Influence of Diets Low in Protein or Lysine on the Intestinal Flora of Chicks with Reference to Cecal Contents

Mariko TAKAHASHI, Masao KAMETAKA, and Tomotari MITSUOKA

1Kyoritsu Women's University, 2-1, Hitotsubashi 2 chome, Chiyoda-ku, Tokyo 101, Japan
2Animal Physiology Laboratory, the Institute of Physical and Chemical Research, Wako-shi 351, Japan

(Received March 1, 1982)

Summary To determine the effect of a certain diet on the intestinal flora of chicks, the cecal flora of chicks fed on a low protein or low lysine diet was examined. The cecal flora of chicks fed on the low protein diet was similar to that of chicks fed on a normal protein diet, but the total count of bacteria, Eubacterium and Enterobacteriaceae in the cecal content of chicks fed on the low lysine diet containing a formulated amino acid mixture minus lysine was significantly lower than that of chicks fed on the control diet.

The total count of Lactobacillus in the cecum was remarkably reduced by feeding the amino acid diet, especially the low lysine diet. Levels of most free amino acids in the cecal contents of the low protein group were significantly lower than those of the control. Lysine, leucine, phenylalanine, methionine, histidine, glycine and tyrosine of the cecal contents in the low lysine group were significantly lower than those of the control group.

Key Words cecal flora, low protein diet, low lysine diet, cecal contents, free amino acids

It is well known that intestinal microflora of chicks has a beneficial effect on the host of sparing nitrogen, under the condition of a nitrogen-free diet (1, 2) or a low lysine diet (3). On the other hand, there are some competitive interactions between the host and its intestinal microflora under the condition of an adequate diet (4). However, little is known about the intestinal flora of chicks given a low protein diet or a low lysine diet. In this work, intestinal flora and nitrogen compounds of chicks given a low protein diet and also a low lysine diet were examined, in order to determine the relationship between the intestinal flora and nitrogen-sparing action.
Animals and diets. Twenty-six female and male broiler chicks of White Rock strain were used in all experiments. One-day-old chicks supplied by a commercial broiler facility were fed on a commercial diet (CLEA JAPAN, Inc.) without chick antibiotics for 2 weeks, and then fed on test diets ad libitum for 2 weeks under the conditions of constant temperature (24 ± 1°C) and relative humidity (55 ± 5%). The compositions of four test diets, i.e. a low protein diet and its control diet, and a low lysine diet and its control diet are given in Tables 1 and 2.

Sampling procedure. After feeding the test diets, each chick was anesthetized with ethyl ether between 11:00 and 12:00 a.m.

Table 1. Composition of low protein diet.

Ingredient	Low protein (%)	Normal protein (%)
Corn starch	76	59
Whole egg protein	3	20
Lard	5	5
Soybean oil	5	5
Mineral mixture	5	5
Cellulose powder	5	5
Vitamin mixture	1	1

a Purified egg protein made by Taiyo Foods Co., Ltd. (Yokkaichi, Japan) was used.
b,c Composition is the same as that in diets used by Ishibashi (9).

Table 2. Composition of low lysine diet.

Ingredient	Low lysine (%)	Normal lysine (%)
Corn starch	59	59
Amino acid mixture	19	19
Lard and soybean oil	10	10
Mineral mixture	5	5
Cellulose powder	5	5
Vitamin mixture	1	1
Lysine	0.2	1
Glutamic acid	0.8	

a One kilogram of the diet contained the following amino acids (g): L-Arg-HCl, 12.7; L-His-HCl, 4.3; L-Trp, 2.1; L-Thr, 6.4; L-Val, 11.0; L-Ile, 11.4; L-Leu, 14.3; Gly, 14.5; L-Glu, 83.3; L-Phe, 8.8; L-Tyr, 6.8; L-Met, 5.8; L-Cys, 3.7; L-Pro, 5.0. b,c Composition is the same as that in diets used by Ishibashi (9).
Crop and cecal contents were weighed and aliquots thereof were transferred into anaerobic transport media \((5)\) and cultured promptly. The remaining aliquots were used for the analysis of nitrogen compounds.

Bacterial procedure. Bacterial techniques used were essentially the same as those of Mitsuoka et al. \((4)\) with some modification. Media and cultivation are summarized in Table 3. The compositions of the media have been described in previous papers \((4-7)\). Five different non-selective media and 10 different selective media were used for the isolation of bacteria. All media except modified Medium 10 and \((\text{NH}_4)_2\text{SO}_4\) medium were poured into ordinary Petri dishes. Modified Medium 10 and \((\text{NH}_4)_2\text{SO}_4\) medium were prepared by the “plate-in-bottle” method \((4)\). Samples were weighed and homogenized with 10 or 100 volumes of sterile anaerobic diluent in a homogenizer for about 30 sec in a \(\text{CO}_2\) atmosphere. From appropriate dilutions, 0.05 ml of sample was spread with a sterile glass rod over a half to a quarter of the whole surface of each agar medium, and incubated under the conditions given in Table 3.

After incubation, the number of colonies of each recognizable type was
counted for all plates. A colony of each type was selected and identified. Organisms were subjected to Gram staining and were classified into broad groups on the basis of morphological and biochemical characteristics. In a suitable dilution for each culture plate, the number of colonies of the same bacterial group was counted and expressed as counts per g of wet material. When the count on the non-selective media was higher than that on the selective media, the former was regarded as the accurate viable count of the corresponding bacterial group. A direct microscopical count was also measured using the procedure for direct milk count.

Chemical analysis. Total nitrogen and 5% trichloroacetic acid (TCA)-soluble nitrogen (non-protein nitrogen, NPN) of cecal contents were determined by the micro-Kjeldahl procedure. Ammonia nitrogen was determined by Conway’s method (8). Free amino acids were determined using an automatic amino acid analyzer (JEOL, JLC-6AH).

RESULTS

Body weight gain and cecal contents

Results for body weight gain and cecal contents are shown in Tables 4 and 5. Final body weights and body weight gains in the low protein and low lysine groups were significantly lower than those in the respective control group, but cecal contents of the deficient groups were not significantly lower.

Table 4. Body weight and cecal contents of chicks fed on a low protein diet and a normal protein diet.

	Low protein	Normal protein
Body weight		
Initial (g)	330 ± 5a	310 ± 12
Final (g)	276 ± 36**b	553 ± 7
Body weight gain (g)	−54 ± 25***	243 ± 3
Cecal content (mg/head)	515 ± 147	803 ± 406

* Means ± SD for 6 chicks. ** t-test analysis, *** p < 0.001.

Table 5. Body weight and cecal contents of chicks fed on a low lysine diet and a normal lysine diet.

	Low lysine	Normal lysine
Body weight		
Initial (g)	300 ± 15a	276 ± 22
Final (g)	311 ± 10**b	448 ± 58
Body weight gain (g)	11 ± 15***	172 ± 46
Cecal content (mg/head)	525 ± 124	750 ± 323

* Means ± SD for 6 chicks. ** t-test analysis, *** p < 0.01, **** p < 0.001.
Table 6. Crop flora of chicks fed on a low protein diet and a normal protein diet.

Bacterial group	Low protein	Normal protein
Total bacteria	8.59 ± 0.46a	8.61 ± 0.74
Enterobacteriaceae	7.94 ± 0.93	7.64 ± 0.11
Streptococcus	6.57 ± 0.52	6.97 ± 1.37
Staphylococcus	3.83 ± 0.58 (3)b	4.73 ± 1.04 (5)
Lactobacillus	8.30 ± 0.49	8.16 ± 1.20
Bifidobacterium	7.18 ± 1.67 (3)	7.67 ± 0.06 (2)
Eubacterium	6.66 ± 0.98 (4)	5.71 ± 3.65 (2)
Bacteroidaceae	5.31 ± 2.05 (4)	7.45 ± 0.44 (4)
Peptococaceae	6.19 ± 0.04 (3)	7.80 ± 0.42 (3)
Clostridium	5.32 ± 2.28 (4)	7.25 ± 0.60 (2)

*a Mean ± SD of log bacterial counts/g (when present). b Figures in parentheses refer to the numbers of chicks harboring the organism.

Table 7. Cecal flora of chicks fed on a low protein diet and a normal protein diet.

Bacterial group	Low protein	Normal protein
Total bacteria	11.28 ± 0.20a	11.31 ± 0.33
Enterobacteriaceae	10.08 ± 0.65	9.66 ± 0.82
Streptococcus	8.61 ± 0.56 (5)b	8.89 ± 0.90
Staphylococcus	3.69 ± 0.36 (5)	3.73 ± 0.57 (3)
Lactobacillus	8.41 ± 1.33	7.88 ± 1.59
Bifidobacterium	10.44 ± 0.24 (5)	10.29 ± 0.83 (4)
Eubacterium	10.40 ± 0.52	10.39 ± 0.93
Bacteroidaceae	10.84 ± 0.33	10.90 ± 0.40
Peptococaceae	10.18 ± 0.63	10.00 ± 1.25
Clostridium	8.92 ± 1.20 (5)	9.03 ± 0.71 (5)
Gemmiger	9.77 ± 0.27 (4)	9.96 ± 0.21 (3)
Curved rod	9.52 ± 0.27 (4)	9.54 ± 0.53 (5)

*a,b See Table 6.

Effect of the low protein diet on microbial flora of chicks

Microbial floras of crops and ceca of chicks fed on the low protein diet are shown in Tables 6 and 7 respectively. No significant difference was found between the flora of the low protein group and that of the controls. Figure 1 shows the counts for growth on (NH₄)₂SO₄ medium, expressed as percentages of total bacterial counts in the cecal contents of chicks. The counts obtained from the low protein group were greater than those of the control.

Effect of the low lysine diet on microbial flora of chicks

The cecal flora of chicks fed on low lysine diet is shown in Table 8. Total counts
of bacteria, *Enterobacteriaceae*, and *Eubacterium* in cecal contents were significantly lower than those of chicks fed on the control diet. The counts for the other bacterial groups under the condition of feeding the low lysine diet seemed to be lower than those on feeding the control diet.

The number of lactobacilli in the cecal contents of chicks receiving the protein diets was about 10^8 (Table 7), and the number of lactobacilli decreased remarkably on feeding the amino acid diets, especially the low lysine diet (Table 8).

Effect of the low protein and the low lysine diets on nitrogenous compounds of cecal contents

Results for nitrogen compounds in cecal contents are summarized in Tables 9–12. Concentrations of total nitrogen and ammonia nitrogen in the cecal contents

Table 8. Cecal flora of chicks fed on a low lysine diet and a normal lysine diet.

Bacterial group	Low lysine	Normal lysine
Total bacteria	10.56 ± 0.34***	11.42 ± 0.22
Enterobacteriaceae	8.34 ± 0.21**	10.42 ± 0.84
Streptococcus	8.16 ± 1.15	9.28 ± 1.69
Yeast	6.45 ± 3.75 (2)	5.95 ± 2.16 (4)
Lactobacillus	3.5 (2)b	5.95 ± 2.16 (4)
Bifidobacterium	9.20 ± 0.20 (2)	10.2 ± 0.15 (2)
Eubacterium	9.62 ± 0.61*	10.6 ± 0.42
Bacteroidaceae	10.1 ± 0.27	11.0 ± 0.35
Peptococaceae	9.72 ± 0.37	9.88 ± 0.40
Clostridium	4.70 ± 2.29	6.10 ± 2.42 (4)
Gemmiger	9.55 ± 0.15 (2)	10.7 ± 0.72 (3)
Curved rod	9.05 ± 0.25 (2)	10.1 ± 0.15 (2)

a,b See Table 6. Statistical significance: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
CECAL FLORA OF CHICKS

Table 9. Nitrogen compounds in the cecal contents of chicks fed on a low protein diet and normal protein diet (mg N/g).

	Low protein	Normal protein
Total nitrogen	10.9 ± 1.5a	22.0 ± 8.0
Non-protein nitrogen	2.25 ± 1.15*	3.98 ± 0.21
Ammonia nitrogen	0.53 ± 0.15	0.73 ± 0.16

*a Values are means ± SD for 6 chicks. *p < 0.05.

Table 10. Nitrogen compounds in the cecal contents of chicks fed on a low lysine diet and a normal lysine diet (mg N/g).

	Low lysine	Normal lysine
Total nitrogen	18.0 ± 4.5a	27.0 ± 6.1
Non-protein nitrogen	3.70 ± 0.70	4.20 ± 0.80
Ammonia nitrogen	0.46 ± 0.17*	0.83 ± 0.27

*a Values are means ± SD for 6 chicks. *p < 0.05.

Table 11. Free amino acid pattern of cecal contents of chicks fed on a low protein diet and a normal protein (μmol/g).

Amino acid	Low protein	Normal protein
Val	1.50 ± 0.89***	4.60 ± 0.28
Lys	0.85 ± 0.62*	2.15 ± 0.45
Leu	0.56 ± 0.39***	2.00 ± 0.17
Thr	0.75 ± 0.45**	2.18 ± 0.48
Ile	0.26 ± 0.18***	1.05 ± 0.10
Phe	0.33 ± 0.18	0.32 ± 0.01
Met	0.85 ± 0.56**	1.70 ± 0.11
His	0.14 ± 0.05***	0.39 ± 0.03
Arg	0.09 (1)	0.27 ± 0.17
Ala	3.27 ± 2.02*	5.80 ± 0.36
Glu	2.21 ± 1.45**	12.3 ± 5.12
Gly	0.89 ± 0.44**	1.77 ± 0.24
Asp	0.75 ± 0.49**	2.00 ± 0.71
Pro	1.30 (1)	4.54 (1)
Ser	0.76 ± 0.49**	1.78 ± 0.46
Tyr	0.30 ± 0.21	0.23 ± 0.09
Cys	—	—
Orn	0.22 ± 0.13**	0.48 ± 0.02
GlcN	0.52 ± 0.24*	1.66 ± 0.02
GalN	6.21 ± 3.53	2.57 ± 0.63

*p < 0.05, **p < 0.01, ***p < 0.001 (n = 6).

Vol. 28, No. 5, 1982
of the low protein group were not significantly lower than those of the control group. The non-protein nitrogen concentration of the low protein group was significantly lower, and most of the free amino acids except phenylalanine, arginine, proline, and tyrosine, were significantly lower than those of the control (Table 11).

Total nitrogen and non-protein nitrogen in the cecal contents of chicks fed on the low lysine diet were not significantly lower than those of the control. Lysine, leucine, phenylalanine, methionine, histidine, glycine and tyrosine of cecal contents of chicks fed on the low lysine diet were significantly lower than those of the control (Table 12). Ammonia nitrogen concentration in the cecal contents of the low-lysine group was significantly lower than that of the control.

DISCUSSION

Intestinal flora and fecal flora of chicks have already been examined by Ochi et al. (12) and Kimura et al. (13), and it is well known that intestinal flora become established 2–4 weeks after feeding (12). In our present data, the counts of total bacteria and Enterobacteriaceae were higher and those of lactobacilli were lower, than those of the earlier data (12). The counts for the other bacterial groups in our

\[J. Nutr. Sci. Vitaminol. \]
present experiment were of the same level as that of the earlier data (12). These differences were thought to derive from our use of purified diets.

The body weight gain and the concentrations of non-protein nitrogen and of most amino acids were significantly reduced by the intake of the low protein diet, but the cecal flora was not significantly changed. Most of the predominant bacteria (80%) isolated from the cecal contents of chicks given the low protein diet were grown in the (NH_4)_2SO_4 medium. In contrast, only a few bacteria (8%) isolated from the cecal contents of chicks given the normal protein diet were grown in the same medium (Fig. 1). These results suggest that the predominant bacteria of the cecal contents of chicks given the low protein diet were adapted to the low nitrogen environment in the cecum, and acquired an ability to grow on the medium which contains ammonia and small amounts of amino acids and proteins.

At a low level of lysine, total bacteria, Enterobacteriaceae and Eubacterium counts were reduced. It is uncertain whether the decrease in these bacterial counts is a cause or a result of the beneficial effect of nitrogen reutilization of the host fed on the low lysine diet (3). A decrease in bacterial counts in the cecal contents of chicks was observed only at a low level of lysine in this experiment, but the concentrations of nitrogenous compounds in the low lysine group were not the lowest among the four diet groups (normal protein diet, low protein diet, normal lysine diet and low lysine diet). Therefore, the decrease in the bacterial counts could not be explained by the decrease of the nitrogenous compounds. Lactobacilli, which were reported to exist in counts of 10^9 per g wet weight of the cecal content of chicks (12), were reduced or not detected in the cecal contents of the amino acid diet groups, the low lysine group in particular (10^3.5).

Barnes (14) suggested that the cecum of chicks is a site for reabsorption of water and non-protein nitrogen, and Salter and Fulford (15) concluded that the intestinal flora has little influence on the digestion of dietary proteins but may play an important role in the degradation of endogenous proteins. Proteins in the cecum of chicks given amino acid diet were endogenous, because the test diets did not contain proteins. Proteins in the cecum of chicks given the protein diets were also thought to be endogenous because proteins in the cecal contents of the chick given the protein diets were as few as those of the lysine diets (Tables 9 and 10). These results support the suggestion of Salter and Fulford (15). Protein and amino acids in the test diets given to chicks might be digested and absorbed up to the time of the ingesta reaching the cecum, only endogenous proteins existing in the cecum.

Remarkable differences of cecal content weights existed between the low and normal protein diets and between the low and normal lysine diets but were not significant, because individual variation was great.

This work was supported by grant 310405 from the Scientific Research Fund of the Ministry of Education, Science and Culture of Japan. We are grateful to Dr. Ishibashi for his helpful discussions, to Mr. Tijimatsu for his assistance in the amino acid analysis, to Mr. Ozaki for his kind help in rearing chicks and to Kyowa Hakko Kogyo Co. for the generous

Vol. 28, No. 5, 1982
supply of crystalline amino acids.

REFERENCES

1) Salter, D. N., Coats, M. E., and Hewitt, D. (1974): The utilization of protein and excretion of uric acid in germ-free and conventional chicks. Brit. J. Nutr., 31, 307–318.

2) Okumura, J., Hewitt, D., Salter, D. N., and Coats, M. E. (1976): The role of the gut microflora in the utilization of dietary urea by the chick. Brit. J. Nutr., 35, 265–272.

3) Ishibashi, T., Kametaka, M., Ozaki, A., Yamamoto, T., and Mitsuoka, T. (1977): Lysine requirement of the growing germfree chick. Jpn. J. Zootech. Sci., 48, 641–648.

4) Mitsuoka, T., Ohno, K., Benno, Y., Suzuki, K., and Namba, K. (1976): Die Faekalflora bei Menschen IV. Mitteilung: Vergleich des neu entwickelten Verfahrens mit dem bisherigen üblichen Verfahren zur Darmfloraanalyse. Zbl. Bakt. Hyg., I. Abt. Orig., A234, 219–233.

5) Mitsuoka, T., Sega, T., and Yamamoto, S. (1965): Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menschen und Tieren. Zbl. Bact., I. Abt. Orig., 195, 455–469.

6) Takahashi, M., Benno, Y., and Mitsuoka, T. (1980): Utilization of ammonia nitrogen by intestinal bacteria isolated from pigs. Appl. Environ. Microbiol., 39, 30–35.

7) Eller, C., Crabill, M. R., and Bryant, M. P. (1971): Anaerobic roll tube media for nonselective enumeration and isolation of bacteria in human feces. Appl. Microbiol., 22, 522–529.

8) Ishizaka, O. (1969): Experimental Method of Microdiffusion Analysis, Nankodo Co., Ltd., Tokyo, pp. 13–27.

9) Ishibashi, T. (1972): Amino acid requirement for maintenance of the adult rooster. Jpn. J. Zootech. Sci., 44, 39–49.

10) Mitsuoka, T., Morishita, Y., Terada, A., and Yamamoto, S. (1965): A simple method ("Plate-in-bottle method") for the cultivation of fastidious anaerobes. Jpn. J. Microbiol., 13, 383–385.

11) Parker, C. A. (1955): Anaerobiosis with iron wool. Aust. J. Exp. Biol. Med. Sci., 33, 33–37.

12) Ochi, Y., Mitsuoka, T., and Sega, T. (1964): Untersuchungen über die Darmflora des Huhnes III. Mitteilung: Die Entwicklung der Darmflora von Küken bis zum Huhn. Zbl. Bakt. I. Abt. Orig., 193, 80–95.

13) Kimura, N., Mimura, F., Nishida, S., Kobayashi, K., and Mitsuoka, T. (1976): Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poult. Sci., 55, 1357–1383.

14) Barnes, E. M. (1977): Ecological concepts of the anaerobic flora in the avian intestine. Am. J. Clin. Nutr., 30, 1793–1798.

15) Salter, D. N., and Fulford, R. J. (1974): The influence of the gut microflora on the digestion of dietary and endogenous proteins: studies of the amino acid composition of the excreta of germ-free and conventional chicks. Brit. J. Nutr., 32, 625–637.