Effects of Loud Noise Exposure on DNA Integrity in Rat Adrenal Gland

Giada Frenzilli, Paola Lenzi, Vittoria Scarcelli, Francesco Fornai, Antonio Pellegrini, Paola Soldani, Antonio Paparelli, and Marco Nigro

Dipartimento di Morfologia Umana e Biologia Applicata, University of Pisa, Pisa, Italy

Loud noise is generally considered an environmental stressor causing negative effects on acoustic, cardiovascular, nervous, and endocrine systems. In this study, we investigated the effects of noise exposure on DNA integrity in rat adrenal gland evaluated by the comet assay. The exposure to loud noise (100 dBA) for 12 hr caused a significant increase of DNA damage in the adrenal gland. Genetic alterations did not decrease 24 hr after the cessation of the stimulus. We hypothesize that an imbalance of redox cell status is responsible for the induction and persistence of noise-induced cellular damage. Key words: adrenal gland, comet assay, DNA damage, loud noise, rat. Environ Health Perspect 112:1671–1672 (2004). doi:10.1289/ehp.7249 available via http://dx.doi.org/ [Online 22 September 2004]

Materials and Methods

Animals. Male Wistar rats weighing 200–250 g (Harlan Labs, San Pietro al Natisone, Italy) were used for the experiments. Animals were housed in the animal facility, fed ad libitum, and kept under closely controlled environmental conditions (12 hr light:dark cycle, lights on between 0700 and 1900 hr; room temperature, 21°C). Animals were treated in accordance with the Guidelines for the Care and Use of Laboratory Animals (National Institutes of Health 1996). All possible efforts were made to reduce animal suffering and minimize the number of animals used.

Experimental procedures. Noise level was set at 100 dBA by the use of two loudspeakers (15 W) (Lenzi et al. 2003) and lasted for 12 hr. Control rats were placed in the same kind of cage without being exposed to noise. Among these, Pellegrini et al. (1997) and Soldani et al. (1999) demonstrated the occurrence of ultrastructural modifications in the adrenal gland of noise-exposed rats. Moreover, recent findings showed that ultrastructural alterations in the rat myocardium detected after loud noise exposure were also accompanied by DNA damage (Lenzi et al. 2003).

The purpose of the present study was to investigate whether levels of loud noise comparable with those present in modern daily life (Baker 1993; Berglund et al. 1999; Brüel 1970; Figure 1) were able to produce DNA damage in rat adrenal gland for the same doses and time intervals previously detected as effective for inducing cellular alterations in the heart (Lenzi et al. 2003).

Results

We evaluated the effect of loud noise on the presence of DNA damage in single cells dissociated from adrenal gland as the percentage of migrated DNA after electrophoresis in exposed and control rats. We observed a significant increase of DNA migration (p < 0.001), compared with controls, in the adrenal gland soon after the cessation of acoustic stress, as shown in Figure 3. This pattern of DNA migration persisted 24 hr after noise exposure, suggesting the absence of recovery (Figure 3). Light microscopy did not reveal the occurrence of cell death. This finding excludes the possibility that the number of strand breaks observed in the present study is due to nonspecific loss of DNA integrity related to cell death processes, providing supporting evidence of a genotoxic effect induced by loud noise.

Discussion

This study demonstrates that loud noise exposure produces a significant loss of DNA integrity in the rat adrenal gland. This effect persisted almost unchanged 24 hr after the cessation of the stimulus. We can exclude the possibility that the elevation of DNA strand breaks was due to cell-death-associated fragmentation; instead, light microscopy revealed a negligible occurrence of necrotic events. The same level and duration of the acoustic stress (100 dBA for 12 hr) were previously demonstrated to be effective in inducing ultrastructural alterations in rat adrenal cells, mainly quantifying the percentage of DNA migrated in the tail of at least 100 cells per animal. We used multifactor analysis of variance to assess the significance of factor effects such as animals, slides, and doses. For statistical analysis we used the software StatGraphics Plus for Windows (version 2.1; Microsoft Corp., Redmond, WA, USA).

Address correspondence to G. Frenzilli, Dipartimento di Morfologia Umana e Biologia Applicata, Sez. Biologia e Genetica University of Pisa, Via Volta, 4-56126 Pisa, Italy. Telephone: 39-050-2219111. Fax: 39-050-2219101. E-mail: giada@biomed.unipi.it

We gratefully acknowledge C. Ghelzani for his excellent technical assistance in the image analysis. This work was supported by the Italian Ministry of Research and by the University of Pisa. The authors declare they have no competing financial interests. Received 12 May 2004; accepted 22 September 2004.
involving the mitochondria and endoplasmic reticulum (Pellegrini et al. 1997). The adrenal gland is known to react to stressful stimuli, including noise. According to Ising and Braun (2000), habitual noise produces sympathetic activation and chronic increases in noradrenaline; nonhabitual noise produces an acute increase of noradrenaline and adrenaline; and extremely intense noise produces a defeat reaction with an increase of cortisol and adrenal stress hormone. The intense functional stimulation has been reported as potential cause for morphologic changes in subcellular structure, involving those organelles where steroids are synthesized, such as smooth endoplasmic reticulum and mitochondria (Simpson and Waterman 1988; Soldani et al. 1999).

Concerning the persistence of genetic damage, it is noteworthy that DNA single-strand breaks are usually repaired within 15 min and that DNA double-strand breaks are repaired within 2 hr (Plappert et al. 1997; Vijayalaxmi et al. 1993). Thus, such a maintenance of genotoxic effects 24 hr after noise exposure might be the consequence of a long-lasting clastogenic agent.

Our results on DNA damage might be interpreted as the output of two main events, namely, the clastogenic effect of oxyradicals and/or the DNA repair of oxidized bases, which implies the expression of alkali-labile sites, detected by the alkaline comet assay.

The negative effects of noise on cell structure and function were supposed to be, at least in part, mediated by the increase of reactive oxygen species (ROS) (Lenzi et al. 2003). ROS levels in the cochlea were found to be significantly higher 1 hr after exposure to 110 dB noise (Ohlemiller et al. 1999a), persisting after the cessation of the exposure (Ohlemiller et al. 1999b). In this respect, it is worthy to note that DNA is a main target of ROS toxicity (Cross et al. 1987; Lemasters et al. 1992). Oxidative damage of DNA is known to induce single-strand breaks and inter-/intrastrand cross-links (Caraceni et al. 1997). The involvement of ROS might play a causal role in the induction and persistence of genetic damage related to loud noise exposure also in extra- auditory organs. Indeed, Van Campen et al. (2002) reported an elevation of 8-hydroxy-2’-deoxyguanosine in brain and liver (besides the higher cochlear involvement) of rats exposed to loud noise (120 dB). According to these findings, the association between noise exposure, oxidative processes, and persisting DNA damage deserves further attention due to the long-lasting consequences in terms of mutagenic and carcinogenic risk (Emerit 1994; Preston-Martin et al. 1989).

Figure 1. Sources and levels of noise exposure. Data represent a synthesis of data from different sources (see "Materials and Methods").

*WHO safeness threshold limit (Berglund et al. 1999).

REFERENCES

Alattar P, Damallo A, Beato MJ, Trancho G. 1987. Body weight gain, food intake and adrenal development in chronic noise stressed rats. Physiol Behav 42:29–32.

Amario A, Castellanos JM, Balash J. 1984. Adaptation of anterior pituitary hormones to chronic noise stress in rats. Behav Neural Biol 41:71–79.

AxeJ, Reisine TD. 1984. Stress hormones: their interaction and regulation. Science 224:452–459.

Baker DE. 1993. Noise: The Invisible Hazard. Columbia, MD: University of Missouri Extension.

Berglund B, Lindvall T, Schwela DH, eds. 1999. Guidelines for Community Noise. London:World Health Organization.

Boerl J, Torrellas A, Guaza C, Borrell S. 1980. Sound stimulation and its effects on pituitary-adrenocortical function and catecholamines in rats. Neuroendocrinology 31:53–59.

Briel PV. 1970. Do we measure damaging noise correctly? B & K Technical Review 1:3–2.

Caraceni P, Dia Maria N, Ryu HS, Colantoni A, Roberts L, Maitd ML, et al. 1997. Proteins but not nucleic acids are molecular targets for the free radical attack during reoxygenation of rat hepatocytes. Free Radiic Biol Med 23:339–344.

Cross DE, Hallwell B, Borish ET, Pryor WA, Ames BA, Saut RS, et al. 1987. Oxygen radicals and human disease. Ann Intern Med 107:526–545.

Emerit I. 1994. Reactive oxygen species, chromosome mutation, and cancer. Free Radiac Biol Med 16:99–109.

Kaweczka-Jasscz K. 1991. Effect of professional work and environmental factors on arterial blood pressure. Med Prac 42:231–236.

Ising H, Braun C. 2000. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Health 7:7–24.

Lang T, Fourcaud C, Jacquetin-Salard MC. 1992. Length of occupational noise exposure and blood pressure. Int Arch Occup Environ Health 63:389–372.

Lemasters JJ, Caldwell-Kenkel JC, Gao W, Nieminen AL, Herman B, Thurman RD. 1982. Hypoxic, ischemic and reperfusion injury in the liver. In: Pathophysiology of Reperfusion Injury (Das DK, ed). Boca Raton, FL: CRC, 101–135.

Lenzi P, Frenzilli G, Gesi M, Ferrucci M, Lazzeri G, Fornai F, et al. 2003. DNA damage associated with ultrastructural alterations in rat myocardium after loud noise exposure. Environ Health Perspect 111:467–471.

National Institutes of Health. 1996. Guidelines for Care and Use of Laboratory Animals. Washington, DC:National Academies Press.

Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman ER, et al. 1999a. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 10:237–246.

Ohlemiller KK, Wright JS, Dugan LA. 1999b. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236.

Pellegrini A, Soldani P, Gesi M, Lenzi P, Natale G, Paparelli A. 1997. Effect of varying noise stress duration on rat adrenal gland: an ultrastructural study. Tissue Cell 29:597–602.

Plappert UG, Stocker B, Fender H, Fiedler TM. 1997. Changes in the repair of blood cells as a biomarker for chronic low-dose exposure to ionizing radiation. Environ Mol Mutagen 30:153–160.

Preston-Martin S, Thomas DC, Wright WE, Henderson BE. 1989. Noise trauma in the etiology of acoustic neuromas in men in Los Angeles County, 1976–1985. Br J Cancer 57:783–786.

Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 3:267–276.

Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 3:267–276.

Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 3:267–276.

Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191.

Soldani P, Gesi M, Lenzi P, Natale G, Fornai F, Pellegrini A, et al. 1999. Long-term exposure to noise modifies rat adrenal cortex ultrastructure and corticosterone plasma levels. J Submicrosc Cytol Pathol 31:441–448.

Van Campen LE, Murphy WJ, Franks JR, Mathias PJ, Torasaon MA. 2002. Oxidative DNA damage is associated with intense noise exposure in the rat. Hear Res 164:29–38.

Vijayalaxmi, Strauss GHS, Tice RR. 1993. An analysis of genetic damage induced by loud noise exposure in the rat. Audiol Neurootol 30:153–160.

Preston-Martin S, Thomas DC, Wright WE, Henderson BE. 1989. Noise trauma in the etiology of acoustic neuromas in men in Los Angeles County, 1976–1985. Br J Cancer 57:783–786.

Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 3:267–276.

Simpson ER, Waterman MR. 1988. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 3:267–276.

Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191.

Soldani P, Gesi M, Lenzi P, Natale G, Fornai F, Pellegrini A, et al. 1999. Long-term exposure to noise modifies rat adrenal cortex ultrastructure and corticosterone plasma levels. J Submicrosc Cytol Pathol 31:441–448.

Van Campen LE, Murphy WJ, Franks JR, Mathias PJ, Torasaon MA. 2002. Oxidative DNA damage is associated with intense noise exposure in the rat. Hear Res 164:29–38.

Vijayalaxmi, Strauss GHS, Tice RR. 1993. An analysis of γ-ray-induced DNA damage in human blood leukocytes, lymphocytes and granulocytes. Mutat Res 292:123–128.