Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk

Kshitij Srivastava¹, Anvesha Srivastava²

¹ Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America. ² Cancer Research Laboratory, Department of Biology, University of the District of Columbia, Washington, D. C., United States of America

Abstract

Background: MicroRNAs (miRNAs) are small RNA molecules that regulate the expression of corresponding messenger RNAs (mRNAs). Variations in the level of expression of distinct miRNAs have been observed in the genesis, progression and prognosis of multiple human malignancies. The present study was aimed to investigate the association between four highly studied miRNA polymorphisms (mir-146a rs2910164, mir-196a2 rs11614913, mir-149 rs2292832 and mir-499 rs3746444) and cancer risk by using a two-sided meta-analytic approach.

Methods: An updated meta-analysis based on 53 independent case-control studies consisting of 27573 cancer cases and 34791 controls was performed. Odds ratio (OR) and 95% confidence interval (95% CI) were used to investigate the strength of the association.

Results: Overall, the pooled analysis showed that mir-196a2 rs11614913 was associated with a decreased cancer risk (OR = 0.846, P = 0.004; TT vs. CC) while other miRNA SNPs showed no association with overall cancer risk. Subgroup analyses based on type of cancer and ethnicity were also performed, and results indicated that there was a strong association between mir-146a rs2910164 and overall cancer risk in Caucasian population under recessive model (OR = 1.274, 95%CI = 1.096–1.481, P = 0.002). Stratified analysis by cancer type also associated mir-196a2 rs11614913 with lung and colorectal cancer at allelic and genotypic level.

Conclusions: The present meta-analysis suggests an important role of mir-196a2 rs11614913 polymorphism with overall cancer risk especially in Asian population. Further studies with large sample size are needed to evaluate and confirm this association.

Introduction

MicroRNAs (miRNAs) are a class of endogenous, small nonprotein-coding single-stranded RNA molecules of ~22 nucleotides in length that regulate a broad range of biologic and pathologic processes [1,2]. Mature miRNAs regulate the expression of approximately 30% of all human genes involved in fundamental biological processes at post-transcriptional level by sequence-specific binding to 3’ untranslated regions (UTRs) of multiple target messenger RNAs (mRNAs), leading to their degradation or translational suppression [3]. To date, more than 12000 miRNA sequences have been identified in humans, although specific functions have not yet been delineated for most of them. Cancer is eventually an outcome of chaotic expression of genes involved in developmental, cell growth and differentiation processes. Recent studies have implicated miRNAs in the genesis, progression (proliferation, migration and invasion) and prognosis of multiple human malignancies [4], including their key role in promoting cancer stem cell tumorigenicity [5]. Variations in the level of expression of distinct miRNAs (“Oncomirs”) have been observed in the development and progression of multiple human cancers and >50% of these miRNA genes are found to be located in cancer-related chromosomal regions functioning either as oncogenes or tumor suppressor genes [6–9]. Thus, variations in miRNA expression may promote carcinogenesis by modulating the expression patterns of essential genes involved in tumor growth and progression [10].

Single nucleotide polymorphisms (SNPs) are the most common form of variation present in the human genome. SNPs present in the miRNA gene regions can alter their expression and/or maturation leading to aberrant miRNA regulation. Many epidemiological studies have examined the association of SNPs in microRNAs with cancer susceptibility (Table 1). However, due to power considerations in single SNP studies with relatively small
Table 1. Characteristics of eligible studies in meta-analysis.

S.no.	Reference	Publication Year	Country origin	Ethnicity	Cancer Type	N (cases)	N (controls)	Control source	Genotyping method	HWE	Matching criteria
1	Xu et al., [35]	2008	China	Asian	HCC	479	504	HB	PCR-RFLP	Yes	age/sex
2	Hu et al., [48]	2009	China	Asian	BC	1009	1093	PB	PCR-RFLP	Yes	age/area
3	Jazdzewski et al., [24]	2008	USA	Caucasian	PTC	608	901	PB	Sequencing	Yes	NR
4	Tian et al., [49]	2009	China	Asian	LC	1058	1035	PB	PCR-RFLP	Yes	age/sex/area
5	Ye et al., [23]	2008	USA	Caucasian	EC	346	346	HB	SNIPlex	Yes	age/sex
6	Catucci et al., [50]	2010	Italy	Caucasian	BC	1894	2760	PB	TaqMan and sequencing	Yes	age
7	Hoffman et al., [22]	2009	USA	Caucasian	BC	441	479	HB/PB	Sequenom MassARRAY	Yes	age
8	Peng et al., [51]	2010	China	Asian	GC	213	213	HB	PCR-RFLP	Yes	age/sex
9	Zhou et al., [52]	2010	China	Asian	CC	703	713	PB	PCR-RFLP	Yes	age/area
10	Yang et al., [53]	2010	Germany	Caucasian	BC	1217	1422	PB	TaqMan and sequencing	Yes	age
11	Xu et al., [54]	2010	China	Asian	PC	251	280	HB	PCR-RFLP	Yes	age
12	Qi et al., [55]	2010	China	Asian	HCC	361	391	HB	PCR-LDR	Yes	NR
13	Dou et al., [56]	2010	China	Asian	Glioma	670	680	HB	PCR-RFLP	Yes	age/sex/area
14	Xu et al., [57]	2011	China	Asian	HCC	501	548	PB	PCR-RFLP	Yes	age/sex/area
15	Kim et al., [58]	2010	Korea	Asian	LC	654	640	HB	PCR-FRET	Yes	age/sex
16	Christensen et al., [59]	2010	USA	Caucasian	HNSCC	484	555	PB	TaqMan	Yes	age/sex/area
17	Srivastava et al., [60]	2010	India	Caucasian	GBC	230	230	PB	PCR-RFLP	Yes	age/sex
18	Liu et al., [61]	2010	USA	Caucasian	HNSCC	1109	1130	HB	PCR-RFLP	Yes	age/sex
19	Zeng et al., [62]	2010	China	Asian	GC	304	304	HB	PCR-RFLP	Yes	age/sex
20	Sun et al., [63]	2010	China	Asian	GC	304	304	HB	PCR-RFLP	Yes	age/sex
21	Guo et al., [64]	2010	China	Asian	ESCC	444	468	HB	SNIPlex	Yes	age/sex/area
22	Yang et al., [65]	2011	Germany	Caucasian	BC	2854	3188	PB	MALDI-TOF mass spectrometry	Yes	age
23	Li et al., [66]	2010	China	Asian	HCC	310	222	HB	PCR-RFLP	Yes	NR
24	Okubo et al., [18]	2010	Japan	Asian	GC	552	697	HB	PCR-RFLP	Yes	NR
25	Chen et al., [67]	2011	China	Asian	CRC	126	407	HB	PCR-LDR	Yes	age/sex
26	Yue et al., [68]	2011	China	Asian	CC	447	443	HB	PCR-RFLP	Yes	age
27	Mittal et al., [69]	2011	India	Caucasian	UBC	212	250	HB	PCR-RFLP	Yes	age/sex
28	Zhou et al., [70]	2011	China	Asian	CC	226	309	HB	PCR-RFLP	Yes	age
29	Akkiz et al., [71]	2011	Turkey	Caucasian	HCC	185	185	HB	PCR-RFLP	Yes	age/sex/ smoking/alcohol
30	Zhan et al., [72]	2011	China	Asian	CRC	252	543	HB	PCR-RFLP	Yes	age/sex
31	Hong et al., [73]	2011	Korea	Asian	NSCLC	406	428	PB	TaqMan	Yes	age/sex
S.no.	Reference	Publication Year	Country of origin	Ethnicity	Cancer Type	N (cases)	N (controls)	Control source	Genotyping method	HWE	Matching criteria
-------	-----------	------------------	-------------------	-----------	-------------	-----------	--------------	-----------------	------------------	------	------------------
32	Permuth-Wey et al., [74]	2011	USA	Caucasian	Glioma	593	614	PB	Illumina's GoldenGate	Yes	NR
33	Akkiz et al., [75]	2011	Turkey	Caucasian	HCC	222	222	HB	PCR-RFLP	Yes	age/sex/smoking/alcohol
34	Zhu et al., [76]	2011	China	Asian	CRC	573	588	HB	TagMan	Yes	age/sex
35	Zhou et al., [25]	2011	China	Asian	HCC	186	483	HB	PCR-RFLP	Yes	NR
36	Schuetz et al., [77]	2012	Canada	Caucasian	NHL	571	280	PB	Illumina's GoldenGate	Yes	age/sex/area
37	Xiang et al., [26]	2012	China	Asian	HCC	100	100	HB	PCR-RFLP	Yes	NR
38	Jedlinski et al., [30]	2011	Australia	Caucasian	BC	193	190	HB	PCR-RFLP	Yes	age
39	Yang et al., [21]	2011	China	Asian	CRC	746	746	HB	SNPlex	Yes	age/sex
40	George et al., [19]	2011	India	Caucasian	PC	159	230	HB	PCR-RFLP	Yes	age/sex
41	Wang et al., [78]	2010	China	Asian	CRC	458	489	PB	SNPlex	Yes	age/sex/area
42	Zhang et al., [79]	2011	China	Asian	CRC	302	513	HB	PCR-RFLP	Yes	NR
43	Zhang et al., [80]	2012	China	Asian	BC	252	248	PB	PCR-RFLP	Yes	age/sex/area
44	Pastrello et al., [27]	2010	Italy	Caucasian	BC/OC	401	155	NR	Sequencing	Yes	NR
45	Vinci et al., [28]	2011	Italy	Caucasian	NSCLC	101	129	NR	HRMA	Yes	age/sex
46	Zhou et al., [81]	2012	China	Asian	HCC	1686	1895	HB	TagMan	Yes	age/sex
47	Kim et al., [29]	2012	Korea	Asian	CRC	159	201	PB	PCR-RFLP	Yes	NR
48	Smith et al., [82]	2012	Australia	Caucasian	BC	193	193	HB	HRMA	Yes	age/sex/ethnicity
49	Hishida et al., [83]	2011	Japan	Asian	GC	583	540	HB	PCR-CTPP	Yes	age/sex
50	Honkawa et al., [84]	2008	USA	Caucasian	CRC	279	278	PB	SNPlex	Yes	age/sex/ethnicity/residence
51	Lung et al., [85]	2012	China	Asian	NPC	233	378	PB	PCR-RFLP	Yes	age/sex
52	Chu et al., [20]	2012	Taiwan	Asian	OSCC	470	425	HB	PCR-RFLP	Yes	NR
53	Bae et al., [86]	2012	Korea	Asian	CRC	417	404	HB	TagMan	Yes	NR

HCC: hepatocellular cancer; BC: breast cancer; GBC: gallbladder cancer; GC: gastric cancer; NSCLC: non-small cell lung carcinoma; CC: cervical cancer; LC: lung cancer; EC: esophageal cancer; PC: prostate cancer; HNSCC: head and neck squamous cell carcinoma; NHL: Non-Hodgkin lymphoma; OC: ovarian cancer; PTC: papillary thyroid carcinoma; NSCLC: non-small cell lung cancer; RCC: renal cell carcinoma; UBC: urinary bladder cancer; CRC: colorectal cancer; ESCC: esophageal squamous cell carcinoma; NPC: Nasopharyngeal Carcinoma; OSCC: oral squamous cell carcinoma; HWE: Hardy-Weinberg equilibrium; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; PCR-LDR: polymerase chain reaction–ligation detection reaction; PCR-FRET: polymerase chain reaction–fluorescent resonance energy transfer; HRMA: high-resolution melting analysis; PCR-CTPP: polymerase chain reaction with confronting two-pair primers; Tm-shift: Melting-temperature–shift allele-specific genotyping; HB: hospital based; PB: population based; NR: not reported; *Let7f-2 rs17276588 deviated from HWE in controls. **miR-499 rs2228930 and miR-149 rs2228932 deviated from HWE in controls. neither miR-499 rs2228930 and miR-149 rs2228932 deviated from HWE in controls. °miR-499 rs3746444 deviated from HWE in controls. †miR-196 rs1616413 and miR-468 rs290164 deviated from HWE in controls. ‡miRNA1-49 rs2228932 deviated from HWE in controls. doi:10.1371/journal.pone.0050966.t001
sample sizes, the outcomes of these studies remain contradictory rather than convincing. The present article applied a meta-analytic approach for relevant miRNA SNPs to better clarify potential associations between these SNPs and cancer. We also systematically reviewed published meta-analyses of observational studies investigating the association between miRNA polymorphisms and cancer risk to investigate their strengths and limitations.

Methods

Publication Search

We searched the PubMed, Medline and Embase databases using the search terms “miRNA,” “cancer/carcinoma,” and “polymorphism/variant” updated until August 25, 2012 and limited to English language papers. Identification of meta-analyses of association studies on miRNA polymorphisms and cancer was also carried out through a search of electronic databases of PubMed, Medline and Embase, up to August 2012. The Medical Subject Headings and key words used for the search were “miRNA”, “cancer”, “polymorphism”, and “meta-analysis” (with both synonymous and plural forms). The online searching was accompanied by checking reference lists from the identified articles and reviews for potentially eligible original reports.

Inclusion and Exclusion Criteria

All miRNA association studies were included in the present meta-analysis if they met the following criteria: 1) case-control study, 2) outcome cancer (histologically/pathologically proven), and 3) sufficient data for examining an odds ratio (OR) with 95% confidence interval (95% CI). The major exclusion criteria were as follows: 1) duplicate data, 2) case reports, series, abstract, comment, review and editorial and 3) insufficient data. Articles published in a language other than English were also excluded.

Data Extraction

From each study, information like: author, year of publication, country of origin, cancer type, ethnicity, number of cases and controls, source of control groups (study design) and genotyping method was extracted. In some cases, identical data were described in more than one publication; in such cases the secondary studies were not included in the meta-analysis. In a few studies, part of the data had already been reported elsewhere, therefore, only the novel data was included. We also checked for HWE in control subjects among all publications.

Genotype and Allele Distributions

Genotype distributions were extracted from the eligible publications for each polymorphism or computed from allele frequencies (if genotype frequencies were not reported) on the basis of sample size, assuming Hardy-Weinberg equilibrium (HWE).

Methodological Quality Assessment

The quality of selected studies was evaluated by scoring according to a set of predetermined criteria. The categories in scoring system used for assessing study quality are summarized in Table S1 [11]. Quality scores ranged from 0 to 10 and studies were scored as “good” if the score was 8–10, “fair” if the score was 5–7 and “poor” if the score was <4.

Statistical Analysis

In the present meta-analysis, we investigated the potential association between the variant allele of miRNA polymorphisms and cancer risk. Also, analysis between the heterozygote, the homozygote and also in dominant and recessive models was done to estimate cancer risk. Stratified analyses were performed by tumor site, ethnicity and source of controls (hospital or population based). Other potentially relevant sub-group analyses such as age, sex and cancer subgroup could not reliably be investigated due to limited data availability. Between-study heterogeneity was evaluated with a χ^2-based Q-test among the studies [12]. Heterogeneity was considered significant when $P<0.05$. In case of no significant heterogeneity, point estimates and 95% CI was estimated using the fixed effect model (Mantel–Haenszel), otherwise, random effects model (DerSimonian Laird) was employed [13,14]. The significance of overall odds ratio (OR) was determined by the Z-test. A χ^2 test with one degree of freedom was performed in controls to observe deviation from HWE. Publication bias was weighted by Begg’s funnel plot and Egger’s linear regression method with $P<0.05$ being considered statistically significant [15]. To assess the stability of the results, sensitivity analyses were performed. Each study in turn was removed from the total, and the remaining studies were reanalyzed. Moreover, sensitivity analysis was also performed, excluding studies whose allele frequencies in controls exhibited significant deviation from the HWE, given that the deviation may denote bias [16]. The type I error rate was fixed at 0.05. All the p values were two sided and all the statistical tests were implemented using the Comprehensive Meta-analysis software (Version 2.0, BIOSTAT, Englewood, NJ).

Hardy–Weinberg Equilibrium Correction

For evaluating impact of HWE-deviated studies on point estimates in genotype based contrasts, ORs were corrected by using the HWE-predicted genotype count in controls instead of the observed counts, as recommended by Trikalinos et al. [17]; thereafter, they were incorporated in the sensitivity analysis.

Results

Study Characteristics

Table 1 and Table S2 show the characteristics of eligible studies and genotype frequency distributions of studied miRNA SNPs included in the present meta-analysis. Fifty-three studies published between 2008 and August 2012 met our inclusion criteria with a total of 27573 cancer cases and 34791 controls. Two studies in Chinese language and 12 cohort studies were excluded from the present analysis. The total score of most studies was over 7 (Table S3). Thirty-two of the studies were conducted on subjects with Asian ethnicity (14689 cases/19894 controls) and 21 with Caucasian ethnicity (12884 cases/14997 controls). Malignancies were histologically or pathologically confirmed in 35 of the included studies, while in 11 studies it was not defined. Controls in 19 studies were population-based, while controls of 31 studies were hospital-based. Two studies included both population-based and hospital-based controls while another 2 studies did not report about the control source. Twelve out of 53 studies did not report on the matching criteria for controls while other studies recruited controls corresponding to cases by the age/sex/area. A classical polymerase chain reaction–restriction fragment length-polymerorphism (PCR–RFLP) method was adopted in 28 of the 53 studies. Seven studies used TaqMan assay; four studies used direct sequencing of the polymorphism; three studies used SNPlex; two studies used SNaPshot, Illumina’s GoldenGate, high-resolution melting analysis (HRMA) and polymerase chain reaction–ligation
Table 2). Significant heterogeneity was observed (Table 3). After the exclusion of the study by George et al. [19], whose genotypic distribution in controls deviated from HWE, the borderline significant association was lost (P = 0.066; allelic model). However, no association was found between genotype CC and cancer risk under the other models. Based on the ethnicity of study population, association was found in Asian populations under allelic and recessive models (Table 4). Removing low scoring studies did not alter the above obtained results \{18,19,25,26,28,29\} (Table S4c).

mir-149 rs2292832. Seven studies evaluated mir-149 rs2292832 and its association with cancer risk. The results of the overall meta-analysis did not suggest any association between rs2292832 and cancer susceptibility for all genetic models (Table 5). Exclusion of the study by Vinci et al. [31] and Kim et al., [29] with quality score of 2 did not altered the pooled estimate (Table S4d).

Through stratified analyses, no significant associations were found in any of the subgroups (racial descent, cancer types and study design) (Table 5).

The effect of some polymorphisms could not be evaluated due to the limited number of studies (mir-27a rs9595819 and mir-373 rs129983273 and rs10425222 = 3 studies; mir-100 rs1834306, mir-124-1 rs331564, mir-128 rs11134527, mir-155 rs229883 and rs2298903, mir-15a rs9354146 and rs2476391, mir-1792 rs17642969, mir-219 rs107822 and rs213210, mir-26a1 rs7372209, mir-30a rs1358379, mir-30c1 rs16827546, mir-335 rs3007348 and rs41272366, mir-423 rs650162, mir-499 rs2298030, mir-604 rs2368392, mir-608 rs4919510 and mir-631 rs57492532 = 2 studies; mir-618 rs2688218, mir-605 rs2043556, mir-34b/c rs4938723, mir-126 rs4636297, let-7i-2 rs17726388, let-7a3 rs731085, mir-101-2 rs7356140, mir-101-2 rs17803780 and rs12373841 and mir-338 rs62073058 = 1 study each).

Sensitivity Analysis

A single study involved in the meta-analysis was removed each time to reflect the influence of the individual data set to the pooled ORs for each of the studied miRNA polymorphisms. The corresponding pooled ORs were not significantly altered for any of the SNPs studied (Table S5a-d).

Publication Bias Analysis

Publication bias was assessed by performing funnel plot and Egger’s regression test under all models. For mir-149 rs2292832, because the number of included studies was small, we did not perform publication bias analysis. After combining all the cancer types, a little asymmetry was observed for mir-146a rs2910164, but the results of Egger’s regression test suggested no evidence for publication bias (Y axis intercept = -0.896, (95% CI) = -3.047 to 1.253; t = 0.859, p = 0.398 for allelic model) (Figure S1). Also, Begg and Mazumdar rank correlation test indicated absence of publication bias (P2tailed = 0.646). Similarly for mir-196a2 rs11614913 and mir-499 rs3746444, funnel plots were symmetrical and the Egger’s test for both models showed no significance, suggesting little evidence of publication bias (Figure S2 and S3).

mirRNAs and Cancer
Variables	n*	Cases/Controls	C-allele vs. G-allele	CC vs. GG OR (95% CI)	CC vs. GG P_{het}	CG vs. GG OR (95% CI)	CG vs. GG P_{het}	Dominant (CC+CG vs. GG) OR (95% CI)	Dominant (CC+CG vs. GG) P_{het}	Recessive (CC vs. CG+GG) OR (95% CI)	Recessive (CC vs. CG+GG) P_{het}	
Total	27	12088/17340	0.963 (0.892–1.039)	<0.001		0.918 (0.777–1.086)	<0.001	1.008 (0.929–1.094)	0.008	1.002 (0.919–1.092)	<0.001	
Cancer type								1.034 (0.894–1.196)	0.001			
Hepatocellular	5	1146/1510	1.102 (0.981–1.237)	0.242	0.764 (0.590–0.988)	0.313	0.126 (0.940–1.349)	0.229	1.148 (0.939–1.403)	0.293		
Breast	3	2669/3395	1.023 (0.945–1.107)	0.938	1.098 (0.912–1.322)	0.539	0.989 (0.887–1.103)	0.888	1.007 (0.908–1.118)	0.955	1.094 (0.920–1.300)	0.453
Other	19	8273/12435	0.934 (0.844–1.035)	<0.001	0.913 (0.727–1.146)	<0.001	0.999 (0.896–1.115)	0.002	0.985 (0.877–1.106)	<0.001	1.009 (0.826–1.232)	<0.001
Ethnicity								1.002	1.019	1.002	1.018	
Asian	14	5914/10118	0.889 (0.785–1.007)	<0.001	0.818 (0.650–1.029)	<0.001	0.972 (0.891–1.060)	0.084	0.931 (0.800–1.083)	<0.001	0.925 (0.770–1.112)	<0.001
Caucasian	13	6174/7222	1.050 (0.993–1.111)	0.459	1.102 (0.886–1.370)	<0.001	1.046 (0.974–1.124)	0.017	1.055 (0.985–1.130)	0.114	1.274 (1.096–1.481)	0.153
Study design								1.002	1.002	1.002	1.002	
Population based	9*	5706/10226	1.015 (0.898–1.147)	0.379	1.185 (0.936–1.500)	0.008	1.070 (0.990–1.156)	0.051	1.089 (1.012–1.172)	0.265	1.331 (1.076–1.645)	0.002
Hospital based	17*	6409/10606	0.893 (0.799–0.997)	<0.001	0.809 (0.650–1.007)	<0.001	0.950 (0.887–1.029)	0.117	0.922 (0.813–1.044)	0.002	0.922 (0.762–1.115)	<0.001

Random effects model was used when P value of Q for heterogeneity test (P_{het})<0.05; otherwise, fixed effect model was used.

*Number of studies involved.

*The study by Lung et al., [85] has both hospital based and population based controls.

OR: odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0050966.t002
Variables	n*	Cases/Controls	T-allele vs. C-allele	TT vs. CC	TC vs. CC	Dominant (TT+TC vs. CC)	Recessive (TT vs. TC+CC)											
			OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}	OR (95% CI)	P_{meta}
Total	30	13703/15439	0.941 (0.889–0.996)	<0.001	0.846 (0.747–0.958)	<0.001	1.017 (0.934–1.106)	0.001	0.972 (0.890–1.060)	<0.001	0.854 (0.778–0.939)	<0.001						
Cancer type																		
Breast	5	3449/4140	0.914 (0.804–1.040)	0.020	0.812 (0.607–1.085)	0.014	0.939 (0.850–1.037)	0.532	0.911 (0.829–1.000)	0.148	0.872 (0.703–1.080)	0.027						
Lung	4	2219/2232	0.893 (0.821–0.971)	0.149	0.793 (0.671–0.938)	0.259	0.927 (0.801–1.074)	0.059	0.882 (0.768–1.013)	0.075	0.842 (0.737–0.962)	0.201						
Colorectal	3	951/1538	0.848 (0.754–0.954)	0.223	0.690 (0.543–0.876)	0.150	0.886 (0.719–1.091)	0.636	0.813 (0.667–0.990)	0.351	0.751 (0.621–0.909)	0.209						
Hepatocellular	4	1015/999	0.862 (0.683–1.088)	0.019	0.744 (0.466–1.189)	0.022	0.897 (0.721–1.115)	0.631	0.850 (0.692–1.043)	0.190	0.809 (0.567–1.154)	0.037						
Other	14	6069/6530	0.994 (0.912–1.083)	0.001	0.915 (0.744–1.124)	<0.001	1.125 (0.975–1.298)	0.001	1.080 (0.941–1.240)	<0.001	0.873 (0.740–1.029)	<0.001						
Ethnicity																		
Asian	17	7718/8580	0.905 (0.845–0.969)	0.004	0.820 (0.699–0.963)	<0.001	0.983 (0.866–1.116)	0.003	0.923 (0.814–1.047)	0.001	0.831 (0.748–0.923)	0.006						
Caucasian	13	5985/6859	0.994 (0.908–1.088)	0.002	0.889 (0.729–1.084)	0.002	1.056 (0.944–1.183)	0.039	1.033 (0.918–1.162)	0.010	0.889 (0.741–1.067)	0.002						
Study design																		
Population based	12*	6520/7355	0.901 (0.833–0.975)	0.010	0.777 (0.651–0.928)	0.003	0.946 (0.877–1.021)	0.262	0.905 (0.842–0.972)	0.136	0.812 (0.693–0.952)	0.001						
Hospital based	18*	7508/8421	0.945 (0.873–1.022)	<0.001	0.845 (0.708–1.009)	<0.001	1.032 (0.910–1.170)	<0.001	0.994 (0.963–1.121)	<0.001	0.854 (0.755–0.965)	0.002						

Random effects model was used when P value of Q-test for heterogeneity test (P_{meta})<0.05; otherwise, fixed effect model was used.

*Number of studies involved.

*The study by Hoffman et al. [22] has both hospital based and population based controls.

OR: odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0050966.t003
Table 4. Meta-analysis of mir-499 rs3746444 polymorphism.

Variables	n*	Cases/Controls	C-allele vs. T-allele	CC vs. TT	CT vs. TT	Dominant (CC+CT vs. TT)	Recessive (CC vs. CT-TT)					
			OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)					
Total	14	7141/8479	1.130 (1.002–1.275)	<0.001	1.124 (0.964–1.310)	0.055	1.177 (1.007–1.377)	<0.001	1.141 (0.985–1.322)	<0.001	1.091 (0.871–1.368)	0.035
Cancer type												
Breast	2	2588/3260	1.115 (0.878–1.417)	0.017	1.257 (0.701–2.255)	0.036	1.067 (0.952–1.196)	0.163	1.079 (0.967–1.203)	0.056	1.111 (0.869–1.421)	0.050
Hepatocellular	3	436/784	1.134 (0.641–2.006)	0.001	1.245 (0.357–4.338)	0.023	1.001 (0.762–1.314)	0.074	1.116 (0.625–1.993)	0.009	1.515 (0.839–2.734)	0.062
Other	9	4117/4435	1.139 (0.976–1.330)	<0.001	1.074 (0.875–1.320)	0.383	1.262 (0.992–1.606)	<0.001	1.175 (0.948–1.456)	<0.001	1.012 (0.828–1.238)	0.130
Ethnicity												
Asian	8	3751/4343	1.227 (1.006–1.497)	<0.001	1.402 (0.941–2.088)	0.037	1.210 (0.972–1.506)	<0.001	1.243 (0.994–1.554)	<0.001	1.357 (1.062–1.734)	0.074
Caucasian	6	3390/4136	0.989 (0.916–1.067)	0.343	0.976 (0.803–1.186)	0.875	1.140 (0.895–1.451)	0.001	0.967 (0.878–1.064)	0.237	0.936 (0.773–1.132)	0.394
Study design												
Population based	5	4026/4726	1.037 (0.961–1.119)	0.021	1.098 (0.886–1.360)	0.126	1.027 (0.935–1.128)	0.217	1.036 (0.947–1.133)	0.065	1.086 (0.879–1.342)	0.200
Hospital based	8	3014/3624	1.206 (0.926–1.570)	<0.001	1.246 (0.874–1.776)	0.045	1.369 (1.017–1.844)	<0.001	1.360 (1.033–1.789)	<0.001	1.113 (0.763–1.624)	0.016

Random effects model was used when P value of Q-test for heterogeneity test (P_{Het})<0.05; otherwise, fixed effect model was used.

*Number of studies involved.

OR: odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0050966.t004
Variables	n*	Cases/Controls	T-allele vs. C-allele	TT vs. CC	TC vs. CC	Dominant (TT+TC vs. CC)	Recessive (TT vs. TC+CC)					
			OR (95% CI)	P_Het	OR (95% CI)	P_Het	OR (95% CI)	P_Het				
Total	7	4142/4242	0.994 (0.924–1.069)	0.345	1.000 (0.859–1.165)	0.324	0.982 (0.893–1.081)	0.526	0.988 (0.902–1.083)	0.351	1.041 (0.913–1.187)	0.333
Cancer type												
Breast	2	1254/1322	0.949 (0.845–1.067)	0.167	0.931 (0.709–1.222)	0.418	0.919 (0.781–1.082)	0.106	0.921 (0.789–1.077)	0.101	0.971 (0.750–1.259)	0.737
Other	5	2888/2920	1.018 (0.938–1.103)	0.417	1.034 (0.860–1.243)	0.205	1.018 (0.904–1.146)	0.816	1.025 (0.916–1.147)	0.591	1.066 (0.915–1.241)	0.172
Ethnicity												
Asian	5	2932/2983	0.991 (0.916–1.073)	0.418	1.003 (0.838–1.200)	0.486	0.968 (0.860–1.088)	0.314	0.978 (0.875–1.094)	0.240	1.056 (0.910–1.225)	0.499
Caucasian	2	1210/1259	1.004 (0.887–1.136)	0.094	0.993 (0.742–1.328)	0.061	1.013 (0.858–1.197)	0.658	1.009 (0.861–1.182)	0.297	0.988 (0.746–1.310)	0.068
Study design												
Population based	4	2562/2558	0.996 (0.908–1.094)	0.324	0.980 (0.815–1.179)	0.496	0.979 (0.888–1.103)	0.275	0.990 (0.883–1.110)	0.206	1.088 (0.917–1.291)	0.409
Hospital based	2	1579/1555	0.957 (0.853–1.074)	0.688	1.016 (0.670–1.539)	0.234	0.976 (0.826–1.154)	0.323	0.960 (0.819–1.124)	0.363	0.930 (0.753–1.149)	0.742

Random effects model was used when P value of Q-test for heterogeneity test (P_Het)<0.05; otherwise, fixed effect model was used.

*a Number of studies involved.

OR: odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0050966.t005
Meta-analyses of Association Studies on miRNA SNPs

A cumulative meta-analysis was also done by sorting the studies in the sequence of largest to smallest, and analysis performed with the addition of each study. The point estimate of the study did not deviate with the addition of smaller studies, ruling out the possibility of publication bias for all the analyzed miRNA SNPs. [23, 24]

Meta-analyses of Association Studies on miRNA SNPs

Eleven meta-analyses published in 2011 and 2012 were retrieved, focusing on 2 miRNA polymorphisms (miR-146a rs2910164 and miR-196a2 rs11614913). Table 6 shows the main characteristics of individual meta-analyses included. The number of primary studies included in the meta-analyses ranged from 4 to 27 with the number of subjects included spanning from 3007 to 10569. The results of the published meta-analyses of the association between miRNA SNPs and cancer showed an overall statistically significant increased risk for mir-196a2 rs11614913 (variant C allele). In subgroup analysis, the increased risk was more prominent in digestive system cancers such as breast, colorectal and hepatocellular cancer. For mir-146a rs2910164, an overall analysis, no significant associations were found. However, in the stratified analysis, this polymorphism was associated with increased breast cancer risk among Europeans [32] and negatively associated with digestive system cancer [33]. The results are also consistent with the outcome from our present meta-analysis.

We also computed the population-attributable risk (PAR) to refer to the proportion of disease risk in Caucasians and Asians that can be attributed to the causal effects of the risk SNP (variant genotype). PAR can be assessed by using the formula [34]: PAR (%) = [(OR-1)/OR] \times 100\%, where OR is the pooled OR stratified for ethnicity and allele frequencies used for computing PAR were taken from the meta-analyses incorporating the largest number of individuals. The results showed mir-196a2 rs11614913 to be the most impacting polymorphism (which might account for approximately 15% among Asians) [PAR (%) mir-196a2 rs11614913 ‘T’ allele carriers: Asians = 14.9, Caucasians = 14.1]. Although the ORs and allele frequencies used for computing PAR were taken from the same ethnic group, the results could still be biased due to the difference in geographic areas and population stratification in individual studies. A more consistent estimation of the PAR requires additional statistics to identify population subgroups significantly affected by particular miRNA polymorphism.

Discussion

In the present study, we reviewed the available literature on genetic studies of miRNA SNPs in cancer and conducted four independent meta-analyses for association between overall cancer and mir-146a rs2910164, mir-196a2 rs11614913, mir-149

Table 6. Description of meta-analyses included in the systematic review.

S. no.	Reference	Publication Year	Cancer Type	Cases/controls	miRNA	rs number	Phet*	OR*	95% CI*
1	Lian et al., [32]	2012	BC	4238/4469	miR-146a	rs2910164	0.757	1.16	0.98–1.36
2	Guo et al., [11]	2012	HCC, CRC, GBC, PS2, OSCC, ESCC, GC	4999/7606	miR-196a2	rs11614913	0.0003	1.38	1.13–1.67
3	Xu et al., [41]	2011	BC, LC, PTC, HCC, GBC, HNSCC, PC, ESCC	7183/7943	miR-146a	rs2910164	0.03	0.89	0.75–1.05
4	Wang et al., [87]	2012	LC, BC, GBC, Glioma, HCC, HNSCC	7922/8849	miR-196a2	rs11614913	0.45	0.92	0.85–0.99
5	Chu et al., [88]	2011	BC, ESCCC, LC, GC, HCC, GBC, PC, PTC, HNSCC, Glioma	9341/10569	miR-196a2	rs11614913	<0.001	1.22	1.04–1.44
6	Gao et al., [89]	2011	BC	3007/3718	miR-146a	rs2910164	0.65	0.90	0.75–1.07
7	Qiu et al., [90]	2011	BC, UBC, ESCC, OC, CGBC, GC, HCC, LC, PVC, HNSCC, Glioma	10585/12183	miR-146a	rs2910164	<0.001	1.13	0.93–1.37
8	Qiu et al., [91]	2011	BC, UBC, ESCC, OC, CGBCGC, GC, HCC, LC, PVC, HNSCC, Glioma, CRC	10441/12353	miR-196a2	rs11614913	<0.001	1.30	1.14–1.48
9	Zhang et al., [92]	2012	LC, HCC, BC, CRC, GC, ESCC, GC, Glioma, UBC, PC	10453/12075	miR-196a2	rs11614913	<0.001	1.23	1.08–1.39
10	Wang et al., [93]	2012	BC, GC, PC, UBC, CC, ESCC, OC, HCC, PTC, RCC, GBC	10496/12885	miR-146a	rs2910164	0.09	1.16	0.98–1.38
11	Wang et al., [94]	2012	LC, GC, CRC, GBC, HCC, ESCC	2394/2767	miR-146a	rs2910164	0.02	1.17	0.95–1.44

BC: breast cancer; GBC: gallbladder cancer; GC: gastric cancer; LC: lung cancer; PTC: papillary thyroid carcinoma; ESCC: esophageal squamous cell carcinoma; HCC: hepatocellular cancer; CRC: colorectal cancer; OS2: oral squamous cell carcinoma; PSCC: pharynx squamous cancer. GC: ovarian cancer; CC: cervical cancer; RCC: renal cell cancer. *Homozygous wild vs. homozygous variant genotype.
One of the important concerns in every meta-analysis is publication bias. Because meta-analysis reviews quantitative data from numerous studies, the publication bias effect of the literature incorporated in the study can bias the meta-analytic outcome. In the present study, the funnel plot for overall results was symmetrical for all the analyzed miRNA SNPs, indicating negligible likelihood of publication bias. The Egger’s test and Begg and Mazumdar rank correlation test were also negative for publication bias. However, the possibility of publication bias cannot completely be ruled out [47]. Sensitivity analyses using HWE-adjusted ORs and corresponding variances also did not modify the results.

To the best of our knowledge, the present study is the most comprehensive meta-analysis to date to have assessed the relationship between the miRNA polymorphisms and cancer risk. Nevertheless, our meta-analysis had some limitations common to these types of studies. First, the present meta-analysis only included case-control studies, most of which were hospital based and excluded 12 cohort studies to avoid potential heterogeneity in comparing results. Thus, the controls may not reflect the representative element of the source population. Second, the difference in the geographic areas (environmental factors) and genetic backgrounds of the study cohort in each article could influence the results. Third, the low sample size in some of the included studies might influence the statistical power to better evaluate the association between miRNA polymorphisms and overall cancer, especially in subgroup analysis. Fourth, gene-gene and gene-environment interactions were not analyzed which might alter the associations between miRNA gene polymorphisms and cancer. Also, a more precise analysis stratified by variables such as age, sex etc. could not be performed due to limitations of the data which also restricted our ability to detect possible sources of heterogeneity.

In conclusion, the results of our meta-analysis demonstrate that mir-196a2 rs11614913 polymorphisms have significant associations with overall cancer risk, although some results are limited by the small number of studies. However, no significant association exists between mir-146a rs2910164, mir-499 rs3746444 and mir-149 rs2292832 and overall cancer. Further studies with a large sample size are needed to evaluate their association with cancer risk.

Supporting Information

Figure S1 Begg’s funnel plot of publication bias for mir-146a rs2910164. Log OR is plotted versus standard error of Log OR for each included study. Every circle dot represents a separate study for the indicated association (C versus G). (TIF)

Figure S2 Begg’s funnel plot of publication bias for mir-196a2 rs11614913. Log OR is plotted versus standard error of Log OR for each included study. Every circle dot represents a separate study for the indicated association (TT versus CC). (TIF)

Figure S3 Begg’s funnel plot of publication bias for mir-499 rs3746444. Log OR is plotted versus standard error of Log OR for each included study. Every circle dot represents a separate study for the indicated association (CC versus TT). (TIF)

Table S1 Scale for methodological quality assessment. (DOC)

Table S2 Genotype frequency distributions of miRNA SNPs studied in included studies. (DOC)
Table S3 | Quality scores for included studies. (DOC)

Table S4 | Meta-analysis of studied miRNA polymorphisms after removing low scoring studies (score ≤5). (DOC)

Table S5 | Sensitivity analysis result for studied miRNA polymorphisms. (DOC)

References

1. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.
2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 205–214.
3. Bartel DP (2005) MicroRNAs: target recognition and regulatory functions. Cell 136: 213–233.
4. Garzon R, Croce CM (2011) MicroRNAs and Cancer: Introduction. Seminars in Oncology 38: 721–733.
5. Jia Y, Liu H, Zhang Q, Xu S, Yang Z, et al. (2012) Tumorigenicity of cancer stem-like cells derived from hepatocarcinoma is regulated by micro-RNA-145. Oncol Rep.
6. J. Ge T, Mika EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834–838.
7. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America 103: 2257–2261.
8. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9: 775–789.
9. Esquela-Kerscher A, Slack FJ (2006) Oncomirs [microRNAs with a role in cancer]. Annu Rev Med 57: 25–48.
10. George GP, Gangwar R, Mandal RK, Sankhwar SN, Mittal RD (2011) Genetic variation in microRNA and primary liver cancer risk in the Chinese population. Jpn J Clin Oncol 41: 101–129.
11. Guo J, Jin M, Zhang M, Chen K (2012) A Genetic Variant in miR-196a2 Polymorphism in Europeans. PLoS One 7: e30585.
12. Cochran WG (1954) The Combination of Estimates from Different Experiments. Biometrics 10: 101–129.
13. Mantel N, Haenszel W (1959) Statistical aspects of the data from retrospective studies of disease. J Natl Cancer Inst 22: 719–748.
14. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177–188.
15. Woolf B (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19: 251–253.
16. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Statistics in Medicine 24: 1291–1306.
17. Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JPA (2006) Impact of Violations and Deviations in Hardy-Weinberg Equilibrium on Postulated Gene-Environment Associations. American Journal of Epidemiology 163: 300–309.
18. Okubo M, Tahara T, Sibata T, Yamashita H, Nakamura M, et al. (2010) Association between common genetic variants in pre-miRNAs and gastric cancer risk in Japanese population. Helicobacter 15: 524–531.
19. George GP, Gaughrer R, Mandal RK, Sankhwar SN, Mantel RD (2011) Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep 38: 1609–1615.
20. Chu Y-H, Tseng L-L, Lin C-W, Chien M-H, Chen M-K, et al. (2012) Impacts of MicroRNA Gene Polymorphisms on the Susceptibility of Environmental Factors Leading to Carcinogenesis in Oral Cancer. PLoS ONE 7: e39777.
21. Yang H, Dinney CP, Ye Y, Zhuo Y, Grossman HB, et al. (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68: 2538–2547.
22. Hoffmann AE, Zheng T, Yi C, Leaderer D, Weidhaas J, et al. (2009) microRNA: a microRNA associated study and functional analysis. Cancer Res 69: 5970–5977.
23. Ye Y, Wang HK, Gu J, Yang H, Liu J, et al. (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer. Cancer Prev Res (Phila) 1: 860–869.
24. Jadworski K, Murray EL, Franziska K, Jarzab B, Schouwenaar DR, et al. (2008) Common SNP in pre-miR-196a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences 105: 7269–7274.
25. Zhou J, Li K, Sun X, Li D, Hu X, et al. (2011) Association Between Two Genetic Variants in miRNA and Primary Liver Cancer Risk in the Chinese Population. DNA Cell Biol.
26. Yang X, Fan S, Cao J, Huang S, Zhang LP (2012) Association of the miR-196-5p-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population. Mol Biol Rep.
27. Pastrello C, Polese J, Della Puppa L, Vieil A, Maestro R (2010) Association between hsa-mir-196a genotype and tumor age-of-onset in BRCA1/BRCA2-

Author Contributions

Conceived and designed the experiments: AS KS. Performed the experiments: AS KS. Analyzed the data: AS KS. Contributed reagents/materials/analysis tools: AS KS. Wrote the paper: AS KS.

Table S6 | Initial free energy (dG) predicted by mfold for the SNPs associated with the precursor and mature forms of human miRNAs. (DOC)
