Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data

The ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 16 April 2014 / Accepted: 15 June 2014 / Published online: 15 July 2014
© CERN for the benefit of the ATLAS collaboration 2014. This article is published with open access at Springerlink.com

Abstract Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton–proton collision data collected in 2011 at $\sqrt{s} = 7$ TeV and corresponding to an integrated luminosity of 4.7 fb^{-1}. Tag-and-probe methods using events with leptonic decays of W and Z bosons and J/ψ mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

1 Introduction

The good performance of electron reconstruction and identification in the ATLAS experiment at the Large Hadron Collider (LHC) based at the CERN Laboratory has been an essential ingredient to its successful scientific programme. It has played a critical role in several analyses, as for instance in Standard Model measurements [1–4], the discovery of a Higgs boson [5], and the searches for new physics beyond the Standard Model [6]. Isolated electrons produced in many interesting physics processes can be subject to large backgrounds from misidentified hadrons, electrons from photon conversions, and non-isolated electrons originating from heavy-flavour decays. For this reason, it is important to efficiently reconstruct and identify electrons over the full acceptance of the detector, while at the same time to have a significant background rejection. In ATLAS, this is accomplished using a combination of powerful detector technologies: silicon detectors and a transition radiation tracker to identify the track of the electron and a longitudinally layered electromagnetic calorimeter system with fine lateral segmentation to measure the electron’s energy deposition, followed by hadronic calorimeters used to veto particles giving rise to significant hadronic activity.

During the 2011 data-taking period at $\sqrt{s} = 7$ TeV, the LHC steadily increased the instantaneous luminosity from $5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ to $3.7 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, with an average superposition (“pile-up”) of approximately nine proton–proton interactions per beam crossing. In contrast to the electron performance goals for the 2010 period [7], which focused on robustness for the first LHC running, the goals for the 2011 period aimed at substantially increasing the background rejection power in this much busier environment to keep the online output rate of events triggered by electron signatures within its allocated budget while at the same time preserving high reconstruction and identification efficiencies for electrons. During this period, ATLAS collected large samples of isolated electrons from $W \rightarrow e\nu$, $Z \rightarrow ee$, and $J/\psi \rightarrow ee$ events, allowing precise measurements of the electron reconstruction and identification efficiencies over the range of transverse energies, E_T, from 7 to 50 GeV. This paper reports on the methods used to perform these measurements, describes the improvements with respect to previous results [7], and benchmarks the performance of the 2011 electron reconstruction and identification used in various analyses performed with proton–proton collisions.

The structure of the paper is as follows. Section 2 provides a brief summary of the main components of the ATLAS detector. The electron trigger design, the algorithm for electron reconstruction and the electron identification criteria are described in Sect. 3. Section 4 focuses on the method used to compute the various efficiencies. The data and simulation samples used in this work are given in Sect. 5 together with the main triggers that enabled the event collection. Section 6 reports on the identification efficiency measurement, presenting the background evaluation and the results obtained.
with the tag-and-probe technique. A similar methodology, but using a subset of the samples available for the identification efficiency measurement, is used to extract the efficiency of the electron reconstruction described in Sect. 7. The study of the probability to mismeasure the charge of an electron is presented in Sect. 8. The summary of the work is given in Sect. 9.

2 The ATLAS detector

The ATLAS detector is designed to observe particles produced in high-energy proton–proton and heavy-ion collisions. It is composed of an inner tracking detector (ID) immersed in a 2 T axial magnetic field produced by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters outside the solenoid, and air-core-toroid muon spectrometers. A three-level triggering system reduces the total data-taking rate from a bunch-crossing frequency of approximately 20 MHz to several hundred Hz. A detailed description of the detector is provided elsewhere [8]. In the following, only an overview of the main systems relevant to the results reported in this paper is provided.

The inner tracking detector provides precise reconstruction of tracks within a pseudorapidity range \(|\eta| \lesssim 2.5\). The innermost part of the ID consists of a silicon pixel detector providing typically three measurement points for charged particles originating in the beam-interaction region. The closest layer to the beam-pipe (referred to as the b-layer) contributes significantly to precision vertexing and provides discrimination against photon conversions. A SemiConductor Tracker (SCT) consisting of modules with two layers of silicon micro-strip sensors surrounds the pixel detector, providing typically eight hits per track at intermediate radii. The outermost region of the ID is covered by a Transition Radiation Tracker (TRT) consisting of straw drift tubes filled with a Xenon mixture, interleaved with polypropylene/polyethylene transition radiators. For charged particles with transverse momentum \(p_T > 0.5\) GeV within its pseudorapidity coverage \(|\eta| \lesssim 2\), the TRT provides typically 35 hits per track. The TRT offers additional electron identification capability via the detection of transition-radiation photons generated by the radiators.

The ATLAS calorimeter system has both electromagnetic and hadronic components and covers the pseudorapidity range \(|\eta| < 4.9\), with finer granularity over the region matched to the inner detector. The central EM calorimeters are of an accordion-geometry design made from lead/liquid-argon (LAr) detectors, providing a full \(\phi\) coverage. These detectors are divided into two half-barrels (\(-1.475 < \eta < 0\) and \(0 < \eta < 1.475\)) and two endcap (EMEC) components (\(1.375 < |\eta| < 3.2\), with a transition region between the barrel and the endcaps (\(1.37 < |\eta| < 1.52\)) which contains a relatively large amount of inactive material. Over the region devoted to precision measurements (\(|\eta| < 2.47\), excluding the transition regions), the EM calorimeter is segmented into longitudinal (depth) compartments called front (also known as strips), middle, and back. The front layer consists of strips finely grained in the \(\eta\) direction, offering excellent discrimination between photons and \(\pi^0 \to \gamma\gamma\). At high electron or photon energy, most of the energy is collected in the middle layer, which has a lateral granularity of 0.025 \(\times\) 0.025 in \((\eta, \phi)\) space, while the back layer provides measurements of energy deposited in the tails of the shower. The hadronic calorimeters, which surround the EM detectors, provide additional discrimination through further energy measurements of possible shower tails. The central EM calorimeter is complemented by two presampler detectors in the region \(|\eta| < 1.52\) (barrel) and \(1.5 < |\eta| < 1.8\) (endcaps), made of a thin LAr layer, providing a sampling for particles that start showering in front of the EM calorimeters. The forward calorimeter (FCal), a copper–tungsten/LAr detector, provides coverage at high pseudorapidity \((3.1 < |\eta| < 4.9\) with EM-shower identification capability given by its lateral granularity and longitudinal segmentation into three layers; this calorimeter plays an important role in extending the pseudorapidity range where electrons from Z-boson decays can be identified.

The inner detectors, including their services, as well as the cryostat containing the LAr calorimeter system correspond to a significant pseudorapidity-dependent amount of material located in front of the EM calorimeters and can impact the electron reconstruction and identification performance. Figure 1 shows the distribution of the material in front of the cryostat in terms of radiation lengths as a function of pseudorapidity. The observed material variations suggest a pseudorapidity-dependent optimisation of the selection criteria.

3 Electron trigger, reconstruction, and identification

3.1 Trigger

The trigger system in ATLAS [8,9] comprises a hardware-based Level-1 trigger (L1) and software-based High-Level Triggers (HLT), composed of the Level-2 trigger (L2) and the Event Filter (EF). Inside the L1, the transverse energy \(E_T\) of electromagnetic showers collected in the calorimeters
is computed within a granularity of $\Delta \eta \times \Delta \phi \approx 0.1 \times 0.1$. The selected objects must satisfy an E_T threshold and are used to seed the L2 reconstruction, which combines calorimetric and track information using fast algorithms. In the EF, offline-like algorithms are deployed for the reconstruction of the calorimetric quantities while an adapted version of the offline software is used to treat the information of the inner detector. During the 2011 run, the L1 output rate was kept below 60 kHz, the L2 rate below 5 kHz and the EF rate was approximately 400 Hz, averaged over the LHC fills.

3.2 Reconstruction

3.2.1 Central electrons

The electron-reconstruction algorithm used in the central region of the detector equipped with the ID ($|\eta| < 2.5$) identifies energy deposits in the EM calorimeter and associates these clusters of energy with reconstructed tracks in the inner detector. The three-step process is as follows.

Cluster reconstruction: EM clusters are seeded from energy deposits with total transverse energy above 2.5 GeV by using a sliding-window algorithm with window size 3×5 in units of 0.025×0.025 in (η, ϕ) space. From Monte Carlo (MC) simulations of W and Z leptonic decays, the efficiency of the initial cluster reconstruction is expected to be approximately 97% at $E_T = 7$ GeV and almost 100% for electrons with $E_T > 20$ GeV.

Track association with the cluster: Within the tracking volume, tracks with $p_T > 0.5$ GeV are extrapolated from their last measured point to the middle layer of the EM calorimeter. The extrapolated η and ϕ coordinates of the impact point are compared to a corresponding seed cluster position in that layer. A track and a cluster are considered to be successfully matched if the distance between the track impact point and the EM cluster barycentre is $|\Delta \eta| < 0.05$. To account for the effect of bremsstrahlung losses on the azimuthal distance, the size of the $\Delta \phi$ track–cluster matching window is 0.1 on the side where the extrapolated track bends as it traverses the solenoidal magnetic field. An electron candidate is considered to be reconstructed if at least one track is matched to the seed cluster. In the case where more than one track is matched to a cluster, tracks with hits in the pixel detector or the SCT are given priority, and the match with the smallest $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ distance is chosen. In the absence of a matching track, the cluster is classified as an unconverted photon candidate. Electrons are distinguished from converted photons by investigating the presence of pairs of close-by tracks originating from a vertex displaced from the interaction point and by verifying the location of the first hits along the path of the single tracks [10].

Reconstructed electron candidate: After a successful track–cluster matching, the cluster sizes are optimised to take into account the overall energy distributions in the different regions of the calorimeter. In the EM barrel region, the energy of the electron cluster is collected by enlarging its size to 3×7 in units of 0.025×0.025 in (η, ϕ) space, while in the EM endcaps the size is increased to 5×5. The total reconstructed electron-candidate energy is determined from the sum of four contributions [11]: the estimated energy deposit in the material in front of the EM calorimeter; the measured energy deposit in the cluster, corrected for the estimated fraction of energy measured by the sampling calorimeter; the estimated energy deposit outside the cluster (lateral leakage); and the estimated energy deposit beyond the EM calorimeter (longitudinal leakage). The correction for the material is aided by the measured presampler signal, while the other three corrections are derived from MC simulations. The (η, ϕ) spatial coordinates of the electron candidate are taken from the parameters of the matched track at the interaction vertex. The absolute energy scale and the intercalibration of the different parts of the EM calorimeter are determined using tightly selected electrons from $Z \rightarrow ee$, $J/\psi \rightarrow ee$ and $W \rightarrow e\nu$ decays [7].

The relative alignment of the calorimeter components with respect to the inner detector has been measured using electron candidates with transverse energy $E_T > 20$ GeV selected with strict identification criteria, similar to those used for the energy calibration, and compatible with coming from the decay of W or Z bosons. The difference between the electron cluster position and the impact point of the track extrapolation to the calorimeter indicates the size of possible relative displacements between the two detectors. The derived alignment constants are applied to correct both the η (as shown in Fig. 2) and ϕ electron cluster coordinates.
3.2.2 Forward electrons

In the forward region (2.5 < |\eta| < 4.9), which is not equipped with tracking detectors, the electron reconstruction uses only the information from the EMEC and forward calorimeters and therefore no distinction is possible between electrons and photons. Due to the reduced detector information in this region, the use of forward electrons in physics analyses is restricted to the range $E_T > 20$ GeV. In contrast to the fixed-size sliding-window clustering used in the central region, the forward region uses a topological clustering algorithm [12]: cells with deposited energy significantly above the noise level are grouped in three dimensions in an iterative procedure, starting from seed cells. The number of cells in the cluster is not fixed and the sum of their energies defines the energy of the cluster, with corrections made to account for energy losses in the passive material in front of the calorimeters.

As determined from simulation, the efficiency of the cluster reconstruction is better than 99% for $E_T > 20$ GeV. An electron candidate in the forward region is reconstructed if it has a transverse energy of $E_T > 5$ GeV and has only a small energy component in the hadronic calorimeters. The direction of the forward-electron candidates is defined by the barycentre of the cells belonging to the cluster.

3.3 Electron identification

3.3.1 Central electrons

The identification criteria for central-electron candidates are implemented based on sequential cuts on calorimeter, on tracking, and on combined track–cluster variables. These requirements are optimised in 10 cluster-η bins, motivated by the structure of the detector, and 11 E_T bins (from 5 to

Fig. 2 Distributions of the difference between the cluster η position determined from the first layer of the EM calorimeter, and the η position of the ID track extrapolated to the entrance of that layer. Before the alignment procedure, the estimated detector positions were based on the best knowledge from survey and construction. The distribution is shown before (red points) and after (black triangles) the alignment corrections. Monte Carlo distributions using a perfect tracker–calorimeter alignment are also shown as a coloured histogram. The four figures correspond to two half-barrels ($-1.37 < \eta < 0$ in (b) and $0 < \eta < 1.37$ in (c)) and the two endcaps ($-2.47 < \eta < -1.52$ in (a) and $1.52 < \eta < 2.47$ in (d)). The two-peak structure visible in the endcap plots (a and d) before alignment is due to an endcap transverse displacement of 5 mm with respect to the beam-line.
in order to provide good separation between signal (isolated) electrons and background from hadrons misidentified as electrons, non-isolated electrons (e.g. from semileptonic decays of heavy-flavour particles), and electrons from photon conversions.

Three sets of reference selection criteria, labelled loose, medium and tight, are designed for use in analyses. These three sets were revisited with respect to those described in Ref. [7], which were designed mostly for robustness at the startup of the LHC machine with low-luminosity conditions. These criteria are designed in a hierarchical way so as to provide increasing background-rejection power at some cost to the identification efficiency. The increased background-rejection power was obtained both by adding discriminating variables at each step and by tightening the requirements on the original variables. The different selections used for central-electron identification are detailed in Table 1 and described below.

Table 1 Variables used in the loose, medium, and tight electron identification criteria in the central region of the detector (|\(\eta\)| < 2.47)

Category	Description	Variable					
loose	Acceptance		\(\eta	< 2.47\)		
	Hadronic leakage	In	\(\eta	< 0.8\) and \(\eta	> 1.37\): ratio of \(E_T\) in the first layer of the hadronic calorimeter to \(E_T\) of the EM cluster
		In \(0.8 <	\eta	< 1.37\): ratio of \(E_T\) in whole hadronic calorimeter to \(E_T\) of the EM cluster			
	Middle layer of the EM	Ratio of energies in	\(3 \times 7\) cells over \(7 \times 7\) cells				
		Lateral width of the shower					
	Front layer of the EM	Total shower width					
		Energy difference of the largest and second largest energy deposits in the cluster divided by their sum					
	Track quality and track–cluster matching	Number of hits in the pixel detector (\(>0\))					
		Number of hits in the silicon detectors (\(\geq 7\))					
		\(\Delta \eta	\) between the cluster position in the first layer and the extrapolated track (\(<0.015\))			
medium (includes loose with tighter requirements on shower shapes)	Track quality and track–cluster matching	Number of hits in the b-layer (\(>0\)) for \(\eta	< 2.01\)			
		Number of hits in the pixel detector (\(>1\)) for \(\eta	> 2.01\)			
		Transverse impact parameter \(d_0	< 5\ mm\)			
		Tighter \(\Delta \eta	\) cut (\(<0.005\))			
tight (includes medium)	TRT	Loose cut on TRT high-threshold fraction					
Conversions	Track quality and track–cluster matching	Tighter transverse impact parameter cut (\(d_0	< 1\ mm\))			
		Asymmetric cut on \(\Delta \phi\) between the cluster position in the middle layer and the extrapolated track					
		Ratio of the cluster energy to the track momentum					
	TRT	Total number of hits in the TRT					
		Tighter cut on the TRT high-threshold fraction					
	Conversions	Reject electron candidates matched to reconstructed photon conversions					
as for the central region, three reference sets use the same variables in each set, but with increasing background rejection power coming from tightened requirements, with the **tight** identification providing a rejection factor approximately two to three times higher than the **loose** selection.

3.3.2 Forward electrons

Electron identification in the forward region also is based on sequential cuts on discriminating variables; however, these variables are mostly based on topological cluster moments, as defined in Table 2. As for the central region, three reference sets of selection criteria, labelled **loose**, **medium**, and **tight**, are defined. To compensate for the absence of tracking information in the forward region, variables describing both the lateral and longitudinal shower development are employed.

In addition, due to the significantly harsher pile-up conditions at high pseudorapidity with respect to those described in Ref. [7], the identification criteria for forward electrons were redesigned and optimised directly with data in nine clustered-η bins: six in the EMEC calorimeter \((2.5 < |η| < 3.16)\) and three in the FCal \((3.35 < |η| < 4.90)\). The transition region between the two calorimeters \((3.16 < |η| < 3.35)\) is excluded from the study. No explicit dependence on cluster \(E_T\) or isolation energy is introduced in the forward-electron identification criteria. However, in contrast to the central electrons, the identification criteria are also optimised in four bins of the number of primary vertices reconstructed in the event \(N_{PV} (1–3, 4–6, 7–10, >10)\), allowing for similar electron-identification efficiency for different pile-up conditions. These three reference sets use the same variables in each set, but with increasing background rejection power coming from tightened requirements, with the **tight** identification providing a rejection factor approximately two to three times higher than the **loose** selection.

3.4 Bremsstrahlung-mitigation algorithms

An electron can lose a significant amount of its energy due to bremsstrahlung when interacting with the material it traverses. Because of the electron’s small mass, radiative losses can be substantial, resulting in alterations of the curvature of the electron’s trajectory when it propagates through a magnetic field and hence of the reconstructed electron track.

The electron-reconstruction scheme described in Sect. 3.2.1 employs the same tracking algorithm for all charged particles, with all tracks fitted using a pion mass hypothesis to estimate the material effects. The lack of special treatment for bremsstrahlung effects results in inefficiencies in reconstructing the electron trajectory. It also results in the degradation of the estimated track parameters, increasing with the amount of material encountered. The effect is strongly dependent on the electron pseudorapidity, as shown in Fig. 1. By taking into account possible bremsstrahlung losses (and the resulting alteration of the track curvature), the estimated electron track parameters can be improved. In 2011–2012, a two-step pro-

Table 2 Variables used to identify electrons in the forward region of the detector \((2.5 < |η| < 4.9)\)

Category	Description	Variable		
Acceptance	\(2.5 <	η	< 4.9\)	\(\lambda_{centre}\)
Shower depth	Distance of the shower barycentre from the calorimeter front face measured along the shower axis	\(f_{max}\)		
Maximum cell energy	Fraction of cluster energy in the most energetic cell	\(\langle l_i^2 \rangle\)		
Longitudinal second moment	Second moment of the distance of each cell to the shower centre in the longitudinal direction \((l_i)\)	\(\langle r_i^2 \rangle\)		
Transverse second moment	Second moment of the distance of each cell to the shower centre in the transverse direction \((r_i)\)	\(w_i \langle l_i^2 \rangle\)		
Normalised lateral moment	\(w_2^\text{min} \) and \(w_{max}^\text{min}\) are second moments of \(r_i\) for different weights per cell	\(\frac{l_i^2}{l_2 + r_{max}}\)		
Normalised longitudinal moment	\(l_2^\text{min}\) and \(l_{max}^\text{min}\) are second moments of \(\lambda_i\) for different weights per cell	\(\frac{w_2^\text{min} \langle l_2^2 \rangle}{l_2^2 \langle r_{max}^2 \rangle}\)		

\[\langle x^n \rangle = \left[\sum_i E_i x_i^n \right] / \left[\sum_i E_i \right], \]

where \(i\) is the cell index within the cluster.
gramme was underway in ATLAS to improve electron reconstruction: first to correct all track parameters associated with electron candidates by performing a bremsstrahlung refitting procedure prior to the matching with the electron cluster, and then performing bremsstrahlung recovery at the initial step of the electron trajectory formation, to allow more efficient track reconstruction. By the end of the 2011 data-taking period, the first step [13] was made available to analyses, improving the track-related electron identification variables. The second step was implemented in time for the 2012 data-taking period, increasing the electron reconstruction efficiency by several percent, especially at low \(E_T \). Results presented in this paper do not use the bremsstrahlung-mitigation algorithms.

4 Methodology for efficiency measurements

Isolated electrons are important ingredients in Standard Model measurements and searches for physics beyond the Standard Model. However, the experimentally determined electron spectra must be corrected for instrumentation inefficiencies, such as those related to trigger, reconstruction, and identification, before absolute measurements can be made. These inefficiencies may be directly estimated from data using so-called tag-and-probe methods [7]. These methods are used to select, from known resonances such as \(Z \rightarrow ee \), unbiased samples of electrons (probes) by using strict selection requirements on the second object produced from the particle’s decay (tags). The efficiency of a requirement algorithm can then be determined by applying it directly to the probe sample after accounting for residual background contamination. The efficiency factor relating a true single-electron spectrum to one determined experimentally may be factorised as a product of different efficiency terms:

\[
\epsilon_e = \epsilon_{\text{cluster}} \cdot \epsilon_{\text{reco}} \cdot \epsilon_{\text{id}} \cdot \epsilon_{\text{trig}} \cdot \epsilon_{\text{other}},
\]

where \(\epsilon_{\text{cluster}} \) is the efficiency to reconstruct an electromagnetic cluster, \(\epsilon_{\text{reco}} \) is the electron reconstruction algorithm efficiency given the presence of the cluster (Sect. 3.2), and \(\epsilon_{\text{id}} \) is the efficiency of identification criteria with respect to the reconstructed electron candidates (Sect. 3.3). The variable \(\epsilon_{\text{trig}} \) denotes the trigger efficiency with respect to reconstructed electron candidates passing the identification criteria. The variable \(\epsilon_{\text{other}} \) is the efficiency of any extra selection requirements applied to the electrons satisfying the identification criteria, such as isolation of the electron cluster and/or track, or selections on the significance of the impact parameter of the fitted electron track (both are used in many analyses). This paper reports on the measurement of the reconstruction efficiency \(\epsilon_{\text{reco}} \) and the identification efficiency \(\epsilon_{\text{id}} \) as determined from data and compared with expectations from simulated events. The term \(\epsilon_{\text{cluster}} \) is determined from simulation to be close to unity, with typical values in the central and forward regions provided in Sect. 3.2. Measurements of the trigger efficiency \(\epsilon_{\text{trig}} \) can be found in Ref. [14]. The term \(\epsilon_{\text{other}} \) is largely process-dependent and so must be measured separately in each analysis. Section 8 presents a measurement of the efficiency to correctly identify the charge of an electron, \(\epsilon_{\text{charge}} \), with respect to the reconstructed electron candidates satisfying the various identification criteria.

Tag-and-probe-based measurements based on samples of \(Z \rightarrow ee, W \rightarrow ev, \) and \(J/\psi \rightarrow ee \) events are presented. The combination of the three samples allows efficiency measurements over a significant \(E_T \) range, from 7 to 50 GeV, while still providing overlapping measurements between the samples. In the case of \(Z \rightarrow ee \) and \(J/\psi \rightarrow ee \) decays, events are selected on the basis of the electron-positron invariant mass and strict identification criteria applied to the tag electron. Electron identification efficiencies are also extracted from \(W \rightarrow ev \) decays, tagging on the presence of missing transverse momentum in the event; this channel contributes significantly to the overall efficiency determination due to its high statistical power. At the LHC, \(J/\psi \) mesons are produced directly and in \(b \)-hadron decays. Prompt \(J/\psi \) decays occur in the vicinity of the primary event vertex while many of the non-prompt \(J/\psi \) particles have displaced decay vertices due to the relatively long lifetime of their \(b \)-hadron parent. The \(J/\psi \) candidates come from a mixture of these two processes; however, their ability to extend the reach of efficiency measurements to low \(E_T \) makes them nonetheless very attractive, in spite of this added complication.

The shower profiles of electrons in the calorimeters depend on both the energy of the electrons and the amount of material traversed by the electrons before reaching the calorimeter. For this reason, electron efficiency measurements in the central region (\(|\eta| < 2.47 \)) are made binned in two dimensions, both transverse energy and pseudorapidity, in contrast to the previous results [7] whose statistical precision could only provide one-dimensional binning in either variable. Eight bins of 5 GeV in transverse energy are used in the range from 10 to 50 GeV, with an additional bin covering the low \(E_T \) range from 7 to 10 GeV. Depending on the available statistics in each \(E_T \) bin, efficiencies are measured in three different, largely detector-motivated, \(\eta \) granularities:

- **coarse**: 11 bins in \(\eta \) with limits \(-2.47, -2.01, -1.52, -1.37, -0.8, -0.1, 0.1, 0.8, 1.37, 1.52, 2.01, 2.47\)
- **middle**: 20 bins in \(\eta \) with \(|\eta| \) limits \(0.0, 0.1, 0.6, 0.8, 1.15, 1.37, 1.52, 1.81, 2.01, 2.37, 2.47\)
- **fine**: 50 bins in \(\eta \) with a typical granularity of 0.1 covering the full pseudorapidity range (\(|\eta| < 2.47 \)).

In the forward region the measurements are performed binned only in absolute electron pseudorapidity:

\footnote{Results in the high transverse energy region \(E_T > 50 \text{ GeV} \) are discussed in Ref. [15].}
Samples of simulated $Z \to ee$, $W \to ev$, and $J/\psi \to ee$ decays are used to benchmark the expected electron reconstruction and identification performance. The primary $Z \to ee$ and $W \to ev$ MC samples are generated with POWHEG version r1556 [18–21] and parton showering is accomplished using PYTHIA version 6.425. The J/ψ samples are generated using the same version of PYTHIA. All generators are interfaced to PHOTOS version 3.0 [22] to simulate the effect of final-state QED radiation. The generated event samples are passed through a detailed ATLAS detector simulation [23] using GEANT4 [24]. The MC events are reconstructed using the same software suite as used for the data. Because background subtraction is not performed on the MC signal samples when assessing the expected electron efficiency, generator-level information is used to select electrons originating only from $Z \to ee$, $W \to ev$, or $J/\psi \to ee$ decays. Correction factors are applied to the simulation to account for known discrepancies with the data. These include corrections in the form of event weights applied to the simulated events to match the average interaction rate per bunch crossing and the width of the beam-spot in the z-direction, both as measured in the 2011 data set. Both corrections are important for the measurements presented in this paper since the identification efficiency depends on the instantaneous luminosity and the position of the primary interaction.

Important improvements to the ATLAS GEANT4 simulation were made as a consequence of observed Monte Carlo–data discrepancies in 2010 related to the transverse shower shapes of electrons in the EM calorimeter [7]. The implementation of a new GEANT4 version (4.9.3), combined with a change of the ATLAS geometry description resulted in a significant improvement in the 2011 MC simulation samples. The residual differences that are still observed when comparing data and MC for some variables, as shown in Fig. 3, have to be taken into account in the analyses by applying appropriate data-to-MC efficiency corrections as presented in this paper.

5.2 Triggers

The samples used in these measurements were selected by the primary electron triggers as well as by specifically designed supporting triggers. In order to keep the trigger rates to an acceptable level with the increase of the instantaneous luminosity in 2011, the primary single-electron trigger selection had to be adjusted several times by raising the minimum transverse energy threshold and tightening the selection criteria. These same trigger conditions are also implemented in the Monte Carlo simulations.

$-$ $Z \to ee$ events were collected using the unprescaled single-electron triggers, requiring the candidates to pass a minimum E_T threshold. These events were also required
In a collider event, the missing transverse momentum is defined as the momentum imbalance in the plane transverse to the beam axis and is obtained from the negative vector sum of the momenta of all particles detected in the event.

$$\sum_{}$$

- $W \rightarrow e\nu$ events were collected with specialised triggers based on the missing transverse momentum\(^5\) E_T^{miss} significance $x_s = E_T^{\text{miss}}/\sqrt{\sum (E_T - c)}$, where the sum runs over all energy deposits and the constants α and c are optimised such that the denominator represents the E_T^{miss} resolution. The x_s variable offers the ability to suppress the background significantly, allowing the triggers to run unprescaled at any pile-up rate. An x_s selection requirement was used in combination with an electron E_T cluster threshold of 10 or 13 GeV. During the 2011 run, additional track-quality requirements were applied to the probe electron candidates. The E_T^{miss} vector was required to be separated by at least $\Delta\phi = 0.7$ from any jet with $p_T > 10$ GeV, where the jets were reconstructed with the anti-k_T algorithm \(^{25}\) with distance parameter $R = 0.4$.

\(^5\) In a collider event, the missing transverse momentum is defined as the momentum imbalance in the plane transverse to the beam axis and is obtained from the negative vector sum of the momenta of all particles detected in the event.

Single-electron triggers	Luminosity [cm\(^{-2}\) s\(^{-1}\)]	E_T threshold [GeV]
e20_medium	Up to 2×10^{33}	20
e22_medium	$2 - 2.3 \times 10^{33}$	22
e22vh_medium1	$> 2.3 \times 10^{33}$	22

6 Identification efficiency measurement

6.1 Central-electron identification efficiency

Events from $W \rightarrow e\nu$, $Z \rightarrow ee$, and $J/\psi \rightarrow ee$ samples are used to measure the central-electron identification effi-
6.1.1 Selection requirements and sample sizes

A common set of requirements is applied to all triggered events to ensure good data quality and suppress contamination from background events. All electron candidates, whether they be tag or probe electrons, must be reconstructed within $|\eta| < 2.47$ with at least six hits in the SCT and one in the pixel detector. The effect of these requirements is accounted for in the reconstruction efficiency; see Sect. 7. Tight selection criteria are applied to the tagging object that triggered the event, that is, to one of the two electrons in $Z \rightarrow ee$ and $J/\psi \rightarrow ee$ events or to E_T^{miss} in the case of $W \rightarrow ev$ events. For the case of $W \rightarrow ev$ and $Z \rightarrow ee$ candidates, the probe electrons must also satisfy a requirement limiting the amount of leakage of the shower into the hadronic calorimeter (also accounted for in the reconstruction efficiency; see Sect. 7). Further criteria are imposed in each channel to improve the separation between signal and background events.

$W \rightarrow ev$ channel: A range of requirements is applied to the minimum value of the transverse mass\(^6\) $m_T (40 \text{ to } 50 \text{ GeV})$, and on the missing transverse momentum, $E_T^{\text{miss}} (25 \text{ to } 40 \text{ GeV})$, of the event in order to obtain event samples with differing background fractions. A minimum transverse-energy requirement of $E_T > 15 \text{ GeV}$ is applied to the probe electrons and the entire event is discarded if more than one probe candidate in a given event satisfies the medium criteria. Two additional requirements are imposed in order to reduce contributions from hadrons misidentified as electrons. The probe electron candidate is required to be separated from any $R = 0.4$ anti-k_t jet with $p_T > 25 \text{ GeV}$ found within a cone of radius $\Delta R = 0.4$. Similarly, the E_T^{miss} vector must be separated from jets with $p_T > 25 \text{ GeV}$ by at least an angular distance of $\Delta \phi = 0.7$. After the final selection, a sample of 6.8 million $W \rightarrow ev$ candidate events was collected when requiring $E_T^{\text{miss}} > 25 \text{ GeV}$ and $m_T > 40 \text{ GeV}$.

$Z \rightarrow ee$ channel: The tag electron is required to have $E_T > 20 \text{ GeV}$ and to lie outside the calorimeter transition region ($1.37 < |\eta| < 1.52$). The probe electron must have $E_T > 15 \text{ GeV}$ and be separated from any jet with $p_T > 20 \text{ GeV}$ found within a cone of $\Delta R = 0.4$. For each pair, the tag and the probe electrons are required to have opposite reconstructed charges. A typical di-electron invariant mass range used in this analysis is 80 to 100 GeV.

\[^6\]m_T = \sqrt{2E_T^eE_T^{\text{miss}}(1 - \cos \Delta \phi)} \text{ where } \Delta \phi \text{ is the azimuthal separation between the directions of the electron and missing transverse momentum.}

![Fig. 4](https://example.com/fig4.png)

Fig. 4 Pseudo-proper time fit of $J/\psi \rightarrow ee$ candidate events for all selected probes within the E_T range 7–10 GeV and integrated over η. The prompt contribution is modelled by two Gaussian functions, while the non-prompt component uses an exponential function convolved with two Gaussians. Points with *error bars* represent the data sample after background subtraction. The *blue dashed line* shows the prompt signal component while the non-prompt component is drawn with a *dashed green line*. The *red curve* is the sum of the fitted prompt and non-prompt components. Although this range is varied in systematic studies. After the final selection, a sample of 2.1 million probes from $Z \rightarrow ee$ candidate events with opposite-charge electrons is extracted from the 2011 data set.

$J/\psi \rightarrow ee$ channel: The $J/\psi \rightarrow ee$ events come from a mixture of both the prompt and non-prompt decays, with their relative fraction depending both on the triggers used to collect the data and also on the E_T of the probe electrons. Given the difficulties associated with the fact that electrons from non-prompt decays are often surrounded by hadronic activity, two methods have been developed to measure the efficiency for isolated electrons at low E_T, both exploiting the pseudo-proper time variable.\(^7\) The first method, the so-called "short-lifetime method" uses $J/\psi \rightarrow ee$ decays measured within very small values of the pseudo-proper-time where the prompt component is enhanced, thereby limiting the non-prompt contribution (f_{NP}) to 8–20 % of the yield. The second method, the so-called "lifetime-fit method", uses the full $J/\psi \rightarrow ee$ candidate sample, corrected for the non-prompt fraction, which is obtained by performing a fit of the pseudo-proper-time distribution at each identification stage. An example of this pseudo-proper time fit is shown in Fig. 4. For both $J/\psi \rightarrow ee$ methods, the main challenge is the suppression of the large background present in the low electron E_T region. In order to reduce this background, tighter require-

\[^7\]The pseudo-proper time is defined as $t_0 = L_{xy} \cdot m_{J/\psi}^2 / p_T^{J/\psi}$, where L_{xy} is the displacement of the J/ψ vertex with respect to the primary vertex projected onto the flight direction of the J/ψ in the transverse plane, $m_{J/\psi}$ is the nominal J/ψ mass [26] and $p_T^{J/\psi}$ is the J/ψ reconstructed transverse momentum.
mments are imposed on the quantities measured with the TRT hits associated with the tag electron, and the probe electron is required to be isolated from surrounding energy deposits. Moreover, both the tag and probe tracks are required to originate from the same primary vertex and to be within 0.2 mm of each other in the z-direction at the vertex (x, y)-position. The probe electron must have $E_T > 5$ GeV. Both the tag and probe are permitted to point toward the calorimeter transition region. After the final selection, a sample of 120,000 $J/\psi \rightarrow ee$ candidate events with opposite-charge electrons is collected in the invariant mass range 2.8–3.3 GeV.

The E_T and η distributions of tight electron probes for the three tag-and-probe samples are shown in Fig. 5.

6.1.2 Background evaluation

After the selections described in Sect. 6.1.1 are applied to the data, the three samples still contain background originating from hadrons misidentified as electrons as well as from true electrons from photon conversions and non-isolated electrons originating from heavy-flavour decays. For each sample and in each (E_T, η) bin, the level of background is evaluated by the use of sensitive discriminating variables to build templates capable of providing some separation between signal and background events. These templates are then either fitted or normalised to data to evaluate and subtract the estimated background component in the signal sample.

$W \rightarrow ev$ channel: Electron isolation [27] is used as the discriminating variable. Templates are built from the sum of the transverse energies in the electromagnetic and hadronic calorimeters contained in a cone of size $\Delta R = X$ around the probe, excluding the probe’s contribution. The size X of the cone is typically 0.3 or 0.4. This isolation variable is corrected on an event-by-event basis for pile-up and underlying event contributions [28] and then normalised to the probe’s transverse energy. The resulting quantity is referred to as $E_T^{\mathrm{cone}}(X)/E_T$. The background template is constructed from the probe selection by reversing two of the electron identification criteria, namely the total shower width w_{total} and the ratio of high-threshold hits to all TRT hits (see Table 1). To ensure adequate statistics in each bin, the background templates are constructed in ($E_T, |\eta|$) bins, assuming similar background at positive and negative pseudorapidity values. In the outermost $|\eta|$ bins where no information from the TRT is available, the template from the last bin with TRT information is employed. A threshold requirement is applied to the $E_T^{\mathrm{cone}}(X)/E_T$ variable to separate the signal-dominated and background-dominated regions located below and above this threshold, respectively. The $E_T^{\mathrm{cone}}(X)/E_T$ spectrum is normalised to the data in this latter region and then used to estimate the background fraction in the signal-dominated region located below the threshold. Figure 6a shows a typical $E_T^{\mathrm{cone}}(0.3)/E_T$ distribution together with the normalised template shape. The signal-to-background ratio S/B typically varies from 6 to 60 for probes with E_T in the ranges of 15–20 to 35–40 GeV, respectively. After performing this background subtraction, 5.2 million events remain in the signal region. As part of the systematic uncertainties studies, templates are also built by applying an additional reverse requirement on R_ϕ to the original template selection. Both sets of templates adequately describe the high $E_T^{\mathrm{cone}}(X)/E_T$ tail while offering differing shapes close to the signal region.

8 Tighter TRT and isolation requirements are applied on the probe samples entering in both the numerator and denominator of the efficiency ratio; both criteria were verified in simulation not to affect the measured identification efficiency.

9 R_ϕ is the ratio of the energy contained in 3×3 in $(\eta \times \phi)$ cells, to the energy in 3×7 cells, computed in the middle layer of the EM calorimeter.
$Z \to ee$ channel: Two discriminating variables are used to evaluate the background yield in this channel. The first variable is the invariant mass distribution m_{ee} of the tag–probe pair. In this case, the background template is constructed from events failing at least two loose identification requirements and having a significant energy deposit in a cone around the probe (see “Bkg template 1” in Fig. 6b). This template is normalised to the invariant mass distribution of reconstructed events in the high-mass region of $m_{ee} > 120$ GeV and then used to evaluate the background fraction in the signal region (typically defined as $80 < m_{ee} < 100$ GeV). A small correction of $\lesssim 1\%$ is performed to account for $Z/\gamma^* \to ee$ signal contribution in the high-mass tail. This is estimated from signal MC normalized to data in the peak region after tight identification cuts. In comparison to using a functional fit to describe the background shape, this method has the advantage of providing reliable results over the entire (E_T, η) kinematic range. The second variable employed is the $E^{\text{cone}}_T(X)/E_T$ value of the probe, as used in the $W \to ev$ channel and following the same background subtraction techniques. A typical invariant mass distribution is shown in Fig. 6b. The S/B ratio typically varies from 5 to 160 for probes with E_T in the ranges of 15–20 and 35–40 GeV, respectively. After performing this background subtraction, two million probes remain in the signal region.

$J/\psi \to ee$ channel: As for the $Z \to ee$ channel, the discriminating variable is the tag–probe invariant mass distribution.
The m_{ee} spectrum of opposite-sign pairs is fitted, typically in the range of 1.8 to 4.6 GeV, considering four distinct components. Two Crystal Ball functions [29] separately model the signal shape and that of the $\psi(2S)$ resonance (the latter function is centred on the nominal PDG [26] value). The background contribution in the signal region is largely modelled by same-sign pairs as measured in data, with an additional Chebyshev polynomial used to model the remaining background from opposite-sign pairs. For the short-lifetime method, these contributions are fitted to the m_{ee} spectrum as measured in data to evaluate the background contribution in the signal region (see Fig. 6c). For the lifetime-fit method, an unbinned maximum likelihood fit is performed, where same (opposite)-sign pairs are considered with a negative (positive) weight (see Fig. 6d). The $J/\psi \rightarrow ee$ sample suffers from a higher background contamination than the other two channels such that the S/B ratio in the typical signal extraction range of $2.8 < m_{ee} < 3$ GeV varies between ~ -0.5 and ~ 3. After performing the background subtraction, 88,000 (66,000) events remain in the signal region in the full (short) pseudo-proper time range.

6.1.3 Identification efficiency measurement systematics

For all three channels, the dominant systematic uncertainties are related to the evaluation of the background contribution to the signal region. Possible biases affecting the efficiency measurement are investigated by varying the selection of events such that the signal-to-background ratio is modified substantially or by re-evaluating the efficiencies with alternative templates or background models. Each analysis is repeated with a large set of variations and the spread of the corresponding results is used to quantify the systematic uncertainties. These variations are designed to allow a reasonable modification of the S/B ratio depending on the background level affecting each mode.

$W \rightarrow ev$ channel: The baseline sample of $W \rightarrow ev$ events is varied by using alternative E_T^{miss} and m_T selection requirements, and by changing the isolation discriminating variable ($E_T^{cone}(0.4)/E_T$ and $E_T^{cone}(0.3)/E_T$) as well as its associated threshold requirement used to delineate the signal and background regions. For each variation, both sets of background templates are used to normalise the isolation distributions above the thresholds. Within the 80 variations used, the S/B ratio distribution in the signal region exhibits an RMS (Root Mean Square) of $\sim 30\%$ at low E_T (15–20 GeV) and $\sim 25\%$ at high E_T (35–40 GeV). The combined effect of the charge misidentification and the different W^+ and W^- production cross-sections at the LHC leads to an up to 5% difference in efficiency using the tight criteria between e^+ and e^- in the calorimeter endcap bins for probes with $25 < E_T < 30$ GeV. This difference is very well modelled in the MC efficiency, leading to a negligible uncertainty for most analyses.

$Z \rightarrow ee$ channel: The baseline sample of $Z \rightarrow ee$ events is modified by using alternative selection criteria defining the tag electrons. Three m_{ee} windows (80–100, 70–100 and 75–105 GeV) are used to extract the signal events. Moreover, the size and composition of the background are varied by modifying the reverse requirements used to generate the templates. As an example, the curves “Bkg template 1 and 2” in Fig. 6b are similar in that the events used to build these templates are required to fail some of the loose identification requirements (template 1 fails at least two requirements while template 2 fails three) and have a significant energy deposit in a cone around the probe. However, in contrast to template 1, template 2 is also built from events passing additional track-quality requirements and having little hadronic activity associated with the candidate. In the case where the invariant mass is the discriminating variable, an isolation condition ($E_T^{cone}(0.4) < 5$ GeV) is optionally applied to the tag requirement. A total of 36 variations are performed, for which the S/B ratio distribution exhibits an RMS of $\sim 10\%$. In the case where the isolation of the probe electron plays the role of discriminating variable, the radius of the isolation cone and its associated threshold are also varied, giving in total 120 variations. The method employing the invariant mass as the discriminating variable is used as the primary efficiency measurement. However, the efficiencies computed using either variable agree well with each other within the systematic uncertainties. Figure 7a shows the differences of the data-to-MC tight efficiency ratios between the two methods in the $E_T = 35–40$ GeV bin, which are generally compatible with zero within less than two standard deviations; these differences are considered as additional uncorrelated systematic uncertainties on the primary measurement.

$J/\psi \rightarrow ee$ channel: The baseline sample of $J/\psi \rightarrow ee$ events is similarly modified by using alternative selection criteria to define the tag electron (additional isolation criteria, tight TRT requirements) and by enlarging the 2.8–3.3 GeV mass window defining the signal range. The functional fit for the background from opposite-sign pairs is modified to assess the uncertainty on the background subtraction (using Chebyshev polynomial functions or exponential fits). The range and the function used for the pseudo-proper time fit as well as the size of the isolation cone and its associated threshold are also varied. Both the track-based and energy-based isolation criteria are investigated. A total of 76 and 52 variations resulting in an S/B ratio distribution RMS of $\sim 30\%$ are used for the lifetime-fit and the short-lifetime methods, respectively.

The method using the short-lifetime range relies on the non-prompt fraction, f_{np}, extracted from the J/ψ differential cross-section measurement [30], which is used to
where the efficiency is seen to drop by up to 2 and 5 % for the lifetime-fit (Method 1) and short-lifetime (Method 2) methods used for the \(J/\psi \to ee \) analysis for tight criteria and for probes in 15–20 GeV bin. In both figures, the error bars represent only the systematic uncertainties associated with the individual methods.

Fig. 7 a Data-to-MC efficiency ratio difference between the two methods to estimate background (Method 1: invariant mass, Method 2: isolation) used in the \(Z \to ee \) analysis for central electrons, for the tight criteria and for probes in the 35–40 GeV \(E_T \) bin. b The same difference for the loose and tight criteria, respectively. These effects are well modelled by simulation with a maximum difference of approximately two standard deviations observed in the case of medium criteria. Variations of the pile-up simulation and of the weighting procedure applied to the simulation to match the pile-up conditions observed in data impact the efficiency at the per mil level.

6.1.4 Combination and results

The \(Z \to ee, W \to ev, \) and \(J/\psi \to ee \) channels are statistically independent and so are combined to increase the preci-
The nuisance parameters b_j, $\delta^{\text{sta}}_{i,k}$, and $\gamma^{\text{elec}}_{i,k}$ represent the relative statistical, uncorrelated, and correlated systematic uncertainties, respectively. The nuisance parameters b_j are related to correlated uncertainties, which are dominated by the background subtraction uncertainties. The combined scale factors are given by SF^i.

During the minimisation procedure, the central values of the scale factors may be shifted by an amount which is a fraction of the correlated uncertainties, such that the minimal χ^2 is reached. In 0.5% of all bins, the absolute value of the pull is larger than two. To be conservative, the uncorrelated uncertainties are in this case inflated by the pull divided by $\sqrt{2}$ and the global minimisation is performed once again. The combination of independent measurements constrains the bin-to-bin correlated uncertainties and reduces their size by up to about 30%, thereby reducing the total uncertainty. This reduction is most significant in the range $E_T > 35$ GeV, where the $Z \rightarrow ee$ and $W \rightarrow ev$ measurements have the highest statistical precision.

High-E_T measurements: $E_T > 20$ GeV. In this region, copious statistics from the low background $Z \rightarrow ee$ and $W \rightarrow ev$ channels are available and so the measurement is performed in all three η granularities (coarse, middle, fine). The total uncertainty in this region is at most 1–2% for tight electrons. In general, the precision reaches the few permil level at 35 GeV and is statistically limited.

Low-E_T measurements: $7 < E_T < 20$ GeV. In this region, the measurement is driven by the $J/\psi \rightarrow ee$ sample, although in the $15–20$ GeV bin results from both $W \rightarrow ev$ and $Z \rightarrow ee$ are also used in the combination. In this range, only the coarse η binning is used due to the statistics available for the measurements. The measurement is limited by the statistical precision and the total uncertainty varies from 3% in the calorimeter barrel regions to 7% in the endcap regions.

10 The pull gives the deviation from the average value of a measurement in units of standard deviation.
Figure 10 illustrates some of the combined scale factors at low and high probe-electron E_T resulting from this minimisation procedure. These scale factors are used in all analyses involving electrons, to correct for residual differences between data and simulation that are mainly due to the modelling of the shower shapes in the calorimeter and to the TRT detector calibration in the region $1 < |\eta| < 2$. These corrections are usually no more than a few percent.

In the following, the combined data efficiencies are extracted by multiplying the combined scale factors by the efficiencies computed from a $Z \rightarrow ee$ Monte Carlo simulation. Figure 11 shows, for the coarse η granularity in the low-E_T region and the fine granularity in the region $E_T > 20$ GeV, the efficiencies obtained in this way. The precision of the efficiency measurements is in general dominated by the statistical component, as shown in Fig. 12 for the tight criteria. Possible sources of systematic uncertainties arising from the choice of MC generator to derive the scale factors are not accounted for in this analysis but are expected to have a negligible impact on these results. This is due to the fact that the final results as shown in Figs. 11 and 12 are obtained from data-driven efficiency measurements, combined through the use of scale factors, but then multiplied by a $Z \rightarrow ee$ MC sample.

In the case of loose identification criteria, efficiencies are fairly uniform with pseudorapidity, while a slight dependence is observed both for medium and tight. The identification efficiency is sensitive to the readout granularity of the detectors and to the non-uniformities of the material along the path of the electron. These variations are taken into account in the identification criteria by defining pseudorapidity-dependent thresholds for the selection variables, in addition to selections dependent on transverse energy. As the tighter medium and tight criteria make use of both calorimetric and track information, they are more sensitive to such effects. Dependences are most notable at $|\eta| < 0.1$ and in the transition region $1.37 < |\eta| < 1.52$. In the region $|\eta| > 2$, where the requirements on the shower shapes are tightened to preserve the needed rejection in the absence of the transition radiation information, a degradation of the efficiencies is observed.

The dependence of the efficiency on the transverse energy of the electron is made more explicit when integrating over the whole pseudorapidity range of the $Z \rightarrow ee$ sample, as shown in Fig. 13a. In the E_T range from 7 to 50 GeV, the loose efficiency varies from about 90 to 98%. The medium and tight criteria show a more significant dependence on energy due to the tighter requirements applied to provide the desired background rejection. The efficiency increases from about 80% at 7 GeV to 90% at 50 GeV for the medium criteria and from about 65% at 7 GeV to 80% at 50 GeV for the tight criteria. The integration over the pseudorapidity range decreases the statistical and uncorrelated systematic uncertainties of the measurement. However, given that almost half of the systematic uncertainty is correlated amongst all η bins, the size of this component does not improve after integration. Thus, the total systematic uncertainties on the efficiency measurements as a function of E_T are dominant over much of the lower E_T range and of comparable size to the statistical uncertainties at high E_T as is shown in Fig. 13b.

6.2 Forward-electron identification efficiency

In the forward region of the calorimeters, the electron identification efficiency is measured with a $Z \rightarrow ee$ sample where a well-isolated $E_T > 25$ GeV tag electron satisfying the tight requirement is identified in the central region of the calorimeter and the probe cluster with $E_T > 20$ GeV is found in the region $2.5 < |\eta| < 4.9$. The candidate events are required to have a low missing transverse momentum, in order to suppress the contributions from $W \rightarrow ev$ background.
The invariant mass of the tag–probe system is fitted in each of the pseudorapidity bins defined in Sect. 3.3.2, in the range 55 < m_{ee} < 130 GeV to a Crystal Ball function convolved with a non-relativistic Breit–Wigner function with fixed Z width [26] to model the signal, and a Landau function to model the background. The S/B ratio is ∼7 and ∼5 in the EMEC and the FCal, respectively. After background subtraction, a total of 192,000 and 76,000 probes remain in the two regions. Variations of the tag requirements are performed, which change the S/B ratio by up to a factor of two. In addition, alternative fit models for signal and background distributions and different fit ranges are used to assess the systematic uncertainties on the electron yields. The total systematic uncertainty is computed by summing in quadrature the effects observed in the individual variations. The largest contributions are related to the choice of background model and signal fit range. Examples of invariant mass fits are shown in Fig. 14.

The electron identification efficiencies measured in data remain stable with increasing pile-up but vary with E_T and |η|. The simulation models well the measured efficiency shape as a function of pile-up and of E_T. However, it does not describe adequately the efficiency measurements as a function of |η|, as shown in Fig. 15. This discrepancy is due to a mismodelling of the shower shapes in the calorimeter and increases with the tightness of applied identification criteria. Data-to-simulation scale factors are computed in each |η| bin to correct for these differences (see Fig. 15d). The resulting total uncertainty is 2–4 and 4–8 % in the EMEC and FCal regions, respectively, and it is dominated by the systematic component.

7 Reconstruction efficiency measurement

The EM cluster reconstruction efficiency ε_{cluster}, for both the central and forward electrons is determined from sim-
Total, systematic, and statistical uncertainties of the tight efficiency (extracted by multiplying the combined scale factors evaluated from the $Z \rightarrow ee$, $W \rightarrow ev$, and $J/\psi \rightarrow ee$ channels by efficiencies computed from a $Z \rightarrow ee$ Monte Carlo simulation) as a function of the η value of the probe for nine E_T bins, from 7–10 GeV (top) to 45–50 GeV (bottom). For $E_T < 20$ GeV, the coarse binning is used and the uncertainties are plotted symmetrically for both the positive and negative η bins. For $E_T > 20$ GeV, the uncertainties are shown in the 50 η bins available using the fine granularity. The total uncertainties are dominated by the statistical component. The systematic uncertainties are dominated by the uncorrelated component, which is largely due to the difference of the two $Z \rightarrow ee$ methods and thus affected by limited statistics of the different data samples employed for the background-subtraction procedures.

Fig. 13 a Dependence of the combined identification efficiencies on the transverse energy of the probe for central electrons. Error bars correspond to the total uncertainties. b Decomposition of the total uncertainty into its statistical and systematic components. The three colours correspond to the three identification criteria (loose, medium, tight). Some points are slightly shifted horizontally within the E_T bin for better visibility. In the E_T region above the Jacobian peak ($E_T > 45$ GeV), both the statistical and systematic uncertainties increase with respect to the highest precision region ($E_T \sim 35$ GeV), as shown in Fig. 12.
Fig. 14 Example fits of invariant mass distributions for probes in the EMEC in (a) and FCal in (b) regions.

Fig. 15 The (a) loose, (b) medium, and (c) tight identification efficiencies as a function of the $|\eta|$ of the probe cluster in the forward region of the calorimeters for data and simulation. In (d), the data/MC ratio is shown for the three identification criteria, slightly shifted for better visibility. All plots are for probe electrons with $E_T > 20$ GeV. In all four figures, error bars correspond to the total uncertainties.

ulation of $Z \rightarrow ee$ decays. From Sect. 3, the forward EM cluster reconstruction efficiency is better than 99% for $E_T > 20$ GeV and the central EM cluster reconstruction efficiency is 97 and 99% at 7 and 15 GeV, respectively. It then follows that the central-electron reconstruction efficiency as measured in data reflects the performance of the track reconstruction and the track–cluster matching procedure. Efficiency values are measured for three event samples:
all reconstructed electron candidates;
electron candidates satisfying in addition a requirement on the quality of the matching track; this is to match the probe definition of the $J/\psi \rightarrow ee$ selection used in the electron identification efficiency measurement;
electron candidates with a good track and satisfying in addition the requirement on the hadronic leakage R_{had} defined by the loose identification criteria; this is to match the probe definition of the $W \rightarrow ev$ and $Z \rightarrow ee$ selections.

For this measurement, only one of the channels available to the identification efficiency measurement, a $Z \rightarrow ee$ sample, can be used. The $Z \rightarrow ee$ event selection follows closely that used for the measurement of the identification efficiency as described in Sect. 6.1.1, with the two exceptions noted in Sect. 4 related to the inclusion of photons in the denominator of the efficiency definition and lack of charge requirements on the tag and probe pairs due to the presence of probe clusters without a matched track.

Figure 16 shows typical examples of the cluster–pair invariant mass distributions used to evaluate ϵ_{reco}. A total of 2.2 million probes were used to perform this measurement. The backgrounds entering the numerator and denominator of ϵ_{reco} are evaluated differently due to the inclusion of clusters associated with reconstructed photons in the denominator.

7.1 Background evaluation

The electron background contribution is estimated using a methodology similar to that employed for the identification efficiency measurements discussed in Sect. 6.1.2, based on the electron–positron invariant mass. The background cluster–pair invariant mass template is obtained from data by reversing identification requirements on the probe object and then normalising the distribution to the background-dominated cluster–pair invariant mass distribution in the 110–250 GeV region. When measuring the reconstruction efficiency alone, the probe electrons of the background template are required to fail at least two of the requirements defining the loose identification, with the exception of those associated with the track quality, and to satisfy the anti-isolation requirement $E_T^{\text{cone}}(0.4)/E_T > 0.05$ (see Fig. 16b). When measuring the reconstruction efficiency for electrons passing the track quality requirement, the background templates are obtained from objects either passing or failing this extra requirement. The background templates used for the measurement employing the additional requirement on the hadronic leakage R_{had} are built in a similar fashion (see Fig. 16c, d).

The background from real photons is estimated using the invariant mass distribution of pairs composed of an electron tag and a probe reconstructed only as a photon, m_{ev}. The sideband regions above and below the Z-boson resonance mainly contain background events. These regions, corrected for the expected number of genuine electron–positron pairs as estimated from simulation are fit to a third-order polynomial function. The number of background events associated with photons is then obtained by integrating this fit function in the signal region (see Fig. 16a).

7.2 Reconstruction efficiency and systematics

The reconstruction efficiency as a function of pseudorapidity for all three event selections is shown in Fig. 17 in E_T bins ranging from 15 to 50 GeV. In the lowest E_T bin, a coarser η binning is used to cope with the smaller data sample, and still ensure that the total uncertainty is equally shared between statistical and systematic sources.

The systematic uncertainties are assessed by varying parameters in the fitting procedure and measuring the global systematic uncertainty as the RMS of the distribution of the results obtained with each configuration. These variations include identification quality of the tag electron, the invariant-mass range used to select the signal events, the template shape used for electrons, and the sideband fit range for the photon background evaluation. For this latter uncertainty, the systematic uncertainty associated with the estimate of the genuine electron–positron events in the sideband region is evaluated by varying this number by ±30 % in each m_{ev} bin, assuming this variation is fully correlated between bins. The 30 % variation is conservatively estimated from the largest observed difference between data and simulation for the probability with which electrons are misidentified as photons. The signal contamination in the template and in the normalisation region is taken into account by varying the amount of signal leaking into the cluster–pair invariant mass template, and by estimating the signal contamination in all other regions from simulation. Similarly to what is done for the photon background evaluation, the latter prediction is assigned a conservative 20 % uncertainty.

From Fig. 17, the efficiency to reconstruct an electron or positron having a track of good quality and matching an electromagnetic cluster that fulfils the R_{had} requirement varies for high-E_T probes from about 96 % in the barrel region of the calorimeter, to about 90 % in the endcap region for $E_T > 30$ GeV. For $E_T < 25$ GeV, this efficiency drops to about 93 % (85 %) in the barrel (endcap) region. For $E_T > 35$ GeV, the total uncertainty on the measured reconstruction efficiencies is well below 0.5 %.

The reconstruction efficiency may be affected by the ambient activity resulting from pile-up interactions. The final plot in Fig. 17 shows the values of the three reconstruction efficiencies as a function of the number of reconstructed primary
Fig. 16 Examples of cluster–pair invariant mass distributions at different levels of the probe selection, in the bin $40 \leq E_T < 45$ GeV.
(a) All reconstructed clusters associated with electrons and photons, used in the denominator of ϵ_{reco}; the photon background estimation used to evaluate the corresponding systematic uncertainty is shown.
(b) Reconstructed electrons used in the numerator of ϵ_{reco}.
(c) Reconstructed electrons passing the track quality requirement.
(d) Reconstructed electrons passing the track quality and R_{had} requirements; two of the different background templates used to estimate the associated systematic uncertainty are shown. In all cases, the shaded histograms show the distributions obtained with probes after tight identification, to give an indication of the expected signal shape.

vertices N_{PV} in the event. The R_{had} requirement introduces the largest sensitivity to pile-up, demonstrated by the few percent efficiency variation as N_{PV} varies from 1 to 20; this dependence is well modelled by the simulation.

The significant background contamination and low statistics of probes at low E_T does not permit a measurement of the reconstruction efficiency for $E_T < 15$ GeV from $Z \rightarrow ee$ decays. Furthermore it is not possible to trigger a sufficiently large sample of $J/\psi \rightarrow ee$ or $W \rightarrow ev$ events unbiased with respect to the reconstruction efficiency measurement. In the region from 7 to 15 GeV, the prediction from simulation is used instead with fair confidence, based on the observed good MC modelling in the E_T region beyond 15 GeV. For this extrapolation, conservative uncertainties of 2 and 5% are assigned in the barrel and endcap regions, respectively.

Figure 18 shows the three types of reconstruction efficiencies as a function of E_T. In the two lowest E_T bins, where no data measurement exists, the expected efficiencies from a $Z \rightarrow ee$ MC sample were used, assigning the systematic uncertainties quoted above. The integration of the measurements over the pseudorapidity range decreases the statistical uncertainty such that the systematic component dominates over the entire E_T range.

7.3 Combined reconstruction and identification efficiency measurement

The reconstruction efficiency presented in this section and the identification efficiency in Sect. 6 are combined to provide the electron reconstruction and identification efficiency measurement. This combined efficiency, integrated over the range $|\eta| < 2.47$, along with the corresponding uncertainty, is presented as a function of E_T in Fig. 19.
Fig. 17 The three types of reconstruction efficiencies, with their total uncertainties, as measured in data and simulation in bins of probe \(E_T \) from 15 < \(E_T \) < 20 GeV to 45 < \(E_T \) < 50 GeV. The final plot on the bottom right shows the efficiency as a function of the number of reconstructed primary vertices in the event. The solid yellow histogram indicates the \(N_{PV} \) distribution in the data. The error bars correspond to the total uncertainties.
8 Charge-identification efficiency

The correct identification of the charge of an electron is important in many analyses, e.g. when exploiting charge correlations of the final-state particles. Electron charge-misidentification may occur when electrons radiate early in the detector, such as near the entrance of the inner tracking detector, and resulting photons subsequently convert and are reconstructed as high p_T tracks. A particle with reconstructed charge opposite to the parent electron may then accidentally be associated with the calorimeter cluster. These effects are expected to follow the distribution of material in the detector, which Fig. 1 shows to be $|\eta|$ dependent.

The probability to correctly identify the charge of the candidate electron is evaluated with a tag-and-probe analysis employing a $Z \rightarrow ee$ sample, considering as probes the ensemble of di-electron pairs without any requirement on the reconstructed sign of the track. The tag is required to satisfy tight identification criteria, to be well isolated ($E_{\text{cone}}(0.3)/E_T < 0.15$) and to have transverse energy greater than 25 GeV. To ensure a well-measured tag charge, the tag is confined to the barrel region of the calorimeter ($|\eta| < 1.37$) where the charge reconstruction efficiency is observed to be very high. The probe electron is also required to have $E_T > 25$ GeV and be anywhere within the acceptance of the inner detector. No correction is applied for the misidentification of the tight central tag electron. This increases the measured charge-identification probability by about 0.2 %.

The invariant mass of the tag–probe system is used as the discriminating variable to separate signal from background.
The ATLAS experiment at the LHC recorded approximately 4.7 fb^{-1} of proton–proton collision data in 2011 at a centre-of-mass energy of $\sqrt{s} = 7$ TeV. The tag-and-probe methods developed to measure the components of the electron efficiency with these data are described in detail. In comparison to similar results based on 2010 data [7], the revised analysis methods presented here, in combination with the higher statistics provided by the 2011 data in the $Z \rightarrow ee$, $W \rightarrow e\nu$, and $J/\psi \rightarrow ee$ channels, have enabled precision measurements of electron efficiency in a finely grained two-dimensional grid of probe electron (E_T, η).

The electron reconstruction efficiency, which is related to the ability to associate a candidate electron track with a corresponding EM cluster, was extracted from a $Z \rightarrow ee$ sample of probe electrons in the central region of the detector ($|\eta| < 2.47$) using a fine η granularity and seven E_T bins in the range of 15 to 50 GeV. The statistical precision is the dominant source of uncertainty of the two-dimensional measurement, with the total uncertainty varying from a few percent in the lowest E_T bin to $\sim 0.5\%$ at 35 GeV.

The efficiency to identify electrons given the existence of a reconstructed-electron candidate is assessed in the central region of the detector ($|\eta| < 2.47$) for three benchmark selection criteria called loose, medium, and tight. A combination of the data to Monte Carlo efficiency ratios measured from $Z \rightarrow ee$, $W \rightarrow e\nu$, and $J/\psi \rightarrow ee$ samples is performed in a fine (E_T, η) grid, over the probe E_T range from 7 to 50 GeV. This results in a typical accuracy on the efficiency to identify electrons from Z decays of a few per mil at $E_T = 35$ GeV and 1–2\% for $E_T < 20$ GeV and it is dominated by the statistical uncertainty. As a consequence of improvements in the simulation, the measured efficiencies demonstrate better agreement with expectations compared to the results presented in Ref. [7], varying with E_T and η.
from a few per mil to a few percent. In the forward region (2.5 < |η| < 4.9), the efficiency of the entirely calorimeter-based loose, medium, and tight criteria was measured in nine |η| bins for probe $E_T > 20$ GeV with a total uncertainty of few percent, mostly arising from systematic effects. In this region, a larger discrepancy is observed between measured and expected efficiencies.

The efficiency for a correct charge reconstruction for tight electrons with $E_T > 25$ GeV is found from a $Z \rightarrow ee$ sample to be >99.7% in the barrel region of the detector, decreasing to ~ 97% in the endcaps, independent of lepton charge.

Overall, the work presented in this paper has enabled precision measurements of two-dimensional efficiencies, improving by approximately an order of magnitude the uncertainties assigned to the results presented in Ref. [7]. These improvements have greatly benefited the analyses performed by the ATLAS collaboration.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; PPARC and RCUK, United Kingdom; SFI, INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Funded by SCOAP3

References

1. ATLAS Collaboration, Measurement of the angular correlations in Drell–Yan lepton pairs to probe Z/γ^* boson transverse momentum at $\sqrt{s} = 7$ TeV with the ATLAS detector. Phys. Lett. B 720, 32 (2013). arXiv:1211.6899 [hep-ex]

2. ATLAS Collaboration, Measurement of W^+W^- production in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector and limits on anomalous WW and $W\gamma$ couplings. Phys. Rev. D 87, 112001 (2013). arXiv:1210.2979 [hep-ex]

3. ATLAS Collaboration, Measurement of ZZ production in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector and limits on anomalous ZZZ and $ZZ\gamma$ couplings. JHEP 03, 128 (2013). arXiv:1211.6096 [hep-ex]

4. ATLAS Collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. JHEP 05, 068 (2014). arXiv:1402.6263 [hep-ex]

5. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

6. ATLAS Collaboration, Search for high-mass resonances decaying to dilepton final states in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. JHEP 11, 138 (2012). arXiv:1209.2535 [hep-ex]

7. ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton–proton collision data. Eur. Phys. J. C 72, 1909 (2012). arXiv:1110.3174 [hep-ex]

8. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008)

9. ATLAS Collaboration, Performance of the ATLAS trigger system in 2010. Eur. Phys. J. C 72, 1849 (2012). arXiv:1110.1530 [hep-ex]

10. ATLAS Collaboration, Expected photon performance in the ATLAS experiment. ATL-PHYS-PUB-2011-007. http://cdsweb.cern.ch/record/1345329

11. ATLAS Collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics. CERN-OPEN-2008-20. arXiv:0901.0512 [hep-ex]

12. W. Lampl et al., Calorimeter clustering algorithms: description and performance. ATL-LARG-PUB-2008-002. http://cdsweb.cern.ch/record/1099735

13. ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian sum filter-based model for bremsstrahlung. ATLAS-CONF-2012-047. http://cdsweb.cern.ch/record/1449796

14. ATLAS Collaboration, Performance of the ATLAS electron and photon trigger in p–p collisions at $\sqrt{s} = 7$ TeV in 2011. ATLAS-CONF-2012-048. http://cdsweb.cern.ch/record/1450089

15. ATLAS Collaboration, Measurement of the high-mass Drell–Yan differential cross-section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. Phys. Lett. B 725, 223 (2013). arXiv:1305.4192 [hep-ex]

16. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:0603175

17. ATLAS Collaboration, Improved luminosity determination in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]

18. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). arXiv:0409146

19. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). arXiv:0709.2092 [hep-ph]

20. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). arXiv:1002.2581 [hep-ph]

21. S. Alioli, P. Nason, C. Oleari, E. Re, NLO vector-boson production matched with shower in POWHEG. JHEP 07, 060 (2008). arXiv:0805.4802 [hep-ph]

22. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur. Phys. J. C 45, 97 (2006). arXiv:0506026
The ATLAS Collaboration

G. Aad 84, T. Abajyan 21, B. Abbott 112, J. Abdallah 152, S. Abdel Khalek 116, O. Abelnir 11, R. Aben 106, B. Abi 113, M. Abolins 89, O. S. AbouZeid 159, H. Abramowicz 154, H. Abreu 137, Y. Abulaila 147a,147b, B. S. Acharya 165a,165b, a, L. Adamczyk 38a, D. L. Adams 25, T. N. Addy 56, J. Adelman 177, S. Adomeit 99, T. Adye 130, T. Agatonovic-Jovic 13b, J. A. Aguilar-Saavedra 125a,125b, M. Agustoni 17, S. P. Ahlen 25, A. Ahmad 49, F. Ahmadov 64, b, G. Aielli 134a,134b,30, T. P. A. Åkesson 90, G. Akimoto 156, A. V. Akimov 95, J. Albert 70, S. Albrand 155, J. M. Alcaraz Verzini 70, M. Aleksa 80, I. N. Aleksandrov 94, C. Alexa 26a, G. Alexander 54, G. Alexandra 49, T. Alexopoulos 10, M. Althoff 65a,165c, G. Alimonti 90, A. Ali 84, J. Alison 31, B. M. M. Allbrooke 17, L. J. Allison 73, P. P. Allport 73, S. E. Allwood-Spiers 33, J. Almond 83, A. Aloisio 103a,103b, R. Alon 173, A. Alonso 30, F. Alonso 70, C. Alpigiani 75, A. Altheimer 35, B. Alvarez Gonzalez 89, M. G. Alviggi 103a,103b, K. Amako 65, V. Amaral Coutinho 24a, C. Amelung 22, D. Amidei 88, V. V. Ammosov 129, a, S. P. Amor Dos Santos 125a,125b, S. Amoroso 48, N. Amrani 154, G. Amundsen 140, C. Anastopoulos 140, L. S. Ancu 17, N. Andari 30, T. Andeen 35, C. F. Anders 58b, G. Anders 30, K. J. Anderson 31, A. Andreazza 90a,90b, V. Andrei 94, X. S. Anduaga 39, S. Angelidakis 9, P. Anger 44, A. Angerami 35, F. Anghinolfi 90, A. V. Anisenkov 108, N. Anjos 125a, A. Anni 47, A. Antonaki 9, M. Antonelli 47, A. Antonov 97, J. Antos 145b, F. Anulli 133a, M. Aoki 65, L. Aperio Bella 18, R. Apolline 119, e, G. Arabidze 89, I. Arcarona 144, Y. Arai 65, J. P. Araque 125a, A. T. H. Arce 45, J-F. Arguin 94, S. Argyropoulos 42, M. Arik 19a, A. J. Armbruster 30, O. Arneæ 82, V. Arnaí 81, O. Arslan 21, A. Artamonov 96, G. Artoni 23, S. Asai 156, N. Asbahi 94, A. Ashkenazi 154, S. Ask 28, B. Åsman 147a,147b, L. Asquith 6, K. Assamagan 25, R. Astasov 145a, M. Atkinson 166, N. B. Atlay 142, B. Auerbach 6, E. Auge 116,116, K. August 127, M. Aurousseau 146b, G. Avolio 30, G. Azuelos 94, d, Y. Azuma 156, M. A. Baak 30, C. Bacci 135a,135b, A. M. Bach 15, H. Bachacou 137, K. Bachas 155, M. Backes 30, M. Backhaus 30, J. Backus Mayes 144, E. Badescu 26a, P. Baggioli 133a,133b, P. Bagnaia 133a,133b, Y. Bai 35a, D. C. Bailey 159, T. Bain 85, J. T. Baines 130, O. K. Baker 177, S. Baker 77, P. Balek 128, F. Ball 137, E. Banas 39, Sw. Banerjee 174, D. Banfi 30, A. Bangert 15, A. E. Bannoura 176, V. Bannister 170, H. S. Bansi 18, L. Barak 173, S. P. Baranov 95, T. Barber 48, E. Barberio 87, D. Barberis 50a,50b, M. Barbero 84, T. Barillari 100, M. Barisonzi 176, T. Barklow 144, N. Barlow 28, B. M. Barnett 130, R. M. Barnett 15, Z. Barnovska 5, A. Baroncelli 135a, G. Barone 49, A. J. Barr 119, F. Barreiro 81, J. Barreiro Guimarães da Costa 57, G. Bogdanchikov 108, A. Bogouch 91, *, C. Bohm 147a, J. Bohm 126, V. Boisvert 76, T. Bold 18a, V. Boldea 26a, A. S. Boldyrev 98,
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton, NY, USA

(a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, UK

Department of Physics, Carleton University, Ottawa, ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Jinan, Shandong, China; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, NY, USA

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

(a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Physics Department, Southern Methodist University, Dallas, TX, USA

Physics Department, University of Texas at Dallas, Richardson, TX, USA

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, NC, USA

SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy

(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

Department of Physics, Hampton University, Hampton, VA, USA

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington, IN, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, USA
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto, ON, Canada
160 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA
163 Centro de Investigaciones, Universidad Antonio Nario, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana, IL, USA
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMI), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver, BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
171 Department of Physics, University of Warwick, Coventry, UK
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison, WI, USA
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, CT, USA
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
g Also at Università di Napoli Parthenope, Naples, Italy
h Also at Institute of Particle Physics (IPP), Canada
i Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
j Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
k Also at Louisiana Tech University, Ruston, LA, USA
l Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
m Also at CERN, Geneva, Switzerland
n Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
o Also at Manhattan College, New York, NY, USA
p Also at Novosibirsk State University, Novosibirsk, Russia
q Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
r Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
s Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
t Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
u Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at Physics Department, Brookhaven National Laboratory, Upton NY, USA
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Department of Physics, Oxford University, Oxford, UK
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased