Comprehensive Study of All-Solid-State Z-Scheme Photocatalytic Systems of ZnO/Pt/CdZnS

Tayiran Taylor Isimjan, Partha Maity, Jordi Llorca, Toseef Ahmed, Manas R. Parida, Omar F. Mohammed, and Hicham Idriss

Abstract: We have investigated a Z-scheme based on a ZnO/Pt/CdZnS photocatalyst, active in the presence of a complex medium composed of acetic acid and benzyl alcohol, the effects of which on the catalyst stability and performance are studied. Transmission electron microscopy images showed uniformly dispersed sub-nanometer Pt particles. Inductively coupled plasma and X-ray photoelectron spectroscopy analyses suggested that Pt is sandwiched between ZnO and CdZnS. An apparent quantum yield (AQY) of 34% was obtained over the [ZnO]₀/1 wt %Pt/CdZnS system at 360 nm, 2.5-fold higher than that of 1%Pt/CdZnS (14%). Furthermore, an AQY of 16% was observed using [ZnO]₀/1 wt %Pt/CdZnS, which was comparable to that of 1 wt %Pt/CdZnS (10%) at 460 nm. On the basis of these results, we proposed a charge transfer mechanism, which was confirmed through femtosecond transient absorption spectroscopy. Finally, we identified the two main factors that affected the stability of the catalyst, which were the sacrificial reagent and the acidic pH.

1. Introduction

Photocatalytic water splitting for hydrogen production employing semiconductor-based photocatalysts is considered to be the “Holy Grail” of solar energy conversion and storage. However, this photocatalytic process is largely limited by four factors: (1) stability with respect to photocorrosion, (2) a narrow band gap of the photocatalysts to absorb more light and suitable band edges/maximum−minimum, which match with the redox potential/level of water, (3) environmental friendliness, and (4) easy access and cost-effectiveness. These four conditions are often mutually exclusive for practical applications. Furthermore, fast charge recombination of the photocatalysts seriously reduces the solar-to-fuel conversion efficiency. Therefore, it is almost impossible to find a single semiconductor photocatalyst that satisfies all of these requirements. For instance, ZnO is the preferred material for the photoelectrode in hydrogen production. However, it has an energy band gap of about ∼3.2 eV; therefore, it mostly absorbs the ultraviolet portion of the solar spectrum, which is less than 5% of total solar energy. As an alternative, cadmium sulfide-based narrow band gap semiconductors, such as Cd₃Zn₄S₅, also have been extensively investigated due to their band gap tunability, and better charge mobility compared to those of CdS. The photocatalytic activity of various morphologies of Cd₃Zn₄S₅, including nanoparticles, nanotwins, nanoflowers, and velvety-
process.\(^1\) In step 1, the highest occupied molecular orbital (HOMO) electrons of an oxygen-evolving complex (photosystem II, PS II) are excited to the lowest unoccupied molecular orbital (LUMO) of PS II under solar light and then the electrons in LUMO of PS II are transferred to the HOMO of ferredoxin-NAPD reductase (PS I), through the electron mediator. In step 2, the HOMO (photosystem I, PS I) electrons of PS I are excited to its LUMO (PS I). As a result, the photogenerated electrons and holes are left in the LUMO (PS I) and the HOMO (PS II), respectively. Finally, the photogenerated electrons in the LUMO (PS I) are used to reduce CO\(_2\), whereas the photogenerated holes in the HOMO of PS II are used to oxidize H\(_2\)O. In light of that, artificial Z-scheme-based photocatalytic systems have been widely investigated.\(^1\) The nature-mimicked Z-scheme photocatalytic system not only shows high redox potentials but also has a slow charge recombination rate in addition to enhanced light absorption.\(^2\) Despite their limitations as mentioned above as single semiconductors, ZnO and Cd\(_{0.8}\)Zn\(_{0.2}\)S together can form an efficient Z-scheme system due to their compatible lattice structures and suitable band gap alignment, which lead to excellent charge migration through the interface and consequently facilitate the effective interband charge transfer from Cd\(_{0.8}\)Zn\(_{0.2}\)S to ZnO.\(^1\) Recently, Rao et al. have reported \([\text{ZnO}]_4/1\%\text{Pt}/\text{Cd}_{0.8}\text{Zn}_{0.2}\text{S}\) heterojunction structures that show a high quantum yield under visible light.\(^2\) However, to the best of our knowledge, there are no systematic studies on this mechanism and stability due to the complexity of the system. Therefore, we used ZnO/Pt/CdZnS as a model system to perform a detailed analysis on the Z-scheme.

In this work, we first synthesized and characterized ZnO/Pt/Cd\(_{0.8}\)Zn\(_{0.2}\)S and its two main components, Pt/ZnO and Pt/Cd\(_{0.8}\)Zn\(_{0.2}\)S, and performed detailed analysis of their contributions to the photocatalytic activity of ZnO/Pt/Cd\(_{0.8}\)Zn\(_{0.2}\)S. Then, we studied the effect of Pt content on the overall photoreactivities of ZnO/Pt/Cd\(_{0.8}\)Zn\(_{0.2}\)S and evaluated the factors that affect the stability of this type of photocatalysts. In addition, we also investigated charge carrier dynamics using femtosecond transient absorption (TA) spectroscopy. Finally, we proposed the possible charge transfer mechanism and verified experimentally the proposed Z-scheme.

2. RESULTS AND DISCUSSION

2.1. Characterization. The X-ray diffraction (XRD) patterns of various catalysts are depicted in Figure 1. The ZnO/Pt/CdZnS hybrid system shows a clear mixture of hexagonal ZnO and cubic Cd\(_{0.8}\)Zn\(_{0.2}\)S phases. The three diffraction peaks of all of the Cd\(_{0.8}\)Zn\(_{0.2}\)S-based materials with 2\(\theta\) values of 26.9, 44.6, and 52.8° represent the (111), (220), and (311)\(^\text{13}\) planes of the zinc-blend phase, respectively. All peaks are broad due to the high content of Cd in the solid solution, which causes a significant increase of unit cell parameters because of large differences of their ion radius (Cd\(^{2+}(0.78\) Å) and Zn\(^{2+}(0.68\) Å)\(^\text{14}\)) and small particle sizes (<10 nm) of each component, as shown by transmission electron microscopy (TEM) images (Figure 3). Because the solid solution of Cd\(_{0.8}\)Zn\(_{0.2}\)S was synthesized at low temperature (60 °C), the main crystal composition is a zinc-blend cubic phase (Figure 1). Similar results were reported by Chen et al.,\(^\text{14}\) where a minor wurtzite phase starts to appear once the Cd content is higher than 48% in Cd\(_{x}\)Zn\(_{1−x}\)S solid solution when the system was synthesized at low temperature. The two small shoulders peaks at 25.3 and 28.5° in Figure 1, corresponding to the (100) and (101) crystal planes of wurtzite, indicate a mixed phase in the solid solutions (Cd\(_{0.8}\)Zn\(_{0.2}\)S and 1%Pt/Cd\(_{0.8}\)Zn\(_{0.2}\)S), but it is not obvious in the case of the hybrid system \([\text{ZnO}]_4/1\%\text{Pt}/\text{Cd}_{0.8}\text{Zn}_{0.2}\text{S}\). However, high-resolution TEM images of \([\text{ZnO}]_4/0.1\%\text{Pt}/\text{Cd}_{0.8}\text{Zn}_{0.2}\text{S}\) (Figure 3) show some wurtzite hexagonal phases of Cd\(_{0.8}\)Zn\(_{0.2}\)S. Therefore, one can conclude that both the solid solution and the hybrid system are formed by mixed phases but the dominant phase is the zinc-blend phase. Because lattice parameters of cubic Cd\(_{x}\)Zn\(_{1−x}\)S solid solutions follow Vergard's law,\(^\text{15}\) which describes a linear relationship between \(x\) and lattice parameters, the Cd contents \((x)\) were calculated according to eq 1.

\[
a(Cd_{x}Zn_{1−x}S) = a(CdS) \times x + a(ZnS) \times (1−x) \tag{1}
\]

Here, \(a(Cd_{x}Zn_{1−x}S)\) is the lattice parameter of the Cd\(_{x}\)Zn\(_{1−x}\)S solid solution, \(a(CdS)\) and \(a(ZnS)\) are the lattice parameters of CdS and ZnS, respectively, and \(x\) is the molar fraction of Cd in the solution. The Cd contents in the solid solutions were calculated to be 0.78 ± 0.02. Because the error is less than 3%, the Cd content is assumed to be the same in all of the cases as 0.8. All of the characteristic peaks of Cd\(_{0.8}\)Zn\(_{0.2}\)S, whether alone or with ZnO, show a clear shift toward a higher angle, indicating the formation of a solid solution. The crystal sizes of ZnO plus Cd\(_{0.8}\)Zn\(_{0.2}\)S both in separate and mixed phases in the Z-scheme are calculated according to Scherrer’s equation. The results show that the crystal sizes of ZnO and Cd\(_{0.8}\)Zn\(_{0.2}\)S are the same in both conditions, which are around 10 and 6 nm, respectively.

The optical band gaps of the Cd\(_{0.8}\)Zn\(_{0.2}\)S-based systems were determined by the Tauc plot,\(^\text{16}\) the optical band gap \((E_g)\) can be obtained in the wavelength range 450–750 nm from the straight line plot between \((a\nu)^1/2\) (\(a\) is the absorption coefficient) and photon energy \((\nu)\). There are slight differences in the \(E_g\) as shown in Figure 2, which could be associated with slight differences of Cd concentration in the solid solution during sample preparation. The \(E_g\) of the Cd\(_{0.8}\)Zn\(_{0.2}\)S-based hybrid systems were found to be between 2.2 and 2.3 eV (Figure 2, inset).

Figure 3 shows the TEM images of an overall view of as-prepared \([\text{ZnO}]_4/\text{Pt/Cd}_{0.8}\text{Zn}_{0.2}\text{S}\), which is constituted by small
particles, quite homogeneous in size. An enlargement of the area inside the square in Figure 3a shows a very homogeneous distribution of particles with an average particle size of 5 nm (Cd$_{0.8}$Zn$_{0.2}$S), which is slightly smaller than that estimated by XRD (Figure 1). It is interesting to note, however, that particles with different crystallinities are seen, ranging from almost amorphous to very well faceted ones. This is particularly visible in the insets of the Fourier transform (FT) image of the particle in Figure 3b. The spots at 3.36 and 3.16 Å correspond well to the (002) and (101) crystallographic planes of hexagonal Cd$_{0.8}$Zn$_{0.2}$S whereas the spots at 2.72 and 3.14 Å represent the (200) and (111) planes of the cubic crystal phase, respectively. Furthermore, the (101) plane of hexagonal ZnO is also observed. In Figure 3c, the several small particles with high electron contrast (marked by white arrows) can be ascribed to a Pt-containing phase. They are subnanometric and very well dispersed. HAADF-STEM was performed to study the microstructure of the catalyst. The EDX analysis shows strong signals of Zn, Cd, and S; they are likely the mixed phases of ZnO and Cd$_{0.8}$Zn$_{0.2}$S. Both phases are extremely well mixed. Figure 1S shows the X-ray photoelectron spectroscopy (XPS) survey spectra of 0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S, 1%Pt/Cd$_{0.8}$Zn$_{0.2}$S.

Figure 2. UV–vis absorption spectra of Cd$_{0.8}$Zn$_{0.2}$S-based materials. Inset: Tauc plots of Cd$_{0.8}$Zn$_{0.2}$S-based materials.

Figure 3. TEM images of [ZnO]$_x$/0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S: (a) low-magnification image; (b) high-magnification image with Fourier transform (FT) analysis; (c) high-magnification image with selected-area electron diffraction pattern, the arrows indicate Pt entities; and (d) high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image with energy dispersive X-ray (EDX) analysis corresponding to the area inside the white square.
[ZnO]$_4$/0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S, and [ZnO]$_4$/1%Pt/Cd$_{0.8}$Zn$_{0.2}$S, which confirm the coexistence of Cd, Zn, S, and Pt. The binding energies of Cd 3d$_{5/2}$, Zn 2p$_{3/2}$, S 2p$_{3/2}$, and O 1s are recorded in Table 1 with the corresponding references.

The range of binding energies of Zn 2p$_{3/2}$ of all of the samples are between 1022.2 ± 0.2 eV and they are close to each other which are similar to that reported for ZnO17 and ZnS18 (Figure 4d). Therefore, establishing an accurate assignment for both Zn$^{2+}$(ZnO) and Zn$^{2+}$(ZnS) is difficult. However, the presence of metal oxide can be verified by analyzing the chemical states of oxygen in the system. For example, the O 1s peaks from Pt/Cd$_{0.8}$Zn$_{0.2}$S and ZnO/Pt/Cd$_{0.8}$Zn$_{0.2}$S show three oxygen species in different chemical environments, where the peaks at ~530.0, 531.5, and 533.0 eV are ascribed to Zn−O, CH$_3$O−H (−OH) (from solvent), and H−O−H, respectively19 (Figure S2). Interestingly, the surface-adsorbed water is only detected on the surface of a nonhybrid system such as 0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S and 1%Pt/Cd$_{0.8}$Zn$_{0.2}$S. Furthermore, the signal intensity of Zn−O became much weaker in the case of ZnO/1%Pt/Cd$_{0.8}$Zn$_{0.2}$S compared to that of ZnO/0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S, which can be interpreted in terms of encapsulation of ZnO by Cd$_{0.8}$Zn$_{0.2}$S in the hybrid systems. The S 2p$_{3/2}$ peaks of the samples are close to 161.0 eV, characteristic of the presence of S$^{2−}$ species on the surface10 (Figure 4a). Furthermore, no other sulfur species are detected, which indicates that S$^{2−}$ species were not oxidized during the synthesis.

The peaks at around 404.7 eV in Figure 4c correspond to Cd 3d$_{3/2}$ and are ascribed to Cd−S bonds.7 The binding energies of Pt 4f 7/2 of the samples are almost identical (Figure 4b). In general, the Pt 4f 7/2 binding energy of bulk metal platinum is around 71.1 eV, whereas the binding energy of Pt 4f 7/2 increases with decreasing the particle size of Pt.21,22 Then, the binding energy of Pt 4f 7/2 recorded at 72.0 eV indicates the presence of very small Pt particles on the surface, in accordance with high-resolution TEM (Figure 3). Inductively coupled plasma (ICP) and XPS analyses suggest that Pt may be sandwiched between ZnO and Cd(Zn)S. This is because 1 wt % Pt, detected by ICP and TEM, is not detectable by XPS in the same hybrid system, even though XPS could detect concentrations down to 0.1 wt % Pt in the absence of ZnO (the nonhybrid system, Figure 4b).

Table 1. Binding Energies (eV) of Core Electrons of the Cd$_{0.8}$Zn$_{0.2}$S-Based Photocatalysts Obtained from XPS Experiments

samples	Cd 3d$_{3/2}$	Zn 2p$_{3/2}$	S 2p$_{3/2}$	Pt 4f$_{7/2}$	O 1s (ZnO)	O 1s (OH)	O 1s (H$_2$O)
0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S	404.8	1022.1	161.1	72.0	531.3	532.9	
1%Pt/Cd$_{0.8}$Zn$_{0.2}$S	404.8	1022.1	161.1	71.9	531.6	533.0	
[ZnO]$_4$/0.1%Pt/Cd$_{0.8}$Zn$_{0.2}$S	404.7	1022.0	161.0	530.0	531.5	531.5	
[ZnO]$_4$/1%Pt/Cd$_{0.8}$Zn$_{0.2}$S	404.8	1022.4	161.2	530.3	531.7	531.7	
reference	9	18, 19	21	22	20		

Figure 4. XPS spectra of the ZnO/Pt/Cd$_{0.8}$Zn$_{0.2}$S system: (a) S 2p, (b) Pt 4f, (c) Cd 3d, and (d) Zn 2p.
2.2. Photocatalytic Tests. Photocatalytic hydrogen generation was evaluated at 42.5 mW/cm² using an aqueous solution of benzyl alcohol and acetic acid (2.5–2.5% v/v) as a sacrificial reagent, which was reported to yield high quantum yields. The pH of the solution was 2.5. Figure 5 shows a comparison of the photocatalytic hydrogen generation activity of the as-prepared samples. The highest hydrogen production rate was achieved for [ZnO]/1%Pt/Cd0.8Zn0.2S, which is likely due to the effect of the Z-scheme between ZnO and Cd0.8Zn0.2S through Pt. No H2 was detected when Pt/ZnO alone was used even after 5 h of irradiation, suggesting that ZnO was not stable at pH = 2.5. However, ZnO/Pt/Cd0.8Zn0.2S showed good stability and better activity under such a condition due to the encapsulation of ZnO by Cd0.8Zn0.2S. To study the effect of each component of ZnO/Pt/Cd0.8Zn0.2S on the Z-scheme, different combinations of ZnO, Pt, and Cd0.8Zn0.2S were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S). The hydrogen generation activities in the broad light spectrum (360–700 nm) and the corresponding quantum yields at 365 and 460 nm were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S). The hydrogen generation activities in the broad light spectrum (360–700 nm) and the corresponding quantum yields at 365 and 460 nm were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S). The hydrogen generation activities in the broad light spectrum (360–700 nm) and the corresponding quantum yields at 365 and 460 nm were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S). The hydrogen generation activities in the broad light spectrum (360–700 nm) and the corresponding quantum yields at 365 and 460 nm were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S). The hydrogen generation activities in the broad light spectrum (360–700 nm) and the corresponding quantum yields at 365 and 460 nm were prepared (Pt/ZnO and Pt/Cd0.8Zn0.2S).

![Figure 5. Rate of photocatalytic hydrogen generation of Cd0.8Zn0.2S-based photocatalysts in an aqueous solution of benzyl alcohol and acetic acid (2.5–2.5% v/v) as a sacrificial reagent, which was reported to yield high quantum yields.](image)

Table 2. AQY% of the CdZnS-Based System under Various Illumination Wavelengths

catalysts	wavelength (nm)	Cd0.8Zn0.2S	0.1%Pt/Cd0.8Zn0.2S	1%Pt/Cd0.8Zn0.2S	[ZnO]4/0.1%Pt/Cd0.8Zn0.2S	[ZnO]4/1%Pt/Cd0.8Zn0.2S
apparent quantum yield (AQY %)	365	3	20	14	11	34
	460	9	16	10	10	16
Cd$_{0.8}$Zn$_{0.2}$S in terms of peak shapes and positions are similar to those observed in CdS$_{24}$ and are assigned in the same manner. The TA feature around 420 nm decays rapidly, which can be attributed to hot excitons in Cd$_{0.8}$Zn$_{0.2}$S.25 This feature disappeared in Cd$_{0.8}$Zn$_{0.2}$S/Pt due to fast electron transfer from Cd$_{0.8}$Zn$_{0.2}$S to Pt. The transient bleach (TB) around 470 nm shows slow decay, indicating the domination of the long-lived single exciton state, and it is attributed to the filling of the electron level,25 which is broadened when Pt is attached to Cd$_{0.8}$Zn$_{0.2}$S. Meanwhile, a fast TB feature at 610 nm appears, suggesting electron transfer from CB of Cd$_{0.8}$Zn$_{0.2}$S to Pt.26 A similar feature at a slightly different position (615 nm) was also observed in the case of ZnO/Pt, further indicating that Pt nanoparticles are the main exciton quenching pathway.25 In addition, the broad TB features at 392 and 460 nm are attributed to electron absorption from shallow trap (ST) states of ZnO, whereas the broad photoinduced absorption (PA) peak at 538 nm can be assigned to hole absorption in ZnO/Pt. It is interesting to note that only one long-lived and high-energy exciton band was observed at 365 nm in pristine ZnO, representing a band absorption of 3.2 eV, which resulted into electrons and holes in the presence of Pt.

Although TB signals at 470 and 610 nm of Cd$_{0.8}$Zn$_{0.2}$S are stronger, they overlapped with those of ZnO/Pt around the same region, making it difficult to analyze (Figure 7A). Therefore, the TB feature at 390 nm and PA at 538 nm of ZnO were chosen to monitor the effect of Z-scheme (Figure 7B). All of the transient features of ZnO/Pt, ZnO/Pt/Cd$_{0.8}$Zn$_{0.2}$S at various wavelengths were fitted with biexponential and the relevant fitted parameters are summarized in Table 6.

![Figure 6. Charge transfer mechanism of the ZnO/Pt/Cd$_{0.8}$Zn$_{0.2}$S system: (a) Z-scheme under UV light and (b) charge separation under visible light.](image)

![Figure 7. (A) Femtosecond (fs) transient absorption spectra of CdZnS, Pt/CdZnS, ZnO, Pt/ZnO, and ZnO/Pt/CdZnS in water at different time delays following 350 nm laser excitation and (B) normalized kinetics traces monitored at key wavelengths of ZnO, Pt/ZnO, and ZnO/Pt/CdZnS and normalized kinetic decay traces of ZnO, Pt/ZnO, and ZnO/Pt/Cd$_{0.8}$Zn$_{0.2}$S in 0.5 mg/mL water suspension following 350 nm excitation with 90 μJ/cm².](image)
3. The electron feature of ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S at 392 nm shows faster decay compared to that of ZnO/Pt, whereas the hole feature at 538 nm displays a negligible change in both ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S and ZnO/Pt (Figure 7B). This indicates faster depopulation of ST electron of ZnO through Z-scheme. According to the proposed mechanism, as shown in Figure 6, the electron generated on ZnO was quenched with the hole from ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S through Pt, which resulted in faster electron decay compared to that of ZnO/Pt. On the other hand, the lifetime of the hole is not affected that much. Consequently, this process made it possible for the electron from Cd\textsubscript{0.8}Zn\textsubscript{0.2}S and the hole from ZnO to participate in redox reactions. This kind of carrier dynamics features agrees well with the description of Z-scheme, as shown in Figure 6.

The stability of the photocatalyst is considered to be the most important factor for practical applications. To investigate the stability of the ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S system, the time dependency of the photocatalytic H\textsubscript{2} production over [ZnO]\textsubscript{4}/0.1\%Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S from an aqueous solution containing 2.5−2.5\% BnOH−CH\textsubscript{3}CO\textsubscript{2}H at 23\% light intensity (42.5 mW/cm2) was measured. The initial pH of the sacrificial reagent was around 2.5. The results (Figure 8) show that the H\textsubscript{2} generation rate declines continuously and then stops completely after 2500 min.

![Figure 8. Stability test for photocatalytic H\textsubscript{2} production with [ZnO]\textsubscript{4}/0.1\%Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S. The reactor volume (137 mL), amounts of catalyst (6 mg) and total flux (42.5 mW/cm2).](image)

Although the catalysts aggregated physically after a prolonged time, there was no color change of the catalyst. Furthermore, a similar H\textsubscript{2} generation rate was obtained after washing the used catalyst with ethanol. This phenomenon suggests that benzyl aldehyde (BzCHO) which was quantified by GC-MS, as one of the reaction intermediates, is strongly adsorbed on the surface of the catalyst, subsequently inhibiting the photocatalytic reaction. Moreover, the XPS analysis of catalysts before and after the reaction (Table 4) reveals a change of Cd/Zn ratio from 1:2.7 to 1:1.6. This could be due to Zn leaching during H\textsubscript{2} generation, owing to the acidic nature of the sacrificial reagent.

Table 4. Bulk and Surface Compositions of the Fresh and Used Catalyst by ICP and XPS

catalyst	bulk (ICP)	surface (XPS)		
	Cd/Zn (x)	Pt (wt %)	Cd/Zn (x)	Pt (wt %)
fresh	1:4.7	0.1	1:2.7	0.2
used	1:1	0.2	1:1.6	0.2

According to the experimental results and visual observation, one can conclude that the two main reasons for the deactivation of the photocatalyst are strong adsorption of BzCHO and dissolution of ZnO.

3. CONCLUSIONS

In summary, a uniformly dispersed ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S photocatalyst exhibits high photocatalytic activity for hydrogen production when 2.5−2.5\% v/v BnOH−CH\textsubscript{3}CO\textsubscript{2}H was used as the sacrificial reagent under xenon lamp irradiation (total light flux: 42.5 mW/cm2). In particular, the highest photocatalytic rate (10.2 mmol/h g) and AQY (34\%) were achieved with [ZnO]\textsubscript{4}/1\%Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S, which are significantly higher than those of 1\%Pt/ZnO and 1\%Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S. These results are attributed to the effective Z-scheme formation between ZnO and Cd\textsubscript{0.8}Zn\textsubscript{0.2}S through Pt. A Z-scheme-based charge transfer mechanism was proposed by performing a time-resolved transient absorption study. Finally, a systematic study was conducted on the photocatalytic stability of the system. The results indicate that there are two main reasons for catalytic deactivation of ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S, namely, (1) blockage of active sites caused by strong adsorption of BzCHO and (2) ZnO dissolution under acidic conditions, which will eventually destroy the Z-scheme. This work not only represents a systematic study on the ZnO/Pt/Cd\textsubscript{0.8}Zn\textsubscript{0.2}S system but also provides new insights into the understanding of photocatalytic activities of metal oxide/metal/Cd(Zn)S hybrid systems.

4. EXPERIMENTAL SECTION

4.1. Synthesis of ZnO/Pt/CdZnS

All reagents were of analytical grade, purchased from Sigma-Aldrich, and used without further purification. The detailed synthetic procedure used for preparing Cd\textsubscript{0.8}Zn\textsubscript{0.2}S-based hybrid materials is described below.12

4.1.1. Pt/ZnO.12 Zn(CH\textsubscript{3}CO\textsubscript{2})\textsubscript{2}·2H\textsubscript{2}O (2.64 g, 12 mmol) was added to methanol (210 mL) in a 500 mL three-neck RBF, and the temperature was raised to 60 °C. After 10 min, 30 mL of a methanolic solution of KOH (1.50 g, 26.7 mmol) was added dropwise to the reaction solution. The clear solution was stirred for another 2 h at 60 °C and then 50 mL of water was added. The resulting white precipitate was filtered, washed with water−methanol (1:1), and dried at 80°C for overnight to give ZnO in quantitative yield. H\textsubscript{2}PtCl\textsubscript{6} (1 mg Pt/mL, 12 mL) was
added dropwise to a methanol solution of ZnO (1 g, 12.3 mmol) nanocrystals, followed by 1.5 mL of NaBH₄ (40 mM) aqueous solution. The solution was stirred for 10 min. The resulting suspension was centrifuged, washed with methanol, and dried in air to give Pt@ZnO in quantitative yield.

4.1.2. ZnO/Pt/Cd₀.₈Zn₀.₂S. Zinc acetate (0.2 mmol) from its (80 mM, 10 mL) stock solution was added dropwise to a methanol solution (80 mM, 2.5 mL) and cadmium acetate (0.8 mmol) from its stock solution (80 mM, 10 mL) were added to the suspension. The suspension was stirred for 15 min at 60 °C, and then sodium sulfide (2 mmol) from the (100 mM, 20 mL) methanolic stock solution was added dropwise. The resulting suspension was stirred for 1 h. The precipitates were separated by centrifugation, washed with H₂O/MeOH (1:1) mixture, and dried at 80 °C overnight to give the final product of [ZnO]₄/1%Pt/Cd₀.₈Zn₀.₂S (0.4 g, 88% in yield).

4.1.3. Pt/Cd₀.₈Zn₀.₂S. Zinc acetate (0.2 mmol) from zinc acetate stock solution (80 mM, 2.5 mL) and cadmium acetate (0.8 mmol) from its (80 mM, 10 mL) stock solution were mixed, the mixture was stirred for 15 min at 60 °C, and then sodium sulfide (2 mmol) from (100 mM, 20 mL) methanolic stock solution was added dropwise. The resulting suspension was stirred for 1 h. The precipitates were separated by centrifugation, washed with the H₂O/MeOH (1:1) mixture, and dried at 60 °C overnight to give the final product of Cd₀.₈Zn₀.₂S in quantitative yield. Photodeposition of Pt on Cd₀.₈Zn₀.₂S was carried out by mixing of Cd₀.₈Zn₀.₂S (100 mg) with 1 mL of stock solution of H₂PtCl₆ (1 mg/mL (Pt)) in BnOH/AcOH (2.5−2.5% v/v). The resulting mixture was illuminated under UV (λ = 360 nm) light with the intensity of 5 mW/cm² at a distance of 5 cm. Similarly, to evaluate the UV + visible light activity, a xenon lamp (Asahi spectra MAX-303) with a total flux of 42.5 mW/cm² (UV ~ 3.0 mW/cm² and visible (up to 650 nm)) was used. Product analyses were performed by a gas chromatograph equipped with a thermal conductivity detector connected to a Porapak Q packed column (2 m) at 45 °C, and N₂ was used as a carrier gas. The BzCHO content was monitored by GC-MS from Thermo Scientific (Waltham, MA USA) equipped with trancse 1300 (GC) and ISQ single quadrupole (MS). Apparent quantum yields (AQYs) at various wavelengths defined by eq 1²⁷ were calculated by data obtained using monochromatic light-emitting diode (365−750 nm) at a distance of 2 cm. The corresponding light intensities were measured with a GL Spectis 5.0 Touch spectrometer.

\[
\text{AQY} = \frac{\text{number of excited electron}}{\text{the number of incident photon}} = \frac{2 \times \text{the number of evolved hydrogen molecules}}{\text{the number of incident photon}}
\]

(2)

4.2. Characterization. UV−vis absorption spectra of the powdered catalysts were collected over the wavelength range of 250−700 nm on a Thermo Fisher Scientific spectrophotometer equipped with a prying mantis diffuse reflectance accessory. Absorbance (A) and reflectance (R) of the samples were measured. The reflectance (R) data were used to calculate the band gap of the samples using the Tauc plot (Kubelka−Munk function).

XRD spectra were recorded using a Bruker D8 Advance X-ray diffractometer. Cu Kα (λ = 1.5406 Å) radiation was used over the range of 2θ interval between 20 and 90° with a step size of 0.010° and a step time of 0.2 s/step was used.

The XP spectra of the samples were collected by a Thermo Scientific Escalab 250 XI XP spectrometer with an Al Kα X-ray source. The X-ray spot size was 650 × 650 μm². Charge compensation was carried out using a standard flood gun. Before collecting XPS data, samples were etched using Ar ions for 5 min at an ion energy of 1000 eV. Data were acquired using the settings given in Table 5.

Table 5. XPS Setting for Date Acquisition

scan	PE (eV)	dwell time (ms)	step size (eV)	# of scans
survey	100	100	1	1
high resolution	30	100	0.1	10−30

4.4. Femtosecond Transient Absorption (TA) Measurements. Time-resolved absorption decays of the catalyst suspension in water were measured with a pump−probe setup, in which a white light continuum probe pulse was generated in a 2 mm thick sapphire plate contained in an Ultrafast System LLC spectrometer using few microjoules energy of an 800 nm pulse. The fundamental output delivered by a Ti:sapphire femtosecond regenerative amplifier operating at 800 nm with 35 fs pulses and a repetition rate of 1 kHz. Spectrally tunable (240−2600 nm) femtosecond pulses generated by an optical parametric amplifier (Light Conversion Ltd) and a white light continuum were used, respectively, as the pump (excitation) and probe beams in a pump−probe experimental setup (Helios). The details of the experimental setup can be found elsewhere.²⁸

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b00767.

XP survey spectra of ZnO/CdZnS-based systems (PDF)
Corresponding Authors
*E-mail: tisimjan@sabic.com (T.T.I.).
*E-mail: Idrish@sabic.com (H.I.).

ORCID

Taiyrjan Taylor Isimjan: 0000-0003-1735-481X
Partha Maity: 0000-0002-0923-7118
Jordi Llorca: 0000-0002-7477-9582
Manas R. Parida: 0000-0003-2091-4507
Omar F. Mohammed: 0000-0001-8500-1130
Hicham Idriss: 0000-0001-8614-7019

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by SABIC-CRD at KAUST. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and MINECO/FEDER grant ENE2015-63969-R.

REFERENCES

(1) Bard, A. J.; Fox, M. A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28, 141−145.

(2) (a) Elward, J. M.; Chakrabarty, A. Effect of dot size on exciton binding energy and electron-hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput. 2013, 9, 4351−4359.

(3) Li, Q.; Meng, H.; Zhou, P.; Zheng, Y.; Wang, J.; Yu, J.; Gong, J. Zn1−xCd2x solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882−889.

(4) (a) Zhang, J.; Yu, J.; Jaroniec, M.; Gong, J. R. Noble Metal-Free Reduced Graphene Oxide–ZnxCd1−x Nanocomposite with Enhanced Solar Photocatalytic H2-Production Performance. Nano Lett. 2012, 13, 4584−4589.

(5) (a) Yu, Y.; Zhang, J.; Wu, X.; Zhao, W.; Zhang, B. Nanoporous single-crystal-like Cd8Zn1−xS nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS−Amine with cadmium ions. Angew. Chem., Int. Ed. 2012, 51, 897−900.

(6) Liu, M.; Wang, L.; Lu, G.; Yao, X.; Guo, L. Twins in Cd1−xZnS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372−1378.

(7) Xiong, Z.; Zheng, M.; Zhu, C.; Zhang, B.; Ma, L.; Shen, W. One-step synthesis of highly efficient three-dimensional Cd1−xZnS photocatalysts for visible light photocatalytic water splitting. Nanoscale Res. Lett. 2013, 8, 334.

(8) Zhou, H.; Liu, Q.; Liu, W.; Ge, J.; Lan, M.; Wang, C.; Geng, J.; Wang, P. Template-free preparation of volvox-like Cd3Zn1−xS nanospheres with cubic phase for efficient photocatalytic hydrogen production. Chem. − Asian J. 2014, 9, 811−818.

(9) (a) Ida, S.; Takahashi, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872−1878. (b) Zheng, H.; Li, Y.; Liu, H.; Yin, X.; Li, Y. Construction of heterostructure materials toward functionality. Chem. Soc. Rev. 2011, 40, 450−464.

(10) (a) Srivinasan, N.; Sakai, E.; Miyauchi, M. Balanced Excitation between Two Semiconductors in Bulk Heterojunction Z-Scheme System for Overall Water Splitting. ACS Catal. 2016, 6, 2197−2200. (b) Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I. D.; Kudo, A.; Yamada, T.; Domen, K. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611−615.

(11) (a) Wang, Q.; Li, Y.; Hisatomi, T.; Nakabayashi, M.; Shibata, N.; Kubota, J.; Domen, K. Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. J. Catal. 2015, 328, 308−315. (d) Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. 2016, 3, No. 1500389.

(12) Mukhopadhyay, S.; Mondal, I.; Pal, U.; Devi, P. S. Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Phys. Chem. Chem. Phys. 2015, 17, 20407−20415.

(13) Lingampallli, S. R.; Gautam, U. K.; Rao, C. N. R. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/Cd, ZnO/Pt/Cd1−xZnS and ZnO/Pt/CdS 1−xSex hybrid nanostructures. Energy Environ. Sci. 2013, 6, 3589−3594.

(14) Han, Z.; Chen, G.; Li, C.; Yu, Y.; Zhou, Y. Preparation of 1D cubic Cd3Zn0.72S solid-solution nanowires using levelling effect of TGAs and improved photocatalytic H2-production activity. J. Mater. Chem. A 2015, 3, 1696−1702.

(15) Hsu, Y.-Y.; Suen, N. T.; Chang, C. C.; Hung, S. F.; Chen, C. L.; Chan, T. S.; Dong, C. L.; Chan, C. C.; Chen, S. Y.; Chen, H. M. Heterojunction of Zinc Blende/Wurtzite in Zn1−xCd0.95xS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches. ACS Appl. Mater. Interfaces 2015, 7, 22558−22569.

(16) Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A. Size effects in band gap bowing in semiconductor alloys. Phys. Rev. B 2011, 83, No. 153301.

(17) Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37−46.

(18) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer: Eden Prairie, MN, 1992; pp 1−261.

(19) Durán, J. D. G.; Guindo, M. C.; Delgado, A. V.; González-Caballero, F. Surface chemical analysis and electrokinetic properties of synthetic spherical mixed zinc-cadmium sulfides. J. Colloid Interface Sci. 1997, 193, 223−233.

(20) Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, 2664−2669. (b) Haija, M. A.; Guimond, S.; Uh, A.; Kuhlbeck, H.; Freund, H. J. Adsorption of water on thin V2O5(0001) films. Surf. Sci. 2006, 600, 1040−1047.

(21) Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748−762.

(22) Kozlova, E. A.; Cherepanova, S. V.; Markovskaya, D. V.; Saraev, A. A.; Gerasimov, E. Y.; Parmon, V. N. Novel photocatalysts Pt/Cd0.95S/ZnO/Zn(OH)2: Activation during hydrogen evolution from aqueous solutions of ethanol under visible light. Appl. Catal. B 2016, 183, 197−205.

(23) Yan, J.; Wu, H.; Chen, H.; Zhang, Y.; Zhang, F.; Liu, S. F. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B 2016, 191, 130−137.

(24) (a) Ben-Shahar, Y.; Scotognella, F.; Waikopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Ban, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2014, 11, 462−471. (b) Ben-Shahar, Y.; Scotognella, F.; Waikopf, N.; Kriegel,
I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462–471. (c) Cooper, J. K.; Cao, J.; Zhang, J. Z. Exciton dynamics of CdS thin films produced by chemical bath deposition and DC pulse sputtering. ACS Appl. Mater. Interfaces 2013, 5, 7544–7551. (d) Wilker, M. B.; Shinopoulos, K. E.; Brown, K. A.; Mulder, D. W.; King, P. W.; Dukovic, G. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H2 generation. J. Am. Chem. Soc. 2014, 136, 4316–4322. (e) Zhu, H.; Chen, Z.; Wu, K.; Lian, T. Wavelength dependent efficient photoreduction of redox mediators using type II ZnSe/CdS nanorod heterostructures. Chem. Sci. 2014, 5, 3905–3914.

(25) Wu, K.; Zhu, H.; Liu, Z.; Rodriguez-Córdoba, W.; Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340.

(26) Wu, K.; Zhu, H.; Lian, T. Ultrafast Exciton Dynamics and Light-Driven H2 Evolution in Colloidal Semiconductor Nanorods and Pt-Tipped Nanorods. Acc. Chem. Res. 2015, 48, 851–859.

(27) Liu, M.; Wang, L.; Lu, G.; Yao, X.; Guo, L. Twins in Cd1-xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372–1378.

(28) (a) Sun, J.; Yu, W.; Usman, A.; Isimjan, T. T.; Dgobbo, S.; Alarousu, E.; Takanabe, K.; Mohammed, O. F. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation. J. Phys. Chem. Lett. 2014, 5, 659–666. (b) El-Ballouli, A. O.; Alarousu, E.; Usman, A.; Pan, J.; Bakr, O. M.; Mohammed, O. F. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots. ACS Photonics 2014, 1, 285–292.