A tale of two sites - II: Inferring the properties of minihalo-hosted galaxies with upcoming 21-cm interferometers

Yuxiang Qin1,*, Andrei Mesinger1, Bradley Greig2,3 and Jaehong Park1,4

1Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
3ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
4School of Physics, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

ABSTRACT
The first generation of galaxies is expected to form in minihalos, accreting gas through \(\text{H}_2 \) cooling, and possessing unique properties. Although unlikely to be directly detected in UV/infrared surveys, the radiation from these molecular-cooling galaxies (MCGs) could leave an imprint in the 21-cm signal from the Cosmic Dawn. Here we quantify their detectability with upcoming radio interferometers. We generate mock 21-cm power spectra using a model for both MCGs as well as more massive, atomic-cooling galaxies (AGCs), allowing both populations to have different properties and scaling relations. The galaxy parameters are chosen so as to be consistent with: (i) high-redshift UV luminosity functions; (ii) the upper limit on the neutral fraction from QSO spectra; (iii) the Thomson scattering optical depth to the CMB; and (iv) the timing of the recent putative EDGES detection. The latter implies a significant contribution of MCGs to the Cosmic Dawn, if confirmed to be cosmological. We then perform Bayesian inference on two models including and ignoring MCG contributions. Comparing their Bayesian evidences, we find a strong preference for the model including MCGs, despite the fact that it has more free parameters. This suggests that if MCGs indeed play a significant role in the Cosmic Dawn, it should be possible to infer their properties from upcoming 21-cm power spectra. Our study illustrates how these observations can discriminate among uncertain galaxy formation models with varying complexities, by maximizing the Bayesian evidence.

Key words: cosmology: theory dark ages, reionization, first stars diffuse radiation early Universe galaxies: high-redshift intergalactic medium

1 INTRODUCTION
The first galaxies of our Universe are expected to form out of pristine gas, cooling inside so-called “minihalos” (with mass \(M_h \sim 10^6 - 10^8 M_\odot \)) via rotational-vibrational transitions of \(\text{H}_2 \) (e.g. Haiman et al. 1996, 1997; Yoshida et al. 2003, 2006). The first episodes of star formation, evolution, and feedback inside these first-generation, molecular-cooling galaxies (MCGs) can be very different from later generations that were mostly built-up out of pre-enriched material inside deeper potential wells (e.g. Haiman et al. 1999; Tumlinson & Shull 2000; Abel et al. 2002; Schaerer 2002; Bromm & Larson 2004; Yoshida et al. 2006; McKee & Tan 2008; Whalen et al. 2008; Turk et al. 2009; Heger & Woosley 2010; Wise et al. 2012; Xu et al. 2016b; Kimm et al. 2016). Moreover, star formation inside MCGs is expected to be transient, tapering off as a growing Lyman-Werner (LW) background starts to effectively photodissociate \(\text{H}_2 \) (e.g. Johnson et al. 2007; Ahn et al. 2009; Holzbauer & Furlanetto 2012; Fialkov et al. 2013; Jaacks et al. 2018; Schauer et al. 2019).

Unfortunately, MCGs are likely too faint to observe directly using UV or infrared telescopes in the foreseeable future (e.g. O'Shea et al. 2015; Xu et al. 2016b). Their transient nature also makes low-redshift detection or even searching for stellar relics in the nearby Universe very challenging (Beers & Christlieb 2005; Tornatore et al. 2007; Nagao et al. 2008; 2009; Lai et al. 2008; Stiavelli et al. 2008; Koedinger et al. 2011; Liu & Bromm 2020).

A promising alternative is to study MCGs through the imprint their radiation fields leave in the intergalactic

* E-mail: Yuxiang.L.Qin@gmail.com
medium (IGM; Faïklov et al. 2013 Mirocha et al. 2017 Muoz 2019). In the standard hierarchical structure formation paradigm, there should have existed a period at the start of the Cosmic Dawn in which the radiation backgrounds were dominated by MCGs. If we can observe IGM properties at a high enough redshift, we could indirectly study the properties of MCGs (e.g. Ciardi et al. 2006 McQuinn et al. 2007 Ahn et al. 2012 Visbal et al. 2015 Miranda et al. 2017 Mesinger et al. 2012 Koh & Wise 2018).

These can broadly divided into global signal experiments and interferometers measuring 21-cm fluctuations. The former includes the Shaped Antenna measurement of the background RAdio Spectrum (SARAS; Singh et al. 2018), the Large-aperture Experiment to Detect the Dark Age (LEDA; Price et al. 2018), Probing Radio Intensity at high-Z from Marion (PRI2M; Philip et al. 2019), and the Experiment to Detect the Global EoR (i.e. Epoch of Reionization) Signature (EDGES; Bowman et al. 2018). The latter has recently claimed a detection with an absorption feature at $z \sim 7$. Source by the spin-flip transition of neutral hydrogen, the cosmic 21-cm signal is sensitive to the ionization and thermal state of the IGM. These are in turn determined by the ionizing, soft UV and X-ray emission from the first galaxies. Therefore, the high-redshift 21-cm signal should encode information about the birth, disappearance, spatial distribution, and typical spectral energy distributions (SEDs) of MCGs.

Many experiments are striving to measure the signal. To these there is a great deal of global signal experiments and interferometers measuring 21-cm fluctuations. The former includes the Shaped Antenna measurement of the background RAdio Spectrum (SARAS; Singh et al. 2018), the Large-aperture Experiment to Detect the Dark Age (LEDA; Price et al. 2018), Probing Radio Intensity at high-Z from Marion (PRI2M; Philip et al. 2019), and the Experiment to Detect the Global EoR (i.e. Epoch of Reionization) Signature (EDGES; Bowman et al. 2018). The latter has recently claimed a detection with an absorption feature at $z \sim 7$, initiating much debate as to its cosmological origin (e.g. Hills et al. 2018; Bradley et al. 2019; Sims & Pober 2019; Mirocha & Furlanetto 2019; Munoz & Loeb 2018; Fialkov et al. 2018; Ewall-Wice et al. 2018; Melbene et al. 2019; Qin et al. 2020).

Existing interferometers, such as the Low-Frequency Array (LOFAR; van Haarlem et al. 2013; Patil et al. 2017), the Murchison Widefield Array (MWA; Tingay et al. 2013; Beardsley et al. 2016) and the Precision Array for Probing Epoch of Reionisation (PAPER; Parsons et al. 2010), are focusing on measuring the 21-cm power spectrum, generally at $z < 10$. These instruments are serving as precursors and pathfinders for the next-generation radio telescopes: the Hydrogen Epoch of Reionization Arrays (HERA; DeBoer et al. 2017) and the Square Kilometre Array (SKA), which promise to deliver 3-dimensional imaging and a high S/N measurement of the 21-cm power spectrum (PS) out to $z \lesssim 20–30$.

However, even with a clean detection of the signal, it is not obvious that we can claim to have detected MCGs. Given how little we know about high-redshift galaxies, there could be many degeneracies in theoretical models. Would we be able to confidently extract the imprint of MCGs from the signal, and distinguish them from more evolved, second-generation galaxies? Bayesian inference provides us with a clean framework to answer such a question. Specifically, Bayesian evidence allows us to perform model selection, quantifying if data prefers one theoretical model over another. It has a built-in Occam’s razor factor, penalizing additional model complexity unless explicitly required by the data (for a recent review of Bayesian inference in astronomy, see Trotta 2017).

In this work, we quantify the detectability of MCGs from a mock measurement of the cosmic 21-cm PS, expected from a 1000h integration with SKA1-low. Our mock signal is generated by self-consistently following the evolution of both MCGs and more massive atomically-cooled galaxies (ACGs), as described in Qin et al. (2020) hereafter Paper-I. From this mock observation, we infer the properties of the underlying galaxies using a model having only a population of ACGs, and a model allowing for both populations: ACGs and MCGs. We compute the Bayes factor of these two models, quantifying if the mock observation provides sufficient evidence for an additional population of MCGs.

This paper is organized as follows. We briefly summarize our model in Section 2 In Section 3 we present our mock observation, chosen so that the timing of the global signal is consistent with the putative EDGES detection. In Section 4 we perform parameter inference using two galaxy models, presenting the corresponding Bayesian evidence. Finally, we conclude in Section 5. In this work, we adopt the following cosmological parameters: ($\Omega_m, \Omega_b, \Omega_{\Lambda}, h, \sigma_8, n_s = 0.31, 0.048, 0.69, 0.68, 0.81, 0.97$), consistent with Planck (Planck Collaboration et al. 2016b, 2018).

2 CHARACTERIZING GALAXIES AT COSMIC DAWN

To model the 21-cm signal we use the public code 21cmFAST (Mesinger & Furlanetto 2007 Mesinger et al. 2011) with the latest update from Paper-I. In Paper-I we extended the galaxy models of 21cmFAST to include a separate population of MCGs, with properties independent to those of ACGs. Here we briefly summarize our procedure for characterizing these galaxies and their corresponding emissivities; for more details, please see Paper-I.

We define two distinct galaxy populations on the basis of the cooling channel through which they obtained the bulk of their gas – ACGs and MCGs. These two populations are defined via exponential “window functions” over the halo mass (M_h) function, $\ln(dn/dM_h)$ (for an in-depth discussion of this choice, see Paper-I. Specifically, the number density of actively star-forming galaxies is

$$
\phi \equiv \frac{dn}{dM_h} \times \begin{cases}
\exp \left(-\frac{M_{\text{mol}}}{M_h} \right)
& \text{if } M_h < M_{\text{mol}} \\
\exp \left(-\frac{M_{\text{cool}}}{M_h} \right) \exp \left(-\frac{M_{\text{ion}}}{M_{\text{crit}}} \right)
& \text{otherwise}
\end{cases},
$$

where the superscripts “atom” and “mol” are used to distinguish ACGs and MCGs, respectively, as they are allowed to have different properties and scaling relations.

We see from equation (1) that the occupancy fraction of ACGs starts dropping below a characteristic mass scale of

$$
M_{\text{crit}} = \max \left[M_{\text{cool}}, M_{\text{ion}}, M_{\text{SN}} \right].
$$

1. http://www.lofar.org/
2. http://www.mwtelescope.org/
3. http://ecr.berkeley.edu/
4. http://reionization.org/
5. https://www.skatelescope.org/
6. https://github.com/21cmfast/21cmFAST
Here we account for three physical processes that can suppress star formation: (i) inefficient cooling, $M_{\text{crit}}^{\text{SN}}$ (corresponding to a virial temperature of $\sim 10^{7}$ K; Barkana & Loeb 2001); (ii) photoheating feedback from inhomogeneous reionization, $M_{\text{crit}}^{\text{phot}}$ (e.g. Sobacchi & Mesinger 2014 see also Efstathiou 1992 [Shapiro et al. 1994] [Thoul & Weinberg 1996] [Hui & Gnedin 1997]; and (iii) supernova feedback $M_{\text{crit}}^{\text{SN}}$ (Haiman et al. 1999; Wise & Abel 2007; Dalla Vecchia & Schaye 2008; 2012; Hopkins et al. 2014; Keller et al. 2014; Kimm et al. 2016; Hopkins et al. 2017).

On the other hand, the occupancy fraction of MCGs picks up below the atomic cooling threshold, $M_{\text{crit}}^{\text{HI}}$ and extends down to

$$M_{\text{crit}}^{\text{HI}} = \max \left[M_{\text{crit}}^{\text{dis}}, M_{\text{crit}}^{\text{phot}}, M_{\text{crit}}^{\text{SN}} \right],$$

(3)

where the additional term, $M_{\text{crit}}^{\text{dis}}$, accounts for the cooling efficiency of H$_2$ in the presence of an inhomogeneous LW background (e.g. Machacek et al. 2004; Draine & Bertoldi 1996; Johnson et al. 2007; Ahn et al. 2009; Wolcott-Green et al. 2011; Holzhauser & Furlanetto 2012; Visbal et al. 2013).

We adopt power-law relations for the stellar (α) and gas (α_{gas}) coupling coefficient between the IGM spin and kinetic temperature; and α set the normalizations and scaling index.

We assume that the stellar mass is on average built-up over some fraction f_{st} of the Hubble time, $t_{\text{st}}H(z)^{-1}$, resulting in a star formation rate of $SFR = M_{\star}H(z)/t_{\text{st}}$. Here, for computational convenience, we fix $t_{\text{st}} = 0.5$ (corresponding to \sim few times the halo dynamical time), noting that there is a strong degeneracy between f_{st} and t_{st}, and the prior distribution over these two parameters results in a relative insensitivity of the results to t_{st} (Park et al. 2019; Paper-I). To compare with observed UV LFs (e.g. Finkelstein et al. 2011 and Paper-I).

We also compute the corresponding 1500A luminosity with a conversion factor $L_{1500}/SFR = 8.7 \times 10^{27} \text{erg s}^{-1} \text{Hz}^{-1} \text{yr}^{-1}$ (Madau & Dickinson 2014).

We allow ACGs and MCGs to have different UV ionizing escape fractions, also with power law scalings with halo mass. However, for computational convenience, here we assume no evolution with halo mass or redshift resulting in just two additional free parameters, $f_{\text{esc}}^{\text{ACG}}$ and $f_{\text{esc}}^{\text{MCG}}$.

The dominant sources of X-rays in the very early Universe are expected to be high mass X-ray binaries (HMXBs; Sanderbeck et al. 2018). Motivated by models and observations of HMXBs (e.g. Mineo et al. 2012; Fragos et al. 2013; Pacucci et al. 2014), we assume their population-averaged specific X-ray luminosity scales linearly with the SFR of host galaxies, and has a power-law SED with an energy spectral index of -1. We assume that only X-rays with energy greater than $E_{0} = 500$ eV can escape the host galaxy and interact with the IGM. This value is motivated by high resolution hydrodynamic simulations of the ISM in the first galaxies (Das et al. 2017). Moreover, we characterize the X-ray luminosity of early galaxies with their soft-band (<2keV) X-ray luminosities, as harder photons have a mean free path longer than the Hubble length and thus do not interact with the IGM. In other words, the specific X-ray luminosity is described by

$$\frac{dL_{X/\odot}}{dE} = \frac{E_{X}^{-1}}{\int_{2\text{keV}}^{500\text{eV}} dE E^{-1}} \times \left[\frac{L_{X,2\text{keV}}/\odot}{L_{\text{mol}}^{\text{X,2keV}}/\odot} \right],$$

(5)

where we include two more free parameters (i.e. $L_{X,2\text{keV}}/\odot$ and $L_{\text{mol}}^{\text{X,2keV}}/\odot$) as the total soft-band luminosity per SFR for ACGs and MCGs.

Based on these galaxy properties, we can calculate 1) the ionization and heating rates by X-rays; 2) the Lyman-α coupling coefficient between the IGM spin and kinetic temperatures; 3) the LW radiation intensity and the critical halo mass characterising the radiative feedback from LW suppression; as well as 4) the UV ionizing photon budget and the critical mass for photoheating feedback (see equation [1]). It is worth noting that we also include inhomogeneous recombinations (Sobacchi & Mesinger 2014), adopting a sub-grid density distribution from Miralda-Escudé et al. (2000) but adjusted for the mean density in each cell, and account for density-dependent attenuation of the local ionizing background according to Rahmati et al. (2013). These quantities are then used to follow the temperature and ionization state of each gas element in our simulation, which are in turn used to compute the 21-cm signal. For more details see Mesinger et al. (2011) and Paper-I.

3 MOCK 21-CM OBSERVATION

We create a mock 21-cm observation from a simulation box with a comoving volume of (500 Mpc)3 and a 2563 grid. While the full parameter space of our model is very large (17 dimensional; see Table 1 in Paper-I), in this proof-of-concept work, we limit it to the 7 parameters that drive the largest signal variation and are most relevant for the early Cosmic Dawn signal. These include $f_{\text{esc}}^{\text{ACG}}$, $f_{\text{esc}}^{\text{MCG}}$, $L_{X,2\text{keV}}/\odot$, $f_{\text{esc}}^{\text{ACG}}$, $f_{\text{esc}}^{\text{MCG}}$, $L_{X,2\text{keV}}/\odot$, and $L_{\text{mol}}^{\text{X,2keV}}/\odot$. Table 1 summarizes their physical meaning, and shows the fiducial values we use to make our mock observation. These fiducial values are chosen in order for the mock observation to be consistent with the following observations:

(i) the galaxy UV LFs at $z \sim 6$–10 (Bouwens et al. 2015a, 2016; Oesch et al. 2015; 2018);
(ii) the upper limit on the neutral fraction at $z \sim 5.9$ from the dark fraction in QSO spectra ($x_{\text{HI}} < 0.06+0.05, 1\sigma$; McGreer et al. 2015); (iii) the CMB Thomson scattering optical depth from Planck ($\tau_{CMB} = 0.058 \pm 0.012, 1\sigma$; Planck Collaboration et al. 2016a); and

Following Paper-I here we also assume $M_{\text{crit}}^{\text{SN}}$ is smaller than the other relevant mass scales, so that we can maximize the importance of MCG and thus match the timing of the putative EDGES detection. Note that SNe feedback could still be responsible for the power-law scaling of the stellar halo mass relation if star formation is feedback-limited (e.g. Wyithe & Loeb 2013).
(iv) the timing\footnote{We only consider the timing from EDGES that is expected to be driven by minihalos (see Paper-I and also Mirocha & Furlanetto 2019). This allows us to select an optimistic model for our proof-of-concept study, in which minihalos play an important role. The amplitude of the reported signal cannot be explained by standard physics (e.g. Muñoz & Loeb 2018; Fialkov et al. 2018; Ewall-Wice et al. 2018; Mebane et al. 2019), and some exotic explanations could have a large impact also on the power spectrum. However, partial degeneracy with unidentified systematics and/or foregrounds (e.g. Hill & Baxter 2018; Spinelli et al. 2018; Bradley et al. 2019; Sims & Pober 2019) could bring the amplitude in line with standard models, without evoking exotic physics. Our mock PS corresponds to such a scenario.} of the recent putative detection of an absorption profile centered at 78 ± 1 MHz in the global 21-cm spectrum by EDGES (Bowman et al. 2018).

We note that, $f_{\text{atom}} \sim 6\%$ and $\alpha = 0.5$ are already well constrained by the observed high-redshift UV LFs while $f_{\text{esc}} = 6\%$ ensures reionization of the fiducial model finishes by $z \approx 5.9$, with the inferred τ_e consistent with results from Planck. On the other hand, log$_{10}$ [L$_{X<2keV/\odot}^\text{mol}$/ erg s$^{-1}$ M$_{\odot}^{-1}$ yr$^{-1}$] = 40.5 is motivated by theoretical models of high-mass X-ray binaries in metal-poor environments (Fragas et al. 2013). Without much knowledge of the MCG properties, we assume that their stellar to halo mass relation and escape fraction follow ACGs, and choose $f_{\text{esc}}^\text{mol} \sim 0.2\%$ and $f_{\text{esc}} = 6\%$. Finally, an enhanced X-ray luminosity of MCGs, here we take log$_{10}$ [L$_{X<2keV/\odot}^\text{mol}$/ erg s$^{-1}$ M$_{\odot}^{-1}$ yr$^{-1}$] = 41.7, is needed to reproduce an 21-cm absorption trough centred at \sim78 MHz (Paper-I). This could be motivated by more luminous X-ray binaries arising from Pop-III stellar remnants in MCGs (Xu et al. 2016a). It is important to note that these are just fiducial parameter values, chosen to make the mock observation consistent with our current knowledge; there are large uncertainties and strong degeneracies as we will see below.

We present the 21-cm lightcone from our fiducial model in the upper panel of Fig. 1 and show its globally averaged 21-cm brightness temperature evolution, EoR history as well as the Thomson scattering optical depth ($\tau_e = 0.062$) in the upper right three sub-panels of Fig. 2 using black solid curves. We see that the model is consistent with the aforementioned observational constraints. The signal follows the expected qualitative trends (e.g. Furlanetto et al. 2006; Baek et al. 2010; Santos et al. 2011; Mesinger et al. 2016; Park et al. 2019). During the cosmic dawn, the first galaxies begin to build up the Lyman-α background, coupling the spin (T_e) and kinetic temperatures (T_b). The brightness temperature (δT_b) is negative (i.e. the IGM is seen in absorption against the CMB) and decreases as the IGM adiabatically cools faster than the CMB. For our choice of galaxy parameters, δT_b reaches its minimum at $z \approx 17$, before X-ray heating becomes significant, eventually heating the IGM to temperatures above the CMB by $z \approx 13 - 14$. As reionization progresses, the signal starts fading until $z \approx 5.8$ when the universe is fully ionized (apart from the residual H I).

3.1 Synthetic power spectra and telescope noise

Following Greig & Mesinger (2018), we compress the cosmic 21-cm lightcone into 3D averaged power spectra. The PS from the mock observation (generated from a unique initial seed) and the forward-modelled simulations (in Sec. 4) are calculated from the same comoving volume of the lightcone. For computing efficiency, forward-modeled simulations have a factor of 24 smaller volume than the mock while keeping the same resolution, i.e. (250 Mpc)3 and 1283 cells. Therefore, we compute the PS from 12 independent sub volumes of the lightcone between $z = 5.5$ (\sim220 MHz) and $z = 30$ (\sim50 MHz). The resulting 3D-averaged PS are shown with the black curves in the sub-panels of Fig. 1 with the central redshifts indicated in the top left of each panel and with the vertical lines in the top panel.

We add to our cosmic 21cm PS instrument noise corresponding to a 1000h integration with SKA1-low\footnote{Note that HERA is expected to provide comparable astrophysical parameter recovery as SKA1-low, using the power spectrum summary statistic and the fiducial galaxy models from Park et al. (2019) and Greig et al. (2020). However, our fiducial model here is chosen to have a significant contribution of MCGs driving a much earlier epoch of heating, as motivated by the putative EDGES}. We use the public 21CMSENSE package (Pober et al. 2013; 2014).
Figure 1. Top panel: A slice of the 21-cm lightcone from our mock observation. The central redshifts of the 12 independent box samples, which are used to calculate the 21-cm PS, are indicated by the vertical dashed lines. Note that the spatial range of the vertical axis is from 250 to 500 cMpc, half the entire lightcone length (500 cMpc). Lower panels: evolution of the 21-cm PS. Solid black curves correspond to the mock observation, with gray shaded regions indicating the 1σ noise from a 1000h observation with SKA1-low. Only power within the range of $k = 0.1 - 1 \text{Mpc}^{-1}$ is considered when performing the Bayesian inference. The [14, 86] percentiles of the recovered posteriors from Fig. 2 are bracketed by the colored lines (2pop using red dash-dotted lines, 1pop using blue dashed lines).

We adopt the “moderate” foreground removal configuration, which excises foreground contaminated modes from the cylindrical k-space “wedge” (which is assumed to extend at $k_1 \approx 0.1h \text{Mpc}^{-1}$ above the horizon limit) and assumes coherent addition of only instantaneously redundant baselines (see more in Pober et al. 2014). We provide a brief summary of the relevant calculations here and direct interested readers to the aforementioned papers for more details.

The thermal noise PS of a single baseline corresponding to a given k mode is (Morales 2005; McQuinn et al. 2006; Parsons et al. 2012)

$$
\Delta_N^2(k) \approx \frac{3k^2(1 + z)^4}{2\pi^2\sqrt{\Omega_m(1 + z)^3 + \Omega_L}} \Omega BT_N^2,
$$

where Ω and B correspond to the solid angle of the primary beam size (e.g. \sim0.1sr at $z = 17$) and observing bandwidth (8 MHz), respectively. We use the SKA1-low antennae configuration described in Greig et al. (2020). The system temperature is taken to be $T_N = (T_{\text{sky}} + T_{\text{rec}})(2Bt)^{-0.5}$ where T_{sky} and T_{rec} represent the sky and receiver temperatures while the factor, $\sqrt{2Bt}$, reflects the number of independent measurements during the integration time, t. Following Thompson et al. (2017), the sky is modelled as being dominated by Galactic synchrotron emission and scales with frequency (ν) as $T_{\text{sky}} = 60K(\nu/300\text{MHz})^{-2.55}$. On the other hand, the receiver is assumed to be kept at 40K with an addition of $0.1T_{\text{sky}}$ reflecting its response to the sky (Pober et al. 2014).

The total uncertainty on the 21-cm PS ($\sigma\Delta_1^2$) is obtained by summing over the individual modes, i, (Pober et al. 2013), and adding the cosmic variance of the mock observation (reasonably assuming it is Gaussian distributed at the relevant scales; Mondal et al. 2016)

$$
\frac{1}{\sigma\Delta_1^2(k)^2} = \sum_i \left(\frac{1}{\Delta_{N,i}^2 + \Delta_{1,i}^2}\right)^2.
$$
The gray shaded regions in Fig. 1 show the resulting 1σ uncertainty on the mock cosmic signal. We note large uncertainties at high redshifts while most constraints from the 21-cm PS come from large scales and z < 15. When performing inference, we additionally exclude the modes outside the range 0.1 ≤ k/Mpc−1 ≤ 1 (demarked in brown in the panels). This is done to conservatively avoid additional foreground contamination as well as aliasing (shot noise) effects from our simulation grids. Moreover, we add an additional 20% “modeling error” to our forward-modeled PS, roughly inspired by comparisons to radiative transfer simulations (e.g. Zahn et al. 2011). We note however that such modeling error is unlikely to have a major impact on parameter inference (Greig et al. 2020).

4 CAN WE INDIRECTLY DETECT THE FIRST, MOLECULARLY-COOLED GALAXIES?

In this section, we use 21MMC (Greig & Mesinger 2015) to constrain astrophysical parameters and perform model selection using the following observations:

- The mock 21-cm power spectra discussed in Sec. 3.1
- The observed galaxy LFs at z = 6–10 (Bouwens et al. 2015a, 2016; Oesch et al. 2018);
- The upper limits on the neutral fraction at z = 5.9 from QSO spectra (McGreer et al. 2015); and
- The Thomson scattering optical depth of the CMB (Planck Collaboration et al. 2016a).

We perform inference using the following two models:

(i) 2pop: the “full” model, including both MCGs and ACGs, used to generate the mock observation; and
(ii) 1pop: a single population model consisting only of ACGs.

2pop is characterized with the 7 free parameters listed in Table 1 while 1pop only has the four parameters relevant for ACGs (i.e. excluding the ones labelled “mol”). It is clear that 1pop cannot reproduce the mock observation: ACGs are too biased at early times and are not sensitive to the build-up of the inhomogeneous LW background. However, given the limited sensitivity of even SKA1-low during the Cosmic Dawn, will we be able to say with certainty that the 1pop model is incorrect?

This question can be readily answered with Bayesian inference. Using the built-in Occam’s razor in the Bayes factor, model selection can be used to detect minihalo-hosted galaxies. Here, we use an empirical scale (Jeffreys 1939) based on the ratio of the evidences of the two models, the so-called Bayes factor.

4.1 Bayesian evidence and model selection

Bayes’ law states that the posterior probability distribution [P(θ|O, M)] of model (M) characterized by parameters (θ) when constrained by observations (O) is equal to the product of our prior knowledge [P(θ|M)] and the likelihood function [P(O|θ, M)] divided by the evidence [P(O|M)]

\[P(\theta|O, M) = \frac{P(O|\theta, M) P(\theta|M)}{P(O|M)}. \]

While the posterior represents our belief about the model after taking the observation into account, the prior reflects our knowledge before. The likelihood measures how well a parameter combination θ can reproduce the observed data O.

The Bayesian evidence, also known as the marginal likelihood, is central to model selection. It can be computed by integrating the likelihood, weighted by the prior, over the entire parameter space:

\[P(O|M) = \int d\theta P(O|\theta, M) P(\theta|M) \sim \delta \theta P(O|\theta_{\text{max}}, M) P(\theta_{\text{max}}|M). \]

The last step in equation (8) approximates the integral trapezoidally around the maximum likelihood, P(O|\theta_{\text{max}}, M) (e.g. Trotta 2017). Here, \(\theta \) and \(\delta \theta \approx P^{-1}(\theta_{\text{max}}, M) \) characterize widths of the likelihood and prior, respectively. The factor \(\delta \theta / \Delta \theta \) is commonly referred to as Occam’s factor, as it penalizes models which have a prior volume that is larger than the likelihood.

There are many model selection criteria (Liddle 2007) to answer whether the increased complexity (see more in Kunz et al. 2006) of a model involving a higher-dimensional parameter space is justifiable by the observation — in our case, whether upcoming 21-cm PS measurements can be used to detect minihalo-hosted galaxies. Here, we use an empirical scale (Jeffreys 1939) based on the ratio of the evidences of the two models, the so-called Bayes factor. Specifically, the probability of the 2pop model being preferred over 1pop is 75.0% (weak), 92.3% (moderate) and 99.3% (strong) if ln B ≡ ln [P(O|M_{2pop})/P(O|M_{1pop})] is 1, 2.5 and 5, respectively.

4.2 Including MultiNest in 21CMMC

21CMMC (Greig & Mesinger 2015) is a Bayesian sampler of 21-cm lightcones, allowing for cosmological and astrophysical parameter inference from the 21-cm signal (Greig & Mesinger 2017, 2018). In its default configuration, 21CMMC employs an ensemble sampler (EMCEE; Goodman & Weare 2010; Foreman-Mackey et al. 2013; Akeret et al. 2013) to explore the parameter space, which does not require the evidence to generate a proposal distribution. This makes the

11] Here we use a flat prior over the following ranges: \(f_{\text{atom}}^{\text{H}} \in [10^{-3}, 1] \) in logarithmic space; \(f_{\text{em}}^{\text{mol}} \in [10^{-4}, 10^{-1}] \) in logarithmic space; \(\alpha_x \in [-0.5, 1]; \) \(f_{\text{em}}^{\text{mol}} \in [10^{-3}, 1] \) in logarithmic space; and \(L_{\text{atom}}^{\text{mol}} \in [10^{8}, 10^{44}] \text{ erg s}^{-1} M_{\odot}^{-1} \text{yr}^{-1} \) in logarithmic space.

[12] https://github.com/21cmfast/21CMMC
Figure 2. Marginalized posterior distributions from our two astrophysical models: (i) 2pop in red / dash-dotted lines; (ii) 1pop in blue / dashed lines. While the 1pop model only considers 4 parameters describing ACGs, 2pop includes additional 3 parameters representing the properties of MCGs. Both results use the following observations when computing the likelihood: (i) the observed galaxy LFs at z=6–10 (Bouwens et al. 2015a, 2015b, 2016; Oesch et al. 2018); (ii) the upper limits on the neutral fraction at z~5.9 from QSO spectra (McGreer et al. 2015); (iii) the Thomson scattering optical depth of the CMB (Planck Collaboration et al. 2016a); and (iv) the 21-cm power spectra from the mock observation (chosen to be consistent with timing implied by the putative EDGES detection; Bowman et al. 2018; see the black solid lines in Fig. 1). The 2D distributions correspond to 68th (dark regions) and 95th (light regions) percentiles. The medians with [14, 86] percentiles for each parameter are presented on the top of the 1D PDF together with the values for the maximum likelihood models (in brackets). The mock parameters are indicated by solid black lines in the posterior with their values shown on the top of the 1D PDFs as well. The upper right three sub-panels present the [14, 86] percentiles of the volume weighted neutral hydrogen fraction (x_{HI}) and brightness temperature (δT_b) as well as the PDF of τ_e and x_{HI} at z=5.9 for the two posterior distributions. Fiducial values from the mock observation are denoted with solid black curves. Observations are indicated in grey or using black circles.
evaluation of the Bayesian evidence computationally challenging in a high-dimensional parameter space (see the first part of equation 9).

In this work, we include the MultiNest\(^{[13]}\) sampler (Feroz & Hobson 2008; Feroz et al. 2009, 2019; Buchner et al. 2014) in 21CMMC, which implements nested sampling—converting the variable of integration in equation 9 from the high-dimensional parameter space to the 1D prior space (see more in [2004]).

\[P(\theta | \mathcal{D}) = \int_0^1 dP(\theta | \mathcal{H}) P(\mathcal{H} | P(\theta | \mathcal{D})), \]

(10)

where \(dP(\theta | \mathcal{D}) \equiv dP(\theta | \mathcal{H})\) represents the differential of prior volume. By reducing the prior volume around higher probability regions at each step when new sampling points are drawn, MultiNest computes the posterior and calculates the Bayesian evidence as a “by-product”. The current public version of 21CMMC allows the user to choose between emcee and MultiNest samplers.

It is worth noting that the recent development of 21CMMC by Binnie & Pritchard (2019) also introduced MultiNest into 21CMMC. They found the posterior of a 3-parameter 21-cm model inferred from mock observations to be consistent between 21CMMC and the original 21CMMC. This encourages us to apply it to our updated 21-cm simulations using more sophisticated galaxy models.

4.3 Strong evidence of minihalos

In Fig. 2, we present the marginalized posteriors from our two models (1pop/2pop in blue/red), including model parameters, global 21-cm signals, EoR histories, and the optical depths. The corresponding 21-cm power spectra are shown in Fig. 4.

For both models, the properties of ACGs are tightly constrained, including \(f_{\text{esc}}^{\text{atom}}\), \(\alpha\) and \(f_{\text{esc}}^{\text{ion}}\). We caution however that these parameters, especially \(f_{\text{esc}}^{\text{ion}}\), are overconstrained (e.g. compared to Park et al. 2019) due to the fact that several ACG parameters are kept fixed in this demonstrative study (most importantly \(M_{\text{SN}}\), \(\alpha_{\text{esc}}, t_\star\)).

In the absence of MCGs, we see that the 1pop model dramatically overestimates the X-ray luminosities of ACGs, with the 1D PDF peaking sharply at \(\log_{10}(L_{X,2keV}^{\text{atom}}/\text{erg s}^{-1}\text{M}_\odot^{-1}\text{yr}) \sim 41.0 - 42.4\): a factor of \(~3 - 75\) times higher than the “true” value of the mock signal. Moreover, the 1pop model prefers a lower \(\alpha\) (i.e. a steeper stellar mass function), despite the fact that the UV LF of MCGs already constrain this parameter (e.g. Park et al. 2019). Thus, the 1pop posterior prefers galaxy models with more efficient star formation in lower mass halos (i.e. smaller \(\alpha\)) and with higher X-ray emissivities (i.e. larger \(L_{X,2keV}^{\text{atom}}\)), in order to (partially) compensate for the missing population of MCGs.

From the global evolution of the neutral fraction and brightness temperatures, as well as the power spectra, we see that the 1pop model does indeed perform a reasonable job at capturing the mock observation. Differences emerge at the highest redshifts, when the radiation fields have a higher relative contribution from MCGs. Even with a higher X-ray emissivity and steeper stellar mass functions, the ACG-only model cannot fully capture the evolution of the ACG + MCG mock observation. ACGs are more biased galaxies, and are insensitive to LW feedback which can prolong the early evolution of IGM properties in feedback-dominated MCG models (e.g. Ahn et al. 2009; Holzbauer & Furlanetto 2012; Fialkov et al. 2013). Thus, compared to the mock signal, the 1pop model has: (i) a more rapid evolution of cosmic milestones; and (ii) a higher 21-cm PS during the epochs when a single field (i.e. temperature or Ly\(\alpha\) coupling) sources the fluctuations, thus making cross terms negligible and allowing the 21-cm PS to be roughly estimated analogously to the halo model with a bias term for the galaxies (e.g. Pritchard & Furlanetto 2007; McQuinn & D’Aloisio 2018). Indeed, we see that the 1pop model has a more rapid evolution of the early stages of reionization (see also Ahn et al. 2009). Moreover, during the epoch of heating when the 21-cm signal is sourced by temperature fluctuations (12 \(\lesssim z \lesssim 15\)), 1pop prefers power spectra that are too high, and results in a too rapid evolution during the transition to the earlier, Ly\(\alpha\)-dominated epoch (\(z \gtrsim 15\)).

On the other hand, the “full”, 2pop model recovers the fiducial parameters of the mock observation quite well. The inferred global evolution of the neutral fraction and brightness temperature, as well as the power spectra, are all consistent with the mock observation, without any notable bias. The X-ray luminosity of MCGs is well constrained, to within \(\sim 1\) dex of the fiducial value. Interestingly, there is a tail in the PDF extending towards low luminosities. Looking at the X-ray luminosity of MCGs is well constrained, to within \(\sim 1\) dex of the fiducial value. Interestingly, there is a tail in the PDF extending towards low luminosities. Looking at the 21-cm signal is sourced by temperature fluctuations (12 \(\lesssim z \lesssim 15\)), 1pop prefers power spectra that are too high, and results in a too rapid evolution during the transition to the earlier, Ly\(\alpha\)-dominated epoch (\(z \gtrsim 15\)).

For completeness, we also present the marginalized UV LFs of ACGs, MCGs (only in 2pop) and all galaxies in Fig. 3. We see that the ACGs and total LFs are tightly constrained at the bright end by currently available observations (Bouwens et al. 2015a; 2016; Oesch et al. 2018). Compared to the mock observation, both 1pop and 2pop results are consistent at \(M_{1500} \lesssim -8\). At fainter magnitudes, only the 2pop model recovers the UV LFs, since MCGs dominate in this regime.

Finally, we come to the main question of this work: can we quantitatively claim that 2pop is a better fit to the data, given that it has more free parameters compared to 1pop? We quantify this using the Bayesian evidence: \(\ln P(\mathcal{O} | \mathcal{D})\). We therefore conclude that the (mock) data require the additional parameters characterizing MCGs (i.e. \(f_{\text{esc}}^{\text{ion}}, f_{\text{esc}}^{\text{atom}}\) and \(L_{X,2keV}^{\text{atom}}\)). This means that it might be possible to indirectly detect the footprint of MCGs in upcoming 21-cm power spectra mea-
measurements. We caution that this conclusion is based on the assumption that minihalo-hosted galaxies truly play a significant role in the IGM evolution during the cosmic dawn (as would be the case if, for example, the EDGES detection is genuinely cosmological).

5 CONCLUSIONS

In this work, we quantify the detectability of minihalos for upcoming 21-cm interferometers. We compute a mock 21-cm signal, motivated by the timing of the putative EDGES detection, which would be driven by X-ray luminous, molecularly-cooled galaxies (Paper-I). The result additionally agrees with the observed high-redshift galaxy UV luminosity functions (Bouwens et al. 2015a, 2016; Oesch et al. 2018), the upper limit on the neutral hydrogen fraction at z~5.9 (McGreer et al. 2015), and the CMB optical depth from Planck satellite (Planck Collaboration et al. 2016a).

We calculate the 21-cm power spectra (PS) from this model, including telescope noise corresponding to a 1000-hour integration with SKA1-low and moderate foreground avoidance. These mock observations are then fed to the 21cmmc driver (Greig & Mesinger 2015), upgraded to allow for nested sampling (Feroz & Hobson 2008), and used to constrain two models: (i) 2pop, including both MCGs and their massive atomic-cooling galaxy (ACG) counterparts; and (ii) 1pop, considering only ACGs.

We note that the 1pop model is able to partially compensate for the missing population of MCGs by preferring a steeper stellar mass function (smaller α_*) and a more X-ray luminous population of HMXBs (higher $L_{\text{atom}}^{\text{max}}$). However, without a transient population of MCGs, the more biased galaxies in the 1pop model result in a somewhat more rapid evolution of cosmic milestones, with a higher PS during the epoch of heating.

We quantify the preference of the mock observation for the more sophisticated galaxy model using the Bayesian evidence. We obtain $\ln \left[P(O|M) \right] = -9.18 \pm 0.32$ and a maximum likelihood of $\ln \left[P(O|\theta_{\text{max}}, M) \right] = -7.92$ for 2pop. These, compared to the 1pop result (i.e. -33.01 ± 0.25 and -20.44), indicate a >99.3% probability of 2pop being preferred over 1pop by the data (i.e. the mock 21-cm PS) according to the Jeffreys’ scale (Jeffreys 1939). Thus if minihalo-hosted galaxies indeed have a significant impact on high-redshift IGM properties (as would be the case if the timing of the EDGES signal is proven to be cosmological Bowman et al. 2018), we should be able to indirectly infer their existence and their properties from upcoming 21-cm observations.

More generally, our study showcases how upcoming 21-cm measurements can be used to discriminate against uncertain galaxy formation models, of varying complexity (see also Binnie & Pritchard 2019). Although we used two simplified, nested models here, the same analysis can be applied to even more sophisticated galaxy models (e.g. Moster et al. 2013; Sun & Furlanetto 2016; Mutch et al. 2016; Ma et al. 2018; Tacchella et al. 2018; Behroozi et al. 2019; Yung et al. 2019). The need for additional complexity can be directly tested via the Occam’s razor factor of the Bayesian evidence, by adding additional model parameters until the evidence is maximized.
ACKNOWLEDGEMENTS

This work was supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (AIDA – #638809). The results presented here reflect the authors views; the ERC is not responsible for their use. Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project #CE170100013. This work was performed on the OzSTAR national facility at Swinburne University of Technology. OzSTAR is funded by Swinburne University of Technology and the National Collaborative Research Infrastructure Strategy (NCRIS). JP was supported in part by a KIAS individual Grant (PG078701) at Korea Institute for Advanced Study.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93
Ahn K., Iliev I. T., Shapiro P. R., Mellema G., Koda J., Mao Y., 2012, ApJ, 756, L16
Ahn K., Shapiro P. R., Iliev I. T., Mellema G., Pen U.-L., 2009, ApJ, 695, 1430
Akeret J., Seehars S., Amara A., Refregier A., Csillaghy A., 2013, Astronomy and Computing, 2, 27
Atek H., Richard J., Kneib J.-P., Schaerer D., 2018, MN-RAS, 479, 5184
Baek S., Semelin B., Di Matteo P., Revaz Y., Combos F., 2010, A&A, 523, A4
Barkana R., Loeb A., 2001, Physics Reports, 349, 125
Beardsley A. P. et al., 2016, ApJ, 833, 102
Beers T. C., Christlieb N., 2005, ARA&A, 43, 531
Behroozi P., Wechsler R. H., Hearin A. P., Conroy C., 2019, MNRAS, 488, 3143
Bhatawdekar R., Conselice C. J., Margalef-Bentabol B., Duncan K., 2019, MNRAS, 843
Binnie T., Pritchard J. R., 2019, Monthly Notices of the Royal Astronomical Society, 487, 11601177
Bouwens R. J. et al., 2015a, ApJ, 803, 34
Bouwens R. J., Oesch P. A., Illingworth G. D., Ellis R. S., Stefanon M., 2017, ApJ, 843, 129
Bouwens R. J. et al., 2016, ApJ, 830, 67
Bowman J. D., Rogers A. E., Monsalve R. A., Mozdzen T. J., Mahesh N., 2018, Nature, 555, 67
Bradley R. F., Tauscher K., Rapetti D., Burns J. O., 2019, ApJ, 874, 153
Bromm V., Larson R. B., 2004, ARA&A, 42, 79
Buchner J. et al., 2014, A&A, 564, A125
Ciardi B., Scannapieco E., Stoehr F., Ferrara A., Iliev I. T., Shapiro P. R., 2006, MNRAS, 366, 689
Dalla Vecchia C., Shaye J., 2008, Monthly Notices of the Royal Astronomical Society, 387, 1431
Dalla Vecchia C., Shaye J., 2012, Monthly Notices of the Royal Astronomical Society, 426, 140
Das A., Mesinger A., Pallottini A., Ferrara A., Wise J. H., 2017, Monthly Notices of the Royal Astronomical Society, 469, 11661174
DeBoer D. R. et al., 2017, PASP, 129, 045001
Draine B. T., Bertoldi F., 1996, ApJ, 468, 269
Efstathiou G., 1992, MNRAS, 256, 43P
Ewall-Wice A., Chang T. C., Lazio J., Doré O., Seiffert M., Monsalve R. A., 2018, The Astrophysical Journal, 868, 63
Feros F., Hobson M. P., 2008, Monthly Notices of the Royal Astronomical Society, 384, 449463
Feros F., Hobson M. P., Bridges M., 2009, Monthly Notices of the Royal Astronomical Society, 398, 16011614
Feros F., Hobson M. P., Cameron E., Pettitt A. N., 2019, The Open Journal of Astrophysics, 2
Fialkov A., Barkana R., Cohen A., 2018, Physical Review Letters, 121, 011101
Fialkov A., Barkana R., Visbal E., Tseliakhovich D., Hirata C. M., 2013, MNRAS, 432, 2909
Finkbeiner D. S. et al., 2015, ApJ, 810, 71
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
Fragos T., Lehner B. D., Naoz S., Zozas A., Basu-Zych A., 2013, ApJ, 776, L31
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Goodman J., Weare J., 2010, Communications in Applied Mathematics and Computational Science, 5, 65
Greig B., Mesinger A., 2015, MNRAS, 449, 4246
Greig B., Mesinger A., 2017, MNRAS, 472, 2651
Greig B., Mesinger A., 2018, MNRAS, 477, 3217
Greig B., Mesinger A., Koopmans L. V. E., 2020, MNRAS, 491, 1398
Haiman Z., Abel T., Rees M. J., 1999
Haiman Z., Rees M. J., Loeb A., 1996, ApJ, 467, 522
Haiman Z., Rees M. J., Loeb A., 1997, ApJ, 476, 458
Heger A., Woosley S. E., 2010, ApJ, 724, 341
Hill J. C., Baxter E. J., 2018, Journal of Cosmology and Astrophy-Particle Physics, 2018, 037
Hills R., Kukarkin G., Meiburg P. D., Puchwein E., 2018, arXiv e-prints, arXiv:1805.01421
Holzbaumer L. N., Furlanetto S. R., 2012, MNRAS, 419, 718
Hopkins P. F., Kereš D., Oiorbe J., Faucher-Giguère C.-A., Quataert E., Murray N., Bullock J. S., 2014, MNRAS, 445, 581
Hopkins P. F. et al., 2017, Mon. Not. R. Astronom. Soc, 000, 0
Hui L., Gnedin N. Y., 1997, MNRAS, 292, 27
Jaacks J., Finkelstein S. L., Bromm V., 2018
Jeffreys H., 1939, The Theory of Probability
Johnson J. L., Greve T. H., Bromm V., 2007, ApJ, 665, 85
Keller B. W., Wadsley J., Benincasa S. M., Couchman H. M. P., 2014, Monthly Notices of the Royal Astronomical Society, 442, 3013
Kimm T., Katz H., Haehnelt M., Rosdahl J., Devriendt J., Slyz A., 2016, eprint arXiv:1608.04762, 000, submitted to MNRAS
Koh D., Wise J. H., 2018, MNRAS, 474, 3817
Kunz M., Trotten R., Parkinson D. R., 2006, Phys. Rev. D, 74, 023503
Lai D. K., Bolte M., Johnson J. A., Lucatello S., Heger A., Woosley S. E., 2008, ApJ, 681, 1524
Liddle A. R., 2004, MNRAS, 351, L49
Wolcott-Green J., Haiman Z., Bryan G. L., 2011, MNRAS, 418, 838
Wyithe J. S. B., Loeb A., 2013, Monthly Notices of the Royal Astronomical Society, 428, 2741
Xu H., Ahn K., Norman M. L., Wise J. H., O'Shea B. W., 2016a, ApJ, 832, L5
Xu H., Wise J. H., Norman M. L., Ahn K., O'Shea B. W., 2016b, ApJ, 833, 84
Yoshida N., Omukai K., Hernquist L., Abel T., 2006, The Astrophysical Journal, 652, 6
Yoshida N., Sokasian A., Hernquist L., Springel V., 2003, ApJ, 598, 73
Yung L. Y. A., Somerville R. S., Popping G., Finkelstein S. L., Ferguson H. C., Davé R., 2019, MNRAS, 490, 2855
Zahn O., Mesinger A., McQuinn M., Trac H., Cen R., Hernquist L. E., 2011, MNRAS, 414, 727

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.