Synthesis, Characterization and Insilco Study of New 1,3-Oxazolone-5-(4-Cl)-one and - Oxazolone-5-(4-NO2)-one Derivatives

Hanan A. Al-Hazam ¹, Abdulbari. M.Mahood²

1. Deparment of Chemistry, College of Science, Basrah University
2. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala

Abstract:

In this study two new compounds are prepared 1,3-Oxazolone-5-(4-Cl)-one and Oxazolone-5-(4-NO2)-one derivatives by a reaction of glycine with sebacoyl chloride. The two compounds were identified and characterized by CHN, IR and ¹H-NMR Spectroscopy. Both derivatives show different biological activity according to the program.

Keyword: Oxazolone Derivatives, Insilco.

Introduction

Oxazolones have five membered heterocyclic compound containing an oxygen and nitrogen as hetero atoms (Fig. 1). The C-4 and C-2 position are characterized for their different biological activates (1).

![Fig. 1: The structure of oxazolone](image)

Various derivatives of Oxazolones show pharmacological activity, for example: anti-cancer (5) anti-diabetic (6), antifungal (7), anti-inflammatory (8) and immunomodulatory activity (9). In addition, oxazolones uses as intermediate for synthesis of many compounds such as amino acid (10) dyes (10) and alcohols (11).
The preparation of Oxazolone consisting the intermolecular condensation (Perkin Condensation Reaction) of N-acetyl 2-amino acid with aromatic aldehyde in the existent of acetic anhydride is well-known as Erlemeyer–Plochi oxazolone synthesis (1-5).

The Mechanism of the Reaction

This is an important way to prepare 2-amino acid and related compound (2). The aldol condensation reaction of oxazalons with carbonyl compound is accurately often followed by hydrolysis to provide unsaturated alpha amino acid, while drastic hydrolysis gives alpha oxa acid (4)
In the previous studies show various method to synthesis oxazolone (12,13) involve used zinic oxide (14) sodium acetate (15) and Calcium acetate (16). When oxazolone substituted at C-2 and C-4 positions demonstrate various activity (17).

The present work include the synthesis, characterization and biological study of two new oxazolone derivative by reaction Sebasoyl chloride with glycine as show in equation:

\[
\text{Experimental}
\]
A- Preparation of bis (2-acetamido acetic acid octane compound A)

A solution of glycine (1 mg, 0.02 mole) and sodium hydroxide (1 ml, 10 % solution), Sebacoyl chloride (0.01 mole) was added, then the reaction mixture was shaken vigorously for an hour, then a few grams of ice was added with string, after that, the solution was acidified with concentrated HCl and the product was collected and recrystallized from ethanol, the yield was 70 %, mp (236-238 0c).

B- Preparation (4-Cl-benzylidine) sebasoyl bis 1,3-oxazol-5-(4H)-one compound or (4-NO2-benzylidine) sebasoyl bis(1,3-oxazol-5-(4H)-one) compound 2:

A mixture of 0.01 mole acetic acid, 5 ml of acetic anhydride and 20ml of p-chloro-benzaldehyde (0.02) mole or p-nitro-benzaldehyde (0.02) mole was added to compound A. The temperature of the reaction kept to 70 ºc for 10 minutes. The mixture was poured into crushed ice and stirred for 32 minutes, the product was collected and recrystallized from ethanol to give the product. Table (1) shows the physical properties of the two compounds.

Table. 1 The physical properties of colored compound

No.	X	M.W.	Yield %	Color
1	P-NO2	546.536	70	Yellow
2	P-Cl	525.432	70	White

Result and Discussion

1. Elemental analysis

The structure of the synthesized compounds were confirmed that elemental analysis as in Table (2), the difference between the elemental analysis data and the calculated value of C, H and N elements were situated with range and this confirmed the validity of the structures of synthesized compound.

Table 2. : CHN results of prepared compounds

No.	X	Molecular	Calculate	Observed				
			C%	H%	N%	C%	H%	N%
1	NO2	C28H26N4O8	61.53	4.7952	10.251	61.3421	4.5952	10.1120
2	Cl	C29H26Cl2N2O4	64.0059	4.9878	5.331	64.0051	4.9810	5.2320
2. 1H-NMR:

All spectra showed a signal at region 1.21-1.24 ppm which was related to Ha (Fig.2-4), Hb appears at 1.7-1.87 ppm as multiple signal and Hc at 2.1-2.5 as triplet. H aromatic at 6.50-7.5 ppm while (Hg) appears at 8.7-8.9 ppm as a singlet.

No	X	Haro.	Hb	Hg	Ha	Hc
1	NO₂	7.01-7.04	1.7-1.8m	8.75	1.21	2.1-2.3t
2	Cl	6.5-7.5	1.7-1.8m	8.95	1.24	2.3-2.5 t

Fig 2. The structure of prepared compound (NO₂) and (Cl)
Fig. 3 The 1HNMR of compound 4-NO$_2$

Fig. 4 The 1HNMR of compound 4-Cl

3. FT-IR Spectra.

The spectra of compound have common strong absorption in the region 1700-1710 cm$^{-1}$ due to C=O of oxazol 5 (4H)one.

The two strong peaks can be indicated to aromatic double bond C=C (1600-1585) cm$^{-1}$, while C=N appears at 1510-1500 cm$^{-1}$. ν C-H olfinic appears at 3090-3095 cm$^{-1}$.

4. Theoretical study

Theroretical study were done by using Am1 semi-empirical method to calculate E Homo, E Lumo and dipole moment (Table 4), by using Hyper Chem 80, the figures show the ball and stick model for new compounds.
Table 4, theoretical results for prepared compounds

NO.	E Homo (eV)	E Lumo (eV)	energy (au)	Dipole moment (Debye)
1	-0.32149	0.99582	-1865.23326600	1.4156
2	-0.299921	-0.00161	-2389.938	3.1041

5. Physical Measurement

IR spectra with KBr disc in the range (200-4000) cm⁻¹ were recorded on a pye-Unicam SP3-300s IR spectrometer. Electronic spectra recorded on Pye-Unicam SP8-100 spectrophotometer. ¹HNMR spectra in CDCl₃ solvent were recorded in Joel EX-90FT using TMS as an internal standard. Melting point was measured on Gallenkam melting point apparatus and uncorrected. The carbon hydrogen analysis was carried out with Perkin-Elmer 24oM element analyzer.
6. Evaluation Biological activity of compounds;

6.1 Derivative has chlorine group.

Two theoretical methods used to measure the biological activity using Insilco Study of the two compounds.

The Oral toxicity prediction results of (Cl) compound using Toxicity Model Computation show LOD50 of the compound equal to 2800 mg/Kg and this show the lower toxicity of compound. Also the class of toxicity is 5 class and result a comparison with 54.26 of accuracy and the results in Fig. 5 and Table 5.

![Comparison of input compound with dataset compounds](image)

Fig .5 comparison of input compound (Cl) with dataset compounds

Table.5 Toxicity model Report.

Classification	Target	shorthand	Predication	Probability
Organ toxicity	Hepatotoxicity	Dil.	inactive	0.55
Toxicity end points	Carcinogenicity	Carcinogen	active	0.52
Toxicity end points	Immunotoxicity	immune	inactive	0.85
Toxicity end points	Mutagenicity	Mutagen	active	0.67
Toxicity end points	Cytotoxicity	cyto	inactive	0.67
6.2 Derivative of Nitro group.

The Oral toxicity prediction results for (NO₂) compound using Toxicity Model Computation show LOD50 of the compound equal to 2800 mg/Kg and this show the lower toxicity of compound. Also the class of toxicity is 5 class and result a comparison with 54.26 of accuracy and the results in Fig. 6 and Table.6.

\[\text{Fig .6 comparison of input compound (NO}_2\text{) with dataset compounds} \]

\[\text{Table.6 Toxicity model Report.} \]

Classification	Target	shorthand	Predication	Probability
Organ toxicity	Hepatotoxicity	Dil.	inactive	0.56
Toxicity end points	Carcinogenicity	Carcinogen	active	0.52
	Immunotoxicity	immune	inactive	0.85
	Mutagenicity	Mutagen	active	0.67
	Cytotoxicity	cyto	inactive	0.67

Reference
1. A. Dixit, G. Garg, N. P. Sharma, D. K. Shrivastava, A. Sharma, Synthesis & Biological evaluation of Oxazolone derivatives, Current Research in Pharmaceutical Sciences 2011; 02: 86-91.
2. L. D. Taylor, P. McLaughlin & M. Mach, The preparation of formaldehyde adduct of 3-dimethylamino2, 2-dimethylpropionaldehyde, Journal Organic Preparations and Procedures, 1, 1969.
3. S. Bala, M. Saini and S. Kamboj, Methods for synthesis of Oxazolones: A Review, International Journal of Chem Tech Research Vol. 3, No.3, pp. 1102-1118, 2011.
4. S. Fozooni, H. Khoshdast, H. Hassani, and H. Hamidian, Synthesis of Oxazolone and Imidazolone Derivatives in Presence of H2O2 Promoted Fly Ash as a Novel and Efficient Catalyst, Journal of Sciences, Islamic Republic of Iran 28(3):221-230(2017)
5. R.L. Jat, M. Mishra, and D. Pathak, Synthesis and anticancer activity of 4-benzylidene-2-phenyloxazol-5(4H)-one derivatives, International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4: 0975-1491.
6. G. Mariappan, B.P Saha, S. Datta, D. kumar, and K.Haldar, Design, synthesis and antidiuretic evaluation of oxazolone derivatives, J. Chem. Sci., May 2011; 123(3): 335– 341.
7. S. Abdel-Aty, Pesticide Effects of Some Imidazolidine and Oxazolone Derivatives, World Journal of Agricultural Sciences, 2009; 5(1): 105-113.
8. G. Okhan, Some New Mannich Bases of 5-Methyl-2-Benzoxazolinones With Analgesic and Anti-Inflammatory Activities, Turk J Chem., 2005; 29: 445 – 454.
9. A. Meseik, Synthesis and immunomodulatory properties of selected oxazolone derivatives, Bioorganic & Medicinal Chemistry, 2004; 12: 2049–2057.
10. S. Fozooni, A. Tikdari, H. Hamidian, H. Khabazzadeha, A synthesis of some new 4-arylidene-5(4H)-oxazolone azo dyes and an evaluation of their solvate chromic behavior, ARKIVOC 2008; (xiv): 115-123.
11. S.Bala, M. Saini, S. Kamboj, Methods for synthesis of Oxazolones, A Review International Journal of Chem.Tech Research CODEN, 2011; 3: 1102-1118.
12. S. Fisk, A. Robert, Mosey, and T. Jetze, The diverse chemistry of oxazol-5-(4H)-ones Chem.Soc.Rev. 2007; 36: 1385 – 1532.
13. K. Ahluwalia, Erlenmeyer-Plochl Azalactone and amino acid synthesis, Comprehensive Practical Organic Chemistry: Preparations and Quantitative analysis, 2000; 82.
14. G. Fareed, N. Afza, A. Versiani, N. Fareed, R. Mughal, A. Kalhoror, L. Iqbal and M. Lateef, Synthesis, spectroscopic characterization and pharmacological evaluation of oxazolone derivatives, J. Serb. Chem. Soc., 2013; 78(8): 1127–1134.
15. H. Hamidian and M. Tikdari, Synthesis of Unsaturated 5(4H)-Oxazolone Derivatives in the Presence of Antimony Pent fluoride as Catalyst, Asian Journal of Chemistry, 2007; 19, 2: 970-974.

16. R. Pereira, M. Sancelme, A.Voldoire, and M. Prudhomme, Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis(3- indolyl)oxazo1-2-ones, Bioorganic & Medicinal Chemistry Letters, 1997; 7: 2503-2506.

17. G. Fareed, N. Afza, A. Versiani, N. Fareed, R. Mughal, A. Kalhoro, L. Iqbal and M. Lateef, Synthesis, spectroscopic characterization and pharmacological evaluation of oxazolone derivatives, J. Serb. Chem. Soc., 2013; 78(8): 1127–1134.