Propensity score matched mortality comparisons of peritoneal and in-centre haemodialysis: systematic review and meta-analysis

Mohamed E. Elsayed1,2, Adam D. Morris2, Xia Li3, Leonard D. Browne1 and Austin G. Stack1,4,5
1Graduate Entry Medical School, University of Limerick, Limerick, Ireland, 2Department of Nephrology, Royal Preston Hospital, Preston, UK, 3Departments of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia, 4Department of Nephrology, University Hospital Limerick, Limerick, Ireland and 5Health Research Institute, University of Limerick, Limerick, Ireland

Correspondence to: Austin G. Stack; Email: austin.stack@ul.ie; Twitter handle: @austingstack

ABSTRACT

Background. Accurate comparisons of haemodialysis (HD) and peritoneal dialysis (PD) survival based on observational studies are difficult due to substantial residual confounding that arises from imbalances between treatments. Propensity score matching (PSM) comparisons confer additional advantages over conventional methods of adjustment by further reducing selection bias between treatments. We conducted a systematic review of studies that compared mortality between in-centre HD with PD using a PSM-based approach.

Methods. A sensitive search strategy identified all citations in the PubMed, Cochrane and EMBASE databases from inception through November 2018. Pooled PD versus HD mortality hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated through random-effects meta-analysis. A subsequent meta-regression explored factors to account for between-study variation.

© The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Results. The systematic review yielded 214 citations with 17 cohort studies and 113,578 PSM incident dialysis patients. Cohort periods spanned the period 1993–2014. The pooled HR for PD versus HD was 1.06 (95% CI 0.99–1.14). There was considerable variation by country, however, mortality risks for PD versus HD remained virtually unchanged when stratified by geographical region with HRs of 1.04 (95% CI 0.94–1.15), 1.14 (95% CI 0.99–1.32) and 0.98 (0.87–1.10) for European, Asian and American cohorts, respectively. Subgroup meta-analyses revealed similar risks for patients with diabetes [HR 1.09 (95% CI 0.98–1.21)] and without diabetes [HR 0.99 (95% CI 0.90–1.09)]. Heterogeneity was substantial ($I^2 = 87\%$) and was largely accounted for by differences in cohort period, study type and country of origin. Together these factors explained a substantial degree of between-studies variance ($R^2 = 90.6\%$).

Conclusions. This meta-analysis suggests that PD and in-centre HD carry equivalent survival benefits. Reported differences in survival between treatments largely reflect a combination of factors that are unrelated to clinical efficacy.

Keywords: haemodialysis, mortality, peritoneal dialysis

INTRODUCTION

Despite observed improvements in survival among patients with end-stage kidney disease (ESKD), the overall risk of death remains alarmingly high for many patients treated with dialysis [1, 2]. Haemodialysis (HD) and peritoneal dialysis (PD) are very different treatment strategies, both technically and mechanistically, and the net benefit of each strategy on health is dependent on the individual clinical efficacy in controlling fluid status and correcting metabolic derangements without contributing to infection risk or cardiovascular disease. For patients approaching ESKD, a full discussion of the potential advantages and disadvantages of PD and HD is an essential component of modern pre-dialysis care programmes. The optimal dialysis modality that confers the greatest survival advantage remains controversial in the absence of evidence from successfully completed randomized controlled trials [3, 4].

To date, comparative studies of survival between PD and in-centre HD have yielded conflicting results and are purely based on observational studies with no randomization of treatment. Substantial systematic differences are found between PD and HD and contribute to substantial selection bias, and many of these characteristics are directly associated with mortality [5–7]. Methodologically, these systematic differences may surpass the ability of conventional methods to adjust for treatment differences and prevent the design and completion of randomized controlled clinical trials. Consequently there is a need for novel and more robust statistical methods to allow more meaningful comparisons [8]. The use of propensity scores, which was introduced in the 1980s, has gained popularity in the last decade (Supplementary data, Figure S1). These are probability scores that are conditioned on treatment assignment. They are most commonly used in matching subjects of different treatment groups to achieve balance in the distribution of measured confounders, allowing direct estimation of causal treatment effects (TEs). They have been shown to outperform conventional regression methods and provide less biased estimates [9–11].

Given the residual uncertainty regarding the optimal survival strategy between HD and PD, we conducted a systematic review and meta-analysis of studies that utilized exclusively a propensity score matching (PSM) approach to compare mortality risks.

MATERIALS AND METHODS

Search strategy, study selection and data synthesis

The protocol of this review was registered and published previously on PROSPERO (http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42014014323). Electronic searches were conducted on the PubMed, Cochrane and EMBASE databases from inception until 30 November 2018 using a sensitive search strategy (Supplementary data, Table S1). Studies were included if they met the following criteria: (i) primary objective to compare mortality risks between PD and in-centre HD, (ii) adult patients with incident ESKD, (iii) PSM as the primary strategy to control for confounding and (iv) published in the English language. Studies that employed propensity score methods other than a matching strategy were not included. In addition, editorials, letters and case reports were also excluded. Two reviewers (M.E.E. and A.D.M.) independently screened and identified studies for inclusion from a web-based platform [12]. In cases of disagreement, a subsequent discussion took place with the resolution of discrepancies by consensus. Data were extracted using a form that was developed prior to article review. The following data were extracted: year of publication, type of study, country of the study, source of the cohort, years of cohort establishment, last year of follow-up, variables used to derive propensity scores, type of matching, number of matched patients and risk of death estimates expressed as hazard ratios (HRs) or relative risks (RRs). Information was retrieved where available on analysis by age group, diabetes and duration on dialysis (vintage), as these factors have previously been shown to modify the impact of modality on mortality [13].

Quality assessment and risk of bias

Risk of bias was examined against the Newcastle–Ottawa Scale for observational studies [14]. This scale awards studies a star-based score that serves as a quick visual assessment tool across three main domains: selection of study groups (up to four stars), comparability of the groups (up to two stars) and ascertainment of the exposure or the outcome of interest (up to three stars). A maximum score of nine stars reflects a study with the highest methodological quality. We also investigated the quality of reporting on PSM methods and the appropriateness of their use. This was assessed on the following domains as proposed by Austin [15]: derivation of propensity scores including choice of variables, reporting and handling of missingness, type of matching methods and definitions, assessment of matching adequacy from appropriate balance diagnostics and adjustment for within-pair correlation in the final model.
Statistical analysis

All analyses were conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A random effects meta-analysis model proposed by DerSimonian and Laird [16] was used to calculate the pooled TE estimate. Robustness of outcome was examined through influential sensitivity analysis where a series of meta-analysis models were fitted with one study being omitted at a time. This helped to explore outlier studies that could have largely influenced the results towards a certain direction. Between-studies heterogeneity was assessed using chi-square with a significance level of $P < 0.10$ and I^2 statistic with the following suggested thresholds: low (25–49%), moderate (50–74%) and high (>75%). Random effects meta-regression allowed exploration of factors accounting for between-studies variation. This was performed through regression of the HR of PD versus HD on potential explanatory factors after logarithmic transformation. Since the outcome was on the logarithmic scale (log HR of PD versus HD), factors with a significantly positive coefficient value reflected an increase in HR in relation to the referent factor while factors with a significantly negative coefficient indicated a corresponding decrease in HR. Covariates considered in the meta-regression model included country location, cohort design (classified as retrospective or prospective and the time period of the study. Three chronological periods were defined as follows: historic, when the study population was initiated on dialysis prior to 2000; middle, where cohort recruitment was between 2000 and 2007; and recent, if the cohort began dialysis after 2007. Potential publication bias was assessed by evaluating the study effect using visual inspection of funnel plots and by conducting Egger’s regression test. Analyses were conducted using R statistical software (R Foundation, Vienna, Austria).

RESULTS

Search results and characteristics of included studies

The initial search identified 214 citations. After duplicate removal and exclusion on title and abstract screening, 38 citations qualified for a full text review. A further 21 studies were excluded for specific reasons, as shown in Figure 1. Following these exclusions, a total of 17 studies, which were published
Year of publication	Authors	Country	Source of cohort	Type of study	Start year	End year	Last follow-up	Number of matched HD patients	Number of matched PD patients	Type of primary analysis	Special characteristics
2018	Thiery et al. [20]	France	REIN registry	Prospective	2006	2008	2013	3088	1105	As treated	–
2017	Rigoni et al. [21]	Italy	Single centre	Retrospective	2008	2014	2015	279	132	As treated	–
2016	Wang et al. [27]	Taiwan	NHIRD	Retrospective	2000	2010	2011	975	975	Intention to treat	Patients with previous history of stroke
2016	van de Luijtgaarden et al. [17]	Europe	ERA-EDTA registry	Prospective	1993	1997	2002	8198	8198	Intention to treat	–
2016	van de Luijtgaarden et al. [17]	Europe	ERA-EDTA registry	Prospective	1998	2002	2007	9610	9610	Intention to treat	–
2016	van de Luijtgaarden et al. [17]	Europe	ERA-EDTA registry	Prospective	2003	2007	2012	9856	9856	Intention to treat	–
2016	Lee et al. [18]	Korea	Multicentre cohort	Prospective	2008	2013	2015	199	199	Intention to treat	Patients with acceptable controlled diabetes
2015	Yang et al. [26]	Taiwan	NHIRD	Retrospective	1999	2010	2010	244	122	Intention to treat	Patients with ESRD due to APKD
2015	Waldum-Grevbo et al. [19]	Norway	Norwegian renal registry	Retrospective	2005	2010	2013	225	225	As treated	–
2014	Kumar et al. [22]	USA	KPSC database	Prospective	2001	2013	2013	1003	1003	Intention to treat	–
2014	Kim et al. [29]	Korea	HRA registry	Prospective	2005	2008	2009	7049	7049	Intention to treat	–
2014	Contreras et al. [23]	USA	USRDS	Prospective	1995	2006	2006	1352	1352	Intention to treat	Patients with SLE
2013	Choi et al. [30]	Korea	Multicentre	Prospective	2008	2011	2011	278	278	Intention to treat	–
2013	Chang et al. [31]	Korea	Single centre	Retrospective	2000	2009	2010	212	212	Intention to treat	–
2012	Lievens et al. [24]	USA	Da Vita database	Prospective	2001	2006	2007	4008	4008	Intention to treat	–
2012	Chang et al. [32]	Taiwan	NHIRD	Retrospective	1997	2006	2006	4721	4721	Intention to treat	–
2010	Weinhandl et al. [25]	USA	CMS ESRD database	Retrospective	2003	2003	2006	6337	6337	Intention to treat	–
2010	Chou et al. [33]	Taiwan	Single centre	Retrospective	1996	2006	2006	78	78	As treated	Patients with positive hepatitis C virus infection

REIN, Renal Epidemiology and Information Network; NHIRD, National Health Insurance Research Database; ERA-EDTA, European Renal Association–European Dialysis and Transplant Association; APKD, adult polycystic kidney disease; KPSC, Kaiser Permanente Southern California; HIRA, Health Insurance Review and Assessment Service; USRDS, United States Renal Data System; SLE, systemic lupus erythematosus; CMS, Centers for Medicare and Medicaid Services.
between 2010 and 2018, contributed to the final meta-analysis. These included 20 historical cohorts, as two studies included >1 cohort [17, 18]. Ten studies were registry-based, three were from multicentre cohorts and the remainder were single-centre studies. There was wide geographical variability, with four studies reporting on European cohorts [17, 19–21], a further four on North American patients [22–25] and nine on dialysis patients from Asian countries. All studies included incident patients who were initiated on dialysis over a period from 1993 to 2014, with six cohorts having patients commencing dialysis before the year 2000 [17, 23, 26, 32, 33]. The total number of dialysis patients was 441,715, from which a total of 114,608 patients were matched on propensity scores and contributed to the final analysis. Table 1 describes the characteristics of included studies. Some studies compared mortality risks in populations with specific characteristics, such as those with a previous history of stroke [27], with systemic lupus erythematosus [23], with adult polycystic kidney disease as the cause of ESKD [26] and with chronic hepatitis C [33].

Meta-analysis of mortality risks between PD and in-centre HD

The HR of death for PD versus in-centre HD varied among PSM cohort studies. Overall, 10 studies did not find a significant difference in mortality between PD and in-centre HD [17–19, 21–23, 25, 26, 32, 33], 4 indicated better survival outcome with PD [17, 18, 24, 30] and the remaining studies favoured better survival with in-centre HD [20, 27–29, 31]. The overall pooled HR of death for PD versus HD was 1.06 [95% confidence interval (CI) 0.99–1.14], demonstrating that PD and HD have similar survival rates. Although there was considerable variation in magnitude and direction of the PD/HD HR by country of origin, meta-analyses on studies from the same geographical region (Europe, Asia and North America)
Table 2. Description of effect modifiers of the association between dialysis modality and risk of death within included studies

Year of publication	Authors	Subgroup analysis on PSM cohort	Factors defining subgroups	Effect of studied factors with significant results	Vintage effect examined on PSM cohort	Effect of vintage on PD-HD RR
1 2018	Thiery et al. [20]	No		-	No	-
2 2017	Rigoni et al. [21]	No		-	No	-
3 2016	Wang et al. [27]	Yes	Age, sex, diabetes and eight other comorbidities	Higher RR in PD group among women, diabetics and those with four other comorbidities	No	-
4 2016	van de Luijtgaarden et al. [17]	Yes	Age and diabetes	Higher RR in PD group in patients ≥65 years old. Diabetes has no effect	No	-
	van de Luijtgaarden et al. [17]			Lower RR in PD group among patients <65 years old and non-diabetic patients	-	-
	van de Luijtgaarden et al. [17]			Lower RR in PD group in non-diabetic patients	-	-
5 2016	Lee et al. [18]	No	Age and incident calendar year	No significant effect	No	-
	Lee et al. [18]			-	No	-
6 2015	Yang et al. [26]	Yes	Age, diabetes and cardiovascular disease	Higher RR in PD group with diabetes, cardiovascular disease and non-diabetic patients ≥65 years old	Yes	No change in RR over time
7 2015	Yang et al. [28]	Yes	Age, diabetes and cardiovascular disease	No significant effect	No	-
8 2015	Waldum-Grevbo et al. [19]	Yes	Age, sex and diabetes	Lower RR in PD group among patients ≤65 years old	Yes	No change in RR over time
9 2014	Kumar et al. [22]	No	Age, sex, diabetes mellitus and eight other comorbidities	Higher RR in PD group in patients ≥55 years old and those with more than one comorbidity. Diabetes has no effect	Yes	-
10 2014	Kim et al. [29]	Yes	Age, sex, diabetes mellitus and eight other comorbidities	No significant effect	No	-
11 2014	Contreras et al. [23]	No	Age, diabetes and sex	Lower RR in PD group among non-diabetic patients <65 years old and non-diabetic females	No	-
12 2013	Choi et al. [30]	Yes	Age, diabetes and sex	No significant effect	No	-
13 2013	Chang et al. [31]	Yes	Age, diabetes and modified Charlson comorbidity score	Higher RR in PD group with diabetes and patients with a modified Charlson comorbidity score ≥5	No	-
14 2012	Lievense et al. [24]	Yes	BMI groups	Lower RR in PD group with baseline BMI of 18.50–29.99 kg/m²	No	-
15 2012	Chang et al. [32]	Yes	Age groups and Charlson comorbidity score	Higher RR in PD group in patients ≥65 years old and patients with high Charlson comorbidity scores	Yes	-
16 2010	Weinhandl et al. [25]	Yes	Age, diabetes and cardiovascular disease	Higher RR in PD group in patients ≥65 years old, diabetics and patients with cardiovascular disease	Yes	No difference in RR in the first year. Higher risk in PD group in the second and third years
17 2010	Chou et al. [33]	No	-	No significant effect	No	-
American) showed equivalent mortality risks (Figure 2). Subsequent influential sensitivity analyses revealed virtually identical results (Supplementary data, Figure S2). There was a substantial degree of heterogeneity across cohorts, ($I^2 = 87\%$, $P < 0.001$). No significant publication bias was found, as confirmed by the Egger’s test (Supplementary data, Figure S4). However, a number of studies fell outside the pseudo 95% confidence limits of the effect size, again confirming substantial heterogeneity.

The multivariate metaregression analysis key factors that contributed to this heterogeneity (Supplementary data, Table S2). Differences in the country of origin, time period during which cohorts were recruited and the type of study design (retrospective versus prospective) explained 90.6% of between-study variance. Further inspection revealed significant improvements in the HR for PD versus HD over time when comparisons were made across cohort periods (Supplementary data, Figure S3).

Effect modifiers of the association between dialysis modality and risk of death

Studies that tested for interactions and explored effect modification of selected variables on the PD/HD mortality relationship are shown in Table 2. The effect of diabetes on the relationship of dialysis modality and mortality was examined in eight studies (10 cohorts). Analyses of four cohorts with diabetes revealed higher mortality for PD than for HD [25, 27, 28, 31]. In three cohort studies without diabetes, mortality risks were significantly lower on PD than HD [17, 30]. A nonsignificant effect was reported for the other three cohorts [17, 19, 29]. One study looked at the effect of diabetes control among diabetic patients and showed better outcome for PD.

![Figure 3: Forest plots for meta-analyses of PD versus HD mortality risk by diabetes. seTE, standard error of treatment effect.](image-url)
patients in the group that had better glycaemic control [18]. Subgroup meta-analyses were conducted in six studies that revealed the pooled HR for PD (versus HD) was 1.09 (95% CI 0.98–1.21) for diabetic patients and 0.99 (95% CI 0.90–1.09) for non-diabetic patients (Figure 3). The interaction term for diabetes and dialysis modality was non-significant.

Age exerted a significant effect in eight cohorts, with five showing worse outcomes for PD among older patients and three studies indicating favourable outcomes among younger patients. Four cohorts showed no age effect. A meta-analysis was not feasible due to differences in chosen age cut-off points and lack of reported estimates.

Eight studies investigated the effect of dialysis vintage on PD/HD mortality. Mortality risks were found to be similar in the first 6–12 months of dialysis initiation in five studies, with four showing higher mortality for PD patients in the subsequent periods [25, 27–29] and one showing a higher risk among HD patients [30]. One study found lower mortality with PD than HD in the first year and similar risks thereafter [22]. Two cohorts reported no evidence of change in mortality risks over time [19, 32].

Risk of bias and appraisal of PSM methods

Studies included in this meta-analysis achieved high scores on the Newcastle–Ottawa Scale ranging from eight to nine stars (Supplementary data, Table S3). In contrast, our analysis revealed that the quality of reporting on PSM varied considerably (Supplementary data, Table S4). With the exception of one study, all studies described the variables that were used to generate the propensity scores. The matching algorithm was clearly stated in 10 studies (58.8%) while the strategy for replacement during the PSM process was explicitly stated in only 3 studies [17, 28, 30]. On evaluating the balance between matched cohorts, most studies applied hypothesis testing and only four (23.5%) used appropriate tests [22, 23, 25, 26]. Three studies adjusted for the paired nature of the matched cohort when estimating HRs [22, 25, 31].

Discussion

To the best of our knowledge, this is the first systematic review and meta-analysis to examine in detail the relative survival benefits of PD compared with in-centre HD based primarily on a propensity-based matching strategy. Previous comparative analysis and systematic reviews of PD/HD mortality were limited due to the inclusion of heterogeneous studies that failed to adequately account for the effect of selection bias [34, 35]. In this carefully constructed meta-analysis of PSM studies, we found overall that the mortality risks were similar for PD and in-centre HD and that the HRs for death remained unchanged in several sensitivity analyses. However, our analysis did uncover significant mortality differences between HD and PD that varied by region, over time and according to the study design. Taken together, these new findings would suggest that while the overall survival of incident patients treated with either PD or HD is similar, reported differences in survival primarily reflect differences in clinical practices within health systems and evolving clinical trends.

The choice of dialysis modality for patients approaching ESKD is determined by a confluence of factors that are associated with the patient, the physician and the prevailing healthcare system and consequently results in fundamental differences between patients selected for PD or HD. Many of these factors have been shown to be independent predictors of survival and adverse outcomes [5–7, 36]. Therefore it has been postulated by many that the observed differences in mortality between dialysis modalities is likely due to selection bias rather than the treatment itself [37]. In order to overcome this specific type of bias, many investigators have advocated the use of PSM to estimate causal TEs rather than conventional regression methods. PSM offers a number of advantages, which make it more appealing than the latter. First, it allows estimation of marginal TEs (average effect of treatment on the population), a feature that is shared with randomized controlled trials. In contrast, conventional regression methods only permit estimation of conditional effects (average effect on the individual) [38]. Second, unlike conventional methods where the outcome is built in with other predictors and confounding variables in the same model, there is clear separation between the design phase and the process of outcome estimation, again in a way that is analogous to randomized experiments [39]. Third, as propensity scores are balancing scores, it is easy to examine the distribution of baseline characteristics, including confounders, between treatment groups. This helps to quantify the extent to which systematic differences are eliminated. In contrast, goodness-of-fit tests are incapable of determining the degree of overlap in the distribution of covariates between treated and untreated groups [8, 40, 41].

This systematic review of more than 114 600 PSM patients found no evidence to support the superiority in survival of one modality over the other. However, quite strikingly, we did find evidence of substantial heterogeneity in mortality risks between PD and HD that mandated further analysis through meta-regression. From these series of analyses, we identified a number of factors that explained a very large proportion of the between-study variability from published studies. First, we identified the ‘country of origin’ as one of the principal determinants of dialysis modality survival. This perhaps reflects the differences in healthcare systems among countries and consequently differences in funding models and variability in patterns of clinical care. It is likely that the reported disparities in PD utilization rates across the globe as well as underlying financial and reimbursement policies have differentially affected the development of PD as a primary dialysis modality, which in turn has contributed to differences in dialysis outcomes [42–44]. Second, it is also possible that differences in modifiable practice patterns such as vascular access type, PD catheter care and fluid type, PD fluid type, length of dialysis as well as dialysis adequacy influenced mortality, which have been shown to vary internationally [45]. Third, although it might be expected that centres with greater experience with PD therapy might experience better survival than HD, this has not been observed internationally [46, 47]. Indeed, mortality comparisons of PD and HD from studies in East Asia have not confirmed superior results for PD despite the relatively high uptake of PD. Similarly, although epidemiological studies have demonstrated racial differences in survival comparisons of dialysis modalities
[48, 49], we did not find evidence to support effect modification of race on mortality from either Asian or US cohort studies [22, 24–25].

The time span of 21 years (1993–2014) allowed us to investigate temporal trends in patterns of survival between PD and HD, as we postulated that some of the between-study heterogeneity in mortality might be accounted for by changing practice patterns. In these series of analysis, a favourable trajectory in PD versus HD mortality was observed in recent cohorts compared with historic cohorts after accounting for the effects of country and study type (Supplementary data, Figure S3). This period effect may be explained by preferentially greater improvements in PD compared with HD, as evident from published reports from large registries [1, 2, 50, 51]. It may also reflect the advancements in pre-dialysis and in overall dialysis care provision to patients over the past 2 decades [52, 53]. Examples of improved practice patterns include a shift in practice towards preserving residual renal function and peritoneal membrane integrity, the advent of more PD biocompatible fluids, improved dialysis adequacy and increased attention to anaemia, mineral and nutrition parameters and vascular access care [53]. Although several studies have identified diabetes as an effect modifier of the PD/HD mortality relationship, we did not observe evidence of this from our subgroup meta-analysis. Similarly, while age and vintage appeared to have variable effects, it was not possible to reach conclusive results due to a lack of reported estimates.

A key objective of the meta-analysis was to explore the scientific quality and reporting of PSM studies. Our investigations uncovered a series of deficiencies in the reporting of statistical methods, including a description on how the matched pairs were formed. This is noteworthy, as a lack of clarity in the methodology used prevents other researchers from replicating these methods and assessing their appropriateness. Ten studies explicitly described the algorithm used in the PSM analysis. Furthermore, only three studies explicitly mentioned whether the matching process was conducted with or without replacement. This is important, as matching with replacement permits a subject from the control group to contribute to more than one matched set, resulting in multiple matched pairs with the same control subject. This lack of independence needs to be taken into account when estimating TEs [54, 55]. One of the most appealing advantages of using PSM is the ability to assess the degree of balance achieved between matched samples in a transparent fashion. However, the majority appeared not to have done this, at least correctly. Most studies utilized significance hypothesis testing such as t-tests to compare the distribution of covariates between matched cohorts. This practice has been strongly discouraged for due to several reasons. First, these tests are dependent on sample size. Therefore a non-significant P-value that is simply due to an underpowered sample could deceivingly indicate a balanced state. Second, while these tests refer to a hypothetical population, balance is an intrinsic characteristic of a matched sample that has no reference to any hypothetical population. This makes the use of significance tests rather irrelevant in determining the degree of established balance. Proper alternatives for balance diagnostics that are independent of sample size are the use of standardized differences and quintile-to-quintile plots [41, 56]. Failure to adequately assess the balance of potential confounders can bias estimates and certainly defies the rationale behind the use of PSM.

Unlike balance diagnostics, there is no consensus on the need to account for the paired nature of matched cohorts when estimating TEs, and indeed more research is needed in this area [38, 55, 57]. In our review, only three studies addressed this point and adjusted the results for within-pair correlation [22, 25, 31]. These deficiencies in reporting and applying PSM methods are similar to those reported in previous reviews that have appraised PSM studies [15, 58–60]. This underscores the need for greater efforts in raising awareness among nephrology researchers and the wider scientific community.

This meta-analysis is not without limitations. Despite advances in the design and analysis of PSM subjects, it is important to emphasize the evidence derived from PSM studies is still inferior to that derived from randomized trials. Estimated propensity scores are dependent on the availability and quality of captured data. Studies usually lack variables that indicate the severity of comorbid diseases, social circumstances such as family support, frailty indicators and perhaps other important factors that could have influenced the choice of modality and outcomes. Also, as many included studies were registry-based, a degree of inherent inaccuracies in coding and record completeness would be expected. Therefore bias arising from unmeasured confounders cannot be eliminated. It is noteworthy that in spite of its advantages, there is not complete consensus on the superiority of PSM versus conventional regression methods and caution must be exercised upon implementation [40, 61]. Finally, the quality of reporting on PSM may have been affected by editing and word limit restrictions, as researchers may have presented more information initially. These points should be weighed against the rigorous systematic approach of this study, the novel focus on mitigating selection bias through achieving methodological uniformity, the inclusion of modern cohorts from various geographical areas, as well as attempts to improve the quality of performing and reporting on PSM methods.

In conclusion, evidence derived from PSM-based comparisons of PD and HD indicates that PD and in-centre HD carry similar survival rates. Differences do exist among subgroups and these depend mainly on the country of origin and the period during which a cohort commenced dialysis. While the quality of reporting and conduct of PSM methods needs to improve in clinical research, they remain a very useful tool in comparing treatment strategies and in assessing causality where randomized clinical trials have proven difficult to implement.

SUPPLEMENTARY DATA
Supplementary data are available at ndt online.

CONFLICT OF INTEREST STATEMENT
None declared. The results presented in this article have not been published previously in whole or part, except in abstract format.
REFERENCES

1. Pippias M, Kramer A, Noordzij M et al. The European Renal Association–European Dialysis and Transplant Association Registry Annual Report 2014: a summary. Clin Kidney J 2017; 10: 154–169
2. United States Renal Data System. 2016 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2016
3. ClinicalTrials.gov. Survival on Peritoneal Dialysis (PD) Versus Hemodialysis (HD) in China. https://ClinicalTrials.gov/show/NCT01413074 (1 June 19, date last accessed)
4. Korevaar JC, Feith GW, Dekker FW et al. Effect of starting with hemodialysis compared with peritoneal dialysis in patients new on dialysis treatment: a randomized controlled trial. Kidney Int 2003; 64: 2222–2228
5. Stuck AG. Determinants of modality selection among incident US dialysis patients: results from a national study. J Am Soc Nephrol 2002; 13: 1279–1287
6. Kim HJ, Park JT, Han SH et al. The pattern of choosing dialysis modality and related mortality outcomes in Korea: a national-population-based study. Korean J Intern Med 2017; 32: 699–710
7. Miskulin DC, Meyer KB, Athienites NV et al. Comorbidity and other factors associated with modality selection in incident dialysis patients: the CHOICE study. Choices for Healthy Outcomes in Caring for End-Stage Renal Disease. Am J Kidney Dis 2002; 39: 324–336
8. Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv Outcome Res Methodol 2001; 2: 169–188
9. Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med 1997; 127: 757–763
10. Newgard CD, Hedges JR, Arthur M et al. Advanced statistics: the propensity score—a method for estimating treatment effect in observational research. Acad Emerg Med 2004; 11: 953–961
11. Martens EP, Pestman WR, de Boer A et al. Systematic differences in treatment effect estimates between propensity score methods and logistic regression. Int J Epidemiol 2008; 37: 1142–1147
12. Ouzzani M, Hamadly H, Fedorowicz Z et al. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016; 5: 210–210
13. Collins AJ, Hao W, Xia H et al. Mortality risks of peritoneal dialysis and hemodialysis. Am J Kidney Dis 1999; 34: 1065–1074
14. Wells GS, O’Connell D, Peterson J et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non Randomised Studies in Meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (1 June 19, date last accessed)
15. Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2006; 27: 2037–2049
16. Kelley GA, Kelley KS. Statistical models for meta-analysis: a brief tutorial. World J Methodol 2012; 2: 27–32
17. van de Luijtgaarden MWM, Jager KJ, Segelmark M et al. Trends in dialysis modality choice and related patient survival in the ERA-EDTA registry over 20 years. Nephrol Dial Transplant 2016; 31: 120–128
18. Lee MJ, Kwon YE, Park KS et al. Glycemic control modifies difference in mortality risk between hemodialysis and peritoneal dialysis in incident dialysis patients with diabetes: results from a nationwide prospective cohort study in Korea. Medicine (Baltimore) 2016; 95: e3118
19. Waldum-Greivo B, Leivestad T, Reisaeter AV et al. Impact of initial dialysis modality on mortality: a propensity-matched study. BMC Nephrol 2015; 16:179
20. Thiery A, Severac F, Hamedouche T et al. Survival advantage of planned haemodialysis over peritoneal dialysis: a cohort study. Nephrol Dial Transplant 2018; 33: 1411–1419
21. Rigoni M, Torri E, Nollo G et al. Survival and time-to-transplantation of peritoneal dialysis versus haemodialysis for end-stage renal disease patients: competing-risks regression model in a single Italian center experience. J Nephrol 2017; 30: 441–447
22. Kumar VA, Sidell MA, Jones JP et al. Survival of propensity matched incident peritoneal and hemodialysis patients in a United States health care system. Kidney Int 2014; 86: 1016–1022
23. Contreras G, Pagan J, Chokshi R et al. Comparison of mortality of ESRD patients with lupus by initial dialysis modality. Clin J Am Soc Nephrol 2014; 9:1949–1956
24. Liwen H, Kalantar-Zadeh K, Lukowsky LR et al. Relationship of body size and initial dialysis modality on subsequent transplantation, mortality and weight gain of ESRD patients. Nephrol Dial Transplant 2012; 27: 3631–3638
25. Weinhandl ED, Foley RN, Gilbertson DT et al. Propensity-matched mortality: comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol 2010; 21: 499–506
26. Yang JY, Chen L, Chao CT et al. Comparative study of outcomes among patients with polycystic kidney disease on hemodialysis and peritoneal dialysis. Sci Rep 2015; 5: 12816
27. Wang IK, Liang WM, Lin CL et al. Impact of dialysis modality on the survival of patients with end-stage renal disease and prior stroke. Int Urol Nephrol 2016; 48: 139–147
28. Yang F, Khan LW, Lau T et al. Hemodialysis versus peritoneal dialysis: a comparison of survival outcomes in south-east Asian patients with end-stage renal disease. PLoS One 2015; 10: e0140195
29. Kim H, Kim KH, Park K et al. A population-based approach indicates an overall higher patient mortality with peritoneal dialysis compared to hemodialysis in Korea. Kidney Int 2014; 86: 991–1000
30. Choi JY, Jang HM, Park J et al. Survival advantage of peritoneal dialysis relative to hemodialysis in the early period of incident dialysis patients: a nationwide prospective propensity-matched study in Korea. PLoS One 2013; 8: e84257
31. Chang JH, Sung JY, Ahn SY et al. Hemodialysis leads to better survival in patients with diabetes or high comorbidity, compared to peritoneal dialysis. Tohoku J Exp Med 2013; 229: 271–277
32. Chang YK, Hsu CC, Hwang SJ et al. A comparative assessment of survival between propensity score-matched patients with peritoneal dialysis and hemodialysis in Taiwan. Medicine (Baltimore) 2012; 91: 144–151
33. Chou CT, Wang IK, Liu JH et al. Comparing survival between peritoneal dialysis and hemodialysis treatment in ESRD patients with chronic hepatitis C infection. Perit Dial Int 2010; 30: 86–90
34. Ross S, Dong E, Gordon M et al. Meta-analysis of outcome studies in end-stage renal disease. Kidney Int 2000; 57: 528–538
35. Couchoud C, Bolignano D, Nistor I et al. Dialysis modality choice in diabetic patients with end-stage kidney disease: a systematic review of the available evidence. Nephrol Dial Transplant 2013; 30: 310–320
36. van de Luijtgaarden MW, Jager KJ, Stel VS et al. Global differences in dialysis modality mix: the role of patient characteristics, macroeconomics and renal service indicators. Nephrol Dial Transplant 2013; 28: 1264–1275
37. Quinn RR, Hux JE, Oliver MJ et al. Selection bias explains apparent differential mortality between dialysis modalities. J Am Soc Nephrol 2011; 22: 1534–1542
38. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 2014; 33: 1242–1258
39. Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med 2007; 26: 20–36
40. Wang J, Donnan PT. Propensity score methods in drug safety studies: practice, strengths and limitations. Pharmacoeconomics Drug Saf 2001; 10: 341–344
41. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009; 28: 3083–3107
42. Just PM, de Charro FT, Tschoske EA et al. Reimbursement and economic factors influencing dialysis modality choice around the world. Nephrol Dial Transplant 2008; 23: 2365–2373
43. Schaefer F, Borzych-Duzalka D, Azocar M et al. Impact of global economic disparities on practices and outcomes of chronic peritoneal dialysis in children: insights from the International Pediatric Peritoneal Dialysis Network registry. Perit Dial Int 2012; 32: 399–409
44. Jain AK, Blake P, Cordy P et al. Global trends in rates of peritoneal dialysis. J Am Soc Nephrol 2012; 23: 533–544
45. Robinson BM, Port FK. International hemodialysis patient outcomes comparisons revisited: the role of practice patterns and other factors. Clin J Am Soc Nephrol 2009; 4(Suppl 1): S12–S17
Nephrol Dial Transplant (2020) 35: 2182–2190
doi: 10.1093/ndt/gfaa037
Advance Access publication 14 March 2020

Dialysis after graft loss: a Swiss experience

Marco Bonani1,4,*, Rita Achermann2,*, Harald Seeger1,*, Michael Scharfe3, Thomas Müller1, Stefan Schaub3, Isabelle Binet4, Uyen Huynh-Do5, Suzan Dahdal5, Dela Golshayan6, Karine Hadaya7, Rudolf P. Wü thrich1, Thomas Fehr8 and Stephan Segerer1,9, the Swiss Transplant Cohort Study (STCS)

1Division of Nephrology, University Hospital Zürich, Zürich, Switzerland, 2Department Transplant Immunology and Nephrology, University Basel Hospital, Basel, Switzerland, 3Department of Clinical Research, Clinical Trial Unit, University Basel Hospital, Basel, Switzerland, 4Division of Nephrology/Transplantation Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland, 5Department of Nephrology and Hypertension, University of Bern, Bern, Switzerland, 6Transplantation Center, CHUV University Hospital, Lausanne, Switzerland, 7Division of Nephrology, Geneva University Hospital, Geneva, Switzerland, 8Department of Internal Medicine, Kantonsspital Graubünden, Chur, Switzerland and 9Division of Nephrology, Dialysis and Transplantation, Kantonsspital Aarau, Aarau, Switzerland

Correspondence to: Stephan Segerer; E-mail: Stephan.Segerer@ksa.ch

*These authors contributed equally to this work.

ABSTRACT

Background. Patients returning to dialysis after graft loss have high early morbidity and mortality.

Methods. We used data from the Swiss Transplant Cohort Study to describe the current practice and outcomes in Switzerland. All patients who received a renal allograft between May 2008 and December 2014 were included. The patients with graft loss were divided into two groups depending on whether the graft loss occurred within 1 year after transplantation (early graft loss group) or later (late graft loss group). Patients with primary non-function who never gained graft function were excluded.

Results. Seventy-seven out of 1502 patients lost their graft during follow-up, 40 within 1 year after transplantation. Eleven patients died within 30 days after allograft loss. Patient survival was 86, 81 and 74% at 30, 90 and 365 days after graft loss, respectively. About 92% started haemodialysis, 62% with definitive vascular access, which was associated with decreased mortality (hazard ratio = 0.28). At the time of graft loss, most patients were on triple immunosuppressive therapy with significant reduction after nephrectomy. One year after graft loss, 77.5% (31 of 40) of patients in the early and 43.2% (16 out of 37) in the late-loss group had undergone nephrectomy. Three years after graft loss, 36% of the patients with early and 12% with late graft loss received another allograft.