The propofol infusion syndrome

Introduction

The propofol infusion syndrome (PRIS) is a rare, often fatal condition associated with high-dose propofol infusions\(^1\) that occurs in both pediatric\(^2-18\) and adult patients.\(^8,19-29\) The syndrome is characterized by severe metabolic acidosis, often accompanied by rhabdomyolysis, cardiac failure, and renal failure.\(^30\) Severe cases progress to refractory bradydysrhythmias, biventricular failure and death in spite of desperate efforts to support the circulation with inotropic drugs, vasopressors and ventricular pacing. Table 1 delineates the clinical criteria by which the diagnosis is made.

Table 1: Clinical features of the propofol infusion syndrome
1. Sudden onset of a marked bradycardia, resistant to treatment, progressing to complete heart block.
2. Lipaemic plasma.
3. Clinically enlarged liver.
4. Metabolic acidosis with a base deficit of >10 mmol.L\(^{-1}\) on at least one occasion.
5. Occasionally rhabdomyolysis or myoglobinuria.

The diagnosis is considered to be established when item #1 occurs together with any one of items #2 - 5.

Most reported cases have originated from intensive care units (ICU’s). It has been suggested that the pathogenesis is multifactorial, whereby priming factors include the presence of acute neurological conditions or inflammatory disease. The triggering factors include the administration of high-dose propofol, catecholamines and/or glucocorticoids.\(^30\) There are however, several recent reports documenting the occurrence of lactic acidosis for which there was no other explanation, after infusions of short duration\(^12,31,32\), and even during anaesthesia in basically healthy patients.\(^23,26,33,34\)

Pathogenesis

Laboratory investigations indicate that propofol impairs mitochondrial oxygen utilization or inhibits electron flow along the mitochondrial electron transport chain.\(^6,12,25-38\) Several clinical reports provide evidence of impaired mitochondrial fatty acid \(\beta\)-oxidation during the syndrome,\(^12,18\) leading to reduced ATP production\(^30\) and accumulation of long- and short-chain acyl-carnitine intermediates.\(^12-18\) The result is cellular hypoxia. The accumulated fatty acids are arrhythmogenic.\(^40\) The syndrome is in many aspects similar to inherited defects in \(\beta\)-oxidation of fatty acids, whereby patients are asymptomatic until they are stressed by starvation or infection, resulting in increased fat metabolism to produce energy. These patients subsequently develop life-threatening rhabdomyolysis, as well as cardiac, renal and hepatic failure. A problem with the propofol infusion syndrome is that there does not appear to be an underlying disorder in the survivors\(^17,18,41\), so that there is no bedside test to indicate which patients may be susceptible. It appears that propofol may affect mitochondrial metabolism of fatty acid in two ways.\(^30\) Firstly, propofol may impair the carnitine transport mechanism whereby long-chain fatty acids are attached to carnitine for transport into the mitochondria.\(^18\) Furthermore, it has been suggested that acquired carnitine deficiency may occur in critically ill patients\(^42\), thereby predisposing to inefficient utilization of long-chain fatty acids. Secondly, there may be inhibition at some point of the \(\beta\)-oxidation spiral.\(^12,17,18\) The result is that long-chain free fatty acids (FFA) as well as medium- and short-chain FFA\(^\star\) cannot be utilized. The precise mechanism whereby propofol affects mitochondrial function is unknown. Reports of patients who survived after haemodialysis or plasmapheresis\(^30,12,15,18,43\) suggest the possibility that the syndrome may be caused by a propofol metabolite. It is unlikely that the main metabolites, the glucuronide and sulfate conjugates are toxic. However, there is evidence to suggest that one of the intermediate metabolites, propofol quinone (2,6-diisopropyl-1,4-benzoquinone) generates hydroxyl free radicals.\(^44\) Propofol itself inhibits the production of free radicals.\(^45\)

Clinical aspects

Propofol has been used for sedation in adults in ICU’s for almost 20 years\(^46,47\) and in children for more than a decade.\(^48\) It was approved for adult ICU sedation by the USA Food and Drug Administration (FDA) in 1993. After the early reports concerning the possible association between prolonged propofol infusions and the syndrome, both the FDA and the drug manufacturer issued warnings that propofol is not indicated for use in paediatric ICU’s. The Canadian Medical Association and Health Canada also issued warnings about the off-label use of propofol for sedation in children.\(^49,50\) Early case reports were met with scepticism concerning propofol’s causative role with arguments that the evidence was circumstantial and was limited to case reports or small series of patients in whom the clinical picture could have been caused by sepsis alone.\(^51,52\) Two relatively large case series where propofol was used for sedation, have reported no incidences of metabolic acidosis, dysrhythmias or death.\(^53,54\) Nevertheless, it must be recognized that sufficient clinical and laboratory evidence has accumulated to conclude that the PRIS does occur in children and in adults, and that it need not necessarily arise only in ICU settings. It remains a rare event of which the true incidence is as yet unknown. Therefore it behoves the prudent clinician to be aware that the syndrome exists and to be alert to the circumstances that predispose to its development. These include an excessive lipid load and a carbohydrate intake that is inadequate to suppress fat metabolism.

It is therefore recommended that should a decision be made to infuse propofol for sedation, the infusion rate be limited to less than 4 mg.kg\(^{-1}\).h\(^{-1}\) for not more than 48 hours.\(^30\)

\(\star\) Medium- and short-chain FFA do not require enzyme-mediated transport across mitochondrial membranes.
Supplementing propofol sedation with opioids and/or benzodiazepines helps to limit the propofol dose-rate. Patients should not receive a heavy lipid load and in addition, should receive an adequate carbohydrate intake (6 mg.kg⁻¹.min⁻¹) in order to suppress lipid β-oxidation. In this regard it should be noted that patients who develop PRIS often exhibit hyperlipidaemia and a “creamy” appearance of the plasma. This may occur during total parenteral nutrition (TPN) in ICU patients receiving fat emulsions. An appropriate daily fat emulsion dosage to children receiving TPN is 2-3 g.kg⁻¹.day⁻¹ and this is easily achieved by an infusion of 4 mg.kg⁻¹.h⁻¹ of 1% propofol. Most reported cases of PRIS have received dose rates much greater than 4 mg.kg⁻¹.h⁻¹ and have therefore received an excessive lipid load due to the propofol infusion alone. Wolf has pointed out that inadequate provision of carbohydrate has been noted in several cases of PRIS. Carbohydrate stores are quickly used up in children. An inadequate carbohydrate intake promotes mobilization of fat stores and increased fat metabolism, thereby exacerbating the effects of propofol on β-oxidation. A recent case report suggests that propofol may have an effect on fat metabolism before any of the features of PRIS develop: An 11 year old received propofol for 6 days at a mean infusion rate of 4.7 mg.kg⁻¹.h⁻¹ accompanied by a carbohydrate intake of only 2 mg.kg⁻¹.min⁻¹. C4-acyl-carnitine increased progressively to twice the normal limit by day 5 without the development of metabolic acidosis, or cardiac or renal impairment.

Patients receiving propofol infusions for more than a few hours should be closely monitored for development of lactic acidosis, as this may occur at an early stage before irreversible cell damage has occurred. In addition increased levels of creatine kinase, myoglobin and troponin I should alert clinicians to the development of early signs of PRIS. Propofol administration should not be re-instituted after apparent recovery, because it appears that the damage to the mitochondria persists for an unknown period, as illustrated by a reported death of a child from PRIS who was re-exposed to propofol shortly after recovering from a metabolic acidosis that occurred during a propofol infusion. Patients who exhibit increasing demand for inotropic and vasopressor support in the intensive care setting should also arouse suspicions of the development of PRIS. In the future it may be possible to detect impending trouble by monitoring acyl-carnitine levels. However, at present this is an assay that is beyond the capabilities of most laboratories.

Should there be no clinical improvement after stopping the propofol infusion, haemodialysis or plasmapheresis should be instituted. Without dialysis mortality is nearly 100%. Severe, refractory cardiac failure has been successfully treated with extracorporeal circulation with membrane oxygenation (ECMO).

References

1. Bray RJ: The propofol infusion syndrome in infants and children: can we predict the risk? Current Opinion in Anaesthesiology 2002; 15: 339-42
2. Bray RJ: Fatal myocardial failure associated with a propofol infusion in a child. Anaesthesia 1995; 50: 94
3. Bray RJ: Propofol infusion syndrome in children. Paediatr.Anaesth. 1998; 8: 491-9
4. Bray RJ: Propofol-infusion syndrome in children. Lancet 1999; 353: 2074-5
5. Cannon ML, Glazier SS, Bauman LA: Metabolic acidosis, rhabdomyolysis, and cardiovascular collapse after prolonged propofol infusion. J.Neurosurg. 2001; 95: 1053-6
6. Cray SJ, Robinson BH, Cox P: Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit Care Med 1998; 26: 2089-92
7. Culp KE, Augustides JG, Ochroch AE, Milas BL: Clinical management of cardiogenic shock associated with prolonged propofol infusion. Anesth.Analg. 2004; 99: 221-6
8. Hanna JP, Ramundo ML: Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology 1998; 50: 301-3
9. Hatch DJ: Propofol-infusion syndrome in children. Lancet 1999; 353: 1117-8
10. Hawkins WJ, Cohen AT: Fatal myocardial failure associated with a propofol infusion in a child. Anaesthesia 1995; 50: 564
11. Holaka J, Aring C, Gillor A: Death after re-exposure to propofol in a 3-year-old child: a case report. Paediatr.Anaesth. 2004; 14: 265-70
12. Mehta N, DeMunter C, Habibi P, Nadel S, Britto J: Short term propofol infusions in children. Lancet 1999; 354: 866-7
13. Murdoch SD, Cohen AT: Propofol-infusion syndrome in children. Lancet 1999; 353: 2074-5
14. Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, Waldmann CS, Verghese C: Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ 1992; 305: 613-6
15. Strickland RA, Murray MJ: Fatal metabolic acidosis in a paediatric patient receiving an infusion of propofol in the intensive care unit: is there a relationship? Crit Care Med 1995; 23: 405-9
16. Van Straaten EA, Hendriks JJ, Ramsey G, Vos CD: Rhabdomyolysis and pulmonary hypertension in a child, possibly due to long-term high-dose propofol infusion. Intensive Care Med. 1996; 32: 997
17. Withington DE, Deceil MK, Al Ayed T: A case of propofol toxicity: further evidence for a causal mechanism. Paediatr.Anaesth. 2004; 14: 303-8
18. Wolf A, Weir P, Segar P, Stone J, Shield J: Propofol infusion syndrome: Impaired fatty acid oxidation due to mitochondrial respiratory disorder. Lancet 2001; 357: 606-7
19. Badr AE, Mychaskow G, Eichhorn JH: Metabolic acidosis associated with a new formulation of propofol. Anesthesiology 2001; 94: 538-8
20. Cremer OL, Moons KG, Bouman EA, Kruiswijk JE, De Smet AM, Kalman C: Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 2001; 357: 117-8
21. Ernest D, French C: Propofol infusion syndrome: report of an adult fatality. Anaesth.Intensive Care 2003; 31: 316-9
22. Funston JS, Prough DS: Two reports of propofol anesthesia associated with metabolic acidosis in adults. Anesthesiology 2004; 101: 8-6
23. Liolios A, Guerit JM, Scholtes JL, Rafopoulos C, Hanton P: Propofol infusion syndrome associated with short-term large-dose infusion during surgical anesthesia in an adult. Anesth.Analg. 2005; 100: 1804-5
24. Nimmo GR, Mackenzie SJ, Grant IS: Haemodynamic and oxygen transport effects of propofol infusion in critically ill adults. Anaesthesia 1994; 49: 485-9
25. Perrier ND, Baega-Varela Y, Murray MJ: Death related to propofol use in an adult patient. Crit Care Med. 2000; 28: 3071-4
26. Salengros JC, Velghe-Lenelle CE, Bollens R, Engelman E, Barvais L: Lactic acidosis during propofol-remifentanil anesthesia in an adult. Anesthesiology 2004; 101: 241-3
27. Kelly DF: Propofol-infusion syndrome. J.Neurosurg. 2001; 95: 925-8
28. Marinella MA: Lactic acidosis associated with propofol. Chest 1996; 109: 292
29. Stelow EB, Johari VP, Smith SA, Crosson JT, Apple FS: Propofol-associated rhabdomyolysis with cardiac involvement in adults: chemical and anatomic findings. Clin Chem 2000; 46: 577-81
30. Vasele B, Rasulo F, Candi rian A, Latronco N: The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003; 29: 1417-25
31. Koch M, De Backer D, Vincent JL: Lactic acidosis: an early marker of propofol infusion syndrome? Intensive Care Med. 2004; 30: 522
32. Haase R, Sauer H, Eichler G: Lactic acidosis following short-term propofol infusion may be an early warning of propofol infusion syndrome. J.Neurosurg.Anesthesiol. 2005; 17: 122-3
33. Kill C, Leonhardt A, Wulf H: Lactic acidosis after short-term infusion of propofol for anaesthesia in a child with osteogenesis imperfecta. Paediatr Anaesth 2003; 13: 823-6
34. Burow BK, Johnson ME, Packer DL: Metabolic acidosis associated with propofol in the absence of other causative factors. Anesthesiology 2004; 101: 239-41
35. Schenkman KA, Yan S: Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 2000; 28: 172-7
36. Branca D, Roberti MS, Lorenzin Peal: Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol 1991; 42: 87-90
37. Branca D, Roberti MS, Vincenti Eea: Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria. Arch Biochem Biophys 1991; 290: 517-21
38. Rigoulet M, Devin A, Averret Neta: Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Eur J Biochem 1996; 241: 280-5
39. Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, Chen TL: Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthase. Anesthesiology 2003; 98: 1178-85
40. Jouven X, Charles MA, Desnos M, Ducimetiere P: Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 2001; 104: 756-61
41. Wolf AR, Potter F: Propofol infusion in children: when does an anesthetic tool become an intensive care liability? Paediatr Anaesth. 2004; 14: 435-8
42. Evangelou A, Vlassopoulos D: Carnitine metabolism and deficit when supplementation is necessary? Curr Pharm Biotechnol 2003; 4: 211-9
43. Abrahams JM, Reiter GT, Acker MA, Sinson GP: Propofol [letter]. Neurosurg 2000; 96: 1160-2
44. Johnson ME, Fauq AH, Uhi CB: Effect of propofol and propofol quinone on hydroxyl radical generation (abstract). Free Radic Biol Med 2002; 33(suppl 1): S202
45. Demiryuruck AT, Cinei I, Kahraman S, Teeder-Uul M, Gogus N, Ayapar U, Kanzik I: Propofol and intralipid interact with reactive oxygen species: A chemiluminescence study. Br J Anaesth 1998; 80: 649-54
46. Aitkenhead AR, Pepperman ML, Willatts SM, Coates PD, Park CR, Bodenham AR, Collins CH, Smith MB, Ledingham IM, Wallace PG: Comparison of propofol and midazolam for sedation in critically ill patients. Lancet 1989; 2: 704-9
47. Grounds RM, Lalor JM, Lumley J, Royston D, Morgan M: Propofol infusion for sedation in the intensive care unit: preliminary report. Br Med J (Clin Res Ed) 1987; 294: 387-400
48. Eddleston JM, Pollard BJ, Blades JF, Doran B: The use of propofol for sedation of critically ill patients undergoing haemodialfiltration. Intensive Care Med 1995; 21: 342-7
49. Wooltorton E: Propofol: contraindicated for sedation of pediatric intensive care patients. CMAJ 2002; 167: 507
50. Maher, M. Propofol contraindicated for sedation in paediatric patients receiving intensive care. Health Canada, Health Products and Food Branch: Notice to hospitals - Important Drug Safety Information . 2002.
51. Reed MD, Blumer JL: Propofol bashing: the time to stop is now! Crit Care Med 1996; 24: 175-6
52. Susla GM: Propofol toxicity in critically ill pediatric patients: show us the proof. Crit Care Med. 1998; 26: 1599-60
53. Cornfield DN, Tegtmeyer K, Nelson MD, Milia CE, Sweeney M: Continuous propofol infusion in 142 critically ill children. Pediatrics 2002; 110: 1177-81
54. Pepperman ML, Macrae D: A comparison of propofol and other sedative use in paediatric intensive care in the United Kingdom. Paediatr Anaesth 1997; 7: 143-53
55. Martin PH, Murthy BVS, Petros AF: Metabolic, biochemical and haemodynamic effects of infusion of propofol for long-term sedation of children undergoing intensive care. Br J Anaesth 1997; 78: 278-9
56. Myburgh JA, Upton RN: Propofol use in head injury patients [comment]. Lancet 2001; 357: 1709-10

This lecture will be presented at SASA Congress 2006

Professor J Coetzee
University of Stellenbosch