Utilization and outcomes of HbA\textsubscript{1c} testing: a population-based study

Graham Woodward, Carl van Walraven, Janet E. Hux

Improved glycemic control through blood glucose monitoring and pharmacotherapy is recommended to reduce the risk of microvascular complications in people with type 1 and type 2 diabetes mellitus.1,2 Measurement of glycated hemoglobin (HbA\textsubscript{1c}) has been advocated as a means of determining the adequacy of glycemic control.3 Guidelines developed in at least 13 countries recommend one or more HbA\textsubscript{1c} tests annually and target levels under 8%.4

Using population-based administrative health databases, we examined HbA\textsubscript{1c} testing frequency and outcomes between September 1, 1999, and September 1, 2000, for all individuals with diabetes aged 20 years or more who lived in eastern Ontario. In 2000, the adult population of eastern Ontario (defined as all areas east of a line connecting Arnprior in the north and Trenton in the south) was 1.09 million; the county-level prevalence of diabetes in 1999 ranged from 4.9 to 6.4 cases per 100 population.5,6 Patients who died or moved out of the area during the study year were excluded to ensure an entire year of observation.

People with diabetes mellitus were identified using a validated algorithm that combined diagnostic information from physician service claims and hospital discharge abstracts.7 Women with gestational diabetes were excluded. The Canadian Institute for Health Information Discharge Abstract Database was used to count hospital admissions owing to hyperglycemia, which were based on a most-responsible ICD-9 diagnosis (International Classification of Diseases, 9th revision) coded 250.1 through 250.3. The Ontario Health Insurance Plan (OHIP) database was used to count visits to general or family practitioners, specialists (i.e., endocrinologists and internists) and hospital emergency departments by people with a diagnosis of diabetes. The Database of Laboratory Tests in Eastern Ontario was used to determine the numbers and results of all HbA\textsubscript{1c} tests performed in eastern Ontario laboratories during the study year, with the exception of tests conducted at hospitals in the towns of Cornwall and Hawkesbury (about 1.5% of all tests in eastern Ontario).8 Each person in the 3 databases had a unique anonymous identifier that allowed accurate data linkage across the data sets.

We summarized HbA\textsubscript{1c} testing frequency and outcomes and used logistic regression analysis to investigate the association of frequency and outcomes with age, sex, rural residence and utilization of the health care system. Because results could be clustered by physician offices or laboratories, which could increase the likelihood of apparent statistical significance, we used a conservative \(p \) value of 0.001 to determine significance. We categorized test outcomes as ideal or optimal according to the Canadian Diabetes Association guidelines9 by comparing each test result with the laboratory’s upper limit of normal for the test.

We identified 63 699 people in eastern Ontario with a diagnosis of diabetes. Of these, only 58% had HbA\textsubscript{1c} tests during the study year (Table 1). Fewer than half of those who had one or more tests had results that were ideal or optimal. Testing was most common among patients 50–74 years old; the youngest adults (aged 20–34 years) were the least likely to have had tests. The likelihood of having had an HbA\textsubscript{1c} test also increased with the number of physician visits. Younger individuals had poorer test outcomes, as did those who visited specialists more often and underwent more tests.

Our results are similar to those of a smaller 1995 Canadian study of physician charts,9 which found that only 53% of patients with type 2 diabetes had HbA\textsubscript{1c} testing during 1 year and that 87% of those had optimal or acceptable blood glucose levels (although only 57% of the test results would be categorized as ideal or optimal if current guidelines9 were used). The association between number of visits to specialists and suboptimal test results may well reflect selective referral patterns to specialists for patients with more refractory hyperglycemia.

Our study had limitations, although we expect their effect on the findings was small. First, the results might not apply to the rest of the province. Second, some patients could have had tests performed by laboratories outside of the study area; because of the large study area and referral patterns within it, however, this would affect only a small minority of patients. Third, validation studies suggest that up to 14% of people with diabetes would not have been captured by our administrative database algorithm because they use physician services infrequently. Exclusion of these patients would likely contribute to an overestimation of testing rates, since their pattern of physician use also suggests that they are unlikely to have undergone HbA\textsubscript{1c} testing.9 Fourth, most specialist physicians in the Kingston area are not paid on a fee-for-
Table 1: Frequency and outcomes of glycosylated hemoglobin (HbA1c) tests over a period of 1 year among eastern Ontario patients with diabetes

Characteristic	Total no. of patients	Tested	No. of patients tested	Ideal or optimal result
		%	OR (95% CI)	%
Total	63 699	58.0	36 926	45.4
Age, yr				
< 20	3 025	40.5	1.00*	1 224
20–34*	11 059	53.9	1.79 (1.64-1.95)	5 960
50-64	21 796	61.4	2.34 (2.16-2.54)	13 372
65-74	16 017	62.5	2.40 (2.21-2.62)	10 008
≥ 75	11 802	53.9	1.69 (1.55-1.85)	6 362
Sex				
Male*	33 715	58.8	1.00*	19 832
Female	29 984	57.0	0.87 (0.85-0.90)	17 094
Residence				
Rural*	16 919	56.3	1.00*	9 530
Urban	46 780	58.6	1.06 (1.02-1.10)	27 396
Hospital admissions for hyperglycemia				
≥ 1*	215	63.3	1.00*	136
None	63 484	58.0	0.78 (0.58-1.06)	36 790
Visits to general or family physician				
None*	7 636	33.7	1.00*	2 573
1	3 852	41.5	1.36 (1.25-1.48)	1 600
2	3 942	49.6	1.94 (1.79-2.10)	1 954
3	4 475	55.6	2.47 (2.29-2.67)	2 489
4	4 520	60.8	3.09 (2.86-3.34)	2 746
≥ 5	39 274	65.1	3.80 (3.60-4.01)	25 564
Visits to internist or endocrinologist				
None*	53 343	54.6	1.00*	29 127
1	3 193	69.7	2.00 (1.85-2.17)	2 225
2	2 501	76.1	2.89 (2.62-3.18)	1 902
3	1 843	78.6	3.46 (3.08-3.88)	1 449
4	1 179	80.2	3.78 (3.25-4.38)	946
≥ 5	1 640	77.9	3.38 (2.99-3.83)	1 277
Diabetes-related visits to ED				
None*	62 464	57.8	1.00*	36 101
1	991	65.9	1.09 (0.95-1.25)	653
≥ 2	244	70.5	1.15 (0.86-1.54)	172
HbA1c tests				
1*				
2				
3				
4				
≥ 5				

Note: OR = odds ratio, CI = confidence interval, ED = emergency department.
*Reference category.
service basis and are not included in OHIP billing data. Nevertheless, excluding the Kingston area from our analyses made no substantial difference to our findings and did not affect our conclusions. Fifth, it is not possible to determine if a lack of testing is attributable to a physician’s failure to order a test or the patient’s failure to follow through with recommended testing.

Our finding that the youngest adults were tested least often and had the poorest test outcomes is particularly worrisome. These patients have the longest time to live with diabetes and accordingly the most to gain from interventions directed at secondary prevention. Other studies have also reported lower testing rates among younger people and improved glycemic control with age. Further research is required to identify how patient or physician factors, service availability and lack of continuity of primary care contribute to this gap. In the meantime, educational interventions for patients and providers should be considered, as well as policy initiatives to ensure equitable access to care.

This article has been peer reviewed.

From the Institute for Clinical Evaluative Sciences (all authors), the Departments of Medicine and of Health Policy, Management and Evaluation, University of Toronto (Hux), and the Clinical Epidemiology and Health Care Research Program, Sunnybrook and Women’s College Health Sciences Centre (Hux), Toronto, and the Ottawa Health Research Institute (van Walraven), Ottawa, Ont.

Competing interests: Janet Hux receives salary support from the Institute for Clinical Evaluative Sciences. Carl van Walraven is an Ontario Ministry of Health Career Scientist. The opinions, results and conclusions are those of the authors, and no endorsement by the Ministry of Health and Long-Term Care or by the Institute for Clinical Evaluative Sciences is intended or should be inferred.

Contributors: Janet Hux, Carl van Walraven and Graham Woodward were all directly involved in the conception, data analysis and manuscript preparation for this study and have approved the final version of the article.

Acknowledgement: This study was partially supported by the Ontario Association of Medical Laboratories.

REFERENCES

1. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:1469-79.
2. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53.
3. Rühlmann CL, Wiedmeyer HM, Little RR, et al. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care 2002;25:275-8.
4. Burgers JS, Bailey IV, Klazinga NS, et al. Comparative analysis of recommenda-

tions and evidence in diabetes guidelines from 13 countries. Diabetes Care 2002;25:893-9.
5. Hux JE, Tang M. Patterns of prevalence and incidence of diabetes. In: Diabetes in Ontario: a practice atlas. Toronto: Institute for Clinical Evaluative Sciences; 2003.
6. Van Walraven C, Raymond M, for the Network of Eastern Ontario Medical Laboratories. Population-based study of repeat laboratory testing. Clin Chem 2003;49:1997-2003.
7. Hux JE, Ivis F, Flinton V, et al. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care 2002;25:312-6.
8. Meltzer S, Leiter L, Daneman D, et al; Canadian Diabetes Association. 1998 clinical practice guidelines for the management of diabetes in Canada (review). CMAJ 1998;159(6 Suppl 8):S1-29.
9. Worrall G, Fraweke D, Kelland J, et al. Care of patients with type II diabetes: a study of family physicians’ compliance with clinical practice guidelines. J Fam Pract 1997;44:374-81.
10. Sherr RI, Franc HV, Resnick HE, et al. Glycemic control of older adults with type 2 diabetes: findings from the third National Health and Nutrition Examination Survey. J Am Geriatr Soc 2000;48:164-7.
11. Bell RA, Camacho F, Goonan K, et al. Quality of diabetes care among low-income patients in North Carolina. Am J Prev Med 2001;21:124-31.
12. Maclean JR, Hick DM, Hoffman WK, et al. Comparison of 2 systems for clinical practice profiling in diabetic care: medical records versus claims and administrative data. Am J Manag Care 2002;8:175-9.
13. Nichols GA, Hillier TA, Javor K, et al. Predictors of glycemic control in insulin using adults with type 2 diabetes. Diabetes Care 2000;23:273-7.
14. Schectman JM, Nadkarni MM, Voss JD. The association between diabetes metabolic control and drug adherence in an indigent population. Diabetes Care 2002; 25:1015-21.

Correspondence to: Dr. Jan Hux, Institute for Clinical Evaluative Sciences, 2075 Bayview Ave., Rm. G106, Toronto ON M4N 3M5; jan@ices.on.ca

Editor’s take

- Improved glycemic control is recommended to reduce the risk of microvascular complications in people with type 1 and type 2 diabetes mellitus. Does the frequency of testing glycemic control (through the measurement of glycosylated hemoglobin levels) affect outcomes?

- In this study, administrative health databases were used to examine the frequency and outcomes of glycosylated hemoglobin testing among eastern Ontario patients aged 20 years or more who have diabetes.

- During the study year, only 58% of the study population had tests. Those aged 34 years or less were the least likely to have been tested, and younger patients had poorer test outcomes than older patients.

Implications for practice: Initiatives are needed to address the gap in glycemic control between younger and older adults.