Generalizations of Checking Stack Automata: Characterizations and Hierarchies *

Oscar H. Ibarra

Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Ian McQuillan

Department of Computer Science, University of Saskatchewan Saskatoon, SK S7N 5C9, Canada
mcquillan@cs.usask.ca

Received (Day Month Year)
Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

We examine different generalizations of checking stack automata by allowing multiple input heads and multiple stacks, and characterize their computing power in terms of two-way multi-head finite automata and space-bounded Turing machines. For various models, we obtain hierarchies in terms of their computing power. Our characterizations and hierarchies expand or tighten some previously known results. We also discuss some decidability questions and the space/time complexity of the models.

Keywords: checking stack automata; multi-head finite automata; characterizations; space-bounded Turing machines; hierarchies.

1. Introduction

A one-way stack automaton (NSA) [5] is a generalization of a one-way pushdown automaton that can enter its stack in a two-way read-only mode, but can only push or pop when it is at the top of the stack. A one-way checking stack automaton [7] is a restriction of stack automata that cannot pop its stack; and it starts by writing to the stack with transitions that either push to the stack or leave the stack unchanged (the write phase), and then it can read from the inside of the stack (the read phase), but once in the read phase, it can no longer push to the stack. The one-way deterministic and nondeterministic versions of checking stack automata are denoted by DCSA and NCSA, respectively. This model is quite powerful, and can accept non-semilinear languages, and NCSA can accept NP-complete languages.

* ©2022. This manuscript version is made available under the CC-BY 4.0 license [https://creativecommons.org/licenses/by/4.0/]. Published at International Journal of Foundations of Computer Science, 32 (5), 481–508 (2021) [https://doi.org/10.1142/S0129054121410045]
although emptiness is still decidable \[4\]. Various space complexity measures on NCSAs and their languages were recently studied \[12\].

The models with two-way input are called 2DCSA and 2NCSA. These are generalized further to models with \(k\) checking stacks: \(k\)-stack 2DCSA and \(k\)-stack 2NCSA, and with multiple input read heads: \(r\)-head \(k\)-stack 2DCSA and \(r\)-head \(k\)-stack 2NCSA. Deterministic multi-head multi-stack 2DCSAs were first defined by Vogel and Wagner \[21\], who showed that they accept exactly the languages that can be accepted by deterministic Turing machines in log space. This class of automata has an undecidable membership problem for nondeterministic machines \[14\]. Thus, \(r\)-head, \(k\)-stack 2DCSAs may be useful in showing other decidable properties.

Here, we compare multi-head multi-stack 2NCSAs and 2DCSAs to space-bounded Turing machines, and to multi-head two-way NFAs and DFAs. Also, we examine the space complexity of these stack automata in comparison to other types of machines. Two space-constrained restrictions of 2NCSAs are useful: an \(r\)-head \(k\)-stack 2NCSA is \(S(n)\)-bounded if every word of length \(n\) accepted has an accepting computation where every stack is of length at most \(O(S(n))\); and an automaton is \(S(n)\)-limited if one stack is unbounded but all others are \(S(n)\)-bounded. Before summarizing the results, we give some notation to describe the machine models used. By convention, if in any of the devices that we have introduced, \(k\) is equal to 1, we will usually drop the prefix “\(k\)-”, and similarly with \(r\) when \(r\) is equal to 1. For example, \(2\mathrm{NCSA}\) will mean 1-head 1-stack \(2\mathrm{NCSA}\), etc. As usual, one-way deterministic (nondeterministic) finite automata are denoted by \(\mathrm{DFA}\) (\(\mathrm{NFA}\)), and the two-way versions are denoted by \(\mathrm{2DFA}\) (\(\mathrm{2NFA}\)), and the \(r\)-head varieties are denoted by \(r\)-head \(\mathrm{2DFA}\) (\(r\)-head \(\mathrm{2NFA}\)). One-way deterministic (nondeterministic) pushdown automata are denoted by \(\mathrm{DPDA}\) (\(\mathrm{NPDA}\)), and two-way versions are denoted by \(\mathrm{2DPDA}\) (\(\mathrm{NPDA}\)). Deterministic (nondeterministic) Turing machines are denoted by \(\mathrm{DTM}\) (respectively \(\mathrm{NTM}\)). An \(S(n)\)-space-bounded DTM (NTM) has the usual meaning \[8\]. In particular, \(\mathrm{DLOG}\) (\(\mathrm{NLOG}\)) will denote languages accepted in deterministic (nondeterministic) log space, \(\mathrm{P}\) (\(\mathrm{NP}\)) will denote languages accepted in deterministic (nondeterministic) polynomial time, and \(\mathrm{PSPACE}\) will denote those accepted in polynomial-space (which coincides for \(\mathrm{DTMs}\) and \(\mathrm{NTMs}\) \[8\]).

We provide an alternate proof of \[21\] that the following models accept the same languages:

- \(\text{multi-head multi-stack 2DCSA}\)
- \(\text{multi-stack } n\text{-limited 2DCSA}\)
- \(\text{multi-head 2DFA}\)
- \(\text{log } n\text{ space-bounded DTM}\)

In the process of proving the above equivalences, we provide new trade-offs between the number of heads/stacks of the multi-head multi-stack 2DCSA and the number of heads of the multi-head 2DFA when converting one model to the other. This result is generalized to a new model that is nondeterministic but the \(2\mathrm{NCSA}\) is restricted so that it operates deterministically until every stack has entered the reading phase, and thereafter can work nondeterministically; the languages are similarly all in \(\mathrm{P}\).
This model is possibly useful as a method of developing polynomial time algorithms as this multi-head multi-stack 2NCSA restriction does not have an explicit time or space bound. Also, the following hierarchies are shown for \(r, k \geq 1 \): \(r \)-head \(k \)-stack 2DCSA is weaker than \((r+2)\)-head \(k \)-stack 2DCSA, and \(r \)-head \(k \)-stack 2DCSA is weaker than \(r \)-head \((k+2)\)-stack 2DCSA. This improves a result from [15] that \(2DCSA \subsetneq DLOG \). We also prove analogous results for when the multi-stack 2DCSA is augmented with a pushdown stack which can only be used after all the checking stacks are done writing. In particular, it is shown that this model is equivalent to a 2DPDA augmented with a log \(n \) space-bounded worktape which we shall refer to as a log \(n \) space-bounded auxiliary \(2DPDA (2NPDA) \). This model was introduced and studied by Cook in [2], who showed that the nondeterministic and deterministic versions are equivalent.

It is shown that for every function \(S(n) \), \((k+1)\)-stack \(S(n) \)-limited \(2NCSA \) languages are equal to \(nS^{k}(n) \) space-bounded NTM languages. Furthermore, this allows us to conclude that \((k+1)\)-stacks are more powerful than \(k \)-stacks for some functions \(S(n) \) by using separations results known regarding space complexity of Turing machines. Hence, multi-stack \(n \)-limited \(2NCSA \) languages are equal to \(\text{PSPACE} \), as are \(2 \)-stack polynomial space-limited \(2NCSA \) languages. Also, \(S(n) \)-bounded \(2NCSA \)s are analyzed and compared to other types of machines. In addition, machines with one global read phase are analyzed.

This paper is an extended version of [13], but with many previously omitted proofs included, and several new results including all of Section 5.2 and everything starting with Section 4.3.

2. Preliminaries

This paper assumes a working knowledge of automata and formal language theory, including finite automata and Turing machines. Please see [8] for basic models, notation for these models, and results. An alphabet is a finite set of symbols. Given an alphabet \(\Sigma \), \(\Sigma^* \) is the set of all words over \(\Sigma \) which includes the empty word \(\lambda \). A language \(L \) over \(\Sigma \) is any subset of \(\Sigma^* \).

Next, we define the main machines of interest. It is most natural to define stack automata, and then checking stack via a restriction. Fixed across all machines are the left and right input end-markers \(\langle \rangle \), the bottom and top stack markers \(Z_b, Z_t \), and the stack read/write head denoted by \(\uparrow \).

A two-way \(r \)-head \(k \)-stack nondeterministic stack automaton (\(r \)-head \(k \)-stack \(2NSA \)) is a tuple \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \), where \(Q \) is a finite set of states, \(q_0 \in Q \) is the initial state, \(F \subseteq Q \) is the set of final states, \(\Sigma \) is the finite input alphabet, and \(\Gamma \) is the finite stack alphabet. Let \(\Sigma_+ = \Sigma \cup \{\langle \rangle, \langle \} \), \(\Gamma_b = \Gamma \cup \{Z_b\}, \Gamma_t = \Gamma \cup \{Z_t\}, \Gamma_+ = \Gamma \cup \{Z_b, Z_t\}, I = \{\text{push}(y), \text{pop}, \text{stay}, \text{down}, \text{up} | y \in \Gamma \} \) (the stack instructions, the first three being write instructions that can apply at the top of the stack, and the latter three being read instructions that can apply when reading inside the stack. Then, \(\delta \) is the transition function, which is
a partial function from \(Q \times \Sigma^+ \times \cdots \times \Sigma^+ \times \Gamma^+ \times \cdots \times \Gamma^+ \) to the powerset of \(Q \times I \times \cdots \times I \times \{-1,0,+1\} \times \cdots \times \{-1,0,+1\} \), with each such transition denoted by

\[
\delta(q,a_1,\ldots,a_r,b_1,\ldots,b_k) \rightarrow (q',\iota_1,\ldots,\iota_k,\gamma_1,\ldots,\gamma_r),
\]

whereby for each \(i, 1 \leq i \leq r, \) and each \(j, 1 \leq j \leq k, \)

- \(a_i = \uparrow \) (respectively \(< \)) implies \(\gamma_i \neq -1 \) \((\gamma_i \neq +1),\)
- \(\iota_j = \text{down} \) (respectively \(\iota_j = \text{up} \)) implies \(b_j \neq Z_b \) \((b_j \neq Z_t),\)
- \(\iota_j = \text{push}(y) \) implies \(b_j \neq Z_t,\)
- \(\iota_j = \text{pop} \) implies \(b_j \in \Gamma.\)

Such a machine is deterministic if there is at most one transition from each \(q \in Q, a_1,\ldots,a_r \in \Sigma^+, b_1,\ldots,b_k \in \Gamma^+ \).

An instantaneous description (ID) is a tuple \((q,\uparrow w,\alpha_1,\ldots,\alpha_r,x_1,\ldots,x_k) \) where \(q \in Q \) is the current state, \(w \in \Sigma^+ \) is the input word (between end-markers \(\uparrow \) and \(< \) in the ID), \(\alpha_i \in \mathbb{N}_0 \) with \(0 \leq \alpha_i \leq |w| + 1 \) is the current position of tape head \(i \) (this can be thought of as \(0 \) scanning \(\uparrow \), \(|w| + 1 \) scanning \(< \)) for \(1 \leq i \leq r, \)

and \(x_j \in Z_b \Gamma^+ \Gamma^+ Z_t \cup Z_b \Gamma^+ \Gamma^+ \) is the stack contents of stack \(j \) (with the stack head \(j \) reading the character before it) for \(1 \leq j \leq k \). Define

\[
(q,\uparrow w,\alpha_1,\ldots,\alpha_r,x_1,\ldots,x_k) \vdash_M (q',\uparrow w,\alpha'_1,\ldots,\alpha'_r,x'_1,\ldots,x'_k)
\]

if there exists a transition \(\delta(q,a_1,\ldots,a_r,b_1,\ldots,b_k) \rightarrow (q',\iota_1,\ldots,\iota_k,\gamma_1,\ldots,\gamma_r), \)

where for \(1 \leq i \leq r, \) \(a_i \) is the character at position \(\alpha_i + 1 \) of \(\uparrow w, \) and \(\alpha'_i = \alpha_i + \gamma_i, \)

and for \(1 \leq j \leq k, \) \(x_j = y_j b_j z_j, \)

- \(\iota_j = \text{push}(y) \) implies \(z_j = Z_t, x'_j = y_j b_j y Z_t,\)
- \(\iota_j = \text{pop} \) implies \(z_j = Z_t, x'_j = y_j Z_t,\)
- \(\iota_j = \text{stay} \) implies \(x'_j = x_j \)
- \(\iota_j = \text{down} \) implies \(x'_j = y_j b_j z_j,\)
- \(\iota_j = \text{up} \) implies \(z_j = d_j z'_j, d_j \in \Gamma, x'_j = y_j b_j d_j z'_j,\)

As usual, \(\vdash_M^* \) is the reflexive and transitive closure of \(\vdash_M \), and an accepting computation on \(w \in \Sigma^+ \) is a sequence

\[
(q_0,\uparrow w,1,\ldots,1,Z_b \downarrow Z_t,\ldots,Z_b \downarrow Z_t) \vdash_M^* (q_f,\uparrow w,\alpha_1,\ldots,\alpha_r,x_1,\ldots,x_k),
\]

where \(q_f \in F, \) and the language accepted by \(M, \) denoted by \(L(M), \) is the set of all strings \(w \in \Sigma^+ \) such that there is an accepting computation on \(w. \)

Furthermore, \(M \) is a non-erasing stack automaton if there are no pop transitions.

And, a non-erasing stack automaton is a checking stack automaton if, in every accepting computation, and each stack \(1 \) through \(k, \) the sequence of transitions only applies instructions in \(\{\text{push}(y), \text{stay} \mid y \in \Gamma\} \) (called the write phase), followed by \(\{\text{stay, down, up}\} \) (called the read phase). As mentioned in Section 1, we denote the
class of two-way \(r \)-head \(k \)-stack nondeterministic checking stack automata by \(r \)-head \(k \)-stack 2NCSA, and we replace N by D for deterministic machines. We use the phrase multi-head to mean \(r \)-head for some \(r \geq 1 \), and multi-stack to mean \(k \)-stack for some \(k \geq 1 \). When there are 0 stacks, we replace NCSA and DCSA with NFA and DFA as they clearly match nondeterministic and deterministic finite automata.

Example 1. A classical example of a DCSA language is \(\{ a^i b^m \mid i \text{ divides } m \} \). Indeed a DCSA machine can read \(a^i \) while pushing \(a^i \) onto the checking stack. As it reads input \(b^m \), it alternates between making right-to-left and left-to-right sweeps on the checking stack reading \(a^i \), verifying that it hits the end of the input at the same time as it hits an end of the stack.

Example 2. Next, consider the language \(\{ a^i b^j c^m \mid i \cdot j = m \} \). This can be accepted by a 2-stack DCSA \(M \). Here, \(M \) copies \(a^i \) from the input onto the first stack and then input \(b^j \) onto the second stack. As it reads the input \(c^m \), it makes sweeps on the first stack as in Example 1 but it moves left one cell on the second stack for every sweep. It then verifies that all three heads (input and two stacks) reach their ends simultaneously.

3. Hierarchies of Multi-Head Multi-Stack 2DCSA and 2NCSA

3.1. The Deterministic Case

This section will consider multi-head, multi-stack 2DCSAs.

Obviously, a \(k \)-stack DCSA (NCSA) (which has a one-way input) is a special case of a \(k \)-stack 2DCSA (2NCSA). It is also immediate that a \(k \)-stack 2DCSA (2NCSA) \(M \) can be simulated by a one-way \((k+1) \)-stack DCSA (NCSA) \(M' \) which first copies its one-way input into one stack which can scan this copied input in a two-way fashion to simulate the scanning of the two-way input head of \(M \).

We will expand on the following results from [3]:

Proposition 3. [3]

1. A language \(L \) is accepted by a 2DCSA if and only if it can be accepted by a 2-head 2DFA.
2. Let \(r \geq 1 \). If a language \(L \) is accepted by an \((r+1) \)-head 2DFA, then it can be accepted by an \(r \)-head 2DCSA.
3. Let \(r \geq 1 \). If a language \(L \) is accepted by an \(r \)-head 2DCSA, then it can be accepted by a \((3r+1) \)-head 2DFA.

To help, we create a new type of machine model called an \(r \)-head \(k \)-stack 2NCSA with sensing. Such a machine has an additional test called sense\((i,j)\), for \(1 \leq i < j \leq r \) that can test whether input heads \(i \) and \(j \) are pointing at the same cell. So in this case, transitions can: read the current state, read the symbol under the \(r \) input heads, read the current cell from each of the stacks, but it can also tell whether any two given input heads are pointing at the same cell (in response, they can switch
states, move the input heads, and can push to the stacks or read from inside the stacks as normal).

Such a machine M is in normal form if it uses the states to keep track of which stacks are in their writing phase or reading phase, every transition (move) applied during the computation writes a symbol to each stack that has not yet entered its reading phase, and it remembers which symbol was last written to each stack using the state.

Lemma 4. Given an r-head k-stack 2NCSA (2DCSA) with sensing M, there exists an r-head k-stack 2NCSA (2DCSA) with sensing M' in normal form such that $L(M) = L(M')$.

Proof. Clearly, by adding states, we may assume that M can keep track of which stacks are in their writing phase or reading phase. We then construct from M a new r-head k-stack 2DCSA M' which uses a new dummy stack symbol #. During each transition, for each stack that has not yet entered its reading phase, if M does not write on the stack, M' writes #. When a stack encounters # during its reading phase, M' skips all # symbols until it reads a symbol of Γ. It can also remember the last pushed symbol in the state.

To simplify the upcoming constructions, we first generalize Proposition 3 Part 3 to multi-stack 2DCSA with multiple two-way input heads and sensing. The construction illustrates the power of multiple input heads, as a stack can be eliminated.

Lemma 5. Let $r \geq 1, k \geq 1$. For every r-head k-stack 2DCSA with sensing M in normal form, there is a $(3r)$-head $(k-1)$-stack 2DCSA with sensing M' in normal form such that $L(M') = L(M)$.

Proof. Let M have l states and let the stacks be called S_1, \ldots, S_k. Construct a $(3r)$-head $(k-1)$-stack 2DCSA with sensing M' that has two steps on input w:

Initially, M' determines which of the k stacks of M first enters its reading phase if it has a finite writing phase. To do this, M' will use r heads, H_1, \ldots, H_r, to simulate the writing phase of M without simulating the writing on the stacks. The way that M' does this is using the following: no stack of M enters the reading phase if and only if M has made more than $m = l(|w| + 2)^r$ moves without a stack entering its reading phase, otherwise there will be two IDs hit with the same state and input head positions, and so determinism causes an infinite loop (the ‘2’ is due to the end-markers, and also the position of the read heads implies the result of any sense test). Thus, as M' is reading the input to simulate M using H_1, \ldots, H_r, M' uses another set of r heads, I_1, \ldots, I_r, to count the number of moves of M up to m.

To do this counting, M' can use each head to count to $|w| + 2$, and can therefore simulate an r-digit base $|w|+2$ number that can count to $(|w|+2)^r$ by using the r^{th} head as the least significant digit and the first head as the most significant digit. Finally, it can use the states of M' to count to l for each change in the simulated
number, thereby allowing to count to \(m \). If no stack of \(M \) enters a reading phase, \(M' \) halts and rejects. If \(M \) has a finite writing phase, \(M' \) can determine the stack, \(S_i \) say, which enters the reading phase first by simulating a transition that reads down in the stack within the first \(m \) moves.

For the second step, \(M' \) uses (the same as above) heads \(H_1, \ldots, H_r \) to simulate the \(r \) heads of \(M \), as well as several additional two-way heads to simulate the computation of \(M \) on stack \(S_i \). In the simulation of \(M, M' \) uses its \(k - 1 \) stacks to simulate stacks \(S_1, \ldots, S_1 - 1, S_{i+1}, \ldots, S_k \), but simulates the operation of \(S_i \) using Lemma 4 and a clever technique in [3]. We describe the construction. The simulation of the writing phase of \(S_i \) is straightforward. But since \(M' \) cannot record the stack contents of \(S_i \), \(M' \) needs to be able to recover the symbols written on \(S_i \) as they are needed during \(S_i \)'s reading phase. To accomplish this, heads \(I_1, \ldots, I_r \) and a state component of \(M \) are used to represent the current configuration of \(M \) at the time it pushed the \(q \)th symbol on \(S_i \), for some \(d \). These \(r \) heads point at the position of the \(r \) heads of \(M \) when the symbol at position \(d \) was written, the state component \(q \) stores the state of \(M \) at this point and the top of all the stacks at this point. If \(M' \) needs to recover the symbol on the next cell \(d + 1 \) to the right of cell \(d \), \(M' \) simulates one transition from \(I_1, \ldots, I_r \) and \(q \) to determine the symbol written on cell \(d + 1 \) (in \(M \), a symbol is written on \(S_i \) in each transition of its writing phase due to the normal form). However, if \(M' \) needs the symbol on cell \(d - 1 \) (to the left of the current cell \(d \)), this is more complicated. In this case, \(M' \) uses another set of \(r \) heads, \(J_1, \ldots, J_r \), to simulate the writing phase of \(M \) from the beginning while also remembering the last transition applied in the finite control. After simulating each transition of \(M, M' \) checks that the configuration of the \(r \) heads \(J_1, \ldots, J_r \) are in the same positions as \(I_1, \ldots, I_r \) respectively. If not, it continues. But if so, it has recovered the final transition applied which can be “undone” to recover the symbol written in position \(d - 1 \) of the stack (since one symbol is written in each step of the writing phase), and to modify \(I_1, \ldots, I_r \) appropriately.

Thus, \(M' \) needs a total of \(3r \) heads to simulate \(M \), and \(M' \) has only \(k - 1 \) stacks. Clearly, \(L(M') = L(M) \). Afterwards, \(M' \) can be again placed in normal form by applying Lemma 4.

The construction in Lemma 4 can be applied twice to construct a new 2DCSA with sensing \(M'' \) with \(3^2r \) heads and \(k - 2 \) stacks, etc. By iterating, we have:

Proposition 6. Let \(r \geq 1, k \geq 1 \). For every \(r \)-head \(k \)-stack 2DCSA with sensing \(M \), there is a \((3^k r)\)-head 2DFA with sensing \(M' \) such that \(L(M') = L(M) \).

Further, the ability to sense can be easily removed from 2DFAs.

Proposition 7. Let \(r \geq 2 \). For every \(r \)-head 2NFA (resp. 2DFA) with sensing \(M \), there is an \((r + 1)\)-head 2NFA (resp. 2DFA) without sensing \(M' \) such that \(L(M) = L(M') \).

Proof. Call the \(r \) heads \(H_1, \ldots, H_r \). Another head called the sensing head is cre-
ated. The sensing head can be used to check if any two heads of \(H_1, \ldots, H_r \) are on the same input position by moving the two heads towards the left end-marker while moving the sensing head to the right from the left end-marker, allowing to test for equality plus allowing recovery of their original position.

Combining together the previous two propositions, we obtain:

Corollary 8. Let \(r \geq 1, k \geq 1 \). For every \(r \)-head \(k \)-stack 2DCSA (with or without sensing) \(M \), there is a \((3^k r + 1)\)-head 2DFA \(M' \) such that \(L(M') = L(M) \).

It is worth pointing out that we did not need to create 2DCSAs with sensing, but instead could have built the sensing head from the proof of Proposition 7 directly into the proof of Lemma 5; but this would have unnecessarily increased the number of heads when iterating Lemma 5.

Later, we will give an analogue of Proposition 6 for a restricted version of multi-head multi-stack 2NCSA. It follows from Corollary 8 (by setting \(r = 1 \)) that every language that is accepted by a \(k \)-stack 2DCSA can be accepted by a \((3^k + 1)\)-head 2DFA. However, we will show that we can improve this result to \(2 \cdot 3^{k-1} + 1 \) heads.

Lemma 9. Let \(k \geq 2 \). For every \(k \)-stack 2DCSA \(M \), there is a 2-head \((k - 1)\)-stack 2DCSA \(M' \) such that \(L(M') = L(M) \).

Proof. We will need the following result concerning two-way deterministic generalized sequential machines (2GSMs) with input end-markers and accepting states in [3], the proof of which is a generalization of an earlier result in [1]. The result states: Let \(X \) be an arbitrary storage structure, and \(r \geq 1 \). Then the class of languages accepted by \(r \)-head 2DFAs augmented with storage structure \(X \) is closed under inverse 2GSM mappings.

Thus, in particular, the class of languages accepted by \(r \)-head \(k \)-stack 2DCSAs is closed under inverse 2GSM mappings.

Let \(\Sigma \) be the input alphabet, \(\Gamma_1, \ldots, \Gamma_k \) be the stack alphabets of stacks \(S_1, \ldots, S_k \) respectively of \(M \) (which we assume without loss of generality to be disjoint), and \(\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_k \).

First construct a 2GSM \(T \) which, for every input \(w \in \Sigma^* \) of \(M \), outputs \(T(w) = w\#z \), where \(z \in \Gamma^* \) is the string which represents the "combined" strings \(M \) writes on the \(k \) stacks just before one of the stacks enters the reading phase. (Note that the stacks may have separate reading phases.) \(T \) does this by first outputting the input \(w \) followed by \# and then simulating the writing phase of \(M \) until one of the stacks enters the reading phase by outputting the stack contents. So, e.g., if in a step, \(M \) writes \(s_i \) on stack \(S_i \) (where \(s_i \) is a symbol or \(\lambda \)), then in the simulated step, \(T \) outputs \(s_1 \cdots s_k \). (Note that if none of the stacks enters the reading phase, \(T \) does not halt.) If stack \(S_p \) (\(1 \leq p \leq k \)) enters the reading phase first, \(T \) enters an accepting state.

Now construct a 2-head \((k - 1)\)-stack 2DCSA \(M' \) which, when given input \(w\#z \), first simulates the writing phase of \(M \) on input \(w \) by using one head on \(w \) and the
other input head to check that \(z \) is the string representing the “combined” strings written on the \(k \) stacks and that \(S_p \) is the first stack that enters the writing phase. Then \(M' \) scans \(z \) and writes into the \(k - 1 \) stacks other than \(S_p \) the strings that would have been written in these stacks. Then \(M' \) continues the simulation by using one input head on \(w \) and the other head on \(z \) to simulate stack \(S_p \). Note that when working on \(z \), the input head simulating stack \(S_p \) skips all symbols not in its stack alphabet, \(\Gamma_p \). The other \(k - 1 \) stacks are simulated faithfully. Then \(T^{-1}(L(M')) = L(M) \). The result follows from the result from [3] \(\square \)

This gives a nice characterization of 2-head 2DCSA:

Corollary 10. A language \(L \) is accepted by a 2-head 2DCSA if and only if \(L \) can be accepted by a 2-stack 2DCSA.

Proof. Let \(M \) be a 2-head 2DCSA. Construct a 2-stack 2DCSA \(M' \) which first copies the input on one stack. Thus \(M' \) has now two copies of the input, and \(M' \) simulates \(M \) using the two copies. The converse follows from Lemma 9 \(\square \)

Next, part 1 of the following proposition uses Lemma 9 to improve Corollary 8 when there is one head, and part 2 converts multiple heads to stacks.

Proposition 11.

(1) Let \(k \geq 2 \). For every \(k \)-stack 2DCSA \(M \), there is a \((2 \cdot 3^{k-1} + 1) \)-head 2DFA \(M' \) such that \(L(M') = L(M) \).

(2) Let \(k \geq 1 \). For every \((k + 1) \)-head 2DFA \(M \), there is a \(k \)-stack 2DCSA \(M' \) such that \(L(M') = L(M) \).

Proof. For Part 1, we first apply Lemma 9 and then apply Corollary 8. For Part 2, \(M' \) copies the input into the \(k \) stacks and then simulates \(M \) using the input and the stacks. \(\square \)

From Corollary 8, Proposition 11 and the known equivalence of multi-head 2DFAs and \(\log n \) space-bounded 2DTMs [9], we obtain an alternate proof of the following from [21]:

Corollary 12. The languages accepted by the following coincide:

- multi-stack 2DCSA,
- multi-head multi-stack 2DCSA,
- multi-head 2DFA,
- \(\log n \) space-bounded 2DFA.

Since languages accepted by \(\log n \) space-bounded 2DTMs are in \(\text{P} \), it follows that languages accepted by multi-head multi-stack 2DCSA are in \(\text{P} \).

Looking now at the relationship between the \(k \)-head 2DCSA and the \(k \)-stack 2DCSA for \(k \geq 2 \), any language accepted by a \(k \)-head 2DCSA can be accepted by
a k-stack 2DCSA (this is obvious). By Proposition 11, any language accepted by a k-stack 2DCSA can be accepted by a $(2 \cdot 3^{k-1} + 1)$-head 2DFA which, in turn, can be accepted by a $(2 \cdot 3^{k-1})$-head 2DCSA (again, this is obvious). Hence, we have the following:

Corollary 13. For $k \geq 2$:

1. Any language accepted by a k-head 2DCSA can be accepted by a k-stack 2DCSA.
2. Any language accepted by a k-stack 2DCSA can be accepted by a $(2 \cdot 3^{k-1})$-head 2DCSA.

It would be interesting to know if in the second item above, the $(2 \cdot 3^{k-1})$ can be improved for $k \geq 3$, noting that for $k = 2$, the ‘6’ can be improved to ‘2’, since as shown in Corollary 10, 2-head 2DCSA and 2-stack 2DCSA are equivalent. Note that for $k = 1$, the models are identical.

The following demonstrates a hierarchy based on read heads and stacks:

Proposition 14. For $r, k \geq 1$:

1. r-head k-stack 2DCSA is weaker than $(r + 2)$-head k-stack 2DCSA.
2. r-head k-stack 2DCSA is weaker than r-head $(k + 2)$-stack 2DCSA.

Proof. Consider part 1. From Corollary 8, there is an $r_1 > r$ such that every language accepted by an r-head k-stack 2DCSA can be accepted by an r_1-head 2DFA. Now there is an infinite hierarchy of multi-head 2DFAs with respect to their recognition power in terms of the number of heads [11,17,18]. Hence, there is an $r' > r_1$ such that the class of languages accepted by r_1-head 2DFAs is properly contained in the class of languages accepted by r'-head 2DFAs. It follows that for any $r, k \geq 1$, there is an $r' > r$ such that the class of languages accepted by r-head k-stack 2DCSAs is properly contained in the class of languages accepted by r'-head k-stack 2DCSAs. We now show that r' can be reduced to $r + 2$.

In [11], using a translational technique, the following result was shown: Let X be an arbitrary storage structure (e.g., k-checking stacks, a pushdown, or a combination of both). If for every $r \geq 1$, there is an $r' > r$ such the class of languages accepted by r-head 2DFAs augmented with X is properly contained in the class of languages accepted by r'-head 2DFAs augmented with X, then r' can be reduced to 2. The proof of this consisted of Lemma 1, Lemma 2, and Theorem 1 (part a) in [11]. The proof is for multi-head 2DFAs, but one can easily check that the proof applies directly to multi-head 2DFAs augmented with X, hence, in particular, when X consists of k checking stacks and/or a pushdown stack (since the proof does not involve modification of how the storage structure operates).

Part 2 follows from part 1 since an $(r + 2)$-head k-stack 2DCSA can be simulated by an r-head $(k + 2)$-stack 2DCSA. (Just copy the input on two new stacks and then simulate two input heads on the 2 new stacks.)
It is an interesting open question whether in Proposition 14, \(r + 2 \) can be reduced to \(r + 1 \) in part 1 (and, consequently also reduce \(k + 2 \) to \(k + 1 \) in part 2). In [17,18], it was shown that \(r \)-head 2DFAs are weaker than \((r + 1) \)-head 2DFAs, but it is not clear that the techniques in these papers can be used to resolve this open question. However, for the special case when \(r = k = 1 \), we can improve Proposition 14:

Proposition 15. For \(r \geq 1 \):

1. 1-head 1-stack 2DCSA is weaker than 2-head 1-stack 2DCSA.
2. 1-head 1-stack 2DCSA is weaker than 1-head 2-stack 2DCSA.

Proof. A 1-head 1-stack 2DCSA is equivalent to a 2-head 2DFA (by Proposition 3, part 1) which, in turn, is weaker than a 3-head 2DFA [17,18]. Part 1 then follows, since a 3-head 2DFA can easily be simulated by a 2-head 1-stack 2DCSA. Part 2 follows from Part 1, since a 2-head 1-stack 2DCSA can trivially be simulated by a 1-head 2-stack 2DCSA.

The constructions and proofs for multi-head and multi-stack 2DCSAs can be used to obtain similar results for more general models. For example, consider the model of \(r \)-head \(k \)-stack 2DCSA augmented with a pushdown store called \(r \)-head \(k \)-stack 2DCSPA. We say such a machine is **ordered** if the machine can only start using the pushdown after all the checking stacks are done writing. If a machine is ordered, this essentially means it behaves as if the pushdown is not there until the writing on the checking stacks is finished. Call this model \(r \)-head \(k \)-stack ordered 2DCSPA.

Because of the restriction on the machine regarding when it can start using the pushdown and the known result that \(r \)-head 2DPDA is weaker than \((r + 1) \)-head 2DPDA [11], one can verify that all the results we have obtained so far in this section would hold when in the statements of the results, 2DFA and 2DCSA are replaced by 2DPDA and ordered 2DCSPA, respectively. So, in particular, as in Proposition 3, part (1), Corollary 8, Corollary 10, Proposition 11, Corollary 13, and Proposition 14 we have:

Proposition 16.

1. A language is accepted by an ordered DCSPA if and only if it can be accepted by a 2-head DPDA.
2. For \(r \geq 1, k \geq 1 \), any language accepted by an \(r \)-head \(k \)-stack ordered 2DCSPA (with or without sensing) can be accepted by a \((3^r + 1)\)-head 2DPDA.
3. A language is accepted by a 2-head ordered 2DCSPA if and only if it can be accepted by a 2-stack ordered 2DCSPA.
4. For \(k \geq 2 \), any language accepted by a \(k \)-stack ordered 2DCSPA can be accepted by a \((2 \cdot 3^{k-1} + 1)\)-head 2DPDA.
5. For \(k \geq 1 \), any language accepted by a \((k + 1)\)-head 2DPDA can be accepted by a \(k \)-stack ordered 2DCSPA.
For \(k \geq 2 \), any language accepted by a \(k \)-head ordered \(2 \)-DCSPA can be accepted by a \(k \)-stack ordered \(2 \)-DCSPA.

For \(r, k \geq 1 \), \(r \)-head \(k \)-stack ordered \(2 \)-DCSPA is weaker than \((r + 2)\)-head \(k \)-stack ordered \(2 \)-DCSPA.

For \(r, k \geq 1 \), \(r \)-head \(k \)-stack ordered \(2 \)-DCSPA is weaker than \(r \)-head \((k + 2)\)-stack ordered \(2 \)-DCSPA.

The analogue of Proposition 15 with \(2 \)-DCSA replaced by ordered \(2 \)-DCSPA also holds — the proof is analogous, using the fact that \(r \)-head \(2 \)-DPDA is weaker than \((r + 1)\)-head \(2 \)-DPDA [11].

Similarly, Proposition 12 with \(\log n \) space-bounded \(1 \)-DPDAs replaced by \(2 \)-DPDAs augmented with \(\log n \) space-bounded read/write tape, would also hold. This latter model, \(\log n \) space-bounded auxiliary \(2 \)-DPDA [2], was shown to be equivalent to \(\log n \) space-bounded auxiliary \(2 \)-NPDA which, in turn, is equivalent to polynomial time-bounded DTM. Summarizing, we have:

Proposition 17. The languages accepted by the following coincide:

- \(\text{multi-stack ordered} \ 2 \)-DCSPAs,
- \(\text{multi-head multi-stack ordered} \ 2 \)-DCSPAs,
- \(\text{multi-head} \ 2 \)-DPDAs,
- \(\log n \) space-bounded auxiliary \(2 \)-DPDAs,
- \(\log n \) space-bounded auxiliary \(2 \)-NPDAs,
- polynomial time-bounded DTM.

Thus the class of languages accepted by multi-stack ordered \(2 \)-DCSPAs is exactly the class \(P \). It is interesting to note that this model has no restriction on the space usage in the pushdown stack and the checking stacks.

The model of the multi-head multi-stack ordered \(2 \)-DCSPA has the restriction that the pushdown can only be used after all the checking stacks are done writing. If this restriction is not present, this model accepts exactly the class of elementary languages (those accepted by deterministic Turing machines with time complexity obtained by iterating an exponential function) [21].

3.2. The Nondeterministic Case

Next, we consider the nondeterministic version. It is known that \(2 \)-NCSAs (i.e., 1-stack \(2 \)-NCSA) are equivalent to \(n \) space-bounded NTMs [9]. But, as the following proposition shows, 2-stack NCSAs (hence, also 2-stack \(2 \)-NCSAs) are significantly more powerful.

Proposition 18. A language \(L \) is accepted by a 2-stack NCSA if and only if \(L \) is accepted by a DTM.

Proof. Let \(M \) be a deterministic 2-counter machine with a one-way read-only input. It is well-known that such a machine is equivalent to a DTM [10]. Construct
a 2-stack NCSA M' which, when given input w, first writes (without moving the input head) 1^n for nondeterministically chosen n (n is guessed to be bigger than or equal to the maximum value placed on any counter) on the two stacks. M' then simulates the computation of M on input w using the two stacks to simulate the counters. That a 2-stack NCSA can be simulated by an NTM and, hence by a DTM, is obvious.

Hence, two-way multi-head multi-stack 2DCSA is significantly less powerful (all languages accepted are in P) than even one-way one-head 2-stack NCSA (which accept all recursively enumerable languages), demonstrating the power of nondeterminism with this model.

3.3. A Hybrid Case

Now we consider a restricted version of multi-head multi-stack 2NCSA. A write-deterministic r-head k-stack 2NCSA is one where the machine operates deterministically until every stack has entered the reading phase, and thereafter can work nondeterministically. Then we have:

Proposition 19.

1. Let $h \geq 2$. For every h-head 2NFA M and $r \geq 1, k \geq 1$ such that $h = r + k$, there is a write-deterministic r-head k-stack 2NCSA M' such that $L(M') = L(M)$.

2. Let $r \geq 1, k \geq 1$. For every write-deterministic r-head k-stack 2NCSA M, there is a $(3^k r + 1)$-head 2NFA M' such that $L(M') = L(M)$.

It follows that write-deterministic multi-head multi-stack 2NCSA languages are in $NLOG$ and, hence, in P.

Proof. For part 1, given M, we construct M' which when given input w, first copies w on each of the k stacks. Then M' simulates M using the r input heads (on w) and the k stacks (each containing w). For part 2, we can again use r-head k-stack 2NCSAs with sensing. By applying Lemma 4, the resulting machine is a write-deterministic r-head k-stack 2NCSA in normal form. Then one can verify that the proofs of Lemma 5 through Corollary 8 apply directly.

Remark 20. Denote the nondeterministic version of an r-head k-stack 2DCSPA by r-head k-stack 2NCSPA. We can then restrict this nondeterministic model to be write-deterministic. Then an analogue of Proposition 19 holds when 2NFA and 2NCSA are replaced by 2NPDA and ordered 2NCSPA, respectively. It follows that write-deterministic multi-stack ordered 2NCSPA is equivalent to multi-head 2NPDA which is equivalent to log n space-bounded auxiliary 2NPDA and which, in turn, is equivalent to log n space-bounded 2DPDA (by Proposition 17). Thus, the models, write-deterministic multi-stack ordered 2NCSPA and multi-head 2NPDA, can be added to the list of equivalences in Proposition 17.
We can define a read-deterministic \(r \)-head \(k \)-stack 2NCSA as one where the machine can operate nondeterministically until every stack has entered the reading phase, and thereafter must work deterministically. However, it is easy to show that a read-deterministic 1-head 1-stack 2NCSA \(M \) can simulate an \(n \) space-bounded NTM \(Z \): \(M \) simply guesses and writes on its stack a sequence of IDs on \(Z \) on an input of length \(n \) and deterministically checks that the sequence is an accepting computing. This is done by using the two-way input head to compare each position of each ID with corresponding positions of the next ID. Similarly, any recursively enumerable language can be accepted by a read-deterministic 1-head 2-stack 2NCSA (in fact, even with one-way input) as seen in the proof of Proposition 18.

4. Synchronous Multi-Stack 2DCSA and 2NCSA

Here, we will look at \(k \)-stack 2DCSA (2NCSA) where the stacks do not have separate reading phases. Thus, on any computation on any input (accepted or not), when a stack enters the reading phase, all other stacks can no longer write. We call such a machine synchronous and we refer to these machines by \(k \)-stack synchronous 2DCSA (2NCSA). Note that 1-stack synchronous 2DCSA (1-stack synchronous 2NCSA) is the same as 2DCSA (2NCSA).

4.1. The Deterministic Case

Clearly, languages accepted by multi-stack synchronous 2DCSAs can be accepted by multi-stack 2DCSAs. We will show perhaps surprisingly below that the converse is also true.

Proposition 3 (which is a result from [3]) states: a language \(L \) can be accepted by a 2DCSA if and only if it can be accepted by a 2-head 2DFA. We can generalize this result as follows:

Proposition 21. Let \(k \geq 1 \). A language \(L \) is accepted by a \(k \)-stack synchronous 2DCSA if and only if \(L \) can be accepted by a \((k + 1)\)-head 2DFA.

Proof. Let \(M \) be a \((k + 1)\)-head 2DFA \(M \). We construct a \(k \)-stack synchronous 2DCSA \(M' \) to simulate \(M \) by first copying the input \(x \) into the \(k \) stacks and then simulating \(M \) using one head on the input and \(k \) heads on the \(k \) stacks.

To prove the converse, we generalize the construction of Proposition 3 Part 1 in [3]. Let \(M \) be a \(k \)-stack synchronous 2DCSA. Let \(\Sigma \) be the input alphabet and \(\Gamma_1, \ldots, \Gamma_k \) be the disjoint stack alphabets of stacks \(S_1, \ldots, S_k \), respectively. Let \(\Gamma = \Gamma_1 \cup \cdots \cup \Gamma_k \).

First construct a 2GSM \(T \) which for every input \(w \in \Sigma^* \) of \(M \), outputs \(T(w) = w\#z \), where \(z \in \Gamma^* \) is the string which represents the “combined” strings \(M \) writes on its \(k \) stacks. \(T \) does this by first outputting the input \(w \) followed by \(\# \) and then simulating the writing phase of \(M \). So, e.g., if in a step, \(M \) writes \(s_i \) on stack \(S_i \) (where \(s_i \) is a symbol or \(\lambda \)), then in the simulated step, \(T \) outputs \(s_1 \cdots s_k \). When \(M \) completes the writing phase, \(T \) enters an accepting state.
Now construct a \((k+1)\)-head 2DFA \(M'\) which when given input \(w\#z\) first simulates the writing phase of \(M\) on input \(w\) by using one head on \(w\) and another head to check that \(z\) is a string representing the “combined” strings written on the \(k\) stacks. Then \(M'\) simulates the reading phase using one head on \(w\) and \(k\) heads on \(z\). Note that when working on \(z\), the input head simulating stack \(S_i\) skips all symbols in \((\Gamma - \Gamma_i)\). Then \(T^{-1}(L(M')) = L(M)\). The result follows since languages accepted by \(k\)-head 2DFAs are closed under inverse 2GSMs [3].

\[\square\]

Proposition 22.

1. \((k+1)\)-stack synchronous 2DCSAs are more powerful than \(k\)-stack synchronous 2DCSAs.
2. The languages accepted by the following models coincide:

 - multi-stack synchronous 2DCSAs,
 - multi-stack 2DCSAs,
 - multi-head multi-stack 2DCSAs,
 - multi-head 2DFAs,
 - log \(n\) space-bounded DTM.

Proof. The first part follows from Proposition 21 and the fact that \((k+1)\)-head 2DFAs are more powerful than \(k\)-head 2DFAs (even on over unary alphabet) [18]. Part 2 follows from Proposition 21 and Corollary 12. \(\square\)

Specifically, to convert a \(k\)-stack 2DCSA to a synchronous machine, the following increase in stacks is sufficient:

Corollary 23. Let \(k \geq 2\). If \(L\) is accepted by a \(k\)-stack 2DCSA, then \(L\) can be accepted by a \((2 \cdot 3^{k-1})\)-stack synchronous 2DCSA.

Proof. If \(L\) is accepted by a \(k\)-stack 2DCSA, then \(L\) can be accepted by a \((2 \cdot 3^{k-1} + 1)\)-head 2DFA (by Proposition 21 part 1). Then \(L\) can be accepted by a \((2 \cdot 3^{k-1})\)-stack synchronous 2DCSA (by Proposition 21). \(\square\)

It is an interesting open question whether the number of additional stacks needed in the simulation in Corollary 23 can be reduced and, in particular, whether 6-stacks can be reduced when \(k = 2\). However, we conjecture that for \(k \geq 2\), there are languages accepted by \(k\)-stack 2DCSAs that cannot be accepted by \(k\)-stack synchronous 2DCSAs.

In [3], the following was shown:

Proposition 24. [3] For \(k \geq 1\), a \((k+1)\)-head 2DFA can be simulated by a \(k\)-head 2DCSA, which in turn can be simulated by a \((3k + 1)\)-head 2DFA.

It was left open whether less than \((3k + 1)\) heads can be used to simulate a \(k\)-head 2DCSA for \(k \geq 2\). However, for \(k = 1\), a 2-head 2DFA can simulate a 1-head
2DCSA (Proposition 21 Part 1). But for multi-stack synchronous 2DCSA and multi-head 2DFA, we have a tight result in Proposition 21. k-stack synchronous 2DCSA are equivalent to (k + 1)-head 2DFA for k ≥ 1.

Interestingly, there is a restricted version of a k-head 2DCSA that is equivalent to a k-stack synchronous 2DCSA (which, by Proposition 21, would also then be equivalent to a (k + 1)-head 2DFA). The result is interesting in that it gives the exact trade-off between a synchronous 2DCSA with 1 input head and k stacks and a restricted 2DCSA with k input heads and 1 stack.

Define an r-head l-write-restricted 2DCSA, or simply r-head write-restricted 2DCSA, to be an r-head 2DCSA, where the writing phase consists of 1 ≤ l ≤ r writing subphases where subphase i only involves moving one input head h_i when writing on the stack, i.e., the symbols written during subphase i depend only on the states and the symbols scanned by head h_i and the other heads do not move from their current position during the subphase (which for all heads that are not h_1, . . . , h_i is the left end-marker). At the end of subphase i, head h_i remains at its current position until the end of the write phase. Then the writing continues with subphase i + 1 with a different head. After writing subphase l, the machine enters the reading phase with all heads participating in the computation. Clearly, for r = 1, the restricted version is the same as the unrestricted version. An r-head 1-write-restricted 2DCSA only allows one input head to be used during the write phase. The first lemma shows that any number of phases can be reduced to one.

Lemma 25. A language L is accepted by an r-head write-restricted 2DCSA if and only if it can be accepted by an r-head 1-write-restricted 2DCSA.

Proof. We need only to show that an r-head l-write-restricted 2DCSA M where r ≥ 2 and l ≥ 2 can be simulated by an r-head 1-write-restricted 2DCSA M_1. Let the input heads of M be h_1, . . . , h_r and #_1, . . . , #_l be new symbols. We shall refer to the writing subphases of M as h_1-subphase, . . . , h_l subphase. The corresponding input heads of M_1 are also called h_1, . . . , h_r. The single writing subphase of M_1 will only involve head h_1.

M_1 begins by simulating the h_1-subphase of M. When the subphase ends, the stack will contain some string w_1 and the input head h_1 will be in some position on the input, which is some distance (number of cells) d_1 from the left end-marker. M_1 then moves h_1 to the left end-marker while writing #_1^{d_1} on the stack. The stack of M_1 will then contain w_1 #_1^{d_1}.

Then M_1, again using h_1, simulates the h_2-subphase of M just like above, after which the stack of M_1 will contain w_1 #_1^{d_1} w_2 #_2^{d_2}. The process is repeated until the h_l-subphase of M has been simulated. The stack of M_1 will then contain w_1 #_1^{d_1} w_2 #_2^{d_2} . . . w_l #_l^{d_l}.

Next, M_1 enters the stack and, for each 1 ≤ i ≤ l, uses the segment #_i^{d_i} of the stack to restore input head h_i to the position it was at on the input when the h_i-subphase ended. (Note that heads h_{i+1}, . . . , h_r, which were not involved in the
writing phase, are on the left end-marker.)

Finally, \(M_1 \) simulates the reading phase of \(M \). However, in the simulation, \(M_1 \) ignores the symbols \(\#_1, \ldots, \#_l \) on the stack. Clearly, \(L(M) = L(M_1) \).

Proposition 26. Let \(k \geq 1 \). The languages accepted by the following models coincide:

- \((k + 1)\)-head 2DFA
- \(k \)-stack synchronous 2DCSA
- \(k \)-head write-restricted 2DCSA

Proof. The equivalence of the first two models above has already been established in Proposition [21]. That the first model can be simulated by the third model is obvious (just copy the input onto the stack and use the stack to simulate one head). There remains to show that any language accepted by a \(k \)-head write-restricted 2DCSA \(M \) can be simulated by a \(k \)-stack synchronous 2DCSA \(M' \). By Lemma [25], we can assume that \(M \) is a \(k \)-head 1-write-restricted 2DCSA. Let the input heads of \(M \) be \(h_1, \ldots, h_k \), and \(h_1 \) is the head involved in the single writing phase. \(M' \) has a single head \(h \) and checking stacks \(s_1, \ldots, s_k \), and operates as follows: \(M' \) first copies the input into stacks \(s_2, \ldots, s_k \). Then it simulates the single writing phase of \(M \) on stack \(s_1 \). Finally, \(M' \) simulates the reading phase of \(M \) using stack \(s_1 \) and the input and stacks \(s_2, \ldots, s_k \) to mimic the \(k \) input heads of \(M \).

From Propositions [22] and [26] we have:

Corollary 27. \((r + 1)\)-head write-restricted 2DCSAs are more powerful than \(r \)-head write-restricted 2DCSAs.

Remark 28. As above, we can define a synchronous version of the \(k \)-stack ordered 2DCSPA. We can also define an \(l \)-write-restricted ordered 2DCSPA. Again all the results above hold when 2DFA, 2DCSA, synchronous 2DCSA, \(\log n \) space-bounded DTM, and \(r \)-head \(l \)-write-restricted 2DCSA are replaced by 2DPDA, ordered 2DCSPA, synchronous ordered 2DCSPA, \(\log n \) space-bounded auxiliary 2DPDA, and \(r \)-head \(l \)-write-restricted ordered 2DCSPA, respectively, noting that \(k \)-head 2DPDA is weaker than \((k + 1)\)-head 2DPDA [11].

4.2. The Nondeterministic Case

Next, we consider \(k \)-stack synchronous 2NCSA. The characterization is simple, as we have:

Proposition 29. Let \(k \geq 1 \). A language \(L \) is accepted by a \(k \)-stack synchronous 2NCSA if and only if \(L \) is accepted by a \(k \)-stack 2NCSA.

Proof. It is sufficient to show that for \(k \geq 2 \), every \(k \)-stack 2NCSA \(M \) can be simulated by a \(k \)-stack synchronous 2NCSA \(M' \).
When given an input w, M' first nondeterministically writes strings z_1, \ldots, z_k on the k stacks while reading λ on the input. Then M' moves all the stack heads to the bottom of their respective stacks. Then M' simulates M on w while checking that each z_i is the string written by M on stack i during the writing phase.

It follows from Proposition 29 that all the results concerning 2NCSAs in the previous section apply to synchronous 2NCSAs.

Finally, we can define an r-head write-restricted 2NCSA as the nondeterministic version of an r-head write-restricted 2DCSA. Using the construction in the proof above, it is clear that an r-head write-restricted 2NCSA is equivalent to an r-head 2NCSA which, in turn, has been shown to be equivalent to an n^r space-bounded NTM [9].

4.3. Some Decidability Questions Concerning Synchronous Machines

Here, we will address decidability questions regarding whether k-stack machines are synchronous.

Proposition 30. For any $k \geq 2$, it is undecidable, given a k-stack 2DCSA M, whether it is synchronous.

Proof. Clearly, we only need to prove the case when $k = 2$. It is known that it is undecidable, given a deterministic 2-counter machine Z with no input starting from both counters being zero, whether it will halt [16]. Let Z be such a 2-counter machine. We construct a 2-stack 2DCSA M over unary input that is synchronous if and only if Z does not halt. M has stacks S_1 and S_2, which, when given a unary input string 1^n, first copies 1^n in S_1 and writes $\#$ in S_2. Then M simulates Z using the input head and S_1 (just by moving both tape heads) but can only continue the simulation if neither counter exceeds n. Hence, as M is simulating Z, M has already started reading from S_1; and if M will later write to S_2, then M is not synchronous. If Z halts without any of its counters exceeding the value 1^n, M writes another $\#$ in S_2 and accepts. If Z exceeds the value n in one of its counters, M detects this and accepts without modifying S_2. Clearly, if Z goes into an infinite loop without exceeding the value n in any of its counters, M also goes into an infinite loop. It follows that M is synchronous if and only if, for every input 1^n to M, M only writes one $\#$ if and only if there is no n where Z halts with both counters at most n, if and only if Z does not halt, which is undecidable.

Proposition 30 still holds when the machine has a one-way input for any $k \geq 3$:

Corollary 31. For any $k \geq 3$, it is undecidable, given a k-stack DCSA M, whether it is synchronous.
Proof. M with stacks \(S_0, S_1, S_2 \) first copies its one-way unary input \(1^n \# \) (where \(\# \) is the right end-marker for the one-way input) in \(S_0 \). Then it proceeds as in the proof of Proposition 30 with \(S_0 \) acting as the two-way input. □

Note that Proposition 30 and Corollary 31 also hold for nondeterministic machines. We now show that Corollary 31 does not hold for \(k = 2 \), even when the machine is nondeterministic.

Proposition 32. It is decidable, given a 2-stack NCSA \(M \), whether it is synchronous.

Proof. Given a 2-stack NCSA \(M \) with stacks \(S_1 \) and \(S_2 \), we will construct a 2NFA \(M' \) such that \(M \) is synchronous if and only if \(L(M') = \emptyset \), which is decidable.

Let \(\Sigma \) be the input alphabet of \(M \), and \(\Gamma \) be the stack alphabet of \(S_1 \) and \(S_2 \). The input to \(M' \) is a string \(w \in \Gamma^* \) (with left and right end-markers). \(M' \) when given \(w \) first guesses which of the two stacks enters the reading phase first.

Suppose \(M' \) guesses that \(S_1 \) enters the reading phase first. \(M' \) guesses the one-way input \(x < \) (\(< \) the end-marker) to \(M \) (where \(x \in \Sigma^* \)) symbol-by-symbol and simulates the writing and reading phases of stack \(S_1 \) (on input \(x < \)) by verifying that it writes \(w \) (the input to \(M' \)) during the write stage while not applying any transitions that read from \(S_2 \), then simulating the read stage of \(M \) by using the two-way input \(w \), until either:

- **Case 1:** \(S_2 \) enters its stack after \(S_1 \) has entered its stack, or
- **Case 2:** \(S_2 \) writes a symbol after \(S_1 \) has entered its stack.

Note that \(M' \) can guess the end-marker \(< \) (which is the last symbol of \(x < \)) either during the writing phase of \(S_1 \) or during the reading phase of \(S_1 \). If Case 1 occurs, then \(M' \) rejects \(w \). If Case 2 occurs, then \(M' \) accepts \(w \).

The case when \(M' \) guesses that \(S_2 \) enters the reading phase first is handled similarly. Clearly, \(M \) is synchronous if and only if \(L(M') = \emptyset \). □

5. Space Complexity of Multi-Stack 2NCSA

This section will consider two measures of space complexity for multi-stack 2NCSAs.

Definition 33. Let \(k \geq 1 \), and let \(M \) be a \(k \)-stack 2NCSA. For \(S(n) \) a non-zero function, define the following space complexity measures.

- We say \(M \) is \(S(n) \)-limited if, for every \(w \in L(M) \) with \(w \) of length \(n \), there is an accepting computation in which the string written on stacks 2 through \(k \) have length at most \(O(S(n)) \).
- We say \(M \) is \(S(n) \)-bounded if, for every \(w \in L(M) \) with \(w \) of length \(n \), there is an accepting computation in which the string written on stacks 1 through \(k \) have length at most \(O(S(n)) \).

Notice that with the definition of \(S(n) \)-limited, there is one stack that is unbounded,
while the others are all at most \(S(n) \) in size; whereas with \(S(n) \)-bounded, every stack is at most \(S(n) \) in size.

5.1. **Characterizations of \(S(n) \)-Limited Multi-Stack 2NCSAs**

We will show that a \(k \)-stack \(S(n) \)-limited 2NCSA can be characterized in terms of space-bounded NTMs. We will use the following characterization of \(r \)-head 2NCSA (i.e., a 1-stack 2NCSA with \(r \) two-way heads) in [9]:

Proposition 34. [9] Let \(r \geq 1 \). A language \(L \) can be accepted by an \(r \)-head 2NCSA if and only if \(L \) can be accepted by an \(n \) space-bounded NTM.

Proposition 35. Let \(S(n) \) be a non-zero function. A language \(L \) is accepted by a 2-stack \(S(n) \)-limited 2NCSA if and only if \(L \) can be accepted by an \(nS(n) \) space-bounded NTM.

Proof. Let \(Z \) be an \(nS(n) \) space-bounded NTM. We can assume without loss of generality that \(Z \) is an NTM with a single read/write worktape that initially contains the input of size \(n \), and can only grow to the right, since \(Z \) allows at least linear space. Construct a 2-stack \(S(n) \)-limited 2NCSA \(M \) with stacks \(S_1 \) (the unbounded stack) and \(S_2 \) (the \(S(n) \)-bounded stack) which, when given an input \(w \) of length \(n \), operates as follows:

1. \(M \) writes \(ID_1 \# \cdots \# ID_s \) on stack \(S_1 \) for some nondeterministically chosen configurations \(ID_1, \ldots, ID_s \) of the worktape of \(Z \) (a configuration is a string \(uvq \), where \(uv \) is a string over the worktape alphabet of \(Z \) and \(q \) is a state and also the position of the read/write head), and \(ID_1 \) is an initial ID starting with the input encoded, and \(ID_s \) is an accepting ID. It is clear that we can assume each ID is of the same length \(m \leq nS(n) \) by padding with blanks and later \(M \) will verify they are of the same length.
2. \(M \) writes a unary string \(1^t \) on \(S_2 \), where \(t \) is nondeterministically guessed.
3. \(M \) checks that each ID on \(S_1 \) is of length \(nt \). This can be done using the input of length \(n \) and stack \(S_2 \) of length \(t \) to count up to \(nt \).
4. Finally, \(M \) checks that \(ID_{i+1} \) is a valid successor of \(ID_i \) of \(Z \) for \(1 \leq i \leq s - 1 \), again using the input and stack \(S_2 \) to repeatedly count to \(nt \) thereby enabling the ability to check that positions of \(ID_i \) match \(ID_{i+1} \) except close to the read/write head where it verifies that it is changing via a transition of \(Z \).

Note that if \(w \) (of length \(n \)) is accepted by \(Z \), then it has an accepting computation that uses at most \(nS(n) \) space. It follows that in step (2) above, there is an \(t \leq S(n) \) which would allow \(M \) to simulate \(Z \) successfully. Hence, \(L(M) = L(Z) \).

To prove the converse, we will use Proposition 34 (with \(r = 1 \)) and translation. Let \(M \) be a 2-stack \(S(n) \)-limited 2NCSA with input alphabet \(\Sigma \) and stack alphabets \(\Gamma_1 \) and \(\Gamma_2 \). Assume that these alphabets are disjoint, and \(S_1 \) is the unbounded
Generalizations of Checking Stack Automata: Characterizations and Hierarchies

We first construct a 2NCSA M' (this has only stack S_1), which operates as follows when given input w:

1. M' checks that the input is of the form $w = a_1\#u_1\#a_2\#u_2\cdots a_n\#u_n$, where $a_i \in \Sigma$, $u_i \in \Gamma_2^*$.
2. M' writes a string $z = u_1\#^r_0z_1\#^r_1z_2\#^r_2\cdots z_k\#^r_k$ on S_1, where $z_i \in \Gamma_1, r_i$, and k are nondeterministically chosen.
3. M' checks that $u_1 = \cdots = u_n$ and $r_1 = \cdots = r_k = |u_1|$.
4. M' simulates M on input $a_1\cdots a_n$ and checks that u_1 was the string written on the bounded stack S_2 of M and $z_1\cdots z_k$ was the string written on the unbounded stack S_1 of M. This is done as follows:

Suppose M is on symbol a_i on the input and has so far written a string of length p on stack S_2 ($p \geq 0$) and written $z_1\cdots z_j$ on stack S_1 ($j \geq 0$). This is represented in M' with its input head in position p of u_i which is directly to the right of a_i (if $p = 0$, the head is on #) and the stack head of S_1 on z_j (if $j = 0$, the head is on #).

We now describe the simulation of a move of M. If, e.g., M moves its input head to the left and writes a $(p + 1)^{st}$ symbol in S_2 and writes z_{j+1} in S_1, then M' performs the following sequence of moves:

a. M' uses the segment #^r_j$ in S_1 (which is at the right of z_j) to temporarily remember the number p by moving the input head to the left.

b. M' moves its input head to a_i^{-1} and uses the number p remembered in S_1 to move the input head to the $p + 1^{st}$ symbol of u_i^{-1} and checks that the symbol in that position is correct.

c. M' moves its stack head right and checks that z_{j+1} is the correct symbol.

The other moves of M are treated similarly.

M' accepts if and only M accepts. Since M has only one stack, $L(M')$ can be accepted by an $|w|$ space-bounded NTM Z' by Proposition 34.

Finally, we construct from Z' another NTM Z which, on input $x = a_1\cdots a_n$, writes on a read/write tape $w = a_1\#u_1\#a_2\#u_2\cdots a_n\#u_n$, where u_1,\ldots, u_n are nondeterministically guessed strings in $\Gamma_2^*_n$. Z then simulates Z' on w. It follows that Z accepts $L(M)$. Also notice that for every input $x = a_1\cdots a_n$ to M, there is some accepting computation on x where the second stack is bounded by $S(n)$. Hence, on input $a_1\cdots a_n \in L(M)$, Z can accept with a computation that writes a word w on the tape that is of length at most $2n + |u_1|$, where $|u_1| = \cdots = |u_n| \leq S(n)$, and so $|w| \leq 2n + nS(n)$. Hence, Z is $nS(n)$ space-bounded.

Generalizing Proposition 35 we have:

Proposition 36. Let $k \geq 1$ and let $S(n)$ be a non-zero function. A language L is accepted by a $(k + 1)$-stack $S(n)$-limited 2NCSA if and only if L can be accepted by an $nS^k(n)$ space-bounded NTM.
Proof. We need only to prove the result when \(k \geq 2 \). As in the first part of the proof of Proposition 35, an \(nS^k(n) \) space-bounded NTM \(Z \) can be simulated by a \((k + 1)\)-stack \(S(n) \)-limited 2NCSA \(M \) with stacks \(S_1, S_2, \ldots, S_{k+1} \), where each of \(S_2, \ldots, S_k \) will now have unary strings of length \(t \leq S(n) \), where \(t \) is nondeterministically guessed. These stacks, together with the input, can count up to \(nt^k \) and could check whether a sequence of ID’s written on \(S_1 \) (each ID is of length \(nt^k \)) is a valid accepting computation.

For the converse, we use induction. Assume that for \(k \geq 1 \), a \((k + 1)\)-stack \(S(n) \)-limited 2NCSA can be simulated by an \(nS^k(n) \) space-bounded NTM. Let \(M \) be a \((k + 2)\)-stack \(S(n) \)-limited 2NCSA with stacks \(S_1, S_2, \ldots, S_{k+2} \), where \(S_1 \) is unbounded and the other stacks are bounded. We construct a \((k + 1)\)-stack \(S(n) \)-limited 2NCSA \(M' \) which “encodes” \(S_2 \) in the input as in the proof of Proposition 35. Then, by induction hypothesis, we construct from \(M' \) an \(nS^{k+1}(n) \) space-bounded NTM \(Z' \) such that \(L(Z') = L(M') \). Finally, we construct from \(Z' \) an \(nS^{k+1}(n) \) space-bounded NTM \(Z \) accepting \(L(M) \), as in Proposition 35.

We can use space hierarchy results for NTMs to show hierarchies of multi-stack space-limited 2NCSAs. For example, since more languages can be accepted with \(n \log^{k+1} n \) space-bounded NTMs than \(n \log^k n \) space-bounded NTMs [19], we have:

Corollary 37. Let \(k \geq 1 \). There are languages accepted by \((k + 1)\)-stack \(\log n \)-limited 2NCSAs that cannot be accepted by \(k \)-stack \(\log n \)-limited 2NCSAs.

Similarly, since \(n^{k+1} \) space-bounded NTMs are computationally more powerful than \(n^k \) space-bounded NTMs [11] for any \(k \geq 1 \), we have:

Corollary 38. Let \(k \geq 1 \). There are languages accepted by \((k + 1)\)-stack \(n \)-limited 2NCSAs that cannot be accepted by \(k \)-stack \(n \)-limited 2NCSAs.

From Propositions 35 and 36 we have:

Corollary 39. The following are equivalent for a language \(L \):

- \(L \) is accepted by a multi-stack polynomial-space-limited 2NCSA.
- \(L \) is accepted by a multi-stack \(n \)-space-limited 2NCSA.
- \(L \) is accepted by a 2-stack polynomial-space-limited 2NCSA.
- \(L \) is in \(\text{PSPACE} \).

In the future, we plan to investigate whether the power of \(S(n) \)-limited machines changes if all branches respect the space bound rather than some accepting branch of each word.

5.2. Characterizations of \(S(n) \)-Bounded Multi-Stack 2NCSAs

In this subsection, we will consider \(S(n) \)-bounded 2NCSAs. For the important special case of \(n \)-bounded machines, we also refer to these as linear-bounded.
Proposition 40. Let $k \geq 1$. For every $(k + 1)$-head 2NFA M, there is a k-stack linear-bounded 2NCSA M' such that $L(M') = L(M)$.

Proof. M' copies the input x into the k stacks and then simulates M using one head on the input and k heads on the k stacks. \hfill \Box

This result holds for the deterministic case as well.

Unfortunately, the converse of Proposition 40 is unlikely, since multi-head 2NFA languages are in NLOG (which is a subset of P) but linear-bounded NCSAs can accept NP-complete languages [20] (see also Proposition 45). However, we can prove a characterization involving homomorphisms.

A letter-to-letter homomorphism $h : \Sigma^* \rightarrow \Gamma^*$ is a homomorphism where for all $a \in \Sigma$, $h(a)$ is in Γ. A λ-free homomorphism h is one where $h(a) \neq \lambda$ for all $a \in \Sigma$.

Proposition 41.

1. Let $k \geq 2$. For every k-head 2NFA M and letter-to-letter homomorphism h, there is a k-stack linear-bounded NCSA M' such that $L(M') = h(L(M))$.

 (Note that if $k = 1$, M accepts a regular set and regular sets are closed under homomorphism, so M' does not need a stack.)

2. Let $k \geq 1$. For every k-stack linear-bounded 2NCSA M, there is a $(k + 1)$-head 2NFA M' and a letter-to-letter homomorphism h such that $L(M) = h(L(M'))$.

Proof. For the first part, M' when given input x, guesses an input y to M (symbol-by-symbol) and writes y into the k stacks while checking that $x = h(y)$. Then M' simulates M on y using the k stacks and accepts x if M accepts y. Note that M' is a k-stack linear-bounded NCSA (i.e., one-way).

For the second part, let c be a positive integer such that the heights of the k-stacks during the writing phase is at most cn, where n is the input length. Let Σ be the input alphabet of M. Assume that the stacks have a common stack alphabet Γ. The input to M' will have $(k + 1)$ tracks: Track 0 contains the input string w to M and for $1 \leq i \leq k$, track i contains the string x_i written on stack i during the writing phase of stack i (note that the stacks have separate reading phases).

Clearly, we can partition each string x_i on track $1 \leq i \leq k$ as a concatenation of substrings of length at most c. Thus, $x_i = y_{i_1} \cdots y_{i_m}$, where we can assume $m = n$ as the substrings can be of length zero, and also we can assume that the first subword y_{i_1} that is smaller than length c must have $y_{i_l} = \lambda$ for all $l > j$.

We can then define a $(k + 1)$-track of symbols of the form $[a, y_1, \ldots, y_k]$ where a is in Σ and each y_i is a string in Γ^* of length at most c. Denote the set of all such symbols by Γ.

Now construct a $(k + 1)$-head 2NFA which, when given a string z in Γ^*, first checks that the strings on tracks 1 to k are contiguous (if a cell contains a string of length less than c, all further cells only contain λ’s). Then M' simulates the 2NCSA...
M using one head to simulate the input head of M and the remaining k heads to simulate the k checking stacks, making sure that track i contains exactly the string written to stack i during its writing phase. M' accepts if M accepts. Now let h be a homomorphism that maps every symbol $[a, y_1, \ldots, y_k]$ to a. It is straightforward to verify that $L(M) = h(L(M'))$.

A letter-to-letter homomorphism is a special case of λ-free homomorphism. Clearly, Proposition 41 still holds if we replace letter-to-letter homomorphism to λ-free homomorphism.

Recall the definition of a one-way stack automaton from Section 2 which is a generalization of a one-way pushdown automaton where the stack head can enter the stack in a two-way read-only mode. When the stack head returns to the top of the stack it can push and pop \cite{5}. The deterministic (nondeterministic) version is denoted by DSA (NSA). Clearly, a DCSA (NCSA) is a special case of a DSA (NSA). In \cite{13}, the following was shown:

Proposition 42. \cite{15} If a language is accepted by a DSA (NSA), then it is the image under a λ-free homomorphism of a language accepted by a log n space-bounded DTM (NTM).

Since multi-head 2DFA\'s (2NFA\'s) are equivalent to log n space-bounded DTM\'s (NTM)\cite{9}, the following results are, in some sense, tighter and more complete characterizations:

Corollary 43.

1. A language L is accepted by a multi-stack linear-bounded 2DCSA if and only if L can be accepted by a log n space-bounded DTM.
2. A language L is accepted by a multi-stack linear-bounded 2NCSA if and only if L is the image under λ-free homomorphism of a language accepted by a log n space-bounded NTM.
3. If language L is accepted by an NSA, then it can be accepted by a multi-stack linear-bounded 2NCSA (hence, also by a multi-stack linear-bounded NCSA, since the former can be simulated by the latter which first copies the input onto an additional stack and simulates the former by using the additional stack as two-way input).

Proof. Part 1 follows from Corollary 12, which clearly also holds for multi-stack linear-bounded 2DCSAs. Part 2 follows from Proposition 11 and since the languages accepted by multi-head 2NFA\'s coincides with the languages accepted by log n space-bounded NTM\'s \cite{9}. Part 3 follows from Part 2 and Proposition 42.

The next result gives an upper bound on the complexity of multi-stack linear-bounded 2NCSA languages.
Proposition 44. Every language accepted by a multi-stack linear-bounded 2NCSA is in \(\text{NP} \).

Proof. Suppose \(M \) is a \(k \)-stack linear-bounded 2NCSA \((k \geq 1)\). By Proposition 41, part 2, there is a \((k + 1)\)-head 2NFA \(M' \) and a \(\lambda \)-free homomorphism \(h \) such that \(L(M) = h(L(M')) \). Now the family of languages accepted by multi-head 2NFAs (which coincides with the family of languages accepted by \(\log n \) space-bounded NTMs) is contained in \(\text{P} \). So to determine if a string \(x \) of length \(n \) is in \(L(M) \), we guess a string \(y \) such that \(x = h(y) \) and then determine if \(y \) is in \(L(M') \). It follows that \(L(M) \) is in \(\text{NP} \).

In terms of one-way machines, the following was shown in [20]:

Proposition 45. [20] There is a language \(L \) accepted by a linear-bounded DCSA \(M \) and a letter-to-letter homomorphism \(h \) such that \(h(L) \) is \(\text{NP} \)-complete. Further, \(h(L) \) is accepted by a linear-bounded NCSA. Hence, NCSAs accept \(\text{NP} \)-complete languages.

Corollary 46. There is a language \(L \) accepted by a DCSA and a letter-to-letter homomorphism \(h \) such that if \(h(L) \) is accepted by a \(\log n \) space bounded NTM, then \(P = \text{NP} \). Furthermore, there is a language \(L' \) accepted by a DCSA and a letter-to-letter homomorphism \(h \) such that if \(h(L') \) is accepted by a multi-stack 2DCSA, then \(P = \text{NP} \).

Proof. The first statement follows from Proposition 45 and the fact that the languages accepted by \(\log n \) space-bounded NTMs are in \(\text{P} \). The second statement follows from the first statement and Corollary 12.

Even stronger, there is a language accepted by a DCSA and a letter-to-letter homomorphism \(h \) such that if \(h(L) \) is accepted by a multi-stack 2DCSA, then \(\text{DLOG} = \text{NP} \).

We have shown earlier that a language \(L \) is accepted by a multi-stack linear-bounded 2DCSA if and only if \(L \) can be accepted by a \(\log n \) space-bounded DTM. This result does not hold for machines with one-way input:

Lemma 47. There is a language that can be accepted by a linear-bounded DCSA but cannot be accepted by any one-way \(\log n \) space-bounded NTM.

Proof. Let \(L = \{ x \# x^R \mid x \in (a + b)^* \} \). Then \(L \) can be accepted by a linear-bounded DCSA which, when given input \(x \# y \) (we assume the input has this form since the finite-state control can check this), copies \(x \) on the stack and then checks that \(y = x^R \). But it is known (and easy to prove) that \(L \) cannot be accepted by any one-way \(\log n \) space-bounded NTM \(M \). (On input \(w = x \# x^R \), where \(|x| = m \), there are only polynomial in \(m \) possible configurations that \(M \) can be in when its one-way input head reaches \#., but there are \(O(2^m) \) strings of the form \(x \# x^R \).)
Proposition 48. There is a language that can be accepted by a linear-bounded 2DCSA that only makes one turn on its input that cannot be accepted by any NCSA (linear-bounded or not).

Proof. Let \(L = \{(a^n \#)^n \mid n \geq 1\} \). Assume that \(L \) is accepted by an NCSA. The class of languages accepted by NCSAs is closed under homomorphisms \(^7\). Thus, if we define \(h(a) = a \) and \(h(\#) = \lambda \), then \(h(L) = \{a^{n^2} \mid n \geq 1\} \) can be accepted by an NCSA, but this language cannot be accepted by any machine in NCSA \(^6\).

However, a linear-bounded 2DCSA \(M \) can accept \(L \): \(M \) copies the first input segment \(a^n\# \) into the stack and using the stack and the two-way input head checks that each segment is \(a^n\#, \) and the number of input segments is \(n \). Note that \(M \)'s input head need only makes one turn on the input: a left-to-right sweep followed by a right-to-left sweep and accept if the input is in \(L \).

The previous proposition can be strengthened from linear-bounded to log \(n \)-bounded if we allow more turns on the input tape.

Proposition 49. There is a language that can be accepted by a log \(n \)-bounded 2DCSA but cannot be accepted by an NCSA.

Proof. Let \(L = \{x_1\#x_2\# \cdots \#x_r\# \mid x_i \text{ is a binary number with the most significant bit on the right, } |x_1| = \cdots = |x_r| = m, x_1 = 0^m, x_r = 1^m, x_{i+1} = x_i + 1, m \geq 1\} \). So, e.g., \(000\#100\#010\#110\#001\#101\#011\#111\# \) is in \(L \).

\(L \) can be accepted by a 2DCSA \(M \) whose stack is log \(n \)-bounded as follows: \(M \) writes a unary string of length \(|x_1| \) in the stack and then uses the stack to go back and forth between \(x_1 \) and \(x_{i+1} \) to check that \(x_{i+1} = x_i + 1 \).

If \(L \) is accepted by an NCSA, then since the class of languages accepted by NCSAs is closed under any homomorphism \(h \) \(^7\), defining \(h(0) = h(1) = \lambda \) and \(h(\#) = a, \) \(h(L) = \{a^m \mid m \geq 1\} \) can be accepted by an NCSA. This contradicts a result in \(^6\) where it was shown that any infinite unary language accepted by an NCSA must contain an infinite regular set.

Now that we know that a log \(n \) 2DCSA (hence, 2NCSA) can accept a non-regular language, it is of interest to know whether there is a hierarchy in terms of the number of stacks. For \(k \geq 1 \), let

\[
L_k = \{x_1\#x_2\# \cdots \#x_r\# \mid x_i \text{ is a binary number with the most significant bit on the right, } |x_1| = \cdots = |x_r| = m^k, x_1 = 0^{m^k}, m^{th} \text{ bit of } x_1 \text{ is marked, } x_r = 1^{m^k}, x_{i+1} = x_i + 1, 1 \leq i < r, m \geq 1\}.
\]

We can construct a \(k \)-stack log \(n \)-bounded 2DCSA \(M_k \) that accepts \(L_k \): \(M_k \) writes the first \(m \) bits of \(x_1 \) into the \(k \) stacks (this is possible since the \(m^{th} \) bit is marked with a special character). Then \(M_k \) uses the stacks to check that each \(x_i \) has length \(m^k \) and that \(x_{i+1} = x_i \). We conjecture that the languages \(L_1, L_2, \ldots \) form a hierarchy in terms of the number of stacks, i.e., \(L_k \) cannot be accepted by any \((k-1)\)-stack log \(n \)-bounded 2DCSA (or even 2NCSA) for \(k \geq 2 \).
6. Conclusions

We studied several generalizations of checking stack automata and characterized their computing power in terms of two-way multi-head finite automata and space-bounded Turing machines. Further, we proved hierarchies of these models with respect to their recognition power in terms of the number of input heads and the number of checking stacks. Our characterizations and hierarchy results expanded/tightened some previously known results. We also investigated some space complexity and decidability questions for the models introduced. Some questions remain open, e.g., improving the stack-head trade-offs in the conversions for some of the results.

Acknowledgments

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research of I. McQuillan was supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 2016-06172.

References

[1] A. V. Aho, J. D. Ullman and J. E. Hopcroft, On the computational power of pushdown automata, *Journal of Computer and System Sciences* 4(2) (1970) 129–136.
[2] S. A. Cook, Characterizations of pushdown machines in terms of time-bounded computers, *J. ACM* 18(1) (1971) 4–18.
[3] J. Engelfriet, The power of two-way deterministic checking stack automata, *Information and Computation* 80(2) (1989) 114–120.
[4] S. Ginsburg, S. Greibach and M. Harrison, One-way stack automata, *Journal of the ACM* 14(2) (1967) 389–418.
[5] S. Ginsburg, S. Greibach and M. Harrison, Stack automata and compiling, *Journal of the ACM* 14(1) (1967) 172–201.
[6] S. Greibach, A note on undecidable properties of formal languages, *Mathematics Systems Theory* 2(1) (1968) 1–6.
[7] S. Greibach, Checking automata and one-way stack languages, *Journal of Computer and System Sciences* 3(2) (1969) 196–217.
[8] J. E. Hopcroft and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation* (Addison-Wesley, Reading, MA, 1979).
[9] O. H. Ibarra, Characterizations of some tape and time complexity classes of Turing machines in terms of multihead and auxiliary stack automata, *Journal of Computer and System Sciences* 5(2) (1971) 88–117.
[10] O. H. Ibarra, A note concerning nondeterministic tape complexities, *Journal of the ACM* 19(4) (1972) 608–612.
[11] O. H. Ibarra, On two-way multichannel automata, *Journal of Computer and System Sciences* 7(1) (1973) 28–36.
[12] O. H. Ibarra, J. Jirásková Jr., I. McQuillan and L. Prigioniero, Space complexity of stack automata models, *Lecture Notes in Computer Science*, eds. N. Jonoska and D. Savchuk *Proceedings of the 24th International Conference on Developments in Language Theory, DLT 2020* 12086 (2020), pp. 137–149.
[13] O. H. Ibarra and I. McQuillan, Generalizations of checking stack automata: Characterizations and hierarchies, *Lecture Notes in Computer Science*, eds. M. Hoshi and
S. Seki Proceedings of the 22nd International Conference on Developments in Language Theory, DLT 2018 11088 (2018), pp. 416–428.

[14] O. H. Ibarra and I. McQuillan, Variations of checking stack automata: Obtaining unexpected decidability properties, Theoretical Computer Science 738 (2018) 1–12.

[15] K. King and C. Wrathall, Stack languages and log n space, Journal of Computer and System Sciences 17(3) (1978) 281–299.

[16] M. L. Minsky, Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing Machines, Annals of Mathematics 74(3) (1961) pp. 437–455.

[17] B. Monien, Transformational methods and their application to complexity problems, Acta Informatica 6 (1976) 95–108.

[18] B. Monien, Two-way multihead automata over a one-letter alphabet, RAIRO. Informatique Théorique 14(1) (1980) 67–82.

[19] J. I. Seiferas, Relating refined space complexity classes, Journal of Computer and System Sciences 14(1) (1977) 100–129.

[20] E. Shamir and C. Beeri, Checking stacks and context-free programmed grammars accept P-complete languages, Proceedings of the 2nd Colloquium on Automata, Languages and Programming, (Springer-Verlag, Berlin, Heidelberg, 1974), pp. 27–33.

[21] J. Vogel and K. Wagner, Two-way automata with more than one storage medium, Theoretical Computer Science 39 (1985) 267–280.