Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

Wenhua Xu1, Wei Li1,2, Ping Jiang1, Hui Wang1,2 & Edith Bai1

1State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China, 2University of Chinese Academy of Sciences, Beijing 100049, China.

The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming.

Soil is the largest reservoir of terrestrial carbon (C) compared to vegetation and atmosphere1 and has diverse soil organic C (SOC) compounds with different stability2. Concerns about the climate–C cycle feedback under current global climate change have catalyzed efforts on SOC decomposition and its temperature sensitivity (Q10)2-6, which represents change in C decomposition rate to a 10°C temperature increase. However, as yet there is no consensus on the relationship of SOC decomposition with temperature owing to various stability of different SOC components2,5,7. As a result, doubts have been cast on the assumed similar sensitivities of discrete C pools to temperature in soil C models8.

Most uncertainty in predicting responses of C storage to changing climate comes from temperature sensitivity of recalcitrant soil C. Compared to more labile C, recalcitrant C has been found to have similar4,9 or lower3,10 Q10 of C decomposition. However, substantial researches in recent years supported the Arrhenius kinetic theory2 and indicated that recalcitrant C with higher activation energy has greater Q10 than labile C11-13. Because soil C quality generally decreases with increasing depth through mineral soil profile due to possible differences in physical and/or chemical protection from C decomposition and microbial community composition17, the increase in Q10 with increasing C recalcitrance, also known as the “C quality-dependent hypothesis” of Q10, has thus been tested at different depths of mineral soils14,16. In boreal and temperate forests with organic forest floor, a large amount of SOC is stored in the organic layer besides the mineral soil. The organic layer and the mineral soil have different rates of C input, accumulation, and turnover, resulting in different substrate availability and quality for C decomposition18,19. Substrate availability, besides substrate quality, could affect Q10 based on the Michaelis–Menten kinetics2,20,21. Consequently, the temperature sensitivity of C decomposition are likely to differ between the two soil layers3,22.

It has been suggested that Q10 of C decomposition may be latitude-dependent, with greater Q10 at higher latitude23,24. The altitudinal pattern of C decomposition with temperature change may be comparable with that caused by latitudinal gradient14,22. Therefore, elevation gradients in mountains are well recognized as “natural experiments” to explore responses of SOC to temperature changes25. Some studies suggested Q10 values of both labile and recalcitrant C increased along the elevation gradient in Mountain Wuyi of China4,16. On the contrary, other studies found no altitudinal trend for Q10 of C decomposition22,26. These inconsistencies may be explained by further understanding of the interactions of intrinsic (e.g. substrate availability) and extrinsic controlling factors (e.g. soil texture) of temperature sensitivity of C decomposition.
Here we collected soils from the northern slope of Mountain Changbai in Northeast China\(^\text{10}\) (Table 1) to investigate variations of \(Q_{10}\) of decomposition along the elevation gradient. Soil samples from both the organic and the mineral layers were incubated for 350 days and \(Q_{10}\) of decomposition was determined by the approach derived from Conant et al.\(^\text{11}\) (see Methods). The specific questions we aim to address in this study include: (1) Does \(Q_{10}\) of C decomposition of both the mineral layer and the organic layer support the \(^{12}C\) quality-dependent hypothesis? (2) Whether and how does \(Q_{10}\) of the organic layer differ from that of the mineral soil along the elevation gradient?

Results

Soil characteristics

Soil organic C (SOC) and total N (TN) in the organic layer were 1.9–6.8 and 1.8–6.1 times higher (both \(p < 0.05\)) than those in the mineral soil across the 6 elevation sites (Fig. 1a and b, Table 2). Correspondingly, CN ratio (\(p < 0.05\)) in the organic layer was higher compared to the mineral soil (Fig. 1c). In the organic layers, SOC ranged from 90.3 g kg\(^{-1}\) at 1900 m to 165.2 g kg\(^{-1}\) at 1510 m (Fig. 1a). However, TN in the organic layer was not influenced by elevation whereas its values varied from 6.5 g kg\(^{-1}\) at 1248 m to 8.9 g kg\(^{-1}\) at 795 m (Fig. 1b). SOC and TN in the mineral soil increased from 17.9 to 46.6 g kg\(^{-1}\) and from 1.1 to 3.7 g kg\(^{-1}\) along the elevation gradients, respectively. Soil pH and texture were also different among the 6 sites (all \(p < 0.05\)) and between the two soil layers (all \(p < 0.05\) except for silt content) (Fig. 1d–g, Table 2). Soil organic layer had higher clay content and lower sand content than the mineral soil across the 6 sites (Fig. 1e and g).

SOC decomposition

Soil respiration rates decreased by 343.8% for the organic layer and by 575.8% for the mineral layer after the 350-day incubation period at 15°C (both \(p < 0.05\), Fig. 2a, Table 3). Both respiration rates and cumulative proportion of soil C respired incubated at 25°C were higher than those at 15°C during the whole incubation period (both \(p < 0.05\), Fig. 2). Means of soil respiration rates over the whole incubation period was 7.6 times greater (\(p < 0.05\)) in the organic layer than in the mineral soil across the incubation temperatures and the elevation gradients (Fig. 2a). Consequently, the cumulative proportion of C respired after 350 days of incubation in the organic layer (22.1% at 25°C and 11.3% at 15°C, respectively) were 1.6 times higher (both \(p < 0.05\)) than those in the mineral soil (13.4% at 25°C and 7.0% at 15°C, respectively) (Fig. 2b). In addition, both of the two measured variables were different among sites with different elevations (both \(p < 0.05\), Table 3).

Temperature sensitivity

The temperature sensitivity (\(Q_{10}\)) of SOC decomposition increased with increasing proportion of C respired over the incubation period in both the organic layer and the mineral soil across the elevation gradient (Fig. 3). The \(Q_{10}\) values in the two soil layers were estimated from 1 to 6% of the proportion of respired C to initial SOC by a step of 1% and named as \(Q_{10-1st}\), \(Q_{10-2nd}\), \(Q_{10-3rd}\) to \(Q_{10-6th}\) for the organic layer and the mineral layer, for example, was determined by dividing the time taken to respire the third 1% of the proportion of respired C to initial SOC by a step of 1% and named as \(Q_{10-1st}\) to \(Q_{10-6th}\) in either soil layer. For example, the highest \(Q_{10-1st}\) value of the organic layer and the mineral soil occurred at 1248 m (3.3) and 1102 m (2.4), respectively (Fig. 1h). In addition, elevation also interacted with soil layer to influence \(Q_{10}\) (Table 2).

Discussion

The alteration of soil C quality can arise through the progressive depletion of labile C and the increasing contribution of recalcitrant C to SOC decomposition during the long-term incubation\(^\text{13,14}\) compared to the relatively short incubation duration\(^\text{4}\). In this 350-day incubation study, the curves of changes in SOC decomposition rates (Fig. 2a) revealed that respiration declined sharply in the first 3 weeks and then started to settle and reduce slowly in both the organic layer and the mineral soil. This observed pattern was consistent with previous long-term laboratory incubation studies\(^\text{11,14,16}\). The enhancement of \(Q_{10}\) over incubation time in both the organic layer (from 2.5 in \(Q_{10-1st}\) to 3.4 in \(Q_{10-6th}\)) and the mineral soil (from 2.1 in \(Q_{10-1st}\) to 2.8 in \(Q_{10-6th}\)) (Fig. 3) suggested that the temperature sensitivity of more labile C was lower than that of more recalcitrant C. This result could be well explained by the Arrhenius equation (\(k = A \exp(-E_a/RT)\)), where \(k\) is the reaction rate of C decomposition, \(A\) is the frequency or pre-exponential factor (the theoretical reaction rate at

Table 1 Sites description

Elevation (m)	Position	MAT (°C)	MAP (mm)	Tree category	Vegetation type	Dominant species	Soil type	The depth of organic layer (cm)
795	42 23’N, 128 05’E	2.0	702	Mixed coniferous broad-leaved forest	Deciduous broadleaf and evergreen needleleaf	Pinus koraiensis	Dark brown forest soil	4.9 ± 0.2a
1102	42 11’N, 128 09’E	0.4	783	Broad-leaved Korean pine forest	Deciduous broadleaf and evergreen needleleaf	Pinus koraiensis	Brown coniferous soil	3.7 ± 0.2b
1248	42 08’N, 128 07’E	-0.3	824	Korean pine-spruce-fir forest	Evergreen needleleaf	Picea jezoensis	Brown coniferous soil	3.6 ± 0.3b
1510	42 05’N, 128 04’E	-1.7	904	Dark coniferous spruce-fir forest	Evergreen needleleaf	Abies nephrolepis	Brown coniferous soil	3.6 ± 0.6b
1690	42 04’N, 128 03’E	-2.6	964	Erman’s birch-spruce-fir forest	Evergreen needleleaf	Picea jezoensis	Brown coniferous soil	3.9 ± 0.4b
1900	42 03’N, 128 04’E	-3.7	1038	Deciduous broadleaf	Pinus koraiensis	Betula ermanii	Soddy forest soil	3.9 ± 0.4b

Data are mean ± SE (n = 4). Lowercase letters next to data indicate significant differences (\(p < 0.05\)) in the depths of the organic layer among the 6 elevations determined by t-test.
$E_a = 0)$, E_a is the activation energy of C components (J mol$^{-1}$), R is the gas constant (8.314 J mol$^{-1}$ K$^{-1}$), and T is the absolute temperature (in Kelvin). It indicated that higher E_a was required for decomposition of more recalcitrant C due to less reaction of stabilized substrates. Q_{10}, defined as the factor by which k increases with increasing temperature by 10$^\circ$C, should increase with increasing E_a and C recalcitrance. Therefore, our results support the "C quality-dependent hypothesis", which has been proven in temperate grassland, subtropical forest, boreal forest, and cropland. Our findings in the temperate forest, together with these previous reports point to the critical role of the relatively recalcitrant C fraction with higher amounts and higher temperature sensitivity in affecting C balance and cycling under further climate warming.

We found constantly higher Q_{10} values in the surface organic layer than the subsurface mineral soil during the incubation (Fig. 3), which was distinct from previous findings of increasing Q_{10} with soil depths in the mineral soil profiles. In addition to Arrhenius kinetics, Q_{10} of decomposition may be affected by Michaelis–Menten kinetics simultaneously. We believe this finding may be explained by the Michaelis–Menten kinetics ($k = V_{max} \times [S] / ([K_m] + [S])$, where k is the reaction rate, V_{max} is the maximum rate of enzymatic activity at a given temperature, $[S]$ is the substrate availability (substrate concentration at active site of enzyme), and K_m is the Michaelis–Menten constant, representing the affinity of enzymes for the substrates expressed as the substrate concentration at which the reaction rate equals $V_{max}/2$. Both V_{max} and K_m are temperature dependent and
their temperature sensitivities can neutralize each other, called “cancelling effect”. When the substrate is least limiting ([S] ≫ \(K_m \)), this “cancelling effect” is eliminated, causing higher \(Q_{10} \). Therefore, the higher \(Q_{10} \) values in the organic layer than in the mineral soil could be due to the reduction in the “cancelling effect” between \(V_{\text{max}} \) and \(K_m \) by the significantly higher C availability in the organic layer. The \(Q_{10} \) values observed in both the organic layer and the mineral soil during the incubation (Fig. 3) were larger than 2.0, which has been typically used as \(Q_{10} \) value of different SOC pools in current soil C models. Therefore, care should be taken when applying this generally used \(Q_{10} \) value to different ecosystems. More importantly, various \(Q_{10} \) values in different soil C pools should be considered to be incorporated into soil C models for better simulation of C decomposition in these forests. In particular, soil organic layer and mineral layer should have different \(Q_{10} \) values when modeling temperate forest with thick organic layers. In addition, \(Q_{10} \) values only reflect the relative changes in decomposition rates as a function of temperature. The absolute amounts of C that can be released from soils are the most important values to be predicted under climate change. Therefore, both the absolute and relative rates in response to temperature change should be considered in combination. In this study, the high amount of SOC and \(Q_{10} \) of C decomposition in the organic layer (Fig. 1a and 3) could have additive effects on C release, suggesting the extreme importance of the organic layer.

![Figure 2](image_url)

Table 2 | Results (F-values) of two-way ANOVA for soil properties and \(Q_{10} \). *: \(p < 0.05 \), ns: \(p > 0.05 \)

Source of variance	SOC	TN	C:N ratio	pH	Sand	Silt	Clay	\(Q_{10-1} \)	\(Q_{10-2} \)	\(Q_{10-3} \)	\(Q_{10-4} \)	\(Q_{10-5} \)	\(Q_{10-6} \)
Soil layer (SL)	201.5*	247.4*	18.6*	10.6*	34.5*	0.3ns	244.2*	13.5*	2.6ns	15.8*	20.3*	17.2*	8.2*
Elevation (E)	3.6*	2.9*	71.7*	16.4*	8.3*	8.6*	7.1*	5.8*	1.3ns	2.4ns	3.1*	5.1*	4.8*
SL \(\times \) E	3.6*	3.1*	1.4ns	9.8*	4.8*	3.1*	21.4*	1.2ns	2.6*	4.4*	9.1*	6.5*	5.1*

Figure 2 | Soil respiration rate (a) and cumulative proportion of soil C respired (b) in the organic layer and the mineral soil across the 6 elevations at different incubation temperature during the incubation (mean ± SE, n = 6).
Soils, respectively.

Results which found decomposition to temperature. When the two layers were considered separately, the Arrhenius kinetic theory was supported by our findings. This highlights the necessity of separating the organic layer or the mineral soil (Fig. 1a and b), which may be the example, in mineral soil of subtropical forests, Xu et al.14 and Wang et al.15 found that both microbial biomass C and soil C:N ratio increased with increasing elevation, which could result in the positive relationship of Q10 with elevation. While in our study, SOC, TN, and soil C:N ratio did not show any altitudinal patterns in either the organic layer or the mineral soil (Fig. 1a and b), which may be the reason why no clear trend of Q10 was observed along the elevation gradient. For the organic soils in Nikiša and Klimek,36 we re-calculated soil C:N ratios based on the soil C and N concentrations in their paper and found no effect of elevation on C:N ratio. Therefore, how elevation may affect of Q10 decomposition actually depends on how elevation influences quality and quantity of soil organic matter and/or activity and abundance of decomposers.

In conclusion, our results suggested the organic layer had higher Q10 than the mineral soil, which is consistent with the Michaelis-Menten kinetics. This highlights the necessity of separating the organic layer from the mineral soil to explore the responses of soil C decomposition to temperature. When the two layers were considered separately, the Arrhenius kinetic theory was supported by our results which found decomposition Q10 increased with decreasing soil C lability. Because the SOC pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. The different Q10 values observed in the two soil layers should be incorporated into soil C models for better prediction of responses of C decomposition to temperature change in temperate ecosystems.

Methods

Site description and soil sampling. The study was conducted on the northern slope of Mountain Changbai in Northeast China (41°42′–42°25′N, 127°42′–128°17′E). Mean annual temperature declined from 2.0 to 3.7°C and mean annual precipitation increased from 702 to 1038 mm with increasing altitude from 795 to 1900 m. Forest types were especially distinct due to climatic changes along the elevation gradient. A 20 × 20 m² plot was set at each of the six major vegetation types with different elevation. The detailed site descriptions were shown in Table 1. Soil samples of the organic layer and the upper 10 cm of the mineral soil were collected at 4 points randomly within each plot in September 2011. The organic layer was distinguished from the mineral soil by its morphology (including soil color, texture, and consistency). Soils were black or dark brown in color and less friable in the organic layer compared to the mineral soil. In addition, the depths of the organic layer were 3.3–4.9 cm across the 6 elevations (Table 1). Each fresh soil sample was sieved with a 2-mm sieve to remove rocks and root materials, thoroughly hand-mixed, and divided into two subsamples. One subsample was stored at 4°C until incubation began. The other subsample was air-dried to measure soil properties. SOC, total nitrogen (TN), and C:N ratio were determined on oven-dried (60°C) soil subsample by an elemental analyzer (VARIO EL III, Germany). Soil pH was measured with a Calomel electrode at 1:5 soil-to-water ratio. Soil texture was measured by the pipette method.35 Soil water content in both soil layers and field water capacity of mineral soil samples were also determined.

Soil incubation. Fresh soil samples of the organic layer (50 g with original soil moisture) and the mineral layer (150 g with 60% of field capacity) were incubated in 1 L Mason jars at 15 and 25°C, respectively. Empty jars without soil samples were used as controls. The soil samples were pre-incubated for five days before

![Diagram](https://via.placeholder.com/150)

Figure 3 | Changes in Q10 associated with proportion of soil C respired in the organic layer and the mineral soil along the elevations during the incubation (mean ± SE, n = 6). Bars with different upper- and lower-case letters are significantly different (p < 0.05) in the organic layer and the mineral soil, respectively.

Source of variance	Sampling time	Incubation temperature (T)	Soil layer (SL)	Elevation (E)	T × SL	T × E	SL × E	T × SL × E
Soil respiration rate								
Cumulative proportion of soil C respired								
measurements of SOC decomposition by the alkali absorption method. In detail, soil respired CO$_2$ was trapped by 30 ml NaOH (1M) solution in an open vial placed in each sealed jar. Samples were taken 22 times (2, 5, 9, 14, 21, 28, 35, 49, 63, 77, 91, 105, 126, 147, 168, 189, 210, 238, 266, 294, 322, 350 days after the incubation) with each sealed jar. Samples were taken 22 times (2, 5, 9, 14, 21, 28, 35, 49, 63, 77, 91, 105, 126, 147, 168, 189, 210, 238, 266, 294, 322, 350 days after the incubation) with each sealed jar. Samples were flushed with compressed air to allow replenishment of O$_2$ and were remoistened to maintain moisture after each interval. The cumulative proportion of soil C respired at a given sampling time was calculated as the summed amounts of C respired before the given sampling time divided by SOC.

Temperature sensitivity. Temperature sensitivity (Q$_{10}$) of SOC decomposition during the incubation was calculated using the method developed by Conant et al. 11:

$$Q_{10} = (t_2/t_1)^{(T_2-T_1)/T_1}$$

where t_1 and t_2 are the time required to respire a given amount of soil C during the incubation at 15 and 25°C, respectively.

Statistical analysis. Shapiro–Wilk and Levene’s tests were used to analyze the data for normality and homogeneity of variance, and if necessary, data were transformed by the square root or logarithmic transformation. Two-way ANOVAs were used to analyze the effects of soil layer and elevation on the Q$_{10}$ values with a given proportion of cumulative C respired during the incubation and soil characteristics (SOC, TN, C:N ratio, pH value, and texture). The differences between the organic and the mineral layers at each site were also determined by paired t-tests. The cumulative proportion of C respired and soil respiration rate during the incubation were analyzed by repeated-measures ANOVA and tested for sampling time, soil layer, elevation, and their interactions. All statistical analyses were performed by SAS 9.2 software (SAS Institute Inc., Cary, NC, USA).

1. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. *Nature* 478, 49–56 (2011).
2. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature* 440, 165–173 (2006).
3. Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. *Science* 298, 2173–2176 (2002).
4. Fang, C., Smith, P., Moncreef, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. *Nature* 433, 57–59 (2005).
5. Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. *Glob. Change Biol.* 17, 3392–3404 (2011).
6. Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. *Soil Biol. Biochem.* 58, 115–126 (2013).
7. Bosatta, E. & Ågren, G. I. Soil organic matter quality interpreted thermodynamically. *Soil Biol. Biochem.* 31, 1889–1891 (1999).
8. Cox, P. M., Betts, R. A., Jones, C. D., Spall, A. A. & Totterdell, J. I. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. *Nature* 408, 184–187 (2000).
9. Conen, F., Leifeld, J., Seth, B. & Aiwell, C. Warming mineralises young and old soil carbon equally. *Biogeosciences* 3, 515–519 (2006).
10. Liski, J., Ilvesniemi, H., Mäkelä, Å. & Westman, C. J. Temperature dependence of old soil organic matter. *Ambio* 29, 56–57 (2000).
11. Conant, R. T. et al. Sensitivity of organic matter decomposition to warming varies with its quality. *Glob. Change Biol.* 14, 868–877 (2008).
12. Hartley, I. P. & Ineson, P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. *Soil Biol. Biochem.* 40, 1567–1574 (2008).
13. Karhu, K. et al. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. *Soil Biol. Biochem.* 42, 72–82 (2010).
14. Xu, X., Zhou, Y., Ruan, H., Luo, Y. & Wang, J. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. *Soil Biol. Biochem.* 42, 1811–1815 (2010).
15. Haddix, M. L. et al. The role of soil characteristics on temperature sensitivity of soil organic matter. *Soil Sci. Soc. Am. J.* 75, 56–68 (2011).
16. Wang, G., Zhou, Y., Xu, X., Ruan, H. & Wang, J. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. *PLoS ONE* 8, e35914, doi: 10.1371/journal.pone.0035914 (2013).
17. Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. *Glob. Change Biol.* 9, 1322–1332 (2003).
18. Trumbore, S. E. & Harden, J. W. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. *J. Geophys. Res. Atmospheres* 102, 28817–28830 (1997).
19. göte, L., Brown, S., Paré, D., Fyles, J. & Baulus, J. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. *Soil Biol. Biochem.* 32, 1079–1090 (2000).
20. Gershenson, A., Bader, N. E. & Cheng, W. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. *Glob. Change Biol.* 15, 176–183 (2009).
21. Fissore, C., Giardina, C. P. & Kolka, R. K. Reduced substrate supply limits the temperature response of soil organic carbon decomposition. *Soil Biol. Biochem.* 67, 306–311 (2013).
22. Schindlbacher, A. et al. Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. *J. Geophys. Res.* 115, G03018, doi: 10.1029/2009JG001191 (2010).
23. Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil. A continental-scale analysis. *Glob. Biogeochem. Cycles* 20, GB3026, doi: 10.1029/2005GB002644 (2006).
24. Vanhala, P. et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. *Soil Biol. Biochem.* 40, 1758–1764 (2008).
25. Körner, C. The use of ‘altitude’ in ecological research. *Trends Ecol. Evol.* 22, 569–574 (2007).
26. Niklitskä, M. & Klimek, B. Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in the Polish Carpathians. *Biol. Fertil. Soils* 43, 511–518 (2007).
27. Tian, Q., He, H., Cheng, W. & Zhang, X. Pulse-dynamic and monotonic decline patterns of soil respiration in long term laboratory microcosms. *Soil Biol. Biochem.* 68, 329–336 (2014).
28. Sierra, C. A. Temperature sensitivity of organic matter decomposition in the Arnhemian equation: some theoretical considerations. *Biogeochemistry* 108, 1–15 (2012).
29. Gee, G. M. & Bauder, J. W. Methods of Soil Analysis, Part I: Physical and Mineralogical Methods. (American Society of Agronomy, Inc. and Soil Science Society of America, Inc.,USA) , pp. 383–411 (1986).

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (41175138 and 31400383), Major State Basic Research Development Program of China (973 Program) (2014CB954400), and State Key Laboratory of Forest and Soil Ecology. We are grateful to Yingping Bai, Weivei Dai, Zongwei Xie, and Jianfei Sun for the help in the laboratory.

Author contributions

E.B. and W.X. designed the experiment. W.X. conducted the measurements, data analyses and wrote the manuscript. W.L., P.J. and H.W. assisted with the experiments. E.B. and W.X. reviewed the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xu, W., Li, W., Jiang, P., Wang, H. & Bai, E. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil. *Sci. Rep.* 4, 6512; DOI:10.1038/srep06512 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/