Response of Maize Grown Under High Plant Density; Performance, Issues and Management - A Critical Review

Alam Sher1, Aaqil Khan2, Li Jin Cai1, Mhummad Irfan Ahmad3, Umair Asharf2 and Sikander Ali Jamoro1
1School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province, China
2State key Laboratory of Agronomy, South China Agricultural University, Guangzhou, China

Abstract
Modern cropping is based on relatively high plant density. The improved grain yield per unit area of modern maize (Zea mays L.) hybrids is due to the increased optimum plant population rather than the improved grain yield per plant. High plant density has been widely used to enhance grain yield in maize. Subsequently we review the effect of planting density on physiology, phenology, morphology, nitrogen use efficiency, water use efficiency grain yield information in maize crop. At higher plant populations reduced grain yield also results from the increased pollen-to-silking interval and the following barrenness. However, it may lead to higher risk lodging hence causing significant yield loss of the crop. Future insights are morphological and physiological basis controlling barren and stalk lodging resistance. How root traits, and anatomy of sheath and stem of maize plants correspond to high plant population and a further study on the physiological and biological basis of organ development that may govern the mechanisms of high plant density would be essential for future research.

Keywords: Maize; High plant density; Phenology; Canopy morphology; Nitrogen use efficiency; WUE; Grain yield

Introduction
In 94 developing countries of the world, Maize crop provides at least 30 percent food calories to more than 4.5 billion people which highlights the importance of maize to ensure global food security [1]. Maize crop is grown mainly in temperate, tropical and subtropical regions on marginal lands and face biotic and abiotic stresses under various extreme climatic conditions [2-4]. Maize yields generally higher in temperate region than in tropical zone the main reason is temperature and solar radiation conjunctions [5]. For 4500 years, maize has had an important role in the lives and the development of the cultural history of the peoples of world [6]. High plant density is a good strategy to obtain high yield [7,8] to meet the current and future food necessities of high population and their rising dietary needs [9]. Improvement in corn yield is dependent on its genetic characteristics, morph-physiological behaviour and its interaction with the environment [10]. Increasing the population density of plants is an agronomical practice that has continuously been studied for maize crops (Table 1). This crop technique has evolved and will continue to evolve over the years and it is the agronomic management factor that has changed the most over the past six decades [11]. After the introduction of the first hybrids, farmers started to steadily increase the plant density, at an average rate of 0.3 plants m⁻². In the US Corn Belt of the 1930s, the mean population density was 3 plants m⁻², while it was 4 plants m⁻² in the 1960s and 6 plants m⁻² in the 1980s [12]. Nowadays, the average density in the USA, where maize cultivation is intense, is around 8 plants m⁻² [13], whereas in the EU, where the pedoclimatic conditions are more heterogeneous across countries, it can vary from 6 to 8 plants m⁻² for medium-late maturing hybrids infertile growing areas (Table 2).

Plant density effect on phenology of maize crop
Phenological events govern crop development which is sensitive to abiotic stresses, so the precise prediction of phenology is critical according to plant density. Modern corn hybrids are characterised by high production per unit area under high plant population, owing to morphological and phenological adaptations such as early silking, short anthesis to silking interval (ASI), few barren stalks, and prolificacy [14]. All the phenological characteristics (vegetative stage, days to tasseling, silking, and maturity), were significantly affected by plant density, according to plant density. Modern corn hybrids are characterised by high production per unit area under high plant population, owing to morphological and phenological adaptations such as early silking, short anthesis to silking interval (ASI), few barren stalks, and prolificacy [14].

ASI	Anthesis to silking interval
NHI	N harvest index
HI	Harvest index
NUE	Nitrogen use efficiency
PPFD	Photosynthetic photon flux densities
DM	Dry matter
EDAH	Diethyl Aminoethyl Hexanote
GxE	Genetics, Environment, Management
GY	Grain yield
LAI	Leaf area index
NC	Nitrogen content
NR	Nitrogen ratio
RUE	Radiation use efficiency
NUE	Nitrogen use efficiency

Table 1: Abbreviations.
No	Country	Author	Design	Year	Plant density (m²)	No of genotypes	Main features
1	USA	Williams II [11]	Split plot	2005/2006/2007	4.3,8,6	6	Agronomics and economics of plant population on sweet corn.
2	Pakistan	Ahmed et al. [111]	Split plot	2006/2007	5.9,7,4,9,8	3	Allometry and productivity of autumn planted maize.
3	Turkey	Turgut et al. [12]	Split plot	2002/2003	6,5,8.5,10.5,12.5	3	Plant Density Effects on Forage and Dry Matter yield of corn.
4	USA	Grant and Hesketh [39]	1988	1.5,4.3,5.7,8.6,10.3	1	SIMULATION OF MAIZE GROWTH under high plant density.	
5	China	Ma et al. [89]	Split plot	2009/2010/2011	3.7,5,2,6,7,8,2	8	Changes in Morphological traits of maize.
6	USA	Armstrong and Albrecht [93]	RCBD factorial	2005	2,4,6,8	1	Plant Density effect on Forage yield and Quality.
7	USA	Shapiro and Wortmann [91]	Split Split Plot	1996/1997/1998	6,7,8	1	Plant Density, nitrogen Rate, row Spacing.
8	USA	Lauer and Rankin [90]	RCBD factorial	1999/2000/2001	3.7,7.4	3	Plant Spacing Variation under high planting density.
9	China	Liu et al. [96]	RCBD factorial	2011/2012	4.5,8,25,12	2	Effect of Planting Density on Root lodging Resistance in Maize.
10	Argentina	Ferreira et al. [88]	RCBD	2012	6,7,8,9	2	Effect of planting density on nutritional quality of corn.
11	Iran	Sheifi et al. [86]	RCBD factorial	2007	8,10,12	3	Effect of plant density on yield related traits in maize.
12	Greece	Gerakis and Taergoubou [17]	Split plot	1970-1971	5,5,10	5	Effects of Dense Planting on Maize Hybrids.
13	USA	Uretbitarea et al. [82]	RCBD	2001/2002/2003	6.5	4	Divergent selection for grain protein, contrasting maize genotypes.
14	India	Jadhav et al. [56]	Split plot	1987/1988	5.3	1	Effect of irrigation and mulching on maize nutrient uptake.
15	Argentina	Rossini et al. [23]	Split plot	2006/2007/2008	6,9,12	2	Inter-plant competition for resources in maize crop under high plant density.
16	Argentina	Maddonie and Otgeui [18]	Split plot	1999/2000/2001/2002	6,9,12	2	Intra specific competition in maize; contribution of extreme plant hierarchies of grain and yield, yield components and kernel composition.
17	Argentina	Pagano et al. [10]	RCBD factorial	2004/2005/2006	6,12,12	2	Plant density in maize: Ear development, flowering and kernel set.
18	Argentina	Maddonie and Otgeui [5]	Split-plot	1999/2000/2001/2002	6,9,12	2	Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set.
19	Argentina	Echarte et al. [13]	Split plot	1998/1999/2000	2,4,6,16,30	4	Kernel Number Determination in Argentinean Maize Hybrids Released between 1965 and 1993.
20	Argentina	Maddonie and Otgeui [16]	Split plot	1993/1994	7	3	Leaf area, light interception, and crop development in maize under planting density.
21	Argentina	Boras et al. [22]	Split plot	1997/1998/1999/2000	3,9,12	3	Leaf senescence in maize hybrid: plant population, row spacing and kernel set.
22	Austerlia	Massignam et al. [29]	RCBD	1999/2000/2001	3.5,6,7,6,9	1	Maize and Sunflower. Physiological measurements under plant density and N.
23	Egypt	Medhat et al. [61]	Split plot	2011/2012/2013	4.7,7.1,9.5	6	Maize response to elevated plant density combined with lowered fertilizer rate.
24	USA	Jorge et al. [32]	1994/1996	4.4,5.9,7.4,8.9,10.4	2	Plant Density Influence on Maize forage yield and Quality.	
25	Kenya	Najoka et al. [28]	RCBD factorial	2001/2002	4.4,8,17,7,35,5	1	Plant density and thinning effect on maize grain and forage yield.
26	USA/SE Asia	Sefsyano et al. [30]	Different USA/Asia	2004/2005/2006/2007	2.7,9,6	Diverse hybrids	N, P, K Accumulation under high plant density.
27	USA	Widdicombe [41]	Split plot	1998/1999	5.6,6,5,7,3,8,1,9,0	4	Row Width and plant Density Effects on corn Grain Production in the Northern corn Belt.
28	USA	Bruns and Abbas [54]	Split plot	2001/2002	4,3,4,5,4,6,4,7,6	6	Effect of plant population on maize hybrid in the subtropical mid-south USA.
29	USA	Sarlangue et al. [46]	Split plot	2000/2001	4,6,8,10,12,14	3	Why corn Hybrids Respond Differently to Variations in plant Density.
30	USA	Pan et al. [29]	Split plot	1983/1984	3.4,4,5	5	Altering source-sink. Prolific maize under plant density.
Table 2: About previous experiments of Maize under high Plant density.

Country	Authors et al.	Experimental Design	Year(s)	N Levels	Plant Density and Management Features
Argentina	Dandrea et al.	Splitplot	2002/2003/2004	7, 12	Genetic effects on yield and agronomic traits of different maize varieties at varying plant densities.
China	Li et al.	Splitplot	2000	6.0	Plant density and yield at different plant densities.
USA	Camptt and Vyn	Splitplot	1997/1998/1999	3.4, 4.5, 6.8	Effects of plant density and nitrogen on yield.
Germany	Prezer et al.	Splitplot	1992	8.2	Nitrogen effects on yield at varying plant densities.
Argentina	Cirilo et al.	Splitplot	2003	5.4, 7.9, 10.4	Performance of different maize hybrids at varying plant densities.
USA	Ciampitti and Vyn	Split-split plot	2009	5.4, 7.9, 10.4	Effects of plant density and nitrogen on yield.
USA	Camberato	Split-split plot	1982/1983/1984	3.4, 4.5, 6.8	Plant density and yield at different nitrogen levels.
Germany	Prezer et al.	7 × 7 lattice square	1992	3.4, 4.5, 6.8	Nitrogen effects on yield at varying plant densities.
China	Mi et al.	Splitplot	1996/1997/1998	3.4, 4.5, 6.8	Effects of plant density and nitrogen on yield.
USA	Ciampitti and Vyn	Split-split plot	2009	5.4, 7.9, 10.4	Effects of plant density and nitrogen on yield.
USA	Inman et al.	Splitplot	2001/2002/2003	5.4, 7.9, 10.4	Effects of plant density and nitrogen on yield.
Germany	Prezer et al.	Splitplot	1992/1993	3.4, 4.5, 6.8	Nitrogen effects on yield at varying plant densities.
USA	Ciampitti and Vyn	Split-split plot	2009	5.4, 7.9, 10.4	Effects of plant density and nitrogen on yield.
USA	Lemcoff and Loomis	Splitplot	1981	3.4, 4.5, 6.8	Effects of plant density and nitrogen on yield.
Slovenia	Bavec and Bavec	Splitplot	1992/1993	3.4, 4.5, 6.8	Nitrogen effects on yield at varying plant densities.
Argentina	Maddonni et al.	RCBD factorial	1997/1998/1999	3.9, 12	Effects of plant density and nitrogen on yield.
India	Parmer and Singh	RCBD	1997/1998/1999	3.9, 12	Effects of plant density and nitrogen on yield.
USA	Maskine et al.	Splitplot	1986/1987/1988	3.7, 4.2	Effects of plant density and nitrogen on yield.
India	Reed et al.	Splitplot	1998	3.7, 4.2	Effects of plant density and nitrogen on yield.
Italy	Testa et al.	Splitplot	2012/2013	7.5, 10, 15, 22	Effects of plant density and nitrogen on yield.
China	Zhang et al.	Splitplot	2012/2013	4.5, 7.9	Effects of plant density and nitrogen on yield.

Citation: Sher A, Khan A, Cai LJ, Ahmad MI, Ashraf U, et al. (2017) Response of Maize Grown Under High Plant Density; Performance, Issues and Management - A Critical Review. Adv Crop Sci Tech 5: 275. doi: 10.4172/2329-8863.1000275
competition for light, water, and nutrients [22], as well as enhanced incidence and severity of ear rots and caused leaf diseases [23]. Light is very important component to measure day length and phenology for example competition for light and water delayed silk emergence and caused in problematic ASI [24,25], finally resulted poor pollination and lower yield.

Plant density effect on canopy morphology of maize crop

Maize yield can also be related to increased plant density effect on plant morphology and physiology. Improved morphology was the key for promoting light use efficiency per plant [26-28] which influenced canopy morphology, light interception and ultimately yield [29,30]. The effects of high plant density on corn morphological development have been studied extensively at the canopy level [31-33]. Whole plant canopy level effects indicated that through local responses that may vary with positions in different types of organs [28,34,35]. For example, the effect of plant density on leaf area expansion through two parts i.e., lamina length and lamina width, the first being consistently decreased in both lower and upper phytomers [36] whereas the second being increased in lower phytomers and decreased in upper phytomers [37]. Increasing panning density accelerated leaf senescence [38], increased the shading of leaves [18], and reduced the net assimilation of individual plants.

In a crop canopy, factors such as plant shape, plant populations, and row width affected leaf distributions, PAR interception and yield [29]. Leaf area, leaf sheath and internode mass decreased with higher planting density, with greater decrease was at higher nodes [39,40]. As an example of a tillering Graminaceae species wheat crop morphological leaf components were influenced by plant population [36]. It was observed that the most significant effect of higher plant population on leaf area per plant was the absence of later formed tillers. The lack of tiller formation was related to low local assimilate availability, induced by low photosynthetic photon flux densities or low red/far red ratios at the site of the incipient tiller. When a species does not form tillers, plant density can only affect the growth of leaves on the main stem. A study into the effects of environmental factors on the morphological development of such a plant type could lead to a better understanding of mechanisms involved in the effects of plant density on leaf area development. Moreover, at higher plant densities, leaf area per plant is decreased in later phases of growth, 40% increased in LAI at high plant density from mid-vegetative to early grain fill even though per plant biomass decreased 40 to 60% at high plant density [41-43]. This decreased in per plant biomass reduces in photosynthetic rate per plant which increased plant barrenness [44] as plant population increased [43,45]. According to morphology plant height is very important factor which is affected by plant density. Plant height is not correlated with root lodging but it was significantly correlated with grain yield [46,47].

Plant density effect on nitrogen use efficiency

To fulfill the requirement of food it is necessary to improve NUE in cereal crops at low input of fertilizer. Most of the cereal crops require large amount of nitrogen to produce maximum yield and for which NUE is estimated to be far less than 50% [48,49]. Nitrogen fertilization and soil management practices are very important to enhance the crop yield [49,50]. Nitrogen demand may also increase as plant density increases dissection of the complex interactions among years, planting populations and N rates began with division of treatment mean data increases dissection of the complex interactions among years, planting populations and N rates began with division of treatment mean data increases dissection of the complex interactions among years, planting populations and N rates began with division of treatment mean data.

A mean plant density of 5.6 pl m$^{-2}$ with a total plant N uptake of 152 kg N ha$^{-1}$, N harvest index (NHI) of 63% and a grain harvest index (HI) of 48%. For the New Era, maize GY averaged 9.0 Mg ha$^{-1}$ at a mean plant density of 7.1 pl m$^{-2}$, total plant N uptake of 170 kg N ha$^{-1}$, NHI of 64% and a grain HI of 50% [51]. Nitrogen has a major effect on growth of maize plant among the major nutrients needed by plants (especially the three elements of N, P, K) [52]. Corn crop response to nitrogen is different due to weather conditions, soil type and maize rotation [53,54]. Various stresses, including nitrogen deprivation and inter-plant competition by high plant density decreased ear size and kernel row number, as well as kernel set in maize and reduced yield [55]. Increased N supply, increased accumulation of dry matter and N by aboveground plant parts of corn during grain filling and ultimately increased yields [56,57] whereas low-yielding maize hybrids responded poorly to added N [58]. Nitrogen fertilization affected corn dry matter (DM) production by influencing leaf area development, leaf area maintenance and photosynthetic efficiency of the leaf area [59] and maximum economic DM for corn occurred at an N rate of about 150 kg ha$^{-1}$ [60]. Efficiency of applied nitrogen to corn crop increased under higher plant populations [61]. Higher plant populations enhanced pre-silking N uptake, but had relatively minor impact on post-silking N uptake for hybrids [45].

Calculation of nitrogen use efficiency: NUE can be calculated by different methods. In plot- or field scale experiments, plots with and without applying N or with 15N labelled fertilizer is used to calculate NUE [62,63]. According to the methodology NUE was also calculated by using an output/input ratio by using this formula [49]. NUE=$(\text{Ng}-\text{Nf}/(\text{Ng}))\times100$ where NG is the application of N fertilizer (in ton) for crop production which is 53% of all nitrogen fertilizers [64]. NG is determined by multiplying N concentration in cereals by its yield, for different crops the values of N concentration (in kg g$^{-1}$) are as follows: rice (12.3 g kg$^{-1}$), oat (19.3 g kg$^{-1}$), rye (22.1 g kg$^{-1}$), barley (20.2 g kg$^{-1}$), maize (12.6 g kg$^{-1}$), sorghum (19.2 g kg$^{-1}$), and wheat (21.3 g kg$^{-1}$). NR is the N released by cereals coming from the soil natural fertilization or deposited by rainfall [65,66]. NR can vary from 40 to 60% in cereals [67,68] have reported mineralized N and atmospheric deposition are the source of 50% of the N taken up in plant. Abundant part of the N taken up in plants comes from the soil [69].

Plant density effect on water use efficiency

Management of irrigation water is crucial in order to improve corn productivity with reduced pollution risks [70] and can reduces yield loss if applied in an inappropriate way [71]. Direct evaporation of water from the soil surface is influenced by a number of factors. One is increase of transpiration (T) from a canopy, which can reduces moisture lost daily (Esc) by humidifying the crop canopy [72,73]. Soil evaporation is also affected by the shading of the soil surface by a crop canopy [74]. Higher water use efficiencies of maize reduced (Esc) and a concurrent increase in transpiration (T), due to nitrogen application which was associated with a larger crop leaf canopy [75]. Thus, potentially, early in the season Esc may be reduced by the presence of a dense crop canopy. High plant density is one way of achieving a dense crop canopy soon after sowing. Use of groundcover by high density to affect Esc and T, by changing plant spacing, therefore provide a low input means of adjusting the evaporation from a cropped field, and increases a efficient use of water. An increase in planting density increased water use efficiency by 24% under irrigation but reduced by 17% under rainfed conditions. Moisture lost daily (Esc) was 4% less, and transpiration (T) was 9% greater at the highest plant population density owing to a larger crop leaf canopy. Irrigation increased the amount of Esc and T by 41%.

Citation: Sher A, Khan A, Cai LJ, Ahmad MI, Asharf U, et al. (2017) Response of Maize Grown Under High Plant Density; Performance, Issues and Management - A Critical Review. Adv Crop Sci Tech 5: 275. doi: 10.4172/2329-8863.1000275
Neither Esc nor T were affected by the interaction between population density and water regime. The increase in leaf area index due to a higher population density was greater under irrigation (78%), than under rainfed conditions (21%) [76]. Despite the significant increasing in biological yield at the rates of 5.9% and 10.9% grain yield significantly decreased at the rate of 1.8% and 10.7% by increasing plant population from 7 to 8 and 9 plant m², respectively. The irrigation and plant density interactions were statistically significant for plant height and yield. There is also one opinion that the super optimal plant population used water more efficiently (25% less than other populations). Therefore, the water use efficiency of maize was changed through the manipulation of plant population density. For the plant population 66,000 plants ha⁻¹ treatment used more water (442.37 mm) and the 38,000 plants ha⁻¹ is next (441.22 mm), while the 53,000 plants ha⁻¹ treatment used the less water (426.87 mm) [76].

Plant density effect on grain yield information

Maize yield was significantly affected by plant density [77]. Only in proper plant density, plants can achieve highest yield [78]. In order to determine proper density of plants, hybrid type is more effective. The higher plant density decreased cob length (-10.8%) ear weight (-6%), kernel weight (-7.1%), the number of kernels per row (-10%) thousand kernels weight by (-18%) and stalk area (-20%) [79]. There is contrary opinion that kernel number and kernel weight are affected by plant density. Kernel number may not be affected by planting density. High plant population affected yield components by reducing the number of ears plant⁻¹, kernels per ear and kernel weight. As plant population increased kernel weight is more stable than other yield components [80-82]. Source-sink relationships during grain filling effected the kernel weight [83]. Various stresses, including nitrogen deprivation and inter-plant competition by increasing plant population decreased ear size and kernel row number, as well as kernel set in maize and reduced yield. High plant population declined above ground biomass and HI, increased barrenness, delayed reproductive processes, reduced kernel weight and number and affected plant grain yield. At high plant densities, many kernels may not develop an event that occurs in some hybrids following poor pollination resulting from a silking period that is delayed relative to tassel emergence [84] and/or owing to a limitation in assimilate supply that caused grain and cob abortion in corn [85]. Moreover, some researchers and Scientists have opinion that corn grain yield typically exhibited a quadratic response to plant density, a gradually decreased rate of yield increase relative to density increase, and finally a yield plateau at some relatively high plant density [86,87]. Increased plant density increased grain yield quadratically [88-90]. Some researchers indicated responses other than quadratic [91-93]. Some scientists concluded that most current hybrids may actually exhibit quadratic-plateau models [92]. Plant to plant variability reduced grain yield and reduced resource use efficiency [94]. Corn yield differed significantly at varying plant density levels, owing to differences in genetic potential [95]. Higher plant population increased plant sterility and the interval between male and female blooms, and decreased the number of grains per ear [96,97].

Strategies to improve maize performance under high plant density

"Genotype (G) x external environment (E) x management (GxE) interaction": Maize yield potential is defined as the maximum yield obtained by a genotype (G) developed in an adapted environment (E), with non-limiting water and nutrients resources, under no pressure of pests and diseases, using the best management (M) practices (e.g., planting time, plant density, N fertilizer rate, tillage practices, crop rotation, etc.) for the specific hybrid, weather and soil conditions [98,99]. Substantial studies have been conducted to identify high yielding and consistent performing maize genotypes (also known as stable genotypes). However, most of the high stable genotypes are less predictable across different crop management practices since plant breeders often perform analysis of two-way data (genotype x site or GxE) for several consecutive years to detect stable genotypes without taking crop management practices into account. Previous studies on crop management practices suggest that optimization of management practice alter the external environment that a maize plant live in, which result in scale or rank shift in its performance [100,101]. This relative shift of genotype performance from one environment to another across management practices is known as genotype x environment x management interaction (GxExM) [102,103]. The impenetrable interaction of a crop bio-system with the external environment introduces challenges when making breeding decisions because it may result in low correlation between phenotypic and genotypic values, thereby reducing progress from selection. This reduction leads to bias in the estimation of heritability and in the prediction of genetic advance [104-106]. Plant population density depends on both genotypic [107] and climatic factors [108]. Improving hybrid and management practices are very important to increase corn yield [109-111]. On an average 50% yield enhancement was due to management and 50% was due to breeding strategies [112]. Recently developed hybrids are more prone to withstand higher planting density than older hybrids. Planting density-tolerant genotypes have ability to decrease production of grain per unit of leaf area is necessary to obtain high yield. Genetically modified brittle stalk mutants and growth regulators like EDAH are good source for controlling stalk lodging in maize crop. Brittle stalk mutants are good indicator of the mechanism of cell wall formation, and a number of brittle stalk mutants had been identified in plants including barley [113,114], Arabidopsis [115], maize [116] and rice [117-119]. At recently, most efforts have been done on the phenotypic observation, genetic analysis, gene mapping, and several genes related traits of brittle have been discovered and characterised [120-122]. A new brittle stalk mutant in corn, designated as Bk-x, was screened from a library of mutants constructed by a cross between a maize inbred Zong 31 and a Mutator active line W22:Mu. The anatomical, morphological, and biochemical difference between Bk-x and normal plants was analysed and genetic behaviour of this trait was investigated using several genetic segregation populations. The other agronomical traits, such as plant height, flowering time, stem diameter, and kernel size in brittle stalk mutants are same with that in the normal plants.

Selection procedures used to improve corn performance in a wide range of climatic conditions brought a series of morphological modifications and adaptation to high plant densities like plant canopy morphology and phenology development. Modifications in plant canopy morphology also in a corn permit new hybrids to withstand higher leaf photosynthetic rates than previous hybrids at high planting densities. This also promote to increase RUE during grain filling, which further increased to the production of more kernels perplant and higher grain yield. Moreover, plant architecture and morphology at high plant densities has alsobeen important in enhancing maize stand ability by reducing problems like stalk and root lodging. Agronomic factors affecting plant population are i. Cultivar ii. length of the growing season. iii. Time of planting, vi. water availability. v. Row spacing.

Some factors affecting NUE, so these factors are very important to improve NUE under high plant density. 20 to 50% losses nitrogen fertilizer in cereal production are repotted in 15N recovery experiments.
These losses are due to denitrification, volatilization, and/or leaching. Loss of fertilizer N results from: i. Soil nitrification/denitrification: 9.5% N losses in winter wheat are due to denitrification from applied fertilizer, 10% in lowland rice, and 10% to 22% (no-till) in corn. Zero till plots can double denitrification losses due to use of straw or application of straw on the surface of soil. ii. NO3--leaching: All applied nitrogen fertilizer sources are converted to the form. In textured soil profile with excessive rains this nitrate N form is not held tightly by soil particles and can be leached. Nitrate leaching can be significant in cereal crops when fertilizer N is applied at rates in excess of that needed for maximum yield. In cooler temperate climates, under conventional tillage corn when only 15 kg N ha–1 was applied nitrate losses was 26 kg N ha–1 yr–1. Volatilization of urea based products: Volatilization losses are due to urea based fertilizers products are susceptible to of N. In the soil and plant residues Urease enzyme in the soil converts the urea component to ammonia gas. 15-20% of the urea based nitrogen may volatilize within a week, if this conversion occurs at the soil surface in a warm sunny days iv. Inherent ability of genotypes. V. Presence of soil microflora. VI. Major factor which affects NUE is nitrogen metabolism.

Conclusion and Future Inceptive

High density planting, while important to increased yields, can also lead to greater competition for resources and morphological changes in the plant and caused lodging. Plant's translocation and photosynthetic activity is severely affected by lodging and decreased yield. Plant population recognized as a important factor determining the degree of competition between plants. The development of earlier hybrids, with shorter plant height, lower leaf number, upright leaves, smaller tassels and more synchronized floral development improved maize ability to withstand high plant densities without presenting a higher percentage of barren plants. The use of higher plant populations enabled corn to intercept virtually all the available solar radiation earlier in the season, transforming this energy into storage carbohydrates and other foods in more grains per area. Plant population recognized as a important factor determining the degree of competition between plants. The taller plant heights, smaller shoot dry weights and stem diameter of plants in high planting density make them more susceptible to lodging than the shorter plant heights, bigger shoot dry weights and stem diameters of plants in less planting density. Moreover, response of sheath and stem anatomy due to high plant population is future prospect to reduce the lodging risk in maize crop.

References

1. CIMMYT (2011) Maize-global alliance for improving food security and the livelihoods of the resource-poor in the developing world, Mexico, p: 91.
2. Edmeades GO, Bolanos J, Laffitte HR (1992) Progress of breeding for drought tolerance in maize. Proceeding of the 47th Annual Corn and Sorghum, Ind Res Conf, Wilkinson D, ASTA, Washington, USA, pp: 93-111.
3. Zaidi PH (2002) Drought tolerance in maize: theoretical considerations and practical implications. CIMMYT, Mexico.
4. Gracen VE (1986) Sources of temperate maize germplasm and potential usefulness grain quality with agronomic traits of S2 lines and testcrosses of maize. Maydica 30: 269-280.
5. Hainzelin E (1998) Improved yield and tolerance of high densities of two elite tropical elite corn populations through introgression of exotic materials. Doctoral thesis, Ecole Nationale Superieure Agronomique of Rennes, France.
6. Elinry JR, Tischler CR, Rosenthal WD, Gerik TJ (1992) Non structural carbohydrate utilization by sorghum and maize shaded during growth. Crop Sci 32: 131-137.
7. Sher A, He L, Zhang S, Li JC, Song Y (2016) “Analysis and characterisation of interplant competition on maize canopy morphology for modelling.” IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA), Qingdao, pp: 189-193.
8. Tokatlidis IS, Has V, Meilis V, Has I, Melonas I, et al. (2011) Maize hybrids less dependent on high plant densities improve resource use efficiency in rainfall and irrigated conditions. Field Crops Res 120: 345-351.
9. Gao Y, Duan AW, Qiu XG, Sun JS, Zhang JP, et al. (2010) Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron J 102: 1149-1157.
10. Xu N, Yile K, Miller PO, Cheilich N (2004) Co-regulation of ear growth and internode elongation in corn. Plant Growth Regul 44: 231-241.
11. Tollenaar M, Dwyer LM, Stewart DW (1992) Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Sci 32: 432-438.
12. Duivick DN (2005) Genetic progress in year of United States of maize. Mydica 50: 193-202.
13. Li J, Xie RZ, Wang KR, Ming B, Guo YQ, et al. (2015) Variations in maize dry matter, harvest index, and grain yield with plant density. Agron J 107: 829-834.
14. Duivick DN, Smith J, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (eds.) Plant Breeding Reviews, John Wiley and Sons, New York, pp: 109-151.
15. Amanullah KR, Khalil A, Shad K (2009) Plant Density and Nitrogen Effects on Maize Phenology and Grain Yield. Journal of plant nutrition 32: 246-260.
16. Ashraf U, Salim MN, Sher A, Sabir S, Khan A, et al. (2016) Maize growth, yield formation and water-nitrogen usage in response to varied irrigation and nitrogen supply under semi-arid climate. Turk J Field Crops 21: 88-96.
17. Bavec F, Bavec M (2002) Effect of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars. Eur J Agron 16: 151-159.
18. Hashemi-Dezfouli A, Herbert SJ (1992) Intensifying plant population response of corn with artificial shade. Agron J 84: 547-551.
19. Lemcoff JH, Loomis RS (1986) Nitrogen Influences on yield determination in maize. Crop Science 26: 1017-1022.
20. Farnham DE (2001) Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron J 93: 1049-1053.
21. Olson RA, Sander DH (1988) Corn production. In: Sprague GF, Dudley JW (eds.) Corn and corn improvement. American Society of Agronomy INC, Madison, Wisconsin, USA, pp: 639-686.
22. Boomsma CR, Santini JB, Tollenar M, Vyn TJ (2000) Maize Morphophysiological response to intense crowding and low nitrogen availability: analysis and review. Agron J 101: 1426-1452.
23. Esechie HA (2009) Effect of planting density on growth and yield of irrigated maize (Zea mays) in the Batlahin Coast region of Oman. The Journal of Agricultural Science 119: 165-169.
24. Westgate ME (1994) Seed formation in maize during drought. In: Boote KJ, Bennett JM, Sinclair TR (eds.) Physiology and determination of crop yield. Madison, American Society of Agronomics 151: 361-364.
25. Smith CS, Mock JJ, Crosbie TM (1982) Variability for morphological and physiological traits associated with barrenness and grain yield in maize population, Iowa Upright Leaf Synthetic. Crop Science 22: 828: 832.
26. Yu Q, Wang T, Liu J, Sun S (1998) Mathematical study on crop architecture and canopy photosynthesis. J. Model Acta Agric Sin 24: 7-15.
27. Li M, Li W (2004) Regulation of fertilizer and density on sink and source and yield of maize. Sci Agric Sin 37: 1130-1137.
28. Maddison GA, Otegui ME, Cirilo AG (2001) Plant population density, row spacing, and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res 71: 183-193.
29. Stewart DW, Costa C, Dwyer LM, Smith DL, Hamilton RI, et al. (2003) Canopy structure, light interception, and photosynthesis in maize. Agronomy Journal 95: 1465-1474.
30. Li SK, Wang CT (2010) Potential and ways to high yield in maize. Science Press, Beijing, China, pp: 217-240.
