Determination of the magnetic structure of Yb$_3$Pt$_4$: a $k=0$ local-moment antiferromagnet

Y. Janssen,1,2 M. S. Kim,1 K. S. Park,1,2 L. S. Wu,2 C. Marques,2 M. C. Bennett,2 Y. Chen,3,4 J. Li,3,4 Q. Huang,3 J. W. Lynn,3 and M. C. Aronson1,2

1Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973
2Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794
3NIST Center for Neutron Research, NIST, Gaithersburg, Maryland 20899
4Department of Materials Science, University of Maryland, College Park, Maryland 20742

(Dated: June 26, 2009)

We have used neutron diffraction measurements to study the zero-field magnetic structure of the intermetallic compound Yb$_3$Pt$_4$, which was earlier found to order antiferromagnetically at the Néel temperature $T_N=2.4$ K, and displays a field-driven quantum critical point at 1.6 T. In Yb$_3$Pt$_4$, the Yb moments sit on a single low-symmetry site in the rhombohedral lattice with space group $R3$. The Yb ions form octahedra with edges that are twisted with respect to the hexagonal unit cell, a twisting that results in every Yb ion having exactly one Yb nearest neighbor. Below T_N, we found new diffracted intensity due to a $k=0$ magnetic structure. This magnetic structure was compared to all symmetry-allowed magnetic structures, and was subsequently refined. The best-fitting magnetic structure model is antiferromagnetic, and involves pairs of Yb nearest neighbors on which the moments point almost exactly towards each other. This structure has moment components within the ab-plane as well as parallel to the c-axis, although the easy magnetization direction lies in the ab-plane. Our magnetization results suggest that besides the crystal-electric-field anisotropy, anisotropic exchange favoring alignment along the c-axis is responsible for the overall direction of the ordered moments. The magnitude of the ordered Yb moments in Yb$_3$Pt$_4$ is 0.81 μ_B/Yb at 1.4 K. The analysis of the bulk properties, the size of the ordered moment, and the observation of well-defined crystal-field levels argue that the Yb moments are spatially localized in zero field.

PACS numbers: 75.25.+z, 71.27.+a, 75.20.Hr

I. INTRODUCTION

The quantum critical state in stoichiometric Yb intermetallic compounds is often associated with anomalous metallic states, non-Fermi liquid behavior, and, most recently, with heavy-Fermion (HF) superconductivity. Some stoichiometric Yb antiferromagnets show field-induced quantum critical points (QCP) and can thus be tuned towards quantum criticality by applying a magnetic field. Different scenarios can be related to antiferromagnetic (AF) QCPs either involving large localized-moment order or involving small-moment spin-density wave-like order. We have recently identified the binary intermetallic compound Yb$_3$Pt$_4$ as a stoichiometric Yb-based compound with a field-induced quantum critical point (QCP).

We have characterized Yb$_3$Pt$_4$ by measuring thermodynamic and transport properties. The magnetic susceptibility χ of Yb$_3$Pt$_4$ above 200 K is well-described by a Curie-Weiss expression involving the full Yb$^{3+}$ moment of 4.5 μ_B. Yb$_3$Pt$_4$ orders antiferromagnetically at the Néel temperature $T_N=2.4$ K, releasing ~ 0.8Rln2 of entropy, consistent with largely localized Yb moments. Since the local symmetry of the Yb ions is triclinic, the manifold of crystal field split states consists of four doublets. This scenario was confirmed in measurements of the specific heat C, which found that the ground doublet is well-separated from the first excited doublet. The reactivity below T_N is quadratic in temperature, the susceptibility χ weakly temperature dependent, and the Sommerfeld constant $\gamma = C/T$ vanishingly small. We concluded that the ordered state is a Fermi liquid, most likely weakly coupled to the ordered Yb moments. These experimental data indicate that the f-electrons are likely localized on the Yb ions, and are thus excluded from the Fermi surface. Besides this zero-field behavior, we have also shown that a field-induced quantum critical point can be reached by applying fields of \sim1.6 T, and that the low-temperature high-field state is also a Fermi liquid.

Some physical parameters important to understand the properties of Yb$_3$Pt$_4$, cannot be directly obtained from thermodynamic measurements, but need to be determined by scattering methods. The magnetic propagation vector, which describes whether the magnetic structure is commensurate or incommensurate with the crystal lattice, is important for the underlying magnetic fluctuations and their coupling to quasiparticles. The order parameter, the temperature dependence of the ordered magnetic moment, can show whether the ordering transition is continuous or discontinuous. The magnitude and direction of the ordered Yb moments, needed to rationalize the ordered-moment scenario (localized or itinerant), is determined by the magnetic structure. We have used neutron diffraction experiments to determine all these, and the results are described in this paper.
This paper is organized as follows. We will give a description of the Yb$_3$Pt$_4$ crystal structure that provides the groundwork for understanding the magnetically ordered structure. Then we will give results of neutron diffraction experiments, and provide symmetry-allowed magnetic-structure models obtained by representation analysis. We will give our best-fitting magnetic-structure model. Finally, with the aid of specific-heat, inelastic neutron scattering and single-crystal magnetization data, we discuss the ordered Yb-4f moments in terms of a local-moment picture.

II. EXPERIMENTS

Small (up to \(\sim 3\) mg) single crystals of Yb$_3$Pt$_4$ were grown out of a high-temperature ternary solution, rich in Pt4$^+$. A polycrystalline sample of Yb$_3$Pt$_4$ was made by combining the yields of 12 different growth crucibles. For initial characterization, we used a Philips diffractometer employing Cu-K$_\alpha$ radiation to measure a powder x-ray diffraction pattern of finely ground crystals taken from each growth. The diffraction patterns were analyzed with the program Rietica, using a Le Bail-type,\(^\text{12}\) of refinement. As we will show below, they can be indexed according to the space group $R\overline{3}$, with average lattice parameters $a=12.94(1)$ Å and $c=5.655(5)$ Å. These results are consistent with values $a=12.888$ Å and $c=5.629$ Å which were reported previously.\(^\text{13}\) No reflections from impurity phases were detected in any of the batches used to make the neutron diffraction sample, which amounted to about 7 g. We note that we have measured the specific heat, ac susceptibility, and dc magnetization on crystals taken from many different growths and in no case have we found a detectable difference in Neel temperature or moment. Additionally, we prepared a single crystal of about 60 mg and used it for a single-crystal neutron diffraction experiment.

Neutron powder diffraction data were collected using the high-resolution neutron powder diffractometer BT-1 and the high-flux double focusing triple-axis spectrometer BT-7 at the NIST Center for Neutron Research NCNR. Samples were loaded in a V (Al) can for the BT-1 (BT-7) experiment. In both experiments, an ILL ‘orange’ cryostat was used, for full-pattern base-temperature measurements at \(\sim 1.4\) K, and for a full-pattern measurement at 5.1 K (5 K) in the BT-1 (BT-7) experiment. A Ge 311 (PG 002) monochromator produced neutrons with a wavelength $\lambda=2.079$ Å (2.359 Å) and data were collected over the angular range of $2\theta=3 - 168$ ° (5 - 60 °) with a step size of 0.05 ° (0.1 °) in the BT-1 (BT-7) experiment. Additionally, the 60 mg single crystal of Yb$_3$Pt$_4$ was aligned such that a (110) reflection was in the Bragg condition, and was subsequently used for a single-crystal neutron diffraction experiment conducted between 1.4 K and 4 K on the triple-axis instrument BT-9 at NCNR-NIST. The neutron diffraction data were analyzed by the Rietveld method using the FULLPROF computer program suite.\(^\text{14}\) Representation analysis to determine possible magnetic structures was performed using the computer program SARAh\(^\text{15}\).

Inelastic neutron scattering experiments were performed on the same 7 g powder sample in the BT-7 double focusing triple-axis spectrometer with a fixed final energy of 14.7 meV, and at several fixed wave vectors and several different temperatures both above and below T_N. We used a double focusing PG monochromator, and a horizontally focusing analyzer to obtain maximum intensity.

Specific heat between 0.5 K and 300 K, and magnetization at 4 K and in fields up to 14 T were measured in Quantum Design Physical Property Measurement Systems (PPMS) respectively equipped with a He-3 option and with a vibrating sample magnetometer option.

III. CRYSTAL AND MAGNETIC STRUCTURE

A. Crystal structure

Yb$_3$Pt$_4$ crystallizes in the rhombohedral Pu$_3$Pd$_4$-type of structure, where Pu can be replaced by all rare earths except Eu, as well as by Y, and Pd by Pt.\(^\text{13,17,18,19}\) Th$_3$Pd$_4$,\(^\text{13}\) and Zr$_3$Pd$_4$\(^\text{20}\) have also been reported to form in this structure type. For the rare-earth compounds, no deviations from the lanthanide contraction have been observed,\(^\text{13}\) indicating that both Ce and Yb are trivalent in these compounds.

Although YbPt forms in the FeB-type structure,\(^\text{21}\) not in the layered cubic CsCl-type structure, we can describe the rhombohedral Yb$_3$Pt$_4$ structure in terms of this CsCl-type YbPt\(^\text{22}\). Fig. 1 shows an unusual projection of the crystal structure of Yb$_3$Pt$_4$, viewed normal to a (10 -30 9) plane. There are layers of Pt atoms, and layers of Yb atoms. In these Yb layers, 1/7 of the atoms is replaced by Pt atoms in an ordered fashion. Besides this, the Yb$_3$Pt$_4$ structure is also distorted away from cubic symmetry, a distortion which also involves a shortening of the distances between the Yb-layer Pt atoms and their surrounding Yb atoms.\(^\text{20}\) This shortening allows us, for descriptive purposes, to divide the structure into two types of spatially separated octahedra with a Pt atom in the center. Of these, one type has Yb atoms at 18f on the corners surrounding the Pt atom at 2a, and may be considered ‘Yb$_6$Pt’ octahedra. The other type has Pt atoms at 18f surrounding the Pt atom at 2b, and are thus ’Pt$_6$Pt’ octahedra. Note that these octahedra are not coordination polyhedra, which can be found in Refs.\(^\text{7}\)\(^\text{17}\). In the top right part of Fig. 1 the structure is represented with these two types of octahedra. Viewed in this unusual way, the Yb$_3$Pt$_4$ crystal structure may be visualized as a stacking of layers of ’Yb$_6$Pt’ and ’Pt$_6$Pt’ octahedra. Note that the sides of the two different kinds of stacked octahedra are almost parallel.

The rhombohedral crystal structure of Yb$_3$Pt$_4$ can be represented by parallel chains of alternating ’Yb$_6$Pt’ and
FIG. 1: (Color online) Schematic drawing of the crystal structure of Yb$_3$Pt$_4$, produced with the software of Ozawa and Kang[16]. The top figure shows an unusual projection, normal to a (10 -30 9) plane, showing how the rhombohedral crystal structure can be seen in relation to a simple cubic structure. Structural octahedra (bottom), as explained in the text, depict 'Pt$_6$Pt' (red) and 'Yb$_6$Pt' (blue). The relation between these structural octahedra and the simple cubic structure is shown as well.

'Bt$_6$Pt' octahedra. The octahedra on neighboring chains are shifted with respect to one another. A rhombohedral unit cell consists of a stacked pair of these unequally sized, parallel-sided octahedra. A hexagonal unit cell, see Fig. 1b, consists of a stacked pair translated by (2/3,1/3,1/3) and by (1/3,2/3,2/3). Though parallel to one another, the sides of the 'Yb$_6$Pt' and 'Pt$_6$Pt' octahedra are not parallel to the crystal axes. Fig. 2 shows a cross section of this hexagonal unit cell, showing the Yb-Yb distances which are shorter than 4 Å. Significantly, every Yb atom has only one Yb nearest neighbor, which greatly simplifies the magnetic structure, as we will see below.

B. High-resolution neutron powder diffraction

We present in Fig. 3 a high-resolution neutron powder diffraction pattern which was measured at 5.1 K, i.e. in the paramagnetic phase. Rietveld analysis indicates that the diffraction pattern can be indexed according to the room-temperature space group $R3$, with lattice parameters $a = 12.8687(2)$ Å and $c = 5.6160(1)$ Å. These lattice parameters are smaller than the room-temperature values $a = 12.94$ Å and $c = 5.655$ Å reported above, which can be ascribed to thermal contraction.

Further Rietveld refinement of the 5.1 K diffraction pattern fully conforms to the Pu$_3$Pd$_4$-type of structure as described in Sec. III A. The results of our best fit, which included background parameters, a scale factor, and peak shape parameters, are shown in Fig. 3 and are summarized in Table I. In accordance with detailed work on single crystals[12], we found that variations of the site occupancies were insignificant, and therefore we fixed the sites to be fully occupied. The refined coordinates for the Yb-18f and the Pt-18f are very similar to the room-temperature values found by Palenzona and, in more detail, by Bennett et al.[7,13]. Including isotropic thermal factors improved the fit. Our best fit was made with different thermal factors for the different species, Yb and Pt. Permitting the possibility of different thermal factors for the different Pt sites provided no further improvement to the fit. We also included a preferential-orientation parameter to improve our refinement, using a modified March
function, as implemented by Fullprof. The modeled preferred-orientation vector was parallel to the c-axis, and the refined parameter was found equal to $0.921(2)$, indicating a slight needle-like habit of the crystals. This is reasonable since the crystals that we coarsely ground for the powder typically were somewhat longer in the c-direction than in the planar directions.

```plaintext

| Atom(site) | $x/a$ | $y/b$ | $z/c$ | occ. | $B_{iso}$ Å |
|------------|-------|-------|-------|------|-------------|
| Pt(3a)     | 0     | 0     | 0     | 1    | 0.28(5)     |
| Pt(3b)     | 0     | 0     | 0.5   | 1    | 0.28(5)     |
| Pt(18f)    | 0.2693(2) | 0.2171(2) | 0.2786(4) | 1    | 0.28(5)     |
| Yb(18f)    | 0.0421(2) | 0.2111(1) | 0.2335(3) | 1    | 0.47(4)     |
```

TABLE I: Refined structural parameters for Yb$_3$Pt$_4$ obtained from high-resolution neutron diffraction at 5.1 K. Space group $R\overline{3}$, $a=12.8687(2)$ Å, $c=5.6160(1)$ Å, $R_p=0.055$, $R_{wp}=0.072$, $\chi^2 = 3.8$.

Having used the data taken at 5.1 K to verify the crystal structure of our powder sample, we next measured a neutron powder diffraction pattern at 1.4 K, i.e the in the magnetically ordered phase below $T_N=2.4$ K. The inset of Fig. 3 shows the difference between the two diffraction patterns. This comparison did not reveal any magnetic intensity, finding that there is no statistically significant difference between the diffraction intensities obtained above and below T_N. A separate refinement of the low temperature diffraction pattern established that there is no shift of the Bragg peak positions, and that the lattice parameters refined from the 5.1 K and the 1.4 K data were the same within 1×10^{-4}. As we will show in the next section, magnetic intensity was only observed when we sacrificed resolution in favor of scattered neutron intensity.

C. High-intensity neutron powder diffraction

We successfully observed new magnetic intensity below T_N in high-intensity-low-resolution powder diffraction experiments. Fig. 4 shows the difference between the neutron powder diffraction patterns at 5 K and at 1.4 K. The tick marks indicate Bragg positions. The lines connecting the data points are guides for the eye. The arrow indicates the strongest magnetic Bragg-peak position, (110). (Bottom) The difference between the neutron powder diffraction patterns at 5 K and 1.4 K. The indexed peaks were used for magnetic structure refinement.
reflection is significantly more intense at 1.4 K than at 5 K. Fig. 4b shows the difference between patterns measured at 5 K and at 1.4 K. This difference pattern shows that at 1.4 K, there is new diffracted intensity at multiple Bragg-peak positions, making feasible the determination of the magnetic structure which is the major result we report here.

We confirm that this new intensity is related to the antiferromagnetic (AF) transition by a performing single-crystal neutron diffraction experiment. Fig. 4 shows the temperature-dependent intensity of the [110] reflection, measured by summing the counts of the centered BT9 detector, at temperatures between 1.4 K and 4 K. The data were obtained over the course of multiple sweeps, with temperatures both increasing and decreasing. Starting at the lowest temperature, this [110] intensity decreases continuously, up to about 2.4 K, above which it remains constant. These results indicate a magnetic ordering temperature of about 2.4 K, in excellent agreement with our previous results from specific heat, dc and ac magnetic susceptibility, and electrical resistivity.24,25 As was also the case in these earlier measurements, we observed neither thermal hysteresis nor a sudden change in this order parameter near \(T_N \), suggesting that the ordering transition is continuous and well-described by a mean-field expression. Furthermore, because the magnetic intensity in every case appears at Bragg-peak positions which have intensity above \(T_N \), the magnetic unit cell is the same as the crystallographic unit cell. We note that this is also the case for the magnetic structure of isostructural Yb\(_3\)Pd\(_4\). Such a structure, with propagation vector \(\mathbf{k}=0 \), is often associated with ferromagnetism, but in this case, as we will see below, it is due to a \(\mathbf{k}=0 \) antiferromagnetic structure.

D. Representation analysis

We will test our diffraction data against magnetic-structure models obtained from representation analysis. These models are linear combinations of magnetic structure patterns, called basis vectors (BVs), for magnetic-moment carrying atoms. The choice of BVs to be included in a magnetic structure model is limited, and is wholly determined by symmetry. A number of BVs form an irreducible representation (IR) or a corepresentation (CR) of those space group elements that leave the magnetic propagation vector \(\mathbf{k} \) invariant. If we apply Landau theory for continuous phase transitions then only one representation, an IR or a CR\(^{22,23}\), is involved in the magnetic order, and therefore the BVs belonging to a single representation. Since our magnetic propagation vector \(\mathbf{k}=0 \), we need to examine the BVs belonging to the IRs and CRs of the space group \(\text{R}^3 \) itself, for the magnetic Yb atoms on the Yb\(_3\)Pt octahedra. According to the program SARA\(_h\), there are six one-dimensional IRs, with three BVs each. Among these six IRs, there are two pairs of CRs\(^{22,23}\), namely IRs \(\Gamma^3 \) and \(\Gamma^5 \), and \(\Gamma^4 \) and \(\Gamma^6 \), which means that these IRs, as well as their BVs, will be considered combined.

Each IR has two BVs that describe components of the magnetic structure in the plane perpendicular to the \(c \)-axis (from here: planar), and one BV that describes a component of the magnetic structure parallel to the \(c \)-axis (from here: axial). The IRs can be split in two parts, \(\Gamma_n \) \((n = 1, 3, 5)\), and \(\Gamma_n \) \((n = 2, 4, 6)\), respectively. For \(n = 1, 3, 5 \) some BVs show a non-zero net magnetization, and are ferromagnetic. For \(n = 2, 4, 6 \) all BVs show no net magnetization, and are antiferromagnetic. A schematic drawing of the 18 BVs is given in Fig. 6 for the IRs with (a) ferromagnetic BV(s), and Fig. 7 for the antiferromagnetic IRs, respectively. Every hexagonal unit cell contains three Yb\(_3\)Pt structural octahedra, and on each of these the magnetic-moment configuration is the same. Therefore, we choose to display the BVs centered on a single Yb\(_3\)Pt octahedron, emphasizing the planar moments by viewing octahedra parallel to the \(c \)-axis, and emphasizing the axial moments by viewing octahedra at an angle of \(\sim 30^\circ \) from the \(c \)-axis. In the figures, each row contains a different IR. In each, the third column contains the axial BVs, while the first two columns contain the planar BVs. The IRs \(\Gamma_n \) can also be divided in three categories: two IRs \((n = 1, 2)\) with BVs that have equal moments on all Yb sites, two IRs \((n = 3, 4)\) with BVs that have 2/3 of the Yb moments half the size of the other 1/3, and two IRs \((n = 5, 6)\) with BVs that have non-zero size on 2/3 of the Yb moments and zero on the other 1/3.
A structural octahedron consists of two equilateral triangles with moments on each vertex. For the equal-moment configurations with the moments planar, these triangles carry AF structures where the moments on the vertices are aligned with the crystal axes and rotated by 120° with respect to one another. For the non-equal-moment configurations with the moments planar, these triangles form canted F structures. For the equal-moment configurations with axial moments, these triangles correspond to F structures, but if the moments on each site are not equal then the structures on these triangles are AF. Pairs of IRs Γ1 and Γ2, Γ3 and Γ4, Γ5 and Γ6, are analogous, as their respective BVs form pairs which are composed of the same triangular moieties described here. The difference between the BVs of the 'F' and the 'AF' IRs, is the direction of the moments on the top triangle relative to those on the bottom triangle, as can be appreciated by comparing, for example, BV ψ1 (ψ2) to ψ4 (ψ5).

Figs. 6 and 7 show that the moments on individual Yb sites are rotated by 120° in the two planar BVs comprising an IR. However, it is not possible to rotate the crystal and at the same time obtain the other planar BV belonging to that IR. We are therefore able to distinguish between different planar BVs for a given IR from a powder diffraction experiment. We note further that the IRs which are part of a CR here each produce the same structure factors in our calculations, and therefore Γ3(4) cannot be distinguished from Γ5(6). We will therefore only use IRs Γ3 and Γ4, as well as Γ1 and Γ2 for our refinements.

In a recent publication, Litvin produced crystallographic tables of magnetic space groups. The magnetic space groups presented here are based on the so-called two-colored space groups, and consequently only include equal-moment magnetic structures. Equal-moment IRs Γ1 and Γ2 are comparable to the magnetic space groups R3 and R3', respectively. We note that models which can be constructed using the unequal-moment IRs Γ3–6 cannot be constructed from these magnetic space groups, requiring instead a more involved multicolored space-group analysis.
E. Magnetic structure refinement

The 1.4 K low-resolution diffraction pattern presented in Fig. 4 was used for a Le Bail-type profile match, fitting for zero-offset, lattice parameters, background, and peak-shape parameters. For the refined lattice parameters we found \(a = 12.803(7) \) Å, and \(c = 5.602(4) \) Å, in agreement with values found in our high-resolution experiment described above. The agreement factors for this fit were \(R_p = 0.019 \) and \(R_{wp} = 0.024 \).

We determined a scale factor from the 5 K diffraction pattern of Fig. 4. For this, we use the profile-matched parameters found for the 1.4 K pattern, together with the atomic positions, thermal factors, as well as the preferred-orientation parameter, found from the refinement of the 5.1 K high-resolution data of Sec. III B. This yielded the scale factor with a refined estimated error of 0.4%. The agreement factors for this fit were \(R_p = 0.027 \) and \(R_{wp} = 0.037 \), which compares well to the values obtained from the profile matching above.

We determined the best fitting magnetic-structure model for each of the four IRs under consideration by refining the BV coefficients for the ‘magnetic-only’ subtracted pattern of Fig. 4, while we kept the scale parameter and the other parameters determined above (except the background parameters), fixed to the value determined on the full 1.4 K and 5 K patterns. We included diffracted intensity only up to \(2\theta = 45^\circ \), thus avoiding the relatively noisy background caused by the strong nuclear peaks at larger diffraction angles in Fig. 4. An initial Le Bail-type profile refinement yielded agreement factors of \(R_p = 0.0142 \) and \(R_{wp} = 0.0177 \). This can be considered the best possible fit, since here the Bragg-intensities themselves are fit parameters, and generated to best match the observed intensities. The results of the refinements of the best-fitting magnetic structure models are shown in Fig. 8 and summarized in Table II. The overall best-fitting magnetic structure model is generated by the BVs of the AF IR \(\Gamma_2 \), since that model gave exactly the same agreement factors as the model-free profile refinement. Second best is the AF best-fitting model described by the BVs of IR \(\Gamma_4 \). The best-fitting model generated by ‘F’ IRs \(\Gamma_3 \) and \(\Gamma_1 \) provides a significantly poorer description of the magnetic diffraction, and it should be noted here that the refinement for \(\Gamma_1 \) was not stable.

Table II also includes the size of the ordered Yb magnetic moment for the best-fitting models. Averaged moments are given for the structures belonging to unequal-moment IRs \(\Gamma_3 \) and \(\Gamma_4 \). The average ordered moments for the four best-structure models due to \(\Gamma_1, \Gamma_2, \) and \(\Gamma_4 \) are all close to 0.85 \(\mu_B \), whereas the best-fitting model belonging to IR \(\Gamma_3 \) has an average moment of 1.6 \(\mu_B/Yb \). The ordered moment for the best-fitting structure is about 0.81(5) \(\mu_B/Yb \) at 1.4 K. This value was used, together with the temperature-dependent intensity of the single-crystal [110]-reflection, to normalize the order parameter, which is displayed in the inset of Fig. 5.

Finally, we refined the scale factor for the full 1.4 K diffraction pattern, including also the best magnetic structure model according to IR \(\Gamma_2 \). Within error, we found the same scale factor as the one we used for the magnetic structure refinement, with agreement factors of \(R_p = 0.025 \) and \(R_{wp} = 0.036 \), comparable to the agreement factors found for the 5 K data, as described above.

A schematic drawing of the proposed magnetic structure for Yb\(_3\)Pt\(_4\) is presented in Fig. 9. In this structure, the ordered Yb moments are all of the same size and have both planar and axial components. Yb octahedra form the basic building block of the extended magnetic structure. In our model all Yb moments point outward from such an octahedron, where the Yb moments on the top triangle point upward, and the moments on the bottom triangle point downward. The directions of the moments are such that the moments on two nearest-neighbor Yb ions, residing in neighboring Yb octahedra, point almost exactly towards each other, see Fig. 9. As calculated from Table II, the planar component of the ordered moment is 0.73 \(\mu_B \), while the axial component is 0.34 \(\mu_B \), thus the ordered moments make an angle of of 64° with the \(c \)-axis.
TABLE II: Magnetic refinement results for Yb$_3$Pt$_4$ at 1.4 K are tabulated for each of the considered IRs, with their BVs and their best-fit coefficients, as well as the average Yb moment μ and the agreement factors R_p and R_{wp} for each model. The best-fitting model has Γ_2.

IR	BV coefficient $\mu (~\mu_B/Yb)$	R_p	R_{wp}
Γ_1	ψ_1 0.44(4)		
	ψ_2 0.36(2)		
	ψ_3 0.34(3)	0.89(9)	0.0233 0.0403
Γ_2	ψ_4 0.38(1)		
	ψ_5 0.34(2)		
	ψ_6 0.18(2)	0.81(5)	0.0142 0.0177
Γ_3	ψ_7 -0.11(4)		
	ψ_8 -0.23(2)		
	ψ_9 0.247(8)	1.6(2)	0.0168 0.0204
Γ_4	ψ_{10} 0.14(2)		
	ψ_{11} 0.08(7)		
	ψ_{12} 0.228(5)	0.86(9)	0.0152 0.0189

IV. CRYSTAL-FIELD AND EXCHANGE ANISOTROPY

A central goal of our magnetic structure determination was to gain insight into whether the Yb moments should be considered spatially localized in zero field, or not. In this section, we seek to rationalize the magnitude of the moment deduced from our diffraction experiments within a crystal field model, including both the crystal field and exchange anisotropies. In the triclinic environment of the Yb ions in Yb$_3$Pt$_4$, the crystal-electric field (CEF) lifts the $2J+1 (=8)$-fold degeneracy of the magnetic 4f shell into 4 doublets, causing the single-ion CEF anisotropy. As stated previously, specific heat measurements provided evidence for this crystal field splitting. We present in Fig. 10 an improved analysis of the magnetic contribution to specific heat C_M, obtained by subtracting the Lu$_3$Pt$_4$ specific heat from the measured Yb$_3$Pt$_4$ specific heat $C(T)$. The ordering peak at $T_N = 2.4$ K is prominent and looks similar to an included ideal mean-field $S = 1/2$-specific heat peak but it reaches only about 80% of the theoretical value at T_N. The entropy associated with magnetic order is very similar as in the earlier measurement, approaching the doublet value of $R\ln 2$ only at ~ 10 K. We note that, in agreement with our earlier report, the Sommerfeld coefficient $\gamma = C/T$ in the ordered state is very small, certainly no larger than 10 mJ/mol-K2 at $T=0$ K. Also clear is a broad Schottky-like peak with a maximum near 75 K. This peak was fit above 10 K with a Schottky-like expression accounting for the ground-state doublet and three excited doublets. The line in Fig. 10 shows the quality of the fit with these excited doublets at energies of 7.1 (5) meV, 20 (2) meV, and 30 (6) meV. These values are notably different from values found by Bennett et al. who found 4.3 meV and 10.9 meV, which we mainly ascribe to fact that they used a Debye expression to account for the lattice contribution of specific heat, where we used Lu$_3$Pt$_4$ data.

Inelastic neutron scattering measurements provide an independent determination of the zero-field CEF splitting, and the results are shown in Fig. 11. We see that there are four sharp peaks, occurring at 7.5 meV, 21 meV,
null
in poor agreement with the zero-field value of 0.57 μ_B/Yb obtained by extrapolation. In fact, it was not possible to extract a unique set of model parameters from M(H) for $H//c$-axis, so we cannot comment quantitatively on the anisotropy in the g-factors and the molecular exchange λ. Nonetheless, our analysis of the magnetization suggests that the CEF-induced magnetic anisotropy strongly favors the crystallographic plane, and from the weak molecular exchange found in the ab-plane, we conclude that the ordering exchange is anisotropic and favors the c-axis. We note here, that similar, though less conclusive, ideas were presented to describe the magnetic structure of isostructural Yb$_3$Pd$_2$.

V. CONCLUSIONS

We confirm by neutron powder diffraction experiments that the intermetallic compound Yb$_3$Pt$_4$ is antiferromagnetic. The zero-field magnetic structure has the same unit cell as the crystal structure, so the propagation vector $k=0$. The order parameter, determined from the temperature dependence of a single-crystal [110] reflection, confirms the magnetic ordering temperature at $T_N=2.4$ K, and indicates that the magnetic ordering transition is continuous and mean-field like. The zero-field magnetic structure was determined using representation analysis. The fundamental building blocks of the magnetic and crystal structure are Yb octahedra, where triads of moments are oriented at 120 degrees in the ab-plane, half with a component along the c-axis and half in the opposite direction. Because $k=0$, there is no net moment within the octahedron. Individual Yb moments are oriented towards their nearest neighbors, which lie in different octahedra. Consequently, the moments have both axial and planar components.

Like the magnetic-order parameter, the temperature dependence of the specific heat $C(T)$, displays a mean-field like transition near $T_N=2.4$ K. The specific heat step $\Delta C(T_N)$ amounts to only $\sim 80\%$ of the value expected for an effective-$S = 1/2$ moment. It is possible that this reduced anomaly results from a substantial degree of hybridization between the Yb moments and the conduction electrons, although there are no overt indications of this hybridization, such as an incipient Kondo effect or any enhancement of the Sommerfeld coefficient γ, which is found to be less than 10 mJ/mol K2 in the ordered state of Yb$_3$Pt$_4$.

A primary motivation for our experiments was to determine whether the Yb moments can be considered spatially localized or significantly itinerant. Neutron diffraction measurements assign an ordered state moment of $0.81 \mu_B$ to each Yb ion at 1.4 K, which is strongly suggestive that a localized-moment description is more suitable. In agreement, specific heat and inelastic neutron scattering measurements concur that the moments which order antiferromagnetically belong to a well separated doublet ground state, signalling that the degeneracy of Yb$^{3+}$ is fully lifted in the low-symmetry crystal electric fields experienced by the Yb ions in Yb$_3$Pt$_4$. Our analysis of the field and temperature dependent magnetization $M(H,T)$ rationalizes the magnetic structure, indicating that the dual actions of the crystal electric field, which seeks to keep the moments in the ab-plane and a molecular exchange field which is almost parallel to c-axis, but with a small transverse component, are together responsible for the canting of the Yb moments out of the ab-plane, while preventing their complete alignment along the c-axis. The overall success of this crystal field plus exchange model is a strong indication that the Yb moments can be considered to be spatially localized, and that the f-electrons are excluded from the Fermi surface, at least in zero field.

VI. ACKNOWLEDGMENTS

We are indebted to A. S. Wills, A. Kreyssig, P. Stephens, A. Moodenbaugh, W. Ratcliff, and P. Khalifah for valuable discussions and for help with experiments. Work at the Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. Work at Stony Brook University was supported by the National Science Foundation under grant NSF-DMR-0405961. We acknowledge the support of the National Institute of Standards and Technology. Work at the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

* Email: y.janssen@bnl.gov
1 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).
2 G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).
3 G. R. Stewart, Rev. Mod. Phys. 78, 743 (2006).
4 P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186 (2008).
5 S. Nalatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, et al., Nat. Phys. 4, 603 (2008).
6 M. C. Bennett, D. A. Sokolov, M. S. Kim, Y. Janssen, Y. Yiu, W. J. Gannon, and M. C. Aronson, unpublished, arXiv:0812.1082v1 [cond-mat.str-el] (2008).
7 M. Bennett, P. Khalifah, D. Sokolov, W. Gannon, Y. Yiu, M. Kim, C. Henderson, and M. Aronson, J. Magn. Magn. Mater. 321, 2021 (2009).
8 Z. Fisk and J. P. Remeika, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner, Jr.
and L. Eyering (North-Holland, Amsterdam, 1989), vol. 12.
9 P. C. Canfield and Z. Fisk, Philos. Mag. B 65, 1117 (1992).
10 P. C. Canfield and I. R. Fisher, J. Cryst. Growth 225, 155 (2001).
11 B. Hunter, Lhpm-rietica, www.rietica.org.
12 A. Le Bail, H. Duroy, and J. L. Fourquet, Mater. Res. Bull. 23, 447 (1988).
13 A. Palenzona, J. Less-Common Met. 53, 133 (1977).
14 T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum 378, 118 (2001).
15 A. S. Wills, Physica B 276-278, 280 (2000), programs available from www.ccp14.ac.uk.
16 T. C. Ozawa and S. J. Kang, J. Appl. Cryst. 37, 679 (2004).
17 D. T. Cromer, A. C. Larson, and R. B. Roof, Jr., Acta Cryst. B 29, 564 (1973).
18 A. Palenzona and A. Iandelli, J. Less-Common Met. 34, 121 (1974).
19 A. Iandelli and A. Palenzona, J. Less-Common Met. 43, 205 (1975).
20 L. A. Bendersky, J. K. Stalick, and R. M. Waterstrat, J. Alloys Compd. 201, 121 (1993).
21 Q. Johnson, R. G. Bedford, and E. Catalano, J. Less-Common Met. 24, 335 (1971).
22 K. Cenzual, J. L. Jorda, and E. Parthé, Acta Cryst. C44, 14 (1988).
23 P. Bonville, J. A. Hodges, P. Imbert, G. Jéhanno, and P. Thuéry, J. Magn. Magn. Mater. 136, 238 (1994).
24 A. S. Wills, unpublished.
25 P. G. Radaelli and L. C. Chapon, Phys. Rev. B 76, 054428 (2007).
26 M. Tinkham, Group Theory and Quantum Mechanics (Dover Publications, Inc., Mineola, NY, 1992).
27 G. Shirane, Acta Cryst. 12, 282 (1959).
28 D. B. Litvin, Acta Cryst. A64, 419 (2008).
29 D. Harker, Acta Cryst. A37, 286 (1981).
30 Sample was obtained by alloying constituent elements in an Ar-atmosphere arc melting furnace.
31 H. R. Ott, L. D. Woolf, M. B. Maple, and D. C. Johnston, J. Low Temp. Phys. 39, 383 (1980).
32 H. R. Ott, G. Keller, W. Odoni, L. D. Woolf, M. B. Maple, D. C. Johnston, and H. A. Mook, Phys. Rev. B 25, 477 (1982).
33 P. Bonville, P. Bellot, J. A. Hodges, P. Imbert, G. Jéhanno, G. Le Bras, J. Hamman, G. Chevrier, P. Thuéry, L. D’Onofrio, et al., Physica B 182, 105 (1992).