Supplement of "Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and formation mechanisms"

Yao Wang et al.

Correspondence to: Yue Zhao (yuezhao20@sjtu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1. Summary of average (standard deviation) values of meteorological parameters, trace gases, aerosol liquid water content (ALWC), aerosol [H^+], PM$_{2.5}$ and components of PM$_{2.5}$ in four seasons and throughout the year in 2015/2016 and 2018/2019.

	Spring	Summer	Autumn	Winter	Annual						
	2015	2019	2015	2019	2015-2016	2018-2019					
T (°C)	16.6 (3.8)	17.2 (2.3)	30.2 (2.3)	30.5 (3.1)	16.4 (1.1)	17.9 (1.9)	7.2 (0.8)	6.2 (0.7)	18.2 (1.7)	18.4 (9.3)	
RH	0.6 (0.1)	0.7 (0.1)	0.7 (0.1)	0.7 (0.1)	0.8 (0.1)	0.7 (0.1)	0.7 (0.1)	0.7 (0.1)	0.7 (0.1)	0.7 (0.1)	
wind speed (m s$^{-1}$)	3.8 (1.5)	4.0 (1.2)	4.4 (1.3)	4.4 (1.2)	3.6 (1.0)	4.3 (1.0)	3.3 (1.0)	3.4 (1.0)	3.8 (1.0)	3.8 (1.0)	
NO$_2$ (ppb)	30.4 (11.5)	22.4 (6.1)	14.9 (5.2)	11.7 (4.0)	28.5 (7.4)	20.1 (7.1)	21.1 (9.4)	14.1 (6.8)	32.6 (14.9)	27.0 (13.0)	21.3
O$_3$ (ppb)	35.9 (8.9)	41.2 (11.0)	38.5 (18.9)	30.7 (13.8)	19.2 (8.8)	31.7 (7.8)	21.1 (9.5)	14.9 (6.7)	29.8 (15.2)	29.6 (13.9)	
SO$_2$ (ppb)	6.3 (2.4)	2.2 (0.6)	3.5 (2.1)	1.5 (0.3)	4.8 (1.8)	3.5 (1.3)	8.4 (3.5)	2.8 (1.1)	5.7 (1.1)	2.5 (1.1)	
ALWC (μg m$^{-3}$)	14.0 (15.4)	12.0 (8.5)	9.6 (4.5)	5.0 (3.3)	52.7 (43.7)	14.6 (32.4)	25.7 (16.8)	29.2 (19.8)	24.4 (16.8)	27.0 (13.0)	14.8
[H^+]	2.4E-4 (3.5E-4)	7.0E-5 (7.5E-5)	7.3E-3 (6.7E-3)	2.0E-3 (2.4E-3)	1.9E-4 (1.2E-4)	9.7E-5 (9.7E-5)	6.1E-5 (7.2E-5)	3.0E-3 (1.1E-2)	2.3E-3 (4.8E-3)	1.4E-3 (5.7E-3)	
OM (μm)	15.9 (7.4)	10.6 (5.2)	7.4 (5.5)	6.2 (4.5)	11.5 (6.3)	8.3 (5.4)	8.3 (8.9)	2.2 (6.0)	11.1 (3.4)	12.7 (5.5)	
EC (μm)	3.9 (1.7)	3.4 (1.2)	2.5 (1.1)	1.5 (0.8)	3.2 (1.2)	1.8 (0.8)	4.0 (1.8)	2.2 (1.0)	4.0 (1.6)	2.2 (1.2)	
CF (μm)	0.5 (0.7)	0.4 (0.2)	0.1 (0.2)	0.3 (0.2)	1.1 (0.8)	0.3 (0.8)	1.5 (1.0)	1.0 (0.6)	1.5 (0.9)	0.7 (0.4)	
NO$_2^+$ (ppb)	9.4 (5.7)	9.9 (6.3)	1.0 (1.1)	3.4 (3.2)	9.6 (8.2)	6.7 (6.5)	16.6 (10.0)	14.1 (10.0)	16.6 (10.0)	8.4 (7.8)	
SO$_2^+$ (ppb)	8.9 (5.2)	5.3 (3.1)	7.4 (2.0)	4.2 (2.0)	9.4 (5.7)	4.0 (1.9)	11.1 (5.1)	9.2 (5.3)	9.1 (4.6)	5.7 (3.8)	
NH$_4^+$ (ppb)	5.9 (3.1)	4.6 (2.6)	2.7 (1.7)	1.4 (1.1)	7.0 (4.8)	3.1 (2.6)	10.2 (5.1)	6.2 (4.1)	6.2 (4.6)	3.8 (3.3)	
PM$_{2.5}$ (μg m$^{-3}$)	59.1 (21.4)	44.6 (20)	30.8 (13.5)	22 (11.1)	59.7 (35.0)	34.2 (17.7)	47.5 (29.9)	55.9 (29.9)	59.0 (37.9)	38.6 (24.0)	

Units: T (°C), wind speed (m s$^{-1}$), NO$_2$ (ppb), O$_3$ (ppb), SO$_2$ (ppb), ALWC (μg m$^{-3}$), aerosol [H^+] (mol L$^{-1}$), and major aerosol components (μg m$^{-3}$).
Table S2. Recoveries of OS standards spiked in the blank filter.

OS standard	Spike concentration (ppm)	Recovery
Limonaketone sulfate	2.50	88.5%
α-Pinene sulfate	2.86	88.7%
Δ-Carene sulfate	3.26	66.4%
β-Caryophyllene sulfate	1.82	84.2%
Octyl sulfate	1.94	82.6%
Methyl sulfate	1.92	88.0%
Phenyl sulfate	1.57	87.7%
Camphorsulfonate	2.27	94.3%
Lactic acid sulfate	5.05	72.5%
Glycolic acid sulfate	4.82	77.8%

Table S3. Dates and concentrations of major components of aerosol samples used for matrix effect evaluation, as well as the ratios of the signal response of OS standards in different sample extracts to that in pure solvent.

Exp. 1	Exp. 2	Exp. 3	Exp. 4	
Date of sample	19/01/2019	19/01/2019	31/07/2019	01/08/2019
OM	22	22	4	4
NO$_3^-$	34	34	0.4	0.7
SO$_4^{2-}$	15	15	2	2

OS standard	Exp. 1	Exp. 2	Exp. 3	Exp. 4
Limonaketone sulfate	0.93 (1.3)	0.93 (7.8)	1.09	1.15
α-Pinene sulfate	0.90 (1.4)	0.98 (9.0)	1.02	1.06
Δ-Carene sulfate	0.81 (1.6)	0.91 (10.2)	1.02	1.08
β-Caryophyllene sulfate	0.96 (0.9)	1.08 (5.7)	1.07	1.10
Octyl sulfate	0.87 (1.0)	1.00 (6.1)	1.10	1.14
Methyl sulfate	0.20 (1.0)	0.16 (6.0)	0.51	0.55
Phenyl sulfate	1.01 (0.8)	0.96 (4.9)	1.06	1.12
Camphorsulfonate	0.89 (1.1)	1.07 (7.1)	1.06	1.11
Lactic acid sulfate	0.93 (1.0)	0.86 (6.3)	1.35	1.38
Glycolic acid sulfate	0.17 (1.0)	0.31 (6.0)	0.45	0.53

Units: OM, NO$_3^-$ and SO$_4^{2-}$ (μg m$^{-3}$). The values in parentheses are the concentrations (ppm) of the OS standards added to the aerosol sample extracts. The OS standard concentrations in experiments 2-4 are the same.
Table S4. Molecular formulas of high-molecular-weight CHOS species observed during the pollution periods of winter and summer in 2019.

Formula	m/z	Formula	m/z
C_{19}H_{33}O_{8}S	409.1896	*C_{19}H_{33}O_{8}S_{2}	421.0052
C_{20}H_{37}O_{8}S	421.226	C_{22}H_{43}O_{8}S	429.1008
C_{19}H_{37}O_{8}S	425.2209	C_{18}H_{33}O_{14}S	437.0026
C_{22}H_{43}O_{8}S	435.278	C_{18}H_{33}O_{14}S	451.0183
*C_{10}H_{20}O_{10}S_{2}	439.0733	C_{18}H_{33}O_{14}S	453.0339
C_{18}H_{33}O_{10}S	439.1638	*C_{12}H_{33}O_{12}S_{2}	455.0318
C_{22}H_{43}O_{8}S	485.2209	C_{12}H_{33}O_{12}S	467.0132
C_{30}H_{57}O_{14}S	611.1223	C_{24}H_{57}O_{14}S	485.2209
C_{31}H_{57}O_{14}S	637.3199	C_{30}H_{57}O_{14}S	569.3301
C_{31}H_{57}O_{14}S	685.3469	C_{30}H_{57}O_{14}S	601.3563
		C_{30}H_{57}O_{14}S	607.3093
		C_{30}H_{57}O_{14}S	637.3199
		C_{30}H_{57}O_{14}S	647.3981
		C_{30}H_{57}O_{14}S	691.4396

*The high-molecular-weight CHOS species with two sulfur atoms may be accretion products of smaller CHOS species.
Table S5. Summary of individual organosulfate concentration (in ng m\(^{-3}\)) in four seasons in 2015/2016 and 2018/2019.

Category	Formula	[M-H]⁻	Spring	Summer	Autumn	Winter			
		2015	2019	2015	2019	2015	2018	2016	2019
C₂/C₃ OS	C₃H₅O₄S⁻	0.53	0.35	0.67	0.82	0.59	0.28	0.67	0.48
	C₃H₅O₅S⁻	1.29	1.15	4.56	3.77	1.50	0.92	1.35	0.93
	C₂H₂O₄S⁻	2.58	2.55	3.79	3.19	2.43	1.80	2.58	1.33
	C₃H₆O₅S⁻	0.75	0.53	0.63	1.24	2.59	0.33	1.27	0.63
	C₃H₆O₆S⁻	2.25	2.32	2.06	1.97	2.15	1.74	2.49	1.72
	C₄H₇O₄S⁻	2.29	2.18	2.31	1.30	1.75	1.23	1.77	2.33
	C₅H₇O₆S⁻	0.85	0.63	0.79	1.14	0.69	0.48	0.95	0.69
	C₆H₉O₆S⁻	0.94	0.54	0.37	0.34	0.99	0.54	1.86	1.95
	C₆H₆O₅S⁻	0.35	0.08	0.37	--	0.41	0.13	0.34	0.12
	C₇H₈O₅S⁻	0.33	0.11	0.32	0.28	0.43	0.11	0.33	0.16
	C₅H₈O₄S⁻	1.06	0.56	1.09	0.47	1.13	0.80	1.49	1.28
	C₆H₇O₆S⁻	1.40	1.06	3.34	2.98	0.90	1.04	0.70	0.68
	C₆H₆O₉S⁻	1.05	1.41	1.02	1.91	1.09	0.97	1.35	1.50
	C₇H₇O₆S⁻	1.51	1.96	6.35	4.19	1.68	1.14	1.41	1.06
	C₇H₈O₆S⁻	1.33	2.34	2.87	1.69	1.61	1.49	1.69	1.35
	C₈H₉O₆S⁻	1.62	2.16	4.57	4.49	1.03	1.84	1.26	1.16
	C₉H₁₀O₆S⁻	0.53	0.64	0.74	1.21	0.54	0.42	0.52	0.40
	C₈H₇O₇S⁻	2.89	3.96	13.14	8.85	2.67	2.55	3.81	3.06
	C₉H₈O₇S⁻	1.57	2.56	9.66	9.74	1.19	1.40	1.33	1.06
	C₁₀H₁₇O₅S⁻	1.26	1.23	35.80	30.52	0.52	0.57	0.48	0.37
	C₁₀H₁₅O₆S⁻	0.48	0.50	0.96	0.87	0.45	0.36	0.45	0.33
	C₁₀H₉O₈S⁻	0.82	0.60	2.64	6.82	--	0.40	0.20	0.24
	C₁₀H₁₆NO₇S⁻	0.57	0.59	2.14	7.39	--	0.26	--	--
	C₁₀H₁₇NO₇S⁻	1.06	1.01	2.64	2.90	0.81	0.72	0.86	0.49
	C₁₀H₁₈NO₇S⁻	1.58	2.05	3.35	4.17	1.28	0.95	1.31	0.56
	C₁₀H₁₉O₇S⁻	0.32	0.04	0.29	0.14	0.31	0.10	0.37	0.27
	C₁₀H₂₀O₇S⁻	1.56	1.10	1.47	0.91	0.95	1.06	1.20	0.99
	C₁₀H₂₁O₇S⁻	1.11	2.24	2.20	3.90	1.01	1.10	1.07	0.61
	C₁₀H₂₂O₇S⁻	2.79	4.37	3.35	6.45	1.77	3.12	3.72	3.57
	C₁₀H₂₃O₇S⁻	0.31	0.22	0.45	0.20	0.31	0.20	0.29	--
	C₁₀H₂₄NO₉S⁻	11.20	6.57	6.50	4.92	3.00	5.52	3.04	5.39
	C₁₀H₂₅NO₉S⁻	2.28	3.00	1.21	1.22	1.36	3.65	1.57	1.53
	C₁₀H₂₆NO₉S⁻	1.70	2.06	1.24	1.60	1.13	1.59	1.11	1.11

SUM 51.04 51.53 114.13 102.09 38.15 37.98 44.48 35.99
Figure S1. MS² spectra of quantified OS species with S-containing fragments being labeled. The collision energy was 6-10 eV for C₅H₈NO₈S⁻, 12-25 eV for C₃H₅O₄S⁻, C₂H₃O₅S⁻, C₄H₅O₅S⁻, and C₁₀H₁₆NO₁₀S⁻, 20-50 eV for C₆H₅O₄S⁻, and 10-35 eV for the rest.