Introduction

Rice direct seeding technology is widely applied in Southeast Asia these years as it requires lower labor costs compared to the conventional transplantation (Abe et al. 2012). However, there are many factors limiting the growth and development of direct-seeded rice, such as low emergence rate, difficult weeding and lodging in later growth period (Yang et al. 2015). Seedling vigor is the ability of a seed to emerge rapidly from soil or water, mainly reference to seed germination rate and early seedling growth (Huang et al. 2004). Seeds with high vigor is important for rice production because it can not only significantly enhance seedling establishment (Luo et al. 2007), but also improve the capability to compete against weeds at seedling stage (Rao et al. 2007). Therefore, seedling vigor has been paid more attention respect to cultivation techniques and genetic analysis in recent years.

Seedling vigor is a complex agronomic trait with several indicators, such as germination rate, final germination percentage and germination index during seed germination stage (Wang et al. 2010), and root length, shoot length, wet weight and dry weight in the early seedling growth process (Redoña and Mackill 1996, Regan et al. 1992). Quantitative trait loci (QTL) analysis has been demonstrated a effective way to study complex traits, for example, yield associated traits (Huang et al. 2009, Song et al. 2007, Wang et al. 2015). Recently, the method has also been employed to study seedling vigor in rice. Han et al. (2006) identified several QTLs for low-temperature vigor of germination at 14°C using the F2:3 populations and deduced that the gene action of low-temperature vigor was most likely to be partially dominant. Germination rate, final germination percentage and germination index were evaluated by Wang et al. (2010) with F2:C3 derived from 93-11 and a CSSL harboring segments from PA64s in 93-11 background, a major QTL for SSL, qSSL1b was fine mapped within 80.5 kb between two InDel markers. Our study provides a platform for further cloning of the QTL and dissecting the molecular basis for seedling vigor at early seedling stage in rice.

Key Words: rice, QTL, seedling vigor, qSSL1b, early seedling stage.

Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length

Anpeng Zhang†, Chaolei Liu†, Guang Chen, Kai Hong, Yang Gao, Peng Tian, Youlin Peng, Bin Zhang, Banpu Ruan, Hongzhen Jiang, Longbiao Guo, Qian Qian and Zhenyu Gao*

State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Seedling vigor is an important agricultural trait as direct-seeded rice technology becomes widely applied. In order to investigate the genetic mechanisms underlying seedling vigor in rice, seeds of 132 recombinant inbred lines (RILs) derived from 93-11 and PA64s, harvested from Lingshui and Hangzhou were cultivated in the nutrient solution, and four indices for seedling vigor were measured including seedling shoot length (SSL), seedling root length (SRL), seedling wet weight (SWW) and seedling dry weight (SDW). Significant correlations were observed among the indices, and also between 1000-seed weight (TSW) and SWW or SDW. Combined with a high-resolution genetic map generated from sequencing of the RILs, 65 quantitative trait loci (QTLs) were detected on all chromosomes with interval of 1.93 Mb on average. Among 57 QTLs for seedling vigor, 28 were detected from seeds harvested in both sites and 33 were first identified. With BC3F2 derived from 93-11 and a CSSL harboring segments from PA64s in 93-11 background, a major QTL for SSL, qSSL1b was fine mapped within 80.5 kb between two InDel markers. Our study provides a platform for further cloning of the QTL and dissecting the molecular basis for seedling vigor at early seedling stage in rice.

Key Words: rice, QTL, seedling vigor, qSSL1b, early seedling stage.

Communicated by Motoyuki Ashikari
Received December 12, 2016. Accepted April 7, 2017.
First Published Online in J-STAGE on May 30, 2017.
*Corresponding author (e-mail: gaozhenyu@caas.cn)
† These authors contributed equally to this work
et al. 2012). In all, these studies have provided useful information for seedling vigor, but there still more researches to be performed in this area.

In this study, we grown 132 RILs derived from 93-11 (Oryza sativa ssp. indica) × PA64s (Oryza sativa ssp. indica) in a nutrient solution for two weeks, and conducted seedling vigor evaluations by measurement of seedlings’ shoot length, root length, wet weight and dry weight. With the help of a high quality genetic map based on the SNPs generated from deep sequencing of the RIL genomes (Gao et al. 2013), a total of 57 QTLs were found. Several co-located QTLs share the same location with previous studies. The major QTL, qSSL1b was fine mapped within 80.5 kb between two insertion-deletion (InDel) markers. These results give more information of the genetic and molecular basis underlie seedling vigor in rice.

Materials and Methods

Plant materials

The recombinant inbred lines (RILs) presented in this study were developed by a cross between an elite paternal inbred Oryza sativa ssp. indica cv. 93-11 and the maternal inbred Oryza sativa ssp. indica cv. PA64s (a photo-thermo-sensitive male sterile line). The provided population was developed in the experimental fields at China National Rice Research Institute in Lingshui, Hainan Province, and in Hangzhou, Zhejiang Province, China. To develop a chromosome segment substitution line (CSSL) containing the QTL for SSL, qSSL1b detected both in Lingshui and Hangzhou on chromosome 1, a line of RILs with PA64s genotype in the qSSL1b region was selected to backcross with recurrent parent 93-11. Two markers SNP1-202 and SNP1-257 (Table 4) were used for marker assisted selection (MAS) of each generation. As a result, a BC1F1 line, with 93-11 genetic background exhibiting heterozygous across the entire qSSL1b region, was constructed. After self-crossing, a BC3F2 population was obtained for fine mapping of qSSL1b.

Phenotypic evaluation of rice seedling vigor

Mature seeds of parents and 132 core RILs were harvested in Lingshui (2012) and Hangzhou (2013) and soaked in deionized water overnight at 30°C in the dark. After germination, seeds were put into the holes of 96-well plates and transferred to 35 L plastic pots containing an nutrient solution (pH 5.6) containing 1.5 mM NH4NO3, 1.0 mM CaCl2, 1.6 mM MgSO4, 0.5 mM K2SO4, 0.3 mM NaH2PO4, 0.1 mM Fe-EDTA, 9.5 uM MnCl2, 20 uM H2BO3, 0.2 uM ZnSO4, 0.2 uM CuSO4, 0.05 uM Na2MoO4 and 0.01 uM Na2SiO3. The plants were grown in a greenhouse and the solution was changed once per 3 days. After 15 days, plants were collected and four indices were employed to evaluate seedling vigor: seedling shoot length (SSL), seedling root length (SRL), seedling wet weight (SWW) and seedling dry weight (SDW). For SSL and SRL, three plants of each line were measured. Six plants were gathered for measurement of SWW and SDW. Before measuring SDW, the samples were packed in individual paper bags and kept in an oven at 75°C for two days.

Data analyses and QTL detection

Statistical analysis of the parents and RILs was conducted for each index by SAS (version 8.01). Pearson correlation coefficients were calculated between each pair of all four indices and 1000-seed weight. A recombinant bin map with 2,262 high-quality polymorphic SNP markers was constructed by the re-sequencing parents and 132 core RIL lines (Gao et al. 2013). QTL analysis was performed with the R/qtl_1.26-14 (http://www.rqtl.org/) using Composite Interval Mapping (CIM). LOD threshold for each dataset was set based on a permutation test (1,000 permutation, P = 0.05). It was considered as a major effect QTL when its LOD score was larger than 2.5. PEV was estimated by ANOVA, and the QTL nomenclature followed the suggestion of McCouch et al. (2008).

Results

Phenotypic variations for seedling vigor and 1000-seed weight of the parents and RILs

For SSL and SRL of seedlings, no significant difference existed between two parents from the seeds harvested in Lingshui while statistically significant difference was found in Hangzhou (Table 1, Fig. 1A–1C). The SWW and SDW

Table 1. Means (standard deviation), min, max, skewness and kurtosis for SSL, SRL, SWW and SDW during seedling stage in parents and RIL lines

Harvested location	Trait	Parents	RIL population					
		93-11	PA64s					
		Mean ± SD	Min	Max	Skewness	Kurtosis		
Lingshui	SSL	22.74 ± 0.38	23.41 ± 0.39	25.83 ± 4.14	17.05	38.52	0.65	0.54
	SRL	5.13 ± 0.03	5.26 ± 0.08	5.85 ± 1.20	3.82	9.56	0.67	0.56
	SWW	2.02 ± 0.09	1.75 ± 0.07	2.06 ± 0.58	0.95	4.43	1.12	2.22
	SDW	0.24 ± 0.02	0.19 ± 0.01	0.25 ± 0.08	0.11	0.61	1.33	3.80
Hangzhou	SSL	20.25 ± 0.37	25.10 ± 1.84	23.24 ± 3.56	15.80	33.04	0.69	0.43
	SRL	5.51 ± 1.08	7.21 ± 1.08	6.55 ± 1.53	3.34	12.10	0.89	1.04
	SWW	1.84 ± 0.08	1.49 ± 0.06	1.60 ± 0.43	0.53	2.95	0.67	0.97
	SDW	0.20 ± 0.01	0.18 ± 0.01	0.19 ± 0.05	0.08	0.36	0.71	0.72

SSL: seedling shoot length, SRL: seedling root length, SWW: seedling wet weight, SDW: seedling dry weight. The results of SSL and SRL in parents are presented as the means ± SD of triplicate samples. Results of SDW and SWW are shown as sum of 6 plants.
Fine mapping of qSSL1b for rice seedling vigor

Breeding Science
Vol. 67 No. 3

Fig. 1. A. Seedling phenotype of 93-11 and PA64s at early seedling stage from Hangzhou. Bar = 5 cm. B–E. Four seedling vigor indices of 93-11 and PA64s from Lingshui and Hangzhou. Results of SDW and SWW are shown as a total of 6 plants. ** and * on the bars indicate significant difference at the 1% and 5% level, respectively according to t test.

Fig. 2. Frequency distributions of seedling shoot length (SSL) (A), seedling root length (SRL) (B), seedling wet weight (SWW) (C) and seedling dry weight (SDW) (D) among RILs with seeds from Lingshui and Hangzhou in early seedling growth stage. Results of SDW and SWW are shown as a total of 6 plants. The white patterns represent phenotype collected in Lingshui and the grey ones represent those in Hangzhou. White triangles and grey triangles indicate SSL, SRL, SWW and SDW of 93-11 and PA64s from Lingshui and Hangzhou, respectively.
of PA64s seedlings from seeds in both sites reached 80%–90% of 93-11, illustrating seedlings of 93-11 were stronger than PA64s (Table 1, Fig. 1D, 1E). The RIL population also showed significant divergence for all the evaluated traits. The mean value of SSL was about 24.50 cm, with the maximum value 38.52 cm and the minimum value 15.80 cm. The minimum value of SRL, SWW and SDW were around 20% of their mean value and the maximum value were about 170% of the mean value in the RIL population (Table 1). And the continuous distributions of four seedling vigor traits among the RILs showed significantly transgressive segregation with values either larger or smaller than those of the parents, which revealed that seedling vigor at early seedling stage was controlled by polygene (Table 1, Fig. 2).

The differences in 1000-seed weight between 9311 and PA64s are displayed in Fig. 3A and 3B. Significant differences of seeds from Lingshui and Hangzhou were found between 9311 and PA64s with respect to 1000-seed weight. Nearly normal distributions were observed in the RIL population for 1000-seed weight from Lingshui and Hangzhou, respectively, indicating the trait was controlled by multigenes (Fig. 3C).

Correlation among the four indices and 1000-seed weight

Pair-wise correlation coefficients among the four indices and those indices with 1000-seed weight were presented in Table 2. Significant correlations were observed among the four parameters. Considering previous study suggested that seed weight might be correlated with seedling vigor (Cui et al. 2002), we also calculated correlation coefficients between 1000-seed weight with the four indices in the RILs and found significant correlations between 1000-seed weight and SSL, SWW, SDW from Hangzhou, and also between 1000-seed weight and SWW, SDW from Lingshui, indicating seed weight contribute to seedling vigor at early seedling stage in this population (Table 2).

QTL identification for seedling vigor

As shown in Table 3 and Fig. 4, combined with a high-resolution genetic map based on the SNPs generated from sequencing of the RILs (Gao et al. 2013), 57 QTLs well-distributed on all 12 chromosomes were identified for the four indices, including SSL, SRL, SWW and SDW. Among them, 28 QTLs were detected from seeds in both Lingshui and Hangzhou, and 33 QTLs were unreported so far.

Eighteen QTLs were responsible for SSL, and nine of them were detected from two sites. The phenotypic variance explained by a single QTL ranged from 1.1% to 13.6%. One major QTL qSSL1b had highest LOD (5.48) from Lingshui and relative higher LOD (3.77) from Hangzhou, with R² of 10.5% and 11.2%, respectively. The additive effect of qSSL1b showed negative, indicating that the positive allele from PA64s contributed to the length of seedling shoot. Genetic distance of qSSL1b was mapped between 117.12 and 133.43 cM, the same locus with qCSH1, a previously reported major QTL for seedling height (Han et al. 2007).

Seven QTLs associated with SRL were detected on chromosomes 2, 3, 5, 7, 8 and 10, respectively. Most of the positive alleles of QTLs were from 93-11. As seedling root length of seeds from Hangzhou was much longer than that from Lingshui (Table 1), only two QTLs were identified from two sites, indicating seedling vigor affected by seeds...
Fine mapping of qSSL1b for rice seedling vigor

We produced a CSSL carrying the major QTL qSSL1b from PA64s in 93-11 background by a repeated backcrossing to 93-11. Then phenotypic character was measured in F2 population including 1,233 individuals derived from a CSSL-qSSL1b BC$_2$F$_2$ line exhibiting heterozygosity across the entire qSSL1b region screened with markers SNP1-202 and SNP1-257. By comparing the sequences of the parents, four InDel markers were developed (Table 4). Combining the genotype and phenotype of homozygous individuals, the QTL was fine mapped between two InDel markers IND1-3 and IND1-4 within around 80.5-kb region of the long arm of chromosome 1 (Fig. 5), where 16 annotated genes were identified by Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/), including one encoding retrotransposon and four coding for expressed protein (Table 5).

Discussion

Seedling vigor is mainly determined by genetic inheritance, conditions of seed storage and environments of germination and early seedlings growth stage (Sun et al. 2007, Yang et al. 2015). In this study, seeds of the 132 RILs from Lingshui and Hangzhou were stored at 4°C before germination, and seedlings were grown in a nutrient solution in greenhouse. By these measurements, the influence of non-genetic factors on QTL detection for seedling vigor can be greatly reduced. McKenzie et al. (1980) reported that seedling traits measured under controlled laboratory conditions were correlated with those under field conditions, demonstrating that QTLs identified for seedling vigor in laboratory could be

Table 2. Correlation coefficients among indices of seed vigor measured during seedling stage and 1000-seed weight in 132 RIL lines derived from 93-11 × PA64s

Trait	SSL	SRL	SWW	SDW	TSW
SSL	0.60**	0.51**	0.50**	0.07	
SRL	0.83**	0.58**	0.95**	0.24*	
SWW	0.85**	0.57**	0.94**	0.25*	
SDW	0.33*	0.21	0.38**	0.43**	
TSW	0.46**	0.87**	0.87**	0.19	

SSL: seedling shoot length, SRL: seedling root length, SDW: seedling dry weight, SWW: seedling wet weight. TSW: 1000-seed weight.

* and ** indicate the 5% and 1% significant level, respectively. Seeds from Lingshui are shown in above diagonal and Hangzhou in below diagonal.

Detection of QTLs for 1000-seed weight

A total of 8 QTLs were detected for 1000-seed weight in Lingshui and/or Hangzhou, distributing on chromosomes 1, 2, 3, 4, 8, 9 and 11 (Table 3, Fig. 4). Only one QTL qTSW2 was identified in both sites, which revealed the trait was environment dependent. The QTL qTSW1 was mapped to the locus overlapped with qSWW1a, consistent with significant correlation between 1000-seed weight and SWW.

![Fig. 4. Location of QTLs for SSL, SRL, SWW, SDW and TSW from Lingshui and Hangzhou on the genetic map. SSL: seedling shoot length, SRL: seedling root length, SDW: seedling dry weight, SWW: seedling wet weight, TSW: 1000-seed weight.](image-url)
Table 3. QTLs for SSL, SRL, SDW and SWW during seedling stage and QTLs for TSW of seeds from Lingshui and Hangzhou

Trait	QTL	Chr.	Genetic distance (cM)	Seeds from 2012 Lingshi	Seeds from 2013 Hangzhou	Reference
			LOD	%Var	LOD	%Var
SSL	qSSL1a	1	49.39–66.10	4.42	4.31	1.233
	unnamed	1				
SSL	qSSL1b	1	117.12–133.43	5.48	10.5	–1.039
SSL	qCSH1	1				
SSL	qSSL2a	2	43.21–53.37	2.64	1.8	0.542
SSL	qSSL2b	2	95.70–108.16	3.00	3.6	–0.789
SSL	qCSH2	2				
SSL	qSSL3	3	42.83–53.87	2.70	4.9	0.787
SSL	qSSL3-2	3				
SSL	qSSL4	4	123.31–132.58	2.55	3.1	0.228
SSL	qPHS4	4				
SSL	qSSL5a	5	23.98–34.98	4.20	4.3	–0.677
SSL	qSV-5	5				
SSL	qSSL6a	6	37.72–38.10	2.72	2.9	–0.747
SSL	qSSL6b	6	81.13–89.41	2.87	2.6	–0.574
SSL	qSSL7	7	40.99–47.01	2.55	4.3	0.732
SSL	qSSL9	9	0.377–7.92	2.75	3.1	0.605
SSL	qSSL10a	10	0.97–9.24	3.47	7.7	1.221
SSL	qSSL10b	10	42.30–61.11	2.82	2.5	0.637
SSL	qSSL10c	10	66.41–72.15	3.43	9.7	1.298
SSL	qSSL11a	11	26.05–30.35	2.70	9.2	–1.272
SSL	qSSL11b	11	60.81–74.18	2.70	9.2	–1.272
SSL	qSL11					
SSL	qSSL12	12	101.84–107.21	3.70	3.7	–0.804
SSL	qCSH12	12				
SRL	qSRL2	2	120.50–127.40	3.18	6.4	–0.377
SRL	qSRL3	3	38.35–41.66	2.91	4.4	0.025
SRL	qSRL5	5	27.92–31.30	3.72	6.1	0.376
SRL	qSRL7	7	25.17–26.13	3.02	3.9	–0.252
SRL	qSRL8a	8	28.49–45.77	2.50	6.6	0.411
SRL	qSRL8b	8	56.05–68.96	3.36	4.6	0.255
SRL	qSRL10	10	51.46–64.12	3.59	11.7	0.569
SWW	qSWW1a	1	21.83–28.08	3.20	7.2	0.154
SWW	qSWW1b	1	54.35–72.27	2.87	6.6	0.112
SWW	qSWW1c	1	117.12–123.82	4.72	5.5	–0.138
SWW	qSWW2a	2	43.21–58.17	4.42	1.8	0.075
SWW	qSWW2b	2	95.70–108.16	4.46	2.6	–0.093
SWW	qSWW4	4	111.58–114.27	3.08	4.8	0.091
SWW	qSWW5	5	31.49–34.98	5.73	1.5	–0.020
SWW	qSWW6a	6	37.72–38.68	4.48	3.2	–0.109
SWW	qSWW6b	6	53.36–54.32	2.95	4.1	–0.127
SWW	qSWW7	7	40.68–47.11	2.74	3.8	0.082
SWW	qSWW8	8	63.20–67.80	2.55	3.6	0.086
SWW	qSWW10a	10	35.77–44.47	4.41	4.3	0.076
SWW	qSWW10b	10	66.41–72.15	4.33	13.8	0.218
SWW	qSWW12	12	101.84–106.21	3.23	6.9	–0.061
applied in the field. In addition, experiments conducted in laboratory have its advantages: environment factors can be easily controlled and experiments can be conducted at any time. However, owing to different environmental conditions in Lingshui and Hangzhou during filling stage, only 28 of 57 QTLs for seedling vigor were shared by the seeds harvested from two locations.

It was proposed that seedling vigor is greatly influenced by seed weight or seed size (Milosevic et al. 2010). Therefore, correlation coefficients between 1000-seed weight and the four indices were analyzed and significant correlations were found between 1000-seed weight and SWW or SDW, suggesting seed weight may contribute to seedling vigor at seedling stage (Table 2). And we found 15 QTL clusters for seedling vigor and TSW, revealing they may be controlled by the same locus.

Seedling vigor is defined as seed properties which determine the potential for rapid, uniform emergence and development of normal seedlings (McDonald 1993). Therefore, the most crucial step in QTL mapping for seedling vigor is the evaluation and screening of the quantitative traits (Wang et al. 2010). We only measured SSL, SRL, SWW and SDW during early seedling growth stage because they were identified as representative indicators for seedling vigor (Redoña et al. 2004).

Table 3. (continued)

Trait	QTL	Chr.	Genetic distance (cM)	Seeds from 2012 Lingshui LOD	%Var	Add.	Seeds from 2013 Hangzhou LOD	%Var	Add.	Reference
SDW	qSDW1a	1	52.62–72.27	3.12	7.7	0.015				http://archive.gramene.org/db/qtl/
	qSDW1b	1	92.28–95.76	2.66	6.2	–0.013				
	qSDW1c	1	117.12–131.89	4.13	8.1	–0.011				
	qSDW2a	2	47.89–59.89	3.04	1.3	0.006				
	qSDW2b	2	95.70–111.45	5.22	2.4	–0.011				
	unnamed	2	33.89–51.21	4.49	2.3	0.012				http://archive.gramene.org/db/qtl/
	qSDW3	3	123.31–127.72	4.15	3.4	0.009				
	qSDW4	4	27.92–34.00	3.85	10.2	–0.004				
	qSDW5a	5	112.96–115.27	3.31	2.7	–0.004				Huang et al. 2004
	qSDW5b	5	37.91–38.68	3.30	4.1	0.011				Cui et al. 2002
	qSDW6a	6	53.36–54.32	2.98	5.9	–0.019				
	qSDW6b	6	63.96–64.93	1.9	3.3	–0.015				
	qSDW8a	8	63.53–74.32	3.70	3.1	–0.015				
	qSDW8b	8	12.53–27.34	2.50	2.2	0.001				
	qSDW9	9	63.96–64.93	3.30	4.1	0.011				
	qSDW10a	10	44.47–57.33	2.83	1.9	0.007				
	qSDW10b	10	66.03–72.15	3.75	11.9	0.027				
	qSDW12a	12	64.46–72.76	3.99	10.2	–0.017				
	qSDW12b	12	101.84–106.21	3.38	6.4	–0.013				
TSW	qTSW1	1	16.98–26.32	3.11	6.9	0.633				Hua et al. 2002
	gw1a	1	134.00–148.00	3.52	12.9	0.972				
	qTGWT-2-2	2	41.85–42.63	3.41	4.8	0.597				Zhuang et al. 2002
	qTSW3	3	27.25–39.00	2.80	5.3	0.611				
	qTSW4a	4	118.10–134.12	2.84	13.1	0.884				Lin et al. 1996
	qTSW4b	4	55.47–60.87	2.97	2.2	–0.405				
	qtsw8	8	49.00–51.82	3.23	8.8	0.788				

SSL: seedling shoot length, SRL: seedling root length, SDW: seedling dry weight, SWW: seedling wet weight, TSW: 1000-seed weight.

Table 4. Primers for InDel and SNP markers developed

Primer	Forward (5′-3′)	Reverse (5′-3′)	Type
SNP1-202	TGGTACGCGTATCGTAGCAGCCGGCACTG	TGGTACGCGTATCGTAGCAGCCGGCACTG	SNP
IND1-1	ACATGGGCTAGCTGGCAGCGGGAACGCTGCTG	TGGTAAGCCAAAGCAGCACTGCTG	SNP
IND1-2	GTTGGCAGACAGCGCTGCTG	GCACTGCGTTCGCGCTGCTG	SNP
IND1-3	TCTGCAAGCGAGCTGCTGCTG	AGCTGATCGCGCTGCTGCTG	SNP
IND1-4	TGTTGCACTCGTGGCATGCTG	CAGATCCGGATTGCTGCTG	SNP
SNP1-25	GCTTGGCAGCGGTACGAGG	TCGAGATCCGGATTGCTGCTG	SNP
and Mackill 1996, Regan et al. 1992). Previous study also found that germination rate (speed) and early seedling growth were correlated in rice (Cui et al. 2002).

Based on a high quality genetic map from sequencing of the RIL genomes (Gao et al. 2013), a total of 57 QTLs were identified for seedling vigor during early seedling growth stage. So far, other researchers have identified several major QTLs for seedling vigor authentically (Dang et al. 2014, Huang et al. 2004, Liu et al. 2014, Wang et al. 2010) and some QTLs were fine mapped to a narrow region and even cloned (Abe et al. 2012, Fujino et al. 2008, 2011, Xie et al. 2014, Yano et al. 2012). Actually, 24 QTLs detected in our study shared the same loci with previously identified QTLs. For example, qSSL4, a QTL detected for seedling shoot length was consistent with qPHS4, a QTL for height of seedlings mapped between markers RM3534 and RM349 in Abe’s study (Abe et al. 2012). The QTL for seedling dry weight on chromosome 6, named as qSDW6b, shared the same locus with qTDW6-2 reported by Cui et al. (2002). In addition, 33 QTLs were first detected here for seedling vigor, such as loci for SWW and SDW on chromosome 12. Owing to high density of SNP markers in our genetic map, most QTLs were detected in a relatively narrower region compared with previous studies (1.93 Mb vs 8.80 Mb on average). However, we did not detect a QTL covering OsGA20ox1, a gene reported to increase plant height and leaf sheath length at the initial growth stage (Yano et al. 2012).

In the study, we identified and delimited a major QTL for seedling shoot length, qSSL1b within 80.5 kb region on chromosome 1, where 16 genes were annotated (Table 5), including the candidate gene for ph1, a major locus affecting plant height in rice encoding a chitin-inducible gibberellin-responsive protein (Kovi et al. 2011). Certainly, a larger genetic population is required for further fine mapping and cloning of the QTL. Meanwhile, series of InDel markers developed here will help improve rice seedling vigor by marker assisted selection (MAS) in future.

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Grant No 31471167).

Literature Cite

Abe, A., H. Takagi, T. Fujibe, K. Aya, M. Kojima, H. Sakakibara, A. Uemura, M. Matsuoka and R. Terauchi (2012) OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice. Theor. Appl. Genet. 125: 647–657.

Anandan, A., M. Anumalla, S.K. Pradhan and J. Ali (2016) Population structure, diversity and trait association analysis in rice (Oryza sativa L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS ONE 11: e0152406.

Cao, L.Y., J. Zhu, L.F. Ren, S.T. Zhao and Q.C. Yan (2002) Mapping QTLs and epistasis for seedling vigor in rice (Oryza sativa L.). Acta Agronomica Sinica 28: 809–815.

Cui, K.H., S.B. Peng, Y.Z. Xing, C.G. Xu, S.B. Yu and Q. Zhang (2002)
Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor. Appl. Genet. 105: 745–753.

Dang, X., T.G. Thi, G. Dong, H. Wang, W.M. Edzesi and D. Hong (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239: 1309–1319.

Fujino, K., H. Sekiguchi, Y. Matsuda, K. Sugimoto, K. Ono and M. Yano (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc. Natl. Acad. Sci. USA 105: 12623–12628.

Fujino, K. and H. Sekiguchi (2011) Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Plant Mol. Biol. 75: 1–10.

Gao, Z.Y., S.C. Zhao, W.M. He, L.B. Guo, Y.L. Peng, J.J. Wang, X.S. Guo, X.M. Zhang, Y.C. Rao, C. Zhang et al. (2013) Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc. Natl. Acad. Sci. USA 110: 14492–14497.

Han, L., Y. Qiao, S. Zhang, Y. Zhang, G. Cao, J. Kim, K. Lee and H. Koh (2007) Identification of quantitative trait loci for cold response of seedling vigor traits in rice. J. Genet. Genomics 34: 239–246.

Han, L.Z., Y.Y. Zhang, Y.L. Qiao, G.L. Cao, S.Y. Zhang, J.H. Kim and H.J. Koh (2006) Genetic and QTL analysis for low-temperature vigor of germination in rice. Yi Chuan Xue Bao 33: 998–1006.

Hua, J.P., Y.Z. Xing, C.G. Xu, X.L. Sun, S.B. Yu and Q. Zhang (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162: 1885–1895.

Huang, X.Z., Q. Qian, Z.B. Liu, H.Y. Sun, S.Y. He, D. Luo, G.G. Xia, C.C. Chu, J.Y. Li and X.D. Fu (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41: 494–497.

Huang, Z., T. Yu, L. Su, S.B. Yu, Z.H. Zhang and Y.G. Zhu (2004) Identification of chromosome regions associated with seedling vigor in rice. Yi Chuan Xue Bao 31: 596–603.

Kovi, M.R., V. Zhang, S. Yu, G. Yang, W. Yan and Y. Xing (2011) Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1. Theor. Appl. Genet. 123: 705–714.

Lin, H.X., H.R. Qian, J.Y. Zhuang, J. Lu, S.K. Min, Z.M. Xiong, N. Huang and K.L. Zheng (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor. Appl. Genet. 92: 920–927.

Liu, L.F., Y.Y. Lai, J.P. Cheng, L. Wang, W.L. Du, Z.F. Wang and H.S. Zhang (2014) Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice. PLoS ONE 9: e115732.

Luo, J., S.Q. Tang, P.S. Hu, L. Aleman, G.A. Jiao and J. Tang (2007) Analysis on factors affecting seedling establishment in rice. Rice Science 14: 27–32.

McCouch, S.R. (2008) Gene nomenclature system for rice. Rice 1: 72–84.

McDonald, M.B. (1993) The history of seed vigor testing. J. Seed Technol. 17: 93–101.

McKenzie, K.S., J.N. Rutger and M.L. Peterson (1980) Relation of seedling vigor to semidwarfism, early maturity, and pubescence in closely related rice lines. Crop Sci. 20: 169–172.

Milosevic, M., M. Vujakovic and D. Karagic (2010) Vigour tests as indicators of seed viability. Genetika 42: 103–118.

Rao, A.N., D.E. Johnson, B. Sivaprasad, J.K. Ladha and A.M. Mortimer (2007) Weed management in direct-seeded rice. Adv. Agron. 93: 153–255.

Redoña, E.D. and D.J. Mackill (1996) Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor. Appl. Genet. 92: 395–402.

Regan, K.L., K.H.M. Siddique, N.C. Turner and B.R. Whan (1992) Potential for increasing early vigour and total biomass in spring wheat. II. characteristics associated with early vigour. Aust. J. Agric. Res. 43: 541–553.

Song, X.J., W. Huang, M. Shi, M.Z. Zhu and H.X. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.

Sun, Q., J.H. Wang and B.Q. Sun (2007) Advances on seed vigor physiological and genetic mechanisms. Agric. Sci. China 6: 1060–1066.

Wang, Y.X., G.S. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y.X. Fang, L.J. Zeng, E.B. Xu, J. Xu et al. (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47: 944–948.

Wang, Z.F., J.F. Wang, Y.M. Bao, F.H. Wang and H.S. Zhang (2010) Quantitative trait loci analysis for rice seed vigor during the germination stage. J. Zhejiang Univ. Sci. B11: 958–964.

Xie, L., Z. Tan, Y. Zhou, R. Xu, L. Feng, Y. Xing and X. Qi (2014) Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J. Integr. Plant Biol. 56: 749–759.

Yang, P., C.L. Chen, G.X. Zou, Q.Q. Peng, Y.S. Wu, V.P. Huang, Y.H. Xiong and J.H. Yin (2015) Research progress in relevant theories of increasing breeding level of direct-seeding rice. Acta Agriculturae Jiangxi 27: 33–35.

Yano, K., T. Takashi, S. Nagamatsu, M. Kojima, H. Sakakibara, H. Kitano, M. Matsuoka and K. Aya (2012) Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice. Plant Cell Physiol. 53: 729–739.

Zhuang, J.Y., Y.Y. Fan, Z.M. Rao, J.L. Wu, Y.W. Xia and K.L. Zheng (2002) Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor. Appl. Genet. 105: 1137–1145.