An existence theorem for steady Navier-Stokes equations in the axially symmetric case

Mikhail Korobkov, Konstantin Pileckas and Remigio Russo

Abstract. We study the nonhomogeneous boundary value problem for the Navier-Stokes equations of steady motion of a viscous incompressible fluid in a bounded three-dimensional domain with multiply connected boundary. We prove that this problem has a solution in some axially symmetric cases, in particular, when all components of the boundary intersect the axis of symmetry.

Mathematics Subject Classification (2010): 35Q30 (primary); 76D03, 76D05 (secondary).

1. Introduction

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with Lipschitz boundary \(\partial \Omega = \Gamma_0 \cup \ldots \cup \Gamma_N \), consisting of \(N + 1 \) disjoint connected components \(\Gamma_j \). Consider the stationary Navier–Stokes system with nonhomogeneous boundary conditions

\[
\begin{aligned}
- \nu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= 0 \quad \text{in} \ \Omega, \\
\text{div} \ \mathbf{u} &= 0 \quad \text{in} \ \Omega, \\
\mathbf{u} &= \mathbf{a} \quad \text{on} \ \partial \Omega.
\end{aligned}
\]

(1.1)

The continuity equation (1.12) implies the compatibility condition

\[
\int_{\partial \Omega} \mathbf{a} \cdot \mathbf{n} \, dS = \sum_{j=0}^{N} \int_{\Gamma_j} \mathbf{a} \cdot \mathbf{n} \, dS = \sum_{j=0}^{N} F_j = 0
\]

(1.2)

The research of M. Korobkov was supported by the Russian Foundation for Basic Research (project No. 12-01-00390-a) and by the Research Council of Lithuania (grant No. VIZIT-2-TYR-005).
The research of K. Pileckas was funded by grant No. MIP-030/2011 of the Research Council of Lithuania.
The research of R. Russo was supported by the “Gruppo Nazionale per la Fisica Matematica” of “Istituto Nazionale di Alta Matematica”.

Received April 2, 2012; accepted in revised form January 17, 2013.