A Modern Self-Referential Weight Matrix That Learns to Modify Itself

Kazuki Irie¹ Imanol Schlag¹ Róbert Csordás¹ Jürgen Schmidhuber¹ ²

Abstract

The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behavior have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that uses outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public†.

1. Introduction

The program of a neural network (NN) is its weight matrix (WM) (Schmidhuber, 1990). With prediction tasks, for example, starting from random values, an NN training procedure based on gradient descent might update the WM to minimize an error function that favors compression of given input-output observations (Solomonoff, 1964). The WM becomes permanent once training ends, and its usefulness is evaluated with respect to its generalisation capability on yet unseen data.

Many environments, however, continue to evolve after training has halted (e.g., Lazaridou et al. (2021); Lin et al. (2021)), and the test setting may deviate from training in ways that exceed the NN’s generalisation capability. Then human intervention might be required to re-train or fine-tune the model. Instead, a fully autonomous system should learn to update their own programs in the light of new experience without such intervention. Especially in multi-task learning and meta-learning (learning to learn; Schmidhuber (1987)), it may be useful to learn how to keep changing and fine-tuning the model in a way that quickly adapts to various situations and new challenges (Hochreiter et al., 2001; Finn et al., 2017).

In principle, a WM could learn by itself a way of executing rapid WM adaptations in task-dependent and context-dependent fashion through a generic mechanism for recursive self-modification. Various self-modifying NNs have been proposed previously (see Sec. 6). Here we revisit the self-referential WM (Schmidhuber, 1992a; 1993a;b;c) from the '90s in the light of modern techniques for updating and generating weights. In particular, we leverage mechanisms which are now well established in the context of Fast Weight Programmers (FWPs, Schmidhuber (1991; 1992b; 1993d); reviewed in Sec. 2). FWPs have recently seen advancements in terms of performance and scalability, inspired by their formal equivalence (Schlag et al., 2021) to linear variants (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2021) of the popular Transformer (Vaswani et al., 2017).

Here we derive a new type of self-referential WM (SRWM) which naturally emerges as an extension to recent works on FWPs. We evaluate the proposed SRWM in three settings. We start by demonstrating that the proposed model is effectively capable of generating useful self-modifications by showing that the model achieves competitive performance on standard few-shot learning benchmarks. Second, by extending the few-shot learning setting to a sequential multi-task learning setting, we test the SRWM’s ability to sequentially adapt itself to changes of the task at runtime. Finally, by using ProcGen (Cobbe et al., 2020), we evaluate it in a multi-task reinforcement learning (RL) setting with procedurally generated game environments. Overall, we demonstrate both practical applicability and competitive performance of the proposed method.

†https://github.com/IDSIA/modern-srwm

¹The Swiss AI Lab, IDSIA, University of Lugano (USI) & SUPSI, Lugano, Switzerland ²King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. Correspondence to: <{kazuki, imanol, robert, juergen}@idsia.ch>. An earlier version was presented at NeurIPS 2021 Deep RL Workshop.

Under review. Copyright 2022 by the author(s).
2. Background on Fast Weight Programmers

Here we briefly review the essential components of fast weight programmers (FWPs; Schmidhuber (1991; 1992b; 1993d)) which our model is built upon (Sec. 3). FWPs have a slow NN which can rapidly modify weights of another fast NN. The concept has seen a recent revival, in particular in light of its direct formal connection (Schlag et al., 2021) to linear variants (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2021; Irie et al., 2021) of the popular Transformer (Vaswani et al., 2017) when the weight generation is based on outer products between keys and values generated by the slow NN (Schmidhuber, 1991).

Recent work augmented the basic FWPs (Schmidhuber, 1991; 1992b) with an improved elementary programming instruction or update rule invoked by the slow NN to reprogram the fast NN, called delta update rule (akin to the delta rule by Widrow & Hoff (1960)). The resulting “DeltaNet” (Schlag et al., 2021) is a general purpose auto-regressive NN with linear complexity w.r.t. input sequence length, which from the operations described above, resulting in a “modern” version of the self-referential weight matrix (Schmidhuber, 1992a; 1993a;b;c) of the ’90s.

Note that FWPs are of great interest from the perspective of context-sensitive information processing, since the fast WM is completely context-dependent: while processing some sequence, a continually changing custom fast NN is built on the fly.

Here we leverage this mechanism to design a new kind of FWP which programs itself. It can be naturally derived from the operations described above, resulting in a “modern” version of the self-referential weight matrix (Schmidhuber, 1992a; 1993a;b;c) of the ’90s.

3. A Modern Self-Referential Weight Matrix

Our “modern” self-referential weight matrix (SRWM) learns to train itself through self-invented key/value “training” patterns and learning rates, invoking sequences of elementary programming instructions based on outer products and the delta update rule, as in the recently proposed variants (Schlag et al., 2021) of FWPs (Sec. 2).

Given an input $x_t \in \mathbb{R}^{d_{in}}$ at time t, our SRWM $W_{t-1} \in \mathbb{R}^{(d_{out}+2d_{in}+1) \times d_{in}}$ produces four variables $[y_t, q_t, k_t, \beta_t]$ where $y_t \in \mathbb{R}^{d_{out}}$ is the output of this layer at the current time step, $q_t \in \mathbb{R}^{d_{in}}$ and $k_t \in \mathbb{R}^{d_{in}}$ are query and key vectors, and $\beta_t \in \mathbb{R}$ is the self-invented learning rate to be used by the delta rule. In analogy to the terminology introduced by the original SRWM papers (Schmidhuber, 1992a; 1993a;b;c), $k_t \in \mathbb{R}^{d_{in}}$ is the modifier-key vector, representing the key whose current value in the SRWM has to be modified, and $q_t \in \mathbb{R}^{d_{in}}$ is the analyser-query which is again fed to the SRWM to retrieve a new “value” vector to be associated with the modifier-key.
The overall dynamics can be expressed as simply as follows:

\[
y_{t}, k_{t}, q_{t}, \beta_t = \mathbf{W}_{t-1} \phi(x_{t}) \tag{5}
\]

\[
\tilde{v}_{t} = \mathbf{W}_{t-1} \phi(k_{t}) \tag{6}
\]

\[
v_{t} = \mathbf{W}_{t-1} \phi(q_{t}) \tag{7}
\]

\[
\mathbf{W}_{t} = \mathbf{W}_{t-1} + \sigma(\beta_t)(v_{t} - \tilde{v}_{t}) \otimes \phi(k_{t}) \tag{8}
\]

where the value vectors have dimensions: \(v_{t}, \tilde{v}_{t} \in \mathbb{R}^{(d_{out}+2*d_{in}+1)} \). Figure 1 illustrates the model.

Importantly, the initial values of the SRWM \(\mathbf{W}_{0} \) are the only parameters in this layer which are trained by gradient descent. In practice, we extend the output dimension of the matrix from “3D+1” \((d_{out}+2*d_{in}+1)\) to “3D+4” \((d_{out}+2*d_{in}+4)\) to generate four different, self-invented, time-varying learning rates \(\beta_t \in \mathbb{R}^4 \) to be used in Eq. 8 for the four submatrices of \(\mathbf{W}_{t-1} = [\mathbf{W}_{t-1}^{y}, \mathbf{W}_{t-1}^{k}, \mathbf{W}_{t-1}^{q}, \mathbf{W}_{t-1}^{\beta}] \) used to produce \(y_{t}, q_{t}, k_{t} \), and \(\beta_t \) in Eq. 5. For efficient computation, we also make use of multi-head computation as is done in regular Transformers \(\text{(Vaswani et al., } 2017; \text{Katharopoulos et al., } 2020) \). Please refer to Appendix A for the full description.

The SRWM described above can potentially be used to replace any regular WM. Here we mainly focus on a model which can be obtained by replacing Eqs. 1-4 in the baseline DeltaNet by the corresponding SRWM equations Eqs. 5-8. In Appendix C.1, we further show preliminary results for another type of model incorporating an SRWM, which is also based on the DeltaNet but where we replace its slow weight matrix (Eq. 1) by an SRWM (Eqs. 5-8).

4. Experiments

Can the self-referential dynamics described in Eqs. 5-8 generate useful self-modifications? The overall goal of our experiments is to evaluate the proposed SRWM on various types of tasks which require “good” self-modifications. We conduct experiments on standard supervised few-shot learning tasks (Sec. 4.1) and multi-task reinforcement learning (RL) in game environments (Sec. 4.3). In addition, we show how our SRWM can be trained to efficiently adapt itself in a sequential multi-task few-shot learning setting (Sec. 4.2). Multi-task settings are particularly relevant for evaluating SRWMs, since unlike the baseline DeltaNet (which uses the same fixed slow weights to generate fast weights for all tasks), SRWMs can potentially learn to even adapt the way it adapts itself to each task as it receives task-specific inputs.

4.1. Standard Few-Shot Learning

We start with evaluating the proposed SRWM’s capability to generate useful self-modifications on standard supervised few-shot image classification tasks. We conduct experiments on the classic Omniglot \(\text{(Lake et al., } 2015) \), Mini-ImageNet \(\text{(Vinyals et al., } 2016; \text{Ravi & Larochelle, } 2017) \), and Fewshot-CIFAR100 (FC100 for short; \text{Oreshkin et al., } 2018). For further details on the datasets, we refer to Appendix B and the respective references.

The task of few-shot image classification, or \(N \)-way \(K \)-shot image classification based on a dataset containing \(C \) classes, is structured through so-called episodes. In each episode, \(N \) distinct classes are randomly drawn from \(C \). The resulting \(N \) classes are re-labelled such that each class is assigned to one out of \(N \) distinct random label indices. For each of these \(N \) classes, \(K \) examples are randomly sampled. The set of resulting \(N \times K \) labelled images is called the support set. The goal of the task is to predict the label of another image (a query image) that is not in the support set which is sampled from one of the \(N \) classes, based on the information available in the support set.

While there are several ways of approaching this problem, we are evaluating our SRWM in the sequential learning approach \(\text{(Santoro et al., } 2016; \text{Hochreiter et al., } 2001) \). That is, the image/label pairs of the support set are randomly ordered to form a sequence which is read by a sequence-processing NN (e.g., a recurrent NN). By encoding the support set information into its internal state, the corresponding NN predicts the label of the query image. In the case of our SRWM, the model generates updates of its own weights as it reads the sequence of support set items. The generated weights are used to compute the final prediction for the query image.
Table 1. Single task, 5-way, few-shot classification test accuracies (%) on Omniglot, Mini-ImageNet and FC100 using Conv-4 or Res-12 vision feature extractor. The numbers for SNAIL* and TADAM* are taken from Mishra et al. (2018) and Oreshkin et al. (2018) respectively. Following the standard convention (Ravi & Larochelle, 2017), we report 95% confidence interval computed over multiple sets of test episodes. For further details, we refer to Appendix B.

Backend	Omniglot	Mini-ImageNet	FC100	
	1-shot	1-shot 5-shot	1-shot 5-shot	
SNAIL*	Conv-4 99.1 ± 0.2	45.1 55.2	- -	
SNAIL*	Res-12 -	55.7 ± 1.0 68.9 ± 0.9	- -	
TADAM*	Res-12 -	58.5 ± 0.3	76.7 ± 0.3 40.1 ± 0.4 56.1 ± 0.4	
LSTM	Conv-4 96.3 ± 0.1	41.4 ± 0.1 50.0 ± 0.1	- -	
Delta Net	Res-12 -	57.1 ± 0.2	70.2 ± 0.2	41.8 ± 0.2 -
SRWM	Res-12 -	59.0 ± 0.1	71.1 ± 0.1	39.3 ± 0.1 -

To fully specify this approach, we also need to explain how input image/label pairs are fed to the model. Here we follow the approach used by Mishra et al. (2018) which we refer to as the synchronous-label setting illustrated in Figure 2. This strategy is specifically designed for \(N \)-way \(K \)-shot learning, which consists in feeding the input and its label to the model at the same time for \(N \times K \) items in the support set. The model only predicts the label of the \((N \times K + 1)\)-th input which is the query image presented without label. An alternative approach (Santoro et al., 2016), which we refer to as the delayed label setting (Figure 3) is used later in Sec. 4.2. In fact, Mishra et al. (2018)'s SNAIL model serves as a baseline in our experiments as it is a Transformer-like model (where the regular feedforward block is replaced by 1D convolution (Waibel et al., 1989)). We also include among the baselines the TADAM method by Oreshkin et al. (2018), as TADAM was introduced together with the FC100 dataset.

We note, however, that TADAM (Oreshkin et al., 2018) is a method specifically designed for few-shot learning, unlike our models and SNAIL (Mishra et al., 2018) which are generic sequence processing NNs applicable beyond few-shot learning e.g., to RL as in Sec. 4.3.

The final performance is directly affected by the choice of a vision feature extractor using a vision model to transform the input image into a compact feature vector which is then fed to the sequence processing component. Here we present results using two popular feature extractors on these benchmarks: Conv-4 (Vinyals et al., 2016) and Res-12 (e.g., Mishra et al. (2018); Oreshkin et al. (2018)). The Res-12 model itself comes in several variants in the few-shot learning literature. Additional details of the model architecture are explained in Appendix B.

The results are summarised in Table 1. Overall, the proposed SRWM performs well. Comparing the SRWM to the generic SNAIL baseline, the SRWM achieves competitive performance on Mini-ImageNet\(^2\) independent of the vision backend (Conv-4 or Res12). DeltaNet and SRWM tend to have similar performance. This is a satisfactory result, as it shows that a single self-modifying WM (instead of separate slow and fast nets) remains competitive in this single task scenario.

While we find the TADAM to outperform the SRWM on 5-shot Mini-ImageNet, the performance is comparable on 1-shot and 5-shot FC100, as well as on 1-shot MiniImageNet. Although the SRWM is a very generic approach, its overall performance is thus very competitive, demonstrating the effectiveness of the proposed self-referential dynamics (the main goal of this experiment).

4.2. Sequential Multi-Task Adaptation

The basic few-shot learning experiments presented in the previous section demonstrate that the very generic SRWM can effectively generate useful weight updates, achieving competitive performance on standard benchmarks. Now we are interested in testing its self-referential dynamics on a task which requires adaptation to environmental changes at runtime. We introduce two modifications to the few-shot learning setting above. First, instead of specifically training the model for \(N \)-way \(K \)-shot classification using the synchronous-label setting (Figure 2), we train our model in the delayed-label setting (Hochreiter et al., 2001) as illustrated in Figure 3. Here the model makes prediction at

\(^2\)On Omniglot, we did not manage to reach \(> 99.0\%\) performance of SNAIL. We might be missing some technical details/tricks but the results are nonetheless respectable.
Table 2. Total and instance-level accuracies (%) for sequential multi-task few-shot learning experiments (Sec. 4.2). Regarding the instance-level accuracy, column $k \in \{1, 2, 3, 5, 10\}$ shows the percentage of correctly predicted k-th instance from each class. Test time scenario where the model is first tasked to learn to predict Omniglot and then Mini-ImageNet. Conv-4 backend is used for both models.

Task	Model	1	2	3	5	10	Total
Omniglot	DeltaNet	38.9	90.9	94.1	95.9	96.8	92.2
	SRWM	41.5	92.0	95.1	96.5	96.4	92.4
Mini-ImageNet	DeltaNet	20.9	42.9	49.3	52.5	54.6	50.9
	SRWM	20.5	45.9	51.5	56.3	59.9	54.5

each time step by receiving an input image to be classified and the correct label of the previous input (the label feeds are thus shifted/delayed by one time step). This setting is convenient for evaluating the model on a continuous stream of predictions/solutions. Second, the sequence of images to be predicted is constructed by concatenating two image sequences sampled from two different datasets: Omniglot and Mini-ImageNet. The model first receives a stream of images from one of the datasets; at some point, the dataset suddenly changes, to simulate a change of environment. The model has to learn to adapt itself to this shift without human intervention, in a continual execution of its program.

Note that our goal is to construct a task which requires adaptation to sudden changes during the model’s runtime, which is different from continual few-shot learning (e.g. Yap et al. (2021)) whose goal is to successively meta-train on multiple few-shot learning tasks.

We conduct experiments in a 5-way classification setting with concatenation of Omniglot and Mini-ImageNet segments containing up to 15 examples per class in each segment. The concatenation order is alternated for each batch, and training segment lengths are randomised by trimming. Regardless of model type, we find that training models in the delayed-label setting is more difficult than in the synchronous-label setting. We observe that in many configurations, the model gets stuck at a sub-optimal behavior where it learns to improve its class-averaged zero-shot accuracy (apparently by learning to output one of the unused labels for a new class appearing in the sequence for the first time), but fails to learn to properly learn from the feedback at each step. The most crucial hyper-parameter we identified was the large enough batch size. Additional details on practicalities are shared in Appendix B.

In the end, we successfully trained both the DeltaNet base-line and the SRWM on this sequential adaptation task. Figure 4 shows the evolution of the SRWM’s test time accuracy as it gets more inputs. In this test setting, the model starts with receiving a stream of samples from Omniglot. At step 74, the task changes; the model now has to classify images sampled from Mini-ImageNet. The accuracy obviously drops due to this change, since the model can not know which class the new datapoint belongs to, but it effectively adapts itself and starts learning the second task. Table 2 compares the DeltaNet to the SRWM. While their performance is similar on the first part of the test sequence based on Omniglot, the SRWM achieves a higher accuracy on the second part sampled from Mini-ImageNet, demonstrating its rapid adaptation capability.

![Figure 4. Test accuracy (%) of the SRWM-based model (using the Conv-4 backend) as a function of the number of forwarding steps in the sequential multi-task adaptation setting (Sec. 4.2). A stream of datapoints is fed to the model in delayed-label fashion (Figure 3). The datapoints are sampled from Omniglot until step 74 (where accuracy drops), then from Mini-ImageNet.](image)

4.3 Multi-Task Reinforcement Learning (RL)

We finally evaluate the proposed model in a multi-task RL setting using procedurally generated game environments of ProcGen (Cobbe et al., 2020). The corresponding setting...
We conduct distributed training using the standard IMPALA (Espeholt et al., 2018) architecture implemented in Torchbeast (Küttler et al., 2019). We use 48 actors (i.e. 8 actors per environment). All our models use the common large architecture of Espeholt et al. (2018) which consists of a 15-layer residual convolutional vision model. They differ from each other by the “memory” module inserted between the vision stem and the output layer. In addition to our SRWM model, we train the baseline IMPALA feed-forward and LSTM (Gers et al., 2000; Hochreiter & Schmidhuber, 1997) models, as well as two additional baselines: the DeltaNet (Schlag et al., 2021) and a “Fake SR” model which is the SRWM model without the self-modification mechanism. (i.e. we only keep the “y”-part in Eq. 5). We set a backpropagation span of 50 steps to train self-modification as well as LSTM and DeltaNet baselines. In all cases, the memory states (including the SRWM weight changes) are only reset at episode boundaries for all stateful models (LSTM, DeltaNet, and SRWM). The LSTM model has one layer with 256 nodes as in the IMPALA baseline. Both DeltaNet and SRWM have two layers with a hidden size of 128, following the setting used by previous work (Irie et al., 2021) training the DeltaNet on Atari.

These 6 environments are known for not explicitly requiring “memory” to perform the task (Cobbe et al., 2020). We confirm this trend by comparison to our baseline feed-forward and LSTM RNN models. In principle, this allows for evaluating the effect of self-modifications in isolation (although it is difficult to completely dissociate self-modification from the concept of “memory”). We jointly train on 6 environments in the easy distribution for a total of 300 M steps (ca. 50 M per environment). In Appendix C.1, we also present an extra experiment using 4 environments from the memory distribution (Dodgeball, Heist, Maze, Miner) to evaluate our models also in partially observable settings, confirming the effectiveness of SRWM.

Train/Test split. Following Cobbe et al. (2020), we use 200 levels (level ID 0 to 199) to train in the easy distribution. For evaluation, instead of randomly sampling the test levels as is commonly done for ProcGen, we consistently use the same set of 3 distinct test splits for all models. Each of our test splits contains 200 levels, respectively including levels 1000 to 1199, 1200 to 1399, and 1400 to 1599. We use 3 test splits and report an average score to take into account the performance variability across the choice of test levels. The performance on the training set is computed using all 200 training levels. We train each model three times, reporting training performance averaged over three runs, and test performance over 9 data points (3 test splits for 3 training runs).

Table 3. ProcGen normalised aggregated scores (multiplied by 100) over 6 environments (Bigfish, Fruitbot, Maze, Leaper, Plunder, and Starpilot) in the easy distribution. The models are trained in a multi-task setting. Normalisation constants are taken from the original ProcGen paper (Cobbe et al., 2020). Results are computed from 3 independent training runs for 300 M steps in the easy distribution. The test scores are averaged over 3 distinct sets of 200 fixed test levels (i.e., the mean/std computed from 9 data points). For further details, see tables in Appendix C.2 where we provide scores obtained for each game. Results on memory distribution can be found in Appendix C.1. The number of trainable parameters are 626 K for the feedforward baseline (FF), 959 K for Fake SR, 1.2 M for LSTM, 1.05 M for DeltaNet and 968 K for SRWM.

Overall Performance. Table 3 shows the aggregated normalised scores. First of all, comparing the LSTM and feed-forward baselines, we confirm Cobbe et al. (2020)’s finding that the LSTM layer does not provide any improvements regarding the test performance (while some improvements are obtained on the train set). The two fast weight models (which can adapt to each task based on the task specific inputs), DeltaNet and SRWM, clearly outperform the feed-forward and LSTM baselines, as well as the Fake SR model.
which is the SRWM without self-modification. The SRWM achieves a slightly better test score than the DeltaNet. Overall, the proposed very generic SRWM based model achieves very competitive performance.

Comparison to Expert Models. We observe that the performance gains achieved by the SRWM over the baselines are particularly large for two of the environments, Bigfish and Starpilot. Here we study these two cases in isolation. In Table 4, we compare multi-task agents presented above to expert agents trained specifically on one environment for 50 M steps. On Starpilot, we observe that the self-modification mechanism yields improvements even in the single task case. The case of Bigfish is more interesting: the performances of the agents with and without self-modification capability are close in the expert training case. However, the self-modifying agent achieves a much better score in the multi-task setting, where the baseline agent’s performance drops by a large margin. This indicates the usefulness of the SRWM’s ability to adapt itself to each environment in the multi-task scenario.

Table 4. Comparison between multi-task vs expert agent performance. Raw scores obtained in the easy distribution of ProcGen.

Env	Split	Weight Update	No (Fake SR)	Yes (SRWM)	
		Multi-6	Expert	Multi-6	Expert
Bigfish	Train	11.6 (5.7)	28.9 (0.9)	20.1 (2.4)	28.5 (1.2)
	Test	4.7 (2.4)	15.8 (1.7)	9.0 (2.0)	14.2 (2.0)
Starpilot	Train	55.0 (1.3)	59.8 (0.7)	61.3 (2.0)	64.0 (1.9)
	Test	49.6 (2.1)	52.9 (1.2)	54.6 (2.4)	57.3 (1.6)

Ablation on State Reset. The SRWM models presented above are trained by carrying over the weight modifications across entire episodes whose lengths are variable—often episodes are getting longer during training as the agent becomes better at the task. We were initially uncertain about the empirical stability of the dynamics described by Eqs. 5-8 in such a scenario. As an ablation study, we trained and evaluated an SRWM agent by resetting the weight update after every fixed time span (whose length was the backpropagation span). Such models failed to leverage the SRWM mechanism, obtaining scores of 28.5 (1.2) and 16.1 (2.2) on the train and test splits respectively, similar to those of the baseline without self-modification (Table 3).

5. Discussion

Here we discuss interesting aspects (ignored in the previous sections) of the proposed SRWM and the experimental settings.

Interpretability. In general, interpreting NNs is not straightforward. The values of β_t of Eq. 8 in the RL setting intuitively define the strength of the weight modifications. We observe that the values of all four components of β_t vary between 0.50 and 0.65 depending on the input, instead of covering the full range of sigmoid values between 0 and 1. We find it difficult to further interpret these statistics. Note, however, that β_t by itself does not fully describe the self-modification effects of Eq. 8, which also depend on the actual values of key and query.

Implementation/Limitation. Similar to recent works on fast weight programmers (Schlag et al., 2021; Katharopoulos et al., 2020; Irie et al., 2021), our SRWM is implemented as a custom CUDA kernel. While this approach yields competitive computation time and memory-efficient custom backpropagation, its flexibility is limited. For instance, to replace all weight matrices in an RL agent’s vision module or in the feature extractor for few-shot learning, a custom implementation for convolution would be required, although in principle the SRWM above could replace any regular weight matrix. Regarding speed, the feedforward and LSTM baselines process about 3,500 steps per second, while DeltaNet and SRWM do 2,300 and 1,700 steps per second respectively on a single P100 GPU in the RL experiments which require slow state copying due to separate interaction and training modes. In supervised few-shot learning settings, the speeds of LSTM, DeltaNet and SRWM are comparable. With a batch size of 128, they process about 8,000 images per second, using the same Conv-4 backend on 1-shot Omniglot on a single P100 GPU.

Limitation of this paper’s scope. The main tasks in our experiments are limited to those solvable by feed-forward NNs: image classification and RL in fully observable environments. Appendix C.1 presents promising preliminary experiments on multi-task RL in partially observable environments using the memory distribution of ProcGen. We found that augmenting the DeltaNet (which already has a short-term memory) with an SRWM by replacing the slow weight matrix in the DeltaNet by an SRWM yields performance improvements. Further experiments are needed to test the SRWM on tasks which themselves require sequence processing, while involving adaptation to different types or domains of sequences, e.g., automated domain adaptation in language modelling (Irie et al., 2018; Lazaridou et al., 2021).

Other perspectives. While we motivated our work purely from the perspective of context-adaptive self-modifying NNs, never-ending self-reconfiguration could also be motivated by analogy to “livewired” synaptic connections in biological neural networks (Eagleman, 2020).
6. Related Work

Original Self-Referential Weight Matrix. The original SRWM was proposed in the '90s as a framework for self-improving recurrent NNs (Schmidhuber, 1992a; 1993a;b;c). Such an RNN has special input and output units to directly address, read, and modify any of its own current weights through an index for each weight of its weight matrix (i.e., for a weight matrix with an input/output dimension N, the weight index ranges from 0 to $N^2 - 1$ which is encoded as a binary vector). In contrast, our self-modification is based on key/value associations, i.e., to encode a WM modification, our NN generates a key vector, value vectors, and a temporary learning rate which allows for the rapid modification of an entire rank at a time (Schmidhuber, 1991; 1993d). This design is reinforced by the recent success of linear Transformers and fast weight programmers (Katharopoulos et al., 2020; Schlag et al., 2021; Irie et al., 2021). In this sense, our SRWM is a modern approach to self-modification, even if the use of outer products to parameterise fast weight generation itself is not (e.g. Schmidhuber (1991; 1993d)).

Other Self-Modifying Neural Networks. There are also more recent works on self-modifying NNs. Neuromodulated plasticity is a Hebbian-style self-modification (Miconi et al., 2018; 2019; Schmidgall, 2020; Najarro & Risi, 2020) which also makes use of outer products to generate a modulation term which is added to the base weights. The corresponding computations can also be interpreted as key/value/query association operations. However, the key, query, and value patterns are hard-coded to be one of the input/output pairs of the corresponding layer at each time step. While this circumvents the necessity to allocate parameters for generating those vectors, it is known that the resulting program can be expressed in terms of an unnormalised attention (Schmidhuber, 1993d) over the past outputs (Ba et al., 2016). In contrast, in our model, all these patterns are arbitrary as they are generated from learned transformations whose parameters are themselves self-modifying.

Hierarchical Fast Weight Programmers. As reviewed in Sec. 2, an FWP is an NN which learns to generate, update, and maintain weights of another NN. However, a typical FWP has a slow NN with a weight matrix that remains fixed after training. Previous work (Irie et al., 2021) has proposed to go one step further by parameterising the slow weights in the DeltaNet with another FWP to obtain the DeltaDeltaNet. However, such a hierarchy has no end, as the highest level programmer would still have a fixed weight matrix. In this work, we follow the spirit of early work (Schmidhuber, 1992a; 1993a;b;c;d) and collapse these potentially hierarchical meta-levels into one single self-referential weight matrix.

Fixed Weight Meta-RNNs. Learning learning dynamics using a fixed-weight NN (typically an RNN) has become a common approach (Hochreiter et al., 2001; Cotter & Conwell, 1990; 1991; Santoro et al., 2016; Wang et al., 2017; Duan et al., 2016; Munkhdalai & Yu, 2017; Munkhdalai et al., 2019; Kirsch & Schmidhuber, 2021; Sandler et al., 2021). A truly self-referential weight matrix, however, would allow for modifying all of its own components. The only thing that’s trained by gradient descent are the SRWM’s initial weights at the beginning—all of them, however, may rapidly change during sequence processing, in a way that’s driven by the SRWM itself.

Recursive Self-Improvements. Beyond the scope of NNs, recursive self-modification is of general interest when considering autonomous, self-improving machines (Schmidhuber, 1987; 2006; Wang, 2007; Nivel & Thórisson, 2009; Steunebrink et al., 2016; Wang et al., 2018). While we proposed a WM that can recursively modify itself, our first set of experiments is limited to studying its practical ability on well known supervised and reinforcement learning tasks. In future work, we intend to define additional tasks for specifically measuring the ability to self-improve. This work may also have to consider standard limitations of NNs such as their lack of systematic generalisation (Fodor et al., 1988) in the context of self-improving NNs.

7. Conclusion

We proposed a new type of self-referential weight matrix (SRWM) with a modern mechanism for self-modification. Our self-modifying neural networks (NNs) learn to generate patterns of keys and values and learning rates, translating these patterns into rapid changes of their own weight matrix through sequential outer products and invocations of the delta update rule. In a set of three experiments, we demonstrated that our generic SRWM is practical and performs well in both supervised few-shot learning and multi-task reinforcement learning settings, using procedurally generated game environments. Our promising results encourage further investigations of self-improving NNs.

Acknowledgements

We would like to thank Karl Cobbe for answering some practical questions about ProcGen. Kazuki Irie wishes to thank Anand Gopalakrishnan for letting him know about ProcGen. This research was partially funded by ERC Advanced grant no: 742870, project AlgoRNN, and by Swiss National Science Foundation grant no: 200021_192356, project NEUSYM. We are thankful for hardware donations from NVIDIA & IBM. The resources used for the project were partially provided by Swiss National Supercomputing Centre (CSCS) project d115.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself

References

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C. Using fast weights to attend to the recent past. In Proc. Advances in Neural Information Processing Systems (NIPS), pp. 4331–4339, Barcelona, Spain, December 2016.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., and Munos, R. Increasing the action gap: New operators for reinforcement learning. In Proc. AAAI Conf. on Artificial Intelligence, pp. 1476–1483, Phoenix, AZ, USA, February 2016. AAAI Press.

Chen, Y., Liu, Z., Xu, H., Darrell, T., and Wang, X. Meta-baseline: exploring simple meta-learning for few-shot learning. In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp. 9062–9071, Virtual only, March 2021.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., et al. Rethinking attention with performers. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leveraging procedural generation to benchmark reinforcement learning. In Proc. Int. Conf. on Machine Learning (ICML), pp. 2048–2056, Virtual only, July 2020.

Cotter, N. E. and Conwell, P. R. Fixed-weight networks can learn. In Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 553–559, San Diego, CA, USA, June 1990.

Cotter, N. E. and Conwell, P. R. Learning algorithms and fixed dynamics. In Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 799–801, Seattle, WA, USA, July 1991.

Deleu, T., Würlfl, T., Samiei, M., Cohen, J. P., and Bengio, Y. Torchmeta: A meta-learning library for PyTorch. Preprint arXiv:1909.06576, 2019.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. RL²: Fast reinforcement learning via slow reinforcement learning. Preprint arXiv:1611.02779, 2016.

Eagleman, D. Livewired: The inside story of the ever-changing brain. 2020.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. In Proc. Int. Conf. on Machine Learning (ICML), pp. 1406–1415, Stockholm, Sweden, July 2018.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proc. Int. Conf. on Machine Learning (ICML), pp. 1126–1135, Sydney, Australia, August 2017.

Fodor, J. A., Pylyshyn, Z. W., et al. Connectionism and cognitive architecture: A critical analysis. Cognition, 28 (1-2):3–71, 1988.

Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to forget: Continual prediction with LSTM. Neural computation, 12(10):2451–2471, 2000.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning to learn using gradient descent. In Proc. Int. Conf. on Artificial Neural Networks (ICANN), volume 2130, pp. 87–94, Vienna, Austria, August 2001.

Irie, K., Kumar, S., Nirschl, M., and Liao, H. RADMM: Recurrent adaptive mixture model with applications to domain robust language modeling. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 6079–6083, Calgary, Canada, April 2018.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J. Going beyond linear transformers with recurrent fast weight programmers. In Proc. Advances in Neural Information Processing Systems (NeurIPS), Virtual only, 2021.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are RNNs: Fast autoregressive transformers with linear attention. In Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July 2020.

Kirsch, L. and Schmidhuber, J. Meta-learning backpropagation and improving it. In Proc. Advances in Neural Information Processing Systems (NeurIPS), Virtual only, 2021.

Krizhevsky, A. Learning multiple layers of features from tiny images. Master’s thesis, Computer Science Department, University of Toronto, 2009.

Küttler, H., Nardelli, N., Lavril, T., Selvatici, M., Sivakumar, V., Rocktäschel, T., and Grefenstette, E. Torchbeast: A PyTorch platform for distributed RL. Preprint arXiv:1910.03552, 2019.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Lazaridou, A., Kuncoro, A., Gribovskaya, E., Agrawal, D., Liska, A., Terzi, T., Gimenez, M., d’Autume, C. d. M., Ruder, S., Yogatama, D., et al. Pitfalls of static language modelling. Preprint arXiv:2102.01951, 2021.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself

Lin, Z., Shi, J., Pathak, D., and Ramanan, D. The CLEAR Benchmark: Continual LEArning on Real-World Imagery. In Conference on Neural Information Processing Systems (NeurIPS), Track on Datasets and Benchmarks, Virtual only, December 2021.

Miconi, T., Stanley, K., and Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation. In Proc. Int. Conf. on Machine Learning (ICML), pp. 3559–3568, Stockholm, Sweden, July 2018.

Miconi, T., Rawal, A., Clune, J., and Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. In Int. Conf. on Learning Representations (ICLR), New Orleans, LA, USA, May 2019.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A simple neural attentive meta-learner. In Int. Conf. on Learning Representations (ICLR), Vancouver, Canada, 2018.

Munkhdalai, T. and Yu, H. Meta networks. In Proc. Int. Conf. on Machine Learning (ICML), pp. 2554–2563, Sydney, Australia, August 2017.

Munkhdalai, T., Sordoni, A., Wang, T., and Trischler, A. Metalearned neural memory. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 13310–13321, Vancouver, Canada, December 2019.

Najarro, E. and Risi, S. Meta-learning through hebbian plasticity in random networks. In Proc. Advances in Neural Information Processing Systems (NeurIPS), Virtual only, December 2020.

Nivel, E. and Thórisson, K. R. Self-programming: Operationalizing autonomy. In Proc. Conf. on Artificial General Intelligence (AGI), pp. 150–155, Arlington, VA, USA, March 2009.

Oreshkin, B. N., López, P. R., and Lacoste, A. TADAM: task dependent adaptive metric for improved few-shot learning. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 719–729, Montréal, Canada, December 2018.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith, N. A., and Kong, L. Random feature attention. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Ravi, S. and Larochelle, H. Optimization as a model for few-shot learning. In Int. Conf. on Learning Representations (ICLR), Toulon, France, April 2017.

Sandler, M., Vladymyrov, M., Zhmoginov, A., Miller, N., Madams, T., Jackson, A., and y Arcas, B. A. Meta-learning bidirectional update rules. In Proc. Int. Conf. on Machine Learning (ICML), pp. 9288–9300, Virtual only, July 2021.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. P. Meta-learning with memory-augmented neural networks. In Proc. Int. Conf. on Machine Learning (ICML), pp. 1842–1850, New York City, NY, USA, June 2016.

Schlag, I., Irie, K., and Schmidhuber, J. Linear Transformers are secretly fast weight programmers. In Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July 2021.

Schmidgall, S. Adaptive reinforcement learning through evolving self-modifying neural networks. In Proc. Genetic and Evolutionary Computation Conference (GECCO), Companion Volume, pp. 89–90, Cancún, Mexico, July 2020.

Schmidhuber, J. Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook. Institut für Informatik, Technische Universität München, 1987. http://www.idsia.ch/~juergen/diploma.html.

Schmidhuber, J. Making the world differentiable: On using fully recurrent self-supervised neural networks for dynamic reinforcement learning and planning in non-stationary environments. Technical Report FKI-126-90, http://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf, Tech. Univ. Munich, 1990.

Schmidhuber, J. Learning to control fast-weight memories: An alternative to recurrent nets. Technical Report FKI-147-91, Institut für Informatik, Technische Universität München, March 1991.

Schmidhuber, J. Steps towards “self-referential” learning. Technical Report CU-CS-627-92, Dept. of Comp. Sci., University of Colorado at Boulder, November 1992a.

Schmidhuber, J. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992b.

Schmidhuber, J. An introspective network that can learn to run its own weight change algorithm. In Proc. IEEE Int. Conf. on Artificial Neural Networks, pp. 191–195, Brighton, UK, May 1993a.

Schmidhuber, J. A self-referential weight matrix. In Proc. Int. Conf. on Artificial Neural Networks (ICANN), pp. 446–451, Amsterdam, Netherlands, September 1993b.
Schmidhuber, J. A neural network that embeds its own meta-levels. In *Proc. IEEE Int. Conf. on Neural Networks (ICNN)*, San Francisco, CA, USA, March 1993c.

Schmidhuber, J. Reducing the ratio between learning complexity and number of time varying variables in fully recurrent nets. In *International Conference on Artificial Neural Networks (ICANN)*, pp. 460–463, Amsterdam, Netherlands, September 1993d.

Schmidhuber, J. Gödel machines: Fully self-referential optimal universal self-improvers. In *Artificial General Intelligence*. Springer, 2006.

Solomonoff, R. J. A formal theory of inductive inference. Part I. *Information and control*, 7(1):1–22, 1964.

Steunebrink, B. R., Thórisson, K. R., and Schmidhuber, J. Growing recursive self-improvers. In *Proc. Conf. on Artificial General Intelligence (AGI)*, pp. 129–139, New York, NY, USA, July 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. In *Proc. Advances in Neural Information Processing Systems (NIPS)*, pp. 5998–6008, Long Beach, CA, USA, December 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. Matching networks for one shot learning. In *Proc. Advances in Neural Information Processing Systems (NIPS)*, pp. 3630–3638, Barcelona, Spain, December 2016.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. Phoneme recognition using time-delay neural networks. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 37(3):328–339, 1989.

Wang, J., Kurth-Nelson, Z., Soyer, H., Leibo, J. Z., Tirumala, D., Munos, R., Blundell, C., Kumaran, D., and Botvinick, M. M. Learning to reinforce learning. In *Proc. Annual Meeting of the Cognitive Science Society (CogSci)*, London, UK, July 2017.

Wang, P. The logic of intelligence. In *Artificial general intelligence*, pp. 31–62. Springer, 2007.

Wang, P., Li, X., and Hammer, P. Self in NARS, an AGI system. *Frontiers in Robotics and AI*, 5:20, 2018.

Widrow, B. and Hoff, M. E. Adaptive switching circuits. In *Proc. IRE WESCON Convention Record*, pp. 96–104, Los Angeles, CA, USA, August 1960.

Yap, P. C., Ritter, H., and Barber, D. Addressing catastrophic forgetting in few-shot problems. In *Proc. Int. Conf. on Machine Learning (ICML)*, pp. 11909–11919, Virtual only, July 2021.
A. SRWM Model Details

Equations for the four-learning rate case. In Sec. 3, for the purpose of clarity, we presented the equations for our SRWM model in the case where we only have a single learning rate β_i. Here we provide a complete description of an SRWM with a separate self-invented learning rate for each component. As we noted in Sec. 3, the SRWM can be split into sub-matrices: $W_{t-1} = [W_{t-1}^y, W_{t-1}^k, W_{t-1}^β_1]$ according to the sub-components used to produce y_t, q_t, k_t, and $β_t$ in Eq. 5. In case where we use separate learning rates, we need separate equations to describe the update of each sub-matrix. For example, for the “y”-part W_{t-1}^y, while keeping the same equation for the first projection (Eq. 5), the rest becomes:

$$y_t^h = W_{t-1}^y φ(k_t)$$
$$y_t^q = W_{t-1}^y φ(q_t)$$
$$W_t^y = W_{t-1}^y + \sigma(β_y,t)(y_t^q - y_t^h) \otimes φ(k_t)$$

where y_t^h and y_t^q are the “y”-part of v_t and $ν_t$ in Eq. 6 and 7 respectively, and $β_y,t ∈ \mathbb{R}$ is one of four learning rates dedicated to the “y”-part. The equations for other sub-matrices $W_{t-1}^q, W_{t-1}^k, W_{t-1}^β$ are analogous.

Use of multiple heads. We inserted the SRWM was between other layers with learned parameters and configurable dimensionalities. This allows for efficient computation using multiple heads as follows. Given a number of heads H used in the SRWM layer, the model dimensions are configured such that the input dimension to an SRWM layer d_{in} is divisible by H. The input is then split into H equally sized components, and each head executes separate SRWM operations (Eqs. 5-8) on one of the input components. In consequence, an SRWM has less parameters than a DeltaNet with the same model hyper-parameters. For example, if $d_{in} = d_{key}$, the common head dimension is $d = d_{in} / H$, the parameter shape of key projection in the SRWM is (H, d, d) while it is $(d_{in}, d_{out}) = (H \times d, H \times d)$ for the DeltaNet. If the input size of the SRWM layer is not configurable, this option has to be disabled and a single head version should be used.

B. Experimental Details for Few-Shot Learning

B.1. Datasets

We conduct few-shot image classification experiments using the Omniglot (Lake et al., 2015), Mini-ImageNet (Vinyals et al., 2016; Ravi & Larochelle, 2017), and Fewshot-CIFAR100 (FC100 for short; Oreshkin et al. (2018)) datasets. We use torchmeta by Deleu et al. (2019) which implements all common settings used with these datasets. For each dataset, classes are split into train, validation and test for few-shot learning settings.

Omniglot images are grayscale hand-written characters from 50 different alphabets, and the dataset contains 1632 different classes with 20 examples per class. The original setting (Lake et al., 2015) splits these 1632 classes into 1200 for training and 432 for testing without validation set. Instead, we use Vinyals et al. (2016)’s 1028/172/432-split for the train/validation/test split into train/valid/test classes of 60/20/20 (Oreshkin et al., 2018). FC100 is based on CIFAR100 (Krizhevsky, 2009). 100 color image classes (600 images per class, each of size 32×32) are split into train/valid/test classes of 60/20/20 (Oreshkin et al., 2018).

B.2. Model and Training Details

Vision feature extractors. We evaluated our models for few-shot learning using two different vision feature extractors: Conv-4 and Res-12. The Conv-4 proposed by Vinyals et al. (2016) has four blocks, each consisting of one 3×3 2D-convolutional layer, batch normalisation, max-pooling of size 2 and a ReLU activation layer. The feature dimension of this encoder’s output is 64, 800, and 128 for Omniglot, Mini-ImageNet, and FC100 respectively.

The Res-12 has four residual blocks consisting of three 3×3 convolutional layers. We use the basic Res-12 architecture of Chen et al. (2021) and the following numbers of channels: 64, 96, 128, 256 in the respective blocks described by Mishra
Sequence processing components. Both the SRWM and DeltaNet-based models used in this work follow the basic Transformer architecture (Vaswani et al., 2017) where the self-attention layers are replaced by the corresponding DeltaNet (Eqs. 1-4) and SRWM (Eqs. 5-8) operations. For Omniglot, we use two layers of size 256 using 16 computational heads and 1,024 (4 * 256) dimensional feed-forward inner dimensions. For 5-shot Mini-ImageNet and FC100, the number of layers is increased to three. For 1-shot Mini-ImageNet using Res-12, it was necessary to increase the number of layers to four and use a feed-forward inner dimension of 2,048 to obtain well-performing models. For supervised tasks, no activation function on x_t is applied in Eq. 5 of the SRWM, while softmax is applied for the RL experiments. The baseline LSTM has two layers for Omniglot and one layer for Mini-ImageNet with 512 nodes in each layer. Increasing its hidden layer size (up to 2,048 nodes) did not yield any performance improvement.

Training hyper-parameters. For Omniglot, we train with a learning rate of 1e-3 with a batch size of 128 for 300 K steps and validate every 10 K steps. For Mini-ImageNet, we use a learning rate of 3e-4 with a batch size of 16. We train for 470 K steps which roughly correspond to one epoch (i.e., covering all class combinations for the choice of 5 classes for few-shot learning). For FC100, we use a learning rate of 1e-4 with a batch size of 16, and train for 300 K steps roughly corresponding to one epoch. To successfully train the LSTM on Mini-ImageNet (which is typically reported to be difficult (Mishra et al., 2018)), it was necessary to increase the learning rate to 1e-3 and apply a global gradient clipping of 1.0. All models are trained using the Adam optimiser.

B.3. Evaluation Procedure

Following the standard evaluation setting of Ravi & Larochelle (2017), we report the mean and 95% confidence interval computed over multiple sets of test episodes. We use 5 different sets consisting of 16 K test episodes each. However, we also note that this metric does not show the performance variance across seeds and/or checkpoints (which is typically high on these tasks—this is not specific to our approach), especially on FC100. For all models, we run up to three seeds. While we find that with some seeds, the model performance remains around the random guessing accuracy of 20% for the entire duration of training, at least one seed was successful for all models reported here. The only exception is the LSTM for which we do not report the performance on FC100 in Table 1.

We also noted that the validation performance sometimes varies by a large margin between two consecutive cross validation steps (even when using a large enough number of validation episodes which yields a value of about 0.1-0.2 for the 95% confidence interval). To illustrate this, we also report the training curves, including the test accuracies at each cross validation step which were specially computed for this plot. Figures 6 and 7 show the training curves corresponding to the SRWM model with the Conv-4 backend reported in Table 1, for 5-shot FC100 and 5-shot Mini-ImageNet respectively. The trend is similar for other models. Here we also noticed that the cross validation misses the optimal test performance (58.5% on FC100 and 64.8% on Mini-ImageNet). On both datasets, we may obtain further improvements by applying more regularisation methods.

B.4. Training in Delayed Label Setting

In the sequential multi-task setting of Sec. 4.2, for both the SRWM and the DeltaNet, we set the number of layers to three, with a hidden layer size of 256 using 16 computational heads, and a feed-forward dimension of 256. We train with a batch size of 32 (crucial for successful training) and a learning rate of 3e-4. During training, each Omniglot and Mini-ImageNet segment is constructed using up to 15 examples per class (which yields the maximum segment length of 75 images in this 5-way classification setting). For each batch, the number of positions to be trimmed is randomly sampled between 1 and 60 for Omniglot and Mini-ImageNet segments during training, to prevent training sequences from having always the same number of examples per class.

C. Additional Results for Reinforcement Learning Experiments

C.1. Experiments on ProcGen Memory Distribution

Sec. 4.3 presents our experimental results on 6 environments in the easy distribution. Here we present an extra experiment using 4 environments in the memory distribution (Dodgeball, Heist, Maze, Miner) to evaluate our models also in partially
A Modern Self-Referential Weight Matrix That Learns to Modify Itself

Figure 6. Training curves on 5-shot FC100 for the SRWM model with the Conv-4 backend. The trend is similar for all other models.

Figure 7. Training curves on 5-shot Mini-ImageNet for the SRWM model with the Conv-4 backend. The trend is similar for all other models.

Table 5. ProcGen normalised aggregated scores (multiplied by 100) over 4 environments (Dodgeball, Heist, Maze, Miner) in the memory distribution. The models are trained in a multi-task setting. We use the normalisation constants for the hard distribution provided in the original ProcGen paper. Results are derived from 3 independent training runs with 800 M steps each. The test scores are averaged over 3 distinct sets of 200 fixed test levels (i.e. the mean/std computed from 9 data points). For further details, see tables in Appendix C.2 where we provide scores obtained for each game.

	DeltaNet	SR-DeltaNet
Train	51.8 (2.6)	59.0 (2.1)
Test	38.0 (4.1)	38.5 (3.2)

observational settings. In ProcGen memory distributions, the world size is increased and the observations are restricted to a small patch of space around the agent (Cobbe et al., 2020). In such partially observable environments, the baseline models have to be sequence processing NNs with memory, such as the DeltaNet. Here we are interested in augmenting such a model with an extra self-referential mechanism. We thus replace the slow weight matrix of DeltaNet (Eq. 1) by an SRWM (Eqs. 5-8). The resulting model thus learns to generate and update a fast weight matrix as a short-term memory, while it also learns to modify itself. We denote this model “SR-DeltaNet.”

We train with a backpropagation span of 100 steps for this memory distribution setting. While we trained for a total of 300 M steps (ca. 50 M per environment) for the joint training on 6 environments in the easy distribution, here we train for 800 M steps (200 M steps per environment) on 4 environments.

Since there is no standard convention (Cobbe et al., 2020) for the memory distribution setting, we opt for training on 500 training levels (level ID 0 to 499) as recommended for the “hard” distribution. For testing, we use the exact same setting as in our easy distribution setting described in Sec. 4.3 (i.e. 3 training runs and 3 different test sets).

Table 5 shows the results. While having a similar parameter count, the SRWM variant achieves a better training score than the DeltaNet baseline, while the test scores are rather close.

We note, however, that this is only a preliminary result in the memory setting, as the model size is rather small: we use the same 2-layer architecture used in the experiments with the easy distribution. Further scaling up the model size (e.g., more layers) should lead to further performance improvements as it would allow for handling longer contexts.

C.2. Extra result tables
Table 6. Performance on ProcGen game environments. Multi-task training in 6 environments in the easy distribution. The three SRWM variants are as follows: True: the SRWM model, Fake: the SRWM without self-modification mechanism, and Reset: the SRWM trained and evaluated with weight update reset.

Env	Split	FF	LSTM	Delta	SRWM
					True
					Fake
					Reset
Bigfish	Train	8.3 (3.9)	6.5 (2.0)	19.6 (4.0)	20.1 (2.4)
Test	4.3 (2.3)	3.2 (1.1)	7.8 (1.5)	9.0 (2.0)	4.7 (2.4)
Fruitbot	Train	29.2 (0.2)	27.8 (0.5)	28.8 (0.9)	28.7 (0.2)
Test	25.6 (1.1)	24.8 (0.7)	24.5 (1.5)	25.5 (1.0)	24.6 (1.2)
Leaper	Train	3.3 (0.2)	3.3 (0.2)	3.5 (0.4)	3.5 (0.2)
Test	3.4 (0.4)	3.6 (0.4)	3.3 (0.4)	3.4 (0.4)	3.6 (0.4)
Maze	Train	1.9 (0.3)	3.1 (0.7)	3.8 (0.2)	3.6 (0.5)
Test	1.4 (0.3)	1.6 (0.4)	1.7 (0.2)	1.8 (0.5)	1.3 (0.3)
Plunder	Train	3.2 (0.2)	3.2 (0.4)	3.3 (0.2)	3.1 (0.0)
Test	3.2 (0.3)	2.9 (0.4)	3.3 (0.2)	3.0 (0.2)	3.1 (0.5)
Starpilot	Train	57.6 (0.9)	56.0 (1.5)	60.3 (0.4)	61.3 (2.0)
Test	53.0 (1.7)	48.3 (2.0)	53.9 (2.4)	54.6 (2.4)	49.6 (2.1)
Aggregated	Train	22.5 (2.6)	28.3 (1.4)	35.0 (1.6)	27.0 (1.8)
Test	16.4 (1.6)	15.7 (1.6)	18.6 (1.7)	20.0 (1.8)	15.3 (1.9)

Table 7. Performance on ProcGen game environments. Multi-task training in 4 environments in the memory distribution.

Env	Split	DeltaNet	SRM-Delta
Dodgeball	Train	7.1 (0.2)	7.1 (0.6)
Test	6.4 (0.3)	6.2 (0.6)	
Heist	Train	1.0 (0.3)	1.5 (0.1)
Test	0.8 (0.2)	1.1 (0.3)	
Maze	Train	5.3 (0.4)	5.9 (0.2)
Test	3.3 (0.6)	3.3 (0.4)	
Miner	Train	32.3 (0.4)	34.5 (0.8)
Test	29.2 (1.1)	29.4 (0.7)	
Aggregated	Train	51.8 (2.6)	59.0 (2.1)
Test	38.0 (4.1)	38.5 (3.2)	