2020

Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1-xO6 ceramics

Cuijin PEI
School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Jingjing TAN
School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Yang LI
School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Guoguang YAO
School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China School of Physics, Northwest University, Xi’an 710069, China

Yanmin JIA
School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

See next page for additional authors

Follow this and additional works at: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics

Recommended Citation

Cuijin PEI, Jingjing TAN, Yang LI et al. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1-xO6 ceramics. *Journal of Advanced Ceramics* 2020, 9(5): 588-594.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Advanced Ceramics by an authorized editor of Tsinghua University Press: Journals Publishing.
Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1-xO6 ceramics

Authors
Cuijin PEI, Jingjing TAN, Yang LI, Guoguang YAO, Yanmin JIA, Zhaoyu REN, Peng LIU, and Huaiwu ZHANG

This research article is available in Journal of Advanced Ceramics: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics/vol9/iss5/6
Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ ceramics

Cuijin PEIa, Jingjing TANa, Yang LIa, Guoguang YAOa,b,*, Yanmin JIAa, Zhaoyu RENb, Peng LIUc, Huaiwu ZHANGd

aSchool of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
bSchool of Physics, Northwest University, Xi’an 710069, China
cCollege of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
dState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Received: January 14, 2020; Revised: May 31, 2020; Accepted: June 13, 2020
© The Author(s) 2020.

Abstract: The non-stoichiometric Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ (0.05 \leq x \leq 0.125) compounds have been prepared via the mixed oxide method. The influences of Sb nonstoichiometry on the sintering behavior, microstructure, phase composition along with microwave dielectric performances for Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ ceramics were studied. Combined with X-ray diffraction (XRD) and Raman spectra, it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li$_3$Mg$_2$SbO$_6$ was formed in all compositions. Appropriate Sb-deficiency in Li$_3$Mg$_2$SbO$_6$ not only lowered its sintering temperature but also remarkably improved its $Q\times f$ value. In particular, non-stoichiometric Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics sintered at 1250 $^\circ$C/5 h owned seldom low dielectric constant ε_r = 10.8, near-zero resonant frequency temperature coefficient τ_f = $-$8.0 ppm/$^\circ$C, and high quality factor $Q\times f$ = 86,300 GHz (at 10.4 GHz). This study provides an alternative approach to ameliorate its dielectric performances for Li$_3$Mg$_2$SbO$_6$-based compounds through defect-engineering.

Keywords: microwave dielectric properties; ceramics; sintering; antimony compounds

1 Introduction

Nowadays, the high-speed advancement in the 5th-generation communication industry has prompted a massive demand for dielectric materials owning outstanding dielectric properties in the high-frequency region [1]. To satisfy the particular criteria, the microwave dielectric material must own following essential parameters: low dielectric constant (ε_r) to shorten signal transition time, small resonant frequency temperature coefficient (τ_f) to enhance thermal stabilization, and high quality factor ($Q\times f$) or low dielectric loss to enhance frequency selectivity [2]. It is still a challenge for one material owning ε_r, τ_f, and $Q\times f$ simultaneously since the majority of microwave dielectric ceramics commonly own low ε_r but large negative τ_f values [3]. To obtain near-zero τ_f, one effective approach is to prepare a solid solution or composite ceramics [4]. However, this method could usually deteriorate the host ceramics’ microwave dielectric properties to some extent owing to the unexpected secondary phase or ion...
diffusion [5,6]. Therefore, new material systems owing above parameters simultaneously need to be explored and investigated [7].

In 1982, Castellanos et al. [8] reported an orthorhombic Li$_3$Mg$_2$SbO$_6$ (LMS) compound. Recently, the LMS compound has received much attention due to its potential application in fields such as luminescence and microwave dielectric materials [9–13]. Zhang et al. [13] reported the microwave dielectric properties of Li$_3$Mg$_2$(Nb$_{1-x}$Sb$_x$)O$_6$ (0.02 ≤ x ≤ 0.08) ceramics. We firstly reported the microwave dielectric performances (Qf0 = 49,000 GHz, τf = -18.0 ppm/°C) of nominal composition LMS ceramics prepared with a mixed oxide method [9]. Yet its poor sinterability (dehiscence) and low Qf inhibit its practical application, which is connected with the secondary phase SbO$_x$ [9]. Lately, we doped modified solid-state reaction method, which not only effectively suppressed the secondary phase SbO$_x$ but also improved the sinterability and dielectric characterizations of LMS ceramics [10]. The above-modified process not only prolongs the preparation period, but also enhances the cost. Recently, many researchers have demonstrated that the sintering behavior and dielectric performances can be ameliorated through introducing non-stoichiometric composition in some material systems [14–17]. However, the effects of non-stoichiometry on Li$_3$Mg$_2$SbO$_6$ ceramics have not yet been reported. In the current paper, the influences of Sb-site nonstoichiometry on the sintering behavior, phase constitution combined with microwave dielectric characterizations of Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ compounds have been studied.

2 Experimental

The non-stoichiometric Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ (0.05 ≤ x ≤ 0.125) were synthesized via solid-state ceramics processing. The reagents of Sb$_2$O$_3$ (99.0%, Guo-Yao Co., Ltd., Shanghai, China), MgO (99.99%, Mountain Development Center, Beijing, China), and Li$_2$CO$_3$ (98.0%, Guo-Yao Co., Ltd., Shanghai, China) were used as starting materials. According to non-stoichiometric Li$_3$Mg$_2$Sb$_{1-x}$O$_6$, the corresponding raw materials were weighed and ground for 8 h using ZrO$_2$ balls as well as absolute ethanol as media. The resultant milled powders were roasted under 80 °C/5 h, and calcined at 900 °C/4 h. After second ball-milled for 8 h, the ball-milled powders were mixed with 6% polyvinyl alcohol solution as the binder, and then granulated manually. The granules were pressed into cylindrical pucks (Ø10 mm × 6 mm) under 200 MPa. After debinding at 500 °C for 2 h, the pucks were fired under 1200–1275 °C dwelling for 5 h.

The phase constitutions of samples have been characterized using X-ray diffraction (XRD, RigakuD/ MAX2550, Tokyo, Japan) with Cu Kα radiation and Raman spectra (Jobin Yvon, Longjumeau, France) equipped with He–Ne laser (633 nm) and an output of 30 mW. X-ray photoelectron spectroscopy (XPS) measurement was carried out with a spectrometer (Axis Ultra, UK) using Al Ka (1486.6 eV) radiation. The surface morphology of sintered bodies was analyzed by adopting scanning electron microscope (SEM, Hitachi, Tokyo, Japan). The bulk densities of sintered bodies were evaluated based on Archimedes’ principle. The εr and Qf values of samples were tested through vector network analyzer (N5230A, Agilent, America) under about 10–12 GHz. The τf value for samples was calculated by Eq. (1):

\[τ_f = \frac{(f_2 - f_1) \times 10^6}{f_1 \times (85 - 25)} \]

where f_1 and f_2 denote the measured frequencies under 25 and 85 °C, respectively.

3 Results and discussion

The refined XRD patterns and refinement parameters for Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ (0.05 ≤ x ≤ 0.125) specimens heated at 1250 °C are displayed in Fig. 1 and Table 1, respectively. As shown in Fig. 1, the calculated XRD profiles based on Li$_3$Co$_2$TaO$_6$ (ICSD #81043) structural model matched well with those of experimental ones. It indicated that for all compositional specimens, almost pure phase Li$_3$Mg$_2$SbO$_6$ was formed along with trace amount of unknown phase (marked as * in Fig. 1), although the maximum 12.5 mol% Sb-site defects were introduced. Similar phenomena were also reported in other materials [18]. In addition, as seen in Table 1, the cell volume was enlarged when x increased from 0.05 to 0.125, which is due to the increased concentration of V$_6$ caused by Sb$^{5+}$ ion defects [19,20]. Figure 2 gives the refined XRD plots for Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ specimens heated at 1200–1275 °C. No obvious phase constitution change or peak position shift was observed in Fig. 2, which indicated that there was no obvious change
Fig. 1 Refined XRD patterns of Li$_3$Mg$_2$Sb$_1$–xO$_6$ ceramics sintered at 1250 ℃.

Fig. 2 Refined XRD patterns of Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics under different sintering temperatures.

Table 1 Refinement parameters and reliability factors of Li$_3$Mg$_2$Sb$_{1–x}$O$_6$ ceramics sintered at 1250 ℃ for 5 h

x	a (Å)	b (Å)	c (Å)	Cell volume (Å3)	R_p (%)	R_{wp} (%)
0.05	8.6292	5.9265	17.7958	910.0941	10.23	14.81
0.10	8.6409	5.9324	17.7829	911.5741	9.21	12.91
0.125	8.6409	5.9403	17.7712	912.1875	10.08	13.74

of unit cell volume. Therefore, based on the definition of packing fraction [21], there should be no change of packing fraction regardless of sintering temperature for a given composition. Compared to Ref. [9], the secondary phase in Li$_3$Mg$_2$SbO$_6$-based ceramics could be effectively inhibited by introduced partial Sb-site deficiency within the crystals.

The typical Raman spectra of Li$_3$Mg$_2$Sb$_{1–x}$O$_6$ samples under different sintering temperatures are depicted in Fig. 3. Only three Raman peaks (475, 551, and 655 cm$^{-1}$) are present in all samples, which are similar to the characteristic Raman spectra of Li$_3$Mg$_2$SbO$_6$ [10]. The Raman peak at 655 cm$^{-1}$ can attribute to the asymmetric stretching vibration of Sb–O–Sb bond in SbO$_6$ octahedral. The Raman peaks at 551 and 475 cm$^{-1}$ are associated with the Li/Mg–O bonds vibration. In addition, there was no significant change of Raman shifts and Raman peak intensity under different sintering temperatures, which were associated with inherent microwave dielectric properties [22]. Furthermore, the Raman band of SbO$_6$ octahedron (655 cm$^{-1}$) slightly shifted to lower frequency with increasing x content as seen the inset in Fig. 3. According to Refs. [15,23], the Raman shift of SbO$_6$ octahedron depended mainly on the Sb–O bond: $\nu = 21349 \exp(-1.9176d_{\text{Sb-O}})$, where ν and $d_{\text{Sb-O}}$ represent Raman shift and Sb–O bond length, respectively. This indicated that the Raman shift was inversely proportional to the unit cell volume. Therefore, the Raman analysis confirmed that the unit cell volume of Li$_3$Mg$_2$Sb$_{1–x}$O$_6$ ceramics expand with increasing x content, which was well correlated with the XRD results.

Figure 4 exhibits the SEM photographs of polished and thermally etched surfaces for Li$_3$Mg$_2$Sb$_{1–x}$O$_6$ samples heated under different temperatures. As seen from Figs. 4(a) and 4(e), a relatively porous structure was observed for Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ fired at 1200 ℃ and for Li$_3$Mg$_2$Sb$_{0.95}$O$_6$ fired at 1250 ℃, respectively. As seen from Figs. 4(a)–4(c), the amount of pores are alleviated, and mean grain size is promoted with the increment temperature. The 1250 ℃-sintered specimen (Fig. 4(c)) exhibited a dense microstructure, implying a higher dielectric performance [24]. However, for Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ fired at 1275 ℃ and Li$_3$Mg$_2$Sb$_{0.875}$O$_6$ sintered at 1250 ℃, anomalous grain growth along with pores appeared due to over-sintering, which would deteriorate the performances of samples [25]. Table 2 lists
Typical SEM photographs of polished and thermally etched surfaces for Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ ceramics under different firing temperatures: (a) Li$_3$Mg$_2$Sb$_0.9$O$_6$, 1200 °C, (b) Li$_3$Mg$_2$Sb$_0.9$O$_6$, 1225 °C, (c) Li$_3$Mg$_2$Sb$_0.9$O$_6$, 1250 °C, (d) Li$_3$Mg$_2$Sb$_0.9$O$_6$, 1275 °C, (e) Li$_3$Mg$_2$Sb$_{0.95}$O$_6$, 1250 °C, and (f) Li$_3$Mg$_2$Sb$_{0.875}$O$_6$, 1250 °C.

Table 2 Energy disperse spectroscopy (EDS) data of the grains A–C marked in Fig. 4(c)

Grain	Weight (wt%)	Atomic (wt%)				
	MgK	SbL	OK	MgK	SbL	OK
A	22.07	50.55	27.37	29.93	13.69	56.39
B	23.00	47.40	29.61	29.69	12.22	58.09
C	25.86	37.30	36.84	28.96	08.34	62.69

The concentrations of compositional elements, which were conducted on grains A–C marked in Fig. 4(c) by the EDS analysis. The EDS analysis revealed that the constitution of large grains (marked A and B) is Li$_3$Mg$_2$SbO$_6$, whereas the smaller and brighter grains are enriched in Mg (marked C). This is consistent with XRD results.

Figure 5 shows the bulk density of Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ ceramics after heat treatment at 1200–1275 °C. For Li$_3$Mg$_2$Sb$_{0.95}$O$_6$ sample, the bulk density gradually increased with increasing temperature from 1200 to 1275 °C, indicating it has high densification sintering temperature. However, for Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ sample, the bulk density increased gradually to the maximum at 1250 °C and subsequently descended. The enhancement in bulk density of Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ sample could attribute to the reduction in porosity and grain boundaries, whereas its decrement could attribute to the anomalous grain growth, as displayed in Fig. 4. In addition, compared with Li$_3$Mg$_2$SbO$_6$ ceramics [10], the low sintering temperature of Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics could attribute to the Sb deficiency and oxygen vacancies within the crystals [26].

Figure 6 displays the variations in ε_r, τ_f, and $Q\times f$ of Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ compounds with firing temperature. In general, ε_r is dramatically dependent on density, ionic polarizability, secondary phase, etc. [27]. The relationship between ε_r and sintering temperature or composition of Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ ceramics revealed a similar tendency as between density and sintering temperature or composition, as shown in Fig. 6(a). Thus, the ε_r value is mainly influenced by densification rather than ionic polarizability and secondary phase. In addition, the τ_f values of...
Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics remained stable (about –8.0 ppm/℃) regardless of sintering temperatures as seen in Fig. 6(b). Both intrinsic parameters (vibration modes and packing fraction) and extrinsic parameters (density, mean grain size, phase composition, etc.) can influence the $Q \times f$ value of ceramics [28,29]. In the present ceramics, the intrinsic factors should be ignored because of no significant change of vibration mode (Fig. 3) and packing fraction as mentioned before. As illustrated in Fig. 6(c), when firing temperature varied from 1200 to 1250 ℃, the $Q \times f$ value of specimens gradually enhanced and obtained a maximum value of ~62,800 GHz for Li$_3$Mg$_2$Sb$_{0.95}$O$_6$ at 1250 ℃, and ~86,300 GHz for Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ at 1250 ℃, respectively. The increased densification and average grain size could be responsible for the improvement of $Q \times f$ value [30]. Beyond this temperature, their $Q \times f$ values decreased slightly, which may be connected with the anomalous grain growth [25]. Interestingly, the Li$_3$Mg$_2$Sb$_{0.875}$O$_6$ ceramics sintered below 1250 ℃ showed poor resonance, which was due to the effect of the yellow core caused by the valence change of antimony ions (Fig. 7) [31]. The resemble phenomena have also been observed in Ti-containing oxides ceramics [32,33]. However, the Li$_3$Mg$_2$Sb$_{0.875}$O$_6$ sample sintered at 1250 ℃ exhibited $Q \times f \approx$ 37,400 GHz due to the absence of yellow cores. A more detailed explanation about this phenomenon is expected in further research. At a given sintering temperature of 1250 ℃, the Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ sample exhibited superior $Q \times f$ value than the others, indicating moderate Sb-deficiency is benefited to improve the $Q \times f$ value of Li$_3$Mg$_2$Sb$_{0.9}$O$_6$-based ceramics. The true reason is still unknown and further research is in progress. Compared to our previous study [10], the non-stoichiometric Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics fabricated by classical solid-state method owned comparable dielectric performances with Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics prepared via modified two-stage process, but relatively lower sintering temperature and simple synthesis process. The comparable or even slightly enhanced $Q \times f$ value would be related to the distortion of crystal lattice caused by an appropriate Sb-site nonstoichiometry, a similar phenomenon was also reported in other ceramic systems [34–36]. Moreover, the $Q \times f$ value (86,300 GHz, at 10.4 GHz) of Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics is 1.7 times larger than that of nominal composition Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics ($Q \times f = 49,000$ GHz at 11.0 GHz), which is ascribed to the absence of secondary SbO$_x$ [9].

4 Conclusions

The non-stoichiometric Li$_3$Mg$_2$Sb$_{1-x}$O$_6$ (0.05 ≤ x ≤ 0.125) ceramics were fabricated, and their phase composition, sintering character, and dielectric properties were characterized. XRD and Raman spectrum results confirmed that Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ without obvious secondary phase can be maintained within the compositional range of 0.05 ≤ x ≤ 0.125. The sinterability and $Q \times f$ values were tremendously improved by introducing appropriate Sb-deficiency in Li$_3$Mg$_2$Sb$_{0.9}$O$_6$. Especially, the nonstoichiometric Li$_3$Mg$_2$Sb$_{0.9}$O$_6$ ceramics sintered at 1250 ℃ simultaneously exhibited small τ of ~8.0 ppm/℃ and ε_r of 10.8, a high $Q \times f$ of 86,300 GHz (at 10.4 GHz). The favorable combined microwave dielectric performances make it an alternative material for millimeter-wave devices.

Acknowledgements

The authors acknowledge the support from the National...
Natural Science Foundation of China (Grant No. 51402235), China Postdoctoral Science Foundation (2015MS82696), Science and Technology Plan Project of Xi'an Bureau of Science and Technology (GXYD17.19), Education Department of Shaanxi Province (18JK0711), and Innovation Funds of Graduate Programs of Xi'an University of Posts and Telecommunications (CXJJLD2019020).

References

[1] Zhang X, Tang B, Fang ZX, et al. Structural evolution and microwave dielectric properties of a novel Li3Mg2-x/3
Nb1-x/3Ti3O9 system with a rock salt structure. Inorg Chem Front 2018, 5: 3113–3125.
[2] Zhang YH, Sun JJ, Dai N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu4(Zr0.5Ti0.5)O3 ceramics. J Eur Ceram Soc 2019, 39: 1127–1131.
[3] Reaney IM, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 2006, 89: 2063–2072.
[4] Gu FF, Chen GH, Li XQ, et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn1-x/2Li0.15Sr0.85O1.8 ceramics. J Eur Ceram Soc 2017, 37: 3065–3071.
[5] Dong MZ, Yue ZX, Zhuang H, et al. Structural and microwave dielectric properties of (1-x)LiNbO3-xCaO:0.5Sr0.5TiO3 thermally stable ceramics. Mater Chem Phys 2015, 167: 354–359.
[6] Zou ZY, Chen ZH, Lan XK, et al. Microstructure and microwave dielectric properties of Ba2Zn1-x/2Si1-xO4 ceramics. J Adv Ceram Soc 2019, 9(5): 588–594.
[7] Huang CL, Tseng YW. Structure, dielectric properties, and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol-gel process. J Am Ceram Soc 2008, 91: 3981–3985.
[8] Castellanos M, Gard JA, West AR. Crystal data for a new family of phases, LixMg2XO6: X = Nb, Ta, Sb. J Appl Cryst 1982, 15: 116–119.
[9] Yao GG, Pei CJ, Gong Y, et al. Microwave dielectric properties of temperature stable (1–x)Li2Mg2-xSb2O5–xBa0.8V2O5 composite ceramics. J Mater Sci: Mater Electron 2018, 29: 9979–9983.
[10] Pei CJ, Hou CD, Li Y, et al. A low εr and temperature-stable Li1.5Mg2SbO3 microwave dielectric ceramics. J Alloys Compd 2019, 792: 46–49.
[11] Wang SY, Sun Q, Devakumar B, et al. Mn4+–activated Li3Mg2SbO3 as an ultrabright fluoride-free red-emitting phosphor for warm white light-emitting diodes. RSC Adv 2019, 9: 3429–3435.
[12] Zhong JS, Chen X, Chen DQ, et al. A novel rare-earth free red-emitting Li3Mg2SbO3: Mn4+ phosphor-in-glass for warm w-LEDs: Synthesis, structure, and luminescence properties. J Alloys Compd 2019, 773: 413–422.
[13] Zhang P, Wu SX, Xiao M. Effect of Sb5+ ion substitution for Nb5+ on crystal structure and microwave dielectric properties for Li3Mg2NbO6 ceramics. J Alloys Compd 2018, 766: 498–505.
[14] Guo WJ, Zhang J, Luo Y, et al. Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba9(Sm,Nd)3.3Ti10O34 ceramics. J Am Ceram Soc 2019, 102: 5494–5502.
[15] Li B, Zheng JG, Li W. Enhanced effect of vanadium ions non-stoichiometry on microwave dielectric properties of Ca4Co2/3V5/3O24 ceramics. Mater Chem Phys 2018, 207: 282–288.
[16] Belous A, Ovchar O, Jancar B, et al. The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the columbites Li3-xMg2NbO6 ceramics. J Eur Ceram Soc 2007, 27: 2933–2936.
[17] Li JM, Fan CG, Cheng ZX, et al. Influence of Zn nonstoichiometry on the phase structure, microstructure and microwave dielectric properties of Nd(Zn1-x/3Ta2/3)O3 ceramics. J Alloys Compd 2019, 793: 385–392.
[18] Pang LX, Zhou D, Yue ZX. Temperature independent low firing Ca8(VO4)2.5Bi2O4 ceramics (0.2 ≤ x ≤ 0.8) microwave dielectric ceramics. J Alloys Compd 2019, 781: 385–388.
[19] Pan WG, Cao MH, Qi JL, et al. Defect structure and dielectric behavior in SrTi1−x(JzNb2/3)O3 ceramics. J Alloys Compd 2019, 784: 1303–1310.
[20] Muhammad R, Khesro A. Influence of A-site nonstoichiometry on the electrical properties of BT-BMT. J Am Ceram Soc 2017, 100: 1091–1097.
[21] Kim ES, Chun BS, Freer R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+Bi6+O4 (A2+:Ca,Pb,Ba; B6+:Mo,W) ceramics. J Adv Ceram Soc 2010, 30: 1731–1736.
[22] Wang Y, Tang TL, Zhang JT, et al. Preparation and microwave dielectric properties of new low-loss NiZrTa2O8 ceramics. J Adv Ceram Soc 2019, 778: 576–578.
[23] Hardcastle FD, Wachs IE. Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. J Raman Spectrosc 1990, 21: 683–691.
[24] Wu SP, Chen DF, Jiang C, et al. Synthesis of monoclinoic CaSnSiO5 ceramics and their microwave dielectric properties. Mater Lett 2013, 91: 239–241.
[25] Song JB, Song KX, Wei JS, et al. Microstructure characteristics and microwave dielectric properties of calcium apatite ceramics as microwave substrates. J Alloys Compd 2018, 731: 264–270.
[26] Bian JJ, Song GX, Yan K. Structure and microwave dielectric properties of Ba6(1−x)[(Co0.5Zn0.5)x]2/3Ni2/3O3 (-0.015 ≤ x ≤ 0.015). J Eur Ceram Soc 2007, 27: 2817–2821.
[27] George S, Sebastian MT. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li1.5Al2O3 (A = Mg, Zn) ceramics. J Am Ceram Soc 2010, 93: 213–217.

www.springer.com/journal/40145
[28] Gurevich VL, Tagantsev AK. Intrinsic dielectric loss in crystals. *Adv Phys* 1991, **40**: 719–767.

[29] Wang KG, Zhou HF, Liu XB, *et al.* A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. *J Eur Ceram Soc* 2019, **39**: 1122–1126.

[30] Kai C, Li CC, Xiang HC, *et al.* Phase formation and microwave dielectric properties of BiMVO₅ (M = Ca, Mg) ceramics potential for low temperature co-fired ceramics application. *J Am Ceram Soc* 2019, **102**: 362–371.

[31] Kim SS, Na HG, Kwon YJ, *et al.* Synthesis and room-temperature NO₂ sensing properties of Sb₂O₃ nanowires. *Met Mater Int* 2015, **21**: 415–421.

[32] Freer R, Azough F. Microstructural engineering of microwave dielectric ceramics. *J Eur Ceram Soc* 2008, **28**: 1433–1441.

[33] Pullar RC, Penn SJ, Wang XR, *et al.* Dielectric loss caused by oxygen vacancies in titania ceramics. *J Eur Ceram Soc* 2009, **29**: 419–424.

[34] Surendran KP, Sebastian MT, Mohanan P, *et al.* Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg₀.₃₅Ta₀.₆₇)O₃. *Chem Mater* 2005, **17**: 142–151.

[35] Zhang TW, Zuo RZ. Effect of Li₃O–V₂O₅ addition on the sintering behavior and microwave dielectric properties of Li₃(Mg₁₋ₓZnₓ)₂NbO₆ ceramics. *Ceram Int* 2014, **40**: 15677–15684.

[36] Desu SB, O’Bryan HM. Microwave loss quality of BaZn₁₁Ta₂O₉ ceramics. *J Am Ceram Soc* 1985, **68**: 546–551.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.