Renal salt wasting syndrome in a patient with COVID-19; a case report and review of the literature

Bassam Al-Helal1*, Emad Abdallah1*, Altayyeb Yousef2, Reem Asad1*, Mahmoud Reda1

Abstract

Introduction: Cerebral salt wasting or renal salt wasting (RSW) syndrome, may be more common than syndrome of inappropriate antidiuretic hormone secretion (SIADH); and may even occur in the absence of cerebral disease. We report a case of RSW in a Bangladeshi patient positive for COVID-19 without clinical cerebral disease.

Case Presentation: A 53 years-old Bangladeshi patient presented with history of chest pain and acute MI. On examination, the patient was conscious, alert, vitally stable, chest with fine bilateral basal crepitation and heart with additional S3 sound and abdomen was lax with no organomegaly. There was no lower limbs oedema. His serum creatinine; 68 umol/L, urea; 3.4 mmol/L, K; 4.7 mmol/L, sodium; 135 mmol/L, uric acid; 141 mmol/L and phosphate was 1.3 mmol/L. Echocardiography (ECG) revealed anterior lateral wall STEMI. PCI was done for LAD. ECG revealed ejection fraction (EF) 10-15%. Nasopharyngeal swab for COVID-19 was positive. Serum sodium decreased from 135 to 108 with signs of hypovolemia. Work up for hyponatremia revealed serum osmolality of 237 mOsm/kg, urine NA; 109 mmol/L, urine osmolality; 295 mOsm/kg, urine uric acid; 685 umol/L, and urine phosphate: 6.5 mmol/L. Additionally serum T3, T4, TSH and serum basal cortisol were normal. The patient received normal saline infusion and fludrocortisone and serum sodium increased to 134 mmol/L. Our patient had all the important clinical and laboratory characteristics of RSW in the absence of cerebral disease which include hyponatremia associated with hypovolemia, high urinary sodium excretion, increased fraction excretion of phosphate and persistent hypouricemia with increased fractional excretion of urate after correction of hyponatremia and with normal renal, adrenal and thyroid functions. Furthermore, there was a prompt response to saline replacement and fludrocortisone and steady improvement in serum sodium with negativity and improvement of COVID-19. Our diagnosis was RSW in the absence of cerebral disease and to our knowledge; this is the first case report of RSW in a patient with COVID-19 in the literature.

Conclusion: RSW should be considered in patients with COVID-19 with hyponatremia and absence of cerebral disease. We suggest changing cerebral salt wasting to the more appropriate term RSW.

Keywords: COVID-19, Cerebral salt-wasting syndrome, Renal salt wasting syndrome, Syndrome of inappropriate antidiuretic hormone secretion, SARS-CoV-2

Case Presentation

A 53 years-old Bangladeshi patient presented to Al-Adan hospital casualty, Kuwait on 28/4/2020, with a history of chest pain and acute myocardial infarction. On examination, the patient was conscious, alert, body mass index was 30 kg/m², blood pressure 113/57 mm Hg, pulse 84 b/m, temperature 37.3°C, chest with fine bilateral basal crepitation and heart with additional S3 sound and abdomen was lax with no organomegaly. There was no lower limbs edema. His serum creatinine ≥8 umol/L, urea; 3.4 mmol/L, K; 4.7 mmol/L, sodium; 130 mmol/L, uric acid; 141 mmol/L, ALT; 39 IU/L, AST;
Hyponatremia is the most common electrolyte abnormality that is undergoing dramatic changes in terms of its diagnostic approach and clinical outcomes (13).

In CSW or RSW, abnormalities in the proximal tubule result in excessive sodium losses, which lead to decreased effective circulating volume. This activates baroreceptors, which increase antidiuretic hormone (ADH) secretion. This results in water conservation and a return to an equilibrated state. In contrast, SIADH primarily occurs due to an inappropriate euvoletic rise in ADH secretion (14). In our case the abnormalities most probably in proximal tubule due to increased urinary sodium excretion with increased FEurate, urea and phosphate.

Differentiation of this disorder from the SIADH, a common cause of hyponatremia, can be difficult because both can present with hyponatremia and concentrated urine with natriuresis. However, distinguishing between the two disorders is important because treatment options differ. Attention to the volume status of the patient is important in making the distinction. Failure to distinguish CSW syndrome from SIADH in a patient with hyponatremia who has brain injury could lead to inappropriate therapy with fluid restriction. RSW should be considered a discrete clinical entity and may be more common than perceived (4). It should also be considered in patients without cerebral disease (3,15).

The relationship among serum urate, FEurate, and hyponatremia in CSW syndrome is unclear. FEurate may remain elevated even after correction of hyponatremia in patients with CSW syndrome. This is distinct from SIADH, in which FEurate returns to the reference range once the hyponatremia is corrected (4,15). The physiologic basis for this in CSW syndrome may be related to the receptor-mediated processing of sodium and urate in the proximal tubule, which may be defective in this syndrome. The physiologic basis for hypouricemia in SIADH remains unclear.

The abnormalities in proximal tubular transport may be secondary to a plasma natriuretic factor that reduces proximal and, possibly, distal sodium transport in renal salt-wasting syndrome. It may also inhibit the tubular transport of urate, phosphate, and urea in addition to sodium (16).

The cause of kidney involvement in COVID-19 is likely to be multifactorial, with cardiovascular comorbidity and predisposing factors (such as sepsis, hypovolemia, and nephrotoxins) as important contributors (6).

Cardiorenal syndrome, particularly right ventricular failure secondary to COVID-19 pneumonia, might lead

Discussion

Hyponatremia is the most common electrolyte
Variables	28/4/2020	11/5/2020	15/5/2020	18/5/2020	19-20/5/2020	21/5/2020	23/5/2020	24-25/5/2020	26/5/2020	28/5/2020	30/5/2020
Creatinine (umol/L)	68	58	60	58	58	67	61	61	60	70	65
S. urea (mmol/L)	3.4	1.7	3.5	3.3	3.6	2.8	3.7	4.2	6.4	5.6	5.6
S. K (mmol/L)	135	108	110/113	131	124/128	129	133	132	131	125	134
S. osmolality (mosmo/kg)	237/240	258	254/253	-	-	281	273	-	282		
S.CL (mmol/L)	89	-	89	85	94	-	-	94.1	92	88	95
S. uric acid (mmol/L)	- -	- -	141	- -	- -	- -	157	148	-	172	
S.PO4 (mmol/L)	- -	- -	- -	- -	- -	1.1	- -	1.3	1.2	-	
Urine NA (mmol/L)	- -	88	109	160	146	141	78/59	44	46	102	
Urine osmolality (mosmo/kg)	- -	295	446	446	452	346/505	252	321	463		
Urine urate (umol/L)	- -	- -	685	- -	- -	- -	1187	1508	1543		
Urine K (mmol/L)	- -	11.6	- -	27.04	20.7/42.7	27.6	42.3	45.07			
Urine CL (mmol/L)	- -	104	- -	132	66	38	-	113			
Urine creatinine (mmol/L)	- -	1.93	- -	4.26	3.3	4.1	-	4			
Urine urea (mmol/L)	- -	49	74	74	-	200	-	143			
Urine P04 (mmol/L)	- -	- -	0.3	0.3	4.1	6.5	-	9.2		5.7	
FEurate (%)	- -	14.6	- -	- -	- -	14.58	-	14.57			
FEPHosphate (%)	- -	- -	- -	- -	- -	- -	-	13.9			
Frusimide/spironolactone	+	- -	- -	- -	- -	- -	- -	- -			
Normal saline	-	+	+	-	-	- -	-	- -			
Fludrocortisone	-	- -	- -	+	-	- -	-	- -			
CVP	6	4	2	4	5	6	3	5	6	7	
Urine output (mL/h)	40	70	70	70	70	100	100	80	70	80	80
CRP	60	53	67	68	60	-	64.85	81.2	29.2	18.4	
COVID-19	-VE	+VE									-VE
to kidney congestion and subsequent acute kidney injury (AKI). Similarly, left ventricular dysfunction might lead to low cardiac output, arterial under-filling, and kidney hypoperfusion.

Autopsy data (7), indicates that the endothelium is affected in the lung and in the kidney, where it is probably responsible for proteinuria. Furthermore, virus particles were reported to be present in renal endothelial cells, indicating viremia as a possible cause of endothelial damage in the kidney and a probable contributor to AKI (7).

Additionally, SARS-CoV-2 can directly infect the renal tubular epithelium and podocytes through an angiotensin-converting enzyme 2 (ACE2)-dependent pathway and cause mitochondrial dysfunction, acute tubular necrosis, the formation of protein reabsorption vacuoles, collapsing glomerulopathy, and protein leakage in Bowman’s capsule (8,9).

Another potential mechanism of AKI involves SARS-CoV-2-related immune response dysregulation, as indicated by observed lymphopenia and cytokine release syndrome (cytokine storm) (10,11).

The report of C/RSW occurring in patients without cerebral disease has led to proposal to change CSW to the more appropriate term RSW.

In conclusion, RSW should be considered in patients with COVID-19 with hyponatremia and absence of cerebral disease. We suggest changing CSW to the more appropriate term RSW.

Acknowledgments
Many thanks to my colleagues in the Al Khezam dialysis center and Al Dabous cardiology center, Al-Adan hospital for following and collection of all data about the patient.

Authors’ contribution
All authors contributed equally to prepare the manuscript.

Conflicts of interest
The authors declared that they have no conflict of interest.

Ethical considerations
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support
None.

References
1. Peters JP, Welt LG, Sims EA, Orloff J, Needham J. A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians. 1950;63:57-64.
2. Tenny S, Thourel W. Cerebral Salt Wasting Syndrome. Treasure Island (FL): StatPearls Publishing; 2020.
3. Bettinelli A, Longoni L, Tammaro F, Fare PB, Garzoni L, Bianchetti MG. Renal salt-wasting syndrome in children with intracranial disorders. Pediatr Nephrol. 2012;27:733-9.
4. Moritz ML. Syndrome of inappropriate anti-diuresis and cerebral salt wasting syndrome: are they different and does it matter? Pediatr Nephrol. 2012;27(5):689-93.
5. Maesaka JK, Imbriano LJ, Ali NM, Ramathli E. Is it cerebral or renal salt wasting? Kidney Int. 2009;76(9):934-8.
6. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949-64.
7. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417-8. doi: 10.1016/S0140-6736(20)30937-5.
8. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219-27. doi: 10.1016/j.kint.2020.04.003.
9. Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MA. Collapsing Glomerulopathy in a Patient With Coronavirus Disease 2019 (COVID-19). Kidney Int Rep. 2020;5:935-9. doi:10.1016/j.ekrr.2020.04.002.
10. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.
11. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16:308-310. doi: 10.1038/s41581-020-0284-7.

12. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382:e38. doi: 10.1056/NEJMc2007575.

13. Maesaka JK, Imbriano LJ, Miyawaki N. High Prevalence of Renal Salt Wasting Without Cerebral Disease as Cause of Hyponatremia in General Medical Wards. Am J Med Sci. 2018;356:15-22. doi: 10.1016/j.amjms.2018.03.020.14.

14. Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery. 2009;65(5):925-35; discussion 933-6

15. Maesaka JK, Miyawaki N, Palaia T, Fishbane S, Durham JH. Renal salt wasting without cerebral disease: diagnostic value of urate determinations in hyponatremia. Kidney Int. 200;71(8):822-6.

16. Bitew S, Imbriano L, Miyawaki N, Fishbane S, Maesaka JK. More on renal salt wasting without cerebral disease: response to saline infusion. Clin J Am Soc Nephrol. 2009;4(2):309-15.