High School Athletic Trainer Services for Knee Injuries

Dustin R. Grooms, PhD, ATC, CSCS*; Janet E. Simon, PhD, ATC*; Sara L. Dalton, MEd, LAT, ATC†; Thomas P. Dompier, PhD, ATC‡; Zachary Y. Kerr, PhD, MPH§

*College of Health Sciences and Professions, School of Applied Health Sciences and Wellness, Division of Athletic Training, Ohio University, Athens; †Datalys Center for Sports Injury Research and Prevention, Inc, Indianapolis, IN; §Department of Exercise and Sport Science and Injury Prevention Research Center, University of North Carolina at Chapel Hill

Context: Participation in high school athletics carries a substantial risk of musculoskeletal injury, particularly to the knee. However, limited information is available on the care being provided by athletic trainers (ATs) for athletes with these injuries.

Design: Descriptive epidemiology study.

Setting: Data on athletic training facility visits and AT services were collected from 147 high schools in 26 states.

Patients or Other Participants: High school student-athletes who participated in 13 boys’ sports and 14 girls’ sports and sustained a diagnosed knee injury during the 2011–2012 through 2013–2014 academic years. The ATs documented 6797 knee injuries, with 4242 sustained in boys’ sports and 2555 sustained in girls’ sports.

Main Outcome Measure(s): The number of athletic training facility visits and individual AT services as well as the average, median, and interquartile range of athletic training facility visits per injury and AT services per injury were calculated by sport and for time-loss (TL; participation restricted for ≥24 hours) and non–time-loss (NTL; participation restricted for <24 hours) injuries.

Results: In total, 28 788 athletic training facility visits were reported, with an overall average of 4 athletic training facility visits per knee injury over the 3-year period. Most athletic training facility visits (72.6%) were associated with NTL injuries, but the majority of AT services (68.6%) were associated with TL injuries. A total of 81 245 AT services were provided for all knee injuries. Therapeutic activities or exercise were the most common type of AT service (52.5%). Overall, an average of 12 AT services were reported per knee injury. Compared with NTL injuries, TL injuries had a larger average number of AT services per injury (34 versus 9; P < .001).

Conclusions: Knee injuries at the high school level are a considerable health care burden. This report demonstrates a high proportion of AT attention to the evaluation and treatment of these injuries. This study confirms the recommended management of knee injuries, with neuromuscular and therapeutic activities being the primary services after knee injury.

Key Words: NATION, injury surveillance, medical care

Key Points

- Over a 3-year period, 6797 knee injuries in high school athletes were reported, with football accounting for 26.7% of the total.
- On average, non–time-loss knee injuries required 9 athletic training therapy sessions and time-loss knee injuries required 34 sessions.
- Athletic trainers primarily used neuromuscular therapy to treat knee injuries.

Participation in US high school athletics has steadily increased over the past 25 years. With increased participation may come an increased incidence of musculoskeletal injuries. Researchers have detailed the incidence of knee injuries at the high school level. An estimated 250,000 knee injuries occur each year, a rate of 2.98 per 10,000 athlete-exposures. These injuries primarily consist of ligament sprains, contusions, or meniscal injuries and occur at the highest rates in football, soccer, gymnastics, and basketball. At many high schools, the primary care provider for these athletes is an athletic trainer (AT). To date, limited data have been available regarding the therapy ATs were providing, how these injuries were being managed, and what type of AT service was given by injury type, sport, or sex. To delay the onset of posttraumatic osteoarthritis and lessen the risk of reinjury, patients with knee injuries require appropriate and timely therapy. The development of posttraumatic osteoarthritis has been linked to decreased muscle strength after injury, likely associated with less-than-optimal therapy postinjury, whereas reinjury has recently been associated with suboptimal return-to-play therapy and rehabilitative progressions. These less-than-optimal outcomes indicate a potential opportunity to improve care for patients with knee injuries in the athletic training setting, but data are lacking regarding the services ATs are providing after knee injuries. Therefore, the purpose of our study was to quantify the services provided by a sample of high school ATs for athletes with knee injuries.
Table 1. Athletic Training Facility Visits for High School Student-Athletes Sustaining Knee Injuries by Sport, NATION, 2011–2012 Through 2013–2014

Sports	No. of Knee Injuries	No. of Athletic Training Facility Visits	% Athletic Training Facility Visits for Non–Time-Loss Injuries	Average No. of Athletic Training Facility Visits per Injury (Median [Interquartile Range])
				Total
Boys' sports				
Baseball	85	382	94.8	4 (2 [1–5]) / 3 (3 [2–5]) / 5 (2 [1–5]) / .2765
Basketball	397	1238	75.6	3 (1 [1–3]) / 7 (4 [2–9]) / 3 (1 [1–2]) / .0037
Crew	32	65	100.0	2 (1 [1–2]) / No injuries / 2 (1 [1–2]) / NA
Cross-country	247	1047	90.2	4 (2 [1–3]) / 9 (6 [3–8]) / 4 (2 [1–3]) / .0827
Football	1815	9778	55.2	5 (2 [1–5]) / 13 (6 [3–14]) / 4 (2 [1–4]) / <.0001
Golf	1	1	100.0	1 (1 [1–1]) / No injuries / 1 (1 [1–1]) / NA
Lacrosse	273	1092	70.9	4 (2 [1–4]) / 9 (5 [3–11]) / 3 (2 [1–4]) / .0015
Soccer	322	882	74.0	3 (1 [1–3]) / 7 (4 [2–6]) / 2 (1 [2–2]) / .0114
Swimming and diving	8	20	95.0	3 (1 [1–3]) / 9 (9 [9–9]) / 2 (1 [1–3]) / .004
Tennis	20	38	100.0	2 (1 [1–2]) / No injuries / 2 (1 [1–2]) / NA
Indoor track	299	1009	95.6	3 (2 [1–4]) / 7 (5 [3–14]) / 3 (2 [1–4]) / .1639
Outdoor track	256	897	93.1	4 (2 [1–4]) / 6 (4 [3–9]) / 3 (2 [1–2]) / .0852
Wrestling	487	1501	67.2	3 (2 [1–3]) / 9 (6 [3–9]) / 2 (1 [1–2]) / <.0001
Total	4242	17,950	66.8	4 (2 [1–4]) / 11 (6 [3–11]) / 3 (2 [1–3]) / <.0001
Girls' sports				
Basketball	370	1860	62.6	5 (2 [1–5]) / 15 (7 [4–16]) / 4 (2 [1–4]) / .0031
Crew	73	216	99.5	3 (1 [1–4]) / 1 (1 [1–1]) / 3 (1 [1–4]) / .5852
Cross-country	252	1013	92.3	4 (2 [1–5]) / 5 (4 [2–7]) / 4 (2 [1–4]) / .3253
Field hockey	252	946	67.1	4 (1 [1–3]) / 12 (4 [1–10]) / 3 (1 [1–3]) / .0265
Golf	1	3	100.0	3 (3 [3–3]) / No injuries / 3 (3 [3–3]) / NA
Gymnastics	33	87	92.0	3 (1 [1–3]) / 4 (4 [2–5]) / 3 (1 [1–3]) / .7301
Lacrosse	219	1024	85.0	5 (2 [1–5]) / 8 (7 [4–13]) / 4 (2 [1–4]) / .0125
Soccer	355	1427	77.6	4 (2 [1–4]) / 8 (4 [2–12]) / 4 (2 [1–4]) / .0024
Softball	90	433	85.5	5 (2 [1–5]) / 6 (5 [2–11]) / 5 (2 [1–4]) / .6517
Swimming and diving	26	59	100.0	2 (1 [1–2]) / No injuries / 2 (1 [1–2]) / NA
Tennis	29	106	84.0	4 (1 [1–2]) / 9 (9 [0–17]) / 3 (1 [1–5]) / .6501
Indoor track	293	1296	91.8	4 (2 [1–5]) / 10 (7 [2–13]) / 4 (2 [1–5]) / .1181
Outdoor track	255	1140	91.8	4 (2 [1–5]) / 9 (7 [3–17]) / 4 (2 [1–5]) / .0052
Volleyball	307	1228	93.0	4 (2 [1–4]) / 4 (2 [1–4]) / 4 (2 [1–4]) / .8447
Total	2555	10838	82.2	4 (2 [1–5]) / 9 (5 [2–11]) / 4 (2 [1–4]) / <.0001
Overall	6797	28,788	72.6	4 (2 [1–4]) / 11 (6 [3–11]) / 3 (2 [1–4]) / <.0001

Abbreviations: NA, not applicable; NATION, National Athletic Treatment, Injury and Outcomes Network.

- "Time-loss injuries" were those injuries resulting in participation restriction of ≥24 hours.
- "Non–time-loss injuries" were those injuries resulting in participation restriction of <24 hours.
- "P value" is for independent-samples t test comparing the average number of athletic training facility visits per injury between time-loss and non–time-loss injuries.
- "P value < .05" was considered significant.

METHODS

This investigation was approved by the Western Institutional Review Board (Puyallup, WA). During the 2011–2012 through 2013–2014 school years, the National Athletic Treatment, Injury and Outcomes Network (NATION) captured injury and AT services data for 27 high school sports during preseason, regular season, and postseason practices and competitions.11 A total of 147 high schools in 26 states participated during the 3-year period. The ATs were full time, part time, or contracted from nearby clinics or university graduate programs. Most of the high schools were public (84.4%), were coeducational (98.6%), were set in nonurban areas (75.5%; rural = 37.4%, suburban = 38.1%), and enrolled fewer than 1000 students (51.0%).

The NATION data-collection tools are embedded within commercially available injury-documenting software,11 which allows data collection to be seamlessly integrated into routine record keeping. Software vendors participating in NATION modified their software and undergo annual certification using benchmarking transmission data sets developed by the Datalys Center for Sports Injury Research and Prevention, Inc (Indianapolis, IN). They also embedded secure data-transmission protocols that send deidentified records to secure Datalys Center servers on an ongoing and routine basis.11 This process is Health Insurance Portability and Accountability Act compliant.

The ATs completed detailed reports for each athlete with a knee injury. The data collection also captured the number of athletic training facility visits and the number of AT services provided for each injury. Detailed methods for collecting injury information and AT services have been previously documented.11,12 An AT service was defined as the application of any type of evaluation, therapy, modality, or skill used by an AT in treatment for an injury. The AT services data were captured at all school-organized varsity
competitions, regular practices, captain’s practices, scrimmages, strength and conditioning sessions, skill instruction, and junior varsity and varsity competitions. The services recorded were only those administered in the AT facility or campus facilities (eg, weight room) by ATs; if a student-athlete sought therapy off campus by other providers, those services were not counted. An injury reported in NATION must have occurred during a school-sponsored sport activity and must have been evaluated or treated (or both) by an AT in conjunction with his or her respective medical staff, including physicians or other health care professionals. A time-loss (TL) injury was defined as restricting a student-athlete from participation for ≥24 hours past the day of injury. A non-time-loss (NTL) injury restricted participation for <24 hours.

Statistical Analysis

We compiled the number of athletic training facility visits and AT services for each knee injury. Services provided by ATs were examined by categories on the basis of previous research. We calculated the average number of athletic training facility visits per knee injury and by knee-injury type (average athletic training facility visit = Σ athletic training facility visits / Σ knee injuries) and the average number of AT services per knee injury (average AT services = Σ AT services / Σ knee injuries). These statistics were calculated overall and for TL and NTL knee injuries. Statistics for TL and NTL injuries were compared using independent-samples t tests. All t statistics with P values <.05 were considered statistically significant. All data were analyzed using SAS Enterprise Guide (version 4.3; SAS Institute Inc, Cary, NC).

RESULTS

Knee-Injury Incidence

During the 3-year period (2011–2012 through 2013–2014), boys’ sports contributed 1185 team-seasons across 13 sports and girls’ sports contributed 1141 team-seasons across 14 sports. Overall, 6797 knee injuries were reported, with 4242 sustained in boys’ sports and 2555 sustained in girls’ sports. The sports with the largest percentage of knee injuries were football (n = 1815 [26.7%]), wrestling (487 [7.2%]), boys’ basketball (397 [5.8%]), and girls’ basketball (370 [5.4%]). For boys’ and girls’ golf, only 1 knee injury was sustained in each sport. A majority of the knee injuries were NTL (6047; 89.0%). Of the knee injuries, 74 knee injuries were football (n = 16 each), lacrosse (12 and 14, respectively) and girls’ basketball (14). The average number of AT services per knee injury for boys’ sports was seen in golf (17); however, only 1 TL knee injury occurred in golf. Other than boys’ golf, the largest average numbers of AT services per knee injury in boys’ and girls’ sports were for baseball and football (16 each), lacrosse (12 and 14, respectively) and girls’ basketball (14). The average number of AT services per knee injury was higher for TL injuries than for NTL injuries (55760; 68.6%). Distributions of AT service types varied by whether injuries resulted in TL or NTL. Overall, 71.4% of TL injuries and 75.9% of NTL knee injuries received therapeutic activities or modalities.

Athletic Trainer Services by Knee Conditions

The knee injuries consisted of 1528 abrasions, 2523 contusions, 572 sprains, 604 strains, and 1570 other conditions (Table 5). Overall, patients with knee sprains received the largest average number of AT services (30) compared with knee abrasions (9), knee contusions (7), knee strains (15), and other knee injuries (16). Sprains contributed the largest average number of AT services per injury. Irrespective of injury type, therapeutic activities and exercise were the most commonly reported AT service per injury type (abrasions = 4.53, contusions = 2.58, sprains = 17.22, strains = 9.38, and other = 8.87; Table 6). Modalities were the next most frequent AT service provided per injury type (abrasions = 1.82, contusions = 1.66, sprains = 5.53, strains = 3.02, and other = 2.75). The
Table 2. Types of Athletic Trainer (AT) Services for High School Student-Athletes Sustaining Knee Injuries by Type of Service, NATION, 2011–2012 Through 2013–2014

Type of AT Service	CPT Code	Total	Time Lossa	Non–Time Lossb	P Valuec
Athletic trainer evaluation or reevaluation	97005, 97006	10 313	7422 (13.3)	2891 (11.3)	<.001d
Consultation		9514 (11.7)	6808 (12.2)	2705 (10.6)	<.001d
Functional evaluation		799 (0.9)	613 (1.1)	186 (0.7)	<.001d
Gait training or crutch fitting	97116	149 (0.2)	38 (<0.1)	111 (0.4)	<.001d
Manual therapy techniques or massage	97140, 97124	1250 (1.5)	1049 (1.9)	201 (0.8)	<.001d
Massage		1154 (1.4)	1003 (1.8)	151 (0.6)	<.001d
Mobilization		96 (0.1)	46 (<0.1)	50 (0.2)	<.001d
Modalities		162 87 (20.0)	11 665 (20.9)	46 313 (18.2)	<.001d
Cold whirlpool		33 (<0.1)	16 (<0.1)	17 (<0.1)	<.013d
Cryocuff		810 (0.9)	396 (0.7)	414 (1.6)	<.001d
Electrical modality (other)		8 (<0.1)	3 (<0.1)	5 (<0.1)	<.118
Electrical stimulation	97014	553 (0.7)	330 (0.6)	223 (0.9)	<.001d
Electrical stimulation		545 (0.7)	327 (0.6)	218 (0.9)	<.001d
Hot or cold packs	97010	15 203 (18.7)	10 976 (19.7)	4227 (16.6)	<.001d
Hot pack		2693 (3.3)	2046 (3.7)	647 (2.5)	<.001d
Hot whirlpool		29 (<0.1)	17 (<0.1)	12 (<0.1)	<.245
Ice bag		11 279 (13.9)	8 144 (14.6)	3 135 (12.3)	<.001d
Ice massage		421 (0.5)	390 (0.7)	31 (0.1)	<.001d
Slush bath		28 (<0.1)	26 (<0.1)	2 (<0.1)	<.006d
Ultrasound		222 (0.3)	189 (0.3)	33 (0.1)	<.001d
Vasopneumatical devices	97016	208 (0.3)	169 (0.3)	39 (0.1)	<.001d
Whirlpool	97022	90 (0.1)	59 (0.1)	31 (0.1)	<.529
Neuromuscular reeducation	97112	4681 (5.8)	2487 (4.5)	2194 (8.6)	<.001d
Basic proprioception		744 (0.9)	274 (0.5)	470 (1.8)	<.001d
Proprioception with device	97018	3937 (4.8)	2213 (4.0)	1724 (6.8)	<.001d
Paraffin bath	97018	0	0	0 NA	.99
Contrast bath	97034	11 (<0.1)	8 (<0.1)	3 (<0.1)	>.99
Iontophoresis/phonophoresia	97033	0	0	0 NA	
Physical performance test or measurement	97750	4 (<0.1)	2 (<0.1)	2 (<0.1)	<.594
Strapping	29280, 29260, 29240, 29250	3946 (4.9)	3257 (5.8)	689 (2.7)	<.001d
Padding	29520, 29230, 29540	236 (0.3)	217 (0.4)	19 (<0.1)	<.001d
Splint	29550	61 (<0.1)	16 (<0.1)	45 (0.2)	<.001d
Taping		1644 (2.0)	1330 (2.4)	314 (1.2)	<.001d
Wrap		2005 (2.5)	1694 (3.0)	311 (1.2)	<.001d
Therapeutic activities or exercise	97110, 97530	42 855 (52.5)	28 146 (50.5)	14 709 (57.7)	<.001d
Bike conditioning		3323 (4.1)	2002 (3.6)	1321 (5.2)	<.001d
Bike ROM		4090 (5.0)	2964 (5.3)	1126 (4.4)	<.001d
Independent ROM	12 827 (15.8)	9319 (16.7)	3508 (13.8)	<.001d	
Isokinetic strength		247 (0.3)	101 (0.2)	146 (0.6)	<.001d
Isometric strength		2532 (3.1)	1223 (2.2)	1309 (5.1)	<.001d
Isotonic strength		9642 (11.9)	5899 (10.6)	3743 (14.7)	<.001d
Manual resistance exercise		1564 (1.9)	1081 (1.9)	483 (1.9)	<.676
Passive ROM		2739 (3.3)	2015 (3.6)	724 (2.8)	<.001d
Proprioceptive neuromuscular facilitation ROM		213 (0.3)	180 (0.3)	33 (0.1)	<.001d
Stair climber		392 (0.5)	164 (0.3)	228 (0.9)	<.001d
Treadmill conditioning		274 (0.3)	123 (0.2)	151 (0.6)	<.001d
Tubing strength		5012 (6.2)	3075 (5.5)	1937 (7.6)	<.001d
Wound care	97597, 97598, 97602	1760 (2.2)	1503 (3.1)	57 (0.2)	<.001d
Total		81 245 (100.0)	55 760 (100.0)	25 485 (100.0)	<.001d

Abbreviations: CPT, Current Procedural Terminology; NA, not applicable; NATION, National Athletic Treatment, Injury and Outcomes Network; ROM, range of motion.

a Time-loss injuries were those injuries resulting in participation restriction of ≥24 hours.
b Non–time-loss injuries were those injuries resulting in participation restriction of <24 hours.
c P value is for χ² or Fisher exact t test comparing the proportion of AT services used between time-loss and non–time-loss injuries.
d P value < .05 was considered significant.
e DJO Global, Vista, CA.
distribution of AT services per knee condition is presented in the Figure. The majority of abrasions (65%) and contusions (74%) required fewer than 5 AT services per injury, whereas only 36% of sprains resolved that quickly. Nearly half (48%) of sprains required more than 11 services compared with 20% for abrasions, 13% for contusions, and 32% for strains.

DISCUSSION

To our knowledge, this is the first report of AT services for knee injuries at the high school level. We documented AT services by sport, service type, athlete sex, and TL and NTL injuries. To date, the management of knee injuries has commonly been limited to expert opinion and physician recommendation. Our work highlights the variety of AT services provided, including evaluation, therapeutic exercise, and various modalities, by condition, sport, sex, and TL status. The volume of services administered in the high school setting represents a significant contribution to the overall health care of these patients.

Comparison With Overall Treatment Data (Common AT Services)

As described in the “Methods” section and the original NATION treatment paper, the knee data reported herein is part of a larger data set encompassing all injuries requiring the attention of an AT in the participating high schools. Of the total 210,773 athletic training clinic visits in the NATION data set, 28,788 (13.7%) were due to knee injuries. The contribution of athletic training clinic visits for knee injuries relative to all injuries was similar for total (4.17 total; 4.24 knee) and NTL injuries (3.47 total; 3.46 knee); however, TL knee injuries required, on average, nearly 3 more clinic visits relative to all injuries (7.76 total, 10.52 knee). The services provided by ATs at the high school level for knee injuries were also in line with all injuries, with the most common being therapeutic activities.

Table 3. Average Number of Athletic Trainer Services per Injury for High School Student-Athletes Sustaining Knee Injuries by Sport, NATION, 2011–2012 Through 2013–2014

Sports	Injuries					
	Total	Time Loss	Non-Time Loss			
Boys’ sports						
Baseball	16 (5 [2–15])	8 (6 [3–12])	14 (4 [2–16])			
Basketball	7 (3 [1–7])	16 (9 [3–25])	6 (3 [1–6])			
Crew	6 (3 [2–5])	No injuries	6 (3 [2–5])			
Cross-country	12 (4 [2–8])	30 (20 [5–38])	11 (3 [2–8])			
Football	16 (4 [2–12])	42 (14 [5–40])	9 (3 [2–9])			
Golf	17 (17 [17–17])	No injuries	17 (17 [17–17])			
Lacrosse	12 (4 [2–11])	34 (14 [5–38])	9 (4 [2–9])			
Soccer	8 (3 [2–7])	21 (6 [2–23])	6 (3 [2–6])			
Swimming and diving	7 (4 [2–8])	31 (31 [31–31])	4 (3 [1–5])			
Tennis	5 (2 [1–6])	No injuries	5 (2 [1–6])			
Indoor track	9 (4 [1–10])	20 (17 [6–26])	9 (3 [1–10])			
Outdoor track	11 (4 [2–11])	16 (10 [4–30])	11 (4 [2–10])			
Wrestling	8 (3 [1–7])	29 (16 [4–31])	5 (3 [1–8])			
Total	12 (4 [2–10])	35 (13 [4–36])	9 (3 [2–8])			
Girls’ sports						
Basketball	14 (4 [2–13])	43 (15 [7–44])	10 (3 [2–9])		.0113	
Crew	8 (2 [1–9])	1 (1 [1–1])	8 (2 [1–10])		.5778	
Cross-country	11 (4 [2–11])	14 (5 [2–23])	10 (4 [2–11])		.4127	
Field hockey	12 (3 [1–8])	52 (11 [2–44])	8 (3 [1–7])		.0520	
Golf	3 (3 [3–3])	No injuries	3 (3 [3–3])		NA	
Gymnastics	8 (3 [2–7])	14 (13 [3–25])	7 (3 [2–7])		.6463	
Lacrosse	14 (5 [2–13])	26 (16 [6–42])	13 (5 [2–10])		.0288	
Soccer	11 (4 [2–11])	24 (13 [3–32])	10 (3 [2–9])		.0047	
Softball	11 (3 [2–12])	12 (8 [2–15])	11 (3 [2–10])		.8783	
Swimming and diving	6 (2 [1–8])	No injuries	6 (2 [1–8])		NA	
Tennis	11 (3 [2–14])	18 (18 [3–32])	10 (3 [1–14])		.5286	
Indoor track	13 (5 [2–14])	41 (25 [5–56])	12 (4 [2–14])		.1129	
Outdoor track	13 (4 [2–13])	29 (19 [4–44])	12 (4 [2–12])		.0992	
Volleyball	10 (3 [1–8])	9 (4 [1–8])	10 (3 [1–8])		.9607	
Total	12 (4 [2–11])	30 (10 [3–36])	10 (4 [2–10])		<.0001	
Overall	12 (4 [2–10])	34 (13 [4–36])	9 (3 [2–8])		<.0001	

Abbreviations: NA, not applicable; NATION, National Athletic Treatment, Injury and Outcomes Network.

a Time-loss injuries were those injuries resulting in participation restriction of ≥24 hours.
b Non–time-loss injuries were those injuries resulting in participation restriction of <24 hours.
c P value is for independent-samples t test comparing the average number of athletic trainer services per injury between time-loss and non–time-loss injuries.
d P value < .05 was considered significant.
Table 4. Average Number of Athletic Trainer (AT) Services per Injury for High School Student-Athletes Sustaining Knee Injuries by Type of Service, NATION, 2011–2012 Through 2013–2014

Type of AT Service	Total (Median [Interquartile Range])	Time Lossa (Median [Interquartile Range])	Non–Time Lossb (Median [Interquartile Range])	P Valuec
Athletic trainer evaluation or reevaluation	1.52 [0–2]	3.85 [1–4]	1.23 [1–3]	<.0001d
Gait training or crutch fitting	0.02 [0–0]	0.15 [0–0]	0.01 [0–0]	<.0001d
Manual therapy techniques or massage	0.18 [0–0]	0.27 [0–0]	0.17 [0–0]	.1259
Modalities	2.40 [1–2]	6.17 [3–7]	1.93 [1–2]	<.0001d
Contrast bath	<0.01 [0–0]	<0.01 [0–0]	<0.01 [0–0]	0.3862
Electrical stimulation	0.08 [0–0]	0.30 [0–0]	0.05 [0–0]	<.0001d
Hot or cold packs	2.24 [1–2]	5.64 [2–6]	1.82 [1–2]	<.0001d
Iontophoresis/phonophoresis	0	0	0	NA
Paraffin bath	0.03 [0–0]	0.04 [0–0]	0.03 [0–0]	.6088
Ultrasound	0.03 [0–0]	0.15 [0–0]	0.02 [0–0]	.0005d
Vasopneumatic devices	0.01 [0–0]	0.04 [0–0]	<0.01 [0–0]	.0332d
Neuromuscular reeducation	0.69 [0–0]	2.93 [0–2]	0.41 [0–1]	<.0001d
Physical performance test or measurement	<0.01 [0–0]	<0.01 [0–0]	<0.01 [0–0]	0.2190
Strapping	0.58 [0–0]	0.92 [0–1]	0.54 [0–0]	0.006d
Therapeutic activities or exercise	6.30 [0–4]	19.61 [4–19]	4.65 [0–3]	<.0001d
Wound care	0.26 [0–0]	0.08 [0–0]	0.28 [0–0]	<.0001d

Abbreviations: NA, not applicable; NATION, National Athletic Treatment, Injury and Outcomes Network.

a Time-loss injuries were those injuries resulting in participation restriction of ≥24 hours.

b Non–time-loss injuries were those injuries resulting in participation restriction of <24 hours.

c P value is for independent-samples *t* test comparing the average number of AT services per injury between time-loss and non–time-loss injuries.

d P value < .05 was considered significant.

Table 5. Average Number of Athletic Trainer Services per Injury for High School Student-Athletes Sustaining Knee Injuries by Sport and Injury, NATION, 2011–2012 Through 2013–2014

Sports	Abrasion (n = 1528)	Contusion (n = 2523)	Sprain (n = 572)	Strain (n = 604)	Other (n = 1570)
Boys’ sports					
Baseball	11 [3–16]	8 [3–6]	68 [24–131]	10 [4–20]	27 [10–24]
Basketball	4 [2–5]	5 [2–4]	19 [11–30]	11 [4–20]	11 [5–12]
Crew	17 [5–7]	2 [1–3]	No injuries	3 [2–4]	3 [2–3]
Cross-country	8 [3–6]	11 [2–6]	12 [10–19]	21 [6–14]	12 [5–11]
Football	10 [3–8]	7 [3–7]	38 [12–33]	22 [7–15]	19 [7–18]
Golf	No injuries	No injuries	No injuries	No injuries	17 [17–17]
Lacrosse	13 [5–15]	7 [3–6]	16 [10–21]	20 [5–9]	17 [5–15]
Soccer	6 [3–7]	5 [2–4]	15 [7–23]	14 [6–13]	10 [4–8]
Swimming and diving	No injuries	1 [1–1]	No injuries	4 [4–5]	15 [10–31]
Tennis	5 [6–7]	1 [1–2]	No injuries	2 [2–3]	9 [5–19]
Indoor track	5 [3–7]	8 [3–5]	6 [4–3]	9 [4–12]	14 [5–23]
Outdoor track	10 [4–10]	5 [2–5]	16 [4–14]	9 [6–11]	16 [7–19]
Wrestling	6 [3–5]	5 [2–5]	22 [9–29]	9 [4–8]	12 [4–7]
Total	8 [3–7]	7 [3–6]	31 [11–49]	15 [5–12]	15 [5–16]
Girls’ sports					
Basketball	8 [3–8]	5 [3–6]	56 [21–62]	21 [11–28]	18 [7–18]
Crew	6 [2–7]	12 [4–15]	1 [1–1]	12 [3–14]	7 [2–9]
Cross-country	10 [3–9]	5 [2–4]	10 [6–9]	17 [7–32]	13 [5–14]
Field hockey	8 [3–7]	5 [2–4]	34 [7–16]	9 [3–9]	22 [6–22]
Golf	3 [3–3]	No injuries	No injuries	No injuries	No injuries
Gymnastics	15 [3–10]	6 [4–9]	12 [9–20]	2 [1–3]	4 [3–7]
Lacrosse	14 [4–7]	9 [4–9]	25 [13–49]	10 [6–15]	20 [7–26]
Soccer	9 [3–10]	8 [3–5]	19 [11–26]	10 [4–11]	17 [7–27]
Softball	10 [3–11]	7 [2–4]	15 [7–26]	12 [6–13]	17 [10–21]
Swimming and diving	7 [5–12]	1 [1–2]	2 [2–2]	5 [3–6]	9 [5–20]
Tennis	5 [3–6]	4 [3–7]	1 [1–1]	10 [4–25]	19 [11–32]
Indoor track	9 [4–12]	12 [4–14]	6 [5–8]	17 [6–25]	17 [7–19]
Outdoor track	14 [5–18]	6 [3–7]	7 [4–15]	11 [5–16]	18 [6–24]
Volleyball	10 [3–7]	4 [2–4]	13 [8–9]	21 [10–23]	15 [5–10]
Total	10 [3–10]	7 [3–5]	25 [8–25]	14 [6–17]	16 [6–17]
Overall	9 [3–8]	7 [3–6]	30 [10–29]	15 [5–14]	16 [5–16]

Abbreviation: NATION, National Athletic Treatment, Injury and Outcomes Network.
(45% total, 52% knee) followed by modalities (18.6% total, 20% knee) and then evaluation (15% total, 12% knee). The overall services per injury were comparable between all injuries and knee injuries (11.01 total, 11.95 knee) and for NTL injuries (9.56 total, 9.22 knee); however, TL injuries to the knee required more visits (18.6 total, 33.98 knee).

The nature of instability after knee sprains requiring surgical reconstruction or extensive therapy relative to other joint sprains likely contributes to the drastic increase in services for TL knee injuries.16–19

Injury Type

The majority of knee injuries fell into 4 categories: abrasion, contusion, sprain, or strain. The high volume of services provided (nearly 12 services per injury over an average of 4 athletic training clinic visits) for knee injuries may be driven by the high number of services for knee sprains: 30 services per injury relative to only 15 for strains, 7 for contusions, and 9 for abrasions. The need for evaluation or reevaluation, more therapeutic exercise and range-of-motion sessions, and modality applications for sprains could be due to the extensive recovery time attributed to ligament injuries20–22 relative to muscle strains or abrasions and contusions. Despite recommendations regarding bracing after ligament injury,23 patients with sprains did not require more strapping relative to the other conditions but did have a much higher incidence of crutch fitting and gait training. Of additional note is the high variability in the number of services across all types for sprains and strains relative to abrasions and contusions. This was probably due to the spectrum of severity.
associated with sprains and strains, ranging from mild cellular- or tissue-level damage to complete structural failure and rupture, as opposed to the likely less severe level associated with contusions or abrasions.24

Abrasions and contusions had a large percentage of injuries requiring 5 or fewer AT services per injury, which is to be expected due to the typically mild nature of these injuries, whereas sprains presented as a bimodal distribution, with a large proportion requiring ≥21 AT services and a large proportion requiring <5 AT services (Figure). This probably reflects the greater spectrum of sprain-related injuries, ranging from those requiring surgical intervention to minor insults. The other injuries classification had a similar bimodal distribution as sprains, with slightly more injuries requiring >21 services (possibly meniscal or cartilage injuries, given that they were not captured by the other categories).

Comparison of TL and NTL Injuries

The average number of AT services per injury increased drastically when the injury was TL, requiring ≥24 hours of activity restriction (34 services for TL, 9 services for NTL). This was largely driven by the increased use of therapeutic activities, modalities, neuromuscular reeducation, and evaluation for TL injuries. Of note, NTL knee injuries still required, on average, more than 3 athletic training clinic visits and 9 services per injury. This indicates that ATs were expending supplies, time, and effort on injuries that may be considered minor but still demanded considerable medical attention. Typically, TL injuries required a greater number of AT services, with the exception of baseball, crew, and golf athletes.

By Sport

Football had the largest number of knee injuries and average AT visits, followed by wrestling, boys’ and girls’ basketball, and soccer, which is in line with previous epidemiologic work24 at the high school level. Of interest, although football had the most knee injuries and AT visits, it also had the lowest percentage of AT visits for NTL injuries. This was not driven by a low number of average AT visits for NTL injuries but by a very high average number of AT visits for TL injuries. The repeated visits for TL injuries increased the services required overall, even though NTL injuries were more numerous. Sports such as baseball, crew, cross-country, gymnastics, softball, swimming, tennis, track, and volleyball reflected an opposite paradigm, in which the vast majority of AT visits were for TL injuries. However, this discrepancy in AT visits was not reflected in the AT services per sport: the number of services required of each TL injury was almost always higher except for baseball, crew, volleyball, and sports with minimal to zero TL injuries. These data indicate that whereas many injury-surveillance systems use TL in their definition of injury, patients with NTL injuries still demand extensive AT services.

Limitations

Some injuries may have gone unreported and some AT services undocumented. The NATION data-collection method integrates with the ATs’ electronic medical record systems, which streamlines documentation; however, at times, services may be undocumented due to time demands in the clinic. Therefore, these data are likely an underestimate of the AT services provided. In addition, the NATION data set captures both TL and NTL injuries and AT services, further increasing the burden on the AT to document all services. The AT’s employment status, which may affect AT services reporting, was also not controlled in this study.25 In addition, ATs may have provided services for injuries that occurred outside of the school setting, and athletes were free to seek treatment via their personal providers, both of which would go unrecorded in this data set. Future investigators may consider examining more injury classifications such as specific ligament or muscle involvement, surgical or other physician interventions (eg, injection, prescription medication, consultation), and chronic or overuse conditions.

CONCLUSIONS

The AT services for knee injuries at the high school level varied, based on participation-restriction time (TL versus NTL injuries), sport, and injury type. Therapeutic exercise was the most common service across all classifications, indicating that ATs may be following best-practice recommendations to address the functional limitations associated with knee injuries through exercise interventions as opposed to relying on modalities or palliative care. However, follow-up research is required to determine whether this is the case and to identify the influence of AT services on more specific injuries, service type, reinjury rate, and patient outcomes to learn whether ATs are indeed engaged in best-practice management of patients with knee injuries. This report can serve as a future resource for examination of AT services and the ATs’ contributions to the health care of athletes with musculoskeletal injuries.

ACKNOWLEDGMENTS

This study would not have been possible without the assistance of the many high school athletic trainers who participated in NATION. This project was funded by the National Athletic Trainers’ Association Research & Education Foundation (Carrollton, TX) and the Central Indiana Corporate Partnership Foundation in cooperation with BioCrossroads (Indianapolis, IN). The content of this report is solely the responsibility of the authors and does not necessarily reflect the views of the National Athletic Trainers’ Association Research & Education Foundation, Central Indiana Corporate Partnership Foundation, or BioCrossroads.

REFERENCES

1. Participation statistics. National Federation of State High School Associations Web site. http://www.nfhs.org/ParticipationStatistics/ParticipationStatistics. Accessed June 6, 2018.
2. Swenson DM, Collins CL, Best TM, Flanagan DC, Fields SK, Comstock RD. Epidemiology of knee injuries among US high school athletes, 2005/06–2010/11. Med Sci Sports Exerc. 2013;45(3):462–469.
3. Ingram JG, Fields SK, Yard EE, Comstock RD. Epidemiology of knee injuries among boys and girls in US high school athletics. Am J Sports Med. 2008;36(6):1116–1122.
4. Fernandez WG, Yard EE, Comstock RD. Epidemiology of lower extremity injuries among US high school athletes. Acad Emerg Med. 2007;14(7):641–645.
5. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep. 2014;16(10):448.
6. Risberg MA, Oiestad BE, Gunderson R, et al. Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med. 2016;44(5):1215–1224.
7. Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(2):302–311.
8. Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock ML, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. 2010;38(3):455–463.
9. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–808.
10. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946–951.
11. Dompier TP, Marshall SW, Kerr ZY, Hayden R. The National Athletic Treatment, Injury and Outcomes Network (NATION): methods of the surveillance program, 2011–2012 through 2013–2014. J Athl Train. 2015;50(8):862–869.
12. Kerr ZY, Dompier TP, Dalton SL, Miller SJ, Hayden R, Marshall SW. Methods and descriptive epidemiology of services provided by athletic trainers in high schools: the National Athletic Treatment, Injury and Outcomes Network study. J Athl Train. 2015;50(12):1310–1318.
13. Lam KC, Snyder Valier AR, Valovich McLeod TC. Injury and treatment characteristics of sport-specific injuries sustained in interscholastic athletics: a report from the Athletic Training Practice-Based Research Network. Sports Health Multidiscip Approach. 2015;7(1):67–74.
14. Luntley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets. Annu Rev Public Health. 2002;23(1):151–169.
15. Shea KG, Carey JL. Management of anterior cruciate ligament injuries: evidence-based guideline. J Am Acad Orthop Surg. 2015;23(5):e1–e5.
16. Anderson MJ, Browning WM, Urban CE, Kluczynski MA, Bisson LJ. A systematic summary of systematic reviews on the topic of the anterior cruciate ligament. Orthop J Sports Med. 2016;4(3):2325967116634074.
17. Derscheid GL, Garrick JG. Medial collateral ligament injuries in football: nonoperative management of grade I and grade II sprains. Am J Sports Med. 1981;9(6):365–368.
18. Kannus P. Nonoperative treatment of grade II and III sprains of the lateral ligament compartment of the knee. Am J Sports Med. 1989;17(1):83–88.
19. Ballmer PM, Jakob RP. The nonoperative treatment of isolated complete tears of the medial collateral ligament of the knee: a prospective study. Arch Orthop Trauma Surg. 107(5):273–276.
20. Mather RC III, Koenig L, Kocher MS, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751–1759.
21. van Melick N, van Cingel RE, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med. 2016;50(24):1506–1515.
22. Nyland J, Mattocks A, Kibbe S, Kalloub A, Greene J, Caborn D. Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update. Open Access J Sports Med. 2016;7:21–32.
23. Wright RW, Fetzer GB. Bracing after ACL reconstruction: a systematic review. Clin Orthop Relat Res. 2007;455:162–168.
24. Starkey C, Brown SD. Orthopedic & Athletic Injury Examination Handbook. 3rd ed. Philadelphia, PA: F.A. Davis; 2015.
25. Kerr ZY, Lynam RC, Mauntel TC, Dompier TP. High school football injury rates and services by athletic trainer employment status. J Athl Train. 2016;51(1):70–73.