Background and Aim
This study aimed to investigate the association between Endoplasmic Reticulum autophagy (ER-phagy) and Alzheimer’s Disease (AD) by analyzing the expression patterns of related genes in animal models.

Methods & Materials
Microarray data of AD patients’ brain tissues were extracted from the Gene Expression Omnibus (GEO) database. These data were first analyzed in GEO2R online tool. Then, the expression of ER-phagy related genes were isolated and the protein interaction networks were plotted by STRING database for the genes with increased expression. Finally, the relationship between the genes that had significant increased expression were designed, and the expression of new identified genes in each study was examined.

Ethical Considerations
All ethical principles were considered in this article.

Results
Genes involved in ER-phagy showed a sporadic expression in different AD models. An increase in the expression of ER-phagy regulatory 1 (FAM134B) gene was observed in studies with the mutation in both Microtubule-associated Protein Tau (MAPT) and Amyloid Precursor Protein (APP) genes. Increase in the expression of NPC intracellular cholesterol transporter 1 (NPC1) gene was observed in two studies that had mutations in APP, Presenilin 1 (PSEN1) and MAPT genes. Moreover, SEC62 homolog and Cell Cycle Progression 1 (CCPG1) genes both showed decreased expression in one study. Finally, the expression of Reticulon 3 (RTN3) was not significant in any of the studies.

Conclusion
The genes involved in ER-phagy have a sporadic expression in AD models, where only two genes FAM134B and NPC1 are involved in AD. The FAM134B gene seems to interact with the Wnk1 gene, which plays a role in cell survival and proliferation, in the hippocampus and forebrain. It also interacts with the Map1lc3b gene, which has a role in phagosome deletion and protein ubiquitination, in the forebrain. It also interacts with the Map1lc3b gene, which has a role in phagosome deletion and protein ubiquitination, in the forebrain. NPC1 had interaction with the Abcg1 gene, which activates lipid homeostasis, in the subventricular zone.

Key words:
Gene expression, Alzheimer’s disease, Endoplasmic reticulum, Autophagy, Microarray
Extended Abstract

Introduction

Alzheimer’s disease is a recognized public health priority because it imposes heavy costs on health care and economic systems [1]. Alzheimer’s is a neurodegenerative disease known as the most common form of dementia and affects approximately 46 million people worldwide [2]. Endoplasmic Reticulum (ER) dysfunction has been observed in various human diseases such as Alzheimer’s, Parkinson’s and Huntington’s [9]. ER function and its morphology are associated with autophagy [6]. It has recently been shown that ER stress causes autophagy [14]. Autophagy is essential for maintaining tissue homeostasis and prevents the onset and progression of many diseases such as aging, neurodegenerative diseases and cancer [15]. Autophagy is a process that occurs in most cells, which is responsible for degrading improperly folded proteins and organs damaged by lysosomes [16]. Autophagy is associated with neurodegenerative diseases such as Alzheimer’s [17] and it has also been shown that Alzheimer’s disease interferes with the autophagy process [18]. In autophagy, when there is stress, an autophagosome is formed that contains portions of ER proteins. Autophagy that occurs in the endoplasmic reticulum network is known as selective autophagic removal of ER (ER-phagy) and balances the flexibility of the ER network during the response of unfolded proteins, aiding cellular homeostasis [19]. ER-phagy involves the breakdown of proteins in the cisternae of the ER network within the autophagosomes. In mammals, there are four receptors for ER-phagy which are basically proteins living in the ER network or transmembrane which are: ER-phagy receptor 1 (FAM 134B), cell cycle progression 1 (CCPG1), SEC62 homolog, and reticulon 3 (RTN3).

Materials and Methods

In this study, data were extracted from the GEO (Gene Expression Omnibus) database [24] by using the keyword “Alzheimer’s disease”. Only those studies conducted on transgenic mice were selected and unrelated and pharmacological studies were excluded. To analyze data, GEO2R online software and Benjamini & Hochberg method were used, and the significance level was set at 0.05 [25]. STRING database was used to predict protein interactions. In this regard, for the genes NPC1, FAM134B, SEC62, RTN3 and CCPG1, protein interactions were predicted and drawn. Separate protein interactions for FAM134B and NPC1 genes were also evaluated [25].

Results

Nine studies that had compared gene expression on non-transgenic (wild) mice and Alzheimer’s models were finally

Figure 1. Interaction network of the ER-phagy proteins indicating the key role of FAM134B protein. Purple line: experimental evidence; Green line: Neighborhood evidence; Red line: Fusion evidence; Yellow line: Text mining evidence; Black line: co-expression evidence; Blue line: Swiss-Prot database evidence

Figure 2. Interaction of FAM134B, as a protein with increased expression, with other proteins indicating that Fam134b protein is closely related to the other 10 proteins. Purple line: experimental evidence; Green line: Neighborhood evidence; Red line: Fusion evidence; Yellow line: Text mining evidence; Black line: co-expression evidence; Blue line: Swiss-Prot database evidence
selected, and the data from these studies were analyzed in GEO2R online software and gene expression changes were recorded. The results of the genes involved in ER-phagy showed fusion expressions in different models of Alzheimer’s disease. An increase in the expression of genes such as the FAM134B gene was observed in studies with reported mutations in microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) genes. An increase in the NPC1 gene was observed in two studies that had reported mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and MAPT genes. The SEC62 and CCPG1 genes both showed a decrease in expression in one study. The RTN3 gene did not show significant expression in any of the studies. Protein interactions for the study genes are illustrated in Figure 1. After the expression of FAM134B gene was increased in GSE53480 and GSE31372 studies, the genes of proteins related to it were also examined. In the GSE53480 study, the Wnk1 gene expression increased and the Sbf2 gene expression decreased, and in the GSE31372 study, the Map1lc3b gene showed an increase in expression (Table 1). For the NPC1 gene, which had a reported expression increase in the GSE60460 and GSE36981 studies, NPC1-related protein genes were also examined. In the GSE60460 study, the Abcg1 gene showed an increase in expression and the Srebf2 gene showed a decrease in expres-

Study code	GSE53480	GSE31372
Transgenic model type	Tg4510	Tg2756
Pldcd2	NS	NS
Wrb	NS	NS
Stx8	NS	NS
Naa50	NS	NS
Wnk1	FC=0.212(P=0.01)	NS
Map1lc3b	NS	FC=0.167(P=0.04)
Rasgeflb	NS	NS
Sbf2	FC=-0.350 (P=0.01)	NS
Ctdp1	NS	NS
Rtn3	NS	NS

FC: Fold change; NS: Not significant; (P>0.05)

Table 2. Studies reports the expression changes in 10 proteins associated with NPC1 gene

Study code	GSE60460	GSE36981
Transgenic model type	3xTg-AD	3xTg-AD
Npc2	NS	NS
Osbp5	NS	NS
Gtpbp1	NS	NS
Gp2	NS	NS
Srebf1	NS	NS
Abcg1	FC=0.529 (P<0.002)	NS
Abca1	NS	NS
Srebf2	FC=-0.384 (P=0.03)	NS
Smpd1	NS	NS
Cytb5d2	NS	NS

FC: Fold change; NS: Not significant; (P>0.05)
sion, and in the GSE36981 study, the Osbpl5 gene showed a decrease in expression (Table 2).

Discussion

Recent studies suggest that the ER-phagy process plays the most important role in maintaining the shape and function of ER [20]. One of the ER functions is to control the quality of proteins. Recently, however, it has been observed that under stress, a part of the ER membrane along with its proteins are transferred to the lysosome and then removed. This stress can include: drug-induced stress, overall cell stress, or hunger [28]. The ER-phagy process has been shown to be dependent on the process of response to unfolded proteins [29]. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, etc. have also been shown to be associated with the process of responding to unfolded proteins [30]. In this regard, we investigated the relationship between the expression of genes involved in ER-phagy in Alzheimer’s disease. Since FAM134B, NPC1, SEC62, CCPG1 AND RTN3 genes are important ER-phagy genes, their expression in Alzheimer’s models was investigated. However, only in 4 of the 9 selected studies for review showed increased expression in only two genes, FAM134B and NPC1. These data indicate that the expression of ER-phagy genes does not change much in Alzheimer’s disease. Since only FAM134B and NPC1 genes showed increased expression, these genes seemed to have a function other than ER-phagy. Therefore, changes in the expression of the genes of the proteins associated with these two proteins were also examined. The FAM134B gene showed increased expression in two studies; one in the hippocampal region along with Wnk1 gene and one in the forebrain along with the Map1lc3b gene. Moreover, with increased expression of NPC1 in the subventricular zone, an increase was also observed in the Abcg1 gene expression (Figures 2 and 3).

Conclusion

Of the genes involved in ER-phagy, only two genes, FAM134B and NPC1, may be involved in Alzheimer’s disease. The FAM134B gene seems to interact with the Wnk1 gene, which plays a role in cell survival and proliferation, in the hippocampus and forebrain. The FAM134B gene may also interact with the Map1lc3b gene, which has a role in removing phagosomes and ubiquitizing proteins, in the forebrain. Furthermore, NPC1 seems to interact with the Abcg1 gene, which activates lipid homeostasis, in the subventricular zone.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles were considered in this article.

Funding

University of Zabol financially supported this research (Code: 9618-59).

Authors’ contributions

Drafting the manuscript: All authors; Literature review, data visualization: Zaliye Gharib; Editing the manuscript, supervision: Nima Sanadgol, Naser Sanchooli.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the University of Zabol for their financial support of this study.
بررسی تغییرات بین ژن‌های دخیل در خودخواری شبکه آندوپلاسمی در مدل‌های حیوانی بیماری آلزایمر با استفاده از ابزارهای زیست‌های‌سیمتریز

۱. گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه زابل، زابل، ایران.

مقدمه
بیماری آلزایمر یک اولویت بهداشت جهانی شناخته شده است، زیرا هزینه‌های اقتصادی تولید شده بر سیستم‌های پزشکی و تغییرات رفتاری از علائم آن است. از نشانه‌های مهم آن می‌توان به تخریب و تحلیل رفتار نورون‌های خاص چرخه سلولی اشاره کرد.

مطالعه می‌کند که در مطالعات مختلف بیماری آلزایمر دارای بیان پراکنده‌ای در مدل‌های مختلف بیماری آلزایمر بوده‌اند. در ژن تنظیم‌کننده ER-phagy ژن‌های دخیل در یافته‌ها و دارای جهش در MAPT در مطالعات دارای جهش در ژن پروتئین مرتبط با میکروتوبول تائو B431MAF، APP افزایش بیان مشاهده شد. همچنین در دو مطالعه که دارای جهش در ژن APP مشاهده شد. از طرف دیگر، ژن‌های همولوگ شبکه آندوپلاسمی در هیچ مطالعه ای بیان معناداری نشان نداد.

کلیدواژه‌ها:
بیماری آلزایمر، خودخواری شبکه آندوپلاسمی، ریزآرایه، مقاله مورد بررسی.
بیماری‌ها مانند بیماری آلزایمر و بیماری پارکینسون دارای مشکل تجزیه پروتئینها هستند. در این بیماری‌ها، پروتئین‌ها به‌صورت غیرقابل تجزیه در شبکه آندوپلاسمی قرار می‌گیرند و گسترش پروتئین‌هایغیرقابلتجزیه برای دستگاه‌های آنتی‌بادی و حضور در جانبهای غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی وابسته هستند. پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی تحت فشار و از طریق راه‌های مختلفی از جمله اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.

یکی از روش‌های بیماری‌ها شامل تجزیه پروتئین‌های غیرقابل تجزیه در شبکه آندوپلاسمی می‌باشد. این روش شامل دو مرحله اصلی است: ۱) شناسایی و تجزیه پروتئین‌های غیرقابل تجزیه و ۲) حذف پروتئین‌های غیرقابل تجزیه. در این روش، پروتئین‌های غیرقابل تجزیه از طریق اتوفاژی و شبکه آندوپلاسمی حذف می‌شوند. در طول پاسخ بیماری‌های بیماری آلزایمر، دستگاه‌های آنتی‌بادی استرگ‌های مشترکی را ایجاد می‌کند که شامل پروتئین‌های غیرقابل تجزیه هستند.
آندوپلاسمی این در صحنه بیماری آلزایمر است که مدلی از ژنتیک شکستی در انسداد پروتئین ژناتیکی ER-phagy و تکثیرهای تازه تولید شده است. این مدل بیان می‌دهد که پروتئین‌های موجود در شبکه آندوپلاسمی به عنوان یک منابع مشترک برای انتقال پروتئین‌ها به خدمات شبکه آندوپلاسمی می‌خورند. این فرآیند در خروجی‌های مختلفی از شبکه آندوپلاسمی شامل آنزیم‌های ATG5 و ATG7 و فعال‌کننده آنزیم ATG3 و LC3 می‌باشد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکمل GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکمل GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکمل GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکمل GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکول GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکول GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus

موکول GABARP یک پروتئین حاوی اتوفاگوزومی FAM134B است که در راه‌های مختلفی از آندوپلاسمی عمل می‌کند. این پروتئین به طور مستقیم با پروتئین زنجیره ژناتیکی ER-phagy نهایی ارتباط دارد و نقش مهمی در تخریب شبکه آندوپلاسمی در بیماری آلزایمر دارد.

۲۵. GABARP
۲۶. LC3
۲۷. Reticulum
۲۸. Trans membrane

۲۹. RecoER-phagy
۳۰. Gene Expression Omnibus
۳۱. Alzheimer's disease
۳۲. Mus musculus
که در ناحیه هیپوکامپ موش های دارای جهش GSE31624 ژن های (ژن Tg2576 و APP (ژن های GSE104249- مطالعه 2) است؛
APP (ژن های APPPS1 ناحیه مغز موش های دارای جهش GSE109055- مطالعه 3) است؛
PSEN1 (ژن های 3xTg هیپوکامپ و کورتکس موش های دارای جهش Sec62) است. در ناحیه هیپوکامپ، ژن MAPT و APP، PSEN1 در همین
Ccpg1 و ژن 0.258 و تغییر بیان 0.02 با معناداری میزان معناداری 0.009- و با 0.۴۱۵ ناحیه مغز با تغییر بیان
در ناحیه کورتکس همین مطالعه نیز ژن MAPT و APP، PSEN1 با تغییر بیان ۰.۱۹۲ و با تغییر بیان ۰.۱۹۰ معناداری که در ناحیه کورتکس موش های دارای جهش GSE92926- مطالعه ۴ مشاهده شد؛
MAPT و APP، PSEN1 (ژن های NPC1 و ریزمان مغز مدل های حیوانی بیماری آلزایمر با استفاده از ابزارهای زیست داده ورزی).
کد مطالعه	GSE36891	GSE31372	GSE60460	GSE109055	GSE109055	GSE53480
NS	NS	NS	NS	NS	NS	NS
FC<0.05	FC<0.05	FC<0.05	FC<0.05	FC<0.05	FC<0.05	FC<0.05
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS

پروتئین	کیفیت ۴	هوموژنتیک	تغییر در تلفیق	تغییر در تلفیق	تغییر در تلفیق	تغییر در تلفیق
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS
Abca1	NS	NS	NS	NS	NS	NS

دادر. پروتئین ۵ مرتبط با پروتئین متنقل شونده به اکسترول در میان دو گروه فشرده است. در مطالعه GSE36891، میزان آماری این پروتئین در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است. در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است. در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است.

دادر. پروتئین ۵ مرتبط با پروتئین متنقل شونده به اکسترول در میان دو گروه فشرده است. در مطالعه GSE36891، میزان آماری این پروتئین در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است. در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است. در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است. در گروه حاوی عناصر تنظیمی (Sreb1) و پروتئین ۲ متنقل شونده به عنصر تنظیمی استرول (Sreb2) از میان دو گروه فشرده است.
پروتئین اسفنجومیلین فسفودی‌ترانسفراز GTP متصل شونده به سرآمید را وساطت می‌کند. پروتئین mRNA نقش mRNA است که در تنظیم پایداری یک پروتئین متصل‌شونده به هم و در هم بیان دارد. پروتئین‌های مرتبط با ژن FAM134B، ژن GSE31372 و GSE53480 در دو مطالعه افزایش بیان پیدا کرده و ژن های پروتئین‌های مرتبط با ژن GSE53480 نیز در مطالعه FAM134B و GSE31372 در آن، کاهش بیان دیده شد. در مطالعه NS: not significant و P: P-value و FC: Fold change FAM134B نام پروتئین‌های مرتبط با JR Tg2756 و Tg4510 و Plced2 و Wrb و Stb8 و Naa50 و Wnk1 و Map1lc3b و Rangef1b و Sbf2 و Ctdp1 و Rtn3، NS: not significant و P: P-value و FC: Fold change FAM134B نام پروتئین‌های مرتبط با JR Tg2756 و Tg4510 و Plced2 و Wrb و Stb8 و Naa50 و Wnk1 و Map1lc3b و Rangef1b و Sbf2 و Ctdp1 و Rtn3، NS: not significant و P: P-value و FC: Fold change FAM134B نام پروتئین‌های مرتبط با JR Tg2756 و Tg4510 و Plced2 و Wrb و Stb8 و Naa50 و Wnk1 و Map1lc3b و Rangef1b و Sbf2 و Ctdp1 و Rtn3، NS: not significant و P: P-value و FC: Fold change FAM134B نام پروتئین‌های مرتبط با JR Tg2756 و Tg4510 و Plced2 و Wrb و Stb8 و Naa50 و Wnk1 و Map1lc3b و Rangef1b و Sbf2 و Ctdp1 و Rtn3، NS: not significant و P: P-value و FC: Fold change FAM134B نام پروتئین‌های مرتبط با JR Tg2756 و Tg4510 و Plced2 و Wrb و Stb8 و Naa50 و Wnk1 و Map1lc3b و Rangef1b و Sbf2 و Ctdp1 و Rtn3.
بررسی شده در مطالعه GSE60460 گزارش شده که نتایج آزمایش پایگاه داده Swissprot. عضویت پروتئین، خط مشکی همبینک و خط سیزربیا NS: not significant یعنی که پیش فرض نمایندگی آزمون-t با استفاده از پایگاه داده Text mining: نتایج آزمایش پایگاه داده ارتباط پروتئین با آزمایش سایر ژن های مرتبط با پروتئین NPC1 به عنوان پروتئین با فعالیت یابن با سایر پروتئین ها توسط پایگاه داده Swissprot، خط مشکی نمایندگی آزمون-t با استفاده از پایگاه داده Text mining، خط سیزربیا NS: not significant. ژن ها به عنوان پیش فرض نمایندگی آزمون-t. پی. چهار گروه‌های آزمایشی باFP: p-value NPC1 با تغییر بیان در پروتئین مرتبط با ژن NPC1 افزایش بیان داشتند. ژن های پروتئین های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن های پروتئین های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن های پروتئین های مرتبط با ژن NPC1، افزایش بیان داشتند.

ژن NPC1	پی. چهار گروه‌های آزمایشی با FP: p-value NPC1	پی. چهار گروه‌های آزمایشی با FP: p-value NPC1
P1lc3b	۰.۳۸۴ (P=0.03)	۰.۳۸۴ (P=0.03)
Abcg1	NS	NS
Abca1	NS	NS
Srebf1	NS	NS
Osbp15	NS	NS
Smpd1	NS	NS
Cyb5d2	NS	NS

نتایج و بیانات

نتایج مطالعه گزارش نشان می‌دهد که پروتئین‌های مرتبط با ژن NPC1 با تغییر بیان داشتند. ژن‌های پروتئین‌های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن‌های پروتئین‌های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن‌های پروتئین‌های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن‌های پروتئین‌های مرتبط با ژن NPC1، افزایش بیان داشتند. ژن‌های پروتئین‌های مرتبط با ژن NPC1، افزایش بیان داشتند.
شبکه آندوپلاسمی یکی از پیچیده‌ترین اندامک‌های سلول‌های یوکاریوتی است. تحقیقات اخیر نشان می‌دهد که شبکه آندوپلاسمی این نقش را در شکل و عملکرد ER-phagy که فرآیند ایفا می‌کند، انجام می‌دهد. ER-phagy یکی از وظایف شبکه آندوپلاسمی است که، در شرایط استرس، قسمت‌هایی از شبکه آندوپلاسمی به لیزوزومهای غشای شبکه آندوپلاسمی منتقل و حذف می‌شوند. این استرس می‌تواند شامل استرس به وسیله دارو یا استرس کلی باشد. نشان داده شده است که برای این فرآیند، شبکه آندوپلاسمی نقش مهمی در کنترل کیفیت پروتئین‌ها دارد. این در مطالعات حیوانی و در vitro نشان داده شده است که ER-phagy عملکردی غیر از حفظ میزان بیان بررسی می‌کند.

شبکه آندوپلاسمی در بیماران آلزایمر اتفاق می‌افتد. این مورد نیز دیده شده است. ER-phagy در مطالعات حیوانی و در vitro نشان داده شده است که بیماری‌های مرتبط با پروتئین‌های اتانخورده مانند بیماری آلزایمر، بیماری پارکینسون و غیره با فرآیند ER-phagy ارتباطی دارند. بر پایه گزارش‌های پزشکی، استرس تانخورده ممکن است نقش خود را در بیماری آلزایمر داشته باشد. ER-phagy نیز از آنجا که در ارتباط با پروتئین‌های ER-phagy ایفا می‌کند، این ژن‌ها احتمالاً نقش خود را در بیماری آلزایمر داشته باشند. ER-phagy برای بیان ژن‌ها، اثرات غیرهایی را نیز دارد.

ما در این مطالعه به بررسی ارتباط بیان ژن‌ها در بیماری آلزایمر پرداختیم. از آنجا که ژن‌های ER-phagy در این مطالعه انتخاب نشدند، این مطالعه از آنجا که محققین از آنجا که تغییرات بیان ژن‌ها در بیماری آلزایمر دیده نشدند. این نتایج نشان می‌دهد که بیماری آلزایمر نقش خود را در تغییرات بیان ژن‌ها ندارد. این نتایج نشان می‌دهد که بیماری آلزایمر نقش خود را در تغییرات بیان ژن‌ها ندارد. این نتایج نشان می‌دهد که بیماری آلزایمر نقش خود را در تغییرات بیان ژن‌ها ندارد. این نتایج نشان می‌دهد که بیماری آلزایمر نقش خود را در تغییرات بیان ژن‌ها ندارد. این نتایج نشان می‌دهد که بیماری آلزایمر نقش خود را در تغییرات بیان ژن‌ها ندارد.
References

[1] Haapasalo A, Pikkarainen M, Soininen H. Alzheimer’s disease. A report from the 7th Kuopio Alzheimer symposium. Neurodegener Dis Manag. 2015; 5(5):379-82. [DOI:10.2217/nmt.15.31] [PMID]

[2] Zhu JB, Tan CC, Tan L, Yu JT. State of play in Alzheimer’s disease genetics. J Alzheimers Dis. 2017; 58(3):631-59. [DOI:10.3233/JAD-170062] [PMID]

[3] Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S. Analysis of 50 Neuronal insult susceptibility genes in clinically diagnosed early-onset Alzheimer’s disease. Int J Mol Sci. 2019; 20(6):1514. [DOI:10.3390/ijms20061514] [PMID]

[4] Khan A, Corbett A, Ballard C. Emerging amyloid and tau targeting treatments for Alzheimer’s disease. Expert Rev Neurother. 2017; 17(7): 697-711. [DOI:10.1080/14737175.2017.1326819]

[5] Zhang Y, Chen X, Zhao Y, Ponnusamy M, Liu Y. The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci. 2017; 28(8): 861-8. [DOI:10.1515/revneuro-2017-0013] [PMID]

[6] Grumati P, Dikic I, Stolz A. ER-phagy at a glance. J Cell Sci. 2018; 131(17):217364. [DOI:10.1242/jcs.217364] [PMID]

[7] Ahmadian N, Hejabi S, Mahmoudi J, Talebi M. Tau pathology of Alzheimer disease: Possible role of sleep deprivation. Basic Clin Neurosci. 2018; 9(5):307. [DOI:10.3259/bcn.9.5.307] [PMID]

[8] Poothong J, Sopha P, Kaufman RL, Tiraposhan W. IRE1α nucleotide sequence quenching specificity in the unfolded protein response. FEBS lett. 2017; 591(2): 406-414. [DOI:10.1002/1873-3468.12546] [PMID]

[9] Muneer A, Khan S, Mozammil R. Endoplasmic reticulum stress: Implications for neuropsychiatric disorders. Chonnam Med J. 2019; 55(1):8-19. [DOI:10.4068/cmj.2019.55.1.8] [PMID]

[10] Scheper W, Hoozemans JJ. The unfolded protein response in neurodegenerative diseases: A neuropathological perspective. Acta Neuro-pathol. 2015; 130(3): 315-31. [DOI:10.1007/s00401-015-1462-8] [PMID]

[11] Dong Z, Cui H. The autophagy-lysosomal pathways and their emerging roles in modulating proteostasis in tumors. Cells. 2019; 8(1):4. [DOI:10.3390/cells8010004] [PMID]

[12] Sanadgol N, Maleki P. Study of the effects of ellagic acid on population density of cuprizone-induced multiple sclerosis. J Arak Uni Med Sci. 2018; 21(6):34-46. http://jct.araku.ac.ir/article_35313_11.html

[13] Castillo-Carranza DL, Zhang Y, Guerrero-Munoz MJ, Kayed R, Rincon-Limas DE, Fernandez-Funce P. Differential activation of the ER stress factor XBP1 by oligomeric assemblies. Neurochem Res. 2012; 37(8):1707-17. [DOI:10.1007/s11064-012-0780-7] [PMID]

[14] Yorimitsu T, Klionsky DJ. Endoplasmic reticulum stress: A new pathway to induce autophagy. Autophagy. 2007; 3(2):160-2. [DOI:10.4161/auto.3653] [PMID]

[15] Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M, Staiano L, et al. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM13A4 complex. EMBO J. 2019; 38(2):e98947. [DOI:10.15252/embj.201898947] [PMID]

[16] Correia SC, Resende R, Moreira PI, Pereira CM. Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell Biol. 2015; 34(4):261-73. [DOI:10.1089/dna.2014.2757] [PMID]

[17] Uddin M, Stachowiak A, Mamun AA, Tzetkov NT, Takeda S, Atanasov AG, et al. Autophagy and Alzheimer’s disease: From molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018; 10:4. [DOI:10.3389/fnagi.2018.00004] [PMID]

[18] Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, et al. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol. 2013; 106:33-54. [DOI:10.1016/j.pneurobio.2013.06.002] [PMID]

[19] Anding AL, Baehrecke EH. Cleaning house: Selective autophagy of organelles. Dev Cell. 2017; 41(1):10-22. [DOI:10.1016/j.devcel.2017.02.016] [PMID]

[20] Dikic I. Open questions: Why should we care about ER-phagy and ER remodelling? BMC Biol. 2018; 16(1):131. [DOI:10.1186/s12915-018-0603-7] [PMID]

[21] Smith M, Wilkinson S. ER homeostasis and autophagy. Essays Biochem. 2017; 61(6):265-30. [DOI:10.1042/EBC20170092] [PMID]

[22] Fregno I, Molinari M. Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance. F1000 Res. 2018; 7:454. [DOI:10.12688/f1000research.13968.1] [PMID]

[23] Loi M, Fregno I, Guerra C, Molinari M. Eat it right: ER-phagy and recovery. Biochem Soc Trans. 2018; 46(3):699-706. [DOI:10.1042/BST20170354] [PMID]

[24] Edgar R, Michael D, Alex EL. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207-10. [DOI:10.1093/nar/30.1.207] [PMID]

[25] Amini J, Sanchooli N, Sanadgol N. Evaluation of microarray-derived gene expression patterns in transgenic mouse models of Alzheimer’s disease (Tau and Amyloid beta) using bioinformatics tools (Perljs)). J Cell Tissue. 2019; 10 (1): 1-11. http://jct.araku.ac.ir/article_35313_en.html

[26] Kinoshita J, Clark T. Alzforum. Methods Mol Biol. 2007; 365-81. [DOI:10.1007/978-1-59745-520-6_19] [PMID]

[27] UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2014; 43(Database issue):D204-12. [DOI:10.1093/nar/gku989] [PMID]

[28] Lipatova Z, Segev N. A role for macro-ER-phagy in ER quality control. PLoS Genet. 2015; 11(7):e1005390. [DOI:10.1371/journal.pgen.1005390] [PMID]

[29] Song S, Tan J, Miao Y, Zhang Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 2018; 233(5):3867-74. [DOI:10.1002/jcp.26137] [PMID]

[30] Li JQ, Yu JT, Jiang T, Tan L. Endoplasmic reticulum dysfunction in Alzheimer’s disease. Rev Neurosci. 2017; 28(8): 861-8. [DOI:10.1515/revneuro-2017-0013] [PMID]