Helicobacter canis colonization in sheep: a zoonotic link

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

Citation	Swennes, Alton G., et al., "Helicobacter canis colonization in sheep: a zoonotic link." Helicobacter 19, 1 (February 2014): p.65-68 doi:10.1111/hel.12097 ©2014 Author[s]
As Published	10.1111/HEL.12097
Publisher	Wiley
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/124798
Terms of Use	Creative Commons Attribution-Noncommercial-Share Alike
Detailed Terms	http://creativecommons.org/licenses/by-nc-sa/4.0/
Abstract

Helicobacter canis has been associated with hepatobiliary and gastrointestinal disease in dogs, cats, and humans. Here we report *H. canis* isolation from sheep feces confirmed by restriction fragment length polymorphism, biochemical profiles, and 16S rRNA sequence analysis. This study identifies sheep as *H. canis* reservoirs potentially important in zoonotic or foodborne transmission.

Keywords

zoonoses; sheep diseases; Helicobacter infections

INTRODUCTION

Helicobacter canis was originally isolated from a child with gastroenteritis (1). Its identification in dogs suggested that pets were reservoirs facilitating zoonotic transmission (2). Subsequently, *H. canis* was isolated from a dog with hepatitis (3), a colony of Bengal cats with endemic diarrhea (4), and healthy cats (5). In these cases, *H. canis*’ role in hepatic and intestinal disease was given further plausibility by extensive prior experimental enterohepatic *Helicobacter* use in mouse inflammation and neoplasia models (6–8). *H. canis* has since been cultured from bacteremic humans (9–12). It has also been identified in a duodenal biopsy from a Crohn’s disease patient (13) and in a liver biopsy from an autoimmune hepatitis patient (14). Most of these reports state that the patient had dog or cat ownership history, and all of these authors hypothesized zoonotic transmission. While previously identified in dogs, cats, and humans, *H. canis* has not been known to naturally infect other species. Here we report *H. canis* isolation from sheep feces, expanding its host range and raising important questions regarding potential avenues for zoonotic or foodborne transmission.
MATERIALS AND METHODS

Bacterial culture

Fecal samples were collected from 22 sheep in sterile Brucella broth containing 20% glycerol. These sheep were from a single open flock of Dorsets, Hampshires, and Dorset-Hampshire crosses used in teaching and research. The cohort’s average age was 4 (range of 1 – 10) and consisted of 21 predominantly multiparous ewes and 1 ram. Collection was approved by the Committee on Animal Care of the Massachusetts Institute of Technology. Samples were plated on 5% sheep blood agar (Thermo Fisher Scientific, Lenexa, KS) and CVA (Cefoperazone-Vancomycin-Amphotericin B) agar (BD, Franklin Lakes, NJ), and cultured at 37°C under microaerobic conditions in vented jars containing N₂, H₂, and CO₂ (80:10:10).

Isolate characterization

Helicobacter-positive samples were identified by colony morphology, phase contrast microscopy, Gram-negative staining, and *Helicobacter* genus-specific 16S rRNA PCR (15). Isolate species identity and clonality were confirmed by RFLP and REP-PCR (15,16). Biochemical testing was performed using the Remel RapID NH kit (Thermo Fisher Scientific, Lenexa, KS). DNA was extracted from pure cultures for 16S rRNA sequencing and a neighbor joining phylogenetic tree was constructed based on sequence similarity (17). All isolates were evaluated for HeLa cell cytotoxicity as previously described, with *H. hepaticus* strain 3B1 as a positive control (18).

RESULTS

Fecal culture yielded mixed bacterial populations that made separation of *Helicobacter*-associated colony morphologies technically difficult. Despite this, 4 isolates, namely MIT 12-7708, MIT 12-7709, MIT 12-7728, and MIT 12-7730 were recovered. RFLP showed *H. canis*-typical banding patterns when their 1200 bp genus-specific 16S rRNA PCR products were digested with the AluI and HhaI restriction enzymes, although 2 distinct AluI patterns were observed as previously reported (Figure 1A) (15). *H. canis* strains NCTC 12740 (human-origin) (1), NCTC 12739 (dog-origin) (2), MIT 98-0152 (cat-origin) (4), and MIT 99-7633 (rhesus macaque-origin) were analyzed simultaneously for comparison.

Sheep-origin *H. canis* isolates shared the same banding pattern by REP-PCR, indicating clonality, but were distinct from the control strains tested (Figure 1B). All sheep-origin isolates were catalase, urease, and γ-glutamyl transpeptidase-negative, oxidase-positive, and did not reduce nitrate to nitrite. Strains from other species shared the same biochemical profile, except that non-sheep strains were γ-glutamyl transpeptidase-positive. Because a previously reported *H. canis* strain was shown to produce cytolethal distending toxin, all isolates were evaluated for *in vitro* cytotoxicity. The sheep-origin isolates did not induce cellular changes consistent with cytotoxicity. 16S rRNA sequencing and BLASTn analysis confirmed that the 3 sheep-origin isolates tested shared 99% identity with *H. canis*. A neighbor joining phylogenetic tree was constructed based on sequence similarity (Figure 1C). Sheep-origin *H. canis* isolates clustered with *H. canis* strains from other species, but were distinct from other enterohepatic *Helicobacter* species (EHS) previously isolated from sheep.

DISCUSSION

In addition to *H. canis*, sheep have been shown to harbor EHS, namely *H. bilis* (Flexispira taxon 2) and *H. trogontum* (Flexispira taxa 4 and 5) (19–21). Two of these sheep-origin...
strains were associated with fetal hepatic necrosis and late-term abortion, a phenomenon that was later experimentally reproduced (21, 22, 23). *H. canis* has not been associated with a specific ovine disease syndrome, though interestingly it has been isolated from a dog’s liver with active hepatitis (3). While no definitive connection has been established, the flock studied here has had several mummified and late-term dead fetuses born to ewes delivering multiple lambs. Also, the flock has historic exposure to dogs and cats.

This study identifies sheep as a new and potentially important *H. canis* reservoir host that could promote direct zoonotic transmission or transmission via dogs or cats. Interestingly, a similar dynamic has been proposed to explain the high *H. pylori* prevalence in individuals with direct or indirect sheep or sheep dog exposure. Several prior reports showed 98% *H. pylori* prevalence in Sardinian (24) and Polish (25) shepherds by CagA ELISA and 13C urea breath test. Sheep contact also disproportionately increased *H. pylori* prevalence odds in Columbian children when measured by 13C urea breath test (26). These prior studies established sheep as a potential *H. pylori* reservoir and have fueled speculation that sheep may be a natural *H. pylori* host species. This report demonstrates that sheep are colonized with *H. canis*, suggesting that they function as reservoirs for the organism. Whether *H. canis* persists in the sheep intestine and is responsible for any disease process requires further study. Sheep may promote zoonotic *H. canis* transmission either directly or via dogs and cats. Foodborne transmission from eating undercooked lamb contaminated by *H. canis* is also a possibility. Interspecies transmission of EHS merits continued study.

Acknowledgments

This work was supported by NIH T32 RR007036, NIH R01 OD011141, NIH P01 CA028842, and NIH P30 ES02109.

References

1. Burnens AP, Stanley J, Schaad UB, Nicolet J. Novel *Campylobacter*-like organism resembling *Helicobacter fennelliae* isolated from a boy with gastroenteritis and from dogs. J Clin Microbiol. 1993; 31(7):1916–7. [PubMed: 8349774]
2. Stanley J, Linton D, Burnens AP, Dewhirst FE, Owen RJ, Porter A, et al. *Helicobacter canis* sp. nov. a new species from dogs: an integrated study of phenotype and genotype. J Gen Microbiol. 1993; 139(10):2495–504. [PubMed: 8254320]
3. Fox J, Drolet R, Higgins R, Messier S, Yan L, Coleman B, et al. *Helicobacter canis* isolated from a dog liver with multifocal necrotizing hepatitis. J Clin Microbiol. 1996; 34(10):2479–82. [PubMed: 8880504]
4. Foley JE, Marks SL, Munson L, Melli A, Dewhirst FE, Yu S, et al. Isolation of *Helicobacter canis* from a colony of Bengal cats with endemic diarrhea. J Clin Microbiol. 1999; 37(10):3271–5. [PubMed: 10488191]
5. Shen Z, Feng Y, Dewhirst FE, Fox JG. Coinfection of enteric *Helicobacter* spp. and *Campylobacter* spp. in cats. J Clin Microbiol. 2001; 39(6):2166–72. [PubMed: 11376052]
6. Fox JG, Li X, Yan L, Cahill RJ, Hurley R, Lewis R, et al. Chronic proliferative hepatitis in AJCr mice associated with persistent *Helicobacter hepaticus* infection: a model of helicobacter-induced carcinogenesis. Infect Immun. 1996; 64(5):1548–58. [PubMed: 8613359]
7. Fox JG, Yan L, Shames B, Campbell J, Murphy JC, Li X. Persistent hepatitis and enterocolitis in germfree mice infected with *Helicobacter hepaticus*. Infect Immun. 1996; 64(9):3673–81. [PubMed: 8751916]
8. Li X, Fox JG, Whary MT, Yan L, Shames B, Zhao Z. SCID/NCr mice naturally infected with *Helicobacter hepaticus* develop progressive hepatitis, proliferative typhlitis, and colitis. Infect Immun. 1999; 66(11):5477–84. [PubMed: 9784560]
9. Prag J, Blom J, Krogefelt KA. *Helicobacter canis* bacteraemia in a 7-month-old child. FEMS Immunol Med Mic. 2007; 50(2):264–7.

Helicobacter. Author manuscript; available in PMC 2015 February 01.
10. Leemann C, Gambillara E, Prod’hom G, Jaton K, Panizzon R, Bille J, et al. First case of bacteremia and multifocal cellulitis due to Helicobacter canis in an immunocompetent patient. J Clin Microbiol. 2006; 44(12):4598–600. [PubMed: 17005753]

11. Gerrard J, Alfredson D, Smith I. Recurrent bacteremia and multifocal lower limb cellulitis due to Helicobacter-like organisms in a patient with X-linked hypogammaglobulinemia. Clin Infect Dis. 2001; 33(10):E116–8. [PubMed: 11595979]

12. Abidi MZ, Wilhelm MP, Neff JL, Hughes JG, Cunningham SA, Patel R. Helicobacter canis bacteremia in a patient with fever of unknown origin. J Clin Microbiol. 2013; 51(3):1046–8. [PubMed: 23284025]

13. Tankovic J, Smati M, Lamarque D, Delchier J-C. First detection of Helicobacter canis in chronic duodenal ulcerations from a patient with Crohn’s disease. Inflamm Bowel Dis. 2011; 17(8):1830–1. [PubMed: 21744440]

14. Casswall TH, Németh A, Nilsson I, Wadström T, Nilsson H-O. Helicobacter species DNA in liver and gastric tissues in children and adolescents with chronic liver disease. Scand J Gastroenterol. 2010; 45(2):160–7.

15. Shen Z, Feng Y, Fox JG. Identification of enterohepatic Helicobacter species by restriction fragment-length polymorphism analysis of the 16S rRNA gene. Helicobacter. 2001; 5(3):121–8. [PubMed: 10971675]

16. Garcia A, Fox JG. The rabbit as a new reservoir host of enterohemorrhagic Escherichia coli. Emerg Infect Dis. 2003; 9(12):1592–7. [PubMed: 14720401]

17. Dewhirst FE, Shen Z, Scimeca MS, Stokes LN, Boumenna T, Chen T, et al. Discordant 16S and 23S rRNA gene phylogenies for the genus Helicobacter: implications for phylogenetic inference and systematics. J Bacteriol. 2005; 187(17):6106–18. [PubMed: 16109952]

18. Shen Z, Feng Y, Rogers AB, Rickman B, Whary MT, Xu S, et al. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect Immun. 2009; 77(6):2508–16. [PubMed: 19307212]

19. Hänninen M-L, Kärenlampi RI, Koort JMK, Mikkonen T, Björkroth KJ. Extension of the species Helicobacter bilis to include the reference strains of Helicobacter sp. flexispira taxa 2, 3 and 8 and Finnish canine and feline flexispira strains. Int J Syst Evol Micr. 2005; 55(2):891–8.

20. Hanninen M-L, Helicobacter sp. flexispira 16S rDNA taxa 1, 4 and 5 and Finnish porcine Helicobacter isolates are members of the species Helicobacter trogontum (taxon 6). Int J Syst Evol Micr. 2003; 53(2):425–33.

21. Dewhirst FE, Fox JG, Mendes EN, Paster BJ, Gates CE, Kirkbride CA, et al. Flexispira rappini species DNA in liver and gastric tissues in children and adolescents with chronic liver disease. Scand J Gastroenterol. 2010; 45(2):160–7.

22. Kirkbride CA, Gates CE, Collins JE. Ovine abortion associated with an anaerobic bacterium. J Am Vet Med Assoc. 1985; 186(8):789–91. [PubMed: 3997638]

23. Kirkbride CA, Gates CE, Collins JE. Abortion in sheep caused by a nonclassified, anaerobic, flagellated bacterium. Am J Vet Res. 1986; 47(2):259–62. [PubMed: 3954201]

24. Dore MP, Bilotta M, Vaira D, Manca A, Massarelli G, Leandro G, et al. High prevalence of Helicobacter pylori infection in shepherds. Digest Dis Sci. 1999; 44(6):1161–4. [PubMed: 10389689]

25. Papież D, Konturek PC, Bielanski W, Plonka M, Dobrzanska M, Kaminska A, et al. Prevalence of Helicobacter pylori infection in Polish shepherds and their families. Digest Liver Dis. 2003; 35(1):10–5.

26. Goodman KJ, Correa P, Aux HJT, Ramirez H, DeLany JP, Pepinosa OG, et al. Helicobacter pylori infection in the Colombian Andes: a population-based study of transmission pathways. Am J Epidemiol. 1996; 144(3):290–9. [PubMed: 8686698]
Helicobacter. Author manuscript; available in PMC 2015 February 01.
Figure 1.
(A) RFLP and (B) REP-PCR profiles of sheep-origin *Helicobacter canis* isolates MIT 12-7708, MIT 12-7709, MIT 12-7728, and MIT 12-7730 with reference strains NCTC 12740 (human-origin), NCTC 12739 (dog-origin), MIT 98-0152 (cat-origin), and MIT 99-7633 (rhesus macaque-origin) included for comparison. (C) Phylogenetic tree of *H. canis* isolates and other *Helicobacter* species based on 16S rRNA sequence. Scale bar = 5% nucleotide sequence difference. GenBank accession numbers are shown in brackets.