Inelastic Final-State Interactions and Two-body Hadronic B decays into Single-Isospin channels

A.N.Kamal and C.W.Luo

Theoretical Physics Institute and Department of Physics,
University of Alberta, Edmonton, Alberta T6G 2J1, Canada.

Abstract

The role of inelastic final-state interactions in CP asymmetries and branching ratios is investigated in certain chosen single isospin two-body hadronic B decays. Treating final-state interactions through Pomeron and Regge exchanges, we demonstrate that inelastic final state interactions could lead to sizeable effects on the CP asymmetry.

PACS number(s): 11.30.Er, 13.25.Hw, 13.85.Fb
I. Introduction

It is well-known that CP asymmetries occur in two-body hadronic decays of B meson involving two distinct CKM angles and two differing strong phases[1]. The sources of the strong phases are several: perturbative penguin loops, final-state interaction (fsi) phases involving two different isospins, and inelastic final-state interactions involving a single isospin state.

In this paper we have studied the effect of interchannel mixing on B decays into two-body single-isospin channels. For reasons to follow, we have chosen to study the following decay modes: $B^{-} \rightarrow \eta_{c}\pi^{-}$, $B^{-} \rightarrow \eta_{c}K^{-}$ and $B^{-} \rightarrow \phi K^{-}$. The first of them, $B^{-} \rightarrow \eta_{c}\pi^{-}$, is a color-suppressed decay into a state with $I = 1$. At the tree-level, it proceeds through a CKM angle product $V_{cb}V_{cd}^\ast$. In absence of interchannel mixing, the CP asymmetry for this mode is known to vanish[2]. (Though ref.[2] does not include electromagnetic penguins, their inclusion does not alter this fact.) The color-favored decay channel $B^{-} \rightarrow D^{0}D^{-}$ with $I = 1$, also proceeds through a CKM product $V_{cb}V_{cd}^\ast$ at the tree-level, and has a nonvanishing CP asymmetry[2]. An inelastic coupling of $D^{0}D^{-}$ channel to $\eta_{c}\pi^{-}$ allows a two-step decay $B^{-} \rightarrow D^{0}D^{-} \rightarrow \eta_{c}\pi^{-}$ resulting in, as we show later, a significant CP asymmetry in $\eta_{c}\pi^{-}$ final state. The same can be argued for $B^{-} \rightarrow \eta_{c}K^{-}$, also a color-suppressed decay proceeding via $V_{cb}V_{cs}^\ast$ at the tree-level. It is also known to have a vanishing CP asymmetry[2] in absence of inelastic fsi. However, the interchannel mixing of $\eta_{c}K^{-}$ channel with $D^{0}D_{s}^{-}$, a color-favored channel, results in a nonvanishing CP asymmetry in $\eta_{c}K^{-}$ mode. Lastly, the mode $B^{-} \rightarrow \phi K^{-}$ involves $b \rightarrow s\bar{s}s$ decay and proceeds only through a penguin amplitude involving CKM angle products $V_{ub}V_{us}^\ast$ and $V_{cb}V_{cs}^\ast$. In absence of inelastic fsi, it is known to have a nonzero CP asymmetry. The strong phases here arise from the light quark
penguin loops. However, ϕK^- channel can couple to $D^{*0}D_s^-$ and $D^0D_s^{*-}$ channels. The decays $B^- \to D^{*0}D_s^-$ and $B^- \to D^0D_s^{*-}$ being Cabibbo-favored, have branching ratios three orders of magnitude larger than that of the penguin process $B^- \to \phi K^-$. We have studied the effect of the inelastic coupling of the channels $B^- \to D^{*0}D_s^-$ and $D^0D_s^{*-}$ to $B^- \to \phi K^-$ channel on the branching ratio and CP asymmetry in the latter mode.

This paper is organized as follows: In section II, we describe the formalism and investigate the effect of inelastic fsi on the branching ratios and CP asymmetries in $B^- \to \eta_c\pi^-$, $B^- \to \eta_cK^-$ and $B^- \to \phi K^-$. The results are discussed in section III.

II. CP Asymmetry and Final State Interaction in $B^- \to \eta_c\pi^-$, $B^- \to \eta_cK^-$ and $B^- \to \phi K^-$

A. Definitions and Formalism

The effective Hamiltonian for $b \to s$ transition (for $b \to d$, replace s by d) is given by [3, 4, 5]

$$H_{eff} = \frac{G_F}{\sqrt{2}} \sum_{q = u, c} \left\{ V_{qb}V_{qs}^* \left[C_1O_1^q + C_2O_2^q + \sum_{i=3}^{10} C_iO_i \right] \right\}. \quad (1)$$

The operators in Eq.(1) are the following;

$$O_1^q = (\bar{s}q)_{V-A}(\bar{q}b)_{V-A}, \quad O_2^q = (\bar{s}_\alpha q_\beta)_{V-A}(\bar{q}_\beta b_\alpha)_{V-A};$$

$$O_3 = (\bar{s}b)_{V-A} \sum_{q'} (\bar{q}'q)_{V-A}, \quad O_4 = (\bar{s}_\alpha b_\beta)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\alpha)_{V-A},$$

$$O_5 = (\bar{s}b)_{V-A} \sum_{q'} (\bar{q}'q)_{V+A}, \quad O_6 = (\bar{s}_\alpha b_\beta)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\alpha)_{V+A}; \quad (2)$$

$$O_7 = \frac{3}{2}(\bar{s}b)_{V-A} \sum_{q'} (e_{q'}q'_\alpha)_{V+A}, \quad O_8 = \frac{3}{2}(\bar{s}_\alpha b_\beta)_{V-A} \sum_{q'} (e_{q'}q'_\beta q'_\alpha)_{V+A},$$

$$O_9 = \frac{3}{2}(\bar{s}b)_{V-A} \sum_{q'} (e_{q'}q'_\alpha)_{V-A}, \quad O_{10} = \frac{3}{2}(\bar{s}_\alpha b_\beta)_{V-A} \sum_{q'} (e_{q'}q'_\beta q'_\alpha)_{V-A}.$$
O_1 and O_2 are the Tree Operators, O_3, \ldots, O_6 are generated by QCD Penguins and O_7, \ldots, O_{10} are generated by Electroweak Penguins. Here $V \pm A$ represent $\gamma \mu (1 \pm \gamma_5)$, α and β are color indices. $\sum_{q'}$ is a sum over the active flavors u,d,s and c quarks.

In the next-to-leading-log calculation one works with effective Wilson coefficients C_i^{eff}, rather than the coefficients that appear in (1). The derivation of these effective coefficients is well known [3, 4, 5]. We simply quote their values

$$
C_1^{eff} = \bar{C}_1, \quad C_2^{eff} = \bar{C}_2, \quad C_3^{eff} = \bar{C}_3 - P_s/N_c, \quad C_4^{eff} = \bar{C}_4 + P_s,
$$
$$
C_5^{eff} = \bar{C}_5 - P_s/N_c, \quad C_6^{eff} = \bar{C}_6 + P_s, \quad C_7^{eff} = \bar{C}_7 + P_e,
$$
$$
C_8^{eff} = \bar{C}_8, \quad C_9^{eff} = \bar{C}_9 + P_e, \quad C_{10}^{eff} = \bar{C}_{10},
$$

with [6]

$$
\bar{C}_1 = 1.1502, \quad \bar{C}_2 = -0.3125, \quad \bar{C}_3 = 0.0174, \quad \bar{C}_4 = -0.0373, \quad \bar{C}_5 = 0.0104, \quad \bar{C}_6 = -0.0459,
$$
$$
\bar{C}_7 = -1.050 \times 10^{-5}, \quad \bar{C}_8 = 3.839 \times 10^{-4}, \quad \bar{C}_9 = -0.0101, \quad \bar{C}_{10} = 1.959 \times 10^{-3},
$$

and

$$
P_s = \frac{\alpha_s(\mu)}{8\pi} C_1(\mu) \left[\frac{10}{9} + \frac{2}{3} \ln \frac{m_q^2}{\mu^2} - G(m_q, \mu, q^2) \right],
$$
$$
P_e = \frac{\alpha_{em}(\mu)}{3\pi} \left[C_2(\mu) + \frac{C_1(\mu)}{N_c} \right] \left[\frac{10}{9} + \frac{2}{3} \log \frac{m_q^2}{\mu^2} - G(m_q, \mu, q^2) \right],
$$

where

$$
G(m_q, \mu, q^2) = -4 \int_0^1 dx x(1-x) \ln \left[1 - x(1-x) \frac{q^2}{m_q^2} \right],
$$

q^2 is the momentum carried by the gluon or the photon in the penguin diagram and m_q the mass of the quark q in the penguin loop. For $q^2 > 4m_q^2$, $G(m_q, \mu, q^2)$ becomes complex giving rise to strong perturbative phases through P_s and P_e. The parameters
we employ are:

\[m_u = 5\, \text{MeV}, m_s = 175\, \text{MeV}, m_c = 1.35\, \text{GeV}, m_b = 5.0\, \text{GeV}, \]

\[CKM\, \text{angles}: A = 0.81, \lambda = 0.22, (\rho, \eta) = (-0.20, 0.45) \text{ and } (0.30, 0.42), \]

\[f_D = 200\, \text{MeV}, f_{D_s} = f_{D_s^*} = f_\eta = 300\, \text{MeV}, f_\phi = 233\, \text{MeV}. \] (8)

Consider now each one of the decays \(B^- \to \eta_c \pi^- \), \(\eta_c K^- \) and \(\phi K^- \) in absence of inelastic FSI. In the factorization approximation, which we adopt, the decay amplitudes are:

\[A(B^- \to \eta_c \pi^-) = \frac{G_F}{\sqrt{2}} \left\{ V_{cb} V_{cs}^* a_2 - V_{tb} V_{ts}^* (a_3 - a_5 - a_7 + a_9) \right\} \eta_c |(\bar{c}c)_{V-A}| 0 < \pi^- |(\bar{d}b)_{V-A}| B^- > \]

(10)

\[A(B^- \to \eta_c K^-) = \frac{G_F}{\sqrt{2}} \left\{ V_{cb} V_{cs}^* a_2 - V_{tb} V_{ts}^* (a_3 - a_5 - a_7 + a_9) \right\} \eta_c |(\bar{c}c)_{V-A}| 0 < K^- |(\bar{s}b)_{V-A}| B^- > \]

(11)

\[A(B^- \to \phi K^-) = -\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left\{ (1 + \frac{1}{N_c}) C_{2i}^{eff} + (1 + \frac{1}{N_c}) C_{4i}^{eff} + a_5 - a_7/2 - \frac{1}{2} (1 + \frac{1}{N_c}) C_{9i}^{eff} \right\} < \phi |(\bar{s}s)_{V-A}| 0 < K^- |(\bar{s}b)_{V-A}| B^- > \]

(12)

where we have used the unitarity relation \(\sum_{q=u,c} V_{qb} V_{qs}^{*} = -V_{tb} V_{ts}^{*} \) and defined

\[a_{2i} = C_{2i}^{eff} + \frac{1}{N_c} C_{2i-1}^{eff}, \]

\[a_{2i-1} = C_{2i-1}^{eff} + \frac{1}{N_c} C_{2i}^{eff}, \]

(13)

with \(i \) an integer. The strong phases appear through \(P_s \) and \(P_e \) defined in (5) and (6). However, in (10) and (11), odd coefficients \(a_3, a_5, a_7 \) and \(a_9 \) involve such combinations of \(C_{i}^{eff} \) as to cancel the effect of \(P_s \) and \(P_e \). Thus, strong phases do not appear in (10) and (11) but they do in (12). Hence, CP asymmetry vanishes for \(B^- \to \eta_c \pi^- \) and
\(\eta_c K^- \) but is nonzero for \(B^- \to \phi K^- \). This is true even if the electromagnetic penguins were ignored as in ref\[2\].

Let us now consider the decay channel \(B^- \to D^0 D^- \). The decay amplitude is given by,

\[
A(B^- \to D^0 D^-) = \frac{G_F}{\sqrt{2}} \left\{ V_{cb} V_{cd}^{\ast} a_1 - V_{tb} V_{td}^{\ast} (a_4 + (a_6 + a_8) R_1 + a_{10}) \right\} < D^- | (\bar{d}c)_{V-A} | 0 > < D^0 | (\bar{c}b)_{V-A} | B^- >
\]

where

\[
R_1 = \frac{2m_D^2}{(m_b - m_c)(m_c + m_d)}.
\]

Note that the above decay is color-favored (tree diagram being proportional to \(a_1 \)) and that strong phases do not cancel in the even coefficients \(a_4, a_6, a_8 \) and \(a_{10} \). Hence CP asymmetry in \(B^- \to D^0 D^- \) is nonvanishing\[2\]. Throughout our calculations, we have used the formfactors from Bauer, Stech and Wirbel\[6\].

In the following section we discuss in detail the mixing of \(D^0 D^- \) and \(\eta_c \pi^- \) channels through inelastic fsi.

B. Inelastic mixing of \(D^0 D^- \) and \(\eta_c \pi^- \) channels.

Inelastic fsi have been discussed in the past\[7, 8, 9, 10, 11\] in the context of the K-matrix formalism. The desirable feature of this method is that unitarity of the S-matrix is ensured. The difficulty lies in the proliferation of K-matrix parameters, mostly unknown, with the number of channels. Moreover, in two-channel problems, the second channel (the inelastic channel) is assumed to reflect (through unitarity) all the inelastic channels. This is an oversimplification of reality. In ref.\[8\], the coupling of \(\eta_c \pi^- \) channel to \(\eta \pi^- \) and \(\eta' \pi^- \) is discussed in K-matrix formalism. We comment on this work in Section III.
In the calculations we present below, we make no effort to enforce two-channel unitarity. Rather, we couple the decay channel $\eta_c\pi^-$ to D^0D^- using a Regge-exchange model. The model coupling constants are related to known coupling constants by approximations we explain in the text. The advantage of this procedure, in contrast to the K-matrix approach[7, 8, 9, 10, 11], is that the scattering parameters are determined more realistically. The shortcoming is that the relevant elements of the S-matrix being completely determined, the S-matrix itself does not satisfy two-channel unitarity. Yet, we think it is more realistic to treat the effect of inelastic channels one channel at a time rather than enforce two-channel unitarity on what is in fact a multi-channel problem.

We begin by establishing certain key equations for an arbitrary number of two-body channels. An $n \times n$ S-matrix for s-wave scattering satisfying unitarity can be written as [12]

$$S = (1 + ik^{\frac{1}{2}}Kk^{\frac{1}{2}})(1 - ik^{\frac{1}{2}}Kk^{\frac{1}{2}})^{-1},$$

where k is a digonal momentum matrix and K a real-symmetric matrix with $n(n+1)/2$ real parameters. The decay amplitudes for the B meson into n two-body channels are inelastically coupled through

$$A = (1 - ik^{\frac{1}{2}}Kk^{\frac{1}{2}})^{-1}A^{(0)},$$

where $A^{(0)}$ is a column of uncoupled amplitudes. The coupled (unitarized) amplitudes are assembled in the column A. From (16) and (17) it is easily shown that [11]

$$A = \frac{1 + S}{2}A^{(0)}.$$

Let us label channels $\eta_c\pi^-$ and D^0D^- as channels 1 and 2 respectively. $A_1^{(0)}$ and $A_2^{(0)}$ are given by (10) and (14) respectively. In order to calculate the effect of channel 2 on channel 1 and vice-versa, we need to calculate the elements S_{11}, S_{12} and S_{22} of the S-matrix. We describe their evaluation in the following.
We assume that Pomeron exchange dominates elastic scattering. The scatterings
\(\eta c \pi^- \to \eta c \pi^- \) and \(D^0 D^- \to D^0 D^- \) are then represented by amplitudes of the form\[13\]

\[
P(s,t) = \beta(t) \left(\frac{s}{s_0} \right)^{\alpha_P(t)} e^{i\alpha_P(t)/2}
\]

(19)

where \(\sqrt{s_0} \) is an energy scale and the Pomeron trajectory is parameterized by

\[
\alpha_P(t) = 1.08 + 0.25t.
\]

(20)

The momentum transfer \(t \) is expressed in \(GeV^2 \) in the above. The Pomeron coupling strength, \(\beta(t) \), is assumed\[14, 15\] to have a \(t \)-dependence of the form \(\beta(t) = \beta(0)e^{2.8t} \).

In the additive quark model, \(\beta(0) = 4\beta(cu) \) for \(\eta c \pi^- \to \eta c \pi^- \), and \(\beta(0) = 2\beta(cu) + \beta(uu) + \beta(cc) \) for \(D^0 D^- \to D^0 D^- \) scattering. The residue \(\beta(uu) \) can be extracted from high energy \(pp \) and \(\pi p \) scattering data yielding \[14, 13\] \(\beta(uu) \approx 6.5 \). No experimental information exists for the determination of \(\beta(cu) \). We make the theoretical ansatz\[13\]:

\[
\beta(cu) \approx \frac{1}{10}\beta(uu),
\]

and assume \(\beta(cc) \) to be negligibly small\[13\].

The inelastic scattering \(\eta c \pi^- \to D^0 D^- \) is mediated by \(D^* \) Regge-exchange in the \(t \) channel (defined by \(t = (P_{D^0} - P_{\eta c})^2 \)). The amplitude is of the form \[16\]

\[
R(s,t) = \beta_R(t) \frac{1 - e^{i\pi\alpha(t)}}{\sin[\pi\alpha(t)]} \left(\frac{s}{s_0} \right)^{\alpha(t)}.
\]

(21)

For \(\beta_R(t) \) we adopt a \(t \) dependence\[13, 16, 17\]

\[
\beta_R(t) = \frac{\beta_R(0)}{\Gamma[\alpha(t)]}.
\]

(22)

The fact that \(\Gamma(z) \) has simple poles at \(z = 0, -1, -2, \ldots \), ensures that the Regge amplitude (21) does not develop nonsense poles at \(\alpha(t) = 0, -1, -2, \ldots \). We also note that in addition to \(R(s,t) \) of (21), there is a \(u \)-channel exchange amplitude \(R(s,u) \) generated by a charged \(D^* \) exchange.
Generally, s_0 is expected to be process-dependent. For light mesons and baryons it has been taken\cite{13} as $s_0 = \frac{1}{\alpha'} \approx 1 GeV^2$. However, for heavy mesons and baryons, the scale s_0 must reflect somehow a higher threshold for the scattering processes. Based on the work of \cite{17}, it is argued in \cite{16} that for πD scattering mediated by ρ-trajectory, $s_{\pi D}^0 \approx \frac{2}{\alpha_R}$. We assume this value for $\eta_c \pi^- \to D^0 D^-$ scattering amplitude.

We determine $\beta_R(0)$ by taking the limit $\alpha(t) \to 1$ (D^* pole) in (21) and comparing it with the perturbative t-channel D^*-pole diagram. For the latter we assume a VPP vertex of form:

$$I_{\text{int}}^{VPP} = f_{ijk} g_{VPP} V_i^J P^j \partial^\mu P^k,$$

where i, j and k are SU(4) labels and f_{ijk} the antisymmetric symbol.

The perturbative t-channel D^*-exchange graph yields,

$$R(s \to \infty, t \sim m_{D^*}^2) = g_{VPP}^2 \frac{s}{t - m_{D^*}^2}.$$

Comparing the limiting case ($t \to m_{D^*}^2, \alpha(m_{D^*}^2) = 1$) of (21) with (24) results in

$$\beta_R(0) = \pi g_{VPP}^2.$$

SU(4) symmetry allows us to determine g_{VPP} from $\rho \to \pi \pi$ and $K^* \to K \pi$ decays\cite{18},

$$\frac{g_{VPP}^2}{4\pi} \approx 3.0.$$

Heavy Quark effective Theory(HQET)\cite{19,20,21,22} could also have been used to determine $g_{D^*-D^0\pi}$ if the rate $\Gamma(D^* \to D\pi)$ were known. In absence of this information, authors of ref.\cite{19} fix this coupling by constraining it to yield the axial coupling of the nucleon, $g_A \approx 1.25$. This results in

$$g_{D^*-D^0\pi} = g_{D^*D^0\pi} = g_{D^0D^+K^-} \approx \frac{3\sqrt{m_{D^*} m_{D^-}}}{4f_\pi} \to \frac{\sqrt{m_{D^*} m_{D^-}}}{f_\pi},$$
where \(f_\pi = 131\, \text{MeV} \). This is a much larger coupling constant than that implied in \cite{18}, resulting in \(\Gamma(D^{*-} \to D^0\pi^-) = (100 - 180)\, \text{KeV} \). In contrast, the SU(4) symmetry scheme of ref\cite{18} obtains \(\Gamma(D^{*-} \to D^0\pi^-) = 16\, \text{KeV} \) using \(g_{VP} \) given in (26). In our calculations we use the SU(4) symmetry coupling given by (23) and (26) only.

From the scattering amplitudes we project out the elements of the S-wave scattering matrix

\[
S_{ij} = \delta_{ij} + \frac{i}{8\pi\sqrt{\lambda_i\lambda_j}} \int_{t_{min}}^{t_{max}} dt T(s,t),
\]

where \(T(s,t) \) is the total amplitude, \(\lambda_i \) and \(\lambda_j \) are the usual triangle functions \(\lambda(x,y,z) = (x^2 + y^2 + z^2 - 2xy - 2xz - 2yz)^{1/2} \) for channels \(i \) and \(j \) respectively and \(t_{max}, t_{min} \) are the limits of the momentum transfer. We also took into account the u-channel charged \(D^* \)-exchange in calculating the S-matrix elements. The resulting S-matrix elements (channel 1 = \(\eta_c\pi^- \), channel 2 = \(D^0D^- \)) are,

\[
S = \begin{pmatrix}
0.946 - 0.93 \times 10^{-3}i & 0.19 \times 10^{-2} + 0.068i & \ldots \\
0.19 \times 10^{-2} + 0.068i & 0.843 - 0.27 \times 10^{-2}i & \ldots \\
& & \ldots \\
& & & \ldots
\end{pmatrix}
\]

Clearly, two-channel unitarity is not satisfied but the S-matrix elements \(S_{ij}(i,j = 1,2) \) are completely determined. Calculation of the unitarized decay amplitudes proceeds by using \(A_0 \) from (10) and (14), and \(S \) from (28) in (18). The calculation of the branching ratios and CP asymmetry is then straightforward. We have chosen to perform the calculation for \(N_c = 3 \) and \(N_c = 2.4 \). The latter choice, suggested in \cite{23}, could be interpreted to reflect nonfactorization effects. The results are shown in Tables 1 and 2.

We note from these Tables that the induced CP asymmetry in \(\eta_c\pi \) channel is large; in fact, as large as in channel \(D^0D^- \) to which it is coupled. The CP asymmetry in \(\eta_c\pi^- \) channel, however, depends almost linearly on \(g_{VP}^2 \). Thus, increasing (decreasing) \(g_{VP} \)
by a factor of 2 results in an increase (decrease) of CP asymmetry by approximately a factor of four. We defer the discussion of the results to Section III.

C. Inelastic Mixing of $D^0 D_{s}^−$ and $\eta_c K^−$ channels

In absence of interchannel coupling, the decay amplitude for $B^− \to D^0 D_{s}^−$ is given by

$$A(B^− \to D^0 D_{s}^−) = \frac{G_F}{\sqrt{2}} \{ V_{cb} V_{cs}^∗ (a_1 - (a_6 + a_8) R_2 + a_{10}) \} < D_{s}^− | (\bar{s}c)_{V−A} | 0 > < D^0 | (\bar{c}b)_{V−A} | B^− >,$$

(30)

where

$$R_2 = \frac{2m_{D_{s}^−}}{(m_b - m_c)(m_c + m_s)}.$$

(31)

Let us label $\eta_c K^−$ and $D^0 D_{s}^−$ as channels 1 and 2 respectively. The pomeron-mediated elastic scattering now involves coupling constants $2\beta (cu) + 2\beta (cs)$ for $\eta_c K^−$ channel and $\beta (cc) + \beta (cu) + \beta (cs) + \beta (us)$ for $D^0 D_{s}^−$ channel. For $\beta (cs)$ we use the ansatz: $\beta (cs) \approx \frac{1}{10} \beta (us) \approx \frac{1}{15} \beta (uu)$. The Pomeron amplitude is then given as in (19).

The inelastic scattering $\eta_c K^− \to D^0 D_{s}^−$ is mediated by D^{*0}-exchange in the t channel ($t = (P_{D^0} - P_{\eta_c})^2$), and by D_{s}^{*}-exchange in the u channel. The calculation of the effect of inelastic coupling of $\eta_c K^−$ and $D^0 D_{s}^−$ channels parallels that of $\eta_c \pi^−$ and $D^0 D^−$ channels described in the previous section. The resulting S-matrix ($\eta_c K^− = \text{channel 1, } D^0 D_{s}^− = \text{channel 2}$) is

$$S = \begin{pmatrix} 0.954 - 0.8 \times 10^{-3} i & 0.85 \times 10^{-3} + 0.068i & \ldots \ldots \\ 0.85 \times 10^{-3} + 0.068i & 0.888 - 0.19 \times 10^{-2} i & \ldots \ldots \end{pmatrix}.$$

(32)

The resulting branching ratios and CP asymmetries are shown in Tables 1 and 2. Again, we notice that CP asymmetry induced in channel $\eta_c K^−$ is comparable to that in channel $D^0 D_{s}^−$. Further discussion of the results is deferred to section III.
D. Inelastic coupling of ϕK^- to $D^{*0}D_s^-$ and $D_s^{*-}D^0$ channels.

In absence of inelastic fsi, the decay amplitudes for $B^- \to D^{*0}D_s^-$ and $D_s^{*-}D^0$ are:

$$A(B^- \to D^{*0}D_s^-) = \frac{G_F}{\sqrt{2}} \left\{ V_{cb}V_{cs}^* a_1 - V_{tb}V_{ts}^* (a_4 - (a_6 + a_8)R_3 + a_{10}) \right\} < D_s^- |(\bar{s}c)_V A| 0 > < D^{*0}_s |(\bar{c}b)_V A| B^- >,$$

$$A(B^- \to D^0D_s^{*-}) = \frac{G_F}{\sqrt{2}} \{ V_{cb}V_{cs}^* a_1 - V_{tb}V_{ts}^* (a_4 + a_{10}) \} < D^*_s^- |(\bar{s}c)_V A| 0 > < D^0 |(\bar{c}b)_V A| B^- >,$$

where

$$R_3 = \frac{2m^2_{D_s}}{(m_s + m_c)(m_c + m_b)}.$$

(35)

Inelastic fsi couple the amplitude for $B^- \to \phi K^-$, eq.(12), to the amplitudes in (33) and (34). The calculation of the S-matrix elements ($\phi K^- =$ channel 1, $D_s^-D^{*0} =$ channel 2, $D_s^{*-}D^0 =$ channel 3) is considerably simplified in the B rest-frame. This is because in this frame the vector meson can only have longitudinal helicity in a $B \to VP$ decay. Because of this fact, the Pomeron and Regge amplitudes involving only helicity 0\tohelicity 0 transition are the same as in spin-less scattering. The Pomeron amplitude for elastic scattering is given by (19) with $\beta(0) = 2\beta(su) + 2\beta(ss)$ for ϕK^- elastic scattering, and $\beta(0) = \beta(us) + \beta(cu) + \beta(cs) + \beta(cc)$ for $D_s^-D^{*0}$ and $D_s^{*-}D^0$ elastic scatterings. We assume $\beta(ss) \approx \frac{2}{3}\beta(su)$.

Inelastic scatterings, $\phi K^- \to D_s^*-D^{*0}$ and $D_s^{*-}D^0$, are mediated by D_s^* exchange in the t channel ($t = (P_{D_s} - P_\phi)^2$ and $(P_{D_s^*} - P_\phi)^2$ respectively). There are no u channel exchanges. D_s-trajectory, being a lower-lying trajectory, makes a smaller contribution and we neglect it. The Regge-amplitude is assumed to be of the form given in (21). In order to determine the coupling $\beta(0)$, we equate the limiting form of (21) for $t \to m^2_{D_s^*}$ with the perturbative expressions for $\phi K^- \to D_s^-D^{*0}$ and $D_s^{*-}D^0$ with D_s^* exchange. We adopt the following definitions,
\(D_s^* - \text{trajectory} : \quad \alpha_{D_s^*} \approx -1.23 + 0.5t, \) \quad (36)

\(VVP - \text{vertex} : \quad L_{\text{int}}(VVP) = g_{VVP}d_{ijk} \epsilon_{\mu \nu \rho \sigma} \partial_\mu V^i_\nu \partial_\rho V^j_\sigma P^k, \) \quad (37)

\(VVV - \text{vertex} : \quad L_{\text{int}}(VVV) = g_{VVV}f_{ijk}(\partial_\mu V^i_\nu - \partial_\nu V^i_\mu)V^j_\mu V^k_\nu, \) \quad (38)

where \(d_{ijk} \) and \(f_{ijk} \) are SU(4) indices. The coupling \(g_{VVP} \) has dimension \((\text{mass})^{-1}\) while \(g_{VVV} \) is dimensionless. \(D_s^* \) trajectory is assumed to be parallel to \(D^* \) trajectory with a slope as in [14].

The evaluation of perturbative \(D_s^* \)-exchange diagram was done numerically. The calculation was made simpler by the fact that the vector particles could only be longitudinally polarized in B rest-frame. For large \(s \) we obtain for the diagrams shown in Figs.1 and 2,

\[
T^{\text{Fig.1}}(s \to \infty, t \sim m_{D_s^*}^2) = 0.7 GeV^2 g_{D^*D_s^*K} g_{D_s^*D_s^*f} \frac{s}{t - m_{D_s^*}^2},
\]

\[
T^{\text{Fig.2}}(s \to \infty, t \sim m_{D_s^*}^2) = 0.5 g_{DD_s^*K} g_{D_s^*D_s^*f} \frac{s}{t - m_{D_s^*}^2}. \quad (39)
\]

The corresponding Regge-exchange amplitude yields

\[
T(s \to \infty, t \sim m_{D_s^*}^2) = \frac{\beta(0)}{\pi} \frac{s}{t - m_{D_s^*}^2}, \quad (40)
\]

where we have used \(s_0 = 2/\alpha' \).

A comparison of (40) with (39) yields \(\beta(0) \). The coupling constants in (39) are determined as follows: In HQET [19], where light pseudoscalar mesons are introduced as nonlinear realization of \(SU(3)_L \times SU(3)_R \), one obtains \((f_\pi = 131\,\text{MeV}) \), and we are using the parameter [19] \(f = -1.5 \),

\[
g_{D^*oD_s^*-K^-} \approx \frac{3}{4f_\pi}. \quad (41)
\]
Light vector and axial-vector mesons can also be introduced in HQET \([20, 21, 22]\) allowing a \(D_s^*D_s\phi\) coupling. However, HQET does not by itself permit an evaluation of this coupling constant. Use of vector dominance in the radiative decays of light mesons determines \([24]\) \(g_{VV\pi} \approx 6\text{GeV}^{-1}\). Using SU(4) symmetry, one obtains \(g_{D_s^*-D_s\phi} \approx 6/\sqrt{2}\text{GeV}^{-1}\) which is a little lower than the value given in (41). For want of a better choice we assume \(g_{D_s^*-D_s\phi} = g_{D_s^*0D_s^*-K^-}\).

HQET \([20, 21, 22]\) allows us to calculate the VVV coupling \(g_{D_s^*D_s^*\phi}\) provided an assumption is made as to how the flavor singlet and the flavor octet of the light vector meson couple to \(D_s^*D_s^*\). In nonet symmetry, we obtain

\[
\begin{align*}
 g_{D_s^*D_s^*\omega} &= 0 \\
 g_{D_s^*D_s^*\phi} &= g_{VV\pi} = g \text{ (of [22])} \approx 4.3
\end{align*}
\]

As for the VPP coupling, we adopt the value in (26).

To calculate the effect of channels \(D_s^*D_s^0\) (channel 2) and \(D_s^-D_s^0\) (channel 3) on \(\phi K^-\) (channel 1), we need the elements \(S_{11}, S_{12}, S_{13}\) of the S-matrix. The decay amplitude for \(B^- \to \phi K^-\) is then given by,

\[
A(B^- \to \phi K^-) = \frac{1+S_{11}}{2}A^{(0)}(B^- \to \phi K^-)+\frac{S_{12}}{2}A^{(0)}(B^- \to D_s^0D_s^-)+\frac{S_{13}}{2}A^{(0)}(B^- \to D_s^0D_s^-),
\]

(44)

The relevant elements of the S-matrix are calculated to be,

\[
\begin{align*}
 S_{11} &= 0.784 - 0.37 \times 10^{-2}i \\
 S_{12} &= -0.53 \times 10^{-3} + 0.12 \times 10^{-2}i \\
 S_{13} &= -0.33 \times 10^{-3} + 0.70 \times 10^{-3}i
\end{align*}
\]

(45)

Since \(B^- \to \phi K^-\) is a penguin mediated process, its branching ratio in absence of inelastic coupling is small \((\sim 10^{-6} \text{ to } 10^{-5})\)\([2]\). In contrast, the inelastic channels
$D^{*0}D_s^−$ and $D^{0}D_s^{*-}$ to which it couples are Cabibbo-favored and have branching ratios of the order of 10^{-3} to 10^{-2}[2]. Thus, whereas the two channels $D^{*0}D_s^-$ and $D^{0}D_s^{*-}$ can influence the branching ratios and CP asymmetries in $\phi K^−$, we do not expect the $\phi K^−$ channel to significantly effect the channels $D^{*0}D_s^−$ and $D^{0}D_s^{*-}$. Further, the inelastic coupling of $D^{*0}D_s^−$ channel to $D^{0}D_s^{*-}$ occurs via the exchange of $(c\bar{c})$ mesonic trajectories, η_c and ψ. As both of these trajectories are low-lying with large and negative intercepts $\alpha(0)$, their contribution to the inelastic scattering $D^{*0}D_s^− \rightarrow D^{0}D_s^{*-}$ is expected to be highly suppressed. We, therefore, do not expect one of these channels to effect the other significantly either. For these reasons we have displayed in Tables 1 and 2 only the effect on the channel ϕK^-.

The other two channels, $D^{*0}D_s^-$ and $D^{0}D_s^{*-}$, are left largely unaffected by fsi.

Tables 1 and 2 show that though the effect of inelastic fsi on the branching ratio for ϕK^- is small (due to the small size of S_{12} and S_{13} in (45)), the effect on the CP asymmetry is significant. The results are discussed in the following section.

III. Results and Discussion

In absence of inelastic fsi, CP asymmetries in $B^- \rightarrow \eta_c\pi^-$ and $\eta_c K^-$ channels vanish[2]. We have shown that an inelastic coupling of $\eta_c\pi^-$ channel to $D^{0}D^-\eta_c$ and that of η_cK^- to $D^{0}D_s^-$, leads to substantial CP asymmetries in $B^- \rightarrow \eta_c\pi^-$ and $\eta_c K^-$ decays. We have used $N_c = 3$ and 2.4 and two sets of values for (ρ, η). The CP asymmetries depend sensitively on the coupling constant $g_{\nu PP}$ and the energy-scale parameter s_0. An increase (decrease) of $g_{\nu PP}$ by a factor of two increases (decreases) the CP asymmetry by roughly a factor of 4. Similarly, increasing s_0 from $1GeV^2$ to $2/\alpha'_R$ enhances the CP asymmetry by raising the values of the off-diagonal elements of the S-matrix. In addition, the calculated CP asymmetry will also depend on the
effective q^2 employed. We have used $q^2 = m_B^2/2$.

Ref. 8 discusses a three-channel problem, $B^- \to \eta \pi^-, \eta' \pi^-$ and $\eta_c \pi^-$, in the K-matrix formalism and demonstrates that a CP asymmetry of the order of $\sim 1\%$ can be generated in $\eta_c \pi^-$ channel through inelastic fsi. Our work differs from 8 in several respects. Most importantly, we couple $\eta_c \pi^-$, a color-suppressed channel, to $D^0 D^-$, a color-favored channel. The channels, $\eta \pi^-$ and $\eta' \pi^-$, invoked in 8 are both color-suppressed, and thus, not expected to be as important as $D^0 D^-$. In addition, we do not require the S-matrix to be unitary at two or three channel level. Another important difference between our work and that of 8 lies in how the strong interaction fsi parameters are determined. We use Pomeron and Regge phenomenology, presumably applicable at $\sqrt{s} \sim m_B$, while 8 determines the K-matrix elements through low-energy phenomenology. For example, the diagonal and off-diagonal elements of the K-matrix are evaluated using a contact ϕ^4-interaction which allows for only S-wave scattering. This is expected to be a reasonable approximation at threshold but hardly likely to hold at $\sqrt{s} \sim m_B$. Despite these differences, we emphasize that the important conclusion of 8 was that a significant CP asymmetry in $\eta_c \pi^-$ could be generated by coupling it to $\eta \pi^-$ and $\eta' \pi^-$ channels. However, the fact that they also found asymmetries of the order of 10% and 20% in $\eta \pi^-$ and $\eta' \pi^-$ channels has little to do with inelastic fsi; asymmetries of this magnitude are generated in these channels in absence of inelastic fsi 2.

We have found that the CP asymmetry in $B^- \to \phi K^-$(a penguin driven process) is significantly effected by a coupling to Cabibbo-favored channels $D^{*0} D_s^-$ and $D^0 D_s^-$. Due to the smallness of the off-diagonal elements of the S-matrix, the effect on the branching ratio is not as large as on CP asymmetry. Again, the CP asymmetry depends sensitively on the coupling constants and the value of s_0.

16
This work was partly supported by a research grant from the Natural Sciences and Engineering Research Council of Canada to A.N.Kamal.
Table 1: Branching ratios and CP asymmetries with $q^2 = m_b^2/2$ and $N_c = 3$ (entries in bracket correspond to the uncoupled case)

CKM Matrix	$\rho = 0.30, \eta = 0.42$	$\rho = -0.20, \eta = 0.45$		
Decay channel	BR	a_{CP}(%)	BR	a_{CP}(%)
$B^- \rightarrow \eta_c\pi^-$	2.85×10^{-6}	3.97	2.87×10^{-6}	4.24
	(2.32×10^{-6})	(0.00)	(2.33×10^{-6})	(0.00)
$B^- \rightarrow D^0D^-$	3.55×10^{-4}	3.94	3.22×10^{-4}	4.69
	(4.18×10^{-4})	(3.97)	(3.80×10^{-4})	(4.72)
$B^- \rightarrow \eta_cK^-$	7.42×10^{-5}	-0.25	7.42×10^{-5}	-0.27
	(5.54×10^{-5})	(0.00)	(5.54×10^{-5})	(0.00)
$B^- \rightarrow D^0D_s^-$	1.47×10^{-2}	-0.21	1.48×10^{-2}	-0.23
	(1.65×10^{-2})	(-0.21)	(1.66×10^{-2})	(-0.23)
$B^- \rightarrow \phi K^-$	6.21×10^{-6}	0.74	5.97×10^{-6}	0.83
	(7.75×10^{-6})	(0.58)	(7.44×10^{-6})	(0.65)
Table 2: Branching ratios and CP asymmetries with $q^2 = m_b^2/2$ and $N_c = 2.4$ (entries in bracket correspond to the uncoupled case)

CKM Matrix	ρ = 0.30, η = 0.42	ρ = −0.20, η = 0.45		
Decay channel	BR	a_{CP} (%)	BR	a_{CP} (%)
$B^- \to \eta_c \pi^-$	1.31×10^{-5}	1.80	1.32×10^{-5}	1.90
	(1.29×10^{-5})	(0.00)	(1.29×10^{-5})	(0.00)
$B^- \to D^0 D^-$	3.38×10^{-4}	3.74	3.06×10^{-4}	4.45
	(3.98×10^{-4})	(3.80)	(3.61×10^{-4})	(4.52)
$B^- \to \eta_c K^-$	3.12×10^{-4}	-0.12	3.11×10^{-4}	-0.13
	(3.08×10^{-4})	(0.00)	(3.08×10^{-4})	(0.00)
$B^- \to D^0 D_s^-$	1.29×10^{-2}	-0.19	1.30×10^{-2}	-0.20
	(1.45×10^{-2})	(-0.19)	(1.46×10^{-2})	(-0.21)
$B^- \to \phi K^-$	7.36×10^{-6}	0.58	7.06×10^{-6}	0.65
	(9.14×10^{-6})	(0.43)	(8.75×10^{-6})	(0.48)
References

[1] See, for example, G.Kramer, W.F.Palmer and H.Simma, Nucl.Phys.B428, 77(1994).

[2] G.Kramer, W.F.Palmer and H.Simma, Z.Phys.C66, 429(1995).

[3] N.G.Deshpande and X.G.He, Phys.Rev.Lett. 74, 26(1995); Phys.Lett.B336, 471(1994).

[4] R.Fleischer, Z.Phys.C62, 81(1994).

[5] A.J.Buras, M.Jamin, M.Lautenbacher and P.Weisz, Nucl.Phys.B400, 37 (1993); A.J.Buras, M.Jamin and M.Lautenbacher, ibid. 75 (1993); M.Ciuchini, E.Franco, G.Martinelli and L.Reina, Nucl.Phys.B415, 403(1994).

[6] M.Bauer, B.Stech and M.Wirbel, Z.Phys.C34, 103(1987).

[7] A.N.Kamal, N.Sinha and R.Sinha, Z.Phys.C41, 207(1988).

[8] S.Barshay, D.Rein and L.M.Sehgal, Phys.Lett.B259,475(1991).

[9] M.Wanninger and L.M.Sehgal, Z.Phys.C50, 47(1994).

[10] A.N.Kamal, Int.J.Mod.Phys.A7, 3515(1992).

[11] A.N.Kamal and C.W.Luo, Alberta-Thy-02-97, hep-ph/9702289 (unpublished).

[12] R.G.Newton, *Scattering Theory of Waves and Particles*, Mc-Graw-Hill, N.Y.(1996).

[13] P.D.B.Collins, *Introduction to Regge Theory and High Energy Physics* (Cambridge Univ.Press, 1977).
[14] H.Q.Zheng, Phys.Lett.B356,107(1995).

[15] G.Nardulli and T.N.Pham, Phys.Lett.B391, 165 (1997).

[16] B.Blok and I.Halperin, Phys.Lett.B385, 324 (1996).

[17] P.E.Volkovitsky and A.B.Kaidalov, Yad.Fiz.35,1231, 1556(1982).

[18] R.L.Thews and A.N.Kamal, Phys.Rev.D32, 810(1985).

[19] T.M.Yan, H.Y.Cheng, C.Y.Cheung, G.L.Lin, Y.C.Lin and H.L.Yu, Phys.Rev.D46, 1148(1992).

[20] J.Schechter and A.Subbaraman, Phys.Rev.D48, 332(1993).

[21] R.Casalbuoni, A.Deandrea, N.D.Bartolomeo, R.Gatto, F.Feruglio and G.Nardulli, Phys.Lett.B299, 139(1993).

[22] A.N.Kamal and Q.P.Xu, Phys.Rev.D49, 1526(1994).

[23] A.N.Kamal and T.N.Pham, Phys.Rev.D50, 395(1994).

[24] B.J.Edwards, *Radiative Decay of Mesons*, Ph.D thesis(1978), University of Alberta
Figure Captions

Fig. 1: Inelastic scattering $B^- \rightarrow D^{*0}D_s^- \rightarrow \phi K^-$ through D_s^* exchange

Fig. 2: Inelastic scattering $B^- \rightarrow D^0D_s^- \rightarrow \phi K^-$ through D_s^* exchange
