Origin of maximal symmetry breaking in even \mathcal{PT}-symmetric lattices

Yogesh N. Joglekar and Jacob L. Barnett
Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA
(Dated: April 28, 2013)

By investigating a parity and time-reversal (\mathcal{PT}) symmetric, N-site lattice with impurities $\pm i\gamma$ and hopping amplitudes $t_0(t_b)$ for regions outside (between) the impurity locations, we probe the origin of maximal \mathcal{PT}-symmetry breaking that occurs when the impurities are nearest neighbors. Through a simple and exact derivation, we prove that the critical impurity strength is equal to the hopping amplitude between the impurities, $\gamma_c = t_b$, and the simultaneous emergence of N complex eigenvalues is a robust feature of any \mathcal{PT}-symmetric hopping profile. Our results show that the threshold strength γ_c can be widely tuned by a small change in the global profile of the lattice, and thus have experimental implications.

Introduction: The discovery of “complex extension of quantum mechanics” by Bender and coworkers [1, 2] set in motion extensive mathematical [3-5] and theoretical investigations [6] of non-Hermitian Hamiltonians $H_{\mathcal{PT}} = \hat{K} + \hat{V}$ that are symmetric with respect to combined parity (\mathcal{P}) and time-reversal (\mathcal{T}) operations. Such continuum or lattice Hamiltonians [7, 10] usually consist of a Hermitian kinetic energy part, $\hat{K} = \hat{K}^\dagger$, and a non-Hermitian, \mathcal{PT}-symmetric potential part, $\hat{V} = \mathcal{PT}\hat{V}\mathcal{PT} \neq \hat{V}^\dagger$. Although it is not Hermitian, $H_{\mathcal{PT}}$ has purely real eigenvalues $E = E^\ast$ over a range of parameters, and its eigenfunctions are simultaneous eigenfunctions of the combined \mathcal{PT}-operation; this range is defined as the \mathcal{PT}-symmetric region. The breaking of \mathcal{PT}-symmetry, along with the attendant non-reciprocal behavior, was recently observed in two coupled optical waveguides [11, 12] and has ignited further interest in \mathcal{PT}-symmetric lattice models. These evanescently coupled waveguides provide an excellent realization [13] of an ideal, one-dimensional lattice with tunable hopping [14], disorder [15], and non-Hermitian, on-site, impurity potentials [16, 17].

Recently nonuniform lattices with site-dependent hopping $t_n(k) = t_0[k(N - k)]^{n/2}$ and a pair of imaginary impurities $\pm i\gamma$ at positions (m, \bar{m}) have been extensively explored [17-20], where $\bar{m} = N + 1 - m$ and $N \gg 1$ is the number of lattice sites. The \mathcal{PT}-symmetric phase in such a lattice is robust when $a \geq 0$, the loss and gain impurities $\pm i\gamma$ are closest to each other, and $\gamma \leq \gamma_c$ where the critical impurity strength is proportional to the bandwidth of the clean lattice, $\gamma_c \propto 4t_0(N/2)^a$. For a generic impurity position m, when the impurity strength $\gamma > \gamma_c(m)$ increases the number of complex eigenvalues increases sequentially from four to $N - 1$ when N is odd and to N when it is even. In an exceptional contrast, when $m = N/2$ - nearest neighbor impurities on an even lattice - all eigenvalues simultaneously become complex at the onset of \mathcal{PT}-symmetry breaking. This maximal symmetry breaking is accompanied by unique signatures in the time-evolution of a wavepacket [20].

These results raise the following questions: Is this exceptional behavior limited to lattices with a-dependent hopping or is it generic? Which factors truly determine the critical impurity strength $\gamma_c(N/2)$ in the exceptional case? How does the critical impurity strength $\gamma_c(m)$ depend upon lattice parameters and impurity positions?

In this Brief Report, we investigate an N-site lattice with impurities $\pm i\gamma$ at positions (m, \bar{m}) and a constant hopping amplitude $t_0(t_b)$ for sites outside (between) the parity-symmetric impurity locations. Our two salient results are as follows: i) When $m = N/2$, we analytically prove that all eigenvalues simultaneously become complex when $\gamma > \gamma_c(N/2) = t_b$. This robust result is true for any symmetric distribution of real hopping amplitudes. ii) When $t_b \gg t_0$, the critical impurity strength $\gamma_c(m) \rightarrow t_b$ irrespective of the impurity position m. When $t_b < t_0$, the critical impurity strength $\gamma_c(m) \sim t_b^\eta$ where the exponent $\eta(d) \sim d$ increases monotonically with the distance $d = N + 1 - 2m$ between the impurities. Thus, the \mathcal{PT}-symmetry breaking threshold can be substantially tuned without significant changes in the global hopping-amplitude profile of the lattice, and the exceptional nature of the $m = N/2$ case is due to the ability to partition the system into two, and exactly two, pieces.

Tight-binding Model: We start with the Hamiltonian for a one-dimensional, tight-binding, non-uniform lattice

$$H_{\mathcal{PT}} = -\sum_{i=1}^{N-1} t(i) \left(a_{i+1}^\dagger a_i + a_i^\dagger a_{i+1} \right) + i\gamma \left(a_m^\dagger a_m - a_m^\dagger a_m \right),$$

where $a_n^\dagger(a_n)$ is the creation (annihilation) operator for a state localized at site n, and the hopping function is given by $t(i) = t_b > 0$ for $m \leq i \leq \bar{m} - 1$, and $t(i) = t_0 > 0$ otherwise. This Hamiltonian continuously extrapolates from that for a lattice of length $d = N + 1 - 2m$ with impurities at its end when $t_b \gg t_0$, to that of a pair of disconnected lattices, one with the gain impurity and the other with the loss impurity, when $t_b \ll t_0$. Note that the critical impurity strengths in these two limits are known [17, 21]. Due to the constant hopping amplitude outside or between the impurity locations, an arbitrary eigenfunction $|\psi\rangle = \sum_{n=1}^N \psi(n) a_n^\dagger |0\rangle$ with energy E can
be expressed using the Bethe ansatz as
\[
\psi(n) = \begin{cases}
A \sin(kn), & 1 \leq n \leq m, \\
B \sin(kn), & m < n < \bar{m}, \\
P \sin(k' n) + Q \cos(k' n), & m < n < \bar{m},
\end{cases}
\] (2)

Here \(E(k, k') = -2t_0 \cos(k) = -2t_0 \cos(k') \) defines the relation between the quasimomenta \(k, k' \). In the \(PT \)-symmetric phase, the energy spectrum of Eq. (1) is particle-hole symmetric \([22]\), and the eigenenergies satisfy \(|E| \lesssim 2 \max(t_0, tb)\). Note that the relative phases of \(\psi(n) \) are the same at different points within each of the three regions, although there may be a phase difference between wavefunctions in different regions. Therefore, without loss of generality, we may choose \(\psi(n) \) to be real for \(1 \leq n \leq m \). By considering the eigenvalue equation \(H_{PT} |\psi\rangle = E |\psi\rangle \) at points \(m, m + 1 \) and their reflection counterparts, it follows that the quasimomenta \((k, k') \) obey the equation \([21]\)
\[
M(k, k') \equiv \left[\sin^2(k(m + 1)) + \sin^2(k(m)) \right] \\
+ \sin[k'(N + 1 - 2m)] + T_b^2 \sin^2(k(m)) \\
\times \sin[k'(N - 1 - 2m)] - 2T_b \sin(k(m)) \\
\times \sin(k(m + 1)) \sin[k'(N - 2m)] = 0,
\] (3)

where \(\Gamma = \gamma/t_0 \) and \(T_b = tb/t_0 \) denote the dimensionless impurity strength and hopping amplitude respectively. Note that when \(2 \min(t_0, tb) < |E| \leq 2 \max(t_0, tb) \), \(k \) is real and \(k' \) is purely imaginary (or vice versa), whereas for \(|E| \leq 2 \min(t_0, tb) \), both \(k, k' \) are real. Thus, Eq. (3) represents two distinct equations in these two cases.

The right-hand panel in Fig. 1 shows the dimensionless critical impurity strength \(\Gammac(d) = \gamma_c(m)/t_0 \) as a function of \(Tb = tb/t_0 \geq 1 \) for various inter-impurity-distances \(d = N + 1 - 2m \) in an \(N = 20 \) even lattice; we obtain similar results for an odd lattice. We find that \(\gamma_c \to tb \) quickly for \(tb/t_0 > 1 \); when \(tb/t_0 \gg 1 \), the lattice reduces to one with \(d + 1 \) sites, impurities at its end points, and the result \(\gamma_c = tb \) is expected \([21]\). The left-hand panel shows \(\Gamma_c(d) \) vs. \(T_b \) on a logarithmic scale in \(N = 20 \) and \(N = 21 \) lattices for \(T_b < 1 \). As the distance \(d \) between the impurities increases, corresponding critical impurity strength decreases as a power-law, \(\Gamma_c(d) \propto T_b^{-\nu(d)} \) where the exponent \(\eta(d) \sim d \). This behavior can be qualitatively understood as follows: the system is in the \(PT \)-symmetric region if the frequency \(\sim \gamma/t_0 \) at which particles are created at the gain-impurity site \(m \) is lower than rate at which these excess particles can hop over to the loss-impurity site, where they are absorbed at frequency \(\sim \gamma/t_0 \). Since \(tb \) is the hopping amplitude at sites between the impurities, it follows that the effective frequency of hopping from the gain- to the loss-site decreases with \(d = T_b^d \). Indeed, when \(tb/t_0 \ll 1 \), the system is divided into two, non \(PT \)-symmetric, uniform lattices, one with the loss impurity and the other with the gain. It follows, then, that \(\gamma_c \to 0 \) as \(tb/t_0 \to 0 \).

Origin of Maximal Symmetry Breaking: Now let us consider the \(m = N/2 \) case, where Eq. (3) reduces to
\[
t_0^2 \sin^2 \left[k \left(\frac{N}{2} + 1 \right) \right] = (b^2 - \gamma^2)^2 \sin^2 \left(k \frac{N}{2} \right).
\] (4)

It follows from Eq. (4) that the \(PT \)-symmetry breaks maximally when \(\gamma > \gamma_c(N/2) = tb \) and is accompanied by the simultaneous emergence of \(N \) complex (not purely imaginary) quasimomenta and eigenenergies. Since the bandwidth of the clean lattice is determined by both hoppings \((t_0, tb)\), it follows that the critical impurity strength is independent of the lattice bandwidth.

To generalize this result, we consider the system with an arbitrary, \(PT \)-symmetric, position-dependent hopping profile \(t_k = t_{N-k} \) and real energy eigenvalues. Since the hopping and eigenvalues are real, the eigenvalue difference equations imply that for any eigenfunction \(|\psi\rangle \), we can choose the coefficients \(\psi(k) \) to be real for \(1 \leq k \leq m \). A real eigenvalue \(\epsilon \) and the (real) coefficients \(\alpha = \phi(N/2) \) and \(\beta = \phi(N/2 - 1) \) of its corresponding eigenfunction \(|\phi\rangle \equiv \sum_{i=1}^{N} \phi(i)|i\rangle \) satisfy
\[
\det \begin{bmatrix}
t_{N/2-1} \beta + (\epsilon - i\gamma) \alpha \\
t_{N/2} \alpha \\
t_{N/2-1} \beta + (\epsilon + i\gamma) \alpha
\end{bmatrix} = 0,
\] (5)

where we have used the \(PT \)-symmetric nature of eigenfunctions to deduce that \(\phi(N/2 + 1) = e^{i\lambda} \alpha \), \(\phi(N/2 + 2) = e^{i\lambda} \beta \). Thus, when \(\gamma > \gamma_c = t_{N/2} = tb \), the eigenvalue \(\epsilon \) must become complex. Since this result is true for all eigenfunctions, it follows that the \(PT \)-symmetry breaks maximally and the critical impurity strength is solely determined by the hopping amplitude between the two impurities. This robust result also explains the fragile nature of \(PT \)-symmetric phase in lattices with hopping.
function \(t_\alpha(k) \) for \(\alpha < 0 \) [20]: in this case, the lattice bandwidth \(\Delta_\alpha \sim N^{-|\alpha|/2} \) whereas the hopping amplitude between the two nearest-neighbor impurities scales as \(t_b \sim N^{-|\alpha|} \). Therefore the critical impurity strength \(\gamma_c/\Delta_\alpha \sim N^{-|\alpha|/2} \rightarrow 0 \) as \(N \rightarrow \infty \). A similar analysis for closest impurities in an odd-\(N \) lattice shows that, due to the presence of a lattice site between the two impurity positions \(m = (N - 1)/2 \) and \(\bar{m} = (N + 3)/2 \), the corresponding critical impurity strength \(\gamma_c \) depends on the details of the eigenfunction.

Thus, the maximal symmetry breaking only occurs in an even, \(\mathcal{PT} \)-symmetric lattice with nearest-neighbor impurities, and its origin is the ability to naturally partition such a lattice into exactly two components.

Acknowledgments: This work was supported by the IUPUI Undergraduate Research Opportunities Program (J.B.) and NSF Grant No. DMR-1054020 (Y.J.).

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[2] C.M. Bender, Dorje C. Brody, and Hugh F. Jones, Phys. Rev. Lett. 89, 270401 (2002).
[3] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[4] A. Mostafazadeh, J. Phys. A 36, 7081 (2003).
[5] A. Mostafazadeh, Phys. Rev. Lett. 99, 130502 (2007).
[6] See, for example, C.M. Bender, Rep. Prog. Phys. 70, 947 (2007); A. Mostafazadeh, Phy. Rev. Lett. 99, 130502 (2007); M. Znojil, J. Phys. A 44, 075302 (2011).
[7] M. Znojil, Phys. Lett. A 40, 13131 (2007).
[8] M. Znojil, Phys. Lett. B 650, 440 (2007).
[9] M. Znojil, Phys. Rev. A 82, 052113 (2010).
[10] C. Korff and R. Weston, J. Phys. A 40, 8845 (2007); O.A. Castro-Alvared and A. Fring, ibid. 42, 465211 (2009).
[11] A. Guo et al., Phys. Rev. Lett. 103, 093902 (2009).
[12] C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010); T. Kottos, ibid, 166 (2010).
[13] D.N. Christodoulides, F. Lederer, and Y. Silberberg, Nature (London) 424, 817 (2003).
[14] A. Perez-Leija, H. Moya-Cessa, A. Szameit, and D.N. Christodoulides, Opt. Lett. 35, 2409 (2010).
[15] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[16] O. Bendix, R. Fksichmann, T. Kottos, and B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009).
[17] L. Jin and Z. Song, Phys. Rev. A 80, 052107 (2009); ibid. 81, 032109 (2010).
[18] S. Longhi, Phys. Rev. B 82, 041106(R) (2010).
[19] Y.N. Joglekar, C. Thompson, and G. Vemuri, Phys. Rev. A 83, 063817 (2011).
[20] D.D. Scott and Y.N. Joglekar, Phys. Rev. A 83, 050102(R) (2011).
[21] Y.N. Joglekar, D. Scott, M. Babbey, and A. Saxena, Phys. Rev. A 82, 030103(R) (2010).
[22] Y.N. Joglekar, Phys. Rev. A 82, 044101 (2010).