Comparison of Recent Studies on Rehabilitation of Chronic Ankle Instability: A Systematic Review

Su-jung Kim, PT, Ph.D.
KEMA Healing Center, Busan, South Korea

Background There are many factors contributing to chronic ankle instability (CAI), but recently it has been reported that dynamic balance, peroneal reaction time, and eversion strength deficiency are highly related.

Purpose The purpose of this study was to find out whether the contributing factors of ankle instability were used in rehabilitation interventions and, if so, whether they were effective.

Study design Systematic review

Methods Relevant health databases, such as PubMed, MEDLINE, CINAHL and ScienceDirect, were searched. Systematic reviews were included if they fit the research question, and they were clearly defined by the search strategy criteria.

Results A total of 58 articles were retrieved and 19 articles fulfilled inclusion criteria. In duplicate counts, dynamic balance training (DBT) was used as an intervention in 15 studies, and strength training (ST) was used in 4 studies. There were also mixed forms of intervention that made it difficult to divide exercise methods.

Conclusions DBT and ST improved the ankle strength, balance, functional performance, and self-reported function of CAI patients. There was limited evidence that either DBT or ST was more effective in improving function in CAI patients.

Key words Chronic ankle instability; Dynamic balance; Rehabilitation; Strength; Vibration training.

INTRODUCTION

Ankle sprains occur very frequently during daily and sports activities.1-3 Chronic ankle instability (CAI) is a common result of an ankle sprain.5,5 About 73% of individuals who have experienced ankle sprain injuries have recurrent episodes, of which 59% report long-term disability.1 The common symptoms of CAI include feeling of instability, sensation of giving way, and subsequent sprains.1,6,7 Additionally, patients with CAI often have defects in functional performance, proprioception, and strength.3 The sequential development of CAI has negative health effects, including poor quality of life and early onset osteoarthritis.7

Studies before the International Ankle Consortium (IAC) published the standard inclusion criteria for CAI in 2014 have differences in methodological quality, outcome measurement method, and criteria for selecting participants.7,8,10 Standard inclusion criteria approved by IAC for enrolling patients with heterogeneous conditions of CAI in controlled studies are as follows: 1) a history of at least 1 significant ankle sprain, and the initial sprain must have occurred at least 12 months prior to study enrollment, 2) a history of the previously injured ankle joint “giving way,” recurrently spraining, and/or having “feelings of instability,” and self-reported ankle instability should be confirmed using the relevant cutoff score from a specific questionnaire validated for ankle instability [ankle instability instrument (AII)-answer “yes” to at least 5 yes/no questions, Cumberland ankle instability tool (CAIT) < 24, identification of functional ankle instability (IdFAI) > 11], 3) a general self-
reported foot and ankle function questionnaire is recommended to describe the level of disability [foot and ankle ability measure (FAAM) < 90% of activities of daily living (ADL) scale, <80% of sport scale, foot and ankle outcome score (FAOS) < 75% in 3 or more categories]. It was recommended to exclude any patients with acute damage to the musculoskeletal structure in other joints of the lower extremity (i.e. sprains, fractures), which impacted joint integrity and function, and who have had at least one day of discontinuation of desired physical activity. Patients with a history of previous surgery for both limb musculoskeletal structures of the lower extremities, such as bones, joint structures, and nerves, were also recommended to be excluded to minimize heterogeneity of chronic ankle instability. Despite the IAC’ s recommendations, it was unclear whether the results of previous systematic reviews accurately reflect the CAI population, according to a 2016 study by Tompson et al. Subjects’ inclusion criteria varied in many previous studies comparing such things as the characteristics of the CAI population and treatment effects. Additionally, inconsistent terminology and multiple operational definitions of CAI were widespread across the literature.

There are many factors contributing to CAI that can cause disorders, but this condition is more heterogeneous than many perceive. Knowledge of CAI and the factors contributing to its development is critical to developing targeted interventions and preventing long-term symptoms. A current review reported strong evidence that contributing factors to CAI were dynamic balance, peroneal reaction time, and eversion strength deficits. Impaired dynamic balance, delayed peroneal reaction time, and lack of eversion muscle strength make the ankle joint unable to cope with the inversion sprain. Common individual rehabilitation exercises for CAI patients are balance training using unstable support surfaces and strengthening using elastic bands. Strengthening intervention using an elastic band helps increase muscle strength and joint position sense, and exercise using an unstable support surface helps reduce muscle latency onset and postural sway. However, studies involving CAI patients are rare or have limited evidence. Therefore, the purpose of this study was to investigate the results of recent CAI rehabilitation studies with strong contributing factors and whether CAI participants meet the criteria according to IAC recommendations.

METHOD

The protocol of this systematic review was developed using the framework outlined in the guidelines provided by the PRISMA (preferred reporting items for systematic review and meta-analyses) statement. The risk of bias assessment was conducted using a modified version of the quality index checklist.

Search strategy

The primary search was conducted on PubMed, MEDLINE, CINAHL and ScienceDirect. The search strategy was identical for all databases using ‘chronic ankle instability AND rehabilitation’ as the search terms with filters applied for full text, randomized controlled trial, and within the last 5 years. Selection criteria were as follows: 1) the study compared a group of participants with CAI to a control group, 2) it compared the effects before and after intervention using dynamic balance, peroneal reaction time or eversion strengthening, 3) the outcome variable were related to the ankle instability score.

Assessment of risk of bias

Risk of bias in the included studies was determined using the Cochrane Collaboration risk of bias assessment tool. A judgment that the risk of bias was low, unclear, or high was provided along with a statement of evidence for the cause of bias for each study. The causes of the biases considered were random sequence generation, assignment concealment, blinding of participants and staff, blinding of outcome evaluation, and incomplete outcome data.

Data analysis

As the selected studies lacked study homogeneity, such as intervention type, duration, and major outcome factors, data pooling for meta-analysis was not possible.

RESULTS

A total of 58 articles were retrieved. After the title and abstract review, 22 articles underwent full-text review. Following a complementary search and assessment of full manuscripts, 19 articles fulfilled the inclusion criteria (Figure 1). Summaries of the studies were shown in Table 1. All selected studies were conducted in participants who met the IAC recommendations for CAI. Allowing duplicate counts of intervention type resulted in 15 articles using dynamic balance training (DBT), 4 articles using strength training (ST), and 4 articles using mixed type. The mixed interventions included functional activity, range of motion (ROM), strength, balance, and neuromuscular training. There were 12 studies comparing the effects of each exercise type before and after exercise. Six studies were conducted on the effects of...
Figure 1. Flow chart of search strategy.

whole-body vibration, sensory targeted ankle rehabilitation strategies, and unstable surfaces.16,18,22,27-28 There was one study comparing the effects of exercise on functionally unstable ankles and functionally stable ankles.29 All studies described a method of random allocation and did random sequence generation (low risk of bias).11,14-31 In most studies, except for one, outcome assessment was double blinded and complete outcome data was provided (low risk of bias).11,14-31

DISCUSSION

The purpose of this study was to systematically review and evaluate the effectiveness of training reflecting the factors contributing to the development of CAI and whether recent studies on CAI selected participants that met the recommendations of the IAC. In all selected studies, the subject selection criteria met IAC recommendations.11,14-31 The findings of the current review indicated that the intervention of recent studies are mainly concerned with dynamic stability, and it is rare to include reaction time and eversion strength.11,13-26 DBT improved the ankle strength, balance, functional performance, and self-reported function of CAI patients (Table 1). In ST groups, all of these factors improved (Table 1). However, because strengthening exercise protocols included dorsiflexion, plantar flexion, inversion and eversion, the relevance to eversion strength was not clear.11,13-15 There was limited evidence whether DBT or ST was more effective in improving function in CAI patients.11,14-16 There was also controversy about the effectiveness of using an unstable support surface, vibration, or sensory-targeted ankle rehabilitation strategies (mobilization, massage, and stretching) in the balance exercise protocol.15-19,22,23,31

In the selected studies, CAIT, FAAM, global rating of function (GRF), star excursion balance test (SEBT), foot lift test, hop test, kinetics, and kinematic were used dependent variables.11, 14,18,20,22-24,26-31 As an instability measurement, SEBT, foot lift test, hop test, kinetics, and kinematics provided valid, objective, and quantifiable data to evaluate the balance ability of the ankle joint. CAIT, FAAM, and GRF as subjective data were also used in a validated ankle instability specific questionnaire to confirm self-reported ankle instability.10 The subjective ‘feelings of instability’ are also important factors that limit patients’ functional activity and reduce their quality of life.11 The CAI populations feel that an unstable ankle joint is usually associated with the fear of sustaining an acute ligament sprain during ADL and sporting activities.10 Health care clinicians should aim to reduce fear-avoidance as well as symptoms and dysfunction to improve the functioning of CAI populations. According to the results of this study, several weeks of DBT, ST, and progressively therapeutic exercise will help improve balance, strength, and self-efficacy in CAI patients.11,14-31 Previous studies have shown that a significant number of CAI patients are experiencing recurrent episodes. According to a study by Wright et al., about 43% of participants maintained a decrease in ‘giving way (the regular occurrence of uncontrolled and unpredictable episodes of excessive inversion of the rear foot)’ after 6 months post-intervention.14 However, as most of the selected studies measured intervention effectiveness immediately after exercise, the long-term effects were not known for certain.11,15-17,19,20,22-29,31

The selected studies were not homogeneous in exercise method, intervention period, and outcome variables, excluding the criteria for selecting CAI participants. Therefore, there is a limitation as comparison using statistical analysis cannot be performed. In addition, in some studies, the similarity between the measurement method and the DBT method used as an outcome variable could not be completely excluded. Therefore, in future studies, it will be necessary to evaluate methodological bias and meta-analysis of articles with research homogeneity.

CONCLUSIONS

This study found that DBT, ST, and therapeutic exercise improved the ankle strength, balance, functional performance, and self-reported function of CAI patients. There is limited evidence on which exercise is most effective in improving function in CAI patients.
Table 1. Summary of articles

Type	Specificity	Protocol	Author	Inclusion/exclusion criteria	Outcome variable	Main findings
DBT* or ST†	2 subgroups: 1. Wobble-board balance training; a single-leg stance exercise with clockwise and counterclockwise rotations 2. Strength-training using Theraband; plantarflexion, dorsiflexion, inversion and eversion	3 times each week, for 4 weeks	Wright et al.¹¹	Mentioned Met IAC³	FAAM⁶	A single exercise can reduce symptoms and improve clinical test performance. Limited evidence indicates that wobble-board balance training was more effective than strength-training.
	2 subgroups: Further study of Wright et al.¹¹ at 6 month post-intervention,	3 times each week, for 4 weeks	Wright et al.¹⁴	Mentioned Met IAC³	FAAM⁶	Some improvements were maintained, but not all.
DBT, ST, or Control	3 subgroups: 1. Balance-Training: 5 dynamic activities to challenge efficient recovery of single-limb balance 2. Strength-Training: resistance-band protocols (dorsiflexion, inversion, and eversion) and heel raises with a slow-reversal proprioceptive neuromuscular facilitation (PNF) technique 3. Control Group: 20-minute bicycle workout with consistent mild to moderate resistance	20 minutes, 3 times each week, for 6 weeks	Hall et al.¹⁵	Mentioned Met IAC³	Isokinetic strength SEBT-anterior, posterolateral, and posteromedial	Both the DBT and ST groups improved strength, balance, and functional performance, while the control group did not improve.
Table 1. Continued

Intervention	Author	Inclusion/ exclusion criteria	Outcome variable	Main findings
DBT, ST, or Control	Hall et al.	Mentioned Met IAC	Disablement in the Physically Active Scale, the Fear-Avoidance Beliefs Questionnaire, FAAM FAAM - ADL and sport VAS	
				Global and regional health-related quality of life was improved in all 3 groups.
DBT or control	Linens et al.	Mentioned Met IAC	Foot lift test Time-in-balance Test SEBT Side hop test	Wobble board training significantly improved static balance.
DBT with or without STARS	Burcal et al.	Mentioned Met IAC	Self-assessed disability: 24-hour, 1-week, 1-month after the intervention SEBT: 24-hour and 1-week after the intervention Static single limb stance (time-to-boundary of pressure): 24-hour and 1-week after the intervention MCID MDC***	Both groups demonstrated improvements in all outcome categories.

Protocol
20 minutes, 3 times each week, for 6 weeks.
20 minutes, 3 times each week, for 4 weeks
and heel raises with a slow-reversal PNF technique
3 times each week, for 4 weeks

Specificity
1.Balance training; 5 dynamic activities to challenge efficient recovery of single-limb balance
2.Strength training; resistance-band protocols(dorsiflexion, inversion, and eversion) and heel raises with a slow-reversal PNF technique
3.Control Group; 20-minute bicycle workout with consistent mild to moderate resistance
1. Wobble-board balance training; a single-leg stance exercise with clockwise and counter-clockwise rotations, difficulty of training progressed (height of each level increased by half inch)
2. Control; no intervention
1. Balance training progressively
2. Balance training with STARS; 5 minutes, calf stretching, plantar massage, ankle joint mobilizations, and ankle joint traction before each balance training session
Intervention

DBT with or without vibration, or Control
3 subgroups: progressed balance exercise 1. Vibration group; trained with BOSU on an Excel Pro vibration platform 2. Non-vibration group; trained with the BOSU on the floor 3. Control; no intervention
DBT
2 subgroups: 1. Traditional single-limb balance training; progressive single-limb balance 2. Progressive dynamic balance training: hop-to-stabilization balance
2 subgroups: 1. A single-leg stance exercise with active power plate 2. Control with inactive power plate
2 subgroups: 1. Progressive balance training with BAPS board 2. Control; no intervention
Intervention

DBT
2 subgroups:
1. Balance training: kicking task with progressively altered conditions
2. Control; no intervention
2 subgroups:
1. Progressive hop stabilization training; figure 8, square shape, zigzag pattern, forward-backward, side to side, and forward hop
2. Control; no intervention
2 subgroups:
1. Progressed hop stabilization training
2. Control; no intervention
Mixed exercise
2 subgroups:
1. Progressive rehabilitation program with destabilization devices; functional activity, ROM, strength, and balance exercises
2. Control; same type exercise without devices
2 subgroups:
1. Progressive rehabilitation program with destabilization devices; functional activity, ROM, strength, and balance exercises
2. Control; same type exercise without devices
Table 1. Continued

Intervention	Author	Inclusion/exclusion criteria	Outcome variable	Main findings
Mixed exercise	Kim et al.	Met IAC	Kinematic data during walking, running, and landing; 6-week and 24-weeks after the intervention	A relatively inverted ankle position during walking and running in functionally unstable ankle group. Neuromuscular training had an immediate effect on changing ankle orientation toward a less everted direction during walking and running as well as jump landing. The changed ankle kinematics seemed to persist during jump, landing but not during walking and running.
Mixed exercise	Shin et al.	Met IAC	Static balance (center of pressure on a force plate) VAS; pain and fatigue	Therapeutic exercise on sea sand effectively improved balance and decreased pain and fatigue.

1 DBT, dynamic balance training; ST, strength-training; 2 IAC, the international ankle consortium; 3 CAIT, cumberland ankle instability tool; 4 FAAM, foot and ankle ability measure; 5 ADL, activities of daily living; 6 SF-36, short-form 36; 7 GRF, global rating of function; 8 SEBT, star excursion balance test; 9 VAS, visual analog scale; 10 STARS, sensory-targeted ankle rehabilitation strategies; 11 MCID, minimal clinically important difference; 12 MDC, minimal detectable change; 13 CAI, chronic ankle instability; 14 FAOC, foot and ankle outcome score; 15 ROM, range of motion.

Key Points

Question Is the rehabilitation intervention of chronic ankle instability focused on the contributing factor of instability and the treatment effect?

Findings Dynamic balance training was used in research on chronic ankle instability (CAI). Dynamic balance and strength training improved the ankle strength, balance, functional performance, and self-reported function of CAI patients.

Meaning It could be applied to the development of management and intervention programs for the CAI population.

Article information

Conflict of Interest Disclosures: None.
Funding/Support: None.
Acknowledgment: None.
Ethic Approval: This manuscript does not require IRB/IACUC approval because there are no human and animal participants.

REFERENCES

1. Yeung MS, Chan KM, So CH, Yuan WY. An epidemiological survey on ankle sprain. *Br J Sports Med.* 1994; 28(2):112-116.
2. Fong DT, Hong Y, Chan LK, Yung PS, Chan KM. A systematic review on ankle injury and ankle sprain in sports. *Sports Med.* 2007;37(1):73-94.
3. Herzog MM, Kerr ZY, Marshall SW, Wikstrom EA. Epidemiology of ankle sprains and chronic ankle instability. *J Athl Train.* 2019;54(6):603-610.
4. Hertel, J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. *J Athl Train.* 2002;37:364-375.
5. van Rijn RM, van Os AG, Bernsen RM, Luijsterburg PA, Koes BW, Bijmer-Beetsma SM. What is the clinical course of acute ankle sprains? A systematic literature review. *Am J Med.* 2008;121(4):324-331.
6. Hubbard TJ, Kramer LC, Denegar CR, Hertel J. Contributing factors to chronic ankle instability. *Foot Ankle Int.*
1. Thompson C, Schabrun S, Romero R, Bialocerkowski A, Marshall P. Factors contributing to chronic ankle instability: a protocol for a systematic review of systematic reviews. Syst Rev. 2016;5:94.
2. Moisan G, Descarreaux M, Cantin V. Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: a systematic review. Gait Posture. 2017;52:381-399.
3. Hall EA, Docherty CL, Simon J, Kingma JJ, Klossner JC. Strength-training protocols to improve deficits in participants with chronic ankle instability: A randomized controlled trial. J Athl Train. 2015;50(1):36-44.
4. Gribble PA, Delahunt E, Bleakley CM, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Athl Train. 2014;49(1):121-127.
5. Wright CJ, Linens SW, Cain MS. A randomized controlled trial comparing rehabilitation efficacy in chronic ankle instability. J Sport Rehabil. 2017;26(4):238-249.
6. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.
7. Gilmore SJ, McClelland JA, Davidson M. Physiotherapeutic interventions before and after surgery for degenerative lumbar conditions: a systematic review. Physiotherapy. 2015;101(2):111-118.
8. Wright CJ, Linens SW. Patient-reported efficacy 6 months after a 4-week rehabilitation intervention in individuals with chronic ankle instability. J Sport Rehabil. 2017;26(4):250-256.
9. Hall EA, Chomistek AK, Kingma JJ, Docherty CL. Balance- and strength-training protocols to improve chronic ankle instability deficits, Part I: assessing clinical outcome measures. J Athl Train. 2018;53(6):568-577.
10. Hall EA, Chomistek AK, Kingma JJ, Docherty CL. Balance- and strength-training protocols to improve chronic ankle instability deficits, Part II: assessing patient-reported outcome measures. J Athl Train. 2018;53(6):578-583.
11. Burel CJ, Trier AY, Wikstrom EA. Balance training versus balance training with STARS in patients with chronic ankle instability: a randomized controlled trial. J Sport Rehabil. 2017;26(5):347-357.
12. Sierra-Guzmán R, Jiménez-JD, Ramírez C, Esteban P, Abián-Vicén J. Effects of synchronous whole body vibration training on a soft, unstable surface in athletes with chronic ankle instability. Int J Sports Med. 2017;38(6):447-455.
13. Sierra-Guzmán R, Jiménez-Diaz F, Ramírez C, Esteban P, Abián-Vicén J. Whole-body-vibration training and balance in recreational athletes with chronic ankle instability. J Athl Train. 2018;53(4):355-363.
14. Steinberg N, Adams R, Tirosh O, Karin J, Waddington G. Effects of textured balance board training in adolescent ballet dancers with ankle pathology. J Sport Rehabil. 2019;28(6):584-592.
15. Anguish B, Sandrey MA. Two 4-week balance-training programs for chronic ankle instability. J Athl Train. 2018;53(7):662-671.
16. Linens SW, Ross SE, Arnold BL. Wobble board rehabilitation for improving balance in ankles with chronic instability. Clin J Sport Med. 2016;26(1):76-82.
17. Rendos NK, Jun HP, Pickett NM, et al. Acute effects of whole body vibration on balance in persons with and without chronic ankle instability. Res Sports Med. 2017;25(4):391-407.
18. Cain MS, Garceau SW, Linens SW. Effects of a 4-week biomechanical ankle platform system protocol on balance in high school athletes with chronic ankle instability. J Sport Rehabil. 2017;26(1):1-7.
19. Conceição JS, Schaefer de Araújo FG, Santos GM, Keightley J, Dos Santos MJ. Changes in postural control after a ball-kicking balance exercise in individuals with chronic ankle instability. J Athl Train. 2016;51(6):480-490.
20. Minoonejad H, Karimizadeh Ardakani M, Rajabi R, Wikstrom EA, Sharifnezhad A. Hop stabilization training improves neuromuscular control in college basketball players with chronic ankle instability: a randomized controlled trial. J Sport Rehabil. 2019;28(6):576-583.
21. Ardakani MK, Wikstrom EA, Minoonejad H, Rajabi R, Sharifnezhad A. Hop-stabilization training and landing biomechanics in athletes with chronic ankle instability: a randomized controlled trial. J Athl Train. 2019;54(12):1296-1303.
22. Donovan L, Hart JM, Saliba S, et al. Effects of ankle destabilization devices and rehabilitation on gait biomechanics in chronic ankle instability patients: a randomized controlled trial. Phys Ther Sport. 2016;21:46-56.
23. Donovan L, Hart JM, Saliba SA, et al. Rehabilitation for chronic ankle instability with or without destabilization devices: a randomized controlled trial. J Athl Train. 2016;51(3):233-251.
24. Kim E, Choi H, Cha JH, Park JC, Kim T. Effects of Neuromuscular Training on the rear-foot angle kinematics in elite women field hockey players with chronic...
31. Shin HJ, Kim SH, Jeon ET, Lee MG, Lee SJ, Cho HY. Effects of therapeutic exercise on sea sand on pain, fatigue, and balance in patients with chronic ankle instability: a feasibility study. *J Sports Med Phys Fitness*. 2019;59(7):1200-1205.