STRUCTURE CONSTANTS IN EQUIVARIANT ORIENTED COHOMOLOGY OF FLAG VARIETIES

REBECCA GOLDIN, CHANGLONG ZHONG

ABSTRACT. We introduce generalized Demazure operators for the equivariant oriented cohomology of the flag variety, which have specializations to various Demazure operators and Demazure-Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of the geometric basis of the equivariant oriented cohomology given by certain Bott-Samelson classes, we use these operators to obtain formulas for the structure constants arising in different bases. Specializing to divided difference operators and Demazure operators in singular cohomology and K-theory, we recover the formulas for structure constants of Schubert classes obtained in Goldin-Knutson [11]. Two specific specializations result in formulas for the structure constants for cohomological and K-theoretic stable bases as well; as a corollary we reproduce a formula for the structure constants of the Segre-Schwartz-MacPherson basis previously obtained by Su [21]. Our methods involve the study of the formal affine Demazure algebra, providing a purely algebraic proof of these results.

1. Introduction

Flag varieties G/B are among the most studied varieties in topology and algebraic geometry. They have a cellular decomposition by Schubert cells, whose closures are called Schubert varieties. Schubert varieties are invariant under a torus action and, consequently, their torus-equivariant singular cohomology is spanned as a module by the Schubert classes.

Other classes associated to Schubert varieties in the equivariant singular cohomology H^*_T and equivariant K-theory K_T of the flag variety G/B include Chern-Schwartz-MacPherson (CSM) classes and Motivic Chern (mC) classes, studied in [1, 2, 17, 19, 18, 20, 22]. These classes coincide with the corresponding stable bases of Maulik-Okounkov [16] for H^*_T and K_T, of the Springer resolutions. Due to this fact, we always refer to the CSM classes as the cohomological stable basis, and to the mC classes as the K-theoretic stable basis. These classes behave like Schubert classes in their corresponding theories. Roughly speaking, Schubert classes in $H^*_T(G/B)$ and $K_T(G/B)$ are constructed by Demazure operators (also called divided difference operators), and elements of the stable bases are constructed by Demazure-Lusztig operators. All these operators generate various Hecke-type algebras.

Structure constants of Schubert classes are central objects in Schubert calculus, appearing in important questions of representation theory and combinatorics. In [11], the first author and Knutson obtain formulas for the structure constants in $H^*_T(G/B)$ and $K_T(G/B)$ using geometric properties of Bott-Samelson resolutions.
of Schubert varieties. They pull-back the Schubert classes to the equivariant cohomology (or equivariant K-theory) of Bott-Samelson variety, apply the cup product in this variety, then push-forward back to G/B. In [21], Su generalized this method to the so-called Segre-Schwartz-MacPherson (SSM) classes, a variant form of CSM classes.

We are interested in generalized cohomology theories, called oriented cohomology theories, defined by Levine and Morel [15]. These cohomologies are contravariant functors defined on the category of smooth projective varieties over a field k of characteristic 0 to the category of commutative rings, such that for proper maps, there is a push-forward map on cohomology groups. Examples include Chow rings (singular cohomology), K-theory and algebraic cobordism. Chern classes are defined for each oriented cohomology theory b, and there is an associated formal group law F defined over $R = b(pt)$. The machinery works equivariantly as well, resulting in a cohomology theory b_T with an associated formal group law F defined over $R = b_T(pt)$. For flag varieties, generalizing work of Kostant and Kumar [13, 14] on equivariant singular cohomology and equivariant K-theory of flag varieties, the ring $b_T(G/B)$ has a nice algebraic model, constructed in Hoffmann et al. in [12], and studied in [6, 7, 5] by Calmès, Zainoulline, and the second author. One can define the (formal) Demazure operators X_α associated to each simple root α. These operators generate a non-commutative algebra, called the formal affine Demazure algebra D_F. It is a free left $b_T(pt)$-module isomorphic to $b_T(G/B)$, together with a dual basis $\{X^I_w \mid w \in W\}$. Indeed, for equivariant Chow group/singular cohomology/K-theory, X^I_w coincides, up to various normalizations, to the Schubert class associated with w. Then $H^*_T(G/B)$ and $K_T(G/B)$ are achieved with the same module basis, and a restricted coefficient ring: a polynomial ring for $H^*_T(G/B)$ and Laurent polynomial ring for $K_T(G/B)$.

We notice that the product structure on D_F^T is obtained by dualizing the coproduct structure of D_F. It follows that the structure constants of the basis X^I_w may be deduced from the twisted Leibniz rule of the product $X_\beta w X_\gamma w \cdots X_\eta w$ for a reduced word $s_{\beta_1} \cdots s_{\beta_k}$ of $w \in W$. This is the main idea of the proof of Theorem 3.7, which implies the main result, Theorem 4.1. Specializing b_T to equivariant singular cohomology and equivariant K-theory, we recover the formulas of the first author and Knutson in [11].

In the case of $H^*_T(G/B)$ and $K_T(G/B)$, replacing the Demazure operators X_α by the Demazure-Lusztig operators T_α and τ_α, one obtains the stable bases for $H^*_T(G/B)$ and $K_T(G/B)$, respectively. Both the cohomology stable basis and the K-theory stable basis can be described in an analogous fashion to the story for Schubert classes. That is, the Demazure-Lusztig operators generate a degenerate affine Hecke algebra (for equivariant cohomology) and an affine Hecke algebra (for equivariant K-theory). The dual elements to products of these operators are essentially the cohomological/K-theoretic stable bases, so their respective twisted
Leibniz rules result in a formula for the structure constants of stable bases. For instance, for cohomology, we recover the formula of Su [21] (see Remark 6.6).

To work with the Demazure operators X_{α} and Demazure-Lusztig operators T_{α} at the same time, we define a general operator Z_{α} (see §3) in a ring containing D_F, which can be specialized to X_{α} and T_{α}. Our main results are Theorems 4.1 and 6.3, which state a formula for structure constants of the basis determined by Z_{α} and apply it to the cohomological stable basis.

The paper is organized as follows: In §2 we recall necessary notation introduced by the second author in [6, 7, 5]. We recall the definition of a Demazure element, the formal affine Demazure algebra, its dual, and relation with $h_T(G/B)$. In §3 we prove the twisted Leibniz rule for the operator Z_{α}, which is used to derive the structure constants of the basis Z_{I}^{*} determined by Z_{α}. In §4 we specialize our result to Demazure operators in singular cohomology and K-theory, and recover the formulas in [11]. In §6 we specialize our result to Demazure-Lusztig operators in singular cohomology, which, as a by-product, recovers the formula due to Su in [21]. In §7, we consider Demazure-Lusztig operators in K-theory and obtain a formula for the structure constants of the K-theoretic stable basis. In §8, for equivariant oriented cohomology, we generalize some results of Kostant-Kumar ([13, Proposition 4.32], [14, Lemma 2.25]) by relating our formula for structure constants with a restriction formula of Schubert classes.

Acknowledgments: The first author was partially supported by National Science Foundation grant DMS-2152312.
guarantees that the elements $x_\alpha, \alpha \in \Lambda$ defined in S below are non-zero-divisors. In particular, the Demazure operators X_α for simple roots α are well defined.

Let G be a split semi-simple linear algebraic group with maximal torus T and a Borel subgroup B. Let the associated root datum of G be $\Sigma \hookrightarrow \Lambda^\vee$, so Λ is the group of characters of T.

Let h be an oriented cohomology theory of Levine and Morel. Roughly speaking, it is a contravariant functor from the category of smooth projective varieties to the category of commutative rings such that there is a push-forward map for any proper map. The Chern classes of vector bundles are defined. Associated to Λ, both can be extended to the torus equivariant setting. We assume the equivariant cohomology theory h is Chern-complete over the point for T, that is, the ring $h_T(pt)$ is separated and complete with respect to the topology induced by the γ-filtration [5, Definition 2.2]. In particular, this includes the completed equivariant Chow ring, the completed equivariant K-theory and equivariant algebraic cobordism.

Let S be the formal group algebra defined in [4]:

$$S = R[[\Lambda]]_F := \frac{R[[x_\lambda | \lambda \in \Lambda]]}{J_F},$$

where J_F is the closure of the ideal generated by x_0 and $x_{\lambda+\mu} - F(x_\lambda, x_\mu)$, for all $\lambda, \mu \in \Lambda$. Indeed, if $\{t_1, ..., t_n\}$ is a basis of Λ, then S is (non-canonically) isomorphic to $R[[x_{t_1}, ..., x_{t_n}]]$. According to [5, §3], $S \cong h_T(pt)$ with x_λ corresponding to $c_1^h(L_\lambda)$ where L_λ is the line bundle associated to $\lambda \in \Lambda$. Since $x_{-\lambda}$ is the formal inverse of x_λ, i.e. $F(x_\lambda, x_{-\lambda}) = 0$ in S, we may write

$$x_{-\lambda} = -x_\lambda + \text{higher degree terms} \in S.$$

Define $Q := S[\frac{1}{x_\lambda} | \alpha \in \Sigma]$. We will frequently need the special element of Q given by $\kappa_\lambda := \frac{1}{x_\lambda} + \frac{1}{x_{-\lambda}}$. Note that κ_λ actually belongs to S. Note also that the action of W on Λ induces an action of W on S.

Example 2.1. *Two cases of the formal product appear widely in the literature [4, §2].*

1. If $F = F_a$ with $R = \mathbb{Z}$, then h is the singular cohomology/Chow groups, and $S \cong \text{Sym}_2(\Lambda)^\wedge$ (with $x_\lambda \mapsto \lambda$) is the completion of the polynomial ring at the augmentation ideal. In this case $x_{-\lambda} = -x_\lambda$ and $\kappa_\lambda = 0$.

2. If $F = F_m$ with $R = \mathbb{Z}$, then h is K-theory, and $S \cong \mathbb{Z}[\Lambda]^\wedge$ (with $x_\lambda \mapsto 1 - e^{-\lambda}$) is the completion of the Laurent polynomial ring at the augmentation ideal. In this case $x_{-\lambda} = \frac{x_\lambda}{x_\lambda - 1}$, and $\kappa_\lambda = 1$.

To obtain equivariant cohomology $H^*_\Gamma(X)$ and equivariant K-theory $K_\Gamma(X)$, we restrict the coefficient ring to $S^a = \text{Sym}[\Lambda]$ and $S^m = \mathbb{Z}[\Lambda]$, respectively.

2.1. The operator algebras Q_W and D_F

This paper is concerned with various divided difference operators acting on $h_T(G/B)$, the equivariant cohomology of G/B. To create an algebraic framework for these operators, following [6, 7]
we localize S at $\{x_\alpha\}$ to create an algebra out of this localization and the Weyl group, as follows.

Let S be the ring described in (1), and let $Q := S[\frac{1}{x_\alpha} | \alpha \in \Sigma]$. Define $Q_W := Q \times R[W]$, as a left Q-module with basis $\{\delta_w\}, w \in W$.

We shall see that Q_W acts on its dual space Q_W^*, which is identified with $Q \otimes_S \bigwedge^*_T(G/B)$, the cohomology of G/B with inverted Chern classes.

We impose a product on Q_W by

$$(p\delta_w)(p'\delta_{w'}) = pw(p')\delta_{ww'},$$

for all $p, p' \in Q$, and $w, w' \in W$,

using the natural W action on Q induced from that on Λ and extending linearly. Note that Q identified with $Q\delta_e$ is a subring of Q_W under this product, where $e \in W$ denotes the identity element of W. We routinely abuse notation and write δ_α for δ_{s_α}, and use $1 = \delta_e$ to denote the identity element of Q_W. The ring Q_W acts on Q by

$$p\delta_w \cdot p' = pw(p'),$$

for all $p, p' \in Q$.

The action of Q_W on Q induces a coproduct structure on Q_W as follows. Let

$$\eta = \sum_{w \in W} q_w \delta_w \in Q_W.$$ Then

$$\eta \cdot (pq) = \sum_{w} q_w w(pq) = \sum_{w} q_w w(p)w(q) = \sum_{w} q_w (\delta_w \cdot p)(\delta_w \cdot q).$$

This action factors through the coproduct $\Delta : Q_W \to Q_W \otimes_Q Q_W$

$$\Delta(\eta) = \sum_{w} q_w \Delta(\delta_w) = \sum_{w} q_w \delta_w \otimes \delta_w.$$ In other words, the coproduct structure on Q_W is induced from the Q_W-action on Q.

For any simple root α we, define the Demazure element X_α and the push-pull element Y_α in Q_W:

$$X_\alpha = \frac{1}{x_\alpha} (1 - \delta_\alpha) \quad \text{and} \quad Y_\alpha = \frac{1}{x_{-\alpha}} + \frac{1}{x_\alpha} \delta_\alpha.$$

We observe the relationship $Y_\alpha = \kappa_\alpha - X_\alpha$. In particular, if $F = F_\alpha$ (resp. $F = F_m$), then $Y_\alpha = -X_\alpha$ (resp. $Y_\alpha = 1 - X_\alpha$).

The way Q_W acts on Q implies that X_α acts in a fashion similar to the Demazure operator defined in [8] (and there denoted D_α). In particular, $X_\alpha \cdot S \subset S$ and, for any $r \in R, X_\alpha \cdot r = 0$ and $\delta_\alpha \cdot r = s_\alpha(r) = r$.

Let D_F be the R-subalgebra of Q_W

$$D_F = \langle S, X_{\alpha_1}, \ldots, X_{\alpha_m} \rangle$$
generated by S and the elements $X_\alpha \in Q_W$ for simple roots α, and call it the formal affine Demazure algebra. It is also generated by S and $\{Y_\alpha : \alpha \text{ simple}\}$. As a left S module, D_F is a also free with basis $\{X_{I_w}\}_{w \in W}$, or with basis $\{Y_{I_w}\}_{w \in W}$; see [6, Proposition 7.7].

Let $w = s_{i_1} \cdots s_{i_k}$ be a reduced word decomposition and $I_w = (i_1, \ldots, i_k)$ the corresponding sequence of reflections. Define

$$X_{I_w} = X_{\alpha_{i_1}} \cdots X_{\alpha_{i_k}} \quad \text{and} \quad Y_{I_w} = Y_{\alpha_{i_1}} \cdots Y_{\alpha_{i_k}}.$$ In particular, $X_{(i)} = X_{\alpha_i}$ and $Y_{(i)} = Y_{\alpha_i}$, though we eliminate parentheses when there is no confusion. We write $X_e := 1 \in Q_W$ to indicate X_I when I is the empty sequence.
The Demazure and push-pull elements have the following properties:

Lemma 2.2. [24, Proposition 3.2] Let \(\alpha \) and \(\beta \) be simple roots. The following identities hold in \(Q_W \):

1. \(X_\alpha^2 = \kappa_\alpha X_\alpha \), \(Y_\alpha^2 = \kappa_\alpha Y_\alpha \).
2. \(X_\alpha p = s_\alpha(p)X_\alpha + X_\alpha \cdot p \), \(p \in Q \).
3. If \((s_\alpha s_\beta)^2 = e\), then \(X_\alpha X_\beta = X_\beta X_\alpha \).
4. If \((s_\alpha s_\beta)^3 = e\), then \(X_\beta X_\alpha X_\beta - X_\alpha X_\beta X_\alpha = \kappa_{\alpha\beta} X_\alpha - \kappa_{\beta\alpha} X_\beta \), where
 \[
 \kappa_{\alpha\beta} = \frac{1}{x_{\alpha + \beta}} - \frac{1}{x_{\alpha + \beta x_{-\alpha}}} - \frac{1}{x_{\alpha x_{\beta}}},
 \]

 Furthermore, \(\kappa_{\alpha\beta} \in S \) by [12, Lemma 6.7].
5. Suppose \(s_\alpha s_\beta \) has order \(m \) with \(m = 4 \) or \(6 \), and \(I_w \) is a choice of reduced word for \(w \in W \). Then
 \[
 \frac{X_\alpha X_{\beta} X_{\alpha} \cdots - X_{\beta} X_{\alpha} X_{\beta} \cdots}{m} = \sum_{v \in W} c_{I_v} X_{I_v},
 \]
 where \(c_{I_v} = 0 \) if \(v \not\subseteq s_\alpha s_\beta \cdots \). Moreover, \(c_{I_v} = 0 \) if \(\ell(v) = m - 1 \) or \(v = e \).

Lemma 2.2.(4)-(5) imply that the operators \(X_\alpha \) (and similarly \(Y_\alpha \)) do not satisfy braid relations for general \(F \). For \(F = F_n \) or \(F = F_m \), they do; in these cases, the coefficients \(\kappa_{\alpha\beta} \) and \(c_{I_v} \) all vanish. In general, \(X_{I_w} \) and \(Y_{I_w} \) depend on the choice of \(I_w \) due to this failure of braid relations.

For the purposes of this paper, we fix a reduced sequence \(I_w \) of \(w \) for each \(w \in W \). While the specific coefficients and calculations regarding \(X_{I_w} \) and \(Y_{I_w} \) depend on this choice, statements regarding bases and ring phenomena do not.

By construction, \(\{\delta_v : v \in W\} \) form a basis of \(Q_W \) as a module over \(Q \). In [6], and extended in [7], the second author proves that \(\{X_{I_v} : v \in W\} \) and \(\{Y_{I_v} : v \in W\} \) also form bases of \(Q_W \) as a module over \(Q \), and that the change of basis matrix from \(\{X_{I_v}\} \) (or from \(\{Y_{I_v}\} \)) to \(\{\delta_v\} \) consists of elements of \(S \). In particular, \(\{\delta_v\} \) are elements of \(D_F \). The lower-triangularity of the change of bases matrices is expressed in the following lemma.

Lemma 2.3. [7, Lemma 3.2, Lemma 3.3] For each \(v \in W \), choose a reduced decomposition of \(v \) and let \(I_v \) be its corresponding sequence. There exist elements \(a_{I_{w,v}}^X \in Q \) for \(v \in W \), and \(b_{w,I_v}^X \in S \) such that

\[
X_{I_w} = \sum_{v \leq w} a_{I_{w,v}}^X \delta_v, \text{ and } \delta_w = \sum_{v \leq w} b_{w,I_v}^X X_{I_v}.
\]

Similarly, there exist \(a_{I_{w,v}}^Y \in Q \) and \(b_{w,I_v}^Y \in S \) such that

\[
Y_{I_w} = \sum_{v \leq w} a_{I_{w,v}}^Y \delta_v, \text{ and } \delta_w = \sum_{v \leq w} b_{w,I_v}^Y Y_{I_v}.
\]

Notice that nonzero coefficients \(b_{w,I_v}^X \) are elements of \(S \) with \(v \leq w \).

Example 2.4. Consider the root datum \(A_2 \), with

\[
W = \{e, s_1, s_2, s_1s_2, s_2s_1, w_0\},
\]
where \(w_0 \) is the longest element and \(s_i \) is the reflection corresponding to \(\alpha_i \) for \(i = 1, 2 \). We fix the reduced sequence \(I_{w_0} = (1, 2, 1) \) for \(w_0 \). For simplicity, let \(\alpha_{13} = \alpha_1 + \alpha_2 \). By direct computation,

\[
\begin{align*}
\delta_1 &= X_e, & \delta_{s_1 s_2} &= 1 - x_1X_{(1)} - x_{\alpha_{13}}X_{(1)} + x_{\alpha_1 x\alpha_{13}}X_{(1, 2)}, \\
\delta_1 &= 1 - x_{\alpha_1}X_{(1)}, & \delta_{s_2 s_1} &= 1 - x_{\alpha_2}X_{(2)} - x_{\alpha_{13}}X_{(1)} + x_{\alpha_1 x\alpha_{13}}X_{(2, 1)}, \\
\delta_2 &= 1 - x_{\alpha_2}X_{(2)}, & \delta_{w_0} &= 1 - x_{\alpha_{13}}X_{(2)} - (x_{\alpha_1} + x_{\alpha_2} - \kappa_{\alpha_1 x\alpha_{13}})X_{(1)} \\
&& & + x_{\alpha_1}x_{\alpha_{13}}X_{(1, 2)} - x_{\alpha_1 x\alpha_{13}}X_{I_{w_0}}.
\end{align*}
\]

2.2. The dual operator algebras. The dual \(Q^*_W \) module

\[Q^*_W = \text{Hom}_G(QW, Q) \cong \text{Hom}(W, Q), \]

contains a natural basis \(\{ f_w \}_{w \in W} \) dual to \(\{ \delta_w \}_{w \in W} \), defined by

\[\langle f_w, \delta_v \rangle = \begin{cases} 1 & \text{if } w = v; \\ 0 & \text{otherwise.} \end{cases} \]

One may think of \(Q^*_W \) as the \(T \)-equivariant oriented cohomology of \(W \) with the trivial \(T \) action, tensored with \(Q \). In particular,

\[Q^*_W = Q \otimes_S \mathfrak{h}_T(W) = Q \otimes_S \mathfrak{h}_T(G/B). \]

The module \(Q^*_W \) forms a ring with product \(f_w f_v = 1 \) if an only if \(w = v \), and 0 otherwise, extended linearly to all elements of \(Q^*_W \), and unity \(1 = \sum_{w \in W} f_w \). This product structure is equivalent to the one induced from the coproduct structure (see §1 below).

The ring \(QW \) acts on \(Q^*_W \) by

\[\langle z \cdot f, z' \rangle = \langle f, z' z \rangle, \quad \text{for all } z, z' \in QW, \ f \in Q^*_W. \]

In the bases \(\{ \delta_w \} \) of \(QW \) and \(\{ f_w \} \) of \(Q^*_W \), the action has explicit formulation

\[p \delta_w \cdot (q f_v) = q v w^{-1} (p) f_{v w^{-1}}, \quad \text{for all } p, q \in Q. \]

Denote

\[\text{pt}_w = \left(\prod_{\alpha < 0} x_{\alpha} \right) \cdot f_w = w \left(\prod_{\alpha < 0} x_{\alpha} \right) f_w \in Q^*_W. \]

Let \(D^*_F := \text{Hom}_S(D_F, S) \subset Q^*_W \) be the dual \(S \)-module to \(D_F \). It is proved in [7, Lemma 10.3] that \(\text{pt}_w \in D^*_F \). Let

\[\zeta^X_{I_{w}} = X_{I_{w}, w}, \quad \text{and} \]

\[\zeta^Y_{I_{w}} = Y_{I_{w}, w}. \]

Then \(\{ \zeta^X_{I_{w}} \} \) forms a basis of \(D^*_F \) over \(S \), as does \(\{ \zeta^Y_{I_{w}} \} \).

Finally, let \(\{ X^*_I \} \) (respectively \(\{ Y^*_I \} \)) be the bases dual to \(\{ X_I \} \) (resp. \(\{ Y_I \} \)) in \(D^*_F \), which are also \(Q \)-basis of \(Q^*_W \).

The classes \(X^*_I \) for each \(v \in W \) are determined by duality. Under the dual pairing,

\[\langle X^*_I, \delta_w \rangle = \langle X^*_I, \sum_{u \in W} b^X_{w, I_u} X_{I_u} \rangle = b^X_{w, I_v}. \]
Set $X_w^* = \sum_{u \in W} m_{I_w,u} f_u$, which implies
\[
\langle X_w^*, \delta_w \rangle = \langle \sum_{u \in W} m_{I_w,u} f_u, \delta_w \rangle = m_{I_w,w},
\]
and thus $X_w^* = \sum_{w \in W} b_{w,I_w} f_w$.

Example 2.5. Consider the root datum A_2, with $W = \{e, s_1, s_2, s_1 s_2, s_2 s_1, w_0\}$. Fix the reduced sequence $w_0 = s_1 s_2 s_1$. The calculations from Example 2.4 imply
\[
\begin{align*}
X_e^* &= 1 = \sum_{w \in W} f_w, & X_{(1,2)}^* &= x_{\alpha_1} x_{\alpha_3} (f_{s_1 s_2} + f_{w_0}) \\
X_{(1)}^* &= -x_{\alpha_1} (f_{s_1} + f_{s_2 s_1}) - x_{\alpha_1} s_{s_2 s_1} - y f_{w_0}, & X_{(2,1)}^* &= x_{\alpha_2} x_{\alpha_3} (f_{s_2 s_1} + f_{w_0}) \\
X_{(2)}^* &= -x_{\alpha_2} (f_{s_2} + f_{s_2 s_1}) - x_{\alpha_3} (f_{s_1 s_2} + f_{w_0}), & X_{I_w^0}^* &= -x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} f_{w_0},
\end{align*}
\]
where $y = x_{\alpha_1} + x_{\alpha_2} - \kappa_{\alpha_1} x_{\alpha_1} x_{\alpha_2}$. In case $F = F_a$ or F_m, we have $y = x_{\alpha_1}$.

The following proposition explains the relationship between the algebraic construction above and equivariant oriented cohomology of G/B.

For each reduced sequence I_w, let $X_w \to G/B$ denote the Bott-Samelson resolution. The push-forward in \mathfrak{h}_T of the fundamental class along this resolution is called the Bott-Samelson class of I_w, which we denote by η_{I_w}. Define a map
\[
\Phi : D_F^\ast \to \mathfrak{h}_T(G/B)
\]
given by $\Phi(\zeta_I^Y) = \eta_{I_w}$ and $\Phi(1) = [G/B]$, the fundamental class of G/B, and extended as a module over S.

Proposition 2.6. The isomorphism Φ satisfies the following properties:

1. [5, Theorem 8.2, Lemma 8.8] The map Φ is a functorial isomorphism.
2. [7, Theorem 14.7] The basis $\{\Phi(X_{I_w}^*) : w \in W\}$ (resp. $\{\Phi(Y_{I_w}^*) : w \in W\}$) is dual to $\Phi(\zeta_I^Y)$ (resp. $\Phi(\zeta_I^Y)$) via the nondegenerate dual pairing on $\mathfrak{h}_T(G/B)$ given by multiplying and pushing forward to a point.
3. [5, Corollary 6.4] Let $i_w : wB \to G/B$ be the inclusion of the T-fixed point corresponding to $w \in W$, and $(i_w)_* : \mathfrak{h}_T(wB) \to \mathfrak{h}_T(G/B)$ be the pushforward map. Then $\Phi(pt_w) = (i_w)_*(1)$.
4. There is a commutative diagram
\[
\begin{array}{ccc}
D_F^\ast & \xrightarrow{\cong} & \mathfrak{h}_T(G/B) \\
\oplus_{w \in W} i_w & \xrightarrow{\cong} & Q \otimes_S \mathfrak{h}_T(W),
\end{array}
\]
where the top horizontal map is the embedding of the S-module into the Q-module Q_w.

By specializing the formal group law to F_a or F_m, respectively, and restricting S to $R[A]/J_F$, we obtain a map $\Phi^H : D_F^\ast \to H_T^2(G/B)$ or $\Phi^K : D_F^\ast \to K_T(G/B)$ to the equivariant cohomology or equivariant K-theory. The map remains an isomorphism over the corresponding module. From now on we will not distinguish between D_F^\ast and $\mathfrak{h}_T(G/B)$.

Example 2.7. Let $X(w) = BwB/B$ be the Schubert variety and $Y(w) = B^{-w}B/B$ be the opposite Schubert variety. For $H^*_T(G/B)$ (with $F = F_\alpha$) or $K_T(G/B)$ (with $F = F_m$), we write w for I_w since X_{I_w} and Y_{I_w} are independent of the reduced sequence.

1. [11, §1.2] For $H^*_T(G/B)$, $\zeta^X_w = [X(w)]$, and $\zeta^Y_w = (-1)^{l(w)}[X(w)]$, where each homology class is identified with its dual cohomology class. Then $Y^*_w = [Y(w)]$ and similarly $X^*_w = (-1)^{l(w)}[Y(w)]$.

2. [3, §3] For $K_T(G/B)$, $\zeta^Y_w = [O_{X(w)}]$ is the class of the structure sheaf of $X(w)$, $Y^*_w = [O_{Y(w)}(-\partial Y(w))], \zeta^X_w = (-1)^{l(w)}[O_{X(w)}(-\partial X(w))], and \ X^*_w = (-1)^{l(w)}[O_{Y(w)}]$.

3. Generalized Demazure operators and the generalized Leibniz rule

In this section, we generalize the operators X_{I_w} and Y_{I_w} on $H^*_T(G/B)$ to a more general class of elements of Q_W, and prove the generalized Leibniz rule for D_F acting on Q. We use this result to compute the coproduct structure in Q_W, and then the product structure in Q^*_W.

Let $\{a_\alpha, b_\alpha \in Q : \alpha \in \Sigma\}$ be a set of elements with the property that, for all $w \in W$,

$$w(a_\alpha) = a_{w(\alpha)}, \quad w(b_\alpha) = b_{w(\alpha)}, \text{ and } b_\alpha \text{ are all invertible in } Q.$$

For any simple root α, define operators $Z_\alpha \in Q_W$ by

$$Z_\alpha = a_\alpha + b_\alpha \delta_\alpha.$$

Clearly X_α and Y_α result from Z_α as special cases of a_α and b_α. For any sequence $I = (i_1, \ldots, i_k)$, define $Z_I \in Q_W$ by

$$Z_I = Z_{\alpha_{i_1}} Z_{\alpha_{i_2}} \cdots Z_{\alpha_{i_k}}.$$

We call Z_I generalized Demazure operators.

As before, we choose a reduced word expression I_w for each $v \in W$.

Lemma 3.1. The set of generalized Demazure operators $\{Z_{I_w}\}$ forms a basis of Q_W as a module over Q.

Proof. This follows from the fact that $b_\alpha \in Q$ is invertible for all simple roots α (hence, for all roots α). \qed

Remark 3.2. Note that $Z_\alpha \in D_F$ if and only it satisfies the residue condition [23, Definition 3.7]. If this is satisfied, then $Z_{I_w} \in D$ and equivalently, $Z^*_w \in D_F$. Moreover, Z_{I_w} forms a basis of D_F if and only if $\frac{1}{\alpha} \in S$ for all α. For example, this holds for X_α, Y_α, but fails for T_α considered in Section 6 and 7. This is precisely why the stable basis is only a basis after localization.

Lemma 3.3. For any sequence J, define coefficients $c_{J, I_w} \in Q$ by

$$Z_J = \sum_{w \in W} c_{J, I_w} Z_{I_w},$$

Then $c_{J, I_w} = 0$ unless $w \leq \prod J$.

where the operators I_{\Leibniz} coefficients $C_{J,I}$ may be expressed as a Q-linear combination of δ_v for $v \leq \prod J$.

For any $v \in W$ and reduced sequence $I_v = (i_1, \ldots, i_k)$, let $\gamma_j = \alpha_{i_j}$ for $j = 1, \ldots, k$. The coefficient of δ_v in Z_{I_v} is

$$b_{\gamma_1} s_{\gamma_1} (b_{\gamma_2}) s_{\gamma_2} (b_{\gamma_3}) \cdots s_{\gamma_k-1} (b_{\gamma_k}).$$

In particular, since b_{γ_j} is invertible, so is $w(b_{\gamma_j})$ for any Weyl group element w, and thus the coefficient of δ_v in Z_{I_v} is nonzero.

Let $A = \{ w \in W : c_{J,I_w} \neq 0 \text{ and } w \not\leq \prod J \}$, and assume A is nonempty. Pick $v \in A$ to be a maximal element of A in the Bruhat order. By support considerations, the only terms contributing to the coefficient of δ_v in (4) is $c_{J,I_w, Z_{I_w}}$. Since the coefficient of δ_v in Z_{I_w} is a unit, we conclude $c_{J,I_w} = 0$, contrary to assumption. □

The structure constants c_{J,I_w} reflect geometric properties in some special cases (see Section 5). When $Z_\alpha = X_\alpha$ for all α or $Z_\alpha = Y_\alpha$ for all α, and $F = F_\alpha$, the coefficients in the sum (4) vanish unless J is a reduced word for w, in which case $c_{J,I_w} = 1$; this reflects the property that the pushforward map in homology sends the orientation class $[BS_J]$ to the Schubert variety $X(w)$ when J is a reduced word for w. When $Z_\alpha = X_\alpha$ for all α or $Z_\alpha = Y_\alpha$ for all α, and $F = F_\alpha$, coefficients vanish except when the Demazure product of J is w, which occurs exactly once and results in $c_{J,I_w} = 1$. In this case, the K-theoretic pushforward of $[O_{BS_J}]$ is the structure sheaf of $X(w)$ when $w = \prod J$. More generally, Z_J is an (equivariant) operator whose dual has support only on those fixed points in the Schubert variety $X(w)$, where $w = \prod J$.

We have the following lemma describing the action of Z_α on a product.

Lemma 3.4. For a simple root α, and $p, q \in Q$, we have

$$Z_\alpha \cdot (pq) = \frac{a_\alpha (a_\alpha + b_\alpha)}{b_\alpha} pq - \frac{a_\alpha}{b_\alpha} [(Z_\alpha \cdot p) q + p (Z_\alpha \cdot q)] + \frac{1}{b_\alpha} (Z_\alpha \cdot p) (Z_\alpha \cdot q).$$

Proof. One just has to plug in $Z_\alpha = a_\alpha + b_\alpha \delta_s$, and use the definition of the action $\delta_s \cdot p = s_a (p)$. A comparison of both sides yields the identity. □

The coefficients occurring in Lemma 3.4 may be generalized to the case of the action of Z_I on a product pq.

Definition 3.5. For each simple root α, let $Z_\alpha = a_\alpha + b_\alpha \delta_s$ with $a_\alpha, b_\alpha \in Q$ and b_α invertible. Let $I = (i_1, \ldots, i_k)$ be a sequence of indices of simple roots, with $\gamma_j := \alpha_{i_j}$ corresponding to the jth entry of I. For $E, F \subset \{1, \ldots, k\}$, define the **Leibniz coefficients** $C^I_{E,F} \in Q$ by

$$C^I_{E,F} = (B_1^E B_2^Z \cdots B_k^Z) \cdot 1,$$

where the operators $B_j^Z \in Q_W$ are given by

$$B_j^Z = \begin{cases}
\frac{1}{b_{\gamma_j}} \delta_{\gamma_j}, & \text{if } j \in E \cap F, \\
\frac{a_{\gamma_j}}{b_{\gamma_j}} \delta_{\gamma_j}, & \text{if } j \in E \text{ or } F, \text{ but not both}, \\
a_{\gamma_j} + \frac{a_{\gamma_j}^2}{b_{\gamma_j}} \delta_{\gamma_j}, & \text{if } j \notin E \cup F.
\end{cases}$$

10 REBECCA GOLDIN, CHANGLONG ZHONG
Similarly, if \(Z = Y \) indicate the push-pull operators,
\[
B^Y_j = \begin{cases}
\frac{x_{ij}}{x_{ij} - \gamma_j}, & \text{if } j \in E \cap F, \\
\frac{x_{ij}}{x_{ij} - \gamma_j}, & \text{if } j \in E \text{ or } F, \text{ but not both,} \\
\frac{1}{x_{ij}} + \frac{x_{ij}}{(x_{ij} - \gamma_j)}, & \text{if } j \notin E \cup F.
\end{cases}
\]

Now we prove the main technical result of this paper, generalizing [6, Lemma 4.8].

Theorem 3.7 (Generalized Leibniz Rule). Let \(Z_I \) be a generalized Demazure operator for \(I = (i_1, \ldots, i_k) \), and let \(\gamma_j = \alpha_{i_j} \) denote the \(j \)th simple root in the list. Then for any \(p, q \in Q \),
\[
Z_I \cdot (pq) = \sum_{E,F \subset \{1, \ldots, k\}} C^I_{E,F}(Z_E \cdot p)(Z_F \cdot q),
\]
where \(C^I_{E,F} \) are the Leibniz coefficients defined in (5).

Proof. For any simple root \(\alpha \), observe the following two identities:
\[
\begin{align*}
(7) \quad a_\alpha (1 - \delta_\alpha) + \frac{a_\alpha (a_\alpha + b_\alpha)}{b_\alpha} \delta_\alpha &= a_\alpha + \frac{a_\alpha^2}{b_\alpha} \delta_\alpha = \frac{a_\alpha}{b_\alpha} Z_\alpha \delta_\alpha, \\
(8) \quad Z_\alpha \cdot (pq) &= a_\alpha (p - s_\alpha(p))q + s_\alpha(p) (Z_\alpha \cdot q).
\end{align*}
\]

Now assume it holds for all \(I \) with \(\ell(I) < k \), and let \(I = (i_1, \ldots, i_k) \). Let \(J = (i_2, \ldots, i_k) \) and let \(\alpha = \alpha_{i_1} \). We have
\[
Z_I \cdot (pq) = (Z_\alpha Z_J) \cdot (pq) = Z_\alpha \cdot (Z_J \cdot (pq))
\]
\[
= Z_\alpha \cdot \left[\sum_{E,F \subset \{2, \ldots, k\}} C^J_{E,F}(Z_E \cdot p)(Z_F \cdot q) \right]
\]
\[
= \sum_{E,F \subset \{2, \ldots, k\}} a_\alpha \left[C^J_{E,F} - s_\alpha(C^J_{E,F}) \right] (Z_E \cdot p)(Z_F \cdot q)
\]
\[
+ \sum_{E,F \subset \{2, \ldots, k\}} s_\alpha(C^J_{E,F}) Z_J \cdot [(Z_E \cdot p)(Z_F \cdot q)] \quad \text{by Equation (8)}
\]
\[
= \sum_{E,F \subset \{2, \ldots, k\}} a_\alpha \left[C^J_{E,F} - s_\alpha(C^J_{E,F}) \right] (Z_E \cdot p)(Z_F \cdot q)
\]
\[
+ \sum_{E,F \subset \{2, \ldots, k\}} s_\alpha(C^J_{E,F}) \frac{a_\alpha (a_\alpha + b_\alpha)}{b_\alpha} (Z_E \cdot p)(Z_F \cdot q)
\]
Comparing the coefficients with $B_E^I \cdot (C^I_{E,F})$ from (6), we see that they coincide. The proof then follows by induction. \hfill \Box

The following corollary follows immediately. We see in Section 8 that the Leibniz coefficients $C^I_{E,[k]}$ arise as factors in summands of specific structure constants in Schubert calculus, justifying the name. Here $[k] = \{1, 2, \ldots, k\}$.

Corollary 3.8. [*Generalized Billey’s Formula*] Let $I = (i_1, \ldots, i_k)$ be a sequence of indices of simple roots, and denote $m_j = s_i s_i \cdots s_{i_{j-1}}(a_i)$ and $n_j = s_i s_i \cdots s_{i_{j-1}}(b_i)$.

For $E \subset [k]$, we have

$$C^I_{E,[k]} = C^I_{E,[k]} = (-1)^{k-|E|} \prod_{j \in [k] \setminus E} m_j \prod_{j \in [k]} n_j^{-1}.$$

As a consequence of Theorem 3.7, [6, Proposition 9.5] and the coproduct defined in Equation (2), we obtain the following theorem.

Theorem 3.9. Let $Z_\alpha = a_\alpha + b_\alpha \delta_\alpha \in Q_W$ with b_α invertible, then for any $I = (i_1, \ldots, i_k)$, we have

$$\Delta(Z_I) = \sum_{E,F \subset [k]} C^I_{E,F} Z_E \otimes Z_F,$$

where $C^I_{E,F}$ are defined in Definition 3.5.

We specialize Theorem 3.7 to the elements X_I and Y_I. For any index j, the operators B_j^X and B_j^Y preserve S under the action of Q_W on Q, and thus $B_j^X, B_j^Y \in D_E$ (see [6, Remark 7.8]). The first statement in the next corollary is the result [6, Proposition 9.5].

Corollary 3.10. For the Demazure elements X_α, and $I = (i_1, \ldots, i_k)$, we have

$$X_I \cdot (pq) = \sum_{E,F \subset [k]} A^I_{E,F}(X_E \cdot p)(X_F \cdot q),$$

where $A^I_{E,F} = (B^X E \cdot \cdots B^X F \cdot 1)$ with $B^X E \in D_E$ defined in Example 3.6. Similarly, for the push-pull elements Y_α, and $I = (i_1, \ldots, i_k)$, we have

$$Y_I \cdot (pq) = \sum_{E,F \subset [k]} B^I_{E,F}(Y_E \cdot p)(Y_F \cdot q),$$

where $B^I_{E,F} = (B^Y E \cdot \cdots B^Y F \cdot 1)$, and $B^Y E \in D_E$ is defined in Example 3.6.
4. The structure constants of equivariant oriented cohomology of flag varieties

In this section we prove the main result, i.e., the formulas of structure constants of Z^*_w in $\mathfrak{h}^T(G/B)$, with resulting formulas for the structure constants of X^*_w and of Y^*_w.

Let $\{Z^*_w\}$ be the basis of Q_W (as a module over Q) dual to the basis $\{Z_w\}$ of Q_W introduced in Section 3.

Theorem 4.1. For any $u, v \in W$, the product $Z^*_w Z^*_v$ is given by

$$Z^*_w Z^*_v = \sum_{w \in \mathcal{W}} c^I_{I_w, I_v} Z^*_w,$$

where

$$c^I_{I_w, I_v} = \sum_{E,F \in \Delta(w)} C^I_{E,F,I_w} C_{F,I_v} \in Q,$$

$C^I_{E,F,I_w} \in Q$ are the Leibniz coefficients given in Definition 3.5. As before, the Q elements c_{E,I_w} and c_{F,I_v} are defined as constants appearing in the expansion

$$(9) \quad Z_f = \sum_{w \in W} c_{E,I_w} Z_w.$$

Example 4.2. Consider the A_3-case. Consider $I_w = (2,3,1,2,1), I_v = (1,2,3,2,1)$, then $c^I_{I_w, I_v} = 0$ unless $w = w_0$ is the longest element. Fix $I_{w_0} = (1,2,3,1,2,1)$, in which case we have

$$C^I_{I_{w_0}(2,3,4,5,6), (1,2,3,5,6)} = B_1^2 B_2^2 B_3^2 B_4^2 B_5^2 B_6^2 \cdot 1$$

and $c_{(2,3,4,5,6), I_w} = c_{(1,2,3,5,6), I_v} = 1$. Therefore,

$$Z^*_w \cdot Z^*_v = \frac{a_{\alpha_1} a_{\alpha_2}}{b_{\alpha_1} b_{\alpha_2 + \alpha_3}} Z^*_w.$$

Proof of Theorem 4.1. The coproduct structure Δ on Q_W (Equation (2)) naturally induces a product on Q_W. For all $f, g \in Q_W$ and $\sum_{w \in W} q_w \delta_w \in Q_W$,

$$\langle f, g, \sum_{w \in W} q_w \delta_w \rangle = \langle f \otimes g, \Delta(\sum_{w \in W} q_w \delta_w) \rangle$$

$$= \langle f \otimes g, \sum_{w \in W} q_w \delta_w \otimes \delta_w \rangle$$

$$= \sum_{w \in W} q_w \langle f, \delta_w \rangle \langle g, \delta_w \rangle.$$

Note that this product corresponds to the product on Q^*_W introduced at the beginning of Section 2.2 since

$$\langle f, g, \sum_{w \in W} q_w \delta_w \rangle = \begin{cases} \langle f, \sum_{w \in W} q_w \delta_w \rangle = \sum_{w} q_w \langle f, \delta_w \rangle, & \text{if } u = v; \\ 0, & \text{otherwise,} \end{cases}$$

$$= \begin{cases} q_u, & \text{if } u = v; \\ 0, & \text{otherwise.} \end{cases}$$
From Theorem 3.9 we have
\[
\Delta(Z_{I_w}) = \sum_{E,F \subseteq [\ell(w)]} C_{E,F}^{I_w} Z_E \otimes Z_F
\]
\[
= \sum_{E,F \subseteq [\ell(w)]} C_{E,F}^{I_w} \left[\left(\sum_{u \in W} c_{E,I_u} Z_{I_u} \right) \otimes \left(\sum_{v \in W} c_{F,I_v} Z_{I_v} \right) \right]
\]
\[
= \sum_{u,v \in W} C_{E,F}^{I_w} c_{E,I_u} c_{F,I_v} Z_{I_u} \otimes Z_{I_v}
\]
\[
= \sum_{u,v \in W} c_{I_w,I_u,I_v} Z_{I_u} \otimes Z_{I_v}.
\]

Finally we obtain the coefficient by calculating the pairing:
\[
\langle Z_{I_w}^*, Z_{I_u}^*, Z_{I_v}^* \rangle = \langle Z_{I_w} \otimes Z_{I_v}^*, \Delta(Z_{I_w}) \rangle = c_{I_w,I_u,I_v}.
\]

Let \(I_w|E \) be the subsequence obtained from restricting \(I_w \) to \(E \). Since \(w = \prod I_w \geq \prod (I_w|E) \) for any \(E \subseteq [\ell(w)] \), by Lemma 3.3, \(c_{I_w,I_u,I_v} = 0 \) unless \(u \leq w \) and \(v \leq w \).

The coproduct structure on the left \(Q \)-module \(Q_W \) restricts to a coproduct structure on the left \(S \)-module \(D_F \) [6, Theorem 9.2]. Consequently, the embedding \(D_F \subset Q_W^* \) is an embedding of subrings. So the structure constants of the \(S \)-bases \(\{ X_{I_w}^* \} \) and \(\{ Y_{I_w}^* \} \) in \(D_F \) are precisely those of the \(Q \)-bases \(\{ X_{I_w}^* \} \) and \(\{ Y_{I_w}^* \} \) in \(Q_W^* \).

Specializing Theorem 4.1 to the \(X \)-operators, we have
\[
X_{I_u}^* X_{I_v}^* = \sum_{w \geq u, v \geq u} \partial_{I_u,I_v}^{I_w} X_{I_w}^*.
\]
with
\[
(10) \quad \partial_{I_u,I_v}^{I_w} = \sum_{E,F \subseteq [\ell(w)]} A_{E,F}^{I_w} c_{E,I_u} c_{F,I_v},
\]
where \(c_{I,I_u} \) are the coefficients that occur in the expansion \(X_I = \sum_v c_{I,I_u} X_{I_u} \). It follows from [6, Theorem 9.2 and Proposition 7.7] that \(A_{E,F}^{I_w} \in S \), that \(c_{I,I_u} \in S \), so \(\partial_{I_u,I_v}^{I_w} \in S \). Similarly, specializing to the \(Y \)-operators, the structure constants for \(Y_{I_w}^* \) are denoted by \(\partial_{I_u,I_v}^{I_w} \) and can be expressed as
\[
Y_{I_u}^* Y_{I_v}^* = \sum_{E,F \subseteq [\ell(w)]} B_{E,F}^{I_w} c_{E,I_u} c_{F,I_v},
\]
where now the coefficients \(c_{I,I_u} \) are those appearing in the expansion of \(Y_I \). As before, \(B_{E,F}^{I_w} \in S \) and \(c_{I,I_u} \in S \), so \(\partial_{I_u,I_v}^{I_w} \in S \). In \S 5 we show that these coefficients simplify in the case that \(F = F_m \) or \(F = F_m^* \), resulting in Theorem 1 from [11]. It is worth noting that the formula (10) can be used to prove the Leray-Hirsch Theorem for flag varieties (see [9]).

Example 4.3. Assume the root datum is of type \(A_1 \), then \(W = \{ e, s_1 \} \). We calculate the basis change explicitly:
\[
X_e^* = f_e + f_{s_1}, \quad X_{(1)}^* = -x_{\alpha_1} f_{s_1}.
\]
and then we may obtain the products directly:

\[X_e^* X_e^* = X_e^*, \quad X_e^* X_{(1)} = X_{(1)}^*, \quad X_{(1)}^* X_{(1)} = -x_\alpha X_{(1)}^*\]

and note that it agrees with Theorem 4.1 with \(Z = X\).

Example 4.4. Consider the root datum \(A_2\), with \(W = \{e, s_1, s_2, s_1s_2, s_2s_1, w_0\}\). For the longest element \(w_0\), we fix the reduced sequence \(I_{w_0} = s_1s_2s_1\).

We use the calculation in Example 2.5, and the product structure on \(Q_w^*\) to obtain the multiplication table for \(X_{I_{w_0}}^*\). Recall that \(f_u f_v = 1\) if \(u = v\) and 0 otherwise, and that \(X_e^* = f_e + s_1 + f_{s_2} + s_1 s_2 + s_2 s_1 + f_{w_0}\). If \(X_w = \sum_u a_u f_u\), we have

\[X_w^* X_e^* = \left(\sum_u a_u f_u \right) \left(\sum_v f_v \right) = \sum_u a_u f_u = X_w^*\]

for all \(w \in W\). Similarly,

\[X_{I_{w_0}}^* X_{(1,2)}^* = (-x_{\alpha_1} x_{\alpha_2} x_{\alpha_13} f_{w_0}) (x_{\alpha_1} x_{\alpha_13} (f_{s_1 s_2} + f_{w_0})) = -x_{\alpha_1} x_{\alpha_2} x_{\alpha_13}^2 f_{w_0}\]

\[= x_{\alpha_1} x_{\alpha_13} X_{I_{w_0}}^*.\]

The other products are as follows: Here \(y\) was defined in Example 2.5.

\[
\begin{align*}
X_{I_{w_0}}^* X_{I_{w_0}}^* &= -x_1 x_2 x_{\alpha_13} X_{I_{w_0}}^* \\
X_{(1)}^* X_{(2)}^* &= X_{(1,2)}^* + X_{(2,1)}^* + x_1 X_{I_{w_0}}^* \\
X_{(2)}^* X_{(2)}^* &= \frac{x_{\alpha_13} - x_2}{x_1 - x_2} X_{(1,2)}^* - x_2 X_{(2)}^* \\
X_{(2,1)}^* X_{(2)}^* &= \frac{x_{\alpha_13} - x_2}{x_1 - x_2} X_{I_{w_0}}^* - x_2 X_{(2,1)}^* \\
X_{(1)}^* X_{(1)}^* &= -x_1 X_{(1)}^* + \frac{x_{\alpha_13} - x_1}{x_1 - x_2} X_{(2,1)}^* + \frac{y^2 - y}{x_1 x_2 x_{\alpha_13}} X_{I_{w_0}}^* \\
X_{(2,1)}^* X_{(1)}^* &= x_1 x_{\alpha_13} X_{(1,2)}^* \\
X_{(2)}^* X_{(1)}^* &= x_2 x_{\alpha_13} X_{I_{w_0}}^* \\
X_{(1)}^* X_{(2)}^* &= -x_2 x_{\alpha_13} X_{I_{w_0}}^* \\
X_{(2,1)}^* X_{(1)}^* &= -x_2 x_{\alpha_13} X_{I_{w_0}}^* \\
X_{(1)}^* X_{(2)}^* &= -y X_{I_{w_0}}^* \\
X_{(2,1)}^* X_{(2)}^* &= -y X_{I_{w_0}}^*. \\
\end{align*}
\]

One can check that the above coefficients \(a_{I_{w_0}}^{I_v}\) agree with the formula (10). Note that when computing \(a_{I_{w_0}}^{I_v}\), one needs to compute the following coefficients:

\[
A_{I_{w_0}}^{I_{w_0}}^{(3),\{3\}}, A_{I_{w_0}}^{I_{w_0}}^{I_{w_0} \in \{3\},\{3\}}, A_{I_{w_0}}^{I_{w_0}}^{\{3\},\{3\}}, A_{I_{w_0}}^{I_{w_0}}^{\{13\},\{13\}}.
\]

As an application, we consider the case of a partial flag variety. Let \(K\) be a subset of \([n]\). Let \(P_K\) be the standard parabolic subgroup, \(W_K < W\) the corresponding subgroup, and \(W_{\mathbb{K}} \subseteq W\) be the set of minimal length representatives of \(W/W_K\). We say a set of reduced sequences \(I_w\) is \(K\)-compatible if for each \(w = w', u \in W_K, v \in W_K\), we have \(I_w = I_u \cup I_v\), i.e., \(I_w\) is the concatenation of \(I_u\) with \(I_v\).

Theorem 4.5. Suppose the set \(\{I_w\}\) is \(K\)-compatible. Then for any \(v, u \in W^K\), we have

\[X_{I_u}^* X_{I_v}^* = \sum_{w \in W^K, w \geq v} a_{I_{w}}^{I_{w}} X_{I_{w}}^*.\]

Proof. It follows from [7, Corollary 8.4] that \(X_{I_u}^*, u \in W^K\) is a basis of \((Q_W^*)^{W_K}\). Moreover, from Lemma 4.3 of loc.it., we know \(\delta_w \bullet (ff') = (\delta_w \bullet f)(\delta_w \bullet f')\). Therefore, \(X_{I_u}^* X_{I_v}^* \in (Q_W^*)^{W_K}\), so is a linear combination of \(X_{I_{w}}^*, w \in W^K\). \(\square\)
Geometrically, under the assumption of this theorem, it follows from [7, Corollary 8.4] that \(\{X^*_w\}_{w \in W^K} \) is a basis of \((D^*_F)^{W^K} \cong H_T(G/P_K)\). So the product \(X^*_u X^*_v, u, v \in W^K \) is a linear combination of \(X^*_w, w \in W^K \).

Corollary 4.6. Let \(F = F_a \) or \(F_m \), and suppose \(u \in W \) satisfies that \(u \in W^K \) for some \(K \) and \(u \) is the longest element in \(W^K \). Then for any \(v \in W^K \), \(a^w_{u,v} = 0 \) for any \(w \in W \), unless \(w = u \).

Proof. In these cases, the braid relations are satisfied, so the structure constants do not depend on the choice of reduced sequences. In other words, fixing \(u \) and \(K \), we can assume we have chosen \(K \)-compatible reduced sequences. Then Theorem 4.5 applies, which implies that for any \(v \in W^K, w \in W \), we have \(c^I_{w,v} = 0 \) unless \(w \in W^K \) and \(w \geq u \). Since \(u \) is maximal in \(W^K \), so \(w = u \). \(\square \)

5. **Structure constants in singular cohomology and K-theory**

We restrict our attention to \(H^*_F(G/B) \) and \(K_T(G/B) \) to recover formulas in [11] of structure constants of Schubert classes for singular cohomology \((F = F_a)\) and K-theory \((F = F_m)\). We first simplify the coefficients \(c^X_{I, I_w} \) and \(c^Y_{I, I_w} \) in these two cases. Recall that, when the formal group law is \(F = F_a \) or \(F = F_m \), the braid relations are satisfied for \(Z_\alpha = X_\alpha \) and \(Z_\alpha = Y_\alpha \). We consider the equivariant oriented cohomology together with either the additive or multiplicative formal group law, and restrict the coefficient ring to \(S^n \) or \(S^m \).

Lemma 5.1. Let \(J \) be a word in the Weyl group. As in Lemma 3.3, define coefficients \(c_{J, I_w} \) by

\[
Z_J = \sum_{w \in W} c_{J, I_w} Z_{I_w}.
\]

(1) Let \(F = F_a \). If \(Z_\alpha = X_\alpha \) or \(Z_\alpha = Y_\alpha \), then

\[
c_{J, I_w} = \begin{cases}
1, & \text{if } J \text{ is a reduced word for } w; \\
0, & \text{else.}
\end{cases}
\]

(2) Let \(F = F_m \). If \(Z_\alpha = X_\alpha \) or \(Z_\alpha = Y_\alpha \), then

\[
c_{J, I_w} = \begin{cases}
1, & \text{if } w = \prod J; \\
0, & \text{else.}
\end{cases}
\]

Proof. When \(F = F_a \) or \(F = F_m \), it is well-known that the braid relations are satisfied. We write \(c_{J, w} \) for the coefficient \(c_{J, I_w} \). When \(F = F_a \), \(Z_\alpha^2 = 0 \), so if \(J \) is not reduced, \(Z_J = 0 \). If \(J \) is reduced and \(\prod J = w \), then \(Z_J = Z_w \), so \(c_{J, w} = 1 \) and \(c_{J, v} = 0 \) for \(v \neq w \).

When \(F = F_m \), we have \(Z_\alpha^2 = Z_\alpha \) and thus \(Z_J = Z_w \) where \(w := \prod J \). It follows that \(c_{J, w} = 1 \) and \(c_{J, v} = 0 \) for \(v \neq w \). \(\square \)

Example 5.2. For \(H^*(G/B) \) and \(F = F_a \), as described in Example 2.7 and Proposition 2.7, the element \(c^X_w \) in \(D^*_F \) corresponds under a natural isomorphism

\[
D^*_F \rightarrow H_T(G/B)
\]

to the equivariant cohomology class Poincaré dual to \([X(w)] \), where \([X(w)]\) is the homology class of the Schubert variety. Furthermore, the first Chern classes of the corresponding line bundles are \(x_\alpha = \alpha \) for all simple roots \(\alpha \).
For each \(w \in W \), fix a reduced sequence \(I_w \). From the specialization of Theorem 4.1, we have defining relations
\[
Y_u^* Y_v^* = \sum_{w \geq u, w \geq v} B^I_{u,w} Y_w^*
\]
for \(B^I_{u,w} \). Then
\[
B^I_{u,w} = \sum_{E,F \subset [\ell(w)]} B^I_{E,F} c^Y_{E,F,u} c^Y_{E,F,w} \text{ by Theorem 4.1},
\]
\[
= \sum_{E,F \text{ reduced for } u,v} B^I_{E,F}, \text{ by Lemma 5.1(1)}
\]
where the second sum is over \(E,F \) whose corresponding products of reflections are reduced and equal to \(u,v \) respectively. Recall that
\[
B^I_{E,F} = (B^Y_{1} B^Y_{2} \cdots B^Y_{\ell(w)}) \cdot 1,
\]
with
\[
B^Y_{j} = \begin{cases}
 x_{\beta_j} \delta_{\beta_j}, & \text{if } j \in E \cap F, \\
 \delta_{\beta_j}, & \text{if } j \in E \text{ or } F, \text{ but not both,} \\
 Y_{\beta_j}, & \text{if } j \notin E \cup F.
\end{cases}
\]
with \(\beta_j = \alpha_{i_j} \).

The coefficients \(B^I_{u,w} \) coincide with the structure constants \(c^w_{u,v} \) in [11, Theorem 1]. Note that in this case, \(Y_w^* \), so \(c^w_{u,v} = (-1)^{\ell(w)} c_{u,v} \), and thus \(X_w^* = (-1)^{\ell(w)} Y_w^* \).

Therefore,
\[
a^I_{u,w} = (-1)^{\ell(w) + \ell(u) + \ell(v)} B^I_{u,w}.
\]

Example 5.3. For \(K_T(G/B) \) (and \(F = F_m \)), we have \(x = 1 - e^\alpha \). The action of \(X_{\alpha} \) (resp. \(Y_{\alpha} \)) on \(K_T(pt) \) corresponds to the action of the ordinary (resp. isobaric) Demazure operator in [11].

Fixing a reduced sequence \(I_w \) for each \(w \), we have
\[
X_u^* X_v^* = \sum_{w \geq u, w \geq v} a^I_{u,w} X_w^* = \sum_{w \geq v, w \geq u} \sum_{E,F} A^I_{E,F} Y_w^*
\]
where by Lemma 5.1(2), the second sum is over all \(E,F \subset [\ell(w)] \) such that \(\prod E = u \) and \(\prod F = v \). Here, we have
\[
B^X_{j} = \begin{cases}
 -(1 - e^{-\beta_j}) \delta_{\beta_j}, & \text{if } j \in E \cap F, \\
 \delta_{\beta_j}, & \text{if } j \in E \text{ or } F, \text{ but not both,} \\
 X_{\beta_j}, & \text{if } j \notin E \cup F,
\end{cases}
\]
where \(\beta_j = \alpha_{i_j} \).

The classes \(\{\xi_w : w \in W\} \) in [11] are defined as the dual basis to \([\mathcal{O}_{X(w)}(-\partial X(w))] \) under the pairing obtained by taking the equivariant cap product and pushing forward to a point. Each \(\xi_w \) coincides with the Poincaré dual class to \([\mathcal{O}_{Y(w)}] \). In Example 2.7 we note that \(X_w^* = (-1)^{\ell(w)} [\mathcal{O}_{Y(w)}] \), and thus \(\xi_w = (-1)^{\ell(w)} X_w^* \).

Therefore,
\[
\xi_u \xi_v = (-1)^{\ell(u) + \ell(v)} \sum_{w \geq u,v} a^I_{u,w} \xi_w.
\]
It follows that the coefficients \((-1)^{\ell(u) + \ell(v) + \ell(w)} a^I_{u,w} \) coincide with \(a^w_{uv} \) in [11], as is clear from the formula.
Let \(\xi_w = w \in W \) defined in [11] satisfy \(\xi_w = Y_w^* \), a similar argument implies that \(\xi_{w, h}^* \) coincide with the structure constants \(\hat{a}_{u, v} \) defined in [11].

Example 5.4. Let \(F = F_4 \). Consider the \(A_2 \) case. If \(I_w = s_1 s_2 s_1, u = s_1, v = s_1 s_2 \), then

\[
\delta_{s_1 s_2 s_1}^{s_1 s_2 s_1} = B_{\{1\}, \{1\}, \{2\}} + B_{\{3\}, \{1\}, \{2\}} = \left(\begin{array}{ccc}
\alpha_1 & \delta_1 & Y_1 \\
\delta_1 & \delta_2 & \delta_1 \\
Y_1 & \delta_1 & \delta_1
\end{array} \right) \cdot 1 = 0 + 1 = 1.
\]

Similarly,

\[
\delta_{s_1 s_2 s_1}^{s_1 s_2 s_1} = B_{\{1\}, \{2\}, \{3\}} + B_{\{3\}, \{2\}, \{3\}} = \left(\begin{array}{ccc}
\delta_1 & \delta_2 & \delta_1 \\
\alpha_2 & \delta_2 & \delta_1 \\
\alpha_2 & \delta_2 & \delta_1
\end{array} \right) \cdot 1 = 1 - 1 = 0.
\]

For the \(A_3 \) case, one can also compute

\[
\delta_{s_2 s_1 s_2 s_1}^{s_2 s_1 s_2 s_1} = B_{\{2\}, \{3\}, \{2\}, \{3\}} + B_{\{2\}, \{3\}, \{1\}, \{2\}} + B_{\{2\}, \{3\}, \{2\}, \{1\}} = \left(\begin{array}{ccc}
\delta_1 & \alpha_2 & \delta_1 \\
\delta_3 & \delta_3 & \delta_1 \\
\delta_3 & \delta_3 & \alpha_2
\end{array} \right) \cdot 1
\]

\[
= (\alpha_1 + \alpha_2 + \alpha_3).
\]

Example 5.5. Let \(F = F_4 \). Consider the \(A_3 \) case, with \(I_w = s_1 s_2 s_3 s_1 s_2, u = s_2 s_3 s_2, v = s_1 s_2 s_1 \). We have

\[
\delta_{s_2 s_3 s_2 s_1}^{s_2 s_3 s_2 s_1} = A_{\{2\}, \{3\}, \{2\}, \{1\}} + A_{\{2\}, \{3\}, \{1\}, \{2\}} + A_{\{2\}, \{3\}, \{2\}, \{1\}} = \left(\begin{array}{ccc}
\delta_1 & -x_2 & \delta_1 \\
x_1 & \delta_2 & \delta_1 \\
-\delta_1 & -x_2 & \delta_1
\end{array} \right) \cdot 1
\]

\[
= -x_1 + x_1 + x_2 + x_2 + x_1 + x_1 = x_2 - x_1 + 2x_2 + x_1
\]

\[
= x_2 - x_1 + 2x_2 + x_1
\]

6. **Structure constants of cohomological stable bases**

In this section, we let \(F = F_4 \) and \(R = R^a = \mathbb{Z}[h] \). We recall the definition of the cohomological stable basis of Maulik-Okounkov, and generalize Su’s formula of structure constants for Segre-Schwartz-MacPherson classes (Theorem 6.3). We use the twisted group algebra language for singular cohomology, whose \(K \)-theory version was given in [22]. As the framework and proofs are very similar to earlier sections, we will only review essential properties. Some of the notation introduced below is restricted to this section only.

Let \(R^a = \mathbb{Z}[h] \), \(S^a = \text{Sym}_{R^a}(A) \) and \(Q^a = \text{Frac}(S^a) \). Define

\[
Q^a_W = Q^a \times_{R^a} R^a[W]
\]

with \(Q^a \)-basis \(\delta_w, w \in W \). For simplicity we introduce the following notation:

\[
\hat{\alpha} = h - \alpha, \quad \alpha_{\alpha'\alpha} = \prod_{\alpha > 0} \alpha, \quad \hat{\alpha}_{\alpha'\alpha} = \prod_{\alpha > 0} (h - \alpha).
\]

Finally, for any simple root \(\alpha \), define an operator associated to this root by

\[
T_{\alpha} = -h \frac{1}{\alpha} (1 - \delta_\alpha) - \delta_\alpha = -h + \hat{\alpha} \delta_\alpha \in Q^a_W.
\]
By direct computation, the set \(\{ T_\alpha \}_{\alpha \in \{ \alpha_1, \ldots, \alpha_n \}} \) satisfies the braid relations, and \(T_\alpha^2 = 1 \). Indeed, the algebra generated by \(\{ T_\alpha \} \) is called the degenerate (or graded) Hecke algebra. Note that \(T_\alpha \) is a special case of \(Z_\alpha \), occurring over \(R = R^a \).

For any sequence \(I = (i_1, \ldots, i_\ell) \) (not necessarily reduced), we define the Demazure-Lusztig operator

\[
T_I = T_{\alpha_{i_1}} \cdots T_{\alpha_{i_\ell}}
\]

in cohomology to be the product of the operators indicated in the list \(I \). It follows from the relations that, if \(I \) and \(I' \) are two sequences with \(w := \prod I = \prod I' \), then \(T_I = T_I' \), and we denote it \(T_w \). The set \(\{ T_w \mid w \in W \} \) is a basis of \(Q_W^a \).

Let \((Q_W^a)^* \) be the \(Q^a \)-dual of \(Q_W^a \), and let \(\{ T_w^* \} \subseteq (Q_W^a)^* \) be the dual basis. Denote the basis of \((Q_W^a)^* \) dual to \(\{ \delta_w \in Q_W^a \} \) by \(\{ f_w \} \), as in §2. The identity of the ring \((Q_W^a)^* \) is denoted by \(1 = \sum_{w \in W} f_w \). The ring \(Q_W^a \) acts on \((Q_W^a)^* \) via the

\[
\bullet \cdot (z \bullet q^* , z') = (q^* , z' z) \quad \text{for } z , z' \in Q_W^a , q^* \in (Q_W^a)^* .
\]

It induces a \(W \)-action on \((Q_W^a)^* \) via the embedding \(W \subseteq Q_W^a \). Let \(((Q_W^a)^*)^W \) denote the Weyl-invariant subgroup of \((Q_W^a)^* \).

In this section only, denote by \(\hat{Y} \in Q_W^a \) the element

\[
\sum_{w \in W} \delta_w \frac{1}{\alpha \cdot \alpha_{w_0}} = \sum_{w \in W} \delta_w \prod_{\alpha > 0} (h - \alpha) .
\]

The map \(\hat{Y} \bullet : (Q_W^a)^* \to ((Q_W^a)^*)^W = Q^a \cdot 1 \) is the algebraic analogue of the composition of the map

\[
Q^a \otimes_{S^a} H_G^* \to Q^a \otimes_{S^a} H_B^* \to Q^a \otimes_{S^a} H_{\mathfrak{T} \times \mathfrak{C}}^* \to Q^a \otimes_{S^a} H_{\mathfrak{T} \times \mathfrak{C}}^* ,
\]

where the last map is the equivariant pushforward of cohomology class \(G/B \) to a point on the second term. The proofs in [7, Lemma 7.1] and [22, Lemma 5.1] easily extend to show that, for any \(f, g \in (Q_W^a)^* \),

\[
\hat{Y} \bullet ((T_\alpha \bullet f) \cdot g) = \hat{Y} \bullet (f \cdot (T_\alpha \bullet g)) .
\]

Definition 6.1. We define two bases of \((Q_W^a)^* \) as a module over \(Q^a \). Let

\[
\begin{align*}
\text{stab}_w^+ &= T_{w^{-1}} \bullet (\alpha_{w_0} f_w) , \\
\text{stab}_w^- &= (-1)^{\ell(w_0)} T_{w^{-1} w_0} \bullet (\alpha_{w_0} f_{w_0}) .
\end{align*}
\]

Then \(\{ \text{stab}_w^+ : w \in W \} \) and \(\{ \text{stab}_w^- : w \in W \} \) each form a basis for \((Q_W^a)^* \) as a module over \(Q^a \). We call these bases the **cohomological stable bases**. See [20] for more details.

It is immediate from the definition that \(\text{stab}_w^+ \) has support on \(\{ f_v : v \leq w \} \) and \(\text{stab}_w^- \) has support on \(\{ f_v : v \geq w \} \).

The following lemma is the analogue of Theorem 5.7 and Lemma 5.6 in [22]. The first identity was due to Maulik-Okounkov originally.

Lemma 6.2. We have

\[
\hat{Y} \bullet [\text{stab}_w^+ \cdot \text{stab}_w^-] = (-1)^{\ell(w_0)} \delta_{w_0} 1 , \quad \hat{Y} \bullet [\text{stab}_w^+ \cdot \alpha_{w_0} T_w^*] = \delta_{w_0} 1 .
\]

Define structure constants \(\ell_{u,v} \in Q^a \) by the equation

\[
\text{stab}_w^- \cdot \text{stab}_v^- = \sum_{w \in W} \ell_{u,v} \text{stab}_u^-.
\]
We now present the main result about the stable basis \(\{\text{stab}^-\} \).

Theorem 6.3. The classes \(\text{stab}^- \) and the coefficients \(\xi^w_{u,v} \) satisfy the following properties:

1. We have \(\text{stab}^- = (-1)^{f(wo)} \hat{\alpha}_{wo} T^*_u \).

2. For each \(w \in W \), fix a reduced sequence \(I_w \). Then

\[
\xi^w_{u,v} = \sum_{E,F \subset \{I(w)\}} \widehat{c}^2_{w0} t^I_{E,F},
\]

where \(t^I_{E,F} = (B^I_1 B^I_2 \cdots B^I_k) \cdot 1 \) with

\[
B^I_j = \begin{cases}
\frac{\alpha_{ij} h}{\alpha_{ij}}, & \text{if } j \in E \cap F, \\
\frac{\alpha_{ij} h}{\alpha_{ij}} + \frac{\alpha_{ij}^2 h^2}{\alpha_{ij}^2}, & \text{if } j \notin E \cup F, \\
\alpha_{ij} \frac{h}{\alpha_{ij}} + \frac{h^2}{\alpha_{ij}^2} \delta_{ij}, & \text{if } j \in E \text{ and not both.}
\end{cases}
\]

Proof. (1). This follows from Lemma 6.2 above.

(2). For each \(w \in W \), fix a reduced decomposition. We have

\[
\text{stab}^- \cdot \text{stab}^- = (-1)^{f(wo)} \hat{\alpha}_{wo} T^*_u \cdot (-1)^{f(wo)} \hat{\alpha}_{wo} T^*_v = \widehat{c}^2_{w0} T^*_u \cdot T^*_v.
\]

Therefore, it suffices to consider the structure constants for \(T^*_u \). But the elements \(T_u \) are an instantiation of \(Z^* \) with the coefficient ring \(R^* \), with \(a_{ij} = -h/\alpha_{ij} \) and \(b_{ij} = \hat{\alpha}_{ij}/\alpha_{ij} \). Thus Theorem 4.1 indicates how to multiply the corresponding dual elements, resulting in \(B^I_j \) defined as above. \(\square \)

When \(h = -1 \), the Demazure Lusztig operator \(T_\alpha \) specializes to the operator considered by Su in [21], allowing us to recover his formula for the structure constants from Theorem 6.3.

Example 6.4. Consider the \(A_2 \)-case. If \(I_w = s_1 s_2 s_1, u = v = s_1 \), then

\[
\xi^{s_1 s_2 s_1}_{s_1, s_1} = \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3 (t^{121}_{(1),(1)} + t^{121}_{(3),(1)} + t^{121}_{(1),(1)} + t^{121}_{(3),(3)}) \cdot 1
\]

\[
= \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3 \begin{pmatrix} \frac{h}{\alpha_1} \delta_1 & -\frac{h}{\alpha_2} + \frac{h^2}{\alpha_2^2} \delta_2 & \frac{h}{\alpha_1} \delta_1 \\ \frac{h}{\alpha_2} \delta_1 & -\frac{h}{\alpha_2} + \frac{h^2}{\alpha_2^2} \delta_2 & \frac{h}{\alpha_2} \delta_1 \\ -\frac{h}{\alpha_1} + \frac{h^2}{\alpha_1^2} \delta_1 & -\frac{h}{\alpha_2} + \frac{h^2}{\alpha_2^2} \delta_2 & -\frac{h}{\alpha_1} + \frac{h^2}{\alpha_1^2} \delta_1 \end{pmatrix} \cdot 1 = h^2(h + \alpha_1).
\]

If \(I_w = s_1 s_2 s_1, u = s_1, v = s_1 s_2 \), then

\[
\xi^{s_1 s_2 s_1}_{s_1, s_1} = \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3 (t^{121}_{(1),(1)} + t^{121}_{(3),(1,2)}) \cdot 1 = h^2(h + \alpha_1).
\]

Similarly, for \(v' = s_2 s_1 \), we have

\[
\xi^{s_1 s_2 s_1}_{s_1, s_2 s_1} = \hat{\alpha}_1 \hat{\alpha}_2 \hat{\alpha}_3 (t^{121}_{(1),(2,3)} + t^{121}_{(3),(2,3)}) \cdot 1 = h^2(h + \alpha_1).
\]
Consider the Example 6.5. Consider the A_3 case. For $I_w = s_1 s_2 s_3 s_4 s_2$, $u = s_2 s_3 s_2$, $v = s_1 s_2 s_1$, with $\alpha_{ij} = \alpha_i + \cdots + \alpha_{j-1}$ for $1 \leq i < j \leq 4$, we have

$$t_{s_1 s_2 s_3 s_4 s_2} = \hat{t}_{u_0} (s_{1,2,3,5}, \{1,2,4\} + t_{s_2 s_3 s_2, \{2,3,5\}, \{2,4,5\}})$$

$$= \hat{a}_{u_0} \left(-\frac{h}{\alpha_1} \delta_1 + \frac{\alpha_2 \delta_2}{\alpha_2} \alpha_2 \delta_2 \frac{h}{\alpha_3} \delta_3 \frac{h}{\alpha_4} \delta_1 \frac{h}{\alpha_2} \delta_2 \right) \cdot 1$$

$$= \hat{a}_{u_0} \left(\begin{array}{c}
\hat{a}_{12312} = \hat{a}_{u_0} (t_{12312}, \{1\} + t_{12312}, \{2,3,5\}, \{4\}) \\
\hat{a}_{12312} = \hat{a}_{u_2} (t_{12312}, \{2\} + t_{12312}, \{2,3,5\}, \{5\}) \\
\end{array} \right)$$

$$= \hat{a}_{u_0} (\alpha_2 + 2\delta_3).$$

Remark 6.6. In [21, Theorem 1.1], the authors find a formula for the structure constants of $\sigma^*_w \in (Q^m_W)^*$, where

$$\sigma_i = \frac{1 + \alpha_i}{\alpha_i} \delta_i - \frac{1}{\alpha_i} \in Q^m_W.$$

This is equal to our $-T_0$ with $\hbar = -1$.

7. Structure Constants for K-theoretic Stable Bases

In this section, we give a formula of the structure constants of the K-theory stable basis. Similar to our strategy in §6, we use the twisted group algebra method. This method was introduced by Su, Zhao and the second author in [22]; we only recall the definitions below. Here we use $F = F_m$ and $R = R^m = \mathbb{Z}[q^{1/2}, q^{-1/2}]$.

Let $S^m = R^m[\Lambda]$. We use the following notation in this section:

$$x_{\pm, 1} = 1 - e^\mp \alpha, \quad \hat{x}_{\alpha} = 1 - q e^{-\alpha}, \quad \hat{x}_w = \prod_{\alpha > 0, w^{-1} \alpha < 0} \hat{x}_\alpha, \quad q_w = q^{\ell(w)}.$$

Let $Q^m = \text{Frac}(S^m)$ and apply the twisted group algebra construction to obtain the module

$$Q^m_W = Q^m \times_{R^m} R^m[W].$$

Define the operator τ^-_α by

$$\tau^-_\alpha = \frac{q - 1}{1 - e^{\alpha}} + \frac{1 - q e^{-\alpha}}{1 - e^{\alpha}} \delta_\alpha \in Q^m_W.$$

Observe that τ^-_α is a special case of Z_α when $Q = Q^m$.

A simple calculation shows that $(\tau^-_\alpha)^2 = (q - 1) \tau^-_\alpha + q$, and that $\{\tau^-_\alpha\}$ satisfies the braid relations. It follows that the K-theoretic Demazure-Lusztig operator τ^-_w, given by the product

$$\tau^-_w = \tau^-_{\alpha_1} \tau^-_{\alpha_2} \cdots \tau^-_{\alpha_i},$$

is independent of choice of reduced word $s_{i_1} s_{i_2} \cdots s_{i_t}$ for w. The set $\{\tau^-_w, w \in \Lambda\}$ is a Q^m-basis of Q^m_W.
For each not-necessarily reduced sequence $I = (i_1, \ldots, i_k)$, let τ_I^- be the concatenation $\tau_{\alpha_{i_1}}^- \cdots \tau_{\alpha_{i_k}}^-$, and define the structure constants $c_{I,w}^- \in \mathbb{R}^m$ by the equations

$$
\tau_I^- = \sum_{w \in W} c_{I,w}^- \tau_w^-.
$$

Lemma 7.1. The coefficients $c_{I,w}^- \in \mathbb{R}^m$ in (11) satisfy the following:

1. For all $w \in W$ and sequences I, $c_{I,w}^- = 0$ unless $w \leq \prod I$.
2. If I is reduced, then

$$
c_{I,w}^- = \begin{cases}
0 & \text{if } w \neq \prod I \\
1 & \text{if } w = \prod I.
\end{cases}
$$

Proof. Statement (1) follows from the quadratic relation $(\tau_{\alpha_i}^-)^2 = (q - 1)\tau_{\alpha_i}^- + q$.

Statement (2) follows from the braid relations satisfied by the $\tau_{\alpha_i}^-$. \hfill \square

The analogous statement to Theorem 3.7 is the following proposition.

Proposition 7.2 (K-Stable Leibniz Rule). If $I = (i_1, \ldots, i_k)$, we have

$$
\tau_I^- \cdot (pq) = \sum_{E,F \subseteq [k]} P_{E,F}^I(\tau_{I|E}^- \cdot p)(\tau_{I|F}^- \cdot q), \quad p, q \in Q.
$$

where $P_{E,F}^I = (B_1^- B_2^- \cdots B_k^-) \cdot 1$ with $B_j^- \in Q_W^m$ defined by

$$
B_j^- = \begin{cases}
\frac{1 - e^{-\alpha_j}}{1 - qe^{-\alpha_j}} \delta_j, & \text{if } j \in E \cap F, \\
\frac{1 - qe^{-\alpha_j}}{1 - qe^{-\alpha_j}} \delta_j, & \text{if } j \in E \text{ or } F, \text{ but not both,} \\
\frac{q - 1}{1 - qe^{-\alpha_j}} \tau_{\alpha_j} \delta_j, & \text{if } j \not\in E \cup F.
\end{cases}
$$

Similar to §6, we take the dual $(Q_W^m)^*$, and Q_W^m acts on $(Q_W^m)^*$ via the \cdot-action. Indeed, we have

$$(Q_W^m)^* \cong Q^m \otimes_{S_m} K_{C^* \times T}(G/B) \cong Q^m \otimes_{S_m} K_{C^* \times T}(T^*G/B).$$

Definition 7.3. [22, Definition 5.3, Theorem 5.4] The K-theoretic stable basis elements are defined by

$$
\text{stab}_{w}^-= q_{w_0}q_{w}^{-1/2}(\tau_{w_0, w})^{-1} \cdot (\prod_{\alpha > 0} (1 - e^\alpha) f_{w_0}) \in (Q_W^m)^*.
$$

Moreover, by [22, Theorem 5.4, Theorem 6.5], we have

$$
\text{stab}_{w}^- = q_{w}^{1/2} q_{w_0} (\tau_{w_0, w})^-.
$$

The following theorem gives a formula for the structure constants of the K-theory stable basis:

Theorem 7.4. Let $\{\text{stab}_{w}^- | w \in W\}$ denote the K-theory stable basis of $(Q_W^m)^*$. Define coefficients $p_{u,v}^w \in Q^m$ by the equation

$$
\text{stab}_u^- \cdot \text{stab}_v^- = \sum_{w \geq u, v} p_{u,v}^w \text{stab}_w^-.
$$

Then

$$
p_{u,v}^w = q_{w_0}^{\frac{1}{2}(|\ell(u) + \ell(v) - \ell(w)|)} q_{w_0} \sum_{E,F} \sum_{E,F} c_{I,w}^- c_{I,w}^- c_{I,w}^-.
$$
where the sum is over all $E,F \subset [\ell(w)]$ such that $\prod (I_w|_E) \geq u$ and $\prod (I_w|_F) \geq v$, and coefficients $c_{I_w|_F,v}^u$ are given in Lemma 7.1

Proof. The proof follows a similar argument as that of Theorem 6.3.

\[\square \]

Remark 7.5. Due to the quadratic relation $(\tau_\alpha^-)^2 = (q-1)\tau_\alpha^- + q$, it is difficult to express the sum in terms of formulas in Section 5 and Section 6. Indeed, this is also the reason why it is difficult to express the restriction formula of stab_w in $[22]$ in terms of an AJ-S-Billey-Graham-Willems type formula.

8. THE RESTRICTION FORMULA

In this section we relate the structure constants of Z_α^w with its restriction coefficients. This generalizes such relations in cohomology and K-theory due to Kostant and Kumar in [13, Proposition 4.32] and [14, Lemma 2.25].

Let Z_α^w be given in Definition 3.5. Following Lemma 2.3, we obtain coefficients $b_{u,I_w}^Z \in \mathbb{Q}$ using the defining relations

$$\delta_u = \sum_{w \in W} b_{u,I_w}^Z Z_{I_w},$$

Then $Z_{w}^* = \sum_{u} b_{u,I_w}^Z f_u$, i.e., $Z_{w}^*(\delta_u) = b_{u,I_w}^Z$. We call b_{u,I_w}^Z the restriction coefficients of Z_{w}^*.

Theorem 8.1. For any $w \in W$, define the matrix p_w^Z with $p_w^Z(u,v) = \epsilon_{I_w,I_u}^I$, the matrix b^Z with $b^Z(u,v) = b_{u,I_w}^Z$, and the matrix b^Z with $b_w^Z(u,v) = \delta_w b_{u,I_w}^Z$. Then

$$p_w^Z = b^Z \cdot b_w^Z \cdot (b^Z)^{-1}.$$

Proof. We have

$$ (p_w^Z \cdot b^Z)(u,v) = \sum_{z \in W} p_w^Z(u,z)b^Z(z,v) = \sum_{z \in W} \epsilon_{I_w,I_u}^I b_{u,z}^Z Z_{I_u}^* Z_{I_z}^*(\delta_u) = Z_{I_w}^*(\delta_u) \cdot Z_{I_u}^*(\delta_u) = b_{u,I_w}^Z Z_{I_u}^*(\delta_u) = \sum_{z \in W} b_w^Z(u,z)\delta_z v b_{z,I_w}^Z = \sum_{z \in W} b^Z(u,z) b_w^Z(z,v) = (b^Z \cdot b_w^Z)(u,v).$$

\[\square \]

Corollary 8.2. For any $v,w \in W$, we have

$$\epsilon_{I_w,I_v}^I = b_{v,I_w}^Z.$$

In particular, ϵ_{I_w,I_v}^I does not depend on the choice of I_v.

Proof. Denote $Z_{I_v} = \sum_{u \leq v} a_{I_v,u}^Z \delta_u$. Then the matrix a^Z with $a^Z(u,v) = a_{I_v,u}^Z$ is the inverse of b^Z. Theorem 8.1 implies that

$$\epsilon_{I_w,I_v}^I = p_w^Z(v,v) = \sum_{z_1,z_2 \in W} b^Z(v,z_1) b_{w}^Z(z_1,z_2) a^Z(z_2,v)$$
can also be proved with the following argument: since

\[Z_{I_w}^*(\delta_u) = b_{u,I_w}^Z = 0 \] unless \(u \geq w \),

\[(Z_{I_u}^* \cdot Z_{I_v}^*)^*(\delta_u) = \left(\sum_{u \geq w, w \geq v} c_{I_u,I_v}^W Z_{I_u}^*(\delta_u) \right) = c_{I_u,I_v}^W b_{u,I_v}^Z \]

On the other hand,

\[(Z_{I_u}^* \cdot Z_{I_v}^*)^*(\delta_u) = Z_{I_u}^*(\delta_u) Z_{I_v}^*(\delta_u) = b_{u,I_u}^Z b_{v,I_v}^Z. \]

Therefore, \(c_{I_u,I_v}^W = b_{u,I_v}^Z \).

\begin{remark}
Corollary 8.2 can also be proved with the following argument: since

\[Z_{I_w}^*(\delta_u) = b_{u,I_w}^Z = 0 \] unless \(u \geq w \),

\[(Z_{I_u}^* \cdot Z_{I_v}^*)^*(\delta_u) = \left(\sum_{u \geq w, w \geq v} c_{I_u,I_v}^W Z_{I_u}^*(\delta_u) \right) = c_{I_u,I_v}^W b_{u,I_v}^Z \]

On the other hand,

\[(Z_{I_u}^* \cdot Z_{I_v}^*)^*(\delta_u) = Z_{I_u}^*(\delta_u) Z_{I_v}^*(\delta_u) = b_{u,I_u}^Z b_{v,I_v}^Z. \]

Therefore, \(c_{I_u,I_v}^W = b_{u,I_v}^Z \).
\end{remark}

\begin{remark}
As mentioned in [11], specializing Corollary 8.2 and Examples 5.2 and 5.3 to singular cohomology or K-theory, and \(Z_\alpha \) to the \(X_\alpha \) and \(Y_\alpha \)-operators, one recovers the AJS/Billey formula and Graham-Willems formula of restriction coefficients of Schubert classes, which are obtained by using root polynomials.
\end{remark}

\begin{example}
Consider the \(A_2 \)-case with \(w = s_1, v = s_1s_2s_1 \). We compute \(b_{v,w}^X = X_{I_w}^*(\delta_v) \). For \(A_{1,3}^I \), we only need to consider the following three:

\[A_{1,3}^I \{1\} = -x_1, \quad A_{1,3}^I \{3\} = -x_2, \quad A_{1,3}^I \{1,3\} = x_1x_2. \]

On the other hand, \(c_{1,3}^X_{v,w} = 1 \) when \(E = \{1\}, \{3\} \), and \(X_1X_1 = \kappa_1X_1 \). So \(c_{1,3}^X_{v,w} = 1 \). Therefore,

\[b_{w,I_w}^X = -x_1 - x_2 + \kappa_1x_1x_2. \]

In particular, if \(F = F_a \), then \(b_{w,I_w}^X = -x_1 - x_2 \), and if \(F = F_m \), then \(b_{w,I_w}^X = -x_1 - x_2 + x_1x_2 = x_{a_1+a_2} \).
\end{example}

\begin{example}
Let \(w = s_1s_2, v = s_1s_2s_3s_1s_2 \). Let us compute \(b_{v,w}^X = X_{I_w}^*(\delta_v) \). We write \(X_{i_1j_1} \cdots X_{i_kj_k} \), for \(X_1X_2X_3 \cdots X_{i_kj_k} = x_{i_kj_k} = x_{i_kj_k}, \) and \(\kappa_\pm = \kappa_{\pm, \pm} = \kappa_{\pm, \pm} = \kappa_{\pm, \pm} = \kappa_{\pm, \pm} \). To compute \(A_{1,2}^I \), we only need to consider

\[A_{1,2}^I \{1,2\} = x_1x_2, \quad A_{1,2}^I \{1,5\} = x_1x_2. \]

On the other hand, \(c_{1,2}^X_{v,w} = 1 \) when \(E = \{1,2\}, \{1,5\}, \{4,5\} \). Concerning \(X_{I_w}^\ell_{\{1,2,5\}} \) is \(X_{122} \), since

\[X_1X_2X_2 = X_1\kappa_2X_2 = s_1(\kappa_2)X_1 + \Delta_1(\kappa_2)X_2 = \kappa_1+2X_1+2 + \Delta_1(\kappa_2)X_2, \]

so

\[c_{1,2}^X_{v,w} = \kappa_1+2. \]
\end{example}
For $X_{I_w(1,4,5)} = X_{112}$, from $X_1X_1X_2 = \kappa_1 X_1X_2$, we get
\[c^X_{I_w(1,4,5),I_w} = \kappa_1. \]
Lastly, for $X_{I_w(1,2,4,5)} = X_{1122}$, from Lemma 2.2 we know
\[X_{1212} = X_1(X_{121} + \kappa_12X_1 - \kappa_21X_2) = \kappa_1 X_{121} + X_1 \kappa_2X_1 - \kappa_1 \kappa_2X_2 \]
\[= \kappa_1 X_{121} + s_1(\kappa_12)X_1^2 + \Delta_1(\kappa_21)X_1 - s_1(\kappa_21)X_2 - \Delta_1(\kappa_21)X_2 \]
\[= \kappa_1 X_{121} + \kappa_{1,12} s_1X_1 + \Delta_1(\kappa_11)X_1 - \kappa_{1,2} - 1X_12 - \Delta_1(\kappa_21)X_2, \]
so
\[c^X_{I_w(1,2,4,5),I_w} = s_1(\kappa_21) = -\kappa_{1,2} - 1. \]
Therefore,
\[b^X_{s_1, s_2, s_1, s_2} = A^L_{[6], \{1,2\}} + A^L_{[6], \{1,5\}} + A^L_{[6], \{4,5\}} \]
\[+ A^L_{[6], \{1,2,5\}} \kappa_{1,2} + A^L_{[6], \{1,4,5\}} \kappa_1 + A^L_{[6], \{1,2,4,5\}} (-\kappa_{1,2} - 1) \]
\[= x_1 x_1 x_2 + x_1 x_2 x_3 + x_2 x_2 x_3 - x_1 x_1 x_2 x_2 + 3 \kappa_1 x_1 + x_1 x_2 x_2 x_3 x_1 + x_1 x_1 x_2 x_2 x_3 x_1 + 2 \kappa_1 - 1 \]
\[= x_1 x_1 x_2 + x_1 x_2 x_3 + x_2 x_2 x_3 - x_2 x_3 x_1 + x_1 + x_2 + x_1 x_2 \]}
In particular, if $F = F_a$, then
\[b^X_{s_1, s_2, s_1, s_2} = \alpha_1 (\alpha_1 + \alpha_2) + \alpha_1 (\alpha_2 + \alpha_3) + \alpha_2 (\alpha_2 + \alpha_3). \]
If $F = F_m$, then
\[b^X_{s_1, s_2, s_1, s_2} = x_1 x_1 x_2 + x_1 x_2 x_3 + x_2 x_2 x_3 - x_1 x_2 x_3 (x_1 + x_2). \]
These agree with the result computed by using root polynomials.

REFERENCES

[1] P. Aluffi and L. Mihalcea, Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds, Compositio Math., 152 (2016), 2603–2625.
[2] P. Aluffi, L. Mihalcea, J. Schuermann and C. Su, Shadows of characteristic cycles, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells, Duke Math. J., to appear, arXiv:1709.08897.
[3] P. Aluffi, L. Mihalcea, J. Schuermann and C. Su, Motivic Chern classes of Schubert cells, Hecke algebras, and applications to Casselman’s problem, Ann. Sci. Éc. Norm. Supér., to appear.
[4] B. Calmès, V. Petrov and K. Zainoulline, Invariants, torsion indices and oriented cohomology of complete flag, Ann. Sci. École Norm. Sup. (4) 46 (2013), 3405–448.
[5] B. Calmès, K. Zainoulline and C. Zhong, Equivariant oriented cohomology of flag varieties, Doc. Math., Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday (2015), 113–144.
[6] B. Calmès, K. Zainoulline and C. Zhong, A coproduct structure on the formal affine Demazure algebra, Math. Zeitschrift, 282 (2016) (3), 1191-1218.
[7] B. Calmès, K. Zainoulline and C. Zhong, Push-pull operators on the formal affine Demazure algebra and its dual, Manuscripta Math. 160 (2019), no. 1-2, 9-50.
[8] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88.
[9] J. M. Douglass and C. Zhong, The Leray-Hirsch Theorem for equivariant oriented cohomology of flag varieties, preprint, arXiv:2009.05902.
[10] R. Goldin and A. Knutson, Schubert structure operators, Sém. Lothar. Combin., Art. 90, 12, 82B,(2020).
[11] R. Goldin and A. Knutson, \textit{Schubert structure operators and $K_T(G/B)$}, Pure Appl. Math. Q., 17, No. 4 (2021), 1345-1385.

[12] A. Hoffmann, J. Malagón-López, A. Savage and K. Zainoulline, \textit{Formal Hecke algebras and algebraic oriented cohomology theories}, Selecta Math. (N.S.) 20 (2014), no. 4, 1213-1245.

[13] B. Kostant and S. Kumar, \textit{The nil Hecke ring and cohomology of G/P for a Kac-Moody group G}, Adv. in Math. 62 (1986), no. 3, 187–237.

[14] B. Kostant and S. Kumar, \textit{T-equivariant K-theory of generalized flag varieties}, J. Differential geometry 32 (1990), 549–603.

[15] M. Levine and F. Morel, \textit{Algebraic cobordism}, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2007.

[16] D. Maulik and A. Okounkov, \textit{Quantum groups and quantum cohomology}, Astérisque, no. 408 (2019), ix+209 pp.

[17] R. Rimányi, V. Tarasov and A. Varchenko, \textit{Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety}, Journal of Geometry and Physics, 94 (2015), 81-119.

[18] R. Rimányi, V. Tarasov and A. Varchenko, \textit{Elliptic and K-theoretic stable envelopes and Newton polytopes}, Selecta Math. (N.S.) 25 (2019), no. 1, Art. 43, 43 pp.

[19] R. Rimányi and A. Varchenko, \textit{Equivariant Chern-Schwartz-MacPherson classes in partial flag varieties: interpolation and formulae}, IMPANGA2015 (eds. J. Buczynski, M. Michalek, E. Postingel), EMS (2018), pp. 225–235.

[20] C. Su, \textit{Restriction formula for stable basis of Springer resolution}, Selecta Math., 23 (2017), Issue 1, 497-518.

[21] C. Su, \textit{Structure constants for Chern classes of Schubert cells}, Math. Zeitschrift, Volume 298 (2021), 193-213.

[22] C. Su, G. Zhao and C. Zhong, \textit{On the K-theory stable bases of the Springer resolution}, Ann. Sci. Éc. Norm. Supér. (4), 53 (2020), no. 3, 663-711.

[23] G. Zhao, C. Zhong, \textit{Geometric representations of the formal affine Hecke algebra}, Adv. Math., 317 (2017), 50-90.

[24] C. Zhong, \textit{On the formal affine Hecke algebra}, J. Inst. Math. Jussieu, 14 (2015), no. 4, 837-855.

George Mason University, Department of Mathematical Sciences, 4400 University Dr., Fairfax, VA 22030
Email address: rgoldin@gmu.edu

University at Albany, Department of Mathematics, CK399, 1400 Washington Ave, Albany, 12222
Email address: czhong@albany.edu