Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from *Laurencia papillosa*

Hossam Murad1*, Mohammad Hawat2, Adnan Ekhtiar3, Abdulmunim AlJapawe3, Assef Abbas4, Hussein Darwish1, Oula Sbenati5 and Ahmed Ghannam5

Abstract

Background: Marine algae consumption is linked to low cancer incidences in countries that traditionally consume marine products. Hence, Phytochemicals are considered as potential chemo-preventive and chemotherapeutic agents against cancer. We investigated the effects of the algal sulfated polysaccharide extract (ASPE) from the red marine alga *L. papillosa* on MDA-MB-231 human breast cancer cell line.

Methods: Flow cytometry analysis was performed to study the cell viability, cell cycle arrest and apoptosis. Changes in the expression of certain genes associated with cell cycle regulation was conducted by PCR real time analyses. Further investigations on apoptotic molecules was performed by ROS measurement and protein profiling.

Results: ASPE at low doses (10 µg/ml), inhibited cell proliferation, and arrested proliferating MDA-MB-231 cells at G1-phase. However, higher doses (50 µg/ml), triggered apoptosis in those cells. The low dose of ASPE also caused up-regulation of *Cip1/p21* and *Kip1/p27* and down-regulation of cyclins *D1*, *D2*, and *E1* transcripts and their related cyclin dependent kinases: *Cdk2*, *Cdk4*, and *Cdk6*. The higher doses of ASPE initiated a dose-dependent apoptotic death in MDA-MB-231 by induction of Bax transcripts, inhibition of Bcl-2 and cleavage of Caspase-3 protein. Over-generation of reactive oxygen species (ROS) were also observed in MDA-MB-231 treated cells.

Conclusions: These findings indicated that ASPE induces G1-phase arrest and apoptosis in MDA-MB-231 cells. ASPE may serve as a potential therapeutic agent for breast cancer.

Keywords: G1-phase cell cycle arrest, Apoptosis, MDA-MB-231, Red algae

Background

Marine algae are health-enhancing resource for providing nutritional benefits and helping diseases treatment. Several epidemiological studies provided evidence that marine algae consumption correlates with low breast cancer rates in East-Asia. These studies report that low risks of developing breast cancer is associated with seaweeds intake in diet [1, 2]. The potentially beneficial effects of marine algae are partially attributed to polysaccharide compounds, particularly sulfated ones [3–5]. Carrageenans are a family of linear sulfated polysaccharide (SP), extracted mainly from red algae [6–8]. Depending on their sulfation degree, solubility and gelling properties, three categories of carrageenans have been categorized as kappa-, iota- and lambda-carrageenans [9, 10]. Red algae (Rhodophyta) have been documented as a source of natural nutraceuticals and pharmaceuticals for many years. Recent studies showed that sulfated polysaccharides isolated from red seaweed possesses various therapeutic and biological feature such as anti-oxidants...
in such studies. A previous study indicated ASPE prepar-
is a human breast cancer cell line known to be widely used
drugs effects on mammalian cells. MDA-MB-231 cell line
mechanism of new nutraceuticals, pharmaceuticals and
Major issues concerning conventional anti-cancer chem-
Dietary pattern has been identified as one of the major
across the world. One out of ten women over 55 years
second leading cause of cancer-related deaths in women
SIGRETO), Nancy, France. MDA-MB-231 cells were
vided by prof. P. BÉCUWE, Cancer Research Unit (EA
Cell culture
MDA-MB-231 breast cancer cell line was kindly pro-
Plant material collection and preparation of polysaccharide
Red alga L. papillosa was collected from Syrian coastal
waters and processed at the marine biology labora-
tory (Faculty of biological sciences, Tishreen University,
Syria). ASPE was prepared as previously explained in
Briefly, collected algal biomass was washed with tap
water to remove salt, sand and foreign matter, air-dried
to constant weight at 60 °C then heated with water (1.5 %
w/v) for 12 h with mechanical stirring. Polysaccharides
dissolved in MilliQ water and filtrated using cheese-
cloth and immediately mixed with 3 volumes of ethanol
to constant weight at 60 °C then heated with water (1.5 %
w/v) for 12 h with mechanical stirring. Polysaccharides
dissolved in MilliQ water and filtrated using cheese-
cloth and immediately mixed with 3 volumes of ethanol
This ASPE
ration from the red alga Laurencia papillosa. This ASPE
predominantly contains a sulfated polysaccharide. ASPE
could inhibit proliferation of MDA-MB-231 in vitro in a
time and dose dependent manner [25]. However, the anti-
proliferative activity mechanism of ASPE remains unclear.
The purpose of the present study was to elucidate the mechanism of ASPE anti-proliferative effect. Furthermore,
it was to characterize the cell cycle arrest and apoptosis
induced in MDA-MB-231 cells after ASPE treatment.

Methods

Plant material collection and preparation of polysaccharide extract

Cell culture

MDA-MB-231 breast cancer cell line was kindly pro-
vided by prof. P. BÉCUWE, Cancer Research Unit (EA
SIGRETO), Nancy, France. MDA-MB-231 cells were
cultured in RPMI-1640 medium containing 10 % fetal
bovine serum (FBS), 50 U/ml penicillin/streptomycin,
and 2 m M l-glutamine. Cells were treated with ASPE
solved in water for the desired concentrations and times
and proceeded for analysis as described below.

Cell viability assay

TO/PI double staining assay was used to distinguish
dead cells from viable ones. 1 × 10^5 MDA-MB-231 cells
were grown for 24 h (hours) then treated with differ-
ent concentrations of ASPE (5, 10, 50 and 100 µg/mL) or
untreated (control), and incubated for another 24 h. Cell
viability was estimated by adding 1 ml of viability buffer
to labeled 6 ml tubes equals the number of samples to be
analyzed. A 20–100 µl of each harvested cell suspension
(~1 × 10^5 cells) were transferred to the matching tubes.
A 4 µl of Thiazole Orange (TO) solution (final concentra-
tion 1 µg/ml) and 2 µl of propidium iodide (PI) solution
(final concentration 2 µg/ml) were added to each tube and
incubated at room temperature for 5 min and analyzed
directly on already set BD FACSCalibur flow cytometr.

DNA content/cell cycle analysis

Samples of untreated or treated MDA-MB-231 cell cut-
ters were analyzed for DNA content/cell cycle analysis
by flow cytometry. Cell cycle distribution was calculated
after appropriate gating of cell populations in FL-2-Area
vs FL-2-Width plot of PI fluorescence. Assays were car-
ried out in triplicates, and the results are representative
of three independent experiments.

Real-time PCR array of human cell cycle related genes

Cells were seeded at 1 × 10^6 cells and grown for 24 h,
then treated with ASPE at two different concentrations:
10 and 30 µg/mL for 24 h. Total RNA was extracted by
RN easy kit (Qiagen, Hilden, Germany) and cDNA was
synthesized as previously described [25]. For quantita-
tive determination of transcripts of cell cycle pathway,
cDNA was mixed with RT^2 SYBR Green ROX qPCR
Master mix (SA Biosciences, USA) according to the
manufacturer’s instructions. The expression of 84 genes
was assessed using the Profiler™ PCR Array Human Cell
Cycle (PAHS-020ZC-12, SA Biosciences, USA) according
to the manufacturer’s instructions. Thermal cycling and
fluorescence detection were performed using StepOne-
Plus™ Real-time PCR system (Applied Biosystems, Foster
City, CA—USA). Data were analyzed by PCR array data
analysis web portal (http://www.sabioscience.com/pcr/
arrayanalysis.php), using 2^−ΔΔCt method.

Apoptosis assay

1 × 10^5 MDA-MB-231 cells were seeded, and treated
with ASPE with different concentrations: 10, 25 and
50 μg/mL. Untreated control was also included. Cells then incubated for 24 h. Cell death was evaluated by the loss of membrane integrity (high PI fluorescence) after treatment with PI solution. Phosphatidylserine exposure was determined using Annexin V-FITC/PI double staining kit (BD Biosciences, USA) and analyzed by flow cytometry. Analysis of stained cells can distinguish cells into four groups, namely viable (annexin V− PI−), early apoptotic (annexin V− PI+), late apoptotic (annexin V+ PI+), and necrotic (annexin V− PI+) cells.

Flow cytometry protein expression analysis
Cells were treated with ASPE for 24 h and then trypsinized and centrifuged for 3 min at 130×g. The cells were re-suspended and washed with PBS. Active Caspase-3 and Bcl-2 proteins expression were evaluated by fluorochrome-conjugated anti-bodies. For each protein a 100 μl of cell suspension (~1 × 10⁵ cells) were transferred to 5 ml tube. Cells washed twice with PBS containing 1 % FCS and 0.1 % NaN3 then cells were suspended in 250 μl of 1X fixation/permeabilization buffer, and incubated in dark at 4 °C for 20 min. The cells washed twice with 1 ml of 1X permeabilization and washing buffer, and suspended in 100 perm/wash buffer. 20–30 μl of the fluorochrome conjugated anti-body was added and cells incubated on ice in the dark for 30 min. Then cells washed with 1 ml of PBS containing 1 % FCS and 0.1 % NaN3 and suspended in 500 μl of PBS. Appropriate isotype and autofluorescence controls were also included.

Measurement of released ROS
Mitochondrial function disorder is often associated with ROS release enhancement. The Amplex Red™, one kind of non-marking and oxidation-sensitive fluorescent probe, which detects the extracellular ROS released by the cell. This protocol was adapted for the measurement of total released Hydrogen peroxide (H₂O₂) by lysing cells to detect the both intra- and extracellular produced H₂O₂ after ASPE treatment. Cells were seeded at 2 × 10⁵ in 96-well plate before treatment then were treated with different concentrations of ASPE and incubated for 12 h. Cells were washed once with pre-warmed 1 % triton added-sodium pyrophosphate buffer (25–200 mg/L) to prevent H₂O₂ degradation when cells lysed, then phosphate buffer containing the Amplex Red™ reagent was applied to the cells according to manufacturer’s instruction (Invitrogen, Carlsbad, USA). Plates were incubated for 15 min at 37 °C. Resorufin, the fluorescent product, was measured in triplicate by a fluorescence multi-well plate reader with an excitation wavelength of 535 nm and an emission wavelength of 590 nm. The values were standardized with reference standard curve of H₂O₂.

Statistical analysis
The results were expressed as the mean value ±SEM of individual experiments. Comparisons of means were conducted using a one-way ANOVA followed by Bonferroni’s post hoc test (GraphPad Prism-Version 6.0 for windows). We considered the two means significantly different when the P value associated was weaker than 0.05.

Results
Declines in MDA-MB-231 cell viability and cell death induction following ASPE exposure
In this study, the design of experiments focused firstly on investigating the response of ASPE-treated MDA-MB-231 cells using different concentrations. The reduction in viability of treated cells was either due to the ASPE-induced cell death or may attribute to the inhibition of biological or biochemical function in cells exposed to ASPE. Our results showed insignificance in dead cells in each of the cells exposed to 5 and 10 μg/mL (Fig. 1). In contrast, at a concentration of 50 μg/mL, the number of dead cells increased significantly to reach about 52 % at 24 h of exposure. By augmenting ASPE concentration, the number of dead cells doubled to reach almost 79 % of the population when cells were treated with 100 μg/mL (Fig. 1). Thus, ASPE seems to be capable of exerting a cytotoxic effect on MDA-MB-231 cells under the present experimental conditions.

G1-phase cell cycle arrest in MDA-MB-231 cells following ASPE exposure
ASPE-treated cells with different concentrations 10, 50 and 100 μg/mL for 24 h showed a typical DNA pattern that represented sub-G1, G1, S, and G2/M phases of the cell cycle. Treated cells firstly showed higher G1 population (73 %) compared with 60 % in the control when treated with 10 μg/mL ASPE. This treatment caused a concomitant decrease in the proportion of cells in G2/M phase of the cell cycle from control (20 %) to treated MDA-MB-231 cells (10 %) (Fig. 2). Whereas, the percentages of sub-G1 phase (apoptotic cells) were significantly increased after cells were treated with 50 and 100 μg/mL ASPE up to 50 and 79 % respectively compared with 8 % in the control (Fig. 2). This experiment suggested that ASPE induces G1-phase cell cycle arrest at low concentration (10 μg/mL). Consequently, ASPE treatment at higher concentrations (50 μg/mL) induced cell death in MDA-MB-231 cells.

Effect of ASPE on the expression levels of cell cycle regulatory genes in MDA-MB-231 cells
Meanwhile, we revealed ASPE injured DNA of MDA-MB-231 cells and probably triggered the observed G1-phase cell cycle arrest by ASPE. We investigated
the effect of ASPE on the expression of cell cycle regulatory genes \((\text{cyclins, cyclin-dependent kinases “CDKs” and CDKs inhibitor})\). Treatment with ASPE resulted in a clear down-regulation in the gene expression levels of \(\text{cyclin D1, cyclin D2 and cyclin E1}\) at 10 and 30 µg/mL (Fig. 3a). Similarly, a marked decrease in the expression of \(\text{CDK2, CDK4 and CDK6}\) was detected at 24 h (Fig. 3a). Concomitantly, a significant increase in the expression of \(\text{CDK inhibitory genes (Cip1/p21 and Kip1/p27)}\) was observed (Fig. 3b). These results indicate that ASPE induced at low concentration the CDK inhibitors which play a central role in the cell cycle progression and induced G1-phase arrest of MDA-MB-231 cells.
ASPE promotes apoptosis in MDA-MB-231 cells
MDA-MB-231 cells were treated with different concentrations (10, 25 and 50 µg/mL) of ASPE for 24 h. Apoptotic cells were determined by flow cytometry using Annexin V-FITC/PI double labeling. As shown in (Fig. 4), the percentage of the apoptotic cells increased significantly in a dose-dependent manner. Apoptotic cell percentages were: 10.6 % at 10 µg/mL, 20.6 % at 25 µg/mL, and 50 % at 50 µg/mL vs. 2.5 % for the control cell cultures. About 7 % of cell population treated with 50 µg/mL of ASPE showed necrotic signs (Fig. 4).

Apoptosis induction is regulated through the activation of active-Caspase-3 and inhibition of Bcl-2 protein following ASPE exposure
Because ASPE induced a pronounced cell death/apoptosis at higher concentrations (50 µg/mL), we investigated the expression of active-Caspase-3, a crucial protein in apoptosis induction, at 50 and 100 µg/mL to better understand the mechanistic of ASPE signalling. We showed that ASPE induces high levels of active-Caspase-3 protein expression starting significantly at 50 µg/mL ASPE to attend 20-folds of expression change at 100 µg/mL ASPE exposure (Fig. 5a). Thus, these data suggest that Active-Caspase-3 might be involved in the ASPE-induced apoptosis of MDA-MB-231 cells. The down-regulation of Bcl-2 protein at same concentrations was also confirmed by flow cytometry which was decreased in a dose-dependent manner (Fig. 5b).

ASPE exposure induces disruption in mitochondrial Bax:Bcl-2 ratio and generates the production of reactive oxygen species (ROS) in MDA-MB-231 cells
We also followed up the ASPE signalling by inspecting the expression of mitochondrial Bax (pro-apoptotic) and Bcl-2 (anti-apoptotic) related to apoptosis induction at 50 and 100 µg/mL. Here, we showed that ASPE induces a significant misbalance of Bax:Bcl-2 transcripts ratio of ASPE-treated cells by up-regulation of Bax gene to reach 4.1-fold and down-regulation of Bcl-2 gene to reach 1.76-fold (Fig. 6a). In the other hand, the effect of treatment of MDA-MB-231 cells with ASPE on the induced levels of ROS was inspected by using Amplex Red™ assay. ROS concentration was determined in treated and lysed cells to measure the total ROS released by the cells. In this assay, cells treated with 50 and 100 µg/mL ASPE...
displayed a marked increase in the levels of total ROS levels compared to the untreated control cells. ASPE was able to increase the ROS signal depending on concentrations tested (Fig. 6b). Therefore, these data suggest that the disruption of mitochondria function by the misbalance of Bax:Bcl-2 ratio and ROS induction are involved in the ASPE-induced apoptosis of MDA-MB-231 cells.

Discussion

Algal sulfated polysaccharides have attracted more attention due to their immune modulatory and anti-tumor properties [26–28]. Seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry [29].

Several recent studies have illustrated the anti-proliferative effect of polysaccharides deviated from difference resources. Polysaccharides from *Tupistrachinensis* induced severe apoptosis in a cancerous tissue in H22 hepatocarcinoma mice animal model [30]. Other study revealed that, the polymeric black tea polyphenols modulate TAP-induced molecular and biochemical alterations in mouse skin like the activation of transcription factors related to cell proliferation, apoptosis and inflammation [31]. Although, fucoidan (sulfated polysaccharide obtained from brown seaweeds) induced apoptosis, inhibited angiogenesis and suppressed lung metastasis of breast cancer in 4T1 mouse breast cancer cells and in BALB/c mice bearing breast cancer [32]. Even though, sulfated polysaccharide fraction from the brown alga Laminaria japonicacan effectively inhibited the proliferation of cervic al carcinoma U14 cells in vitro, and could not only significantly inhibited the growth of U14 implanted tumor but also induced apoptosis of tumor tissue in tumor-bearing mice [33].

Our results showed that ASPE from red seaweed suppresses cell proliferation of MDA-MB-231 cells and arrest them at G1-phase at low dose (10 µg/mL). ASPE also triggers apoptosis in these cells at higher doses (30–50 µg/ ml), possibly through enhanced expression of Bax, and inhabitation of Bcl-2 protein. The increased ratio of Bax/ Bcl-2 and the activation of Caspase-3 in addition to ROS
induction are perceptible indicators for such pathway (Fig. 7).

The same behaviour of treated-MDA-MB-231/Her-2 cancers cells with curcumin (a hydrophobic polyphenol derived from the plant, *Curcuma longa*) was observed depending on the concentration of the applied treatment. This compound induces G1-phase arrest at a 30 μM whereas, it triggers apoptosis at 50 μM and blocks cell migration. A low dose of curcumin cause increases p27 and decreases Skp2, Her2, Cyclin E, CDK kinases in a
time and dose-dependent manner. However, higher doses of curcumin initiate a dose-dependent apoptotic death in MDA-MB-231 by cleaving forms of PARP and Caspase-3 [34].

Importantly, control of cell cycle progression in cancer cells is considered to be a potentially effective strategy for the control of tumor growth [35]. The molecular analyses of human cancers have revealed that cell cycle regulators are frequently mutated in most common malignancies [36]. Our data indicated that treatment of MDA-MB-231 cells at 10 µg/mL ASPE resulted in significant G1-phase arrest of cell cycle progression, which indicates that one of the mechanisms by which ASPE may act to inhibit the proliferation of cancer cells is inhibition of cell cycle progression.

Many other compounds have the same effects as ASPE on MDA-MB-231 cells. Boehmeriasin A isolated from Boehmeria siamensis Craib for example considered as proliferation inhibitor of MDA-MB-231 via G1 phase cell cycle arrest. It also induced differentiation in those cells [37]. Physcion (anthraquinone from rhubarb) is another example. This compound also has anti-proliferative effects on MDA-MB-231 mediated by inducing G0/G1 phase arrest [38]. On the other hand, both fractions (pentaene and pentaene/diethyl ether fractions) which isolated from Daucuscarota inhibits cell proliferation by inducing cell cycle arrest in MDA-MB-231 cells through the inhibition of the MAPK/ERK pathway [39].

When cells are injured, CDK inhibitory genes are up-regulated then, the G1-phase-related Cyclin-CDK complexes are down-regulated for promoting cell cycle arrest [40]. Our finding of a significant decrease in cyclins D1, D2, and E1 and their related inhibitors Cdk2, Cdk4, and Cdk6 in MDA-MB-231 cells after treatment with ASPE suggests the disruption of the uncontrolled cell cycle progression of these cells (Fig. 3). Therefore, this result suggests that the ASPE induced G1-phase arrest is mediated through the up-regulation of Cip1/p21 and Kip1/p27 transcripts, which enhances the formation of heterotrim-meric complexes with the G1-S Cdks and cyclins thereby inhibiting their activity (Fig. 3). Kip1/p27 is up-regulated in response to anti-proliferative signals [41]. Zhuang et al. demonstrated that treatment of human breast cancer cell lines with Metformin (oral anti-hyperglycemic drug) activated AMPK which caused the loss of cyclin D1 mRNA and downregulation of cyclin D1 protein. The reduction in cyclin D1 resulted in the release of sequestered cell cycle inhibitors Kip1/p27 and Cip1/p21. The released CDK inhibitors bind to and inhibit cyclin E/CDK2, thus preventing cell cycle progression from G1 to S phase [42].

The increased expression of G1 cyclins in cancer cells provides an uncontrolled growth advantage because...
most of these cells either lack Cdk inhibitors or the expression of Cdk inhibitors is not at a sufficient level to control Cdk-cyclin activity [40]. G1-phase arrest of cell cycle progression provides an opportunity for cells to either undergo repair mechanisms or follow the apoptotic pathway.

The tumor suppressor TP53 plays an important role in response to DNA damage and other genomic instability. Functional TP53 protein is crucial in TP53-dependent pathway leading to cell cycle arrest or apoptosis [43]. MDA-MB-231 cells are known to contain mutated, functionally inactive TP53 [44, 45]. The increase in TP53 protein following ASPE treatment (data not shown) may not solely explain TP53-dependent apoptosis. Therefore, the up-regulation of Cip1/p21 gene, cell cycle arrest and apoptosis in MDA-MB-231 cells is chiefly mediated through a TP53-independent mechanism.

On the other hand, our flow cytometry data indicate that treatment of MDA-MB-231 cells with 25 and 50 µg/mL of ASPE resulted in significant induction of apoptosis (Fig. 4). Apoptosis plays a crucial role in eliminating the mutated neoplastic and hyperproliferating neoplastic cells from the system and therefore is considered as a protective mechanism against cancer progression [46, 47]. Apoptosis has been shown as a significant way of cell death after cytotoxic drug treatment in a variety of cancer types [48]. Therefore, an understanding of apoptosis events and its pathway may allow the development of novel agents for cancer treatment [49]. Nuclear condensation, DNA fragmentation, cell shrinkage and cell membrane disintegration are common apoptotic features [50–52]. Interestingly, our results demonstrated that ASPE effectively induces apoptosis by dose and time dependent manner in MDA-MB-231 cells (Fig. 4). Apoptosis is tightly regulated by anti-apoptotic and proapoptotic effector molecules, including Caspase-3 and Bcl-2 protein family. As the activity of the regulatory molecules can be lost in cancer cells, it is important to elucidate the mechanisms by which anti-apoptotic molecules exert their effects, especially in MDA-MB-231 cells. Thus, we investigated the ASPE mode-of-action and by consequent described the characterized apoptosis induction in ASPE-treated cells. We found that ASPE treatment of MDA-MB-231 cells resulted in a dose-dependent activation of Caspase-3 demonstrated by flow cytometry (Fig. 5). This confirmed the role of Caspase-3 in the ASPE-induced apoptosis.

The Bcl-2 family of proteins is the central regulators of the mitochondrial cell-intrinsic apoptotic [53]. The Bcl-2 itself binds to pro apoptotic members such as Bax, preventing pore formation and cytochrome c release [54–56]. In contrast, increase in expression of Bax, induces cell death eliminating tumor cells [57–59]. Therefore, we investigated the contribution of Bcl-2 family proteins to ASPE-induced apoptosis of MDA-MB-231 cells. We found that treatment of MDA-MB-231 cells with ASPE resulted in a pronounced increase in the expression of Bax transcripts and a decrease in the transcripts expression of Bcl-2 (Fig. 6a). Consequently, we confirmed the decrease of Bcl-2 protein after ASPE treatment by flow cytometry (Fig. 5b). This misbalance may be responsible for the concomitant execution phase of apoptosis that we observed, which included disruption of mitochondrial functionality. ROS generation in apoptosis induction by some agents has been shown to occur downs mitochondrial disruption [60, 61]. Our results also showed that ASPE induced ROS in a dose-dependent manner (Fig. 6b). ROS may as well participate in apoptosis induced by ASPE. Similar results were observed in human umbilical vein endothelial cells (HUVECs) exposed to high concentration of λ-carrageenan oligosaccharides (A-CO) which activated the mitochondrial-mediated apoptotic pathway and triggered ROS production [62]. Observing our data together, the biological activity of ASPE algal extract demonstrates a potent mechanism for cell cycle arrest and apoptosis induction. These results are conformed to numerous studies mentioning cytostatic effects within algal sulfated polysaccharides treatment [63, 64].

Conclusions

The results of this study do support a pervious study about the role of algal sulphated polysaccharidic extract ASPE in inducing cell cycle arrest and apoptosis induction in MDA-MB-231 breast cancer cells. The ASPE could be a promising target molecule for developing a new anti-cancer drugs. Nevertheless, further studies are warranted to evaluate its potential anti-proliferative and anti-cancerous activities in vivo.

Abbreviations

ASPE: algal sulfated polysaccharide extract; SP: sulfated polysaccharide; PI: propidium iodide; SSC: side-scatter light; cDNA: complementary DNA; FITC: fluorescein isothiocyanate; ROS: reactive oxygen species; H2O2: hydrogen peroxide; ANOVA: analysis of variance; CDKs: cyclin-dependent kinases; Cip1: CDK-interacting protein 1; Kip1: kinase interacting protein 1; Bax: (protein coding), Bcl2-associated X protein.

Authors’ contributions

HM, AG and AA conceived and designed the study. AA, HD and OS carried out the study and the data analysis. MH wrote the manuscript. AE revised the manuscript. All authors read and approved the final manuscript.

Author details

1 Division of Human Genetics, Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus, Syria. 2 Division of Biochemistry & Toxicology, Department of Molecular Biology and Biotechnology, Damascus, Syria. 3 Division of Mammalian Biology, Department of Molecular Biology and Biotechnology, Damascus, Syria. 4 Laboratory of Marine biology, Faculty of Sciences, Tishreen University, Lattakia, Syria. 5 Laboratory of plant functional genomics, AECS, P. O. Box 6091, Damascus, Syria.
Acknowledgements
This work was supported and funded by the Atomic Energy Commission of Syria (AECS). The authors would like to thank the Director General of AECS and the Head of Molecular Biology and Biotechnology Department for their support.

Competing interests
The authors declare that they have no competing interests.

Received: 15 February 2016 Accepted: 10 May 2016
Published online: 26 May 2016

References
1. Pisi N, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer. 2002;97(1):72–81.
2. Yuan Y, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol. 2006;44(7):1144–50.
3. Kim SK, Karagoulis MZ. Marine algae: natural product source for gastrointestinal cancer treatment. Adv Food Nutr Res. 2011;64:225–33.
4. Khannal M, Nabavi M, Sadati N, Shams Ardekan M, Sohrabipour J, Nabavi SM, Ghaffari P, Ostad SN. Cytotoxic activity of some marine brown algae against cancer cell lines. Biol Res. 2010;43(1):131–7.
5. Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, Chang HW. Marine algal natural products with anti oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13(5):1–7.
6. Lu J, Xiao Q, Wang L, Liu X, Wang X, Yang Z, Zhang H, Dong P. Fucoidan prevents multiple myeloma cell escape from chemotherapy-induced drug cytotoxicity. Fitoterapia. 2013;84:257–63.
7. Chanda S, Dave R, Kaneria M, Nagani K. Seaweeds: a novel, untapped source of drugs from sea to combat infectious diseases, vol. 1. Formatex Research Center, 2010.
8. Ravikumar S, Inbanesan SJ, Suganthi P. Seaweeds as a source of lead compounds for the development of new antiplastomodial drugs from South East coast of India. Parasitol Res. 2011;109(1):47–52.
9. Patel S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. J Biotech. 2012;2(3):171–85.
10. Leibbrandt A, Meier C, Konig-Schuster M, Weinmullner R, Kalthoff D, Pfluger MT, Jimenez-Colmenero F. Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int. 2013;84:257–63.
11. Gaurav K, Prerana D, Varshali K, Vaidya MM, Ramchandani AG, Maru GB. Anticancer proper ties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One. 2010;5(12):e14320.
12. Cofrades S, Lopez-Lopez I, Bravo L, Ruiz-Capillas B, Bastida S, Larrea MT, Jimenez-Colmenero F. Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int. 2010;16(5):361–70.
13. Fu BD, Bi W, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia. 2013;84:303–7.
14. Chen LL, Chen X, Choi H, Sang H, Chen LC, Zhang H, Gouw L, Andtbacka RH, Chan BK, Rodesch CK, et al. Exploiting antitumor immunity to overcome relapse and improve remission duration. Cancer Immunol Immunother. 2012;61(7):1113–24.
15. Yang YJ, Nam SJ, Kong G, Kim MK. A case-control study on seaweed consumption and the risk of breast cancer. Br J Nutr. 2010;103(9):1345–53.
16. Namvara F, Mohameda S, Farda SG, Behavaine J, Mustaphab NM, Athiehc NM, Orthman F, Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem. 2012;130(3):376–82.
17. Urech K, Buessing A, Thalmann G, Schaeffermeyer H, Heusser P. Antipro liferative effects of mistletoe (Viscum album L) extract in urinary bladder carcinoma cell lines. Anticancer Res. 2006;26(4B):3049–55.
18. Kalitnik AA, Batabanova AB, Nagorskaya VP, Reunov AV, Glazunov VP, Set F, Yermak IM. Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol. 2012;25(1):65–72.
19. Magalhaes KD, Costa LS, Fidelis GP, Oliveira RM, Nobre LT, Dantas-Santos N, Camara RB, Albuquerque IR, Cordeiro SL, Sabry DA, et al. Anticoagulant, antioxidant and antitumor activities of heterofucans from the seaweed dictyopteris delicatula. Int J Mol Sci. 2011;12(5):3352–65.
20. Pushpamali WA, Nikolipita C, De Zoysa M, Whang J, Kim SJ, Lee J. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr Polym. 2008;73(2):274–9.
21. Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):153–62.
22. Sun Y, Chang J, Wang X, Song J, Li C, Chen X, Li Q, Sun S. A polysaccharide from the fungi of Humicola exhibits anti-tumor potential and immunomodulatory effects. Carbohydr Polym. 2013;92(1):577–82.
23. Gamal-EIdeen AM, Ahmed EF, Abou-Zeid MA. In vitro cancer chemopre ventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food Chem Toxicol. 2009;47(6):1378–84.
24. Ngo DH, Kim SK. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol. 2013;62:70–5.
25. Misurcova L, Skrovankova S, Samek D, Ambrozova J, Machu L. Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res. 2012;66:75–145.
26. Huang W. Anticancer effect of plant-derived polysaccharides on mice. J Cancer Ther. 2013;4(02):500–3.
27. Gaurav K, Prerana D, Varshali K, Vaidya MM, Ramchandani AG, Maru GB. Polymeric black tea polyphenols modulate the localization and activity of 12-O-tetradecanoylphorbol-13-acetate-mediated kinases in mouse skin: mechanisms of their anti-tumor-promoting action. Free Radic Biol Med. 2012;53(6):1358–70.
28. Xue M, Ge Y, Zhang J, Wang Q, Hou L, Liu Y, Sun L, Li Q. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One. 2012;7(8):e43483.
29. Zhai Q, Li X, Yang Y, Yu L. Anti-tumor activity of a polysaccharide fraction from Laminaria japonica on U14 cervical carcinoma-bearing mice. Tumor Biol. 2013;35(1):117–22.
30. Sun SH, Huang HC, Huang C, Lin JK. Cycle arrest and apoptosis in MDA-MB-231-Her2 cells induced by curcumin. Eur J Pharmacol. 2012;690:22–30.
31. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CDIs). Oncogene. 1995;11(2):211–9.
32. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995;14(1):3–15.
33. Yan J, Luo D, Luo Y, Gao X, Zhang G. Induction of G1 arrest and differentiation in MDA-MB-231 breast cancer cell by boehmeriasin A, a novel compound from plant. Int J Gynecol Cancer. 2010;20(8):e12124.
34. Hong YJ, Chung HJ, Bae SY, Trung TN, Bae K, Lee SK. Induction of cell cycle arrest and apoptosis by physoin, an anthropoquinone isolated from rhubarb (Rhizomes of Rheum tanguticum), in MDA-MB-231 human breast cancer cells. J Cancer Prev. 2014;19(4):273–8.
35. Shebaby WN, Mroueh M, Bodman-Smith K, Mansour A, Taleb RI, Daher CF, El-Sibai M. Daucus carota pentane-based fractions arrest the cell cycle (G0/G1) in MDA-MB-231 human breast cancer cells. J Cancer Prev. 2014;19(4):273–8.
36. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995;14(1):3–15.
42. Zhuang Y, Miskimins WK. Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal. 2008;3:18.
43. Zhang N, Kong X, Yan S, Yuan C, Yang Q. Huaira aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci. 2010;101(11):2375–83.
44. Toillon RA, Chemin V, Jouy N, Fauquette W, Boilly B, Le Bourhis X. Normal breast epithelial cells induce p53-dependent apoptosis and p53-independent cell cycle arrest of breast cancer cells. Breast Cancer Res Treat. 2002;71(3):269–80.
45. Nigo JM, Baker SJ, Presinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P. Mutations in the p53 gene occur in diverse human tumor types. Nature. 1989;342(6250):705–8.
46. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.
47. Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–88.
48. Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992;11(2):121–39.
49. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.
50. Shah S, Gapor A, Sylvester PW. Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutr Cancer. 2003;45(2):236–46.
51. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Cancer. 2005;5(4):277–88.
52. Cheah YH, Nordin FJ, Tee TT, Azimahtol HL, Abdullah NR. Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction. Anticancer Res. 2006;26(6):4527–34.
53. Gross A, McDonell JM, Korshveyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.
54. Rassouli FB, Matin MM, Iranshahi M, Bahrami AR. Investigating the cytotoxic and apoptosis inducing effects of monoterpenoid stylosin in vitro. Fitoterapia. 2011;82(5):742–9.
55. Luo G, Guan X, Zhou L. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biol Ther. 2008;7(6):966–73.
56. Crompton M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol. 2000;12(4):414–9.
57. Gao Z, Shao Y, Jiang X. Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J Biol Chem. 2005;280(46):38271–5.
58. Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Upregulation of Bax and downregulation of Bcl2 during 3-NC-mediated apoptosis in human cancer cells. Cancer Cell Int. 2015;15(1):1.
59. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.
60. Liu WN, Leung KN. Jamaric acid inhibits the growth of murine macrophage-like leukemia PUSS-1 cells by inducing cell cycle arrest and apoptosis. Cancer Cell Int. 2015;15(1):1.
61. Chen HM, Yan XJ, Mai TY, Wang J, Xu WF. X-Carrageenan oligosaccharides elicit reactive oxygen species production resulting in mitochondrial-dependent apoptosis in human umbilical vein endothelial cells. J Mol Med. 2009;24(06):801–6.
62. Xue M, Ge Y, Zhang J, Wang Q, Hou L, Liu Y, Sun L, Li Q. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One. 2012;7(8):1–9.
63. Elgamal AA. Biological Importance of marine algae. Saudi Pharm J. 2010;18:1–25.