k} \).

Let \(\mathcal{F}_A' \) be an extension of \(\mathcal{F}_A \) on \(X_A' \) i.e. an element of \(\mathcal{D}_{\mathcal{F}_A}(A') \). Since it is locally free, there exists a covering \(\mathcal{U}' = \{ U'_i \} \) of \(X_A \) by such that \(\mathcal{F}_A'|_{U'_i} \) is \(\mathcal{O}_{U'_i} \)-free. Denote by \(\mathcal{U} := \{ U_i \} \) the cover of \(X_k \) where \(U_i := U'_i \cap X_k \). We know from the proof of [5, Theorem 7.3] that \(\mathcal{F}_A(\xi) \) is given by a collection of sheaves \(\mathcal{F}_i := \mathcal{F}_A'|_{U'_i} \) and isomorphisms \(\phi_{ij} : \mathcal{F}_i|_{U_i \cap U_j} \to \mathcal{F}_j|_{U_i \cap U_j} \) such that

\[
\phi_{ii} = \text{Id}, \quad \phi_{ij} : \mathcal{F}_i|_{U_i \cap U_j'} = \mathcal{F}_A'|_{U'_i \cap U'_j} \xrightarrow{\text{Id} + (a \otimes \phi''_{ij}) \circ \pi} \mathcal{F}_A'|_{U'_i \cap U'_j} = \mathcal{F}_j|_{U'_i \cap U'_j}
\]

where \(a, \phi''_{ij} \) are as above and \(\pi \) is the natural restriction morphism \(\mathcal{F}_A' \to \mathcal{F}_k \). Then by [4, Ex. II.1.22], \(\mathcal{F}_A(\xi) \) glues to a sheaf if the morphisms \(\{ \phi_{ij} \} \) satisfy the cocycle condition. In the following lemma we prove that this is indeed the case.

Lemma 3.8. Let \(\mathcal{F}_i' \) and \(\phi_{ij} \) be as above. The morphisms \(\{ \phi_{ij} \} \) satisfy the cocycle condition i.e. for any \(i, j, k \) \(\phi_{ik} = \phi_{jk} \circ \phi_{ij} \).

Proof. It suffices to prove this equality for the basis elements, say \(s_1^i, \ldots, s_{r'}^i \) generating \(\mathcal{F}_i'_{U'_i \cap U'_j \cap U'_k} \). For any basis element \(s_i^j \),

\[
\phi_{jk} \circ \phi_{ij}(s_i^j) = \phi_{jk}(\text{Id} + (a \otimes \phi''_{ij})(\pi(s_i^j))) = \phi_{jk}(\pi(s_i^j) + a\phi''_{ij}(\pi(s_i^j))) = (\text{Id} + a \otimes \phi''_{jk})(\pi(s_i^j)) + a\phi''_{ij}(\pi(s_i^j)) + a\phi''_{ij}(\pi(s_i^j)) = \pi(s_i^j) + \phi_{jk}(\pi(s_i^j)) + a\phi''_{ij}(\pi(s_i^j)) + a\phi''_{jk}(\pi(s_i^j)) = 0
\]

because \(a^2 = 0 \) in \(A' \). Since \(\phi''_{ik} = \phi''_{ij} + \phi''_{jk} \), we have

\[
\phi_{jk} \circ \phi_{ij}(s_i^j) = \pi(s_i^j) + a(\phi''_{ik}(\pi(s_i^j)) = \phi_{ik}(s_i^j).
\]

This shows that \(\{ \phi_{ij} \}_{i,j} \) satisfy the cocycle condition. \(\Box \)

Using this we conclude that \(\mathcal{F}_A(\xi) \), obtained by glueing the sheaves \(\mathcal{F}_i' \) along the isomorphism \(\phi_{ij} \) is a sheaf.

Similarly, an element say \(\xi' \) in \(H^1(\text{Hom}_{X_k}(\det(\mathcal{F}_k), \det(\mathcal{F}_k)) \otimes_k I) \) acts on an element in \(\mathcal{D}_{\text{det}(\mathcal{F}_k)}(A') \), say \(\det(\mathcal{F}_A') \) to produce a line bundle \(\det(\mathcal{F}_A')(\xi') \) given by a family of sheaves \(\{ \mathcal{L}_i := \mathcal{L}_A'|_{U'_i} \} \) and isomorphisms

\[
\phi_{ij} : \mathcal{L}_i|_{U'_i} \xrightarrow{\text{Id} + (a \otimes \phi''_{ij}) \circ \pi} \mathcal{L}_j|_{U'_j}
\]

where \(\phi''_{ij} \in \Gamma(U_i \cap U_j, \text{Hom}(\det(\mathcal{F}_k), \det(\mathcal{F}_k)) \otimes_k I) \). Again by Lemma 3.8 \(\det(\mathcal{F}_A')(\xi') \) is a sheaf.

Definition 3.9. We have the following definitions.

6.
1. We define a map
\[\phi_1 : H^1(\text{Hom}_X(\mathcal{F}_k, \mathcal{F}_k) \otimes I_1) \to \mathcal{D}_{\mathcal{F}_k}(A'), \quad \xi \mapsto \mathcal{F}_A'(\xi) \]
which uniquely associates an extension \(\mathcal{F}_A'(\xi) \) of \(\mathcal{F}_A' \) (using Lemma 3.8) to an element \(\xi \) of \(H^1(\text{Hom}_X(\mathcal{F}_k, \mathcal{F}_k) \otimes I_1) \).

2. Replacing \(\mathcal{F}_A' \) by \(\text{det}(\mathcal{F}_A') \) and starting with \(\text{det}(\mathcal{F}_A') \) we associate an extension say \((\text{det}(\mathcal{F}_A'))(\xi') \) to an element \(\xi' \) of \(H^1(\text{Hom}_X(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k)) \otimes I_1) \). Hence we define a map
\[\phi_2 : H^1(\text{Hom}_X(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k)) \otimes I_1) \to \mathcal{D}_{\text{det}(\mathcal{F}_k)}(A'), \quad \xi' \mapsto \text{det}(\mathcal{F}_A')(\xi') \]

Remark 3.10. Note that by Corollary 3.4 there exist surjective morphisms \(r_1 : \mathcal{D}_{\mathcal{F}_k}(A') \to \mathcal{D}_{\mathcal{F}_k}(A) \) and \(r_2 : \mathcal{D}_{\text{det}(\mathcal{F}_k)}(A') \to \mathcal{D}_{\text{det}(\mathcal{F}_k)}(A) \). By [5] Theorem 7.3, \(r_1^{-1}(\mathcal{F}_A) = \text{Im}(\phi_1) \), \(r_2^{-1}(\text{det}(\mathcal{F}_A)) = \text{Im}(\phi_2) \).

The following lemma tells us that taking the determinant commutes with glueing of the sheaf.

Lemma 3.11. The determinant of the sheaf \(\mathcal{F}_A'(\xi) \) is the line bundle obtained by glueing \(\{ \text{det}(\mathcal{F}_i') \} \) along the isomorphisms
\[\overline{\phi}_{ij} : \text{det}(\mathcal{F}_i'|_{U_i \cap U_j}) \to \text{det}(\mathcal{F}_j'|_{U_i \cap U_j}), \quad s_1^{(i)} \wedge \cdots \wedge s_r^{(i)} \mapsto \phi_{ij}(s_1^{(i)}) \wedge \cdots \wedge \phi_{ij}(s_r^{(i)}) \]
where \(s_1^{(i)}, \ldots, s_r^{(i)} \) are the basis elements of \(\mathcal{F}_i'|_{U_i \cap U_j} \).

Proof. By Lemma 3.8 for all \(t = 1, \ldots, r \), we have \(\phi_{ik}(s_t^{(i)}) = \phi_{jk}(s_t^{(i)}) \circ \phi_{ij}(s_t^{(i)}) \). Then,
\[\overline{\phi}_{jk} \circ \overline{\phi}_{ij}(s_1^{(i)} \wedge \cdots \wedge s_r^{(i)}) = \overline{\phi}_{jk}(\phi_{ij}(s_1^{(i)}) \wedge \cdots \wedge \phi_{ij}(s_r^{(i)})) \]
\[= (\phi_{jk} \circ \phi_{ij}(s_1^{(i)})) \wedge \cdots \wedge (\phi_{jk} \circ \phi_{ij}(s_r^{(i)})) \]
\[= \phi_{jk}(s_1^{(i)}) \wedge \cdots \wedge \phi_{jk}(s_r^{(i)}) \]
\[= \overline{\phi}_{jk}(s_1^{(i)} \wedge \cdots \wedge s_r^{(i)}) \]
Hence the morphisms \(\{ \overline{\phi}_{ij} \} \) satisfy the cocycle condition i.e \(\overline{\phi}_{jk} = \overline{\phi}_{jk} \circ \overline{\phi}_{ij} \).

By Lemma 3.8, there exist isomorphisms \(\psi_i : \mathcal{F}_A'(\xi)|_{U_i} \simeq \mathcal{F}_i' \) satisfying \(\psi_i|_{U_{ij}} = \phi_{ij} \circ \psi_i|_{U_{ij}} \). We define \(\overline{\psi}_i : \text{det}(\mathcal{F}_A'(\xi))|_{U_i} \simeq \text{det}(\mathcal{F}_i') \) as follows. Let \(s_1^{(i)}, \ldots, s_r^{(i)} \) be the basis of \(\mathcal{F}_A'(\xi)|_{U_i} \). Then \(\overline{\psi}_i(s_1^{(i)} \wedge \cdots \wedge s_r^{(i)}) := \psi_i(s_1^{(i)}) \wedge \cdots \wedge \psi_i(s_r^{(i)}) \). Therefore
\[\overline{\phi}_{ij} \circ \overline{\psi}_i(s_1^{(i)} \wedge \cdots \wedge s_r^{(i)}) = \overline{\phi}_{ij}(\psi_i(s_1^{(i)}) \wedge \cdots \wedge \psi_i(s_r^{(i)})) \]
\[= \phi_{ij}(\psi_i(s_1^{(i)})) \wedge \cdots \wedge \phi_{ij}(\psi_i(s_r^{(i)})) \]
\[= \psi_j(s_1^{(i)}) \wedge \cdots \wedge \psi_j(s_r^{(i)}) \]
Then by the uniqueness of glueing mentioned in [4] Ex. II.1.22, \(\{ \text{det}(\mathcal{F}_i) \} \) glues along the isomorphisms \(\{ \overline{\phi}_{ij} \}_{i,j} \) to \(\text{det}(\mathcal{F}_A'(\xi)) \). \(\square \)
Lemma 3.15. The morphism

\[\text{trace map} \]

\[\phi \mapsto \text{tr}_U(\phi) := \left(s_1 \wedge \ldots \wedge s_r \mapsto \sum_j s_1 \wedge \ldots \wedge \phi(s_j) \wedge \ldots \wedge s_r \right). \]

Let \(U := \{ U_i \} \) be a small enough open cover of \(X_k \) such that \(\mathcal{F}_k \) is free on each \(U_i \). Then the trace map is given by

\[\text{tr} : \text{Hom}_{X_k}(\mathcal{F}_k, \mathcal{F}_k) \to \text{Hom}_{X_k}(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k)) \]

such that \(\text{tr}|_{U_i} = \text{tr}_{U_i} \) for any affine open set \(U_i \) of \(X_k \).

Remark 3.14. Note that the morphism \(\text{tr}_U \) is \(O_{X_k} \)-linear. Let \(f \in O_{X_k}(U) \). Then

\[\text{tr}_U(f \phi) = s_1 \wedge \ldots \wedge s_r \mapsto \sum_j s_1 \wedge \ldots \wedge f(\phi(s_j)) \wedge \ldots \wedge s_r \]

\[= \sum_j f(s_1 \wedge \ldots \wedge \phi(s_j) \wedge \ldots \wedge s_r) \]

\[= f \sum_j s_1 \wedge \ldots \wedge \phi(s_j) \wedge \ldots \wedge s_r \]

\[= f \text{tr}_U(\phi). \]

Lemma 3.15. The morphism \(\text{tr} \) is surjective.

Proof. It suffices to prove surjectivity on the level of stalks. Let \(x \in X_k \) be a closed point. Consider the induced morphism

\[\text{tr}_x : \text{Hom}_{X_k}(\mathcal{F}_k_x, \mathcal{F}_k_x) \to \text{Hom}_{X_k}(\text{det}(\mathcal{F}_k_x), \text{det}(\mathcal{F}_k_x)) \]

and basis \(s_1, \ldots, s_r \in \mathcal{F}_k_x \). Since the map \(\text{tr}_x \) is \(O_{X_k,x} \)-linear and \(\text{Hom}_{O_{X_k}}(\text{det}(\mathcal{F}_k_x), \text{det}(\mathcal{F}_k_x)) \cong O_{X_k,x} \), it suffices to show that \(\text{Id} \in \text{Im}(\text{tr}_x) \). Let \(\phi \in \text{Hom}_{X_k}(\mathcal{F}_k_x, \mathcal{F}_k_x) \) defined as \(\phi(s_i) = s_i \) for \(i = 1 \) and \(0 \) otherwise. This concludes the proof.

We can define the trace map cohomologically as follows:

Definition 3.16. Let \(U := \{ U_i \} \) be a small enough open affine cover of \(X_k \) such that \(\mathcal{F}_k \) is free on each \(U_i \). Using \([4, \text{III. Theorem 4.5}]\) we define \(\check{C} \)-Cocycle \(C^p(U, \text{Hom}(\mathcal{F}_k, \mathcal{F}_k)) \) (resp \(\check{C}^p(U, \text{Hom}(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k))) \)), such that the corresponding \(\check{C} \)-cohomology coincides with the sheaf cohomology \(H^i(X_k, \text{Hom}(\mathcal{F}_k, \mathcal{F}_k)) \) (resp \(H^i(X_k, \text{Hom}(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k)))) \). The morphism \((*) \) of Definition induces a morphism on cohomologies

\[\text{tr}^i : H^i(X_k, \text{Hom}(\mathcal{F}_k, \mathcal{F}_k)) \to H^i(X_k, \text{Hom}(\text{det}(\mathcal{F}_k), \text{det}(\mathcal{F}_k))) \cong H^i(X_k, O_{X_k}). \]
As a corollary to Lemma 3.15 we have:

Corollary 3.17. The morphism induced on cohomology

\[
\text{tr}^1 : H^1(X_k, \text{Hom}_{X_k}(F_k, F_k)) \to H^1(X_k, \text{Hom}_{X_k}(\text{det}(F_k), \text{det}(F_k)))
\]

is surjective.

Proof. Consider the short exact sequence,

\[
0 \to \ker \text{tr} \to \text{Hom}_{X_k}(F_k, F_k) \overset{\text{tr}}{\to} \text{Hom}_{X_k}(\text{det}(F_k), \text{det}(F_k)) \to 0.
\]

We get the following terms in the associated long exact sequence,

\[
\ldots \to H^1(X_k, \text{Hom}_{X_k}(F_k, F_k)) \overset{\text{tr}}{\to} H^1(X_k, \text{Hom}_{X_k}(\text{det}(F_k), \text{det}(F_k))) \to H^2(\ker \text{tr}) \to \ldots
\]

Since \(X_k\) is a curve, by Grothendieck’s vanishing theorem, \(H^2(\ker(\text{tr})) = 0\). Therefore, the morphism \(\text{tr}^1\) is surjective. \(\square \)

The following proposition tells us that the determinant map ‘commutes’ with the trace map.

Proposition 3.18. Notation as in 3.7. Let

\[
\text{det}_{ij} : \Gamma(U_i \cap U_j, \text{Hom}(F'_i, F'_i)) \to \Gamma(U_i \cap U_j, \text{Hom}(\text{det}(F'_i), \text{det}(F'_i)))
\]

be a morphism defined by

\[
\phi_{ij} \in \Gamma(U_i \cap U_j, \text{Hom}(F'_i, F'_i)) \mapsto \text{det}_{ij}(\phi_{ij}) := (s^1_i \wedge \ldots \wedge s^r_i \mapsto \phi_{ij}(s^1_i) \wedge \ldots \wedge \phi_{ij}(s^r_i))
\]

where \(s^1_i, \ldots, s^r_i\) are the basis elements of \(F'_i|_{U_i \cap U_j}\). Then for any pair \(i \neq j\), we have

\[
\text{det} \circ (\text{Id} + (\phi''_{ij} \otimes a) \circ \pi) = \text{Id} + (\text{tr}_{U_{ij}}(\phi''_{ij}) \otimes a) \circ \pi.
\]

In other words, the following diagram is commutative:

\[
\begin{array}{ccc}
H^1(\text{Hom}_{X_k}(F_k, F_k) \otimes_k I) & \xrightarrow{\phi_1} & D_{[F_k]}(A') \\
\text{tr}^1 \otimes \text{Id} & & \circ \text{Det}_{A'} \\
H^1(\text{Hom}_{X_k}(\text{det}(F_k), \text{det}(F_k)) \otimes_k I) & \xrightarrow{\phi_2} & D_{[\text{det}(F_k)]}(A')
\end{array}
\]

Proof. Let \(s^1_i, \ldots, s^r_i\) be the sections generating \(F'_i|_{U_i \cap U_j}\). Any section of \(\text{Hom}(\text{det}(F'_i), \text{det}(F'_i))\) is (uniquely) defined by the image of \(s^1_i \wedge \ldots \wedge s^r_i\). Hence it suffices to prove

\[
(\text{det}_{ij} \circ (\text{Id} + (\phi''_{ij} \otimes a) \circ \pi))(s^1_i \wedge \ldots \wedge s^r_i) = (\text{Id} + (\text{tr}_{U_{ij}}(\phi''_{ij}) \otimes a) \circ \pi)(s^1_i \wedge \ldots \wedge s^r_i).
\]
For $1 \leq t \leq r$, $(\text{Id} + (\phi''_{ij} \otimes a) \circ \pi)(s^t_1) = s^1_t + a\phi''_{ij}(\pi(s^t_1))$ and since $I.m_{A'} = 0$, $a' = 0$ for $t > 1$. Hence,

$$(\det_{ij} \circ (\text{Id} + (\phi''_{ij} \otimes a) \circ \pi))(s^t_1 \wedge ... \wedge s^t_r) = (s^1_t + a\phi''_{ij}(\pi(s^t_1))) \wedge ... \wedge (s^1_r + a\phi''_{ij}(\pi(s^t_r))) = s^t_1 \wedge ... \wedge s^t_r + a \sum_k s^1_k \wedge ... \wedge \phi''_{ij}(\pi(s^t_1)) \wedge ... \wedge s^t_r = (\text{Id} + (\text{tr}_{U_{ij}}(\phi''_{ij}) \otimes a) \circ \pi)(s^1_1 \wedge ... \wedge s^t_r).$$

This completes the proof of the proposition. \hfill \Box

We end this section with the following theorem.

Theorem 3.19. The functor $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}$ is unobstructed.

Proof. Let $A' \to A$ be a small extension in Art/R and ϕ_1, ϕ_2 be as in Definition 3.8. Recall the surjective morphisms r_1, r_2 from Remark 3.10. Then we have the following diagram.

\[
\begin{array}{ccc}
\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}(A') & \xrightarrow{\psi} & \mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}(A) \\
\downarrow & & \downarrow \\
H^1(\text{Hom}_{X_k}(\mathcal{F}_k, \mathcal{F}_k) \otimes_k I) & \xrightarrow{\phi_1} & \mathcal{D}_{[\mathcal{F}_k]}(A') & \xrightarrow{r} & \mathcal{D}_{[\mathcal{F}_k]}(A) \\
\downarrow & & \downarrow & & \downarrow \\
H^1(\text{Hom}_{X_k}((\mathcal{F}_k), \det(\mathcal{F}_k)) \otimes_k I) & \xrightarrow{\phi_2} & \mathcal{D}_{[\mathcal{F}_k]}(A') & \xrightarrow{r} & \mathcal{D}_{[\det(\mathcal{F}_k)]}(A) \\
\downarrow & & \downarrow & & \downarrow \\
\text{tr}^1 \otimes \text{Id} & & \text{Det}_A' & & \text{Det}_A \\
\end{array}
\]

where the upper right square and the lower right square are commutative by definition and the lower left square is commutative by Proposition 3.18. To prove that $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}$ is unobstructed, we need to show that ψ is surjective. Let \mathcal{L}_A be the unique pull-back of \mathcal{L}_R under the morphism $X_A \to X_R$ and \mathcal{F}_A be an element in $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}(A)$. Since $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]]}(A') = \det(\mathcal{L}'_A)$ where \mathcal{L}'_A is $\pi^*\mathcal{L}_R$ for $\pi : X_A' \to X_R$, we need to prove there exists a sheaf \mathcal{F}_A' on X_A' with determinant \mathcal{L}_A' which is an extension of \mathcal{F}_A.

By definition $\mathcal{F}_2(\mathcal{L}_A') = \mathcal{L}_A$. Since ϕ_1 and ϕ_2 are injective, $r_1^{-1}(\mathcal{F}_A) = \text{Im}(\phi_1)$ and $r_2^{-1}(\mathcal{L}_A) = \text{Im}(\phi_2)$. Therefore, there exists $t \in H^1(\text{Hom}_{X_k}(\det(\mathcal{F}_k), \det(\mathcal{F}_k)) \otimes_k I)$ such that $\phi_2(t) = \mathcal{L}_A$. By Corollary 3.17, $\text{tr}^1 \otimes \text{Id}$ is surjective. Hence there exists $t' \in H^1(\text{Hom}_{X_k}(\mathcal{F}_k, \mathcal{F}_k) \otimes_k I)$ such that $\text{tr}^1 \otimes \text{Id}(t') = t$. Denote by $\mathcal{F}_A' := \phi_1(t')$. By commutativity of the lower left square, $\det(\mathcal{F}_A') = \mathcal{L}_A'$. This concludes the proof of the theorem. \hfill \Box
4 Main results

In Theorem [3.19] we showed that the deformation functor $D_{[\mathcal{F}_k], [\det(\mathcal{F}_k)]}$ is unobstructed for any closed point $[\mathcal{F}_k]$ of the moduli space M^s_{R,L_R}. In this section we prove that this functor is in fact pro-represented by the completion of the local ring at the point $[\mathcal{F}_k]$ (see Proposition 4.4). Using this we prove that the moduli space M^s_{R,L_R} of pure stable sheaves with fixed determinant L over X_R is smooth over $\text{Spec}(R)$.

Notation 4.1. Keep Notations 1.1 and 3.1. Let $[\mathcal{F}_k]$ be a k-rational point of M^s_{R,L_R} and denote by $\Lambda'' := \hat{\mathcal{O}}_{M^s_{R,L_R}}$ the completion of the local ring $\mathcal{O}_{M^s_{R,L_R}}$. Under the determinant morphism $\det : M^s_{R} \rightarrow \text{Pic}(X_R)$, the line bundle $\det([\mathcal{F}_k])$ is a k-point of $\text{Pic}(X_R)$. Denote by $\Lambda' := \hat{\mathcal{O}}_{\text{Pic}(X_R), [\det(\mathcal{F}_k)]}$ and by $\Lambda := \hat{\mathcal{O}}_{M^s_{R,L_R}, [\mathcal{F}_k]}$.

Definition 4.2. By $\hat{\mathcal{O}}_{M^s_{R}, [\mathcal{F}_k]}$ we denote the covariant functor $\text{Hom}(\Lambda'', -) : \text{Art}/R \rightarrow \text{Sets}, \ A \mapsto \text{Hom}_{R-\text{alg}}(\Lambda'', A)$.

We define the functors $\hat{\mathcal{O}}_{\text{Pic}(X_R), [\det(\mathcal{F}_k)]}$ and $\hat{\mathcal{O}}_{M^s_{R,L_R}, [\mathcal{F}_k]}$ similarly.

Lemma 4.3. The deformation functor $D_{[\mathcal{F}_k]}$ (resp. $D_{[\mathcal{L}_k]}$) are pro-representable by $\hat{\mathcal{O}}_{M^s_{R}, [\mathcal{F}_k]}$ (resp. $\hat{\mathcal{O}}_{\text{Pic}(X_R), [\det(\mathcal{F}_k)]}$).

Proof. Recall from the proof of [2] Theorem 3.1, that for m sufficiently large, \mathcal{R}^s is the open subset of $\text{Quot}(\mathcal{H}; P)$ where $\mathcal{H} := \mathcal{O}_{X_R}(-m)^P(m)$ parametrizing stable quotients. By [3] Lemma 6.3, $\phi : \mathcal{R}^s \rightarrow M^s_{R}$ is an etale $\text{PGL}(V)$-principal bundle. Therefore, $\hat{\mathcal{O}}_{\mathcal{R}^s, [\mathcal{F}_k]} \cong \hat{\mathcal{O}}_{M^s_{R}, [\mathcal{F}_k]}$.

Denote by $Q := \text{Quot}(\mathcal{H}; P)$ and by $D_{Q,[\mathcal{F}_k]}$ the deformation functor corresponding to the Quot-scheme at the point $[\mathcal{F}_k]$. Recall that for any local Artin ring A, Pic(Spec(A)) = 0, hence $D_{[\mathcal{F}_k]} = D_{Q,[\mathcal{F}_k]}$. Since the functor Quot is representable, the deformation functor $D_{Q,[\mathcal{F}_k]}$ is pro-representable by $\hat{\mathcal{O}}_{Q,[\mathcal{F}_k]}$ i.e.,

$D_{Q,[\mathcal{F}_k]} \cong \hat{\mathcal{O}}_{Q,[\mathcal{F}_k]} \cong \hat{\mathcal{O}}_{\mathcal{R}^s, [\mathcal{F}_k]}$,

where the second isomorphism follows from the fact that \mathcal{R}^s is an open subset of Q. Therefore, $D_{[\mathcal{F}_k]}$ is isomorphic to $\hat{\mathcal{O}}_{M^s_{R}, [\mathcal{F}_k]}$.

Using the same argument we can show that $D_{[\det(\mathcal{F}_k)]} \cong \hat{\mathcal{O}}_{\text{Pic}(X_R), [\det(\mathcal{F}_k)]}$. This proves the lemma.

Using this lemma we prove the following proposition.

Proposition 4.4. The deformation functor $D_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]}$ is pro-represented by the completion of the local ring $\mathcal{O}_{M^s_{R,L_R}, [\mathcal{F}_k]}$.
Proof. By Lemma 4.3, \(D[\mathcal{F}_k] \) (respectively \(D[\det(\mathcal{F}_k)] \)) is pro-represented by \(\hat{\mathcal{O}}_{\text{det}(X_R),\{\det(\mathcal{F}_k)\}} \) (respectively \(\hat{\mathcal{O}}_{\text{Pic}(X_R),\{\det(\mathcal{F}_k)\}} \)). We have a natural transformation
\[
det : \hat{\mathcal{O}}_{M^*_R,\{\mathcal{F}_k\}} \to \hat{\mathcal{O}}_{\text{Pic}(X_R),\{\det(\mathcal{F}_k)\}}
\]
induced by the determinant morphism, \(\det : M^*_R \to \text{Pic}(X_R) \) localized at the point \([\mathcal{F}_k]\). Let \(A \in \text{Art}/R \) and \(\mathcal{L}_A \) be the pullback of the line bundle \(\mathcal{L}_R \) under the morphism \(X_A \to X_R \). Recall the natural transformation \(\text{Det}_A \) defined in Definition 3.5. We have the following commutative diagram
\[
\begin{array}{ccc}
D[\mathcal{F}_k](A) & \xrightarrow{\sim} & \hat{\mathcal{O}}_{M^*_R,\{\mathcal{F}_k\}}(A) \\
\text{Det}_A \downarrow & \circlearrowleft & \downarrow \text{det}_A \\
D[\det(\mathcal{F}_k)](A) & \xrightarrow{\sim} & \hat{\mathcal{O}}_{\text{Pic}(X_R),\{\det(\mathcal{F}_k)\}}(A)
\end{array}
\]
Hence the deformation functor \(D[\mathcal{F}_k],\{\det(\mathcal{F}_k)\}(A) \cong \text{det}_A^{-1}(\phi_{\mathcal{L}_A}) \), where \(\phi_{\mathcal{L}_A} := \sigma(\mathcal{L}_A) \). Therefore to prove that \(D[\mathcal{F}_k],\{\det(\mathcal{F}_k)\} \) is pro-represented by \(\hat{\mathcal{O}}_{M^*_R,\mathcal{L}_R,\{\mathcal{F}_k\}} \), we need to show that for any \(A \in \text{Art}/R \),
\[
\text{det}_A^{-1}(\phi_{\mathcal{L}_A}) \cong \text{Hom}_R(\Lambda, A). \tag{1}
\]
By Lemma 4.3, \(D[\det(\mathcal{F}_k)](A) \cong \text{Hom}_R(\Lambda', A) \). Hence for a fixed element \(\mathcal{L}_A \in D[\det(\mathcal{F}_k)](A) \), the corresponding morphism from \(\text{Spec}(A) \to \text{Spec}(\Lambda') \) is unique and this is the morphism \(\phi_{\mathcal{L}_A} \). This implies the commutativity of the following diagram
\[
\begin{array}{ccc}
\text{Spec}(A) & \xrightarrow{\phi_{\mathcal{L}_A}} & \text{Spec}(\Lambda') \\
\downarrow & \circlearrowleft & \downarrow \\
\text{Spec}(R) & \xrightarrow{\phi_{\mathcal{L}_A}} & \text{Spec}(\Lambda')
\end{array}
\]
where the morphism \(\text{Spec}(R) \to \text{Spec}(\Lambda') \) is the morphism corresponding to the line bundle \(\mathcal{L}_R \). Then the bijection in (1) follows from the property of fibre product and the following diagram.
Since A was arbitrary, (1) holds for any $A \in \text{Art}/R$. Hence $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]}$ is pro-represented by $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]}$.

Using this we prove the following theorem.

Theorem 4.5. The morphism $M_{R,L,R}^* \to \text{Spec}(R)$ is smooth.

Proof. Since the scheme $M_{R,L,R}^*$ is noetherian and smoothness is an open condition, it suffices to check that the morphism $M_{R,L,R}^* \to \text{Spec}(R)$ is smooth at closed points. Let $[\mathcal{F}_k]$ be a closed point of $M_{R,L,R}^*$. Since the morphism $M_{R,L,R}^* \to \text{Spec}(R)$ is of finite type, to prove that it is smooth at the point $[\mathcal{F}_k]$, we need to show that the functor $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]}$ is unobstructed.

By Proposition 4.4, the completion of the local ring $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]}$ pro-represents the functor $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]}$, i.e $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]} \simeq \mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]}$. By Theorem 3.19 the deformation functor $\mathcal{D}_{[\mathcal{F}_k],[\det(\mathcal{F}_k)]}$ is unobstructed. Hence the functor $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]}$ is unobstructed. This implies $\mathcal{O}_{M_{R,L,R}^*,[\mathcal{F}_k]}$ is unobstructed. Hence, the morphism $M_{R,L,R}^* \to \text{Spec}(R)$ is smooth at the point $[\mathcal{F}_k]$.

References

[1] V. Artamkin. On deformation of sheaves. *Math USSR Izv*, 32:663–668, 1989.

[2] H. Esnault and A. Langer. On a positive equicharacteristic variant of the p-curvature conjecture. *Documenta Math. J.*, 18:23–50, 2013.

[3] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitasure, and A. Vistoli. *Fundamental algebraic geometry. Grothendieck’s FGA explained*, Mathematical Surveys and Monographs, volume 123. Amer. Math. Soc, 2005.

[4] R. Hartshorne. *Algebraic Geometry*, volume 52. Graduate texts in Math, Springer Verlag, 1977.
[5] R. Hartshorne. *Deformation Theory*, volume 257. Graduate texts in Math, Springer Verlag, 2010.

[6] D. Huybrechts and M. Lehn. *The geometry of moduli spaces of sheaves*, volume 31. Aspects of Mathematics, Vieweg, Braunshweig, 1997.

[7] A. Langer. Castenuovo-mumford regularity. *Duke Math. J.*, 124:571–586, 2004.

[8] A. Langer. Semistable sheaves in positive characteristic. *Ann of Math*, 159:251–276, 2004.

[9] M. Maruyama. Moduli of stable sheaves II. *J.Math.Kyoto Univ*, 18:557–614, 1978.