Measurement of the Ratio of the 3-jet to 2-jet Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

A measurement of the ratio of the inclusive 3-jet to 2-jet cross sections as a function of the total jet transverse momentum, H_T, in the range $0.2 < H_T < 2.5$ TeV is presented. The data have been collected at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, and correspond to an integrated luminosity of 36 pb$^{-1}$. Comparisons are made between the data and the predictions of different QCD-based Monte Carlo models for multijet production. All models considered in this study are consistent with the data for $H_T > 0.5$ TeV. This measurement extends to an H_T range that has not been explored before.

Submitted to Physics Letters B
1 Introduction

In leading-order (LO) perturbative Quantum Chromodynamics (pQCD), jet production in pp collisions occurs when two partons interact via the strong force to produce two final-state partons. The elementary processes that contribute in the final state are $qq \rightarrow qq$, $qg \rightarrow qg$, $gg \rightarrow gg$, and $gg \rightarrow qq$, where q and g are quarks (or antiquarks) and gluons, respectively. Each of the final state particles may subsequently lose energy by emitting other quarks and gluons in a process referred to as a parton shower (PS). Finally, the products of the parton shower undergo hadronisation and form hadron jets. Events with three or more jets in the final state originate from hard-gluon radiation and other higher-order QCD processes.

In this letter, a measurement of the inclusive 3-jet to 2-jet cross section ratio, R_{32}, is presented in proton-proton collisions at $\sqrt{s} = 7$ TeV. The measurement is performed using a multijet data sample collected in 2010 by the Compact Muon Solenoid (CMS) experiment, at the Large Hadron Collider (LHC), and corresponds to an integrated luminosity of 36 pb$^{-1}$. Jets are reconstructed in the CMS detector using the anti-k_T jet algorithm [9, 10], with the requirements $p_T > 50$ GeV and rapidity $|y| < 2.5$. This cross section definition is chosen to maximise the phase space of the measurement. The value of R_{32} is measured as a function of the total jet transverse momentum of the event, H_T, defined as

$$H_T = \sum_{i=1}^{N} p_{T_i},$$

where p_{T_i} are the transverse momenta of all jets found with $p_T > 50$ GeV and $|y| < 2.5$ in an event. This definition provides a general estimate of the energy available to the parton-parton hard process and is less sensitive to detector effects than p_T. Major systematic uncertainties that hamper jet cross section measurements, such as those due to the jet energy scale and the jet selection efficiency, largely cancel in the measurement of R_{32}, whilst the uncertainty on the integrated luminosity measurement cancels completely. Hence, a measurement of R_{32} is subject to smaller uncertainties than the absolute multijet cross section measurements and can provide a stringent test of the theoretical models.

The measured R_{32} is used to perform a study on the validity of different Monte Carlo (MC) models currently in use for modeling collisions at the LHC. The high centre-of-mass energy of the LHC allows a test of the models in a transverse momentum region that was not accessible to previous experiments. Such studies are important because QCD-induced processes constitute, in some cases, the dominant backgrounds for signals of new physics at the LHC. This investigation is complementary to other studies which also aim to probe the validity of pQCD early in the LHC era [11–13].

The D0 Collaboration at the Fermilab Tevatron has measured the same ratio of cross sections for jets in the range $100 < H_T < 600$ GeV and $p\bar{p}$ centre-of-mass energy of 1.8 TeV [5]. Hence this study extends the range of the R_{32} measurement in a previously unexplored transverse momentum region, and probes pQCD up to $H_T = 2.5$ TeV.
The CMS Detector

The central feature of the CMS apparatus is a superconducting solenoid which provides an axial magnetic field of 3.8 T. The field volume of the solenoid is instrumented with various particle detection systems. Charged particle trajectories are measured by the silicon pixel and strip trackers, with full azimuthal coverage within $|\eta| < 2.5$, where the pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle. The momentum resolution is about 1% at 100 GeV. Surrounding the trackers are a lead-tungstate crystal electromagnetic calorimeter (ECAL) [14] with a preshower detector in the endcaps, which covers the region $|\eta| < 3$, and a brass/scintillator hadron calorimeter (HCAL) [15], which extends up to $|\eta| = 5$. The ECAL has an energy resolution of better than 0.5% for unconverted photons with transverse energies above 100 GeV. The energy of charged pions and other quasi-stable hadrons can be measured with the calorimeters (ECAL and HCAL combined) with a resolution of $\Delta E/E \approx 100% / \sqrt{E [\text{GeV}]} \oplus 5\%$, albeit with a nonlinear response. For charged hadrons, the calorimeter resolution improves on the tracker momentum resolution only for p_T’s in excess of 500 GeV. The steel return yoke outside the solenoid is instrumented with gas-ionisation detectors used to identify and reconstruct muons. The CMS experiment collects data using a two-level trigger system: the first-level hardware trigger (L1) [16] and the high-level software trigger (HLT) [17]. The L1 jet algorithm searches for collimated transverse energy depositions using an effective sliding-window algorithm whose size is 1.044 by 1.044 in (η, ϕ) space. Each jet candidate is assigned η, ϕ, and p_T values that are used to seed subsequent searches in the HLT. The HLT uses data at full granularity and searches for jets using an iterative cone algorithm [18, 19] of radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5$. A more detailed description of the CMS detector can be found in Ref. [20].

Data Selection and Reconstruction

The jet sample used for this study was collected using the L1 and HLT single jet triggers. The efficiency of the trigger system is studied using a combination of minimum-bias triggers [21], which are independent of the L1 jet trigger, as well as low-threshold calorimeter triggers. Five different jet-trigger thresholds are used in this analysis, which ensure 100% trigger efficiency for each of the different H_T regions of the jet sample ($H_T > 0.20, 0.31, 0.40, 0.56, \text{ and } 0.80 \text{ TeV})$. The integrated luminosities corresponding to each of the five regions are 0.4, 4.5, 9.2, 20.0, and 36.0 pb$^{-1}$, respectively.

Each event is required to have an offline reconstructed vertex position along the beam line that is within 24 cm of the nominal interaction point. The global event reconstruction (also called particle-flow event reconstruction [22]) consists in reconstructing and identifying each single particle with an optimised combination of all sub-detector information. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The energy of muons is obtained from the corresponding track momentum. The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL energy, corrected for zero-suppression effects, and calibrated for the non-linear response of the calorimeters. Finally the energy of neutral hadrons is obtained from the corresponding calibrated ECAL and HCAL energy.

For each event, hadronic jets are clustered from these reconstructed particles with the infrared...
and collinear safe anti-\(k_T\) algorithm, operated with a size parameter \(R\) of 0.5. The jet momentum is determined as the vectorial sum of all particle momenta in this jet, and is found in the simulation to be within 5% to 10% of the true momentum over the whole \(p_T\) spectrum and detector acceptance. An offset correction is applied to take into account the extra energy clustered in jets due to additional proton-proton interactions within the same bunch crossing. Jet energy corrections are derived from the simulation, and are confirmed with \textit{in situ} measurements with the energy balance of dijet and photon+jet events [23]. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions.

Events with two or more jets of \(H_T > 0.2\) TeV, \(p_T > 50\) GeV, and \(|y| < 2.5\) are selected. The final dijet sample consists of 376 590 events. A subsample of 206 845 events has an additional third jet that passes the \(p_T\) and \(y\) selection criteria.

4 Monte Carlo Models and Comparisons with Data

The jet data are compared with the predictions of five QCD-based MC generators that simulate jet production in pp collisions at \(\sqrt{s} = 7\) TeV.

The \textsc{Pythia} 6.4.22 MC generator [24] uses LO matrix elements to generate the \(2 \to 2\) hard processes and a PS model to simulate higher-order processes. The PS model gives a good description of parton emission when the emitted partons are close in phase space. Events are generated with two different tunes of \textsc{Pythia} 6.4: D6T [25] and Z2. The Z2 tune is identical to the Z1 tune described in [25] except that Z2 uses the CTEQ6L1 [26] proton parton distribution functions (PDF) while Z1 uses CTEQ5L [27]. Parton showers are ordered by mass in D6T and by \(p_T\) in Z2. Hadronisation is simulated using the Lund string model [28, 29].

The \textsc{Pythia} 8 [30] tune C2 [31] simulation orders the PS in \(p_T\) and models the underlying event using the multiple parton interaction model from \textsc{Pythia} 6, including initial- and final-state QCD radiation.

The \textsc{Herwig}++ [32] tune 2.3 program takes LO matrix elements and simulates PS using the coherent-branching algorithm, with angular ordering of showers. Hadronisation is simulated using the cluster model. The underlying event is generated from the eikonal multiple parton-parton scattering model.

The \textsc{Madgraph} [33, 34] generator is used because of its treatment of hard and well-separated partons. \textsc{Madgraph} generates tree-level helicity amplitudes and is interfaced to \textsc{Pythia} 6, which generates the rest of the higher-order effects using the PS model. Matching algorithms ensure that no double-counting occurs between the tree-level and the PS-model-generated partons. The \textsc{Madgraph} parameter that distinguishes between PS and tree-level diagrams is set to 30 GeV. The tune version is D6T.

The \textsc{Alpgen} [35] tune D6T MC program also generates tree-level processes. As with \textsc{Madgraph}, it is interfaced with \textsc{Pythia} 6 for generating higher-order effects. The jet-parton matching threshold is set to 20 GeV and the maximum distance between partons and jets to \(\Delta R = 0.7\).

The CTEQ6L1 PDF set is used to model the proton structure in \textsc{Pythia} 8 and \textsc{Madgraph}, while \textsc{Herwig}++ and \textsc{Alpgen} use the MRST2001 [36] and CTEQ5 PDF sets respectively.

The generated events from \textsc{Pythia} 6 tune Z2, \textsc{Madgraph}, and \textsc{Herwig}++ are processed through a full detector simulation based on \textsc{Geant4} [37].
Jets (denoted MC jets) are reconstructed from particle-flow objects by means of the anti-\(k_T\) jet algorithm. The jet energy corrections and selection criteria applied to MC events are identical to those applied to the data. Jets are also reconstructed using the anti-\(k_T\) jet algorithm on the MC four-vectors of the stable particles after hadronisation. These (hadron-level) jets, referred to as GenJets, represent the MC prediction free of detector effects.

Detailed studies of the \(p_T\), \(y\), and \(H_T\) reconstruction are performed using the MC simulation. The \(p_T\) resolution varies from 12% at 50 GeV to 5% at 1 TeV. These values are in agreement with the resolutions extracted from data. The \(H_T\) resolution found using MC jets varies from 6% at 200 GeV to 3.5% at 2.5 TeV.

Plotted in Fig. 1 (top) are the \(H_T\) distributions of the inclusive 2-jet (left) and 3-jet (right) samples after all selection criteria (solid circles). The five different jet samples are normalised to the integrated luminosity of 36 pb\(^{-1}\). The measurements are compared to the predictions of \textsc{Pythia6} tune Z2 MC (histogram), normalised to the total number of dijet events. Also shown in Fig. 1 (bottom) is the ratio between the MC predictions and the data, separately for inclusive 2-jet and 3-jet events. The MC predictions describe within 20% the shape of the measured \(H_T\) distributions in data. This test has been repeated using the predictions of \textsc{Madgraph} and \textsc{Herwig++} MC programs with similar results.

5 Extraction of \(R_{32}\) from the Data

The inclusive 2-jet \(d\sigma/\,dH_T\) and 3-jet \(d\sigma/\,dH_T\) differential cross sections are extracted from the data using

\[
\frac{d\sigma}{dH_T} = \frac{C_i}{L\times \epsilon_i} \frac{N_i}{\Delta H_T},
\]

where \(C_i\) is a normalisation constant, \(L\) is the integrated luminosity, \(\epsilon_i\) is the acceptance and efficiency, and \(N_i\) is the number of events in the \(i\)th bin of \(H_T\) for the inclusive 2-jet or 3-jet sample.
where C_i, ϵ_i, and N_i are the smearing correction, detection efficiency, and the number of selected events for inclusive 2-jet ($i = 2$) and inclusive 3-jet ($i = 3$) events respectively, L is the integrated luminosity, and ΔH_T is the bin size.

The smearing and efficiency corrections are computed using the PYTHIA6 tune Z2: GenJet events, consisting of all hadron-level events which have at least two jets with $p_T > 50$ GeV and $|y| < 2.5$, and MC jet events, consisting of all events with at least two reconstructed jets passing all selection criteria. The efficiency ϵ_i is defined as the number of selected events (at any reconstructed H_T) arising from a given generated H_T interval divided by the total number of generated events in that interval. The efficiency for 2-jet events is 100% throughout the H_T range, while the efficiency for 3-jet events increases from 72% at $H_T = 200$ GeV to 100% above $H_T = 400$ GeV. The smearing correction C_i is defined as the number of selected events (at any reconstructed H_T) arising from a given generated H_T interval divided by the total number of selected events in that interval. The smearing correction C_2 is approximately 0.9 throughout the H_T range, while C_3 is approximately 0.7 at $H_T = 200$ GeV and increases to 0.9 for $H_T > 300$ GeV.

The ratio R_{32} as a function of H_T is extracted from the data by dividing the inclusive differential 3-jet cross section by the inclusive differential 2-jet cross section:

$$R_{32} = \frac{d\sigma_3/dH_T}{d\sigma_2/dH_T}.$$

The overall multiplicative correction factor to the data, $C_3/C_2 \times \epsilon_2/\epsilon_3$, is within 4% of unity in the range $0.2 < H_T < 0.5$ TeV and within 2% thereafter. This method of extracting R_{32} is tested by treating the MADGRAPH sample as the data and using PYTHIA6 as the MC. The MADGRAPH MC jets are treated and corrected (using PYTHIA6) the same way as the data and the extracted ratio from MADGRAPH is compared with the ratio at the hadron-level from MADGRAPH using GenJets. The extracted ratio is within $\pm 1\%$ of the GenJet ratio, and this difference is included in the overall systematic uncertainty for R_{32}.

The measured R_{32} after all corrections is shown in Fig. 2. As expected, R_{32} rises with increasing H_T, as the phase space opens up for the emission of a third jet satisfying the $p_T > 50$ GeV selection criterion. The R_{32} value reaches a plateau of about 0.8, which depends upon the p_T and y selection criteria as well as the jet-finding algorithm. The R_{32} plateau value measured here is different from that measured by the D0 collaboration. The origin of this difference was studied using the MC and it is due to the different centre-of-mass energy and p_T and y selection criteria.

Several sources of systematic uncertainty on R_{32} are considered. Uncertainties due to insufficient knowledge of the MC H_T distributions are estimated by altering the shape of the MC distributions and comparing with the data. Those uncertainties are in the range 3–8%. Uncertainties originating from the jet energy scale, the effect of pile-up, insufficient knowledge of the jet p_T resolution, and self-consistency checks of the extraction method (using MADGRAPH as data) are considered. The contribution of each of these effects is at the 1% level. The combined systematic uncertainty is estimated by adding in quadrature all these uncertainties and is shown as the shaded area in Fig. 2. The combined systematic uncertainty is in the range 4–10%.

Also displayed in Fig. 2 are the predictions of the five MC generators considered in this study. The ratios, R_{32}, of the different MC predictions to the measured values are plotted in Fig. 3. The shaded area represents the combined statistical and systematic uncertainty for the data. The
Figure 2: The measured R_{32} (solid circles) as a function of H_T, and the predictions of PYTHIA6, PYTHIA8, MADGRAPH, ALPGEN, and HERWIG++ (curves). Error bars represent statistical uncertainties. The shaded area indicates the size of the combined systematic uncertainty.
predictions of MadGraph agree with the data throughout the \(H_T \) range of the measurement. On the other hand, previous studies of event shapes and dijet angular decorrelations [11, 12] indicate that MadGraph does not describe these distributions well. However, \(R_{32} \) is constructed from inclusive measurements and is mainly sensitive to the probability of emitting a third parton in the final state, whereas the other two distributions depend mainly on the final state of the event. In contrast, the predictions of Alpgen, Pythia6, Pythia8, and HERWIG++ are in agreement with the measured \(R_{32} \) for \(H_T \) > 0.5 TeV, although they overestimate it for lower values of \(H_T \).

6 Summary

The ratio of the inclusive 3-jet to 2-jet cross sections, for jets with \(p_T > 50 \) GeV and \(|y| < 2.5 \), has been measured in the range \(0.2 < H_T < 2.5 \) TeV for proton-proton collisions at a centre-of-mass energy of 7 TeV. The measured ratio rises with increasing \(H_T \), as the phase space opens for the production of a third jet, reaching a plateau value of about 0.8 for \(H_T \geq 1 \) TeV.

This study tests the prediction of the different MC generators considered at TeV scales. Pythia6 tune Z2, MadGraph, and HERWIG++ describe within 20% the shape of the \(H_T \) distributions in data.

The predictions of MadGraph, which generates tree-level helicity amplitudes, are in agreement with the measured \(R_{32} \) throughout the range of this measurement. Alpgen, which also uses this method, describes well the data for \(H_T > 0.5 \) TeV, but overestimates \(R_{32} \) for lower \(H_T \) values. The difference between the predictions of MadGraph and Alpgen is an estimate of the uncertainty of the theoretical predictions due to the different jet-parton matching parameters used by the two MC programs. The current results combined with previous measurements of event shapes and dijet angular decorrelations indicate that whilst MadGraph has difficul-
ties in describing the details of the event shapes and dijet angular decorrelations, it predicts correctly the probability of emitting a third parton in the final state. The MC programs that use LO matrix elements to simulate the hard scattering and PS for all higher-order effects (PYTHIA6, PYTHIA8, HERWIG++) describe well the data above $H_T > 0.5$ TeV, but overestimate R_{32} below this value. This is the first measurement of this ratio in the multi-TeV region, extending to an H_T range that has not been explored before.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).
References

[1] UA1 Collaboration, “Comparison of Three Jet and Two Jet Cross-Sections in Proton-Antiproton Collisions at the CERN SPS Collider”, *Phys. Lett. B* **158** (1985) 494. doi:10.1016/0370-2693(85)90801-9

[2] UA2 Collaboration, “A Study of Three-Jet Events at the CERN p¯p Collider”, *Z. Phys. C* **30** (1986) 341. doi:10.1007/BF01557598

[3] CDF Collaboration, “Properties of High-Mass Multijet Events at the Fermilab Proton-Antiproton Collider”, *Phys. Rev. Lett.* **75** (1995) 608. doi:10.1103/PhysRevLett.75.608

[4] D0 Collaboration, “Studies of Topological Distributions of Inclusive Three- and Four-Jet Events in p¯p Collisions at √s = 1800 GeV with the D0 Detector”, *Phys. Rev. D* **53** (1996) 6000. doi:10.1103/PhysRevD.53.6000

[5] D0 Collaboration, “Ratios of Multijet Cross Sections in p¯p Collisions at √s = 1.8 TeV”, *Phys. Rev. Lett.* **86** (2001) 1955. doi:10.1103/PhysRevLett.86.1955

[6] ZEUS Collaboration, “Dijet production in neutral current deep inelastic scattering at HERA”, *Eur. Phys. J. C* **23** (2002) 13. doi:10.1007/s100520100845

[7] D0 Collaboration, “Multiple jet production at low transverse energies in p¯p collisions at √s = 1.8 TeV”, *Phys. Rev. D* **67** (2003) 052001. doi:10.1103/PhysRevD.67.052001

[8] ZEUS Collaboration, “Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA”, *Nucl. Phys. B* **765** (2007) 1. doi:10.1016/j.nuclphysb.2006.09.018

[9] M. Cacciari, G. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, *JHEP* **04** (2008) 063. doi:10.1088/1126-6708/2008/04/063

[10] M. Cacciari and G. Salam, “Dispelling the N^3 myth for the k_t jet-finder”, *Phys. Lett. B* **641** (2006) 57. doi:10.1016/j.physletb.2006.08.037

[11] CMS Collaboration, “First Measurement of Hadronic Event Shapes in pp Collisions at √s = 7 TeV”, *Phys. Lett. B* **699** (2011) 48. doi:10.1016/j.physletb.2011.03.060

[12] CMS Collaboration, “Dijet Azimuthal Decorrelations in pp Collisions at √s = 7 TeV”, *Phys. Rev. Lett.* **106** (2011) 122003. doi:10.1103/PhysRevLett.106.122003

[13] ATLAS Collaboration, “Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √s = 7 TeV”, (2011). arXiv:1102.2696v2

[14] CMS Collaboration, “Performance and Operation of the CMS Electromagnetic Calorimeter”, *JINST* **5** (2010) T03010. doi:10.1088/1748-0221/5/03/T03010

[15] CMS Collaboration, “Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data”, *JINST* **5** (2010) T03012. doi:10.1088/1748-0221/5/03/T03012

[16] CMS Collaboration, “CMS TRIDAS Project Technical Design Report, Volume I, The Trigger Systems”, Technical Report CERN-LHCC-2000-038/CMS-TDR-006-1, (2000). CMS TDR 6.1.
[17] CMS Collaboration, “The CMS High Level Trigger”, Eur. Phys. J. C 46 (2006) 605. doi:10.1140/epjc/s2006-02495-8

[18] CMS Collaboration, “CMS Physics Technical Design Report, Volume 1”, Technical Report CERN-LHCC-2006-001/CMS-TDR-008-1, (2006). Section 11.6.3.

[19] CMS Collaboration, “Performance of Jet Algorithms in CMS”, CMS Physics Analysis Summary CMS-PAS-JME-07-003 (2007).

[20] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004. doi:10.1088/1748-0221/3/08/S08004

[21] CMS Collaboration, “Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s} = 0.9$ and 2.36 TeV”, JHEP 02 (2010) 41. doi:10.1007/JHEP02(2010)041

[22] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009).

[23] CMS Collaboration, “Determination of the Jet Energy Scale in CMS with pp Collisions at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-010 (2010).

[24] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026. doi:10.1088/1126-6708/2006/05/026

[25] R. Field, “Early LHC Underlying Event Data-Findings and Surprises”, (2010). arXiv:1010.3558v1

[26] B. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012. doi:10.1088/1126-6708/2002/07/012

[27] H. Lai et al., “Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions”, Eur. Phys. J. C 12 (2000) 375. doi:10.1007/s100529900196

[28] B. Andersson, “Parton Fragmentation and String Dynamics”, Phys. Rep. 97 (1983) 31. doi:10.1016/0370-1573(83)90080-7

[29] T. Sjöstrand, “The Merging of Jets”, Phys. Lett. B 142 (1984) 420. doi:10.1016/0370-2693(84)91354-6

[30] T. Sjöstrand, S. Mrenna, and P. Skands, “A Brief Introduction to PYTHIA 8.1”, Comput. Phys. Commun. 178 (2008) 852. doi:10.1016/j.cpc.2008.01.036

[31] R. Corke and T. Sjöstrand, “Interleaved parton showers and tuning prospects”, JHEP 03 (2011) 032. doi:10.1007/JHEP03(2011)032

[32] M. Bahr et al., “HERWIG++ Physics and Manual”, Eur. Phys. J. C 58 (2008) 639. doi:10.1140/epjc/s10052-008-0798-9

[33] J. Alwall et al., “MadGraph/MadEvent v4: The New Web Generation”, JHEP 09 (2007) 028. doi:10.1088/1126-6708/2007/09/028

[34] T. Stelzer and W. Long, “Automatic generation of tree level helicity amplitudes”, Comput. Phys. Commun. 81 (1994) 357. doi:10.1016/0010-4655(94)90084-1
[35] M. Mangano et al., “ALPGEN, a generator for hard multiparton processes in hadronic collisions”, *JHEP* 07 (2003) 001. [doi:10.1088/1126-6708/2003/07/001]

[36] A. Martin et al., “MRST2001: partons and alpha_s from precise deep inelastic scattering and Tevatron jet data”, *Eur. Phys. J. C* 23 (2002) 73. [doi:10.1007/s100520100842]

[37] GEANT4 Collaboration, “GEANT4: A Simulation Tool Kit”, *Nucl. Instrum. Meth. A* 506 (2003) 250. [doi:10.1016/S0168-9002(03)01368-8]
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, G. Kasieczka, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schönbeck, J. Strauss, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
L. Benucci, E.A. De Wolf, X. Janssen, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, R. Gonzalez Suarez, A. Kalogeropoulos, J. Maes, M. Maes, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, L. Cead, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beil, T. Caebergs, E. Deaubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amoral, A. Sznajder, F. Torres Da Silva De Araujo

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
F.A. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores, C. Lagana, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov, L. Dimitrov, V. Ganchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Khalil, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Villeurbanne, France
C. Baty, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, W. Bender, E. Dietz-Laursonn, M. Erdmann, J. Frangenheim, T. Hebbeker, A. Hinzmann, K. Hoepfner, T. Klimekovich, D. Klingebiel, P. Kreuzer, D. Lamske, C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad, D. Heydhausen, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Damann, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, J. Hauk, H. Jung, M. Kasemann, I. Katkov, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, R. Mankel, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, J. Olzem, D. Pitzl, A. Raspereza, A. Raval, M. Rosin, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissinger

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, K. Kaschube,
G. Kaussen, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, M. Schröder, T. Schum, J. Schwandt, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

11 C. Barth, J. Bauer, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Grusche, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, D. Piparo, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratrikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

12 G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

13 A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu, P. Hidas, D. Horvath, A. Kapusi, K. Krajczar, F. Sikler, G.I. Veres, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India

S. Ahuja, S. Bhattacharya, B.C. Choudhary, P. Gupta, S. Jain, S. Jain, A. Kumar, K. Ranjan, R.K. Shivpuri

Bhabha Atomic Research Centre, Mumbai, India

R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, M. Guchait, A. Gurtu, M. Maity, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahimi, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdizadeh, B. Safarzadeh, M. Zeinali
INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, L. Lusito, G. Maggi, M. Maggi, N. Manna, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, G.A. Pierro, A. Pompili, G. Pugliese, F. Romano, G. Roselli, G. Selvaggi, L. Silvestris, R. Trentadue, S. Tuppunti, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Castro, F.R. Cavalllo, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, M. Giunta, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G. Siroli, G. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglio, V. Ciulli, C. Cивини, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, L. Di Matteo, S. Gennai, A. Ghezzi, S. Malvezzi, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavallo, A. De Cosa, F. Fabozzi, A.O.M. Iorio, L. Lista, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, P. Bellan, D. Bisello, A. Branca, R. Carlin, P. Cecchия, M. De Mattia, T. Dorigo, U. Dosselli, F. Fanzago, F. Gasparini, U. Gasparini, A. Gozzellino, S. Lacaprara, I. Lazzizzera, M. Margoni, M. Mazzucato, A.T. Meneguzzo, M. Nespolo, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzano, S.P. Ratti, C. Riccardi, P. Torre, P. Vitullo, C. Viviani

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponeti, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Santocchia, S. Taroni, M. Valdata

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccoli, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, A. Kraan, F. Ligabue
The CMS Collaboration

T. Lomtadzea, L. Martinia,22, A. Messineoa,b, F. Pallaa, G. Segneria, A.T. Serbana, P. Spagnoloa, R. Tenchinia, G. Tonellib,1, A. Venturia,2, P.G. Verdinia

INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza, D. Francia,b, M. Grassia,1, E. Longoa,b, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b,1, R. Paramattia, S. Rahatloua,b, C. Rovelli1

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b,1, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b,1, C. Mariottia, M. Maronea,b, S. Masellia, E. Migliorea,b, G. Milaa,b, V. Monacoa,b, M. Musicha,b, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia,b, A. Romeroa,b, M. Ruspaia,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, D. Montaninoa,b, A. Penzoa

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D. Son, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, B. Hong, M.S. Jeong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, H.B. Rhee, E. Seo, S. Shin, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Gob, M.S. Kim, E. Kwon, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, R. Lopez-Fernandez, R. Magaña Villalba, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fous, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Sántaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell, D. Benedetti, C. Bernet, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, B. Cury, D. D’Enterria, A. De Roeck, S. Di Guida, N. Dupont-Sagorin, A. Elliott-Prisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, A. Honma, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, A. Maurisset, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimi, G. Poles, A. Racz, J. Rodriguez Antunes, G. Roland, T. Rommerskirchen, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, M. Simon, P. Sphicas, M. Spiropulu, M. Stoye, M. Tadel, P. Tropea, A. Tsirou, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohr, J. Sibille, A. Starodumov

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
P. Bertignoni, L. Caminada, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Eugster, K. Freudenreich, C. Grab, A. Hervé, W. Hintz, P. Lecomte, W. Lustermann, C. Marchica, P. Martinez Ruiz del Arbol, P. Meridiani, P. Milenovic, F. Moortgat, C. Nägeli, P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, C.-S. Sawley, B. Stieger, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek

National Central University, Chung-Li, Taiwan

20

A The CMS Collaboration
Brown University, Providence, USA
A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Miceli, M. Nikolic, D. Pellett, J. Robles, S. Salur, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veelken

University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein1, J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA
J. Babb, A. Chandra, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, O.R. Long, A. Luthra, H. Nguyen, B.C. Shen1, R. Stringer, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, Y. Tu, A. Vartak, S. Wasserbaech44, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlinin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang

Cornell University, Ithaca, USA
L. Agostino, J. Alexander, D. Cassel, A. Chatterjee, S. Das, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhunaishvili, B. Kreis, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, A. Ryd, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, S. Banerjee, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, F. Borcherding, K. Burkett,
J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, W. Cooper, D.P. Eartly, V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthoti, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, M. Johnson, U. Joshi, R. Khatiwada, B. Klima, K. Kosierkos, S. Kunori, S. Kwan, C. Leonardopoulos, P. Limon, D. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. Miao, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, R. Pordes, O. Prokofyev, N. Saoulidou, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczek, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, M. De Gruttola, G.P. Di Giovani, D. Dobur, A. Drozdetskii, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, K. Matchev, G. Mitselmakher, L. Muniz, C. Prescott, R. Remington, M. Schmitt, B. Scurlock, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA
C. Ceron, V. Gaulnney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, D. Mesa, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, L. Quertenmont, S. Sekmen, V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner, R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, G.J. Kunde, F. Lacroix, M. Malek, C. O’Brien, C. Silvestre, A. Smoron, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. Mccliment, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakabaria, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright
University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, Y. Lu, A.C. Mignerey, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Rolan, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, E.A. Wenger, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, P.R. Dudero, G. Franzoni, J. Haupt, K. Klapoetke, Y. Kubota, J. Mans, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeher, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Khachilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, J. Jones, E. Laird, D. Lopes Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov,
P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA
C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA
O. Atramentov, A. Barker, D. Duggan, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
J. Asaadi, R. Eusebi, J. Gilmore, A. Gurrola, T. Kamon, V. Khotilovich, R. Montalvo, C.N. Nguyen, I. Osipenkov, Y. Pakhotin, J. Pivarski, A. Savonov, S. Sengupta, A. Tatarinov, D. Toback, M. Weinberger

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, M. Boutle, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, J.N. Bellinger, D. Carlsmith, S. Dasu, J. Efron, K. Flood, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, F. Palmonari, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Suez Canal University, Suez, Egypt
5: Also at British University, Cairo, Egypt
6: Also at Fayoum University, El-Fayoum, Egypt
7: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
8: Also at Massachusetts Institute of Technology, Cambridge, USA
9: Also at Université de Haute-Alsace, Mulhouse, France
10: Also at Brandenburg University of Technology, Cottbus, Germany
11: Also at Moscow State University, Moscow, Russia
12: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
13: Also at Eötvös Loránd University, Budapest, Hungary
14: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
15: Also at University of Visva-Bharati, Santiniketan, India
16: Also at Sharif University of Technology, Tehran, Iran
17: Also at Shiraz University, Shiraz, Iran
18: Also at Isfahan University of Technology, Isfahan, Iran
19: Also at Facoltà Ingegneria Università di Roma ”La Sapienza”, Roma, Italy
20: Also at Università della Basilicata, Potenza, Italy
21: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
22: Also at Università degli studi di Siena, Siena, Italy
23: Also at California Institute of Technology, Pasadena, USA
24: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
25: Also at University of California, Los Angeles, Los Angeles, USA
26: Also at University of Florida, Gainesville, USA
27: Also at Università di Genève, Geneva, Switzerland
28: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
29: Also at University of Athens, Athens, Greece
30: Also at The University of Kansas, Lawrence, USA
31: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
32: Also at Paul Scherrer Institut, Villigen, Switzerland
33: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
34: Also at Gaziosmanpasa University, Tokat, Turkey
35: Also at Adiyaman University, Adiyaman, Turkey
36: Also at Mersin University, Mersin, Turkey
37: Also at Izmir Institute of Technology, Izmir, Turkey
38: Also at Kafkas University, Kars, Turkey
39: Also at Suleyman Demirel University, Isparta, Turkey
40: Also at Ege University, Izmir, Turkey
41: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
42: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
43: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
44: Also at Utah Valley University, Orem, USA
45: Also at Institute for Nuclear Research, Moscow, Russia
46: Also at Los Alamos National Laboratory, Los Alamos, USA
47: Also at Erzincan University, Erzincan, Turkey