VARIABLE SELECTION IN SPARSE GLARMA MODELS

M. GOMTSYAN, C. LÉVY-LEDUC, S. OUADAH, AND L. SANSONNET

Abstract. In this paper, we propose a novel and efficient two-stage variable selection approach for sparse GLARMA models, which are pervasive for modeling discrete-valued time series. Our approach consists in iteratively combining the estimation of the autoregressive moving average (ARMA) coefficients of GLARMA models with regularized methods designed for performing variable selection in regression coefficients of Generalized Linear Models (GLM). We first establish the consistency of the ARMA part coefficient estimators in a specific case. Then, we explain how to efficiently implement our approach. Finally, we assess the performance of our methodology using synthetic data and compare it with alternative methods. Our approach is very attractive since it benefits from a low computational load and is able to outperform the other methods in terms of coefficient estimation, particularly in recovering the non null regression coefficients.

1. Introduction

Discrete-valued time series arise in a wide variety of fields ranging from finance to molecular biology and public health. For instance, we can mention the number of transactions in stocks in the finance field, see Brännás and Quoreshi (2010). In the field of molecular biology, modeling RNA-Seq kinetics data is a challenging issue, see Thorne (2018) and in the public health context, there is an interest in the modeling of daily asthma presentations in a given hospital, see Souza et al. (2014).

The literature on modeling discrete-valued time series is becoming increasingly abundant, see Davis et al. (2016) for a review. Different classes of models have been proposed such as the Integer Autoregressive Moving Average (INARMA) models and the generalized state space models.

The Integer Autoregressive process of order 1 (INAR(1)) was first introduced by McKenzie (1985) and the Integer-valued Moving Average (INMA) process is described in Al-Osh and Alzaid (1988). One of the attractive features of INARMA processes is that their autocorrelation structure is similar to the one of autoregressive moving average (ARMA) models. However, it has to be noticed that statistical inference in these models is generally complicated and requires to develop intensive computational approaches such as the efficient MCMC algorithm devised by Neal and Subba Rao (2007) for INARMA processes of known AR and MA orders. This strategy was extended to unknown AR and MA orders by Enciso-Mora et al. (2009). For further references on INARMA models, we refer the reader to Weiss (2018).
The other important class of models for discrete-valued time series is the one of generalized state space models which can have a parameter-driven and an observation-driven version, see Davis et al. (1999) for a review. The main difference between these two versions is that in parameter-driven models, the state vector evolves independently of the past history of the observations whereas the state vector depends on the past observations in observation-driven models. More precisely, in parameter-driven models, let \((\nu_t)\) be a stationary process, the observations \(Y_t\) are thus modeled as follows: conditionally on \((\nu_t)\), \(Y_t\) has a Poisson distribution of parameter \(\exp(\beta_0^* + \sum_{i=1}^p \beta_i^* x_{t,i} + \nu_t)\), where the \(x_{t,i}\)'s are the \(p\) regressor variables (or covariates). Estimating the parameters in such models has a very high computational load, see Jung and Liesenfeld (2001).

Observation-driven models initially proposed by Cox et al. (1981) and further studied in Zeger and Qaqish (1988) do not have this computational drawback and are thus considered as a promising alternative to parameter-driven models. Different kinds of observation-driven models can be found in the literature: the Generalized Linear Autoregressive Moving Average (GLARMA) models introduced by Davis et al. (1999) and further studied in Davis et al. (2003), Davis et al. (2005), Dunsmuir (2015) and the (log-)linear Poisson autoregressive models studied in Fokianos et al. (2009), Fokianos and Tjøstheim (2011) and Fokianos and Tjøstheim (2012). Note that GLARMA models cannot be seen as a particular case of the log-linear Poisson autoregressive models.

In the following, we shall consider the GLARMA model introduced in Davis et al. (2005) with additional covariates. More precisely, given the past history \(F_{t-1} = \sigma(Y_s, s \leq t - 1)\), we assume that

\[(1)\]
\[Y_t|F_{t-1} \sim \mathcal{P}(\mu_t^*),\]

where \(\mathcal{P}(\mu)\) denotes the Poisson distribution with mean \(\mu\). In \(1\),

\[(2)\]
\[\mu_t^* = \exp(W_t^*) \text{ with } W_t^* = \beta_0^* + \sum_{i=1}^p \beta_i^* x_{t,i} + Z_t^*,\]

where the \(x_{t,i}\)'s are the \(p\) regressor variables \((p \geq 1)\),

\[(3)\]
\[Z_t^* = \sum_{j=1}^q \gamma_j^* E_{t-j}^* \text{ with } E_t^* = \frac{Y_t - \mu_t^*}{\mu_t^*} = Y_t \exp(-W_t^*) - 1,\]

with \(1 \leq q \leq \infty\) and \(E_t^* = 0\) for all \(t \leq 0\). Here, the \(E_t^*\)'s correspond to the working residuals in classical Generalized Linear Models (GLM), which means that we limit ourselves to the case \(\lambda = 1\) in the more general definition: \(E_t^* = (Y_t - \mu_t^*)\mu_t^{\lambda-1}\). Note that in the case where \(q = \infty\), \((Z_t^*)\) satisfies the ARMA-like recursions given in Equation (4) of Davis et al. (2005). The model defined by \(1\), \(2\) and \(3\) is thus referred as a GLARMA model.

The main goal of this paper is to introduce a novel variable selection approach in the deterministic part (covariates) of sparse GLARMA models that is in \(1\), \(2\) and \(3\) where the vector of the \(\beta_i^*\)’s is sparse meaning many \(\beta_i^*\)’s are null. The novel approach that we propose consists in combining a procedure for estimating the ARMA part coefficients with regularized methods designed for GLM.
The paper is organized as follows. Firstly, in Section 2.1, we describe the classical estimation procedure in GLARMA models and in Section 2.4, establish a consistency result in a specific case. Secondly, we propose a novel two-stage estimation procedure which is described in Section 2.2. It consists in first estimating the ARMA coefficients and then in estimating the regression coefficients by using a regularized approach. The practical implementation of our approach is given in Section 2.3. Thirdly, in Section 3, we provide some numerical experiments to illustrate our method and to compare its performance to alternative approaches on finite sample size data. Finally, we give the proofs of the theoretical results in Section 4.

2. Statistical inference

2.1. Classical estimation procedure in GLARMA models. Classically, for estimating the parameter \(\delta^* = (\beta^*, \gamma^*) \) where \(\beta^* = (\beta_0^*, \beta_1^*, \ldots, \beta_p^*)' \) is the vector of regressor coefficients defined in (2) and \(\gamma^* = (\gamma_1^*, \ldots, \gamma_q^*)' \) is the vector of the ARMA part coefficients defined in (3), the following criterion, based on the conditional log-likelihood, is maximized with respect to \(\delta = (\beta', \gamma') \), with \(\beta = (\beta_0, \beta_1, \ldots, \beta_p)' \) and \(\gamma = (\gamma_1, \ldots, \gamma_q)' \):

\[
L(\delta) = \sum_{t=1}^{n} (Y_t W_t(\delta) - \exp(W_t(\delta))).
\]

In (1),

\[
W_t(\delta) = \beta' x_t + Z_t(\delta) = \beta_0 + \sum_{i=1}^{p} \beta_i x_{t,i} + \sum_{j=1}^{q} \gamma_j E_{t-j}(\delta),
\]

with \(x_t = (x_{t,0}, x_{t,1}, \ldots, x_{t,p})' \), \(x_{t,0} = 1 \) for all \(t \) and

\[
E_t(\delta) = Y_t \exp(-W_t(\delta)) - 1, \text{ if } t > 0 \text{ and } E_t(\delta) = 0, \text{ if } t \leq 0.
\]

For further details on the choice of this criterion, we refer the reader to Davis et al. (2005).

To obtain \(\hat{\delta} \) defined by

\[
\hat{\delta} = \operatorname{Argmax}_\delta L(\delta),
\]

the first derivatives of \(L \) are considered:

\[
\frac{\partial L}{\partial \delta}(\delta) = \sum_{t=1}^{n} (Y_t - \exp(W_t(\delta))) \frac{\partial W_t}{\partial \delta}(\delta),
\]

where

\[
\frac{\partial W_t}{\partial \delta}(\delta) = \frac{\partial \beta' x_t}{\partial \delta} + \frac{\partial Z_t}{\partial \delta}(\delta),
\]

\(\beta, x_t \) and \(Z_t \) being given in (5). The computations of the first derivatives of \(W_t \) are detailed in Section 4.1.1.

Based on Equation (7) which is non linear in \(\delta \) and which has to be recursively computed, it is not possible to obtain a closed-form formula for \(\hat{\delta} \). Thus \(\hat{\delta} \) is computed by using the
Newton-Raphson algorithm. More precisely, starting from an initial value for \(\delta \) denoted by \(\delta^{(0)} \), the following recursion for \(r \geq 1 \) is used:

\[
\delta^{(r)} = \delta^{(r-1)} - \frac{\partial^2 L}{\partial \delta \partial \delta} (\delta^{(r-1)}) \left(-1 \right) \frac{\partial L}{\partial \delta} (\delta^{(r-1)}),
\]

where \(\frac{\partial^2 L}{\partial \delta \partial \delta} \) corresponds to the Hessian matrix of \(L \) and is defined in (9) given below. Hence, it requires the computation of the first and second derivatives of \(L \). We already explained how to compute the first derivatives of \(L \). As for the second derivatives of \(L \), it can be obtained as follows:

\[
\frac{\partial^2 L}{\partial \delta \partial \delta} (\delta) = \sum_{t=1}^{n} (Y_t - \exp(W_t(\delta))) \frac{\partial^2 W_t}{\partial \delta \partial \delta} (\delta) - \sum_{t=1}^{n} \exp(W_t(\delta)) \frac{\partial W_t}{\partial \delta} (\delta) \frac{\partial W_t}{\partial \delta} (\delta).
\]

The computations of the second derivatives of \(W_t \) are detailed in Section 4.1.2.

However, in our sparse framework where many components of \(\beta^* \) are null, this procedure provides poor estimation results, see Section 3.1.2 for numerical illustration. This is the reason why we devised a novel estimation procedure described in the next section.

2.2. Our estimation procedure. For selecting the most relevant components of \(\beta^* \), we propose the following two-stage procedure: Firstly, we estimate \(\gamma^* \) by using the Newton-Raphson algorithm described in Section 2.2.1 and secondly, we estimate \(\beta^* \) by using the regularized approach detailed in Section 2.2.2.

2.2.1. Estimation of \(\gamma^* \). To estimate \(\gamma^* \), we propose using

\[
\hat{\gamma} = \text{Argmax}_\gamma L(\beta^{(0)'}, \gamma'),
\]

where \(L \) is defined in (4), \(\beta^{(0)} = (\beta_0^{(0)}, \ldots, \beta_p^{(0)})' \) is a given initial value for \(\beta^* \) and \(\gamma = (\gamma_1, \ldots, \gamma_q)' \). Similar to the approach proposed in Section 2.1, we use the Newton-Raphson algorithm to obtain \(\hat{\gamma} \) based on the following recursion for \(r \geq 1 \) starting from the initial value \(\gamma^{(0)} = (\gamma_1^{(0)}, \ldots, \gamma_q^{(0)})' \):

\[
\gamma^{(r)} = \gamma^{(r-1)} - \frac{\partial^2 L}{\partial \gamma' \partial \gamma} (\beta^{(0)'}, \gamma^{(r-1)'}) \left(-1 \right) \frac{\partial L}{\partial \gamma} (\beta^{(0)'}, \gamma^{(r-1)'}),
\]

where the first and second derivatives of \(L \) are obtained using the same strategy as the one used for deriving Equations (7) and (9) in Section 2.1.

2.2.2. Variable selection: Estimation of \(\beta^* \). To perform variable selection in the \(\beta_i \) of Model (2) aimed to obtain a sparse estimator of \(\beta_i^* \), we shall use a methodology inspired by Friedman et al. (2010) for fitting generalized linear models with \(\ell_1 \) penalties. It consists in penalizing a quadratic approximation to the log-likelihood obtained by a Taylor expansion. Using \(\beta^{(0)} \) and \(\hat{\gamma} \) defined in Section 2.2.1, the quadratic approximation is obtained as
follows:
\[
\widetilde{L}(\beta) := L(\beta_0, \ldots, \beta_p, \hat{\gamma}) = \tilde{L}(\beta^{(0)}) + \frac{\partial L}{\partial \beta} (\beta^{(0)}, \hat{\gamma})(\beta - \beta^{(0)}) + \frac{1}{2} (\beta - \beta^{(0)})' \frac{\partial^2 L}{\partial \beta \partial \beta'} (\beta^{(0)}, \hat{\gamma})(\beta - \beta^{(0)}),
\]
where
\[
\frac{\partial L}{\partial \beta} = \left(\frac{\partial L}{\partial \beta_0}, \ldots, \frac{\partial L}{\partial \beta_p} \right) \quad \text{and} \quad \frac{\partial^2 L}{\partial \beta \partial \beta'} = \left(\frac{\partial^2 L}{\partial \beta_j \partial \beta_k} \right)_{0 \leq j, k \leq p}.
\]
Thus,
\[
\tilde{L}(\beta) = \tilde{L}(\beta^{(0)}) + \frac{\partial L}{\partial \beta} (\beta^{(0)}, \hat{\gamma}) U (\nu - \nu^{(0)}) - \frac{1}{2} (\nu - \nu^{(0)})' \Lambda (\nu - \nu^{(0)}),
\]
where \(U \Lambda U' \) is the singular value decomposition of the positive semidefinite symmetric matrix \(-\frac{\partial^2 L}{\partial \beta \partial \beta'} (\beta^{(0)}, \hat{\gamma})\) and \(\nu - \nu^{(0)} = U' (\beta - \beta^{(0)}) \).

In order to obtain a sparse estimator of \(\beta^* \), we propose using \(\hat{\beta}(\lambda) \) defined by
\[
\hat{\beta}(\lambda) = \operatorname{Argmin}_\beta \left\{ -\tilde{L}_Q(\beta) + \lambda \|\beta\|_1 \right\},
\]
for a positive \(\lambda \), where \(\|\beta\|_1 = \sum_{k=0}^p |\beta_k| \) and \(\tilde{L}_Q(\beta) \) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by
\[
-\tilde{L}_Q(\beta) = \frac{1}{2} \|\mathcal{Y} - \mathcal{X}\beta\|_2^2,
\]
with
\[
\mathcal{Y} = \Lambda^{1/2} U' \beta^{(0)} + \Lambda^{-1/2} U' \left(\frac{\partial L}{\partial \beta} (\beta^{(0)}, \hat{\gamma}) \right)' \quad \text{and} \quad \mathcal{X} = \Lambda^{1/2} U' \quad \text{and} \quad \|\cdot\|_2 \text{ denoting the } \ell_2 \text{ norm in } \mathbb{R}^{p+1}.
\]
Computational details for obtaining the expression \(\tilde{L}_Q(\beta) \) appearing in Criterion (12) are provided in Section 4.2.

To obtain the final estimator \(\hat{\beta} \) of \(\beta^* \), we shall consider two different approaches:

- **Standard stability selection.** It consists in using the stability selection procedure devised by Meinshausen and Bühlmann (2010) which guarantees the robustness of the selected variables. This approach can be described as follows. The vector \(\mathcal{Y} \) defined in (14) is randomly split into several subsamples of size \((p + 1)/2\), which corresponds to half of the length of \(\mathcal{Y} \). For each subsample \(\mathcal{Y}^{(s)} \) and the corresponding design matrix \(\mathcal{X}^{(s)} \), the LASSO criterion (12) is applied with a given \(\lambda \), where \(\mathcal{Y} \) and \(\mathcal{X} \) are replaced by \(\mathcal{Y}^{(s)} \) and \(\mathcal{X}^{(s)} \), respectively. For each subsampling, the indices \(i \) of the non null \(\hat{\beta}_i \) are stored and, for a given threshold, we keep in the final set of selected variables only the ones appearing a number of times larger than this threshold. Concerning the choice of \(\lambda \), we shall consider the one obtained by cross-validation (Chapter 7 of Hastie et al. (2009)) and the smallest element of the grid of \(\lambda \) provided by the R glmnet package.
• **Fast stability selection.** It consists in applying the LASSO criterion (12) for several values of λ. For each λ, the indices i of the non null $\hat{\beta}_i(\lambda)$ are stored and, for a given threshold, we keep in the final set of selected variables only the ones appearing a number of times larger than this threshold.

These approaches will be further investigated in Section 3.

2.3. **Practical implementation.** In practice, the previous approach can be summarized as follows.

- **Initialization.** We take for $\beta(0)$ the estimator of β^* obtained by fitting a GLM to the observations Y_1, \ldots, Y_n thus ignoring the ARMA part of the model in the case where $n > p$. If p is larger than n, then a regularized criterion for GLM models can be used, see for instance Friedman et al. (2010). For $\gamma(0)$, we take the null vector.

- **Newton-Raphson algorithm.** We use the recursion defined in (10) with the initialization $(\beta(0), \gamma(0))$ obtained in the previous step and we stop at the iteration R such that $\|\gamma(R) - \gamma(R-1)\|_\infty < 10^{-6}$.

- **Variable selection.** To obtain a sparse estimator of β^*, we use the criterion (12) where $\beta(0)$ and $\hat{\gamma}^{(R)}$ appearing in (14) are replaced by $\beta(0)$ and $\gamma^{(R)}$ obtained in the previous steps. We thus get $\hat{\beta}$ by using one of the three approaches described at the end of Section 2.2.2.

This procedure can be improved by iterating the Newton-Raphson algorithm and Variable selection steps. More precisely, let us denote by $\beta_1^{(0)}$, $\gamma_1^{(R_1)}$ and $\hat{\beta}_1$ the values of $\beta(0)$, $\gamma^{(R)}$ and $\hat{\beta}$ obtained in the three steps described above at the first iteration. At the second iteration, $(\beta^{(0)}, \gamma^{(0)})$ appearing in the Newton-Raphson algorithm step is replaced by $(\hat{\beta}_1, \gamma_1^{(R_1)})$. At the end of this second iteration, $\hat{\beta}_2$ and $\gamma_2^{(R_2)}$ denote the obtained values of β and $\gamma^{(R)}$, respectively. This approach is iterated until the stabilization of $\gamma_k^{(R_k)}$.

2.4. **Consistency results.** In this section, we shall establish the consistency of the parameter γ_1^* in the case where $q = 1$ from Y_1, \ldots, Y_n defined in (1), (3) and (2) where (2) is replaced by

$$\mu_t^* = \exp(W_t^*) \text{ with } W_t^* = \beta_0^* + Z_t^*.$$

We limit ourselves to this framework since in the more general one the consistency is much more tricky to handle and is beyond the scope of this paper. Note that some theoretical results have already been obtained in this framework (no covariates and $q = 1$) by Davis et al. (2003) and Davis et al. (2005). However, here, we provide, on the one hand, a more detailed version of the proof of these results and on the other hand, a proof of the consistency of γ_1^* based on a stochastic equicontinuity result.

Theorem 1. Assume that Y_1, \ldots, Y_n satisfy the model defined by (4), (15) and (3) with $q = 1$ and $\gamma_1^* \in \Gamma$ where Γ is a compact set of \mathbb{R} which does not contain 0. Assume also that (W_t^*) starts with its stationary invariant distribution. Let $\hat{\gamma}_1$ be defined by:

$$\hat{\gamma}_1 = \text{Argmax}_{\gamma_1 \in \Gamma} L(\beta_0^*, \gamma_1),$$

We have $\hat{\gamma}_1 \rightarrow \gamma_1^*$ in probability as $n \rightarrow \infty$.

where
\begin{equation}
L(\beta_0^*, \gamma_1) = \sum_{t=1}^{n} (Y_t W_t(\beta_0^*, \gamma_1) - \exp(W_t(\beta_0^*, \gamma_1)))
\end{equation}
with
\begin{equation}
W_t(\beta_0^*, \gamma_1) = \beta_0^* + Z_t(\gamma_1) = \beta_0^* + \gamma_1 E_{t-1}(\gamma_1),
\end{equation}
\[E_{t-1}(\gamma_1) = Y_{t-1} \exp(-W_{t-1}(\beta_0^*, \gamma_1)) - 1, \text{ if } t > 1 \text{ and } E_{t-1}(\gamma_1) = 0, \text{ if } t \leq 1.\]

Then \(\hat{\gamma}_1 \xrightarrow{p} \gamma_1^*\), as \(n\) tends to infinity, where \(\xrightarrow{p}\) denotes the convergence in probability.

The proof of Theorem 1 is based on the following propositions which are proved in Section 4.

Proposition 1. For all fixed \(\gamma_1\), under the assumptions of Theorem 1,
\begin{equation}
\frac{1}{n} L(\beta_0^*, \gamma_1) \xrightarrow{p} \mathcal{L}(\gamma_1) := \mathbb{E} [Y_3 W_3(\beta_0^*, \gamma_1) - \exp(W_3(\beta_0^*, \gamma_1))], \text{ as } n \text{ tends to infinity.}
\end{equation}

Proposition 2. The function \(\mathcal{L}\) defined in (18) has a unique maximum at the true parameter \(\gamma_1 = \gamma_1^*\).

Proposition 3. Under the assumptions of Theorem 1
\[\sup_{\gamma_1 \in \Gamma} \left| \frac{L(\beta_0^*, \gamma_1)}{n} - \mathcal{L}(\gamma_1) \right| \xrightarrow{p} 0, \text{ as } n \text{ tends to infinity,}\]
where \(\mathcal{L}(\gamma_1)\) is defined in (18).

3. **Numerical experiments**

The goal of this section is to investigate the performance of our method both from a statistical and a numerical points of view, using synthetic data generated by the model defined by (1), (2) and (3).

3.1. **Statistical performance.**

3.1.1. *Estimation of the parameters when \(p = 0.\)* In this section, we investigate the statistical performance of our methodology in the model defined by (1), (2) and (3) for \(n\) in \(\{50, 100, 250, 500, 1000\}\) in the case where \(p = 0\), namely when there are no covariates and for \(q\) in \(\{1, 2, 3\}\). The performance of our approach for estimating \(\beta_0^*\) and the \(\gamma_k^*\) are displayed in Figures 1, 2 and 3. We can see from these figures that the accuracy of the parameter estimations is improved when \(n\) increases, which corroborates the consistency of \(\gamma_1^*\) given in Theorem 1 in the case \(q = 1\).
Moreover, it has to be noticed that in this particular context where there are no covariates ($p = 0$), the performance of our approach in terms of parameters estimation is similar to the one of the package glarma described in Dunsmuir and Scott (2015).

3.1.2. Estimation of the parameters when $p \geq 1$ and β^* is sparse

In this section, we assess the performance of our methodology in terms of support recovery, namely the identification of the non null coefficients of β^*, and of the estimation of γ^*. We shall consider Y_1, \ldots, Y_n satisfying the model defined by (1), (2) and (3) with covariates chosen in a Fourier basis, for $n = 1000$ in the first two paragraphs, $q \in \{1, 2, 3\}$, $p = 100$ and two sparsity levels (5% or 10% of non null coefficients in β^*). More precisely, when the sparsity level is 5% (resp. 10%) all the β_{i}^* are assumed to be equal to zero except for five (resp. ten) of them for which the values are given in the caption of Figure 4 (resp. in the caption of Figure 16).
Figure 3. Boxplots for the estimations of $\gamma^*_2 = 1/4$ in Model (2) with no regressor and $q = 2$ (left), $\gamma^*_2 = 1/3$ in Model (2) with no regressor and $q = 3$ (middle) and of $\gamma^*_3 = 1/4$ in Model (2) with no regressor and $q = 3$ (right). The horizontal lines correspond to the true values of the parameters.

Estimation of the support of β^*

In this paragraph, we focus on the performance of our approach for retrieving the support of β^* by computing the True Positive Rates (TPR) and False Positive Rates (FPR). We shall consider the two methods that are proposed in Section 2.2.2: standard stability selection (ss_{cv} and ss_{min}) and fast stability selection ($fast_{ss}$). For comparison purpose, we shall also consider the standard Lasso approach proposed by Friedman et al. (2010) in GLM where the parameter λ is either chosen thanks to the standard cross-validation ($lasso_{cv}$) or by taking the optimal λ which maximizes the difference between the TPR and FPR ($lasso_{best}$).

Figures 4, 5 and 6 display the TPR and FPR of the previously mentioned approaches with respect to the threshold defined at the end of Section 2.2.2 when $n = 1000$, the sparsity level is equal to 5% and $q = 1, 2$ and 3, respectively. We can see from these figures that when the threshold is well tuned, our approaches outperform the classical Lasso even when the parameter λ is chosen in an optimal way. More precisely, the thresholds 0.4, 0.7 and 0.8 achieve a satisfactory trade-off between the TPR and the FPR for $fast_{ss}$, ss_{cv} and ss_{min}, respectively. The conclusions are similar in the case where the sparsity level is equal to 10%, the corresponding figures (16, 17 and 18) are given in the Appendix. We can observe from these figures that the performance of $fast_{ss}$ are slightly better than ss_{cv} and ss_{min} when the sparsity level is equal to 5% but it is the reverse when the sparsity level is equal to 10%.

We also compare our approach with the method implemented in the glarma package of Dunsmuir and Scott (2015) in the case where $q = 1$ and when the sparsity level is equal to 5%. Since this method is not devised for performing variable selection, we consider that a given component of β^* is estimated by 0 if its estimation obtained by the glarma package is smaller than a given threshold. The results are displayed in Figure 7 for different thresholds...
Figure 4. Error bars of the TPR and FPR associated to the support recovery of β^* for five methods with respect to the thresholds when $n = 1000$, $q = 1$, $p = 100$ and a 5% sparsity level. All the $\beta_i^* = 0$ except for five of them: $\beta_1^* = 1.73$, $\beta_3^* = 0.38$, $\beta_{17}^* = 0.29$, $\beta_{33}^* = -0.64$ and $\beta_{44}^* = -0.13$.
Based on Figures 11 and 12, we chose a threshold equal to 0.7 for both sparsity levels (5% and 10%) which provides a good trade-off between TPR and FPR for all values of n. We can see from Figure 13 that ss_{min} with this threshold outperforms lasso_{cv} when the sparsity level is equal to 5% and all the values of n considered. In the case where the sparsity level is equal to 10%, lasso_{cv} has a slightly larger TPR for $n = 150$ and $n = 200$. However, the FPR of ss_{min} is much smaller.

Figure 14 displays the boxplots for the estimations of γ^\star in Model (2) for $q = 1$, $p = 100$, different values of n (150, 200, 500, 1000) and sparsity levels (5% and 10%) obtained by ss_{min} with a threshold of 0.7 for six iterations. We can see from this figure that this approach provides accurate estimations of γ_1^\star from Iteration 2 especially when n is larger than 200.

3.2. Numerical performance. Figure 15 displays the means of the computational times for ss_{min} and fast_{ss}. The performance of ss_{cv} are not displayed since they are similar to the one of ss_{min}. We can see from this figure that it takes around 1 minute to process observations Y_1, \ldots, Y_n satisfying Model (1) for a given threshold and one iteration, when
Figure 6. Error bars of the TPR and FPR associated to the support recovery of β^* for five methods with respect to the thresholds when $n = 1000$, $q = 3$, $p = 100$ and a 5% sparsity level. All the $\beta_i^* = 0$ except for five of them: $\beta_1^* = 1.73$, $\beta_5^* = 0.38$, $\beta_{17}^* = 0.29$, $\beta_{33}^* = -0.64$ and $\beta_{44}^* = -0.13$.

$n = 1000$ and $p = 100$. Moreover, we can observe that the computational burden of fast_ss is slightly smaller than the one of ss_min.
Figure 7. Error bars of the TPR and FPR associated to the support recovery of β^* obtained with the glarma package for different thresholds when $n = 1000$, $q = 1$, $p = 100$ and a 5% sparsity level. All the $\beta_i^* = 0$ except for five of them: $\beta_1^* = 1.73$, $\beta_3^* = 0.38$, $\beta_{17}^* = 0.29$, $\beta_{33}^* = -0.64$ and $\beta_{44}^* = -0.13$.
Figure 8. Boxplots for the estimations of γ^* in Model (2) with a 5% sparsity level and $q = 1, 2, 3$ obtained by ss_cv. Top: $q = 1$ and $\gamma^*_1 = 0.5$ (left), $q = 2$ and $\gamma^*_1 = 0.5$ (middle), $q = 2$ and $\gamma^*_2 = 0.25$ (right). Bottom: $q = 3$ and $\gamma^*_1 = 0.5$ (left), $q = 3$ and $\gamma^*_2 = 1/3$ (middle), $q = 3$ and $\gamma^*_3 = 0.25$ (right). The horizontal lines correspond to the values of the γ^*_i's.
Figure 9. Boxplots for the estimations of γ^* in Model (2) with a 5% sparsity level and $q = 1, 2, 3$ obtained by fast.ss. Top: $q = 1$ and $\gamma_1^* = 0.5$ (left), $q = 2$ and $\gamma_1^* = 0.5$ (middle), $q = 2$ and $\gamma_2^* = 0.25$ (right). Bottom: $q = 3$ and $\gamma_1^* = 0.5$ (left), $q = 3$ and $\gamma_2^* = 1/3$ (middle), $q = 3$ and $\gamma_3^* = 0.25$ (right). The horizontal lines correspond to the values of the γ_i^*'s.
Figure 10. Boxplots for the estimations of γ^* in Model (2) with a 5% sparsity level and $q = 1, 2, 3$ obtained by ss.min. Top: $q = 1$ and $\gamma_1^* = 0.5$ (left), $q = 2$ and $\gamma_1^* = 0.5$ (middle), $q = 2$ and $\gamma_2^* = 0.25$ (right). Bottom: $q = 3$ and $\gamma_1^* = 0.5$ (left), $q = 3$ and $\gamma_2^* = 1/3$ (middle), $q = 3$ and $\gamma_3^* = 0.25$ (right). The horizontal lines correspond to the values of the γ_i^*'s.
Figure 11. Error bars of the TPR and FPR associated to the support recovery of β^* for ss$_{\text{min}}$ with respect to the thresholds for different values of n, $q = 1$, $p = 100$ and a 5% sparsity level.

Figure 12. Error bars of the TPR and FPR associated to the support recovery of β^* for ss$_{\text{min}}$ with respect to the thresholds for different values of n, $q = 1$, $p = 100$ and a 10% sparsity level.
Figure 13. Error bars of the TPR and FPR associated to the support recovery of β^* for \texttt{ss.min} and \texttt{lasso.cv} for different values of n, $q = 1$, $p = 100$ and different sparsity levels.

Figure 14. Boxplots for the estimations of γ^* in Model (2) for $q = 1$, $p = 100$, different values of n and sparsity levels (left: 5%, right: 10%) obtained by \texttt{ss.min} with a threshold of 0.7 for different iterations (iter).
Figure 15. Means of the computational times in seconds for \texttt{ss.min} and \texttt{fast_ss} in the case where $p = 100$, and different values of n and q, a given threshold and one iteration.
4. Proofs

4.1. Computation of the first and second derivatives of W_t defined in (5). The computations given below are similar to those provided in Davis et al. (2005) but are specific to the parametrization $\delta = (\beta', \gamma')$ considered in this paper.

4.1.1. Computation of the first derivatives of W_t. By the definition of W_t given in (5), we get

$$\frac{\partial W_t}{\partial \beta_k} = x_{t,k},$$

$$\frac{\partial W_t}{\partial \gamma_\ell} = E_{t-\ell} + \sum_{j=1}^{q^{\land(t-1)}} \gamma_j Y_{t-1-j} \frac{\partial W_{t-j}}{\partial \gamma_\ell},$$

where β, x_t and Z_t are defined in (5). More precisely, for all $k \in \{0, \ldots, p\}$, $\ell \in \{1, \ldots, q\}$ and $t \in \{1, \ldots, n\}$, by (6),

$$\frac{\partial W_t}{\partial \beta_k} = x_{t,k} + \sum_{j=1}^{q^{\land(t-1)}} \gamma_j Y_{t-1-j} \frac{\partial W_{t-j}}{\partial \beta_k},$$

$$\frac{\partial W_t}{\partial \gamma_\ell} = E_{t-\ell} + \sum_{j=1}^{q^{\land(t-1)}} \gamma_j Y_{t-1-j} \frac{\partial W_{t-j}}{\partial \gamma_\ell},$$

where we used that $E_t = 0$, $\forall t \leq 0$.

The first derivatives of W_t are thus obtained from the following recursive expressions.

For all $k \in \{0, \ldots, p\}$

$$\frac{\partial W_1}{\partial \beta_k} = x_{1,k},$$

$$\frac{\partial W_2}{\partial \beta_k} = x_{2,k} - \gamma_1(1 + E_1) \frac{\partial W_1}{\partial \beta_k},$$

where

$$W_1 = \beta' x_1$$

and $E_1 = Y_1 \exp(-W_1) - 1$.

Moreover,

$$\frac{\partial W_3}{\partial \beta_k} = x_{3,k} - \gamma_1(1 + E_2) \frac{\partial W_2}{\partial \beta_k} - \gamma_2(1 + E_1) \frac{\partial W_1}{\partial \beta_k},$$

where

$$W_2 = \beta' x_2 + \gamma_1 E_1,$$

$$E_2 = Y_2 \exp(-W_2) - 1,$$

$$W_3 = \beta' x_3 + \gamma_1(1 + E_2) \frac{\partial W_2}{\partial \beta_k} + \gamma_2(1 + E_1) \frac{\partial W_1}{\partial \beta_k},$$
and so on. In the same way, for all \(\ell \in \{1, \ldots, q\} \)

\[
\frac{\partial W_1}{\partial \gamma_\ell} = 0, \\
\frac{\partial W_2}{\partial \gamma_\ell} = E_{2-\ell}, \\
\frac{\partial W_3}{\partial \gamma_\ell} = E_{3-\ell} - \gamma_1(1 + E_2) \frac{\partial W_2}{\partial \gamma_\ell}
\]

and so on, where \(E_t = 0, \forall t \leq 0 \) and \(E_1, E_2 \) are defined in [21] and [22], respectively.

4.1.2. Computation of the second derivatives of \(W_t \). Using [19] and [20], we get that for all \(j, k \in \{0, \ldots, p\}, \ell, m \in \{1, \ldots, q\} \) and \(t \in \{1, \ldots, n\} \),

\[
\frac{\partial^2 W_t}{\partial \beta_j \partial \beta_k} = - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i(1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \beta_j \partial \beta_k} - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i \frac{\partial E_{t-i} \partial W_{t-i}}{\partial \beta_j \partial \beta_k} \\
= - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i(1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \beta_j \partial \beta_k} + \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i(1 + E_{t-i}) \frac{\partial W_{t-i} \partial W_{t-i}}{\partial \beta_j \partial \beta_k},
\]

\[
\frac{\partial^2 W_t}{\partial \beta_k \partial \gamma_\ell} = -(1 + E_{t-\ell}) \frac{\partial W_{t-\ell}}{\partial \beta_k} - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i \left\{ \frac{\partial W_{t-i} \partial E_{t-i}}{\partial \beta_k} + (1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \beta_k \partial \gamma_\ell} \right\} \\
= -(1 + E_{t-\ell}) \frac{\partial W_{t-\ell}}{\partial \beta_k} - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i \left\{ -(1 + E_{t-i}) \frac{\partial W_{t-i} \partial W_{t-i}}{\partial \beta_k \partial \gamma_\ell} + (1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \beta_k \partial \gamma_\ell} \right\},
\]

\[
\frac{\partial^2 W_t}{\partial \gamma_\ell \partial \gamma_m} = \frac{\partial E_{t-\ell}}{\partial \gamma_m} - (1 + E_{t-m}) \frac{\partial W_{t-m}}{\partial \gamma_\ell} - \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i \left\{ \frac{\partial W_{t-i} \partial E_{t-i}}{\partial \gamma_\ell} + (1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \gamma_\ell \partial \gamma_m} \right\} \\
= -(1 + E_{t-\ell}) \frac{\partial W_{t-\ell}}{\partial \gamma_m} - (1 + E_{t-m}) \frac{\partial W_{t-m}}{\partial \gamma_\ell} \\
- \sum_{i=1}^{q^{\wedge(t-1)}} \gamma_i \left\{ -(1 + E_{t-i}) \frac{\partial W_{t-i} \partial W_{t-i}}{\partial \gamma_\ell} + (1 + E_{t-i}) \frac{\partial^2 W_{t-i}}{\partial \gamma_\ell \partial \gamma_m} \right\}.
\]

To compute the second derivatives of \(W_t \), we shall use the following recursive expressions for all \(j, k \in \{0, \ldots, p\} \)

\[
\frac{\partial^2 W_1}{\partial \beta_j \partial \beta_k} = 0, \\
\frac{\partial^2 W_2}{\partial \beta_j \partial \beta_k} = \gamma_1(1 + E_1)x_{1,j}x_{1,k},
\]

\[
\frac{\partial^2 W_3}{\partial \beta_j \partial \beta_k} = E_{3-\ell} - \gamma_1(1 + E_2) \frac{\partial W_2}{\partial \beta_k}.
\]
where E_1 is defined in (21) and so on. Moreover, for all $k \in \{0, \ldots, p\}$ and $\ell \in \{1, \ldots, q\}$
\[
\frac{\partial^2 W_1}{\partial \beta_k \partial \gamma_\ell} = 0,
\frac{\partial^2 W_2}{\partial \beta_k \partial \gamma_\ell} = -(1 + E_{2-\ell}) \frac{\partial W_{2-\ell}}{\partial \beta_k},
\]
where $E_t = 0$ for all $t \leq 0$ and the first derivatives of W_t are computed in (19). Note also
\[
\frac{\partial^2 W_1}{\partial \gamma_\ell \partial \gamma_m} = 0,
\frac{\partial^2 W_2}{\partial \gamma_\ell \partial \gamma_m} = 0
\]
and so on.

4.2. Computational details for obtaining Criterion (12). By (11),
\[
\tilde{L}(\beta) = \tilde{L}(\beta^{(0)}) + \frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma})U(\nu - \nu^{(0)}) - \frac{1}{2}(\nu - \nu^{(0)})' \Lambda(\nu - \nu^{(0)}),
\]
where $\nu - \nu^{(0)} = U'(\beta - \beta^{(0)})$. Hence,
\[
\tilde{L}(\beta) = \tilde{L}(\beta^{(0)}) + \frac{1}{2} \sum_{k=0}^p \lambda_k \left(\nu_k - \nu_k^{(0)} \right) \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma})U \right)_k^2 + \frac{1}{2} \sum_{k=0}^p \lambda_k \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma})U \right)_k^2,
\]
where the λ_k's are the diagonal terms of Λ.

Since the only term depending on β is the second one in the last expression of $\tilde{L}(\beta)$, we define $\tilde{L}_Q(\beta)$ appearing in Criterion (12) as follows:
\[
-\tilde{L}_Q(\beta) = \frac{1}{2} \sum_{k=0}^p \lambda_k \left(\nu_k - \nu_k^{(0)} \right) \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma})U \right)_k^2
= \frac{1}{2} \left\| \Lambda^{1/2} \left(\nu - \nu^{(0)} - \Lambda^{-1} \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma})U \right) \right) \right\|_2^2
= \frac{1}{2} \left\| \Lambda^{1/2}U'(\beta - \beta^{(0)}) - \Lambda^{-1/2}U' \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma}) \right) \right\|_2^2
= \frac{1}{2} \left\| \Lambda^{1/2}U'(\beta^{(0)} - \beta) + \Lambda^{-1/2}U' \left(\frac{\partial L}{\partial \beta}(\beta^{(0)}, \tilde{\gamma}) \right) \right\|_2^2
= \frac{1}{2} \left\| \mathcal{Y} - \mathcal{X} \beta \right\|_2^2,
\]
where
\[\mathcal{Y} = \Lambda^{1/2} U' \beta(0) + \Lambda^{-1/2} U' \left(\frac{\partial L}{\partial \beta} \tilde{\gamma} \right)', \quad \mathcal{X} = \Lambda^{1/2} U'. \]

4.3. **Proofs of Propositions 1, 2 and 3 and of Lemma 1.** This section contains the proofs of Propositions 1, 2 and 3.

4.3.1. **Proof of Proposition 1.** We first establish the following lemma for proving Proposition 1.

Lemma 1. \((W_t^*)\) is an aperiodic Markov process satisfying Doeblin’s condition.

Proof of Lemma 1. By (15) and (3), we observe that:

\[W_t^* = (\beta_0^* - \gamma_1^*) + \gamma_1^* Y_{t-1} \exp(-W_{t-1}^*). \]

Thus, \(\mathcal{F}_{t-2} = \mathcal{F}_{t-1}^{W_t^*} := \sigma(W_s, s \leq t - 1). \) By (1), the distribution of \(Y_{t-1} \) conditionally to \(\mathcal{F}_{t-2} \) is \(\mathcal{P}(\exp(W_{t-1}^*)) \). Hence, the distribution of \(W_t^* \) conditionally to \(\mathcal{F}_{t-1}^{W_t^*} \) is the same as distribution of \(Y_t \) conditionally to \(W_{t-1}^* \), which means that \((W_t^*) \) has the Markov property.

Let us now prove that \((W_t^*) \) is strongly aperiodic which implies that it is aperiodic.

\[\mathbb{P}(W_t^* = \beta_0^* - \gamma_1^* | W_{t-1}^* = \beta_0^* - \gamma_1^*) = \mathbb{P}(Y_{t-1} = 0 | W_{t-1}^* = \beta_0^* - \gamma_1^*) = \exp(- \exp(\beta_0^* - \gamma_1^*)) > 0, \]

where the first equality comes from (23) and the last equality comes from (1) since \(\mathcal{F}_{t-2} = \mathcal{F}_{t-1}^{W_t^*} \).

To prove that \((W_t^*) \) satisfies Doeblin’s condition namely that there exists a probability measure \(\nu \) with the property that, for some \(m \geq 1, \varepsilon > 0 \) and \(\delta > 0 \),

\[\nu(B) > \varepsilon \implies \mathbb{P}(W_{t+m-1}^* \in B, W_{t+m-2}^* \in B \ldots, W_{t+1}^* \in B, W_t \in B | W_{t-1}^* = x) \geq \delta, \]

for all \(x \) in the state space \(X \) of \(W_t^* \) and \(B \) in the Borel sets of \(X \), we refer the reader to the proof of Proposition 2 in Davis et al. (2003).

\[\square \]

Proof of Proposition 2. For proving Proposition 1, we shall use Theorems 1.3.3 and 1.3.5 of Taniguchi and Kakizawa (2012). In order to apply these theorems it is enough to prove that \((W_t^*)\) is a strictly stationary and ergodic process since \(Y_t W_t(\beta_0^*, \gamma_1) - \exp(W_t(\beta_0^*, \gamma_1)) \) is a measurable function of \(W_{t+1}^*, W_t^*, \ldots, W_2^* \). Note that the latter fact comes from (15) and (3) for \(Y_t \) and from (3) with \(q = 1 \) and \(p = 0 \) for \(W_t \).

In order to prove that \((W_t^*)\) is a strictly stationary and ergodic process, we have first to prove that \((W_t^*)\) is an aperiodic Markov process satisfying Doeblin’s condition, see Lemma 1. cv The statement of Lemma 1 corresponds to Assertion (iv) of Theorem 16.0.2 of Meyn and Tweedie (1993) which is equivalent to Assertion (i) of this theorem, and implies that \((W_t^*)\) is uniformly ergodic.

Hence, by Definition (16.6) of uniform ergodicity given in Meyn and Tweedie (1993), there exists a unique stationary invariant measure for \((W_t^*)\), see also the paragraph below Equation (1.3) of Sandrić (2017) for an additional justification. Combining that existence of a unique stationary invariant measure for \((W_t^*)\) with the following arguments shows that \((W_t^*)\) is a strictly stationary process and also an ergodic Markov process.
By Theorem 3.6.3, Corollary 3.6.1 and Definition 3.6.6 of Stout (1974), if the process \((W_t^*)\) is started with its unique stationary invariant distribution, \((W_t^*)\) is a strictly stationary process.

By Definition 3.6.8 of Stout (1974), the existence of a unique stationary invariant measure for \((W_t^*)\) means that \((W_t^*)\) is an ergodic Markov process, see also the paragraph below (b) Sandrić (2017, p. 717).

Finally, by Theorem 3.6.5 of Stout (1974), since \((W_t^*)\) is an ergodic Markov process and a strictly stationary process, \((W_t^*)\) is an ergodic and strictly stationary process in the sense of the assumption of Theorem 1.3.5 of Taniguchi and Kakizawa (2012).

\[\square\]

4.3.2. Proof of Proposition 3

Note that for all \(\gamma_1\),

\[\mathcal{L}(\gamma_1) = \mathbb{E}[Y_3W_3(\beta_0^*, \gamma_1) - \exp(W_3(\beta_0^*, \gamma_1))] = \mathbb{E}[\mathbb{E}[Y_3W_3(\beta_0^*, \gamma_1) - \exp(W_3(\beta_0^*, \gamma_1))|\mathcal{F}_2]]
\]

\[= \mathbb{E}[(\exp(W_3^*)W_3(\beta_0^*, \gamma_1) - \exp(W_3(\beta_0^*, \gamma_1))]
\]

\[\leq \mathbb{E}[(\exp(W_3^*) (W_3^* - 1)] = \mathcal{L}(\gamma_1^*),
\]

where the inequality comes from the following inequality \(x - \exp(x) \leq -1\), for all \(x \in \mathbb{R}\). This inequality is an equality only when \(x = 0\) which means that \(\gamma_1 = \gamma_1^*\).

4.3.3. Proof of Proposition 3

The proof of this proposition comes from Proposition 1 and the stochastic equicontinuity of \(n^{-1}L(\beta_0^*, \gamma_1)\). Thus, it is enough to prove that there exists a positive \(\delta\) such that

\[\sup_{|\gamma_1 - \gamma_2| \leq \delta} \left| \frac{L(\beta_0^*, \gamma_1)}{n} - \frac{L(\beta_0^*, \gamma_2)}{n} \right| \xrightarrow{p} 0, \text{ as } n \text{ tends to infinity.}
\]

Observe that, by (16),

\[\left| \frac{L(\beta_0^*, \gamma_1)}{n} - \frac{L(\beta_0^*, \gamma_2)}{n} \right| \leq \frac{1}{n} \sum_{t=1}^{n} Y_t |W_t(\beta_0^*, \gamma_1) - W_t(\beta_0^*, \gamma_2)| + \frac{1}{n} \sum_{t=1}^{n} |\exp (W_t(\beta_0^*, \gamma_1)) - \exp (W_t(\beta_0^*, \gamma_2))|.
\]
Let us first focus on bounding the following expression for $t \geq 2$ (since $W_1(\beta_0^*, \gamma) = \beta_0^*$, for all γ). By (17)

$$|W_t(\beta_0^*, \gamma_1) - W_t(\beta_0^*, \gamma_2)| = |Z_t(\gamma_1) - Z_t(\gamma_2)| = |\gamma_1 E_{t-1}(\gamma_1) - \gamma_2 E_{t-1}(\gamma_2)|$$

$$= |\gamma_1 [Y_{t-1} \exp(-W_{t-1}(\beta_0^*, \gamma_1)) - 1] - \gamma_2 [Y_{t-1} \exp(-W_{t-1}(\beta_0^*, \gamma_2)) - 1]|$$

$$= |Y_{t-1} e^{-\beta_0^*} [\gamma_1 \exp(-Z_{t-1}(\gamma_1)) - \gamma_2 \exp(-Z_{t-1}(\gamma_2))] + \gamma_2 - \gamma_1|$$

$$\leq Y_{t-1} e^{-\beta_0^*} |\gamma_1 - \gamma_2| \exp(-Z_{t-1}(\gamma_1)) + |\gamma_2| |\exp(-Z_{t-1}(\gamma_1)) - \exp(-Z_{t-1}(\gamma_2))| + |\gamma_2 - \gamma_1|$$

$$\leq Y_{t-1} e^{-\beta_0^*} |\gamma_1 - \gamma_2| \exp(-Z_{t-1}(\gamma_1)) + |\gamma_2| \exp(-Z_{t-1}(\gamma_1)) - Z_{t-1}(\gamma_2)| \exp(|Z_{t-1}(\gamma_1) - Z_{t-1}(\gamma_2))|$$

$$\leq |\gamma_2 - \gamma_1|,$$

where we used in the last inequality that for all x and y in \mathbb{R},

$$|e^x - e^y| = e^x |1 - e^{y-x}| \leq e^x |y - x| e^{|y-x|}.$$

Observing that

$$\exp(-Z_{t}(\gamma_1)) = \exp\left(-\gamma_1 \left[Y_{t-1} e^{-\beta_0^*} \exp(-Z_{t-1}(\gamma_1)) - 1\right]\right),$$

and $|Z_2(\gamma_1) - Z_2(\gamma_2)| \leq \delta |Y_1 e^{-\beta_0^*} + 1|$ we get, for γ_1 and γ_2 such that $|\gamma_1 - \gamma_2| \leq \delta$, that

$$|W_t(\beta_0^*, \gamma_1) - W_t(\beta_0^*, \gamma_2)| \leq \delta F(Y_{t-1}, Y_{t-2}, \ldots, Y_1),$$

where F is a measurable function. By (25),

$$|\exp(W_t(\beta_0^*, \gamma_1)) - \exp(W_t(\beta_0^*, \gamma_2))|$$

$$\leq \exp(W_t(\beta_0^*, \gamma_1)) |W_t(\beta_0^*, \gamma_1) - W_t(\beta_0^*, \gamma_2)| \exp(|W_t(\beta_0^*, \gamma_1) - W_t(\beta_0^*, \gamma_2))|$$

where the last inequality comes from (27), (26) and (17) and where G is a measurable function. Thus, we get that

$$\left|\frac{L(\beta_0^*, \gamma_1)}{n} - \frac{L(\beta_0^*, \gamma_2)}{n}\right| \leq \frac{\delta}{n} \sum_{t=1}^{n} H(Y_t, Y_{t-1}, \ldots, Y_1),$$

which gives the result by using similar arguments as those given in the proof of Proposition 1, namely that (Y_t) is strictly stationary and ergodic. By Theorem 1.3.3 of [Taniguchi and Kakizawa (2012)], $(Y_t, Y_{t-1}, \ldots, Y_1)$ is strictly stationary and ergodic since (Y_t) has these properties. Thus, $\mathbb{E}[|H(Y_t, Y_{t-1}, \ldots, Y_1)|] < \infty$, which concludes the proof by Theorem 1.3.5 of [Taniguchi and Kakizawa (2012)].
APPENDIX

This appendix contains additional results for the support recovery of β^* and for the estimation of γ^* discussed in Section 3.1.2.

Figure 16. Error bars of the TPR and FPR associated to the support recovery of β^* for five methods with respect to the thresholds when $n = 1000$, $q = 1$, $p = 100$ and a 10% sparsity level. All the $\beta^*_i = 0$ except for ten of them: $\beta^*_1 = 1.73$, $\beta^*_3 = 1.2$, $\beta^*_5 = 0.67$, $\beta^*_6 = 0.5$, $\beta^*_14 = -0.38$, $\beta^*_17 = 0.29$, $\beta^*_30 = -0.64$, $\beta^*_33 = -0.13$, $\beta^*_38 = -0.1$ and $\beta^*_44 = -0.07$.
Figure 17. Error bars of the TPR and FPR associated to the support recovery of β^* for five methods with respect to the thresholds when $n = 1000$, $q = 2$, $p = 100$ and a 10% sparsity level. All the $\beta_i^* = 0$ except for ten of them: $\beta_1^* = 1.73, \beta_3^* = 1.2, \beta_5^* = 0.67, \beta_{10}^* = 0.5, \beta_{14}^* = -0.38, \beta_{17}^* = 0.29, \beta_{30}^* = -0.64, \beta_{33}^* = -0.13, \beta_{38}^* = -0.1$ and $\beta_{44}^* = -0.07$.
Figure 18. Error bars of the TPR and FPR giving the corresponding final sets of selected variables for five methods with respect to the thresholds when $n = 1000$, $q = 3$, $p = 100$ and a 10% sparsity level. All the $\beta^*_{i} = 0$ except for ten of them: $\beta^*_{1} = 1.73$, $\beta^*_{3} = 1.2$, $\beta^*_{5} = 0.67$, $\beta^*_{10} = 0.5$, $\beta^*_{14} = -0.38$, $\beta^*_{17} = 0.29$, $\beta^*_{30} = -0.64$, $\beta^*_{33} = -0.13$, $\beta^*_{38} = -0.1$ and $\beta^*_{44} = -0.07$.
Figure 19. Boxplots for the estimations of γ^* in Model (2) with a 10\% sparsity level and $q = 1, 2, 3$ obtained by \texttt{ss.cv}. Top: $q = 1$ and $\gamma^*_1 = 0.5$ (left), $q = 2$ and $\gamma^*_1 = 0.5$ (middle), $q = 2$ and $\gamma^*_2 = 0.25$ (right). Bottom: $q = 3$ and $\gamma^*_1 = 0.5$ (left), $q = 3$ and $\gamma^*_2 = 1/3$ (middle), $q = 3$ and $\gamma^*_3 = 0.25$ (right). The horizontal lines correspond to the values of the γ^*_i’s.
Figure 20. Boxplots for the estimations of γ^* in Model (2) with a 10% sparsity level and $q = 1, 2, 3$ obtained by fast_ss. Top: $q = 1$ and $\gamma_1^* = 0.5$ (left), $q = 2$ and $\gamma_1^* = 0.5$ (middle), $q = 2$ and $\gamma_2^* = 0.25$ (right). Bottom: $q = 3$ and $\gamma_1^* = 0.5$ (left), $q = 3$ and $\gamma_2^* = 1/3$ (middle), $q = 3$ and $\gamma_3^* = 0.25$ (right). The horizontal lines correspond to the values of the γ_i^*'s.
Figure 21. Boxplots for the estimations of γ^* in Model (2) with a 10% sparsity level and $q = 1, 2, 3$ obtained by ss.min. Top: $q = 1$ and $\gamma_1^* = 0.5$ (left), $q = 2$ and $\gamma_1^* = 0.5$ (middle), $q = 2$ and $\gamma_2^* = 0.25$ (right). Bottom: $q = 3$ and $\gamma_1^* = 0.5$ (left), $q = 3$ and $\gamma_2^* = 1/3$ (middle), $q = 3$ and $\gamma_3^* = 0.25$ (right). The horizontal lines correspond to the values of the γ_i^*'s.
References

Al-Osh, M. and A. A. Alzaid (1988). Integer-valued moving average (INMA) process. Statistical Papers 29(1), 281–300.

Brännäs, K. and A. M. M. S. Quoreshi (2010). Integer-valued moving average modelling of the number of transactions in stocks. Applied Financial Economics 20(18), 1429–1440.

Cox, D. R., G. Gudmundsson, G. Lindgren, L. Bondesson, E. Harsaae, P. Laake, K. Juselius, and S. L. Lauritzen (1981). Statistical analysis of time series: Some recent developments [with discussion and reply]. Scandinavian Journal of Statistics 8(2), 93–115.

Davis, R. A., W. T. M. Dunsmuir, and S. B. Streett (2003). Observation-driven models for Poisson counts. Biometrika 90(4), 777–790.

Davis, R. A., W. T. M. Dunsmuir, and S. B. Streett (2005). Maximum likelihood estimation for an observation driven model for Poisson counts. Methodology and Computing in Applied Probability 7(2), 149–159.

Davis, R. A., W. T. M. Dunsmuir, and Y. Wang (1999). Modeling time series of count data. Statistics Textbooks and Monographs 158, 63–114.

Davis, R. A., S. H. Holan, R. Lund, and N. Ravishanker (Eds.) (2016). Handbook of discrete-valued time series. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL.

Dunsmuir, W. T. M. (2015). Generalized Linear Autoregressive Moving Average Models, Chapter 3, pp. 51–76. CRC Press.

Dunsmuir, W. T. M. and D. Scott (2015). The glarma package for observation-driven time series regression of counts. Journal of Statistical Software, Articles 67(7), 1–36.

Enciso-Mora, V., P. Neal, and T. Subba Rao (2009). Efficient order selection algorithms for integer-valued ARMA processes. Journal of Time Series Analysis 30(1), 1–18.

Fokianos, K., A. Rahbek, and D. Tjøstheim (2009). Poisson autoregression. Journal of the American Statistical Association 104(488), 1430–1439.

Fokianos, K. and D. Tjøstheim (2012). Nonlinear poisson autoregression. Annals of the Institute of Statistical Mathematics 64(6), 1205–1225.

Fokianos, K. and D. Tjøstheim (2011). Log-linear poisson autoregression. Journal of Multivariate Analysis 102(3), 563 – 578.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22.

Hastie, T., R. Tibshirani, and J. Friedman (2009). Elements of Statistical Learning: Data mining, inference, and prediction. Springer Science & Business Media.

Jung, R. C. and R. Liesenfeld (2001). Estimating time series models for count data using efficient importance sampling. ASTA Advances in Statistical Analysis 4(85), 387–407.

McKenzie, E. (1985). Some simple models for discrete variate time series. Journal of the American Statistical Association 21(4), 645–650.

Meinshausen, N. and P. Bühlmann (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(4), 417–473.
Meyn, S. and R. Tweedie (1993). Markov Chains and Stochastic Stability. Springer-Verlag, London.
Neal, P. and T. Subba Rao (2007). MCMC for integer-valued ARMA processes. Journal of Time Series Analysis 28(1), 92–110.
Sandrić, N. (2017). A note on the Birkhoff ergodic theorem. Results in Mathematics 72(1), 715–730.
Souza, J. B. d., V. A. Reisen, J. M. Santos, and G. C. Franco (2014). Principal components and generalized linear modeling in the correlation between hospital admissions and air pollution. Revista de Saúde Pública 48, 451 – 458.
Stout, W. (1974). Almost sure convergence. Probability and mathematical statistics. Academic Press.
Taniguchi, M. and Y. Kakizawa (2012). Asymptotic theory of statistical inference for time series. Springer Science & Business Media.
Thorne, T. (2018). Approximate inference of gene regulatory network models from RNA-Seq time series data. BMC Bioinformatics 19(1), 127.
Weiss, C. (2018). An Introduction to Discrete-Valued Time Series. John Wiley & Sons Ltd.
Zeger, S. L. and B. Qaqish (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics 44(4), 1019–1031.

UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
E-mail address: mgomtsian@gmail.com

UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
E-mail address: celine.levy-leduc@agroparistech.fr

UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
E-mail address: sarah.ouadah@agroparistech.fr

UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
E-mail address: laure.sansonnet@agroparistech.fr