Instructions for use

Title
Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans

Author(s)
Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

Citation
Journal of Biological Chemistry, 288, 10953-10961

Issue Date
2013-04-19

Doc URL
http://hdl.handle.net/2115/52882

Rights
This research was originally published in Journal of Biological Chemistry. Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans. 2013. vol.288 pp.10953-10961. © the American Society for Biochemistry and Molecular Biology.

Type
article (author version)

Additional Information
There are other files related to this item in HUSCAP. Check the above URL.

File Information
- HUSCAP minireview 2nd revision submitted 130224.pdf
- Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Human genetic disorders caused by mutations in the genes encoding biosynthetic enzymes for sulfated glycosaminoglycans*

Shuji Mizumoto†, Shiro Ikegawa¶, and Kazuyuki Sugahara†§

From the †Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, and the ¶Laboratory for Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, Tokyo, 108-8639

Running title: Bone and skin disorders involving chondroitin and dermatan sulfate (58/60)

§, To whom correspondence should be addressed: Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan, Tel: +81-11-706-9054; Fax: +81-11-706-9056, E-mail: k-sugar@sci.hokudai.ac.jp

Key words: chondroitin sulfate; dermatan sulfate; heparan sulfate; glycosaminoglycan; proteoglycan; glycosyltransferase; sulfotransferase; bone; cartilage; skin.

SUMMARY (97/100)

A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances of crucial biological functions of GAGs in human. Recent studies have revealed that mutations in the genes encoding CS- and DS-biosynthetic enzymes cause various disorders of connective tissues. This review focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances of biosynthetic enzymes for sulfated GAGs.

INTRODUCTION

Proteoglycans (PGs) having linear polysaccharides as side chains are widely distributed in extracellular matrices and at cell surfaces (1-3). Chondroitin sulfate (CS) and dermatan sulfate (DS) chains are classified as sulfated glycosaminoglycans (GAGs) and covalently attached to the core proteins of PGs (1-3). PGs function in embryonic development and play roles in the pathological development of a number of diseases through the GAG chains (3-7). GAGs are modified by sulfation at various positions of hydroxy groups in each constituent sugar residue and by epimerization of uronic acid residues during the biosynthetic process, resulting in enormous structural diversity, which is fundamental to a wide range of biological events involving GAGs (4). Thus, it is imaginable that the heritable disturbance of the fine structure of GAGs may cause a variety of diseases.

The backbones of CS and DS consist of repeating disaccharide building units of N-acetyl-D-galactosamine (GalNAc) and uronic acid, D-glucuronic acid (GlcUA) or L-iduronic acid (IdoUA). CS/DS hybrid chains with both CS and DS structural elements are often found in mammalian tissues, and modified by sulfate groups at C-2 of uronic acids, and C-4 and/or C-6 of GalNAc residues with various combinations (4). In recent years, most, if not all, glycosyltransferases/epimerases/sulfotransferases and related enzymes for GAG biosynthesis have been cloned and characterized (Table 1, Figures 1 and 2) (3, 7, 8), although their regulatory mechanism(s) at the transcriptional level largely are not yet understood. However, in addition to well established mucopolysaccharidoses and lysosomal storage diseases (9), which are characterized by the accumulation of undigested GAG fragments in lysosomes due to defective catabolism by mutated glycosidases and sulfatases, several genetic diseases caused by mutations of the genes encoding biosynthetic enzymes have recently been described. Examples include
hereditary multiple exostoses resulting from mutations in the *EXT1* and *EXT2* genes encoding the glycosyltransferases responsible for HS biosynthesis (10, 11), chondrodysplasias caused by the mutations in the sulfate transporter and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase-2 (12), and Ehlers-Danlos syndrome (EDS) progeroid form caused by mutations in *B4GALT7* encoding β4-galactosyltransferase-7, resulting in the defect of DS chains (13-18). Accumulating evidence suggests that CS/DS-biosynthetic enzymes in addition to the above mentioned genes are crucial to bone development and skin integrity in humans (Table 2). This review will overview the biosynthetic mechanism for CS/DS chains and focus on genetic diseases which have been recently characterized from a glycobiological point of view in terms of disturbances to the biosynthesis of functional CS/DS chains.

Biosynthesis of Chondroitin Sulfate and Dermatan Sulfate Chains

GAG-protein Linkage Region —— The newly synthesized core proteins of PGs are initially modified by glycosylation to form a common GAG-protein linkage region tetrasaccharide, GlcUAβ1–3galactoseβ1–3galactoseβ1–4xylose β1– (GlcUA–Gal–Gal–Xyl–), attached to the serine residue(s) of the GAG attachment sites of the PGs in the endoplasmic reticulum and Golgi compartments (2, 4, 7). Each specific glycosyltransferase, β–xylosyltransferase (XyLT) (19, 20), β1,4-galactosyltransferase-I (GalT-I) (21, 22), β1,3-galactosyltransferase-II (GalT-II) (23), and β1,3-glucuronosyltransferase-I (GlcAT-I) (24), which are encoded by *XYLT1* (and *XYLT2*), *B4GALT7*, *B3GALT6*, and *B3GAT3*, respectively, transfer to the serine residue or growing glycan from the corresponding uridine diphosphate (UDP)-sugars including UDP-Xyl, UDP-Gal, and UDP-GlcUA (Table 1). The GAG-protein linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl-O-, of CS and HS might be synthesized by the same set of enzymes including XyLT, GalTs, GlcAT-I, some of which may form a multi-enzyme complex such as a so-called GAGosome for HS synthesis (25, 26). Further, the sugar residues in the GAG linkage region are frequently modified by 2-O-phosphorylation (the xylose residue), and sulfation at C-6 (the first galactose) and C-4 or C-6 (the second galactose) (2). The enzymes responsible for the phosphorylation and sulfation have been identified as FAM20B and chondroitin 6-O-sulfotransferase-I (C6ST-I), respectively (27, 28). Although the biological functions of these modifications remain unclear, they influence, at least in vitro, the glycosyltransferase activities of GalT-I and GlcAT-I.

Repeating Disaccharide Region of CS/DS —— Following completion of the building of the tetrasaccharide, GlcUAβ1–3Galβ1–3Galβ1–4Xylβ1–serine, the first GalNAc residue is transferred to the GlcUA residue in the linkage region by β1,4-N-acetylgalactosaminyltransferase-I (GalNAcT-I), resulting in the initiation of the synthesis of the repeating disaccharide region of CS/DS chains (Fig. 1, Table 1) (29-32). Alternatively, the addition of a GlcNAc residue to the linkage region by α1,4-N-acetylgalcosaminyltransferase-I (GlcNAcT-I) evokes HS biosynthesis (Fig. 1) (33-41). Thus, the transfer of the first hexosamine residue, α-GlcNAc or β-GalNAc, which is the fifth saccharide from the reducing terminal, is crucial in determining the type of GAGs as HS or CS. The biosynthesis of a HS chain on core proteins requires a cluster of acidic and hydrophobic amino acids located near the Ser-Gly of the GAG-attachment site (41). In addition, the sulfation of Gal residues in the GAG-protein linkage region, GlcUA–Gal–Gal–Xyl–O–, has been reported (2). The potential sites for sulfation are C-6 of the first Gal and C-4 or C-6 of the second Gal residue, which occurs in the linkage region of CS/DS, but not HS/Hep (2). These observations indicate that the amino acids of the core protein at the GAG attachment site, the sulfation of the linkage region and/or unknown additional factors may be involved in the selective assembly of CS and HS chains. Thus, the molecular mechanism of the enigmatic differential biosynthetic assembly of HS and CS chains at the GAG attachment sites remains to be a black box.

Thereafter, polymerization of the CS backbone occurs to construct the repeating disaccharide region consisting of −3GalNAcβ1–4GlcUAβ1− by enzymatic activities designated as CS-GlcAT-II and GalNAcT-II, and catalyzed by an enzyme
complex CS-polymerase composed of various combinations of the chondroitin synthase family including chondroitin synthase (ChSy), chondroitin polymerizing factor (ChPF) and the other four family members (Table 1) (42-48). ChSy consists of 802 amino acids with homology to β3-galactosyltransferase and β4-galactosyltransferase family members on the amino- and carboxy-terminal sides, respectively, and is a bifunctional glycosyltransferase with GalNAcT-II and CS-GlcAT-II activities required for the formation of the disaccharide unit (42). On the other hand, ChPF possesses only weak GalNAcT-II activity (43), whereas Yada et al. independently reported that ChPF has the both GalNAcT-II and CS-GlcAT-II activities, resulting in the designation of ChPF as chondroitin sulfate synthase-2 (CSS2) (47). In spite of the dual enzymatic activities of ChSy, ChSy itself cannot achieve polymerization reactions to build up the repeating disaccharide units of CS. However, the association of ChSy with ChPF results in a dramatic augmentation of both the glycosyltransferase activities of ChSy (43). Furthermore, this enzyme complex can polymerize a CS chain onto the linkage region tetrasaccharide attached to the core protein (43). Thus, ChPF may function as a chaperone, which confers on ChSy the stronger glycosyltransferase activities, or stabilizes ChSy by forming an enzyme complex ChSy/ChPF (43-45).

In the case of DS chains, DS-epimerase converts βGlcUA into αIdoUA by epimerizing the C-5 position of GlcUA residues after the formation of a chondroitin polymer as a precursor backbone (49-52).

Subsequently, the chondroitin and dermatan chains fully develop through sulfation catalyzed by chondroitin/dermatan 4-O-sulfotransferases (C4ST/D4ST) (53-57) or chondroitin 6-O-sulfotransferase (C6ST) (58, 59), which transfer the sulfate group from a sulfate donor 3'-phosphoadenosine 5’-phosphosulfate (PAPS) to the C-4 or C-6 positions of GalNAc residues in each chain, respectively (Fig. 2, Table 1). Disulfated disaccharide units, [GlcUA(2-O-sulfate)–GalNAc(6-O-sulfate)], [IdoUA(2-O-sulfate)–GalNAc(4-O-sulfate)], [GlcUA–GalNAc(4-O-), 6-O-disulfates], and [IdoUA–GalNAc(4-O-, 6-O-disulfates)], are found infrequently but in significant amounts in various mammalian tissues and cells, and formed by the successive actions of uronosyl 2-O-sulfotransferase (UST) (60) and GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) (61), which transfers sulfate to the C-2 position of a uronic acid residue flanking the GalNAc(4-O- or 6-O-sulfate) and to the C-6 position of GalNAc(4-O-sulfate) formed by C4ST, respectively (Fig. 2, Table 1). Sulfation patterns arranged by disaccharide units including these units and non-sulfated and/or monosulfated units [GlcUA–GalNAc(4-O-sulfate), GlcUA–GalNAc(6-O-sulfate), IdoUA–GalNAc(4-O-sulfate) and IdoUA–GalNAc(6-O-sulfate)] in CS, DS, and CS/DS hybrid chains vary among cell types, tissues, developmental stages, and pathological conditions, resulting in enormous diversity, which is the structural basis of the biological functions of CS/DS chains (4, 5).

Human Disorders Affecting Skeleton and Skin Caused by Disturbance of Chondroitin Sulfate and Dermatan Sulfate Syntheses

GalT-I (B4GALT7) deficiency——Mutations of the GalT-I gene cause Ehlers-Danlos syndrome (EDS)-progeroid type (Table 2) (13-18). EDS is a heterogeneous group of heritable connective tissue disorders characterized by joint and skin laxity and tissue fragility. Namely, six major types [classical type, hypermobility type, vascular type, kyphoscoliosis type, arthrochalasia type, and dermatospraxis type (62)] and several minor types including the progeroid type are known (supplemental Table S1).

The characteristics of EDS-progeroid type (GalT-I deficiency) include an aged appearance, developmental delay, short stature, craniofacial dysmorphism, generalized osteopenia, defective wound healing, hypermobile joints, hypotonic muscles, and loose yet elastic skin (13-16). Fibroblasts from these patients with p.Arg270Cys mutation in GalT-I show reduced galactosyltransferase activity compared with control subjects, and synthesize de-glycanated decorin and biglycan core proteins in addition to their PG forms (16). It has also been demonstrated that p.Ala186Asp mutation markedly reduces GalT-I activity in vitro, whereas its effects on the biosynthesis of CS/DS and HS are much less pronounced (17). In addition, a drastic decrease in GalT-I activity and GAG biosynthesis caused by p.Leu206Pro and p.Arg270Cys mutations has been reported (63, 64). Interestingly, the reduction in GalT-I
activity caused by the p.Arg270Cys mutation results in a reduction in the sulfation of HS chains and a retardation of wound closure in vitro (18). Taken together, the phenotypes of EDS progeroid form caused by GalT-I mutations are attributable to defects in mainly DS and partially HS and/or CS chains.

GlcAT-I (B3GAT3) deficiency —— A family with recessive inheritance and five affected individuals with joint dislocations mainly affecting the elbow, and congenital heart defects including a bicuspid aortic valve, was reported. A mutation (p.Arg277Gln) in the B3GAT3 gene coding for GlcAT-I was identified for this Larsen-like syndrome family (65). Larsen syndrome is characterized by dislocations of the hip, knee, and elbow joints, equinovarus foot deformity, and craniofacial dysmorphism that includes hypertelorism, prominence of the forehead, a depressed nasal bridge, and a flattened midface (66, 67). The p.Arg277Gln mutation causes a drastic reduction in GlcAT-I activity in the patients’ fibroblasts (~5% of control fibroblasts) (65). Although the wild-type GlcAT-I is located in the cis and cis-medial Golgi in control fibroblasts, the amount of mutant protein is markedly reduced as demonstrated by immunofluorescent staining using anti-GlcAT-I antibody, indicating that the mutant GlcAT-I may be produced to a lesser extent, be degraded, or be susceptible to a protease as compared with the wild-type (65). Furthermore, the mutation results in a decrease in the biosynthesis of GAGs. The fibroblasts from patients produce not only a PG form of decorin, which is secreted by the fibroblasts and has a single DS chain, but also DS-free decorin presumably bearing the linkage region trisaccharide stub, Galβ1-3Galβ1-4Xyl (65). Further, the numbers of CS and HS chains on the core proteins at the surface of the fibroblasts are reduced to 65% and 53% of those in control subjects, respectively (65). These observations suggest that the mutant GlcAT-I (p.Arg277Gln) cannot transfer GlcUA to the common GAG-protein linkage region tri-saccharide Gal-Gal-Xyl, resulting in a partial deficiency of CS, DS, and HS that presents as connective tissue disorders with heart defects, Larsen-like syndrome, B3GAT3-type.

More recently, another mutation p.Pro140Leu was found in a consanguineous family from the Nias island in Indonesia (68). These patients had skeletal phenotypes characterized by disproportionate short stature, but no heart phenotype in contrast to the p.Arg277Gln mutation. A recombinant enzyme of the p.Pro140Leu mutation showed significant reduction in the enzymatic activity, reflecting the mutation that lies within the donor substrate-binding sub-domain of the catalytic domain of GlcAT-I. However, cultured lymphoblastoid cells show that defective synthesis is more pronounced for CS than for HS.

CSGALNACT1 deficiency —— Two possible mutations in the CSGALNACT1 gene encoding a protein with GalNAcT-I and –II activities are found in patients with Bell’s palsy and unknown type of hereditary motor and sensory neuropathy (HMSN) (69). HMSNs are heterogeneous neurodegenerative disorders characterized by a progressive loss of functions in the peripheral sensory nerves (70). Its symptoms commonly include weakness, falls, and sensory loss often associated with cavus or planus foot deformity (70). Degeneration of myelin sheaths and/or axons causes paralytic amyotrophy predominantly involving distal limbs in association with hypo- or a-reflexia. The recombinant mutant proteins for p.His234Arg and p.Met509Arg, exhibit no GalNAcT-II activity, implying these mutations in CSGALNACT1 and/or CS-PGs may be associated with pathogenetic mechanisms of the peripheral neuropathies (69). To further understand the neuropathy involving CS, knockout mice, Csgalnact1−/− may be useful, although currently, the mice are reported only to show an abnormal development in cartilage (71, 72).

CHSY1 deficiency —— The Temtamy pre-axial brachydactyly syndrome is an autosomal recessive congenital syndrome characterized by bilateral, symmetric pre-axial brachydactyly and hyperphalangism, facial dysmorphism, dental anomalies, sensorineural hearing loss, delayed motor and mental developments, and growth retardation. The disease is caused by mutations in chondroitin synthase 1 (CHSY1), including p.Gly19–Leu28del, p.Gly5Alafs*30, p.Gln69*, and p.Pro539Arg (73, 74). The knockdown of CHSY1 in zebrafish suggests that it is involved in the signaling of bone morphogenetic protein (BMP) during the bone development (73). Tian et al. reported syndromic recessive pre-axial brachydactyly with partial duplication of
proximal phalanges caused by the CHSY1 mutations (74). Furthermore, Wilson et al. recently demonstrated that Chsy knockout (Chsy1^{−/−}) mice manifest brachypodism with a striking patterning defect in distal phalanges, chondrodysplasia, and a decrease in bone density (75). Associated with the digit-patterning defect are a reduction in CS and a shift in cell orientation. The expression of Gdf5 (growth and differentiation factor 5), a member of the BMP family is altered during the earliest stages of joint formation of the Chsy1^{−/−} mouse (75), indicating that Chsy1 restricts Gdf5 expression. These observations suggest that CHSY1 and/or CS chains are indispensable regulators of joint patterning and skeletal development, and that the Chsy1^{−/−} mouse is a good animal model for human brachydactyly caused by CHSY1 mutations.

C6ST-1 (CHST3) deficiency — A loss-of-function mutation in chondroitin 6-O-sulfotransferase-1 (C6ST-1) causes human spondyloepiphyseal dysplasia (SED), Omani type, a severe chondrodysplasia with major involvement of the spine (76-81). The original patients with SED, Omani type caused by a missense mutation p.Arg304Gln, showed a short stature, severe kyphoscoliosis, osteoarthritis in elbow, wrist, and knee joints, secondary dislocation of the large joints, rhizomelia, fusion of carpal bones, and mild brachydactyly (76, 77). Several of their clinical features including ventricular septal, mitral, and/or tricuspid defects, aortic regurgitations, deafness, and metacarpal shortening differ significantly from the original description of the disease in Turkish siblings (p.Tyr141Met and p.Leu286Pro) (78, 79). 6-O-Sulfation on GalNAc residues in CS chains was barely detected in fibroblasts and urine obtained from the patients (78). Furthermore, Sperti-Furga and his colleagues have demonstrated that additional CHST3 mutations cause autosomal recessive Larsen syndrome, chondrodysplasia with multiple dislocations, humero-spinal dysostosis, and Desbuquois syndrome (80, 81). These observations suggest that the degree of the 6-O-sulfation deficiency in CS varies depending on the substituted amino acids in C6ST-1. The clinical spectra are similar to those seen in other skeletal dysplasias caused by defective sulfation of GAGs. Different pathological phenotypes may result from a relatively narrow clinical features and age-related descriptions of the same conditions.

D4ST-1 (CHST14) deficiency — Kosho et al. reported six unrelated Japanese showing characteristic craniofacial features, multiple congenital contractures, progressive joint and skin laxity, and progressive multi-system complications, features partially similar to those of EDS, kyphoscoliosis type (VI) caused by a deficiency of lysyl hydroxylase (82, 83). Although lysyl hydroxylase activity was normal in these patients, homozygosity mapping of two independent consanguineous families identified CHST14 encoding dermatan 4-O-sulfotransferase-1 (D4ST-1) harboring four mutations (p.Lys69*, p.Pro281Leu, p.Cys289Ser, and p.Tyr293Cys) (84). A recombinant mutant D4ST-1 showed no D4ST activity (84). In addition, the fibroblasts from the patients showed a marked reduction in sulfotransferase activity (84). Surprisingly, CS chains but not dermatan were produced as a decorin side chain by the fibroblasts (84). In fact, 4-O-sulfations in CS and DS chains act as a block to prevent DS-epimerase from re-equilibrating between GlcUA and IdoUA (50). Hence, the defect in D4ST-1 allows a back-epimerization reaction converting IdoUA to GlcUA to form chondroitin, followed by sulfation with chondroitin 4-O-sulfotransferase (C4ST), resulting in an aberrant shift from DS to CS synthesis, which may affect the formation or maintenance of adequate collagen bundles in the patients' dermal tissues (84).

Dünder et al. and Malfait et al. independently reported that the mutations in D4ST-1 caused adducted thumb-clubfoot syndrome (ATCS) and EDS, musculocontractural type (EDS-VIB) without a mutation of lysyl hydroxylase (85, 86). ATCS is an autosomal recessive disorder showing characteristic clinical features such as adducted thumb, clubfoot, craniofacial dysmorphism, arachnodactyly, cryptorchidism, atrial septal defect, kidney defect, cranial ventricular enlargement, and psychomotor retardation as well as thin and translucent skin, joint instability, and osteopenia from birth to early childhood (87, 88). Five of the eleven patients with ATCS died in early infancy or childhood, indicating that ATCS patients may have more severe manifestations than patients with EDS, type VIB.

CONCLUSION
The cloning of cDNAs for the genes encoding enzymes involved in the biosynthesis of GAG chains during the last 15 years has led to a better understanding of not only the biosynthetic mechanism but also the functions of CS, DS and HS chains *in vivo*, which have been clarified by using model organisms such as nematodes, fruit flies, zebrafish, and knockout mice (7, 8, 89-91). Moreover, recent advances in the study of human genetic diseases of skeleton and skin achieved by the cooperative efforts of clinicians, molecular geneticists, and glycobiologists have revealed the importance of CS/DS side chains of PGs. Further understanding of the molecular pathogenesis involving CS and DS chains is essential to facilitate the development of therapeutics for these diseases.
REFERENCES

1. Iozzo, R.V. (1998) Matrix proteoglycans: From molecular design to cellular function. *Annu. Rev. Biochem.* 67, 609-652

2. Sugahara, K., and Kitagawa, H. (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. *Curr. Opin. Struct. Biol.* 10, 518-527

3. Mizumoto, S., and Sugahara, K. (2012) Bone and skin disorders caused by a disturbance in the biosynthesis of chondroitin sulfate and dermatan sulfate in *Extracellular matrix: Pathobiology and Signaling*, (Karamanos, N. ed.), Walter De Gruyter, Berlin, Germany, pp. 97-118

4. Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., and Kitagawa, H. (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. *Curr. Opin. Struct. Biol.* 13, 612-620

5. Sugahara, K., and Mikami, T. (2007) Chondroitin/dermatan sulfate in the central nervous system. *Curr. Opin. Struct. Biol.* 17, 526-545

6. Fuster, M.M., and Esko, J.D. (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. *Nat. Rev. Cancer* 5, 526-542

7. Bishop, J.R., Schulksz, M., and Esko, J.D. (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. *Nature* 446, 1030-1037

8. Mizumoto, S., Uyama, T., Mikami, T., Kitagawa, H., and Sugahara, K. (2005) Biosynthetic pathways for differential expression of functional chondroitin sulfate and heparan sulfate in *Handbook of Carbohydrate Engineering*, (Yarema, K.J. ed.), CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 289-324

9. Futerman, A.H., and van Meer, G. (2004) The cell biology of lysosomal storage disorders. *Nat. Rev. Mol. Cell Biol.* 5, 554-565

10. McCormick, C., Leduc, Y., Martindale, D., Mattison, K., Esford, L.E., Dyer, A.P., and Tufaro, F. (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. *Nat. Genet.* 19, 158-161

11. Zak, B.M., Crawford, B.E., and Esko, J.D. (2002) Hereditary multiple exostoses and heparan sulfate polymerization. *Biochem. Biophys. Acta* 1573, 346-355

12. Faiyaz-ul-Haque, M., King, L.M., Krakow, D., Cantor, R.M., Rusiniak, M.E., Swank, R.T., Superti-Furga, A., Haque, S., Abbas, H., Ahmad, W., Ahmad, M., and Cohn, D.H. (1998) Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. *Nat. Genet.* 20, 157-162

13. Quentin, E., Gladen, A., Rodén, L., and Kresse, H. (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: Galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. *Proc. Natl. Acad. Sci. U.S.A.* 87, 1342-1346

14. Okajima, T., Fukumoto, S., Furukawa, K., Urano, T., and Furukawa, K. (1999) Molecular basis for the progeroid variant of Ehlers-Danlos syndrome: identification and characterization of two mutations in galactosyltransferase I gene. *J. Biol. Chem.* 274, 28841-28844

15. Faiyaz-Ul-Haque, M., Zaidi, S.H.E., Al-Ali, M., Al-Mureikhi, M.S., Kennedy, S., Al-Thani, G., Tsui, L.C., and Teebi, A.S. (2004) A novel missense mutation in the galactosyltransferase I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. *Am. J. Med. Genet.* 128A, 39-45

16. Seidler, D.G., Faiyaz-Ul-Haque, M., Hansen, U., Yip, G.W., Zaidi, S.H., Teebi, A.S., Kiesel, L., and Götte, M. (2006) Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (β4GalT-7). *J. Mol. Med. (Berl.)* 84, 583-594

17. Götte, M., and Kresse, H. (2005) Defective glycosaminoglycan substitution of decorin in a patient with progeroid syndrome is a direct consequence of two point mutations in the galactosyltransferase I (β4GalT-7) gene. *Biochem. Genet.* 43, 65-77

18. Götte, M., Spillmann, D., Yip, G.W., Versteeg, E., Echtlemeyer, F.G., van Kuppevelt, T.H., and Kiesel, L. (2008) Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (β4GalT-7) deficient form of Ehlers-Danlos syndrome. *Hum. Mol. Genet.* 17, 996-1009
19. Göttinng, C., Kuhn, J., Zahn, R., Brinkmann, T., and Kleesiek, K. (2000) Molecular cloning and expression of human UDP-D-xylene: Proteoglycan core protein β-D-xyllosyltransferase and its first isoform XT-II. J. Mol. Biol. 304, 517-528
20. Pönighaus, C., Ambrosius, M., Casanova, J.C., Prante, C., Kuhn, J., Esko, J.D., Kleesiek, K., and Göttinng, C. (2007) Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfates and heparan sulfate proteoglycans. J. Biol. Chem. 282, 5201-5206
21. Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., and Clausen, H. (1999) Cloning and expression of a proteoglycan UDP-galactose: β-xylene β1,4-galactosyltransferase I: A seventh member of the human β4-galactosyltransferase gene family. J. Biol. Chem. 274, 26165-26171
22. Okajima, T., Yoshida, K., Kondo, T., and Furukawa, K. (1999) Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 274, 22915-22918
23. Bai, X., Zhou, D., Brown, J.R., Crawford, B.E., Hennet, T., and Esko, J.D. (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J. Biol. Chem. 276, 48189-48195
24. Kitagawa, H., Tone, Y., Tamura, J., Neumann, K.W., Ogawa, T., Oka, S., Kawasaki, T., and Sugahara, K. (1998) Molecular cloning and expression of glucuronoltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273, 6615-6618
25. Schwartz, N.B., Rodén, L., and Dorfman, A. (1974) Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase. Biochem. Biophys. Res. Commun. 56, 717-724
26. Presto, J., Thuveson, M., Carlsson, P., Busse, M., Wilén, M., Eriksson, I., Kusche-Gullberg, M., and Kjellén, L. (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc. Natl. Acad. Sci. U.S.A. 105, 4751-4756
27. Kitagawa, H., Tsutsumi, K., Ikemgi-Kuzuhara, A., Nidanaka, S., Goto, F., Ogawa, T., and Sugahara, K. (2008) Sulfation of the galactose residues in the glycosaminoglycan-protein linkage region by recombinant human chondroitin 6-O-sulfotransferase-1. J. Biol. Chem. 283, 27438-27443
28. Koike, T., Izumikawa, T., Tamura, J., and Kitagawa, H. (2009) FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem. J. 421, 157-162
29. Uyama, T., Kitagawa, H., Tamura, J., and Sugahara, K. (2002) Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J. Biol. Chem. 277, 8841-8846
30. Gotoh, M., Sato, T., Akashima, T., Iwasaki, H., Kameyama, A., Mochizuki, H., Yada, T., Inaba, N., Zhang, Y., Kikuchi, N., Kwon, Y.D., Togayachi, A., Kudo, T., Nishihara, S., Watanabe, H., Kimata, K., and Narimatsu, H. (2002) Enzymatic synthesis of chondroitin with a novel chondroitin sulfate N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine to glucuronic acid in initiation and elongation of chondroitin sulfate synthesis. J. Biol. Chem. 277, 38189-38196
31. Uyama, T., Kitagawa, H., Tanaka, J., Tamura, J., Ogawa, T., and Sugahara, K. (2003) Molecular cloning and expression of a second chondroitin N-acetylgalactosaminyltransferase involved in the initiation and elongation of chondroitin/dermatan sulfate. J. Biol. Chem. 278, 3072-3078
32. Sato, T., Gotoh, M., Kiyoihara, K., Akashima, T., Iwasaki, H., Kameyama, A., Mochizuki, H., Yada, T., Inaba, N., Togayachi, A., Kudo, T., Asada, M., Watanabe, H., Imamura, T., Kimata, K., and Narimatsu, H. (2003) Differential roles of two N-acetylgalactosaminyltransferases, CSGalNAcT-1, and a novel enzyme, CSGalNAcT-2: Initiation and elongation in synthesis of chondroitin sulfate. J. Biol. Chem. 278, 3063-3071
33. Lind, T., Tufaro, F., McCormick, C., Lindahl, U., and Lidholt, K. (1998) The Putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan
sulfate. J. Biol. Chem. 273, 26265-26268
34. Kitagawa, H., Shimakawa, H., and Sugahara K. (1999) The tumor suppressor EXT-like gene EXTL2 encodes an α,1,4-N-acetylgalactosaminyltransferase that transfers N-acetylglactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region: the key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933-13937
35. McCormick, C., Duncan, G., Goutsos, T., and Tufaro, F. (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc. Natl. Acad. Sci. U.S.A. 97, 668-673
36. Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U., and Kusche-Gullberg, M. (2000) The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1, 282-286
37. Kim, B.T., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U., and Sugahara, K. (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α,1,4-N-acetylgalactosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 98, 7176-7181
38. Kim, B.T., Kitagawa, H., Tanaka, J., Tamura, J., and Sugahara, K. (2003) In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J. Biol. Chem. 278, 41618-41623
39. Busse, M., and Kusche-Gullberg, M. (2003) In vitro polymerization of heparan sulfate backbone by the EXT proteins. J. Biol. Chem. 278, 41333-41337
40. Sugahara, K., and Kitagawa, H. (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54, 163-175
41. Esko, J.D., and Zhang, L. (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr. Opin. Struct. Biol. 6, 663-670
42. Kitagawa, H., Uyma, T., and Sugahara, K. (2001) Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276, 38721-38726
43. Kitagawa, H., Izumikawa, T., Uyma, T., and Sugahara, K. (2003) Molecular cloning of a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization. J. Biol. Chem. 278, 23666-23671
44. Izumikawa, T., Uyma, T., Okuura, Y., Sugahara, K., and Kitagawa, H. (2007) Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin polymerizing factor. Biochem. J. 403, 545-552
45. Izumikawa, T., Koike, T., Shiozawa, S., Sugahara, K., Tamura, J., and Kitagawa, H. (2008) Identification of chondroitin sulfate glucuronyltransferase as chondroitin synthase-3 involved in chondroitin polymerization: Chondroitin polymerization is achieved by multiple enzyme complexes consisting of chondroitin synthase family members. J. Biol. Chem. 283, 11396-11406
46. Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K., and Narimatsu, H. (2002) Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase that transfers glucuronic acid to N-acetylgalactosamine. J. Biol. Chem. 277, 38179-38188
47. Yada, T., Gotoh, M., Sato, T., Shionyu, M., Go, M., Kaseyama, H., Iwasaki, H., Kikuchi, N., Kwon, Y. D., Togayachi, A., Kudo, T., Watanabe, H., Narimatsu, H., and Kimata, K. (2003) Chondroitin sulfate synthase-2: Molecular cloning and characterization of a novel human glycosyltransferase homologous to chondroitin sulfate glucuronyltransferase, which has dual enzymatic activities. J. Biol. Chem. 278, 30235-30247
48. Yada, T., Sato, T., Kaseyama, H., Gotoh, M., Iwasaki, H., Kikuchi, N., Kwon, Y. D., Togayachi, A., Kudo, T., Watanabe, H., Narimatsu, H., and Kimata, K. (2003) Chondroitin sulfate synthase-3: Molecular cloning and characterization. J. Biol. Chem. 278, 39711-39725
49. Malmström, A., and Fransson, L.A. (1975) Biosynthesis of dermatan sulfate. I. Formation of L-iduronic acid residues. J. Biol. Chem. 250, 3419-3425
50. Malmström, A. (1984) Biosynthesis of dermatan sulfate. II. Substrate specificity of the C-5 uronosyl epimerase. J. Biol. Chem. 259, 161-165
51. Maccarana, M., Olander, B., Malmström, J., Tiedemann, K., Aebersold, R., Lindahl, U., Li, J.P.,
and Malmström, A. (2006) Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J. Biol. Chem. 281, 11560-11568
52. Pacheco, B., Malmström, A., and Maccarana, M. (2009) Two dermatan sulfate epimerases form iduronic acid domains in dermatan sulfate. J. Biol. Chem. 284, 9788-9795
53. Yamauchi, S., Mita, S., Matusbara, T., Fukuta, M., Habuchi, H., Kimata, K., and Habuchi, O. (2000) Molecular cloning and expression of chondroitin 4-sulfotransferase. J. Biol. Chem. 275, 8975-8981
54. Hiraoka, N., Nakagawa, H., Ong, E., Akama, T.O., Fukuda, M.N., and Fukuda, M. (2000) Multiple congenital dislocations associated with characteristic facial abnormality. J. Pediat. Orthop. 20, 1-5.
55. Kang, H.G., Evers, M.R., Xia, G., Baenziger, J.U., and Schachner, M. (2002) Molecular cloning and characterization of chondroitin-4-O-sulfotransferase: A novel member of the HNK-1 family of sulfotransferases. J. Biol. Chem. 277, 34766-34772
56. Evers, M.R., Xia, G, Kang, H.G., Schachner, M., and Baenziger, J.U. (2001) Molecular cloning and characterization of a dermatan-specific N-acetylgalactosamine 4-O-sulfotransferase. J. Biol. Chem. 276, 36344-36353
57. Mikami, T., Mizumoto, S., Kago, N., Kitagawa, H., and Sugahara, K. (2003) Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: Implication of differential roles in dermatan sulfate biosynthesis. J. Biol. Chem. 278, 36115-36127
58. Fukuta, M., Uchimura, K., Nakashima, K., Kato, M., Kimata, K., Shinomura, T., and Habuchi, O. (1995) Molecular cloning and expression of chick chondrocyte chondroitin 6-sulfotransferase. J. Biol. Chem. 270, 18575-18580
59. Fukuta, M., Kobayashi, Y., Uchimura, K., Kimata, K., and Habuchi, O. (1998) Molecular cloning and expression of human chondroitin 6-sulfotransferase. Biochim. Biophys. Acta 1399, 57-61
60. Kobayashi, M., Sugumaran, G., Liu, J., Shworak, N.W., Silbert, J.E., and Rosenberg, R.D. (1999) Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate. J. Biol. Chem. 274, 10474-10480
61. Ohtake, S., Ito, Y., Fukuta, M., and Habuchi, O. (2001) Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene. J. Biol. Chem. 276, 43894-43900
62. Mao, J.R., and Bristow, J. (2001) The Ehlers-Danlos syndrome: on beyond collagens. J. Clin. Invest. 107, 1063-1069
63. Bui, C., Talhaoui, I., Chabel, M., Mulliert, G., Coughtrie, M.W., Ouzzine, M., and Fournel-Gigleux, S. (2010) Molecular characterization of β1,4-galactosyltransferase 7 genetic mutations linked to the progeroid form of Ehlers-Danlos syndrome (EDS). FEBS Lett. 584, 3962-3968
64. Rahuel-Clermont, S., Daligault, F., Piet, M.H., Gulberti, S., Netter, P., Branlant, G., Magdalou, J., and Lattard, V. (2010) Biochemical and thermodynamic characterization of mutated β1,4-galactosyltransferase 7 involved in the progeroid form of the Ehlers-Danlos syndrome. Biochem. J. 432, 303-311
65. Baasanjav, S., Al-Gazali, L., Hashiguchi, T., Mizumoto, S., Fischer, B., Horn, D., Seelow, D., Bassam R. Aziz, A.S., Langer, R., Saleh, A.A.H., Becker, C., Nürnberg, G., Cantagrel, V., Gleson, J.G., Gomez, D., Michel, J.B., Stricker, S., Lindner, T.H., Nürnberg, P., Sugahara, K., Mundlos, S., and Hoffmann, K. (2011) Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am. J. Hum. Genet. 89, 15-27
66. Larsen, L.J., Schottstaedt, E.R., and Bost, F.C. (1950) Multiple congenital dislocations associated with characteristic facial abnormality. J. Pediat. 37, 574-581
67. Steel, H.H., and Kohl, J. (1972) Multiple congenital dislocations associated with other skeletal anomalies (Larsen's syndrome) in three siblings. J. Bone. Joint. Surg. Am. 54, 75-82
68. Budde, B.S., Mizumoto, S., Kogawa, R., Becker, C.I, Altmüller, J., Thiele, H. Frommolt, P, Toliat, M.R., Hämmerle, J.M., Höhne, W., Sugahara, K., Nürnberg, P, Kennerknecht, I. Mutation of B3GAT3 causes skeletal dysplasia in a consanguineous clan from Nias. Abstract
69. Saigoh, K., Izumikawa, T., Koike, T., Shimizu, J., Kitagawa, H., and Kusunoki S. (2011) Chondroitin β-1,4-N-acetylgalactosaminytransferase-1 missense mutations are associated with neuropathies. J. Hum. Genet. 56, 143-146

70. Ouvrier, R., Geevasingh, N., and Ryan, M.M. (2007) Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood. Muscle Nerve 36, 131-143

71. Watanabe, Y., Takeuchi, K., Higa Onaga, S., Sato, M., Tsujita, M., Abe, M., Natsume, R., Li, M., Furuichi, T., Saeki, M., Izumikawa, T., Hasegawa, A., Yokoyama, M., Ikegawa, S., Sakimura, K., Amizuka, N., Kitagawa, H., and Igarashi, M. (2010) Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem. J. 432, 47-55

72. Sato, T., Kudo, T., Ikehara, Y., Ogawa, H., Hirano, T., Kiyohara, K., Hagiwara, K., Togayachi, A., Kunze, J., and Mundlos, S. (2004) Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. J. Med. Genet. 41, 146-152

73. Li, Y., Laue, K., Temtamy, S., Aglan, M., Kotan, L.D., Yigit, G., Canan, H., Pawlik, B., Nürnberg, G., Wakeling, E.L., Quarel, O.W., Baessmann, I., Lanktree, M.B., Yilmaz, M., Hegele, R.A., Amr, K., May, K.W., Nürnberg, P., Topaloglu, A.K., Hammerschmidt, M., and Wollnik, B. (2010) Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am. J. Hum. Genet. 87, 757-767

74. Tian, J., Ling, L., Shboul, M., Lee, H., O’Connor, B., Merriman, B., Nelson, S.F., Cool, S., Ababneh, O.H., Al-Hadidy, A., Masri, A., Hamamy, H., and Reversade, B. (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am. J. Hum. Genet. 87, 768-778

75. Wilson, D.G., Phamluong, K., Lin, W.Y., Barck, K., Carano, R.A., Diehl, L., Peterson, A.S., Martin, F., Solloway, M.J. (2012) Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev. Biol. 363, 413-425

76. Rajab, A., Kunze, J., and Mundlos, S. (2004) Spondyloepiphyseal dysplasia Omani type: a new recessive type of SED with progressive spinal involvement. Am. J. Med. Genet. 126A, 413-419

77. Thiele, H., Sakano, M., Kitagawa, H., Sugahara, K., Rajab, A., Höhne, W., Ritter, H., Leschik, G., Nürnberg, P., and Mundlos, S. (2004) Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc. Natl. Acad. Sci. U.S.A. 101, 10155-10160

78. van Roij, M.H., Mizumoto, S., Yamada, S., Morgan, T., Tan-Sindunata, M.B., Meijers-Heijboer, H., Verbeke, J.L., Markie, D., Sugahara, K., and Robertson, S.P. (2008) Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. Am. J. Med. Genet. 146A, 2376-2384

79. Tuyusuz, B., Mizumoto, S., Sugahara, K., Celebi, A., Mundlos, S., and Turkmen, S. (2009) Omani-type spondyloepiphyseal dysplasia with cardiac involvement caused by a missense mutation in CHST3. Clin. Genet. 75, 375-383

80. Hermanns, P., Unger, S., Rossi, A., Perez-Aytes, A., Cortina, H., Bonafe, L., Boccone, L., Setzu, V., Dutroit, M., Sangiorgi, L., Pecora, F., Reichert, K., Nishimura, G., Spranger, J., Zabel, B., and Superti-Furga, A. (2008) Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am. J. Hum. Genet. 82, 1368-1374

81. Unger, S., Lausch, E., Rossi, A., Mégarbané, A., Sillence, D., Alcausin, M., Aytes, A., Mendoza-Londono, R., Nampothiri, S., Afroz, B., Hall, B., Lo, I.F., Lam, S.T., Hoefele, J., Rost, I., Wakeling, E., Mangold, E., Godbole, K., Vatanavicharn, N., Franco, L.M., Chandler, K., Hollander, S., Velten, T., Reichert, K., Spranger, J., Robertson, S., Bonafè, L., Zabel, B., and Superti-Furga, A. (2010) Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: Congenital dislocations and vertebral changes as principal diagnostic features. Am. J. Med. Genet. 152A, 2543-2549

82. Kosho, T., Takahashi, J., Ohashi, H., Nishimura, G., Kato, H., and Fukushima, Y. (2005) Ehlers-Danlos syndrome type VIB with characteristic facies, decreased curvatures of the spinal
column, and joint contractures in two unrelated girls. *Am. J. Med. Genet.* **138A**, 282-287
83. Kosho, T., Miyake, N., Hatamochi, A., Takahashi, J., Kato, H., Miyahara, T., Igawa, Y., Yasui, H., Ishida, T., Ono, K., Kosuda, T., Inoue, A., Kohiyama, M., Hattori, T., Ohashi, H., Nishimura, G., Kawamura, R., Wakui, K., Fukushima, Y., and Matsumoto, N. (2010) A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. *Am. J. Med. Genet.* **152A**, 1333-1346
84. Miyake, N., Kosho, T., Mizumo, S., Furuchi, T., Hatamochi, A., Nagashima, Y., Arai, E., Takahashi, K., Kawamura, R., Wakui, K., Takahashi, J., Kato, H., Yasui, H., Ishida, T., Ohashi, H., Nishimura, G., Shiina, M., Saitsu, H., Tsurusaki, Y., Doi, H., Fukushima, Y., Ikegawa, S., Yamada, S., Sugahara, K., and Matsumoto, N. (2010) Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. *Hum. Mutat.* **31**, 966-974
85. Dündar, M., Müller, T., Zhang, Q., Pan, J., Steinmann, B., Vodopiutz, J., Gruber, R., Sonoda, T., Krabichler, B., Utermann, G., Baenziger, J.U., Zhang, L., and Janecke, A.R. (2009) Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. *Am. J. Hum. Genet.* **85**, 873-882
86. Malfait, F., Syx, D., Vlummens, P., Symoens, S., Nampoorthiri, S., Hermans-Lê, T., Van Laer, L., De and Paepe, A. (2010) Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. *Hum. Mutat.* **31**, 1233-1239
87. Dündar, M., Demiryilmaz, F., Demiryilmaz, I., Kumandas, S., Erkilic, K., Kendirci, M., Tuncel, M., Ozyazgan, I., and Tolmie, J.L. (1997) An autosomal recessive adducted thumb-club foot syndrome observed in Turkish cousins. *Clin. Genet.* **51**, 61-64
88. Sonoda, T., and Kouno, K. (2000) Two brothers with distal arthrogryposis, peculiar facial appearance, cleft palate, short stature, hydronephrosis, retentio testis, and normal intelligence: a new type of distal arthrogryposis?. *Am. J. Med. Genet.* **91**, 280-285
89. Häcker, U., Nybakken, K., and Perrimon, N. (2005) Heparan sulphate proteoglycans: the sweet side of development. *Nat. Rev. Mol. Cell Biol.* **6**, 530-541
90. Bülow, H.E., and Hobert, O. (2006) The molecular diversity of glycosaminoglycans shapes animal development. *Annu. Rev. Cell Dev. Biol.* **22**, 375-407
91. Lee, J.S., and Chien, C.B. (2004) When sugars guide axons: insights from heparan sulphate proteoglycan mutants. *Nat. Rev. Genet.* **5**, 923-935
92. Superti-Furga, A., Hastbacka, J., Wilcox, W.R., Cohn, D.H., van der Harten, H.J., Rossi, A., Blau, N., Rimoin, D.L., Steinmann, B., Lander, E.S., and Gitzelmann, R. (1996) Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. *Nat. Genet.* **12**, 100-102
93. Rossi, A., van der Harten, H.J., Beemer, F.A., Kleijer, W.J., Gitzelmann, R., Steinmann, B., and Superti-Furga, A. (1996) Phenotypic and genotypic overlap between atelosteogenesis type 2 and diastrophic dysplasia. *Hum. Genet.* **98**, 657-661
94. Noordam, C., Dhir, V., McNelis, J.C., Schlereth, F., Hanley, N.A., Krone, N., Smeitink, J.A., Smeets, R., Sweep, F.C., Claasen-van der Grinten, H.L., and Arlt, W. (2009) Inactivating PAPSS2 mutations in a patient with premature pubarche. *N. Engl. J. Med.* **360**, 2310-2318
95. Miyake, N., Elcioglu, N.H., Iida, A., Isguven, P., Dai, J., Murakami, N., Takamura, K., Cho, T.J., Kim, O.H., Hasegawa, T., Nagai, T., Ohashi, H., Nishimura, G., Matsumoto, N., and Ikegawa, S. (2012) PAPSS2 mutations cause autosomal recessive brachydactyly. *J. Med. Genet.* **49**, 533-538
96. Hiraoka, S., Furuichi, T., Nishimura, G., Shibata, S., Yanagishita, M., Rimoin, D.L., Superti-Furga, A., Nihkels, P.G., Ogawa, M., Katsuyama, K., Toyoda, H., Kinoshita-Toyoda, A., Ishida, N., Isono, K., Sanai, Y., Cohn, D. H., Koseki, H., and Ikegawa, S. (2007) Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. *Nat. Med.* **13**, 1363-1367
97. Goossens, D., Van Gestel, S., Claes, S., De Rijck, P., Souery, D., Massat, I., Van den Bossche, D., Backhovens, H., Mendlewicz, J., Van Broeckhoven, C., and Del-Favero, J. (2003) A novel CpG-associated brain-expressed candidate gene for chromosome 18q-linked bipolar disorder. *Mol. Psychiatry* **8**, 83-89
FIGURE 1. Schematic presentation of the biosynthetic assembly of the GAG backbones by various glycosyltransferases.

Each glycosyltransferase requires the respective UDP-sugar as donor substrate. Following the synthesis of specific core proteins, the synthesis of the so-called GAG-protein linkage region, GlcUAβ1-3Galβ1-3Galβ1-4Xylβ1-1-O- common to CS/DS and HS/Hep chains, is initiated by XylT, which transfers a Xyl residue from UDP-Xyl to the specific serine (Ser) residue in the endoplasmic reticulum, and is completed by the consecutive addition of each sugar by GalT-I, GalT-II, and GlcAT-I, which are common to the biosynthesis of both CS and HS, in Golgi apparatus.

Following the completion of the synthesis of the linkage region, the first βGalNAc residue is transferred to the naked GlcUA residue in the linkage region by GalNAcT-I, which initiates the assembly of the chondroitin backbone. Subsequently, the repeating disaccharide region, [-3GalNAcβ1-4GlcUAβ1-1]-n, is elongated by alternate additions of GlcUA and GalNAc residues from UDP-GlcUA and UDP-GalNAc catalyzed by CS-GlcAT-II and GalNAcT-II activities, respectively, of a hetero-complex (CS-polymerase) of formed with chondroitin synthase and chondroitin polymerizing factor.

On the other hand, the addition of α1-4-linked GlcNAc to the linkage region by GlcNAcT-I initiates the assembly of the HS repeating disaccharide region [-4GlcNAcα1-4GlcUAβ1-1]-n. Then, the chain polymerization of the HS chain is catalyzed by HS-GlcAT-II and GlcNAcT-II activities of HS polymerase, which is a hetero-complex of EXT1 and EXT2.

The molecular mechanism of the differential biosynthetic assembly of HS and CS chains at the GAG attachment sites remains to be elucidated as details have been discussed in the text, and therefore the transfer reactions of the 5th sugar (1st amino sugar) are shown in this Fig. by two distinct dotted arrows.

After the formation of the chondroitin and heparan backbones, GAG chains are matured by
sulfation at various positions and epimerization at GlcUA residues.

Each enzyme (glycosyltransferase and/or epimerase), its coding gene, and the corresponding inherited disorder are described under the respective sugar symbols from top at each line. Sulfotransferases involved in the chain modifications are not included in this figure, and illustrated in Figure 2 (see also Table 2 for the inherited diseases of sulfotransferases).

FIGURE 2. A schematic diagram of the biosynthetic modification of CS/DS chains.

After the formation of the chondroitin backbone, [-4GlcUAβ1-3GalNAcβ1-], each sugar residue is modified with a number of sulfate groups. Sulfation occurs mainly at positions 4 and 6 of GalNAc and position 2 of GlcUA catalyzed by various sulfotransferases. All sulfotransferases transfer a sulfate group from 3’-phosphoadenosine 5’-phosphosulfate (PAPS), a universal donor substrate to a specific position of GlcUA or GalNAc residue. C4ST and C6ST transfer sulfate to position 4 or 6 of GalNAc residues, resulting in the formation of A-units [GlcUA-GalNAc(4-O-sulfate)] and C-units [GlcUA-GalNAc(6-O-sulfate)], respectively. Further sulfation is catalyzed by GalNAc4S-6ST or UST, which is essential for the formation of highly sulfated disaccharide units, E-units [GlcUA-GalNAc(4-O, 6-O-sulfate)] and D-units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], respectively.

After the formation of the chondroitin backbone, DSE converts GlcUA into IdoUA by epimerizing the C-5 carboxy group, resulting in the formation of the dermatan backbone, composed of iO-units [-4IdoUAα1-3GalNAcβ1-]. The position 4 of GalNAc residues are sulfated by a distinct 4-O-sulfotransferase, D4ST, forming iA-units [IdoUA-GalNAc(4-O-sulfate)]. Further sulfations of DS chains are infrequently achieved by GalNAc4S-6ST or UST common to CS chains.

The abbreviation of “i” in iA, iB, and iE stands for IdoUA. DSE, DS-C5-epimerase; C4ST, chondroitin 4-O-sulfotransferase; C6ST, chondroitin 6-O-sulfotransferase; D4ST, dermatan 4-O-sulfotransferase; D6ST, dermatan 6-O-sulfotransferase; UST, uronyl 2-O-sulfotransferase; GalNAc4S-6ST, GalNAc 4-sulfate 6-O-sulfotransferase; 2S, 4S, and 6S, 2-O-, 4-O-, 6-O-sulfate.
Enzymes (Activity)	Coding genes (synonym)	Chromosomal location	mRNA accession No.	
Linkage region				
Xylosytransferase (XylT)	XYLTI	16p12.3	NM_022166	
	XYLTI2	17q21.33	NM_022167	
β4Galactosyltransferase-I (GalT-I)	B4GALT7	5q35.2-q35.3	NM_007255	
β3Galactosyltransfer -II (GalT-II)	B3GALT6	1p36.33	NM_080605	
β3Glucuronyltransferase-I (GlcAT-I)	B3GAT3	11q12.3	NM_012200	
Xylose 2-O-kinase	FAM20B (gsk1)	1q25	NM_014864	
Galactose 6-O-sulfotransferase	CHST3 (C6ST-I)	10q22.1	NM_004273	
Repeating disaccharide region				
Chondroitin synthase (GalNAcT-II, CS-GlcAT-II)	CHSY1	15q26.3	NM_014918	
	CHSY2 (CSS3)	5q23.3	NM_175856	
	CHSY3 (CHPF2, CSGLCA-T)	7q36.1	NM_019015	
Chondroitin polymerizing factor (GalNAcT-II, CS-GlcAT-II)	CHPF (CSS2)	2q35	NM_024536	
Chondroitin N-acetylgalactosaminyltransferase (GalNAcT-I, GalNAcT-II)	CSGALNACT1	8p21.3	NM_018371	
Dermatan sulfate epimerase	DSE	6q22	NM_013352	
	DSEL	18q22.1	NM_032160	
Uronyl 2-O-sulfotransferase	UST	6q25.1	NM_005715	
Chondroitin 4-O-sulfotransferase	CHST11 (C4ST-1)	12q	NM_018413	
	CHST12 (C4ST-2)	7p22	NM_018641	
	CHST13 (C4ST-3)	3q21.3	NM_152889	
Dermatan 4-O-sulfotransferase	CHST14 (D4ST-1)	15q15.1	NM_130468	
Chondroitin 6-O-sulfotransferase	CHST3 (C6ST-1)	10q22.1	NM_004273	
N-Acetylgalactosamine-4-sulfate-6-O-sulfotransferase	CHST15 (GalNAc4S-6ST)	10q26	NM_015892	
Gene (coded enzyme or protein)	Disorders	MIM No.	Clinical features	References
-------------------------------	-----------	---------	---	------------
SLC26A2 (DTDST)	Achondrogenesis type IB	600972	Lethal chondrodysplasia with severe under-development of skeleton, extreme micromelia, death before or immediately after birth.	92, 93
	Atelosteogenesis type II	256050		
	Diastrophic dysplasia	222600		
	Multiple epiphyseal dysplasia, AR type	226900	Epiphyseal dysplasia and early onset osteoarthritis.	
PAPSS2 (PAPS synthase-2)	Spondyloepimetaphyseal dysplasia, Pakistani type (PAPSS2 type)	612847	Short, bowed lower limbs, enlarged knee joint, kyphoscoliosis, and mild generalized brachydactyly. Androgen excess, premature pubarche, hyperandrogenic anovulation, low level of serum, dehydroepiandrosterone, short trunk, kyphosis and scoliosis.	12, 94, 95
	Hyperandrogenism			
	Brachyoilnima, AR type			
SLC35D1 (UDP-GlcUA/UDP-GalNAc transporter)	Schneckenbecken dysplasia	269250	Neonatal lethal chondrodysplasia, platyspondylody with oval-shaped vertebral bodies, extremely short long bones with dumbbell-like appearance, small ilia with snail-like appearance.	96
B4GALT7 (GalT-I)	EDS, progeroid form	130070	Developmental delay, aged appearance, short stature, craniofacial dysmorphism, generalized osteopenia.	13-18
B3GAT3 (GlcAT-I)	Larsen-like syndrome, B3GAT3 type	245600	Joint dislocations mainly affecting the elbow, congenital heart defects such as bicuspid aortic valve, aortic root dilatation.	65
CSGALNACT1	Hereditary motor and sensory neuropathy, unknown type	—	Intermittent postural tremor, reduction in compound muscle action potentials, acquired idiopathic generalized anhidrosis, hemi-facial palsy.	69
CHSY1	Tentamay pre-axial brachydactyly syndrome	605282	Short stature, limb malformation, hearing loss.	73, 74
CHST3 (C6ST-1)	Spondyloepiphyseal dysplasia, Omani type	143095	Short stature, severe kyphoscoliosis, osteoarthritis (elbow, wrist and knee), secondary dislocation of large joints, rhizomelia, fusion of carpal bones, mild brachydactyly, metacarpal shortening, ventricular septal defect, mitral and tricuspid defects, aortic regurgitations, deafness.	76-81
DSEL (DS epimerase-2)	Bipolar disorder	611125	Alternating episodes of depression and mania or hypomania, congenital malformation of the diaphragm.	97-99
	Depressive disorder			
	Diaphragmatic hernia			
	Microphthalmia			
CHST14 (D4ST-1)	EDS, Kosho type	601776	Craniofacial dysmorphism, multiple contractures, progressive joint and skin laxities, multisystem fragility-related	82-88
	EDS, musculocontractural type			
EDS, type VIB
Adducted thumb-clubfoot syndrome
manifestations, contractures of thumbs and feet, defects of heart, kidney and intestine.

SLC26A2, solute carrier family 26 (sulfate transporter) member 2; DTDST, diastrophic dysplasia sulfate transporter; PAPSS2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2; SLC35D1, solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter) member D1; B4GALT7, xylosylprotein beta 1,4-galactosyltransferase 7; B3GAT3, beta-1,3-glucuronyltransferase 3; CSGALNACT1, chondroitin sulfate N-acetylgalactosaminyltransferase 1; CHSY1, chondroitin sulfate synthase 1; CHST3, carbohydrate (chondroitin 6) sulfotransferase 3; DSEL, dermatan sulfate epimerase-like; CHST14, carbohydrate (N-acetylgalactosamine 4-O) sulfotransferase 14.

AR and EDS stand for autosomal recessive and Ehlers-Danlos syndrome, respectively.
FIGURE 1

GAG-repeating disaccharide region

CS/DS
- DS epimerase
- DSE, DSEL
- Bipolar disorder
- Diaphragmatic hernia

GalNAc-II
GlcAT-II
(CS-polymerase)
CHSY1-3, CHPF

GalNAc-I

GalNAc-II
GlcAT-II

n
n
Common GAG-protein linkage region

GalNAc-I

GlcAT-I
GalT-I
GalT-II

Ser

B3GAT3
B3GALT6
B4GALT7
XYLT1,2

Larisen-like syndrome
B3GAT3 type

Ehlers-Danlos syndrome
Progeroid type

Inositol

GlcNAc-II

GlcAT-II
(HS-polymerase)
EXT1, EXT2

GalNAc-II
GlcAT-II

EXTL2, EXTL3

Hereditary multiple exostoses

B3GAT3
B3GALT6
B4GALT7
XYLT1,2

GlcUA

GlcNAc

GalNAc

Gal

Xyl

IdoUA

GlcNAc

GalNAc

GlcUA

Gal

Xyl
FIGURE 2

- GlcUA-GalNAc-
 - C4ST
 - C6ST
 - GalNAc4S
 - GalNAc(4S)
 - E unit
 - GlcUA-GalNAc(4S)
 - D unit
 - GlcUA-GalNAc(6S)
 - IE unit
 - GlcUA-GalNAc(4S,6S)
 - IB unit

- GlcUA-GalNAc(4S)-
 - D4ST
 - iA unit
 - iO unit

- IdoUA-GalNAc-
 - DSE
 - O unit
 - iD unit
 - UST
 - GalNAc4S
 - GalNAc(4S)
 - D unit
 - GlcUA-GalNAc(4S)