Foxo1 Links Hyperglycemia to LDL Oxidation and Endothelial Nitric Oxide Synthase Dysfunction in Vascular Endothelial Cells

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Tanaka, Jun, Li Qiang, Alexander S. Banks, Carrie L. Welch, Michihiro Matsumoto, Tadahiro Kitamura, Yukari Ido-Kitamura, Ronald A. DePinho, and Domenico Accili. 2009. Foxo1 Links Hyperglycemia to LDL Oxidation and Endothelial Nitric Oxide Synthase Dysfunction in Vascular Endothelial Cells. Diabetes 58(10): 2344-2354.

Published Version
doi:10.2337/db09-0167

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5352097

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Foxo1 Links Hyperglycemia to LDL Oxidation and Endothelial Nitric Oxide Synthase Dysfunction in Vascular Endothelial Cells

Jun Tanaka, Li Qiang, Alexander S. Banks, Carrie L. Welch, Michihiro Matsumoto, Tadahiro Kitamura, Yukari Ido-Kitamura, Ronald A. DePinho, and Domenico Accili

OBJECTIVE—Atherosclerotic cardiovascular disease is the leading cause of death among people with diabetes. Generation of oxidized LDLs and reduced nitric oxide (NO) availability because of endothelial NO synthase (eNOS) dysfunction are critical events in atherosclerotic plaque formation. Biochemical mechanism leading from hyperglycemia to oxLDL formation and eNOS dysfunction is unknown.

RESEARCH DESIGN AND METHODS—We show that glucose, acting through oxidative stress, activates the transcription factor Foxo1 in vascular endothelial cells.

RESULTS—Foxo1 promotes inducible NOS (iNOS)-dependent NO-peroxynitrite generation, which leads in turn to LDL oxidation and eNOS dysfunction. We demonstrate that Foxo1 gain-of-function mimics the effects of hyperglycemia on this process, whereas conditional Foxo1 knockout in vascular endothelial cells prevents it.

CONCLUSIONS—The findings reveal a hitherto unsuspected role of the endothelial iNOS-NO-peroxynitrite pathway in lipid peroxidation and eNOS dysfunction and suggest that Foxo1 activation in response to hyperglycemia brings about proatherogenic changes in vascular endothelial cell function. Diabetes 58: 2344–2354, 2009

Cardiovascular disease (CVD) is the leading cause of death of diabetic patients. Type 2 diabetes increases CVD-related morbidity and mortality by two- to fourfold (1). Unlike microvascular diabetes complications, the benefit of tight glycemic control on the prevention of macrovascular complications remains unclear (2), owing possibly to the contribution of insulin resistance as an independent risk factor (3,4).

A growing consensus indicates that the adverse effects of hyperglycemia on diabetes complications are exerted through a shared pathway of oxidative stress, leading to oxidative modification of lipid, protein, and DNA; activation of proinflammatory pathways; DNA damage; and cellular apoptosis (5). In contrast, the effects of “insulin resistance” are heterogeneous, primarily because the constellation of events commonly subsumed under this moniker is indeed an admixture of insulin resistance and excessive insulin sensitivity, at the cellular and organ level (6).

It is widely held that alterations of endothelial cell function are early events in atherosclerosis development. These perturbations include the modification of lipoproteins, loss of endothelium-dependent vasodilation (endothelial dysfunction, synonymous to endothelial nitric oxide synthase [eNOS] dysfunction), and increased expression of cellular adhesion molecules (7). These lead to the formation of fatty streaks, consisting of cholesterol-laden macrophages beneath the endothelium of large arteries. Several lines of evidence underscore the importance of oxidative modifications of native LDL and eNOS function in fatty streak formation (8,9). For example, macrophages become cholesterol-laden foam cells when cultured in the presence of oxidized, but not of native, LDL (10,11). Hyperglycemia has been linked to the generation of peroxynitrite, a highly potent oxidant that impairs eNOS activity, and glucose-induced eNOS dysfunction can be restored by antioxidants (12). However, the mechanisms by which hyperglycemia and oxidative stress increase oxLDL and cause eNOS dysfunction remain unclear.

In this study, we sought to identify a pathway linking diabetes to oxLDL formation and eNOS dysfunction. We show that the forkhead protein Foxo1 is activated by glucose and oxidative stress in endothelial cells to promote inducible NOS (iNOS)-dependent NO/peroxynitrite generation. The latter increases lipid peroxidation and causes eNOS dysfunction by disrupting eNOS dimerization. We demonstrate that Foxo1 gain-of-function mimics the effects of hyperglycemia on this process, while conditional Foxo1 knockout in vascular endothelial cells prevents it. The data reveal a seemingly novel mechanism, whereby iNOS-dependent NO/peroxynitrite generation by vascular endothelial cells promotes the early changes associated with the pathogenesis of atherosclerosis in diabetes.

RESEARCH DESIGN AND METHODS
Measurement of NO and reactive oxygen species/peroxynitrite production. We cultured primary human aortic endothelial cells (HAECs) (Lonza) in EGM-2 (endothelial growth medium-2; Lonza) and used them between passages 3 and 5. We determined NO production using the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA; EMD Biosciences) as described elsewhere (13) and reactive oxygen species (ROS)/peroxynitrite production using 5-(and6)-carboxy 2,7 dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA; Invitrogen). HAECs were grown to confluence and
stimulated with high glucose or H₂O₂ in chamber slides (Lab-Tek), then serum-deprived for 24 h in endothelial basal medium-2 (EBM-2) supplemented with 100 μM L-arginine, loaded with DAF-2 DA (3 μM) or carboxy-H₂DCFDA (10 μM) for 30 min at 37°C and washed three times with EBM-2. After fixation in 2% paraformaldehyde for 5 min at 4°C, we visualized NO and ROS/peroxynitrite production using microscopes. In some assays, we transduced HAECs with Foxo1-ADA and DBD-Foxo1-ADA adenoviruses (14) 24 h before the experiment and cultured them with the iNOS inhibitor 1400W (10 μM) for 3 h, or with the eNOS inhibitor t-NAME (100 μM) (Calbiochem) for 30 min before adding DAF-2DA. We determined the total amount of NOx (nitrate and nitrite) in phenol-red-free DMEM using a Nitric Oxide Quantitation Kit (Active Motif) after a 24-h culture in the presence or absence of NO inhibitors (Active Motif, Carlsbad, CA) and EZ4UF17 (3 μM; EMD Biosciences) were used to activate eNOS.

RNA isolation and expression studies. We extracted RNA using RNAasy Mini Kit and RNAasy-Free DNase Set (Qiagen). For real-time PCR analysis, we reverse transcribed total RNA using SuperScript II First-Strand Synthesis System (Invitrogen). Oligonucleotide primer sequences were as follows: human (h) iNOS, 5′-tctgaggcagagaaagctg-3′ and 5′-aagcttgtgagctaggc-3′; hNOX, 5′-gctcactccatatcact-3′ and 5′-tcattcaggtggtgctgttgg-3′; hFoxO3, 5′-gtaacagtacgccggaactct-3′ and 5′-gtagctgggctgggagctgttgg-3′; hFoxO4, 5′-ggtgcctcactctcccttc-3′ and 5′-agaagacaagctctcctgtg-3′; mFoxO1, 5′-gccctcaccgctacaacatcc-3′ and 5′-gctgagctgtgactttggcta-3′; mFoxO3, 5′-aatcacagaaaggttggggacca-3′ and 5′-ctgaggcagagaaagctg-3′, and mFoxO4, 5′-ggtgacggaagccccct-3′ and 5′-cagcccattctattct-3′. We performed PCR reactions in triplicate using a DNA Engine Opticon 3 System (MJ Research). Relative mRNA levels were calculated using a standard curve, with the PCR product for each primer set normalized to 36B4 mRNA level.

Western blotting. Cells were lysed and aortas were homogenized by Polytron immediately after dissection in RIPA buffer (150 mmol/l NaCl, 15 mmol/l PIPES, pH 8.0; 1% SDS; 0.5% deoxycholate; 0.5% Triton-X100; 0.1% Pronase; 100 mmol/l L-arginine; loaded with DAF-2 DA (3 μM) or carboxy-H₂DCFDA (10 μM) for 3 h, or with the eNOS inhibitor t-NAME (100 μM) (Calbiochem) for 30 min before adding DAF-2DA. We determined the total amount of NOx (nitrate and nitrite) in phenol-red-free DMEM using a Nitric Oxide Quantitation Kit (Active Motif) after a 24-h culture in the presence or absence of NO inhibitors (Active Motif, Carlsbad, CA) and EZ4UF17 (3 μM; EMD Biosciences) were used to activate eNOS.

Results

Glucose and oxidative stress promote iNOS-dependent NO and ROS/peroxynitrite generation in HAECs. NO has a dual effect on endothelial function (19,20). In physiologic conditions, NO is a potent vasodilator and protects endothelial cells from oxidative damage (21). In contrast, with oxidative stress, iNOS-derived NO can react with superoxide to yield peroxynitrite, a highly reactive oxidant (22), which in turn promotes LDL oxidation (8) and inhibits eNOS-dependent NO production (12). Incubation of HAECs in medium containing 25 mmol/l glucose for 48 h increased NO production four- to fivefold (Fig. 1A), with the eNOS inhibitor L-NAME, prevented H₂O₂- and glucose-induced NO production (Fig. 1B). Incubation with H₂O₂, an inducer of oxidative stress, mimicked these effects (Fig. 1C). Measurements of gene expression indicated that both glucose and H₂O₂ increased iNOS, but not eNOS mRNA and protein, whereas nNOS mRNA was undetectable (Fig. 1D and E). Furthermore, the iNOS inhibitor 1400W, but not the eNOS inhibitor t-NAME, prevented H₂O₂- and glucose-induced NO production (Fig. 1F). These results indicate that exposure of HAECs to high glucose or oxidative stress promotes iNOS-dependent peroxynitrite generation through NO production, a hitherto unrecognized process.
Increased iNOS expression and lipid peroxidation in diabetic mice. We investigated whether hyperglycemia, presumably resulting in oxidative stress, affects endothelial iNOS mRNA expression in vivo. When mice were rendered hyperglycemic by administration of STZ, aortic iNOS mRNA levels rose threefold (Fig. 1G and H). Immunohistochemistry on aortas isolated from STZ-induced diabetic mice indicated a selective increase in iNOS immunoreactivity in endothelial cells (Fig. 1I, first two panels from the left). We expected that the rise in NO levels in hyperglycemic conditions would result in peroxynitrite production through ROS, leading to increased lipid peroxidation (22,23). Accordingly, we observed a twofold increase of lipid peroxides levels (measured as TBARS) in the plasma of STZ diabetic mice compared with normoglycemic controls (Fig. 1J).

iNOS activation by hyperglycemia in HAECs and in mice, with the attendant increase in oxLDL formation, represents an attractive mechanism to explain the early stages in the progression of atherosclerosis. Therefore, we sought to identify the biochemical mechanism underlying glucose regulation of iNOS in HAECs and in mice. High glucose and insulin/growth factor withdrawal induces Foxo1 nuclear translocation. The forkhead protein Foxo1 integrates hormonal and nutrient cues with
gene transcription (24). We asked whether glucose-induced oxidative stress and insulin/growth factor signaling affect the subcellular localization of a Foxo1-GFP fusion protein in HAECs. Under basal conditions (5.5 mmol/l glucose), we detected Foxo1-GFP in the cytoplasm; after incubation with increasing glucose concentrations or H2O2, Foxo1-GFP translocated to the nucleus, as did in response to insulin/growth factor withdrawal (Fig. 2A). To study the mechanism of glucose-induced translocation, we determined Foxo1 phosphorylation and acetylation in cells grown in different glucose concentrations. We found that glucose decreased Foxo1 phosphorylation and acetylation in a dose-dependent manner (Fig. 2B). These data are consistent with our prior observations that glucose causes nuclear translocation of Foxo1 by promoting its deacetylation (15). Moreover, expression of a Foxo1-responsive reporter gene increased up to twofold in cells treated with high glucose or with H2O2 (but not with mannitol) in a time-dependent manner (Fig. 2C). These results indicate Foxo1 is activated by elevated glucose
levels and oxidative stress, as well as by insulin/growth factor withdrawal.

Insulin resistance fails to alter Foxo1 phosphorylation in HAECs and aorta. Although oxidative stress associated with hyperglycemia is thought to play a pathogenic role in atherosclerosis, outcome studies have failed to convincingly demonstrate that tight glycemic control prevents the macrovascular complications of diabetes (2). In addition to hyperglycemia, insulin resistance is also recognized as an independent risk factor for atherosclerosis (3,4). Theoretically, one would predict that insulin resistance in HAECs could also eventuate in increased Foxo1 activity, by way of reduced Akt-dependent Foxo1 phosphorylation, with increased nuclear retention (25). We examined this point in cultured cells and in mice.

First, we incubated HAECs in 100 nmol/l insulin overnight, to induce ligand-mediated receptor downregulation (26). The expectation was that a commensurate decrease in Akt and Foxo1 phosphorylation would occur, leading to increased nuclear Foxo1. The treatment caused a 50% decrease in InsR content but failed to affect phospho-InsR, phospho-Akt, and phospho-Foxo1 levels (Fig. 2E). Next, we investigated Foxo1 phosphorylation in aortas isolated from mice lacking InsR in all cell types (L1) (18). Consistent with the result in insulin-treated HAECs, we detected near-normal Akt and Foxo1 phosphorylation in L1 mouse aortas (Fig. 2F).

These findings can be explained by the presence of additional growth factor receptors (such as Igf1R) in HAECs (27), acting to preserve Foxo1 phosphorylation when insulin signaling is decreased. These data support a model in which hyperglycemia trumps insulin resistance as a metabolic cue regulating Foxo1 activity in endothelial cells.

Foxo1 activation mimics the effects of glucose and oxidative stress on NO and ROS production. To determine whether Foxo1 mediates iNOS-dependent NO and ROS production, we performed gain-of-function experiments in HAECs. Expression of constitutively nuclear Foxo1 (Foxo1-ADA) dose-dependently increased NO and ROS production (Fig. 3A–C) and was associated with increased iNOS but not eNOS expression (Fig. 3D). iNOS induction by Foxo1ADA was observed only in HAECs and not in mouse βTC-3 or in human THP-1 cells, suggesting that the Foxo1 effect on iNOS is specific for endothelial cells (data not shown). Addition of an iNOS, but not of an eNOS inhibitor, prevented the effect of Foxo1ADA (Fig. 3E). Finally, Foxo1 overexpression increased the levels of stable NO intermediates (NOx) in the culture medium, an increase that was reversed by iNOS inhibition (Fig. 3F and G).

Activation of Foxo1 promotes oxidized LDL formation and impairs eNOS function by disrupting eNOS dimerization. Peroxynitrite has been shown to increase oxLDL levels and impair eNOS function, leading to blunted NO production (8) (12). We examined whether Foxo1 activation affects peroxynitrite production, LDL oxidation, and eNOS dimer formation in HAECs. We observed a dose-dependent increase in oxLDL levels in medium of HAECs transduced with Foxo1ADA (Fig. 4A), which was preempted by the addition of an iNOS inhibitor (Fig. 4B). Moreover, Foxo1 impaired eNOS dimer formation, an effect that was also reversed by the iNOS inhibitor. Glucose also decreased eNOS dimer formation in a dose-dependent manner, consistent with our hypothesis that hyperglycemia activates Foxo1 (Fig. 4C). Accordingly,
FIG. 3. Foxo1ADA increases iNOS mRNA, NO, and ROS/peroxynitrite generation. HAECs were transduced with increasing concentrations of HA-Foxo1ADA for 24 h (A–D and F) with or without pretreatment of the eNOS inhibitor, L-NAME, or iNOS inhibitor, 1400W (E and G). A: Endogenous and exogenous Foxo1 Western blotting using anti-Foxo1 and anti-HA antibodies. B and E: NO production using DAF-2DA. C: ROS/peroxynitrite production using carboxy-H$_2$DCFDA. D: iNOS and eNOS proteins (upper panel) and mRNA (lower panel) expression levels. F and G: Total amount of NOx concentration in the medium. *P < 0.05; **P < 0.01.
eNOS-dependent NO production was decreased, whereas eNOS-independent basal NO production was increased (Fig. 4D), in cells transduced with Foxo1ADA. This effect was reflected in increased ROS production by Foxo1ADA, but not by eNOS activation (Fig. 4E). Measurements of stable NO intermediates (NOx) in the culture medium corroborated this result (Fig. 4F). These data indicate that Foxo1 activation in endothelial cells increases LDL peroxidation and decreases eNOS function through the iNOS-peroxynitrite pathway.

Foxo1 binding to iNOS promoter is required for NO induction and LDL oxidation. Foxo1 can regulate gene expression in a DNA binding-independent manner (14). To determine whether Foxo1 binding to target DNA is required for iNOS induction and lipid peroxidation, we compared the effects of constitutively nuclear, DNA binding–competent (Foxo1ADA) and –defective (DBD-Foxo1ADA) Foxo1. DBD-Foxo1ADA failed to affect NO production and LDL peroxidation (Fig. 5A–C), demonstrating that DNA binding is required for iNOS induction. This conclusion is supported by gene reporter assays, indicating that Foxo1ADA, but not DBD-Foxo1ADA, increased expression of a reporter gene under the control of human iNOS promoter (Fig. 5D). Furthermore, ChIP assays show that Foxo1 binds to a forkhead site of the human iNOS promoter in intact chromatin isolated from HAECs (Fig. 5E).

Loss of Foxo1 function blocks iNOS induction in HAECs and in aortas of diabetic mice. We next asked whether Foxo1 loss-of-function prevented iNOS induction. To this end, we transfected HAECs with siRNA constructs targeting Foxo1, Foxo3, or Foxo4, singly or in combination. After transfection of phycoerythrin-labeled control siRNA, we observed red fluorescence in virtually all HAEC nuclei (Fig. 6A), indicating high efficiency of siRNA delivery (Fig. 6B). Transfection of Foxo1, Foxo3, or Foxo4 siRNAs led to 92, 87, and 81% decreases in target mRNA expression, respectively. Cotransfection of the pooled siRNAs decreased Foxo1, Foxo3, and Foxo4 mRNA by 87, 77, and 82%, respectively (Fig. 6B). In untransfected HAECs, iNOS expression increased 2.8- and 2.5-fold after H_2O_2 and high glucose treatment, respectively. Foxo1...

FIG. 4. LDL oxidation and eNOS dimerization in response to Foxo1ADA. A: LDL oxidation (measured as TBARS) in HAECs expressing Foxo1ADA and incubated with native LDL. Sin-1, a NO and superoxide donor, was used as a positive control to generate peroxynitrite. B: LDL oxidation in HAECs expressing Foxo1ADA and treated with the iNOS inhibitor, 1400W. C: Low-temperature western blotting to detect eNOS dimers in HAECs transfected with Foxo1ADA or treated with different glucose concentrations for 48 h. D: Basal and insulin/calcium ionophore-stimulated NO production using DAF2-DA. E: ROS production and (F) NOx concentration in the medium of HAECs transduced with Foxo1ADA and treated with insulin/calcium ionophore. *P < 0.05; **P < 0.01 by Student’s t test. (A high-quality digital representation of this figure is available in the online issue.)
knockdown blunted the rise of iNOS mRNA and protein in response to oxidative stress, whereas knockdown of either Foxo3 or Foxo4 had no effect (Fig. 6C). These data indicate that Foxo1 is the main Foxo isofom required for iNOS activation by oxidative stress.

To provide in vivo evidence for a role of Foxo1 in mediating the effects of hyperglycemia on iNOS and lipid peroxidation, we generated vascular endothelial cell–specific Foxo1 knockout mice (Tie2-cre/Foxo1^{fl_{ox}/fl_{ox}}) (Fig. 7A and B). Mice were born at term in Mendelian ratios and showed no gross or metabolic abnormalities (data not shown). We rendered them diabetic with STZ and measured aortic iNOS mRNA and serum lipid peroxides levels. We detected a 49% decrease of iNOS mRNA and a 32% decrease of serum lipid peroxide levels (Fig. 7C) in hyperglycemic Tie2-cre/Foxo1^{fl_{ox}/fl_{ox}} mice, compared with Foxo1^{fl_{ox}/fl_{ox}} controls. Immunohistochemical analyses indicated that the STZ-induced increase of iNOS protein was blunted in Tie2-cre/Foxo1^{fl_{ox}/fl_{ox}} mice (Fig. 1F, third and fourth panel from the left). These results suggest that Foxo1 activation in diabetic endothelial cells is required for oxLDL generation.

DISCUSSION

The cardiovascular complications of diabetes represent a major threat to public health (28, 29). Not only does excess morbidity and mortality for CVD already account for most of the financial burden of diabetes (28), but this complication appears to be uniquely resistant to tight glucose control (2, 30). In addition, progress in reducing mortality from ischemic and nonischemic heart disease with lipid-lowering drugs is being offset by the soaring rates of diabetes-related CVD (31). Finally, it is becoming increasingly clear that effects of antidiabetes medications should be viewed in the context of CVD outcome studies and not simply of glucose control (32).

The clinical complexity of diabetes-related CVD stems from the heterogeneity of molecular mechanisms underlying atherosclerotic plaque development, progression, and eventual rupture. The present work focused on early events occurring in vascular endothelial cells and more precisely on the mechanisms by which hyperglycemia and insulin resistance affect oxLDL generation and endothelial dysfunction. Our data provide a mechanistic foundation for recent work, showing that ablation of Akt1, the predominant Akt isoform in endothelial cells, smooth muscle cells, and monocytes, leads to severe atherosclerosis in apolipoprotein E knockout mice, through a mechanism dependent on endothelial dysfunction (33). We propose that the next step in this process is activation of Foxo1 (through impaired Akt-dependent phosphorylation), followed by iNOS induction, generation of ROS/peroxynitrite, oxLDL production, impairment of eNOS activity, and endothelial dysfunction.

Two aspects of the identification of Foxo1 as an effector of oxidative stress damage in response to hyperglycemia have noteworthy pathophysiologic implications. First, it is apparent that Foxo1 is more readily activated in response to hyperglycemia than to insulin resistance in endothelial cells. This finding suggests that although insulin-resistant subjects are predisposed to atherosclerosis and suffer disproportionately from its consequences independently of diabetes (3, 4), this may occur primarily through oxidative stress, rather than impaired insulin signaling per se. Indeed, the recent demonstration that increased free fatty acid levels can bring about oxidative stress in euglycemic conditions strengthens this conclusion (34). The failure of insulin resistance to activate Foxo1 (via de-phosphorylation) could be because of compensatory signals through IGF-1 receptors, which outnumber insulin receptors on vascular endothelial cells (27). Moreover, additional surface receptors for growth factors and fluid shear stress (35) enable vascular endothelial cells to maintain near-normal Akt phosphorylation through different pathways, when InsR signaling has been dampened or genetically ablated, as exemplified in Fig. 2F.

As a second consideration, it is interesting to compare and contrast the present findings with Foxo1 activation in response to oxidative stress in pancreatic β-cells (15). In β-cells, Foxo1 nuclear translocation protects against glucose toxicity, at least in the short term (15); whereas in vascular endothelial cells, Foxo1 activation boosts their oxidative capacity through ROS/peroxynitrite generation,...
with attendant lipid peroxidation and eNOS dysfunction. This observation is consistent with the fact that Foxo1 increases iNOS transcription in endothelial cells but not in pancreatic β-cells or monocytes (data not shown). The present data dovetail with scattered evidence in the literature for a role of iNOS in the adverse metabolic consequences of hyperglycemia in skeletal muscle, adipose, and liver (36,37). In addition, although in advanced atherosclerotic lesions the role of macrophage-derived iNOS is quantitatively predominant, histopathology of fetal human aortic samples shows that LDL and oxLDL are frequently found in the absence of monocyte/macrophages, but the opposite is rare (38). Thus, our results suggest that iNOS activation by Foxo1 drives the generation of plasma lipid peroxides and endothelial dysfunction often seen in diabetes (36,39,40). Furthermore, iNOS has been shown in most (41–44), but not all studies (45), to promote atherosclerosis development. For example, administration of an iNOS inhibitor prevented atherogenic lesion progression in atherosclerosis-prone mice (46,47), and was associated with lower plasma lipid peroxides levels (41,43,44). These results are consistent with our in vivo data, showing lower plasma lipid peroxides and aortic iNOS in STZ-induced diabetic mice lacking Foxo1 in vascular endothelial cells.

In conclusion, our data provide a model biochemical pathway through Foxo1, linking increased plasma glucose levels with the early pathophysiologic manifestations of atherosclerosis in diabetes. When viewed in the context of prior work, demonstrating that Foxo1 activation underlies many consequences of insulin resistance in liver and brain (48–50), this model can be subsumed under a unifying theory of the independent effects of impaired insulin action and hyperglycemia on the progression of diabetes and its complications.

ACKNOWLEDGMENTS
This work was supported by National Institutes of Health Grants P01-HL-87123 and P30-DK-63608 (Columbia Diabetes & Endocrinology Research Center).
No potential conflicts of interest relevant to this article were reported.

We thank members of the Accili laboratory for useful discussions and critical reading of the manuscript. R.A.D. is an American Cancer Society Research Professor and an Ellison Medical Foundation Senior Scholar and is supported by the Robert A. and Renee E. Belfer Family Institute for Innovative Cancer Science.

REFERENCES

1. National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics Fact Sheet: General Information and National Estimates on Diabetes in the United States. Bethesda, MD, U.S. Department of Health and Human Services, National Institute of Health, 2005

2. U.K. Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853

3. Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 2002;25:1177–1184

4. Yip J, Facchin FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J Clin Endocrinol Metab 1998;83:2773–2776

5. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820

6. Accili D. Lilly lecture 2003: the struggle for mastery in insulin action: from triumvirate to republic. Diabetes 2004;53:1633–1642

7. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell 2001;104:503–516

8. Gaut JP, Heinecke JW. Mechanisms for oxidizing low-density lipoprotein.

9. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924

10. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1984;81:3883–3887

11. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984;81:3883–3887

12. Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002;109:817–826

13. Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-dependent pathways in vascular endothelium. Mol Endocrinol 2006;20:1152–1163

14. Kitamura T, Kitamura YI, Funahashi Y, Shawber CJ, Castrillon DH, Koppila R, Depinho RA, Kitajewski J, Accili D. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 2007;117:2477–2485

15. Kitamura YI, Kitamura T, Kruse JP, Raun JC, Stein R, Gu W, Accili D. Foxo1 protects against pancreatic beta cell failure through NeuroD and Nfat induction. Cell Metab 2005;2:153–163

16. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 2001;230:230–242

17. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, J. TANAKA AND ASSOCIATES

FIG. 7. Conditional ablation of Foxo1 in vascular endothelial cells (EC) impairs iNOS induction and lowers lipid peroxides levels in diabetic mice. A: PCR genotyping of whole tissue or affinity-purified liver and lung endothelial cells from Tie2-cre/Foxo1flox/lox and Foxo1flox/lox mice (17). B: Foxo1 and Foxo3 Western blot in endothelial cells isolated from Tie2-cre/Foxo1flox/lox and Foxo1flox/lox mice. C: Blood glucose, aortic iNOS mRNA, and serum lipid peroxides levels in Tie2-cre/Foxo1flox/lox and Foxo1flox/lox mice, examined 2 weeks after diabetes induction by STZ (n = 12 for each genotype). *P < 0.05 by Student’s t test. VEFKO, vascular endothelial cell Foxo1 knockout.
Depinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007;128:309–323

18. Okamoto H, Nakae J, Kitamura T, Park BC, Dragatsis I, Accili D. Transgenic rescue of insulin-resistant-deficient mice. J Clin Invest 2004;114:214–223

19. Kawashina S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium 2004;11:99–107

20. Napoli C, de Nigris F, Williams-Ignarro V, Carnemolla R, Tabas I, Accili D, Tall AR. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421–426

21. Kawashina S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 2004;24:1098–1005

22. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990;87:1620–1624

23. Graham A, Hogg N, Kalyanaraman B, O’Leary V, Darley-Usmar V, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett 1993;330:181–185

24. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421–426

25. Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001;108:1359–1367

26. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004;113:764–773

27. Chisalita SI, Arnevert HJ. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 2004;286:E906–E901

28. International Diabetes Federation. Diabetes Atlas, Brussels, Belgium, International Diabetes Federation, 2007

29. Otonkoski T, Beattie GM, Rubin JS, Lopez AD, Baird A, Hayek A. International Diabetes Federation, 2007

30. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004;113:764–773

31. Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA 1999;281:1291–1297

32. Sobel BE. Optimizing cardiovascular outcomes in diabetes mellitus. Am J Med 2007;120:S3–S11

33. Hernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T, Iwakiri Y, Prendergast J, Miao RJ, Birkbaum MJ, Sessa WC. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab 2007;6:446–457

34. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 2006;116:1071–1080

35. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res 1998;83:334–341

36. Cericò A, Quagliaro L, D’Amico M, Di Filippo C, Marfella R, Nappo F, Berrino L, Rossi F, Giugliano D. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 2002;51:1076–1082