PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation

Abstract
SARS-CoV-2 spike protein-induced heart inflammation may originate from either COVID-19 infection or the administration of COVID-19 mRNA vaccines. As pyrroloquinoline quinone (PQQ) is a scavenger of free radicals, redox cofactor, and antioxidant which supports cognitive and mitochondrial functions, supplementation with PQQ could have a positive effect to reduce heart inflammation after COVID-19 mRNA vaccines. However, there is no evidence yet for this opportunity in the literature. Cellular and animal model results are missing. Similarly, no clinical trials have been conducted. While it is recommended to measure the levels of the cardiac biomarkers before and after COVID-19 vaccination, no recommendation can be made about supplementation with PQQ, which, however, we note has no contraindication.

Keywords
pyrroloquinoline quinone, pyrroloquinoline quinone supplementation, mRNA vaccines

Received: November 27th, 2021; Accepted: January 31st, 2022.

To the Editor
The present study aimed to understand if supplementation with pyrroloquinoline quinone (PQQ) may have positive effects to reduce the heart inflammation associated with the administration of COVID-19 mRNA vaccines, which have been claimed to produce COVID-19-like symptoms in some patients, at different degrees of severity. SARS-CoV-2 spike protein-induced inflammations have been shown in many works with attribution in some cases to the spike protein produced by the vaccines by itself rather than the virus.6-15

There is no doubt that oxidative and inflammatory conditions may originate from the administration of the COVID-19 vaccines. Generally speaking, potential risks include local and systemic inflammatory responses and toxic effects of synthetic nucleosides and components for vaccine delivery.16 These risks are generally low but can be more relevant in risk categories such as immune-depressed or immune-compromised patients. Mostly unexplored in the literature is the specific opportunity to develop COVID-19-like symptoms following vaccinations which create the SARS-CoV-2 spike protein, which starts to be understood consistently in the literature.6-9,11-15

mRNA vaccine works by providing the body with genetic information as a form of mRNA to produce viral proteins.17-19 These viral proteins are the spike proteins found on the surface of SARS-CoV-2. These proteins trigger an immune response producing specific antibodies. The vaccine prepares the body to fight off the infection in the case it will come into contact with the pathogen. COVID-19-like symptoms following vaccinations may be the result of the spike protein. This work aims to understand if PQQ supplementation may reduce some of the side effects of COVID-19 mRNA vaccines, more specifically heart inflammatory processes.

PQQ is a pyrroloquinoline having oxo groups at the 4- and 5-positions and carboxy groups at positions 2-, 7-, and 9.20 It is the conjugate acid of PQQ (3-) of chemical formula C14H6N2O8. PQQ is contained in fruits such as papaya or kiwi fruit, vegetables such as spinach, green pepper, parsley or celery, human breast milk, dark chocolate, and green tea.1

PQQ is a supplement for the support of cognitive and mitochondrial functions, also working as a free radicals’ scavenger. PQQ is a redox cofactor and antioxidant.21 It works as a water-soluble vitamin. It is a plant growth factor, a bacterial cofactor, and a pyrroloquinoline cofactor.

PQQ has nutritional importance22 and is physiologically relevant.23 It was proposed as a new redox cofactor vitamin for mammals.24 However, Felton and Anthony25 argued against PQQ being considered a vitamin. Recently,26 PQQ has been described as a longevity vitamin that is not indispensable for survival, but needed for long-term health. PQQ stimulates the growth of microorganisms.27 There are many examples of growth stimulation of microorganisms by PQQ, such as the microbial production of PQQ of, or the report of PQQ as an essential growth factor of a poly (vinyl alcohol)-degrading bacteria of.43

PQQ disodium salt helps with cognitive function and may protect from UVA irradiation-induced aging.28,29 PQQ supports the health of mitochondria, the membrane-bound cell organelles producing most of the chemical energy needed, stored in adenosine triphosphate (ATP), then used to power the biochemical reactions across cells. PQQ protects the
mitochondria from oxidative damage, and is the only nutrient capable of helping the growth of new mitochondria.

Elevated levels of oxidative stress are relevant to many conditions, for example, bone fracture healing. By inhibiting oxidative stress PQQ promoted osteoblastic bone formation, and inhibited osteoclastic bone resorption in a mice model. Also, in a mice model, PQQ protected against exercise-induced fatigue. In chicks, PQQ helped with fatty liver disease. PQQ supplementation helped with reproductive exercise-induced fatigue. In chicks, PQQ helped with fatty liver disease. PQQ supplementation helped with reproductive aging in mice, and helped with mitochondrial biogenesis in a rotenone-induced Parkinson’s disease model.

Especially, heart and brain are dense with mitochondria. PQQ protects the mitochondria from free radicals and promotes the production of new mitochondria within cells. PQQ may thus support heart health and preserve cognitive function. Thus, the literature supports the use of PQQ as an anti-inflammatory substance, as an antioxidant, and a detox substance.

Regarding COVID-19 therapeutic agents, an analysis of the efficacy of different early treatments for COVID-19 was presented (database built on 783 studies as per August 5, 2021). While these treatments do not replace vaccinations or restrictions, they are the only practical, effective, and safe means that can help to reduce the fatality associated with COVID-19 infection. While no treatment is available and effective for all the current and future variants of COVID-19, some treatments can reduce the risk of COVID-19 becoming endemic and reduce mortality and collateral damage.

The literature reports benefits from many different compounds in different stages of COVID-19 infection following different mechanisms of action. Some substances (such as Ivermectin) work as antivirals and their administration may be coupled to vitamins, minerals, and antibiotics. Other substances (such as Fluvoxamine) work as anti-inflammatory agents. Other substances contribute to alleviating the severity of the infection following other pathways. Some of the other compounds mentioned as adjuvants are vitamins, such as vitamin C and D, or minerals, such as zinc. Best opportunities are generally offered for treatments in the early stages of infection, rather than in later, more advanced stages. Some compounds with antioxidant properties, such as quercetin, a plant flavonol, and curcumin, the principal curcuminoïd of turmeric, have been used against COVID-19 infection. No study has been performed so far for the use of PQQ against COVID-19 as either an antiviral or anti-inflammatory agent.

The literature is therefore supportive of the use of PQQ as an anti-inflammatory substance, but there is no support for its use as an anti-inflammatory agent against COVID-19 infection or the inflammatory side effects of COVID-19 vaccines.

As PQQ may help lower inflammation while also improving mitochondrial health, and also work as a detox, PQQ has the potential for an agent mitigating the damage from novel COVID-19 vaccines. The topic of how to fight the side effect of the COVID-19 vaccine is undoubtedly noteworthy. However, there is not enough information for this specific use of PQQ.

As the COVID-19 vaccines work causing an immune response, by using excessive PQQ or other similar anti-inflammatory products, there is in principle also a risk of diminishing the effectiveness of the vaccine by downregulating the immune response. However, this is an extremely remote possibility.

It has been recently discovered that PQQ can prevent chronic heart failure by regulating mitochondrial function. As COVID-19 infection (and to some extent vaccination against COVID-19) has associated cardiovascular complications such as arrhythmias, thrombosis, heart failure, cardiomyopathy, myocardial damage, and acute coronary syndromes, through inflammatory processes linked to the SARS-CoV-2 spike protein, PQQ could likely help against these specific complications of COVID-19 infection, as well as against the side effects of COVID-19 vaccinations.

No contraindication is known for ingesting PQQ from food, despite no recommended dosage information existing for supplementing with PQQ. Excessive doses may certainly have adverse effects, especially on kidneys, but the risks of moderate supplementation are very low. In 2017, the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) concluded that PQQ is perfectly safe under the intended conditions of use as food pursuant. The use of moderate PQQ supplementation appears therefore free of major downfall.

In conclusion, while the measure of the levels of cardiac biomarkers before and after COVID-19 mRNA vaccination is certainly recommended, supplementation with PQQ to avoid side effects of COVID-19 mRNA vaccines is not supported by evidence. Despite there being no proof that PQQ may limit the heart inflammation which may be experienced following COVID-19 mRNA vaccination, as supplementation with PQQ has no contraindication, there is no reason to prevent the uptake of PQQ after COVID-19 mRNA vaccinations. Definitively PQQ is one of the substances to test in cellular and animal models, and during appropriate clinical trials, to discover potential uses against COVID-19 infection and side effects of COVID-19 mRNA vaccines.

Alberto Boretti
Independent Scientist, Johnsonville Road, Johnsonville, Wellington 6037, New Zealand
Email: a.a.boretti@gmail.com

Declaration of Conflicting Interests
The author declared no potential conflicts of interest for the research, authorship, and/or publication of this article.

Funding
The author received no financial support for the research, authorship, and/or publication of this article.
References

1. WebMD Editorial Contributors 2021. What to Know About PQQ Supplements. www.webmd.com/vitamins-and-supplements/what-to-know-about-pqq-supplements

2. Barhoumi T, Alghanem B, Shaibah H, et al. SARS-CoV-2 coronavirus spike protein-induced apoptosis, inflammatory, and oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting enzyme inhibitor (perindopril). Front Immunol. 2021;12:728896. doi:10.3389/fimmu.2021.728896.

3. Khan S, Shafei MS, Longoria C, Schoggins J, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kB pathway. bioRxiv. doi:10.1101/2021.03.16.435700.

4. Patra T, Meyer K, Geerling I, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020;16(12):e1009128.

5. Pan P, Shen M, Yu Z, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12(1):1-17.

6. Biancatelli RMC, Solopov PA, Sharlow ER, Lazo JS, Marik PE, Catravas JD. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in K18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Phys-Lung Cell Mole Phys. 2021;321(2):L477-L484. doi:10.1152/ajplung.00223.2021.

7. Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021;144(6):471-484.

8. Koizumi T, Awaya T, Yoshioka K, et al. Myocarditis after COVID-19 mRNA vaccines. QJM Int J Med. 2021;114(10):741-743. doi:10.1093/qjmed/hcab244.

9. Matta A, Kunadhvanju R, Osman M, et al. Clinical presentation and outcomes of myocarditis post mRNA vaccination: a meta-analysis and systematic review. Cureus. 2021;13(11):ec19240. doi:10.7759/cureus.19240.

10. Satterfield BA, Bhatt DI, Gersh BJ. 2021. Cardiac involvement in the long-term implications of COVID-19. Nat Rev Cardiol. doi:10.1038/s41569-021-00631-3.

11. Lim Y, Kim MC, Kim KH, et al. Case report: acute fulminant myocarditis and cardiogenic shock after messenger RNA coronavirus disease 2019 vaccination requiring extracorporeal cardiopulmonary resuscitation. Front Cardiovasc Med. 2021;8:758996.

12. Habelink D, Lagast A, Novoa-Usm e M, Atmowihardjo I. 2022. A case of myocarditis in a 60-year-old man 48 h after mRNA vaccination against SARS-CoV2. Clin Res Cardiol. 111: 230-232. doi:10.1007/s00392-021-01946-4.

13. Badshah M, Shriner J, Rynders B, Sjovold A, Shaukar MHS, Rajpurohit N. MODERNA mRNA-1273 vaccine-associated myopericarditis in a patient with a subclinical autoimmune predisposition. J Cardiol Cases. 2021;24(5):227-229.

14. Istampoulouoglou I, Dimitriou S, Spāni S, et al. Myocarditis and pericarditis in association with COVID-19 mRNA-vaccination: cases from a regional pharmacovigilance centre. Glob Cardiol Sci Pract. 2021;2021(3):e202118.

15. Chouchana L., Blet A., Al-Khalaf M., et al. 2021. Cardiac inflammation after COVID-19 mRNA vaccines: a global pharmacovigilance analysis. medRxiv. doi:10.1101/2021.08.12.21261955.

16. Doublier M, Papadhymiou A, Kotrognis G, et al. Does COVID-19 vaccine warrant the classical principle “ofelein i mi vlapint”? Medicina (B Aires). 2021;57(3):253. doi:10.3390/medicina57030253.

17. Jackson NA, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines. 2020;5(1):1-6.

18. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discovery. 2018;17(4):261-279.

19. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.

20. molview.org/?cid=1024.

21. Wen H, He Y, Zhang K, et al. Mini-review: functions and action mechanisms of PQQ in osteoporosis and neuro injury. Curr Stem Cell Res Ther. 2020;15(1):32-36.

22. Killgore J, Smidt C, Duich L, et al. Nutritional importance of pyrroloquinoline quinone. In: Iriarte A, Martinez-Carrion M, Kagan HM eds., The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines. 2020;5(1):1-6.

23. Rucker R, Stites T, Steinberg F, Mitchell A. 2000. Physiological importance of pyrroloquinoline quinone. In: Iriarte A, Martinez-Carrion M, Kagan HM eds., The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines. 2020;5(1):1-6.

24. Kasahara T, Kato T. A new redox-cofactor vitamin for mammals. Science. 1989;245(4920):850-852.

25. Doulberis M, Papaefthymiou A, Kotronis G, et al. Myocarditis and pericarditis in association with COVID-19 mRNA-vaccination: cases from a regional pharmacovigilance centre. Glob Cardiol Sci Pract. 2021;2021(3):e202118.

26. Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci USA. 2005;102(5):1832-832.

27. Felton LM, Anthony C. Role of PQQ as a mammalian enzyme cofactor? Nature. 2005;433(7025):E10.

28. Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci USA. 2018;115(43):10836-10844.

29. Ameyama M, Matsushita K, Shinagawa E, Hayashi M, Adachi O. Pyrroloquinoline quinone: excretion by methylotrophs and growth stimulation for microorganisms. BioFactors (Oxford, England). 1988;1(1):51-53.
28. Stites T, Storms D, Bauerly K, et al. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. *J Nutr.* 2006;136(2):390-396.

29. Zhang C, Wen C, Lin J, Shen G. Protective effect of pyrroloquinoline quinone on ultraviolet A irradiation-induced human dermal fibroblast senescence in vitro proceeds via the anti-apoptotic sirtuin 1/nuclear factor-derived erythroid 2-related factor 2/heme oxygenase 1 pathway. *Mol Med Rep.* 2015;12(3):4382-4388.

30. Jonscher KR, Stewart MS, Alfonso–Garcia A, et al. Early PQQ supplementation has persistent long–term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. *FASEB J.* 2017;31(4):1434-1448.

31. Wu X, Zhou X, Liang S, Zhu X, Dong Z. The mechanism of pyrroloquinoline quinone influencing the fracture healing process of estrogen-deficient mice by inhibiting oxidative stress. *Biomem Pharmacothe.* 2021;139:111598.

32. Liu I, Zhang Y, Liu T, et al. Pyrroloquinoline quinone protects against exercise–induced fatigue and oxidative damage via improving mitochondrial function in mice. *FASEB J.* 2021;35(4):e21394.

33. Qu K, Zhao Q, Wang J, Qi GH, Wu SG, Zhang Hj. Effects of pyrroloquinoline quinone on lipid metabolism and anti-oxidative capacity in a high-fat-diet metabolic dysfunction-associated fatty liver disease chick model. *Int J Mol Sci.* 2021;22(5):1458.

34. He J, Wang H, Shi J, Shi M, Sun W. 1, 25-dihydroxyvitamin D deficiency accelerates male reproductive senescence in aging mice and 1, 25 (OH) 2D3 alleviates oxidative stress via NF-κB/SOD. *Am J Phys-Endocrinol Metab.* 2021;320(4):E732-E746.

35. Cheng Q, Chen J, Guo H, et al. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation. *Acta Pharmacol Sin.* 2021;42(5):665-678.

36. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Safety of pyrroloquinoline quinone disodium salt as a novel food pursuant to regulation (EC) No 258/97. *EFSA J.* 2017;15(11):e05058.

37. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. *Nat Rev Cardiol.* 2020;17(9):543-558.

38. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. *Circulation.* 2020;141(20):1648-1655.

39. Xu X, Chen C, Lu WJ, et al. Pyrroloquinoline quinone can prevent chronic heart failure by regulating mitochondrial function. *Cardiovasc Diagn Ther.* 2020;10(3):453-469.

40. Ameyama M, Shinagawa E, Matsushita K, Adachi O. Growth stimulation of microorganisms by pyrroloquinoline quinone. *Agric Biol Chem.* 1984;48(11):2909-2911.

41. Ameyama M, Shinagawa E, Matsushita K, Adachi O. Growth stimulating substance for microorganisms produced by *Escherichia coli* causing the reduction of the lag phase in microbial growth and identity of the substance with pyrroloquinoline quinone. *Agric Biol Chem.* 1984;48(12):3099-3107.

42. Shimao M, Fujita I, Kato N, Sakazawa C. Enhancement of pyrroloquinoline quinone production and polyvinyl alcohol degradation in mixed continuous cultures of *Pseudomonas putida* VM15A and *Pseudomonas* sp. Strain VM15C with mixed carbon sources. *Appl Environ Microbiol.* 1985;49(6):1389-1391.