Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases

Mohamed Mokhtar\(^a\), Khadijah S. Alghamdi\(^b\), Nesreen S. Ahmed\(^c\), Dina Bakhotmah\(^a\) and Tamer S. Saleh\(^d,e\)

\(^a\)Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; \(^b\)Chemistry Department, Faculty of Science, Albaha University, Albaha, Saudi Arabia; \(^c\)Department of Therapeutic Chemistry, National Research Centre, Cairo, Egypt; \(^d\)Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia; \(^e\)Green Chemistry Department, National Research Centre, Giza, Egypt

ABSTRACT

A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds \(4b, 4j, 4k, \) and \(4e\) exhibited the most potent cytotoxic activity of IC\(_{50}\) values \((0.002 - 0.004 \mu M)\) comparing to Staurosporine of IC\(_{50}\); \(0.005 \mu M\). The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC\(_{50}\) range \(0.0149 - 0.048 \mu M\). Furthermore, the most promising cytotoxic compounds \(4b, 4j\) were evaluated as multitargeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-\(\beta\), and VEGFR-2. Compound \(4j\) showed promising inhibitory activity against HER-2 and PDGFR-\(\beta\) of IC\(_{50}\) values \(0.17 \times 10^{-3}, 0.07 \times 10^{-3} \mu M\) in comparison with the reference drug sorafenib of IC\(_{50}\); \(0.28 \times 10^{-3}, 0.13 \times 10^{-3} \mu M\), respectively. In addition, \(4j\) induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.

1. Introduction

Breast cancer is one of the most common causes that threatens women’s health impacting \(\sim 15\%\) of all cancer deaths occurred in women all over the world\(^1,2\). The incidence of breast cancer is increasing in all the regions of globe. Although chemo and radiotherapies are considered the most important prime option for the treatment of cancer disease,\(^3\) the drug-induced toxicity to the normal cells and drug-resistance constitute problems that still need to be resolved\(^4\). Therefore, the discovery of new selective and safer anticancer agents is still a great interest in the field of medicinal chemistry\(^5\).

Receptor tyrosine kinases (RTKs) are transmembrane proteins. They are composed of many triggered domains when a ligand binds to their extracellular regions, activating signalling cascades downstream\(^6,7\). RTKs such as; epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor-2 (VEGFR-2), and PDGFR play crucial roles in controlling multiple cellular processes, including cell proliferation, differentiation, survival, and apoptosis. Mutations or deletions in gene functions can result in uncontrolled expression of protein kinases, which can lead to tumour development, angiogenesis, and metastasis. Thus, RTKs are considered novel drug targets to develop tyrosine kinase inhibitors.

CONTACT Mohamed Mokhtar \(\text{mmokhtar2000@yahoo.com, mmoustafa@kau.edu.sa}\) Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

ARTICLE HISTORY

Received 30 April 2021
Revised 4 June 2021
Accepted 12 June 2021

KEYWORDS

4,6,7,8-Tetrahydroquinolin-5(1H)-one; HER-2 inhibitors; breast cancer; apoptosis; molecular docking study

GRAPHICAL ABSTRACT

![Graphical Abstract](image)

\(^1\) 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
inhibitors. In addition, these suppressors can inhibit the overexpression of tyrosine kinase and maintain its physiological balance. The US FDA approves more than 60 small-molecule protein kinase inhibitors. Most of them are multi-targeting suppressors synergistically functioning on many signalling pathways by interacting with each target simultaneously. Targeting multiple kinases increases the anticancer potency as well as reduces the risk of developing drug resistance.

Quinoline is naturally present in many alkaloids having potent antitumor activity, for example, camptothecin. Quinoline scaffold and its related derivatives represent a broad spectrum of pharmacological activities, especially in drug discovery of new anticancer agents. Food and Drug Administration (FDA) has approved various quinoline small molecules acting as protein kinases inhibitors for clinical uses in cancer disease. The occurrence of the nitrogen atom in the quinoline nucleus withdraws electrons by resonance and interferes with the equal distribution of electron density. It has been reported that the quinoline nucleus has a great tendency to bind to the active site of various proteins via the formation of hydrogen bonds with its nitrogen atom and \(\pi - \pi \) stacking complexes with complementary amino acid residues.

Furthermore, multiple sulphonyl compounds have been reported to inhibit the growth of various human tumour cell lines. Various sulphonamide derivatives, such as HMN-214, E7010 (ABT-751), and E7070 (Indisulam), represented antitumor activity through different various modes of actions as multidrug resistance down-regulation, inhibition of tubulin polymerisation as well as RTKs inhibition (Figure 2).

Molecular hybridisation currently appears as a promising drug design strategy, specifically in discovering new anticancer drugs. It has been reported that conjugating of two or more pharmacophores in the same molecular architecture might decrease the risk of drug–drug interactions, overcome the problem of drug resistance as well as enhance the biological efficacy via the binding with different targets as one single entity.

Based on the above findings, in continuation of our recent work of using green synthetic approaches to develop a variety of heterocyclic systems with great biological importance, and in an attempt to prepare new potent anti-breast cancer leads of potential suppression activity against different RTKs EGFR, HER-2, PDGFR-\(\beta \), and VEGFR-2, this study deals with the synthesis of new tetrahydroquinolines hybridised with other substituted phenylsulfonyl-phenyl moieties at C-4 position and conjugated with different groups at C-2 and C-3 positions (Figure 3). It has been taken in consideration the effect of molecular orientation, ring size variation and the occurrence of different heteroatoms that could provide hydrogen binding with various RTKs binding pockets (Figure 3). The cytotoxic activity against human breast cancer cells (MCF-7) was evaluated for all the new prepared analogues. In addition, in vitro multi-targeting inhibition assessment against EGFR, HER-2, PDGFR-\(\beta \), and VEGFR-2 of the most active cytotoxic candidates was also carried out. Extra investigations of different mechanistic pathways such as cell cycle analysis and apoptosis were performed.

Figure 1. Quinoline-based multi-kinase inhibitors approved by FDA.
evaluated for the most promising compound as a representative example for the new active analogues. Furthermore, molecular modelling studies were performed to explore the modes of interaction between the promising target compounds and the vital amino acids residues of different kinases to ascertain binding stability and the relationship between their physicochemical characteristics and their favourable suppression effects.

2. Materials and methods

2.1. Chemistry

All organic solvents were purchased from commercial sources and used as received unless otherwise stated. All other chemicals were purchased from Merck, Aldrich, or Acros and used without further purification. Thin-layer chromatography (TLC) was performed on pre-coated Merck 60 GF254 silica gel plates with a fluorescent indicator, and detection by means of UV light at 254 and 360 nm. The melting points were measured on a Stuart melting point apparatus and are uncorrected. IR spectra were recorded on a Smart iTR, which is an ultrahigh-performance, versatile Attenuated Total Reflectance (ATR) sampling accessory on the Nicolet iS10 FT-IR spectrometer. The NMR spectra were recorded on a Bruker Avance III 400 (9.4 T, 400.13 MHz for 1H, 100.62 MHz for 13C) spectrometer with a 5-mm BBFO probe, at 298 K and a Bruker High Performance Digital FT-NMR Spectrometer Avance III 850 MHz. Chemical shifts (δ in ppm) are given relative to internal solvent, DMSO-d$_6$ 2.50 for 1H and 39.50 for 13C, CDCl$_3$ 7.25 for 1H and 77.7 was used as an external standard. Mass spectra were recorded on a Thermo ISQ Single Quadrupole GC-MS. Elemental analyses were carried out on a Euro Vector instrument C, H, N, S analyser EA3000 Series. Sonication was performed by Techno-gaz sonicator (with a frequency of 37 kHz and ultrasonic peak max. 320 W).

The catalyst (CS/CuNPs)$_{35}$, 4-(phenylsulfonyl)benzaldehyde (2a)$_{36}$ and 4-tosylbenzaldehyde (2b)$_{37}$ were prepared according to reported literature.

2.2. General methods for the synthesis of 4,6,7,8-tetrahydroquinolin-5(1H)-one derivatives (4a–l)

2.2.1. Silent reactions

A mixture of dinedone (1) (1 mmol), different aldehydes 2a, b (1 mmol), active methylene compounds 3a–f (1 mmol) and ammonium acetate (9 mmol) in ethanol (25 ml) containing a catalytic amount of Cu-chitosan NPs (0.1 g) was refluxed at 60°C for the appropriate time (cf. Table 1) until completion of the reaction (monitored by TLC). The reaction mixture was filtered to separate the catalyst; then, the filtrate was cooled at room temperature, and the reliable product obtained was filtered, dried, and purified by recrystallisation from ethanol.

2.2.2. Sonicated reactions

These processes were performed on the same scale described above for silent reactions. All The reactions were kept at 60°C, which was attained by adding or removing water in an ultrasonic bath (the temperature inside the reaction vessel was 58–63°C). The sonochemical reactions were continued for a suitable time (cf. Table 1) until the starting materials were no longer detectable by TLC. Then, the catalyst was separated, and the products obtained were purified as described above in silent reaction procedures. The synthesised compounds with their physical data are listed below.

2.2.2.1. Methyl 2,7,7-trimethyl-5-oxo-4-(phenylsulfonyl)phenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4a). Mp 260–262°C.
Table 1. Synthesis of new 4,6,7,8-tetrahydroquinolin-5(1H)-ones scaffold 4a–l under both ultrasound and conventional conditions.

Compound
![Structure 4a](image)
![Structure 4b](image)
![Structure 4c](image)

	Conventional conditions	Ultrasound conditions		
	Time (h)	Yield %	Time (min)	Yield%
4a	5	80	20	93
4b	6	84	25	95
4c	6	80	30	92

(continued)
Compound	Conventional conditions	Ultrasound conditions		
	Time (h)	Yield %	Time (min)	Yield %
4d	6	78	30	90
4e	6	78	30	90
4f	5	84	25	95

(continued)
Compound	Conventional conditions	Ultrasound conditions		
	Time (h)	Yield %	Time (min)	Yield %
4g	5	82	25	95
4i	2	9	5	95
4h	5	84	25	93
4i	2	5	5	95

Table 1. Continued.
Table 1. Continued.

Compound	Conventional conditions	Ultrasound conditions			
	Time (h)	Yield %	Time (min)	Yield %	
![4j](image)	6	79	!image	30	92
![4k](image)	6	78	!image	30	90
![4l](image)	6	92	!image	30	90
2.2.2.2. Ethyl 7,7-dimethyl-5-oxo-4-(4-phenylsulfonylphenyl)-2-(trifluoromethyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4b).

Mp 245–247°C. IR (KBr) νmax/cm⁻¹: 3221 (NH), 1717, 1688 (C = O), 1314, 1210 (SO₂). ¹H NMR (400 MHz, DMSO-d₆): δ 0.85 (s, 3H, CH₃), 0.96 (s, 3H, CH₃), 1.14 (t, 3H, J = 7 Hz, CH₃ ester) 1.84 (br's, 2H, NH₂, D₂O exchangeable). ¹³C NMR (100 MHz, DMSO-d₆): δ 18.8, 27.1, 29.3, 32.7, 36.5, 50.5, 51.3, 102.7, 109.6, 127.5, 127.8, 132.1, 138.9, 144.7, 153.4, 167.4, 194.8; MS m/z (%): 465 (M⁺, 40.9). Anal. for C₂₃H₂₄N₄O₅S: C, 67.08; H, 5.85; N, 3.01; S, 6.89. found: C, 67.29; H, 5.79; N, 2.90; S, 6.83%.

2.2.2.3. Ethyl 2-amino-7,7-dimethyl-5-oxo-4-(4-phenylsulfonylphenyl)enyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4c).

Mp 238–240°C. IR (KBr) νmax/cm⁻¹: 3389, 3282 (NH₂), 3126 (NH), 1712, 1689 (C = O), 1310, 1196 (SO₂). ¹H NMR (400 MHz, CDCl₃): δ 0.96 (s, 3H, CH₃), 0.96 (s, 3H, CH₃), 1.09 (s, 3H, CH₃) 1.40 (t, 3H, J = 7 Hz, CH₃ ester) 1.84 (br's, 2H, NH₂, D₂O exchangeable). ¹³C NMR (213 MHz, CDCl₃): δ 17.8, 27.1, 29.3, 32.7, 36.7, 51.3, 62.0, 102.6, 109.5, 123.2, 127.6, 127.7, 130.2, 134.9, 138.9, 141.7, 146.7, 150.6, 153.6, 167.4, 194.7; MS m/z (%): 533 (M⁺, 51.5). Anal. for C₂₃H₂₄F₂N₄O₅S: C, 60.78; H, 4.91; N, 2.63, S, 6.01. found: C, 60.99; H, 4.87; N, 2.53; S, 5.94%.

2.2.2.4. 2-Amino-3-benzyl-7,7-dimethyl-5-oxo-4-(4-phenylsulfonylphenyl)yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4d).

Mp > 300°C. IR (KBr) νmax/cm⁻¹: 3339, 3291 (NH₂), 3222 (NH), 1699, 1685 (C = O), 1310, 1206 (SO₂). ¹H NMR (850 MHz, CDCl₃): δ 0.96 (s, 3H, CH₃), 0.96 (s, 3H, CH₃), 1.09 (s, 3H, CH₃) 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b) 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b) 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4). 2.18 (dd, 2H, J = 14 Hz, H-8a and H-8b), 2.42 (dd, 2H, J = 16.9 Hz, H-6a and H-6b). 4.65 (s, 1H, CH-4).
2.2.2.10. 2-Amino-3-benzoyl-7,7-dimethyl-4-(4-tosylphenyl)-4,6,7,8-tetrahydroquinolin-5(1H)-one (4k).

M.p 300 °C. IR (KBr) \(\nu_{\text{max}}/\text{cm}^{-1} \): 3382, 3267 (NH2), 3211 (NH), 1697, 1681, 1676, 1660, 1589, 1578, 1547, 1447, 1347, 1273, 1254, 1185, 1151, 1140, 1120, 1090, 1079, 1067, 1047, 996, 954, 917, 890, 863, 835, 826, 806, 774, 745, 725, 710, 698, 687, 666, 655, 612, 593, 558, 540, 532, 520, 508, 498, 478, 459, 440, 419, 403, 398, 392, 386, 380, 374, 368, 362, 356, 350, 344, 338, 332, 326, 321, 315, 309, 303, 297, 291, 286, 280, 274, 268, 262, 256, 250, 244, 238, 232, 226, 220, 214, 208, 202, 196, 190, 184, 178, 172, 166, 160, 154, 148, 142, 136, 130, 124, 118, 112, 106, 100, 94, 88, 82, 76, 70, 64, 58, 52, 46, 40, 34, 28, 22, 16, 10, 4, 0.

The X-ray crystallographic structure of human HER2 (HER2) co-crystallised with 2-(2H-1,2,3-trifluoromethyl)phenoxypyridin-3-yl amino)-5H-pyrrrolo[3,2-d]pyrimidin-5-yl(ethoxy) ethanol (O3Q) (PDB ID: 3PP0) was downloaded from the protein data bank (https://www.rcsb.org/structure/3PP0). For each co-crystallised enzyme, water molecules and ligands which are not involved in the binding were removed. The protein was prepared for the docking study using Protonate 3D protocol in MOE with default options. The co-crystallised ligand (O3Q) was used to define the binding site for docking. Triangle Matcher placement method and London dG scoring function were used for docking.

2.3. Results and discussion

3.1. Chemistry

We synthesised a series of 12 compounds bearing 4,6,7,8-tetrahydroquinolin-5(1H)-one scaffold according to Scheme 1. Compounds 4a–l were synthesised following the previously reported optimised multicomponent green reaction procedures by treating dimedone (1) and aldehydes 2a, b namely; 4-(phenylsulfonyl)benzaldehyde and 4-tosylbenzaldehyde respectively with various active methylene compounds 3a–f in the presence of ammonium acetate in ethanol.
under ultrasonic irradiation conditions using chitosan decorated copper nanoparticles (CS/CuNPs) as a catalyst.

The progress of reactions was monitored by TLC till the disappearance of reactants. The beneficial effect of ultrasound is noticeable over conventional conditions on this reaction (Table 1), reducing the reaction time from 5 to 6 h into 20–30 min. and the yield of reaction increased to 90–95% under ultrasound irradiation compared to 78–84% under conventional conditions (Table 1).

The reaction products were identified as the polysubstituted 4,6,7,8-tetrahydroquinolin-5(1H)-ones 4a–l in all cases based on its 1H NMR spectrum. For example, the 1H NMR spectrum of the isolated reaction product 4a revealed five singlet signals at δ 0.80, 0.98, 2.28, 3.49, and 4.91 ppm due to the four methyl groups and CH-4, respectively, two shielded doublets (dd) at δ 1.97, 2.15, ppm with coupling constants of approximately 16 Hz due to the H8a, H8b, another two shielded doublets (dd) at δ 2.33, and 2.41 ppm with coupling constant of 16.4 Hz due to H6a, H6b and two doublets and aromatic multiplet in the region 7.76–7.80 ppm due to 9 aromatic protons. In addition to a D2O exchangeable signal at 9.21 indicates the presence of NH group. Also, the 13C NMR of the isolated product 4a adds strong evidence for the proposed structure, which agrees with the structure formed as shown in Scheme 1 (cf. experimental part).

The apparent effect of ultrasound on the reaction mentioned above may be attributed to the fact that ultrasonic irradiation gives the reactants sufficient energy to exceed the energy barrier of the reaction, thus, 4,6,7,8-tetrahydroquinolin-5(1H)-ones 4a–l formed. This sufficient energy can be reasonably interpreted in terms of the physical phenomenon called acoustic cavitation (in our case, at solid-liquid interfaces). The most accepted proposed mechanism for the effect of cavitation near surfaces44,45 is microjet impact and shockwave damage. Along with the shock wave associated with the cavitation collapse, the jet causes localised deformation and surface erosion, which increases the possible reaction area. Therefore, the treated surfaces contain an increased number of dislocations that are widely considered to be the active sites in catalysis.

3.2. Biological evaluation

3.2.1. In vitro anticancer activity

This work represents the construction of a new series of compounds bearing 7,7-dimethyl-4–(4-(phenylsulfonyl)phenyl)-4,6,7,8-tetrahydroquinolin-5(1H)-one scaffold 4a–l of potential anti-breast cancer activity. To evaluate the cytotoxic activity of the new derivatives, they were subjected to MTT cell viability assay against human breast cancer MCF-7 cell line utilising staurosporine as a reference drug.46–48 The obtained data were represented as IC50 (µM) values which are the average of at least three independent experiments and tabulated in Table 2.

The new derivatives showed variable degrees of cytotoxic activities. Interestingly, the 2-trifluoromethyl derivative 4b exhibited about 2.5-fold more potent activity than the standard drug.
resulted by staurosporine of IC 50 values of 0.003, 0.004, and 0.005 μM. The potent cytotoxic effect of 4b could be explained due to the electron withdrawing power of fluorine atom, alongside the increased carbon–fluorine bond energy, that significantly potentiates the metabolic stability of the host molecule and enhances its lipophilicity against normal WI38 cells. It could be explained due to the electron withdrawing power of fluorine atom, alongside the increased carbon–fluorine bond energy, that significantly potentiates the metabolic stability of the host molecule and enhances its lipophilicity. The rest of the compounds produced a detectable decrease in the cytotoxic potency of IC 50, ranging from 0.023 to 0.103 μM, respectively, but both were less potent than the Sorafenib of IC 50 0.04 ± 0.02 μM (Table 4). On the other hand, the safety profile of the most promising candidates (4b, 4j, 4k, and 4e) was evaluated against the normal WI38 cells derived from lung tissues in comparison with staurosporine as a reference drug using MTT assay. It is worthy of mentioning that the IC 50 values of the target compounds 4j, 4b against the normal WI38 cells were 20 and 24-fold higher than their IC 50 against the cancer cells and about 3-fold higher than the IC 50 value of reference drug staurosporine confirming the promising safety profile of both compounds. Whereas, less safety profile was investigated by compounds 4e and 4k producing IC 50 values against WI38 cells that were only 4-fold higher than their IC 50 against MCF-7 cells and approximately equal to that obtained by staurosporine (Table 2).

3.2.3. In vitro kinase inhibition assay
To explore the mechanistic insight into the cytotoxic potentials of the new quinolone compounds, in vitro kinase assay was performed to evaluate the kinase suppression activity of the most promising cytotoxic candidates 4b, 4j, 4k against four different RTK. Which are: EGFR, human epidermal growth factor receptor (HER2), PDGFR-α, and VEGFR-2. It has been detected that compound 4j was more potent than 4b as EGFR inhibitor with IC 50 values of 0.07 ± 0.04 μM and 0.07 ± 0.01 μM, respectively, but both were less potent than the Sorafenib of IC 50 0.04 × 10⁻³ μM (Table 4). On the other hand, the safety profile of the most promising candidates (4b, 4j, 4k, and 4e) was evaluated against the normal WI38 cells derived from lung tissues in comparison with staurosporine as a reference drug using MTT assay. It is worthy of mentioning that the IC 50 values of the target compounds 4j, 4b against the normal WI38 cells were 20 and 24-fold higher than their IC 50 against the cancer cells and about 3-fold higher than the IC 50 value of reference drug staurosporine confirming the promising safety profile of both compounds. Whereas, less safety profile was investigated by compounds 4e and 4k producing IC 50 values against WI38 cells that were only 4-fold higher than their IC 50 against MCF-7 cells and approximately equal to that obtained by staurosporine (Table 2).

Compound No.	IC 50 (μM) mean ± SD
4e	0.0149 ± 0.003
4j	0.048 ± 0.008
4b	0.045 ± 0.013
4k	0.0176 ± 0.009
Staurosporine	0.013 ± 0.002

Table 3. The effect of some compounds as representative examples against the normal WI38 cells.

Compound No.	IC 50 (μM) mean ± SD
4e	0.103 ± 0.013
4j	0.002 ± 0.001
4b	0.015 ± 0.002
4k	0.007 ± 0.001
Staurosporine	0.004 ± 0.002

Table 2. In vitro cell cytotoxic activity of the new compounds against MCF-7 cancer cells.

Compound No.	IC 50 (μM) mean ± SD
4e	0.0149 ± 0.003
4j	0.048 ± 0.008
4b	0.045 ± 0.013
4k	0.0176 ± 0.009
Staurosporine	0.013 ± 0.002

Table 4. Protein kinase inhibition of compounds 4b and 4j in comparison with Sorafenib.

Compound No.	EGFR IC 50 (μM)	HER-2 IC 50 (μM)	PDGFR-α IC 50 (μM)	VEGFR-2 IC 50 (μM)
4b	0.11 ± 0.03	0.30 ± 0.05	0.21 ± 0.04	1.05 ± 0.02
4j	0.07 ± 0.02	0.17 ± 0.02	0.07 ± 0.01	0.30 ± 0.06
Sorafenib	0.04 ± 0.02	0.28 ± 0.04	0.13 ± 0.02	0.17 ± 0.02

3.2.2. The effect of compounds 4b, 4j, 4k, and 4e against the normal WI38 cells
One of the characteristics differentiating different anticancer agents from each other is the recurrence and severity of their side effects to the normal cells at their therapeutic doses. Accordingly,
other hand, compound $4j$ exhibited a significant inhibitory effect against HER-2, which is about 1.6 folds more potent than the Sorafenib of IC$_{50}$ 0.17 x 10$^{-3}$ µM, IC$_{50}$ Sorafenib 0.28 x 10$^{-3}$ µM. Also, compound $4j$ notably inhibited PDGFR-α by 1.9-fold more than the reference sorafenib of IC$_{50}$ 0.07 x 10$^{-3}$, 0.13 x 10$^{-3}$ µM, respectively. Furthermore, both compounds $4b$ and $4j$ revealed VEGFR-2 inhibitory effect of about 6.2 and 1.8-fold less than that of Sorafenib of IC$_{50}$ values 1.05, 0.30 x 10$^{-3}$ µM, IC$_{50}$ Sorafenib: 0.17 x 10$^{-3}$ µM, respectively. Furthermore, the obtained data revealed the distinct inhibitory profile of the amino tetrahydroquinoline derivative $4j$ in comparison with the reference drug sorafenib as illustrated in Table 3.

3.2.4. Apoptosis assay

The derivatives $4b$ and $4j$ were selected to study their apoptotic effects on MCF-7 cancer cells using Annexin-V/PI binding assay based on their promising cytotoxic potency and various kinase inhibitory effects. Staining MCF-7 cells was carried out with the two dyes; Annexin V/propidium iodide (PI) after treating them with compounds $4b$ and $4j$ at their IC$_{50}$ concentrations of 0.002 and 0.003 µM for 24 h. Flow cytometry method39,49 has been used to detect the corresponding red (PI) and green (FITC) fluorescence. It has been noted that there was an increment in the percentages of the late apoptosis produced by the evaluated compounds $4b$ and $4j$ from 0.13% (control DMSO/MCF-7 cells) to 13.81% and
22.03%, respectively. Also, the tested compounds produced early apoptotic effects of 6.15% and 3.27% compared to 0.58% of the untreated MCF-7 cell with necrosis percent of 4.37% and 9.22%, respectively, vs. 0.66% produced by the DMSO control (Figures 4 and 5).

The proportion of the late apoptosis produced by both 4b and 4j was higher than the proportion of the early phase, which makes recovering the dead cells to safe ones is more challenging.

3.2.5. Cell cycle analysis
The induction of apoptosis is one of the most crucial tools that confirm the effectiveness of cancer therapy. Cell cycle checkpoints are G1 (restriction or start), S (metaphase), and G2/M. One of the main functions of the anticancer therapeutics is stoppage of the cell division at these checkpoints. Thus, MCF-7 cells were incubated with compounds 4b and 4j at their IC50 concentrations (0.002, 0.003 μM) for 24 h. The cells were stained with Annexin V/PI and examined using flow cytometry procedure. The resultant data revealed that there was cell accumulation of percentages 24.33% and 18.03% at pre G1 and G2/M phases in MCF-7 cells treated with compound 4b and cell accumulation percentages of 34.52% and 31.17% at pre G1 and G2/M phases in MCF-7 cells treated with compound 4j comparing to 1.43% and 5.03% of the untreated MCF-7 cells. This result represents that there was cell cycle arrest at G2/M phase with mitotic cycle cessation (Table 5, Figure 6).

4. Molecular docking study
The molecular modelling studies were carried out using MOE (2019.0102) software. All minimisations were performed with MOE until an RMSD gradient of 0.1 kcal mol−1 Å−1 with MMFF94x force field, and the partial charges were automatically calculated.

4.1. Human epidermal growth factor receptor 2 (HER2)
The X-ray crystallographic structure of human HER2 (HER2) co-crystallised with 2-[(5-chloro-6-[3-(trifluoromethyl)phenoxyl]-pyridin-3-yl)amino]-5H-pyrrolo[3,2-d]pyrimidin-5-yl]ethoxy) ethanol
(03Q) (PDB ID: 3PP0) was downloaded from the protein data bank (https://www.rcsb.org/structure/3PP0). For each co-crystallised enzyme, water molecules and ligands that are not involved in the binding were removed. The protein was prepared for the docking study using Protonate 3D protocol in MOE with default options. The co-crystalised ligand (03Q) was used to define the binding site for docking. Triangle Matcher placement method and London dG scoring function were used for docking.

Through examination of the binding interactions of 03Q to the active site of the enzyme, it shows strong bond interactions with Gln799, Leu800, Met801, Arg849, and Asp863 (Figure 7).

Table 6. Docking data of compound 4j in the active site of HER2.

Compound	S (kcal/mol)	Amino acids	Interacting groups	Type of interaction	Length
4j	-17.3597	Gln799	CH (Pyrimidine)	Electrostatic	3.47
		Leu800	N (Pyrimidine)	H-bond acceptor	4.05
		Met801	N (Pyrimidine)	H-bond acceptor	3.09
		Arg849	CH₂	Electrostatic	3.31.2021
		Asp863	OH	H-bond donor	2.65
Sorafenib	-15.4085	Lys753	O (C = O)	H-bond acceptor	3.35
		Met801	NH (Amide)	H-bond donor	3.25
		Thr862	NH (Urea)	H-bond donor	2.84

Figure 9. 2D and 3D diagram of compound 4j interactions within HER2 binding site.

Figure 10. 2D and 3D diagram of compound Sorafenib interactions within HER2 binding site.
The docking setup was first validated by self-docking the co-crystallised ligand (3Q) in the vicinity of the enzyme’s binding site. The docking score (S) was 17.1413 kcal/mol, and the root means square deviation (RMSD) was 0.14339 Å (Figure 8).

The $4j$ compound showed high energy binding score (17.3597 kcal/mol) similar to that of the co-crystallised ligand and higher than Sorafenib. Moreover, it showed good binding interactions with the amino acids in the active site of the receptor. The results are summarised in Table 6 and Figures 9 and 10.

4.2. Platelet-derived growth factor receptor α (PDGFR-α)

The X-ray crystallographic structure of human PDGFRA co-crystallised with Imatinib (PDB ID: 6JOL) was downloaded from the protein data bank (https://www.rcsb.org/structure/6JOL). For each co-crystallised enzyme, water molecules and ligands that are not involved in the binding were removed. The protein was prepared for the docking study using Protonate 3D protocol in MOE with default options. The co-crystallised ligand (imatinib) was used to define the binding site for docking. Triangle Matcher placement method and London dG scoring function were used for docking.

By examining the binding interactions of imatinib to the enzyme’s active site, it shows strong bond interactions with Val607, Glu644, Thr674, Cys677, His816, and Asp836 (Figure 11).

Table 7. Docking results of compound 4j in the active site of PDGFR-α.

Compound	S (kcal/mol)	Amino acids	Interacting groups	Type of interaction	Length
4j	-13.2171	Lys627	O (S = O)	H-bond acceptor	3.62
		Ile647	NH$_2$	H-bond acceptor	3.99
		Cys814	NH$_2$	H-bond donor	3.20
		Cys814	O (C = O)	Electrostatic	3.64
		His816	O (C = O)	H-bond acceptor	3.67
		Asp836	CH (Phenyl)	Electrostatic	2.83
		Asp836	CH	Electrostatic	3.42
		Glu644	NH	H-bond donor	2.87
		Glu644	NH	H-bond donor	3.26
		Met648	NH	H-bond acceptor	4.05
		Cys677	O (C = O)	H-bond acceptor	3.00
		Cys814	Cl	Halogen bond	3.97
		Asp836	O (C = O)	H-bond acceptor	2.88
Sorafenib	-13.0476	Glu644	NH	H-bond donor	2.87
		Met648	NH	H-bond acceptor	4.05
		Cys677	O (C = O)	H-bond acceptor	3.00
		Cys814	Cl	Halogen bond	3.97
		Asp836	O (C = O)	H-bond acceptor	2.88

The docking setup was first validated by self-docking the co-crystallised ligand (3Q) in the vicinity of the enzyme’s binding site. The docking score (S) was -17.1413 kcal/mol, and the root means square deviation (RMSD) was 0.14339 Å (Figure 8).

The 4j compound showed high energy binding score (-17.3597 kcal/mol) similar to that of the co-crystallised ligand and higher than Sorafenib. Moreover, it showed good binding interactions with the amino acids in the active site of the receptor. The results are summarised in Table 6 and Figures 9 and 10.

4.2. Platelet-derived growth factor receptor α (PDGFR-α)

The X-ray crystallographic structure of human PDGFRA co-crystallised with Imatinib (PDB ID: 6JOL) was downloaded from the protein data bank (https://www.rcsb.org/structure/6JOL). For each co-crystallised enzyme, water molecules and ligands that are not involved in the binding were removed. The protein was prepared for the docking study using Protonate 3D protocol in MOE with default options. The co-crystallised ligand (imatinib) was used to define the binding site for docking. Triangle Matcher placement method and London dG scoring function were used for docking.

By examining the binding interactions of imatinib to the enzyme’s active site, it shows strong bond interactions with Val607, Glu644, Thr674, Cys677, His816, and Asp836 (Figure 11).
The docking setup was first validated by self-docking the co-crystallised ligand (imatinib) in the vicinity of the enzyme’s binding site. The docking score (S) was \(-18.0520\) kcal/mol, and RMSD was \(0.6983\) Å (Figure 12).

The 4j compound showed a similar energy binding score to that of Sorafenib. It exhibited good binding interactions with the amino acid in PDGFR-α active site. The results are summarised in Table 7 and Figures 13 and 14.

5. Conclusion

A new class of 4,6,7,8-tetrahydroquinolin-5(1H)-one-based derivatives has been green synthesised as anti-breast cancer (MCF-7) agents of potential multi-targeting RTKs. The compounds 4a–l were examined as cytotoxic agents against MCF-7 cancer cells using MTT assay utilising staurosporine as a standard drug. The compounds 4b, 4e, 4j, and 4k appeared as the most promising cytotoxic candidates. That revealing a more potent inhibiting effect than staurosporine, displaying \(IC_{50}\) values ranging from 0.002 to 0.004 \(\mu\)M vs. IC\(_{50}\) value of staurosporine, 0.007 \(\mu\)M. The safety profile of the latter derivatives was evaluated against the normal WI38 cells. The compounds 4b and 4j appeared as the safest agents on the normal cells. Furthermore, the compound 4b, 4j were selected as representative examples to evaluate their suppression activity against EGFR, HER-2, PDGF-α, and VEGFR-2 protein kinases. The compound 4j investigated potent multi-targeting inhibitory activity in comparison with Sorafenib. In addition, the biological evidence revealed that the compound 4j caused a marked apoptotic degree with a necrosis percentage 4.2%, leading to cell cycle disruption at G2/M phase in MCF-7 cancer cells. Accordingly, the new derivatives bearing 4,6,7,8-tetrahydroquinolin-5(1H)-one scaffold could be considered primary nuclei for further structural optimisation to get more potent, selective, and safer anticancer candidates. A molecular docking study was found in complete agreement with the obtained experimental results.

Acknowledgements

The authors, therefore, gratefully acknowledge DSR technical and financial support. The authors would like to thank Dr. Mostafa A. Hussein, at chemistry department, King Abdulaziz University, for his informative discussion, especially in the Docking studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. DF-838–130-1441.

ORCID

Mohamed Mokhtar http://orcid.org/0000-0002-0594-7207
Nesreen S. Ahmed http://orcid.org/0000-0001-9136-9986
Dina Bakhotmah http://orcid.org/0000-0001-6651-7932

References

1. Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trend, Cancer Epidemiol. Biomark Prev 2017;26: 444–57.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin 2018;68:7–30.
3. Shyamsivappan S, Vivek R, Saravanan A, et al. A novel 8-nitro quinoline-thiosemicarbazone analogues induces G1/S & G2/M phase cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway. Bioorg Chem 2020;97:103709.
4. Yang K, Yang JQ, Luo SH, et al. Synthesis of N-2(5H)-furannonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg Chem 2021; 107:104518.
5. Verma SK, Ratre P, Jain AK, et al. De novo designing, assessment of target affinity and binding interactions against aromatase: discovery of novel leads as anti-breast cancer agents. Struct Chem 2021;32:847–58.
6. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:5548–57.
7. Myers SH, Brunton VG, Unciti-Broceta A. AXL inhibitors in cancer: a medicinal chemistry perspective. J Med Chem 2016;59:3593–608.
8. Ségaline AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015;4:1–12.
9. Sarukhanyan E, Shityakov S, Dandekar T. Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer. Front Chem 2020;7:920.
10. Guo T, Ma S. Recent advances in the discovery of multitargeted tyrosine kinase inhibitors as anticancer agents. ChemMedChem 2021;16:600–20.
11. Roskoski R. Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol Res 2020;152:104609.
12. Broeckman F, Giovannetti E, Peters GJ. Tyrosine kinase inhibitors: multi-targeted or single-targeted? World J Clin Oncol 2011;2:80–93.
13. Raghavendra NM, Pingili D, Kadasi S, et al. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 2018;143:1277–300.
14. Govindachari TR, Viswanathan N. The stem bark of Mappia foetida, a tree native to India, has proved to be another source significant for the isolation of camptothecin. Phytochemistry 1972;11:3529–31.
15. Martorana A, Monica GL, Lauria A. Quinoline-based molecules targeting c-met, EGF, and VEGF receptors and the proteins involved in related carcinogenic pathways. Molecules 2020;25:4279.
16. Marella A, Tanwar OP, Saha R, et al. Quinoline: a versatile heterocyclic. Saudi Pharm J 2013;21:1–12.
17. Afzal O, Kumar S, Haider MR, et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 2015;97:871–910.
18. Musiol R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin Drug Discov 2017;12:583–97.
19. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol 2018;36:231–7.
20. Zschäbitz S, Grüllich C. Lenvantinib: a tyrosine kinase inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα, KIT and RET. Recent Result Cancer Res 2018;211:187–98.
21. Markowitz JN, Fancher KM. Cabozantinib: a multitargeted oral tyrosine kinase inhibitor. Pharmacotherapy 2018;38:357–69.
22. Deeks ED. Neratinib: first global approval. Drugs 2017;77:1695–704.
23. Alafeefy AM. Design, synthesis, and antitumor screening of certain novel tetrahydroquinoline sulfonamides. J Enzyme Inhib Med Chem 2015;30:189–94.
24. Pacchiano F, Carta F, McDonald PC, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimitastatic activity in a model of breast cancer metastasis. J Med Chem 2011;54:1896–902.
25. Takacova M, Holotnakova T, Barathova M, et al. Src induces expression of carbonic anhydrase IX via hypoxia-inducible factor 1. Oncol Rep 2010;23:869–74.
26. Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009;131:3057–62.
27. Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010;53:335–44.
28. Hou Y, Shang C, Wang H, Yun J. Isatine-azole hybrids and their anticancer activities. Arch Pharm (Weinheim) 2020;353:e1900272.
29. Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020;353:e1900367.
30. Fortin S, Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Discov 2013;8:1029–47.
31. Mokhtar M, Saleh TS, Ahmed NS, Al-Bogami AS. A green mecanochemochemical one-pot three-component domino reaction synthesis of polysubstituted azoloazoles containing benzofuran moiety: cytotoxic activity against HePG2 cell lines. Polycyclic Aromatic Compounds 2020;40:594–608.
32. Mokhtar M, Alhashedi BFA, Kashmery HA, et al. Highly efficient nanosized mesoporous cumgal ternary oxide catalyst for nitro-alcohol synthesis: ultrasound-assisted sustainable green perspective for the Henry reaction. ACS Omega 2020;5:6532–44.
33. Althabaiti NS, Al-Nwaiser FM, Saleh TS, Mokhtar M. Ultrasonic-assisted Michael addition of arylhalide to activated olefins utilizing nanosized CoMgAl-layered double hydroxide catalysts. Catalysts 2020;10:220.
34. Al-Bogami AS, Saleh TS, Moussa TAA. Green synthesis, antimicrobial activity and cytotoxicity of novel fused pyrimidine derivatives possessing a trifluoromethyl moiety. ChemistrySelect 2018;3:8306–11.
35. Alghamdi KS, Ahmed NSI, Bakhotmah D, Mokhtar M. Chitosan decorated copper nanoparticles as efficient catalyst for synthesis of novel quinoline derivatives. J Nanosci Nanotechnol 2020;20:890–9.
36. Ulman A, Urankar E. A novel synthesis of 4-{[alkyl(aryl)sulfon- nyl]benzaldehydes: alky[(aryl)sulfinate anion as a nucleophile in aromatic substitutions. J Organ Chem 1989;54:4691–2.
37. Yuan YQ, Guo SR. A mild and efficient synthesis of aryl sulfones from aryl chlorides and sulfonic acid salts using microwave heating. Synlett 2011;2011:2750–6.
38. Hosamani KM, Reddy DS, Devrajagowda HC. Microwave-assisted synthesis of new fluorinated coumarin-pyrimidine hybrids as potent anticancer agents, their DNA cleavage and X-ray crystal studies. RSC Adv 2015;5:11261–71.
39. Amin KM, Syam YM, Anwar MM, et al. Synthesis and molecular docking study of new benzofuran and furan[3,2-g]chromene-based cytotoxic agents against breast cancer and p38z MAP kinase inhibitors. Bioorg Chem 2018;76:487–500.
40. Abbas HS, Abd El-Karim SS. Design, synthesis and anticervical cancer activity of new benzofuran-pyrazol-hydrazono-thiazolidin-4-one hybrids as potential EGFR inhibitors and apoptosis inducing agents. Bioorg Chem 2019;89:103035.
41. Panda SS, Liaqat S, Girgis AS, Samir A, et al. Novel antibacterial active quinoline-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg Med Chem Lett 2015;25:3816–21.
42. Nossier ES, Abd El-Karim SS, Khalifa NM, et al. Kinase inhibitory activities and molecular docking of a novel series of anticancer pyrazole derivatives. Molecules 2018;23:3074.
43. Puratchikody A, Siram D, Umanaheswari A, Irfan N. 3-D structural interactions and quantitative structural toxicity studies of tyrosine derivatives intended for safe potent inflammation treatment. Chem Cent J 2016;10:24.
44. Mason TJ, Tiehm A. Advances in sonochemistry, volume 6: ultrasound in environmental protection. Amsterdam, Netherlands: Elsevier Science; 2001:145.

45. Shah YT, Pandit AB, Moholkar VS. Cavitation reaction engineering. New York (NY): Plenum Publishers; 1999.

46. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

47. Vistica DT, Skehan P, Scudiero D, et al. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 1991;51:2515–20.

48. Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Meth 1988;11:15–7.

49. Anwar MM, Abd El-Karim SS, Mahmoud AH, et al. A comparative study of the anticancer activity and PARP-1 inhibiting effect of benzofuran–pyrazole scaffold and its nano-sized particles in human breast cancer cells. Molecules 2019;24:2413.

50. Liu F, Liu D, Yang Y, Zhao S. Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett 2013;5:1261–5.

51. MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr 1995;5:127–56.