Prospects of observing pulsed radiation from gamma-ray pulsars with H.E.S.S.

O. C. de Jager1, A. Konopelko2, B.C. Raubenheimer1 and B. Visser1

1Unit for Space Physics, Potchefstroom University, Potchefstroom, 2520, South Africa
2Max Planck Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany

Abstract. Observations and theoretical studies have demonstrated that the pulsed spectra of all gamma-ray pulsars terminate at energies below a few hundred GeV. In most cases we expect this cutoff energy E_o to be around 10 GeV. Only with next-generation ground-based γ-ray telescopes, which are expected to have non-zero trigger probabilities near 10 GeV, can we expect to detect pulsations. The large γ-ray fluxes below E_o, together with the associated sharp pulse profiles, compensate for the lack of imaging capability near threshold. For H.E.S.S. we find that the pulsed component of PSR B1706-44 should be detectable near threshold, whereas the unidentified GeV EGRET sources should be detectable if the superexponential cutoff energy is larger than ~ 30 GeV for relatively hard pulsar photon spectra ($\sim E^{-1.5}$).

A Introduction

Whereas gamma-ray pulsars are known to count amongst the brightest sources in the 1 - 30 GeV range (Lamb & Macomb, 1997), only their plerions, supernova shells and extragalactic sources appear to be visible at TeV energies. This is not unexpected, since pulsed γ-rays are known to be created in strong magnetic fields and magnetic pair production results in a superexponential cutoff above a characteristic energy E_o. Simulations of pair cascades have shown that E_o is usually in the 10 GeV region (Daugherty & Harding, 1996), but this cutoff depends on several parameters, such as the altitude of γ-ray production above the polar cap, the observer’s viewing angle relative to the spin axis, and the magnetic inclination angle relative to the spin axis. A γ-ray/e$^+/-$ cascade develops and those photons which escape pair creation (with $E < E_o$) are observable, resulting in a pulsed spectrum which is typically harder than E^{-2} for $E < E_o$. Based on this consideration, Nel & de Jager (1995) modelled the high energy γ-ray pulsed spectra of pulsars as

\begin{equation}
\frac{dN_\gamma}{dE} = k(E/E_n)^{-g} \exp(-(E/E_o)^b).
\end{equation}
Whereas pulsar photon spectral indices between $g = 1.4$ and 2.1 are observed, harder spectra are theoretically possible (A.K. Harding, 2000, personal communication to O.C. de Jager). The constant k represents the monochromatic flux at the normalising energy $E_n \ll E_o$. We will normalise spectra at $E_n = 1$ GeV.

In the case of the outergap model for pulsars (Cheng, Ho, & Ruderman 1996), γ-ray production is expected to occur near the pulsar light cylinder, and the cutoff is expected to result from energetics arguments, rather than from magnetic pair production. In this case a larger E_o may be observable. Ground-based TeV γ-ray observations however provide firm upper limits on E_o. (Nel et al. (1993) gave a detailed discussion on this topic; see also Catanese & Weekes 1999.)

B Gamma-Ray Pulsar Spectral Parameters above 1 GeV

Table 1 shows the parameter results of a fit to the total pulsed spectra of the six brightest EGRET γ-ray pulsars. These spectral parameters reproduce the EGRET flux up to 30 GeV, and are consistent with the TeV pulsed limits. They also reproduce the GeV source catalog flux (Lamb & Macomb 1997). In the case of Vela and Geminga the cutoffs are well defined by the EGRET data and the errors on E_o are relatively small ($\sim 20\%$). In the case of Crab and PSR B1055-52, some evidence of a turnover is seen in the spectra above 10 GeV, although it is difficult to obtain reliable measures of E_o and b. In the case of PSR B1951+32 and PSR B1706-44 we see no evidence of a turnover up to 30 GeV, and a minimum value of $E_o = 40$ GeV (consistent with EGRET) was selected. This value is conservative with respect to the H.E.S.S. response. For those cases where E_o is not well defined, we have selected $b = 2$ (a value typical for a spectrum attenuated by magnetic pair production) to give conservative H.E.S.S. rates.

Using the H.E.S.S. collection area vs. energy $A(E)$ for any 2-telescope triggers (Konopelko 2000), we were able to calculate the expected rates R_p for pulsed γ-rays by integrating the product of $A(E)dN_\gamma/dE$ over all energies. The results for the six EGRET pulsars are shown in Table 1 (indicated by “R_p”). It is clear that the rate for PSR B1706-44 is the largest of all pulsars if E_o is not smaller than 40 GeV.

C H.E.S.S. Sensitivity for Pulsed γ-Ray Mission

It was shown by de Jager, Swanepoel & Raubenheimer (1987) and de Jager (1994) that the basic scaling parameter for any test for uniformity on the circle (given a test period) is given by $x = p\sqrt{n}$, where $p = R_p/(R_b + R_p)$ is the pulsed fraction, with R_p the pulsed rate and R_b the background rate. The total number of events is given by $N = (R_p + R_b)T$, with T the observation time. In this case the test statistic for uniformity for the general Beran (1969) class of tests is given by $B = x^2\Phi_B + c$, where Φ_B is derived from the intrinsic pulse profile, and c is the noise term. It was shown by Thompson (2000) that the pulse profiles above 5 GeV consist mostly of a single narrow peak, and it can be shown that $\Phi_B = 5.8$ for a 5%
TABLE 1. Gamma-ray spectral parameters above 1 GeV and corresponding H.E.S.S. rates and observation time for detection. Spectral references from Macomb & Gehrels (1999).

Object	$k \times 10^{-8}$	g	E_o (GeV)	b	$F(>1$ GeV) (cm$^{-2}$s$^{-1}$)	R_p (hour$^{-1}$)	T (10-hour days)
Crab	24.0	2.08	30	2	22	100	3
Vela	138	1.62	8.0	1.7	148	8	400
Geminga	73.0	1.42	5.0	2.2	76	$\ll 1$	-
PSR B1951+32	3.80	1.74	40	2	4.9	180	1
PSR B1055-52	4.00	1.80	20	2	4.5	8	420
PSR B1706-44	20.5	2.10	40	2	20	240	1

FWHM (single peak), if B is taken as the Z_m^2 test statistic with $m = 10$ harmonics (see e.g. de Jager, Swanepoel & Raubenheimer 1987). In this case $c = 20$.

A value of $x = 3$ would introduce a $\sim 3\sigma$ DC excess in a spatial analysis, but assuming that we have no imaging capability for E_o near the detection threshold, we have to rely on a timing analysis, which would give $Z_{10}^2 \sim 73$, or a chance probability of 7×10^{-8} if the period is known, but 0.03 after multiplying with the number of trials for a 6 hour observation if searching for periods as short as 50 ms. A confirming run (e.g. on a second night) should always be made to see if one of the few most significant periods from the previous run have repeated itself - in this case at the $\sim 10^{-7}$ level.

Using an additional topological software trigger, and selecting events by image size and angular shape, we were able to reject $\sim 99.2\%$ of the triggered background events, while retaining 95% of the source events. From a total background rate of 1 kHz (Konopelko 2000), we get $R_b = 8$ Hz. This allows us to calculate detection sensitivities for periodicities:

From the GeV source catalogue, we find that the galactic unidentified EGRET source (some may be pulsars - Lamb & Macomb 1997) fluxes range from $F(>1$ GeV) = 1 to 25×10^{-8} cm$^{-2}$s$^{-1}$. Figures 1 and 2 give the H.E.S.S. sensitivity for a wide range of possible pulsar photon spectral indices between 1 and 2, and requiring a marginal detection within $T = 3$ to 6 hours (assuming a minimum “DC significance” of $x = 3$): Figures 1 and 2 respectively show E_o and T vs k, with the latter within the EGRET range as discussed above. Table 1 also shows T calculated in the same way, but assuming the spectral parameters of individual pulsars.

D Conclusions

It is clear that H.E.S.S. can only detect pulsars if E_o exceeds ~ 30 GeV. Even weak EGRET sources may be detectable if the spectra are as hard as E^{-1}, provided that E_o exceeds the levels prescribed by Figure 1. PSR B1706-44 (for which E_o is known to be at least as large as ~ 40 GeV) should be a H.E.S.S. candidate and
FIGURE 1. Figure 1 (Left panel): Parameter space (E_o vs k) for the detection of unknown pulsars within one night with H.E.S.S. using a timing analysis approach, and assuming $x = 3$. The three curves represent (from bottom to top) photon spectral indices of 1, 1.5 and 2.0. The solid line is for 3 hours of continuous observation, whereas the dashed lines (for the same set of spectral indices) represent a six-hour run. Figure 2 (right panel): The observation time required to detect a pulsar as a function of k for a photon index of 1.5 and E_o as shown (also for $x = 3$).

other similar pulsars (such as PSR B1951+32) may be similarly detectable within one night. If one cannot detect a clear signal within a single night, an exact timing solution would be required to do a coherent analysis over a long period of time.

Whereas we have addressed the conservative polar cap model, any outergap component is expected to give a large value for E_o (which is no challenge for H.E.S.S.), but k may be small for such pulsars. This will be treated in a separate paper.

References

Beran, R.J. 1969, Ann. Math. Statist., 40, 1196.
Catanese, M. & Weekes, T.C. 1999, PASP,111(764), 1193.
Cheng, K.S., Ho, C. & Ruderman, M.A. 1986, ApJ, 300, 500.
Daugherty, J.K. & Harding, A.K. 1996, ApJ, 458, 278.
de Jager, O.C., Swanepoel, J.W.H. & Raubenheimer, B.C. 1986, A&A, 170, 187.
de Jager, O.C. 1994, ApJ, 436, 239.
Konopelko, A. 2000, these proceedings.
Lamb, R.C. & Macomb, D.J., 1997, ApJ, 488, 872.
Macomb, D.J. & Gehrels, N. 1999, ApJ Suppl, 120, 335.
Nel, H.I. et al. 1993, ApJ, 418, 836.
Nel, H.I. & de Jager, O.C. 1995, Astr. Space Science, 230, 299.
Thompson, D.J. 2000, these proceedings.