Index-stable compact p-adic analytic groups

FRANCESCO NOSEDA and ILIR SNOPCE

With an appendix by Jean-Pierre Serre.

Abstract. A profinite group is index-stable if any two isomorphic open subgroups have the same index. Let p be a prime, and let G be a compact p-adic analytic group with associated \mathbb{Q}_p-Lie algebra $\mathcal{L}(G)$. We prove that G is index-stable whenever $\mathcal{L}(G)$ is semisimple. In particular, a just-infinite compact p-adic analytic group is index-stable if and only if it is not virtually abelian. Within the category of compact p-adic analytic groups, this gives a positive answer to a question of C. Reid. In the appendix, J-P. Serre proves that G is index-stable if and only if the determinant of any automorphism of $\mathcal{L}(G)$ has p-adic norm 1.

Mathematics Subject Classification. Primary 20E18, 22E20; Secondary 22E60.

Keywords. Index-stable group, Just-infinite profinite group, p-adic analytic group, Pro-p group, p-adic Lie lattice, Commensurator.

Introduction. Throughout, let p be a prime. A pro-p group G is said to be powerful if $p \geq 3$ and $[G, G] \leq G^p$, or $p = 2$ and $[G, G] \leq G^4$. A finitely generated torsion-free powerful pro-p group is called uniform. In his seminal paper *Groupes analytiques p-adiques* [12], M. Lazard obtained the following algebraic characterization of p-adic analytic groups: a topological group is p-adic analytic if and only if it contains an open uniform pro-p subgroup (see [4, Theorems 8.1 and 8.18]). With every uniform pro-p group U one can naturally associate a \mathbb{Z}_p-Lie lattice L_U. The \mathbb{Q}_p-Lie algebra associated with a compact p-adic analytic group G is defined as $\mathcal{L}(G) := L_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, where U is an open uniform pro-p subgroup of G.

The following theorem is the main result of this paper.

Ilir Snopce supported by CNPq and FAPERJ.
Theorem 1. Let G be a compact p-adic analytic group, let $\mathcal{L}(G)$ be the \mathbb{Q}_p-Lie algebra associated with G, and assume that $\mathcal{L}(G)$ is semisimple. If H and K are two isomorphic closed subgroups of G, then $|G : H| = |G : K|$.

Remark. Soon after a preliminary version of this paper was published on the arXiv, the authors received a letter from Jean-Pierre Serre with a different proof of a more general version of Theorem 1; see Theorem 9. We thank Professor Serre for kindly agreeing to include his letter as an appendix to this paper.

A profinite group is said to be index-unstable if it contains a pair of isomorphic open subgroups of different indices; otherwise, it is said to be index-stable. This definition was introduced by C. Reid in [15], where he also raised the following question, which is still open.

Question 2. Let G be a (hereditarily) just-infinite profinite group which is index-unstable. Is G necessarily virtually abelian?

Recall that a profinite group G is said to be just-infinite if it is infinite, and every non-trivial closed normal subgroup of G is of finite index. A just-infinite profinite group G is hereditarily just-infinite if every open subgroup of G is just-infinite.

The following corollary gives a positive answer to Question 2 within the category of p-adic analytic groups.

Corollary 3. Let G be a just-infinite compact p-adic analytic group. Then G is index-stable if and only if it is not virtually abelian.
the modular function for the strong topology. Moreover, it is not difficult to see that if \(G \) is a just-infinite profinite group, then \(VZ(G) = \{1\} \) if and only if \(G \) is not virtually abelian.

The following result is a direct consequence of Corollary 3 and the above discussion.

Corollary 4. Let \(G \) be a just-infinite compact \(p \)-adic analytic group. If \(G \) is not virtually abelian, then \(\text{Comm}(G)_S \) is unimodular.

Solvable just-infinite \(p \)-adic analytic pro-\(p \) groups are irreducible \(p \)-adic space groups; in particular, they are virtually abelian (cf. [11]). Hence, they contain many pairs of open subgroups of different indices that are isomorphic to each other. In contrast, by [11, Lemma III.11], an unsolvable just-infinite \(p \)-adic analytic pro-\(p \) group \(G \) has the remarkable property of not being isomorphic to any of its proper closed subgroups. C. Reid generalized this result to all profinite groups by proving that a just-infinite profinite group \(G \) that contains an open proper subgroup isomorphic to \(G \) is virtually abelian (see [15, Theorem E]). The following corollary shows that within the category of compact \(p \)-adic analytic groups a much stronger result holds.

Corollary 5. Let \(G \) be an unsolvable just-infinite \(p \)-adic analytic pro-\(p \) group. Then \(G \) is index-stable.

Open pro-\(p \) subgroups of \(p \)-adic Chevalley groups form a rich source of unsolvable (hereditarily) just-infinite \(p \)-adic analytic pro-\(p \) groups; for \(n \geq 2 \), the first congruence subgroup \(\text{SL}_n^1(\mathbb{Z}_p) \) of \(\text{SL}_n(\mathbb{Z}_p) \) and its open subgroups are typical examples of such groups. More generally, given a simple finite dimensional \(\mathbb{Q}_p \)-Lie algebra \(\mathcal{L} \), any open pro-\(p \) subgroup of \(\text{Aut}(\mathcal{L}) \) is an unsolvable (hereditarily) just-infinite \(p \)-adic analytic pro-\(p \) group (see [11, Proposition III.9]). Moreover, given an unsolvable just-infinite \(p \)-adic analytic pro-\(p \) group \(G \), there is a semisimple \(\mathbb{Q}_p \)-Lie algebra \(\mathcal{L} \) such that \(G \) is an open subgroup of \(\text{Aut}(\mathcal{L}) \) (cf. [11, Section III.9]).

By [6, Proposition 6.1], every solvable just-infinite pro-\(p \) group other than \(\mathbb{Z}_p \) has torsion. Thus, a non-procyclic torsion-free just-infinite \(p \)-adic analytic pro-\(p \) group must be unsolvable. Hence, we can deduce the following result, which is the correct formulation of [14, Conjecture 2.10].

Corollary 6. Let \(G \) be a non-procyclic torsion-free just-infinite \(p \)-adic analytic pro-\(p \) group. Then \(G \) is index-stable.

Next, we observe that Theorem 1 relies on its Lie-algebra counterpart, which is an interesting result on its own. By definition, a \(\mathbb{Z}_p \)-Lie lattice is a \(\mathbb{Z}_p \)-Lie algebra the underlying module of which is finitely generated and free. A \(\mathbb{Z}_p \)-Lie lattice \(L \) is said to be index-stable if for any pair \(M \) and \(N \) of isomorphic finite-index subalgebras of \(L \), we have \(|L : M| = |L : N| \).

Theorem 7. Let \(L \) be a \(\mathbb{Z}_p \)-Lie lattice, and assume that \(L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) is semisimple as \(\mathbb{Q}_p \)-Lie algebra. Then \(L \) is index-stable.

An \(n \)-dimensional \(\mathbb{Z}_p \)-Lie lattice \(L \) is said to be just-infinite if every non-zero ideal of \(L \) has dimension \(n \). The following corollary proves (the correct formulation of) [14, Conjecture 2.9].
Corollary 8. Let L be a just-infinite \mathbb{Z}_p-Lie lattice, and assume that $\dim L > 1$. Then L is index-stable.

We remark that Corollary 5 and Corollary 8 have applications to the study of self-similar actions of hereditarily just-infinite p-adic analytic pro-p groups using the language of virtual endomorphisms (cf. [14]).

We close the introduction by stating the theorem proved by Serre in the appendix.

Theorem 9 (Serre). Let G be a compact p-adic analytic group, and let $\mathcal{L}(G)$ be the \mathbb{Q}_p-Lie algebra associated with G. Then G is index-stable if and only if all automorphisms s of $\mathcal{L}(G)$ satisfy $|\det(s)| = 1$, where $|\cdot|$ is the p-adic norm of \mathbb{Q}_p.

The following corollary was suggested by the referee, to whom we are thankful.

Corollary 10. Let G be a p-adic analytic group and let $\mathcal{L}(G)$ be the \mathbb{Q}_p-Lie algebra associated with G. If all automorphisms s of $\mathcal{L}(G)$ satisfy $|\det(s)| = 1$, then G is unimodular. On the other hand, if some automorphism s of $\mathcal{L}(G)$ has $|\det(s)| \neq 1$, then there exists a p-adic analytic group H that contains G as an open subgroup and such that H is not unimodular.

Remark 11. The proof of Theorem 9 (see the appendix) relies on p-adic integration, for which the reader may consult, for instance, [9, Section 7.4]. Now, denote by (*) the condition on $\mathcal{L}(G)$ in the statement of Theorem 9. We note that there exist \mathbb{Q}_p-Lie algebras that satisfy condition (*) but are not semisimple. J.L. Dyer constructed a nilpotent Lie algebra of dimension 9 and nilpotency class 6 with the property that its group of automorphisms is unipotent [5]. In general, by a result of G. Leger and E. Luks [13, Theorem (*)], if the automorphism group $\text{Aut}(\mathcal{L})$ of a nilpotent Lie algebra \mathcal{L} of dimension > 1 is nilpotent, then it is unipotent. J. Dixmier and W.G. Lister constructed an example of a nilpotent Lie algebra \mathcal{M} of dimension 8 and nilpotency class 3 such that $\text{Aut}(\mathcal{M})$ is not nilpotent but the derivation algebra $\text{Der}(\mathcal{M})$ is nilpotent [3]. The latter condition implies that any automorphism of \mathcal{M} has eigenvalues that are roots of unity. Clearly, all of these Lie algebras satisfy condition (*).

Corollary 12. Let G be a compact p-adic analytic group of dimension > 1, let \mathcal{L} be the \mathbb{Q}_p-Lie algebra associated with G, and assume that \mathcal{L} is nilpotent. If $\text{Aut}(\mathcal{L})$ is nilpotent or $\text{Der}(\mathcal{L})$ is nilpotent, then G is index-stable.

1. **Proofs of the main results.** In this section, we prove Theorem 1, Theorem 7, Corollary 3, Corollary 8, and Corollary 10.

Proof of Theorem 7. Let M and N be finite-index subalgebras of L, and let $\varphi : M \to N$ be an isomorphism of \mathbb{Z}_p-Lie lattices. Let $\mathcal{L} := L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ and fix a \mathbb{Z}_p-basis $\{a_1, \ldots, a_d\}$ of L. Then, clearly, $\{a_1, \ldots, a_d\}$ is a \mathbb{Q}_p-basis of \mathcal{L}. Let $\kappa : \mathcal{L} \times \mathcal{L} \to \mathbb{Q}_p$, defined by $\kappa(x, y) = \text{tr}(\text{ad}(x)\text{ad}(y))$, be the Killing form of \mathcal{L}. Denote by A the matrix representing κ with respect to the given basis; in other words, $A = (A_{ij})$, where $A_{ij} = \kappa(a_i, a_j)$ for $1 \leq i, j \leq d$. Since \mathcal{L} is a semisimple Lie
algebra over a field of characteristic 0, by Cartan’s criterion [10, Page 69], we have that \(\kappa \) is a non-degenerate bilinear form; in particular, \(\det(A) \neq 0 \). Let \(\{m_1, \ldots, m_d\} \) be a \(\mathbb{Z}_p \)-basis of \(M \); then \(\{\varphi(m_1), \ldots, \varphi(m_d)\} \) is a \(\mathbb{Z}_p \)-basis of \(N \).

Let \(B = (B_{ij}) \) and \(C = (C_{ij}) \) be the change-of-basis matrices defined by \(m_j = \sum_i B_{ij} a_i \) and \(\varphi(m_j) = \sum_i C_{ij} a_i \). Note that \(|L : M| = p^{v_p(\det(B))} \) and \(|L : N| = p^{v_p(\det(C))} \), where \(v_p \) is the \(p \)-adic valuation (one way to prove this claim is to recall that there exist a basis \(\{b_i\} \) of \(L \) and non-negative integers \(\{k_i\} \) such that \(\{p^{k_i} b_i\} \) is a basis of \(M \); similarly for \(N \); cf. [8, Lemma 10.7.2]). The matrices of \(\kappa \) with respect to the bases \(\{m_i\} \) and \(\{\varphi(m_i)\} \) are \(B^T A B \) and \(C^T A C \), respectively. Since the automorphism of \(\mathcal{L} \) induced by \(\varphi \) preserves the Killing form, \(B^T A B = C^T A C \). Taking the determinant on both sides, and recalling that \(\det(A) \neq 0 \), we see that \(v_p(\det(B)) = v_p(\det(C)) \), and the theorem follows. \(\square \)

Proof of Corollary 8. Since \(L \) is a just-infinite \(\mathbb{Z}_p \)-Lie lattice of dimension greater than 1, it is not difficult to see that \(L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) is a simple \(\mathbb{Q}_p \)-Lie algebra. Hence, the corollary follows from Theorem 7. \(\square \)

A \(\mathbb{Z}_p \)-Lie lattice \(L \) is called **powerful** if \(|L, L| \subseteq pL \) for \(p \) odd, or \(|L, L| \subseteq 4L \) for \(p = 2 \).

With a uniform pro-\(p \) group \(G \) one may associate a powerful \(\mathbb{Z}_p \)-Lie lattice \(L_G \) in the following way: \(G \) and \(L_G \) are identified as sets, and the Lie operations are defined by

\[
g + h = \lim_{n \to \infty} (g^{p^n} h^{p^n})^{p^{-n}},
\]

\[
[g, h]_{\text{Lie}} = \lim_{n \to \infty} [g^{p^n}, h^{p^n}]^{p^{-2n}} = \lim_{n \to \infty} (g^{-p^n} h^{p^n} g^{p^n} h^{p^n})^{p^{-2n}}.
\]

On the other hand, if \(L \) is a powerful \(\mathbb{Z}_p \)-Lie lattice, then the Campbell-Hausdorff formula induces a group structure on \(L \); the resulting group is a uniform pro-\(p \) group. If this construction is applied to the \(\mathbb{Z}_p \)-Lie Lattice \(L_G \) associated with a uniform group \(G \), one recovers the original group. Indeed, the assignment \(G \mapsto L_G \) gives an isomorphism between the category of uniform pro-\(p \) groups and the category of powerful \(\mathbb{Z}_p \)-Lie lattices (see [4, Theorems 4.30 and 9.10]). Recall that every compact \(p \)-adic analytic group contains an open subgroup that is a uniform pro-\(p \) group (see [4, Corollary 8.34]). As we already mentioned in the introduction, the \(\mathbb{Q}_p \)-Lie algebra associated with a compact \(p \)-adic analytic group \(G \) is defined as \(\mathcal{L}(G) := L_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \), where \(U \) is an open uniform pro-\(p \) subgroup of \(G \) (see [4, Section 9.5]). A key invariant of a \(p \)-adic analytic group \(G \) is its dimension as a \(p \)-adic manifold, denoted by \(\dim(G) \). Algebraically, \(\dim(G) \) can be described as \(d(U) \), where \(U \) is any uniform open pro-\(p \) subgroup of \(G \), and \(d(U) \) denotes the minimal cardinality of a topological generating set for \(U \).

Proof of Theorem 1. Let \(H \) and \(K \) be two isomorphic closed subgroups of \(G \). If one of these subgroups, say \(H \), has infinite index in \(G \), then \(\dim(H) < \dim(G) \). Hence \(\dim(K) < \dim(G) \), and therefore \(|G : K| \) is infinite as well. Since \(G \) is virtually pro-\(p \), it is not difficult to see that \(|G : K| \) and \(|G : H| \) coincide as supernatural numbers.
Now suppose that H and K are open subgroups in G. Let $\varphi : H \rightarrow K$ be an isomorphism, and let U be an open uniform subgroup of G; note that, since G is compact, U is of finite index in G. Let U_H be a uniform open subgroup of H. Then $U_K := \varphi(U_H)$ is a uniform open subgroup of K. Moreover, $|H : U_H| = |K : U_K|$. Choose a positive integer p^m such that $V_H := (U_H)^{p^m}$ and $V_K := (U_K)^{p^m}$ are contained in U; by [4, Theorem 3.6], V_H and V_K are uniform. Let L_U be the \mathbb{Z}_p-Lie lattice associated with U. Then the \mathbb{Q}_p-Lie algebra associated with G is given by $\mathcal{L}(G) = L_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, which is semisimple by assumption. Since U_H and U_K are isomorphic, we have that V_H and V_K are isomorphic open uniform subgroups of U. This implies that L_{V_H} and L_{V_K} are isomorphic \mathbb{Z}_p-Lie sublattices of L_U of finite index. By Theorem 7, $|L_U : L_{V_H}| = |L_U : L_{V_K}|$. Hence, by [4, Proposition 4.31], $|U : V_H| = |U : V_K|$. Clearly, this implies that $|G : V_H| = |G : V_K|$. Now, since $|H : U_H| = |K : U_K|$ and $|U_H : V_H| = |U_K : V_K|$, it follows that $|G : H| = |G : K|$, as desired.

Proof of Corollary 3. Clearly, if G is virtually abelian, then G is index-unstable. Suppose that G is not virtually abelian. By [7, Theorem 3.6], a just-infinite profinite group is either a branch profinite group or it contains an open normal subgroup which is isomorphic to the direct product of a finite number of copies of some hereditarily just-infinite profinite group. Note that G cannot be a branch profinite group since, by [4, Theorem 8.33], G is of finite rank (that is, there exists a positive integer d such that every closed subgroup of G can be generated topologically by at most d elements). Hence, G contains an open normal subgroup H which is isomorphic to the direct product of a finite number, say k, of copies of some hereditarily just-infinite uniform pro-p group U; in particular, H is uniform. Note that if U is solvable, then U is isomorphic to \mathbb{Z}_p, and consequently G is virtually abelian, which is a contradiction. Hence, U is an unsolvable hereditarily just-infinite uniform pro-p group. By [6, Proposition F], the associated \mathbb{Q}_p-Lie algebra $\mathcal{L}(U) = L_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is simple. Thus, the \mathbb{Q}_p-Lie algebra $\mathcal{L}(G) = L_H \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ associated with G is semisimple since it is isomorphic to the direct sum of k copies of $\mathcal{L}(U)$. Now Theorem 1 yields that G is index-stable.

Proof of Corollary 10. We sketch the proof of the second statement. Let s be an automorphism of $\mathcal{L}(G)$ such that $|\det(s)| \neq 1$. There exist open compact subgroups U and V of G, and an isomorphism $\varphi : U \rightarrow V$ such that $(d\varphi)_e = s$, where e is the identity of G. Let μ be a left-invariant Haar measure on G. From $|\det(s)| \neq 1$, it follows that $\mu(U) \neq \mu(V)$. Let H be the HNN-extension of G associated with φ, that is, $H = \langle G, t \mid tut^{-1} = \varphi(u) \forall u \in U \rangle$, where $t \in H$ is the stable letter (see, for instance, [2, page 188]); then $tUt^{-1} = V$ in H. From [2, Proposition 8.B.10], we see that there exists a unique topology on H that makes it a topological group such that G is (identified with) an open subgroup of H. It follows that H is p-adic analytic. If H was unimodular, it would follow that $\mu(U) = \mu(V)$, giving a contradiction.

Publisher’s Note Springer Nature remains neutral with regard to juridical claims in published maps and institutional affiliations.
Appendix: A letter from Jean-Pierre Serre.

Dear MM. Noseda and Snopce,

I have just seen your arXiv paper on “Index-stable compact p-adic analytic groups”. Your proof uses Lazard’s very nice results, but in fact these results are not necessary: p-adic integration is enough. Let me explain:

Let L be a finite-dimensional Lie algebra over \mathbb{Q}_p. Denote by $|x|$ the p-adic norm of \mathbb{Q}_p. Consider the following property of L:

For every automorphism s of L, we have $|\det(s)| = 1$ (*).

This is true, for instance, if L is semisimple since $\det(s) = \pm 1$, which is the case you consider.

Assume property (*). Let $n = \dim L$. Let u be a non-zero element of $\wedge^n L^*$, where L^* is the \mathbb{Q}_p-dual of L. Let G be a compact p-adic analytic group with Lie algebra L. Then u defines a right-invariant differential form ω_u on G of degree n. The corresponding measure $\mu_u = |\omega_u|$ is a non-zero right-invariant positive measure on G, hence is a Haar measure since G is compact. Property (*) implies that μ_u is invariant by every automorphism of L. Hence every isomorphism of G onto another group G' carries μ_u (for G) into μ_u (for G'). This implies that, if G, G' are open subgroups of some compact p-adic group G'', then they have the same index - as wanted.

Conversely, if (*) is not true for some s, and if G'' is compact with Lie algebra L, s defines a local automorphism of G'', and if G is a small enough open subgroup of G'', it is transformed by s into another open subgroup G', and the ratio $(G'' : G)/(G'' : G')$ is equal to $|\det(s)|$, which is $\neq 1$.

Best wishes,

J-P. Serre

References

[1] Barnea, Y., Ershov, M., Weigel, T.: Abstract commensurators of profinite groups. Trans. Amer. Math. Soc. 363, 5381–5417 (2011)
[2] Cornulier, Y., de la Harpe, P.: Metric Geometry of Locally Compact Groups. EMS Tracts in Mathematics, vol. 25. European Mathematical Society, Zürich (2016)
[3] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Amer. Math. Soc. 8, 155–158 (1957)
[4] Dixon, J.D., Du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-p Groups, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 61. Cambridge University Press, Cambridge (1999)
[5] Dyer, J.L.: A nilpotent Lie algebra with nilpotent automorphism group. Bull. Amer. Math. Soc. 76(1), 52–56 (1970)
[6] González-Sánchez, J., Klopsch, B.: Analytic pro-p groups of small dimensions. J. Group Theory 12, 711–734 (2009)
[7] Grigorchuk, R.I. Just infinite branch groups. In: New Horizons in Pro-p Groups, Progr. Math., vol. 184, pp. 121–179. Birkhäuser Boston, Boston, MA (2000)

[8] Grillet, P.: Algebra. Wiley, Hoboken (1999)

[9] Igusa, J.: An Introduction to the Theory of Local Zeta Functions. AMS/IP Studies in Advanced Mathematics, vol. 14. American Mathematical Society, Providence, RI; International Press, Cambridge, MA (2000)

[10] Jacobson, N.: Lie algebras. Dover Publications, Mineola (1962)

[11] Klaas, G., Leedham-Green, C.R., Plesken, W.: Linear pro-p Groups of Finite Width. Lecture Notes in Mathematics, vol. 1674. Springer, Berlin (1997)

[12] Lazard, M.: Groupes analytiques p-adiques. Publ. Math. Inst. Hautes Études Sci. 26, 5–219 (1965)

[13] Leger, G., Luks, E.: On nilpotent groups of algebra automorphisms. Nagoya Math. J. 46, 87–95 (1972)

[14] Noseda, F., Snopce, I.: On self-similarity of p-adic analytic pro-p groups of small dimension. J. Algebra 540, 317–345 (2019)

[15] Reid, C.D.: On the structure of just infinite profinite groups. J. Algebra 324, 2249–2261 (2010)

FRANCESCO NOSEDA
Mathematics Institute
Federal University of Rio de Janeiro
Av. Athos da Silveira Ramos, 149
Rio de Janeiro RJ 21941-909
Brazil
e-mail: noseda@im.ufrj.br

ILIR SNOPE
Mathematics Institute
Federal University of Rio de Janeiro
Av. Athos da Silveira Ramos, 149
Rio de Janeiro RJ 21941-909
Brazil
e-mail: ilir@im.ufrj.br

Received: 18 July 2020

Revised: 22 September 2020

Accepted: 7 October 2020.