Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer

Long-Ying Deng, Jian-Ping Wang, Zhi-Fu Gui, Li-Zong Shen

Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou, Nanjing 210029, Jiangsu Province, China

Author contributions: Shen LZ designed the research; Deng LY, Wang JP and Gui ZF performed the research and analyzed the data; Deng LY and Shen LZ wrote the paper; Deng LY and Wang JP contributed equally to this work.

Supported by The Social Development Foundation from Science and Technology Bureau of Nanjing, No. 200605010

Correspondence to: Li-Zong Shen, PhD, MD, Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou, Nanjing 210029, Jiangsu Province, China. shenlz@163.com

Telephone: +86-25-85038020 Fax: +86-25-85038020

Received: November 17, 2010 Revised: March 11, 2011 Accepted: March 18, 2011 Published online: June 28, 2011

Abstract

AIM: To evaluate bacterial cytosine deaminase (bCD) mutant D314A and 5-fluorocytosine (5-FC) for treatment of colon cancer in a mouse model.

METHODS: Recombinant lentivirus vectors that contained wild-type bCD gene (bCDwt), and bCD mutant D314A gene (bCD-D314A) with green fluorescence protein gene were constructed and used to infect human colon carcinoma LoVo cells, to generate stable transfected cells, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A. These were injected subcutaneously into Balb/c nude mice to establish xenograft models. Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by intraperitoneal (i.p.) injection once daily for 14 d. On the day after LoVo cell injection, mice were monitored daily for tumor volume and survival.

RESULTS: Sequence analyses confirmed the construction of recombinant lentiviral plasmids that contained bCDwt or bCD-D314A. The lentiviral vector had high efficacy for gene delivery, and RT-PCR showed that bCDwt or bCD-D314A gene was transferred to LoVo cells. Among these treatment groups, gene delivery or 5-FC administration alone had no effect on tumor growth. However, bCDwt/5-FC or bCD-D314A/5-FC treatment inhibited tumor growth and prolonged survival of mice significantly (P < 0.05). Importantly, the tumor volume in the bCD-D314A/5-FC-treated group was lower than that in the bCDwt/5-FC group (P < 0.05), and bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC (P < 0.05).

CONCLUSION: The bCD mutant D314A enhanced significantly antitumor activity in human colon cancer xenograft models, which provides a promising approach for human colon carcinoma therapy.

© 2011 Baishideng. All rights reserved.

Key words: Suicide gene therapy; Bacterial cytosine deaminase; Mutant; D314A; 5-fluorocytosine; Colon cancer

Peer reviewer: Dr. Dinesh Vyas, Department of Minimally and Endoscopic Surgery, St John Mercy Hospital, 851 E Fifth Street, Washington, MO 63090, United States

Deng LY, Wang JP, Gui ZF, Shen LZ. Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer. World J Gastroenterol 2011; 17(24): 2958-2964 Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i24/2958.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i24.2958

INTRODUCTION

Colorectal cancer has one of the highest mortalities worldwide[1]. Conventional therapies consist of surgery, chemotherapy, radiotherapy, and biotherapy. Despite advances in the treatment of colorectal cancer, the prognosis for locally advanced or metastatic disease remains relatively
by CD of bacterial intestinal microflora into 5-FU is responsible for side effects[19]. Other studies have suggested that the CD from *Saccharomyces cerevisiae* (yCD) displays a kinetic advantage towards 5-FC over bCD[18]. However, yCD is considerably less thermostable than bCD; a characteristic that may make the bacterial enzyme a preferable catalytic system for gene therapy. Fortunately, Mahan et al[10-13] have used random mutagenesis to create novel bCDs that demonstrate an increased preference for 5-FC over cytosine. Among these mutants isolated, the mutant D314A [substitution of an alanine (A) for the aspartic acid (D) at position 314 of bCD] enzyme demonstrates a dramatic decrease in cytosine activity (17-fold), as well as a slight increase in activity toward 5-FC (twofold), which indicates that mutant D314A prefers the prodrug over cytosine by almost 20-fold. Despite the thermostability of yCD, others have suggested that yCD is superior to bCD in gene therapy settings because of a 23-fold relative substrate preference for 5-FC that is displayed by yCD[18]. However, given the thermostability of bCD and the 19-fold relative substrate preference that the bCD mutant D314A displays towards 5-FC, bCD D314A may be a superior suicide gene to yCD. These results indicate that bCD mutant D314A is a superior candidate for suicide gene therapy. Recently, this mutant D314A has been demonstrated to enhance cytotoxicity of human glioma and pancreatic cancer cells, and to increase therapeutic efficacy against human glioma and human pancreatic tumor xenografts, especially combined with radiotherapy[20,21]. However, there have been only a few studies of bCD mutants in colorectal cancer.

Previously, we have used the bCD gene to treat colon cancer, and have found that the efficacy of wild-type bCD is not sufficient to abolish cancer cells in *vitro* or in *vivo*, therefore, combination therapy with other genes, such as interleukin-2 or interferon-γ, is needed to improve the cytotoxicity of bCD[22,23]. Recently, we have constructed bCD-D314A using site-directed mutagenesis[19], and have demonstrated that it has significantly increased cytotoxicity in human colon cancer cell line LoVo, compared with wild-type bCD (bCDwt) in *vivo*[24].

The aim of the present study was to investigate whether bCD-D314A suicide gene and 5-FC prodrug therapy produce increased therapeutic efficacy in *vivo* for human colon cancer in nude mice using lentiviral vectors. The results presented here indicate that mutant bCD-D314A was able to significantly enhance antitumor efficacy in human colon cancer xenograft models in *vivo* compared with bCDwt.

MATERIALS AND METHODS

Cells and cell culture

Human colon cancer cell line LoVo (CCL-229; ATCC, Manassas, VA, USA) was cultured in RPMI-1640 medium (Gibco, Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; Gibco). HEK 293T (human embryonic kidney 293T cell line containing SV40 large T antigen) (CRL-11268; ATCC) was cultured in Dulbecco’s Modified Eagle’s Medium (Gibco) supplemented with 10% cosmic calf serum (Hy-
clone, Logan, UT, USA), 2 mmol/L L-glutamine (Sigma, St. Louis, MO, USA), 100 U/mL penicillin (Sigma) and 0.1 mg/mL streptomycin (Sigma). LoVo and HEK 293T cells were in a 5% CO₂-humidified atmosphere at 37°C.

Reagents, animals, plasmids and vectors

5-FC was obtained from Sigma. Restriction enzymes Hind III, Kpn I, Nhe I, EcoR I and Dpn I, T4 DNA ligase, pfu DNA polymerase, DNA marker DL2000 and PCR reagents were obtained from Takara (Osu, Shiga, Japan). Primers were chemically synthesized by Shanghai Generay Co. Ltd. (Shanghai, China). The plasmid DNA extraction (Mini) kit was provided by Qiagen (Crawley, West Sussex, UK). TRIZol and Lipofectamine 2000™ transfection reagent were obtained from Invitrogen.

Female athymic Balb/c (nu/nu) nude mice were purchased from Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, China) and were housed under aseptic conditions in micro-isolator cages, which were approved by the local Institutional Animal Care and Use Committee.

The plasmid pcDNA3.1/bCDwt that contained whole-length wild-type bCD gene, and pcDNA3.1/bCD-D314A that contained the mutant D314A gene, were prepared and stored in our department. The plJMI-GFP lentivirus vector with green fluorescence protein (GFP) gene was a generous gift from Prof. J Li (Nanjing Medical University).

Recombinant bCDwt or bCD-D314A plasmids construction and identification

The pcDNA3.1-bCDwt and pcDNA3.1-bCD-D314A plasmids were all double digested with Hind III and Kpn I. The products of enzyme digestion were connected to the lentiviral vector pLJM1-GFP, which was double digested with Nhe I and EcoR I, to produce pLJM1-bCDwt-GFP and pLJM1-bCD-D314A-GFP. These plasmids were then transformed into E. coli XL1-Blue. The colonies were selected for PCR identification. The sense sequence of bCD primers was 5'-CGCAAATGGGCGGTAGGCGTG-3', whereas the antisense sequence was 5'AATTCTCAACGCTGTTGAAGGATGTAC-3'. The sequenced plasmids were extracted and sent to BGI Sequencing Company (Shanghai, China) for sequencing.

Recombinant lentivirus construction, cell infection and stable cell line generation

To produce recombinant lentiviruses that encoded bCDwt, bCD-D314A or GFP gene, three types of plasmids (pLJM1-bCDwt-GFP, pLJM1-bCD-D314A-GFP and pLJM1-GFP) were transfected to 293T cells according to the instructions for Lipofectamine 2000™ (Invitrogen). The virus-containing supernatant was collected 48 h after transfection, concentrated by centrifugation (4000 r/min, 4°C for 5 min), and filtered with a 0.45-μm membrane filter. The virus titers were determined in 293T cells.

For LoVo cell infection, there were three groups: bCDwt-GFP, bCD-D314A-GFP, and GFP (null). LoVo cells were seeded at a density of 1 × 10⁶ cells in a 60-mm plate and infected with different lentiviral vectors in the presence of 10 μg/mL polybrene (Millipore, Billerica, MA, USA). At 10-12 h post-infection, the growth medium was replaced. Forty-eight hours later, the GFP expression of transduced cells was observed under fluorescence microscopy. LoVo cells were infected twice in the same way. At 3 d after transfection, the FACSCalibur flow cytometer (BD, Franklin Lakes, NJ, USA) was used for fluorescence-activated cell sorting and then stable transfected cells, LoVo/null, LoVo/bCDwt and LoVo/bCD-D314A were cultured in a 5% CO₂-humidified incubator at 37°C.

Detection of bCD gene in transfected LoVo cells with RT-PCR

Total RNA was extracted from transfected LoVo cells harvested from the different groups with TRIzol reagent. First-strand cDNA was synthesized by reverse transcription according to the instructions for M2MLV (Promega, Madison, WI, USA). The sense sequence of bCD primers used in RT-PCR was 5’TTATGTCGAATAACGCTTGTAACCAC-3’, whereas the antisense sequence was 5’TACCTCCAGTTGTATAATCGATGGC-3’. PCR was performed for 35 cycles (94°C for 1 min, 60°C for 1.5 min, 72°C for 1.5 min) in an automated DNA Thermal Cycler (Perkin-Elmer Cetus, Norwalk, CT, USA).

Xenograft tumor model study

To compare antitumor effects of bCDwt- and bCD-D314A-mediated molecular chemotherapy in vivo, combination of 5-FC, pools of LoVo, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A cells [5 × 10⁶ cells in 100 μL PBS (pH 7.3)] were injected subcutaneously (s.c.) into the right flanks of 5-6-wk-old female Balb/c nude mice (n = 20, respectively). Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by i.p. injection once daily for 14 d. Starting at day 1, the tumor volume was monitored daily using caliper measurement, calculated using the formula: π/6 × (width ÷ length)³. On the day after LoVo cell injection, mice were monitored daily for survival.

Statistical analysis

The treatment groups were compared with respect to tumor size. To test for significant differences in tumor volume among treatment groups, one-way ANOVA was conducted. When ANOVA indicated that a significant difference existed (P < 0.05), multiple comparison procedures were used to determine where the differences lay. Kaplan-Meier survival curves were analyzed by the log-rank test, and specific pairwise multiple comparisons were made using the Holm-Sidak method. All comparisons were made using the 0.05 level of significance.

RESULTS

Identification of recombinant lentiviral plasmids

Sequencing results of recombinant lentiviral plasmids showed that pLJM1-bCDwt-GFP contained the wild-type bCD gene, and pLJM1-bCD-D314A-GFP contained the mutant D314A (Figure 1), which indicated that the two recombinant lentiviral plasmids were constructed successfully.
Efficacy of gene delivery by lentiviral vectors

Lentiviral vectors have improved efficiency to deliver genes. In this study, GFP was used as a reporter gene. Figure 2 shows that the efficacy of gene delivery by lentiviral vectors was satisfactory.

Identification of bCD gene in LoVo cells transfected with different lentiviral vectors

LoVo cells transfected with different lentiviral vectors, LoVo/null, LoVo/bCDwt and LoVo/bCD-D314A, were subjected to RT-PCR to identify bCD gene expression. As shown in Figure 3, LoVo/bCDwt and LoVo/bCD-D314A cells had bCD gene expression, while bCD gene was not detected in LoVo/null cells.

Antitumor effects of bCD wt and bCD-D314A in combination with 5-FC in human colon carcinoma xenograft model

To evaluate the potential of bCD-D314A gene therapy with 5-FC in vivo, LoVo cells with different stably gene delivery were injected s.c. into the right flank of athymic nude mice. Two weeks after cell inoculation, before treatment, the tumors in each group were palpable and the mean volumes in each group did not differ significantly among the treatment groups ($P>0.05$), and within treatment variances (PBS vs 5-FC) were not significantly different ($P>0.05$). The baseline mean tumor volume at 14 d after tumor cell injection was 412.63 ± 36.79 mm3.

PBS or 5-FC (500 mg/kg) was administered i.p. once daily for 2 wk. Starting at day 1, mice were monitored for tumor volume and survival. Inhibition of tumor growth was initially noted in mice treated with LoVo/bCDwt or LoVo/bCD-D314A in combination with 5-FC compared with the other groups on day 20 ($P<0.05$) (Figure 4). There were no significant differences in tumor growth between the other groups ($P>0.05$), which indicated that gene delivery or 5-FC administration alone had no influence on tumor growth. From day 20 onwards, tumors in the mice treated with LoVo/bCD-D314A and 5-FC shrank daily, whereas the tumors in mice treated with LoVo/bCDwt and 5-FC increased gradually. The difference in tumor volume between these two groups became increasingly marked ($P<0.05$). At the same time, the tumors in the other groups kept growing (Figure 4).

As to the influence of bCD-D314A and bCDwt on survival, we showed that bCD-D314A/5-FC or bCDwt/5-FC treatment significantly prolonged survival of mice in comparison with the other groups. As shown in Figure 5, the median survival time of other groups was about 35 d and there was no difference among them ($P>0.05$), whereas it was prolonged to 62 or 94 d in the bCDwt/5-FC or bCD-D314A/5-FC group, respectively ($P<0.05$). Furthermore, bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC ($P<0.05$).

DISCUSSION

Worldwide, more than one million individuals will develop colorectal cancer annually, and the disease-specific mortal-
June 28, 2011
Volume 17 | Issue 24

Deng LY et al. Antitumor activity of mutant bCD

Figure 4 Growth of LoVo, LoVo/null, LoVo/bCDwt, and LoVo/bCD-D314A xenografts treated with PBS or 5-fluorocytosine. Treatment was started on 14 d after tumor cell inoculation. PBS or 5-fluorocytosine (5-FC) (500 mg/kg) was injected intraperitoneal once a day for 14 d. Data points represent the mean tumor volume of each group of animals. bCD: Bacterial cytosine deaminase; bCDwt: Wild-type bCD; bCD-D314A: bCD mutant D314A; LoVo/null: LoVo cell transfected with pLJM1-GFP; LoVo/bCDwt: LoVo cell transfected with pLJM1-bCD-D314A-GFP.

Figure 5 Efficacy of wild-type bCD gene or bCD mutant D314A gene suicide gene therapy in human colon carcinoma xenografts. LoVo human colon carcinoma cells with different gene transfection (5 × 10⁶ cells/mouse) were injected into the right flank of athymic nude mice (10 mice/group). Two weeks after tumor cell injection, PBS or 5-fluorocytosine (5-FC) (500 mg/kg) was injected intraperitoneal once a day for 14 d. On the day after LoVo cell injection, mice were monitored daily for survival. bCD: Bacterial cytosine deaminase; bCDwt: wild-type bCD; bCD-D314A: bCD mutant D314A; LoVo/null: LoVo cell transfected with pLJM1-GFP; LoVo/bCDwt: LoVo cell transfected with pLJM1-bCD-D314A-GFP.

The most important characteristic of suicide gene therapy is its bystander effect. Although the viral or non-viral gene delivery systems currently available have poor efficacy for in vitro gene transfer, complete eradication of tumors has been seen in some experimental animal models, which is thought to depend on the bystander killing effect. In the bCD/5-FC system, the bystander effect is caused by the passive diffusion of 5-FC into the extracellular milieu and its diffusion into the adjacent cells, which requires no gap junctions[11]. The immune-related response also contributes to the bystander effect[20], which has been confirmed by our experimental results from the immunocompetent and immunodeficient mice[21]. Although this approach has been in development for several decades, new combinations with cancer therapies, such as selective conventional chemotherapy[21] and radiotherapy[21], are being tested.

Unlike conventional chemotherapy, suicide gene therapy renders specific killing of the tumor cells that express the suicide gene, but it may lead to systemic toxicity if these genes are delivered to normal cells. Thus, target specificity is of great importance to suicide gene therapy. The rationale behind suicide gene therapy is that, after targeted transfer of these genes into tumor cells, only tumor and neighboring cells will be rendered sensitive to their cytotoxic action. Specifically, targeted expression of the prodrug-activating enzyme avoids systemic toxicity, and results in high drug concentrations in the tumor mass and an improved therapeutic index compared with non-targeted gene delivery. To kill carcinoembryonic antigen (CEA)-positive colorectal carcinoma cells specifically using the bCD/5-FC system, we have constructed a new replication-deficient recombinant adenoviral vector that contains the bCD gene controlled by the CEA promoter, AdCEACD, and have evaluated its in vivo cytotoxic effects. We have shown that this vector can transfer bCD to CEA-positive tumor cells specifically by comparing the vector with cytomegalovirus (CMV) promoter, AdCMVCD[7]. However, the cytotoxic effects of bCD/5-FC decreased to some extent[22,23]. Although this loss of activity may be due to differences in transcriptional activation between the CEA and CMV promoters, the low affinity displayed by wild-type bCD towards 5-FC in comparison with cytosine is thought to be the principal factor that leads to the relatively poor turnover of 5-FC of wild-type bCD and limits the overall therapeutic response.

It has been shown previously that the bCD mutant, D314A, decreased efficiency for endogenous cytosine, which can compete with the prodrug for the active enzyme site, in combination with increased efficiency for 5-FC that resulted in a 19-fold relative substrate preference for 5-FC in comparison with bCDwt[16,19]. The bCD mutant D314A has been demonstrated to be an excellent candidate for...
subsequent preclinical comparisons with wild-type bCD and yCD.

Recently, we have constructed the bCD mutant D314A using site-directed mutagenesis. The in vitro results have indicated that its killing and bystander effects on human colon cancer LoVo cells are enhanced significantly as compared with wild-type bCD30. Thus, the rationale for using the mutant bCD gene for colon carcinoma in vitro is that the bCD mutant D314A can more effectively convert 5-FC to 5-FU, and increase the antitumor activity and prolong survival.

In the present study, we investigated mutant bCD gene transfer with lentiviral vector for treatment of human colon cancer in xenograft models. Lentivirus-based vectors (lentivectors) have been developed with improved efficiency, specificity, and safety, and are being increasingly used in basic and applied research. Clinical trials of human gene therapy are currently underway using lentivectors in a wide range of human diseases30. In the present study, lentiviral vector was used to transfer suicide genes. These preliminary results confirmed the efficacy of lentiviral vector for suicide gene delivery.

After the LoVo cells stably transfected with bCDwt gene or mutant bCD-D314A gene were established, they were inoculated into athymic nude mice to produce xenograft tumor models. Afterwards, 5-FC was administered. As expected, a more potent cytotoxicity effect for colon cancer was obtained using bCD-D314A/5-FC treatment in comparison with bCDwt/5-FC. During 5-FC administration, the tumors treated with bCDwt/5-FC or bCD-D314A/5-FC grew slower than those in other treatment groups, which indicated that 5-FC or suicide gene transfer alone had no effect on colon cancer. The comparative study of bCD-D314A/5-FC and bCDwt/5-FC showed an increased antitumor effect, and decreased tumor growth was observed following bCD-D314A/5-FC gene therapy. Furthermore, survival analysis showed that bCD-D314A/5-FC therapy prolonged life significantly, which confirmed the enhanced antitumor activity of bCD mutant D314A.

Although the intratumoral or blood 5-FU concentration was not estimated after 5-FC administration in this study, the enhanced antitumor effect of bCD mutant D314A in combination with 5-FC was thought to be due to its ability to convert 5-FC to 5-FU more effectively, which is consistent with recently published data in other tumor models20,21. The blood and tumor levels of 5-FC and 5-FU are a subject for future studies that will enable a rational dosing strategy.

In summary, our studies provide preliminary evidence that treatment using bCD mutant D314A for suicide gene/5-FC prodrug therapy is a promising approach for treatment of human colon carcinoma. Further studies on delivery systems, doses and protocols would be worthwhile to optimize this approach.

ACKNOWLEDGMENTS

The authors thank Professor Jian-Ming Li for the kind gift of pLJM1.

REFERENCES

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300
2. Weiss J, Moghanaki D, Plastaras JP, Haller DG. Improved patient and regimen selection in locally advanced rectal cancer: who, how, and what next? Clin Colorectal Cancer 2009; 8: 194-199
3. Sharma A, Tandon M, Bangari DS, Mittal SK. Adenosine vector-based strategies for cancer therapy. Curr Drug Ther 2009; 4: 117-138
4. Wu C, Lin J, Hong M, Choudhury Y, Leung D, Dang LH, Zhao Y, Zeng J, Wang S. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol Ther 2009; 17: 2058-2066
5. Figueiredo ML, Kao C, Wu L. Advances in preclinical investigation of prostate cancer gene therapy. Mol Ther 2007; 15: 1053-1064
6. Chaszczyewska-Markowska M, Sibecka S, Sikorski A, Madaj J, Opolski A, Ugorski M. Liposomal formulation of 5-fluorocytosine in suicide gene therapy with cytokine deaminase-for colorectal cancer. Cancer Lett 2008; 262: 164-172
7. Shen LZ, Wu WX, Xu DH, Zheng ZC, Liu XY, Ding Q, Hua YB, Yao K. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenosine vector containing cytokine deaminase gene. World J Gastroenterol 2002; 8: 270-275
8. Yazawa K, Fisher WE, Bruniciardi FC. Current progress in suicide gene therapy for cancer. World J Surg 2002; 26: 783-789
9. Huang Q, Liu XZ, Kang CS, Wang GX, Zhong Y, Pu PY. The anti-glialoma effect of suicide gene therapy using BMSC expressing HSV/TK combined with overexpression of Cx43 in glioma cells. Cancer Gene Ther 2010; 17: 192-202
10. Garcia-Rodriguez L, Abate-Daga D, Rojas A, Gonzalez JR,
Deng LY et al. Antitumor activity of mutant bCD

Fillat C. E-cadherin contributes to the bystander effect of TK/ GCV suicide therapy and enhances its antitumour activity in pancreatic cancer models. Gene Ther 2011; 18: 73-81

11 Spasojević I, Maksimovic V, Zakrzewska J, Bacic G. Effects of 5-fluorouracil on erythrocytes in relation to its cardiotoxicity: membrane structure and functioning. J Chem Inf Model 2005; 45: 1680-1685

12 Brown NL, Lemoine NR. Clinical trials with GDEPT: cytosine deaminase and 5-fluorocytosine. Methods Mol Med 2004; 90: 451-457

13 Freytag SO, Stricker H, Pegg J, Paelli D, Pradhan DG, Peabody J, DePeralta-Venturina M, Xia X, Brown S, Lu M, Kim JH. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497-7506

14 Breton E, Goetz C, Kintz J, Accart N, Aubertin G, Grellier B, Erbs P, Rooke R, Constantinescu A, Choquet P. In vivo preclinical low-field MRI monitoring of tumor growth following a suicide-gene therapy in an orthotopic nude mouse model of human glioblastoma. C R Biol 2010; 333: 220-225

15 Shi DZ, Hu WX, Li LX, Chen G, Wei D, Gu PY. Pharmacokinetics and the bystander effect in CD::UPRT/5-FC bi-gene therapy of glioma. Chin Med J (Engl) 2009; 122: 1267-1272

16 Mahan SD, Iretion GC, Stoddard BL, Black ME. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference. Biochemistry 2004; 43: 8957-8964

17 Diasio RB, Lakings DE, Bennett JE. Evidence for conversion of 5-fluorocytosine to 5-fluorouracil in human: possible factor in 5-fluorocytosine clinical toxicity. Antimicrob Agents Chemother 1978; 14: 903-908

18 Stolworthy TS, Korkegian AM, Willmon CL, Ardiyan A, Cundiff J, Stoddard BL, Black ME. Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine. J Mol Biol 2008; 377: 854-869

19 Mahan SD, Iretion GC, Knoeber C, Stoddard BL, Black ME. Random mutagenesis and selection of Escherichia coli cytosine deaminase for cancer gene therapy. Protein Eng Des Sel 2004; 17: 625-633

20 Kaliberova SA, Market JM, Gillespie GY, Krendelchtchikova V, Della Manna D, Sellers JC, Kaliberova LN, Black ME, Buchsbaum DJ. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma. Gene Ther 2007; 14: 1111-1119

21 Kaliberova LN, Della Manna DL, Krendelchtchikova V, Black ME, Buchsbaum DJ, Kaliberov SA. Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene. Mol Cancer Ther 2008; 7: 2845-2854

22 Shen LZ, Hua YB, Wu WX, Xu DH, Ding Q, Liu XY, Wang GL. IL-2 gene therapy enhances cytotoxic effect of E. Coli Cytosine deaminase gene for colon cancer. Zhonghua Weichang Waike Za Zhi 2004; 7: 411-413

23 Shen LZ, Hua YB, Wu WX, Xu DH, Ding Q, Chen GY, Zheng ZC, Liu XY. Enhancement of tumor killing using a combination of E. Coli Cytosine deaminase gene and INF-gene therapy. Acta Univ Med Nanjing 2004; 24: 618-620

24 Sun MC, Huang YM, Zhu ZC, Wang JP, Shen LZ, Wu WX. Inhibitory effect of mutant cytosine deaminase D314A against human colon cancer cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi 2009; 16: 595-599

25 Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N. Colorectal cancer. Lancet 2010; 375: 1030-1047

26 Agard C, Ligeza C, Dupas B, Izembart A, El Kouri C, Moullier P, Ferry N. Immune-dependent distant bystander effect after adenovirus-mediated suicide gene transfer in a rat model of liver colorectal metastasis. Cancer Gene Ther 2001; 8: 128-136

27 Shen LZ, Wu WX, Hua YB, Ding Q, Chen T. The relationship between the bystander effect of E. coli cytosine deaminase gene depends on the immune status of host. Linchuang Zhong-liuxue Zazhi 2004; 9: 237-240

28 Shen LZ, Ding Q, Wu WX, Xu DH, Liu XY, Zheng ZC, Wu ZY. In vitro effect of cytosine deaminase gene therapy and chemical reagents on colon cancer cell line. Zhonghua Weichang Waike Za Zhi 2002; 17: 404-406

29 Xing L, Sun X, Deng X, Kotedia K, Urano M, Koutcher JA, Ling CC, Li GC. Expression of the bifunctional suicide gene CDUPRT increases radiosensitization and bystander effect of 5-FC in prostate cancer cells. Radiother Oncol 2009; 92: 345-352

30 Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58: 107-119

S- Editor Sun H L- Editor Kerr C E- Editor Ma WH