Analysis of the Roles of 14-3-3 in the Platelet Glycoprotein Ib-IX-mediated Activation of Integrin α1b3 Using a Reconstituted Mammalian Cell Expression Model

Minyi Gu,* Xiaodong Xi,* Graham D. Englund,* Michael C. Berndt,‡ and Xiaoping Du*

*Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612; and ‡Baker Medical Research Institute, Prahran, VIC 3181, Australia

Abstract. We have reconstituted the platelet glycoprotein (GP) Ib-IX-mediated activation of the integrin α1b3 in a recombinant DNA expression model, and show that 14-3-3 is important in GP Ib-IX signaling. CHO cells expressing α1b3 adhere poorly to vWF. Cells expressing GP Ib-IX adhere to vWF in the presence of botrocetin but spread poorly. Cells coexpressing integrin α1b3 and GP Ib-IX adhere and spread on vWF, which is inhibited by RGDS peptides and antibodies against α1b3. VWF binding to GP Ib-IX also activates soluble fibrinogen binding to α1b3 indicating that GP Ib-IX mediates a cellular signal leading to α1b3 activation. Deletion of the 14-3-3-binding site in α1b3 inhibited GP Ib-IX-mediated fibrinogen binding to α1b3 and cell spreading on vWF. Thus, 14-3-3 binding to GP Ib-IX is important in GP Ib-IX signaling. Expression of a dominant negative 14-3-3 mutant inhibited cell spreading on vWF, suggesting an important role for 14-3-3. Deleting both the 14-3-3 and filamin-binding sites of α1b3 but inhibited vWF-induced fibrinogen binding to α1b3. Thus, while different activation mechanisms may be responsible for vWF interaction with different integrins, GP Ib-IX-mediated activation of α1b3 requires 14-3-3 interaction with GP Ib-IX.

Key words: platelet • glycoprotein Ib-IX • integrin • 14-3-3 • von Willebrand factor

Platelet adhesion to the subendothelial matrix plays a critical role in thrombosis and hemostasis. Initial platelet adhesion is mediated by the interaction between a platelet receptor for von Willebrand factor (vWF), the glycoprotein Ib-IX complex (GP Ib-IX), and matrix-bound vWF (Sakariassen et al., 1979, 1986; Savage et al., 1996, 1998). This interaction is particularly important under high shear flow conditions. Subsequently, platelets firmly adhere and spread on vWF, and aggregate to form a primary thrombus (Weiss et al., 1986; Savage et al., 1996, 1998). Platelet spreading is dependent upon activation of integrin α1b3 interaction with the RGD sequence in vWF, and platelet aggregation is dependent upon activation of integrin α1b3 binding to soluble fibrinogen (for reviews see Phillips et al., 1991; Ruggeri and Ware, 1993; Du and Ginsberg, 1997). Thus far, the GP Ib-IX-mediated signaling pathway leading to integrin activation has been unclear.

GP Ib-IX consists of three subunits: GP Ibα, GP Ibβ, and GP Ibβ3. GP Ib-IX is loosely associated with glycoprotein V. The NH2-terminal domain of GP Ibα contains binding sites for vWF and thrombin (for reviews see López, 1994; Ware, 1998). In vivo, binding of vWF to GP Ib-IX does not occur unless vWF first interacts with exposed subendothelial matrix components such as collagen VI (Mazzucato et al., 1999). Collagen probably induces a conformational change in vWF exposing the binding site for GP Ibα (Mazzucato et al., 1999). In vitro, the effect of collagen on vWF is mimicked by desialation of vWF or by vWF modulators such as ristocetin or botrocetin which similarly induce vWF binding to the same binding pocket in the NH2-terminal region of GP Ibα (Berndt et al., 1988; Vicente et al., 1988; Andrews et al., 1989). The cytoplasmic domain of GP Ibα contains a binding site for filamin (also called actin-binding protein or A BP-280), which links GP Ib-IX to cross-linked actin filamental structures underlining the plasma membrane (the membrane skeleton; Fox, 1985a,b). We found that an intracellular signaling molecule, 14-3-3, is also associated with GP Ib-IX (Du et al., 1994), and a binding site...
for 14-3-3c is located in a 15–amino acid residue region (residues 595–610) at the COOH terminus of GPIbα (Du et al., 1996), distinct from the binding site for filamin (residues 536–568; A ndrews and Fox, 1992). Binding of 14-3-3 to GPIbα is regulated by phosphorylation of GPIbα at serine609 (Bodnar et al., 1999). 14-3-3 binding also involves an additional 14-3-3-binding site in GPIbβ regulated by protein kinase A (PKA; A ndrews et al., 1998; Calverley et al., 1998). The 14-3-3 family of highly conserved intracellular proteins interacts with serine phosphorylated intracellular proteins (Furukawa et al., 1993; Fanti et al., 1994; F Reed et al., 1994; Fu et al., 1994; Pallas et al., 1994; A cs et al., 1995; Bonnefoy et al., 1995; Conklin et al., 1995; Li et al., 1996; Meller et al., 1996), and regulates their functions (Fanti et al., 1994; Ford et al., 1994; Li et al., 1995; Z ha et al., 1996; T zivion et al., 1998). A recognition motif, RXpSXP, has been identified in several 14-3-3 ligands (M uslin et al., 1996; Y affe et al., 1997). Interaction with RXpSXP P-motif–containing proteins requires helix G of 14-3-3c (G u and D u, 1998). In contrast, GPIbα binding requires the helix I region of 14-3-3c distinct from the site required for binding of RXpSXP-containing ligands (G u and D u, 1998).

In this study, we have established a CHO cell expression model for studying GPIb-IX–mediated integrin activation. We show that deletion of the 14-3-3-binding site in the COOH terminus of GPIbα inhibits GPIb-IX–induced integrin activation. Further, we show that expression of a dominant negative mutant of 14-3-3 containing the GPIb-IX–binding site also inhibits vWF-induced integrin activation. Thus, 14-3-3 plays important roles in vWF-induced GPIb-IX signaling leading to αIIbβ3 activation. In addition, deleting both the filament and 14-3-3-binding sites in GPIbα enhanced cell spreading on vWF. This did not require αIIbβ3, but did require an endogenous integrin. The same deletion mutant, however, failed to mediate vWF-induced fibrinogen binding, suggesting that αIIbβ3 activation was inhibited. Thus, different mechanisms may be responsible for vWF interaction with different integrins after GPIb-IX–mediated initial adhesion.

Materials and Methods

Reagents

A n anti-peptide antibody, anti-1-baC, recognizing the COOH-terminal domain of GPIbα has been described previously (Du et al., 1996). The monoclonal antibodies WM23 and A K2 against GPIbα, and purification of vWF and botrocetin were as described previously (B erndt et al., 1985; A ndrews et al., 1989). The monoclonal antibody against GPIbα, P3221, was kindly provided by Dr. Zaverio Ruggeri (The Scripps Research Institute, L a jolla, C A.). ma bS D57 and 15 against integrin αIIbβ3 were kindly provided by Dr. M ark G insberg (The Scripps Research Institute, L a jolla, C A.). Monoclonal antibody, 4F10, against integrin αIIbβ3 complex was kindly provided by Dr. V irgil W oods (University of California at San D iego, C A.). Monoclonal antibody against human β3, S21, and monoclonal antibody against vWF, S29, were generous gifts from Dr. C hangpeng R uan (Suzhou Medical College, Suzhou, C hina; R uan et al., 1998a); CDNA clones encoding αIIb and β3 in C D M8 vector were kindly provided by Dr. M ark G insberg. In some experiments, botrocetin was also purchased from C enterchem. R istocetin was purchased from Sigma Chemical C o.

DNA encoding wild-type and mutant 14-3-3c was described previously (Du et al., 1996; G u and D u, 1998). The wild-type and mutant 14-3-3c were subcloned into pEGFP-C2 vector (Clonetech) between EcoRI and Xbal sites. The constructs encode a wild-type or a mutant 14-3-3c fused to the COOH terminus of green fluorescent protein (GFP)1.

Cell Lines Expressing Recombinant Proteins

Transfections of cDNA into CHO cells were performed according to the previously described methods using L ipofectamine (B RL; D u et al., 1996). Selection markers (CD neo and CD hygro; I nvitrogen) were cotransfected with desired DNA at a 1:10 ratio. Stably transfected cell lines were selected in selection media containing 0.5 mM G418 and/or 0.2 mM hygromycin, and further selected by mass cell sorting using antibodies recognizing GPIbα (P3221) and/or integrin αIIbβ3 (D 57). The following cell lines were established: cells expressing GPIbα (1-ba9) (D u et al., 1996); cells expressing integrin αIIbβ3 (2b3a); cells coexpressing GPIbα and αIIbβ3 (123); and cells coexpressing integrin αIIbβ3 and GPIbα mutants with truncated GPIbα cytoplasmic domains at residues 591 (A591/ 2b3a) and 559 (A559/2b3a) (D u et al., 1996). Cells expressing comparable levels of integrins or/and GPIb-IX were further selected by cell sorting and monitored by flow cytometry.

Cell Adhesion Assay

Microtiter wells were coated with 10 μg/ml vWF or botrocetin in PBS at 4°C overnight. Cells in Tyrode’s buffer in the presence of 5 μg/ml botrocetin were incubated in ligand-coated microtiter wells for 30 min at 37°C in a CO2 incubator. As adhesion of the GPIbα-IX and integrin-transfected CHO cells to vWF does not require botrocetin, botrocetin was omitted in some experiments. A fter three washes, cell spreading was examined under an inverted microscope (20× objective lens). In quantitative assays, 50 μl of 0.3% n-p-nitrophenyl phosphate in 1% Triton X-100, 50 mM sodium acetate, pH 5.0, was added to microtiter wells and incubated at 37°C for 1 h. The reaction was stopped by adding 50 μl of 1 M NaO H. R esults were determined by reading OD at 405 nm wave length. A standard curve of acid phosphatase reaction was established by adding the acid phosphatase substrate to various known numbers of the same cells in parallel wells. Acid phosphatase assay of the standards confirmed that the OD value was proportional to cell number. The rate of cell adhesion was estimated from the ratio of the numbers of adherent cells to that of total cells.

Fluorescence Microscopy

Cells were allowed to adhere and spread on vWF- or fibrinogen-coated glass chamber slides (N un c). A fter three washes, cells were fixed by adding 4% paraformaldehyde in PBS. In experiments that required cell permeabilization, cells were permeabilized by adding 0.1 M Tris, 0.01 M E G TA, 0.1 M N aC l, 5 mM M gC l2, pH 7.4, containing 0.1% Triton X-100, 0.5 mM leupeptin, 1 mM PM SF, and 0.1 mM E 64. The cells were then incubated with 20 μg/ml of various antibodies at 22°C for 1 h. A fter three washes, cells were further incubated with fluorescein- or rhodamine-labeled secondary antibodies at 22°C for 30 min. To stain the actin filaments, rhodamine-labeled phalloidin (Sigma C hemical C o.) was also added. A fter additional washes, cells were photographed under a fluorescence microscope. In some experiments, the data were collected by a cooled C CD camera and surface area quantitated using Image-Pro Plus (M edia C ybernetics).

Flow Cytometry Analysis of vWF Binding and vWF-induced Fibrinogen Binding

Fluorescein-labeling of fibrinogen was prepared as described previously (C hen et al., 1994). C esls expressing recombinant proteins were harvested and suspended in modified T yrode’s buffer (D u et al., 1991). C els (1 × 106/ml) were incubated for 30 min with 25 μg/ml fluorescein-labeled fibrinogen in the presence of 20 μg/ml vWF and 1 mg/ml botrocetin. A s a negative control, cells were also incubated with fluorescein-labeled fibrinogen in the presence of 1 mg/ml ristocetin but in the absence of vWF. R GDS peptide (1 mM) was added in parallel assays for estimation of specific fibrinogen binding to the integrin. We showed previously that 1 mM R GDS completely abolished fibrinogen binding to integrin αIIbβ3 while 1 mM R GES had no effect (D u et al., 1991). Fibrinogen binding was analyzed by flow cytometry.

1 Abbreviations used in this paper: GFP, green fluorescent protein; GP, glycoprotein; PGE3, prostaglandin E3; PKA, protein kinase A; vWF, von Willebrand factor.
For vWF binding, the cells in Tyrode's buffer were incubated for 30 min at 22°C with vWF in the presence 1 mg/ml ristocetin. A fter washing, the cells were further incubated for 30 min with a monoclonal antibody against vWF, SZ29, and then analyzed by flow cytometry.

Immunoprecipitation

CHO cells coexpressing integrin αIIbβ3 with wild-type GPIb-IX (123 cells) or GPIb-IX mutant A91 were solubilized as previously described (Gu and Du, 1998). Cell lysates were incubated with 10 μg of WM23 against GPIbα or mouse IgG (Sigma Chemical Co.) at 4°C for 1 h and further incubated for 1 h after addition of protein G–conjugated Sepharose beads (Sigma Chemical Co.). After three washes, the bead-bound proteins were analyzed by SDS-PAGE and Western blotting with a rabbit anti-GPIb antibody (Sigma Chemical Co.) or a rabbit antibody against 14-3-3 (Du et al., 1996). Reaction of the antibodies was visualized using an enhanced chemiluminescence kit (Amersham-Pharmacia).

Results

Roles of GPIb-IX and αIIbβ3 in Mediating Cell Adhesion to vWF

To analyze the roles of GPIb-IX and integrin αIIbβ3 in vWF-mediated platelet adhesion and activation, stable CHO cell lines were established that express one of the two platelet receptors for vWF: GPIb-IX (1b9 cells) or integrin αIIbβ3 (2b3a cells). A stable cell line was also established that expressed both GPIb-IX and integrin αIIbβ3 at levels comparable to 1b9 and 2b3a cells, respectively (123 cells; Fig. 1A). These cells were incubated in vWF-coated microtiter wells for 30 min in the presence of botrocetin, which binds to vWF and mimics the effects of subendothelial matrix to induce vWF binding to GPIb-IX (Andrews et al., 1989). As a positive control, these cells were also incubated in fibrinogen-coated microtiter wells. A differential cells were quantitated with an acid-phosphatase assay. A's shown in Fig. 1, <10% of the 2b3a cells (expressing only αIIbβ3) adhered to the vWF-coated surface compared with ~55% adhesion to fibrinogen, suggesting only a background level of vWF-integrin interaction. This result is consistent with previous work showing a low affinity state of αIIbβ3 expressed in CHO cells (O'Toole et al., 1990), and is also consistent with results obtained in platelets showing that integrin αIIbβ3 interacts poorly with vWF without prior activation (Savage et al., 1992). The possibility of defective integrin function and expression in 2b3a cells can be excluded, as both the 2b3a cells and 123 cells but not 1b9 cells adhered to immobilized fibrinogen which is known to interact with integrin αIIbβ3 without prior activation (Coller, 1980; Savage et al., 1995; Fig. 1B). Thus, vWF is a poor ligand for unactivated integrin αIIbβ3.

In contrast to cells expressing αIIbβ3 (2b3a cells), those expressing GPIb-IX (1b9 cells) or those expressing both GPIb-IX and integrin αIIbβ3 (123 cells), adhered to vWF-coated wells in the presence of botrocetin (Fig. 1B). A platelet adhesion to immobilized vWF occurs in the absence of vWF modulators (Savage et al., 1992), we further examined the adhesion of 123 cells to immobilized vWF without botrocetin treatment. Fig. 1C shows that 123 cells adhere to vWF does not require botrocetin, indicating that adhesion of CHO cells expressing GPIb-IX and αIIbβ3 to vWF is similar to platelet adhesion. Furthermore, adhesion of 123 cells to vWF was inhibited by monoclonal antibodies against vWF-binding site of GPIbα (Fig. 1C).
These results suggest that, as in platelets, GPIb-IX is required for cell adhesion to vWF in this CHO cell expression model.

GPIb-IX Induces Integrin-vWF Interaction and Integrin-dependent Cell Spreading on vWF

Under a microscope, most adherent 1b9 cells (expressing GPIb-IX only) on vWF showed a rounded morphology similar to nonadherent cells (Fig. 2 A). In contrast, 123 cells (coexpressing GPIb-IX and αIIbβ3) spread on the vWF-coated surface (Fig. 2 A). Spreading of 123 cells was abolished by RGDS peptide (Fig. 2 A), indicating that spreading was mediated by integrins. Spreading of 123 cells was also inhibited by the monoclonal antibody 4F10, against human αIIbβ3 complex, and by anti-human β3 antibody SZ21 (Fig. 2 A). These data indicated that spreading was mainly mediated by integrin αIIbβ3 and that endogenous integrins were unlikely to play a major role. It is unlikely that coexpression of GPIb-IX with αIIbβ3 in the 123 cell line resulted in constitutively active integrin αIIbβ3, as 123 cells did not bind to soluble fibrinogen without prior activation (data not shown, see Fig. 3). Thus, vWF binding to GPIb-IX induces integrin-vWF interaction and inte-
To further exclude the possibility that integrin function in 123 cells may differ from that in the 2b3a cell line, we also examined integrin-mediated cell spreading on immobilized fibrinogen. Both 2b3a cells and 123 cells fully spread on immobilized fibrinogen (Fig. 2B), suggesting that αIIβ3 expressed in both cell lines functioned in a similar manner. As shown above, only a small percentage of 2b3a cells adhere to vWF. Some of these adherent cells, however, also spread on vWF, suggesting that the background level GPIb-IX–independent interaction of αIIβ3 with vWF in a small percentage of 2b3a cells can also mediate cell spreading.

To examine the morphological changes in more detail, the adherent cells were stained with fluorescently labeled phalloidin, and examined by fluorescence microscopy under high magnification. Only 5% of 1b9 cells spread on vWF (Fig. 2C). Most 1b9 cells did not spread or only poorly spread on vWF. However, 58% of these poorly spread cells showed limited filopodium- or lamellipodium-like structures extending to the vWF-coated surface (Fig. 2C) which was inhibited by RGDS peptide. This indicates a low level interaction between vWF and an endogenous integrin, which is consistent with the results obtained by Cunningham et al. (1996). In contrast to 1b9 cells, ~70% of 123 cells (expressing both GPIb-IX and integrin αIIβ3) fully spread, which was inhibited by RGDS peptide (Fig. 2C). These results show that GPIb-IX induces integrin αIIβ3 interaction with vWF which is responsible for 123 cell spreading on vWF.

vWF-induced Fibrinogen Binding to Integrin αIIβ3 in CHO Cells

Two possible mechanisms could explain GPIb-IX–induced integrin-vWF interaction in the CHO cell expression model: (a) GPIb-IX may induce a cellular signal that increases the affinity of integrin for vWF (activation); or (b) the GPIb-IX binding to vWF may allow access of integrin to vWF, e.g., by changing the conformation of vWF. To differentiate between these two possibilities, we examined whether vWF activated integrin binding to another ligand of αIIβ3, soluble fibrinogen, in 123 cells. It is known that integrin αIIβ3 binds soluble fibrinogen only after the integrin is activated (for reviews, see Du and Ginsberg, 1997; Phillips et al., 1991). FITC-labeled fibrinogen was incubated with 123 cells in the presence of ristocetin which is known to induce soluble vWF binding to GPIb-IX and vWF-dependent platelet aggregation but not to induce fibrinogen-dependent platelet aggregation in the absence of vWF (for review, see Ware, 1998). As expected, there was no specific fibrinogen binding to 123 cells exposed only to ristocetin, indicating that ristocetin alone does not induce specific fibrinogen binding to integrin αIIβ3 (Fig. 3A). When both vWF and ristocetin were present, however, there was significant binding of fibrinogen. VWF-induced fibrinogen binding was inhibited by RGDS peptide (Fig. 3B and E), and was also inhibited by an anti-GPIbα mono-
clonal antibody, AK2, known to inhibit ristocetin-induced vWF binding to GPIb-IX (Fig. 3 C). Furthermore, vWF did not induce specific fibrinogen binding to 2b3a cells (Fig. 3 D), suggesting that vWF-induced fibrinogen binding to integrin αIIbβ3 requires vWF interaction with GPIb-IX. Thus, vWF interaction with GPIb-IX not only stimulates vWF-αIIbβ3 interaction, but also induces the integrin to bind soluble fibrinogen. These data indicate that ristocetin-dependent vWF binding to GPIb-IX induces a cellular signal that activates the ligand-binding function of αIIbβ3.

Effects of GPIbα Cytoplasmic Domain Deletion Mutagenesis on 14-3-3-binding Function of GPIb-IX

We showed previously (Du et al., 1996) that the intracellular signaling molecule 14-3-3 binding to a site in the COOH-terminal 15 residues (residues 595–610) of the cytoplasmic domain of GPIbα. To investigate the role of 14-3-3 in GPIb-IX–mediated activation of αIIbβ3 in the CHO cell model, we established a CHO cell line (Δ591/2b3a cells) that coexpresses αIIbβ3 and a mutant GPIb-IX, Δ591, that lacks the 14-3-3-binding site (18 residues) at the COOH terminus of GPIbα, but retains the functional filamin-binding domain in GPIbα (Cunningham et al., 1996; Du et al., 1996). As shown in Fig. 4, wild-type GPIb-IX expressed in CHO cells (123 cells) coimmunoprecipitates with an endogenous CHO cell 14-3-3 protein reactive with anti–14-3-3z antibodies (Fig. 4). The mutant GPIb-IX (Δ591), however, failed to coimmunoprecipitate endogenous CHO cell 14-3-3 protein reactive with anti–14-3-3z antibodies (Fig. 4). As a control, we also immunoblotted the same immunoprecipitates with an anti-GPIbα antibody, and observed that similar amounts of GPIbα were immunoprecipitated from both the Δ591/2b3a cells and 123 cells (expressing wild-type GPIb-IX; Fig. 4). Thus, the Δ591 mutant GPIb-IX is defective in binding to endogenous 14-3-3.

Figure 4. Coimmunoprecipitation of endogenous CHO cell 14-3-3 with GPIb-IX. Cells were stably transfected with integrin αIIbβ3 together with wild-type GPIb-IX (123) or GPIb-IX mutants with GPIbα cytoplasmic domain truncated at residue 591 to delete 14-3-3-binding site (Δ591/2b3a). The 123 cells and Δ591/2b3a cells were solubilized and immunoprecipitated with the monoclonal antibody, WM23, against GPIbα (Ib) or control mouse IgG (Ig). Immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with a rabbit antibody against 14-3-3z or a rabbit anti-GPIbα antibody. Note that 14-3-3z was coimmunoprecipitated with wild-type GPIb-IX but not Δ591.

Figure 5. Deletion of the 14-3-3-binding site in the cytoplasmic domain of GPIbα inhibited GPIb-IX–induced integrin activation. Cells were transfected with integrin αIIbβ3 together with wild-type GPIb-IX (123), a GPIb-IX mutant lacking the 14-3-3-binding site (Δ591/2b3a), or a GPIb-IX mutant with deleted filamin and 14-3-3-binding sites (Δ559/2b3a). (A) The 123 cells, Δ591/2b3a and Δ559/2b3a cells were incubated with FITC-labeled fibrinogen (20 μg/ml) at 22°C for 30 min in the presence of ristocetin only (1 mg/ml; NO vWF) or in the presence of 20 μg/ml vWF and ristocetin (+ vWF). To estimate nonspecific binding, these cells were also incubated with FITC-labeled fibrinogen (20 μg/ml) at 22°C for 30 min in the presence of 1 mM RGDS peptide (+RGDS) known to specifically inhibit fibrinogen binding to αIIbβ3. The cells were then analyzed by flow cytometry. (B) 123 cells or Δ591/2b3a cells were incubated with biotin-labeled WM23 (against GPIbα) and FITC-labeled D57 (against αIIbβ3). As a control, CHO cells expressing GPIb-IX only or αIIbβ3 only were also incubated with these antibodies at 22°C for 30 min. After washing and further incubation with phycoerythrin-labeled streptavidin, the cells were diluted in Tyrode’s buffer and analyzed by flow cytometry.
GPIb-IX–mediated Activation of the Integrin \(\alpha_{IIb}\beta_3 \) Requires the 14-3-3–binding Site in GPIb\(\alpha \)

To determine whether deletion of the 14-3-3–binding site in GPIb\(\alpha \) affects GPIb-IX–mediated activation of the integrin \(\alpha_{IIb}\beta_3 \), we examined whether ristocetin-induced vWF binding to the mutant GPIb-IX stimulates the binding of FITC-labeled fibrinogen to D591/2b3a cells. Fig. 5 A shows that vWF induces soluble fibrinogen binding to 123 cells which is inhibited by RGD\(S \) peptide. In contrast, vWF-induced fibrinogen binding to D591/2b3a cells is absent. It is unlikely that the defect in fibrinogen binding to D591/2b3a cells results from naturally occurring mutations developed in the CHO cells during selection as the D591/2b3a cells are established by mass sorting of cells reactive with both antibodies against \(\alpha_{IIb}\beta_3 \) and GPIb-IX and not by single cell cloning. It is also unlikely that the inhibition of integrin activation results from defective binding of vWF as vWF binding to D591/2b3a cells is not negatively affected (Fig. 6). A s 591/2b3a cells adhered and spread on fibrinogen (Fig. 7), the possibility of a defective integrin function can be further excluded. Thus, our data indicate that the 14-3-3–binding site of GPIb\(\alpha \) plays an important role in GPIb-IX–mediated integrin activation.

We also examined vWF-induced fibrinogen binding to a CHO cell line (D595/2b3a), expressing integrin \(\alpha_{IIb}\beta_3 \) and a truncation mutant GPIb-IX lacking both the 14-3-3-binding domain and filamin-binding domain of GPIb\(\alpha \). No specific fibrinogen binding was detected in this cell line suggesting that inhibition of \(\alpha_{IIb}\beta_3 \) activation by deleting the 14-3-3-binding site of GPIb\(\alpha \) was not reversed by further deletion of the fibrin-binding site of GPIb\(\alpha \) (Fig. 5).

The 14-3-3–binding Site of GPIb-IX Is Involved in GPIb-IX–induced Integrin-vWF Interaction and Cell Spreading on vWF

To investigate whether 14-3-3 binding plays a role in GPIb-IX–induced integrin-vWF interaction and integrin-dependent cell spreading on vWF, the 123 cells and D591/2b3a cells were allowed to adhere to vWF-coated microtiter wells. As examined under the microscope, \(\sim 70\% \) of the 123 cells were spread on both vWF- and fibrinogen-coated microtiter wells. In contrast, only a small percentage (\(\sim 30\% \)) of D591/2b3a cells appeared spreading on vWF, indicating that GPIb-IX–induced integrin-vWF interaction was inhibited (Fig. 7). To quantitate the cell spreading objectively, cells adherent to vWF were permeabilized and stained with rhodamine-labeled phalloidin. Fluorescently stained cells in randomly selected fields were quantitated for cell surface area using Image-Pro Plus software (Media Cybernetics). As shown in Fig. 8, the average surface area of D591/2b3a cells were about half of that of 123 cells, indicating that the spreading of the mutant cell line was significantly reduced but not totally abolished. Since D591/2b3a cells adhered and spread on fibrinogen in a manner similar to 123 cells, the ligand-binding function of \(\alpha_{IIb}\beta_3 \) and the integrin-mediated spreading process was not impaired in the D591/2b3a cell line. Thus, inhibition of GPIb-IX– and integrin-dependent spreading on vWF in this cell line is unlikely to be caused by a defect in ligand-binding function of \(\alpha_{IIb}\beta_3 \) or in the integrin’s post-ligand occupancy events. These data suggest that 14-3-3\(\zeta \) binding to the COOH-terminal region of GPIb\(\alpha \) plays an important role in GPIb-IX–mediated integrin activation (Fig. 2 C).

Effects of Disruption of GPIb-IX Interaction with Filamin on vWF Interaction with Integrins

It has been shown previously (Cunningham et al., 1996; Du et al., 1996) that truncation of GPIb-IX at residue 559...
The Journal of Cell Biology, Volume 147, 1999 1092

... abolishes filamin and 14-3-3 binding to GPIb-IX, and induces GPIb-IX-dependent cell spreading in the absence of integrin αIIbβ3 (Cunningham et al., 1996). To investigate functional effects of this truncation mutation on GPIb-IX-dependent vWF interaction with different integrins, we coexpressed Δ559 with integrin αIIbβ3 (Δ559/2b3a). Not only did the Δ559/2b3a cells exhibit no defect in spreading, but they actually showed enhanced spreading on vWF compared with 123 cells (Figs. 7 and 8). The spreading of Δ559/2b3a cells was significantly inhibited by RGDS peptide but poorly inhibited by anti-αIIbβ3 antibody 4F10 and anti-β3 antibody SZ21 (Fig. 7), suggesting that an endogenous integrin plays a significant role. This result is consistent with previous studies showing that CHO cells expressing the same mutant of GPIb-IX spread on vWF in the absence of integrin αIIbβ3 (Cunningham et al., 1996). However, when incubated with soluble fibrinogen in the presence of vWF and ristocetin, no specific binding of fibrinogen to Δ559/2b3a cells was detected (see Fig. 5). These results indicate that deletion of both 14-3-3 and filamin-binding sites of GPIbα in Δ559 of GPIbα abolishes filamin and 14-3-3 binding to GPIb-IX, and induces GPIb-IX-dependent cell spreading in the absence of integrin αIIbβ3 (Cunningham et al., 1996). To investigate functional effects of this truncation mutation on GPIb-IX-dependent vWF interaction with different integrins, we coexpressed Δ559 with integrin αIIbβ3 (Δ559/2b3a). Not only did the Δ559/2b3a cells exhibit no defect in spreading, but they actually showed enhanced spreading on vWF compared with 123 cells (Figs. 7 and 8). The spreading of Δ559/2b3a cells was significantly inhibited by RGDS peptide but poorly inhibited by anti-αIIbβ3 antibody 4F10 and anti-β3 antibody SZ21 (Fig. 7), suggesting that an endogenous integrin plays a significant role. This result is consistent with previous studies showing that CHO cells expressing the same mutant of GPIb-IX spread on vWF in the absence of integrin αIIbβ3 (Cunningham et al., 1996). However, when incubated with soluble fibrinogen in the presence of vWF and ristocetin, no specific binding of fibrinogen to Δ559/2b3a cells was detected (see Fig. 5). These results indicate that deletion of both 14-3-3 and filamin-binding sites of GPIbα inhibited GPIb-IX-mediated activation of fibrinogen binding to αIIbβ3, but enhanced the interaction of vWF with an endogenous integrin (which only plays a very limited role in wild-type GPIb-IX-mediated cell spreading (see Fig. 2 C). Thus, it appears that two different mechanisms may be involved in the vWF interaction with integrins: a GPIb-IX-mediated 14-3-3-dependent mechanism that induces an activation signal leading to the activation of integrin αIIbβ3, and an alternative mechanism that allows the interaction of vWF with an unidentified integrin. The latter mechanism becomes significant only when the association of GPIb-IX with the membrane skeleton structure is disrupted.

Inhibition of GPIb-IX- and Integrin-dependent Cell Spreading by a 14-3-3 Fragment Containing the GPIb-IX-binding Site

We have recently shown that GPIbα binds to a site in the helix I region of 14-3-3ζ, distinct from the sites required for 14-3-3ζ binding to RSXpSXp-motif containing ligands such as c-Raf (Gu and Du, 1998). To verify that 14-3-3ζ plays a role in GPIb-IX signaling, we constructed cDNA encoding fusion proteins of green fluorescent protein (GFP) with wild-type 14-3-3ζ (GFP-1433) as well as a small fragment of 14-3-3ζ containing the GPIbα-binding site (1433T12, residues 188–231; Gu and Du, 1998). Transient expression of the wild-type and the mutant 14-3-3...
was indicated by the emission of green fluorescence (Fig. 9). After transfection of pEGFP vector alone, z70% of 123 cells adhere and spread on vWF. Cells expressing GFP-1433 fusion protein showed an increase in the percentage of spreading (85%), suggesting that overexpression of 14-3-3 enhanced cell spreading on vWF-coated surface (Fig. 9). In contrast, 90% of the cells expressing GFP-T12 fusion protein are rounded (Fig. 9), and the rest (10% cells) only partially spread on vWF (not shown). These results suggest that the small fragment of 14-3-3 inhibited the function of endogenous 14-3-3 in a dominant negative fashion.

Discussion

In this study, we show that GPIb-IX binding to vWF induces signals that activate the ligand-binding function of integrin αIIbβ3 and integrin-dependent cell spreading using a reconstituted CHO cell expression model. We show that vWF-induced GPIb-IX signaling is inhibited by deletion of the 14-3-3-binding sites in the cytoplasmic domain of GPIbα (Figs. 5 and 7). Thus, our study indicates that interaction between GPIb-IX and 14-3-3 plays an important role in GPIb-IX-mediated signaling leading to activation of integrin αIIbβ3.

Understanding the intracellular signaling mechanism induced by ligand binding to the platelet vWF receptor, GPIb-IX, as well as platelet signaling in general, has been hampered by the lack of specific means to interfere with platelet signaling intracellularly at a molecular level. Studies on the GPIb-IX–induced platelet activation by biochemical approaches have shown that ligand binding to GPIb-IX induces a series of intracellular biochemical changes such as generation of thromboxane A2 (Kroll et al., 1991), production of phosphatidic acid (Kroll et al., 1991), activation of PI-3 kinase (Jackson et al., 1994), increase in the cytoplasmic calcium level (Kroll et al., 1991; Ikeda et al., 1993), and activation of protein kinases such as protein kinase C (Kroll et al., 1991, 1993; Chow et al., 1992) and tyrosine kinases (Razdan et al., 1994; Asazuma et al., 1997). The consequence of these intracellular signaling events is the activation of integrin αIIbβ3 (De Marco et al., 1985a,b; Gralnick et al., 1985, 1991; Savage et al., 1992, 1996). However, specific molecular pathways leading to these signaling events are unclear. In many cell types, ad-
vances in understanding the molecular mechanisms of intracellular signaling are often achieved with the use of recombinant DNA transfection techniques to express specific intracellular signaling molecules or to specifically alter the function of such a molecule. A's platelets do not have nuclei and cannot be maintained in culture, it is difficult to use recombinant DNA approach directly. Thus, we have developed a model system in a CHO cell line expressing both the human integrin \(\alpha_{IIb}\beta_3 \) and GPIb-IX. In our CHO cell expression model, GPIb-IX mediates signaling leading to the activation of integrin \(\alpha_{IIb}\beta_3 \) in a manner similar to that observed in platelets: (a) vWF binding to GPIb-IX in our CHO cell model not only induces integrin vWF interaction but also induces soluble fibrinogen binding to the integrin \(\alpha_{IIb}\beta_3 \), suggesting that GPIb-IX is unlikely to be simply presenting \(\alpha_{IIb}\beta_3 \) to vWF or inducing changes in vWF, but is inducing a cellular signal that activates the ligand-binding function of the integrin (Fig. 3). This is consistent with previous findings in platelets showing vWF binding to GPIb-IX initiates signaling leading to integrin \(\alpha_{IIb}\beta_3 \) activation (DeMarco et al., 1985a,b; Gralnick et al., 1985; Kroll et al., 1991; Savage et al., 1992, 1996). (b) We show that GPIb-IX–induced integrin–dependent cell spreading on vWF was inhibited by prostaglandin E \(_1\) (PGE\(_1\)), and the protein kinase C inhibitor calphostin C (Fig. 2). These inhibitors also inhibit vWF–induced integrin activation in platelets (Coller, 1981; DeMarco et al., 1985a; Savage et al., 1992; Kroll et al., 1993; Kroll et al., 1991, 1993). Reconstitution of the platelet GPIb-IX–mediated activation of \(\alpha_{IIb}\beta_3 \) in CHO cells is thus significant to further understanding the GPIb-IX–mediated signaling using specific molecular biological approaches.

In our CHO cell expression model, the vWF modulator, ristocetin, was used to induce binding of soluble vWF to GPIb-IX expressed in CHO cells. It is known that platelets do not bind to soluble vWF under physiological conditions. At the site of vascular injury, vWF binds to exposed subendothelial matrix proteins such as collagen. Collagen binding causes the exposure of the GPIb-IX–binding site in vWF probably by inducing a conformational change (Mazzucato et al., 1999). Shear stress may play a role in the conformational change of vWF induced by the subendothelial matrix (Siedecki et al., 1996). In vitro, the effect of subendothelial matrix proteins on vWF can be mimicked by desialation of vWF (DeMarco et al., 1985a), natural occurring mutations in vWF (DeMarco et al., 1985b; Gralnick et al., 1985) or binding of artificial vWF modulators such as botrocetin (Andrews et al., 1989) and ristocetin (Berndt et al., 1985; Kroll et al., 1991). Although there is a report that ristocetin may flocculate fibrinogen (Scott et al., 1991) and thus may increase nonspecific binding of fibrinogen, ristocetin–induced platelet aggregation in platelet-rich plasma is dependent on vWF binding to GPIb-IX, indicating that ristocetin cannot directly induce fibrinogen binding to integrin \(\alpha_{IIb}\beta_3 \). Binding of vWF to platelets induced by ristocetin and other in vitro methods is similar to vWF binding induced by subendothelial matrix under flow conditions. In both cases vWF binds essentially the same ligand-binding pocket on GPIb-IX in the NH\(_2\)-terminal region of GPIb\(_{\alpha}\), and can be inhibited by the same monoclonal antibodies (e.g., A K2) directed against the NH\(_2\)-terminal region of GPIb-IX (Berndt et al., 1988; Vicente et al., 1988, 1990; Fredrickson et al., 1998). Furthermore, vWF binding to GPIb-IX induced by vWF modulators, desialation or mutations initiate similar platelet responses to that observed when platelets adhere to matrix-bound vWF. These responses include activation of PKC, elevation of intracellular calcium, release of thromboxane A\(_2\), release of granule contents, and activation of the integrin \(\alpha_{IIb}\beta_3 \) (Kroll et al., 1991; Savage et al., 1992, 1996, 1998). For these reasons, ristocetin as a modulator of vWF binding to GPIb-IX has been commonly used in clinical and research laboratories. Since all available evidence indicates that GPIb-IX signaling is initiated by vWF binding to the NH\(_2\) terminus of GPIb\(_{\alpha}\) (Ware, 1998), and the experiments are controlled such that the effects of ristocetin alone can be excluded (Fig. 3), differences in the methods of induction of vWF binding (desialation, mutation, modulators, or shear stress) are unlikely to be a significant factor causing GPIb-IX signaling to diverge into dramatically different pathways. Thus, data obtained using vWF modulators such as ristocetin are relevant to understanding GPIb-IX signaling during platelet adhesion to the subendothelial matrix in vivo.

We have shown previously that 14-3-3, an intracellular signaling molecule, bound to the cytoplasmic domain of GPIb-IX, and that its binding was dependent upon the COOH-terminal region of GPIb\(_{\alpha}\) (Du et al., 1996) and the helix I region of 14-3-3 (Gu and Du, 1998). In this study, we have investigated the role of 14-3-3 in GPIb-IX signaling in the CHO cell expression model and show that deletion of the 14-3-3-binding site in the COOH terminus of GPIb\(_{\alpha}\) inhibits GPIb-IX–mediated \(\alpha_{IIb}\beta_3 \) activation. A’s deletion of the COOH-terminal domain of GPIb\(_{\alpha}\) did not negatively affect vWF binding to GPIb-IX (Fig. 6), it is unlikely that the inhibition in integrin activation resulted from a loss of vWF binding function of the mutant GPIb-IX. Since this GPIb-IX mutant still interacts with filamin at a nearby site (Cunningham et al., 1996), it is also unlikely that a gross disturbance of the tertiary structure of the GPIb\(_{\alpha}\) cytoplasmic domain or loss of the interaction with the filamin-membrane skeleton caused the inhibition in signaling. Consistent with the importance of 14-3-3 in vWF-induced signaling, the small dominant negative fragment of 14-3-3 that contains the GPIb\(_{\alpha}\)-binding site (Gu and Du, 1998) also inhibited GPIb-IX–mediated integrin activation (Fig. 7). Thus, we conclude that 14-3-3 binding to GPIb-IX plays an important role in wild-type GPIb-IX–mediated signaling leading to integrin activation. This is the first identified early link between GPIb-IX and the integrin activation pathway.

Filamin binding to the central region of the GPIb\(_{\alpha}\) cytoplasmic domain links GPIb-IX to the membrane skeleton structure (cross-linked short actin filaments) underlying the membrane (Fox et al., 1988). The association of GPIb-IX with this structure is important for platelets to maintain a discoid shape (Lopez et al., 1998). A membrane skeleton-like structure can also be seen in the CHO cells expressing GPIb-IX complex (Du et al., unpublished data). It has been shown previously that truncation of GPIb\(_{\alpha}\) at residue 559 abolished association of GPIb-IX with the filamin-membrane skeleton. Cells expressing this truncated...
mutant GPIb-IX spread on vWF without coexpression of αIIbβ3 (Cunningham et al., 1996), a process that is inhibited by RGD peptides (Du, X., unpublished data). Consistent with this, we found that Δ559/23a cells expressing this mutant GPIb-IX and integrin αIIbβ3 showed an enhanced spreading on vWF which was poorly inhibited by anti-αIIbβ3 antibodies that blocked ligand-binding sites but was significantly inhibited by RGD peptide (Fig. 7), suggesting that an RGD-dependent endogenous integrin is responsible. In contrast to the truncation mutant, cells expressing wild-type GPIb-IX spread poorly on vWF in the absence of αIIbβ3 (Fig. 2). This suggests that the function of this endogenous CHO cell integrin to mediate cell spreading on vWF is restrained by the membrane skeleton association with GPIb-IX and enhanced by disruption of this association. When coexpressed with integrin αIIbβ3, however, wild-type GPIb-IX is able to induce cell spreading on vWF (Fig. 2) and soluble fibrinogen binding to integrin αIIbβ3. Thus, GPIb-IX–mediated activation of αIIbβ3 is not restrained by the association of GPIb-IX with the membrane skeleton. This suggests that the functions of αIIbβ3 and the endogenous integrin are regulated by GPIb-IX via different mechanisms. Indeed, we showed that GPIb-IX–mediated activation of αIIbβ3 involves the binding of 14-3-3 to the COOH terminus of GPIbα. In contrast, the Δ559/23a cells expressing the mutant GPIb-IX lacking both filamin and 14-3-3–binding sites were defective in vWF-induced fibrinogen binding (Fig. 5). It remains unclear what types of endogenous CHO cell integrin are responsible for cell spreading on vWF in the absence of αIIbβ3, and what mechanisms are involved in the upregulation of their function when GPIb-IX is dissociated from the membrane skeleton. CHO cells express an endogenous vitronectin receptor (a v complexed with β3 or possibly β2) and αIIbβ3, both of which are inhibited by RGD peptides (Chen et al., 1995; Felding-Habermand and Cheresh, 1993; Zhang et al., 1995). A s these CHO cell integrins are known to interact with immobilized ligands without prior activation, one possibility is that binding of vWF to GPIb-IX may change the conformation of vWF or bring vWF to the vicinity of the endogenous integrin and thus allow their interaction via a localized signaling mechanism. Disruption of GPIb-IX association with the membrane skeleton may allow free lateral movement of GPIb-IX to the vicinity of these integrins without the restraint by the membrane skeleton structure, thus enhancing cell spreading on vWF. In contrast, the function of αIIbβ3 to interact with vWF and soluble fibrinogen is known to require prior activation via intracellular signaling (Phillips et al., 1991; Savage et al., 1992). Thus, vWF–induced activation of αIIbβ3 is not restrained by the membrane skeleton structure, but requires a 14-3-3–dependent signaling mechanism.

We thank Drs. Mark Ginsberg, Zaverio Ruggeri, Changeng Ruan, and Joan E.B. Fox for providing reagents and for discussions. This work is in part supported by the grant HL 52547 from National Institutes of Health, and by the National Heart Foundation of Australia. X. Du is an Established Investigator of the American Heart Association.

Received: 29 March 1999
Revised: 14 October 1999
Accepted: 18 October 1999

References

Ac, P., Z. Szaladi, M.G. Kamanietz, and P.M. Blumberg. 1995. Differential activation of PKC isozymes by 14-3-3-zeta protein. Biochem. Biophys. Res. Commun. 216:103-109.

Arends, R.K., W.J. Booth, J.J. Gorman, P.A. Castaldi, and M.C. Berndt. 1989. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry. 28: 8317-8326.

Arends, R.K., and J.E. Fox. 1992. Identification of a region in the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX complex that binds to purified actin-binding protein. J. Biol. Chem. 267:18605-18611.

Arends, R.K., S.J. Harris, T. McNally, and M.C. Berndt. 1998. Binding of purified 14-3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Biochemistry. 37:6306-647.

Asazuma, N., Y. Ozaki, K. Sato, Y. Yamoto, M. Handa, Y. Fujimura, S. M. Iura, and S. Kume. 1997. Glycoprotein Ib- von Willebrand factor interactions activate tyrosine kinases in human platelets. Blood. 90:4798-4769.

Berndt, M.C., C.P. Du, and W.J. Booth. 1998. Ristocetin-dependent reconstitution of binding of von Willebrand factor to purified human platelet membrane glycoprotein Ib-IX complex. Biochemistry. 27:633-640.

Bodnar, R.J., M. Gu, Z. Li, G.D. Englund, and X.D. Du. 1999. The cytoplasmic domain of the platelet glycoprotein Ibα is phosphorylated at serine659. J. Biol. Chem. In press.

Bonfey, B.N., Y.C. Liu, M. von Willebrand, A. Sung, C. Elly, T. Mustelin, H. Yoshida, K. Ishizaka, and A. Altman. 1995. Inhibition of phosphatidylinositol-3 kinase activity by association with 14-3-3 proteins in T cells. Proc. Natl. Acad. Sci. USA. 92:10142-10147.

Calverley, D.C., T.J. Kavanagh, and G.J. Roth. 1989. Human protein spreading on vWF. 14-3-2eta interacts with platelet glycoprotein Ib subunits Ibalpha and Ibbeta. Blood. 91:1295-1303.

Chen, Y.P., T.E. O'Toole, L. Leong, B.Q. Liu, F. Diaz-Gonzalez, and M.H. Ginsberg. 1995. Beta 3 integrin-mediated fibrin clot retraction by nucleated cells: differing behavior of alpha 11b and alpha v beta 3. Blood. 86: 2606-2615.

Chow, T.W., J.D. Hellums, J.L. Moake, and M.H. Kroll. 1992. Shear stress-induced vWF binding to platelet glycoprotein Ibα initiates calcium influx associated with aggregation. Blood. 80:113-120.

Coller, B.S. 1980. Interaction of normal, thrombasthenic, and Bernard-Soulier platelets with immobilized fibrinogen: defective platelet-fibrinogen interaction in thrombasthenia. Blood. 55:169-178.

Coller, B.S. 1981. Inhibition of von Willebrand factor-dependent platelet function by increased platelet cyclic AMP and its prevention by cytoskeleton-disrupting agents. Blood. 57:946-955.

Cunningham, J.G., S.C. Meyer, and J.E. Fox. 1996. The cytoplasmic domain of the alpha subunit of glycoprotein (GP) Ib mediates attachment of the entire GP Ib-IX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J. Biol. Chem. 271:11581-11587.

De Marco, L.A., G. Girolami, S. Russell, and Z.M. Ruggeri. 1985a. Interaction of von Willebrand factor with glycoprotein Ib induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation. J. Clin. Invest. 75:1198-1203.

De Marco, L.A., G. Girolami, T.S. Zimmerman, and Z.M. Ruggeri. 1985b. Activation of purified type IIB von Willebrand factor with the platelet membrane glycoprotein Iib binds fibrinogen binding to the glycoprotein IIb/IIIa complex and initiates aggregation. Proc. Natl. Acad. Sci. USA. 82:7424-7428.

Du, X., J.E. Fox, and S. Pei. 1996. Identification of the binding sequence for the 17S 14-3-3 protein in the cytoplasmic domain of the adhesive receptor platelet glycoprotein Ibα. J. Biol. Chem. 271:7362-7367.

Du, X., and M. Ginsberg. 1997. Integrin αIIbβ3 and platelet function. Thromb. Haemostasis. 78:96-100.

Du, X., S.J. Harris, T.J. Tetaz, M.H. Ginsberg, and M.C. Berndt. 1994. Association of a phospholipase A2 (14-3-3 protein) with the platelet glycoprotein Ib-IX complex. J. Biol. Chem. 269:12827-12890.

Du, X., E.P. Plow, A.L. Frelinger, T.E. O'Toole, J.C. Loftus, and M.H. Ginsberg. 1990. Ligands "activate" integrin alpha IIb beta 3 (platelet GPIb-IIIa). Cell. 65:409-416.

Fanti, W.J., A.J. Muslin, A. Kikuchi, J.A. Martin, A.M. MacNicol, R.W. Gross, and A.M. Carr. 1994. 14-3-3 protein homologs required for the DNA damage check-
point in fission yeast. Science. 265:533-535.

Fox, J. E. B. 1985a. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J. Biol. Chem. 260:11970–11977.

Fox, J. E. B. 1985b. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib. J. Clin. Invest. 76:1673–1683.

Freedrich, B. J., J. D. Dong, L. M. V. McIntire, and J. A. L. O. Perez. 1998. Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Iib-IX-V complex. Blood. 92:3684–3693.

Freed, E. M., S. Mony, S. G. McConville, R. F. McCormick, and R. Ruggieri. 1994. Binding of 14-3-3 proteins to the protein kinase R1 and effects on its activation. Science. 265:1713–1716.

Fu, H., X. Xia, D. C. Pallas, C. Cui, K. Conroy, R. P. Narasimhan, H. Mamon, R. J. Collier, and T. M. Roberts. 1994. Interaction of the protein kinase R1 with 14-3-3 proteins. Science. 266:126–129.

Furukawa, Y., N. I. Ikuta, S. Omata, T. Y. Amachi, T. Isobe, and T. Ichimura. 1993. Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein. Biochim. Biophys. Res. Commun. 194:144–149.

Gralnick, H. R., S. B. Williams, L. M. Mackow, M. E. Rick, P. Maisonneuve, C. Jennings, and Y. Sultan. 1985. Von Willebrand's disease with spontaneous platelet aggregation induced by an abnormal plasma von Willebrand factor. J. Clin. Invest. 76:1522–1529.

Gu, M., and X. Du. 1998. A novel ligand-binding site in the c-form 14-3-3 protein recognizing the platelet glycoprotein Ib and distinct from the c-Raf-binding site. J. Biol. Chem. 273:33465–33471.

Ikeda, Y., M. Handa, T. Kamata, K. Kawano, Y. Kawai, K. Watanabe, K. Sakai, F. Maeyumi, I. Itagaki, A. Yoshioka, and Z. M. Ruggieri. 1993. Transmembrane calcium influx associated with von Willebrand factor binding to transmembrane calcium influx associated with von Willebrand factor binding to GPIb in the initiation of shear-induced platelet aggregation. Thromb. Haemostasis. 69:496-502.

Jackson, S. P., S. M. Schoenwaelder, Y. Y. Yuan, I. Rabinowits, H. H. Salem, and C. A. M. Mitchel. 1994. A dimerization receptor activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 269:27093–27099.

Kroll, M. H., T. S. Harris, J. L. Macek, R. J. Handin, and A. J. Schafer. 1991. von Willebrand factor binding to platelet GPIb initiates signals for platelet activation. J. Clin. Invest. 88:1568–1573.

Kroll, M. H., J. D. Hellums, Z. Guo, W. Durante, K. Razdan, J. K. Hrbolich, and A. I. Schafer. 1993. Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein. Biochim. Biophys. Res. Commun. 194:144–149.

Lopez, J. A. 1994. The platelet glycoprotein Iib-IX complex. Blood Coaflil.

Lopez, J. A., R. K. Andrews, V. A. Fisher-Kharaghani, and M. C. Berndt. 1998. Bernard-Soulier syndrome. Blood. 91:4397–4418.

Mazzucco, M., P. Spezio, A. Massoti, L. De A Pompoina, M. R. Cozzi, A. Yoshioka, R. Perris, A. Columbia, and L. D. M. Arco. 1999. Identification of domains responsible for von Willebrand factor type V collagen interaction mediating platelet aggregation under high flow. J. Biol. Chem. 274:3033–3041.

Meller, N., Y. C. Liu, T. L. Collins, B. N. Bonnefoy, G. Baier, N. Isakov, and A. A. Itamten. 1996. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol. Cell. Biol. 16:5782–5791.

Moss, A. J., J. W. Tanner, P. M. Allen, and A. S. Shaw. 1994. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.