Efficacy and effectiveness of 20 child health interventions in China: Systematic review of Chinese literature

Jian Shayne F. Zhang
Centre for Population Health Sciences and Global Health Academy, University of Edinburgh, Scotland, UK

Aim The research production of the Chinese academics for the past few decades, which is being published in more than nine thousands of Chinese academic periodicals, has recently been digitalized and made available in the public domain. The aim of this study was to systematically identify and assess the evidence from Chinese literature sources on the efficacy and effectiveness of child health interventions in China.

Methods The Chinese National Knowledge Infrastructure databases were searched for the studies with primary data on efficacy or effectiveness of child health interventions in China between 1980 and 2011. The searches of PubMed and the ‘Lives Saved Tool (LiST)’ evidence base were also performed to identify the counterpart evidence in the English language.

Results Of 32 interventions initially identified in the Chinese literature, 20 interventions sustained the primary information addressing efficacy or effectiveness. Among preventive interventions (14 interventions), most studies were dedicated to complementary feeding (7 studies), kangaroo mother care (7 studies) and syphilis detection and treatment (4 studies). Among treatment interventions (6 interventions), the most frequently studied were zinc for treatment of diarrhoea (11 studies) and newborn resuscitation (9 studies). The evidence on efficacy or effectiveness of the 32 interventions conducted in Chinese children in the Chinese literature was either of comparable quality, or more informative than the available reports on China in the English literature, which rarely contained studies on child health intervention effectiveness exclusively in Chinese population. The included studies reported positive results unanimously, implying a likely publication bias.

Discussion The evidence on the efficacy and effectiveness of child health interventions in China is typically modest in quantity and quality, and implies a notable urban-rural discrepancy in applied health systems research to improve child health interventions and programmes. However, it is clear that considerable research interests and initiatives from both inside and outside the country have been concentrating on implementation, long-term operation, evaluation and further development of child health interventions, especially preventive interventions in China.
In 2000, the UN defined a set of goals on which a global political consensus was reached – the ‘Millennium Development Goals’ (1,2). The fourth goal was defined as an ambition to decrease the levels of global child mortality between 1990 and 2015 by two thirds (3). The leading strategies for achieving child mortality reduction were to implement cost-effective interventions in the largest part of the population in low and middle income countries (4–7). These interventions were developed to prevent and treat the leading causes of child mortality, eg, preterm birth complications, birth asphyxia, neonatal infections, pneumonia, congenital abnormalities, diarrhoea, tetanus and HIV/AIDS (5,6). Clearly, there are many possible interventions available, and prioritization of those interventions for implementation among children has become one of the most important health policy goals for the governments, especially in low and middle income countries (8). They are calling for better evidence on the efficacy, effectiveness and cost-effectiveness of each intervention, and also better information on the patterns of child mortality burden in their countries (8). Therefore, understanding the causes of child mortality and the effectiveness of the preventive and treatment interventions has become one of the main interests of the global health community. The ‘Child Survival Series’ published by The Lancet is the earliest and one of the best examples (5,9–12).

The controversy over the true value of many child health interventions still rekindle debates now and then. First, once a few published randomized controlled trials show effectiveness of an intervention, it becomes unethical to scale up the evaluation only to deprive the control arm of apparent benefits. Second, the diversity of study settings and contexts produces enormous confounding and distorts generalization. Third, due to resource constraints, not every study can achieve sufficiently large sample size. Many of them eventually become underpowered, which leads to diverse and often conflicting results. Furthermore, mortality is rarely – if ever – an acceptable outcome of an intervention trial, and the introduction of proxy indicators creates uncertainty over the true effects on mortality and causes ambiguous conclusions. The most recent effort to integrate estimated effectiveness of interventions on child mortality has been published in 2 supplements of the International Journal of Epidemiology and BMC Public Health, providing the theoretical and methodological background information for the ‘Lives Saved Tool (LiST)’ (13). LiST is an evidence-based software module that allows prediction of the impact of scaling up different child health interventions at the national, regional and global level. Although this project is designed and performed to produce reasonably conservative estimates, the primary information gap is still an open issue and that new evidence from any proper sources would further refine the estimates.

One of the potential sources of this kind is academic literature in the Chinese language. The research production of Chinese academics for the past few decades, which is being published in more than nine thousands of Chinese academic periodicals, has recently been digitalized and made available in the public domain. It has been proven that strategically retrieving and analysing qualified publications in the Chinese literature contributes significant evidence and updates to the understanding and knowledge on various topics in the field of child health epidemiology (14). The aim of this study was to systematically identify and assess the evidence from Chinese literature sources on the efficacy and effectiveness of child health interventions in China.

METHODS

The China National Knowledge Infrastructure (CNKI) databases were searched for the period January 1980 to March 2011. CNKI is the most complete source of academ-
Efficacy and effectiveness of 20 child health interventions in China: Systematic review of Chinese literature

Information in China and represents the Chinese equivalent of PubMed or the Web of Knowledge (15). A systematic search of CNKI was performed to identify clinical and community-based studies with primary data reporting either efficacy or effectiveness of child health interventions relevant to neonates, infants, pre-school children or parents in China. Studies were included if: the total cohort was more than 50 subjects; the study design was prospective; the sample population was exclusively Chinese who lived in China at long-term residency base (16,17).

Table 2 The list of 59 retained studies for 20 interventions

Preventive interventions	Key search terms	General search terms	Crude hits	Title hits	Abstract hits	Final hits
Antibiotics for premature rupture of membranes	抗生素; 胎膜早破	效果; 评价; 影响; 作用; 干预	309	26	2	1
Clean delivery practices	科学接生	效果; 评价; 影响; 作用; 干预	30	16	4	1
Complementary feeding	食物添加; 食物喂养	效果; 评价; 影响; 作用; 干预	147	23	13	7
Folic acid (vitamin B) supplementation	叶酸; 维生素B; 补充	效果; 评价; 影响; 作用; 干预	123	21	12	2
Hib vaccination to prevent pneumonia	Hib疫苗	效果; 评价; 影响; 作用; 干预	124	34	2	1
Kangaroo mother care	袋鼠式护理; 皮肤接触护理	效果; 评价; 影响; 作用; 干预	60	31	15	7
Labour surveillance (including partograph) for early diagnosis of complications	产前检查; 并发症; 早期诊断	效果; 评价; 影响; 作用; 干预	366	27	6	2
Measles vaccination	麻疹疫苗	效果; 评价; 影响; 作用; 干预	68	21	5	2
Nevirapine and replacement feeding (where possible) to prevent HIV transmission	奈韦拉平; 替代喂养; 艾滋病	效果; 评价; 影响; 作用; 干预	156	44	2	1
Newborn temperature management	新生儿; 温度管理	效果; 评价; 影响; 作用; 干预	1	1	1	1
Syphilis detection and treatment	梅毒	效果; 评价; 影响; 作用; 干预	184	12	10	4
Tetanus toxoid (neonatal)	破伤风; 类毒素; 新生儿	效果; 评价; 影响; 作用; 干预	197	9	3	2
Vitamin A supplementation	维生素A; 维他命A	效果; 评价; 影响; 作用; 干预	598	56	10	2
Water, sanitation, hygiene	水与环境卫生(WES)项目	效果; 评价; 影响; 作用; 干预	19	8	2	1

Figure 1 Geographical distribution of 59 retained studies during 1980–2011.
The search terms used were various combinations from a set of terms for ‘efficacy’ and ‘effectiveness’ in their Chinese equivalents, i.e. ‘效果’, ‘评价’, ‘影响’, etc. and a set of terms for each intervention in the Chinese equivalences as well, eg, ‘叶酸’, ‘维生素B’, ‘补充’, etc. for ‘folic acid (vitamin B) supplementation’. The first step was to search prevention and treatment interventions targeting causes of child death in general (early development-related excluded). As this search strategy aimed to be as inclusive as possible, it resulted in 6476 publications which mentioned 32 interventions (Table 1). The first level screening based on titles left 649 studies for further identification as the majority were not relevant at all to the topic of ‘efficacy’ or ‘effec-

Table 3 Three most investigated preventive child health interventions in Chinese literature

Start No.	Year	Province	Cohort Type	Sample Size (Intervention 1)	Sample Size (Intervention 2)	Sample Size (Controls)	Outcome	Indicators of the Outcome
1	2009	Zhejiang	Hospital	100	100		Body temperature management	Temperature recovery speed (hr): I=1.65±1.36, C=0.63±1.83, P<0.05
2	2008–2009	Guangdong	Hospital	50	50		Venepuncture pain management	Heart rates (min): I=I=6, (8–14), P<0.05, Blood oxygen rate (%): I=I=6, (5–5), P<0.05
3	2007	Hebei	Hospital	80	80		Body temperature management	Temperature recovery speed: I=38(<4h), C=18(<4h), P<0.05
4	2007–2008	Guangdong	Hospital	30	30		Weight gain	Weight gain in the 28th day: I=835g, C=750g, P<0.005
5	2006–2008	Hunan	Hospital	60	60		Physiological and behaviour indicators	Heart rates (min): I=142±19.1, C=157±24.8, P<0.01, Blood oxygen rate (%): I=91±4.6, C=87±9, P<0.01
6	2004–2009	Shandong	Hospital	55	53		Pain management	Heart rates (min): I=152±13.9, C=12±1.5, P<0.05, Blood oxygen rate (%): I=94±3, C=93±8, P<0.05
7	1999–2002	Guangdong	Hospital	54	50		Prognosis of very LBW	MDI: I=99±12, C=89±10, P<0.01, PDI: I=91±10, C=83±11, P<0.05

• Kangaroo mother care

1. 2009 Zhejiang Hospital 100 100 Body temperature management Temperature recovery speed (hr): I=1.65±1.36, C=0.63±1.83, P<0.05

2. 2008–2009 Guangdong Hospital 50 50 Venepuncture pain management Heart rates (min): I=6, (8–14), P<0.05, Blood oxygen rate (%): I=6, (5–5), P<0.05

3. 2007 Hebei Hospital 80 80 Body temperature management Temperature recovery speed: I=38(<4h), C=18(<4h), P<0.05

4. 2007–2008 Guangdong Hospital 30 30 Weight gain Weight gain in the 28th day: I=835g, C=750g, P<0.005

5. 2006–2008 Hunan Hospital 60 60 Physiological and behaviour indicators Heart rates (min): I=142±19.1, C=157±24.8, P<0.01, Blood oxygen rate (%): I=91±4.6, C=87±9, P<0.01

6. 2004–2009 Shandong Hospital 55 53 Pain management Heart rates (min): I=152±13.9, C=12±1.5, P<0.05, Blood oxygen rate (%): I=94±3, C=93±8, P<0.05

7. 1999–2002 Guangdong Hospital 54 50 Prognosis of very LBW MDI: I=99±12, C=89±10, P<0.01, PDI: I=91±10, C=83±11, P<0.05

• Complementary feeding

1. 2007–2008 Guangxi Community 100 100 Percentage-Nutrition (P0–P100): I=I=6, C=0.63±1.83, P<0.05

2. 2006–2008 Jiangsu Hospital 206 175 Hb (g/L): I=80±13, C=60±12.57, P<0.05, IDA: I=94±5, C=33±6.3, P<0.05

3. 2004 Gansu Community 1000 500 327 DQ: I=53±10, C=0.001

4. 2003 Guangdong Hospital 251 237 Malnutrition: I=I=6, C=0.63±1.83, P<0.05

5. 2002 Jiangsu Hospital 52 52 Anemia(%) I=17±3, C=38±40, P<0.05

6. 1997 Liaoning Hospital 107 34 Standard BW: I=64±8.7, C=21±6.8, P<0.01

7. 1994 Sichuan Hospital 45 60 58 BW, Height, HC: I=I=6, C=0.63±1.83, P<0.05

• Syphilis detection and treatment

1. 2006–2009 Inner Mongolia Hospital 168 32 Syphilis(+): 72 children born to interventions; 19 children born to Controls

2. 2005 Guangdong Community 139±157 125 Syphilis child cases in theory for 2005, 4 Syphilis child cases in 2005

3. 2001–2005 Guangdong Hospital 50 13 Syphilis(+): 8 children born to Interventions; 10 children born to Controls

4. 2001–2002 Guangdong Community 186 517 Reduction: 61.90%
tiveness’. The abstract screening then left 136 relevant records for full text retrieving. Eventually, 59 studies (up to 1% of the initial screen) for 20 interventions were retained (Table 2). The most common reasons for exclusion were: 1. the total sample cohort was less than 50 subjects, considering that the small sample size might lead to large errors; 2. study design was retrospective, which might cause massive recall bias; 3. the study method was not sufficiently described to understand or interpret the results.

RESULTS

The distribution of the 59 included studies clustered mainly in the eastern and central regions of China (Figure 1). The latest classification of Chinese regions based on regional macro-economy development recommended dividing China into the eastern, central and western regions. Of the three macro-regions, Western China suffered the most from economical disadvantages. This also provides insight into a further discrepancy: the retained studies conducted in Eastern and Central China were generally led by major university-affiliated hospitals, which were in control of the key resources, such as the provincially leading research and teaching hubs and/or networks. In Western China, however, the retained studies were mostly conducted through cooperation with international organizations, as the overseas aid programmes. Also, an analysis of the period 1980 to 2011, which separated the included studies into 4-year time-periods by frequency, showed the time trend of a steady increase until the period 2004–2007. This was followed by a sharp drop during the period 2008–2011, to the level of activity observed back in 1992–1995 (Figure 2).

All the included studies that evaluated a total of 20 interventions were focused on addressing efficacy or effectiveness as the primary outcome. Among preventive interventions (14 interventions), most studies were dedicated to complementary feeding (7 studies), kangaroo mother care (7 studies) and syphilis detection and treatment (4 studies) (Table 3). Among treatment interventions (6 interventions), the most frequently studied were zinc for treatment of diarrhoea (11 studies) and newborn resuscitation (9 studies) (Table 4). Within each intervention, the results from individual studies generally supported each other, providing evidence on the positive effects for all interventions. However, several peculiarities need to be noted: for complementary feeding, each study adopted different food formulas and this may be due to the widespread geographic distribution. For Kangaroo mother care, the research interests varied dramatically, which made the targeting outcomes very diverse – including body temperature management, pain management, weigh gain, physiological and behavioural factors, etc. For syphilis detection and treatment, it was noted that one community-based study conducted in Guangdong province and recruiting 186,517 subjects reported an impressive 61.90% reduction rate during a period of two years. For zinc for treatment of diarrhoea, although OER and anti-diarrhoea duration were common indicators, the ingredients and portions of zinc formula adopted in each study were not consistent. Finally, for newborn resuscitation the universal outcome indicators employed in each study were Apgar-5 and Apgar-10, while Apgar-1 and Apgar-7 occasionally reported with other specific outcomes such as mortality, morbidity of asphyxia, pneumonia and infections.

The evidence on efficacy or effectiveness of the 32 interventions conducted in Chinese children in the Chinese literature was either of comparable quality, or more informative than the available reports on China in the English literature (Table 5). Although the selected English literature sources showed a substantial and strikingly increasing number of publications on child health interventions during the same period, studies on intervention effectiveness exclusively in Chinese children were very rarely published, and the few rare studies were unlikely to scale-up a systematic analysis or meta-analysis for any of the 32 selected interventions in this paper.

DISCUSSION

This paper represents the very first attempt to systematically investigate the accessibility, quantity and quality of the research production of Chinese academics over the period of the past 30 years on efficacy and effectiveness of child health interventions in China. It is possible that a parallel review and/or the extended systematic review of other digital Chinese-language databases such as Chongqing VIP and Wanfang would have identified slightly more studies. However, the initial searching within the two additional databases did not seem to add any further evidence (my search on February 15, 2011), and this might due to the extremely massive overlap in indexed journals of the three domains (15, 18, 19). It is very unlikely that substantial omissions could have drawn dramatically different conclusions on quantity assessment from those that this paper offers.

Conducting studies which evaluate interventions generally not only requires substantial financial support and high level technical expertise, but it is also subject to various vital factors, such as ethical approval, unique local conditions/customs and liaisons with multiple-organizations, to name a few. Usually, a single team of researchers has to invest tremendous efforts to ensure smooth workflow for years to achieve the ultimate outcome, either positive or negative, even possessing sufficient essential resources.
Table 4 Two most investigated treatment child health interventions in Chinese literature

Study No.	Year	Province	Cohort site	Sample size (interventions 1)	Sample size (interventions 2)	Outcome
1	2009	Shandong	Hospital –	65 – 60 –	OER (%): I=96.92, C=78.33, P<0.05 Anti-diarrhoea duration (days): I=6.1±0.5, C=7±1.02, P<0.05	
2	2008–2009	Jiangxi	Hospital –	90 – 90 –	OER (%): I=90.0, C=60.0, P<0.05 Anti-diarrhoea duration (days): I=3.1±1.2, C=5.3±2.1, P<0.01	
3	2008–2009	Tianjin	Hospital –	45 – 42 –	OER (%): I=86.3, C=76.2, P<0.05	–
4	2008–2009	Liaoning	Hospital –	55 – 55 –	OER (%): I=89.0, C=65.4, P<0.01	–
5	2007–2009	Shaanxi	Hospital –	40 – 40 –	OER (%): I=92.5, C=80.0, P<0.05 Anti-diarrhoea duration (days): I=2.8±1.0, C=4.2±1.9, P<0.01	–
6	2007–2009	Sichuan	Hospital –	120 – 120 –	OER (%): I=93.4, C=82.5, P<0.05 Anti-diarrhoea duration (hrs): I=48.9±3.0, C=100.2±3.16, P<0.05	–
7	2007–2009	Jiangxi	Hospital –	60 – 60 –	OER (%): I=93.4, C=73.2, P<0.01	–
8	2006–2008	Hubei	Hospital –	55 – 50 –	Anti-diarrhoea duration (hrs): I=45±6, C=49±5, P<0.01	–
9	2005–2007	Sichuan	Hospital –	95 – 91 –	OER (%): I=92.0, C=79.1, P<0.05	–
10	2005–2006	Jiangxi	Hospital –	60 – 60 –	OER (%): I=93.4, C=82.5, P<0.05	–
11	2003–2006	Shandong	Hospital –	124 – 126 –	OER (%): I=98, C=92, P<0.05	–

- Zinc for treatment of diarrhoea
 - 1 2009 Shandong Hospital – 65 – 60 – OER (%): I=96.92, C=78.33, P<0.05 Anti-diarrhoea duration (days): I=6±1.0, C=7±1.02, P<0.05 – –
 - 2 2008–2009 Jiangxi Hospital – 90 – 90 – OER (%): I=90.0, C=60.0, P<0.05 Anti-diarrhoea duration (days): I=3.1±1.2, C=5.3±2.1, P<0.01 – –
 - 3 2008–2009 Tianjin Hospital – 45 – 42 – OER (%): I=86.3, C=76.2, P<0.05 – –
 - 4 2008–2009 Liaoning Hospital – 55 – 55 – OER (%): I=89.0, C=65.4, P<0.01 – –
 - 5 2007–2009 Shaanxi Hospital – 40 – 40 – OER (%): I=92.5, C=80.0, P<0.05 Anti-diarrhoea duration (days): I=2.8±1.0, C=4.2±1.9, P<0.01 – –
 - 6 2007–2009 Sichuan Hospital – 120 – 120 – OER (%): I=93.4, C=82.5, P<0.05 Anti-diarrhoea duration (hrs): I=48.9±3.0, C=100.2±3.16, P<0.05 – –
 - 7 2007–2009 Jiangxi Hospital – 60 – 60 – OER (%): I=93.4, C=73.2, P<0.01 – –
 - 8 2006–2008 Hubei Hospital – 55 – 50 – Anti-diarrhoea duration (hrs): I=45±6, C=49±5, P<0.01 – –
 - 9 2005–2006 Shandong Hospital – 124 – 126 – OER (%): I=98, C=92, P<0.05 – –

- Newborn resuscitation
 - 1 2003–2006 Shandong Hospital – 3050 – 2850 – Asphyxia (%): I=0.4, C=2.1, P<0.01 – –
 - 2 2002–2005 Qinghai Hospital – 682 – 1318 – Mortality (%): I=15, C=38, P<0.05 – –
 - 3 2001–2006 Hubei Hospital – 13905 – 7808 – Asphyxia (%): I=0.48, C=2.7, P<0.01 – –
 - 4 2000–2003 Henan Hospital – 168 – 55 – Apgar-5: I=8.0±1.0, C=6.3±0.8, P<0.01 Apgar-10: I=9.0±1.1, C=8.0±0.5, P<0.01 – –

- Urban-rural discrepancy in study distribution and funding resources is particularly notable. While the studies in Eastern and Central China were conducted by regional leading institutes as scientific research projects, Western China, the most remote and mountainous region of the country, seems to still be reliant on overseas aid to implement child health interventions. The longstanding urban-rural socio-economic imbalance results in limited academic and industrial ac-
Table 5 The remaining 15 child health interventions with addressed effectiveness in Chinese literature

PREVENTIVE INTERVENTIONS

Study No.	Year	Province	Cohort	Sample Size (Intervention 1)	Sample Size (Intervention 2)	Sample Size (Control)	Outcome
							RR=1.77(95 % CI: 1.082 – 2.466, AR=1.29%, ARP=43.63%, P<0.01)
1	1996–1997	Zhejiang	Hospital	2265	–	2265	Congenital heart diseases
2	1993–1995	National	Community	130142	–	117689 NTD	I20(NTDs) / 130142
							I37(NTDs) / 117689, P<0.01
1	1991–1993	Hunan	Community	170	–	170_(e0)	IU/ml(mothers) increased =0.137–0.008 IU/ml(children) =0.054
2	1986–1987	Ningxia	Community	67	–	41	IU/ml ≥0.01: 89.55% of children born to Interventions; 14.63% of children born to Controls P<0.01
1	1991–1993	Heilongjiang	Hospital	355	–	366	Death (Children): I=9, C=5; P<0.01
2	1991–1992	Hebei	Community	327	–	343	Z value: I>C, P<0.01
1	2006–2007	Shandong	Hospital	226	–	208	RDS: I=290; C=52, P<0.01
							LBW: I=531; C=88, P<0.01
							Preterm birth: I=534; C=95 P<0.01
							Caesarean section rate: I=68; C=113; P<0.01
2	2006–2007	Shandong	Hospital	226	–	208	RDS: I=290; C=52, P<0.01
							LBW: I=531; C=88, P<0.01
							Preterm birth: I=534; C=95 P<0.01
							Caesarean section rate: I=68; C=113; P<0.01
1	2001–2005	Chongqing	Institute	64	–	61	Hb (g/L): I=122.0±7.5, C=120.3±7.87, P<0.001
2	1991–1992	Hebei	Community	327	–	343	Reduction: 7.0%
1	1996–2000	Gansu	Community	21 villages	–	–	Sanitation per household, population educated, children hygiene behaviour positive change rate are all increased.
1	2003–2007	Guizhou	Community	25302	–	–	Mortality: 26.68 / 100000 (2002)
							3.52 / 100000 (2003)
							0.20 / 100000 (2007)
2	1991–1992	Hebei	Community	503	–	–	Reduction in 6 years: 59.22%

I – intervention, C – control, RR – risk ratio, AR – attribute ratio, ARP – attribute ratio percentage, RDS – respiratory distress syndrome, Hb – hemoglobin concentration
Table 5 cont.

Study No.	Year	Province	Cohort	Cohort Size	Sample Size (Intervention 1)	Sample Size (Intervention 2)	Sample Size (Intervention 3)	Control	Outcome
1	2000	Anhui	Hospital	–	18	19	–	5	Hyaline membrane disease (<34 weeks gestation): I< C, *P<0.001
1	2001–2005	Heilongjiang	Hospital	60	–	–	60	–	Temperature recovery speed (days): I=1.51 ±0.89, C=3.87 ±2.03, *P<0.01
1	1994–1996	Jiangsu	Hospital	24	30	23	–	–	Diarrhoea recovery speed (days): I=2.97 ±1.45, C=5.72 ±2.43, *P<0.01
1	1990–2000	Chongqing	Hospital	30	–	–	30	–	General recovery speed (days): I=4.70 ±1.98, C=7.28 ±2.86, *P<0.01
1	2003–2006	Jiangxi	Hospital	42	–	–	35	–	Recurrent respiratory infection: I< C, *P<0.01
1	1990–2000	Chongqing	Hospital	30	–	–	30	–	Measles: I=1.17 ±0.12, C=0.84 ±0.24, *P<0.01
1	1990–2000	Chongqing	Hospital	30	–	–	30	–	Cough recovery duration (days): I=8.12 ±1.24, C=9.36 ±1.68, *P<0.01
1	1990–2000	Chongqing	Hospital	30	–	–	30	–	Diarrhoea recovery duration (days): I=7.88 ±1.87, C=9.13 ±1.20, *P<0.01

I – intervention, C – control, RR – risk ratio, AR – attribute ratio, ARP – attribute ratio percentage, RDS – respiratory distress syndrome, Hb – hemoglobin concentration

activities focusing on the most underdeveloped region of China, where implementing, evaluating and further developing appropriately customized interventions may achieve highest potential impact on child mortality reduction and other aspects of child health in China as a whole.

Comprehensive and accurate data and evidence on child health interventions are indispensable for prioritizing prevention and treatment strategies in order to achieve optimal policy decisions. It is clear that considerable research interests and initiatives from both inside and outside the country have been concentrating on child health interventions, especially preventive interventions in China. How to best harness and facilitate those potential strengths in this still new and fast growing field could be the next opportunity and challenge that the country has to take.

Funding: This study was supported by the Bill and Melinda Gates Foundation Grant to the U.S. Fund for UNICEF.

Ethical approval: Not required.

Authorship declaration: JSFZ conceived and performed the study, analyzed and interpreted the results and wrote the article.

Competing interests: The author has completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.
Efficacy and effectiveness of 20 child health interventions in China: Systematic review of Chinese literature

REFERENCES

1. The International Bank for Reconstruction and Development, The World Bank. Global monitoring report 2006 Millennium Development Goals: Strengthening mutual accountability, aid, trade, and governance. Washington, DC: The World Bank. 2006.

2. UNDP. About the MDGs: Basics. Available at: http://undp.org/mdg/basics.shtml. Accessed: 22 February 2011.

3. UNICEF: Countdown to 2015: Tracking progress in maternal, newborn and child survival: the 2008 report. 2008. Available at: www.countdown2015mnch.org/documents/2008report/2008Countdown2015FullReport_2ndEdition_1x1.pdf. Accessed: 22 February 2011.

4. Bryce J, Black RE, Walker N, Bhutta ZA, Lawn JE, Steketee RW. Can the world afford to save the lives of 6 million children each year? Lancet. 2005;365:2193–2199.

5. Jones G, Steketee RW, Black RE, Bhutta ZA, Morris SS; Bellagio Child Survival Study Group. How many child deaths can we prevent this year? Lancet. 2003;362:65–71.

6. Bryce J, Terreri N, Victora CG, Mason E, Daelmans B, Bhutta ZA, et al. Countdown to 2015: tracking intervention coverage for child survival. Lancet. 2006;368:1067–1076.

7. Lawn JE. A price tag for newborn and child survival. Available at: http://cs.server2.textor.com/alldocs/40%20Joy%20Lawn.ppt. Accessed: 22 February 2011.

8. Rudan I, Kapiriri L, Tomlinson M, Balliet M, Cohen B, Chopra M. Evidence-based priority setting for health care and research: Tools to support policy in maternal, neonatal, and child health in Africa. PLoS Med. 2010;7:e1000308.

9. Black RE, Morris SS, Bryce J. Where and why are 10 million children dying every year? Lancet. 2003;361:2226–2234.

10. Bryce J, el Arifeen S, Pariyo G, Lanata C, Gwatkin D, Habicht JP; Multi-Country Evaluation of IMCI Study Group. Reducing child mortality: can public health deliver? Lancet. 2003;362:159–164.

11. Victora CG, Wagstaff A, Schellenberg JA, Gwatkin D, Claeson M, Habicht JP. Applying an equity lens to child health and mortality: more of the same is not enough. Lancet. 2003;362:233–241.

12. Claeson M, Gillespie D, Mshinda H, Troedsson H, Victora CG; Victora CG; The Bellagio Study Group on Child Survival. Knowledge into action for child survival. Lancet. 2003;362:323–327.

13. LiST: The Lives Saved Tool. Available at: http://www.jhsph.edu/dept/lbh/IIP/list. Accessed: 22 February 2011.

14. Rudan I, Chan KY, Zhang JSF, Theodoratou E, Feng XL, Salomon J, et al. Causes of deaths in children younger than 5 years in China in 2008. Lancet. 2010;375:1083–1089.

15. China National Knowledge Infrastructure. Available at: www.global.cnki.net. Accessed: 22 February 2011.

16. Walker N, Fischer-Walker C, Bryce J, Bahl R, Cousens S; CHERG Review Groups on Intervention Effects. Standards for CHERG reviews of intervention effects on child survival. Int J Epidemiol. 2010;39 Suppl 1:i21–i31.

17. Schunemann HJ, Oxman AD, Brozek J, Glasziou P, Bossuyt P, Chang S, et al. GRADE: assessing the quality of evidence for diagnostic recommendations. ACP J Club. 2008;149.

18. Chongqing VIP database. Available at: http://www.cqvip.com. Accessed: 22 February 2011.

19. Wanfang database. Available at: http://www.wanfangdata.com.cn. Accessed: 22 February 2011.