MINIREVIEWS

Modulation of Morphogenesis in *Candida albicans* by Various Small Molecules

Julie Shareck and Pierre Belhumeur*

Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada

The pathogenic yeast *Candida albicans*, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. Astriking feature of *C. albicans* is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of *C. albicans* and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in *C. albicans* has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in *C. albicans*. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat *Candida* infections.

Candida albicans, a member of the endogenous human microflora, is the most common human fungal pathogen. In healthy individuals, outgrowth of *C. albicans* results in superficial mycoses of the skin, nails, and mucous membranes (thrush and vulvovaginitis). However, in individuals with immune deficiencies caused by underlying disease, chemotherapy treatment, or immunosuppression following a transplantation, *C. albicans* can cause severe, life-threatening invasive candidiasis. *C. albicans* now ranks as the fourth leading cause of nosocomial infections and is the most common fungal species causing bloodstream infections, with associated mortality rates of 38 to 49% (62, 90, 111, 146). Antifungal drugs currently used for the treatment of *Candida* infections include polyenes, azoles, echinocandins, allyamines, and flucytosine. These drugs exert either fungicidal or fungistatic activities by interfering with essential processes (104). Intensive prophylactic and therapeutic uses of antifungal agents have selected for drug-resistant strains (6, 30, 118). Moreover, the limited arsenal of antifungal drugs is further compromised by severe side effects in patients and the emergence of species refractory to conventionally used agents (90). There is a need to develop new antifungals and to explore novel therapeutic approaches to treat *Candida* infections.

C. albicans has the ability to grow in a variety of morphological forms, including as budding yeast, pseudohyphae, and true hyphae (133). The transition from yeast growth to hyphal growth is induced by a variety of environmental cues reflecting host conditions (temperature of 37°C, neutral or alkaline pH, or presence of serum) that activate a complex network of signaling pathways (15, 19, 41, 145). Although recent findings have demonstrated that the yeast-to-hypha (Y-H) transition is not always required for virulence in systemic candidiasis (99), morphogenesis still belongs to the realm of *C. albicans* virulence factors as demonstrated by several lines of evidence, the first being that strains defective in morphogenesis are attenuated in virulence in systemic candidiasis (83, 121, 152). In addition, hyphal development is necessary for *C. albicans* to evade phagocytes (84), to escape from blood vessels (112), and to colonize medical devices by forming biofilms (97, 98). Moreover, both yeast and hyphal cells are found in *C. albicans*-infected organs (103). Thus, morphogenesis contributes to the overall virulence of *C. albicans*.

To widen the repertoire of antifungal drugs, targets that differ from those of conventional drugs have to be identified. Recently, targeting virulence rather than essential processes has been postulated as a new paradigm for the development of antifungal agents, following the successful development of drugs targeting bacterial virulence in antimicrobial therapy (5, 20, 43). Thus, instead of being killed, a pathogen is maintained in a harmless form by blocking virulence attributes that contribute to its pathogenicity. Moreover, resistance to drugs that target virulence instead of growth is less likely to develop, given that selective pressure is reduced on nonessential targets that are required only to colonize host environments (66). In *C. albicans*, virulence factors that are eligible as targets for the development of new antifungal drugs have been reviewed recently and include secreted aspartic proteases, phospholipases, calcineurin, inositol phosphoryl ceramide synthase, and elastase (20, 43).

Given that morphogenesis is a virulence factor of *C. albicans*, it may also constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis has been...
shown to be a means to treat candidiasis. Using the tet-NRG1 strain, which can be induced to filament when doxycycline is added to the drinking water of animals, studies have demonstrated that inhibiting filamentation attenuated virulence in a model of systemic candidiasis and served as an effective therapeutic intervention (120, 121). Concurrently, numerous molecules have been reported to modulate the Y-H transition in C. albicans. These molecules may harbor interesting therapeutic properties, given that they target a virulence factor. In addition, they are in line with the current trend in antifungal drug development and may constitute novel antifungal agents, which are required to remedy antifungal drug resistance problems and to enhance the arsenal of antifungal agents. In this minireview, we research the literature in an attempt to list the molecules reported to influence morphogenesis in C. albicans, while focusing on studies that have addressed the modes of action of specific molecules. When possible, we review experimental findings regarding their effects on C. albicans infections. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.

FARNESOL

Farnesol, a 15-carbon oxygenated lipid made up of isoprene moieties, was the first quorum-sensing (QS) molecule to be identified in eukaryotes (63). Secreted by a number of Candida laboratory strains and clinical isolates, farnesol inhibits the Y-H transition in C. albicans (63, 64). The QS molecule is active at blocking hyphal growth induced by a variety of morphogenetic cues such as serum and N-acetylglucosamine (91). Moreover, farnesol affects various developmental processes in other Candida spp. and in pathogenic fungi, including Aspergillus spp., Fusarium graminearum, and Paracoccidioides brasiliensis (reviewed in reference 76).

Findings regarding farnesol’s repressive effects on filamentation and its mode of action have been reviewed extensively (29, 57, 74, 76, 96). To gain insight into the response of C. albicans to farnesol, global gene expression analyses were performed (21, 25, 38, 119). Although experimental approaches varied from one study to another, farnesol commonly affected the expression of genes that belonged to functional categories such as stress response, heat shock, drug resistance, amino acid and carbon metabolism, iron transport, cell wall, and cell cycle. One study suggested that farnesol affected the mitogen-activated protein (MAP) kinase pathway, as transcript levels of the HST77 kinase and the CPH1 transcription factor were reduced in the presence of the molecule (119). However, farnesol inhibited the Y-H transition in a cph1/cph1 mutant, suggesting that CPH1 is not a primary but rather a secondary target of farnesol (34). While gene expression analyses generated a wealth of data pertaining to farnesol’s transcriptional effects on C. albicans, specific cellular targets were not identified.

Other morphogenetic regulators may play a role in the C. albicans response to farnesol. CHK1, a two-component signal transduction pathway histidine kinase, appeared to be required for the farnesol-mediated inhibition of hyphal growth (75). Chk1p may act either as a sensor or downstream of the sensor for farnesol (74). The histidine kinase may function via the Hog1p MAP kinase, which was shown to be phosphorylated in the presence of farnesol (130). Like CHK1, the negative regulators of filamentation TUP1 and NRG1 were shown to be involved in the response of cells to farnesol (69). Indeed, tup1/tup1 and nrg1/nrg1 mutants remained filamentous in the presence of farnesol. Farnesol treatment also resulted in an increase in TUP1 mRNA and protein levels and corrected the haploinsufficient phenotype of a TUP1/tup1 mutant strain (69). Concurrently, the Ras1p-cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway was identified as an important target of farnesol (34). Several lines of evidence suggest that farnesol inhibits the Y-H transition by downregulating Ras1p signaling. Farnesol repressed hypha formation in a strain that expressed the hyperactive Ras1p^{G13V} variant. Moreover, the addition of dibutyrly cAMP, a cAMP analogue, restored filamentation to farnesol-treated cells. Farnesol treatment also increased mRNA levels of cAMP-repressed genes, suggesting that cAMP levels were reduced in the presence of farnesol.

There are several ways by which farnesol could modulate the Ras1p signaling pathway as well as other factors involved in the Y-H transition. Membrane-bound, Ras1p interacts with the adenylyl cyclase Cyr1p in the vicinity of the plasma membrane, thus promoting cAMP synthesis (42, 144). Because farnesol is a highly hydrophobic molecule that localizes to the plasma membrane, it may disrupt the membrane, causing the release of farnesylated Ras1p or affecting the Ras1p-Cyr1p complex, thus impairing cAMP production and the Y-H transition (34, 76, 125). Farnesol may also impede posttranslational modifications of Ras1p, which are required for the protein’s localization to the plasma membrane and its biological activity as well as for hyphal development in C. albicans (49, 76, 88). Another possibility is that farnesol binds directly to Ras1p or to Cyr1p, thus interfering with cAMP synthesis. The effect of farnesol on HST77 and CPH1 expression levels (119) is likely to be mediated by Ras1p, given that the GTPase is a regulator of the MAP kinase signaling pathway (78). Additionally, Tup1p/Nrg1p and Chk1p may also be downstream targets of Ras1p, as regulators of these factors have yet to be identified (76). With the current state of knowledge regarding the molecular networks regulating the Y-H transition, it is impossible to determine whether farnesol has one specific target or modulates simultaneously different targets that vary according to hypha-inducing conditions. Furthermore, a receptor or a binding protein for farnesol has not been identified.

Given its hypha-inhibiting properties, farnesol was purported to harbor therapeutic potential (96), and its effects on various types of Candida infections were examined. C. albicans cells cocultured with human gingival fibroblasts and epithelial cells were exposed to farnesol. At concentrations tolerated by gingival cells, farnesol blocked the Y-H transition of C. albicans (117). In a follow-up study that used a human oral mucosa model, farnesol was shown to promote epithelial cell defense against C. albicans by increasing Toll-like receptor 2 (TLR2) expression levels, promoting interleukin-6 (IL-6) secretion, and increasing antimicrobial peptide human beta-defensin 2 (hBD2) levels (35). Likewise, using a mouse model of mucosal candidiasis, farnesol administered orally to infected animals suppressed hyphal development and had an overall protective effect against oral candidiasis (54). Farnesol had contrasting effects in a mouse model of systemic candidiasis. Whether administered intraperitoneally, intravenously, or orally to infected mice, farnesol treatment accelerated the demise of in-
fected animals (94). Moreover, farnesol interfered with the normal progression of cytokine induction by decreasing IL-12 levels, which increased the susceptibility of mice to systemic candidiasis (95). Administered on its own, farnesol was harmless, indicating that it specifically enhanced virulence in systemic candidiasis (95). Administered on its own, farnesol was harmful levels, which increased the susceptibility of mice to systemic infection (94). Moreover, farnesol interfered with the subcellular localization of Ras1p and reducing its levels, which may account for its hypha-stimulating properties (23).

As a commensal organism of the mucosal microbiota and a pathogen in different host niches, C. albicans encounters microorganisms of the endogenous microflora as well as several opportunistic pathogens. A number of bacteria and yeasts have been reported to secrete molecules that influence the Y-H transition. Pseudomonas aeruginosa secretes the 3-oxo-C12-acyl homoserine lactone (3OC12HSL), a 12-carbon backbone molecule structurally related to farnesol, which inhibited the Y-H transition induced in N-acetylglucosamine-containing medium and caused filaments to revert to the yeast morphology (61). Similar in structure to farnesol and farnesic acid, dodecanol and three other QS molecules produced by Xanthomonas campestris, Burkholderia cenocepacia, and Streptococcus mutans also exerted hypha-inhibiting activities (16, 140, 142). Like farnesol, these molecules may block the Y-H transition by inhibiting the Ras1p-cAMP-PKA signaling pathway, potentially through similar mechanisms (57, 60). Additionally, P. aeruginosa also had an inhibitory effect on C. albicans growth in vitro, in burn wounds, and in the lungs of patients with cystic fibrosis (46, 70). Pyocyanin, phospholipase C, and phenazines were the molecules responsible for this inhibitory effect (58, 71). Interestingly, the antifungal activity of P. aeruginosa was specifically targeted toward hyphal cells, as bacteria were shown to attach to and kill fungal filaments only (58).

Other microorganisms, including oral and gut residents, have also been reported to exert morphogenesis-modulating activities. Streptococcus mutans secreted a 22-amino-acid-containing peptide that inhibited the Y-H transition induced using saliva-coated culture plates containing YNB medium (65). In contrast, cell-free Streptococcus gordonii supernatants enhanced hyphal development and biofilm formation induced in the presence of human saliva at 37°C and affected the activation of several MAP kinases, including that of Cek1p, Mkclp, and Hog1p (11). Although the active compound was not identified, H2O2 and autoinducer 2 were proposed to promote filamentation by impacting the oxidative stress response. Culture supernatants from Lactobacillus rhamnosus GG and the probiotic yeast Saccharomyces boulardii blocked germ tube formation induced in serum-containing medium and in RPMI 1640 medium at 37°C (73, 92, 101). Butyric acid was shown to mimic the effect of L. rhamnosus GG spent medium, at concentrations well within the physiological range observed in the colon (101, 116). The hypha-inhibiting activities of butyric acid had previously been reported (18, 56). In the case of S. boulardii, capric acid was identified as the active molecule: it inhibited the Y-H transition as well as adhesion and biofilm formation (92). Two other compounds produced by Acinetobacter baumannii and Salmonella enterica serovar Typhimurium also inhibited filamentation and biofilm formation but have yet to be identified (110, 134).

In complex microbial communities, molecules mediate interspecies interactions (57, 59, 143). With respect to morphogenesis-modulating molecules, these secreted products may be a mechanism by which microbes compete with C. albicans by inhibiting hypha formation, limiting attachment, and preventing invasion. It may also be a way for C. albicans to respond to the presence of microorganisms. For instance, in the presence of 3OC12HSL, C. albicans may block hyphal development as a means to escape being killed by P. aeruginosa. Conversely, hypha-inducing molecules may mediate synergistic interactions between bacteria and C. albicans by promoting biofilm formation and invasion (11).

FATTY ACIDS, EICOSANOIDS, AND CYCLOOXYGENASE INHIBITORS

Lipids are involved in fungal development and pathogenicity (39, 100, 114, 127). In C. albicans, lipid molecules such as fatty acids and eicosanoids have been reported to modulate the Y-H transition. Fatty acids, including butyric, capric, lauric, palmitoleic, oleic, linoleic, conjugated linoleic, and arachidonic acids, inhibited the Y-H transition induced under various conditions (28, 89, 92, 101). The hypha-inhibiting activities of fatty acids were dependent on the medium. For instance, linoleic and oleic acids were shown to have no effect on germ tube formation induced in serum or to block the Y-H transition induced in other conditions, such as Spider medium (28, 101). Such discrepancies may be due to the lipid-binding capacity of serum albumins, which sequester lipidic molecules and reduce their effective concentrations (76). Moreover, although the effects of fatty acids on the Y-H transition have been described, their modes of action have not been studied extensively. Conjugated linoleic acid (CLA) was reported to block the Y-H transition induced in Spider medium by affecting the subcellular localization of Ras1p and reducing its levels,
thereby impeding the activation of Ras1p signaling and blocking the induction of the TEC1 transcription factor (124). In addition, while the antifungal properties and cytotoxicity of several fatty acids have been reported (13, 22, 37), fatty acids inhibited hyphal growth at concentrations that did not affect cellular growth (124).

In contrast to fatty acids, eicosanoids such as prostaglandin E2 (40, 68, 102) and thromboxane B2 (101) enhanced the Y-H transition. Eicosanoids are oxygenated lipids derived from 20-carbon polyunsaturated fatty acid precursors such as arachidonic acid. In mammalian cells, cyclooxygenases (COX) catalyze the conversion of arachidonic acid into prostaglandins. While *C. albicans* does not possess a COX homolog, the fatty acid desaturase OLE2 and the multicopper oxidase FET3 were found to play a role in prostaglandin synthesis (40). Concurrently, several COX inhibitors, including diclofenac sodium, indomethacin, ibuprofen, resveratrol, and eicosatetraynoic acid (ETYA), were shown to block the Y-H transition induced in serum-containing, Lee’s or Spider medium at 37°C (3, 44, 108, 136). It is not clear whether or not COX inhibitors affected filamentation by blocking prostaglandin synthesis, given that a direct association between reduced prostaglandin levels and reduced hypha formation was not shown and that *C. albicans* does not encode a COX homolog. Moreover, COX inhibitors appeared to reduce viability of *C. albicans* cells, which may account for their hypha-inhibiting activities (3, 36, 102). For instance, diclofenac sodium and resveratrol blocked hyphal development but also affected cellular growth (44, 108).

PEPTIDES AND PROTEINS

Various peptides and proteins were shown to modulate the Y-H transition in *C. albicans*. At concentrations of 25 μg ml⁻¹, nisin Z, an antimicrobial peptide of the lantibiotic family, reduced germ tube formation induced in serum-containing medium and decreased adhesion of *C. albicans* cells to gingival monolayer cultures (2). However, a previous study had shown that at slightly higher concentrations (100 μg ml⁻¹), nisin Z reduced cellular growth rates and caused ultrastructural disturbances in *C. albicans* cells, casting doubt on the mechanism by which the antimicrobial peptide inhibited filamentation (81). Salivary components statherin and mucin also affected morphogenesis. Hyphae grown overnight in RPMI 1640 medium switched to yeast growth in the presence of statherin (80), while mucin inhibited hypha formation induced in RPMI 1640 medium at 37°C and blocked RAS1 induction without affecting cellular growth (106). Cdc42/Rac interactive binding (CRIB) fusion polypeptides containing the CRIB consensus sequence were designed to disrupt the binding of the Rho GTPase Cdc42p to its effectors Cst20p and Cia4p, interactions that are required for hyphal development (77, 79). CRIB polypeptides, which have high-affinity binding to Cdc42p, blocked the Y-H transition induced in Lee’s medium in time- and dose-dependent fashions, without impairing cellular growth (132). Additionally, hyphal cells grown overnight in Lee’s medium switched to yeast-like forms when they were incubated in fresh medium in the presence of either of the CRIB polypeptides, indicating the peptides can convert hyphal cells back into the yeast-like form.

RAPAMYCIN

Rapamycin, a hydrophobic macrolide produced as a secondary metabolite by the soil bacterium *Streptomyces hygroscopicus*, was initially discovered as an antifungal agent against *C. albicans* (139). Rapamycin inhibits the function of the Tor (target of rapamycin) kinases (53), of which one homolog was identified in *C. albicans* (Tor1p) (32). Tor1p has contrasting roles in regulating morphogenesis which vary according to hypha-inducing conditions. For instance, on solid synthetic low ammonium dextrose (SLAD) medium, alkaline M199 medium (pH 8.0), and Spider medium at 37°C, sublethal concentrations of rapamycin blocked hyphal growth, indicating that Tor1p is a positive regulator of filamentation under nitrogen or nutrient starvation conditions and in response to alkaline growth conditions (12, 33, 86). In contrast, in most liquid hypha-inducing media, rapamycin had no effect on the Y-H transition, indicating that Tor1p does not regulate hyphal development under these conditions (12).

Interestingly, in liquid Spider medium, rapamycin promoted cellular aggregation and flocculation (12). These findings demonstrate that Tor1p negatively regulates cellular adhesion under such growth conditions. Gene expression analysis showed that rapamycin treatment strongly induced the hyphal growth program in *C. albicans*, resulting in the induction of hypha-specific genes (*ALS1, ALS3, HWPI, and ECE1*) and hyphal growth regulators (*TEC1* and *RFG1*). Additionally, rapamycin decreased transcript levels of filamentation repressors *TUP1* and *NRGI*. The transcription factors Efg1p and Bcr1p were required for the rapamycin-mediated cellular aggregation as well as for expression of adhesins. Thus, in liquid Spider medium, rapamycin promotes cellular aggregation by compromising Tor1p function, which results in the activation of Efg1p and Bcr1p and the downregulation of *TUP1* and *NRGI*.

GELDANAMYCIN

Geldanamycin (GdA) is a microbial metabolite that inhibits the function of Hsp90p, a molecular chaperone and heat shock protein (115). Hsp90p regulates the form and function of various client proteins, several of which regulate morphogenesis in *C. albicans* (109, 113, 123). GdA treatment induced filamentation in *C. albicans* cells grown in noninducing conditions (123). The genetic deletion of *HSP90* was also shown to phenocopy the GdA-induced filamentation. Combined, these results suggest that Hsp90p is a negative regulator of morphogenesis. Upstream inputs from the cAMP-PKA signaling pathway were required for cells to filament in the presence of GdA, while the transcription factor Efg1p was not required. These results suggest that the GdA-induced filamentation may be regulated by transcription factors that function downstream of PKA, such as Tec1p, Flo8p, and Sfl1p (122, 123). Hsp90p has been proposed to repress cAMP-PKA signaling, either by (i) interacting with a positive regulator of the pathway and maintaining it in an inactive form (e.g., Tpk1p or Tpk2p), the catalytic subunits of PKA), (ii) stabilizing a negative regulator of the pathway (e.g., Bcr1p, the regulatory subunit of PKA), or (iii) interacting indirectly with the cAMP-PKA pathway via an unknown protein (122). Other models involving different Hsp90p client proteins are also possible. Interestingly, the ge-
nentic depletion of HSP90 attenuated virulence in a mouse model of systemic candidiasis, resulting in clearance of the infection (123). While these findings suggest that modulating morphogenesis by compromising Hsp90p function is a means to treat candidiasis, reduced virulence may have been due to reduced cellular growth rates associated with reduced HSP90 cellular levels. Nonetheless, a study has shown that harnessing Hsp90p function, either with the use of clinically relevant GdA derivatives or by genetically compromising Hsp90, improved the therapeutic efficacy of an azole in two animal models of infection (31). Because they enhance the efficacy of existing antifungal drugs, Hsp90p inhibitors such as GdA and structurally related compounds are good candidates for the development of effective combination therapy strategies.

HISTONE DEACETYLASE INHIBITORS

Histone deacetylases (HDACs) are chromatin-remodeling proteins usually involved in transcriptional repression (45). HDACs deacetylate histones globally or at specific promoters, directed by transcription factors or other DNA-binding proteins (67). The HDACs Hda1p, Hos2p, Set3p, and Hst3p have been reported to regulate morphogenesis, yet they have contrasting roles (55, 148, 151). Moreover, several HDAC inhibitors have been shown to modulate hyphal development and virulence (55, 129, 131, 148). For instance, suberoylanilide hydroxamic acid (SAHA) inhibited the serum-induced Y-H transition, which correlated with a minor reduction in EFG1 transcript levels (129). In contrast, nicotinamide, an inhibitor of Hst3p, induced filamentation of C. albicans cells in noninducing conditions (148). Hst3p, a member of a family of NAD\(^+\)-dependent histone deacetylases known as sirtuins, is inhibited by nicotinamide, a product of the NAD\(^+\)-dependent deacetylation reaction. The pharmacological inhibition of Hst3p using nicotinamide or the genetic depletion of HST3 not only induced filamentation but also attenuated virulence in a model of systemic candidiasis. Yet, reduced virulence in vivo was likely due to reduced growth rates rather than to the modulation of morphology, as nicotinamide treatment or the repression of HST3 resulted in cell death.

Trichostatin A (TSA), a well-characterized HDAC inhibitor (150), had contrasting effects on morphogenesis that depended on experimental settings, including strains, growth conditions, and TSA concentrations used. Clinical isolates of C. albicans pretreated for 48 h with 4 \(\mu\)g ml\(^{-1}\) of TSA were unable to form germ tubes when induced to filament in yeast extract-peptone-dextrose (YPD) medium supplemented with 20% serum (129). In addition, EFG1 transcript levels were reduced in TSA-treated cells. These results suggest that TSA inhibited a histone deacetylase required for the Y-H transition and down-regulated EFG1 expression. The Hda1p HDAC was proposed to potentially mediate the effects of TSA on hyphal development. In contrast, similar TSA concentrations had no effect on the serum-induced Y-H transition (131). In these experiments, TSA treatment may have been insufficient to affect morphogenesis, given that the HDAC inhibitor was added at the onset of hyphal induction. Another study showed that TSA treatment promoted hyphal development under noninducing conditions (55). Indeed, on solid YPD medium supplemented with 10 \(\mu\)g ml\(^{-1}\) of TSA, colonies displayed filamentous growth after 3 days of incubation at 37°C. The TSA-induced filamentation was phenocopied by the deletion of the SET3 and HOS2 histone deacetylase genes. Additionally, both histone deacetylases were shown to be involved in repressing morphogenesis at the level of the Efg1p transcription factor. Thus, the TSA-induced filamentation appears to be caused by TSA inhibiting the Set3p and Hos2p HDACs and relieving the repression of filamentation (55). Interestingly, despite the fact the set3/set3 mutant strain filamented in vivo, it was still attenuated in virulence in a model of systemic candidiasis. Moreover, reduced growth rates did not account for reduced virulence, as the generation times of wild-type and set3/set3 strains did not differ significantly (55). Given that TSA inhibits Set3p, the HDAC inhibitor may reduce virulence in vivo, but this has yet to be demonstrated.

CELL CYCLE INHIBITORS

Hydroxyurea (HU) and nocodazole (NZ) are cell cycle-perturbing agents. While HU inhibits ribonucleotide reductase, depleting ribonucleotides and inhibiting DNA synthesis, NZ disrupts microtubules and locks cells in mitosis. In addition to causing cell cycle arrest, both drugs also trigger hyperpolarized growth of C. albicans cells grown in noninducing conditions (7–9, 145). Upon exposure to HU or to NZ, yeast cells developed hyperpolarized buds, which continued to elongate despite DNA replication being blocked (7–9). HU- and NZ-induced elongated buds displayed pseudohyphal morphological features (constrictions at the neck and width of \(\geq 2\mu m\)) as well as hyphal-like features, in that they maintained polarized growth, demonstrated nuclear movement out of the mother cell and into the elongating filament, and expressed several hypha-specific genes (HSGs) (7, 8). HU-induced elongated buds eventually died after 24 h. However, sublethal concentrations of the inhibitor have also been reported to induce hyperpolarized growth without impacting cellular growth (128). The development of hyperpolarized buds involves different proteins, several of which are cell cycle checkpoints. For instance, the Rad53p effector kinase of the DNA replication checkpoint and the Mad2p spindle assembly checkpoint were required for hyperpolarization of buds induced by HU and NZ treatments, respectively (9, 128). Interestingly, bud elongation appears to be caused by the activation of cell cycle checkpoints by cell cycle inhibitors rather than by cell cycle arrest (128). Moreover, several components of Ras1p signaling, including the GTPase Ras1p and adenylate cyclase Cyr1p, were required for HU-induced elongated buds (7, 8). Given the fact that hyperpolarized growth has been observed only in response to cell cycle-inhibiting agents or in strains in which cell cycle genes are inactivated or overexpressed (reviewed in references 14 and 145), it is not clear whether or not this growth mode is physiologically relevant. Yet, it remains possible that hyperpolarized buds may be important for pathogenicity and/or survival in the host, as they eventually express hypha- and virulence-specific factors (145).

OTHER SMALL MOLECULES

Many other small molecules have been reported to affect morphogenesis in C. albicans (135, 136). Propranolol, a calmodulin inhibitor (141), was shown to inhibit serum-induced hypha formation by reducing EFG1 expression levels (10, 138).
Various inhibitors of actin dynamics, including latrunculin, jasplakinolide, and cytochalasin A, also blocked the Y-H transition induced in serum-containing, Spider, or M199 medium at 37°C (1, 50, 135, 147). 1,4-Diamino-2-butane (DAB) blocked the Y-H transition induced in RPMI 1640 medium at 37°C by reducing polyamine levels, decreasing CYRI mRNA levels, and reducing cAMP cellular levels (137). Sublethal concentrations of azoles inhibited hypha formation induced in M199 medium at 37°C (47, 105). The hypha-inhibiting activities of azoles may be due to increased farnesol production reported in azole-treated cells (64). Two derivatives of propa- nol from a chemical library reduced cAMP's effect on virulence in vitro (120, 121). Therefore, does modulating morphogenesis constitute a sound approach to treat candidiasis? First, it is noteworthy to mention that there is an overall lack of evidence demonstrating that impairing the developmental process can be used to treat candidiasis. While many small molecules have been reported to modulate the Y-H transition in vitro, very few compounds have been evaluated for their effects on virulence using in vitro or in vivo infection models. Second, the therapeutic potential of some molecules, including nicotinamide, ECC145, ECC188, and geldanamycin, may stem in part from their cytotoxicity toward C. albicans rather than C. albicans. Yet, an overview of the literature revealed that the mechanisms of few of these compounds have been identified as primary targets of morphogenesis-modulating molecules may well be secondary targets. Proof-of-concept experiments have shown that interfering with the morphogenetic plasticity of C. albicans and promoting its growth in a form that does not damage the host attenuates virulence in vivo (120, 121). Therefore, does modulating morphogenesis constitute a sound approach to treat candidiasis? First, it is noteworthy to mention that there is an overall lack of evidence demonstrating that impairing the developmental process can be used to treat candidiasis. While many small molecules have been reported to modulate the Y-H transition in vitro, very few compounds have been evaluated for their effects on virulence using in vitro or in vivo infection models. Second, the therapeutic potential of some molecules, including nicotinamide, ECC145, ECC188, and geldanamycin, may stem in part from their cytotoxicity toward C. albicans rather than C. albicans.
from their capacity to modulate the Y-H transition, as they reduced cellular growth rates (123, 148, 149). Third, the studies that have evaluated the effects of small molecules on virulence in various infection models have yielded mixed results. Farnesol and ninis Z were both shown to have a protective effect in mucosal candidiasis (2, 54, 117), while in a model of systemic candidiasis, farnesol enhanced pathogenicity (94, 95).

On the basis of current findings, it appears that modulating morphogenesis is a means to treat mucosal/superficial Candida infections. As for systemic candidiasis, the lack of literature renders it difficult to reach similar conclusions. To circumvent this impediment, small molecules that modulate the Y-H transition in C. albicans without affecting cellular growth should be evaluated for their therapeutic potential in various infection models. More data are needed to determine whether or not targeting the Y-H transition constitutes a sound therapeutic strategy to treat Candida infections.

ACKNOWLEDGMENTS

We thank the reviewers for their careful consideration of the manuscript and for their comments as well as M. Clement for insightful discussions. J.S. is supported by studentships from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Faculty of Graduate Studies of the Université de Montréal. P.B. is the recipient of the Saputo Research Chair in Bio-medical Dairy Products Optimization of the Université de Montréal.

REFERENCES

1. Akashi, T., T. Kanbe, and K. Tanaka. 1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology 140:271–280.
2. Akerey, B., C. Le-Lay, I. Fliss, M. Subirade, and M. Rouabhaa. 2009. In vitro efficacy of ninis Z against Candida albicans adhesion and transition following contact with normal human gingival cells. J. Appl. Microbiol. 107:1298–1306.
3. Alem, M. A., and L. J. Douglas. 2004. Effects of aspirin and other non-steroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob. Agents Chemother. 48:41–47.
4. Alem, M. A., M. D. Oteef, T. H. Flowers, and L. J. Douglas. 2006. Production of tyroside by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 5:1770–1779.
5. Alksne, L. E., and S. J. Projan. 2000. Viral infection of Candida albicans as a target for antimicrobial chemotheraphy. Curr. Opin. Biotechnol. 11:625–636.
6. Anderson, J. B. 2005. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat. Rev. Microbiol. 3:547–556.
7. Bachewich, C., A. Nantel, and M. Whiteway. 2005. Cell cycle arrest during S or G phase generates polarized growth via distinct signals in Candida albicans. Mol. Microbiol. 55:942–959.
8. Bachewich, C., D. Y. Thomas, and M. Whiteway. 2003. Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Mol. Biol. Cell 14:2163–2180.
9. Bai, C., N. Ramanan, Y. M. Wang, and Y. Wang. 2002. Spindle assembly checkpoint component CaMad2p is indispensable for Candida albicans survival and virulence in mice. Mol. Microbiol. 43:51–44.
10. Baker, C. A., K. Desrosiers, and J. W. Dolan. 2002. Propranolol inhibits hyphal development in Candida albicans. Antimicrob. Agents Chemother. 46:3617–3620.
11. Bamford, C. V., et al. 2009. Streptococcus gordoni modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77:3096–3104.
12. Bastidas, R. J., J. Heitman, and M. E. Cardenas. 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 5:e1000294.
13. Bergson, J. G., A. Ravnfinnson, O. Steingrimsson, and H. Thormar. 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 45:3209–3212.
14. Berman, J. 2006. Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol. 9:595–601.
15. Biswas, S., P. Van Dijck, and A. Datta. 2007. Environmental sensing and signal transduction pathways regulating morphogenetic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 71:349–376.
16. Boon, C., et al. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2:237–36.
17. Boulant, S. P. C., M. Allfier, M. Culici, and M. Dal Sasso. 2007. Inhibitory activity of thymol against the formation and viability of Candida albicans hyphae. Mycoses 50:502–506.
18. Braun, P. C., R. F. Hector, M. E. Kamark, J. T. Hart, and R. L. Cihlar. 1987. Effect of cerulenin and sodium butyrate on chitin synthesis in Candida albicans. Can. J. Microbiol. 33:546–550.
19. Brown, A. J. P., S. Argimon, and N. A. R. Gow. 2007. Signal transduction and morphogenesis in Candida albicans, p. 167–194. In R. J. Howard, and N. A. R. Gow (ed.), Biology of the fungal cell, 2nd ed. The Volca M.V.H. Springer-Verlag, Berlin, Germany.
20. Calluji, C., A. Trabocchi, and A. Guarna. 2011. Novel small molecules for the treatment of infections caused by Candida albicans: a patent review (2002–2010). Expert Opin. Ther. Pat. 21:381–397.
21. Cho, T., et al. 2007. Transcriptional changes in Candida albicans genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-d-glucosamine medium. Nippon Ishinkin Gakkai Zasshi 48:155–167.
22. Chung, S. C., T. I. Kim, C. H. Ahn, J. Shin, and K. B. Oh. 2010. Candida albicans PHO81 is responsible for the inhibition of hyphal development by farnesic acid. FEBS Lett. 584:4639–4645.
23. Chung, S. C., J. Y. Lee, and K. B. Oh. 2005. cDNA cloning of farnesic acid-induced genes in Candida albicans by differential display analysis. J. Microbiol. Biotechnol. 15:1146–1151.
24. Clement, M., J. Tremblay, M. Lange, J. Thibodeau, and P. Belfeurme. 2007. Whey-derived free fatty acids suppress the germination of Candida albicans in vitro. FEBS Yeast Res. 7:276–285.
25. Cottier, F., and F. A. Halischkeg. 2009. Sensing the environment: response of Candida albicans to the X-factor. FEMS Microbiol. Lett. 295:1–9.
26. Cowen, L. E., J. B. Anderson, and L. M. Kohn. 2002. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 56:139–165.
27. Cowen, L. E., et al. 2009. Harnessing Hap70 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. U. S. A. 106:2818–2823.
28. Cruz, M. C., et al. 2001. Rapamycin and less immunosuppressive analogues are toxic to Candida albicans and Cryptococcus neoformans with FKBP12-dependent inhibition of TOR. Antimicrob. Agents Chemother. 45:3162–3170.
29. Cutler, N. S., X. Pan, J. Heitman, and M. E. Cardenas. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell 12:4103–4113.
30. Davis-Hanna, A. A., A. E. Piipans, L. I. Stateva, and D. A. Hogan. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-CAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 71:1632–1640.
31. Decanis, N., K. Savignac, and M. Rouabhaa. 2009. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. Cyto-kine 53:132–140.
32. Deva, R., R. Ciccoli, L. Kock, and S. Nigan. 2001. Involvement of aspirin-sensitive oxygenase in vulvovaginal candidiasis. FEMS Microbiol. Lett. 198:37–43.
33. Deva, R., R. Ciccoli, T. Schewe, J. L. Kock, and S. Nigan. 2000. Arachidonate stimulates cell growth and forms a novel oxygenated metabolite in Candida albicans. Biochim. Biophys. Acta 1486:299–311.
34. Enjalbert, B., and M. Whiteway. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot. Cell 4:1203–1210.
35. Erb-Downward, J. R., and G. B. Huffnagle. 2006. Role of oxygenases and other lipid mediators in fungal pathogenesis. Future Microbiol. 2:129–227.
36. Erb-Downward, J. R., and M. C. Noverr. 2007. Characterization of prosta-glandin E2 production by Candida albicans. Infect. Immun. 75:4396–3505.
37. Ernst, J. F. 2000. Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146[Part 8]:1763–1774.
42. Fang, H. M., and Y. Wang. 2006. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 61:484–496.

43. Gauwerky, K., C. Borelli, and H. C. Korting. 2003. The Ras/cAMP/PKA signaling pathway and growth in Candida albicans. Mol. Microbiol. 48:645–657.

44. Gauwerky, K., C. Borelli, and H. C. Korting. 2004. The Ras/cAMP/PKA signaling pathway and growth in Candida albicans. Mol. Microbiol. 48:645–657.

45. Grozinger, C. M., and S. L. Schreiber. 2002. Deacteylses enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. 9:3–16.

46. Gupta, N., A. Haque, G. Mukhopadhyay, R. P. Narayan, and R. Prasad. 2005. Interactions between bacteria and Candida in the burn wound. Burns 31:375–378.

47. Ha, K. C., and T. C. White. 1999. Effects of azole antifungal drugs on the transition from yeast cells to hyphal in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother. 43:763–768.

48. Hameed, S., et al. 2008. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res. 8:744–755.

49. Hancock, J. F. 2003. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4:373–384.

50. Hazan, L., and H. Liu. 2002. Hyphal tip-associated localization of Cdc42 is F-actin-dependent in Candida albicans. Eukaryot. Cell 1:856–864.

51. Hazen, K. C., and J. E. Cutler. 1979. Autoregulation of germ tube formation by Candida albicans. Infect. Immun. 24:661–666.

52. Hazen, K. C., and J. E. Cutler. 1983. Isolation and purification of morphogen autoregulatory substance produced by Candida albicans. J. Biochem. 94:777–783.

53. Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909.

54. Hissajima, T., et al. 2008. Protective effects of farnesol against oral candidiasis in mice. Microbiol. Immunol. 52:327–333.

55. Huang, D., and D. L. Wansley. 2001. Quorum sensing in the dimorphic fungus Candida albicans. FEMS Yeast Res. 3:189–194.

56. Huang, D., et al. 2008. Lithium-mediated suppression of morphogenesis and growth in Candida albicans. FEMS Yeast Res. 8:615–621.

57. Irwin, J. R. 2005. Function of C. albicans mutants are avirulent. Cell 90:393–949.

58. Jureczek, E., et al. 2007. Nonsynergistic C. albicans mutants are avirulent. Cell 90:393–949.

59. Lorenz, M. C., J. A. Bender, and G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:1076–1087.

60. Kallel, T. A., A. K. Nazmi, and E. C. Veerman. 2009. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans. FEMS Yeast Res. 9:1102–1110.

61. Le Lay, C., B. Akerey, I. Fliss, M. Subirade, and M. Rouabba. 1999. Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J. Appl. Microbiol. 105:1630–1639.

62. Lepper, E., et al. 1996. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 93:13217–13222.

63. Lepper, E., et al. 2001. Ras links cellular morphogenesis to virulence by regulating hyphal differentiation in the pathogenic fungus Candida albicans. Mol. Microbiol. 42:673–687.

64. Lepper, E., et al. 1997. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase Car1p. Cell 75:39–54.

65. Lepper, E., T. A. K. Nazmi, and E. C. Veerman. 2009. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans. FEMS Yeast Res. 9:1102–1110.

66. McLeod, D. D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson. 2005. Farnesol concentrations required to block germ tube formation in Candida albicans. Mol. Microbiol. 58:401–408.

67. McGeady, P., D. A. Logan, and D. L. Wansley. 2002. A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a yeast cell form to a filamentous form. FEMS Microbiol. Lett. 213:41–44.

68. McInnes, R., A. A. G. Buchanan, B. A. Stothard, and J. W. Dolan. 2000. Urease-negative Candida albicans inhibits the growth of Candida albicans. Antimicrob. Agents Chemother. 44:7873–7877.

69. Mecetti, M. H., J. A. Diaz, and S. A. Lee. 2011. Emerging opportunistic yeast infections. Lancet Infect. Dis. 11:142–151.

70. Moellering, R. C. 1999. Antifungal agents. N Engl. J. Med. 340:1765–1777.

71. Mosel, D. D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson. 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl. Environ. Microbiol. 71:4938–4940.

72. Mrzuny, A., A. Krassowska, P. Stefanowicz, D. Dziadkowicz, and M. Lukaszewicz. 2010. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 5:e12050.

73. Nasution, O., et al. 2008. Hydrogen peroxide induces hyphal differentiation in Candida albicans. Eukaryot. Cell 7:2008–2011.

74. Navarathna, D. H., et al. 2007. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect. Immun. 1609–1618.

75. Navarathna, D. H., K. W. Nickerson, G. E. Duhamel, T. R. Jerrels, and T. M. Petro. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Blrlp. Curr. Biol. 15:1130–1135.

76. Noble, C. J., and A. P. Mitchell. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Blrlp. Curr. Biol. 15:1130–1135.

77. Noble, C. J., J. E. Nett, D. R. Andes, and A. P. Mitchell. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 5:1604–1610.

78. Noble, S. M., S. French, L. A. Kohn, V. Chen, and A. D. Johnson. 2010. Systematic screens of a Candida albicans homozygous deletion library define morphogenetic switching and pathogenicity. Nat. Genet. 42:590–596.

79. Nover, M. C., J. R. Erb-Downward, and G. B. Huffnagle. 2003. Production of amino alcohols: study of mechanism of action. Eur. J. Med. Chem. 44:1823–1829.
of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Micro. Infect. 10.16:517–533.

101. Noverr, M. C., and G. B. Huffnagle. 2004. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72:6206–6210.

102. Noverr, M. C., S. M. Phare, G. B. Toews, M. J. Coffey, and G. B. Huffnagle. 2001. Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. 69:2957–2963.

103. Odds, F. C. 1988. Morphogenesis in Candida, with special reference to C. albicans, p. 49–50. In F. C. Odds (ed.), Candida and candidosis. A review and bibliography, 2nd ed. Ballière Tindall, London, United Kingdom.

104. Odds, F. C., A. J. Brown, and N. A. Gow. 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11:272–279.

105. Odds, F. C., A. Cockayne, J. Hayward, and A. B. Abbott. 1985. Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development of Candida albicans. J. Hyg. Gen. Microbiol. 131:2581–2589.

106. Ogasawara, A., et al. 2007. Hyphal formation of Candida albicans is inhibited by salivary mucin. J. Biol. Chem. 282:284–286.

107. Oh, K. B., H. Miyazawa, T. Naito, and H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphogenesis of Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 98:14091–14096.

108. Okamoto-Shibayama, K., Y. Sato, and T. Azuma. 2010. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 29:1311–1322.

109. Pfaller, M. A., and D. J. Diekema. 2008. Prokaryote-eukaryote interactions identified by cross-kingdom structural analogues. Mol. Microbiol. 71:2843–2854.

110. Pratt, W. B., and D. O. Toft. 2008. Inhibition of filamentation can be used to treat dissemination of candidiasis. Antimicrob. Agents Chemother. 52:3552–3559.

111. Przybyla, E. A., P. B. Toft, and A. J. Brown. 2006. Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75:1–20.

112. Pulvirenti, A., et al. 2006. Farnesol, a biologically active fluorescent farnesol analogs. Chem. Biol. 13:3312–3316.

113. Pulvirenti, A., P. B. Toft, and A. J. Brown. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75:271–294.

114. Pulvirenti, A., et al. 2006. Farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem Biol. 13:352–356.

115. Pulvirenti, A., et al. 2006. Conjugated linoleic acid enhances Candida albicans sensitivity to azoles and related antifungal correlation with reduction in CDR and ERG upregulation. Antimicrob. Agents Chemother. 46:3532–3539.

116. Saidi, S., C. Luitaud, and M. Rouabhia. 2007. Hyphal formation of Candida albicans is inhibited by salivary mucin. J. Biol. Chem. 282:284–286.

117. Saemann, M. D., G. A. Bohmig, and G. J. Zlabinger. 1981. Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc. Natl. Acad. Sci. U. S. A. 78:795–799.

118. Sanglard, D., and T. C. White. 1995. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Yeast. 12:565–577.

119. Sharp, R. S., and L. Cowen. 2010. Hyphal cooperation and development: Hsp90 regulates morphogenetic signaling in Candida albicans. Virulence 1:45–48.

120. Sharp, R. S., et al. 2009. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1p-PKA signaling. Curr. Biol. 19:621–629.

121. Shareck, J., A. Nantel, and P. Belhumeur. 2011. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Yeast. 28:561–577.