The effect of species on lacustrine $\delta^{18}O_{\text{diatom}}$ and its implications for palaeoenvironmental reconstructions

HANNAH L. BAILEY,1* ANDREW C. G. HENDERSON,1 HILARY J. SLOANE,2 ANDREA SNELLING,2 MELANIE J. LENC3,2 AND DARRELL S. KAUFMAN4

1School of Geography, Politics & Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, Keyworth, UK
3Centre for Environmental Geochemistry, School of Geography, University of Nottingham, Nottingham, UK
4School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA

Received 15 January 2014; Revised 8 April 2014; Accepted 9 April 2014

ABSTRACT: The oxygen isotope composition of diatom silica ($\delta^{18}O_{\text{diatom}}$) is increasingly being used to reconstruct climate from marine and lacustrine sedimentary archives. Although diatoms are assumed to precipitate their frustule in isotopic equilibrium with their surrounding water, it is unclear whether internal processes of a given species affect the fractionation of oxygen between the water and the diatom. We present $\delta^{18}O_{\text{diatom}}$ data from two diatom size fractions (3–38 and >38 μm) characterized by different species in a sediment core from Heart Lake, Alaska. Differences in $\delta^{18}O_{\text{diatom}}$ between the two size fractions varies from 0 to 1.2‰, with a mean offset of 0.01‰ (n = 20). Fourier transform infrared spectroscopy confirms our samples consist of pure biogenic silica (SiO$_2$) and $\delta^{18}O_{\text{diatom}}$ trends are not driven by contamination. The maximum offset is outside the range of error, but the mean is within analytical error of the technique (±1.06‰), demonstrating no discernible species-dependent fractionation in $\delta^{18}O_{\text{diatom}}$. We conclude that lacustrine $\delta^{18}O_{\text{diatom}}$ measurements offer a reliable and valuable method for reconstructing $\delta^{18}O_{\text{water}}$. Considering the presence of small offsets in our two records, we advise interpreting shifts in $\delta^{18}O_{\text{diatom}}$ only where the magnitude of change is greater than the combined analytical error. Copyright © 2014 The Authors. Journal of Quaternary Science published by John Wiley & Sons Ltd on behalf of Quaternary Research Association

KEYWORDS: diatom; fractionation; lake; oxygen isotopes; palaeoclimate

Introduction

Diatoms are microscopic, unicellular algae with an external shell (frustule) composed of biogenic silica (opal, SiO$_2$, pH$_2$O) (Round et al., 2007). Distinct diatom communities exist due to variable ecological tolerances and optima (e.g. Moser et al., 1996; Battarbee et al., 2001), making them sensitive indicators of environmental change. Their siliceous frustules can be preserved over long timescales and are generally identifiable to the species level, enabling the reconstruction of past environments well beyond the instrumental record. The silica frustule comprises two layers: a tetrahedrally bonded silica layer (–Si–O–Si) which incorporates oxygen with the surrounding water following frustule formation (Leng and Barker, 2006). By isolating and extracting oxygen from the internal silica, the isotopic composition of the diatom ($\delta^{18}O_{\text{diatom}}$) can be determined and used to reconstruct past changes in climate (Leng and Barker, 2006).

The $\delta^{18}O_{\text{diatom}}$ value of a diatom frustule depends on the ambient water temperature and isotopic composition of the water ($\delta^{18}O_{\text{water}}$) in which the diatom grows (Labeyrie, 1974; Juillet-Leclerc and Labeyrie, 1987). By assuming $\delta^{18}O_{\text{diatom}}$ fractionates in isotopic equilibrium with this surrounding water, stratigraphic shifts in $\delta^{18}O_{\text{diatom}}$ can be used to infer changes in climate over time. The aspect of climate captured by $\delta^{18}O_{\text{diatom}}$ depends largely on local hydrology, climate, water residence time and seasonality of diatom growth. Previous studies have interpreted lacustrine $\delta^{18}O_{\text{diatom}}$ records to reflect changes in the precipitation/evaporation balance (Rioual et al., 2001; Lamb et al., 2005), shifts in moisture source and regime (Shemesh et al., 2001a,b; Jones et al., 2004; Rosqvist et al., 2004; Leng et al., 2005; Schiff et al., 2009), changes in the amount and seasonality of precipitation (Barker et al., 2001; Morley et al., 2005; Mackay et al., 2013) and, to some extent, changes in temperature (Juillet-Leclerc and Labeyrie, 1987; Shemesh et al., 1995; Brandriss et al., 1998; Moschen et al., 2005). The oxygen isotope composition of marine diatoms has also been used to reconstruct palaeoceanoGraphic conditions, whereby $\delta^{18}O_{\text{diatom}}$ is interpreted to reflect changes in sea surface temperature and surface salinity (e.g. Shemesh et al., 1992; Sancetta et al., 1985), sea ice extent and meltwater events (e.g. Shemesh et al., 1995; Swann et al., 2013; Pike et al., 2013), as well as changes in climate-ocean dynamics and ocean productivity (e.g. Juillet-Leclerc and Schrader, 1987; Swann et al., 2006; Romero et al., 2011). $\delta^{18}O_{\text{diatom}}$ is therefore increasingly being used as an indicator of palaeoclimate from both marine and terrestrial sedimentary archives (Leng and Barker, 2006; Swann and Leng, 2009). Following the development of the technique in the 1970s and 1980s (Labeyrie, 1974; Labeyrie and Juillet, 1982), efforts over the last decade have significantly advanced our understanding of $\delta^{18}O_{\text{diatom}}$ fractionation, as well as addressed problematic issues of sample contamination and silica maturation (for a review see Leng and Henderson, 2013). As diatoms are ubiquitous in most aquatic environments, $\delta^{18}O_{\text{diatom}}$ data are particularly valuable in the absence of other available proxies for isotopic analysis, such as authigenic carbonates and carbonate-based microfossils (e.g. foraminifera, ostracods). Examples of such environments include oceans and lakes in high latitudes where carbonates are often limited or absent (e.g. Rosqvist et al., 1999, 2004; Hu and Shemesh, 2003; Schiff et al., 2009; Jones et al., 2004; Swann et al., 2010).

Vital effects on $\delta^{18}O_{\text{diatom}}$ fractionation

Diatoms are generally assumed to precipitate their frustules in isotopic equilibrium with the surrounding water ($\delta^{18}O_{\text{water}}$), and any biological fractionation is presumed to be constant.
Furthermore, there is a growing consensus that fractionation between $\delta^{18}O_{\text{diatom}}$ and $\delta^{18}O_{\text{water}}$ is in the order of c. $-0.2\%_\circ$ C (e.g. Brandriss et al., 1998; Moschen et al., 2005; Dodd and Sharp, 2010), enabling changes in $\delta^{18}O_{\text{diatom}}$ to be quantified over time. However, the $\delta^{18}O_{\text{diatom}}$ composition of a diatom frustule often differs from that predicted by thermodynamics, an offset often referred to as a ‘vital effect’ (or disequilibrium effect) (Leng and Barker, 2006). Such vital effects are well documented and better understood in biogenic carbonates such as foraminifera in the marine environment (Shackleton et al., 1973; Erez, 1978) and ostracods in the lacustrine environment (Xia et al., 1997; Wetterich et al., 2008). In these instances, vital effects may even serve as a valuable palaeoenvironmental indicator, for example to reconstruct ocean thermal stratification (e.g. Fairbanks and Wiebe, 1980; Ravelo and Fairbanks, 1992; Mulitza et al., 1997) or vertical temperature gradients (Tedesco et al., 2007; Steph et al., 2009) due to the varying depths and temperatures occupied by different species. However, the $\delta^{18}O$ of foraminiferal calcite is not only controlled by the physical and chemical properties of the water column (e.g. $\delta^{18}O_{\text{water}}$, temperature, depth), but also by ‘species-specific’ vital effects: internal processes such as calcification rate (Ortiz et al., 1996), symbiotic photosynthesis (Spero and Lea, 1993) and respiration (Wolf-Gladrow et al., 1999) of a given species, which are known to affect isotope fractionation. Some studies have also demonstrated that offsets can be found between the $\delta^{18}O$ of ostracod valves at different stages of growth (e.g. juvenile vs. adult) (Von Grafenstein et al., 1999; Keatings et al., 2002).

Similarly, $\delta^{18}O$ vital effects in diatoms could result from species-specific fractionation, with a varying fractionation factor due to species-dependent $\delta^{18}O$ uptake in equilibrium conditions, or a shortage or excess supply in non-equilibrium conditions (Chapligin et al., 2012). The internal processes within the frustule could theoretically alter $\delta^{18}O_{\text{diatom}}$ relative to the isotopic signal of the surrounding water, by an amount that could vary from species to species. However, unlike biogenic carbonates, these effects are poorly understood and much harder to observe, their small size (2–200 µm) making it difficult to isolate individual diatom species for isotope analysis. Isotope measurements are typically made on samples containing many tens of different diatom species. The possibility that different diatom species fractionate oxygen differently is therefore problematic, especially as the abundance of different species changes through time downcore, and it is not possible to analyse the same species in every sample. A number of studies have found no evidence for vital effects between individual diatom species (e.g. Sancetta et al., 1985; Schmidt et al., 2001; Moschen et al., 2005). When small (0.2–0.6%) offsets have been observed between different species, they are usually within the range of analytical reproducibility (e.g. Shemesh et al., 1995; Brandriss et al., 1998). More recently, however, an offset of c. 3.0–3.5% was suggested for two size fractions of marine diatoms in the north-west Pacific (Swann et al., 2007, 2008). A potential species-driven offset has considerable implications for the applicability of $\delta^{18}O_{\text{diatom}}$ as a paleoecological proxy in the marine environment, particularly as this magnitude of variation equates to a 15–16°C temperature difference. In the north-west Pacific, these offsets were attributed to size-related effects associated with larger diatoms (>75 µm; Swann et al., 2007), although the results were largely inconclusive.

Similar to biogenic carbonates, the habitat in which a diatom grows (e.g. benthic vs. planktonic; water depth) may also affect its isotope composition. For example, the $\delta^{18}O$ of lake water may become more negative with increasing depth if lighter isotopes are preferentially evaporated at the surface (e.g. Von Grafenstein et al., 1999). In addition, water temperature decreases with depth and may also influence the oxygen isotope fractionation of diatom silica (Juillet-Leclerc and Labyrie, 1987; Shemesh et al., 1992; Brandriss et al., 1998; Moschen et al., 2005), which must be considered when interpreting records of $\delta^{18}O_{\text{diatom}}$. An offset between diatom species could also derive from the timing of the diatom bloom in the water column and whether the $\delta^{18}O_{\text{diatom}}$ signal captured has a seasonal component (e.g. spring vs. autumn; temperature and precipitation). The interpretation of $\delta^{18}O_{\text{diatom}}$ from any sedimentary record therefore requires an understanding of the external processes affecting $\delta^{18}O_{\text{diatom}}$ at a particular site, such as climate, water inflow and outflow, lake residence time and diatom ecology.

Here, we examine the issue of species-dependent vital effects in $\delta^{18}O_{\text{diatom}}$ using lacustrine sediment material from Heart Lake on Adak Island, part of the Aleutian Island chain in south-west Alaska. By analysing the $\delta^{18}O_{\text{diatom}}$ value of two size fractions containing different diatom species, we investigate whether species-specific fractionation of oxygen is evident in a lacustrine environment.

Study site

Heart Lake, located on Adak Island in the north-west Pacific (51.87°N, 176.63°W; Fig. 1), is a small (<0.25 km²) freshwater, through-flow lake. Separating the Bering Sea to the north and the Pacific Ocean to the south, the island experiences a cool, wet and windy maritime climate (Rodionov et al., 2005). Mean precipitation in January and July is 150.4 and 71.6 mm, respectively (1942–1996) (NOAA, 2013). The mean annual $\delta^{18}O$ of precipitation (8.8%o; varying slightly between January (–9.43%o) and July (–9.33%) (IAEA, 2013). The correlation between $\delta^{18}O$ and $\delta^{18}H$ of available precipitation data from Adak (1962–1973) (IAEA, 2013) defines a local meteoric water line where $\delta^{18}H$= 6.86 $\delta^{18}O$ – 3.26 (Fig. 2). The $\delta^{18}O$ of surface lake water samples collected in summer 2009 and 2010 are −9.75 and −9.24%, and are similar to modern-day $\delta^{18}O_{\text{precip}}$ values. Therefore, evaporation of surface waters has very little influence on the $\delta^{18}O$ of the lake and suggests that the $\delta^{18}O$ of Heart Lake reflects $\delta^{18}O_{\text{precip}}$ (rain and snowfall) received by the lake.

Methodology

Sample material

A 5.5-m-long sediment core (AS-10-1D) was recovered from Heart Lake in July 2010. A GPS-enabled sonar depth recorder guided bathymetric profiling, and the core site was selected adjacent to the deepest part of the basin at 7.6 m depth. The core was recovered using a percussion corer operated from a floating platform. The core was split, photographed and described (Krawiec, 2013), with 20 samples taken downcore for $\delta^{18}O_{\text{diatom}}$ and diatom species analysis. The samples range in age from 8.0 to 1.0 kyr cal a BP based on a best-fit age–depth model constructed using accelerator mass spectrometry 14C ages and correlated tephra ages from nearby Andrew Lake (Krawiec et al., 2013).

Sample preparation

Samples for $\delta^{18}O_{\text{diatom}}$ were prepared using a stepwise process of chemical digestion, differential settling, sieving and heavy liquid separation based on Morley et al. (2004). Sediment samples were treated with 30% H2O2 at 90°C until...
EFFECT OF SPECIES ON LACUSTRIENE $\Delta^{18}O_{\text{diatom}}$

reactions ceased (to remove organic material), before using 5% HCl to eliminate any carbonates. Following differential settling, all samples were centrifuged in sodium polytungstate ($3\text{Na}_2\text{WO}_4\cdot\text{9WO}_3\cdot\text{H}_2\text{O}$) (SPT) heavy liquid at 2500 r.p.m. for 20 min, resulting in the separation and suspension of diatoms from the heavier detrital residue. This process was repeated three times using specific gravities of 2.50, 2.30 and 2.25 g mL$^{-1}$. After the final SPT separation, samples were washed five times at 1500 r.p.m. for 5 min to remove any remaining SPT. Purified diatom samples were then sieved at 38 and 3 μm, resulting in two size fractions of 3–38 and >38 μm of the sample were then treated with an additional stage of 30% H$_2$O$_2$ at 70°C for 1 week and centrifuge-washed to ensure no traces of organic matter remained.

Sub-samples of the purified diatom material were retained and mounted on cover slips using Naphrax®, Brunel Microscopes Ltd. The samples were visually inspected for contamination before diatom assemblage analysis using light microscopy (300 frustules per sample). Standard diatom preparation and analysis (Battarbee et al., 2001) was also performed on the unprocessed lake sediment to identify the diatom assemblages present and to determine whether any species were lost during preparation for diatom isotope analysis.

Contamination assessment

Fourier transform infrared spectroscopy (FTIR) was used as a rapid, non-destructive means to assess the chemical composition of biogenic silica within our samples (Swann and Patwardhan, 2011). Sixteen purified diatom samples, together with the within-run laboratory diatom standard (BFCmod), were analysed using FTIR (Fig. 3). FTIR produces energy absorption spectra of a sample over a range of wavelengths. Individual absorption peaks correspond to specific chemical bonds and compounds, with pure silica displaying peaks in two distinct regions at >2500 cm$^{-1}$ (hydroxyl) and <1300 cm$^{-1}$ (silica) (Fidalgo and Ilharco, 2001; Patwardhan et al., 2006; Swann and Patwardhan, 2011). FTIR analyses of all purified diatom isotope samples indicate peaks corresponding to the BFCmod standard, known to represent clean, fossilized diatomite (Fig. 3). Spectral deviation from the standard would indicate additional compounds within the sample and contamination by non-diatom components (Swann and Patwardhan, 2011). Peaks centred at ~450, ~800 and ~1100 cm$^{-1}$ indicate pure silica and suggest the samples comprise purely diatoms. Additionally, scanning electron microscopy (SEM) was used to check sample purity before oxygen isotope analysis (Fig. 4).

Oxygen isotope analysis

Purified diatom samples were analysed for $\delta^{18}O_{\text{diatom}}$ at the NERC Isotope Geosciences Laboratory (UK) using a step-wise fluorination method outlined in Leng and Barker (2006). The outer hydrous layer of the diatom, known to freely exchange isotopically with water (e.g. Juillet-Leclerc and Labeyrie, 1987), was removed in a pre-fluorination stage using a BrF$_5$ reagent at low temperature. This was followed by a full reaction at high temperature to liberate oxygen that was converted to CO$_2$ (Clayton and Mayeda, 1963) and measured for $\delta^{18}O_{\text{diatom}}$ using a MAT 253 dual-inlet mass spectrometer. All $\delta^{18}O$ values were converted to the VSMOW scale using the within-run laboratory standard BFCmod, and are reported here in per mil (%).

Results

Diatom assemblages

Diatom frustules are well preserved in all 60 samples as indicated by SEM images that show no evidence of valve dissolution (Fig. 4). The smaller size fraction (3–38 μm) is taxonomically diverse, with 120 diatom species identified. The flora is dominated by seven species ($\text{Psammothidium levanderi}$, $\text{Rossithidium pusillum}$, Cyclotella rossii, $\text{Pseudostaurorosa brevistriata}$, $\text{Staurorosa constreus}$, $\text{Stauroforma exiguiformis}$ and $\text{Staurosirella pinnata}$) with a combined relative abundance of 76% across all samples (Fig. 4B). Subtle shifts...
in species assemblages are evident among the samples, with the most notable transition at ~320 cm depth, when the abundance of *P. levanderi* and *C. rossii* decline markedly and the abundance of the small *Staurosira/Staurosirella* species increasingly dominate. In the larger size fraction (>38 µm), 28 different diatom species were identified. The assemblages are dominated by six species (*Didymosphenia geminata*, *Surirella robusta*, *Surirella splendida*, *Pinnularia turnerae*, *Rhopalodia gibba* and *Campylodiscus hibernicus*), with a combined relative abundance of 85% across all samples (Fig. 4A). The diatom assemblage in this larger fraction is distinctly different from that of the smaller size fraction; they are not merely larger specimens of the same species. The transition at ~320 cm depth is also evident in the larger size fraction, with a marked increase in *D. geminata*, *P. turnerae* and *R. gibba*, which replace *C. hibernicus* and *Surirella* species. The unprocessed bulk sediment samples are composed of the same diatom assemblages found in both the purified δ¹⁸O₅₂₀ size fractions (Fig. 4C). However, the larger >38-µm diatoms only represent ~1% of the relative abundance across all bulk sediment samples.

δ¹⁸O₅₂₀values

The δ¹⁸O₅₂₀ values from Heart Lake range from +28.8 to +33.4‰ (Fig. 5). Comparing the two size fractions, δ¹⁸O₅₂₀ values differ by 0–1.2‰ (r² = 0.75, P < 0.05), with a mean difference of ~0.01‰. Duplicate analyses of δ¹⁸O₅₂₀ indicate an analytical reproducibility (1σ) of ±0.19‰ for the smaller (3–38 µm) fraction, ±0.49‰ for the larger (>38 µm) fraction and ±0.31‰ for the BFCnom laboratory diatom standard. All 20 pairs have δ¹⁸O₅₂₀ values within the combined analytical uncertainty of ±1.06‰ (2σ) for the two size fractions. Neither fraction is consistently more isotopically positive or negative relative to the other, and the two values are similar down core, aside from two samples at 147.5 and 161.5 cm depth where they diverge.

The relationships between δ¹⁸O₅₂₀ and diatom assemblages were evaluated using principal components analysis (PCA) (Fig. 5B, C) (ter Braak and Prentice, 1988). A PCA was applied to a correlation matrix based on the dominant diatom species in all 20 samples, in both size fractions. The stratigraphic changes are captured in the first and second PCA axes, which account for 49.9 and 29.9% of variance in

![Figure 3. Fourier transform infrared Spectra (FTIR) of purified Heart Lake diatom samples (thin lines) and the BFCnom diatom standard (thick dashed line) composed of pure diatomite. The grey shaded areas indicate the separate hydroxyl (–OH) and silica components. This figure is available in colour online at wileyonlinelibrary.com.](image)

![Figure 4. Stratigraphic changes in Heart Lake dominant diatom assemblages in the (A) large >38-µm, (B) small 3- to 38-µm and (C) bulk (unprocessed) sediment diatom size fractions. Corresponding SEM images of selected diatom species are presented below each graph.](image)
the small size fraction (Fig. 5B), and 55.3 and 17.0% in the large fraction (Fig. 5C).

Discussion

All 20 pairs of diatom size fractions have differences in δ^{18}O$_{\text{diatom}}$ within the 2σ uncertainty range of this technique. Furthermore, the mean difference between the two data sets is close to zero ($\mu = -0.01 \‰$) and indicates the two δ^{18}O$_{\text{diatom}}$ records are not statistically different (Fig. 6).

The diatom assemblages from the two size fractions are composed of entirely different species, and the relative abundance of each species varies through time (Fig. 4). The main growing season of diatoms identified in Heart Lake occurs in spring following winter snow melt, when sediment and nutrient input to the lake is high and temperatures begin to increase. While some species such as *D. geminata* are known to reside in freshwaters year-round, the main bloom occurs in late spring and summer (Whitton et al., 2009). *C. hibernicus*, which is dominant in the lower section of the core, also blooms in both spring and autumn (Griffiths, 1923; Ramrath et al., 1999). Autumn diatom blooms are typically caused by the breakdown of summer stratification and entrainment of nutrients while there are still sufficient light levels for growth (Round et al., 2007). Temperatures in Heart Lake are consistently low year-round and the lake water is well mixed, meaning autumn blooms are unlikely to occur. As a result, both size fractions of the diatom sample capture the spring/summer δ^{18}O$_{\text{diatom}}$ signal when their silica frustule is formed (Moschen et al., 2005), and this rules out possible ‘seasonal-effects’ on δ^{18}O$_{\text{diatom}}$ values.

Aside from the planktonic/tychoplanktonic species *C. rossii*, all the dominant diatom species in Heart Lake are generally benthic and occupy the same habitat and pool of water (δ^{18}O$_{\text{water}}$). Heart Lake is 7.6 m deep and is likely to be well mixed. Given the similarity between the δ^{18}O value of precipitation and lake water at Heart Lake, isotopic enrichment due to evaporation is insignificant. Any so-called water column effect is probably only applicable to deeper lakes than Heart Lake, or within the marine environment where there may be variations associated with different water masses. We can therefore assume all pairs of diatom fractions analysed for δ^{18}O$_{\text{diatom}}$ formed their silica frustules under the same environmental conditions (i.e. depth, temperature, δ^{18}O$_{\text{water}}$). Although there are subtle differences between species habit, with some being solitary (e.g. *C. hibernicus*), some colonial (e.g. *D. geminata*), others motile (i.e. *C. rossii*), attached to substrata (e.g. *R. gibba*) or a combination of the above, these attributes appear insignificant given there is no discernible difference in δ^{18}O$_{\text{diatom}}$.

Evidence of a size-related species effect on δ^{18}O$_{\text{diatom}}$ has previously been documented in the marine environment, although these results are rather inconclusive. Swann et al. (2007) report more positive values of δ^{18}O$_{\text{diatom}}$ in smaller diatoms compared with larger ones, but further research suggested the opposite (Swann et al., 2008). Diatom size is also inherently linked to growth rate, with most diatoms exhibiting a gradual reduction in size/growth with increasing maturity and successive cell division (Round et al., 2007). We cannot quantify the growth rate of specific diatoms within our sediment record, but we note in each size fraction the diameter of any given species does not vary visibly (Fig. 4).
While it would be incorrect to assume growth rates are consistent across all species, there is no evidence for a relationship between diatom size and the amount of fractionation in our samples, with no one size fraction consistently more positive or negative in $\delta^{18}O_{\text{diatom}}$ relative to the other (and within analytical error).

Visual inspection of all samples by light microscopy and SEM revealed no obvious sign of contamination (e.g., SPT, minerals, tephra), which is further confirmed by FTIR analysis. As the fluorination process will liberate oxygen from any oxygen-bearing mineral in the sample (Brewer et al.), this is also confirmed by FTIR analysis. While the data do not establish whether diatoms are found in nearly all aquatic environments, $\delta^{18}O_{\text{diatom}}$ records offer an important source of information in regions devoid of other proxies available for isotopic analysis (e.g., carbonates), such as in the high-latitude regions. Considering the presence of small offsets in our two records, we advise interpreting shifts in $\delta^{18}O_{\text{diatom}}$ only where the magnitude of change is greater than the combined analytical error for those samples.

Conclusions

$\delta^{18}O$ from diatom silica is generally presumed to precipitate in isotopic equilibrium with the surrounding water, but the presence of species-dependent vital effects on fractionation has, until now, been unclear. Our $\delta^{18}O_{\text{diatom}}$ data from Heart Lake reveal only small differences (0–1.2‰, n = 20) between two size fractions containing different diatom species assemblages. Given all differences are within the combined analytical error of the technique, it suggests there is no species- or size-related effects controlling fractionation of $\delta^{18}O_{\text{diatom}}$ and bulk $\delta^{18}O_{\text{diatom}}$ samples are suitable for investigating palaeoenvironmental change at Heart Lake.

Diatom species analyses of both the raw sediment and the purified diatom samples reveal some diatom species were lost during preparation for diatom oxygen isotopes. However, considering these species account for <1% of overall abundance across all samples, we conclude the purified samples analysed for $\delta^{18}O_{\text{diatom}}$ are representative of the species found within the raw sediment. It is therefore advised that samples for $\delta^{18}O_{\text{diatom}}$ follow the same rigorous preparation and analytical procedures employed here.

$\delta^{18}O_{\text{diatom}}$ measurements from lacustrine diatom silica are a reliable and valuable method for reconstructing past $\delta^{18}O_{\text{water}}$. As diatoms are found in nearly all aquatic environments, $\delta^{18}O_{\text{diatom}}$ records offer an important source of information in regions devoid of other proxies available for isotopic analysis (e.g., carbonates), such as in the high-latitude regions. Considering the presence of small offsets in our two records, we advise interpreting shifts in $\delta^{18}O_{\text{diatom}}$ only where the magnitude of change is greater than the combined analytical error for those samples.

Acknowledgements. The research was supported by a NERC CASE studentship award to H.L.B. (NE/I528350/1) and a NERC Isotope Geosciences Facilities grant to A.G.C.H. (IP/1202/1110). Recovery of water samples, sediment core material and the development of the age model was supported by an NSF grant to D.S.K. (EAR 0823522). We thank Yarrow Axford, Anne Kratiec and Dave Vaillencourt for field assistance.

Abbreviations. FTIR, Fourier transform infrared spectroscopy; PCA, principal components analysis; SEM, scanning electron microscopy; SPT, sodium polytungstate.

References

Barker PA, Street-Perrott FA, Leng MJ, et al. 2001. A 14,000-year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya. Science 292: 2307–2310.

Battaroe RW, Carvalho L, Juggins S. 2001. Diatoms. In Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators, Smol JP, Birks HJB, Last WM (eds). Kluwer Academic Publishers: Dordrecht; 155–202.

Brandriis ME, O’Neil JR, Edlund MB, et al. 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochimica et Cosmochimica Acta 62: 1119–1125.

Brewer TS, Leng MJ, Mackay AW, et al. 2008. Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. Journal of Quaternary Science 23: 321–330.

Chaplin B, Meyer H, Bryan A, et al. 2012. Assessment of purification and contamination correction methods for analysing the oxygen isotope composition from biogenic silica. Chemical Geology 300–301: 185–199.
Clayton RN, Mayeda TK. 1963. The use of bromine pentfluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. *Geochemica et Cosmochimica Acta* 27: 43–52.

Dodd JP, Sharp ZD. 2010. A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments. *Geochemica et Cosmochimica Acta* 74: 1381–1390.

Erez J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. *Nature* 273: 199–202.

Fairbanks RG, Wiebe PH. 1980. Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance. *Science* 209: 1524–1526.

Fidalgo A, Ilharco LM. 2001. The defect structure of sol–gel-derived silica. *Journal of Non-Crystalline Solids* 283: 144–154.

Griffiths BM. 1923. The phytoplankton of bodies of fresh water, and the factors determining its occurrence and composition. *Journal of Ecology* 11: 184–213.

Hu FS, Shemesh A. 2003. A biogenic-silica δ¹⁸O record of climatic change during the last glacial-interglacial transition in southwestern Alaska. *Quaternary Research* 59: 379–385.

IAEA. 2013. Global network of isotopes in precipitation. *The GNIP database*. Retrieved 14 January 2013 from www-naweb.iaea.org.

Jones VI, Leng MJ, Solovieva N, et al. 2004. Holocene climate of the Kola Peninsula; evidence from the oxygen isotope record of diatom silica. *Quaternary Science Reviews* 23: 833–839.

Juillet-Leclerc A, Labeyrie L. 1987. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. *Earth and Planetary Science Letters* 84: 69–74.

Juillet-Leclerc A, Schrader H. 1987. Variations of upwelling intensity recorded in varved sediment from the Gulf of California during the past 3,000 years. *Nature* 329: 146–149.

Keatings JW, Heaton THE, Holmes JA. 2002. Carbon and oxygen isotope fractionation in non-marine ostracods: results from a ‘natural culture’ environment. *Geochemia et Cosmochimica Acta* 66: 1701–1711.

Krawiec ACL. 2013. Holocene Tephrochronology and Storminess Inferred from Two Lakes on Adak Island, Alaska, MSc Thesis, Northern Arizona University.

Krawiec ACL, Kaufman DS, Vaillencourt DA. 2013. Age models and tephrostratigraphy from two lakes on Adak Island, Alaska. *Quaternary Geochronology* 18: 41–53.

Lamb AL, Brewer TS, Leng MJ, Swann GEA. 2010. Stable isotopes in diatom silica. In *Smol JP, Stoermer EF (eds). Cambridge University Press: Cambridge Press: 575–589.

Leng MJ, Metcalfe SE, Davies SJ. 2005. Investigating Late Holocene climate variability in central Mexico using carbon isotope ratios in organic materials and oxygen isotope ratios from diatom silica within lacustrine sediments. *Journal of Paleolimnology* 34: 413–431.

Leng MJ, Swann GEA, Hodson MJ, et al. 2009. The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. *Silicon* 1: 65–77.

Mackay AW, Swann GEA, Fagel N, et al. 2013. Hydrological instability during the Last Interglacial in central Asia: a new diatom oxygen isotope record from Lake Baikal. *Quaternary Science Reviews* 66: 45–54.

Morley DW, Leng MJ, Mackay AW, et al. 2004. Cleaning of lake sediment samples for diatom oxygen isotope analysis. *Journal of Paleolimnology* 31: 391–401.

Morley DW, Leng MJ, Mackay AW, et al. 2005. Late glacial and Holocene environmental change in the Lake Baikal region documented by oxygen isotopes from diatom silica. *Global and Planetary Change* 46: 221–233.

Moschen R, Lücke A, Schleser G. 2005. Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and palaeoclimatology. *Geophysical Research Letters* 32: L07703.

Moser KA, MacDonald GM, Smol JP. 1996. Applications of freshwater diatoms to geographical research. *Progress in Physical Geography* 20: 21–52.

Mulitza S, Dürkoop A, Hale W, et al. 1997. Planktonic foraminifera as recorders of past surface-water stratification. *Geology* 25: 335–338.

NOAA. 2013. National Oceanic and Atmospheric Administration. National Climatic Data Centre. Retrieved 16 January 2013 from www.ncdc.noaa.gov/land-based-station-data.

Ortiz JD, Mix AC, Rugh W, et al. 1996. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibrium. *Geochemica et Cosmochimica Acta* 60: 4509–4523.

Patwardhan SV, Maheshwari R, Mukherjee N, et al. 2006. Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: an example of a polylysine macromolecular “switch”. *Biomacromolecules* 7: 491–497.

Pike J, Swann GEA, Leng MJ, et al. 2013. Glacial discharge along the west Antarctic Peninsula during the Holocene. *Nature Geoscience* 6: 199–202.

Ramrath A, Nowaczynk NR, Negendank JFW. 1999. Sedimentological evidence for environmental changes since 34,000 years BP from Lago di Mezzano, central Italy. *Journal of Paleolimnology* 21: 423–435.

Ravelo CA, Fairbanks RG. 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. *Paleoceanography* 7: 815–832.

Riaul P, Andrieu-Ponel V, Rietti-Shati M, et al. 2001. High-resolution record of climate stability in France during the last interglacial period. *Nature* 413: 293–296.

Ridionov SN, Overland JE, Bond NA. 2005. Spatial and temporal variability of the Aleutian climate. *Fisheries Oceanography* 14: 3–21.

Romero OE, Swann GEA, Hodell DA, et al. 2011. A highly productive subarctic Atlantic during the Last Interglacial and the role of diatoms. *Geology* 39: 1015–1018.

Rosqvist GC, Rietti-Shati M, Shemesh A. 1999. Late glacial to middle Holocene climatic record of lacustrine biogenic silica oxygen isotopes from a Southern Ocean island. *Geology* 27: 967–970.

Rosqvist GC, Jonsson C, Yam R, et al. 2004. Diatom oxygen isotopes in pro-glacial lake sediments from northern Sweden: a 5000 year record of atmospheric circulation. *Quaternary Science Reviews* 23: 851–859.

Round FE, Crawford RW, Mann DG. 2007. *The Diatoms: Biology and Morphology of the Genera*. Cambridge University Press: Cambridge.

Sancetta C, Heusser I, Labeyrie L, et al. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. *Marine Geology* 62: 55–68.

Schiff CJ, Kaufman DS, Wolfe AP, et al. 2009. Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. *Journal of Paleolimnology* 41: 189–208.

Schmidt M, Botz R, Rickert D, et al. 2001. Oxygen isotopes of marine diatoms and relations to opal-A maturation. *Geochemia et Cosmochimica Acta* 65: 201–211.

Shackleton NJ, Wiseman JDH, Buckley HA. 1973. Non-equilibrium isotopic fractionation between seawater and planktonic foraminiferal tests. *Nature* 242: 177–179.
Shemesh A, Charles CD, Fairbanks RG. 1992. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. *Science* **256**: 1434–1436.

Shemesh A, Burckle LH, Hays JD. 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. *Paleoceanography* **10**: 179–196.

Shemesh A, Rietti-Shati M, Rioual P, et al. 2001a. An oxygen isotope record of lacustrine opal from a European Maar indicates climatic stability during the last interglacial. *Geophysical Research Letters* **28**: 2305–2308.

Shemesh A, Rosqvist G, Rietti-Shati M, et al. 2001b. Holocene climatic change in Swedish Lapland inferred from an oxygen-isotope record of lacustrine biogenic silica. *Holocene* **11**: 447–454.

Spero HJ, Lea DW. 1993. Intraspecific stable isotope variability in the planktic foraminifera *Globigerinoides sacculifer*: results from laboratory experiments. *Marine Micropaleontology* **22**: 221–234.

Steph S, Regenberg M, Tiedemann R, et al. 2009. Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean core-tops: implications for reconstructing upper ocean stratification. *Marine Micropaleontology* **71**: 1–19.

Swann GEA, Leng MJ. 2009. A review of diatom δ18O in palaeoceanography. *Quaternary Science Reviews* **28**: 384–398.

Swann GEA, Patwardhan SV. 2011. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. *Climate of The Past* **7**: 65–74.

Swann GEA, Maslin MA, Leng MJ, et al. 2006. Diatom δ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciations. *Paleoceanography* **21**: PA1009.

Swann GEA, Leng MJ, Sloane HJ, et al. 2007. Diatom oxygen isotopes: evidence of a species effect in the sediment record. *Geochemistry, Geophysics, Geosystems* **8**: Q06012.

Swann GEA, Leng MJ, Sloane HJ, et al. 2008. Isotope offsets in marine diatom δ18O over the last 200 ka. *Journal of Quaternary Science* **23**: 389–400.

Swann GEA, Leng MJ, Juschus O, et al. 2010. A combined oxygen and silicon diatom isotope record of Late Quaternary change in Lake El’gygytgyn, North East Siberia. *Quaternary Science Reviews* **29**: 774–786.

Swann GEA, Pike J, Snelling AM, et al. 2013. Seasonally resolved diatom δ18O records from the west Antarctic Peninsula over the last deglaciation. *Earth and Planetary Science Letters* **364**: 12–23.

Tedesco KA, Thunell R, Astor Y, et al. 2007. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: seasonal and interannual variations. *Marine Micropaleontology* **62**: 180–193.

Von Grafenstein U, Erlenrheuser H, Trimborn P. 1999. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. *Palaeogeography, Palaeoclimatology, Palaeoecology* **148**: 133–152.

Wetterich S, Schirrmieister L, Meyer H, et al. 2008. Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta (Siberian Arctic, Russia): geochemical applications for palaeoenvironmental reconstructions. *Journal of Paleolimnology* **39**: 427–449.

Whitton BA, Ellwood NT, Kawecka B. 2009. Biology of the freshwater diatom *Didymosphenia*: a review. *Hydrobiologia* **630**: 1–37.

Wolf-Gladrow DA, Riebesell U, Burkhardt S, et al. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. *Tellus B* **51**: 461–476.

Xia J, Ito E, Engstrom DR. 1997. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation. *Geochimica et Cosmochimica Acta* **61**: 377–382.