Evaluation of effect of non-pesticidal methods against shoot and fruit borers of okra in comparison with chemical control

VR Tathode, RS Wasu, Uttarwar Sai Prasoona and Dr. SK Aherkar

DOI: https://doi.org/10.22271/chemi.2020.v8.i6v.10979

Abstract
The field experiment was carried out to investigate effect of some phototropical, mechanical and botanical control measures in comparison with chemical treatment against okra shoot and fruit borers on okra under field condition during kharif, 2019. The minimum shoot infestation due to Earias vittella were reported in Recommended insecticidal spray (Ist Spray and IIIrd Spray with Imidacloprid 17.8% SL, IIInd Spray and IVth Spray with Fenvalerate 20% EC) which was at par with non-pesticidal treatment. Removal of infested shoots + Light Traps + NSE (5%) + Yellow sticky trap followed by treatment Light traps + NSE (5%) and Removal of infested shoots + Light traps + Yellow sticky trap. While minimum fruit damage on number as well as weight basis due Earias vittella and Helicoverpa armigera were also observed in above order of treatments.

Keywords: Fenvalerate, Imidacloprid, Light trap, NSE 5%, Okra shoot and fruit borer, Helicoverpa armigera

Introduction
Okra, Abelmoschus esculentus (L.) Moench a tall growing vegetable belongs to family Malvaceae, an economically important vegetable crop grown in tropical and sub-tropical parts of the world. Whose A. esculentus (L.) Moench species are cultivated commercially in India. Okra fruits are principally good source of vitamins A, B and C with traces of zinc, calcium, Iron, Iodine minerals. It possesses diuretic properties with iodine control goiter, genitourinary disorders and also manages diabetes and many. Besides these it’s fibres and stalks are used in paper industry (Singh et al., 2014) [14] and it’ seed used as substitute for coffee in some countries (Gemedo et al., 2015) [4]. In India okra has been cultivated since 12th century BC during Kharif, rabi and summer season. At present okra is cultivated on an area of 5,09,020 ha with an annual production 60,94,940 MT with productivity of 12 MT/ha in India. The major okra producing states are Gujarat, Maharashtra, Andhra Pradesh, Uttar Pradesh, Bihar, Orissa, West Bengal, Karnataka and Assam. In Maharashtra, okra occupies prominent position covering an area of 13.98 thousand ha with an annual production of 139.40 thousand MT with productivity 9.97 MT/ha in 2017 and mainly grown in Pune, Jalgaon, Thane, Nashik, Satara, Aurangabad, Solapur, Dhule and Osmanabad districts (Anonymous, 2018) [1].

The major cause of low productivity is damage inflicted by insect pest from early time to maturity. The pest complex of okra varies from region to region and the number of recorded species ranges from 13 to 72 species of insects of infesting on okra depending on the agro-climatic conditions. Along with damage due to sucking pests majorly fruit borers of okra are extremely damaging including Earias spp. and Helicoverpa armigera (Hubner). The recorded yield losses are up to 36 to 90 per cent due to Earias spp. (Meeambigai et al., 2017) [10]. There are two species of shoot and fruit borer Earias vittella Fabricius and Earias insulana Boisduval which are notorious and cause more than 40-50 per cent losses to okra in various parts of India. Helicoverpa armigera (Hubner) is alone reported to cause damage to the extent of 3.5 to 90 per cent to okra in different parts of the country. In general, the overall damage due to insect pests accounts to 48.97 per cent loss in fruit yield (Subbireddy et al., 2018) [15].

Majorly to manage these pests there is abusive use of broad spectrum chemicals which lead to tribulations of resistance, resurgence of secondary pest, phyto-toxicity, toxicity to beneficial
organisms, intoxication of farm personnel and environmental pollution. During recent years, the problems of pesticide residues in harvested produce of okra assume importance. The surging concern towards environmental security and pesticide residue free food push up interest of farmers towards organic farming. Although use of insecticides cannot be exclude completely as it play a major role in management strategies. So it become need of an hour to look towards safer technique to manage pest effectively.

By considering all this facts, present study was executed to study the effects of photo-tropical, mechanical and botanical control measures for effective management of shoot and fruit borers of okra.

Materials and method
The present investigation was conducted at Department of Vegetable Science, Dr. PDKV, Akola during kharif 2019. The experiment was randomized block design with 9 treatment and six replication. In which PDKV-Pragati variety was sown at 60*45 cm² in gross plot size of 5.4*5.4 cm², net plot size 5.28*4.50 cm² All recommended agronomical practices was followed to raise crops except, plant protection measures.

S. No.	Treatments
T1	Removal of infested shoots only + Yellow sticky trap
T2	Light trap only
T3	Neem Seed Extract (5%) only
T4	Removal of infested shoots + Light traps + Yellow sticky trap
T5	Removal of infested shoots + NSE (5%) + Yellow sticky trap
T6	Light traps + NSE (5%)
T7	Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap
T8	Control (no treatment)
T9	Recommended insecticidal spray (ISt Spray and IISt Spray with Imidacloprid 17.8% SL, IISt Spray and IVSt Spray with Fenvalerate 20% EC)

All these treatments were design in order to control major insect pests of okra but in this paper only data related fruit borers of okra is discussed. The observations on shoots infestation was recorded by selecting five plants randomly from net plot replication wise up to 30 days after sowing and observations were continued at seven days interval up to 45 days after sowing. This was worked out by formula

\[
\text{Per-cent shoot infestation} = \frac{\text{Number of infested shoots}}{\text{Number of total shoots}} \times 100
\]

Damaged and healthy okra fruits due to *Earias vittella* Fabricius and *Helicoverpa armigera* (Hubner) were counted and weight treatment and replication wise during each fruit picking from net plot. Also border fruits were removed, weight and kept separated. The observations converted into per cent fruit damage on number basis and weight basis by following formula.

Fruit borer infestation (Number basis)

\[
\text{Fruit borer infestation (Number basis)} = \frac{\text{Number of infested fruits}}{\text{Total no. of fruits placed}} \times 100
\]

Per cent fruit damage (Weight basis)

\[
\text{Per cent fruit damage (Weight basis)} = \frac{\text{Weight of damaged fruits}}{\text{Total weight of fruits placed}} \times 100
\]

Thus, the data so far generated were subjected to corresponding square root or arc sine value and subjected to statistical analysis for testing the level of significance. Thus, the data so far generated were subjected to proper transformation and then statistically analyzed (Gomez and Gomez, 1984) [3].

Result and discussion

Shoot damage by *E. vittella* to okra up to 30 and 45 days after germination

Shoot damage by *E. vittella* to okra up to 30 DAS

The data presented in Table 2 indicated that after 30 DAS least infestation of shoot damage to okra was due to T9 (Recommended insecticidal spray) treatment 4.85 per cent and was at par with treatment T7 (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) 5.12 per cent. Both these treatments recorded significantly least shoot infestation over all the treatments. The next group of treatments which recorded least shoot infestation were T6 (Light traps + NSE (5%) only) followed by T4 (Removal of infested shoots + Light traps + Yellow sticky trap). T2 (Light trap only). T3 (Removal of infested shoots + NSE (5%) + Yellow sticky trap) and T1 (Neem seed extract (5%) only) recording 7.24, 8.03, 8.03, 8.28 and 9.30 per cent shoot infestation, respectively. The latter treatment T5 (Neem seed extract (5%) only) was also at par with treatment T1 (Removal of infested shoots only + Yellow sticky trap) with 11.20 per cent damage. Significantly maximum damage due to shoot borer over all the treatments was recorded in treatment control (16.56 per cent).

Cumulative effect of various treatments on shoot damage by *E. vittella* to okra

Significantly maximum shoot infestation due to *E. vittella* was observed in treatment T3 (Control) 14.99 per cent, over all the treatments. Significantly least shoot infestation between 30 to 45 DAS was observed in treatment T9 (Recommended insecticidal spray) and T7 (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) 4.71 and 5.56 per cent, respectively and were at par with each other. However, the latter treatment was also at par with treatment T8 (Control) (Neem seed extract (5%) only) recording 8.49, 8.59, 8.68 and 9.97 per cent shoot infestation, respectively. However, the former treatment T9 was significantly superior to treatment T1 (Removal of infested shoots only + Yellow sticky trap) recording 11.57 per cent shoot infestation (Table 2).
Significantly minimum shoot damage was recorded in treatment T₉ (Recommended insecticidal spray) and T₇ (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) 4.78 and 5.34 per cent, respectively and were at par with each other and significantly superior over rest of the treatments in reducing the shoot damage to okra. The next group of treatment T₈ (Light traps + NSE (5%)), T₆ (Removal of infested shoots + Light traps + Yellow sticky trap), T₅ (Light trap only), T₃ (Removal of infested shoots + NSE (5%) + Yellow sticky trap) recorded 7.18, 8.26, 8.31 and 8.48 per cent shoot damage were at par with each other but the former treatment T₄ was significantly superior to treatment T₃ (Neem seed extract (5%) only) and T₁ (Removal of infested shoots only + Yellow sticky trap) in which 9.63 and 11.39 per cent shoot infestation was recorded, respectively (Table 2 & Fig. 1).

Waghmode et al. (2020) [16] who revealed that treatment Fenvalerate 20% EC @ 2ml/L found significantly effective in recording lower percentage of shoot damage due to shoot and fruit borer at 30 DAG and 45 DAG. Gautam et al. (2015) [3] reported minimum shoot damage 5 per cent with insecticidal treatment imidacloprid against E. vittella on okra. Mazed et al. (2017) [9] managed infestation of E. vittella on okra with mechanical control and recorded 12.79 per cent shoot infestation. Navale (2012) [11] studied on eco-friendly management of E. vittella on okra. The result revealed that lowest infestation (shoot and fruit infestation) and highest yield over control was observed in treatment with NSE 5% alternated with cypermethrin 0.007%, followed by T. chilonis (T₉), Clipping of shoots+ NSE 5% (T₈), NSE 5% (T₁), neem oil 2% (T₂), Bt 1000 ml/ha (T₆), clipping of shoot alone (T₃). Kumar (2019) [6] reported that T₇ (Removal of infested shoots + Light trap + NSE (5%)) was the best alternative to T₈ (Pesticides spray including cypermethrin 25 EC) for maximum marketable fruits with minimum shoot and fruit infestation and effective for the non-pesticidal management of brinjal shoot and fruit borer in brinjal.

Table 2: Cumulative effect of various treatments on shoot damage due to E. vittella in okra at 30 and 45 DAS

S. No.	Treatment details	Mean Per cent Infestation to shoots		
		30 DAS	45 DAS	Cumulative Mean
T₁	Removal of infested shoots only + Yellow sticky trap	11.20 (3.34)	11.57 (3.40)	11.39 (3.37)
T₂	Light trap only	8.03 (2.83)	8.59 (2.92)	8.31 (2.88)
T₃	Neem Seed Extract (5%) only	9.30 (3.04)	9.97 (3.15)	9.63 (3.09)
T₄	Removal of infested shoots + Light traps + Yellow sticky trap	8.03 (2.83)	8.49 (2.91)	8.26 (2.87)
T₅	Removal of infested shoots + NSE (5%) + Yellow sticky trap	8.28 (2.87)	8.68 (2.94)	8.48 (2.91)
T₆	Light traps + NSE (5%)	7.24 (2.69)	7.12 (2.66)	7.18 (2.67)
T₇	Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap	5.12 (2.26)	5.56 (2.35)	5.34 (2.31)
T₈	Control (No treatment)	16.56 (4.06)	14.99 (3.86)	15.77 (3.96)
T₉	Recommended insecticidal spray	4.85 (2.20)	4.71 (2.17)	4.78 (2.19)

Note: Figures in parenthesis are corresponding square root transformation values, DAS- Days after sowing

Fig 1: Cumulative effect of various treatments on shoot infestation due to E. vittella on okra

Cumulative mean per cent infestation to shoots due to E. vittella

Cumulative mean per cent fruit damage on number and weight basis by E. Vittella

Cumulative mean per cent fruit damage on number basis E. vittella

The data revealed that significantly maximum damage over all treatments was recorded in treatment T₉ (Control) in which 35.52 per cent fruit damage was observed.

The most effective treatment T₉ (Recommended insecticidal spray) recorded 14.96 per cent fruit damage and was at par with treatment T₇ (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) with 19.11 per cent fruit damage. However, treatment T₇ (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) was also superior to T₃ (Neem Seed Extract (5%) only) with 25.73 per
cum cent fruit damage. Both these treatments were at par with the groups of treatments T6 (Light traps + NSE 5%), T4 (Removal of infested shoots + Light traps + Yellow sticky trap), T3 (Removal of infested shoots + NSE (5%) + Yellow sticky trap) and T2 (Light trap only) with 21.04, 21.75, 23.01, 23.38 per cent fruit damage, respectively.

Least effective treatment T1 (Removal of infested shoots only + Yellow sticky trap) recorded 29.22 per cent fruit damage (Table 3 & Fig. 2).

Cumulative mean per cent fruit damage on weight basis by *E. vittella*.

The results revealed that significantly maximum per cent fruit damage due to *E. vittella* was recorded in treatment T0 (Control) with 34.67 per cent fruit damage and was at par with treatment T1 (Removal of infested shoots only + Yellow sticky trap) recording 28.48 per cent damage fruits. Significantly least damage on weight basis was due to treatment T5 (Recommended insecticidal spray) 14.56 per cent fruit damage and was at par with treatment T4 (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) with 18.77 per cent fruit damage (Table 4 & Fig. 2).

In the group of treatments T6 (Light traps + NSE (5%)) recorded 20.55 per cent fruit damage on weight basis, and was significantly superior to treatment T1 (Removal of infested shoots only + Yellow sticky trap) recording 28.48 per cent fruit damage. However, both the treatments were at par with treatments T4 (Removal of infested shoots + Light traps + Yellow sticky trap), T5 (Removal of infested shoots + NSE (5%) + Yellow sticky trap), T2 (Light trap only) and T3 (Neem seed extract (5%) only) recording 21.30, 22.62, 23.35 and 25.59 per cent fruit damage on number basis, respectively.

Similar results are reported by Parmar *et al.* (2013) [12] reported that imidacloprid (0.0053%) treatment recorded 15.94 per cent fruit damage had the lowest infestation of *E. vittella* to fruits and the highest yields of healthy okra fruits. Waghmode *et al.* (2020) [16] observed lowest fruit infestation on number basis and weight basis with fenvalerate 20% EC among all treatment over other treatments including NSE (5%) reported 16.46 and 20.81 per cent fruit infestation due to *E. vittella* on okra.

However, Lakhamapure *et al.* (2018) [7] and Lakhamapure *et al.* (2018) [8] managed fruit infestation on number basis as well as on weight basis with NSKE (5%) by *Earias vittella* on okra. Navale (2012) [11] reported effectiveness of clipping of shoot + NSE (5%), neem seed extract 5% and clipping of shoots with 22.52, 23.67 and 31.40 per cent fruit infestation on number basis against *E. vittella* on okra. Findings of the present treatments in the studies are in consistency of above reported findings.

Table 3: Cumulative mean per cent fruit damage by shoot and fruit borer *E. vittella* at each picking on number basis

S. No.	Treatment details	Number of pickings	Cumulative mean	Fruit damage (%)					
1	2	3	4	5	6	7			
T1	Removal of infested shoots + Yellow sticky trap	27.99 (31.83)	29.45 (32.80)	30.30 (33.34)	30.09 (33.19)	28.86 (32.39)	29.02 (32.47)	28.87 (32.41)	29.22
T2	Light trap only	22.84 (28.55)	23.39 (28.92)	23.87 (29.19)	23.69 (29.11)	22.92 (28.59)	24.03 (28.95)	22.98 (28.35)	23.38
T3	Neem Seed Extract (5%) only	25.33 (30.20)	25.80 (30.51)	26.33 (30.86)	26.28 (30.47)	25.75 (28.80)	26.26 (29.30)	24.39 (29.59)	25.73
T4	Removal of infested shoots + Light traps + Yellow sticky trap	21.95 (27.92)	21.70 (27.72)	21.79 (27.77)	21.36 (27.49)	21.52 (27.59)	21.73 (27.79)	22.22 (28.10)	21.75
T5	Removal of infested shoots + NSE (5%) + Yellow sticky trap	23.74 (29.15)	23.07 (28.68)	22.71 (28.45)	22.92 (28.58)	22.36 (28.08)	23.82 (29.20)	22.43 (29.25)	23.01
T6	Light traps + NSE (5%)	21.60 (26.98)	21.75 (27.79)	20.73 (27.05)	21.08 (27.30)	21.38 (27.47)	21.99 (27.37)	20.58 (26.28)	21.04
T7	Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap	18.84 (25.70)	20.20 (26.69)	18.30 (25.22)	19.80 (26.41)	19.66 (26.32)	19.14 (25.94)	17.85 (24.97)	19.11
T8	Control (Untreated)	35.47 (36.53)	36.25 (37.00)	35.76 (36.71)	36.00 (36.85)	34.94 (36.21)	34.52 (35.96)	35.71 (36.68)	35.52
T9	Recommended insecticidal spray	14.91 (22.61)	15.61 (23.22)	15.40 (23.08)	15.08 (22.68)	14.72 (22.56)	15.22 (22.89)	13.78 (21.71)	14.96
‘F’ test	Sig.								
SE (M) ±	3.89	3.74	3.95	4.38	4.79	4.06	3.79	3.50	

Note: Figures in parenthesis are corresponding arc sine transformations values.

Table 4: Cumulative mean per cent fruit damage by shoot and fruit borer *E. vittella* at each picking on weight basis

S. No.	Treatment details	Number of pickings	Cumulative mean	Fruit damage (%)					
1	2	3	4	5	6	7			
T1	Removal of infested shoots only + Yellow sticky trap	27.63 (31.61)	28.64 (32.27)	29.39 (32.75)	29.12 (32.55)	28.35 (32.05)	28.23 (31.97)	27.96 (31.82)	28.48
T2	Light trap only	23.67 (29.11)	23.27 (28.83)	23.51 (29.03)	23.57 (28.46)	22.74 (28.96)	23.45 (28.84)	23.27 (28.89)	23.35
T3	Neem Seed Extract (5%) only	24.94 (29.94)	25.41 (30.26)	26.29 (30.84)	26.16 (30.76)	25.33 (30.20)	26.00 (30.64)	25.00 (30.38)	25.59
T4	Removal of infested shoots + Light traps + Yellow sticky trap	21.60 (27.68)	21.24 (27.40)	21.35 (27.46)	20.99 (27.23)	21.58 (27.58)	21.37 (27.53)	20.99 (27.23)	21.30
T5	Removal of infested shoots + NSE (5%) + Yellow	23.31 (22.65)	22.62 (22.32)	22.58 (22.50)	22.35 (22.37)	21.76 (22.37)	21.76 (22.37)	22.62	

\[\text{1530}\]
Cumulative mean per cent fruit damage on number and weight basis by fruit borer (*Helicoverpa armigera*)

Cumulative mean per cent fruit damage on number basis by *H. armigera*

The results of cumulative effect of various treatments on fruit damage on number basis against *H. armigera* on okra indicate that treatment T₈ (control) recorded significantly maximum fruit damage on number basis over all the treatments and was at par with treatment T₁ (Removal of infested shoots only + Yellow sticky trap) recorded 31.07 and 27.88 per cent fruit damage on number basis over control. Minimum fruit damage was observed in treatment T₉ (Recommended insecticidal spray) with 10.44 per cent fruit damage on number basis and was at par with the treatment T₇ (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) with 11.88 per cent fruit damage on number basis. Treatment T₆ (Light traps + NSE (5%)) with 15.9 per cent fruit damage was at par with treatment T₄ (Removal of infested shoots + Light traps + Yellow sticky trap), T₅ (Removal of infested shoots + NSE (5%) + Yellow sticky trap) and T₂ (Light trap only) with 16.89, 17.13 and 17.72 per cent fruit damage and was significantly superior over treatment T₃ (Neem seed extract (5%) only) with 20.19 per cent fruit damage on number basis (Table 5 & Fig. 3).

Cumulative mean per cent fruit damage on weight basis by *H. armigera*

The cumulative effect of various treatments indicates that significantly maximum per cent fruit damage was observed in untreated control T₀ with 30.28 per cent fruit damage due to *H. armigera* and was at par with treatment T₁ (Removal of infested shoots only + Yellow sticky trap) with 27.20 per cent fruit damage. The lowest fruit damage 10.12 per cent was recorded in treatment T₉ (Recommended insecticidal sprays) and was at par with T₇ (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) with 11.48 per cent fruit damage on weight basis (Table 6 & Fig. 3).

The next most effective treatment with minimum fruit damage was T₆ (Light traps + NSE (5%)) with 15.65 per cent fruit damage and was at par with treatments T₄ (Removal of infested shoots + Light traps + Yellow sticky trap), T₅ (Removal of infested shoots + NSE (5%) + Yellow sticky trap), T₂ (Light trap only) and T₃ (Neem Seed Extract (5%) only) recording damage with 16.46, 16.75, 17.30 and 19.73 per cent fruit damage on weight basis, respectively. Dhar and Bhattacharya (2015) [2] evaluated that single application of Imidacloprid 17.8% SL followed by twice applications of Spinosad 45% SC gave maximum reduction in infestation of fruit borer in okra. Subhiredy et al. (2018) [15] observed lowest number of larvae and per cent fruit damage on number as well as on weight basis of fruit borer on okra in neem oil 0.3%, azadirachtin 0.15 EC 0.00006% followed by NSKE 5% and garlic bulb extract 3% during kharif and summer season. Senguttuvan and Rajendran (2001) [13] reported that treatment NSE (5%) recorded lower fruit damage to the extent of 11.3% over untreated check (31.3%) due to fruit boring pests in okra. The result of above researchers lends support the present findings.
Table 5: Cumulative mean per cent fruit damage by *H. armigera* at each picking on number basis.

S. No.	Treatment details	Fruit damage (%)	1	2	3	4	5	6	7	Cumulative mean
T₁	Removal of infested shoots + Yellow sticky trap	26.04 (30.66)	26.34 (30.84)	26.95 (32.98)	29.15 (32.64)	29.47 (32.66)	27.59 (31.66)	26.96 (31.26)	27.88 (31.84)	
T₂	Light trap only	16.35 (23.81)	17.40 (24.61)	17.92 (25.00)	18.95 (25.77)	18.86 (25.72)	18.08 (25.14)	16.51 (23.91)	17.72 (24.85)	
T₃	Neem Seed Extract (5%) only	19.40 (26.10)	20.15 (26.64)	21.09 (27.31)	20.69 (27.02)	20.36 (26.81)	20.35 (26.79)	19.27 (26.01)	20.19 (26.67)	
T₄	Removal of infested shoots + Light traps + Yellow sticky trap	15.80 (23.41)	16.85 (24.23)	17.82 (24.97)	16.94 (24.30)	17.79 (24.95)	16.94 (24.31)	16.08 (23.63)	16.89 (24.26)	
T₅	Removal of infested shoots + NSE (5%) + Yellow sticky trap	16.24 (23.73)	17.14 (24.42)	18.20 (25.23)	17.62 (24.81)	17.77 (24.88)	16.83 (24.18)	16.15 (23.66)	17.13 (24.41)	
T₆	Light traps + NSE (5%)	14.18 (22.08)	15.74 (23.32)	16.27 (23.73)	16.42 (23.91)	16.58 (23.91)	16.83 (24.12)	15.64 (23.25)	15.95 (23.46)	
T₇	Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap	10.83 (19.21)	11.75 (20.03)	12.38 (20.53)	11.90 (20.18)	11.96 (20.22)	12.59 (20.77)	11.77 (20.05)	11.88 (20.14)	
T₈	Control (Untreated)	29.89 (33.12)	31.06 (33.85)	31.68 (34.24)	31.48 (34.31)	31.45 (34.21)	31.45 (34.09)	30.29 (33.37)	31.07 (33.86)	
T₉	Recommended insecticidal spray	9.15 (17.60)	10.31 (18.72)	11.22 (19.57)	11.54 (19.82)	11.26 (19.61)	10.26 (18.77)	9.34 (18.82)	10.44 (18.82)	

Note: Figures in parenthesis are corresponding arc sine transformations values.

Table 6: Cumulative mean per cent fruit damage by *H. armigera* at each picking on weight basis

Sr. No.	Treatment details	Fruit damage (%)	1	2	3	4	5	6	7	Cumulative mean
T₁	Removal of infested shoots + Yellow sticky trap	25.51 (30.32)	25.95 (30.59)	29.01 (32.58)	28.05 (31.92)	28.95 (32.50)	27.23 (31.43)	25.69 (30.42)	27.20 (31.39)	
T₂	Light trap only	16.01 (23.54)	17.06 (24.35)	17.56 (24.74)	18.55 (25.47)	18.53 (25.47)	17.65 (24.82)	15.78 (23.33)	17.30 (24.53)	
T₃	Neem Seed Extract (5%) only	19.01 (25.83)	19.57 (26.21)	20.70 (27.04)	20.35 (26.78)	19.96 (26.52)	18.70 (26.44)	17.93 (25.59)	18.70 (26.34)	
T₄	Removal of infested shoots + Light traps + Yellow sticky traps	15.45 (23.13)	16.49 (23.96)	17.38 (24.63)	16.59 (24.63)	17.41 (24.66)	16.44 (24.63)	15.46 (23.92)	16.46 (24.11)	
T₅	Removal of infested shoots + NSE (5%) + Yellow sticky trap	15.93 (23.49)	16.83 (24.18)	17.79 (24.92)	16.59 (24.55)	17.42 (24.62)	16.46 (24.23)	15.58 (23.80)	16.75 (24.11)	
T₆	Light traps + NSE (5%)	13.98 (21.88)	15.35 (23.01)	15.94 (23.47)	16.60 (23.95)	16.16 (23.59)	16.42 (23.85)	15.12 (22.83)	15.65 (23.22)	
T₇	Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap	10.42 (18.83)	11.48 (19.79)	12.07 (20.25)	11.62 (19.93)	11.70 (19.99)	12.29 (20.51)	10.79 (19.17)	11.48 (19.78)	
T₈	Control (Untreated)	29.33 (32.77)	30.50 (33.30)	31.06 (33.86)	30.69 (33.64)	30.88 (33.73)	30.62 (33.57)	28.90 (32.50)	30.28 (33.37)	
T₉	Recommended insecticidal spray	8.90 (17.36)	10.05 (18.48)	10.94 (19.31)	10.91 (19.26)	10.99 (19.36)	9.99 (18.42)	9.06 (17.51)	10.12 (18.53)	

Note: Figures in parenthesis are corresponding arc sine transformations values.
Conclusion
Non-pesticidal treatment T7 (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) successfully managed shoot damage as well as fruit damage due to okra shoot and fruit borers on okra. This findings can be explore as replacement for insecticidal treatment in organic farming. Also it helps in producing pesticide residue free okra fruits. The order of effectiveness in reducing shoot damage to *Earias vittella* at 30 DAS and 45 DAS and in case of fruit damage on number as well as weight basis due *E. vittella* and *H. armigera* was T9 (Recommended insecticidal spray) < T1 (Removal of infested shoots + Light traps + NSE (5%) + Yellow sticky trap) < T4 (Light traps + NSE (5%)) < T6 (Removal of infested shoots + Light traps + Yellow sticky trap). However other treatments also helped in effective management of shoot damage due to okra shoot and fruit borer as well as fruit damage due to okra shoot and fruit borers of okra.

Acknowledgement
The author gratefully acknowledge Department of Vegetable Science and Agricultural Entomology, Dr. PDKV, Akola for providing necessary facilities during the course of my study. I am also grateful to my esteem chairman and members of my advisory committee.

References
1. Anonymous. Horticulture statistics at a glance. https://www.agri.nic.in. 2018.
2. Dhar T, Bhattacharya S. Efficacy of Imidacloprid and Spinosad against pest complex of okra and tomato. International Journal Of Bio-Resource, Environment And Agricultural Sciences (UBEAS) 2015;1(3):126-131.
3. Gautam HK, Singh NN, Rai AB. Effect of some plant extract and an insecticide on the incidence of *Earias vittella* in okra. Indian Journal Agricultural Research 2015;49(2):175-179.
4. Gemede HF, Negussie R, Guletal DH, Ashagrie ZW, Fekadu B. Nutritional quality and health benefits of okra (*Abelmoschus esculentus*): a review. International Journal of Nutrition and Food Science 2015;4(2):208-215.
5. Gomez KA, Gomez AA. Statistical procedures for Agricultural Research, Second edition. John willey and Sons. New York, 1984, 582.
6. Kumar VA. Non-pesticidal management of *Lecinodes orbonalis* in brinjal. M.Sc. (Agri.) Thesis (unpub.), Dr. PDKV, Akola, 2019.
7. Lakhamapure AR, Lavhe NV, Barde PS, Deotale RO, Panchabhai PR. Assessment of shoot and fruit damage on number basis in okra. International Journal of Current Microbiology and Applied Sciences 2018;7(12):3518-3523.
8. Lakhamapure AR, Lavhe NV, Panchabhai PR, Barde PS, Deotale RO. Assessment of fruit infestation of *Abelmoschus esculentus* by shoot and fruit borer on weight basis. International Journal of Current Microbiology and Applied Sciences 2018;7(12):2319-7706.
9. Mazed MA, Alam MZ, Miah MRU, Hossain MS, Awal MA. Effectiveness of some selected insecticide and botanicals against okra shoot and fruit borer. J Agricultural Research. 2017;42(2):353-362.
10. Meenambigai C, Bhuvaneswari K, Kumar KM, Sangavi R. Pesticides usage pattern of okra, *Abelmoschus esculentus* (L.) Moench in Tamilnadu. Journal of Entomology and Zoology Studies 2017;5(6):1760-1765.
11. Navale PJ. Ecofriendly management of *Earias vittella* (Fabricius) on okra. M.Sc. Thesis (Unpub.) Dr. PDKV, Akola (MS), 2012.
12. Parmar KD, Korat DM, Joshi MN, Patel AR, Shah PG. Relative bio-efficacy of insecticides/miticides against pest complex of okra. Karnataka Journal of Agricultural Sciences 2013;26(3):375-378.
13. Senguttuvan T, Rajendran R. Plant products for the control of bhendi fruit borers in: proceedings of the second national symposium on integrated pest management in horticultural crops: new molecules, bio-pesticides and environment, Bangalore, Karnataka, India, 2001, 17-18.
14. Singh P, Chauhana V, Tiwaria BK, Chauhan SS, Simon S, Bilal S, *et al*. An overview on okra and it’s importance as nutritive vegetable in the world. International Journal of Pharmacy And Biological Science 2014;4(2):227-233.
15. Subbireddy KB, Patel HP, Patel NB, Bharpoda TM. Utilization of plant extract for managing fruit borer in okra. International Journal of Current Microbiology and Applied Science 2018;7(5):2786-2793.
16. Waghmode SB, Lande GK, Jawanjal KN, Gavhane RM. Effect of insecticides and botanicals alone and in combination with fungicide against okra shoot and fruit borer. Journal of Entomology and Zoology Studies 2020;8(2):511-518.