EXOTIC GROUP C^*-ALGEBRAS IN NONCOMMUTATIVE DUALITY

S. KALISZEWSKI, MAGNUS B. LANDSTAD, AND JOHN QUIGG

Abstract. We show that for a locally compact group G there is a one-to-one correspondence between G-invariant weak*-closed subspaces E of the Fourier-Stieltjes algebra $B(G)$ containing $B_r(G)$ and quotients $C^*_E(G)$ of $C^*(G)$ which are intermediate between $C^*(G)$ and the reduced group algebra $C^*_r(G)$. We show that the canonical comultiplication on $C^*(G)$ descends to a coaction or a comultiplication on $C^*_E(G)$ if and only if E is an ideal or subalgebra, respectively. When α is an action of G on a C^*-algebra B, we define "E-crossed products" $B \rtimes_{\alpha,E} G$ lying between the full crossed product and the reduced one, and we conjecture that these "intermediate crossed products" satisfy an "exotic" version of crossed-product duality involving $C^*_E(G)$.

1. Introduction

It has long been known that for a locally compact group G there are many C^*-algebras between the full group C^*-algebra $C^*(G)$ and the reduced algebra $C^*_r(G)$ (see [Eym64]). However, little study has been made regarding the extent to which these intermediate algebras can be called group C^*-algebras.

This paper is inspired by recent work of Brown and Guentner [BG], which studies such intermediate algebras for discrete groups, and [Oka], which shows that in fact there can be a continuum of such intermediate algebras. We shall consider a general locally compact group G, and show that by elementary harmonic analysis there is a one-to-one correspondence between G-invariant weak*-closed subspaces E of the Fourier-Stieltjes algebra $B(G)$ containing $B_r(G)$ and quotients $C^*_E(G)$ of $C^*(G)$ which are intermediate between $C^*(G)$ and the reduced group algebra $C^*_r(G)$.

We are primarily interested in the following results:

Date: August 30, 2012.
2000 Mathematics Subject Classification. Primary 46L05.
Key words and phrases. group C^*-algebra, coaction, C^*-bialgebra, Hopf C^*-algebra, quantum group, Fourier-Stieltjes algebra.
• E is an ideal if and only if there is a coaction $C^*_E(G) \to M(C^*_E(G) \otimes C^*(G))$.
• E is a subalgebra if and only if there is a comultiplication $C^*_E(G) \to M(C^*_E(G) \otimes C^*_E(G))$.

(See Propositions 3.13 and 3.16 for more precise statements.) These C^*-algebras can be used to describe various properties of G, e.g., if G is discrete and $E = B(G) \cap c_0(G)$, then G has the Haagerup property if and only if $C^*_E(G) = C^*(G)$ (see [BG, Corollary 3.4]). Brown and Guentner also prove that (again, in the discrete case) $C^*_E(G)$ is a compact quantum group, because it carries a comultiplication, and this caught our attention since it makes a connection with noncommutative crossed-product duality.

If we have a C^*-dynamical system (B, G, α), one can form the full crossed product $B \rtimes_{\alpha} G$ or the reduced crossed product $B \rtimes_{\alpha, r} G$. We show in Section 6 that for E as above there is an “E-crossed product” $B \rtimes_{\alpha, E} G$, and we speculate that these “intermediate” crossed products satisfy an “exotic” version of crossed-product duality involving $C^*_E(G)$.

After a short section on preliminaries, in Section 3 we prove the above-mentioned results concerning the existence of a coaction or comultiplication on $C^*_E(G)$.

In Section 4 we briefly explore the analogue for arbitrary locally compact groups of the construction used in [BG], where for discrete groups they construct group C^*-algebras starting with ideals of $\ell^\infty(G)$.

In Section 5 we specialize (for the only time in this paper) to the discrete case, showing that a quotient $C^*_E(G)$ is a group C^*-algebra if and only if it is topologically graded in the sense of [Exe97].

Finally, in Section 6 we outline a possible application of our exotic group algebras to noncommutative crossed-product duality.

After this paper was circulated in preprint form, we learned that Buss and Echterhoff [BE] have given counterexamples to Conjecture 6.12 and have proven Conjecture 6.14.

We thank the referee for helpful comments.

2. Preliminaries

All ideals of C^*-algebras will be closed and two-sided. If A and B are C^*-algebras, then $A \otimes B$ will denote the minimal tensor product.

For one of our examples we will need the following elementary fact, which is surely folklore.
Lemma 2.1. Let A be a C^*-algebra, and let I and J be ideals of A. Let $\phi : A \to A/I$ and $\psi : A \to A/J$ be the quotient maps, and define
\[\pi = \phi \oplus \psi : A \to (A/I) \oplus (A/J). \]
Then π is surjective if and only if $A = I + J$.

Proof. First assume that π is surjective, and let $a \in A$. Choose $b \in A$ such that
\[\pi(b) = (\phi(a), 0), \]
i.e., $\phi(b) = \phi(a)$ and $\psi(b) = 0$. Then $a - b \in I, b \in J$, and $a = (a - b) + b$.
Conversely, assume that $A = I + J$, and let $a \in A$. Choose $b \in I$ and $c \in J$ such that $a = b + c$. Then $\psi(c) = 0$, and $\phi(c) = \phi(a)$ since $a - c \in I$. Thus
\[\pi(c) = (\phi(a), 0). \]
It follows that $\pi(A) \supset (A/I) \oplus \{0\}$, and similarly $\pi(A) \supset \{0\} \oplus (A/J)$, and hence π is onto. \qed

A point of notation: for a homomorphism between C^*-algebras, or for a bounded linear functional on a C^*-algebra, we use a bar to denote the unique strictly continuous extension to the multiplier algebra.

We adopt the conventions of [EKQR06] for actions and coactions of a locally compact group G on a C^*-algebra A. In particular, we use full coactions $\delta : A \to M(A \otimes C^*(G))$, which are nondegenerate injective homomorphisms satisfying the coaction-nondegeneracy property
\[\text{span}\{\delta(A)(1 \otimes C^*(G))\} = A \otimes C^*(G) \] (2.1)
and the coaction identity
\[\delta \otimes \text{id} \circ \delta = \text{id} \otimes \delta_G \circ \delta, \] (2.2)
where δ_G is the canonical coaction on $C^*(G)$, determined by $\delta_G(x) = x \otimes x$ for $x \in G$ (and where G is identified with its canonical image in $M(C^*(G))$). Recall that δ gives rise to a right $B(G)$-module structure on A^* given by
\[\omega \cdot f = \omega \otimes f \circ \delta \quad \text{for } \omega \in A^* \text{ and } f \in B(G), \]
and also to a left $B(G)$-module structure on A given by
\[f \cdot a = \text{id} \otimes f \circ \delta(a) \quad \text{for } f \in B(G) \text{ and } a \in A, \]
and that moreover
\[(\omega \cdot f)(a) = \omega(f \cdot a) \quad \text{for all } \omega \in A^*, f \in B(G), \text{ and } a \in A. \]

Further recall that $1_G \cdot a = a$ for all $a \in A$, where 1_G is the constant function with value 1. In fact, suppose we have a homomorphism $\delta : A \to M(A \otimes C^*(G))$ satisfying all the conditions of a coaction except...
Perhaps injectivity. Then δ is in fact a coaction, because injectivity follows automatically, by the following folklore trick:

Lemma 2.2. Let $\delta : A \to M(A \otimes C^*(G))$ be a homomorphism satisfying (2.1) and (2.2). Then for all $a \in A$ we have
\[
id \otimes 1_G \circ \delta(a) = a,
\]
where $1_G \in B(G)$ is the constant function with value 1. In particular, δ is injective and hence a coaction.

Proof. First of all,
\[
A = \overline{\text{span}} \left\{ (\text{id} \otimes g)(\delta(a)(1 \otimes c)) : g \in B(G), a \in A, c \in C^*(G) \right\}
\]
\[
= \overline{\text{span}} \left\{ \text{id} \otimes c \cdot g \circ \delta(a) : g \in B(G), a \in A, c \in C^*(G) \right\}
\]
\[
= \overline{\text{span}} \left\{ \text{id} \otimes f \circ \delta(a) : f \in B(G), a \in A \right\}.
\]
Now the following computation suffices: for all $a \in A$ and $f \in B(G)$ we have
\[
id \otimes 1_G \circ \delta(\text{id} \otimes f \circ \delta(a))
\]
\[
= \text{id} \otimes 1_G \circ \text{id} \otimes \text{id} \otimes f \circ (\delta \otimes \text{id}) \circ \delta(a)
\]
\[
= \text{id} \otimes 1_G \otimes f \circ (\text{id} \otimes \delta_G) \circ \delta(a)
\]
\[
= \text{id} \otimes f \circ \delta(a)
\]
\[
= \text{id} \otimes f \circ \delta(a)
\]

3. **Exotic Quotients of $C^*(G)$**

Let G be a locally compact group. We are interested in certain quotients $C^*_E(G)$ (see Definition 3.2 for this notation). We will always assume that ideals of C^*-algebras are closed and two-sided. Let $B(G)$ denote the Fourier-Stieltjes algebra, which we identify with the dual of $C^*(G)$. We give $B(G)$ the usual $C^*(G)$-bimodule structure: for $a,b \in C^*(G)$ and $f \in B(G)$ we define
\[
\langle b, a \cdot f \rangle = \langle ba, f \rangle \quad \text{and} \quad \langle b, f \cdot a \rangle = \langle ab, f \rangle.
\]
This bimodule structure extends to an $M(C^*(G))$-bimodule structure, because for $m \in M(C^*(G))$ and $f \in B(G)$ the linear functionals $a \mapsto \langle am, f \rangle$ and $a \mapsto \langle ma, f \rangle$ on $C^*(G)$ are bounded. Regarding G as canonically embedded in $M(C^*(G))$, the associated G-bimodule structure on $B(G)$ is given by
\[
(x \cdot f)(y) = f(yx) \quad \text{and} \quad (f \cdot x)(y) = f(xy)
\]
for $x,y \in G$ and $f \in B(G)$.
A quotient $C^*(G)/I$ is uniquely determined by the annihilator $E = I^\perp$ in $B(G)$, which is a weak*-closed subspace. We find it convenient to work in terms of E rather than I, keeping in mind that we will have $I = ^\perp E$, the preannihilator in $C^*(G)$. First we record the following well-known property:

Lemma 3.1. For any weak*-closed subspace E of $B(G)$, the following are equivalent:

1. $^\perp E$ is an ideal;
2. E is a $C^*(G)$-subbimodule;
3. E is G-invariant.

Proof. (1)\iff(2) follows from, e.g., [Ped79, Theorem 3.10.8], and (2)\iff(3) follows by integration. □

Definition 3.2. If E is a weak*-closed G-invariant subspace of $B(G)$, let $C^*_E(G)$ denote the quotient $C^*(G)/^\perp E$.

Note that the above definition makes sense, by Lemma 3.1.

Example 3.3. Of course we have $C^*(G) = C^*_{B(G)}(G)$.

Also,

$$C^*_r(G) = C^*_{B_r(G)}(G),$$

where $B_r(G)$ is the regular Fourier-Stieltjes algebra of G, because if $\lambda : C^*(G) \to C^*_r(G)$ denotes the regular representation of G then

$$(\ker \lambda)^\perp = B_r(G).$$

Recall for later use that the intersection $C_c(G) \cap B(G)$ is norm-dense in the Fourier algebra $A(G)$ (for the norm of functionals on $C^*(G)$), and is weak*-dense in $B_r(G)$ [Eym64].

Remark 3.4. If E is a weak*-closed G-invariant subspace of $B(G)$, and $q : C^*(G) \to C^*_E(G)$ is the quotient map, then the dual map $q^* : C_*^*(G)^* \to C^*(G)^* = B(G)$ is an isometric isomorphism onto E, and we identify $E = C^*_E(G)^*$ and regard q^* as an inclusion map.

Inspired in part by [BG], we pause here to give another construction of the quotients $C^*_E(G)$:

1. Start with a G-invariant, but not necessarily weak*-closed, subspace E of $B(G)$.
(2) Call a representation \(U\) of \(G\) on a Hilbert space \(H\) an \(E\)-representation if there is a dense subspace \(H_0\) of \(H\) such that the matrix coefficients
\[
x \mapsto \langle U_x \xi, \eta \rangle
\]
are in \(E\) for all \(\xi, \eta \in H_0\).

(3) Define a \(C^*\)-seminorm \(\| \cdot \|_E\) on \(C^c(G)\) by
\[
\| f \|_E = \sup \{ \| U(f) \| : U \text{ is an } E\text{-representation of } G \}.
\]

The following lemma is presumably well-known, but we include a proof for the convenience of the reader.

Lemma 3.5. With the above notation, let \(I\) be the ideal of \(C^*(G)\) given by

\[
I = \{ a \in C^*(G) : \| a \|_E = 0 \}.
\]

Then:

1. \(I = ^{-}E\).
2. The weak*-closure \(\overline{E}\) of \(E\) in \(B(G)\) is \(G\)-invariant, and \(C^*_E(G) = C^*(G)/I\) is the Hausdorff completion of \(C^c(G)\) in the seminorm \(\| \cdot \|_E\).
3. If \(E\) is an ideal or a subalgebra of \(B(G)\), then so is \(\overline{E}\).

Proof. (1) To show that \(I \subset ^{-}E\), let \(a \in I\) and \(f \in E\). Since \(f \in B(G)\), we can choose a representation \(U\) of \(G\) on a Hilbert space \(H\) and vectors \(\xi, \eta \in H\) such that
\[
f(x) = \langle U_x \xi, \eta \rangle \quad \text{for } x \in G.
\]
Let \(K_0\) be the smallest \(G\)-invariant subspace of \(H\) containing both \(\xi\) and \(\eta\), and let \(K = \overline{K_0}\). Then \(K\) is a closed \(G\)-invariant subspace of \(H\), so determines a subrepresentation \(\rho\) of \(G\). For every \(\zeta, \kappa \in K_0\), the function \(x \mapsto \langle U_x \zeta, \kappa \rangle\) is in \(E\) because \(E\) is \(G\)-invariant. Thus \(\rho\) is an \(E\)-representation. We have
\[
|\langle a, f \rangle| = |\langle \rho(a) \xi, \eta \rangle| \\
\leq \|\rho(a)\| \|\xi\| \|\eta\| \\
\leq \|a\|_E \|\xi\| \|\eta\| \\
= 0.
\]
Thus \(a \in ^{-}E\).

For the opposite containment, suppose by way of contradiction that we can find \(a \in ^{-}E \setminus I\). Then \(\|a\|_E \neq 0\), so we can also choose an \(E\)-representation \(U\) of \(G\) on a Hilbert space \(H\) such that \(U(a) \neq 0\). Let \(H_0\) be a dense subspace of \(H\) such that for all \(\xi, \eta \in H_0\) the function
$x \mapsto \langle U_x \xi, \eta \rangle$ is in E. By density we can choose $\xi, \eta \in H_0$ such that $\langle U(a) \xi, \eta \rangle \neq 0$. Then $g(x) = \langle U_x \xi, \eta \rangle$ defines an element $g \in E$, and we have

$$\langle a, g \rangle = \langle U(a) \xi, \eta \rangle \neq 0,$$

which is a contradiction. Therefore $\perp E \subset I$, as desired.

(2) Since $I = \perp E$ we have $E = I \perp$, which is G-invariant because I is an ideal, by Lemma 3.1. We have $I = \perp E$, so $C^*_E(G) = C^*(G)/I$ by Definition 3.2. Since $C_c(G)$ is dense in $C^*(G)$, the result now follows by the definition of I in (3.1).

(3) This follows immediately from separate weak*-continuity of multiplication in $B(G)$. This is a well-known property of $B(G)$, but we include the brief proof here for completeness: the bimodule action of $B(G)$ on the enveloping algebra $W^*(G) = B(G)^*$, given by

$$\langle a \cdot f, g \rangle = \langle a, fg \rangle = \langle f \cdot a, g \rangle \quad \text{for } a \in W^*(G), f, g \in B(G),$$

leaves $C^*(G)$ invariant, because it satisfies the submultiplicativity condition $\|a \cdot f\| \leq \|a\| \|f\|$ on norms and leaves $C_c(G) \subset C^*(G)$ invariant. Thus, if $f_i \to 0$ weak* in $B(G)$ and $g \in B(G)$, then for all $a \in C^*(G)$ we have

$$\langle a, f_i g \rangle = \langle a \cdot g, f_i \rangle \to 0.$$

□

Corollary 3.6.

(1) A representation U of G is an E-representation if and only if, identifying U with the corresponding representation of $C^*(G)$, we have $\ker U \supset \perp E$.

(2) A nondegenerate homomorphism $\tau : C^*(G) \to M(A)$, where A is a C^*-algebra, factors through a homomorphism of $C^*_E(G)$ if and only if

$$\overline{\omega} \circ \tau \in \overline{E} \quad \text{for all } \omega \in A^*,$$

where again \overline{E} denotes the weak*-closure of E.

Proof. This follows readily from Lemma 3.5. □

Remark 3.7. In light of Lemma 3.5 if we have a G-invariant subspace E of $B(G)$ that is not necessarily weak*-closed, it makes sense to, and we shall, write $C^*_E(G)$ for $C^*_E(G)$. However, whenever convenient we can replace E by its weak*-closure, giving the same quotient $C^*_E(G)$.

Observation 3.8. By Lemma 3.5, if E is a G-invariant subspace of $B(G)$ then:

(1) $C^*_E(G) = C^*(G)$ if and only if E is weak*-dense in $B(G)$.

(2) $C^*_E(G) = C^*_r(G)$ if and only if E is weak*-dense in $B_r(G)$.
We record an elementary consequence of our definitions:

Lemma 3.9. For a weak*-closed G-invariant subspace E of $B(G)$, the following are equivalent:

1. $\perp E \subset \ker \lambda$;
2. $E \supset B_r(G)$;
3. $E \supset A(G)$;
4. $E \supset (C_c(G) \cap B(G))$;
5. there is a (unique) homomorphism $\rho : C^*_E(G) \to C^*_r(G)$ making the diagram commute.

Definition 3.10. For a weak*-closed G-invariant subspace E of $B(G)$, we say the quotient $C^*_E(G)$ is a group C^*-algebra of G if the above equivalent conditions (1)–(4) are satisfied. If $B_r(G) \subsetneq E \neq B(G)$ we say the group C^*-algebra is exotic.

We will see in Proposition 5.1 that if G is discrete then a quotient $C^*_E(G)$ is a group C^*-algebra of G if and only if it is topologically graded in Exel’s sense [Exe97, Definition 3.4].

We are especially interested in group C^*-algebras that carry a coaction or a comultiplication. We will need the following result, which is folklore among coaction cognoscenti:

Lemma 3.11. If $\delta : A \to M(A \otimes C^*(G))$ is a coaction of G on a C^*-algebra A and I is an ideal of A, then the following are equivalent:

1. there is a coaction $\tilde{\delta}$ on A/I making the diagram commute (where q is the quotient map);
2. $I \subset \ker q \otimes \text{id} \circ \delta$.
3. I^\perp is a $B(G)$-submodule of A^*.
Proof. This is well-known, but difficult to find in the literature, so we include the brief proof for the convenience of the reader. There exists a homomorphism \(\tilde{\delta} \) making the diagram (3.2) commute if and only if (2) holds, and in that case \(\tilde{\delta} \) will satisfy the coaction-nondegeneracy (2.1) and the coaction identity (2.2). By Lemma 2.2 this implies that \(\tilde{\delta} \) is a coaction. Thus (1) \(\iff \) (2), and (2) \(\iff \) (3) follows from a routine calculation using the fact that \(\{ \psi \otimes f : \psi \in (A/I)^*, f \in B(G) \} \) separates the elements of \(M(A/I \otimes C^*(G)) \). \(\Box \)

Recall that the multiplication in \(B(G) \) satisfies
\[
\langle a, fg \rangle = \langle \delta_G(a), f \otimes g \rangle \quad \text{for } a \in C^*(G) \text{ and } f, g \in B(G),
\]
where here we use the notation \(f \otimes g \) to denote the functional in \((C^*(G) \otimes C^*(G))^* \) determined by
\[
\langle x \otimes y, f \otimes g \rangle = f(x)g(y) \quad \text{for } x, y \in G.
\]

Remark 3.12. Note that we need to explicitly state the above convention for \(f \otimes g \), since we are using the minimal tensor product: if \(G \) is a group for which the canonical surjection \(C^*(G) \otimes \max C^*(G) \to C^*(G) \otimes C^*(G) \) is noninjective\(^1\), then
\[
C^*(G) \otimes C^*(G) \neq C^*(G \times G)
\]
\[
(C^*(G) \otimes C^*(G))^* \neq B(G \times G),
\]
because \(C^*(G \times G) = C^*(G) \otimes \max C^*(G) \).

Corollary 3.13. Let \(E \) be a weak*-closed \(G \)-invariant subspace of \(B(G) \), and let \(q : C^*(G) \to C^*_E(G) \) be the quotient map. Then there is a coaction \(\delta^E_G \) of \(G \) on \(C^*_E(G) \) such that
\[
\delta^E_G(q(x)) = q(x) \otimes x \quad \text{for } x \in G
\]
if and only if \(E \) is an ideal of \(B(G) \).

Proof. Since \(E \) is the annihilator of \(\ker q \), this follows immediately from Lemma 3.11. \(\Box \)

Recall that in Definition 3.10 we called \(C^*_E(G) \) a group \(C^* \)-algebra if \(E \) is a weak*-closed \(G \)-invariant subspace of \(B(G) \) containing \(B_r(G) \); this latter property is automatic if \(E \) is an ideal (as long as it’s nonzero):

\[^1\text{e.g., any infinite simple group with property T — see [BO08, Theorem 6.4.14 and Remark 6.4.15]}\]
Lemma 3.14. Every nonzero norm-closed G-invariant ideal of $B(G)$ contains $A(G)$, and hence every nonzero weak*-closed G-invariant ideal of $B(G)$ contains $B_r(G)$.

Proof. Let E be the ideal. It suffices to show that $E \cap A(G)$ is norm dense in $A(G)$. There exist $t \in G$ and $f \in E$ such that $f(t) \neq 0$. By [Eym64, Lemma 3.2] there exists $g \in A(G) \cap C_c(G)$ such that $g(t) \neq 0$, and then $fg \in E \cap C_c(G)$ is nonzero at t. By G-invariance of E, for all $x \in G$ there exists $f \in E$ such that $f(x) \neq 0$. Then for any $y \neq x$ we can find $g \in A(G) \cap C_c(G)$ such that $g(x) \neq 0$ and $g(y) = 0$, and so $fg \in E$ is nonzero at x and zero at y. Thus $E \cap A(G)$ is an ideal of $A(G)$ that is nowhere vanishing on G and separates points, so by [Eym64, Corollary 3.38] $E \cap A(G)$ is norm dense in $A(G)$, so we are done. \hfill \square

Recall that a comultiplication on a C^*-algebra A is a homomorphism (which we do not in general require to be injective) $\Delta : A \to M(A \otimes A)$ satisfying the co-associativity property
\[\Delta \otimes \text{id} \circ \Delta = \text{id} \otimes \Delta \circ \Delta \]
and the nondegeneracy properties
\[\overline{\text{span}}\{\Delta(A)(1 \otimes A)\} = A \otimes A = \overline{\text{span}}\{(A \otimes 1)\Delta(A)\}. \]
A C^*-algebra with a comultiplication is called a C^*-bialgebra (see [Kaw08] for this terminology). A comultiplication Δ on A is used to make the dual space A^* into a Banach algebra in the standard way:
\[\omega \psi := \omega \otimes \psi \circ \Delta \quad \text{for} \quad \omega, \psi \in A^*. \]

The following is another folklore result, proved similarly to Lemma 3.11:

Lemma 3.15. If $\Delta : A \to M(A \otimes A)$ is a comultiplication on a C^*-algebra A and I is an ideal of A, then the following are equivalent:

1. there is a comultiplication $\tilde{\Delta}$ on A/I making the diagram
\[
\begin{array}{ccc}
A & \xrightarrow{\Delta} & M(A \otimes A) \\
\downarrow q & & \downarrow q \otimes q \\
A/I & \xrightarrow{\tilde{\Delta}} & M(A/I \otimes A/I)
\end{array}
\]
commute (where q is the quotient map);
2. $I \subset \ker q \otimes q \circ \Delta$.
3. I^\perp is a subalgebra of A^*.

We apply this to the canonical comultiplication δ_G on $C^*(G)$:
Proposition 3.16. Let E be a weak*-closed G-invariant subspace of $B(G)$, and let $q : C^*(G) \to C^*_E(G)$ be the quotient map. Then the following are equivalent:

1. there is a comultiplication Δ making the diagram

\[
\begin{array}{ccc}
C^*(G) & \xrightarrow{\delta_G} & M(C^*(G) \otimes C^*(G)) \\
\downarrow q & & \downarrow \overline{q \otimes q} \\
C^*_E(G) & \xrightarrow{\Delta} & M(C^*_E(G) \otimes C^*_E(G))
\end{array}
\]

commute;

2. $\perp E \subset \ker q \otimes q \circ \delta_G$;

3. E is a subalgebra of $B(G)$.

Remark 3.17. Proposition 3.16 tells us that if E is a weak*-closed G-invariant subalgebra of $B(G)$, then the group algebra $C^*_E(G)$ is a C^*-bialgebra. However, this probably does not make $C^*_E(G)$ a locally compact quantum group, since this would require an antipode. It might be difficult to investigate the general question of whether there exists some antipode on $C^*_E(G)$ that is compatible with the comultiplication; it seems more reasonable to ask whether the quotient map $q : C^*(G) \to C^*_E(G)$ takes the canonical antipode on $C^*(G)$ to an antipode on $C^*_E(G)$. This requires E to be closed under inverse i.e., if $f \in E$ then so is the function f^\vee defined by $f^\vee(x) = f(x^{-1})$. Now, $f^\vee(x) = \overline{f^*(x)}$ where f^* is defined by $f^*(a) = f(a^*)$ for $a \in C^*(G)$. Since $f \in E$ if and only if $f^* \in E$, we see that E is invariant under $f \mapsto f^\vee$ if and only if it is invariant under complex conjugation. In all our examples (in particular Section 4) E has this property. Note that $C^*_E(G)$ always has a Haar weight, since we can compose the canonical Haar weight on $C^*_r(G)$ with the quotient map $C^*_r(G) \to C^*_E(G)$. However, this Haar weight on $C^*_E(G)$ is faithful if and only if $E = B_r(G)$.

Remark 3.18. By Lemma 3.5, if E is a G-invariant ideal of $B(G)$ and $I = \perp E$, then E is also a G-invariant ideal, so by Proposition 3.13 there is a coaction δ^E_G of G on $C^*_E(G)$ such that

\[
\delta^E_G(q(x)) = q(x) \otimes x \quad \text{for } x \in G,
\]

where $q : C^*(G) \to C^*_E(G)$ is the quotient map.

Similarly, if E is a G-invariant subalgebra of $B(G)$ then \overline{E} is also a G-invariant subalgebra, so by Proposition 3.16 there is a comultiplication Δ on $C^*_E(G)$ such that

\[
\Delta(q(x)) = q(x) \otimes q(x) \quad \text{for } x \in G.
\]
Example 3.19. Note that if the quotient \(C^*_E(G) \) is a group \(C^* \)-algebra, then the quotient map \(q : C^*(G) \to C^*_E(G) \) is faithful on \(C_c(G) \), and so by Lemma 3.5 \(C^*_E(G) \) is the completion of \(C_c(G) \) in the associated norm \(\| \cdot \|_E \). However, \(q \) being faithful on \(C_c(G) \) is not sufficient for \(C^*_E(G) \) to be a group \(C^* \)-algebra. The simplest example of this is in [FD88, Exercise XI.38] (which we modify only slightly): let \(0 \leq a < b < 2\pi \), and define a surjection

\[
q(n)(t) = e^{int}.
\]

Then the unitaries \(q(n) \) are linearly independent, so \(q \) is faithful on \(c_c(\mathbb{Z}) \), but \(q(C^*(\mathbb{Z})) \) is not a group \(C^* \)-algebra because \(\ker q \) is a non-trivial ideal of \(C^*(\mathbb{Z}) \) and \(\mathbb{Z} \) is amenable, so that \(\ker \lambda = \{0\} \).

Example 3.20. The paper [EQ99] shows how to construct exotic group \(C^* \)-algebras \(C^*_E(G) \) (see also [KS, Remark 9.6] for similar exotic quantum groups) with no coaction: let

\[
q = \lambda \oplus 1_G,
\]

where \(1_G \) denotes the trivial 1-dimensional representation of \(G \). The quotient \(C^*_E(G) \) is a group \(C^* \)-algebra since \(\ker q = \ker \lambda \cap \ker 1_G \). On the other hand, we have

\[
E = (\ker q)^\perp = B_r(G) + \mathbb{C}1_G,
\]

which is not an ideal of \(B(G) \) unless it is all of \(B(G) \), i.e., unless \(q \) is faithful; as remarked in [EQ99], this behavior would be quite bizarre, and in fact we do not know of any discrete nonamenable group with this property.

However, these quotients \(C^*_E(G) \) are \(C^* \)-bialgebras, because \(B_r(G) + \mathbb{C}1_G \) is a subalgebra of \(B(G) \). Thus, these quotients give examples of exotic group \(C^* \)-bialgebras that are different from those in [BG, Proposition 4.4 and Remark 4.5]. It is interesting to note that these quotients of \(C^*(G) \) are of a decidedly elementary variety: by Lemma 2.1 we have

\[
C^*_E(G) = C^*_r(G) \oplus \mathbb{C},
\]

because \(C^*(G) = \ker \lambda + \ker 1_G \) since \(G \) is nonamenable. To see this latter implication, recall that if \(G \) is nonamenable then \(1_G \) is not weakly contained in \(\lambda \), so \(\ker 1_G \not\subset \ker \lambda \), and hence \(C^*(G) = \ker \lambda + \ker 1_G \) since \(\ker 1_G \) is a maximal ideal.

Valette has a similar example in [Val84, Theorem 3.6] where he shows that if \(N \) is a closed normal subgroup of \(G \) that has property \((T) \), then \(C^*(G) \) is the direct sum of \(C^*(G/N) \) and a complementary ideal.
For a different source of exotic group C^*-bialgebras, see Example \[3.22\].

Example 3.21. We can also find examples of group C^*-algebras with no comultiplication: modify the preceding example by taking
\[q = \lambda \oplus \gamma, \]
where γ is a nontrivial character of G (assuming that G has such characters). Then
\[(\ker q)^\perp = B_r(G) + C\gamma, \]
which is not a subalgebra of $B(G)$ when G is nonamenable.

Example 3.22. Let G be a locally compact group for which the canonical surjection
\[(3.3) \quad C^*(G) \otimes_{\max} C^*(G) \to C^*(G) \otimes C^*(G) \]
is not injective, where in the second tensor product we use the minimal C^*-tensor norm as usual (see Remark \[3.12\]). Let I denote the kernel of this map. Since the algebraic product $B(G) \odot B(G)$ is weak*-dense in $(C^*(G) \otimes C^*(G))^*$, the annihilator $E = I^\perp$ is the weak*-closed span of functions of the form
\[(x, y) \mapsto f(x)g(y) \quad \text{for } f, g \in B(G). \]
This is clearly a subalgebra, but not an ideal, because it contains 1. Also, $E \supset B_r(G \times G)$ because the surjection (3.3) can be followed by
\[C^*(G) \otimes C^*(G) \to C_r^*(G) \otimes C_r^*(G) \cong C_r^*(G \times G). \]
Thus the canonical coaction $\delta_{G \times G}$ of $G \times G$ on $C^*(G \times G)$ descends to a comultiplication on the group C^*-algebra $C_r^*(G \times G) \cong C^*(G) \otimes C^*(G)$, but not to a coaction of $G \times G$.

4. **Classical ideals**

We continue to let G be an arbitrary locally compact group.

We will apply the theory of the preceding sections to group C^*-algebras $C_r^*(G)$ with E of the form
\[E = D \cap B(G), \]
where D is some familiar G-invariant set of functions on G.

Notation 4.1. If D is a G-invariant set of functions on G, we write $\|f\|_D = \|f\|_{D \cap B(G)}$, and similarly $C^*_D(G) = C^*_D(G \cap B(G))$.
So, for instance, we can consider $C^*_c(G)$, $C^*_{c_0}(G)$, and $C^*_{L^p(G)}(G)$. In each of these cases the intersection $E = D \cap B(G)$ is a G-invariant ideal of $B(G)$, so by Remark 3.18 and Lemma 3.14 these quotients are all group C^*-algebras carrying coactions of G, and hence by Proposition 3.16 they carry comultiplications. In the case that G is discrete, $C^*_c(G)$, $C^*_0(G)$, and $\ell^p(G)$ could be regarded as classical ideals of $\ell^\infty(G)$; this is the context of Brown and Guentner’s “new completions of discrete groups” [BG].

We have

$$C^*_c(G) = C^*_{A(G)}(G) = C^*_r(G),$$

because $C_c(G) \cap B(G)$ is norm dense in $A(G)$, and hence weak*-dense in $B_r(G)$. However, the quotients $C^*_{c_0}(G)$ and $C^*_{L^p(G)}(G)$ are more mysterious. Nevertheless, we have the following (which, for the case of discrete G, is [BG, Proposition 2.11]):

Proposition 4.2. For all $p \leq 2$ we have $C^*_{L^p(G)}(G) = C^*_r(G)$.

Proof. Since $L^p(G) \cap B(G)$ consists of bounded functions, for $p \leq 2$ we have

$$C_c(G) \cap B(G) \subset L^p(G) \cap B(G) \subset L^2(G) \cap B(G).$$

Now, if U is a representation of G having a cyclic vector ξ such that the function $x \mapsto \langle U_x \xi, \xi \rangle$ is in $L^2(G)$, then U is contained in λ (see, e.g., [Car76]), and consequently $L^2(G) \cap B(G) \subset A(G)$. Thus

$$B_r(G) = \overline{C_c(G) \cap B(G)}^{\text{weak}^*} \subset \overline{L^p(G) \cap B(G)}^{\text{weak}^*} \subset \overline{L^2(G) \cap B(G)}^{\text{weak}^*} \subset \overline{A(G)}^{\text{weak}^*} = B_r(G),$$

and the result follows. \(\square\)

Remark 4.3. (1) The proof of Proposition 4.2 is much easier when G is discrete, because then for $\xi \in \ell^2(G)$ we have

$$\xi(x) = \langle \lambda_x \chi(e), \overline{\xi} \rangle,$$

so $\ell^2(G) \subset A(G)$.

(2) In general, $C^*_0(G) \cap B(G) \subset B_r(G)$, and the containment can be proper (for perhaps the earliest result along these lines, see [Men16]). When G is discrete, this phenomenon occurs...
precisely when \(G \) is a-T-menable but nonamenable, by the result of [BG] mentioned in the introduction.

(3) Using the method outlined in this section, if we start with a \(G \)-invariant ideal \(D \) of \(L^\infty(G) \) and put \(E = D \cap B(G)^{\text{weak}^*} \), we get many weak*-closed ideals of \(B(G) \), but probably not all. For example, if we let \(z_F \) be the supremum in the universal enveloping von Neumann algebra \(W^*(G) = C^*(G)^{**} \) of the support projections of finite dimensional representations of \(G \), then it follows from [Wal75, Proposition 1, Theorem 2, Proposition 8] that \((1-z_F) \cdot B(G) \) is an ideal of \(B(G) \) and \(z_F \cdot B(G) = AP(G) \cap B(G) \) is a subalgebra. It seems unlikely that for all locally compact groups \(G \) the ideal \((1-z_F) \cdot B(G) \) arises as an intersection \(D \cap B(G) \) for an ideal \(D \) of \(L^\infty(G) \).

5. Graded algebras

In this short section we impose the condition that the group \(G \) is discrete. We made this a separate section for the purpose of clarity — here the assumptions on \(G \) are different from everywhere else in this paper. [Exe97, Definition 3.1] and [FD88, VIII.16.11–12] define \(G \)-graded \(C^* \)-algebras as certain quotients of Fell-bundle algebras. When the fibres of the Fell bundle are 1-dimensional, each one consists of scalar multiplies of a unitary. When these unitaries can be chosen to form a representation of \(G \), the \(C^* \)-algebra is a quotient \(C^*_E(G) \).

The following can be regarded as a special case of [Exe97, Theorem 3.3]:

Proposition 5.1. Let \(E \) be a weak*-closed \(G \)-invariant subspace of \(B(G) \), and let \(q : C^*(G) \to C^*_E(G) \) be the quotient map. Then the following are equivalent:

1. \(C^*_E(G) \) is a group \(C^* \)-algebra in the sense of Definition 3.10;
2. there is a bounded linear functional \(\omega \) on \(C^*_E(G) \) such that
 \[
 \omega(q(x)) = \begin{cases}
 1 & \text{if } x = e \\
 0 & \text{if } x \neq e;
 \end{cases}
 \]
3. \(E \) contains the canonical trace \(\text{tr} \) on \(C^*(G) \);
4. \(E \supset B_r(G) \);

\[\text{Exe97, FD88}\] would require the images of the fibres to be linearly independent.
(5) there is a (unique) homomorphism $\rho : C^*_E(G) \to C^*_r(G)$ making the diagram

\[
\begin{array}{ccc}
C^*_r(G) & \xrightarrow{\delta} & M(C^*_r(G) \otimes C^*_r(G)) \\
\downarrow{q} & & \downarrow{q \otimes \text{id}} \\
C^*_E(G) & \xrightarrow{\delta_E} & M(C^*_E(G) \otimes C^*_r(G))
\end{array}
\]

commute.

Proof. Assuming (2), the composition $\omega \circ q$ coincides with tr, so $\text{tr} \in E$, and conversely if $\text{tr} \in E$ then we get a suitable ω. Thus (2) \Leftrightarrow (3).

For the rest, just note that $B_r(G) = (\ker \lambda) ^\perp$ is the weak*-closed G-invariant subspace generated by $\text{tr} = \chi_{\{e\}}$, and appeal to Lemma 3.9.

Remark 5.2. Condition (2) in Proposition 5.1 is precisely what Exel’s [Exe97, Definition 3.4] would require to say that $C^*_E(G)$ is topologically graded.

6. Exotic coactions

We return to the context of an arbitrary locally compact group G.

The coactions appearing in noncommutative crossed-product duality come in a variety of flavors: reduced vs. full (see [EKQR06, Appendix] or [HQRW11], for example), and, among the full ones, a spectrum with normal and maximal coactions at the extremes (see [EKQ04], for example). In this concluding section we briefly propose a new program in crossed-product duality: “exotic coactions”, involving the exotic group C^*-algebras $C^*_E(G)$ in the sense of Definition 3.10. From now until Proposition 6.16 we are concerned with nonzero G-invariant weak*-closed ideals E of $B(G)$.

By Lemmas 3.9 and 3.14 the quotient $C^*_E(G) = C^*_r(G) / ^\perp E$ is a group C^*-algebra. By Proposition 3.13, there is a coaction δ^E_G of G on $C^*_E(G)$ making the diagram

\[
\begin{array}{ccc}
C^*_r(G) & \xrightarrow{\delta} & M(C^*_r(G) \otimes C^*_r(G)) \\
\downarrow{q} & & \downarrow{q \otimes \text{id}} \\
C^*_E(G) & \xrightarrow{\delta^E_G} & M(C^*_E(G) \otimes C^*_r(G))
\end{array}
\]
commute, where q is the quotient map, and by Proposition 3.16 there is a quotient comultiplication Δ on $C^*_E(G)$. Recall that we defined the exotic group C^*-algebras to be the ones strictly between the two extremes $C^*(G)$ and $C^*_r(G)$, corresponding to $E = B(G)$ and $E = B_r(G)$, respectively.

On one level, we could try to study coactions of Hopf C^*-algebras associated to the locally compact group G other than $C^*(G)$ and $C^*_r(G)$. However, there is an inconvenient subtlety here (see Remark 3.17). However, there is a deeper level to this program, relating more directly to crossed-product duality. At the deepest level, we aim for a characterization of all coactions of G in terms of the quotients $C^*_E(G)$. We hasten to emphasize that at this time some of the following is speculative, and is intended merely to outline a program of study.

From now on, the unadorned term “coaction” will refer to a full coaction of G on a C^*-algebra A.

Let $\psi : (A^m, \delta^m) \to (A, \delta)$ be the maximalization of δ, so that δ^m is a maximal coaction, $\psi : A^m \to A$ is an equivariant surjection, and the crossed-product surjection

$$
\psi \times G : A^m \times_{\delta^m} G \to A \rtimes \delta G
$$

(for the existence of which, see [EKQR06, Lemma A.46], for example) is an isomorphism. Since δ^m is maximal, the canonical surjection

$$
\Phi : A^m \times_{\delta^m} G \times_{\delta^m} G \to A^m \otimes K(L^2(G))
$$

is an isomorphism (this is “full-crossed-product duality”). Blurring the distinction between $A^m \times_{\delta^m} G$ and the isomorphic crossed product $A \rtimes_{\delta} G$, and recalling that $\psi \times G : A^m \times_{\delta^m} G \to A \rtimes \delta G$ is $\delta^m - \delta$ equivariant, we can regard Φ as an isomorphism

$$
A \rtimes \delta G \times_{\delta} G \xrightarrow{\Phi} A^m \otimes K(L^2(G)).
$$

We have a surjection

$$
\psi \otimes \text{id} : A^m \otimes K(L^2(G)) \to A \otimes K(L^2(G)),
$$

whose kernel is $(\ker \psi) \otimes K(L^2(G))$ since $K(L^2(G))$ is nuclear. Let K_δ be the inverse image under Φ of this kernel, giving an ideal of $A \rtimes \delta G \rtimes_{\delta} G$ and an isomorphism Φ_δ making the diagram

\[
\begin{array}{ccc}
A \rtimes \delta G \rtimes_{\delta} G & \xrightarrow{\Phi} & A^m \otimes K(L^2(G)) \\
\downarrow & & \downarrow \psi \otimes \text{id} \\
(A \rtimes \delta G \rtimes_{\delta} G) / K_\delta & \xrightarrow{\cong} & A \otimes K(L^2(G))
\end{array}
\]

(6.1)
commute, where \(Q \) is the quotient map. Adapting the techniques of [EQ02, Theorem 3.7], it is not hard to see that \(K_\delta \) is contained in the kernel of the regular representation \(\Lambda : A \rtimes_\delta G \rtimes_\delta G \to A \rtimes_\delta G \rtimes_{\delta,r} G \).

If \(\delta \) is maximal, then diagram 6.1 collapses to a single row. On the other hand, if \(\delta \) is normal, then \(Q \) is the regular representation \(\Lambda \) and in particular

\[
(A \rtimes_\delta G \rtimes_\delta G)/K_\delta = A \rtimes_\delta G \rtimes_{\delta,r} G.
\]

(In this case the isomorphism \(\Phi_\delta \) is “reduced-crossed-product duality”.)

With the ultimate goal (which at this time remains elusive — see Conjectures 6.12 and 6.14) of achieving an “\(E \)-crossed-product duality”, intermediate between full- and reduced-crossed-product dualities, below we will propose tentative definitions of “\(E \)-crossed-product duality” and “\(E \)-crossed products” \(B \rtimes_{\alpha,E} G \) by actions \(\alpha : G \to \text{Aut} B \), and we will prove that they have the following properties:

1. A coaction satisfies \(B(G) \)-crossed-product duality if and only if it is maximal.
2. A coaction satisfies \(B_r(G) \)-crossed-product duality if and only if it is normal.
3. \(B \rtimes_{\alpha,B(G)} G = B \rtimes_{\alpha} G \).
4. \(B \rtimes_{\alpha,B_r(G)} G = B \rtimes_{\alpha,r} G \).
5. The dual coaction \(\hat{\alpha} \) on the full crossed product \(B \rtimes_\alpha G \) satisfies \(B(G) \)-crossed-product duality.
6. The dual coaction \(\hat{\alpha}^n \) on the reduced crossed product \(B \rtimes_{\alpha,r} G \) satisfies \(B_r(G) \)-crossed-product duality.
7. In general, \(B \rtimes_{\alpha,E} G \) is a quotient of \(B \rtimes_\alpha G \) by an ideal contained in the kernel of the regular representation \(\Lambda : B \rtimes_\alpha G \to B \rtimes_{\alpha,r} G \).
8. There is a dual coaction \(\hat{\alpha}_E \) of \(G \) on \(B \rtimes_{\alpha,E} G \).

Definition 6.1. Define an ideal \(J_{\alpha,E} \) of the crossed product \(B \rtimes_\alpha G \) by

\[
J_{\alpha,E} = \ker \text{id} \otimes q \circ \hat{\alpha},
\]

and define the \(E \)-crossed product by

\[
B \rtimes_{\alpha,E} G = (B \rtimes_\alpha G)/J_{\alpha,E}.
\]

\(^3\)This is a convenient place to correct a slip in the last paragraph of the proof of [EQ02, Theorem 3.7]: “contains” should be replaced by “is contained in” (both times).
Note that the above properties (1)–(7) are obviously satisfied (because $\hat{\alpha}$ is maximal and $\hat{\alpha}^n$ is normal), and we now verify that (8) holds as well:

Theorem 6.2. Let E be a nonzero weak*-closed G-invariant ideal of $B(G)$, and let $Q : B \rtimes_{\alpha} G \to B \rtimes_{\alpha,E} G$ be the quotient map. Then there is a coaction $\hat{\alpha}_E$ making the diagram

$$
\begin{array}{ccc}
B \rtimes_{\alpha} G & \longrightarrow & M((B \rtimes_{\alpha} G) \otimes C^*(G)) \\
Q & & Q \otimes \text{id} \\
B \rtimes_{\alpha,E} G & \longrightarrow & M((B \rtimes_{\alpha,E} G) \otimes C^*(G))
\end{array}
$$

commute.

Proof. By Lemma 3.13, we must show that

$$\text{ker } Q \otimes \text{id} \circ \hat{\alpha}.$$

Let $a \in J_{\alpha,E}$, $\omega \in (B \rtimes_{\alpha,E} G)^*$, and $g \in B(G)$. Then

$$\omega \otimes g \circ Q \otimes \text{id} \circ \hat{\alpha}(a) = Q^* \omega \otimes g \circ \hat{\alpha}(a) = Q^* \omega \circ \text{id} \otimes g \circ \hat{\alpha}(a) = Q^* \omega(g \cdot a).$$

Now, since $Q^* \omega \in J^\perp_{\alpha,E}$, it suffices to show that $g \cdot a \in J_{\alpha,E}$. For $h \in E$ we have

$$h \cdot (g \cdot a) = (hg) \cdot a = (gh) \cdot a = g \cdot (h \cdot a) = 0,$$

because $h \cdot a = 0$ by Lemma 6.3 below. □

Lemma 6.3. With the above notation, we have:

1. $J_{\alpha,E} = \{a \in B \rtimes_{\alpha} G : E \cdot a = \{0\}\}$, and
2. $J^\perp_{\alpha,E} = \text{span}\{(B \rtimes_{\alpha} G)^* \cdot E\}$, where the closure is in the weak*-topology.

Proof. (1) For $a \in B \rtimes_{\alpha} G$, we have

$$a \in J_{\alpha,E} \iff \text{id} \otimes q \circ \hat{\alpha}(a) = 0 \iff \omega \otimes h \circ \text{id} \otimes q \circ \hat{\alpha}(a) = 0$$

for all $\omega \in (B \rtimes_{\alpha,E} G)^*$ and $h \in C^*_E(G)^*$

$$\omega \otimes q^* h \circ \hat{\alpha}(a) = 0$$

for all $\omega \in (B \rtimes_{\alpha,E} G)^*$ and $h \in C^*_E(G)^*$.
\[\omega \otimes g \circ \hat{\alpha}(a) = 0 \]
for all \(\omega \in (B \rtimes_{\alpha,E} G)^* \) and \(g \in E \)
\[\omega \circ \text{id} \otimes g \circ \hat{\alpha}(a) = 0 \]
for all \(\omega \in (B \rtimes_{\alpha,E} G)^* \) and \(g \in E \)
\[\omega(g \cdot a) = 0 \] for all \(\omega \in (B \rtimes_{\alpha,E} G)^* \) and \(g \in E \)
\[g \cdot a = 0 \] for all \(g \in E \).

(2) If \(a \in J_{\alpha,E}, \omega \in (B \rtimes_{\alpha} G)^* \), and \(f \in E \),
\[(\omega \cdot f)(a) = \omega(f \cdot a) = 0, \]
so \(\omega \cdot f \in J_{\alpha,E}^\perp \), and hence the left-hand side contains the right.

For the opposite containment, it suffices to show that
\[J_{\alpha,E} \supset J_{\alpha,E}^\perp \cdot E. \]
If \(a \in J_{\alpha,E}^\perp \cdot E \), then for all \(\omega \in (B \rtimes_{\alpha} G)^* \) and \(f \in E \) we have
\[0 = (\omega \cdot f)(a) = \omega(f \cdot a), \]
so \(f \cdot a = 0 \), and therefore \(a \in J_{\alpha,E} \).

Remark 6.4. We could define a covariant representation \((\pi, U)\) of the action \((B, \alpha)\) to be an \(E\)-representation if the representation \(U\) of \(G\) is an \(E\)-representation, and we could define an ideal \(\tilde{J}_{\alpha,E}\) of \(B \rtimes_{\alpha} G\) by
\[\tilde{J}_{\alpha,E} = \{ a : \pi \times U(a) = 0 \} \]
for every \(E\)-representation \((\pi, U)\). It follows from Corollary 3.6 that \((\pi, U)\) is an \(E\)-representation in the above sense if and only if
\[\overline{\omega} \circ U \in E \] for all \(\omega \in (\pi \times U(B \rtimes_{\alpha} G))^* \),
where \(i_G : C^*(G) \to \text{M}(B \rtimes_{\alpha} G)\) is the canonical nondegenerate homomorphism, and consequently
\[\tilde{J}_{\alpha,E} = \{ \omega \in (B \rtimes_{\alpha} G)^* : \overline{\omega} \circ i_G \in E \}. \]

In the following lemma we show one containment that always holds between (6.2) and the ideal of Definition 6.1, after which we explain why these ideals do not coincide in general.

Lemma 6.5. With the above notation, we have
\[\tilde{J}_{\alpha,E} \subset J_{\alpha,E}. \]

Proof. If \(\omega \in (B \rtimes_{\alpha} G)^* \) and \(f \in E \), then
\[\overline{\omega} \cdot f \circ \overline{i_G} = \overline{\omega} \otimes \overline{f} \circ \overline{\hat{\alpha}} \circ \overline{i_G} \]
\[= \overline{\omega} \otimes \overline{f} \circ \overline{i_G} \otimes \text{id} \circ \delta_G \]
\[
\begin{align*}
\omega \circ i_G & \otimes f \circ \delta_G \\
= (\omega \circ i_G) f,
\end{align*}
\]
which is in \(E\) because \(f \in E\) and \(E\) is an ideal of \(B(G)\). Thus \(\omega \cdot f \in \tilde{J}_{\alpha,E}^\perp\). \(\square\)

Example 6.6. To see that the inclusion of Lemma 6.5 can be proper, consider the extreme case \(E = B_r(G)\), so that \(B \rtimes_{\alpha,E} G = B \rtimes_{\alpha,r} G\). In this case \(J_{\alpha,E}\) is the kernel of the regular representation \(\Lambda : B \rtimes_{\alpha} G \to B \rtimes_{\alpha,r} G\). On the other hand, \(\tilde{J}_{\alpha,E}\) comprises the elements that are killed by every representation \(\pi \times U\) for which \(U\) is weakly contained in the regular representation \(\lambda\) of \(G\). [QS92, Example 5.3] gives an example of an action \((B,\alpha)\) having a covariant representation \((\pi,U)\) for which \(U\) is weakly contained in \(\lambda\) but \(\pi \times U\) is not weakly contained in \(\Lambda\). Thus \(\ker \pi \times U\) contains \(\tilde{J}_{\alpha,E}\) and \(J_{\alpha,E}\) has an element not contained in \(\ker \pi \times U\), so \(\tilde{J}_{\alpha,E}\) is properly contained in \(J_{\alpha,E}\) in this case.

Definition 6.7. We say that \(G\) is \(E\)-amenable if there are positive definite functions \(h_n\) in \(E\) such that \(h_n \to 1\) uniformly on compact sets.

Lemma 6.8. If \(G\) is \(E\)-amenable and \((A,G,\alpha)\) is an action, then \(J_{\alpha,E} = \{0\}\), so
\[
A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,E} G.
\]

Proof. By Lemma 6.3, we have \(h_n \cdot a = 0\) for all \(a \in J_{\alpha,E}\). Since \(h_n \to 1\) uniformly on compact sets, it follows that \(h_n \cdot a \to a\) in norm. To see this, note that since the \(h_n\) are positive definite and \(h_n \to 1\), the sequence \(\{h_n\}\) is bounded in \(B(G)\), and certainly for \(f \in C_c(G)\) we have
\[
h_n \cdot (fa) = (h_n f)a \to f a
\]
in norm, because the pointwise products \(h_n f\) converge to \(f\) uniformly and hence in the inductive limit topology since \(\text{supp} f\) is compact. Therefore \(J_{\alpha,E} = \{0\}\). \(\square\)

Remark 6.9. In [BG] Section 5, Brown and Guentner study actions of a discrete group \(G\) on a unital abelian \(C^*\)-algebra \(C(X)\), and introduce the concept of a \(D\)-amenable action, where \(D\) is a \(G\)-invariant ideal of \(\ell^\infty(G)\). In particular, if \(G\) is \(D\)-amenable then every action of \(G\) is \(D\)-amenable. They show that if the action is \(D\)-amenable then \(\tilde{J}_{\alpha,E} = \{0\}\), i.e.,
\[
C_D^*(X \rtimes G) \cong C(X) \rtimes_{\alpha} G.
\]
Here we have used the notation of [BG]: $C^*_E(X \rtimes G)$ denotes the quotient of the crossed product $C(X) \rtimes \alpha G$ by the ideal $\tilde{J}_{\alpha,E}$ (although Brown and Guentner give a different, albeit equivalent, definition).

Question 6.10. With the above notation, form a weak*-closed G-invariant ideal E of $B(G)$ by taking the weak*-closure of $D \cap B(G)$. Then is the stronger statement $J_{\alpha,E} = \{0\}$ true? (One easily checks it for $E = B_r(G)$, and it is trivial for $E = B(G)$.)

Note that the techniques of [BG] rely heavily on the fact that they are using ideals of $\ell^\infty(G)$, whereas our methods require ideals of $B(G)$.

Definition 6.11. A coaction (A, δ) satisfies E–crossed-product duality if

$$K_{\delta} = J_{\delta,E},$$

where K_{δ} is the ideal from (6.1) and $J_{\delta,E}$ is the ideal associated to the dual action $\hat{\delta}$ in Definition 6.1.

Thus (A, δ) satisfies E–crossed-product duality precisely when we have an isomorphism Φ_E making the diagram

$$
\begin{array}{ccc}
A \rtimes_{\delta} G \rtimes_{\delta} G & \xrightarrow{\Phi} & A \otimes K(L^2(G)) \\
Q \downarrow & \cong & \Phi_E \\
A \rtimes_{\delta} G \rtimes_{\hat{\delta},E} G & \end{array}
$$

commute, where Q is the quotient map.

Conjecture 6.12. Every coaction satisfies E–crossed-product duality for some E.

Observation 6.13. If E is an ideal of $B(G)$, then every group C^*-algebra $C^*_E(G)$ is an E-crossed product:

$$C^*_E(G) = \mathbb{C} \rtimes_{\iota,E} G,$$

where ι is the trivial action of G on \mathbb{C}, because the kernel of the quotient map $C^*_E(G) \to C^*_E(G)$ is $\perp E$. This generalizes the extreme cases

1. $C^*_E(G) = \mathbb{C} \rtimes_{\iota} G$;
2. $C^*_E(G) = \mathbb{C} \rtimes_{\iota,r} G$.

Conjecture 6.14. If (B, α) is an action, then the dual coaction $\hat{\alpha}_E$ on the E-crossed product $B \rtimes_{\alpha,E} G$ satisfies E–crossed-product duality.

Remark 6.15. In particular, by Observation 6.13 Conjecture 6.14 would imply as a special case that the canonical coaction δ^E_G on the group algebra $C^*_E(G)$ satisfies E–crossed-product duality.
For our final result, we only require that E be a weak*-closed G-invariant subalgebra of $B(G)$ (but not necessarily an ideal). By Proposition 3.16, $C_E^*(G)$ carries a comultiplication Δ that is a quotient of the canonical comultiplication δ_G on $C^*(G)$.

Techniques similar to those used in the proof of Theorem 6.2, taking $g \in E$ rather than $g \in B(G)$, can be used to show:

Proposition 6.16. Let E be a weak*-closed G-invariant subalgebra of $B(G)$, and let (B, α) be an action. Then there is a coaction Δ_α of the C^*-bialgebra $C_E^*(G)$ making the diagram

\[
\begin{array}{ccc}
B \rtimes_\alpha G & \xrightarrow{\Delta_\alpha} & M((B \rtimes_\alpha G) \otimes C^*(G)) \\
\downarrow & & \downarrow \\
B \rtimes_{\alpha, E} G & \xrightarrow{\Delta_\alpha} & M((B \rtimes_{\alpha, E} G) \otimes C_E^*(G))
\end{array}
\]

commute, where we use notation from Theorem 6.2.

We close with a rather vague query:

Question 6.17. What are the relationships among E-crossed products, E-coactions, and coactions of the C^*-bialgebra $C_E^*(G)$?

We hope to investigate this question, together with Conjectures 6.12 and 6.14 in future research.

References

[BG] N. P. Brown and E. Guentner, *New C^*-completions of discrete groups and related spaces*, arXiv:1205.4649 [math.OA].

[BO08] N. P. Brown and N. Ozawa, *C*-algebras and finite-dimensional approximations*, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008.

[BE] A. Buss and S. Echterhoff, *Universal and exotic generalized fixed-point algebras for weakly proper actions and duality*, arXiv:1304.5697 [math.OA].

[Car76] A. Carey, *Square-integrable representations of non-unimodular groups*, Bull. Austral. Math. Soc. 15 (1976), 1–12.

[EKQ04] S. Echterhoff, S. Kaliszewski, and J. Quigg, *Maximal coactions*, Internat. J. Math. 15 (2004), 47–61.

[EKQR06] S. Echterhoff, S. Kaliszewski, J. Quigg, and I. Raeburn, *A Categorical Approach to Imprimitivity Theorems for C*-Dynamical Systems*, vol. 180, Mem. Amer. Math. Soc., no. 850, American Mathematical Society, Providence, RI, 2006.

[EQ99] S. Echterhoff and J. Quigg, *Induced coactions of discrete groups on C^*-algebras*, Canad. J. Math. 51 (1999), 745–770.

[EQ02] ———, *Full duality for coactions of discrete groups*, Math. Scand. 90 (2002), 267–288.
[Exe97] R. Exel, *Amenability for Fell bundles*, J. reine angew. Math. 492 (1997), 41–73.

[Eym64] P. Eymard, *L’algèbre de Fourier d’un groupe localement compact*, Bull. Soc. Math. France 92 (1964), 181–236.

[FD88] J. M. G. Fell and R. S. Doran, *Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles. Vol. 2*, Pure and Applied Mathematics, vol. 126, Academic Press Inc., Boston, MA, 1988.

[HQRW11] A. an Huef, J. Quigg, I. Raeburn, and D. P. Williams, *Full and reduced coactions of locally compact groups on C*-algebras*, Expositiones Math. 29 (2011), 3–23.

[Kaw08] K. Kawamura, *C*-bialgebra defined by the direct sum of Cuntz algebras*, J. Algebra 319 (2008), no. 9, 3935–3959.

[KS] D. Kyed and P. M. Soltan, *Property (T) and exotic quantum group norms*, arXiv:1006.4044[math.OA].

[Men16] D. Menchoff, *Sur unicité du développement trigonométrique*, C. R. Acad. Sci. Paris 163 (1916), 433–436.

[Oka] R. Okayasu, *Free group C*-algebras associated with ℓ_p*, arXiv:1203.0800[math.OA].

[Ped79] G. K. Pedersen, *C*-algebras and their automorphism groups*, Academic Press, 1979.

[QS92] J. C. Quigg and J. Spielberg, *Regularity and hyporegularity in C*-dynamical systems*, Houston J. Math. 18 (1992), 139–152.

[Val84] A. Valette, *Minimal projections, integrable representations and property (T)*, Arch. Math. (Basel) 43 (1984), no. 5, 397–406.

[Wal75] M. E. Walter, *On the structure of the Fourier-Stieltjes algebra*, Pacific J. Math. 58 (1975), no. 1, 267–281.

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287

E-mail address: kaliszewski@asu.edu

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

E-mail address: magnusla@math.ntnu.no

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287

E-mail address: quigg@asu.edu