Chromatin modifications and the DNA damage response to ionizing radiation

Rakesh Kumar1, Nobuo Horikoshi1, Mayank Singh1, Arun Gupta1, Hari S. Misra1,2, Kevin Albuquerque1, Clayton R. Hunt1 and Tej K. Pandita1,∗

1 Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
2 Homi Bhabha National Institute, Molecular Genetics Section, Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India

In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

Keywords: histone modifications, DNA repair

INTRODUCTION

Cells derived from individuals with ataxia-telangiectasia are radiation sensitive and have a higher rate of conversion of DNA double-strand breaks (DSBs) into chromosome breaks post irradiation (Pandita and Hittelman, 1992a,b; Pandita and Richardson, 2009). The increased frequency of chromosome aberrations observed in ataxia-telangiectasia mutated (ATM) defective cells has been attributed to an altered chromatin status which is observed at both the global chromatin level as well as specifically at telomeric chromatin (Pandita and Hittelman, 1995; Smidenov et al., 1999; Pandita, 2001, 2002, 2003). It is now evident that DNA damage renders chromatin more sensitive to micrococcal nuclease digestion (Titford and Stewart, 1989) and that induction of DSB results in decondensation of chromatin at the local as well as global level (Krivak et al., 2006; Delaire et al., 2009), an essential requirement for activation of the DNA damage response (DDR) and subsequent DSB repair. The basic repeating unit of chromatin, the nucleosome, consists of a histone octamer complex containing four types of histones, namely H2A, H2B, H3, and H4 (Luger et al., 1997), around which is wound 146 bp of DNA. Nucleosome formation compacts naked double helical DNA by approximately six fold its linear dimension. DSB formation has been reported to lead to a localized disruption of nucleosomes, a process that depends on NBS1 and ATM (Berkochev et al., 2007). Histones consist structurally of a globular core domain with flexible tail regions at both the N-terminal and C-terminal regions. The globular core domain interacts with other histones while the termini contain highly conserved, charged lysine and arginine amino acid residues involved in DNA–histone interaction. In addition to histones, non-histone proteins are also involved in developing special chromatin structures. The known histone modifications induced following ionizing radiation exposure are phosphorylation, acetylation, methylation, and ubiquitination (Pandita and Richardson, 2009; Deem et al., 2012). Among these major chromatin modifications, post-damage-induced histone phosphorylation has been the most thoroughly studied. Recent studies have provided evidence that histone acetylation of lysine is also critical for the DDR. Post-translational modifications (PTMs) of histone proteins are critical for cellular recognition of DNA damage and subsequent recruitment of repair protein complexes to the damage sites. Moreover, evidence is emerging suggesting that pre-existing chromatin modifications also play an important role in the DDR (Sharma et al., 2010).

HISTONE MODIFICATIONS IN DNA DSB REPAIR

Histone modifications provide support for critical repair proteins that act on the DNA damage site by helping in the recruitment of specific protein DNA repair factors and also play a role in sensing the initial DNA damage. Histone modifications have been detected on lysine as acetylation, methylation, or ubiquitination modification, on arginine as methylation and on serine/threonine as phosphorylation. Except for ubiquitination,
all these modifications alter histone/DNA electrostatic interactions and ultimately change chromatin dynamics and function by altering access of the cellular factors involved in DDR.

HISTONE PHOSPHORYLATION

Phosphorylation of all histones has been reported to affect transcription, DNA repair, apoptotic, and chromosome condensation during mitosis (Hanks et al., 1983; Van Hooser et al., 1998). H2A phosphorylation has been extensively studied in response to DNA damaging agents (Pauli et al., 2000) and phosphorylation specifically of the H2A variant H2AX occurs immediately (within a few minutes) after exposure to ionizing radiation. Phosphorylation of H2AX (Rogakou et al., 1998), the product referred to as γ-H2AX, has been shown to be an essential event in the response to DNA strand breaks and is thought to modify the higher order chromatin structure at the damage site. In yeast, H2A is phosphorylated at Ser129 by the Tel1 and Mec1 kinases in response to various DNA damaging agents (Kouzarides, 2000, 2007; Pauli et al., 2000; Foster and Downs, 2005) while in humans ATM and ATR (human ortholog for yeast Tel1 and Mec1, respectively) phosphorylate the corresponding Ser139 of H2A. This phosphorylation event is critical for the recruitment of signaling/repair proteins to DNA damage sites since ionizing radiation induced formation of γ-H2AX foci is rapid, precedes repair factor assembly into repairosome foci and is required for subsequent foci formation by numerous factors including 53BP1, NBS1, BRCA1, and cheated into repairosome foci and is required for subsequent foci formation.

Consistently, γ-H2AX foci is rapid, precedes repair factor assembly into repairosome foci and is required for subsequent foci formation by numerous factors including 53BP1, NBS1, BRCA1, and RAD54 that belong to the SWI2/SNF2 family of helicases involved in DNA repair (Widlak et al., 2006). In addition to H2AX, other histones also undergo phosphorylation as part of the DDR, e.g., phosphorylation of H2B at Ser14 and N-terminal phosphorylation of H4 (Fernandez-Capetillo et al., 2004a). Phosphorylation of H2B and H4 has been reported to be abundant in close proximity to endonuclease-induced double-strand breaks (Cheung et al., 2005; Utley et al., 2005) and is mediated by sterile 20 kinase (Mst1; Ahn et al., 2005) and casein kinase 2 (Cheung et al., 2005; Utley et al., 2005). The major types of phosphorylated histones in chromatin and the associated kinases are summarized in Table 1.

HISTONE METHYLATION

Histone methylation on lysine and arginine (Grant, 2001; Zhang and Reinberg, 2001; Fischle et al., 2007; Kouzarides, 2007) was discovered 40 years ago (Murray, 1964). Specific methylation sites linked to the DDR are summarized in Table 2. Multiple methylations of H3 and H4 are reported (mono-, di-, and trimethyl groups per residue) at K4, K9, K27, K36, K79 and R2, R8, R17, R26 for H3 and K20 and R3 for H4. Histone methyltransferases use S-adenosyl-methionine as a methyl donor for the catalytic process. Lysine methylation is mainly commenced by the SET domain containing proteins (Dm Su(var)3-9, Enhancer of zeste (E(z)), and trithorax (trx)) while arginine methylation is carried out by co-activator arginine methyltransferase (CARM1) and the protein arginine methyl transferase (PRMT1). Additionally, as histone acetylation can be detected by bromodomain containing proteins, methylated sites are detected by proteins containing a chromodomain motif. Although dimethylation of histone H4 lysine 20 (H4K20me2), mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals (Pei et al., 2011), does not seem to increase globally after DNA damage, it is critical for 53BP1 recruitment to double-strand breaks (Pei et al., 2011) but does increase in the vicinity of DSBs. Not surprisingly then, MMSET depletion significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Recruitment of MMSET to DSBs requires the γ-H2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser102 of MMSET (Pei et al., 2011). Based on such observations, it is possible that a pathway involving γ-H2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.

Table 1 Phosphorylation.

Modification	Modifier	Histone	Roles in DNA repair	Reference
pS1 CK2 H4	ATM, ATR	H2AX	Recruits and accumulates DDR proteins (MDC1) to repair lesion and promotes histone acetylation	Rogakou et al. (1998), Kouzarides (2000, 2007), Pauli et al. (2000), Foster and Downs (2005)
pT14 CK2 H4	WSTF	H2AX	Recruits activated ATM and MDC1	Cook et al. (2008), Xiao et al. (2009)
pS139 ATM, ATR, DNA-PKcs	H2AX	Promotes NHEJ by 53BP1 recruitment and methylation of H4K20	Fernandez-Capetillo et al. (2004a)	
pS139 ATM, ATR, DNA-PKcs	H2AX	Recruits and accumulates DDR proteins (MDC1) to repair lesion and promotes histone acetylation	Rogakou et al. (1998), Kouzarides (2000, 2007), Pauli et al. (2000), Foster and Downs (2005)	
pT14 CK2 H4	WSTF	H2AX	Recruits activated ATM and MDC1	Cook et al. (2008), Xiao et al. (2009)
pS139 ATM, ATR, DNA-PKcs	H2AX	Promotes NHEJ by 53BP1 recruitment and methylation of H4K20	Fernandez-Capetillo et al. (2004a)	

Table 2 Methylation.

Modification	Modifier	Histone	Roles in DNA repair	Reference
pS159 ATM, ATR, DNA-PKcs	H2AX	Recruitment and accumulation of DDR proteins (MDC1) to repair lesion and promotes histone acetylation	Rogakou et al. (1998), Kouzarides (2000, 2007), Pauli et al. (2000), Foster and Downs (2005)	
pT14 CK2 H4	WSTF	H2AX	Recruits activated ATM and MDC1	Cook et al. (2008), Xiao et al. (2009)
pS139 ATM, ATR, DNA-PKcs	H2AX	Promotes NHEJ by 53BP1 recruitment and methylation of H4K20	Fernandez-Capetillo et al. (2004a)	
pS139 ATM, ATR, DNA-PKcs	H2AX	Recruits and accumulates DDR proteins (MDC1) to repair lesion and promotes histone acetylation	Rogakou et al. (1998), Kouzarides (2000, 2007), Pauli et al. (2000), Foster and Downs (2005)	
pT14 CK2 H4	WSTF	H2AX	Recruits activated ATM and MDC1	Cook et al. (2008), Xiao et al. (2009)
pS139 ATM, ATR, DNA-PKcs	H2AX	Promotes NHEJ by 53BP1 recruitment and methylation of H4K20	Fernandez-Capetillo et al. (2004a)	
Kumar et al. Histone modifications and DNA repair

Table 2 | Methylation.

Modification	Modifier	Histone	Role in DNA repair	Reference
K4me3	SET1	H3	Stimulates V(D)J recombination via recombination activating gene (RAG) complex	Wang et al. (2009), Stanlie et al. (2010)
K9me3	Suv3-9H1	H3	Interacts with HP1δ, phosphorylates damage-induced HP1β, and activates TIP60	Ayoub et al. (2008), Sun et al. (2009)
K36me2	Menin/SETMAR	H3	Accumulates NBS1 and Ku to stimulate NHEJ	De Haro et al. (2010), Beck et al. (2011)
K79me3	DOT1	H3	Recruits RAD9 in budding yeast	Boettman et al. (2007)
K20me2	Suv4-20H1/Suv4-20H2	H4	Recruits DDR and repair proteins	Sanders et al. (2004), Schetta et al. (2004), Pei et al. (2011)

HISTONE ACETYLATION

Histone acetylation neutralizes positively charged lysine residues, altering the chromatin fiber intra- and inter-nucleosomal interactions to facilitate decondensation and enhance access to nucleosomal DNA (Kouzarides, 2000; Anderson et al., 2001). Table 3 summarizes the histone acetylation enzymes with known connections to the DDR and their specific histone substrates. Acetylation is a dynamic histone marker regulated by the balance between histone acetyltransferases (HATs), which transfer an acetyl moiety from acetyl-coenzyme A to the ε-amino group of lysine, and histone deacetylases (HDACs) which remove the acetyl-group from histones (Shahbazian and Grunstein, 2007). Histone modification occurs in both the nucleus and cytoplasm by Type-A and Type-B HATs, respectively. Type-A HATs are responsible for chromatin dynamics in the nucleus. There are multiple Type A HAT families including the Gcn5 superfamily, MYST family, p300/CBP, nuclear receptor co-activators, TAFII250 and TFIIIC. Individual histones can contain modifications that differentially regulate chromatin functions. While acetylation of H3 and H4 histones increases interactions with components of the transcriptional machinery containing bromodomains, methylation of lysine 9 on H3 (H3K9) allows heterochromatin protein 1 (HP1) binding via the chromodomain to the chromatin, thereby inhibiting binding of the transcription machinery to DNA. The acetylation at the N-terminuses of H3 and H4 and at H3K56 plays an important role in genomic stability, DNA replication, and in the binding of chromatin assembly factor (CFI)-PCNA complex (Chen and Tyler, 2008). Acetylation has been detected at four lysines (K5, K8, K12, and K16) in the N-terminal tail of the H4 histone. Acetylation at K16 in H4 was observed on the Drosophila male X chromosome (Turner et al., 1992) and correlated with gene dosage compensation. The modification has also been implicated in the control of chromatin structure responsible for interaction of other proteins (Shogren-Knaak et al., 2006). The acetyl-transferase responsible for histone H4 acetylation at K16 is MOF (Gupta et al., 2005, 2008; Smith et al., 2005; Sharma et al., 2010). Acetylation at H4 K16 (H4K16ac) has been implicated in the proper compaction of chromatin 30-nm fibers (Shogren-Knaak et al., 2006). More importantly, lack of MOF also influences ATM activation (Gupta et al., 2010) and results in delayed appearance of IR-induced γ-H2AX foci (Sharma et al., 2010). Consistent with the influence of histone H4 K16 acetylation on ATM activation, HDAC inhibitor treatment results in global ATM activation even in the absence of DNA damage (Bakkenist and Kastan, 2003).

HISTONE UBIQUITINATION

Ubiquitination is a cellular process that conjugates a 76 amino acid protein, ubiquitin, to the lysine ε-amino group of specific

Table 3 | Histone acetylation.

Modification	Modifier	Histone	Role in DNA repair	Reference
K5ac	TIP60	H2AX	Helps in K118ub of H2AX and removal of H2AX from chromatin	Kusch et al. (2004), Ikura et al. (2007)
K36ac, K14ac	CBP/p300	H2AX	Recruits Ku during NHEJ	Deen et al. (2012)
K36ac	GCN5,CBP/p300	H3	Recruits SV1/SNF complex, promotes spreading of γ-H2AX domain and regulates ATM activity	Tamburini and Tyler (2005)
K23ac, K27ac	GCN5,CBP/p300	H3	Regulates Ku protein recruitment during DSB repair	Ogawa et al. (2011)
K18ac	GCN5,CBP/p300	H3	Depletes after IR to promote NHEJ, enriches K56ac after HR and UV repair	Miller et al. (2010)
K56ac	GCN5,CBP/p300, RITT109	H3	Recruits DDR and repair proteins and recruits SWI/SNF nucleosome remodeling complex	Gupta et al. (2005, 2008), Sharma et al. (2010)

www.frontiersin.org January 2013 Volume 2 Article 214
proteins as a result of which it acts as a signaling molecule to regulate protein function and stability. Ubiquitination of H2A at K119 is associated with transcriptional repression via polycomb repressive complex (de Naegeli et al., 2004; Fang et al., 2004) and the E3 ubiquitin-protein ligase RNF2 or RING2 responsible for this ubiquitination is stimulated by RING finger-domain containing proteins like BMI-1 and RING1A (Cao et al., 2003). Interestingly, BMI-1, RING1A, and RING1B are involved in DSBR-associated H2A ubiquitination (Cao and Yan, 2012). Ionizing radiation induces ubiquitination of nucleic H2A and H2AX histones. Mono-ubiquitinated H2A is enriched in the satellite regions of genome where as the ubiquitination of H2B is mostly in transcriptionally active genes. Histone H2A and H2AX can also be polyubiquitinated by ubiquitin ligase complex. During DNA repair at the break site, RNF8 and RNF168 catalyze formation of lysine 63 linked polyubiquitination chains on histones H2A and H2AX (Doil et al., 2009; Stewart et al., 2009; Campbell et al., 2012). RNF8 is rapidly recruited to the sites of DNA damage in an MDC1-dependent manner through its functional FHA domain and RNF8 is required to recruit other repair factors (Huem et al., 2007; Kolos et al., 2007; Mailand et al., 2007; Shi et al., 2008; Martinej et al., 2009; Mok and Henderson, 2012). RNF8-catalyzed ubiquitination modification does not lead to protein degradation because the polyubiquitin synthesized in the RNF8/UBC13-mediated pathways is a lysine-63 linkage, rather than the lysine-48 canonical signal for protein degradation. Recent studies have revealed that R6Ub synthesis is regulated by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1; Wiener et al., 2012). It is thought that RNF8 executed ubiquitination has a role in maintaining genomic integrity, however, the role of post-damage mono-ubiquitination in chromatin reassembly needs to be elucidated (Deen et al., 2012). It has been reported that RNF8 is inactive toward nucleosomal histone H2A. In contrast RNF168 catalyzes the monoubiquitination of the histones (H2A/H2AX) specifically on K13-15 (Mattiroli et al., 2012). Interestingly, E3 ligases like BRCA1 promote BRCA2 recruitment that appears in turn to promote the recruitment of RAD51 involved in homologous recombination (HR; Qing et al., 2011). The major histone sites of ubiquitination, the enzymes required and the role of the modification in the DDR are summarized in Table 4.

Table 4 | Ubiquitination.

Modification	Modifier	Histone	Role in DNA repair	Reference
K119ub/K119ub2, K110poly-ub	RNF8, RNF168	H2A	Accumulates BRAC1 and 53BP1 for DNA repair	Hura et al. (2007)
K119ub/K119ub2, K110poly-ub	RNF8, RNF168, TM60–8BC13	H2AX	Recruits DDR proteins to the repair lesion	Mailand et al. (2007), Doil et al. (2009), Stewart et al. (2009)
K120ub	RNF20–RNF40	H2B	Recruits XRCC4 and Ku for NHEJ and BRCA1 and RAD51 for HR	Moyal et al. (2011), Nakamura et al. (2011)
K91ub	BBAP	H4	Induces H4K20me modification and recruits 53BP1 to promote NHEJ	Yan et al. (2009)
undergo DSB repair by an alternative form of NHEJ (Alt NHEJ), which operates at telomeres in telomerase deficient cells or in the absence of Ku or DNA-PKcs. This pathway involves proteins different from those involved in the C-NHEJ pathway including poly(ADP-ribose) polymerase 1 (PARP-1), XRCC1, DNA ligase III (LIG3), nucleotide kinase, or Flap endonuclease 1. Though this pathway is relatively poorly characterized, certain features of a NHEJ are well characterized such as a slower kinetics of DSB repair than in C-NHEJ and competitive repression of A-NHEJ by Ku under normal conditions. Whether C-NHEJ and Alt-NHEJ require any pathway specific chromatin modifications is not yet known.

The first visible chromatin modification that occurs immediately after cellular exposure to IR is phosphorylation of histone H2AX on Ser139, the product being γ-H2AX, which functions to recruit repair proteins. Besides γ-H2AX, other modifications involved in the NHEJ are acetylation, methylation, phosphorylation, and ubiquitination of histone H2A, H2B, H3, and H4. These histone modifications may play a role in either marking the site of a DNA break to facilitate the recruitment of DNA repair proteins or relaxing the chromatin so the repair proteins can access the damaged DNA site. For example, Metnase, a methylase which dimethylates histone H3 residue K36 (H3K36me2) in the DNA DSB region, and the levels of H3K36me2 have been found to correspond positively to DSB repair efficiency (reviewed in Williamson et al., 2012). Another modification, H3K4me3, carried out by Suv39 H3 histone methyltransferase has been found at DSBs and the absence of this modification has been linked to poor DNA DSB repair (Faucher and Wellinger, 2010).

During NHEJ repair, histones H3 and H4 are reportedly acetylated on the N-terminal lysines (reviewed in Williamson et al., 2012). NuA4–TIP60 acetylates histone H4 at DSBs and this acetylation has been linked with improved DSB repair (Bird et al., 2002; Murr et al., 2006). Similarly, the base levels of H4K16ac prior to DNA DSB induction influences repair as cells with decreased levels of H4K16ac have reduced efficiency of DNA DSB repair by NHEJ (Sharma et al., 2010). Other histone modifications by INO80, SWR1, and RSC complexes are necessary for recruitment of Ku70/80 at DNA DSB sites (Shim et al., 2007; van Attikum et al., 2012). It is interesting to note that at DSBs, RSC complex recruits Mre11, which is followed by ATPase remodeling to facilitate access to the site by proteins required for NHEJ-mediated repair (Shim et al., 2007). Furthermore, acetylation of H3 and H4 by CBP and p300 cooperate with the SW1/SNF complex to facilitate recruitment of Ku70/80 (Ngiowasa et al., 2011). The function of histone acetylation therefore seems to be during the early stages of NHEJ to facilitate chromatin relaxation and subsequently allow the repair proteins to access the DNA DSB.

CHROMATIN MODIFICATIONS DURING HOMOLOGOUS RECOMBINATION REPAIR

During the DNA DSB repair by HR, nucleotide sequences are exchanged between two similar or identical molecules of DNA, allowing the cells to accurately repair DNA. HR type repair is predominant during meiosis and in the S- and G2-phases of the cell cycle, whereas NHEJ repair is predominant in G1-phase cells. HR repair is a complex process, which requires significant alterations in chromatin structure in order to allow repair proteins access to damaged DNA. During this process, the first step is the processing of the exposed DNA ends to produce 5′-overhangs. DNA DSB ends for RAD51 binding. Recombination is followed by RAD51 filament formation on the resulting single-stranded DNA, homologous sequence search, heteroduplex formation, repair synthesis, and resolution of the heteroduplex, all steps that require major changes in the chromatin structure. While HR makes a significant contribution to cell survival after IR exposure only in the S- and G2-phases, replication-associated one-ended DSBs are also efficiently and primarily repaired by HR.

The initiating step for HR is end-resection to create a 3′-overhang, which is subsequently coated by replication protein A (RPA). After formation of a DSB end, these ends are resculated in vertebrates by the MRE11/RAD50/NBS1(MRN) complex or the MRX complex in yeast. Exo1 along with DNA2 nucleases then digest the 5′-end in eukaryotes. In yeast, the MRX complex, in cooperation with Sac2, is important for initiating DNA resection. The MRN complex serves as a multipurpose DNA clamp that acts to directly bridge severed DNA ends. DNA resection is followed by a critical step, which is recognition of homologous DNA sequences followed by generation of a joint molecule between single-stranded DNA and its duplex repair template. DNA strand exchange leads to switching of base-paired partners between these DNAs. Homology recognition and strand exchange are mediated by recombinase proteins such as RecA in prokaryotes and RAD51 in eukaryotes. RecA and RAD51 assembled into protein filaments on single-stranded DNA catalyze DNA rearrangement aided by accessory/mediator proteins. Subsequent steps in HR can include the engagement of the second DNA end, DNA branch migration, and eventual resolution of repaired DNA strands.

Upon joint molecule formation, a critical common step in the HR pathways is the hand off of the 3′-end of the incoming DNA molecule to a DNA polymerase, such that recombination will result in two restored duplex DNAs. At this stage of the reaction the partner DNA molecules are physically joined via branched DNA structures, which upon ligation can be converted into so-called Holliday junctions. There appear to be many structure-specific endonucleases that can resolve these structures resulting in the completion of DNA repair by HR. Enzymes such as the E. coli RuvABC complex and the eukaryotic Gen1 protein incise Holliday junctions producing directly ligatable crossover and non-crossover products. Alternatively, a DNA helicase, BLM, in combination with a type I topoisomerase, can resolve Holliday junctions. Branched DNA intermediates in HR can also be acted upon by evolutionary-conserved structure-specific endonucleases, including Mus81/Eme1 and Sae1/Sae4. During the HR process, a number of acetylation events occur on histones H3 and H4 with the proteins implicated in the modification being GCN5, NuA4, and HAT1 (Tambrini and Tyler, 2005; Murr et al., 2006). GCN5 also plays some role in pathway choice for DSB repair as DNA-PKcs phosphorylates GCN5 to inactivate its HAT domain. In addition, GCN5 also interacts with BRCA1 through a mechanism that is dependent upon its HAT activity, suggesting a role in HR repair of DNA DSBs (Ohkus et al., 2006).

During HR repair, MDC1 recruits RNF8 (E3) to ubiquitinate H2AX (Kolas et al., 2007; Mohammad and Yaffe, 2009).
Subsequently, recruited BRCAl further maintains H2AX ubiquitination in order to recruit downstream DDR and DSBR repair components. Furthermore, at the completion of HR repair chromatin structure must be restored to the pre-damage state, a process that starts with dephosphorylation of γ-H2AX by protein phosphatase 2A (PP2A) or PP4C in mammals (Hanks et al., 1983).

Removal of acetylation marks occurs by HDACs, which subsequently results in the condensation of chromatin back to its native configuration. Besides the chromatin modifying factors, a non-histone chromatin protein known as HP1, initially identified in Drosophila and named for its predominant localization to pericentric heterochromatin (Li and Smerdon, 2002), plays a role in genomic instability (Sharma et al., 2010). HP1α, γ, and β (M31) (Cbx1), and HP1β (M24) (Singh et al., 1991; Eisenberg and Elgin, 2000; Jones et al., 2000). HP1β is a dosage-dependent modifier of pericentric heterochromatin-induced silencing (Festenstein et al., 1999).

HP1β plays a critical role in maintaining genomic stability in mammalian cells (Sharma et al., 2013; Aucott et al., 2008) with both negative (Ayyoub et al., 2008; Goodarzi et al., 2008) as well as positive (Liu et al., 2009) effects on DNA damage repair. First, damage-dependent phosphorylation of HP1β decreases its chromosomal-dependent affinity for H3K9me3 leading to transient displacement of HP1β from DNA damage sites (Ayyoub et al., 2008). In addition, HP1β depletion alleviates the ATM requirement for efficient DSBR repair in heterochromatin regions (Goodarzi et al., 2008), suggesting HP1β suppresses repair in heterochromatin DNA regions. However, HP1β was also found to accumulate at DNA damage sites, indicating a more active involvement in DNA repair (Liu et al., 2009). In human cells, HP1β overexpression increased IR-induced chromosomal damage (Sharma et al., 2003). HP1β mobilization during DNA repair is regulated by ATM-dependent KAP-1 Ser473 phosphorylation (Ziv et al., 2006; Bolderson et al., 2012).

REFERENCES

Ahn, S. H., Cheung, W. L., Hsu, J. Y., Aucott, R., Bullwinkel, J., Yu, Y., Shi, W., Ayoub, N., Jeyasekharan, A. D., Bernal, et al. (2013). Remodeling KAP-1 Ser473 phosphorylation (Ziv et al., 2006; Bolderson et al., 2012).

ACKNOWLEDGMENTS

We thank Jessica Tyler for her insightful thoughts and usage of her work. The work in Tej K. Pandita’s laboratory is supported by National Institutes of Health National Cancer Institute Grants R01CA123232, R01CA129537, R01CA154320, and U19AI091175.
response, and cancer. Front. Oncol. 2:226. doi: 10.3389/fonc.2012.00226

Cao, R., Tsukada, Y., and Zhang, Y. (2005). Role of Brm and Ring1A in H2A ubiquitination and Histone silencing. Mol. Cell 20, 845-854.

Cartright, R., Dunn, A. M., Simpson, P. J., Sambori, C. E., and Thacker, J. (1998). Isolation of novel human and mouse genes of the TRIM24/RECOMBINATION-gene family. Nucleic Acids Res. 26, 1035-1041.

Chapman, J. R., Telese, F., Wang, B. G., Cheung, W. L., Turner, F. B., Krish, A. C., et al. (2010). Metnase promotes DNA repair and X inactivation. J. Biol. Chem. 285, 3769-3791.

Doilan, N., Bekker-Jensen, S., Faust, H., Møller, H., Bartek, J., Lukas, C., et al. (2007). Nucleosome exclusion repair-induced H2A ubiquitination and RNF168 and reveals a universal DNA damage response. J. Cell Biol. 180, 855-867.

Eissenberg, J. C., and Elgin, S. C. (1999). Tyr0sine dephosphorylation and X inactivation. Trends Genet. 15, 656-660.

Festenstein, R., Sharghi-Namini, S., Fox, M., et al. (1999). Heterochromatin protein 1 mediates mammalian PEV in a dose- and chromosomal-context-dependent manner. Nat. Genet. 25, 457-461.

Gapud, E. J., and Sleckman, B. P. (2011). Unique and redundant functions of ATM and ATR-kinases during DNA replication checkpoints. Front. Oncol. 1, 370-379.

Kumar et al. Histone modifications and DNA repair
et al. (2011). Requirement of ATM-dependent mono-ubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell 41, 526–542.

Murti, R., Loines, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q., et al. (2006). Histone acetylation at Trp5–Trypt.modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 95–104.

Muray, K. (1984). The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 13, 160–165.

Nakamura, K., Kata, A., Kobayashi, J., Sugahara, H., Sakamoto, D., Oka, Y., et al. (2011). Regulation of homologous recombination by EZF2-dependent H2B ubiquitination. Mol. Cell 41, 515–525.

Ogawa, H., Urata, A., Osakada, A., Takii, H., Yokomizo, I., Nakamura, S., et al. (2011). Histone acetylation by CRP and p300 at double-strand break sites facilitates SWENF1-dependent chronic remodelling and the recruitment of non-homologous end-joining factors. Oncogene 30, 2135–2146.

Onishi, H., Kitagawa, H., Wada, O., Takerca, S., Tora, L., Koizumi, M., et al. (2006). An H4K20TRAPP histone acetyltransferase complex co-activates BRCA1 transcription function through histone modification. J. Biol. Chem. 281, 20–26.

Pandita, T. K. (2001). The role of ATM in telomere structure and function. Radiat. Res. 156, 462–467.

Pandita, T. K. (2002). ATM function and cell cycle stability. Oncogene 21, 611–618.

Pandita, T. K. (2003). A multifaceted role for ATM in genome maintenance. Expert. Rev. Mol. Med. 5, 1–18.

Pandita, T. K., and Hittelman, W. N. (2008). The contribution of DNA damage and chromosome repair deficien- cies to the radiosensitivity of ataxia-telangiectasia. Radiat. Res. 161, 211–223.

Pandita, T. K., and Hittelman, W. N. (1992b). Initial chromosome dam- age but not DNA damage is greater in ataxia telangiectasia cells. Radiat. Res. 130, 94–103.

Pandita, T. K., and Hittelman, W. N. (1995). Evidence of a chromatin basis for increased mutagen sensitiv- ity associated with multiple primary malignancies of the head and neck. J. Natl. Cancer Inst. 87, 730–741.

Pandita, T. K., Lovernman, H. B., Lam, S. D., Dhar, S., Zhang, W., Tera, Y., et al. (2000). Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 19, 1586–1591.

Pandita, T. K., and Richardson, C. (2009). Chromatin remodelling finds its place in the DNA double-strand break response. Nucleic Acids Res. 37, 1963–1977.

Paull, T. K., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Geller, M., and Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Cell 100, 860–869.

Pei, H., Zhang, L., Luo, K., Qin, Y., Chesi, M., et al. (2011). H2B ubiquitination. Mol. Cell 37, 1021–1029.

Shahbazian, M. D., and Grunstein, M. (2007). Evidence of a chromatin basis for increased mutagen sensitivity of ataxia telangiectasia. Nature 447, 738–743.

Shi, W., Ma, Z., Wilkins, H., Alkhat, K., Scott, S. P., Zhang, J., et al. (2008). Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation. J. Biol. Chem. 283, 3106–3116.

Shim, E. Y., Hong, S. J., Ohm, J. H., Yoon, Y., Zhang, T., and Lee, S. E. (2007). RSC mobilizes nucle- osomes to improve accessibility of repair machinery to the damaged chromosome. Mol. Cell Biol. 27, 1602– 1613.

Shogren-Knaak, M., Ishi, H., Sun, J. M., Pinto, M. J., Davis, J. R., and Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 313, 846–847.

Singh, P. R., Miller, J. R., Pearce, J., Kathy, B., Burton, B. D., Paro, R., et al. (1991). A sequence motif found in a Drosophila heterochro- matin protein is conserved in animals and plants. Nucleic Acids Res. 19, 789–794.

Smith, L. R., Bhan, S., and Pandita, T. K. (1999). Altered telomere nuclear matrix interactions and nucleosomial periodicity in ataxia telangiectasia cells before and after ionizing radi- ation treatment. Mol. Cell Biol. 19, 6965–6971.

Smith, E. K., Cayrou, C., Avvakumov, N., et al. (2004). Histone H4-H3.2 chromatin remodeling complexes at chromosome double-strand breaks. EMBO J. 23, 6115–6125.

Smith, E. R., Cayrou, C., Huang, R., Lane, W. S., Cotc, J., and Lacocch, J.-C. (2005). A human protein complex homologous to the Drosophila Maelcomplexe is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell Biol. 25, 9175–9186.

Sonoda, E., Hochegger, H., Saberi, A., Timachi, Y., and Haber, J. E. (2004). Developmental expression and protein interactions. Science 303, 124–128.

Storch, D. J., and Stowka, S. H. (1999). Micrococcal nuclease: its specificity and role in nucleosome disassembly. Annu. Rev. Biochem. 68, 375–394.

Stucki, M., Clapperton, J. A., Moham- med, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2001). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 105, 1213–1228.

Suzuki, M., Clapperton, J. A., Misono, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2000). Histone H2A ubiquitination links DNA damage detection to activation of the tumour suppressor TP53. Nat. Cell Biol. 11, 1176–1182.

Tamburin, B. A., and Tyley, K. J. (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand break repair. Mol. Cell 20, 4993–4993.

Vidal, D. J., and Stowka, S. H. (1998). Micrococcal nuclease: its specificity and use for chromatin analysis. Adv. Biochem. 25, 127–137.

Turner, B. M., Baby, A. J., and Ladetto, J. (1992). Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chrom- some domains in Drosophila poly- tenic nuclei. Cell 69, 375–384.

Uley, R. T., Lasorte, N., John- rodtus, O., Allard, S., and Cot, J. (2005). Regulation of Nucle histone acetyltransferase activity in transcrip- tion and DNA repair by phos- phorylation of histone H4. Mol. Cell. Biol. 25, 8179–8189.

van Attikum, H., Frisch, O., and Gasser, S. M. (2007). Distinct roles for SWI/SNF and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4115–4123.

Van Houw, B., Goudschi, D. W., Allik, C. D., Binkley, B. R., and Maniatis, M. A. (1998). Histone H1 phosphory- sation is required for the initiation, but not maintenance of mammalian chromosome condensation. J. Biol. Chem. 273, 23171–23179.

Wang, G. G., Song, J., Wang, Z., Dittmann, H. L., Caudex, S., Li, H., et al. (2009). Heteromultimeric macromolecular complexes that play a role in DNA damage recognition and repair. Cell 139, 119–126.

Wen, Z., Zhang, W. S., and Wolberger, C. (2012). The mechan- ism of OGTU-mediated inhibition
of ubiquitination. Nature 483, 618–622.
Williamson, E. A., Wray, J. W., Bansal, P., and Hromas, R. (2012). Overview for the histone codes for DNA repair. Prog. Mol. Biol. Transl. Sci 110, 207–227.
Xiao, A., Li, H., Shechter, D., Alm, S. H., Fabritius, L. A., Erdjument-Bromage, H., et al. (2009). WSTF regulates the H2AX DNA damage response via a novel tyrosine kinase activity. Nature 457, 37–42.
Yan, Q., Duivi, S., Xu, R., Graves, K., Kiselevskaya, P., Maat, J. P., et al. (2009). BRAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol. Cell 36, 110–120.
Yuan, J., Adamiak, R., and Chen, J. (2010). Focus on histone variant H2AX: to be or not to be. FEBS Lett. 584, 3717–3724.
Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histones tails. Genes Dev. 15, 2343–2360.
Zhu, Y., Bielopolski, D., Galanty, Y., Lukas, C., Taya, Y., Schultz, D. C., et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and RAP-1-dependent pathway. Nat. Cell Biol. 8, 870–876.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 21 October 2012; paper pending published: 05 December 2012; accepted: 29 December 2012; published online: 22 January 2013.
Citation: Kumar R, Horikoshi N, Singh M, Gupta A, Misra HS, Albuquerque K, Hunt CR and Pandita TK (2013) Chromatin modifications and the DNA damage response to ionizing radiation. Front. Oncol. 2:214. doi: 10.3389/fonc.2012.00214
This article was submitted to Frontiers in Radiobiology, a specialty of Frontiers in Oncology.
Copyright © 2013 Kumar, Horikoshi, Singh, Gupta, Misra, Albuquerque, Hunt and Pandita. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.