Efficient large-scale protein sequence comparison and gene matching to identify orthologs and co-orthologs

Khalid Mahmood1,2, Geoffrey I. Webb3, Jiangning Song1, James C. Whisstock1,2,* and Arun S. Konagurthu3,*

1Department of Biochemistry and Molecular Biology, 2ARC Centre of Excellence in Structural and Functional Microbial Genomics and 3Clayton School of Information Technology, Monash University, VIC 3800, Australia

Received September 17, 2011; Revised December 1, 2011; Accepted December 6, 2011

ABSTRACT

Broadly, computational approaches for ortholog assignment is a three steps process: (i) identify all putative homologs between the genomes, (ii) identify gene anchors and (iii) link anchors to identify best gene matches given their order and context. In this article, we engineer two methods to improve two important aspects of this pipeline [specifically steps (ii) and (iii)]. First, computing sequence similarity data [step (i)] is a computationally intensive task for large sequence sets, creating a bottleneck in the ortholog assignment pipeline. We have designed a fast and highly scalable sort-join method (afree) based on k-mer counts to rapidly compare all pairs of sequences in a large protein sequence set to identify putative homologs. Second, availability of complex genomes containing large gene families with prevalence of complex evolutionary events, such as duplications, has made the task of assigning orthologs and co-orthologs difficult. Here, we have developed an iterative graph matching strategy where at each iteration the best gene assignments are identified resulting in a set of orthologs and co-orthologs. We find that the afree algorithm is faster than existing methods and maintains high accuracy in identifying similar genes. The iterative graph matching strategy also showed high accuracy in identifying complex gene relationships. Standalone afree available from http://vbc.med.monash.edu.au/~kmahmood/afree. EGM2, complete ortholog assignment pipeline (including afree and the iterative graph matching method) available from http://vbc.med.monash.edu.au/~kmahmood/EGM2.

INTRODUCTION

Identifying orthologous relationships among genes between genomes of various organisms is an essential task in comparative genomics (1). This information is useful to identify shared evolutionary history as well as functional counterparts between shared segments in genomes. Recent advances in sequencing technologies have resulted in proliferation of genome data at unprecedented rates, widening the gap between annotated genes and those without any ascribed functional information. Computational methods for identifying gene orthologs between a pair of genomes usually involves three steps: (i) sequence similarity is calculated between all gene sequences in the genomes being compared; (ii) anchor or similar genomic regions in the form of gene strings are identified; (iii) finally, anchor regions are used to link genes that are potentially functional counterparts. In this article, we focus on two important steps [i] and [iii] above: we engineer a fast and accurate method for calculating initial sequence similarities and next we develop a method that effectively identifies complex gene–gene relations.

Calculating initial sequence similarity, by all-against-all comparison, is an important foundation of the gene matching process. Techniques for sequence comparison can be broadly categorized into alignment-based and alignment-free methods. Alignment algorithms generally involve a dynamic programming step to produce an optimal match between molecular sequences (for extensive review see Ref. (2)). Alignment-based algorithms are powerful and have been developed to detect similarity between molecular sequence (genes or proteins) at various levels; global or complete sequence comparison (3) and local or subsequence comparisons (4). Although several efficient implementations have been developed, the computational load for comparing a large number of sequences still poses a challenge for alignment based
and efficiently storing their similarity. The \(k \)-mers works on the hypothesis that similar sequences share some free all-against-all similarity search. Essentially, a method termed aligned-free sequence comparison is used in the context of automated gene matching. Several alignment-free sequence comparison methods have been proposed. [See Ref. (5) for an extensive review.]

In this work, first, we explore alignment-free sequence comparison in the context of automated gene matching. We engineer a new alignment-free sequence comparison method termed \textit{afree} that can rapidly perform all-against-all similarity search. Essentially, \textit{afree} works on the hypothesis that similar sequences share \(k \)-mers, or in other words, the higher the number of common \(k \)-mers between two sequences, the higher is their similarity. The \textit{afree} method works by calculating and efficiently storing \(k \)-mers for every sequence in the dataset. This is followed by a series of calculations and heuristics that, in a single process, calculates the similarity between every sequence pair in the dataset. This is different from current methods that perform large scale comparisons based on a series of pairwise sequence comparisons (9,10).

The next focus of this study is to develop a method that can help understand complex gene relationships. Several computational algorithms have been developed to match genes between a pair of genomes in an effort to identify orthologs including MAGIC (17), FISH (18), DAGchainer (19), ADHoRe (20), OSfinder (21) and EGM (22). As more and more complex genomes are being sequenced, especially eukaryotics genomes, identifying relationships between genes has become more complex. Identifying one-to-one orthologous relationships had generally been seen to be sufficient for guiding information about gene function and evolution for smaller related species (23,24). However, the task of assigning gene orthologs has become more complex with the availability of large genomes where evolutionary events such as segmental duplications as well as whole genome duplications following speciation are not uncommon. Such evolutionary scenarios often lead to two or more genes orthologous to one or more genes, known as \textit{co-orthologous} genes (24–29). Therefore, identifying co-orthologs is an important comparative genomics task and is commonly used to discover and transfer experimental gene function information between mammals and model experimental systems.

Example cases include Drosophila discs large (dlg) gene (30,31), \textit{hox} cluster genes (32) and Fugu genes (29) like synapsin (SYN) (33). To achieve this, we develop an iterative graph matching approach which at each iteration identifies gene matches such that the sum total of similarity scores for all gene matches is maximized.

Hence, this article reports two advancements to the gene matching pipeline:

1. A highly scalable alignment-free sequence comparison method for efficient detection of gene similarities.
2. A new method to identify co-orthologous genes between genomes has been designed that will provide more insights to infer gene function and evolution.

The methods have been incorporated within the Encapsulated Gene-by-gene Matching (EGM) pipeline (22), resulting in a new, more efficient software, EGM2.

MATERIALS AND METHODS

This section explains our alignment-free based method for sequence comparison and our graph theoretic approach for matching gene co-orthologs.

Alignment-free sequence comparison, \textit{afree}

Broadly, alignment-free comparison is performed in two steps. In the first step, the number of shared \(k \)-mers are calculated. This is followed by a step where a statistical measure is employed to quantify the shared \(k \)-mer count to a similarity measure between each sequence pair. As is the case with gene matching across whole genomes involving a large volume of sequences, it is important to calculate the shared \(k \)-mer counts in an efficient manner. Our efficient, highly scalable method is explained below.

Definitions. Let \(G_1 \) and \(G_2 \) denote two genome sequences represented as a collection of \(m \) and \(n \) protein sequences,
respectively: \(G_1 = \{p_1, p_2, p_3, \ldots, p_m\} \) and \(G_2 = \{q_1, q_2, q_3, \ldots, q_n\} \). Any protein \(p = \{a_1, a_2, \ldots\} \) is a finite sequence of amino acid letters from the standard 20 letter alphabet. A \(k\)-mer from sequence \(p \) is any (contiguous) substring of size \(k \) that is permissible given the sequence length.

Algorithm. To perform an all-against-all comparison, the dataset of sequences in \(G_1 \) and \(G_2 \) are concatenated: \(G_1 = G_1 \cup G_2 = \{p_1, \ldots, p_n, q_1, \ldots, q_n\} \). A sort-and-join strategy is used to efficiently build a shared \(k\)-mer count for each protein pair in the concatenated set followed by measuring pairwise similarity. This is achieved in three steps described below:

Step 1: assembling sequence words: a list \(L \) of tuples is constructed for \(G_3 \). Each tuple in the list consists of three fields: (i) the \(k\)-mer string, (ii) the protein sequence index it belongs to and (iii) the offset of the string from the start position in the protein sequence. Construction of the list is straightforward as it involves sliding along, with a window of length \(k \), the sequences in \(G_1 \) one by one. (To ensure efficiency in the join phase [see step (ii)] of the algorithm, for each sequence in \(G_3 \), only unique \(k\)-mers in that sequence are recorded in \(L \).) To allow our algorithm to scale to very large number of sequences, we pack each tuple in \(L \) into a 64-bit machine word, i.e. each tuple is encoded as a 64-bit integer. The tuple fields (\(k\)-mer, index and offset) are packed as follows: each amino acid letter in the \(k\)-mer is encoded in \(\lceil \log_2 20 \rceil = 5 \) bits. (We use a canonical ordering of amino acids and encode them as integers in the range [0, 19].) The remainder of the 64-bit word is packed with the protein sequence index and the \(k\)-mer word offset.

Specifically in our implementation, we set aside the first \(k \times 5 < 32 \) (most-significant) bits in the 64-bit word to encode each \(k\)-mer. This allows a maximum \(k\)-mer length of 6 (occupying \(6 \times 5 = 30 \) bits). In the remaining 34 bits, 14 least-significant bits are used to encode the set of proteins involved in the tuple, 10 bits are used to encode the protein index and the rest the protein sequence index. We note that this configuration allows us to compare, at its maximum, \(2^{20} \approx 1 \text{ million} \) protein sequences of length up to \(2^{14} = 16 \text{,}384 \) amino acids each.

Next, the list \(L \) is sorted purely on the \(k\)-mer as the sort key. We implement a highly efficient least significant digit (LSD) radix sort (see ‘Results’ section). LSD radix sort for fixed-sized keys grows linearly (34). We use a radix size of 8 bits, which allows us to sort \(L \) on the \(k\)-mer key (encoded in the tuple) in a maximum of four linear sweeps through \(L \). (The number of sweeps through the list in sorting is automatically adjusted based on the user defined size of \(k \). For example, when \(k = 3 \), the sorting requires simply two sweeps.) A crucial factor for the efficiency achieved in our sorting phase is due to significant cache locality derived by economically representing \(L \) as an linear array of 64-bit words. (See Figure 1 for an illustration.)

Step 2: counting shared \(k\)-mers: let \(M = (m_{ij})_{1 \leq i, j \leq m+n} \) be a matrix where \(m_{ij} \) represents the number of \(k\)-mers that overlap between any two proteins \(p_i \) and \(p_j \) in \(G_3 \). The matrix \(M \) can be computed efficiently by performing a relational join of the sorted list \(L \) with itself (i.e. \(L \bowtie L \)).

The operation to compute the counts \(m_{ij} \) proceeds as follows: initially, a pointer \(ptr1 \) is set to point to the first tuple in the sorted list \(L \). Next pointer \(ptr2 = ptr1 + 1 \) is defined and is used to traverse \(L \) while \(L[ptr1] = L[ptr2] \) (\(k\)-mer i.e. until the \(k\)-mer in the tuples pointed by \(ptr1 \) and \(ptr2 \) match. Together \(ptr1 \) and \(ptr2 \) define the range where equal \(k\)-mers are found. Binary form of the tuples \(\text{AYT} \) and \(\text{QDY} \) is depicted on the right. Also note that only unique \(k\)-mers are recorded in \(L \) to improve efficiency in the join phase of the algorithm [see step (ii)].

![Figure 1. Constructing the sorted list of tuples. The figure illustrates an example construction of the sorted list of tuples \(L \). Each tuple in \(L \) is comprised of three fields: the \(k\)-mer, the index of the protein in the genome data and the offset from the start of the sequence. With \(k = 3 \), proteins \(p_1 \), \(p_2 \) and \(p_3 \) form 8, 6 and 3 \(k\)-mers, respectively. Binary form of the tuples \(\text{AYT} \) and \(\text{QDY} \) is depicted on the right. Also note that only unique \(k\)-mers are recorded in \(L \) to improve efficiency in the join phase of the algorithm [see step (ii)].](image-url)
Data: list \(L \), matrix \(M \) (initialized to 0)
Result: \(M(i,j) \rightarrow \) number of shared \(k \)-mers between any pair of sequences in \(G \)
Comment: \(L.size \) gives the size of list \(L \). \(L[x].k\text{-mer} \) gives the \(k \)-mer field of the tuple at \(L[x] \). Similarly \(L[x].index \) gives the protein sequence index (in \(G \)) of that tuple.

\[
L.size \leftarrow L.size; \\
ptr1,ptr2 \leftarrow 0; \\
\text{while } ptr1 < L.size \text{ and } ptr2 < L.size \text{ do} \\
\quad ptr2 \leftarrow ptr1 + 1; \\
\quad \text{while } ptr2 < L.size \text{ do} \\
\quad \quad ptr2 \leftarrow ptr2 + 1; \\
\quad \text{end} \\
\quad \text{for } x = ptr1 \text{ to } ptr2 \text{ do} \\
\quad \quad i \leftarrow L[x].index; \\
\quad \quad j \leftarrow L[y].index; \\
\quad \quad M(i,j) \leftarrow M(i,j) + 1; \\
\quad \text{end} \\
\quad \text{end} \\
\quad ptr1 \leftarrow ptr2; \\
\text{end}
\]

Figure 2. Join phase. Pseudocode for the list join [Step (ii)] to count the number of shared \(k \)-mers.

clock times of the join step across several genome-wide comparisons are plotted.)

Step 3: similarity measures: a similarity measure is defined as a function that quantifies the \(k \)-mer counts between any pair of protein sequences. As mentioned earlier the underlying notion is that proteins with large \(k \)-mer counts are likely to be similar. A number of methods have been previously proposed to calculate the similarity between two sequences on this idea (see ‘Introduction’ section).

Here we implement the Sorensen-Dice similarity index (SD) \((35,36)\) as a measure of similarity. The SD similarity index is a simple statistic to evaluate the similarity between sample sets. For two proteins \(\text{index} \) is a simple statistic to evaluate the similarity between \(\text{sequences} \) (35,36) as a measure of similarity. The SD similarity score based on the counts \(m_{ij} \) of that tuple.

\[
\text{SD} = \frac{200m_{ij}}{K_i + K_j}
\]

We note that SD takes the value in the range [0, 100], where a score of 100 indicates identical sequences. The SD similarity index has commonly been used in molecular sequence comparison and retrieval programs such as Refs \((37,38)\). Finally, the matrix \(M \) is updated to store SD similarity score based on the counts \(m_{ij} \).

We additionally implement several strategies to improve the accuracy of the similarity score. For instance, two sequences are only compared if the length of the shorter sequences is above a prescribed proportion of the longer sequence. This reduces the chances of potentially misleading matches based on small motif or domain level similarity. From the perspective of efficiency, a large number of comparisons are filtered and only comparisons of interest (in terms of gene matching) are performed.

Determining Co-orthologs

The gene matching pipeline described here builds on the EGM method \((22)\). EGM models the comparison between two genomes as a bipartite graph with weighted edges (each node is a protein sequence in the genome). Each edge between proteins is weighted on their sequence similarity and reinforced when a continuous stretch of proteins in the two genomes share a prescribed level of similarity (gene segments or strings are more likely to be conserved). Taken together, EGM uses a segment length-dependant edge weighting scheme (derived from sequence similarity and gene context) to calculate gene matching by transforming the task to a linear assignment problem. EGM then employs the Hungarian method for weighted bipartite graph matching to identify best gene matches i.e. genes are matched that maximize the synteny given the weights. However, this method has a limitation, where gene matches follow the simple one-to-one relationship. In the case of large and complex genomes with segmental duplications among other complex evolutionary rearrangements, one-to-one relationships are not sufficient to fully map gene relationships between genomes. Here we describe a simple iterative matching strategy that identifies all gene matches or co-orthologs between genomes.

Define \(G_1 \) and \(G_2 \) as the encapsulated forms of the genome \(G_1 \) and \(G_2 \). In short, encapsulation is a transformation of a genome from a set of gene sequences to a set of integers where each integer identifies its respective gene family. These gene families are computed using single-linkage clustering, where the measure of similarity between nodes (genes) is given in the matrix \(M \). Further, define a weighted bipartite graph \(G = (V \equiv G_1 \cup G_2, E) \), where \(V \) is the vertex set of the two disjoint encapsulated genomes \((G_1 \text{ and } G_2) \), and \(E \) is the set of all edges between every node in the encapsulated genomes. To reduce the number of spurious and possibly non-orthologous matches mainly rising from non-homologous genomic segments, the matrix \(M \) is not used directly to extract edge weights for \(E \). Instead, we define an \textit{ad hoc} weight matrix \(W = (w_{ij})_{i,j \in m+n} \) where \(w(i,j) \) corresponds to an edge in \(E \). The matrix \(W \) is computed using a seed-and-extend strategy that reinforces homologous gene segments (strings of genes) i.e. longer stretches of homologous genes (nodes) will have a larger weight. A more detailed description of the approach is presented in Ref. \((22)\).

Given \(G \) and \(W \), we compute gene matches using the Hungarian method \((39)\) for maximum weight bipartite graph matching approach [see Ref. \((40)\) for implementation details]. This produces the maximum weight
‘one-to-one’ assignment in the bipartite graph i.e. one gene is matched with one other gene. In order to identify co-orthologs, however, an iterative Hungarian algorithm strategy provided a good solution (41). Briefly, the iterative approach works in the following manner.

1. Apply the Hungarian method to \(W \) with respect to the current matching \(C \) to produce a set of matching. In other words, the first iteration of the Hungarian algorithms would results in a current gene match set \(C \subseteq E \).

2. For each matched edge in \(C = (p_a, q_b) \ldots (p_l, q_i) \) where \(p \in G_1^\prime \) and \(q \in G_2^\prime \), the edge weights \((w_{a,b}, \ldots, w_{i,j})\) in \(W \) are set to \(\infty \). This ensures that the current gene matching is not the ‘best’ available match for the next iteration.

3. The modified weight matrix \(W \) is then used as input for the next graph matching iteration [steps (i) and (ii)] until a specified number of iterations are performed or no more matches are found.

This results in the identification of multiple gene matches that collectively form a comprehensive set of one-to-many or many-to-many gene relationships, thus identifying putative co-orthologs.

RESULTS AND DISCUSSION

Two main algorithmic enhancements to the EGM gene matching pipeline have been described here; (i) an automated alignment-free sequence comparison method and (ii) a method to identify co-orthologs. The aim of these enhancements is to fully automate the task of matching gene orthologs between genomes. To evaluate the effectiveness and performance of our methods, we have performed several experiments. Comparisons were performed at two levels. On a relatively smaller scale, we compared the gene set of Human chromosome X versus Mouse chromosome X, Human chromosome 20 versus Mouse chromosome 2, Mycobacterium Tuberculosis versus Mycobacterium Leprae. On a larger scale, we compared the entire gene set in the Human, Mouse and Rat genomes. Protein sequences for the Human, Mouse and Rat genomes were obtained from the Integr8 database (42) and the Mycobacterium datasets were obtained from the NCBI Genbank database.

The performance of afree was evaluated against BLAST as well as the recently published UBLAST (10) tools.

Evaluating afree

The BLAST tool is a standard method used for calculating sequence similarity between protein sequences and is commonly employed in gene matching to calculate an initial sequence similarity matrix (22). Therefore, we used data generated with BLAST for evaluating afree against the state of the art UBLAST (10). The UBLAST tool performs rapid sequence search and works on the hypothesis that most sequence comparisons are not essential and only a few top hits (sequences with high number of common \(k \)-mers) can be compared to improve performance. This feature is described by the maximum targets feature in the tool. The performance is evaluated in term of precision and recall values. Sequence matches identified by BLAST are considered true. Precision is defined as the fraction of matches identified that are true.

\[
\text{precision} = \frac{\text{true positive matches}}{\text{total reported matches}}
\]

While, recall is defined as the fraction of all true matches that are identified.

\[
\text{recall} = \frac{\text{true positive matches}}{\text{total blast matches}}
\]

The BLAST program was executed using default parameters and the E-value threshold set at 0.001. Both afree and UBLAST were executed using the \(k = 5 \). For a more comprehensive analysis, UBLAST searches were performed using both the complete all-against-all search (from now on denoted as UBLAST) as well as the maximum hits set at 50 (from now on denoted as UBLAST50) and similarly, the E-value threshold set at 0.001. The afree approach uses a threshold on SD score to determine sequence similarity. First we performed analysis to understand the relationship between SD scores and percentage identity from sequence alignments. Next, we analyzed the relationship between the SD score and pairwise sequence identity as reported by BLAST.

The following function, where \(\lambda \) is an empirically determined scaling parameter:

\[
f(SD) = \begin{cases}
\exp(-\lambda/SD) \times 100 & \text{if } SD > 0 \\
0 & \text{if } SD = 0
\end{cases}
\]

Figure 3. SD similarity measure. This figure illustrates the relationship between the SD score and the corresponding pairwise sequence identity (attained from BLAST). The Human and Mouse chromosome X comparison was used to perform this analysis with \(k = 5 \) and \(SD > 15 \). It is clear that the SD statistic is correlated with the percentage sequence identity. Therefore, it is a reliable measure to quantify similarity based on shared \(k \)-mers.
This table shows performance comparison between BLAST, UBLAST (all matches), UBLAST50 (maximum target = 50) and afree. We also assessed the accuracy of UBLAST and BLAST proved to be the most time intensive. UBLAST and UBLAST50 provide a significant speed-up to BLAST, but our method afree is the fastest. We also assessed the accuracy of UBLAST and afree by comparing homologous pairs against BLAST output that was considered to be true positive homologs. The precision value shows that both UBLAST and afree maintain high precision. However, afree shows better ability in identifying a larger fraction of true positive homologs as indicated by the recall values. Overall, afree provides a significant speed up to BLAST while maintaining a very high precision and recall.

For the purpose of gene matching, the aim is to identify closely related sequences. It is clear that \(k \)-mer based distance measures are suitable; however, for more diverged sequences it is still not well understood if such measures are reliable, at least to the level of low sequence identities (43). Therefore, in all cases two protein sequences are considered similar if their similarity measure (SD score, \(E \)-value, sequence identity) is within a prescribed threshold and the length of the shorter of the two protein sequences is at least 50% of the other (the proportionality threshold reduces the chance of inferring similarity based on short motifs). The SD score thresholds are determined empirically for each experiment.

Table 1 shows the results from five different comparisons between varying sizes of datasets. In all cases, four methods (BLAST, UBLAST, UBLAST50—with maximum targets set at 50 and afree) were used to calculate all-against-all sequence comparison. The results show that afree and UBLAST are significantly faster than BLAST. Expectedly, in comparison to UBLAST, the UBLAST50 showed a significant speed-up as fewer comparisons are performed. The UBLAST50 speed-up did not significantly affect the number of observed similar sequences (recall) in smaller datasets (chromosome level) while maintaining a high precision value (see Matches, precision and recall values in Table 1). However, in the case of larger datasets (Human, Mouse and Rat), we observed that UBLAST was able to identify considerably larger number of similar sequences in comparison to UBLAST50, again shown by the higher recall values, with a minor decrease in precision. Overall, however, our afree implementation is the fastest of the methods compared and both UBLAST and afree maintain similar high precision. Further, in all comparisons our afree tool was able to identify a larger number of true matches as represented by high recall values. This is important as the aim of such comparison is to identify maximum number of putative homology relationships providing a larger cover on the genomes being compared. Our afree approach performs better than both the complete and maximum target versions of UBLAST, mainly because UBLAST performs the sequence comparison on task-by-task basis i.e. given a dataset of sequences, each sequence is iteratively used as a query and searched against the database. While our afree approach achieves higher performance by calculating the comparison in a single bulk operation i.e. in a single iteration, all sequences are compared with every other sequence in the dataset.

afree performance. Next, we analyze the efficiency of the afree algorithm by examining individual components of the algorithm. In the first case, we assess the scalability of the sort phase. We randomly generate \(k \)-mers list of size ranging from 1000 to 100 million tuples. Figure 4a shows the results of the experiments where it is evident that the sort time grows linearly with the list size, a highly desirable feature for the algorithm to be highly efficient. The largest list containing 100 million randomly generated \(k \)-mers \((k = 5)\) was sorted in \(< 12\) s (note that the list for the Human versus Mouse comparison contains 21 million tuples).
Figure 4b shows the time taken by various phases in the algorithm on real data. The figure shows that the majority of the time is spent in the join phase whose complexity grows quadratically with the size of the largest run (block) of k-mers that are common. However, even for the large genome scale comparisons such as Human versus Mouse, afree remains the fastest of the methods compared.

Identifying co-orthologs using iterative EGM

Next we performed experiments to evaluate the performance of various initial sequence similarity data inputs to our EGM ortholog identification pipeline (see ‘Determining co-orthologs’ section). Five comparisons, as described in the previous paragraph, were performed with initial sequence similarity data attained from BLAST (denoted as E_{GM_B}), UBLAST (denoted as E_{GM_U}) and the afree (denoted as $E_{GM_{AF}}$) approach. Note that UBLAST50 was not used as the aim of this experiment is to identify the maximum number of orthologs and further, $E_{BLAST50} \subseteq E_{UBLAST}$. We used the Ensembl Compara (44) dataset of orthologs to assess the approximate accuracy of identifying orthologs and co-orthologs using the various similarity data sources (no Compara data available for the Mycobacterium spp). The number of identified orthologs overlapping with the Compara data were considered true positives. We empirically determined that in most cases four iterations were sufficient to identity orthologs (see Figure 5, where each iteration reveals unique pairs of putative orthologs represented by different colors).

Figure 5. Iterative EGM. This figure illustrates the gene matching calculated by the iterative EGM pipeline. The Human and Mouse X chromosomes orthologs and co-orthologs are presented as a dotplot where each dot represents a gene match and colors represent the iteration (iteration1-red: 424 orthologs with average sequence identity of 85.1%, similarly, iteration2-green: 71.60%, iteration3-blue: 14.63%, and iteration4-purple: 5.74%).

Table 2 summarizes the results. The results show that E_{GM_B} identified the largest number of orthologs among the three sources. Further, the average sequence identity of the E_{GM_B} orthologs is 79.73%, lower than both E_{GM_U} (82.4%) and $E_{GM_{AF}}$ (83.38%) based orthologs,
suggested that more distantly related proteins are matched. In comparison to EGM_U, the EGM_AF approach leads to a higher number of ortholog matches. The higher count means that a larger proportion of the genome is matched which is important especially in genome annotation. In terms of precision (fraction of true identified orthologs), interestingly, we observed that the EGM_AF and EGM_U approaches lead to higher precision compared with BLAST. These data suggest that k-mer-based approaches are robust enough to accurately determine orthologs at varying genome sizes. Among EGM_U and EGM_AF, the precision values were comparable, except the Human Chr. X versus Mouse Chr. X and Mouse versus Rat comparisons, where EGM_AF and EGM_U performed better, respectively. However, the EGM_AF approach maintained a higher orthologs count among all comparisons. The comparison with the Compara dataset revealed that the iterative Hungarian method strategy (see ‘Determining co-orthologs’ section) is able to accurately and robustly match gene orthologs and co-orthologs.

We further analyze the orthologs identified in the Human versus Mouse comparison (21461 and 23202 genes, respectively). The new iterative EGM pipeline identified a total of 26916 orthologs based on the BLAST similarity data (Table 2), with 14485 of these gene matches overlapping with the Compara orthologs. Similarly, EGM_U and EGM_AF lead to 11658 and 13505 true positive orthologs. Next we analyze these true orthologs to assess EGM’s ability to identify co-orthologs. The Compara datasets represents the cardinality of ortholog relationships as being ‘one2one’, ‘one2many’ or even ‘many2many’, with the later two representing co-ortholog relationships. Table 3 lists the number of co-orthologs correctly identified by EGM at each iteration. Expectedly, EGM_B identified the most co-orthologous relationships, ahead of EGM_AF and EGM_U, respectively.

We also evaluate the overall performance of the iterative EGM by comparing the orthologs identified by gene matching approaches DAGchainer (19) and ADHoRe (20). Table 4 shows the results for the Human versus Mouse and Mouse versus Rat comparisons performed using EGM_AF, DAGchainer and ADHoRe.

Comparisons	Method	Matches per iteration	Total	TP	Precision	Recall	Avg. id			
		1	2	3	4					
Human Chr. X versus Mouse Chr. X	EGM_B	448	90	28	22	588	418	0.711	0.60	78.9
	EGM_U	358	64	23	15	460	335	0.728	0.48	81.1
	EGM_AF	395	43	5	3	446	373	0.836	0.54	85.9
Human Chr. 20 versus Mouse Chr. 2	EGM_B	365	14	3	1	383	344	0.898	0.75	83.2
	EGM_U	295	8	1	1	305	276	0.905	0.61	85.4
	EGM_AF	347	11	0	0	358	324	0.905	0.71	84.7
Mycobacterium tuberculosis versus M. leprae	EGM_B	1390	92	31	15	1528	–	–	–	79.7
	EGM_U	1273	65	20	11	1369	–	–	–	80.8
	EGM_AF	1358	71	18	9	1456	–	–	–	80.5
Human versus Mouse	EGM_B	15155	6107	3436	2218	26916	14485	0.538	0.74	76.4
	EGM_U	12303	3877	2222	1651	20532	11658	0.581	0.60	79.5
	EGM_AF	14018	5003	2645	1543	23590	13505	0.582	0.69	79.4
Mouse versus Rat	EGM_B	17230	7618	4877	3610	33335	17187	0.516	0.82	80.8
	EGM_U	15443	5262	3490	2801	26996	15199	0.563	0.73	83.9
	EGM_AF	16298	6605	4158	2933	29994	16406	0.542	0.78	83.5

Table 2. Iterative EGM for identifying complex orthologous relationships

Table 3. Ensembl Compara co-orthologs (Human versus Mouse)

Iteration	EGM_B	EGM_U	EGM_AF
1	836	697	744
2	612	501	552
3	261	234	220
4	175	159	137
Total	1884	1591	1653

The table shows the performance of the iterative EGM pipeline using different input homology data sources (BLAST → EGM_B, UBLAST → EGM_U, afree → EGM_AF). Various gene matching comparisons were performed with four graph matching iterations. Identified orthologs that overlapped with Compara dataset of orthologs were considered true positives (TP). In all comparisons, EGM_B identified the most true orthologs, however, showed the lowest precision especially for large whole genome-scale comparisons. EGM_AF was the next best in terms of the number of true orthologs while maintaining high precision. Both EGM_AF and EGM_U maintained similar high precision, except in the Human Chr. X versus Mouse Chr. X and Mouse versus Rat comparisons, where EGM_AF and EGM_U resulted in higher precision, respectively. Together with the recall values, the data suggest that the iterative EGM pipeline is a reliable and effective method for identifying complex ortholog and co-ortholog relationships. Further, the data shows that EGM_AF and UBLAST provide reliable alternatives to BLAST based input data to gene matching pipelines. (No compara orthologs are available for the Mycobacterium genomes above).
The required data (22). To this end, our alignment-free software parameters to manual post-processing to extract large-scale datasets. In addition, external applications the computational time requirements creates a bottleneck (initial all-against-all similarity) data. However, the use of external applications such as BLAST to provide input as DAGchainer (19), ADHoRe (20) and EGM (22) rely on external applications such as BLAST to provide input (initial all-against-all similarity) data. However, the use of external software such as BLAST is resource intensive and the computational time requirements creates a bottleneck in the ortholog identification pipeline, especially for large-scale datasets. In addition, external applications pose technical difficulties from various, often complicated, software parameters to manual post-processing to extract the required data (22). To this end, our alignment-free approach afree provides a robust and rapid tool for fast sequence comparisons. The results show that afree is fast and accurate for smaller chromosome to larger genome scale data. We compared afree to the traditionally used BLAST application to assess the accuracy and saw that afree maintains high precision while providing a significant speed-up. Further comparisons between afree and UBLAST (a state of the art sequence search tool) shows that although the two maintain similar high precision, afree correctly calculates a higher fraction of true positive matches (recall) with better performance (Table 1). afree achieves high performance using a novel fast bulk comparison-based method that calculates similarity between every sequence pair in the data set. Current techniques, including UBLAST, perform sequence comparison in an iterative manner i.e. each sequence is iteratively used as a query to search against the reference dataset. Further, the goal of performing an all-against-all sequence search is to build a matrix of similarities where the actual pairwise sequence alignments are not required. Previously, the EGM pipeline (22) employed the Hungarian method for graph matching to calculate gene matching on a one-to-one basis (i.e. one gene is matched to only one other gene from the corresponding genomes). Earlier, such relationships were considered sufficient for identifying common gene ancestors (45). However, as mentioned earlier, sequence data from more complex genomes is fast becoming available making it increasingly desirable that more complex gene matches be used than simple one-to-one relationships (26–28). Larger complex genomes have higher tendency to contain large protein families and further, evolutionary events such as speciation and duplications especially in eukaryotes add to the complexity in correctly matching orthologous genes. In essence, now the task is not only to match ‘best’ gene matches (orthologs), instead the task is to identify all ‘best’ matches (co-orthologs) given the gene context and order information. To this end, our iterative EGM strategy based on the Hungarian algorithm has shown great potential. Results from our experiments show that the iterative EGM is effective and accurate in identifying true orthologs and co-orthologs (Tables 2 and 3). Comparison with DAGchainer and ADHoRe have also shown that our iterative algorithm is more effective in identifying co-orthologous relationships as defined by the compara ortholog data sets (Table 4).

CONCLUSION

We have developed and tested algorithms that significantly help fully automate the non-trivial tasks of gene matching and identification of homologous genomic segments. Previously, methods for gene matching such as DAGchainer (19), ADHoRe (20) and EGM (22) rely on external applications such as BLAST to provide input (initial all-against-all similarity) data. However, the use of external software such as BLAST is resource intensive and the computational time requirements creates a bottleneck in the ortholog identification pipeline, especially for large-scale datasets. In addition, external applications pose technical difficulties from various, often complicated, software parameters to manual post-processing to extract the required data (22). To this end, our alignment-free approach afree provides a robust and rapid tool for fast sequence comparisons. The results show that afree
ACKNOWLEDGEMENTS
The authors acknowledge: Australian Research Council (ARC) Centre of Excellence in Structural Functional Microbial Genomics for support; Monash e-Research Centre and the Victorian Bioinformatics Consortium for computational resources.

FUNDING
K.M. is a PhD Student supported by ARC scholarship. J.S.’s research is funded by National Health and Medical Research Council (NHMRC) Peter Doherty Fellowship. J.C.W. is an ARC Federation Fellow and Honorary NHMRC Principle Research Fellow. A.S.K’s research is supported by Monash Larkins Fellowship. Funding for open access charge: Australian Research Council.

Conflict of interest statement. None declared.

REFERENCES
1. Kriventseva,E.V., Rahman,N., Espinosa,O. and Zdobnov,E.M. (2008) OrthoDB: the hierarchical catalog of eukaryotic orthologs. Nucleic Acids Res., 36, D271–D275.
2. Vingron,M. and Waterman,M.S. (1994) Sequence alignment and penalty choice: review of concepts, case studies and implications. J. Mol. Biol., 235, 1–12.
3. Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, 443–453.
4. Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences. J. Mol. Biol., 147, 195–197.
5. Vinga,S. and Almeida,J. (2003) Alignment-free sequence comparison-a review. Bioinformatics, 19, 513–523.
6. Pearson,W.R. (1990) Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol., 183, 63–98.
7. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402.
8. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
9. Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659.
10. Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461.
11. Koolty,H., Dyer,N.P., Reid,J.E., Koengtes,G. and Ott,S. (2010) An alignment-free model for comparison of regulatory sequences. Bioinformatics, 26, 2391–2397.
12. Gordan,R., Narlikar,L. and Hartemink,A.J. (2010) Finding regulatory dna motifs using alignment-free evolutionary conservation information. Nucleic Acids Res., 38, e90.
13. Xu,M. and Su,Z. (2010) A novel alignment-free method for comparing transcription factor binding site motifs. PLoS One, 5, e8797.
14. Jun,S.R., Sims,G.E., Wu,G.A. and Kim,S.H. (2010) Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc. Natl. Acad. Sci. U.S.A., 107, 133–138.
15. Zhi,D., Shatsky,M. and Brenner,S.E. (2010) Alignment-free local structural search by write decomposition. Bioinformatics, 26, 1176–1184.
16. Arunachalam,M., Jayasurya,K., Tomancak,P. and Ohler,U. (2010) An alignment-free method to identify candidate orthologous enhancers in multiple drosophila genomes. Bioinformatics, 26, 2109–2115.
17. Swidan,F., Rocha,E.P., Shmoish,M. and Pinter,R.Y. (2006) An integrative method for accurate comparative genome mapping. PLoS Comput. Biol., 2, e75.
18. Calabrese,P.P., Chakravarty,S. and Vision,T.J. (2003) Fast identification and statistical evaluation of segmental homologies in comparative maps. Bioinformatics, 19(Suppl. 1), iii74–iii80.
19. Hachaiya,T., Osana,Y., Popendorf,K. and Sakakibara,Y. (2009) Accurate identification of orthologous segments among multiple genomes. Bioinformatics, 25, 853–860.
20. Vandepoele,K., Saeys,Y., Simillion,C., Raes,J. and Van De Peer,Y. (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between arabidopsis and rice. Genome Res., 12, 1792–1801.
21. Hachiya,T., Osana,Y., Popendorf,K. and Sakakibara,Y. (2009) Dagchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics, 20, 3643–3646.
22. Mahmood,K., Konagurthu,A.S., Song,J., Buckle,A.M., Webb,G.I. and Whisstock,J.C. (2010) EGM: encapsulated gene-by-gene matching to identify gene orthologs and homologous segments in genomes. Bioinformatics, 26, 2076–2084.
23. Renn,M., Storm,C.E. and Sonnhammer,E.L. (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol., 314, 1041–1052.
24. Sonnhammer,E.L.L. and Koonin,E.V. (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet., 18, 619–620.
25. Koonin,E.V. (2005) Orthologs, paralogs, and evolutionary genomes. Ann. Rev. Genet., 39, 309–338.
26. Bandyopadhyay,S., Sharon,R. and Ideker,T. (2006) Systematic identification of functional orthologs based on protein network comparison. Genome Res., 16, 428–435.
27. Dehal,P. and Boore,J.L. (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol., 3, e314.
28. Sjolander,K. (2004) Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics, 20, 170–179.
29. Woolfe,A. and Elgar,G. (2007) Comparative genomics using fugu conservation of regulatory elements in vertebrate hox gene clusters. Genomics Res., 39, 1–34.
30. Kuhn,H.W. (1955) The hungarian method for the assignment problem. Naval Res. Logist. Quart., 2, 83–97.
40. Papadimitriou, C.H. and Steiglitz, K. (1998) *Combinatorial Optimization: Algorithms and Complexity*. Courier Dover Publications, Mineola New York.

41. Bansal, A.K., Bork, P. and Stuckey, P. (1998) Automated pair-wise comparisons of microbial genomes. *Math. Model. Sci. Comput.*, 19, 1–23.

42. Pruess, M., Kersey, P. and Apweiler, R. (2005) The integr8 project—a resource for genomic and proteomic data. *In Silico Biol.*, 5, 179–185.

43. Edgar, R.C. (2004) Local homology recognition and distance measures in linear time using compressed amino acid alphabets. *Nucleic Acids Res.*, 32, 380–385.

44. Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T. et al. (2008) Ensembl 2008. *Nucleic Acids Res.*, 36, D707–D714.

45. Sankoff, D. (1999) Genome rearrangement with gene families. *Bioinformatics*, 15, 909–917.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Mahmood, K; Webb, G I; Song, J; Whisstock, J C; Konagurthu, A S

Title:
Efficient large-scale protein sequence comparison and gene matching to identify orthologs and co-orthologs

Date:
2012-03-01

Citation:
Mahmood, K., Webb, G. I., Song, J., Whisstock, J. C. & Konagurthu, A. S. (2012). Efficient large-scale protein sequence comparison and gene matching to identify orthologs and co-orthologs. NUCLEIC ACIDS RESEARCH, 40 (6), https://doi.org/10.1093/nar/gkr1261.

Persistent Link:
http://hdl.handle.net/11343/253582

License:
CC BY-NC