The $B \to \rho$ helicity form factors within the QCD light-cone sum rules

Wei Cheng1, Xing-Gang Wu1, Rui-Yu Zhou1, and Hai-Bing Fu2

1Department of Physics, Chongqing University, Chongqing 401331, P.R. China and
2School of Science, Guizhou Minzu University, Guiyang 550025, P.R. China

(Dated: October 18, 2018)

We study the $B \to \rho$ helicity form factors (HFFs) by applying the light-cone sum rules up to twist-4 accuracy. The HFF has some advantages in comparison to the conventionally calculated transition form factors, such as the HFF parameterization can be achieved via diagonalizable unitarity relations and etc. At the large recoil point, only the ρ-meson longitudinal component contributes to the HFFs, and we have $H_{\rho,0}(0) = 0.435 \pm 0.055$ and $H_{\rho,1}(0) = 0$. We extrapolate the HFFs to physically allowable q^2-region and apply them to the $B \to \rho$ semileptonic decay. We observe that the ρ-meson longitudinal component dominates its differential decay width in low q^2-region, and its transverse component dominates the high q^2-region. Two ratios R_{low} and R_{high} are used to characterize those properties, and our LCSR calculation gives, $R_{\text{low}} = 0.967_{-0.285}^{+0.308}$ and $R_{\text{high}} = 0.219_{-0.070}^{+0.055}$, which agree with the BaBar measurements within errors.

PACS numbers: 13.25.Hw, 11.55.Hx, 12.38.Aw

I. INTRODUCTION

The B-meson decays are important for precision test of standard model (SM) and for seeking of new physics beyond the SM. Within the framework of SM, they can be used to fix the masses and couplings of the basic particles, research the CP-violation phenomena, determine more precise values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, and etc, cf. Refs.[1-8].

For the B-meson decays, one has to deal with the one-particle, the two-particle, and the three or more particle matrix elements. Those hadronic matrix elements are key components for extracting useful information on the underlying flavor transitions and studying the decay constants, the transition form factors (TFFs), the mixings and decay amplitudes. The γ-structures of those non-perturbative hadronic matrix elements can be decomposed into Lorentz-invariant structures by using covariant decomposition, leading to basic TFFs for various decay channels.

Matrix element	TFFs	HFFs		
$\langle \bar{q} \gamma^\mu b	V	B \rangle$	V	$H_{V,0}, H_{V,1}$
$\langle \bar{q} \gamma^\mu \gamma^5 b	B \rangle$	A_0, A_1, A_2	$H_{V,1}, H_{V,2}$	
$\langle \bar{q} \sigma^{\mu\nu} q	B \rangle$	T_1	$H_{\tau,0}$	
$\langle \bar{q} \gamma^{\mu-\nu}\gamma^5 q	B \rangle$	T_2, T_3	$H_{\tau,1}, H_{\tau,2}$	

TABLE I. The relations among the $B \to \rho$ helicity form factors (HFFs), the helicity form factors (HFFs), and the hadronic matrix elements.

Specifically, for the $B \to \rho$ decays, we need to deal with seven TFFs for the hadronic matrix elements [9, 10], which are shown in Table I. For convenience, we also present the relations among the $B \to \rho$ hadronic matrix elements in Table I.

The $B \to \rho$ decays have been analyzed by various experimental groups, such as the BaBar collaboration [11, 12], the Belle collaboration [13], the LHCb collaboration [14, 15], the ATLAS collaboration [16], the CLEO collaboration [17]. On the other hand, the TFFs/HFFs for the $B \to \rho$ decays have been calculated under various approaches, such as the light-cone sum rules (LCSR) [18-28], the lattice QCD (LQCD) [29-36], the perturbative QCD (pQCD) [37-41], or some Phenomenological model [42, 43]. Those approaches are complementary to each other, which are applicable for different q^2-region.

For the $B \to \rho$ decays, we shall express the hadronic matrix elements by using the HFF with the help of the covariant helicity projection approach [44]. The HFFs are also Lorentz-invariant functions which can be formally expressed as the linear combination of the usually adopted TFFs.

Transition	J^P	Mass (GeV)	HFFs
$b \to d$	1^-	5.33	$H_{V,1}$
1^+	5.72	$H_{V,1}, H_{V,2}$	

TABLE II. The masses of low-lying B_d resonances [9] and their relations to the HFFs, which are obtained by relating the dominant poles in the LCSR to those low-lying resonances.
II. CALCULATION TECHNOLOGY FOR THE \(B \to \rho \) HFFS

As for the \(B \to \rho \ell\nu_e \) semileptonic decays, we need to deal with the hadronic matrix element:

\[
\sum_{\alpha=0,\pm,t} \langle \rho(k,\varepsilon_\alpha(k))|\bar{q}\gamma_\mu(1-\gamma^5) b|B(p)\rangle.
\]

where \(k = (k^0,0,0,|\vec{k}|) \), \(\varepsilon_\alpha(k) \) are \(\rho \)-meson longitudinal \((\alpha = 0)\) and transverse \((\pm)\) polarization vectors. In the \(B \)-meson rest frame with the \(z \) axis along the \(\rho \)-meson moving direction, and we have

\[
\varepsilon_0(k) = \frac{1}{m_\rho}(|\vec{k}|,0,0,k^0),
\]

\[
\varepsilon_\pm(k) = \mp \frac{1}{\sqrt{2}}(0,1,\mp i,0),
\]

where \(|\vec{k}| = \sqrt{\lambda}/2m_B, \) \(k^0 = (M_B^2 + m_\rho^2 - q^2)/2m_\rho \) with \(q = p - k \), and \(\lambda = (t_+ - q^2)(t_+ - q^2) \) with \(t_\pm = (m_B \pm m_\rho)^2 \). The polarization vectors satisfy \(k \cdot \varepsilon_\alpha(k) = 0 \).

As proposed by Ref. [44], one can adopt the covariant helicity projection approach to study those hadronic matrix element (1). The off-shell \(W \)-boson has similar polarization vectors as those of \(\rho \)-meson, e.g. the off-shell \(W \)-boson with momentum \(q = (q^0,0,0,-|\vec{q}|) \) are

\[
\varepsilon_0(q) = \frac{1}{\sqrt{q^2}}(|\vec{q}|,0,0,-q^0),
\]

\[
\varepsilon_\pm(q) = \mp \frac{1}{\sqrt{2}}(0,1,\mp i,0),
\]

\[
\varepsilon_t(q) = \frac{1}{\sqrt{q^2}}q_t,
\]

where \(|\vec{q}| = |\vec{k}|, q^0 = (M_B^2 + m_\rho^2 + q^2)/2m_\rho \), and the extra vector \(\varepsilon_t(q) \) is the time-like polarization vector. The linear combinations of the transverse helicity projection vector \(\varepsilon_\pm(q) \) give

\[
\varepsilon_1(q) = \frac{\varepsilon_-(q) - \varepsilon_+(q)}{\sqrt{2}} = (0,1,0,0),
\]

\[
\varepsilon_2(q) = \frac{\varepsilon_-(q) + \varepsilon_+(q)}{\sqrt{2}} = (0,0,i,0).
\]

Using the off-shell \(W \)-boson polarization vectors, one can project out the relevant HFFs from the hadronic matrix elements [9]

\[
\mathcal{H}_{\rho,\sigma}(q^2) = \sqrt{\frac{q^2}{\lambda}} \sum_{\alpha=0,\pm,t} \varepsilon_\sigma^\mu(q) \int d^4xe^{i\vec{q}\cdot\vec{x}} \langle \rho(k,\varepsilon_\alpha(k))|\bar{q}\gamma_\mu(1-\gamma^5) b|B(p)\rangle,
\]

where \(q = p - k \). In the following, we shall not consider the time-like HFF (1), which can be treated by using the same way and has no contribution to semileptonic decay width due to chiral suppression.

Following the standard LCSR procedures [7, 21, 45], we can derive the LCSRs for the \(B \to \rho \) HFFs. We first define a two-point correlation function as

\[
\Pi_\sigma(p,q) = -i\sqrt{\frac{q^2}{\lambda}} \sum_{\alpha=0,\pm,t} \varepsilon_\sigma^\mu(q) \int d^4xe^{i\vec{q}\cdot\vec{x}} \times \langle \rho(k,\varepsilon_\alpha(k))|T\{j_{V-A,\mu}(x),j_B^{\sigma}(0)\}|0\rangle,
\]

where the currents \(j_{V-A,\mu}(x) = \bar{d}(x)\gamma_\mu(1-\gamma_5)b(x) \) and \(j_B^{\sigma}(0) = i\gamma_\nu b(0)\gamma_5q(0) \) which has the same quantum state of the \(B \)-meson with \(J^{PC} = 0^- \), and \(\sigma = (0,1,2) \).

In the time-like \(q^2 \)-region, one can insert a complete series of the intermediate hadronic states in the correlator (10) and single out the pole term of the \(B \)-meson lowest pseudoscalar,

\[
\Pi_\sigma^{\text{H}} = \sqrt{\frac{q^2}{\lambda}} \sum_{\alpha=0,\pm,t} \varepsilon_\sigma^\mu(q) \frac{\langle \rho(k,\varepsilon_\alpha(k))|\bar{q}\gamma_\mu(1-\gamma^5) b|B\rangle\langle B|\bar{b}\gamma_5q\rangle}{m_b[m_B^2 - (p + q)^2]} + \sqrt{\frac{q^2}{\lambda}} \sum_{\alpha=0,\pm,t} \varepsilon_\sigma^\mu(q) \frac{\langle \rho(k,\varepsilon_\alpha(k))|\bar{q}\gamma_\mu(1-\gamma^5) b|B^{\text{H}}\rangle\langle B^{\text{H}}|\bar{b}\gamma_5q\rangle}{m_b[m_B^{\text{H}} - (p + q)^2]},
\]

(11)
where $\langle B\bar{B}\gamma_5 q|0\rangle = m_B^2 f_B/m_0$ with f_B being the B-meson decay constant. By replacing the contributions from the higher-level resonances and continuum states with the dispersion relations, the invariant amplitudes can be rewritten as

$$
\Pi_\sigma^H = \frac{m_B^2 f_B}{m_0 m_B^2 - (p + q)^2} H_{\rho,0}(q^2) + \int_{s_0}^{\infty} \frac{\rho_H^H}{s - (p + q)^2} ds + \cdots,
$$

(12)

where s_0 stands for the continuum threshold parameter and the ellipsis is the subtraction constant or the finite q^2-polynomial, which has no contribution to the final sum rules. The spectral densities $\rho_H(s)$ can be approximated by using the ansatz of the quark-hadron duality [46], i.e. $\rho_H(s) = \rho_{QCD}^H(s)\theta(s - s_0)$.

In the space-like q^2-region, i.e. $(p + q)^2 - m_B^2 \ll 0$ and $q^2 \ll m_B^2$ for the momentum transfer, which correspond to small light-cone distance $x^2 \approx 0$, the correlator (10) can be calculated by using the operator product expansion (OPE). By using the b-quark propagator given by Ref.[20], we obtain

$$
\Pi_\sigma^{OPE}(p, q) = -i \sqrt{\frac{2}{\pi}} \sum_{a=0, \pm, t} \varepsilon_i^{\mu}(q) \int \frac{d^4 k}{(2\pi)^4} \frac{\epsilon^{(q-k)^\mu}}{m_B^2 - k^2}
$$

$$
\left\{ k^\nu (\rho(k, \varepsilon_{a}(k))|T\{\bar{d}(x)\gamma_\mu q(0)|0\rangle + k^\nu (\rho(k, \varepsilon_{a}(k))|T\{\bar{d}(x)\gamma_\mu q(0)|0\rangle \right\}
$$

$$
+ m_B (\rho(k, \varepsilon_{a}(k))|T\{\bar{d}(x)\gamma_\mu q(0)|0\rangle \right\} - m_B (\rho(k, \varepsilon_{a}(k))|T\{\bar{d}(x)\gamma_\mu q(0)|0\rangle + \cdots (13)
$$

The nonlocal matrix elements can be expressed in terms of the ρ-meson LCDAs of various twists [21, 47], which are put in the Appendix.

The LCSRs for the $B \to \rho$ HFFs are then ready to be derived by equating the correlator in the time-like and space-like regions due to analytic property of the correlator in different q^2-regions. After applying the Borel transformation, which removes the subtraction term in the dispersion relation and exponentially suppresses the contributions from unknown excited resonances, we get the required LCSRs for the HFFs:

\[\text{(14)} \]
\[
\mathcal{H}_{\rho,1} = \frac{\sqrt{2q^2m_B}}{2f_Bm_B^2} \int_0^1 du e^{(m_B^2-s(u))/M^2} \left\{ f_{\rho}^+ \Theta(c(u,s_0)) \phi_{2,\rho}^+(u) + \frac{m_{\rho}m_B}{2u^2M^2} \Theta(c(u,s_0)) \psi_{3,\rho}^+(u) \right. \\
+ \frac{m_{\rho}m_B}{u^2M^2} \Theta(c(u,s_0)) + \frac{1}{u^2M^2} \Theta(c(u,s_0)) \left. \frac{m_{\rho}m_B}{4} \phi_{4,\rho}^+(u) \right\} + \int_0^1 dv \int_0^1 du \int_0^1 dD e^{(m_B^2-s(u))/M^2} \times \frac{\sqrt{2q^2m_{\rho}^2m_B^2}}{6(m_B + m_\rho)} \Theta(c(u,s_0)) \left[(2v - 1)\bar{\Psi}_{3,\rho}(\alpha) + 12 \left(\Psi_{4,\rho}(\alpha) - 2(u - 1)(\Phi_{4,\rho}^{(1)}(\alpha) - \Phi_{4,\rho}^{(2)}(\alpha)) \right) \right], \quad (15)
\]

\[
\mathcal{H}_{\rho,2} = \frac{\sqrt{2q^2m_{\rho}m_B}}{\sqrt{f_Bm_B^2}} \int_0^1 du e^{(m_B^2-s(u))/M^2} \left\{ \frac{m_{\rho}m_B}{2u^2m_B^2} \Theta(c(u,s_0)) \phi_{2,\rho}^+(u) + \frac{m_{\rho}m_B}{2u} \Theta(c(u,s_0)) \right. \\
\times \psi_{3,\rho}^+(u) + \frac{m_{\rho}m_B}{u} \Theta(c(u,s_0)) \phi_{3,\rho}^+(u) - m_{\rho}f_{\rho}^+ \left[\frac{m_{\rho}^2C}{8u^4M^2} \Theta(c(u,s_0)) + \frac{C - 2m_{\rho}^2}{8u^3M^2} \Theta(c(u,s_0)) \right] \\
- \frac{1}{8u^2} \Theta(c(u,s_0)) \right\} \phi_{4,\rho}^+(u) - \frac{m_{\rho}m_B}{u^2M^2} \Theta(c(u,s_0)) C_{\rho}(u) - m_{\rho}f_{\rho}^+ \left[\frac{C}{u^3M^2} \Theta(c(u,s_0)) - \frac{1}{u^2} \right] \times \Theta(c(u,s_0)) \right\} \int_0^1 dv \int_0^1 du \int_0^1 dD \\
\times e^{(m_B^2-s(u))/M^2} \Theta(c(u,s_0)) \sqrt{2q^2m_{\rho}^2m_B^2} \left\{ f_{\rho}^+ \left[\bar{\Psi}_{4,\rho}(\alpha) - 12 \left(\Psi_{4,\rho}(\alpha) - 2v\Psi_{4,\rho}(\alpha) \right) \right. \\
+ 2\Phi_{4,\rho}^{(1)}(\alpha) - 2\Phi_{4,\rho}^{(2)}(\alpha) + 4v\Phi_{4,\rho}^{(2)}(\alpha) \right\} \left(m_B^2 - m_\rho^2 + 2m_B^2 \right) + 2m_Bm_{\rho}f_{\rho}^+ \left[\Phi_{3,\rho}^+(\alpha) + 12\Phi_{3,\rho}^+(\alpha) \right] \right\}, \quad (16)
\]

where we have implicitly set the factorization scale as \(\mu \).

\[
\int dD = \int d\alpha_1 d\alpha_2 d\alpha_3 (1 - \sum_{i=1}^3 \alpha_i). \quad C = m_B^2 + u^2m_{\rho}^2 - q^2, \\
\mathcal{E} = m_B^2 - u^2m_{\rho}^2 + q^2, \quad F = m_B^2 - u^2m_{\rho}^2 - q^2, \quad \mathcal{H} = q^2/(m_B^2 - m_{\rho}^2), \quad Q = m_B^2 - m_{\rho}^2 - q^2, \quad (c, s_0) = g_0 - m_B^2 + \bar{q}^2 - \bar{q}m_{\rho}^2 \\
\text{and} \quad (s_\rho) = [m_B^2 - \bar{q}(q^2 - \bar{q}m_{\rho}^2)]/\bar{q} = u \text{ with } \bar{q} = 1 - q. \quad \Theta(c(u,s_0)) \text{ denotes the usual step function.} \quad \Theta(c(u,s_0)) \text{ and } \tilde{\Theta}(c(u,s_0)) \text{ can be obtained from the surface terms } \\
\delta(c(u_0,s_0)) \text{ and } \Delta(c(u_0,s_0)), \text{ whose explicit forms have been given in Ref. [10].} \quad \text{The functions } A_{\rho}(u), B_{\rho}(u), \text{ } \text{ } C_{\rho}(u), H_3(u) \text{ and } I_L(u) \text{ are defined as:}
\]

\[
A_{\rho}(u) = \int_0^u dv \left[\phi_{4,\rho}^+(v) - \phi_{3,\rho}^+(v) \right], \quad (17)
B_{\rho}(u) = \int_0^u dv \psi_{4,\rho}^+(v), \quad (18)
C_{\rho}(u) = \int_0^u dv \int_0^v dw \left[\psi_{4,\rho}^+(w) + \phi_{3,\rho}^+(w) \right. \\
- 2\phi_{3,\rho}^+(w) \right], \quad (19)
H_3(u) = \int_0^u dv \left[\psi_{4,\rho}^+(v) - \phi_{3,\rho}^+(v) \right] \quad (20)
\]

and

\[
I_L(u) = \int_0^u dv \int_0^v dw \left[\phi_{3,\rho}^+(w) - \frac{1}{2} \phi_{4,\rho}^+(w) \right. \\
- \frac{1}{2} \psi_{4,\rho}^+(w) \right]. \quad (21)
\]

III. NUMERICAL RESULTS

A. Input parameters and the HFFs

We take the \(\rho \)-meson decay constants \([47], f_{\rho}^+ = 0.145(9) \text{ GeV and } f_{\rho}^\parallel = 0.216(9) \text{ GeV, the } b \)-quark pole mass \(m_b = 4.80 \pm 0.05 \text{ GeV}, \text{ the } \rho \)-meson mass \(m_\rho = 0.775 \text{ GeV}, \text{ the } B \)-meson mass \(m_B = 5.279 \text{ GeV} \) and the \(B \)-meson decay constant \(f_B = 0.160 \pm 0.019 \text{GeV} \).\]

The factorization scale \(\mu \) is set as the typical momentum transfer of \(B \rightarrow \rho \), i.e. \(\mu \simeq (m_B^2 - m_{\rho}^2)^{1/2} \sim 2 \text{ GeV} \), and we set our error as \(\Delta \mu = \pm 1 \text{ GeV} \).\]

Up to twist-4 accuracy, the needed \(\rho \)-meson light-cone distribution amplitudes (LCDAs) are grouped in Table III, in which \(\delta = m_\rho/m_b \sim 0.16 \). Since the contributions from the twist-4 terms themselves are numerically small, we thus directly adopt the twist-4 LCDAs model derived from the conformal expansion of the matrix element to do the numerical calculation \([47]\). Contribu-
show how the LCDA are suppressed by ϕ particle twist-3 LCDAs, i.e. of the twist-2 light-cone wavefunction model constructed by integrating out the transverse momentum dependence. We present the results from the twist-3 LCDAs $\phi_{3,\rho}^\perp$, $\psi_{3,\rho}$, $\phi_{3,\rho}^\parallel$ and $\bar{\psi}_{3,\rho}$ are suppressed by δ^1 and the twist-3 contributions from the LCDAs $\phi_{3,\rho}^\parallel$ and $\psi_{3,\rho}$ are suppressed by δ^2. The 2-particle twist-3 LCDAs, i.e. $\phi_{3,\rho}^\perp$, $\psi_{3,\rho}$, $\phi_{3,\rho}^\parallel$ and $\bar{\psi}_{3,\rho}$, can be related to the twist-2 LCDAs $\phi_{2,\rho}^\perp$ and $\phi_{2,\rho}^\parallel$ via the Wandzura-Wilczek approximation [19, 49]. The 3-particle twist-3 LCDAs are also numerically small and we shall adopt the models of Ref.[47] to do the calculation. The twist-2 LCDAs, $\phi_{2,\rho}^\perp$ and $\phi_{2,\rho}^\parallel$, can be derived by integrating out the transverse momentum dependence of the twist-2 light-cone wavefunction model constructed in Refs.[26, 27, 50–55]. For convenience, we call it as the WH-DA model, which states

$$\phi_{2,\rho}^\lambda (x, \mu_0) = \frac{A^\lambda_{2,\rho}}{8\pi^3/2} \int_0^\lambda x \bar{n} x m_4 [1 + B^\lambda_{2,\rho} e^{-1/2} (\xi)]$$

where $\lambda = \parallel$ or \perp, respectively. The reduced decay constants $\bar{f}_{\rho}^\perp = f_{\rho}^\perp / \sqrt{3}$ and $\bar{f}_{\rho}^\parallel = f_{\rho}^\parallel / \sqrt{5}$, $\xi = 2x - 1$, and the error function $\text{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$. The lepton quark mass m_q is usually taken as 0.3 GeV and we vary it within the region of $[0.2, 0.4]$ GeV for its uncertainty. The parameters $A^\lambda_{2,\rho}$, $B^\lambda_{2,\rho}$ and $b^\lambda_{2,\rho}$ can be determined by using the usual constraints:

- The normalization condition, $\int \phi_{2,\rho}^\lambda (x) dx = 1$;
- The average of the squared transverse momentum, $(k^2)^{1/2} = 0.37$ GeV [50, 56].
- The second Gegenbauer moments of the twist-2 LCDAs $\phi_{2,\rho}^\perp$ and $\phi_{2,\rho}^\parallel$, $a^2_2 (1 \text{ GeV}) = 0.14(6)$ and $a^2_2 (1 \text{ GeV}) = 0.15(7)$ [47].

Using those constraints, we can obtain the LCDA at the scale of 1 GeV, whose behavior at any other scales can be achieved via the renormalization group evolution [57]. The LCDA at any other scales can be obtained by using the conventional evolution equation. We present the parameters of $\phi_{2,\rho}^\perp$ and $\phi_{2,\rho}^\parallel$ in Table IV and V, and the corresponding curves in Fig.1. Those two LCDAs are close in shape, both of which change from a convex behavior to a doubly humped behavior with the increment of the second Gegenbauer moment.

![FIG. 1. The leading-twist LCDA $\phi_{2,\rho}^\lambda (x, \mu_0 = 1 \text{ GeV})$, where λ stands for the transverse ($\lambda = \perp$) and longitudinal ($\lambda = \parallel$) components, respectively. $m_q = 0.3$ GeV.](image)

TABLE III. The ρ-meson LCDAs with different twist-structures, where $\delta \approx m_q / m_\rho$ [21].	twist-2	twist-3	twist-4
$\phi_{2,\rho}^\perp$	$\phi_{3,\rho}^\perp$	$\phi_{4,\rho}^\perp$	$\Phi_{4,\rho}^{(1)}$, $\Phi_{4,\rho}^{(2)}$
$\phi_{2,\rho}^\parallel$	$\psi_{3,\rho}$, $\Phi_{3,\rho}^\parallel$	$\phi_{4,\rho}^\parallel$, $\psi_{4,\rho}$, $\Phi_{4,\rho}^\parallel$	
$\phi_{3,\rho}^\perp$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\perp$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\perp$	$\phi_{3,\rho}^\perp$	$\phi_{3,\rho}^\perp$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$
$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\phi_{3,\rho}^\parallel$	$\Phi_{3,\rho}^{(1)}$, $\Phi_{3,\rho}^{(2)}$

![TABLE IV. Parameters of the ρ-meson transverse leading-twist LCDA for some typical choices of $a_2^\perp (1 \text{ GeV})$. $m_q = 0.3$ GeV.](image)

a_2^\perp	A_2^\perp	B_2^\perp	b_2^\perp
0.20	22.679	0.151	0.555
0.14	23.808	0.100	0.572
0.08	25.213	0.050	0.595

![TABLE V. Parameters of the ρ-meson longitudinal leading-twist LCDA for some typical choices of $a_2^\parallel (1 \text{ GeV})$. $m_q = 0.3$ GeV.](image)

a_2^\parallel	A_2^\parallel	B_2^\parallel	b_2^\parallel
0.22	22.620	0.168	0.549
0.15	23.951	0.109	0.569
0.08	25.275	0.048	0.590
and 9
V
VII
the resonance of the
we set
s
a
m
tainties, the LCDA uncertainties from different choice of
effects to the LCDA. Thus when discussing the uncer-
tainties, the LCDA uncertainties from different choice of
m_q shall also be included.

TABLE VI. The Borel parameter M^2 for the HFFs $H_{\rho,\sigma}$ at the
continuum threshold $s_0 = 34.0$ GeV2.

$H_{\rho,0}$	$H_{\rho,1}$	$H_{\rho,2}$	
M^2	$25^{+0.5}_{-0.7}$	$34.1^{+12.5}_{-7.8}$	$21.8^{+3.7}_{-2.0}$

As for the LCSRs of the HFFs, we also need to know
the continuum threshold s_0 and the allowable range of
the Borel parameter M^2, i.e. the so-called Borel window.
The continuum threshold s_0, being as the demarcation of
the B-meson ground state and higher mass contributions,
is usually set as the one that is close to the first known resonance of
the B-meson ground state. For the purpose, we set s_0 as
34.0 ± 1.0 GeV2, which indicates that the
excitation energy is around 0.45 GeV to 0.65 GeV. The
correlator is expanded over $1/M^2$, when we calculate it to
all-power series, it shall be independent to the choice of
$1/M^2$. However we only know its first several terms, and
we have to set a proper range for M^2. As a conservative
prediction, we require the continuum contribution to be
less than 65% of the total LCSR to set the upper limit of
M^2, e.g.

$$\int_{s_0}^{\infty} ds \rho^{\text{tot}}(s) e^{-s/M^2} \leq 65\%.$$ \hspace{1cm} (23)

Generally, the net contributions from the highest-twist
terms increase with the decrement of M^2, and the lower
limit of M^2 is usually fixed by requiring the highest-twist contributions to be small so as to ensure the convergence
of the twist expansion. For the present considered three
HFFs $H_{\rho,\sigma}$, the twist-4 contributions behave quite
differently. As a unified criteria for those HFFs, we adopt
the flatness of the HFFs over M^2 to set the lower limit of
M^2, e.g., we require the HFFs to be changed less than 1%
within the Borel window. The determined Borel window
M^2 are listed in the Table VI.

TABLE VII. Uncertainties of the LCSR predictions on the
HFFs $H_{\rho,\sigma}$ at the $q^2 = 10$ caused by the errors of the
input parameters, e.g. ΔDA shows the uncertainty caused by
varying the leading-twist LCDA with the parameters listed
in Tables IV and V, in which the uncertainties caused by
varying m_q from $0.2\text{GeV} \rightarrow 0.4\text{GeV}$ are also included.

$H_{\rho,0}$	$H_{\rho,1}$	$H_{\rho,2}$			
ΔDA	$\Delta \mu$	ΔM^2	Δs_0	$\Delta (m_\rho; f_B)$	
0.688	-0.003	0.000	0.006	0.027	0.076
0.314	-0.002	0.000	0.003	0.015	0.020
0.408	-0.003	0.000	0.003	0.024	0.032

We take the HFFs $H_{\rho,\sigma}(q^2 = 10)$ as explicit examples
to show how the HFFs change with the input parameters.
The results are collected in Table VII, where errors from
the B-meson decay constant f_B, the b-quark pole mass
m_b, the ρ-meson mass m_ρ, the factorization scale μ, the
Borel parameter M^2 and the continuum threshold s_0.
Table VII shows that the main errors of those HFFs come from
the parameters m_b, f_B, and s_0, whose effects could be
up to $\sim 10\%$ - 20% accordingly.

B. Extrapolation of the HFFs to all q^2-region

The LCSR method is only valid for large energy of the
final-state vector meson, e.g. $E_\rho \gg \Lambda_{\text{QCD}}$. It implies a
not too large q^2 via the relation $q^2 = m_B^2 - 2m_B E_\rho$, e.g.

$$0 \leq q^2 \leq q_{\text{LCSR,max}}^2 \simeq 14 \text{ GeV}^2.$$ \hspace{1cm}

On the other hand, the allowable physical range for q^2 is
about $[0, 20.3] \text{ GeV}^2$, in which the upper limit is fixed by
$q^2_{\text{max}} = (m_B - m_\rho)^2$ \cite{21}. We adopt the method suggested by
Ref.\cite{9} to do the extrapolation of the HFFs, i.e. the

FIG. 2. The leading-twist LCDA $\phi_{2,\rho}(x, \mu_0 = 1 \text{ GeV})$ for
$m_q \in [0.2, 0.4] \text{ GeV}$, where λ stands for the transverse
$(\lambda = \perp)$ and longitudinal $(\lambda = ||)$ components, respectively.
$\sigma_2(1 \text{ GeV}) = 0.14$ and $\sigma_2(1 \text{ GeV}) = 0.15$.

\hspace{1cm} 21
The HFFs $\mathcal{H}_{\rho,\sigma}$ shall be extrapolated as a simplified series expansion as follows:

$$
\mathcal{H}_{\rho,0}(t) = \frac{1}{B(t) \sqrt{z(t,t_{-})}} \phi_{1}^{V,A}(t) \sum_{k=0}^{\infty} a_{k}^{0} z^{k},
$$

$$
\mathcal{H}_{\rho,1}(t) = \frac{\sqrt{-z(t,0)}}{B(t) \phi_{1}^{V,A}(t)} \sum_{k=0}^{\infty} a_{k}^{1} z^{k},
$$

$$
\mathcal{H}_{\rho,2}(t) = \frac{\sqrt{-z(t,0)}}{B(t) \sqrt{z(t,t_{-})}} \phi_{1}^{V,A}(t) \sum_{k=0}^{\infty} a_{k}^{2} z^{k},
$$

where $\phi_{1}^{V}(t) = 1$, $\sqrt{-z(t,0)} = \sqrt{q^{2}/m_{B}}$, $B(t) = 1 - q^{2}/m_{\rho,\tau}$, $\sqrt{z(t,t_{-})} = \sqrt{\lambda/m_{B}^{2}}$, and

$$
z(t) = \sqrt{t_{+} - t - \sqrt{t_{+} - t_{0}}} \sqrt{t_{+} - t + \sqrt{t_{+} - t_{0}}}
$$

with $t_{\pm} = (m_{B} \pm m_{\rho})^{2}$ and $t_{0} = t_{+}(1 - 1 - t_{-}/t_{+})$.

Table VIII

The fitted parameters $a_{k}^{\rho,\sigma}$ for the HFFs $\mathcal{H}_{\rho,\sigma}$, where all input parameters are set to be their central values.

$\mathcal{H}_{\rho,0}$	$\mathcal{H}_{\rho,1}$	$\mathcal{H}_{\rho,2}$	
$a_{k}^{\rho,\sigma}$	0.257	0.386	
$a_{k}^{\rho,\sigma}$	1.511	-1.020	-0.310
Δ	0.238	0.045	0.128

The parameters $a_{k}^{\rho,\sigma}$ can be determined by requiring the “quality” of fit (Δ) to be less than one, where Δ is defined as

$$
\Delta = \frac{\sum_{t} \left| \mathcal{H}_{\rho,\sigma}(t) - \mathcal{H}_{\rho,\sigma}^{fit}(t) \right|}{\sum_{t} \left| \mathcal{H}_{\rho,\sigma}(t) \right|} \times 100,
$$

where $t \in [0, \frac{1}{2}, \cdots, \frac{1}{14}]$ GeV2. We put the determined parameters $a_{k}^{\rho,\sigma}$ in Table VIII, in which all the input parameters are set to be their central values.

We put the extrapolated $B \to \rho$ HFFs $\mathcal{H}_{\rho,\sigma}(q^{2})$ in Fig.(3), where the shaded band stands for the squared average of all the mentioned uncertainties. All the HFFs are monotonically increase with the increment of q^{2}, and at the large recoil point, we have $\mathcal{H}_{\rho,0}(0) = 0.435 \pm 0.045$ and $\mathcal{H}_{\rho,1,2}(0) = 0$.

IV. The $B \to \rho$ Semileptonic Decay and the CKM Matrix Element $|V_{ab}|$}

In this subsection, we apply the HFFs $\mathcal{H}_{\rho,\sigma}(q^{2})$ to study the semileptonic decay $B \to \rho \ell \nu_{\ell}$, which is frequently used for precision test the SM and for searching of new physics beyond SM.

Within the SM, the total differential decay width of $B \to \rho \ell \nu_{\ell}$ can be written as

$$
\frac{1}{|V_{ab}|^{2}} \frac{d\Gamma}{dq^{2}} = \mathcal{G} \lambda(q^{2})^{3/2} \left[\mathcal{H}_{\rho,0}^{2}(q^{2}) + \mathcal{H}_{\rho,1}^{2}(q^{2}) + \mathcal{H}_{\rho,2}^{2}(q^{2}) \right],
$$

where the terms proportional m_{ρ}^{2} have been suppressed due to the large chiral suppression for the light leptons with negligible masses. The parameter $\mathcal{G} = G_{F}^{2}/(192\pi^{3} m_{B}^{3})$ with the fermi coupling constant $G_{F} = 1.166 \times 10^{-5}$ GeV$^{-2}$ [48], and the phase-space factor $\lambda(q^{2}) = (m_{B}^{2} + m_{\rho}^{2} - q^{2})^{2} - 4m_{B}^{2}m_{\rho}^{2}$. Our LCSR prediction for the differential decay width $1/|V_{ab}|^{2} \times d\Gamma/dq^{2}$ is presented in Fig.(4), where the uncertainties from all error sources are added in quadrature. As a comparison, the UKQCD group LQCD prediction [29] and their extrapolated LQCD prediction (with the help of the heavy quark symmetry, kinematic constraints and the LCSR scaling relations) [32] are presented as a comparison. Our LCSR prediction is consistent with the LQCD prediction within the intermediate q^{2}-region; however our LCSR prediction prefer a larger $1/|V_{ab}|^{2} \times d\Gamma/dq^{2}$ in low q^{2}-region and a smaller $1/|V_{ab}|^{2} \times d\Gamma/dq^{2}$ in high q^{2}-region.

As a minor point, we pick out the uncertainty caused
We present the total decay width $\Gamma/|V_{ub}|^2$ in Table IX, in which we also present the ratio $\Gamma_\parallel/\Gamma_\perp$ as a useful reference. The total decay width, $\Gamma = \Gamma_\parallel + \Gamma_\perp$, where the decay width for the ρ-meson longitudinal components Γ_\parallel is defined as

$$\Gamma_\parallel = \mathcal{G}|V_{ub}|^2 \int_0^{q^2_{\text{max}}} dq^2 \lambda(q^2)^{3/2} \mathcal{H}^2_{\rho,0}(q^2)$$

and the decay width for the ρ-meson transverse components Γ_\perp is defined as

$$\Gamma_\perp = \mathcal{G}|V_{ub}|^2 \int_0^{q^2_{\text{max}}} dq^2 \lambda(q^2)^{3/2} [\mathcal{H}^2_{\rho,1}(q^2) + \mathcal{H}^2_{\rho,2}(q^2)].$$

Table IX shows that, due to the large cancelation of the differences among different q^2-regions, the difference for the total decay width Γ between the integrated LCSR and LQCD predictions shall be greatly suppressed.

We present the total decay width $1/|V_{ub}|^2 \times d\Gamma/dq^2$ for $m_q \in [0.2, 0.4]$ GeV, where other input parameters are set to be their central values.

by varying $m_q \in [0.2, 0.4]$ GeV from the above uncertainty, and present the LCSR prediction for the differential decay width $1/|V_{ub}|^2 \times d\Gamma/dq^2$ in Fig. (5). It shows the uncertainty caused by m_q is small, which agree with the observation of Table VII that the dominant uncertainties are from the parameters m_b, f_B, and s_0.

We present the LCSR predictions for the polarized differential decay widths $1/|V_{ub}|^2 \times d\Gamma^\parallel/\text{d}q^2$ and $1/|V_{ub}|^2 \times d\Gamma^\perp/\text{d}q^2$. The LQCD result for total differential decay width [29] is presented as a comparison.

We present the LCSR predictions for the polarized differential decay widths $1/|V_{ub}|^2 \times d\Gamma^\parallel/\text{d}q^2$ and $1/|V_{ub}|^2 \times d\Gamma^\perp/\text{d}q^2$ in Fig. (6), in which all the input parameters are set to be their central values. Fig. (6) shows that the differential decay widths for the final-state ρ-meson transverse and longitudinal components behave quite differently. The longitudinal differential decay width $d\Gamma^\parallel/\text{d}q^2$ monotonously deceases with the increment of q^2, and the transverse differential decay width $d\Gamma^\perp/\text{d}q^2$ shall first increase and then decrease with the increment of q^2. Both of them tend to zero for $q^2 \rightarrow q^2_{\text{max}}$ due to the phase-space suppression. As a result, the ρ-meson longitudinal component dominates low q^2-region, and its transverse component dominates high q^2-region 1.

1 Such dominance could be explained as a consequence of Lorentz

\[\text{TABLE IX. The LCSR predictions and the extrapolated LQCD predictions of the UKQCD group [32] for the total decay width } \Gamma/|V_{ub}|^2 \text{ and the ratio } \Gamma_\parallel/\Gamma_\perp. \]

| | $\Gamma/|V_{ub}|^2$ | $\Gamma_\parallel/\Gamma_\perp$ |
|-------|---------------------|--------------------------|
| LCSR | $12.1^{+2.6}_{-2.5}$ | $1.14^{+0.35}_{-0.34}$ |
| UKQCD | $10.9^{+2.3}_{-1.3}$ | $0.80^{+0.04}_{-0.03}$ |

\[\text{FIG. 4. The LCSR prediction for the differential decay width } 1/|V_{ub}|^2 \times d\Gamma/\text{d}q^2. \text{ The LQCD prediction [29] and the extrapolated prediction of UKQCD group by using of the LQCD result [32] are presented as a comparison. The shaded bands are their theoretical errors.} \]

\[\text{FIG. 5. The LCSR prediction for the differential decay width } 1/|V_{ub}|^2 \times d\Gamma/\text{d}q^2 \text{ for } m_q \in [0.2, 0.4] \text{ GeV, where other input parameters are set to be their central values.} \]

\[\text{FIG. 6. The LCSR predictions for the polarized differential decay widths } 1/|V_{ub}|^2 \times d\Gamma^\parallel/\text{d}q^2 \text{ and } 1/|V_{ub}|^2 \times d\Gamma^\perp/\text{d}q^2. \text{ The LQCD result for total differential decay width [29] is presented as a comparison.} \]
Our LCSR calculation gives, which is about 1.6 \(\sigma \) deviation from the BaBar measurement. Because the (middle) partial decay widths \(\Delta \Gamma_{\text{mid}} \) for the LCSR and LQCD approaches are close to each other, by comparing \(R_{\text{low}} \) and \(R_{\text{high}} \) with the experimental data, one can get the correct decay widths in different \(q^2 \)-region and thus confirm which theoretical prediction is more reliable.

As a final remark, with the help of the branching ratio \(B(B^0 \rightarrow \rho^{+} \ell^{-} \nu_{\ell}) = (2.45 \pm 0.32) \times 10^{-4} \) and the lifetime \(\tau(B^0) = 1.520 \pm 0.004 \text{ps} \), we obtain \(|V_{ub}| = (2.96^{+0.52}_{-0.51}) \times 10^{-3} \), where the error is weighted average of all the mentioned error sources. This value agrees with the BaBar predictions \([60]\), \((2.75 \pm 0.24) \times 10^{-3} \) and \((2.83 \pm 0.24) \times 10^{-3} \), and the CLEO predictions \([17]\), \((3.23 \pm 0.24^{+0.23}_{-0.26}) \pm 0.58) \times 10^{-3} \) and \((3.25 \pm 0.14^{+0.21}_{-0.29}) \times 0.55) \times 10^{-3} \), within errors.

\[\Delta \Gamma_{\text{low}} = \int_{0}^{8} \frac{d \Gamma}{dq^2} dq^2 = (0.747 \pm 0.234) \times 10^{-4}, \]
\[\Delta \Gamma_{\text{mid}} = \int_{8}^{16} \frac{d \Gamma}{dq^2} dq^2 = (0.980 \pm 0.187) \times 10^{-4}, \]
\[\Delta \Gamma_{\text{high}} = \int_{16}^{20.3} \frac{d \Gamma}{dq^2} dq^2 = (0.256 \pm 0.072) \times 10^{-4} \]
which lead to
\[R_{\text{low}} = \frac{\Gamma_{\text{low}}}{\Gamma_{\text{mid}}} = 0.762 \pm 0.280, \]
\[R_{\text{high}} = \frac{\Gamma_{\text{high}}}{\Gamma_{\text{mid}}} = 0.216 \pm 0.089. \]

A comparison of those two ratios is presented in Fig.(7). The LCSR predictions agree with the BaBar measurement with errors, while the extrapolated LQCD prefers a larger \(R_{\text{high}} \), which is about 1.6 \(\sigma \) deviation from the BaBar measurement.

\[V. \text{ SUMMARY} \]

We have studied the HFFs for the \(B \)-meson semileptonic decay \(B \rightarrow \rho \ell \nu \) within the LCSR approach. Fig.(3) shows that the extrapolated HFFs within the whole \(q^2 \)-region. At the large recoil point, only the \(\rho \)-meson longitudinal component contributes, e.g. \(H_{\rho,0}(0) = 0.435^{+0.055}_{-0.045} \) and \(H_{\rho,1}(1) \equiv 0 \), where the errors are squared averages of the considered error sources. By applying the extrapolated HFFs to the semileptonic decay \(B \rightarrow \rho \ell \nu \), we observe that the differential decay width \(1/|V_{ub}|^2 \times d\Gamma/dq^2 \), as shown by Fig.(4), is consistent with the Lattice QCD prediction within the intermediate \(q^2 \)-region. However our LCSR prediction prefers a larger \(1/|V_{ub}|^2 \times d\Gamma/dq^2 \) in low \(q^2 \)-region and a smaller \(1/|V_{ub}|^2 \times d\Gamma/dq^2 \) in high \(q^2 \)-region. More explicitly, Fig.(6) shows that the longitudinal decay width dominates the lower \(q^2 \)-region and the transverse one dominates the higher \(q^2 \)-region. Two typical ratios \(R_{\text{low}} \) and \(R_{\text{high}} \) can be used to test those properties. Our LCSR calculation shows that \(R_{\text{low}} = 0.967^{+0.308}_{-0.285} \) and \(R_{\text{high}} = 0.219^{+0.058}_{-0.070} \). Fig.(7) shows that those predictions agree with the BaBar measurements within errors. Thus by using the HFFs with definite polarizations, some useful information can be achieved. A more precise measurement of those ratios shall be helpful for testing various calculation approaches.

Acknowledgements: This work was supported in part by the Natural Science Foundation of China under Grant No.11625520 and No.11765007; by the Fundamental Research Funds for the Central Universities under the Grant No.2018CDPTCG0001/3; by the Project of Guizhou Provincial Department of Science and Technology under Grant No.[2017]1089; by the Project for Young Talents Growth of Guizhou Provincial Department of Education under Grant No.KY[2016]156; the Key Project invariance \([58]\).
for Innovation Research Groups of Guizhou Provincial Department of Education under Grant No.KY[2016]028.

APPENDIX: THE NONLOCAL MATRIX ELEMENTS

The nonlocal matrix elements used in our calculation are \cite{10, 21, 47}:

\begin{align}
\langle \rho(k, \varepsilon(k)) | \bar{d}(x) | q(0) \rangle & = -i \frac{f_\rho^\perp}{2} (E \cdot x) m_\rho^2 \int_0^1 du e^{i u p \cdot x} \psi_{3, \rho}^\perp(u), \\
\langle \rho(k, \varepsilon(k)) | \bar{d}(x) \gamma_\beta \gamma_5 q(0) | 0 \rangle & = \frac{1}{4} \varepsilon_\beta m_\rho f_\rho \int_0^1 du e^{i u p \cdot x} \psi_{3, \rho}^\perp(u), \\
\langle \rho(k, \varepsilon(k)) | \bar{d}(x) \gamma_\beta q(0) | 0 \rangle & = m_\rho f_\rho \int_0^1 du e^{i u p \cdot x} \left\{ \frac{E \cdot x}{p \cdot x} p_\beta \phi_{2, \rho}^\parallel(u) + E_\beta \phi_{3, \rho}^\perp(u) \right\}, \\
\langle \rho(k, \varepsilon(k)) | \bar{d}(x) \gamma_\mu q(0) | 0 \rangle & = m_\rho f_\rho \int_0^1 du e^{i u p \cdot x} \left\{ \frac{E \cdot x}{p \cdot x} p_\beta \left[\phi_{2, \rho}^\parallel(u) + \phi_{3, \rho}^\perp(u) \right] + \frac{E \cdot x}{p \cdot x} p_\beta \frac{m_\rho^2 x^2}{16} \phi_{4, \rho}^\perp(u) \\
& + E_\beta \phi_{3, \rho}^\perp(u) \right\}, \\
\langle \rho(p, \lambda) | \bar{d}(x) \sigma_{\mu\nu} q(0) | 0 \rangle & = -i f_\rho \int_0^1 du e^{i u p \cdot x} \left\{ \left(E_\mu p_\nu - E_\nu p_\mu \right) \left[\phi_{2, \rho}^\perp(u) + \frac{m_\rho^2 x^2}{16} \phi_{4, \rho}^\perp(u) \right] \\
& + \left(p_\mu x_\nu - p_\nu x_\mu \right) \frac{E \cdot x}{(p \cdot x)^2} m_\rho^2 \left[\psi_{4, \rho}^\perp(u) - \frac{1}{2} \phi_{2, \rho}^\perp(u) \right] \right\}.
\end{align}

where f_ρ^\perp and f_ρ^\parallel are ρ-meson decay constants, which are defined as

\begin{align}
\langle \rho(k, \varepsilon(k)) | \bar{d}(0) \gamma_\mu q(0) | 0 \rangle & = f_\rho^\parallel m_\rho E_\mu, \\
\langle \rho(k, \varepsilon(k)) | \bar{d}(0) \sigma_{\mu\nu} q(0) | 0 \rangle & = i f_\rho^\perp \left(E_\mu p_\nu - E_\nu p_\mu \right) .
\end{align}

To do the simplification, the following identities are helpful:

\begin{align}
\gamma_\mu \gamma_\nu & = g_{\mu\nu} - i \sigma_{\mu\nu}, \\
\gamma_\mu \gamma_\nu \gamma_5 & = g_{\mu\nu} \gamma_5 - \frac{1}{2} \varepsilon_{\mu\alpha\beta} \sigma^{\alpha\beta}, \\
\gamma_5 \sigma^{\rho\sigma} & = -\frac{i}{2} \sigma^{\alpha\beta} \varepsilon_{\rho\sigma\alpha\beta}, \\
\sigma_{\mu\nu} \gamma_5 & = i (g_{\alpha\nu} \gamma_\mu - g_{\alpha\mu} \gamma_\nu) + \varepsilon_{\alpha\mu\nu} \beta^{\alpha\beta} \gamma_5.
\end{align}

\begin{thebibliography}{5}
\bibitem{1} N. Cabibbo, Phys. Rev. Lett. \textbf{10}, 531 (1963).
\bibitem{2} M. Kobayashi and T. Maskawa, Prog. Theor. Phys. \textbf{49}, 652 (1973).
\bibitem{3} M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B \textbf{147}, 385 (1979).
\bibitem{4} A. J. Buras, W. Słominski and H. Steger, Nucl. Phys. B \textbf{238}, 529 (1984).
\bibitem{5} D. C. Kennedy and P. Langacker, Phys. Rev. Lett. \textbf{65},
\end{thebibliography}
[6] K. G. Chetyrkin, M. Misiak and M. Munz, Phys. Lett. B 400, 206 (1997).
[7] P. Ball and V. M. Braun, Phys. Rev. D 58, 094016 (1998).
[8] N. G. Deshpande, B. Dutta and S. Oh, Phys. Lett. B 473, 141 (2000).
[9] A. Bharucha, T. Feldmann and M. Wick, JHEP 1009, 090 (2010).
[10] H. B. Fu, X. G. Wu and Y. Ma, J. Phys. G 43, 015002 (2016).
[11] A. Sibidanov et al. [ATLAS Collaboration], ATLAS-CONF-2013-038, 2013.
[12] A. Khodjamirian, T. Mannel, A. A. Pivovarov and M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 313, 448 (1996).
[13] A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 313, 448 (1996).
[14] P. Ball and V. M. Braun, Phys. Rev. D 55, 5561 (1997).
[15] T. Huang and Z. H. Li, Phys. Rev. D 57, 1993 (1998).
[16] P. Ball and R. Zwicky, Phys. Rev. D 71, 014029 (2005).
[17] T. Huang, Z. H. Li, X. G. Wu and F. Zuo, Int. J. Mod. Phys. A 23, 3237 (2008).
[18] A. Khodjamirian, T. Mannel, A. A. Pivovarov and Y. M. Wang, JHEP 1009, 089 (2010).
[19] M. Ahmady, R. Campbell, S. Lord and R. Sandapen, Phys. Rev. D 88, 074031 (2013).
[20] A. Bharucha, D. M. Straub and R. Zwicky, JHEP 1608, 098 (2016).
[21] H. B. Fu, X. G. Wu, H. Y. Han, Y. Ma and H. Y. Bi, Phys. Lett. B 738, 228 (2014).
[22] H. B. Fu, X. G. Wu, H. Y. Han and Y. Ma, J. Phys. G 42, 055002 (2015).
[23] W. Cheng, X. G. Wu and H. B. Fu, Phys. Rev. D 95, 094023 (2017).
[24] J. M. Flynn et al. [UKQCD Collaboration], Nucl. Phys. B 461, 327 (1996).
[25] J. M. Flynn et al. [UKQCD Collaboration], Nucl. Phys. B 476, 313 (1996).
[26] L. Del Debbio et al. [UKQCD Collaboration], Phys. Lett. B 416, 392 (1998).
[27] L. Del Debbio et al. [UKQCD Collaboration], Nucl. Phys. B 63, 383 (1998).
[28] C. C. Bowler et al. [UKQCD Collaboration], JHEP 0405, 035 (2004).
[29] R. R. Horgan, Z. F. Liu, S. Meinel and M. Wingate, Phys. Rev. D 89, 094501 (2014).
[30] R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Phys. Rev. Lett. 112, 212003 (2014).
[31] A. Agadjanov, V. Bernard, U. G. Meibner and A. Ruset-sky, Nucl. Phys. B B 910, 387 (2016).
[32] T. Kurimoto, H. n. Li and A. I. Sanda, Phys. Rev. D 65, 014007 (2002).
[33] C. H. Chen and C. Q. Geng, Nucl. Phys. B 636, 338 (2002).
[34] T. Kurimoto, H. n. Li and A. I. Sanda, Phys. Rev. D 67, 054028 (2003).
[35] Y. Y. Fan, W. F. Wang, S. Cheng and Z. J. Xiao, Chin. Sci. Bull. 59, 125 (2014).
[36] S. Cheng, A. Khodjamirian and J. Virto, JHEP 1705, 157 (2017).
[37] S. Cheng, A. Khodjamirian and J. Virto, Phys. Rev. D 96, 051901 (2017).
[38] J. G. Korner and G. A. Schuler, Z. Phys. C 46, 93 (1990).
[39] A. Khodjamirian, T. Mannel and N. Offen, Phys. Rev. D 75, 054013 (2007).
[40] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 448 (1979).
[41] P. Ball, V. M. Braun and A. Lenz, JHEP 0708, 090 (2007).
[42] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
[43] S. Wandzura and F. Wilczek, Phys. Lett. 72B, 195 (1977).
[44] X. G. Wu and T. Huang, Phys. Rev. D 82, 034024 (2010).
[45] S. J. Brodsky, T. Huang and G. P. Lepage, Conf. Proc. C 110816, 143 (1981).
[46] T. Huang, B. Q. Ma and Q. X. Shen, Phys. Rev. D 49, 1490 (1994).
[47] F. G. Cao and T. Huang, Phys. Rev. D 59, 093004 (1999).
[48] T. Huang and X. G. Wu, Phys. Rev. D 70, 093013 (2004).
[49] X. G. Wu and T. Huang, Chin. Sci. Bull. 59, 3801 (2014).
[50] T. Huang, T. Zhong and X. G. Wu, Phys. Rev. D 88, 034013 (2013).
[51] P. Ball and R. Zwicky, JHEP 0604, 046 (2006).
[52] G. Hiller and R. Zwicky, JHEP 1403, 042 (2014).
[53] J. Beringer et al. [Particle Data Group], Phys. Rev. D 86, 010001 (2012).
[54] H. W. Wulsin [BaBar Collaboration], PoS ICHEP 2010, 277 (2010).