The scenario of two families of compact stars

1. Equations of state, mass-radius relations and binary systems

Alessandro Drago1, Andrea Lavagno2, Giuseppe Pagliara1, and Daniele Pigato2

1 Dip. di Fisica e Scienze della Terra dell’Università di Ferrara and INFN Sez. di Ferrara, Via Saragat 1, I-44100 Ferrara, Italy
2 Department of Applied Science and Technology, Politecnico di Torino and INFN, Sez. di Torino, I-10129 Torino, Italy

Received: date / Revised version: date

Abstract. We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range $40 < L < 62$ MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to $2.75 M_\odot$ as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density.

PACS. PACS-key describing text of that key – PACS-key describing text of that key

1 Introduction

Ultra-relativistic heavy ions experiments have provided many indications of the formation of a new phase of strongly interacting matter, named quark gluon plasma, which is obtained by heating up hadronic matter (with almost vanishing baryon density) to temperatures of few hundreds MeV \cite{1}. In this state, the fundamental degrees of freedom of QCD, quarks and gluons, are deconfined. A very interesting question of nuclear and hadronic physics concerns the possibility of the formation of a deconfined phase also at large baryon densities and small temperatures. Natural systems to look for this state of matter are neutron stars. In this respect, the recent discoveries of two stellar objects \cite{23} with masses of $M = 2 M_\odot$ are very promising: the larger the mass the larger the baryon density in the core of the stars. Those massive compact stars are therefore the best systems for studying the structure of the QCD phase diagram at high densities.

There is huge collection of theoretical and phenomenological calculations aiming at establishing whether quark matter can form in these stellar objects and which would be the possible associated observational signatures. One can distinguish three possible scenarios: i) there is only one family of compact stars which are hybrid stars i.e. stars composed by hadronic matter at low density and quark matter at high density. See for instance Refs. \cite{4,5,6,7} for recent calculations providing equations of state stiff enough to support a star of $2 M_\odot$. ii) high mass “twin compact stars” \cite{8}. In this scenario most of the stars would be composed only of nucleonic matter. Stellar configurations with masses of about $2 M_\odot$ could be composed either of nucleonic or of hybrid matter. The two coexisting stellar configurations have different radii: hybrid stars are more compact than their “twin hadronic stars”. iii) two separated families of compact stars \cite{9}: hadronic stars which can be very compact and have a maximum mass of about $1.5 − 1.6 M_\odot$; quark stars which can be very massive, up to $2.75 M_\odot$, and have large radii.

The third scenario is the one we will present in this paper and in the accompanying paper 2. We will discuss in particular the phenomenological motivations in favor of this model and we will try to analyze the predictions which distinguish this model from the other two. The paper is

Send offprint requests to:
organized as follows: in Sec.2 we present the calculations of the equations of state of hadronic and quark matter. In Sec.3 we compare our theoretical results with the observational constraints on the masses and the radii of compact stars. In Sec. 4 we discuss the information one can obtain on the Equation of State (EoS) from the study of compact stars in binary systems. Final discussions and conclusions are presented in Sec. 5.

2 Equations of state

In this Section we present the EoS for hadronic and quark matter used in the present investigation. For hadronic matter a problem hugely discussed in the literature concerns how to reconcile the unavoidable appearance of hyperons (at densities of the order of $2 - 3\rho_0$) with the existence of compact stars with masses of $2M_\odot$. This problem is discussed in the contributions of Chatterjee and Vidana and of Oertel et al. in this volume. The similar problem of the appearance of delta resonances at finite density is much less discussed in the literature for reasons that we will clarify in the following. Here we summarize our findings concerning the simultaneous formation of hyperons and deltas within a relativistic mean field approach.

In the first subsection, the β-stable hadronic EoS is studied in the regime of zero temperature within a nonlinear relativistic Walecka-type model and in the framework of the so-called SFHo parametrization which takes into account the recent experimental constraints. In the second subsection, we extend the study of the SFHo model at finite value of entropy per baryon.

2.1 Hadronic equations of state including Δ-isobars and hyperons at $T = 0$

Concerning the hadronic EoS we consider in this paper two different relativistic EoS with the inclusion of the octet of lightest baryons (nucleons and hyperons) and $\Delta(1232)$ isobar resonances. First, we study the nonlinear GM3 model of Glendenning-Moszkowsky in which the interaction between baryons is mediated by the exchange of a scalar meson σ, an isoscalar vector meson ω and a isovector vector ρ \cite{10}. Let us note that, within the GM3 parametrization, only the experimental value of the symmetry energy at saturation S is used to fix the coupling between the rho meson and the nucleons. However, recently, a remarkable concordance among experimental, theoretical, and observational studies has been found \cite{11}, by allowing to significantly constrain also the value of L, the derivative with respect to the density of the symmetry energy S at saturation:

$$L = 3n_B \frac{dS}{dn_B} \bigg|_{n_B=n_0} .$$

Therefore, extensions of the GM relativistic mean-field model have been implemented which include ρ meson self-interaction terms. These new parametrization modify the density dependence of the symmetry energy at supranuclear densities and satisfy all of the experimental constraints both from terrestrial and astrophysical data by restricting L to the range of $40\ MeV \lesssim L \lesssim 62\ MeV$ \cite{11}.

To this purpose, we are going to compare the results in the framework of the GM3 model (with a value of $L \approx 80\ MeV$, automatically fixed once a specific value of S is adopted) with a more sophisticated EoS, called SFHo, for which $S = 32\ MeV$ (very close to the GM3 value) and $L = 47\ MeV$ \cite{13,14}.

In the GM3 model the general form of lagrangian is given by \cite{10}

$$L_{\text{octet}} = \sum_k \bar{\psi}_k \left(i \gamma_\mu \partial^\mu - m_k + g_{\rho k} \sigma - g_{\Delta k} \gamma_\mu \omega^\mu - g_{\rho k} \gamma_\mu \frac{\tau_k}{2} \cdot \rho^\mu \right) \psi_k + \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma - m_\sigma^2 \sigma^2 \right) - \frac{1}{4} \omega_{\mu \nu} \omega^{\mu \nu} + \frac{1}{2} m_\omega^2 \omega_{\mu \nu} \omega^{\mu \nu} - \frac{1}{4} \rho_{\mu \nu} \cdot \rho^{\mu \nu} + \frac{1}{2} m_\rho^2 \rho_{\mu} \cdot \rho^{, \mu} + U(\sigma, \omega, \rho),$$

where the index k runs over the baryon octet, m_k is the bare mass of the baryon k, τ_k is the isospin operator and finally U is the mesons potential which can contain non linear interaction terms.

Concerning hyperons, with the exception of the Λ, their binding energies in hypernuclei are highly uncertain (see, for example, Ref. \cite{15} and references therein) and thus also their couplings with mesons are poorly constrained. Here, we use the parameters set of Refs. \cite{16,17,18} obtained by reproducing the following values of the binding energies in nuclear matter U^N_A:

$$U^N_A = -28\ MeV,\ U^N_{\Sigma} = 30\ MeV,\ U^N_{\Xi} = -18\ MeV.$$ (3)

For the coupling with vector mesons we use the SU(6) symmetry relations:

$$\frac{1}{3} g_{\rho N} = \frac{1}{2} g_{\omega N} = \frac{1}{2} g_{\omega \Lambda} = \frac{1}{2} g_{\omega \Sigma} = g_{\omega \Xi} \quad (4)$$

$$g_{\rho N} = -\frac{1}{2} g_{\rho \Sigma} = g_{\rho \Xi}, \quad g_{\rho \Lambda} = 0. \quad (5)$$

In relativistic heavy ion collisions, where large values of temperature and density can be reached, a state of resonance matter may be formed and the $\Delta(1232)$-isobars are expected to play a central role. \cite{15,19,20,21,22}. Moreover, it has been pointed out that the existence of Δ can be very relevant also in the core of neutron stars \cite{23,24,25,26,27}.

The mean-field Lagrangian density for the Δ-isobars can be then expressed as

$$L_\Delta = \bar{\psi}_\Delta \left[i \gamma_\mu \partial^\mu - (m_\Delta - g_{\rho \Delta} \sigma) - g_{\omega \Delta} \gamma_\mu \omega^\mu - g_{\rho \Delta} \gamma_\mu \left(\frac{\tau_{\Delta}^3}{2} \right) \right] \psi_\Delta,$$ (6)

Notice that this rather restricted range for the values of L is still debated, see for instance Ref. \cite{12} where a looser constraint is proposed.
where ψ_i^t is the Rarita-Schwinger spinor for the Δ-isobars (Δ^{++}, Δ^{+}, Δ^0, Δ^-) and $I_3 = \text{diag}(3/2, 1/2, -1/2, -3/2)$ is the matrix containing the isospin charges of the Δs.

As customary, for the couplings of hyperons and Δ isobars with the mesons, we introduce the ratios

$$x_{s\iota} = g_{s\iota}/g_{sN}, \quad x_{w\iota} = g_{w\iota}/g_{wN}, \quad x_{\rho\iota} = g_{\rho\iota}/g_{\rho N},$$ \hspace{1cm} (7)

where the index ι runs over all the hyperons and Δ isobars.

Concerning the values of the Δ-meson couplings, if the SU(6) symmetry is exact, one adopts the universal couplings $x_{s\Delta} = x_{w\Delta} = 1$. As already extensively discussed in Ref. [28], among the four Δ isobars, the Δ^- is likely to appear first because it can replace a neutron and an electron at the top of their Fermi seas in β-stable matter. However, this particle is “isospin unfavored” because its isospin charge of the neutron. For large values of the symmetry energy, obtained in Ref. [29], among the four Δ-isobars, the Δ^- is likely to appear first because it can replace a neutron and an electron at the top of their Fermi seas in β-stable matter.

Concerning the values of the Δ-meson couplings, if the SU(6) symmetry is exact, one adopts the universal couplings $x_{s\Delta} = x_{w\Delta} = 1$. As already extensively discussed in Ref. [28], among the four Δ isobars, the Δ^- is likely to appear first because it can replace a neutron and an electron at the top of their Fermi seas in β-stable matter.

However, this particle is “isospin unfavored” because its isospin charge $t_3 = -3/2$ has the same sign of the isospin charge of the neutron. For large values of the symmetry energy S and, therefore, of $g_{\rho\Delta}$, the Δ^- appears at very large densities or it does not appear at all in dense matter thus playing no role in compact stars. Indeed, in Ref. [28], the Δ-isobars could appear in neutron stars only for not physical small values of the symmetry energy, obtained by setting $g_{\rho\Delta} = 0$ for all the baryons. However, as already observed, in the GM3 model the coupling g_{sN} is fixed by using the experimental value of the symmetry energy, the most recent estimates ranging in the interval $29 \lessapprox S \lessapprox 32.7$ MeV [11]. In this scheme no experimental information on the density dependence of the symmetry energy can be incorporated and in particular the L parameter is automatically fixed once a specific value of S is adopted. It turns out that in the models introduced in Refs. [10,25], $L \sim 80$ MeV and it is thus significantly higher than the values suggested by the most recent analysis [11].

Moreover, in this context let us observe that the SU(6) symmetry is not exactly fulfilled and one may assume the scalar coupling ratio $x_{s\Delta} > 1$ with a value close to the mass ratio of the Δ and the nucleon [29]. On the other hand, QCD finite-density sum rule results show that the Lorentz vector self-energy for the Δ is significantly smaller than the nucleon vector self-energy implying therefore $x_{\omega\Delta} < 1$ [30].

In the many body analysis of Ref. [31], the real part of the Δ self-energy has been evaluated to be about -30 MeV at $\rho_B = 0.75 n_0$. Notice that this self energy is relative to the one of the nucleon and the total potential felt by the Δ is the sum of its self energy and of the nucleon potential, a number of the order of -80 MeV. Also phenomenological analysis have been performed of data from electron-nucleus [32,33,34], photo-absorption [35] and pion-nucleus scattering [36,37]. Such analyses suggest a more attractive interaction of the Δ in the medium with respect to the nucleon one (see Refs. [38,39] for more details). New analyses, and possibly new experiments, aiming at a better determinations of these couplings would be extremely important. Notice also that no information is available for $x_{\rho\Delta}$ which in principle could be extracted by analyzing scattering on neutron rich nuclei (see the recent discussion in [10,11]).

The threshold for the formation of the i-th baryon is given by the following relation:

$$\mu_i \geq m_i - g_{s\iota}\sigma + g_{w\iota}\omega + t_{3\iota}g_{\rho\iota}\rho,$$ \hspace{1cm} (8)

where σ, ω and ρ are the expectation values of the corresponding fields, m_i, m, and $t_{3\iota}$ are the chemical potential, the mass and the isospin charge of the baryons. The baryon chemical potential μ_i are obtained by the β-equilibrium conditions:

$$\mu_i = \mu_B + c_i \mu_C,$$ \hspace{1cm} (9)

where μ_B and μ_C are the chemical potentials associated with the conservation of the baryon number and the electric charge respectively and c_i is the electric charge of the i-th baryon.

In Fig. 1, we display the baryon density dependence of the particle’s fractions in the GM3 model for $x_{s\Delta} = 1.25$, $x_{w\Delta} = 1$ and neglecting in this case the coupling of the Δ-isobars with the ρ meson ($x_{\rho\Delta} = 0$). Let us note that in this scheme the appearance of the Δ-isobars is a consequence of the introduction of a more attractive interaction ($x_{s\Delta} > 1$) of Δ-particles with respect to the nucleon in the mean field approximation, as in Refs. [28,30,12]. It is remarkable that the early appearance of Δ resonances, the first one being the Δ^-, considerably shifts the onset of hyperons which start to form at densities of $\sim 5 \rho_0$ (see the curve for the Λ’s).

With the purpose of including the new experimental constraints about the value of the density derivative of the symmetry energy L, we can first study an extended GM3 model by considering the following density dependent baryon-ρ meson coupling [35,36]

$$g_{\rho\iota} = g_{\rho\iota}(n_0) e^{-\alpha(n_0/n_0 - 1)}.$$ \hspace{1cm} (10)

In this way we introduce a single parameter α which affects only the value of L leaving untouched the other properties of nuclear matter at saturation.
The role of such density dependent baryon-ρ meson coupling in the modified GM3 model can be observed in Fig. 2 where is reported the value of $n_{\Delta \text{crit}}^B$ for the different baryons as a function of L. We limit this first discussion to the case of the Λ, Δ^- and Ξ^- which are the first heavy baryons appearing as the density increases (notice that Σ hyperons are unfavored due to their repulsive potential) in the so-called universal coupling $x_{\sigma,\Delta} = x_{\omega,\Delta} = x_{\rho,\Delta} = 1$. One can notice the different behavior of the thresholds: the larger the value of L the larger $n_{\Delta \text{crit}}^A$ and the smaller $n_{\Delta \text{crit}}^\Lambda$ and $n_{\Delta \text{crit}}^{\Xi^-}$.

At high values of L, larger than about 65 MeV, the threshold of the Δ^- increases very rapidly with L. This corresponds to the values of L for which Δ^- appears before the Σ^- thus completely suppressing those particles. Indeed within the GM3 model, for which $L \sim 80$ MeV, the Δ^- do not appear at all as already found in Ref. [25]. Similarly, one can notice that if the isobars are formed before the hyperons, what happens below $L \sim 56$ MeV, $n_{\Delta \text{crit}}^\Lambda$ and $n_{\Delta \text{crit}}^{\Xi^-}$ are shifted to larger densities, as already noticed in Ref. [9]. Analogous results have been found in Ref. [25], where two cases are analyzed, corresponding to a finite and to a vanishing value of g_{pN}, with the result that in the case of $g_{pN} = 0$ the isobars are favored. The blue lines mark the range of the values of L indicated by the analysis of Ref. [11]. Therefore, the recent constraints on L imply that at densities close to three times n_0 both the hyperons and the isobars must be included in the equation of state and for the lower allowed values of L, the isobars appear even before the hyperons. Finally, let us stress that in this analysis we have chosen a rather conservative choice for the couplings between Δs and mesons. If higher values of $x_{\sigma,\Delta}$ and/or lower values for $x_{\omega,\Delta}$ are adopted, $n_{\Delta \text{crit}}^\Lambda$ can result to be smaller than $n_{\Delta \text{crit}}^\Lambda$ and $n_{\Delta \text{crit}}^{\Xi^-}$ for all the acceptable values of L.

In conclusion, the early appearance of Δ-isobars results to be strictly related to the value of the L parameter of the symmetry energy and, for the values of L indicated in Ref. [11], such particle degrees of freedom influence the appearance of hyperons and cannot be neglected in the EoS. These results have been confirmed in the more recent Ref. [14].
2.2 Hadronic equation of state at finite entropy per baryon

In this subsection we are going to study the behavior of the hadronic EoS for conditions realized in protoneutron stars (PNS). In particular, we focus our investigation by considering the more realistic SFHo parametrization in the first stage of the protoneutron stars (PNS) evolution, corresponding to a total entropy per baryon equal to one, in which neutrinos are trapped and strongly influence the threshold of hyperons formation. Therefore, we also take into account of leptons particle by fixing the lepton fraction

\[Y_L = Y_e + Y_\nu = (n_e + n_\nu)/n_B, \]

(11)

where \(n_e, n_\nu \) and \(n_B \) are the electron, neutrino and baryon number densities, respectively.

The total entropy per baryon is calculated by means of

\[s = \frac{S_B + S_l}{T \rho_B}, \]

(12)

where \(S_B = P_B + \epsilon_B - \sum_{i=B} \mu_i \rho_i \) and \(S_l = P_l + \epsilon_l - \sum_{i=l} \mu_i \rho_i \), and the sums are extended over all the baryons and leptons species.

It is well known that the presence of trapped neutrinos significantly alter the protons and the electrons abundance and strongly influence the threshold of hyperons formation. This is also true in the presence of \(\Delta \)-isobar degrees of freedom. With the purpose of investigating this problem, in Fig. 3 we report the particle concentrations \(Y_i \) as a function of the baryon density for \(s = 1 \) and \(Y_L = 0.4 \) in the SFHo parametrization with the coupling \(x_{\Delta} = 1.0 \) (upper panel) and \(x_{\Delta} = 1.1 \) (lower panel).

Let us observe that, in the case of the universal coupling \(x_{\Delta} = x_{\Delta} \) (upper panel), \(\Lambda \) and \(\Delta^- \) particles appear at approximately the same baryon density (\(n_B \approx 3 n_0 \)). For \(x_{\Delta} = 1.1 \) (lower panel), the onset of \(\Delta^- \) particles is shifted at lower densities and the presence of \(\Delta \)-isobars become more relevant. In both cases, the population of strange \(\Lambda \) particle becomes relevant (greater than 5\%) at about \(n_B \approx 4 n_0 \).

The features observed in the particle concentration are also reflected in Fig. 5, where we show the temperature as a function of the baryon density for nucleonic matter \((np) \), for hyperonic matter \((npH) \) and with the inclusion of \(\Delta \)-isobar degrees of freedom \((npH\Delta) \). As before, in the presence of \(\Delta \) particles, we have considered two different meson-\(\Delta \) couplings (continuous line for \(x_{\Delta} = 1.0 \) and dashed line for \(x_{\Delta} = 1.1 \)). For \(x_{\Delta} = 1.0 \), \(\Lambda \) and \(\Delta^- \) particles start at \(n_B \approx 3 n_0 \) and, for a large baryon density range, the behavior is almost isothermal \((T \approx 18 \pm 20 \text{ MeV}) \). A more discontinuous behavior can be observed in the case of \(x_{\Delta} = 1.1 \), due to the presence of the four \(\Delta \)-isobar states.

In Fig. 5, the gravitational mass as a function of the central baryon density \(n_c \) for \(s = 1 \) and \(Y_L = 0.4 \) is reported for two different values of the \(x_{\Delta} \) coupling ratio. In this case no appreciable difference can be observed for \(npH \) and \(npH\Delta \) curves (overlapped blue and green curves in the figure), except for a greater central density \(n_c \) reached in presence of \(\Delta \) particles. In agreement with the previous results, we can see from the figure that hyperons and \(\Delta \)s appear at \(n_B \approx 3 n_0 \), corresponding to \(M_G \approx 1.45M_\odot \). For stellar configurations with masses below this value, deltas and hyperons do not appear or play a marginal role. Therefore we do not expect any difference concerning the SN explosion mechanism in the two families scenario with respect to the standard one. For larger masses there are a few possibilities:

- hyperons appear and trigger the transition to quark matter halting the collapse;
- hyperons appear but their abundance is not large enough to trigger the conversion and a black hole will form after deleptonization [15].

In this little discussion we have not taken into account the rotation of the progenitor what can play an important role as discussed in paper 2.

2.3 Quark matter equation of state

The quark matter EoS at densities reachable in the core of compact stars is basically completely unknown. In the
for two different meson-\(npH\) reported, the continuous line refers to the dashed line stands for the state of the art.

Fig. 5. Temperature as a function of the baryon density (in units of \(n_0\)) for two different families of compact stars. The labels \(np\), \(npH\) and \(npH\Delta\) stand for nucleons, nucleons plus hyperons, nucleons plus hyperons and \(\Delta\)-isobars, respectively. The results for two different meson-\(\Delta\) couplings in the curves \(npH\Delta\) are reported, the continuous line refers to \(x_{\sigma\Delta} = 1.0\) while the dashed line stands for \(x_{\sigma\Delta} = 1.1\).

Fig. 6. Gravitational mass as a function of the central baryon density \(n_c\) for \(s = 1\) and \(Y_L = 0.4\) in the SFHo parametrization with the couplings \(x_{\sigma\Delta} = 1.0\) and \(x_{\sigma\Delta} = 1.1\).

literature, bag models or chiral models at finite chemical potential have been widely used which capture two important non-perturbative aspects of QCD: confinement and chiral symmetry breaking the latter. Alternatively, one can resort to perturbative QCD calculations: it has been shown that at high temperature, vanishing chemical potential and finite quark masses perturbative calculations provide results consistent with lattice QCD for temperature larger than about 0.2 GeV. The same technique has been used to compute the EoS at finite chemical potential and vanishing temperature with the very interesting result that the strange quark matter EoS could be stiff enough to support stars with \(2.75 M_\odot\). Here, we adopt the parametrization of the pQCD calculations at finite chemical potential presented in [38]. This parametrization has only one free parameter, the scale parameter \(X\), which is the ratio between the renormalization scale and the baryon chemical potential and it ranges between 1 and 4. We choose here the value \(X = 3.5\) for which the maximum mass of quark stars is \(2.53 M_\odot\) (see solid red line in Fig[7]). It is important to remark that all the calculations of the quark matter EoS, such as the ones of [37], are affected by large uncertainties which inevitably affect also the predicted value of the maximum mass. For instance, also in the simple MIT bag model parametrization of Ref.[39], it has been proven that very massive configurations can be obtained when varying the free parameters of the model. Moreover, it has been shown that, color superconductivity, which is a purely non-perturbative phenomenon, helps in obtaining high masses. Recently, within a SU(3) quark meson model it has also been shown that massive quark stars configurations are allowed although in a specific parameters region [30]. Clearly, new and precise astrophysical measurements are needed to constrain the properties of dense matter.

3 Masses and radii: theory vs observations

Let us discuss the information on the mass-radius relation obtained by means of astrophysical observations. The direct and precise measurements of the masses of PSR J1614-2230 with \(M = 1.97 \pm 0.04 M_\odot\) and of PSR J0348+0432, with \(M = 2.01 \pm 0.04 M_\odot\), clearly represent the most important constraints that theoretical calculations must fulfill. A possible candidate with a mass even larger already exists: it is the black widow pulsar PSR B1957+20 whose mass could be of \(2.4 \pm 0.12 M_\odot\) provided that the modeling of the light curves is correct. Taking into account the systematic uncertainties on the light curves fit, the lowest limit for its mass turns out to be of \(1.66 M_\odot\). Other hints for the existence of compact stars heavier than \(2 M_\odot\) have been observed also from the observation and the modeling of short-granular bursts (GRB). The SWIFT experiment has detected tens of short-GRB whose light curves display extended emissions, X-ray flares and internal plateaus with rapid decay at the end of the plateaus (see [52] and Refs. therein). These observations favor a model for the inner engine of these events which is based on a rapidly spinning millisecond magnetar formed from the merger of two neutron stars. Interestingly, the same stellar objects, but formed after a supernova, could be the inner engine of long GRBs [53].

Let us discuss now radii measurements. One has to remark that radii measurements are much more uncertain than mass measurements and all the observational constraints are based on specific assumptions made for mod-
eling the spectra of the X-ray emissions. In Refs. 65,66, the fits on the thermal emission of 6 quiescent low-mass X-ray binaries, under the assumption that all of them have the same radius \(R \), provide the constraint \(R = 9.4 \pm 1.2 \) km. We remark however that these results are under debate, see Refs. 67,68. Other indications of the existence of stars with small radii can be found from the analysis of X-ray bursts in Refs. 69,70. In particular, at 1σ, the analysis of 69 indicates radii of about 9.5 ± 1.5 km and masses of about \(M = 1.6 \pm 0.2 M_\odot \) (a previous analysis of 4U 1820-30 presented in Ref. 71 has also found rather small radii: \(R = 11.2^{+0.4}_{-0.5} \) km and \(M = 1.29^{+0.19}_{-0.07} M_\odot \)). For Cyg X-2 a radius of about 9 ± 0.5 km is inferred for the canonical mass of 1.44 ± 0.06 \(M_\odot \) while for 4U 1728-34 the suggested ranges are 8.7 − 9.7 km for radius and 1.2 − 1.6 \(M_\odot \) for the mass 72. Also, in the analysis of the X-ray pulsations of SAX J1808.4-3658 one obtains indications of a small radius although the uncertainty is still quite large: at 3σ, 0.8 \(M_\odot \) < \(M < 1.7 \) \(M_\odot \) and 5 km < \(R < 13 \) km 73,74. These data and the mass-radius relation of hadronic stars (with deltas and hyperons) are displayed in Fig. 8.

On the other hand, significantly larger radii are obtained by means of pulse phase-resolved X-ray spectroscopy of PSR J0437-4715 75. The radius is constrained to be larger than \(14 \) km at 1σ confidence level assuming the mass of the star to be of \(1.76 \) \(M_\odot \) (this value has been obtained via the radio timing technique in 75). Similarly, in Ref. 67, a radius larger than about 14 km is obtained for the system RX J1856.5-3754 by assuming a mass between 1.5 and 1.8 \(M_\odot \).

The existence of very massive compact stars and the possibility that some neutron stars are very compact represents a serious problem for the theoretical modeling of the EoS of strongly interacting matter. While massive compact stars imply that the EoS is stiff, a soft EoS is instead needed to obtain small radii. This tension is relieved, as proposed in 9, if one assumes that there are two families of coexisting compact stars: hadronic stars which can be very compact and quark stars which can be very massive. Specifically, the massive PSR J1614-2230 and PSR J0348+0432, are interpreted in our scenario as quark stars. Similarly, stars with large radii, as the ones inferred in the analysis of Refs. 65,67, are again interpreted as quark stars. On the other hand, the compact stellar objects such as the ones discussed in the analysis of 65,66,69,60,61,62 would be instead hadronic stars. The idea that the equation of state for dense matter has a two-phase nature allowing both large and small compact stars has been suggested also in the analysis of Ref. 68.

In Fig. 7 and 8 we display the observational constraints discussed above and three examples of theoretical mass-radius relations (solid and dashed lines) based on the SFHo model with \(\Delta \) only, or with both \(\Delta \) and hyperons for the hadronic EoS (here \(x_{n,\Delta} = 1.15 \)) and the parametrization presented in 68 for the quark matter EoS. All the constraints are fulfilled if one assumes that hadronic stars and quark stars coexist. Notice that hadronic stars cannot reach masses larger than about 1.5 − 1.6 \(M_\odot \) as a result of the softening caused by the formation of deltas and hyperons. The so called hyperon puzzle, and similarly the delta puzzle pointed out in 38, is easily solved in our two families scenario: hyperons and deltas do reduce the maximum mass of compact stars to values significantly smaller than 2 \(M_\odot \) but this fact does not represent a puzzle since the most massive objects are actually quark stars. Notice that also in the scenarios i) and ii) discussed in the introduction, massive stars are composed mostly of quark matter.

A natural question concerns the way the quark star branch is populated. The stellar configuration for which the solid black line starts to deviate from the solid green line corresponds to the onset of hyperons. Once a critical amount of hyperons is present in the center of the star, nucleation of quark matter can start and can subsequently trigger the conversion to a quark star. The conversion occurs because it is energetically convenient: at a fixed value of the baryonic mass, the gravitational mass of the star on the quark star branch is smaller than the one on the hadronic star branch (see the brown line for an example of this conversion process). The process of conversion is specifically analyzed in the accompanying paper 2.

4 Binary systems

Another useful constraint on the EoS can be obtained also by studying the double pulsar system J0737-3039 69. The mass of the so called Pulsar B is of 1.249 ± 0.001 \(M_\odot \). Under the assumption that this pulsar was formed from an electron capture supernova one can infer a baryonic mass in the range 1.366 − 1.375 \(M_\odot \) 70. In our scenario we can interpret this star as a hadronic star (which contains \(\Delta \) resonances but which is too light to allow the formation of hyperons). In Fig. 11 we display the relation between the gravitational mass and the baryonic mass for hadronic stars and quark stars. In the insert, we show also the constraint of 70. Our hadronic EoS is perfectly in agreement with the analysis of Ref. 70: the appearance of delta resonances gives a small additional contribution to the binding energy of hadronic stars as compared to nucleonic stars. When considering only nucleons (see green line), the constraint of 70 is not fulfilled. Notice however that detailed supernova simulations have shown that the uncertainties associated with the EoS and the wind aeration are such that the allowed baryonic mass window is shifted towards smaller values 71.

Low-mass X-ray binaries offer another possible hint for the existence of two families of compact stars. These systems are most probably at the origin of millisecond pulsars: within the so called recycling scenario, the neutron star is spun up to millisecond periods due to the accretion of mass from its white dwarf companion. Tidal interactions during the accretion phase are responsible for the circularization of the orbit and indeed most of the millisecond pulsars are in circular orbits (with eccentricity \(e \) from 10\(^{-7}\) to 10\(^{-5}\)). However, recently, few examples have been discovered having a much larger eccentricity such as PSR J2234+06 for which \(e = 0.13 \) (see other examples in 72). In this system the white dwarf has a mass
of 0.23\(M_\odot\). The existence of systems with high eccentricities represents a puzzle in the recycling model of pulsars. A possible explanation is that the accreting object, at some point during its evolution, collapses to a more stable configuration thus increasing abruptly the eccentricity of the binary. In Ref. [73] it has been investigated the scenario of a rotationally-delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. In Ref. [74] instead, the accreting star is a neutron star which, due to mass accretion, converts into a quark star. In our two families scenario the conversion of a hadronic star to a quark star is necessary once a sufficient amount of strangeness is formed at the center of the star. As one can see in Fig. 7, the conversion would occur for masses of the hadronic star between \(1.35 - 1.6M_\odot\) with an energy released in the conversion given by the difference between the gravitational mass of the hadronic star \(M_H\) and the gravitational mass of the quark star \(M_Q\) computed at the same fixed baryonic mass: \(\Delta M = M_H - M_Q \approx 0.15M_\odot\) (see Fig. 9). The eccentricity is related to the masses of the hadronic star, of the quark star and of the white dwarf companion \(M_{WD}\) by the following relation: \(e = \Delta M/(M_Q + M_{WD})\). It results that \(e \approx 0.1\) if one takes \(M_{WD} = 0.23M_\odot\), \(M_H = 1.55M_\odot\) \(M_Q = 1.4M_\odot\). A correction to the eccentricity of the order of \(\pm 0.03\) is obtained when considering that during the conversion the newly born stellar object could get a small kick velocity \(v_k\) of the order of 1km/sec (see Fig. 9). These simple estimates show that in our model the values of the eccentricities are quite close to the measured ones. It would be therefore interesting to investigate more in detail this problem. Future measurements of the masses of the compact stars in those eccentric systems will be crucial to test our scenario.

5 Discussion and conclusions

We have discussed several hints of the existence of two coexisting families of compact stars, hadronic stars and quark stars. A first important and widely discussed argument in favor of this scenario is the necessary appearance of delta resonances and hyperons as the central density of a hadronic star reaches values larger than about 2\(\rho_0\). The formation of these particles softens the EoS and reduces the maximum mass with respect to stars made only of nucleons. How much the maximum mass is reduced due to the appearance of these particles is the subject of a lively and on-going research activity in nuclear physics (see Refs. [75][76][77][78][79][80][81][82]). One hand, in phenomenological calculations based on relativistic mean field models the maximum mass of hyperon stars could still reach the 2\(M_\odot\) limit (see for instance [83][84][85] on the other hand in more realistic calculations based on microscopic nucleon-nucleon interactions, the appearance of hyperons is accompanied by a strong softening of the EoS which leads to maximum masses much below 2\(M_\odot\), and in some case even below 1.4\(M_\odot\) [86][87][88]. A possible way out is that the hadronic EoS is so stiff that even for the 2\(M_\odot\) star the central density is below the threshold for the appearance of hyperons: a possible example has been given in [89] where at a mass 2.09\(M_\odot\) the central density is of 3.5\(\rho_0\) and hyperons are not yet formed. This scenario is realized if the three-body hyperon-nucleon interaction is sufficiently repulsive. Another possible way to add repulsion between baryons is the multi-Pomeranch potential proposed in [90] which, again, would allow the existence of massive hadronic stars. Unfortunately from
Fig. 9. Relation between gravitational mass and baryonic mass for hadronic stars and quark stars. At fixed baryonic mass the difference between the gravitational mass of a hadronic star and a quark star is of the order of 0.15\(M_{\odot}\). In the inset we display also the curve corresponding to nucleonic stars within the SFHo EoS (green line). The slightly larger binding energy obtained when adding deltas and hyperons allow to fulfill the constraint of [70] (blue box).
mass and the flux of cosmic strangelets are expected to be available in the near future thanks to the AMS-02 experiment.

From the theoretical side, to date, there has been only one detailed simulation of the merger of two quark stars \[100\] while the possibility of neutron star - quark star and black hole - quark star merger have not yet been considered. An unexpected result of these simulations is that in many cases, after the merger, a prompt collapse to a black hole occurs and basically no quark matter is ejected. In particular, this occurs for values of the total mass of the merger larger than about 2.5 - 3\(M_\odot\). In our scenario quark stars have masses larger than about 1.35\(M_\odot\) and it is rather difficult to avoid a prompt collapse. It is therefore possible that even if quark matter is absolutely stable the flux of strangelets is vanishingly small and not all compact stars convert into quark stars as it would result if the cosmic strangelets pollution would be significant \[101\]. The two families of compact stars could indeed coexist.

A.D. would like to thank V. Hislop for the moral support during the preparation of the paper. G.P. acknowledges financial support from the Italian Ministry of Research through the program Rita Levi Montalcini .

References

1. J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005), nucl-ex/0501009
2. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)
3. J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 631 (2013)
4. H. Chen, M. Baldo, G.F. Burgio, H.J. Schulze, Phys. Rev. D84, 105023 (2011), 1107.2497
5. L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012), 1106.0559
6. J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013), 1211.2121
7. A. Kurakela, E.S. Fraga, J. Schaffner-Bielich, A. Vuorinen, Astrophys. J. 789, 127 (2014), 1402.6618
8. S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Tyl et, Astron. Astrophys. 577, A40 (2015), 1411.2856
9. A. Drago, A. Lavagno, G. Pagliara, Phys.Rev. D89, 043014 (2014), 1309.7263
10. N. Glendenning, S. Moszkowski, Phys.Rev.Lett. 67, 2414 (1991)
11. J.M. Lattimer, Y. Lim, ApJ. 771, 51 (2013), 1203.4286
12. M. B. Tsang et al., Phys. Rev. C 86 (2012) 015803.
13. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys.Rept. 411, 325 (2005), nucl-th/0410066
14. A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013), 1207.2184
15. A.R. Raduta, F. Gulminelli, M. Oertel (2014), 1406.0395
16. J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys.Rev.Lett. 71, 1328 (1993)
17. J. Schaffner, L.N. Mishustin, Phys.Rev. C53, 1416 (1996)
18. E.E. Zabrodin, I.C. Arcene, J. Bleibel, M. Bleicher, L.V. Bravina et al., J.Phys. G36, 064065 (2009)
19. M. Hofmann, R. Mattiello, H. Sorge, H. Stoecker, W. Greiner, Phys.Rev. C51, 2095 (1995)
20. S. Bass, M. Gyulassy, H. Stoecker, W. Greiner, J.Phys. G25, R1 (1999)
21. A. Lavagno, Phys.Rev. C81, 044909 (2010)
22. A. Lavagno, D. Pigato, Phys.Rev. C86, 024917 (2012)
23. H. Huber, F. Weber, M. Weigel, C. Schaab, Int.J.Mod.Phys. E7, 301 (1998), nucl-th/9711025
24. H. Xiang, G. Hua, Phys.Rev. C67, 038801 (2003)
25. Y. Chen, H. Guo, Y. Liu, Phys.Rev. C75, 035806 (2007)
26. Y. Chen, Y. Yuan, Y. Liu, Phys.Rev. C79, 055802 (2009)
27. T. Schurhoff, S. Schramm, V. Dexheimer, Astrophys.J. 724, L74 (2010)
28. N. Glendenning, Astrophys.J. 293, 470 (1985)
29. D. Kosov, C. Fuchs, B. Martemyanov, A. Faessler, Phys.Lett. B421, 37 (1998)
30. M. Jin, Phys.Rev. C51, 2260 (1995)
31. E. Oset, L. Salcedo, Nucl.Phys. A468, 631 (1987)
32. J. Koch, N. Ohtsuka, Nucl.Phys. A435, 765 (1985)
33. K. Wehrberger, C. Bedau, F. Beck, Nucl.Phys. A504, 797 (1989)
34. J. O’Connell, R. Sealock, Phys.Rev. C42, 2290 (1990)
35. W. Alberico, G. Gervino, A. Lavagno, Phys.Lett. B321, 177 (1994)
36. Y. Horikawa, M. Thies, F. Lenz, Nucl.Phys. A345, 386 (1980)
37. S. Nakamura, T. Sato, T.S. Lee, B. Szczerbinska, K. Kudoh, Phys.Rev. C81, 035502 (2010), 0910.1057
38. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys.Rev. C90, 065809 (2014), 14072843
39. B.J. Cai, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C92, 015802 (2015)
40. B.A. Li (2015), 1507.03279
41. J. Benlliure et al., JPS Conf. Proc. 6, 020039 (2015)
42. Z.X. Li, G.J. Mao, Y.Z. Zhao, W. Greiner, Phys.Rev. C56, 1570 (1997)
43. S. Tyl et, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys.Rev. C81, 015803 (2010), 0908.2344
44. B.J. Cai, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys.Rev. C92, 015802 (2015), 1501.01680
45. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, R. Knorren, Phys. Rept. 280, 1 (1997), nucl-th/9603042
46. M. Buballa, Phys. Rept. 407, 205 (2005), hep-ph/0402234
47. A. Kurakela, P. Romatschke, A. Vuorinen, Phys.Rev.D81, 105021 (2010), 0912.1856
48. E.S. Fraga, A. Kurakela, A. Vuorinen, Astrophys.J. 781, L25 (2014), 1311.5145
49. S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel and J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011), 1501.01680
50. A. Zacchi, R. Stiede and J. Schaffner-Bielich, Phys. Rev. D 92 (2015) 4, 045022.
51. M. van Kerkwijk, R. Breton, S. Kulkarni, Astrophys.J. 728, 95 (2011)
52. H.J. Li, B. Zhang, W.H. Lei, Y. Li, P.D. Lasky, Astrophys.J. 805, 89 (2015), 1501.02859
53. B. Metzger, D. Giannios, T. Thompson, N. Bucciantini, E. Quataert (2010)
54. P.D. Lasky, B. Haskell, V. Ravi, E.J. Howell, D.M. Coward, Phys.Rev. D80, 047302 (2014), 1311.1352
55. S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge (2013), 1302.0023
56. S. Guillot, R.E. Rutledge, Astrophys.J. **796**, L3 (2014), 1409.4306
57. J.M. Lattimer, A.W. Steiner (2013), 1305.3242
58. C.O. Heinke et al., Mon. Not. Roy. Astron. Soc. **444**, 443 (2014), 1406.1497
59. F. Ozel, G. Baym, T. Guver, Phys.Rev. **D82**, 101301 (2010), 1002.3153
60. L. Titarchuk, N. Shaposhnikov, Astrophys. J. **570**, L25 (2002), astro-ph/0203432
61. N. Shaposhnikov, L. Titarchuk, Astrophys. J. **606**, L57 (2004), astro-ph/0403488
62. N. Shaposhnikov, L. Titarchuk, F. Haberl, Astrophys. J. **593**, L35 (2003), astro-ph/0307215
63. D.A. Leahy, S.M. Morsink, C. Cadeau, Astrophys. J. **672**, 1119 (2008), astro-ph/0703287
64. S. M. Morsink and D. A. Leahy, Astrophys. J. **726** (2011)
65. S. Bogdanov, Astrophys.J. **762**, 96 (2013), 1211.6113
66. J.P.W. Verbiest, M. Bailes, W. van Straten, G.B. Hobbs, R.T. Edwards, R.N. Manchester, N.D.R. Bhat, J.M. Sarkissian, B.A. Jacoby, S.R. Kulkarni, Astrophys. J. **679**, 675 (2008), 0801.2589
67. V. Hambaryan, R. Neuhaeuser, V. Suleimanov, K. Werner, Journal of Physics: Conf.Ser. **496**, 012015 (2014)
68. D. A. Leahy, S. M. Morsink, Y. Y. Chung and Y. Chou, Astrophys. J. **691** (2009) 1235 [arXiv:0806.0824 [astro-ph]].
69. M. Burgay et al., Nature **426**, 531 (2003), astro-ph/0312071
70. P. Podsiadlowski, J.D.M. Dewi, P. Lesaffre, J.C. Miller, W.G. Newton, J.R. Stone, Mon. Not. Roy. Astron. Soc. **361**, 1243 (2005), astro-ph/0506566
71. F.S. Kitaura, H.T. Janka, W. Hillebrandt, Astron. Astrophys. **450**, 345 (2006), astro-ph/0512065
72. B. Knisel et al., Astrophys. J. **806**, 140 (2015), 1504.03684
73. P.C.C. Freire, T.M. Tauris, Mon.Not.Roy.Astron.Soc. **438**, 86 (2014), 1311.3478
74. L. Jiang, X.D. Li, J. Dey, M. Dey, Astrophys.J. **807**, 41 (2015), 1505.00464
75. J. Rikovska-Stone, P. A. M. Guichon, H. H. Matevosyan and A. W. Thomas, Nucl. Phys. A **792** (2007) 341.
76. M. Oertel, A. F. Fantina and J. Novak, Phys. Rev. C **85** (2012) 055806.
77. G. Colucci and A. Sedrakian, Phys. Rev. C **87** (2013) 055806.
78. L. L. Lopes and D. P. Menezes, Phys. Rev. C **89** (2014) 2, 025805.
79. S. Banik, M. Hempel and D. Bandyopadhyay, Astrophys. J. Suppl. **214** (2014) 2, 22.
80. E. N. E. van Dalen, G. Colucci and A. Sedrakian, Phys. Lett. B **734** (2014) 383.
81. I. Katayama and K. Saito, arXiv:1410.7166 [nucl-th].
82. M. Oertel, C. Providencia, F. Gulminelli and A. R. Ruduta, J. Phys. G **42** (2015) 7, 075202.
83. S. Weisenborn, D. Chatterjee, J. Schaffner-Bielich, Phys.Rev. **C85**, 065802 (2012)
84. S. Weisenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl.Phys. **A881**, 62 (2012), 1111.6049
85. I. Bednarek, P. Haensel, J. Zdunik, M. Bejger, R. Manka (2011), 1111.6942
86. M. Baldo, G. Burgio, H. Schulze, Phys.Rev. **C61**, 055801 (2000), nucl-th/9912066
87. I. Vidana, D. Logoteta, C. Providencia, A. Polls, I. Bombaci, Europhys.Lett. **94**, 11002 (2011), 1006.5660
88. H. Dajo, B.J. Schaefer, J. Wambach, Phys. Rev. **C81**, 035803 (2010), 0811.2939
89. D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. **114**, 092301 (2015).
90. Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijsen, Phys. Rev. **C90**, 045805 (2014).
91. D. Psaltis, F. zel, D. Chakrabarty, Astrophys. J. **787**, 136 (2014).
92. A. Bauswein, N. Stergioulas, H.T. Janka (2015), 1508.05493
93. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys.Rev. **C38**, 1010 (1988).
94. J. Madsen, Phys.Rev. **D71**, 014026 (2005).
95. B.I. Abelev et al. (STAR), Phys. Rev. **C76**, 011901 (2007), nucl-ex/0511047
96. C. Greiner, P. Koch, H. Stoecker, Phys. Rev. Lett. **58**, 1825 (1987).
97. D.M. Jacobs, G.D. Starkman, B.W. Lynn, Mon. Not. Roy. Astron. Soc. (2014), 1410.2236
98. L. Paulucci, J.E. Horvath, Phys. Lett. **B733**, 164 (2014), 1405.1777
99. K. Han, J. Achenfelter, A. Chikanian, W. Emmet, L.E. Finch, A. Heinz, J. Madsen, R.D. Majka, B. Monreal, J. Sandweiss, Phys. Rev. Lett. **103**, 092302 (2009), 0903.5085
100. A. Bauswein, H.T. Janka, R. Oechslin, G. Pagliara, I. Sagert et al., Phys.Rev.Lett. **103**, 011101 (2009)
101. J.L. Friedman, R.R. Caldwell, Phys. Lett. **B264**, 143 (1991)