Fusarium Infection
Report of 26 Cases and Review of 97 Cases From the Literature

Maged Muhammed, MD,* Theodora Anagnostou, MD,* Athanasios Desalermos, MD, Themistoklis K. Kourkoumpetis, MD, Herman A. Carneiro, MBBS, MSc, Justin Glavis-Bloom, BA, Jeffrey J. Coleman, PhD, and Eleftherios Mylonakis, MD, PhD

INTRODUCTION

Fusarium species, Aspergillus species, and Zygomycetes are the most clinically important molds. Fusarium species isolates are universally found in the environment and cause infection in both humans and plants.29,33,94,95,97 In humans, infection starts with the inhalation of Fusarium conidia or direct contact with materials contaminated with Fusarium conidia. Subsequently, conidia germinate and form filaments that invade the surrounding tissue when a suitable environment is offered.

There is a paucity of reports describing the predisposing factors and clinical characteristics of patients with Fusarium infection.77 The clinical presentation of fusariosis depends on the host’s immune status.140 Invasive infections, such as sinusitis, pneumonia, deep cutaneous infections, and disseminated infections, present in immunocompromised patients and most commonly manifest as fever not responding to antimicrobial medications.96 Specifically, neutropenia, deficits in cellular immunity, induction chemotherapy for leukemia, and hematopoietic cell transplantation are considered risk factors for the development of invasive fusariosis.15,96,98 On the other hand, immunocompetent patients present more frequently with superficial infections, such as keratitis and onychomycosis.19,49,50,60

In the current study, we describe the clinical characteristics of 26 patients with proven or probable invasive fusariosis managed at Massachusetts General Hospital (MGH) during a 10-year period and review the literature of cases with fusariosis published since January 2000, focusing on the therapeutic approach and outcome of patients.

PATIENTS AND METHODS

We identified patients with fusariosis treated at MGH from January 2000 to January 2010 by searching the records of the clinical microbiology laboratory at MGH, Boston, MA. We collected data by reviewing the electronic medical records of the patients; we retrieved their baseline characteristics, underlying diseases, treatment modalities, and outcome. We categorized all patients according to the revised definitions of the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/IFICG and NIAID/MSG) into proven and probable cases.

*These authors contributed equally to the study.

Abbreviations: COPD = chronic obstructive pulmonary disease, EORTC = European Organization for Research and Treatment of Cancer, FSSC = Fusarium solani species complex, G-CSF = granulocyte colony-stimulating factor, GM-CSF = granulocyte macrophage colony-stimulating factor, HSCT = hematopoietic stem cell transplant, IFICG = Invasive Fungal Infection Cooperative Group, MIC = minimum inhibitory concentration, MSG = Mycoses Study Group, MGH = Massachusetts General Hospital, NIAID = National Institute of Allergy and Infectious Diseases.
TABLE 1. Characteristics of 26 MGH Patients With Fusarium Infection

Patient	Age (yr)/Sex	Underlying Disease	Pathogen Source	Reason for Admission	Antifungal Prophylaxis Treatment	Treatment Trial or Empiric Therapy	Reason for Other Fungal Cause	Outcome	
1	45/F	Skin	Not significant	Excision for planter mass	NA	NA	NA	Recovered	
2	23/M	Blood, CSF, urine	Focal segmental glomerulosclerosis	Nausea and vomiting and headache	NA	NA	NA	Died	
3	20/F	Bronchial washings	Cystic fibrosis (lung transplant 1 yr ago)	NA	NA	NA	NA	Liposomal amphotericin B plus caspofungin (for Aspergillus)	Died
4	68/F	Skin	Not significant	NA	NA	NA	NA	Recovered	
5	4/M	Skin	Burn	NA	Voriconazole	NA	NA	Recovered	
6	17/F	Bone	Burn	NA	Voriconazole	NA	NA	Recovered	
7	55/M	Bronchial washings	Alpha-1-antitrypsin deficiency (lung transplant 2 mo ago)	NA	NA	NA	NA	Recovered	
8	59/F	Bronchial washings	Idiopathic pulmonary fibrosis (lung transplant 1 yr ago)	Motor vehicle accident	Liposomal amphotericin B plus caspofungin	NA	NA	Recovered	
9	66/F	Bronchial washings	COPD (lung transplant 15 yr ago)	NA	NA	NA	NA	Liposomal amphotericin B plus voriconazole	Recovered
10	8/F	Skin	Not significant	NA	NA	NA	NA	Liposomal amphotericin B plus voriconazole	Recovered
11	4/F	Skin	Burn	NA	NA	NA	NA	Liposomal amphotericin B plus micafungin	Died
12	59/M	Skin	Acute myelogenous leukemia	NA	NA	NA	NA	Fluconazole	Recovered
13	52/M	Skin	COPD (lung transplant 2 years ago)	Hospitalization assessment for end-stage liver disease	Fluconazole	NA	NA	Liposomal amphotericin B plus voriconazole	Recovered
14	19/F	Bronchial washings	Cystic fibrosis, (lung transplant 2 years ago)	Fever and shortness of breath	Fluconazole	NA	NA	Vericonazole	Recovered

2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Patient	Age	Gender	Site	Condition	Symptoms	Treatments	Outcome	
15	36F	Skin	Burn	Burn		NA	M RAFV	
16	52M	Blood culture	B-cell lymphoma	Abdominal pain and nausea and vomiting	M RAFV	Voriconazole plus (surgical debridement)	NA	
17	51M	Bronchial washings	COPD, and TB	Shortness of breath, chest pain, cough, and fever	Liposomal amphotericin B plus voriconazole	NA	Died	
18	63M	Blood	Acute myelogenous leukemia	Anemia, shortness of breath, hyperuricemia	Fluconazole	NA	Voriconazole	NA
19	42F	Blood and left inguinal nodes	Not significant	Fever due to infection in the groin region after catheterization	NA	Voriconazole	NA	
20	44M	Bronchial washings	Idiopathic pulmonary fibrosis (lung transplant 4 mo ago)	Respiratory failure	Liposomal amphotericin B plus voriconazole	NA	Died	
21	15F	Skin	Burn			Liposomal amphotericin B plus (surgical debridement)	NA	
22	39F	Bronchial washings	Hodgkin disease, autologous stem cell transplant 3.5 yr ago	Shortness of breath	Liposomal amphotericin B plus voriconazole	NA	Died	
23	53M	Blood culture	Acute myelogenous leukemia	Chemotherapy	Liposomal amphotericin B plus voriconazole	NA	Recovered	
24	7M	Skin	Asthma	Motor vehicle accident	Voriconazole (extensive debridement)	NA	Recovered	
25	56F	Skin	Lung cancer, burn	Burn	Liposomal amphotericin B plus voriconazole (then D/C) and surgical debridement	NA	NA	
26	54F	Sputum	Lung cancer and COPD		Itraconazole	NA	Recovered	

Abbreviations: CSF = cerebrospinal fluid, NA = not applicable, TB = tuberculosis.

* Patients 3, 7, 8, 9, 14, and 20 have previously been reported.
In our literature review, we identified published cases of fusariosis in the English literature by searching the MEDLINE database (National Library of Medicine, Bethesda, MD) using the terms “Fusarium” or “fusariosis.” Non-English language studies, expert commentaries, and abstracts from scientific meetings were excluded. Of note, in order to focus on invasive fusariosis, we also excluded patients with superficial localized infections, such as keratitis and onychomycosis. Finally, we excluded cases with positive cultures for Fusarium species but without histopathologic confirmation, and cases with limited data.

RESULTS

Case Series

We identified 26 patients with proven (n = 20) or probable (n = 6) invasive fusariosis. The mean age was 38 years (range, 4–68 yr). Table 1 represents the baseline patient characteristics. The most common underlying conditions included burns (n = 7), lung transplantation (n = 6, performed 2 mo, 4 mo, 1 yr, 1 yr, 2 yr, and 15 yr before the diagnosis of fusariosis was established) and hematologic malignancies (n = 5), such as acute myeloid leukemia (n = 3), B-cell lymphoma (n = 1), and Hodgkin lymphoma treated with stem cell transplantation 3.5 years before the index hospitalization (n = 1). Less frequent underlying diseases included focal segmental glomerulosclerosis (n = 1), end-stage liver disease (n = 1), chronic obstructive pulmonary disease (COPD) and tuberculosis (n = 1), lung cancer and COPD (n = 1), and asthma (n = 1). Of note, 3 patients had no comorbidities. Twelve patients were receiving immunosuppressive therapy at the time of admission, including cancer chemotherapy (n = 9), calcineurin inhibitors (n = 5), such as tacrolimus or cyclosporine and steroids (n = 2). Six patients developed fusariosis while receiving antifungal agents for prophylaxis, specifically fluconazole (n = 4), micafungin (n = 1), and voriconazole (n = 1).

Skin was the most common site of infection (n = 11; 8 proven and 3 probable), followed by lung (n = 8 proven) and disseminated infection (n = 7; 4 proven and 3 probable). No speciation of Fusarium species was performed by the clinical laboratory of MGH. The minimum inhibitory concentration (MIC) of antifungal agents was determined for 4 isolates. Two were resistant to voriconazole (≥8 µg/mL) and 2 to both voriconazole and amphotericin B (≥8 µg/mL).

The diagnosis of skin fusariosis was established with cultures from the skin growing Fusarium species (n = 11) and skin biopsy (n = 8). Regarding the therapeutic management of skin fusariosis, 4 patients received medical treatment alone; 3 received combination therapy and died (liposomal amphotericin B/voriconazole: n = 2; and liposomal amphotericin B/micafungin: n = 1); and 1 received monotherapy with voriconazole and was cured. Five patients received both surgical and antifungal therapy; 3 received combination therapy (1 liposomal amphotericin B/micafungin and recovered, 1 voriconazole/micafungin and recovered, and 1 liposomal amphotericin B and voriconazole and died) and 2 received monotherapy (1 liposomal amphotericin B lost to follow-up and 1 voriconazole and recovered). Finally, 2 patients were treated surgically only and recovered. We note that 2 patients received granulocyte colony-stimulating factor (G-CSF) and G-CSF combined with granulocyte macrophage colony-stimulating factor (GM-CSF), respectively, for neutropenia (Table 2). Overall, 4 of 6 patients who received combination therapy died (66.7% mortality), and 1 of them had undergone subsequent surgery. On the other hand, none of the patients who received monotherapy, surgical treatment alone, or monotherapy with surgical treatment died.

Patients with pulmonary fusariosis presented with shortness of breath (n = 6), fever (n = 6), cough (n = 3), fatigue (n = 2), and chest pain (n = 1), and Fusarium species were isolated from bronchial washings (n = 7) and sputum (n = 1). Regarding the treatment administered, 4 patients received monotherapy and recovered (voriconazole: n = 3; itraconazole: n = 1), while 4 received combination therapy (2 liposomal amphotericin B/voriconazole and died, 1 liposomal amphotericin B/caspofungin and died, and 1 inhaled amphotericin B and oral voriconazole and recovered). Overall, 3 of 4 patients who were treated with combination therapy died (75% mortality), while none of the patients treated with monotherapy died. Of note, as shown in Tables 1 and 2, 5 of the 8 cases of pulmonary fusariosis have previously been described.17 Patients with disseminated fusariosis presented with various clinical symptoms, including nausea and vomiting (n = 2), shortness of breath (n = 2), and fever (n = 1), and all of them had blood cultures positive for Fusarium species. Three patients were treated with combination therapy (liposomal amphotericin B/voriconazole, 2 died and 1 recovered), 3 patients received monotherapy with voriconazole and recovered, while 1 patient received no therapy and died (fusariosis was diagnosed after death). Overall, 2 of 3 patients who received combination therapy died (66.7% mortality), while none of the patients treated with monotherapy died. Of note, as shown in Tables 1 and 2, 1 case of disseminated fusariosis has previously been reported.17

Literature Review

We identified 97 cases of invasive fusariosis from the literature published since 2000.1

In our literature review, we identified published cases of fusariosis from the English literature by searching the MEDLINE database (National Library of Medicine, Bethesda, MD) using the terms “Fusarium” or “fusariosis.” Non-English language studies, expert commentaries, and abstracts from scientific meetings were excluded. Of note, in order to focus on invasive fusariosis, we also excluded patients with superficial localized infections, such as keratitis and onychomycosis. Finally, we excluded cases with positive cultures for Fusarium species but without histopathologic confirmation, and cases with limited data.
TABLE 2. Treatment and Outcome of 26 MGH Patients

Skin fusariosis (n = 11)*	Adjunct therapy (n = 8)	Outcome	
Medical therapy (n = 9)	Liposomal amphotericin B/voriconazole (n = 3)	Surgery (n = 1)	Died
Combination therapy (n = 6)	Liposomal amphotericin B/micafungin (n = 2)	Surgery (n = 1)	Died
Monotherapy (n = 3)	Voriconazole (n = 1)	Surgery (n = 1)	Died
No medical therapy (n = 2)	Liposomal amphotericin B (n = 1)	Surgery and G-CSF (n = 1)	Lost to follow-up

Pulmonary fusariosis (n = 8)	Adjunct therapy (n = 0)	Outcome	
Medical therapy (n = 8)	Liposomal amphotericin B/voriconazole (n = 2)	NA	Died*
Combination therapy (n = 4)	Liposomal amphotericin B/caspofungin (n = 1)	NA	Died†
Monotherapy (n = 4)	Voriconazole (n = 1)	Inhaled amphotericin B/voriconazole (n = 1)	Recovered†

Disseminated fusariosis (n = 7)	Adjunct therapy (n = 0)	Outcome	
Medical therapy (n = 6)	Liposomal amphotericin B/voriconazole (n = 1)	NA	Died†
Combination therapy (n = 3)	Liposomal amphotericin B/voriconazole (n = 2)	NA	Died*
Monotherapy (n = 3)	Voriconazole (n = 3)	Recovered*	
No medical therapy (n = 1)	NA	Recovered*	

*New MGH cases.
†Previously published MGH cases.

7 recovered; liposomal amphotericin B/flucytosine: n = 2, 1 recovered; liposomal amphotericin B/flucytosone: n = 1, recovered; liposomal amphotericin B/itraconazole: n = 1, recovered; itraconazole/terbinafine: n = 1, recovered; and liposomal amphotericin B/posaconazole/terbinafine: n = 1, recovered). Two patients had the combination of surgery and antifungal monotherapy and recovered (amphotericin B: n = 1; and voriconazole: n = 1), while 3 underwent only surgery and recovered. We note that 9 patients received G-CSF because of neutropenia, while 1 received granulocytes, and 1 received the combination of G-CSF and granulocytes. Overall, 5 of the 16 patients who received combination therapy died (31.3% mortality), while 2 of the 19 patients who received monotherapy died (12.5% mortality).

DISCUSSION

Herein we present 26 patients with proven or probable invasive fusariosis treated at a general hospital (MGH patients) and review 97 cases reported since 2000. Hematologic malignancies, solid organ transplantation, HSCT, or immunosuppressive therapy were the predominant underlying conditions, and the skin was the predominant site of infection in both MGH and literature cases. The most frequently identified species among literature patients were members of the Fusarium solani complex (49%; 29 of 59 isolates). The clinical presentation varied depending on the infected site; diagnosis was established with biopsy and culture. Blood cultures were positive in 86% of MGH patients and 82% of literature patients with disseminated fusariosis (82% of
TABLE 3. Treatment and Outcome of 97 Patients From the Literature

Initial Medical Therapy	Sequential Medical Therapy	Adjunct Therapy	Outcome
Skin fusariosis (n = 40)			
Combination therapy (n = 18)	Liposomal amphotericin B/voriconazole (n = 7)	NA (n = 5)	Died (n = 3)
Liposomal amphotericin B/voriconazole (n = 12)	G-CSF (n = 1)	Recovered (n = 2)	
Liposomal amphotericin B/itraconazole (n = 1)	G-CSF/granulocytes (n = 1)	Died (n = 1)	
Liposomal amphotericin B (n = 3)		G-CSF (n = 1)	Recovered (n = 2)
Posaconazole (n = 1)	Liposomal amphotericin B/flucytosine (n = 2)	NA (n = 1)	Died (n = 1)
Flucytosine (n = 1)	Liposomal amphotericin B/fluconazole (n = 1)	G-CSF (n = 1)	Recovered (n = 1)
Liposomal amphotericin B/fluconazole (n = 1)	Liposomal amphotericin B/fluconazole (n = 1)	NA (n = 1)	Recovered (n = 1)
Voriconazole (n = 1)	Liposomal amphotericin B/posaconazole/terbinafine (n = 1)	Granulocytes (n = 1)	Recovered (n = 1)
Itraconazole/terbinafine (n = 1)	Itraconazole/terbinafine (n = 1)	NA (n = 1)	Recovered (n = 1)
Monotherapy (n = 19)	Voriconazole (n = 8)	NA (n = 3)	Recovered (n = 7)
Liposomal amphotericin B/voriconazole (n = 1)	Voriconazole (n = 1)	Surgery (n = 1)	Recovered (n = 7)
Liposomal amphotericin B (n = 1)		G-CSF (n = 2)	Died (n = 1)
Liposomal amphotericin B/fluconazole (n = 1)	Liposomal amphotericin B (n = 3)	G-CSF (n = 3)	Recovered (n = 2)
Liposomal amphotericin B/fluconazole (n = 1)	Liposomal amphotericin B (n = 1)	G-CSF (n = 1)	Died (n = 1)
Liposomal amphotericin B/posaconazole/terbinafine (n = 1)	Itraconazole/terbinafine (n = 1)	NA (n = 1)	Recovered (n = 2)
Fluconazole (n = 2)		G-CSF (n = 1)	Recovered (n = 1)
Itraconazole (n = 1)		NA (n = 4)	Recovered (n = 2)
Itraconazole/terbinafine (n = 1)		Surgery (n = 1)	Recovered (n = 1)
No medical therapy (n = 3)			Recovered

Muhammad et al. Medicine & Volume 92, Number 6, November 2013

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Pulmonary fusariosis (n = 3)

Monotherapy (n = 3)	Voriconazole (n = 1)	Amphotericin B deoxycholate (n = 1)	Posaconazole (n = 1)	Voriconazole (n = 1)	Amphotericin B deoxycholate (n = 1)	Posaconazole (n = 1)	NA (n = 3)	Recovered (n = 3)

Disseminated fusariosis (n = 23)

Combination therapy (n = 7)	Liposomal amphotericin B/fluconazole (n = 2)	Liposomal amphotericin B/fluconazole (n = 2)	G-CSF (n = 2)	Recovered (n = 1) Died (n = 1)
	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B/voriconazole (n = 2)	G-CSF (n = 2)	Recovered (n = 2)
	Voriconazole (n = 1)	Liposomal amphotericin B/terbinafine (n = 2)	NA (n = 1)	Died (n = 1)
	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B/posaconazole (n = 1)	NA (n = 1)	Died (n = 1)
	Caspofungin/voriconazole (n = 1)	Liposomal amphotericin B/posaconazole (n = 1)	NA (n = 1)	Died (n = 1)
Monotherapy (n = 16)	Liposomal amphotericin B (n = 7)	Liposomal amphotericin B (n = 9)	NA (n = 4)	Recovered (n = 3) Died (n = 1)
	Voriconazole (n = 1)	G-CSF (n = 1)		Recovered (n = 4)
	Liposomal amphotericin B/voriconazole (n = 1)	NA (n = 1)		
	Voriconazole (n = 1)	G-CSF (n = 1)		
	Liposomal amphotericin B (n = 3)	Voriconazole (n = 4)	NA (n = 3)	Recovered (n = 2) Died (n = 1)
	Voriconazole/caspofungin (n = 1)	G-CSF/granulocytes (n = 1)	Recovered (n = 4)	
	Liposomal amphotericin B (n = 1)	Itraconazole (n = 1)	G-CSF (n = 1)	
	Liposomal amphotericin B/voriconazole/	Posaconazole (n = 1)	GM-CSF (n = 1)	
	caspofungin (n = 1)			
	Liposomal amphotericin B (n = 1)	Caspofungin (n = 1)	G-CSF (n = 1)	

Other infected sites (n = 6)

Nasal cavity (n = 2)	Liposomal amphotericin B (n = 2)	Voriconazole (n = 2)	NA (n = 6)	Recovered (n = 6)
Peritonitis (n = 2)	Liposomal amphotericin B/flucytosine (n = 1)	Liposomal amphotericin B/flucytosine (n = 1)	Liposomal amphotericin B/ketoconazole (n = 1)	Liposomal amphotericin B (n = 1)
Sinusitis (n = 1)	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B (n = 1)
Liver (n = 1)	Fluconazole (n = 1)	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B (n = 1)	Liposomal amphotericin B (n = 1)
all patients with disseminated disease). The most commonly used therapeutic scheme in MGH patients was monotherapy with voriconazole (n = 8, 0% mortality), followed by the combination of amphotericin B/voriconazole (n = 8, 87.5% mortality). On the contrary, literature patients were more frequently treated with monotherapy with amphotericin B (n = 19, 10.5% mortality), followed by the administration of voriconazole as monotherapy (n = 15, 6.7% mortality) and the combination of amphotericin B/voriconazole (n = 14, 35.7% mortality). Overall, the mortality rates of patients receiving combination therapy were higher than those of patients receiving monotherapy in both MGH and literature patients and for all infected sites. Also, patients who underwent surgical intervention exhibited lower mortality rates than patients treated with antifungal agents only.

Fusarium species are ubiquitous in the environment and can be found in soil and water. In humans, Fusarium species cause a wide spectrum of diseases, ranging from superficial infections to locally invasive and disseminated infections. Invasive and disseminated fusariosis occurs mostly in patients with compromised immune systems, and especially neutropenia. In fact, in our study 61.5% of MGH patients and 100% of literature patients were immunocompromised. The most frequent underlying disease in both the MGH and the published cases was hematologic malignancies (53% of patients overall), while other major underlying diseases included solid organ transplantation (15% of patients overall) and HSCT (15% of patients overall). Also, the majority of patients (63% of patients overall) were receiving immunosuppressive regimens at the time of diagnosis of fusariosis, and 31% were neutropenic.

Although the clinical presentation of invasive fusariosis is highly variable, high fever that is not responsive to antifungal agents, respiratory infections also occur frequently, while skin involvement represents either a primary site of infection or metastatic lesions from disseminated disease and manifests as papules, nodules, areas of necrosis, mycetomas, target lesions, or bullae. In the current study, the skin was one of the main sites of infection (54% of patients overall). Since fusariosis leads to fatal outcomes without treatment or when treatment is delayed, skin lesions in immunocompromised patients should be investigated aggressively.

The diagnosis of fusariosis is mainly based on culture of infected sites and histopathology, which require more than 5–7 days. This can cause a delay in treatment and result in fatalities. Moreover, the microscopic characteristics of Fusarium species are not always distinguishable from other molds, especially Aspergillus species, and therefore identification requires significant expertise. In addition, immunocompromised patients often receive prophylaxis with antifungal medications, which turn cultures for Fusarium species negative and render diagnosis more difficult. Thus, non-culture methods such as polymerase chain reaction (PCR) may be superior for detecting Fusarium species.

Since there are not enough data to support a solid evidence-based approach to the treatment of invasive fusariosis, improvement in this domain is mandatory. Medical intervention remains the mainstay of treatment. Amphotericin B monotherapy is considered an effective therapeutic approach in immunocompromised patients, according to previously published studies. Specifically, in a retrospective study, amphotericin B cured or stabilized 15 of 26 patients with invasive fusariosis. Moreover, posaconazole has been reported as a successful salvage treatment for patients with invasive fusariosis. Most clinicians start with either amphotericin B or voriconazole as first-line therapy. In the current study, amphotericin B was used as monotherapy in 1 MGH patient, who recovered, and in 19.6% of literature patients with a mortality rate of 10.5%. Voriconazole was also commonly administered (30.8% of MGH patients and 15.5% of literature cases, with mortality rates of 0% and 6.7%, respectively). Finally, the combination of amphotericin B/voriconazole was used in 30.8% of MGH patients and 14.4% of literature cases with mortality rates of 87.5% and 35.7%, respectively. These results show that monotherapy with voriconazole and monotherapy with amphotericin B are both successful in treating invasive fusariosis, since the difference in mortality is not significant.

Among patients with skin fusariosis, for MGH patients the mortality for those treated with combination therapy was 66.7% compared with 0% mortality for those treated with monotherapy and, for literature patients the mortality was 31.3% for those treated with combination therapy compared with 10.5% for those treated with monotherapy. MGH patients with pulmonary fusariosis had a mortality rate of 75%, while none of the literature patients treated with monotherapy died. Finally, disseminated disease led to a mortality rate of 66.7% in MGH patients treated with combination therapy compared to 0% in those treated with monotherapy, while the mortality rates for literature patients were 42.9% and 12.5%, respectively. The higher mortality rates of patients who received combination therapy may be explained by the fact that more severely ill patients tend to receive more medications and thus are more likely to be treated with combination therapy. Overall, the most effective antifungal therapy should be based on Fusarium species susceptibility testing. Although in the present series, the MIC of antifungal agents was determined for only 6 isolates, the resistance profiles of some of these isolates highlight the emerging resistance of Fusarium species to traditional antifungal regimens.

Finally, surgery was performed in 7 MGH patients with skin fusariosis (14.3% mortality), 5 literature patients with skin fusariosis (0% mortality), and 1 literature patient with disseminated infection (0% mortality). The mortality rates of patients who underwent surgery were lower compared to those who did not have surgery (rates of 75%, 19.4%, and 8.7%, respectively). This finding suggests that the surgical removal of focal lesions may result in better outcomes and thus should be considered for patients with skin or disseminated infections.

Despite medical intervention, invasive fusariosis has been linked to a high mortality rate. In the current report, the mortality rate was 50% among the MGH patients with disseminated fusariosis, 40% among patients with skin fusariosis, and 37.5% among patients with lung fusariosis. On the other hand, the mortality rates of the literature patients with disseminated, skin, and pulmonary fusariosis were 30%, 18%, and 0%, respectively. The higher mortality rates of the MGH patients in the current series may be attributed to their comorbidities, and the lower mortality rates of the literature patients may be due to a “publication bias.” A representative example of more comorbidities among MGH patients is the presence of burns (7.7%, n = 7 MGH patients vs 2.1%, n = 2 literature patients). This difference may lead to the observation of a higher mortality in the MGH patient population and may be explained by the fact that most case reports in the literature present patients with a favorable outcome and thus with fewer comorbidities. We note that 6 of 7 patients with burns had skin fusariosis. However, a true association between burns and skin fusariosis is difficult to establish, because of the small sample size of the MGH cohort.

In conclusion, the results of the current study suggest that monotherapy with voriconazole is equally effective to monotherapy with amphotericin B for the treatment of invasive fusariosis, and that the addition of surgery leads to better outcomes in patients with disseminated fusariosis.
with skin and disseminated fusariosis. More studies with larger sample sizes that will allow for stratification of the outcomes by disease severity are required to investigate the difference in the effectiveness of combination medical therapy versus monotherapy, with the low prevalence of invasive fusariosis being a limiting factor.

REFERENCES

1. Albisetti M, Launer RP, Gungor T, Schar G, Niggli FK, Nadal D. Disseminated Fusarium oxysporum infection in hemophagocytic lymphohistiocytosis. *Infection*. 2004;32:364–366.

2. Anandi V, Vishwanathan P, Sasikala S, Rangarajan M, Subramaniyan CS, Chidambaram N. Fusarium solani breast abscess. *Indian J Med Microbiol*. 2005;23:198–199.

3. Anten S, Hedderma ER, Visser O, Zweegman AS. Images in haematology. Cerebral fungal abscess in a patient with acute promyelocytic leukaemia. *Br J Haematol*. 2008;14:253.

4. Apostolidis J, Bouzani M, Bouzani M, Platsouka E, Belasiotou H, Stamouli M, Harhalakis N, Boutati EL, Paniara O, Nikiforakis E. Resolution of fungemia due to Fusarium species in a patient with acute leukemia treated with caspofungin. *Clin Infect Dis*. 2003;36:1349–1350.

5. Aquino VR, Vercosa EB, Falhauber G, Lunardi LW, Silla L, Pasqualetto AC. Distribution of filamentous fungi causing invasive fungal disease at the Haematological Unit, Hospital de Clinicas de Porto Alegre, Brazil. *Braz J Infect Dis*. 2010;14:277–280.

6. Asten B, McCarthy H, Wilkins B, Smith A, Duncombe A. Fatal disseminated fusarium infection in acute lymphoblastic leukaemia in complete remission. *J Clin Pathol*. 2001;54:488–490.

7. Bader M, Jafri AK, Krueger T, Kumar V. Fusarium osteomyelitis of the foot in a patient with diabetes mellitus. *Scand J Infect Dis*. 2005:35:895–896.

8. Banger JS, Singh JC. Cutaneous Fusarium infection in a renal transplant recipient: a case report. *J Med Case Reports*. 2011;5:205.

9. Barrios NJ, Kirkpatrick DV, Murciano A, Stine K, Van Dyke RB, Humbert JR. Successful treatment of disseminated Fusarium infection in an immunocompromised patient. *J Pediatr Hematol Oncol*. 1990;12:319–324.

10. Bibhash E, Kokolina E, Sigler L, Sofianos D, Tsakis D, Visvardis G, Papadimitriou M, Memmos D. Three cases of uncommon fungal peritonitis in patients undergoing peritoneal dialysis. *Perit Dial Int*. 2002;22:523–525.

11. Bodey GP, Boktour M, Mays M, Kontoyiannis D, Hachem R, Abel P, Kiefer T, Neumann T, Dolken G. Myocardial and aortal involvement in a case of disseminated infection with Fusarium solani after allogeneic stem cell transplantation: report of a case. *Mycoses*. 2009;52:372–376.

12. Carneiro HA, Coleman JJ, Restrepo A, Mylonakis E. Fusarium infection in lung transplant patients: report of 6 cases and review of the literature. *Medicine (Baltimore)*. 2011;90:69–80.

13. Cesaro S, Marinello S, Alessia B, Alaggio R, Rossi L, Toffolotti T, Putti MC, Gamba P. Successful treatment of disseminated fusariosis in a child with acute myelogenous leukaemia with medical and surgical approach. *Mycoses*. 2010;53:181–185.

14. Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao C, Jacobson LM, Crowell CS, Sneed RS, Lewis FM, Schaffzin JK, Kainer MA, Genese CA, Alfonso EC, Jones DB, Srinivasan A, Fridkin SK, Park BJ. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. *JAMA*. 2006;296:953–963.

15. Chi CC, Wang SH. Disseminated cutaneous Fusarium moniliforme infections in a leukemic child. *Int J Dermatol*. 2007;46:487–489.

16. Coccia S, Codeluppi M, Venturelli C, Bedini A, Grottola A, Gennari W, Cavinii F, Di Benedetto F, De Ruvo N, Rumpianesi F, Gerenda GE, Guaraldi G. Fusarium verticillioides fungemia in a liver transplantation patient: successful treatment with voriconazole. *Diagn Microbiol Infect Dis*. 2011;71:438–441.

17. Consigny S, Dheid N, Datry A, Choquet S, Leblond V, Chosidow O. Successful voriconazole treatment of disseminated fusarium infection in an immunocompromised patient. *Clin Infect Dis*. 2003;37:311–313.

18. Cooke NS, Feighery C, Armstrong DK, Walsh M, Dempsey S. Cutaneous Fusarium solani infection in childhood acute lymphoblastic leukaemia. *Clin Exp Dermatol*. 2009;34:117–119.

19. Cudillo L, Girimenca C, Santilli S, Picardi A, Dantamoro T, Tendas A, de Fabritiis P. Breakthrough fusariosis in a patient with acute lymphoblastic leukaemia receiving voriconazole prophylaxis. *Clin Infect Dis*. 2005;40:1212–1213.

20. Cudillo L, Tendas A, Picardi A, Dantamoro T, Del Principe ML, Amadori S, de Fabritiis P. Successful treatment of disseminated fusariosis with high dose liposomal amphotericin-B in a patient with acute lymphoblastic leukaemia. *Ann Hematol*. 2006;85:136–138.

21. Cuellar-Rodriguez J, Bravo LT, Oethinger M, Fraser T, Mossad SB. Disseminated fusariosis in a recipient of a bone-marrow transplant. *Lancet Infect Dis*. 2009;9:520.

22. Dai W, Dharamsi JW, Soliman S, Ricotti C, Gander R, Bergstresser P, Chan J. Cutaneous fusariosis developing in a post-irradiation site. *Dermatol Online J*. 2011;17:5.

23. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kaufmann CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Munoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaatou T, Bennett JE. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. *Clin Infect Dis*. 2008;46:1813–1821.

24. Dignani MC, Anaissie E. Human fusariosis. *Clin Microbiol Infect*. 2004;10:67–75.

25. Docei I, Gyetvai T, Kredics L, Nagy E. Involvement of Fusarium spp. in fungal keratitis. *Clin Microbiol Infect*. 2004;10:773–776.

26. Dombushe B, Hus O, Summerbell RC, Lass-Florl C, Lackner H, Schwerin W, Sozinho P, Urban C. Fusarium verticillioides abscess of the nasal septum in an immunosuppressed child: case report and identification of the morphologically atypical fungal strain. *J Clin Microbiol*. 2005;43:1998–2001.

27. Durand-Joly I, Alfandari S, Bencziko Z, Rodrigue M, Espinel-Ingroff A, Catteau B, et al. Successful outcome of disseminated Fusarium
infection with skin localization treated with voriconazole and amphotericin B lipid complex in a patient with acute leukemia. *J Clin Microbiol.* 2003;41:4898–4900.

33. Edupuganti S, Rouphael N, Melha A, Eaton M, Heller JG, Bressler A, Brandt M, O’Donnell K. Fusarium falciforme vertebral abscess and osteomyelitis: case report and molecular classification. *J Clin Microbiol.* 2011;49:2350–2353.

34. Elvers KT, Leeming K, Moore CP, Lappin-Scott HM. Bacterial-fungal biofilms in flowing water photo-processing tanks. *Appl Microbiol.* 1998;84:607–618.

35. Enochs DA, Ludlam HA, Brown NM. Invasive fungal infections: a review of epidemiology and management options. *J Med Microbiol.* 2006;55:809–818.

36. Evans J, Levesque D, de Lahunta A, Jensen JE. Intracranial fusariosis: a novel cause of fungal meningoencephalitis in a dog. *Vet Pathol.* 2004;41:510–514.

37. Fan Y, Willems L, Leboeuf C, Li W, Lacroix C, Robin M, Socie G, Ribaud P, Verneuil L, Janin A. Skin microvascular thrombosis in Fusarium infection in two early biopsied cases. *Case Rep Dermatol.* 2010;2:76–81.

38. Feramisco JD, Hsiao JL, Fox LP, Ruben BS. Angioinvasive Fusarium infection in two early biopsied cases. *J Clin Microbiol.* 2005;43:5278–5280.

39. Fergie JE, Huang DB, Purcell K, Milligan T. Successful treatment of Fusarium solani endocarditis successfully treated with liposomal amphotericin B and voriconazole. *Pediatr Infect Dis J.* 2004;23:1059–1061.

40. Halpern M, Balbi E, Carius L, Roma J, Gonzalez AC, Agoglia L, Covelo M, Araujo A, Guedes C, Alves J, Enne M, Martinho JM, Pacheco L. Cellulitis and nodular skin lesions due to Fusarium spp in liver transplant: case report. *Transplant Proc.* 2010;42:599–600.

41. Healy M, Reece K, Walton D, Huang J, Frye S, Raad II, Kontoyiannis DP. Use of the Diversi Lab System for species and strain differentiation of Fusarium species isolates. *J Clin Microbiol.* 2005;43:5278–5280.

42. Hennequin C, Abachin E, Syamonnas F, Lavarde V, Rebourx G, Nolard N, Berche P. Identification of Fusarium species involved in human infections by 28S rRNA gene sequencing. *J Clin Microbiol.* 1999;37:3586–3589.

43. Herbrecht R, Kessler R, Kravanja C, Meyer MH, Waller J, Letscher-Bru V. Successful treatment of Fusarium proliferatum pneumonia with posaconazole in a lung transplant recipient. *J Heart Lung Transplant.* 2004;23:1451–1454.

44. Hilmioglu-Polat S, Metin DY, Inci R, Dereli T, Kilince I, Tumbay E. Non-dermatophytic molds as agents of onychomycosis in Izmir, Turkey—a prospective study. *Mykopathologia.* 2005;160:125–128.

45. Ho DY, Lee JD, Rosso F, Montoya JG. Treating disseminated fusariosis: amphotericin B, voriconazole or both? *Mycoses.* 2007;50:227–231.

46. Hsue HC, Ruan SY, Kuo YL, Huang YT, Hsu RH PR. Invasive infections caused by non-Aspergillus moulds identified by sequencing analysis at a tertiary care hospital in Taiwan, 2000–2008. *Clin Microbiol Infect.* 2010;16:1204–1206.

47. Hsu CK, Hsu MM, Lee YJ. Fusariosis occurring in an ulcerated cutaneous CD8+ T cell lymphoma tumor. *Eur J Dermatol.* 2006;16:297–301.

48. Huang WW, Gray C, Bowers R, Walk N, Lind A, Hornstra I. Painful necrotic nodules in an immunocompromised patient. *Transplant Proc.* 2004;36:439–444.

49. Hue FX, Huerre M, Rouffault MA, de Bievre C. Specific detection of Fusarium species in clinical specimens using real-time PCR. *J Clin Microbiol.* 1999;37:2434–2438.

50. Jakle C, Leek JC, Olson DA, Robbins DL. Septic arthritis due to Fusarium solani. *J Rheumatol.* 1983;10:151–153.

51. Jossi M, Ambrosioni J, Macedo-Vinas M, Garbino J. Invasive fusariosis with prolonged fungemia in a patient with acute lymphoblastic leukemia: case report and review of the literature. *Int J Infect Dis.* 2010;14:354–356.

52. Kapp M, Schargus M, Deuchert T, Springer J, Wendel F, Loeffler J, Proefrock AD, Ball D, Paplam P, Varma A, Kwon-Chung J, Segal BH. Successful treatment of disseminated fusariosis with posaconazole during neutropenia and subsequent allogeneic hematopoietic stem cell transplantation. *Transplant Infect Dis.* 2007;9:156–160.

53. Kurzai O, Heinz W, Einsele H, Stuhler G. Cellulitis and nodular skin lesions due to Fusarium spp in liver transplant: case report. *Transplant Proc.* 2010;42:599–600.

54. Lateef W, Kwan J, Yang G, Zich AL, Crist WL, Zhou SS, Chang DC, Park BJ. Postrecall surveillance following a multistate fusarium keratitis outbreak, 2004 through 2006. *JAMA.* 2007;298:2867–2868.

55. Leung CT, Warburton M, Jaffe DL, Forney LJ, Klatt DM, Clancy C, Dehority S. Virulence of Fusarium spp. as agents of onychomycosis in immunocompetent hosts. *Int J Dermatol.* 2000;39:419–421.

56. McGuire PM, Cooper L, Antia J, Onyemelikere M, Offermanns S. Fusarium oxysporum in a human with meningitis. *J Clin Microbiol.* 1999;37:272–276.

57. Gorman SR, Magiorakos AP, Zimmerman SK, Craven DE. Fusarium oxysporum mushroom in an immunocompetent host. *J Med Vet Mycol.* 2006;44:613–616.

58. Grant GB, Friskin S, Chang DC, Park BJ. Postrecall surveillance following a multistate fusarium keratitis outbreak, 2004 through 2006. *JAMA.* 2007;298:2867–2868.

59. Guarro J, Nucci M, Akiki T, Gene J, Barreiro MD, Goncalves RT. Fusarium spp. as agents of onychomycosis in immunocompetent hosts. *Int J Dermatol.* 2000;39:419–421.

60. Guilhermetti E, Takahachi G, Shinobu CS, Svidzinski TI. Fusarium spp. successful treatment with oral voriconazole. *Br J Dermatol.* 2004;150:777–778.
71. Kleinschmidt-Demasters BK. Disseminated Fusarium infection with brain abscesses in a lung transplant recipient. *Clin Neuropathol.*, 2009;28:417–421.

72. Koukourmpetis TK, Fuchs BB, Coleman JJ, Desalermos A, Mylonakis E. Polymerase chain reaction-based assays for the diagnosis of invasive fungal infections. *Clin Infect Dis.* 2012;54:1322–1331.

73. Kurien M, Anandi V, Raman R, Brahmadathan KN. Maxillary sinus fusariosis in immunocompetent hosts. *J Laryngol Otol.* 1992;106:733–736.

74. Labois A, Gray C, Lepretre S. Successful treatment of disseminated fusariosis with voriconazole in an acute lymphoblastic leukaemia patient. *Mycoses.* 2011;54:8–11.

75. Latenser BA. Fusarium infections in burn patients: a case report and review of the literature. *J Burn Care Rehabil.* 2003;24:285–288.

76. Letscher-Bru V, Campos F, Waller J, Randriamahazaka R, Candolfi E, Herbrecht R. Successful outcome of treatment of a disseminated infection due to Fusarium dimerum in a leukemia patient. *J Clin Microbiol.* 2002;40:1100–1102.

77. Lipoy B, Rihova H, Hanslianova M, Kocmanova I, Zaloudikova Z, Kaloudova Y, Suchanek I, Mager R, Krupicova H, Slezak M, Dutko M, Brychta P, Sevcikova A. Unsuccessful therapy of combined mycotic infection in a severely burned patient: a case study. *Acta Chir Plast.* 2009;51:83–84.

78. Lodato F, Tame MR, Montagnani M, Sambri V, Liguori G, Azzaroli F, LO Nigro L, Di Cataldo A, Ragusa R. Successful treatment of fusariosis with voriconazole in an acute lymphoblastic leukaemia patient due to Fusarium dimerum in a leukemia patient. *J Clin Microbiol.* 2009;47:733–737.

79. Lodato F, Tame MR, Montagnani M, Sambri V, Liguori G, Azzaroli F, LO Nigro L, Di Cataldo A, Ragusa R. Successful treatment of fusariosis with voriconazole in an acute lymphoblastic leukaemia patient due to Fusarium dimerum in a leukemia patient. *J Clin Microbiol.* 2009;47:733–737.

80. Macedo DP, Neves RP, Fontan J, Souza-Motta CM, Lima D. A case of disseminated Fusarium infection in a child with acute lymphoblastic leukemia. *Liver Transpl.* 2010;16:103–107.

81. Madariaga MG, Kohl S. Disseminated fusariosis presenting with pulmonary nodules following a line infection. *Braz J Infect Dis.* 2006;10:419.

82. Madhavan M, Ratnarker C, Veliaith AJ, Kanugo R, Smile SR, Bhat S. Primary disseminated fusarial infection. *Postgrad Med J.* 1992;68:143–144.

83. Mansur AT, Artunkal S, Ener B. Fusarium oxysporum infection of stasis ulcer: eradication with measures aimed to improve stasis. *Mycoses.* 2009;54:205–207.

84. Mellioul F, Kosouri H, Barbouche R, Maamer M, Hamed LB, Hmida S, Hassen AB, Bejaoui M. Successful treatment of Fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions. *Braz J Infect Dis.* 2010;14:10.

85. Mikulska M, Furfaro E, Del Bono V, Gualandi F, Raiola AM, Molinari MP, Gritti P, Sanguinetti M, Posteraro B, Bacigalupo A, Viscoli C. Successful treatment of disseminated Fusarium infection in an immunocompromised patient. *Acta Chir Plast.* 2010;52:6.

86. Muller C, Schumacher U, Gregor M, Lamprecht G. How successful treatment of disseminated Fusarium infection in an immunocompromised patient: a case report. *Mycoses.* 2011;54:8–11.

87. Neuburger S, Massenkeil G, Seibold M, Lutz C, Tamm I, Le Coutre P, Graf B, Doerken B, Arnold R. Successful salvage treatment of disseminated cutaneous fusariosis with liposomal amphotericin B and terbinafine after allogeneic stem cell transplantation. *Transpl Infect Dis.* 2008;10:290–293.

88. Nirenberg in an apparently immunocompetent patient. *Mycoses.* 2004;47:3456–3461.

89. Nucci M, Anaissie E. Fusarium infections in healthy and immunocompromised hosts: implications for diagnosis and management. *Clin Infect Dis.* 2002;35:909–920.

90. Nucci M, Anaissie E. Emerging fungi. *Infect Dis Clin North Am.* 2006;20:563–579.

91. Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. *Clin Microbiol Rev.* 2007;20:695–704.

92. Nucci M, Anaissie EJ, Queiroz-Telles F, Martins CA, Trabasso P, Solza C, Mangini C, Simoes BP, Colombo AL, Vaz J, Levy CE, Costa S, Moreira VA, Oliveira JS, Paraguay N, Duboc G, Voltarelli JC, Maiolino A, Pasquinii R, Souza CA. Outcome predictors of 84 patients with hematologic malignancies and Fusarium infection. *Cancer.* 2003;98:315–319.

93. Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. *Clin Microbiol Rev.* 2007;20:695–704.

94. Nucci M, Anaissie EJ, Queiroz-Telles F, Martins CA, Trabasso P, Costa S, Voltarelli JC, Colombo AL, Imhof A, Pasquinii R, Maioiino A, Souza CA, Anaissie E. Fusarium infection in hematopoietic stem cell transplant recipients. *Clin Infect Dis.* 2004;38:1237–1242.

95. Nunes MD, Barbosa FB, Gomes GH, Trauilo R, Ferraciddleo MF, Ferrari TC. Fatal right-sided endocarditis caused by Fusarium in an immunocompromised patient: a case report. *Mycoses.* 2011;54:460–462.

96. Okada H, Hamatani S, Kondo M, Imai T, Itoh S, Iose K, Onishi S. Successful treatment of disseminated Fusarium infection in an infant with leukemia. *Int J Hematol.* 2000;72:494–498.

97. Oliveira JS, Kerbauy FB, Colombo AL, Bahia DM, Pinheiro GS, Silva MR, Ribeiro MS, Raineri G, Kerbauy J. Fungal infections in marrow transplant recipients under antifungal prophylaxis with fluconazole. *Braz J Med Biol Res.* 2003;35:798–799.

98. Pagano L, Girmenia C, Mele L, Ricci P, Tosti ME, Nosari A, Buelli M, Picardi M, Allione B, Corvatta L, D’Antonio D, Montillo M, Melillo L, Chierichini A, Cenaachci A, Tomso A, Cudillo L, Candoni A, Savignano C, Bonini A, Martino P, Del Favero A. Infections caused by filamentous fungi in patients with hematologic malignancies. A report of 391 cases by GIMEFA Infection Program. *Haematologica.* 2001;86:862–870.

99. Palmore TN, Shea YR, Childs RW, Sherry RM, Walsh TJ. Fusarium proliferatum soft tissue infection at the site of a puncture by a plant: recovery, isolation, and direct molecular identification. *J Clin Microbiol.* 2010;48:338–342.

100. Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR, Baddley JW, Brown JM, Brumble LM, Freifeld AG, Hadley S, Herwaldt L, Ito JL, Kaufmann CA, Lyon GM, Marr K, Morrison MP, Ganciulao G, Patterson TF, Perl TM, Schuster MG, Walker R, Wingard JR, Walsh TJ, Kontoyiannis DP. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001–2006. *Emerg Infect Dis.* 2011;17:1855–1864.

101. Patterson TF, Mackool BT, Gilman MD, Prins A. Case records of the Massachusetts General Hospital. Case 22–2009. A 59-year-old man with skin and pulmonary lesions after chemotherapy for leukemia [corrected]. *N Engl J Med.* 2009;361:287–296.
106. Pelgroche-Llacsahuanga H, Manegold E, Kroll G, Haase G. Case report. Pathohistological findings in a clinical case of disseminated infection with Fusarium oxysporum. *Mycoses*. 2000;43:367–372.

107. Pereiro M Jr, Abalde MT, Zulaica A, Caeiro JL, Florez A, Peteiro C, Toribio J. Chronic infection due to Fusarium oxysporum mimicking lupus vulgaris: case report and review of cutaneous involvement in fusariosis. *Acta Derm Venereol*. 2001;81:51–53.

108. Perez-Perez L, Pereiro M Jr, Sanchez-Aguilar D, Toribio J. Ulcerous lesions disclosing cutaneous infection with Fusarium solani. *Acta Derm Venereol*. 2007;87:422–424.

109. Perfect JR. Treatment of non-Aspergillus moulds in immunocompromised patients, with amphotericin B lipid complex. *Clin Infect Dis*. 2005;40:401–408.

110. Pflugfelder SC, Flynn HW Jr, Zwiecky TA, Forster RK, Tsiligianni A, Perfect JR. Treatment of non-Aspergillus moulds in immunocompromised patients, with amphotericin B lipid complex. *Mycoses*. 2007;50:424–429.

111. Raad II, Hachem RY, Herbrecht R, Graybill JR, Hare R, Corcoran G, Rippon JW, Larson RA, Rosenthal DM, Clayman J. Disseminated Fusarium infection presenting as bilateral endogenous endophthalmitis. *Arch Ophthalmol*. 2005;123:702–703.

112. Rezaei KA, Elliott D, Plous O, Vazquez JA, Abrams GW. Disseminated Fusarium infection mimicking lupus vulgaris: case report and review of cutaneous involvement in fusariosis. *Acta Derm Venereol*. 2006;42:1398–1403.

113. Rodriguez CA, Lujan-Zilbertman J, Woodard P, Andreansky M, Raad II, Hachem RY, Herbrecht R, Graybill JR, Hare R, Corcoran G, Rippon JW, Larson RA, Rosenthal DM, Clayman J. Disseminated Fusarium infection mimicking lupus vulgaris: case report and review of the literature. *Mycopathologia*. 1988;95:19–30.

114. Raad II, Hachem RY, Herbrecht R, Graybill JR, Hare R, Corcoran G, Kontoyiannis DP. Posaconazole as salvage treatment for invasive fusariosis in patients with underlying hematologic malignancy and other conditions. *Clin Infect Dis*. 2006;42:1398–1403.

115. Rodriguez-Villabobos H, Georgala A, Beguin H, Heymans C, Pye G, Crokaert F, Aoun M. Disseminated infection due to Cylindrocarpon (Fusarium) lichenicola in a neutropenic patient with acute leukemia: report of a case and review of the literature. * Eur J Clin Microbiol Infect Dis*. 2003;22:62–65.

116. Rodriguez CA, Lujan-Zibermann J, Woodard P, Andreansky M, Adderson EE. Successful treatment of disseminated fusariosis. *Bone Marrow Transplant*. 2003;31:411–412.

117. Romano C, Caposciutti P, Ghirardi A, Miracco C, Fimiani M. A case of localised cutaneous fusariosis due to Fusarium oxysporum. *Mycopathologia*. 2010;170:39–46.

118. Rothe A, Seibold M, Hoppe T, Seifert H, Engert A, Caspar C, Karthaus M, Fatkenheuer G, Bethe U, Tintelnot K, Cornely OA. Combination therapy of disseminated Fusarium oxysporum infection with terbinfine and amphotericin B. *Ann Hematol*. 2004;83:394–397.

119. Ruiz N, Fernandez-Martos C, Romero I, Pla A, Maizel J, Calatrava A, Guillem V. Invasive fungal infection of an otherwise healthy patient. *Acta Derm Venereol*. 2007;87:422–424.

120. Sampathkumar P, Paya CV. Fusarium infection after solid-organ transplantation. *Clin Infect Dis*. 2001;32:1237–1240.

121. Sanders A, Beyer U, Amberg R. Systemic Fusarium oxysporum infection in an immunocompetent patient with an adult respiratory distress syndrome (ARDS) and extracorporeal membrane oxygenation (ECMO). *Mycoses*. 1998;41:109–111.

122. Saw SM, Ooi PL, Tan DT, Khor WB, Fong CW, Lim J, Cajucom-Uy HY, Heng D, Chew SK, Aung T, Tan AL, Chan CL, Ting S, Tambyah PA, Wong TY. Risk factors for contact lens-related fusarium keratitis: a case-control study in Singapore. *Arch Ophthalmol*. 2007;125:611–617.

123. Selleslag D. A case of fusariosis in an immunocompromised patient successfully treated with liposomal amphotericin B. *Acta Biomed*. 2006;77:32–35.

124. Sierra-Hoffman M, Paltiyevich-Gibson S, Carpenter JL, Hurley DL. Fusarium osteomyelitis: case report and review of the literature. *Scand J Infect Dis*. 2005;37:237–240.

125. Stanzani M, Vianelli N, Bandini G, Paolini S, Arpinati M, Bonifazi F, Giannini B, Agostinelli C, Baccarani M, Ricci P. Successful treatment of disseminated fusariosis after allogeneic hematopoietic stem cell transplantation with the combination of voriconazole and liposomal amphotericin B. *J Infect*. 2006;53:243–246.

126. Sturm AW, Graver W, Kwee WS. Disseminated Fusarium oxysporum infection in patient with heatstroke. *Lancet*. 1989;1:968.

127. Taj-Aldeen SJ, Gene J, Al Bozom I, Buzina W, Cano JF, Guarro J. Gangrenous necrosis of the diabetic foot caused by Fusarium acutatum. *Med Mycol*. 2006;44:547–552.

128. Terada M, Fujita J, Watanabe S, Kawasaki M, Tanabe H, Anzawa K, Mochizuki T. Oleronan bursa with Fusarium solani infection in an otherwise healthy patient. *Mycoses*. 2011;54:853–855.

129. Testerman GM, Steagall MK, Colquitt LA, Maki A. Disseminated Fusarium infection in a multiple trauma patient. *South Med J*. 2008;101:320–323.

130. Tezcan G, Ozhak-Baysan B, Alastruey-Izquierdo A, Ogune D, Ongut G, Yildiran ST, Hazar V, Cunca-Estrella M, Rodriguez-Tudela JL. Disseminated fusariosis caused by Fusarium verticillioides in an acute lymphoblastic leukemia patient after allogeneic hematopoietic stem cell transplantation. *J Clin Microbiol*. 2009;47:278–281.

131. Tomimori-Yamashita J, Ogawa MM, Hirata SH, Fischman O, Michalany NS, Yamashita HK, Alchorne M. Mycetoma caused by Fusarium solani with osteolytic lesions on the hand: case report. *Mycopathologia*. 2002;153:11–14.

132. Vagace JM, Sanz-Rodriguez C, Casado MS, Alonso N, Garcia-Dominguez M, de la Llana FG, Zarallo L, Fajardo M, Bajo R. Resolution of disseminated fusariosis in a child with acute leukemia treated with combined antifungal therapy: a case report. *BMC Infect Dis*. 2007;7:40.

133. Vazquez JA, Singh S, Elliott D, Puklin J, Ben-Joseph AM, Abrams GW. Rapid molecular diagnosis of a disseminated fungal infection presenting as sudden bilateral visual loss in a patient with acute myeloid leukemia. *Clin Adv Hematol Oncol*. 2006;4:914–916.

134. Vincent AL, Cabrero JE, Greene JN, Sandin RL. Successful voriconazole therapy of disseminated Fusarium solani in the brain of a patient with acute leukemia. *J Clin Microbiol*. 2003;41:1401–1404.

135. Viviani MA, Cofrancesco E, Boschetti C, Tortorano AM, Cortellaro M. Erdication of Fusarium infection in a leukopenic patient treated with liposomal amphotericin B. *Mycoses*. 1991;34:255–256.

136. White PL, Perry MD, Barnes RA. An update on the molecular diagnosis of invasive fungal disease. *FEMS Microbiol Lett*. 2009;296:1–10.

137. Yera H, Bougnoux ME, Jeannot C, Baichen MT, De Pineux G, Dupouy-Camet J. Mycetoma of the foot caused by Fusarium solani: identification of the etiologic agent by DNA sequencing. *J Clin Microbiol*. 2003;41:1805–1808.

138. Yun SJ, Shin MG, Choi C, Kim HJ, Lee JB, Kim SJ, Lee SC, Won YH. Fatal disseminated angioinvasive Fusarium falicorne infection in a patient with acute myeloid leukemia. *Br J Dermatol*. 2007;157:407–409.

139. Zhang CZ, Fung MA, Eisen DB. Disseminated fusariosis presenting as panniculitis-like lesions on the legs of a neutropenic girl with acute lymphoblastic leukemia. *Dermatol Online J*. 2009;15:5.