A companion to AB Pic at the planet/brown dwarf boundary*

G. Chauvin1, A.-M. Lagrange2, B. Zuckerman3, C. Dumas1, D. Mouillet4, I. Song3, J.-L. Beuzit2, P. Lowrance5, and M. S. Bessell6

1European Southern Observatory, Casilla 19001, Santiago 19, Chile
2Laboratoire d’Astrophysique, Observatoire de Grenoble, 414, Rue de la piscine, Saint-Martin d’Hères, France
3Department of Physics & Astronomy and Center for Astrobiology, University of California, Los Angeles, Box 951562, CA 90095, USA
4Laboratoire d’Astrophysique, Observatoire Midi-Pyrénées, Tarbes, France
5Spitzer Science Center, Infrared Processing and Analysis Center, MS 220-6, Pasadena, CA 91125, USA
6Research School of Astronomy and Astrophysics Institute of Advanced Studies, Australian National University, Cotter Road, Weston Creek, Canberra, ACT 2611, Australia

Received September 15, 1996; accepted March 16, 1997

Abstract. We report deep imaging observations of the young, nearby star AB Pic, a member of the large Tucana-Horologium association. We have detected a faint, red source 5.5′′ South of the star with JHK colors compatible with that of a young substellar L dwarf. Follow-up observations at two additional epochs confirm, with a confidence level of 4.7σ, that the faint red object is a companion to AB Pic rather than it being a stationary background object. A low resolution K-band spectrum indicates an early-L spectral type for the companion. Finally, evolutionary model predictions based on the JHK photometry of AB Pic b indicate a mass of 13 to 14 MJup if its age is ∼ 30 Myr. Is AB Pic b a massive planet or a minimum mass brown dwarf?

1. Introduction

In October 2000, we began a deep imaging survey of stars in young, nearby southern associations to search for companion brown dwarfs and giant planets. First, we used the ADONIS/SHARPII adaptive optics (AO) instrument at the ESO/3.6 m telescope (Chauvin et al. 2003). Since November 2002 we have pursued the survey with the VLT/NACO instrument. We mainly focused our search on the Tucana-Horologium (Torres et al. 2000, Zuckerman & Webb 2000) and TW Hydrae (Kastner et al. 1997) associations, as well as the β Pictoris (Zuckerman et al. 2001) and AB Doradus (Zuckerman et al. 2004) co-moving groups, to explore the circumstellar environment within semimajor axes between tens and hundreds of AU with detection limits down to a few Jupiter masses.

This strategy resulted in the astrometric and spectroscopic confirmation of a brown dwarf companion to GSC08047-00232 (Chauvin et al 2005, Neuhäuser & Guenther 2004) and detection of a giant planet companion candidate to the young brown dwarf 2M1207 (Chauvin et al. 2004; Chauvin et al. 2005, submitted).

In March 2003, we observed the young star AB Pic (HIP 30034, K2V, V=9.16, d = 47.3±1.5 pc), identified by Song et al. (2003) as a member of the large Tucana-Horologium association of estimated age ∼ 30 Myr, according to a comparison of V − K versus M_K with evolutionary tracks. At 5.5″ South from AB Pic, we detected (Fig. 1) a faint and red object with a near-IR color compatible with that observed for cool L dwarfs (Leggett et al. 2002). We re-observed both objects in March and September 2004 in order to determine if they shared common proper motions. In December 2004, acquisition of a near-IR spectrum enabled us to determine the spectral type of AB Pic b and to confirm its substellar status.

2. Observations

AB Pic A and b were imaged with NACO using classical imaging and coronagraphy (Table 1 and Fig. 2). The JHK photometry of AB Pic A is known from the 2MASS All-Sky Catalog of Point Sources (Cutri et al. 2003). On 17 March 2003, we measured the JHK contrasts of AB Pic A and b, using the deconvolution algorithm of Véran & Rigaut (1998), so as to determine the photometry of AB Pic b (see Table 2). The transformation between the K_s filter of NACO and the K filter used by CTIO-2MASS was found to be smaller than 0.03 magnitude. On 5 March 2004 and 26 September 2004, follow-up observations of AB Pic A and b were acquired in the H band with the S13 camera to provide the best compromise between high angular resolution and AO correction. To calibrate the platescale and the detector orientation, we observed at each epoch the astrometric field of θ Ori 1 C. The orientations of true north of the S13
camera were found on 16 March 2003, 5 March 2004 and 26 September 2004 respectively at −0.05", 0.04", 0.20" east of the vertical with an uncertainty of 0.10". The pixel scale was found to be relatively stable in time with values of 13.21 ± 0.11 mas, 13.24 ± 0.05 mas and 13.23 ± 0.09 mas.

The NACO spectroscopic observations of AB Pic b were obtained on 3 December 2004, using the low resolution (R = 550) grism with the 86 mas slit, the S54 camera (54 mas/pixel) and the SHK filter covering the entire spectral range between 1.39 and 2.52 μm. The telluric standard star HIP 33632 (B6V) was also observed. After subtracting the sky and dividing by a flat field using {	extit{eclipse}} (Devillard 1997), the spectra of AB Pic b and HIP 33632 were extracted and calibrated in wavelength with {	extit{IRAF/DOSLIT}}. To calibrate the relative throughput of the atmosphere and the instrument, we divided the extracted spectrum of AB Pic b by the spectrum of HIP 33632. To restore the continuum shape, we then multiplied by a composite spectrum of a B6IV star taken from a library of stellar spectra (Pickles 1998).

3. Companionship confirmation

To verify that AB Pic A and b were comoving together in the sky and thus physically bound, their relative positions were determined on 17 March 2003, 5 March 2004 and 26 September 2004 (see Table 3). We then took into account the proper motion of AB Pic A from the Tycho catalog [Høg et al. (2000)]

\[\mu_x = 15.9 \pm 1.2 \text{ mas/yr} \] and \[\mu_y = 46.2 \pm 1.2 \text{ mas/yr} \], its expected parallactic motion and the detector calibrations at each epoch (platescale and detector orientation, see section 2). The expected variations in separation and position angle in the case of a bound companion and of a background stationary object are shown in Fig. 2. The maximal orbital motion of AB Pic b from March 2003 to September 2004 is < 12 mas. In the case of a stationary background object, important variations are expected in both separation and position angle. Between March

Table 2. Photometry of AB Pic A and b

Component	J (mag)	H (mag)	K (mag)
AB Pic A	7.58 +/− 0.03	7.09 +/− 0.03	6.98 +/− 0.03
AB Pic b	16.18 +/− 0.10	14.69 +/− 0.10	14.14 +/− 0.08

a from the 2MASS All-Sky Catalog of Point Sources (Cutri et al. 2003).

b from \textit{a} and NACO measurements presented in this work.
H-band to chromatical e
portion of the AB Pic b spectrum which is less subject than the
observed by Knapp et al. (2004) for late-type L dwarfs.

2003 and September 2004, differences of separation and posi-
tion angle show that AB Pic b is not a stationary background
object, at the 4.7 σ confidence level.

Table 3. Astrometric measurements of AB Pic A and b and con-
fidence level estimation that AB Pic b is not a stationary back-
ground object.

UT Date	Separation (mas)	Position Angle (°)	Confidence Level
17/03/2003	5460 ± 14	175.33 ± 0.18	-
05/03/2004	5450 ± 16	175.13 ± 0.21	3.0 σ
26/09/2004	5453 ± 14	175.10 ± 0.20	4.7 σ

4. Spectral type determination

Based on the near-IR photometry presented in Table 2, we can
derive the near-IR colors of AB Pic b: \((J - K) = 2.04 \), \((J - H) = 1.49 \) and \((H - K) = 0.55 \). These values are consistent with that observed by Knapp et al. (2004) for late-type L dwarfs.

From spectroscopy, we decided to consider only the K-band
portion of the AB Pic b spectrum which is less subject than the
H-band to chromatical effects, mainly due to differential slit
centering and/or differential AO corrections between the sci-
ence source and the telluric standard (see Goto et al. 2002; Chauvin et al. 2004). Based on the template spectra for late-
M, L and T dwarfs of Leggett et al. (2001) and Geballe et al. (2002), we used a minimum \(\chi^2 \) adjustment to find the best tem-
plate spectra matching the broad water-band absorptions of the
AB Pic b spectrum. This allowed us to derive a spectral type
L1\(_{+2}\) for AB Pic b. The best adjustment is obtained with the
L1 dwarf 2MASSJ0345+2540 (see Fig. 3). In addition, various
water band indices confirm this spectral type estimation.

5. Temperature and mass determination

As an L1\(_{+2}\) dwarf companion to a 30 Myr old star, AB Pic b
is unambiguously a substellar object. To investigate its physi-
cal properties (mass, temperature and luminosity), evolutionary
model predictions can be compared to the absolute photometry
of AB Pic b. However, as described by Baraffe et al. (2002),
model predictions must be considered carefully as they are still
uncertain at early phases of evolution (< 100 Myr; see also
Mohanty et al. 2004 and Close et al. 2005).

We then considered the most commonly used models of
Burrows et al. (1997), Chabrier et al. (2000) and Baraffe et
al. (2002) to describe the atmospheric properties of young
brown dwarfs and giant planets. Table 4 displays predictions
of DUSTY models of Baraffe, of Burrows et al. (1997) and B.
Macintosh & M. Marley (personal communication). As may be
seen, for a 30 Myr old object, the two calculations agree rather
well, with one a bit redder in J-K than AB Pic b and the other a
bit bluer.

6. Gravitational collapse or core accretion?

With a model-derived mass of about 13 M\(\text{Jup}\), one can specu-
late whether AB Pic b is a giant planet or a brown dwarf. The
International Astronomical Union has recently adopted a defi-

![Fig. 2. Top: Differences of separation between AB Pic A and b on 17 March 2003, 5 March 2004, and 26 September 2004. Bottom: Differences of position angle for AB Pic A and b. The expected evolutions with their uncertainties for bound (solid line) and stationary background (dashed line) objects are indicated.](image)

![Fig. 3. K-band spectrum of AB Pic b acquired on 3 December 2004 with the low resolution (R = 550) grism of NACO, the 86 mas slit and the S54 camera (54 mas/pixel). The best \(\chi^2 \) adjustment is found with the L1 dwarf 2MASSJ0345+2540 (Geballe et al. 2002).](image)
tion to differentiate planetary and brown dwarf companions. The latter are objects with masses above the minimum mass for deuterium burning (13.6 M_{Jup}). Based on this criterion, as one may see from Table 4, it is going to be very difficult to decide between very high mass planet or a very low mass brown dwarf, given uncertainties in evolutionary models and in the age of AB Pic b. A second criterion, defended by an important fraction of the community, would be to differentiate planet from brown dwarf according to their origins of formation. But, more than discussing the definition of AB Pic b, everyone should agree that a more meaningful question is here to know whether this object has formed by gravitational collapse, that is, in a one-step process, or by a two-step process that begins with core accretion.

An answer is suggested by early results from imaging surveys for young planets in combination with data from the precision radial velocity technique (PRV). In the very close stellar environment, closer than ~ 4 AU, PRV results indicate a mass spectrum that increases toward lower masses, from 10 M_{Jup} to less than 1 M_{Jup} (see Jorissen et al. 2001). In contrast, our VLT survey of ~ 50 stars, which is sensitive to masses down to about 2 M_{Jup} at physical separations wider than ~ 80 AU, has revealed only the possible planetary mass companion AB Pic b (~ 13 M_{Jup} at ~ 260 AU). (The case of 2M1207 b is not considered in the discussion as the primary is a young brown dwarf). In addition, no other sensitive near-infrared imaging survey of young stars – with VLT/NACO (Masciadri et al. 2005), with the Keck AO system (Macintosh et al., in preparation) and with HST (Song et al., in preparation) – has yet reported any objects of planetary mass. Thus, this apparent absence of companions of a few Jupiter masses, suggests that wide companions like AB Pic b have formed in situ by gravitational collapse. In addition, for separations as large as ~ 260 AU, formation by core accretion of planetesimals seems very unlikely because of inappropriate timescales to form planetesimals at such distances (Augereau et al. 2001). Gravitational instabilities within a protoplanetary disk (Papaloizou & Terquem 2001; Rafikov 2005) or mechanisms proposed for brown dwarfs formation (Kroupa & Bouvier 2003) appear to be more probable scenarii to explain the origin of wide companions such as AB Pic b.

Interestingly, gravitational collapse mechanisms, which are relatively insensitive to metallicity, may also be true for very massive PRV planets with small semi-major axes (< 4 AU). Inspection of stellar metallicity vs planet mass data given in Santos et al (2004) and Fischer & Valenti (2005) indicates that the well-known correlation between high stellar metallicity and the existence of planets may not be present for stars with the highest mass planets (> 7 M_{Jup}; see also Rice et al. 2003). That is, these relatively few highest mass PRV planets may have formed by gravitational collapse, while the lower mass PRV planets formed mostly or entirely via core accretion with subsequent gravitational infall. As the number of systems, detected by PRV and direct imaging, continues to grow, it should be possible to confirm or deny these tentative correlations.

Acknowledgements. We would like to thank the staff of the ESO, Gilles Chabrier, Isabelle Baraffe and France Allard for providing the latest update of their evolutionary models, Sandy Leggett and Tom Geballe who kindly sent us their near-infrared template spectra, and finally Sandy Leggett again for her remarks on the letter.

References

Augereau, J.-C., Nelson, R.P., Lagrange, A.-M., Papaloizou, J.C.B. & Mouillet, D. 2001, A&A, 370, 447
Baraffe I., Chabrier G., Allard F. & Hauschildt P.H., 2002, A&A 382, 563
Burrows, A., Marley, M., Hubbard, W. B. et al. 1997, AJ, 491, 856
Chabrier, G., Baraffe, I., Allard, F. & Hauschildt, H. 2000, ApJ, 542, 464
Chauvin, G., Thomson, M., Dumas, C. et al. 2003, A&A, 404, 157
Chauvin, G., Lagrange A.-M., Dumas C. et al. 2004, A&A, 425, L29
Chauvin G., Lagrange A.-M., Lacombe F. et al. 2005, A&A, 430, 1027
Close, L.M. et al. 2005, Nature, 433, 286
Cutri, R. M., Skrutskie, M. F., van Dyk, S. et al. 2003, 2MASS All-Sky Catalog of Point Sources
Devillard N. 1997, The messenger, 87
Fischer, D.A. & Valenti, J. 2005, ApJ, 622, 1102
Geballe, T. R., Knapp, G. R., Leggett, S. K. et al. 2002, ApJ, 564, 466
Goto, M., Kobayashi, N., Terada H. et al. 2002, ApJ, 567, L59
Hög, E., Fabricius, C., Makarov, V.V. et al. 2000, A&A, 355, 27
Jorissen, A., Mayor, M. & Udry, S. 2001, A&A, 379, 992
Kastner, J.H., Zucker, B., Weintraub, D.A. & Forveille T. 1997, Science 277, 67
Knapp, G.R., Leggett, S. K., Fan, X. et al. 2004, AJ, 127, 3553
Kroupa, P. & Bouvier, J. 2003, MNras, 346, 369
Leggett, S. K., Allard, F., Geballe, T. R., Hauschildt, P. H. & Schweitzer, A. 2001, ApJ, 548, 908
Leggett, S. K., Golimowski, D. A., Fan, X. et al. 2002, ApJ, 564, 452
Masciadri, E., Mundt, R., Henning, Th. & Alvarez, C. 2005, ApJ, astro-ph/0502376
Mohanty, S., Jayawardhana, R. & Basri, G. 2004, ApJ, 609, 885
Neuhäuser, R. & Guenther, E.W. 2000, A&A, 420, 647
Papaloizou, J. C. B., Terquem, C. 2001, MNras, 325, 221
Pikke, A.J. 1998, PASP 110, 863
Rafikov, R. & Rice, R 2005, ApJ, 621, L69
Reid, I.N., Burgasser, A.J., Cruz, K.L., Kirkpatrick, J.D. & Gizis, J.E. 2001, AJ, 121, 1710
Rice, W., Armitage, P. & Bonnell, I. et al 2003, MNras, 346, L36
Santos, N.C., Israelian, G., & Mayor, M. 2004, A&A, 415, 1153

Table 4. Absolute magnitudes of AB Pic b compared to evolutionary model predictions (Burrows et al. 1997; Baraffe et al. 2002; B. Macintosh & T. Barman, private communication).

Model	Age (Myr)	Mass (M_{Jup})	T_{eff} (K)	M_{J} (mag)	M_{H} (mag)	M_{K} (mag)
AB Pic b	30	~ 12.80	~ 11.37	~ 10.76		
Burrows *	30.4	13	1513	12.8	11.9	11.2
	30.4	14	1856	11.5	10.7	10.1
DUSTY *	30	13	1594	14.0	12.2	11.0
	30	14	1764	12.8	11.5	10.5
	20	13	1672	13.2	11.7	10.7
	40	14	1701	13.3	11.8	10.7

* The gravity factor $\log(g)$ is respectively equal to 4.0 and 4.1 for the Burrows and DUSTY models.
Song I., Zuckerman B. & Bessel M.S. 2003, ApJ, 599, 342
Torres, C.A.O., Da Silva, L., Quast, G.R., de la Reza, R. & Jilinski, E.
2000, AJ, 120, 1410
Véran, J.P. & Rigaut, F. 1998, SPIE, 3353, 426
Wilking, B.A., Greene T.P. & Meyer M.R. 1999, AJ, 117, 469
Zuckerman, B. & Webb, R.A. 2000, ApJ, 535, 959
Zuckerman B., Song I., Bessel M.S.& Webb, R.A. 2001, ApJ, 562,
L87
Zuckerman B., Song I. & Bessel M.S. 2004, ApJ, 613, L65