Some Generalized BRS Transformations. I
The Pure Yang-Mills Case

Paul Federbush
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1109
(pfed@math.lsa.umich.edu)

Abstract

Some generalized BRS transformations are developed for the pure Yang-Mills theory, and a form of quantum gravity. Unlike the usual BRS transformations: these are nonlocal; may be infinite formal power series in the gauge fields; and do not leave the action invariant, but only the product e^{-S} with the Jacobian. Similar constructions should exist for many other field theory situations.
I. Introduction

Since the development of BRS transformations for the Yang-Mills theory, [1], they have played a major role in theoretical applications, such as to the study of renormalization and unitarity. BRS transformations have also been given for quantum gravity [2],[3],[4], and applied to study the renormalizability of higher derivative quantum gravity, [4]. Our interest was to develop a BRS transformation for a particular formulation of quantum gravity in a natural gauge to the theory, [5]. This led us to develop the generalized BRS transformations of this paper, and to apply them to the pure Yang-Mills theory. The Yang-Mills setting is a simpler arena to present the basic ideas, and hopefully generalized BRS transformations may have application to the Yang-Mills theory. There has been study of some aspects of the Yang-Mills theory by other generalizations of the BRS symmetry,[6].

For the pure Yang-Mills we write the action as follows:

\[
S = \int \text{Tr}[\alpha F_{\mu\nu}^2 + \frac{\beta}{2}(\partial_{\mu}A_{\mu})^2 + \gamma \bar{c}_i(\partial_{\mu}L_i)(\partial_{\mu}L_j + [A_{\mu},L_j])c_j].
\] (1)

The superscript L indicates differentiation is to the left, and \(c_i\) is the ghost field. Sum over repeated indices will always be understood, except where otherwise indicated.

The BRS transformations are then:

\[
A_{\mu}(x) \rightarrow A_{\mu}(x) + (\partial_{\mu}c_j(x))L_j\lambda + [A_{\mu}(x),L_j]c_j(x)\lambda.
\] (2)

\[
\bar{c}_j(x) \rightarrow \bar{c}_j(x) - \left(\frac{\beta}{\gamma}\right) \partial_{\mu}A_{\mu}^f(x)\lambda.
\] (3)

\[
c_j(x) \rightarrow c_j(x) + \frac{1}{2} \delta_{j\kappa\ell}c_\kappa(x)c_\ell(x)\lambda.
\] (4)

We work in Euclidean space, and the \(L_i\) are orthonormal in the trace inner product.
These transformations leave the action invariant and have (super-) Jacobian 1 (of course working to linear order in λ). The structure constants satisfy:

$$s_{ij\kappa} = \text{Tr}(L_i[L_j, L_\kappa]).$$

(5)

II Generalized BRS Transformations for the Pure Yang-Mills

In contrast to (2),(3),(4) the generalized BRS transformations for the pure Yang-Mills theory will involve a rather arbitrary formal gauge transformation and are given as:

$$A_\mu(x) \to A_\mu(x) + \frac{\partial}{\partial x^\mu}[c_j(x) + \int_y F_j(x, y)c_j(y)]L_j\lambda$$

$$+ [A_\mu(x), L_j][c_j(x) + \int_y F_j(x, y)c_j(y)]\lambda$$

(6)

$$\bar{c}_i(x) \to \bar{c}_i(x) - \left(\frac{\beta}{\gamma}\right)(\frac{\partial}{\partial x^\mu}A^\mu_i(x))\lambda - \left(\frac{\beta}{\gamma}\right)G_i(x)\lambda$$

(7)

$$c_j(x) \to c_j(x) + \frac{1}{2}s_{j\kappa\ell}c_\kappa(x)c_\ell(x)\lambda + \int_y \int_z Z_{j\kappa\ell}(x, y, z)c_\kappa(y)c_\ell(z)\lambda$$

(8)

Here $F_j(x, y)$ is an essentially arbitrary formal power series in the A_μ field with the lowest order term of degree 1.

$$F_j(x, y) = F^1_j(x, y) + F^2_j(x, y) + ...$$

(9)

$F^i_j(x, y)$ is of degree i. F^1, say, is of form:

$$F^1_j(x, y) = \int_z f^1_j(x, y, z)A^{\mu}_i(z)$$

(10)
where

\[A_\mu(x) = \Sigma_i A^i_\mu(x)L_i \] \hspace{1cm} (11)

The \(G_i \) and \(Z_{j\kappa\ell} \) are determined as formal power series in the \(A_\mu \), inductively by degree, as will be specified below. If \(F_j \equiv 0 \) one gets the usual BRS transformation. If to order one in \(\lambda \) we write:

\[S \rightarrow S + \Delta S\lambda \] \hspace{1cm} (12)

\[J = 1 + \Delta J\lambda \] \hspace{1cm} (13)

Where \(J \) is the Jacobian of the transformation (6) –(8), then we require:

\[\Delta S - \Delta J = 0 \] \hspace{1cm} (14)

which ensures invariance of \(\int e^{-S} \) (i.e. invariance of \(e^{-S} \) times integration measure density).

We write

\[\Delta S = \Delta S_1 + \Delta S_2 \] \hspace{1cm} (15)

\[\Delta J = \Delta J_1 + \Delta J_2 \] \hspace{1cm} (16)

where the subscripts 1 and 2 split the expressions into terms linear and quadratic in \(c_i(x) \). Eq. (14) becomes two equations:

\[\Delta S_1 - \Delta J_1 = 0 \] \hspace{1cm} (17)

\[\Delta S_2 - \Delta J_2 = 0 \] \hspace{1cm} (18)

It is easy to see:

\[\Delta J_2 = 0 \] \hspace{1cm} (19)

The equations (18)-(19) are just:

\[\Delta S_2 = 0 \] \hspace{1cm} (20)
which by a simple calculation holds for \(Z \) satisfying:

\[
\Delta_x Z_{i\kappa\ell}(x, y, z) + \frac{\partial}{\partial x^\mu} (A^\nu_\mu(x) Z_{s\kappa\ell}(x, y, z)) s_{irs} - \frac{\partial}{\partial x^\mu} \left[\left(\frac{\partial}{\partial x^\mu} F_\kappa(x, y) \right) \delta(z - x) \right] s_{i\kappa\ell} - \frac{\partial}{\partial x^\mu} [A^s_\mu(x) F_\kappa(x, y) \delta(z - x)] s_{rs\kappa} s_{ir\ell} = 0 \tag{21}
\]

\(\delta(z - x) \) is a four dimensional delta function. Equation (21) may be solved inductively in degree for \(Z \) a formal power series in the fields \(A_\mu(x) \), similar to \(F_\kappa(x, y) \).

In equation (21) indices \(i, \kappa, \ell \) are never summed!

With \(F_\kappa(x, y) \) given, and \(Z_{i\kappa\ell}(x, y, z) \) now determined, \(G_i(x) \) is obtained from equation (17), completely specifying the generalized BRS transformation (6)–(8). Similarly to the derivation of \(Z_{i\kappa\ell}(x, y, z) \), equation (17) holds if \(G_i(x) \) satisfies:

\[
\Delta_y G_i(y) - \left(\frac{\partial}{\partial y^\mu} G_i(y) \right) A^\mu_j(y) s_{rji} + \int_x A^\nu_i(x, \mu, \nu) \frac{\partial}{\partial x^\mu} F_i(x, y) \nonumber
\]

\[
+ \int_x A^\nu_i(x, \mu, \nu) A^\mu_j(x) F_i(x, y) s_{rji} + \frac{1}{\beta} \int_x \frac{\delta}{\delta A^\mu_i(x)} \frac{\partial}{\partial x^\mu} F_i(x, y) \nonumber
\]

\[
+ \frac{1}{\beta} \int_x \frac{\delta}{\delta A^\mu_i(x)} \left\{ A^\nu_j(x) F_i(x, y) \right\} s_{rji} - \frac{1}{\beta} \int_x \left[Z_{jji}(x, x, y) - Z_{jij}(x, y, x) \right] = 0. \tag{22}
\]

This equation may be solved inductively as a formal power series in \(A_\mu(x) \) for \(G_i \). The familiar notation for functional derivative has been used, and commas indicate partial derivatives. Index \(i \) is never summed over! The last term is eq.(22) is delicate to calculate... the nitty-gritty yet awaits a proper exegesis.
References

[1] C. Becchi, A. Rouet, and R. Stora, “Renormalization of the Abelian Higgs-Kibble Model”, *CMP* **42** 127 (1975). C. Becchi, A. Rouet, and R. Stora, “Renormalization of Gauge Theories”, *Annals Phys.* **98** 287 (1976).

[2] R. Delbourgo and M. Ramon-Medrano, “Becchi-Rouet-Stora Gauge Identities for Gravity”, *Nucl. Phys. B* **110**, 467 (1976).

[3] J. Dixon, unpublished Ph.D. thesis, Oxford (1975).

[4] K. S. Stelle, “Renormalization of higher-derivative quantum gravity”, *Phys. Rev. D* **16** 953-969 (1977).

[5] P. Federbush, “A Speculative Approach to Quantum Gravity”, Symposium in Honor of Eyvind H. Wichmann, University of California, Berkeley, June 1999.

[6] Satish, D. Joglekar, A. Misra, “Relating Green’s Functions in Axial and Lorentz Gauges Using Finite Field-Dependent BRS Transformations”, [hep-th/9812101](https://arxiv.org/abs/hep-th/9812101).

[7] G. Battle, P. Federbush, and P. Uhlig, “Wavelets for Quantum Gravity and Divergence-Free Wavelets”, *Appl. and Comp. Harmonic Analysis* **1**, 295 (1994).