Survival Rate and Prognostic Factors in Turkish Women Patients with Breast Cancer

*Şebnem Zorlutuna

Department of Econometrics, Faculty of Economics and Administrative Sciences, Sivas Cumhuriyet University, Sivas, Turkey

*Correspondence: Email: szorlutuna@cumhuriyet.edu.tr

(Received 14 Oct 2020; accepted 21 Dec 2020)

Abstract

Background: The study aimed to estimate the overall and disease-free survival rates of breast cancer patients and the factors affecting these rates.

Methods: In this retrospective study, data were obtained from 686 patients diagnosed with breast cancer in Sivas Cumhuriyet University Faculty of Medicine Research and Application Hospital Oncology Center between 1988 and 2014. Total population sampling method was used. The survival rates at certain periods were determined by creating a Life Table. By using the Kaplan-Meier Analysis, the mean survival times and rates were determined, and whether the variables had an impact on survival was examined. By applying Cox regression analysis, the effect of prognostic factors that are significant on the survival time of breast cancer patients was examined.

Results: Overall mean survival time was found as 208.4±11.8 months. According to Kaplan-Meier analysis, 1, 5, 10 and 20-years overall survival rates were 96.6 ± 0.07%, 82.3 ± 1.7%, 64.4 ± 3.4% and 49%± 7.4%, respectively. According to Cox regression analysis results, variables that influence overall survival time were found as disease stage, multicentricity status, ECOG (performance status), presence of diabetes, CA15-3 value, neutrophil/lymphocyte ratio. Moreover, variables that had an impact on the disease-free survival time were found as tumor grade, multicentricity, and ECOG.

Conclusion: Many factors other than disease can prolong survival or accelerate death. Considering the findings of this study may be useful in planning the treatment of breast cancer patients have positive affect on overall survival rates.

Keywords: Breast cancer; Survival analysis; Cox regression; Life table; Kaplan-Meier

Introduction

Cancer is a public health issue and problem for both the world and our country with its burden of disease, lethality and increasing tendency. According to the World Cancer Database (GLOBOCAN) 2018 data, global cancer burden reached 18.1 million cases and 9.6 million cancer deaths. The International Agency for Research on Cancer (IARC) estimates that one in five men and one in six women worldwide will suffer cancer throughout their lives, and one in eight men and one in eleven women will die of cancer (1).
Breast cancer is the second most common cancer in the world, and it is the cancer that causes the most death among women. According to Globocan 2018 data, when the distribution of breast cancer cases in the world is analyzed, Asia comes first with 43.6% followed by Europe with 25%. In mortality rates, Asia comes first with 49.6% and Europe is second with 22%.

Although breast cancer is common, it is a type of cancer that generally shows a slow development rate. When the diagnosis is made early, successful treatment results can be obtained and the mortality rate can be reduced. For this reason, experts in all regions of the world are working on breast cancer (2-8). Because knowing every information and the factors that may affect the treatment processes positively or negatively regarding the course of breast cancer can help develop strategies for both improving the quality of life of patients and reducing the cost of treatment.

Mortality decreased in some western countries due to early diagnosis of the disease and improvement of treatment methods (2, 9), mortality is higher among developing countries due to low awareness and low level of early diagnosis (2, 10-12). The survival rate has been reported as 73% in developed countries and 53% in developing countries (2, 10, 11). “In 1993, the incidence of breast cancer was 24 per 100,000, and it increased to 50 per 100,000 in 2013; the number of new patients was 22,345 in Turkey in 2018” (13-15). Recently, the survival rate and prognostic factors of Iranian breast cancer patients were investigated (2).

In this study, the survival rates of breast cancer patients, which are very common in our geography, were investigated. For this purpose, Kaplan-Meier analysis was applied to the data obtained from breast cancer patients treated at Sivas Cumhuriyet University Faculty of Medicine Research and Application Hospital Oncology Center. Then 1, 5, 10 and 20 years survival rates were determined. Moreover, prognostic factors that affect the survival time of breast cancer patients were investigated using cox regression analysis.

Methods

In this retrospective study, data were obtained from 686 patients diagnosed with breast cancer in Sivas Cumhuriyet University Faculty of Medicine Research and Application Hospital Oncology Center between 1988 and 2014. The survival analysis was used to analyze and interpret the data obtained until the occurrence of any event of interest.

The time elapsed between a certain starting time and death (failure) of a living organism or an inanimate object is called the "survival time" or "failure time" (16). The survival analysis estimates how long an individual with a particular illness will survive after a diagnosis of the disease or how long it will take the disease to recur (relapse) after beginning the treatment.

The main feature that distinguishes survival analyzes from other analyzes is that the stopped, that is, censored data is included in the analysis. When the event of interest in a study is the lifetime of an individual or a case, it is sometimes not possible for them to be kept under observation until the end of the study. Individuals or cases who come out of the observation for various reasons are called paused or censored observation.

In the survival analysis, nonparametric and semi-parametric survival analyzes are used because the data structure is censored and the results obtained by parametric analysis methods may not be healthy.

The most well-known of these analyzes are:

- Life table analysis
- Kaplan-Meier Analysis
- Cox Regression Analysis

In these analysis methods, the results may differ as well as in the same direction.

The life table method can be used when the lifetime is grouped by intervals and the number of patients who die at each interval is measured (16). Main differences between the Kaplan-Meier method and the life table are that the follow-up period of the study is not divided into certain time intervals, that while the probability of death is calculated, the ones who left the study alive are
not included. Moreover, it can be studied with fewer observations in the Kaplan-Meier method (17). Cox regression (18) model used to measure the effects of explanatory variables on survival time, is an extremely flexible regression model that does not require any assumptions about the structure of survival data. In the basis of the model, there is a logic that the risk rate or survival times are taken as a dependent variable and these vary depending on some factors. In Cox regression model, the effects of explanatory variables on the dependent variable are multiplica-

tive. Refer to references (19,20) for more information.

Results

Incidents (death) occurred in 132 of the patients. The youngest patient’s age was 18 and the oldest 89 yr. The mean age was 52 and the median 51 yr.

Statistical Analysis

As seen in Table 1, 1, 5, 10, and 20-year overall survival rate was 97%, 78%, 63%, and 49%, respectively.

Table 1: Overall life table of patients observed

Interval Start Time (Month)	Number of Patients Observed	Number of Censored Patients	Number of Risky Patients	Number of Patients Died	Termination Rate	Survival Rate	Cumulative Survival Rate
0	686	1	685.5	20	0.03	0.97	0.97
12	665	65	632.5	19	0.03	0.97	0.94
24	581	91	535.5	24	0.04	0.96	0.90
36	466	91	420.5	15	0.04	0.96	0.87
48	360	68	326	16	0.05	0.95	0.82
60	276	50	251	13	0.05	0.95	0.78
72	213	57	184.5	2	0.01	0.99	0.77
84	154	41	133.5	9	0.07	0.93	0.72
96	104	22	93	5	0.05	0.95	0.68
108	77	16	69	4	0.06	0.94	0.64
120	57	8	53	1	0.02	0.98	0.63
132	48	17	39.5	1	0.03	0.97	0.61
144	30	7	26.5	1	0.04	0.96	0.59
156	22	5	19.5	0	0.0	1.00	0.59
168	17	3	15.5	0	0.0	1.00	0.59
180	14	3	12.5	1	0.08	0.92	0.54
192	10	1	9.5	1	0.11	0.89	0.49
204	8	1	7.5	0	0.0	1.00	0.49
216	7	2	6	0	0.0	1.00	0.49
228	5	1	4.5	0	0.0	1.00	0.49
240	4	1	3.5	0	0.0	1.00	0.49
252	3	1	2.5	0	0.0	1.00	0.49
264	2	0	2	0	0.0	1.00	0.49
276	2	0	2	0	0.0	1.00	0.49
288	2	1	1.5	0	0.0	1.00	0.49
300	1	0	1	0	0.0	1.00	0.49
312	1	1	0.5	0	0.0	1.00	0.49
The disease-free survival time is the total time between the first relapse and the primary treatment of the disease. As seen in (Table 2), 1, 5, 10, and 20-year disease-free survival rate of the patients are 99%, 94%, 91%, and 68%, respectively.

Table 2: Disease-free life table of the patients observed

Interval Start Time (Month)	Number of Patients Observed	Censored Patients	Number of Risky Patients	Number of Patients Died	Termination Rate	Survival Rate	Cumulative Survival Rate
0	686	70	651	9	0.01	0.99	0.99
12	607	76	569	7	0.01	0.99	0.97
24	524	103	472.5	6	0.01	0.99	0.96
36	415	94	368	5	0.01	0.99	0.95
48	316	77	277.5	3	0.01	0.99	0.94
60	236	52	210	0	0.0	1.00	0.94
72	184	56	156	1	0.01	0.99	0.93
84	127	42	106	1	0.01	0.99	0.92
96	84	20	74	0	0.0	1.00	0.92
108	64	18	55	1	0.02	0.98	0.91
120	45	7	41.5	0	0.0	1.00	0.91
132	38	16	30	1	0.03	0.97	0.88
144	21	7	17.5	0	0.0	1.00	0.88
156	14	4	12	1	0.08	0.92	0.80
168	9	2	8	0	0.0	1.00	0.80
180	7	1	6.5	1	0.15	0.85	0.68
192	5	0	5	0	0.0	1.00	0.68
204	5	1	4.5	0	0.0	1.00	0.68
216	4	1	3.5	0	0.0	1.00	0.68
228	3	0	3	0	0.0	1.00	0.68
240	3	1	2.5	0	0.0	1.00	0.68
252	2	0	2	0	0.0	1.00	0.68
264	2	0	2	0	0.0	1.00	0.68
276	2	0	2	0	0.0	1.00	0.68
288	2	1	1.5	0	0.0	1.00	0.68
300	1	0	1	1	1.00	0.0	0.0

Kaplan-Meier Analysis

By using Kaplan-Meier analysis, both overall survival and disease-free survival rates were examined.

Overall mean survival time (months) ± Standard Error (SE) [95% Confidence Interval (CI)] was found as 208.4 months ± 11.8 months [185.3-231.4].

1, 5, 10, and 20-year overall survival rate was found as 96.6% ± 0.07%, 82.3% ± 1.7%, 64.4% ± 3.4%, and 49.5% ± 7.4%, respectively. The overall survival curve is given in Fig. 1.
The number of relapsed patients was 37. The number of censored data was 649 (94.6%). The mean disease-free survival time was found as 211 months ± 10.5 months [190.4-231.5]. 1, 5, 10, and 20-year disease-free survival rate was found as 98.6% ± 0.05%, 94% ± 1.1%, 90.6 ± 2.4%, and 69% ± 12.4%, respectively. The disease-free survival curve was given in Fig. 2.

With Kaplan-Meier analysis, factors affecting survival times were determined by looking at the results (P<0.05) of Log-rank tests for each variable. Factors affecting overall survival time were found as disease stage, patient's age, C-erb B-2 status, LUMB, tumor grade, tumor diameter, LVI1, multicentricity, ECOG, CEA value, CA15-3 value, neutrophil / lymphocyte ratio, neutrophil/Plt rate. Average, standard error and 95% confidence intervals of survival times for these factors are given in Table 3.

Table 3: Averages of overall survival times by effective factors

Variable	Mean Estimate	Std. Error	95% Confidence Interval	
			Lower Limit	Upper Limit
Stage I	176.860	9.382	158.471	195.249
Stage II	223.672	16.998	190.356	256.987
Stage III	138.996	10.342	118.726	159.266
Stage IV	41.417	8.140	25.463	57.371
Stage unknow	206.778	49.791	109.187	304.368
Stage insitu	133.923	8.721	116.830	151.016
Overall	208.356	11.757	185.313	231.400
Under 35	149.660	15.006	120.249	179.071
36-45	211.637	17.074	178.171	245.102
46-55	203.076	9.618	184.225	221.927
56-65	138.411	11.655	115.568	161.255
66-75	101.475	7.366	87.039	115.912
Over 75	73.898	8.316	57.597	90.198
Overall	208.356	11.757	185.313	231.400
CerB2 negative	169.838	11.026	148.818	190.356
CerB2 positive	187.267	8.140	168.726	205.766
Overall	197.721	8.140	178.171	217.271
LUMBA	225.554	21.897	182.636	268.473
LUMBA (her2-)	165.981	17.074	148.818	183.144
LUMBA (her2+)	99.464	9.618	89.107	109.821
her2+	130.020	10.332	101.421	158.621
Overall	203.076	8.140	170.852	234.648
Tumor Grade 1.00	172.009	15.288	148.818	208.865
Tumor Grade 2.00	188.845	15.288	158.880	218.810
Factors affecting the disease-free survival time were found as Ki-67 value, LUMB, grade, ECOG, diabetes, CEA value, CA15-3 value. Average, standard error and 95% confidence intervals of disease-free survival times for these factors are given in Table 4.

Table 4: Averages of disease-free survival times by effective factors

Variable	Mean	Std. Error	95% Confidence Interval
Ki67 value under 28	130.125	5.408	119.524 - 140.725
Ki67 value over 28	217.639	17.905	182.546 - 252.732
Overall	209.989	13.443	183.640 - 236.338
LUMBA	299.721	3.787	292.300 - 307.143
LUMBA (her2-)	149.938	6.305	137.581 - 162.295
LUMBA (her2+)	114.436	3.712	107.161 - 121.710
her2+	173.443	6.760	159.606 - 187.281
trible(-)	166.057	7.060	152.808 - 187.306
Overall	248.878	24.061	201.719 - 296.037
Tumor Grade 1.00	230.649	7.151	216.634 - 244.665
Tumor Grade 2.00	211.244	31.566	149.374 - 273.114
Tumor Grade 3.00	149.211	6.153	137.151 - 161.271
Cox Regresyon Analysis
In this section, by applying Cox regression analysis, the effect of 23 independent variables was measured in the death (survival times) of breast cancer patients. The results of Cox regression analysis conducted to determine the variables affecting overall survival are seen in Table 5. Accordingly, the variables that have an effect on the overall survival time were found as the stage of the disease, multicentricity status, ECOG (performance status), presence of diabetes, CA15-3 value, and neutrophil/lymphocyte ratio.

The death risk of patients in stage 4 was 60.433 times more than patients in stage 1 (P=0.008). No significant difference was observed in the second and third stages. Those who had multicentricity carry 3.063 times more death risk than who did not (P=0.043). While there was no significant difference in ECOG (performance status) 0, 1, 2, there was a significant difference in ECOG 3. Patients with diabetes were 4.93 (4.93=1/, 203) times more at risk than those without diabetes (P=0.047). CA15-3 value was another variable that affects survival time (P=0.0). Neutrophil/lymphocyte ratio was also another significant variable (P=0.015). The increase in this rate increased the survival time.

The results of Cox regression analysis conducted to determine the variables affecting disease-free survival are seen in Table 6.

Table 5: Cox regression analysis results for overall survival

Variable	β	Std Error	Wald	d.f.	p	Exp(β)	95% Confidence Interval	95% Confidence Interval
Age	0.044	0.033	1.773	1	0.183	1.045	0.980-1.114	0.738-23.108
Menopause condition	1.418	0.879	2.604	1	0.107	4.129	0.738-23.108	
ER	-0.010	1.342	0.0	1	0.994	0.990	0.071-13.738	
PR	0.156	0.806	0.038	1	0.846	1.169	0.241-5.668	
CerB2	-0.198	0.870	0.052	1	0.820	0.820	0.149-4.518	
ki67	0.012	0.011	1.221	1	0.269	1.012	0.991-1.033	
Table 6: Cox regression analysis for disease-free survival

Variable	β	Std Error	Wald	d.f.	p	Exp(β)	95% Confidence Interval		
Stage									
Stage (1)	0.437	1.105	107.970	0.002	1	0.997	1.549	0.0	1.241E+092
Stage (2)	4.367	1.325	107.711	0.002	1	0.968	78.844	0.0	3.761E+093
Stage (3)	5.079	1.552	108.516	0.002	1	0.962	160.665	0.0	7.760E+093
Stage (4)	12.967	1.531	109.516	0.002	1	0.906	427844.35	0.0	7.100E+098
Histology									
histology(1)	-1.413	1.174	1.448	0.014	1	0.907	0.758	0.007	78.897
histology(2)	-0.277	2.370	0.896	0.014	1	0.907	0.758	0.007	78.897
histology(3)	-7.592	8.020	0.896	0.014	1	0.907	0.758	0.007	78.897
Menopause	2.208	1.192	3.434	0.014	1	0.907	9.101	0.880	94.089

Available at: http://ijph.tums.ac.ir
Accordingly, variables that had an effect on disease-free survival time were found as tumor grade, multicentricity, ECOG (performance status), and ECOG (1).

In addition, patients with tumor grade 3 were at 10.75 (1/0.093) times more risk than patients who were 1. Patients with multicentricity were at 11.11 (11.11=1/0.090) times more risk than non-multicentric patients. Patients with ECOG 4 were at 200 (200=1/0.005) times more risk than patients with ECOG 2.

Discussion

In this retrospective study conducted in the Oncology Center of Sivas Cumhuriyet University Faculty of Medicine Research and Application Hospital in Turkey, 1, 5, 10, and 20-year overall survival rate was found as 96.6% ± 0.07%, 82.3% ± 1.7%, 64.4% ± 3.4%, and 49.5%± 7.4%, respectively. Variables that affect the overall survival time were found as disease stage, multicentricity status, ECOG (performance status), presence of diabetes, CA15-3 value, neutrophil / lymphocyte ratio. Moreover, variables that affect the disease-free survival time were found as tumor grade, multicentricity, and ECOG.

In a similar study among women with breast cancer in Iran (2), the survival rate decreased as the patient follow-up time increased. In addition, a significant relationship was observed between survival time and variables such as age, tumor size, lymph node number, stage, histological grade, estrogen receptor, progesterone receptor, and lymphovascular invasion. 1, 5, 10, 15, 20 and 25-year overall survival rate was found as 95%, 75%, 60%, 47%, 46% and 46%, respectively.
Moreover, in a retrospective cohort study of in-patient breast cancer cases in Indonesia (8), important factors associated with survival rate were found to be metastasis and comorbidity. In another study conducted in Egypt to determine the relationship between the survival time of women with breast cancer and sociodemographic and pathological factors (5), the median survival time was 83.8 ± 3.2. In addition, education level, bone metastasis, lung metastasis, tumor size and number of nodes were significantly correlated with survival. It is understood from these studies conducted in different countries, at different times and using different variables, the stage of the disease, the tumor size, the presence of another disease, and metastasis variables can be said to be common prognostic factors that affect the survival of breast cancer patients. Moreover, factors such as the level of awareness, screening programs, early diagnosis, access to treatment may lead to different survival rates according to countries.

Conclusion

The breast cancer was investigated, which is very common in our region. In addition, the prognostic factors were investigated affecting the survival rates and survival times of Turkish breast cancer patients. I hope that the findings from this study will not only contribute to the treatment processes of patients in this region, but will also contribute to the creation of general treatment strategies by comparing the results of similar studies conducted in different geographies of the world.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

I would like to thank Oncologist Assoc. Prof. Dr. Birsen Yücel, who helped me to collect the data required for my study and select the variables.

Conflict of interest

The author declares that there is no conflict of interest.

References

1. The Global Cancer Observatory (2018). https://geo.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
2. Meshkat M, Baghestani AR, Zayeri F, et al (2020). Survival Rate and Prognostic Factors among Iranian Breast Cancer Patients. Iran J Public Health, 49(2): 341-350.
3. Yoshida M, Shimizu C, Fukutomi T, et al (2011). Prognostic factors in young Japanese women with breast cancer: prognostic value of age at diagnosis. Jpn J Clin Oncol, 41(2): 180-9.
4. Shen Y, Yang Y, Inoue LY, et al (2005). Role of detection method in predicting breast cancer survival: analysis of randomized screening trials. J Natl Cancer Inst, 97(16): 1195-203.
5. Seedhom AE, Kamal NN (2011). Factors affecting survival of women diagnosed with breast cancer in El-Minia Governorate, Egypt. Int J Prev Med, 2(3): 131-8.
6. Zhang M, Chen H, Gu J (2016). Analysis of factors affecting endocrine therapy resistance in breast cancer. Onkol Lett, 11(1): 379-384.
7. Denkert C, von Minckwitz G, Darb-Esfahani S, et al (2018). Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol, 19(1): 40-50.
8. Nadjib Bustan M, Aidid MK, Afrianty Gobel F (2018). Cox Proportional Hazard Survival Analysis to Inpatient Breast Cancer Cases. Journal of Physics Conference Series, 1028(1): 012230.
9. Rosai J (2011). Rosai and Ackerman’s surgical pathology e-book. Elsevier Health Sciences.
10. The Global Cancer Observatory (2012). https://geo.iarc.fr/
11. Acil H, Cavdar I (2014). Comparison of quality of life of Turkish breast cancer patients receiving breast conserving surgery or modified radical mastectomy. *Asian Pac J Cancer Prev*, 15(13): 5377-81.

12. Rahimzadeh M, Pourhoseingholi MA, Kavehie B. (2016). Survival rates for breast cancer in Iranian patients: a meta-analysis. *Asian Pac J Cancer Prev*, 17(10): 4615–4621.

13. Çakmak GK, Emiroğlu S, Sezer A, et al (2020). Surgical Trends in Breast Cancer in Turkey: An Increase in Breast-Conserving Surgery. *JCO Glob Oncol*, 6: JGO.

14. Fidaner C, Eser SY, Parkin DM (2001). Incidence in Izmir in 1993–1994: first results from Izmir Cancer Registry. *Eur J Cancer*, 37(1): 83-92.

15. International Agency for Research on Cancer, World Health Organisation. Globocan Fact Sheets-Turkey. The Global Cancer Observatory; 2018. http://gco.iarc.fr/today/data/factsheets/populations/792-turkey-fact-sheets.pdf

16. Elandt-Johnson RC, Johnson NL (1980). *Survival models and data analysis* (Vol.110). John Wiley & Sons.

17. Machin D, Cheung YB, Parmar M (2006). *Survival analysis: a practical approach*. John Wiley & Sons.

18. Cox DR (1972). Regression models and life-tables. *Journal of the Royal Statistical Society: Series B (Methodological)*, 34(2): 187-202.

19. Hosmer Jr DW, Lemeshow S, May S (2011). *Applied survival analysis: regression modeling of time-to-event data*. https://www.wiley.com/en-gb/Applied+Survival+Analysis:+Regression+Modeling+of+Time+to+Event+Data,+2nd+Edition-p-9780471754992

20. Katz MH (1999). *Multivariable Analysis: A Practical Guide for Clinicians*. https://www.cambridge.org/core/books/multivariable-analysis/DBE7816A781AEF53108FD721199B4AC9