Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Communication

Infection sustained by lineage B.1.1.7 of SARS-CoV-2 is characterised by longer persistence and higher viral RNA loads in nasopharyngeal swabs

Paolo Calisti*, Laura Amato, Ilaria Puglia, Francesca Cito, Alessandra Di Giuseppe, Maria Luisa Danzetta, Daniela Morelli, Marco Di Domenico, Marialuigia Caporale, Silvia Scialabba, Ottavio Portanti, Valentina Curini, Fabrizia Perletta, Cesare Cammà, Massimo Ancora, Giovanni Savini, Giacomo Migliorati, Nicola D’Alterio, Alessio Lorusso

Istituto Zooproflettico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100, Teramo, Italy

A R T I C L E I N F O

Article history:
Received 25 February 2021
Received in revised form 27 February 2021
Accepted 2 March 2021

Keywords:
SARS-CoV-2
Coronavirus
VOC 202012/01
lineage B.1.1.7
Abruzzo
Italy

A B S T R A C T

Following the announcement on December 2020 about the emergence of a new variant (VOC 202012/01, B.1.1.7 lineage) in the United Kingdom, a targeted surveillance was put in place in the Abruzzo region (Italy), which allowed detection of 313 persons affected by lineage B.1.1.7, up to the 20th of February 2021. We investigated the results of RT-PCR on nasopharyngeal swabs tested from December 2020 to February 2021 to verify any difference on the viral load and persistence between people infected by lineage B.1.1.7 and others. Statistically significant lower values of Ct associated with the detection of the N protein encoding gene (Ct N) were observed in persons with lineage B.1.1.7 infection (median C t N = 15.8) in comparison to those infected by other lineages (median C t N = 16.9). A significantly longer duration of the persistence of SARS-CoV-2 RNA in nasopharyngeal swabs was observed in persons with lineage B.1.1.7 infection (16 days) in comparison to those infected by other lineages (14 days).

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Starting from March 2020, nasopharyngeal swabs collected in three provinces (Chieti, L’Aquila and Teramo) of Abruzzo, a central Region of Italy, were tested daily for the presence of SARS-CoV-2 RNA at the Istituto Zooproflettico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM) (Danzetta et al., 2020).

Several SARS-CoV-2 variants are now circulating globally and some of them have raised international concern. One of these is certainly represented by the Variant of Concern (VOC) 202012/01 which belongs to the lineage B.1.1.7 (Rambaut et al., 2020). VOC 202012/01 is considered to have higher transmission capabilities (Davies et al., 2021), and although mechanisms underlying VOC 202012/01 spread are largely unknown, VOC 202012/01 seems to be associated with higher viral loads and prolonged viral persistence in infected patients (Kissler et al., 2021). Furthermore, a six nucleotide deletion in the S protein encoding gene of VOC 202012/01 is responsible for the S-gene drop out of a commonly used SARS-CoV-2 RNA real time-based detection kit (Thermo-scientific, Waltham-MA, USA), which simultaneously detects two additional regions of the SARS-CoV-2 genome, namely ORF1ab and N protein encoding genes.

In order to unravel the spread of VOC 202012/01 in Abruzzo, a surveillance plan was established by the IZSAM. A two-step strategy was adopted (Bal et al., 2021). The first included a random selection of swabs resulting positive for SARS-CoV-2 RNA in a time period ranging from the beginning of December 2020 to February 20th 2021 but showing a readout pattern characterized by the S-gene drop-out. The second included whole genome sequence analysis of the S-negative swab samples with Threshold cycle (Ct) values ≤20. Overall, at least 10% of all positive samples were sequenced.

In the period of observation, 1724 samples tested positive for SARS-CoV-2 RNA with the S-negative readout pattern. Of these,
655 were sequenced. VOC 202012/01 was detected in 313 individuals, mostly originating from the province of Chieti (n = 258, 82.4%), which experienced an upsurge of COVID-19 cases in the first two months of the year 2021.

Hence, we deeply investigated the molecular results of nasopharyngeal swabs tested from December 2020 to February 2021 to verify whether VOC 202012/01 was associated with higher RNA loads and prolonged persistence in the respiratory tract with respect to those of other SARS-CoV-2 variants.

Methods

The workflow for SARS-CoV-2 RNA detection and sequencing have been previously described by our group (Danzetta et al., 2020). Sequences, once produced, are regularly shared with the GISAID database. For the estimation of the viral load in tested swabs, the C_T values associated with the detection of N protein encoding gene (C_T N) were chosen, since this protein is less affected by the mutation mainly targeting the S gene (Wu and Brian, 2010). The C_T N gene values of the first positive nasopharyngeal swab of patients tested from December 2020 to February 2021 were analysed by comparing the median C_T N values observed in the 313 VOC 202012/01-infected individuals with homologous values in individuals with S-positive results (n = 2344). To obtain two comparable sub-populations only those individuals with C_T values ≤ 20 were considered.

To verify any difference in the duration of the positivity at the molecular test, a further subset of the two previously mentioned groups was defined. Reasonably, only those individuals with a final negative result, thus allowing definition of the end of the positivity period, were included in the analysis. The difference (in days) between the date of the first and last positive nasopharyngeal swab was considered for each infected individual.

The statistical analysis was performed using StatTools© (Palisade Corporation, Ithaca, NY, USA). A Mann–Whitney test was used to assess the statistical significance of differences among the C_T N median values, whereas Chi-square and Fisher exact tests were used for comparing the percentages of people in the two groups who had clinical symptoms and those who died. Level of statistical significance was set at 0.05.

Results and discussion

A statistically significant difference (Mann–Whitney Test, P < 0.0001) was observed between the median values of C_T N observed in VOC 202012/01-infected individuals (median C_T N = 15.8) in comparison to S-positive infected individuals (median C_T N = 16.9) (Table 1). Furthermore, a statistically significant difference (Mann–Whitney Test, P = 0.0317) was observed between the median values of the duration of RNA positivity at the molecular test in VOC 202012/01-infected individuals (n = 136; median value = 16 days) in comparison to those of S-positive infected individuals (n = 965; median value = 14 days) (Table 1).

Viral load kinetics and the duration of viral shedding are important determinants for disease transmission (Cevik et al., 2021). In this regard also our analysis, performed in a given time period, suggests that VOC 202012/01 persists longer in the respiratory tract of infected individuals reaching higher RNA loads with respect to those of other SARS-CoV-2 variants. Although not a good predictor for viral load at individual level (Dahdouh et al., 2020), C_T values may give an indirect indication of the viral load in the population, as already seen in other studies (Veronesi et al., 2020; Hay et al., 2021).

One limitation of our study is the lack of information on the clinical status of all persons of two groups, which could be linked to different levels of C_T values and duration of the disease. However, the information about the presence or absence of clinical signs and the exitus of the disease was available for 140 VOC 202012/01-infected individuals and 961 S-positive infected individuals. In particular, 83.6% (C.I. 95%: 76.5%–88.8%) and 81.2% (C.I. 95%: 78.6%–83.5%) of individuals showed COVID-19 clinical signs in VOC 202012/01-infected and S-positive infected persons, respectively. The difference of the two percentages is not statistically significant (Chi-square: 0.4686, P = 0.4936). Similarly, the difference between the percentages of deaths in the two groups, 21% (C.I. 95%: 0.8%–6.1%) for VOC 202012/01-infected and 4.1% (C.I. 95%: 3.0%–5.5%), was not significant (exact Fisher value = 0.3493). These findings, although limited to a sub-sample of the study population, suggest a similar clinical picture and gravity in the two populations.

Further analyses are reasonably warranted in order to establish the correlation between C_T values originating from infections with different variants and the presence of infectious (then transmissible) virus, the evolution of the spread of VOC 202012/01 in a given area and the impact on hospitalization and access to intensive care unit.

Conflict of interest

None.

Funding source

IZSAM funding was provided by the Italian Ministry of Health (Ricerca Corrente 2019 “NGS e diagnostica molecolare in Sanità Animale: Fast D2”, recipient Alessio Lorusso) and Ricerca Corrente 2020 “PanCO: epidemiologia e patogenesi dei coronavirus umani ed animali”, recipient Alessio Lorusso).

Ethical approval

The results analysed in the present study derive from the official control activities performed by the Public Health Local Authority and no ethical approval is specifically requested.

References

Bal A, Destras G, Gaynard A, Stefic K, Marlet J, Eymieux S, et al. Two-step strategy for the identification of SARS-CoV-2 variant of concern 202012/01 and other variants with spike deletion H69-V70, France, August to December 2020. Euro Surveill 2021;26[January 3]:2100008, doi:http://dx.doi.org/10.2807/1560-7917. ES.2021.26.3.2100008. PMID: 33478625; PMCID: PMC7848679.
Cevik M, Tate M, Lloyd O, Maroalo AE, Schaifers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2021;2(January (1)):e13–22. doi:http://dx.doi.org/10.1016/S2666-5247(20)30172-5 Epub 2020 Nov 15. PMID: 33521734; PMCID: PMC7837230.

Dahdouh E, Lázaro-Perona F, Romero-Gómez MP, Mingorance J, García-Rodríguez J. Ct values from SARS-CoV-2 diagnostic PCR assays should not be used as direct estimates of viral load. J Infect 2020;S0163–4453(October (2)3067–7, doi:http://dx.doi.org/10.1016/j.jinf.2020.10.017 Epub ahead of print. PMID: 33131699; PMCID: PMC7585367.

Danzetta ML, Amato L, Cito F, Di Giuseppe A, Morelli D, Savini G, et al. SARS-CoV-2 RNA persistence in naso-pharyngeal swabs. Microorganisms 2020;8(July (8)):1124, doi:http://dx.doi.org/10.3390/microorganisms8081124 PMID: 32722621; PMCID: PMC7466010.

Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Díaz-Ordaz K, Keogh RH. Increased hazard of death in community-tested cases of SARS-CoV-2 variant of concern 202012/01. medRxiv [Preprint] 2021;(February), doi:http://dx.doi.org/10.1101/2021.02.01.21250959 2021.02.01.21250959. PMID: 33564794; PMCID: PMC7872389.

Hay JA, Kennedy-Shaffer L, Kanjilal S, Lennon NJ, Gabriel SR, Lipsitch M, et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. medRxiv [Preprint] 2021;2020(February), doi:http://dx.doi.org/10.1101/2020.08.20.20204222 10.08.20204222. PMID: 33594381; PMCID: PMC7885940.

Kissler S, Fauver JR, Mack C, Tai CG, Breban M, Watkins AE, et al. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. Preprint. 2021. https://nrs.harvard.edu/URN-3:HUL.InstRepos:37366884.

Rambaut A, Loman N, Pybus O, Barclay W, Barrett J, Carabelli A, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. 2020. https://virolological.org/t/1563.

Veronesi L, Colucci ME, Pasquarella C, Caruso L, Mohieldin Mahgoub Ibrahim M, Zoni R, et al. Virological surveillance of SARS-CoV-2 in an Italian northern area: comparison of Real Time RT PCR cycle threshold (Ct) values in three epidemic periods. Acta Biomed 2020;91(July (9-S))19–21, doi:http://dx.doi.org/10.23750/abm.v91i9-S.10138 PMID: 32701912.

Wu HY, Brian DA. Subgenomic messenger RNA amplification in coronaviruses. Proc Natl Acad Sci U S A 2010;107(27):12257–62, doi:http://dx.doi.org/10.1073/pnas.1000378107.