Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c–Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.
Neuropeptide signaling regulates a variety of neuronal functions to increase the behavioral repertoire of animals, thereby affecting behaviors such as foraging and escape. Insulin-like peptides (ILPs), including insulin, IGF1, and IGF2, also function in behaviors such as those related to learning. For example, IGF1 peptides expressed in mitral cells in the olfactory bulb and midbrain dopamine neurons promote social learning and motor skill learning, respectively. IGF2 expression in the hippocampus enhances memory retention.

Recent advances in genetic and fluorescence imaging techniques have helped elucidate the neuropeptide signaling that acts at specific sites and timing within neural circuits. However, our understanding of these processes during behavior and behavioral learning remains limited.

In *Caenorhabditis elegans*, an ILP, INS-1, acts on an insulin receptor homolog, DAF-2, and its downstream PI 3-kinase (PI3K)–Akt signaling in the ASER gustatory neuron, the right-sided ASE class of amphid sensory neurons, to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Thedaf-2 gene produces DAF-2 (E11.5–) isoforms, e.g., DAF-2a, and DAF-2 (E11.5+) isoforms, e.g., DAF-2c, by alternative splicing of exon 11.5. In ASER, DAF-2a mainly localizes to the cell body to regulate starvation-dependent nuclear translocation of the FOXO homolog, DAF-16, whereas DAF-2c is preferentially translocated to the axon, and its translocation increases by starvation. DAF-2a and DAF-2c are required for taste avoidance learning in the cell body and axon of ASER, respectively. In addition to taste avoidance learning, INS-1 and other ILPs regulate various forms of behavioral learning in *C. elegans*, such as those related to olfaction, thermosensation, and pathogen avoidance.

In the mammalian brain, the insulin receptor isoforms IR-A and IR-B, which are produced in a manner similar to that observed in *C. elegans*, are also coexpressed in neurons, although their functions are currently unclear.

Diacylglycerol (DAG) metabolism plays crucial roles in the regulation of behavioral learning in sensory neurons, such as the thermosensory AFD, the olfactory AWC, and the gustatory ASE neurons. In the axon of ASER, EGL-8 (phospholipase Cβ, PLCβ) is proposed to regulate synaptic output via DAG and PKC-1 (novel protein kinase Cε) localized at presynaptic regions. Correlations exist between DAG dynamics and migration direction in salt chemotaxis of worms after feeding: DAG levels at the ASER axon are increased by a decrease in ambient salt concentration, whereby well-fed worms migrate toward high salt concentrations; in contrast, DAG levels are decreased by an increase in ambient salt concentration, thereby leading worms to move toward low salt concentrations. This mechanism allows worms to remain in the location at which they were fed. PLC-1 (an isozyme of the PLC family, PLCε) plays a minor role in DAG dynamics in the ASER axon of well-fed worms. PLC-1 is proposed to regulate neurotransmission from ASER to its downstream interneuron, AIB. In mammals, PLCε is activated by direct interaction with small GTPases and mediates signaling pathways, such as Ca2+ signaling, in several cell types.

C. elegans PLC-1 harbors the domains required for binding such GTPases, although it is unclear how PLC-1 activity is regulated.

Here, we show that INS-1 secretion only during salt chemotaxis after starvation conditioning restores defects in taste avoidance learning of ins-1 mutants. These effects depend on DAF-2c but not DAF-16. Therefore, INS-1–DAF-2c signaling during salt chemotaxis after starvation conditioning is important for taste avoidance learning. The responses of AIA interneurons, which are downstream of ASER in the neural circuit and a main site of INS-1 release, to changes in salt concentration are elevated after starvation conditioning dependent on the synaptic output of ASER. Based on these findings, we propose that INS-1 release from AIA is enhanced during chemotaxis, where worms undergo multiple changes in salt concentration, after starvation conditioning. This feedback signal of INS-1 to DAF-2c in ASER may contribute to long-lasting activation of DAF-2c signaling to induce the robust avoidance behavior. In addition, ASER-specific knockdown via a CRISPR/Cas9 strategy suggests that decreased EGL-8 activity in ASER suppresses the aberrant high-salt migration in the daf-2c mutant after starvation conditioning. Further genetic studies suggest that DAF-2c signaling promotes high-salt migration via PLC-1 phosphorylation after starvation conditioning. Based on these findings, we propose a model in which DAF-2c signaling modulates the balance of pathways mediated by PLC isozymes in ASER to direct dramatic behavioral changes after starvation.

Results

INS-1 acts on the DAF-2c pathway for both low- and high-salt migration after starvation. We have reported that worms with a large deletion mutation of *ins-1*, namely *ins-1*(nr2091)9, were attracted to salt concentrations experienced during feeding similar to the wild type (Supplementary Fig. 1); however, they showed significant defects in both low- and high-salt migration after high- and low-salt conditioning in the absence of food, respectively (Fig. 1a, b). *daf-2c*(pe2722) mutants, which harbor a frameshift deletion in the cassette exon 11.5, and *daf-16*(mgDf50) mutants, which harbor a large deletion in a *daf-16* locus, also show significant defects in taste avoidance learning (Fig. 1b). On the other hand, the *daf-2c* and *daf-16* mutants show strong attraction to salt concentrations experienced during feeding, although the *daf-2c* mutant shows weaker attraction toward low salt than that in the wild type (Supplementary Fig. 1). The *daf-16* and *daf-2c* mutations show additive effects on taste avoidance learning and the *daf-16*; *daf-2c* double-mutants show aberrant salt chemotaxis, as if they were attracted to salt concentrations experienced during starvation (Fig. 1b). To assess which pathway acts downstream of INS-1, the effects of *ins-1*(nr2091) on taste avoidance learning were examined using single or double *daf-2c*(pe2722) and *daf-16*(mgDf50) mutants. The *ins-1* mutation enhanced the defects of *daf-16* but not *daf-2c* mutants in low-salt migration after high-salt conditioning, suggesting that *ins-1* acts in the *daf-2c* genetic pathway (Fig. 1b left, c). The *ins-1* mutation enhanced the defects of both *daf-2c* and *daf-16* mutants in high-salt migration after low-salt conditioning (Fig. 1b, right). On the other hand, it did not further enhance the salt chemotaxis defect of the *daf-16*; *daf-2c* double-mutant after starvation conditioning at low salt (Fig. 1b, right). Therefore, *ins-1* acts on both the *daf-2c* and *daf-16* genetic pathways to promote high-salt migration after starvation conditioning at low salt (Fig. 1c).

INS-1 release during salt chemotaxis drives taste avoidance. As previously reported, *ins-1* mutants show a significant defect in learned taste avoidance after starvation conditioning in liquids and this defect is rescued by INS-1 expression in neurons including AIA. The learning defect of *ins-1* was also rescued by INS-1 expression in either ASI or AWA, but not in ASI, RIA or ADF, in which intrinsic expression of *ins-1* was observed by using a fosmid reporter (Supplementary Fig. 2a–c). We also confirmed the requirement of INS-1 in AIA and chemosensory neurons, including ASI, for taste avoidance learning after starvation conditioning on agar plates by conditional knockdown of *ins-1* using the somatic CRISPR/Cas9 method (Supplementary Fig. 3).

Although INS-1 expression has not been confirmed in RIC interneurons, ectopic expression of *INS-1* in RIC largely restored the learning defects of *ins-1*, which suggests that INS-1 could...
Fig. 1 INS-1 acts in both DAF-2c and DAF-16 pathways in taste avoidance learning. a Schematic of taste avoidance learning. b Salt chemotaxis after conditioning on agar plates at high or low salt concentrations in the absence of food. c Proposed genetic pathways downstream of ins-1 in the regulation of low- or high-salt migration after high- or low-salt conditioning in the absence of food, respectively.

function extrasynaptically in taste avoidance learning (Supplementary Fig. 2b, 2nd block from right). RIC-specific knockdown of ins-1 caused a weak but significant defect after starvation conditioning only at low salt, implying that endogenous INS-1 in RIC may weakly contribute to the regulation of taste avoidance learning (Supplementary Fig. 3). It was reported that the action of RIC interneurons is repressed by dopaminergic signaling31. Thus, we examined the effect of excess dopamine release by a deletion mutation of dat-1, the dopamine reuptake transporter, on taste avoidance learning of the ins-1 mutant expressing INS-1 only in RIC. Indeed, the dat-1(ok157) mutation inhibited the effect of INS-1 expression in RIC on taste avoidance learning of the ins-1 mutant (Supplementary Fig. 2e). This capsaicin-induced inhibitory effect was not observed in ins-1 mutants (Fig. 2c, fourth blocks, red bars); this confirms that excess dopamine signaling repressed the action of INS-1 in RIC. These data suggest that INS-1 secretion during salt chemotaxis but not starvation conditioning is required for taste avoidance learning. We note that capsaicin application during both conditioning and chemotaxis periods caused a low-salt migration defect after high-salt conditioning in the cat-2 mutant background (Fig. 2c left, the fifth block, the purple bar), which might be an unknown effect of prolonged capsaicin exposure on salt chemotaxis.

To further examine timing-dependent action of INS-1, INS-1 and VR1 were coexpressed in the dopaminergic neurons and capsaicin was applied to activate the dopaminergic neurons and promote INS-1 release at different periods in the ins-1 mutants (Fig. 3a, b)32. First, we confirmed that the learning defect of the ins-1 mutants was not rescued by either INS-1 expression or activation of the dopaminergic neurons alone (Fig. 3c, 2nd and 3rd blocks). We note that capsaicin application during conditioning and/or chemotaxis periods caused decreased high-salt migration in worms expressing VR1 alone (Fig. 3c, third blocks), implying that excess dopamine release might affect salt chemotaxis in a direction that decreases migration toward high salt. On the other hand, the learning defect of the ins-1 mutants was rescued by INS-1 expression combined with capsaicin application during salt chemotaxis after starvation conditioning: INS-1 release during salt chemotaxis promoted movement toward both lower and higher salt concentrations dependent on
conditioned salt concentrations (Fig. 3c, fourth blocks, red bars). These effects were observed in the *daf-16* but not *daf-2* mutant (Fig. 3d). Hence, the data suggest that INS-1 drives dispersal from salt concentrations encountered by worms under starvation conditions via DAF-2c. On the other hand, forced INS-1 release only during starvation conditioning enhanced (rather than rescued) the learning defect of the *ins-1* mutant (Fig. 3c, fourth blocks, green bars), implying that excess amount of INS-1 release during starvation conditioning may reduce learned taste avoidance by an unknown mechanism. Consistent of this, the inhibition of INS-1 release only during a chemotaxis period had a higher inhibitory effect on taste avoidance than that during both conditioning and chemotaxis (Fig. 2c, left, the fourth block, red vs. purple bars). Collectively, our results indicate that the timing of INS-1 release is important for the regulation of taste avoidance learning, and INS-1 release during salt chemotaxis is required and sufficient for taste avoidance.

Salt responses of AIA neurons are increased by starvation depending on synaptic output from ASER. It has been reported that spontaneous activity of the AIA neuron, a main site of INS-1 release, is increased during foraging after food deprivation for more than 20 min. Here, we examined the activity of AIA neurons in response to salt concentration changes using Ca$^{2+}$ imaging, making comparisons following conditioning in the presence or absence of food. We first monitored AIA activities following salt concentration changes between 50 and 25 mM. As previously reported, after cultivation with 50 mM (high) salt in the presence of food, AIA neurons were activated in response to increased salt concentration, whereas strong activation did not occur in response to decreased salt concentration (Fig. 4a left, blue line in top panel, middle panel). After food deprivation for 5–6 h with high salt, the OFF response, i.e., calcium response to a decrease in salt concentration, was significantly enhanced (Fig. 4a left, orange line in top panel, bottom panel, 4b left). We next assessed AIA responses after cultivation at 25 mM (low) salt in the presence of food. The AIA neurons were activated in response to both decreased and increased salt concentrations, with stronger activation observed in OFF responses (Fig. 4a right, blue line in top panel, middle panel). After food deprivation for 5–6 h with low salt, the ON response, i.e., calcium response to an increase in salt concentration, was significantly enhanced (Fig. 4a right, orange line in top panel, bottom panel, 4b right). To test the contribution of ASER to these AIA responses, tetanus toxin light chain (TeTx) was expressed in ASER to decrease the synaptic output from the neuron and then the activities of AIA upon salt concentration changes were monitored. We first confirmed that worms expressing TeTx in ASER showed weak but significant defects in taste avoidance learning (Supplementary Fig. 4). After cultivation at high salt in the presence of food, AIA neurons from TeTx-expressing animals responded to salt concentration increase in a manner similar to the wild type, suggesting that the ON response of AIA is regulated by neurons other than ASER (Fig. 4c left, blue line in top panel, middle panel). On the other hand, no significant enhancement was observed in the OFF and ON responses of AIA after food deprivation (Fig. 4c d). These data suggest that AIA activities in response to salt concentration changes are enhanced after starvation dependent on the output from the ASER neuron.
DAF-2c and PLC-1 act in the same genetic pathway to promote high-salt migration after starvation conditioning. To explore the mechanisms by which the DAF-2c pathway regulates migration toward both higher and lower salt concentrations after starvation conditioning, we conducted epistasis analyses between *daf-2c* and genes in phosphoinositide metabolism pathways, for which genetic interactions in salt chemotaxis were proposed in our previous studies. The PLCβ homolog EGL-8 and the PLCε homolog PLC-1 play major and minor roles, respectively, for regulating the amount of DAG at the ASER axon upon salt...
Fig. 4 Calcium responses of AIA are increased upon salt concentration changes after starvation conditioning. Calcium responses of AIA upon salt concentration changes after 50 mM (High) or 25 mM (Low) salt conditioning in the presence or absence of food.

a, c Time course of the average fluorescence intensity ratios (F/F_0) (top) and heat maps of F/F_0 (middle and bottom) of GCaMP6s in AIA. The NaCl concentration was switched from 50 to 25 mM at 25 s and then returned to 50 mM at 75 s.

b, d Quantification of calcium responses of AIA upon a salt concentration decrease (Downshift) or increase (Upshift) after 50 mM (High) or 25 mM (Low) salt conditioning in the presence or absence of food. Peak fluorescence intensity ratios (F/F_0) of GCaMP6s in AIA during the 10 s period after the salt concentration change. Calcium responses in the wild type (**a, b**: High-salt/Food(+) , n = 43; High-salt/Food(−), n = 34; Low-salt/Food(+), n = 22; Low-salt/Food(−), n = 44) and in worms expressing tetanus toxin light chain (TeTx) in ASER (**c, d**: High-salt/Food(+), n = 40; High-salt/Food(−), n = 40; Low-salt/Food(+), n = 44; Low-salt/Food(−), n = 46). Two-tailed Wilcoxon–Mann–Whitney test: *P < 0.05 and **P < 0.01. ns not significant. Box plots represent the median (central line), the 25th and 75th percentiles (the box), 1.5 times the interquartile range from the 25th and 75th percentiles (the whiskers). Individual data points are superimposed on the box plots.
concentration changes. Starvation conditioning reduces DAG dynamics dependent on the DAF-2 pathway. We tested the effects of the \textit{daf-2c} mutation on the taste avoidance learning of the frameshift deletion mutant \textit{egl-8(n488)} and the \textit{plc-1(pe1238)} mutant, which harbors a deletion in the large isoform of \textit{plc-1}. The \textit{egl-8(n488)} mutant showed reduced taste avoidance after starvation conditioning; the \textit{daf-2c} mutations further enhanced the high-salt migration defect after low-salt conditioning. This suggests that the DAF-2c pathway acts at least partly in parallel with \textit{egl-8} in high-salt migration after starvation conditioning. The \textit{plc-1(pe1238)} mutant exhibited a strong defect in high-salt migration after starvation conditioning at low salt. Interestingly, the \textit{daf-2c} mutation had no additive effect on the high-salt migration defect of \textit{plc-1(pe1238)} (Fig. 5a, right). On the other hand, the \textit{daf-2c} mutation caused low-salt migration defects after high-salt conditioning both in the \textit{egl-8} and \textit{plc-1} mutant backgrounds (Fig. 5a, left).

Decreased \textit{EGL-8} activity in ASER suppresses aberrant high salt migration in the \textit{daf-2c} mutant after starvation conditioning. Consistent with the previous report suggesting that \textit{EGL-8} functions in several types of neurons, including motor neurons\cite{36}, the \textit{egl-8} mutation caused significantly low mobility in salt chemotaxis compared to the wild type (Supplementary Fig. 5). To further clarify the function of \textit{PLC-1} and \textit{EGL-8} in ASER, we examined knockdown (via the somatic CRISPR/Cas9 method) of the PLC isozymes only in the ASER neuron. ASER-
knockdown of plc-1 or egl-8 significantly reduced high-salt migration after starvation conditioning at low salt (Fig. 5b right, 1st and 3rd blocks, Supplementary Fig. 6a, right). ASER-knockdown of egl-8 further increases low-salt migration bias in the plc-1(pe1238) genetic background, suggesting that both PLC isoforms redundantly act in ASER (Fig. 5b, 2nd blocks from right). On the other hand, ASER-knockdown of egl-8 but not plc-1 significantly reduced high-salt migration after conditioning with feeding, consistent with the observation that EGL-8 plays a major role in DAG dynamics in the ASER axon after feeding26 (Supplementary Fig. 6b).

We next examined the effect of ASER-specific knockdown of the PLC isoforms in the daf-2c(pe2722) genetic background. ASER-knockdown of plc-1 significantly reduced high-salt migration after low-salt conditioning in the absence of food in the daf-2c mutant, similar to the wild type (Fig. 5b right, 2nd block). Remarkably, the daf-2c mutation caused no significant effect on high-salt migration after starvation conditioning with ASER-specific knockdown of plc-1 (Fig. 5b right, blue bars in 1st and 2nd blocks), which is consistent with the finding that daf-2c acts in the same genetic pathway as plc-1. ASER-knockdown of egl-8 suppressed low-salt migration defects and increased migration bias toward low salt in the daf-2c mutants after high- and low-salt conditioning, respectively (Fig. 5b, 4th blocks). Furthermore, the daf-2c mutation caused no significant effect on low-salt migration after starvation conditioning at high salt with knockdown of egl-8 and the plc-1 mutation (Fig. 5b, left, red bars in 1st and 2nd blocks from right). These data imply that DAF-2c promotes migration toward lower salt via suppression of both EGL-8 and PLC-1 in ASER (Fig. 7).

Discussion

Our cell-specific rescue or knockdown experiments suggest that INS-1 secretion from AWA and ASI chemosensory neurons and AIA interneurons promotes taste avoidance learning. These neurons express endogenous INS-1, with strong expression shown in AIA (CeNGEN; https://cengen.shinyapps.io/CegenApp/); they connect to each other by gap junctions and send synaptic outputs to ASER37 (Supplementary Fig. 2d). As INS-1 is localized to presynaptic regions9, our findings suggest that local release of INS-1 from multiple neuron types may immediately modulate the functions of ASER through the axonal DAF-2c receptor. The axonal transport of DAF-2c is increased during starvation11. This localization change of DAF-2c may be required for acquisition phase of learning. In the present study, activation of INS-1–DAF-2c signaling during chemotaxis led to taste avoidance after starvation conditioning. Therefore, increased DAF-2c signaling at the axon during starvation and its persistent activation during chemotaxis might be required to induce and maintain starvation-induced taste avoidance.

Strong activation of AIA neurons was observed upon a salt concentration change, i.e., increased or decreased salt concentrations after high- or low-salt conditioning in the presence of food, respectively. Given previous evidence that artificial activation of AIA suppresses turning behavior38, it is possible that this contributes to the observed attraction toward given salt concentrations. In contrast, strong AIA responses were observed upon concentration changes to both low and high salt after starvation conditioning; these responses were dependent on ASER. It was reported that the spontaneous activities of AIA were increased under starvation conditions dependent on inputs from chemosensory neurons33. During chemotaxis where animals experience multiple rounds of increase and decrease of salt concentrations, this effect of starvation is likely augmented. These findings imply that increased AIA activities may increase INS-1 secretion during chemotaxis after starvation, which plays a key role in maintaining the high activity of DAF-2c signaling by sending feedback signals to DAF-2c in ASER. We confirmed that worms expressing T itrX in ASER showed a weak but significant defect in high-salt migration after low-salt conditioning in the absence of food (Supplementary Fig. 4). Synaptic output from ASER and possible feedback regulation of INS-1 from AIA may be more important for chemotaxis after low-salt conditioning than that after high-salt conditioning. Consistent of this, we have previously shown that stronger synaptic transmission was observed in ASER after low salt exposure in buffer than that after high salt exposure34.

In addition to the action of INS-1 on DAF-2c, INS-1 acts on the DAF-2a–DAF-16 pathway in high-salt migration after starvation conditioning at low salt. Similar to the action of INS-1 on DAF-2–DAF-16 signaling in the intestine and AWC chemosensory neurons20,39, INS-1 may act as an antagonist on DAF-2a in ASER for the regulation of taste avoidance learning. Conversely, mutant phenotypes and epistasis analyses suggest that INS-1 acts on DAF-2c as an agonist. Taken together, these findings imply that INS-1 acts on both DAF-2c and DAF-2a as an agonist and antagonist, respectively, to effectively regulate behavioral plasticity at different cellular sites in ASER. We previously reported that a shift to the restrictive temperature of the temperature-sensitive daf-2(e1370) mutant, in which functions of both DAF-2a (E11.5−) and DAF-2c (E11.5+) isoforms are disrupted, during either starvation conditioning or chemotaxis assay caused defects in starvation-induced avoidance of odorant13. Therefore, daf-2 is required for conditioning, as well as chemotaxis. In the ASER neuron, DAF-2a (E11.5−) represses starvation-dependent nuclear
Fig. 6 Putative Akt phosphorylation sites of PLC-1(L) are required for high-salt migration after starvation conditioning at low salt.

a The domain structures of PLC-1(L) and PLC-1(S) were analyzed with Pfam 33.1 (http://pfam.xfam.org/). Threonine residues in the Akt phosphorylation consensus sites (RXRXXT) are highlighted with yellow stars. Genetic interactions between Akt and daf-2c mutations (b, n = 4–10 assays) and rescue of taste avoidance learning by PLC-1(+/-) or PLC-1(3A) in the plc-1(pe1238) mutant (c, n = 24 assays). Chemotaxis indices after high- or low-salt conditioning in the absence of food. Each dot in red or blue represents a value calculated in each chemotaxis assay after conditioning at high or low salt concentrations, respectively. A black dot represents a chemotaxis index calculated in each chemotaxis assay using worms without transgenes. Bars represent mean values; error bars represent SEM. Two-tailed Welch’s t-test with Holm correction: **P < 0.01. ns not significant.
Starvation conditioning at:

	High salt	Low salt
INS-1–DAF-2c pathway	![Diagram](image.png)	![Diagram](image.png)
DAG level:	Decrease	Increase
Migration bias toward:	Low salt	High salt

Fig. 7 The INS-1–DAF-2c pathway promotes learned taste avoidance via distinct PLC isozymes. Worms migrate toward both higher and lower salt concentrations to effectively avoid the salt concentrations encountered under starvation conditions. We propose a model in which the INS-1–DAF-2c pathway exerts distinct effects on the PLC isozymes EGL-8 (PLCε) and PLC-1 (PLCe) after starvation conditioning. We postulate that the INS-1–DAF-2c pathway suppresses EGL-8 and PLC-1 activities and elevate PLC-1 activity, which decreases and increases DAG levels, and thereby promotes both lower and higher salt migrations, respectively.

Other unknown signaling pathways further increases migration bias toward higher salt after starvation. PLCβ is known to be directly activated by Gaq[48]. Also, in *C. elegans*, EGL-30 (Gaq) is proposed to activate EGL-8 in several types of neurons, including ASER[38]. On the other hand, PLCε is activated by diverse regulators, such as small G proteins[49]. Although regulators for PLC-1 activity are mostly unclear, multiple inputs, including DAF-2c/Akt signaling, may regulate PLC-1 to control taste avoidance after starvation.

In addition to the difference in the activators between PLCβ and PLCε, mechanisms for membrane binding and cellular distribution are different. The C-terminal domain (CTD) characteristic for PLCβ is known to determine membrane binding and spatial localization to regions of the membrane enriched in the substrate, phosphatidylinositol-4,5-bisphosphate (PIP2)[40]. Unlike PLCβ, the membrane-binding regions of PLCe are obscure, although the pleckstrin-homology (PH) domain is proposed to bind PIP2 and anchor the enzyme at the membrane[49]. In this study, we found the FERM domain in the N-terminal region specific for long isoform of PLC-1 (Fig. 6a). The FERM domain is involved in localization to the plasma membrane and the purified FERM domain binds to PIP2[41]. As a putative Akt phosphorylation sites exist in the FERM domain of PLC-1, DAF-2c/Akt signaling may regulate membrane localization of PLC-1 via phosphorylation of this site, which needs to be confirmed in future studies. The possible differences in upstream regulators and localization patterns in the plasma membrane might contribute to the separate roles of EGL-8 and PLC-1 in DAF-2c-dependent salt chemotaxis plasticity. The ASER neuron has synaptic connections to various interneurons and expresses a variety of neuropeptides, which could extrasynaptically modulate neural circuits. In ASER, each of PLCs may modulate ASER functions, such as synaptic transmission, at the different sites in the axon along with DAF-2c. It will be interesting to elucidate how multiple PLCs modulate ASER functions and its downstream neural circuits to regulate dramatic changes in salt chemotaxis after starvation.

Methods

Caenorhabditis elegans strains. *Caenorhabditis elegans* Bristol strain N2 was used as the wild type. The *C. elegans* strains were grown and maintained on NGM plates seeded with *Escherichia coli* strain NA22 at 20 °C, except for in calcium imaging experiments in which *E. coli* strain OP50 was used as a food source.

Standard genetics methods were used to generate strains with multiple mutations by crossing. The mutants and transgenic worms used in this study are listed in Supplementary Data 1.

DNA constructs and transgenesis. To generate ins-1::Venus expression plasmids, we generated the destination vector carrying ins-1::Venus cDNA, namely pDEST-INS-1::Venus, and then inserted promoter sequences upstream of *ins-1::Venus* via the LR reaction with entry vectors carrying the promoter sequences (pENTR-promoter) using the GATEWAY cloning technique (ThermoFisher). We used the daf-7 promoter (3.1 kb) for ASI expression, the odr-10 promoter (1.1 kb) for AWA expression, the gcy-28d promoter (2.8 kb) (a gift from Dr. Takeshi Ishihara) for strong AIA and weak ASJ expression, the rgef-1 promoter (1.0 kb) for ASI expression, the gcy-5 promoter (2.1 kb) for RIA expression, the tph-1 promoter (1.7 kb) for ADF and NSM expression, the fub-1 promoter (4.5 kb) for RIC expression, and the dat-1 promoter (0.7 kb) for CEP, ADE, and PDE expression. The expression patterns were confirmed by INS-1::Venus fluorescence using confocal microscopy.

We generated an ins-1 fosmid reporter according to the protocol reported by Tursun et al.[42]. The BALU9 cassette (a gift from Dr. Oliver Hobert), which contains s23::gfp cDNA and the F5g (FRT-galK-FRT) sequence, was inserted downstream of the ins-1 ORF in a fosmid vector (WRM0618B05). To generate a plasmid containing rat VRI cDNA (a gift from Dr. Cori Bargmann), driven by the dat-1 promoter, we generated the destination vector carrying rat VRI cDNA, namely pDEST-VRI, and then inserted the dat-1 promoter sequence upstream of VRI via the LR reaction with the entry vector carrying the dat-1 promoter (pENTR-dat-1) using the GATEWAY cloning technique (ThermoFisher).

To generate plasmids containing Cas9 cDNA (a gift from Dr. Bob Goldstein) driven by the rgef-1 promoter (3.5 kb) (a gift from Dr. Roger Pocock), gcy-28d promoter (2.8 kb), gcy-1 promoter (3.2 kb), or gcy-5 promoter (2.0 kb), we
generated the destination vector carrying Cas9 fused to SL2-CFP, namely pDEST-Cas9-SL2-CFP, and then inserted the promoter sequences upstream of Cas9 via the LR reaction with the destination vectors carrying rgef-1 promoter, pENTR-gcy-28d, pENTR-ges-1, and pENTR-gcy-5. To generate a plasmid for expression of a mutant form of PLC-1 with the destination vector carrying PLC-1(L), namely pDEST-PLC-1(L), was followed by the taste avoidance learning assay (Supplementary Fig. 7). To generate a plasmid for expression of GCaMP6s or mCherry in AIA, the ins-1 promoter was inserted upstream of GCaMP6s or mCherry cDNA via the LR reaction with the destination vector carrying TeTx, namely pENTR-TeTx, and pENTR-gcy-5. To generate a plasmid for expression of GCaMP6s or mCherry in AIA, the ins-1 promoter was inserted upstream of GCaMP6s or mCherry cDNA via the LR reaction with the destination vector carrying GCaMP6s, i.e., pDEST-GCaMP6s (a gift from Dr. Takeshi Ishihara), or pDEST-mCherry, respectively, and the entry vector carrying the ins-1 promoter, i.e., pENTR-ins-1. To generate a plasmid for the expression of TeTx, the gcy-5 promoter was inserted upstream of TeTx cDNA via the LR reaction with the destination vector carrying TeTx, namely pDEST-TeTx, and pENTR-gcy-5.

To isolate RNA, worm bodies were homogenized with TRIzol reagent (Invitrogen) according to the manufacturer's protocol. cDNA was synthesized from isolated RNA using random hexamer primers and the SuperScript III First-Strand Synthesis System (Invitrogen). PCR was performed using the following primers: for rgef-1 promoter, gcy-28d promoter, ges-1 promoter, gpc-1 promoter, hbb-1 promoter or gcy-5 promoter, respectively, based on CFP fosmid reporter were injected at concentrations of 20 mM NaCl. After conditioning, the worms were placed at the center of a 9 cm agar plate, adult worms were transferred to NGM plates with 25- or 100 mM NaCl in phosphate at pH 6.0, 1 mM CaCl2, 1 mM MgSO4, and 2% agar) with an NaCl concentration adjusted to 350 mOsm with glycerol containing 50 mM NaCl was delivered to the tip of the nose. The NaCl concentration contained in the imaging buffer was shifted from 50 to 25 mM and then recovered to 50 mM after 50 s. Fluorescence intensities of GCaMP6s and mCherry were simultaneously monitored at a rate of two frames per second. Fluorescence intensities in the neuronal processes of AIA were analyzed with custom-made scripts using Image software. The average fluorescence intensity ratio of the GCaMP6s to mCherry over 20 frames (10 s) prior to the salt concentration shift from 50 to 25 mM was set as F0, and the fluorescence intensity ratio of GCaMP6s to mCherry relative to F0 (F/F0) was calculated for a time series of images.

Statistics and reproducibility. Statistical analyses were done using R3.6.1 (http://www.R-project.org/). For multiple comparison, Welch’s t-test with Holm correction or ANOVA followed by Dunnett’s or Tukey’s post hoc test was applied. All analyses were performed with at least four biological replicates. In behavioral assays using transgenic C. elegans strains, a minimum of two independent transgene arrays were tested for effects on behaviors, and then all of the obtained data were used for quantification. Non-parametric Wilcoxon– Mann–Whitney test was applied to compare calcium responses of AIA neurons.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Source data for graphs are available in the fighare repository (https://doi.org/10.6084/m9.figshare.16791640) (ref. 1). All other data are available from the corresponding author on reasonable request.

Received: 28 May 2021; Accepted: 9 December 2021; Published online: 11 January 2022

Salt concentration learning assay. Salt concentration learning assays were performed according to our previously reported procedures44. For conditioning on agar plates, adult worms were transferred to NGM plates with 25- or 100 mM NaCl in the absence or presence of a bacterial food (NA22) for 5–90 ng/µl along with a conjection maker, i.e., lin-44::mCherry (20 ng/µl), m3p::GFP (30 ng/µl) or m3p::Venus (10 ng/µl), and a carrier DNA, namely pPD49.26. To avoid false positives, preparations were mixed at a fixed concentration of 100 ng/µl. The ins-1 fosmid reporter was injected at 15 ng/µl along with a co-injection maker, phr24 (2 ng/µl), and the C. elegans genome (150 ng/µl) as a carrier DNA.

Chemotaxis assay. For calculating the chemotaxis index, the density of worms was determined in a microfluidic device and an imaging buffer (25 mM potassium phosphate at pH 6.0, 1 mM CaCl2, 1 mM MgSO4, and 0.02% gelatin; osmolality was adjusted to 350 mOsm with glycerol) containing 50 mM NaCl was delivered to the tip of the nose. The NaCl concentration contained in the imaging buffer was shifted from 50 to 25 mM and then recovered to 50 mM after 50 s. Fluorescence intensities of GCaMP6s and mCherry were simultaneously monitored at a rate of two frames per second. Fluorescence intensities in the neuronal processes of AIA were analyzed with custom-made scripts using Image software. The average fluorescence intensity ratio of the GCaMP6s to mCherry over 20 frames (10 s) prior to the salt concentration shift from 50 to 25 mM was set as F0, and the fluorescence intensity ratio of GCaMP6s to mCherry relative to F0 (F/F0) was calculated for a time series of images.

Statistics and reproducibility. Statistical analyses were done using R3.6.1 (http://www.R-project.org/). For multiple comparison, Welch’s t-test with Holm correction or ANOVA followed by Dunnett’s or Tukey’s post hoc test was applied. All analyses were performed with at least four biological replicates. In behavioral assays using transgenic C. elegans strains, a minimum of two independent transgene arrays were tested for effects on behaviors, and then all of the obtained data were used for quantification. Non-parametric Wilcoxon– Mann–Whitney test was applied to compare calcium responses of AIA neurons.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Source data for graphs are available in the fighare repository (https://doi.org/10.6084/m9.figshare.16791640) (ref. 1). All other data are available from the corresponding author on reasonable request.

References
1. Nakajima, K. et al. Co-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat. Commun. 7, 10268 (2016).
2. Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).
3. Beets, I. et al. Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression. Neuron 105, 106–121.e10 (2020).
4. Liu, Z. et al. IGF-1-dependent synaptic plasticity of mitral cells in olfactory memory during social learning. Neuron 95, 106–122.e105 (2017).
5. Pristera, A. et al. Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration. Proc. Natl Acad. Sci. USA 116, 3817–3826 (2019).
6. Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011).
7. Chen, Y., Lin, Y. C., Kuo, T. W. & Knight, Z. A. Sensory detection of food mediates aversive behavior in C. elegans. Neuron 51, 613–625 (2006).
8. Ohno, H. et al. Role of synaptic phosphorylidyinositol 3-kinase in a behavioral learning response in C. elegans. Sci. 345, 313–317 (2014).
9. Tomioka, M. et al. The insulin/Pi-3 kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51, 613–625 (2006).
10. Leal, T. M. et al. The role of glycogen synthase kinase 3 in a behavioral learning response in C. elegans. Cell Rep. 34, 313–317 (2014).
11. Tomioka, M., Naito, Y., Kuroyanagi, H. & Iino, Y. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c with alternative splicing. Nat. Commun. 7, 11645 (2016).
12. Nagashima, T., Iino, Y. & Tomioka, M. DAF-16/FOXO promotes taste response learning independently of axonal insulin-like signaling. PLoS Genet. 15, e1008297 (2019).
13. Lin, C. H. et al. Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory consolidation. J. Neurosci. 30, 8001–8011 (2010).
14. Chalasani, S. et al. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory learning. Nat. Neurosci. 13, 615–621 (2010).
15. Cho, C. E., Bruegemann, C., Etoile, N. D. & Bargmann, C. I. Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning. Elife https://doi.org/10.7554/eLife.14000 (2016).
16. Harris, G. et al. Dissecting the serotonergic food signal stimulating sensory-evoked dynamics. Neuron 302, 801–811 (2010).
23. Arey, R. N., Stein, G. M., Kaletsky, R., Kauffman, A. & Murphy, C. T. (2019). Pheromones modulate learning by regulating the balanced signals. *Neuron* 104, 1095–1109.e1095.

24. Kodama, E. et al. Insulin-like signaling and the neural circuit for integrative behavior in *C. elegans*. *Genes Dev.* 20, 2955–2960 (2006).

25. Takeishi, A., Yeon, J., Harris, N., Yang, W. & Sengupta, P. Feeding state functionally reconfigures a sensory circuit to drive thermoosensory behavioral plasticity. *Elife* [https://doi.org/10.7554/elife.61187] (2020).

26. Spencer, B., Rank, L., Metcalf, J. & Despata, P. Identification of insulin receptor splice variant B in neurons by in situ detection in human brain samples. *Sci. Rep.* 8, 4070 (2018).

27. Nakano, S. et al. Presynaptic MAST kinase controls opposing postsynaptic responses to convey stimulus valence in *Caenorhabditis elegans* eagles. *Proc. Natl Acad. Sci. USA* 117, 1638–1647 (2020).

28. Azey, R. N., Stein, G. M., Kalezsky, R., Kaufman, A. & Murphy, C. T. Activation of Gq signaling enhances memory consolidation and slows cognitive decline. *Neuron* 98, 562–574.e565 (2018).

29. Fu, Y. et al. Neuronal and intestinal protein kinase d isoforms mediate Na+ (salt)-tae-induced learning. *Sci. Signal.* 2, ra42 (2009).

30. Kariya, K., Bui, Y. K., Gao, X., Sternberg, P. W. & Kataoka, T. Phospholipase C epsilon regulates ovulation in *Caenorhabditis elegans*. *J. Neuroscience* 30, 307–318 (2002).

31. Ohno, H., Sakai, N., Adachi, T. & Iino, Y. Dynamics of presynaptic diacylglycerol in a sensory neuron encode differences between past and current stimulus intensity. *Cell Rep.* 20, 2294–2303 (2017).

32. Smrcka, A. V., Brown, J. H. & Holz, G. G. Role of phospholipase C epsilon in physiological phosphoinositide signaling networks. *Cell Signal.* 24, 1333–1343 (2012).

33. Misra, V. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. *Genes Dev.* 15, 672–686 (2001).

34. Shen, Z. et al. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. *Dev. Cell* 30, 625–636 (2014).

35. Suo, S., Calotti, J. G. & Van Tol, H. H. Dopamine counteracts octopamine signalling in a neural circuit mediating food response in *C. elegans*. *EMBO J.* 28, 2437–2448 (2009).

36. Tobin, D. M. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. *Neuron* 35, 307–318 (2002).

37. López-Cruz, A. et al. Parallel multimodal circuits control an innate foraging behavior. *Neuron* 102, 407–419.e408 (2019).

38. Oda, S., Tomioka, M. & Iino, Y. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemosensation learning in *Caenorhabditis elegans*. *Neurophsyciol. Genet.* 106, 301–308 (2011).

39. Adachi, T. et al. Reversal of salt preference is directed by the insulin(P/PIK3 and G(q)/PKC signaling in *Caenorhabditis elegans*. *Genetics* 186, 1309–1319 (2010).

40. Lackner, M. R., Nurrish, S. J. & Kaplan, J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. *Neuron* 24, 335–346 (1999).

41. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode *Caenorhabditis elegans*. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 314, 1–340 (1986).

42. Wang, L. et al. A gustatory neural circuit of *Caenorhabditis elegans* generates memory-dependent behaviors in Na+ chemosensation. *J. Neuroscience* 37, 2097–2111 (2017).

43. Hung, W. L., Wang, Y., Chitturi, J. & Zhen, M. A *Caenorhabditis elegans* developmental decision requires insulin signaling-mediated neuron-intestine communication. *Development* 141, 1767–1779 (2014).

44. Muniruddinahan, K., Van Camp, M. M. & Lyon, A. M. Structure and regulation of phospholipase C8 and e at the membrane. *Chem. Phys. Lipids* 235, 105050 (2021).