Prediction of wear properties of graphene-Si$_3$N$_4$ reinforced titanium hybrid composites by artificial neural network

Tuğba Mutuk1, Mevlüt Gürbüz2 and Halil Mutuk3

1 Department of Metallurgical and Materials Science Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139, Samsun, Turkey
2 Department of Mechanical Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139, Samsun, Turkey
3 Department of Physics, Faculty of Science and Letters, Ondokuz Mayis University, 55139, Samsun, Turkey

E-mail: tugba.isitan@omu.edu.tr

Keywords: graphene, titanium, Si$_3$N$_4$, hybrid composite, wear rate, artificial neural network

Abstract

In this study, we have employed artificial neural network (ANN) method to predict wear properties of titanium hybrid composites produced by powder metallurgy (PM) method. Titanium (Ti) was used as a matrix materials and graphene nano-platelets (GNPs)-Si$_3$N$_4$ were used as reinforcement materials in hybrid composites. A back-propagation neural network with 3–6–1 architecture was developed to predict wear rates by considering weight fraction reinforcements, load and density as model variables. The well trained ANN system predicted the experimental results in a good agreement with the experimental data. This refers that ANN can be used to evaluate wear rate of samples in a cost effective way.

1. Introduction

Two dimensional compounds were hypothetical objects until 2004 when graphene was isolated [1]. One of the important reason for nonexistence of two dimensional compounds was thermal instability when they were seperated. Graphene is a crystal that has a two-dimensional structure made of carbon atoms. It is the essential structural element for other allotropes, such as carbon nanotubes and fullerenes. Therefore graphene plays an important role in understanding the electronic properties of other allotropes [2].

Carbon atoms have four electrons on valence shell and these electrons are responsible for chemical bonding. In graphene, being a two dimensional structure, each carbon atom is bonded to the three carbon atoms. As a result of this connection, an electron is ‘liberated’ for electronic conduction. In this manner, graphene is an important playground since it is the basis for the understanding of the electronic properties of materials. For example, for an ordinary particle in classical and non-relativistic quantum mechanics, energy of the any particle E is proportional to the square of the momentum, p^2, i.e. $E \sim p^2$. This means that Schrödinger equation can be used for these systems. On the surface of graphene, the energy of the electron is linear in momentum, $E \sim p$, where Dirac equation can be used. For the time being, graphene is the only material on which Dirac equation can be experimentally studied. Besides that electron flow resembles the motion of the relativistic Dirac particles [2].

Nowadays, graphene has became a hot topic in physics and engineering studies due to its extraordinary properties such as optical [3–5], strength [6–9], electricity [10–12], and heat conduction [13–16].

Due to their main properties like high strength, low density and higher corrosion resistance, titanium (Ti) became one of the most important engineering materials. Based on these properties, pure Ti is being used as a matrix material in the composites [17–20]. In recent years carbon based materials, especially graphene nanoplates (GNPs) are the most preferred materials due to the its remarkable properties. GNPs can be used as a reinforcement material in Ti matrix composites. Moreover, there are many studies about this topic in the literature, for example [21–25]. This kind of composites have many application areas such as biomaterials, aerospace and automotive industries.
One of the most interesting subjects of recent years for new materials is hybrid composites. They are composites which have a combination of two or more reinforcement materials. The usage of composite materials for engineering applications has been impeded by the significant expense of the producing component [26]. Simulation of material properties can be helpful in the optimization. The absence of useful methods to predict material properties for understanding basis of particulate reinforced composites is a challenging task. Furthermore nonlinear behaviour, like in wear process, of the problem makes this task more untouchable. Therefore artificial neural networks (ANNs) has been used in material science for modeling physical and mechanical properties of engineering materials [27–35].

ANNs are information processing systems or computational models based on biological nervous system. This approach stems from the problem solving process of human brain. It is a mathematical tool that mimickes human brain functions [36–39]. ANN methods have been used as powerful techniques to solve a diverse of real-world problems since they have excellent learning capacity. This method can be very helpful with legitimate care and adequate data for simulations of any correlation.

In the present study, we studied wear behaviour of GNPs and Si3N4 reinforced Ti-matrix hybrid composite which was produced in [40] by Artificial Neural Network (ANN) method. These reinforcements materials (GNPs and Si3N4) are used in Ti-matrix for producing hybrid composites by powder metallurgy (PM) method which is a new study for literature.

The paper organized as follows: in section 2, ANN framework is presented. In section 3 the process of composite production and in section 4 neural network setup are given. In section 5, both experimental and ANN results are presented. In section 6, the conclusion of this work is given.

2. Artificial neural network framework

Artificial neural networks are considered to be a model of human brain. The structure of networks consists of highly interconnected processing units which are called neurons. They are arranged in different layers in the neural network and connected each other by weighted links (adaptive synaptic weights) over which signals can pass.

There are three layers in the neural network structure: input layer, hidden layer and output layer. Input layer provide information from the outside world to the network. They receive data from outside. The formal job is done in input layer is to transfer the data to the other layers. There is no computation in this layer. In the hidden layer, information is transferred from the input layer to the output layer. At the same time computations are made. In the output layer, the result of the computational process are displayed to the outside world. A schematic diagram of an ANN is showed in figure 1.

Figure 1 is an example of feed forward neural network in which information moves in only one direction, forward from the input layer to the output layer.

ANNs consist of several neurons and they are the fundamental processing units in a network. They are connected each other over adaptive synaptic weights. Each neuron in the different layers receives one or more input over these connections and produces only one output. This output can be spread to the other neurons in the network.

The mathematical architecture of an ANN can be seen in figure 2.

In a single artificial neuron, the main components are synaptic weights, threshold (addition) function, activation function and outputs. Inputs x_i are obtained from outside the neuron by experimental data. They can
be any data related to the problem. Synaptic weight \(w_{ij} \) refers to the strength of a connection between two neurons in different layers. In general, these weights are taken as random numbers. A function \(f(s) \) acts on the produced weighted signal. This function is called activation function.

The output of the \(i \)th neuron \(N_i \) is
\[
O_i = f \left(w_0 + \sum_{j=1}^{n} w_{ij} x_j \right). \tag{2.1}
\]

The neuron’s work condition can be defined as
\[
w_0 + \sum_{j=1}^{n} w_{ij} x_j \geq \Theta, \tag{2.2}
\]
and the input of the \(i \)th neuron \(N_i \) is
\[
s_i = w_0 + \sum_{j=1}^{n} w_{ij} x_j. \tag{2.3}
\]

The output signal obtained by activation function is
\[
O_i = f \left(s_i - \Theta_i \right), \tag{2.4}
\]
where \(\Theta_i \) is a threshold value which has to be reached or exceeded for the neuron to produce output signal. All the inputs are multiplied by their synaptic weights and added together to form the net input to the neuron. This is called net and written as
\[
net = \sum_{j=1}^{n} w_{ij} x_j + \Theta \tag{2.5}
\]
where \(\Theta \) is a threshold value which is added to the neurons. The neuron takes these inputs and produce an output \(y \) by mapping function \(f(\text{net}) \)
\[
y = f(\text{net}) = f \left(\sum_{j=1}^{n} w_{ij} x_j + \Theta \right) \tag{2.6}
\]
where \(f \) is the neuron activation function. A sigmoid function of the form
\[
y = f(\text{net}) = \frac{1}{1 - e^{-\text{net}}} \tag{2.7}
\]
is the most common activation function since it is useful in linear and nonlinear problems.

The solution of an engineering problem or any other computation like image processing in ANN is based on learning through examples. ANN learns by examples and acquire knowledge about the problem or system. Learning is done by training the network with adequate data set. The important point in this mechanism is that neural network can learn by examples without having known any formulae about the problem or system. By
Table 1. Composite designation.

Hybrid Composite Sample	GNPs reinforcement	Si₃N₄ reinforcement
Pure Ti	—	—
TiSG15 0.15 wt% 3 wt%		
TiSG30 0.30 wt% 3 wt%		
TiSG45 0.45 wt% 3 wt%		
TiSG60 0.60 wt% 3 wt%		

doing this, like in human brain, it can generalize some knowledge which could be used for in the solution process. If the training process is done appropriately, the neural network can gain ability to solve unknown or unfamiliar instances of the problem or system. It should be also noted that the learning mechanism from small experimental data makes ANNs important for manufacturing issues.

3. Materials details and wear test

One of us (T Mutuk) [40] have studied about hybrid composites which were produced with powder metallurgy (PM) method. Titanium (Ti) was used as a matrix materials and GNP-Si₃N₄ were used as a reinforcement materials in hybrid composites. The matrix material was chosen as pure Ti powder (Alfa Aesar, −325 mesh) and also reinforcement materials were chosen graphene nano platelets (GNPs) (Grafen Chemical Industries Co.) and Si₃N₄ (Ube Ind., <1 μm). Different percentages of GNP and Si₃N₄ added in the composite by weight of titanium. GNP reinforcements of 0.15 wt%, 0.30 wt%, 0.45 wt% and 0.6 wt% and other reinforcement material Si₃N₄ of 3 wt% were mixed with pure Ti powder. These properties can be seen in table 1. The synergic effect of GNP-Si₃N₄ particles on density, wear rate and microstructure of hybrid composites were studied [40].

Graphene has major properties on mechanical and microstructure in the composite. One of these is the solid lubricant properties of graphene. This feature has an effect on wear properties on composite. When the graphene in the composite touches with the abrasive counter part during wear test, it prevents the delamination of composite because of solid lubricant properties [41–43]. Besides, Si₃N₄ has mechanical properties, corrosion resistance and abrasion resistance are better than many high strength ceramic materials at high temperatures. Therefore, these kind of materials were selected for producing hybrid composite in this study.

In this study, we have employed artificial neural network (ANN) method to predict wear properties of titanium hybrid composites. Titanium (Ti) was used as a matrix materials and Graphene nano-platelets (GNPs)-Si₃N₄ were used as a reinforcement materials in hybrid composites. Wear tests conditions in this study were performed using a pin-on-disc wear test unit at ambient temperature under dry conditions. The material of the counterpart disc consists of stainless steel with a radius of 20 mm, and a hardness of 65 HRC. Moreover, hybrid composite samples were produced 10 mm radius and 3 mm thickness for wear tests [40, 44].

During the wear test different loads (10 N, 20 N, 30 N) were carried out on the composite. The sliding distance (L) was calculated according to equation (2.8)

\[
L = \frac{2\pi nt}{V m} \tag{2.8}
\]

\[
\Delta V = \frac{\Delta m}{\rho} \tag{2.9}
\]

\[
W = \frac{\Delta V}{PL} \tag{2.10}
\]

where L is the sliding distance (500 m), R is the radius of counterpart disc (20 mm), n is the number of revolutions (200 rpm) and t is the testing time (20 min). The volume change of worn samples (\(\Delta V\), equation (2.9)) were measured using by mass loss (\(\Delta m\)) and density of composite (\(\rho\)). The wear rates (W) of composites were calculated by equation (2.10), where W, P are the wear rate (mm³/(N·m)) and applied load (N), respectively [44].

Figure 3 shows the SEM micrographs of hybrid composites after wear testing at a load of 30 N. At this wear testing conditions, a minimum wear rate of TiSG15 was observed. These images give the highest damage, deepest wear groove and a lot of deep pits for pure Ti. Less damage and groves are observed in the surface of the TiSG15 hybrid composite (figure 3(a)). As expected, the depth of grooves and wear rate increased with increasing load. GNP and Si₃N₄ have uniform distributions in the Ti matrix without agglomeration up to 0.15 wt% GNP content. Moreover, the agglomeration of GNP occurs using a large amount of GNPs. As seen in (figure 3(c)) agglomeration and also delamination because of large amount of GNP additive. As seen in (figure 3(c)) agglomeration and also delamination occurred because of large amount of GNP additive.
In the present work, we used Neural Network Toolbox of MATLAB 2016b. We have used a back-propagation (error-correction) algorithm which is a powerful learning algorithm. According to the learning algorithm, in order to reduce error, synaptic weights are changed and neural network produce new results in this way. This will be repeated until the desired result is achieved. Back-propagation algorithm is a powerful tool when the neural network has hidden layers.

The fundamental idea behind the back-propagation algorithm is to propagate errors from hidden layers to the input layers during the learning process. Back-propagation is necessary since neurons in the hidden layer
have no training target value unlike output layer so they must be trained based on errors from previous layers. When the errors are propagated backward through the nodes, synaptic weights are changed. Training happens until the errors in the weights are adequately small to be accepted \[45\].

In the \(n\)th iteration of training, if the output value of \(j\)th neuron is defined as \(y_j\) and target output from this neuron is defined as \(d_j\), error signal can be defined as follows \[36\]:

\[
e_{j}(n) = d_j(n) - y_j(n).
\]

(2.11)

The algorithm can be written as follows \[46\]:

- Initialize the weights \(w\) from the input layer to the hidden layer and weights \(v\) from the hidden layer to the output layer. Choose the learning parameter (lies between 0 and 1) and error \(E_{\text{max}}\). Initially error is taken as 0.
- Train the network.
- Compute the error value, \(E = \frac{1}{2}(d_j - y_j)^2 + E_{\text{max}}\)
- Compute the error signal terms of the output layer and the hidden layer.
- Compute components of error gradient vectors.
- Check the weights if they are properly modified.
If $E = E_{\text{max}}$ terminate the training session. If not, go to step 2 with $E \rightarrow 0$ and initiate a new training.

For further details of this algorithm, see [43]. In the present work, the hyperbolic tangent sigmoid function (tansig) (equation (2.7)) and the linear transfer function (purelin) were used as the activation transfer functions, Levenberg–Marquardt (LM) algorithm was used as the learning rule, and the mean square error (MSE) was used as the performance function. Figure 4 shows the architecture of neural network used in this work.

There are three neurons in the input layer (density, load, reinforcements), single hidden layer with five neurons and one output neuron was modelled to predict the wear rate of the samples. There is no a for determining the number of neurons in the hidden layer. We have used an approximation given by Wong [47] as

$$n \ (\text{Number of input neurons}) \rightarrow 2n \ (\text{Number of hidden neurons}) \quad (2.12)$$

5. Results and discussions

The constructed 3-6-1 neural network model was trained and tested using the data set from table 2.

Input and output variable of each neuron in the layers must be numeric. In principle, each parameter in the model should contribute on an equal footing. Thus, to ensure equal contribution of model parameters, datasets...
were normalized according to equation (2.13)

\[X_N = \frac{X - X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \]

(2.13)

where \(X_N\) is the normalized value of the \(X\), \(X_{\text{max}}\) is the maximum values of \(X\), and \(X_{\text{min}}\) is the minimum values of \(X\).

As a result of this procedure, each parameter takes a value in the interval (0,1). The training performance of this ANN model is shown in figure 5.

The training process was terminated after 7 iterations. When the number of iterations reaches its termination criterion, a mean square error (MSE) value was obtained as 0.000 000 047 708. Randomly selected 80% of the experimental data have been used for training the artificial neural network, 10% for validating and 10% for testing.

In order to test the generalization and prediction performance of the neural network, the experimental values were compared to the predicted values of ANN. Thus, a linear regression between the neural network output and experimental data is shown in figure 6.

The overall R value for all samples is 0.941 49, which shows good correlation between experimental data and total neural network response. This is an indication of good agreement between the experimental data and neural network prediction. This agreement can be also seen in figures 7(a) and (b).

Figure 7(a), infer that the wear rate declines as the GNPs reinforcement wt% rises up to 0.15 wt% additive. It is seen that 0.15 wt% GNPs and 3 wt% Si3N4 additives in the composites gave the best result compared to the pure Ti in the wear test. When GNPs reinforcement ratio increased, wear rates are increased because GNPs have agglomeration tendency partially in the composite. The inhomogeneous and locally dispersion of the GNPs led to more porous structure in composites. Therefore, the abrasive disc interact the large pure Ti zone and porous surface which causes to the deterioration of the wear properties. Figure 7(b) supports this conclusion in framework of ANN.

Figure 8 shows both of experimental and ANN results. It can be observed in the figure 8 that predicted values of the neural network follows the same trend as the experimental data. This is another achievement of the neural network of this study.

6. Conclusion

In this study, we have employed artificial neural network (ANN) method to predict wear properties of titanium hybrid composites. Titanium (Ti) was used as a matrix materials and Graphene nano-platelets (GNPs)-Si3N4 were used as a reinforcement materials in hybrid composites.

Titanium hybrid composites which we worked on were produced by PM method because it is more effective and economic for production of composites compared to other well known methods in classical way.

An ANN model for predicting the wear rate values of the composite was constructed. It has been shown that the predicted results are in good agreement with the experimental data. This implies that the wear rate can be predicted by framework of ANN with a good accuracy. It is also verified that the neural network model is reliable and predicted outputs can give an idea for developing and manufacturing new wear resistant materials.
One of the advantages of using ANN is to shorten working time and examine real physical and engineering systems in a cost effective way. The other advantage is required number of model parameters is far less than any other solution technique and therefore, compact solution models are obtained, with very low demand on memory space [48].

The results show that the predicted data maintained by ANN framework are in good agreement compared to the experimental results. A well-trained ANN system can be very helpful for estimating physical and mechanical properties of engineering systems.

ORCID iDs

Tuğba Mutuk https://orcid.org/0000-0003-0143-2721
Halil Mutuk https://orcid.org/0000-0002-6794-0879

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109–62
[3] Falkovsky L A and Pershoguba S S 2007 Optical far-infrared properties of a graphene monolayer and multilayer Phys. Rev. B 76 153410
[4] Falkovsky L A 2008 Optical properties of graphene J. Phys. Conf. Ser. 129 1
[5] Song W N, He C Y, Zhang W, Gao Y C, Yang Y X, Wu Y Q, Chen Z M, Li X C and Dong Y J 2014 Synthesis and nonlinear optical properties of reduced graphene oxide hybrid covalently functionalized with zinc phthalocyanine Carbon 77 1020–30
[6] Rafiee M A, Rafiee J, Wang Z, Song H H, Yu Z Z and Koratkar N 2009 Enhanced mechanical properties of nanocomposites at low graphene content ACS Nano 3 3884–90
[7] Fan H L, Wang L L, Zhao K K, Li N, Shi Z J, Ge Z G and Jin Z X 2010 Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites Biomacromolecules 11 2345–51
[8] Hwang J, Yoon T, Jin S H, Lee J, Kim T S, Hong S H and Jeon S 2013 Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process Adv. Mater. 25 6724–9
[9] Papageorgiou D G, Kinloch I A and Young R J 2017 Mechanical properties of graphene and graphene-based nanocomposites Prog. Mater. Sci. 90 75–127
[10] Xu K, Cao P G and Heath JR 2009 Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers Nano Lett. 9 4446–51
[11] Nagashio K, Yamashita T, Nishimura T, Kita K and Torii M 2011 Electrical transport properties of graphene on SiO2 with specific surface structures J. Appl. Phys. 110 024513
[12] Ciccek O, Tecimer H U, Tan S O, Tecimer H, Orak I and Altindal S 2017 Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures *Compos. Part B-Eng.* 113 14–23

[13] Balandin A A 2011 Thermal properties of graphene and nanostructured carbon materials *Nat. Mater.* 10 569–81

[14] Saner Okan B 2017 Fabrication of multilayer graphene oxide–reinforced high density polyethylene nanocomposites with enhanced thermal and mechanical properties via thermokinetic mixing *Turk. J. Chem.* 41 381–90

[15] Pop E, Varshevy V and Roy A K 2012 Thermal properties of graphene: Fundamentals and applications *MRS Bull.* 37 1273–81

[16] Xu Y, Li Z and Duan W 2014 Thermal and thermoelastic properties of graphene *Small* 10 2182–99

[17] Zhao S, Xu Y J, Pan C L, Liang L H and Wang X G 2019 Hot microstructural modeling and strengthening mechanism of TiB/Al-6Al-4V discontinuously-reinforced titanium matrix composite *Materials* 12 827

[18] Kamalizadeh S, Niknam S A, Asgari A and Balazinski M 2019 Tool wear characterization in high-speed milling of titanium matrix metal matrix composites *Int. J. Adv. Manuf. Tech.* 100 2901–13

[19] Qin J N 2019 A model to predict the preferred orientation relationships of in situ synthesized TiB in titanium matrix composites *Comp. Mater. Sci.* 167 151–9

[20] Dong L L, Xiao B, Jin L H, Lu J W, Liu Y, Fu Y Q, Zhao Y Q, Wu G H and Zhang Y S 2019 Mechanisms of simultaneously enhanced strength and ductility of titanium matrix composites reinforced with nanosheets of graphene oxides *Ceram. Int.* 45 19370–9

[21] Song Y, Chen Y, Liu W W, Li W L, Wang Y G, Zhao D and Liu X B 2016 Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers *Mater. Des.* 109 256–63

[22] Cao Z, Wang X D, Li J L, Wu Y, Zhang H P, Guo J Q and Wang S Q 2017 Reinforcement with graphene nano flakes in titanium matrix composites *J. Alloys Compd.* 696 498–502

[23] Mu X N, Zhang H M, Cai H N, Fan Q B, Zhang Z H, Wu Y Z, Fu J and Yu D H 2017 Microstructure evolution and superior tensile properties of low content graphene nanoplattenes reinforced pure Ti matrix composites *Mat. Sci. Eng. A-Struct.* 687 164–74

[24] Mu X N, Cai H N, Zhang H M, Fan Q B, Zhang Z H, Wu Y, Ge Y X and Wang D D 2018 Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite *Mater. Des.* 140 431–41

[25] Gurbuz M and Mutuk T 2018 Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites *J. Compos. Mater.* 52 543–51

[26] Ageleyle A A, Ezeobor D E, Agbeleye A A, Esezobor D E, Agunsoye J O, Balogun S A and Sosimi A A 2018 Prediction of the abrasive wear behaviour of heat-treated aluminium–clay composites using artificial neural network journal of Taibah University for Science 12 235–40

[27] Jones S P, Jansen R and Fusaro R L 1997 Preliminary investigation of neural network techniques to predict tribological properties *Tribol. Trans.* 40 731–6

[28] Satyanarayana G, Naidu G S and Babu N H 2018 Artificial neural network and regression modelling to study the effect of reinforcement and deformation on volumetric wear of red mud nanoparticle reinforced aluminium matrix composites synthesized by stir casting *Bol. Soc. Esp. Ceram.* 57 91–100

[29] Stojanovic B, Blagojevic J, Babic M, Velickovic S and Miladinovic S 2017 Optimization of hybrid aluminum composites wear using Taguchi method and artificial neural network *Ind. Lubr. Tribol.* 69 1005–15

[30] Veeresh Kumar G B, Pramod R, Shivakumar Gouda P S and Rao C S P 2017 Artificial neural networks for the prediction of wear properties of Al601-TiO3 composites *IOP Conf. Ser.: Mater. Sci. Eng.* 225 012046

[31] Nemati Z A and Motakabef P 2007 Investigation of graphite oxidation kinetics in Mg-O-C composite via artificial neural network approach *Comp. Mater. Sci.* 39 723–8

[32] Pramod R, Veeresh Kumar G B, Shivakumar Goudab P S and Mathew A T 2018 Study on the Al2O3 reinforced Al7075 metal matrix composites wear behavior using artificial neural networks *Mater. Today-Proc.* 31 11376–85

[33] Altarazi S, Ammourri M and Hijazi A 2018 Artificial neural network modeling to evaluate polyvinylchloride composites’ properties *Comp. Mater. Sci.* 153 1–9

[34] Varol T, Çanakçı A and Özşahin S 2013 Artificial neural network modeling to effect reinforcement properties on the physical and mechanical properties of Al2024–B4C composites produced by powder metallurgy *Compos. Part B-Eng.* 54 224–33

[35] Tuntas R and Dikici B 2015 Prediction of corrosion susceptibilities of Al-based metal matrix composites reinforced with SiC particles using artificial neural network *J. Compos. Mater.* 49 3431–8

[36] Haykin S 1987 *Neural Networks: A Comprehensive Foundation* (Singapore: Pearson Education)

[37] Nielsen R H 1990 *Neurocomputing* (USA: Addison-Wesley Publishing Company)

[38] Rojas R 1996 *Neural Networks: A Systematic Introduction* (Berlin, Germany: Springer)

[39] Graupe D 2007 *Principles of Artificial Neural Networks* (Toh Tuck Link, Singapore: World Scientific Publishing)

[40] Mutuk T 2019 Prototype implant production with graphene–Si3N4 reinforced titanium hybrid composite *PhD Thesis* Ondokuz Mayis University, Turkey

[41] Kumar P and Wani M F 2017 Synthesis and tribological properties of graphene: a review *Jurnal Tribologi.* 13 36–71

[42] Kumar P and Wani M F 2017 Tribological characterization of graphene oxide as lubricant additive on hypereutectic Al-25Si/Steel *tribopair Tribology Transaction* 61 12–12

[43] Kumar P and Wani M F 2019 Effect of temperature on the friction and wear properties of graphene nano-platelets as lubricant additive on Al-25Si alloy *Mater. Res. Exp.* 6 046513–28

[44] Šenel M C, Gurbuz M and Koç E 2018 Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets *Mater. Sci. Tech.* 34 1980–9

[45] Lawrence R 1997 *Using Neural Networks to Forecast Stock Market Prices* (University of Manitoba)

[46] Zurada J M 1992 *Introduction to Artificial Neural Systems* (St. Paul, MN: West Publishing Co.)

[47] Wong F S 1991 Time series forecasting using backpropagation neural networks *Neurocomputing* 2 147–59

[48] Lagaris I E, Likas A and Fotiadis D I 1998 Artificial neural networks for solving ordinary and partial differential equations *IEEE T. Neural Netw.* 9 897–100