Initial problem for heat equation with multisoliton inhomogeneity and one-loop quantum corrections

S. Leble, A. Yurov,
Faculty of Applied Physics and Mathematics
Technical University of Gdańsk,
ul. G.Narutowicza, 11/12 80-952, Gdańsk-Wrzeszcz, Poland,
email leble@mif.pg.gda.pl
and
Kaliningrad State University, Theoretical Physics Department,
Al.Nevsky st.,14, 236041 Kaliningrad, Russia.

February 4, 2019

Abstract

The generalized zeta-function is built by a dressing method based on the Darboux covariance of the heat equation and used to evaluate the correspondent functional integral in quasiclassical approximation. Quantum corrections to a kink-like solutions of Landau-Ginzburg model are calculated.

1 Introduction

In the paper of V.Konoplich [1] quantum corrections to a few classical solutions by means of Riemann zeta-function are calculated. Most interesting of them are the corrections to the kink - the separatrix solution of field ϕ^4 model. The method of [1] is rather complicated and it could be useful to simplify it. We use the dressing technique based on classical Darboux transformations (DT) with a new applications to Green function construction [2]. It is the main aim of this note with eventual possibility to generalize the result due to universality of the technique when a link to integrable (soliton, SUSY)
systems is established. The suggested approach opens new possibilities; for example it allows to show the way to calculate the quantum corrections to Q-balls and periodic solutions of the models. The last problem is posed in the useful review.

2 Heat equation Cauchy problem

We will base on the DT-covariance of the heat equation for the function
\[\rho(\tau, x, y) = -\rho_\tau + \rho_{xx} + u(x)\rho = 0, \]
that means the form-invariance of (11) with respect to iterated DT, defined by the Wronskian \[W[\phi_1, ..., \phi_N] \]
of the solutions of (11)
\[\rho \to \rho[N] = \frac{W[\phi_1, ..., \phi_N, \rho]}{W[\phi_1, ..., \phi_N]}, \]
\[u \to u[N] = u + 2ln W[\phi_1, ..., \phi_N]. \]

Consider now a Cauchy problem for the equation (11), where \[u(x) \] represents the reflectionless potential in a sense that it could be produced by the DT and the initial condition is
\[\rho(0, x, y) = \delta(x - y). \]

The problem is formulated for a Green function: it is rather general and may be applied as a model of classical diffusion or heat conductivity. We, however, would follow other applications in the theory of quasiclassical quantization, where the function \[\rho \] is treated as density matrix whence \[\tau \] stands for inverse temperature [?].

The algorithm of such problem solution is the dressing procedure organized by a sequence of DTs defined by (2):
\[\left(\frac{\partial}{\partial x} - \ln_x \phi_1(x, y) \right) \rho_0(0, x, y) = g_1(x, y), \]
\[\left(\frac{\partial}{\partial x} - \ln_x \phi_2[1](x, y) \right) g_1(x, y) = g_2(x, y), ..., \]
\[\left(\frac{\partial}{\partial x} - \ln_x \phi_k[k-1](x, y) \right) g_{k-1} = g_k x, y, \]
\[g_N(x, y) = \delta(x, y), 2 \leq k \leq N. \]

and the following theorem

Theorem The function \[\rho[N] \] being built by (2) will be a solution of the problem (11) with the potential \[u[N] \], if \[\rho(\tau, x, y) \] is a solution of the (1) with the initial condition \[\rho_0(0, x, y) \].

The result is used when static solutions of \[\phi^4 \] model are quantized by means of Riemann function \[\zeta(s) \] expressed via the Green functions of the
The one-loop quantum correction to action is evaluated directly as
\[S_q = -\zeta'(0). \]

3 Example of kink

Most popular example of the kink is obtained in this scheme by means of DT over zero seed \(u = 0 \). The solution \(\rho \) of (1) with \(\rho_0 \) as initial condition for this case is a simple heat equation solution
\[\rho(\tau, x, y) = \frac{1}{2\sqrt{\pi\tau}} \int_{-\infty}^{\infty} \rho_0(z, y) \exp\left[-\frac{(x-z)^2}{4\tau}\right] dz. \]

The initial condition \(\rho_0 \) is evaluated by direct integration in (1):
\[\rho_0(x, y) = \phi_1(x) \begin{cases} \phi_1^{-1}(y), & x > y \\ 0, & x < y \end{cases} \]

The Green function \(\rho[2] \) (density matrix) for the kink solution as the potential is built by the two-fold DT by the Wronskian formula (2) that results in
\[\rho[2](\tau, x, y) = \exp\left[-\frac{(x-y)^2}{4\sqrt{\tau}}\right] + \frac{1}{2} \sum_{m=1}^{2} \rho_m \psi_m(x) \psi_m(y) \left[\text{Erf}\left[\frac{(x-y+2b_m\tau)}{2\sqrt{\tau}}\right] - \text{Erf}\left[\frac{(x-y-2b_m\tau)}{2\sqrt{\tau}}\right] \right], \]

where \(b_k = km/\sqrt{2}, \rho_k = ||\psi||^{-2}, k=1,2. \) After multiplication of the Green function by \(\exp[-4m^2\tau] \):
\[\rho \rightarrow \rho \exp[-4m^2\tau], \]

the first term of the Green function leads to a divergent integral. This divergence is well-known, its origin is a zero vacuum oscillations. In our approach this fact has transparent explanation, because the divergent term is simply a solution of heat equation with constant coefficients, that appear when the self-action of scalar field is neglected. Such divergence is usually compensated by addition of contra terms of normal order.

Our procedure deletes all ultraviolet divergencies of 1+1 \(\phi^4 \) model including energy of zero oscillations and one-meson states if one evaluates the generalized zeta-function by the formula
\[\zeta_D(s) = M^{2s} \int_0^\infty \gamma(t)t^{s-1}dt / \Gamma(s) \]

\(\Gamma(s) \) is the Euler gamma function and \(M \) is a mass scale. The function \(\gamma(t) \) in the integrand of (3) is expressed via the Green functions \(G(x, y, \tau) \) and \(G_0(x, y, \tau) \) difference. The result coincides with one from [1].
4 Conclusion

As a conclusion let us note that this approach is elaborated in [6] (published in a local conference abstract book) and allows to calculate one-loop corrections to the N-level reflectionless potential and, very similarly, solitons of SG. Some eventual applications are visible in the case studied at [8].

References

[1] Konoplich R.V. Quantum corrections calculations to nontrivial classical solutions via zeta-function. TMP, 1987, v73, p 379-392. The zeta-function method in field theory at finite temperature. (Russian) Teoret. Mat. Fiz. 78 (1989), no. 3, 444–457; translation in Theoret. and Math. Phys. 78 (1989), no. 3, 315–325. One-loop quantum corrections to the energy of extended objects. Nuclear Phys. B 323 (1989), no. 3, 660–672.

[2] Leble S., Zaitsev A, The Modified Resolvent for the One-dimensional Schrodinger Operator with a reflectionless potential and Green Functions in Multidimensions (with). J. Phys. A: Math. Gen. v. 28 (1995) p. L585-L588.

[3] Sukumar, C. V. Green’s functions, sum rules and matrix elements for SUSY partners. J. Phys. A 37 (2004), no. 43, 10287–10295.

[4] Cervero J.M, Estevez P.G. Exact two-dimensional Q-balls near the kink phase Phys. Lett. B, v176, p139-142, 1986.

[5] Tuszyński, J. A.; Dixon, J. M.; Grundland, A. M. Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems. Fortschr. Phys. 42 (1994), no. 4, 301–337.

[6] Leble, S.B. and Yurov, A.V. (1993) On the quantum corrections to classical solutions via generalized zeta-function, in Abstracts of XXVII sci. conf. Kaliningrad State University, Kaliningrad, p. 157.

[7] Novikov S.P. Manakov S.V. Pitaevski L.P. Zakharov V.E. Theory of Solitons. Plenum, New York, 1984.
[8] Tuszyński, J. A.; Middleton, J.; Christiansen, P. L.; Dixon, J. M. Exact eigenfunctions of the linear ramp potential in the Gross-Pitaevskii equation for the Bose-Einstein condensate. Phys. Lett. A 291 (2001), no. 4-5, 220–225.