Conclusion. Our results indicate variation in practice among providers at ECU ID Clinic regarding the screening, the need for a follow-up, and the type of follow-up provided. Additionally, research shows that anal cancer is one of the non-defining AIDS cancers whose incidence increases as the patient ages. However, based on the data, anal cancer screening decreases as the patient ages at the ECU ID clinic. Therefore, a standardized clinic protocol is needed, which may help improve the screening of HPV and anal cancer.

Disclosures. All authors: No reported disclosures.

275. Parental Risk Factors for Fever in their Children 7–10 Days After the First Dose of Measles-Containing Vaccines
Ousseny Zerbo, PhD1; Sharareh Modaresi, MD, MPH2; Kristin Goddard, MPH1; Nathan Pastorek, MD, PhD3; FPIDS4; and Nicolas E. Klein, MD, PhD5; 1Division of Research, Kaiser Permanente Vaccine Study Center, Oakland, California, 2US Health and Human Services, Bethesda, Maryland, 3Pediatrics, Stanford University School of Medicine, Stanford, California, 4Kaiser Permanente Vaccine Study Center, Oakland, California

Session: 244. Miscellaneous Vaccines
Saturday, October 6, 2018: 12:30 PM

Background. Fever 7–10 days after the first dose of a measles-containing vaccine (MCV) clusters among siblings in families suggesting a genetic basis. To further investigate this association, we evaluated whether clinical conditions in parents are associated with fever after a first dose of MCV in the child.

Methods. We conducted a cohort study including children born in Kaiser Permanente Northern California between 2009 and 2016 who received an MCV between ages 1 and 2 years. Each child was linked with his/her mother and father (if possible). We defined MCV-associated fever as a clinic or emergency department visit with fever code 7–10 days after the first dose of an MCV and identified parental clinical conditions present before or after child birth in electronic health record data. We evaluated parental clinical conditions associated with MCV-associated fever in the child using chi square or T test and multivariable logistic regression analyses.

Results. The study included 244,128 children, 192,253 mothers (100% of children’s mothers), and 108,877 fathers (59% of children). There were 3,750 children (1.54%) with MCV-associated fever. We identified more than 1,000 separate clinical conditions in the parents, of which 29 maternal and 11 paternal conditions were significantly associated with MCV-associated fever in the child. After adjustment for maternal and infant factors including healthcare seeking behavior, maternal fever (odds ratio [OR] 1.15, 95% confidence interval [CI] 1.03–1.25), respiratory infection with fever (OR 1.20, 95% CI 1.10–1.30), maternal fever after a MCV (OR 0.56, 95% CI 1.35–25.78), migraines (OR 0.73, 95% CI 1.05–1.24), syncope (OR 1.15, 95% CI 1.01–1.27), arrhythmia (OR 1.21, 95% CI 1.00–1.45), essential thromboembolism (OR 1.93, 95% CI 1.15–3.25) and Addison’s disease (OR 2.90, 95% CI 0.90–3.33) were significantly associated with infant fever after a MCV. Maternal fever after a MCV (OR 1.44, 95% CI 1.20–1.72) and (OR 1.60, 95% CI 1.03–2.48) were associated with MCV-associated fever in the child.

Conclusion. Specific parental immune factors were associated with fever in their child. These associations could be mediated generally to genetics and particularly to familial immune responses.

Disclosures. N. P. Klein, Sanofi Pasteur: Investigator, Research grant. Merck: Investigator, Research grant. GSK: Investigator, Research grant. Pfizer: Investigator, Research support. Protein Science: Investigator, Research grant. MedImmune: Investigator, Research grant. Dynavax: Research Contractor, Grant recipient.

276. Immunogenicity of Takeda's Bivalent Virus-like Particle (VLP) Norovirus Vaccine (NoV) Candidate in Children From 6 Months up to 4 Years of Age
Taisei Masuda, PhD1; Inge Lefvre, MD2; Paul Mendelman, MD3; Jim Sherwood, BA1; Svetlana Bizjajeva, PhD1 and Astrid Borkowski, MD1; 1Takeda Pharmaceuticals International AG, Zurich, Switzerland, 2Takeda Development Center Americas, Inc., Deerfield, Illinois

Session: 244. Miscellaneous Vaccines
Saturday, October 6, 2018: 12:30 PM

Background. With the introduction of routine childhood rotavirus vaccination, norovirus is now becoming the major cause of medically-attended gastroenteritis in children. Takeda is developing a norovirus vaccine (NoV) that contains genotypes GI.1 and GII.4 consensus (GII.4c) sequence VLPs. We report the immunogenicity data of NoV administered to children from 6 months up to 4 years of age.

Methods. Two age cohorts (1 to < 4 years, and 6 to < 12 months, n = 120 per cohort) were enrolled in this ongoing double-blind, randomized, phase 2 dose-finding study conducted in Colombia and Panama. Children received one or two intramuscular doses of NoV formulations containing 15/15, 15/50, 50/50 or 50/150 μg of GI.1 and GII.4c VLPs used as homologous priming and het

Results. Each formulation induced dosage-dependent HBGA responses after a single dose, with a further increase after a second dose. In 1- to <4 year-olds HBGA SRR against GI.1 and GII.4c after one dose were 55–62% and 67–82%, respectively. SRR increased to 93–100% and 83–100% after a second dose. In 6 to < 12 month-olds response levels were lower after the first dose: SRRs were 10–61% and 17–65% for GI.1 and GII.4c, respectively, increasing to 83–100% and 80–92% after a second dose. GMTs reflected this pattern of responses with higher GMTs for GI.1 and GII.4c achieved with the 50/150 μg formulation than the other dosages after both vaccinations in both age cohorts.

Conclusion. In 6–12 month-old infants and children up to 4 years of age, robust immune responses to the bivalent norovirus VLP vaccine candidates were observed; the highest HBGA responses in both age cohorts were observed after two doses of 50/150 μg formulation. Further clinical evaluation of these formulations is underway in infants < 6 months of age.

Clinical Trial Registration Number: NCT 03135112; End_of_Clinical_Trial: 2018-000779-20

Disclosures. T. Masuda, Takeda Pharmaceuticals International AG: Employee, Salary. I. Lefvre, Takeda Pharmaceuticals International AG: Employee, Salary. P. Mendelman, Takeda Pharmaceuticals International AG: Employee. I. Sherwood, Takeda Pharmaceuticals International AG: Employee, Salary. S. Bizjajeva, Takeda Pharmaceuticals International AG: Employee, Salary. A. Borkowski, Takeda Pharmaceuticals International AG: Employee, Salary.