REVIEW

Molecular regulation of arteriovenous endothelial cell specification [version 1; peer review: 2 approved]

Jennifer Fang¹, Karen Hirschi²

¹Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
²Departments of Medicine, Genetics, and Biomedical Engineering, Yale Cardiovascular Research Center, Yale Stem Cell Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA

Abstract
The systemic circulation depends upon a highly organized, hierarchal blood vascular network that requires the successful specification of arterial and venous endothelial cells during development. This process is driven by a cascade of signaling events (including Hedgehog, vascular endothelial growth factor (VEGF), Notch, connexin (Cx), transforming growth factor-beta (TGF-β), and COUP transcription factor 2 (COUP-TFII)) to influence endothelial cell cycle status and expression of arterial or venous genes and is further regulated by hemodynamic flow. Failure of endothelial cells to properly undergo arteriovenous specification may contribute to vascular malformation and dysfunction, such as in hereditary hemorrhagic telangiectasia (HHT) and capillary malformation-arteriovenous malformation (CM-AVM) where abnormal vessel arteriovenous structures, such as large shunts lacking clear arteriovenous identity and function, thereby compromising peripheral blood flow. This review provides an overview of recent findings in the field of arteriovenous specification and highlights key regulators of this process.

Keywords
artery, vein, endothelial cell specification, vascular development

Reviewer Status
Invited Reviewers
1
2

version 1
first published: 29 Jul 2019 (F1000 Faculty Rev):1208 (https://doi.org/10.12688/f1000research.16701.1)
nLatest published: 29 Jul 2019, 8(F1000 Faculty Rev):1208 (https://doi.org/10.12688/f1000research.16701.1)

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 Ondine Cleaver, University of Texas Southwestern Medical Center, Dallas, USA
2 Helen Arthur, Newcastle University, Newcastle, UK

Any comments on the article can be found at the end of the article.
Corresponding author: Karen Hirschi (karen.hirschi@yale.edu)

Author roles: Fang J: Conceptualization, Writing – Original Draft Preparation; Hirschi K: Conceptualization, Funding Acquisition, Resources, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the National Institutes of Health (HL128064, HL096360, and EB017103) and CT Innovations (15-RMB-YALE-04 and 15-RMB-YALE-07).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Fang J and Hirschi K. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Fang J and Hirschi K. Molecular regulation of arteriovenous endothelial cell specification [version 1; peer review: 2 approved] F1000Research 2019, 8(F1000 Faculty Rev):1208 (https://doi.org/10.12688/f1000research.16701.1)

First published: 29 Jul 2019, 8(F1000 Faculty Rev):1208 (https://doi.org/10.12688/f1000research.16701.1)
Introduction
Systemic blood circulation depends upon a highly organized vessel network to efficiently deliver nutrient-rich blood to, and remove waste from, peripheral tissues. The mechanisms that drive development of the blood vasculature are of significant scientific interest with regard to improving our basic understanding of developmental vascular biology and to advancing the fields of personalized and regenerative medicine, where the ability to engineer blood vessels in a laboratory setting would be of significant therapeutic value. In particular, the cell signaling programs that govern the acquisition of specialized endothelial cell identities such as arteries and veins—both crucial for the formation of a functional circulatory system—are the focus of this review.

During early embryonic development, the vasculature forms when primitive endothelial cells coalesce into a primordial microvascular network. Subsequent remodeling of this primitive vasculature organizes the network into the hierarchal architecture typical of mature vessel beds. Specifically, vascular remodeling processes (including endothelial cell proliferation and migration as well as mural cell recruitment and differentiation) drive the formation of anatomically distinct large vascular structures such as arteries and veins (reviewed by dela Paz and D’Amore in 2009). The arterial and venous sides of the systemic circulation are connected to one another at one end by the heart, and at the other end by dense networks of microvessels in the periphery; altogether, this systemic circuit supports circulation of blood throughout the body. Arteries and smaller arterioles are located upstream of the microvasculature and bear a characteristically thick layer of circumferentially organized smooth muscle cells that regulate vessel diameter to influence luminal blood flow and downstream perfusion. In contrast, the smooth muscle layer of veins and venules is thinner and less organized, resulting in a less rigid vessel wall capable of supporting the large blood volume typical of the venous side of the vasculature, and venous valves prevent luminal backflow through these vessels. Microvascular capillaries are a network of thinly walled, small-caliber blood vessels surrounded by a perivascular layer of pericytes that together support exchange of oxygen, fluid, nutrients, and waste into and out of surrounding tissue.

Throughout the vasculature, an inner endothelial layer forms the interface between the vessel lumen and the vessel wall. However, endothelial cells are not a homogeneous cell population; rather, endothelial cells of specialized vascular structures (that is, arteries, veins, and microvessels) express distinct molecular signatures that reflect their individual location and function in the vascular tree. Moreover, acquisition of specialized endothelial cell signatures occurs prior to network formation, suggesting that molecular specification of endothelial cells toward arterial or venous identities (termed arteriovenous specification) or other endothelial cell lineages (such as lymphatic or hemogenic) can drive the morphological reorganization of nascent vessel networks. Defects in vascular specification, proliferation, and remodeling can result in arteriovenous malformations (AVMs) that express both arterial and venous markers and may even express markers of lymphatic vasculature. Collectively, these data emphasize the importance of proper endothelial cell specification for normal development and function of the vascular system.

Early embryonic vessel development and endothelial specification
During embryogenesis, vascular endothelial cells originate from mesoderm-derived angioblasts (that is, endothelial progenitor cells) that, in mice, first appear at embryonic day 7.0 to 7.5 in the extra-embryonic yolk sac. During the process of vasculogenesis, precursor cells progressively acquire markers of endothelial cell phenotype—vascular endothelial growth factor receptor type 2 (VEGFR2), vascular endothelial cadherin, and so on—and form a primitive vascular plexus in the yolk sac and in the embryo proper. Recently, Plein et al. reported that a subset of yolk sac endothelial cells that acquire hemogenic potential to become erythro-myeloid progenitor cells are also capable of re-differentiating into endothelial cells and integrating back into the yolk sac and embryonic vasculature. The primitive vasculature that is comprised of these two endothelial cell sources undergoes stepwise remodeling to produce the earliest extra- and intra-embryonic vessels, which collectively form the embryo’s first closed circulatory loop. As endothelial cells of the dorsal aorta and the cardinal vein within the embryo progressively acquire expression of arterial and venous markers, respectively, the remaining endothelial cells of primitive plexi undergo sprouting angiogenesis to expand the vascular network, followed by additional remodeling and specification to further reorganize the network into a hierarchal branching architecture.

Arteriovenous specification of the endothelial cells that form the dorsal aorta and cardinal vein appears to be molecularly determined prior to the onset of systemic blood flow. Discrete, non-overlapping expression of neuropilin-1 (Nrp1) and neuropilin-2 (Nrp2) is observed in vascular plexi of chick embryos and these endothelial cell populations subsequently segregate into the earliest embryonic arteries and veins, respectively. Expression of ephrinB2, enriched in some arterial endothelial cells, and the receptor EphB4, enriched in some venous cells, is also observed in the primitive vasculature prior to the onset of blood flow. Despite these findings, the early morphogen or morphogens that first induce formation of the initial vascular plexus and support arteriovenous specification therein remain unclear. Furthermore, it is still uncertain whether these arteriovenous specification pathways are common across all vertebrate species or even whether, within the same organism, all endothelial cells synchronously acquire their arteriovenous identity via the same initiating signal(s) or downstream mechanism(s).

Role of shear stress
The observations that embryonic arterial and venous markers are expressed prior to the onset of blood flow and that blood flow is dispensable for early arteriovenous specification events in the chick embryo suggest that the initiating arteriovenous specification event for angioblasts is not necessarily blood flow. However, blood flow is nonetheless crucial for certain
arteriovenous specification events and is necessary for the maintenance of arterial identity.

Supporting this point, loss of systemic blood flow in chick and mice produces defects in arteriovenous specification and induces AVMs. For example, in Ncx1^{−/−} mouse embryos (which lack a heartbeat), blood flow is not required for initial formation of the dorsal aorta and the cardinal vein but is necessary to induce separation of these vessel structures and to maintain arterial marker expression and suppress venous identity genes in the dorsal aorta. Thus, early endothelial cell fate acquisition is dynamic, and hemodynamic signaling is needed to sustain arteriovenous identity in the remodeling vasculature.

Consistent with this model, expression of arterial identity genes is induced in cultured endothelial cells and is greatest when cells are exposed to shear stress magnitudes typical of arterial vessels (~15 dynes/cm²), relative to higher or lower shear magnitudes. Furthermore, maintenance of arterial gene expression in cultured arterial endothelial cells requires pulsatile, not constant, flow. These data indicate that endothelial cell specification is tightly calibrated to hemodynamic flow profile and suggest that other endothelial cell types, such as venous and lymphatic, may be similarly promoted by vessel-specific flow profiles. Consistent with the idea that endothelial cell identity is plastic and influenced by hemodynamic flow, several studies show that vessel grafts generally lose markers of their vessels of origin and assume the molecular identity of their grafted location. Although the particular mechanosensitive pathways that govern these flow-sensitive specification events remain unclear, activation of mechanosensitive receptors, such as activin receptor-like kinase 1 (ACVRL1, or Alk1) and Notch1 or Notch4, likely leads to the downstream transactivation of fundamental regulators of endothelial cell specification and vascular remodeling, which is discussed in greater detail below.

Role of cell cycle control

A growing body of evidence suggests that endothelial cell cycle arrest is necessary to enable the acquisition of specialized endothelial cell phenotypes. Cell cycle control critically regulates cell fate decisions during embryonic stem cell differentiation, suggesting that a similar process may occur for acquisition of specialized cell phenotypes in other contexts, such as for endothelial cells in the vasculature. In undifferentiated stem cells, cell cycle progression is tightly regulated, and cell cycle length governs both pluripotency and cell differentiation. In blood vessels, molecular regulation of cell cycle state may similarly be required to achieve a balance between expansion and maturation of vessel networks.

Consistent with this hypothesis, angiogenic endothelial cells are highly proliferative, whereas proliferation is substantially suppressed in remodeling vessel networks undergoing arteriovenous specification, particularly in developing arterial-associated vascular beds. In addition, fluid shear stress at physiologically arterial levels significantly reduces proliferation of endothelial cells in culture and endothelial cells in mature arteries are characteristically quiescent. Recent studies show that pharmacological induction of G₁ arrest is sufficient to enable the expression of arterial identity genes in endothelial cells in culture even in the absence of other conventional activators of arterial specification. In addition, during coronary vascular development, transition from venous to arterial endothelial cell phenotypes is associated with G₁ growth arrest that is prevented by expression of the venous identity regulator COUP-TFI, and endothelial cell G₁ arrest is also required for hemogenic specification. Thus, signaling pathways, including those reviewed below, may regulate endothelial specification, at least in part, by modulating cell cycle state to enable subsequent endothelial cell specification events. Whether a specific cell cycle state is necessary to enable venous and lymphatic endothelial cell specification is unclear and this is under investigation.

Regulators of arteriovenous specification

Vascular network morphogenesis and endothelial cell specification require coordinated cell–cell signaling between endothelial cells, mural cells, and adjacent cell types. Specification of endothelial cell identity is regulated by the integrated balance of multiple cell–cell signaling pathways that antagonistically induce arterial or venous identity. In particular, an “arterialization” cascade involving Hedgehog, vascular endothelial growth factor (VEGF), Notch, and connexin (Cx) signaling plays an important role in inducing arterial specification. There is also cross-talk of this pathway with transforming growth factor-beta (TGF-β) signaling and this pathway is inhibited by regulators of venous identity, such as COUP-TFI.

Hedgehog

Binding of the morphogen Sonic Hedgehog (Shh) to its cell surface receptor Patched-1 (PTCH1) alleviates repression of the central downstream Shh effector, Smoothened (Smo). In turn, Smo induces the expression of numerous gene targets essential for embryonic development. In endothelial cells, Shh activates endothelial cell survival and alters cytoskeletal arrangement in culture, and studies in zebrafish show that Shh signaling is necessary for arteriovenous specification. Specifically, in zebrafish mutants lacking Shh, endothelial cells of the dorsal aorta fail to acquire expression of the arterial-enriched gene ephrinB2. This is thought to be the result of loss of VEGF expression in Shh-deficient somites, leading to reduced VEGF signaling and reduced downstream Notch. However, Shh also regulates endothelial cell identity independent of its stimulation of VEGF/Notch signaling. Specifically, Hedgehog represses venous identity and promotes arterial specification via calcitonin receptor-like receptor (Crlr) signaling as well as by directly upregulating expression of Notch signaling effectors.

Vascular endothelial growth factor

VEGF functions at multiple levels during vasculogenesis and vessel remodeling, including during arteriovenous specification. Although loss of even a single allele of VEGF-A is sufficient to disrupt vessel formation resulting in embryonic lethality in mice, VEGF-A knockdown in zebrafish morphants preserves embryonic survival albeit with arteriovenous specification...
Recent findings indicate that, in addition to its effects on Etv2 and downstream Notch, VEGERF2 activation directly regulates the balance of signaling through either phosphatidylinositol-3-kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathways to determine arterial and venous cell fates. In a small-molecule screen, Hong et al. report that inhibition of PI3K signaling induces ERK1/2 (MAPK signaling) activation—a signaling pathway that regulates endothelial cell proliferation (among other functions)—to promote arterial specification. This effect is capable of rescuing arteriovenous defects of the gridlock zebrafish mutant, where the Notch-targeted transcription factor Hey2 is affected, indicating that MAPK signaling influences arterial identity downstream of Notch signaling. In contrast, small-molecule inhibitors of MAPK, or constitutive activation of PI3K signaling via induction of protein kinase B (Akt), prevents arterial specification and instead induces venous identity, indicating that the antagonistic relationship between MAPK and PI3K signaling pathways strongly influences endothelial cell fate.

Notch

Members of the Notch family of transmembrane receptors, as well as their membrane-bound ligands, are expressed in multiple cell types of the developing and mature vasculature. In response to VEGF-activated expression of members of the Sox family of transcription factors (for example, Sox7, Sox17, and Sox18) or stimulation of the Wingless/Integrated (Wnt) signaling pathway, primordial endothelial cells are induced to express the transmembrane receptor Notch1 and its ligand Dll4. Notch1 and related endothelial-expressed Notch receptors are activated by membrane-bound Notch ligands of adjacent endothelial cells (homologous signaling) as well as those expressed by other stromal cell types (heterologous signaling). Indeed, the developing vasculature expresses multiple Notch ligand and receptor types, and some are restricted to specific regions of the expanding and remodeling vascular tree. Binding of ligand to the Notch receptor results in proteolytic cleavage of the Notch intracellular domain, which translocates to the nucleus and binds to and activates DNA-binding protein RBPJk, resulting in transcription of genes that influence endothelial cell cycle status and function, leading to induced expression of arterial identity genes.

In animals treated with Notch inhibitors or in transgenic animals lacking either Notch ligands or receptors, sprouting angiogenesis and arteriovenous specification fail to occur normally. Instead, vascular endothelial cells hyperproliferate and do not properly remodel into arteriovenous networks. In gridlock zebrafish mutants, ephrinB2 expression is lost and formation of the dorsal aorta is compromised but the cardinal vein is enlarged.

One possible explanation for the central role for Notch in arteriovenous specification is as a mechanism to couple mechanosensory receptor signaling to downstream endothelial cell specification pathways. Fluid shear stress activates Notch signaling in endothelial cells in a dose-dependent fashion with Notch activation peaking at or slightly above physiologically arterial levels of shear. Ablation of Notch1 signaling compromises classic flow-sensitive endothelial cell responses, including quiescence and cell alignment, whereas constitutive activation of Notch4 induces focal vessel enlargement by disrupting normal hemodynamic signaling. Although the exact mechanosensory signaling complex or complexes that render Notch signaling flow-sensitive have yet to be identified, ligand-dependent Notch activation is force-dependent, which suggests that the Notch receptor itself may participate in an as-yet-undescribed mechanosensory complex.

Other studies suggest that Notch may also enable arteriovenous specification by determining the cell cycle state of remodeling endothelial cells. In response to flow, Notch signaling activation alters the expression of cell cycle regulators. In addition, Notch-mediated G1 arrest is required for acquisition of arterial expression, as well as hemogenic cell fates. In contrast, suppression of Notch signaling by COUP-TFI drives venous specification, and transgenic ablation of Notch signaling components enhances lymphatic endothelial cell specification. Taken together, these data suggest, in the developing vasculature, Notch signaling may play a central role in precisely coupling endothelial cell cycle state to hemodynamic flow sensing to achieve proper fate specification. However, it is still unclear whether venous and lymphatic endothelial cell fates are similarly specified in distinct cell cycle states, which requires further intensive investigation. Nonetheless, in support of this hypothesis, dysregulated Notch signaling leads to focal appearance of AVMs at sites of high flow that are associated with failure to acquire (or maintain) specialized endothelial cell identities. Whether in animals lacking Notch (or Alk, see below) signaling AVMs are a direct result of disrupted arteriovenous specification or whether EC fail to undergo proper arteriovenous specification as a by-product of enlarged, malformed vessels that result from aberrant responses to shear (such as failure to migrate against the direction of flow) remains unclear.

Lastly, Notch is an important regulator of hemogenic endothelial cell development in the yolk sac and embryonic aorta–gonad–mesonephros region, and circulating yolk sac–endothelium–derived hematopoietic progenitors have recently been shown to reintegrate into the developing vasculature. Thus, it is interesting to speculate that Notch may contribute to arteriovenous network formation, in part, by regulating the relative abundance of these two endothelial cell sources, which may have different propensities for arterial versus venous identity. However, much more work is needed to address these possibilities.

Ephrin/Eph

The ephrin family of transmembrane ligands and their cognate Eph receptors mediate cell–cell signaling between adjacent
cells and often involve the repulsion of Eph receptor-expressing cells from ephrin-expressing neighbors. In a landmark study of the developing vasculature, Wang et al.11 found that ephrinB2 expression is highly enriched in arteries and EphB4 expression is enriched in veins. Expression of both genes is observed prior to the onset of blood flow, suggesting that they participate in a genetic arteriovenous program. Furthermore, EphB4 venous expression depends upon arterial expression of ephrinB211, suggesting that during development arterial specification may drive venous specification via ephrin-Eph signaling. Mutations that affect the EphB4 gene or downstream Ras signaling are associated with the autosomal-dominant congenital vascular disease, capillary malformation-arteriovenous malformation (CM-AVM), wherein patients present with numerous cutaneous capillary malformations as well as AVMs17.

Transforming growth factor-beta

The TGF-β superfamily of soluble ligands and their cognate membrane-bound receptors play a variety of key roles during vessel development. This pathway includes signaling through the TGF-β1-TGFβR2-Alk5 ligand-receptor complex, which predominantly activates Smads2/3 signaling, as well as Bone morphogenetic protein (BMP) 9/10-Alk1-Eng ligand-receptor signaling, which predominantly activates Smads1/5/818. Specifically, signaling through TGF-β1-TGFβR2 typically mediates mural cell recruitment and differentiation19, whereas Alk1/Eng signaling regulates endothelial cell quiescence, limits vessel caliber, and enables arteriogenous specification20,55,60. However, there is also evidence of significant cross-talk between distinct TGF-β signaling pathways51,62, as well as between TGF-β superfamily pathways and other cell signaling pathways (for example, Notch) and that it is the balance of Smad signaling activation via these distinct pathways that establishes proper vessel formation50,64. Indeed, patients bearing heterozygous mutations affecting either Alk1 or Eng, or downstream Smad4, exhibit the congenital disease hereditary hemorrhagic telangiectasia (HHT), which is characterized by microvascular overgrowth and the focal appearance of large-caliber AVMs that lack clear arterial or venous identity60,65.

Several recent studies have focused on the cross-talk between BMP and Notch signaling pathways to modulate endothelial cell behavior during vessel development. BMP-activated sprouting angiogenesis is negatively regulated by Notch upregulation of Smad6, an inhibitor of BMP signaling66. Meanwhile, nuclear translocation of BMP-activated phospho-Smads not only upregulates BMP target genes but also participates in the Notch/RBPJ-kappa gene regulatory complex to regulate Notch-activated transcriptional responses67. Consequently, inhibited expression of endothelial-expressed BMP regulatory proteins, BMPER and TWSG1, disrupts Notch signaling and expression of arterial identity genes, resulting in increased venous specification in zebrafish embryos68. Alk1 inhibition also depresses Notch signaling and produces AVMs in mice69. In separate studies, BMPER is reported to activate ERK1/2 signaling68 (which promotes arterial specification70), while the Alk1 co-receptor Endoglin suppresses PI3K/Akt signaling (which promotes venous identity71) to support endothelial cell migration against the direction of blood flow, a process hypothesized to support arteriogenesis and prevent AVMs10. Thus, currently available evidence suggests that BMP9/10-Alk1 signaling may regulate arterivoenous specification, at least in part, by modulating endothelial cell responsiveness to VEGF- and Notch-activated signaling. However, other studies suggest that other endothelial cell behaviors, such as responsiveness to shear or migration (or both), are also affected9,35.

Connexins

Membrane-expressed connexin (also known as Cx) proteins form multimeric complexes (termed connexons) that dock with connexons of adjacent cells to form intercellular channels (termed gap junction channels) that mediate passage of ions and small signaling molecules to support electrochemical coupling and intercellular communication. At least four connexin proteins (Cx37, Cx40, Cx43, and Cx45) are commonly reported at endothelial cell–cell junctions of the blood vasculature17,72, and some studies report endothelial expression of a fifth connexin (Cx32)73,74. Furthermore, an additional connexin (Cx47) is expressed in lymphatic endothelial cells and contributes to lymphatic vessel development75. Of the commonly studied vascular connexins, Cx40 (encoded by the gene Gja5) is well recognized as a potent marker of arterial endothelial cells owing to its high expression in arteries invested with smooth muscle1,76. Deletion of this connexin inhibits flow-activated arterial specification in the chick77 and affects sprouting angiogenesis and mural cell recruitment in the neonatal mouse retina78. Furthermore, loss of Cx40 potentiates the appearance of AVMs in Alk1-haploinsufficient animals79, suggesting that it may suppress the formation of these vascular defects in wild-type animals, at least in part, by functioning downstream of BMP9/10-Alk1 signaling. Recently, Su et al.80 employed a single-cell transcriptomic analysis of developing coronary vessels to identify a Cx40-enriched population of venous-originating “pre-artery” cells that express markers of mature arteries. The majority of these cells were later found to line the coronary arteries and were excluded from coronary veins, suggesting that expression of Cx40 is a critical intermediary step for arterial identity acquisition.

Endothelial-expressed Cx37 is also almost exclusively expressed in large arteries of the adult vasculature81 as well as in developing arteries and arterioles of remodeling vessels77. However, unlike Cx40, Cx37 is additionally expressed in remodeling capillaries and in arteriolar vessels that have yet to be invested with mural cells77, suggesting that it may play an earlier role than Cx40 in arteriogenous specification during development. Deletion of Cx37 disrupts developmental and injury-induced vessel growth and remodeling82,79, and transgenic ablation of both connexins in combination results in embryonic lethality due to failure of the vasculature to form83, suggesting that Cx37 and Cx40 play essential and possibly distinct roles during vessel development. For example, many connexins regulate cell proliferation, and Cx37 is a particularly potent inhibitor of cell cycle progression84. Cx37 directly modulates endothelial cell cycle status downstream of flow-activated Notch signaling by upregulating p27, causing late G1 arrest to enable expression of arterial genes Cx40 and ephrinB285. It is possible...
that Cx37 plays a similar cell cycle arrest role to enable specification towards other endothelial cell fates. In support of this possibility, transgenic ablation of one or both copies of Cx37 is associated with endothelial cell hyperproliferation and defects in not only arterial development but also venous and lymphatic development.

MicroRNAs
A growing body of evidence indicates that microRNA (miRNA) species likely play an important, if currently underappreciated, role in endothelial cell specification. Although several studies show that miRNAs are necessary for endothelial cell differentiation from angioblasts, less is known about their involvement in specifying endothelial cell phenotypes. Endothelial and mural cells express numerous miRNA species, and miRNA processing machinery, including *Drosha* and *Dicer*, appears to be crucial for vessel development. Mutants lacking expression of *Dicer* in Etv2-positive mesodermal progenitor cells exhibit defects in vessel remodeling and patterning due, at least in part, to loss of miR-130a expression. Meanwhile, miR-27b is required for venous formation in zebrafish, and miR-181 destabilizes expression of Prox1, a key regulator of lymphatic endothelial cell specification and maintenance. In addition, endothelial-specific mutation of *Drosha* in mice produces leaky, dilated microvessels and aberrant arteriovenous connections (but lack clear AVMs), and missense point mutations in the *Drosha* gene are more prevalent among patients with HHT compared with healthy populations, suggesting that miRNA processing defects may contribute to the pathogenesis of this disease or modulate its severity or both. Taken together, these studies suggest that miRNAs likely play a broad role in endothelial cell specification and vascular remodeling. However, more work is needed to identify critical miRNA regulators of these processes and to fully elucidate their molecular roles.

Conclusions
Endothelial cell specification toward arterial and venous fates is critical for the formation and remodeling of the blood circulatory system during development and post-natally. Failure of the vasculature to properly undergo arteriovenous specification may contribute to the malformation or dysfunction of blood vessels, such as occurs in patients with HHT, who exhibit aberrant vessel structures that compromise quality of life and that can even be fatal.

During normal development, acquisition of arterial identity is driven by a molecular program (see proposed model, Figure 1) that includes Hedgehog, VEGF, Notch, and connexin signaling and downstream PI3K and MAPK signaling. This pathway is modulated by TGF-β signaling and miRNAs and is antagonized by COUP-TFII, which promotes venous formation. Although early endothelial specification events may occur via a “hardwired” genetic program prior to the onset of blood flow, hemodynamic flow is precisely calibrated to arteriovenous identity and vessel identity is sustained by blood flow forces. Recent studies suggest that flow-sensitive regulation of Notch signaling may play a central role in modulating endothelial cell cycle state to enable the specification of different endothelial cell phenotypes in distinct cell cycle states; however, this requires further investigation.

Figure 1. A proposed model of the regulation of arteriovenous specification in primitive endothelial cells, highlighting key players and some of the evidence of cell signaling cross-talk. A proposed model of the regulation of arteriovenous specification in primitive endothelial cells, highlighting key players and some of the evidence of cell signaling cross-talk.
An improved understanding of the molecular mechanisms that regulate the initial acquisition of endothelial cell identity, as well as the signals that sustain specialized vessel structures and functions, is therefore an important frontier for new and ongoing research in the field of vascular biology. Additional insights into the molecular regulation of arteriovenous specification will profoundly influence our understanding of the physiology of vessel maintenance and the pathophysiology of numerous diseases involving disorganized vessel growth and remodeling.

Abbreviations

Akt, protein kinase B; Alk, activin-receptor-like kinase; AVM, arteriovenous malformation; BMP, bone morphogenetic protein; COUP-TFII, COUP transcription factor 2; Cx, connexin; HHT, hereditary hemorrhagic telangiectasia; MAPK, mitogen-activated protein kinase; miRNA, microRNA; PI3K, phosphatidylinositol-3-kinase; Shh, Sonic Hedgehog; Snod, Smoothend; TGF-β, transforming growth factor-beta; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor type 2

Grant information

This work was supported by the National Institutes of Health (HL128064, HL096360, and EB017103) and CT Innovations (15-RMB-YALE-04 and 15-RMB-YALE-07).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. dela Paz NG, D'Amore PA: Arterial versus venous endothelial cells. Cell Tissue Res. 2009; 336(1): 5–16. PubMed Abstract | Publisher Full Text | Free Full Text

2. Aranguren XL, Aguirre X, Beeners M, et al.: Unraveling a novel transcription factor code determining the human arterial-endothelial cell signature. Blood. 2013; 122(4): 3982–92. PubMed Abstract | Publisher Full Text

3. Herzog Y, Guthmann-Raviv N, Neufeld G: Segregation of arterial and venous markers in subpopulations of blood islands before vessel formation. Dev Dyn. 2000; 223(4): 1047–56. PubMed Abstract | Publisher Full Text

4. Hirashima M, Suda T: Molecular distinction and angiogenic growth factor; VEGFR2, vascular endothelial growth factor receptor type 2; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor type 2

5. Kässmeyer S, Plendl J, Custodis P, et al.: Hedgehog proteins activate

6. Kässmeyer S, Plendl J, Custodis P, et al.: Hedgehog proteins activate

7. Kässmeyer S, Plendl J, Custodis P, et al.: Hedgehog proteins activate

8. Chong DC, Koo Y, Xu K, et al.: Molecular identity of arteries, veins, and lymphatics. J Vasc Surg. 2018; 69(1): 253–62. PubMed Abstract | Publisher Full Text | Free Full Text

9. Shioda T, Minoda S, Kato Y, et al.: Sonic Hedgehog Signaling in the Pathway of Arteriovenous Progenitor Cell Differentiation. Circ Res. 2017; 121(5): 907–16. PubMed Abstract | Publisher Full Text | Free Full Text

10. Heinecke J, Beckouche N, Huang L, et al.: Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci Rep. 2017; 7(1): 11965. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Wang HU, Chen ZF, Anderson DJ: Molecular distinction and angiogenic growth factor; VEGFR2, vascular endothelial growth factor receptor type 2

12. Zhong TP, Childs S, Leu JP, et al.: Gridlock signalling pathway fashions the first embryonic artery. Nature. 2001; 414(6860): 216–20. PubMed Abstract | Publisher Full Text

13. Le Noble F, Moyon D, Pardanaud L, et al.: Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004; 131(2): 361–75. PubMed Abstract | Publisher Full Text

14. Buschmann I, Pries A, Shyp-Rekowska B, et al.: Pulsatile shear and Gja1 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010; 137(13): 2187–96. PubMed Abstract | Publisher Full Text

15. He H, Ji, Beckouche N, Huang L, et al.: Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow. Sci Rep. 2017; 7(1): 11965. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

16. Lucioli JL, Jones EA, Huang C, et al.: Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007; 134(16): 2317–26. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. Fang JS, Coon BG, Gitis N, et al.: Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017; 8(1): 2149. PubMed Abstract

18. Wolf K, Hu H, Isai T, et al.: Molecular identity of arteries, veins, and lymphatics. J Vasc Surg. 2018; 69(1): 253–62. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

19. Paulkin S, Vallier L: The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013; 153(1): 135–47. PubMed Abstract | Publisher Full Text | Free Full Text

20. Vallier L: Cell Cycle Rules Pluripotency. Cell Stem Cell. 2017; 17(2): 131–2. PubMed Abstract | Publisher Full Text

21. Peiras EM, Warr MR, Passegue E: Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011; 195(5): 709–20. PubMed Abstract | Publisher Full Text | Free Full Text

22. Benedito R, Roca C, Sörensen I, et al.: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009; 137(6): 1124–35. PubMed Abstract | Publisher Full Text | F1000 Recommendation

23. Pituéles NE, Schmidt I, Giorno BD, et al.: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 2017; 19(8): 915–27. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Levesque MJ, Nerem RM, Sprague EA: Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials. 1990; 11(5): 702–1. PubMed Abstract | Publisher Full Text

25. Langille BL, Reidy MA, Kline RL: Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits. Arterioscler. 1986; 6(2): 146–54. PubMed Abstract | Publisher Full Text

26. Su T, Stanley G, Sinha R, et al.: Single-cell analysis of early progenitor cells that build coronary arteries. Nature. 2018; 559(7714): 356–62. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Marceau KL, Stills TM, Coskun S, et al.: Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev Cell. 2013; 27(5): 504–15. PubMed Abstract | Publisher Full Text | Free Full Text

28. Safarova AA, Safarova AK, Pola R, et al.: Sonic Hedgehog Signaling Pathway in Endothelial Progenitor Cell Biology for Vascular Medicine. Int J Mol Sci. 2018; 19(10): pii: E3040. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

29. Chinchilla P, Xiao L, Kazarisitz MG, et al.: Hedgehog proteins activate
generates mechanical pulling force dependent on dynamin, epsins, and actin.

PubMed Abstract | Publisher Full Text

vessels.

PubMed Abstract | Publisher Full Text

morphogenesis in mice.

PubMed Abstract | Publisher Full Text

modulating arteriogenesis and angiogenesis.

PubMed Abstract | Publisher Full Text

endothelial growth factor in arterial endothelial cells: implications for

PubMed Abstract | Publisher Full Text

modulates vascular remodeling and specification by upregulating Dll4/Notch

PubMed Abstract | Publisher Full Text

mechanisms.

PubMed Abstract | Publisher Full Text

differentiation.

PubMed Abstract | Publisher Full Text

pro-angiogenic responses in endothelial cells through non-canonical

signaling pathways. Cell Cycle. 2010; 9(3): 570–9.

PubMed Abstract | Publisher Full Text

Lawson ND, Vogel AM, Weinstein BM: sonic hedgehog and vascular endothelial

growth factor act upstream of the Notch pathway during arterial endothelial
differentiation. Dev Cell. 2002; 3(1): 127–36.

PubMed Abstract | Publisher Full Text

Krebs LT, Xue Y, Norton CR, Iso T, Maeno T, Oike Y, Hofmann JJ, Luisa Iruela-Arispe M:

PubMed Abstract | Publisher Full Text

Lawson ND, Vogel AM, Weinstein BM: sonic hedgehog and vascular endothelial

growth factor act upstream of the Notch pathway during arterial endothelial

differentiation. Dev Cell. 2002; 3(1): 127–36.

PubMed Abstract | Publisher Full Text

48. Williams C, Kim SH, Ni TT, et al.: Hedgehog signaling induces arterial

endothelial cell formation by repressing venous cell fate. Dev Biol. 2010; 341(1): 196–204.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

46. Krebs LT, Xue Y, Norton CR, Iso T, Maeno T, Oike Y, Hofmann JJ, Luisa Iruela-Arispe M:

PubMed Abstract | Publisher Full Text

Wilkinson RN, Koudja MJ, Patient RK, et al.: Hedgehog signaling via a calcitonin

receptor-like receptor can induce arterial differentiation independently of

VEGF signaling in zebrafish. Blood. 2012; 120(24): 477–88.

PubMed Abstract | Publisher Full Text | Free Full Text

44. Iso T, Maeno T, Oike Y, Hofmann JJ, Luisa Iruela-Arispe M:

PubMed Abstract | Publisher Full Text

42. Kemper J, Subbaiah PV: Hedgehog signaling in the developing cardiovascular

system. J Clin Invest. 2015; 125(7): 2803–10.

PubMed Abstract | Publisher Full Text | Free Full Text

40. Hofmann JJ, Luisa Iruela-Arispe M: Notch expression patterns in the retina: An

eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns. 2007; 7(4): 461–70.

PubMed Abstract | Publisher Full Text | Free Full Text

38. Shi W, Aguirre E, Lee JC, et al.: Regulation of the arterial-venous fate decision in

the mouse limb bud: the role of BMP4 signaling. Development. 2009; 136(20): 3413–23.

PubMed Abstract | Publisher Full Text

36. Muino M, Yurchenco PD, et al.: Ectopic Notch signaling in the developing heart:

an unexpected role for N cadherin in vascular remodeling. Development. 2008; 135(14): 2297–308.

PubMed Abstract | Publisher Full Text

34. Carmeliet P, Ferreira V, Biret G, et al.: Abnormal blood vessel development and

lethality in embryos lacking a single VEGF allele. Nature. 1996; 380(6573): 435–9.

PubMed Abstract | Publisher Full Text

32. Thorgeirsson TS, Mendelsohn C, et al.: BMPER is an endothelial cell regulator and

BMP receptor function in the endothelium. Cardiovasc Res. 2005; 65(3): 599–608.

PubMed Abstract | Publisher Full Text

30. Lehmann SH, Shibata J, et al.: BMPER is required for vascular smooth muscle

differentiation. Dev Dyn. 2007; 236(1): 120–30.

PubMed Abstract | Publisher Full Text

28. Hoogendijk J, Bakker K, et al.: BMPER regulates arterial differentiation by inhibiting

Notch signaling. J Cell Biol. 2006; 173(5): 983–94.

PubMed Abstract | Publisher Full Text | Free Full Text

26. Stathopoulos C, et al.: BMPER controls arteriogenesis and angiogenesis in vivo.

Dev Cell. 2008; 14(4): 633–43.

PubMed Abstract | Publisher Full Text | Free Full Text

24. Guo Y, Willard D, et al.: BMPER upregulates Notch signaling and promotes arterial

differentiation in zebrafish. Dev Cell. 2008; 14(3): 493–503.

PubMed Abstract | Publisher Full Text | Free Full Text

22. Tabin CJ, et al.: BMPER regulates arterial development and modulates venous

differentiation. Science. 2006; 312(5776): 1027–30.

PubMed Abstract | Publisher Full Text | Free Full Text

20. Li H, Zhang X, et al.: BMPER regulates arterial differentiation by promoting venous

development. Dev Genes Evol. 2009; 219(6): 339–50.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

18. Liu Q, et al.: BMPER regulates arterial and venous differentiation during embryogenesis.

J Cell Biochem. 2004; 91(4): 646–55.

PubMed Abstract | Publisher Full Text | Free Full Text

16. Liu Q, et al.: BMPER regulates arterial and venous differentiation during embryogenesis.

J Cell Biochem. 2004; 91(4): 646–55.

PubMed Abstract | Publisher Full Text | Free Full Text

14. Lawton NA, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text

12. Li H, Zhang X, et al.: BMPER regulates arterial differentiation by promoting venous

differentiation. Dev Genes Evol. 2009; 219(6): 339–50.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

10. Liu Q, et al.: BMPER regulates arterial and venous differentiation during embryogenesis.

J Cell Biochem. 2004; 91(4): 646–55.

PubMed Abstract | Publisher Full Text | Free Full Text

8. Lawton NA, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

6. Li H, Zhang X, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

4. Lawton NA, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

2. Lawton NA, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

0. Lawton NA, et al.: BMPER regulates arterial differentiation. Dev Dyn. 2008; 237(2): 250–62.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

F1000Research 2019, 8(F1000 Faculty Rev):1208 Last updated: 29 JUL 2019
72. Dejana E: Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004; 5(4): 261–70. PubMed Abstract | Publisher Full Text

73. Okamoto T, Akiyama M, Takeda M, et al.: Connexin32 protects against vascular inflammation by modulating inflammatory cytokine expression by endothelial cells. Exp Cell Res. 2011; 317(3): 348–55. PubMed Abstract | Publisher Full Text

74. Okamoto T, Aki N, Kawamoto E, et al.: Endothelial connexin32 enhances angiogenesis by positively regulating tube formation and cell migration. Exp Cell Res. 2014; 321(2): 133–41. PubMed Abstract | Publisher Full Text

75. Meens MJ, Kikut J, Rochemont V, et al.: Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS One. 2017; 12(7): e0181476. PubMed Abstract | Publisher Full Text

76. Haefliger JA, Allagnat F, Hamard L, et al.: Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arterioscler Thromb Vasc Biol. 2017; 37(11): 2136–46. PubMed Abstract | Publisher Full Text | F1000 Recommendation

77. Gkatzis K, Thalgott J, Dos-Santos-Luis D, et al.: Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Arterioscler Thromb Vasc Biol. 2016; 36(4): 707–17. PubMed Abstract | Publisher Full Text | F1000 Recommendation

78. Haefliger JA, Polikar R, Schryner G, et al.: Connexin37 in normal and pathological development of mouse heart and great arteries. Dev Dyn. 2000; 218(2): 331–44. PubMed Abstract | Publisher Full Text

79. Fang JS, Angelov SN, Simon AM, et al.: Cx37 deletion enhances vascular growth and facilitates ischemic limb recovery. Am J Physiol Heart Circ Physiol. 2011; 301(5): H1872–81. PubMed Abstract | Publisher Full Text | Free Full Text

80. Simon AM, McWhorter AF: Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol. 2002; 251(2): 206–20. PubMed Abstract | Publisher Full Text

81. Burt JM, Nelson TK, Simon AM, et al.: Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am J Physiol Cell Physiol. 2008; 295(5): C1103–12. PubMed Abstract | Publisher Full Text | Free Full Text

82. Munger SJ, Kanady JD, Simon AM: Absence of venous valves in mice lacking Connexin37. Dev Biol. 2013; 373(2): 338–48. PubMed Abstract | Publisher Full Text | Free Full Text

83. Kanady JD, Delinger MT, Munger SJ, et al.: Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol. 2011; 354(2): 253–66. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

84. Kanady JD, Munger SJ, Witte M, et al.: Combining Foxc2 and Connexin37 deletions in mice leads to severe defects in lymphatic vascular growth and remodeling. Dev Biol. 2015; 405(1): 33–46. PubMed Abstract | Publisher Full Text | Free Full Text

85. Liu D, Krueger J, Le Noble F: The role of blood flow and miRNAs in blood vessel development. Int J Dev Biol. 2011; 55(4–5): 419–29. PubMed Abstract | Publisher Full Text

86. Hata A, Lagna G: Deregalation of Drosha in the pathogenesis of hereditary hemorrhagic telangiectasia. Curr Opin Hematol. 2015; 22(3): 161–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

87. Singh BN, Tahara N, Kawakami Y, et al.: Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis. PLoS One. 2017; 12(12): e0189010. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

88. Biyashev D, Velicosa D, Topczewski J, et al.: miR-27b controls venous specification and tip cell fate. Blood. 2012; 119(11): 2873–87. PubMed Abstract | Publisher Full Text | Free Full Text

89. Kazemwadel J, Michael MZ, Harvey NL: Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood. 2010; 116(13): 2395–401. PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1 Helen Arthur
 Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle, UK
 Competing Interests: No competing interests were disclosed.

2 Ondine Cleaver
 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com