On Outage Analysis in Overlay CCRN with RF Energy Harvesting and Co-channel Interference

Sutanu Ghosh1 · Santi P. Maity2 · Tamaghna Acharya3

Accepted: 23 December 2022 / Published online: 6 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper studies the effect of co-channel interference (CCI) on energy harvesting (EH) from radio frequency (RF) signal and the performance of reliable communication. An overlay mode of cooperative cognitive radio network (CCRN) model is considered that may support one-way communication between primary users (PUs) and two-way communications between secondary users (SUs). Closed form PU and SU outage expressions are derived in presence of CCI at two SU nodes and multiple antennas at PU transmitter. The absolute impact of CCI on the performance of the proposed system is analysed with respect to various parameters like, transmission power, interference-to-noise-ratio (INR), power splitting factor, number of CCI sources and number of antennas. About 20% and 15% improvements are achieved for PU and SU outage using two antennas compared to single antenna system model.

Keywords Simultaneous wireless information and power transfer · Co-channel interference · Cooperative cognitive radio network · Multi-antenna system

1 Introduction

Despite the remarkable developments over the last two decades, wireless networks still coexist with various challenging issues like, the area of coverage, scarcity of spectrum resources, reliable data transmission, interference from different co-channel interferers [1].

1 Electronics and Communication Engineering, Institute of Engineering and Management, Salt Lake, Kolkata 700091, India
2 Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
3 Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
lack of energy back-ups for wireless nodes etc. Cooperative communication using relaying technique is one of the most useful solutions to enhance the area of coverage, reliable communication and to minimize various sources of interferences [2]. In addition to that, cognitive radio networks (CRNs) [3] have emerged as a promising network architecture to address the issue of spectrum scarcity using spectrum sharing techniques. Various spectrum sharing modes are popularly known as interweave, underlay and overlay [4]. Two nearest nodes can access licensed spectrum using interweave mode of spectrum sharing in absence of primary users (PUs). In underlay mode of spectrum sharing, both PU and secondary users (SUs) can communicate simultaneously communications maintaining a constraint of interference due to SUs communication on the transmission of PU signals should be below a maximum threshold limit. In overlay mode of spectrum sharing, SUs can access PUs spectrum to send their signals, in return of that they need to perform like relay node between two or more PU nodes. Co-operative CRNs (CCRNs) [5] have been found as a prominent system architecture to address some of above mentioned challenging issues specifically, scarcity of spectrum resources and network lifetime along with the sustainable operation, leveraging the growth of CR enabled spectrum sharing communication and simultaneous wireless information and power transfer (SWIPT) [6–8].

Two-way relay based cooperative communication along with overlay mode of CRN can be developed to serve two simultaneous communication sessions through the common access of licensed spectrum by SU nodes. This framework is most useful for internet-of-things (IoT) [9] network driven by device-to-device (D2D) [10] based application in massive machine-type communications (mMTC) over the available spectrum of cellular network [11]. In addition to that in cellular network, it is seen that co-channel interference (CCI) from different interferes have dual effect on SWIPT enabled one-way or two-way relaying. It shows its bad effect in form of interference, leading to deterioration on information transmission rate of relay node. At same network, CCI can purposely be used as a part of source of energy harvesting (EH) to empower the relay nodes. In the existing work, decode-and-forward (DF) relaying mechanism [12, 13] is studied to analyse the network performance of RF-EH enabled one-way SU communication considering both good and bad impacts of interference [14–16]. SU outage performance along with ergodic capacity is analysed in [14] for underlay mode of CCRN considering both delay-tolerant and delay-limited transmission. Dual impacts of CCI is studied in [15] using power splitting (PS) [17] and time switching (TS) [18] protocols to investigate the performance of IoT network over cellular spectrum. The authors of [16] also consider the influence of CCI on radio frequency (RF) EH enabled overlay mode of CCRN. In [16], three independent transmission slots are considered for one-way PU and one-way SU communication.

None of the above mentioned studies have shown the dual effects of CCI on the reliability of SWIPT enabled two-way SU communications. Furthermore, the issue of multi-antenna transmission is a key feature of modern wireless communication (i.e, 5G/6G applications) has not yet been investigated in above studies. Additionally, the utilization of pre-assigned time slot for EH is found to be inefficient scheme [19]. Instead of that, energy and information transmission at the same time slot applying hybrid power-time switching relaying (HPTSR) protocol [20] is more effective to obtain high achievable throughput. Moreover, Nakagami fading is adopted in the open literature for more efficient modelling of RF EH [21].

Motivated by the above mentioned issues, the current study highlights the effect of CCI on the system reliability of a SWIPT enabled multi-antenna model with spectrum sharing communication over Nakagami fading channels. The proposed model adopts HPTSR protocol. As Compared to [16], this work studies the system performance of RF-EH enabled
one-way PU and two-way SU communications in presence of multiple CCIs at SU nodes and multiple antennas at PU transmitter. The main contributions of the work are summarised as below.

- A three-phase overlay mode of CCRN frame structure is proposed for one-way PU and two-way SU communications using HPTSR protocol in presence multiple CCI.
- Both the analytical expressions of PU and SU outage are derived.
- Impacts of power sharing factor, PS factor and power level of multiple CCI on the performance of the proposed system are shown through simulation results and the effect of multiple antennas on the system performance is also shown in the results.

The meaning of various symbols used in signal description is listed in Table 1. The rest portions of this paper are organized in following ways. The detail description of system model and protocol is given in Sect. 2. PU and SU outage derivations are given in Sect. 3. simulation results are provided in Sect. 4 and in Sect. 5, paper is finally concluded.

2 System Model and Protocol Description

As shown in Fig. 1, an overlay mode of CCRN model is adopted that enables one-way PU communication between PU transmitter (PU$_T$) and PU receiver (PU$_R$) and two-way SU communications between SU$_1$ and SU$_2$. Due to absence of line-of-sight between PU nodes, PU$_T$ requires the cooperation from the nearest secondary nodes to relay its

Symbols	Definitions
$h_{1j,n}$	Coefficient of link between PU$_T$ and SU$_j$, (j ∈ 1, 2)
h_{2j}	Coefficient of link between SU$_j$ and PU$_R$
h_i	Coefficient of link between SU$_1$ and SU$_2$
η_{ji}	Channel coefficient between the SU$_j$ and the ith interferer (I$_i$)
m_k	Nakagami shaping factor
Ds_{j1}	Distance between PU$_T$–SU$_j$
Ds_{j2}	Distance between SU$_j$–PU$_R$
D_s	Distance between SU$_1$–SU$_2$
d_{ji}	Distance between SU$_j$–I$_i$
n_{pu}, n_{su}	Received AWGN at PU, SU
σ_t^2	AWGN variance
τ	Time allocation for EH
n_j	PS factor of SU$_j$
ν	Path loss exponent
η	RF-to-DC conversion efficiency
β	Power allocation factor
P_T	Transmission power from PU$_T$ to SU$_j$
P_{I_j}	Transmission power from I$_i$ to SU$_j$
information to the PU_R. Eventually, SU nodes can share the PU spectrum to send its own data for the necessary communication purpose. PU_T is assumed to have multiple antennas while SU nodes and PU_R are associated with single antenna. It is further assumed that PU_T is empowered through its own energy back-up while SU nodes are not self-sufficient in terms of their energy back-up. Therefore, SU nodes are empowered by EH from information carrying RF signals following HPTSR protocol. It is also considered that internally several EH circuits are placed in parallel and therefore, the characteristics of harvesting energy is linear in nature. Different links present in the system may follow Nakagami distribution. The target rate of SU and PU information transmission can be set as R_s and R_p, respectively.
Let \(\mathbf{h}_{ij,n} = [h_{ij,1}, h_{ij,2}, \ldots, h_{ij,N_{pu}}] \), \(h_{ij} \) and \(h_s \) (\(j \in 1, 2 \)) be the channel coefficients between \(\text{PU}_j \) and \(\text{SU}_j \), \(\text{SU}_j \) and \(\text{PU}_K \), \(\text{SU}_1 \) and \(\text{SU}_2 \), respectively, where \(\mathbf{h}_{ij,n} \sim \mathcal{CN}(m_k, 1) \) and \(h_{ij} \sim \mathcal{CN}(m_k, 1) \), \(\zeta_{jj} \) is the channel coefficient between the \(\text{SU}_j \) and the \(j \)th interferer (\(I_j \), with \(\zeta_{jj} \sim \mathcal{CN}(m_k, 1) \)). Symbol \(m_k \) indicates the Nakagami shaping factor and \(D_s j_1, D_s j_2, D_s 3 \) and \(d_{jj} \) are the distances between \(\text{PU}_j-\text{SU}_j, \text{SU}_j-\text{PU}_K, \text{SU}_1-\text{SU}_2 \) and \(\text{SU}_j-I_j \), respectively. \(n_{pu} = n_{su} \sim \mathcal{CN}(0, \sigma^2) \) define the additive white Gaussian noise (AWGN) at the receiver of \(\text{PU} \) and \(\text{SU} \) nodes and \(\sigma^2 \) is used to indicate AWGN variance. It is assumed that necessary channel state information (CSI) is not available at the Primary nodes.

In Phase-I, \(\text{PU}_j \) transmits its signal \(X_{pt} \) to both \(\text{SU}_j \) nodes. Both the \(\text{SU}_j \) nodes use the received RF signal purposely for EH and information decoding. \(\text{SU}_1 \) (\(\text{SU}_2 \)) relays received signal from \(\text{PU} \) transmitter to \(\text{PU} \) receiver and at the same time, it transmits its own information \(X_{sj} \) to \(\text{SU}_j \) (\(j \neq p; p, j \in 1,2; &p = 2 \) for, \(l = 2 \) and \(p = 1 \) for, \(l = 3 \)) in Phase-II (III) using its harvested energy in Phase-I. Signal received in Phase-I at \(\text{SU}_j \) from \(\text{PU}_j \) and the interferers is expressed as

\[
Y_{SU_j} = \sum_{n=1}^{N_{j}} \sqrt{\frac{P_T}{(D_{sji})^\nu}} h_{ij,n} X_{pt} + \sum_{l=1}^{N_{j}} \sqrt{\frac{P_{l}}{(d_{jl})^\nu}} \zeta_{jl} X_{jl} + n_{su}
\]

(1)

where \(P_T \) is the transmit power of \(\text{PU}_j \) and \(P_{l} \) is the transmit power of \(I_j \). The symbol \(\nu \) is used to indicate propagation path loss exponent.

As noise power level is very low, therefore, harvesting energy from noise signal is not considered at \(\text{SU}_j \). Thus, the maximum harvesting energy at \(\text{SU}_j \) can be determined as

\[
E_j = \eta p_j \left(\frac{\sum_{n=1}^{N_{j}} P_T |h_{ij,n}|^2}{(D_{sji})^\nu} + \frac{\sum_{l=1}^{N_{j}} P_{l} |\zeta_{jl}|^2}{(d_{jl})^\nu} \right) \tau T.
\]

The symbol \(\rho_j \) (\(0 < \rho_j < 1 \)) is used to define PS factor of RF EH circuit at \(\text{SU}_j \). Available harvested power at \(\text{SU}_j \) to broadcast the signal in Phase-I (\(l \in 2, 3 \)) can be expressed as \(P_{lh}^j = \frac{E_j}{\tau-\eta} \). \(\eta (0 < \eta < 1) \) is energy conversion efficiency of RF EH circuit. \(a = \frac{\eta p_T}{(D_{sji})^\nu}, b = \frac{\eta p_{l}}{(d_{jl})^\nu} \).

The remaining portion of the received power after EH, \((1 - \rho)P_T \) at \(\text{SU}_j \) is applied to decode the received information in Phase-I. Achievable throughput at \(\text{SU}_j \) for decoding of \(\text{PU} \) information in Phase-I is written as

\[
P_{SU_j}^{(lp)} = \frac{\tau T}{T} \log_2 \left(1 + \frac{\sum_{n=1}^{N_{j}} (1-\rho_p)P_T |h_{ij,n}|^2}{\sum_{l=1}^{N_{j}} (1-\rho)P_{l} |\zeta_{jl}|^2 + \sigma^2} \right)
\]

(2)

where \(\beta P_{jh}^l (0 < \beta < 1) \) part of available harvested power at \(\text{SU}_j \) is used to send \(\text{PU} \) information and rest \((1 - \beta)P_{jh}^l \) part of available power is used to transmit the signal \(X_{sj} \) to \(\text{SU}_p \) (\(j \neq p; p, j \in 1,2 \)). \(\text{SU}_j \) can transmit combined signal \(X_{cs} \) and it can be expressed as

\[
X_{cs} = \sqrt{\beta P_{jh}^l} X_{pt} + \sqrt{(1 - \beta)P_{jh}^l} X_{sj}.
\]

In Phase-I, the received SINR at \(\text{PU}_K \), can be expressed as

\[
\gamma = \frac{\beta P_{jh}^l |b|^2}{\beta' P_{j}^l |b|^{2} + 1}
\]

and

\[
\beta' = \frac{1}{(D_{sji})^\nu}, \beta' = \frac{(1-\beta)P_{jh}^l}{(D_{sji})^\nu \sigma^2}.
\]

Achievable data rate at \(\text{PU} \) receiver in Phase-I can be written as (on the basis received SINR at \(\text{PU} \) receiver)
The signal received at SU\textsubscript{p} can be written as

\[
Y_{SU_p}^l = \sqrt{(1 - \beta)P_j h_j X_{sj}} + \sqrt{\beta P_j h_j X_{pt}} + \sum_{i=1}^{N_i} \frac{P_{I_{pi}}}{(d_{pi})^{\nu}} \zeta_{pi} X_{I_{pi}} + n_{su}
\]

where \(\zeta_{pi} \) is the interferer signal from interferer \(i \), \(P_{I_{pi}} \) is the power of the interfering signal, \(d_{pi} \) is the distance between the interferer and the SU receiver, \(\nu \) is the propagation exponent, and \(n_{su} \) is the noise.

Based on prior knowledge of PU information from the received signal, SU\textsubscript{p} is able to extract original SU data and remove the PU signal from the received signal. Therefore, achievable throughput at SU\textsubscript{p} in Phase-\(l \) can be written as

\[
R_{SU_{ip}} = \frac{(1 - \tau)}{2} \log_2 \left\{ 1 + \frac{c' P_j h_j | h_s |^2}{\sum_{i=1}^{N_i} di' | \zeta_{pi} |^2 + 1} \right\}
\]

where \(c' = \frac{(1-\beta)}{(D_s)^{\nu} \sigma^2} \), \(di' = \frac{P_{I_{pi}}}{(d_{pi})^{\nu} \sigma^2} \).

3 System Outage Analysis

3.1 PU Network Outage Analysis

PU outage probability can be mathematically expressed as

\[
Pr_{PU\text{out}}^{PU} = (1 - Pr_{sr1}) \times (1 - Pr_{sr2})
\]

where \(Pr_{srj} = Pr(R_{SU_j}^{(IP)} \geq \mathcal{R}_j) \times Pr(R_{PU_{ip}} \geq \mathcal{R}_j) \).

Based on (2), the probability of success of information transmission from PU\textsubscript{T} to SU\textsubscript{j} is written as

\[
Pr\left\{ \frac{A_{pj} X_j}{C_{pj} Z_j + 1} \geq u_{t1} \right\} = \int_{\frac{b_{1j}}{A_{pj}}}^{\infty} f_{x_j}(x_j) dx_j \int_{0}^{\frac{\delta_{pj} - \gamma_{l}}{\epsilon_{pj} \gamma_{l}}} f_{z_j}(z_j) dz_j
\]

where \(A_{pj} = \frac{(1-\rho)P_T}{(D_{sj})^{\nu} \sigma^2} \), \(C_{pj} = \frac{(1-\rho)P_{I_{pj}}}{(d_{pj})^{\nu} \sigma^2} \), \(u_{t1} = 2 \left(\frac{\delta_{pj}}{\epsilon_{pj}} \right) - 1 \). Random variables \(X_j = | h_{j,j,n} |^2 \), \(X_3 = | h_{2,j} |^2 \) and \(X_s = | h_s |^2 \) follow Nakagami distribution.
It is assumed that geographic location of interferers are randomly distributed and specially, they are located in other cluster of cellular network \[22, 23\]. Therefore, \(Z_j, V_p\) are considered as the sum of \(N_i\) number of exponential random variables and the variables are independent identically distributed (i.i.d.) \[24\]. Following central chi-squared distribution, \(Z_j, V_p\) can defined as:

\[
Z_j = \left| \xi_{ji} \right|^2, \quad V_p = \left| \xi_{pi} \right|^2.
\]

Probability density function (PDF) of gamma distribution of \(Z_j\) can be defined as

\[
f_{Z_j}(z_j) = \frac{N^N_{i} m_{k}^{N_{i} m_{k} - 1}}{\Gamma(N_{i} m_{k})} \exp(-\frac{z_j}{N_{i} m_{k}}).\]

PDF of \(X_j\) is expressed as

\[
f_{X_j}(x_j) = \left(\frac{N_{pa} m_{k}}{\Gamma(N_{pa} m_{k})} \right)^{N_{pa} m_{k} - 1} \exp(-\frac{x_j}{N_{pa} m_{k}}).\]

Therefore, (7) can be expressed as \[19, 25\],

\[
Pr \left\{ \frac{A_{pj} X_j}{C_{pj} Z_j + 1} \geq u_{r1} \right\} = \frac{\Gamma(N_{pa} m_{k}, N_{pa} m_{k} \frac{u_{r1}}{C_{pj}})}{\Gamma(N_{pa} m_{k})} - \exp \left(-\frac{N_{m k}}{C_{pj}} \right) \times \frac{M_{p}(A_{pj})^{p_{a} - r}(u_{r1})^{p_{a}} \Gamma \left[m_{m} \frac{u_{r1}}{C_{pj} \Gamma(N_{pa} m_{k})} \right]}{\left(N_{pa} m_{k} + \frac{N_{m k} A_{pj}}{C_{pj} u_{r1}} \right)^{m_{m}}}.
\]

where \(m_{m} = N_{pa} m_{k} + p_{a} - r\). \(\Gamma(\ldots)\) indicates upper incomplete gamma function and \(\gamma(\ldots)\) is the lower incomplete gamma function.

The probability of successful data transmission from SU \(j\) to PU \(R\) is defined as \[19\]

\[
\left\{ \begin{array}{l}
Pr \left[x_3 \geq \frac{u_{p}}{(a_{3} + b_{3} x_2)} \right] = I, \text{ for } u_{r2} < \frac{\beta}{(1-\beta)} \\
0, \text{ otherwise}
\end{array} \right.
\]

Now, \(Pr \left[x_3 \geq \frac{u_{p}}{(a_{3} + b_{3} x_2)} \right]\) can be expressed as \[25\]. Here \(u_{r2} = 2^{\frac{2 \beta}{1-\beta}} - 1, u_{p} = \frac{u_{r2}}{(a_{3} - b_{3} u_{r2})}, m_{k} = m_{k} - p_{a} + r\). Finally, closed form PU outage expression is possible to derive by putting (8)–(10) in (6).
The outage probability of SU network is mathematically defined as
\[P_{out} = 1 - \left[Pr(R_{SU}^{IP} \geq \mathcal{R}_p) \times Pr(R_{SU}^{IP} \geq \mathcal{R}_p) \times Pr(R_{SU}^{IP} \geq \mathcal{R}_p) \times Pr(R_{SU}^{IP} \geq \mathcal{R}_p) \right]. \]

Following the way of (10), \(Pr \left[\frac{c}{d_i} \frac{(a_x + b_c)_x}{d_i} \geq u_{ts} \right] = \Gamma' \) is determined as (11) [25].

\[u_{ts} = 2 \left(\frac{2K_m}{1-\rho} \right) - 1, \]
\[m_{sr} = m_k + p_a - r_b + r_c - r_m, \]
\(K(p_{\cdot}) \) indicates the mathematical notation of modified Bessel’s function. Based on (8) and (11), one can determine the closed form SU outage.

\[I' = M_p \left(\sum_{p_a=0}^{N_{ma}-1} \left(\frac{u_{ts}N_{ma}}{a_{cc}} \right) \right) \]
\[\times K_{m_i} \left(2m_k \sqrt{\frac{u_{ts}N_{pa}}{a_{cc}}} \right) + \left[1 - 2 \sum_{p_a=0}^{N_{ma}-1} \left(\frac{N_{ma}N_{ma}}{a_{cc}} \right) \right] \]
\[\times \left(\frac{r_s}{r_m} \Gamma(m_r) \left(\frac{u_{ts}N_{pa}}{a_{cc}} \right) \right) \]
\[\times K_{r_m} \left(2m_k \sqrt{\frac{u_{ts}N_{pa}}{a_{cc}}} \right) \];

(11)
Table 2 Simulation parameters

Parameter values
\(\rho_1 = \rho_2 = \rho \)
\(\eta \)
\(\tau \)
\(\nu \)
\(L_p \)
\(d_3 \)
Noise variance
\(R_p \)
\(R_s \)

Fig. 2 Outage probability versus \(\beta \) at transmit power = 43 dBm

\[
Y_m = \frac{\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} \sum_{u=0}^{\infty} (-1)^u \left(\begin{array}{c} t_a \\ t \end{array} \right) \left(\begin{array}{c} u \\ t_u \end{array} \right) \left(\begin{array}{c} a \\ r \end{array} \right) \left(\begin{array}{c} r \end{array} \right) \right)}{\sum_{r_j=0}^{R_r-1} \sum_{r_i=0}^{R_r-1} \Gamma(T_a)(t_a)(t_u)(r_i)(r_j)(R_i)}
\]

where \(m_{rb} = N_p m_k + p_a - r_b \), \(R_l = N_p m_k + r + t_s - t_a + r_j \), \(T_{ms} = m_k - p_a + r + 2r_f + t_u - t_a \), \(-r_j - r_t \), \(T_a = p_a - r - t_k + N_j m_k \).

4 Numerical Results

In Table 2, the simulation parameters are provided. The location of both the SU nodes are considered at the middle between two PU nodes. Received power at SU \(j \) from PU \(R \) is considered 1.5 dBm and almost 10% PU outage is observed for \(\beta = 0.94 \) at PU transmit power.
\((P_T) = 43\) dBm. Monte-Carlo simulation is done to verify the analytical results. MATLAB software is used to analyse the performance of proposed model.

Figure 2 depicts the outage performances of both PU and SU network with respect to power sharing factor \(\beta\). As illustrated in figure, outage performance of PU network is degraded and outage performance of SU network is improved with the gradual increase in \(\beta\) value. At the very high value of \(\beta\), SU outage is found to be very poor for reliable communication. At the high value of \(\beta\), allocation of more power for PU transmission and less power allocation for SU transmission is the reason of these outage performances of the proposed system. About 99\% PU outage performance is improved at \(\beta = 0.97\) and about 86\% SU outage improvement is found at \(\beta = 0.1\).

Figure 3a shows the outage performances of PU and SU outage vs received INR at \(SU_j\). Simulation outputs exactly satisfy the analytical outputs. If INR is less, then PU and SU outage are found as low. As shown in figure, SU outage deteriorates (increases) very fast with increasing INR and after reaching at certain level of INR, SU outage is the worst (found as 1). A sluggish improvement of PU outage (decreases) is observed with the

Fig. 3 Outage probability with respect to \textbf{a} received level of INR at \(SU_j\) for given \(N_i = 1\), \textbf{b} transmission power for the variation of both \(\rho\) and \(N_i\) at \(N_{\rho_a} = 2\), \textbf{c} transmission power for the variation of both \(N_i\) and \(N_{\rho_a}\).
increase in the level of INR and it can reach its minimum probability for certain level of
INR. Thereafter, the enhancement in INR level is responsible for further PU outage deter-
ioration. About 20% and 15% performance gains are found for both PU and SU outage
for the increase in N_p from 1 to 2 at INR $= 46$ dB. It is also depicted in figure that if INR
crosses 50 dB limit, the improvement of SU outage is insignificant for the increase in N_p from 1 to 2.

Figure 3b, c illustrate the response of PU and SU outage probability with respect
to the change in PU transmit power. The observation in Fig. 3b is found for different
values of N_i, ρ and the observation in Fig. 3c is found for different values of N_p, N_i. The performances are depicted for received INR $= 51$ dB. When ρ is high, then the performance of PU outage is better (low) than SU outage. With the increase in N_p, the performances are improved together. As CCI is also the source EH, therefore, harvested energy is enhanced with the increase in N_i and its effect is also observed on the performance of the proposed system. PU outage variation is not so significant but, the outage variation of SU is more sensitive with the change in the value of N_i.

As shown in Fig. 3b, it is observed that if ρ is chosen for a certain level of inter-
ference power, then the performance gains in terms of both PU and SU outage are
achieved. It is also observed that both the outage performances are very poor at very
low value or very high value of ρ at the fixed value of τ. The performances are found to
be optimum at the moderate value of ρ. The characteristics of the plot can be explained
as follows. If ρ value is very high, power allocation for harvesting energy is also found
to be high and consequently, less power is allocated for information processing. There-
fore, high value of ρ is the reason to obtain low data rate of achievable throughput in
first time slot following (2). Reverse case of low achievable rate of relaying occurs for
low value ρ.

Figure 3b shows 58% and 18% PU and SU outage improvements at $\rho = 0.9$ com-
pared to $\rho = 0.6$ for $P_T = 45$ dBm and $N_i = 4$. It is also observed that SU outage is 11%
deteriorated with the increasing number of interferers from $N_i = 1$–4 considering same
mean interference power.

In Fig. 3c, significant outage improvement is seen for the increasing number of
antennas at PU transmitter. 48% and 10% PU and SU outage improvements are achieved
for increasing number of antennas from $N_p = 1$ to $N_p = 3$ at $P_T = 45$ dBm and $N_i = 4$.
It is also observed that PU outage is same but, SU outage is found to be inferior (high
value) in presence of CCI compared to the absence of CCI at SU nodes. In Table 3, a
brief comparative study is shown on the performance of SU outage between the proposed
system in presence of CCI and in absence of CCI.

The PU outage performance comparison between the proposed network and [16] is
shown in Fig. 4 with respect to transmit power for $N_p = 1$, INR $= 70$ dB and $N_i = 2$.
Since, two SU nodes are associated with the transmission of PU information, therefore,

Table 3: Comparative outage performance study of SU network for the presence or absence of CCI at SU nodes
Outage probability at transmission power = 45 dBm
For $\rho_1 = \rho_2 = \rho = 0.9$
Improvement at $\rho = 0.9$ over $\rho = 0.6$
For $N_p = 3$
the proposed network performance is better than [16]. About 26% performance gain is achieved using the proposed network compared to [16]. As the performance gain of SU outage of the proposed network is insignificant compared to [16], therefore, SU outage performance comparison is not shown in the figure.

5 Conclusions

In the present work, the dual effects of CCI from multiple interferers and the positive impact of multiple antennas present at PU transmitter on the system performance of RF EH enabled one-way PU communication and two-way SU communications is discussed for an overlay mode of CCRN. Closed form PU and SU outage expressions have been analysed that exactly match the simulation outputs. The proposed system is performed better at higher value of PS factor with large number of CCIs. It is found that the performances of PU and SU outage are improved by 48% and 10%, respectively with the increasing number of antennas from 1 to 3.

- This work is possible to extend further considering the presence of CCI at both PU and SU nodes.
- The similar network performance analysis can be done for amplify-and-forward relay assisted underlay mode of CCRN.
- Outage analysis is also possible to extend considering the non-linear effect of RF EH circuit.

Author Contributions All authors contributed to the study conception and design. Material preparation and analysis were performed by Sutanu Ghosh, Santi P. Maity and Tamaghna Acharya.

Funding The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data Availability Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate Not applicable.
Consent to Publish Not applicable.

Ethical Approval It is hereby declared that the manuscript (in part or full) has not yet been submitted nor under consideration anywhere else for possible publication.

References

1. Khwandah, S., Cosmas, J., Glover, I. A., Lazaridis, P. I., Araniti, G., & Zaharis, Z. D. (2016). An enhanced cognitive femtocell approach for co-channel downlink interference avoidance. IEEE Wireless Communications, 23(6), 132–139.
2. Li, Q., Yu, M., Pandharipande, A., & Ge, X. (2016). Outage analysis of co-operative two-path relay channels. IEEE Transactions on Wireless Communications, 15(5), 3157–3169.
3. Akylidiz, I. F., Lee, W., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.
4. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.
5. Ojo, F. K., & Mohd Salleh, M. F. (2019). Energy efficiency optimization for SWIPT-enabled cooperative relay networks in the presence of interfering transmitter. IEEE Communications Letters, 23(10), 1806–1810.
6. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.
7. Clerckx, B., Huang, K., Varshney, L. R., Ulukus, S., & Alouini, M.-S. (2021). Wireless power transfer for future networks: Signal processing, machine learning, computing, and sensing. IEEE Journal of Selected Topics in Signal Processing, 15(5), 1060–1094.
8. Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.
9. Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2018). Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484.
10. Gandotra, P., & Jha, R. K. (2016). Device-to-device communication in cellular networks: A survey. Elsevier Journal of Network and Computer Applications, 71, 99–117.
11. Gurjar, D. S., Nguyen, H. H., & Tuan, H. D. (2019). Wireless information and power transfer for IoT applications in overlay cognitive radio networks. IEEE Internet of Things Journal, 6(2), 3257–3270.
12. Lou, Y., Sun, R., Cheng, J., Nie, D., & Qiao, G. (2021). Secrecy outage analysis of two-hop decode-and-forward mixed RF/UWOC systems. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2021.3058988.
13. Han, L., Zhu, W.-P., & Lin, M. (2022). Outage analysis of multi-relay NOMA-based hybrid satellite-terrestrial relay networks. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2022.3163312.
14. Kalamkar, S. S., & Banerjee, A. (2017). Interference-aided energy harvesting: Cognitive relaying with multiple primary transceivers. IEEE Transactions on Communications and Networking, 3(3), 313–327.
15. Fazlul Kader, Md. (2020). Interference aided cooperative SWIPT for cellular IoT networks towards 5G and beyond. Physical Communication, 43, 1–18.
16. He, J., Guo, S., Pan, G., Yang, Y., & Liu, D. (2018). Relay cooperation and outage analysis in cognitive radio networks with energy harvesting. IEEE Systems Journal, 12(3), 2129–2140.
17. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.
18. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2015). Wireless-powered relays in cooperative communications: Time-switching relaying protocols and throughput analysis. IEEE Transactions on Communications, 63(5), 1607–1622.
19. Ghosh, S., Acharya, T., & Maity, S. P. (2020). On outage analysis in SWIPT enabled bidirectional D2D communications using spectrum sharing in cellular networks. IEEE Transactions on Vehicular Technology, 69(9), 10167–10176.
20. Shah, S. T., Choi, K. W., Hasan, S. F., & Chung, M. Y. (2016). Throughput analysis of two-way relay networks with wireless energy harvesting capabilities. Ad Hoc Networks, 53, 123–131.
21. Prathima, A., Gurjar, D. S., Nguyen, H. H., & Bhardwaj, A. (2020). Performance analysis and optimization of bidirectional overlay cognitive radio networks with hybrid-SWIPT. *IEEE Transactions on Vehicular Technology, 69*(11), 13467–13481.

22. Hussein, J. A., Ikki, S. S., Boussakta, S., & Tsimenidis, C. C. (2016). Performance analysis of opportunistic scheduling in dual-hop multiuser underlay cognitive network in the presence of cochannel interference. *IEEE Transactions on Vehicular Technology, 65*(10), 8163–8176.

23. Hussein, J. A., Boussakta, S., & Ikki, S. S. (2017). Performance study of a UCRN over Nakagami- m fading channels in the presence of CCI. *IEEE Transactions on Cognitive Communications and Networking, 3*(4), 752–765.

24. Li, B., Zhou, J., Zou, Y., & Wang, F. (2018). Closed-form secrecy outage analysis of cellular downlink systems in the presence of co-channel interference. *IEEE Transactions on Wireless Communications, 17*(7), 4721–4734.

25. Gradshteyn, I. S., & Ryzhik, I. M. (2007). *Table of integrals, series, and products* (7th ed.). Academic Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Sutanu Ghosh received the M.Tech. degree from Jadavpur University, Kolkata, India, in 2009, and the Ph.D. degree from the Indian Institute of Engineering Science and Technology Shibpur, Howrah, India, in 2021. He is currently an Associate Professor with the Department of Electronics and Communication Engineering, Institute of Engineering and Management, Kolkata, and also working as a Visiting Research Scholar with the Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. His research interests include radio-frequency energy harvesting, visible light communication, Internet of Things, and cognitive radio networks.

Santi P. Maity received his B.E. degree in Electronics and Communication Engineering from National Institute of Technology Durgapur and M. Tech. in Microwaves from the University of Burdwan, India in 1993 and 1997, respectively. He received his Ph.D. degree in Engineering from Indian Institute of Engineering Science and Technology, Shibpur, India in 2008. He received a couple of post-doctoral positions in several institutes, like University of Vigo, Spain, Nanyang Technological University, Singapore, and Université Paris-Sud 11. He did his Postdoctoral work from January 2009 to July 2009 and February 2011 to July 2011 at the Laboratoire des Signaux et Systems (CNRS–Supelec–Université Paris-Sud 11) in France. He has been working as Professor in the Dept. of Information Technology, IIEST, Shibpur, India since September 2012 and has been promoted to Professor (HAG-Higher Administrative Grade) on August, 2021. He served as Head, Department of Information Technology, BESU Shibpur from January 2012 to January 2014. He was also head of PDSIT, IIEST Shibpur and School of VLSI at IIEST Shibpur. His research interests include CDMA, MC-CDMA, Cognitive Radio Network; Compressed Sensing Image reconstruction and Transmission, Digital Image Watermarking and Secret Sharing. His recent research works focus on Machine
Learning in Medical image reconstruction, analysis and CRN. He has published about 300 research articles in several Journals, Conference Proceedings and book chapters. He has guided (as single and joint supervisors) so far 19 Ph. D students on the above mentioned research areas and six more are also working.

Tamaghna Acharya received his bachelor of engineering (B.E.) degree from Bengal Engineering College (Deemed University), Howrah, India in 2000. He received his M.Tech. degree from Electronics & Electrical Communication Engineering department of IIT Kharagpur, India in 2005 and received his Ph.D. degree from Jadavpur University, India in 2011. Presently, he is an Associate Professor in the department of Electronics & Telecommunication Engineering of Indian Institute of Engineering Science and Technology Shibpur, West Bengal, India. His current research interests include resource allocation in wireless networks and RF energy harvesting.