Kaon Meson Condensation of Hyperonized Neutron Star within the framework of the \(\sigma\)-cut Scheme

Fu Ma\(^1\), Wenjun Guo\(^1\) and Chen Wu\(^2\)

\(^1\) University of Shanghai for Science and Technology, Shanghai 200093, China
\(^2\) Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

The recent measurement of the mass of neutron stars (PSR J1614 - 2230, PSR J0348 + 0432, MSP J0740 + 6620) restricts the lower limit \(\sim 2M_\odot\) of the maximum mass of such compact stars, making it possible for dense matter to exist in massive stars. The relativistic mean field theory with parameter sets FSUGold including Kaon condensation is used to describe the properties of neutron stars in \(\beta\) equilibrium. Through careful choice of the parameter of the \(\sigma\)-cut \(\lambda_\nu\), we are able to produce a maximum mass neutron star with Kaon condensation heavier than \(2M_\odot\), and we find that the parameter \(\lambda_\nu\) of the \(\rho - \omega\) interaction term in this model has a significant effect on \(K^-\) condensation. In the case of using \(\sigma\)-cut scheme, \(K^-\) condensation occurs only when the \(\rho - \omega\) interaction \(\lambda_\nu\) is switched off.

I. INTRODUCTION

Born as a result of supernova explosions, neutron stars are highly condensed stellar remnants. A typical neutron star has a mass of the order of the solar mass, but its radius is only around 10–12 km. The internal matter composition and equation of state (EOS) of compact stars are restricted by recent gravitational wave observations. The massive NSs observed, e.g., PSR J1614-2230 with \(M = 1.908 \pm 0.016M_\odot\) [1–4], have established strong constraints on the EOS of nuclear matter. PSR J0348+0432 with \(M = 2.01 \pm 0.04 M_\odot\) [5], MSP J0740+6620, with \(M = 2.08^{+0.07}_{-0.05} M_\odot\) [6, 7], and radius \(12.39^{+0.30}_{-0.98}\) km obtained from NICER data [8], have strengthened the already stiff constraints on the EOS. The observation of gravitational waves is another crucial source of information about NS matter, the recent GW190814 event observed by the LIGO - Virgo Collaboration (LVC) from a coalescence of a black hole and a lighter companion sets the mass of the former to be \(23.2^{+11.0}_{-1.0} M_\odot\) and that of the latter to be \(2.59^{+0.08}_{-0.09} M_\odot\) [9]. It is unclear whether the lighter companion star is a neutron star or a black hole. So far, the study of neutron stars has been used as one of the important methods for studying strong interactions in dense nuclear matter, and it is still a research hotspot of nuclear celestial bodies [10, 11]. It has gradually been discovered that only considering basic nucleon, neutrons and protons is not enough in the study of neutron stars. In fact, the inner cores of the neutron stars are sources of speculation, some of the possibilities being the appearance of hyperons [12, 13], only quarks [14–18], or Kaon condensates [19–22].

Kaplan and Nelson have suggested that the ground state of hadronic matter might form a negatively charged Kaon Bose-Einstein condensation above a certain critical density [23, 24]. In the interior of a neutron star, as the density of neutrons increases, the electronic chemical potential will increase to keep the matter in \(\beta\)-equilibrium. When the electronic chemical potential exceeds the mass of muons, muons appear. And when the vacuum mass of the meson (pion, Kaon) is exceeded, as the density increases, negatively charged mesons begin to appear, which helps to maintain electrical neutrality. However, the \(s\) - wave \(\pi N\) scattering potential repels the ground state mass of the \(\pi\) meson and prevents the generation of the \(\pi\) meson [25]. The effective mass of the \(K^-\) meson is decreased due to the interaction with the nucleon. If the \(K^-\) meson energy intersects with the electron chemical potential at a certain density, then \(K^-\) will be more advantageous than electrons as a neutralizer for positive charges. The very interaction that reduces the Kaon energy modifies the nucleons with which they interact, and this will open the possibility of the appearance of Kaon condensates.

Although many scholars have proposed various phenomenological models based on density functional theory and realistic nuclear potential to explain, the interaction of particles at such high densities is not known precisely. To get the EOS of the neutron star matter, the RMF theory is usually applied [26], which describes the interaction between baryons via the exchange of mesons [24, 27, 28]. The model determines the coupling parameters through the saturation properties of the nuclear matter and extends it to high-density. It has achieved great success in the study of the nuclei and nuclear matter. There are many theoretical models within the RMF framework. In this paper, we are going to adopt the FSUGold model as an example [29]. The RMF theory with the parameter set FSUGold was proposed by Todd-Rutel and Piekarwicz [30–33]. It has achieved great success in study of the nuclear matter and the ground-state properties of some spherical nuclei [32]. However, when it is applied to study the EOS including hyperons, the maximum mass of the neutron stars obtained by this model is too small, the problem is that the EOS generated by the FSUGold model [13] is too soft. In order to describe nuclear matter at high density with FSUGold model, some researchers have proposed a \(\sigma\)-cut scheme [34]. This scheme points out that if the mean-field self-interaction potential rises sharply in a narrow vicinity \(n_0\sim n\) of the value of mean
fields corresponding to nuclear densities n_* [34], the nucleon effective mass saturates and the EOS stiffens, where n_0 is the nuclear saturation density. This procedure offers a simple way to stiffen the EOS at high densities without altering it at densities $n \leq n_0$. However, the effect of hyperons on neutron star matter is not included in study [34]. It is well known that the introduction of hyperon degrees of freedom leads to a softer EOS, thus producing a neutron star with a small mass. It leaves open question of whether the σ-cut scheme is still effective when hyperons are considered. In addition, some scholars pointed out that exotic EOS can not be ruled out by the observation of a $2M_\odot$ compact star [35]. In this article, we use the FSUGold model to study NS matter including hyperons and Kaon condensates with σ-cut scheme.

This paper is organized as follows. First, the theoretical framework is presented. Then we will study the effects of the σ-cut scheme. The Kaon condensation will be considered too. Finally, some conclusions are provided.

II. THEORETICAL FRAMEWORK

In this section, we introduce the FSUGold model to study the properties of the phase transition from hadronic to Kaon condensed matter. For the baryons matter we have considered nucleons (n and p), and hyperons (Λ, Σ and Ξ). The exchanged mesons include the isoscalar scalar meson (σ), the isoscalar vector meson (ω), the isovector vector meson (ρ), the starting point of the extended FSUGold model is the Lagrangian density:

$$\mathcal{L} = \sum_B \bar{\psi}_B [i \gamma^\mu \partial_\mu - m_B + g_{\sigma B} \sigma - g_{\omega B} \gamma^\mu \omega_\mu - \frac{g_{\rho B}}{2} \gamma^\mu \vec{\rho} \cdot \vec{\rho} + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma] \psi_B + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{\kappa}{3!} (g_{\sigma N} \sigma)^3 - \frac{\lambda}{4!} (g_{\sigma N} \sigma)^4 - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu + \frac{\xi}{4!} (g_{\omega N}^2 \omega_\mu \omega^\mu)^2$$

where Λ_ν is introduced to modify the density dependence of symmetry energy. All the eight lightest baryons ($p, n, \Lambda^0, \Lambda^+,$ $\Sigma^+, \Sigma^0, \Sigma^-, \Xi^0, \Xi^-$) are included, as the two leptons, electron and muon. The terms m_σ, m_ω, and m_ρ are the masses of σ, ω, and ρ mesons, respectively. The antisymmetric tensors of vector mesons take the forms

$$F_{\mu \nu} = \partial_\mu \omega_\nu - \partial_\nu \omega_\mu, \quad G_{\mu \nu} = \partial_\mu \rho_\nu - \partial_\nu \rho_\mu.$$

The isoscalar meson self-interactions (via κ, λ, and ξ terms) are necessary for the appropriate EOS of symmetric nuclear matter. $g_{\sigma N}$, $g_{\omega N}$ and $g_{\rho N}$ are the coupling constants between baryon and σ meson, baryon and ω meson and baryon and ρ meson, respectively. In this paper, the operators of meson fields are replaced by their expectation values by the mean field approximation.

With the increase of the density, the Kaon condensation does appear in the interior of the neutron stars. We take the Lagrangian of Kaon condensation as the same that is used in Ref. [36] and [37], which reads

$$\mathcal{L}_K = D_\mu K^* \partial^\mu K - m_K^2 K^* K,$$

which characterizes the Kaon-nucleon interaction. Experiment studies show that the kaons experience a repulsive interaction in nuclear matter whereas antikaons experience an attractive potential [38, 39]. Waas and Weise found an attractive potential for the K^- at the saturation nuclear density of about $U_K(\rho_0) = -120 \text{MeV}$ [40]. Coupled channel calculations at finite density have yielded a value of $U_K(\rho_0) = -100 \text{MeV}$ [41]. More recent self-consistent calculations with a chiral Lagrangian [42, 43] and coupled channel calculation including a modified self-energy of the Kaon [44] indicate that the Kaon may experience an attractive potential with its depth about -80 MeV to even -50 MeV at the saturation density. Another calculation from hybrid model [45] suggests the value of K^- optical potential to be in the range 180 ± 20 MeV at saturation density. In this paper, we carry out our calculations with a series of optical potentials ranging from -160 MeV to -120 MeV.

For the meson-hyperon couplings, we take those in the SU(6) quark model for the vector couplings constants:

$$g_{\rho \Lambda} = 0, \quad g_{\rho \Sigma} = 2g_{\rho \Xi} = 2g_{\rho N},$$

$$g_{\omega \Lambda} = g_{\omega \Sigma} = 2g_{\omega \Xi} = \frac{2}{3} g_{\omega N}.$$

The scalar coupling constants $g_{\sigma K}$ is fixed to the optical potential of the K^- at saturated nuclear matter:

$$U_K(\rho_0) = -g_{\sigma K} \sigma(\rho_0) - g_{\omega K} \omega(\rho_0),$$
well studied and $U_A^N = -30$ MeV was obtained with bound Λ hypernuclear states [47, 48]. One of the unsettled issues in hypernuclear physics is the Σ-N interaction in nuclear matter. An attractive potential was generally used in the past for Σ to be bounded in nuclear matter. However, a detailed scan for Σ hypernuclear states turned out to give negative results. The study of Σ-atmosphere also showed strong evidence for a sizable repulsive potential in the nuclear core at $\rho = \rho_0$. Therefore, for the $\Sigma-N$ interaction, we consider $U^{(N)}_{\Sigma} = -30$ MeV, as used in Ref. [48]. Besides, the $\Sigma-N$ interaction in nuclear matter is attractive with the potential $U^{(N)}_{\Xi} = -18$ MeV [35]. We take then such a value in our calculation. The $g_{\sigma K}$ can be related to the potential of Kaon at the saturated density through Eq. (3). $g_{\sigma K}$ values corresponding to several values of U_K are listed in Table I.

By solving the Euler-Lagrangian equation of Kaon we obtain equation of motion: $[D^{\mu}D_{\mu} + m_{\pi}^2]K = 0$. We can then derive the dispersion relation for the Bose-condensation of K^-, which reads

$$\omega_K = m_K - g_{\sigma K} \rho - g_{\omega K} \omega - \frac{g_{\rho K}}{2} \rho.$$

(6)

With the increase of density, the energy ω_K of a test Kaon in the pure normal phase can be computed as a function of the nucleon density. The Kaon energy will decrease while the potential of Kaon($\omega_K = \mu_e$) increases with the density. When the condition $\omega_K = \mu_e$ is achieved, the Kaon will occupy a small fraction of the total volume. The new meson field equations are then different from normal phase due to the additional source terms and can be written explicitly as

$$m_{\sigma}^2 \sigma + \frac{1}{2} g_{\sigma\sigma N} \sigma^2 + \frac{4}{3} \lambda g_{\sigma N}^3 = \sum_B g_{\sigma B} \rho_B \sigma + g_{\rho K} \rho_K$$

$$m_{\omega}^2 \omega + \frac{\xi}{6} g_{\omega N}^4 \omega^3 + 2 \Lambda \nu g_{\rho N}^2 g_{\omega}^2 \rho \omega = \sum_B g_{\omega B} \rho_B \omega$$

$$g_{\omega K} \rho K$$

$$m_{\rho}^2 \rho + 2 \Lambda \nu g_{\rho N} g_{\rho} \omega^2 \rho = \sum_B g_{\rho B} \tau_B \rho_B - \frac{g_{\rho K}}{2} \rho,$$

(7)

where ρ_N and ρ_N^B are the nucleon density and the scalar density, respectively and the Kaon density $\rho_K = 2(\omega_K + g_{\omega K} \omega + \frac{g_{\rho K}}{2})K^+K^-.$

For the neutron matter with baryons and charged leptons, the β-equilibrium conditions are guaranteed with the following relations of chemical potentials for different particles:

$$\mu_p = \mu_{\Sigma^+} = \mu_n - \mu_e,$$

(8)

$$\mu_{\Sigma^-} = \mu_{\Xi^-} = \mu_n + \mu_e,$$

(9)

$$\mu_{\mu} = \mu_e,$$

(10)

and the charge neutrality condition is fulfilled by:

$$n_p + n_\Xi = n_e + n_{\Sigma^-} + n_{\Sigma^-} + n_{\Xi^-}.$$

(11)

The chemical potential of baryons and leptons read:

$$\mu_B = \sqrt{k_F^B + m_{\Lambda}^2 + g_{\omega B} \omega + g_{\rho B} \tau_B \rho},$$

(12)

$$\mu_l = \sqrt{k_F^l + m_l^2},$$

(13)

where k_F^B is the Fermi momentum and the $m_{\Lambda}^*_{\Lambda}$ is the effective mass of baryon B, which can be related to the scalar meson field as $m_{\Lambda}^*_{\Lambda} = m_B - g_{\sigma B} \sigma$, and k_F^l is the Fermi momentum of the lepton $l(\mu, e)$.

The total energy density of the system with Kaon condensation reads then $\varepsilon = \varepsilon_N + \varepsilon_K$, where ε_N is the energy density of normal nuclear matter and can be given as

$$\varepsilon_B = \sum_B \frac{2}{3} (\frac{\pi}{2})^3 k_F^B \sqrt{k_F^B + k^2 d^3 k} \left[\frac{1}{2} m_{\omega}^2 \omega^2 + \frac{\xi}{8} g_{\omega N}^4 \omega^4 + \frac{1}{2} m_{\sigma}^2 \sigma^2 + \frac{\kappa}{6} g_{\sigma N}^3 \sigma^3 + \frac{\lambda}{24} g_{\sigma N}^4 \sigma^4 \right]$$

$$+ \frac{1}{2} m_{\rho}^2 \rho^2 + 3 \Lambda \nu g_{\rho N} \omega^2 \rho^2 + \frac{1}{4 \pi^2} \sum_l \int_0^{k_F^l} \sqrt{k^2 + m_l^2} k^2 dk,$$

(15)

where k_F^B is the Fermi momentum and $m_{\Lambda}^*_{\Lambda}$ is the effective mass of baryons, which can be related to the scalar meson field as $m_{\Lambda}^*_{\Lambda} = m_B - g_{\sigma B} \sigma$. And the energy contributed by the Kaon condensation ε_K is

$$\varepsilon_K = 2 m_{\Lambda}^*_{\Lambda} K^* K = m_{\Lambda}^*_{\Lambda} R_K.$$

(16)

The Kaon does not contribute directly to the pressure as it is a $(s$-wave) Bose condensate so that the expression of pressure reads

$$P = \sum_B \frac{1}{3} \frac{2}{(2\pi)^3} \int_0^{k_F^B} \frac{k^2}{\sqrt{m_B^2 + k^2}} dk^3 + \frac{1}{2} m_{\omega}^2 \omega^2$$

$$+ \frac{\xi}{24} g_{\omega N}^4 \omega^4 - \frac{1}{2} m_{\sigma}^2 \sigma^2 - \frac{\kappa}{6} g_{\sigma N}^3 \sigma^3 - \frac{\lambda}{24} g_{\sigma N}^4 \sigma^4$$

$$+ \frac{1}{2} m_{\rho}^2 \rho^2 + \Lambda \nu g_{\rho N} \omega^2 \rho^2 + \frac{1}{4 \pi^2} \sum_l \int_0^{k_F^l} \sqrt{k^2 + m_l^2} dk,$$

(17)
With the obtained ε and P, the mass-radius relation and other relevant quantities of neutron star can be obtained by solving the Oppenheimer and Volkoff equation \cite{10, 49, 50}.

\[
\frac{dP(r)}{dr} = -\frac{GM(r)\varepsilon}{r^2}(1 + \frac{P}{\varepsilon C^2})(1 + \frac{4\pi r^3 P}{M(r)C^2}) \times (1 - \frac{2GM(r)}{rC^2})^{-1},
\]

(18)

\[
dM(r) = 4\pi r^2 \varepsilon(r) dr,
\]

(19)

where G is the gravitational constant and C is the velocity of light, and the EOS for neutron matter is given by Eq. (15) and Eq. (17), we can study the physical behavior of neutron stars for the extended model.

The σ-cut scheme \cite{34}, which is able to stiffen the EOS above saturation density, adds in the original Lagrangian density, the function \cite{34, 51, 52}.

\[
\Delta U(\sigma) = \alpha \ln(1 + \exp[\beta(\sigma - f_{\text{cor}})]),
\]

(20)

where $f = g_N/M_N$ and $f_{\text{cor}} = f_0 + c_\sigma(1 - f_0)$. M_N is the nucleon mass. f_0 is the value of f at saturation density, equal to 0.31 for the FSUGold model. c_σ is a positive parameter that we can adjust. The smaller c_σ is, the stronger the effect of the σ-cut scheme becomes. However, we must be careful that this scheme would not affect the saturation properties of nuclear matter. In this paper, we want to find a suitable value for the parameter c_σ that is able to satisfy the maximum mass constraint. α and β are constants, taken to be $4.822 \times 10^{-4}M_N^2$ and 120 as in Ref. \cite{34}. This scheme stiffens the EOS by quenching the decreasing of the effective mass of the nucleon $M_N^* = M_N(1 - f)$ at high density.

Before giving our numerical results, we list parameters for the FSUGold model in Table II. The parameter of the models can be found in Ref. [30, 33, 53] in detail.

III. RESULTS

First, we want to find the range for c_σ in which the saturation properties of nucleon matter are not affected by the σ-cut scheme, by examining the effective mass of nucleons under the σ-cut scheme. In Fig. 1, we plot the ratio of the effective mass to the rest mass as a function of the baryon density, where ρ_0 is the saturation density 0.148 fm^{-3}. We can see that, when $\rho \leq \rho_0$, the effect mass is almost same as nucleons-only matter and unchanged by the σ-cut scheme. When $\rho > \rho_0$, the effect mass dropped to around $0.55M_N$.

In Fig. 2, we plot the σ meson field strength as a function of the baryon density with and without the σ-cut scheme. We must make sure that the σ potential is not affected by the σ-cut scheme at saturation density. It is clear that when the baryon density below the saturation density, the σ meson field strength is almost same as nucleons-only matter and unchanged by σ-cut scheme.

So we can conclude that, for $\rho > \rho_0$, the σ meson field strength is quenched at high baryon density, and the σ-cut scheme will not affect the saturation properties. This is what we want by using the σ-cut scheme. The smaller c_σ is, the stronger the quenching becomes.

Fig. 3 shows the Kaon energy(ω_K) and electron chemical potential(u_e) as a function of baryon density with $U_K = -120, -140, -160$ MeV for the parameter $\Lambda_\nu = 0$ and $\Lambda_\nu = 0.03$. K^- condensation initiates once the value of ω_K reaches that of the electron chemical potential. For $\Lambda_\nu = 0.03$, there is no intersection when $U_K = -120$ MeV.

Fig. 4 shows the relative population of particles versus baryon density with Kaon optical potential $U_K = -160$ MeV.
TABLE II. Parameter sets for the FSUGold model discussed in the text and the meson masses $M_{\sigma} = 491.5\text{MeV}$, $M_{\omega} = 782.5\text{MeV}$, $M_{\rho} = 763\text{MeV}$.

Model	g_{σ}^2	g_{ω}^2	g_{ρ}^2	κ	λ	ξ	Λ_v
FSUGold	112.19	204.54	138.47	1.42	0.0238	0.06	0.03/0

$-120, -140, -160\text{ MeV}$, $\Lambda_v = 0.03$. When $U_K = -120\text{ MeV}$, there is no K^-. For $U_K = -140\text{ MeV}$, the mixed phase initiates with the onset of K^- at $\sim 3.5\rho_0$ and terminates at $\sim 8.7\rho_0$, for $U_K = -160\text{ MeV}$, with the appearance of K^- at $\sim 2.7\rho_0$ and ceasing of electron population around $\sim 8.9\rho_0$, the proton and K^- population becomes equal following the charge neutrality condition. Σ^- will decrease, also Ξ^- will be delayed.

Next we examine the effect of the σ-cut scheme on the Kaon energies. This is plotted in the Fig. 5. For $\Lambda_v = 0.03$, there is no intersection between ω_K and μ_e. The bigger c_σ is, the closer ω_K and μ_e are. For $\Lambda_v = 0$, the Kaon condensation will occur when $U_K = -140, -160\text{ MeV}$. The smaller c_σ is, the smaller σ meson field strength becomes, this will reduce the appearance of K^-. The isoscalar-isovector coupling (Λ_v) term in Eq. (1) is used to modify the density dependence of the symmetry energy and the neutron skin thicknesses of heavy nuclei, we can clearly find that Λ_v has a significant impact on the appearance of K^-. When $\Lambda_v = 0$, this will increase the chemical potential of the electron and promote the appearance of K^-. It is interesting to know how the σ-cut scheme affects the relative populations of particles. In Fig. 6, the relative populations as a function of the baryon density are plotted with K^- optical potential $U_K = -160\text{ MeV}$, we are interested in the occurrence of K^-, so we choose $\Lambda_v = 0$. We can find that the percentages of K^- is decreased by the σ-cut scheme, and the relative populations of some hyperons are influenced significantly by the σ-cut scheme when $\Lambda_v = 0$. The σ-cut scheme increases the percentage of Ξ^- and Ξ^0, while it decreases the percentage of Σ^- and Σ^0. We list the threshold densities n_{cr} for Kaon condensation for different values of K^- optical potential depths U_K in Table III.

FIG. 3. Kaon energy(ω_K) and electron chemical potential(μ_e) as a function of baryon density, left panel:$\Lambda_v = 0.03$, right panel:$\Lambda_v = 0$. The solid curves exhibits $U_K = -160\text{ MeV}$, dotted lines exhibits $U_K = -140\text{ MeV}$, dashed lines exhibits $U_K = -120\text{ MeV}$.

FIG. 4. Relative population of particles versus baryon density without σ-cut scheme and K^- potential depth of $U_K = -120, 140, 160\text{ MeV}$, $\Lambda_v = 0.03$, dashed lines denote K^-.

TABLE III. Threshold densities n_{cr} (in units of fm^{-3}) for Kaon condensation in dense nuclear matter for different values of K^- optical potential depths U_K (in units of MeV) without σ-cut scheme and $c_\sigma = 0.15$.

U_K (MeV)	$n_{cr}(K^-)$ (no σ-cut scheme)	$n_{cr}(K^-)$ ($c_\sigma = 0.15$)
-120	none	none
-140	0.34	0.3
-160	0.27	0.28

$\Lambda_v = 0$. We can find that the percentages of K^- is decreased by the σ-cut scheme, and the relative populations of some hyperons are influenced significantly by the σ-cut scheme when $\Lambda_v = 0$. The σ-cut scheme increases the percentage of Ξ^- and Ξ^0, while it decreases the percentage of Σ^- and Σ^0. We list the threshold densities n_{cr} for Kaon condensation for different values of K^- optical potential depths U_K in Table III.
Then we can discuss some properties of the neutron star, Fig. 7 shows the matter pressure as a function of energy density for the Kaon optical potential $U_K = -120, -140, -160$ MeV and without σ-cut scheme. The appearance of Kaon to a great extent softens the EOS. As the energy density increases, the EOS of NS matter that contains K mesons will exceed that of only nucleons and hyperons.

The parameter Λ_ν, describing the interaction between ρ meson and ω meson in the FSUGold model is introduced to soften the symmetry energy. It can affect the macroscopic properties of the neutron stars. In Fig. 8 the EOS is displayed for $\Lambda_\nu = 0$ and $\Lambda_\nu = 0.03$. We can find that the EOS with parameter $\Lambda_\nu = 0$ is softer than the case of $\Lambda_\nu = 0.03$, by using σ-cut scheme, the EOS is significantly stiffened when $c_\sigma = 0.15$.

The results of mass-radius relation for static spherical stars from solution of the Tolman-Oppenheimer-Volkoff(TOV) equation discussed here are shown in Fig. 9. The mass measurements of PSR J1614 - 2230 [1–4],

FIG. 5. Kaon energy(ω_K) and electron chemical potential(μ_e) as functions of baryon density with the σ-cut scheme, left panel: $\Lambda_\nu=0.03$, right panel: $\Lambda_\nu=0$. The solid curve exhibits $U_K = -160$ MeV, dotted lines exhibits $U_K = -140$ MeV, dashed lines exhibits $U_K = -120$ MeV.

FIG. 6. Relative population of particles versus baryon density with and without σ-cut scheme, K^- optical potential depth of $U_K = -160$ MeV, $\Lambda_\nu = 0$. Upper panel: without σ-cut scheme, lower panel: $c_\sigma = 0.15$, dashed lines denote K^-.

FIG. 7. Pressure versus energy density without the σ-cut scheme. The solid line is for n, p, leptons and hyperons whereas others are with additional K^-, dotted line exhibits $U_K = -120$ MeV, dashed line exhibits $U_K = -140$ MeV, dash-dotted line exhibits $U_K = -160$ MeV.

FIG. 8. Pressure versus energy density with and without the σ-cut scheme. The solid lines curve with $\Lambda_\nu = 0.03$, dashed lines curve with $\Lambda_\nu = 0$, the black lines exhibits without σ-cut scheme, the red lines exhibits with $c_\sigma = 0.15$.
TABLE IV. The maximum mass (in unit of solar mass M_\odot) and radius (in unit of km) of neutron stars using and not using σ-cut scheme.

Scheme	$\Lambda_\nu = 0.03$	$\Lambda_\nu = 0$	MSP J0740+6620	PSR J0030-0451
No σ-cut scheme (n, p, H)	M R	M R	M R	M R
$c_\sigma = 0.1(n, p, H, K^−)$	1.31 11.6	1.32 13.3	2.08 ± 0.07	1.34±0.15
$c_\sigma = 0.15(n, p, H, K^−)$	1.99 13.6	1.96 14.4	1.39±1.3	12.71±1.14
$c_\sigma = 0.2(n, p, H, K^−)$	1.9 13.1	1.86 13.7		

FIG. 9. Mass-radius relation using and not using σ-cut scheme in NS matter including hyperons and $K^−$. The solid lines denoted $\Lambda_\nu = 0.03$, dashed lines denoted $\Lambda_\nu = 0$, $U_K = −160$ MeV. The horizontal bars indicate the observational constraints of PSR J1614 - 2230 [1, 4], PSR J0348 + 0432 [5], MSP J0740 + 6620 [6, 7] and PSR J0030-0451 [54].

In this paper, we have discussed the $K^−$ meson condensation inside the neutron star under the FSUGold model. This model predicts a limiting neutron star mass of $1.72M_\odot$ [29]. The maximum mass changes to $1.3M_\odot$ when hyperons are included [13]. Adding Kaon meson will further soften the EOS. In this work we used σ-cut scheme, by adjusting the parameter c_σ, we got the maximum mass heavier than $2M_\odot$ within the range of observed mass measurements. We also compared the radius of NS with the recent NICER results, the ρ-ω coupling constant Λ_ν has a significant effect on the radius the appearance of $K^−$ and when using σ-cut scheme. The Kaon condensation cannot exist in the NS matter for $\Lambda_\nu = 0.03$, for $\Lambda_\nu = 0$, as the ρ-ω interaction is switched off, the electron chemical potential will increase and make it possible for $K^−$ condensation occur in neutron star.

IV. SUMMARY

In this paper, we have discussed the $K^−$ meson condensation inside the neutron star under the FSUGold model. This model predicts a limiting neutron star mass of $1.72M_\odot$ [29]. The maximum mass changes to $1.3M_\odot$ when hyperons are included [13]. Adding Kaon meson will further soften the EOS. In this work we used σ-cut scheme, by adjusting the parameter c_σ, we got the maximum mass heavier than $2M_\odot$ within the range of observed mass measurements. We also compared the radius of NS with the recent NICER results, the ρ-ω coupling constant Λ_ν has a significant effect on the radius the appearance of $K^−$ and when using σ-cut scheme. The Kaon condensation cannot exist in the NS matter for $\Lambda_\nu = 0.03$, for $\Lambda_\nu = 0$, as the ρ-ω interaction is switched off, the electron chemical potential will increase and make it possible for $K^−$ condensation occur in neutron star.

[1] Paul Demorest, Tim Pennucci, Scott Ransom, Mallory Roberts, and Jason Hessels. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature, 467:1081–1083, 2010.
[2] Zaven Arzoumanian, Adam Brazier, Sarah Burke-Spolaor, Sydney Chamberlin, Shami Chatterjee, Brian Christy, James M Cordes, Neil J Cornish, Fronefield Crawford, H Thankful Cromartie, et al. The nanograv 11-year data set: high-resolution timing of 45 millisecond pulsars. The Astrophysical Journal Supplement Series, 235(2):37, 2018.
[3] Emmanuel Fonseca, Timothy T Pennucci, Justin A Ellis, Ingrid H Stairs, David J Nice, Scott M Ransom, Paul B Demorest, Zaven Arzoumanian, Kathryn Crowter, Timothy Dolch, et al. The nanograv nine-year data set: mass and geometric measurements of binary millisecond pulsars. The Astrophysical Journal, 832(2):167, 2016.
[4] Feryal ¨Ozel, Dimitrios Psaltis, Scott Ransom, Paul Demorest, and Mark Alford. The massive pulsar psr j1614–2230: linking quantum chromodynamics, gamma-ray bursts, and gravitational wave astronomy. The Astrophysical Journal Letters, 724(2):L199, 2010.
[5] John Antoniadis, Paulo CC Freire, Norbert Wex, Thomas M Tauris, Ryan S Lynch, Marten H Van Kerkwijk, Michael Kramer, Cees Bassa, Vik S Dhillon, Thomas Driebe, et al. A massive pulsar in a compact relativistic binary. Science, 340(6131), 2013.
[6] E. Fonseca et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett., 915(1):L12, 2021.
[7] H Thankful Cromartie, Emmanuel Fonseca, Scott M Ransom, Paul B Demorest, Zaven Arzoumanian, Harsha Blumer, Paul R Brook, Megan E DeCesar, Timothy Dolch, Justin A Ellis, et al. Relativistic shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astronomy, 4(1):72–76, 2020.

[8] Thomas E Riley, Anna L Watts, Paul S Ray, Slavko Bogdanov, Sebastien Guillot, Sharon M Morsink, Anna V Bilous, Zaven Arzoumanian, Devarshi Choudhury, Julija S Deneva, et al. A nice view of the massive pulsar psr j0740+ 6620 informed by radio timing and xmm-newton spectroscopy. The Astrophysical Journal Letters, 918(2):L27, 2021.

[9] Richard Abbott, TD Abbott, S Abraham, F Acernese, K Ackley, C Adams, RX Adhikari, VB Adya, C Affeldt, M Agathos, et al. Gw190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. The Astrophysical Journal Letters, 896(2):L44, 2020.

[10] Norman K Glendenning. Compact stars: Nuclear physics, particle physics and general relativity. Springer Science & Business Media, 2012.

[11] Fridolin Weber, R. Negreiros, P. Rosenfield, and M. Stejner. Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics. Prog. Part. Nucl. Phys., 59:94–113, 2007.

[12] Jurgen Schaffner and Igor N. Mishustin. Hyperon rich neutron star matter. Phys. Rev. C, 56:626–647, 1997.

[13] Hua Li, Xin-Lian Luo, and Hong-Shi Zong. Bag model study of a quark-star matter equation of state. Phys. Rev. C, 82:055803, 2010.

[14] Ann E. Nelson and David B. Kaplan. Strange Condensate Realignment in Relativistic Heavy Ion Collisions. Phys. Lett. B, 192:193, 1987.

[15] N. K. Glendenning. Neutron Stars Are Giant Hypernuclei? Astrophys. J., 293:470–493, 1985.

[16] J. D. Walecka. A Theory of highly condensed matter. Annals Phys., 83:491–529, 1974.

[17] D. Vautherin and D. M. Brink. Harterree-Fock calculations with Skyrme’s interaction. 1. Spherical nuclei. Phys. Rev. C, 5:626–647, 1972.

[18] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi. Relativistic equation of state of nuclear matter for supernova and neutron star. Nucl. Phys. A, 637:435–450, 1998.

[19] B. G. Todd-Rutel and J. Piekarewicz. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter. Phys. Rev. Lett., 95:125501, 2005.

[20] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen. Relativistic effective interaction for nuclei, giant resonances, and neutron stars. Phys. Rev. C, 82:055803, 2010.

[21] J. Piekarewicz. Why is Tin so soft? Phys. Rev. C, 76:031301, 2007.

[22] J. Piekarewicz. Validating relativistic models of nuclear structure against theoretical, experimental, and observational constraints. Phys. Rev. C, 76:064310, 2007.

[23] F. J. Fattoyev and J. Piekarewicz. Relativistic models of the neutron-star matter equation of state. Phys. Rev. C, 82:055805, 2010.

[24] D. B. Kaplan and A. E. Nelson. Strange Goings on in Dense Nucleonic Matter. Phys. Lett. B, 175:57–63, 1986.
[46] Jurgen Schaffner, Carl B. Dover, Avraham Gal, Carsten Greiner, D. John Millener, and Horst Stoecker. Multiply strange nuclear systems. *Annals Phys.*, 235:35–76, 1994.

[47] D. J. Millener, C. B. Dover, and A. Gal. Lambda Nucleus Single Particle Potentials. *Phys. Rev. C*, 38:2700–2708, 1988.

[48] Tuhin Malik, Sarmistha Banik, and Debades Bandyopadhyay. Equation-of-state Table with Hyperon and Antikaon for Supernova and Neutron Star Merger. *Astrophys. J.*, 910(2):96, 2021.

[49] M. Baldo, I. Bombaci, and G. F. Burgio. Microscopic nuclear equation of state with three-body forces and neutron star structure. *Astron. Astrophys.*, 328:274–282, 1997.

[50] J Robert Oppenheimer and George M Volkoff. On massive neutron cores. *Physical Review*, 55(4):374, 1939.

[51] Mariana Dutra, Odilon Lourenço, and Débora P. Menezes. Stellar properties and nuclear matter constraints. *Phys. Rev. C*, 93(2):025806, 2016. [Erratum: Phys.Rev.C 94, 049901 (2016)].

[52] E. E. Kolomeitsev, K. A. Maslov, and D. N. Voskresensky. Hyperon puzzle and the RMF model with scaled hadron masses and coupling constants. *J. Phys. Conf. Ser.*, 668(1):012064, 2016.

[53] F. J. Fattoyev and J. Piekarewicz. Sensitivity of the Moment of Inertia of Neutron Stars to the Equation of State of Neutron-Rich Matter. *Phys. Rev. C*, 82:025810, 2010.

[54] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M. Ludlam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V. Bilous, D. Chakrabarty, K. C. Gendreau, A. K. Harding, W. C. G. Ho, J. M. Lattimer, S. M. Morsink, and T. E. Strohmayer. A nicer view of psr j0030-0451: Millisecond pulsar parameter estimation. *The Astrophysical Journal*, 887(1):L21, dec 2019.