On Coarse Spectral Geometry in Even Dimension

Robert Yuncken

March 10, 2010

Abstract

Let σ be the involution of the Roe algebra $C^*|\mathbb{R}|$ which is induced from the reflection $\mathbb{R} \to \mathbb{R}; \ x \mapsto -x$. A graded Fredholm module over a separable C^*-algebra A gives rise to a homomorphism $\tilde{\rho} : A \to C^*|\mathbb{R}|^\sigma$ to the fixed-point subalgebra. We use this observation to give an even-dimensional analogue of a result of Roe. Namely, we show that the K-theory of this symmetric Roe algebra is $K_0(C^*|\mathbb{R}|^\sigma) \cong \mathbb{Z}$, $K_1(C^*|\mathbb{R}|^\sigma) = 0$, and that the induced map $\tilde{\rho}_* : K_0(A) \to \mathbb{Z}$ on K-theory gives the index pairing of K-homology with K-theory.

1 Introduction

In [Roe97], Roe observed that a Dirac operator D on an odd-dimensional closed manifold M gives rise to a C^*-algebra homomorphism

$$\tilde{\rho} : C(M) \to C^*|\mathbb{R}|$$

from the continuous functions on M to the Roe algebra of the real line \mathbb{R}. The space \mathbb{R} appears because, up to coarse equivalence, it is the spectrum of the self-adjoint operator D. The K-theory of $C^*|\mathbb{R}|$ is

$$K_n(C^*|\mathbb{R}|) \cong \begin{cases} 0, & n = 0, \\ \mathbb{Z}, & n = 1, \end{cases}$$

and the map

$$\tilde{\rho}_* : K_1(C(M)) \to K_1(C^*|\mathbb{R}|) \cong \mathbb{Z}$$

agrees with the index pairing of K-theory with the K-homology class $[D] \in K_1(M)$.

This point of view was extensively developed by Luu ([Luu05]), who showed that analytic K-homology can be reformulated entirely in the language of coarse spectral geometry. Specifically, let A be a separable C^*-algebra. Luu defined groups $KC^n(A, \mathbb{C})$ whose cycles are \ast-homomorphisms $\rho : A \to C^*|\mathbb{R}^n|$ and

1 The most natural coarse structure on \mathbb{R}^n here is the topologically controlled coarse structure associated to the compactification of \mathbb{R}^n by a sphere at infinity. (See [Roe03] for the definition.) If A is separable, it turns out to be equivalent to use the standard metric coarse structure on \mathbb{R}^n, although the construction becomes somewhat more technical. The K-theory of $C^*|\mathbb{R}^n|$ is the same in either case.
then proved that $KC^n(A, C) \cong KK^n(A, C)$. In fact, Luu worked with an arbitrary (σ-unital) coefficient algebra B, to produce groups $KC^n(A, B)$ isomorphic to $KK^n(A, B)$. We choose not to work in that generality here.

Luu’s picture of K-homology is aesthetically very pleasing. The price of this elegance, however, is some computational complexity in even dimensions. The isomorphism of KK and KC in even dimension is achieved via a map $KK^0(A, C) \to KC^2(A, C)$ which requires as input a balanced Fredholm module, i.e. a graded Fredholm module of the form $(H = H_0 \oplus H_0, \rho = \rho_0 \oplus \phi_0, F = (g_0 U_0^*)$ for some Hilbert space H_0, representation ρ_0 and Fredholm operator $U : H_0 \to H_0$. While every K^0-class can be represented by a balanced Fredholm module, the process of “balancing” is quite heavy-handed. For instance, given a Dirac operator on an even dimensional manifold, the Hilbert space of the associated balanced Fredholm module is an infinite direct sum of L^2-sections of the spinor bundle. (See [HR00, Proposition 8.3.12].) The relationship between the spectrum of U and that of the original operator D is not obvious.

In this paper, we describe an alternative approach to controlled spectral geometry in even dimension which is more convenient for geometric applications. Let $s : \mathbb{R} \to \mathbb{R}$ denote the reflection through the origin. This induces a $*$-involution σ of the Roe algebra $C^*|\mathbb{R}|$ (see Section 3). Given a graded Fredholm module (H, ρ, D) for A, Roe’s construction in fact produces a $*$-homomorphism $\tilde{\rho} : A \to C^*|\mathbb{R}|^\sigma$ into the fixed-point algebra of σ. Our main result is the following.

Theorem 1.1. The K-theory of the symmetric Roe algebra is

$$K_n(C^*|\mathbb{R}|^\sigma) \cong \begin{cases} \mathbb{Z}, & n = 0, \\ 0, & n = 1, \end{cases}$$

and the induced map

$$\tilde{\rho}_* : K_0(A) \to K_0(C^*|\mathbb{R}|^\sigma) \cong \mathbb{Z}$$

agrees with the index pairing of $[(H, \rho, D)] \in K^0(A)$ with K-theory.

The author would like to thank Viêt-Trung Luu for stimulating chats.

2 Preliminaries: The Roe algebra $C^*|\mathbb{R}|$

We shall use $|\mathbb{R}|$ to denote the real line equipped with the topological coarse structure induced from the two-point compactification $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. Thus, a set $E \subseteq \mathbb{R} \times \mathbb{R}$ is controlled if for any sequence $(x_n, y_n) \in E$, $x_n \to \infty$ (resp. $-\infty$) if and only if $y_n \to -\infty$ (resp. $-\infty$).

We shall refer to a Hilbert space H equipped with a nondegenerate representation $m : C_0(\mathbb{R}) \to B(H)$ as a geometric \mathbb{R}-Hilbert space. By the spectral theorem, m extends naturally to the algebra of Borel functions $B(\mathbb{R})$. We shall
typically suppress mention of m in the notation. We use χ_Y to denote the characteristic function of a subset $Y \subset \mathbb{R}$.

An operator $T \in \mathcal{B}(H)$ is **locally compact** if $fT, Tf \in \mathcal{K}(H)$ for all $f \in C_0(\mathbb{R})$. It is **controlled** (for the above topological coarse structure) if for all $R \in \mathbb{R}$ there exists $S \in \mathbb{R}$ such that

$$\chi_{(-\infty,R]} T \chi_{[S,\infty]} = 0, \quad \chi_{[S,\infty)} T \chi_{(-\infty,R]} = 0,$$

$$\chi_{(-R,\infty]} T \chi_{(-\infty,-S]} = 0, \quad \chi_{(-\infty,-S]} T \chi_{(-R,\infty]} = 0.$$

One defines $C^*((\mathbb{R}; H))$ as the norm-closure of the locally compact and controlled operators on H. This C^*-algebra is independent of the choice of H as long as H is **ample**, i.e. $m(f)$ is noncompact for all nonzero $f \in C_0(\mathbb{R})$. In that case, the algebra is referred to as the **Roe algebra** $C^*|\mathbb{R}|$.

The following standard facts are easy consequences of the definitions. The reader familiar with Roe algebras may prefer to recognize them as consequences of the coarsely excisive decomposition $\mathbb{R} = (-\infty,0] \cup [0,\infty)$, where we note that the ideal $C^*|\mathbb{R}|(\{0\}; H)$ associated to the inclusion of a point into \mathbb{R} is just the compact operators. (See [HRY93],[HPR97].)

Lemma 2.1. Let $T \in C^*((\mathbb{R}; H))$. For any $R_1, R_2 \in \mathbb{R}$,

(i) $\chi_{(-\infty,R_1]} T \chi_{[R_2,\infty)}$ and $\chi_{[R_2,\infty)} T \chi_{(-\infty,R_1]}$ are compact operators.

(ii) $[T, \chi_{(-\infty,R_1]}]$ and $[T, \chi_{[R_2,\infty)}]$ are compact operators.

3 Graded Fredholm modules and the symmetric Roe algebra

In what follows, we shall use the unbounded (‘Baaj-Julg’) picture of K-homology. This is a purely aesthetic choice—see Remark 3.3 for the construction using bounded Fredholm modules.

Let A be a C^*-algebra, and let (H,ρ,D) be a graded unbounded Fredholm module for A, i.e. H is a $\mathbb{Z}/2\mathbb{Z}$-graded Hilbert space, ρ is a representation of A by even operators on H, and D is an odd self-adjoint unbounded operator on H such that

(1) for all $a \in A$, $(1 + D^2)^{-\frac{1}{2}} \rho(a)$ extends to a compact operator,

(2) for a dense set of $a \in A$, $[D,\rho(a)]$ is densely defined and extends to a bounded operator.

Let γ_{ev}, γ_{od} denote the projections onto the even and odd components of H, and $\gamma = \gamma_{ev} - \gamma_{od}$ be the grading operator. Let σ be the involution of $\mathcal{B}(H)$ defined by $\sigma : T \mapsto \gamma T \gamma$.

Functional calculus on the operator D provides H with a geometric \mathbb{R} structure, namely $m : B(\mathbb{R}) \to \mathcal{B}(H); \ f \mapsto f(D)$. For any $f \in C_0(\mathbb{R})$,

$$\sigma(m(f)) = f(\gamma D \gamma) = f(-D) = m(f \circ s),$$

3
where \(s : \mathbb{R} \to \mathbb{R} \) is the reflection in the origin. In coarse language, \(\gamma \) is a covering isometry for \(s \). It follows that \(\sigma \) restricts to an involution of \(C^*([\mathbb{R}]; H) \). The subalgebra fixed by \(\sigma \) will be denoted \(C^*([\mathbb{R}]; H)^\sigma \).

Taking this symmetry into account gives an immediate strengthening of Roe’s construction for ungraded Fredholm modules.

Proposition 3.1. The image of \(\rho \) lies in \(C^*([\mathbb{R}]; H)^\sigma \).

Proof. The function \(f(x) = x(1+x^2)^{-\frac{1}{2}} \) generates \(C([\mathbb{R}]) \), and the ideal generated by \(g(x) = (1 + x^2)^{-\frac{1}{2}} \) is \(C_0(\mathbb{R}) \). Using [HR00, Theorem 6.5.1], Properties (1) and (2) above imply that \(\rho(a) \in C^*([\mathbb{R}]; H) \) for any \(a \in A \). Since \(\rho(a) \) is even, \(\sigma(a) = \gamma \rho(a) \gamma = \rho(a) \). \(\square \)

This geometric \(\mathbb{R} \)-Hilbert space \(H \) is not typically ample. However, one can always embed \(H \) into an ample geometric \(\mathbb{R} \)-Hilbert space. For specificity, let us put \(\mathcal{H} := H \oplus L^2(\mathbb{R}) \), where \(L^2(\mathbb{R}) \) has its natural geometric \(\mathbb{R} \)-structure. Extension of operators by zero gives an inclusion \(\iota : C^*([\mathbb{R}]; H) \to C^*|\mathcal{H}| \). Put \(\hat{\rho} = \iota \circ \rho : A \to C^*|\mathcal{H}| \).

The symmetry \(g \mapsto g \circ s \) defines a grading operator on \(L^2(\mathbb{R}) \). We shall reuse \(\gamma \) to denote the total grading operator on \(\mathcal{H} \). Likewise, we use \(\sigma \) to denote conjugation by \(\gamma \) in \(\mathcal{B}(\mathcal{H}) \). Then \(\hat{\rho} \) has image in \(C^*|\mathcal{H}|^\sigma \).

Remark 3.2. In the above, we have employed a specific choice of symmetry \(\sigma \in \text{Aut}(C^*|\mathbb{R}|) \) associated to the reflection \(s \) of \(\mathbb{R} \). For the expert concerned about the uniqueness of this definition, we supply some brief comments without proof. They shall not be needed in what follows.

Let \(\mathcal{H} \) be any ample geometric \(\mathbb{R} \)-Hilbert space. By [Lau05, Prop. 2.2.11(iii)] (following [HRY93]), there exists a unitary \(\gamma : \mathcal{H} \to \mathcal{H} \) which covers \(s \), in the sense that \((1 \times s)(\text{Supp}(\gamma)) \subseteq \mathbb{R} \times \mathbb{R} \) is a controlled set. By carrying out the proof of this fact in a way that maintains the reflective symmetry, one can ensure that \(\gamma \) is involutive, \(\gamma^2 = 1 \). Then \(\sigma : T \to \gamma T \gamma \) is an involution of \(C^*|\mathcal{H}| \). If \(\gamma' \) is another involutive covering isometry for \(s \), then there is a controlled unitary \(V \in \mathcal{B}(\mathcal{H}) \) such that \(\gamma' = V \gamma \) ([Lau05, Prop. 2.2.11(iv)] following [HRY93]). If \(\sigma' \) is conjugation by \(\gamma' \), then \(C^*|\mathcal{H}|^\sigma' = VC^*|\mathcal{H}|V^* \). Thus the symmetric Roe algebra \(C^*|\mathcal{H}|^\sigma \) is unique up to controlled unitary equivalence.

Remark 3.3. The bounded Fredholm module corresponding to \((H, \rho, D) \) is \((H, \rho, F := D(1 + D^2)^{-\frac{1}{2}}) \). The map \(\phi : x \mapsto x(1 + x^2)^{-\frac{1}{2}} \) defines a coarse equivalence from \(|\mathbb{R}| \) to the interval \(|(-1,1)| \), with topological coarse structure associated to its two-point compactification \([-1,1]\). Thus, the bounded picture of \(K \)-homology provides a morphism \(\rho : A \to C^*|(-1,1)| \cong C^*|\mathbb{R}| \).

4 K-theory of the symmetric Roe algebra \(C^*|\mathbb{R}|^\sigma \)

Proposition 4.1. The \(K \)-theory of \(C^*|\mathbb{R}|^\sigma \) is

\[
K_\bullet(C^*|\mathbb{R}|^\sigma) \cong \begin{cases}
\mathbb{Z}, & \bullet = 0, \\
0, & \bullet = 1.
\end{cases}
\]
Moreover, $K_0(C^*|R|)^\sigma$ is generated by finite rank projections $p \in M_n(C^*|R|)^\sigma$, and for such projections, the map to Z is given by

$$[p] \mapsto \dim \mathcal{H}_{ev} - \dim \mathcal{H}_{od}.$$

We use a Mayer-Vietoris type argument (cf. [HRY93]). Put $Y_+ := [1, \infty)$, $Y_- := (-\infty, -1]$, with their coarse structures inherited from $|R|$. We will abbreviate $\chi_{Y\pm}$ as $\chi\pm$. Since $\mathcal{H}_+ := \chi_+ \mathcal{H}$ is an ample geometric Y_+-Hilbert space, we can define the Roe algebra $C^*|Y_+|$ as the corner algebra $C^*(|Y_+|; \mathcal{H}_+) = \chi_+ C^*|R|\chi_+$. Likewise for $C^*|Y_-|$.

Note that $\sigma(\chi\pm) = \chi\pm$, so that σ interchanges $C^*|Y_+|$ and $C^*|Y_-|$. Since $\chi_+ \chi_- = 0$, the symmetrization map $(I + \sigma) : T \mapsto T + \sigma(T)$ is a \ast-homomorphism from $C^*|Y_+|$ into $C^*|R|^{\sigma}$. We obtain a morphism of short-exact sequences,

$$0 \longrightarrow \mathcal{K}(|Y_+|) \longrightarrow C^*|Y_+| \longrightarrow C^*|Y_+|/\mathcal{K}(|Y_+|) \longrightarrow 0$$

for such projections. The map to Z is given by

$$[p] \mapsto \dim \mathcal{H}_{ev} - \dim \mathcal{H}_{od}.$$

Lemma 4.2. The right-hand map $(I + \sigma) : C^*|Y_+|/\mathcal{K}(|Y_+|) \rightarrow C^*|R|^{\sigma}/\mathcal{K}(|Y_+|)$ is an isomorphism.

Proof. Let $\psi : C^*|R|^{\sigma} \rightarrow C^*|Y_+|$ denote the cut-down map $T \mapsto \chi_+ T \chi_+$. By using Lemma 2.1(ii), ψ is a homomorphism modulo compacts, so it descends to a homomorphism $\psi : C^*|R|^{\sigma}/\mathcal{K}(|Y_+|) \rightarrow C^*|Y_+|/\mathcal{K}(|Y_+|)$. By Lemma 2.1(i), for any $T \in C^*|R|^{\sigma}$ we have

$$T \equiv \chi_+ T \chi_+ + \chi_- T \chi_- \mod \mathcal{K}(|Y_+|),$$

so that ψ is inverse to $(I + \sigma)$. \hfill \square

Put $\mathcal{H}_{ev} := \gamma_{ev} \mathcal{H}$, $\mathcal{H}_{od} := \gamma_{od} \mathcal{H}$.

Lemma 4.3. We have $\mathcal{K}(|Y_+|) \cong \mathcal{K}(|Y_+|) \oplus \mathcal{K}(|Y_+|)$ via $T \mapsto T_{\gamma_{ev}} \oplus T_{\gamma_{od}}$. In particular, $K_0(\mathcal{K}(|Y_+|)) \cong \mathbb{Z} \oplus \mathbb{Z}$ via the map which sends the class of a projection p to $(\dim (p \mathcal{H}_{ev}), \dim (p \mathcal{H}_{od}))$.

Proof. Note that any $T \in C^*|R|^{\sigma}$ commutes with γ, so $T \mapsto T_{\gamma_{ev}} \oplus T_{\gamma_{od}}$ is indeed a homomorphism. The inverse homomorphism is $T_1 \oplus T_2 \mapsto T_1 + T_2$. \hfill \square

Lemma 4.4. Under the identifications $K_0(\mathcal{K}(|Y_+|)) \cong \mathbb{Z}$ and $K_0(\mathcal{K}(|Y_+|)) \cong \mathbb{Z} \oplus \mathbb{Z}$, the map $(I + \sigma)_*$ is $n \mapsto (n, n)$.

Proof. Let p be a projection in $\mathcal{K}(|Y_+|)$. Then $p = \chi_{Y_+} p \chi_{Y_+}$, so $p^\gamma = \chi_{Y_+} p^\gamma \chi_{Y_+}$, and hence $\text{Tr}(p^\gamma) = 0$. Since $\gamma_{ev/od} = \frac{1}{2}(1 \pm \gamma)$, $\text{Tr}(p \gamma_{ev}) = \text{Tr}(p \gamma_{od}) = \frac{1}{2} \text{Tr}(p)$. Similarly, $\text{Tr}(p \gamma_{ev}) = \frac{1}{2} \text{Tr}(p \gamma_{od}) = \frac{1}{2} \text{Tr}(p)$. Hence, $\text{Tr}((I + \sigma)(p \gamma_{ev})) = \text{Tr}((I + \sigma)(p \gamma_{od})) = \text{Tr}(p)$, and the result follows from the previous lemma. \hfill \square
By [Roe96, Proposition 9.4], \(C^*|Y_+ | \) has trivial \(K \)-theory. The boundary maps in \(K \)-theory induced from the diagram (4.1) give

\[
\begin{array}{ccc}
K_1(C^*|Y_+ |/\mathcal{K}(\mathcal{H}_+)) & \overset{\partial}{\rightarrow} & K_0(\mathcal{K}(\mathcal{H}_+)) \cong \mathbb{Z} \\
& (I + \sigma) & \\
K_1(C^*|\mathbb{R}^\sigma/\mathcal{K}(\mathcal{H})^\sigma) & \overset{\partial}{\rightarrow} & K_0(\mathcal{K}(\mathcal{H})^\sigma) \cong \mathbb{Z} \oplus \mathbb{Z} \\
& (I + \sigma) & \\
\end{array}
\tag{4.2}
\]

We see that \(K_1(C^*|\mathbb{R}^\sigma/\mathcal{K}(\mathcal{H})^\sigma) \cong \mathbb{Z}, \) and the image of its boundary map into \(K_0(\mathcal{K}(\mathcal{H})^\sigma) \) is \(\{(n, n) \mid n \in \mathbb{Z}\}. \) The corresponding diagram in the other degree gives \(K_0(\mathcal{K}(\mathcal{H})^\sigma) \cong 0. \)

Now the six-term exact sequence associated to the bottom row of (4.1) becomes

\[
\begin{array}{cccc}
(n, n) & \mathbb{Z} \oplus \mathbb{Z} & K_0(C^*|\mathbb{R}^\sigma) & 0 \\
\downarrow n & & \downarrow & \\
\mathbb{Z} & K_1(C^*|\mathbb{R}^\sigma) & 0
\end{array}
\]

Thus, \(K_0(C^*|\mathbb{R}^\sigma) \cong \mathbb{Z} \) and \(K_1(C^*|\mathbb{R}^\sigma) \cong 0. \) With an appropriate choice of sign, top-left horizontal map is given by \((m, n) \mapsto m - n.\) Applying Lemma 4.3 this completes the proof of (4.1).

5 The index pairing

Let \(\theta \in K^0(A) \) be the \(K \)-homology class of a graded unbounded Fredholm module \((H, \rho, D), \) and put \(F := D(1 + D^2)^{-\frac{1}{2}}. \) Let \(p \) be a projection in \(M_n(A). \)

The index pairing \(K^0(A) \times K_0(A) \to \mathbb{Z} \) is given by

\[
(\theta, [p]) := \text{Index} \left[\rho(p)(F \otimes I_n)\rho(p) : \rho(p)\mathcal{H}^n_{ev} \to \rho(p)\mathcal{H}^n_{od} \right],
\]

(where \(I_n \) denotes the identity in \(M_n(\mathbb{C})\).)

Let \(P = \tilde{\rho}(p) \in M_n(C^*|\mathbb{R}^\sigma) \), and let \(f \) denote the function \(f(x) = x(1 + x^2)^{-\frac{1}{2}} \), as represented on the geometric \(|\mathbb{R}| \)-Hilbert space \(\mathcal{H}. \) Then

\[
(\theta, [p]) = \text{Index}(P(f \otimes I_n)P : P\mathcal{H}^n_{ev} \to P\mathcal{H}^n_{od}).
\]

The right-hand side here depends only on the class of \(P \) in \(K_0(C^*|\mathbb{R}^\sigma) \). By Proposition 4.1 we may therefore replace \(P \) by a finite rank projection \(Q, \) and the index is

\[
(\theta, [p]) = \text{Index}(Q(f \otimes I_n)Q : Q\mathcal{H}^n_{ev} \to Q\mathcal{H}^n_{od}) = \dim(Q\mathcal{H}^n_{ev}) - \dim(Q\mathcal{H}^n_{od}) = [Q] = \rho_*[p].
\]

This completes the proof of Theorem 1.1.
Remark 5.1. Given the above results, it is natural to expect a reformulation of $KK^0(A,\mathbb{C})$ in the spirit of Luu. Indeed, one can define a group $KC^0_\sigma(A,\mathbb{C})$ as follows. Cycles are morphisms from A into the symmetric Roe algebra $C^*|\mathbb{R}|^\sigma$. Equivalence of cycles is generated by controlled unitary equivalences (preserving the involution γ) and weak homotopies (respecting the symmetry σ). Then $KC^0_\sigma(A,\mathbb{C}) \cong KK^0(A,\mathbb{C})$. We shall not develop this in detail here, as the results follow [Luu05] closely.

References

[HPR97] Nigel Higson, Erik Kjær Pedersen, and John Roe. C^*-algebras and controlled topology. *K-Theory*, 11(3):209–239, 1997.

[HR00] Nigel Higson and John Roe. *Analytic K-homology*. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000. Oxford Science Publications.

[HRY93] Nigel Higson, John Roe, and Guo Liang Yu. A coarse Mayer-Vietoris principle. *Math. Proc. Cambridge Philos. Soc.*, 114(1):85–97, 1993.

[Luu05] Việt-Trung Luu. *A large scale approach to K-homology*. PhD thesis, Penn State University, 2005.

[Roe96] John Roe. *Index theory, coarse geometry, and topology of manifolds*, volume 90 of *CBMS Regional Conference Series in Mathematics*. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996.

[Roe97] John Roe. An example of dual control. *Rocky Mountain J. Math.*, 27(4):1215–1221, 1997.

[Roe03] John Roe. *Lectures on coarse geometry*, volume 31 of *University Lecture Series*. American Mathematical Society, Providence, RI, 2003.