Arthroscopic Microfracture Alone or Combined Application of Acellular Scaffold: Which One is More Effective in the Treatment of Osteochondral Lesions of the Talus

Bertan Cengiz (drbertan@gmail.com)
Acibadem Kayseri Hospital

Ramin Moradi
Sincan Koru Hospital

Research Article

Keywords: Talus, Osteochondritis, microfracture

DOI: https://doi.org/10.21203/rs.3.rs-636631/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: In this study, it was aimed to compare the clinical and radiological outcomes of the single-step arthroscopic microfracture (AMFx) repair procedure and the combined application of AMFx and cell-free scaffold (CFS) in the treatment of talar osteochondral lesions (TOLs).

Methods: This retrospective study included patients presenting with a TOL larger than 1.5 cm2 and smaller than 3 cm2 between March 2015 and June 2018 who received arthroscopic treatment and attended follow-up for a period of at least 24 months. Eighteen patients (group 1) had been treated with the AMFx method and 16 patients (group 2) with AMFx + CFS application. American Orthopedic Foot and Ankle Society (AOFAS), Visual Analog Scale (VAS), and Tegner Activity Scores. magnetic resonance observation of cartilage repair tissue (MOCART) score was used to assess cartilage repair tissue.

Results: The mean patient age was 33.47±8.67 and the mean follow-up time was 32.24±9.33 months. In terms of the two groups, there was no significant difference in terms of age (p=0.984), body mass index (p=0.450), defect size (p=0.081) and follow-up time (p=0.484). The median AOFAS score increased in the AMFx group (p<0.001) and in the AMFx+CFS group (p<0.001), from preoperative assessment until follow-up assessment at 12 months. The treatment groups were not superior to each other in terms of clinical scores (p>0.05). The two groups were also similar with respect to the components of the MOCART score.

Conclusion: Comparisons revealed that outcomes at the end of 24-month follow-up were similar. Therefore, TOLs appear to benefit similarly from the AMFx and AMFx + CFS techniques.

Background

Although the etiology of the talar osteochondral lesions (TOLs) is still uncertain, these lesions are well-defined to be cartilage injuries involving both the chondral and subchondral layers that are thought to occur secondary to ankle trauma [1] or ischemic causes [2]. The clinical findings of TOLs may vary from asymptomatic disease to the presence of severe pain and significantly worsened quality of daily life [3]. While TOL secondary to trauma generally manifests in the anterolateral area, ischemic lesions are usually located posteromedially [4]. Planning of treatment approach has become more important due to the increasing incidence of TOLs [5]. The main factors affecting treatment are the size, depth, and localization of the TOL and the degree of subchondral bone involvement [5]. Several treatment options are available, including conservative treatment, arthroscopic debridement and microfracture, mosaicplasty, allograft applications, and autologous chondrocyte implantation [6, 7]; however, it has been shown that inappropriate treatment may lead to cartilage degeneration and osteoarthritis in the long-term [8].

The arthroscopic microfracture (AMFx) technique is an easily performed single-step procedure that is the most frequently employed cartilage repair method. Today, arthroscopic techniques are usually based on the stimulation of bone marrow and the gathering of mesenchymal stem cells (MSCs) in order to ensure
healing [9–11]. Despite being reported to have inadequate effectiveness in long-term follow-up due to the high failure rate and formation of biomechanically poor fibrocartilage in lesions larger than 1.5 cm², the AMFx procedure remains popular, especially for the treatment of smaller lesions [9, 10, 12].

Cell-free scaffolds (CFS) are cost-effective and can be applied as a single-step arthroscopic procedure. The application of CFS in combination with AMFx provides a basis for the maturation of mesenchymal stem cells from subchondral bone [13, 14]. In addition, these biomaterials also ensure the mechanical stability of mesenchymal stem cells by providing 3-dimensional support [15]. Current evidence shows that, compared to 2-dimensional support, a 3-dimensional support environment preserves chondrocyte structure, enables relatively better chondrocyte transformation, and procures a tissue structure that mimics native tissue characteristics, thereby enhancing repair [15–17].

In this study, it was aimed to comparatively present the short-term clinical and radiological outcomes of the stand-alone AMFx procedure and the combined AMFx + CFS application, which are utilized in the single-step treatment of TOLs.

Methods

The study was approved by the ethics committee of our institute, and written informed consent – for the procedures and also the use of data as part of a scientific study – was obtained from all patients. Patients that have been screened for talus focal osteochondral lesions between March 2015 and June 2018 were retrospectively evaluated. Inclusion criteria were as follows: being aged between 20 and 50 years, having received surgical treatment for Outerbridge grade 3–4 lesions larger than 1.5 cm² and smaller than 3 cm² affecting talar dome, having a body mass index (BMI) of < 30, and attending follow-up studies for at least 24 months. Patients who were lost to follow-up, those who had a history of ankle surgery, patients who needed revision surgery, and those who had ankle instability or a kissing lesion were excluded from the study.

Thirty-four patients who fulfilled the inclusion/exclusion criteria were included in the study. All patients were operated by one of two surgeons (A and B). Eighteen patients (10 females, 8 males) who were operated by surgeon A using the AMFx procedure (stand-alone) comprised Group 1, and 16 patients (10 males, 6 females) who were operated by Surgeon B using the combined procedure (AMFx + CFS) (SupraFelt™, BMT Calsis, Ankara, Turkey) comprised Group 2.

Data of the two groups were reviewed and age, body mass index (BMI), follow-up time, and TOL size were recorded. The American Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale, Visual Analog Scale (VAS), and Tegner Activity Scale were determined preoperatively. They were consistently used to evaluate clinical results during the postoperative period. Magnetic resonance observation of cartilage repair tissue (MOCART) score was used to evaluate cartilage quality from magnetic resonance (MR) images [18]. The groups were compared in terms of demographics and the size of cartilage defects, in addition to scores obtained from the AOFAS, VAS, Tegner Activity Scale, and MOCART analysis.
In both groups, debridement was performed on cartilage defects, and subchondral bone was reached via standard ankle arthroscopy. A probe was used to measure the depth and size of the lesions in millimeters. In Group 1, AMFx was performed using a 30-degree awl on the TOL site and the procedure was terminated following joint debridement. In Group 2, AMFx was also performed via the use of a 30-degree awl on the TOL site, followed by arthroscopic application of CFS (SupraFelt™) in order to fill the defect completely. A fixation method was not used for scaffold stabilization and the procedure was terminated (Fig. 1).

Statistical analysis

All analyses were performed with SPSS v21 (SPSS Inc., Chicago, IL, USA). The Shapiro-Wilk test was used to check normality. Data were expressed with mean ± standard deviation or median(minimum-maximum) values for continuous variables according to the normality of distribution and frequency (percentage) values for categorical variables. Normally distributed variables were analyzed with the independent samples t-test. Non-normally distributed variables were analyzed with the Mann–Whitney U test. Categorical variable distributions were analyzed with the Pearson Chi-square test or the Fisher's exact test. Repeated measurements were analyzed with Friedman's analysis of variance by ranks depending on the normality of distribution. Pairwise comparisons were performed with the Bonferroni correction method. Comparisons of the changes in these variables between the groups were performed by analyzing the differences between measurements via the Mann-Whitney U test. P-values of < 0.05 were considered to demonstrate statistical significance.

Results

A total of 34 patients were included in the study. 55.5% of the patients in Group 1 (stand-alone AMFx) and 37.5% of the patients in Group 2 (combined procedure) were female. The mean ages were 28.8 ± 6.2 and 30.4 ± 7.6 years in Group 1 and Group 2, respectively. The mean BMI values were 24.2 ± 4.3 and 25.3 ± 3.6 in Group 1 and Group 2, respectively. In terms of defect size, the mean value was 1.9 ± 0.3 cm² in Group 1 and 2.1 ± 0.4 cm² in Group 2. Follow-up durations were 42.2 ± 9.2 months and 40.1 ± 11.6 months, respectively. There was no significant difference between the two groups in terms of demographic features and lesion size (p > 0.05 for all, Table 1).

When compared to preoperative findings, both groups exhibited a statistically significant change in AOFAS, VAS, and Tegner Activity scores at month 12 (the first postoperative evaluation included in the study) (p < 0.001 for all, Table 1). However, the comparison of the amount of change in scores it was shown that no statistically significant differences were found in the AOFAS, VAS, and Tegner Activity scores (p > 0.05 for all, Table 1) (Fig. 2, Fig. 3). Furthermore, in terms of AOFAS, VAS, and Tegner scores reported at baseline (preoperative) and postoperative 12th and 24th months, there were no significant differences between the two groups (p = 0.198, p = 0.281, p = 0.403, respectively; Table 1).
There was again no significant difference in MOCART scores between the two groups (p > 0.05, Table 2). Nevertheless, we observed that Group 2 had higher scores in the surface integration and effusion subgroups of the MOCART analysis compared to Group 1. Subchondral bone was intact in > 60% of subjects in both groups. Effusion was identified in 22.22% and 18.75% of the patients in Group 1 and Group 2, respectively (Table 2).

There were no major complications in the patients. In Group 1, transient Sudeck’s atrophy and paresthesia were identified, and both had resolved within 6 months. In Group 2, one patient developed a superficial infection which was successfully treated with oral antibiotic therapy.

Discussion

The most important finding of this study was that both the stand-alone AMFx and the combined AMFx + CFS procedures provided decreased pain levels and considerably good clinical outcomes within the follow-up period in patients treated for TOL. Additionally, although results were similar in the majority of evaluations, we noted that hyaline-like chondral tissue was better organized, and MOCART scores were relatively higher with the AMFx + CFS technique.

Treatment for cartilage problems is still controversial, and the options vary depending on lesion size. While AMFx provides good clinical outcomes with the advantage of bone marrow stimulation in the treatment of small osteochondral lesions, it cannot achieve the desired success in large lesions since structural support to mesenchymal stem cells is insufficient when lesion size and depth are greater [7, 19, 20]. According to the literature, AMFx is the first-line treatment for TOLs, particularly those measuring around 1.5 cm² [9, 21]. In a study by Choi et al., 32 patients with TOLs larger than 1.5 cm² were treated with the AMFx method, and it was reported that a successful outcome could only be achieved in 1 patient [22]. Therefore, a size of 1.5 cm² has been described as a critical threshold for AMFx treatment of TOLs [22, 23]. Treatment options for TOLs larger than 1.5 cm² include methods that promote the formation of fibrous cartilage with cell-containing or cell-free scaffolds in addition to restoration techniques such as mosaicplasty and autologous chondrocyte implantation. At the same time, allograft use is suggested in much larger lesions [24]. However, it would be more effective to consider such restoration techniques in revision surgeries rather than in the first-line treatment of TOLs, since these techniques are more expensive and complex (compared to stand-alone AMFx) and may result in morbidity. From this standpoint, we comparatively evaluated the effectiveness of AMFx and AMFx + CFS treatments in lesions larger than 1.5 cm² (up to a maximum of 3 cm²) and found that both treatment methods provided a significant improvement in terms of clinical scores during short-term follow-up.

The interest in CFS treatment has been increasing due to several advantages, including low cost, wide availability, and the fact that there is no need for cell culture or a donor site [25–28]. Recent animal studies suggest that CFS is also effective in cartilage regeneration. It can provide a well-structured subchondral trabecular bone and enables the generation of repair tissue rich in proteoglycans and type II collagen, which are important histological characteristics of hyaline cartilage [29, 30]. In addition to the
ease of using CFS as a single-step arthroscopic procedure without the need for arthrotomy for the
treatment of TOL, the CFS application was also shown to induce chondrogenesis due to its hyaluronic
acid (HA)-based scaffold structure [31]. In a study by Kanatli et al., cell-free polyglycolic acid (PGA) - HA
scaffolds were reported to provide successful clinical outcomes in the treatment of TOLs sized 2.5 cm²
and greater [32]. In the present study, we also obtained successful clinical outcomes after cell-free PGA-
HA scaffold application in the treatment of TOLs measuring 1.5 cm² – 3 cm², which is consistent with the
literature. Taken together, these results indicate that PGA-HA-based CFSs are effective and successful in
the treatment of TOLs sized up to 3 cm².

The AMFx + CFS group had marginally better MOCART results; however, statistical significance was not
present in any of the comparisons – possibly due to the low number of patients. Nonetheless, we believe
it should be emphasized that the AMFx + CFS group had better border integration in the current study,
similar to results obtained by Valderrabano et al. and Wiewiorski et al. [33, 34]. Two studies in the
literature showed that PGA-HA-based CFS use led to a high rate of hypertrophic healing in TOLs [32, 35];
whereas, in contrast to the literature, “none of the patients in the current study had suffered from this
complication. This was attributed to the fact that the CFSs used in this study had a different scaffold-
matrix structure as compared to their counterparts employed in other studies.

This study had some limitations. First of all, it had a retrospective design and follow-up was short, which
might have prevented the identification of procedure-based differences that could develop with time.
Second, although the procedures were carried out in a similar fashion by both surgeons, the fact that the
groups had undergone treatment by different surgeons may be a cause of bias. Third, various important
factors (age, gender, trauma characteristics etc.) that could have had an impact on treatment results
could not be investigated separately with subgroup analyses, since sample size was not large enough.
Finally, the lack of histological evaluation could put the current outcome analysis in question; however,
we used the MOCART scoring system, which is accepted as an objective method that enables
quantitative analysis of repair tissue.

Conclusion

Significant improvements in clinical scores were observed in the short-term follow-up of patients who
underwent stand-alone AMFx and combined AMFx + CFS application for the treatment of TOLs
measuring up to 3 cm². The outcomes were similar in both groups when compared at postoperative 12
and 24 months, and the number of changes in scores was also found to be similar with the two methods.
Therefore, with respect to short-term follow-up, both the single-step AMFx and the combined AMFx + CFS
techniques are effective in the treatment of TOLs.

List Of Abbreviations

TOL: Talar osteochondral lesions
Declarations

Ethics approval and Consent to participate:

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Acibadem University (Date 17.09.2020 /No. 2020-20/07). Informed consent was obtained from the individual participant included in the study.

Consent for publication:

Written informed consent was obtained from the patients for publication of the arthroscopic images. A copy of the written consent is available for review by the Editor of this journal.

Availability of data and material:

The datasets used in this study are available from the corresponding author on reasonable request.

Competing interest:

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Funding:

There is no funding source.
Author contributions

BC collected and analyzed the datas of the patients and was a major contributor in writing the manuscript. RM has drafted the work and substantively revised it. All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Acknowledgments:

None

References

1. Badekas T, Takvorian M, Souras N: Treatment principles for osteochondral lesions in foot and ankle. Int Orthop, 2013; 37(9): 1697–706.

2. Albano D, Martinelli N, Bianchi A, Messina C, Malerba F, Sconfienza LM: Clinical and imaging outcome of osteochondral lesions of the talus treated using autologous matrix-induced chondrogenesis technique with a biomimetic scaffold. BMC Musculoskelet Disord, 2017; 18(1).

3. Van Dijk CN, Reilingh ML, Zengerink M, Van Bergen CJ: Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosoc, 2010; 18(5): 570–80.

4. Navid DO, Myerson MS: Approach alternatives for treatment of osteochondral lesions of the talus. Foot Ankle Clin, 2002; 7(3): 635–49.

5. Leontaritis N, Hinojosa L, Panchbhavi VK: Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg Am, 2009; 91(2): 333–9.

6. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G: Osteochondral Lesions of the Talus: Randomized Controlled Trial Comparing Chondroplasty, Microfracture, and Osteochondral Autograft Transplantation. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2006; 22(10): 1085–92.

7. Gobbi A, Scotti C, Peretti GM: Scaffolding as Treatment for Osteochondral Defects in the Ankle. Arthroscopy 2016. p. 1003-11.

8. Schachter AK, Chen AL, Reddy PD, Tejwani NC: Osteochondral lesions of the talus. J Am Acad Orthop Surg, 2005; 13(3): 152–8.

9. Chuckpaiwong B, Berkson EM, Theodore GH: Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy, 2008; 24(1): 106–12.

10. Gudas R, Kalesinskas RJ, Kimtys V et al: A prospective randomized clinical study of mosaicosteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy, 2005; 21(9): 1066–75.

11. Khan WS, Johnson DS, Hardingham TE: The potential of stem cells in the treatment of knee cartilage defects. Knee, 2010; 17(6): 369–74.
12. Polat G, Ersen A, Erdil ME, Kizilkurt T, Kilicoglu O, Asik M: Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc, 2016; 24(4): 1299–303.

13. Cortese F, McNicholas M, Janes G et al: Arthroscopic Delivery of Matrix-Induced Autologous Chondrocyte Implant: International Experience and Technique Recommendations. Cartilage, 2012; 3(2): 156–64.

14. Patrascu JM, Freymann U, Kaps C, Poenaru DV: Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br, 2010; 92(8): 1160–3.

15. Zhang L, Hu J, Athanasiou KA: The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng, 2009; 37(1–2): 1–57.

16. Georgiannos D, Bisbinas I, Badekas A: Osteochondral transplantation of autologous graft for the treatment of osteochondral lesions of talus: 5- to 7-year follow-up. Knee Surg Sports Traumatol Arthrosc, 2016; 24(12): 3722–9.

17. Fennema E, Rivron N, Rouwkema J, Van Blitterswijk C, De Boer J: Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol, 2013; 31(2): 108–15.

18. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S: Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol, 2006; 57(1): 16–23.

19. Van Dijk CN: Ankle Arthroscopy 2014.

20. Yasui Y, Wollstein A, Murawski CD, Kennedy JG: Operative Treatment for Osteochondral Lesions of the Talus. Cartilage, 2016; 8(1): 42–9.

21. Choi WJ, Park KK, Kim BS, Lee JW: Osteochondral Lesion of the Talus. The American Journal of Sports Medicine, 2009; 37(10): 1974–80.

22. Choi WJ, Park KK, Kim BS, Lee JW: Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med, 2009; 37(10): 1974–80.

23. Murawski CD, Foo LF, Kennedy JG: A Review of Arthroscopic Bone Marrow Stimulation Techniques of the Talus: The Good, the Bad, and the Causes for Concern. Cartilage, 2010; 1(2): 137–44.

24. Ferkel RD, Zanotti RM, Komenda GA et al: Arthroscopic Treatment of Chronic Osteochondral Lesions of the Talus. The American Journal of Sports Medicine, 2017; 36(9): 1750–62.

25. Brouwer KM, Van Rensch P, Harbers VEM et al: Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering. J Tissue Eng Regen Med, 2011; 5(6): 501–4.

26. Efe T, Theisen C, Fuchs-Winkelmann S et al: Cell-free collagen type I matrix for repair of cartilage defects—clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc, 2011; 20(10): 1915–22.
27. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M: Scaffold-Based Cartilage Treatments: With or Without Cells? A Systematic Review of Preclinical and Clinical Evidence. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2015; 31(4): 767–75.

28. Pot MW, Gonzales VK, Buma P et al: Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ, 2016; 4(29).

29. Erggelet C, Endres M, Neumann K et al: Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res, 2009; 27(10): 1353–60.

30. Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E: A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res, 2012; 470(3): 910–9.

31. Hegewald AA, Ringe J, Bartel J et al: Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell, 2004; 36(6): 431–8.

32. Kanatlı U, Eren A, Eren TK, Vural A, Geylan DE, Öner AY: Single-Step Arthroscopic Repair With Cell-Free Polymer-Based Scaffold in Osteochondral Lesions of the Talus: Clinical and Radiological Results. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2017; 33(9): 1718–26.

33. Valderrabano V, Miska M, Leumann A, Wiewiorski M: Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med, 2013; 41(3): 519–27.

34. Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V: Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol, 2013; 68(10): 1031–8.

35. Eren TK: Comparison of arthroscopic microfracture and cell-free scaffold implantation techniques in the treatment of talar osteochondral lesions. Joint Diseases and Related Surgery, 2019; 30(2): 97–105.

Tables
Table 1
Summary of the patients characteristics and scale scores with regard to surgery method

Surgery method	Microfracture (n = 18)	Microfracture + Scaffold (n = 16)	p
Age	33.50 ± 8.26	33.44 ± 9.39	0.984
Gender			
Female	10 (55.56%)	6 (37.50%)	0.479
Male	8 (44.44%)	10 (62.50%)	
Body mass index	26.13 ± 3.31	25.28 ± 3.16	0.450
Follow-up time	29 (24–52)	27.5 (12–49)	0.484
Size of the lesion	2.1 (1.6–4)	2.5 (1.8–3.2)	0.081
AOFAS Ankle-Hindfoot Scale score			
Baseline	60 (50–66) a	56 (52–66) a	0.198
1st assessment	89 (84–96) b	92 (86–96) b	
2nd assessment	92 (88–96) b	94 (92–96) b	
p (within variables)	< 0.001	< 0.001	
Visual Analog Scale score			
Baseline	6.5 (5–7) a	7 (6–7) a	0.281
1st assessment	2 (1–2) b	1 (1–2) b	
2nd assessment	1 (1–2) b	1 (1–2) b	
p (within variables)	< 0.001	< 0.001	
Tegner Activity Scale score			
Baseline	3 (1–7) a	3 (1–4) a	0.403
1st assessment	4 (2–7) ab	4 (2–7) b	
2nd assessment	4 (3–7) b	4 (2–7) b	
p (within variables)	< 0.001	< 0.001	
Complication	2 (11.11%)	1 (6.25%)	1.000

Note: p values indicate statistical significance between groups.
Surgery method
Data are given as mean ± standard deviation or median (minimum - maximum) for continuous variables according to normality of distribution and as frequency (percentage) for categorical variables.
Same letters denote the lack of statistically significant difference between repeated measurements.
Table 2
Summary of the MOCART scoring system with regard to surgery method

Surgery method	Microfracture (n = 18)	Microfracture + Scaffold (n = 16)	p
Degree of defect repair and filling of the defect			
Complete	8 (44.44%)	9 (56.25%)	0.305
Hypertrophy	0 (0.00%)	2 (12.50%)	
Incomplete			
> 50% of the adjacent cartilage	6 (33.33%)	3 (18.75%)	
< 50% of the adjacent cartilage	4 (22.22%)	2 (12.5%)	
Subchondral bone exposed	0 (0.00%)	0 (0.00%)	
Integration to border zone			
Complete	4 (22.22%)	6 (37.50%)	0.685
Incomplete			
Demarcating border visible (split like)	6 (33.33%)	5 (31.25%)	
Defect visible			
< 50% of the length of the repair tissue	5 (27.78%)	4 (25.00%)	
> 50% of the length of the repair tissue	3 (16.67%)	1 (6.25%)	
Surface of the repair tissue			
Surface intact	4 (22.22%)	6 (37.50%)	0.475
Surface damaged			
< 50% of repair tissue depth	11 (61.11%)	9 (56.25%)	
> 50% of repair tissue depth or total degeneration	3 (16.67%)	1 (6.25%)	
Structure of the repair tissue			
Homogenous	6 (33.33%)	6 (37.50%)	1.000
Inhomogeneous or cleft formation	12 (66.67%)	10 (62.50%)	
Signal intensity of the repair tissue			
T2-FSE			
	Frequency 1	Frequency 2	p-value
------------------	-------------	-------------	---------
Surgery method			
Isointense	4 (22.22%)	5 (31.25%)	0.821
Moderately hyperintense	11 (61.11%)	9 (56.25%)	
Markedly hyperintense	3 (16.67%)	2 (12.50%)	
Subchondral Lamina			
Intact	6 (33.33%)	7 (43.75%)	0.787
Non-intact	12 (66.67%)	9 (56.25%)	
Subchondral bone			
Intact	11 (61.11%)	11 (68.75%)	0.849
Non-intact			
Edema	5 (27.78%)	4 (25.00%)	
Cyst formation or degeneration	2 (11.11%)	1 (6.25%)	
Adhesions			
No	18 (100.00%)	16 (100.00%)	N/A
Yes	0 (0.00%)	0 (0.00%)	
Effusion			
No	14 (77.78%)	13 (81.25%)	1.000
Yes	4 (22.22%)	3 (18.75%)	

Data are given as frequency (percentage)

Figures
Figure 1

Arthroscopic images of ankle arthroscopy (A) Osteochondral lesion (OCL) of the medial talar dome of talus (B) After debridetment of the OCL to stable margins (C) Microfracture (AMFx) application (D) Application of the cell- free scaffold (CFS) after AMFx (E) Image of CFS
Figure 2

AOFAS Ankle-Hindfoot Scale scores with regard to groups

Groups

Microfracture

Microfracture + Scaffold

Baseline

1st assessment

2nd assessment
Figure 3

Tegner Activity Scale scores with regard to groups