EVOlution of the Lyα halos around high-redshift radio galaxies

Andrew W. Zirm1, Arjun Dey2, Mark Dickinson2, and Colin J. Norman1

1 The Johns Hopkins University, Baltimore, MD 21218, USA; azirm@pha.jhu.edu, norman@stsci.edu
2 National Optical Astronomy Observatory, Tucson, AZ 85719, USA; dey@noao.edu, med@noao.edu

Received 2008 November 13; accepted 2009 February 3; published 2009 February 26

ABSTRACT

We have obtained the first constraints on extended Lyα emission at z ≈ 1 in a sample of five radio galaxies. We detect Lyα emission from four of the five galaxies. The Lyα luminosities range from 0.1–4 × 10^{43} erg s^{-1} and are much smaller than those observed for halos around higher redshift radio galaxies. If the z ≈ 1 radio galaxies are the descendants of the z ≤ 2 radio galaxies, then their Lyα luminosities evolve strongly with redshift as ∼(1 + z)^3. There do not appear to be strong correlations between other parameters, such as radio power, suggesting that this observed evolution is real and not an observational artifact or secondary correlation. We speculate that this evolution of luminous halos may be due to gas depletion (as gas cools, settles, and forms stars) accompanied by an overall rise in the mean gas temperature and a decrease in specific star formation rate in and around these massive galaxies.

Key words: galaxies: evolution – galaxies: individual (3C 210, 3C 265, 3C 266, 3C 267, 3C 324)

1. Introduction

The bright end of the luminosity function is dominated today by giant elliptical and cD galaxies. The history of these massive galaxies traces the evolution of the highest peaks in the initial density perturbation spectrum, and thus potentially places strong constraints on paradigms of structure formation. The hosts of high-redshift radio galaxies (z ≥ 1; z RGs) are likely the progenitors of these modern-day giants: the HαRG K-band Hubble diagram is well fitted by the “passive” evolution of a stellar population with a high formation redshift (e.g., McCarthy 1993; De Breuck et al. 2002), and NICMOS continuum images of 0.8 < z < 1.8 3CR radio galaxies show that the starlight distributions are round and symmetric, mostly with R^{1/2} law light profiles (Zirm et al. 1999, 2003). Furthermore, the inferred stellar masses derived from modeling of the spectral energy distributions (SEDs), including data from the Spitzer Space Telescope, define the upper envelope of the mass function for all high-redshift galaxies (Seymour et al. 2007). In addition, age dating studies of a few z = 1–1.5 HzRGs suggest that they formed the bulk of their stars at significantly higher redshifts, z ≳ 2, and evolved fairly “passively” thereafter (Stockton et al. 1995; Dunlop et al. 1996; Spinrad et al. 1997). Finally, radio galaxies at z ≤ 2 are generally found in overdense, protocluster, environments (e.g., Venemans et al. 2007; Kodama et al. 2007; Zirm et al. 2008), again consistent with them marking high-density peaks in the dark matter field.

Many of the z > 2 radio galaxies, including those within protocluster regions, are surrounded by giant (≤ 100 kpc) Lyα halos (McCarthy et al. 1990, 1995; Dey et al. 1997; Villar-Martín et al. 1999; Reuland et al. 2003). These halos have line luminosities of several ×10^{44} erg s^{-1}, and suggest the presence of huge gas reservoirs. Initially these halos were thought to be associated only with, and perhaps powered by, rare, luminous radio galaxies. However, the discovery by Steidel et al. (2000) of two giant Lyα “blobs” associated with a galaxy overdensity at z = 3.09 and only loosely associated with any galaxies with detectable UV continuum suggests that Lyα halos may be relevant to the formation of the most massive galaxies in general. Subsequent deep Lyα imaging and spectroscopy of this same protocluster field identified many lower luminosity, radio-quiet, spatially extended Lyα emitters (Matsuda et al. 2004; Saito et al. 2008).

The origins of the Lyα emitting gas remain ambiguous. Monolithic cooling of pristine, infalling gas would have an extremely short lifetime (τ_{cool} ∼ 10^4 yr; e.g., Dey et al. 2005) and could not explain the prevalence of the halo phenomenon. However, if the ionized gas reservoirs were replenished via further infall and/or outflows from the central source the “monolithic” scenario may still be viable. If we assume that the halos are formed by a mixture of inflow and outflow, the morphology and evolution of the Lyα emission should provide clues to the nature of that mix and by extension the galaxy formation process. Another possibility is that each hydrogen atom is ionized more than once on average.

Little is known about how these halos evolve with redshift. As the host galaxy and radio source age spectrally and dynamically, the interaction between the halo and its embedded sources may alter in form. Between z ∼ 4 and z ∼ 1, the host galaxy is largely assembled as a mature giant elliptical, and a hot young stellar population is no more than a minor contributor to the total UV flux (e.g., Zirm et al. 2003). The central ionization source may shift from being dominated by young stars and starburst outflows to being dominated by the interaction with the radio source and photoionization by the central engine. Understanding the connection between young radio galaxies at z ∼ 3 and the more mature objects at z ∼ 1 requires similar data at all redshifts, including measurements of their emission line properties. Moreover, studies of the same emission lines at similar sensitivity can distinguish genuine evolutionary trends from the consequences of line choice or instrumental limitations.

In this Letter, we present Lyα measurements of five radio galaxies at 0.8 < z < 1.3 obtained using the slitless prism mode with the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). This Letter is organized as follows. We present the observations and data reduction in Section 2, the results in Section 3, a discussion of these results in the context of theories of galaxy formation in Section 4, and finally a brief summary of our conclusions in Section 5. Throughout this Letter, we assume a cosmological model with Ω_Λ = 0.7 and Ω_m = 0.3 and H_0 = 70 km s^{-1} Mpc^{-1}.
2. OBSERVATIONS

We used the STIS on board the Hubble Space Telescope during 2001 December 20–2003 April 12 to image five high-redshift radio galaxies lying in the range $0.8 < z < 1.3$ (GO No. 9166; P.I.: A. Zirm). The target galaxies are selected from the 3CR catalog (Bennett 1962) and all are known to have strong nebular line emission based on their optical spectra. At the redshift of the target galaxies, the Lyα line falls in the near-ultraviolet (NUV) and thus requires space-based observation. Observations were made with the STIS NUV–MAMAs, ultraviolet sensitive array detectors, with the prism, to obtain very low dispersion ($\sim 30 \text{ Å pixel}^{-1}$) spectra over the Lyα line to produce, effectively, a line image. The extremely dark UV sky background and absence of readout noise in the STIS MAMAs enhance our sensitivity to low surface-brightness emission. Our resultant Lyα images have depth comparable to those of $z \sim 3$ objects in a few orbits, with much higher spatial resolution.

The dispersion of the STIS prism mode at redshifted Lyα at $z = 1$ is $\sim 3000 \text{ km s}^{-1} \text{ pixel}^{-1}$, sufficiently low that the prism-dispersed Lyα will essentially form a monochromatic emission line image, with the galaxy continuum dispersed beneath it. In addition to the slitless prism data, we also took direct images using both the NUV–MAMA (which includes Lyα) and the optical CCD to determine the zero point for the source spectra. The details of exposure times are listed in Table 1.

We extracted the Lyα fluxes in a simple manner. Visual inspection of the prism and direct image data show that the two-dimensional spectra are dominated by line emission. The structures observed in the direct image are reproduced when the prism is used rather than being smoothed over larger areas. 3C 265 is the exception where both continuum and the C IV emission line are also visible in the two-dimensional spectrum. However, to model the spectra, even in the case of 3C 265, we have taken a simple power-law continuum with both $f_{\lambda} \propto \lambda^0$ and $\propto \lambda^{-2}$ (i.e., flat in f_{λ} and f_{ν}, respectively). We chose these two extrema based on the empirical range of far-UV (FUV) slopes observed for both star-forming galaxies (e.g., Meurer et al. 1999) and active galactic nuclei (AGNs; e.g., Vanden Berk et al. 2001; Telfer et al. 2002). We used the tabulated dispersion relation for the prism and the direct NUV image of each galaxy to construct continuum-only models of the prism observations. We thereby assumed that the morphology of the direct image, which includes Lyα, is representative of the spatial distribution of continuum flux. These models were scaled and subtracted, to minimize the residuals, to leave only the line emission. We note that the exact details of the continuum subtraction should not significantly change the results. Lyα fluxes were then derived by performing photometry in apertures designed to include the residual flux on these continuum-subtracted images and masking the C IV flux in the case of 3C 265. The resulting Lyα line fluxes and luminosities are listed in Table 1.

Galaxy	z	R.A. (J2000)	Decl. (J2000)	NUV Prism Exp. Time (s)	Direct Exp. Time (s)	NUV Line Flux ($10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$)	Line Luminosity ($10^{42} \text{ erg s}^{-1}$)
3C 210	1.17	08:58:09.9	27:50:52	2757	260	<0.1	<1
3C 265	0.81	11:45:29.0	31:33:49	1330	3474	<0.1	<1
3C 266	1.28	11:45:43.4	49:46:08	5260	360	<0.1	<1
3C 267	1.14	11:49:56.5	12:47:19	2709	360	<0.1	<1
3C 324	1.21	15:49:48.9	21:25:38	3474	360	<0.1	<1

The raw prism data, the continuum-subtracted data, and the data with a fiducial halo model added are presented in Figure 1. The fiducial model halo has $L_{\text{Ly} \alpha} = 1 \times 10^{44} \text{ erg s}^{-1}$ and follows a King model profile with core radius $= 10 \text{ kpc}$, similar to observations of Lyα halos surrounding $z > 2$ radio galaxies (e.g., Reuland et al. 2003). The observed optical and near-infrared data are from HST WFPC2 and NICMOS, respectively.

The raw prism data, the continuum-subtracted data, and the data with a fiducial halo model added are presented in Figure 1. The fiducial model halo has $L_{\text{Ly} \alpha} = 1 \times 10^{44} \text{ erg s}^{-1}$ and follows a King model profile with core radius $= 10 \text{ kpc}$, similar to observations of Lyα halos surrounding $z > 2$ radio galaxies (e.g., Reuland et al. 2003). The observed optical and near-infrared data are from HST WFPC2 and NICMOS, respectively.

3. RESULTS

Of the five $z \sim 1$ radio galaxies targeted, four have significant or marginal detections of Lyα flux. 3C 210 shows no line emission to a limit of $L_{\text{Ly} \alpha} < 10^{45} \text{ erg s}^{-1}$. Of the four with Lyα, two are bright, 3Cs 266 and 324 with $L_{\text{Ly} \alpha} = 3.6$ and $2.0 \times 10^{43} \text{ erg s}^{-1}$, respectively, while 3Cs 267 and 265 are both a factor of 10 less luminous (see Table 1). The evolution of the Lyα luminosity around powerful radio galaxies with redshift is shown in Figure 2. The stars are the galaxies from the current study, while the circles are higher redshift radio galaxies (McCarthy et al. 1990, 1995; Dey et al. 1997; Reuland et al. 2003; Villar-Martín et al. 2003, 2007; Zirm et al. 2005; Venemans et al. 2007) and the squares are radio-quiet extended Lyα emitters (“blobs”; Steidel et al. 2000; Matsuda et al. 2004). The solid lines are “by eye” power-law evolution models with
No. 1, 2009 EVOLUTION OF THE Ly\text{\textgreek{a}} HALOS AROUND HIGH-REDSHIFT RADIO GALAXIES L33

$L_{\text{Ly}\\alpha} \propto (1 + z)^{\alpha}$, where $\alpha = 5.0$ and 2.3. The radial extents of these $z \sim 1$ halos are about a factor of 2 smaller than the high-redshift halos. There is no similarly strong redshift correlation with radio power or stellar mass of the radio host for HzRGs in general (see Seymour et al. 2007). In any case, it is clear that the 100 kpc, 10^{44} erg s$^{-1}$ halos generally seen around powerful radio galaxies at $z \lesssim 2$ are not present around their counterparts (which are not necessarily their descendents) at $z \sim 1$.

At least two of the radio galaxies (3C 265 and 266) show Ly\text{\textgreek{a}} emission with significant angular extent (Figure 3). For these galaxies, we also plot the fiducial halo model in the same apertures for comparison. In addition to the difference in overall luminosity, the lower redshift halos also appear to have steeper surface-brightness profiles with smaller extent along with some constant surface-brightness emission associated with the UV continuum. The sizes of the detectable line-emitting regions are only tens of kpcs as opposed to the higher redshift examples with radii close to 100 kpc. More specifically, for the well detected case of 3C 265, the morphology of the extended line emission seems rather different from the halos seen at high redshift. For the other galaxies, our data are not deep enough to reveal much morphological information. For 3C 265, however, we can see that the extended line emission (panel (a) in Figure 1) roughly follows the spatial distribution of the UV continuum (panel (d)) which is aligned with the double-lobed radio axis, perhaps indicating that this line emission is excited by the AGN. This is in contrast to the higher redshift halos which generally show little or no UV continuum associated with the line emission.

To investigate the energetics of the halos, we have used X-ray core measurements from the literature (Crawford & Fabian 1996; Hardcastle & Worrall 1999; Fabian et al. 2002, 2003; Pentericci et al. 2002; Derry et al. 2003; Scharf et al. 2003; Overzier et al. 2005) and Ly\text{\textgreek{a}} luminosities to make two different estimates of the UV ionizing radiation in the radio galaxy environments. We assume a single ionizing photon results in a single Ly\text{\textgreek{a}} photon. For the X-ray data, we assume a single power-law spectrum from the rest-frame X-ray to the UV to estimate the number of ionizing photons due to the AGN. In Figure 4, we show the ratio of the two ionizing luminosities versus redshift. While this plot is a bit sparse and consists of rather heterogeneous data sets, it seems that there may be a trend for the high-redshift halos to require a power source beyond the X-ray luminosity, while at $z \sim 1$, the X-rays may be sufficient to power the extended line emission. We discuss the implications of this result further in the following section.

4. DISCUSSION

We have presented slitless NUV spectroscopy of five $z \sim 1$ powerful radio galaxies. These spectra show for the first time the considerable redshift evolution of the extended Ly\text{\textgreek{a}} lumi-
nosity surrounding powerful radio galaxies. The morphology of the extended line emission also seems to change from a centrally concentrated halo at high redshift to a more evenly distributed surface-brightness profile at lower redshift associated with the known (extended) UV continuum. The size of the halos is also about a factor of 2 (at minimum) smaller than the high-redshift examples. These changes together suggest that we may be seeing a change in the dominant process responsible for the line emission as a function of redshift. Furthermore, the lack of similar halos around comparable power-radio galaxies, along with the discoveries of radio-quiet Lyα halos, implies that halos are not solely a feature of radio galaxies but may be associated more generally with galaxy and structure formation.

By making observations of Lyα emission over a range of redshifts, we study the evolution of the gaseous environments of massive galaxies where other methods, such as X-ray imaging, are impractical at higher redshifts. The luminosity and structure of the line-emitting gas provide clues to the dynamical and excitation states of the gas. We can use simulations to put these observations in context. Dijkstra et al. (2006a, 2006b) have quantified the relationship between different infall and cooling scenarios and Lyα surface brightness using a set of simulations. Their range of initial conditions and assumptions span the gap between two extremes. First, that the cooling timescale is short and tracks the loss of gravitational potential energy as the gas falls into the center after being shock heated at the virial radius (e.g., Haiman et al. 2000). Second, that the gas is accreted cold (i.e., no virial shock heating) and only subsequently its kinetic energy is converted to thermal energy resulting in Lyα emission (e.g., Dekel & Birnboim 2006). These simulations confirm and quantify the intuitive view that the line emission is more centrally concentrated for the case where heating and cooling only occur once the gas has collapsed to the center and that more extended emission is seen where clumps of gas are assumed to cool as they descend into the gravitational potential. It should be noted, however, that both scenarios produce extended halos of line emission.

In addition to either or both of these infall scenarios, the gas may also be ionized by UV-luminous young and forming stars and by the central AGN. For 3C 265, the close correlation between the UV-continuum emitting regions and the Lyα emission suggests that the ionizing source is low-level star formation, young stars, and photoionization by AGN light in these areas. Our observations indicate that the halo phenomenon as seen at high redshift has changed significantly by $z \sim 1$. This inference is further supported by our analysis of the energetics of the radio galaxies over the same range of redshift. While at high redshift $z \gtrsim 2$ the virial shocking of infalling gas may dominate the Lyα emission, it seems that by $z \sim 1$ the X-ray output of the central AGN may be sufficient to ionize the surrounding gas.

Under any scenario, it is clear that the gaseous environments of massive galaxies are subject to several possible changes during the more than three billion years between $z \sim 2.5$ and $z \sim 1$. Gas is consumed in star formation and black hole accretion, it is enriched with metals and deposited back in the intergalactic medium (IGM) via supernovae and AGN-driven outflows, and the IGM itself is disrupted and shock heated via galaxy interactions and mergers. Overall, however, the amount of cool gas surrounding galaxies decreases with cosmic time, while elliptical galaxies and galaxy clusters retain vast reservoirs of hot gas. If we associate the high-redshift, luminous halos with the initial accretion and starburst, the faint halos at later times suggest that the gas has either been depleted via star formation and accretion or that the cooling time has increased sufficiently to quench infall. Cooling radiation and subsequent star formation dominates the halo luminosity at high redshift with some additional contribution associated with the AGN. As the gas cools and forms stars the bulk of the line luminosity disappears with only the residual, AGN, and star-formation-related emission remaining by $z \sim 1$. This residual emission is over a smaller area (radius $\lesssim 50$ kpc) and is associated with the UV-continuum emission.

5. CONCLUSIONS

We have used STIS NUV-MAMA slitless spectroscopy of five $z \sim 1$ powerful radio galaxies to determine their Lyα properties and to specifically look for luminous, extended halos of line emission as are seen around $z \lesssim 2$ radio galaxies. While we find that at least two of the targets have extended emission line regions, it is unclear from these data alone whether this Lyα is directly related to the high-z halos. The emission line morphologies are rather different, and the luminosities are an order of magnitude lower than at higher redshift. The physical extent of the halos is smaller by about a factor of 2 compared to the $z \gtrsim 2$ examples. We have argued that based on the available X-ray data it is likely that the dominant mechanism for producing Lyα photons has changed from that related to gas infall and cooling at high redshift to that dominated by photoionization by young stars and the AGN by $z \sim 1$.

Based on these data, it is clear that Lyα studies of massive galaxies over a range of redshifts will provide clues to the state of the gaseous environment and the history of galaxy feedback in the local IGM. In the scenario of Dekel and Birnboim (Dekel & Birnboim 2006, 2008; Birnboim et al. 2007) there is a transition from a cold accretion regime, in which Lyα photons are produced by cooling gas, to a two-phase medium, where Lyα may still be emitted by filamentary “cold flows,” and finally to a single hot phase. These transitions occur naturally as a result.
of the gravitational buildup of structure and the consequent formation of a virial shock. It may therefore be possible to follow this progression via Lyα imaging surveys, particularly using high spatial resolution data as we have presented here to study the morphology of the line emission. The state of the Lyα emitting gas would provide direct clues to the state of the galaxy formation process and the thermodynamic properties of the gas. This “Lyα calorimeter” could be combined with data from the next-generation X-ray and mm/radio telescopes to generate a complete census of the gas in and around massive galaxies from $z \sim 4$ to $z = 0$.

We thank the anonymous referee for several helpful comments. Support for program no. 9166 was provided by NASA through a grant (GO-9166.01-A) from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. A.D. and M.E.D. are supported by NOAO, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

REFERENCES

Bennett, A. S. 1962, MmRAS, 68, 163
Birnboim, Y., Dekel, A., & Neistein, E. 2007, MNRAS, 380, 339
Crawford, C. S., & Fabian, A. C. 1996, MNRAS, 282, 1483
De Breuck, C., van Breugel, W., Stanford, S. A., Röttgering, H., Miley, G., & Stern, D. 2002, AJ, 123, 637
Dekel, A., & Birnboim, Y. 2006, MNRAS, 368, 2
Dekel, A., & Birnboim, Y. 2008, MNRAS, 383, 119
Derry, P. M., O’Brien, P. T., Reeves, J. N., Ward, M. J., Imanishi, M., & Ueno, S. 2003, MNRAS, 342, L53
Dey, A., et al. 2005, ApJ, 629, 654
Dey, A., van Breugel, W., Vaccă, W. D., & Antonucci, R. 1997, ApJ, 490, 698
Dijkstra, M., Haiman, Z., & Spaans, M. 2006a, ApJ, 649, 14
Dijkstra, M., Haiman, Z., & Spaans, M. 2006b, ApJ, 649, 37
Dunlop, J., Peacock, J., Spinrad, H., Dey, A., Jimenez, R., Stern, D., & Windhorst, R. 1996, Nature, 381, 581
Fabian, A. C., Crawford, C. S., & Iwasawa, K. 2002, MNRAS, 331, L57
Fabian, A. C., Sanders, J. S., Crawford, C. S., & Ettori, S. 2003, MNRAS, 341, 729
Haiman, Z., Spaans, M., & Quataert, E. 2000, ApJ, 537, 5
Hardcastle, M. J., & Worrall, D. M. 1999, MNRAS, 309, 969
Kodama, T., Tanaka, I., Kajisawa, M., Kurk, J., Venemans, B., De Breuck, C., Vernet, J., & Lidman, C. 2007, MNRAS, 377, 1717
Matsuda, Y., et al. 2004, AJ, 128, 569
McCarthy, P. J. 1993, ARA&A, 31, 639
McCarthy, P. J., Spinrad, H., Dickinson, M., van Breugel, W., Liebert, J., Djorgovski, S., & Eisenhardt, P. 1990, ApJ, 365, 487
McCarthy, P. J., Spinrad, H., & van Breugel, W. 1995, ApJS, 99, 27
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64
Overzier, R. A., Harris, D. E., Carilli, C. L., Pentericci, L., Röttgering, H. J. A., & Miley, G. K. 2005, A&A, 433, 87
Pentericci, L., Kurk, J. D., Carilli, C. L., Harris, D. E., Miley, G. K., & Röttgering, H. J. A. 2002, A&A, 396, 109
Reuland, M., et al. 2003, ApJ, 592, 755
Saito, T., Shimasaku, K., Okamura, S., Ouchi, M., Akiyama, M., Yoshida, M., & Ueda, Y. 2008, ApJ, 675, 1076
Scharf, C., Smail, I., Ivison, R., Bower, R., van Breugel, W., & Reuland, M. 2003, ApJ, 596, 105
Seymour, N., et al. 2007, ApJS, 171, 353
Spinrad, H., Dey, A., Stern, D., Dunlop, J., Peacock, J., Jimenez, R., & Windhorst, R. 1997, ApJ, 484, 581
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M. 2000, ApJ, 532, 170
Stockton, A., Kellogg, M., & Ridgway, S. E. 1995, ApJ, 443, L69
Telfer, R. C., Zheng, W., Kriss, G. A., & Davidsen, A. F. 2002, ApJ, 565, 773
Vanden Berk, D. E., et al. 2001, AJ, 122, 549
Venemans, B. P., et al. 2007, A&A, 461, 823
Villar-Martín, M., Fosbury, R. A. E., Binette, L., Tadhunter, C. N., & Rocca-Volmerange, B. 1999, A&A, 351, 47
Villar-Martín, M., Sánchez, S. F., Humphrey, A., Dijkstra, M., di Serego Alighieri, S., De Breuck, C., & González Delgado, R. 2007, MNRAS, 378, 416
Villar-Martín, M., Vernet, J., di Serego Alighieri, S., Fosbury, R., Humphrey, A., & Pentericci, L. 2003, MNRAS, 346, 273
Zirm, A., et al. 1999, in ASP Conf. Ser. 193, The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift, ed. A. J. Bunker & W. J. M. an Breugel (San Francisco, CA, ASP), 114
Zirm, A. W., Dickinson, M., & Dey, A. 2003, ApJ, 585, 90
Zirm, A. W., et al. 2005, ApJ, 630, 68
Zirm, A. W., et al. 2008, ApJ, 680, 224