Full counting statistics and the Edgeworth series for matrix product states

Yifei Shi and Israel Klich

Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
E-mail: ys2ea@virginia.edu and ik3j@virginia.edu

Received 28 February 2013
Accepted 27 March 2013
Published 7 May 2013

Online at stacks.iop.org/JSTAT/2013/P05001
doi:10.1088/1742-5468/2013/05/P05001

Abstract. We consider the full counting statistics of spin in matrix product states. In particular, we study the approach to a Gaussian distribution for magnetization. We derive the asymptotic corrections to the central limit theorem for magnetization distribution for finite but large blocks in analogy to the Edgeworth series. We also show how central limit theorem like behavior is modified for certain states with topological characteristics such as the AKLT state.

Keywords: solvable lattice models, mesoscopic systems (theory), spin chains, ladders and planes (theory), entanglement in extended quantum systems (theory)
1. Introduction

With the advantage of precision experiments in condensed matter physics, it is now possible to probe the nature of correlated quantum systems to ever higher degrees of detail and precision. This is especially apparent in cold atom systems, where in addition to refined correlation measurements, we also have fine control of the Hamiltonian parameters themselves. One of the most useful ways of studying detailed correlations in the intermediate regime between the macroscopic, thermodynamic properties, and the microscopic, atom by atom level, is through the full counting statistics functions. These describe the full probability distribution of suitable observables, such as the magnetization of a block of spins in a spin chain or the total excess charge flowing through a quantum point contact.

The full counting statistics function (FCS) contains detailed information about the properties of the state. It has been a useful tool to analyze quantum states, from its original appearance in quantum optics, in the theory of photon detectors [1, 2] in quantum optics to counting statistics of electrons in mesoscopic systems introduced by Levitov and Lesovik [3]. The full counting statistics has been studied in numerous electronic systems theoretically [4]–[8] as well as in experiments [9, 10]. The utility of full counting statistics for cold atoms was pointed out in [11]. It has also been demonstrated that in certain cases counting statistics may be used to characterize block entanglement entropy in fermion states and spin states [12]–[14]. Recently, the analyticity properties of the ‘bulk’ component of the full counting statistics in classical Ising and quantum XY spin chains have been used as an alternative characterization of phases [15].

Here, we explore the quantum noise in an important class of 1d states, the so called matrix product states (MPSs) [16]. Such states appear as the ground states of frustration free Hamiltonians, and are especially useful as variational states to study other 1d quantum systems. Indeed, matrix product states have been shown to be well suited for the
approximation of ground states of gapped Hamiltonians \cite{17, 18}. For an extensive review of MPSs, their properties, and their relation to the density matrix renormalization group (DMRG) algorithm see \cite{19, 20}. We also mention that MPSs possess convenient properties that allow a thorough study of correlations and fluctuations in them, for example, an analogue of the Wick’s theorem has been demonstrated for generic translationally invariant MPSs in \cite{21}. Finally, we remark that our results also hold for nonquantum states as long as the probability distribution of certain measurements may be described in terms analogous to MPSs, a prominent example for which is the exact solution of the 1D asymmetric exclusion process \cite{22}. In \cite{23} counting statistics was explored for a quantum-dot chain, in a regime corresponding to the totally asymmetric simple exclusion process, and in \cite{24} the full counting statistics for the asymmetric exclusion model were computed exactly for finite size systems.

Here, we concentrate on the corrections to central limit theorem (CLT) like behavior of the full counting statistics. The central limit theorem is a description of the statistics of averages of independent random variables, stating that properly weighted averages tend to a Gaussian distribution when the number of random variables is large. Since the correlation length in an MPS, say, is finite, one may expect Gaussian like behavior for the magnetization of large blocks of spins. We find that the simple structure of the MPS allows us to not only do this but much more: we can controllably identify how the central limit of magnetization is reached, what the main corrections are (a consequence of entanglement in the system) and show how CLT may sometimes completely fail in cases of topological states.

The distribution of magnetization approach to Gaussian behavior at large spin blocks is substantially more intricate for the MPS as opposed to independent random variables. To address this behavior we concentrate on deriving the asymptotic probability distribution and corrections to it. While in many cases, even when the distribution seems Gaussian in the infinite block size limit, the corrections due to finite block size are modified. Such corrections are described for independent, identically distributed variables using various asymptotic series such as the Gram–Charlier A series and the Edgeworth series \cite{25, 26}. The Edgeworth series has been extensively studied in the mathematical literature, with the focus on ensuring its applicability when dealing with random identically distributed variables, which may have divergent moments, see e.g. \cite{27}–\cite{29}.

Here, we derive an expression for the asymptotic corrections to the central limit error function of MPSs in analogy to the asymptotic Edgeworth series. We start by deriving formulas for the full counting statistics generating function.

2. Full counting statistics for matrix product states

2.1. General formula

Let us consider an MPS with periodic boundary conditions on N spins, defined as follows:

$$
\psi = \sum_{\{\sigma_i\}} \text{Tr} \left(A_{\sigma_1} A_{\sigma_2} \cdots A_{\sigma_N} \right) |\sigma_1 \sigma_2 \cdots \sigma_N \rangle \tag{1}
$$

where $A_\sigma \in \{A_1, \ldots, A_S\}$, S is the spin index, and $\sigma_i \in \{1, \ldots S\}$. The matrices A are of size $D \times D$, where D is called the bond dimension.
To express the full counting statistics of the spin variable σ, we define
\[E(\lambda) = \sum_\sigma e^{i\lambda \sigma} \tilde{A}_\sigma \otimes A_\sigma. \]
(2)

The full counting statistics generating function of the magnetization of a block of l sites is then given by
\[\chi(\lambda; l; N) \equiv \sum_n \text{prob(total spin of block} = n) e^{i\lambda n} = \langle e^{i\lambda \hat{S}_l} \rangle = \frac{\text{Tr} E(\lambda)^l E(0)^N - l}{\text{Tr} E(0)^N}. \]
(3)

Here $\hat{S}_l = \sum_{i=1}^l \hat{\sigma}_i$ where $\hat{\sigma}_i$ is a spin operator at site i. When considering the thermodynamic limit, we add, as is usual, the demand that $\sum_{\sigma} \sigma A_{\sigma} A_{\bar{\sigma}}^+ = I$.

This ensures that the largest eigenvalue of $E(0)$ is $\lambda = 1$. In addition, when dealing with problems in the thermodynamic limit we assume that this largest eigenvalue is non-degenerate. In the thermodynamic limit, we define
\[\chi(\lambda; l) \equiv \lim_{N \to \infty} \chi(\lambda; l; N). \]
(5)

The existence of the limit is assured by the conditions above. To compute $\chi(\lambda; l)$ we define $P(\lambda)$ to be the matrix which brings $E(\lambda)$ to its Jordan form, with Jordan blocks J_k arranged such that the block with the largest eigenvalue is J_1. Note that the number of blocks as well as eigenvalues depends on λ. We have
\[E(\lambda)^l = P(\lambda)(\oplus_{k=1}^l J_k^l) P^{-1}(\lambda). \]
(6)

We assume that $\langle |i\rangle$ and $|i\rangle$ are the left and right eigenvectors of $E(\lambda)$, and $i = 1$ corresponds to the largest eigenvalue, and note that if there is no degeneracy,
\[E(0)^N \to P(0)|1\rangle \langle 1| P^{-1}(0). \]
(7)

Therefore, the full counting statistics function is given by
\[\chi(\lambda; l) = \langle 1| P^{-1}(0) P(\lambda)(\oplus_{k=1}^l J_k^l) P^{-1}(\lambda) P(0)|1\rangle. \]
(8)

Let $\alpha_k(\lambda)$ be the diagonal value of J_k. We can compute explicitly the power of a Jordan block, obtaining after some algebra the formula
\[\chi(\lambda; l) = \sum_{k=1}^{d_k} \sum_{i=1}^{\min(l,d_k)-i} \sum_{\nu=0}^{\min(l,d_k) - \nu} C^l_{\nu} Q_{k,i,\nu} \alpha_k^{l-\nu} \]
(9)

where C^l_{ν} are the binomial coefficients, d_k is the dimension of Jordan block k and
\[Q_{k,i,\nu}(\lambda) = \left< i + \nu + \sum_{n=0}^{k-1} d_n | P^{-1}(\lambda) P(0)|1\right> \left< 1| P^{-1}(0) P(\lambda)| i + \nu + \sum_{n=0}^{k-1} d_n \right>. \]
(10)

Note that in equation (9), Q, α_k as well as the limits in the sum depend on λ implicitly. Since the largest eigenvalue 1 of $E(0)$ is non-degenerate, we have that $Q_{1,1,0}(0) = 1$ and $Q_{k,i,\nu}(0) = 0$ for all other values of k, i, ν. It is also important to note that since, generically,
eigenvalues do not cross, we expect that we may set \(d_k = 1, \nu = 0 \) in equation (9) for almost all values of \(\lambda \in [-\pi, \pi] \), unless some special symmetry or constraint is present.

2.2. Central limit theorem at large \(l \) limit

Let us now consider the limit of a large block size \(l \). As with any thermodynamic quantity, computed in a system with finite correlation length, we expect a Gaussian distribution of observables according to the CLT. For a matrix product state, of course, the spins are not independent, and so the central limit distribution receives contributions from two types of corrections: due to correlations and due to finite size. Below we establish this behavior and derive the appropriate asymptotic description of the probability distribution for large but finite blocks.

In the limit of large \(l \), if the largest eigenvalue of the matrix \(E(\lambda) \) is non-degenerate, \(E(\lambda)^l \) is dominated by the largest eigenvalue \(\alpha_1(\lambda) \) and we may write that

\[
\chi(\lambda; l) \sim \chi_0(\lambda)\chi_1(\lambda)^l \quad \text{as } l \to \infty
\]

where

\[
\chi_1(\lambda) = \alpha_1(\lambda); \quad \chi_0(\lambda) = Q_{1,1,0}(\lambda).
\]

It is possible to take into account the corrections due to the smaller eigenvalues of \(E(\lambda) \) as well, giving additional exponentially small corrections.

We are now in a position to describe the probability distribution of block magnetization. Let us define

\[
\hat{M}_l = \frac{1}{\sqrt{l}} \hat{S}_l - l\mu(l)
\]

where \(\hat{S}_l \) is the total spin operator for a block of \(l \) spins, \(\mu(l) \) is the average magnetization per site, and \(\text{var}(\sigma, l) \) is the variance per site. We note that since the spin variables on different sites are not independent, both \(\mu(l) \) and \(\text{var}(\sigma, l) \) depend explicitly on the size of the block. Let

\[
F_l(M) = \text{Prob}(M_l \leq M)
\]

be the probability distribution of measuring \(\hat{M}_l \). To find \(F_l(M) \), we now focus on the FCS for \(\hat{M}_l \), defined as

\[
\chi_M(\lambda; l) = \langle e^{i\lambda \hat{M}_l} \rangle.
\]

Since we assume that the largest eigenvalue of \(E(\lambda) \) is non-degenerate at \(\lambda = 0 \), this eigenvalue is analytic in a neighborhood of \(\lambda = 0 \). Indeed both \(\chi_0(\lambda) \) and \(\chi_1(\lambda) \) are analytic in the domain \(\lambda \leq |\lambda_*| \) where \(\lambda_* \) is the smallest \(\lambda \) (in the complex plane) for which the largest eigenvalue of \(E(\lambda) \) becomes degenerate (see, e.g. [30]). We can therefore expand \(\ln(\chi_1(\lambda)), \ln(\chi_0(\lambda)) \) near \(\lambda = 0 \). Noting that \(\chi_0(\lambda) = \chi_1(\lambda) = 1 \) we have the ‘cumulants’
\(\kappa_r \) and \(\xi_r \) in
\[
\ln(\chi_0(\lambda)) = \sum_{r=1}^{\infty} \frac{\xi^r_r(i\lambda)^r}{n!}
\]
\[
\ln(\chi_1(\lambda)) = \sum_{r=1}^{\infty} \frac{\kappa^r_r(i\lambda)^r}{n!}.
\]
(15)

We see that for a block of \(l \) spins, \(\mu(l) = \langle \sigma \rangle = \kappa_1 + \xi_1 / l \), and \(\text{var}(\sigma, l) = \sqrt{\langle \sigma^2 \rangle - \langle \sigma \rangle^2} = \sqrt{\kappa_2 + \xi_2 / l} \). We also recognize \(\chi_0 \) as the boundary (or ‘edge’) term that characterizes the effect of the rest of the chain on the chosen \(l \) spins, and \(\chi_1 \) as the bulk term that is not affected by other spins.

In this paper \(\chi_1 \) plays, formally, the role of the local independent random variable in the usual derivation of the central limit theorem. However, it is important to note that in a generic MPS, \(\chi_1 \) is not the full counting statistics of a valid probability distribution. Indeed, for that, the associated distribution, given by the Fourier transform of \(\chi_1 \), must be a positive real function.

Let us briefly explore how close \(\chi_1 \) is to a valid probability distribution. To do so we write the counting statistics of a block of size 1 as
\[
\chi(\lambda, 1) = \chi_1(\lambda) + \chi_\delta(\lambda),
\]
and define the pseudo-probabilities
\[
\tilde{p}_{n,i} = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\lambda \chi_i(\lambda) e^{-i\lambda n}, \quad i = 1, \delta,
\]
(17)
associated with the various eigenvalues of the \(\chi_1(\lambda), \chi_\delta(\lambda) \). Thus \(\tilde{p}_{n,1} \) is the effective probability distribution which would have generated the asymptotic behavior described by the central limit behavior. We can establish the following properties.

1. From the definition of \(\chi_1 \), we can immediately infer that the associated distribution is discrete.

Indeed, observe that since \(E(\lambda) \) is periodic, we can choose \(\chi_1(\lambda) \) to be periodic, \(\chi_1(\lambda) = \chi_1(\lambda + 2\pi) \), which is associated with discrete, integer, spins.

2. The distribution is real (however it is in general not necessarily positive).

The second property is established by noting that
\[
E(-\lambda) = \tau E(\lambda) \tau
\]
where \(\tau \) swaps \(v_1 \otimes v_2 \rightarrow v_2 \otimes v_1 \). Therefore
\[
\text{spec}E(-\lambda) = \text{spec}E(\lambda)
\]
(19)
and, in particular \(\chi_1(-\lambda) = \chi_1^*(\lambda) \), ensuring that the Fourier transform is real. It is, however, in general not associated with a probability distribution, since the Fourier transform is, in general, not strictly positive.

3. \(\sum_n \tilde{p}_{n,1} = 1 \) and \(\sum_n \tilde{p}_{n,\delta} = 0 \). To prove this note that \(\chi_\delta(0) = 0 \) since \(\chi(0, 1) = \chi_1(0) = 1 \). Now use that \(\sum_n \tilde{p}_{n,\delta} = \chi_\delta(0) \).
2.3. Edgeworth series expansion

We now proceed to derive the Edgeworth series for our MPS. Using the definition equation (12) and equation (11), we can find the cumulants for the distribution of \hat{M}_i,

$$\ln \chi_M(\lambda;l) = \frac{(i\lambda)^2}{2} + \frac{(i\lambda)^3(\kappa_3 + \xi_3)}{6(\kappa_2 + \xi_2)^{3/2}} + \frac{(i\lambda)^4(\kappa_4 + \xi_4)}{24(\kappa_2 + \xi_2)^2} + \frac{(i\lambda)^5(\kappa_5 + \xi_5)}{120(\kappa_2 + \xi_2)^{5/2}} + \cdots. \quad (20)$$

We note that for the normal distribution, we have

$$\ln \phi(\lambda) = \frac{(i\lambda)^2}{2}. \quad (21)$$

Combining the two equations, and collecting terms according to the power of l, we have

$$\ln \frac{\chi_M(\lambda)}{\phi(\lambda)} = \frac{1}{l^{1/2}} \frac{(i\lambda)^3\kappa_3}{6\kappa_2^{3/2}} + \frac{1}{l} \frac{(i\lambda)^4\kappa_4}{24\kappa_2} + \frac{1}{l^{3/2}} \left[\frac{(i\lambda)^5\kappa_5}{120\kappa_2^{5/2}} + \frac{(i\lambda)^3}{6} \left(\xi_2 - \frac{3\xi_3}{2\kappa_2} \right) \right] + \cdots.$$

Exponentiating the above equation, we have

$$\chi_M(\lambda;l) = \left(1 + \sum_{j=1}^{\infty} \frac{q_j(i\lambda)}{l^{j/2}} \right) e^{-\lambda^2/2} \quad (22)$$

where q_j is a polynomial of degree $3j$.

Finally, to obtain F_l in equation (13), we perform the inverse Fourier transformation to get the probability density, and integrate it over x to get the probability distribution. We define

$$\Phi(x) \equiv \int_{-\infty}^{x} \frac{dq}{\sqrt{2\pi}} e^{-(1/2)q^2} \quad (23)$$

to be the error function. We obtain

$$F_l(x) = \Phi(x) + \sum_{j=1}^{\infty} \frac{q_j(-\partial_x)}{l^{j/2}} \Phi(x). \quad (24)$$

In general q_j is a complicated polynomial, which can be computed to all orders. Here we write explicitly the first few terms,

$$q_1 = -\frac{\kappa_3(\partial_x)^3}{6\kappa_2^{3/2}}$$

$$q_2 = \frac{\kappa_4(\partial_x)^4}{24\kappa_2} + \frac{\kappa_3^2(\partial_x)^6}{72\kappa_2^3}$$

$$q_3 = -\frac{\kappa_3^3(\partial_x)^9}{1296\kappa_2^{9/2}} - \frac{\kappa_3\kappa_4(\partial_x)^7}{144\kappa_2^{7/2}} - \frac{\kappa_5(\partial_x)^5}{120\kappa_2^{5/2}} - \frac{(\partial_x)^3}{6} \left(\xi_2 - \frac{3\xi_3}{2\kappa_2} \right). \quad (25)$$

Comparing the above result with the usual Edgeworth series [25, 26], we find that the first two terms are the same as those appearing in the Edgeworth expansion for l independent measures with cumulants κ_i; the correction from the boundary term χ_0 only affects the third and higher order terms.

It is important to note that the parameters κ_i, ξ_i are, in principle, measurable. For example, κ_2, ξ_2 can be obtained from the total noise in the measurement of l and $l + 1$ spins as $\kappa_2 = \langle \Delta S_{l+1}^2 \rangle - \langle \Delta S_l^2 \rangle$ and $\xi_2 = (l + 1)\langle \Delta S_l^2 \rangle - l\langle \Delta S_{l+1}^2 \rangle$, where $\Delta S_l \equiv S_l - \langle S_l \rangle$.

doi:10.1088/1742-5468/2013/05/P05001

J. Stat. Mech. (2013) P05001
Alternatively, by considering $\chi_0(\lambda)$ as a differential operator acting on the Fourier transform of χ_1, and combining the Taylor series for $\chi_0(\lambda) = \sum_{k=0}^\infty \frac{f_k}{k!}\lambda^k$ with the Edgeworth series for χ^l_1, we may write explicitly

$$\tilde{F}_l = \text{Prob}\left(\frac{S_l - l\kappa_1}{\sqrt{\kappa_2}} \leq x\right) = \sum_{L=0}^\infty \frac{1}{L!} \sum_{m=0}^L \frac{i^m f_m G_{L-m,m}}{\kappa_2^{m/2} m!}$$

where $G_{k,m}(x)$ is given by $G_{0,m} = (-\partial_x)^m \Phi(x)$,

$$G_{k,m} = \sum_{\{p_1, \ldots, p_k\} \in \mathbb{Z}_k^{k}} \frac{(-\partial_x)^{k+m+2j} \Phi(x)}{p_1! \ldots p_k!} \left(\frac{\kappa_3}{3!}\right)^{p_1} \left(\frac{\kappa_{k+2}}{(k+2)!}\right)^{p_k}$$

We can now compute $F_l(x)$ by using the expression equation (26), combined with

$$F_l(x) = \text{Prob}\left(\frac{S_l - l\mu(l)}{\text{var}(S_l)^{1/2}} \leq x\right) = \text{Prob}\left(\frac{S_l - l\kappa_1}{\sqrt{\kappa_2}} \leq \frac{1}{\sqrt{1 + \xi_2\kappa_2}} x - \frac{\xi_1}{\sqrt{1\kappa_2}}\right) = \tilde{F}_l\left(\frac{1}{\sqrt{1 + \xi_2\kappa_2}} x - \frac{\xi_1}{\sqrt{1\kappa_2}}\right)$$

2.4. Example

To illustrate these ideas, let us consider the following spin 1 MPS, given by the properly normalized matrices:

$$A^+ = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}; \quad A^0 = \sqrt{\frac{1}{6}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}; \quad A^- = \sqrt{\frac{1}{3}} \begin{pmatrix} 0 & 0 \\ -1 & -1 \end{pmatrix}.$$

Plugging these matrices into the definition equation (2) we find that

$$E(\lambda) = \frac{1}{6} \begin{pmatrix} 2e^{i\lambda} + 1 & 2e^{i\lambda} - 1 & 2e^{i\lambda} - 1 & 2e^{i\lambda} + 1 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & -1 & 1 \\ 2e^{-i\lambda} + 1 & 2e^{-i\lambda} + 1 & 2e^{-i\lambda} + 1 & 2e^{-i\lambda} + 1 \end{pmatrix}. $$

At $\lambda = 0$ we find that the largest eigenvalue is 1, and that it is separated by a gap from the next eigenvalue 1/3.

In figure 1, we compare the probability distribution for magnetization computed numerically from the ground state wave function, with the probability distribution obtained from our Edgeworth series equation (24). Here, the exact probability distribution $F_l(M)$ was found numerically by performing an inverse Fourier transformation of equation (3). In the example depicted in figure 1, for a block of 20 spins, it is evident that the Edgeworth series works extremely well, capturing the essence of the correction already at first order. We also exhibit the pseudo-probabilities in figure 2, computed according to equation (17).

doi:10.1088/1742-5468/2013/05/P05001
3. The AKLT state

Next, we consider an example where the full counting statistics is not described by a Gaussian of finite width, although the system is gapped. In this example, the variance per
site actually vanishes as $1/l$. Consider the so called Affleck, Lieb, Kennedy and Tasaki (AKLT) state. The AKLT state [31] is a unique ground state of the AKLT Hamiltonian. It has a ‘string’, instead of local, order parameter, and also fractionalized edge excitations. See [32, 33] for a more recent study. The AKLT Hamiltonian is

$$\hat{H} = \sum_j \left\{ S_j S_{j+1} + \frac{1}{3} (S_j + S_{j+1})^2 \right\}.$$

The ground state has an MPS form, according to [34]

$$A^+ = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad A^0 = \sqrt{\frac{1}{3}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}; \quad A^- = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

which gives

$$E(\lambda) = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 & 2e^{i\lambda} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 2e^{i\lambda} & 0 & 0 & 1 \end{pmatrix}.$$

Computing the eigenvalues of $E(\lambda)$, we see that they are $1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}$, independent of λ. In the limit of $N, l \to \infty$, $e^S(\lambda, l, N) \to (1 + \cos \lambda/2)$, we find that the counting statistics does not depend on l.

This result reflects the topological nature of the AKLT state; the total spin of the block depends only on the ‘edge modes’ which are the only ones which are allowed to fluctuate.

In general, the absence of scaling of fluctuations appears whenever we have a correspondence of the form

$$E(\lambda) = V(\lambda)E(0)V^{-1}(\lambda)$$

for some matrix V. In such a case, $\chi_1(\lambda) \equiv 1$, and the entire contribution comes from the edge $\chi(\lambda; l) = \chi_0(\lambda)$. In this case $\ln_\chi(\lambda)$ is clearly not extensive in the block size l.

4. Conclusion

To summarize, matrix product states supply a very natural class of probability distributions, which are not independent random variables, but are still quite amenable to treatment and computation. In this paper we have studied the full counting statistics of spin in matrix product states. We explored the finite size correction to the Gaussian counting statistics expected on large scales. We showed how an Edgeworth type series may be used to describe these asymptotic corrections and checked it numerically on an explicit example. Finally, we showed that in special cases, such as the AKLT model, the fluctuations in the system do not scale linearly with system size, and the Edgeworth description is not valid whenever it is based on variance and mean which were measured on any finite size block.

doi:10.1088/1742-5468/2013/05/P05001
Acknowledgment

Financial support from NSF CAREER award No. DMR-0956053 is gratefully acknowledged.

References

[1] Glauber R J, Photon correlations, 1963 Phys. Rev. Lett. 10 84
[2] Mandel L and Wolf E, Coherence properties of optical fields, 1965 Rev. Mod. Phys. 37 231
[3] Levitov L S and Lesovik G B, Charge-transport statistics in quantum conductors, 1992 JETP Lett. 55 555
[4] Nazarov Y V and Kindermann M, Full counting statistics of a general quantum mechanical variable, 2003 Europ. Phys. J. B 35 413
[5] Belzig W, Full counting statistics in quantum contacts, 2005 CFN Lectures on Functional Nanostructures vol 1, p 123
[6] Schönhammer K, Full counting statistics for noninteracting fermions: exact results and the levitov-lesovik formula, 2007 Phys. Rev. B 75 205329
[7] Komnik A and Saleur H, Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices, 2011 Phys. Rev. Lett. 107 100601
[8] Levine G C, Bantegui M J and Burg J A, Full counting statistics in a disordered free fermion system, 2012 Phys. Rev. B 86 174202
[9] Flindt C, Fricke C, Hohls F, Nvotný T, Netočný K, Brandes T and Haug R J, Universal oscillations in counting statistics, 2009 Proc. Nat. Acad. Sci. 106 10116
[10] Cherng R W and Demler E, Quantum noise analysis of spin systems realized with cold atoms, 2007 New J. Phys. 9 7
[11] Klich I, Refael G and Silva A, Measuring entanglement entropies in many-body systems, 2006 Phys. Rev. A 74 32306
[12] Klich I and Levitov L, Quantum noise as an entanglement meter, 2009 Phys. Rev. Lett. 102 100502
[13] Song H F, Flindt C, Rachel S, Klich I and Le Hur K, Entanglement entropy from charge statistics: exact relations for noninteracting many-body systems, 2011 Phys. Rev. B 83 161408
[14] Ivanov D A and Abanov A G, Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains, 2013 Phys. Rev. E 87 022114
[15] Fannes M, Nachtergaele B and Werner R F, Finitely correlated states on quantum spin chains, 1992 Commun. Math. Phys. 144 443
[16] Hastings M B, An area law for one-dimensional quantum systems, 2007 J. Stat. Mech. P08024
[17] Verstraete F and Cirac J I, Matrix product states represent ground states faithfully, 2006 Phys. Rev. B 73 094423
[18] Schollwöck U, The density-matrix renormalization group, 2005 Rev. Mod. Phys. 77 259
[19] McCulloch I P, From density-matrix renormalization group to matrix product states, 2007 J. Stat. Mech. P10014
[20] Hübener R, Mari A and Eisert J, Wick’s theorem for matrix product states, 2013 Phys. Rev. Lett. 110 040401
[21] Derrida B, Evans M R, Hakim V and Pasquier V, Exact solution of a 1d asymmetric exclusion model using a matrix formulation, 1999 J. Phys. A: Math. Gen. 26 1493
[22] Karzig T and Von Oppen F, Signatures of critical full counting statistics in a quantum-dot chain, 2010 Phys. Rev. B 81 045317
[23] Gorissen M, Lazarescu A, Mallick K and Vanderzande C, Exact current statistics of the asymmetric simple exclusion process with open boundaries, 2012 Phys. Rev. Lett. 109 170601
[24] Kolassa J, 2005 Series Approximation Methods in Statistics (Berlin: Springer)
[25] Blinnikov S and Moessner R, Expansions for nearly gaussian distributions, 1998 Astron. Astrophys. Suppl. Ser. 130 193
[26] Esseen C G, Fourier analysis of distribution functions. a mathematical study of the Laplace-Gaussian law, 1945 Acta Math. 77 1
[27] Petrov V V, On local limit theorems for sums of independent random variables, 1964 Theory Probab. Appl. 9 312
doi:10.1088/1742-5468/2013/05/P05001 11
Full counting statistics and the Edgeworth series for matrix product states

[29] Bobkov S G, Chistyakov G P and Götze F, *Rate of convergence and edgeworth-type expansion in the entropic central limit theorem*, 2011 arXiv:1104.3994

[30] Lax P D, 1996 *Linear Algebra* (New York: Wiley)

[31] Affleck I, Kennedy T, Lieb E H and Tasaki H, *Valence bond ground states valence bond ground states in isotropic quantum antiferromagnets*, 1988 Commun. Math. Phys. **115** 477

[32] Hirano T, Katsura H and Hatsugai Y, *Topological classification of gapped spin chains: quantized berry phase as a local order parameter*, 2008 Phys. Rev. B **77** 094431

[33] Pollmann F, Turner A M, Berg E and Oshikawa M, *Entanglement spectrum of a topological phase in one dimension*, 2010 Phys. Rev. B **81** 064439

[34] Schollwöck U. *The density-matrix renormalization group in the age of matrix product states*, 2011 Ann. Phys. **326** 96

doi:10.1088/1742-5468/2013/05/P05001