CDH1 Methylation in Preoperative Peritoneal Washes Is an Independent Prognostic Factor for Gastric Cancer

QI-MING YU, MD,1,2 XIN-BAO WANG, MD, PhD,1,2 JUN LUO, MD,3 SHI WANG, MD,3 XIAN-HUA FANG, MD,4 JIANG-LIU YU, BS,3 AND ZHI-QIANG LING, MD, PhD1,*

1Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Banshanqiao District, Hangzhou, China
2Department of Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Banshanqiao District, Hangzhou, China
3Department of Endoscopy, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Banshanqiao District, Hangzhou, China
4Department of Pathology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Banshanqiao District, Hangzhou, China

Background and Objectives: To investigate the clinical value of CDH1 methylation in preoperative peritoneal washes (PPW) from gastric cancer patients.

Methods: CDH1 methylation was detected by real-time methylation specific-PCR in tumor tissues and corresponding PPW from 92 gastric cancer patients, gastric mucosa from 40 chronic gastritis patients and 48 normal persons.

Results: CDH1 methylation was found in 75 of 92 (81.5%) gastric cancer tissues, which significantly correlated with size, growth pattern, differentiation, lymphatic invasion, venous invasion, invasion depth, lymph node metastasis, distant metastasis, and TNM stage of tumor (all \(P<0.05\)), but its relationship to age, gender, tumor site, and \(H. pylori\) infection was not found (all \(P>0.05\)). The percentage of CDH1 methylation in PPW was 48.9%, of which the AUC value of ROC curve was 0.8 compared to that in gastric cancer tissues. Kaplan–Meier analysis showed that there was a significant difference in disease-free survival (DFS) between the patients with or without methylated CDH1 in their PPW (\(\chi^2 = 109.64, P<0.000\)). Cox regression analysis revealed CDH1 methylation in PPW was an independent risk factor for gastric cancer patients, with a remarkable decrease in DFS after postoperative 30 months.

Conclusions: Methylated CDH1 in PPW predicts poor prognosis for gastric cancer patients. J. Surg. Oncol. 2012;106:765–771. © 2012 Wiley Periodicals, Inc.

Key Words: CDH1; gastric cancer; methylation; preoperative peritoneal washes (PPW); prognosis; tumor progression

INTRODUCTION

Gastric carcinoma (GC) is one of the highly prevalent malignant diseases worldwide which carries a very poor prognosis, and the 5-year survival rate is low. GC is also one of the most common digestive tract cancers in China, with a high incidence and mortality, approximately accounting for 10% of malignancies [1]. It has been already verified that GC was characterized by rapid deterioration, early metastasis, without much chance for radical operation and poor prognosis. Those patients without non-specific symptoms at early stage had mostly lost the opportunity of surgical therapy when gastric cancer was detected at advanced stage [2,3]. So, new molecular biomarkers are undoubtedly needed to facilitate the early diagnosis, metastasis, and prognosis evaluation for GC.

Accumulating evidence indicates that aberrant promoter methylation is one of the most common molecular alterations in human neoplasia, and considered as a sensitive and very promising biomarkers in early diagnosing of tumors [4,5]. Furthermore, tumor cells can release DNA to peripheral blood and enriched circulating DNA level can be found in the serum of cancer patients, several times higher than normal. Previous studies showed that methylation of multiple genes were detected in blood plasma, urine, sputum and peritoneal washes in several different cancers, and high frequent hypermethylation of suppressor was mostly cancer specific, so it may be utilized as a molecular diagnostic marker of cancer [6–11].

CDH1, a tumor metastasis suppressor gene, is located on chromosome 16q22.1. Its product is a \(\text{Ca}^{2+}\)-dependent cell adhesion molecule, and mutations in this gene have been associated with the origin, development, invasion, metastasis, and prognosis of carcinomas derived from a variety of epithelial tissues [12,13]. The product of CDH1 expression, E-cadherin, mediates the adhesion reaction between the same types of cells and plays a role in the cytoskeleton, implying that the degree of its expression and function directly impact the detachment and re-attachment of tumor cells. When the activity of CDH1 is normal, tumor cells are not easily detached from the primary tumor. On the contrary, CDH1 inactivation results in decreased cell adhesion and abnormal polarity, which promotes tumor metastasis [13–16]. CDH1 methylation-modulated loss of gene expression has been shown to be important in the origin and development of many tumors [17–23]. Various degrees of methylation in the CDH1 promoter CpG islands and the consequent loss of E-cadherin expression were reported in many tumor tissues, such as cervical carcinoma [17], prostate carcinoma [18], malignant melanoma [19], non-small cell lung carcinoma [20], liver carcinoma [21], esophageal cancer [22], and GC [23]. E-cadherin expression was also shown to be associated with the level of methylation of promoter CpG islands, implying that this mechanism may be an early event in the malignant process, and that it is an important event in tumor occurrence and development [17–24]. Here, we used real-time methylation specific-PCR (real-time MSP) assays to detect the methylation status of CDH1 promoter 5′-CpG island in preoperative

Grant sponsor: Science and Technology General Project of Zhejiang Province; Grant number: 2009C33143.

The authors declare that they have no competing interests.

*Correspondence to: Zhi-Qiang Ling, MD, PhD, Zhejiang Cancer Research Institute, Hangzhou 310022, China. Fax: +86-571-88122587.
E-mail: lingq@hotmail.com

Received 9 September 2011; Accepted 15 March 2012
DOI 10.1002/jso.23116
Published online 18 April 2012 in Wiley Online Library (wileyonlinelibrary.com).
peritoneal wash DNA from 92 patients with GC, in order to evalu-
ated its prognostic potential for GC patients.

MATERIALS AND METHODS

Patients and Tissue Samples

The Institutional Review Board on Medical Ethics, Zhejiang Province Cancer Hospital approved the method of tissue collection including informed consent from all patients. The present study ana-
yzed the gastric cancer tissue and the corresponding preoperative peritoneal wash of 92 cases. Tumor tissues were collected at the time of surgery from 92 patients with primary GC at Zhejiang Province Cancer Hospital, Zhejiang Province People’s Hospital and the First People’s Hospital of Chunan County from January 2008 to December 2009. The diagnosis of all patients without preoperative radiotherapy or chemotherapy was confirmed not only by gastroin-
testinal endoscopy followed with pathological analysis but also by examination of the paraffin embedded tissue sections. Demographic, clinical and histopathological parameters are shown in Table I. As a measure of prognosis, we analyzed the clinical data concerning disease-free survival (DFS), defined as the time from surgery data to first recurrence or death by gastric cancer or last contact. The follow-up was carried out by our study group members and ended on June 30, 2011. Meanwhile, 40 specimens of normal gastric mucosal without GC or other digestive system diseases individuals (male: n = 24, female: n = 16; mean age: 51 years) and 48 specimens from patients with chronic gastritis were also collected at Zhejiang Province People’s Hospital, Fifth People’s Hospital at Hangzhou Yuhang District and the Hospital of Traditional Chinese Medicine (TCM) at Hangzhou Yuhang District. In the normal control group, three biopsies were captured by endoscopy from each individual’s gastric antrum, the first biopsy for rapid urease test, the second were immediately frozen and stored, the third for paraffin embedded section.

Preoperative Peritoneal Washes (PPW)

About 200 ml of warm normal saline were introduced and manu-
ally dispersed in the Douglas cavity, para-colic gutters and in the right and left subphrenic cavity, when entering the abdominal cavity, prior to manipulating the tumor. At least 100 ml of fluid was sub-
sequently recovered, after gentle stirring, from several regions of the abdominal cavity. The fluid was then centrifuged for 10 min at 1,500 rpm. The sediment was smeared onto one or more glass slides and stained using the Papanicolau’s method. All cytological exami-
nations were performed by three cytopathologists independently. Cytological findings were classified as positive or negative. The following cell characteristics were used to determine the presence of malignant cells: presence of aggregate, size, shape, type of cyto-
plasm, cytoplasmic vacuoli, mainly nuclear abnormalities, nuclear chromatin, nuclear cytoplasmic ratio, mitotic figures, and nucleolar prominence. Meanwhile, we isolated cells using some preoperative peritoneal washes of all patients, and immediately stored these cells samples at −80°C until DNA was extracted.

Analysis of Helicobacter pylori (H. pylori) Infection

Biopsies were obtained from all patients who had endoscopic evaluations. H. pylori status had been determined by rapid urease test and Giemsa staining method. Urease test was done by a freshly prepared solution of urease test reagent and the test was recorded as positive if the color of the solution turned pink within 24 hr. Biopsy materials embedded in paraffin were stained with Giemsa for histo-
pathologic examination. It was considered as H. pylori infection when two tests were positive, and the result with single positive was been excluded.

Genomic DNA Extraction

Serial 5-μm sections that contained carcinoma and non-neoplastic tissues were mounted on non-coated glass slides and dried at 37°C overnight. After deparaffinization and staining with hematoxylin and eosin (H&E), we collected 5,000 nuclei from 5 to 10 serial sections using a 27G needle. The collected nuclei were treated with 40 μl of 200 μg/ml proteinase K (Sigma-Aldrich Co., St. Louis, MO) at 42°C, for 72 hr. The paramagnetic bead technology (AxyPrep Mag Blood gDNA kit, Axygen Scientific, Inc., Union City, CA) was utilized to isolate genomic DNA from fresh PPW according to kit’s protocol. The protocol consists of the following steps: lysis, binding, washing, and elution. Contaminants are removed during the binding and washing steps. The quality of DNA was assessed by the A260/
CDH1 Methylation Predicts Poor Prognosis

RESULTS

Methylated Status of CDH1 Gene Promoter 5′-CpG Island in GC Tissues, Cancer-Adjacent Normal Tissues, Chronic Gastric and Normal Mucous Tissues

CDH1 methylation was not found in DNA samples of the gastric mucosa from 48 patients with chronic gastritis and 40 normal persons. However, aberrant CDH1 methylation was found in 75 (81.5%) of 92 GC patients. Of these 75 patients, 45 (48.9%) were fully methylated and 30 (32.6%) were partially methylated. In the samples from cancer-adjacent normal tissues, 4 (4.3%) of 92 specimens were partially methylated (U/M) in CDH1 gene promoter. These two levels were significantly different (P < 0.01).

Relationship Between CDH1 Methylation in GC Tissues and Clinicopathologic Parameters

The rate of CDH1 methylation was 63.0% (29/46) in GC tissues from the patient in stage I/II, while was 100.0% (46/46) in stage I/II, with a significant difference between these two groups (χ² = 20.853, P < 0.001). Moreover, the rate of CDH1 methylation was 95.7% (44/46) in GC tissues with lymph node metastasis, while was 67.4% (31/46) in GC tissues without lymph node metastasis, also with a significant difference between these two groups (χ² = 12.195, P < 0.001). The correlations between CDH1 methylation in GC tissues and clinicopathologic parameters are listed in Table I.

Detection of CDH1 Methylation in PPW From GC Patients

Of 92 GC patients, 45 (48.9%) cases were fully methylated, 30 (32.6%) cases were partially methylated and 17 (18.5%) cases were unmethylated in the 5′-CpG island of CDH1 promoter. Based on the definition that considered both fully and partially methylated as aberrant methylation, we found the rate of aberrant CDH1 methylation was 81.5% (75/92), while the rate of unmethylation was 18.5% (17/92).

Correlation Between CDH1 Methylation in PPW From GC Patients and Clinicopathologic Parameters

It was found that CDH1 methylation correlated significantly with invasion depth, lymph node metastasis, distant metastasis and TNM stage of tumor (all P < 0.05), but its relationship to age, gender, tumor site and infection of H. pylori was not found (all P > 0.05). Correlations between CDH1 methylation in preoperative peritoneal washes from GC patients and clinicopathologic parameters are listed in Table II.

Consistency Analysis of CDH1 Methylation in PPW and Tumor Tissues From GC Patients

Of 92 GC patients, 45 specimens showed CDH1 methylation both in their PPW and tumor tissues. Using the results of CDH1 methylation in GC tissues as the golden standard, the diagnostic value of PPW was determined by means of receiver-operating characteristic (ROC) curves, of which the AUC value of ROC curve was 0.8 compared to GC tissues (Fig. 1).

Correlation Between the Results of CDH1 Methylation in PPW and Cytology

Of the 92 tumors, 39 (42.4%) showed a positive cytology. Peritoneal lavage cytology (PLC) was significantly related to the pathological findings. Overall 94.9% of patients with a positive PLC had a T3/T4 tumor and 100% of the patients with a positive PLC had a N-positive tumor (P < 0.001); in 76.9% of patients with a positive PLC, the tumor grade was low (P = 0.001). It was indicated that the rate of positive peritoneal wash samples increases proportionally when the tumor invades the deeper layers of the gastric wall or the lymph nodes, and when the tumor has lost differentiation. Of the 45 patients with a positive CDH1 methylation in PPW, 39 (86.7%) showed a positive cytology. And 100% of the patients with a positive
PLC had a CDH1 methylation in PPW. The CDH1 methylation in PPW ($P = 0.000, \gamma = 0.782$) was closely correlated with the positive PLC.

Effect of CDH1 Methylation in PPW on Prognosis of GC Patients

All patients were followed-up after surgery treatment until the endpoint events occurred (tumor recurrence, metastasis, or death), then we analyzed the DFS. Up to June 30, 2011, compared to 4 progressed cases in 47 patients with CDH1 unmethylation, all of 45 patients with CDH1 methylation in PPW had progressed or died after 28 months’ follow-up, with a marked decrease in DFS after postoperative 30 months. Median progression-free survival was only 20.93 months. Kaplan–Meier analysis showed that patients with CDH1 unmethylation in tumor tissues or in PPW exhibited an obvious survival advantage (both $P = 0.000$) (Fig. 2). It was demonstrated that the analysis of aberrant methylation in PPW is more significant than the analysis of aberrant methylation in primary tumor tissue. Meanwhile, Cox regression analysis revealed that patients with CDH1 unmethylation in their PPW had an independent survival advantage ($P = 0.000; RR, 332.876; 95\%\ CI, 21.705–5105.068$) (Fig. 3). In addition, TNM stages could be considered as an influencing factor of prognosis in GC (RR, 307.058; 95\%\ CI, 21.190–4449.397), only when the effect of CDH1 methylation was eliminated.

DISCUSSION

Gastric cancer is still one of the most common malignancies worldwide, expected to be responsible for approximately 738,000 deaths in 2008 over the world [26]. Previous evidences indicate that gastric cancer is the result of various genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell-cycle regulating proteins and cell adhesion molecules [27–30]. DNA hypermethylation, as one of the most common epigenetic molecular alterations in human tumors, play an important role in the screening, early diagnosis and prognosis of cancer [31–33].

In GC, the inactivation of CDH1 by aberrant promoter methylation has been demonstrated [23]. CDH1, a metastasis suppressor gene, locates on chromosome 16q22.1 and encodes calcium-dependent cellular adhesion molecule E-cadherin. Reduced expression of E-cadherin, or loss of E-cadherin function, is regarded as one of the main molecular events involved in the disorder of the intercellular adhesion system, triggering cancer invasion and metastasis [12–16,34]. Recent studies have found that the methylation of CDH1 promoter 5'-CpG island may be one of the leading causes to its inactivation [13–23]. It is demonstrated that CDH1 promoter 5'-CpG island is methylated to varying degrees in choriocarcinoma [35], prostatic carcinoma [18,36], malignant melanoma [19], non-small cell lung cancer [20], hepatocarcinoma [21], and gastric cancer [23], of which hypermethylation is implicated in the epigenetic silencing of the CDH1 gene, leading to reduced or absent E-cadherin expression [12–16,34,36]. Caldeira et al. [37] reported that high frequency of abnormal CDH1 methylation occurred in infiltrating breast cancers and it contributed to a decrease in E-cadherin expression. Ling
et al. [22] have proved that down-regulated expression of CDH1 is closely correlated with histologic type, invasive depth, lymph node metastasis, and distant metastasis of esophageal cancer. Thus, it seems reasonable to presume that aberrant methylation of CDH1 promoter 5'-CpG island may be an early event involved in the pathogenesis of tumor, and is closely correlated with the prognosis of tumor [13–24,34–37].

In present study, by utilizing real-time MSP to detect the CDH1 promoter methylation of GC tissues, we found that a much higher percentage of CDH1 methylation in GC tissues (81.5%, 75/92). On the contrast, CDH1 methylation promoter was not observed in the gastric mucosal tissues from 48 patients with chronic gastritis and 40 normal persons, suggesting that CDH1 methylation may contribute to the pathogenesis of GC. Furthermore, the rate of CDH1 methylation was 63.0% in GC tissues from the patient in stage I/II, which is much lower than that in stage I/II (100.0%) (P < 0.05), it is showed CDH1 methylation may be used in evaluating the malignant degree of the tumor. GC patients with NO lymph node metastasis also presented a marked lower rate of CDH1 methylation, demonstrated its correlation to the development of GC. Meanwhile, our survival analysis validated CDH1 methylation may be a candidate as a prognostic marker for GC patients.

As we known, GC presents a high rate of abdomen metastasis. More than a century since Paget developed the theory of seed and soil, it was found that free tumor cells in peritoneal washes in some GC patients and considered these cells as the important factors of abdomen metastasis [38–40]. However, few evidences reveal that how to free tumor cells penetrate the peritoneal mesothelial barrier and replant in abdomen, the mechanism is still unclear. It was supposed during the development of cancer, CDH1 hypermethylation of free tumor cells in abdomen brings about reduced expression of E-cadherin that inhibits intercellular adhesion and makes tumor cells easy to penetrate basement membrane into cancer-adjacent tissues and vessels, facilitates abdomino plantation of tumor cells. From that point, we sought to detect aberrant methylated DNA of cells in preoperative peritoneal washes from GC patients and to evaluate whether the detection of aberrant methylation is correlated with

Fig. 2. The relationship between the methylated status of CDH1 and survival. Kaplan–Meier analysis showed that there was a significant difference in disease-free survival (DFS) between the patients with or without methylated CDH1 in their tumor tissues (A) ($\chi^2 = 55.467$, $P < 0.000$), or in their PPW (B) ($\chi^2 = 109.64$, $P < 0.000$).

Fig. 3. Cox regression model of survival analysis based on double factors (CDH1 methylation and tumor clinical stage). Cox regression analysis showed CDH1 methylation in PPW was an independent risk factor for gastric cancer patients, with a remarkable decrease in DFS after postoperative 30 months. A: CDH1 methylation in tumor tissues; (B) CDH1 methylation in PPW.

Journal of Surgical Oncology
lymph node metastasis, and distant metastasis (all
19). Harbst K, Staaf J, Masback A, et al.: Multiple metastases from
20. Kim DS, Kim MJ, Lee JY, et al.: Aberrant methylation of
21. Matsumura T, Makino R, Mitamura K: Frequent downregulation
22. Rouprêt M, Hupertan V, Yates DR, et al.: A comparison of the
23. Qiao XT, Gumucio DL: Current molecular markers for gastric
24. Ibañez de Caceres I, Baird C, Esteller M, et al.: Tumor cell-
23. Barber M, Murrell A, Ito Y, et al.: Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer. J Pathol 2008;216:295–306.
24. Berx G, van Roy F: Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 2009;1:a003129.
25. Ling ZQ, Tanaka A, Li P, et al.: Microsatellite instability with promoter methylation and silencing of hMLH1 can regionally occur during progression of gastric carcinoma. Cancer Lett 2010;297:244–251.
26. Dikshit RP, Mathur G, Mhatre S, et al.: Epidemiological review of gastric cancer in India. Indian J Med Paediatr Oncol 2011;32:3–11.
27. Piazuelo MB, Epplein M, Correa P: Gastric cancer: An infectious disease. Infect Dis Clin North Am 2010;24:853–869.
28. Wu WK, Cho CH, Lee CW, et al.: Dysregulation of cellular signaling in gastric cancer. Cancer Lett 2010;295:144–153.
29. Oguma K, Oshima H, Oshima M: Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol 2010;6:515–526.
30. Saikawa Y, Fukushima K, Takahashi T, et al.: Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric Cancer 2010;13:11–24.
31. Herceg Z, Vaissière T: Epigenetic mechanisms and cancer: An interface between the environment and the genome. Epigenetics 2011;6:804–819.
32. Tycko B: Cancer epigenetics and targeted therapies. Oncology (Williston Park) 2011;25:231.
33. Brait M, Sidransky D: Cancer epigenetics: Above and beyond. Toxicol Mech Methods 2011;21:275–288.
34. Nawijn MC, Hackett TL, Postma DS, et al.: E-cadherin: Gatekeeper of airway mucosa and allergic sensitization. Trends Immunol 2011;32:248–255.
35. Xue WC, Chan KY, Feng HC, et al.: Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma. J Mol Diagn 2004;6:326–334.
36. Saha B, Kaur P, Tsao-Wei D, et al.: Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate 2008;68:1681–1688.
37. Caldeira JR, Prando EC, Quevedo FC, et al.: CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 2006;6:48.
38. Matussaka S, Chin K, Ogura M, et al.: Circulating tumor cells as a surrogate marker for determining response to chemotherapy in patients with advanced gastric cancer. Cancer Sci 2010;101:1067–1071.
39. Lurje G, Schiesser M, Claudius A, et al.: Circulating tumor cells in gastrointestinal malignancies: Current techniques and clinical implications. J Oncol 2010;392652.
40. Takeuchi H, Kitagawa Y: Circulating tumor cells in gastrointestinal cancer. J Hepatobiliary Pancreat Sci 2010;17:577–582.
41. Hiraki M, Kitajima Y, Koga Y, et al.: Aberrant gene methylation is a biomarker for the detection of cancer cells in peritoneal wash samples from advanced gastric cancer patients. Ann Surg Oncol 2011;18:3013–3019.
42. Hiraki M, Kitajima Y, Sato S, et al.: Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer. World J Gastroenterol 2010;16:330–338.
43. Kagure E, Thomazini CM, Pardini MI, et al.: Methylation status of CDH1 gene in samples of gastric mucous from Brazilian patients with chronic gastritis infected by Helicobacter pylori. Arq Gastroenterol 2010;47:7–12.