Supporting Information

Table S1 the preparation details of the corresponding CNF@NiMo samples

Samples	NiNO$_3$·6H$_2$O /mmol	Na$_2$MoO$_4$·2H$_2$O /mmol	H$_2$O /ml	CH$_3$CH$_2$OH /ml
CNF@NiMo-0.5	0.5	0.5	15	15
CNF@NiMo-1	1	1	15	15
CNF@NiMo-2	2	2	15	15
CNF@NiMo-3	3	3	15	15
Figure S1. Typical SEM images of carbon nanofibers: (a) low magnification; (b) high magnification
Figure S2. (a) N\textsubscript{2} adsorption-desorption isotherms of CNF@NiMo-0.5, CNF@NiMo-1, CNF@NiMo-2, CNF@NiMo-3 and (b) the corresponding pore size distributions.
Figure S3. (a) N$_2$ adsorption-desorption isotherms of pure CNFs before NiMoO$_4$ grown and (b) the corresponding pore size distributions.
Figure S4. TGA curves of the CNF@NiMo-0.5, CNF@NiMo-1, CNF@NiMo-2, CNF@NiMo-3 and CNFs

Figure S5. XRD pattern of the TGA residue
Figure S6. The characterization of TGA residue, (a) SEM image and (b) the corresponding EDS spectroscopy.
Figure S7. (a) the CV curves and (b) the Galvanostatic charge/discharge voltage profiles of pure NiMoO$_4$ synthesized by the same procedure with CNF@NiMo-2.
Figure S8. (a) the CV curves and (b) the Galvanostatic charge/discharge voltage profiles of pristine CNFs electrode
Figure S9. (a) the CV curves and (b) the Galvanostatic charge/discharge voltage profiles of activated carbon.
Table S2 Summary of the reported NiMoO₄ based materials (in term of the specific surface area, the specific capacitance and the rate capability)

Materials	Specific Surface Area	Specific Capacity (1 A g⁻¹)	Rate Capability (20 A g⁻¹)	Reference
NiMoO₄ Nanospheres	58.2 m² g⁻¹	974 F g⁻¹	84% 10 A g⁻¹	[1]
NiMoO₄ Nanosheet/NF	79 m² g⁻¹	1221 F g⁻¹	79% 20 A g⁻¹	[2]
NiMoO₄·H₂O nanoflake/NF	14.1 m² g⁻¹	1300 F g⁻¹	73% 10 A g⁻¹	[3]
NiMoO₄ nanosheets	107.4 m² g⁻¹	1200 F g⁻¹	<75% 20 A g⁻¹	[4]
NiMoO₄·H₂O nanotubes	128.5 m² g⁻¹	864 F g⁻¹	70% 4 A g⁻¹	[5]
NiMoO₄ nanorod/rGO	50.8 m² g⁻¹	1274 F g⁻¹	45% 10 A g⁻¹	[6]
CNF@NiMo-2	283 m² g⁻¹	1840 F g⁻¹	81% 10 A g⁻¹	This Work
			78% 20 A g⁻¹	
Reference	Author(s)	Journal/Book	Page/Volume	
-----------	---	--	--	
[1]	D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, H. Huang, Q. Li, T. Wang	ACS Applied Materials & Interfaces 5 (2013)	12905	
[2]	S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou	Advanced Energy Materials 5 (2015)	1401172	
[3]	C. Qing, Y. Liu, X. Sun, X. Ouyang, H. Wang, D. Sun, B. Wang, Q. Zhou, L. Xu, Y. Tang	RSC Advances 6 (2016)	67785	
[4]	D. Cai, B. Liu, D. Wang, Y. Liu, L. Wang, H. Li, Y. Wang, C. Wang, Q. Li, T. Wang	Electrochimica Acta 115 (2014)	358	
[5]	Z. Yin, S. Zhang, Y. Chen, P. Gao, C. Zhu, P. Yang, L. Qi	Journal of Materials Chemistry A 3 (2015)	739	
[6]	T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, W. Zhou	Electrochimica Acta 180 (2015)	998	