Plasticity of chemoreceptor gene expression: Sensory and circuit inputs modulate state-dependent chemoreceptors

Matthew Gruner and Alexander M van der Linden*
Department of Biology; University of Nevada; Reno, NV USA

Animals dramatically modify their chemosensory behaviors when starved, which could allow them to alter and optimize their food-search strategies. Dynamic changes in the gene expression of chemoreceptors may be a general mechanism underlying food and state-dependent changes in chemosensory behaviors. In our recent study,1 we identified chemoreceptors in the ADL sensory neuron type of C. elegans that are modulated by feeding state and food availability. Here, we highlight our recent findings by which sensory inputs into ADL, neuronal outputs from ADL, and circuit inputs from the RMG interneuron, which is electrically connected to ADL, are required to regulate an ADL-expressed chemoreceptor. This sensory and circuit-mediated regulation of chemoreceptor gene expression is dependent on cell-autonomous pathways acting in ADL, e.g. KIN-29, DAF-2, OCR-2 and calcium signaling, and circuit inputs from RMG mediated by NPR-1. Based on these findings, we propose an intriguing but speculative feedback modulatory circuit mechanism by which sensory perception of food and internal state signals may be coupled to regulate ADL-expressed chemoreceptors, which may allow animals to precisely regulate and fine-tune their chemosensory neuron responses as a function of feeding state.

Modulating Chemoreceptor Genes: a General Strategy for Behavioral Plasticity

Growing evidence suggests that certain animals can alter their chemosensory neuron perception directly by dynamically changing expression levels of chemoreceptor genes, thereby gating sensory stimuli to change chemosensory behavior. For example, previous studies in the mosquito Anopheles gambiae has shown that gene expression of the olfactory receptor, AgOr1, known to recognize an odor found in human sweat, is highly expressed before a blood feeding, but rapidly downregulated after a blood feeding.2,3 A recent global study showed that small changes in transcript levels of a number of olfactory receptor genes, were highly correlated with odor sensitivity changes within the antennae of A. gambiae subsequent to a blood feeding (Fig.1A).4 These findings supported the idea that mosquitoes may use expression changes of specific olfactory receptor genes to alter their behavioral sensitivity to host-specific odors, thereby diminishing host-seeking behavior after a blood meal. In addition to feeding state, changes in olfactory receptor and accessory (Obp) genes are also dependent on the sex of an animal. After mating, female Drosophila flies rapidly modify their olfactory behaviors to lower attraction to males such that they can focus on reproduction, and these behavioral changes are accompanied by modulation of different olfactory receptor genes (Fig.1B).5 In mice and zebrafish, a small subset of olfactory receptor genes is induced in temporal waves, which may reflect a mechanism for developmental acquisition of odorant discrimination.6,7

Over 1500 predicted chemoreceptor genes have been identified in the genome of the nematode Caenorhabditis elegans,8 and unlike insects and mammals, each C. elegans chemosensory neuron type expresses multiple partially overlapping sets of...
chemoreceptor genes (possibly >20), all of which are presumably linked to a common chemical response that is determined by the identity of the neuron and its synaptic targets. As each chemosensory neuron type expresses multiple chemoreceptor genes, it has been hypothesized by us and others that changing the expression of individual or distinct populations of chemoreceptor genes may allow *C. elegans* to selectively alter its response to specific or a subset of chemicals, without inadvertently altering the response to all chemicals sensed by that neuron. As expected, the expression of a subset chemoreceptor genes in *C. elegans* are modulated by neuronal activity, pheromone levels and developmental conditions. As in other animals, dynamic changes in expression levels of chemoreceptor genes appear to directly alter chemosensory behaviors. For example, a recent study showed that altered expression level changes of the *odr-10* chemoreceptor gene, known to sense the food-related chemical diacetyl, modifies *C. elegans* male exploratory behavior (**Fig. 1C**). Thus, dynamic changes in the expression level of chemoreceptor genes is observed across phyla, and may be a general strategy underlying behavioral plasticity. In this commentary, we highlight new potential mechanisms regarding the modulation of chemoreceptor gene expression by food and feeding state of *C. elegans*.

State-Dependent Plasticity in Chemoreceptors Expressed in ADL Neurons

Our recent work focused on chemoreceptor genes expressed in the ADL sensory neuron type, which is known to express a multitude of chemoreceptors (>10), and respond to a wide variety of repulsive cues, e.g., odors, pheromone, and heavy metals. Using *gfp*-based expression analysis, we tested a subset of ADL-expressed chemoreceptors, and discovered that two chemoreceptor genes, *srh-234* and *srh-34*, are rapidly and reversibly modulated by fed and starved conditions of *C. elegans*. In fed animals, expression levels of *srh-234* is high but when animals are starved, *srh-234* expression is rapidly downregulated until food is again available. Interestingly, changes in *srh-34* expression levels show an opposite phenotype compared to *srh-234* in fed and starved conditions. Using a *gfp*-based expression analysis of *srh-234*, we found several interesting new aspects of this state-dependent modulation of chemoreceptor genes: First, starvation modulation of *srh-234* expression depends both on sensory inputs from food and internal state signals. Second, multiple signaling pathways and transcriptional modules act cell-autonomously in ADL sensory neurons to couple food and internal state signals with chemoreceptor gene modulation. Third, circuit inputs from neurons other than ADL as well as ADL output modulate *srh-234* expression mainly through neuropeptide and insulin signaling.

Sensory inputs from food and internal state signals modulate chemoreceptor expression

When we discovered that an ADL-expressed chemoreceptor is regulated by...
the feeding state of C. elegans (fed vs starved), one of the first questions we asked is whether the reduced *srh-234* expression phenotype observed in starved animals is due to either internal nutritional signals associated with a decrease in food ingestion, or due to sensory inputs that are associated with decreased food presence. Using methods such as Functional Rescue In Single-Sensory Cilia (FRISCC), \(^{19}\) and sub-cellular laser-surgery \(^{20}\) experiments of the ADL dendrite, we found that sensory inputs from food directly mediated by ADL sensory neurons are required to regulate *srh-234* expression. Furthermore, when we examined *srh-234* expression in animals exposed to bacterial food that can be normally sensed by C. elegans but not eaten, \(^{21}\) we found that internal nutritional signals are required to regulate *srh-234* expression. These results suggested that modulation of *srh-234* expression is dependent on both sensory perception and ingestion of food. Prior to our study, it was known that the presence and absence of food can elicit rapid changes in ADL-mediated repulsive responses, and this short-term plasticity occurs through serotoninergic and dopaminergic signaling pathways. \(^{22}\) We found that key neuropeptides, e.g. serotonin, dopamine, tyramine, and octopamine, all of which whom signal hunger and satiety, do not effect *srh-234* expression. In contrast to short-term plasticity, state-dependent mechanisms of long-term plasticity in ADL-mediated responses are more likely to involve changes in chemoreceptor gene expression. It is therefore tempting to speculate that increased *srh-234* expression levels in ADL may allow fed animals to be less tolerant of repulsive cues detected by *srh-234* (i.e. perhaps enhancing discrimination toward certain food-related odors) whereas decreased *srh-234* expression in ADL following long periods of starvation may allow starved animals to be more tolerant to these repulsive cues (i.e., perhaps being less discriminatory with food-related odors). This regulation of chemoreceptor gene expression could allow starved C. elegans to modulate changing priorities in food-searching behavior under stress-full conditions such as starvation.

Multiple cell-autonomous pathways in ADL regulate chemoreceptor gene expression

Our work shows that multiple, in parallel acting pathways function cell-autonomously in ADL to convey food and internal state signals to regulate *srh-234* expression (Fig. 2):\(^1\)

1. **SIK pathway.** Previously, we showed that KIN-29 salt-inducible kinase (SIK) regulates a subset of chemoreceptors genes including *srh-234* by inhibiting the gene repressive functions of the MEF-2 MADS-domain containing transcription factor. \(^{12,23}\) We found that *mef-2* is essential for the reduced *srh-234* expression in starved animals but dispensable when fed, suggesting that during starvation MEF-2 may repress but not drive *srh-234* expression. MEF2 is known to bind a consensus MEF2 binding site upstream of a consensus E-box sequence (CANNTG) where basic helix-loop-helix (bHLH) factors are negatively regulated. \(^{24}\) We suggest that a similar transcriptional module may operate at the *srh-234* promoter. In this mechanism, bHLH factors may drive *srh-234* expression via the candidate E-box site (CACCTG) during feeding conditions (Fig. 2A) but in starved conditions, MEF-2 likely binds directly to the candidate MEF2 site in the *srh-234* promoter and repress bHLH factor(s) leading to the reduction of *srh-234* expression (Fig. 2B). Consistent with this hypothesis, we recently identified candidate bHLH factors that may act in a complex manner at the *srh-234* promoter to drive its expression via the E-box site (Gruner and van der Linden, pers. comm).

Many of the 34 predicted bHLH factors in the C. elegans genome that either can form homodimers (9 bHLH factors) or heterodimers (21 bHLH factors) \(^{25}\) have a well-characterized role in cell-specification and nervous system development, which may overshadow their role in orchestrating state-dependent regulation of chemoreceptor genes.

2. **Insulin signaling:** As internal nutritional signals in C. elegans are conveyed through an insulin pathway, we examined *srh-234* expression in *daf-2* insulin-like receptor mutants. We found that the function of DAF-2 and its downstream target DAF-16 FOXO transcription factor are specifically required in ADL neurons to regulate *srh-234* expression. In this mechanism, DAF-2 regulates *srh-234* by inhibiting the gene expression functions of DAF-16 during feeding (Fig. 2A), but in starved conditions, DAF-16 likely functions as a repressor leading to reduced *srh-234* expression (Fig. 2B). The mechanism by which DAF-2/DAF-16 signaling regulates *srh-234* expression in ADL cell-autonomously remains unclear, as there are no clear DAF-16 binding sites present in the *srh-234* promoter used in our study. \(^1\) These results suggest that DAF-2 in ADL via DAF-16 is conveying signals about the nutritional status of C. elegans to promote *srh-234* expression.

3. **TRPV signaling:** The TRPV channels, OCR-2 and OSM-9, can form heterodimers, and are involved in the regulation of chemoreceptor genes, such as the *odr-10* chemoreceptor. \(^{26,27}\) We found that expression of the *ocr-2*, but less *osm-9*, is necessary and sufficient in ADL to regulate *srh-234* expression. The OCR-2-mediated regulation of *srh-234* is independent of MEF-2 or DAF-16 function, suggesting that yet unknown transcription factors act downstream of OCR-2 to regulate *srh-234*. However, based on the recent identification of a functional nuclear localization signal in OCR-2, \(^{28}\) it remains possible that OCR-2 itself may directly regulate *srh-234* expression.

4. **Intracellular calcium levels:** Calcium signaling mediated by voltage-dependent calcium channels are highly linked to gene regulatory mechanisms. When we examined mutants of voltage-gated calcium channels, *egl-19* and *unc-36*, we found that they reduce *srh-234* expression during feeding. Conversely, when we examined a *g
mutation in egl-19, predicted to increase calcium influx into cells,29 we found that egl-19(gf) restores the reduced srh-234 expression phenotype during starvation. Calcium-dependent signaling mediated by OCR-2 may alter neuronal gene expression in C. elegans.30 We found that overexpression of egl-19(gf) specifically in ADL neurons could bypass the requirement of OCR-2 as well as KIN-29, DAF-2 and NPR-1 (see

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{A model by which sensory inputs and cell-autonomous pathways in the ADL sensory neuron regulate chemoreceptor gene expression. (A) When well-fed (in the presence of food), expression of chemoreceptor srh-234 is increased in the polymodal nociceptive neuron ADL. The transient-receptor potential (TRPV) channels, OCR-2 and OSM-9 (not shown), are essential for the perception of food and the cell-autonomous activation of srh-234 expression. L-type voltage-activated Ca2+ channel, EGL-19, when constitutively activated is sufficient to increase srh-234 expression, suggesting Ca2+ couples food perception with transcriptional changes. The insulin-like receptor, DAF-2, acting in a DAF-16-dependent manner is also essential for srh-234 expression. The neuropeptide receptor, NPR-1, expressed in the RMG interneuron, and regulates srh-234 expression in ADL likely via gap junctions (Fig. 3). The MEF-2 transcription factor is inhibited by the salt-inducible kinase, KIN-29, and prevented from binding a candidate MEF2 site in the cis-regulatory region of srh-234. A candidate E-box motif was found about 30 bp downstream of a MEF2 site in the srh-234 promoter. (B) When starved (in the absence of food), OCR-2 activity and intracellular Ca2+ levels in ADL are likely decreased. Low agonistic insulin-like peptides (ILPs) or possibly increased antagonistic ILPs lower DAF-2 activity and allow DAF-16 nuclear translocation. Although DAF-16 is necessary for repressing srh-234 expression during starvation, there are no predicted binding sites within the 165 bp cis-regulatory region of srh-234. MEF-2 is no longer inhibited by KIN-29 allowing DNA binding, and possible inhibition of bHLH-mediated activation of srh-234 at the E-box site. Taken together, during starvation MEF-2 and DAF-16 may repress srh-234 expression, while bHLH factors may drive srh-234 expression during feeding (Gruner and van der Linden, pers. comm.) The epistatic relationship between the different signaling pathways in ADL neurons remains to be fully defined. Data shown is from.1}
\end{figure}
below) in regulating \textit{srh-234} expression. These results suggest that increased calcium influx in ADL increases \textit{srh-234} expression during feeding (Fig. 2A), whereas low calcium levels reduces the expression of \textit{srh-234} during starvation (Fig. 2B). Thus, perhaps intracellular calcium levels in ADL neurons are modulated by an animals’ feeding state; however, we were unable to detect changes in ‘basal’ calcium levels in fed or starved animals using current calcium imaging tools available in \textit{C. elegans}. Nevertheless, our genetic experiments with \textit{egl-19(gf)} provided support that calcium levels in ADL neurons regulate \textit{srh-234} expression, possibly by directly influencing bHLH-mediated transcription (Fig. 2). 31

Taken together, we identified multiple key components, e.g., KIN-29, OCR-2, DAF-2, and calcium channels, that function cell-autonomously in ADL to regulate \textit{srh-234} expression. Signaling mediated by these pathways converge on a transcriptional module that includes MEF-2, DAF-16 and bHLH factors. We suggest that these signaling pathways and transcriptional regulators in ADL neurons couple the perception of food and internal nutritional signals to regulate a subset of ADL-expressed chemoreceptor genes.

Circuit inputs and ADL outputs regulate chemoreceptor gene expression
Chemoreceptor expression is primarily regulated by sensory inputs from the environment, but our recent work identified unexpected requirements for circuit inputs into ADL and outputs from ADL in the regulation of \textit{srh-234} expression (Fig. 3): 1

1. Circuit inputs from RMG via NPR-1:
Recent elegant work proposed the hub-and-spoke model explaining the circuit properties underlying aggregative behavior and pheromone responses. 32 In this circuit, RMG interneurons (hub) is the major site for the NPR-1 neuropeptide receptor (a homolog of neuropeptide Y, NPY) to alter pheromone responses mediated by the gap-junction connected sensory neurons, ASK and ADL (spokes). 17,32 We found that \textit{npr-1} is necessary and sufficient when expressed in RMG to restore the reduced \textit{srh-234} expression in ADL of \textit{npr-1} mutants during feeding, which is dependent on the function of the innexin gap-junction components, \textit{unc-7} and \textit{unc-9}. Based on these results, we suggest a potential circuit mechanism for NPR-1-mediated regulation of \textit{srh-234} expression similar to the proposed RMG hub-and-spoke circuit. 32 In this circuit (Fig. 3), high activity of NPR-1 inhibits RMG in fed conditions, perhaps by silencing the gap-junction circuit as previously proposed, 32 resulting in increased \textit{srh-234} expression in ADL. Conversely, when NPR-1 activity is reduced or absent in starved conditions, gap junction-mediated communication is open in the RMG circuit, which in turn may decrease \textit{srh-234} expression. NPY-like signaling in both \textit{C. elegans} and \textit{Drosophila} appears to be a central regulator of stress responses. 33,34 It is therefore possible that NPR-1 signaling in RMG conveys stress information associated with starvation to regulate \textit{srh-234} expression in ADL.

Several properties of this NPR-1 gap-junction circuit in the regulation of \textit{srh-234} expression remains to be determined. For instance, although our results suggest that \textit{unc-7/9} gap-junctions are required for NPR-1-mediated regulation of \textit{srh-234}, expression of \textit{unc-7} in either RMG or ADL did not restore the \textit{srh-234} expression phenotype of \textit{npr-1 unc-7} double mutants. A recent study revealed a more complex picture of gap-junction networks, such that an electrically-coupled circuit may function as a co-incident detector, in which changes in the number of active neurons within the circuit may generate different responses. 35 It is therefore possible that \textit{unc-7/9} may be required in other neurons, besides RMG and ADL, consistent with our results showing that pan-neuronal expression of \textit{unc-7} partially restored the \textit{srh-234} expression phenotype of \textit{npr-1 unc-7} doubles.

2. Circuit inputs mediated by insulin-like peptides: We found that a specific \textit{gf} mutation in the \textit{daf-28} insulin-like peptide (ILP), predicted to block
3. Neuronal outputs of ADL: We found our recent study 1 provides the first potential feedback modulatory mechanisms through which chemoreceptor genes expressed in chemosensory neurons are dynamically altered in response to changes in food availability and an internal state of starvation. Based on our results, we suggest that circuit inputs from RMG interneurons mediated by NPR-1 signaling are integrated with signals from the perception of food and internal state associated with starvation (and other stress information) through multiple pathways acting cell-autonomously in ADL, which in turn may regulate NPR-1 in RMG through the release of yet unknown neuropeptides from ADL. Given that the free-living nematode C. elegans has high anatomical and functional similarity with parasitic nematodes that seek out their host using chemical cues, 43 it would be intriguing to speculate that certain parasitic nematodes use similar state-dependent mechanisms of chemoreceptor gene modulation to transition between host-seeking and leaving behavior.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This work was funded by grants from the National Science Foundation IOS1353014, and the National Institute of General Medical Sciences P20GM103650 and P20GM103440.

References
1. Gruner M, Nelson D, Winburn A, Hinz R, Ryu L, Chung SH, Kim K, Gabel CV, van der Linden AM. Feeding state, insulin and NPR-1 module chemoreceptor gene expression via integration of sensory and circuit inputs. PLoS Genet 2014; 10:e1004707; PMID:25357003; http://dx.doi.org/10.1371/journal.pgen.1004707
2. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci U S A 2001; 98:14693-7; PMID:11724964; http://dx.doi.org/10.1073/pnas.261432998
3. Hallem EA, Nicole Fox A, Zwiebel LJ. Olfaction: mosquito receptor for human-sweat odorant. Nature 2004; 427:212-3; PMID:14724626; http://dx.doi.org/10.1038/d41576-04132a
4. Rinker DC, Pitts RJ, Zhou X, Sub E, Rokas A, Zwiebel LJ. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci U S A 2013; 110:8260-5; PMID:23630291; http://dx.doi.org/10.1073/pnas.1302562110
5. Zhou S, Stone EA, Mackay TF, Anholt RR. Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet 2009; 5:e1000681; PMID:19816562; http://dx.doi.org/10.1371/journal.pgen.1000681
6. Barth AL, Justice NJ, Ngai J. Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 1996; 16:233-4; PMID:8562087; http://dx.doi.org/10.1016/0896-6273(96)00020-3
7. Khan M, Vaei E, Mombaerts P. Temporal patterns of odorant receptor gene expression in adult and aged mice. J Comp Neurol 2013; 57:120-9; PMID:23962816; http://dx.doi.org/10.1002/jcn.2138.001
8. Robertson HM, Thomas JH. The putative chemoreceptor families of C. elegans. WormBook 2006:61-12; PMID:18947145
9. Troemel ER, Kimmel BE, Bargmann CI. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 1997; 91:1611-2; PMID:9346234; http://dx.doi.org/10.1016/S0092-8674(00)80399-2
10. Peckel EL, Troemel ER, Bargmann CI. Sensory experience and sensory activity regulate chemosensory receptor gene expression in C. elegans. Proc Natl Acad Sci USA 2002; 99:19820-5; PMID:12217294; http://dx.doi.org/10.1073/pnas.191352498
11. Nolan KM, Sarabi-Reinach TR, Horne JK, Saffer AM, Sengupta P. The DAF-7 TGF-beta signaling pathway regulates chemosensory receptor gene expression in C. elegans. Genes Dev 2002; 16:3961-73; PMID:12464635; http://dx.doi.org/10.1101/gad.1027702
12. van der Linden AM, Nolan KM, Sengupta P. KIN-29 SKI regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J 2007; 26:358-70; PMID:17137074; http://dx.doi.org/10.1038/sj.emboj.7601479
13. Sengupta P, Chou JH, Bargmann CI. odor-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacytel. Cell 1996; 84:899-909; PMID:8661313; http://dx.doi.org/10.1016/S0092-8674(00)81068-5
14. Ryan DA, Miller RM, Lee K, Neal SJ, Fagan KA, Sengupta P, Portman DS. Sex, age, and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression. Curr Biol 2014; 24:2509-17; PMID:25438941; http://dx.doi.org/10.1016/j.cub.2014.09.032
15. McCarroll SA, Li H, Bargmann CI. Identification of transcriptional regulatory elements in chemosensory receptor genes by probabilistic segmentation. Curr Biol 2010; 15:347-52; PMID:19723796; http://dx.doi.org/10.1016/j.cub.2010.05.023
16. Bargmann CI, Harwig E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1995; 75:151-27; PMID:8343618; http://dx.doi.org/10.1016/0092-8674(95)80053-H
17. Jang H, Kim K, Neal SJ, Macakso E, Kim D, Butcher RA, Zeiger DM, Bargmann CI, Sengupta P. Neuroendocrine state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 2012; 75:585-92; PMID:22920251; http://dx.doi.org/10.1016/j.neuron.2012.06.034
18. Sambong I, Nagao T, Liu Y, Yoshimi T, Takada K, Wada Y, Furut M. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 1999; 10:753-7; PMID:10208545; http://dx.doi.org/10.1097/00001756-199908170-00012
19. Senti G, Eczura M, Lobnez J, Schafer WR, Swoboda P. Worms with a single functional sensory cilium generate proper neuron-specific behavioral output. Genetics 2009; 183:595-605; ISI-SSCI; PMID:19652182; http://dx.doi.org/10.1534/genetics.108.101717

Conclusions
Our recent study 1 provides the first illustration of circuit level inputs and agonistic ILPs from binding to the DAF-2 receptor, 36 reduces srh-234 expression in feeding conditions similar as daf-2 mutants. Based on these findings, we suggest that the DAF-2 receptor acting cell-autonomously in ADL neurons may be targeted by ILPs from neurons other than ADL (Fig. 3). Interestingly, in salt-chemotaxis learning, DAF-2 acts in ASE sensory neurons, and is targeted by the INS-1 ILP released from AIA interneurons. 37 We found that ins-1 mutants do not alter srh-234 expression. However, there are over 40 ILPs predicted in the C. elegans genome 38 that together act in a complex manner to regulate olfactory responses, 39,40 and a comprehensive study of these ILPs may provide clues about how they regulate chemoreceptor gene expression as a function of feeding state.

3. Neuronal outputs of ADL: We found that enhancing neuropeptide secretion in ADL by overexpressing pck-1(gf) 41 strongly increases the expression of srh-234 during feeding conditions, suggesting that altering ADL output regulates srh-234 expression (Fig. 3). Prior to our study, it was shown that OCR-2 may couple the perception of food to UNC-31-dependent secretion of insulin-like peptides from ADL neurons to regulate L1 starvation survival. 42 Consistent with these findings, we found that overexpressing pck-1(gf) in ADL can partially restore the reduced srh-234 expression phenotype of ocr-2 mutants, and this regulation appears to be dependent on the function of NPR-1 (Fig. 3). Taken together, these results suggest that perhaps the release of neuropeptides such as ILPs from ADL may in turn modulate NPR-1 in RMG to regulate srh-234 expression, revealing the ability of feedback modulation by which chemoreceptor gene expression in chemosensory neurons are regulated.
