Perfect matchings and Hamiltonicity in the Cartesian product of cycles

John Baptist Gauci
Department of Mathematics, University of Malta, Malta.

Jean Paul Zerafa
Dipartimento di Scienze Fisiche, Informatiche e Matematiche,
Università di Modena e Reggio Emilia, Via Campi 213/B, Modena, Italy

Abstract

A pairing of a graph \(G \) is a perfect matching of the complete graph having the same vertex set as \(G \). If every pairing of \(G \) can be extended to a Hamiltonian cycle of the underlying complete graph using only edges from \(G \), then \(G \) has the PH–property. A somewhat weaker property is the PMH–property, whereby every perfect matching of \(G \) can be extended to a Hamiltonian cycle of \(G \). In an attempt to characterise all 4–regular graphs having the PH–property, we answer a question made in 2015 by Alahmadi et al. by showing that the Cartesian product \(C_p □ C_q \) of two cycles on \(p \) and \(q \) vertices does not have the PMH–property, except for \(C_4 □ C_4 \) which is known to have the PH–property.

Keywords: Cartesian product of cycles, Hamiltonian cycle, perfect matching.

Math. Subj. Class.: 05C70, 05C45, 05C76.

1 Introduction

All graphs considered are finite, simple (without loops or multiple edges) and connected. A perfect matching of a graph \(G \) is a set of independent edges of \(G \) which cover the vertex set \(V(G) \) of \(G \). If for a given perfect matching \(M \) of \(G \) there exists another perfect matching \(N \) of \(G \) such that \(M \cup N \) is a Hamiltonian cycle of \(G \), then we say that \(M \) can be extended to a Hamiltonian cycle. A graph admitting a perfect matching has the Perfect–Matching–Hamiltonian property (for short the PH–property) if each of its perfect matchings can be extended to a Hamiltonian cycle. In this case we also say that \(G \) is PHM. Graphs having this property and other similar concepts have been studied by various authors such as in [1, 2, 3, 5, 6, 7, 8, 9, 10]. For a more detailed introduction to the subject we suggest the reader to [1].

The path graph, cycle graph and complete graph on \(n \) vertices are denoted by \(P_n, C_n \) and \(K_n \), respectively. A vertex of degree one is called an end vertex. For any graph \(G \), \(K_G \) denotes the complete graph on the same vertex set \(V(G) \) of \(G \). Let \(G \) be of even order. A perfect matching of \(K_G \) is said to be a pairing of \(G \). In [2], the authors say that a graph \(G \) has the Pairing–Hamiltonian property (for short the PH–property) if every pairing \(M \) of \(G \) can be extended to a Hamiltonian cycle \(H \) of \(K_G \) in which \(E(H) - M \subseteq E(G) \). Clearly, this is a stronger property than the PMH–property and if a graph has the PH–property then

E-mail addresses: john-baptist.gauci@um.edu.mt (John Baptist Gauci), jeanpaul.zerafa@unimore.it (Jean Paul Zerafa)
it is also PMH. Amongst other results, the authors characterise which cubic graphs have the PH–property: K_4, the complete bipartite graph $K_{3,3}$ and the 3–dimensional hypercube Q_3. Most of the notation and terminology that we use in the sequel is standard, and we refer the reader to [4] for definitions and notation not explicitly stated.

Having a complete characterisation of cubic graphs that have the PH–property, a natural pursuit would be to characterise 4–regular graphs having the same property, as also suggested by the authors in [2]. Although Seongmin Ok and Thomas Perrett privately communicated to the authors of [2] the existence of an infinite family of 4–regular graphs having the PH–property, it was suggested to tackle this characterisation problem by looking at the Cartesian product of two cycles $C_p \square C_q$ (Open Problem 3 in [2]). In particular, the authors ask for which values of p and q does $C_p \square C_q$ have the PH–property.

In this work we show that $C_p \square C_q$ has the PH–property only when both p and q are equal to 4. In fact, the graph $C_4 \square C_4$ is isomorphic to the 4–dimensional hypercube Q_4, which was proved to have the PH–property in [5] together with all other n–dimensional hypercubes. More precisely, we show that except for Q_4, $C_p \square C_q$ is not PMH.

2 Main Result

Definition 2.1. The Cartesian product $G \square H$ of two graphs G and H is a graph whose vertex set is the Cartesian product $V(G) \times V(H)$ of $V(G)$ and $V(H)$. Two vertices (u_i, v_j) and (u_k, v_l) are adjacent precisely if $u_i = u_k$ and $v_jv_l \in E(H)$ or $u_iu_k \in E(G)$ and $v_j = v_l$. Thus,

$$V(G \square H) = \{(u_r, v_s) : u_r \in V(G) \text{ and } v_s \in V(H)\},$$

and

$$E(G \square H) = \{(u_i, v_j)(u_k, v_l) : u_i = u_k, v_jv_l \in E(H) \text{ or } u_iu_k \in E(G), v_j = v_l\}.$$

For simplicity, we shall refer to the vertex (u_r, v_s) as $\omega_{r,s}$. In this work we restrict our attention to the Cartesian product of a cycle graph and a path graph and to that of two cycle graphs, noting that the latter is also referred to in literature as a torus grid graph. In the sequel we tacitly assume that operations (including addition and subtraction) in the indices of the vertices of a cycle C_n are carried out in a “cyclic sense”, that is, going to 1 upon reaching n, and vice-versa.

We first prove the following result.

Lemma 2.2. The graph $C_p \square P_q$ is not PMH, for every $p, q \geq 3$.

Proof. Label the vertices of C_p and P_q consecutively as u_1, u_2, \ldots, u_p and v_1, v_2, \ldots, v_q, respectively, such that v_1 and v_q are the two end vertices of P_q. If p is even (and so q is even, otherwise $C_p \square P_q$ does not have a perfect matching), then there exists a perfect matching of $C_p \square P_q$ containing an odd cut, say $\{\omega_{1,q-1}, \omega_{1,q}, \ldots, \omega_{p,q-1}, \omega_{p,q}\}$. Clearly, this perfect matching cannot be extended to a Hamiltonian cycle. Thus, we can assume that p is even. Let M be a perfect matching of $C_p \square P_q$ containing $\omega_{i,q-1} \omega_{i+1,q-1}$ and $\omega_{i-1,q} \omega_{i,q}$, for every odd $i \in [p]$, where $[p] = \{1, \ldots, p\}$. For contradiction, suppose that N is a perfect matching of $C_p \square P_q$ such that $M \cup N$ is a Hamiltonian cycle. Then, for every odd $i \in [p]$, N contains either $\omega_{i,q} \omega_{i+1,q}$ or the two edges $\omega_{i,q-1} \omega_{i,q}$ and $\omega_{i+1,q-1} \omega_{i+1,q}$. Therefore, $M \cup N$ contains a cycle with vertices belonging to $\{\omega_{1,q-1}, \omega_{p,q-1}, \omega_{1,q}, \ldots, \omega_{p,q}\}$. Since $q > 2$, $M \cup N$ is not a Hamiltonian cycle, a contradiction. Consequently, $C_p \square P_q$ is not PMH. \qed
Now, we prove our main result.

Theorem 2.3. Let \(p, q \geq 3 \). The graph \(C_p \Box C_q \) is PMH only when \(p = 4 \) and \(q = 4 \).

Proof. The 4–dimensional hypercube \(Q_4 = C_4 \Box C_4 \) has the PH–property by Fink’s result in [5]. Moreover, the authors in [2] showed that \(C_4 \Box C_q \) is not PMH when \(q \neq 4 \). Thus, in what follows we shall assume that \(p \) is even and at least 6 and that \(q \) is not equal to 4.

Let the consecutive vertices of \(C_p \) and \(C_q \) be labelled \(u_1, u_2, \ldots, u_p \) and \(v_1, v_2, \ldots, v_q \), respectively.

We first consider the case when \(q = 3 \). For simplicity, let the vertices \(\omega_i,1, \omega_i,2, \omega_i,3 \) be referred to as \(a_i, b_i, c_i \), for each \(i \in [p] \), and let \(M \) be a perfect of \(C_p \Box C_3 \) containing the following nine edges: \(a_1a_2, b_1b_2, c_1c_2, a_3a_4, b_3b_4, a_5a_6, b_5b_6, a_4b_6, c_4c_6 \), as shown in Figure 1. Since \(p \) is even, such a perfect matching \(M \) clearly exists.

![Figure 1: Edges belonging to the perfect matching \(M \) in \(C_p \Box C_3 \)](image)

We claim that \(M \) cannot be extended to a Hamiltonian cycle. For, suppose not, and let \(N \) be a perfect matching of \(C_p \Box C_3 \) such that \(M \cup N \) is a Hamiltonian cycle. Each of the two sets \(X_1 = \{ a_3a_4, c_3c_4 \} \) and \(X_2 = \{ a_5a_6, c_5c_6 \} \) is a 2–edge-cut of the cubic graph \(C_p \Box C_3 - M \), and so \(|X_1 \cap N| \) is even for each \(i = 1, 2 \). Moreover, the edge \(b_4b_5 \) is a bridge of the graph \(C_p \Box C_3 - M \), and consequently, \(M \cup N \) contains a cycle of length 4, 6 or 8 with vertices belonging to \(\{ a_3, a_4, a_5, a_6, c_3, c_4, c_5, c_6 \} \), a contradiction. Therefore, \(q \geq 5 \).

Similar to above, for each \(i \in [p] \), let the vertices \(\omega_i,1, \omega_i,2, \ldots, \omega_i,6 \) be referred to as \(a_i, b_i, \ldots, f_i \) as in Figure 2, with \(f_i \) being equal to \(a_i \) if \(q = 5 \). For each \(i \in [p] \), let \(L_i \) and \(R_i \) represent \(b_i \cdots c_i \) and \(d_i \cdots e_i \), respectively, whilst \(L := \{ L_i : i \in [p] \} \) and \(R := \{ R_i : i \in [p] \} \). Let \(M \) be a perfect matching of \(C_p \Box C_q \) containing the following edges:

(i) \(a_i a_{i+1} \) and \(f_i f_{i+1} \), for every even \(i \in [p] \),

(ii) \(b_i b_{i+1} \) and \(e_i e_{i+1} \), for every odd \(i \in [p] \), and

(iii) \(c_i d_i \), for every \(i \in [p] \).
Once again, since p is even, such a perfect matching M exists. For contradiction, suppose that N is a perfect matching of $C_p \Box C_q$ such that $M \cup N$ is a Hamiltonian cycle H of $C_p \Box C_q$. The set of edges L (and similarly R) is an even cut of order p in the cubic graph $C_p \Box C_q - M$. Consequently, both $|L \cap N|$ and $|R \cap N|$ are even. We claim that both sets L and R must be intersected by N. For, suppose that $R \cap N$ is empty, without loss of generality. In this case, $M \cup N$ forms a Hamiltonian cycle of $C_p \Box C_q - R$, which is isomorphic to $C_p \Box P_q$. By a similar reasoning to that used in the proof of Lemma 2.2, this leads to a contradiction, and so M cannot be extended to a Hamiltonian cycle. Therefore, both $L \cap N$ and $R \cap N$ are non-empty.

Next, we claim that a maximal sequence of consecutive edges belonging to $L - N$ (or $R - N$) is of even length, whereby “consecutive edges” we mean that the indices of these edges are consecutive integers in a cyclic sense. For, suppose there exists such a sequence made up of an odd number of edges. Without loss of generality, let L_s and L_{s+2t} be the first and last edges of this sequence, for some $s \in [p]$ and $0 \leq t < p/2$. Thus, L_{s-1} and L_{s+2t+1} are in N. In order for N to cover all the vertices of the graph it must induce a perfect matching of the path $c_s c_{s+1} \ldots c_{s+2t}$, which has an odd number of vertices. This is not possible, and so our claim holds. Consequently, there exists $L_\gamma \in N$, for some odd $\gamma \in [p]$. We pair the edge L_γ with the edge $L_{\gamma'}$, where γ' is the least integer greater than γ in a cyclic sense such that $L_{\gamma'} \in N$. More formally,

$$
\gamma' = \begin{cases}
\min\{j \in \{\gamma + 1, \ldots, p\} : L_j \in N\} & \text{if such a minimum exists,} \\
\min\{j \in \{1, \ldots, \gamma - 1\} : L_j \in N\} & \text{otherwise.}
\end{cases}
$$

By the last claim we note that γ' is even and that the next integer $\beta > \gamma'$ in a cyclic sense (if any) for which L_β is in N must be odd. Repeating this procedure on all the edges in $L \cap N$ we get a partition of $L \cap N$ into pairs of edges $\{L_\gamma, L_{\gamma'}\}$ where γ is odd and γ' is even. The edges in $R \cap N$ are partitioned into pairs in a similar way.

We remark that if we start tracing the Hamiltonian cycle H from c_γ going towards b_γ,
then H contains a path with edges alternating in N and M, starting from c_γ and ending at $c_{\gamma'}$. More precisely, if $\gamma' = \gamma + 1$, then H contains the path $c_\alpha b_i b_j c_\gamma$. Otherwise, if $\gamma' \neq \gamma + 1$, then, for every even $j \in \{\gamma + 1, \ldots, \gamma' - 2\}$, N contains either $b_j b_{j+1}$ or the two edges $a_j b_j$ and $a_{j+1} b_{j+1}$. Consequently, the internal vertices on this path belong to the set $\{b_{\gamma}, a_{\gamma+1}, b_{\gamma+1}, \ldots, a_{\gamma'-1}, b_{\gamma'-1}, b_{\gamma'}\}$. In each of these two cases we shall refer to such a path between c_α and $c_{\gamma'}$ as an $L_\gamma L_{\gamma'}$-bracket, or just a left–bracket, with L_γ and $L_{\gamma'}$ being the upper and lower edges of the bracket, respectively.

Having arrived at $c_{\gamma'}$, and noting that $c_{\gamma'} d_{\gamma'} \in M$, H also traverses this edge to arrive at vertex $d_{\gamma'}$. At this point we can potentially take one of three directions, depending on whether $R_{\gamma'}$ is in N or otherwise. If $R_{\gamma'} \in N$, then there exists an $R_\alpha R_{\gamma'}$-bracket for some odd $\alpha \in [p]$, where α is the greatest integer smaller than γ' in a cyclic sense such that $R_\alpha \in N$. As above, this bracket consists of a path with edges alternating in N and M, starting from $d_{\gamma'}$ and ending at d_α, such that the other vertices of this path belong to:

$$\{e_{\gamma'}, f_{\gamma'-1}, e_{\gamma'-1}, \ldots, f_{\alpha+1}, e_{\alpha+1}, e_\alpha\} \text{ if } \alpha \neq \gamma' - 1,$$

$$\{e_{\gamma'}, e_\alpha\} \text{ if } \alpha = \gamma' - 1.$$

Otherwise, if $R_{\gamma'} \notin N$, we either have $d_{\gamma'-1} d_{\gamma'} \in N$ or $d_{\gamma'} d_{\gamma'+1} \in N$. Continuing this process, the Hamiltonian cycle H must eventually reach the vertex c_{γ}. Thus, H contains only vertices in the set $\{a_i, b_i, c_i, d_i, e_i, f_i : i \in [p]\}$, giving a contradiction if $q \geq 7$. Henceforth, we can assume that $5 \leq q \leq 6$. Notwithstanding whether or not $R_{\gamma'}$ is in N, if $q = 6$, then there is no instance in the above procedure which leads to H passing through the vertices a_{γ} and $a_{\gamma'}$, a contradiction. Hence, we can further assume that $q = 5$.

We now note that for the vertices in the set $\{a_i, b_i, e_i : i \in [p]\}$ to be in H, they must belong either to a left–bracket or to a right–bracket. Thus, if $R_i \in N$ is a lower edge of a right–bracket, for some even $i \in [p]$, then, R_{i+1} must be an upper edge of another right–bracket (that is, $R_{i+1} \in N$), otherwise, the vertex e_{i+1} is not contained in any bracket. This observation, together with the fact that a maximal sequence of consecutive edges belonging to $R - N$ is of even length, implies that if $R_i \notin N$, for some even $i \in [p]$, then $d_i d_{i+1} \in N$.

We revert back to the last remaining case, that is, when $q = 5$. The only way how the Hamiltonian cycle H can contain the vertices a_{γ} and $a_{\gamma'}$ is when both R_γ and $R_{\gamma'}$ do not belong to N, in which case a_{γ} and $a_{\gamma'}$ can be reached by some right–bracket (or right–brackets). Therefore, suppose that R_γ and $R_{\gamma'}$ do not belong to N.

Consequently, tracing H starting from c_γ and going in the direction of b_γ, after traversing the $L_\gamma L_{\gamma'}$-bracket, H must then contain the path $c_\gamma d_{\gamma'} d_{\gamma'+1} e_{\gamma'+1}$. First assume that $\gamma' + 1 \neq \gamma$. By the same reasoning used for the edges in $R \cap N$, the lower edge $L_{\gamma'}$ must be followed by an upper edge, and thus $L_{\gamma'+1} \in N$. We trace the Hamiltonian cycle through an $L_{\gamma'+1} L_{\gamma''}$-bracket, noting in particular that for $a_{\gamma''}$ to be in H, $R_{\gamma''}$ does not belong to N, and hence $d_{\gamma''} d_{\gamma''+1} \in N$, since γ'' is even. Continuing this procedure, H must eventually reach again the vertex c_γ, without having traversed any right–bracket. The same conclusion can be obtained if $\gamma' + 1 = \gamma$. In either case, the vertices a_{γ} and $a_{\gamma'}$, together with several other vertices of $C_9 \square C_9$, are untouched by H, a contradiction. As a result M cannot be extended to a Hamiltonian cycle, proving our theorem.

\[\square \]

References

[1] M. Abreu, J.B. Gauci, D. Labbate, G. Mazzuoccolo and J.P. Zerafa, Extending Perfect Matchings to Hamiltonian Cycles in Line Graphs, (2019), arXiv:1910.01553.
[2] A. Alahmadi, R.E.L. Aldred, A. Alkenani, R. Hijazi, P. Solé and C. Thomassen, Extending a perfect matching to a Hamiltonian cycle, *Discrete Math. Theor. Comput. Sci. 17*(1) (2015), 241–254.

[3] D. Amar, E. Flandrin and G. Gancarzewicz, A degree condition implying that every matching is contained in a Hamiltonian cycle, *Discrete Math. 309* (2009), 3703–3713.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory, *Springer Series: Graduate Texts in Mathematics 244*, 2008.

[5] J. Fink, Perfect matchings extend to Hamilton cycles in hypercubes, *J. Combin. Theory Ser. B 97* (2007), 1074–1076.

[6] R. Haggkvist, On F–Hamiltonian graphs, in: J.A. Bondy, U.S.R. Murty (eds.), *Graph Theory and Related Topics*, Academic Press, New York, 1979, 219–231.

[7] M. Las Vergnas, *Problèmes de couplages et problèmes hamiltoniens en théorie des graphes*, Thesis, University of Paris 6, Paris, 1972.

[8] F. Ruskey and C. Savage, Hamilton cycles that extend transposition matchings in Cayley graphs of S_n, *SIAM J. Discrete Math.* 6 (1993), 152–166.

[9] F. Wang and W. Zhao, Matchings Extend to Hamiltonian Cycles in 5–Cube, *Discuss. Math. Graph Theory 38* (2018), 217–231.

[10] Z. Yang, On F–Hamiltonian graphs, *Discrete Math. 196* (1999), 281–286.