On Universality of the S Combinator

Farrokh Vatan*

October 25, 2022

Abstract

In combinatory logic it is known that the set of two combinators \(S \) and \(K \) are universal; in the sense that any other combinator can be expressed in terms of these two. We show that the \(K \) combinator cannot be expressed only in terms of the \(S \) combinator. This will answer a question raised by Stephen Wolfram [15] as “Is the \(S \) combinator on its own computation universal?”

1 Introduction

Combinatory logic introduced by Schönfinkel [10] and developed by Curry [2]. Wolfram’s book, [15], provides an extensive historical background of its development. Here we consider combinatory logic as a rewiring (or substitution) system.

Here are the rewriting rules of some combinators, with the names given by Smullyan [13]:

\[
\begin{align*}
K_{xy} & \triangleright x & \quad & \text{(Kestrel)}, \\
S_{xyz} & \triangleright xz(yz) & & \text{(Starling)}, \\
B_{xyz} & \triangleright x(yz) & & \text{(Bluebird)}, \\
I_x & \triangleright x & & \text{(Identity)}, \\
J_{xyzw} & \triangleright xy(xwz) & & \text{(Jay)}, \\
L_{xy} & \triangleright x(yy) & & \text{(Lark)},
\end{align*}
\]

*NASA’s Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: Farrokh.Vatan@jpl.nasa.gov.

This work was done as a private venture and not in the author’s capacity as an employee of the Jet Propulsion Laboratory, California Institute of Technology.
We denote the reflexive, transitive closure of \triangleright by \triangleright^*; i.e., $X \triangleright^* Y$ if and only if there is a sequence X_1, \ldots, X_n, $n \geq 1$, such that $X_1 = X$, $X_n = Y$, and $X_i \triangleright X_{i+1}$, for $1 \leq i \leq n - 1$.

Definition 1.1 (Terms of Combinatory Logic) The language of combinatory logic consists of an infinite set of variables x_0, x_1, \ldots and two atomic constants K and S, called basic combinators. The set of expressions called combinatory logic terms, or simply terms, is defined inductively as follows:

1. all variables and atomic constants are terms;
2. if X and Y are terms, then so is $(X \cdot Y)$.

A combinator is a term having no occurrence of any variable. ■

In the following, for simplicity, we use “x”, “y”, “z”, etc., to represent variables (distinct, unless otherwise stated). Also sometimes parentheses will be omitted following the convention of association to the left, so that $(((Sx)y)z)$ will be abbreviated to $Sxyz$, and $((SK)(KS))$ will be abbreviated to $SK(KS)$. Also, we write $(X \cdot Y)$ simply as (XY) or XY.

According to the above definition, K and S are the only primitive combinator and the other combinators defined by (3)-(7) can be defined in terms of the two primitive ones; for example:

$$B := S(KS)K,$$
$$I := SKK,$$
$$L := ((S((S(KS))K))(K((S((SK)K))((SK)K))))) ,$$
$$M := S(SKK)(SKK).$$

Definition 1.2 For a set $\{C_1, \ldots, C_k\}$ of combinators, $\mathcal{CL}(C_1, \ldots, C_k)$ is the set of the combinators built only from C_1, \ldots, C_k by means of application. ■

Thus $\mathcal{CL}(K, S)$ is the set of all combinators. There has been studies of some subsets of $\mathcal{CL}(K, S)$. Giraudo [5] investigated $\mathcal{CL}(M)$ as an ordered set. Sprenger and Wymann-Böni [12] showed that $\mathcal{CL}(L)$ is decidable.
Probst and Studer [9] studied CL(J) to provide an elementary proof of the strong normalization property of J. Waldmann [14] studied CL(S) to show that this term rewriting system admits no ground loops. This extends the known result of the absence of cycles. Also, the paper provides a procedure that decides whether an S-term has a normal form. In [1], Barendregt et al. surveyed different problems regarding CL(S).

In this paper we investigate the universality of the combinator S. This is a natural question, as \{K, S\} is a universal basis for combinators; in the sense that every rewriting rule can be represented as a combinator in CL(K, S). This is a question that Wolfram [15] has raised as “Is the S combinator on its own computation universal?” We provide a negative answer to this question: every combinator \Sigma \in CL(K, S) that satisfies the rewriting rule \Sigma x \triangleright^* x does not belong to CL(S).

Our proof is based on a model of combinatory logic. We are not using the elegant Scott’s \(D_\infty\) model (see, e.g., [11, 7]), but a simpler set-theoretic model introduced by Engeler [3, 4, 6, 7], also mentioned by Plotkin [8]. We show that in this model every combinator in CL(S) corresponds with a set that is “closed under a substitution rule.” Then we show that interpretation of every combinator \Sigma that satisfies the rewriting rule \Sigma x \triangleright^* x does not has this property. This proves that K is not in CL(S), in the sense that there is no combinator \Sigma_0 \in CL(S) such that \Sigma_0 xy \triangleright^* x.

2 A Model for Combinatory Logic

Throughout this paper the notation “\(a \rightsquigarrow b\)” means the ordered pair “\(a, b\)”, following the suggestion of [3], “to make notation mnemonic.”

Definition 2.1 (The set \(\mathcal{G}\)) We define the sets \(G_n\) recursively:

\[
G_0 = \{0, 1, 2, \ldots\};
\]

\[
G_{n+1} = G_n \cup \{(\alpha \rightsquigarrow b) : \alpha \subseteq G_n, \alpha \text{ is finite, and } b \in G_n\}.
\]

Then

\[
\mathcal{G} = \bigcup_{n \geq 0} G_n.
\]

The members of \(\mathcal{G}\) can be presented as trees. In tree representation of \(\alpha \rightsquigarrow b\), the left branch is labeled by the subset \(\alpha \subseteq \mathcal{G}\) and the right branch by the element \(b \in \mathcal{G}\) (see Figure [1]).
We adopt the following definition of a model for the combinatory logic originally introduced by Engeler [3], also Plotkin [8] proposed a similar definition.

Definition 2.2 (The Model \(\mathbb{D} \), [3, 4, 6, 7]) The model \(\mathbb{D} \) is consists of the background set

\[
\mathcal{P} = \text{the set of all subsets of } \mathcal{G},
\]

and the binary operation \(\bullet \) on \(\mathcal{P} \):

\[
M \bullet N = \{ s : \text{there exists a finite } \alpha \subseteq N \text{ such that } (\alpha \mapsto s) \in M \}.
\]

The interpretations of the basic combinators are defined as follows:

\[
\begin{align*}
\llbracket K \rrbracket &= \{(\{t\} \mapsto (\emptyset \mapsto t)) : t \in \mathcal{G} \}, \quad (10) \\
\llbracket S \rrbracket &= \left\{ \left. \tau \mapsto \{r_1, \ldots, r_n \} \mapsto s \right| \mapsto \left(\sigma_1 \mapsto r_1, \ldots, \sigma_n \mapsto r_n \right) \mapsto (\sigma \mapsto s) \right\} : \\
&\quad n \geq 0, r_1, \ldots, r_n \in \mathcal{G}, \sigma = \tau \cup (\cup_i \sigma_i) \in \mathcal{P}, \sigma \text{ finite}, \quad (11) \\
\llbracket (X \cdot Y) \rrbracket &= \llbracket X \rrbracket \bullet \llbracket Y \rrbracket. \quad \blacksquare (12)
\end{align*}
\]

In the original definition [3] of the model \(\mathbb{D} \), the interpretation of \(\mathcal{K} \) was defined as

\[
\{(\alpha \mapsto (\beta \mapsto t)) : \alpha, \beta \subseteq \mathcal{G}, t \in \alpha, \alpha \text{ and } \beta \text{ are finite} \}.
\]
Figure 2: Tree representation of a generic member (11) of $[S]$; here τ, σ_i are finite subsets of G and s, r_i are members of G.

Here we use the simpler definition of [4].

Figure 1 (b) shows a tree representation of a member of $[K]$ and Figure 2 shows a tree representation of a generic member of $[S]$.

Theorem 2.1 ([3, 6, 7]) For subsets M, N, and L of G, we have

$$[K] \cdot M \cdot N = M,$$

(13)

$$[S] \cdot M \cdot N \cdot L = M \cdot L \cdot (N \cdot L).$$

(14)

Example 1. The combinator I, defined by rewriting rule (4). In $CL(K, S)$, the combinator I is define as $I := SKK$, because

$$Ix = SKKx \triangleright Kx(Kx) \triangleright x.$$

In fact, I also can be defined as SKC, where $C \in CL(K, S)$ is an arbitrary combinator. Then

$$[I] = [SKK] = [S] \cdot [K] \cdot [K]$$

$$= \{ s : \exists \alpha_1, \alpha_2 \subseteq [K] \text{ such that } (\alpha_1 \rightarrow (\alpha_2 \rightarrow s)) \in [S] \}$$

$$= \{ s : \exists t \in G, \exists \alpha_2 \subseteq [K] \text{ such that } (\{ t \} \rightarrow (\emptyset \rightarrow t)) \rightarrow (\alpha_2 \rightarrow s)) \in [S] \}.$$

Comparing the last condition with (11), it follows that here $n = 0$, $\alpha_2 = \emptyset$, and $s = (\{ t \} \rightarrow t)$. Therefore,

$$[I] = \{ (\{ t \} \rightarrow t) : t \in G \}.$$

(15)
Note that if we used the definition $I = SKC$, for some other combinator C, then we would get the same result.

Example 2. Using (10) and (15), the interpretation of the combinator KI is

$$[KI] = [K] \cdot [I]$$

$$= \{ X : \exists \alpha \subseteq [I] \text{ such that } (\alpha \rightarrow X) \in [K] \}$$

$$= \{ (\emptyset \mapsto (\{t\} \mapsto t)) : t \in \mathcal{G} \}.$$

Let

$$K^{**} := K(KI).$$

Then

$$K^{**}xyz = K(KI)xyz \triangleright KIyz \triangleright lz \triangleright z.$$

The interpretation of the combinator K^{**} is

$$[K^{**}] = [K(KI)]$$

$$= [K] \cdot [KI]$$

$$= \{ X : \exists \alpha \subseteq [KI] \text{ such that } (\alpha \rightarrow X) \in [K] \}$$

$$= \{ (\emptyset \mapsto (\emptyset \mapsto (\{t\} \mapsto t)) : t \in \mathcal{G} \}. \quad \blacksquare$$

3 Substitution

3.1 Templates for the generic members

The equations (10), (11), and (15) define templates for the generic member of $[K]$, $[S]$, and $[I]$, respectively. Each template consists of variables, like τ and s in (11), which represent an arbitrarily finite subset or a member of \mathcal{G}.

The same is true for any combinator $\Sigma \in \mathcal{CL}(K, S)$, in the sense that there is a templates for the generic member of $[\Sigma]$, consists of variables denoting either arbitrarily finite subsets or members of \mathcal{G}. To obtain this template, suppose that $\Sigma = \Sigma_1 \cdot \Sigma_2$, where $\Sigma_1, \Sigma_2 \in \mathcal{CL}(K, S)$. There are the templates $\mathcal{T}_1 = Y \rightarrow X$ and \mathcal{T}_2 for Σ_1 and Σ_2, respectively. Consider $\mathcal{T}_2 \rightarrow X$ and modify X to X' such that $\mathcal{T}_2 \mapsto X'$ follows the template \mathcal{T}_1. Then X' is the template for the generic member of $[\Sigma]$.

6
Example 1. Consider the combinator $\Sigma_1 = (S \cdot K)$. From (11), the template for the generic member of $[S]$ is
\[T_1 = \left\{ \tau \mapsto (\{r_1, \ldots, r_n\} \mapsto s) \right\} \mapsto \left\{ \sigma_1 \mapsto r_1, \ldots, \sigma_n \mapsto r_n \right\} \mapsto \left((\tau \cup \cup_i \sigma_i) \mapsto s \right), \] (16)
for $n \geq 0$ and $\sigma = \tau \cup (\cup_i \sigma_i)$. From (10), the template of $[K]$ is
\[T_2 = (\{t\} \mapsto (\emptyset \mapsto t)). \]

Now $T_2 \mapsto T'$ follows the template T_1 if and only if
\[(\{t\} \mapsto (\emptyset \mapsto t)) = (\tau \mapsto (\{r_1, \ldots, r_n\} \mapsto s)), \]
\[T' = (\{\sigma_1 \mapsto r_1, \ldots, \sigma_n \mapsto r_n\} \mapsto ((\tau \cup \cup_i \sigma_i) \mapsto s)). \]

Thus, $\tau = \{t\}$, $n = 0$, and $s = t$. Therefore, the template for the generic member of $[S \cdot K]$ is
\[T' = (\emptyset \mapsto (\{t\} \mapsto t)). \]

In another words,
\[[S \cdot K] = \{(\emptyset \mapsto (\{t\} \mapsto t)) : t \in \mathcal{G}\}. \]

Example 2. Consider the combinator $\Sigma_2 = (S \cdot S)$, and the template T_1 of equation (16) for the generic member of $[S]$. Now, $T_1 \mapsto T''$ follows the template of $[S]$ of the following form
\[\left\{ \tau' \mapsto (\{r'_1, \ldots, r'_n\} \mapsto s') \right\} \mapsto \left\{ \sigma'_1 \mapsto r'_1, \ldots, \sigma'_n \mapsto r'_n \right\} \mapsto ((\tau' \cup \cup_i \sigma'_i) \mapsto s') \]
if and only if
\[T_1 = (\tau' \mapsto (\{r'_1, \ldots, r'_n\} \mapsto s')), \]
\[T'' = (\{\sigma'_1 \mapsto r'_1, \ldots, \sigma'_n \mapsto r'_n\} \mapsto ((\tau' \cup \cup_i \sigma'_i) \mapsto s')). \]

Thus,
\[\tau' = (\tau \mapsto (\{r_1, \ldots, r_n\} \mapsto s)), \]
\[r'_i = (\sigma_i \mapsto r_i), \quad 1 \leq i \leq n, \]
\[s' = ((\tau \cup \cup_i \sigma_i) \mapsto s). \]
Therefore, \mathcal{T}'', the template for the generic members of $\llbracket S \cdot S \rrbracket$, has the following form

$$
\mathcal{T}'' = \left\{ \sigma'_1 \mapsto (\sigma_1 \mapsto r_1), \ldots, \sigma'_n \mapsto (\sigma_n \mapsto r_n) \right\} \mapsto \left((\tau' \cup \cup_i \sigma'_i) \mapsto ((\tau \cup \cup_i \sigma_i) \mapsto s) \right).
$$

Thus \mathcal{T}'' is the template for the generic members of $\llbracket S \cdot S \rrbracket$; i.e.,

$$
\llbracket S \cdot S \rrbracket = \left\{ \left\{ \sigma'_1 \mapsto (\sigma_1 \mapsto r_1), \ldots, \sigma'_n \mapsto (\sigma_n \mapsto r_n) \right\} \mapsto \left((\tau' \cup \cup_i \sigma'_i) \mapsto ((\tau \cup \cup_i \sigma_i) \mapsto s) \right) : n \geq 0, \tau' = (\tau \mapsto \{r_1, \ldots, r_n\} \mapsto s) \right\}, s \in \mathcal{G}, r_i \in \mathcal{G}, \tau, \sigma_i, \text{ and } \sigma'_i \text{ finite subsets of } \mathcal{G}.
$$

Theorem 3.1 If \mathcal{T} is the template for the generic member of $\llbracket \Sigma \rrbracket$, where $\Sigma \in \text{CL}(S)$, then \mathcal{T} does not contain $\{t\}$, as a variable denoting a subset of \mathcal{G}.

Proof. Note that variables of (16), the template for the generic member of $\llbracket S \rrbracket$, denote either members of \mathcal{G} or finite subsets of it; i.e., no variable of the form $\{t\}$ as a variable representing a subset. We prove the theorem by induction on the number of occurrences of S in Σ. Then the base case, where $\Sigma = S$, is obvious. For the induction step, suppose that $\Sigma = \Sigma_1 \cdot \Sigma_2$, where $\Sigma_1, \Sigma_2 \in \text{CL}(S)$. Let \mathcal{T}_1 and \mathcal{T}_2 be templates for the generic members of $\llbracket \Sigma_1 \rrbracket$ and $\llbracket \Sigma_2 \rrbracket$, respectively. By induction hypothesis, \mathcal{T}_1 and \mathcal{T}_2 do not contain any $\{t\}$, as a variable denoting a subset of \mathcal{G}. The template \mathcal{T} for the generic member of $\llbracket \Sigma \rrbracket$ is obtained from $\mathcal{T}_1 \rightarrow \mathcal{T}$ by forcing it to follow the template \mathcal{T}_1. This process does not introduce any subset variable of the form $\{t\}$. ■

3.2 Companion

First, some useful definitions and notations.

Definition 3.1 $(B_0 \text{ and } B_\mu)$ Let

$$
B_0 = (\{0\} \mapsto 0),
$$

$$
B_\mu = (\{0\} \mapsto \mu).
$$

The value of the integer $\mu \geq 1$ will be determined later. ■

Definition 3.2 $(B_0\text{-Base})$ A member $X \in \mathcal{G}$ has B_0-base if and only if

$$
X = (\alpha_1 \mapsto (\cdots (\alpha_n \mapsto B_0) \cdots)),
$$

where $n \geq 0$ and $\alpha_i \subseteq \mathcal{G}$ is finite. In the special case of $n = 0$, B_0 has B_0-base. ■
Definition 3.3 $(B_\mu\text{-Substitution})$ Suppose $X \in \mathcal{G}$ has B_0-base and is of the general form (17). The B_μ-substitution of X, denoted as $\text{sub}_\mu(X)$, is

$$\text{sub}_\mu(X) = \left(\alpha_1 \mapsto (\cdots (\alpha_n \mapsto B_\mu) \cdots) \right).$$

Definition 3.4 $(B_\mu\text{-Companion})$ Suppose that $X \in \mathcal{G}$, of the form (17), for $\Sigma \in \text{CL}(S)$, has B_0-base. Let T be the template for the generic member of \mathcal{G}. Therefore, X is obtained from T by substituting variables of T by members or finite subsets of \mathcal{G}. Then there are two possible cases. (i) There is variable s which is substituted by a B_0-base $Y \in \mathcal{G}$ to obtain X. (ii) There are variables t and σ which are substituted by 0 and $\{0\}$, respectively, to obtain X. Then the B_μ-companion of B_0, denoted by $\text{comp}_\mu(X)$, is obtained as follows: in case (i) by replacing the variable s by $\text{sub}_\mu(Y)$; in case (ii) by replacing the variable t by μ. Here we assume that the integer μ is bigger than any number appearing in X.

Theorem 3.2 If $\Sigma \in \text{CL}(S)$, $X \in \mathcal{G}$, X has B_0-base, and μ is bigger than any number appearing in X, then $\text{comp}_\mu(X) \in \mathcal{G}$.

Proof. If $\text{comp}_\mu(X)$ is obtained using rule (i) of Definition 3.4 then obviously $\text{comp}_\mu(X) \in \mathcal{G}$. If the rule (ii) is used, then the theorem follows from Theorem 3.1.

4 Combinators generated by S

There are combinators in $\text{CL}(K, S)$ which define the same rewriting rule as $I := SKK$. For example, $SK(SKSK) \triangleright^* SKK$. Also, for the combinator

$$\Sigma_0 = S(S(S(SK)(S(KK)S(KK)I))(KI)))(KI)K,$$

we have $\Sigma_0 x \triangleright^* x$, for all x; while it is not the case that $\Sigma_0 \triangleright^* SKK$. The following theorem shows that interpretation of such combinators in \mathcal{D} is a super set of $[I]$.

Theorem 4.1 Let $\Sigma \in \text{CL}(K, S)$ such that $\Sigma x \triangleright^* x$, for all x. Then $[I] \subseteq \mathcal{G}$.

9
Proof. From (15), it is enough to show that \(\{ t \rightarrow t \} \in [\Sigma] \), for every \(t \in \mathcal{S} \). From the relations (1), (2), and (12)-(14) it follows that for every \(M \subseteq \mathcal{S} \),

\[
[\Sigma] \cdot M = M.
\]

Let \(t \in \mathcal{S} \). Then

\[
\{ t \} = [\Sigma] \cdot \{ t \} = \{ s : \exists \alpha \subseteq \{ t \} \text{ such that } (\alpha \rightarrow s) \in [\Sigma] \}.
\]

If \(\alpha = \emptyset \), then \((\emptyset \rightarrow t) \in [\Sigma]\), which implies \(t \in \emptyset = [\Sigma] \cdot \emptyset \). Therefore, \(\alpha = \{ t \} \); and \((\{ t \} \rightarrow t) \in [\Sigma]\).

\[\blacksquare\]

Theorem 4.2 Let \(\Sigma \in \text{CL}(\mathcal{S}) \). Then it is not the case that \(\Sigma x \triangleright^* x \), for all \(x \).

Proof. Suppose, by contradiction, that \(\Sigma x \triangleright^* x \), for all \(x \). From (15) and Theorem 4.1, it follows that \(B_0 = (\{ 0 \} \rightarrow 0) \in [\mathbb{I}] \subseteq [\Sigma] \). Note that from proof of Theorem 4.1, \([\Sigma] \cdot M = M \), for every \(M \subseteq \mathcal{S} \). Then from the Theorem 3.2 it follows that \(\text{comp}_\mu(B_0) = (\{ 0 \} \rightarrow \mu) \in [\Sigma] \); which implies \(\mu \in \{ 0 \} = [\Sigma] \cdot \{ 0 \} \). This contradicts the assumption \(\mu > 0 \). \[\blacksquare\]

References

[1] H. Barendregt, J. Endrullis, J. W. Klop, J. Waldmann, Dance of the Starlings, in M. Fitting, B. Rayman (eds), *Raymond Smullyan on Self Reference*, Springer, pp. 67–111, 2017.

[2] H. B. Curry, Grundlagen der Kombinatorischen Logik, *American Journal of Mathematics*, vol. 52, pp. 789–834, 1930.

[3] E. Engeler, Algebras and combinators, *Algebra Universalis*, vol. 13, pp. 389–392, 1981.

[4] E. Engeler, et al., *The Combinatory Programme*, Birkhauser, 1995.

[5] S. Giraudo, Mockingbird lattices, *Proceedings of the 34th Conference on Formal Power Series and Algebraic combinatorics*, 2022.

[6] M. E. Hall, Models of the lambda calculus: an introduction, *Chamchuri Journal of Mathematics*, vol. 6, pp. 57-88, 2014.
[7] J. R. Hindley and J. P. Seldin, *Lambda-Calculus and Combinators: An Introduction*, Cambridge University Press, 2nd edition, 2008.

[8] G. D. Plotkin, Set-theoretical and other elementary models of the λ-calculus, *Theoretical Computer Science*, Vol. 121, pp. 351-409, 1993.

[9] D. Probst and T. Studer, How to normalize the Jay, *Theoretical Computer Science*, vol. 254, pp. 677–681, 2001.

[10] M. Schönfinkel, Über die Bausteine der mathematischen Logik, *Mathematische Annalen*, vol. 92, pp. 305–316, 1924.

[11] D. S. Scott, Lambda calculus: some models, some philosophy. In J. Barwise et al., editors, *The Kleene Symposium*, pp. 223–265. North- Holland Co., Amsterdam, 1980.

[12] M. Sprenger, M. Wymann-Böni, How to decide the lark, *Theoretical Computer Science*, Vol. 110, pp. 419-432 1993.

[13] R. Smullyan, *To Mock a Mockingbird*, Alfred A. Knopf, Inc., 1985.

[14] J. Waldmann, The combinator S, *Information and Computation*, vol. 159, pp. 2–21, 2000.

[15] S. Wolfram, *Combinators: A Centennial View*, Wolfram Media, 2021.