THE GENE-DIET ASSOCIATIONS IN POSTMENOPAUSAL WOMEN WITH NEWLY DIAGNOSED DYSLIPIDEMIA

B. GRYGIEL-GÓRNIAK1,2, E. KACZMAREK3, M. MOSOR4, J. PRZYSŁAWSKI2, J. NOWAK4

1. Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland; 2. Department of Bromatology and Human Nutrition, Poznan University of Medical Sciences, Poznan, Poland; 3. Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland; 4. Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan. Corresponding author: Bogna Grygiel-Górniak, Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland, bgrygiel@ump.edu.pl

Abstract: Objectives: The aim of this study was to determine the relationship between polymorphisms of peroxisome proliferator activated receptor - PPAR gamma-2 (Pro12Ala, C1431T) and beta 3-adrenergic receptor - ADRB3 (Trp64Arg) and dietary habits in a group of postmenopausal women who were not under hypolipidemic treatment. Design: Genetic, nutritional and anthropometric parameters were measured in 213 dyslipidemic (LDL ≥115 mg/dL) and 58 normolipidemic (LDL<115) postmenopausal women. The PCR-RFLP method was used to determine the distributions of selected alleles and genotype frequencies. Dietary intake of basic components and fatty acids was obtained from a 7-day weighed food record and the bio-impedance method was used to determine nutritional status. Results: Nearly 79% of analyzed women were in the first-time-diagnosed dyslipidemic state. The dyslipidemic subjects were characterized with higher intake of energy, fat, and saturated fatty acids (SFA). The analysis of the same polymorphisms showed association at the P value <0.05 with nutrients (fat, SFA, and polyunsaturated fatty acid - PUFA and saccharose) and elevated LDL level. Higher PUFA intake in a group of women with the protective Ala12/X polymorphism did not increase the risk of dyslipidemia even though they were characterized by visceral distribution of fat. The Arg64/X polymorphism and higher intake of energy, fat, and arachidic acid intake (C20:0) were associated with dyslipidemic state. Conclusion: Both nutritional and genetic factors are related to lipid profile. The identification of gene-diet associations is likely to provide useful information about the etiology of postmenopausal dyslipidemia and help in effective treatment.

Key words: Polymorphisms of PPARγ2 and ADRβ3 genes, dietary habits, postmenopausal dyslipidemia.

Introduction

Many European populations, including Poland, represent countries of high risk of cardiovascular diseases (CVD) (1). Recent studies of Polish population – NATPOL 2011 showed that nearly 61% of adult Polish inhabitants (about 18 million) have dyslipidemia (2), which is the main risk factor of CVD (3). The European Study on Cardiovascular Risk Prevention and Management in Usual Daily Practice showed that general prevalence of dyslipidaemia in Europe is about 57.7% of patients with at least one major risk factor for CVD (4) and ranges between 29% in Switzerland (5) till 59.1% in Italy (6) and 65.4% in Spain (7). Many genetic factors (including PPARγ2 or ADRβ3 genes) show variable association with dyslipidemia (8, 9) and can be modulated by selective nutrients intake (10, 11). Because polyunsaturated fatty acids and prostanoids (12) are the major natural ligands of the PPARγ2 gene, the quality of fat may affect transduction of metabolic signals (13). In animal studies an increase in PPARγ mRNA in adipose tissue was observed after a high-fat diet supplement (8). Moreover, C1431T polymorphism of PPARγ2 gene is associated with metabolic disorders, dyslipidemia, and CVD development (14-16). Besides PPARγ2 gene, ADRβ3 gene, located mainly in adipose tissue, also is involved in the regulation of lipolysis and thermogenesis (17); and the presence of Arg64 allele is related to the increased chances of gaining weight in Caucasians (25 year observation of obese subjects) (18).

Some studies have reported on the combined role of genetic (e.g., Pro12Ala genotype) and lifestyle (such as dietary fatty acid ratio) factors in metabolic disorders (insulin resistance or BMI value) (10, 11). However, usually, in patients with metabolic disorders the already used medications could affect glucose and lipid concentrations or the expression of the PPARγ2 gene (e.g., thiazolidinediones and statins). Taking into consideration the above mentioned data, we attempted in our study to estimate the relationship between specific polymorphisms, nutritional status and dietary habits in a group of postmenopausal women, who were never diagnosed of or treated for dyslipidemia and show, which of the genetic factors may play an important role in the treatment strategies in this group. Moreover, we would like to indicate, which of the nutritional habits should be changed to treat or prevent the exacerbation of dyslipidemia.

Material and methods

Analyzed group

In this study, 1,423 women, aged 49 to 75 years, were recruited and they underwent standard health checkups at a metabolic outpatient clinic. From this group, we selected postmenopausal women who did not undergo any
hypolipidemic or hypoglycemic treatment. After the gynecological interview (minimum 12 months of amenorrhea or bilateral oophorectomy), the hormonal assessment based on the measurement of follicle-stimulating hormone (FSH) confirmed the postmenopausal period. Women earlier diagnosed with or treated for dyslipidemia, severe cardiovascular diseases, endocrinological disorders, renal or liver dysfunction, cancer or the ones supplemented with minerals/vitamins/fitosterols were excluded from the study. Finally, we selected 271 postmenopausal women, who undergo biochemical, nutritional, and genetic evaluation. The selection was random because PPARγ2 and ADRβ3 polymorphisms were unknown at the time of recruitment. The ethical approval was obtained from the respective local Bioethical Commission of Poznan Medical University, Poland, nr 792/09, and the guidelines proposed by the Declaration of Helsinki were followed. Written informed consent was obtained from all subjects before the commencement of the study.

Anthropometric measurements

Anthropometric measurements were directly taken in accordance with the International Standards for Anthropometric Assessment (19) by trained interviewers. Women’s weight, height, waist circumference, blood pressure, and bioimpedance were measured in the morning, using a standardized procedure. Body mass was determined in underwear in the standing upright position with electronic scales with a precision of 100 g (SECA scale). The height was determined to the nearest 0.1 cm. Waist circumference was measured at the midpoint between the lower margin of the least palpable rib and the top of the iliac crest, using a flexible measure to the nearest 0.1 cm. Body mass index was calculated as weight/height squared (kg/m2) and waist-to-hip ratio (WHR) as the proportion of waist-to-hip circumferences (20). A bioimpedance analyzer with a single frequency of 50 kHz (Bodystat 1500, Bodystat Ltd., United Kingdom) was used to assess the fat content to the proportion of total body mass.

Biochemical evaluation

After 12 hour fasting, venous blood samples were collected from all patients at 7 A.M. Serum samples were taken from clotted (15 min, room temperature) and centrifuged blood (15 min, 3,000 x g). Serum was separated and directly used for the assay. The obtained samples were used for the measurements of FSH levels and plasma lipid profile. The concentration of FSH was measured to confirm the postmenopausal age by chemiluminescence assays (Roche Diagnostics). The lipid profile was assessed with enzymatic colorimetric assays (Cobas Integra 400 Plus; Roche Diagnostics, Mannheim, Germany). Low density lipoprotein (LDL) cholesterol was calculated using Friedewald’s formula (21).

According to the recommendation of European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) the characteristic SCORE (Systematic Coronary Risk Estimation) was calculated for whole group of women (n=271). Estimated SCORE (based on data for no-smoking women aged 60) was within the range of 1%-5%. The assessed coronary risk was moderate and thus LDL-cholesterol of 3 mmol/L (less than 115 mg/dL) should be considered as a target value in the analyzed group (2). The value of LDL <115 is also recommended by ESC as target in general population (without diagnosed CVD or diabetes mellitus, similar to the group in this study) (2, 22). Considering this evidence every subject with LDL level ≥115 mg was classified as dyslipidemic, while with LDL <115 mg/dL as normal lipidemic. The lipid accumulation product (LAP) was calculated using the formula: LAP=(WC – 58)×TG (nmol/L) (23, 24).

Dietary evaluation

The food intake was assessed at a 24 hour interval for 7 days and all women were on normal diet (traditional Polish diet). The estimated daily food rations (DFR) enabled the analysis of energy intake, basic nutritional components consumption (protein, fat and carbohydrates) and selected fatty acids intake (including SFA, MUFA, PUFA). The results of the questionnaire were analyzed with both the quantitative and qualitative analyzes of the subjects’ daily diets using computer databases for Microsoft Access 2000. The food intake recommendations of the National Institute of Food and Nutrition in Warsaw, Poland, were taken in to account to determine whether the Recommended Dietary Allowances (RDAs) specific for age, sex, ideal body mass, height, and physical activity were fulfilled (25). Dietary cholesterol was compared with the nutritional prophylaxis recommendations at the level of 200 mg (recommended in dyslipidemia) (20, 25).

Genotyping

Genomic DNA was isolated from venous blood samples according to the manufacturer’s protocol (Gentra Puregene Blood Kit; QIAGEN, Venlo, Limburg). Genotypes of the Pro12Ala (rs1801282) and Trp64Arg polymorphism (rs4994) were determined by applying a TaqMan genotyping assay (Life Technologies, Carlsbad, CA). As a quality-control measure, negative controls and approximately 5% of samples were genotyped in duplicate to check genotyping accuracy. The controls for each of the genotypes of both single nucleotide polymorphisms were run in parallel. An allelic discrimination assay was performed on an AB17900HT or on CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Inc, Hercules, CA). C1431T (rs3856806) genotyping was performed using PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Eco72I cleaves the PCR product from wild-type DNA to generate fragments of 127bp and 43bp, but does not cut products containing the variant allele. PCR-digests were analyzed on 2.5% agarose gels. The determination of the ADRβ3 variant was performed using the PCR method as described by Sivenius and colleagues (26). The genotypes were determined as Trp64Trp, Trp64Arg, and Arg64Arg without
earlier knowledge of the patients’ status.

Linkage disequilibrium block determination and haplotype construction

The genotype data were used to construct the haplotypes between the two polymorphisms by using Haplovie 4.2 software (Broad Institute, Cambridge, MA) to evaluate linkage disequilibrium (LD). Linkage disequilibrium between the single nucleotide polymorphisms used in haplotype analysis was measured using a pairwise D’ statistic. The structure of the LD block was examined with the method proposed by Gabriel and colleagues (27) using the 80% confidence bounds of D’. The haplotype frequencies were calculated based on the maximum likelihood method with Haplovie 4.2 software. Finally, the associations between haplotypes and obesity status were checked. Specific haplotype frequencies were compared among lean and obese women (chi-square test).

Statistical Analysis

The Shapiro-Wilk test was used to determine if the continuous variables were normally distributed. Since the results were not consistent with normal distribution, nonparametric methods were used for the statistical analysis. Continuous data were shown as mean ± standard deviation. The hypothesis that the differences between analyzed anthropometric and nutritional factors in the analyzed groups were significant was tested by Mann-Whitney U-test. The association of analyzed genotypes with anthropometric and nutritional parameters in normo- and dyslipidemic women was also tested by Mann-Whitney U test. The odds ratio (OR) with a 95% confidence interval (CI) for gene polymorphisms according to normolipidemic (LDL <130 mg/dL) and hyperlipidemic state were determined. A P value <0.05 was regarded as statistically significant. The statistical analyzes were performed with STATISTICA 12 (including STATISTICA Medical Package 2.0; StatSoft, Inc. 2014 software) and SPSS 22 (IBM, Inc, Chicago, IL, USA).

Table 1

Analyzed parameters	Normolipidemic (n=58)	Dyslipidemic (n=213)	P value
Age (years)	59.74±7.44	59.19±8.0	0.4984
Height (cm)	161.18±6.09	160.88±5.74	0.7223
Body mass (kg)	73.79±16.33	77.07±16.29	0.1761
Body fat (% body mass)	42.47±6.21	43.74±6.84	0.2072
BMI (kg/m2)	28.14±19.16	29.77±36.12	0.0027
WC (cm)	88.54±14.45	90.88±14.24	0.2701
WHR	0.83±0.08	0.83±0.07	0.5301
FSH	73.48±28.62	69.13±25.68	0.2659
TC (mg/dL)	184.74±9.21	243.44±36.00	0.00001
LDL (mg/dL)	99.62±12.57	155.31±31.76	0.0001
TG (mg/dL)	99.90±46.16	122.28±54.92	0.0048
HDL (mg/dL)	65.24±14.66	63.65±14.73	0.4675
LAP	37.06±30.68	48.83±34.31	0.0186
Energy (kcal)	1910.41±467.88	2087.39±575.16	0.0319
Protein (g)	77.95±18.74	81.04±21.34	0.3164
Fat (g)	71.62±18.98	80.59±26.62	0.0170
Carbohydrates (g)	242.99±78.18	263.52±81.39	0.0871
SFA-%energy	11.43±2.14	12.29±2.47	0.0164
MUFA-%energy	13.13±2.66	13.21±2.82	0.8435
PUFA-%energy	6.08±1.75	5.58±1.74	0.0503
PUFA/SFA ratio	0.61±0.26	0.54±0.23	0.0332
Dietary cholesterol (mg)	399.25±138.83	453.89±201.70	0.0534
Butteric acid C4:0 (g)	0.65±0.27	0.80±0.39	0.0065
Caproic acid C6:0 (g)	0.40±0.17	0.50±0.24	0.0053
Caprylic acid C8:0 (g)	0.25±0.10	0.30±0.14	0.0043
Capric acid C10:0 (g)	0.60±0.24	0.73±0.34	0.0064
Lauric acid C12:0 (g)	0.82±0.34	0.98±0.44	0.0139
Myristic acid C14:0 (g)	2.73±1.02	3.33±1.39	0.0024
Pentadecylic acid C15:0 (g)	0.29±0.11	0.36±0.15	0.0007
Palmitic acid C16:0 (g)	12.43±1.47	14.47±5.08	0.0043
Margaric acid C17:0 (g)	0.25±0.09	0.31±0.13	0.0013
Searic acid C18:0 (g)	5.58±1.76	6.59±2.61	0.0059
Tetradecenoic acid C14:1 (g)	0.34±0.14	0.41±0.17	0.0066
Ginkgolic acid C15:1 (g)	0.14±0.05	0.18±0.08	0.0012
Palmitoleic acid C16:1 (g)	1.56±0.53	1.84±0.69	0.0046
Heptadecenoic acid C17:1 (g)	0.24±0.10	0.30±0.14	0.0027
Vaccenic acid C18:1 (g)	24.23±7.23	27.20±10.52	0.0444

No significant differences between analyzed groups and the intake of arachidic acid C20:0, palullin acid C20:1, ericolic acid C22:1, linoleic acid C18:2, α-Linolenic acid C18:3-alfa, stearidonic acid C18:4, dihomo-γ-linolenic acid C20:3, arachidonic acid C20:4, eicosapentaenoic acid C20:5, docosapentaenoic acid C22:5, and docosahexaenoic acid C22:6; BMI–body mass index; WC–waist circumference; WHR–waist to hip ratio; FSH–follicle-stimulating hormone; TC–total cholesterol; LDL–low density lipoproteins; TG–triglycerides; HDL–high density lipoprotein; LAP–lipid accumulation product; SFA–saturated fatty acids, MUFA–monounsaturated fatty acids, PUFA–polyunsaturated fatty acids.
Table 2

Genotype and allele frequencies of the Pro12Ala and C1431/X PPARγ2 and Trp 64Arg of β-adrenergic receptor gene polymorphisms according to normolipidemic (LDL <130 mg/dL) and dyslipidemic state (LDL ≥130 mg/dL).

Values	Normolipidemic (n=58)	Dyslipidemic (n=213)	Whole group (n=271)
Genotype			
Pro12Pro	39 (67.24%)	145 (68.08%)	184 (67.90%)
Pro12Ala	16 (27.59%)	61 (28.64%)	77 (28.41%)
Ala12Ala	3 (5.17%)	7 (3.28%)	10 (3.69%)
Chi-square value (P value)	0.7938 (ns)		
Allele frequency			
Pro	94 (0.810)	351 (0.824)	445 (0.821)
Ala	22 (0.190)	75 (0.176)	97 (0.179)
OR (95% CI)			
OR			
Trp64/X polymorphism	C1431C	41 (70.69%)	157 (73.71%)
		198 (73.06%)	
C1431T	13 (22.41%)	52 (24.41%)	65 (23.99%)
T1431T	4 (6.90%)	4 (1.88%)	8 (2.95%)
Chi-square value (P value)	0.8475 (ns)*		
Allele frequency			
C1431	95 (0.819)	366 (0.859)	461 (0.851)
T1431	21 (0.181)	60 (0.141)	81 (0.149)
OR (95% CI)			
OR			
Trp64/X polymorphism	Arg64Arg	11 (0.00%)	4 (1.88%)
		4 (1.48%)	
Chi-square value (P value)	0.8475 (ns)**		
Allele frequency			
Trp	105 (0.905)	381 (0.894)	486 (0.897)
Arg	11 (0.095)	45 (0.106)	56 (0.103)
OR (95% CI)			
OR			

* C1431C and C1431T that counts for T1431T are too small for testing the 3x2 contingency table; ** Trp64Trp and Trp64Arg that counts for Arg64Arg are too small for testing the 3x2 contingency table.

Results

The anthropometric parameters of dyslipidemic and normolipidemic subjects were comparable in both groups (Table 1). All women were overweight (BMI ≥25 kg/m2) and characterized with visceral distribution of fat (WC >80 cm) (28). Besides differences in LDL level (used as independent variable to classify the patients as normolipidemic or dyslipidemic) we also observed the differences in TC, TG, and non-HDL cholesterol between analyzed groups. The lipid accumulation product (LAP) was significantly higher in dyslipidemic group. The intake of energy as total fat and as saturated fatty acids (SFA) expressed in percent of total energy intake and analyzed individually (as butyric, caproic, caprylic, capric, lauric, myristic, pentadecylic, palmitic, margaric, and stearic acid, C4:0 – C20:0) and as monounsaturated fatty acids (such as tetradecanoic, ginkgolic, palmitoleic, heptadecanoic, and vaccenic acid, C14:1 – C18:1) were higher in dyslipidemic women. There were no statistically significant differences between the intake of total amount of PUFA (expressed as percent of energy intake) and selected PUFA in analyzed group (linoleic, α-Linolenic, stearidonic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acid). The dietary cholesterol intake was higher in dyslipidemic group, while the ratio of PUFA to SFA was lower.

The analysis of confidence intervals and odds ratios showed no statistically significant differences between analyzed allele frequencies in normolipidemic and dyslipidemic women (Table 2). The data present in Table 3 has revealed not only the nutritional influence on LDL level, but also various gene–diet relations with dyslipidemia. Within the same polymorphism (Table 3, Part A), higher intake of energy, SFA, and C15:0 and lower intake of PUFA determined the higher level of LDL. Normolipidemic women with Ala12/X polymorphism (Table 3, Part B) were characterized by their higher waist circumference and higher PUFA intake. The diet of dyslipidemic subjects with Arg64/X polymorphism (Table 3, Part C) contained higher energy from nutrients, fat, and arachidic acid intake.

Discussion

Several factors were proposed to be associated with dyslipidemia including dietary habits, physical activity, and genetic background (9, 29-32). However, the studies describing such relations in postmenopausal age are very scarce (33, 34), and to our knowledge neither of them describe the diet–gene interaction in newly diagnosed postmenopausal dyslipidemia. In this study, we found both nutritional and genetic associations with the dyslipidemic state.

The analyzed groups of women (Table 1) were overweight (BMI ≥25<30 kg/m2) (20, 28). The waist circumference (WC) and WHR ratio over-crossed recommended values in normolipidemic and dyslipidemic subjects (WC >80 cm and WHR >0.8) (28). These parameters show the central deposition of fat, which is considered not only as a risk factor of CVD diseases in postmenopausal age (35), but also as a risk factor of breast cancer (36). Beside this, LAP (a novel index of central lipid accumulation) was found to be elevated in both groups and was significantly higher in dyslipidemic women. In European population, the optimal cut-off value of LAP for the screening of metabolic syndrome is 33.28 in females (37). Increased LAP in both groups shows not only a central lipid accumulation, but...
also predicts the risk of metabolic syndrome (23, 38) and CVD development (23, 37).

The intake of energy, as fat and saturated fatty acids were higher in dyslipidemic women, while PUFA/SFA ratio was lower (Table 1). Mainly the excess of SFA causes an elevated LDL level and the substitution of these acids for polyunsaturated fat in the diet results in the decrease of both total cholesterol and LDL concentration (39, 40). Beside the excess of SFA, low amount of PUFA were noted in both groups, what influences on high HDL (“protective”) level in both normolipidemic and dyslipidemic group (37, 43, 44). In this study, we did not confirm the differences between

Polymorphism	LDL level	Analyzed parameters	X ± SD	n	P value
A. Different LDL level					
Ala12/X	Dyslipidemic	Energy (kcal)	2168.91±573.83	68	0.0217
	Normolipidemic		1829.93±463.14	18	
	Dyslipidemic	C15:0 (g)	0.37±0.15	68	0.0208
	Normolipidemic		0.28±0.11	18	
	Dyslipidemic	PUFA-%energy	5.29±1.71	68	0.0208
	Normolipidemic		6.24±1.43	18	
Pro12Pro	Dyslipidemic	SFA-%energy	12.42±2.44	147	0.0259
	Normolipidemic		11.44±2.35	38	
	Dyslipidemic	C15:0 (g)	0.35±0.14	147	0.0186
	Normolipidemic		0.29±0.11	38	
C1431C	Dyslipidemic	Fat (g)	81.75±26.68	158	0.0144
	Normolipidemic		70.75±18.72	40	
	Dyslipidemic	C20:0 (g)	0.29±0.14	158	0.0111
	Normolipidemic		0.25±0.08	40	
T1431/X	Dyslipidemic	Saccharose-%energy	9.32±3.52	57	0.0377
	Normolipidemic		8.43±3.28	16	
	Dyslipidemic	Fat-% energy	3.42±4.77	57	0.0187
	Normolipidemic		34.62±4.64	16	
Arg64/X	Dyslipidemic	C20:0 (g)	0.28±0.11	41	0.0494
	Normolipidemic		0.29±0.08	10	

B. Different polymorphisms					
Pro12Pro	Normolipidemic	Waist circumference	86.16±13.38	38	0.0465
Ala12/X			94.31±15.81	18	
Pro12Pro		PUFA-% energy	6.01±1.92	38	0.04028
Ala12/X			6.24±1.43	18	

C. Different polymorphisms and LDL level					
Trp64Trp	Normolipidemic	Energy (kcal)	1923.69±500.42	46	0.0414
Arg64/X	Dyslipidemic		2168.09±587.84	41	
Trp64Trp	Normolipidemic	Fat (g)	71.93±19.98	46	0.0110
Arg64/X	Dyslipidemic		85.79±26.09	41	
Trp64Trp	Normolipidemic	C20:0 (g)	0.28±0.12	46	0.0081
Arg64/X	Dyslipidemic		0.28±0.11	41	

C15:0–pentadecylic acid; C20:0–arachidic acid; SFA–saturated fatty acids; PUFA–polyunsaturated fatty acids
gene distribution and the presence of dyslipidemia (Table 2). However, we have observed some associations of nutritional and genetic background with the level of LDL. We have shown that Ala12 genotype may be related to the lower risk of dyslipidemia (Table 3, Part B) and this genotype together with the dietary factors (higher intake of PUFA) seems to play a protective role. Because, even though Ala carriers had higher waist circumference, they remained normolipidemic. Similar to our study, Robitaille at al., have showed that each 10 g increment in fat intake was associated with an increase of 1.2 cm in waist circumference among Pro12/Pro12 homozygotes, whereas no significant change in WC was observed among carriers of the Ala12 allele (11). The normolipidemic state in Ala12/X polymorphism can also be partially explained by the fact of higher intake of PUFA, which have beneficial influence on the lipid profile and decrease the risk of CVD development (30-33).

Dyslipidemic women with Arg64/X polymorphism of the ADRβ3 were characterized with higher intake of energy, total fat, and arachidonic acid (C20:0). Thus, this polymorphism seems to be related to dyslipidemic state and can increase the lipid disorders if it is associated by higher intake of proatherogenic nutrients. This evidence is confirmed by the study of Asian (45) and Caucasian populations (18), which have shown that Arg64 allele is associated with obesity development. Moreover, obese subjects with this allele are predisposed to lipid disorders (higher TC, LDL, and TG) (46). Therefore, the association of the Arg64 allele with an inadequate amount and quality of fat in daily food rations of the analyzed women can be predisposed to postmenopausal dyslipidemia. We conclude that both genetic background and nutritional habits are related to health status in an aging population (18, 45-47).

Conclusion

To our knowledge this is the first study, which showed a genetic associations of ADRβ3 and PPARγ2 variants and eating behavior in postmenopausal women with dyslipidemia who did not undergo hypolipidemic treatment. The dyslipidemia was first time diagnosed in nearly 80% of postmenopausal women, which suggest the need for early diagnosis, dietary modification, and/or hypolipidemic treatment in postmenopausal women to prevent CVD development. According to the recommendations of ESC and the European Atherosclerosis Society (EAS) women with LDL ≥115 mg/dL should undertake lifestyle interventions including dietary modification and increased physical activity. Therefore, lower intake of fat and SFA and higher intake of PUFA should be recommended. Alongside, the presented results suggest that some polymorphisms together with the selected nutrients are related to dyslipidemia. Therefore, Ala12 (protective) and Arg64 allele (predisposing to dyslipidemia) may play an important role in the treatment strategies in long-term weight changes in viscerally overweight postmenopausal women with newly diagnosed dyslipidemia.

Ethics declaration: All experimental procedures were conducted in accordance with the guidelines in the Declaration of Helsinki and approved by the Bioethics Committee of Poznan University of Medical Sciences in Poland.

Acknowledgments: B.G.G designed the study and supervised the practical carrying out of the clinical trial; M.M. conduct genetic measurement; E.K. and B.G.G. do statistical analysis; J.P. and J.N. analyzed the data; B.G.G. wrote the manuscript and had the primary responsibility for final content. All authors read and approved the final manuscript.

Funding source: This study was supported by the Polish National Science Center (NCN) under grant No. N404 504 638.

Conflict of Interest Disclosures: The authors do not have any conflicts of interest.

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

References

1. Global status report on noncommunicable diseases 2010. Geneva, World Health Organization, 2011.
2. Zdrojewski T, Solnica B, Cybulska B, Bandoz P, Rutkowski M, Stokwiszewski J, Gazcrog Z, Banach M, Woźniak B, Pencina M, Wyrzykowski B. Prevalence of lipid abnormalities in Poland. The NATPOL 2011 survey. Kardiol Pol, 2016;74:213-23.
3. Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, Agehall S, Alegraia E, Chapman MJ, Durrington P et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J, 2011;32:1769–1818.
4. Banegas JR, Lopez-Garcia E, Dallongeville J, Guallar E, Halcox JP, et al. (2011) Achievement of treatment goals for primary prevention of cardiovascular disease in clinical practice across Europe: the EURIKA study. Eur Heart J 32: 2143–2152.
5. Firmann M, Marques-Vidal P, Paucaud F, Mossor V, Rodondi N, et al. (2010) Prevalence, treatment and control of dyslipidaemia in Switzerland: still a long way to go. Eur J Cardiovasc Prev Rehabil 17: 682–687.
6. Laccetti R, Pota A, Stranges S, Falconi C, Memoli B, et al. (2012) Evidence on the prevalence and geographic distribution of major cardiovascular risk factors in Italy. Public Health Nutr 16: 305–315.
7. Gomez-Huelgas R, Mancera-Romero J, Bernal-Lopez MR, Jensen-Chaparro S, Baca-Osorio AJ, et al. (2011) Prevalence of cardiovascular risk factors in an urban adult population from southern Spain. IMAP Study. Int J Clin Pract 65: 35–40.
8. Vidal-Puig A, Jimenez-Linan M, Lowell B B, Hamann A, Hu E, Spiegelman B, Flier J S., Moller D E. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J. Clin. Invest, 1996;97:2553–2561.
9. Grygiel-Gorniak B, Kaczmarek E, Moser M, Przyszlawski J, Nowak J. Association of PPAR-y2 and β3-AR Polymorphisms With Postmenopausal Hypertension. J Clin Hypertens (Greenwich), 2015;17:549-56.
10. Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC, Hunter DJ. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet, 2003;12:2923–2929.
11. Robitaille J, Despres JP, Perusse L, Voil MC. The PPAR-gamma P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: results from the Quebec Family Study. Clin Genet, 2003;63:109–116.
12. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Williams TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999;3:397–403.
13. Semple R K., Chatterjee V K., O’Rahilly S. PPARy and human metabolic disease. J Clin Invest, 2006;116:581–589.
14. Yang LL, Hua Q, Liu RK, Yang Z. Association between two common polymorphisms of PPARgamma gene and metabolic syndrome families in a Chinese population. Arch Med Res, 2009;40:89–96.
15. Rooki H, Haertan MS, Azizunazheh P, Mirhafesan R, Elbrehimi M, Ferns G, Ghayour-Mobarhan M, Zali MR. Associations between C143T and Pro12Ala variants of PPARγ gene and their haplotypes with susceptibility to metabolic syndrome in an Iranian population. Mol Biol Rep, 2014;41:3127–3133.
16. Oladi M, Nothani M, Avan A, Mirhafesan S, Tajbakhsh A, Ghasemi F, Asadi A, Elahdahi Salami M, Mohammadi A, Hoseinzadeh L, Ferns GA, Ghayour-Mobarhan...
M. Impact of the C1431T Polymorphism of the Peroxisome Proliferator Activated Receptor-Gamma (PPAR-γ) Gene on Fasted Serum Lipid Levels in Patients with Coronary Artery Disease. Ann Nutr Metab, 2015;66:149-54.

17. Lonnqvist F, Thorne A, Nilssell K, Hoffstedt J, Arner P. A pathogenic role of visceral fat β3-adrenoreceptors in obesity. J Clin Invest, 1995;95:1109-1116.

18. Clément K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, Silver KD, Shuldiner AR, Froguel P, Stroebel AD. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med, 1995;333(6):352-4.

19. ISAK International standards for anthropometric assessment. International Society for the Advancement of Kinesiometry; 2001.

20. World Health Organization. Diet, nutrition and the prevention of chronic diseases. WHO Technical Report Series 916 chapter 5 Geneva 2003.

21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem, 1972;18:499-502.

22. Belgian Society of Cardiology – ESC. Prevention of coronary heart disease in clinical practice. Eur Heart J, 1998;19:1430-503.

23. Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc Disord. 2005;5:26.

24. Maturana MA, Moreira RM, Spritzer PM. Lipid accumulation product (LAP) is related to androgenicity and cardiovascular risk factors in postmenopausal women. Maturitas, 2011;70:395-399.

25. Jarosz M, Bulhak -Jachymczyk B. [Recommended values of human nutrition]. Medical Publishing Company PZWL, Warsaw, 2013. Polish.

26. Siemenius K, Valve R, Lindi V, et al. Synergistic effect of polymorphisms in uncoupling protein 1 and β3-adrenergic receptor genes on long-term body weight change in Finnish type 2 diabetic and non diabetic control subjects. Int J Obes Relat Metab Disord, 2000;24:514-519.

27. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper M, Eichler EE, Handsaker RE, Kolar CJ, Ralapati S, Rorie EA, Ziaugra L, Doolin P, develop. [Human Variation Project Team]. The background of obesity and non communicable diseases prevention]. Medical Publishing Company PZWL, Warsaw, 2013. Polish.

28. World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity, Geneva, 2000.

29. Ruiz-Narváez EA, Kraft P, Campos H. Aha 12 variant of the peroxisome proliferator-activated receptor-gamma gene (PPARG) is associated with higher polysaturated fat in adipose tissue and attenuates the protective effect of polysaturated fat intake on the risk of myocardial infarction. Am J Clin Nutr, 2007;86:1238-1242.

30. Król E, Jachymczyk B, Górska E, Niedziela J, Kowalczyk J, Lampe J, Boesl M, Troeger C, Schwenk T, Burger H, Meisel C, Fröhlich J, Nüsken N, Rittner P, Zerneck D, Kiefer T, Neumeier M, Dittrich J, Drescher M, Schillinger M, Pabst O, Siemenius K, Akerboom D, Hohlfeld R, Hafner M, Nierenheuer M, Paul M, Schilling A, Röcken C, Dörner T, Simonetti F, Feichtinger K, Kuch B, Gamsjäger J, Röcker C, Schmitt H, Scheibenhardt P, Thalhammer J, The ADRB3 Trp64Arg variant and BMI: a meta-analysis of 44,833 individuals. Int J Obes (Lond), 2008;32:1240-1249.

31. de Luis DA, Aller R, Izaola O, Gonzalez-Sagrado M, Conde R. Relationship of beta3-adrenergic receptor gene with cardiovascular risk factors in presurgical morbidly obese patients. Arch Med Res, 2008;39:791-795.

32. Merwitz A, Rajab NF, Shahar S, Sharif R: Cognitive impairment, genomic instability and trace elements. J Nutr Health Aging. 2015;19(1):48-57.