On a subfamily of starlike functions related to hyperbolic cosine function

Mridula Mundalia\(^1\) · S. Sivaprasad Kumar\(^1\)

Received: 29 April 2022 / Accepted: 6 January 2023 / Published online: 11 February 2023
© The Author(s), under exclusive licence to The Forum D’Analystes 2023

Abstract
We introduce and study a new Ma–Minda subclass of starlike functions \(S^*_\psi\), defined as
\[
S^*_\psi := \left\{ f \in A : \frac{zf'(z)}{f(z)} < \cosh \sqrt{z} =: \varphi(z), z \in \mathbb{D} \right\},
\]
associated with an analytic univalent function \(\cosh \sqrt{z}\), where we choose the branch of the square root function so that \(\cosh \sqrt{z} = 1 + z/2! + z^2/4! + \cdots\). We establish certain inclusion relations for \(S^*_\psi\) and deduce sharp \(S^*_\psi\)-radii for certain subclasses of analytic functions.

Keywords Univalent functions · Starlike functions · Radius problems · Hyperbolic Cosine function · Subordination

Mathematics Subject Classification 30C45 · 30C80

1 Introduction
Let \(A_n\) be the class of all analytic functions defined on the open unit disc \(\mathbb{D} := \{z \in \mathbb{C} : |z|<1\}\), with Taylor series representation of the form \(f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \cdots\). Let \(A := A_1\). Assume \(S \subset A\) as the class of univalent functions. If \(f(z)\) and \(g(z)\) are analytic functions in \(\mathbb{D}\), then \(f(z)\) is said to be subordinate to \(g(z)\) (\(f \prec g\)), if there exists a self-map \(w(z)\) on \(\mathbb{D}\) such that \(w(0) = 0\) and \(f(z) = g(w(z))\). For instance, if \(g(z)\) is a univalent function in \(\mathbb{D}\), then \(f \prec g\) if

Communicated by S. Ponnusamy.
S. Sivaprasad Kumar contributed equally to this work.

Extended author information available on the last page of the article
and only if \(f(0) = g(0) \) and \(f(D) \subset g(D) \). In 1992, Ma and Minda [12] investigated
the following subclasses of \(\mathcal{A} \) using the notion of subordination

\[
\mathcal{S}^*(\phi) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < \phi(z), z \in D \right\}
\]

and

\[
\mathcal{C}(\phi) := \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} < \phi(z), z \in D \right\}.
\]

In the above defined classes, the expressions \(zf'(z)/f(z) \) and \(1 + zf''(z)/f'(z) \) are
subordinate to an analytic univalent function \(\phi(z) \) such that \(\phi'(0) > 0 \) and
\(\text{Re}\phi(z) > 0 \) (\(z \in D \)). Furthermore, \(\phi(z) \) is symmetric about the real axis and starlike
with respect to \(\phi(0) = 1 \). Several authors have previously handled the Ma and Minda
classes for various choices of \(\phi(z) \), some are enlisted below (Table 1).

The classes \(\mathcal{S}^*_{e}, \mathcal{S}^*_r, \mathcal{S}^*(q_{\kappa}), \mathcal{S}^*[A,B] \) and \(\mathcal{SS}^*(\beta) \) were widely studied in
[3, 7, 13, 14, 24]. For instance, a number of sufficient conditions in terms of
coefficient estimates for the class \(\mathcal{SS}^*(\beta) \) are studied in [16] and references therein.

For the present study we examine the function \(g_{\sigma}(z) := \cosh \sigma \sqrt{z} \), where \(\sigma \in [-\pi/2, \pi/2] \) and we choose the branch of the square root function so that
\(\cosh \sigma \sqrt{z} = 1 + \sigma^2 z/2! + \sigma^4 z^2/4! + \cdots \). Note that \(g_{\sigma}(z) \) is an analytic univalent
function with \(\text{Re}g_{\sigma}(z) > 0 \) and maps \(D \) onto a convex region. Further it is symmetric
about real axis (i.e. \(g_{\sigma}(z) = g_{\sigma}(\bar{z}) \)) such that \(g_{\sigma}'(0) = \sigma^2/2 > 0 \). Consequently, \(g_{\sigma}(z) \)
is a Ma–Minda type function. In the recent years, cosine and cosine hyperbolic
functions have been investigated, see [2, 4]. Note that \(g(z) = \cosh \sqrt{z}, \phi_1(z) = \cos z \)
and \(\phi_2(z) = \cosh z \) have identical images, however \(\phi_1(z) (\phi_1'(0) < 0) \) and \(\phi_2(z) \) are
non-univalent functions in \(D \), whereas \(g(z) (g'(0) = 1/2 > 0) \) is univalent in \(D \).

Thus the geometry of \(g_{\sigma}(z) \) piqued our interest in formulating the following
definition, by means of subordination.

Table 1 Ma–Minda starlike classes for special choices of \(\phi(z) \)

Class \(\mathcal{S}^*(\phi) \)	\(\phi(z) \)	References
\(\mathcal{S}^*_{e} \)	\(e^z \)	Mendiratta et al. [14]
\(\mathcal{S}^*_r \)	\(\sqrt{1 + z} \)	Sokol et al. [26]
\(\mathcal{S}^*_q \)	\(z + \sqrt{1 + z^2} \)	Raina et al. [21]
\(\mathcal{S}^*_{s} \)	\((1 + sz)^2, -1 \leq s \leq 1\)	Masih et al. [13]
\(\mathcal{S}^*(q_{\kappa}) \)	\(\sqrt{1 + \kappa z}, 0 < \kappa \leq 1 \)	Sokol et al. [3]
\(\mathcal{SS}^*(\beta) \)	\((1 + z)/(1 - z)^{\beta}, 0 < \beta \leq 1\)	Stankiewicz [27]
\(\mathcal{S}^*[A,B] \)	\((1 + Az)/(1 + Bz) \)	Janowski [7]
\(\mathcal{S}^*(\beta) \)	\((1 + (1 - 2\beta)z)/(1 - z), 0 \leq \beta < 1\)	Robertson [23]
Definition 1 Let \(S_{\varepsilon}^* \) be the class of normalized starlike functions, defined as follows:

\[
S_{\varepsilon}^* := \left\{ f \in \mathcal{A} : \frac{zf''(z)}{f'(z)} < \varphi_{\varepsilon}(z) := \cosh \sigma \sqrt{z}, z \in \mathbb{D} \right\} \quad (\sigma \in [-\pi/2, \pi/2] - \{0\}),
\]

where we choose the branch of the square root function so that

\[
cosh \sigma \sqrt{z} = 1 + \frac{\sigma^2 z}{2!} + \frac{\sigma^4 z^2}{4!} + \frac{\sigma^6 z^3}{6!} + \cdots.
\]

The conformal mapping \(\varphi_{\varepsilon} : \mathbb{D} \to \mathbb{C} \), maps the unit disc \(\mathbb{D} \) onto the region

\[
\Omega_{\varphi_{\varepsilon}} := \{ u \in \mathbb{C} : |\log(u + \sqrt{u^2 - 1})|^2 < \sigma^2 \} \quad (\sigma \in [-\pi/2, \pi/2] - \{0\}),
\]

defined on the principle branch of logarithm and square root functions. For each \(\sigma \leq \varphi \), observe that \(\varphi_{\varepsilon}(\mathbb{D}) \subset \varphi_{\varepsilon}(\mathbb{D}) \). Moreover, for each circle \(|z| = r < 1 \),

\[
\begin{align*}
\min_{|z|=r} \text{Re} \varphi_{\varepsilon}(z) &= \min_{|z|=r} |\varphi_{\varepsilon}(z)| = \varphi_{\varepsilon}(\sqrt{-r}) \\
\max_{|z|=r} \text{Re} \varphi_{\varepsilon}(z) &= \max_{|z|=r} |\varphi_{\varepsilon}(z)| = \varphi_{\varepsilon}(\sqrt{r}).
\end{align*}
\]

(1)

Assume \(\varphi_1(z) = \varphi(z) \), therefore we have \(S_{\varepsilon}^* = S_{\varepsilon}^* \). In the present investigation we shall restrict our major workings to a subclass of starlike functions, namely \(S_{\varepsilon}^* \), and deduce radii constants along with some inclusion relations. In terms of integral representation, we have \(f \in S_{\varepsilon}^* \) if and only if

\[
f(z) = z \exp \left(\int_0^z \frac{\hat{\varphi}(t) - 1}{t} \, dt \right)
\]

(2)

where \(\hat{\varphi}(z) < \varphi(z) \). Note that if \(\psi_{\varepsilon}(z) = 1 + z^3/3 + z^2/18 \) and \(\phi_{\varepsilon}(z) = 1 + \sin(z/3) \), then evidently \(\psi_{\varepsilon}(z) \) and \(\phi_{\varepsilon}(z) \) are subordinate to \(\varphi(z) \), so the corresponding functions

\[
f_1(z) = z \exp \left(\frac{z^3 + z^2}{36} \right) \quad \text{and} \quad f_2(z) = ze^{Si(z)}, \text{where} \quad Si(z) = \int_0^z \frac{\sin t}{t} \, dt
\]

lie in \(S_{\varepsilon}^* \). Now using the representation in (2), we obtain different functions, those work as extremal functions for various results. For instance, \(\varphi_{\varepsilon n} \in \mathcal{A} \ (n = 2, 3, 4, \ldots) \), defined as
\[\varphi_{\varphi}(z) = z \exp \left(\frac{z}{\int_0^z \frac{q(t^{n-1}) - 1}{t} \, dt} \right) = z + \frac{z^n}{2(n-1)} + \frac{z^{2(n-1)}}{48(n-1)} + \cdots, \quad (3) \]

belongs to \(S^*_\varphi \). We denote \(\varphi_{\varphi} := \varphi_{\varphi} \). For completeness of our class \(S^*_\varphi \), we give below a remark using the results of [12, 15].

Remark 1 For \(f \in S^*_\varphi \) and \(\varphi_{\varphi}(z) \) be as defined in (3), then for \(|z| = r_0 < 1 \), we have

(i) \(-\varphi_{\varphi}(-r_0) \leq |f(z)| \leq \varphi_{\varphi}(r_0) \) (Growth Theorem).

(ii) \(\varphi_{\varphi}'(-r_0) \leq |f'(z)| \leq \varphi_{\varphi}'(r_0) \) (Distortion Theorem).

(iii) \(|\arg(f(z)/z)| \leq \max_{|z|=r_0} \arg(\varphi_{\varphi}(z)/z) \) (Rotation Theorem).

Equality for (i)–(iii) holds for some \(z_0 \neq 0 \) if and only if \(f(z) \) is a rotation of \(\varphi_{\varphi}(z) \). In fact if \(f \in S^*_\varphi \) then either \(f \) is a rotation of \(\varphi_{\varphi}(z) \) or \(f(\mathbb{D}) \supset \{v : |v| \leq -\varphi_{\varphi}(-1) \approx 0.619 \ldots \} \).

Further, from the results in [15] for each \(f \in S^*_\varphi \),

(i) \(|a_2| \leq 1/2 \),

(ii) \(|a_3| \leq 1/4 \),

(iii) \(|a_4| \leq 1/6 \)

and (iv) for any complex constant \(\mu \), \(|a_3 - \mu a_2^2| \leq \frac{1}{4} \max\{1, |\mu - 7/12|\} \).

These estimates are sharp. Equality in (i) holds for the function \(\varphi_{\varphi}(z) \) and \(\tilde{f}(z) = z + z^3/4 \) is an extremal function for (ii) and (iv).

2 Properties of hyperbolic cosine function

We begin with a Lemma which demonstrates a maximal disc centered at a point \((c, 0)\) on the real line, that can be subscribed within \(g_\sigma(\mathbb{D}) \).

Lemma 1 Suppose \(\sigma \neq 0 \), then \(g_\sigma(z) \) satisfies the following inclusion

\[\{u \in \mathbb{C} : |u - c| < r_{ac} \} \subset g_\sigma(\mathbb{D}) =: \Omega_{g_\sigma}(\sigma) \quad (-\pi/2 \leq \sigma \leq \pi/2), \]

where

\[r_{ac} = \begin{cases} c - \cos \sigma, & \cos \sigma < c \leq (\cosh \sigma + \cos \sigma)/2 \\ \cosh \sigma - c, & (\cosh \sigma + \cos \sigma)/2 \leq c < \cosh \sigma. \end{cases} \]

Proof Let \(\Gamma := g_\sigma(e^{it}), -\pi \leq t \leq \pi \) be the boundary curve of the function \(g_\sigma(z) \). Due to symmetricity of the curve \(\Gamma \) about real-axis, it is enough to consider \(0 \leq t \leq \pi \). Define a function \(G_c(\tau) \) as follows:

\[G_c(\tau) := (c - \cosh(\sigma(\cos \tau))) \cos(\sigma(\sin \tau)))^2 + \sinh^2(\sigma(\cos \tau)) \sin^2(\sigma(\sin \tau)), \]

where \(\tau = t/2 \). Observe that \(G_c(\tau) \) (see Fig. 1 for different values of \(c \)) is the square of the distance from point \((c, 0)\) to \(\Gamma \). Now we study the following cases:
Case 1: For \(\cos \sigma < c \leq 1 \), \(G_c(\tau) \) is monotonically decreasing on \([0, \pi/2]\), then

\[
 r_{ac} = \min_{\tau \in [0, \pi/2]} \sqrt{G_c(\tau)} = \sqrt{G_c(\pi/2)} = c - \cos \sigma.
\]

Case 2: When \(1 \leq c \leq \sigma_0 \), where \(\sigma_0 < (\cosh \sigma + \cos \sigma)/2 \) is a point at which \(G_c(\tau) \) changes its character i.e \(G_c(\tau) \) is monotonically decreasing for \(1 \leq c \leq \sigma_0 \) and has three critical points \(\{0, \tau_c, \pi/2\} \) for \(\sigma_0 < c \leq (\cosh \sigma + \cos \sigma)/2 \), where \(\tau_c \in (0, \pi/2) \) is the only root of the equation

\[
 2c \tan \tau \cos(\sigma \sin \tau) \sinh(\sigma \cos \tau) + 2 \sin(\sigma \sin \tau) \cosh(\sigma \cos \tau) \\
 = \sin(2\sigma \sin \tau) + \tan \tau \sinh(2\sigma \cos \tau).
\]

(4)

Note that \(\tau_c < \tau_c \) whenever \(c < \hat{c} \). Further

\[G_c(0) - G_c(\pi/2) = (\cosh \sigma - \cos \sigma)(\cos \sigma + \cosh \sigma - 2c) \geq 0. \]

Therefore this yields

\[
 r_{ac} = \min_{\tau \in [0, \pi/2]} \left\{ \sqrt{G_c(0)}, \sqrt{G_c(\tau_c)}, \sqrt{G_c(\pi/2)} \right\} = \sqrt{G_c(\pi/2)} = c - \cos \sigma.
\]

Case 3: For \((\cosh \sigma + \cos \sigma)/2 \leq c \leq \sigma_1 \), where \(\sigma_1 < \cosh \sigma \) is a point at which \(G_c(\tau) \) changes its character i.e \(G_c(\tau) \) has three critical points \(\{0, \tau_c, \pi/2\} \), where \(\tau_c \in (0, \pi/2) \) is the only root of Eq. (4) and \(G_c(\tau) \) is an increasing function for \(\sigma_1 < \sigma < \cosh \sigma \). Infact \(G_c(0) \leq G_c(\pi/2) \). Therefore

\[
 r_{ac} = \min_{\tau \in [0, \pi/2]} \left\{ \sqrt{G_c(0)}, \sqrt{G_c(\tau_c)}, \sqrt{G_c(\pi/2)} \right\} = \sqrt{G_c(0)} = \cosh \sigma - c.
\]

Hence the result follows. \(\square \)

Inclusion results in Lemma 2, follows from equation (1) and Lemma 1.

Lemma 2 For the region \(\Omega_{q_\sigma} := q_\sigma(\mathbb{D}) \), following inclusion relations hold:

(i) \(\{u : |u - (\cosh \sigma + \cos \sigma)/2| < (\cosh \sigma - \cos \sigma)/2\} \subset \Omega_{q_\sigma}. \)

(ii) \(\Omega_{q_\sigma} \subset \{u : \cos \sigma < \Re u < \cosh \sigma\} \) and \(\Omega_{q_\sigma} \subset \{u : \cos \sigma < |u| < \cosh \sigma\}. \)
(iii) \(\Omega_{\sigma} \subseteq \{ u : |\operatorname{Im} u| < l \} \) and \(\Omega_{\sigma} \subseteq \{ u : |u - (\cosh \sigma + \cos \sigma)/2| < l \} \), where \(l = |\operatorname{Im}(\cosh(\sigma e^{i t_0}/2))| \), and \(t_0 \) is the root of the equation

\[
\cos \sigma + \cosh \sigma - 2 \cos(\sigma \sin(t/2)) \cosh(\sigma \cos(t/2)) = 0.
\]

For \(\sigma = 1 \), Lemma 1 leads to the following result for the region \(\Omega_{\sigma} =: \Omega_0 \).

Theorem 1 The region \(\Omega_0 := \mathcal{Q}(\mathbb{D}) \supset \{ u \in \mathbb{C} : |u - c| < r_c \} \) where

\[
r_c = \begin{cases}
\cosh 1 - c, & \text{if } 1 < c \leq (\cosh 1 + \cos 1)/2 \\
\cosh 1 - c, & \text{if } (\cosh 1 + \cos 1)/2 \leq c < \cosh 1.
\end{cases}
\]

Remark 2 Theorem 1 ensures that \(D_c := |u - c| < r_c \), is the maximal disc subscribed in \(\mathcal{Q}(\mathbb{D}) \), when \(c = (\cosh 1 + \cos 1)/2 \) and \(r_c = (\cosh 1 - \cos 1)/2 \). Thus \(D_c \subseteq \mathcal{Q}(\mathbb{D}) \).

For all the subsequent results, we shall assume \(c_0 := \cos 1 \) and \(c_1 := \cosh 1 \).

Lemma 3 For the region \(\Omega_0 := \mathcal{Q}(\mathbb{D}) \), we have the following inclusion relations:

(i) \(\{ u : |u - (c_0 + c_1)/2| < (c_1 - c_0)/2 \} \subseteq \Omega_0 \).

(ii) \(\Omega_0 \subseteq \{ u : |\arg u| < m \} \), where \(m \approx 0.506053 \approx (0.322163) \pi/2 \approx 28.9947^\circ \).

(iii) \(\Omega_0 \subseteq \{ u : c_0 < \Re u < c_1 \} \) and \(\Omega_0 \subseteq \{ u : c_0 < |u| < c_1 \} \).

(iv) \(\Omega_0 \subseteq \{ u : |\operatorname{Im} u| < l \} \) and \(\Omega_0 \subseteq \{ u : |u - (c_0 + c_1)/2| < l \} \), where \(l = |\operatorname{Im}(\cosh(e^{i t_0}/2))| \) and \(t_0 \) is the solution of the equation

\[
c_0 + c_1 - 2 \cos(\sin(t/2)) \cosh(\cos(t/2)) = 0.
\]

Proof We can obtain (i), (iii)–(iv) from equations in (1), Remark 2 and Lemma 2 (for \(\sigma = 1 \)). For part (ii) let \(\Gamma := \partial(\mathcal{Q}(z)) = \mathcal{Q}(e^{it}) \), \(-\pi \leq t \leq \pi\), represents the boundary curve of \(\mathcal{Q}(z) \). Assume that

\[
\Re e^{it} = \cos(\sin(t/2)) \cosh(\cos(t/2)) =: X(t)
\]

and

\[
\Im e^{it} = \sin(\sin(t/2)) \sinh(\cos(t/2)) =: Y(t).
\]

Consider
\[|\log f(z)| < \max_{|z|=1} |\log f(z)| = \max_{t \in [-\pi, \pi]} |\arg f(e^{it})| = \max_{t \in [-\pi, \pi]} \tan^{-1}(Y(t)/X(t)) = \max_{t \in [-\pi, \pi]} \tan^{-1}(\tan(\sin(t/2)) \tanh(\cos(t/2))) =: m(t) \]

Observe that \(\tan^{-1} x \) is a monotonically increasing real valued function. Therefore it is enough to obtain the maximum of \(m(t) \). The roots of
\[
m'(t) = 0.5(\cos(t/2) \tanh(\cos(t/2)) \sec^2(\sin(t/2)) - \sin(\sin(t/2)) \text{sech}^2(\cos(t/2))) = 0
\]
are \(t_1 \approx -1.91672 \) and \(t_2 \approx 1.91672 \). As \(t_1 < t_2 \), therefore maximum of \(m(t) \) is attained at \(t_2 \). Hence the inclusion in (ii) follows.

In Theorem 2 and Corollary 1, we prove inclusion results pertaining to various classes along with the classes \(ST_p(\gamma) \), \(S_{hpl}(s) \), \(k-ST \) and \(M(\beta) \) [1, 8, 9, 28] defined below:

\[
M(\beta) := \left\{ f \in A : \frac{zf'(z)}{f(z)} < \frac{1 + (2\beta - 1)z}{1 + z}, \beta > 1 \right\},
\]

\[
ST_p(\gamma) := \left\{ f \in A : \text{Re} \frac{zf'(z)}{f(z)} + \gamma > \left| \frac{zf'(z)}{f(z)} - \gamma \right|, \gamma > 0 \right\},
\]

\[
S_{hpl}(s) := \left\{ f \in A : \frac{zf'(z)}{f(z)} < (1 - z)^{-s} = e^{-s \log(1-z)}, 0 < s \leq 1 \right\},
\]

\[
k-ST := \left\{ f \in A : \text{Re} \frac{zf'(z)}{f(z)} > k \left| \frac{zf'(z)}{f(z)} - 1 \right|, k \geq 0 \right\}.
\]

Theorem 2 Let \(f \in S_{\theta_{\sigma}}^* \) then for each \(\sigma \in [-\pi/2, \pi/2] \) \(\setminus \{0\} \), following inclusions hold:

(i) \(S_{\theta_{\sigma}}^* \subset S^*(\zeta) \), where \(\zeta = \cos \sigma \).

(ii) \(S_{\theta_{\sigma}}^* \subset M(\beta) \), where \(\beta = \cosh \sigma \).

(iii) \(S_{\kappa}^* \subset S_{\theta_{\sigma}}^* \), whenever \(\kappa \leq 1 - \cos^2 \sigma \).

(iv) \(k-ST \subset S_{\theta_{\sigma}}^* \), whenever \(k \geq \cosh \sigma/(\cosh \sigma - 1) \).

(v) \(S_{\theta_{\sigma}}^* \subset S_{hpl}^*(s) \), whenever \(\log(\sec \sigma)/\log 2 \leq s \leq 1 \), \(\sigma \in [-\pi/3, \pi/3] \setminus \{0\} \).

(vi) \(S_{\theta_{\sigma}}^* \subset S_L^*(s) \), whenever \(1 - \sqrt{\cos \sigma} \leq s \leq \frac{1}{\sqrt{2}} \).

Proof Observe that, in Eq. (1), when \(r \) tends to 1\(^{-}\), sharp bounds on real part and modulus of \(\varrho_{\sigma}(z) \) are obtained. Consequently, due to Lemma 2 the inclusions in (i) and (ii) are true for the class \(S_{\theta_{\sigma}}^* \). We know that \(q_{\kappa}(z) = \sqrt{1 + \kappa z} \) where \(0 < \kappa \leq 1 \), is associated with the region \(|u^2 - 1| < \kappa \). Therefore part (iii) can be easily established as \(q_{\kappa}(\mathbb{D}) \) lies in \(\varOmega_{\theta_{\sigma}} \), if and only if, \(\sqrt{1 - \kappa} \geq \cosh \sigma \), which implies \(\kappa \leq 1 - \cos^2 \sigma \). For part (iv), let \(\Gamma_k = \{ u \in \mathbb{C} : \text{Re} u > k |u - 1| \} \), where \(k \geq 0 \). When \(k > 1 \), the set \(\Gamma_k \) represents the interior of an ellipse.
where \(x_1 = k^2/(k^2 - 1) \), \(a_1 = k/(k^2 - 1) \) and \(b_1 = 1/\sqrt{k^2 - 1} \). For \(\gamma_k \) to lie in \(\Omega_{q_x} \) we must have \(x_1 + a_1 \leq \cosh \sigma \), which gives a sufficient condition for \(\gamma_k \) to lie in \(\Omega_{q_x} \), this leads us to the required condition. From [8] we know that \(\text{Re}(1 - z)^{-s} > 2^{-s} \). Therefore for (v) to hold true \(2^{-s} \leq \cos \sigma \), which gives \(\log(\sec \sigma) / \log 2 \leq s \leq 1 \), provided \(-\pi/3 \leq \sigma \leq \pi/3 \). Furthermore, it was demonstrated in [13], that \(L_S(\mathbb{D}) \supset \{ u : |u - 1| < 1 - (1 - s)^2 \} \), where \(0 < s \leq 1/\sqrt{2} \). Thus for (vi) to hold true we must have \(1 - (1 - s)^2 \geq 1 - \cos \sigma \). Thus \(S_{q_x}^* \subset S_L^*(s) \) for each \(s \geq 1 - \sqrt{\cos \sigma} \). ☐

In the following Corollary we prove inclusion results for the class \(S_{q_x}^* \).

Corollary 1 For each function \(f \in S_{q_x}^* \) the following inclusions hold:

- (i) \(S_{q_x}^* \subset S^*(c_0) \).
- (ii) \(S_{q_x}^* \subset M(c_1) \).
- (iii) \(S_{q_x}^* \subset SS^*(\beta) \), where \(\beta \approx 0.322163 \).
- (iv) \(S_{q_x}^* \subset S_{q_x}^* \), whenever \(\kappa \leq 1 - c_0^2 \).
- (v) \(k - ST \subset S_{q_x}^* \), whenever \(k \geq c_1/(c_1 - 1) \).
- (vi) \(S_{q_x}^* \subset S_{hp}(s) \), whenever \(- \log c_0 / \log 2 \leq s \leq 1 \).

Legend

- \(g_1 : g(z) = \cosh \sqrt{z} \)
- \(g_2 : \text{Re} u = c_0 \)
- \(g_3 : |\arg u| = \beta \pi / 2 \)
- \(\arg \lambda_1 = - \arg \lambda_2 = \beta \pi / 2 \)
- \(\beta \approx 0.322163 \)
- \(g_4 : \text{Re} u = c_1 \)
- \(g_5 : \sqrt{1 + (1 - c_0^2)}z \)
- \(g_6 : \text{Re} u = \frac{c_1}{c_1 - 1} |u - 1| \)
- \(g_7 : \frac{(\text{Re} u - \frac{c_0 + c_1}{2})^2}{(c_1 - c_0) \frac{c_1^2}{2}} + \frac{(\text{Im} u)^2}{(c_2)^2} \),
- \(c_2 = 0.65 \)
- \(g_8 : \text{Re} u + \gamma = |u - \gamma| \),
- \(\gamma \approx 0.0654238 \)
- \(g_9 : \frac{1}{(1 - z)^s}, s_0 = \frac{\log c_0^2}{\log 2} \)

Fig. 2 Inclusion graphs in context of Corollary 1 associated with \(g(z) \).
(vii) $S_\sigma^* \subset S_L^*(s)$, whenever $1 - \sqrt{c_0} s \leq \frac{1}{\sqrt{z}}$.
(viii) $S_\sigma^* \subset ST_p(\gamma)$, whenever $\gamma \geq \gamma_0 \approx 0.0654238$.

Proof Clearly parts (i)–(iii) and (iv)–(vii) can be obtained as a result of Theorem 2 for $\sigma = 1$. Part (iii) is true due to Lemma 3, for the class S_σ^* (see Fig. 2). For (viii) in order to show $S_\sigma^* \subset ST_p(\gamma)$, we must have $|u - \gamma| - Reu < \gamma$, where $u(z) = \cosh \sqrt{z}$. For $z = e^{i\tau}$ we have

$$H(\tau) := \frac{\sin^2(\sin \tau) \sinh^2(\cos \tau)}{4 \cos(\sin \tau) \cosh(\cos \tau)} < \gamma,$$

where $\tau = t/2$. Clearly $H'(\tau)$ vanishes on $\{0, \tilde{\tau}, \pi/2\}$, with $\tau = \tilde{\tau} \approx 0.832934$ as the only root of the equation

$$\tan(\sin \tau) \tanh(\cos \tau)((\cos \tau(\cos(2 \sin \tau) + 3) \sin(\cos \tau) \sec(\sin \tau)) - \sin \tau \sin(\sin \tau)(\cosh(2 \cos \tau) + 3) \sech(\cos \tau)) = 0$$

in $(0, \pi/2)$. Therefore $\max_{\tau \in [0, \pi/2]} H(\tau) = H(\tilde{\tau}) \approx 0.0654238$. Observe that $ST_p(\gamma_1) \subset ST_p(\gamma_2)$ whenever $\gamma_1 < \gamma_2$. This leads to the required inclusion relation. \[\square \]

Remark 3 Figure 2 displays various inclusion relations related to the region $\Omega_\sigma := \Omega_{\sigma_1}$. A vertical ellipse enclosing the region Ω_σ is $(x - x_2)^2/a_2^2 + y^2/b_2^2 = 1$, where $x_2 = c_0/2$, $a_2 = c_1/2$ and $c_2 \geq \max \text{Im}q(z)$. For visual purposes we illustrate this ellipse (g_7) for $c_2 = 0.65$. Figure 2 depicts the sharpness of inclusion results in Corollary 1.

Let $\mathcal{P}_n(z)$ denote the class of functions $p(z)$ of the type $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \ldots$ such that $Re(p(z)) > \alpha$ $(0 \leq \alpha < 1)$. Clearly the class $\mathcal{P}_n(z) \subset \mathcal{P}_n$ and assume $\mathcal{P}_n := \mathcal{P}_n(0)$. If a function $p(z)$ of the form $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + \ldots$ satisfies $p(z) \prec (1 + Az)/(1 + Bz)$, for $A \neq B$ and $|B| \leq 1$, then $p \in \mathcal{P}_n[A, B]$. We state a few lemmas in connection with these classes.

Lemma 4 [22] If $p \in \mathcal{P}_n[A, B]$, then for $|z| = r$

$$|p(z) - \frac{1 - ABr^{2n}}{1 - B^2 r^{2n}}| \leq |A - B|r^n \frac{1}{1 - B^2 r^{2n}}.$$

Particularly, if $p \in \mathcal{P}_n(\alpha)$, then

$$|p(z) - \frac{1 + (1 - 2\alpha) r^{2n}}{1 - r^{2n}}| \leq \frac{2(1 - \alpha)r^n}{1 - r^{2n}}.$$
Lemma 5 \[25\] If \(p \in \mathcal{P}_n'(z) \), then for \(|z| = r\)

\[
\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{2(1 - x nr^2)}{(1 - r^2)(1 + (1 - 2x)r^2)}.
\]

Theorem 3 Let \(p(z) = (1 + Az)/(1 + Bz) \), where \(-1 < B < A \leq 1\), then \(p(z) \prec \cosh \sqrt{z} \) if and only if

\[
A \leq \begin{cases}
1 - (1 - B)c_0 & \text{if } 2(1 - AB) \leq (c_0 + c_1)(1 - B^2) \\
(1 + B)c_1 - 1 & \text{if } 2(1 - AB) \geq (c_0 + c_1)(1 - B^2).
\end{cases}
\]

(6)

Proof Lemma 4 shows that the \(p(z) = (1 + Az)/(1 + Bz) \), maps \(\mathbb{D} \) onto the disc

\[
\left| p(z) - \frac{1 - AB}{1 - B^2} \right| \leq \frac{A - B}{1 - B^2}, \quad -1 < B < A \leq 1.
\]

By Theorem 1, \(p(z) \prec \cosh \sqrt{z} \) if and only if the above disc lies within \(\Omega_q \). Conditions in (6) gives \((1 + A) \leq (1 + B)c_1\), provided \(2(1 - AB) \geq (c_0 + c_1)(1 - B^2)\) holds. In fact \((A - B)/(1 - B^2) \leq c_1 - (1 - AB)/(1 - B^2)\) leads to \((A - B)/(1 - B^2) \leq c_1 - c\) provided \(2c \geq c_0 + c_1\) where \(c = (1 - AB)/(1 - B^2)\). Also from (6), \((1 - A) \geq (1 - B)c_0\) whenever \(2(1 - AB) \leq (c_0 + c_1)(1 - B^2)\). Equivalently, \((A - B)/(1 - B^2) \leq c - c_0\) whenever \(2c \leq c_0 + c_1\). Thus \(p(z)\) lies in \(|u - c| < r_c\), where \(r_c\) is given by (5).

Corollary 2 If conditions on \(A, B\) are as given in Theorem 3, then \(S^*_n[A, B] \subset S^*_q\).

3 Radius problems

Radius problems have been an active area of research in geometric function theory. Some of the pioneering work in this direction have been discussed by several authors, see [3, 14, 22, 24]. For further development on radius problems of analytic functions, readers may refer to [5, 10, 17, 19]. Motivated by the aforestated work, we derive radius results for the following classes

\[
S^*_n(q) = \left\{ f \in \mathcal{A}_n : \frac{zf'(z)}{f(z)} < \cosh \sqrt{z} =: q(z) \right\},
\]

\[
S^*_n[A, B] = \left\{ f \in \mathcal{A}_n : \frac{zf'(z)}{f(z)} < \frac{1 + Az}{1 + Bz} \right\}
\]

and
On a subfamily of starlike functions... 2053

\[M_n(\beta) = \left\{ f \in A_n : \frac{zf'(z)}{f(z)} < \frac{1 + (1 - 2\beta)z}{1 - z}, \beta > 1 \right\}. \]

In the sequel we apply lemmas stated in Sect. 2, to obtain sharp \(S^*_n(\rho) \)-radius, \(S^*_n[A, B] \)-radius and \(M_n(\beta) \)-radius for the class \(S^*_\rho \). The following theorem is obtained from Lemma 3 and equations in (1).

Theorem 4 The class \(S^*_\rho \subset M(\beta) \) for \(|z| < r_\beta \), where

\[r_\beta = \left\{ \begin{array}{ll} r(\beta), & 1 < \beta < c_1 \\ 1, & \beta \geq c_1. \end{array} \right. \]

and \(r(\beta) \in (0, 1) \) is the smallest root of the equation \(\cosh \sqrt{r} = \beta \). Equality holds when \(f(z) = \phi_\rho(z) \).

Theorem 5 Suppose \(f \in S^*_\rho \), then \(f(z) \) is starlike of order \(\zeta \), in \(|z| < r_\zeta \), where \(r_\zeta < 1 \) is the least positive root of the equation \(\cos \sqrt{r} = \zeta \). This radius result is sharp.

Proof As \(f \in S^*_\rho \), then we have \(zf'(z) = f(z) \cosh \sqrt{w(z)} \), where \(w(z) \) is a Schwarz function with \(w(0) = 0 \) such that for \(-\pi \leq t \leq \pi \), \(w(z) = \text{Re}^t \). For each \(R = |w(z)| \leq |z| = r < 1 \), we have \(\cos \sqrt{R} \geq \cos \sqrt{r} \), and as a result of equations in (1)

\[\text{Re} \frac{zf'(z)}{f(z)} \geq \min_{|z|=r} \text{Reg}(w(z)) = \cos \sqrt{r} \geq \zeta. \]

If \(s(r, \zeta) := \cos \sqrt{r} - \zeta \), then there exist \(r_{\zeta_0} < r_{\zeta_1} \) such that \(s(r_{\zeta_0}, \zeta) > 0 \) and \(s(r_{\zeta_1}, \zeta) < 0 \), holds. Thus a least positive root \(r_\zeta \) for the equation \(s(r, \zeta) = 0 \), will serve the purpose. In particular, at \(z_0 = -r \), we have \(\text{Re}(z_0f'(z_0)/f(z_0)) = \cos \sqrt{r} = \zeta \), then function \(f(z) = \phi_\rho(z) \) is the extremal function.

On replacing \(\phi(z) = (1 + (1 - 2x)z)/(1 - z) \) in the definition \(C(\phi) \) we get the well-known class of convex functions of order \(\alpha \) \((0 \leq \alpha < 1) \), denoted by \(C(\alpha) \). For \(\alpha = 0 \), it reduces to the well-known class of convex functions \(C \). In Theorem 6, we establish radius of convexity of order \(\alpha \) for the class \(S^*_\rho \).

Theorem 6 Let \(f \in S^*_\rho \), then \(f \in C(\alpha) \), where \(\alpha \in [0, 1] \), provided \(|z| \leq r_0 \), where \(r_0 \in [0, 1) \) is the least positive root of the equation

\[2(1 - r^2) \cos \sqrt{r} - \sqrt{r} \tan \sqrt{r} = \alpha. \]

Proof As \(f \in S^*_\rho \), there exists a Schwarz function \(w(z) \) such that \(w(0) = 0 \) and

\[\frac{zf'(z)}{f(z)} = \cosh \sqrt{w(z)}. \] (7)

On logarithmically differentiating (7) and applying triangle inequality, we deduce
\[\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) = \text{Re} \left(\frac{zf'(z)}{f(z)} + \frac{zw'(z) \tanh \sqrt{w(z)}}{2\sqrt{w(z)}} \right) \]

\[\geq \cos \sqrt{r} - |z| |w'(z)| \left| \frac{\tanh \sqrt{w(z)}}{2\sqrt{w(z)}} \right| \quad (|z| = r < 1). \tag{8} \]

Further Schwarz Pick Lemma, yields

\[-|z| |w'(z)| \left| \frac{\tanh \sqrt{w(z)}}{\sqrt{w(z)}} \right| \geq - |z| \frac{1 - |w(z)|^2}{1 - |z|^2} \left| \frac{\tanh \sqrt{w(z)}}{\sqrt{w(z)}} \right|. \tag{9} \]

Assume \(w(z) = Re^{it}, t \in [-\pi, \pi] \) where \(R \leq r \), then inequality (9) yields

\[\text{Re} \left(\frac{zw'(z) \tanh \sqrt{w(z)}}{2\sqrt{w(z)}} \right) \leq \sqrt{r} \tan \sqrt{r} \frac{2(1 - r^2)}{2(1 - r^2)}. \tag{10} \]

Thus from inequalities (8) and (10) we conclude that

\[\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq \cos \sqrt{r} - \frac{\sqrt{r} \tan \sqrt{r}}{2(1 - r^2)}. \]

Hence the least positive root of the equation of \(2(1 - r^2) \cos \sqrt{r} - \sqrt{r} \tan \sqrt{r} = \pi \) will serve the purpose. \(\square \)

Theorem 7 For \(-1 \leq B < A \leq 1\), suppose \(f \in S_n^*[A, B] \), then the sharp \(S_n^*(q) \)–radius is given by

(i) \(\mathcal{R}_{S_n^*(q)}(S_n^*[A, B]) = \min \{ 1; (1 - c_0)/(A - Bc_0)^{1/n} \} =: \mathcal{R}_0 \), where \(0 \leq B < A \leq 1 \).

(ii) \(\mathcal{R}_{S_n^*(q)}(S_n^*[A, B]) = \begin{cases} \mathcal{R}_0, & \mathcal{R}_0 \leq \mathcal{R}_1 \\ \mathcal{R}_2, & \mathcal{R}_0 > \mathcal{R}_1 \end{cases} \), where \(-1 \leq B < 0 < A \leq 1\).

where

\[\mathcal{R}_1 = \left(\frac{c_0 - 2}{B(c_0 B - 2A)} \right)^{1/2n}, \quad \mathcal{R}_2 = \min \left\{ 1; \left(\frac{c_1 - 1}{A - Bc_1} \right)^{1/n} \right\}. \]

Proof As \(f \in S_n^*[A, B] \), then \(p(z) = zf'(z)/f(z) \) lies in the disc \(|p(z) - c| < R\), where

\[c = \frac{1 - AB r^{2n}}{1 - B^2 r^{2n}} \quad \text{and} \quad R = \frac{(A - B)r^{2n}}{1 - B^2 r^{2n}}. \]

If \(B \geq 0 \), then \(c \leq 1 \). For \(f(z) \) to lie in \(S_n^*(q) \), Theorem 1 and Lemma 4 yields
\[
\frac{(A - B)r^n}{1 - B^2r^{2n}} \leq \frac{1 - AB^2r^{2n}}{1 - B^2r^{2n}} - c_0.
\]

The above inequality gives \(r \leq R_0 \). Equality here holds for \(\tilde{f}(z) \) of the form
\[
\tilde{f}(z) = \begin{cases}
(1 + Bz^n)^{(A-B)/nB}, & B \neq 0 \\
\exp(Az^n), & B = 0.
\end{cases}
\] (11)

Further, if \(-1 \leq B < 0 < A \leq 1 \) and \(R_0 \leq R_1 \), then \(c \leq (c_0 + c_1)/2 \) if and only if \(r \leq R_1 \). Therefore, for \(0 \leq r \leq R_0 \), we deduce that \(c \leq (c_0 + c_1)/2 \). In fact, due to Theorem 1 for each \(f \in S_0(\phi) \), we have \((A - B)r^n/(1 - B^2r^{2n}) \leq c - c_0 \), equivalently \(r \leq R_0 \). Furthermore, assume that \(R_0 > R_1 \). Then \(c \geq (c_0 + c_1)/2 \) if and only if \(r \geq R_1 \). In particular for \(r \geq R_0 \), we have \(c \geq (c_0 + c_1)/2 \). Thus by Theorem 1, for each \(f \in S_0(\phi) \), the inequality \((A - B)r^n/(1 - B^2r^{2n}) \geq c_1 - c \) is equivalent to \(r \leq R_2 \). The function \(\tilde{f}(z) \) given in (11) works as the extremal function.

Theorem 8 Let \(\beta > 1 \), then the sharp \(S_0(\phi) \)-radius for the class \(\mathcal{M}(\beta) \), is given by
\[
R_{S_0(\phi)}(\mathcal{M}(\beta)) = \left(\frac{1 - c_0}{2\beta - (1 + c_0)}\right)^{1/n}.
\]

Proof As \(f \in \mathcal{M}(\beta) \), then \(zf'(z)/f(z) < (1 + (1 - 2\beta)z)/(1 - z) \). Clearly, for each \(\beta > 1 \), \((1 + (1 - 2\beta)r^{2n})/(1 - r^{2n}) \leq 1 \). Further by Lemma 4, we get
\[
\left| \frac{zf'(z)}{f(z)} - \frac{1 + (1 - 2\beta)r^{2n}}{1 - r^{2n}} \right| \leq \frac{2(\beta - 1)r^n}{1 - r^{2n}}.
\]

On applying Theorem 1, we have
\[
\frac{2(\beta - 1)r^n}{1 - r^{2n}} \leq \frac{1 + (1 - 2\beta)r^{2n}}{1 - r^{2n}} - c_0
\]
or equivalently \(r^{2n}((1 - 2\beta) + c_0) - 2(\beta - 1)r^n + 1 - c_0 \geq 0 \), which gives \(r \leq R_{S_0(\phi)}(\mathcal{M}(\beta)) \). The required extremal function is \(\tilde{f}(z) = z/(1 - z)^{2(1-\beta)/n} \). \(\square \)

Recently, Lecko et al. [11] investigated the expressions \(\text{Re}(1 - z^2)f(z)/z > 0 \) and \(\text{Re}(1 - z)^2f(z)/z > 0 \), involving the starlike functions \(z/(1 - z^2) \) and \(z/(1 - z)^2 \). In 2019, Cho et al. [6] estimated radii constants for classes characterised by the ratio of two analytic functions \(f(z) \) and \(g(z) \) with certain conditions on \(g(z) \), namely \(\text{Reg}(z)/z > x \) for \(x = 0 \) or \(1/2 \), such that \(\text{Re}(f(z)/g(z)) > 0 \). Motivated by these classes, here below we define some subclasses of \(\mathcal{A}_n \),
\[
\mathcal{F}_1(\beta) := \left\{ f \in \mathcal{A}_n : \left| \frac{f(z)}{g(z)} - 1 \right| < 1 \text{ and } \text{Re} \left(g(z) \right) > \beta, g \in \mathcal{A}_n \right\} \quad (\beta \in \{0, 1/2\})
\]

and

\[Springer \]
\[\mathcal{F}_2 := \left\{ f \in \mathcal{A}_n : \left| \frac{f(z)}{g(z)} - 1 \right| < 1 \text{ and } g \in \mathcal{A}_n \text{ is convex} \right\}. \]

Definition 2 Let \(-1 \leq A \leq 1\) and \(g \in \mathcal{A}_n\), then for each \(n = 1, 2, \ldots\), \(\mathcal{F}_3 \subset \mathcal{A}_n\), be defined as:
\[\mathcal{F}_3 := \left\{ f \in \mathcal{A}_n : \text{Re} \left(\frac{f(z)}{g(z)} > 0 \right) \text{ and } \text{Re} \left(\frac{(1 - z^n)^{(1+A)/n}}{z} g(z) > 0 \right) \right\}. \]

Remark 4 The functions \(\tilde{f}(z) = z(1 + (1 - 2\beta)z^n)/(1 - z^n)\) defined on \(\mathbb{D}\) satisfy \(|(\tilde{f}(z)/\tilde{g}(z)) - 1| = |z^n| < 1\) and \(\text{Re}(\tilde{g}(z)/z = \text{Re}(1 + (1 - 2\beta)z^n)/(1 - z^n) > \beta\). Therefore \(\tilde{f} \in \mathcal{F}_1(\beta)\), where \(\beta \in \{0, 1/2\}\). If \(\tilde{f}(z) = z(1 + z^n)/(1 - z^n)^{1/n}\) and \(\tilde{g}(z) = z/(1 - z^n)^{1/n}\), then \(\tilde{f} \in \mathcal{F}_2\). Similarly when \(\tilde{f}(z) = z(1 + z^n)^{(1)+n} z^n)^{(1+A)/n}\) and \(\tilde{g}(z) = z(1 + z^n)/(1 - z^n)^{(1+A)/n}\), then \(\tilde{f} \in \mathcal{F}_3\). Therefore the class \(\mathcal{F}_3\) is non-empty.

Theorem 9 The sharp \(S^*_n(q)\)-radii for the classes \(\mathcal{F}_1(0)\), \(\mathcal{F}_1(1/2)\) and \(\mathcal{F}_2\), are respectively given by

(i) \[\mathcal{R}_{S_n^*(q)}(\mathcal{F}_1(0)) = \left(\frac{\sqrt{9n^2 - 4(c_0 - 1)(1 + n - c_0) - 3n}}{2(1 + n - c_0)} \right)^{1/n}. \]

(ii) \[\mathcal{R}_{S_n^*(q)}(\mathcal{F}_1(1/2)) = \left(\frac{1 - c_0}{2n - (c_0 - 1)} \right)^{1/n}. \]

(iii) \[\mathcal{R}_{S_n^*(q)}(\mathcal{F}_2) = \left(\frac{\sqrt{1 + n(n + 6) + 4c_0(c_0 - (1 + n)) - (1 + n)}}{2(n - c_0)} \right)^{1/n}. \]

Proof Assume \(f(z)/g(z) = p_1(z)\) and \(g(z)/z = p_2(z)\), where \(f(z)\) and \(g(z)\) are analytic functions in \(\mathbb{D}\).

(i) As \(f \in \mathcal{F}_1(0)\), then \(p_2 \in \mathcal{P}_n(0)\). We know that \(|p_1(z) - 1| < 1\) holds if \(\text{Re}(1/p_1(z)) > 1/2\) and vice-versa. Assume \(f(z) = z p_1(z) p_2(z)\). Now using the expressions of \(p_1(z)\), \(p_2(z)\) and by applying Theorem 1 and Lemma 5 we have
\[\left| \frac{zf''(z)}{f(z)} - 1 \right| = \left| \frac{zp_2'(z)}{p_2(z)} - \frac{zp_1'(z)}{p_1(z)} \right| \leq \frac{(3 + r^m)mr^m}{1 - r^m} \leq 1 - c_0. \]

The above inequality leads to \(r^m(n + 1 - c_0) + 3mr^m - 1 + c_0 \leq 0\), provided \(r \leq \mathcal{R}_{S_n^*(q)}(\mathcal{F}_1(0))\). The functions \(\tilde{f}(z) = z(1 + z^n)/(1 - z^n)^{2}\) and \(\tilde{g}(z) = z(1 + z^n)/(1 - z^n)\) at \(z_0 = \mathcal{R}_{S_n^*(q)}(\mathcal{F}_1(0)) e^{\pi i/n}\) gives
\[
\frac{z_0 \tilde{f}'(z_0)}{\tilde{f}(z_0)} - 1 = \frac{(3 + z_0^2)n z_0^n}{1 - z_0^{2n}} = 1 - c_0.
\]

Thus \(\tilde{f}\) is the extremal function.

(ii) Let \(f \in \mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_1}(1/2))\), then \(1/p_1, p_2 \in \mathcal{P}_n(1/2)\). Proceeding as in (i), on applying Theorem 1 and Lemma 5 we get

\[\frac{|z f'(z)|}{f(z)} - 1 \leq \frac{2n r^n}{1 - r^n} \leq 1 - c_0. \]

This holds true whenever \(r \leq \mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_1}(1/2))\). For sharpness, consider \(\tilde{f}(z) = z\) and \(\tilde{g}(z) = z/(1 - z^n)\), then at \(z_0 = \mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_1}(1/2)) e^{i\pi/n}\), we get

\[\frac{z_0 \tilde{f}'(z_0)}{\tilde{f}(z_0)} - 1 = \frac{2n z_0^n}{1 - z_0^n} = 1 - c_0. \]

(iii) Let \(f(z)/g(z) = p(z)\) be a function defined in \(D\). As \(f \in \overline{\mathcal{H}_2}\), then \(|1/p(z) - 1| < 1\) if and only if \(\Re p(z) > 1/2\). As \(g \in A_n\) is convex, then due to Marx-Strohhäcker theorem, \(g \in S^*_n(1/2), (S^*_n(1/2) = \{f \in A_n : \Re f(z)/f(z) > 1/2\})\). Therefore due to Lemma 4,

\[\frac{|z g'(z)|}{g(z)} - 1 \leq \frac{r^n}{1 - r^{2n}}. \]

On logarithmically differentiating \(f(z)\) and applying Theorem 1, we get

\[\frac{|z f'(z)|}{f(z)} - \frac{1}{1 - r^{2n}} = \frac{|z g'(z) - z p'(z) - 1 - z^n|}{g(z) - p(z)} \leq \frac{nr^{2n} + (1 + n)r^n}{1 - r^{2n}} \leq \frac{1}{1 - r^{2n}} - c_0, \]

which leads to \(r^{2n}(n - c_0) + r^n(1 + n) - 1 + c_0 \leq 0\), provided \(r \leq \mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_2})\). The functions \(\tilde{f}(z) = z(1 + z^n)/(1 - z^n)^{1/n}\) and \(\tilde{g}(z) = z/(1 - z^n)^{1/n}\) at \(z_0 = \mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_2}) e^{i\pi/n}\) gives \(|z_0 \tilde{f}'(z_0)/\tilde{f}(z_0)| = c_0\). Hence the result is sharp.

\[\square \]

Theorem 10 Let \(r \in [0, 1]\), then the sharp \(S^*_n(\vartheta)\) –radius for the class \(\overline{\mathcal{H}_3}\) is given by

\[\mathcal{R}_{S^*_n(\vartheta)}(\overline{\mathcal{H}_3}) = \begin{cases} \mathcal{R}_0, & r \leq \mathcal{R}_0, \\ \mathcal{R}_1, & r \geq \mathcal{R}_0, \end{cases} \]

where
\[\mathcal{R}_0 = \begin{cases}
\left(\frac{1 + A + 4n + \sqrt{(1 + A + 4n)^2 - 4(1 - c_0)(A + c_0)}}{2(A + c_0)} \right)^{1/n} & \text{if } -1 \leq A < -c_0, \\
\left(\frac{1 - c_0}{1 + 4n - c_0} \right)^{1/n} & \text{if } A = -c_0, \\
\left(\frac{1 + A + 4n - \sqrt{(1 + A + 4n)^2 - 4(1 - c_0)(A + c_0)}}{2(A + c_0)} \right)^{1/n} & \text{if } -c_0 < A \leq 1,
\end{cases} \]

and
\[\mathcal{R}_1 = \left(\frac{\sqrt{(1 + A + 4n)^2 + 4(A + c_1)(c_1 - 1) - (1 + A + 4n)}}{2(A + c_1)} \right)^{1/n}. \]

Proof Let \(f \in \mathcal{A}_3 \), then \(\text{Re}(f(z)/g(z)) > 0 \) and \(\text{Re}((1 - z^n)^{(1+A)/n} g(z)/z) > 0 \), where \(g \in \mathcal{A}_n \). Define \(g(z)/f(z) = p_1(z) \) and \((1 - z^n)^{(1+A)/n} g(z)/z = p_2(z) \), where \(p_1(z) \) and \(p_2(z) \) are analytic in \(\mathbb{D} \). Since \(A < 1 \), then for \(|z| = r < 1 \), the inequality \((1 + Ar^{2n}) \geq 1 - r^{2n} \), holds true. Further on logarithmically differentiating \(zp_1(z)p_2(z)(1 - z^n)^{-(1+A)/n} = f(z) \), we get
\[\frac{zf'(z)}{f(z)} = \frac{1 + Az^n}{1 - z^n} + \frac{zp'_1(z)}{p_1(z)} + \frac{zp'_2(z)}{p_2(z)}. \]

Due to Lemmas 4–5, for \(|z| = r \), we infer
\[\left| \frac{zf'(z)}{f(z)} - \frac{1 + Ar^{2n}}{1 - r^{2n}} \right| \leq \frac{4nr^n}{1 - r^{2n}} + \frac{(1 + A)r^n}{1 - r^{2n}}. \tag{12} \]

Assume \(c = (1 + Ar^{2n})/(1 - r^{2n}) \). Then \(c \leq (c_0 + c_1)/2 \) leads to \(r \leq \mathcal{R} \) and vice-versa, where \(\mathcal{R} = ((c_0 - 2)/(2A + c_0))^{1/2n} \). Algebraically, for each \(n = 1, 2, 3, \ldots \), it can be observed that, for the given range of \(A \), we have \(\mathcal{R}_0 < \mathcal{R}_1 < \mathcal{R} \). In particular, if \(r \leq \mathcal{R}_0 \), then \(c \leq (c_0 + c_1)/2 \). Further due to Theorem 1, inequality (12) gives
\[\frac{4nr^n}{1 - r^{2n}} + \frac{(1 + A)r^n}{1 - r^{2n}} \leq \frac{1 + Ar^{2n}}{1 - r^{2n}} - c_0, \]
whenever \(r \leq \mathcal{R}_0 \). Moreover if \(c \geq (c_0 + c_1)/2 \), then \(r \geq \mathcal{R}_0 \). In fact, when \(r \geq \mathcal{R}_0 \), then we have \(c \geq (c_0 + c_1)/2 \). Now inequality (12) together with Theorem 1 yields
\[\frac{4nr^n}{1 - r^{2n}} + \frac{(1 + A)r^n}{1 - r^{2n}} \leq c_1 - \frac{1 + Ar^{2n}}{1 - r^{2n}}, \]
provided \(r \leq \mathcal{R}_1 \). Thus the following functions, mentioned in Remark 4
serve as the extremal function for both the cases.

4 Certain estimates for the class S_q^*

In this section certain sufficient conditions for the class S_q^* are established.

Theorem 11 Let $f \in \mathcal{A}$, then $f \in S_q^*$ if and only if

$$\frac{1}{z} \left(f(z) \ast \frac{z - k z^2}{(1 - z)^2} \right) \neq 0 \quad (13)$$

where $k = \cosh e^{i/2} / (\cosh e^{i/2} - 1)$ for $t \in [-\pi, \pi]$. Moreover, $f \in S_q^*$ if and only if

$$1 - \sum_{n=2}^{\infty} \frac{(n - \cosh e^{i/2}) a_n}{\cosh e^{i/2} - 1} z^{n-1} \neq 0. \quad (14)$$

Proof Since $f \in S_q^*$, then $zf'(z)/f(z) = \cosh \sqrt{w(z)}$, where $w(z)$ is a Schwarz function with $w(0) = 0$. Equivalently for $w(z) = e^{it}, -\pi \leq t \leq \pi$, we have

$$\frac{zf'(z)}{f(z)} \neq \cosh e^{i/2} \Leftrightarrow zf'(z) - (\cosh e^{i/2})f(z) \neq 0 \quad \text{for} \quad t \in [-\pi, \pi],$$

Eventually it leads to $zf'(z) - k(zf'(z) - f(z)) \neq 0$. Thus through simple computations (13) can be established. The condition in (14) can be deduced using (13). □

Corollary 3 Let $f \in \mathcal{A}$ satisfy the following

$$\sum_{n=2}^{\infty} \left| \frac{n - \cosh e^{i/2}}{\cosh e^{i/2} - 1} \right| \left| a_n \right| < 1, \quad (15)$$

then $f \in S_q^*$.

Proof Consider the following inequality with $k = \cosh e^{i/2} / (\cosh e^{i/2} - 1)$,

$$\left| 1 - \sum_{n=2}^{\infty} (n(k - 1) - k)a_n z^{n-1} \right| \geq 1 - \sum_{n=2}^{\infty} |(n(k - 1) - k)||a_n|.$$
\[1 - \sum_{n=2}^{\infty} (n(k - 1) - k) a_n z^{n-1} > 0, \]

Hence due to Theorem 11 we conclude that \(f \in S^*_0 \).

Theorem 12 Let \(f \in S^*_0 \) then the following inequality holds

\[c_1^2 - 1 \geq \sum_{k=2}^{\infty} (k^2 - c_1^2) |a_k|^2. \]

Proof Since \(f \in S^*_0 \), then \(zf'(z) = \cosh(\sqrt{w(z)}) f(z) \), for a Schwarz function \(w(z) \) with \(w(0) = 0 \). For \(0 \leq |z| = r < 1 \), we get the following

\[
2\pi \sum_{k=1}^{\infty} k^2 |a_k|^2 r^{2k} = \int_0^{2\pi} |re^{i\theta} f'(re^{i\theta})|^2 \, d\theta \\
= \int_0^{2\pi} \left| \cosh\left(\sqrt{w(re^{i\theta})}\right) f(re^{i\theta}) \right|^2 \, d\theta \\
\leq \int_0^{2\pi} \cosh^2\left(\sqrt{|w(re^{i\theta})|}\right) |f(re^{i\theta})|^2 \, d\theta \\
\leq \int_0^{2\pi} (\cosh^2 r) |f(re^{i\theta})|^2 \, d\theta \\
= 2\pi (\cosh^2 r) \sum_{k=1}^{\infty} |a_k|^2 r^{2k}.
\]

Thus when \(r \) tends to \(1^- \), we at once obtain the required inequality.

Example 1 Let \(f \in A \), then following functions are members of \(S^*_0 \).

1. \(f(z) = z + a_n z^n \in S^*_0 \), provided \(|a_n| \leq (1 - c_0)/(n - c_0), \ n \in \mathbb{N} - \{1\} \).
2. \(f(z) = z/(1 - Az)^2 \in S^*_0 \), provided \(|A| \leq (c_1 - 1)/(c_1 + 1) \).
3. \(f(z) = z/(1 - Az) \in S^*_0 \), provided \(|A| \leq (c_1 - 1)/c_1 \).
4. \(f(z) = ze^{Az} \in S^*_0 \), provided \(|A| \leq 1 - c_0 \).

Proof For part (i) we require that \(zf'(z)/f(z) = (1 + na_n z^{n-1})/(1 + a_n z^{n-1}) \) must lie in the disc \(\{ u : |u - c| < r_c \} \subseteq \partial(\mathbb{D}) \), centered at \(c \), where \(r_c \) is defined in (5). It is a known fact that the function \(f(z) = z + a_n z^n \) is univalent if and only if \(|a_n| \leq 1/n \). Thus \(c = (1 - n|a_n|^2)/(1 - |a_n|^2) \leq 1 \). If \(u = (1 + na_n z^{n-1})/(1 + a_n z^{n-1}) \) and \(r_c = (1 - n|a_n|^2)/(1 - |a_n|^2) - c_0 \), then due to Theorem 1,
\[
\frac{(n - 1)|a_n|}{1 - |a_n|^2} \leq \frac{1 - n|a_n|^2}{1 - |a_n|^2} - c_0.
\]

The proofs of (ii)–(iv) are much akin to (i), therefore it is skipped.

Acknowledgements The authors acknowledged the support of Delhi Technological University, Delhi, India, for giving monetary help to complete this research work.

Author Contributions Both the authors have equal contribution. Authors are thankful to the reviewers for their valuable suggestions.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors have no conflict of interest.

References

1. Ali, R.M., K.G. Subramanian, V. Ravichandran, and O.P. Ahuja. 2008. Neighborhoods of starlike and convex functions associated with parabola. Journal of Inequalities and Applications 346279: 9.
2. Alotaibi, A., M. Arif, M.A. Alghamdi, and S. Hussain. 2020. Starlikeness associated with cosine hyperbolic function. Mathematics 8 (7): 1118. https://doi.org/10.3390/math8071118.
3. Aouf, M.K., J. Dziok, and J. Sokół. 2011. On a subclass of strongly starlike functions. Applied Mathematics Letters 24 (1): 27–32.
4. Bano, K., and M. Raza. 2021. Starlike functions associated with cosine functions. Bulletin of the Iranian Mathematical Society 47 (5): 1513–1532.
5. Baricz, Á., M. Obradović, and S. Ponnusamy. 2013. The radius of univalence of the reciprocal of a product of two analytic functions. Journal of Analysis 21: 1–19.
6. Cho, N.E., V. Kumar, S.S. Kumar, and V. Ravichandran. 2019. Radius problems for starlike functions associated with the sine function. Bulletin of the Iranian Mathematical Society 45 (1): 213–232.
7. Janowski, W. 1973. Some extremal problems for certain families of analytic functions. I. Annales Polonici Mathematici 28 (3): 297–326.
8. Kanas, S., V.S. Masih, and A. Ebadian. 2019. Relations of a planar domains bounded by hyperbolas with families of holomorphic functions. Journal of Inequalities and Applications 2019 (1): 1–14.
9. Kanas, S., and A. Wiśniowska. 2000. Conic domains and starlike functions. Revue Roumaine de Mathématiques Pures et Appliquées 45 (4): 647–658.
10. Kumar, S., and S.K. Sahoo. 2021. Radius of convexity for integral operators involving Hornich operations. Journal of Mathematical Analysis and Applications 502 (2): 21.
11. Lecko, A., and Y.J. Sim. 2019. Coefficient problems in the subclasses of close-to-star functions. Results in Mathematics 74 (3): 104.
12. Ma, W.C., and D. Minda. 1992. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin). Conf. Proc. Lecture Notes Anal., 157–169. Cambridge, MA: Int. Press.
13. Masih, V.S., and S. Kanas. 2020. Subclasses of starlike and convex functions associated with the Limaçon Domain. Symmetry 12: 942.
14. Mendorratta, R., S. Nagpal, and V. Ravichandran. 2015. On a subclass of strongly starlike functions associated with exponential function. Bulletin of the Malaysian Mathematical Science Society 38 (1): 365–386.
15. Mundalia, M., and S.K. Shannugam. 2020. Coefficient bounds for a unified class of holomorphic functions. In Mathematical analysis. I. Approximation theory, Springer Proc. Math. Stat., vol. 306, 197–210. Singapore: Springer.
16. Nezhmetdinov, I.R., and S. Ponnusamy. 2005. New coefficient conditions for the starlikeness of analytic functions and their applications. Houston Journal of Mathematics 31 (2): 587–604.
17. Ponnusamy, S., and S.K. Sahoo. 2006. Study of some subclasses of univalent functions and their radius properties. *Kodai Mathematical Journal* 29 (3): 391–405.
18. Ponnusamy, S., S.K. Sahoo, and N.L. Sharma. 2016. Maximal area integral problem for certain class of univalent analytic functions. *Mediterranean Journal of Mathematics* 13 (2): 607–623.
19. Ponnusamy, S., S.K. Sahoo, and T. Sugawa. 2014. Radius problems associated with pre-Schwarzian and Schwarzian derivatives. *Analysis (Berlin)* 34 (2): 163–171.
20. Ponnusamy, S., N.L. Sharma, and K.-J. Wirths. 2020. Logarithmic coefficients problems in families related to starlike and convex functions. *Journal of the Australian Mathematical Society* 109 (2): 230–249.
21. Raina, R.K., and J. Sokół. 2015. Some properties related to a certain class of starlike functions. *Comptes Rendus Mathematique Academie des Sciences Paris* 353 (11): 973–978.
22. Ravichandran, V., F. Rønning, and T.N. Shanmugam. 1997. Radius of convexity and radius of starlikeness for some classes of analytic functions. *Complex Variables, Theory and Application* 33 (1–4): 265–280.
23. Robertson, M.I.S. 1936. On the theory of univalent functions. *Annals of Mathematics* 37 (2): 374–408.
24. Saliu, A., K.I. Noor, S. Hussain, and M. Darus. 2021. Some results for the family of univalent functions related with limaçon domain. *AIMS Mathematics* 6 (4): 3410–3431.
25. Shah, G.M. 1972. On the univalence of some analytic functions. *Pacific Journal of Mathematics* 43: 239–250.
26. Sokół, J., and J. Stankiewicz. 1996. Radius of convexity of some subclasses of strongly starlike functions. *Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka* 19: 101–105.
27. Stankiewicz, J. 1971. Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées. *Annales Universitatis Mariae Curie-Skłodowska Section A* 20 (1966): 59–75.
28. Uralegaddi, B.A., M.D. Ganigi, and S.M. Sarangi. 1994. Univalent functions with positive coefficients. *Tamkang Journal of Mathematics* 25 (3): 225–230.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Mridula Mundalia¹ · S. Sivaprasad Kumar¹

S. Sivaprasad Kumar
spkumar@dce.ac.in
Mridula Mundalia
miridulamundalia@yahoo.co.in

¹ Department of Applied Mathematics, Delhi Technological University, Shahbad Daulatpur, Delhi 110042, India