Yeast screening platform identifies FDA-approved drugs that reduce Aβ oligomerization

Triana Amen¹,² and Daniel Kaganovich¹

¹Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
²Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel.

* Corresponding Authors:
Daniel Kaganovich, E-mail: dan@cc.huji.ac.il;
Triana Amen, E-mail: triana.amen@mail.huji.ac.il

The older the average person alive today becomes, the more instances of neurodegeneration are observed worldwide. Alzheimer’s disease is the most common neurodegenerative disorder preferentially affecting older individuals with 26.6 million cases recorded in 2006. It is estimated that worldwide prevalence will rise to 100 million cases by 2050 [1]. There is currently no effective treatment nor preventative therapy for Alzheimer’s disease, and no definitive diagnosis besides post-mortem pathology. Diagnosis is based on the presence of intracellular inclusions of hyperphosphorylated microtubule associated protein tau and extracellular plaques consisting of amyloid beta (Aβ) peptide [2]. Aβ is a small peptide 40-42 aa in length, formed via amyloid precursor protein (APP) cleavage that results in Aβ release into the extracellular space. Aβ is normally observed circulating in the cerebrospinal fluid of mammals, and is produced mostly in the central nervous system [3]. Although Aβ aggregates are the major pathological hallmark of Alzheimer’s disease, the mechanisms of Aβ induced neurotoxicity is not well understood, and even less is known about the physiological function of Aβ peptide. Absence of APP results in embryonic development defects due to irregular migration of cerebral cortex neurons [4]. Recent work also indicates that Aβ peptide concentrations in the CNS modulate synaptic transmission and synaptic hyperactivity via direct binding to APP [5].

In addition to the pathological connection between Aβ deposition and Alzheimer’s, a genetic connection has been mapped as well. Multiple mutations in APP and its cleaving enzymes increase the risk of Alzheimer disease onset [6-8]. Some mutations alter the cleavage of APP, resulting in a shifted ratio of Aβ1-42 to Aβ1-40, thus increasing the proportion of the more aggregation-prone species. Other mutations affect the aggregation propensity of the Aβ1-40/42 peptide itself [9]. As with another aggregation-prone disease associated protein, α-synuclein in Parkinson’s disease, an increase in Aβ production results in its aggregation and the early onset of Alzheimer’s disease [10].

While most models of Aβ cellular pathology assume that toxicity stems from its aggregation propensity [11], there has been vigorous debate about whether the toxicity stems mostly from extracellular high-molecular weight amyloid plaques, or mostly from the low molecular weight oligomers [12-14]. Aβ can be re-incorporated into the cytoplasm after extra-cellular cleavage, and much evidence has accumulated over the past several years that favors the small intracellular oligomers as the toxic aggregate species [15]. Particularly convincing are seminal studies in simple models of disease: C. elegans and mice, demonstrating a link between aging, insulin signaling, and toxicity driven by low molecular weight oligomers of Aβ [16-18]. Another study, modeling Alzheimer’s disease in mice, showed that cognitive impairment precedes mature fibrillar deposits [19].

Due to the multifaceted and multifactorial nature of Alzheimer’s physiology, no single model can fully recapitulate disease. Mice are currently the model system that most closely resembles human beings while still being capable of exhibiting features of aging on a time-scale in line with the duration of a typical PhD or postdoc. Mice can also be scored for learning and memory defects, as well as motor neuron function. However, it is equally the case that a mouse that is artificially expressing extremely high amounts of Aβ in its brain will not accurately recapitulate

Comment on last issue’s Sei-Kyoung Park, Kiira Ratia, Mariam Ba, Maria Valencik and Susan W. Liebman (2016). Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs. Microbial Cell 3(2): 53-64.

doi: 10.15698/mic2016.03.482
Received originally: 03.02.2016; in revised form: 10.02.2016, Accepted 11.02.2016, Published 03.03.2016.
Keywords: yeast, drug, FDA, Alzheimer’s, screen, amyloid beta.
the memory neuronal circuits of a 75-year-old human being. At the same time, mammalian models are sometimes less tractable and may offer less molecular and cellular detail of pathology and toxic events.

Simpler models of Aβ toxicity have been exploited with tremendous success towards greatly improving our understanding of the cellular pathology of molecular events associated with Alzheimer’s, as well as other neurodegenerative diseases. Of these, one of the most flexible, tractable, and versatile models has been the yeast *Saccharomyces cerevisiae* [20-24]. One of the things that make yeast such an important model for studying aggregation toxicity is that aggregation-prone, disease-associated proteins that would normally kill any mammalian cell are usually only mildly toxic in yeast. This suggests that yeast have efficient mechanisms for avoiding the aggregate toxicity that many human cells, and especially neurons, eventually succumb to. These mechanisms can be investigated in yeast with the hope of eventually exploiting them to address human pathology.

Another enormous advantage of yeast is the ease with which they can be used for high-throughput and high-content screening of genetic components of disease-associated molecular processes, as well as small molecule modulators of toxicity. Using a variety of high-throughput screening approaches several groups have identified genetic modifiers of α-synuclein toxicity [21, 25], ALS-associated pathology [26], as well as Alzheimer’s-associated aggregation [27]. Similarly, a number of promising small molecular modifiers of Parkinson’s cellular pathology [20] have been discovered through yeast screening.

Recently, Park and colleagues working in Susan Liebman’s group discovered a number of small molecules capable of modulating Aβ aggregation in a yeast model [28]. The group constructed an Aβ fused to a translation factor domain to assess the Aβ oligomerization with a simple growth assay [29]. Park *et al.* screened 1200 FDA-approved drugs for the effect on Aβ oligomerization using a novel approach developed by the group earlier [28]. The study uncovered 7 well-known compounds able to reduce oli-
Connor, S., Chai, H., and Cameron, J. (2007). The role of reactive oxygen species in Alzheimer's disease. *J. Neurosci. Res.* 85(2): 245-252.

Dolin, S. and Hugon, J. (1999). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 27(2): 225-235.

Gardner, R. and Price, J. (1996). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 21(1): 1-9.

Hall, I. and Kaur, G. (1998). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 24(5): 754-764.

Huang, Y. and Zhang, L. (2001). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 31(7): 1021-1031.

Jackson, H. and Jiang, G. (2000). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 29(6): 1103-1115.

Kanemitsu, S. and Ishii, S. (2003). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 35(2): 271-282.

Lee, D. and Lee, J. (2004). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 37(5): 575-585.

Li, J. and Li, Y. (2005). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 39(7): 988-995.

Miyakawa, T. and Tanaka, M. (2006). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 41(4): 495-505.

Nakamura, H. and Nakamura, Y. (2007). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 43(6): 807-817.

Park, J. and Park, C. (2008). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 45(1): 1-11.

Shepherd, A. and Simpkins, J. (2009). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 47(2): 241-252.

Wang, Y. and Wang, Z. (2010). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 49(1): 1-10.

Yoon, K. and Yoon, S. (2011). The role of oxidative stress in the pathogenesis of Alzheimer's disease. *Free Radic. Biol. Med.* 51(1): 1-10.
tects from age-onset, neurodegeneration-linked proteotoxicity. 

Aging Cell 13(1): 165-174.

19. Mucke L, Selkoe DJ (2012). Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2(7): a006338.

20. Su LHJ, Auluck PK, Outeiro TF, Yeger-Lotem E, Kritzer JA, Tardiff DF, Strathearn KE, Liu F, Cao SS, Hamamichi S, Hill KJ, Caldwell KA, Bell GW, Fraenkel E, Cooper AA, Caldwell GA, McCaffery JM, Rochet JC, Lindquist S (2010). Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis Model Mech 3(3-4): 194-208.

21. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, Kamadurai HB, Kim HT, Lancaster AK, Caldwell KA, Caldwell GA, Rochet JC, Buchwald SL, Lindquist S (2013). Yeast Reveal a “Druggable” Rsp5/Nedd4 Network that Ameliorates alpha-Synuclein Toxicity in Neurons. Science 342(6161): 979-983.

22. Tenreiro S, Reimao-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, Santos CN, Kaganovich D, Outeiro TF (2014). Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson’s Disease. Plos Genet 10(5).

23. Outeiro TF, Lindquist S (2003). Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302(5651): 1772-1775.

24. Figley MD, Gitler AD (2013). Yeast genetic screen reveals novel therapeutic strategy for ALS. Rare Dis 1:e24420.

25. Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou YL, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schule B, Lippard SJ, Tsai LH, Krainc D, Buchwald SI, Jaenisch R, Lindquist S (2013). Identification and Rescue of alpha-Synuclein Toxicity in Parkinson Patient-Derived Neurons. Science 342(6161): 983-987.

26. Sun ZH, Diaz Z, Fang XD, Hart MP, Chesi A, Shorter J, Gitler AD (2011). Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. Plos Biol 9(4).

27. Treusch S, Hamamichi S, Goodman JL, Matlack KES, Chung CY, Baru V, Shulman IM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olfoffson A, DeJager PL, Tanz RE, Caldwell KA, Caldwell GA, Lindquist S (2011). Functional Links Between A beta Toxicity, Endocytic Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science 334(6060): 1241-1245.

28. Sei-Kyoung Park KR, Mariam Ba, Maria Valencik and Susan W. Liebman (2016). Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs. Microbial Cell 3(2): 53-64.

29. Bagriantsev S, Liebman S (2006). Modulation of A beta(42) low-n oligomerization using a novel yeast reporter system. Bmc Biol 4:32.

30. Kaganovich D, Kopito R, Frydman J (2008). Misfolded proteins partition between two distinct quality control compartments. Nature 454(7208): 1088-U1036.