Over the past two decades, immunotherapy has emerged as a promising treatment option for patients with cancer. However, newer versions of immunotherapy, such as checkpoint inhibitors, may be associated with unusual adverse effects (AEs) that can range in severity from mild to life-threatening. Unlike common AEs of conventional chemotherapy, which have a predictable nadir or cyclic pattern after administration, AEs of these newer immunotherapies are variable, depending on the type of immunotherapy, route of administration, and mechanism of action. The onset and resolution of these AEs may be present at any time, during administration of treatment, a few weeks after administration of treatment, or several months after completion of treatment. Therefore, improving outcomes in patients undergoing oncologic immunotherapy requires oncology nurses’ knowledge and understanding of various immunotherapy agents, as well as early recognition and management of potential AEs, especially AEs associated with checkpoint inhibitors and other therapies that manipulate T-cell activation causing autoimmune toxicity. This article draws upon current evidence from systematic reviews, meta-analyses, and expert consensus guidelines to provide a brief overview of common immunotherapies used in cancer and management of their associated AEs.

Key words: Adverse events, cancer, immunotherapy, management

Introduction
Over the past two decades, the Food and Drug Administration (FDA) has approved several different types of immunotherapies as treatment options for patients with cancer, secondary to reports of improved survival, and complete remissions in some cancers.[1-7] Immunotherapy uses the body’s immune system to combat cancer; specifically, it stimulates the production of specific antibodies or counteracts malignant cells’ production of signals or pathways that suppress immune responses.[6] However, stimulating the immune system may cause unusual adverse events (AEs), especially with checkpoint inhibitors...
and other therapies that manipulate T-cell activation causing autoimmune toxicity. Occurring in any system of the body, these AEs range from mild to life-threatening in severity, depending on the type of immunotherapy, route of administration, and mechanism of action. Unlike the AEs of conventional chemotherapy, which have a predictable nadir or cyclic pattern after administration, AEs related to these newer versions of immunotherapy are variable in regard to their onset and resolution and may be present at any time, from a period of a few weeks during administration of treatment to several months after completion of treatment. Therefore, improving outcomes in patients undergoing oncologic immunotherapy requires oncology nurses’ knowledge and understanding of the various immunotherapy agents, as well as early recognition and management of potential AEs, especially AEs associated with checkpoint inhibitors and other agents that manipulate T-cell activation causing autoimmune toxicity. This article draws upon current evidence from systemic reviews, meta-analyses, and expert consensus guidelines to provide a brief overview of common immunotherapies used in cancer and management of their associated AEs.

Categories of Immunotherapy

The major oncologic immunotherapies involve cancer vaccines, monoclonal antibodies (mAbs), chimeric antigen receptor (CAR) T-cell therapy, cytokines, oncolytic viral immunotherapy, and immune checkpoint inhibitors. Given the variability in mechanism of action of the different immunotherapies and the heterogeneity of AEs, it is imperative that oncology nurses become familiar with the current version of The National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE v. 5.0), which is a standardized list of AE terms commonly found in oncology. The CTCAE is available in detail at https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. The CTCAE serves as a universal tool for oncology nurses to properly gauge or measure the severity of the AE, track the progress of the AE, document the AEs in standardized terminology, and help oncology nurses to initiate the proper treatment for the AEs based on the CTCAE grade and the established guidelines and algorithms.

Cancer vaccines

Cancer vaccines stimulate or restore the immune system’s ability to target peptides or antigens on cancer cells. Generally, these biological response modifiers are categorized as cell-based, peptide-based, tumor-cell-based, or immune- or dendritic-cell-based vaccines. Currently, sipuleucel-T (Provenge; Dendreon Pharmaceuticals) is the only therapeutic dendritic-cell-based vaccine that has received FDA approval for the treatment of hormone-refractory prostate cancer. Sipuleucel-T uses the patient’s own cells to induce an immune response against prostate acid phosphatase (PAP), which is found in 95% of prostate adenocarcinomas and is specific to prostate tissue. Sipuleucel-T is made by harvesting the patient’s peripheral blood mononuclear cells using leukapheresis. The cells are then sent to the laboratory, where they are cultured in vitro for 36–44 h with a fusion protein, composed of recombinant PAP and granulocyte-macrophage-colony-stimulating factor (GM-CSF), and then reinfused back into the patient. Normally, this process is replicated every 2 weeks for a total of three doses.

Generally, sipuleucel-T is well tolerated; however, common AEs experienced by patients participating in sipuleucel-T clinical trials include chills (44.0%–57.8%), pyrexia (29.3%–36.2%), headache (16.0%–23.3%), myalgia (9.8%–21.6%), influenza-like illness (9.8%–13.8%), and hypertension (7.4%–11.2%). One clinical trial reported groin pain (5%), vomiting (10.9%), dyspnea (10.9%), asthenia (5.3%–14.3%), and hyperhidrosis. Other reported AEs include stroke, myocardial infarction, and increased risk of deep vein thrombosis.

However, most AEs associated with sipuleucel-T are infusion related which are caused by a release of cytokines. Usually, infusion-related AEs are self-limiting and resolve within 24–48 h after vaccine infusion. To minimize infusion-related AEs, the European Society for Medical Oncology clinical practice guidelines recommends premedication with acetaminophen and diphenhydramine and adjustment in the infusion rate of sipuleucel-T [Table 1].

Monoclonal antibodies

mAbs are cell-derived, laboratory-generated substances that target specific antigens on tumors. mAbs – which may be murine (made from mice), chimeric (part mouse and part human), humanized (mouse antibodies attached to human antibodies), or fully human (human antibodies) – hinder tumor growth by inhibiting tumor cells’ survival cascades, interfering with tumor angiogenesis, and enabling malignant cells to avoid programmed cell death (PD) and evade immune checkpoints. To date, the FDA has approved several mAbs for the treatment of cancer [Table 2]. AEs associated with mAbs are specific to the pharmacologic mechanism of action [Table 1], and their management depends on the mechanism of action and the route of administration [Table 1]. For example, mAb-related AEs can range from a mild headache, diarrhea, transient pruritus, and dermatitis to potentially serious or life-threatening AEs such as anaphylaxis, cardiovascular AEs, thromboembolic AEs, cytokine release...
Table 1: Other Immunotherapy agents

Immunotherapy agent	Drug and company	Target	Indication	Common selected AEs	Management
CAR T-cell	Asiabtagene ciloceuc	CD19	Adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy.	• Cytokine release syndrome (CSR) (Fever (100.4 °F/38 °C or higher), hypotension, tachycardia, hypoxia, and chills), • Immune effector cell-associated neurotoxicity syndrome (ICANS) (delirium, encephalopathy, aphasia, lethargy, difficulty concentrating, agitation, tremor, and seizures).	CSR • Grade 1: Supportive care for fever, headache, fatigue, myalgia, and malaise. • Grade 2: Administer tocilizumab intravenously. Repeat tocilizumab every 8 hours as needed if not responsive to intravenous fluids or increasing supplemental oxygen. Limit of 3 doses of tocilizumab in a 24-hour period. Administer corticosteroids if no improvement within 24 h • Grade 3: Give tocilizumab as per grade 2. Administer methylprednisolone 1 mg/kg every 6 hours, continue until the event is grade 1, then taper over 3 days. • Grade 4: Same as per grade 2. Administer methylprednisolone 1000 mg intravenously per day for 3 days.
	(Yescarta)				
	KITE Pharma, Inc.				
Tisageniecleucel (Kymriah)	Novartis	CD19	Adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy. Pediatric and young adults B-cell acute lymphoblastic leukemia.		

Cytokines

Immunotherapy agent	Drug and company	Target	Indication	Common selected AEs	Management
IFN alpha-2b (Intron A)	Merck	No specific target. Binds to type 1 interferon receptors and activates tyrosine kinase which produces antiproliferative and immunomodulatory effects.	Carcinoid tumors Melanoma Renal cell carcinoma Cutaneous T-cell lymphoma Hairy cell leukemia Follicular lymphoma Chronic myeloid leukemia	• Injection site reaction • Alopecia • Anorexia • Nausea/vomiting • Dry mouth • Increased liver enzymes • Arthralgia • Myalgia • Asthenia • Flu-like symptoms	Assess complete blood counts, thyroid function studies, and liver enzymes. • Assess for depression and suicidal risk. Start antidepressant therapy at the earliest sign of depression. • Assess for autoimmune disorders and discontinue treatment as needed.
Aldesleukin (IL-2; Proleukin)	Novartis	No specific target. Inhibits tumor growth by stimulating growth and activity of T cells and B lymphocytes.	Metastatic renal cell carcinoma Metastatic melanoma	• Diarrhea • Chills • Vomiting • Rash • Bilirubinemia • Thrombocytopenia • Nausea • Confusion • Increased serum creatinine	Assess baseline pulmonary, cardiac, hepatic, renal, and neurological function prior to starting treatment. • Monitor for signs and symptoms of infection, treat as needed. • Assess for baseline pre-existing autoimmune disease and inflammatory disorders. • Monitor blood glucose levels throughout treatment. • Monitor vital signs, urine output, and weight.

Contd...
Table 1: Contd...

Immunotherapy agent	Drug and company	Target	Indication	Common selected AEs	Management
Vaccine					
Sipuleucel-T (Provenge)	Dendreon	Prostatic acid phosphatase (PAP)	Hormone-refractory prostate cancer	Infusion related reactions • Chills • Fatigue • Fever • Back pain • Nausea • Arthralgias • Headache	Monitor for infusion related reactions. • Consider premedication with acetaminophen and diphenhydramine. • Use universal precautions when handling to limit potential exposure to infectious diseases.
Viral therapy					
Talimogene laherparepvec (Imlygic or T-VEC)	Angen	No specific target. Designed to mediate tumor regression via replication within and lysis of tumor cells	Advanced melanoma	Fever and chills • Fatigue • Nausea • Flu-like symptoms • Injection site reaction (pain, erythema, swelling)	Assess for injection site reaction. Consider premedication with acetaminophen or indomethacin. Monitor for signs and symptoms of infection, treat as needed.

syndrome (CRS), hepatitis, pulmonary AEs, hemorrhage, and cytopenias.\[30,34\] While the mechanism behind some mAbs AEs such as cytopenias is unclear, AEs such as Stevens–Johnson syndrome, urticaria, serum sickness, and anaphylaxis are generally mediated by the immune system.\[33\] The mechanism behind pulmonary AEs such as interstitial pneumonitis, acute respiratory distress syndrome, hypersensitivity pneumonitis, or bronchiolitis obliterans organizing pneumonia is a result of activation of cytotoxic T-lymphocytes, which leads to alveolar and vascular damage, cytokine release, and likely cross-reaction between lung and tumor antigens.\[33\] In contrast, cardiac AEs are believed to result from the inhibition of a growth factor (neuregulin 1) which is needed for cardiac development and maintenance.\[33\] Similarly, AE such as acneiform rash which occurs in 50%–100% of patients receiving cetuximab and panitumumab is a result of the inhibition of epidermal growth factor receptor (EGFR) which initiates the alteration and rupture of the epithelial barrier, which in turn facilitates bacterial access and proliferation.\[33\] AEs (hypertension, hemorrhage, and thromboembolism) associated with mAbs that target vascular endothelial growth factor (VEGF) and VEGF receptor are a result of the disruption of physiological processes involved in wound healing, blood pressure regulation, coagulation, renal filtration, and vascular homeostasis.\[31\]

Other frequently reported AEs of mAbs are infusion related and a result of antigen–antibody interactions precipitating cytokine release.\[17,30\] Infusion-related AEs can occur within 30 min to 2 h after the infusion or 24 h later and are described as pruritus, chills, fever, asthenia, dyspnea, nausea, rash, or headache.\[30,34\] Severe and potentially fatal infusion-related AEs may occur in 0.3% of patients and present as angioedema, hypotension, bronchospasm, and cardiac arrest.\[30,34\] Furthermore, the incidence of infusion-related AEs varies among different mAbs. For example, rituximab is 77%, trastuzumab is 40%, cetuximab is 15%–20%, bevacizumab is <3%, and panitumumab is 3%.\[33\] Management of infusion-related AEs is based on well-established clinical practice guidelines by the European Society for Medical Oncology.\[17\]

Chimeric antigen receptor T-cells

CAR T-cells are genetically engineered T-cells reprogrammed to produce CARs on the cell membrane.\[8,35\] Once these cells have been collected from the patient’s blood, reprogrammed, and injected back into the patient, tumor-specific recognition occurs, and then, T-cell memory enables the T-cells to proliferate, destroy tumor cells, and
Table 2: Monoclonal antibodies (mAbs)

Monoclonal antibodies (mAbs)	Company	Target	Indication	Common selected AEs	Management
Bevacizumab (Avastin)	Genentech	VEGF	Metastatic colorectal cancer Non-small cell lung cancer Renal cell cancer Cervical, ovarian, fallopian tube, and peritoneal cancer Recurrent glioblastoma	Epistaxis Headache Hypertension Rhinitis Proteinuria Taste alteration Dry skin Rectal hemorrhage Lacrimation disorder Back pain Exfoliative dermatitis	Hypertension
• Evaluate risk and maintain blood pressure within normal range.					
• Treat with angiotensin-converting enzyme (ACE) inhibitors, beta blockers, calcium channel blockers, and diuretics.					
Proteinuria					
• Assess urinary protein excretion assessment before every cycle of anti-VEGF using a urine dipstick.					
• If urine dipstick >2+, order 24-h urine collection for protein.					
• Hold treatment if 24-hour urine protein levels are >2 grams and restart treatment when levels are <2 grams.					
• Discontinue treatment for 24-hour urine protein >3.5 grams.					
• Angiotensin II receptors and ACE inhibitors may reduce the severity of proteinuria and end-stage renal disease.					
Hemorrhage					
• Prior to starting an anti-VEGF, assess for risk factors or any signs of bleeding.					
Wound healing					
• Discontinue treatment at least 28 days prior to surgery and reinitiate at 28 days after surgery or when wound is completely healed.					
Infection					
• Assess for signs and symptoms of infection.					
• Monitor for signs and symptoms of neurotoxic AEs.					
• Assess infusion related AEs					
• Pre-medicate with dexamethasone.					
Blinatumomab (Blincyto)	Amgen	CD19	Philadelphia-chromosome-negative relapsed or refractory B-cell precursor acute lymphoblastic leukemia	Infection Headache Neutropenia, Thrombocytopenia Fever Anemia Infusion reaction	Electrolytes
• Monitor electrolyte imbalances (magnesium, calcium, potassium) and replete as needed.					
Treatment of cutaneous AEs					
• Rash					
• Grade 1- Apply emollients regularly.					
• Grade 2- Oral or topical application of tetracycline antibiotics, corticosteroids, moisturizers, and sunscreen.					
Refer to dermatologist.					
• Grade 3- Continue topical and oral regimen and refer to dermatologist. Hold EGFR therapy.					
Paronychia					
• Grade 1- Warm water or white vinegar soaks.					
• Grade 2- Topical corticosteroids and antimicrobials, consult a dermatologist and podiatrist as needed.					
• Grade 3- Refer to dermatologist or podiatrist, continue topical steroids, antifungals, antibiotics, antiseptics, and silver nitrate.					
Gastrointestinal AEs					
• Diarrhea					
• Assess for infection versus drug related.					
• Grade 1-2- loperamide, hydrate.					
• Grade 3-4- In addition to loperamide, add codeine for a short-term basis.					
• Obtain stool cultures and hospitalization for intravenous fluids as needed.					
• Referral to gastroenterologist if diarrhea does not resolve.					
Brentuximab vedotin (Adcetris)	SeattleGenetics	CD30	Hodgkin lymphoma Systemic anaplastic large cell lymphoma	Neutropenia Peripheral sensory neuropathy Fatigue Nausea/vomiting Anemia Upper respiratory infection Diarrhea Pyrexia Rash Thrombocytopenia Cough	
Cetuximab (Erbitux)	Lilly	EGFR	Metastatic colorectal cancer Head and neck cancer	Acne-like rash Fatigue Growth of eyelashes Dry skin Allergic reaction, Myocardial infarction Diarrhea Hypomagnesemia Paronychia	
Monoclonal antibodies (mAbs)	Company	Target	Indication	Common selected AEs	Management
----------------------------	---------	--------	------------	---------------------	------------
Daratumumab (Darzalex)	Janssen	CD38	Multiple myeloma	Fatigue, Nausea/vomiting, Diarrhea, Constipation, Muscle spasms, Back pain, Fever, chills, Dizziness, Insomnia, Dyspnea, Cough, Edema, Neuropathy, Arthralgias, Cold-like symptoms	Fatigue • Assess treatable contributing factors. • Assess psychosocial factors. • Treatment may include physical activity, psychosocial interventions, mind-body interventions, and pharmacologic interventions. • Assess for signs and symptoms of infection.
Dinutuximab (Unituxin)	United Therapeutics	GD2 gangloside	Neuroblastoma (in children)	Pain, Fever, Thrombocytopenia, Lymphopenia, Infusion reactions, Hypotension, Hypertension, Hyponatremia	• Assess for signs and symptoms of infection. • Monitor blood pressure and treat as per guidelines. Discontinue treatment for severe or uncontrolled hypertension. • Assess infusion related AEs.
Elotuzumab (Empliciti)	Bristol-Myers Squibb	SLAMF7	Multiple myeloma	Infusion reaction, Hypertension	• Assess for signs and symptoms of infection. • Monitor blood pressure and treat as per guidelines. Discontinue treatment for severe or uncontrolled hypertension. • Assess infusion related AEs.
Gentuzumab Ozogamicin (Mylotarg)	Pfizer Inc.	CD33	Newly-Diagnosed Acute myeloid leukemia (AML), Relapsed or refractory AML	Nausea/vomiting, Diarrhea, Constipation, Headache, Dizziness, Anxiety, Depression, Cytopenia, Elevated liver enzymes	• Assess for signs and symptoms of infection. • Assess complete blood counts and metabolic panels three times per week. • Assess for signs and symptoms of infection. • Assess infusion related AEs. Discontinue for severe infusion reactions.
Ibritumomab tiuxetan (Zevalin)	Biogen Idec, Inc	CD20	Non-Hodgkin lymphoma	Cytopenia, Fatigue, Nasopharyngitis, Nausea, Abdominal pain, Asthenia, Cough, Diarrhea, Pyrexia	• Assess for signs and symptoms of infection. • Assess infusion related AEs. Discontinue for severe infusion reactions. • Monitor complete blood counts and platelet count weekly after administration of drug.
Necitumumab (Portrazza)	Lilly	EGFR	Non-small cell lung cancer	Hypomagnesemia, Hypokalemia, Vomiting, Diarrhea, Acne, Weight loss, Mucositis, Hemoptysis	Electrolytes • Monitor electrolyte imbalances (magnesium, calcium, potassium) and replete as needed. Treatment of cutaneous AEs • Rash ✗ Grade 1- Apply emollients regularly. ✗ Grade 2- Oral or topical application of tetracycline antibiotics, corticosteroids, moisturizers, and sunscreen. Refer to dermatologist. ✗ Grade 3- Continue topical and oral regimen and refer to dermatologist. Hold EGFR therapy. • Paronychia ✗ Grade 1- Warm water or white vinegar soaks. ✗ Grade 2- Topical corticosteroids and antimicrobials, consult a dermatologist and podiatrist as needed. ✗ Grade 3- Refer to dermatologist or podiatrist, continue topical steroids, antifungals, antibiotics, antiseptics, and silver nitrate.

Contd...
Monoclonal antibodies (mAbs)	Company	Target	Indication	Common selected AEs	Management
Obinutuzumab (Gazyva)	Genentech	CD20	Chronic myeloid leukemia	Infusion reaction	• Monitor for infusion related AEs and treat as per guidelines.
			Follicular lymphoma	Neutropenia	• Monitor for signs and symptoms of infection.
				Thrombocytopenia, Anemia	• Monitor complete blood counts frequently.
				Fever	
				Cough	
				Diarrhea	
				Nausea	
				Fatigue	
				Dyspnea	
				Rash	
				Nausea	
				Bronchitis	
				Upper respiratory tract infection	
Ofatumumab (Arzerra)	Novartis	CD20	Chronic lymphocytic leukemia	Infusion reaction	• Pre-medicate with oral or intravenous antihistamine, acetaminophen, and intravenous corticosteroid to minimize infusion reaction.
				Neutropenia	• Monitor complete blood counts and assess neurologic function.
				Pneumonia	
				Fever	
				Cough	
				Diarrhea	
				Anemia	
				Fatigue	
				Dyspnea	
				Rash	
				Nausea	
				Bronchitis	
Olaratumab (Lartruvo)	Lilly	PDGF R	Soft tissue sarcoma	Nausea/vomiting	• Monitor electrolyte imbalances and replete as needed.
		alpha		Fatigue	• Monitor for signs and symptoms of infection.
				Myalgias	• Monitor complete blood counts frequently.
				Mucositis	• Monitor for infusion related AEs and treat as per guidelines.
				Alopecia	
				Diarrhea	
				Anorexia	
				Abdominal pain	
				Neuropathy	
				Headache	
				Lymphopenia	
				Neutropenia	
				Thrombocytopenia	
				Hyperglycemia	
				Elevated activated Partial thromboplastin time	
				Hypokalemia	
				Hypophosphatemia	
Panitumumab (Vectibix)	Amgen	EGFR	Wild-type RAS metastatic colorectal cancer	Acneiform dermatitis	Electrolytes Monitor electrolyte imbalances (magnesium, calcium, potassium) and replete as needed.
				Pruritus	Treatment of cutaneous AEs.
				Rash	• Rash
				Skin exfoliation	• Grade 1- Apply emollients regularly.
				Paronychia	• Grade 2- Oral or topical application of tetracycline antibiotics, corticosteroids, moisturizers, and sunscreen. Refer to dermatologist.
				Dry skin	• Grade 3- Continue topical and oral regimen and refer to dermatologist. Hold EGFR therapy.
				Skin rashes	
				Diarrhea, Nausea/vomiting	
				Fatigue	
				Abdominal pain	
				Overgrowth of eyelashes	
Table 2: Contd...

Monoclonal antibodies (mAbs)	Company	Target	Indication	Common selected AEs	Management
Pertuzumab (Perjeta)	Genentech	HER-2	Metastatic breast cancer	Nausea	• Paronychia
✓ Grade 1- Warm water or white vinegar soaks.					
✓ Grade 2- Topical corticosteroids and antimicrobials, consult a dermatologist and podiatrist as needed.					
✓ Grade 3- Refer to dermatologist or podiatrist, continue topical steroids, antifungals, antibiotics, antiseptics, and silver nitrate.					
• Gastrointestinal AEs					
✓ Diarrhea					
✓ Assess for infection versus drug related.					
✓ Grade 1-2- loperamide, hydrate.					
✓ Grade 3-4- In addition to loperamide, add codeine for a short-term basis.					
✓ Obtain stool cultures and hospitalization for intravenous fluids as needed.					
✓ Referral to gastroenterologist if diarrhea does not resolve.					
Ramucirumab (Cyramza)	Agen	VEGFR2	Non-small cell lung cancer	Hypertension	• Hypertension
✓ Evaluate risk and maintain blood pressure within normal range.					
✓ Treat with angiotensin-converting enzyme (ACE) inhibitors, beta blockers, calcium channel blockers, and diuretics.					
• Discontinue treatment for severe or uncontrolled hypertension.					
• Hemorrhage					
✓ Prior to starting an anti-VEGF, assess for risk factors or any signs of bleeding.					
• Proteinuria					
✓ Assess urine protein levels protein levels before each cycle.					
• Assess for infusion related AEs					
• Premedicate with acetaminophen and antihistamine prior to each infusion.					
• Assess complete blood counts and renal function.					
Rituxin (Rituximab)	Genentech	CD20	Low grade or follicular lymphoma	Infusion reactions	• Assess for signs and symptoms of infection.
• Assess left ventricular ejection function and monitor for cardiac failure or dysfunction.					
Trastuzumab (Herceptin)	Roche	HER-2	Adjuvant and Metastatic breast cancer	Fever	• Assess liver enzymes at baseline and prior to each dose.
• Monitor electrolytes and replete as needed.					
• Monitor for signs and symptoms of infection.					
• Assess left ventricular function at baseline and during treatment.					
• Monitor complete blood counts frequently.					
Trastuzumab Emtrastine (Kadcyla)	Genentech	HER-2	Metastatic breast cancer	Nausea	• Thrombocytopenia
 • Elevated liver enzymes
 • Hypokalemia
 • Myalgia
 • Arthralgia
 • Anemia
 • Neutropenia
 • Fatigue
 • Nausea
 • Cardiomyopathy |
A common AE associated with CAR T-cell therapy is CRS, with incidence rates of 43%–100% in adult and pediatric patients with relapsed and refractory acute lymphoblastic leukemia.\(^{[18,38-40]}\) CSR occurs when T-cells engage with a target antigen, multiply in the body, and release cytokines that cause an inflammatory response.\(^{[18]}\) The onset and severity of CRS depend on the type of CAR T-cell therapy and the degree of immune cell activation.\(^{[19]}\) Typically, CRS symptoms, if they occur, develop days to weeks after infusion of CAR T-cell therapy.\(^{[19]}\) Patients with CRS may experience constitutional symptoms such as fever, rigors, malaise, myalgias, arthralgias, fatigue, nausea, vomiting, and headache, while other patients may develop severe symptoms such as hypotension, tachycardia, capillary leak syndrome, and multiorgan dysfunction.\(^{[18,19,38-41]}\) In addition, patients may experience neurotoxicity, also known as immune effector cell-associated neurotoxicity syndrome, which can occur concurrently with or after CSR, and vary from mild, expressive aphasia to confusion, lethargy, agitation, delirium, difficulty concentrating, seizures, encephalopathy, and infrequently, cerebral edema.\(^{[19,42]}\)

In a trial conducted by Schuster et al., in which 28 patients with diffuse large B-cell lymphoma or follicular lymphoma that had relapsed or was refractory to previous treatment were treated with CAR T-cell therapy, CRS occurred in 16 patients and neurotoxicity (ranging from mild cognitive disturbance to global encephalopathy) occurred in 11 patients.\(^{[42]}\) In this study, CRS and neurotoxicity were self-limiting in all patients but one, who was given tocilizumab (Actemra: Genentech, South San Francisco, CA, USA), an anti-interleukin (IL)-6 antibody that reversed the symptoms of CRS within a few hours.\(^{[42]}\) A similar study of 161 patients (133 patients completed the toxicity assessment) with acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin's lymphoma treated with CAR T-cell therapy reported that CRS developed in 71% of patients and that neurotoxicity was observed in 40% of patients.\(^{[43]}\) In this study, CRS and neurotoxicity were reversible except six patients who died.\(^{[43]}\)

Management of CRS depends on the grading as outlined in consensus guidelines established by a CAR T-cell therapy-associated toxicity working group and the American Society for Blood and Marrow Transplant [Table 1].\(^{[20,44]}\) Opinions vary on the need for hospitalization; Neelapu et al. recommended hospitalization and close monitoring of patients for a period of 7 days after CAR T-cell infusion, whereas Teachey et al. posited that patients can receive CAR T-cells in the outpatient setting and be admitted to the hospital only if the patient develops a fever.\(^{[20,45]}\)

Cytokines

Cytokines, which are small protein molecules naturally produced by the body, regulate the differentiation, migration, activation, and suppression of leukocytes.\(^{[13]}\) Of the several different varieties of cytokines, recombinant interferon alpha-2b (IFN-alpha-2b) and IL-2 are the most widely used cytokines in cancer treatment.\(^{[21]}\) Recombinant IFN-alpha-2b has been approved for non-Hodgkin's lymphoma, hairy cell leukemia, and melanoma.\(^{[46]}\) Recombinant IFN-alpha-2b is associated with flu-like symptoms, such as chills, fever, headache, and myalgia,\(^{[10,22]}\) which are generally controlled with nonsteroidal anti-inflammatory drugs.\(^{[47]}\) Other potential AEs include anorexia, depression, fatigue, hepatic dysfunction, thyroid dysfunction, autoimmune hemolytic anemia/thrombocytopenia, and immune-mediated nephritict syndrome.\(^{[10,48]}\) Patients with grade 2–3 fatigue may require a break from treatment or a dose reduction, and patients with depression may require prophylactic antidepressants.\(^{[47]}\) Generally, AEs associated with IFN-alpha-2b tend to reverse rapidly when therapy is discontinued.\(^{[10]}\)

IL-2 is a T-cell growth factor that promotes the antitumor activity of natural killer cells, enhances the growth and proliferation of regulatory T-cells (Tregs), and induces lymphokine-activated killer cells that mediate antitumor effects.\(^{[13]}\) IL-2 has been approved for the treatment of metastatic melanoma and metastatic renal cell cancer and can be administered intravenously or subcutaneously.\(^{[49]}\) Common AEs associated with IL-2 include chills, fatigue, fever, nausea, diarrhea, vomiting, hypotension, transaminitis, dyspnea, oliguria, and hyperbilirubinemia.\(^{[10,23]}\) In a retrospective analysis of 243 patients with advanced melanoma who received high-dose IL-2, the following AEs were reported: oliguria (14%–58%), hypotension (14%–39%), and tachycardia (10%–21%).\(^{[50]}\) Given that these AEs can be severe or life-threatening, most patients are administered high-dose IL-2 on an inpatient unit with cardiac monitoring at institutions that have healthcare providers who have experience in recognizing and managing these AEs using specific institutional guidelines and standing orders [Table 1].\(^{[10,23,44]}\)

Oncolytic viral therapy

Oncolytic viral therapy, which increases a patient’s immune response to cancer without harming normal
Checkpoint inhibitors	Company	Target	Indication	Common selected irAEs	Management
Atezolizumab (Tecentriq)	Roche/Genentech Ltd	PD-L1	Metastatic nonsmall cell lung cancer	Fatigue	Baseline
			Advanced urothelial cancer	Diarrhea, Fever, Myalgias	Perform a baseline assessment of thyroid studies, complete blood counts, liver function, and metabolic panels, and document them prior to starting each treatment and at intervals of 6-12 weeks for the first 6 months after completing treatment
				Hepatitis	Document any co-morbid conditions
				Pneumonitis	Evaluate baseline radiological examinations
				Dermatitis	Assess for history of autoimmune disease, which may worsen with starting a checkpoint inhibitor
					Inform patients and caregivers of potential irAEs before treatment initiation
				Infusion irAEs	Infusion irAEs
Avelumab (Ravencio)	Merck	PD-L1	Metastatic Merkel cell cancer	Fatigue, Myalgias, Colitis	Assess for infusion related AEs
				Infusion reaction	Interrupt or slow the rate of infusion for grade 1 or 2
				Dermatitis, Hypothyroidism, Hyperthyroidism, Hyperglycemia, Nephritis, Hepatitis	For grade 3 or 4, permanently, discontinue the treatment
					General management
					Assess for irAEs and manage according to grade, clinical guidelines or algorithms
					Fatigue irAEs
					Assess adenocorticotropic hormone, cortisol, and testosterone
					Assess treatable contributing factors (gastrointestinal, hepatic, and pulmonary irAEs)
					Assess psychosocial factors
					Treatment may include physical activity, psychosocial interventions, mind-body interventions, and pharmacologic interventions
Durvalumab (Imfinzi)	AstraZeneca	PD-L1	Unresectable stage III non-small cell lung cancer	Fatigue	Dermatologic irAEs
			Urothelial cancer	Colitis, Fever, Myalgias	Grade 1- Treat with topical emollients, oral antihistamines, and mild strength topical corticosteroids
					Grade 2- Topical emollients, oral antihistamines, median to high strength topical steroids
					Grade 3- Hold treatment, treat with topical emollients, oral antihistamines, high strength topical steroids or systemic corticosteroids depending on the severity of symptoms
					Grade 4- Hold treatment, hospital admission, dermatologist referral, intravenous methylprednisolone
Ipilimumab (Yervoy)	Bristol-Myers Squibb Co	CTLA-4	Melanoma	Fatigue, Diarrhea, Colitis	Gastrointestinal irAEs
			Combined with Nivolumab for treatment of advanced renal cell cancer, and microsatellite instability high or mismatch repair deficient metastatic colorectal cancer	Myalgias	Assess complete blood count, serum electrolyte panel, stool analysis for enteropathogens, and Clostridium difficile
					Grade 1- Consider holding treatment, hydration, loperamide
					Grade 2- Hold treatment, intravenous methylprednisolone, consider infliximab if no response to steroids. If refractory to infliximab, consider vedolizumab
					Grade 3- Discontinue anti-CTLA-4, consider resuming anti-PD1/anti-PD-L1 after symptoms have resolved. Consider Gastrointestinal referral
					Grade 4- Discontinue treatment permanently, hospitalization
Nivolumab (Opdivo)	Bristol-Myers Squibb Co	PD-1	Metastatic melanoma	Fatigue	Endocrine irAEs
			Metastatic non-small cell lung cancer	Myalgias	Thyroid
			Advanced renal cell cancer	Dermatitis	1. Check thyroid panel at baseline and prior to each treatment
			Metastatic urachial cancer	Diarrhea	2. Hormone replacement therapy for symptomatic hypothyroidism or TSH > 10
			Classical Hodgkin lymphoma	Hypothyroidism	3. Beta-blockers for symptomatic hyperthyroidism
			Recurrent/metastatic squamous cell cancer of the head and neck	Colitis, Hepatitis, Pneumonitis	Diabetes mellitus
			Hapatocellular cancer		Monitor blood glucose levels with each dose
					Lifestyle and diet modification as needed
					Endocrine referral if symptomatic or uncontrolled blood glucose levels
Pembrolizumab (Keytruda)	Merck and Co Inc	PD-1	Advanced non-small cell lung cancer	Fatigue	Hepatic irAEs
			Classical Hodgkin lymphoma	Dermatitis	Evaluate liver function tests prior to starting every cycle of treatment
			Advanced gastric cancer	Arthralgias	Grade 2- Hold treatment, monitor liver function tests twice weekly
					If grade 2 lasts longer than 1-2 weeks, check for disease related causes, concomitant drug or alcohol administration, and infectious diseases
			Advanced melanoma	Cough	Treat with corticosteroids
			Microsatellite instability-High cancer	Hyperglycemia	
			Advanced cervical cancer	Hepatitis	
			Head and neck squamous cell cancer	Pruritus	
tissue, uses a modified virus that can force tumor cells to self-destruct and release antigens. In 2015, talimogene laherparepvec (T-VEC) (Imlygic: Amgen, Thousand Oaks, CA, USA), a second-generation oncolytic herpes simplex type 1, was engineered to express human GM-CSF, received FDA approval for use in patients with advanced melanoma. The mechanism of action of T-VEC is unknown; however, it is thought that T-VEC uses the herpes virus entry mediator, glycoproteins, and nectins on the cell surface to enter cancer cells and trigger cell lysis. Common AEs associated with T-VEC are fever (42.8%), chills (48.6%), fatigue (50.3%), nausea (35.6%), vomiting (21.2%), headache (18.8%), and erythema, pain, and cellulitis (27.7%) at the injection site. Management of AEs is mainly supportive; for example, acetaminophen or indomethacin can be given for pain, chills, or fever, and ice bags can be applied to the injection site 5–10 min before T-VEC injection to minimize pain at the injection site [Table 1].

Immune checkpoint inhibitors

Immune checkpoint inhibitors, which enhance the immune system’s preexisting antitumor responses, target molecules that switch immune responses on and off. For instance, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is normally expressed on the surface of naive effector T-cells and Tregs, which inhibit autoimmunity, and promotes tolerance to self-antigens. Similarly, PD-1 is an immune inhibitory receptor which negatively regulates T-cell functions through the engagement of programmed death ligand 1 (PD-L1), which is found on various malignant cells. Hence, checkpoint inhibitors disrupt the signaling pathways that allow cancer cells to evade T-cell-mediated death by preventing CTLA-4 and PD-1 from binding with specific ligands, thus enhancing the immune system’s ability to attack malignant cells. The FDA has approved several checkpoint inhibitors that have shown clinical efficacy in the treatment of a number of cancers [Table 3].

The AEs associated with checkpoint inhibitors are referred to as immune-related AEs (irAEs). These irAEs are secondary to the infiltration of activated T-cells – which are also involved in autoimmunity – into normal tissue. These irAEs can affect any organ or multiple organs simultaneously or at different time points. The areas most commonly affected are skin, gastrointestinal tract, endocrine, lungs, thyroid, pituitary, adrenal glands, and musculoskeletal system and less commonly affected are nervous, renal, hematologic, ocular, and cardiovascular system. For example, in a retrospective study of 50 patients with nonsmall cell lung cancer, who were treated with an immune checkpoint inhibitor, the

Table 3: Contd...

Checkpoint inhibitors	Company	Target	Indication
Ipilimumab (CTLA-4)	Bristol-Myers Squibb	Advanced melanoma, urothelial bladder cancer, primary mediastinal B-cell lymphoma	
Nivolumab (PD-1)	Merck	Lung, melanoma, head and neck, renal cell, bladder, esophageal	
Pembrolizumab (PD-1)	Merck	Lung, melanoma, head and neck, esophageal, bladder, head and neck, renal cell,	
most frequent irAEs were fatigue (42%), rash (22%), nausea (20%), and fever (20%). Similarly, a retrospective analysis to assess the safety profile of nivolumab in 576 patients with advanced melanoma found that 71% of patients experienced irAEs, with the most common irAEs being fatigue (25%), pruritus (17%), diarrhea (13%), and rash (13%).

The management of irAEs is based on well-established clinical practice guidelines, such as the National Comprehensive Cancer Network, the American Society of Clinical Oncology, the European Society for Medical Oncology, and the Society for Immunotherapy of Cancer. For patients with grade 1 irAEs that are not cardiac, hematologic, or neurologically related, they continue checkpoint inhibitors with close monitoring. For patients with grade 2 irAEs, the checkpoint inhibitor should be put on hold and corticosteroids may be given; the checkpoint inhibitor may be resumed when the patient’s symptoms and/or laboratory values return to grade 1 or less. For patients with grade 3 irAEs, the checkpoint inhibitor should be placed on hold and high-dose corticosteroids should be administered and tapered over 4–6 weeks; if symptoms do not improve within 48–72 h, administer infliximab; however, if symptoms and/or laboratory values return to grade 1 or less, the checkpoint inhibitor may be resumed with caution. For patients with grade 4 irAEs – except for endocrinopathies that are controlled with hormone replacement – the checkpoint inhibitor should be permanently discontinued.

Since check inhibitors can cause irAEs to occur in any organ of the body, potentiate autoimmune diseases, or aggravate other comorbid diseases, patients should be thoroughly screened and examined before starting an immune checkpoint inhibitor. Furthermore, patients and caregivers should be educated in early recognition and management of irAEs to minimize serious or life-threatening complications. A complete patient educational guide on irAEs can be accessed at https://www.esmo.org/Patients/Patient-Guides/Patient-Guide-on-Immunotherapy-Side-Effects.
Combination immunotherapy

Although immunotherapy has changed the landscape of cancer treatment, one of the biggest challenges of this type of treatment is that many patients do not benefit from it (i.e., they have primary resistance) and some patients relapsed after a period of response (i.e., they develop acquired resistance). To overcome this challenge, researchers are using strategies such as combining anti-PD-1 or PD-L1 agents with other immunotherapy agents, molecular targeted therapy, vaccines, chemotherapies, radiotherapy, or chemoradiotherapies. As of September 2017, over 1,105 combination immunotherapy clinical trials were in progress; however, only one checkpoint inhibitor combination, nivolumab (Opdivo) with ipilimumab (Yervoy), has been approved for clinical use.

As checkpoint inhibitors are combined with other immunotherapy agents or other treatment modalities, the likelihood of more severe or newer AEs occurring increases. For example, a systematic review that assessed the clinical, epidemiological, humanistic, and economic burden of gastrointestinal AEs due to combination checkpoint inhibitors in advance melanoma reported that patients who received combination of ipilimumab plus nivolumab experienced more AEs than patients who received monotherapy checkpoint inhibitors. Similarly, an observational study of patients with nonsmall cell lung cancer receiving nivolumab plus an EGFR-tyrosine kinase inhibitor (TKI) reported higher incidents of interstitial pneumonitis for nivolumab in combination with EGFR-TKI versus treatment with either drug alone.

Conclusion

Because of the variability in the mechanism of action among the major categories of oncologic immunotherapy treatments, and because of the heterogeneity of AEs, it is imperative that oncology nurses become familiar with the different AEs so that they can initiate appropriate management and referrals to specialist to improve patient outcomes. Oncology nurses need to be on the forefront of assessing and documenting AEs and the long-term impact on patients, which may lead to a better understanding of why some patients develop AEs and how they can be predicted and alleviated in patients with cancer.

Acknowledgments

I would like to thank Laura Russell for the scientific editing of this manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Mayor S. Immunotherapy improves overall survival in pancreatic cancer. Lancet Oncol 2015;16:e58.
2. Chen J, Xiao-Zhong G, Qi XS. Clinical outcomes of specific immunotherapy in advanced pancreatic cancer: A systematic review and meta-analysis. J Immunol Res 2017;2017:828391.
3. Pritz C. Immunotherapy drug improves survival of patients with squamous non-small cell lung cancer. Cancer 2015;121:3562-3.
4. Gao D, Li C, Xie X, Zhao P, Wei X, Sun W, et al. Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in gastric and colorectal cancer patients. PLoS One 2014:e93886.
5. Andtbacka RH, Kaufman HL, Colilicho F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015;33:2780-8.
6. Karbach J, Gnjatic S, Biskamp M, Atanca A, Weidmann E, Brandt K, et al. Long-term complete remission following radiosurgery and immunotherapy in a melanoma patient with brain metastasis: Immunologic correlates. Cancer Immunol Res 2014;2:404-9.
7. Weng J, Lai P, Qin L, Lai Y, Jiang Z, Luo C, et al. A novel generation of T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J Hematol Oncol 2018;11:25.
8. Stanculeanu DL, Daniela Z, Lazescu A, Bunghez R, Anghel R. Development of new immunotherapy treatments in different cancer types. J Med Life 2016;9:240-8.
9. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol 2015;33:2992-9.
10. Ventola CL. Cancer immunotherapy, part 2: Efficacy, safety, and other clinical considerations. P T 2017;42:452-63.
11. Alatrash G, Jakher H, Stafford PD, Mittendorf EA. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf 2013;12:631-45.
12. Conn Y. Recent developments in oncology immunotherapy, implications for NPs part 1. J Nurse Pract 2018;14:251-8.e1.
13. Ventola CL. Cancer immunotherapy, part 1: Current strategies and agents. P T 2017;42:375-83.
14. Hu R, George DJ, Zhang T. What is the role of sipuleucel-T in the treatment of patients with advanced prostate cancer? An update on the evidence. Ther Adv Urol 2016;8:272-8.
15. Graff JN, Chamberlain ED. Sipuleucel-T in the treatment of prostate cancer: An evidence-based review of its place in therapy. Core Evid 2015;10:1-10.
16. Kwok KK, Vincent EC, Gibson JN. 36 - antineoplastic drugs. In: Dowd FF, Johnson BS, Mariotti AJ, editors. Pharmacology and Therapeutics for Dentistry. 7th ed. St. Louis, Missouri: Mosby; 2017. p. 530-62.
17. Roselló S, Blasco I, García Fáregat L, Cervantes A, Jordan K; ESMO Guidelines Committee. Management of infusion reactions to systemic anticancer therapy: ESMO clinical practice guidelines. Ann Oncol 2017;28:v100-18.
18. Frey N. Cytokine release syndrome: Who is at risk and how to treat. Best Pract Res Clin Haematol 2017;30:336-49.
19. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M,
et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188-95.
20. Neelapu SS, Tummla S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy – Assessment and management of toxicities. Nat Rev Clin Oncol 2016;13:47-62.
21. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 2018;10. pii: a020472.
22. Xu J, Li J, Chen J, Liu ZJ. Effect of adjuvant interferon therapy on hepatitis b/c virus-related hepatocellular carcinoma after curative therapy – Meta-analysis. Adv Clin Exp Med 2015;24:331-40.
23. Dutcher JP, Schwartzzenburger DJ, Kaufman HL, Agarwala SS, Tarhini AA, Lowder JN. High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. J Immuno Ther Cancer 2014;2:26.
24. Barber FD. Recent developments in oncology immunotherapy. adverse effects part 2. J Nurse Pract 2018;14:259-66.
25. Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 2016;4:53.
26. Jarboe J, Gupta A, Saif W. Therapeutic human monoclonal antibodies against cancer. Methods Mol Biol 2014;1060:61-77.
27. Singh S, Kumar NK, Dwivedi P, Charan J, Kaur R, Sidhu P, et al. Monoclonal antibodies: A review. Curr Clin Pharmacol 2018;13:85-99.
28. Sherbenou DW, Mark TM, Forberg P. Monoclonal antibodies in multiple myeloma: A new wave of the future. Clin Lymphoma Myeloma Leuk 2016;17:545-54.
29. Tóbias A, O’brien MP, Agulnik M. Olaratumab for advanced soft tissue sarcoma. Expert Rev Clin Pharmacol 2017;10:699-705.
30. Guan M, Zhou YP, Sun JL, Chen SC. Toxicity management after chimeric antigen receptor T cell therapy: One size does not fit ‘ALL’. Nature Rev Clin Oncol 2018;15:218.
31. Brandes AA, Bartolotti M, Tosoni A, Poggi R, Franceschi E. Practical management of bevacizumab-related toxicities in glioblastoma. Oncologist 2015;20:166-75.
32. Hofheinz RD, Deplanque G, Komatsu Y, Kobayashi Y, Ocivirk J, Racca P, et al. Recommendations for the prophylactic management of skin reactions induced by epidermal growth factor receptor inhibitors in patients with solid tumors. Oncologist 2016;21:1483-91.
33. Baldo BA. Adverse events to monoclonal antibodies used for cancer therapy. Biomed Res Int 2015;2015:428169.
34. Charwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: Clinical implications. Nat Rev Clin Oncol 2016;13:209-27.
35. Callahan C, Baniewicz D, Ely B. CAR T-cell therapy: Pediatric patients with relapsed and refractory acute lymphoblastic leukemia. Clin J Oncol Nurs 2017;21:22-8.
36. Bayer V, Amaya B, Baniewicz D, Callahan C, Marsh L, McCoy AS, et al. Cancer immunotherapy: An evidence-based overview and implications for practice. Clin J Oncol Nurs 2017;21:13-21.
37. Zheng PP, Kros JM, Li J. Approved CAR T cell therapies: Ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov Today 2018;23:1175-82.
38. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014;371:1507-17.
39. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Semin Oncol 2015;42:436-47.
40. Tzankov A, Khanani AA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+ CD8+ composition in adult B cell ALL patients. J Clin Invest 2016;126:2123-38.
41. Bonfant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016;3:16011.
42. Schuster SJ, Vodobjoda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545-54.
43. Callahan C, Baniewicz D, Ely B. CAR T-cell therapy: Pediatric patients with relapsed and refractory acute lymphoblastic leukemia. Clin J Oncol Nurs 2017;21:22-8.
Ciccolini K, et al. Checkpoint inhibitors: Common immune-related adverse events and their management. Clin J Oncol Nurs 2017;21:45-52.

57. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2018;29:84-91.

58. Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline summary. J Oncol Pract 2018;14:247-9.

59. Nagai H, Muto M. Optimal management of immune-related adverse events resulting from treatment with immune checkpoint inhibitors: A review and update. Int J Clin Oncol 2018;23:410-20.

60. Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the society for immunotherapy of cancer (SITC) toxicity management working group. J Immunother Cancer 2017;5:95.

61. Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book 2015; 76-83. [doi: 10.14694/EdBook_AM.35.76].

62. Hsu JC, Lin JY, Hsu MY, Lin PC. Effectiveness and safety of immune checkpoint inhibitors: A retrospective study in Taiwan. PLoS One 2018;13:e0202725.

63. Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J Clin Oncol 2017;35:785-92.

64. Thompson JA. New NCCN guidelines: Recognition and management of immunotherapy-related toxicity. J Natl Compr Canc Netw 2018;16:594-6.

65. Haanen JB, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28:iv119-42.

66. Pennock GK, Chow LQ. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist 2015;20:812-22.

67. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707-23.

68. Mearns ES, Bell JA, Galaznik A, Puglielli SM, Cichewicz AB, Boulanger T, et al. Gastrointestinal adverse events with combination of checkpoint inhibitors in advanced melanoma: A systematic review. Melanoma Manag 2018;5:MMT01.

69. Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol 2018;4:1112-5.