The evolution of reperfusion therapy in acute myocardial infarction and acute ischaemic stroke has many similarities: thrombolysis is superior to placebo, intra-arterial thrombolysis is not superior to intravenous (i.v.), facilitated intervention is of questionable value, and direct mechanical recanalization without thrombolysis is proven (myocardial infarction) or promising (stroke) to be superior to thrombolysis—but only when started with no or minimal delay. However, there are also substantial differences. Direct catheter-based thrombectomy in acute ischaemic stroke is more difficult than primary angioplasty (in ST-elevation myocardial infarction [STEMI]) in many ways: complex pre-intervention diagnostic workup, shorter time window for clinically effective reperfusion, need for an emergent multidisciplinary approach from the first medical contact, vessel tortuosity, vessel fragility, no evidence available about dosage and combination of peri-procedural antithrombotic drugs, risk of intracranial bleeding, unclear respective roles of thrombolysis and mechanical intervention, lower number of suitable patients, and thus longer learning curves of the staff. Thus, starting acute stroke interventional programme requires a lot of learning, discipline, and humility. Randomized trials comparing different reperfusion strategies provided similar results in acute ischaemic stroke as in STEMI. Thus, it might be expected that also a future randomized trial comparing direct (primary) catheter-based thrombectomy vs. i.v. thrombolysis could show superiority of the mechanical intervention if it would be initiated without delay. Such randomized trial is needed to define the role of mechanical intervention alone in acute stroke treatment.

Keywords

Myocardial infarction • Acute stroke • Reperfusion • Thrombolysis • Primary angioplasty • Catheter intervention • Thrombectomy

Introduction

Acute regional ischaemia with progressive necrosis developing quickly during the initial hours after arterial thrombotic occlusion is a common feature of acute myocardial infarction and acute ischaemic stroke. Both these diseases are leading causes of death worldwide. Restoration of antegrade blood flow in the acutely occluded artery (i.e. reperfusion of the ischaemic tissue) is the most effective therapy in both situations (Figures 1 and 2). Timely reperfusion halts the progress of necrosis and preserves viable tissue (myocardium in jeopardy or cerebral penumbra).

The pathophysiology of cerebral infarction is different from myocardial infarction. Whereas in myocardial infarction thrombotic arterial occlusion over the ruptured coronary plaque can be found in 90–95% of patients, acute stroke in many patients cannot be simply attributed to a cerebral vessel occlusion (e.g. lacunar cerebral infarction has completely different aetiology). The differences between these two diseases are at least as important as the similarities, and the treatment should be done by physicians having these differences in mind (Table 1).

Reperfusion therapy of acute myocardial infarction using thrombolytic agents was first used by Chazov et al. in 1976 and
Figure 1 Coronary angiography before and after primary percutaneous coronary intervention in a patient with 'double' ST-elevation myocardial infarction (STEMI) (two acutely occluded coronary arteries). (A) Thrombotic occlusion of the proximal right coronary artery on admission. (B) Widely patent (near-normal) right coronary artery after stent implantation. (C) Thrombotic occlusion of the proximal obtuse marginal branch on admission. (D) Widely patent (near-normal) obtuse marginal branch after stent implantation.

Figure 2 Carotid angiography before and after catheter-based thrombectomy in acute anterior circulation stroke. (A) Thrombotic occlusion of the middle cerebral artery on admission. (B) Widely patent (near-normal) middle cerebral artery after catheter-based thrombectomy.
was introduced into broad clinical practice 10 years later after the publication of the pivotal randomized clinical trials GISSI2 and ISIS-2.3 Mechanical recanalization by means of primary angioplasty was first used by Meyer et al.4 and Hartzler et al.5 The first three randomized clinical trials showing superiority of primary PTCA over thrombolysis in ST-elevation myocardial infarction [STEMI] were published by Zijlstra et al.6, Grines et al.7, and Gibbons et al.8 in 1993. It took another 9 years before the Czech Society of Cardiology published in 2003.13 Direct mechanical reperfusion using catheter-based thrombectomy without thrombolysis was first used in 2001,14 and there is yet no randomized trial completed to date comparing mechanical reperfusion (without thrombolysis) vs. intravenous (i.v.) thrombolysis. Thus, the latest official guidelines do not yet recognize direct mechanical intervention as the accepted routine therapy for acute stroke.

There is a marked difference in the use of reperfusion therapy for acute myocardial infarction and for acute ischaemic stroke. In the USA during 2009, only 4.5% of ischaemic strokes were treated by i.v. thrombolysis.16 The situation is similar in Europe. In the Czech Republic, 4% of all hospitalized strokes are treated by thrombolysis and 0.3% by the combination of thrombolysis with mechanical intervention. On the other hand, nearly all STEMI patients are treated by primary percutaneous coronary intervention (PCI) in many European countries—e.g. the Czech Republic, The Netherlands, Sweden, Germany, Poland, and many others as was shown by the Stent for Life initiative.17 This initiative helped to improve STEMI treatment in many European countries during the last few years.18 In other countries (e.g. UK, Slovakia, and others) similar improvement was achieved by the joint initiative of cardiologists and local governments.

Although cardiologists succeeded to decrease the in-hospital case fatality of unselected acute myocardial infarction to current 5–8% during the last 20 years, case fatality of acute stroke in many countries remained almost unchanged. In the USA, the population mortality of stroke decreased (from #3 cause of death to #4 cause of death), and much of this improvement is attributed to care in primary stroke centres and in specialized stroke units. Thrombolysis has not been associated with reductions in case fatality due to acute ischaemic stroke. Many cardiologists worldwide (after having fully developed STEMI networks in their regions) are increasingly interested in

Table 1 Similarities and differences between acute myocardial infarction and acute stroke

Similarities	Acute myocardial infarction	Acute ischaemic stroke
Pathophysiology	Arterial occlusion + ischaemic necrosis in nearly all cases	Arterial occlusion + ischaemic necrosis in only half of the cases
Clinical picture	Acute onset	Acute onset
Prognosis	High mortality (if untreated by reperfusion)	High mortality and permanent disability
Effective treatment	Reperfusion therapy	Reperfusion therapy

Differences	Acute myocardial infarction	Acute ischaemic stroke
Aetiology	Uniform: plaque rupture + thrombosis in situ in 90–95%	Multifactorial: cardioembolic, arterioembolic, thrombosis in situ, lacunar, cryptogenic
Arterial occlusive thrombus feasible for catheter-based intervention	Found in 90–95% of acute coronary angiograms	Found only in ~40–50% of acute CT-angiograms
Time window symptom onset—intervention start (to offer benefit and not harm)	24 h (48 h in some patients)	3 h (8 h in some patients)
Reperfusion damage	Only theoretically, clinically is reperfusion beneficial	Reperfusion damage (parenchymal bleeding) is a real clinical problem
Clinical picture	Pain (dyspnoea) alerts most patients to call early for help	Neurological dysfunction and absence of pain frequently results in late medical contact
Diagnostic method before reperfusion therapy indication	ECG (fast, simple, cheap, at the site of first medical contact)	CT (takes more time, expensive, in-hospital)
Laboratory diagnostic marker	Troponin (although not needed for the initial decision in ST-elevation myocardial infarction)	Not yet available
Contraindications for catheter-based intervention	None	Intracranial bleeding or advanced ischaemia on CT
Percentage of hospitalized patients who undergo reperfusion therapy in well-functioning health care systems	>90%	<10%
acute stroke treatment. The interventional treatment of acute stroke (unlike acute myocardial infarction) requires effective cooperation between several medical specialties. The leading neurologists, neurosurgeons, and neuroradiologists recognize the possibilities of effective regional STEMI networks (enabling 24/7 service for acute interventions) and are opening their minds to future cooperation with cardiologists to improve the patient access to this modern therapy. However, there remain many obstacles, including resistance of neurosciences specialists to the concept of non-neurosciences-trained physicians caring for and performing interventions on patients with stroke. These attitudes are due to typical issues such as ‘turf battles’, financial concerns, as well as the relatively small number of patients who may be eligible for treatment, but also important and relevant concerns regarding knowledge of cerebral physiology, anatomy, and stroke management.

Of course, this review article reflects the point of view of the authors—two cardiologists and one neurologist. The authors recognize that others might have somewhat different views. The aim of this contribution is not to give recommendations, but rather to stimulate interdisciplinary discussion.

Intravenous thrombolysis vs. conservative treatment

Many randomized clinical trials confirmed superiority of i.v. thrombolysis over placebo in STEMI when used early after symptom onset (Figure 3). The rate of intracranial bleeding was 0.5–1.4% in a meta-analysis. In acute stroke, one of the two most positive thrombolytic trials did not show significant mortality benefit (17.3% 3-month mortality after thrombolysis vs. 20.5% mortality after placebo, $P = 0.30$), but found a significant decrease in overall unfavourable outcome (death or severe disability defined as modified Rankin Scale (mRS) > 2 was found in 57% after thrombolysis vs. 73% after placebo)—the difference caused by 13% absolute reduction in permanent disability. Symptomatic intracranial (6.4% thrombolysis vs. 0.6% placebo) as well as overall fatal (2.9% thrombolysis vs. 0.3% placebo) bleeding was significantly higher after recombinant tissue plasminogen activator (rt-PA).

The ECASS-III trial enrolled 821 patients treated between 3 and 4.5 h after the onset of a stroke. Fewer patients had an unfavourable

![Figure 3](image-url)
outcome (death or severe disability) with alteplase over placebo (48 vs. 55%; \(P = 0.04 \)). The incidence of symptomatic intracranial haemorrhage (sICH) was higher with alteplase than with placebo (2.4 vs. 0.2%; \(P = 0.008 \)). Mortality did not differ significantly between the alteplase and placebo groups (7.7 and 8.4%, respectively; \(P = 0.68 \)).

The Third International Stroke Trial (IST-3\(^{27} \)) randomized 3035 elderly (53% were \(\geq 80 \) years) patients with acute ischaemic stroke \(< 6 \) h from symptom onset in two groups: (i) i.v. rt-PA or (ii) control treatment. Unfavourable outcome (death or disability by Oxford Handicap Score \(> 2 \)) at 6 months was found in 63% (rt-PA) vs. 65% (control, \(P = 0.181 \)). Fatal or non-fatal sICH within 7 days occurred in 7% after rt-PA vs. 1% in the control group. Early mortality was 11% (rt-PA) vs. 7% (control group, \(P = 0.001 \))—total 6-month mortality was equal in both groups (27%).

A comprehensive meta-analysis comparing i.v. thrombolysis vs. conservative therapy for acute stroke\(^{25} \) included 26 trials involving 7152 patients. Thrombolytic therapy within 6 h from symptom onset increased the risk of sICH (OR 3.49, 95% CI 2.81–4.33) and death (OR 1.31, 95% CI 1.14–1.50) at 3–6 months post-stroke. However, the proportion of patients who were dead or dependent (modified Rankin 3–6) at 3–6 months after stroke was reduced (odds ratio 0.81, 95% confidence interval 0.73–0.90). Treatment within 3 h was more effective at reducing the combined endpoint of death or dependency (OR 0.71, 95% CI 0.52–0.96) but had no effect on mortality (OR 1.13, 95% CI 0.86–1.48).

Another meta-analysis\(^{23} \) included 3670 patients from eight trials using rt-PA (ECASS-III, EPITHET, and six older trials) and was focused on the time window between symptom onset and start of thrombolysis. Favourable 3-month outcome (defined as modified Rankin score \(0–1 \)) increased as time delay decreased (\(P = 0.0269 \)) and there was no benefit of rt-PA treatment beyond 270 min. Benefit was greater the earlier patients were treated: adjusted odds of a favourable 3-month outcome were 2.55 (95% CI 1.44–4.52) for 0–90 min, 1.64 (1.12–2.40) for 91–180 min, 1.34 (1.06–1.68) for 181–270 min, and 1.22 (0.92–1.61) for 271–360 min. Large ICH occurred in 5.2% of patients assigned to alteplase and 1.0% of controls, with no relationship to time delays. However, mortality increased with time delay (\(P = 0.0444 \); adjusted odds were 0.78 (0.41–1.48) for 0–90 min, 1.13 (0.70–1.82) for 91–180 min, 1.22 (0.87–1.71) for 181–270 min, and 1.49 (1.00–2.21) for 271–360 min.

Thus, i.v. thrombolysis is superior to placebo for both diseases (acute myocardial infarction and acute stroke) provided it is used timely: within \(< 12 \) h in STEMI (with maximum benefit within \(< 6 \) h) and within \(< 4.5 \) h in acute stroke (with mortality benefit only within \(< 90 \) min).

Intravenous plus/ vs. intra-arterial thrombolysis

Historically, thrombolysis was introduced to STEMI treatment as *intracoronary infusion* (Figure 4).\(^{1,24–26} \) However, it was soon recognized that i.v. infusion of a fibrinolytic agent is able to achieve the same clinical benefit with the same (or even lower—due to lack of arterial punctures and lack of mechanical manipulations in a ‘hypo-coagulable state’) bleeding risk.\(^{27,28} \) The slightly higher recanalization rates (50–60%) achieved with intracoronary thrombolysis over i.v. route (40–45%) did not result in improved clinical outcomes. Thus, the intracoronary administration of thrombolytic agents was completely abandoned \(\geq 20 \) years ago.

Meta-analysis of 15 studies\(^{29} \) on combined i.v. + intra-arterial (i.a.) thrombolytic therapy in acute stroke found 35.1% complete recanalization rate, 17.9% mortality, 51.1% unfavourable outcome (death or disability mRs \(> 2 \) at 90 days), and 8.6% sICH (proven haemorrhage with an increase of National Institute of Health Stroke Scale (NIHSS) by \(\geq 4 \) points). Neither mortality difference nor difference in sICH was found when combined lytic therapy was compared with i.v. thrombolysis alone.

The PROACT-II trial randomized 180 patients with angiographically proven middle cerebral artery occlusion treated within \(6 \) h of stroke onset to either i.a. thrombolysis or placebo. Mechanical manipulation of the thrombus was not permitted. The study showed clinical superiority of thrombolysis (40% good neurological outcomes—mRS \(\leq 2 \)) over placebo (25% mRs \(\leq 2 \)). The rate of sICH was 10.9% with thrombolysis and 2% with placebo. There was no difference in 90-day mortality.\(^{30} \)

The Japanese MELT trial used i.a. urokinase in patients with M1 or M2 MCA occlusions of \(< 6 \) h duration.\(^{31} \) The trial was stopped after enrolling 114 patients because of Japanese approval of IV tPA. The primary endpoint (mRS \(\leq 2 \)) was not significantly different compared with placebo, and the rate of sICH was 9%. However, a pre-planned secondary analysis showed that the rate of recovery to normal or near normal (mRS \(\leq 1 \)) was higher in the treatment group (42.1 vs. 22.8%; \(P = 0.045 \)).

The data from these two trials show the efficacy of IAT compared with placebo in the treatment of patients with angiographically proven MCA occlusion. Although there has been no direct, pure comparison of IA thrombolysis vs. i.v. thrombolysis, it is known\(^{22–35} \) that recanalization rates for large-vessel occlusion are generally poor with i.v. tPA (e.g. MCA recanalization rate is \(\sim 33% \), ICA recanalization is \(\sim 8% \), and patients with thrombi \(> 8 \) mm do not recanalize with i.v. tPA). Unfortunately, the initiation of IAT is much more time-consuming than i.v. tPA; therefore, the potential benefit may be lost due to the delay in treatment onset. Furthermore, the sICH rates \(\sim 10% \)\(^{31,32} \) after i.a. thrombolysis are rather high.

Thus, there is no direct evidence (neither for acute myocardial infarction nor for acute stroke) that i.a. administration of a fibrinolytic agent is of any superior clinical value over simple i.v. thrombolysis alone.

Facilitated intervention (thrombolysis + mechanical intervention)

Many randomized trials in STEMI\(^{36–39} \) and others tested the attractive hypothesis: to use i.v. thrombolysis at the time of first medical contact (to save time), followed by coronary angiography and angioplasty (to maximize the recanalization rates) (Figures 5 and 6). However, all these trials failed to show benefit of this approach over direct angioplasty alone. The results of most trials almost copied the two similarly designed three-arm trials\(^{28,36} \): facilitated angioplasty was slightly superior to i.v. thrombolysis alone, but was far less effective than primary angioplasty alone. The explanation is complex, but most important are two differences favouring...
primary over facilitated PCI: higher rates of re-infarction (including stent thrombosis) and higher rates of bleeding complications (including cardiac tamponade) after facilitated PCI.

The recently published STREAM trial randomized selected patients (unable to undergo primary PCI within 1 h from the first medical contact) to either pre-hospital fibrinolysis with subsequent coronary angiography (+PCI) or primary PCI. The trial found similar outcomes in both groups. However, fibrinolysis was associated with a slightly increased risk of intracranial bleeding.39

The Interventional Management of Stroke (IMS 3) trial compared i.v. thrombolysis (tPA) alone vs. facilitated intervention (i.v. tPA + i.a. tPA or mechanical thrombectomy). The trial has suspended enrolment for futility. A major limitation of the IMS III trial was that patients were selected upon clinical grounds and only 47% had a CT angiogram (CTA). In a pre-planned analysis of the patients with a documented arterial occlusion by CTA, there was a significant benefit in favour of facilitated intervention \((P = 0.01) \).

Figure 4 Comparison of intra-arterial vs. intravenous thrombolysis in acute myocardial infarction and acute stroke. (A) ‘Hard’ clinical endpoints, i.e. death/re-infarction/stroke for STEMI patients and death/severe disability (mRS > 2) for stroke patients. (B) All-cause mortality. (C) Symptomatic intracranial haemorrhage. Adopted from references 24–26 and 29.

These data on combined therapy demonstrate that there is no benefit from facilitated intervention (i.v. thrombolysis followed by i.a. thrombolysis ± catheter intervention) over i.v. thrombolysis alone in acute stroke patients when used as a primary strategy. However, in patients with failed i.v. thrombolysis and in some selected patients with a large thrombus burden, IAT can be considered for rescue therapy. This is very similar to the situation in acute myocardial infarction 25 years ago (intracoronary thrombolysis was not superior to i.v. thrombolysis) or more recently (facilitated PCI was not shown to be superior in several trials).

Primary catheter-based intervention (primary percutaneous coronary intervention, direct catheter-based thrombectomy)

The benefits of primary PCI over thrombolysis in STEMI were clearly demonstrated 20 years ago (Figure 7).6–8 These benefits are present even when patients require transportation from the first medical contact site to the nearest PCI-capable hospital.41,42 A large meta-analysis has demonstrated this benefit unequivocally.93
Figure 5 Comparison of intravenous thrombolysis vs. lysis-facilitated intervention in acute myocardial infarction and acute stroke. (A) “Hard” clinical endpoints, i.e. death/re-infarction/stroke for STEMI patients and death/severe disability (mRS > 2) for stroke patients. (B) All-cause mortality. (C) Symptomatic intracranial haemorrhage. Adopted from references 28, 36, and 40.

Figure 6 Comparison of facilitated intervention vs. catheter intervention alone in acute myocardial infarction and acute stroke. Adopted from references 28 and 36 (STEMI); no randomized trials available for acute stroke.

Figure 7 Comparison of catheter intervention alone vs. intravenous thrombolysis alone in acute myocardial infarction and acute stroke. Adopted from reference 43 (STEMI); no randomized trials available for acute stroke.
Similar evidence from randomized trials is lacking in acute ischaemic stroke. A few years ago, CBT was performed with bulky devices, and a significant risk of complications was present. In the last 3–5 years, several new clot retrieval devices (stent retrievers) have been introduced and received CE mark for the use in European patients. These devices (e.g. Solitaire® or Trevo®) are something between a tiny self-expanding stent and a soft ‘spider-web-like’ basket for clot removal, and the risks of complications with this latest generation stent retrievers are much smaller, whereas their success rates are higher. Detailed information about CBT was published in the JACC white paper.44

The Penumbra Pivotal Stroke Trial45 included 125 patients, mostly pre-treated by thrombolysis, with a mean NIHSS of 17.6, and demonstrated an 81.6% of recanalization rate. However, clinical outcomes were not different (or were even worse) from previous thrombolytic trials: 32.8% 90-day mortality, 75% unfavourable outcome (death or disability), and 11.2% sICH.

The Solitaire With the Intention For Thrombectomy (SWIFT) trial46 tested the Solitaire® stent retriever against the Merci Retriever® in patients within 8 h of stroke onset but was stopped early after the randomization of 113 patients because an interim analysis showed that the primary efficacy outcome (TIMI 2 or 3 flow) was achieved more often with Solitaire® (61 vs. 24%, OR 4.87, \(P < 0.0001 \)). Importantly, good neurological outcome (58 vs. 33%, OR 2.78, \(P = 0.0001 \)) and 90-day mortality (17 vs. 38%, OR 0.34, \(P = 0.0001 \)) were more favourable in the Solitaire® group with a markedly lower rate of sICH (2 vs. 11%, OR 0.14, \(P = 0.057 \)).

The TREVO 2 trial47 was similar to SWIFT and tested the Trevo® stent retriever vs. The Merci Retriever®. Recanalization (TICI 2 or greater) was higher with Trevo® than with Merci® (86 vs. 60%, OR 4.22, \(P < 0.0001 \)) as was good clinical outcome (40 vs. 22%, OR 2.39, \(P = 0.013 \)). There were no differences in the risk of sICH (7 vs. 9%, OR 0.75, \(P = 0.78 \)) or 90-day mortality (33 vs. 24%, OR 1.61, \(P = 0.18 \)). An important finding from the SWIFT trial was that the speed of recanalization with the stent retrievers was significantly lower (36 min with Solitaire® vs. 52 min with Merci®, \(P = 0.038 \)). Several other devices with varying designs are currently being tested.

A recently published single-centre experience48 with 104 patients treated with the Solitaire® stent retrieval, 75% of them received also thrombolysis. The recanalization rate was 78%. The mean NIHSS decreased from 15.3 (before) to 7.8 (after treatment). Mortality was 16% (anterior circulation) and 47.8% (posterior circulation). Intracranial bleeding occurred in 8%.

Another recent multicentre retrospective review49 included 237 patients (mean age 64 years; mean baseline NIHSS 15) with acute proximal intracranial anterior circulation occlusion—endovascular treatment was initiated > 8 h (mean 15 h) from time last seen well. The treatment selection was strictly based on MRI or CT perfusion imaging. Successful revascularization was achieved in 74%. Parenchymal haematoma occurred in 9%. The 90-day mortality rate was 21.5% and unfavourable outcome was in 55%.

The most recent meta-analysis50 of CBT registries identified 16 eligible published studies: 4 on the Merci device (\(n = 357 \)), 8 on the Penumbra system (\(n = 455 \)), and 4 on stent retrievers Solitaire® or Trevo® (\(n = 113 \)). The mean procedural duration for Merci was 120 min. The mean puncture-to-recanalization time for Penumbra was 64.6 min, and for stent retrievers, 54.7 min. Successful recanalization was achieved in 59.1% (Merci), 86.6% (Penumbra), and 92.9% (stent retrievers). Functional independence (mRS ≤ 2) was achieved in 31.5% (Merci), 36.6% (Penumbra), and 46.9% (stent retrievers). The 3-month mortality rate was 37.8% in the Merci studies, 20.7% in the Penumbra studies, and 12.3% in stent retriever studies. This study demonstrated improved outcomes after CBT when performed with the latest generation of stent retrievers. Major limitations of this and any other meta-analysis or comparison between stroke trials are the heterogeneity of the stroke patients enrolled and the criteria for patient selection. This heterogeneity stems from the multitude of causes of ischaemic stroke (e.g. atherosclerotic occlusion, cardioembolism, spontaneous dissection, etc.) as well as the variable sizes and locations of thrombi and occlusions. In addition, the status of collaterals, the severity of the ischaemic penumbra, and the size of the ischaemic core pre-treatment all have an effect on prognosis and outcomes.

The interventional techniques and peri-procedural management are highly variable. Patients undergoing catheter-based interventions for acute ischaemic stroke receive either general anaesthesia (GA) or conscious sedation. General anaesthesia may delay time to treatment, whereas conscious sedation may result in patient movement and compromise the safety of the procedure. Analysis of 980 patients who underwent intervention for acute anterior circulation stroke at 12 stroke centres between 2005 and 2009 found an overall recanalization rate of 68% and a symptomatic haemorrhage rate of 9.2%. General anaesthesia was used in 44% of patients with no differences in intracranial haemorrhage rates when compared with the conscious sedation group. The use of GA was associated with poorer neurological outcome at 90 days (odds ratio = 2.33; 95% CI 1.63–3.44; \(P < 0.0001 \)) and higher mortality (odds ratio = 1.68; 95% CI 1.23–2.30; \(P < 0.0001 \)) compared with conscious sedation. For example, it is becoming increasingly more likely that the use of GA has a significant deleterious effect on outcomes and increased mortality.51

A recent study52 demonstrated that even stroke caused by the acute occlusion of the internal carotid artery (with only 8–17% recanalization rate and 55% mortality rate when treated by thrombolysis) can be effectively treated by CBT: successful revascularization of extracranial internal carotid artery with acute stent implantation was achieved in 95% of patients. The intracranial recanalization was achieved in 61% of patients, who had simultaneous intracranial artery occlusion. The mortality rate was 13.6% at 90 days and the favourable outcome (mRS ≤ 2) was 41%.

These data show that the latest generation of stent retrievers is able to recanalize 80–90% of occluded intracranial arteries—three times more compared with thrombolysis. However, it is not yet known whether this translates to better clinical outcomes. The sufficient data on outcomes after primary CBT (without thrombolysis) are still missing and trials comparing i.v. thrombolysis vs. primary CBT are urgently needed and are being planned and initiated.

Adjuvant antithrombotic therapy before/after reperfusion

One of the major differences between acute MI and acute stroke lies in the intensity of adjuvant antithrombotic therapy connected to any reperfusion strategy. Although antithrombotic therapy in acute MI is...
usually based on full-dose parenteral anticoagulation plus dual (or
sometimes even triple) antiplatelet therapy, such multidrug strategy in
acute stroke would be disastrous and cause many intracranial
bleedings. Antithrombotic therapy in acute stroke, especially
when treated by thrombolysis, should be cautious, low dose, usually
with a single agent. There are no trials at all assessing adjuvant antithrom-
botic therapies during/after direct catheter-based interventions in
acute stroke. This important topic is, however, beyond the scope
of this review.

Future: how to improve acute stroke outcomes?

Facing the above-mentioned minimal benefits from i.v. thrombolysis
(vs. conservative treatment) in acute stroke and absence of any ben-
efits from i.a. thrombolysis (vs. i.v. lysis alone), the future trials in acute
stroke must follow the way paved by acute myocardial infarction
trials: the future trials should compare i.v. thrombolysis alone vs.
catheter-based mechanical intervention alone (without lytics) for
the occlusion of major cerebral arteries. If such trials would demon-
strate superiority of catheter-based thrombectomy, we can face in
future similar evolution in acute stroke treatment as we have been
facing in acute MI treatment in the past years.

Nevertheless, irrespective of the trial results, the most important
is to prevent acute strokes—and this field is much more successful
already today. When the acute stroke occurs despite the preventive
measures, the critical value of every minute shortening the delay to
reperfusion therapy is essential. The continuous education should
be focused on both—the wide population knowledge of stroke
symptoms and the critical role of time and also to health care profes-
sionals, who must change their passive attitude to stroke treatment.

Summary

The evolution of reperfusion therapy in acute myocardial infarction
and acute ischaemic stroke has many similarities: thrombolysis is su-
perior to placebo, i.a. thrombolysis is not superior to i.v., facilitated
intervention (thrombolysis followed by mechanical intervention)
is of questionable value, and direct mechanical recanalization with-
thrombolysis clearly is (myocardial infarcion) or possibly will be
(stroke) superior to thrombolysis—but only when started with no
or minimal delay (Table 2).

However, there are also substantial differences. Direct catheter-
based thrombectomy in acute ischaemic stroke is more difficult
than primary angioplasty (in STEMI) in many ways: complex pre-
intervention diagnostic workup, shorter time window for clinically ef-
fective reperfusion, need for an emergent multidisciplinary approach
from the first medical contact, vessel tortuosity, vessel fragility, no
evidence available about dosage and combination of peri-procedural
antithrombotic drugs, risk of intracranial bleeding, unclear respective
roles of thrombolysis and mechanical intervention, lower number of
suitable patients, and thus longer learning curves of the staff. Thus,
starting acute stroke interventional programme requires a lot of
learning, discipline, and humility.

Reperfusion strategies combining thrombolysis with immediate
intervention (i.a. thrombolysis or i.v. thrombolysis followed by
mechanical intervention) in general failed in both acute disorders
(STEMI and stroke) mainly due to the following reasons: (i) the fi-
brinolytic effect is always systemic and not directly dependent on
the dose or site of administration, (ii) the catheter manipulation in
a ‘fibrinolytic state’ causes more bleeding complications than simple i.v. thrombolysis, (iii) when thrombolysis is preceding mecha-
nical intervention, the start of invasive procedure is always somewhat
delayed (this delay may be critical if the intervention is indicated for
clinical thrombolysis failure). Randomized trials comparing different
reperfusion strategies provided similar results in acute ischaemic
stroke as in STEMI. Thus, it might be expected that also a randomized
trial comparing direct (primary) CBT vs. i.v. thrombolysis could show
superiority of CBT if the mechanical intervention would be initiated
without delay. Such randomized trials are needed to define the role of
CBT in acute stroke treatment.

Table 2 Summary of the outcomes of various
reperfusion strategies in randomized trials

STEMI death/re-MI/stroke	Acute stroke death/severe disability (mRs > 2)	
Conservative (no reperfusion)	15–30%	55–75%
I.V. thrombolysis	11–16%	48–63%
Local (i.a.) thrombolysis	10–15%	51–60%
Facilitated intervention (thrombolysis + intervention)	9–14%	59–79%
Primary catheter-based intervention (no thrombolysis)	5–9%	No randomized trials published

Funding

Preparation of this manuscript was supported by a research project of
Charles University Prague (PRVOUK P35).

Conflict of interest: none declared.

References

1. Chazov EI, Matveeva LS, Mazaev AV, Sargin KE, Sadovskaia GV, Ruda MI. Intracoron-
yary administration of fibrinolytic in acute myocardial infarct. Ter Arkh 1976;48:8–19.
2. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI).
Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction.
Lancet 1986;1:397–402.
3. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Rando-
mised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187
cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2:349–360.
4. Meyer J, Merx W, Schweizer P, Dörr R, Lambertz H, Bethge C, Erbel R, Effert S. Selective intracoronary lysis and transluminal coronary dilation as an immediate
measure in acute myocardial infarct. Verh Dtsch Ges Herz Kreislaufforsch 1982;48:157–165.
5. Hartzler GO, Rutherford BD, McConahay DR, Johnson WL Jr, McCallister BD,
Gura GM Jr, Corin RC, Crockett JE. Percutaneous transluminal coronary angioplasty
with and without thrombolytic therapy for treatment of acute myocardial infarction.
Am Heart J 1983;106:5 Pt 1):965–973.
6. Zijlstra F, de Boer MJ, Hoornije JC, Reiffers S, Reiber JH. Suryapranata H. A compari-
sion of immediate coronary angioplasty with intravenous streptokinase in acute myo-
cardial infarction. N Engl J Med 1993;328:680–684.
7. Grines CL, Brownie KT, Maroo J, Rothbaum D, Stone GW, O’Keefe J, Osterle P,
Donohue B, Chelliah N, Timmis GC. A comparison of immediate angioplasty with
thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in
Myocardial Infarction Study Group. N Engl J Med 1993;328:673–679.
8. Gibbons RJ, Holmes DR, Reeder GS, Bailey KR, Hopfenspirger MR, Gersh BJ. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. The Mayo Coronary Care Unit and Catheterization Laboratory Groups. N Engl J Med. 1993;328:685–691.

9. Widimsky P, Janoušek S, Vojáček J. Czech Society for Cardiology guidelines for the diagnosis and treatment of acute myocardial infarction (Q-wave/ST elevations) bundle branch blocks. Cvrk 2002;44:123–141.

10. Fletcher AP, Alkjaersig N, Lewis M, Tulevski V, Davies A, Brook J, Hardin WB, Landau WM, Raichle ME. A pilot study of urorokinase therapy in cerebral infarction. Stroke 1976;7:135–142.

11. Mori E, Yonedo T, Tabuchai H, Yoshida T, Ohkawa S, Ohsumi Y, Kitano K, Tsutsumi A, Yamadai A. Intraoperative recanalization tissue plasminogen activator in acute carotid artery territory stroke. Neurology 1992;42:876–892.

12. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–1587.

13. Adams HP Jr, Adams RJ, Brott T, del Zoppo GJ. Intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke. N Engl J Med 1992;326:135–142.

14. Bladin C, Byrnes G. Time to treatment with intravenous alteplase and outcome in acute stroke patients with anterior circulation strokes. Neurosurgery 2000;47:975–982.

15. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, Kothari RU, Menon BK, Nogueira RG, Rabinstein AA, Reynolds WS, Saver JL, Wintermark M, Yonas H, American Heart Association Stroke Council, Council on Cardiovascular Nursing, Council on Peripheral Vascular Disease, and Council on Clinical Cardiology. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke 2003;34:1070–1107.

16. Brott T,收到的State of the art on intravenous thrombolysis. Stroke 2004;35:135–142.

17. Widimsky P, Groch L, Zelízko M, Aschermann M, Bednár F, Suryapranata H. Multi-centre randomized trial comparing transport to primary angioplasty vs immediate thrombolysis combined with a modified treatment strategy for patients with acute myocardial infarction presenting to a community hospital without a catheterization laboratory. The PRAGUE study. Eur Heart J 2000;21:823–831.

18. Mazighi P, Meseguer E, Labreuche J. Amanziska. P. Bridging therapy in acute ische-mic stroke: a systematic review and meta-analysis. Stroke 2013;43:1302–1308.

19. Furlan A, Higashida R, Wechsler L, Gentry H, Kase C, Pessin M, Alhaja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ische-mic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:2003–2011.

20. Ogawa A, Mori E, Plematuks A, Taki W, Takahashi A, Nemoto S, Myamato S, Sasaki M, Inoue T, MELT Japan Study Group. Randomized trial of intraarterial infu-sion of recombinant prourokinase within 6 hours of middle cerebral artery stroke: the middle cerebral artery embolism local fibrinolytic intervention trial (MELT) Japan. Stroke 2007;38:2633–2639.

21. Kharitonova T, Ahmed N, Thioren M, Wardlaw JM, von Kummer R, Glahn J, Wahlgren N. Hyperdense middle cerebral artery sign on admission CT scan—prognostic significance for ischaemic stroke patients treated with intravenous thromboly-sis in the safe implementation of thrombolysis in Stroke International Thrombolytic Registry. Cerebrovasc Dis 2009;27:51–59.

22. De Silva DA, Breidenfeld C, Eibinger M, Christensen S, Barber PA, Butler KS, Levey CR, Parsons MW, Bladin CF, Donnan GA, Davis SM. The benefits of intravenous thrombolysis relate to the site of arterial occlusion in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET). Stroke 2010;41:295–299.

23. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingle R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011;42:1775–1777.

24. Saver JL, Yafeh B. Confirmation of tPA treatment effect by baseline severity-adjusted end point reanalysis of the NINDS-tPA stroke trials. Stroke 2007;38:414–416.

25. Vermeer F, Oude Ophuis Ajv, vd Berg EJ, Brunninkhuis LG, Wetter CJ, Boehmer AG, Louisberg AH, Dassen WVR, Bar BW. Generic intravenous thrombolysis. Stroke 2006;37:1191–1194.

26. De Silva DA, Breidenfeld C, Eibinger M, Christensen S, Barber PA, Butler KS, Levey CR, Parsons MW, Bladin CF, Donnan GA, Davis SM. The benefits of intravenous thrombolysis relate to the site of arterial occlusion in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET). Stroke 2010;41:295–299.

27. Amandrucki M, Antman EM, Murphy SA, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW, Jr; Qwave/ST elevations/7 bundle branch block). Lancet 2003;362:135–142.

28. Furlan A, Higashida R, Wechsler L, Gentry H, Kase C, Pessin M, Alhaja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ische-mic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:2003–2011.

29. Mazighi P, Groch L, Zelízko M, Aschermann M, Bednár F, Suryapranata H. Multi-centre randomized trial comparing transport to primary angioplasty vs immediate thrombolysis combined with a modified treatment strategy for patients with acute myocardial infarction presenting to a community hospital without a catheterization laboratory. The PRAGUE study. Eur Heart J 2000;21:823–831.

30. Mazighi P, Meseguer E, Labreuche J. Amanziska. P. Bridging therapy in acute ische-mic stroke: a systematic review and meta-analysis. Stroke 2013;43:1302–1308.

31. Furlan A, Higashida R, Wechsler L, Gentry H, Kase C, Pessin M, Alhaja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ische-mic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:2003–2011.

32. Mazighi P, Groch L, Zelízko M, Aschermann M, Bednár F, Suryapranata H. Multi-centre randomized trial comparing transport to primary angioplasty vs immediate thrombolysis combined with a modified treatment strategy for patients with acute myocardial infarction presenting to a community hospital without a catheterization laboratory. The PRAGUE study. Eur Heart J 2000;21:823–831.

33. Mazighi P, Meseguer E, Labreuche J. Amanziska. P. Bridging therapy in acute ische-mic stroke: a systematic review and meta-analysis. Stroke 2013;43:1302–1308.
42. Andersen HR, Nielsen TT, Rasmussen K, Thuesen L, Kelbaek H, Thayssen P, Abildgaard U, Pedersen F, Madsen JK, Grande P, Villadsen AB, Krusell LR, Haghfelt T, Lomholt P, Husted SE, Vigholt E, Kjaergard HK, Mortensen LS, DANAMI-2 Investigators. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 2003;349:733–742.

43. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 2003;361:13–20.

44. White CJ, Abou-Chebl A, Cates CU, Levy EI, McMullan PW, Rocha-Singh K, Weintrager JM, Wholey MH. Stroke intervention: catheter-based therapy for acute ischemic stroke. J Am Coll Cardiol 2011;58:101–116.

45. The Penumbra Pivotal Stroke Trial Investigators. The Penumbra Pivotal Stroke Trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009;40:2761–2768.

46. Saver JL, Jahan R, Levy EI, Jovin TG, Albers GW, Liebeskind DS, Smith WS; TREVO 2 Trialists. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 2012;380:1241–1249.

47. Papanagiotou P, Roth C, Walter S, Behnke S, Grunwald IQ, Viera J, Politi M, Körner H, Kostopoulos P, Haas A, Fassbender K, Reth W. Carotid artery stenting in acute stroke. J Am Coll Cardiol 2011;58:2363–2369.