Studies on the evaluation of some strains of *Calocybe indica* P&C for cultivation in Jammu

Pourush Shrikhandia S P, Geeta Sumbali*

Department of Botany, University of Jammu, Jammu Kashmir-180006, India

Article History:
- Received on: 02.04.2019
- Revised on: 10.07.2019
- Accepted on: 15.07.2019

Keywords:
- Jammu,
- milky mushroom,
- cultivation,
- sporophores

ABSTRACT

Calocybe indica, commonly known as milky/summer white mushroom, ‘kuduk’ or ‘dudhi chatta’, is a lignocellulolytic, tropical mushroom of Indian origin, which requires a temperature of 30-35°C and a relative humidity of 80-90°C for good growth. It is a new introduction to the domestic mushroom family. There are 40 different species of *C. indica*, out of which four are edible, that is, *C. carnea*, *C. ionides*, *C. gambosa* and *C. indica*. In northern part of our country, very few efforts have been attempted towards the cultivation of *C. indica*. Therefore, the present study was conducted to screen some strains of *C. indica* viz., DMRO-309, DMRO-319, CI-6, CI-9 and APK-2 procured from Directorate of Mushroom Research, Solan for their growth behaviour, morphometric characters, yield and biological efficiency on wheat and paddy straw for cultivation in Jammu district. On the basis of the results obtained, *C. indica* strain DMRO-309 and APK-2 emerged as the best performers under the climatic conditions of Jammu region.

Corresponding Author

Name: Geeta Sumbali
Phone: 9419192102
Email: geetasumbalippl@yahoo.co.in

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v10i3.1494

© International Journal of Research in Pharmaceutical Sciences
ones like *Pleurotus ostreatus*, *Lentinula edodes*, *Auricularia polytricha*, *Flammulina velutipes* and *Agaricus bisporus* (Wu et al., 2013). The second-largest producer of mushroom is the USA, which shares 16% of the world output (Kumar et al., 2013). According to (Prakasam, 2012), three geographical regions- Europe, America and East Asia contribute approximately 96% of the world mushroom production.

In India, cultivation of edible mushrooms started in 1961 with the temperate mushrooms, especially button mushroom (*Agaricus bisporus*). However, our country can make rapid progress in the mushroom industry by cultivating the tropical and subtropical mushrooms. The annual turnover of fresh mushrooms in India is about 1,13,315 tonnes with Punjab, Uttarakhand and Haryana as the leading states in decreasing order (Thakur and Singh, 2014).

Calocybe indica is a lignocellulolytic mushroom, which requires a temperature of 30–35°C and relative humidity of 80 to 90% for good growth. Therefore, it is an ideal candidate for hot weather cultivation when no other mushroom excepting *Volvariella* species can grow. It has a robust sporophore, attractive colour, sustainable yield, delicious taste, unique texture and excellent shelf life as compared to oyster or button mushroom (Amin et al., 2010). Like the oyster mushroom (*Pleurotus* species), it is capable of growing on a wide range of lignocellulosic substrates. Moreover, its spore content is very low and hence does not cause respiratory allergy problem as the oyster mushroom species do. From J&K state, *Calocybe indica* (CI-3 strain) has been cultivated on a wide range of agrowastes, garden wastes and forest wastes of Jammu division (Chivan and Sumbali, 2016). However, no work has been done on the other available strains of *C. indica*. Therefore, the present study was conducted to screen some strains of *C. indica* viz., DMRO-309, DMRO-319, CI-6, CI-9 and APK-2 procured from Directorate of Mushroom Research, Solan, Himachal Pradesh. These included DMRO-309, DMRO-319, CI-6, CI-9 and APK-2. All the strains were maintained on sterilized PDA (potato dextrose agar) medium and MEA (malt extract agar) medium slants and kept at room temperature during the entire period of investigation. Subsequent culturing was done after every 3 months.

Agrowastes used for the cultivation of *C. indica*

For the cultivation of *C. indica*, two agrowastes, that is, paddy straw and wheat straw were collected from local fields.

Cultivation site and mushroom house

Experiments pertaining to the cultivation of *C. indica* (P&C) were conducted in a mushroom cultivation house located in the Botanical Garden of Department of Botany, University of Jammu, Jammu.

The protocol used for the cultivation of *C. indica* strains

Cultivation of *C. indica* was done by following the process given below:

Preparation of mother spawn

A spawn is a pure fungal culture grown on softened grains in a sterilized condition. During the present study, mother spawn of five strains of *C. indica* (DMRO-309, DMRO-319, CI-6, CI-9 and APK-2) was prepared from pure cultures by following the method of (Munjal, 1973).

Preparation of commercial spawn

It was prepared by putting softened wheat grains in polyethylene bags (9” × 13” -150 gauges) @ 500 g grain/bag. Thereafter, these bags were sterilized at 15 lbs./sq. inch for 2 hours. After cooling, the bags were aseptically inoculated with 10-15 g of mother spawn in a laminar airflow chamber and incubated...
at 30±2°C. During the period of incubation, the bags were frequently examined for any type of contamination. Bags exhibiting contamination were immediately discarded, whereas those showing white and uniform mycelial growth covering all the grains were used for experimentation.

Preparation of substrate

Agrowastes like wheat straw, paddy straw, maize stalk, bajra stalk and sorghum stalk were collected from the fields, whereas dehulled maize cobs were collected after threshing. These substrates were finally chopped into small pieces of 5-7 cm and then subjected to hot water treatment.

Hot water treatment

The substrates were soaked individually for 4 hours in a drum containing water. Thereafter, the soaked substrates were boiled in hot water (80-90 ºC) for 40-60 minutes. Excess water was then drained off, and the substrates were spread over sloppy and cemented floor till the moisture content of the substrate remained 60 percent. The water content in the substrate after pasteurization and draining was tested by squeezing between the fingers. The substrate which did not leak out drops of water upon squeezing was considered to be saturated with approximately 60% moisture level and was considered ready for use.

Filling of bags and spawning

Spawning is a technique of introducing spawn into the substrate with the aim of achieving rapid growth for the production of sporophores (fruiting bodies). The cooled substrate was filled in polyethylene bags (12"x18") @ 2 kg wet substrate per bag. Multi-layered spawning of the substrate was done alternately. For this, wheat grain based spawn was used @ 6% of dry weight of substrate. After spawning, small holes were made in the polyethylene bags and the lower end corners were cut to drain off the excess water. Thereafter, the necks of the bags were closed with rubber bands.

Spawn run

The spawned bags were then kept in the hanging nets placed in the mushroom house, where the temperature of 25-35 ºC and relative humidity of 80-90 percent were maintained for spawn running. This was done by frequently sprinkling water on the walls, floor and by using mist fan. The spawn run, which refers to the growth of the spawn on the substrate, took 10-15 days. After complete colonization of the substrate by mushroom mycelium, casing was done.

Casing of the bags

It is the process of covering the mycelial colonised substrate with few layers of soil or any other casing material having high water holding capacity, good pore size and neutral pH. After complete spawn run, the bags were cut into two equal halves, and each half was encased with 2-4 cm thick casing material, which consisted of a mixture of FYM. Before use, the casing material was autoclaved at 15 lbs psi for 60 minutes. Further, casing layer was kept moist by sprinkling fresh water as and when required. Three replicates were maintained for each treatment.

Watering and pinhead formation

The cased bags were kept back in the hanging nets at a temperature of 25-35 ºC and relative humidity of 80-90 percent. Watering was done 2-3 times per day by sprinkling the top casing soil in order to maintain moisture. Additionally, a relative humidity of more than 80 percent in the mushroom house was maintained by mist fan. The mushroom house had diffused light conditions due to the blue tarpaulin and a window that was kept partially opened for its aeration. After 8-10 days of casing, numerous needle-shaped pin heads started appearing, and within 6-8 days some of them matured into large-sized sporophores, ready for harvesting.

Weight and size of sporophores

The freshly harvested sporophores were immediately weighed with the help of an electrical balance (EK8150-13, Zhongshan Camry Manufacturer and Trading Co., Ltd., China) having a sensitivity of 1g and was expressed in grams. The sporophores collected from each bag were also measured for their size, that is, a diameter of the pileus (cap) and length of the stipe (stalk) were recorded with the help of thread and expressed in centimetres and width in millimeters.

Yield and biological efficiency of C. indica

The cumulative yield for each substrate and all replicates was recorded by summing up the fresh weight of pickings. Biological efficiency (BE), which is the ability of mushrooms to convert the substrate contents into fruiting bodies was calculated by following (Chang et al., 1981):
Table 1: Growth behaviour of five strains of *Calocybe indica*.

Agrowastes used	*C. indica* strains assessed	Days required for	Total days required for the production of first flush	F-value	P-value
Paddy straw	DMR0-309	Spawn run	11.67±0.33	30.67	
	APK-2	Pinhead formation	9.33±0.33	9.67±0.88	
	DMR0-319	First flush	15.67±0.67	42.34	
	Cl-6		17.00±0.58	13.67±0.67	
	Cl-9		18.33±0.33	14.33±0.67	
	F-value		63.3		
	P-value		P<0.05		
Wheat straw	DMR0-309		13.00±0.58	32.00	
	APK-2		12.33±0.33	41.67	
	DMR0-319		16.33±1.33	45.00	
	Cl-6		17.33±0.88	14.67±0.67	
	Cl-9		19.33±1.45	14.33±1.20	
	F-value		74.2		
	P-value		P<0.05		

The values given are mean ± standard error. Fischer’s LSD was applied when ANOVA detected a significant difference (P<0.05) between days required for cultivation by different strains on two agrowastes. Values within a column followed by the same letter do not differ significantly.

Table 2: Morphometric characters of the sporophores produced by *Calocybe indica* strains.

Agrowastes used	*C. indica* strains assessed	Number of sporophores per bag	Range of sporophore weight (g)	Range of pileus diameter (cm)	Range of stipe length (cm)	Range of stipe width (mm)	F-value	P-value
Paddy straw	DMR0-309	14.67±0.88	28-392	6-17	6-18	20-42		
	APK-2	19.47±1.45	15-235	5-12	6-14	14-39		
	DMR0-319	7.00±0.15	16-120	4-10	4-9	12-34		
	Cl-6	5.67±1.20	15-104	4-8	4-10	12-29		
	Cl-9	2.67±0.67	7-92	3-7	4-8	10-22		
	F-value	48.2	-	-	-	-		
	P-value	P<0.05	-	-	-	-		
Wheat straw	DMR0-309	17.67±1.45	19-320	5-15	6-14	17-40		
	APK-2	21.33±1.20	14-208	4-10	6-10	14-38		
	DMR0-319	6.60±1.52	16-115	4-7	5-13	12-31		
	Cl-6	5.33±0.45	17-103	4-6	4-10	11-27		
	Cl-9	2.33±0.33	12-74	3-8	10-20	-		
	F-value	52.1	-	-	-	-		
	P-value	P<0.05	-	-	-	-		

The values given are mean ± standard error. Fischer’s LSD was applied when ANOVA detected a significant difference (P<0.05) between the type of strain used and a number of sporophores produced on two agrowastes. Values within a column followed by the same letter do not differ significantly.
Table 3: Yield and biological efficiency of different strains of *Calocybe indica*.

Agrowastes used	*C. indica* strains assessed	Yield g/500g of dry substrate	Biological efficiency (%)
Paddy straw	DMRO-309	448.07±2.58	89.61
	APK2	435.13±2.31	87.02
	DMRO-319	393.21±2.16	78.64
	CI-6	374.36±0.88	74.87
	CI-9	344.37±2.79	68.87
Wheat straw	DMRO-309	435.86±1.23	87.17
	APK2	415.32±0.96	83.06
	DMRO-319	385.19±1.12	77.04
	CI-6	370.67±0.78	74.13
	CI-9	336.03±0.49	66.60
	F-value	21.45	
	P-value	P<0.05	

The values given are mean±standard error. Fischer’s LSD was applied when ANOVA detected a significant difference (P<0.05) between the type of strain used and yield. Values within a column followed by the same letter do not differ significantly.

Biological efficiency (%) =

\[
\frac{\text{Fresh weight of mushroom yield}}{\text{Dry weight of substrate used}} \times 100
\]

Statistical analysis

The data were analysed using analysis of variance (ANOVA) on variables such as growth behaviour of different strains on two standard agrowastes (straw of wheat and paddy); different morphometric characters of five strains on these tested substrates; yield and biological efficiency of these strains on these tested substrates. Analysis of variance and other statistical analysis were done using SPSS software package (Version 18.0).

RESULTS AND DISCUSSION

During the present investigation, five strains of *Calocybe indica* P&C viz., DMRO-309, DMRO-319, CI-6, CI-9 and APK-2 were screened for their growth behaviour during cultivation, morphometric characters of the sporophores, their yield potential and biological efficiency on two different agrowastes viz., paddy straw and wheat straw, which are commonly available in Jammu district.

Growth behaviour during cultivation

Data given in Table 1 depicts the time required for complete spawn run, pinhead formation and first harvest. A perusal of data shows that among the five different strains of *C. indica* evaluated, two strains (DMRO-309 and APK-2) were found to have very fast spawn run on both the tested substrates and statistically did not differ significantly. *C. indica* strain DMRO-309 took 11.67 and 13 days for complete colonization on paddy straw and wheat straw respectively, whereas strain APK-2 colonized paddy straw and wheat straw completely in 12.33 and 13.67 days respectively. Earlier, Krishnamoorthy and Muthusamy (1997); Rawal and Doshi (2014); Singh et al. (2018) have also found similar results with APK-2 strain while growing it on different agrowastes in other parts of the country. In contrast to the present results, some researchers have even observed requirement of as high as 32 days for complete spawn run by APK-2 and different CI strains of *C. indica* on some other types of lignocellulosic wastes (Krishnamoorthy and Muthusamy, 1997; Krishnamoorthy et al., 2000; Nagaratna and Mallesha, 2007; Singh et al., 2009; Kaur et al., 2011; Vijaykumar et al., 2014; Krishnamoorthy and Balan, 2014; Chivan and Sumbali, 2016; Singh et al., 2018).

The other three tested strains of *C. indica* (DMRO-319, CI-6 and CI-9) took more time (approximately 15 to 19 days) to colonize the tested substrates and showed significant differences (Table 1). However, literature shows no work on the cultivation of *C. indica* DMRO-309 strain but few other CI strains of *C. indica* like CI-1, CI-2, CI-3, CI-4, CI-5, CI-6, CI-7, CI-8, CI-9, CI-10, CI-13, CI-14, CI-15, CI-16, CI-18 and CI-524 have been reported to show early colonization on these two standard agrowastes (Singh et al., 2009; Kaur et al., 2011; Kumar et al., 2011; Senthilnambi et al., 2011; Dhakad et al., 2015; Chivan and Sumbali, 2016; Singh et al., 2018).
Table 1 also shows that apart from substrate colonization, even the pinhead formation after casing was initiated early in DMRO-309 and APK-2, which took 9.33 and 10 days on paddy straw and 9.67 and 10 days on wheat straw respectively. Statistically, the difference was insignificant. However, the other tested strains exhibited delayed pinhead initiation on these substrates requiring approximately 12-14 days (Table 1). Likewise, DMRO-309 and APK-2 also exhibited early sporophore formation, which were ready for harvesting after 9.67 days (DMRO-309) and 10.33 days (APK-2) on paddy straw and after 9.33 days (DMRO-309) and 10.67 days (APK-2) on wheat straw. The other three tested strains (DMRO-319, CI-6 and CI-9) showed delayed but significant statistical differences in sporophore maturation (Table 1).

The nonsignificant statistical difference with respect to total days required for the production of the first flush of a crop by DMRO-309 and APK-2 was observed (Table 1). Both these strains took minimum time period on both the agrowastes. However, the other three strains exhibited statistical differences and delay in the total days required for crop production, which ranged from 38.13-48.33 days on the tested agrowastes. Recently, Alsowadi and Al-homam, 2019 also observed that C. indica APK-2 strain is not only a fast colonizer in vivo but is also a rapid biomass producer in vitro conditions at a temperature of 30°C. Few other researchers have observed early pinhead emergence and sporophore maturation even in case of different CI strains of C. indica grown on other agrowastes and their mixed combinations (Singh et al., 2009; Chivan and Sumbali, 2016; Singh et al., 2018). It is possible that variations detected in cropping period on different agrowastes may be due to the environmental variations (temperature, humidity and light arrangements) or due to specific nutritional requirements of the cultivated mushroom (Khanna and Garcha, 1981). In the present investigation, diffuse blue light, humidity above 80% and temperature of 30±2°C was used throughout the cultivation programme, which probably enhanced the rate of the growth process and reduced the time period of cultivation.

Morphometric characters of the sporophores

Morphometric characters of the sporophores of tested strains of C. indica have been given in Table 2. Perusal of data indicates a wide variation in the number of sporophores per bag (2.33-21.33), sporophore weight (7g-392g), pileus diameter (2-17 cm), stipe length (3-18 cm) and stipe width (10-42 mm). Among the tested strains, DMRO-309 and APK-2 were the best both in terms of growth behaviour as well as morphometric characters. Similar results have been obtained by few other workers during cultivation of APK-2 and different CI strains of C. indica in north-western and southern parts of India (Krishnamoorthy and Muthusamy, 1997; Tandon and Sharma, 2006; Bhatt et al., 2007; Singh et al., 2009; Kaur et al., 2011; Kumar et al., 2011; Selvaraju et al., 2015; Dhakad et al., 2015). However, cultivation of strain DMRO-309 is being attempted for the first time and was found to show good growth behaviour and morphometric characters of the sporophores (Table 1 &Table 2).

Yield potential and biological efficiency

Results presented in Table 3 show significant differences in the sporophore yield of all the tested strains of C. indica on both the agrowastes that were utilized. Maximum sporophore production of 448.07 g and 435.86 g per 500g of the dry substrate was achieved by spawning DMRO-309 in paddy straw and wheat straw bags respectively. This strain also showed the highest biological efficiency (89.61%) on paddy straw, followed in decreasing order (87.17%) on wheat straw (Figure 1). The other strain, APK-2 strain proved to be less efficient than DMRO-309 as it produced 435.13g and 415.32g of sporophores per 500g of dry substrate and yielded a biological efficiency of 87.02% and 83.06% on paddy straw and wheat straw respectively (Table 3). Rest of the three strains viz., DMRO-319, CI-6 and CI-9 gave moderate yield and biological efficiency of 393.21g (78.64%), 374.36g (74.87%) and 344.37g (68.87%) on paddy straw and 385.19g (77.04%), 370.67g (74.13%) and 336.03g (66.60%) on wheat straw respectively (Table 3).

The results obtained in the present study for APK-2 strain are in accordance with the findings of many other researchers who also observed high yield and high biological efficiency of APK-2 on these standard agrowastes as compared to other lignocellulosic substrates (Krishnamoorthy and Muthusamy, 1997; Rawal and Doshi, 2014; Selvaraju et al., 2015). However, Singh et al. (2018) while cultivating APK-2 strain on wheat straw observed only 53.33% biological efficiency, which could be increased by adding different chemicals as supplements. Similarly, Krishnamoorthy (2014) reported significantly higher yield performance ranging from 601.60g to 817.50g per 500g of the dry substrate on chemically treated paddy straw in five mushroom farms of Tamil Nadu, thus exhibiting biological efficiency as high as 120.32% to 163.50%.

Cultivation of C. indica DMRO-309 and DMRO-319 was attempted for the first time and they showed significant differences in the yield performance,
whereas biological efficiency was recorded to be more than 77% on the tested agrowastes (Table 3). Earlier, Singh et al. (2017) while cultivating a wild Calocybe species (DMRO-600) obtained a biological efficiency of 70% and 64% on wheat straw and a combination of wheat and paddy straw (1:1) respectively.

Results presented in Table 3 reveal moderate yield and biological efficiency of approximately 74% by C. indica CI-6. In contrast to our findings, NRCM (2006) reported that CI-6 strain gave average biological efficiency of 42.34% when grown in different centres of the country. The present investigation also indicates that among the five tested strains, the least biological efficiency was shown by CI-9 (Figure 1). Earlier, Kaur et al. (2011) also observed that among the evaluated nine strains of C. indica (CI- 1 to CI-7, CI-9 and APK-2), least biological efficiency of 47.17% on wheat straw was shown by CI-9. Significant differences in the yield performance and biological efficiency shown by different strains of C. indica may be attributed to the differences in their enzymatic activity required for effective colonization of the substrate and later production of sporophores. The ability of a mushroom to digest and absorb the nutrients from the substrate through enzymatic activity is considered to be the main factor for selection of mushroom strains (Rajarathnam et al., 1992).

Microbial contamination of mushroom beds is almost inevitable. While conducting studies on the cultivation of C. indica, frequent contamination of substrate bags by different antagonistic microorganisms was observed during spawn run stage and sporophore formation stage in case of strain DMRO-319, CI-6 and CI-9. The substrate bags having these strains were found to be frequently contaminated with Trichoderma, Aspergillus and Coprinus species at spawn run stage, which maybe because of the weak enzymatic activity of these strains, due to which substrate components were not colonized quickly. This causes delayed spawn run with reduced sporophore production and yield and provides sufficient time to the antagonists to grow on the substrate bags. In contrast, no contamination or very little contamination by antagonistic microbes was observed in the substrate beds spawned with strain DMRO-309 and strain APK-2. This may be attributed to their good lignocellulolytic enzymatic activity, which is required for fast colonization of the substrates, thereby providing very less time to the contaminating agents for growth and further spread. Literature also reveals negative effects of the antagonistic microbes causing frequent contamination of the substrate beds during spawn run and thus leading to either complete loss or reduced crop yield (Salam et al., 2004; Sarmah et al., 2006; Singh et al., 2010). Therefore, from the results of the present investigation, it can be concluded that C. indica strain DMRO-309 and APK-2 were the best performers under the climatic conditions of Jammu and may be exploited for commercial cultivation.

CONCLUSIONS

It can be concluded from the present study that preferential colonization of substrates and sporophore...
yield exhibited by a particular strain may depend
upon a number of factors like percent lignocellulosic
composition of substrate material, which consists of
cellulose, hemicelluloses, lignin and other phenolics
that either favour or hinder the activity of mycelial
growth. Secondly, proper packaging of the substrate
is important for the retention of moisture in the sub-
strate beds, which results in proper mycelial growth.
Thirdly, the biodegradative potential of mycelium to
grow on a particular substrate lies in its ability to de-
grade it, which in turn is decided by the repertoire of
lignocellulolytic enzymes it possesses.

ACKNOWLEDGEMENT

The authors are highly thankful to the Head, Depart-
ment of Botany, University of Jammu, J&K for pro-
viding lab facilities and to UGC-SAP-II for providing
financial assistance for carrying out this research
work.

REFERENCES

Amin, R., Khair, A., Alam, N., Lee, T. S. 2010. Effect
of different substrates and casing materials on the
growth and yield of Calocybe indica. Mycobiology,
38(2).
Bhatt, P., Kushwaha, K. P. S., Singh, R. P. 2007. Evalu-
ation of different substrates and casing mixtures
for production of Calocybe indica. Indian Phy-
topathology, 60(1):128–130.
Chang, S. T., Lau, O. W., Cho, K. Y. 1981. The cul-
tivation and nutritional value of Pleurotus sajor-
caju. European Journal of Applied Microbiology
and Biotechnology, 12(1):58–62.
Chivan, A. A., Sumbali, G. 2016. Effect of spawn den-
sity of Calocybe indica (CI-3 strain) on spawn run
using different lignocellulosic wastes. American
International Journal of Research in Formal and
Applied Science, 1(15):66–69.
Dhakad, P. K., Chandra, R., Yadav, M. K., Patar, U. R.
2015. Comparative study on growth parameters and
yield potential of five strains of milky mush-
room (Calocybe indica). Journal of Pure and Ap-
plied Microbiology, 9(3):2333–2338.
Kaur, J., Sodhi, H. S., Kapoor, S., Khanna, P. K., Jaswal,
R. K. 2011. Strain improvement of specialty mush-
room, Calocybe indica, through mutagenesis. Ap-
plied Biological Research, 13(2):62–69.
Khanna, P., Garcha, H. S. 1981. Introducing the cul-
tivation of Pleurotus floridas in the plains of India.
Mushroom Science. 11:655–665.
Krishnamoorthy, A. S. 2014. Biodiversity explo-
ratory of milky mushroom (Calocybe indica P&C)...
concept to commercialization. Proceedings of the
International conference on Mushroom Biology
and Mushroom Products. 8:490–495.
Krishnamoorthy, A. S., Balan, V. 2014. A Comprehen-
sive Review of Tropical Milky White Mushroom
(Calocybe indica P&C). Mycobiology, 43(3):184–
194.
Krishnamoorthy, A. S., Muthusamy, M. T.
Nakkeeran, S. 2000. Technique for commer-
cial production of milky mushroom P&C. Indian
Journal of Mushrooms, 18:19–23.
Kumar, P., Lal, S. K. M., Ali, M. 2013. Mush-
room cultivation an emerging agribusiness for self-
employment and entrepreneur development.
Agriwais, 1(2):147–154.
Kumar, R., Singh, G., Pandey, P., Mishra, P. 2011.
Cultural, physiological characteristics and yield at-
tributes of strains of milky mushroom (Calocybe
indica). Journal of Mycology and Plant Pathology,
41(1):67–67.
Munjal, R. L. 1973. Production of quality spawn of
Agaricus bisporus and Volvariella spp. Indian Jour-
nal of Mushrooms., 1(1):1–11.
Nagaratna, G. K., Mallesha, B. C. 2007. Use of vermi-
compost as casing material for cultivation of milky
mushroom. Mushroom Research, 16(2):81–83.
NRCM 2006. National Research Centre for Mush-
room. Annual report : All India co-ordinated
mushroom improvement project. Solan: Yugantar
Prakashan Pvt. Ltd.
Prakasam, V. 2012. Current scenario of mushroom
research in India. Indian Phytopathology, 65(1):1–
11.
Rajarathnam, S., Shashireka, M. N., Bano, Z. 1992.
Biopotentialities of the basidiomycetes. Advances
in Applied Microbiology, 37:233–361.
Rawal, P., Doshi, A. 2014. Evaluation of substrate for
organic cultivation of milky mushroom (Calocybe
indica) strain APK-2. Periodic Research, 2(4):28–
30.
Salam, S. A., Geeta, D., Nair; H. H. 2004. Coirpith
a non-conventional substrate for Calocybe indica
(milky mushroom) production. Mushroom Re-
search, (2):60–64.
Sarmah, L. M., Gogoi, R., Rathaiya, Y. 2006. Possi-
bility of milky mushroom cultivation in Assam and
use of moss as a casing material. Annals of Agricul-
tural Research, 27(1):37–41.
Selvaraju, S., Vasanth, M., Muralidharan, R., Raja,
...
R. R. 2015. Yield potential of milky mushroom-Calocybe indica (APK-2) with respect to various agricultural wastes. World Journal of Pharmaceutical Research, 4(11):1499–1508.

Senthilnambi, D., Balabaskar, P., Eswaran, A. 2011. Impact of different spawn substrates on yield of Calocybe indica. African Journal of Agricultural Research, 6(16):3946–3948.

Singh, A., Sharma, V. P., Satish, K., Anjum, V., Rajender, S. 2010. Prevalence of competitor and parasitic moulds during milky and white button mushroom cultivation in Haryana. Mushroom Research, 19(1):45–49.

Singh, M., Singh, A. K., Gautam, R. K. 2009. Screening of substrates for growth and yield of Calocybe indica. Indian Phytopathology, 62(1):109–111.

Singh, V., Kumar, P., Kumar, S., Kumar, K. 2017. Yield performance of collected wild milky mushroom (Calocybe indica). Plant Archives. 17(1):181–186.

Singh, V. P., Singh, G., Kumar, B., Kumar, A., Srivastava, S. 2018. Effect of various chemicals on the mycelial growth and fruiting body of milky mushroom (Calocybe indica). Asian Journal of Crop Science, 10(4):168–173.

Tandon, G., Sharma, V. P. 2006. Yield performance of Calocybe indica on various substrates and supplements. Mushroom Research, (1):33–35.

Thakur, M. P., Singh, H. K. 2014. Advances in the cultivation technology of tropical mushrooms in India. JNKVV Res J, 48(2):120–135.

Vijaykumar, G., John, P., Ganesh, K. 2014. Selection of different substrates for the cultivation of milky mushroom (Calocybe indica P & C). Indian Journal of Traditional Knowledge, 13:434–436.

Wu, S. R., Zhao, C. Y., Hou, B., Tai, L. M., Gui, M. Y. 2013. Analysis on Chinese edible fungus production area layout of nearly five years. Edible Fungi China, 1:51–53.