The Hausdorff dimension of random walks and
the correlation length critical exponent in Euclidean field theory

Joe Kiskis1, Rajamani Narayanan2, Pavlos Vranas3

Abstract

We study the random walk representation of the two-point function in statistical mechanics models near the critical point. Using standard scaling arguments we show that the critical exponent ν describing the vanishing of the physical mass at the critical point is equal to ν_θ/d_w. d_w is the Hausdorff dimension of the walk. ν_θ is the exponent describing the vanishing of the energy per unit length of the walk at the critical point. For the case of O(N) models, we show that $\nu_\theta = \varphi$, where φ is the crossover exponent known in the context of field theory. This implies that the Hausdorff dimension of the walk is φ/ν for O(N) models.

KEY WORDS: Random walks in field theory; Hausdorff dimension of random walks; correlation length exponent.

1 Department of Physics, University of California, Davis, CA 95616
2 Department of Physics, Rutgers University, Piscataway, NJ 08855-0849
3 SCRI, Florida State University, Tallahassee, FL 32306
1. Introduction

The two-point function is a quantity of central interest in statistical mechanics models including lattice regulated quantum field theories. Let \(G(r, t) \) be the two point function between 0 and \(r \) in a model with one parameter \(t \). Let \(t = 0 \) be a critical point. Near \(t = 0 \), the two point function in three dimensions has a scaling form of the type\(^{(1)}\)

\[
G(r, t) = \frac{1}{r^{1+\eta}} g(r^\nu).
\]

(1)

The scaling function \(g(x) \) decays exponentially for large \(x \) so that

\[
m_p \sim t^\nu
\]

(2)
is the physical mass. For free field theory, \(\nu = \frac{1}{2} \), and a departure from that typically signifies non-trivial interactions in the underlying field theory.

In this paper, we present a physical understanding of the exponent \(\nu \) based on random walks. The two-point function in any statistical mechanics model admits a random walk representation\(^{(2)}\). This representation is obtained by writing the two-point function as a sum of an infinite number of terms with a one-to-one correspondence between each term and a random walk between the two points.

In section 2, we show that the random walk representation leads to an expression for the two-point function \(G(r, t) \) of the form

\[
G(r, t) = \int_0^\infty dl \ S(l, t) P(l, r, t).
\]

(3)

\(S(l, t) \) is the energy factor, and \(P(l, r, t) \) is the entropy factor. \(P(l, r, t) \) is the probability density of walks of fixed length \(l \):

\[
P(l, r, t) \geq 0, \quad \forall l, r, t; \quad \text{and} \quad \int d^3r \ P(l, r, t) = 1, \quad \forall l, t.
\]

(4)
Just as the two-point function has a scaling form near \(t = 0 \), we assume that both \(S(l, t) \) and \(P(l, r, t) \) have scaling forms near \(t = 0 \). We will be interested in the Hausdorff dimension \(d_w \) of the walk near \(t = 0 \).

The mean distance \(R(l) \) of a walk of length \(l \) is proportional to the square root of the second moment of the probability density with respect to \(r \). For \(t \to 0 \), the probability distribution of walks will be spread out, and \(R(l) \) will diverge for large \(l \) with a leading behavior of the type

\[
R(l) \sim l^{\nu_w}.
\]

(5)

\(d_w = 1/\nu_w \) is the Hausdorff dimension of the walk.

The energy factor \(S(l, t) \) is the weighted sum of all walks of length \(l \). Therefore, \(\theta(t) \equiv -\frac{1}{l} \ln S(l, t) \) for \(l \to \infty \) is an appropriate definition of the energy per unit length of the walk. Near \(t = 0 \) walks of all lengths become equally important which implies that \(\theta(t) \) vanishes as \(t \to 0 \). We assume the leading behavior

\[
\theta(t) \sim t^{\nu_\theta}.
\]

(6)

\(\nu_\theta \) is another quantity of interest to us. Both (5) and (6) are similar in spirit to (2) and follow from the scaling form we assume for \(P(l, r, t) \) and \(S(l, t) \) just as (2) follows from (1).

The scaling forms for \(S(l, t) \) and \(P(l, r, t) \) when combined in (3) must be consistent with (1). Using this we show in section 2 that

\[
\nu = \nu_w \nu_\theta.
\]

(7)

The content of (7) is that the nonanalyticity in (2) near \(t = 0 \) has two sources: a) a nonanalyticity in \(\theta(t) \), which controls the length \(l \), and b) a nonanalyticity in the relation
\(R(l) \) between the mean distance and the length. If the underlying theory in the vicinity of the critical point is free, then \(\nu_0 = 1 \) and \(\nu_w = \frac{1}{2} \).

We consider \(O(N) \) models in section 3 and show that for these models,

\[
\nu_0 = \varphi, \quad (8)
\]

where \(\varphi \) is a cross-over exponent\(^{(3)}\). Substitution of (8) in (7) gives

\[
d_w = \frac{1}{\nu_w} = \frac{\varphi}{\nu}. \quad (9)
\]

2. Derivation of the scaling law \(\nu = \nu_w \nu_0 \)

The two-point function \(G(r, t) \) can always be cast in the form\(^{(2)}\),

\[
G(r, t) = \sum_{w:0\rightarrow r} \Omega(w, t). \quad (10)
\]

The sum is over all random walks \(w \) connecting 0 and \(r \), and (10) is called the random walk representation of the two-point function. \(\Omega(w, t) \) depends upon the model and is always positive. By grouping together all walks of length \(l \), (10) can be rewritten as \(^4\),

\[
G(r, t) = \int_0^\infty dl \, \tilde{\Omega}(l, r, t). \quad (11)
\]

Define

\[
S(l, t) = \int d^3r \, \tilde{\Omega}(l, r, t), \quad (12)
\]

and

\[
P(l, r, t) = \frac{\tilde{\Omega}(l, r, t)}{S(l, t)}. \quad (13)
\]

\(^4\) In the following equation, the integral is to be understood as a limit of a sum.
Substitution of (13) in (11) gives (3) with (13) satisfying the property (4).

In a manner similar to (1), both \(S(l, t) \) and \(P(l, r, t) \) are expected to have scaling forms. For \(S(l, t) \), we assume the following general form:

\[
S(l, t) = \frac{1}{l^{\eta_p}} s(l^{\nu_w})
\]

with an exponential decay for \(s \) at large argument. This is identical to the form for \(G(r, t) \) in (1). From (14), it is clear that the energy per unit length \(\theta(t) \) is given by (6).

Next, we have to write down the scaling form for \(P(l, r, t) \). Here we have to keep in mind that it has to be in concordance with (4), and with the combination of (1), (3), and (14). This results in the following general form for \(P(l, r, t) \):

\[
P(l, r, t) = \frac{1}{r^3} p(l^{\nu_w}, r^{\nu}).
\]

The pre-factor \(1/r^3 \) is in agreement with (4). The leading behavior of the mean distance of the walk for large \(l \) is given by (5). The combination \(rt^\nu \) in (15) is in accordance with (1) and (3).

Further, consistency of (14), (15), and (3) with (1) gives the scaling law (7). It also results in a scaling relation for the anomalous dimension \(\eta_p \),

\[
\eta_p = 1 - (2 - \eta) \nu_w.
\]

The scaling relations (7) and (16) involve three exponents defined in the walk picture: \(\nu_w, \nu_\theta \) and \(\eta_p \). In the next section, we focus on the O(N) models to obtain (8). The equations (8), (7), and (16) are three relations for those three exponents.
3. O(N) models and ν_0

At fixed spatial cutoff $a = 1/\Lambda$, the O(N) symmetric Lagrangian is

$$\mathcal{L}(\vec{\phi}) = \frac{1}{2} (\partial \vec{\phi} \cdot \partial \vec{\phi}) + \frac{1}{2} (m_c^2 + t)(\vec{\phi} \cdot \vec{\phi}) + \frac{\lambda_c}{4!} (\vec{\phi} \cdot \vec{\phi})^2.$$ \hspace{2cm} (17)

m_c and λ_c are chosen so that $t = 0$ is the critical point.

The first step in deriving the random walk representation for the two point function is to write the interaction term as

$$e^{-\frac{\lambda_c}{4!} (\vec{\phi} \cdot \vec{\phi})^2} = \frac{1}{\sqrt{2\pi}} \int d\sigma \, e^{-\frac{1}{2} \sigma^2 + b \sigma (\vec{\phi} \cdot \vec{\phi})},$$ \hspace{2cm} (18)

with

$$b = i \sqrt{\frac{2\lambda_c}{4!}}.$$ \hspace{2cm} (19)

The partition function becomes

$$Z(t) = \int [d\vec{\phi}] [d\sigma] \, e^{-\frac{1}{2} \int d^3x \left[\sigma^2 + \vec{\phi} \cdot (H + t) \vec{\phi} \right]}$$

$$= \int [d\sigma] e^{-\frac{\lambda}{2} \text{Tr} \ln(H+t) - \frac{1}{2} \int d^3x \, \sigma^2},$$

with

$$H = -\partial^2 + m_c^2 - 2b \sigma.$$ \hspace{2cm} (20)

The two-point function,

$$G(r, t) \delta^{ij} = \langle \phi^i(0) \phi^j(r) \rangle,$$

$$= \int_0^\infty dl \, e^{-tl} \frac{1}{Z(t)} \int [d\sigma] e^{-\frac{\lambda}{2} \text{Tr} \ln(H+t) - \frac{1}{2} \int d^3x \, \sigma^2} \Psi(l, r).$$ \hspace{2cm} (22)

In (22), $\Psi(l, r)$, is the solution to

$$-\frac{\partial}{\partial l} \Psi(l, r) = H \Psi(l, r),$$ \hspace{2cm} (23)
with the initial condition,
\[\Psi(0, r) = \delta^3(r). \] (24)

\(\Psi(l, r) \) is the propagation kernel for the Hamiltonian \(H \). It has a standard path integral representation in which the sum is over all paths from the origin to \(r \) in proper time \(l \). The length \(L \) of these paths is proportional to \(l \) and inversely proportional to the spatial cutoff \(a \).

Therefore the integrand in (22) is indeed \(\tilde{\Omega}(l, r, t) \) as defined in (11).\(^5\) Hence \(S(l, t) \), defined in (12), can be written as

\[S(l, t) = e^{-tl} S_I(l, t) \] (25)

where

\[S_I(l, t) = \frac{1}{Z(t)} \int [d\sigma] e^{-\frac{N}{2} \text{Tr} \ln(H + t) - \frac{1}{2} \int d^3x \sigma^2} \left[\int d^3r \Psi(l, r) \right]. \] (26)

\(S_I(l, t) \) incorporates the interaction of the walk in \(\Psi(l, r) \) with the background loops in \(\text{Tr} \ln(H + t) \). If there is no interaction term in (17) \((\lambda_c = 0) \), then \(S_I(l, t) = 1, \eta_p = 0, \) and \(\nu_\theta = 1 \).

The key issue is to understand the behavior of \(S_I(l, t) \) when \(N \geq 1 \). In particular, the energy per unit length of the walk is

\[\theta(t) = t - \lim_{l \to \infty} \frac{\ln(S_I(l, t))}{l}. \] (27)

The second term on the right hand side of (27) is the contribution from the interaction of the walk with the background loops. We would like to know its behavior near \(t = 0 \). We \(^5\) To make the explicit connection to (10) one just has to write down the path integral sum of \(\Psi(l, r) \).
will now show that for small t,

$$\lim_{l \to \infty} \frac{\ln(S_l(l, t))}{l} = t - ct^\varphi + \text{higher powers in } t.$$ \hspace{1cm} (28)$$

This will result in (6) and (8).

Toward this end, we softly break the $O(N)$ symmetry in (17) to an $O(K) \times O(N-K)$ symmetry by introducing a different mass term for the K-component $\vec{\phi}_1$ field and the $(N-K)$-component $\vec{\phi}_2$ field6:

$$(m^2_c + t)(\vec{\phi} \cdot \vec{\phi}) \to (m^2_c + t)(\vec{\phi}_1 \cdot \vec{\phi}_1) + (m^2_c + t')(\vec{\phi}_2 \cdot \vec{\phi}_2).$$ \hspace{1cm} (29)$$

$t = t' = 0$, where the $O(N)$ symmetry is broken, is the critical point of interest to us. But for the model with the asymmetric term (29), there are two critical lines in the (t, t') plane3. One critical line corresponds to the breaking of the $O(K)$ symmetry, and the other line corresponds to the breaking of the $O(N-K)$ symmetry. These lines meet at the bicritical point $t = t' = 0$ where the $O(N)$ symmetry is broken.

It is useful3 to define the effective thermal parameter T as

$$T = \frac{Kt + (N - K)t'}{N},$$ \hspace{1cm} (30)$$

and the anisotropy g as

$$g = \frac{t' - t}{N}.$$ \hspace{1cm} (31)$$

The critical line where the $O(K)$ symmetry is broken is given by3

$$T = (\alpha g)^{\frac{1}{2}} + \text{higher powers in } g.$$ \hspace{1cm} (32)$$

6 The first K components of $\vec{\phi}$ form the vector $\vec{\phi}_1$ and the last $(N-K)$ components of $\vec{\phi}$ form the vector $\vec{\phi}_2$.

8
Near $t = t' = 0$, (32) can be rewritten as

$$t = t' - ct^{\varphi} + \text{higher powers in } t',$$ \hfill (33)

with $c = N/\alpha$. φ is called the crossover exponent, and the ϵ-expansion gives \(^3\)

$$\varphi = 1 + \frac{N}{2(N + 8)}\epsilon + \frac{N^3 + 24N^2 + 68N}{4(N + 8)^3} \epsilon^2 + O(\epsilon^3) > 1.$$ \hfill (34)

In this, $\epsilon = 4 - d$, and d is the Euclidean dimension in which the model is defined. Let us consider the two-point function of the $\vec{\phi}_1$ field

$$G(r, t, t')\delta^{ij} = \langle \phi_1^i(0)\phi_1^j(r) \rangle.$$ \hfill (35)

As before, we can write down the random walk representation of this two-point function. Instead of (25), we will now have

$$S(l, t, t') = e^{-tl}S_I(l, t, t'),$$ \hfill (36)

where

$$S_I(l, t, t') = \frac{1}{Z(t, t')} \int [d\sigma] e^{-\frac{K}{2} \text{Tr ln}(H + t) - \frac{N - K}{2} \text{Tr ln}(H + t') - \frac{1}{2} \int d^3x \sigma^2} \left[\int d^3r \Psi(l, r) \right],$$ \hfill (37)

and

$$Z(t, t') = \int [d\sigma] e^{-\frac{K}{2} \text{Tr ln}(H + t) - \frac{N - K}{2} \text{Tr ln}(H + t') - \frac{1}{2} \int d^3x \sigma^2}.$$ \hfill (38)

The energy per unit length of the walk is

$$\theta(T, g) = t - f(t, t'),$$ \hfill (39)

with

$$f(t, t') = \lim_{l \to \infty} \frac{\ln(S_I(l, t, t'))}{l}.$$ \hfill (40)
When \(t = t' \), (37) goes to (26), (38) goes to (20), and (39) goes to (27).

To proceed further, we have to look at the scaling form of \(\theta(T, g) \) near the critical line (32). From the discussion in Ref. 3, it follows that \(\theta \) has the form

\[
\theta(T, g) = T^{\nu_\theta} h_K(g/T^\varphi).
\]

(41)

\(h_K(x) \) is regular at \(x = 0 \), and the leading behavior in (41) is compatible with (6) when \(g = 0 \). (39) and (41) have to be consistent. For example, the calculations of

\[
\left. \frac{\partial \theta(T, g)}{\partial g} \right|_{g=0}^{K=0}.
\]

(42)

from (39) and (41) must agree. This gives

\[
-N = t^{\nu_\theta - \varphi} h_0'(0).
\]

(43)

\(h_K'(x) \) is the derivative of \(h_K(x) \) with respect to \(x \). The left hand side of (43) is obtained by evaluating (42) using (39). We have used (30) and (31) and the fact that \(f(t, t') \) in (39) does not depend on \(t \) when \(K = 0 \) (see (37) and (40)). The right hand side of (43) is obtained by evaluating (42) using (41). \(h_0(x) \) is regular at \(x = 0 \) and \(h_0'(0) \) is a constant. (43) is valid for a range of \(t \) near 0. This means that \(h_0'(0) = -N \) and more significantly, the relation of interest (c.f.(8)), \(\nu_\theta = \varphi \).

4. Conclusions

In this paper we analysed the singular behavior of the random walk representation of the two-point function. The energy per unit length of the walk \(\theta(t) \) is found to have a non-trivial dependence on the bare parameter \(t \) (c.f.(6)). This is attributed to the fact
that the walk is taking place in the presence of background loops. For O(N) models, the exponent ν_θ characterizing the nonanalytic behavior of $\theta(t)$ is shown to be same as another exponent already known in the context of field theory, namely the crossover exponent φ (c.f.(8)). This connection enables us to derive a relation for the Hausdorff dimension of the walk in terms of standard exponents in field theory (c.f.(9)).

Acknowledgements

This research was supported in part by the DOE under grant # DE-FG03-91ER40674 (JK), grant # DE-FG05-90ER40559 (RN) and under grants # DE-FG05-85ER250000 & # DE-FG05-92ER40742 (PV).

References

1. D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena World Scientific (1984) I-1-2.

2. J. Glimm and A. Jaffe, Quantum Physics Springer-Verlag (1987) chapter 21; C. Itzykson and J. Drouffe, Statistical Field Theory Cambridge University Press (1989) 1.2.2.

3. D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena World Scientific (1984) II-5-3.

4. C. Itzykson and J. Drouffe, Statistical Field Theory Cambridge University Press (1989) 1.2.3.