Phytochemical Constituents and In vitro Pharmacological Response of Cnidium monnieri; A Natural Ancient Medicinal Herb

Naveed Munir1, Zahed Mehmoond2, Muhammad Shahid3, Samina Aslam4, Mazhar Abbas5, Huma Mehboob6, Samiah H. Al-Mijallia7, Muhammad Jahangeer8, and Qurrat ul Ain Badar9

Abstract

Background: Natural medicines are being used for the treatment of various disorders due to pharmacological, therapeutical, and nutraceuticals characteristics.

Objectives: Current research was planned to explore In vitro pharmacological response of phytochemical constituents extracted from C. monnieri’ seeds using aqueous ethanol (70%).

Methods: Qualitative and quantitative measurements for phytochemical constituents were performed following reference protocols. Then In vitro antioxidant potential, cytotoxic studies, antimicrobial, and spermicidal pharmacological response of C. monnieri extract were investigated.

Results: The results of High Performance Liquid Chromatography (HPLC), Fourier Transform Infra-Red (FTIR) spectroscopy, and Atomic Absorption Spectrophotometer (AAS) explored the presence of wide range of bioactive compounds with significant (p<.05) antioxidant activities. Cytotoxic studies revealed significant (p<.05) protective behavior of C. monnieri evaluated using CtDNA damage protection, against Salmonella typhi TA98 and TA100, RBCs membrane stabilizing and clot lysis assay. It was also found that selected herb has antibacterial and antifungal activities. The results of spermicidal study on human (n = 30) spermatozoa revealed significant (p<.05) contraceptive per vaginal behavior of this natural medicinal plant.

Conclusion: It could be concluded that C. monnieri showed significant pharmacological activities with non-toxic behavior, however In vivo study in animals and clinical trials are required to declare this natural herb as therapeutic agent.

Keywords

Natural medicine, phytochemical constituents, pharmacological response, In vitro, contraceptive

1 Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
2 Department of Biochemistry, Government College University, Faisalabad, Pakistan
3 Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
4 Department of Chemistry, The Women University Multan, Pakistan
5 Department of Biochemistry, University of Veterinary and Animals Science Lahore (Jhang Campus), Jhang, Pakistan
6 Department of Biochemistry, Government Women College University Faisalabad, Pakistan
7 Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
8 Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Lahore, Pakistan
9 School of Biochemistry and Biotechnology University of the Punjab, Lahore, Pakistan

Corresponding Author:
Qurrat ul Ain Badar, School of Biochemistry and Biotechnology, University of the Punjab, P.O. Box No. 54590, Lahore, Pakistan.
Email: annashahid89@yahoo.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Since earlier civilizations, medicinal plants have been used by human beings for their survival and growth. WHO (2007) had estimated that the use of conventional treatments in developing countries for primary health care is about 80% and involves the use of different extracts obtained from herbal plants. Even though pharmaceutical drugs are employed for treating many infectious as well as non-infectious diseases, but they are very costly with several side effects, thus it is important to seek alternative appropriate sources to resolve these problems. In this case, healthy and organic foods obtained from natural plants having abundant phytochemicals can be a hope to provide balanced diet for a growing population around the world. Oxidative damage may cause a wide range of contagious diseases like diabetes, obesity, aging, cancer, cardiovascular diseases, joint disorders, and Alzheimer’s disease. Phenolic compounds such as polyphenols, found in medicinal plants play a major role in pharmacological and many biological activities like antioxidants, anti-allergic, antimicrobial, anti-inflammatory, cardioprotective, antaceutical, and vasodilatory effects. Many plants with medicinal values are rich with active metabolites, flavonoids, phenolic acids and terpenoids. These active plant metabolites are useful in the scavenging of free radicals, metal chelating and the reduction of single tone oxygen.

C. monnieri (L. Cuss.) belongs to the family of Umbeliferae and is commonly used as a traditional herbal medicine for the treatment of various illnesses in China, Japan, and Vietnam. This is a yearly plant commonly known as Xà Sâng Tù in Vietnam, “She Chuang Zì” in China and “Jashoshi” in Japan. C. monnieri (L.) Cuss has been identified to contain almost 350 phytochemical components like bornyl isovalerate, alpha-pinene, isoborneol, cnidiline, cnidimine (edulin), osthol (coumarin), isopimpinellin, columbianadin, isopimpelline, imperatorin, xanthotoxol, archangelicin, glucoside, bergapten, xanthotoxin (cinidimonal), and sesquiterpenes. Compounds such as osthole and coumarin have been identified as the active ingredients responsible for the pharmacological effects, although mechanism of action of C. monnieri is still unknown. Studies are further needed to analyze the relationship of structure-activity and to expose the toxicity and clinical consequences of the plant before being used as a pharmaceutical agent.

C. monnieri (L.) have been reported to have a variety of therapeutic properties including female genitals health, cure male impotence, deal with antipruritic, treat skin problems, exhibited strong anti-allergic, antimicrobial, and treating osteoporosis. These pharmacological properties of this natural medicinal plant might be due to its strong antioxidant characteristics. Taking all these aspects into consideration, this research aimed to track the therapeutic effects of this traditional medicinal plant by evaluating In vitro antioxidant, cytotoxic, antimicrobial, and spermicidal pharmacological response of C. monnieri hydroethanolic extract.

Material and Method

Selection and Collection of Plant Material

The seeds of C. monnieri were identified and authenticated taxonomically from Department of Botany, Government College University, Faisalabad-Pakistan (Ref#Bot-2019-7794) after purchasing from the Local market of Faisalabad-Pakistan. Then, washed seeds were powdered using electronic grinder (Model CB 222, Cambridge, UK) after drying in shade at room temperature and in oven set at 50°C for overnight. Hydroethanolic (30:70 v/v) extract was prepare following the protocol of Sulaiman et al., with some modification.

Phytochemical Analysis

As phytochemical screening procedure, qualitative analysis for phytochemical constituents including steroids, flavonoids, alkaloids, glycosides, triterpenoids, tannins, and saponins was performed following the standard methods.

Quantitative Analysis

Total phenolic contents (TPC) and Total flavonoids contents (TFC)

Total phenolic contents (TPC) estimation in Hydroethanolic extract was done following the Folin-Ciocalteu method as described by Jain et al. Total flavonoids contents (TFC) were quantified using the protocol described by Pranuthi et al.

High Performance Liquid Chromatography (HPLC) for phenolic compounds

High Performance Liquid Chromatography (HPLC) (C_{18} column having 250 × 4.6 mm internal diameter with 5 μm film thickness, accompanying an oven set at 30°C) was used to determine the selected phenolic compounds in the extract following the method as described by Yue et al., with minor modifications. Chromera HPLC system (Perkin Elmer, USA.) attached with Flexer Binary LC pump, UV/Vis LC Detector (Shelton CT, 06 484 USA) controlled by software V. 4.2. 6410 used to analyze the data. Acetonitrile: methanol (70: 30) as solvent A and double distilled water having glacial acetic acid (.5%) solvent B in mobile phase were used. Many phytochemical compounds were identified using 275 nm wavelength using standards to compare the retention times and spiking.

Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectrophotometer to explore the various functional chemical linkages in the extracted phytochemicals was used. Munir et al., protocol was followed using FTIR spectrometer (Model Bruker Platinum ATR with accessories A225/Q Platinum ATR Multiple Crystals CRY diamond and having Interferogram Size of 10 550 points) in the frequency range of 400–4000/cm available in the Central Hi-Tech Laboratory, Government College University, Faisalabad-Pakistan was used.
Trace Elements and Heavy Metals Estimation

Nitric-perchloric acid method, Colagar et al.,13 protocol was used to digest the seeds for measurement of trace and heavy metals (ppm) using atomic absorption spectrophotometer (AAS) (Aurora, Canada) available in Central Hi-Tech Laboratory, Government College University, Faisalabad-Pakistan. Cu, Fe, Cd, Pb, Mg, Co, Zn, Ni, and Mn as acted important bio elements were measured by AAS.

Investigations of Antioxidant Potential of C. monnieri Extract Using Different Assays

Total Antioxidant Capacity (TAC) (Phosphomolybdenum Method). TAC of the hydroethanolic extract was estimated by Phosphomolybdenum assay, a spectrophotometric method, following the protocol of Prieto et al.10 Ascorbic acid (25, 50, 100, 150, 200, 250, and 300 μg/ml) in methanol (absolute) was used as standard for the construction of standard curve. Butylated hydroxytoluene (BHT) was used as reference controls.

DPPH Inhibition (%) = \(\frac{\text{Blank abs (A}_0\text{)} - \text{Sample abs (A}_1\text{)}}{\text{Blank abs (A}_0\text{)}} \times 100 \)

Hydrogen Peroxide (H\(_2\)O\(_2\)) Scavenging potential. Jain et al.,9 method was used to measure the H\(_2\)O\(_2\) scavenging potential of the seeds extract. Vitamin C as standard and PBS as blank were used taking absorbance at 230 nm and percent hydrogen peroxide scavenging capacity was calculated as

\[
\% \text{ Scavenged } [\text{H}_2\text{O}_2] = \frac{1 - \text{AS}}{\text{AS}} \times 100
\]

where AS = absorbance in the presence of the extract sample or standard.

Reducing power assay (FRAP method). For the measurement of antioxidant potential of selected herb ferric reducing power assay (FRAP) was used as described by Pranuthi et al.,10 in which the reducing potential of substance Fe\(^{3+}\) (CN)\(_6\) into Fe\(^{2+}\) (CN)\(_6\) by direct electron donation was measured using 25, 50, 100, 150, 200, 250, 300, 350, and 400 (μg/mL) concentrations of extract in, respectively, labeled tests tubes.

In vitro Cytotoxic studies of C. monnieri Extract

Cytotoxic Potential by Hemolytic Assay. To evaluate the cytotoxic status of hydroethanolic plant extract hemolytic assay was used following the protocol of Munir et al.,12 with some modifications using RBCs suspension (7.0 × 10\(^8\) RBCs/mL) in triplicates and calculated as

Percent Hemolysis = \(\frac{\text{Ae} - \text{Ap}/\text{Ad} - \text{Ap}}{\times 100} \)

Here Ae = the absorbance of plant extract; Ap = the absorbance of PBS; Ad = the absorbance of DMSO (20%) used to make plants dilution.

Thrombolytic Potential by Clot Lysis Assay

To investigate the clot dissolving potential of selected natural herb, Munir et al.,12 protocol was used. Healthy volunteers (n = 10) for the collection of fresh venous blood (1 mL) (excluded those having any transmittable infection or taking any type of anticoagulant) were recruited as instructed by Institutional Research Scrutiny Committee (Ref. No. GCUF/DAS/19/1534). PBS as negative control while streptokinase vial (1 500 000 IU) as positive control were used, and percentage clot dissolving potential calculated as

Clot Dissolving activity(%) = \(\frac{(\text{clot Initial weight} - \text{clot final weight})}{\text{clot initial weight}} \times 100 \)

Ames Test (Mutagenicity/Genotoxicity evaluation)

The Bacterial Reverse Mutation Test (Ames test) developed by Bruce Ames in 1970s used as a screening method in drug development because of its simplicity and relatively low cost to prelude genotoxic impact of medicines before clinical usage.15 Salmonella typhimurium two strains TA98 and TA100 as auxotrophic bacterial strains were used to evaluate the genotoxicity through reverse mutations using fluctuation method on incubating for up to 5 days in 96 well microplates. Probability test was performed to evaluate the results statistically.

Calf Thymus DNA Damage Prevention Test

Calf thymus DNA (Ct DNA) was used to explore the genoprotective ability of aqueous ethanolic extract of C. monnieri following the method of Munir et al.,12 with some modifications. Fenton reagent composed of 30% (v/v) hydrogen peroxide and ferrous sulphate (2 mM) as DNA damage inducer was incubated with Ct DNA and natural herb extract (100 μg/mL), respectively. Agarose gel electrophoresis was used to compare the DNA damage protection capacity of selected plant extract along with controls DNA and gel documentation was done by Syngene GeneGenius Gel Light Imaging System.

Antibacterial and Antifungal Potential of C. monnieri’ Hydroethanolic Extract

For the evaluation of antimicrobial activities, pre identified bacterial strains including Bacillus subtilis, Staphylococcus aureus, Pasteurella multocida, Escherichia coli, Klebsiella pneumoniae, Acinetobacter species, Pseudomonas Species,
and Salmonella Species; and fungal strains like Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Fusarium solani, Alternaria alternaria, and Schizophyllum species were obtained from the Department of Microbiology, Government College University, Faisalabad-Pakistan. Well diffusion method was used for antibacterial and antifungal activities as described by Imran et al.,16 Then Minimum Inhibitory Concentrations (MIC) of plant extract against two-gram positive bacterial strains including S. aureus and B subtilis and two-gram negative bacterial strains E. coli and Acinetobacter species were also investigated using microwell plate (96 wells) method. Streptomycin/ciprofloxacin as positive controls for bacteria and terbenafor fungi were used. To evaluate the capacity of selected medicinal plant extract to prevent the biofilm formation against S. aureus and B. subtilis (gram positive bacteria); E. coli and P. multocida (gram negative bacteria) were also determined following the method of Di Ciccio et al. Finally, the Biofilm reduction (%) was calculated using the following formula

\[
\text{Biofilm reduction } \% = \left(\frac{\text{OD control} - \text{OD sample}}{\text{OD control}} \right) \times 100
\]

In vitro Spermatozoa Parameters. Healthy volunteers (time-to-pregnancy (TTP) 12 month) (n = 30) were chosen for the semen samples collection after taking written informed consent and semen samples were processed according to World Health Organization (WHO) protocol.18 Different concentrations of extract (25 μg/mL, 50 μg/mL, and 100 μg/mL) were used to determine the impact on sperms motility total (%), progressive motility (%) and viability (%). After mixing the extract with semen (1:1), leave at room temperature for 30 seconds, then sperm motility total (%) as well as progressive motility (%) at specific times as at 0min, 15min, 30min, 45min, 60min, and 120min were recorded. 1% Eosin Y stain in 9.9% physiological saline was used to observe the viability of spermatozoa by incubating the semen, extract, and stain (1: 1:1) for up to 120min following the protocol of Munir et al.12

Statistical Analysis

The obtained results were expressed as Mean ± SEM and further interpreted through statistical analysis by applying one way ANOVA test. Probability test was also used by Minitab 17 statistical software (Trial version).

Results

Results revealed the presence of steroids, flavonoids, tannins, saponins, and triterpenoids in the extract of *C. monnieri* while alkaloids and glycosides were not detected (Table 1). Significant (p<.05) amount of total phenolic contents and total flavonoids contents (309.33 ± 5.67 mg GAE/g and 68.64 ± 4.45 μg CE/g, respectively) in the extract of *C. monnieri* seeds were found (Table 2). HPLC-UV chromatogram of *C. monnieri* seeds extract’ results revealed the presence of Gallic Acid (Rt = 2.830), Catechin (Rt = 3.097), P-coumeric acid (Rt = 5.499), HB acid (Rt = 7.061), and Ferulic acid (13.099) (Figure 1). The results of Fourier transform infrared spectroscopy (FTIR) (Figure 2) explored wide range of absorption peaks which represented the presence of wide range of bioactive natural chemical constituents with different functional groups like O-H, N-H, C-H, C≡C, C=N, C=C, C=O, C=C, C-N, C-O, C-Cl, C-I, S-S, and N = O*.12 The results of mineral contents, both essential and toxic elements, revealed significant (p<.05) concentration (ppm) in the seeds of selected medicinal herb (Table 3).

Significant (p<.05) hemolysis and clot dissolving activities as compared to controls (PBS) (Figures 3C and 3D) could be suggested that selected medicinal plant has significantly (p<.05) higher concentration of phytochemical constituents which might induce apoptosis in cells by destabilizing the cellular membrane.19 The results of mutagenicity test explored that selected medicinal plant did not possess mutagenic activity and In vitro study using Fenton reaction results revealed comparatively with controls noticeable DNA damaging prevention potential of *C. monnieri* (Table 4 and Figure 4).

The results of antibacterial activity of selected natural herb evaluated by gel diffusion method are given in Table 5, reported as growth inhibition zones (mm) measured using a zone reader after incubating at 37°C for 24 hours. Results explored that selected medicinal plant possesses significant (p<.05) antibacterial activities against different selected pathogenic bacteria. It was found that *C. monnieri* showed at different extent antibacterial activities while did not show antibacterial activity against *P. multocida* and *K. pneumoniae* (Table 5). The results of MIC tested against *S. aureus*, *B. subtilis*, *E. coli*, and *Acinetobacter* species revealed that *C. monnieri* extract has highest growth inhibition potential against *S. aureus* and *Acinetobacter* species even in selected maximum dilution (.39 mg/mL). On the other hand, *C. monnieri* was only able to inhibit the growth of *B. subtilis* and *E. coli* upto concentrations of 12.5 mg/mL observed visually by change in color after adding 10 μL. resazurin solution and the results were interpreted using the interpretation chart of NCCLS (1997). Furthermore, In vitro

Plant Phytochemicals	Cnidium monnieri
Alkaloids	–
Flavonoids	+
Tannins	+
Saponins	++
Glycosides	–
Steroids	–
Triterpenoids	+

(+) indicates the detection of phytoconstituent, (–) indicates non detection of phytoconstituent present.

Plant/Phytochemicals	Cyanidium monnieri
Alkaloids	–
Flavonoids	+
Tannins	+
Saponins	++
Glycosides	–
Steroids	–
Triterpenoids	+

(+) indicates the detection of phytoconstituent, (–) indicates non detection of phytoconstituent present.

Table 1. Qualitative phytochemicals present in hydroethanolic extract of the studied medicinal plant.
potential of the selected medicinal plant to prevent the attachment and inhibition of biofilm formation was evaluated and results are given in Table 6. The results were calculated as Percent biofilm inhibition. C. monnieri seeds hydroethanolic extract have significant (p<.05) potential to prevent the attachment of S. aureus, B. subtilis and E. coli while enhanced the biofilm growth of P. multocida bacteria on the microwells plate (Table 6). The results of antifungal assay explored that C. monnieri has potential to inhibit the growth of Schizophyllum species, A. flavus, and A. niger at some extent but no activity against F. solani, and A. alternaria was observed (Table 7).

Results revealed that C. monnieri have significant (p<.05) spermicidal activity, observed on incubating the semen with hydroethanolic extracts of C. monnieri seeds. Moreover, it was also found that on treating

Table 2. Phytochemical Constituents and antioxidant activities of selected plant hydroethanolic extract as mean ± SEM of multiple determinations of each experiment.

Plants/Contents	C. monnieri	Vitamin C
TPC (mg GAE/g dry plants material)	309.33 ± 5.67	—
TFC (μg CE/g dry plants material)	68.64 ± 4.45	—
H$_2$O$_2$ Scavenging activity (%)	17.67 ± 1.67	48.70 ± 2.91$^\wedge$
DPPH Inhibition (%)	36.79 ± 1.78	90.15 ± 5.93$^\wedge$

Mean with different letters as superscript in the same row indicate significant (p<.05) differences among tested plants extract and controls. Symbol – indicates not tested.

Figure 1. Chromatogram representing different phytochemical constituents identified using HPLC in the hydroethanolic extract of Cnidium monnieri.
the spermatozoa with different concentrations of extract the viability of sperms significantly (p<.05) decreased, observed by increasing ability in retaining the eosin stain into the head of sperms (Figure 5A1-A3).

Discussion

The presence of a wide range of natural phytochemical constituents in the medicinal plants with multiple activities made them as a primary medicinal choice to compete many health-related issues among communities and individuals. It was well reported that the therapeutic applications like analgesic, antibacterial, and antispasmodic were due to the secondary metabolites derived from medicinal plants and the significant antioxidant potential is due to the presence of phenolics contents. Different phytochemical constituents isolated from C. monnieri mainly osthole and coumarins are responsible for the pharmacological activities of this medicinal plant. Bio elements are classified in different groups as Group I to Group V based on their requirements and applications. Figures 3A and 3B represented the potential antioxidant behavior of selected natural herb to neutralize the impact of free radicals. It was reported that long-term treatment of mitochondrial redox components with the herbal formulation containing Chinese herbal formula with extract of C. monnieri have diverse potential to enhance the antioxidant enzymes activities including GSH, α-tocopherol (α-TOC), and manganese-superoxide dismutase (Mn SOD).

Table 3. Mineral contents of selected medicinal plant as mean ± SEM of multiple determinations of each experiment.

Plants Contents	C. monnieri
Copper (ppm)	55.268 ± 2.17
Iron (ppm)	591.249 ± 8.80
Zinc (ppm)	36.856 ± 2.92
Magnesium (ppm)	215.817 ± 2.43
Manganese (ppm)	95.111 ± 2.91
Cobalt (ppm)	320.542 ± 5.68
Nickle (ppm)	71.778 ± 1.26
Cadmium (ppm)	4.572 ± .22
Lead (ppm)	2.633 ± 1.68

Figure 2. FTIR graph representing different functional groups and possible phytochemical constituents identified using FTIR in the hydroethanolic extract of Cnidium monnieri.

Table 3. Mineral contents of selected medicinal plant as mean ± SEM of multiple determinations of each experiment.
Medicinal plants having genotoxic activities shall be announced genetically toxic and marked as unsafe. Moreover, the evaluation of anti-mutagenic activities of medicinal properties is also very important to declare chemopreventive

Table 4. Mutagenic activity of selected medicinal plant against S. typhi TA98 and TA100.

Hydroethanolic Extract and Bacterial Strains	Number of positive wells/total number of wells	Results
Mutagenic activity against TA98		
(a) Background	20/96	-
(b) Standard (K2Cr2O7)	80/96	+
(c) C. monnieri	7/96	-
Mutagenic activity against TA100		
(a) Background	25/96	-
(b) Standard (NaN3)	86/96	+
(c) C. monnieri	5/96	-

+, Significant increase in the number of positive wells compared to the related control (p < .05). –, Non-significant (p > .05) effect observed.

Medicinal plants having genotoxic activities shall be announced genetically toxic and marked as unsafe. Moreover, the evaluation of anti-mutagenic activities of medicinal properties is also very important to declare chemopreventive

Figure 3. Represent the different biological activities of Cnidium monnieri (A) Total antioxidant capacity (TAC) by Phosphomolybdenum method, (B) reducing potential investigated by FRAP method, (C) hemolytic activities (%) evaluated against washed RBCs, and (D) thrombolytic activities (%) of selected medicinal plant. Where CM = Cnidium monnieri. The results are means ± SE of mean values of control and plant extract. Alphabets on the bars represent significance (p<.05) in group mean differences among tested plant extract and controls.

Figure 4. DNA damage prevention potential of selected medicinal plant using Ct DNA (Calf thymus DNA). Where, Lane A = Untreated DNA, Lane B = 2 mM FeSO4, 30% H2O2 + DNA + 1 mM Quercetin, Lane C = 30% H2O2 + DNA, Lane D = 2 mM FeSO4, 30% H2O2 + DNA, Lane E = 2 mM FeSO4 + DNA, and Lane F = 2 mM FeSO4, 30% H2O2 + sDNA + Cnidium monnieri.
characteristic of medicinal plants and therapeutic potential for clinical purpose use. Anti-mutagens compound prevents the mutagenicity might by neutralizing the mutagen or preventing the reaction of DNA and mutagens.26 The concern related to the safety of medicinal plants is becoming one of the emerging interests for researchers and the investigation of toxic aspects of herbs that might be associated with their usage, therefore avoiding potential harmful effects. 27 The results of mutagenicity test explored that selected medicinal plant did not possess mutagenic activity or in other words selected natural herb is non-mutagenic in nature. According to literature review, this was the first time that selected medicinal plant was screened out for the mutagenic activities.

Furthermore, medicinal plants having significant (p<.05) antibacterial potential could be used as medication for the treatment as well as prevention of infectious diseases. 28 Biofilm formation is one of the major resistance mechanisms against available antibiotics of different bacterial strains which produced the resistance maintenance capability in microbes, modulate the ability of transmission, and increased the reversibility potential. 29,30 Our results agreed with the findings of Alam et al., 31 where reported that methanolic extract of Bacopa monnieri L. has significant antimicrobial activity against B. subtilis, S. aureus, P. aeruginosa, and K. pneumonia, and activities against S. aureus and E. coli were also reported. 32 Alam et al., 31 investigated that B. monnieri L. have antifungal activities to inhibit the fungi like C. albicans (UCC 29), Microsporum audouinii (MUC 545), A. niger (MUC 177), and Trichophyton mentagrophytes (MUC 665) when extracts are used in different concentrations as using the method of Kirby–Bauer disk diffusion. B. monnieri also have potential

Table 5. Antibacterial activity of tested medicinal plant extract against selected bacterial strains.
Bacterial Strains

S. aureus
B. subtilis
E. coli
P. multocida
Acinetobacter species
Pseudomonas species
Salmonella species
K. pneumoniae

Values are Mean ± SE (standard error mean) of replicate measurements. Values with different alphabets in superscripts within same rows are significantly different (p<.05), Note: (-): no activity observed, mm (millimeter inhibition zone).

Table 6. Biofilm formation inhibition Assay to evaluate the biofilm inhibition potential of selected medicinal plant extract against selected bacterial strains.
Plants Extracts/Bacterial Strains

C. monnieri 10 mg/mL
C. monnieri 20 mg/mL
Streptomycin (1 mg/mL)
Ciprofloxacin (1 mg/mL)

Values are Mean ± SE (standard error mean) of replicate measurements. Values with different alphabets in superscripts within same column for same concentrations are significantly different (p<.05), Note: /sign indicate the enhancement of biofilm formation. The numbers ≥ 50% (in bold) show high activity against the bacteria.

Table 7. Antifungal activities of selected medicinal plant aqueous ethanolic extract against selected fungal strains.
Bacterial Strains

Schizophyllum species
F. solani
A. alternaria
A. flavus
A. niger
A. terreus

Values are Mean ± SE (standard error mean) of replicate measurements. Values with different alphabets in superscripts within same rows are significantly different (p<.05), Note: (-): no activity observed, mm (millimeter inhibition zone).
against A. flavus, and C. albicans. Experiments revealed that osthole inhibits Fusarium graminearum, Aparagillus species habitats on common weeds and cereal crops. Sphaerotheca Fuliginea regulated by spore-spreading and mycelium growth inhibitions was also reported.

Therapeutic as well as nutraceuticals properties of medicinal plants are being accepted worldwide particularly in developing countries for the management of different disorders. The findings of spermicidal studies explored significant (p<.05) contraceptive pharmacological behavior of C. monnieri. Our results agreed with the finding of Yingzi and Shuying. Yingzi explored the spermicidal mechanisms of traditional Chinese medicine C. monnieri, by observing the ultrastructural changes in human sperm with this natural herb. The sperm membrane in both head and tail regions were damaged significantly, the acrosomal membrane and nuclear membrane were disrupted, the mitochondria were injured, and vacuolization were seen in it; the part microtubule were injured and dissolved. On the other hand, Shuying, observed the spermicidal effect of C. monnieri at different times intervals on semen samples obtained from 18 healthy men and found that C. monnieri has a definite spermicidal effect on spermatozoa in vitro. Our results also revealed a close relationship between the spermicidal effect, the concentration and dosage of C. monnieri extract. C. monnieri may be a new kind of spermicidal contraceptive per vagina. But In vivo study in animals and clinical trials are required to declare this natural herb as therapeutic agent.

Conclusion

Since earlier civilizations, natural medicinal plants have been used by human being for their survival and growth. Over the years, therapeutic as well as nutraceuticals properties are being accepted worldwide particularly in developing countries for the management of different disorders. A wide range of bioactive molecules in the hydroethanolic extract of C. monnieri having various biological activities have been
Acknowledgments

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We acknowledged Pakistan Science Foundation (PSF) (PSF research project # PSF/NSLP/P-GCUF (710) to provide the fund to complete this research work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We acknowledged Pakistan Science Foundation (PSF) (PSF research project # PSF/NSLP/P-GCUF (710) to provide the fund to complete this research work.

ORCID iD

Naveed Munir https://orcid.org/0000-0003-0380-1332
Huma Mehboob https://orcid.org/0000-0001-7070-0342

References

1. Ramakrishna N, Saidulu C. Traditional herbal knowledge on reproductive disorders and sexually transmitted diseases in the Adilabad district of AP. J Nat Prod Plant Resour. 2014;4(2):1-5.
2. Prasad AD, Shyma TB, Raghavendra MP. Traditional herbal remedies used for management of reproductive disorders in Wayanad district, Kerala. Int J Res Pharm Chem. 2014;4(2):333-341.
3. Chatha SA, Hussain AI, Asad R, Majeed M, Aslam N. Bioactive components and antioxidant properties of Terminalia arjuna L. extracts. J Food Process Technol. 2014;5(2):1.
4. Chan CL, Gan RY, Corke H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int J Food Sci Technol. 2016;51(3):565-573.
5. Koukoui O, Aghangnan DCP, Medoatinsa E, et al. Chemical profile, cytotoxicity anti-radical and hypolipidemic activities of Tridax procumbens of Benin. Res J Pharmaceut Biol Chem Sci. 2015;6(4):1441-1449.
6. Li YM, Jia M, Li HQ, et al. Cnidium monnieri: a review of traditional uses, phytochemical and ethnopharmacological properties. Am J Chin Med. 2015;43(05):835-877.
7. Lim EG, Kim GT, Kim BM, et al. Ethanol extract from Cnidium monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53-independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells. Mol Med Rep. 2018;17(2):2572-2580.
8. Sulaiman SF, Sajak AA, Ooi KL, Seow EM. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J Food Compos Anal. 2011;24(4-5):506-515.
9. Jain S, Jain A, Vaidya A, Kumar D, Jain V. Preliminary phytochemical, pharmacognostical and physico-chemical evaluation of Cedrus deodara heartwood. J Pharmacogn Phytochem. 2014;3(1).
10. Pranuthi EK, Narendra K, Swathi J, et al. Qualitative assessment of bioactive compounds from a very rare medicinal plant Ficus dalhousiae Miq. J Pharmacogn Phytochem. 2014;3(1).
11. Yue X, Hao Y, Jian-Fei W, et al. Simultaneous determination of nine phenolic acids in dendranthema morifolium (Ramat) Tzvel. cv. Chuju samples by high performance liquid chromatography. Chin J Anal Chem. 2013;41(3):383-388.
12. Munir N, Mahmood Z, Yameen M, Mustafa G. Therapeutic response of Epimedium gandiflorum’s different doses to restore the antioxidant potential and reproductive hormones in male albino rats. Dose-Response. 2020;18(3):1559325820959563.
13. Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res (NY). 2009;29(2):82-88.
14. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-341.
15. Ames BN, Durston WE, Yamazaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA. 1973;70(8):2281-2285.
16. Imran M, Rasool N, Rizwan K, et al. Chemical composition and biological studies of Ficus benjamina. Chem Cent J. 2014;8(1):1.
17. Di Ciccio P, Vergara A, Festino AR, et al. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control. 2015;50:930-936.
18. Kandil H, Agarwal A, Saleh R, et al. Editorial Commentary on Draft of World Health Organization Sixth Edition Laboratory Manual for the Examination and Processing of Human Semen. The World Journal of Men’s Health. 2021;39(4):577.
19. Yang LL, Wang MC, Chen LG, Wang CC. Cytotoxic activity of C. monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53-independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells. Mol Med Rep. 2018;17(2):2572-2580.
20. Okwu DE, Okwu ME. Chemical composition of Spondias mombin Linn plant parts. J Sustain Agric Environ. 2004;6(2):140-147.
21. Xueling Z, Benguo L, Limin L, Xiaoi Z. Microwave-assisted extraction and antioxidant activity of total phenolic compounds from pomegranate peel. J Med Plants Res. 2011;5(6):1004-1011.
22. Zhao J, Zhou M, Liu Y, Zhang G, Luo Y. Chromones and coumarins from the dried fructus of Cnidium monnieri. *Fitoterapia*. 2011;82(5):767-771.
23. Chatterjea MN, Shinde R. *Textbook of Medical Biochemistry*. Wife Goes On; 2011:100-111.
24. Chiu PY, Leung HY, Ling Siu AH, et al. Long-term treatment with a Yang-invigorating Chinese herbal formula produces generalized tissue protection against oxidative damage in rats. *Rejuvenation Res*. 2008;11(1):43-62.
25. Verschaeve L. Genotoxicity and antigenotoxicity studies of traditional medicinal plants: how informative and accurate are the results? *Nat Prod Commun*. 2015;10(8):1934578X1501000843.
26. Bhattacharya S. Natural antimutagens: a review. *Res J Med Plant*. 2011;5(2):116-126.
27. Srinivasa Rao B, Chandrasekaran CV, Srikanth HS, et al. Mutagenicity and acute oral toxicity test for herbal poultry feed supplements. *J Toxicol*. 2018;10:2112.
28. Madduluri S, Rao KB, Sitaram B. In vitro evaluation of antibacterial activity of five indigenous plants extract against five bacterial pathogens of human. *Int J Pharm Pharmaceut Sci*. 2013;5(4):679-684.
29. Akram M, Riaz M, Munir N, et al. Progress and prospects in the management of bacterial infections and developments in Phytotherapeutic modalities. *Clin Exp Pharmacol Physiol*. 2020;47(7):1107-1119.
30. Holmes AH, Moore LS, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. *Lancet*. 2016;387(10014):176-187.
31. Alami K, Parvez N, Yadav S, et al. Antimicrobial activity of leaf callus of Bacopa monnieri. *Der Pharm Lett*. 2011;3(1):287-291.
32. Mkk F, Sp D, Irfan M. Antibacterial and antifungal activity of various extracts of Bacopa monnieri. arXiv preprint arXiv:1909.2019; 11(1): 1698-1702.
33. Wang CM, Zhou W, Li CX, et al. Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. *J Asian Nat Prod Res*. 2009;11(9):783-791.
34. Yingzi Z. Influence of Cnidium Monnieri on Ultrastructure of Human Sperm [J]. *Journal of Harbin Medical University*. 1995;1:11-22.
35. Shuying Z. Experimental Study of Spermicidal Effect of Cnidium Monnieri [J]. *J Harbin Med Univ*. 1992;2:8-15.