Preparation of Copper Nanoparticles in Liquid by Matrix Sputtering Process

Ko Nakagawa, Takashi Narushima, Satoshi Udagawa, and Tetsu Yonezawa*

Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, 060-8628 Japan

Email: tetsu@eng.hokudai.ac.jp

Abstract. As a new method for nanoparticles preparation, magnetron sputtering of metal atoms and clusters into organic liquids has been intensively used recently. In this study, metallic copper nanoparticles dispersed in pentaerythritol ethoxylate were prepared by this process. Their size control was achieved by controlling the sputtering current. Specific absorption at ca. 580 nm was detected by UV-Vis measurement which is attributed to the specific plasmon absorption of metallic copper. TEM observation also revealed the formation of metallic nanoparticles.

1. Introduction

Metal nanoparticles (MNPs) have been attracted significant attention from the scientific and engineering community as their specific physicochemical properties which are different from bulk materials and atomic materials, and it is considered that they play an important role in developing new scientific approaches. MNPs are now considered as a key material of modern nanotechnology. Their unique properties, including nonlinear optics, plasmon phenomena, photo luminescence, catalysis, electronics, biomedicine, magnetic phenomena, as well as energy conversion, are varied with their sizes, especially in a single digit nm region, and with their shape and surface condition. [1-4] For optical properties, extremely small MNPs with their sizes close to Fermi wave length of electron have photoluminescence characterized by quantum size effect. [5-7]

In most cases, recently, especially in laboratories, MNP dispersions were prepared by chemical reduction or decomposition of the corresponding metal compounds by using external reduction agents or solvents. [1, 8-10] Initial cost of wet chemical processes is usually much smaller than vacuum processes and the particle sizes can be controlled by the selection of metal sources, protective reagents, reducing reagents as well as their concentrations.

On the other hand, NP preparation by vacuum process is considered as an industrial process which generates naked MNPs or oxide coated MNPs. Initial cost of vacuum processes is usually much more expensive than chemical reduction processes, but vacuum processes are usually continuous manufacturing ones, whose running cost can be smaller than that of chemical processes, which are batch processes, generally. From this point of view, a new route to prepare MNPs by using a relatively non-expensive apparatus has been demanded. Recently, magnetron sputtering, which is usually focused on the preparation of thin films on solid substrates, has been applied for NP preparation. Ye et al. reported the preparation of rough thin films of Ag on silicon oil. [11] After this work, this magnetron sputtering procedure to prepare MNPs in liquid was extended to other liquids, such as ionic liquids, [12-15] oils, [16] liquid polymers [17] and so on. Size and structure control of Au NPs by
changing sputtering parameters has been also discussed. [17-19] The Authors’ group proposed to use a thiol organic salt, being solid at room temperature, as the matrix to sputtering preparation of Au NPs by heating the matrix molecules. [20] Other thiol liquid molecules were also used as the matrix for Au NP preparation by sputtering, and this NP dispersion could be polymerized to form a transparent fluorescent resin.[21]

However, these papers published so far reported only Au or Ag NPs as MNPs, which are stable in ambient condition. Quite recently, Suzuki et al. reported metal oxide NPs by sputter deposition into ILs and heat treatment under air. [22,23] In this study, we firstly prepared metallic Cu NPs in liquid organic molecules by magnetron sputtering process.

2. Experimental Section

2.1. Materials
As an organic liquid, pentaerythritol ethoxylate (PEEL, Aldrich, C(CH₂(OCH₂CH₂)ₙOH)₄) was selected and used as purchased. It is one of the monomers of urethane. Target copper (99.96 %, diameter = 50 mm) was purchased from Nilaco, Japan.

2.2. Preparation of copper nanoparticle dispersion by sputtering process
In order to remove water molecules and other ingredients in PEEL, it was kept at 90 °C under vacuum for more than 2 h. Some bubbles formed from PEEL. The vacuum chamber was evacuated first to ~10⁻³ Pa and Ar gas was admitted in until the system was stabilized at a pressure of 2 Pa. Before sputtering, this gas exchange procedure was repeated more than twice in order to evacuate oxygen gas completely. The vacuum pressure was kept at 2 Pa during the sputtering. All samples were obtained by dc-magnetron sputtering of a Cu target over a cylindrical glass petri plate (~6 cm diameter × ~1 cm height) containing 7.0 g of PEEL. The temperature of PEEL was kept at 20 °C by using a cooling apparatus under the petri plate. Sputtering current was varied in the range of 10 - 100 mA, and sputtering time was 8 or 60 min.

2.3. Characterization
UV-Vis absorption spectra were obtained with a Jasco V-630 using a 1-mm or 10-mm quartz cuvette. The particle structure and size were observed by TEM with a Hitachi H-9500 at the acceleration voltage of 300 kV. The sample grid (Cu, 3 mmΦ) was prepared by putting a drop of Cu nanoparticle dispersion in PEEL and followed by dipping into ethanol for 10 min to wash excess PEEL.

3. Results and Discussion

3.1. Preparation of Cu nanoparticles by Sputtering
As previously reported, Au NPs can be readily obtained by magnetron sputtering into ionic liquids, oils, etc. Discussions of the relationships between sputtering parameters and sizes and shapes of the obtained Au NPs were also discussed. Here, we tried to obtain Cu NPs by sputtering. First, we evacuate the sputtering chamber to 10⁻³ Pa and then filled it with Ar gas up to 2 Pa. This evacuation/Ar introduction process was carefully repeated at least twice in order to remove oxygen gas. Otherwise, CuO or Cu₂O NPs can be obtained.
When we carefully changed the chamber gas to Ar, we have successfully obtained CuNPs in PEEL. Figure 2 shows the UV-Vis absorption spectra of Cu NPs obtained by magnetron sputtering at 50 mA for 8 min and the spectra were measured at just after preparation and 7 days after preparation. After preparation, one can find a small absorption shoulder peak at ca. 580 nm, which is corresponding to the specific plasmon absorption of metallic copper NPs. However, after keeping 7 days under ambient condition, the absorbance of the Cu NPs in PEEL dramatically decreased in whole area. In Figure 2, the photographs of the dispersion in a quartz cell are also collected. The color of the dispersion diminished dramatically during 7 days, and the sample after 7 days is slightly yellow. This situation should be attributed to oxidation of Cu NPs in PEEL dispersion. On the other hand, this color change suggests that no aggregation or flocculation of Cu NPs occurred in PEEL.

3.2. Cu NPs in PEEL Prepared by Sputtering with Different Sputtering Parameters

As discussed in the introduction section, precise control of particle size is very important technique to obtain MNPs. Hatakeyama et al. changed various sputtering parameters to obtain Au NPs in poly(ethylene glycol) (PEG). [17-19] Temperature, concentration can be parameters which control the size and shape of Au NPs. Here, we have tried to control Cu NPs in PEEL by changing the sputtering current. In order to emphasize the effect of the changing sputtering current, the sputtering time was kept at 60 min. UV-Vis spectra and TEM images of Cu NPs obtained in PEEL by sputtering Cu at various currents in the range between 10 – 100 mA are collected in Figs. 3 and 4, respectively. No plasmon absorption peak is found in the spectrum of Cu NPs in PEEL prepared with sputtering current.
of 10 mA. More than 30 mA, the plasmon absorption peak at ca. 580 nm can be observed. After being sputtered from the Cu target, Cu atoms and clusters bombarded onto PEEL surface and interact with PEEL molecules. In the surface region, growth of Cu atoms and clusters to Cu NPs proceeds. [16] Therefore, when the sputtering current is higher, the amount of generated Cu atoms and clusters increased. Then, the growth of the particles becomes rapid to generate larger NPs.

In fact, the particle diameter was depending on the sputtering current. Sputtered at 10 or 20 mA, the average particle size is between 2 – 3 nm. However, higher current gave larger particles, especially Cu NPs prepared at 100 mA, showed two peaks in the size distribution, one is 5.5 nm, and the other is larger, about 8 nm.

Precise observation of the UV-Vis spectra in Fig. 3 indicates a slight blue shift in the spectrum of Cu NPs prepared at 100 mA comparing with that prepared at 50 mA, even the particle sizes became larger. It can be explained by the difference of the baselines. However, further experiments with different sputtering conditions are needed.

4. Conclusion
Spherical metallic Cu NPs with a diameter of single digit nm were obtained by Ar sputtering onto organic oil, PEEL and Cu NP dispersions were obtained. No aggregation or flocculation of NPs has been observed but oxidation of Cu NPs proceeded when the dispersion was kept under ambient condition. Their particle size has been controlled by sputtering current, and plasmon absorption corresponding to metallic Cu NPs has been clearly detected.
Acknowledgement
This work is partially supported by Grant-in-Aid for Scientific Research in Priority Area “Molecular Science for Supra Functional Systems (477)” to TY (22018001). Authors thank Dr. Y. Shishino (Tokai Opt. Co., Ltd.) for his kind suggestions to our experimental work.

References
[1] Toshima N and Yonezawa T 1998 New J. Chem 1179
[2] G. Schmid Ed., Clusters and Colloids, VCH, Weinheim 1994.
[3] T. Pradeep, “NANO: The Essentials”, McGraw-Hill Education 2007.
[4] Daniel M.-C. And Astruc D. 2004 Chem Rev 104 293.
[5] Siwach OP and Sen P 2008 J Nanoparticle Res 10, 107
[6] Kawasaki H, Kosaka Y, Myoujin T, Narushima T, Yonezawa T, and Arakawa R 2011 Chem Commun 47 7740
[7] Wei W, Lu Y, Chen W, and Chen S 2011 J Am Chem Soc 133 2060
[8] Tomonari M, Ida K, Yamashita H, and Yonezawa T 2008 J Nanosci Nanotechnol 8 2468.
[9] Yonezawa T, Nishida N, and Hyono A 2010 Chem Lett 39 548
[10] Slatemann C, Lisiecki I, Urban J, and Pileni MP 2004 Langmuir 20 11772
[11] Ye G, Zhang Q, Feng C, Ge H, and Jiao Z 1996 Phys Rev B 54 14754
[12] Torimoto T, Okazaki K, Kiyama T, Hihara K, Tanaka N, and Kuwabata S, 2006 Appl Phys Lett 89 243117
[13] Kameyama T, Ohno Y, Kurimoto T, Okazaki K, Uematsu T, Kuwabata S, and Torimoto T 2010 Phys Chem Chem Phys 12 1804
[14] Kuwabata S, Tsuda T, and Torimoto T 2010 J Phys Chem Lett 1 3177
[15] Wender H, de Oliveira LF, Migowski P, Feil AF, Lissner E, Prechtl MHG, Teixeira SR, and Dupont J 2010 J Phys Chem C 114 11764
[16] Wender H, Gonçalves RV, Feil AF, Migowski P, Poletto FS, Pohlmann AR, Dupont and J, Teixeira SR 2011 J Phys Chem C 115 16362
[17] Hatakeyama Y, Morita T, Takahashi S, Onishi K, and Nishikawa K 2011 J Phys Chem C 115 3279
[18] Hatakeyama Y, Okamoto M, Torimoto T, Kuwabata S, and Nishikawa K 2009 J Phys Chem C 113 3917
[19] Hatakeyama Y, Takahashi S, and Nishikawa K 2010 J Phys Chem C 114 11098
[20] Shishino Y, Yonezawa T, Kawai K, and Nishihara H 2010 Chem Commun 46 7211
[21] Shishino Y, Yonezawa T, Udagawa S, Hase, and K, Nishihara H 2011 Angew Chem Int Ed 50, 703
[22] Suzuki T, Okazaki K, Suzuki S, Shibayama T, Kuwabata S, and Torimoto T 2010 Chem Mater 22 5209
[23] Suzuki T, Suzuki S, Tomita Y, Okazaki K, Shibayama T, Kuwabata S, and Torimoto T 2010 Chem Lett 39 1072
[24] Papavassiliou GC and Kokkinakis TH 1974 J Phys F, Metal Phys 4 67