Research on power source structure optimization for East China Power Grid

To cite this article: Lingjun Xu et al 2017 IOP Conf. Ser.: Earth Environ. Sci. 64 012084

View the article online for updates and enhancements.

Related content
- Study on the ability of Shanghai UHV AC grid access point voltage regulation
 Wentao Chen, Hui Xia, Wenxuan Han et al.
- Research on Coordinated Development Strategy of Northeast Power Grid and National Energy Grid
 J K Zhang, X Ma, P C Ren et al.
- Optimization of CCUS Source-Sink Matching for Large Coal-Fired Units: A Case of North China
 Feiyin Wang, Pengtao Wang, Qifei Wang et al.
Research on power source structure optimization for East China Power Grid

Lingjun Xu¹, Da Sang², Jianping Zhang², Chunyi Tang¹ and Da Xu¹,*

¹Hydro china Hua dong Engineering Corporation, Hangzhou, China
²East China Grid Company Limited, Shanghai, China

*Corresponding author e-mail: xulingjun@163.com

Abstract. The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.

1. Introduction

The east china power grid is one of the largest provincial power grids in china which is composed of Shang hai, Jiang su, Zhe jiang, and a Hui and Fu jian province. The structure of east china power grid is not reasonable for the coal power [1]. Takes a much higher proportion than hydropower [2], at present the coal power takes charge of most peak load regulation. There are some shortcomings such as the economy is poor and the operation safety and stability of the unit is reduced in peak load regulation by coal power. In order to meet the increasing power demand of East China Power Grid, The coal power, nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future. For nuclear power is suitable for base load operation, the output of wind power and other new energy [3]. Is randomness, the electric power from outside is aim to send electricity and do not assume the task of peak load regulation, those factors will lead to a phenomenon that the proportion of peak load regulation power source may be seen further declined.

The variation rule [4]. Of electric power in east china power grid is gained by analysis of social economy and energy resources, load and electricity consumption of the power grid. The power demand [5]. In 2025 is predicted combined with load prediction result of east china power grid. The status quo and planning of power source is arranged and optimization model of power source structure is established. Then the electric power market, peak load regulation capacity [6]. And the comparison result of peak load regulation power source are obtained. Based on the optimization for power source structure, the reasonable power source allocation in east china is obtained at last.
2. Load prediction

The load of east china power grid is predicted by analysis of electricity consumption, the relationship between variation rule of electric power structure and economic growth. The result of load prediction is shown as below.

Item	2015	2020	2025
The maximum load (MW)	235000	305000	370000
Growth rate (%)	5.35	3.94	
Annual power demand (billion kWh)	1400	1800	2150
Growth rate (%)	5.15	3.62	

Through analysis of status quo of east china power grid in recent years, It can be found that the peak load in summer usually occurred in July, August and September, mostly in August, and the peak load in winter usually occurred in December; The evening peak load of each month is often higher than early peak load, usually the evening peak load occurred at pm19~20 in summer and pm18~19 in winter. It is predicted that daily load rate of typical days in summer and winter is between 0.798 and 0.834, the daily minimum load rate is between 0.595 and 0.634.

3. The analysis peak load regulation balance

The amplitude of power source in east china power grid are as follows:

1. Conventional hydropower station: The amplitude of peak load regulation of large and medium-sized hydropower stations can reach to 100%, the small hydropower stations are incapable to regulate peak load.
2. Pumped storage power station: The amplitude of peak load regulation can reach to 200% of its boot capacity.
3. Coal power: The amplitude of peak load regulation of large coal units can reach to 40~50%. The small coal units are considered as base load which has no capacity of peak load regulation.
4. Gas power: The amplitude of peak load regulation can reach to 100% of its boot capacity. Thermal units are considered as base load.
5. Nuclear power: The nuclear power is considered as base load.
6. Wind power: The anti-rate of peak load regulation is 45%.
7. Hydropower from outside: The hydropower from outside bear base load in flood season and take some charge of peak load regulation in dry season.
8. Coal power from outside: It is considered as base load.

The calculation of peak load regulation balance of east china power grid in 2025 is carried out on the base of above principle, the results are shown in the table below.

The calculated result indicates that the peak valley difference of east china power grid will significantly increase in future With the increase of nuclear power, wind power, other new energy sources and electric power from outside, the amplitude of coal power in future will be high and the pressure of peak load regulation cannot be ignored. It is hard to is difficult to satisfy with the request of Safe, stable and economical operation of power grid. It is an urgent need to build peak load regulation power source.
Table 2. The peak load regulation balance of east china power grid in 2025 (Unit: MW)

item	Unit: MW
1 Maximum load	370000
2 Minimum load rate	0.6340
3 Maximum peak valley difference	136159
4 hot-spare	279000
5 Anti-spare of wind	11025
6 Required capacity of peak load regulation	175084
7 Total boot capacity	399900

Conventional hydropower	14722
Pumped storage power station	13220
Gas power	31169
Oil power	857
Nuclear power	39920
Wind power	1225
Hydropower from outside	26326
Coal power from outside	49980
Small Coal power	24861
Coal power which can regulate peak load	197620
Required capacity of peak load regulation	175084

Conventional hydropower	6828
Pumped storage power station	26440
Gas power	12085
Coal power which can regulate peak load	129732

Amplitude of coal power(%)	65.6
Capacity of coal power when amplitude of coal power is 35%	69167
The profit and loss of capacity of coal power (+ is profit - is loss)	-60565

4. The optimal allocation of power source

On the base of power source which participate in peak load regulation, adjusting the scale of coal power, gas power and pumped storage power stations, maintaining the scale of other power sources to carry out optimal allocation of power source in east china power grid. The result shows that total discounted cost of Pumped storage power station is the least. When the scale of Pumped storage power station is 40000MW, the amplitude of coal power decreased from 65.6% to 44.6%, which means that Pumped storage power station takes a good effect on peak load regulation.

Table 3. Reasonable scale of Pumped storage power station in east china power grid in 2025

scheme	Reasonable scale of Pumped storage power station (MW)	New scale of Pumped storage power station (MW)	Total discounted utilization hours of coal power(billion RMB)	Coal consumption (thousand tons)	Gas consumption (billon m3)	Amplitude of coal power (%)	summer	winter
M1	13220	0	218609	2259.3	4598	313570	27.55	59.9
C1	22000	8780	209411	2238.7	4823	312690	27.55	59.4
C2	40000	26780	191060	2213.7	5339	311020	27.55	44.6
C3	46000	32780	185513	2214.2	5517	310630	27.55	38.9
R1	13220	47741	209411	2287.1	4653	302150	33.75	62.4
R2	13220	65741	26780	2344.6	4783	278920	46.48	50.7
R4	13220	71741	32780	2364.4	4832	271280	50.72	52.6

The effect of different amplitude of coal power act on the scale of Pumped storage power station is analysed on base of optimization for power source structure. At the same time, the different amplitude
of thermal units, gas power, nuclear power, hydropower from outside, coal power from outside act on the scale of Pumped storage power station is analysed too. When the amplitude of hydropower from outside is 20%, the amplitude of coal power from outside is 30%, the amplitude of thermal units is 20%, the amplitude of nuclear power is 10%, the reasonable scale of Pumped storage power station is 32318MW; When hydropower from outside, coal power from outside, thermal units, nuclear power don’t participate in peak load regulation, and take wind power from outside into consideration, the reasonable scale of Pumped storage power station is 60017MW. By analysis of the economic efficiency of power system, capacity and possibility of peak load regulation and uncertainty of electric power from outside, this article presents that the reasonable scale of pumped storage power station is 40000MW, and the proportion of pumped storage power station is 8.1%.

The optimal allocation of power source of east china power grid in 2025 is as follows:

Item	2025	
Scale of power source(MW)	Proportion (%)	
Maximum load	370000	100
Assemble power	490889	
Conventional hydropower station	19932	4.1
Pumped storage power station	40000	8.1
Gas power	38961	7.9
Nuclear power	39920	8.1
Wind power	24500	5.0
Coal power from outside	56300	11.5
Hydropower from outside	40800	8.3
Coal power	230476	46.9

5. Conclusion

The structure of east china power grid is not reasonable for the coal power takes a much higher proportion. The capacity of peak load regulation is obviously different in all kinds of power source, demand of electricity continues to increase, peak valley difference will increase significantly and the pressure of peak load regulation cannot be ignored. By analysis of optimal allocation of power source, it shows that the reasonable scale of pumped storage power station is 40000MW, and the proportion of pumped storage power station is 8.1%. If the power source planning carried out according to the idea of peak load regulation balance, the power source structure of east china power grid in future will be better and better. The method can play an important role in guiding for the planning work in east china power grid.

References

[1] Cong,Y.L.& Niimura,T. Hydro generation scheduling for deregulated and competitive operation [J]. Power System Technology, 2002(1):13-17.
[2] Yeh W.W.G. Reservoir management and operation models:a state of art review. Water Resource Research[J], 1985,21(12):1797-1818.
[3] Hernandez, H.M.& Diaz J.A. Operations planning of Colombian hydro-thermal interconnected system [J]. IEEE Transactions on Power Systems, 1991,6(2):778-786.
[4] Georgakakos, A.P. H.Yao,Y.Yu. Control Models For Hydroelectric Energy Optimization [J]. Water Resource Research, 1997,33(10):2367-2379.
[5] Greg Magsaysay, Thomas Schuette, Russ J Fostiak. Use of a static frequency converter for rapid load response in pumped-storage plants. IEEE Transactions on Energy Conversion, Vol. 10, No.4, December 1995.
[6] Nicolet, C., Avellan, F., Allenbach, P., Sapin, A., Simond, J.-J., "New Tools for the Simulation of Transient Phenomena in Francis Turbine Power Plants". Proceedings of the 21st IAHR Symposium, Lausanne, pp. 519-528, 2002.