A REMARK ON CLASSICAL PLÜCKER’S FORMULAE

VIK.S. KULIKOV

Abstract. For any reduced curve $C \subset \mathbb{P}^2$, we define the notions of the number of its virtual cusps c_v and the number of its virtual nodes n_v, which are non-negative, coincide respectively with the numbers of ordinary cusps and nodes in the case of cuspidal curves, and if \hat{C} is the dual curve of an irreducible curve C and \hat{n}_v and \hat{c}_v are the numbers of its virtual nodes and virtual cusps, then the integers $c_v, n_v, \hat{c}_v, \hat{n}_v$ satisfy Classical Plücker’s formulae.

INTRODUCTION.

Let $C \subset \mathbb{P}^2$ be a reduced curve defined over the field of complex numbers \mathbb{C}. A curve C is called cuspidal if the singular points of C are only the ordinary cusps and nodes.

In modern textbooks on algebraic geometry, classical Plücker’s formulae are stated as follows (see, for example, [1], [2]).

Classical Plücker’s formulae. Let $C \subset \mathbb{P}^2$ be an irreducible cuspidal curve of genus g, degree $d \geq 2$, having c ordinary cusps and n nodes. Assume that the dual curve \hat{C} of C is also a cuspidal curve. Then

$$\hat{d} = d(d - 1) - 3c - 2n;$$ (1)

$$g = \frac{(d - 1)(d - 2)}{2} - c - n;$$ (2)

$$d = \hat{d}(\hat{d} - 1) - 3\hat{c} - 2\hat{n};$$ (3)

$$g = \frac{(\hat{d} - 1)(\hat{d} - 2)}{2} - \hat{c} - \hat{n},$$ (4)

where \hat{c} and \hat{n} are the numbers of ordinary cusps and nodes of \hat{C} and $\hat{d} = \deg \hat{C}$.

Denote by $V(d, c, n) \subset \mathbb{P}^{\frac{d(d+1)}{2}}$ the variety parametrizing the irreducible cuspidal curves of degree d with c ordinary cusps and n nodes. Very often, if for given d, c, and n one of the invariants \hat{c} or \hat{n}, obtained as the solution of (1) – (4), is negative, then it is claimed that this is sufficient for the "proof" of the emptiness of $V(d, c, n)$. However, the correctness of the following statement is unknown: "the dual curve \hat{C} of a curve C corresponding to a generic point of

\[\text{This research was partially supported by grants of NSh-4713.2010.1, RFBR 08-01-00095, and by AG Laboratory HSE, RF government grant, ag. 11.G34.31.0023.}\]
V(d, c, n) is cuspidal”. Therefore, in general case, it is impossible to conclude the non-existence of cuspidal curve C if \(\hat{c} \) or \(\hat{n} \) is negative. Of course, to avoid this problem, it is possible to use generalized Plücker’s formulae including the numbers of all possible types of singular points of \(\hat{C} \). But, we again have a difficulty, namely, in this case we must take into account too many unknown invariables.

To obviate the arising difficulty, in section 1 for any reduced plane curve C we define the notions of the number of its virtual cusps \(c_v \) and the number of its virtual nodes \(n_v \) which are non-negative, coincide respectively with the numbers of ordinary cusps and nodes in the case of cuspidal curves, and if the dual curve \(\hat{C} \) of an irreducible curve C has \(\hat{n}_v \) virtual nodes and \(\hat{c}_v \) virtual cusps, then the integers \(c_v, n_v, \hat{c}_v, \) and \(\hat{n}_v \) satisfy Classical Plücker’s formulae.

In section 2, we investigate the behaviour of the Hessian curve \(H_C \) of a cuspidal curve C at cusps and nodes of C, and in section 3, we give a proof of some inequalities for the numbers of cusps and nodes of plane cuspidal curves of degree d which was obtained early in [3] under additional assumption that the dual curve of a generic cuspidal curve is also cuspidal.

1. THE NUMBERS OF VIRTUAL CUSPS AND NODES

Let \((C, p) \subset (\mathbb{P}^2, p)\) be a germ of a reduced plane singularity. It splits into several irreducible germs: \((C, p) = (C_1, p) \cup \cdots \cup (C_k, p)\). Denote by \(m_j\) the multiplicity of the singularity \((C_j, p)\) at the point p and let \(\delta_p\) be the \(\delta\)-invariant of the singularity \((C, p)\). By definition, the integers

\[
c_{v,p} := \sum_{i=1}^k (m_i - 1)
\]

and

\[
n_{v,p} := \delta_p - \sum_{i=1}^k (m_i - 1)
\]

are called respectively the numbers of virtual cusps and virtual nodes of the singularity \((C, p)\). We have \(\delta_p = c_{v,p} + n_{v,p}\).

Lemma 1. Let \((C, p) \subset (\mathbb{P}^2, p)\) be a germ of a reduced plane singularity, \(c_{v,p}\) be the number of its virtual cusps and \(n_{v,p}\) be the number of its virtual nodes. Then

(i) \(c_{v,p} \geq 0, n_{v,p} \geq 0\);

(ii) if \((C, p)\) is an ordinary cusp, then \(c_{v,p} = 1\) and \(n_{v,p} = 0\);

(iii) if \((C, p)\) is an ordinary node, then \(c_{v,p} = 0\) and \(n_{v,p} = 1\).
Proof. We prove only the inequality $n_v \geq 0$, since all the other claims of Lemma 1 are obvious. Let $(C, p) = (C_1, p) \cup \cdots \cup (C_k, p)$ and m_i be the multiplicity of its irreducible branch (C_i, p). Then the multiplicity of (C, p) at p is equal to $m_p = \sum_{i=1}^k m_i$ and we have

$$n_{v, p} = \delta_p - \sum_{i=1}^k (m_i - 1) \geq \delta_p - \sum_{i=1}^k m_i + 1 = \delta_p - (m_p - 1) \geq \delta_p - \frac{m_p(m_p - 1)}{2} \geq 0,$$

since $m_p \geq 2$ for singular points and $\delta_p \geq \frac{m_p(m_p - 1)}{2}$. Therefore, we have

$$n_v = \sum_{p \in \text{Sing} C} n_{v, p} \geq 0. \quad \Box$$

Let $C \subset \mathbb{P}^2$ be a reduced curve. Denote by $\text{Sing} C$ the set of its singular points. By definition, we put

$$c_v := \sum_{p \in \text{Sing} C} c_{v, p},$$

$$n_v := \sum_{p \in \text{Sing} C} n_{v, p}$$

and call these integers respectively the number of virtual cusps and the number virtual nodes of the curve C. If C is an irreducible curve of degree d and geometric genus g, then we have $g = \frac{(d-1)(d-2)}{2} - \delta_C$, where $\delta_C = \sum_{p \in \text{Sing} C} \delta_p$ is the δ-invariant of C. Therefore, we have

$$g = \frac{(d-1)(d-2)}{2} - c_v - n_v. \quad (5)$$

The following proposition is a corollary of Lemma 1.

Proposition 1. Let c_v be the number of virtual cusps and n_v be the number of virtual nodes of a reduced curve $C \subset \mathbb{P}^2$. We have

(i) $c_v \geq 0$ and $n_v \geq 0$,

(ii) if C is a cuspidal curve, then c_v and n_v are equal respectively to the number c of cusps and the number n of nodes of C.

Theorem 1. (Plücker’s formulae). Let C and \hat{C} be irreducible dual curves of genus g, $\deg C = d \geq 2$, $\deg \hat{C} = \hat{d}$, and c_v, n_v, \hat{c}_v, \hat{n}_v are the numbers of their virtual cusps and nodes, respectively. Then we have the following equalities:

\begin{align*}
\hat{d} &= d(d - 1) - 3c_v - 2n_v; \\
2g &= (d - 1)(d - 2) - 2c_v - 2n_v; \\
d &= \hat{d}(\hat{d} - 1) - 3\hat{c}_v - 2\hat{n}_v; \\
2g &= (\hat{d} - 1)(\hat{d} - 2) - 2\hat{c}_v - 2\hat{n}_v.
\end{align*}

Proof. To prove Plücker’s formulae, we need the following

Lemma 2. For an irreducible plane curve C we have

\begin{align*}
\hat{d} &= 2d + 2(g - 1) - c_v, \\
\hat{c}_v &= 3d + 6(g - 1) - 2c_v, \\
d &= 2\hat{d} + 2(g - 1) - \hat{c}_v, \\
c_v &= 3\hat{d} + 6(g - 1) - 2\hat{c}_v.
\end{align*}

Proof. Denote by $\nu : \overline{C} \to C$ and $\hat{\nu} : \overline{C} \to \hat{C}$ the normalization morphisms, consider generic (with respect to C and \hat{C}) linear projections $pr : \mathbb{P}^2 \to \mathbb{P}^1$ and $\hat{pr} : \hat{\mathbb{P}}^2 \to \hat{\mathbb{P}}^1$, and put $\pi = pr \circ \nu$ and $\hat{\pi} = \hat{pr} \circ \hat{\nu}$. We have $\deg \pi = d$ and $\deg \hat{\pi} = \hat{d}$.

Let $\nu^{-1}(x_i) = \{y_{i,1}, \ldots, y_{i,m_i}\}$ for $x_i \in \text{Sing } C$. For each point $y_{i,j}$ denote by $r_{i,j}$ the ramification index of π at $y_{i,j}$. It is easy to see that $r_{i,j}$ coincides with the multiplicity $m_{i,j}$ at x_i of the irreducible germ $(C_{i,j}, x_i) \subset (C, x_i)$ corresponding to the point $y_{i,j}$. Therefore, we have

$$c_v = \sum_{i,j} (r_{i,j} - 1).$$

Applying Hurwitz formula to π and $\hat{\pi}$, we obtain

$$2(g - 1) = -2d + c_v + \hat{d}$$

and

$$2(g - 1) = -2\hat{d} + \hat{c}_v + d$$

which give formulae (10) and (12).

To prove (11), note that $\hat{c}_v = 2\hat{d} + 2(g - 1) - d$ by (12). Therefore

$$\hat{c}_v = 2(2d + 2(g - 1) - c_v) + 2(g - 1) - d$$

by (10), that is, $\hat{c}_v = 3d + 6(g - 1) - 2c_v$. Formula (13) is obtained similarly. □

It follows from (5) that

$$2(g - 1) + 2c_v + 2n_v = d(d - 3),$$

$$2(g - 1) + 2\hat{c}_v + 2\hat{n}_v = \hat{d}(\hat{d} - 3)$$
which are equivalent to (7) and (9). To complete the proof of Plücker’s formulae, notice that formulae (6) and (8) easily follow from equations (10) – (13) and (16).

2. On the Hessian curve of a cuspidal curve

Let $C \subset \mathbb{P}^2$ be an irreducible cuspidal curve of degree d with c cusps and n nodes. It follows from (7) and (11) that

$$8c + 6n + \hat{c}_v = 3d(d - 2).$$

Equality (17) has a natural geometric meaning. To explain it, let the curve C is given by equation $F(x_0, x_1, x_2) = 0$, where x_0, x_1, x_2 are homogeneous coordinates in \mathbb{P}^2. Consider the Hessian curve $H_C \subset \mathbb{P}^2$ of the curve C. It is given by equation $\det(\frac{\partial^2 F}{\partial x_i \partial x_j}) = 0$. We have $\deg H_C = 3(d - 2)$. Therefore the intersection number $(C, H_C)_{P^2}$ is equal to $3d(d - 2)$. On the other hand, it is well-known (see, for example, [1]) that the curves C and H_C meet at the singular points and at the inflection points of the curve C. Therefore we have

$$\sum'(C, H_C)_p + \sum''(C, H_C)_p + \sum'''(C, H_C)_p = (C, H_C)_{P^2} = 3d(d - 2),$$

where $(C, H_C)_p$ is the intersection number of the curves C and H_C at a point $p \in C$ and the sum \sum' is taken over all cusps of C, the sum \sum'' is taken over all nodes of C, and the sum \sum''' is taken over all inflection points of C.

Let us show that the coefficients involving in equation (17) have the following geometric meaning: equality (17) is the same as equality (18), that is, the coefficient 8 in (17) is the intersection number $(C, H_C)_p$ at a cusp $p \in C$, the coefficient 6 is the intersection number $(C, H_C)_p$ at a node $p \in C$, and $\hat{c}_v = \sum'''(C, H_C)_p$. Indeed, let p be a cusp of C. Without loss of generality, we can assume that $p = (0, 0, 1)$ and

$$F(x_0, x_1, x_2) = x_0^2U(x_0, x_1, x_2) + x_0x_1^2V(x_0, x_1, x_2) + x_1^3W(x_0, x_1, x_2),$$

where U is a homogeneous polynomial of degree $d - 2$ such that $U(0, 0, 1) = 1$ and V and W are homogeneous polynomials of degree $d - 3$ such that $W(0, 0, 1) = 1$. Put $a = V(0, 0, 1)$, then in non-homogeneous coordinates $x = \frac{x_0}{x_2}, y = \frac{x_1}{x_2}$ we have $p = (0, 0, 1)$, the curve C is given by equation of the form

$$x^2 + y^3 + axy^2 + bx^2y + cx^3 + \text{terms of higher degree} = 0,$$

and the curve H_C is given by equation of the form

$$x^2(6y + 2ax) + \text{terms of higher degree} = 0.$$

Easy computation (applying σ-process with center at p) gives the following inequality:

$$(C, H_C)_p \geq 8$$

if p is a cusp of C.

Let \(p \) be a node of \(C \). Again, without loss of generality, we can assume that \(p = (0, 0, 1) \) and
\[
F(x_0, x_1, x_2) = x_0 x_1 U(x_0, x_1, x_2) + V(x_0, x_1) W(x_0, x_1, x_2),
\]
where \(U \) is a homogeneous polynomial of degree \(d - 2 \) such that \(U(0, 0, 1) = 1 \), \(V \) is a homogeneous polynomial of degree 3, and \(W \) is a homogeneous polynomial of degree \(d - 3 \). In non-homogeneous coordinates \(x = \frac{x_0}{x_2}, y = \frac{x_1}{x_2} \) we have \(p = (0, 0) \), the curve \(C \) is given by equation of the form
\[
xy + \text{terms of higher degree} = 0,
\]
and the curve \(H_C \) is given by equation of the same form
\[
xy + \text{terms of higher degree} = 0.
\]

Easy computation (applying \(\sigma \)-process with center at \(p \)) gives the following inequality:
\[
(C, H_C)_p \geq 6 \tag{20}
\]
if \(p \) is a node of \(C \).

If \(p \) is an \(r \)-tuple inflection point of \(C \) (that is, \((C, L_p)_p = r + 2 \), where the line \(L_p \) is tangent to \(C \) at \(p \)), then by Theorem 1 on page 289 in [1], we have \((C, H_C)_p = r \). On the other hand, the branch \((\hat{C}, \hat{p})\) of the dual curve \(\hat{C} \), corresponding to an irreducible branch \((C, p) \subset (C, p)\) at a point \(p \) of a cuspidal curve \(C \), is singular if and only if \(p \) is an inflection point of \(C \); and the branch \((\hat{C}, \hat{p})\), corresponding to the branch \((C, p)\) at \(r \)-tuple inflection point \(p \in C \), has a singularity of type \(u^{r+1} - v^{r+2} = 0 \). The multiplicity \(m_{\hat{p}} \) of this singularity is equal to \(r + 1 \). Therefore, we have
\[
\Sigma''(C, H_C)_p = \sum_{(\hat{C}, \hat{p})} (m_{\hat{p}} - 1) = \hat{c}_v. \tag{21}
\]

Finally, it follows from (17) – (21) that inequalities (19) and (20) are the equalities in the case of cuspidal curves.

3. Lefschetz’s Inequalities

As above, let \(C \subset \mathbb{P}^2 \) be an irreducible cuspidal curve of degree \(d \) and genus \(g \) having \(c \) cusps and \(n \) nodes.

In [3], assuming that for a generic cuspidal curve with given numerical invariants the dual curve is also cuspidal, Lefschetz proved the following inequalities
\[
c \leq \frac{3}{2} d + 3(g-1) \tag{22}
\]
if \(d \) is even and
\[
c \leq \frac{3d-1}{2} + 3(g-1) \tag{23}
\]
if d is odd. It follows from (11) that these inequalities occur for any plane cuspidal curve, since \hat{c}_v is a non-negative integer.

Note also that equality (17) gives rise to the following statement: for a plane cuspidal curve of degree $d \geq 2$ the following inequality holds:

$$8c + 6n \leq 3d(d - 2) - \frac{1 - (-1)^d}{2}. \quad (24)$$

Remark 1. One can show that for any $d = 2k$, $k \geq 3$, and for any $g \geq 0$ such that $2 \leq 3g \leq k - 4$ or $g \leq 1$, there exist a cuspidal curve of degree d having $c = 3(k + g - 1)$ cusps and $n = 2(k - 1)(k - 2) - 4g$ nodes for which inequality (24) becomes the equality. If $d = 2k + 1$, $k \geq 3$, then for any g such that $2 \leq 3g \leq k - 4$ or $g \leq 1$, there exist a cuspidal curve of degree d having $c = 3(k + g) - 2$ cusps, $n = 2(k - 1)^2 - 4g$ nodes, and for which inequality (24) becomes the equality. The proof of these statements follows from the fact that the genus of such curves C is equal to g and for these curves the dual curves \hat{C} have degree $\hat{d} = 2(g - 1) + 7 + \frac{1 - (-1)^d}{2}$ and the number of virtual cusps $\hat{c}_v = \frac{1 - (-1)^d}{2}$. Therefore such curves can be obtained as the image of a generic linear projection to \mathbb{P}^2 of a smooth curve $\overline{C} \subset \mathbb{P}^{\hat{d} - g}$ of degree \hat{d} birationally isomorphic to C. Standard computations (which we leave to the reader) of codimension of the locus of "bad" projections shows that in this case there is a linear projection $\text{pr} : \mathbb{P}^{\hat{d} - g} \to \mathbb{P}^2$ such that $\text{pr}(\overline{C}) = \hat{C}$ is a cuspidal curve with $\hat{c} = \frac{1 - (-1)^d}{2}$ and its dual curve \hat{C} is also cuspidal.

For completeness, let me remind also the following well-known inequalities which we have for plane cuspidal curves:

$$3c + 2n < d(d - 1) - \sqrt{d}, \quad (25)$$

$$2c + 2n \leq (d - 1)(d - 2), \quad (26)$$

$$d(d - 2)(d^2 - 9) + (3c + 2n)^2 + 27c + 20n \geq 2d(d - 1)(3c + 2n) \quad (27)$$

which are consequences of equalities (6) – (9) and the inequalities $\hat{d} \geq \sqrt{d}$, $g \geq 0$, $\hat{n}_v \geq 0$;

$$16c + 9n \leq d(5d - 6) \quad (\text{Hirzebruch – Ivinskis inequality (4)})$$

which is true in the case of even d.

Note also that inequalities (24) – (27) hold for any irreducible plane curve if we substitute c_v and n_v instead of c and n.
REFERENCES

[1] Brieskorn E., Knörrer H., \textit{Plane algebraic curves}, Birkhäuser-Verlag, Basel-Boston-Stuttgart, (1986).
[2] Griffiths P. and Harris J., \textit{Principles of algebraic geometry}, A Wiley-Interscience Publication, John Wiley & Sons, New York Chichester Brisbane Toronto, 1978.
[3] Lefschetz S., \textit{On the existence of loci with given singularities}, Transactions of Am. Math. Soc. \textbf{14} (1913), 23-41.
[4] Hirzebruch F., \textit{Singularities of algebraic surfaces and characteristic numbers}, Contemp. Math., \textbf{58},I (1986), 141-155.

Steklov Mathematical Institute
E-mail address: kulikov@mi.ras.ru