Methods of theoretical researches the non-linear electrophysical properties of solid dielectrics with compound crystalline structure

V A Kalytka 1*, Y G Neshina 2, P Sh Madi 2 and Y P Naboko 1
1 Karaganda State Technical University, 56, Mira blvd, Karaganda, 100027, Kazakhstan
2 National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia

E-mail: kalytka@mail.ru

Abstract. Methods quasiclassical kinetic theory investigate the phenomena of nonlinear ion-relaxation polarization in solid dielectrics with a compound structure of the crystal lattice. As a particular case, the mechanism of nonlinear proton-relaxation polarization in hydrogen-bonded crystals (HBC), classified according the electrophysical properties as proton semiconductors and dielectrics (PSD), is theoretically studied. Generalized kinetic equation and spectra of complex permittivity (CP), which allow to describe the nonlinear properties of dielectric losses in HBC in range of ultra-low temperatures (1-10 K) and low fields (100 kV/m - 1000 kV/m), and in range of ultra-high temperatures (550-1500 K) and strong fields (10 MV/m - 1000 MV/m). The scientific and practical significance of received results consists in development of the theoretical basis of algorithm for computer prediction of materials properties and parameters that are functional elements of technological schemes of industrial installations and systems.

Introduction
The hydrogen bonded-crystals (HBC) [1] classified by type and properties of crystal lattice as layered crystals (layered silicates, crystalline hydrates), and by electrophysical properties as proton semiconductors and dielectrics (PSD) are of scientific-practical interest for modern electrotechnical, electrochemical and electric power industries [2-10]. HBC is characterized by the presence of a hydrogen sublattice in their structure and the proton conductivity property connected with the diffusion transfer of hydrogen ions (protons) along hydrogen links towards to the lines of force of external electric field [11]. Materials of this class are used as: memory elements for computer chips; nonlinear converters of optical signals [2-8]; regulators of laser radiation parameters (KDP, DKDP); electric insulation elements of the conductive parts of thermal electric power station electrical generators [9]; fuel cells in hydrogen energetics [10] etc.

Of practical interest are materials of functional elements of technological systems, which work in extreme conditions: ultra-low temperatures (near helium); strong electric fields and ultrahigh temperatures (near breakdown); intensive (coherent) laser radiation; strong magnetic fields, etc.

In the low-temperatures range (50-100 K), according to the results of experimental and theoretical studies [11,12,14], mechanism of relaxation polarization in the HBC is realized, mainly, due to the tunnel proton transport through a potential barrier (nonlinear quantum diffusion polarization). In the
high temperatures range (450-550 K) nonlinear volumetric charge polarization takes place [11,13,15,16] due to the mixed type relaxers transfer: thermally activated transitions of Bjerrum ionization defects between layers of water molecules and quantum transitions protons.

Research objective and research methods
Nonlinear electrophysical processes in the PSD caused by: nonlinear volume-charge polarization, in the sufficiently high temperatures range \(T \approx 350-550 \) K [15, 16]; tunnel migration polarization, at low \(T \approx 70-100 \) K and ultralow \(T \approx 4-25 \) K temperatures [11-14]; structural rearrangement of the hydrogen sublattice during spontaneous polarization of ferroelectrics (KDP, DKDP), near the temperature of phase second order transition [17, 18]. All these phenomena are not sufficiently studied at the theoretical level, there is no unified universal theory equally suitable for mathematical description and computer prediction of the proton conductivity mechanisms in HBC in any temperature range, field strengths and electromagnetic radiation intensity.

Low-temperature (tunnel) maxima \(\text{tg}_6(T) \) in HBC [19] can not be measured at all.

The purpose of the paper is to develop a generalized pattern based on theoretical research of nonlinear electrophysical properties of dielectrics materials with a compound crystal structure (ceramics, ferroelectrics, mica and etc.). The generalized nonlinear kinetic equation in this model will be composed by methods of quasiclassical kinetic theory [20,21] on basis of the balance equation of number of ions, moving in the multiwell potential field, perturbed by external polarizing field [16,20,22].

Solutions for a prototype system
Theoretical investigating of kinetics phenomena connected with the ion-relaxation polarization and conductivity in dielectrics with a compound crystal lattice will be based upon the one-dimensional equation of the diffusional ion transport (in HBC – protons) [21]

\[
q \frac{\partial N}{\partial t} + \frac{\partial \jmath}{\partial x} = 0.
\]

Based upon (1), modeling the current density of ions in the form [22]

\[
\jmath_k(x; t) = q \left\{ \nu_{mob}(x; t) \cdot N(x; t) - \frac{\partial}{\partial x} \left(D_{diff} (x; t) \cdot N(x; t) \right) \right\}
\]

Where \(D_{diff}(x; t) = \sum_{l=0}^{\infty} \frac{1}{(2l)!} D_{diff}^{(2l)} \cdot \xi^{2l}(x; t) \cdot \nu_{mob}(x; t) = \left[\sum_{l=0}^{\infty} \frac{1}{(2l+1)!} \cdot \mu_{mob}^{(2l+1)} \cdot \xi^{2l}(x; t) \right] \times E(x; t) \),

\[D_{diff}^{(2l)} = a^{2l} W^{(2l)}, \]

\[\mu_{mob}^{(2l+1)} = \frac{q a^{2l} W^{(2l+1)}}{k_b T}, \]

\[\zeta(x; t) = \frac{q E(x; t) \tau}{2 k_b T} < 1 \] [22], we get a generalized nonlinear kinetic equation of the Fokker-Planck equation type [22]

\[
\frac{\partial N}{\partial t} = \frac{\partial^2}{\partial x^2} \left(D_{diff} (x; t) \cdot N(x; t) \right) - \frac{\partial}{\partial x} \left(\nu_{mob}(x; t) \cdot N(x; t) \right).
\]

The kinetic coefficients \(W^{(2l)}(T) \), \(W^{(2l+1)}(T) \) in approximations in \(2l, 2l+1 \) by parameter \(\zeta(x; t) \) calculated in [22] in temperature functions. The solution of the equation (3) will be done for the blocking electrodes model \(\jmath_k(0; t) = \jmath_k(d; t) = 0 \), where \(d \) – the crystal thickness [11]:
\[
\left[v_{mob}(x; t) \cdot N(x; t) - \frac{\partial}{\partial x} \left(D_{diff}(x; t) \cdot N(x; t) \right) \right]_{v=[0, d]}
\] (4)

The initial condition has the form \(N(x; 0) = N_0 \) \([1],[11]\). The equation (3) is solved in complex with the Poisson equation \([11]\)

\[
\frac{\partial E}{\partial x} = \frac{q}{\varepsilon_\infty} \cdot (N(x; t) - N_0)
\] (5)

In equation (5): \(N_0 \) — equilibrium concentration of the particles (ions); \(\varepsilon_\infty \) — high-frequency dielectric constant. Boundary conditions for equation (5) are taken in the form

\[
\int_0^d E(x; t) \, dx = V_0 \cdot \exp(\text{i} \omega t), \text{ where } V_0 = E_0 d, \omega \text{— amplitude and frequency of EMF } [11].
\]

Solution of equation (3) in general case is done by method of successive approximations in infinite power series in powers of dimensionless comparison parameter \(\xi_0 = \frac{qE_0 a}{2k_B T} < 1 \). Then

\[
N(x; t) = \sum_{s=0}^{\infty} N^{(s)}(x; t) \cdot \xi_0^s.
\] (6)

More detailed investigations of the scheme for solving equations (3), (5), by the method of successive approximations (6) come to the search for the linking dependencies of this approximation \(n^{(s)}(x; t) \), from the previous approximation.

Theoretical part

The detailed theoretical researches of the nonlinear kinetic phenomena during the proton relaxation in HBC, made on basis of linearizing system equations (3), (5), allowed to install the generalized expressions for polarization determined in the approximation \(r \) by frequency \([23]\)

\[
p^{(r)}(r) = \frac{2^{2+s}}{qN_0 \cdot W^{(0)}(T) \cdot \gamma^s} \sum_{n=0}^{\infty} C^{(a+r)}(n) \times \frac{\exp (\text{i} r \omega t)}{1 + i \omega r} \times \sin^2 \left(\frac{\pi n}{2} \right).
\] (7)

The function \(C^{(a)}(n) \) and non-dimensional parameters \(\Xi_0 < 1, \gamma = \frac{qE_0 W^{(i)}}{W^{(0)}} < 1 \) were investigated in work \([23]\).

In (7): \(T_n = \left(\frac{1}{T_{n,D}} + \frac{1}{T_M} \right)^{-1} \) — relaxation time for the relaxation mode number \(n \) \([24]\), where

\[
T_{n,D} = \frac{T_D}{n^2} \text{ — diffusional relaxation time for the mode number } n, \text{ and } T_D(T) = \frac{d^2}{\pi^2 D_{diff}^{(0)}(T)} \text{ — for the 1-st mode. }
\]

\[
T_M(T) = \frac{\varepsilon_0 \varepsilon_\infty}{\mu_{mob}(T) \cdot q N_0} \text{ — Maxwelle relaxation time.}
\]
Detailed analysis of the expression (7) allowed to establish theoretically, that in the app taking into account all the subsequent approximations of the perturbation theory in a parameter, starting from the second, results roximation $r=1$ (on the fundamental frequency of variable field), taking into account all the subsequent approximations of the perturbation theory γ in a parameter, starting from the second, leads to noticeable deviations from the results of the linear kinetic theory [11], when calculating the components of the complex dielectric constant (CP) [24]

$$
\hat{a}^{(a)} = e_0 e_n \times \frac{\Gamma^{(a)}_1 - i \Gamma^{(a)}_2}{1 - \Gamma^{(a)}_1 + i \Gamma^{(a)}_2},
\hat{a}^{(a)} = e_0 e_n \times \frac{1}{1 - \Gamma^{(a)}_1 + i \Gamma^{(a)}_2}.
$$

(8)

$$
\text{Re}[\hat{a}^{(a)}] = e_0 e_n \times \frac{1 - \Gamma^{(a)}_1}{(1 - \Gamma^{(a)}_1)^2 + (\Gamma^{(a)}_2)^2},
\text{Im}[\hat{a}^{(a)}] = e_0 e_n \times \frac{\Gamma^{(a)}_2}{(1 - \Gamma^{(a)}_1)^2 + (\Gamma^{(a)}_2)^2}.
$$

(9)

In the meaning of Maxwelle relaxation, when $T_n \approx T_M$, we can write

$$
\text{Re}[\hat{a}_{1M}^{(a)}] = e_0 e_n \times (1 + \Gamma^{(a)}_{1M}) = e_0 e_n \times \left(1 + \frac{1}{1 + \omega^2 T_M^{-2}}\right),
\text{Im}[\hat{a}_{1M}^{(a)}] = e_0 e_n \times \Gamma^{(a)}_{2M} = e_0 e_n \times \frac{\omega T_M}{1 + \omega^2 T_M^{-2}}.
$$

(10)

In the meaning of diffusional relaxation, when $T_n \approx T_{nD}$, we can write

$$
\text{Re}[\hat{a}_{1D}^{(a)}] = e_0 e_n \times (1 + \Gamma^{(a)}_{1D}) = e_0 e_n \times \left(1 + \frac{4T_D}{\pi^2 T_M n^2} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^4 + \omega^2 T_D^{-2}}\right),
\text{Im}[\hat{a}_{1D}^{(a)}] = e_0 e_n \times \Gamma^{(a)}_{2D} = e_0 e_n \times \frac{4T_D}{\pi^2 T_M} \sum_{n=1}^{\infty} \frac{1}{n^2 (n^4 + \omega^2 T_D^{-2})}.
$$

(12)

denoting $\alpha_1 = \frac{T_D}{T_M}, \alpha_2 = \frac{\alpha_D}{T_D}, \xi = \pi \sqrt{\frac{\alpha_2}{2}}$, finally we can rewrite the diffusional dispersions relations in the following transcendent form.
Proposed solution scheme of a generalized nonlinear kinetic equation (3) can be used in analytical studies of polarization processes in different electric and technical, so in other materials similar to HBC by the type of crystal structure and ionic conduction mechanism (ferroelectric crystals (KDP, DKDP), perovskites, ceramics, mica and etc.) [25-30].

Summary

1. Composed the generalized nonlinear kinetic equation (3), describing influence of nonlinearities on mechanism of proton-relaxation polarization in crystals with hydrogen bonds (HBC), in a wide range of temperatures (1-1500 K) and fields (100 kV / m-1000 MV / m).
2. For the first time, transcendental analytical expressions for diffusion dispersion relations during polarization in HBC are written - formulas (13), (14).
3. A mathematical model significant for practical applications has been developed, which can be used for theoretical studies of nonlinear polarization phenomena in other (similar to HBC) dielectric crystals with ionic conductivity (ferroelectric crystals (KDP, DKDP); ceramics, mica, etc.).

References

[1] Tonkonogov M P 1998 *Dielectric spectroscopy of crystals with hydrogen bonds* (Proton relaxation. Successful Surveys of Physical Science) 168 (1) 29-54.

[2] Hart Sean, Ren Hechen, Wagner Timo, Philipp Leubner, Mathias Mühlbauer, Christoph Brüne, Hartmut Buhmann, Laurens W. Molenkamp and Amir Yacoby 2014 *Induced superconductivity in the quantum spin Hall edge* (Nature Physics) 10 638-643.

[3] Tan Wei, Sun Yong, Chen Hong & Shen Shun-Qing 2014 *Photonic simulation of topological excitations in metamaterials* (Scientific Reports) 4 (3842)

[4] Wells B M, Zayats A V, Podolskiy V A 2014 *Nonlocal optics of plasmonic nanowire metamaterials* (Physical Review) B. 89 035111 (4).

[5] Slobozhanyuk A P, Ginzburg P, Powell D A, Iorsh I, Shalin A S, Segovia P, Krasavin A V, Wurtz G A, Podolskiy V A, Belov P A, Zayats A V 2015 *Purcell effect in Hyperbolic Metamaterial Resonators* (Physical Review) B. 92 195127 (8).

[6] Khanikaev A B, Hossein M S, Tse Wang-Kong, Mehdi Kargarian, Allan H. MacDonald, Gennady Shvets 2013 *Photonic topological insulators* (Nature Materials) 12 233–239.

[7] Kudyshev Zh, Reddy H, Guler U, Kildishev A V, Shalaev V M, Boltasseva A 2017 *Temperature-dependent optical properties of plasmonic titanium nitride thin films* (ACS Photonics) 4 (6) 1413-1420.

[8] Kudyshev Z A, Wells B M, Litchinitser N M, and Podolskiy V A 2017 *Nonlocal Effects In Transition Hyperbolic Metamaterials* (ACS Photonics) 4 (10) 2470–2478.

[9] Antonova A M, Vorobiov A V, Lyalikov B A 2008 *To the choice of materials for unconventional thermal insulation of TPP and NPP equipment* (Power engineering: ecology, reliability, safety (Materials of the XIV All-Russian Scientific and Technical Conference, Publisher TPU, Tomsk) 289.)
[10] Demin A, Denyushkina L A 1997 Proceedings on International Symposium on Solid Oxide Fuel Cells (Germany. Pennington, NG, USA) 1349 – 1358.

[11] Kalytka V A, Korovkin M V 2015 Proton conductivity (Germany, LAP LAMBERT Academic Publishing).

[12] Kalytka V A, Korovkin M V 2016 Quantum effects at a proton relaxation at low temperatures (Russian Physics Journal) 59 (7) 994- 1001.

[13] Kalytka V A, Nikonova T Yu 2016 Nonlinear electrophysical properties of proton semiconductors and dielectrics (the 13- th International Scientific - Technical Conference. The electronic physical section, Novosibirsk, NGTU) 57–65.

[14] Kalytka V A, Aliferov A I, Baimukhanov Z K, Mekhtiev A D 2017 Zone structure of the energy spectrum and wave functions of proton in proton conductivity dielectrics (Proceedings of the Russian High School Academy of Science) 35 (2) 18-31.

[15] Kalytka V A, Korovkin M V 2017 Dispersion relations for proton relaxation in solid dielectrics (Russian Physics Journal) 59 (12) 2151- 2161.

[16] Kalytka V A, Baimukhanov Z K, Mekhtiev A D 2016 Nonlinear effects under polarization of dielectrics with compound crystalline structure (Proceedings of the Russian High School Academy of Science) 32 (3) 7-21.

[17] Kulagin I A, Ganeyev R A, Tugushev R I, Ryasnyanskii A I, Usmanov T 2004 Components of the third-order nonlinear susceptibility tensor of nonlinear optical crystals KDP, DKDP and LiNbO3 (Quantum electronics) 34 (7) 657-662.

[18] Belonenko M B 1998 Features of the nonlinear dynamics of laser pulse in the photorefractive ferroelectric with hydrogen bonds (Quantum electronics) 25 (3) 255-258.

[19] Annenkov Yu M, Kalytka V A, Korovkin M V 2015 Quantum effects under migratory polarization in nanometer layers of proton semiconductors and dielectrics at ultralow temperatures (Russian Physics Journal) 58 (1) 35- 41. (in Russian).

[20] Kalytka V A, Korovkin M V, Mekhtiev A D, Alkina A D 2017 Detailed analysis the non-linear of dielectric losses in proton semiconductors and dielectrics (Bulletin of Moscow Region State University. Series: Physics and Mathematics) 4 39-54.

[21] Landau L D, Lifshits E M 1976 Statistical physics (Nauka Publishing house, Moscow).

[22] Kalytka V A 2017 Mathematical description of non-linear relaxing polarization in dielectrics with hydrogen bonds (Bulletin of Samara University, Nature Science Series) 23 (3) 71-83. DOI:10.18287/2541-7525- 2017-23-3-71-83.

[23] Kalytka V A 2018 Nonlinear kinetic phenomena under polarization in solid dielectrics (Bulletin of Moscow Region State University. Series, Physics and Mathematics) 2 61–75. DOI:10.18384/2310-7525-2018-2-61-75.

[24] Kalytka V A, Korovkin M V, Mekhtiev A D, Yurchenko A V 2018 Non-linear polarizing effects in dielectrics with hydrogen bonds (Russian Physics Journal) 61 (4) 757-769. DOI: 10.1007/s11828-018-1457-8.

[25] Reijers R, Haije W 2008 Literature review on high temperature proton conducting materials (Energy research Centre of the Netherlands) ECN-E-08-091.

[26] Glöckner R, Neiman A, Larring Y, Norby T 1999 Protons in Sr3(Sr1-x,Nb2-x)O9.45x perovskite (Solid State Ionics) 125 369-376.

[27] Ziegler R J F, Biersack J P, Ziegler M D 2012 The Stopping and Range of Ions in Material (SRIM) 398.

[28] Annenkov Yu M, Ivashutenko A S, Vlasov I V, Kabyshev A V 2005 Electrical properties of corundum- ceramics (Proceedings of Tomsk Polytechnic University. Management and Informatics with Calculation Technologies Series) 308 (7) 35-38.

[29] Kytin V G, Kulbachinskii V A, Kondratieva D Yu, Pavlikov A V, Grigoriev A N, Mankevich A S, Korsakov I E 2018 Hopping transport of holes in CuCrO2 ceramic samples doped with
magnesium (Bulletin Physical faculty of Moscow State University named by M.V. Lomonosov) 1 1-5. (in Russian).

[30] Khang V C, Korovkin M V, Ananyeva L G 2016 20th International Scientific Symposium of Students (Postgraduates and Young Scientists on Problems of Geology and Subsurface Development IOP Conference Series-Earth and Environmental Science) 43 012004.