Žilinským krajom prechádzajú dva medzinárodné cestné koridory Va a VI, ale hustota cestnej siete kraja patrí medzi najmenšie na Slovensku. Cestná sieť je nadmerne zaťažená a hlavné cestné ťahy kraja patria medzi úseky s najvyššou nehodovosťou. Model komunikácie obsluhy kraja riešený v uplynulých rokoch sa venoval v rámci integrácie dopravných systémov aj cestnej sieti kraja. Príspevok uvádza základné charakteristiky siete, údaje o súčasnej doprave a princípy modelovania dopravy. Základné východiská pre zlepšenie dopravnej situácie sú uvedené v závere na základe hodnotenia súčasného a predpokladaného stavu záťaženosti siete.

1. Cestná sieť Žilinského kraja

Doprava tvorí dôležitú a strategicky rozhodujúcu úlohu v hospodárskom vývoji spoločnosti. Najdôležitejším cieľom budovania dopravnej infraštruktúry je vytvorenie cestnej siete so zabezpečením optimálnych nákladov a výkonnosti, ako aj dodržaním bezpečnostných a ekologických aspektov a socialných priorit.

Žilinským krajom prechádzajú dva medzinárodné cestné koridory „Va“ a „VI“, ale hustota cestnej siete kraja patrí medzi najmenšie na Slovensku. Pomalé tempo výstavby diaľničnej siete v kraji, zapríčinené hlavne vysokými ekonomickými nárokom spôsobilo, že existujúca cestná sieť je nadmerne zaťažená a hlavné cestné ťahy kraja patria medzi úseky s najvyššou nehodovosťou. Geografický charakter krajiny však neumožňuje rozvoj cestnej siete na úrovni, zodpovedajúcej demografickým podmienkam. Z toho dôvodu je potrebné hľadať spôsob skvalitnenia dopravnej obsluhy na základe integrácie všetkých dopravných systémov nielen v rámci ekonomických pravidiel, ale aj z pohľadu jej účelnosti.

Územie Žilinského kraja pozostáva z 11-tich okresov s 313-timi sídelnými útvarmi, s celkovým počtom obyvateľov 692 582. Postavenie kraja z celoštátneho pohľadu je uvedené v tabuľkách 1 - 3, v ktorých sú uvedené aj podrobné údaje o cestnej sieti kraja [1].

Two international corridors “Va” and “VI” pass through Žilina region, but yet the road network density of the region belongs to the lowest in Slovakia. The road network is loaded excessively and main arteries come under a section with a maximum accident rate. The model of the communication attendance of the region that has been solved recently deals with the road network in the region in the terms of the transportation system integration. The paper presents basic characteristics of the network, information on the present state of the traffic, as well as principles of a traffic modelling process. The main resources for improving the traffic situation based on the evaluation of present situation and forecast for network loading are presented in the conclusion.

1. The roads network of Žilina region

Transport plays an important, strategic, and decisive role in the economic development of society. The most important objective of building transport infrastructure is creation of a road network with optimum costs and capacity while respecting principles of safety and ecology and social priorities.

Although two international corridors “Va” and “VI” pass through Žilina region, the road network density of the region belongs to the lowest in Slovakia. The slow rate of the motorway network building in the region was caused above all by high financial demands inducing an excessive loading of the present road network. The main arterials come under the section with a maximum accident rate. The geographical character of the country doesn’t allow the development of road network at the level corresponding with demographic conditions. Therefore, it is necessary to create a method for enhancing the traffic service on the basis of integration of all transportation systems, not only within the frame of economic rules, but also from a serviceability point of view.

The territory of Žilina region consists of 11 counties with 313 urban agglomerations. The total number of the inhabitants is 692 582. The situation of the region from a national point of view is shown in Tables 1-3 [1]. Detailed information on the road network in the region is presented there, too.
Okres	Cesty I. triedy	Cesty II. triedy	Cesty III. triedy	Diaľnice	Spolu	Cesty „E“	Trasy „TEM“
Bytča	25,669	29,421	41,434	0,000	96,524	25,669	8,225
Čadca	32,696	76,581	113,415	0,000	222,692	32,696	32,632
Dolný Kubín	59,180	13,906	89,114	0,000	162,200	36,178	5,430
Kysucké N. Mesto	11,227	0,000	54,995	0,000	66,222	11,227	11,227
Liptovský Mikuláš	72,405	62,148	174,381	42,695	351,629	45,866	86,000
Martin	48,002	8,425	135,426	0,000	191,853	22,596	22,596
Namestovo	38,976	30,010	95,005	0,000	163,991	0,000	0,000
Ružomberok	60,134	0,000	92,465	3,056	155,655	60,160	52,003
Turčianske Teplice	24,266	26,422	80,840	0,000	131,528	0,000	0,000
Tvrdošín	21,795	41,069	55,155	0,000	118,019	21,795	0,000
Žilina	75,494	44,578	185,373	0,000	305,445	39,131	39,315
Žilinský kraj:	466,844	332,560	1117,603	45,751	305,445	295,338	217,314

| Komunikácie / Communications 1-2/2002 | 74 |

Žilinský kraj v celostátnom porovnaní k 31. 12. 2000

	Rozloha km²	Počet obyvateľov	Dĺžka cest a dialníc km	Hustota cestnej siete km/km²	km/1000obyv.
Slovensko	49 034	5398657	17737,397	0,362	3,286
Žilinský kraj	6 788	692582	1965,758	0,290	2,838
Žilinský kraj	13,84%	12,82%	11,08%	80,11%	86,36%

Žilina region in a national comparison (to 31 December, 2000)

	Area, sq. km	Inhabitants	Roads length, km	Road density km/sq.km	km/1000inhab.
Slovensko	49 034	5398657	17737,397	0,362	3,286
Žilina region	6 788	692582	1965,758	0,290	2,838
Žilina region	13,84%	12,82%	11,08%	80,11%	86,36%
Porovnanie dĺžky a hustoty cestnej siete okresov v Žilinskom kraji
Tab. 3

Okres	Rozloha	Obyvateľstvo	Dĺžka ciest	Hustota cestnej siete				
	km²	%	Počet	%	km	%	km/km²	km/tis. obv.
Bytča	282	4,2	30489	4,4	96,524	4,9	0,342	3,166
Ľv. M. M.	308	5,0	30489	5,4	101,943	5,6	0,335	3,017
Dolný Kubín	760	11,1	92869	13,4	222,692	11,3	0,293	2,358
Slovenský kraj	6788	100	692582	100	1965,758	100	0,290	2,838
Ružomberok	647	9,5	59913	8,7	155,655	7,9	0,241	1,963
Turč. Teplice	393	5,8	16823	2,4	131,528	6,7	0,335	7,818
Tvrdošín	479	7,1	34723	5,0	118,019	6,0	0,246	3,399
Žilina	815	12,0	156921	22,7	305,445	15,5	0,375	1,946

Comparison of length and density of a provincial road network in Žilina region
Table 3

County	Area	Inhabitants	Road length	Road network density	
	sq.km	Number	km	km/sq.km	km/1000 inh.
Bytča	282	30489	96,524	0,342	3,166
Ľv. M. M.	308	30489	101,943	0,335	3,017
Dolný Kubín	760	92869	222,692	0,293	2,358
Slovenský kraj	6788	692582	1965,758	0,290	2,838
Ružomberok	647	59913	155,655	0,241	1,963
Turč. Teplice	393	16823	131,528	0,335	7,818
Tvrdošín	479	34723	118,019	0,246	3,399
Žilina	815	156921	305,445	0,375	1,946
Žilinský kraj	6788	692582	1965,758	0,290	2,838

Prik hodnotení Slovenska je zrejmé, že Žilinský kraj má najnižšiu hustotu cestnej siete v km/km², predstavujúcu len 80 % z republikoveho priemeru a 11 % dĺžky ciest.

2. Stav nehodovosti

Jedným z najdôležitejších prvkov hodnotenia kvality cestnej siete je nehodovosť. Žilinský kraj patri už niekoľko rokov k naj stupňom nejedného oblastiach Slovenskej republiky z pohľadu dopravnej nehodovosti (DN). Za roky 1999 a 2000 mal Žilinský kraj na cestách I. a II. triedy najväčší podiel na vzniku DN na Slovensku – 4082 a 3661 DN, čo je 17 %. Na celej cestnej sieti kraja bolo v roku 2000 spolu 6024 DN. Viac ako 80 % územia kraja je zahrnuté do oblasti s nehodovostou, prekračujúcou hustotu 2 DN na 1 km cesty. Predovšetkým cesta I/18 patri z hľadiska počtu DN na milión vozokm za rok ku kritickým cestným ťahom celoslovenského,
významu. Ku kritickým cestným ťahom celoštátneho významu dalej patria useky ciest I/61, I/64, I/11, II/487, II/517, II/507, II/583 a II/584 (obr. 1). Na území kraja sa nachádza jeden kritický cestný ťah krajského významu a tiež jeden kritický cestný ťah okresného významu [2].

Na poklesu bezpečnosti cestnej dopravy sa podieľajú predo všetkým kritické nehodové lokality KNL (useky, na ktorých je počet nehôd väčší ako kritický počet stanovený Poissonovým rozdelením pravdepodobnosti na základe analýzy dopravného prúdu a okrajových podmienok). Na území kraja sa nachádza na sledovaných cestných ťahoch I. a II. triedy 30-36 KNL, na ktorých sa za posledných 5 rokov stalo takmer 19 000 dopravných nehôd a zahynulo takmer 400 ľudí (tab. 4).

Celkovo sa na území kraja nachádza 5 opakujúcich sa KNL, dve patria do zoznamu KNL už niekoľko rokov. Lokality sa nachádzajú na ceste I/18, I/61 a II/487. Podrobné údaje s vyčíslením následkov sú uvedené v tab. 5.

Nehodovosť na sledovaných cestných ťahoch

Rok	Počet KNL	Počet OKNL	Hustota nehodovosti, DN/km	Počet DN	Počet SZ	Počet ŤZ	Materiálová škoda, mil. Sk
1996	32	1	> 2,00	3990	64	179	88,4
1997	36	2	> 2,11	3741	87	235	170,5
1998	30	2	> 2,11	3410	88	235	187,0
1999	35	2	> 2,11	4082	78	228	204,5
2000	31	5	>1,81	3661	66	158	157,2

The critical accident localities (CAL) participate, above all, in the road safety decrease. (CAL are the sections, in which the accident number is higher than the critical number determined by Poisson probability distribution on the basis of the traffic flow and boundary conditions analysis.) More than 30 CALs occur on the observed 1st and 2nd class roads, where nearly 19000 traffic accidents and nearly 400 fatal accidents happened during the last 5 years (Table 4).

Overall five RCAL occur in the region and two belonged to the list of RCAL during the last few years. The localities are situated on the roads Nr. I/18, I/61 and II/487. Detailed data with the results of quantification are described in Table 5.
Vysvetlivky k tabuľke:

- **KNL** – kritická nehodová lokalita
- **OKNL** – opakujúca sa kritická nehodová lokalita
- **DN** – dopravná nehoda
- **SZ** – smrteľné zranenie
- **ŤZ** – ťažké zranenie

* Repeated critical accident locality

Opakujúce sa KNL na cestnej sieti I. a II. triedy

Rok	Číslo cesty	Dĺžka úseku, km	Miesto	Počet DN	Počet SZ	Počet ŤZ	Materiálová škoda, mil. Sk
1997	I/18 0.5	Ružomberok	23	0	1	0.8	
	I/18 0.5	Žilina	29	0	0	1.0	
1998	I/18 0.5	Ružomberok	22	0	2	1.1	
	I/18 0.5	Žilina	40	0	0	1.1	
1999	I/18 0.5	Ružomberok	24	0	0	1.1	
	I/18 0.5	Žilina	44	0	0	1.6	
	II/487 0.37	Čadca	12	0	0	0.25	
	I/18 0.5	Ružomberok	19	0	1	0.97	
	I/61 0.5	Pov. Bystrica	30	0	1	2.22	
	I/18 0.5	Žilina	11	0	0	0.46	
2000	I/18 0.5	Žilina	40	0	2	1.59	

The repeated critical accident localities on the 1st and 2nd class roads

Year	Road number	Section length, km	Locality	Accident number	Fatal accidents	Hard injury number	Property damage, mil. Sk
1997	I/18 0.5	Ružomberok	23	0	1	0.8	
	I/18 0.5	Žilina	29	0	0	1.0	
1998	I/18 0.5	Ružomberok	22	0	2	1.1	
	I/18 0.5	Žilina	40	0	0	1.1	
1999	I/18 0.5	Ružomberok	24	0	0	1.1	
	I/18 0.5	Žilina	44	0	0	1.6	
	II/487 0.37	Čadca	12	0	0	0.25	
	I/18 0.5	Ružomberok	19	0	1	0.97	
	I/61 0.5	Pov. Bystrica	30	0	1	2.22	
	I/18 0.5	Žilina	11	0	0	0.46	
2000	I/18 0.5	Žilina	40	0	2	1.59	
3. Zaťaženie cestnej siete

Pre hodnotenie časti cestnej siete kraja bola spracovaná analýza jej zaťaženosti. Vybraté boli ucelené ľahšie cesty I. triedy, rozdelené na podúseky podľa dopravného zaťaženia. Pre každý úsek bolo uvažované s maximálnou intenzitou podľa celoštátneho sčítania dopravy v roku 2000, prepocítanou na rok 2020 pomocou výhľadových koeficientov rastu dopravy. Získané hodnoty sú uvedené na obr. 2. Údaje v zátvorke platia pre výhľadový rok 2020. Jednotlivé hodnotené podúseky sú označené číslom v krúžku.

Výsledky poukazali na poddimenzovanie hodnôt na najviac zaťažených úsecach cestnej siete. V Žilinskom kraji sa to prejavilo najviac na úsecoch Žilina – Strečno a Vrútky – Martin, kde intenzita dosiahla 16 726, resp. 17 193 vozidiel za 24 h. Zodpovedá to približne pôvodne predpokladanej intenzite okolo roku 2010. Do výpočtov zaťaženosti boli zahrnuté aj hodnoty určené na základe demografických údajov a socio-ekonomických dát, získaných dotazníkovým prieskumom v roku 1999.

Cestná sieť bola modelovaná z cest I. triedy a niektorých vybraných úsekov cest II. triedy. Poloha uzlov a ťaží jednotlivých okresov zodpovedala postupom modelovania medzioblastných vzťahov [3]. Vlastný proces modelovania zahŕňal nasledovné kroky:

3. The loading of the road network

The analysis of the carrying capacity was prepared for evaluating the part of the road network in the region. The integrated parts of the 1st class roads were selected and divided into subsections according to the traffic volume. The maximum traffic volume was calculated according to the traffic census from 2000. The volumes were recalculated for the year 2020 for each section with coefficients of the traffic growth. The obtained values are shown in Fig. 2. The data in parentheses are valid for the perspective year 2020. The number in the circle marks the evaluated subsections.

Obr. 2. Intenzita dopravy na cestách I. triedy v sk.v./24h pre rok 2000 (2020)
Fig. 2. The traffic volume for 1st class roads in vehicles per day (AADT) for 2000 (2020)

The results showed under dimensioning of the values in the most loaded sections of the road network. In the observed region it appears, above all, in the sections Žilina – Strečno and Vrútky – Martin where the traffic volume achieved 16726, and 17193 vehicles per day, respectively. It is approximately equivalent to the presumptive volume for 2010 year.

The data determined on the basis of demographic and social-economic analyses obtained from the household interviews in 1999 were also included into the calculation. The road network was modelled from 1st class and selected 2nd class roads. The location of nodes and zone centres responds to the modelling system of the inter-zone relations [3]. The process of the modelling included the following steps:
modelovanie cestnej siete územia v programe VISUM,
vypočet matice vzdialenosťí s použitím metódy najkrátiej cesty,
transformácia matice vzdialenosťí do programu VISEM,
generovanie matice prepravných vztahov,
zaťažovanie cestnej siete v programe VISUM.

Výsledkom modelovania prepravných vztahov a ich aplikácie na cestnú sieť sú zaťažové kartogramy dopravy, spracované pre denné predpokladané intenzity.

4. Pridelenie dopravy na cestnú sieť

Namodelované prepravne vzťahy boli pridelene na cestnú sieť kraja so zredukovaným množstvom sídelných utvarov. Vonkajšie územie bolo rozdelené podľa smerovania dopravných sietí na susedné okresy, kraje, ostatné kraje SR a susedné štáty. Pre vypočet boli použité len údaje, priamo sa týkajúce Žilinského kraja vo forme zdrojovej, príp. cieľovej dopravy. Cieľová doprava z iných oblastí a doprava tranzitná nebola hodnotená pre Považská Bystricu a Prievidzu z dôvodu nedostatku informácií. Tento fakt spôsobil čiastočné poddimenzovanie dopravného zaťaženia kraja. Základná cestná sieť kraja je uvedená na obr. 3 [4].

- Modelling the road network in the region using the VISUM software.
- Calculation of a distance matrix using the nearest road method.
- Transformation of the distance matrix to the VISEM software.
- Generation of the O-D matrix.
- Trip distribution to the road network in VISUM.

The traffic volume diagrams worked out for a daily presumptive volume present the results of the trip distribution model and their application to the road network.

4. The trip assignment to the road network

The modelled traffic relations were distributed to the road network in the region with a reduced number of urban agglomerations. The outer area was divided into the neighbouring counties, regions, and countries by routing the transport networks. Only the data concerned Žilina region in the form of the origin or destination traffic were used for calculation. The destination traffic from other regions and through traffic from Považská Bystrica and Prievidza were not evaluated because of lack of information. This fact caused a partial under dimensioning of the regional traffic loading. The basic regional roads network is shown in Fig. 3 [4].

Obr. 3. Základná cestná sieť kraja
Fig. 3. The basic road network in the region
Po získaní matic prepravných vzťahov bolo pomocou rovno-
važnej metódy pridelovania dopravy realizované predpokladané
zaťaženie cestnej siete (obr. 4). Napriek absencii hodnôt tranzitnej
dopravy získané zaťaženie siete takmer dosahuje úroveň, zistenú
v roku 2000. Z toho je zrejmé, že odporová funkcia, použitá v pro-
gramovom prostriedku VISION, nezodpovedá celkom našim špeci-
fikáms. Modelové hodnoty prekráčajú i údaje získané gravitačnou
metódu, a to hlavne pri individuálnej doprave. Pri hromadnej
doprave sú údaje porovnatelne. Preto je potrebné v ďalších analy-
zách venovať pozornosť hlavne kalibrácii modelu pre program
VISUM.

5. Kapacitné posúdenie vybranej časti
cestnej siete
Za účelom zhodnotenia skutočného stavu zaťaženia boli dôle-
jej kapacitné posúdené vybraté časti cestnej siete. Teoretické hodnoty
prípustnej intenzity v jazdnom pruhu boli porovnané s vypočítanými
hodnotami, určenými na základe skutočných intenzít a súčasných
stavebných a jazdných podmienok. Porovnanie bolo realizované
percentuálnym vyjadrením podielu skutočnej intenzity ku prípust-
nej hodnote. Hodnotenie úsekov s prekročenou kapacitou je pre-
zzentovane v tab. 6.

Z tabuľky je zrejmé, že z 19 hodnotených úsekov ciest I.
triedy v kraji v roku 2000 až 7 úsekov malo prekročenú teoretickú

The expected load of the roads network was obtained by an
equilibrium procedure of the trip assignment after calculating the
O-D matrixes (Fig. 4). The calculated traffic load of the network
almost achieves the level observed in 2000 in spite of the through
traffic volumes absence. Whence it follows that the deterrence
function used in the VISION software does not correspond com-
pletely with Slovak conditions. The model values excess also data
obtained by a gravity method, namely for the private transport. In
case of the public transport the data are comparable. Therefore it
is necessary to pay attention to the model calibration for the
VISUM software in future analyses.

5. The capacity analysis of a selected part
of the road network
The capacity analysis of the road network in selected parts
was realised in order to determine the recent loading state. The-
etical values of an allowable traffic volume in the traffic lane
were compared with calculated values determined on the basis of
real volumes and recent building and traffic conditions. The com-
parison was realised by the percent ratio of the real volume to the
allowable volume. The evaluation of the sections with overloaded
capacity is presented in Table 6.

From the table it results that from 19 evaluated sections of 1st
class road in the region in the year 2000 even 7 sections overloaded
kapacitu. Uvedené úseky sú znázornené na obr. 5 šrafovane. V roku 2020 to bude až 12 úsekov.

Uvedený stav zataženia siete je potrebné považovať za kritický. Predovšetkým cestný fah Bratislava – Žilina – Poprad, tvorený na území kraja cestami I/61 a I/18 je prakticky v celom úseku za hranicou pripustnej intenzity. Výnimkou je len diaľničný úsek Ivachnová – hranica kraja. Úseky Bytča – Žilina, Žilina – Martin a Martin – Sučany prekračujú povolenú intenzitu až o 200 % už v roku 2000. Podobný stav je i na ceste I/65 Martin – Turčianske Teplice.

Posúdenie kapacít v roku 2000

Číslo úseku	Pripustná intenzita, voz/h	Skutočná intenzita, voz/h	Prekročenie kapacity, %
1	276	742	169
2	302	817	171
3	280	1004	258
4	312	963	209
5	411	552	34
6	594	759	28
9	509	747	47

Tab. 6

Section number	Capacity, vph	Traffic volume, vph	Capacity overload, %
1	276	742	169
2	302	817	171
3	280	1004	258
4	312	963	209
5	411	552	34
6	594	759	28
9	509	747	47

Obr. 5. Úseky s prekročenou pripustnou intenzitou

Fig. 5. The sections with exceeded allowable volume
6. Recommendations for quality improvement

From the presented analysis it results that the road network of 1st class in Žilina region is in a critical state from the point of view of capacity. The same result follows from the traffic accident analysis. Therefore it is necessary to build the motorways network in the region namely in the initially determined corridors, which, in addition, correspond to the international corridors.

Literatúra – References

[1] Prehľad údajov o sieti cestných komunikácií SR, SSC Bratislava, Cestná databanka, február 2001
[2] Prehľady dopravnej nehodovosti na cestnej sieti SR za roky 1996-2000. Útvar dopravnej nehodovosti, SSC Bratislava
[3] Kolektív: Model komunikačnej obsluhy územnosprávneho celku - kraja. Správa z riešenia výskumnjej úlohy C519. ŽU Žilina, 2000.
[4] SEDLIAČKOVÁ, J.: Modelovanie dopravných vzťahov Žilinského okresu. DP, ŽU 2001.

Z uvedenej analýzy vyplýva, že cestná siet I. triedy na území Žilinského kraja je z hľadiska kapacity v kritickom stave. Rovnaký výsledok vyplýva z analýzy nehodovosti. Preto je nevyhnutné budovanie diaľničnej siete na území kraja v pôvodne stanovených kori-dorch, ktoré navyše zodpovedajú medzinárodným koridorom.