Short Range Correlations and the EMC Effect

L.B. Weinstein,1 E. Piasetzky,2 D.W. Higinbotham,3 J. Gomez,3 O. Hen,2 and R. Shneor2

1Old Dominion University, Norfolk, Virginia 23529
2Tel Aviv University, Tel Aviv 69978, Israel
3Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

(Dated: January 19, 2011)

This paper shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) at intermediate

\[x_B \geq 2 \text{ GeV}^2 \]

and \(0.35 \leq x_B \leq 0.7 \) is linearly related to the Short Range Correlation (SRC) scale factor obtained from electron inclusive scattering at \(x_B \geq 1 \). The observed phenomenological relationship is used to extract the ratio of the deuteron to the free

\[n / F_N \]

or \[p / F_P \] cross sections on nucleus \(A \). This paper will explore the relationship between deep inelastic and large-

\[x_B \]

inelastic scattering.

The per-nucleon electron deep inelastic scattering (DIS) cross sections of nuclei with \(A \geq 3 \) are smaller than those of deuterium at \(Q^2 \geq 2 \text{ GeV}^2 \), and moderate \(x_B \), 0.35 \(\leq x_B \leq 0.7 \). This effect, known as the EMC effect, has been measured for a wide range of nuclei \([1,2]\). There is no generally accepted explanation of the EMC effect.

In general, proposed explanations need to include both nuclear structure effects (momentum distributions and binding energy) and modification of the bound nucleon structure due to the nuclear medium. Comprehensive reviews of the EMC effect can be found in \([3,11]\) and references therein. Recent high-precision data on light nuclei \([7]\) suggest that it is a local density effect and not a bulk property of the nuclear medium.

The per-nucleon inelastic scattering cross sections of nuclei with \(A \geq 3 \) are greater than those of deuterium for \(Q^2 > 1.4 \text{ GeV}^2 \) and large \(x_B \), 1.5 \(\leq x_B \leq 2 \). The cross section ratio for two different nuclei (e.g., carbon and helium) shows a plateau when plotted as a function of \(x_B \) (i.e., it is independent of \(x_B \)). This was first observed at SLAC \([12]\) and subsequently at Jefferson Laboratory \([13,14]\). The plateau indicates that the nucleon momentum distributions of different nuclei for high momentum, \(p \geq p_{\text{thresh}} = 0.275 \text{ GeV}/c \), are similar in shape and differ only in magnitude. The ratio (in the plateau region) of the per-nucleon inclusive \((e,e')\) cross sections for two nuclei is then the ratio of the probabilities to find high momentum nucleons in those two nuclei \([15,16]\).

These high-momentum nucleons were shown recently in hadronic \([17,18]\) and leptonic \([19,20]\) two-nucleon knockout experiments to be almost entirely due to central and tensor nucleon-nucleon Short Range Correlations (SRC) \([21–24]\). SRC occur between pairs of nucleons with high relative momentum and low center of mass momentum, where low and high are relative to the Fermi momentum in heavy nuclei. Thus, we will call the ratio of cross sections in the plateau region the “SRC scale factor”.

This paper will show quantitatively that the magnitude of the EMC effect in nucleus \(A \) is linearly related to the SRC scale factor of that nucleus relative to deuterium. This idea was suggested by Higinbotham et al. \([22]\).

We characterize the strength of the EMC effect for nucleus \(A \) following Ref. \([7]\) as the slope of the ratio of the per-nucleon deep inelastic electron scattering cross sections of nucleus \(A \) relative to deuterium, \(dR_{EMC}/dx \), in the region \(0.35 \leq x_B \leq 0.7 \). This slope is proportional to the value of the cross section ratio at \(x \approx 0.5 \), but is unaffected by overall normalization uncertainties that merely raise or lower all of the data points together. For \(^3\text{He} \), \(^4\text{He} \), \(^9\text{Be} \) and \(^{12}\text{C} \) we use the published slopes from \([7]\) measured at \(3 \leq Q^2 \leq 6 \text{ GeV}^2 \). We also fit the ratios, measured in Ref. \([13]\), as a function of \(x_B \) for 0.36 \(\leq x_B \leq 0.68 \). The results are averages over all measured \(Q^2 \) (i.e., \(Q^2 = 2,5 \) and 10 GeV\(^2 \) for \(x_B < 0.6 \) and \(Q^2 = 5 \) and 10 GeV\(^2 \) for larger \(x_B \)). The results from the two measurements for \(^3\text{He} \) and \(^{12}\text{C} \) are consistent and we use the weighted average of the two. See Table \([1]\) The uncertainties are not meant to take into account possible effects of the anti-shadowing region at \(x_B \approx 0.15 \) and the Fermi motion region at \(x_B > 0.75 \) extending into the region of interest.

The SRC scale factors determined from the isospin-corrected per-nucleon ratio of the inclusive \((e,e')\) cross sections on nucleus \(A \) and \(^3\text{He} \), \(a_2(A/^{3}\text{He}) = \)}
(3/\(A\))\(\sigma_A(Q^2, x_B)/\sigma^3_{\text{He}}(Q^2, x_B)\) are listed in Table II using data from \([14]\). We used the ratio of deuterium to \(^3\text{He}\) determined in Ref. \([14]\) primarily from the calculated ratio of their momentum distributions above the scaling threshold (\(P_{\text{thresh}} = 0.275 \pm 0.025\) GeV/c). We combined the statistical and systematic uncertainties in quadrature to give the total uncertainties shown in the table. The SRC scale factors for nucleus \(A\) relative to deuterium, \(a_2(A/d)\), are calculated from the second column.

The value of the SRC scale factors was shown to be \(Q^2\) independent for 1.5 \(\leq Q^2 \leq 2.5\) GeV\(^2\) \([13]\) and more recently for 1.5 \(\leq Q^2 \leq 5\) GeV\(^2\) \([20]\). Similarly, the EMC effect was shown to be \(Q^2\) independent for SLAC, BCDMS and NMC data for 2 \(\leq Q^2 \leq 40\) GeV\(^2\) \([3]\). This \(Q^2\)-independence allows us to compare these quantities in their different measured ranges.

![FIG. 1](image-url)

FIG. 1. The EMC slopes versus the SRC scale factors. The uncertainties include both statistical and systematic errors added in quadrature. The fit parameter is the intercept of the line and also the negative of the slope of the line.

This correlation between the EMC slopes and the SRC scale factors also allows us to extract significant information about the deuteron itself. Due to the lack of a free neutron target, the EMC measurements used the deuteron as an approximation to a free proton and neutron system and measured the ratio of inclusive DIS on nuclei to that of the deuteron. This seems like a reasonable approximation since the deuteron is loosely bound (\(\approx 2\) MeV) and the average distance between the nucleons is large (\(\approx 2\) fm). But the deuteron is not a free system; the pion tensor force binds the two nucleons even if weakly.

To quantify the effects of the binding of nucleons in deuterium, we define the In-Medium Correction (IMC) effect as the ratio of the DIS cross section per nucleon bound in a nucleus relative to the free (unbound) \(pn\) pair cross section (as opposed to the EMC effect which uses the ratio to deuteron).

This implies that both stem from the same underlying nuclear physics, such as high local density or large nucleon virtuality (\(v = P^2 - m^2\) where \(P\) is the four momentum).

TABLE II. The SRC scale factors for nucleus \(A\) with respect to \(^3\text{He}\) and to deuterium. The third column is calculated from the second. The resulting uncertainties are slightly overestimated since the uncertainty in the \(d/\text{He}\) ratio of about 5% is added to all of the other ratios. The predicted values (fourth column) are calculated from the values in Table I and Eq. 1.

Nucleus	Measured \(a_2(A/\text{He})\)	Measured \(a_2(A/d)\)	Predicted \(a_2(A/d)\)
Deuteron	0.508 ± 0.025	1	
\(^3\text{He}\)	1.97 ± 0.10		
\(^4\text{He}\)	3.80 ± 0.34		
\(^12\text{C}\)	4.75 ± 0.41		
\(^56\text{Fe}\)	5.58 ± 0.45		
\(^6\text{Be}\)	4.08 ± 0.60		
\(^2\text{Al}\)	5.13 ± 0.55		
\(^30\text{Ca}\)	5.44 ± 0.70		
\(^108\text{Ag}\)	7.29 ± 0.83		
\(^197\text{Au}\)	6.19 ± 0.65		

TABLE I. The measured EMC slopes \(dR_{\text{EMC}}/dx\) for 0.35 \(\leq x_B \leq 0.7\).

Nucleus	\(dR_{\text{EMC}}/dx\) (Ref. [7])	\(dR_{\text{EMC}}/dx\) (combined)
Deuteron	0	
\(^3\text{He}\)	-0.070 ± 0.029	-0.070 ± 0.029
\(^4\text{He}\)	-0.199 ± 0.029	-0.197 ± 0.026
\(^7\text{Be}\)	-0.271 ± 0.029	-0.243 ± 0.023
\(^12\text{C}\)	-0.280 ± 0.029	-0.292 ± 0.023
\(^2\text{Al}\)	-0.325 ± 0.034	-0.325 ± 0.034
\(^30\text{Ca}\)	-0.350 ± 0.047	-0.350 ± 0.047
\(^56\text{Fe}\)	-0.388 ± 0.032	-0.388 ± 0.032
\(^197\text{Au}\)	-0.490 ± 0.039	-0.490 ± 0.039

Fig. 1 shows the EMC slopes versus the SRC scale factors. The two values are strongly linearly correlated,

\[-dR_{\text{EMC}}/dx = (a_2(A/d) - 1) \times (0.079 ± 0.006)\]

(1)
The deuteron IMC effect can be extracted from the data in Fig. 1. If the IMC effect and the SRC scale factor both stem from the same cause, then the IMC effect and the SRC scale factor will both vanish at the same point. The value $a_2(A/d) = 0$ is the limit of free nucleons with no SRC. Extrapolating the best fit line in Fig. 1 to $a_2(A/d) = 0$ gives an intercept of $dR_{EMC}/dx = -0.079 \pm 0.006$. The difference between this value and the deuteron EMC slope of 0 is the deuteron IMC slope:

$$dR_{IMC}(d)/dx = 0.079 \pm 0.006 \ .$$

This slope is the same size as the EMC slope measured for the ratio of 3He to deuteron 2H. It is slightly smaller than the deuteron IMC slope of ≈ 0.10 derived in [3] assuming that the EMC effect is proportional to the average nuclear density and the slope of 0.098 deduced by Frankfurt and Strikman based on the relative virtuality of nucleons in iron and deuterium [16] and the iron EMC slope [3].

The IMC effect for nucleus A is then just the difference between the measured EMC effect and the value $dR_{EMC}/dx = -0.079 \pm 0.006$. Thus

$$dR_{IMC}(A)/dx = \left| dR_{EMC}(A)/dx \right|_{meas} + 0.079 \pm 0.006 \ .$$

This is true when the slopes are small compared to one.

The free neutron cross section can be obtained from the measured deuteron and proton cross sections using the observed phenomenological relationship presented in Fig. 1 to determine the nuclear corrections. Since the EMC effect is linear for $0.3 \leq x_B \leq 0.7$, we have

$$\sigma_d/\sigma_p = 1 - a(x_B - b) \quad \text{for} \quad 0.3 \leq x_B \leq 0.7,$$

where σ_d and σ_p are the measured DIS cross sections for the deuteron and free proton, σ_n is the free neutron DIS cross section that we want to extract, $a = |dR_{IMC}(d)/dx| = 0.079 \pm 0.006$ and $b = 0.31 \pm 0.04$ is the average value of x_B where the EMC ratio is unity (i.e., where the per-nucleon cross sections are equal $\sigma_A(x_B)/A = \sigma_d(x_B)/2$) as determined in Refs. [3, 7] and taking into account the quoted normalization uncertainties.

Our results imply that $\sigma_d/(\sigma_p + \sigma_n)$ decreases linearly from 1 to 0.97 over the range $0.3 \leq x_B \leq 0.7$. (More precisely, that it decreases by 0.031 ± 0.004 where the uncertainty is due to the fit uncertainties in Eq. 3.) This depletion (see Eq. 4) is similar in size to the depletion calculated by Melnitchouk using the weak binding approximation smearing function with target mass corrections and an off-shell correction [23]. However, the distribution in x_B is very different. Melnitchouk’s calculated ratio reaches its minimum of 0.97 at $x_B \approx 0.5$ and increases rapidly, crossing 1 at $x_B \approx 0.7$.

If the structure function F_2 is proportional to the DIS cross section (i.e., if the ratio of the longitudinal to transverse cross sections is the same for n, p and d [see discussion in [3]]), then the free neutron structure function, $F_2^n(x_B, Q^2)$, can also be deduced from the measured deuteron and proton structure functions:

$$F_2^n(x_B, Q^2) = \frac{2F_2^d(x_B, Q^2) - [1 - a(x_B - b)] F_2^p(x_B, Q^2)}{[1 - a(x_B - b)]}$$

which leads to

$$F_2^n(x_B, Q^2) = \frac{2F_2^d(x_B, Q^2) - [1 - a(x_B - b)] F_2^p(x_B, Q^2)}{[1 - a(x_B - b)]} \ .$$

This is only valid for $0.35 \leq x_B \leq 0.7$.

Fig. 2 shows the ratio of F_2^n/F_2^d extracted in this work using the IMC-based correction and the $Q^2 = 12$ GeV2 ratio F_2^n/F_2^d from Ref. [28]. Note that the ratio F_2^n/F_2^d is Q^2-independent from $6 \leq Q^2 \leq 20$ GeV2 for $0.4 \leq x_B \leq 0.7$ [28]. The dominant uncertainty in this extraction is the uncertainty in the measured F_2^n/F_2^d. The IMC-based correction increases the extracted free neutron structure function (relative to that extracted using the deuteron momentum density [28]) by an amount that increases with x_B. Thus, the IMC-based F_2^n strongly favors model-based extractions of F_2^n that include nucleon modification in the deuteron [28].

The IMC-based F_2^n appears to be constant or slightly increasing in the range from $0.6 \leq x_B \leq 0.7$. The d/u ratio is simply related to the ratio of F_2^n/F_2^d in the deep inelastic limit, $x^2 \ll Q^2/4m^2$ [28], $d/u = (4F_2^n/F_2^d - 1)/(4 - F_2^n/F_2^d)$. While it is quite hazardous to extrapolate from our limited x_B range all the way to $x_B = 1$, these results appear to disfavor models of the proton with d/u ratios of 0 at $x_B = 1$ (see [29] and references therein).

By using the deuteron IMC slope, these results take into account both the nuclear corrections as well as any possible changes to the internal structure of the neutron in the deuteron. Note that this assumes either that the EMC and F_2 data are taken at the same Q^2 or that they are Q^2-independent for $6 \leq Q^2 \leq 12$ GeV2. The fact that the measured EMC ratios for nuclei with $A \geq 3$ decrease linearly with increasing x_B for $0.35 \leq x_B \leq 0.7$ indicates that Fermi smearing is not significant in this range.

We now speculate as to the physical reason for the EMC-SRC relation presented above. Assuming that the IMC/EMC effect is due to a difference in the quark distributions in bound and free nucleons, these differences could occur predominantly in either mean field nucleons or in nucleons affected by SRC.

According to Ref. [30], the IMC/EMC effect is mainly associated with nucleons at high virtuality. These nucle-
ons, like the nucleons affected by SRC, have larger momenta and a denser local environment than that of the other nucleons in the nucleus. Therefore, they should exhibit the largest changes in their internal structure.

The linear correlation between the strength of the EMC and the SRC in nuclei, shown in Fig. 1, indicates that possible modifications of the quark distributions occur in nucleons affected by SRC. This also predicts a larger EMC effect in higher density nuclear systems such as neutron stars. This correlation may also help us to understand the difficult to quantify nucleon modification (offshell effects) that must occur when two nucleons are close together.

To summarize, we have found a striking linear correlation between the EMC slope measured in deep inelastic electron scattering and the short range correlations scale factor measured in inelastic scattering. The SRC are associated with large nucleon momenta and the EMC effect is associated with modified nucleon structure. This correlation allows us to extract the free neutron structure function model-independently and to place constraints on large x_B parton distribution functions. Knowledge of these PDFs is important for searches for new physics in collider experiments [31] and for neutrino oscillation experiments.

We are grateful for many fruitful discussions with John Arrington, Sebastian Kuhn, Mark Strikman, Franz Gross, Jerry Miller, and Wally Melnitchouk. This work was supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Israel Science Foundation, and the US-Israeli Bi-National Science Foundation. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE contract DE-AC05-06OR23177.

* Contact Author weinstein@odu.edu

[1] J. Aubert et al., Phys. Lett. B 123, 275 (1983).
[2] J. Ashman et al., Phys. Lett. B 202, 603 (1988).
[3] J. Gomez et al., Phys. Rev. D 49, 4348 (1994).
[4] M. Arneodo et al., Phys. Lett. B 211, 493 (1988).
[5] M. Arneodo et al., Nucl. Phys. B 333, 1 (1990).
[6] D. Allasia et al., Phys. Lett. B 249, 366 (1990).
[7] J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009).
[8] D. Geesaman, K. Saito, and A. Thomas, Ann. Rev. Nucl. and Part. Sci. 45, 337 (1995).
[9] P. R. Norton, Rep. Prog. Phys. 66, 1253 (2003).
[10] M. M. Sargsian et al., J. Phys. G 29, R1 (2003).
[11] J. R. Smith and G. A. Miller, Phys. Rev. C 65, 055206 (2002).
[12] L. L. Frankfurt and M. I. Strikman and D. B. Day and M. Sargsyan, Phys. Rev. C 48, 2451 (1993).
[13] K. Egiyan et al., Phys. Rev. C 68, 014313 (2003).
[14] K. Egiyan et al., Phys. Rev. Lett. 96, 082501 (2006).
[15] L. L. Frankfurt and M. I. Strikman, Phys. Rep. 76, 215 (1981).
[16] L. Frankfurt and M. Strikman, Phys. Rep. 160, 235 (1988).
[17] A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003).
[18] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, and J. W. Watson, Phys. Rev. Lett. 97, 162504 (2006).
[19] R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007).
[20] R. Subedi et al., Science 320, 1476 (2008).
[21] M. M. Sargsian, T. V. Abrahamyan, M. I. Strikman, and L. L. Frankfurt, Phys. Rev. C 71, 044615 (2005).
[22] R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Phys. Rev. Lett. 98, 132501 (2007).
[23] M. Alvioli, C. Cifio degli Atti, and H. Morita, Phys. Rev. Lett. 100, 162503 (2008).
[24] H. Baghdasaryan et al. Phys. Rev. Lett. 105, 222501 (2010).
[25] D. W. Higinbotham, J. Gomez, and E. Piasetzky (2010), arXiv:1003.4497 [hep-ph].
[26] N. Fomin, Ph.D. thesis, University of Virginia (2007), arXiv:0812.2144 [nucl-ex].
[27] W. Melnitchouk, AIP Conf. Proc. 1261, 85 (2010), arXiv:1005.4124 [nucl-th].
[28] J. Arrington, F. Coester, R. Holt, and T.-S. H. Lee, J. Phys. G 36, 025005 (2009).
[29] W. Melnitchouk and A. W. Thomas, Phys. Lett. B 377, 11 (1996).
[30] C. Cifio degli Atti, L. L. Frankfurt, L.P. Kaptari and M.I. Strikman, Phys. Rev. C 76, 055206 (2007).
[31] S. Kuhlmann et al., Phys. Lett. B 476, 291 (2000).