Smart nanomaterial and nanocomposite with advanced agrochemical activities

Antul Kumar¹, Anuj Choudhary¹, Harmanjot Kaur¹, Sahil Mehta² and Azamal Husen³*

Abstract

Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.

Keywords: Conventional agriculture, Agrochemicals, Nanomaterial, Crop improvement, Sustainable

Introduction

Globally, people are employed in agriculture for the cultivation of fundamental food crops and various essential forms of products such as fibers, fuels, fodders, and raw materials. Limited resources and an exponentially growing population, which is estimated to mark 9.6 billion by 2050, enforce the areas derived demanding the elaboration of very sustainable agriculture while permitting declination of global hunger and poverty [1, 2]. To fulfill this demand of relentlessly expanding population, there is an urgent prerequisite to enhance food production by more than 50% [2, 3]. Due to the limited number of natural resources (water, land, soil, forest, etc.) and ceiling in crop productivity, there is a huge demand for effective agricultural approaches that are viable and liable economically and eco-friendly. To overcome these dilemmas, synthetic agrochemicals (herbicides, insecticides, fungicides, and fertilizers) have been developed and used to increase agricultural yields [4, 5]. However, the application of such agrochemicals had been instrumental for elevating food quality and quantity in past decades to evaluate the long-term ill effect of such agrochemicals on soil health and the ecosystem [6]. However, research on nanoparticle application as chemical alternatives for utility in the agriculture sector has become enhancing popularity over the past decade, later referred to as nanoagrochemicals [7]. The intentional and directional delivery in the environment, nanoagrochemicals may be considered specific in terms of expectable environmental issues, as they would represent the single diffuse cause of engineered nanoparticles (NPs) [8, 9]. Given this, one such initiative taken is the forefront of smart nanomaterials for revolutionizing
current agriculture practices that contain good reactivity due to their substantial surface area to volume ratio and exceptional physicochemical characteristics that offer the novel advantage of modification according to increasing demand [2].

Modern agriculture is renovating into sustainable agriculture with the use of these modern age materials that are empowering to attain maximum output from limited resources [10]. Generally, agrochemical is essential to increase crop productivity but contrary, their application decline soil fertility by hindering soil mineral balance [11]. Moreover, the direct foliar or sprayed application can be cost-effective and very high, which run off and need to be controlled [12]. The nanomaterials-based chemicals developed in agriculture regulate nutrient depletion rate, yield reduction, input cost for crop raising, protection, production, and minimizing post-harvest loss [3]. Nanocomposites have become a key component of nanomaterials for scrutinizing and stimulating the plant life cycle because of their intrinsic unique thermal, electrical, chemical, and mechanical properties. The translocation in size-dependent lies in the range of 0.1–1000 nm within plant parts and altered according to surface compositions, a charge of NPs (highly negatively charged shows more translocation), and plant size exclusion limit [10, 13]. These routes of penetration are confirmed via different in vitro (Filter paper, hydroponics, agar media, Hoagland solution, Murashige and Skoog media, nutrient solution) and in vivo (foliar uptake, branch feeding, trunk injection, and root uptake) experiments using nanopesticide, nanoherbicide, nanoherbicides, and nanogrowth-promoting compounds [2, 9]. However, in certain cases the size exclusion is high so, it’s difficult to limits the specific passage and concentration that affect the growth phase of plants both positively and negatively (Fig. 1).

Many successful examples of utilizing smart nanomaterial in agriculture have been reported in recent years including multi-walled carbon nanotubes [5, 14], metal-based nanocomposites [15], silver inhibits fungus germination [16], and many more. This new-age nanof ormulation has the potential to fine-tune the physiology just entering the soil–plant complex that can be solely exploited to spotify the lateral effect [17].

The nanoparticle-based products (NMs) including smart agrochemical delivery systems having nanocomposites as chief ingredients are being constantly developed. Much intensive research is still required to achieve

Fig. 1 Diagrammatic illustration of nanoparticles transport, and their interactions in crop plant
the practical advantages of nanoagrochemicals with improved working design, regulation of commercialization, and risk assessment of nanofertilizer, nanopesticide, and nanoherbicide [18, 19]. New crop cultivars, that can sustain heat, drought, salinity, and other unresolved challenges in farming systems disturb the whole spectrum of major cultivation practices worldwide. Moreover, it is expected that the implementation of NMs in the natural environment decline the chemicals-based hazardous level [12]. We surely believe, their application in agriculture will narrow down the gap between sustainable and chemical-based agriculture systems. Besides this, it boosts food production and quality globally in an eco-friendly manner by resolving water and soil contamination [20]. Thus, practically they could provide novel avenues regarding developing new NMs-based products [14]. Conventional agrochemical has offered numerous drawbacks regarding the non-selectively and adsorption rate of active ingredients (AIs).

It has been reported that more than 99.9% pesticides are failed to be delivered at target sites and cause a hazardous impact on the health of the soil, water, air with enhances pathogenic resistance and biodiversity loss [12, 21, 22]. Overall, we aimed to highlight the current information on facts that nanomaterial or nanocomposite deliver an efficient solution to upgrade and advanced the agriculture innovations, food systems, sustainable crop protection, and production. Moreover, information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and limitation in agrochemical activities are also discussed in the present review.

Nanostructure compounds with the controlled released system (CRS)

Due to several advantages over conventional chemical application approaches, many researchers have put forward the model of the controlled release system [15, 23–29] to offer substitutes to reduce environmental pollution. The controlled release (CR) allows efficient delivery of an AI more actively in soil and plant for the desired interval of time, resulting in the decreases of the amounts of agrochemicals used, energy, manpower, or other resources crucial to operate the application instruments as well as in enhancement in safety to humans who deal with their application [26, 29–32]. Additionally, CR shows many advantages over conventional methods including decrease phytotoxicity, reduce agrochemical loss due to volatilization, lixiviation, drift, improper handling, and degradation in soil and controlled delivery coincides with a suitable concentration in the plant to prevent unpredictable losses in form of evaporation, leaching and weather (Fig. 2) [16, 33].

Comprehensive characterization is a significant prerequisite to predict or explain the efficiency and behaviour of smart nano-loaded agrochemicals. In particular, retention of AIs, behaviour, composition and phase, zeta potential, and internal structure of polymeric nanocarriers, and their release in particle environment conditions are summarized as important properties [30, 34–36]. The rate of loading and release for AIs from nanocarriers plays a central role in predicting or assessing their efficacy. These can be evaluated by ingredients concentration remaining within polymeric matrix and amount of released ingredients [37, 38]. The mechanism of release can be achieved via different modes such as:

Diffusion via relaxation/swelling of NPs

In the concentration gradient phenomena (or fickian diffusion), the release would occur at a high rate when nanocarriers are diluted using either concentrated or solid formulations even under irrigation or rainfall events. The diffusion can be slow down by enhancing the nanoparticle size or enhancing the distance within media in which diffusion of AI occurs observed in poly lactic acid (PLA) loaded metazachlor [32, 39, 40]. Similarly, enhanced cross-linking has been suggested as an efficient method to delay diffusion by increasing the tortuosity or decreasing the porosity via the polymer matrix, as indicates by methomyl-loaded chitosan (azidobenaldehyde-carboxymethyl) pesticide before and after polymer crosslinking [40–43].

Burst release

The most commonly rapid release method in which AI release undesirably, if an initial high amount of AI is not favorable for the application of target. The phenomena would show enhance the concentration of AIs present near or on the surface of the NPs indicates high significant burst release. For example, PLA-loaded metazachlor (herbicides) nanocapsule or surface coating has been recommended to inhibits the initial rapid burst that is frequently noted for nanospheres [35].

Degradation

Nanoparticle release can be triggered or accelerated by physical, chemical, and biological degradation that can be achieved by hydrolysis with water, light exposure, temperature, pH, specific stimulus, and enzymatic activities. For example, PLGA (Poly lactic co-glycolic acid) NPs show increased hydrolytic degradation with enhancing surface area- volume ratio for water, and their diffusion rate might be fine-tuned with appropriate nanocarriers [44]. Moreover, the mPEG (methoxy polyethylene
glycol) incorporated in PLGA-NPs increases the degradation rate of NPs via enhanced hydrophilicity and ultimately accessibility for hydrolysis in hydrolytic degradation type. In enzymatic degradation, the events lead by the activities of phosphatases, glycosidases, and protease viz: PCL (poly(ε-caprolactone) degradation enhance with the activity of lipase activity [44]. Similarly, γ-PGA (poly (γ-glutamic acid) degradation mediated by γ-GTP (γ-glutamyl transpeptidase) is considered as a most common enzyme that causes rapid degradation [38]. In another study, zein nanoparticle shows rapid and extensive degradation and release of encapsulated ciprofloxacin antibiotic, in presence of trypsin enzyme than collagenase [37].

In some cases, stimuli-response release can be observed using photosensitive polymers such as micellar or UV (Ultraviolet) labile core–shell NPs were produced to PEG and nitrobenzyl to carboxymethyl chitosan. Thus, stimuli-based nanocomposite can intelligently react to the stimulus produced by the target or the adjoining environment that eventually triggers the AIs release to regulate the pest effectively [45, 46]. However, physical stability in some NPs altered by pH, when the polymer is weak basic or acidic such that electrostatic and charge will reliable on pH [40, 41, 47]. For instance, carboxymethyl cellulose and feather keratin were loaded with avermectin. The diffusion rate was observed to be faster at low pH (Fickian transport) and higher pH (non-Fickian) [46].

Nanoformulations as a promising tool in an agricultural system

Agrochemicals includes pesticides, herbicides, fungicides, bactericides, nematicides, rodenticides that are used to target pest, weed, pathogenic fungus, bacteria, nematodes and rodents (Fig. 3) [48–50]. Globally, the herbicide market is expanding and is estimated to lies between $27.21 and $39.15 billion at a compound annual growth rate (CAGR) of 6.25% in the expected period 2016–2022. Besides this, the global pesticides market was accounted to reach $70.57 billion by 2021 at a CAGR of 5.15% estimated between 2016 and 2021. Besides this, the global market of encapsulated pesticides grows exponentially at reach benchmark of US $800 million by 2025 expectedly and gains 11.8% CAGR in the tenure of 2019–2025 [18, 19, 48, 49].

The families represented by inorganic chemicals are triazines, phenoxy, and benzoic acid chloroacetanilides representing herbicides, phenylpyrrole, benzimidazoles, dithiocarbamates, and nitriales for fungicide, carbamate, organophosphates, organochlorines relating to insecticide. Smart nanoagrochemicals with nanoformulations
must offer a broad variety of benefits including enhanced durability, effectiveness, wettability, good dispersion, less toxicity, good biodegradable ability in soil and environment, and photogenerative nature with the least residues compared to conventional chemicals [51–53]. Over the past, extensive studies were carried out on nanoagrochemicals to access their significant role and contamination range in affecting soil–plant nutrient cycles [19].

Nanopesticide

The potential utility of nanochemicals in integrated pest management (IPM) depends upon targeted delivery of AIs with increased activity at least drug concentration and proficient monitoring of pesticides interactions with the surroundings. Under harsh conditions, the chemical stability can be achieved by efficient nanocarriers having enhanced dispersal range, wettability, and more protectivity to pesticides without risk of runoff [54–57]. Other noteworthy characteristics of pesticidal nanocompositions can be observed in thermal stability, large surface area, increased target affinity, and biodegradable nature after successful delivery. These delivery systems can be regulated for single goals or multiple combinations viz; spatially target release, time-controlled release, remotely or self-regulated release to overcome the biological barriers in the successful target [21, 58–60]. However, the efficacy of nanoencapsulation or nanocarriers is (1) to prevent pre-degradation of AI in the carrier before their release in the target (2) to improve penetration and ease solubility of AIs within the target site (3) to monitor or regulate the degradation of AIs in the desired site [61, 62].

According to Kremer et al. [63] the adsorptive interaction between pesticides and NPs showing discrete molecular dynamics. Such interactions should have a positive impact on adsorption sites via physiological morphology, binding ability, antioxidant systems, and transportability of pesticides in plants [64]. In Arabidopsis thaliana, the antagonistic effect between silver NPs and Diclofop-methyl (post-emergence herbicide) in which herbicides presence decline or affected the Ag⁺ from silver NPs. Moreover, a decrease in pesticide concentration is imperative to avoid their toxicity on non-selected organisms and narrow down contamination risk [65–67]. Several nanocompositions of pesticides have been developed such as nanoemulsions, nanosuspensions, and nanocapsulations. Such nanomaterials are prepared specifically to maintain the regulated release of AIs in several ways including magnetic release, ultrasound release, pH release, heat release, moisture release, DNA-based release, specific release, quick and slow-release [19].
In some cases, nanoparticle delivery in hollow silica NPs are used to prevent avermectin from UV radiation and provide photostability to nanopesticides causing long-term effects on the target organism. Several NPs used various forms of encapsulations including (1) Lipid nanomaterial-based encapsulation. (2) Metal–organic framework-based encapsulation. (3) Polymer-based 6encapsulation. (4) Clay nanomaterial-based encapsulation. (4) Greener encapsulation [9, 42, 43, 45, 47, 68–70].

Nanofertilizer
Besides plant protection, these smart NPs are extensively used to regulate the physiological process. For example, SiO$_2$ NPs (silicon dioxide NPs) elevates seed germination rate in Lycopersicon esculentum [71, 72], chitosan-polyacrylamide-NP increase biomass, nutrient uptake and antioxidant enzymes in Phaseolus vulgaris [73, 74], Au-NPs (gold NPs) promotes seed germination, seedling growth, enzymatic activity and nutrient uptake in Zea mays [75, 76], SiO$_2$-NPs improve uptake of NPK, increase enzymatic activity and seed germination rate in Hyssopus officinalis and Z. mays [77–79], chitosan-CuNPs (copper NPs) enhance seed germination, activation of α-amylase, protease and activity of various antioxidant enzymes in Z. mays [2, 80, 81], chitosan-ZnNPs (zinc NPs) increase accumulation of zinc content and defense enzymes in Triticum durum [82, 83], chitosan-γ-polyglutamic acid-gibberellic acid NPs promotes seed germination, root development, leaf area, hormonal efficiency, extracellular enzymes and nutrient efficiency [83, 84], Chitosan-polyacrylamide acid-NP NPs promotes protein content and nutrient uptake [74, 85], ZnO-NPs (zinc oxide NPs) increase activity of catalase (60.7%), superoxide dismutase (22.8%) and nutrient acquisition [86, 87], CeO$_2$-NPs (cerium oxide NPs) enhance seed germination and vigour, enzymatic activity and nutrient uptake in Spinacia oleracea and Z. mays [88–91], AuNPs increase chlorophyll content and antioxidant enzyme activities in Brassica juncea [92] and TiO$_2$ NPs (titanium oxide NPs) enhance chlorophyll content, nutrient uptake, activity of Rubisco and antioxidant enzymes in S. oleracea and Cicer arietinum [89, 93] (Table 1).

Nanoinsecticides
As the trends and demand of encapsulated NPs exponentially increased the regulatory pressure for their management also simultaneously. Encapsulated insecticides share more than 42% of total pesticide revenue up to 2017 [60, 94, 95]. Recently, in 2019 pesticide manual online classified encapsulated insecticides contain hazardous toxic AIs like pendimethalin, acetochlor, dichlobenil, tefluthrin, etofenprox, chlorpyrifos, carbosulfan, and furathioecarb at the commercial level [19]. The toxicity level of AIs not only depends upon encapsulation material but it helps in adjusting the dynamics of the target species exposure to AIs in vivo conditions [21, 25, 96]. The use of styrene and methylnecrylate as encapsulation wall material increased the nematicidal activity to suppress the growth of the wheat rust-causing pathogen, *Puccinia reconditea*. Similarly, the effect of urea—formaldehyde and polyuria resin wall on stomatal toxicity, contact toxicity, phoxim loaded microcapsule efficacy, and photolysis properties was reported by Zhang et al. [97]. In another study, improved pest efficiency and poor cytotoxicity of sodium alginate imidachloroprid encapsulation were observed that favored direct application of imidachloroprid [68].

Another study shows a decrease in picloram toxicity to soil microbiota with silica gel encapsulation in comparison to free-form picloform. The silica NPs bioavailability to the non-selected organism can be enhanced by tuning the wall properties of the silica shell [98]. In a study, Jacques et al. [99] reported the atrazine toxicity in encapsulated polymeric and lipid nanocompositions against nematodes, Caenorhabditis elegans, but comparably no toxicity was observed in tripolyphosphate/chitosan-based encapsulation that itself can be attributed to low toxicity. Moreover, the oil encapsulated PCL neem-derived nanoencapsulation did not exhibit any adverse effect of stomatal conductance, the photosynthetic ability of maize after exposure up to 300 days. These findings suggest the careful selection of wall material/encapsulation and physicochemical properties of AIs and their composition and application sites [19, 100].

The Si-NPs (silicon NPs) have been efficiently reported to protect infestation from stored beetle Callosobruchus maculatus in pulses like Vigna unguiculata, V. mungo, V. radiate, Macrotyloma uniflorum, C. arietinum, and Cajanus cajan [101]. Despite their excellent performance, nanopesticides show poor commercialization and stability. The pH, temperature, humidity, UV radiation influence AIs availability and influence physiochemical characteristics. Besides these quantity, quality, strict legislation, expensesness and degradation period of AIs are emerging issues while using nanopesticides [19, 54, 79].

Nanofungicides
Beyond the nanocarriers application, nanomaterial as AIs for crop protection is a major aspect of research. The broad spectrum of antifungal properties of nanofungicides can improve their efficiency as a pesticide. For instance, copper, silver, and zinc NPs resolve the disadvantages of chemical AIs for pathogenic resistance with sharp antimicrobial activity and non-toxicity [19]. Moreover, chitosan-based NPs (Ch-NPs) showed effective antifungal activity and restrict growth reported by many
Nanoformulation	Mode of applications	Targeted crop	Properties (size/shape/Molecular weight/pH)	Effect on Plant physiological processes	Key references		
SiO₂ NPs	Seed treatment	*L. esculentum* Mill	12 nm	Enhance seed germination	–	[71, 72]	
Nano-chitosan	Seed treatment	*C. arietinum* L	pH 4.8	Promote total biomass, germination, and vigor index up to (57%)	–	[83, 170]	
Chitosan-polymeth-acrylic acid-NPK NP	Foliar spray	*P. vulgaris* L	20 nm	Enhance plant growth and total biomass	Promote nutrient uptake and accumulation	[73, 74]	
Au NPs	Seed imbibition	*Z. mays* L	10–30 nm, spherical	Promote germination and seedling growth	Promote activity of Superoxide dismutase, peroxidase, and catalase	Increased nutrient uptake of maize excluding iron	[75, 76]
SiO₂ NPs	Seed imbibition	*H. officinalis* L	10–20 nm, spherical	Improve plant growth and seed germination	Enhance total soluble proteins	–	[77, 78]
SiO₂ NPs	Seed imbibition	*Z. mays* L	10–20 nm, spherical	Promotes seed germination	Enchanced the activities of antioxidant enzymes	Increase uptake of nitrogen, phosphorus, and potassium	[77, 79]
Chitosan-Cu NPs	Seed treatment	*Z. mays* L	Low molecular weight, 80%	Promote seedling growth	Enhance activity of α-amylase and protease	–	[2, 80]
Chitosan-Cu NPs	Foliar spray	*Z. mays* L	50–190 kDa, 80%	Promote seedling growth, overall plant height, and biomass	Enhance activities of defense enzymes	–	[2, 81]
Chitosan-Zn NPs	Foliar spray	*T. durum* L	60 kDa, 85%	Stomatal localization of nanoparticles	Promote defense enzyme activities	Enhance zinc content accumulation by 42%	[82, 83]
Nano-chitosan	Seed treatment	*Z. mays* L	pH 7.0–9.0	Enhance plant height, leaf area, and seed germination	Promote activities of glucose-6-phosphate dehydrogenase, succinate dehydrogenase, and superoxide dismutase	Enhance accumulation of potassium inside the plant	[102, 171]
Chitosan-γ-polyglutamic acid-gibberellic Acid-NPs	Seed treatment	*P. vulgaris* L	290 kDa, 75%–85%, pH 4.5	Promote seed germination, root development, and total leaf area	Enhance the hormonal efficiency, enhance extracellular enzymes, such as cutinase, lipase, and esterase	Increase efficiency of nutrients	[83, 84]
Chitosan-gibberellic acid NPs	Seed treatment	*P. vulgaris* L	27 kDa, 75%–85%, pH 4.5	Promote leaf area, carotenoid and chlorophyll content	Enhance the hormonal efficiency by 90%	Not significant effect on nutrient uptake	[172, 173]
Nano-chitosan	Seed treatment	*P. vulgaris* L	100–399 kDa	Increase seed germination and radical length	Enhance the activity of peroxidase and catalase	Increase Zinc uptake in plant	[174, 175]
Nanoformulation	Mode of applications	Targeted crop	Properties (size/shape/Molecular weight/ pH)	Effect on Plant physiological processes	Key references		
------------------------------	----------------------	--------------------------------	---	--	----------------		
Nano-chitosan	Seed treatment	*Capsicum annuum* L	110 kDa, 85–90%, pH 4.0	Enhance the root biomass (77%) and fresh leaf biomass (28%) Increase the activity of catalase and peroxidase 33% and 23% respectively Not much significant effect on nutrient uptake	[176, 177]		
Chitosan-polymeth-acrylic acid-NPK NP	Seed treatment	*P. sativum var. Master B*	20 nm	Enhance mitotic cell division about 1.5 fold Enhance total soluble proteins like legumin, convicilin and β, violin 1, 2 and 3 Enhances the efficiency of plants for the uptake of nutrients	[74, 85]		
ZnO NPs	Seed soaked	*Avena sativa* L	20–50 nm, spherical shape	Promote percent germination – Modulate uptake of nitrogen and phosphorus in plants Enhance nutrient acquisition in wheat	[178, 179]		
ZnO NPs	Seed imbibition	*T. aestivum* L	30–40 nm, sphere-crystal	Improve shoot length and total plant biomass Enhance the activity of superoxide dismutase (22.8%) and catalase (60.7%) Enhance nutrient acquisition in wheat	[86, 87]		
Chitosan-thiamine NP	Seed treatment	*C. arietinum* L	27 kDa, 85%	Promote seed germination and plant growth Enhance activities of peroxidase, polyphenol oxidase, chitinase, and protease enzyme Enhance nutrient uptake	[83, 180]		
CeO₂ NPs	50 Mg-Ce per L hydroponic	*Z. mays* L	2–4 nm, crystal	Promote photosynthesis and gas exchange Accumulation of hydrogen peroxidase enzyme Catalase activity significantly increased Increase nutrient uptake of maize Enhance nutrient uptake	[91, 181]		
CeO₂ NPs	Foliar spray	*S. oleracea* L	4–7 nm	Enhance percent germination (4%) and vigor index Enhance antioxidative enzymes, proline and hydrogen peroxide –	[89, 182]		
Nano-chitosan	Foliar spray	*Coffea canephora* Pierre var Robusta	600 kDa, 85%, pH 6.0	Increase (30–50%) chlorophyll content and photosynthetic rate (30%) Enhance the enzymatic activities Enhance nutrient uptake (Nitrogen 10–27%, Phosphorus 17–30% and Potassium 30–45%)	[83]		
Chitosan-polymeth-acrylic acid-NPK NP	Foliar spray	*T. aestivum* L	20 nm	Increase crop yield (50%) and harvest index (24%) Increase polysaccharides and total saccharides (11%), nitrate reductase enzyme Accumulation of nitrogen, phosphorus, and potassium in plant	[83]		
AuNPs	Spray on leaves	*B. juncea* L. Ciem	10–20 nm, spherical	Enhance chlorophyll content and plant growth Enhance antioxidative enzymes, proline and hydrogen peroxide –	[92]		
Table 1 (continued)

Nanoformulation	Mode of applications	Targeted crop	Properties (size/shape/Molecular weight/pH)	Effect on Plant physiological processes	Key references		
Carbon (CNTs)	Seeds in culture media	*L. esculentum Mill*	Nanotubes	Enhance seed germination and vigor index	Increase activities of peroxidase, catalase, and superoxide dismutase	[182]	
TiO₂ NPs	Seeds soaked	*S. oleracea L*	30–60 nm, crystal shape	Enhance seedling growth, biomass, and chlorophyll content	Promote activities of antioxidant enzymes (0.25%)	Enhance nutrient uptake	[88]
TiO₂ NPs	Spray on leaves	*Carinatum L*	5–20 nm	Reduce membrane damage during cold stress	Increase activity of Rubisco enzyme	Increase the mineral uptake in plant	[183]
research workers in the last decade. For example, Ch-NPs against Alternaria alternata, Macrophomina phaseolina, Rhizoctonia solani [102], Pyricularia grisea, Alternaria solani, Fusarium oxysporum [102, 103], Pyricularia grisea, Copper–chitosan NPs against Fusarium solani [104], Cu-chitosan NPs against R. solani and Sclerotium rolfsii [105], chitosan-saponin NPs [102], oleoyl-chitosan NPs against Verticillium dahliae [106], salicylic acid-loaded chitosan NPs against Fusarium verticillioides [107], Ag-chitosan NPs against R. solani, Aspergillus flavus and A. alterneta [108], silica-chitosan NPs against Phomopsis asparagi [109] chitosan-pepper tree (Schinus molle) essential oil (CS-EO) NPs against Aspergillus parasiticus [110], chitosan boehmite alumina nanocomposites films and thyme oil against Monilinia laxa [111] fungicide zineb (Zb) and chitosan-Ag NPs against Neoscytalidium dimidiatum [112], chitosan-Thyme-oregano, thyme-tea tree and thyme-pepermint EO mixtures against Aspergillus niger, A. flavus, A. parasiticus, and Penicillium chrysogenum, [113], chitosan-thymol NPs against Botrytis cinerea [39], chitosan-Cymbopogon martinii essential oil against Fusarium graminearum [114].

In comparison to conventional agrochemicals, the nanoparticle was confirmed to be highly effective in crop protection even at minute concentration viz: 0.43 and 0.75 mg/plate concentration of Ag-doped hollow titanium-oxide (TiO₂) nanoformulation against Potato pathogens such as Venturia inaequalis and F. solani [115] (Table 2). Moreover, several successful examples of NPs were studied extensively for abiotic stress tolerance in recent years [116–118]. To cope with drought tolerance, several reports published in past decades on the application of NPs such as TiO₂ application in Linum usitatissimum via elevating pigmentation and reducing the activity of Malondialdehyde (MDA) and Hydrogen peroxide (H₂O₂) [119], ZnO promotes effective seed germination in Glycine max [120], CuNPs improve pigmentation, biomass and grain yield in Z. mays [121]. In case of salinity stress, seed soaking, nutrient solutions, and seed priming methods are used for evaluation in G. max, S. lycopersicum, and Gossypium hirsutum respectively [122–124].

The application improves stress tolerance by enhancing chlorophyll content, biomass number, soluble sugar content, seed germination [125–127]. According to Shoemaker [128] application of AgNPs (silver NPs) in Triticum aestivum increases seedling growth and leaf area whereas foliar application of SeNPs (selenium NPs) improves antioxidant enzyme activity and thylakoid membrane stability in Sorghum bicolor under heat stress [129] (Table 3).

Nanoherbicide

These NPs inhibit the physiological processes and growth phases in several weed species. For example, Ch-NPs retard germination and growth phases in Bidens pilosa [130, 131] NPs atrazine disrupts PSII activity in Amaranthius viridus [132], Fe₃O₄ NPs (Iron oxide NPs) + purified diatomite + glyphosate decrease pH level in Cynodon dactylon [133], Zero valent Fe NPs (Iron NPs) retard germination in Lolium perenne [32]. The efficacy of metribuzan, (a commercial herbicide) was enhanced via using NPs to maintain the growth of the weed population including Melilotus album, T. aestivum, Agrostis stolonifera, and Setaria macrocheata [19].

The atrazine-loaded nanocarriers are used to penetrate the stomatal region, hydathodes and ensure their direct entry into vascular tissues. It ensures the targeting, cellular uptakes, and overcomes intracellular trafficking due to certain properties of NPs: (1) Interaction affinity. (2) Mechanical effect of form and size. (3) catalytic effect. (4) Surface charges/hydrophobicity. Fraceto et al. [19] describing decreased toxicity level of paraquat in non-targeted plants preferring Triphosphate/chitosan nanocarriers application over conventional spray system in Brassica sp. Similarly, in B. pilosa and C. dactylon mortality rate of seedlings was enhanced using encapsulated glyphosate magnetic nanocarriers [19, 131]. The nanocapsulation uses low doses of herbicide and could effectively reduce the long-term residual effect of herbicides in target species as well as in agricultural land. Conclusively, nanoherbicide can enhance the delivery of AIs in plant tissues and comparatively declined the chance of environmental toxicity [60, 94, 95].

Impact on plants-soil microbiome

NPs face numerous experience transformation, dissolution aggregation in soil microbiota, adsorption with key regulators that mediate the fate of degradation for organic content, pH, divalent cations, and clay (most important for retention of NPs). According to Asadishad et al. [134], the toxicity of AgNPs depends upon microbial substrate-dependent respiration toward ammonia-oxidizing bacteria decreased with elevation pH content and clay content. Low pH causes the dissolution of AgNPs whereas high soil pH value enhances the negative charge site numbers and leads to increase Ag sorption [19]. In a study, similar results were reported about CuONPs (Copper oxide NPs) on low clay content and organic matter with coarse soil texture. Such acidic soil favors the dissolution of Ag and CuNPs with free ionic liberation, which can elevate the short-duration impact of NPs [9]. Zhai et al. [135] also concluded that nanoformulations of ionic pesticides can show the variable impact, more commonly associated with the fractional ion release. Other authors
Table 2 Successful application of nanocomposites for biotic stress tolerance

Pathogen type	Nanoparticles used	Plant disease	Mechanism of action	Key references
Fungus				
Bipolaris sorokiniana	AgNPs biosynthesized with Serratia sp.	Spot blotch pathogen of wheat	Enhance lignification of vascular bundles	[92]
Gloeophyllum abietinum	Green-synthesize AgNPs extracted with turnip leaf	Wood-rotting	Inhibit the conidia development	[184]
Phytophthora capsici	Ag core-DHAPAC shell nanocluster	Blight diseases in Solanaceae	Reduce mycelial growth and sporangial production	[185]
Escherichia coli, Bacillus Subtilis and F. oxysporum	Cu(OH)₂NPs	Corn leaf blight	Decrease number of conidia	[125]
F. oxysporum	Cu₂(PO₄)₃·3H₂O nanosheets	Root fungal disease in watermelon	Inhibit the fungus growth	[125]
F. graminearum	Multiwalled carbon nanotubes, graphene oxide, reduced graphene oxide, and fullerene	Fusarium head blight in wheat	Inhibit spore germination of Fusarium graminearum	[96]
F. oxysporum	CeO₂NPs	Panama disease	Enhance antioxidant enzyme activity	[186]
Aspergillus spp.	SINPs	Black mold	Inhibit fungus proliferation	[187]
R. solani	Calcium carbonate	Brown rot of stems	Reduce rot growth and recover sucrose level	[188]
Phytophthora	Green-synthesize AgNPs extracted with Artemisia absinthium	Seed rots	Effect zoospore development	[189]
Bacteria				
X. perforans	Ag nanoparticles along with graphene oxide	Bacterial spot of tomato	Significantly decrease the activity of X perforans	[190]
B. sorokiniana	AgNPs biosynthesized with Serratia sp.	Spot blotch pathogen of wheat	Inhibit conidial germination	[191]
Clavibacter michiganensis	CuNPs and K₂SiO₃NPs	Bacterial ring rot in potato	Decrease bacterial cell viability	[192]
X. perforans	Photochemically active TiO₂NPs	Spot disease in tomato	Due to high photocatalytic activity, reduction in bacterial spot	[193]
Ralstonia solanecarum	MgONPs	Vascular wilt disease	Inhibit bacterial activity	[185]
Xanthomonas campestris pv. campestris	Silver (Ag) NPs	Bacterial blight	Enhance antioxidant enzyme activity	[194]
Colletotrichum gloeosporioides	Chitosan NP	Disease in Chile	Inhibit growth of mycelia	[195]
A. alternata	Chitosan NP	Leaf spot	Inhibit spore germination	[83]
Xanthomonas alfalfae	Synthesized Mg(OH)₂NPs	Bacterial leaf spot	Significantly decrease the activity of X alfalfae	[11]

Target species	Nanoparticles used	Mechanism of action	References
Insects			
Aedes aegypti and Anopheles stephensi	Microbial synthesized Ag, Au, and ZnO-NPs	Epithelial cell, midgut, cortex damage, and thorax shape change	[196]
Aedes albopictus and Culex pipiens pallens	Ag synthesized using Cassia fistula extract	Total protein level, acetylcholinesterase, and α- and decreased activity of β-carboxylesterase	[197]
Chironomus riparius	AgNPs	Modulates GST genes expression, upregulated mRNA expression in delta3, Sigma4 and Epsilon1 GST class	[98]
C. riparius	AgNPs	Downregulated activity of ribosomal gene protein, activation of gonadotrophin through upregulation of Balbiani ring protein gene (CrBR2.2) and gonadotrophin-releasing hormone gene (CrGnRH1)	[98]
C. riparius	AgNPs	Enhance expression of epsilon-1, sigma-4, and delta-3 and transcript levels of catalase, thiolreductase 1, Mn superoxide dismutase	[98]
noted the difference and similarities of ionic and nanoforms of AgNPs with variation in antibacterial activity or the effect on a soil-borne microbial community and their response in in-vitro conditions [19, 136, 137].

In long-term studies, Guilger et al. [66], ensuring routes predictably depend on biogenic NPs, that show the least effect on human cells and denitrification process but are likely to show more impact on plant fungus relationship. At the microscale level, denitrification is a prime microbial activity that gets affected by AgNPs by modulating hydric conditions, pH and creating a devoid zone for fundamental accessories (carbon, nitrate, and oxygen). However, by high soil redox potential value and sandy texture soil favored denitrification, whereas textured clay soils provided offers low redox potential and lies in range for biological transformation [19]. Such impact is correlated by the affinity of AgNPs to denitrification and physicochemical properties ex: surface charge, coating, size, sedimentation rate, dispersibility, and solubility [138]. The biogenic AgNPs are derived from the green process and have no effect on N-cycle reported by Kumar et al. [67]. While the effect of nanocapsules, nanogels, nanometal, and nonmetal particles on soil microbiota as non-selected microbes has been documented. Li et al. [139] evidenced the negative impact of nanopesticide CM-β-CD-MNPs-Diuron complex (carboxymethyl-hydroxypropyl-β-cyclodextrin magnetic NPs) on the activity of the urease enzyme. The Diuron NPs complex causes declined in the population status of soil bacteria except for actinobacteria with an increase in reactive oxygen species. All these indicate toxicity of CM-β-CD-MNPs-Diuron exert stress on soil microbes and did not reduce even by using Diuron nanoencapsulation [12, 19]. The bionanopesticides treatment was confirmed to improve soil microbiome including weight gain and survival percentages in beneficial earthworm *Eudrilus eugeniae*. It also shows excellent larvicidal, antifeedant, and pupicidal activities against *Helicoverpa armigera* and *Spodoptera* sp. at 100 ppm nanoformulation dose [19, 50, 55].

Drawbacks using nanoagrochemicals on plants

The nanopesticides are also showing some adverse effects on crop plants directly or indirectly. The most favorable and used AgNPs and their complex nanoparticle have been attributed to their diverse range in each class of pesticides due to low toxicity but still many reported published that explained the drawback of these smart nanoagrochemicals [61, 140, 141] (Table 4). For example, In *Vicia faba*, the AgNPs internalization in leaves can abrupt the stomatal conductance, CO₂ assimilation rate and photosystem II [142]. Furthermore, the binding of AgNPs attaches with Chlorophyll forming a hybrid, that excites electrons 10 times due to fast electron–hole separation and plasmon resonance effect. In another study, AgNPs and AgNPs-graphene oxide GO (Ag@dsDNA GO) effect also observed in *L. esculentum* exhibit antibacterial activity toward *Xanthomonas perforans* [143]. Various reports were submitted in recent years such as ZnO NPs reduced root growth in *Allium cepa* [89], Ch-NPs + paraquat biomass reduction, lipid peroxidation, genotoxicity and leaf necrosis in *Brassica sp.* [144], SiO₂NPs affect biomass, germination, protein content, photosynthetic pigment in *Taraxacum officinale* and *Amaranthus retroflexus* [76], AgNPs cause lipid peroxidation, leaf damages and alters catalase activity in *G. max* [145], NPP ATZ + AMZ *Raphanus raphanistrum* suppresses plant growth [146].

Besides these, NPs show an adverse impact on plant physiology, soil microbiota, and declined enzymatic population. For instance; Al₂O₃ (Aluminium oxide) reduces bacterial growth and reduces seedling growth [147, 148], C60 fullerene restricts bacterial growth up to 20–30% [149], ZnNPs decrease enzymatic activities in soil and

Target species	Nanoparticles used	Mechanism of action	References		
Drosophila melanogaster	AgNPs	Reduce Cu-dependent enzyme activity, couple with membrane-bound Cu transport protein results in Cu sequestration	[199]		
D. melanogaster	AgNPs	Cause pigmentation defects and flies locomotive ability	[200]		
D. melanogaster	AgNPs	DNA-damage, autophagy, ROS-mediated apoptosis	[201]		
D. melanogaster	Ag and TiO₂ NPs	Effect developmental processes of flies	[202]		
Sitophilus oryzae	Nanostructured Al₂O₃	Absorbing wax layer that results in insect dehydration	[93]		
Aedes albopictus	Ag NPs prepared using 3,5-dinitrosalicylic acid and salicylic acid	Total protein, esterase, phosphatase, and acetylcholine esterase enzyme activity decreased	[203]		
Stress type	Nanoparticles	Plant species	Mode of application	Results	Key references
------------	---------------	---------------	---------------------	---------	---------------
Drought	TiO$_2$	*L. usitatissimum* L.	Foliar spray	Enhance chlorophyll and carotenoid content as well as lowers the activity of MDA and H$_2$O$_2$	[204]
	TiO$_2$	*T. aestivum* L. cv Pishtaz	Foliar spray	Enhance starch content, growth, and yield	[76]
	TiO$_2$	*T. aestivum* L.	Amended soil	Increased seedling growth, antioxidant enzymes, total chlorophyll, and carotenoid content	[205]
	ZnO	*G. max* L.	Seed soaking	Enhance germination rate and percent germination	[119]
	Fe$_2$O$_3$	*Mentha piperita* L.	Hoagland solution	Increase activity of antioxidant enzymes	[206]
	Cu	*Z. mays* L.	Plant priming	Improve plant biomass, chlorophyll, anthocyanins, and grain yield	[207]
	CNTs, graphene	*G. hirsutum* L.	Seed priming	Increase seedling growth and biomass	[123]
	Chitosan NPs	*Hordeum vulgare* L.	Foliar spray	Increase proline content, CAT and SOD	[208]
Salinity	Ag	*Trigonella foenum-graecum*	Seed soaking	Improve percent germination, fresh and dry weight of seedlings	[209]
	ZnO	*Abelmoschus esculentus* L.	Foliar spray	Increase activity of superoxide dismutase, catalase, and photosynthetic pigments	[210]
	ZnO and Si	*Mangifera indica* L.	Foliar spray	Enhance nutrient uptake, carbon assimilation in plants	[211]
	SiO$_2$	*Solanum lycopersicum* L.	Seed soaking	Upregulation of stress tolerance genes	[212]
	SiO$_2$	*Pragaria ananassa* L.	Soil application	Enhance growth, proline, chlorophyll, epicuticular wax layer and leaf relative water content	[213]
	SiO$_2$	*Musa acuminate* L.	Seed priming	Enhance chlorophyll content, shoot growth	[214]
	Ag	*T. aestivum* L.	Seed priming	Enhance total soluble sugars, proline content, and peroxidase activity	[185]
	Fe$_2$O$_3$	*Helianthus annuus* L.	Foliar spray	Enhance dry weight, leaf area, chlorophyll content	[215]
	Fe$_2$O$_3$	*Dracocephalum moldavica* L.	Foliar spray	Increase the enzymatic activity of guaiacol peroxidase, catalase, ascorbate peroxidase, and glutathione reductase	[215]
	Mn	*C. annuum* L.	Nanopriming	Improve plant growth	[216]
	CeO	*G. hirsutum* L.	Seed priming	Improve root growth and decrease ROS level	[121]
	CNTs, graphene	*Catharanthus roseus* L.	Murashige and Skoog medium	Enhance the number of leaves and flowers	[124]
	Chitosan-PVA and CuNPs	*S. lycopersicum* L.	Nutrient solution	Enhance chlorophyll, carotenoids, and lycopene content	[122]
Heat	Ag	*T. aestivum* L.	Soil application	Promote the root number, seedling length, and leaf area	[127]
	Se	*S. bicolor* L. *Moench*	Foliar spray	Improve thylakoid membrane stability and activity of antioxidant enzymes	[217]
Table 3 (continued)

Stress type	Nanoparticles	Plant species	Mode of application	Results	Key references
Heavy metal	Fe	T. aestivum L.	Soil application	Increase rate of photosynthesis, chlorophyll content, and plant growth	[87]
UV-B	Si	T. aestivum L.	Nutrient solution	Improve antioxidant defense system	[218]
Cold	TiO$_2$	C. arietinum L.	Amended soil	Decrease MDA levels and electrolyte leakage index	[219]
Flooding	Al$_2$O$_3$	G. max L.	Seed soaking	Increased hypocotyl length, mitochondrial membrane proteins	[220]

Table 4 Adverse effect of nanoparticles on targeted crop and soil health

NPs	Size (nm)	Targeted crop	Adverse effect on plant	Degradation time in soil (days)	Effect on soil	Key references
Al$_2$O$_3$	50	Nicotiana tabacum L.	Reduce the germination percentage, biomass per seedling, and average root length	3	Reduce the activity of bacteria *Bacillus cereus* and *Pseudomonas stutzeri*	[147, 148]
C$_{60}$ fullerence	50	G. max (L.) Merr	Reduced biomass	60	Reduction of 20–30% in fast-growing protozoa and bacteria	[58, 149]
CuO, Ni, ZnO and Cr$_2$O$_3$	100	Oryza sativa L.	Effect the activities of antioxidant enzymes in plant	24	Activity of enzyme dehydrogenase and urease reduced to 75% and 44% respectively	[221, 222]
ZnO and TiO$_2$	10–20	T. aestivum L.	Reduced the root growth by 75%	60	Adversely affect the growth of earthworms, traces of ZnO and TiO$_2$ were found inside the body	[61, 223]
Zn$^{2+}$, Zn, and ZnO	50	Z. mays L.	50% reduction in photosynthesis, leaf stomatal conductance, transpiration rate, and intercellular CO$_2$ concentration	56	Reduce enzymes like β-glucosidase, phosphatase, and dehydrogenase present in the soil	[51, 150]
nZVI (zero valent iron)	20–100	Salix alba L.	Effect seedling growth	7	At 750 mg/kg, mortality rate of *Lumbricus rubellus* and *Eisenia fetida* was 100%	[53, 224]
Au	25	O. sativa L.	Damage to the root cell wall due to accumulation of Au across xylem	30	Effect the soil microbes and edaphic factors of soil	[52, 225]
TiO$_2$, Ag, and CeO$_2$	7–45	A. cepa L.	Increase in DNA damage as well as lipid peroxidation in roots	14	Reduced the survival, growth and fertility of nematodes	[226]
SnO$_2$, CeO$_2$ and Fe$_3$O$_4$	61 (SnO$_2$), 50–100 (CeO$_2$), 20–30 (Fe$_3$O$_4$)	Z. mays L.	Fe$_3$O$_4$ results in accumulation of Al in plant roots and negatively affects plant growth	63	Inhibits microbial growth	[141]
Ag	10–20	P. vulgaris L.	Disrupt chlorophyll synthesis, nutrient uptake, and hormone regulation	30	50% reduction in the activity of nitrifying bacteria	[158]
reducers transpiration rate and photosynthetic rate in Z. mays [150]. Conclusively, NPs are very reactive and variable in nature, so always a concerning risk for workers who may come across during their application.

Limitation and challenges at commercial scale implementation

As with documentation, the lack of finding on behavior and fate in the environment of nanoagrochemicals and their impact on faunal diversity may put challenges on their incorporation in agriculture. Instead of the benefits of using nanoencapsulation systems, their implementation requires caution, since it is mandatory to calculate their behavior in the environment and non-targeted communities to develop safer product development policies [54]. Although, it needs to develop smart nanoagrochemicals that are focused on biological nanoformulation and that offer a simple handling process, low cost, more AIs persistence with a sharp release system, and high degradation rate without leaving any residue [148]. Besides these, poor demonstrations at field conditions, cost-effectiveness, consumer acceptance, and feasibility of technology are major constraints on commercial implementation [152].

The limited management guidelines, inconsistence legislative framework, and regulatory models, and lack of public awareness campaign creates inconsistent marketing of such incipient nanoagricultural products. The national and international arrangement that fits at ground level is the only way that supports Nanotechnological development [49]. However, the community seeking approval for nanoagrochemicals must demonstrate the precautionary uses of these new products by proposing unjustifiable safety risks to the user and environment. Thus regulatory guidelines and frameworks are becoming primarily important to resolve the emerging issues of nanoagrochemicals [153]. Moreover, the need for collaboration, discussion, and information exchange forums among countries to ensure threat mitigating strategies should be considered as a milestone in nanoagrochemicals. So consolidates efforts of governmental organizations, scientists, and social communities are needed to preventing the adverse effect of nanoagrochemicals on humans and the environment [59].

In this scenario, the toxicity measuring instrumental setup is used in the characterization of toxicity type and their level to access the potential intrinsic hazards [59]. Currently, the main focus of experimental investigation on nanomaterial translocation in biotic/abiotic systems, monitoring and revealing interaction Among nanotoxicity and nanomaterial in the physical and chemical environment [48, 54, 151–153].

Transformation

Due to high reactivity, the interaction of nanocomponents with organic and inorganic components in the soil as well as for plants is undetermined and unregulated. The changing in physiochemical properties and transformation behavior after implementation creates chances of heavy metal toxicity. Biotransformation was demonstrated in Cucumis sativa, using CeO₂ bioavailability cause 20% to Ce(III) in the shoots and 15% of Ce(IV) being reduced to Ce(III) in the roots [154]. In another study, AgNPs were oxidized and forming the Ag-glutathione complex in the lettuce plant [154].

Accumulation of NPs

Because of variability in binding, the accumulation of NPs causes toxicity in plants, humans, and animals. In soybean, CeO₂ application shut down the Nitrogen fixation cycles and causes toxicity. However, ROS production, growth inhibition, cellular toxicity, and other phytotoxic effect were reported in Amaranthus tricolor. The application of C60 fullerene enhanced DDT accumulation in soybean, tomato, and zucchini plants [155].

Time to switch toward more sustainability

Most agrochemicals are not fully utilized by plants or seep off into the soil, air and water unintendedly causes toxic ill effects and accumulated through biomagnification. Moreover, global pesticide rise threatened biodiversity and led to the adverse effect on human intelligence quotient and fecundity in recent years. Still, it’s also enhancement the resistance in weeds and plant pathogen against agrochemical turn them to super pathogen/weed. New doses after the changing in strategies of pathogens or new strain resurgence enhance cost-effectiveness and put the question on existing regulatory recommendations. [14, 106, 156–158].

The chemicals persist in soil particles, agricultural residues, irrigation water and migrates into the different layers of soils turns into a serious threat to the ecosystem. Leaching of synthetic pesticides, abrupting soil-pest, soil-microbe activities, algal blooms formation, eutrophication, altering soil physiochemical properties [159], and salt toxicity via creating salt buildup in soil [160].

Low-cost oxides of Mg, Al, Fe, Ti, Ce, and Zn (Magnesium, Aluminium, Iron, Titanium, Cerium, Zinc) are ideal candidates and provides greater affinity, a large number of active sites, minimum intraparticle diffusion distance, and maximum specific surface area [160]. NP implementation help to successfully chase down the inorganic residues of various chemicals such as permethrin, 2–4 Dichlorophenoxy acetic acid (2–4-D), Dichlorodiphenyltrichloroethane (DCPT), Diuron (Adsorption),
Chlorpyrifos, Chloridazon, Methomyl (Photocatalysis) from the soil. Some nanocomposites are used for complete degradation of lethal agrochemicals for example silver-doped TiO₂ and gold doped TiO₂. Zerovalent Fe (nZVI), endosulfan, TiO₂, nZVI for atrazine, Ag for chlorpyrifos, Pd–Mg, Ni–Fe bimetallic system, nZVI for DDT, nZVI, nitrogen-doped TiO₂, Fe–Pd (iron–palladium), Fe–S (Iron–sulfur) for Lindane [161] (Table 5).

Smart agrochemical: a step ahead toward more sustainability

Al-Barly et al. reported the slow release of nanocomposite fertilizers to depend upon phosphate and nitrogen content availability in soil [162]. TiO₂ NPs derived from *Moringa oleifera* leaf extract are used to control the red palm weevil (*Rhynchophorus ferrugineus*) and exhibits antioxidant and larvicidal activities. In the case of *Zanthoxylum rhoifolium*, nano-encapsulated essential oil was reported to maintain the population of *Bemisia tabaci* [19, 163]. Nanopesticides derived from pyrethrum insecticides cause an impact on the population status of honey bees. Except for these studies, agrochemical degradation can also be accomplished using adsorption, membrane filtration, catalytic degradation, oxidation, and biological treatment. Since, adsorption using smart Nansorbents also relies on environmental factors including pH, temperature, and competitive adsorbing molecules [19].

At low pH, the protonated charged active site of NPs disturbs the binding ability of positively charge agrochemical whereas, high temperature creates hinders the electrochemical interactions between active sites and agrochemicals due to elevated vibrate energy of active site of adsorbent and kinetic energy of agrochemicals [79]. Moreover, chitosan-coated and cross-linked chitosan-Ag NPs used as composite microbeads that incorporated into reverse osmosis filters help in the effective removal of atrazine content from the water. According to Aseri et al. [164] integration of membrane filters and magnetic NPs-based beads enhances microbial elimination and resonance activation of water, respectively.

Secondly, targeting a not selected species with possible adverse effect is a key issue emerging that put a loophole of criticism for these smart nanoagrochemicals. For example; 1–10 mg L⁻¹ of Polyhydroxybutyrate-co-hydroxyvalerate (PBHA) encapsulation for atrazine in lactuca sativa for 24 h reduced genotoxicity in plants [165], PCL atrazine nanocapsules ill effect on *Daphnia similis* and *Pseudokirchneriella subcapitata*, after exposure up to 24 h [166]. Solid lipid NPs encapsulating simazine 0.025–0.25 mg mL⁻¹ exhibits *Caenorhabditis elegans* Induction of mortality and decrease in the body length after exposure of 48 h [167]. The uncontrolled non-targeted release of AIs in plant cells causes lysosomal damage with increasing pH. After the cellular compartment, nanoagrochemicals may bind or channelization into cell organelles and causes damage to protein, pigments, and DNA [98].

The binding ability of nanocompositions with selected and non-selected binding helps to recognize its distribution, bioavailability, toxicity level, and exclusion from the plant cell. Several proteins acquire a wide range of functional and structural properties including ligand bonding, metabolite production, catalysis, cellular and molecular reorganization [19]. The protein- nanopesticide complex can cause minor structural configuration and denaturation of proteins. Similarly, conformational changes and movement of the genomic DNA mediated through NPs also induced cytogenetic abnormalities. These nanopesticide toxicity are solely dependent upon the balance between key factors like biodegradability, concentration, and size of incorporated AIs. In *Prochilodus lineatus* 20 μg L⁻¹ concentration using PCL nanocapsules containing atrazine up to 24–48 h declined toxicity, as they did not induce carbonic anhydrase activity, alterations in glycemia and antioxidant response [168], in *Enchytraeus crypticus* causes a decrease in hatching due to the delayed number of adults and juveniles [19, 158, 169].

No doubt, intervention of nanoagrochemicals, resolve many threats mitigation put forward by the implementation of agrochemical but still more validation is required to lowering the agroecological risks. The persistent use of novel monitoring applications always knocks down the door of improvement of sustainable crop production and protection without creating the threats of NPs as a new contaminant.

Conclusion and future perspectives

During the entire course of million years of evolution, the green plants had evolved without any interference from other eukaryotes. However, for the last fifty years, continuous human activities have introduced many contaminants in the environment that altered the ecological balance and raised the eye-brows of researchers towards combating the new pathovars and pathotypes. These thrusting biological stresses have severely damaged global crop production. Concerning, the environmental penalty of conventional agrochemicals at present, nanoformulations seem to be a potential applicant for plant protection. The use of controlled biodegradable polymers especially polyhydroxalkanoates shows significant and attractive properties of biocompatibility, biosorption rate, low-cost synthesis, thermoplastic nature, and ease in biodegradation rate that have popular advantages conventional chemical delivery systems. However, sustainable and efficient utilization with promising target delivery and low toxic effects are prerequisites of commercial
Table 5 Agrochemicals (insecticides, herbicides, and other fungicides) used to regulate the activity of crop pests under a sustainable agriculture approach

Chemical	Trade manufacture company	Nanocomposites used	Crop	Target	Key references
Insecticides					
Chlorpyrifos	Dow Chemical Company	PVC	G. hirustum L.	Aphis gossypii, Spodoptera frugiperda, and Lygus lineolaris	[227]
	Dow AgroSciences	Chitosan/PLA	Solanum melongena L.	Pseudococcidae	
Chlorfenapyr	Super Bio Tech Marketing Company	Silica	Brassica rapa	Helicoverpa armigera	[94]
Avermectin	Super Bio Tech Marketing Company	Polystyrene nanoparticles (PHSN)	G. hirustum L.	Tetranychus urticae	[229]
Azadirachtin	Ecobiocides & Botanicals Pvt Ltd	Chitosan	Ricinus communis L.	Spodoptera litura	[231]
Deltamethrin	Crop Chemicals India Limited	Chitosan-coated beeswax SLN (Solid–liquid nanoparticles)	G. hirustum L., S. lycopersicum L.	Helicoverpa zea, Leucinodes orbonalis	[185]
Imidacloprid	Chemet Wets & Flows Pvt. Ltd	Sodium alginate	Nicotiana tobacum L.	Cacodellidae	[232]
Geraniol	Otto Cheemie Pvt Ltd	Chitosan/Gum Arabic	G. hirustum L.	Bemisia tabaci	[233]
Nicotine	Alchem International Pvt. Ltd	Chitosan/TPP	S. lycopersicum L.	Musca domestica	[234]
Organic					
Garlic essential oil	Arishtha Organics Pvt	PEG	O. sativa L.	Tribolium castaneum	[235]
A. arborescens L. essential oil	Priority Biocidal, LLC	SLN	S. lycopersicum L.	Sitophilus zeamais	[236]
Nanopermethrin	Jerobin J (Hamad medical corporation)	PEG	–	Culex quinquefasciatus	[237]
Geranium essential oils	India aroma oils and company	PEG	T. aestivum L.	Rhizopertha dominica	[238]
Citrus peel essential oil	India aroma oils and company	PEG	S. lycopersicum L.	Tuta absoluta	[239]
Rosmarinus officinalis essential oil	Rosemary essential oil manufacturers & oem manufacturers India	PEG	O. sativa L.	Tribolium castaneum	[240]
Herbicides					
Paraquat	Syngenta	Montmorillonite	G. max L.	Plantago lanceolata L	[241]
	Syngenta	Chitosan/tripolyphosphate	Brassica rapa L	Soil sorption microalgae	[242]
Atrazine	Syngenta	Poly (ε-caprolactone)	S. bicolor L.	Stellaria media L, Trifolium repens L, Lamium amplexicaule L	[63]
		SLN	Brassica napus	Raphanus raphanistum L	
		Poly (lactic-co-glycolic acid)	Solanum tuberosum L.	Croton setigerus L, Oxalis corniculata L	
Imazapic, Imazapyr	Avansagro chemicals shanghai limited	Alginate/chitosan	A. cepa L.	B. pilosa L	[243]
Diuron	Adama Agan Ltd	Chitosan	Z. mays L.	Echinocloa crus-galli L, Beauv	[244]
2,4-D	FirmLimited Company	Nanosized rice husk		T repens L, Stellaria media L	[241]
implementation. Although, the studies on the soil–plant microbiome and nanoscale characterization highlight the impact of chemical agrochemical on the environment.

The use of nanocoated AIs biopesticides is expected to surpass the challenges of chemical residual management gap and premature degradation of AIs. Instead, these, applying new nanocomponents along with existing chemicals should follow regular checks on resistance strategies of targeted organisms, new resistance pathways, and revolutionized pest strains. Although, smart agrochemicals or nanoagrochemicals resolve so many issues and gives an instant solution.

To ensure these, it is essential to develop more international and national risk assessment, management, and mitigating strategies. Beyond these challenges, social acceptance with reduced environmental cost chiefly soil deterioration, microbiome disruption, depleted water resources need keen monitoring. Ecologically, the continuous uses of agrochemical put the question on survival challenges result in more resistance races creating a vicious loop in which pesticides concentration help to revolutionizing the organism more toward superiority.

For this, alternative strategies with strong monitoring are required, together recommendations of IPM practices help to eliminate shortcomings in individual practices. Despite the advancement in studies on nanoformulation and plant response more extensions in genomic, proteomics, and metabolic studies help to understand the interaction in the mechanism.

Table 5 (continued)

Chemical	Trade manufacture company	Nanocomposites used	Crop	Target	Key references
Tebuconazole	Super bio tech	PVP and PVP copolymer	*Pinus taeda* L.	Gliocladium trabeum	[244]
Chlorothalonil	Super bio tech	Bacterial ghosts	*T. aestivum* L., *H. vulgare* L. and *Cucumis sativus* L.	Erysiphe graminis and Sphaeroteca fuliginea	[244]
Kathon 930	Rallis india limited	Polymeric and SLN	*P. vulgaris* L.	A. niger	[11]
Validamycin	Rohm and haas company	PVC	*Pinus taeda* L.	Gliocladium trabeum	[244]
Pyraclostrobin	Shijiazhuangdai-lunchanical co. Ltd	Chitosan–PLA graft copolymer	*Betula alleghaniensis* Britt	Trametes versicolor	[245]
Ferbam	Loveland Products Canada Inc	Chitosan/MSN	*S. tuberosum* L.	R. solani	[246]
Carbendazim	Chemet Wets & Flows Pvt. Ltd.	Gold	*S. lycopersicum* L.	Colletotrichum gossypii	[247]
Prochloraz	Lanfeng biochemical co. Ltd	PHSN	*Z. mays* L.	Puccinia asparagi	[248]
			Camellia sinensis	Pythium aphanidermatum	[249]
			F. oxysporum	B. cinerea	[250]
			C. sativus L.	B. cinerea	[251]

Abbreviations

NPs: Nanoparticles; NMs: Nanomaterial-based products; AIs: Active ingredients; CRS: Controlled release system; CR: Controlled release; PLA: Poly lactic acid; PLGA: Poly(lactic-co-glycolic acid); mPEG: Methoxy polyethylene glycol; PCL: Poly(e-caprolactone); γ-PGA: Poly(γ-glutamic acid); γ-GTP: (γ-Glutamyl transpeptidase); UV: Ultraviolet; PEG: Polyethylene glycol; CAGR: Compound annual growth rate; IPM: Integrated pest management; Ag*+: Silver; SiO₂NPs: Silicon dioxide nanoparticles; Ch-poly(methacrylic) NPs: Chitosan poly(methacrylic) nitrogen phosphorus potassium; Au-NPs: Gold nanoparticles; ZnO NPs: Zinc oxide nanoparticles; CeO₂-NPs: Cerium dioxide nanoparticles; TiO₂-NPs: Titanium oxide nanoparticles; S. oleracea: Spinacia oleracea; S. tuberosum: Solanum tuberosum; S. lycopersicum: Solanum lycopersicum; C. arietinum: Vigna mungo; F. oxysporum: Fusarium oxysporum; S. lycopersicum: Solanum lycopersicum; X. perforans: Xanthomonas perforans; G. hirusutum: Gossypium hirusutum; L. usitatissimum: Linum usitatissimum; G. max: Glycine max; S. oleracea: Spinacia oleracea; A. niger: Aspergillus niger; H. vulgare: Hordeum vulgare; B. juncea: Brassica juncea; C. dactylon: C. dactylon; P. vulgaris: Phaseolus vulgaris; C. annuum: Capsicum annuum; S. fuliginea: Sphaeroteca fuliginea; G. riparius: Chironomus riparius; C. riparius: Phlebotomus argentipes; T. solani: Plasmopara halstedii; X. oryzae: Xanthomonas oryzae; S. oleracea: Spinacia oleracea; B. cinerea: Botrytis cinerea.

Acknowledgements

Not applicable.
Authors' contributions

The primary draft of the manuscript was prepared by AH and established by AC, AK, HK, and SM. SM reviewed the literature, AK and AC examined the manuscript and designed the table and figure section. AK, AC, and SM were involved in manuscript writing, and AH offered crucial advice and examined the entire manuscript on every step of writing. All authors read and approved the final version of the manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Declarations

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Botany, Punjab Agricultural University, Ludhiana 141004, India.
2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
3Wolaita Sodo University, Wolaita, Ethiopia.

Received: 27 August 2021 Accepted: 6 October 2021

Published online: 18 October 2021

References

1. Zulfiquar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S (2019) Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci 289:110270. https://doi.org/10.1016/j.plantsci.2019.110270
2. Yu J, Wang D, Geetha N, Khawar KM, Jogaiah S, Mujtaba M (2021) Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review. Carbohydr Polym 261:117904. https://doi.org/10.1016/j.carbpol.2021.117904
3. Mittal D, Kaur G, Singh P, Yadv K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol 2:579954. https://doi.org/10.3389/fnano.2020.579954
4. Husen H, Iqbal M (2019) Nanomaterials and plant potential. Springer. Cham. https://doi.org/10.1007/978-3-030-05569-1
5. Husen H, Jawaid M (2020) Nanomaterials for agriculture and forestry applications. Elsevier, Cambridge. https://doi.org/10.1016/B978-0-12-818840-3.00008-4
6. Husen H (2021) Harsh environment and plant resilience (Molecular and Functional Aspects). Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7
7. Husen H (2021) Plant performance under environmental stress (Hormones, Biostimulants and Sustainable Plant Growth Management). Springer. Cham. https://doi.org/10.1007/978-3-030-78521-5
8. Bachheti RK, Fikadu A, Bachheti A, Husen A (2020) Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci 27:2551–2562. https://doi.org/10.1016/j.sjbs.2020.05.012
9. Siddiqui M, Al-Whaihi M (2014) Role of nano-SiO2 in germination of tomato (lycopersicum esculentum seeds). Mill. Saudi J Biol Sci 21:13–17. https://doi.org/10.1016/j.sjbs.2013.04.003
10. Sonika D, Saurav K, Aakash G, Uttam L, Ranjita T, Shankar J, Ganesh L, Deval PB, Niranj K (2021) Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomaterials 2021:6687290. https://doi.org/10.1155/2021/6687290
11. Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370. https://doi.org/10.1007/s12011-020-02138-3
12. He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21. https://doi.org/10.1016/j.jfda.2018.12.002
13. Salem SS, Fouda MMG, Fouda A (2021) Antibacterial, cytotoxicity and larvicial activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci 32:351–361. https://doi.org/10.3390/jc7050372
14. Husen A, Siddiqi KS (2014) Role of nano-SiO2 in germination of tomato (lycopersicum esculentum seeds). Mill. Saudi J Biol Sci 21:13–17. https://doi.org/10.1016/j.sjbs.2013.04.003
15. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.croprol.2012.04.012
16. Nair P, Varghese SH, Nair BG, Makawaa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. https://doi.org/10.1016/j.plantsci.2010.04.012
17. Sharma A, Bachheti A, Sharma P, Bachheti RK, Husen A (2020) Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L: a comprehensive review. Curr Res Biotechnol 2:145–160. https://doi.org/10.1016/j.crbj.2020.11.001
18. Pandey A, Srivastava S, Aggarwal N (2020) Assessment of the pesticidal behaviour of diacyl hydrazine-based ready-to-use nanofertilizers. Chem Biol Technol Agric 7:1.10.1016/j.cbt.2019.s40538-020-0177-9
19. Fraceto LF, Pascoli M, de Albuquerque FP, Calzavara AK, Tinoco-Nunes S, Oliveira WHC, Gonçalves KC (2020) The potential of nanobiopesticide based on zero nanoparticles and neem oil for enhanced control of agricultural pests. J Pest Sci 93:789–806. https://doi.org/10.1186/s12951-018-0028-6
20. Kamle M, Mahato DK, Devi S, Soni R, Tripathi V, Mishra AK, Kumar P (2020) Nanotechnological interventions for plant health improvement and sustainable agriculture. BioTech 10:1–1. https://doi.org/10.1016/j.s13205-020-2152-3
21. Özkara A, Akyil D, Koruk M (2016) Pesticides, environmental pollution, and health: In Environmental health risk-hazardous factors to living species 2016, p 16. https://doi.org/10.5772/63094
22. Titir G, Geetha G, Rita K, Amitava M (2020) Nanocomposites for delivering agrochemicals: a comprehensive review. J Agric Food Chem 68:3691–3702. https://doi.org/10.1021/acs.jafc.9b06982
23. Aouada FA, de Moura MR, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of parathion pesticide. J Mater Sci 45:9477–9485. https://doi.org/10.1007/s10853-012-0193-1
24. Bortolin A, Aouada FA, de Moura MR, Ribeiro C, Longo E, Mattoso LHC (2012) Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J Appl Polym Sci 123:2291–2298. https://doi.org/10.1002/app.34742
25. Ghazali SA, Hussein MZ, Sario SH (2013) 3,4-Dichlorophenoxyacetate interlayered in anionic clay for controlled release formulation of a new environmentally friendly agrochemical. Nanoscale Res Lett 8:362. https://doi.org/10.1186/1556-276X-8-362
26. Chuxiang S, Wei S, Wei W, Zhaoy T, Tian L, Xiyang G, Hua Z, Yihua Y (2014) Encapsulation and controlled release of hydropholic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114. https://doi.org/10.1016/j.ijpharm.2013.12.050
27. Wanyka H (2014) Controlled release of agrochemicals intercalated into montmorillinite interlayer space. Sci World J 2014:1–15.656287. https://doi.org/10.1155/2014/656287
28. Cartmill AD, Cartmill DL, Alarcon A (2014) Controlled release fertilizer increased phytoemediated control of petroleum-contaminated sandy soil. Int J Phytoremy 16:285–301. https://doi.org/10.1007/s12951-014-0028-6
29. Carson LC, Ozores-Hampton M, Morgan KT, Sargent SA (2014) Effect of controlled-release and soluble fertilizer on tomato production and postharvest quality in seepage irrigation. Hort Sci 49:85–95. https://doi.org/10.21273/HORTSCI.49.1.85
30. Sopena F, Maqueda C, Morillo E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Cien Investig Agrar 35:27–42. https://doi.org/10.4067/S0718-16202009000100002
31. Chevillard A, Angellier-Coussy H, Guillard V, Gontard N, Gastañd E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 205:32–39. https://doi.org/10.1016/j.jhazmat.2011.11.083
32. El-Temseh YS, Joner EJ (2015) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137
33. Aouafa AD, de Moura MR (2015) Nanotechnology applied in agriculture: controlled release of agrochemicals. In: Ram M, et al (eds) Nanotechnologies in food and agriculture. Springer. https://doi.org/10.1007/978-3-319-14024-7
34. Fauzia S, Furqani F, Zein R, Munaf E (2015) Adsorption and reaction kinetics of tetratrazine by using Annona muricata L. seeds. J Chem Pharm Res 7:537–582
35. Stitoulak P, Kucharczyk P, Sedlirav K, Bazant P, Sedlarik V, Bazant P, Koutny M (2012) Low polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731–3951. https://doi.org/10.3390/molecules25163731
36. Fu JX, Wang HJ, Zhou YQ, Wang JY (2009) Antibacterial activity of chitosan nanoparticles encapsulated with ciprofloxacin-loaded zein microsphere films. Mater Sci Eng 29:1161–1166. https://doi.org/10.1016/j.msec.2008.09.031
37. Hou Y, Hu J, Park H, Lee M (2012) Chitosan based nanoparticles as a sustained protein release carrier for tissue engineering applications. J Biomed Mater Res Part A 100:939–947. https://doi.org/10.1002/jbm.a.34031
38. Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V (2018) Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610. https://doi.org/10.3389/fphar.2018.00610
39. El-Hamshary H, Fouda MMG, Moydeen M, El-Newehy MH, Al-Deyab SS, Shenawy MM (2017) Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. NANO 7:443. https://doi.org/10.1007/jbm.a.34031
40. Zheng M, Falkeborg M, Zheng Y, Yang T, Xu X (2013) Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surf Physicochem Eng Asp 430:76–84. https://doi.org/10.1016/j.ijpharm.2016.07.019
41. Pan Y, Tikekar RV, Nitin N (2016) Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. Int J Pharm 511:322–330. https://doi.org/10.1016/j.ijpharm.2016.07.019
42. Chawla JS, Amijy MM (2002) Biodegradable poly (ε- caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. J Pharm Pharmacol 54:127–138. https://doi.org/10.1211/03738-51730200485-0
43. Orellana-Tavera C, Baxter EF, Tian T, Bennett TD, Slater NHK, Cheetham AK, Fairen-Jimenez D (2015) Amorphous metal-organic frameworks for drug delivery. Chem Commun 51:13878–13881. https://doi.org/10.1039/c5cc05237h
44. Lin C, Chen X, Zhou H, Zhou X, Xu H, Chen H (2019) Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting pH sensitivity for sustained pesticide release. J Appl Polym Sci 136:47160. https://doi.org/10.1002/app.47160
45. Ramasamy T, Rutlala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO (2017) Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release 258:226–253. https://doi.org/10.1016/j.jconrel.2017.07.043
46. Henschion M, McCarthy M, Dillon EJ (2019) Big issues for a small technology: consumer trade-offs in acceptance of nanotechnology in food.

Innov Food Sci Emerg Technol 58:102210. https://doi.org/10.1016/j.ifset.2019.102210
47. Lai RWS, Yeung KYW, Yung MMN (2018) Regulation of engineered nanomaterials: current challenges, insights and future directions. Environ Sci Pollut Res Int 25:3060–3077. https://doi.org/10.1007/s11356-017-9499-0
48. Kumaraj C, Gandhi PR, Elango G, Karthi S, Chung IM, Rajakumar G (2018) Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nanof ormation (NGNF) on Helicoverpa armigera (Hub). and Spodoptera litura (Fab.). Int J Biol Macromol 107:59–69. https://doi.org/10.1016/j.ijbiomac.2017.08.145
49. Vishnu D, Tatiana M, Arvind R, Srilata NS, Saglara M, Ritu S, Andrey G, Viktoria ST, William OP, Karen AG, Hashim SM (2018) Effects of zinc oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotech Monitor Manag 9:76–84. https://doi.org/10.1016/j.ennmm.2017.12.006
50. Zoya J, Kayya D, Mansi M, Vinayak DF, Ayushi S (2019) Effect of accumulation of nanoparticles in soil health- a concern on future. Front Nanosci. https://doi.org/10.1515/fjnm-2017-0005
51. Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Musarrat J (2020) Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nanoformulation (NGNF) on Allium cepa L. seeds. J Chem Pharm Res 12:12539–12547. https://doi.org/10.1021/acs.jconr.el.2017.04.043
52. Kremer RJ (2020) Bioherbicides and nanotechnology: current status and future trends. In: Nano-biopesticides today and future perspectives, Academic Press, pp 353–366. https://doi.org/10.1016/B978-0-12-815829-6.00015-2
53. Grillo R, Fraceto LF, Amorim MJ, Scott-Fordmand JJ, Schoonjans R, Chaudhry Q (2020) Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater 404:124148. https://doi.org/10.1016/j.jhazmat.2020.124148
54. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and Ca(OH)₂ fullerene differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547. https://doi.org/10.1021/es4039489
55. Kah M, Tufanckji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540. https://doi.org/10.1038/s41565-019-0439-5
56. de Oliveira RL, de Mello PR, Felisberto G, Cechinó MV, Gratão PL (2019) Silicon mitigates mangane ses deficiency stress by regulating the physiology of antioxidant enzymes in sorghum plants. J Soil Sci Plant Nutr. 19:524–534. https://doi.org/10.11738/131.1367-x
57. Ahmed B, Ameen F, Rizvi A, Ali K, Sonbol H, Zaidi A, Musarrat J (2020) Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO₂, and Al₂O₃ toward beneficial soil microorganisms. J Hazard Mater 404:124148. https://doi.org/10.1016/j.jhazmat.2020.124148
58. Chung I, Reka HA, Venkidadasamy B, Thiruvengadam M (2019) Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut 230:48. https://doi.org/10.1007/s11270-019-4084-2
59. Foadji OM, Osinowo OA, Ogunsuyi OI (2020) Interaction of titanium dioxide and zinc oxide nanoparticles induced cytogenotoxicity in Allium cepa. Nucleus 63:159–166. https://doi.org/10.1016/j.nucleus.2020.03.008-1
60. Youssef MS, Elamawi RM (2018) Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in V. faba. Environ Sci Pollut Res Int 5:1–13. https://doi.org/10.1007/s11356-018-3250-1
99. Pasquoto-Stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, Gilger M, Troost J, Oliveira HC, Stolf-Moreira R, Fraceto LF, de Lima R (2017) Nanocapsules containing neem (Azadirachta indica) oil: development, characterization, and toxicity evaluation. Sci Rep 7:5929. https://doi.org/10.1038/s41598-017-06052-4.

100. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003.

101. Sebastian A, Nangia A, Prasad MNV (2019) Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Mull. Engl. Bark: relevance in amelioration of metal stress in rice. J Hazard Mater 371:261–272. https://doi.org/10.1016/j.jhazmat.2019.03.021.

102. Sathyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325. https://doi.org/10.1016/j.carbpol.2016.05.033.

103. Volchidova NR, Sattarov ME, Kareva ND, Rashidova SS (2014) Fungicide features of the nanosystems of silkworm (Bombyx mori) chitosan with copper ions. Microbiol 83:751–753.

104. Rubina MS, Vasil'kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Xing K, Liu Y, Shen X, Zhu X, Li X, Miao X, Qin S (2017) Effect of O-chitosan nanoparticles on the development and membrane permeability of Verrucillium dhaharii. Carbohydr Polym 165:334–343. https://doi.org/10.1016/j.carbpol.2017.02.063.

105. Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanofibrillations against important seed borne pathogens. Int J Technol Res 1:83–86.

106. Cao L, Zhang H, Cao C, Zhang J, Li P, Huang Q (2016) Quartzemized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomater 6:126. https://doi.org/10.3390/nano6070126.

107. Luque-Aleazar AG, Cortez-Rocha MO, Vélazquez-Corterass CA, Acosta-Silva AL, Santacruz-Oteiga HDC, Burgos-Hernández A, Argüelles-Monal WM, Pascencia-Jatomea M (2016) Enhanced antifungal eff of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Aspergillus parasiticus Spores. J Nanomater 1:1–10. https://doi.org/10.1016/j.jjibio.2018.10.022.

108. Kumaraswamy RW, Kumar S, Choudhary PC, Sharma SS, Pal A, Ralys R, Saharan V (2019) Salicylic acid functionalized chitosan nanoparticles: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202.

109. Kaur R, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanofibrillations against important seed borne pathogens. Int J Technol Res 1:83–86.

110. Cao L, Zhang H, Cao C, Zhang J, Li P, Huang Q (2016) Quartzemized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomater 6:126. https://doi.org/10.3390/nano6070126.

111. Luque-Aleazar AG, Cortez-Rocha MO, Vélazquez-Corterass CA, Acosta-Silva AL, Santacruz-Oteiga HDC, Burgos-Hernández A, Argüelles-Monal WM, Pascencia-Jatomea M (2016) Enhanced antifungal eff of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Aspergillus parasiticus Spores. J Nanomater 1:1–10. https://doi.org/10.1016/j.jjibio.2018.10.022.

112. Iftikhar A, Rizwan M, Adrees M, Ali S, Rehman MZ, Qayyum MF, Khan N, Bano AMD, Babar A (2020) Impacts of plant growth promot- ers and plant growth regulators on rainfall agriculture. PLoS ONE 15:e0231426. https://doi.org/10.1371/journal.pone.0231426.

113. Preisler AC, Pereira AES, Campos EVR, Dalazen G, Fraceto LF, Oliveira HC (2018) Post-emergence herbicidal activity of nanostructured silica as a stored pulse protector against infestation of bruchid beetle, Bruchidae). Appl Nanosci 6:445–450. https://doi.org/10.1007/s1004 0790.

114. Singh S, Husen A (2020) Behavior of agricultural crops in relation to nanomaterials under adverse environment al conditions. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier, Cambridge, pp 219–236. https://doi.org/10.1016/BS-AJJO.2018.07.023.

115. Hussain A (2020) Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (T. aestivum L.) under selenium nanoparticle stress. Environ Sci Pollution Res 27:33809–33820. https://doi.org/10.1007/s11356-020-09661-9.

116. Shoemaker AG (2020) The effects of titanium dioxide nanoparticles on the growth and development of Sorghum Bicolor (L.) Moench. Adv Agric Hortic Entomol 132:1–15.

117. Maruyama CR, Gilger M, Fiszman P, Sileshi-José M (2016) Nano- particles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/ srep19768.

118. Presier AC, Pereira AES, Campos EVR, Dalazen G, Fraceto LF, Oliveira HC (2020) Atazone nanoaencapsulation improves pre-emergence herbical activity against Bident pilosus without enhancing long-term residual effect on Glycine max. Pest Manag Sci 76:141–149. https://doi.org/10.1002/ps.5482.

119. Souza GF, Gomes DG, Campos EVR, Oliveira JL, Fraceto LF, StolfMoreira R, Oliveira HC (2018) Post-emergence herbical activity of nanosratrazine against susceptible weeds. Front Environ Sci 6:1–6. https://doi.org/10.1007/s41371-019-00901-x.

120. Xiang Y, Zhang G, Chi Y, Cai D, Wu Z (2017) Fabrication of a control- ler nanopesticide system with magnetic collectability. Chem Eng J 328:320–330. https://doi.org/10.1016/j.cej.2017.06.038.
assembly: a potent on-site biolarvicidal agent against mosquito vec-
tors. RSC Adv 10:9356–9368. https://doi.org/10.1039/C9RA09972G
238. Abouelatta AM, Keratum AY, Ahmed SL, El-Zun HM (2020) Repellent,
contact and fumigant activities of geranium (Pelargonium graveolens
L’HÉR) essential oils against Tribolium castaneum (Herbst) and Rhyzoper-
tha dominica (F.). Int J Tropical Insect Sci 40:1021–1030. https://doi.org/
10.1007/s42690-020-00161-4
239. Campolo O, Puglisi I, Barbagallo RN, Cherif A, Ricupero M, Biondi A,
Zappa P (2020) Side effects of two citrus essential oil formulations on
a generalist insect predator, plant and soil enzymatic activities. Chem-
osphere 257:127252
240. Ikawati S, Himawan T, Abadi AL, Tarno H (2020) Toxicity nanoinsecticide
based on clove essential oil against Tribolium castaneum (Herbst). J Pest
Sci 46:222–228. https://doi.org/10.1584/jpestics.D20-059
241. Leslie B, Mark M, Leonard L, Matteo S (2020) Efficacy of various herbici-
cides for the control of perennial Plantago spp. and effects on alfalfa
damage and yield. Agronomy 10:1710. https://doi.org/10.3390/agronomy10111710
242. Thongpik J, Pumas P, Pumas C (2020) Paraquat degradation by
biological manganese oxide (BioMnOx) catalyst generated from living
microalga pediasmium duplex AARL G060. Front Microbiol 11:573611.
https://doi.org/10.3389/fmicb.2020.573611
243. Francisco CF, María EAG, Claudia LA, Balam RR, Roberto LVG, Patricia RC,
Rocio ACS, Alexey P, Yanis TM, Juan CGR, Nina B (2020) ArgovitTM silver
nanoparticles effects on Allium cepa: plant growth promotion without
cyto genotoxic damage. Nanomaterials 10:1386. https://doi.org/10.3390/nnano10011386
244. Broda M (2020) Natural compounds for wood protection against fungi—a review. Molecules 25:3538. https://doi.org/10.3390/molec-
ules25153538
245. Kvitak I, Kivnik S, Karababa E (2020) Assessment of bioactive com-
pounds and antioxidant activity of turkey tail medicinal mushroom
Trametes versicolor (Agaricomycetes). Int J Med Mushrooms 22:559–571.
https://doi.org/10.1615/IJMedMushrooms.2020035027
246. Cui J, Sun C, Wang A, Wang Y, Zhu H, Shen Y, Li N, Zhao X, Cui B, Wang C,
Gao F, Zeng Z, Cui H (2020) Dual-functionalized pesticide nanocapsule
delivery system with improved spreading behavior and enhanced
bioactivity. Nanomaterials 10:220. https://doi.org/10.3390/nano1002020
247. Luis AP, Ana AFP, Ramón G, Sandra M, Karen E (2020) Nanoparticles in
agroindustry: applications, toxicity, challenges, and trends. Nanomateri-
als 10:1654. https://doi.org/10.3390/nano10091654
248. Marcela VH, Israel MB, Ramon GG, Enrique RG, Rosalia VOV, Luciano
AL, Inneo TP (2020) Nanoparticles as potential antivirals in agriculture.
Agriculture 10:444. https://doi.org/10.3390/agriculture10100444
249. Arshad A, Temoor A, Wenge-W, Afansa H, Rahila H, Md. Mahidul IM,
Yanli W, Qanli A, Guochang S, Bin L (2020) Advancements in plant and
microbe-based syntheses of metallic nanoparticles and their antimicro-
bial activity against plant pathogens. Nanomaterials 10:1146. https://
doi.org/10.3390/nano10061146
250. Piela A, Zymariczky DE, Brzeziriska RM, Duda M, Grzesiaj K, Saeid A,
Klimek OM (2020) Biogenic synthesis of silica nanoparticles from corn
cohbs husks. Dependence of the productivity on the method of raw
material processing. Bioorg Chem 99:103773. https://doi.org/10.1016/j.
bioorg.2020.103773.
251. Hafez YM, Atta KA, Kamel S, Alamery SF, El-Gendy S, Al-Doss AA,
Abdeelaal KA (2020) Bacillus subtilis as a bio-agent combined with nano
molecules can control powdery mildew disease through histochemical
and physiobiochemical changes in cucumber plants. Physiol Mol Plant
Pathol 111:101489. https://doi.org/10.1016/j.pmpp.2020.101489

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.