Regularities and Discrepancies of Credit Default Swaps:
a Data Science approach through Benford’s Law

Marcel Ausloos1*, Rosella Castellano2, Roy Cerqueti3

1 School of Management, University of Leicester,
University Road, Leicester LE1 7RH, UK
\textit{e-mail address:} ma683@le.ac.uk

2 University of Macerata, Department of Economics and Law,
via Crescimbeni 20, I-62100, Macerata, Italy
\textit{e-mail address:} rosella.castellano@unimc.it

3 University of Macerata, Department of Economics and Law,
via Crescimbeni 20, I-62100, Macerata, Italy
\textit{e-mail address:} roy.cerqueti@unimc.it

Abstract

In this paper, we search whether the Benford’s law is applicable to monitor daily changes in sovereign Credit Default Swaps (CDS) quotes, which are acknowledged to be complex systems of economic content. This test is of paramount importance since the CDS of a country proxy its health and probability to default, being associated to an insurance against the event of its default. We fit the Benford’s law to the daily changes in sovereign CDS spreads for 13 European countries, – both inside and outside the European Union and European Monetary Union. Two different tenors for the sovereign CDS contracts are considered: 5 yrs and 10 yrs, – the former being the reference and most liquid one. The time period under investigation is 2008-2015 which includes the period of distress caused by the European sovereign debt crisis. Moreover, (i) an analysis over relevant sub-periods is carried out; (ii) several insights are provided also by implementing the tracking of the Benford’s law over moving windows. The main test for checking the conformance to Benford’s law is – as usual – the χ^2 test, whose values are presented and discussed for all cases. The analysis is further completed by elaborations based on Chebyshev’s

* Corresponding author.
distance and Kullback and Leibler’s divergence. The results highlight differences by countries and tenors. In particular, these results suggest that liquidity seems to be associated to higher levels of distortion. Greece – representing a peculiar case – shows a very different path with respect to the other European countries.

Keywords: Benford’s Law, Credit Default Swaps, Complex Systems, Data Science.

1 Introduction

Quantitative phenomena are characterized by numbers, whose values exhibit specific features. For instance, it is clear that the distribution of individuals’ age in the world is not uniform, implying that it is more probable to randomly extract a twenty-years old human than a hundred-years old one. However, deviations from the uniform law have been observed for large dataset also in not very intuitive contexts. In this respect, the so-called Benford’s law (BL), introduced by Newcomb (1881) and formalized by Benford (1938), plays a prominent role. BL describes the regularity of the frequency distribution of leading digits in some important large data set. In particular, it states that the distribution of first digits is more concentrated on smaller values, and the digit "one" has the highest frequency. The story of BL is interestingly traced in Torres et al. (2007), where both the theoretical advancements from the original formulation and a list of its applications are provided. In brief, the assertion of the BL is that, once taken a large set of numbers, the first digits distribution follows a logarithmic law:

$$P(d) = \log_{10}(1 + \frac{1}{d}), \quad d = 1, 2, \ldots, 9, \quad (1)$$

where $P(d)$ is the probability that some numbers from the data set have their first digit equal to d; \log_{10} being the logarithm in base 10. For the reader’s convenience, in Table 1 we show the frequencies of the first digit as given by the BL.

The applications of BL range in a wide set of fields. A list of recent contributions (published after the list of Torres et al.) should e.g. include Tödter (2009), Bazzani et al. (2010), Rauch et al. (2011), De and Sen (2011), Mir (2012, 2014), Mir et al. (2014), Ausloos and Clippe (2012), Ausloos et al. (2015). In the specific context of financial applications, BL violations might be meaningfully associated to data misalignments (as much demonstrated by Nigrini 1992, 1996) and toxicity of the markets, but also to other cases (Ausloos et al. 2015). Some papers are particularly relevant here. Varian (1972) tested – through BL – the presence of anomalies over a set of land planning data for 777 tracts, roughly corresponding to census tracts in the area of San Francisco Bay: input data (in year 1967) and forecasts (for years between 1970 and 1990). He found surprisingly, yet somewhat expected, agreement (not his own words) with BL.

Nigrini (1992, 1996) assessed mistakes over a large collection of accounting data, and explained them
by invoking frauds or, simply, misprints in the data reporting process (see also Nigrini and Mittermeir, 1997). It is also worth noting the contributions of Ley (1996) who studied the stock market by using Benford’s Law (BL); Realdon (2008) who applied the BL and linked the CDS market to the stock market, and Carrera (2015) who used BL to analyze numerical patterns in exchange rates in order to verify whether they appear to have been subject to some degree of policy management. In line with Abrantes et al. (2011), Judge and Schechter (2009) and Varian (1972), we use the BL to verify the quality and credibility of CDS data. This is a key issue since CDS are traded in decentralized Over The Counter (OTC) markets which are often pictured as opaque and with little information about pricing mechanisms, price settlement and trading volumes. Moreover, we scientifically move from the perspective of CDS as complex systems (see e.g. Giansante et al., 2012 and Kim and Jung, 2014, where the CDS volatility is studied by adopting a network approach; supporting arguments on the complex nature of the CDS can be also found in Burns et al., 2013). In so doing, we are also in line with the literature stating that BL provides an informative content mainly when the data generating process is a complex system (see e.g. Li et al., 2015).

Here, we adopt a data science perspective, aiming at deciphering the presence of anomalies in the daily changes of sovereign CDS quotes. There are three main reasons why we chose the sovereign CDS: first, before the recent crisis, CDS were often lauded as derivative instruments that could stabilize the financial system as a whole because of their portentous risk transferring and risk signaling abilities. Secondly, the CDS market has grown tremendously over the last decade and is currently an integral part of the financial system. Thirdly, there is some anecdotal evidence that major banks manipulated CDS prices. For example, it is worth citing the case of Reuters reporting that big U.S. banks face CDS manipulation lawsuit1 and the one of US Senator Carl Levin that has accused Goldman Sachs to manipulate CDS quotes2.

Thus, the up-to-date relevance of the present investigation can be found in the growing importance of the role played by sovereign CDS in the globalized financial market (Longstaff et al., 2011).

Indeed, after the financial crisis started in 2007 in the United States, financial markets have found a new concern since the beginning of 2010: the levels of deficits and public debts. All developed countries, even the largest, are suspected of being able to default on their debt. Rating agencies, bankers and investment funds have begun to worry about the sustainability of public finances and required countries to reduce their debt by cutting government spending, especially social spending. In this context, it can be observed that the recent development of CDS on the debt of developed countries has launched CDS as tools for estimating the probability of default of the States, although their quotes are determined on an opaque and poorly regulated market (Jarrow, 2011). As a consequence, the scientific interest for sovereign CDS mainly focuses on a time span which includes the

1http://mobile.reuters.com/article/idUSL1N0R51TS20140904?irpc=932
2http://blogs.reuters.com/felix-salmon/2010/12/10/annals-of-cds-manipulation-goldman-sachs-edition/
Table 1: Frequencies of the first digit in a set of data – values ranging from 1 to 9, see the first row – according to BL.

key dates characterizing the financial crisis which is still experienced. Indeed, a considerable number of sovereign CDS contracts were signed in the early stages of the crisis (2008-2010), particularly on the wake of the turbulence following the failure of Lehman Brothers. Pre-crisis periods are generally associated to low volumes of these products. Consequently, the limited meaningfulness of the analysis of their paths allows us to shorten such considerations in this paper.

A broad range of literature analyzes the CDS market (Bao et al., 2011; Castellano and D’Ecclesia, 2013; Castellano and Scaccia, 2014, only to mention the most recent ones) and, especially in the last six years, due to the European sovereign debt crisis, the scientific literature has placed more emphasis on sovereign CDS. Many of the recent studies have found that CDS quotes on debt securities increase substantially before financial crises become full-blown. However, it is worth to mention that, beyond its signaling power, the CDS market still poses many questions in relation to its full transparency and its capacity to spread of market disturbances – mostly on the downside – from one country to the other. For instance, Afonso et al. (2012) use EU sovereign CDS spreads to carry out an analysis on the reaction of spreads to announcements from rating agencies. They show that quotes are sensitive to announcements, and that spillover effects from lower to higher rated countries among EMU countries, together with persistence effects, can be observed. Longstaff et al. (2011) show that sovereign CDS quotes are driven more by global market factors, risk premiums, and investment flows than by country-specific macro-economic fundamentals. In other words, their analysis supports a view of the sovereign CDS market in which investors play a predominant role.

Some other studies highlight that the price discovery mechanism and the knowledge of actual net positions of financial institutions are necessary to ensure the transparency of the CDS market (Cont and Kokholm, 2014).

2 Paper content

The dataset considered in this paper is given by Thomson Reuters Composite Sovereign CDS spreads for 13 European countries on a daily basis. Countries are distributed in four main groups: a) the core economies - France Germany, United Kingdom; b) the most worrying economies - Ireland, Italy, Portugal and Spain; c) the Eastern economies - Croatia, Czech Republic, Poland, Romania - and Turkey; d) Greece. Spreads are provided for two different tenors: 5 and 10 years. The period under
investigation is August 2008 - April 2015. Such a period includes the Lehman Brother’s bankruptcy and the sovereign debt crisis of developed countries, which are associated to increasing level of signed sovereign CDS contracts and to the interest in the analysis of their paths. The resulting time series gives then an amount of 42,000 spread observations.

The conformance between daily changes in CDS spreads and BL has been checked by performing two different typologies of procedures. First, for both tenors (5 and 10 years) a χ^2 test has been implemented over the entire period and over four noticeable sub-periods: (i) August 8, 2008 - April 25, 2015; (ii) August 8, 2008 - January 1, 2010; (iii) January 1, 2010 - October 31, 2013; (iv) November 1, 2013 - April 25, 2015; (v) January 1, 2010 - April 25, 2015. Such sub-periods were chosen to highlight the time span of the European sovereign debt crisis and the one that preceded it. Second, for the reference contract (5 years), a BL conformity track has been implemented by computing three statistical indicators over moving windows of 120 days length, with 60 days overlap: a χ^2 test, the Chebyshev’s distance and the Kullback and Leibler’s divergence.

It will be shown that several insights can be derived from the analysis: first of all, there is much evidence of conformity with BL, but not in all cases. In particular, the BL validity hypothesis can be accepted for a wide set of countries, but only in the 10 yrs tenor case. Differently, BL is rather systematically violated in the case of most liquid products, i.e. in the 5 yrs tenor case. The core economies show remarkable discrepancies with respect to BL, suggesting a major deviation of the daily changes sovereign CDS spreads. It seems also that such violations are more evident after 2010, and this leads to conjecture the presence of a relationship between the financial distress and non conformity of CDS data to BL. Greece can be viewed as a very special case, in that it follows a very different path with respect to the other European countries.

Of course, we cannot exclude the presence of scale effects biasing the obtained results. In fact, CDS quotes can be very shallow since net and gross CDS volumes for all the tenors represent typically a small fraction of the outstanding government debt. In this respect, the most liquid one – i.e. the 5yrs-CDS – represents an even smaller fraction of the total outstanding debt. Thus, the evolution of CDS spreads might be driven more by liquidity constraints than by movements in the underlying sovereign risk perception. Anyway, for a definitive validation, a scale effect conjecture deserves further investigations, which are beyond the scopes of this paper.

Thus, this paper is organized as follows: Section 3 contains the description of the experiments, along with the presentation of the used dataset. In Section 3, the main results of the experiment are discussed. Section 4 offers some concluding remarks through a discussion of the results.
3 Experiments

In this section, we describe the empirical experiments carried out for testing the conformity of the daily changes in CDS spreads with the BL. First, the used dataset is introduced: for a better understanding of the data scales, the main descriptive statistics are reported (see Subsection 3.1). Furthermore, for the reader’s convenience, we recall the definition of CDS and their main properties. Second, the adopted methodological tools are listed and discussed. The procedures implemented for analyzing the deviations between the first digit of the CDS spreads and BL distribution are also presented (see Subsection 3.2).

3.1 Data

We use daily Thomson Reuters Composite Sovereign CDS spreads of 13 European countries provided by Data Stream, both inside and outside the European Union and European Monetary Union. Thomson Reuters is fairly acknowledged as one of the leading data providers of CDS quotes. The Thomson Reuters end-of-day composite spreads are calculated by a standard aggregation of the prices contributed by major market makers. With respect to individual dealer’s prices, the aggregated (composite) prices allow a more comprehensive perspective on the market (Mayordomo et al., 2014).

We use daily CDS spreads in basis points\(^3\) (bps.) and two different tenors (5 and 10 years), starting from August 2008 to April 2015. The time series considers 1,750 days, which results in a total of 42,000 spread observations. We recall that we consider four sets of countries, as indicated above: a) the core economies - France Germany, United Kingdom; b) the most worrying economies - Ireland, Italy, Portugal and Spain; c) the Eastern economies - Croatia, Czech Republic, Poland, Romania - and Turkey; d) Greece. The first two groups contain countries on the basis of their credit risk: the first contains countries with a credit rating of at least ”A”, while the second group contains all CDS entities rated worse than ”A”. The third considers a specific geographical area, Eastern economies and Turkey, while the fourth contains only Greece, - which is the first European country that has experienced in 2012 a partial default after the constituency of the currency union.

The time interval for such a study is taken as a whole: (i) August 8, 2008 - April 25, 2015, but it is also useful to consider special subclasses: (ii) August 8, 2008 - January 1, 2010; (iii) January 1, 2010 - October 31, 2013; (iv) November 1, 2013 - April 25, 2015, and the (v) January 1, 2010 - April 25, 2015 which regroups the latter two time periods. The analysis was conducted also on the sub-periods of the considered time span to highlight whether the advent of the sovereign crisis may have been one cause of the major/minor conformance of the daily changes in CDS quotes with BL.

\(^3\)A basis point (bp) is equal to1/100th of 1%.
The European sovereign debt crisis is, indeed, a multi-year crisis that has been taking place through successive stages since the end of 2009. Especially during the period (iii), it is common knowledge that the ”most worrying economies”, faced a strong rise in spreads as the result of a widespread concern about their future debt sustainability.

During period (iv), European CDS quotes have shown, with respect to period (iii), a downward trend in the CDS spread level, with the only exception of Greece and Turkey. Table 2 reports some descriptive statistics and shows that after the large upward jump observed during period (iii), the CDS quotes of the core economies, together with worrying economies and eastern economies, experienced a tendency to decrease. For instance, the mean 5 years German tenor decreased from 53.06 to 20.44 bps.; the corresponding Italian one from 282.42 to 127.17 bps and the Portuguese from 601.71 to 204.92, only to mention some of them. It is worth to mention that a large downward jump is observed also in the historical volatility (i.e. standard deviation).

For reader’s convenience, at this stage, it is fair to recall what a CDS is aimed at and its general properties. Generally speaking, a CDS is an agreement between two parties (the buyer and the seller). The buyer pays a periodic premium, usually quarterly or semianual, to hedge an underlying security, a loan or a bond, against the default of the issuer. Upon the default of the issuer, the seller commits herself/himself to pay the amount the buyer will not recover from the default procedure. As a result of this agreement, the buyer of a CDS receives credit protection, whereas its seller guarantees the creditworthiness of the underlying debt security. So, the risk of default is transferred from the holder of the fixed income instrument to the seller of the swap. When CDS are used to hedge against the default (or downgrade) of a State, they are called in jargon ”sovereign CDS”.

The Credit Default Swap (CDS), because of their above mentioned structure, implicitly embed forward-looking information about the creditworthiness of the issuer, – given that CDS spreads are no more than the cost of credit risk insurance. At the same time, CDS market is the source of regulatory concerns due to its size and lack of transparency. As a matter of fact, the CDS market is a decentralized unregulated OTC market in which detailed information about the pricing mechanisms is rather scarce and contracts often get traded so much that it is hard to know who stands at either end of a transaction (Cont and Kokholm, 2014; Cont, 2010).

Therefore, in order to investigate the (possible) presence of irregularities in the CDS market more closely, we make use of the empirical Benford’s distribution, Eq. (1), and analyze daily changes in sovereign CDS quotes for the mentioned European countries, inside and outside the European
Union and European Monetary Union, in time intervals admittedly characterized by the effects of the sovereign debt crisis. We will find that CDS spreads depart significantly from the expected Benford’s reference distribution, raising potential concerns relative to the unbiased nature of the warning signals related with sovereign risk coming from the CDS market.

3.2 Methodology

In the case of the daily changes in sovereign CDS quotes, the statistical assessment of the closeness between the observed distribution of digits and the corresponding values of BL is verified by using 3 different approaches. First, the χ^2 test is computed on the overall sample and on the sub-periods (ii)-(v) introduced in Subsection 3.1. In doing so, we are able to statistically observe whether the data fit the BL, at a given confidence level. Then, we compute the Chebyshev’s distance and the Kullback and Leibler’s divergence in moving windows, in order to track the time-dependence consistency of the observed frequencies with the ones associated to BL.

The χ^2 test is one of the most used statistical tools for checking whenever a series of data satisfy a hypothesis, here the BL. In the first digit case, there are nine possible outcomes – ranging from 1 to 9 – since zero cannot be viewed as a significant first digit of a number. Thus, we deal with $n = 9$ values and $n - 1 = 8$ degrees of freedom for the χ^2 test, according to the formula:

$$\chi^2(8) = \sum_{i=1}^{9} \left(\frac{N_{obs}^{(i)} - N_{BL}^{(i)}}{N_{BL}^{(i)}} \right)^2,$$

where $N_{obs}^{(i)}$ is the number of observations of the i-th digit and $N_{BL}^{(i)}$ is the related theoretical one suggested by the BL, for each $i = 1, \ldots, 9$.

The critical values of the χ^2 test with 8 degrees of freedom and the corresponding level of confidence are used to identify the acceptance region. In the case of significance level of 0.05 and 8 degrees of freedom, the critical value of the χ^2 test is 15.507. If the χ^2 test – calculated as in (2) – is below such a critical value, then the null hypothesis of consistency of the data with the BL is accepted at a significance level of 0.05.

The Chebyshev’s distance between two discrete probability distributions is given as:

$$d_C(P_{obs}, P_{BL}) = \max_{i=1,\ldots,9} |p_{obs}^{(i)} - p_{BL}^{(i)}|,$$

where, – in the peculiar case we deal with here, $P_{obs} = (p_{obs}^{(1)}, \ldots, p_{obs}^{(9)})$ is the vector of the observed frequencies for the first digit, while $P_{BL} = (p_{BL}^{(1)}, \ldots, p_{BL}^{(9)})$ is the one associated to BL.

By adopting the same notation, the Kullback and Leibler’s divergence between the observed and BL frequencies is:

$$d_{KL}(P_{obs}, P_{BL}) = \sum_{i=1}^{9} p_{obs}^{(i)} \ln \left(\frac{p_{obs}^{(i)}}{p_{BL}^{(i)}} \right).$$
The interpretation of the Chebyshev’s distance can be easily grasped when looking at formula (3). It is easily argued that a high value of $d_C(P_{obs}, P_{BL})$ indicates that there exists $i = 1, \ldots, 9$ such that $p^{(i)}_{obs}$ and $p^{(i)}_{BL}$ are remarkably different. *A contrario*, a low value of $d_C(P_{obs}, P_{BL})$ is associated to small deviations of $p^{(i)}_{obs}$ from $p^{(i)}_{BL}$, for each $i = 1, \ldots, 9$. The extreme cases are $d_C(P_{obs}, P_{BL}) = 0$ – when $P_{obs} \equiv P_{BL}$ in a component-wise sense – and $d_C(P_{obs}, P_{BL}) = \max_i |p^{(i)}_{BL}| = |p^{(1)}_{BL}|$ – when $P_{obs} = 0$.

The Kullback and Leibler’s divergence measures the information loss when P_{obs} is taken as an approximation of the first digit distribution given by P_{BL}. Then, d_{KL} contributes to a correct evaluation of the entity of the deviation of a set of data from BL when the first digit is considered. Therefore, the Kullback and Leibler’s divergence can be interpreted as a proxy of the degree of opaqueness of the CDS market.

Next, we propose to examine the Chebyshev’s distance and the Kullback and Leibler’s divergence in the view of a time track of the transparency of sovereign CDS market. For this aim, 90-days rolling windows have been considered, with a moving time of 45 days. The initial date is August 8, 2008 and the terminal one is April 25, 2015, whence leading to examine 38 time windows.

4 Results

This section contains a critical reading of the results of the analysis. We proceed by considering first the whole period along with its four subperiods, and then a moving window approach.

4.1 Whole time interval and its subperiods

Table 3 collects the values of χ^2 tests and related p-values for the considered 13 countries when the overall time interval and the four sub-periods (ii)-(v) are taken into account.

INSERT TABLE 3 ABOUT HERE

Caption. χ^2 tests by country and time interval.

Fixed a significance level of 0.05, table 3 shows that – when considering the entire period – the null hypothesis of BL is in general verified only in the case of 10 yrs tenor and not in the 5 yrs one. This is true especially for France (the p-value is about 0.95) and Czech Republic (0.97), but also for Portugal (0.89), UK (0.80), Croatia (0.80), Spain (0.78), Ireland (0.71). This outcome suggests that 5 yrs CDS spreads are probably the most ”manipulated” ones. After all, it is useful to underline that these discrepancies occur mainly in the commonly accepted reference contract, being the 5 yrs tenor the most liquid in the CDS market. Greece represents the only exception, with BL holding only for the changes in 5 yrs CDS quotes with a p-value of 0.94, decreasing to 0.75 in the case of 10
yrs contracts. However, Greece is also a very peculiar case, not only because of missing data, but also due to a persistent economic distress which characterizes all the periods under investigation. BL is violated for Germany, Poland, Italy, Romania and Turkey in both tenor cases. It is also worth to remark here that the data of all the core economies present a remarkable discrepancy with BL in the case of 5 yrs tenor. These findings again suggest that the most liquid contracts – as the 5 yrs tenors for the core economies – are those more easily “manipulable”. The analysis of sub-periods provides more insights on when data show a higher deviation from BL. The values of the χ^2 tests are higher (and BL is more likely violated) over the sub-period 2010-2015 for all the considered countries and tenors, with the only exception of the 4 Eastern European Countries (Croatia, Czech Republic, Poland and Romania). However, focusing on the sub-periods 2010-2013 and 2013-2015, it is possible to identify – by comparing the former period with the latter one – a wider discrepancy with BL for Germany, UK, Czech Republic (5 yrs tenor) and Germany, Italy, Romania, Turkey (10 yrs tenor), a lower distortion for Italy, Croatia, Poland, Romania, Turkey (5 yrs tenor) and France, Ireland, Poland, (10 yrs case). Moreover, with the exception of Greece, the daily changes in 5 yrs tenors CDS spreads never satisfy BL. In particular, splitting 2010-2015 in two sub-periods (iii)-(iv) does not seem to produce any striking result allowing us to identify a sub-period in which the violations of BL for core economies occur, whence allowing us to conclude that such BL violations are rather uniform and pervasive. Completely different is the outcome of the analysis for the sub-period 2008-2010. In this case, the distribution of the data is generally closer to BL, especially for the 5 yrs tenor case, suggesting that data may have been objects of “manipulation” after 2010.

4.2 Rolling windows

In order to better identify periods in which the distribution of sovereign 5 yrs CDS quotes deviates from BL, we performed an analysis on moving windows to test the closeness of the distributions for rolling two months periods. The tracking of the χ^2 tests by countries are reported in Table 4, where the values of the test by country and moving window are reported.

INSERT TABLE 4 ABOUT HERE

Caption. χ^2 tests by country and moving window.

INSERT FIGURE 1 ABOUT HERE

Caption. Linear trends for the χ^2 tests over the moving windows.

Considering a significance level of 0.05, an overview of the results suggests mixing evidence. Some windows are associated to a great departure from the BL (see e.g. the high values of the χ^2 test over the windows XXVIII-XXXIII for the core economies, over the windows XXVI-XXVII
for Croatia, XXXI-XXXVII for Poland) while in other ones there is concordance with BL (see e.g. window III for France, XII for Germany, IV for UK, VIII for Italy and the very low value of χ^2 test – i.e.: 1.49 – in the first window for Portugal). It seems that the distance between the distributions tends to increase with respect to time, as is evidenced by Figure 1, graphics a-c, where a trend line is superimposed on the temporal evolution of the values of the χ^2 test. With the Czech Republic and Turkey exceptions, the group Eastern economies + Turkey shows the same tendency, that is the distance between the two distributions increases when one gets closer to the advent of the sovereign debt crisis (see Table 4 and Figure 1, d-h). Similar results are obtained in the case of countries which are in the group of the worrying economies (see Table 4 and Figure 1, i-m). In summary, contrary to what happens for the group of worrying economies, it seems that CDS quotes of core economies have been "manipulated", with increasing evidence during the European debt crisis.

Finally, Tables 5 and 6 show respectively the values of the Chebyshev’s distance and Kullback and Leibler’s divergence by moving window and country.

The tracking of the Chebyshev’s distance (see Table 5) and the Kullback and Leibler’s divergence (see Table 6), confirm some of the above mentioned results (for the discordance case see e.g., in Table 5, the high values in windows XXVIII-XXX for the core economies, in window XXVI for Croatia, XXXI-XXXII for Poland and, for Table 6, windows XXVIII-XXXI for Germany and UK, windows XXVI-XXVII for Croatia and XXXI-XXXIII for Poland; for the concordance with BL see e.g. window I for Portugal and window III for France in both Tables). Furthermore, Table 5 and Table 6 allow us to add some conclusion to previous results. This is possible because the Chebyshev’s distance captures the largest deviation between the empirical frequencies of the numerical values of the first digits and those associated to BL, while the Kullback and Leibler’s divergence represents a proxy of the information loss due to the approximation of the BL through the empirical frequencies of the first digits. In this respect, Table 5 shows that the Chebyshev’s distance ranges over a rather narrow interval. However, it seems to assume higher values in the most recent rolling windows for some core countries (Germany and UK), exhibits a U-shape form in the case of Italy and Poland while it is a reversed U-shape in the remarkable case of Greece (but notice the large amount of missing data). In terms of levels, it is important to note that Germany, UK, Czech Republic and Poland exhibit very high maximum values of the Chebyshev’s distance (more than 0.18). This
evidence suggests that in some rolling windows BL is violated because 1 – the most frequent first digit – appears less than BL would suggest. The countries whose sovereign CDS exhibit the smallest maximum deviation from BL are Portugal and Turkey.

Looking at Table 6, it can be observed that there exists a positive trend for UK, Poland, Romania and Turkey. For these countries, the information loss in explaining BL through the empirical distributions is very large for the most recent rolling windows. A few countries (UK, Czech Republic and Poland) show a rather high value of the maximum of the Kullback and Leibler’s divergence (more than 0.27, with the peak of UK at 0.37), suggesting a higher level of deviation over some sub-periods. Differently, Italy and Portugal seem to exhibit less distorted distribution.

5 Conclusions

In this article, we adopt a data science perspective and discuss the validity of the BL for some European sovereign CDS over a eight years period, which includes the current financial crisis. We have dealt with this issue by adopting different points of view. Firstly, a global analysis over the entire period on the fitting of BL with the daily changes in CDS for the first digits has been performed. Secondly, further elaborations have been performed by clustering the reference period into four meaningful sub-periods. Moreover, a tracking study has been carried out by considering a moving window approach. We illustrated the usefulness of BL to study the data quality of sovereign CDS. The employed statistical tools have been the χ^2 test – which provides a general goodness-of-fit measure, the Chebyshev’s distance – leading to results on the specific changing of the most manipulated digit value and the Kullback and Leibler’s divergence which is a measure of the loss of information in passing by BL to empirical frequencies.

Results suggest that the most liquid contracts seem to be the most ”manipulated” ones, and deviations involve mainly the core economies and the 5 yrs tenor case. It is worth to note that Greece follows a very different path with respect to the other European countries. Furthermore, ”manipulations” seem to have occurred mainly after the beginning of the sovereign debt crisis.

References

[1] Abrantes-Metz R.M., Villas-Boas S.B., and Judge G., 2011, Tracking the Libor rate. Applied Economics Letters 18, 893-899.

[2] Afonso A., Furceri D., Gomes P., 2012, Sovereign credit ratings and financial markets linkages: Application to European data. Journal of International Money and Finance, 31, 606-638.

[3] Ausloos, M., Clippe, P., 2012. Benford’s law and Theil transform of financial data. Physica A 391(24), 6556-6567.
[4] Ausloos, M., Herteliu, C., Ileanu, B., 2015. Breakdown of Benford’s law for birth data. Physica A 419, 736-745.

[5] Bao, J., Pan, J., Wang, J., 2011. Liquidity of Corporate Bonds. Journal of Finance 66, 911-946.

[6] Bazzani, A., Giorgini, B., Rambaldi, S., Gallotti, R., Giovannini, L., 2010. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. Journal of Statistical Mechanics: Theory and Experiment 05, P05001.

[7] Benford, F., 1938, The law of anomalous numbers, Proceedings of the American Philosophical Society 78, 551-572.

[8] Burns, T.R., Martinelli, A., DeVille, P., 2013. A Socio-economic Systems model of the Global Financial Crisis of 2007+: Power, innovation, Ideology, and Design Failure. In: Financial Crises and the Nature of Capitalist Money, London: Palgrave Macmillan.

[9] Carrera, C., 2015, Tracking exchange rate management in Latin America. Review of Financial Economics 25, 35–41.

[10] Castellano R., D’Ecclesia R.L., 2013, CDS Volatility: the Key Signal of Credit Quality. Annals of Operations Research 205, 89-107.

[11] Castellano R., Scaccia L., 2014, Can CDS indexes signal future turmoil in the stock market? A Markov switching perspective. Central European Journal of Operations Research 22, 285-305.

[12] Cont R., Kokholm T., 2014, Central clearing of OTC derivatives: Bilateral vs multilateral netting. Statistics & Risk Modeling, 31, 3-22.

[13] Cont R., 2010, Credit default swaps and financial stability. Financial Stability Review, 14, 35-43.

[14] De, A.S., Sen, U., 2011, Benford’s law detects quantum phase transitions similarly as earthquakes. Europhysics Letters, 95, 50008.

[15] Markose, S., Giansante, S., Shaghaghi A.R., 2012. ”Too interconnected to fail” financial network of US CDS market: Topological fragility and systemic risk. Journal of Economic Behavior and Organization, 83(3), 627-646.

[16] Jarrow, R.A., 2011, The Economics of Credit Default Swaps. Annual Review of Financial Economics, 3, 235-257.

[17] Judge G., Schechter L., 2009. Detecting problems in survey data using Benford’s law. Journal of Human Resources 44, 1–24
[18] Kim, K., Jung, S.S., 2014. Empirical analysis of structural change in Credit Default Swap volatility. Chaos, Solitons and Fractals 60, 56-67.

[19] Ley E., 1996, On the peculiar distribution of the U.S. stock indexes’ digits. The American Statistician, 50, 311-313.

[20] Li, Q., Fu, Z., Yuan, N., 2015. Beyond Benford’s Law: Distinguishing Noise from Chaos. PLoS ONE 10(6), e0129161.

[21] Longstaff F.A., Pan J., Pedersen L.H., and Singleton K.J., 2011, How Sovereign Is Sovereign Credit Risk? American Economic Journal: Macroeconomics, 3, 75-103.

[22] Mayordomo S., Peña J.I., Schwartz E.S. Are All Credit Default Swap Databases Equal? European Financial Management, 20, 677-713.

[23] Mir, T.A., 2012 The law of the leading digits and the world religions. Physica A 391(3), 792-798.

[24] Mir, T.A., 2014 The Benford law behavior of the religious activity data. Physica A 408, 1-9.

[25] Mir, T.A., Ausloos, M., and Cerqueti, R., 2014, Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. The European Physical Journal B, 87, 261.

[26] Newcomb S., 1881, Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics 4, 39-40.

[27] Nigrini, M.J., 1992, The detection of income tax evasion through an analysis of digital distributions, Ph. D. Dissertation, University of Cincinnati.

[28] Nigrini, M.J., 1996, A Taxpayer Compliance Application of Benford’s Law, Journal of the American Taxation Association, 18(1), 72-91.

[29] Nigrini, M. J., and Mittermeir, L. J., 1997, The Use of Benford’s Law as an Aid in Analytical Procedures. Auditing: A Journal of Practice & Theory, 16, 52-67.

[30] Rauch, B., Götsche, M., Brähler, G., and Engel, St. 2011. Fact and Fiction in EU-Governmental Economic Data, German Economic Review, 12(3), 243-255.

[31] Realdon, M., 2008, Credit default swap rates and stock prices. Applied Financial Economics Letters, 4, 241–248.

[32] Tödtter, K-H. 2009. Benford’s Law as an Indicator of Fraud in Economics, German Economic Review, 10(3), 339-351.
[33] Torres, J., Fernandez, S., Gamero, A., and Sola, A., 2007. How do numbers begin? (The first digit law). European Journal of Physics 28, L17.

[34] Varian H., 1972, Benford’s law. The American Statistician 26, 65-66.