An island invaded by exotics: a review of freshwater fish in Puerto Rico

Ruber Rodríguez-Barrerasa,*, Camille Zapata-Arroyob, Wilfredo Falcón L.c and María De Lourdes Olmedaa

aDepartment of Biology, University of Puerto Rico, Bayamón, USA; bResearch and Development Department, Eco-Caribe LLC, C/o Department of Biology University of Puerto Rico, San Juan, PR, USA; cDepartment of Natural and Environmental Resources, San Juan, PR, USA

ABSTRACT
The introduction of exotic fishes in streams and water reservoirs has modified autochthonous freshwater fish communities in Puerto Rico. There are approximately 46 fish species in inland waters, and most of them were introduced during the last century. We here summarize relevant information on 46 freshwater fish species reported for the island. Approximately 80% of the species are non-native. An evaluation of the local trade revealed another 128 freshwater fish species are sold locally as pets. This raises serious concerns, as we detected a potential pool of non-native species that are either considered invasive elsewhere, or that, based on their ecology, could become invasive on the island in the near future. We also found that cichlids as a group pose the highest risk to freshwater ecosystems, with 13 species established in the wild, and another 38 potential invaders in the local pet trade. This study may be used as a baseline for the conservation and management purposes of both native and non-native fish species, including the development of strategies for preventing the release of live fish pets into the wild. More specific management for non-native fish, especially those identified here that pose significant threats to Puerto Rico’s native fish and their ecosystems, are warranted.

ARTICLE HISTORY
Received 7 June 2019
Accepted 10 February 2020

KEYWORDS
Freshwater fish; biodiversity; exotics; biological invasions; Puerto Rico; Caribbean

Introduction
The Neotropical realm has the highest diversity of freshwater fish, with more than 5,160 recorded species worldwide [1]. Native freshwater fish communities on tropical islands usually have low species diversity and are composed entirely of species with catadromous or amphidromous life histories [2,3]. Puerto Rico has nine native freshwater fish species, all of which require contact with marine environments during some phase of their life cycle [4]. These native species include representatives within the families Anguillidae, Eleotridae, Gobiidae, and Mugilidae [5,6]. Today, however, there are about 77 reported freshwater fish species that inhabit the inland waters of Puerto Rico [3].

Unsustainable human development has considerably impacted freshwater ecosystems globally, and native freshwater fish face a variety of threats [7]. Catchment-scale modifications (i.e. altered movement pathways of sediments in water systems due to land-use changes or increased imperviousness) and stream channelization projects in urban areas, often employed as a strategy to control flooding, have a strong impact on the distribution and composition of fish species and their communities [8]. Hence, the migratory patterns and life cycles associated with the development of a species are modified or broken, and thus the native species assemblages become overtaxed, while the establishment of exotic species remains rampant [5,9].

Highly urbanized areas degrade freshwater ecosystems due to the interplay between the loss of appropriate habitat for native fish species and the proliferation of introduced non-native species (which are often more tolerant to disturbed ecosystems), resulting in a decrease of native freshwater fish diversity [10], and in the loss of the ecological services they provide [11]. In Puerto Rico, over the last century, anthropogenic disturbances such as the modification of watersheds through the alteration of river courses, construction of dams, channelization of reaches, deforestation, road crossings, water pollution, and changes in the species composition – which includes the introduction of non-native fish – have greatly modified the inland freshwater ecosystems [12]. For example, dam construction and some channel modifications serve as barriers to Puerto Rico’s native fish species, affecting their migratory patterns and species assemblages of native fish. Most the major rivers of Puerto Rico have some degree of damming (i.e. water retention structures), which has negatively impacted freshwater fish communities through habitat fragmentation [13].

With the establishment of Biological Invasion as a discipline, we now know, without a doubt, that the detrimental effects of biological invasions have intensified greatly during the last decades [14]. The ever-present threat of new introductions on non-native fish to indigenous ecosystems represents a serious threat to freshwater systems, especially on island ecosystems. The
Introduction of non-native fish in the inland freshwater systems of Puerto Rico has severely impacted native fish communities, with local depletion or local extinction of native species [3,8,15]. Currently, freshwater habitats are mostly composed of fish species introduced from America, Africa and Asia [15]. Although the introduction of non-native fish into the water reservoirs of Puerto Rico began in the early 1900s, most of the non-native species present in the wild today are the result of both accidental and intentional releases during the last decades. Non-native fishes were brought for aquaculture and the sport fishing industries, and some escaped from fish hatcheries and fishponds that were mainly established in the 1930s [16]. Hence, species such as goldfish (Carassius auratus), swordtails (Xiphophorus hellerii), sailfin catfish (Pterygoplichthys sp.), algae-eater (Gyrinocheilus aymonieri), and several cichlid species have been released to the wild by their owners and have become common throughout the island [17]. What ecological impacts these non-native fish may have on native species is a shared concern amongst scientists that study freshwater ecosystems in Puerto Rico. For example, predation by introduced non-native freshwater fish upon native snail and bird species has been reported in Puerto Rico [18].

Early studies of freshwater fish communities in Puerto Rico focused on biological aspects of native species [19,20], and they gradually shifted to include species distributions, the biology and management of non-native species, and the impacts of these on native freshwater fish communities [15]. More recently, studies have focused on the effects of ecological factors influencing freshwater fish populations and communities (e.g. parasitization), genetics, and urban fish assemblages [8,17,21,22]. However, and although Puerto Rican freshwater ecosystems are relatively well studied when compared to other islands, biologists keep recording new species established in the wild. For example, just in 2018, Rodríguez-Barreras and Zapata-Arroyo [23] recorded the occurrence of an established population of the highly invasive African catfish Clarias gariepinus in Puerto Rico, a species considered harmful to native species elsewhere, which raised grave concerns amongst state and federal agencies tasked with the management of the native and sport fish resources of the island.

The availability of scientific information on the identity of both native and non-native fish species that currently inhabit the island, and on locally traded non-native freshwater fish is critical to effectively manage the freshwater fish resources. However, there is currently no updated list of freshwater species to accomplish this. To fill this gap, here we present a comprehensive list of native and non-native freshwater fish species established in Puerto Rico, and the species that have not yet been reported in the wild, but that are traded locally. For the freshwater fish fauna that are present in the wild, we synthesize the most relevant information, which includes aspects of their biology, ecology, and their geographic distribution. Additionally, we provide information about freshwater fish species that are sold through the aquarium pet trade in Puerto Rico and their potential invasiveness.

Methods

Site description

The Puerto Rican Archipelago is located in the Caribbean Sea, and composed of three main populated-islands (Puerto Rico, Vieques, and Culebra), and numerous other islands, islets and cays, which, together with the US and UK Virgin Islands (except for St. Croix) form the biogeographic area known as the Puerto Rican Bank. This study focuses on the main island of the Puerto Rican Archipelago, Puerto Rico, which is the smallest of the Greater Antilles, with an area of approximately 8,870 km². Puerto Rico currently has a human population of approximately 3.2 million inhabitants with a human-population density of ca. 351 inhabitants per km², after experiencing a dramatic decrease in population (of ca. −0.5 million, or a 15.3% decrease) in just 8 years [24]. Geologically, Puerto Rico is of volcanic origin, but possesses karst regions [17], and has diverse climatic zones [25]. The climatic zones of the freshwater systems of the island vary from perennial streams in areas of high precipitation, to intermittent streams in areas of low precipitation [26]. The Central Cordillera is the main mountainous chain that runs east-west through the center of Puerto Rico. It reaches 1,340 m at its highest point and is the origin of most of the rivers and streams on the island. The rivers and streams draining towards the north include many underground systems flowing through the Karst Region and include the longest river systems on the island, whereas there are fewer and shorter length rivers and streams draining towards the south [27,28]. When compared to the other Greater Antilles, the rivers and streams of Puerto Rico are generally small and flashy, and composed of mainly rocky substrates of volcanic origin (e.g. pebbles, gravel, boulders) and sand.

Compilation of fish species present in puerto rico

To generate a comprehensive and updated list of freshwater fish species present in Puerto Rico that may be used to inform conservation and management strategies, we focused on identifying: i) species present in the wild, and ii) locally traded species, especially those present only in captivity (i.e. that may be potentially released into the wild).

Fish species present in the wild

To compile a list of fish species present in the wild, we reviewed the literature (which included published and unpublished scientific articles and technical reports of
government agencies), performed a survey of specimens collected and deposited in zoological collections, and carried out sampling in-situ.

To identify the species of fish present in the wild, we considered species with life histories recognized as catadromous, amphidromous and stream resident. We excluded fish species with life histories dominated primarily by phases inhabiting marine, estuarine and brackish water habitats. To compile a list of fish species present in the wild, we reviewed the literature – which included published and unpublished scientific articles and technical reports of government agencies, performed a survey of specimens collected and deposited in zoological collections, and carried out sampling in-situ. Local distribution for all species was not uniform due to differences in information sources.

To perform the literature review, we used the institutional database of the library in the University of Puerto Rico, and search engines using the keywords: “freshwater”, “fish”, “exotic species”, and “Puerto Rico”. To complement the information extracted from the literature, we surveyed the specimens deposited in the Zoological Museum of the University of Puerto Rico – Río Piedras Campus. For each collection, we recorded the following information: sample identification number (ID), species identity, number of individuals, and collection date.

We conducted fish surveys in four locations in the metropolitan area of San Juan, which includes Guanabo River (18°21’59.78”N, 66°06’41.32”W; [June/2018]), a tributary of the Guanabo River in the Camarones suburb (18°12’20.52”N, 66°03’48.99”W; [June/2018]), a tributary of the Bayamón River (18°22’11.03”N, 66°8’49.69”W; July/2018)), and Mameyes River, located in Rio Grande (18°19’26.57”N, 65°44’55.89”W; [July/2018]). Sites were selected because these are areas of high suspected invasion potential due to proximity to aquaria owners and have not been frequently sampled. Fish species were identified visually by snorkeling or by capturing them using a hand net. All captured individuals were released immediately after identification.

Locally traded fish species

To identify locally traded fish species, primarily through the aquarium (ornamental) and pet trade markets, and to identify those species that have invasive potential, we followed Falcón and Tremblay [29]. Briefly, during April of 2019, we conducted surveys *in situ*, focusing on pet- and aquarium shops in the Metropolitan Area of San Juan. Moreover, we surveyed online community groups covering topics related to biodiversity, pet trade, aquarium fish, and collected available posted data (e.g. location, species, photographs). Surveyed Facebook (http://www.facebook.com) groups included *The fish outlet, Nativos Ciclids fish shop, Adictos a los peces, Báez Aquarium and more, Aquarium Xtra, and Pet Ways* (see Supplemental Information). We also surveyed the pet section of local online classified (user-generated ads) webpage *Clasificados Online*.

Scientific name nomenclature

After taxonomic identification (at the lowest possible level), we followed the nomenclature established by the Integrated Taxonomic Information System to assign the corresponding scientific name for each identified taxon, and updated the scientific name of fish reported in the literature or preserved in zoological collections, as needed [30]. We provide common names for fish currently present in the wild in Puerto Rico in both English and Spanish in Table 1.

Results

We report 46 freshwater fish for Puerto Rico freshwater systems, belonging to 7 orders, 14 families, and 32 genera (Table 1, Figure 1). The Order Perciformes was the best represented with 26 species, whereas the Orders such as Anguilliformes and Characiformes were represented only by one species (Table 1). The family Cichlidae was the best represented with 13 species followed by Poeciliidae with 7 species, both families include only non-native species (Figure 2). Most fish species found in Puerto Rico’s streams and water reservoirs are non-native; only 9 species of this list are native, which represents 19.6% of the total number of freshwater fish species reported for Puerto Rico. We also found another 128 freshwater fish species commercialized in stores and local websites. The most represented families were Cichlidae with 39 species, Cyprinidae with 16 species and Characidae with 11 species (Figure 2). See Appendix 1 for more details.

The following list includes all freshwater fish species with established populations on the island:

Order Anguilliformes

Family Anguillidae Rafinesque, 1810

Anguilla rostrata (Lesueur, 1817)

Distribution

Northwest to western Central Atlantic: Greenland south along the Atlantic coast of Canada and the USA to Panama and throughout much of the south Caribbean to Trinidad.
Species	Common name	Occurrence	Migratory status	Max length (cm)	Pet trade
Anguilla rostrata	American Eel, Angieula	Introduced Resident	Catadromous	152.0	-
Mylolepis rubripinnis	Redhook Silver Dollar, Pacú	Introduced Present	Present	41.5	Y
Dorosoma petenense	Threadfin shad, Sardina de agua dulce	Introduced Resident	Resident	33.0	U
Carassius auratus	Goldfish, Pez de Colores	Introduced Resident	Resident	48.0	Y
Pethia conchonius	Rosy Barb, Mino Rosado	Introduced Resident	Resident	14.0	Y
Gymnocheilus aymonieri	Siamese Algae-eater	Introduced Resident	Resident	28.0	Y
Gambusia affinis	Western Mosquitofish	Introduced Resident	Resident	5.1	Y
Poecilia latipinna	Salinfl Molly	Introduced Resident	Resident	15.0	Y
Poecilia reticulata	Guppy	Introduced Resident	Resident	5.0	Y
Poecilia wingei	Unidentified	Introduced Resident	Resident	5.2	U
Poecilia splendens	Molly	Introduced Resident	Resident	7.5	Y
Xiphophorus helleri	Green Swordtail	Introduced Resident	Resident	14.0	Y
Xiphophorus maculatus	Southern Platfish, Platy	Introduced Resident	Resident	4.0	Y
Agonostomus monticola	Mountain Mullet, Dajao	Native	Amphidromous	36.0	-
Lepomis auritus	Redbreast Sun Shad, Sardina	Introduced Resident	Resident	30.5	U
Lepomis macrochirus	Bluegill, Chopa Ciénega	Introduced Resident	Resident	41.0	U
Lepomis microlophus	Redear Sunfish, Chopa caricola	Introduced Resident	Resident	43.2	U
Micropterus salmoides	Chattahoochee Bass	Introduced Resident	Resident	40.6	U
Micropterus salmoides	Largemouth Bass, Bobina, Perca Americana	Introduced Resident	Resident	97.0	U
Amphipholis centrinus	Midsal Chich, Diablotto Rojo	Introduced Resident	Resident	24.4	Y
Amphipholis labiatus	Red Devil, Diablotto Rojo	Introduced Resident	Resident	24.0	Y
Archocentrus nigrofuscatus	Convict Cichlid	Introduced Resident	Resident	10.0	Y
Astronotus ocellatus	Oscar	Introduced Resident	Resident	45.7	Y
Cichla ocellaris	Butterfly Peacock Bass, Tucunaré	Introduced Resident	Resident	74.0	U
Hemiculter cyprinoguttatus	Rio Grande Chichlid	Introduced Resident	Resident	30.0	U
Oreochromis aureus	Blue Tilapia, Tilapia Azul	Introduced Resident	Resident	45.7	Y
Oreochromis mossambicus	Mozambique Tilapia, Tilapia de Mozambique	Introduced Resident	Resident	39.0	Y
Oreochromis niloticus	Nile Tilapia	Introduced Resident	Resident	60.0	Y
Parachromis managuensis	Jaguar Guapote	Introduced Resident	Resident	53.0	Y
Thorichthys meeki	Firemouth Chichlid, Boca de Fuego	Introduced Resident	Resident	17.0	Y
Tilapia rendalli	Redbreast tilapia, Tilapia	Introduced Resident	Resident	45.0	Y
Vieja melanura	Redhead Cichlid, Cabeza de Fuego	Introduced Resident	Resident	35.0	Y
Dorosoma maculatum	Fat Sleeper, Mapiro	Native	Amphidromous	70.0	-
Electrophorus Silver	Spinycheek Sleeper, Morón	Native	Amphidromous	25.0	-
Gobiomorus dormitor	Bigmouth Sleeper, Guavina	Native	Amphidromous	90.0	-
Awaous brevirostris	Goby, Saga	Native	Amphidromous	30.0	-
Sicydium buski	Olivo	Native	Amphidromous	6.0	-
Sicydium plumieri	Sirajo Goby, Olivo	Native	Amphidromous	11.0	-
Sicydium punctatum	Olivo	Native	Amphidromous	8.0	-
Claris gariepinus	African Catfish	Introduced Present	Present	170.0	U
Ameiurus catus	White Catfish, Barbudo Blanco	Introduced Resident	Resident	132.0	U
Ameiurus nebulosus	Brown Bullhead, Torito Barbudo	Introduced Resident	Resident	53.0	U
Ictalurus punctatus	Channel Catfish, Barbudo de Canal	Introduced Resident	Resident	132.0	U
Pterygophis multiradiatus	Safflin Catfish, Pleco	Introduced Resident	Resident	14.0	Y
Pterygophis paralius	Amazon Safflin Catfish, Pleco	Introduced Resident	Resident	42.3	Y
Pangasius hypophthalmus	Basa Catfish	Introduced Resident	Resident	130.0	U

Puerto Rico localities: Found in nearly all rivers of Puerto Rico in the lowlands. Occasionally found in farms and reservoirs. Canovanas River (18°23'48',18°N), 65°54'44.89"W), Herrera River (18°33'01',20", 65°), 51°50',27"W), Tabonuco Ravine (18°21'15',53", 65°), 28°09',18"W), Marmeyes River (18°19'26',57", 65°), 44°55',89"W), Sabana River (18°15'44',05", 65°), 47°39',13"W), Pitahaya River (18°21'53',73", 65°), 43°06',53"W), Juan Martin River (18°21'07',85", 65°), 41°00',90"W), Juan Diego Ravine (18°18'27',67", 65°), 46°08',63"W), Rincón Ravine (18°17'28',25", 65°), 41°37',67"W), Guayanés River (18°04',12',51", 65°), 50°32',70"W), Caño Santiago (18°03',29',08", 65°), 49°32',71"W), Maunabo River (18°00',12',59", 65°), 54°13',65"W), Tallaboa River (18°02',17',33", 66°), 43°17',40"W), Guayanilla River (18°18',13',36", 66°) to 47°55',91"W), Yauco River (17°59',23',53", 66°), 50°24',92"W), Loco River (18°00',53',10", 66°), 52°33',10"W), Los Llanos Ravine (18°01',44',65", 67°), 3°49',65", 67°) lagoons. References [3,16,31,34].
Remarks: I-00003, three organisms collected on 28 March 1969; I-00004, one org. collected on 03 June 1969; I-00005, four orgs. collected on 03 June 1969; I-00006, one org. collected on 08 March 1976; I-00007, one org. collected on 14 June 2000; and I-00008, two orgs. collected on 22 May 1999.

Order Characiformes
Family Serrasalmidae Bleeker, 1859
Myleus rubripinnis (Müller and Troschel, 1844)

Distribution
Naturally occurs in South America: Amazon and Orinoco River basins; and Guiana Shield rivers.

Puerto Rico localities: Cerrillos reservoir (18°05'49.92"N, 66°34'43.83"W).

References [35,36].

Order Clupeiformes
Family Clupeidae Cuvier, 1816
Dorosoma petenense (Günther, 1867)

Distribution
North and Central America: Gulf of Mexico drainage, Mississippi system, from the Ohio River of Kentucky and southern Indiana southwest to Oklahoma, and south to Texas and Florida, also rivers around the Gulf to northern...
Guatemala; also found in Belize Rivers. Introduced in Hawaiian waters, and in Chesapeake Bay tributaries. Puerto Rico localities: in May 1963, 40 adults from Georgia were introduced to Guajataca reservoir (18°23'26,86"N, 66°55'25,94"W). Currently found in Great River of Arecibo (18°24'06,07"N, 66°41'27,10"W), and in most of the island reservoirs. References [15, 16, 36].

Remarks: I-00012, four organisms collected on 14 June 2000; and I-00017, three orgs. collected on 15 June 2000.

Order Cypriniformes

Family Arcticidae Newton, 1891

Carassius auratus (Linnaeus, 1758)

Distribution
Worldwide distributed, but originally from Asia: central Asia and China and Japan.

Pethia conchonius (Hamilton, 1822)

Distribution
Afghanistan, Bangladesh, Pakistan, India, Nepal, and Myanmar. Puerto Rico localities: Caguítas River (18°13'52,39"N, 66°03'05,79"W), Cañas River (18°17'22,84"N, 66°03'58,96"W), Canovanillas River (18°19'17,07"N, 65°54'13,36"W), Majada River (18°02'30,63"N, 66°12'36,38"W), Yunes River (18°19'21,34"N, 66°35'15,67"W), Barranquita River (18°10'24,90"N, 66°17'53,82"W), La Zapatera Ravine (18°07'23,70"N, 66°05'07,65"W), Patillas Canal (17°58'40,63"N, 66°08'56,52"W), Loiza (18°18'54,98"N, 66°01'14,52"W) and Dos Bocas (18°19'57,68"N, 66°40'05,12"W) reservoirs.

Puerto Rico localities: Guajataca (18°23'26,86"N, 66°55'25,94"W), and Guayabal (18°05'44,53"N, 66°30'14,13"W) reservoirs, but also in small ponds around the island.

References [16, 36, 37].
References [3,36,38].

Family Gyrinocheilidae Gill, 1905

Gyrinocheilus aymonieri (Tirant, 1883)

Distribution
Asia (Mekong, Chao Phraya and Meklong basins, and the northern Malay Peninsula).
Puerto Rico localities: Cañas River (18°17’22.84″N, 66°03’58.96″W).
References [3,36,39].

Family Poeciliidae Bonaparte, 1831

Gambusia affinis (Baird and Girard, 1853)

Distribution
North and Central America: Mississippi River basin from central Indiana and Illinois in the USA south to The Gulf of Mexico and Gulf Slope drainages west to Mexico.
Puerto Rico localities: Considered the most abundant fish in the freshwater reservoirs of the island. Found in the following reservoirs: Carite (18°04’44.13″N, 66°06’00.05″W), Caonillas (18°16’28.90″N, 66°39’10.30″W), Dos Bocas (18°19’57.68″N, 66°40’05.12″W), Guayabal (18°05’44.53″N, 66°30’14.13″W), Loiza (18°18’54.98″N, 66°01’14.52″W), Patillas (18°01’27.38″N, 66°01’23.76″W), and Toa Vaca (18°06’09.99″N, 66°28’57.91″W) reservoirs. Also, near the coast, all the way upstream to the headwaters at Mount Guajarte.
References [16,34,36].

Poecilia latipinna (Lesueur, 1821)

Distribution
North America: From Cape Fear drainage in North Carolina in the USA to Veracruz in Mexico.
Puerto Rico localities: Great River of Loiza (18°23’48.19″N, 65°54’44.89″W), and Canóvanas River (18°23’48.18″N, 65°54’44.89″W).
References [3,34].
Remarks: I-00029, + 200 organisms collected on 21 March 1998; and I-00030, 50 orgs. collected on 03/21/1998.

Poecilia reticulata Peters, 1859

Distribution
South America: Venezuela, Barbados, Trinidad, northern Brazil and the Guyanas. Widely introduced and established elsewhere, mainly for mosquito control, but had rare to non-existing effects on mosquitos, and negative to perhaps neutral effects on native fish. Africa: Feral populations reported from the coastal reaches of Natal river from Durban southwards, as well as in the Kuruman Eye and Lake Ojikoto in Namibia.
Puerto Rico localities: Guaynabo River (18°21’59.78″N, 66°06’41.32″W), tributary to Bayamón river (18°22’11.61″N, 66°08’33.44″W), Caguas River (18°13’52.39″N, 66°03’05.79″W), Cañas River (18°17’22.84″N, 66°03’58.96″W), Canovillas River (18°19’17.07″N, 65°54’13.36″W), Canóvanas River (18°23’48.18″N, 65°54’44.89″W), Herrera River (18°33’01.20″N, 65°51’50.27″W), Humacao River (18°09’03.55″N, 65°51’55.77″W), Guayanés River (18°04’12.51″N, 65°50’32.70″W), Majada River (18°02’30.63″N, 66°12’36.38″W), Descalabrado River (18°03’57.07″N, 66°25’48.19″W), Macaná River (18°00’51.57″N, 66°45’55.35″W), Yauco River (17°59’23.53″N, 66°50’24.92″W), Los Llanos Ravine (18°01’44.65″N, 67°06’49.65″W), Blanco River (18°13’46.94″N, 65°47’09.12″W), Prieto River (18°15’19.81″N, 65°46’52.57″W), Juncal River (18°17’10.99″N, 66°53’39.73″W), Guatemala River (18°20’35.75″N, 66°59’59.16″W), Salada Ravine (18°21’04.74″N, 67°01’32.95″W), tributaries to Culebrinas River, Camuy River (18°27’00.37″N, 66°49’36.47″W), Naranjito River (18°16’55.50″N, 66°35’00.61″W), Limón River (18°19’33.34″N, 66°36’56.01″W), La Ventana River (18°10’29.79″N, 66°21’05.86″W), Yunes River (18°19’21.34″N, 66°35’15.67″W), Tamáná River (18°24’39.05″N, 66°42’54.54″W), Jobos Ravine (18°19’18.03″N, 66°40’46.04″W), Great River of Manatí (18°24’31.31″N, 66°29’46.04″W), Cañabón River (18°13’24.69″N, 66°20’17.26″W), Bauta River (18°17’52.09″N, 66°27’35.69″W), Sana Muerto River (18°17’12.32″N, 66°25’19.97″W), Caltos River (18°17’09.70″N, 66°30’53.76″W), Maravilla River (18°21’05.76″N, 66°17’50.17″W), Morovis River (18°20’57.45″N, 66°23’10.50″W), Unibón River (18°20’36.43″N, 66°22’00.04″W), Barranquita River (18°10’24.90″N, 66°17’53.82″W), La Zapatera Ravine (18°07’23.70″N, 66°05’07.65″W), and Rio Piedras River (18°24’00.98″N, 66°03’42.58″W).
References [3,36,40].
Remarks: I-00031, 25 organisms collected on unknown date; I-00032, 1 org. collected on 20 May 2002; I-00033, 2 orgs. collected on 01 March 1998; I-00034, 3 orgs. collected on 01 March 1999; I-00035, 1 org. collected on unknown date; I-00036, 4 orgs. collected on 25 March 1997, I-00042, 15 orgs. collected on 20 March 1969; and I-00043, 1 org. collected on 14 March 1969.

Poecilia vivipara Bloch and Schneider, 1801

Distribution
South America, between Suriname and Brazil (not the Atlantic area South of the Laguna dos Patos basin in Brazil). Also introduced in the Caribbean.
Puerto Rico localities: Reported at Ponce, Fajardo, Arroyo, Guánica, and Comerio municipalities, Cartagena reservoir (18°00'51.06"N, 67°06'16.17"W), Aibonito River (18°09'39.98"N, 66°18'41.21"W), Ingenio River (18°04'33.66"N, 65°50'34.40"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), and the mouth of the Loiza River (18°25'57.43"N, 65°53'02.61"W),

References [31,33,41,43].

Remarks: I-00037, two organisms collected on 15 March 1998; I-00038, five organs. collected on 22 March 1969; and I-00040, five organs. collected on unknown date.

Poecilia sphenops Valenciennes in Cuvier and Valenciennes, 1846

Distribution

Central and South America: Mexico to Colombia.

Puerto Rico localities: Guaynabo River (18°21’59.78”N, 66°06’41.32”W), Caguitas River (18°13’52.39”N, 66°03’05.79”W), Cañas River (18°17’22.84”N, 66°03’58.96”W), Canovillas River (18°19’17.07”N, 65°54’13.36”W), Canóvanas River (18°23’48.18”N, 65°54’44.89”W), Majada River (18°02’30.63”N, 66°12’36.38”W), Dascalbrado River (18°03’57.07”N, 66°25’48.19”W), Yauco River (17°59’23.53”N, 66°50’24.92”W), Guatemala River (18°20’35.75”N, 66°59’59.16”W), tributaries to Culebrinas River, Camuy River (18°27’00.37”N, 66°49’36.47”W), Naranjito River (18°16’55.50”N, 66°35’00.61”W), Limón River (18°19’33.34”N, 66°36’56.01”W), La Ventana River (18°10’29.79”N, 66°21’05.86”W), Yunes River (18°19’21.34”N, 66°35’15.67”W), Great River of Manati (18°24’31.31”N, 66°29’46.04”W), Cañabón River (18°13’24.69”N, 66°20’17.26”W), Sana Muerto River (18°17’12.32”N, 66°25’19.97”W), Toro Negro River (18°13’49.25”N, 66°30’44.99”W), Cialitos River (18°17’09.70”N, 66°30’53.76”W), Maravilla River (18°21’05.76”N, 66°17’50.17”W), Unión River (18°20’36.43”N, 66°22’50.04”W), Barranquita River (18°10’24.90”N, 66°17’53.82”W), and La Zapatera Ravine (18°07’23.70”N, 66°05’07.65”W).

References [3,44].

Xiphophorus maculatus (Günther, 1866)

Distribution

North and Central America: Ciudad Veracruz, Mexico to northern Belize.

Puerto Rico localities: found in several drainages around the island.

References [15,36,40].

Order Mugiliformes

Family Mugilidae Jarocki, 1822

Agonostomus (Bankroft in Griffith and Smith, 1834)

Distribution

North to South America: North Carolina, Florida, Louisiana and Texas in the USA to Colombia and Venezuela, including the West Indies.

Puerto Rico localities: Canovanas River (18°23’48.18”N, 65°54’44.89”W), Herrera River (18°33’01.20”N, 65°51’50.27”W), Tabonuco Ravine (18°21’15.53”N, 65°28’09.18”W), Waimeyes River (18°19’26.57”N, 65°44’55.89”W), Sabana River (18°15’44.05”N, 65°47’39.13”W), Pitahaya River (18°21’53.73”N, 65°43’06.53”W), Juan Martin River (18°21’07.85”N, 65°41’00.90”W), Juan Diego Ravine (18°18’27.67”N, 65°46’08.63”W), Rincon Ravine (18°17’18.25”N, 65°41’37.67”W), Humaaco River (18°09’03.55”N, 65°09’03.55”W), Yauco River (17°59’23.53”N, 66°50’24.92”W), Los Llanos Ravine (18°04’44.65”N, 67°07’49.69”W), Blanco River (18°13’46.94”N, 65°47’09.12”W), Prieto River (18°15’19.81”N, 65°46’52.57”W), Juncal River (18°17’10.99”N, 66°53’39.73”W), Guatemala River (18°20’35.75”N, 66°59’59.16”W), Camuy River (18°27’00.37”N, 66°49’36.47”W), Naranjito River (18°16’55.50”N, 66°35’00.61”W), Limón River (18°19’33.34”N, 66°36’56.01”W), La Ventana River (18°10’29.79”N, 66°21’05.86”W), Yunes River (18°19’21.34”N, 66°35’15.67”W), Tamamá River (18°24’39.05”N, 66°42’54.54”W), Jobos Ravine (18°19’03”N, 66°40’46.04”W), Great River of Manati (18°24’31.31”N, 66°29’46.04”W), Cañabón River (18°13’24.69”N, 66°20’17.26”W), Bauta River (18°17’52.09”N, 66°27’35.69”W), Cialitos River (18°17’09.70”N, 66°30’53.76”W), Maravilla River (18°21’05.76”N, 66°17’50.17”W), Unión River (18°20’36.43”N, 66°22’50.04”W), Barranquita River (18°10’24.90”N, 66°17’53.82”W), La Zapatera Ravine (18°07’23.70”N, 66°05’07.65”W), and Rio Piedras River (18°24’00.98”N, 66°03’42.58”W).

References [3,44].
Lepomis auritus (Linnaeus, 1758)

Distribution
North America: Eastern Rivers of USA and Canada.
Puerto Rico localities: Cañas River (18°17′22″N, 66°03′58″W), Great River of Manati (18°24′31″N, 66°29′46″W), Barranquita River (18°10′24″N, 66°17′53″W), La Zapatera Ravine (18°07′27″N, 66°05′07″W), Carite (18°04′44″N, 66°06′00″W), Cidra (18°11′38″N, 66°08′18″W), Dos Bocas (18°19′57″N, 66°40′05″W), Guayabal (18°05′44″N, 66°30′14″W), Cerillos (18°05′49″N, 66°34′43″W), Luchetti (18°05′37″N, 66°52′09″W), La Plata (18°20′04″N, 66°14′08″W), Guajataca (18°23′26″W, 66°55′25″W), Guay (18°11′56″W, 66°50′01″W), Patillas (18°01′27″W, 66°01′23″W), and Tortuguero Lagoon (18°27′50″N, 66°26′36″W).

References [3,34].

Lepomis macrolepis (Rafinesque, 1819)

Distribution
North America: The Great Lakes and Mississippi river basin; from Quebec to northern Mexico.
Puerto Rico localities: Garzas (18°08′12″N, 66°44′38″W), Guay (18°11′56″W, 66°50′01″W), Patillas (18°01′27″W, 66°01′23″W), Cerillos (18°05′49″W, 66°34′43″W), Luchetti (18°05′37″N, 66°52′09″W), and La Plata (18°20′04″N, 66°14′08″W) reservoirs.

References [15,34].

Lepomis microlophus (Günther, 1859)

Distribution
North America: Savannah River in South Carolina to Nueces River in Texas, Mississippi River basin to southern Indiana and Illinois in the USA.
Puerto Rico localities: Tortuguero Lagoon (18°27′50″N, 66°26′36″W), Garzas (18°08′12″N, 66°44′38″W), Cidra (18°11′38″N, 66°08′18″W), Carite (18°04′44″N, 66°06′00″W), Toa Vaca (18°06′09″N, 66°28′57″W), Guayabal (18°05′44″N, 66°30′14″W), Patillas (18°01′27″W, 66°01′23″W), Guay (18°11′56″W, 66°50′01″W), Guajataca (18°23′26″W, 66°55′25″W), Cerillos (18°05′49″W, 66°34′43″W), and La Plata (18°20′04″N, 66°14′08″W) reservoirs.

References [16,34,47].
Family Cichlidae Bonaparte, 1835

Archocentrus nigrofasciatus (Günther, 1867)

Distribution
Its range extends through Nicaragua and at least into Costa Rica; also found in continental U.S.A and Hawaii.

Puerto Rico localities: Patillas Canal (17°58′40″N, 66°08′56″W), Cañas (18°17′22″N, 66°03′58″W), Guaynabo (18°21′59″N, 66°06′41″W, and Yunes (18°19′21″N, 66°35′15″W) rivers. Also found in Loiza (18°18′54″N, 66°01′14″W), Las Curias (18°20′29″N, 66°02′53″W), Guaynabo (18°23′26″N, 66°55′25″W), Loiza (18°18′54″N, 66°01′14″W), Cañas (18°13′24″N, 66°00′05″W, and Toa Vaca (18°06′09″N, 66°28′57″W) reservoirs.

References [3, 36, 48, 49].

Amphilophus citrinellus (Günther, 1864)

Distribution
Central America: Atlantic slope of Nicaragua and Costa Rica (San Juan River drainage, including Lakes Nicaragua, Managua, Masaya and Apoyo).

Puerto Rico localities: Cañaboncito (18°12′58″N, 66°04′14″W), Cañas (18°17′22″N, 66°03′58″W), Cañabón (18°13′24″N, 66°20′17″W), and Rio Piedras (18°24′00″N, 66°03′42″W) rivers. Also found in Guajataca (18°23′26″N, 66°55′25″W), Loiza (18°18′54″N, 66°01′14″W), Dos Bocas (18°19′57″N, 66°40′05″W), and Toa Vaca (18°06′09″N, 66°28′57″W) reservoirs.

References [36].

Amphilophus labiatus (Günther, 1864)

Distribution
Central America: Atlantic slope of Nicaragua, in Lakes Nicaragua and Managua.

Puerto Rico localities: Guaynabo River (18°21′59″N, 66°06′41″W), Great River of Loiza (18°23′48″N, 65°54′44″W), Caonillas (18°16′28″N, 66°39′10″W), and Dos Bocas (18°19′57″N, 66°40′05″W) reservoirs.

References [36, 50].

Astronotus ocellatus (Agassiz in Spix and Agassiz, 1831)

Distribution
South America: Amazon River basin in Peru, Colombia and Brazil; French Guiana, and Argentina.

Puerto Rico localities: Aibonito farm pond, Bayamón River (18°22′11″N, 66°8′49″W), tributary of Guaynabo River (18°12′20″N, 66°03′48″W), Tortuguero Lagoon (18°27′50″N, 66°26′36″W), Loiza (18°18′54″N, 66°01′14″W), Las Curias (18°20′29″N, 66°02′53″W), Guajataca (18°23′26″N, 66°55′25″W), La Plata (18°20′04″N, 66°14′08″W), Comerio (18°15′35″N, 66°12′19″W), and Guajataca (18°23′26″N, 66°55′25″W) reservoirs.

References [15, 34, 36, 51, 52].

Cichla ocellaris (Bloch and Schneider, 1801)

Distribution
South America: Marowijne drainage in Suriname and French Guiana to the Essequibo drainage in Guyana.

Puerto Rico localities: Loiza (18°18′54″N, 66°01′14″W), Dos Bocas (18°19′57″N, 66°40′05″W), Caonillas (18°16′28″N, 66°39′10″W), Carite (18°18′44″N, 66°06′00″W), Patillas (18°12′27″N, 66°01′23″W), Cidra (18°11′38″N, 66°08′18″W), Guayabal (18°05′44″N, 66°30′14″W), La Plata (18°20′04″N, 66°14′08″W), Luchetti (18°05′73″W, 66°52′09″W), and Guajataca (18°23′26″N, 66°55′25″W) reservoirs.

References [36, 53].

Herichthys cyanoguttatum (Baird and Girard, 1854)

Distribution
North America: originally restricted to the lower Rio Grande drainage in Texas, USA and south to northeastern Mexico. Introduced on Edwards Plateau of central Texas and central peninsular Florida, USA, and Verde River basin (La Media Luna region), Mexico.

Puerto Rico localities: Loiza (18°18′54″N, 66°01′14″W) reservoir.

References [34, 36, 54].

Oreochromis aureus (Steindachner, 1864)

Distribution
Africa and Eurasia: Jordan Valley, Lower Nile, Chad Basin, Benue, middle and upper Niger, Senegal River. Introduced in the oasis of Azraq (Jordan), warm water ponds of USA, South and Central America and South East Asia.

Puerto Rico localities: Widespread throughout the island (rivers and reservoirs).

References [36, 55].
Oreochromis mossambicus (Peters, 1852)

Distribution
Africa: Lower Zambezi, Lower Shiré and coastal plains from Zambezi delta to Algoa Bay. Occurs southwards to the Brak River in the Eastern Cape and in the Transvaal in the Limpopo system.

Puerto Rico localities: drainage canals, farm ponds, reservoirs and lagoons, though not everywhere. Cañas River (18°17'22.84"N, 66°03'58.96"W), Canovanillas River (18°19'17.07"N, 65°54'13.36"W), Juan Martín River (18°21'07.85"N, 65°41'00.90"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), Caño Santiago (18°03'29.08"N, 65°49'32.71"W), Majada River (18°02'30.63"N, 66°12'36.38"W), Guayanilla River (18°18'12.33"N, 66°47'55.91"W), Yauco River (17°59'23.53"N, 66°50'24.92"W), Loco River (18°00'53.10"N, 66°52'33.10"W), Prieto River (18°15'19.81"N, 65°46'52.57"W), Guatemala River (18°20'35.75"N, 66°59'59.16"W), Ciales River (18°17'09.70"N, 66°30'53.76"W), marble River (18°21'05.76"N, 66°17'50.17"W), Morovis River (18°20'57.45"N, 66°23'10.50"W), Unión River (18°20'36.43"N, 66°22'50.04"W), Barranquita River (18°10'24.90"N, 66°17'53.82"W), La Zapatera Ravine (18°07'23.70"N, 66°05'07.65"W), Guaynabo River (18°21'59.78"N, 66°06'41.32"W), Rio Piedras River (18°24'00.98"N, 66°03'42.58"W), and Loiza Reservoir (18°18'54.98"N, 66°01'14.52"W).

References [3,16,55].

Remarks: I-00119, one organism collected on 20 January 1975; I-00120, one org. collected on 03/14/1975; and I-00121, one org. collected on 14 March 1975.

Oreochromis niloticus (Linnaeus, 1758)

Distribution
Widely introduced for aquaculture. Naturally occurring in coastal rivers of Israel, Nile basin, Ethiopian lakes, and West Africa.

Puerto Rico localities: Great River of Loiza (18°23'48.19"N, 65°54'44.89"W), Cañas River (18°17'22.84"N, 66°03'58.96"W), Canovanillas River (18°19'17.07"N, 65°54'13.36"W), and Blanco River (18°13'46.94"N, 65°47'09.12"W).

References [3,55].

Parachromis managuensis (Günther, 1867)

Distribution
Central America: Atlantic slope from the Ulua River (Honduras) to the Matina River in Costa Rica.

Puerto Rico localities: Bayamón River (18°22'11.03"N, 66°8'49.69"W), Guaynabo River (18°21'59.78"N, 66°06'41.32"W), and Loiza (18°18'54.98"N, 66°01'14.52"W), Citra (18°11'38.75"N, 66°08'18.24"W), Guajataca (18°23'26.86"N, 66°55'25.94"W), Dos Bocas (18°19'57.68"N, 66°40'05.12"W), and La Plata (18°20'04.89"N, 66°14'08.25"W) reservoirs.

References [36,54].

Thorichthys meeki Brind, 1918

Distribution
Central America: Atlantic slope in the Usumacinta River drainage, the Belize River drainage, and near Progreso in Mexico, Guatemala, and Belize.

Puerto Rico localities: Dos Bocas (18°19'57.68"N, 66°40'05.12"W), La Plata (18°20'04.89"N, 66°14'08.25"W), Caonillas (18°16'28.90"N, 66°39'10.30"W), Guayabal (18°05'44.53"N, 66°30'14.13"W), and Loiza (18°18'54.98"N, 66°01'14.52"W) reservoirs (Grana 2007).

References [36,56].

Tilapia rendalli (Boulenger, 1897)

Distribution
Africa: from the middle Congo River basin up to the upper Lualaba and the Bangweulu area. Also, in Lake Malawi, Zambesi, coastal areas from Zambesi Delta to Natal, Okavango, Cunene, Limpopo, Malagarasi and Lake Tanganyika. Introduced elsewhere, usually for weed control and aquaculture.

Puerto Rico localities: Bayamón River (18°22'11.03"N, 66°8'49.69"W), Guaynabo River (18°21'59.78"N, 66°06'41.32"W), Cañas River (18°17'22.84"N, 66°03'58.96"W). Very abundant in most of the island reservoirs.

References [3,57].

Vieja melanura (Günther, 1862)

Family Eleotridae Bonaparte, 1835

Distribution
Central America: Atlantic slope, in the Usumacinta River drainage in Mexico, Guatemala and Belize.

Puerto Rico localities: Guajataca (18°23'26.86"N, 66°55'25.94"W), Guayo (18°11'56.02"N, 66°50'01.79"W) and La Plata (18°20'04.89"N, 66°14'08.25"W) reservoirs. References [36,56].

Dormitator maculatus (Bloch, 1792)

Distribution
Western Atlantic from North Carolina south along the USA, Bahamas, throughout the Gulf of Mexico and the Caribbean Sea to southeastern Brazil.
Puerto Rico localities: Widespread throughout the island, but only in rivers, not present in freshwater reservoirs.

References [17,36,47,58].

Eleotris perringer (Cope, 1871)

Distribution
Northwest to western Central Atlantic: Bermuda, Bahamas, South Carolina and northern Gulf of Mexico in the USA to southeastern Brazil.

Puerto Rico localities: Tabonuco Ravine (18°21'15.53"N, 65°28'09.18"W), Mameyes River (18°19'26.57"N, 65°44'55.89"W), Sabana River (18°15'44.05"N, 65°47'39.13"W), Pitahaya River (18°21'53.73"N, 65°43'06.53"W), Juan Martin River (18°21'07.85"N, 65°41'10.90"W), Juan Diego Ravine (18°18'27.67"N, 65°46'08.63"W), Rincón Ravine (18°17'18.25"N, 65°41'37.67"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), Caño Santiago (18°03'29.08"N, 65°49'32.71"W), Maunabo River (18°00'12.59"N, 65°54'13.65"W), Guayanilla River (18°18'12.33"N, 66°47'55.91"W), Yauco River (17°59'23.53"N, 66°50'24.92"W), Los Llanos Ravine (18°01'44.65"N, 67°06'49.65"W), Yagüez River (18°12'26.80"N, 67°07'08.81"W), Salada Ravine (18°21'04.74"N, 67°01'32.95"W), Dulce Ravine (18°23'05.35"N, 67°05'42.48"W), Cialitos River (18°17'09.70"N, 66°30'53.76"W), and Río Piedras River (18°24'00.98"N, 66°03'42.58"W).

References [3,6,16,35,58].

Gobiomorus dormitor (Lacepède, 1800)

Distribution
Western Central Atlantic, southern Florida and southern Texas in the USA to eastern Brazil.

Puerto Rico localities: Reported in all rivers of Puerto Rico, also found in Tortuguero Lagoon (18°27'50.37"N, 66°26'36.91"W), Loiza (18°18'54.98"N, 66°01'14.52"W), Melania (17°58'42.55"N, 66°08'35.92"W), Patillas (18°01'27.38"N, 66°01'23.76"W), and Carite (18°04'44.13"N, 66°06'00.05"W) reservoirs, Canóvanas River (18°23'48.18"N, 65°54'44.89"W), Herrera River (18°33'01.20"N, 65°51'50.27"W), Tabonuco Ravine (18°21'15.53"N, 65°28'09.18"W), Mameyes River (18°19'26.57"N, 65°44'55.89"W), Sabana River (18°15'44.05"N, 65°47'39.13"W), Pitahaya River (18°21'53.73"N, 65°43'06.53"W), Juan Martin River (18°21'07.85"N, 65°41'00.90"W), Juan Diego Ravine (18°18'27.67"N, 65°46'08.63"W), Rincón Ravine (18°17'18.25"N, 65°41'37.67"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), Caño Santiago (18°03'29.08"N, 65°49'32.71"W), Maunabo River (18°00'12.59"N, 65°54'13.65"W), Majada River (18°02'30.63"N, 66°12'36.38"W), Pastillo River (18°02'19.84"N, 66°39'54.84"W), Tallaboa River (18°02'17.33"N, 66°43'17.40"W), Guayanilla River (18°18'12.33"N, 66°47'55.91"W), Yagüez River (18°12'26.80"N, 67°07'08.81"W), Blanco River (18°13'46.94"N, 65°47'09.12"W), Prieto River (18°15'19.81"N, 65°46'52.57"W), Salada Ravine (18°21'04.74"N, 67°01'32.95"W), Dulce Ravine (18°23'05.35"N, 67°05'42.48"W), Toro Negro River (18°13'49.25"N, 66°30'44.99"W), Cialitos River (18°17'09.70"N, 66°30'53.76"W), Río Piedras River (18°24'00.98"N, 66°03'42.58"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), and Guajataca River (18°26'52.79"N, 66°57'45.94"W).

References [3,6,16,35,58].

Awaous banana (Valenciennes in Cuvier and Valenciennes, 1837)

Distribution
North, Central and South America: northern Florida, USA southward through the Greater and the Lesser Antilles to Trinidad and Tobago, and from Tamaulipas, Mexico southward to Caracas, Venezuela; central Baja California Sur and Sonora, Mexico southward to Tumbes, Peru.

Puerto Rico localities: Canovianas River (18°19'17.07"N, 65°54'13.36"W), Canovanas River (18°23'48.18"N, 65°54'44.89"W), Herrera River (18°33'01.20"N, 65°51'50.27"W), Tabonuco Ravine (18°21'15.53"N, 65°28'09.18"W), Mameyes River (18°19'26.57"N, 65°44'55.89"W), Sabana River (18°15'44.05"N, 65°47'39.13"W), Pitahaya River (18°21'53.73"N, 65°43'06.53"W), Juan Martin River (18°21'07.85"N, 65°41'00.90"W), Juan Diego Ravine (18°18'27.67"N, 65°46'08.63"W), Rincón Ravine (18°17'18.25"N, 65°41'37.67"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), Caño Santiago (18°03'29.08"N, 65°49'32.71"W), Maunabo River (18°00'12.59"N, 65°54'13.65"W), Majada River (18°02'30.63"N, 66°12'36.38"W), Pastillo River (18°02'19.84"N, 66°39'54.84"W), Tallaboa River (18°02'17.33"N, 66°43'17.40"W), Guayanilla River (18°18'12.33"N, 66°47'55.91"W), Yagüez River (18°12'26.80"N, 67°07'08.81"W), Blanco River (18°13'46.94"N, 65°47'09.12"W), Prieto River (18°15'19.81"N, 65°46'52.57"W), Salada Ravine (18°21'04.74"N, 67°01'32.95"W), Dulce Ravine (18°23'05.35"N, 67°05'42.48"W), Toro Negro River (18°13'49.25"N, 66°30'44.99"W), Cialitos River (18°17'09.70"N, 66°30'53.76"W), Río Piedras River (18°24'00.98"N, 66°03'42.58"W), Guayanés River (18°04'12.51"N, 65°50'32.70"W), and Guajataca River (18°26'52.79"N, 66°57'45.94"W).

References [3,27,36,58].

Family Gobiidae Cuvier, 1816

Neotropical Biodiversity
09°03,55′N, 65°51′55.77″W, Guayanés River (18°), 04°12,51′N, 65°50′32.70″W, Caño Santiago (18°), 03°29,08′N, 65°49′32.71″W, Maunabo River (18°), 00°12,59′N, 65°54′13.65″W, Majada River (18°, 02°30,63′N, 66°12′36.38″W, Dacalbreo River (18°), 03°57,07′N, 66°25′48.19″W, Cañas River (18°), 17°22,84′N, 66°03′58.96″W, Pastillo River (18°), 02′19,84″N, 66°39′54.84″W, Tallaboa River (18°), 02′17,33′N, 66°43′17.40″W, Macaná River (18°), 00′51,57′N, 66°45′55.35″W, Guayanilla River (18°), 28 March 1969; I-00196, two orgs. collected on 22 March 1976; I-00195, one org. collected on 22 May 1998; and I-00204, 26 orgs. collected on 25 October 1998.

References [42,48,21,31,36,43,61,55,44,99,60,61].

Remarks: I-000203, 1 organism collected on 22 May 1998; and I-00204, 26 orgs. collected on 27 April 2000.

Sicydium punctatum Perugia, 1896

Distribution
Caribbean coast of Venezuela, Dominica, Jamaica, Martinique, Puerto Rico, Trinidad and Tobago, and Panama.

Puerto Rico localities: Great River of Añasco (18° 16′ 28.28″N, 67° 06′ 47.09″W) and Blanco River (18° 13′ 46.94″N, 65° 56′ 24.28″W). References [3,21,31,36,54,61].

Order Siluriformes

Sicydium buscki Evermann and Clark, 1906

Distribution
Cuba, Dominican Republic, and Puerto Rico.

Puerto Rico localities: Maricao, Arecibo, and Aguadilla municipalities.

References [21,53,60,61].

Sicydium plumieri (Bloch, 1786)

Distribution
The Greater and Lesser Antilles, South of Cuba, and Panama.

Puerto Rico localities: Canovänner River (18° 19′ 17.07″N, 65° 54′ 13.36″W), Canóvanas River (18° 23′ 48.18″N, 65° 54′ 44.89″W), Herrera River (18° 33′ 01.20″N, 65° 51′ 50.27″W), Espíritu Santo River (18° 21′ 54.37″N, 65° 48′ 55.44″W), Tabonuco Ravine (18° 21′ 15.53″N, 65° 28′ 09.18″W), Sabana River (18° 15′ 44.05″N, 65° 47′ 39.13″W), Juan Martin River (18° 21′ 07.85″N, 65° 41′ 00.90″W), Juan Diego Ravine (18° 18′ 27.67″N, 65° 46′ 08.63″W), Majada River (18° 02′ 30.63″N, 66° 12′ 36.38″W), Dacalbreo River (18° 03′ 57.07″N, 66° 25′ 48.19″W), Cañas River (18° 17′ 22.84″N, 66° 03′ 58.96″W), Pastillo River (18° 02′19.84″N, 66° 39′ 54.84″W), Tallaboa River (18° 02′ 17.33′N, 66° 43′ 17.40″W), Macaná River (18° 00′ 51.57′N, 66° 45′ 55.35″W), Guayanilla River (18° 18′ 12.33′N, 66° 47′ 55.91″W), Loco River (18° 00′ 53.10″N, 65° 52′ 33.10″W), Yagüez River (18° 12′ 26.80″N, 67° 07′ 08.11″W), Blanco River (18° 1′ 34′ 46.94″N, 65° 47′ 09.11″W), Prieto River (18° 15′ 19.81″N, 65° 46′ 52.57″W), Great River of Añasco (18° 16′ 28.28″N, 67° 06′ 47.09″W), Fría Ravine (18° 1′ 34′ 46.94″N, 65° 56′ 24.28″W), Bauta River (18° 24′ 39.05″N, 66° 42′ 54.54″W), Great River of Manatí (18° 24′ 31.31″N, 66° 29′ 46.04″W), Guayanabo River (18° 21′ 59.78″N, 66° 06′ 41.32″W), and Río Piedras River (18° 24′ 00.98″N, 66° 03′ 42.58″W).

References [21,31,36,54,61].

Order Siluriformes

Clarias gariepinus (Burchell, 1822)

Distribution
The species is native to most of the African continent and small areas of Asia in Israel, Syria and the south of Turkey. The African catfish has been introduced in at least 37 countries of Africa, Europe, Asia and America, mainly for aquaculture, with negative impacts in freshwater and brackish ecosystems.

Puerto Rico localities: Patillas Canal (17°58′40.63″N, 66°08′56.52″W). References [23,62].
Remarks: MZUPRRP-I-936 and MZUPRRP-I-937, 2 organisms collected in 2018.

Family Ictaluridae Gill, 1861

Ameiurus catus (Linnaeus, 1758)

Distribution
North America: Rivers of the Atlantic coastal states of the USA from Florida to New York.

Puerto Rico localities: Dos Bocas Reservoir (18° 19'57.68"N, 66°40'05.12"W).

References [16,36,63].

Ameiurus nebulosus (Lesueur, 1819)

Distribution
North America: Atlantic and Gulf Slope drainages from Nova Scotia and New Brunswick in Canada to Mobile Bay in Alabama in the USA, and St. Lawrence-Great Lakes, Hudson Bay and Mississippi River basins from Quebec west to Saskatchewan in Canada and south to Louisiana, USA. Several countries report adverse ecological impact after the introduction. Asia: Iran and Turkey.

Puerto Rico localities: Melanía (17°58’42.55”N, 66°08’35.92”W), Comerio (18°15’29.50”N, 66°12’17.59”W), Carite (18°04’44.13”N, 66°06’00.05”W), Dos Bocas (18° 19’57.68”N, 66°40’05.12”W), Toa Vaca (18°06’09.99”N, 66°28’57.91”W), Patillas (18°01’27.38”N, 66°01’23.76”W), Caonillas (18°16’28.90”N, 66°39’10.30”W), Guayabal (18°05’44.53”N, 66°30’14.13”W) reservoirs, and La Plata River (18°08’14.07”N, 66°12’27.07”W).

References [16,36].

Ictalurus punctatus (Rafinesque, 1818)

Distribution
Central drainages of the United States to southern Canada and northern Mexico; also introduced in Europe, the Russian Federation, Cuba, and portions of Latin America.

Puerto Rico localities: Dos Bocas (18°19’57.68”N, 66°40’05.12”W), Loiza (18°18’54.98”N, 66°01’14.52”W), Patillas (18°01’27.38”N, 66°01’23.76”W), Carite (18°04’44.13”N, 66°06’00.05”W), Caonillas (18°16’28.90”N, 66°39’10.30”W), Cidra (18°11’38.75”N, 66°08’18.24”W), Guayabal (18°05’44.53”N, 66°30’14.13”W) reservoirs, Toa Vaca (18°06’09.99”N, 66°28’57.91”W) reservoirs, Cañas River (18°17’22.84”N, 66°03’58.96”W), Yauco River (17°59’23.53”N, 66°50’24.92”W), Loco River (18°00’53.10”N, 66°52’33.10”W), Blanco River (18°13’46.94”N, 65°47’09.12”W), Prieto River (18°15’19.81”N, 65°46’52.57”W), and the estuarine area of the Great River of Arecibo (18°27’39.92”N, 66°42’24.67”W).

References [3,16,34,36].

Remarks: I-00018, 1 organism collected on 11 August 1999.

Family Loricariidae Rafinesque, 1815

Pterygoplichthys multiradiatus (Hancock, 1828)

Distribution
South America: Orinoco River basin, Argentina, Taiwan, mainland USA, and Hawaii.

Puerto Rico localities: Bayamón River (18°22’11.03”N, 66°8’49.69”W), Gurabo River (18°16’01.09”N, 65°58’55.04”W), Great River of Loiza (18°23’48.19”N, 65°54’44.89”W), Rio Piedras River (18°24’00.98”N, 66°03’42.58”W), Guayanabo River (18°21’59.78”N, 66°06’41.32”W), Guanajibo River (18°06’18.85”N, 67°03’55.21”W), Loco River (18°00’53.10”N, 66°52’33.10”W), Patillas Channel (17°58’40.63”N, 66°08’56.52”W), Loiza (18°18’54.98”N, 66°01’14.52”W) and Dos Bocas reservoirs (18°19’57.68”N, 66°40’05.12”W), and Dorado Shrimp Farm.

References [18,36,64].

Remarks: I-00020, 1 organism collected in 1999.

Pterygoplichthys pardalis (Castelnau, 1855)

Distribution
In South America, from lower, middle and upper Amazon River basin; also introduced to countries outside its native range.

Puerto Rico localities: Great River of Loiza River (18°23’48.19”N, 65°54’44.89”W), Cañas River (18°17’22.84”N, 66°03’58.96”W), Juan Martín River (18°21’07.85”N, 65°41’00.90”W), Yauco River (17°59’23.53”N, 66°50’24.92”W), La Zapatera Ravine (18°07’23.70”N, 66°05’07.65”W), Rio Piedras River (18°24’00.98”N, 66°03’42.58”W), Loiza (18°18’54.98”N, 66°01’14.52”W), Dos Bocas (18°19’57.68”N, 66°40’05.12”W), Caonillas (18°16’28.90”N, 66°39’10.30”W), Patillas (18°01’27.38”N, 66°01’23.76”W), Cidra (18°11’38.75”N, 66°08’18.24”W), Guayabal (18°05’44.53”N, 66°30’14.13”W) reservoirs, and Cerrillos (18°05’49.92”N, 66°34’43.83”W) reservoirs.

References [3,64].

Family Pangasiidae Bleeker, 1858

Pangasius hypophthalmus (Sauvage, 1878)

Distribution
Asia: Mekong, Chao Phraya, and Maeklong basins.
Puerto Rico localities: Loiza Reservoir (18°18′54.98″N, 66°01′14.52″W), and Caribe Fisheries Inc. farm (18°01′42.27″N, 66°58′20.83″W) in Lajas.

References [36,65].

Discussion

We review the freshwater fish fauna of Puerto Rico and present an updated list of the species present in the island. We report all known sites occupied by each fish species that inhabit streams and freshwater reservoirs in the island (georeferenced when possible). Although 77 fish species have been reported for Puerto Rico [3], we include only those species considered freshwater residents or species that spend most of their life cycle in freshwater. Consequently, we have excluded native fish such as Bathygobius soporator, Dormitor maculatus, Gerres cinereus, Kryptolebias marmoratus, Microphis brachyurus, Mugil cephalus, Mugil liza, Megalops atlanticus and Strongylura marina, all of which are occasionally found in freshwater streams, but primarily inhabit marine or estuarine ecosystems [16]. One of the highlights of our study, and a source of concern, is the number of introduced species inhabiting streams and water reservoirs in Puerto Rico, compared to the pool of native species currently present on the islands. Less than 20% of the freshwater fish species are native.

The fast development of freshwater aquaculture in the past century has been a major factor responsible for the introduction of many exotic fish in mainland areas, and some islands [66]. However, the dominance of aquarium species in our list and the lack of an established aquaculture industry in Puerto Rico indicate that the pet trade has been critical in the introduction of exotic freshwater fish. In the past, there were short-lived commercial tilapia farms established in Puerto Rico. For example, the Lajas Aquaculture Station and the Maricao Fish Hatchery operated for years [67], with the Maricao Fish Hatchery still being operated today by the Department of Natural and Environmental Resources (D.N.E.R.). The introduction of most (62.6%) non-indigenous resident species in Puerto Rico is associated with the local aquarium and pet trade business, while the vector for the remainder non-native species is equivocal; however, we suspect the aquarium and pet trade market as the likely culprit.

The international fish trade is currently growing and represents an important source of revenue for many countries [68,69]. However, this brings with it the risk of release of live non-native freshwater fish outside their native range, which may have negative impacts on the populations of native species and the ecosystem services they provide. As with many introduced invasive species, the introduction of non-native freshwater fish may have unintended and unpredictable negative effects on local environments and currently represents one of the main threats against the survivorship and genetic integrity of native species populations [70,71]. Moreover, established exotic fish may introduce parasites and diseases, compete for or alter food resources and habitat dynamics, and prey upon native fish [72]. The current freshwater fish community’s composition in Puerto Rico is not only a direct consequence of irresponsible and uninformed attitudes of pet owners but it is also due to the illegal introduction by local aquaculture farms. For example, the Jaguar Guapote Cichlid was introduced to Puerto Rico without the permission of the D.N.E.R by aquaculture farms to control tilapia overpopulation in the culture ponds. Once discovered, the D.N.E.R ordered the eradication of the fish, which was supposedly completed. However, the Jaguar Guapote appeared later in the Loiza Reservoir, which indicates other (geographic) sources are supplying the species into freshwater ecosystems.

The existence of another 128 freshwater fish sold locally as pets represents a serious threat and serves as a “potential pool” of non-native species that could be added to natural freshwater ecosystems in the future (See Appendix 1). Of all the species, those that belong to the family Cichlidae represent the most aggressive invaders, with 13 species established on the island and another 38 potential invasive species sold as pets (Figure 2). The 2010 D.N.E.R Fisheries Regulations [73] published a table with the aquarium species which are allowed for import into Puerto Rico. When we compare this list with our potential invasive species list, we noticed differences. For example, the Family Anguillidae has only one species in the D.N.E.R. list, but we also found another species of eel, Anguilla marmorata, sold as pets. Most alarming is that the Family Cichlidae has 113 species authorized by D.N.E.R to be sold as pets. Thirteen of those have escaped and established while another 39 potential cichlid invaders are still in the local market.

The negative impacts of exotic fish have not yet been thoroughly documented in Puerto Rico, but there are indications that impacts may be, indeed, serious. For example, Red devil cichlids (Amphilophus spp.) are known to be extremely aggressive predators and competitors. D.N.E.R has documented an inverse relationship between non-native sunfish (Lepomis sp.) and red devil abundances, but attributing sunfish decline to the introduction of invasive red devil cichlids is speculative since the evidence may be circumstantial [74]. However, if there is such a relationship between the two non-indigenous species, then we could expect that if the red devil invades Puerto Rican rivers, they will potentially negatively impact the native freshwater fish community. Another species of concern is the armored catfish (Pterygoplichthys spp.) which could compromise shoreline stability by increasing riverbank erosion and suspended sediment loads in the reservoirs as a result of excavating nest burrows at high densities along shorelines [75]. Armored catfish may also pose a threat to
endangered brown pelicans (Pelecanus occidentalis), some of which have died from having catfish lodged in their throat by their spines [18].

There are many different approaches to managing existing invasive species and avoiding new introductions. For example, managers and politicians should create an administrative bill that would establish public education programs and campaigns about the importance of avoiding the release of freshwater fish from aquaria and aquaculture in streams, channels, and reservoirs. New laws could also penalize releasing potential invasive fish with fines. More specific management of current populations of introduced fish, especially those that pose significant threats to Puerto Rico’s native fish and their ecosystems, should be prioritized. In order for management efforts to succeed, further research must be done to fill in the knowledge gaps in the distribution and ecology of introduced species. Efforts should prioritize native ecosystems with higher native fish diversity such as lowland streams and introduced species that are found at high abundances in these environments.

Acknowledgments

We want to thank the University of Puerto Rico in Bayamón, the Department of Natural and Environmental Resources (D.N. E.R) of Puerto Rico for supporting the field works and data collection. WFL and MLO thank the Wildlife and Sport Fish Restoration Program managed by the US Fish and Wildlife Service, for supporting scientific research on the freshwater ecosystems of Puerto Rico, and indirectly supporting this effort through Grant FW-16.1 (2019-2021), and others, awarded to D. N.E.R. Finally, we would like to thank Dr. James D. Ackerman (University of Puerto Rico), for his insightful suggestions, which helped improve the manuscript.

Author Contribution

Ruber Rodríguez-Barreras: fieldwork, writing, and web search.
Camille Zapata-Arroyo: study design, fieldwork, writing.
Wilfredo Falcón: study design, writing and web search.
María de Lourdes Olmeda: fieldwork and writing.

Disclosure Statement

No potential conflict of interest was reported by the authors.

ORCID

Ruber Rodríguez-Barreras http://orcid.org/0000-0001-7790-6108

References

[1] Winemiller KO, Agostinho AA, Caramaschi EP. Fish ecology in tropical streams. In D Dudgeon ed. Tropical stream ecology. San Diego: Academic Press. 2008. p. 107–146.

[2] March JG, Benstead JP, Pringle CM, et al. Damming tropical island streams: problems, solutions, and alternatives. BioScience. 2003;53:1069–1078.

[3] Kwak TJ, Cooney PB, Brown CH Fishery population and habitat assessment in Puerto Rico streams: phase 1 final report. Federal Aid in Sport Fish Restoration Project F-50 Final Report. Marine Resources Division, San Juan: Puerto Rico Department of Natural and Environmental Resources; 2007.

[4] McDowall RM. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fisheries. 2007;8:1–13.

[5] Holmquist JG, Schmidt-Gengenbach JM, Yoshioka BB. High dams and marine-freshwater linkages: effects on native and introduced fauna in the Caribbean. Conserv Biol. 1998;2(3):621–630.

[6] Fitzsimons MJ, Parham JE, Nishimoto RT. Similarities in behavioral ecology among amphidromous and catadromous fishes on the oceanic islands of Hawai‘i and Guam. Environ Biol Fish. 2002;65:123–129.

[7] Magurran AE. Threats to freshwater fish. Science. 2009;325:1215.

[8] Engman AC, Ramirez A. Fish assemblage structure in urban streams of Puerto Rico: the importance of reach-and catchment-scale abiotic factors. Hydrobiologia. 2012;693(1):141–155.

[9] Greathouse EA, Pringle CM, McDowell WH, et al. Indirect upstream effects of dams: consequences of migratory consumer extirpation in Puerto Rico. Ecol Appl. 2006;16(1):339–352.

[10] Walsh CJ, Roy AH, Feminilla JW, et al. The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthological Soc. 2005;24(3):706–723.

[11] Postel S, Carpenter S. Freshwater ecosystem services. In Graften C. Daily (ed.); Nature’s Services: societal dependence on natural ecosystems. Washington, D.C. and Corvelo, California: Island Press; 1997. p. 195–214.

[12] Wesley-Neal J, Lílyestrom CG, Kwak J. Factors influencing tropical Island freshwater fishes: species, status, and management implications in Puerto Rico. Fisheries. 2009;34(11):546–554.

[13] Cooney PB, Kwak TJ. Development of standard weight equations for Caribbean and Gulf of Mexico amphidromous fishes. North Am J Fish Manage. 2010;30(5):1203–1209.

[14] Simberloff D, Martin JL, Genovesi P. Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol. 2013;28:58–66.

[15] Erdman DS. Exotic fishes in Puerto Rico. In WR Courtenay, JR Stauffer ed. Distribution, biology, and management of exotic fishes. Baltimore, MD: John Hopkins University Press; 1984. p. 162–176.

[16] Erdman DS. Inland game fishes of Puerto Rico. 2d ed. Federal Aid Proj. F–1–20. San Juan, PR: US Department of Agriculture, Centralized and Ancillary Services.

[17] Neal JW, Lílyestrom CG, Kwak T.J. Factors influencing tropical island freshwater fishes: species, status, and management implications in Puerto Rico. Fisheries. 2009;34(11):546–554.

[18] Bunkley-Williams L, Williams EH, Lílyestrom CG, et al. The South American sailfin armored catfish, Liposarcus multiradiatus (Hancock), a new exotic established in Puerto Rican fresh waters. Caribbean J Sci. 1994;30(1–2):90–94.

[19] Erdman DS. Notes on the biology of the gobid fish Sicydium plumieri in Puerto Rico. Bull Mar Sci. 1961;11(1):448–456.
[20] Stoner AW. Community structure of the demersal fish species of Laguna Joyuda, Puerto Rico. Estuaries Coasts. 1986;9(2):142–152.

[21] Engman AC, Hogue GM, Starnes WC, et al. Puerto Rico Sicydium goby diversity: species-specific insights on population structures and distributions. Neotropical Biodivers. 2019;5(1):22–29.

[22] Ramirez A, De Jesús-Crespo R, Martinó-Cardona DM, et al. Urban streams in Puerto Rico: what can we learn from the tropics? J North Am Benthological Soc. 2009;28(4):1070–1079.

[23] Rodríguez-Barreras R, Zapata-Arroyo C. The ecological life zones of North America north of Mexico. Boston: Houghton Mifflin Company; 1991. p. 432.

[25] Pike AS, Scatena FN, Wohl EE. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico. Earth Surf Process Landf. 2010;35(12):1402–1417.

[27] Ahmad R, Scatena FN, Gupta A. Morphology and sedimentation in Caribbean montane streams: examples from Jamaica and Puerto Rico. Sediment Geol. 1993;85 (1–4):157–169.

[28] Pike AS, Scatena FN, Wohl EE. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico. Earth Surf Process Landf. 2010;35(12):1402–1417.

[29] Falcón W, Tremblay RL. From the cage to the wild: introductions of Poecilidae to Puerto Rico. Peer J. 2018;6:e5669.

[30] WoRMS. Editorial Board (2019). World register of marine species. [cited 2019 Nov 19]. Available from: http://www.marinespecies.org

[31] Evermann BW, Marsh MC. The fishes of Porto Rico. Bul US Fish Comm. 1902;20(1):49–350.

[32] Danforth ST. An ecological study of Cartagena Lagoon, Porto Rico, with special references to birds. Journ Dept Agri Porto Rico. 1926;10(1):1–3.

[33] Hildebrand SF. An annotated list of fishes of Porto Rico. Bul North Carolina Biological Survey and the North Carolina State Museum of Natural History; 1980. http://www.nativelife.com/data/techartp.pdf

[34] Page LM, Burr BM. A field guide to freshwater fishes of Puerto Rico. Copeia. 1935;2:49–56.

[35] Ortega H, Vari RP. Annotated checklist of the freshwater fishes of Peru. Smithson Contrib Zool. 1956;437:1–25.

[36] Kwak TJ, Engman AC, Fisher JR, et al. Drivers of Caribbean Freshwater Ecosystems and Fisheries. In: Taylor WW, Bartley DM, Goddard CI, et al. editors. Freshwater, fish and the future: proceedings of the global cross-sectoral conference. Food and Agriculture Organization of the United Nations, Rome, Michigan State University, East Lansing; and American Fisheries Society. Maryland: Bethesda; 2016. p. 219–232.

[37] Kottelat M, Whitten AJ, Kartikasari SN, et al. Freshwater fishes of Western Indonesia and Sulawesi. Hong Kong: Periplus Editions; 1993.

[38] Pethiyagoda R, Megaskumbura M, Maduwage K. A synopsis of the South Asian fishes referred to Puntius (Pisces: cyprinidae). Ichthyol Explor Freshwaters. 2012;23(1):69–95.

[39] Rainboth WJ. Fishes of the Cambodian Mekong. FAO species identification field guide for fishery purposes. Ichthyological research: FAO, Rome; 1996. p. 265.

[40] Rodriguez CM. Phylogenetic analysis of the tribe Poeciliini (Cyprinodontiformes: poeciliidae). Copeia. 1997;4:663–679.

[41] Nichols JT. The fishes of Porto Rico and the Virgin Islands. Scientific survey of Porto Rico and the Virgin Islands. N Y Acad Sci. 1929;10(2):161–295.

[42] Nichols JT. The fishes of Porto Rico and the Virgin Islands. Scientific survey of Porto Rico and the Virgin Islands. N Y Acad Sci. 1930;10(3):299–399.

[43] Kenny JS. Views from the bridge: a memoir on the freshwater fishes of Trinidad. Maracas, St. Joseph: Trinidad and Tobago; 1995. Julian S. Kenny; p. 1–98.

[44] Wischnath L. Atlas of livebearers of the world. United States of America: TFH Publications Inc.; 1993. p. 336.

[45] Harrison IU, Mugilidae L, Fischer W, Krupp F, Schneider W, et al., editors Guía FAO para Identificación de Especies para los Fines de la Pesca. Pacifico Centro-Oriental. Vol. 3. Rome: FAO; 1995. p. 1293–1298.

[46] Baker WH, Blanton RE, Johnston CE. Diversity within the Redeye Bass, Micropterus coosae (Perciformes: centrarchidae) species group, with descriptions of four new species. Zootaxa. 2013;3635(4):379–401.

[47] Lee DS, Gilbert CR, Hocutt CH, et al. Atlas of North American freshwater fishes. North Carolina: North Carolina State Museum of Natural History; 1980. http://www.nativefshlab.net/library/textpdf/20231.pdf

[48] Bagley JC, Matamoros WA, McMahan CD, et al. Phylogeography and species delimitation in convict cichlids (Cichlidae: amatitlania): implications for taxonomy and Plio-Pleistocene evolutionary history in Central America. Biol J Linn Soc. 2016;120(1):155–170.

[49] Schmitter-Soto JJ. A systematic revision of the genus Archocentrus (Perciformes: cichlidae), with the description of two new genera and six new species. Zootaxa. 2007;1603:1–78.

[50] Kullander SO, Hartel KE. The systematic status of cichlid genera described by Louis Agassiz in 1859: amphilophus, Baidon, Hypsophrys and Parachromis (Teleostei: cichlidae). Ichthyol Explor Freshwat. 1997;7 (3):193–202.

[51] Lee DS, Platania SP, Burgess GH. Atlas of North American freshwater fishes - 1983 supplement. In: North Carolina Biological Survey and the North Carolina State Museum of Natural History. Raleigh, NC; 1983,854.

[52] Lopez HL, Menini RC, Miguelarena AM. Lista de los peces de agua dulce de la Argentina. Biologia Acuatica. 1987;1:21–50.

[53] Kullander SO, Nijssen H. The cichlids of Surinam: teleostei, Labroidei. The Netherlands: Leiden; 1989.

[54] Kullander SO. Cichlidae (Cichlids). In: Reis RE, Kullander SO, Ferraris CJ, editors. Checklist of the Freshwater Fishes of South and Central America. Vol. 2003. Porto Alegre, Brasil: Edipucrs; 2003. p. 605–654.

[55] Trewavas E. Tilapiine cichlid genera described by Louis Agassiz in 1859: amphilophus, Baidon, Hypsophrys and Parachromis (Teleostei: cichlidae). Ichthyol Explor Freshwat. 1997;7 (3):193–202.

[56] Conkel D. Cichlids of North and Central America. USA. New Jersey: TFH. Publications Inc.; 1993.
referred to as “Tilapia”. Mol Phylogenet Evol. 2013;68(1):64–80.

[58] Robins CR, Ray GC. A field guide to Atlantic coast fishes of North America. Boston, Houghton: Mifflin Company; 1986. p. 354.

[59] Bacheler NM, Neal JW, Noble RL. Diet overlap between native bigmouth sleepers (Gobiomorus dormitor) and introduced predatory fishes in a Puerto Rico reservoir. Ecol Freshwater Fish. 2004;13:111–118.

[60] Claro R, Parenti LR. The marine ichthyofauna of Cuba. In: Claro R, Lindeman KC, Parenti LR, editors. Ecology of the marine fishes of Cuba. Washington and London: Smithsonian Institution Press; 2001. p. 21–57.

[61] Watson RE. Sicydium from the Dominican Republic with Description of a New Species (Teleostei: gobiidae). Staatliches Museum für Naturkunde. 2000;608:1–31.

[62] Teugels GG. A systematic revision of the African species of the genus Clarias (Pisces: Claridae). Ann Mus R Afr Centr, Sci Zool. 1986;247:1–99.

[63] Hardman M, Page LM. Phylogenetic relationships among bullhead catfishes of the genus Ameiurus (Siluriformes: ictaluridae). Copeia. 2003;1:20–33.

[64] Burgess WE. An atlas of freshwater and marine catfishes. A preliminary survey of the Siluriformes. New Jersey: TFH Publications, Inc.; 1989.

[65] Roberts TR, Vidhyanon C. Systematic revision of the Asian catfish family Pangasiidae, with biological observations and descriptions of three new species. Proc Acad Nat Sci Philad. 1991;143:97–144.

[66] Naylor R, Williams SL, Strong DR. Aquaculture - a gateway for exotic species. Science. 2001;294:1655–1656.

[67] Garcia-Pérez A, Alston DE, Cortés-Maldonado R. Growth, survival, yield, and size distributions of freshwater prawn Macrobrachium rosenbergii and tilapia Oreochromis niloticus in polyculture and monoculture systems in Puerto Rico. J World Aquacult Soc. 2000;31(3):446–451.

[68] Tveteras S, Asche F. International fish trade and exchange rates: an application to the trade with salmon and fishmeal. Appl Econ. 2008;40(13):1745–1755.

[69] Gertzen E, Familiar O, Leung B. Quantifying invasion pathways: fish introductions from the aquarium trade. Can J Fisheries Aquat Sci. 2008;65(7):1265–1273.

[70] Moyle PB, Li HW, Barton BA. The Frankenstein Effect: impact of Introduced Fishes on Native Fishes in North America. In: RH Shroud editor. The role of fish culture in fisheries management. Bethesda (MD): American Fisheries Society. 1987. p. 415–426.

[71] Bruton MN. Have fishes had their chips? The dilemma of threatened fishes. Environ Biol Fish. 1995;43(1):1–27.

[72] Coad BW, Abdoli A. Exotic fish species in the fresh waters of Iran. Zool Middle East. 1993;9(1):65–80.

[73] Reglamento de Pesca de Puerto Rico. DRNA publication; no. #7949; 2010. p. 1–99.

[74] Olmeda ML, Lilyestrom C, Del Moral R, et al. Population Dynamics of Introduced Sunfish Species to Tropical Reservoirs. Poster presented at: American Fisheries Society 144th Annual Meeting; 2014 Aug 17-2; Québec City, Canada.

[75] Olmeda ML, Del Moral R, Lilyestrom C Puerto Rico Department of Natural and Environmental Resources. Federal Aid in Sport Fish Restoration Project F-52.1. Freshwater Sport Fish Community Assessments in Puerto Rico Reservoirs and Lagoons. San Juan, Puerto Rico: DENR publication; no. F-52.1; 2007.