Correlation between Chondromalacia Patella and Patellofemoral Factors in Middle-Age Population: A Clinical, Functional, and Radiological Analysis

Rashmeet Kaur¹ Anshul Dahuja² Chandanpreet Kaur³ Jagdeep Singh² Paramdeep Singh¹ Radhe Shyam²

¹Department of Radiodiagnosis, Guru Gobind Singh Medical College, Faridkot, Punjab, India
²Department of Orthopaedics, Guru Gobind Singh Medical College, Faridkot, Punjab, India
³Department of Physical Medical Rehabilitation, Guru Gobind Singh Medical College, Faridkot, Punjab, India

Abstract

Background Despite higher incidence of patellofemoral pain (PFP) and consequently morbidity, the understanding about PF factors leading to PF arthritis is way lacking.

Material and Methods A prospective study of first 80 patients who were diagnosed with chondromalacia patella (CMP) on magnetic resonance imaging (MRI) divided into early and late CMP groups were evaluated clinically, radiologically, and in terms of functional outcome.

Results: Quadriceps angle, Clark’s test, and Insall–Salvati ratio results were nonsignificant despite greater values were observed in late CMP group, whereas trochlear morphology results (sulcus angle: 153:138 degrees and sulcus depth 3.9:5.4 mm) and clinical scores were significant in late CMP group (Kujala’s score: 61:78, whereas PF pain score: 43:25). Type-C patellar morphology was found in greater number in late CMP cohort.

Conclusion Trochlear and patellar morphologies along with clinical scores play a key role in understanding of the CMP.

Keywords
- chondromalacia patella
- patellofemoral
- trochlea

Introduction

Knee pain is the second most prevailing disorder of knee and patellofemoral pain (PFP) being considered one of the most common forms of knee pain, with incidence ranging between 15 and 45%.⁰¹ PFP is described as nontraumatic diffuse anterior knee pain (AKP) during load bearing activities of the joint such as squatting, running, climbing, and descending stairs.² The degeneration of cartilage can quickly lead to tracking issues of the patella and, if left untreated, can often lead to osteoarthritis.³ There is no descriptive treatment of chondromalacia patella (CMP) due to poor regenerative properties and complex physiology of cartilage.⁴ Patellofemoral joint is a part of the knee joint and ironically even knowing the high incidence of PF arthritis and morbidity in middle aged patients, the literature on the understanding of PF factors is scarce and treatment is neither promising nor clear making it one of the tangled topic in today’s orthopaedics.⁵⁻⁶

There is very limited research on correlation of stage of CMP on severity of anterior knee pain and resultant functional morbidity.¹⁰⁻¹⁴ To our knowledge, this is the first study which has taken into account comprehensively the clinical
Materials and Methods

This was a single-center, prospective, cross-sectional study conducted at a high-volume tertiary center in North India after obtaining ethical approval the institutional ethical committee. We examined middle-aged patients in the orthopaedic outpatient department (OPD) with anterior knee pain who had undergone clinical and magnetic resonance imaging (MRI) examination of the knee and first 50 patients who were diagnosed with late/advanced CMP (grades III and IV, i.e., cartilage loss) constituted group I and 30 patients as (group II) with early CMP (grades I and II, i.e., no cartilage loss). Written informed consent was obtained from all patients. Patients with anterior knee pain for longer than a month and worsening of the anterior knee pain, with at least one of the following activities, were included in the study: climbing or descending stairs, squatting, jumping, and prolonged sitting. The study exclusion criteria were a history of a major trauma, history of past lower extremity surgery and/or fracture, presence of neuromuscular disease, inflammatory rheumatic disease, epilepsy, dementia, pregnancy, history of intra-articular injection, genu varus–valgus, difference in leg length and detection of severe ligament, Osgood–Schlatter disease, or advanced stage osteoarthritis in MRI.

In addition to anterior knee pain, complaints, including swelling, feeling of knee giving way, stiffness, locking at the knee, clicking noise during movements of the knee, crepitation, pain triggered by prolonged sitting, first-step limping, sliding knee cap, and difficulty in squatting, were recorded. Patients’ knee physical examination findings, Kujala’s PF scoring system (KPSS), and functional index questionnaire were obtained from the outpatient clinic records. The Q angle was determined from the MRI images. Patients were categorized into early and late CMP groups based on four stages on the MRI staging system that was modified Outerbridge’s arthroscopy staging system. In case, cartilage injuries in the medial and lateral femoral condyles were at different stages, the highest stage was considered for categorizing the patient. Finally, we evaluated respective correlation of the advanced CMP group (stages 3 and 4) and early CMP group with PF indexes, patellar morphology (Wiberg’s classification), Q angle, and patellar position in patients with anterior knee pain.

1. Trochlear sulcus angle: it is the angle between the two lines that connects the deepest point of the trochlea to the anterior medial and lateral femoral condyles measured on axial scans (Fig. 1), a trochlear angle greater than 144 degrees was evaluated as trochlear hypoplasia.

2. Trochlear sulcus depth: it is the distance between the deepest point of the trochlear sulcus and the line connecting medial and lateral femoral condyles. A sulcus depth lower than 5 mm was accepted as hypoplasia and a depth lower than 3 mm was accepted as a sign of dysplasia.

3. Insall–Salvati index (patellar tendon length/the longest diagonal diameter of patella): it is the ratio of patellar tendon length to the longest diagonal diameter of patella (Fig. 2). It was measured using the sagittal section where maximum length of patella was visualized (often the section where anterior cruciate ligament can be visualized). Patellar tendon length was divided by the longest diagonal diameter to calculate the Insall–Salvati index. Values below 1.1 were accepted as patella baja, and values above 1.3 were accepted as patella alta.

4. Lateral patellofemoral angle: it is the angle between the line connecting anterior medial and lateral femoral condyles and the line drawn tangential to the lateral patellar facet. This angle is used for the evaluation of patellar tilt and is measured using the axial section corresponding to the middle point of the patella at the sagittal plane (Fig. 3). This angle usually opens laterally, so any medial angulation or an angle lower than 8 degrees to the lateral side was evaluated as a sign of abnormal tilt.

5. Patellar translation: it is measured to assess patellar subluxation. It is the distance between the vertical line passing from the anterior of medial femoral condyle and the vertical line passing from the medial most border of the patella measured on the axial planes. A >2-mm sliding toward the lateral side was evaluated as subluxation.

Additionally, in all patients, the CMP grading/stage was determined from the MRI images. Patients were categorized into early and late CMP groups based on four stages on the MRI staging system that was modified Outerbridge’s arthroscopy staging system. In case, cartilage injuries in the medial and patellar facet were at different stages, the highest stage was considered for categorizing the patient.

Finally, we evaluated respective correlation of the advanced CMP group (stages 3 and 4) and early CMP group with PF indexes, patellar morphology (Wiberg’s classification), Q angle, and patellar position in patients with anterior knee pain.
To test the interobserver reliability, another radiologist performed quantitative and semiquantitative measurements of randomly selected 50 knees among 80 knees.

Statistical Analysis

Statistical analysis will be performed using the Statistical Package for Social Sciences (SPSS) software version 16 (SPSS Inc., Chicago, Illinois, United States). To compare the categorical data in terms of other categorical properties, Chi-square and Fisher’s exact tests were used. Any two groups were compared with regard to measurement values using the Mann–Whitney U-test. A p-value of <0.05 was accepted as statistically significant.

Results

Only a small fraction of patients showed type-A and -C morphologies of patella as shown in Fig. 4 and Fig. 5. Trochlear morphology results came out to be significant with higher sulcus angle (153 degrees) and shallow trochlear sulcus (3.9 mm) as shown in Fig. 1 and 6. We observed higher
number of patients in patella alta:patella baja in late CMP group but the results are not significant. Clinical scores were significantly better in early CMP group as compared with late CMP group (Fig. 7).

Discussion

In previous studies, the overall sensitivity and specificity of MRI in the diagnosis of patellar cartilage defects ranged between 83 and 97%. Only 10% of CMP patients require surgery, so it is very difficult to justify every doubtful CMP patient to prepare for surgery.

A high Q-angle leads to valgus stress with excessive pressure on PF articulation, consequently resulting in CMP. Most of the western studies suggest that there is a significant association between AKP and Q-angle and there are multiple studies to counter the same. So, the validity of Q-angle is dubious. In our study, the average Q-angle in advanced and early CMP group was 17.1 and 13.2 degrees favoring association between Q-angle and anterior knee pain but the result was statistically nonsignificant (as shown in Table 1). We believe that Q-angle is an important parameter which can have a significant association with anterior knee pain but the cause of indecisive results could be because of its measurement bias, dynamic character, and multifactorial association.

To evaluate the relationship between the stage of chondromalacia and severity of pain experienced by patients, PF severity scale scores were used. Patients in the advanced-stage CMP group had higher scores. To our knowledge, there are only couple of studies in literature which analyzed the relationship between pain intensity and disease progression. In literature, only one study prospectively followed-up clinical symptoms in patients who were categorized based on trochlear and patellar cartilage injury in arthroscopy and found greater functional limitation and more subjective complaints among patients with more severe cartilage injury. Our study showed a significant difference in the clinical scores of late and early CMP groups with Kujala’s functional score lower (61 as compared with 78 in early CMP) and PF pain score higher in the advanced CMP group (43 in comparison to 25 in early CMP shown in Table 2). Our results equate with Aysin et al who observed that those with more advanced CMP reported higher pain severity and lower knee function compared with those with early CMP, but they found no difference in the MRI measurements of two groups.

Table 1 Demographics of patients with anterior knee pain

Patient profile	Late CMP (50)	Early CMP (30)
Age (range; y)	44 (38–53)	41 (36–50)
M:F ratio	29:21	19:11
Average weight (kg)	71.8 kg	69.9
Unilateral:bilateral	36:14	21:9
Average Q angle	17.1	13.2
ROM of knee joint (degree)	0–105	0–120
Any swelling/synovitis	6	1
Pain on specific activity	29	19
Squatting	22	2
Climbing on stairs	13	0
First-step pain		

Abbreviations: CMP, chondromalacia patella; F, female; M, male; Q angle, quadriceps angle; ROM, range of motion;
There is plenty of research work done on trochlear morphology and PF pathology with contrasting results. The three-dimensional shape of the femoral trochlea is becoming the center of consideration in determining CMP. According to Ali et al, the trochlear morphology plays a key role in PF pathology and should always be taken into account while taking PF parameters. Our study favored multiple previous studies showing significant MRI results of lower trochlear depth and higher TSA are associated with higher cartilage defects (Table 3 and Fig. 8). This finding supports our assumption which proposes that knees with flattened lateral trochlea are more likely to face CMP and we can identify patients at risk of developing CMP with higher TSA.

Patellar tilt can be assessed by lateral femoral angle which didn't show any association with the CMP in our study, supporting by the study of Aysin et al. Contrary to our results, Yang et al and Tuna et al found correlation between lateral femoral angle and CMP with smaller lateral PF angle or medial opening of angle that is associated with higher probability of cartilage defect.

The literature is muddled with multiple knee examination tests and we know that there is no single best clinical test to predict CMP. The low sensitivity and predictive value of Clark’s sign as shown by Doberstein et al were also strengthened in our study than 50% of advanced CMP patient had positive Clark’s sign. So, we are of this opinion that combining clinical test with clinical scores of KPSS or PFP scale (PFPS) can increase the predictability rate of CMP and may help to formulate a criteria to diagnose it more precisely. However, to verify this presumption, there is a need for extensive research with large series showing substantial data.

Articular cartilage defects (ACD) in the PF region are more common with various dysplastic shapes of the patella. However, a small number of investigations have revealed correlations between the shape of the patella and ACD in the PF region. Wiberg himself stated that type-A (I) and -B (II) shapes of patella are less destined to ACD in the PF region. Our study supported Gudas et al and Wiberg’s classification system observing type II as most common variant and type C most closely associated with advanced CMP. Gudas et al observed type-II patella as most common variant and also concluded that the shape of the patella is an important anatomic parameter which may reflect the development of articular cartilage defects in the PF region. So, it can be anticipated that type-C (III) morphology can have a progressive course to CMP which further can be halted by proactive measures in the form chondroprotective drugs and strict adherence to “do’s and don’ts” regimen for the knee care.
Insall–Salvati ratio has been the matter of debate as a possible risk factor for CMP.33-37 Limited studies found an association between patella alta and CMP postulating that patella alta contributes to maltracking and PF mismatch.33,36 Other studies have shown no significant correlation between Insall–Salvati ratio and CMP.27 Dowd and Bentley rather found association between patella alta and patellar instability but failed to find any correlation with CMP.34 In concordance with these findings, our study did not show any significant interconnection between the presence of CMP and Insall–Salvati ratio despite having higher ratio of patella alta to patella baja in advanced chondromalacia group.

Limitations
This study includes following limitations: static Q angle, non-feasibility of standing position for MRI, medium cohort size, no follow-up, and no arthroscopy correlation.

Future Considerations
Further studies should have a longer follow-up with larger group specifically focusing on trochlear and patellar morphology and assessment of progression in CMP.

Conclusion
A holistic approach is required to interpret the multifactorial association of CMP. Our study concludes that a combination of Q angle, clinical examination, and PF scores can be used in the preliminary criteria to isolate CMP patients. These patients further can be directed for detailed radiological imaging of trochlear and patellar morphology to delineate underlying pathology, severity, and management. Furthermore, radiological criteria can be generated to predict progression of early to late CMP and to assess patients at risk of developing CMP. Lateral PF angle and Insall–Salvati ratio add little to the understanding of CMP pathology and may be skipped in routine PF assessment.

Ethical Approval
This study was approved by Ethics Committee and the ethical approval number is GGS/IEC//19/19.

Financial Support and Sponsorship
None.

Conflicts of Interest
There are no conflicts of interest.

Acknowledgment
Authors would like to thank Department of Social and Preventive Medicine.

References
1. Crossley KM, Stefanik JJ, Selfe J, et al. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures. Br J Sports Med 2016;50(14):839–843
2. Roush JR, Curtis Bay R, Curtis Bay R. Prevalence of anterior knee pain in 18-35 year-old females. Int J Sports Phys Ther 2012;7(4):396–401
3. Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. J Biomed Mater Res A 2012;100(9):2526–2536
4. McCauley TR, Recht MP, Disler DG. Clinical imaging of articular cartilage in the knee. Semin Musculoskelet Radiol 2001(5):293–304
5. Crossley KM, Bennell KL, Cowan SM, Green S. Analysis of outcome measures for persons with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil 2004;85(5):815–822
6. Bennell K, Bartam S, Crossley K, Green S. Outcome measures in patellofemoral pain syndrome: test retest reliability and inter-relationships. Phys Ther Sport 2000;1:32–41
7. Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimar in 2012. Scoring of patellofemoral disorders. Skeletal Radiol 1993;22(6):403–410
8. Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011;31(1):37–61
9. Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol 2010;194(3):721–727
10. Gudas R, Siuπsin 25, Gudaïtė A, et al. The patello-femoral joint degeneration and the shape of the patella in the population needing an arthroscopic procedure. Medicina (Kaunas) 2018;54(2):21
11. Mattila VM, Weckström M, Leppänen V, Kiuru M, Pihlajamäki H. Sensitivity of MRI for articular cartilage lesions of the patellae. Scand J Surg 2012;101(1):56–61
12. Mattila VM, Kuiikkiala H, Leppänen VV, Kiuru MJ, Mattila VM. Reliability of clinical findings and magnetic resonance imaging for the diagnosis of chondromalacia patellae. J Bone Joint Surg Am 2010;92(4):927–934
13. Haim A, Yaniv M, Dekel S, Amir H. Patellofemoral pain syndrome: validity of clinical and radiological features. Clin Orthop Relat Res 2006;451(1):223–228
14. Emami MJ, Ghahramani MH, Abdinajad F, Namazi H. Q-angle: an invaluable parameter for evaluation of anterior knee pain. Arch Iran Med 2007;10(1):24–26
15. Patil S, White L, Jones A, Hui AC. Idiopathic anterior knee pain in 18-35 year-old females. Int J Sports Phys Ther 2010;5(3):356–359
16. Türkmen F, Aca¡ MA, Kacura BK, et al. A new diagnostic parameter for patellofemoral pain. Int J Clin Exp Med 2015;8(7):11563–11566
17. Aysin IK, Aysin A, Mete BD, Guvendi E, Aysin M, Kocyigit H. Aysin. Investigation of relationship between anterior knee pain, chondromalacia patella and patellofemoral malalignment. Eurasian J Med 2018;50(1):28–33
18. Elson DW, Jones S, Caplan N, St Clair Gibson A, Stewart S, Kader DF. Clinically insignificant association between anterior knee...
pain and patellofemoral lesions which are found incidentally.
Knee 2013;20(6):471–475

23 Duran S, Cavusoglu M, Kocadal O, Sakman B. Association
between trochlear morphology and chondromalacia patella:
an MRI study. Clin Imaging 2017;41:7–10

24 Mehl J, Feucht MJ, Bode G, Dovi-Akue D, Stüdkamp NP,
Niemeyer P. Association between patellar cartilage defects and
patellofemoral geometry: a matched-pair MRI comparison of
patients with and without isolated patellar cartilage defects.
Knee Surg Sports Traumatol Arthrosc 2016;24(3):838–846

25 McNally EG, Ostlere SJ, Pal C, Phillips A, Reid H, Dodd C.
Assessment of patellar maltracking using combined static and
dynamic MRI. Eur Radiol 2000;10(7):1051–1055

26 Özdemir M, Kavak RP. Chondromalacia patella among mil-
itary recruits with anterior knee pain: Prevalence and association with patellofemoral malalignment. Indian J Orthop 2019;53(6):682–688

27 Thakkar RS, Del Grande F, Wadhwa V, et al. Patellar insta-
bility: CT and MRI measurements and their correlation with
internal derangement findings. Knee Surg Sports Traumatol
Arthrosc 2016;24(9):3021–3028

28 Tuna BK, Semiz-Oysu A, Pekar B, Bukte Y, Hayirliglu A.
The association of patellofemoral joint morphology with
chondromalacia patella: a quantitative MRI analysis. Clin Imaging 2014;38(4):495–498

29 Loudon JK, Wiesner D, Goist-Foley HL, Asjes C, Loudon
KL. Intrarater reliability of functional performance tests
for subjects with patellofemoral pain syndrome. J Athl
Train 2002;37(3):256–261

30 Doberstein ST, Romeyn RL, Reineke DM. The diagnostic value
of the Clarke sign in assessing chondromalacia patella. J Athl
Train 2008;43(2):190–196

31 de Lange-Brokaar BJE, Bijsterbosch J, Kornaat PR, et al.
Radiographic progression of knee osteoarthritis is associated
with MRI abnormalities in both the patellofemoral and tibiofem-
oral joint. Osteoarthritis Cartilage 2016;24(3):473–479

32 Kim HS, Yoo JH, Park NH, Chang JH, Ban YS, Song SH. Magnetic
resonance imaging findings in small patella syndrome. Knee
Surg Relat Res 2016;28(1):75–78

33 Insall J, Falvo KA, Wise DW. Chondromalacia patellae: a pro-
spective study. J Bone Joint Surg Am 1976;58(1):1–8

34 Dowd GS, Bentley G. Radiographic assessment in patellar
instability and chondromalacia patellae. J Bone Joint Surg
Br 1986;68(2):297–300

35 Aglietti P, Cerulli G. Chondromalacia and recurrent subluxation
of the patella: a study of malalignment, with some indications
for radiography. Ital J Orthop Traumatol 1979;5(2):187–201

36 Lancourt JE, Cristini JA. Patella alta and patella infera.
Their etiological role in patellar dislocation, chondromala-
cia, and apophysitis of the tibial tubercle. J Bone Joint Surg
Am 1975;57(8):1112–1115

37 Marks KE, Bentley G. Patella alta and chondromalacia. J Bone
Joint Surg Br 1978;60(1):71–73