Pre-modular fusion categories of global dimensions p^2

Zhiqiang Yu

Abstract

Let $p \geq 5$ be a prime, we show that a non-pointed modular fusion category C is Grothendieck equivalent to $C(sl_2, 2(p-1))^A_0$ if and only if $\dim(C) = p \cdot u$, where u is a certain totally positive algebraic unit and A is the regular algebra of the Tannakian subcategory $\text{Rep}(\mathbb{Z}_2) \subseteq C(sl_2, 2(p-1))$. As a direct corollary, we classify non-simple modular fusion categories of global dimensions p^2.

Keywords: Global dimension; pre-modular fusion category; modular fusion category

Mathematics Subject Classification 2020: 18M20

1 Introduction

A fusion category C over the complex field \mathbb{C} is a semisimple finite tensor category, fusion categories are widely studied with restrictions on their Frobenius-Perron dimensions [10, 11], ranks (i.e., the number of the isomorphism classes of simple objects) [4, 21] etc. The global dimension of a fusion category is an important concept that deserved more attentions. Unlike the classification of fusion categories by Frobenius-Perron dimensions, however, we even don’t know the structures of fusion categories with a prime global dimension.

Recently, some progresses are made in topics related to the classifications of spherical fusion categories by their global dimensions. In [22], V. Ostrik gave lower bounds of the dimensions (more generally, the formal codegrees) of fusion categories, as a direct result, he classified spherical fusion categories of integer global dimensions less than 6. Braided spherical (or, pre-modular) fusion categories of global dimension less than or equal to 10 were completely classified by the author in [27], and spherical fusion categories of dimension 6 were also shown to be weakly integral. It was conjectured in [27] that pre-modular fusion categories of prime dimension p are always pointed if $p \neq 5$, this is answered affirmatively in [25] lately. Moreover, by using a classical Siegel’s trace theorem about totally positive algebraic integers [26], spherical fusion categories of prime dimension p are proved to be pointed if $(p - 1)/2$ is also an odd prime.

As a special class of fusion categories, modular fusion categories connect deeply with conformal field theory [2], vertex operator algebras [6], quantum groups at root of unity [2, 10]. The S-matrix and T-matrix of modular fusion categories (see section 2), which reflect many important properties of modular fusion categories, also enjoy interesting algebraic and arithmetic properties [3, 4, 6]. Therefore, modular fusion categories are inseparable with algebraic number...
theory and representations of the modular group \(SL(2, \mathbb{Z}) \) \[3, 4, 10\], in particular, one can peer into their properties by considering the number of Galois orbits of the simple objects \[16, 23\] and the representation type of \(SL(2, \mathbb{Z}) \) associated to a modular category \[17\], for example.

Let \(p \) be a prime, \(C \) a modular fusion category of global dimension \(p^2 \). Then \(C \) is tensor equivalent to an Ising category \(C(\mathfrak{sl}_2, 2) \) or \(C \) is pointed \[22\] if \(p = 2 \). Modular fusion categories of global dimension 9 are either pointed or braided tensor equivalent to a Galois conjugate of the non-pointed simple modular fusion category \(C(\mathfrak{so}_5, \frac{3}{2})_{ad} \) \[27, \text{Theorem 4.8}\]. Let \(C(\mathfrak{sl}_2, 3)_{ad} \) denote the Yang-Lee (or, Fibonacci) fusion category, which is a rank 2 transitive modular fusion category \[15\], and its Galois conjugate \(C(\mathfrak{sl}_2, 3)_{ad}^\sigma \) has global dimension \(\frac{25-\sqrt{25}}{2} \), where \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \) such that \(\sigma(\zeta_5) = \zeta_5^2 \). So modular fusion categories

\[
C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}^\sigma \boxtimes C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}^\sigma, \quad C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}^\sigma \boxtimes C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}^\sigma \boxtimes C(\mathbb{Z}_5, \eta)
\]

both have global dimension 25, where \(C(\mathbb{Z}_5, \eta) \) is a pointed modular fusion category of dimension 5. When \(p = 7 \), modular fusion category \(C(\mathfrak{sl}_2, 5)_{ad} \boxtimes C(\mathfrak{sl}_2, 5)_{ad}^\tau \boxtimes C(\mathfrak{sl}_2, 5)_{ad}^\tau \) and its Galois conjugates have global dimension 49, where \(\tau \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \) such that \(\tau(\zeta_7) = \zeta_7^2 \), \(C(\mathfrak{sl}_2, 5)_{ad} \) is a transitive modular fusion category of rank 3 \[21, 16\]. It was asked in \[27, \text{Question 4.9}\] whether the modular fusion categories (and their Galois conjugates) mentioned above are all non-pointed modular fusion categories of global dimension \(p^2 \).

In this paper, from both the views of algebraic and arithmetic properties of modular fusion categories, we continue to investigate the structure of (pre-)modular fusion categories of global dimensions \(p^2 \) with \(p \geq 5 \). Let \(C \) be such a modular fusion category, if \(C \) does not contains a non-trivial fusion subcategory of integer dimension, we show that \(C \) always contains a Galois conjugate of the transitive modular fusion category \(C(\mathfrak{sl}_2, p-2)_{ad} \) \(\text{Theorem 4.3} \), then we give a complete classification of non-simple modular fusion category of global dimension \(p^2 \) \(\text{Theorem 4.15} \). Moreover, we find that there exists another non-pointed modular fusion category of global dimension \(11^2 \), which then gives a negative answer to \[27, \text{Question 4.9}\].

Table 1: Some Notations

Notation	Meaning
\(\zeta_n \)	the \(n \)-th primitive root of unity \(e^{\frac{2\pi i}{n}} \)
\(N(f) \)	the norm of \(f \), i.e., \(N(f) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(f)/\mathbb{Q})} \sigma(f) \)
\(O_X(C) \)	the Galois orbit of simple object \(X \) of a modular fusion category \(C \)
\(C(g, k) \)	the modular fusion category obtained from representation category \(\text{Rep}(U_q(g)) \) of quantum group \(U_q(g) \) at root of unity

The paper is organized as follows. In section \[2\] we recall some basic notions and notations of (modular) fusion categories, such as global dimensions, formal codegrees and \(d \)-numbers, modular data, and the congruence representations of the modular group \(SL(2, \mathbb{Z}) \). In section \[3\] we consider modular fusion categories whose norm of global dimensions are powers of a prime \(p \), in particular, if \(p \geq 5 \), we show that a non-pointed modular fusion category \(C \) is Grothendieck equivalent to \(C(\mathfrak{sl}_2, 2(p-1))_{ad} \) if and only if \(\dim(C) = p \cdot u \) in Theorem \[3, 12\] and Corollary \[3, 13\] where \(u \) is a certain algebraic unit. In section \[4\] we first show that a non-simple modular
fusion category C of global dimension p^2 contains a Galois conjugate of a transitive modular fusion subcategory if C does not contain a non-trivial fusion subcategory with an integer global dimension in Theorem 4.3, then we give a complete classification of non-simple modular fusion categories of dimension p^2 in Theorem 4.15.

2 Preliminaries

In this section, we recall we will recall some important definitions and properties about fusion categories and modular fusion categories, we refer the readers to [2, 4, 7, 10, 11, 15, 20].

2.1 Fusion categories and dimensions

Let C be a fusion category, $O(C)$ the set of isomorphism classes of simple objects of a fusion category C. Then the Frobenius-Perron homomorphism $FPdim(-) : Gr(C) \rightarrow C$ is the unique ring homomorphism such that $FPdim(X) \geq 1$ is an algebraic integer, $\forall X \in O(C)$, $FPdim(X)$ is called the Frobenius-Perron dimension of the object X, and the sum $FPdim(C) := \sum_{X \in O(C)} FPdim(X)^2$ is defined as the Frobenius-Perron dimension of C.

A fusion category C is weakly integral if $FPdim(C) \in \mathbb{Z}$, C is integral if $FPdim(X) \in \mathbb{Z}$ for all $X \in O(C)$. We use C_{int} to denote the maximal integral fusion subcategory of C. The adjoint subcategory C_{ad} of a weakly integral fusion category is always integral [10]. A simple object of C is called invertible if $X \otimes X^* = I$, the unit object, equivalently, $FPdim(X) = 1$. A fusion category C is pointed if $O(C)$ is a finite group, where the group multiplication is induced by the tensor product \otimes. In the following, we use C_{pt} to denote the maximal pointed subcategory of C, that is, the fusion subcategory generated by invertible simple objects of C. And we say a fusion category C is non-pointed if $C_{pt} \neq C$. In addition, two fusion categories C and D are Grothendieck equivalent if $Gr(C) \cong Gr(D)$ as fusion rings.

Let C be a spherical fusion category C with spherical structure j, which is a natural isomorphism $j = \{j_X : X \rightarrow X^{**}, X \in C\}$ such that $dim_j(X) = dim_j(X^*)$, $dim_j(X)$ is called the quantum (or, categorical) dimension of X determined by j, where $dim_j(X)$ is defined as the (categorical) trace of id_X, that is,

$$dim_j(X) = Tr(id_X) := ev_X \circ (j_X \circ id_X) \otimes id_X^* \circ coev_X,$$

where $(X^*, ev_X, coev_X)$ is the dual object of X and we suppress the associativity and unit constraints of C. We define the global (or, categorical) dimension of the fusion category C as

$$dim(C) := \sum_{X \in O(C)} dim_j(X)^2,$$

the global dimension $dim(C)$ is independent of the choice of the spherical structure of C and $dim_j(-)$ induces a homomorphism from $Gr(C)$ to \mathbb{C} [10 Proposition 4.7.12].

Given an arbitrary spherical fusion category C, we can consider the twist (or Galois conjugate) C^σ of C, where $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ and $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q}. More precisely, C^σ is a
fusion category with the same monoidal functor \otimes as C and the associator of C'' is obtained by composing the one of C with automorphism σ. Moreover, $\dim(C'') = \sigma(\dim(C))$. A fusion category C is said to be pseudo-unitary if $\dim(C) = \FPdim(C)$. For more properties of global dimension, we refer the readers to references [10][11][22]. In this paper, we will fix a spherical structure j and denote $\dim_j(-)$ by $\dim(-)$.

2.2 Formal codegrees of fusion categories

Let C be a fusion category, then the complexified ring $\Gr(C) \otimes \mathbb{C}$ is semisimple. Given an irreducible representation χ of $\Gr(C) \otimes \mathbb{C}$, the element
$$\alpha_\chi = \sum_{X \in \mathcal{O}(C)} \text{tr}_\chi(X)X^*$$
is central, where tr_χ is the ordinary trace function on the representation χ, moreover $\chi'(\alpha_\chi) = 0$ if $\chi \not\cong \chi'$ and $f_\chi := \chi(\alpha_\chi)$ is a positive algebraic integer [14], f_χ is called a formal codegree of fusion category C [20]. For example, $\FPdim(C)$ and $\dim(C)$ are formal codegrees of C.

It was showed that $\dim(C)f_\chi$ is always a totally positive algebraic integer [20, Corollary 2.14] and the set of formal codegrees of C satisfy the following equation [20, Proposition 2.10]
$$\sum \chi(1) f_\chi = 1.$$
If $C \not\cong \text{Vec}$, then $f_\chi > \sqrt{2\rank(C)} + 1 \geq \sqrt{\frac{2}{3}}$ for all irreducible representations χ [22, Theorem 4.2.1]. Moreover, $\sigma(\dim(C)) > \sqrt{2}$ if the non-trivial fusion category C is not a Galois conjugate of $C(sl_2,3)_{\text{ad}}$ [22, Proposition A.1.1], where $\sigma \in \text{Gal}(\mathbb{Q}/\mathbb{Q})$.

Let α be an algebraic integer with the minimal polynomial $g(x) = x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n$, then α is called a d-number if $(a_i)^j$ divides $(a_j)^n$ for all $1 \leq j \leq n$ [20, Definition 1.1], see [20, Lemma 2.7] for more equivalent conditions about d-numbers. The formal codegrees of a fusion category are d-numbers [20, Theorem 1.2], for example. In addition, the Frobenius-Perron dimensions and quantum dimensions of objects, and formal codegrees of a fusion category are cyclotomic algebraic integers [11, Corollary 8.53]. Hence, in order to determine whether a totally positive algebraic integer α is a formal codegree of a fusion category C, we can use the Program GAP to test whether α is a d-number and the Galois group of the minimal polynomial of α is abelian, this is called the d-number tests and cyclotomic test [20].

2.3 Modular fusion categories and representations of $\text{SL}(2,\mathbb{Z})$

Let C be a braided fusion category with braiding c and D a fusion subcategory of C. Then the centralizer of D in C is the following fusion subcategory
$$D_C' = \{ X \in C | c_{Y,X}c_{X,Y} = \text{id}_{X \otimes Y}, \forall Y \in D \}.$$
We call $C' := C_C'$ the M"uger center of C [15].
Let \mathcal{C} be a braided spherical (i.e., pre-modular) fusion category with ribbon structure θ, the matrices $S = (S_{X,Y})$ and $T = (d_{X,Y} \theta_X)$ are called the S-matrix and T-matrix of \mathcal{C}, respectively, where $S_{X,Y} = \text{Tr}(c_{YX}c_{X,Y})$, $X, Y \in \mathcal{O}(\mathcal{C})$. A modular fusion category is a pre-modular fusion category such that the S-matrix S is non-degenerate, equivalently $\mathcal{C}' = \text{Vec}[7,10][15]$. Moreover, the S-matrix a modular fusion category \mathcal{C} determines the multiplication of the Grothendieck ring $\text{Gr}(\mathcal{C})$ by the famous Verlinde formula [10], i.e., for $X,Y,Z \in \mathcal{O}(\mathcal{C})$,

\[
N_{X,Y}^Z := \dim_C(\text{Hom}(X \otimes Y, Z)) = \sum_{W \in \mathcal{O}(\mathcal{C})} \frac{S_{X,W}S_{Y,W}S_{Z,W}}{\dim(W)}.
\]

Moreover, given a modular fusion category \mathcal{C}, the Verlinde formula (2) also implies that the set of ring homomorphism from $\text{Gr}(\mathcal{C})$ to \mathbb{C} is in bijective correspondence with $\mathcal{O}(\mathcal{C})$ [10]. Explicitly, let $X \in \mathcal{O}(\mathcal{C})$, then $h_X(Y) := \frac{S_{X,Y}}{\dim(X)}$ defines a ring homomorphism from $\text{Gr}(\mathcal{C})$ to \mathbb{C}, $\forall Y \in \mathcal{O}(\mathcal{C})$; notice that the set of formal coodegrees of \mathcal{C} is $\{\frac{\dim(C)}{\dim(X)} | X \in \mathcal{O}(\mathcal{C})\}$ due to the Verlinde formula (2). Since $\sigma \circ h_X(-)$ is also a ring homomorphism of $\text{Gr}(\mathcal{C})$, where $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, there is a unique simple object Y such that $\sigma \circ h_X(-) = h_Y(-)$. Hence, there is a unique permutation $\hat{\sigma}$ of $\mathcal{O}(\mathcal{C})$ such that $\hat{\sigma}(X) = Y$ and $\sigma \circ h_X(-) = h_{\hat{\sigma}(X)}(-)$. We call the subset

$\mathcal{O}_X(\mathcal{C}) := \{ Y \in \mathcal{O}(\mathcal{C}) | Y = \hat{\sigma}(X) \text{ for some } \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \}$

the Galois orbit of the simple object X. When $\mathcal{O}_I(\mathcal{C}) = \mathcal{O}(\mathcal{C})$, then \mathcal{C} is said to be transitive; transitive modular fusion categories are classified explicitly [16] Theorem III.

The modular data (S, T) of a modular fusion category \mathcal{C} is also connected closely with the congruence representations of the modular group $\text{SL}(2, \mathbb{Z})$ [3][4][6], which is generated by $s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $t = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with relations $s^4 = 1$ and $(st)^3 = s^2$. Explicitly, the morphism $s \mapsto \frac{1}{\sqrt{\dim(C)}} S, t \mapsto T$ defines a projective representation of $\text{SL}(2, \mathbb{Z})$ [10] Theorem 8.16.1, where $\sqrt{\dim(C)}$ is the positive square root of $\dim(C)$.

Let $\tau(S) := \sum_{X \in \mathcal{O}(\mathcal{C})} \dim(X)^2 \theta_X^S$ be the Gauss sums of \mathcal{C} [7][10], then $\xi(S) := \frac{\tau(S)}{\sqrt{\dim(C)}}$ is called the multiplicative central charge of \mathcal{C}. It follows from [4][6] that there always exists a third root ξ of $\xi(S)$ such that $s := \rho_C(s) = \sqrt{\dim(C)} S$ and $t := \rho_C(t) = \sqrt{\dim(C)} T$ defines a finite-dimensional congruence representation ρ_C of $\text{SL}(2, \mathbb{Z})$ of level N, that is, $\ker(\rho_C)$ is a congruence subgroup of level $N = \text{ord}(t)$. Moreover, $\mathbb{Q}(S) \subseteq Q(T) \subseteq \mathbb{Q}(t)$ [6] Theorem II].

Let $t_X := \theta_X/\xi$, the normalized ribbon structure of the simple object X, $\forall X \in \mathcal{O}(\mathcal{C})$, then we have the Galois symmetry [6] Theorem II], that is, $\sigma^2(t_X) = t_{\hat{\sigma}(X)}, \forall \sigma \in \text{Gal}(\mathbb{Q}(t)/\mathbb{Q})$.

Let ρ be a finite-dimensional congruence representation of $\text{SL}(2, \mathbb{Z})$ of level n, where n is a positive integer. Then ρ factors through the finite groups

$\text{SL}(2, \mathbb{Z}_n) \cong \text{SL}(2, \mathbb{Z}_{p_1^{n_1}}) \times \cdots \times \text{SL}(2, \mathbb{Z}_{p_r^{n_r}})$

and $\rho \cong \otimes_{j=1}^r \rho_{p_j}$ by the Chinese Reminder Theorem, where $n = \prod_{j=1}^r p_j^{n_j}$ and p_j are distinct primes, ρ_{p_j} are finite-dimensional representations of subgroups $\text{SL}(2, \mathbb{Z}_{p_j^{n_j}})$. Moreover, given an arbitrary prime p, all finite-dimensional irreducible representations of the group $\text{SL}(2, \mathbb{Z}_{p^n})$ are completely classified and constructed explicitly in [18][19]. A finite-dimensional congruence representation ρ of the modular group $\text{SL}(2, \mathbb{Z})$ is said to be non-degenerate if the eigenvalues
of \(\rho(t) \) are distinct; non-degenerate finite-dimensional congruence representations are irreducible [9] Lemma 1. In addition, the set of eigenvalues of \(\rho(t) \) is called the t-spectrum of \(\rho \) following [4] [17] [23]: we note that the t-spectrum of any finite-dimensional irreducible representation of \(\text{SL}(2, \mathbb{Z}_{p^m}) \) is produced in [23] Appendix.

The following remark is known to experts, we list it here for the reader’s convenience, and it will play a key role in the arguments of this paper.

Remark 2.1. Let \(C \) be a non-trivial modular fusion category with \(N(\dim(C)) = p^N \), where \(p \) is an odd prime. Then there exists a simple object \(X \) such that \(p \) divides \(\text{ord}(t_X) \).

Indeed, if \(t_Y = 1 \) for all \(Y \in \mathcal{O}(C) \), then \(\xi = 1 \) as \(t_Y = 1/\xi = 1 \), so \(\theta_Y = 1 \) (\(\forall Y \in \mathcal{O}(C) \)). Notice that the balancing equation \([10]\) then implies that \(s_{X,Y} = \dim(X) \dim(Y) \), particularly the \(S \)-matrix of \(C \) can’t be non-degenerate, it is a contradiction.

Moreover, let \(X \) be the simple object of \(C \) such that \(\text{ord}(t_X) = p^n \) is maximal. Then

\[
\text{rank}(C) \geq \frac{p^{n-1}(p-1)}{2}.
\]

By the Galois symmetry of modular fusion categories [6], we have \(\sigma^2(t_X) = t_{\sigma(t_X)} \), then

\[\text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q}) \cdot t_X = \{ t_{\sigma(t_X)} = \sigma^2(t_X) | \sigma \in \text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q}) \}, \]

hence the number of Galois conjugates of \(X \) is greater or equal to the order of the following subgroup

\[\text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q})^2 := \{ \sigma^2 | \sigma \in \text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q}) \} \]

of \(\text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q}) \). It follows immediately that the order of \(\text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q})^2 \) is exactly \(\frac{p^{n-1}(p-1)}{2} \), since \(\text{Gal}(\mathbb{Q}(t_X)/\mathbb{Q}) \) is a cyclic group of order \(p^{n-1}(p-1) \).

Throughout this paper, we always use \(\rho_0 \) to denote the trivial representation of \(\text{SL}(2, \mathbb{Z}) \).

Example 2.2. Let \(p \geq 5 \) be a prime, and let \(C := C(\mathfrak{sl}_2, 2(p-1)) \). Then \(C \) contains a unique non-trivial connected étale algebra \(A \) [12] Theorem 6.5], i.e., the regular algebra of Tannakian subcategory \(\text{Rep}(\mathbb{Z}_2) \subseteq C \), such that \(C_A^0 \) is a modular fusion category and

\[\dim(C_A^0) = \frac{\dim(C)}{\dim(A)^2} = \frac{p}{4 \cos^2(\frac{d}{p})} \]

by [12] Theorem 4.5], where \(d = \frac{p+1}{2} \). Moreover, the simple objects of \(C_A^0 \) are also characterized explicitly in [12] Theorem 7.1], i.e., \(\mathcal{O}(C_A^0) = \{ V_0, V_2, \cdots, V_{p-3}, V_{p-1}, V_{p-1}^- \} \), and

\[\dim(V_j) = \frac{\zeta_{4p}^{j+1} - \zeta_{4p}^{-j+1}}{\zeta_{4p} - \zeta_{4p}^{-1}} = \frac{\cos(\frac{(d-1)(j+1)}{p})}{\cos(\frac{d-1}{p})}, 0 \leq j \leq p-3, \dim(V_{p-3}^-) = \frac{1}{2 \cos(\frac{d-1}{p})} \]

Hence, the formal codegrees of \(C(\mathfrak{sl}_2, 2(p-1))^0_\Lambda \) are

\[p(\text{twice}), \sigma \left(\frac{p}{4 \cos^2(\frac{d}{p})} \right) \text{ where } \sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)^+/\mathbb{Q}). \]

In particular, if \(p = 5 \), then \(C(\mathfrak{sl}_2, 8)^0_\Lambda \simeq C(\mathfrak{sl}_2, 3)_{\text{ad}} \boxtimes C(\mathfrak{sl}_2, 3)_{\text{ad}} \) as modular fusion category.
By [12] Theorem 1.17, $\theta_{V_{j}} = e^{2\pi i \frac{d_{j}+2j}{dp-1}}$ and $\theta_{V_{j}} = \zeta_{p}^{j}$. Notice that the multiplicative central charge $\xi(C_{A}) = \xi(C) = e^{2\pi i \frac{dp-1}{dp-1}}$, let ξ be a third root of $\xi(C_{A})$, so ξ is an 24-th root of $\zeta_{p}^{3(p-1)}$, while $\zeta_{p}^{p-1} = \zeta_{p}^{(p-1)+p(p-1)} = \zeta_{p}^{2(p-1)}$, hence we can choose $\xi = \zeta_{p}^{\frac{p-1}{2}}$ to be the third root of $\xi(C_{A})$, then the t-spectrum of the normalized t-matrix is

$$\left\{ \sigma^{2}(\zeta_{p}^{\frac{p-1}{2}}) \mid \sigma \in \text{Gal}(Q(\zeta_{p})/Q) \right\} \cup \{\text{twice}\}.$$

Therefore, the associated modular representation ρ_{ξ} is $\rho_{1} \oplus \rho_{0}$, where ρ_{1} is a d-dimensional irreducible representation of $\text{SL}(2, \mathbb{Z})$ of level p and ρ_{0} is the trivial representation of $\text{SL}(2, \mathbb{Z})$.

3 Modular fusion categories with $N(\dim(C)) = p^{m}$

In this section, we always assume p is a prime, and we study the structures of modular fusion categories C such that $N(\dim(C))$ is a power of p. Notice that if $N(\dim(C)) = p$ and $\dim(C) \notin \mathbb{Z}$, then C is braided tensor equivalent to a Galois conjugate of $C(sl_{2}, 3)_{ad}$ [25].

3.1 Modular fusion category C with $N(\dim(C)) = p^{2}$

Let C be a modular fusion category with $N(\dim(C)) = p^{2}$. Then [25] Proposition 4.11] says that $\frac{1}{2}d(\dim(C)) \leq 2$, where $d(\dim(C)) = [Q(\dim(C)) : Q]$, that is, $\dim(C) = 1, 2, 3, 4$. Note that $Q(\dim(C)) \subseteq Q(T_{C})$ and the Cauchy’s Theorem [3] Theorem 3.9] shows that $\text{ord}(T_{C}) = p^{m}$ for some positive integer m. Since $Q(\dim(C))$ is a real subfield of $Q(T_{C})$, $Q(\dim(C)) \subseteq Q(\zeta_{p^{n}})^{+}$, the maximal real subfield of $Q(\zeta_{p^{n}})$, and the Galois group $\text{Gal}(Q(\zeta_{p^{n}})/Q)$ is

$$\text{Gal}(Q(\zeta_{p^{n}})/Q) \cong (\mathbb{Z}_{p^{n}})^{*} = \left\{ \begin{array}{ll}
\mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p-1}, & p > 2; \\
\mathbb{Z}_{2}, & p = 2 \text{ and } n = 2; \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}, & p = 2 \text{ and } n \geq 3.
\end{array} \right.$$

and $[Q(\zeta_{p^{n}}) : Q(\zeta_{p^{n}})^{+}] = 2$. Moreover, for any odd prime p, it is well-known that the cyclotomic field $Q(\zeta_{p^{n}})$ contains a unique quadratic subfield $Q(\sqrt[p^{n}]{p})$, where $p^{n} := (-1)^{\frac{p-1}{2}} p$.

We first prove the following lemma, which is a direct corollary of [25] Theorem 4.4].

Lemma 3.1. Let C be a modular fusion category such that $N(\dim(C)) = p^{m}$, where p is a prime. If $d(\dim(C)) > m$, then $m = \frac{p-1}{2}$ and C is braided equivalent to a Galois conjugate of the transitive modular fusion category $C(sl_{2}, p-2)_{ad}$.

Proof. Since $N(\dim(C)) = p^{m}$ and $m < d(\dim(C))$, p does not divide $\dim(C)$ by [25] Proposition 4.2]. Thus, for any integer $q \in \mathbb{Z}_{\geq 2}$, q does not divides $\dim(C)$. Hence, all formal codegrees of C are Galois conjugates of $\dim(C)$ [25] Theorem 4.4]. Note that C is a modular fusion category, formal codegrees of C all have the form $\frac{\dim(C)}{\dim(X)^{2}}$ for simple objects X of C, so for any object $X \in \mathcal{O}(C)$, there exists a $\sigma \in \text{Gal}(Q(\dim(C))/Q)$ such that

$$\frac{\dim(C)}{\dim(X)^{2}} = \sigma(\dim(C)) = \sigma \left(\frac{\dim(C)}{\dim(I)^{2}} \right) = \frac{\dim(C)}{\dim(\sigma(I))^{2}}.$$

Corollary 3.2. Let \(\sigma \) be a modular fusion category such that \(N_{\mathbb{Q}}(\dim(C)) = p^2 \). If \(d_{\dim(C)} > 2 \), then \(p = 7 \) and \(C \cong C(sl_2, 5)_{ad} \), where \(\tau \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \).

Let \(C \) be a modular fusion category, \(D := \bigoplus_{\sigma \in \text{Gal}(\mathbb{Q}(\dim(C))/\mathbb{Q})} C^\sigma \), then

\[
\dim(D) = N(\dim(C)) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\dim(C))/\mathbb{Q})} \dim(C^\sigma) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\dim(C))/\mathbb{Q})} \sigma(\dim(C)).
\]

Hence, [22] Lemma 4.2.2, Remark 4.2.3] say that

\[
(3) \quad \text{rank}(D) = \text{rank}(C)^{d_{\dim(C)}} \leq \dim(D),
\]

and \(\text{rank}(D) = \dim(D) \) if and only if \(D \) is pointed. In particular, if \(N(\dim(C)) = p^2 \), then \(\text{rank}(C) \leq p^2 \). When \(p = 2 \), it is easy to see \(\dim(C) = 4 \), then \(C \cong \mathcal{I} \) is an Ising category or \(C \) is pointed [22] Example 5.1.2]; when \(p = 3 \), \(d_{\dim(C)} = 1 \), that is, \(\dim(C) = 9 \), then \(C \) is either pointed or \(C \) is braided equivalent to a Galois conjugate of \(C(sl_5, 9, \zeta_{18})_{ad} \) by [27] Theorem, where \(\zeta_{18} \) is a primitive 18-root of unity.

Lemma 3.3. Let \(C \) be a modular fusion category such that \(N(\dim(C)) = p^2 \), where \(p \) is a prime. If \(d_{\dim(C)} = 2 \), then \(p = 5 \), and as a modular fusion category

\[
C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \text{ or } C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad}.
\]

where \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \) such that \(\sigma(\sqrt{5}) = -\sqrt{5} \).

Proof. By using the Cauchy theorem [3] Theorem 3.9] and [25] Proposition 4.2], we know that \(\dim(C) \in \mathbb{Q}(\zeta_p^s) \) for some positive integer \(s \). If \(d_{\dim(C)} = 2 \), then \(\dim(C)/p \) is a totally positive algebraic unit in the unique quadratic subfield \(\mathbb{Q}(\sqrt{p}) \) of \(\mathbb{Q}(\zeta_p^s) \), in particular, \(p \equiv 1 \pmod{4} \) and \(N\left(\frac{\dim(C)}{p}\right) = 1 \). Let \(\sigma \in \text{Gal}(\mathbb{Q}(\sqrt{p})/\mathbb{Q}) \) be the unique non-trivial element, then \(\sigma(\epsilon_p)\epsilon_p = -1 \) since \(N_{\mathbb{Q}(\sqrt{p})}(\epsilon_p) = -1 \), where \(\epsilon_p \) is the fundamental unit in the quadratic field \(\mathbb{Q}(\sqrt{p}) \). As \(\dim(C) \) is a totally positive algebraic integer, we have \(\sigma(\dim(C)) > 0 \), so \(\frac{\dim(C)}{p} = \epsilon_p^n \) for a nonzero even integer \(n \) by the Fundamental unit theorem [1] Theorem 11.5.1]. Besides, for the Galois conjugate \(\sigma(\dim(C)) \) of \(\dim(C) \), we have \(\sigma(\dim(C)) > \frac{4\sqrt{3}}{5} \) and \(\dim(C) > \frac{4\sqrt{3}}{5} \) by [22] Proposition A.1.1]. Hence without loss of generality, we can assume \(n \geq 2 \) below, then

\[
\sigma(\dim(C)) = p\epsilon_p^{-n} > \frac{4\sqrt{3}}{5},
\]

also \(\epsilon_p^{-n} \leq \epsilon_p^{-2} \) as \(n \geq 2 \), thus

\[
pe_p^{-2} \geq pe_p^{-n} = \sigma(\dim(C)) > \frac{4\sqrt{3}}{5}.
\]
which then implies $\epsilon_p < \sqrt{\frac{5}{4\sqrt{3}}}$. Let

$$\epsilon_p = \frac{a_p + b_p \sqrt{3}}{2}$$

for positive integers a_p, b_p. If $b_p \geq 2$, then $\epsilon_p > \sqrt{\frac{5}{4\sqrt{3}}}$ if $p_b = 1$, then

$$a_p^2 - pb_p^2 = -4,$$

i.e., $a_p = \sqrt{p} - 4$, we also have $\epsilon_p > \sqrt{\frac{5}{4\sqrt{3}}}$ if $p > 5$. In fact, let $p > 5$ and

$$p \equiv 1 \pmod{4}, \epsilon_p > \sqrt{\frac{5}{4\sqrt{3}}}$$

and only if $\frac{\sqrt{5} - 1}{2} > \left(\sqrt{\frac{5}{4\sqrt{3}}} - \frac{1}{p}\right) \sqrt{p}$, which is equivalent to

$$\sqrt{\frac{5}{4\sqrt{3}} - \frac{5}{4\sqrt{3}}} \cdot \sqrt{p} > \frac{1}{p},$$

while we have inequalities

$$\sqrt{\frac{5}{4\sqrt{3}}} - \frac{5}{4\sqrt{3}} > 0.12 > \frac{1}{13} \geq \frac{1}{p} \quad \text{when} \quad p \geq 13,$$

which is a contradiction for $p \geq 13$. Then $p = 5$.

If $p = 5$ and $d_{\text{dim}(C)} = 2$, then $\mathbb{Q}(\text{dim}(C)) = \mathbb{Q}(\sqrt{5})$. Since C is not a transitive modular fusion category, $5 | \text{FPdim}(C)$ by [25, Theorem 4.4]. Meanwhile, [25, Proposition 4.2] implies $N(\text{FPdim}(C)) = 25$. Therefore, $\text{FPdim}(C) = 5\epsilon_5^n$, where n is a positive even integer. Let $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ such that $\sigma(\sqrt{5}) = -\sqrt{5}$, notice that $\text{FPdim}(C)$ and $\sigma(\text{FPdim}(C))$ are formal codegrees of C, so $\sigma(\text{FPdim}(C)) > \sqrt{\frac{5}{4\sqrt{3}}}$ by [22, Theorem 4.2.1], which implies $n = 2$ and $\text{FPdim}(C) = \frac{15 + 2\sqrt{5}}{2}$. Since $\text{rank}(C) \leq 4$ by equation (3), by using the argument of [22] Example 5.1.2(v), we obtain that $\mathcal{C} \cong \mathcal{C}(\mathfrak{sl}_2, 3)_{\text{ad}} \boxtimes \mathcal{C}(\mathfrak{sl}_2, 3)_{\text{ad}}$ or $\mathcal{C} \cong \mathcal{C}(\mathfrak{sl}_2, 5)_{\eta} \boxtimes \mathcal{C}(\mathfrak{sl}_2, 3)_{\text{ad}}$ as modular fusion category.

Remark 3.4. It follows from the proof of Lemma 3.3 and [22] Example 5.1.2] that a non-pointed modular fusion category C is Grothendieck equivalent to $\mathcal{C}(\mathfrak{sl}_2, 8)_{\eta}$ if and only if $\text{dim}(C) = 5\epsilon_5^n$, where $m = 0, \pm 2$.

In summary, Corollary 3.2 and Lemma 5.3 imply the following theorem:

Theorem 3.5. Let C be a modular fusion category with $N(\text{dim}(C)) = p^2$, where p is a prime. Then either $\text{dim}(C) = p^2$, or $p = 5, 7$. Moreover, if $\text{dim}(C) \neq p^2$, then

$$\mathcal{C} \cong \begin{cases}
\mathcal{C}(\mathfrak{sl}_2, 3)_{\text{ad}} \boxtimes \mathcal{C}(\mathfrak{sl}_2, 3)_{\text{ad}} & \text{if } p = 5; \\
\mathcal{C}(\mathfrak{sl}_2, 5)_{\eta} & \text{if } p = 7.
\end{cases}$$

as modular fusion category, where $\sigma \in \text{Gal}(\mathbb{Q}(\eta_5)/\mathbb{Q})$ and $\tau \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$.

Let C be a spherical fusion category of global dimension p, where p is a prime. Then for any formal codegree f of C, it follows from [25] Lemma 5.1 that $f = p \cdot u_f$, where u_f is an algebraic unit in the field $\mathbb{Q}(\zeta_p)^+$. By using the argument of [25] Proposition 5.2, thus $d_f := [\mathbb{Q}(f) : \mathbb{Q}]$ divides $\frac{p - 1}{2}$.

Proposition 3.6. Assume that C is not pointed. Then $2 < d_{\text{FPdim}(C)} < \frac{p - 1}{2}$ if $p > 5$.

Proof. Spherical fusion categories of integer dimensions less or equal to 5 are classified in [22] Example 5.2.2], so we assume $p > 5$ below. If $d_{\text{FPdim}(C)} = 2$, then $u_{d_{\text{FPdim}(C)}} = \epsilon_5^n$ [11, Theorem 11.5.1], where $n \neq 0$ is an even integer, as C is not pointed and $u_{d_{\text{FPdim}(C)}}$ is a totally positive algebraic unit. Thus $\text{FPdim}(C) = p\epsilon_5^n$, while $\text{FPdim}(C) > \sqrt{\frac{5}{3}}$ and $\sigma(\text{FPdim}(C)) > \sqrt{\frac{5}{3}}$ [22, Theorem 4.2.1], where $\langle \sigma \rangle = \mathbb{Q}(\epsilon_p)/\mathbb{Q}$. By using the same argument of Lemma 5.3 we see $p \leq 11$. However, spherical fusion categories of global dimensions 7, 11 are pointed [25, Theorem 5.5], it is a contradiction. Hence $d_{\text{FPdim}(C)} > 2$ if $p > 5$.

9
If \(d_{\FPdim(C)} = \frac{p-1}{2} \), then \([21]\) Corollary 2.15 says
\[
\mathbb{Q}(\FPdim(C)) = \mathbb{Q}(\zeta_p)^+ = \mathbb{Q}(\dim(X), X \in \mathcal{O}(C)).
\]
That is, each of the homomorphisms \(\dim(-) \) and \(\FPdim(-) \) has \(\frac{p-1}{2} \) Galois conjugates. Since \(\mathcal{C} \) is not a pointed fusion category, \(\rank(C) < p \) by \([22]\) Remark 4.2.3, so \(\rank(C) = p - 1 \) and the Grothendieck ring \(\Gr(C) \) is commutative. Note that
\[
\sum_{\sigma \in \Gal(\mathbb{Q}(\zeta_p)^+)/\mathbb{Q}} \frac{1}{\sigma(\dim(C))} + \frac{1}{\sigma(\FPdim(C))} = 1,
\]
by \([20]\) Proposition 2.10, then we have
\[
\sum_{\sigma \in \Gal(\mathbb{Q}(\zeta_p)^+)/\mathbb{Q}} \frac{1}{\sigma(\FPdim(C))} = \frac{p+1}{2}.
\]
While \(\frac{p+1}{2} \neq 1 \) is a totally positive algebraic unit and \(\mathbb{Q}(\zeta_p)^+ \neq \mathbb{Q}(\sqrt{5}) \), the Siegel’s trace theorem \([26]\) Theorem III shows
\[
\sum_{\sigma \in \Gal(\mathbb{Q}(\zeta_p)^+)/\mathbb{Q}} \frac{1}{\sigma(\FPdim(C))} = \text{tr}(\frac{1}{\FPdim(C)}) \geq \frac{p-1}{2} - \frac{3}{2}.
\]
Thus we obtain \(\frac{p+1}{2} > \frac{p-1}{2} + \frac{3}{2} \), which then implies \(p < 5 \), it is impossible.
\(\square \)

Remark 3.7. In fact, let \(f_X \) be an arbitrary formal codegree of \(\mathcal{C} \), where \(\mathcal{C} \) is a spherical fusion category of global dimension \(p \) with \(p \neq 5 \). If \(f_X \notin \mathbb{Z} \), then the method of the above proposition says that \(2 < [\mathbb{Q}(f_X) : \mathbb{Q}] < \frac{p-1}{2} \).

3.2 Modular fusion category \(\mathcal{C} \) with \(N(\dim(C)) = p^3 \)

Let \(\mathcal{C} \) be a modular fusion category such that \(N(\dim(C)) = p^3 \) and \(\dim(C) \notin \mathbb{Z} \). Then \(d_{\dim(C)} \leq 6 \) by \([25]\) Proposition 4.11, moreover Lemma 3.11 says \(d_{\dim(C)} = 2, 3 \). Hence, we know either 4 or 6 divides \(p - 1 \). In particular, there does not exist modular fusion categories such that \(N(\dim(C)) = p^3 \) and \(d_{\dim(C)} > 1 \) when \((p - 1, 6) = 2 \). The inequality (3) implies \(\rank(C) \leq p - 1 \), and we know there does not exist such modular fusion category when \(p = 2, 3 \) \([21]\), so we assume \(p \geq 5 \) below. Moreover,

Lemma 3.8. Let \(\mathcal{C} \) be a modular fusion category such that \(N(\dim(C)) = p^3 \) and \(d_{\dim(C)} > 1 \). Then \(\mathcal{C} \) is simple when \(p > 5 \).

Proof. Assume \(\mathcal{C} \cong \mathcal{D} \cong \mathcal{D}' \) where \(\mathcal{D} \) is a modular fusion subcategory of \(\mathcal{C} \), then the proof of Lemma 3.11 shows that either \(\mathcal{D} \) or \(\mathcal{D}' \) is transitive, as \(p \) can not divide both \(\dim(D) \) and \(\dim(D') \). Without loss of generality, assume that \(\mathcal{D} \) is braided equivalent to a Galois conjugate of \(\mathcal{C}(\mathfrak{s}_2, p^2)_{\text{ad}} \), then \(N(\dim(D)) = \frac{p^3}{2} \) and
\[
N_{\mathbb{Q}(\zeta_p)^+}(\dim(C)) = \begin{cases} \frac{3(p-1)}{2}, & \text{if } d_{\dim(C)} = 2; \\ \frac{p(p-1)}{2}, & \text{if } d_{\dim(C)} = 3. \end{cases}
\]
thus we obtain \(N_{\mathbb{Q}(\zeta_p)^+}(\dim(D)) = \frac{p(p+1)}{2} \) if \(d_{\dim(C)} = 2 \), or \(p \) if \(d_{\dim(C)} = 3 \). Obviously, in each case \(p \) can’t divide \(\dim(D') \) by \([25]\) Proposition 4.2, so \(\mathcal{D}' \) is also transitive by \([25]\) Theorem 4.4. However, there is a contradiction when \(p > 5 \). \(\square \)
Lemma 3.9. Let C be a modular fusion category such that $N(\dim(C)) = 5^2$ and $d_{\dim(C)} \neq 1$. Then $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$ or $25 \pm 10\sqrt{5}$, and $FPdim(C) = 25 + 10\sqrt{5}$ or $\frac{25 + 3\sqrt{5}}{2}$.

Proof. It is easy to see $\mathbb{Q}(\sqrt{5}) = \mathbb{Q}(\dim(C))$. Since $d_{\dim(C)} = 2$ and $N\left(\frac{\dim(C)}{5\sqrt{5}}\right) = -1$, $\dim(C) = 5\sqrt{5}e_5^n$ with an odd integer m, where $e_5 = \frac{\sqrt{5} + 1}{2}$ is the fundamental algebraic unit of $\mathbb{Q}(\sqrt{5})$. By [22] Proposition A.1.1, $\sigma(\dim(C)) > \frac{4\sqrt{5}}{5}$ and $\dim(C) > \frac{4\sqrt{5}}{5}$, where $\sigma(\sqrt{5}) = -\sqrt{5}$. Hence, if $m \leq -1$, then $\dim(C) = 5\sqrt{5}\left(\frac{\sqrt{5} - 1}{2}\right)^{-m} > \frac{4\sqrt{5}}{5}$, i.e., $\left(\frac{5\sqrt{5} - 1}{2}\right)^{-m} > \frac{4\sqrt{5} - 5}{25\sqrt{5}}$, thus $m = -1, -3$; if $m > 0$, then $\sigma(\dim(C)) = \frac{5\sqrt{5}}{5\sqrt{5}e_5^{-m}} > \frac{4\sqrt{5}}{5}$, so $m = 1, 3$. In summary, $m = \pm 1, \pm 3$.

Assume that $\dim(\mathcal{O})$ takes value in a subfield \mathcal{F} of the totally real $\mathbb{Q}(\zeta_{2n})^+$ for some positive integer n with n being minimal. If $n > 1$, then $[\mathcal{F} : \mathbb{Q}] \geq 10$ as $\mathbb{Q}(\sqrt{5}) \subseteq \mathcal{F}$, for any $\sigma \in \text{Gal}(\mathcal{F}/\mathbb{Q})$, there exists a unique simple object $\sigma(I)$ such that $\sigma(\dim(C)) = \frac{\dim(C)}{\dim(I)^2}$, while $\sigma(\dim(C)) \in \left\{\frac{25 + 5\sqrt{5}}{2}\right\}$ or $\left\{25 \pm 10\sqrt{5}\right\}$, then C has at least 5 formal codegrees equal to $\frac{25 + 5\sqrt{5}}{2}$ and $\frac{25 - 5\sqrt{5}}{2}$ if $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$; however $5(1/\frac{25 + 5\sqrt{5}}{2}) + 1/\frac{25 - 5\sqrt{5}}{2} = 1$, so these are all formal codegrees of C, it is a contradiction as $n = 1$ in this case; if $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$, then $5(1/(25 + 10\sqrt{5}) + 1/(25 - 10\sqrt{5})) = 2$, impossible. Thus, $n = 1$. Since $\frac{\dim(C)}{\dim(I)^2}$ is a totally positive algebraic integer that is less than or equal to 1, we see $N(FPdim(C)) = 25, 125$ by Lemma [5] and [25] Proposition 4.2.

If $N(FPdim(C)) = 25$, then $FPdim(C) = 5\epsilon_5^2 = \frac{25 + 5\sqrt{5}}{2}$ and C is braided equivalent to a Deligne product of two Fibonacci fusion categories by [22] Example 5.1.2; however, in this case $N(\dim(C)) \neq 125$. Therefore, $N(FPdim(C)) = 125$, then $FPdim(C) = \frac{25 + 5\sqrt{5}}{2}$ or $25 + 10\sqrt{5}$, as $FPdim(C)$ is the largest among the set of formal codegrees of C.

Proposition 3.10. Let C be a modular fusion category such that $N(\dim(C)) = 5^2$ and $d_{\dim(C)} \neq 1$. Then as modular fusion category,

$$C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \text{ or } C \cong C(Z_5, \eta) \boxtimes C(sl_2, 3)_{ad},$$

where $\sigma_i \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ for all $1 \leq i \leq 4$.

Proof. By Lemma [5] we know $FPdim(C) = 25 + 10\sqrt{5}$ or $\frac{25 + 3\sqrt{5}}{2}$.

If $FPdim(C) = \frac{25 + 5\sqrt{5}}{2}$, then $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$, so C is conjugated to a quasi-unitary fusion category. Notice that C contains a self-dual simple object $X = \hat{\sigma}(I)$ of FP-dimension $\frac{1 + \sqrt{5}}{2}$. $X \otimes X = I \oplus Z$ where Z is also a self-dual simple object of FP-dimension $\frac{1 + \sqrt{5}}{2}$. If $Z = X$, then C contains $C(sl_2, 3)_{ad}$ as a fusion subcategory, hence $C \cong C(Z_5, \eta) \boxtimes C(sl_2, 3)_{ad}$; if not, $X \otimes Z = X \oplus g$, where g is a non-trivial invertible object, so C_{fp} is non-trivial. While $FPdim(C_{fp})$ divides $FPdim(C)$ by [11] Proposition 8.15, which implies $FPdim(C_{fp}) = 5$ and $C_{fp} \cong C(Z_5, \eta)$. By [7] Theorem 3.13, we have

$$C \cong C(Z_5, \eta) \boxtimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = \frac{25 + 5\sqrt{5}}{2},$$

$$C \cong C(Z_5, \eta) \boxtimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = \frac{25 + 3\sqrt{5}}{2}.$$
If $\text{FPdim}(C) = 25 + 10\sqrt{5}$, then $C_{pt} = \text{Vec}$. In fact, if $C_{pt} \neq \text{Vec}$, then $C_{pt} \cong C(\mathbb{Z}_5, \eta)$ and $C \cong C(\mathbb{Z}_5, \eta) \boxtimes D$ with $\dim(D) = 5 + 2\sqrt{5}$. However, note that $5 - 2\sqrt{5}$ is a formal codegree of D, which contradicts to \[\begin{array}{l}
\text{Theorem 1.1.2}\end{array}\]. If $\dim(C) = 25 + 10\sqrt{5}$, by using the same argument as above, we know C contains a Galois conjugate of $C(sl_2, 3)_{ad}$ as a modular fusion subcategory. Consequently, $C \cong C(sl_2, 3)_{ad} \boxtimes D$ with D being a modular fusion subcategory and $\sqrt{N(\dim(D))} = 5^2$, where $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$, and Lemma \[\begin{array}{l}
3.3\end{array}\] implies
\[
C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = 25 + 10\sqrt{5},
C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \otimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = 25 - 10\sqrt{5}.
\]

Notice that if $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$, then $\dim(C') = \frac{25 + 5\sqrt{5}}{2}$, hence it suffices to consider when $\dim(C) = \frac{25 + 5\sqrt{5}}{2}$ below. We know that C contains a self-dual simple object $X = \hat{s}(I)$ with $\dim(X)^2 = \frac{25 + 5\sqrt{5}}{2}$, simple objects Y and $Z = s(Y)$ such that $\dim(Y)^2 = \frac{\dim(C)}{\text{FPdim}(C)} = \frac{25 + 5\sqrt{5}}{2}$ and $\dim(Z)^2 = \frac{\dim(C)}{\text{FPdim}(C)} = \frac{25 + 5\sqrt{5}}{2}$. Let f be another formal codegree of C, then $N(f) = 25$ or 125. If $N(f) = 25$, then f is a root of $x^2 - ax + 25 = 0$ with $a^2 \geq 100$, we obtain $f = 5$ by equation \[\begin{array}{l}
1\end{array}\], thus C contains a simple object V with $\dim(V)^2 = \frac{25 + 5\sqrt{5}}{2}$, which is impossible as $\dim(V) \notin \mathbb{Q}(\zeta_5)$. Thus, $N(f) = 125$ for all other formal codegrees of C, a direct computation shows $\mathcal{O}(C) = \{I, X, Y, Z, V_1, V_2, W_1, W_2\}$ with $\dim(V_1)^2 = \dim(V_2)^2 = 1$ and $\dim(W_1)^2 = \dim(W_2)^2 = \frac{25 + 5\sqrt{5}}{2}$.

By decomposing $\text{FPdim}(C)$ into the sum of squares of Frobenius-Perron dimensions of eight simple objects over field $\mathbb{Q}(\sqrt{5})$, we find that C always contains a simple object of Frobenius-Perron dimension $\frac{25 + 5\sqrt{5}}{2}$, therefore, $C \cong C(sl_2, 3)_{ad} \boxtimes D$ as modular fusion subcategory by \[\begin{array}{l}
7\end{array}\] Theorem 3.13]. Thus, again by Lemma \[\begin{array}{l}
3.3\end{array}\]
\[
C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = \frac{25 + 5\sqrt{5}}{2},
C \cong C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \otimes C(sl_2, 3)_{ad} \text{ if } \dim(C) = \frac{25 - 5\sqrt{5}}{2},
\]
$\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ such that $\sigma(\sqrt{5}) = -\sqrt{5}$, this completes the proof of the proposition.

Let C be a modular fusion category. Let $p \geq 5$, and let ρ_1 be a $\frac{p+1}{2}$-dimensional irreducible representation of $\text{SL}(2, \mathbb{Z})$ with level equal to p, it is proved in \[\begin{array}{l}
17\end{array}\] Proposition 3.22] that if the associated modular representation ρ_C is equivalent to $m\rho_0 \oplus \rho_1$, then $m = 1$.

We strengthen the above conclusion in the following proposition and theorem.

Proposition 3.11. Let $p \geq 7$ be a prime, and let C be a modular fusion category such that $\rho_C \cong \rho_0 \oplus \rho_1$, where ρ_1 is the $\frac{p+1}{2}$-dimensional irreducible representation of $\text{SL}(2, \mathbb{Z})$ of level p. Then C is a Galois conjugate of a pseudo-unitary fusion category.

Proof. Let $\mathcal{O}(C) = \{X_0, X_1, \cdots, X_d\}$ and $S = (S_{ij})$ be the un-normalized S-matrix of C. Let $d := \frac{p+1}{2}, \ p^* = \left(\frac{-1}{p}\right) p$ and $\beta := \left(\frac{a}{p}\right) / \sqrt{p}$, where a is an integer coprime to p. By \[\begin{array}{l}
17\end{array}\] Proposition 3.22] there exists an real orthogonal matrix $U = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ such that
\[
\rho_C(s) = \frac{1}{\sqrt{\dim(C)}} S = U \begin{pmatrix} 1 & 0 \\ 0 & \rho_1(s) \end{pmatrix} U^T, \rho_C(t) = \text{diag}(1, \zeta_p^a, \cdots, \zeta_p^{(d-1)a}),
\]
Corollary 3.5.8. However, in this case
Notice that
\[\rho_1(g) = \beta \begin{pmatrix}
1 & \sqrt{2} & \cdots & \sqrt{2} \\
\sqrt{2} & 2 \cos \left(\frac{4\pi a jk}{p} \right) & \cdots & \sqrt{2} \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt{2} & \sqrt{2} & \cdots & \sqrt{2}
\end{pmatrix}, \]
for \(1 \leq j, k, l \leq d - 1\), \(A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\),
\[A_2 = \text{diag}(\lambda_1, \ldots, \lambda_{d-1}), \] where \(\lambda_i \in \{\pm 1\}\). Moreover, \(\sqrt{2}a_{12}, \sqrt{2}a_{22} \in \mathbb{Q} \), \(0 < a_{12}^2 < 1\) and \(0 < a_{22}^2 < 1\).

Up to isomorphism, there are exactly two \(\frac{p+1}{4}\)-dimensional irreducible representations of level \(p\) [8, 19] depending on the value \(\left(\frac{2}{p} \right)\). We assume \(a = 1\) below, the other case is the same.

A direct computation shows
\[\rho_C(g) = \begin{pmatrix}
1 + a_{12}^2(\beta - 1) & a_{12}a_{22}(\beta - 1) & \sqrt{2}\beta a_{12} \lambda_1 & \cdots & \sqrt{2}\beta a_{12} \lambda_{d-1} \\
\sqrt{2} \beta a_{12} \lambda_1 & 1 + a_{22}^2(\beta - 1) & \sqrt{2} \beta a_{22} \lambda_1 & \cdots & \sqrt{2} \beta a_{22} \lambda_{d-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sqrt{2} \beta a_{12} \lambda_{d-1} & \sqrt{2} \beta a_{22} \lambda_{d-1} & \cdots & 2 \beta \lambda_j \lambda_k \cos \left(\frac{4\pi a jk}{p} \right)
\end{pmatrix}, \]
for \(1 \leq j, k \leq d - 1\). We show that either \(X_0\) or \(X_1\) don’t represent the unit object \(I\).

On the contrary, without loss of generality, let \(X_0 = I\), then \(\frac{1}{\sqrt{\dim(C)}} = |1 + (\beta - 1) a_{12}^2|\).
Notice that
\[\beta = \left(\frac{1}{p} \right) / \sqrt{p} = \left\{ \begin{array}{ll}
\frac{1}{p}, & p \equiv 1 \mod 4; \\
\frac{-1}{p}, & p \equiv 3 \mod 4.
\end{array} \right. \]
then \(|1 + (\beta - 1) a_{12}^2|^2 = \left\{ \begin{array}{ll}
1 - 2a_{12}^2 + \frac{p+1}{p} a_{12}^4 + 2(a_{12}^2 - a_{12}^4) \sqrt{p}, & p \equiv 1 \mod 4; \\
1 - 2a_{12}^2 + \frac{p+1}{p} a_{12}^4, & p \equiv 3 \mod 4.
\end{array} \right. \]
and
\[|\beta - 1|^2 = \left\{ \begin{array}{ll}
\frac{p+1-2\sqrt{p}}{p}, & p \equiv 1 \mod 4; \\
\frac{p+1}{p}, & p \equiv 3 \mod 4.
\end{array} \right. \]
When \(p \equiv 3 \mod 4\), the set of formal codegrees of \(C\) is
\[\frac{\dim(C)}{(\sqrt{\dim(C)}|S_{1,1}|)^2} \in \left\{ \dim(C), \frac{1}{a_{12}^2 a_{22}^2 |\beta - 1|^2}, \frac{p}{\sqrt{2} a_{12} \lambda_j} \right\}, 1 \leq j \leq d, \]
so the formal codegrees of \(C\) are all rational, which implies they are integers. In particular, \(\text{FPdim}(C) = p^m\) by Cauchy’s theorem [3, Theorem 3.9], hence \(C\) must be integral as \(p\) is odd [10 Corollary 3.5.8]. However, in this case \(C^p\) must be non-trivial, so \(\text{rank}(C) \geq p\), it is impossible.

When \(p \equiv 1 \mod 4\), \(\frac{1}{\sqrt{\dim(C)}|S_{1,1}|^2} = 1 - 2a_{12}^2 + \frac{p+1}{p} a_{12}^4 + 2(a_{12}^2 - a_{12}^4) \sqrt{p} \notin \mathbb{Z}\), again the Cauchy’s theorem [3, Theorem 3.9] implies that \(N(\dim(C)) = p^m\) for \(m \geq 2\). Let \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})\) be a generator, then \(\sigma\) has no invariant simple objects [17, Proposition 3.22]. Hence
\[\sigma(\dim(C)) = \frac{\dim(C)}{\dim(X_2)^2} = \frac{1}{a_{12}^2 a_{22}^2 |\beta - 1|^2} = \frac{p}{a_{12}^2 a_{22}^2} \left(\frac{p+1+2\sqrt{p}}{(p+1)^2} \right). \]
Therefore, \(N(\dim(C)) = \dim(C) \sigma(\dim(C)) = \frac{p^2}{(p-1)^2 a_{12}^2 a_{22}^2}\), that is, \(a_{12}^2 a_{22}^2 (p-1)^2 = p^m\) with \(2 \mid m\) and \(m \geq 0\), since \(a_{12}^2 a_{22}^2 \in \mathbb{Q}\). Assume \(m = 2l\), so \(a_{12}^2 a_{22}^2 = \frac{1}{p(p-1)^2}; \) meanwhile
\[
a_1^2 + a_2^2 = 1, \text{ so } a_1^2 \text{ and } a_2^2 \text{ are roots of equation } x^2 - x + \frac{1}{p^3(p-1)} = 0, \text{ consequently}
\]
\[
a_{12}^2, a_{22}^2 = \frac{\sqrt{(p-1)p^l} \pm \sqrt{(p-1)p^l - 4}}{2\sqrt{(p-1)p^l}}.
\]
Since \(p \geq 7 \) and \(p \equiv 1 \mod 4 \), \((p-1)p^l - 4, (p-1)p^l) = 4\); as \(a_{12}^2, a_{22}^2 \) are rational, we have \((p-1)p^l - 4 = q_1^2 \) and \((p-1)p^l = q_2^2 \) for nonnegative integers \(q_1, q_2 \). Note that \((q_2 - q_1)(q_2 + q_1) = 4\), then \(l = 0 \) and \(p = 5 \), it is a contradiction.

Therefore, the unit object \(I \in \{X_2, \ldots, X_d\} \). Meanwhile, the Galois symmetry \([6] \text{ Theorem II} \) implies that the unit object \(I \) has exactly \(\frac{p-1}{2} \) Galois conjugates, so \(\mathcal{O}_I(C) = \{X_2, \ldots, X_d\} \).

If the simple object \(X_1 \) or \(X_2 \) determines the homomorphism \(\text{FPdim}(-) \), then \(\text{FPdim}(C) = \frac{\dim(C)}{\dim(X_1)} \text{ or } \text{FPdim}(C) = \frac{\dim(C)}{\dim(X_2)} \). Note that \(\text{FPdim}(C) \in \mathbb{Q} \) in both cases, again \(C \) must be an integral fusion category, so \(\text{rank}(C) \geq p \), which is absurd. Therefore, the simple object which determines the homomorphism \(\text{FPdim}(-) \) belongs to \(\mathcal{O}_I(C) \), so \(C \) is Galois conjugate to a pseudo-unitary fusion category.

\[\Box\]

Theorem 3.12. Let \(p \geq 5 \) be a prime and \(C \) a modular fusion category such that \(\rho_C \cong \rho_0 \oplus \rho_1 \), where \(\rho_1 \) is the \(d \)-dimensional irreducible representation of \(SL(2, \mathbb{Z}) \) of level \(p \). Then \(C \) is Grothendieck equivalent to \(C(sl_2, (2p-1))_1^0 \). Moreover, \(\dim(C) = p \cdot \text{u} \) where \(\text{u} \) is a Galois conjugate of algebraic unit \(4 \cos^2(\frac{d\pi}{p}) \).

Proof. By Proposition 3.11 we know that \(C \) is a Galois conjugate of a pseudo-unitary fusion category if \(p \geq 7 \). Without loss of generality, we assume that \(C \) is pseudo-unitary. As we have proved in Proposition 3.11 that \(X_0, X_1 \not\in \mathcal{O}_I(C) \), and \(\rho(s) = \frac{1}{\sqrt{\dim(C)}} S \).

\[
\dim(C) = \frac{1}{\vert S_{X_0, X_0} \vert^2} \text{ for some } 2 \leq k \leq d.
\]
Meanwhile, \(\text{FPdim}(C) \) is the largest among its Galois conjugates, we see \(\dim(C) = \frac{p}{4 \cos^2(\frac{d\pi}{p})} \).

In addition, if \(p = 5 \), then the argument of Proposition 3.11 also shows that \(\dim(C) = 5 \epsilon_2^2 \) if the unit object \(I \in \{X_0, X_1\} \) and that \(C \) is a Galois conjugate of a pseudo-unitary fusion category if \(I \in \{X_2, X_3\} \). Hence, in both cases, we see that \(C \) is braided tensor equivalent to a Galois conjugate of \(C(sl_2, 8)_1^0 \) by Lemma 3.3.

We assume \(p \geq 7 \) below, then \(C \) is a simple modular fusion category. Indeed, if \(C \) is not simple, then fusion subcategories of \(C \) are modular by [27] Theorem 3.1. Let \(D \) be an arbitrary non-trivial modular fusion subcategory of \(C \), then \(C \cong D \boxtimes D' \) by [17] Theorem 3.13. As \(p \) can’t divide both \(\dim(D) \) and \(\dim(D') \), therefore \(D \) and \(D' \) are transitive modular fusion categories. By [16], we know \(D \cong C(sl_2, p - 2)_{\sigma_1}^{\sigma_2} \) and \(D' \cong C(sl_2, p - 2)_{\sigma_2}^{\sigma_1} \) for \(\sigma_1, \sigma_2 \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \).

However, \(\dim(C(sl_2, p - 2)_{\sigma_1}) = \frac{6}{\sqrt{p^3(p-1)}} \) and
\[
\dim(C) = \dim(D) \text{ dim}(D') = \sigma_1(\dim(C(sl_2, p - 2)_{\sigma_1})) \sigma_1(\dim(C(sl_2, p - 2)_{\sigma_1})),
\]
so \(\frac{\nu_{ad}}{p^{\nu_{ad}}} = N(\dim(C)) = N(\dim(D)) N(\dim(D')) = p^{\nu_{ad} - 3} \), i.e., \(p = 5 \), it is impossible.

A direct computation shows that the set of formal codimensions of \(C \) is
\[
\left\{ \frac{\dim(C)}{\sqrt{\dim(C) S_{X_0, X_0}^2}}, \frac{\dim(C)}{\sqrt{\dim(C) S_{X_0, X_1}^2}} \sigma(\dim(C)), \forall \sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \right\},
\]

14
while norms of \(\frac{\dim(C)}{(\sqrt{\dim(C)})} \) and \(\frac{\dim(C)}{(\sqrt{\dim(C)})} \) divide that of \(\dim(C) \), which is power of \(p \), consequently \((\sqrt{2a_{12}})^2 = \frac{1}{p^{m_1}} \) and \((\sqrt{2a_{22}})^2 = \frac{1}{p^{m_2}} \) for nonnegative integers \(m_1, m_2 \), while \((\sqrt{2a_{12}})^2 + (\sqrt{2a_{22}})^2 = 2 \), so \(a_{12} = \frac{m_1}{2} \) and \(a_{22} = \frac{m_2}{2} \). Hence, we obtain that

\[
 \rho_C(s) = \begin{pmatrix}
 \frac{\beta_{1\lambda_1}}{2} & \frac{\beta_{1\lambda_{d-1}}}{2} & \cdots & \frac{\beta_1\lambda_1}{2} & \cdots & \beta_{1\lambda_{d-1}} \\
 \beta_{1\lambda_1} & \beta_{2\lambda_1} & \cdots & \beta_{1\lambda_1} & \cdots & \beta_{2\lambda_{d-1}} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 \frac{\beta_{1\lambda_{d-1}}}{2} & \frac{\beta_{2\lambda_{d-1}}}{2} & \cdots & \beta_{2\lambda_1} & \cdots & \beta_{2\lambda_{d-1}} \\
 \end{pmatrix}, 1 \leq j, k \leq d - 1.
\]

We choose \(-a = \frac{1}{2} \mod p \), when \(-a = j = k = \frac{1}{2} \),

\[
 |2\beta_{l_j}\lambda_k \cos\left(\frac{4\pi a_k}{p}\right)|^2 = \frac{4 \cos^2\left(\frac{(d-1)x}{p}\right)}{\dim(C)},
\]

therefore \(X_d \) represents the isomorphism class of the unit object.

Consequently, the set of the Frobenius-Perron dimensions of simple objects of \(C \) is:

\[
 \left\{ \frac{\mu_1\lambda_{d-1}}{2 \cos\left(\frac{(d-1)x}{p}\right)} - \frac{\mu_2\lambda_{d-1}}{2 \cos\left(\frac{(d-1)x}{p}\right)} \right\}, 1 \leq j \leq d - 1,
\]

since the Frobenius-Perron dimensions of simple objects are positive, \(\mu_1 = \mu_2 = \lambda_j \) for all \(1 \leq j \leq d - 1 \). By comparing the Frobenius-Perron dimensions of simple objects of \(C \) and \(C(s_{12}, 2(p - 1))_{\lambda} \) (see Example 2.2), let \(\phi : \text{Gr}(C(s_{12}, 2(p - 1))_{\lambda}) \rightarrow \text{Gr}(C) \) be a morphism such that \(\phi(V_{p-1}^\pm) = X_0, X_1 \) and \(\phi(V_{2(d-j)}^\pm) = X_j, 1 \leq j \leq d \), respectively. Notice that \(C \) and \(\text{Gr}(C) \) share the same modular data and \(\phi \) preserves the Frobenius-Perron dimensions of simple objects, hence \(\phi \) is an isomorphism of fusion ring by the Verlinde formula.

\[\Box\]

Corollary 3.13. Let \(C \) be a modular fusion category such that \(\dim(C) = p \cdot u \), where \(u \neq 1 \) and \(u \in \mathbb{Q}(\zeta_n)^+ \) is a totally positive algebraic unit. Then \(C \) is Grothendieck equivalent to \(C(s_{12}, 2(p - 1))_{\lambda} \).

Proof. Let \(D := \mathbb{E}_{\sigma \in \text{Gal}(\mathbb{Q}(u)/\mathbb{Q})}[^\sigma C] \). Since \(C \) is not pointed, the inequality \(\boxed{1} \) and \(\boxed{2} \) Remark 4.2.3 imply \(\text{rank}(C) \leq p - 1 \), so we can assume \(p \geq 5 \). If \(\mathbb{Q}(u) : \mathbb{Q} = 2 \), then \(N(\dim(C)) = p^2 \), \(p = 5 \) and \(\dim(C) = \frac{5^{[3x_2+5]}_2}{2} \) by Lemma \(\boxed{4} \) Assume \(\mathbb{Q}(u) : \mathbb{Q} > 2 \) and \(p > 5 \) below. By Remark \(\boxed{2} \) we know \(\text{ord}(t_{\mathbb{G}}) = p \) and at least one of the Galois orbits of simple objects of \(C \) contains \(\frac{u-1}{2} \) simple objects. Meanwhile \(C \) can not be a transitive modular fusion category \(\boxed{16} \) Theorem 1, therefore, \(\text{rank}(C) > \frac{p-1}{2} \).

Assume \(\rho_C \) is the modular representation associated to \(C \), then \(\rho_C \) is a direct sum of level \(p \) irreducible representations of \(\text{SL}(2, \mathbb{Z}) \). However, \(\rho_C \) can’t be decomposed as direct sum of irreducible representation of disjoint t-spectrum \(\boxed{4} \) Lemma 3.18\] and \(\rho_C \) also can’t be decomposed into direct sum of one-dimensional representations \(\boxed{9} \) Lemma 4. Therefore, by comparing the dimensions of level \(p \) irreducible representations of \(\text{SL}(2, \mathbb{Z}) \), we obtain that either \(\rho_C \) is an irreducible representation of dimension \(p - 1 \) or \(\frac{p+1}{2}, \) or \(\rho \) is a direct sum of two irreducible representations.
of dimension $\frac{p-1}{2}$, or ρ is a direct sum of one-dimensional representations and an irreducible representation of dimension $\frac{p+1}{2}$.

If $\rho_C \cong \rho_1 \oplus \rho_2$ with $\dim(\rho_1) = \dim(\rho_2) = \frac{p-1}{2}$, since the t-spectrums of ρ_1 and ρ_2 intersect non-trivially [4 Lemma 3.18], $\rho_1 = \rho_2$, which is impossible by [23 Lemma 5.2.2]. And the irreducible representations of dimension $\frac{p+1}{2}$ can’t be realized as representations of modular fusion categories [8]. Therefore, ρ_C is an irreducible representation of dimension $p - 1$ or $\rho_C = \rho_0 \oplus \rho_1$ by [17 Lemma 3.20, Proposition 3.22], where ρ_0 is the trivial representation and ρ_1 is the irreducible representation of dimension $\frac{p+1}{2}$.

If ρ_C is irreducible, then $\text{rank}(C) = p - 1$. In particular, the Galois symmetry [6 Theorem II] implies that $\mathcal{O}(C)$ splits into two orbits and each Galois orbit have exactly $\frac{p-1}{2}$ simple objects. Notice that all formal codegrees of C are divided by p. Indeed, if not, then C is a transitive modular fusion category [25 Theorem 4.4] and

$$C \cong C(sl_2, p - 2)^u$$

for some $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$, however, $\text{rank}(C(sl_2, p - 2)) = \frac{p-1}{2}$, it is a contradiction. Meanwhile, $p^2 \nmid f$ for any formal codegree f of C, otherwise, $p^2 \mid \dim(C)$, which implies $p \mid u$, it is impossible by [25 Proposition 4.2]. Thus, for any formal codegree f of C, we have $f = p \cdot u_f$, where $u_f \in \mathbb{Q}(\dim(X), X \in \mathcal{O}(C))$ is a totally positive algebraic integer as $f \mid \dim(C)$. Since $f = \frac{\dim(C)}{\dim(X)}$, for some simple object $X \in \mathcal{O}(C)$, we see $u_X := u_f = \frac{u}{\dim(X)}$.

By definition,

$$p \cdot u = \dim(C) = \sum_{X \in \mathcal{O}(C)} \dim(X)^2 = \sum_{X \in \mathcal{O}(C)} \frac{u}{u_X},$$

and for any $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)^+/\mathbb{Q})$, $\sigma \left(\frac{\dim(C)}{\dim(X)^2} = \frac{\dim(C)}{\dim(\sigma(X))^2} \right)$, therefore,

$$\dim(\sigma(X))^2 = \frac{u \sigma(\dim(X))^2}{\sigma(u)} = \frac{u}{\sigma(u_X)}$$

and $\sigma(u_X) = \frac{u}{\dim(\sigma(X))^2} = u_{\sigma}(X)$.

Thus, we have the following equation

$$\sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)^+/\mathbb{Q})} \dim(\sigma(X))^2 = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)^+/\mathbb{Q})} \frac{u}{\sigma(u_X)}.$$

Hence, let $\mathcal{O}(C) = \Gamma_1 \cup \Gamma_2$, where $\Gamma_1 := \{ \sigma(X_i) | \sigma \in \text{Gal}(\mathbb{Q}(u_{X_i})/\mathbb{Q}) \}$, then

$$p = \sum_{i=1}^{2} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(u_{X_i})/\mathbb{Q})} \frac{1}{\sigma(u_{X_i})}.$$

Since $u_f = u \neq 1$, the Siegel’ trace theorem [26] says that

$$\sum_{\sigma \in \text{Gal}(\mathbb{Q}(u_{X_i})/\mathbb{Q})} \frac{1}{\sigma(u_{X_i})} > 1.79 \cdot \frac{p - 1}{2},$$

except for roots of the equation $x^3 - 5x^2 + 6x - 1 = 0$ when $p = 7$ [13 Theorem 1.1]. If $u_{X_1} = 1$, then $\sum_{\sigma \in \text{Gal}(\mathbb{Q}(u_{X_1})/\mathbb{Q})} \frac{1}{\sigma(u_{X_1})} = \frac{p+1}{2}$. Hence,

$$p \geq \frac{5}{3} \cdot \frac{p - 1}{2} + \frac{p - 1}{2},$$

16
that is, \(p \leq 3 \), it is impossible.

When \(pC = \rho_0 \oplus \rho_1 \), we deduce from Theorem 4.12 that \(C \) is Grothendieck equivalent to the modular fusion category \(\mathcal{C}(\mathfrak{sl}_2, (2p - 1))_\Lambda \). This finishes the proof of the corollary.

Corollary 3.14. Let \(C \) be a modular fusion category such that \(N(\dim(C)) = p^3 \) and \(d_{\dim(C)} = 3 \). Then \(p = 7 \) and \(C \) is Grothendieck equivalent to \(\mathcal{C}(\mathfrak{sl}_2, 12)_\Lambda \).

4 Modular fusion category of global dimension \(p^2 \)

In this section, we always assume \(p \) is a prime and we study the structure of modular fusion categories \(C \) of global dimension \(p^2 \).

Proposition 4.1. Let \(C \) be a pre-modular fusion category of global dimension \(p^2 \). If \(C' \not\cong \text{Vec} \), then either \(C \) is pointed or \(C \cong \mathcal{C}(\mathfrak{sl}_2, 3)_{ad} \boxtimes \mathcal{C}(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes \text{Rep}(\mathbb{Z}_3) \), where \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q}) \) such that \(\sigma(\zeta_3) = \zeta_3^2 \).

Proof. Since \(C' \not\cong \text{Vec} \), \(\dim(C') = p, p^2 \) by [22] Theorem 3.1. If \(\dim(C') = p^2 \), then \(C \) is symmetric, so it is pointed [11] Proposition 8.32. If \(\dim(C') = p \), then \(C' = \text{Rep}(\mathbb{Z}_p) \) is Tannakian, or \(C' \equiv \text{Vec} \) and \(p = 2 \). When \(p = 2 \), it is obviously \(C \) is pointed [22] Example 5.1.2. If \(C' = \text{Rep}(\mathbb{Z}_p) \), then \(C_{zp} \) is a modular fusion category of dimension \(p \), hence \(C_{zp} \) is pointed or \(C_{zp} \cong C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \) by [25] Theorem 5.12. Therefore, \(C \) is a pointed fusion category or \(C \cong C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes \text{Rep}(\mathbb{Z}_3) \).

Proposition 4.2. Let \(D \) be a non-trivial fusion subcategory of \(C \). If \(\dim(D) \in \mathbb{Z} \), then either \(C \) is pointed, or \(C \cong C(\mathfrak{sl}_2, 2) \), or \(C \cong C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \boxtimes \text{Vec}, \text{ad} \), or \(C \cong C(\mathbb{Z}_p, \eta) \boxtimes C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \), where \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q}) \) such that \(\sigma(\zeta_3) = \zeta_3^2 \).

Proof. Since \(D \) is a non-trivial fusion subcategory of \(C \) with integral global dimension, by [22] Theorem 3.1 \(\dim(D) = p \). Then we consider the global dimension of the Miyler center \(D' \) of \(D \). [22] Theorem 3.1 again implies that either \(D = D' \) is symmetric or \(D \) is a modular fusion category. If \(D \) is modular, then \(D \cong C(\mathfrak{sl}_2, 3)_{ad} \boxtimes C(\mathfrak{sl}_2, 3)_{ad}'' \) or \(D \) is pointed by [25] Theorem 5.12. Notice that \(C \cong D \boxtimes D' \) as modular fusion category [7] Theorem 3.13, so \(D' \) is also a modular fusion category of dimension \(p^2 \), thus the structure of \(D \) is known. If \(D \) is symmetric, then either it is a Tannakian fusion category or \(D \equiv \text{Vec} \). In the first case, \(D \) must be a Lagrange fusion category as \(D \subseteq D' \) and \(\dim(D) \dim(D'_C) = p^2 \) [7] Theorem 3.10], which implies \(C \cong Z(\text{Vec}_{Zp}) \) by [7] Theorem 4.64], where \(\omega \in Z^1(\mathbb{Z}_p, C^*) \) is a 3-cocycle; in the second case \(\dim(C) = 4 \), then \(C \cong C(\mathfrak{sl}_2, 2) \) is an Ising category or \(C \) is pointed [22] Example 5.1.2.

Let \(C \) be a modular fusion category of global dimension \(p^2 \), then \(\text{ord}(T_C) \) divides \(p^5 \) [10] Corollary 8.18.2]. Since the structures of modular fusion categories of global dimension 4 and 9 are known [22][27], we always assume \(p \geq 5 \) below. Let \(\text{ord}(t_C) = p^t \) where \(t \) is the normalized \(T \)-matrix of \(C \), since \(\text{rank}(C) \leq p^2 - 1 \) [22] Lemma 4.2.2], \(n \leq 2 \) by Remark [22]. In particular, the number of simple objects in each Galois orbit is less than or equal to \(|\text{Gal}(\mathbb{Q}(\zeta_{p^2})/\mathbb{Q})|^2 | = p^2 - 2 \).

Assume that \(C \) does not contain a non-trivial fusion subcategory of integer global dimension below, and let \(D \) be a non-trivial modular fusion subcategory of \(C \). Note that we can assume that
\mathcal{D} to be a simple modular fusion category and that \mathcal{C} can be decomposed as Deligne product of simple modular fusion subcategories. Indeed, since \mathcal{D}' is an integral fusion subcategory, $\mathcal{D}' = \text{Vec}$, hence fusion subcategories of \mathcal{C} are modular. Assume $\dim(\mathcal{D})$ be the largest among its Galois conjugates, otherwise we can replace \mathcal{D} with one of its Galois conjugates \mathcal{D}''.

Theorem 4.3. Let \mathcal{C} be a non-simple modular fusion category of dimension p^2, where $p > 3$. If \mathcal{C} does not contain a non-trivial fusion subcategory with integer global dimension, then \mathcal{C} contains a modular fusion subcategory that is braided equivalent to a Galois conjugate of $\mathcal{C}(sl_2, p-2)_{\text{ad}}$.

Proof. Let $\mathcal{D} \subseteq \mathcal{C}$ be a simple modular fusion subcategory with $\dim(\mathcal{D}) \notin \mathbb{Z}$, then $\mathcal{C} \cong \mathcal{D} \boxtimes \mathcal{D}'$ and \mathcal{D}' is also a modular fusion category by [17] Theorem 3.13. By Lemma 4.4 it suffices to show that \mathcal{C} contains a non-trivial fusion subcategory whose global dimension is not divided by p in sense of algebraic integers. If $p \nmid \dim(\mathcal{D})$, then we are done; assume $\dim(\mathcal{D}) = pa \mathbb{Z}$ for some totally positive algebraic integer $a_\mathbb{D}$ below. If \mathcal{D}' is not simple, let $\mathcal{D}' \cong \mathcal{A} \boxtimes \mathcal{B}$, where \mathcal{A}, \mathcal{B} are non-trivial modular fusion subcategories, obviously p can’t divide both $\dim(A)$ and $\dim(B)$, thus the argument of Lemma 4.4 says that either \mathcal{A} or \mathcal{B} is a transitive modular fusion category, so \mathcal{C} contains a Galois conjugate of $\mathcal{C}(sl_2, p-2)_{\text{ad}}$ [16] Theorem 1.1].

Assume that \mathcal{D}' is a simple modular fusion category such that $\dim(\mathcal{D}'^\prime) = pb_\mathcal{D}$, $a_\mathcal{D}$ and $b_\mathcal{D}$ are totally positive algebraic units with $1 = a_\mathcal{D}b_\mathcal{D}$. Notice that $a_\mathcal{D} \in \mathbb{Q}((\zeta_5))^+$, if not, each Galois orbit of the unit objects $I_\mathcal{D}$ and $I_{\mathcal{D}'}$ has at least p simple objects, then $\text{rank}(\mathcal{C}) \geq p^2$, it is impossible. By Corollary 8.13 \mathcal{D} and \mathcal{D}' are Grothendieck equivalent to modular fusion category $\mathcal{C}(sl_2, 2(p-1))_{\text{ad}}$. Up to Galois conjugates, we can assume $\dim(\mathcal{D}) = \frac{p}{4 \cos^2(\frac{\pi}{p})}$ and $\dim(\mathcal{D}'^\prime) = 4p \cos^2(\frac{\pi}{p})$ with $d = \frac{p+1}{2}$.

If there exists a $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ such that

$$\sigma\left(\frac{p}{4 \cos^2(\frac{\pi}{p})}\right) = \dim(\mathcal{D}'^\prime) = 4p \cos^2(\frac{d\pi}{p}),$$

then $p = 5$; in addition, when $p = 5$ we have a braided tensor equivalence

$$\mathcal{D} \cong \mathcal{C}(sl_2, 3)_{\text{ad}} \boxtimes \mathcal{C}(sl_2, 3)_{\text{ad}} \text{ or } \mathcal{D} \cong \mathcal{C}(sl_2, 3)_{\text{ad}}^\sigma \boxtimes \mathcal{C}(sl_2, 3)_{\text{ad}}^\sigma$$

by Theorem 3.5 where $\sigma(\zeta_5) = \zeta_5^2$. However, \mathcal{C} must contain a fusion subcategory of dimension 5 by Proposition 3.10 which contradicts to the assumption. Therefore, \mathcal{C} contains a modular fusion subcategory that is braided equivalent to a Galois conjugate of $\mathcal{C}(sl_2, p-2)_{\text{ad}}$. \hfill \Box

Lemma 4.4. Let $f(x) = \frac{4 \pi \sin^2(x)}{x}$, where $x \in (0, \frac{\pi}{2}]$. Then $f(x)$ is an increasing function.

Proof. We have $f'(x) = \frac{4 \pi \sin(x)[2x \cos(x) - \sin(x)]}{x^2}$; since $x \in (0, \frac{\pi}{2}]$, $\frac{4 \pi \sin(x)}{x^2} > 0$. Let

$$g(x) := 2x \cos(x) - \sin(x), \quad x \in [0, \frac{\pi}{2}],$$

then $g'(x) = \cos(x) - 2x \sin(x)$, $g''(x) = -\sin(x) - 2x \cos(x)$, hence $g''(x) < 0$ for all $x \in [0, \frac{\pi}{2}]$, so $g'(x) \geq g'(\frac{\pi}{2}) > 0$. Thus $g(x) \geq g(0) = 0$ for $x \in [0, \frac{\pi}{2}]$, which shows $f'(x) > 0$ when $x \in (0, \frac{\pi}{2}]$. Consequently, $f(x)$ is a strictly increasing function. \hfill \Box
Theorem 4.5. Let C be a modular fusion category of global dimension p^2, where $p > 3$ is a prime. If C contains a modular fusion category that is a Galois conjugate of $C(s_{12}, p - 2)_{ad}$, then $p \leq 23$ and $Q(Sc) \subseteq Q(T_c) = Q(\zeta_p)$.

Proof. Let $D := C(s_{12}, p - 2)_{ad}$, then $\dim(D) = \frac{p}{\sin^2(\pi/p)}$ and $\dim(D_C) = 4p\sin^2(\pi/p)$. By [22, Proposition A.1.1], we obtain that $\dim(D_C) > \frac{2p}{\sqrt{3}}$, since $\dim(D_C) = f(\pi/p)$, where $f(x) = \frac{4x\sin^2(x)}{\sqrt{3}}$, and $f(\pi/29) < 1.38 < \frac{2p}{\sqrt{3}}$. Lemma 4.4 implies $p \leq 23$.

Since C is not pointed, $\text{rank}(C) \leq p^2 - 1$ by [22, Remark 4.2.3]; while $\text{rank}(D) = \frac{2p}{\sqrt{3}}$, so $\text{rank}(D_C) \leq 2(p + 1)$. Assume that $Q(t_c) = Q(\zeta_p^m)$ with m being minimal. When $p > 5$, if $n > 1$, then $\text{rank}(C) > p^2$ by Remark 2.1 which is a contradiction. When $p = 5$, the structure of C is known by Proposition 3.10, so $n = 1$.

Lemma 4.6. Let C be a modular fusion category of global dimension $p\beta_p$, where p is a prime and $\beta_p := 2 - (\zeta_p + \zeta_p^{-1})$. Then $\dim(X)$ is an algebraic unit for all objects $X \in O(C)$.

Proof. Let $f = \frac{\dim(C)}{\dim(X)^2}$ be an arbitrary formal codegree of C corresponding to a simple object X. Since C is not transitive, $p | f$ by [25, Theorem 4.4], hence $\frac{\beta_p}{\dim(X)^2}$ is an algebraic integer, i.e., $N_{Q(\zeta_p^m)}(\dim(X)^2) | N_{Q(\zeta_p^m)}(\beta_p)$ by [23, Proposition 4.2]. While $N_{Q(\zeta_p^m)}(\dim(X)^2) = N_{Q(\zeta_p^m)}(\dim(X)^2)$ and $N_{Q(\zeta_p^m)}(\beta_p) = p$, so $N_{Q(\zeta_p^m)}(\dim(X)^2) = 1$, which means that $\dim(X)$ must be an algebraic unit.

Corollary 4.7. Let D be a modular fusion category of global dimension $p\beta_p$, where $p > 3$ is a prime. Then C does not contain simple object that is fixed by $\text{Gal}(Q(\zeta_p^m)/Q)$.

Proof. Let X be a simple object that is fixed by the Galois group $\text{Gal}(Q(\zeta_p^m)/Q)$, then for any $\sigma \in \text{Gal}(Q(\zeta_p^m)/Q)$, we have

$$\frac{\dim(D)}{\dim(X)^2} = \sigma \left(\frac{\dim(D)}{\dim(X)^2} \right) = \frac{\dim(D)}{\dim(\sigma(X))^2} \in \mathbb{Z},$$

which implies $\dim(X)^2 = \beta_p$, it contradicts to Lemma 4.6.

Proposition 4.8. Let C be a modular fusion category of global dimension $p\beta_p$, where $p \geq 7$. Then $\text{rank}(C) = p - 1$ or $\frac{3(p - 1)}{2}$.

Proof. Since $Q(\dim(C)) = Q(\zeta_p^m)$ and $\text{ord}(t) = p$ by Theorem 4.5, the orbit of I has exactly $\frac{p}{\beta_p}$ simple objects, it is easy to see that C can’t be a transitive modular fusion category, so $\text{rank}(C) > \frac{p}{\beta_p}$. By Corollary 4.5, $p \leq 23$; Corollary 4.7 says that each Galois orbit of simple objects of C has exactly $\frac{p}{\beta_p}$ simple objects when $p = 7, 11, 23$.

When $p = 13, 17, 19$, for any formal codegree f of C, and let $g(x) = x^n - a_1x^{n-1} + \cdots + (-1)^na_n$ be the minimal polynomial of f, where a_j are positive integers and n is a divisor of $\frac{p}{\beta_p}$. Notice that $a_0 = N(f)$ is a power of p and that

$$\sum_{\sigma \in \text{Gal}(Q(\zeta_p^m)/Q)} \frac{1}{\sigma(\dim(C))} = \frac{a_{n-1}}{a_n} = \begin{cases} \frac{1}{p}, & \text{if } p = 13; \\ \frac{1}{7}, & \text{if } p = 17; \\ \frac{1}{17}, & \text{if } p = 19. \end{cases}$$
equation \(1\) implies \(\sum_{\sigma \in \text{Gal}(\mathbb{Q}(f))/\mathbb{Q}} \frac{d}{d(f)} \leq \frac{\alpha\cdot\omega_{\mathbb{Q}}}{\omega_{\mathbb{Q}}}\). By using the program GAP, we can show that the \(d\)-number test or cyclotomic test fail when \([\mathbb{Q}(f) : \mathbb{Q}] < \frac{p-1}{2}\) for any formal codegree \(f\) of \(C\), hence each Galois orbit of simple object of \(C\) has \(\frac{d}{d} \) simple objects. Since \(N(\dim(C)) = p^{\frac{d}{d}+\frac{1}{2}}\), the inequality \(3\) shows that \(\text{rank}(C) \leq \left[\frac{p+1}{2}\right] = \left[p \cdot \frac{p-2}{2}\right]\), where \([\alpha]\) is the integer part of a positive algebraic integer \(\alpha\). Therefore, \(\text{rank}(C) \leq 12\) if \(p = 7\), \(\text{rank}(C) = p-1 = \frac{3(p-1)}{2}\) when \(p = 11, 13, 17\) and \(\text{rank}(C) = p-1 = 1\) when \(p = 19, 23\).

When \(p = 7\), for any formal codegree \(f\) of \(C\), let \(g(x) = x^3 - ax^2 + bx - 7^4\) be the minimal polynomial of \(f\), where \(a, b\) are positive integers. Then the \(d\)-number test and cyclotomic test show that \(g(x) = x^3 - 49x^2 + 686x - 7^4\), which is the minimal polynomial of \(7\beta_7\), or \(g(x) = x^3 - 98x^2 + 1029x - 7^4\), the minimal polynomial of the totally positive algebraic integer \(\frac{4\alpha}{\beta_7^2}\). Then the set of formal codegrees of \(C\) are exactly the Galois conjugates of \(\dim(C)\) (with multiplicity equals two) and \(\text{FPdim}(C) = \frac{4\alpha}{\beta_7}\) by equation \(1\).

Lemma 4.9. Let \(C\) be a modular fusion category of global dimension \(p\beta_p\) where \(p = 11, 13, 23, \ldots\). Then \(\text{rank}(C) \neq \frac{3(p-1)}{2}\).

Proof. Assume \(\text{rank}(C) = \frac{3(p-1)}{2}\). By Proposition \(4.3\) each Galois orbits of the simple objects has exactly \(\frac{d}{d} \) simple objects. Let \(X_1 = I, X_2, X_3\) be the representatives of each Galois orbits. Let \(d := \frac{p-1}{2}\), let \(g_2(x) = x^d + \sum_{j=1}^{d} (-1)^ja_jx^{d-j}\) and \(g_1(x) = x^d + \sum_{j=1}^{d} (-1)^jb_jx^{d-j}\) be the minimal polynomials of the formal codegrees \(\frac{\dim(C)}{\text{dim}(X_i)}\) of \(C\), respectively, where \(a_j, b_j\) are positive integers for \(1 \leq j \leq d\). Since \(\dim(X_i)^2\) are algebraic units by Lemma \(4.9\) we obtain \(a_d = b_d = \frac{N(\dim(C))}{p^{\frac{d}{2}}+1}\). The \(d\)-number condition \(20\) says \(a_{d-1}^d \mid a_{d-1}\) and \(b_{d-1}^d \mid b_{d-1}\), that is, \(p^d\) divides both \(a_{d-1}\) and \(b_{d-1}\).

Assume \(b_{d-1} \geq a_{d-1}\) and \(a_{d-1} = mp^d\) with \(m\) being a positive integer. As \(\sigma\left(\frac{\dim(C)}{\dim(X_i)^2}\right) = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\beta_p)^+)} \frac{\dim(C)}{\text{dim}(X_i)^2}\), then

\[
\dim(C) = \sum_{i=1}^{3} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\beta_p)^+)} \dim(\sigma(X_i))^2 \leq \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\beta_p)^+)} \frac{\dim(C)}{\sigma(\dim(C))} + \sum_{i=2}^{3} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\beta_p)^+)} \frac{\dim(C)}{\sigma(\dim(C))}\sigma(\dim(X_i))^2,
\]

\[
\sum_{\sigma \in \text{Gal}(\mathbb{Q}(\beta_p)^+)} \frac{\dim(C)}{\sigma(\dim(C))} = \begin{cases} 5\beta_{11}, & \text{if } p = 11; \\ 7\beta_{13}, & \text{if } p = 13, \end{cases}
\]

We assume \(p = 11\) below, the other case is same. Let \(f_1 \leq \cdots \leq f_5\) be the Galois conjugates of \(\frac{\dim(C)}{\dim(X_2)}\). If \(m = 1\), then \(f_j \geq j-1\) for all \(1 \leq j \leq 5\), consequently \(\alpha_5 \geq 11^5 \cdot 5! > 11^6\), it is impossible. If \(m = 2\), the \(d\)-number test shows \(11^2|a_1, 11^3|a_2\) and \(11^4 \mid a_4\); also note \(f_j \geq \frac{11}{2} (1 \leq j \leq 5)\), by using a similar restriction of \(27\) Theorem \(4.2\), we see \(27a_1 \leq a_2, 1, a_2 \leq a_3\) and \(4a_3 \leq a_4 = 2 \cdot 1, 11^5\); the cyclotomic test fails for all possible cases, however. If \(m = 3\), then \(f_j \geq \frac{11}{2} (1 \leq j \leq 5)\), \(18a_1 \leq a_2, 7a_2 \leq a_3\) and \(7a_3 \leq 2a_4 = 6 \cdot 11^5\), again the cyclotomic test fails for all possible cases. Therefore, \(\text{rank}(C) \neq \frac{3(p-1)}{2}\).

Lemma 4.10. Let \(C\) be a modular fusion category of global dimension \(17\beta_{17}\), then \(\text{rank}(C) \neq 24\).
Proposition 4.12. Let \(C \) be a modular fusion category of global dimension \(\text{FPdim}(C) = 24 \). Let \(X_1 = I, X_2, X_3 \) be the representatives of each Galois orbits. Therefore, same as Lemma 4.9

\[
\dim(C) = \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)^+)/\mathbb{Q})} \frac{\dim(C)}{\sigma(\dim(C))} + \sum_{i=2}^{3} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)^+)/\mathbb{Q})} \frac{\dim(C)}{\sigma(\dim(C))} \sigma(\dim(X_i)^2)
\]

\[
> \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)^+)/\mathbb{Q})} \frac{\dim(C)}{\sigma(\dim(C))} + \sum_{i=2}^{3} \sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)^+)/\mathbb{Q})} \frac{\dim(C)}{M} \sigma(\dim(X_i)^2),
\]

where \(M \) is the maximal Galois conjugate of \(\dim(C) \). Note that

\[
\sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)^+)/\mathbb{Q})} \frac{\dim(C)}{\sigma(\dim(C))} = 12 \beta_{17},
\]

we have \(5 \beta_{17} > \frac{\dim(C)}{\pi} \cdot 2 \cdot 8 \cdot 1.79 \) by the Siegel’s trace theorem [13], which then implies \(\sin^2 \frac{\pi}{5} > 1 \), it is a contradiction.

Lemma 4.11. Let \(C \) be a modular fusion category of global dimension \(p \beta_p \), where \(p \geq 7 \). If \(C \) is not simple, then \(p = 7 \) and \(C \cong C(\mathfrak{sl}_2, 5)^{ad}_1 \boxtimes C(\mathfrak{sl}_2, 5)^{ad}_2 \), where \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \) such that \(\sigma(\zeta_7) = \zeta_7^2 \).

Proof. Indeed, if \(C \cong B_1 \boxtimes B_2 \) with \(B_1, B_2 \) being non-trivial modular fusion subcategories, then it is easy to see that \(p \) cannot divide both \(\dim(B_1) \) and \(\dim(B_2) \), so \(B_1 \) and \(B_2 \) are prime transitive modular fusion categories [25 Theorem 4.4]. Note that

\[
N(\dim(C)) = p^{\frac{\beta_p}{4}} = N(\dim(B_1))N(\dim(B_2)) = p^{\beta_p - 3},
\]

that is, \(p = 7 \), and \(C \cong C(\mathfrak{sl}_2, 5)^{ad}_1 \boxtimes C(\mathfrak{sl}_2, 5)^{ad}_2 \) as modular fusion category.

Proposition 4.12. Let \(C \) be a modular fusion category of global dimension \(7 \beta_7 \), then as a modular fusion category \(C \cong C(\mathfrak{sl}_2, 5)^{ad}_1 \boxtimes C(\mathfrak{sl}_2, 5)^{ad}_2 \).

Proof. By Proposition 4.8, we know \(\text{rank}(C) = 9 \) and \(\text{FPdim}(C) = \frac{20}{3} \). Let \(X_1 = I \), and \(\mathcal{O}_X(C) = \{ X_1, X_2, X_3 \} \), that is, \(\sigma(\dim(C)) = \frac{\dim(C)}{\dim(X_1)^2}, \sigma^2(\dim(C)) = \frac{\dim(C)}{\dim(X_2)^2}, \sigma \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q}) \) such that \(\sigma(\zeta_7) = \zeta_7^2 \); \(\mathcal{O}_X(C) = \{ X_4, X_5, X_6 \} \), where \(\dim(X_4)^2 = 1 \),

\[
\sigma(\dim(C)) = \frac{\dim(C)}{\dim(X_5)^2}, \sigma^2(\dim(C)) = \frac{\dim(C)}{\dim(X_6)^2};
\]

and \(\mathcal{O}_X(C) = \{ X_7, X_8, X_9 \} \), where \(\dim(X_7)^2 = \frac{\dim(C)}{\text{FPdim}(C)} = \frac{3}{2} \).

\[
\frac{\dim(C)}{\dim(X_8)^2} = \sigma \left(\frac{\dim(C)}{\dim(X_7)^2} \right), \quad \frac{\dim(C)}{\dim(X_9)^2} = \sigma^2 \left(\frac{\dim(C)}{\dim(X_7)^2} \right).
\]
Then we obtain that
\[\epsilon_2 \dim(X_2) = \epsilon_5 \dim(X_5) = \frac{1}{d_Y}, \epsilon_3 \dim(X_3) = \epsilon_6 \dim(X_6) = \frac{1}{d_Y}, \dim(X_4) = \epsilon_4, \]
\[\dim(X_7) = \frac{\epsilon_7}{d_Y}, \dim(X_8) = \frac{\epsilon_8 d_Y}{d_Y}, \dim(X_9) = \frac{\epsilon_9 d_Y}{d_Y}, \epsilon_j \in \{\pm 1\}, 2 \leq j \leq 9. \]

Since \(\sigma(X_j) = X_{j+1} \) and \(\sigma^2(X_j) = X_{j+2} \) where \(j \in \{1, 4, 7\} \), for \(1 \leq k \leq 9 \),
\[\sigma \left(\frac{S_{X_j, x_k}}{\dim(X_j)} \right) = \frac{S_{X_{j+1}, x_k}}{\dim(X_{j+1})}, \quad \sigma^2 \left(\frac{S_{X_j, x_k}}{\dim(X_j)} \right) = \frac{S_{X_{j+2}, x_k}}{\dim(X_{j+2})}. \]

Meanwhile \(\text{FPdim}(C) = \frac{\dim(C)}{\dim(X_7)} \), so \(\text{FPdim}(X_j) = \frac{S_{X_j, X_7}}{\dim(X_7)} \) for all \(1 \leq j \leq 9 \). Note that \(\sigma(d_X) = \frac{1}{d_Y} \) and \(\sigma(d_Y) = -\frac{d_Y}{d_Y} \), hence \(\text{FPdim}(X_2) = \frac{\dim(X_2) \sigma(d_X)}{\dim(X_7)} = -\epsilon_2 d_Y \) and
\[\text{FPdim}(X_3) = \frac{\dim(X_3) \sigma^2(d_X)}{\dim(X_7)} = -\epsilon_3 d_Y, \] we see \(\epsilon_2 = \epsilon_3 = -1. \)

Notice that the \(S \)-matrix of \(C \) are presented by \(\epsilon_j \) \((4 \leq j \leq 9) \), \(d_X, d_Y, \text{FPdim}(X_4), \text{FPdim}(X_7), S_{X_4, X_4} \) and their Galois conjugates. In particular,
\[\text{FPdim}(X_5) = -\epsilon_4 \epsilon_5 d_Y^2 \sigma(\text{FPdim}(X_4)), \text{FPdim}(X_6) = -\epsilon_4 \epsilon_5 d_Y^2 \sigma^2(\text{FPdim}(X_4)), \]
\[\text{FPdim}(X_8) = \epsilon_7 \epsilon_8 d_Y^2 \sigma(\text{FPdim}(X_7)), \text{FPdim}(X_9) = \epsilon_7 \epsilon_8 d_Y^2 \sigma^2(\text{FPdim}(X_7)). \]

The Verlinde formula \([2] \) implies \(X_2 \otimes X_2 = I \oplus X_3 \oplus A \), where \(A \) is an object with \(\text{FPdim}(A) = 2d_X \), so either \(A \) is a simple object or \(A \) is a direct sum of two simple objects by \([10] \) Corollary 3.1.6] and \([5] \) Theorem 1.0.1, note that \(A \) contains a simple object of Frobenius-Perron dimension \(d_X \) or \(d_Y \) as a direct summand in the latter case \([5] \) Theorem 1.0.1. We claim that \(A \) is a direct sum of two non-isomorphic simple objects of Frobenius-Perron dimension \(d_X \). Indeed, if \(A \) is simple or \(A = V \oplus W \) with \(\text{FPdim}(V) = d_Y \) and \(\text{FPdim}(W) = 2d_X - d_Y \), then a direct computation shows that \(\text{FPdim}(C) > \frac{2d_X - d_Y}{2d_X} \); if \(A = 2M \) with \(\text{FPdim}(M) = d_X \), then \(M \otimes X_2 = 2X_2 \oplus N \), however \(\text{FPdim}(N) = d_Y \), it is a contradiction.

Since the Frobenius-Perron dimensions of simple objects in the Galois orbits of \(X_4 \) and \(X_7 \) are distinct, it is easy to show that they are \(d_X, d_Y, d_X d_Y \), respectively. Assume \(A = W_1 \oplus W_2 \) and let \(V_1, V_2 \) be simple objects of Frobenius-Perron dimension \(d_Y \). Then \(V_1 \otimes V_2 \) and \(W_1 \otimes W_2 \) must be simple, as \(C \) does not contain non-trivial invertible simple objects. Assume \(V_1 \otimes V_1 = I \oplus W_1 \), if \(V_2 \otimes V_2 = I \oplus W_2 \), then \(2I \leq (V_1 \otimes V_2) \otimes (V_1 \otimes V_2) \), it is impossible, so \(V_2 \otimes V_2 = 2I \otimes W_2 \); note that if \(V_1 \otimes W_1 = V_1 \otimes W_2 \), then \(2I \leq W_2 \otimes (V_1 \otimes W_1) \equiv V_1 \otimes (W_1 \otimes W_2) \), it is impossible. Therefore, \(V_1 \otimes W_1 = V_1 \otimes W_1 \) and \(W_1 \otimes W_1 = I \oplus V_1 \otimes W_1 \), so \(C \) contains a fusion subcategory that is Grothendieck equivalent to \(C(sl_2, 5)_{ad} \). Consequently, \(C \cong C(sl_2, 5)_{ad} \otimes C(sl_2, 5)_{ad} \) as modular fusion category by Lemma 4.11. \[\square \]

Proposition 4.13. Let \(C \) be a modular fusion category of global dimension \(p \tilde{d}_p \), where \(11 \leq p \leq 23 \). If \(\text{rank}(C) = p - 1 \), then \(p = 11 \) and \(C \) is braided tensor equivalent to a Galois conjugate of modular fusion category \(C(sl_2, 5)_{ad} \).

Proof. Let \(\rho_C \) be the associated modular representation of \(C \). We know that \(\rho_C \) can’t be decomposed as direct sum of sub-representations with disjoint t-spectra [4] Lemma 3.18] and also that \(\rho_C \) can’t be decomposed as direct sum of non-degenerate sub-representations of same type [23] Lemma 5.2.2]. Since \(\text{rank}(C) = p - 1 \) and \(\text{ord}(t) = p \), by comparing the dimensions of level
Moreover, when pC is irreducible and rank(C) = 0, we obtain either ρC is irreducible or $\rho C = \rho_1 \oplus (\oplus_m \rho_0)$, where ρ_1 is an irreducible representation of rank $\frac{p+1}{2}$ and $m = \frac{p-3}{2}$. However, [17, Proposition 3.22] states $m = 1$ and then $p = 5$, which is impossible. Hence, ρC is irreducible.

As ρC is non-degenerate and rank(C) \leq 23, [9, Main Theorem 4] implies that $p = 11, 17, 23$. Moreover, when $p = 17, 23$, the $(p - 1)$-dimensional non-degenerate representations are realized as modular representations of modular fusion categories $C(g_2, \frac{1}{2})$ and $C(\tau_7, 5)_{ad}$, respectively. However, neither of the Galois conjugates of $\dim(C(g_2, \frac{1}{2}))$ equal to $17\beta_7\tau$, and the norm of $\dim(C(\tau_7, 5)_{ad})$ is 23^{14}, it is also impossible. When $p = 11$, the 10-dimensional non-degenerate representations can only be realized as modular representation of $C(s_{05}, \frac{1}{2})_{ad}$. Therefore, C is braided tensor equivalent to a Galois conjugate of $C(s_{05}, \frac{1}{2})_{ad}$.

Theorem 4.14. Let C be a modular fusion category of global dimension $p\beta_p$, where $p > 3$ is a prime. If $C_{p} = Vec$, then C is braided equivalent to one of the following modular fusion categories

$$
\begin{cases}
C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad}, & \text{if } p = 5; \\
C(sl_2, 5)_{ad} \boxtimes C(sl_2, 5)_{ad} \boxtimes C(sl_2, 5)_{ad}, & \text{if } p = 7; \\
C(sl_2, 2)_{ad}, & \text{if } p = 11.
\end{cases}
$$

where $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ such that $\sigma(\zeta_5) = \zeta_5^2$, $\tau \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q})$ such that $\tau(\zeta_7) = \zeta_7^2$ and $\nu \in \text{Gal}(\mathbb{Q}(\zeta_{11})/\mathbb{Q})$ such that $\nu(\zeta_{11}) = \zeta_{11}^7$.

Proof. We know $p \leq 23$ by Theorem 4.5. When $p = 5$, this is the conclusion of Proposition 3.10 and Proposition 4.8 shows rank$(C) = p - 1$ or $\frac{3p-15}{2}$ if $p > 5$. If rank$(C) = \frac{3p-15}{2}$, then there exists such a modular fusion category C only for $p = 7$ by Lemma 4.9, Lemma 4.10 and Proposition 4.12 if rank$(C) = p - 1$, we have $p = 11$ by Proposition 4.13.

Recall that modular fusion categories of global dimension 4 and 9 are either pointed, or braided equivalent to a Galois conjugate of Ising category $C(sl_2, 2)$ and $C(s_{05}, \frac{1}{2})_{ad}$ [27], respectively. Hence, combining with the conclusions of [27, Proposition 4.4], Theorem 4.3 and Theorem 4.14 together imply the following theorem:

Theorem 4.15. Let C be a modular fusion category of global dimension p^2, where $p > 5$ is a prime. If C contains a non-trivial fusion subcategory, then either C is pointed, or C is braided tensor equivalent to a Galois conjugate of one of the following modular fusion categories

$$
\begin{cases}
C(sl_2, 3)_{ad} \boxtimes C(sl_2, 3)_{ad} \boxtimes C(Z_5, \eta), & \text{if } p = 5; \\
C(sl_2, 5)_{ad} \boxtimes C(sl_2, 5)_{ad} \boxtimes C(sl_2, 3)_{ad}, & \text{if } p = 7; \\
C(sl_2, 9)_{ad} \boxtimes C(sl_2, 9)_{ad}, & \text{if } p = 11.
\end{cases}
$$

where $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ such that $\sigma(\zeta_5) = \zeta_5^2$, $\tau \in \text{Gal}(\mathbb{Q}(\zeta_7)/\mathbb{Q})$ such that $\tau(\zeta_7) = \zeta_7^2$ and $\nu \in \text{Gal}(\mathbb{Q}(\zeta_{11})/\mathbb{Q})$ such that $\nu(\zeta_{11}) = \zeta_{11}^7$.

This completes the classification of non-simple modular fusion categories of global dimension p^2. In addition, it is worth to note that $C(s_{05}, \frac{1}{2})_{ad}$ and its Galois conjugates are simple modular fusion categories of global dimension 9.
Question 4.16. Let \(p > 3 \) be a prime. Is there a simple modular fusion category \(C \) of global dimension \(p^2 \)?

Moreover, let \(D \) be a spherical fusion category of global dimension \(p \), then its Drinfeld center \(Z(D) \) is a modular fusion category of global dimension \(p^2 \). Therefore, a negative answer to Question 4.16 will also result in a complete classification of spherical fusion categories of prime global dimensions.

Acknowledgements

The author is supported by the National Natural Science Foundation of China (no.12101541), the Natural Science Foundation of Jiangsu Province (no.BK20210785), and the Natural Science Foundation of Jiangsu Higher Institutions of China (no.21KJB110006). The author is grateful to Y. Wang for conversations on the representations of the modular group \(SL(2, \mathbb{Z}) \).

References

[1] S. Alaca and K. Williams, Introductory algebraic number theory, Cambridge university press, Cambridge, 2004.

[2] B. Bakalov and A. Kirillov, Jr, Lectures on tensor categories and modular functors, University Lecture Series 21, Amer. Math. Soc., 2001.

[3] P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, Rank-finiteness for modular fusion categories, J. Amer. Math. Soc. 29 (2016), no. 3, 857-881.

[4] P. Bruillard, S.-H. Ng, E. Rowell and Z. Wang, On classification of modular categories by rank, Int. Math. Res. Not. 2016 (2016), no. 24, 7546-7588.

[5] F. Calegari, S. Morrison and N. Snyder, Cyclotomic integers, fusion categories, and subfactors, Comm. Math. Phys (2011), 303, 845-896.

[6] C. Dong, X. Lin and S-H. Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121-2166.

[7] V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories I, Sel. Math. New. Ser. 16 (2010), no. 2, 1-119.

[8] W. Eholzer, Fusion algebras induced by representations of the modular group, Int. J. Mod. Phys. A, 8 (1993), 3495-3507.

[9] W. Eholzer, On the classification of modular fusion algebras, Comm. Math. Phys, 172 (1995), 623-659.

[10] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs 205, Amer. Math. Soc., 2015.

[11] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. 162 (2005), no. 2, 581-642.
[12] A. Kirillov, Jr and V. Ostrik, On a q-analogue of the McKay correspondence and the ADE classification of \mathfrak{sl}_2 conformal field theories, Adv. Math. 171 (2002), no. 2, 183-227.

[13] Y. Liang and Q. Wu, The trace problem for totally positive algebraic integers. J. Aust. Math. Soc, 90 (2011), 341-354.

[14] G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, 18. Amer. Math. Soc., 2003.

[15] M. Müger, Galois theory for braided tensor categories and the modular closure, Adv. Math. 150 (2000), no. 2, 151-201.

[16] S-H. Ng, Y. Wang and Q. Zhang, Modular fusion category with transitive Galois actions, Comm. Math. Phys. 390 (2022), 1271-1310.

[17] S-H. Ng, E. Rowell, Z. Wang and X. Wen, Reconstruction of modular data from $\text{SL}_2(\mathbb{Z})$ representations, Xiv:2203.14829.

[18] A. Nobs, Die irreduziblen Darstellungen der Gruppen $\text{SL}_2(\mathbb{Z}_p)$, insbesondere $\text{SL}_2(\mathbb{Z}_2)$. I. Comment. Math. Helv. 51 (1976), no. 4, 465-489.

[19] A. Nobs and J. Wolfart, Die irreduziblen Darstellungen der Gruppen $\text{SL}_2(\mathbb{Z}_p)$, insbesondere $\text{SL}_2(\mathbb{Z}_p)$: II. Comment. Math. Helv. 51 (1976), no. 4, 491-526.

[20] V. Ostrik, On formal codegrees of fusion categories, Math. Res. Lett. 16 (2009), no. 5, 899-905.

[21] V. Ostrik, Pivotal fusion categories of rank 3, Mosc. Math. J. 15 (2015), no. 2, 373-396.

[22] V. Ostrik, Remark on global dimension of fusion category, Tensor categories and Hopf algebras, 169-180, Contemp. Math, 413, Amer. Math. Soc., Providence, RI, 2019.

[23] J. Plavnik, A. Schopieray, Z. Yu and Q. Zhang, Modular tensor categories, subcategories, and Galois orbits, [arXiv:2111.05228]

[24] E. Rowell, From quantum groups to unitary modular tensor categories. Representations of algebraic groups, quantum groups, and Lie algebras, 215-230, Contemp. Math, 413, Amer. Math. Soc., Providence, RI, 2006.

[25] A. Schopieray, Norm, trace and formal codegrees of fusion categories, J. Algebra, 568 (2021), 362-385.

[26] S. Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. 46 (1945), no. 2, 302-312.

[27] Z. Yu, Pre-modular fusion categories of small global dimensions, Algebr. Represent. Theory, 25 (2022), no.2, 521-538.

Zhiqiang Yu
Email: zhiqyumath@yzu.edu.cn
School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China