On the local metric dimension of corona product graphs

Juan A. Rodríguez-Velázquez, Gabriel A. Barragán-Ramírez and Carlos García Gómez

Departament d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain.
juanalberto.rodriguez@urv.cat, gbrbcn@gmail.com

May 11, 2014

Abstract

A vertex \(v \in V(G) \) is said to distinguish two vertices \(x, y \in V(G) \) of a nontrivial connected graph \(G \) if the distance from \(v \) to \(x \) is different from the distance from \(v \) to \(y \). A set \(S \subset V(G) \) is a local metric generator for \(G \) if every two adjacent vertices of \(G \) are distinguished by some vertex of \(S \). A minimum local metric generator is called a local metric basis for \(G \) and its cardinality, the local metric dimension of \(G \). In this paper we study the problem of finding exact values for the local metric dimension of corona product of graphs.

Keywords: Metric generator; metric dimension; local metric set; local metric dimension, corona product graph.

1 Introduction

A generator of a metric space is a set \(S \) of points in the space with the property that every point of the space is uniquely determined by the distances from the elements of \(S \). Given a simple and connected graph \(G = (V, E) \), we consider the function \(d_G : V \times V \to \mathbb{R}^+ \), where \(d_G(u, v) \) is the length of a shortest path between \(u \) and \(v \). Clearly, \((V, d_G) \) is a metric space, i.e., \(d_G \) satisfies \(d_G(x, x) = 0 \) for all \(x \in V \), \(d_G(x, y) = d_G(y, x) \) for all \(x, y \in V \) and \(d_G(x, y) \leq d_G(x, z) + d_G(z, y) \) for all \(x, y, z \in V \). A vertex \(v \in V \) is said to distinguish two vertices \(x \) and \(y \) if \(d_G(v, x) \neq d_G(v, y) \). A set \(S \subset V \) is said to be a metric generator for \(G \) if any pair of vertices of \(G \) is distinguished by some element of \(S \). A minimum generator is called a metric basis, and its cardinality the metric dimension of \(G \), denoted by \(\dim(G) \).

Motivated by the problem of uniquely determining the location of an intruder in a network, the concept of metric dimension of a graph was introduced by Slater in [18], where the metric generators were called locating sets. The concept of metric dimension of a graph was also introduced by Harary and Melter in [9], where metric generators were called resolving sets. Applications of this invariant to the navigation of robots in networks are discussed in [13] and applications to chemistry in [11, 12]. This invariant was studied further in a number of other papers including, for instance [11, 14, 15, 16, 19]. Several variations of metric generators including resolving dominating sets [13], independent resolving sets [6], local metric sets [15], strong resolving sets [17], etc. have since been introduced and studied.
In this article we are interested in the study of local metric generators, also called local metric sets [15]. A set \(S \) of vertices in a connected graph \(G \) is a local metric generator for \(G \) if every two adjacent vertices of \(G \) are distinguished by some vertex of \(S \). A minimum local metric generator is called a local metric basis for \(G \) and its cardinality, the local metric dimension of \(G \), is denoted by \(\dim_l(G) \). The following main results were obtained in [15].

Theorem 1. [15] Let \(G \) be a nontrivial connected graph of order \(n \). Then \(\dim_l(G) = n - 1 \) if and only if \(G \) is the complete graph of order \(n \) and \(\dim_l(G) = 1 \) if and only if \(G \) is bipartite.

The clique number \(\omega(G) \) of a graph \(G \) is the order of a largest complete subgraph in \(G \).

Theorem 2. [15] Let \(G \) be connected graph of order \(n \). Then \(\dim_l(G) = n - 2 \) if and only if \(\omega(G) = n - 1 \).

In this paper we study the local metric dimension of corona product graphs. We begin by giving some basic concepts and notations. For two adjacent vertices \(u, v \) of \(G = (V, E) \) we use the notation \(u \sim v \). For a vertex \(v \) of \(G \), \(N_G(v) \) denotes the set of neighbors that \(v \) has in \(G \), i.e., \(N_G(v) = \{ u \in V : u \sim v \} \). The set \(N_G(v) \) is called the open neighborhood of \(v \) in \(G \) and \(N_G[v] = N_G(v) \cup \{ v \} \) is called the closed neighborhood of \(v \) in \(G \). The degree of a vertex \(v \) of \(G \) will be denoted by \(\delta_G(v) \), i.e., \(\delta_G(v) = |N_G(v)| \). Given a set \(S \subset V \), we denote by \(\langle S \rangle_G \) the subgraph of \(G \) induced by \(S \) and by \(N_G(S) = \cup_{v \in S} N_G(v) \) the open neighborhood of \(S \). In particular, if \(S = \{ x \} \) we will use the notation \(\langle x \rangle \) instead of \(\{ \{ x \} \} \).

Let \(G \) and \(H \) be two graphs of order \(n \) and \(n_1 \), respectively. Recall that the corona product \(G \odot H \) is defined as the graph obtained from \(G \) and \(H \) by taking one copy of \(G \) and \(n \) copies of \(H \) and joining by an edge each vertex from the \(i \)-th copy of \(H \) with the \(i \)-th vertex of \(G \). We will denote by \(V = \{ v_1, v_2, \ldots, v_n \} \) the set of vertices of \(G \) and by \(H_i = (V_i, E_i) \) the copy of \(H \) such that \(v_i \sim x \) for every \(x \in V_i \). The join \(G + H \) is defined as the graph obtained from disjoint graphs \(G \) and \(H \) by taking one copy of \(G \) and one copy of \(H \) and joining by an edge each vertex of \(G \) with each vertex of \(H \). Notice that the corona graph \(K_1 \odot H \) is isomorphic to the join graph \(K_1 + H \). The vertex of \(K_1 \) will be denoted by \(v \).

2 General results

To begin with, we consider some straightforward cases. If \(H \) is an empty graph, then \(K_1 \odot H \) is a star graph and \(\dim_l(K_1 \odot H) = 1 \). Moreover, if \(H \) is a complete graph of order \(n \), then \(K_1 \odot H \) is a complete graph of order \(n + 1 \) and \(\dim_l(K_1 \odot H) = n \).

Theorem 3. Let \(G \) be a connected nontrivial graph. For any empty graph \(H \),

\[
\dim_l(G \odot H) = \dim_l(G).
\]

Proof. Let \(B \) be a local metric basis for \(G \). Since in \(G \odot H \) every pair of adjacent vertices of \(G \) is distinguished by some vertex of \(B \) and every vertex of \(B \) distinguishes every pair of adjacent vertices composed by one vertex of \(G \) and one vertex of \(H \), we conclude that \(B \) is a local metric generator for \(G \odot H \).

Now, suppose that \(A \) is a local metric basis for \(G \odot H \) such that \(|A| < |B| \). Since \(H \) is an empty graph, if there exists \(x \in A \cap V_i \), for some \(i \), then the pairs of vertices of \(G \odot H \) which are distinguished by \(x \) can be distinguished also by \(v_i \). So, we consider the set \(A' \) obtained from \(A \) by replacing by \(v_i \) each vertex \(x \in A \cap V_i \), where \(i \in \{ 1, \ldots, n \} \). Thus, \(A' \) is a local metric generator for \(G \) and \(|A'| \leq |A| < |B| = \dim_l(G) \), which is a contradiction. Therefore, \(B \) is a local metric basis for \(G \odot H \). \(\square \)
We present now the main result on the local metric dimension of corona graphs \(G \odot H \) for the case where \(H \) is a non-empty graph.

Theorem 4. Let \(H \) be a non-empty graph. The following assertions hold.

(i) If the vertex of \(K_1 \) does not belong to any local metric basis for \(K_1 + H \), then for any connected graph \(G \) of order \(n \),

\[
\dim_l(G \odot H) = n \cdot \dim_l(K_1 + H).
\]

(ii) If the vertex of \(K_1 \) belongs to a local metric basis for \(K_1 + H \), then for any connected graph \(G \) of order \(n \geq 2 \),

\[
\dim_l(G \odot H) = n(\dim_l(K_1 + H) - 1).
\]

Proof. If \(n = 1 \), then \(G \odot H \cong K_1 + H \) and we are done. We consider \(n \geq 2 \). Let \(S_i \) be a local metric basis for \(\langle v_i \rangle + H_i \) and let \(S'_i = S_i - \{v_i\} \). Note that \(S'_i \neq \emptyset \) because \(H_i \) is a non-empty graph and \(v_i \) does not distinguish any pair of adjacent vertices belonging to \(V_i \).

In order to show that \(X = \bigcup_{i=1}^{n} S'_i \) is a local metric basis for \(G \odot H \) we differentiate the following cases for two adjacent vertices \(x, y \).

Case 1. \(x, y \in V_i \). Since \(v_i \) does not distinguish \(x, y \), there exists \(u \in S'_i \) such that \(d_{G \odot H}(x, u) = d_{\langle v_i \rangle + H_i}(x, u) \neq d_{\langle v_i \rangle + H_i}(y, u) = d_{G \odot H}(y, u) \).

Case 2. \(x \in V_i \) and \(y = v_i \). For \(u \in S'_j, j \neq i \), we have \(d_{G \odot H}(x, u) = 1 + d_{G \odot H}(y, u) > d_{G \odot H}(y, u) \).

Case 3. \(x = v_i \) and \(y = v_j \). For \(u \in S'_j \), we have \(d_{G \odot H}(x, u) = 2 = d_{G \odot H}(x, y) + 1 > 1 = d_{G \odot H}(y, u) \).

Hence, \(X \) is a local metric basis for \(G \odot H \).

Now we shall prove (i). If the vertex of \(K_1 \) does not belong to any local metric basis for \(K_1 + H \), then \(v_i \not\in S_i \) for every \(i \in \{1, \ldots, n\} \) and, as a consequence,

\[
\dim_l(G \odot H) \leq |X| = \sum_{i=1}^{n} |S'_i| = \sum_{i=1}^{n} \dim_l(\langle v_i \rangle + H_i) = n \cdot \dim_l(K_1 + H).
\]

Now we need to prove that \(\dim_l(G \odot H) \geq n \cdot \dim_l(K_1 + H) \). In order to do this, let \(W \) be a local metric basis for \(G \odot H \) and let \(W_i = V_i \cap W \). Consider two adjacent vertices \(x, y \in V_i - W_i \). Since no vertex \(a \in W - W_i \) distinguishes the pair \(x, y \), there exists \(u \in W_i \) such that \(d_{\langle v_i \rangle + H_i}(x, u) = d_{G \odot H}(x, u) \neq d_{G \odot H}(y, u) = d_{\langle v_i \rangle + H_i}(y, u) \). So we conclude that \(W_i \cup \{v_i\} \) is a local metric generator for \(\langle v_i \rangle + H_i \). Now, since \(v_i \) does not belong to any local metric basis for \(\langle v_i \rangle + H_i \), we have that \(|W_i| + 1 = |W_i \cup \{v_i\}| > \dim_l(\langle v_i \rangle + H_i) \) and, as a consequence, \(|W_i| \geq \dim_l(\langle v_i \rangle + H_i) \). Therefore,

\[
\dim_l(G \odot H) = |W| \geq \sum_{i=1}^{n} |W_i| \geq \sum_{i=1}^{n} \dim_l(\langle v_i \rangle + H_i) = n \cdot \dim_l(K_1 + H),
\]

and the proof of (i) is complete.

Finally, we shall prove (ii). If the vertex of \(K_1 \) belongs to a local metric basis for \(K_1 + H \), then we assume that \(v_i \in S_i \) for every \(i \in \{1, \ldots, n\} \). Suppose that there exists \(B \) such that \(B \) is a local metric basis for \(G \odot H \) and \(|B| < |X| \). In such a case, there exists \(i \in \{1, \ldots, n\} \) such that the set \(B_i = B \cap V_i \) satisfies \(|B_i| < |S'_i| \). Now, since no vertex of \(B - B_i \) distinguishes the
pairs of adjacent vertices belonging to \(V \), the set \(B_i \cup \{ v_i \} \) must be a local metric generator for \(\langle v_i \rangle + H_i \). So, \(\text{dim}_l(\langle v_i \rangle + H_i) \leq |B_i| + 1 < |S'_i| + 1 = |S_i| = \text{dim}_l(\langle v_i \rangle + H_i) \), which is a contradiction. Hence, \(X \) is a local metric basis for \(G \) and, as a consequence,

\[
\text{dim}_l(G \circ H) = |X| = \sum_{i=1}^{n} |S'_i| = \sum_{i=1}^{n} (\text{dim}_l(\langle v_i \rangle + H_i) - 1) = n(\text{dim}_l(K_1 + H) - 1).
\]

The proof of (ii) is now complete. \(\square \)

As a direct consequence of Theorem 4 we obtain the following results.

Corollary 5. The following assertions hold for any connected graph \(G \) of order \(n \geq 2 \).

(i) For any integer \(t \geq 2 \), \(\text{dim}_l(G \circ K_t) = n(t - 1) \).

(ii) For any positive integers \(r \) and \(s \), \(\text{dim}_l(G \circ K_{r,s}) = n \).

(iii) Let \(t \geq 4 \) be an integer. If \(t \equiv 1(4) \), then \(\text{dim}_l(G \circ P_t) = n \left\lceil \frac{t}{4} \right\rceil \) and if \(t \not\equiv 1(4) \), then \(\text{dim}_l(G \circ P_t) = n \left\lceil \frac{t}{4} \right\rceil \).

(iv) For any integer \(t \geq 4 \), \(\text{dim}_l(G \circ C_t) = n \left\lceil \frac{t}{4} \right\rceil \).

Proof.

(i) If \(H \cong K_t \), then \(K_1 + K_t \cong K_{t+1} \) and the vertex of \(K_1 \) can belong to a local metric basis for \(K_1 + K_t \). Thus,

\[
\text{dim}_l(G \circ K_t) = n \cdot (\text{dim}_l(K_{t+1}) - 1) = n \cdot (t - 1).
\]

(ii) If \(H = (U_1 \cup U_2, E) \cong K_{r,s} \) then for every \(a \in U_1 \) (or \(a \in U_2 \)) the set \(\{a, v\} \) is a local metric basis for \(\langle v \rangle + H \). Therefore,

\[
\text{dim}_l(G \circ K_{r,s}) = n \cdot (\text{dim}_l(K_1 + K_{r,s}) - 1) = n.
\]

(iii) Notice that a set \(B \) is a local metric basis for \(K_1 + P_t \) if and only if for every pair of adjacent vertices \(x, y \in V(P_t) \), vertex \(x \) is adjacent to an element of \(B \) or vertex \(y \) is adjacent to an element of \(B \). Thus, for any subgraph \(H' \) of \(P_t \) isomorphic to \(P_t \), we have \(B \cap V(H') \neq \emptyset \). With this observation in mind, we consider the following two cases.

Case 1. \(4 \leq t \leq 5 \). In this case we have that \(\text{dim}_l(\langle v \rangle + P_t) = 2 \) and \(v \) belongs to any local metric basis. Thus, \(\text{dim}_l(G \circ P_t) = n = n \left\lceil \frac{t}{4} \right\rceil \).

Case 2. \(t \geq 6 \). For \(t = 4k + r \), where \(0 \leq r \leq 3 \), we obtain

\[
\text{dim}_l(K_1 + P_t) = \begin{cases}
 k, & \text{if } r = 0 \text{ or } r = 1 \\
 k + 1, & \text{if } r = 2 \text{ or } r = 3
\end{cases}
\]

(1)

Therefore, since in this case vertex \(v \) does not belong to any local metric basis for \(\langle v \rangle + P_t \), we obtain

\[
\text{dim}_l(G \circ P_t) = n \cdot \text{dim}_l(K_1 + P_t) = \begin{cases}
 n \cdot \left\lceil \frac{t}{4} \right\rceil, & \text{if } t \equiv 1(4) \\
 n \cdot \left\lceil \frac{t}{4} \right\rceil, & \text{if } t \not\equiv 1(4).
\end{cases}
\]
Lemma 8. For any graph H it follows $\dim_l(\langle v \rangle + C_t) = 2$. Since v belongs to any local metric metric basis for $\langle v \rangle + C_4$ and v does not belong to any local metric basis for $\langle v \rangle + C_5$, we have

$$\dim_l(G \circ C_4) = n$$

and

$$\dim_l(G \circ C_5) = 2n = n \left\lceil \frac{5}{4} \right\rceil.$$

Now we consider the case where $t \geq 6$. As in the proof of (iii), for any local metric basis B of $\langle v \rangle + C_t$ and any subgraph H' of C_t, isomorphic to P_4, we have $B \cap V(H') \neq \emptyset$. Hence, for $t = 4k + r$, where $0 \leq r \leq 3$, we deduce

$$\dim_l(K_1 + C_t) = \begin{cases} k, & \text{if } r = 0 \\ k + 1, & \text{otherwise.} \end{cases}$$

(2)

Then, since for $t \geq 6$ vertex v does not belong to any local metric basis for $\langle v \rangle + C_t$,

$$\dim_l(G \circ C_t) = n \cdot \dim_l(K_1 + C_t) = n \cdot \left\lceil \frac{t}{4} \right\rceil.$$

Corollary 6. For any connected graph H and any connected graph G of order $n \geq 2$, $\dim_l(G \circ H) \geq n \cdot \dim_l(H)$.

Proof. Let B be a local metric basis for $K_1 + H$. Since the vertex v of K_1 does not distinguish any pair of adjacent vertices $x, y \in V(H)$, $B - \{v\}$ is a local metric generator for H. Thus, if $v \in B$, then $\dim_l(K_1 + H) - 1 \geq \dim_l(H)$ and, if $v \notin B$, then $\dim_l(K_1 + H) \geq \dim_l(H)$. Therefore, Theorem 4 leads to $\dim_l(G \circ H) \geq n \cdot \dim_l(H)$.

Corollary 7. For any graph H of diameter two and any connected graph G of order $n \geq 2$, $\dim_l(G \circ H) = n \cdot \dim_l(H)$.

Proof. Since H has diameter two, for every $x, y \in V(H)$ it follows $d_H(x, y) = d_{K_1 + H}(x, y)$. So, if the vertex of K_1 does not belong to any local metric basis for $K_1 + H$, then every local metric basis for H is a local metric basis for $K_1 + H$ and vice versa. Hence, in such a case, Theorem 4(i) leads to $\dim_l(G \circ H) = n \cdot \dim_l(H)$.

Now we suppose that there exists a local metric basis B of $K_1 + H$ such that the vertex v of K_1 belongs to B. Since v does not distinguish any pair of vertices of H, $B' = B - \{v\}$ is a local metric generator for H. Moreover, if there exists $A \subset V(H)$ such that $|A| < |B'|$ and A is a local metric basis for H, then $A \cup \{v\}$ is a local metric generator for $K_1 + H$, which is a contradiction because $|A| + 1 < |B'| + 1 = |B| = \dim_l(K_1 + H)$. Therefore, B' is a local metric basis for H and, as a result, $\dim_l(K_1 + H) = 1 + \dim_l(H)$. So, by Theorem 4(ii) we obtain $\dim_l(G \circ H) = n \cdot \dim_l(H)$.

Lemma 8. Let H be a graph of radius $r(H)$. If $r(H) \geq 4$ then the vertex of K_1 does not belong to any local metric basis for $K_1 + H$.

Proof. Let B be a local metric basis for $K_1 + H$. We suppose that the vertex v of K_1 belongs to B. Note that $v \in B$ if and only if there exists $u \in V(H) - B$ such that $B \subset N_{K_1 + H}(u)$.

Now, if $r(H) \geq 4$, then we take $u' \in V(H)$ such that $d_H(u, u') = 4$ and a shortest path $uu_1u_2u_3u'$. In such a case for every $b \in B - \{v\}$ we will have that $d_{K_1 + H}(b, u_3) = d_{K_1 + H}(b, u') = 2$, which is a contradiction. Hence, v does not belong to any local metric basis for $K_1 + H$.

□
The converse of Lemma 8 is not true. In Figure 1 we show a graph H of radius three where the vertex of K_1 does not belong to any metric basis for $K_1 + H$.

The following result is a direct consequence of Theorem 4 (i) and Lemma 8.

Theorem 9. For any connected graph G of order n and any graph H of radius $r(H) \geq 4$,

$$\dim_l(G \odot H) = n \cdot \dim_l(K_1 + H).$$

Another consequence of Theorem 4 is the following result.

Corollary 10. For any non-empty graph H of order n' and any connected graph G of order $n \geq 2$,

$$n \leq \dim_l(G \odot H) \leq n(n' - 1).$$

The aim of the next section is the study of the limit cases of Corollary 10.

2.1 Extremal values for $\dim_l(G \odot H)$

Theorem 11. Let H be a graph of order n' and let G be a connected graph of order $n \geq 2$. Then $\dim_l(G \odot H) = n(n' - 1)$ if and only if $H \cong K_{n'}$ or $H \cong K_1 \cup K_{n' - 1}$.

Proof. By Theorem 4 we conclude that $\dim_l(G \odot H) = n(n' - 1)$ if and only if exactly one of the following cases hold:

Case a: the vertex v of K_1 does not belong to any local metric basis for $K_1 + H$ and $\dim_l(K_1 + H) = n' - 1$.

Case b: the vertex v of K_1 belongs to a local metric basis for $K_1 + H$ and $\dim_l(K_1 + H) = n'$.

We first consider Case a. By Theorem 2 $\dim_l(K_1 + H) = n' - 1$ if and only if $\omega(H) = n' - 1$. Let $V(H) = \{u_1, u_2, \ldots, u_{n'}\}$. If $\langle V(H) - \{u_1\} \rangle$ is a clique and $u_i \sim u_1$, then $\{v\} \cup V(H) - \{u_1, u_i\}$ is a local metric basis for $K_1 + H$, which is a contradiction. Hence u_1 is an isolated vertex of H. So, Case a holds if and only if $H \cong K_1 \cup K_{n' - 1}$.

Finally, by Theorem 4 we deduce that Case b holds if and only if $H \cong K_{n'}$. \hfill\Box

The radius $r(G)$ of a graph G is the minimum eccentricity of any vertex of G. The center of G, denoted by $C(G)$, is the set of vertices of G with eccentricity equal to $r(G)$.

Theorem 12. Let H be a non-empty graph and let G be a connected graph of order $n \geq 2$. Then $\dim_l(G \odot H) = n$ if and only if H is a bipartite graph having only one non-trivial connected component H^* and $r(H^*) \leq 2$.

Proof. Since $\langle v \rangle + H$ is not bipartite, by Theorem 4 we deduce $\dim_l(\langle v \rangle + H) \geq 2$. So, if $\dim_l(G \odot H) = n$, then by Theorem 4 we have that $\dim_l(\langle v \rangle + H) = 2$ and v belongs to a local metric basis for $\langle v \rangle + H$, say $B = \{u, v\}$. So, $B \cap V(H) = \{u\}$ must be a local
metric generator for H and, by Theorem 1, we conclude that H is a bipartite graph having only one non-trivial connected component. Moreover, if the non-trivial component of H has radius $r > 2$, then there exists $u_3 \in V(H)$ such that $d_H(u, u_3) = 3$ and, as a consequence, for any shortest path $uu_1u_2u_3$ we have $d_{(v)+H}(u, u_2) = d_{(v)+H}((u, u_3)$, i.e., the pair of adjacent vertices u_2, u_3 is not distinguished by the elements of B, which is a contradiction. Therefore, $r \leq 2$.

Conversely, let H be a bipartite graph where having only one non-trivial component H^*. Let $r(H^*) \leq 2$, let a be a vertex belonging to the center of H^* and let v be the vertex of K_1. Since H is a triangle free graph, a distinguishes every pair of adjacent vertices $x, y \in V(H^*)$. So, $\{v, a\}$ is a local metric generator for $K_1 + H$, which is a local metric basis because $\dim_l(K_1 + H) \geq 2$. We conclude the proof by Theorem 4 (ii).

\section{The value of $\dim_l(G \odot H)$ when H is a bipartite graph of radius three}

Theorems 12 and 9 suggest to consider the case where H is a bipartite graphs of radius three. To do that, we need the following additional notation. For any $a \in V(H)$, we denote

$$N^{(i)}_H(a) = \{w \in V(H) : d_H(w, a) = i\}.$$

We also define $N^{(i)}_H[a] = N^{(i)}_H(a) \cup \{a\}$. Note that $N^{(1)}_H(a) = N_H(a)$ and $N^{(1)}_H[a] = N_H[a]$. Given two sets $A, B \subset V(H)$ we say that A dominates B if every vertex in $B - A$ is adjacent to some vertex belonging to A. From now on we will use the notation $A \succ B$ to indicate that A dominates B. For every $x \in C(H)$, let $\beta(x) = \min\{\vert A \vert : A \subseteq N_H(x) \text{ and } A \succ N^{(2)}_H(x)\}$ and let

$$\delta'(H) = \min_{x \in C(H)} \{\beta(x)\}.$$

\textbf{Lemma 13.} For any bipartite graph H of radius three,

$$\dim_l(K_1 + H) \leq \delta'(H) + 1.$$

Moreover, $\dim_l(K_1 + H) = \delta'(H) + 1$ if and only if the vertex of K_1 belongs to a local metric basis for $K_1 + H$.

\textbf{Proof.} Let u be a vertex belonging to the center of H and $A \subseteq N_H(u)$ such that $A \succ N^{(2)}_H(u)$ and $\vert A \vert = \delta'(H)$. Let us show that $B = A \cup \{v\}$ is a local metric generator for $\langle v \rangle + H$. We first note that since H is bipartite, for two adjacent vertices $x, y \notin B$ it follows $d_H(u, x) \neq d_H(u, y)$. Hence, without loss of generality, we may consider the following three cases for two adjacent vertices $x, y \notin B$.

Case 1: $x = u$ and $y \sim u$. In this case for every $z \in A$ it follows $d_{K_1+H}(x, z) = 1$ and $d_{K_1+H}(y, z) = 2$.

Case 2: $d_H(u, x) = 1$ and $d_H(u, y) = 2$. In this case $y \in N^{(2)}_H(u)$ and there exists $x' \in A$ such that $x' \sim y$ and, since H is a bipartite graph, $x' \not\sim x$. So, $d_{K_1+H}(x, x') = 2$ and $d_{K_1+H}(y, x') = 1$.

Case 3: $d_H(u, x) = 2$ and $d_H(u, y) = 3$. In this case $x \in N^{(2)}_H(u)$ and there exists $x' \in A$ such that $ux'y$ is a shortest path in H. So, $d_{K_1+H}(x, x') = 1$ and $d_{K_1+H}(y, x') = 2$.

7
Thus, B is a local metric generator for $K_1 + H$ and, as a consequence, $\dim_l(K_1 + H) \leq \delta'(H) + 1$.

Moreover, if $\dim_l(K_1 + H) = \delta'(H) + 1$, then B is a local metric basis for $K_1 + H$ which contains the vertex of K_1.

Conversely, let S be a local metric basis for $K_1 + H$ which contains the vertex v of K_1. In this case there exists $w \in V(H)$ such that $N_H(w) \supset S - \{v\}$. If $w \not\in C(H)$, then there exists $w' \in V(H)$ such that $d_H(w, w') \geq 4$ and for every shortest path $ww_1w_2w_3w'$ from w to w' the pair of vertices w_3, w' is not resolved in $K_1 + H$ by any $s \in S$, which is a contradiction. Hence, $w \in C(H)$ and $S - \{v\} \supset N_H^{(2)}(w)$. The minimality of the cardinality of S leads to $|S - \{v\}| = \delta'(H)$. Therefore, $\delta'(H) + 1 = |S| = \dim_l(K_1 + H)$. \hfill \Box

As a direct consequence of Theorem 4 and Lemma 13 we obtain the following result.

Theorem 14. Let H be a bipartite graph of radius three and let G be a connected graph of order $n \geq 2$. Then

\[\dim_l(G \odot H) \leq n \cdot \delta'(H). \]

2.2.1 The maximum value of $\dim_l(G \odot H)$ when H is a bipartite graph of radius three

In this section we show that the above bound is attained for a subfamily of bipartite graphs of diameter three that does not contain a square (a subgraph isomorphic to $K_{2,2}$). In such a case, the girth of H must be six and $H = (U_1 \cup U_2, E)$ satisfies the following property:

✧ For any $i \in \{1, 2\}$ and any two distinct vertices $a, b \in U_i$, $|N_H(a) \cap N_H(b)| = 1$.

Therefore, H is the incidence graph of a finite projective plane. So, we have two possibilities (see, for instance, [2]):

(P1) $H = (U_1 \cup U_2, E)$ is the incidence graph of a degenerate projective plane. In this case $|U_1| = |U_2| = t$, $t \geq 3$, and H is a pseudo sphere graph S_t (also called near pencil) defined as follows: we consider $t - 1$ path graphs of order 4 and we identify one extreme of each one of the $t - 1$ path graphs in one pole a and all the other extreme vertices of the paths in a pole b. In particular, S_3 is the cycle graph C_6.

(P2) $H = (U_1 \cup U_2, E)$ is the incidence graph of a non-degenerate projective plane of order q. In this case H is a regular graph of degree $\delta_H = q + 1$ and $|U_1| = |U_2| = q^2 + q + 1$. Note that $|U_1| = |U_2| = \delta_H^2 - \delta_H + 1$.

In the case (P1) the set $B = \{a, b\}$ composed by both poles of the pseudo sphere is a dominating set of S_t. Thus, B is a local metric basis for $\langle v \rangle + S_t$ and $N_{S_t}(a) \cap N_{S_t}(b) = \emptyset$. Also, there are no local metric generators composed by two vertices at distance two, so the vertex v does not belong to any local metric basis for $\langle v \rangle + S_t$ and, by Theorem 4 (i), we obtain that for any connected graph G of order $n \geq 2$, $\dim_l(G \odot S_t) = 2n$.

The rest of this section covers the study of case (P2), i.e., the case where H is the incidence graph of a non-degenerate projective plane.

Lemma 15. For any bipartite graph $H \not\cong S_t$ of diameter three and girth six,

\[\delta'(H) = \delta_H. \]
Proof. Let $x \in U_i$, $i \in \{1, 2\}$. Since for any $y, z \in N_H(x)$ we have $N_H(y) \cap N_H(z) = \{x\}$, we deduce that for any $A \subseteq N_H(x)$,

$$
|N_H^{(2)}(x)| = |U_i - \{x\}| \geq \left| \bigcup_{y \in A} (N_H(y) - \{x\}) \right| = \sum_{y \in A}(|N_H(y)| - 1) = (\delta_H - 1)|A|.
$$

Therefore, since $|U_i| = \delta_H^2 - \delta_H + 1$, we have that $A \succeq N_H^{(2)}(x)$ if and only if $A = N_H(x)$. □

Lemma 16. Let $H = (U_1 \cup U_2, E) \not\cong S_t$ be a bipartite graph of diameter three and girth six. For any local metric basis B of $K_1 + H$, either $B \cap U_1 = \emptyset$ or $B \cap U_2 = \emptyset$.

Proof. We proceed by contradiction. Suppose that $B_1 = B \cap U_1 \neq \emptyset$ and $B_2 = B \cap U_2 \neq \emptyset$. We differentiate two cases.

Case 1: $B_1 \cup N_H(B_2) \neq U_1$ or $B_2 \cup N_H(B_1) \neq U_2$. We take, without loss of generality, $x \in U_1$ such that $x \notin B_1 \cup N_H(B_2)$. Since B is a local metric basis for $K_1 + H$ and $N_H(x) \cap B_2 = \emptyset$, the set $N_H(x)$ must be dominated by B_1. Moreover, since H is a square free graph, for any $b \in B_1$ there exists only one vertex $y_b \in N_H(x) \cap N_H(b)$. Thus, $\delta_H = |N_H(x)| \leq |B_1|$. On the other hand, by Lemmas 13 and 15 we have $|B \cap (U_1 \cup U_2)| \leq \delta_H$. Hence, the assumption $B_2 = B \cap U_2 \neq \emptyset$ leads to $|B_1| \leq \delta_H - 1$, which is a contradiction with the fact that $|B_1| \geq \delta_H$.

Case 2: $B_1 \cup N_H(B_2) = U_1$ and $B_2 \cup N_H(B_1) = U_2$. If $|B_1| = |B_2| = 1$, then $\delta_H^2 - \delta_H + 1 = |U_1| = |B_1 \cup N_H(B_2)| \leq 1 + \delta_H$, which is a contradiction for $\delta_H > 2$. Thus, without loss of generality, we assume that $|B_2| \geq 2$. Let $a, b \in B_2$ and let $c \in U_1$ such that $\{c\} = N_H(a) \cap N_H(b)$. We define $B'_1 = B_1 \cup \{c\}$, $B'_2 = B_2 - \{a, b\}$ and $B' = B'_1 \cup B'_2$. Note that $|B'| < |B|$. We take two adjacent vertices x, y such that $x \in U_1 - B'_1$ and $y \in U_2 - B'_2$. Now, if $y \in \{a, b\}$, then $c \in B'$ distinguishes the pair x, y and if $y \notin \{a, b\}$, then there exists $y' \in B_1 \subseteq B'$ such that y' is adjacent to y. Thus, B' is a local metric basis for $K_1 + H$, which is a contradiction.

Since both cases lead to a contradiction, the proof is complete. □

Lemma 17. Let $H \not\cong S_t$ be a bipartite graph of diameter three and girth six. Then the vertex of K_1 belongs to any local metric basis for $K_1 + H$.

Proof. Let B be a local metric basis for $\langle v \rangle + H$. We proceed by contradiction. Suppose that $v \notin B$. By Lemmas 13 and 15 we have $|B| \leq \delta_H$. By Lemma 16 we can assume that $B \subseteq B_1$. Now, if $|B| \leq \delta_H - 1$, then

$$
|N_H(B)| = \left| \bigcup_{b \in B} N_H(b) \right| \leq \sum_{b \in B} |N_H(b)| = (\delta_H - 1)\delta_H < |U_2|,
$$

which is a contradiction because if there exist two adjacent vertices x, y such that $x \in U_1 - B$ and $y \in U_2 - N_H(B)$, then the pair x, y is not distinguished by the elements of B. Hence, we conclude $|B| = \delta_H$.

Now, if there exists $a \in U_2$ such that $N_H(a) = B$, then the pair of adjacent vertices a, v is not distinguished by the elements of B, which is a contradiction. Thus, let $b, b' \in B$, $a \in N_H(b) \cap N_H(b')$, and $x_a \in N_H(a) - B$. Since B is a local metric basis and H is a square free graph, for every $y, z \in N_H(x_a)$, there exist two vertices $b_y \in (B - \{b, b'\}) \cap N_H(y)$ and $b_z \in (B - \{b, b'\}) \cap N_H(z)$ such that $b_y \neq b_z$. Hence,

$$
\delta_H - 1 = |N_H(x_a) - a| \leq |B - \{b, b'\}| = \delta_H - 2,
$$

which is a contradiction. Therefore, v must belong to B. □
\textbf{Theorem 18.} Let $H \not\cong S_i$ be a bipartite graph of diameter three and girth six. Then for any connected graph G of order $n \geq 2$,

$$\dim_l(G \circ H) = n \cdot \delta_H.$$

\textit{Proof.} By Lemma 17 we know that the vertex of K_1 belongs to every local metric basis for $K_1 + H$, by Lemmas 13 and 15 we have $\dim_l(K_1 + H) = \delta_H + 1$ and by Theorem 4 (ii) we conclude $\dim_l(G \circ H) = n \cdot \delta_H$. \hfill \qed

Let $\pi = (P, L)$ be a finite non-degenerate projective plane of order q, where P is the set of points and L is the set of lines. Given two sets $P' \subset P$ and $L' \subset L$, we say that $P' \cup L'$ satisfies the property G, if for any point p_0 and any line l_0 such that $p_0 \in l_0$ we have

- there exists $p \in P'$ such that $p \in l_0$, or
- there exists $l \in L'$ such that $p_o \in l$.

We define $\Upsilon(\pi) = \min\{|P' \cup L'| \text{ such that } P' \cup L' \text{ satisfies the property } G\}$.

We have that if H is the incidence graph of π, then a set $P' \cup L'$ satisfies the property G if and only if $P' \cup L' \cup \{v\}$ is a local metric generator for $\langle v \rangle + H$. Therefore, according to Lemmas 13, 15 and 17 we conclude

$$\Upsilon(\pi) = \delta_H = q.$$

Note that if $P' \cup L'$ satisfies the property G and its cardinality is the minimum among all the sets satisfying this property, then either $P' = \emptyset$ and L' is the set of lines incident to one point or $L' = \emptyset$ and P' is the set composed by all the points laying on one line.

\subsection*{2.2.2 The minimum value of $\dim_l(G \circ H)$ when H is a bipartite graph of radius three}

As a direct consequence of Theorems 4 and 12 we derive the following result.

\textbf{Remark 19.} For any connected graph H of radius $r(H) \geq 3$ and any connected graph G of order $n \geq 2$,

$$\dim_l(G \circ H) \geq 2n.$$

In this section we study the limit case of the above bound for the case where H is bipartite.

\textbf{Lemma 20.} If H is a graph of radius three and $\dim_l(K_1 + H) = 2$, then the vertex of K_1 does not belong to any local metric basis for $K_1 + H$.

\textit{Proof.} Let $\{a, b\}$ be a local metric basis for $\langle v \rangle + H$. Since $r(H) = 3$, no vertex of H distinguishes every pair of adjacent vertices of H. Thus, $a \neq v$ and $b \neq v$. \hfill \qed

\textbf{Theorem 21.} Let $H = (U_1, U_2, E)$ be a bipartite graph of radius three and let G be a connected graph of order n. Then $\dim_l(G \circ H) = 2n$ if and only if $\dim_l(K_1 + H) = 2$ or for some $i \in \{1, 2\}$, there exist $a, b \in U_i$ such that $N_H(a) \cup N_H(b) = U_j$, where $j \in \{1, 2\} - \{i\}$.

10
Proof. By Theorem 4 we know that \(\dim_l(G \odot H) = 2n \) if and only if either \(\dim_l(\langle v \rangle + H) = 2 \) and \(v \) does not belong to any local metric basis for \(\langle v \rangle + H \) or \(\dim_l(\langle v \rangle + H) = 3 \) and there exists a local metric basis \(B \) of \(\langle v \rangle + H \) such that \(v \in B \).

If \(\dim_l(\langle v \rangle + H) = 2 \), then we are done (note that by Lemma 20 we have that \(v \) does not belong to any local metric basis for \(\langle v \rangle + H \)).

Let \(B = \{a, b, v\} \) be a local metric basis of \(\langle v \rangle + H \). Since \(v \in B \), we have \(N_H(a) \cap N_H(b) \neq \emptyset \). So, \(a \) and \(b \) must belong to the same color class, set \(a, b \in U_1 \). Hence, if there exists \(y \in U_2 \setminus (N_H(a) \cup N_H(b)) \), then for every \(x \in N_H(y) \), the pair \(x, y \) is distinguished by \(a \) or by \(b \). So, \(\{a, b, v\} \) is a local metric basis for \(\langle v \rangle + H \) and, as a consequence, \(\dim_l(\langle v \rangle + H) = 2 \) or \(\{a, b, v\} \) is a local metric basis of \(\langle v \rangle + H \).

Conversely, if there exists \(a, b \in U_i \) such that \(N_H(a) \cup N_H(b) = U_j \), where \(j \in \{1, 2\} \setminus \{i\} \), then for every \(y \in U_j \) and \(x \in N_H(y) \), the pair \(x, y \) is distinguished by \(a \) or by \(b \). Hence, \(\{a, b, v\} \) is a local metric basis of \(\langle v \rangle + H \). Therefore, either \(\dim_l(\langle v \rangle + H) = 2 \) or \(\{a, b, v\} \) is a local metric basis of \(\langle v \rangle + H \).

Consider the following decision problem. The input is an arbitrary bipartite graph \(H = (U_1 \cup U_2, E) \) of radius three. The problem consists in deciding whether \(H \) satisfies \(\dim_l(K_1 + H) = 2 \), or not. According to the next remark we deduce that the time complexity of this decision problem is at most \(O(|U_1|^2|U_2|^2) \). Although this remark is straightforward, we include the proof for completeness.

Remark 22. Let \(H = (U_1, U_2, E) \) be a bipartite graph of radius three. Consider the following statements:

(i) For some \(i \in \{1, 2\} \), there exist \(a, b \in U_i \) such that \(\{N_H(a), N_H(b)\} \) is a partition of \(U_j \), where \(j \in \{1, 2\} \setminus \{i\} \).

(ii) There exist two vertices \(a \in U_1 \) and \(b \in U_2 \) such that for every edge \(xy \in E \), where \(x \in U_1 \) and \(y \in U_2 \), it follows \(y \in N_H(a) \) or \(x \in N_H(b) \).

Then \(\dim_l(K_1 + H) = 2 \) if and only if (i) or (ii) holds.

Proof. We first note that since \(K_1 + H \) is not bipartite, Theorem 1 leads to \(\dim_l(K_1 + H) \geq 2 \).

(Sufficiency) If (i) holds, then \(\{a, b\} \supset U_j \) and \(N_H(a) \cap N_H(b) = \emptyset \). Hence, \(\{a, b\} \) is a local metric basis of \(K_1 + H \) and, as a consequence, \(\dim_l(K_1 + H) = 2 \).

Now, if (ii) holds, it is straightforward to see that \(\{a, b\} \) is a local metric basis of \(K_1 + H \) and, as a consequence, \(\dim_l(K_1 + H) = 2 \).

(Necessity) Let \(\{a, b\} \) be a local metric basis for \(\langle v \rangle + H \). By Lemma 20 we know that \(v \notin \{a, b\} \). Then we have two possibilities.

1. \(a \) and \(b \) belong to the same color class of \(H \), say \(a, b \in U_1 \). Since for every \(x \in V(H) \), the pair \(x, v \) must be distinguished by \(a \) or by \(b \), we conclude that \(N_H(a) \cap N_H(b) = \emptyset \).

 Also, since every pair of adjacent vertices \(x \in U_1 \) and \(y \in U_2 \) must be distinguished by \(a \) or by \(b \), we conclude that \(y \sim a \) or \(y \sim b \) and, as a result, \(\{a, b\} \supset U_2 \). Hence, we conclude that \(\{N_H(a), N_H(b)\} \) is a partition of \(U_2 \).

2. \(a \) and \(b \) belong to different color classes of \(H \), say \(a \in U_1 \) and \(b \in U_2 \). Since \(\{a, b\} \) is a local metric basis for \(\langle v \rangle + H \), for every edge \(xy \in E \), where \(x \in U_1 \) and \(y \in U_2 \), it follows \(y \in N_H(a) \) or \(x \in N_H(b) \).
Note that if \(H = (U_1 \cup U_2, E) \) is a bipartite graph of diameter \(D(H) = 3 \), then for any \(i \in \{1, 2\} \) and \(x, y \in U_i \) we have \(N_H(x) \cap N_H(y) \neq \emptyset \). Hence, we deduce the following consequence of Remark 22.

Corollary 23. Let \(H \) be a bipartite graph where \(D(H) = r(H) = 3 \). If \(B = \{a, b\} \) is a local metric basis for \(K_1 + H \), the \(a \) and \(b \) belong to different color classes.

Other direct consequence of Remark 22 is the following.

Corollary 24. Let \(H = (U_1, U_2, E) \) be a bipartite graph of radius three. If for some \(i \in \{1, 2\} \), there exist \(a \in U_i \) such that \(\delta_H(a) = |U_j| - 1 \), where \(j \in \{1, 2\} - \{i\} \), then \(\dim_l(K_1 + H) = 2 \).

2.2.3 Closed formulae for \(\dim_l(G \odot H) \) when \(H \) is a tree of radius three

In order to study the particular case when \(H \) is a tree of radius three, we introduce the following additional notation. Let \(T \) be a tree of radius three. For the particular case when \(C(T) = \{u\} \) we consider the forest \(F_u = \cup_{w \in N_T(u)} T_w \) composed of all the rooted trees \(T_w = (V_w, E_w) \), of root \(w \in N_T(u) \), obtained by removing the central vertex \(u \) from \(T \). The height of \(T_w \) is \(h_w = \max_{x \in V(T_w)} \{d(w, x)\} \). We denote by \(\varsigma(T) \) the number of trees in \(F_u \) with \(h_w \) equal to two, i.e., \(\varsigma(T) = |S(T)| \), where

\[
S(T) = \{w \in N_T(u) : h_w = 2\}.
\]

Note that if \(h_w \neq 1 \), for every \(w \in N_T(u) \), then \(\varsigma(T) = \delta'(T) \). So, as the following result shows, the bound \(\dim_l(G \odot T) \leq n \cdot \delta'(T) \) is tight.

Theorem 25. Let \(T \) be a tree of radius three and center \(C(T) \). The following assertion hold for any connected graph \(G \) of order \(n \geq 2 \).

(i) If \(|C(T)| = 2 \), then \(\dim_l(G \odot T) = 2n \)

(ii) If \(C(T) = \{u\} \), then

\[
\dim_l(G \odot T) = \begin{cases}
n \cdot (\varsigma(T) + 1), & \text{if there exists } w \in N_T(u) \text{ such that } h_w = 1, \\
n \cdot \varsigma(T), & \text{otherwise.}
\end{cases}
\]

Proof. It is well-known that the center of a tree consists of either a single vertex or two adjacent vertices.

We first consider the case where \(C(T) \) consists of two adjacent vertices, say \(C(T) = \{u', u''\} \). Note that in this case, if we remove the edge \(\{u', u''\} \) from \(T \), we obtain two rooted trees \(T' = (V', E') \) and \(T'' = (V'', E'') \), with roots \(u' \) and \(u'' \), respectively, where the distance from the root to the leaves is at most two. Hence, in \(K_1 + T \) every pair of adjacent vertices \(x, y \in V' \) is distinguished by \(u' \) and every pair of adjacent vertices \(x, y \in V'' \) is distinguished by \(u'' \). Also, for every \(x \in V' - \{u'\} \) the pair \(v, x \) is distinguished by \(u'' \) and for every \(x \in V'' - \{u''\} \), the pair \(v, x \) is distinguished by \(u' \), where \(v \) is the vertex of \(K_1 \). So, \(C(T) \) is a local metric generator for \(K_1 + T \). Hence, \(\dim_l(K_1 + T) \leq 2 \) and, since \(K_1 + T \) is not bipartite, by Theorem 1 we conclude that \(\dim_l(K_1 + T) = 2 \). Now, in this case, if the vertex of \(K_1 \) belongs to a local metric basis for \(K_1 + T \), then there exists \(z \in V(T) \) such that \(z \) distinguishes any pair of adjacent vertices \(x, y \in V(T) \), and as a consequence \(r(T) \leq 2 \), which is a contradiction. Thus, we conclude that the vertex of \(K_1 \) does not belong to any
local metric basis for $K_1 + T$. Therefore, as a consequence of Theorem 4 (i) we obtain $\dim_d(G \odot T) = 2n$.

Now let us consider the case where the center of T consists of a single vertex, say $C(T) = \{u\}$. Let B be a local metric basis for $K_1 + T$. We first note that for every rooted tree $T_w = (V_w, E_w)$ of height two we have $|B \cap V_w| = 1$, due to the fact that in $K_1 + T$ the vertex $w \in N_T(u)$ distinguishes every pair of adjacent vertices $x, y \in V_w$ and no vertex of $V(K_1 + T) - V_w$ distinguishes a pair of adjacent vertices where one vertex is a leaf. Hence, $\dim_d(K_1 + T) \geq \varsigma(T)$. Now we differentiate the following cases.

Case 1. There exists $w \in N_T(u)$ such that $h_w = 1$. In this case, the subgraph of T induced by the set $X = \cup_{h_w \leq 1} V_w \cup \{u\}$ is a tree of root u and height two. Hence, as above we conclude that $|B \cap X| = 1$. So, $\dim_d(K_1 + T) \geq \varsigma(T) + 1$. In order to show that the set $A = \{u\} \cup S(T)$ is a local metric basis for $K_1 + T$ we only need to observe that $N_T(w) \cap N_T(u) = \emptyset$ and, as a consequence, for every $x \in V(T)$ the pair x, v is distinguished by some $z \in A$. Thus, $\dim_d(K_1 \odot T) = \varsigma(T) + 1$.

Moreover, since for every metric basis A of $K_1 + T$ we have $|A \cap X| = 1$ and for every rooted tree $T_w = (V_w, E_w)$ of height two, $|A \cap V_w| = 1$, we conclude that the vertex of K_1 does not belong to any local metric basis for $K_1 + T$. Therefore, as a consequence of Theorem 4 (i) we obtain $\dim_d(G \odot T) = n(\varsigma(T) + 1)$.

Case 2. For every $w \in N_T(u)$, $h_w \neq 1$. In this case we define

$$\varphi(T_w) = |\{z \in N_{T_w}(w) : \delta_T(z) \geq 2\}|.$$

Suppose there exists $w_i \in N_T(u)$ such that $\varphi(T_{w_i}) = 1$. With this assumption we define

$$A' = \{z\} \cup S(T) - \{w_i\},$$

where $z \in V_{w_i}$ and $\delta_T(z) \geq 2$. Note that every pair of adjacent vertices $x, y \in \{u\} \cup V_{w_i}$ is distinguished by z. So, by analogy to Case 1 we show that A' is a local metric basis for $K_1 + T$ and the vertex of K_1 does not belong to any local metric basis for $K_1 + T$. Therefore, as a consequence of Theorem 4 (i) we obtain $\dim_d(G \odot T) = n \cdot \varsigma(T)$.

On the other hand, if for every $w \in S(T)$ it follows $\varphi(T_w) \geq 2$, then w is the only vertex of V_w which distinguishes every pair of adjacent vertices $x, y \in V_w$. Thus, in such a case $S(T)$ is a subset of any local metric basis for $K_1 + T$ and, as a consequence, the only two local metric basis for $K_1 + T$ are $\{u\} \cup S(T)$ and $\{v\} \cup S(T)$. Therefore, as a consequence of Theorem 4 (ii) we obtain $\dim_d(G \odot T) = n \cdot \varsigma(T)$.

References

[1] R. Bailey, K. Meagher, On the metric dimension of grassmann graphs, Discrete Mathematics & Theoretical Computer Science 13 (2011) 97–104.

[2] J. A. Bondy, U. S. R. Murty, Graph theory, vol. 244 of Graduate Texts in Mathematics, Springer, New York, 2008.

URL http://dx.doi.org/10.1007/978-1-84628-970-5

[3] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs, Mathematica Bohemica 128 (1) (2003) 25–36.

URL http://mb.math.cas.cz/mb128-1/3.html
[4] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood., On the metric dimension of cartesian product of graphs, SIAM Journal in Discrete Mathematics 21 (2) (2007) 423–441.
URL http://epubs.siam.org/doi/abs/10.1137/050641867

[5] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (1-3) (2000) 99–113.
URL http://dx.doi.org/10.1016/S0166-218X(00)00198-0

[6] G. Chartrand, V. Saenpholphat, P. Zhang, The independent resolving number of a graph, Mathematica Bohemica 128 (4) (2003) 379–393.
URL http://mb.math.cas.cz/mb128-4/4.html

[7] M. Feng, K. Wang, On the metric dimension of bilinear forms graphs, Discrete Mathematics 312 (6) (2012) 1266 – 1268.
URL http://www.sciencedirect.com/science/article/pii/S0012365X11005279

[8] J. Guo, K. Wang, F. Li, Metric dimension of some distance-regular graphs, Journal of Combinatorial Optimization (2012) 1–8.
URL http://dx.doi.org/10.1007/s10878-012-9459-x

[9] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.
URL http://www.ams.org/mathscinet-getitem?mr=0457289

[10] T. W. Haynes, M. A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (8) (2006) 1293–1300.
URL http://www.sciencedirect.com/science/article/pii/S0166218X06000035

[11] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics 3 (2) (1993) 203–236, pMID: 8220404.
URL http://www.tandfonline.com/doi/abs/10.1080/10543409309308835060

[12] M. A. Johnson, Browsable structure-activity datasets, in: R. Carbó-Dorca, P. Mezey (eds.), Advances in Molecular Similarity, JAI Press Inc, Stamford, Connecticut, 1998, pp. 153–170.
URL http://books.google.es/books?id=1vvMsHXd2AsC

[13] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (1996) 217–229.
URL http://www.utdallas.edu/~rbk/papers/beacons.pdf

[14] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1) (1984) 113–121.
URL http://www.sciencedirect.com/science/article/pii/0734189X84900513

[15] F. Okamoto, B. Phinezy, P. Zhang, The local metric dimension of a graph, Mathematica Bohemica 135 (3) (2010) 239–255.
URL http://dml.cz/dmlcz/140702
[16] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 2004 (38) (2004) 1997–2017. URL http://www.hindawi.com/journals/ijmms/2004/247096/abs/

[17] A. Sebő, E. Tannier, On metric generators of graphs, Mathematics of Operations Research 29 (2) (2004) 383–393. URL http://dx.doi.org/10.1287/moor.1030.0070

[18] P. J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549–559. URL http://130.203.133.150/showciting?cid=5100917

[19] I. G. Yero, D. Kuziak, J. A. Rodríguez-Velázquez, On the metric dimension of corona product graphs, Computers & Mathematics with Applications 61 (9) (2011) 2793–2798. URL http://www.sciencedirect.com/science/article/pii/S0898122111002094