On a p-Kirchhoff-type problem arising in ecosystems

S. H. Rasouli1 · Z. Firouzjahi1

Abstract In this article, we discuss the existence of positive solutions for an ecological model of the form:

$$
\begin{cases}
-M(\int_{\Omega} |\nabla u|^p \, dx) \Delta_p u = \frac{au^{p-1} - bu^{q-1} - c}{u^z}, & x \in \Omega, \\
u = 0, & x \in \partial \Omega,
\end{cases}
$$

where Ω is a bounded domain with smooth boundary, $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $1 < p < \gamma$, $M : [0, \infty) \to (0, \infty)$ is a continuous and increasing function, $a > 0$, $b > 0$, $c \geq 0$, and $z \in (0, 1)$. This model describes the steady states of a logistic growth model with grazing and constant yield harvesting. We also discuss the dynamics of the fish population with natural predation and constant yield harvesting. We discuss the existence of a positive solution for given a, b, γ and small values of c.

Keywords Positive solutions · Sub-supersolutions · p-Kirchhoff-type problems

Mathematics Subject Classification 35J55 · 35J65

Introduction

In this paper, we are interested in the existence of positive solutions for the p-Kirchhoff-type problems

$$
\begin{cases}
-M(\int_{\Omega} |\nabla u|^p \, dx) \Delta_p u = \frac{au^{p-1} - bu^{q-1} - c}{u^z}, & x \in \Omega, \\
u = 0, & x \in \partial \Omega,
\end{cases}
$$

where $M : [0, \infty) \to (0, \infty)$ is a continuous and increasing function, $c \geq 0$, $a, b > 0$, Ω is a bounded domain with smooth boundary, Δ_p denotes the p-Laplacian operator defined by $\Delta_p z = \text{div}(|\nabla z|^{p-2} \nabla z)$, $1 < p < \gamma$ and $x \in (0, 1)$.

Here u is the population density and $au^{p-1} - bu^{q-1}$ represents logistics growth. This model describes grazing of a fixed number of grazers on a logistically growing species (see [11]). The herbivore density is assumed to be a constant which is a valid assumption for managed grazing systems and the rate of grazing is given by $\frac{c}{u}$. At high levels of vegetation density this term saturates to c as the grazing population is a constant. This model has also been applied to describe the dynamics of fish populations (see [15]). In the case of the fish population the term $\frac{c}{u}$ corresponds to natural predation.

In recent years, problems involving Kirchhoff-type operators have been studied in many papers, we refer to [3, 4, 6, 10, 14] in which the authors have used the variational and topological methods to get the existence of solutions. In this article, we are motivated by the ideas introduced in [7, 12, 13] and properties of Kirchhoff-type operators in [3, 4, 6], we study problem (1) in semipositone case (i.e., $\lim_{s \to 0^+} f(s) = -\infty$; $f(s) = \frac{as^{p-1} - bs^{q-1} - c}{s^z}$; see [5, 7–9]). Using sub-supersolution techniques, we prove the existence of a positive solution for the problem.

To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}
-\Delta_p \phi = \lambda \phi |\phi|^{p-2} \phi, & x \in \Omega, \\
\phi = 0, & x \in \partial \Omega.
\end{cases}
$$

Let ϕ be the eigenfunction corresponding to the first eigenvalue λ_1 of (3) such that $\phi(x) > 0$ in Ω and $||\phi||_{\infty} = 1$. It can be shown that $\frac{\partial \phi}{\partial n} < 0$ on $\partial \Omega$. Here n is the outward normal. Let $m, \delta > 0$ and $\mu > 0$ be such that:
\[\mu \leq \phi \leq 1, \quad x \in \Omega - \Omega_{\delta}, \quad (3) \]
\[|\nabla \phi|^{p} \geq m, \quad x \in \Omega_{\delta}, \quad (4) \]
with \(\Omega_{\delta} := \{ x \in \Omega | d(x, \partial \Omega) \leq \delta \} \). This is possible since \(|\nabla \phi|^{p} \neq 0 \) on \(\partial \Omega \) while \(\phi = 0 \) on \(\partial \Omega \). We will also consider the unique solution \(e \in W_{0}^{1,p}(\Omega) \) of the boundary value problem
\[
\begin{cases}
-\Delta_{p} e = 1, & x \in \Omega, \\
e = 0, & x \in \partial \Omega,
\end{cases}
\]
to discuss our existence result, it is known that \(e > 0 \) in \(\Omega \) and \(\frac{\partial e}{\partial \nu} < 0 \) on \(\partial \Omega \).

Existence results

In this section, we shall establish our existence result via the method of sub-supersolution. A function \(\psi \) is said to be a subsolution of (1), if it is in \(W_{0}^{1,p}(\Omega) \) such that
\[
-M \left(\int_{\Omega} |\nabla \psi|^{p} \, dx \right) \int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla w \, dx \\
\leq \int_{\Omega} \left[a|\nabla \phi|^{p-2} - b|\nabla \phi|^{p-2} - c \right] w \, dx,
\]
and \(z \) is said supersolution of (1), if it is in \(W_{0}^{1,p}(\Omega) \) such that
\[
-M \left(\int_{\Omega} |\nabla z|^{p} \, dx \right) \int_{\Omega} |\nabla z|^{p-2} \nabla z \cdot \nabla w \, dx \\
\geq \int_{\Omega} \left[a|\nabla \phi|^{p-2} - b|\nabla \phi|^{p-2} - c \right] w \, dx,
\]
for all \(w \in W = \{ w \in C_{0}^{\infty}(\Omega) | w \geq 0, x \in \Omega \} \). Then the following result holds:

Lemma 2.1 (See [1, 2, 8]) Suppose there exist sub and supersolutions \(\psi \) and \(z \) respectively of (1) such that \(\psi \leq z \). Then (1) has a solution \(u \) such that \(\psi \leq u \leq z \).

Now we state our main result.

Theorem 2.2 Let there exist constants \(M_{0} > 0 \) and \(M_{\infty} \geq 0 \) such that \(M_{0} \leq M(t) \leq M_{\infty} \) for all \(t \in [0, \infty) \). Given \(a, b > 0, 1 < p < \gamma, \) and \(\alpha \in (0, 1) \), there exists a constant \(c_{1} = c_{1}(a, b, \alpha, \gamma, p, \Omega) > 0 \) such that for \(c < c_{1} \), (1) has a positive solution.

Remark 2.3 In the nonsingular case (\(\alpha = 0 \)), positive solutions exist only when \(a > \lambda_{1} \) (the principle eigenvalue) (see [12, 13]). But in the singular case, we establish the existence of a positive solution for any \(a > 0 \).

Proof of Theorem 2.2 We start with the construction of a positive subsolution for (1). Fix \(\beta \in (1, \frac{p}{p-1+\gamma}) \). Define \(\psi = k\phi^{{\beta}} \), where \(k > 0 \) is such that \(a \geq 2b\phi^{p-\gamma} + M_{\infty}\beta^{-1}\lambda_{1}k^{2} \). Define
\[
c_{1} := \min \left\{ M_{\infty}\lambda_{1}^{-1} \beta^{-1}(\beta - 1)(p - 1)M^{p}, \right. \\
\left. \frac{1}{2} M_{\infty}\lambda_{1}^{-1} \mu \beta^{-1}(a - \beta^{2}\lambda_{1}k^{2}) \right\},
\]
Note that \(c_{1} > 0 \) by the choice of \(k \) and \(\beta \). A calculation shows that
\[
\nabla \psi = k\beta \phi^{\beta-1},
\]
and
\[
-M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \Delta \psi \\
= M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla \psi \, dx \\
= k^{-1} \beta^{-1} M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla \phi \, dx \\
= k^{-1} \beta^{-1} M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \left(|\nabla \phi|^{(\beta - 1)(p - 1)} - w \nabla \phi^{(\beta - 1)(p - 1)} \right) \, dx \\
= k^{-1} \beta^{-1} M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \left(|\nabla \phi|^{(\beta - 1)(p - 1)}w \right) \, dx \\
- k^{-1} \beta^{-1} M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \left(|\nabla \phi|^{(\beta - 1)(p - 1)} \right) \, dx \\
= k^{-1} \beta^{-1} M \left(\int_{\Omega} |\nabla \psi|^{p} \right) \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \left(|\nabla \phi|^{(\beta - 1)(p - 1)}w \right) \, dx \\
- (\beta - 1)(p - 1)|\nabla \phi|^{p} \phi^{p+\beta(p-1)} \, dx.
\]

Thus \(\psi \) is a subsolution of (1) if
\[
M_{\infty}\lambda_{1}^{-1} \beta^{-1} \left[\lambda_{1} \phi^{\beta(p-1)} - (\beta - 1)(p - 1)|\nabla \phi|^{p} \phi^{p+\beta(p-1)} \right] \\
\leq ak^{p-1+\gamma} \phi^{(p-1)\gamma} - bk^{p-1+\gamma} \phi^{(\gamma - 1)(p-1)\gamma} - \frac{c}{k^{2} \phi^{\beta}}.
\]
For this, we have to show the following three inequalities:
\[-k^{p-1-z} \phi^{p(1-z)} (a - M_{\infty} k^z \beta^{-1} \lambda_1 \phi^2) \]
\[\leq -2k^{p-1-z} \phi^{p(1-z)-z}, \quad x \in \Omega, \]
\[-\frac{1}{2} k^{p-1-z} \phi^{p(1-z)} (a - M_{\infty} k^z \beta^{-1} \lambda_1 \phi^2) \]
\[\leq -\frac{c}{k^2 \phi^2}, \quad x \in \Omega - \Omega_0, \]
\[-M_{\infty} k^p \beta^{-1} (p-1)(\beta - 1) \left| \frac{\nabla \phi}{\phi^{p-\beta}(p-1)} \right| \]
\[\leq -\frac{c}{k^2 \phi^2}, \quad x \in \Omega_0, \]
by the choice of \(k \), we have:
\[-\frac{1}{2} k^{p-1-z} \phi^{p(1-z)} (a - M_{\infty} k^z \beta^{-1} \lambda_1 \phi^2) \]
\[\leq -bk^{p-1-z} \phi^{p(1-z)} \]
\[\leq -bk^{p-1-z} \phi^{p(1-z)}. \] (5)

Now, we have in \(\Omega_0 \), \(|\nabla \phi|^p \geq m \), and \(c < M_{\infty} k^{p+1} \beta^{-1} (\beta - 1)(p-1)m^p \), then the following inequalities hold:
\[-M_{\infty} k^{p-1} \beta^{-1} (p-1)(\beta - 1) \left| \frac{\nabla \phi}{\phi^{p-\beta}(p-1)} \right| \]
\[\leq -M_{\infty} k^{p-1} \beta^{-1} (p-1)(\beta - 1)(p-1)m^p \]
\[\leq -\frac{c}{k^2 \phi^2}, \quad x \in \Omega_0. \] (6)

On the other hand, since \(p - \beta(p - 1 + \varepsilon) > 0 \),
\[-\frac{c}{k^2 \phi^2} \frac{\phi^{p-\beta(p-1)-z}}{\phi^{p-\beta(p-1)-z}} \leq -\frac{c}{k^2 \phi^2}. \] Hence
\[-M_{\infty} k^{p-1} \beta^{-1} (p-1)(\beta - 1) \left| \frac{\nabla \phi}{\phi^{p-\beta}(p-1)} \right| \leq -\frac{c}{k^2 \phi^2}. \] (6)

Finally, in \(\Omega - \Omega_0 \) using \(\phi \geq \mu \) and \(c < \frac{1}{2} M_{\infty} k^{p-1} \mu^{p-1}(a - \beta^{-1} \lambda_1 k^2) \), we have:
\[-\frac{1}{2} k^{p-1-z} \phi^{p(1-z)} (a - M_{\infty} k^z \beta^{-1} \lambda_1 \phi^2) \]
\[\leq -k^{p-1-z} \phi^{p(1-z)} (a - M_{\infty} k^z \beta^{-1} \lambda_1 \phi^2) \]
\[\leq -\frac{c}{k^2 \phi^2}. \] (7)

For \(c < c_1 \), by (6) and (7) the Eq. (5) holds. Thus \(\psi \) is a subsolution of (1).

Now for a supersolution choose \(\varepsilon := N \varepsilon \), where \(N > 0 \) is such that \(N \varepsilon \geq \psi \) and
\[au^{p-1} - bu^{q-1} - c \leq N^{p-1}, \]
for all \(u > 0 \). We have
\[-M \left(\int_{\Omega} |\nabla z|^p \, dx \right) \triangle_p z = M \left(\int_{\Omega} |\nabla z|^p \, dx \right) N^{p-1} \]
\[\geq M \varepsilon N^{p-1} \]
\[\geq \frac{a^{p-1} - b^{q-1} - c}{z^2}. \]

i.e., \(z \) is a supersolution of (1) with \(z \geq \psi \) for \(N \) large (note \(\nabla e \neq 0; \varepsilon \Omega \)). Thus, there exists a positive solution \(u \) of (1) such that \(\psi \leq u \leq z \). This completes the proof of Theorem 2.2. \(\square \)

Acknowledgments The authors thank the referees for their appreciation, valuable comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Afrouzi, G.A., Chung, N.T., Shakeri, S.: Existence of positive solutions for Kirchhoff type equations. Electron. J. Diff. Eqs. 180, 1–8 (2013)
2. Cui, S.: Existence and nonexistence of positive solution for singular semilinear elliptic boundary value problems, Nonlinear Anal. pp. 149–176 (2000)
3. Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problems involving the p(x)-Laplacian. Appl. Anal. 92(1), 191–210 (2013)
4. Dai, G., Ma, R.: Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal. Real World Appl. 12, 2666–2680 (2011)
5. Goddard II, J., Lee, E.K., Sankar, L., Shivaji, R.: Existence results for classes of infinite semipositone problems. Boundary Value Problems, 2013:97, 1–9 (2013)
6. Han, X., Dai, G.: On the super-subsolution method for a p(x)-Kirchhoff type equations. J. Integr. Appl. 2012, 283 (2012)
7. Lee, E.K., Shivaji, R., Ye, J.: Positive solutions for infinite semipositone problems with falling zeros. Nonlinear Anal. 72, 4475–4479 (2010)
8. Lee, E.K., Shivaji, R., Ye, J.: Classes of infinite semipositone systems. Proc. R. Soc. Edinb. 139A, 853–865 (2009)
9. Lee, E.K., Shivaji, R., Ye, J.: Classes of infinite semipositone \(n \times n \) systems. Differ. Integr. Equ. 24(3–4), 361–370 (2011)
10. Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63, 1967–1977 (2005)
11. Noy-Meir, I.: Stability of grazing systems an application of predator-prey graphs. J. Ecol. 63, 459–482 (1975)
12. Oruganti, S., Shi, J., Shivaji, R.: Diffusive logistic equation with constant yield harvesting: I. steady states. Trans. Am. Math. Soc. 345(9), 3601–3619 (2002)
13. Oruganti, S., Shi, J., Shivaji, R.: Logistic equation with the p-Laplacian and constant yield harvesting. Abstr. Appl. Anal. 9, 723–727 (2004)

14. Ricceri, B.: On an elliptic Kirchhoff type problems depending on two parameter. J. Global Optim. 46(4), 543–549 (2010)

15. Steele, J.H., Henderson, E.W.: Modelling long term fluctuations in fish stocks. Science 224, 985–987 (1984)