Abstract

Many machine learning classification systems lack competency awareness. Specifically, many systems lack the ability to identify when outliers (e.g., samples that are distinct from and not represented in the training data distribution) are being presented to the system. The ability to detect outliers is of practical significance since it can help the system behave in a reasonable way when encountering unexpected data. In prior work, outlier detection is commonly carried out in a processing pipeline that is distinct from the classification model. Thus, for a complete system that incorporates outlier detection and classification, two models must be trained, increasing the overall complexity of the approach. In this paper we use the concept of the null space to integrate an outlier detection method directly into a neural network used for classification. Our method, called Null Space Analysis (NuSA) of neural networks, works by computing and controlling the magnitude of the null space projection as data is passed through a network. Using these projections, we can then calculate a score that can differentiate between normal and abnormal data. Results are shown that indicate networks trained with NuSA retain their classification performance while also being able to detect outliers at rates similar to commonly used outlier detection algorithms.

1. Introduction

Artificial neural network (ANN) and deep learning-based approaches are increasingly being incorporated into real-world applications and systems. Unlike curated benchmark datasets, outliers and unexpected data is commonly encountered in systems deployed for application. Thus, the ability to accurately identify outliers to ensure reliability of ANN-dependent systems is essential. Due to this, outlier detection has been a key aspect of machine learning for some time (Rousseeuw & Driessen, 1999; Breunig et al., 2000; Kingma & Welling, 2014). In standard outlier detection, the goal is to identify inputs that are distinct from the training data distribution (Bansal et al., 2016). These distinctions can be subtle, as illustrated by the work in adversarial examples (Szegedy et al., 2013; Fawzi et al., 2018), and also can be samples from an unknown class (e.g., presenting an image of a dog to an ANN trained to differentiate between species of cats). Without mechanisms to detect outliers, ANNs will classify every sample (sometimes with high confidence (Moosavi-Dezfooli et al., 2015)) to a class found in the training data. In this paper, we focus on the outlier detection paradigm of unknown classes and propose a method for ANNs to identify when data does not match its trained purpose.

A variety of outlier detection methods have been developed in the literature. A common outlier detection method is to use distances to nearby points (Breunig et al., 2000; Goldstein & Dengel, 2012). An example of this is to use the distance to the \(k\) nearest neighbors as an outlier score (Ramaswamy et al., 2000). Another example is the Angle-Based Outlier Detection (Kriegel et al., 2008) which uses both the distance and angle between points to identify outliers. Another class of outlier detection algorithms are one-class classifiers. A popular example of these algorithms is the One-Class Support Vector Machine (Schölkopf et al., 2001). In this case the Support Vector Machine (SVM) is used to estimate a hyperplane that encompasses the training data and outliers can be detected based on their distance from the hyperplane. The major and minor principal components of known “good” data to generate a hyperplane for comparison has also been used (Shyu et al., 2003). The Isolation Forest (Liu et al., 2008) is another method that uses a random forest to find outliers. Methods that identify outliers by having a large reconstruction error using a model fit with the training data have also been used. Recently, the most popular examples of these methods are auto-encoders (Aggarwal, 2015) or variational auto-encoders (Kingma & Welling, 2014). However, all of these methods are capable of only one thing, outlier detection. We propose a method...
Outlier Detection through Null Space Analysis of Neural Networks

using Null Space Analysis (NuSA) that is capable of encoding outlier detection directly into an ANN, thereby increasing the competency awareness of the ANN.

In our NuSA approach, we leverage the null space associated with the weight matrix of a layer in the ANN to perform outlier detection concurrently with classification using the same network. As a refresher, the null space of a matrix is defined as:

$$\mathcal{N}(A) = \{ z \in \mathbb{R}^n \mid Az = 0 \} ,$$

where A is a linear mapping. In other words, the null space of matrix, A, defines the region of the input space that maps to zero. The motivation to leverage the null space is related to the study of adversarial samples such as those shown in (Nguyen et al., 2014) and to experiences in handwritten word recognition in the 1990s (Chiang and P. D. Gader, 1997; Gader et al., 1997). The NuSA approach is a partial, but important, solution to the problem of competency awareness of ANNs; it is unlikely that there is one method alone that can alleviate this problem. Outlier samples derived from the null space of a weight matrix of a network can theoretically have infinite magnitude and added to non-outlier samples with no deviation in the ANN output. This statement will be made more precise in the next section.

2. Null Space Analysis of ANNs

Each layer of an ANN is the projection of a sample by a weight matrix followed by the application of an activation function. This sample is either the input data point at the first layer or the output of a previous layer for any hidden layers. Every weight matrix has an associated null space, although some may be empty. However, any weight matrix that projects into a lower dimensional space (i.e., input dimensionality is larger than the output/subsequent layer dimensionality) has a non-empty null space. The overwhelming majority of all commonly used deep learning architectures consist of several subsequent layers that project into lower dimensional spaces and, thus, have an associated series of non-empty null spaces. Any sample with a non-zero projection into any null space in the network, cannot be distinguished by the network from those samples without that null space component.

For clarity, the null space concept is first illustrated using a simple one-layer ANN with K inputs and M outputs and $K > M$. It is then illustrated for for multi-layer networks. Assume $X = \{ x_1, x_2, \ldots, x_N \}$ is a collection of samples drawn from the joint distribution of the classes of interest, that is, $x_n \sim p_D$ and that a network, f_X has been trained to approximate a function f with $y_n = f(x_n)$. In the one-layer case, $y_n = Wx_n$. Since $K > M$, there is a non-trivial null space $\mathcal{N}(W)$ of dimension $K - M$. If $z \in \mathcal{N}(W)$, then $Wz = 0$ so

$$\forall \lambda > 0 \quad W(x_n + \lambda z) = Wx_n + \lambda Wz = Wx_n = y_n .$$

which implies that there are infinitely many possibilities for mapping unknown inputs to apparently meaningful outputs. In a multi-layer network, there are many layers of matrix-vector multiplications which can be expressed as

$$x_{n,1} = \sigma_1(W_1x_n) \quad x_{n,2} = \sigma_2(W_2x_{n,1}) \quad \cdots \quad x_{n,N_h} = \sigma_{N_h}(W_{N_h}x_{n,N_{h-1}})$$

where x is an input, N_h is the number of hidden layers, and $\sigma_h, h = 1, 2, \ldots, N_h$ are nonlinear functions. More succinctly

$$f_X(x_n) = \begin{aligned} N_h \{ W_{N_h} \sigma_{N_h-1}(W_{N_h-1}(\cdots W_1x) \cdots) \} \end{aligned}$$

Consider a non-outlier sample $x \sim p_D$. Let $z \in \mathbb{R}_K$ and $z_h = \sigma_{h-1}(W_{h-1}\cdots \sigma(W_1x))$ for any $h = 1, 2, \ldots, N_h$. If $z_h \in \mathcal{N}(W_h)$ then $W_hz_h = 0$ so $f_X(x+z) = f_X(x)$. Therefore, any input sample, z, that is the inverse image of a sample, z_h of the null space of any of the weight matrices, W_h, can be added to a legitimate input, x and the output will not change. This is one source of “adversarial” examples that can cause outliers that are nothing like any of the true samples to have high outputs for at least one class.

The description above outlines an interesting and unique class of adversarial samples for a network. Some adversarial samples are defined via stability, a small change in an input sample (e.g., imperceptible to a human) can produce a large change in output. The NuSA approach is focused on the opposite problem, i.e., large changes in an input sample can produce a small (or, no) changes in output. A human would easily disregard this heavily corrupted sample as an outlier but, as pointed out in (Chiang and P. D. Gader, 1997; Gader et al., 1997; Nguyen et al., 2014), the network would not be able to distinguish the sample from the valid sample. An example of this is shown in Figure 1.

Figure 1. Left: Original image. Center: Additive null space noise. Right: Final image, indistinguishable from original image according to the network the noise in the center column is sampled from.
In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.

Outlier Detection through Null Space Analysis of Neural Networks

In our approach, we aim to leverage the null space to identify these outliers. The NuSA approach is to maximize the projection of any training data samples into the null space of layers in a network. Then, during tests, the magnitude of the projection onto the null space can be monitored and any sample with a large null space projection can be flagged as an outlier. The idea is to push everything into the null except for the classes that exist in the training sets. This is difficult for the network since by maximizing the null except for the classes that exist in the training sets.

In order to accomplish this, we define the Null Space Analysis (NuSA) Term which computes the magnitude of the null space projection we now apply this statistic much easier.
In our experiments, we use a simple network that consists of one hidden layer, 64 inputs with 32 outputs. The number of outputs depends on the test which varies from two to nine. The sigmoid activation function is used along with the Adam optimizer (Kingma & Ba, 2014). For each experiment, we use a subset of the CIFAR10 classes to serve as “known” classes which we train the classifier against. The remaining classes are used only to serve as outliers at test time. The superset of training data that contains all ten classes is held fixed for all experiments, and is the same as were used for training/validation when WideResNet was trained. The test set is the same for every outlier detection test that follows (outliers are not allowed in the accuracy tests). Every possible combination of known and unknown classes was tested but only a representative subset are shown in the paper for compactness (since there are 1012 number of possible known/unknown class combinations). Figure 2 shows the performance with and without NuSA on CIFAR10 on this network. The goal of this experiment is to verify that the NuSA term does not impact classification performance when included and not to improve or evaluate classification accuracy on CIFAR10 relative to the state of the art in the literature. We can see from the figure that NuSA has little to no impact on the predictive capability of the trained classifier. This is shown by the average accuracy being nearly identical and heavily overlapping standard deviation bars. We will score the algorithms based on how well each method can identify the unknown classes.

Figure 3 shows the average ROC and precision recall curves respectively (computed by averaging precision over fixed x-values) for NuSA and several other algorithms. Both of these plots were made use the results from the tests with five known classes. This set of tests has the most individual tests, at 252, and is also the only configuration that is balanced between known and unknown classes. In these results we can see that the simple network with NuSA outperforms several of the dedicated outlier detection algorithms. However, the performance of NuSA is not as good as the performance of Angle Based Outlier Detection (Kriegel et al., 2008), K-Nearest Neighbors Outlier Detection (Ramaswamy et al., 2000), or the Local Outlier Factor (Breunig et al., 2000). Again, an advantage of NuSA is that it is incorporated into the classification ANN. However, a single strategy/approach for competency awareness (e.g., NuSA alone) is unlikely to be sufficient in application.

5. Conclusion

In this paper we have presented a new method for detecting outliers during testing. Specifically, NuSA is able to detect outliers without the need to train an additional model exclusively for outlier detection. NuSA is incorporated directly into the ANN used for classification. This has the advantage of only needing to train and run one model at test time as the classification network is now capable of doing both classification and outlier detection simultaneously. While the outlier detection performance of the NuSA network does not quite stack up with state-of-the-art outlier detection algorithms it is an important step towards true competency detection as it provides ANNs the ability to find outliers internally.
A. Additional Results

In Figure 4 we show a particular set of results. In the results shown we highlight the case where the known classes are 0, 2, 5, 7, and 9. For each method we make a histogram of the algorithms’ output values for known and unknown classes to investigate the separation between the two classes. In all cases the orange histogram shows the known classes while the blue shows the unknown classes. In these histograms we can see that NuSA generates two overlapping distributions for the known and unknown classes. The other algorithms that perform the best are ABOD, KNN, and LOF these methods outperform NuSA here due to the compactness of their distributions. Yet, NuSA appears to actually have a larger separation between the means of the distributions.

References

Aggarwal, C. C. Outlier Analysis. Springer, 2015.

Bansal, R., Gaur, N., and Singh, S. N. Outlier detection: Applications and techniques in data mining. In 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), pp. 373–377, 2016.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD ’00, pp. 93–104, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581132174. doi: 10.1145/342009.335388. URL https://doi.org/10.1145/342009.335388

Chiang and P. D. Gader, J.-H. Hybrid fuzzy-neural systems in handwritten word recognition. IEEE Transactions on Fuzzy Systems, 5(4):497–510, Nov 1997. ISSN 1063-6706. doi: 10.1109/91.649901.

Fawzi, A., Fawzi, O., and Frossard, P. Analysis of classifiers’ robustness to adversarial perturbations. Machine Learn, 107 (3):481–508, Mar 2018. ISSN 0885-6125.

Gader, P. D., Keller, J. M., Krishnapuram, R., and Mohamed, J.-H. C. M. A. Neural and fuzzy methods in handwriting recognition. Computer, 30(2):79–86, Feb 1997. ISSN 0018-9162. doi: 10.1109/2.566164.

Goldstein, M. and Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. 09 2012.

Kingma, D. and Welling, M. Auto-encoding variational bayes. 12 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization, 2014.

Kriegel, H.-P., Schubert, M., and Zimek, A. Angle-based outlier detection in high-dimensional data. pp. 444–452, 08 2008. doi: 10.1145/1401890.1401946.

Krizhevsky, A. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.
Figure 4. Histograms of each algorithm’s outlier detection scores. In all images the blue histogram represents the data from the known classes (0, 2, 5, 7, and 9 in this case) and the orange represents the unknown classes. The output from NuSA has been inverted in this figure so that as the score increases the likelihood of being an outlier increases to match the other algorithms. The outputs from each of the algorithms have been scaled to fall between zero and one.