Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Article

Ivermectin and mortality in patients with COVID-19: A systematic review, meta-analysis, and meta-regression of randomized controlled trials

Ahmad Fariz Malvi Zamzam Zein a, *, Catur Setiya Sulistiyanab, Wilson Matthew Raffaeloc, Raymond Pranatac

a Department of Internal Medicine, Faculty of Medicine, Universitas Swadaya Gunung Jati, Department of Internal Medicine, Waled General Hospital, Cirebon, Indonesia
b Department of Medical Education, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia
c Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia

A R T I C L E I N F O

Article history:
Received 30 May 2021
Received in revised form 21 June 2021
Accepted 22 June 2021

Keywords:
Coronavirus
Ivermectin
Mortality
SARS-CoV-2
Therapy

A B S T R A C T

Aims: This systematic review and meta-analysis aims to investigate the effect of ivermectin on mortality in patients with COVID-19.

Methods: A comprehensive systematic literature search was performed using PubMed, Scopus, Embase, and Clinicaltrials.gov from the inception of databases up until April 9, 2021. The intervention group was ivermectin and the control group was standard of care or placebo. The primary outcome was mortality reported as risk ratio (RR).

Results: There were 9 RCTs comprising of 1788 patients included in this meta-analysis. Ivermectin was associated with decreased mortality (RR 0.39 [95% CI 0.20–0.74], p = 0.004; I²: 58.2%, p = 0.051). Subgroup analysis in patients with severe COVID-19 showed borderline statistical significance towards mortality reduction (RR 0.42 [95% CI 0.18–1.00], p = 0.052; I²: 68.3, p = 0.013). The benefit of ivermectin and mortality was reduced by hypertension (RR 1.08 [95% CI 1.03–1.13], p = 0.001); but was not influenced by age (p = 0.657), sex (p = 0.466), diabetes (p = 0.429). Sensitivity analysis using fixed-effect model showed that ivermectin decreased mortality in general (RR 0.43 [95% CI 0.29–0.62], p < 0.001) and severe COVID-19 subgroup (RR 0.48 [95% CI 0.32–0.72], p < 0.001).

Conclusions: Ivermectin was associated with decreased mortality in COVID-19 with a low certainty of evidence. Further adequately powered double-blinded placebo-controlled RCTs are required for definite conclusion.

© 2021 Diabetes India. Published by Elsevier Ltd. All rights reserved.

1. Protocol registration

PROSPERO: CRD42021247986.

2. Background

Coronavirus disease 2019 (COVID-19) is still one of the most prevalent diseases despite the best effort to contain them [1]. Although most of the patients only have mild-moderate clinical symptoms, a significant proportion of them developed acute complications that may be lethal [2–4]. Lethal complications are usually linked with inflammation associated with COVID-19, in which there is elevation of tumor necrosis factor (TNF–α), C-reactive protein (CRP), D-dimer, interferon (IF)–γ and interleukin (IL) [5,6]. Most medications that is touted for COVID-19 failed to demonstrate benefit in randomized controlled trials (RCTs). In an effort to find treatment, there is a mounting interest on repurposing the available antiviral and antiparasitic medications to treat COVID-19.

One of the most promising drugs is ivermectin, a macrocyclic lactone antiparasitic drug, well known for its broad spectrum antiparasitic activity, and has excellent safety profile [7,8].
versatile, ivermectin shows activity beyond its antiparasitic properties, including antimicrobial, antiviral, and anticancer [9–14]. Recent studies have shown its antiviral activity against several RNA viruses, therefore raising the possibility to be used as an alternative agent against SARS-CoV2 [15–18]. This systematic review and meta-analysis aims to investigate the effect of ivermectin on mortality in patients with COVID-19 by pooling randomized controlled trials (RCTs) that were designed to evaluate ivermectin versus standard of care or placebo.

3. Materials and methods

This is a Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) compliant systematic review and meta-analysis, registered in PROSPERO (CRD42021247986).

3.1. Search strategy and study selection

A comprehensive systematic literature search was performed using PubMed, Scopus, Embase, and Clinicaltrials.gov (Filter: Completed) using terms “(SARS-CoV-2 OR COVID-19 OR 2019-nCoV OR Coronavirus Disease 2019) AND (ivermectin)” from the inception of databases up until April 9, 2021. Two independent authors screened through the title/abstracts and potentially eligible articles were assessed based on the inclusion and exclusion criteria. Discrepancies during this process were resolved by discussion.

3.2. Inclusion and exclusion criteria

Studies that met all of the following criteria were included: 1) randomized controlled trials (RCTs) comparing ivermectin versus control in patients with COVID-19 and 2) mortality.

Studies that met one of the following criteria were excluded: 1) conference papers/abstracts-only publication, 2) non-research letters, 3) reviews, and 4) editorial/commentaries. We did not impose language restrictions.

3.3. Data extraction

Data extraction was performed by two independent authors. The data of interest for this systematic review were the first author, study design, ivermectin dose, sample size, percentage of severe COVID-19, age, sex, diabetes, hypertension, coronary artery disease, and mortality. Discrepancies were resolved by discussion.

3.4. Risk of Bias Assessment

To assess the risk of bias, two independent authors used the Cochrane Risk of Bias (RoB) Assessment for RCTs. Discrepancies were resolved by discussion. Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework was used to determine the certainty of evidence.

3.5. Intervention and outcome

The intervention group was ivermectin with or without standard of care. The control group was placebo or standard of care defined by each trial. The primary outcome was mortality, defined as clinically validated non-survivor/death. The pooled effect estimate was reported as risk ratio (RR).

3.6. Statistical analysis

To calculate the pooled RRs for the primary outcome, we performed Der-Simonian Laird random-effects meta-analysis, regardless of heterogeneity. The p-values in this study was two-tailed and a value of ≤0.05 were considered as statistically significant. Cochran’s Q test and I² statistics were used to evaluate heterogeneity, I² values above 50% or/and p-value below 0.10 indicates significant heterogeneity. Funnel-plot analysis and Egger’s test were used to assess publication bias and potential for small-study effects. STATA version 16.0 was used to perform the statistical analysis. Meta-regression analysis was performed for the association between ivermectin and mortality reduction using patients' characteristics as covariates. Sensitivity analysis using Mantel-Haenszel fixed-effect model was performed.

4. Results

4.1. Baseline characteristics

There were 9 RCTs comprising of 1788 patients included in this systematic review and meta-analysis [Fig. 1] [19–28]. Baseline characteristics of the included studies can be seen in Table 1.

4.2. Ivermectin and mortality

Ivermectin was associated with decreased mortality (RR 0.39 [95% CI 0.20–0.74], p = 0.004; I²: 58.2%, p = 0.051) [Fig. 2]. Subgroup analysis in patients with severe COVID-19 showed borderline statistical significance towards mortality reduction (RR 0.42 [95% CI 0.18–1.01], p = 0.052; I²: 68.3, p = 0.013) [Fig. 3].

4.3. Meta-regression

The benefit of ivermectin and mortality was reduced by hypertension (RR 1.08 [95% CI 1.03–1.13], p = 0.001); but was not influenced by age (p = 0.657), sex (reference: male, p = 0.466), diabetes (p = 0.429).

4.4. Risk of Bias Assessment

Risk of bias assessment using Cochrane RoB Tool can be seen in [Fig. 4]. Most of the studies were preprints which may increase bias. Funnel-plot was asymmetrical [Fig. 5] and there is an indication of small-study effects (p = 0.005).

4.5. Certainty of evidence

GRADE Assessment indicates that the mortality lowering effect of ivermectin has a low certainty of evidence, with an absolute risk reduction of 53 fewer per 1000 (from 71 fewer to 21 fewer) (Table 2).

4.6. Sensitivity analysis

Sensitivity analysis using fixed-effect model showed that ivermectin was significantly associated with decreased mortality in general (RR 0.43 [95% CI 0.29–0.62], p < 0.001) and severe COVID-19 subgroup (RR 0.48 [95% CI 0.32–0.72], p < 0.001).

5. Discussion

This meta-analysis showed that ivermectin reduce mortality in patients with COVID-19 with a low certainty of evidence. Meta-regression indicates that the benefit of ivermectin use was smaller in patients with hypertension. Hypertension is associated with worse prognosis in patients with COVID-19, and drugs such as angiotensin receptor blockers might affect their prognosis [29,30]. The included studies did not
Fig. 1. Prisma flowchart.

Table 1
Baseline characteristics.

Authors	Study Design	Samples	Ivermectin Dose	Control	Severe COVID-19 (%)	Age (years)	Male (%)	DM (%)	HTN (%)	CAD (%)	Funders	
Elgazzar 2020	RCT	98 vs 176	1400 mcg/kg maximum 4 tablets OD for 4 days	HCQ	50	57	70	17	14	25	None	
Galan 2021	RCT	50 vs 105	14 mg OD on day 1 and 2	HCQ/CQ	100	53.4	58.2	28.1	43.4	NA	Unclear	
Gonzalez 2021	RCT	36 vs. <80 kg: 12 mg OD single-dose >80 kg: 18 mg OD single-dose	HCQ/ Placebo	100	53.8	62.2	33.3	32.1	NA	Unclear		
Hashim 2020	RCT	70 vs 70	200 mcg/kg OD on day 1 and 2	SOC	31.4	49	52	NA	NA	NA	Unclear	
Lopez-Medina	RCT	200 vs 198	300 mcg/kg OD for 5 days	Placebo	0	37	42.5	5.5	13.3	NA	Centro de Estudios en Infectología Pediátrica	
Niaee 2020	RCT	90 vs 90	400 mcg/kg OD (single dose or per 2 days) and 200 mcg/kg OD (single dose or per 2 days)	HCQ/ Placebo	12.2	NA	50	NA	NA	NA	NA	Qazvin University of Medical Sciences and Science and Technology Park
Ravikriti 2021	RCT	55 vs 57	12 mg OD on day 1 and 2	Placebo	0	52.5	72.3	35.7	34.8	8.9	AIIMS, Sun Pharma	
NCT04523831	RCT	183 vs 180	12 mg OD for 5 days	SOC	0	39.6					Dhaka Medical College	
NCT04646109	RCT	30 vs 30	200 mcg/kg OD for 5 days	HCQ/ Favipiravir	100	62.2	66.7	31.6	45	21.7	Afyonkarahisar Health Sciences University, NeuTec Pharma	

CAD: Coronary Artery Disease, COVID-19: Coronavirus Disease 2019, DM: Diabetes Mellitus, HTN: Hypertension, RCT: Randomized Controlled Trials, NA: Not Available, OD: Once Daily.
report the stage of hypertension, controlled/uncontrolled, and medications used in hypertensive patients; which may confound the association. The underlying mechanism for this observation is unclear and requires further investigation. However, this observation might be due to 100% severe COVID-19 in two studies which enroll high percentage of hypertension (Galan et al. [24] and NCT04646109 [26]), also these studies did not clearly report the presence of coronary artery disease or heart failure, which are important complications of hypertension. Thus, the finding might also be a coincidence or an indicator of other end organ complications. Interestingly, diabetes does not significantly affect ivermectin’s benefit. Some antidiabetic drugs have been shown to lower mortality in COVID-19 and glucose control seemed to be an important component in these patients [31–34]. These factors were vaguely reported by the included studies and may affect the analysis.

Ivermectin is a macrocyclic lactone antiparasitic drug which is well known for its broad spectrum antiparasitic activity, high efficacy, and excellent safety profile [7,8]. Known for its versatility, ivermectin shows wide array of antimicrobial, antiviral, and anticancer activities [3–14]. Recent studies have shown that ivermectin has antiviral activity against several RNA viruses, which might be useful in combating SARS-CoV2 [15–18].

Ivermectin is a mixture of both equipotent 22,23-dihydroavermectin B1a (80%) and 22,23-dihydroavermectin B1b (20%) [7,8]. Ivermectin’s potential antiviral activity against several RNA viruses including, zika virus, influenza A virus, human immunodeficiency virus (HIV) and dengue virus has been demonstrated [18,35,36]. One of the most important antiviral mechanism is the inhibition of importin a/b1 heterodimer, which is essential for nuclear trafficking viral protein, thus important for viral replication [17,35,37]. Another possible mechanism that had been discovered in the past, but was not fully explained, is the role of ivermectin as an ionophore agent [11]. Ionophores are molecules which have both hydrophilic pockets that serve as an ion binding site, covered by hydrophobic on the external surface. These properties allow ionophore to cross across cell membrane, affecting hydro-electrolyte balance. The two structures that form ivermectin,
reacting with each other in a “head-tail” fashion. This configuration is possibly mediated by plasma transport proteins, such as albumin [38]. The conformation eventually would lead to osmotic lysis and help neutralizing the virus at an early stage of infection [39]. This mechanism is proposed to be effective in viruses without a protein capsid, which will resist osmotic lysis [7]. SARS-CoV2 is present with only a phospholipid envelope with few proteins inserted within [40].

Ivermectin also demonstrates in vivo and in vitro anti-inflammatory activities, through reducing the production of inflammatory cytokines such as TNF-alpha, interleukin-1 (IL-1) and interleukin-6 (IL-6) [41]. In mice, administration of ivermectin suppresses mucous hypersecretion and the production of inflammatory cytokines in the sample that was taken from bronchoalveolar lavage [42].

Ivermectin also appears to inhibit SARS-CoV2 replication in vitro and show a ~5000 fold reduction in viral RNA at 48 h [43]. Although the exact mechanism is not fully elucidated, it is proposed that multiple mechanisms such as inhibition of importin α/β1 heterodimer and the role of ivermectin as ionophore might contribute to its broad-spectrum antiviral activity [43,44]. Despite promising results and satisfactory safety profile, the use of ivermectin is limited to its pharmacokinetic problems such as low solubility and high cytotoxicity [45]. Therefore, more controlled studies are needed to determine the benefit of ivermectin in COVID-19.

5.1. Limitations and way forward

Most of the included studies were preprints, which is not yet peer-reviewed, and presented as a potential source of bias; this is the most important limitation of this meta-analysis. It is known that studies with positive results are likely to be published or reported, and the accuracy of meta-analysis highly depends on the source material. The presence of publication bias is also supported by the funnel-plot analysis and Egger’s test. Most studies individually reported a p-value of >0.05, this might be caused by inadequately powered trial (low incidence of mortality and inadequate sample size). However, it should be noted that the only study reporting significantly lower mortality, as shown in Fig. 2, was at high risk of bias (too many uncertainties upon RoB assessment) and displayed unclear baseline characteristics among the two groups [23]. It should also be noted that the control group of the study has a higher mortality rate compared to the control group of the other studies, one of the possible explanations is due to high number of comorbidities in this group. Most of the studies also did not report important parameters such as chronic kidney disease, heart disease, medications for chronic diseases [46], and laboratory parameters such as d-dimer and c-reactive proteins which may affect prognosis. Uneven distribution of comorbidities may affect the results. Additionally, the dose and length of ivermectin administration varied across the studies.Thus adequately powered double-blinded placebo-controlled RCTs with similar baseline characteristics and dosing among the intervention and control groups are required before a definite conclusion can be made.

6. Conclusion

Ivermectin was associated with decreased mortality in patients with COVID-19 with a low certainty of evidence. Further double-blinded placebo-controlled RCTs with large samples are required for definite conclusion. In the future, if the pre-prints publication is published with the similar result to the current analyses, the certainty of evidence will increase.
Certainty assessment	N of patients	Effect	Certainty Importance
Showing strong bias	28/812	RR 0.44 (0.25–0.78)	LOW
Suspected weak bias	976 (95%)		CRITICAL
Not showing bias	53 fewer per 1000 (from 71 fewer to 21 fewer)		

CI: Confidence interval; RR: Risk ratio.

Explanations:
a. Multiple studies with high risk of bias (see Fig. 3).
b. High heterogeneity.
c. Asymmetrical Funnel Plot.

c. Asymmetrical Funnel Plot.

b. High heterogeneity.

c. Conceptualization, Methodology, Software, Data curation, Formal analysis, Investigation, Validation, Writing — original draft, Writing — review & editing.

c. Conceptualization, Data curation, Investigation, Writing — original draft, Writing — review & editing.

CRediT authorship contribution statement

Ahmad Fariz Malvi Zam zam Zein: Conceptualization, Data curation, Investigation, Writing — original draft, Writing — review & editing.
Catur Setiya Sulistiyana: Data curation, Investigation, Writing — original draft.
Wilson Matthew Raffaele: Data curation, Investigation, Writing — original draft.
Raymond Pranata: Conceptualization, Methodology, Software, Data curation, Formal analysis, Investigation, Validation, Writing — original draft, Writing — review & editing.

Conflict of interest

The authors have no potential conflict of interest.

ABBREVIATIONS INDEX

COVID-19 Coronavirus disease 2019
CRP C-reactive protein
IF Interferon
IL Interleukin
GRADE Grading of Recommendations, Assessment, Development and Evaluation
RCT Randomized Controlled Trial
RR Risk Ratio

Ethical approval

Not Applicable.

Funding

None.

Data availability

Data are available on reasonable request.

Informed consent

Not Applicable.

References

[1] Who. Weekly epidemiological update - 2 March 2021, 2021. Geneva.
[2] Pranata R, Huang I, Raharjo SB. Incidence and impact of cardiac arrhythmias in coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Indian Pacing Electrophysiol J 2020;20:193–8. https://doi.org/10.1016/j.ipej.2020.08.001.
[3] Lim MA, Pranata R, Huang I, Yonas E, Soeroto AY, Supriyadi R. Multiorgan failure with emphasis on acute kidney injury and severity of COVID-19: systematic review and meta-analysis. Can J Kidney Heal Dis 2020;7. https://doi.org/10.1177/2054358120938573.
[4] Pranata R, Huang I, Lim MA, Yonas E, Vania R, Kuswardhani RAT. Delirium and mortality in coronavirus disease 2019 (COVID-19) — a systematic review and meta-analysis. Arch Gerontol Geriatr 2021;95:104388. https://doi.org/10.1016/j.jager.2021.104388.
[5] Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis 2020;14. https://doi.org/10.1177/1753466620937175.
[6] Yonas E, Alwi I, Pranata R, Huang I, Lim MA, Yamin M, et al. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 — a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr Clin Res Rev 2020;14:2219–30. https://doi.org/10.1016/j.dsmx.2020.01.011.
[7] Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn-Schmiedeberg’s Arch Pharmacol 2020;393:1153–6. https://doi.org/10.1007/s00210-020-01902-5.
[8] Canga AG, Prieto AMS, Diez L, Martinez NF, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans - a mini-review. AAPS J 2008;10:42–6. https://doi.org/10.1208/s12248-007-9000-5.
[9] Lim LE, Vilcheze N, Ng C, Jacobs WR, Ramón-García S, Thompson CJ. Anthelmintic avermectins kill mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob Agents Chemother 2013;57:1040–6. https://doi.org/10.1128/AAC.01996-12.
[10] Ashraf S, Chaudhry U, Raza A, Ghosh D, Zhao X. In vitro activity of ivermectin against Staphylococcus aureus clinical isolates. Antimicrob Resist Infect Contr 2018;7. https://doi.org/10.1186/s13756-018-0314-4.
[11] Juarez M, Schoink-Cabrera A, Duenas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res 2018;8:317–31.
[12] Intuyod K, Hahnvajanawong C, Pinlaor P, Pinlaor S. Anti-parasitic drug ivermectin exhibits potent anti-mitotic activity. Vet Parasitol 2016;226:1–4. https://doi.org/10.1016/j.vetpar.2016.06.015.
[13] Ashraf S, Pichard R. Ivermectin exhibits potent anti-mitotic activity. Vet Parasitol 2016;226:1–4. https://doi.org/10.1016/j.vetpar.2016.06.015.
[14] Ventre E, Rizieres A, Lenief V, Albert F, Rossio P, Laoubi L, et al. Topical ivermectin improves allergic skin inflammation. Allergy Eur J Allergy Clin Immunol 2017;72:1212–21. https://doi.org/10.1111/aci.13118.
[15] Cali L, Wagstaff KM, Jans DA. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antivir Res 2012;95:202–6. https://doi.org/10.1016/j.antiviral.2012.06.008.
[16] Tay MYF, Fraser JE, Chan WWK, Moreland NJ, Rathore AP, Wang C, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir Res 2013;99:301–6. https://doi.org/10.1016/j.antiviral.2013.06.002.
[17] Yang SN, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin σ/β1 heterodimer. Antivir Res 2020;177. https://doi.org/10.1016/j.antiviral.2020.104760.
[18] Götz V, Magar I, Dorsfeld D, Giese S, Pohlmann A, Höger D, et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNA import. Sci Rep 2016;6. https://doi.org/10.1038/srep23138.
[19] Hashim HA, Mastood MF, Rasheed AM, Fatah DF, Kababi KK, Abdulamir AS. Controlled randomized clinical trial on using Ivermectin with Doxycycline for treating COVID-19 patients in Baghdad, Iraq. MedRxiv 2020;48. https://doi.org/10.1101/2020.10.26.20219345.
[20] Niaee MS, Gheibi N, Namdar P, Allami A, Zolghadr L, Javadi A, et al. Ivermectin as an adjunct treatment for hospitalized adult COVID-19 patients: a
randomized multi-center clinical trial. Res Sq 2020. https://doi.org/10.21203/rs.3.rs-109670/v1.
[21] Rajter JC, Sherman N, Fatteh N, Vogel F, Sacks J, Rajter JJ. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: the ivermectin in COVID nineteen study. Chest 2021;159: 85–92. https://doi.org/10.1016/j.chest.2020.10.009.
[22] Ravikirti Roy R, Pattadar C, Raj R, Agrawal N, Biswas B, et al. Ivermectin as a potential treatment for mild to moderate COVID-19 – a double blind randomized placebo-controlled trial. MedRxiv 2021. https://doi.org/10.1016/j.jchom.2021.03.027.
[23] Elgazzar A, Elraweel A, Youssef SA, Hany B, Haife M. Efficacy and safety of ivermectin for treatment and prophylaxis of COVID-19 pandemic. Res Sq 2020. https://doi.org/10.21203/rs.3.rs-100956/v3.
[24] Galan LEB, Santos NM dos, Araújo JV, de Lima Moreira A, Galaviz DM, Ramirez O, Martínez E, et al. Use of renin angiotensin system inhibitor on mortality in patients with severe COVID-19. A randomized controlled trial. Corresponding Authors. MedRxiv 2021 2021. https://doi.org/10.1101/2021.02.18.21252037.
[25] Gonzalez JLB, Gonzalez Gómez M, Antonio E, Enciso M, Josue R, Maldonado E, et al. Efficacy and safety of Ivermectin and Hydroxychloroquine in patients with severe COVID-19. A randomized controlled trial Corresponding Authors. MedRxiv 2021 2021. https://doi.org/10.1016/j.jchom.2021.01.011.
[26] Crump A, Ivermectin: enigmatic multifaceted "wonder" drug continues to surprise and exceed expectations. J Antibiot (Tokyo) 2017;70:495–505. https://doi.org/10.7164/jantibiot.2017.11.
[27] Holt AC, Ramanathan A, Freitas F, El-Azhary R, Fainstein V, et al. Use of ivermectin in COVID nineteen study. Chest 2021;159: 85–92. https://doi.org/10.1016/j.chest.2020.10.009.
[28] Pranata R, Henrina J, Laurensia S, Huang I. Hypertension is associated with severe COVID-19: the past, the present, and the future. Metabolism 2021:154814. https://doi.org/10.1016/j.metabol.2021.154814.
[29] Mohamed A, Mohamed R, Al-Sudais K. Ivermectin: a specific inhibitor of importin α/β-mediated nuclear import: able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012;442:851–6. https://doi.org/10.1042/BJ20120150.
[30] Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 2016;20:259–70. https://doi.org/10.1016/j.chom.2016.07.004.
[31] Parikh SV, Bhatia P, Kulkarni P. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res 2008;57:524–9. https://doi.org/10.1007/s00011-008-8007-8.
[32] Rajter JC, Sherman N, Fatteh N, Sacks J, Rajter JJ. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Diabetes Metab Syndr 2020;21. https://doi.org/10.1016/j.dsx.2021.03.027.
[33] Akhtar S, Akhtar S, Shahzad M, Sultana S, Yasir A, et al. Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020;178. https://doi.org/10.1016/j.antiviral.2020.104787.
[34] Iyer S, Sengupta S, Agarwal S, Banerjee S, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res 2008;57:524–9. https://doi.org/10.1007/s00011-008-8007-8.
[35] Pranata R, Henrina J, Laurensia S, Huang I. Hypertension is associated with severe COVID-19: the past, the present, and the future. Metabolism 2021:154814. https://doi.org/10.1016/j.metabol.2021.154814.