Estimation of covariance matrix using multi-response local polynomial estimator for designing children growth charts: A theoretically discussion

N Chamidah* and B Lestari2

1Department of Mathematics, Faculty of Science and Technology, Airlangga University. Jalan Mulyorejo Kampus C UNAIR, Surabaya 60115, Indonesia.
2Department of Mathematics, Faculty of Mathematics and Natural Science, The University of Jember. Jalan Kalimantan 37 Kampus Tegal Boto, Jember 68111, Indonesia.

*Corresponding author’s e-mail: nur-c@fst.unair.ac.id

Abstract. In statistical analysis for instance regression analysis we always be faced a estimation problem of regression function which draws relationship between variables in the regression model. In the real cases we frequently meet the relationship between one or more response variables and one or more predictor variables where there are correlations between responses that is called a multi-response regression model. There are two approaches to estimate the multi-response regression model, i.e., parametric and nonparametric. One of estimators in nonparametric regression model is local polynomial estimator for estimating the regression function. Since there are correlations between responses then in the estimating of regression function we need a weight matrix that is to be inverse of covariance matrix of error. Therefore, the main objective of this research is to estimate covariance matrix of error by using multi-response local polynomial estimator. The result of this research is a covariance matrix estimator that is in the future can be used to design children growth charts.

1. Introduction
In statistical modelling there are two approaches for estimating the regression function, i.e., parametric and nonparametric. The nonparametric approach gives more flexibility for the form of the regression function. Many researchers have studied nonparametric regression, i.e., spline estimator by [1-4], local linear estimator by [5-8], and local polynomial estimators with one response and one predictor variables for polynomial order one called as local linear have been discussed by [9] who applied it to spatial regression. Next, [10] have researched local linear estimator and stated that it is better than kernel estimator because it has mean square prediction least than that kernel estimator. Furthermore, [11] applied local polynomial estimator to time series data, and [12] used local polynomial estimator to estimate esophageal pressure on gastroesophageal reflux disease.

In the widely field we frequently be faced cases involving regression models with more than one response variables and there are correlation between responses. So, these regression function problems must be solved by multi-response nonparametric regression or multi-response semiparametric regression. For example [13] used smoothing spline estimator for biresponse that is applied to hormone data; [14-17] have discussed the multi-response nonparametric regression by using spline

Published under licence by IOP Publishing Ltd
estimator and [18-20] have studied biresponse local linear regression. Meanwhile, multi-response semiparametric regression in some cases by using spline estimator and local linear estimator have discussed by [21-22] and [23], respectively.

One of real cases that involve regression model with more than one response variables and there are correlations between responses is children growth model [19], [20], [23]. According to [24] children up to one year old grows up quickly and then goes down slowly as long as going up of children’s age, so that locally model approach is more suitable for this case. Next, [25] proposed quantile polynomial parametric regression approach to design children growth chart. But, the growth chart given by [25] was too smooth, so that it did not represent the data which has locally pattern and its pattern change is very sharp. In addition, all researchers who have mentioned previously, discussed estimation the regression functions of the nonparametric and semiparametric regression models by assuming the covariance matrix is known, so that the covariance matrix is not need to be estimated.

If the covariance matrix is unknown then it must be estimated from the data. Therefore, in this paper we give estimating method of covariance matrix by using multi-response local polynomial estimator.

2. Method
To estimate children growth chart based on anthropometric measures, i.e., weight and height, we use multi-response model by weighted least squares method because there is significant correlation between weight and height of children. Therefore, for estimating the children growth charts we estimate the charts simultaneously and need the weight matrix, i.e., inverse of covariance matrix of error. In next section, we give results and discussion about estimations of the regression function and the covariance matrix methods by using multi-response local polynomial estimator.

3. Results and discussion
3.1. Estimation of Regression function by using multi-response local polynomial estimator
Suppose that the paired observations \((t_i, y_{i1}, y_{i2}, \ldots, y_{ip})\), \(i = 1, 2, \ldots, n\) follows the following regression model:

\[
y_i = f(t_i) + \epsilon_i, \quad r = 1, 2, \ldots, p
\]

where random error \(\epsilon_i\) follows the following assumptions:

\[
E(\epsilon_i) = 0, \quad \text{and} \quad E(\epsilon_i^2) = \sigma_i^2, E(\epsilon_i, \epsilon_{i'}) = \begin{cases} \sigma_{(i,i')}, & i = i' \\ 0, & i \neq i' \end{cases}
\]

for \(r \neq s\), \(r = s = 1, 2, \ldots, p\).

Next, based on \(i\)-th observation and for \(p\) responses, we can elaborate equation (1) as follows:

\[
\begin{aligned}
y_{i1} &= f_1(t_i) + \epsilon_{i1} \\
y_{i2} &= f_2(t_i) + \epsilon_{i2} \\
&\vdots \\
y_{ip} &= f_p(t_i) + \epsilon_{ip}
\end{aligned}
\]

Therefore, we can express equation (3) in the following matrix notation:

\[
\begin{pmatrix}
y_{i1} \\
y_{i2} \\
\vdots \\
y_{ip}
\end{pmatrix} = \begin{pmatrix}
f_1(t_i) \\
f_2(t_i) \\
\vdots \\
f_p(t_i)
\end{pmatrix} + \begin{pmatrix}
\epsilon_{i1} \\
\epsilon_{i2} \\
\vdots \\
\epsilon_{ip}
\end{pmatrix}
\]

where \(y_i = (y_{i1}, y_{i2}, \ldots, y_{ip})'\) and \(f(t_i) = (f_1(t_i), f_2(t_i), \ldots, f_p(t_i))'\) is unknown smooth function.

Further, if we elaborate every response in equation (4) for every observation, then equation (4) can be written as follows:

\[
y = f + \epsilon.
\]
where \(E(\varepsilon) = 0, \ Var(\varepsilon) = V \), \(y = (y_1, y_2, \ldots, y_p)' \), \(f = (f_1, f_2, \ldots, f_p)' \), \(\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p)' \),
\(\varepsilon_e = (\varepsilon_{e1}, \varepsilon_{e2}, \ldots, \varepsilon_{en})' \), \(y_e = (y_{e1}, y_{e2}, \ldots, y_{en})' \), and \(f_e = (f_e(t_1), f_e(t_2), \ldots, f_e(t_n))' \).

In the model given in (5), there are correlations between responses, so that to get the estimated model by using multi-response local polynomial estimator we must use weights either kernel function or covariance matrix. Note that, statistically, the weight matrix is to be inverse of covariance matrix of error vector \(\varepsilon \). If we note the covariance matrix as \(\mathbf{V} \), then we can determine \(\mathbf{V} \) as follows:

\[
\mathbf{V} = \text{Var}(\varepsilon) = E(\varepsilon - E(\varepsilon))(\varepsilon - E(\varepsilon))' = E(\varepsilon\varepsilon')
\]

Next, by considering the assumptions in (2), we obtain the covariance matrix \(\mathbf{V} \) as follows:

\[
\mathbf{V} = E \left(\begin{bmatrix}
\varepsilon_{11}^2 & \varepsilon_{11}\varepsilon_{12} & \ldots & \varepsilon_{11}\varepsilon_{1n} \\
\varepsilon_{12}\varepsilon_{11} & \varepsilon_{12}^2 & \ldots & \varepsilon_{12}\varepsilon_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon_{1n}\varepsilon_{11} & \varepsilon_{1n}\varepsilon_{12} & \ldots & \varepsilon_{1n}^2
\end{bmatrix}
\right)
\]

Furthermore, by applying Taylor expansion we get \(f_r(t), r = 1, 2, \ldots, p \) as follows:

\[
f_r(t) = \sum_{j=0}^{d_r} \frac{f_r^{(j)}(t_0)}{j!} (t-t_0)^j = \sum_{j=0}^{d_r} \beta_{rj}(t_0)(t-t_0)^j, \quad r = 1, 2, \ldots, p
\]

where \(d_r \) is order of polynomial, \(\beta_{rj}(t_0) = \frac{f_r^{(j)}(t_0)}{j!} \) and \(t \in (t_0-h, t_0+h) \).

We can express equation (7) in the following matrix notation:

\[
f_r(t) = X^*_r \beta_r(t_0)
\]

where \(X^*_r = \text{diag}(x_{r1}, x_{r2}, \ldots, x_{rp}) \), \(x_{r0} = \begin{pmatrix} (t-t_0) & \cdots & (t-t_0)^{d_r} \end{pmatrix} \), \(r = 1, 2, \ldots, p \).
\[\beta(t_0) = \left(\beta_1(t_0) \quad \beta_2(t_0) \quad \cdots \quad \beta_p(t_0) \right)^\prime; \quad \text{and} \quad \beta_r(t_0) = \left(\beta_{r0}(t_0) \quad \beta_{r1}(t_0) \quad \cdots \quad \beta_{rl}(t_0) \right)^\prime. \]

Based on equation (7) and by using \(n \) samples of paired observation \((t_i, y_{i1}, y_{i2}, \ldots, y_{ip})\), we can write equation (8) as follows:

\[f(t) = X_0 \beta(t_0) \]

where \(f(t) = (f_1(t), f_2(t), \ldots, f_p(t))^\prime; \quad f_r(t) = (f_{r1}(t_1), f_{r2}(t_2), \ldots, f_{rn}(t_n))^\prime; \)

\[X_0 = \text{diag}(X_{t0}, X_{2t0}, \ldots, X_{pt0}) \quad \text{and} \quad X_{r0} = \begin{bmatrix} 1 & (t_1 - t_0) & \cdots & (t_1 - t_0)^d_r \\ 1 & (t_2 - t_0) & \cdots & (t_2 - t_0)^d_r \\ \vdots & \vdots & \ddots & \vdots \\ 1 & (t_n - t_0) & \cdots & (t_n - t_0)^d_r \end{bmatrix}. \]

Based on (9) we can write equation (1) as follows:

\[Y = X_0 \beta(t_0) + \varepsilon \]

where \(Y = (y_1, y_2, \ldots, y_p)^\prime \) and \(y_r = (y_{r1}, y_{r2}, \ldots, y_{rn})^\prime. \)

In estimating the regression function in model (1) based on multireponse local polynomial, we use weighted least squared optimization as follows:

\[\text{Min}_\beta Q(\beta(t_0)) = \text{Min}_\beta(Y - X_0 \beta(t_0))^\prime V^{-1} K_h(t_0) (Y - X_0 \beta(t_0)) \]

where \(K_h(t_0) = \text{diag}(K_{h1}(t_0), K_{h2}(t_0), \ldots, K_{hp}(t_0)) \)

\[K_{hr}(t_0) = \left(K_{hr}(t_1 - t_0), K_{hr}(t_2 - t_0), \ldots, K_{hr}(t_n - t_0) \right)^\prime \]

and matrix \(V \) is block diagonal matrix of error given in (6) so it is invertible matrix. So, we get solution of (11) as follows:

\[\hat{\beta}(t_0) = (X_0^\prime V^{-1} K_h(t_0) X_0)^{-1} X_0^\prime V^{-1} K_h(t_0) Y. \]

Based on (8) and (12) we obtain the estimated of regression function \(\hat{f}(t) \) as follows:

\[\hat{f}(t) = X_0^\prime \hat{\beta}(t_0) = X_0^\prime \left(X_0^\prime V^{-1} K_h(t_0) X_0 \right)^{-1} X_0^\prime V^{-1} K_h(t_0) Y, \quad t \in (t_0 - h, t_0 + h) \]

Therefore, for \(t = t_0 \) we have \(\hat{f}(t_0) \) as follows:

\[\hat{f}(t_0) = e \left(X_0^\prime V^{-1} K_h(t_0) X_0 \right)^{-1} X_0^\prime V^{-1} K_h(t_0) Y \]

where \(e = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p)^\prime \) and \(e_r (r = 1, 2, \ldots, p) \) is row matrix with dimension \(\left(p + \sum_{r=1}^p d_r \right) \), and \(d_r \) is polynomial order of \(r \)-th response. For \(p = 1 \), \(\varepsilon_1 \) equals to 1 at the first element, and equals to zero elsewhere. Next for \(p \geq 2 \), \(\varepsilon_r \) equals to 1 at \(\left(\sum_{r=1}^p d_r \right) + 1 \)-th element, and equals to zero elsewhere. Finally, based on multi-response local polynomial estimator we obtain estimation of regression function \(\tilde{f}(t) = \left(\tilde{f}(t_1), \tilde{f}(t_2), \ldots, \tilde{f}(t_n) \right)^\prime \) as follows:

\[\tilde{f}(t) = A(h)Y \]

\[\text{(14)} \]
where $A(h) = (A_h(t_1), A_h(t_2), \ldots, A_h(t_n))'$ and $A_h(t_i) = e \left(X'_h V^{-1} K_h(t_i) X_i \right)^{-1} X'_h V^{-1} K_h(t_i)$, $i = 1, 2, \ldots, n$.

3.2. Estimation of covariance matrix by using multi-response local polynomial estimator

In equation (13), $\hat{f}(t_0)$ contains unknown covariance matrix V which must be estimated. In this section we discuss estimation of covariance matrix. To obtain estimated covariance matrix, firstly we consider the following optimization:

$$\min_{\beta'_r(t_0)} Q'(t_0) = \min\left(Y'_r - X_{n_0} \beta'_r(t_0) \right)' K_h(t_0) \left(Y'_r - X_{n_0} \beta'_r(t_0) \right)$$

So, we get solution of (15) as follows:

$$\hat{\beta}'_r(t_0) = \left(X'_{n_0} K_h(t_0) X_{n_0} \right)^{-1} X'_{n_0} K_h(t_0) Y'_r$$

and

$$E(Y'_r) = X_{n_0} \hat{\beta}'_r(t_0) = X_{n_0} \left(X'_{n_0} K_h(t_0) X_{n_0} \right)^{-1} X'_{n_0} K_h(t_0) Y'_r = A_{n_0} Y'_r$$

where $A_{n_0} = X_{n_0} \left(X'_{n_0} K_h(t_0) X_{n_0} \right)^{-1} X'_{n_0} K_h(t_0)$.

By assuming $E(\varepsilon'_{n_0}) = 0$, $\text{Var}(\varepsilon'_{n_0}) = \sigma^2_{n_0}$, we estimate $\sigma^2_{n_0}$ that is obtained from $E\left[\varepsilon'_{n_0} \varepsilon'_{n_0} \right]$ as follows:

$$E(\hat{\sigma}^2_{n_0}) = E\left[\varepsilon'_{n_0} \varepsilon'_{n_0} \right] = E\left[\left(Y'_r - E(Y'_r) \right)' \left(Y'_r - E(Y'_r) \right) \right]$$

$$= E\left[\left(Y'_r - A_{n_0} Y'_r \right)' \left(Y'_r - A_{n_0} Y'_r \right) \right] = E\left[Y'_r (I - A_{n_0})' (I - A_{n_0}) Y'_r \right]$$

$$= E\left[Y'_r Q_{(n_0)} Y'_r \right]$$

where $Q_{(n_0)} = (I - A_{n_0})' (I - A_{n_0})$.

Further, equation can be written as follows:

$$E(\hat{\sigma}^2_{n_0}) = \text{tr} \left(Q_{(n_0)} \sigma^2_{n_0} I_n \right) + (A_{n_0} Y'_r)' Q_{(n_0)} A_{n_0} Y'_r = \sigma^2_{n_0} \text{tr} \left(Q_{(n_0)} \right) + (A_{n_0} Y'_r)' Q_{(n_0)} A_{n_0} Y'_r$$

$$= \sigma^2_{n_0} \text{tr} \left(Q_{(n_0)} \right) + Y'_r A_{n_0}' Q_{(n_0)} A_{n_0} Y'_r = \sigma^2_{n_0} \text{tr} \left(Q_{(n_0)} \right) + Y'_r A_{n_0}' (I - A_{n_0}) A_{n_0} Y'_r$$

$$= \sigma^2_{n_0} \text{tr} \left(Q_{(n_0)} \right) + Y'_r A_{n_0}' (I - A_{n_0}) A_{n_0} Y'_r$$

Since matrix A_{n_0} is idempotent, i.e.,

$$A_{n_0} A_{n_0} = X_{n_0} \left(X'_{n_0} K_h(t_0) X_{n_0} \right)^{-1} X_{n_0} K_h(t_0) X_{n_0} \left(X'_{n_0} K_h(t_0) X_{n_0} \right)^{-1} X_{n_0} K_h(t_0) = A_{n_0}$$

then by considering equation (17), we can write equation (18) as follows:
\[E(\hat{\sigma}^2_{t_0}) = \sigma^2_{t_0} tr\left(\mathbf{Q}_{(rr)0}\right) + Y' A_{t_0} \left(I - A_{t_0} \right)' \left(A_{t_0} - A_{t_0} \right) Y \]

\[= \sigma^2_{t_0} tr\left(\mathbf{Q}_{(rr)0}\right) \]

So, we obtain \(\hat{\sigma}^2_{t_0} = \frac{Y' \mathbf{Q}_{(rr)_0} Y}{tr(\mathbf{Q}_{(rr)_0})} \)

On the other hand, we have:

\[E(\hat{\sigma}^2_{(rr)0}) = E\left[\left(\mathbf{e}_{t_0}^* \mathbf{e}_{t_0} \right)' \right] = E\left[\left(\mathbf{Y} - E(\mathbf{Y}) \right)' \left(\mathbf{Y} - E(\mathbf{Y}) \right) \right] = E\left[Y' \left(I - A_{t_0} \right)' \left(I - A_{t_0} \right) Y \right] \]

\[= E\left[Y' \mathbf{Q}_{(rr)_0} Y \right] \]

where \(\mathbf{Q}_{(rr)_0} = \left(I - A_{t_0} \right)' \left(I - A_{t_0} \right) \).

Therefore, we get:

\[E(\hat{\sigma}^2_{(rr)0}) = tr\left(\mathbf{Q}_{(rr)_0} \sigma_{(rr)_0} \mathbf{I}_m \right) + \left(A_{t_0} Y \right)' \mathbf{Q}_{(rr)_0} \left(A_{t_0} Y \right) \]

\[= \sigma_{(rr)_0} tr\left(\mathbf{Q}_{(rr)_0} \right) + Y' A_{t_0} \left(I - A_{t_0} \right)' \left(A_{t_0} - A_{t_0} A_{t_0} \right) Y \]

\[= \sigma_{(rr)_0} tr\left(\mathbf{Q}_{(rr)_0} \right) \]

Thus, we obtain:

\[\hat{\sigma}^2_{(rr)_0} = \frac{Y' \mathbf{Q}_{(rr)_0} Y}{tr(\mathbf{Q}_{(rr)_0})} = \frac{Y' \left(I - A_{t_0} \right)' \left(I - A_{t_0} \right) Y}{tr\left(\left(I - A_{t_0} \right)' \left(I - A_{t_0} \right) \right)} \]

Next, for \(t_0 = t_i \), \(i = 1, 2, ..., n \), we have:

\[\hat{\sigma}^2_{t_i} = \frac{Y' \mathbf{Q}_{(rr)(t_i)} Y}{tr(\mathbf{Q}_{(rr)(t_i)})} = \frac{Y' \left(I - A_{t_i} \right)' \left(I - A_{t_i} \right) Y}{tr\left(\left(I - A_{t_i} \right)' \left(I - A_{t_i} \right) \right)} \]

and for \(r \neq s \), we have:

\[\hat{\sigma}^2_{(rs)} = \frac{Y' \mathbf{Q}_{(rs)} Y}{tr(\mathbf{Q}_{(rs)})} = \frac{Y' \left(I - A_{t_i} \right)' \left(I - A_{t_s} \right) Y}{tr\left(\left(I - A_{t_s} \right)' \left(I - A_{t_s} \right) \right)} \]

where \(r = s = 1, 2, 3, ..., p \), \(A_{t_i} = X_{t_i} \left(X_{t_i}' K_{rh} (t_i) X_{t_i} \right)^{-1} X_{t_i} K_{rh} (t_i) \).

Therefore, we obtain estimation of covariance matrix \(\mathbf{V} \) as follows:
\[\hat{V} = \begin{bmatrix} \hat{\Sigma}_1 & \hat{\Sigma}_{12} & \cdots & \hat{\Sigma}_{1p} \\ \hat{\Sigma}_{21} & \hat{\Sigma}_2 & \cdots & \hat{\Sigma}_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\Sigma}_{p1} & \hat{\Sigma}_{p2} & \cdots & \hat{\Sigma}_p \end{bmatrix} \]

(19)

where

\[\hat{\Sigma}_r = \text{diag} \left(\hat{\sigma}_{1r}^2, \hat{\sigma}_{2r}^2, \ldots, \hat{\sigma}_{nr}^2 \right) = \text{diag} \left(\frac{Y'Q_{(ir)r_1}Y}{\text{tr} \left(Q_{(ir)r_1} \right)}, \frac{Y'Q_{(ir)r_2}Y}{\text{tr} \left(Q_{(ir)r_2} \right)}, \ldots, \frac{Y'Q_{(ir)r_n}Y}{\text{tr} \left(Q_{(ir)r_n} \right)} \right) \]

\[\hat{\Sigma}_{rs} = \hat{\Sigma}_{sr} = \text{diag} \left(\hat{\sigma}_{(ir)s_1}^2, \hat{\sigma}_{(ir)s_2}^2, \ldots, \hat{\sigma}_{(ir)s_p}^2 \right) = \text{diag} \left(\frac{Y'Q_{(ir)s_1}Y}{\text{tr} \left(Q_{(ir)s_1} \right)}, \frac{Y'Q_{(ir)s_2}Y}{\text{tr} \left(Q_{(ir)s_2} \right)}, \ldots, \frac{Y'Q_{(ir)s_p}Y}{\text{tr} \left(Q_{(ir)s_p} \right)} \right) \]

and \(r = s = 1, 2, 3, \ldots, p. \)

3. Conclusion

For designing the children growth charts, we estimate them simultaneously and need the weight matrix, i.e., inverse of covariance matrix of error. By using multi-reponse local polynomial, we obtain the estimated regression function of the model as given in equation (14), and we obtain the estimated covariance matrix as given in equation (19). Furthermore, in the next our research, the children growth charts can be used for assessing nutritional status of children.

Acknowledgments

Many thanks to Director of the Directorate of Research and Public Service, the Directorate General of Reinforcing of Research and Development, the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for funding this research via the University Excellence Fundamental Research Grant (Hibah Penelitian Dasar Unggulan Perguruan Tinggi – Hibah PDUPT) in the fiscal year 2019.

References

[1] Adiwati, T and Chamidah, N. 2019 Modelling of Hypertension Risk Factors Using Penalized Spline to Prevent Hypertension in Indonesia IOP Conf. Series: Materials Science and Engineering 546 052003

[2] Massaid A Hanif M, Febrianti D and Chamidah N 2019 Modelling of Poverty Percentage of Non-Food Per Capita Expenditures in Indonesia Using Least Square Spline Estimator IOP Conf. Series: Materials Science and Engineering 546 052044

[3] Ramadan W, Chamidah N, Zaman B, Muniroh L, and Lestari B 2019 Standard Growth Chart of Weight for Height to Determine Wasting Nutritional Status in East Java Based on Semiparametric Least Square Spline Estimator IOP Conf. Series: Materials Science and Engineering 546 052063

[4] Oktavitri N.I, Kuncoro E P, Purnobasuki H and Chamidah N 2019 Prediction of suspended and attached process behavior in anaerobic batch reactor using nonparametric regression model approach based on spline estimator Eco. Env. & Cons. 25 (April Suppl. Issue) pp. S96-S1

[5] Chamidah N, Tjahjono E, Fadilah A.R, Lestari B 2018 Standard Growth Charts for Weight of Children in East Java Using Local Linear Estimator. J. Phys: Conf. Ser 1097 012092

[6] Puspitawati A and Chamidah N 2019 Choroidal Neovascularisation Classification on Fundus Retinal Images Using Local Linear Estimator IOP Conf. Series: Materials Science and Engineering 546 052056

[7] Chamidah N, Gusti K H, Tjahjono E, and Lestari B 2019 Improving of Classification Accuracy of Cyst and Tumor Using Local Polynomial Estimator TELKOMNIKA 17(3) pp 1492-1500
Darnah, Utoyo M.I and Chamidah N 2019 Modeling of Maternal Mortality and Infant Mortality Cases in East Kalimantan using Poisson Regression Approach Based on Local Linear Estimator IOP Conf. Series: Earth and Environmental Science 243 012023

Hallin M, Lu Z, and Tran L T 2004 Local Linear Spatial Regression The Annals of Statistics 32 pp 2469-2500.

Baillo A, and Grane A 2009 Local Linear Regression for Functional Predictor and Scalar Response Journal of Multivariate Analysis 100 pp 102-111.

Regonda S K, Rajagopal B, Lall U, Clark M, and Moon Y-I 2005 Local Polynomial Method for Ensemble Forecast of Time Series Nonlinear Processes in Geophysics 12 pp 397-406.

Liang H, and Chen D Z 2005 Assessment of Esophageal Pressure in Gastroesophageal Reflux Disease by Local Regression Annals of Biomedical Engineering 33 pp 847-853.

Wang Y, Guo W and Brown W B 2000 Spline smoothing for bivariate data with applications to association between hormones Statistica Sinica 10 pp 377-397.

Chamidah N and Lestari B 2016 Spline Estimator in Homoscedastic Multi-Response Nonparametric Regression Model in Case of Unbalanced Number of Observations Far East Journal of Mathematical Sciences (FJMS) 100 pp 1433-1453.

Lestari B, Anggraeni D and Saifudin T 2018 Estimation of Covariance Matrix based on Spline Estimator in Homoscedastic Multi-Responses Nonparametric Regression Model in Case of Unbalance Number of Observations Far East J. Math. Sciences (FJMS) 108(2) pp 341-355.

Islamiyati A, Fatmawati and Chamidah N 2018 Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression Journal of Physics: Conf. Series 979 pp. 012093.

Lestari B, Fatmawati and Budiantara I N 2019 Spline Estimator and Its Asymptotic Properties in Multi-response Nonparametric Regression Model Songkranakarin Journal of Science and Technology In Press.

Welsh A H, and Yee T W 2006 Local Regression for Vector Responses Journal of Statistical Planning and Inference 136 pp 3007-3031.

Chamidah N and Rifada M 2016 Estimation of median growth curves for children up two years old based on biresponse local linear estimator AIP Conference Proceedings 1718 p110001.

Nidhomuddin, Chamidah N, Kurniawan N 2019 Admission Test Modelling of State Islamic College in Indonesia Using Local Linear for Bivariate Longitudinal Data IOP Conf. Series: Materials Science and Engineering 546 052047

Chamidah N, Kurniawan A, Zaman B, and Muniroh L 2018 Least Square-Spline Estimator in Multi-response Semiparametric Regression Model for Estimating Median Growth Charts of Children in East Java, Indonesia Far East J. Math. Sciences (FJMS)107(2) pp 295-307.

Hidayati L, Chamidah N and Budiantara I N 2019 Spline Truncated Estimator in Multiresponse Semiparametric Regression Model for Computer based National Exam in West Nusa Tenggara IOP Conf. Series: Materials Science and Engineering 546 052029.

Chamidah N and Rifada M 2016 Local linear estimator in bi-response semiparametric regression model for estimating median growth charts of children Far East Journal of Mathematical Sciences 99 (8) pp 1233-1244

Narendra M B, Sularyo T S, Soetjiningsih, Suyitno H, and Ranuh I G N G 2002 Tumbuh Kembang Anak dan Remaja CV. Sagung Seto Jakarta.

Chen M-Y, and Peng L 2006 Simple and efficient improvement of multivariate local linear regression Journal of Multivariate Analysis 97 pp 1501-1524.