The Interactions in the Carboxyl Terminus of Human 4-Hydroxyphenylpyruvate Dioxygenase Are Critical to Mediate the Conformation of the Final Helix and the Tail to Shield the Active Site for Catalysis

Jang-Foung Lin, Yung-Lin Sheih, Tsu-Chung Chang, Ni-Yuan Chang, Chiung-Wen Chang, Chia-Pei Shen, Hwei-Jen Lee

Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan

Abstract

4-Hydroxyphenylpyruvate dioxygenase (4-HPPD) is an important enzyme for tyrosine catabolism, which catalyzes the conversion of 4-hydroxyphenylpyruvate (4-HPP) to homogentisate. In the present study, human 4-HPPD was cloned and expressed in E. coli. The kinetic parameters for 4-HPP conversion were: $k_{\text{cat}} = 2.2 \pm 0.1 \text{ s}^{-1}$, and $K_m = 0.08 \pm 0.02 \text{ mM}$. Sequence alignments show that human 4-HPPD possesses an extended C-terminus compared to other 4-HPPD enzymes. Successive truncation of the disordered tail which follows the final α-helix resulted in no changes in the K_m value for 4-HPP substrate but the k_{cat} values were significantly reduced. The results suggest that this disordered C-terminal tail plays an important role in catalysis. For inspection the effect of terminal truncation on protein structure, mutant models were built. These models suggest that the different conformation of E254, R378 and Q375 in the final helix might be the cause of the activity loss. In the structure E254 interacts with R378, the end residue in the final helix; mutation of either one of these residues causes a ca. 95% reductions in k_{cat} values. Q375 provides bifurcate interactions to fix the tail and the final helix in position. The model of the Q375N mutant shows that a solvent accessible channel opens to the putative substrate binding site, suggesting this is responsible for the complete loss of activity. These results highlight the critical role of Q375 in orientating the tail and ensuring the conformation of the terminal α-helix to maintain the integrity of the active site for catalysis.

Citation: Lin J-F, Sheih Y-L, Chang T-C, Chang N-Y, Chang C-W, et al. (2013) The Interactions in the Carboxyl Terminus of Human 4-Hydroxyphenylpyruvate Dioxygenase Are Critical to Mediate the Conformation of the Final Helix and the Tail to Shield the Active Site for Catalysis. PLoS ONE 8(8): e69733. doi:10.1371/journal.pone.0069733

Editor: Paul Taylor, University of Edinburgh, United Kingdom

Received April 25, 2013; Accepted June 12, 2013; Published August 9, 2013

Copyright: © 2013 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported financially by the National Science Council (NSC 99-2311-B-016-001-MY3) and National Defense Medical Bureau (MAB101-49). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hjlee@mail.ndmctsgh.edu.tw

† These authors contributed equally to this work.

Introduction

4-Hydroxyphenylpyruvate dioxygenase (4-HPPD, EC 1.13.11.27) belongs to the non-haem Fe(II)/2-oxoacid-dependent oxygenase superfamily, which couples the oxidative decarboxylation of a 2-oxoacid (most commonly α-ketoglutarate) to the oxidation of the prime substrate. A wide range of different types of reactions are catalyzed by these oxygenases, including hydroxylations, desaturations and oxidative ring closures. These reactions have environmental, pharmaceutical and medical significance [1,2]. 4-HPPD catalyzes the second step in the pathway of tyrosine catabolism. The active site of 4-HPPD is buried inside a barrel-like domain which is shielded with a C-terminal extension of 4-HPPD structures are very similar. The structure of 4-HPPD is comprised of two barrel-shaped domains and is similar in topology to the extradiol dioxygenases [10–16]. A 2-His-1-carboxylate motif is buried inside the β-barrel of the carboxyl-terminal domain of 4-HPPD which binds the iron(II) cofactor [10–13,16]. This metal binding motif is strictly conserved among non-haem iron(II)-dependent oxygenases [17,18].

The active site of 4-HPPD is buried inside a barrel-like β-sheet which is shielded with a C-terminal α-helix [10–13,16]. Covering of the active site by a C-terminal extension is commonly observed in many 2-oxoglutarate-dependent oxygenases and it is assumed that the C-terminus functions as a gate and controls access to the homogentisate reaction product is an intermediate in the biosynthesis of plastoquinone and tocopherols [3], and inhibitors of 4-HPPD have been used as herbicides [6–8].

Human 4-HPPD is active as a homodimer with a subunit molecular mass of ca. 45 kDa [9]. Alignment of the amino acid sequences of 4-HPPD from different species shows that they are less than 30% identical. However, the topologies of all determined 4-HPPD structures are very similar. The structure of 4-HPPD is comprised of two barrel-shaped domains and is similar in topology to the extradiol dioxygenases [10–16]. A 2-His-1-carboxylate motif is buried inside the β-barrel of the carboxyl-terminal domain of 4-HPPD which binds the iron(II) cofactor [10–13,16]. This metal binding motif is strictly conserved among non-haem iron(II)-dependent oxygenases [17,18].

The active site of 4-HPPD is buried inside a barrel-like β-sheet which is shielded with a C-terminal α-helix [10–13,16]. Covering of the active site by a C-terminal extension is commonly observed in many 2-oxoglutarate-dependent oxygenases and it is assumed that the C-terminus functions as a gate and controls access to the homogentisate reaction product which is an intermediate in the biosynthesis of plastoquinone and tocopherols [3], and inhibitors of 4-HPPD have been used as herbicides [6–8].
active site and isolates the bound substrate during catalysis [11,19–22]. Superimposing the crystal structures of \(P. \) \(\text{fluorescens} \) 4-HPPD and \(S. \) \(\text{avermitilis} \) 4-HPPD in complex with NTBC reveal significant differences in the position of the C-terminal helix [10,12]. Binding of the NTBC inhibitor in the active site leads to a 40 degree rotation of the C-terminal \(\alpha \)-helix. Residues in the terminal \(\alpha \)-helix might also be involved in catalysis [23,24]. For example, replacement of F337 and F341, two residues in the terminal \(\alpha \)-helix in \(S. \) \(\text{avermitilis} \) 4-HPPD, by Ile and Tyr resulted in loss of activity [23]. The aromatic side-chain of F337 is thought to interact with the aromatic ring of the substrate by \(\pi-\pi \) interactions [23,25]. Human and rat 4-HPPD possess longer C-terminal sequences than enzymes from plants and microorganisms (Fig. 2). Truncation experiments suggest that the C-terminal extension is essential for enzyme activity [26], but little is known about its function as the residues beyond the final C-terminal \(\alpha \)-helix are disordered in all reported X-ray crystal structures [10–13,16]. To date, the precise role of the C-terminus has not been determined.

This study reports the effect of truncating successive C-terminal residues on the activity of recombinant human 4-HPPD. Activity is progressively reduced upon truncation of the C-terminus, indicating the important role of this tail in catalysis. Structural modeling of truncation mutants was carried out using the X-ray coordinates of human 4-HPPD to investigate the effects of C-terminal truncation on protein structure [16]. All models were geometrically minimized by the quantum mechanical-molecular mechanical calculations. The truncated mutant models showed a different conformation in the terminal helix, especially a change in conformation of the benzene ring of F371 and large differences in the side-chain conformations of E254, R378 and Q375. In the structure, the residues of R378 and Q375, which are located in the final helix, provide interactions which fix this helix and the C-terminal tail into position. Substitution of Q375 and R378 resulted in loss of activity, indicating that these interactions are critical for maintaining the helix in a stable conformation for catalysis. The Q375N mutant model showed a solvent accessible channel opened in the side-chain conformations of E254, R378 and Q375. In the truncated mutant models, the side-chain conformations of E254, R378 and Q375 are different from the native state, suggesting the interactions provided by Q375 to hold the terminal helix and the tail in proper position are critical for isolating the active site from solvent during catalysis.

Materials and Methods

Materials

The restriction enzymes and T4 DNA ligase used for cloning were purchased from NEBioLab (Beverly, MA) and the QuikChange site-directed mutagenesis kit from Stratagene (La Jolla, CA). HiPrep 16/10 Q XL and Sephacryl HR-100 columns were purchased from GE Healthcare (Fairfield, CT). Q-Sepharose, SOURCE 15PHE and Sephacryl HR-100 were purchased from GE Healthcare (Uppsala, Sweden). All other chemicals and buffers were obtained from the Sigma-Aldrich Chemical Co. (St. Louis, MO) or J. T. Baker (Phillipsburg, NJ) and were of the highest purity available.

Cloning

HepG2 cells were grown in Dulbecco’s modified Eagle medium for 4 days to 5-x10^6 cells before harvesting and homogenized in buffer RX for total RNA preparation (Viogen Total RNA Miniprep System). The first strand of cDNA was obtained by reverse transcription using the BRL ThermoScript™ RT-PCR system and an oligo(dT) primer according to the instructions of the manufacturer. The 4-HPPD gene was amplified by PCR using the following primers: forward primer 5’-GGAAATTCGATGACACTACAGTGCAAAAGGGGCGA-3’ and reverse primer 5’-CGGGATCCCTAGATCAGGCGACCCGGCAAGGCCAC-3’. These primers were designed based on the sequence of human liver 4-HPPD (accession no: P32754), with additional Ndel and BamHI restriction sites. The amplification reaction mixture contained 1 μL cDNA, 0.4 mM dNTPs, 0.2 μM forward and reverse primers, and 1 unit Taq DNA polymerase (Qiagen). After initial denaturation at 95°C for 5 min, amplification was performed by 30 cycles of the following: 95°C for 30 s; 58°C for 30 s; and 72°C for 2 min; followed by a final extension at 72°C for 10 min. The purified PCR product after digestion by Ndel and BamHI restriction enzymes was cloned into the pTrc vectors. The integrity of the plasmid with the 4-HPPD gene (termed as pTrc-4-HPPD) was confirmed by DNA sequencing.

Preparation of mutants

Truncated mutants of 4-HPPD were prepared by PCR using pTrc-4-HPPD as template. The forward and reverse primers used in PCR are shown in Table 1. Preparation of point mutants was carried out using the QuickChange mutagenesis system. Two complementary primers including the desired mutations (Table 1), template vector (pTrc-4-HPPD) and PfuTurbo DNA polymerase were used for PCR. After amplification, parental DNA was digested with DpnI and newly synthesized mutant-containing vectors were transformed into E. coli DH5α competent cells. To confirm the presence of the desired mutation, the complete DNA sequences of the mutant 4-HPPD enzymes were determined.

Figure 1. Catalytic conversion of HPP to HGA by HPPD.

doi:10.1371/journal.pone.0069733.g001

Figure 2. Alignment of amino acid sequences of the C-terminus of human 4-HPPD with enzymes from other species [37]. Fully conservative sequences and residues in iron binding sphere are colored grey and dark grey, respectively. Abbreviations used: h4-HPPD, Homo sapiens (human) 4-HPPD; r1-HPPD, Rattus norvegicus (rat) 4-HPPD; z4-HPPD, Zea mays 4-HPPD; aH-HPPD, Arabidopsis thaliana 4-HPPD; sa4-HPPD, Streptomyces avermitilis 4-HPPD; pf4-HPPD, Pseudomonas fluorescens 4-HPPD. The sequences for the h4-HPPD and r1-HPPD C-terminal tail (G379 to M393) are highlighted by the square frame.

doi:10.1371/journal.pone.0069733.g002
buffer A supplemented with 1.2 M (NH₄)₂SO₄ and 10% (v/v) glycerol and eluted with a gradient into buffer A supplemented with 10% (v/v) glycerol over 100 mL with fractions of 2 mL.

The supernatants were loaded onto Q-Sepharose anion exchange column (26 mm × 10 cm). Two solvents [0.1% (v/v) SDS, pH 6.5] were used with the following gradient: 17 min linear gradient from 100% buffer A to 30% buffer A/70% buffer B; and 1 min 100% buffer B.

After centrifugation at 12,000 g for 15 min at 4°C, the supernatants were loaded onto Q-Sepharose anion exchange column (26 mm × 10 cm). Two solvents [0.1% (v/v) SDS, pH 6.5] were used with the following gradient: 17 min linear gradient from 100% buffer A to 30% buffer A/70% buffer B; and 1 min 100% buffer B.

Enzyme activity measurements

1. Oxygen consumption by Oxygraph. The activity of 4-HPPD was measured using oxygen consumption in a Hansatech DW1 Oxygraph System (Hansatech, UK) equipped with a Clark-type electrode. The reaction mixture (total 2 mL containing 0.2 mM ascorbate, 0.2 mM ferrous sulfate and 5 μg 4-HPPD in 0.1 M Tris-acetate buffer, pH 6.5) was incubated for 1 min at 37°C, before addition of 1 mM 4-HPP to initiate the reaction. Reaction rates were corrected for consumption of oxygen in the absence of 4-HPPD. The concentrations of 4-HPPD used in kinetic assays varied between 0.01 to 2 mM. The apparent kinetic parameters were determined by fitting to the Michaelis-Menten equation using SigmaPlot software (Systat Software).

2. Assay of enzyme activity by HPLC. Reaction mixtures (200 μL) containing 0.1 M Tris-acetate, pH 6.5, 4 mM ascorbate, 1 mM ferrous sulfate, 1 mM 4-HPP and 5 μg 4-HPPD were incubated for 5 min at 37°C. After incubation, the reaction mixtures were filtered by centrifugation at 8000 g (an ultrafiltration spin column from Vivascience with molecular weight cut off of 5 kDa) to remove the enzyme. The products were analysed by HPLC on a C18 column (4.6 × 250 mm, 5-μm particle size; ODS HYPERIL) at a flow rate of 1 mL/min. Two solvents [0.1% (v/v) TFA for buffer A; and 0.07% (v/v) TFA/90% (v/v) acetonitrile for buffer B] were used with the following gradient: 17 min linear gradient from 100% buffer A to 30% buffer A/70% buffer B; 2 min linear gradient to 100% buffer B; and 1 min 100% buffer B. The elution was monitored at 280 or 230 nm.

Circular dichroism studies

Circular dichroism (CD) spectra were measured using a Jasco J-815 spectropolarimeter equipped with a Peltier temperature controller accessory. Experiments were performed using 1 mm path length cell for the far-UV region (200 to 250 nm). All spectra were averaged from three accumulations and were buffer corrected.

Building models of human 4-HPPD

Modeling of human 4-HPPD in complex with 4-HPP was generated using the Discovery Studio 2.5 software (Accelrys Inc.). Structures of human 4-HPPD (PDB code: 3ISQ) [16] were used as the starting model. The 4-HPP substrate was docked into the active site of h4-HPPD using the LibDock protocol. One hundred hotspots in the binding pocket of protein were set for conformation matching. The binding pocket was defined as a 10 Å radius sphere centred at the iron(II) atom for calculation and smart minimization. The high quality mode and best conformation method were selected for docking. Other parameters were used at their default settings. After docking, a series of 4-HPP conformations were applied to energy minimization with the algorithm of smart minimization until the gradient tolerance was satisfied (RMS Gradient ~0.1 kcal/mol/Å).

Enzyme activity measurements

1. Oxygen consumption by Oxygraph. The activity of 4-HPPD was measured using oxygen consumption in a Hansatech DW1 Oxygraph System (Hansatech, UK) equipped with a Clark-type electrode. The reaction mixture (total 2 mL containing 0.2 mM ascorbate, 0.2 mM ferrous sulfate and 5 μg 4-HPPD in 0.1 M Tris-acetate buffer, pH 6.5) was incubated for 1 min at 37°C, before addition of 1 mM 4-HPP to initiate the reaction. Reaction rates were corrected for consumption of oxygen in the absence of 4-HPPD. The concentrations of 4-HPPD used in kinetic assays varied between 0.01 to 2 mM. The apparent kinetic parameters were determined by fitting to the Michaelis-Menten equation using SigmaPlot software (Systat Software).

2. Assay of enzyme activity by HPLC. Reaction mixtures (200 μL) containing 0.1 M Tris-acetate, pH 6.5, 4 mM ascorbate, 1 mM ferrous sulfate, 1 mM 4-HPP and 5 μg 4-HPPD were incubated for 5 min at 37°C. After incubation, the reaction mixtures were filtered by centrifugation at 8000 g (an ultrafiltration spin column from Vivascience with molecular weight cut off of 5 kDa) to remove the enzyme. The products were analysed by HPLC on a C18 column (4.6 × 250 mm, 5-μm particle size; ODS HYPERIL) at a flow rate of 1 mL/min. Two solvents [0.1% (v/v) TFA for buffer A; and 0.07% (v/v) TFA/90% (v/v) acetonitrile for buffer B] were used with the following gradient: 17 min linear gradient from 100% buffer A to 30% buffer A/70% buffer B; 2 min linear gradient to 100% buffer B; and 1 min 100% buffer B. The elution was monitored at 280 or 230 nm.

Circular dichroism studies

Circular dichroism (CD) spectra were measured using a Jasco J-815 spectropolarimeter equipped with a Peltier temperature controller accessory. Experiments were performed using 1 mm path length cell for the far-UV region (200 to 250 nm). All spectra were averaged from three accumulations and were buffer corrected.

Building models of human 4-HPPD

Modeling of human 4-HPPD in complex with 4-HPP was generated using the Discovery Studio 2.5 software (Accelrys Inc.). Structures of human 4-HPPD (PDB code: 3ISQ) [16] were used as the starting model. The 4-HPP substrate was docked into the active site of h4-HPPD using the LibDock protocol. One hundred hotspots in the binding pocket of protein were set for conformation matching. The binding pocket was defined as a 10 Å radius sphere centred at the iron(II) atom for calculation and smart minimization. The high quality mode and best conformation method were selected for docking. Other parameters were used at their default settings. After docking, a series of 4-HPP conformations were applied to energy minimization with the algorithm of smart minimization until the gradient tolerance was satisfied (RMS Gradient ~0.1 kcal/mol/Å).

Mutant 4-HPPD was built using the Built Mutants protocol followed by energy minimization. Quantum mechanical-molecular mechanical (QM-MM) calculations were performed on the models of wild-type and mutant enzymes in complex with 4-HPP using the Minimization (QM-MM) protocol. Before the simulation, atom constraints were applied to the regions outside 5 Å distance of 4-HPP and the two residues of Q375 and R378. Inside...
the regions were simulated and the metal ion, 4-HPP and the side-chains of H193, H266, E349, Q334, Q265 and Q251 were defined as the quantum atoms. The parameter of Multiplicity in Dmol3 was set as auto. All other parameters of the protocol were used with their default setting.

Results

Purification of recombinant human 4-HPPD

Recombinant human liver 4-HPPD gene was cloned from HepG2 cells. The sequence of the cloned 4-HPPD gene was identical to that reported for human liver enzyme (EMBL sequence data bank access number: X72389) [27]. When E. coli cells harbouring recombinant 4-HPPD gene were cultured a characteristic brownish pigment was observed, as reported previously [27,28]. This pigment is an oxidation product of homogentisate [27,29]. This observation indicates soluble expression of active enzyme from the recombinant gene in E. coli.

Purification of recombinant 4-HPPD using anion-exchange, hydrophobic interaction and size-exclusion chromatography yielded a pure protein, as judged by SDS-PAGE analyses (Fig. 3A). The purified protein showed a single major band with molecular mass about 45 kDa on SDS-PAGE (Fig. 3B). The yield of purified 4-HPPD was about 10% based on enzyme activity, with about a 15-fold improvement in purity from the cell lysate (Table 2). The five residues of the N-terminus in recombinant 4-HPPD were determined to be TTYSD, consistent with that predicted from the gene sequence of the human liver enzyme [27]. Purified recombinant wild-type and mutant 4-HPPD enzymes were further confirmed to be the same enzyme by Western blotting analysis (Fig. 3C).

Characterisation of recombinant human 4-HPPD

The catalytic activity of purified recombinant 4-HPPD was determined by a HPLC assay, which measures the formation of homogentisate, and the Oxygraph assay which continuously measures oxygen consumption during catalysis. The requirement for a reducing agent in the assay was determined using the HPLC assay. The presence of ascorbate in stoichiometric amounts resulted in an increase in specific activity of the recombinant enzyme by ca. 2-fold. When the stoichiometry was increased to 4-fold, activity was increased by ca. 2.7-fold compared to in the absence of ascorbate. In contrast, addition of dithiothreitol (DTT) to the assay solution had no significant effect on activity. Addition of tris(2-carboxyethyl)phosphine (TCEP) reduced the activity by ca. 30%.

To determine the efficiency of recombinant 4-HPPD to convert 4-HPP substrate to HG product, production of 4-hydroxyphenylpyruvate (4-HPA) was determined. No 4-HPA was produced by the wild-type enzyme, indicating that this alternative product was not produced at a significant level. The specific activity of the wild-type enzyme was determined to be 2.6±0.1 and 2.8±0.1 μmol/min/mg by Oxygraph and HPLC assays, respectively (Table 3). These results are in agreement with the data reported for native human 4-HPPD [9,27].

Activity of mutant enzymes

To investigate the influence of the C-terminus on the catalytic function of 4-HPPD, several mutants were constructed with different numbers of residues removed: 5 residues (ΔG388); 8 residues (ΔE385); 12 residues (ΔL381); 13 residues (ΔN380); 14 residues (ΔG379); and 15 residues (ΔR378). The R378K, Q375N and R378K/Q375N point mutants were also constructed. All of these proteins were purified to near homogeneity, as judged by SDS-PAGE analyses (Fig. 3B). Circular dichroism analyses of all mutants suggested no gross changes in the secondary structure as compared to the wild-type enzyme.

Deletion of residues from the C-terminus resulted in a reduction in enzymatic activity (Table 3). The activities of the ΔG388, ΔE385 and ΔL381 mutants were only ca. 50 to 60% of that of the wild-type enzyme. The ΔN380 mutant was ca. 20% as active as the wild-type enzyme, and further truncation to R378 abolished all activity. The R378K or E254D mutation reduced activity to ca. 5% of the wild-type enzyme, and all activity was abolished in the Q375N and R378K/Q375N mutants, indicating the importance of these residues for catalysis. Production of HPA by these mutants was not detected, showing that the reduction in activity was not due to the formation of an alternative product.

Steady-state kinetic analyses on these mutants were carried out using the Oxygraph assay (Table 4). The k_{cat} and K_m values for 4-HPP substrate for wild-type enzyme was determined to be 2.2±0.1 s$^{-1}$ and 0.08±0.02 mM, respectively. No significant change in K_m value was observed for the ΔG388, ΔE385 or ΔL381 mutants compared to wild-type enzyme, whilst k_{cat} values were reduced by ca. 25 to 50%. However, deletion of further residues (ΔN380 and ΔG379 mutants) resulted in increased K_m and decreased k_{cat} values. The latter two mutants had a catalytic efficiency of ca. 3% and 1% compared to wild-type enzyme.

Figure 3. SDS-PAGE analyses of wild-type and mutant 4-HPPD enzymes. (A) Fractions are shown for the different purification steps of wild-type 4-HPPD. Lane 1, cell crude lysate; Lane 2, following Q-sepharose anion-exchange chromatography; Lane 3, following SOURCE 15PHE hydrophobic interaction chromatography; Lane 4, concentrated fractions after 5-100 Sephacryl gel filtration chromatography. (B) Purified wild-type and mutant 4-HPPD enzymes. (C) Western blotting of (B). doi:10.1371/journal.pone.0069733.g003
respectively, as judged by k_{cat}/K_m values. Substitution in R378 or E254 resulted in about 95% reduction in k_{cat} values. In addition, the R378K mutant showed an increased K_m value.

Structural modeling

The structure of human 4-HPPD was previously determined without bound substrate (Fig. 4A) [16]. Binding of the 4-HPP substrate into the active site of the enzyme was therefore modeled using a docking routine. The geometry minimization by QM-MM calculations was performed for all enzymes in complex with 4-HPP. Compared to the structure of 4-HPPD, this model with bound 4-HPP was shifted with the C$_{ar}$ r.m.s.d about 0.83 Å, respectively. The substrate aromatic side-chain is sandwiched between the phenyl rings of F336 and F364, and the phenolic 4-hydroxyl group of 4-HPP forms hydrogen bonds with the side-chains of Q265 and Q251 (Fig. 4B).

In the modeled structure of mutant protein, the structure the terminal α-helix was apparently shifted with core r.m.s.d about 0.46, 0.45 and 0.28 Å for the ΔG379, Q375N and R378K mutants, respectively, as compared to the wild-type model. The side-chains of Q251, E254, Q265, Y295, F336, F364, F368, F371, Q375, L377 and R378 in ΔG379 mutant model were obviously moved with r.m.s.d about 0.32, 1.1, 0.23, 0.54, 0.22, 0.25, 0.37, 0.86, 1.35, 1.39 and 0.78 Å, respectively (Fig. 4B). It is noted that the aromatic ring of F371 in this mutant model was particularly rotated by about 60 degrees. Due to the truncation, the bifurcate interactions between the side-chain of Q375 and the oxygen atom of S250 and N380 were disrupted and in turn new hydrogen bonds were formed between the side-chains of Q375 and E254. Similarly, Q375 formed new interactions with Q251 and N380 in the ΔN380 mutant model (data not shown). In the modeled structure of Q375N mutant, similar movement in the side-chains of these residues were shown. Moreover, the dramatic movement in the side-chains of F347 and F371 (about 0.47 and 2.16 Å, respectively) resulted in increased accessibility of the active site cavity. A channel extending from the active site to the C-terminus was shown in the modeled structure (Fig. 4C).

Discussion

Human recombinant 4-HPPD was cloned from HepG2 cells and expressed as soluble protein in *E. coli*. The purified protein had similar enzymatic activity as the native enzyme. The recombinant enzyme was only activated by ascorbate, and not by other reducing agents. This contrasts with the results for native human liver 4-HPPD, where activation was observed for ascorbate and other reducing cofactors [9,27]. Activation by ascorbate and DTT has been previously reported for rat liver α-ketoisocaproate

Table 2. The purification of recombinant human 4-HPPD.

Purification steps	Total activity (U)	Protein concentration (mg/mL)	Specific activity (U/mg)	Yield (%)	Purification factor
Crude extract	113	19	0.2	100	1
Step I*	53	1.0	1.2	47	7
Step II	18	0.9	2.4	16	14
Step III	12	0.9	2.5	10	15

*Steps I to III indicate the pooled fractions after the Q-Sepharose column, after the SOURCE 15PHE column and concentrated fractions pooled after the S-100 Sephacryl column, respectively. The 4-HPPD activity was measured by the formation of HG in μmol/min (U) using the HPLC assay.

Table 3. Activities of the wild-type and mutant enzymes.

proteins	Specific activity (μmol min$^{-1}$ mg$^{-1}$)	Relative activity (%)	Specific activity (μmol min$^{-1}$ mg$^{-1}$)	Relative activity (%)
Wild-type	2.6±0.1	100	2.8±0.1	100
ΔG388	1.5±0.2	56	2.2±0.1	81
ΔE385	1.7±0.1	65	1.6±0.1	57
ΔL381	1.1±0.3	44	1.4±0.1	50
ΔN380	0.8±0.03	31	0.5±0.02	17
AG379	0.1±0.02	5	0.03±0.01	1
ΔR378	ND	<0.1	ND	<0.1
R378K	0.07±0.01	3	0.04±0.01	1
Q375N	ND	<0.1	ND	<0.1
R378K/Q375N	ND	<0.1	ND	<0.1
E254D	0.06±0.01	2	0.2±0.02	7

The data are the mean ± S.D. of three independent experiments. ND, not detectable.
The wild-type enzyme but k
PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69733
and D
critical for the catalysis.
interactions provided by the last five residues, L381 and N380 are
ring of F336 and both residues act as a gate to restrict access to the
this manner the side-chain of Q251 is located near the aromatic
chain of Q251 is reversed allowing interaction with substrate. In
substrate binding site is broad and partly formed by the C-
determined without bound substrate shows that the putative
oxidase [27,30]. This α-ketoisocaproate oxidase was later found to
be the same enzyme as 4-HPPD [27,31]. Activation of enzyme activity
by ascorbate has also been reported for other oxygenase enzymes,
e.g. deacetoxycephalosporin synthase (DAOCS) and
prolyl 4-hydroxylase [27,32–34]. In these enzymes, ascorbate is
probably used to keep the iron in the ferrous state in the active site.
It has also been proposed that ascorbate is able to reduce the ferryl
species during uncoupled catalytic cycles performed by prolyl-4-
hydroxylase and 2,4-dichlorophenoxyacetic acid/2-oxoglutarate
dioxygenase [27,33,34].

The active site of 4-HPPD is enclosed by a C-terminal α-helix
which is assumed to function as a gate which controls access of
substrate [11]. The C-terminus of the reported structure was
resolved only as far as Met-304 and the last 9 residues were
ordered and not visible in the structure (Fig. 4A) [16]. Arg-378 is
located at the end of the final α-helix, and the last 15 residues
comprise the disordered C-terminal tail. Previously Lee et al. [26]
identified a mutant rat 4-HPPD gene that encoded a protein with
14 residues deleted from the C-terminus, which was expressed as
an inactive enzyme. This mutant showed no brownish pigment
formation when expressed in E. coli and had no detectable
decarboxylation ability using α-ketoisocaproate as a substrate.
This study shows that all activity is lost for human 4-HPPD upon
removal of the final 15 residues (ΔR378) of the C-terminus when
4-HPP was used as substrate. Human and rat 4-HPPD have the
same number of amino acids in their sequences and are ca. 85%
identical. The results in this study show the critical role of this
disordered tail for enzyme activity in these enzymes. This study
also shows that the last 5 residues, VVPGM, of the C-terminus are
important for enzyme activity. Deletion of these residues led to loss
of ca. 50% activity. These mutants had very similar Kᵦₐ values to
the wild-type enzyme but kₑₐₐ values were significantly reduced.
Even more reduction of kₑₐₐ values were observed for the ΔL381
and ΔN380 and ΔG379 mutants. The results suggest that the
interactions provided by the last five residues, L381 and N380 are
for the catalysis.

Inspection of the reported structure of human 4-HPPD
determined without bound substrate shows that the putative
substrate binding site is broad and partly formed by the C-
terminus (Fig. 4D). Docking of substrate into the putative binding
site appears to induce a conformational change. The simulation
model shows that the orientation of the amide group in the side-
chain of Q251 is reversed allowing interaction with substrate.
In this manner the side-chain of Q251 is located near the aromatic
ring of F336 and both residues act as a gate to restrict access to the
substrate binding pocket (Fig. 4A and E). This change seems drive
the movement of the final helix (about 2 Å) with formation of a
new salt bridge between the side-chains of R338 and E374 and a
new hydrogen bond between the side-chains of S366 and Y295.
Residues of F347, F371, P339, R376 and Q375 that line the
channel from the gate to the C-terminus were shifted about 0.7,
2.1, 1.2, 1.5 and 1.5 Å, respectively, to shield the active site from
solvent. It is noted that the shift of Q375 led to the switch of its
bifurcate interactions with N380 and K249 to N380 and S250
after substrate binding. The tail in the C-terminus is assumed to
interact with residues surrounding the active site entrance but it
is not visible in this model.

In the structure of human 4-HPPD, residues of N380, L381,
T382 and N383 in the tail participate in interactions with residues of
E254, Y258, Q375, K247, K248 and K249, which are located around
the entrance of active site, to fix the end of the final helix into
the appropriate position (Fig. 4A) [16]. The ΔG379 model
showed the truncation of the tail to disrupt these interactions,
causing apparent movements of the final α-helix and residues near
the active site entrance. In particular a conformational change in
the aromatic ring of F371 and large differences in the conformations
of E254, R378 and Q375 are predicted (Fig. 4B). The distance
between the side-chain of Q251 and F336 was increased about 0.3 Å as compared with wild-type model. The broad access
might be covered by residues lining the channel. However, due to
the change in conformation in the aromatic ring of F371, the
positions of F347 and P339 were subtle moved (Fig. 4F).
Truncation of the tail might expose the entrance and increases
the solvent accessibility to the active site. This change might be
the reason for loss of catalytic activity. Results from kinetics of tail
truncated enzymes suggest the interactions provided by the last
residues together with L381 and N380 are critical for catalysis.
The structural models suggest residues of Q375, K248 and D342
located around the active site entrance might interact with these
residues in the tail. Furthermore, the crystal structure and models
of wild-type or the different truncated mutants showed that Q375
can have various interactions with the tail and residues near the
active site entrance, suggesting the dynamic interaction provide by
this residue might modulate the position of final helix and C-
terminus during the catalytic cycle.

Residues in the terminal α-helix of 4-HPPD may also have a
role in catalysis. A previous study by Gunisior et al. [23] showed that ca. 98 and 80% of activity was lost for the saa-HPPD F337I
and F341Y mutants, respectively. The F337I mutant also catalyzed the
formation of oxeiponine (from an arene oxide-derived intermedi-
ate) and hydroxymandelate (HMA) in addition to HG. These two
residues correspond to F364 and F368 in the terminal helix of 4-
HPPD. The results in this study indicate that the π-π interaction
between the 4-HPP substrate and F364 is important for
maintaining the benzene ring of 4-HPP in a proper position for
oxidation [23,25]. In the present study, the activity lost by
substitution of R378 and Q375 indicates a strict requirement of
these two residues in the proper position for catalysis. These two
residues are not conservative among different species and their
equivalent residues in plants are Leu and Glu, respectively (Fig. 2).
In the 4-HPPD structure, R378 and Q375 are located close to the
C-terminal end of the helix facing the entrance of the active site,
and Q375 is situated near the Q251 (about 3.5 Å) [16]. Q251 is a
critical catalytic residue which forms hydrogen bonds with the 4-
hydroxy group of the 4-HPP substrate. Studies by Raspail et al.
[25] showed that the interactions provided by Q272, Q286 and
Q358 (corresponding to Q251, Q265 and Q334 in human 4-
HPPD) are critical for the formation of the enzyme-4-HPP
complex and the first nucleophilic reaction by dioxygen.

Table 4. Apparent kinetic parameters of wild-type and
mutant 4-HPPD enzymes measured using the oxygraph assay.

Proteins	kₑₐₐ (s⁻¹)	Kᵦₐ (mM)	kₑₐₐ/Kᵦₐ (s⁻¹mM⁻¹)
Wild-type	2.2±0.1	0.08±0.02	29±4
AG388	1.4±0.2	0.08±0.01	17±2
AL385	1.4±0.1	0.09±0.01	16±1.2
AL381	1.0±0.2	0.07±0.01	14±3.2
AN380	0.5±0.02	0.3±0.1	1.5±0.2
AG379	0.1±0.01	0.12±0.01	0.9±0.1
R378K	0.07±0.01	0.24±0.01	0.27±0.01
E254D	0.06±0.01	0.11±0.02	0.57±0.12

Reported data are mean ± S.D. of three independent experiments.
doi:10.1371/journal.pone.0069733.t004

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69733

C-Terminus of 4-Hydroxyphenylpyruvate Dioxygenase
Figure 4. Models of 4-HPPD in complex with 4-HPP substrate. Superimposition of the model for the wild-type enzyme and the X-ray crystal structure of human 4-HPPD (PDB code: 3ISQ) [16] (A), and the models of ΔG379 (B), and Q375N (C) mutant enzymes (stereo image). The protein is shown as a cartoon and colored grey and cyan for the wild-type model and crystal structure or mutant models, respectively. The metal and 4-HPP present as sphere and stick models and colored green and yellow for wild-type and mutant enzymes, respectively. Hydrogen bonding interactions are shown as dashed black lines in (B). The putative substrate binding cavity is shown as Jacks style and colored green and magenta for wild-type and Q375N mutant models, respectively in (C). (D–G) Presentation of the crystal structure (D), wild-type (E), ΔG379 (F), and Q375N (G) models as surface styles and colored by interpolated charge. The C-terminus and residues in the final helix are shown as a ribbon and stick model, respectively, and colored in cyan. The cavity for putative substrate binding cavity is colored yellow. The metal and 4-HPP present as sphere and stick models and colored green.

doi:10.1371/journal.pone.0069733.g004
In the wild-type model, Q375 forms bifurcate hydrogen bonds with S250 and N360 to fix the final helix and the tail in the appropriate position, substitution to disrupt these interactions would destabilize the C-terminus. In the Q375N mutant model, the side-chain of Q251 and F366 was separated for about 0.4 Å while that in the wild-type model and the aromatic ring of F371 was dramatically shifted away from that of F347 (Fig. 4E and G). These changes resulted in opening a solvent accessible channel from the putative substrate binding pocket to the C-terminus. Furthermore, without these interactions to stabilize the tail, it might not function properly to cover the active site entrance. This may account for the complete loss of activity.

R378 is the final residue in the terminal helix. In the structure, this residue interacts with E254 to fix the terminal helix in proper position (Fig. 4A). Mutation of R378 or E254 resulted in most of the activity lost especially the reduction of the k_{cat} value. The R378K mutant model showed that the substitution not only disrupted the interaction between R378 and E254 but also affected the interaction between Q375 and S250 and the hydrogen bonding of Y259 and S366. These results indicating the interactions formed by the two residues are critical for maintaining the terminal helix in a stable conformation for catalysis. However, inspection the models of truncated and Q375N mutant enzymes, show that although the relative positions of R378 and E254 are shifted, the interactions between the two residues are still retained. The result highlights the roles of R378 and Q375 in stabilization of the C-terminus are different.

The models and kinetic data suggest the bifurcate interactions provided by Q375 are critical to stabilize the final α-helix and the tail in the correct position for catalysis. Hence, truncation of the C-terminus means that the final α-helix cannot appropriately function as a gate to isolate the active site from solvent and hence impacts on the catalytic reaction performed by mutant 4-HPPD enzymes. Mutant enzymes which are still active produce the expected HG product, suggesting that the orientation of the substrate aromatic ring is still appropriate. Removal of part or all of the C-terminal tail might affect either step in the catalytic cycle including the activation of dioxygen, the nucleophilic attack by dioxygen or the release of the HG product; the latter step has been shown to be rate-limiting for the reaction [35]. However, this hypothesis requires further confirmation. Results from this study suggest that other roles for the C-terminus are also possible. Through the interaction with Q375, the dynamic orientation of the tail might mediate the appropriate position of the final α-helix to ensure that gate is opened during the appropriate steps in the catalytic cycle to allow substrate to bind and the release of product [11,36]. These interactions assume to maintain the integrity of the active site, ensuring correct orientation of substrate and its interaction with residues in the active site which are important for catalysis.

Acknowledgements

We thank Dr M. D. Lloyd (University of Bath, U. K.) for reading and discussing this manuscript before publication and Dr. M. H. Lee for helpful discussions.

Author Contributions

Conceived and designed the experiments: HJL. Performed the experiments: JFL, YLS, NYC, CWC, CPS. Analyzed the data: HJL, JFL, YLS, TCC. Contributed reagents/materials/analysis tools: HJL, TCC. Wrote the paper: HJL.

References

1. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, et al. (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100: 644–669.
2. Hausinger RF (2004) FeII/2-oxoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39: 21–68.
3. Moran GR (2005) 4-Hydroxypyruvate dioxygenase. Arch Biochem Biophys 433: 117–128.
4. Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, et al. (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene are responsible for tyrosinemia type III and hawksinuria. Mol Genet Metab 71: 506–510.
5. Goodwin TW, Mercer EI (1983) Introduction to Plant Biochemistry; 2nd ed., 22. You Z, Omura S, Ikeda H, Cane DE, Jogl G (2007) Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem 282: 53655–53660.
10. Brownlee JM, Johnson-Winters K, Harrison DH, Moran GR (2004) Structure of a cephalosporin synthase. Nature 394: 805–809.
11. Hegg EL, Que L (1997) The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(ii) enzymes. J Biol Chem 272: 625–629.
12. Serre L, Sailland A, Sy D, Boudec P, Rolland A, et al. (1999) Crystal structure of human 4-Hydroxyphenylpyruvate dioxygenase. RCSB Protein Data Bank PDB ID: 1BSQ.
13. Valegard K, Terwisscha van Scheltinga AC, Dubus A, Ranghino G, Oster LM, et al. (2004) The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Nat Struct Mol Biol 11: 95–101.
14. Han S, Elui JD, Timmis KN, Muchmore SW, Bein JT (1995) Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270: 976–980.
15. Kita A, Kita S, Fujisawa I, Inaka K, Ishida T, et al. (1999) An archetypical extradiol-cleaving catechol dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 7: 25–34.
16. Pilkus ES, Shafqat N, Cocking R, Bray JE, Krojer T, et al. (2009) Crystal structure of human 4-Hydroxyphenylpyruvate dioxygenase. RCSB Protein Data Bank PDB ID: 1BSQ.
17. Hegg EL, Que L J (1997) The 2-His-1-carboxylate facial triad: a emerging structural motif in mononuclear non-heme iron(ii) enzymes. Eur J Biochem 250: 625–629.
18. Koehntop KD, Emerson JP, Que L, Jr (2005) The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(ii) enzymes. J Biol Inorg Chem 10: 87–93.
19. Valegard K, Terwisscha van Scheltinga AC, Dubus A, Ranghino G, Oster LM, et al. (2004) The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Nat Struct Mol Biol 11: 95–101.
20. Valegard K, van Scheltinga AC, Dubus A, Ranghino G, Oster LM, et al. (1998) Structure of a cephalosporin synthase. Nature 394: 805–809.
21. McDonough MA, Kavanagh KL, Butler D, Sears T, Oppermann U, et al. (2005) Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. J Biol Chem 280: 11101–11100.
22. You Z, Omura S, Ikeda H, Cane DE, Jogl G (2007) Crystal structure of the non-heme iron dioxygenase PIIH in pentalenolactone biosynthesis. J Biol Chem 282: 36552–36560.
23. Gunior M, Ravel J, Chalils GL, Townsend CA (2004) Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzoic acid intermediate in homogentisate formation. Biochemistry 43: 663–674.
24. Lancaster DE, McNell LA, McDonough MA, Aplin RT, Hewinson KS, et al. (2004) Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIIH) activity. Biochem J 383: 429–437.
25. Raspall C, Grañórdge M, Morceni Y, Crouzy S, Lefebvre B, et al. (2011) 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. J Biol Chem 286: 26601–26607.
26. Lee MH, Zhang ZH, MacKinnon CH, Baldwin JE, Crouch NP (1996) The C-terminal of rat 4-hydroxyphenylpyruvate dioxygenase is indispensable for enzyme activity. FEBS Lett 393: 269–272.

27. Ruetschi U, Dellen A, Sahlin P, Steunman G, Ryno L, et al. (1993) Human 4-hydroxyphenylpyruvate dioxygenase. Primary structure and chromosomal localization of the gene. Eur J Biochem 213: 1081–1089.

28. Garcia I, Rodgers M, Pepin R, Hueh TF, Marriny M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119: 1507–1516.

29. Denoya CD, Skinner DD, Morgenstern MR (1994) A Strepomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol 176: 3312–3319.

30. Sabourin PJ, Bieber LL (1981) Subcellular distribution and partial characterization of an a-ketoisocaproate oxidase of rat liver: formation of b-hydroxyisovaleric acid. Arch Biochem Biophys 206: 132–144.

31. Crouch NP, Baldwin JE, Lee MH, MacKinnon CH, Zhang ZH (1996) Initial studies on the substrate specificity of soluble recombinant 4-hydroxyphenylpyruvate dioxygenase from rat liver. Biosci Med Chem Lett 3: 1255–1260.

32. Dubus A, Lloyd MD, Lee JJ, Schofield CJ, Baldwin JE, et al. (2003) Probing the penicillin sidechain selectivity of recombinant deacetoxycephalosporin C synthase. Cell Mol Life Sci 59: 835–843.

33. Majamaa K, Hanauske-Abel HM, Gunzler V, Kivirikko KI (1984) The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem 138: 239–245.

34. Myllyla R, Majamaa K, Gunzler V, Hanauske-Abel HM, Kivirikko KI (1984) Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. J Biol Chem 259: 5403–5405.

35. Johnson-Winters K, Purpero VM, Kavana M, Moran GR (2005) Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Strepomyces avermitilis. Biochemistry 44: 7189–7199.

36. Brownlee J, He P, Moran GR, Harrison DH (2008) Two roads diverged: the structure of hydroxymandelate synthase from Amycolatopsis orientalis in complex with 4-hydroxymandelate. Biochemistry 47: 2002–2013.

37. Larkin MA, Blacksheilds G, Brown NP, Chen RA, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.