RESEARCH ARTICLE

Meningeal Hemangiopericytomas and Meningomas: a Comparative Immunohistochemical and Genetic Study

Saoussen Trabelsi¹, Nadia Mama², Maroua Chourabi¹, Maroua Haddaji Mastouri¹, Mohamed Ladib³, Sergey Popov⁴, Anna Burford⁴, Moncef Mokni⁵, Kalthoum Tlili², Hedi Krifa³, Chris Jones⁴, Mohamed Tahar Yacoubi⁵, Ali Saad¹, Dorra H’mida-Ben Brahim¹*

Abstract

Background: The meningeal hemangiopericytoma (MHPC) is a vascular tumor arising from pericytes. Most intracranial MHPCs resemble meningiomas (MNGs) in their clinical presentation and histological features and may therefore be misdiagnosed, despite important differences in prognosis. Materials and Methods: We report 8 cases of MHPC and 5 cases of MNG collected from 2007 to 2011 from the Neuro-Surgery and Histopathology departments. All 13 samples were reviewed by two independent pathologists and investigated by immunohistochemistry (IHC) using mesenchymal, epithelial and neuro-glial markers. Additionally, we screened all tumors for a large panel of chromosomal alterations using multiplex ligation probe amplification (MLPA). Presence of the NAB2-STAT6 fusion gene was inferred by immunohistochemical staining for STAT6. Results: Compared with MNG, MHPCs showed strong VIM (100% of cases), CD99 (62%), bcl-2 (87%), and p16 (75%) staining but only focal positivity with EMA (33%) and NSE (37%). The p21 antibody was positive in 62% of MHPC and less than 1% in all MNGs. MLPA data did not distinguish HPC from MNG, with PTEN loss and ERBB2 gain found in both. By contrast, STAT6 nuclear staining was observed in 3 MHPC cases and was absent from MNG. Conclusions: MNG and MHPC comprise a spectrum of tumors that cannot be easily differentiated based on histopathology. The presence of STAT6 nuclear positivity may however be a useful diagnostic marker.

Keywords: Meningeal hemangiopericytoma - immunohistochemistry - NAB2-STAT6 fusion - molecular analysis

Introduction

Meningeal hemangiopericytoma (MHPC) is a malignant neoplasm which originates from meningeal capillary pericytes (Stout and Murray, 1942). It has been reported to represent 2% to 4% of meningeal tumors, comprising less than 1% of all intracranial tumors (Guthrie et al., 1989). Epidemiological studies reports that MHPC are rare tumors with lower average than meningiomas (MNGs) (Jazayeri et al., 2013). Most intracranial MHPCs mimic MNGs in their clinical and histopathological presentation, as well as their immunohistochemical profile (Rajaram et al., 2004), and are hence often misdiagnosed.

Meningiomas are neoplasms arising from meningothelial cells of the meninges (Larijani et al., 2014). They constitute approximatively 13-26% of all intracranial tumours (Ozbayir et al., 2011). They are most often slow-growing benign tumors, however atypical or anaplastic tumors can be found (Ozbayir et al., 2011). Moreover, atypical anaplastic meningioma has diverse radiological manifestations and MRI technology has certain diagnosis limitations (Wu et al., 2013).

However, MHPC metastasize outside the CNS in 25%-60% of cases, whereas meningiomas metastasize only occasionally (Rajaram et al., 2004). Given this important prognostic difference, the correct diagnosis and thus the appropriate treatment strategy should be adopted.

The recent WHO classification describes HPC, solitary fibrous tumours (SFT) and MNG as a new biomarkers has prompted us to look for potential differences in IHC. According to S.Barthelme et al. (2014) presence of the NAB2-STAT6 fusion gene distinguishes SFT from MHPC (Barthelmess et al., 2014). This fusion is not well described in MHPCs and has not been reported in the specific comparison between MNG and MHPC. Investigation of additional molecular markers in this differential diagnosis has also been lacking.

Materials and Methods

We investigated a cohort of 8 MHPCs and 5 MNGs from adults. MHPC were provided from 3 women and 5 men. The patients' mean age was 52.6 years (range: 18-79 years). The MNGs were provided from 4 women and 1 man. The patients' mean age was 51.2 years (range: 18-72 years).

¹Department of Cytogenetics, Molecular Genetics and Reproductive Biology, ²Department of Histopathology-Cytopathology, Farhat Hached University Hospital, ³Department of Imagery, ⁴Department of Neuro-Surgery, Sousse University Hospital, Sousse, Tunisia, ⁵Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London, UK *For correspondence: dorrahmida@yahoo.fr

DOI: http://dx.doi.org/10.7314/APJCP.2015.16.16.6871
5 men; MNG patients were from 3 women and 2 men. Patients’ ages ranged from 25 to 81 years. 7 of the 8 MHPC locations were supratentorial: 4 occipital, 2 frontal and 1 temporo-occipital. Only 1 MHPC was located in the cerebellum. MNG tumor location was supra-tentorial in 4 cases and infra-tentorial in 1 case. Clinical symptoms at diagnosis were variable: hemiparesis, disorientation, decreased visual acuity, and headache (Table 1).

Immunohistochemistry

An immunohistochemical study was performed on formalin-fixed, paraffin-embedded tissue cut at 4µm using polyclonal antibodies (Table 2).

Immunohistochemistry for STAT6 was carried out as a surrogate for the NAB2-STAT6 fusion. Antigen retrieval was performed at 98°C with DAKO antigen retrieval solution pH 6 for 20 min. Endogenous peroxidase activity

Table 1. Clinical and histopathological data of patients and their developing tumors

Patients #	Age at diagnosis (year)	Sexe	Tumor location	Subtype	Grade
1	70	M	TP	MHPC	II
2	17	F	F	MHPC	II
3	61	M	O	MHPC	II
4	34	F	O	MHPC	III
5	46	M	F	MHPC	I
6	34	F	O	MHPC	III
7	52	M	C	MHPC	I
8	46	F	T	MNG/HPC	III
9	50	M	TO	MNG	III
10	81	M	NA	MNG	II
11	25	F	IE	MNG	II
12	65	F	P	MNG	II
13	45	M	F	MNG	II

*Footnotes: F: female, M: male, C: cerebellum, P: parietal, T: temporal, TP: temporo-parietal, F: frontal; O: Occipital, TO: temporo-occipital, NA: not available, IE: intradural extramedullar, MHPC: meningial hemangiopericytoma, MNG: meningioma

Table 2. Antibodies Results list and Methods in Immunohistochemical Analysis

Antigen	Antibody and manufacturers	Dilution	Antigen retrieval	Staining (%)
EMA	Dako Clone E29	1:100	EDTA PH6	60% 37%
VIM	Dako Clone Vim 3B4	1:100	EDTA PH6	100% 50%
Bcl2	Dako Clone 124	1:50	EDTA PH6	87% 50%
CD56	Neomarker Clone 123C3D5	1:50	EDTA PH6	25% 40%
S100	Dako Clone	1:300	/	12% 40%
Synaptophysine	Neomarker Clone Rb-SP111-RM	1:200	EDTA PH6	0% 0%
P21	Novocastra Clone 4D10	1:40	EDTA PH6	62% 20%
P16	Dako Clone K334	1:50	EDTA PH6	75% 40%
CD34	Dako Clone Qbend 10	1:50	EDTA PH6	37% 40%
NSE	Dako Clone BBS/NC/V1H14	1:50	EDTA PH6	37% 80%
CD99	Novocastra clone HO36-I-1	1:20	EDTA PH9	62% 40%
ACE	Dako Clone 11-7	1:50	EDTA PH6	0% 0%
F8	Dako Clone F8/86	1:50	EDTA PH6	0% 0%
Des	Dako clone D33	1:50	EDTA PH9	0% 0%
GFAP	Dako Clone Poly ZCG23	1:300	EDTA PH6	0% 0%
K167	Dako Clone MIB1	1:300	EDTA PH6	27% 14%
STAT6	Santa Cruz (S-20; sc-621)	1:300	EDTA PH6	37% 0%

Footnotes: (i) without antigen retrieval
was blocked with 3% hydrogen peroxide in methanol. The detection system used was Novolink Polymer (Leica Microsystems, Newcastle Ltd) with diaminobenzidine as a chromogen. The slides were counterstained with hematoxylin.

DNA extraction

Tumor genomic DNA was extracted from either fresh tissue using a standard phenol:chloroform protocol, or FFPE tissues according to The QIAamp DNA FFPE Tissue kit according to the manufacturers protocol (QIAGEN).

Multiplex ligation probe amplification (MLPA)

MLPA is a multiplex PCR technique in which up to 45 specific sequences are simultaneously quantified in a single reaction. For this multigenic technique, a specifically designed set of probes was used to test for chromosomal abnormalities - SALSA MLPA Kits P105, P370 and P088 (MRC Holland, Amsterdam, The Netherlands).

Fragments were separated by electrophoresis on the ABI Prism 310 capillary genetic analyser. Data analysis was performed with “GeneMarker™” software (SoftGenetics). Thresholds to detect losses and gains of genetic material were set respectively at 0.75 and 1.25.

Results

Histology

Microscopically, MHPCs showed a variable cell proliferation rate and focal necrosis. All studied MNG showed a high cellular proliferation rate and are thus classified as a high grade MNG. The MHPC group showed oval and atypical cells with high vascularity. Areas presenting surrounding branched vessels exhibiting a staghorn pattern were specifically seen in MHPCs.

Table 3. Genetic and immunohistochemistry results

Tumor #	MLPA	CDKN2A	PTEN	EGFR	TP53	ERBB2	
	1p36	19q13	7q36	9p21	10q26	11p11	17q
MHPC							
#1	NS	gain	NS	NS	Loss	NS	NS
#2	gain	NS	NS	NS	gain	NS	NS
#3	gain	gain	Loss	NS	NS	NS	NS
#4*	gain	gain	Loss	NS	Loss	NS	NS
#5	gain	gain	gain	NS	Loss	NS	NS
#6	gain	NS	Loss	NS	NS	NS	NS
#7	gain	NS	NS	NS	NS	NS	Loss
#8*	gain	gain	NS	NS	Loss	gain	NS
MNG							
#9	NS	NS	NS	NS	Loss	NS	NS
#10	gain	gain	NS	gain	NS	gain	gain
#11*	NS	NS	NS	NS	Loss	NS	NS
#12	NS	gain	NS	loss	Loss	NS	NS
#13	gain	NS	NS	NS	loss	Loss	NS

Tumor #	IHC	VIM	Syn	ACE	F8	Des	GFAP	EMA	CD34
MHPC									
#1	+++	-	-	-	-	-	-	-	+
#2	+	-	-	-	-	-	-	-	-
#3	+	-	-	-	-	-	+	+	-
#4*	+	-	-	-	-	-	+f	-	
#5	+	-	-	-	-	-	-	-	-
#6	++	-	-	-	-	-	+f	++	-
#7	+++	-	-	-	-	-	+++	-	-
#8*	+++	-	-	-	-	-	ND	++	
MNG									
#9	+	-	-	-	ND	-	-	-	+
#10	+f	-	-	-	-	-	+	-	
#11*	+	-	-	-	-	-	++	-	
#12	ND	-	-	-	-	-	+	-	
#13	+	-	-	-	-	-	+f	+f	
Mitoses were frequently observed in MNG but were rare in MHPC (Figure 1, suplementary Table).

Immunohistochemistry

No immunoreactivity was seen for ACE, F-VIII, Desmin, Synaptophysin and GFAP in any analysed samples. MHPCs express the VIM, CD34, CD99 and Bcl2 (7,4,5,7 cases) in the neoplastic cells more than MNGs (2,1,3,2). EMA expressing rates were higher in MNGs (3) than MHPCs (2). p21 was positive in 62% of MHPCs and less than 1% in all MNGs.

Based on morphological and immunohistochemical staining features, a final diagnosis of anaplastic meningeal hemangiopericytoma was made in all 8 studied tumors.

Tumor #	CD99	Bcl2	P21	P16	CD56	S100	stat6
#1	-	+	-	+	-	-	-
#2	+	+	40%	+	-	-	-
#3	+	+	50%	ND	-	-	-
#4*	-	+	90%	-	-	-	n
#5	+	+	+	+	-	-	-
#6	+++	+	-	+f	-	-	n
#7	+	-	-	-	-	-	-
#8*	-	+	1%	-	-	ND	n/c

MHPC

Tumor #	CD99	Bcl2	P21	P16	CD56	S100	stat6
#9	+	+	3%	+	+	-	-
#10	+	+	-	+	ND	+	-
#11*	-	-	1%	+f	+	+	-

MNG

Tumor #	CD99	Bcl2	P21	P16	CD56	S100	stat6
#12	+	+f	++	-	-	-	-

Table 4. Hemangiopericytomas and Meningiomas histological description

Tumor #	Proliferation	Cell shape	Vascularity	Collagen	Mitosis	Necrosis
1	H	O,Fu	H	+	Rare	-
2	Var	O,R	H	-	Frq	-
3	H	O,Fu	H	-	Rare	+
4	H	O	M	+	Rare	+
5	H	O,Fu	H	+	Rare	+
6	H	O	H	+	Rare	-
7	H	O,R /	Frq	-		
8	M	Fu	H	-	Frq	-
9	H	O /	Frq	+		
10	H	Fu,R	/	-		
11	H	R /	-	-		
12	H	Fu	H	Frq		

Footnotes: MHPC: Meningial Hemangiopericytoma, MNG: meningioma, (NS): normal status, (-) : negative staining , (+): weak positive staining, (++): moderate positive staining, (++++): high positive staining, (+f) : focal staining, (n) : nuclear staining, (c) : cytoplasmic staining, (n/c): nuclear and cytoplasmic staining, ND : not determined, (*) : Tumor section with STAT6 staining presented in figure 1

Mitoses were frequently observed in MNG but were rare in MHPC (Figure 1, supplementary Table).

STAT6 expression

As expected, the 5 MNGs were negative for STAT6 expression, used a surrogate for the NBA2-STAT6 fusion gene. Nuclear staining was exclusively present on 3 out of 8 MHPC specimens. 2 positive MHPCs specimens represent a first tumor and its relapse (tumor #4 and #6). The third positive MHPC for STAT6 was according to histology and IHC investigations set as an uncertain diagnosis case. The STAT6 labelling showed a focal area of nuclear positivity in addition to abundant cytoplasmic staining in the same tumor section (tumor # 8) (Figure 1).

Molecular analysis

We used a molecular approach based on copy

6874 Asian Pacific Journal of Cancer Prevention, Vol 16, 2015
Meningeal Hemangiopericytomas and Meningomas - a Comparative Immunohistochemical and Genetic Study.

Intracranial MHPC is a dural-based neoplasm that highly mimics MNGs. The World Health Organization has separated MHPCs from MNGs since 1993, and individualized MHPCs as a “mesenchymal, non-meningothelial” tumor (Chan et al., 2012). With the exception of MHPC clinical outcome, there are few distinguishing features between MHPC and MNG.

Chiechi et al reported that MHPC occurs in locations similar to MNG (Chiechi et al., 1996; Akiyama et al., 2004). They are found mostly at supratentorial, less frequently at infratentorial, very rarely intraventricular and even intraparenchymal locations have been reported (Muttaqin et al., 1991; Abrahams et al., 1999; Alen et al., 2001; Kuzeyli et al., 2003). Similarly, most of MHPC as well as MNG in our cases are in a supratentorial location.

The pathological features crucial for the diagnosis also remain the most controversial. Further, the immunoprofiles of MHPC and MNG were reported as slightly different (Shoji et al., 2002). The most important IHC markers thought to be diagnostically useful are EMA and CD34. The EMA is an epithelial marker reported positive in MNG but focal staining occurring in some MHPCs led to diagnostic uncertainty (Rajaram et al., 2004). CD34 is thought to be specific for MHPCs but was also reported to be controversial with a positive staining noted in MNG (Rajaram et al., 2004). However, Bcl-2 has been reported as very sensitive marker to MHPCs (Rajaram et al., 2004).

In our study, EMA as a highly sensitive meningothelial marker was found to be positive in 60% of our MNGs. Nonetheless, an EMA focal staining was observed in 33% of MHPCs. Thus EMA expression cannot preclude the diagnosis of MHPC. Bcl-2 was positive in 62% of MHPCs, however a focal weak signal was also observed in 40% of MNG. As reported by other studies CD99 proves to be another marker that MHPC strongly express (Rajaram et al., 2004). In our series it proved to be a sensitive marker with MHPC (62%) but still remains positive in MNG (40%). In fact, both CD99 and Bcl-2 highlight the extensive overlap between the two tumor groups.

In accordance with Shoji et al, the majority of MHPCs strongly express p21, whilst it is almost entirely absent from MNGs p21, is the product of the WAF1/CIP1/SDI1 gene and an inhibitor of cyclin-dependent kinases. It has been clearly demonstrated that prognostic significance of p21 is enhanced in combination with other apoptotic factors (i.e. p53) and associated with a better outcome (Shoji et al., 2002). The absence of p21 expression in MNG may be associated with their high grade.

We noted that the genetic profiles of MHPC and MNG were very similar except for CDKN2A loss predominantly present in MNGs. CDKN2A loss was previously described in anaplastic tumors and it matched with the high-grade histological description in our MNG samples (Bostrom et al., 2001).

ERBB2 belongs to the receptor tyrosine kinase family I. It has an important role in regulating the anti-apoptotic phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (PKB)/AKT signalling pathway (Gilbertson et al., 1998; Elenius et al., 1999). ERBB2 is located on chromosome 17q11.2–q12, a region frequently gained in several tumors as found in our MNGs (de Bont et al., 2008). PTEN is located at 10q23.3, a chromosomal region frequently implicated in tumor malignancy. In contrast to a previous report (Peters et al., 1998), we found PTEN loss in 3 MNG. This gene loss was also detected in 4 MHPCs and is therefore not specific to either entity.

In our study, both IHC markers and genetic profiles did not discriminate MNG from MHPC. A fusion gene between NAB2 and STAT6 has been recently identified as potential marker specific for SFT (Barthelmess et al., 2000). The absence of STAT6 in MHPC is thought to be specific for the diagnosis of SFT (Shoji et al., 2002). The absence of STAT6 in MHPC (60%) in our cases is in agreement with the above-mentioned reports (Kuzeyli et al., 2003; Peters et al., 1998).

In our series all MNGs were negative for transcription factor E2F1 (p107/p130). The absence of E2F1 expression was also reported in MNG (de Bont et al., 2008). In contrast to MNGs E2F1 was positive in 2 of 4 MHPCs. This supports the idea that E2F1 is a sensitive marker for MHPCs (Shoji et al., 2002). E2F1 is known to be an important regulator of cell proliferation (Simon et al., 1998).

Prognostically there is an important role for the cell cycle arrest protein p21. This tumor suppressor gene is located on chromosome 17p13.1 and encodes for a cyclin-dependent kinase inhibitor. The absence of p21 expression in MHPCs was reported in 60%. The presence of p21 expression in MNG was restricted to 1 of 5 cases (Shoji et al., 2002). p21 is also upregulated by the Rb tumor suppressor gene (Pietenpol et al., 1995; Taniguchi et al., 1995). In accordance with Shoji et al, the majority of MHPCs strongly express p21, whilst it is almost entirely absent from MNGs (Peters et al., 1998). We found p21 expression in 62% of MHPCs, but only in 40% of MNGs. In fact, both CD99 and Bcl-2 highlight the extensive overlap between the two tumor groups.
Acknowledgements

We are grateful to all patients for their contribution. We also extend special thanks to all members of GETUC “Groupe d’Etude des Tumeurs Cerebrales” and Glioma team at the Divisions of Molecular Pathology and Cancer Therapeutics at the Institute of Cancer Research in Sutton, UK.

References

Abrahams JM, Forman MS, Lavi E, et al (1999). Hemangiopericytoma of the third ventricle. Case report. J Neurosurg, 90, 359-62.

Aktyama M, Sakai H, Onoue H, et al (2004). Imaging intracranial haemangiopericytomas: study of seven cases. Neuoradiol, 46, 194-7.

Alen JF, Lobato RD, Gomez PA, et al (2001). Intracranial hemangiopericytoma: study of 12 cases. Acta Neurochir (Wien), 143, 575-86.

Barthelmes S, Geddert H, Boltze C, et al (2014). Solitary fibrous tumors/hemangiopericytomas with different variants of the NAB2-STAT6 gene fusion are characterized by specific histomorphology and distinct clinicopathological features. Am J Pathol, 184, 1209-18.

Boström J, Meyer-Puttitz B, Wolter M, et al (2001). Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol, 159, 661-9.

Chan JK, Cheuk W, Ho LC, et al (2012). Recurrent meningeal hemangiopericytoma with multiple metastasis and hypoglycemia: a case report. Case Rep Med, 2012, 628756.

Chiechi MV, Smirniotopoulos JG, Mena H (1996). Intracranial hemangiopericytomas: MR and CT features. AJNR Am J Neuroradiol, 17, 1365-71.

de Bont JM, Packer RJ, Michiels EM, et al (2008). Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol, 10, 1040-60.

Elenius K, Choi CJ, Paul S, et al (1999). Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase. Oncogene, 18, 2607-15.

Gilbertson RJ, Clifford SC, MacMeekin W, et al (1998). Expression of the ErbB-neuregulin signaling network during human cerebellar development: implications for the biology of medulloblastoma. Cancer Res, 58, 3932-41.

Guthrie BL, Ebersold MJ, Scheithauer BW, et al (1989). Meningeal hemangiopericytoma: histopathological features, treatment, and long-term follow-up of 44 cases. Neurosurg, 25, 514-22.

Iwaki T, Fukui M, Takeshita I, et al (1988). Hemangiopericytoma of the meninges: a clinicopathologic and immunohistochemical study. Clin Neuropathol, 7, 93-9.

Jazayeri SB, Rahimi-Movaghar V, Shokraneh F, et al (2013). Epidemiology of primary CNS tumors in Iran: a systematic review. Asian Pac J Cancer Prev, 14, 3979-85.

Kazeyli K, Cakir E, Karaarslan G, et al (2003). Primary parenchymal cerebral cystic hemangiopericytoma: a 5-year follow up of disease progression. Australas Radiol, 47, 88-91.

Larjani L, Madjid Z, Samadikuchaksaraei A, et al (2014). Methylation of O6-methyl guanine methyltransferase gene promoter in meningiomas--comparison between tumor grades I, II, and III. Asian Pac J Cancer Prev, 15, 33-8.

Muttaqin Z, Uozumi T, Kuwabara S, et al (1991). Intraventricular hemangiopericytoma--case report. Neurol Med Chir (Tokyo), 31, 662-5.

Ozbayir T, Malak AT, Bektas M, et al (2011). Information needs of patients with meningiomas. Asian Pac J Cancer Prev, 12, 439-41.

Peters N, Wellenreuther R, Rollbrocker B, et al (1998). Analysis of the PTEN gene in human meningiomas. Neuropathol Appl Neurobiol, 24, 3-8.

Rajaram V, Brat DJ, Perry A (2004). Anaplastic meningioma versus meningeal hemangiopericytoma: immunohistochemical and genetic markers. Hum Pathol, 35, 1413-8.

Schweizer L, Koelsche C, Sahn F, et al (2013). Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol, 125, 651-8.

Shoji T, Tanaka F, Takata T, et al (2002). Clinical significance of p21 expression in non-small-cell lung cancer. J Clin Oncol, 20, 3865-71.

Stout AP, Murray MR (1942). Hemangiopericytoma: a vascular tumor featuring zimmermann’s pericytes. Ann Surg, 116, 26-33.

Wu QW, Yan RF, Li Q, et al (2013). Magnetic resonance image manifestations of the atypical meningioma. Asian Pac J Cancer Prev, 14, 6337-40.