Primary cardiac manifestation of autosomal dominant polycystic kidney disease revealed by patient induced pluripotent stem cell-derived cardiomyocytes

Jia-Jung Lee¹,²,³, Sin-Jhong Cheng⁴,⁵, Ching-Ying Huang⁶, Chen-Yun Chen⁶, Li Feng⁷,⁸, Daw-Yang Hwang⁹,¹⁰, Timothy J. Kamp¹¹,¹², Hung-Chun Chen¹²,³,⁎⁎, Patrick C.H. Hsieh⁶,⁷,⁎

¹ Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
² Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
³ Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
⁴ Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
⁵ Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
⁶ Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
⁷ Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
⁸ Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
⁹ Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
¹⁰ Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States

⁎⁎ Correspondence to: H.C. Chen, Division of Nephrology, Kaohsiung Medical University Hospital; Faculty of Medicine, Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
E-mail addresses: chencs@kmu.edu.tw (H.-C. Chen), phsieh@ibms.sinica.edu.tw (P.C.H. Hsieh).

ABSTRACT

Background: Mutations in PKD1 or PKD2 gene lead to autosomal dominant polycystic kidney disease (ADPKD). The mechanism of ADPKD progression and its link to increased cardiovascular mortality is still elusive.
Methods: We differentiated ADPKD patient induced pluripotent stem cells (iPSCs) to cardiomyocytes (CMs). The electrophysiological properties at the cellular level were analyzed by calcium imaging and whole cell patch clamping.
Findings: The ADPKD patient iPSC-CMs had decreased sarcoplasmic reticulum calcium content compared with Control-CMs. Spontaneous action potential of the PKD2 mutation line-derived CMs demonstrated slower beating rate and longer action potential duration. The PKD1 mutation line-derived CMs showed a comparable dose-dependent shortening of phase II repolarization with the Control-CMs, but a significant increase in beating frequency in response to L-type calcium channel blocker. The PKD1-mutant iPSC-CMs also showed a relatively unstable baseline as a greater percentage of cells exhibited delayed afterdepolarizations (DADs). Both the ADPKD patient iPSC-CMs showed more β-adrenergic agonist-elicited DADs compared with Control-CMs.
Interpretation: Characterization of ADPKD patient iPSC-CMs provides new insights into the increased clinical risk of arrhythmias, and the results enable disease modeling and drug screening for cardiac manifestations of ADPKD.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder with an estimated prevalence of 1:400–1:1000 [1]. Besides pathognomonic bilateral renal cysts and familial kidney failure, ADPKD has extra-renal manifestations and is considered a systemic disease [1,2]. Cardiovascular complications are the major cause of ADPKD patient mortality [3,4]. To date, we still lack effective treatment for ADPKD [5,6]. Patients with ADPKD have increased incidence of early onset hypertension, left ventricular hypertrophy,
ADPKD is attributable to mutations at two gene loci, *PKD1* (16p13.3, 85% of cases) and *PKD2* (4q22, 15% of cases) [8]. Polycystin1 (*PC1*) and polycystin2 (*PC2*), encoded by *PKD1* and by *PKD2* respectively, are expressed in endothelial cells, vascular smooth muscle cells, and cardiomyocytes (CMs) providing potential direct mechanisms for the cardiovascular manifestations of ADPKD [9,10]. Recent evidence indicates that *PC1* and *PC2* modulate calcium (Ca) cycling and the functional properties of CMs. A decrease in *PC1* contributed to pressure overload-induced cardiac hypertrophy in a mouse model through modifying stabilization of the α1C protein of the L-type Ca channel [10]. The heart of mice with *Pkd1*-deficiency showed increased CM apoptosis, fibrosis, and impaired systolic and diastolic function [11]. Decreased *PC2* expression altered the Ca transient, shifted the β-adrenergic pathway balance, and cardiac dysfunction [12,13]. Epidemiological analysis showed *Pkd2* mutation correlated with idiopathic dilated cardiomyopathy [14]. According to these results, we hypothesized that the cardiac manifestations of ADPKD patients are mutation gene-related and can be modeled at the cellular level.

Human induced pluripotent stem cells (iPSCs) exhibit self-renewal and pluripotency making them a promising cell source for disease modeling, drug discovery and cell therapy [15–18]. iPSCs have been generated from patients with ADPKD to study the vascular pathology, and endothelial cells differentiated from ADPKD-iPSCs showed altered Ca entry and gene expression compared with non-ADPKD controls [19]. However, the link between the ADPKD gene mutations and cardiac manifestations remains obscure. Particularly, studies have not been performed in human CMs to evaluate the impact of ADPKD gene mutations. In this study, we generated ADPKD patient-specific iPSCs and differentiated them toward CMs to decipher the cellular phenotype focusing on Ca handling and drug responses to provide new insight into the clinical cardiovascular manifestations of ADPKD.

2. Materials and methods

2.1. Cell origins and maintenance of undifferentiated hiPSCs

The ADPKD patient-derived iPSC lines from one *PKD1*-mutation subject (*PKD1* Q533X, the iPSC-PKD1 line) and from one *PKD2*-mutation subject (*PKD2* R803X, the iPSC-PKD2 line) were used in our study [20,21]. Two human iPSC normal lines were used as controls, and one of the normal line was applied in the electrophysiological experiment [18]. All of our iPSC lines were generated and authenticated by the Taiwan Human Disease iPSC Service Consortium. We shifted the iPSCs to a feeder-free culture system on Matrigel-coated plates (Corning, NY, USA) and maintained them in daily Essential 8 medium (Thermo Fisher Scientific, Waltham, MA, USA) exchange. The human embryonic stem cell line, H9 (ESC—H9), obtained from WiCell was used in the qPCR experiment as a reference for human pluripotent stem cells.

2.2. Differentiation of hiPSCs toward cardiomyocytes

We adapted the small molecule induction method for CM differentiation [22–24]. In the era of next genetic sequencing, big data, and inter-organ system interaction, establishing a reliable, clinically-relevant, fundamental tool such as patient iPSC-based cellular models, to study organ-, tissue-, and cell type-specific pathogenesis is a crucial complementary validation for developing novel and efficient therapies.

Research in context

Evidence before this study

Human iPSCs from ADPKD patients or human iPSCs with mutated-PKD gene have been used in research as iPSC-derived epithelial cells, iPSC-derived endothelial cells, and iPSC-derived kidney organoids. To date, no human ADPKD iPSC study has addressed the frequent cardiovascular complications and high cardiovascular mortality in ADPKD. Accumulating evidence suggests that PKD1 and PKD2, and their derived proteins are associated with cardiac abnormality in animal models. The *PKD2* encoding protein PC2 is a non-specific cation channel and is reported to affect intracellular calcium cycling. The *PKD1* encoding protein PC1 was reported to be involved in L-type calcium channel stability. Because calcium cycling and stability are important to cardiac function and arrhythmia, in our study we used cardiomyocytes derived from ADPKD patient iPSCs to study its primary cellular phenomenon using an electrophysiology approach.

Added value of this study

We efficiently differentiated ADPKD patient iPSCs toward ventricular-like cardiomyocytes and confirmed the PC1 and PC2 expression. Electrophysiological experiments including calcium imaging and whole cell patching were applicable to human iPSC-derived cardiomyocytes. The abnormal calcium cycling and aberrant drug responses of the ADPKD patient iPSC-derived cardiomyocytes were consistent with previous observations in mouse models. More importantly, the close mimicry of the spontaneous beating and drug responsiveness of the patient iPSC-derived cardiomyocytes with the donor patient’s clinical phenotype supported the invaluable role of the iPSC-derived cardiomyocytes to establish an in vitro, human cell-based, ADPKD cardiac manifestation model.

Implications of all the available evidence

Deciphering the organ-specific pathophysiology of a human disease with multiple organ involvement is very challenging but is the foundation of novel therapy development. Patient iPSCs carrying a specific mutation are invaluable experimental material enabling us to study a mutated gene causing a phenotype from an organ-specific, tissue-specific, and cell-specific perspective. Our study revealed the close mimicry of iPSC-derived cardiomyocytes with the donor patient’s clinical course. The primary cardiac electrophysiological manifestation of ADPKD patient iPSC-derived cardiomyocytes showed the PKD mutation per se is a cause of cardiomyocyte calcium cycling abnormality and is proarrhythogenic. These results pave the way for us to further investigate and evaluate cardiovascular phenotypes in the ADPKD population. In the era of next genetic sequencing, big data, and inter-organ system interaction, establishing a reliable, clinically-relevant, fundamental tool such as patient iPSC-based cellular models, to study organ-, tissue-, and cell type-specific pathogenesis is a crucial complementary validation for developing novel and efficient therapies.

valvular abnormalities, intracranial aneurysm, and aortic dissection/aneurysm [7]. The extent to which these cardiovascular complications are secondary to the progressive renal disease or due to primary manifestations of the mutant protein remains unknown.
2.3. hiPSC-CM dissociation, storage and plating

hiPSC-CMs were incubated with TrypLE Express (Thermo Fisher Science, Waltham, MA, USA) and 1 mg/mL type IV Collagenase (Thermo Fisher Science, Waltham, MA, USA) for 10 min at 37 °C to dissociate cells. hiPSC-CMs were cryopreserved in 10% DMSO and 90% FBS and stored in liquid nitrogen. For our experiments, hiPSC-CMs were thawed and plated at low density on Matrigel growth factor-reduced coated dishes in cardiac medium consisting of RPMI1640 and B-27 supplement.

2.4. Immunostaining and flow cytometry for the hiPSC-CMs

We applied 1:400 mouse α-Actinin (Sigma-Aldrich, St. Louis, MO, USA) for immunostaining. For flow cytometry, we applied 1:100 mouse Troponin-I (Ab19615, Abcam, Cambridge, UK) for the dissociated iPSC-CMs. (Full method can be found in the Supplementary Material).

2.5. Immunoblotting

Primary antibodies included 1:100 mouse anti-PC1 (Santa Cruz Biotechnology, Dallas, TX, USA), 1:200 rabbit anti-PC2 (Santa Cruz Biotechnology, Dallas, TX, USA), and 1:5000 mouse anti-α-Tubulin (Millipore Merck, Darmstadt, Germany) were used for Western blotting. (Full method can be found in the Supplementary Material).

2.6. Real-time quantitative polymerase chain reaction

In each qPCR reaction, the cDNA equivalent of 20 ng of RNA was used. Amplification of cDNA was monitored on an ABI 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA) with OmicsGreen qPCR Master Mix (Omics Bio, Taipei, Taiwan). Results were normalized to the expression of ACTB. The primer sequences are listed in Table S1. (Full method can be found in the Supplementary Material).

2.7. Calcium imaging experiments

Cells were loaded with 2 μM Fura-2 AM (Thermo Fisher Science, Waltham, MA, USA) in Ca-free Tyrode’s solution (in mM: NaCl 135, KCl 5.4, MgCl₂ 6H₂O 1, Na₂HPO₄·H₂O 0.5, HEPES 10, and glucose 1; pH was adjusted to 7.4 by NaOH) at 37 °C for 20 min. Calcium measurements were made by recording the fluorescence ratio of the cells at 340 and 380 nm at room temperature by MetaFluor Fluorescence Ratio Imaging Software (Molecular Devices, Sunnyvale, CA). We recorded the baseline for 40 s, then the cells were exposed to 10 mM caffeine (Sigma-Aldrich, St. Louis, MO, USA) bolus and a total of 300 s of recording was completed.

2.8. Measurement of L-type Ca current

We used the voltage-clamp mode for recording the current of L-type calcium channel (I_{Ca}). The internal solution contained (in mM): CsCl 110, MgCl₂ 1, MgATP 5, EGTA 14, and Hepes 20; pH was adjusted to 7.25 with CsOH and the osmolality was adjusted to 300 mOsm. The external solution contained (in mM): NaCl 134, CsCl 5, MgCl₂ 1, CaCl₂ 2, glucose 10 and HEPES 10; pH was adjusted to 7.4 with NaOH. The iPSC-CMs were held at −70 mV, and a 100-ms conditioning pulse to −40 mV was applied. I_{Ca} was then elicited by 200-ms depolarizing steps ranging from −40 mV to +40 mV (with 10 mV increment). Current densities (pA) were determined to normalize the maximal current amplitude to cell size (pF). Cell membrane capacitance was determined online using Molecular Devices MultiClamp 700B Amplifier (Scientifica, Uckfield, East Sussex, UK).

2.9. Spontaneous action potential recordings

Action potentials (APs) of spontaneously beating iPSC-CMs were recorded by whole-cell current clamping. The Tyrode’s solution contained (in mM): NaCl 140, KCl 5.4, MgCl₂ 1, CaCl₂ 1.8, glucose 10, and HEPES 10; pH was adjusted to 7.4 with NaOH, and oxygenated with 100% O₂ at 37 °C. The internal solution contained (in mM): KCl 120, MgCl₂ 1, MgATP 3, EGTA 10, and Hepes 10; pH was adjusted to 7.2 with KOH and the osmolality was adjusted to 300–305 mOsm. All signals were low-pass filtered at 1 kHz and digitized at 10 kHz using a CED Power 1401–3 interface (Cambridge Electronic Design). Data were collected using Signal software (Cambridge Electronic Design, Cambridge, UK).

2.10. Compound solutions used in drug assays

All drugs used in this study were purchased from Sigma-Aldrich. The drug compound solutions were prepared as 10 mmol/L stocks in DMSO, stored at −20 °C, and were diluted in external Tyrode’s solution 30 min before treatment.

2.11. Statistical analysis

Statistical analyses and figures were generated by GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA). Differences among groups were assessed by using one-way ANOVA and two-way ANOVA where appropriate, followed by Bonferroni post hoc test. Drug dose-response of nifedipine was analyzed by repeated measures one-way ANOVA. The half maximal inhibitory concentration (IC_{50}) of nifedipine-induced APD_{90}, APD_{50}, and APD_{25} shortening were calculated by fitting with Hill function. Correlation of the durations of APD_{50}, APD_{50}, and APD_{25} with the beating rates, respectively, were analyzed by linear regression. All data was expressed as mean ± SD unless stated otherwise. Results were considered statistically significant if the P value was <0.05.
3.3. PKD1 and PKD2 genes and PC1 and PC2 proteins were expressed in iPSC-CMs

PKD1 and PKD2 gene expression showed significant increase after iPSC lines differentiated to iPSC-CMs by quantitative RT-PCR analysis. (Bar and error bar were generated from three individual experiments, Fig. 1C, Fig. S2). We then checked the PC1 and PC2 protein expression. By Western blotting, lysates from iPSC-CMs revealed doublet bands of PC1 at around 460 kDa, a specific band of PC2 at 110 kDa, and α-tubulin at 55 kDa as the loading control (Fig. 1D, Fig. S2). These results indicated that the iPSC-CMs had PKD1 and PKD2 expression at both the gene and the protein levels.

3.4. ADPKD-iPSC-CMs had reduced sarcoplasmic reticulum Ca content and increased L-type Ca current

Given that prior studies using mouse cardiomyocytes suggested changes in intracellular Ca cycling, we used iPSC-CMs after differentiation day 30 loaded with Fura-2-AM to characterize the intracellular Ca cycling [12,22]. The Ca images showed a decreased baseline Ca signal of PKD1-CMs in comparison with Control-CMs, and PKD2-CMs showed no change. Both PKD1-CMs and PKD2-CMs had decreased sarcoplasmic reticulum Ca content in comparison with the Control-CMs as shown by smaller peak and area under the curve after perfusion with 10 mM caffeine (Figs. 2A–C, Control-CM, n = 118; PKD1-CM, n = 79; PKD2-CM, n = 61). The full quantitative data are shown in Table S2.

In cardiomyocytes, L-type Ca currents ($I_{Ca,L}$) play an integral role in triggering Ca cycling and their membrane stability has been suggested to be regulated by PC1 [10]. Next, we performed whole-cell patch clamp studies of quiescent cells at room temperature elicited by stepwise voltage steps to measure the $I_{Ca,L}$ of iPSC-CMs (Fig. 2D). The density of $I_{Ca,L}$ in PKD1-CMs was significantly larger than in Control-CMs at voltages −10 mV, 0 mV, and 10 mV (Fig. 2E); however, there was no significant difference between the control and PKD2-CMs. There was no difference in cell size as assessed by cell capacitance between groups (Fig. 2F). The decreased diastolic Ca level in PKD1-CMs, reduced SR Ca content in PKD1-CMs and PKD2-CMs, with the increased $I_{Ca,L}$ from PKD1-CMs, pointed to clear alterations in Ca cycling in the disease cardiomyocytes that vary between the PKD1 and PKD2 variants. (Figs. 2C and E).
3.5. Baseline action potentials of ADPKD iPSC-CMs

To further examine the electrophysiological properties of the control and the ADPKD patient iPSC-CMs, we next recorded the spontaneous action potentials from single beating cells at 37 °C using whole-cell patch clamp (Fig. 3) [22]. The action potential durations at 90%, 50%, and 25% repolarization (APD90, APD50, and APD25) were calculated. CM phenotypes were defined as ventricular-, nodal-, and atrial-like waveforms by the morphology of the action potentials generated and by the APD90/APD50 ratio (Fig. 3A–C). Ventricular-like cells have maximum diastolic potential (MDP) lower than −50 mV, large amplitude (APA) N90 mV, APD90/APD50 ratio b1.4, rapid action potential upstroke, and a long plateau phase. Atrial-like cells have MDP lower than −50 mV, APD90/APD50 ratio b1.7, and no plateau phase. Nodal-like cells have relatively more positive MDP with an APD90/APD50 ratio between 1.4–1.7 [22]. The predominant cell type was ventricular-like cells in all groups, comprising 85% of Control-CMs, 83% of PKD1-CMs, and 89% of PKD2-CMs. The nodal-like cells represented about 10–16% of the iPSC-CMs, while a few cells were classified as atrial-like cells (Fig. 3D).

Quantitative analysis of the spontaneous action potentials showed no differences in MDP, APA, or maximum rate of depolarization (dv/dtmax) between groups (Fig. 3E) [22]. The PKD2-CM ventricular-like cells had a higher peak voltage of 48 ± 1 mV in comparison with the Control-CMs of 41 ± 1 mV. PKD2-CM ventricular-like cells had longer APD90, APD50, and APD25, respectively, and slower beating rates (Fig. 3E, full numerical data in Table S3). There was a linear correlation between the durations of APD90, APD50, and APD25 with the beating rates (Fig. S3). No obvious arrhythmia phenotypes or differences in PKD1-CMs and Control-CMs were observed. But the slower beating rate and longer APD duration of the PKD2-CMs were remarkably similar to the clinical sinus bradycardia phenotype of the specific patient donor of iPSC-PKD2 (Fig. 3E, Fig. S1B).

3.6. Electrophysiological response to L-type Ca channel blocker

Next, we applied whole cell patch clamping of spontaneously beating cells to explore potentially different drug responsiveness between groups. After stable baseline recording for 3 min, we applied serial incremental nifedipine, an L-type Ca channel blocker, solutions for 2 min respectively from 3 nM, 10 nM, 30 nM, 100 nM, and then washout recording under continuous flow of Tyrode’s solution (Fig. 4A). The representative long run recordings are shown in Fig. S4A. The Control-CMs and PKD1-CMs showed nifedipine-induced shortening of phase II repolarization in a dose-dependent manner (Fig. 4B) quantified as dose-dependent decreases in APD90, APD50, and APD25, respectively, and slower beating rates (Fig. 3E). No obvious arrhythmia phenotypes or differences in PKD1-CMs and Control-CMs were observed. But the slower beating rate and longer APD duration of the PKD2-CMs were remarkably similar to the clinical sinus bradycardia phenotype of the specific patient donor of iPSC-PKD2 (Fig. 3E, Fig. S1B).
PKD2-CMs showed a relatively blunted response to nifedipine treatment (Fig. 4B, C, and S4B). The full numerical data is presented in Table S4.

By two-way ANOVA, the only significant difference between groups was the slower beating rate in response to nifedipine of PKD2-CMs (Fig. S4C). This information is in line with the baseline slower beating rate of PKD2-CMs (Fig. 3E). We further analyzed the instantaneous beating frequency in response to nifedipine of different groups (Fig. 4E). The PKD1-CMs showed a significant increase in beating rate with nifedipine treatment in comparison with Control-CMs and with PKD2-CMs (Fig. 4F). These data are compatible with the significantly altered Ca baseline, SR Ca content, and the higher ICa,L density in the baseline recording of PKD1-CMs.

3.7. Electrophysiological response to β-adrenergic agonist

Altered Ca transient but exaggerated β-adrenergic response in a PKD2−/− mouse model has been documented leading us to explore the iPSC-CM responsiveness to β-adrenergic stimuli [12]. After baseline recording for 3 min, we applied 1 μM isoproterenol, a non-selective β-adrenergic agonist, for 3 min and then washout with continuous external Tyrode’s solution (Fig. 5A). At the cellular level, development of early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs) were considered proarrhythmic characteristics [26]. Representative long run recordings are shown in Fig. 5C. Zero out of 15 (0%) Control-CMs, six out of 28 (21.4%) PKD1-CMs, and one out of 20 (5%) PKD2-CMs had baseline DADs. With isoproterenol treatment,
four out of 15 (26.7%) Control-CMs, 13 out of 28 (46.4%) PKD1-CMs, and ten out of 20 (50%) PKD2-CMs had isoproterenol elicited DADs (Fig. 5B).

These results were in line with the drastic outcome and dysrhythmia clinical phenotype of the specific PKD1 patient. Both PKD1-CM and PKD2-CM shared proarrhythmogenic features elicited by isoproterenol further suggesting a correlation with PKD-associated cardiovascular complications.

4. Discussion

In this study, we provide proof-of-concept that applying patient-specific iPSCs to decipher complicated human diseases such as ADPKD is a feasible approach (Fig. 6). Taking advantage of the efficient iPSC cardiomyocyte differentiation, we first verified the change in Ca handling and drug responsiveness of the ADPKD iPSC-CMs. More
specifically, the slower beating rate, longer APD period, and relatively blunted response to nifedipine treatment of PKD2-CMs clearly recapitulated the clinical phenotype of sinus bradycardia of the donor. The decreased baseline and SR Ca content, larger ICa,L density, dramatic dose-response and frequency response to nifedipine treatment of PKD1-CMs closely matched the clinical outcome of the donor. Both of these ADPKD iPSC-CMs showed increased DADs after isoproterenol treatment, suggesting common proarrhythmogenic characteristics. These electrophysiological differences at the cellular level of patient iPSC-CMs support the potential role of the disease mutation gene per se in contributing to ADPKD-associated cardiovascular complications.

Studies on the proteins PC1 and PC2, encoded by the disease causative genes PKD1 and PKD2, respectively, have identified a bewildering array of signaling pathways and regulatory processes [1,8]. Despite promising results in PKD animal models, clinical trials targeting mechanisms such as the mTOR-pathway, camp-pathway, or renin-angiotensin-aldosterone system showed no or only moderate effects [5,6,27]. Animal models were unable to fully recapitulate human responses and these species-specific discrepancies highlight the significance of using human cells for disease modeling and drug development. The advances in human iPSC technologies have enabled scientists to develop novel human cell-based, in vitro, disease models [15]. A pioneer study by Freedman showed that PKD1-mutant patient iPSC-derived epithelial cells have decreased PC2 expression in cilia [28]. PKD mutant human iPSC-derived kidney organoids showed promising results in modeling ADPKD cystogenesis [29,30]. To the best of our knowledge, this is the first report to apply iPSC-derived CMs to the study of ADPKD cardiac electric characterization for modeling ADPKD extra-renal manifestations. As yet, no clear correlation between severity of disease phenotype and the position of the mutation for ADPKD have been reported [31–34]. We used the PKD1 mutation line iPSC-PKD1 carrying Q533X mutation which has a strong family history of cardiovascular complication, and the PKD2 mutation line iPSC-PKD2 carrying R803X at PKD2, which represents the hot mutation spot in Taiwan, in our study [20,21,25].

Using the small molecule induction method, the iPSC-CMs we generated were of high purity and ventricular-like cells were predominant [22–24]. The iPSC-CMs had PKD1 and PKD2 expression at both the gene and the protein level. PC2 has a molecular weight of ~110 kDa and the doublet bands of PC1 are considered the N-terminal fragment subunits of PC1 after autoproteolysis at the G protein-coupled receptor proteolytic site [35]. The decreased SR Ca content and the increased ICa,L density of PKD1-CMs suggests a compensatory mechanism [36]. PC1 encoded by PKD1, is a transmembrane protein with a multidomain structure, a large extracellular N-terminal, and an intracellular C-terminal. The mutation of iPSC-PKD1 was PKD1 Q533X, which is located next to the C-type lectin domain (403–532) at the extracellular

Fig. 5. Action potential (AP) responses to β-adrenergic agonist, isoproterenol, in cardiomyocytes derived from control and ADPKD patient-specific iPSCs. (A) Schematic diagram of the procedure of the isoproterenol experiment. With whole cell patching of a single iPSC-CM, stable baseline recording was obtained for 3 min. Next, 1 μM isoproterenol was applied for 3 min, and then the cell was washed with external Tyrode’s solution and recorded for 5 more minutes. (B) Percentage of cells showing delay after depolarization (DAD) at baseline and with isoproterenol treatment. (C) Representative AP tracing of the iPSC-CMs from each group during the isoproterenol experiment, respectively. Dashed lines show 0 mV. Red dots indicate DAD. Control-CMs, n = 15, one batch of cells generated from one differentiation experiment; PKD1-CMs, n = 28, four batches of cells generated by two differentiation experiments; PKD2-CMs, n = 20, four batches of cells generated by two differentiation experiments.
purinergic signaling pathway [27]. Whether this linkage could be general-
calcium homeostasis in the pathogenesis of ADPKD. Evidence suggests the
lights the important role of PC1 and PC2 induced disruption of intracellular
haploinsuf-
with the earlier reports from animal models suggesting PC1 or PC2
SR Ca content. Therefore, our data from human iPSC-CMs are in line
ily, TRPP2 [8]. In CMs, PC2 was reported to interact with and regulate
cation channel and is a member of the transient receptor potential fam-
ymarianodine receptor 2 by acting as a brake for Ca release of SR [12]. Mu-
N- and C-terminals [8]. PC2 functions as a Ca-permeable nonselective
by
R803X mutation, which is located in the C-terminal of PC2. PC2 encoded
pine treatment. The slower spontaneous beating rate at baseline and
dependent shortening of phase II repolarization in response to nifedi-
line action potentials and their responses to nifedipine, an L-type Ca
ADPKD will need further investigation.

We further examined the spontaneously beating cells for their base-
line action potentials and their responses to nifedipine, an L-type Ca
channel blocker. The Contol-CMs and PKD1-CMs showed dose-
dependent shortening of phase II repolarization in response to nifedi-
pine treatment. The slower spontaneous beating rate at baseline and
blunted responses to nifedipine treatment characterized the electric
phenotype of PKD2-CMs. This closely mimicked the clinical sinus brady-
cardia of this specific patient. The iPSC-PKD2 line carried the PKD2
R803X mutation, which is located in the C-terminal of PC2. PC2 encoded
by PKD2 is a 968 amino acid transmembrane protein with intracellular
N- and C-terminals [8], PC2 functions as a Ca-permeable nonsel ective
channel and is a member of the transient receptor potential family,
TRPP2 [8]. In CMs, PC2 was reported to interact with and regulate
ryanodine receptor 2 by acting as a brake for Ca release of SR [12]. Mu-
Ition of iPSC-PKD2, PKD2 R803X, is located near the S812 phosphoryla-
tion site for sequestering PC2 at ER/SR [39]. However, how this mutation
gene affects the autonomous cardiac cycling will need further investiga-
Our work concerns a proof-of-concept of application of iPSC-CMs for studying a complex human disease. We report the
shaped line in the future, including having the mutated genes contribute to the cardiovascular complication. We
ager that the big challenge with stem cell experiments is the relative heterogeneity from line to line and even from clone to clone. The genetic
heterogeneity of iPSCs is well-characterized and is mostly attributed to
 donor factors [41]. The variations may also be induced or selected by the
reprogramming process, or accumulated in culturing [42]. Therefore, monitoring and validating the genetic background of the iPSC lines is
important in the application of stem cell science. Nevertheless, the pre-
ically recapitated phenotype of iPSCs at the cellular level supported its
valuable role in studying complex human disease [43]. Since large-scale
stem cell experiments are difficult, costly, and could still not fully elimi-
nate these concerns, one feasible approach would be the emerging new
tool of gene editing [44,45]. The cellular phenotype of a disease line in
comparison with its precise gene corrected isogenic control would be
more powerful to strengthen the findings of stem cell research. Al-
though our present results come from two disease lines in comparison with normal lines, findings for both PKD1 and PKD2 share features
that are consistent with similar pathophysiology in the clinic, supporting the biological robustness of our results.

In summary, we demonstrated successful ventricular cell predomi-
nant cardiomyocyte differentiation from human iPSCs. The electrophys-
ological parameters including the Ca images, Ca currents, and spontaneous action potentials of the ADPKD patient-specific iPSC-CMs
exhibited a cellular phenotype that was closely correlated with the clin-
ical phenotype of the specific patients. We have therefore displayed a
new approach to decipher kidney disease with multiple organ involve-
ment by using patient-specific iPSCs. ADPKD is a systemic disorder with
many extra-renal manifestations, our study supports the notion that the
role of the mutation gene per se might contribute to its cardiovascular
complication. Larger scale and more comprehensive evaluation will be
needed to address the ADPKD patient’s cardiovascular presentation and to develop novel therapies.
Acknowledgements

We thank Dr. Ling-Hui Li for consultation. We thank the Taiwan Human Disease iPSC Service Consortium for iPSC generation and technical support.

Funding sources

This work was supported by the Ministry of Science and Technology, Taiwan [MOST 106-2811-B-001-036 and 106-2319-B-001-003], the National Health Research Institutes grant EX106-10512S, and the Academia Sinica Program for Technology Supporting Platform Axis (TSPA) Scheme, Thematic Research Program and Summit Research Program. The mutation gene analysis and clinical evaluations were supported by grant MOST104–2314-B-037-036 (to D.Y.H.) and grant MOST107–2314-B-037-019-MY3, KMUH103–3 M06, KMUH104–4 M10 (to J.J.L.).

Conflicts of interest

None.

Author contributions

H.C.C. and P.C.H. conceived the strategy and supervised the project; J.J.L. designed the study; J.J.L., S.J.C., C.Y.H., C.Y.C., F.L., and D.Y.H. carried out experiments; J.J.L. and S.J.C. analyzed the results and made the figures; J.J.L. drafted the paper; T.J.K., H.C.C. and P.C.H. critically revised the paper; all authors approved the final version of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2019.01.011.

References

[1] Torres VE, Harris PC, Pinson Y. Autosomal dominant polycystic kidney disease. Lancet 2007;369:1287–301.
[2] Luciano RL, Johnson AM, Hammond WS, Gabow PA. Causes of death in autosomal dominant polycystic kidney disease. Am J Kidney Dis 2001;38:777–86.
[3] Fick GM, Johnson AM, Hammond WS, Gabow PA. Cardiovascular abnormalities in autosomal dominant polycystic kidney disease: role of extra-renal complications to mortality. Am J Kidney Dis 2001;38:777–84.
[4] Hsiang C, Hsiang H, Chen SY, Chen YM, Tan YC, et al. Polycystin-2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. J Hum Genet 2013;58:720–9.
[5] Luong P, Tan F, Lee AS, Gogt S, Sanchez-Ferreira V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 2013;127:1677–91.
[6] Taura D, Sone M, Numata T, Nakamura M, Shiota F, et al. Identification of MMP9 as a novel risk factor for intracranial aneurysms in ADPKD using iPS models. Sci Rep 2016;6:30013.
[7] Lee JJ, Ho MC, Huang CY, Wen CH, Cheng YC, Hsu YH, et al. Analysis of induced pluripotent stem cell-derived cardiomyocytes using a common mutation of R309X in PKD2. Stem Cell Res 2017;25:38–48.
[8] Burridge PW, Matsa E, Shukla P, Lin ZC, Cheruku JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855–60.
[9] Liao X, Hsiung C, Wilson G, Zhu K, Hazeltine LB, Azarim SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 2012;109:E1848–57.
[10] Hwang HS, Krystal D, Feaster TK, Sanchez-Ferreira V, Zhang J, Kamp T, et al. Comparable calcium handling of human iPS-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 2015;83:79–87.
[11] Chien KY, Chen HM, Jeng CC, Lee SY, Chen VM, Tan YC, et al. Novel PKD1 and PKD2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. J Hum Genet 2013;58:720–9.
[12] Luong P, Tan F, Lee AS, Gogt S, Sanchez-Ferreira V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 2013;127:1677–91.
[13] Fitch GM, Johnson AM, Hammond WS, Gabow PA. Causes of death in autosomal dominant polycystic kidney disease. Am J Kidney Dis 2001;38:777–86.
[14] Luciano RL, Johnson AM, Hammond WS, Gabow PA. Cardiovascular abnormalities in autosomal dominant polycystic kidney disease: role of extra-renal complications to mortality. Am J Kidney Dis 2001;38:777–84.
[15] Hsiang C, Hsiang H, Chen SY, Chen YM, Tan YC, et al. Polycystin-2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. J Hum Genet 2013;58:720–9.
[16] Taura D, Sone M, Numata T, Nakamura M, Shiota F, et al. Identification of MMP9 as a novel risk factor for intracranial aneurysms in ADPKD using iPS models. Sci Rep 2016;6:30013.
[17] Lee JJ, Ho MC, Huang CY, Wen CH, Cheng YC, Hsu YH, et al. Analysis of induced pluripotent stem cell-derived cardiomyocytes using a common mutation of R309X in PKD2. Stem Cell Res 2017;25:38–48.
[18] Burridge PW, Matsa E, Shukla P, Lin ZC, Cheruku JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855–60.
[19] Liao X, Hsiung C, Wilson G, Zhu K, Hazeltine LB, Azarim SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 2012;109:E1848–57.
[20] Hwang HS, Krystal D, Feaster TK, Sanchez-Ferreira V, Zhang J, Kamp T, et al. Comparable calcium handling of human iPS-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 2015;83:79–87.
[21] Chien KY, Chen HM, Jeng CC, Lee SY, Chen VM, Tan YC, et al. Novel PKD1 and PKD2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. J Hum Genet 2013;58:720–9.
[22] Luong P, Tan F, Lee AS, Gogt S, Sanchez-Ferreira V, Wang Y, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 2013;127:1677–91.
[23] Fitch GM, Johnson AM, Hammond WS, Gabow PA. Causes of death in autosomal dominant polycystic kidney disease. Am J Kidney Dis 2001;38:777–86.
[24] Luciano RL, Johnson AM, Hammond WS, Gabow PA. Cardiovascular abnormalities in autosomal dominant polycystic kidney disease: role of extra-renal complications to mortality. Am J Kidney Dis 2001;38:777–84.
[25] Hsiang C, Hsiang H, Chen SY, Chen YM, Tan YC, et al. Polycystin-2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. J Hum Genet 2013;58:720–9.
[26] Taura D, Sone M, Numata T, Nakamura M, Shiota F, et al. Identification of MMP9 as a novel risk factor for intracranial aneurysms in ADPKD using iPS models. Sci Rep 2016;6:30013.
[27] Lee JJ, Ho MC, Huang CY, Wen CH, Cheng YC, Hsu YH, et al. Analysis of induced pluripotent stem cell-derived cardiomyocytes using a common mutation of R309X in PKD2. Stem Cell Res 2017;25:38–48.
[28] Burridge PW, Matsa E, Shukla P, Lin ZC, Cheruku JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855–60.