Fluctuation–induced phase in CsCuCl$_3$ in transverse magnetic field: Theory

A. E. Jacobs, and Tetsuro Nikuni

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

(March 24, 2022)

Abstract

CsCuCl$_3$ is a quantum triangular antiferromagnet, ferromagnetically stacked, with an incommensurate (IC) structure due to a Dzyaloshinskii–Moriya interaction. Because of the classical degeneracy caused by the frustration, fluctuations in CsCuCl$_3$ have extraordinarily large effects, such as the phase transition in longitudinal magnetic field (normal to the planes, parallel to the IC wavenumber q) and the plateau in q in transverse field (perpendicular to q). We argue that fluctuations are responsible also for the new IC phase discovered in transverse field near the Néel temperature T_N, by T. Werner et al. [Solid State Commun. 102, 609 (1997)]. We develop and analyse the corresponding minimal Landau theory; the effects of fluctuations on the frustration are included phenomenologically, by means of a biquadratic term. The Landau theory gives two IC phases, one familiar from previous studies; properties of the new IC phase, which occupies a pocket of the temperature–field phase diagram near T_N, agree qualitatively with those of the new phase found experimentally.

64.70.Rh, 75.10.Jm, 75.25.+z, 75.50.Ee
I. INTRODUCTION

Compounds based on the triangular antiferromagnet (TAFM), particularly members of the ABX_3 family, have provided a wealth of interesting behaviour and indeed many surprises, as recently reviewed.[1] Because of the extraordinarily large effects of quantum and thermal fluctuations, CsCuCl$_3$ (with Néel temperature $T_N = 10.65\,$K and zero–temperature saturation field $H_S \approx 30\,$T) ranks among the most interesting of these compounds; the surprises began 20 years ago[2] and continue still, in theory as well as in experiment.

The magnetic properties of CsCuCl$_3$ are due to the Cu$^{2+}$ ions ($S = 1/2$); these form a stacked triangular lattice, to a good approximation. The interaction in the planes is antiferromagnetic and therefore frustrated. Normal to the planes (in the chain or stacked triangular lattice, to a good approximation. The interaction in the planes is antiferromagnetic and therefore frustrated. Normal to the planes (in the chain or c direction), a ferromagnetic interaction competes with a Dzyaloshinskii–Moriya (DM) interaction[3]. giving an incommensurate (IC) structure with wavenumber $q = q_z$ in the c direction. In more detail, the classical, zero–temperature structure in zero magnetic field is the three–sublattice, $\pm 120^\circ$ TAFM structure; the spins lie in the planes, rotating by $\approx 5.1^\circ$ per plane[4]. Application of a magnetic field yields a variety of interesting phenomena related to the classical degeneracy of the TAFM; recall that the classical ground state of the TAFM is continuously (and also discretely) degenerate, even in a magnetic field, and also that thermal fluctuations[5] break the continuous degeneracy in the same way, both selecting for example the colinear structure at $H \approx H_S/3$.

In longitudinal magnetic field (normal to the planes, parallel to the IC wavenumber q), the low–temperature magnetization is discontinuous[6] at $H \approx 0.4H_S$, due to a novel, fluctuation–induced phase transition[7]; the umbrella structure is optimal at small H (due to a small, easy–plane anisotropy in the interplane exchange[8]) and a coplanar structure is optimal at larger H (due to quantum fluctuations). Other experiments[9] support the Nikuni–Shiba analysis[10]. In summary, CsCuCl$_3$ in longitudinal field appears to be understood, except that the transition at high temperature T has puzzling features[11].

A transverse field (in the planes, perpendicular to q) gives more surprises. The behaviour at low fields is conventional: q decreases quadratically with H, and the curvature increases[12] with T. Classical (mean–field) theory[13]–[14] gives both of these and also a transition to the commensurate (C) phase at $H \approx 0.47H_S$ (at $T = 0$); this transition has recently been observed[15], but at larger H ($\approx 0.58H_S$). Classical theory cannot, however, explain any of the following: At low T, unusual behaviour occurs for fields near $H = H_S/3$, well below the IC→C transition; structure is found in the magnetization[16] in the 133Cs NMR shift[17], in the IC wavenumber (Ref. [18] finds a plateau), and in ESR measurements[19]. At high T, a second IC phase appears and T_N increases with field[20]

At low T, the structure near $H_S/3$ seems related to changes, induced by quantum fluctuations, in the structure of the TAFM near the same field[21]–[22]. Linear spin–wave (LSW) theory, which adds the leading quantum correction to classical theory, gives a plateau in the magnetization of the C state[23] (as for the TAFM), a promising start. But there is another surprise, this time in theory. Not only does LSW theory of the IC phase fail to explain any of the other results, it actually provides a worse description of the IC phase than does classical theory, by predicting a premature IC→C transition[24] at $H \approx 0.32H_S$. An innovative phenomenological theory of quantum fluctuations explains the existence of the plateau[25] in q, and also its level. The theoretical value ($H \approx 0.44H_S$) for the field at
the IC→C transition is however too small, and the magnetization is not predicted well; likely the phenomenological theory can be improved.

Both new findings near T_N, namely the increase of T_N with field (as in the TAFM) and the second IC phase, are likely due to thermal fluctuations; neither has yet been treated theoretically. Because a microscopic or numerical treatment of fluctuations is out of the question for a vector–spin system with a nonsinusoidal IC structure, we use phenomenology. To treat a particular aspect of fluctuations near T_N, namely effects related to the breaking of the classical degeneracy of the TAFM, we add to the standard Landau theory a term biquadratic in the order parameter, as in our treatment of quantum fluctuations at $T=0$; this term appears neither in the Hamiltonian nor in mean–field theory at any T. Of course this term is not intended to include fluctuation effects in general (such phenomenology cannot possibly explain the reduction of T_N from the mean–field value of 35.5 K to the experimental value of 10.65 K).

In qualitative agreement with experiment, the Landau theory predicts a second IC phase to exist in a small T–H region near T_N. As discussed in the preceding article and in Section IV, the theory explains other properties of the new phase, qualitatively; as discussed in the Appendix, however, it does not explain the increase of T_N with H. The new phase is the high–T version of a state which arose in the classical theory; the state exists at all T in classical (mean–field) theory, but is never optimal. We argue that the new phase owes its existence to fluctuations; these are strong enough to overcome an energy difference in classical theory, just as quantum fluctuations in longitudinal field overcome the small anisotropy. A unifying feature is that the two most striking of the experimental results in transverse field, namely the plateau in q and the new phase near T_N, are explained using the same phenomenological treatment of fluctuations, in Ref. and here respectively.

Remarkably then, CsCuCl$_3$ displays a fluctuation–induced phase transition in transverse field, and a different fluctuation–induced phase transition in longitudinal field.

II. HAMILTONIAN

The main interactions are described by the Hamiltonian

$$H = \sum_{i,n}[-2J_0 \mathbf{S}_i \cdot \mathbf{S}_{i,n+1} - D \mathbf{z} \cdot (\mathbf{S}_i \times \mathbf{S}_{i,n+1}) + J_1 \sum_k \mathbf{S}_i \cdot \mathbf{S}_{kn} - g \mu_B H \mathbf{x} \cdot \mathbf{S}_i],$$ \hspace{1cm} (1)

where \mathbf{S}_i is the spin operator at the ith site in the nth a–b plane, \mathbf{z} and \mathbf{x} are unit vectors in the c and a directions, and the k sum is over the six, in–plane, nearest neighbours of the site $i n$. The first term ($\propto J_0$) is the isotropic, ferromagnetic exchange interaction between spins in nearest–neighbour planes, the second ($\propto D$) is the interplane DM interaction, the third ($\propto J_1$) is the isotropic, frustrated, antiferromagnetic exchange interaction between nearest-neighbour spins in the a–b planes, and the fourth is the Zeeman energy in a field H transverse to the chains. We omit the easy–plane anisotropy in the interplane interaction, the dipole–dipole interaction, and several other effects. The coefficients have been estimated previously; we use $J_0 = 28$ K, $J_1 = 4.9$ K and $D = 5$ K. The saturation field, above which each spin is aligned with the field at $T=0$, is $H_S = 18J_1S/(g\mu_B) \approx 30$ T.

At the classical level, the intrachain exchange term (J_0) favours states with spins parallel in adjacent a–b planes while the smaller DM term (D) favours states with spins in the planes
and rotating by $\pi/2$ per plane. At zero field, for all $T < T_N$, the spins lie in the planes, forming the 120° structure with three sublattices. The structure normal to the planes is helical; the wavenumber at $H = 0$ is $q_0 \hat{z}$ where $q_0 = \arctan (D/(2J_0)) \approx 2\pi/71$. A transverse field deforms the helical structure, which becomes highly nonsinuso idal at higher H.

For $T = 0$, the above Hamiltonian was investigated in the classical approximation, and the leading quantum correction was obtained using linear spin–wave (LSW) theory. Neither theory can account for the structure observed near $H_S/3$, but a phenomenological treatment of quantum fluctuations is largely successful.

The extension of classical theory to $T > 0$ (by mean–field theory) gives a phase diagram with only one IC phase, and so an understanding of the new IC phase near T_N seems to require including fluctuations at some level. A satisfactory microscopic treatment of fluctuations in CsCuCl$_3$ is out of the question at $T = 0$, and they are even more difficult to treat for $T > 0$, leaving it seems only a phenomenological approach. For general $T > 0$, one could simply add the biquadratic term to the mean–field expression for the free energy, but the coefficient would have to be adjusted as fluctuation effects increase with T, requiring a fit at each T or strong guidance from theory; this approach would be most reasonable near T_N, if the mean–field free energy were expanded to fourth order in the order parameter. We have chosen instead to use a fourth–order Landau theory.

III. LANDAU THEORY

The following describes a minimal Landau theory of CsCuCl$_3$ near T_N; usually, Landau theory is reliable regarding the phase diagram, less reliable regarding the order of the transitions, and unreliable regarding fine details like the position dependence of the order parameter. We assume a structure with three sublattices in the a–b planes and with period L in the c direction (in units of the layer spacing); the restriction to integer L causes no difficulty. We assume also that the spins remain in the a–b planes at all H and T. Curiously, the DM term is not sufficient for this; the easy–plane anisotropy helps of course, but fluctuation effects seem to be necessary. In mean–field theory, the free energy would be expressed in terms of the site–dependent magnetization $\langle S_{jl} \rangle$, where $j = 1, 2, 3$ is the sublattice index and $l = 1, \ldots, L$ is the layer index. In Landau theory, the free energy is expanded in the order parameter m_{jl}, which is only proportional to $\langle S_{jl} \rangle$.

Explicitly, we use the following expression for the free energy F of the N spins, relative to the paramagnetic state at $H = 0$:

$$F = \frac{N}{3L} \sum_{j=1}^{3} \sum_{l=1}^{L} \left[\frac{1}{2} \alpha_1 m_{jl}^2 + \alpha_2 m_{jl} \cdot m_{j+1,l} - h \hat{x} \cdot m_{jl} + \frac{1}{4} \gamma_1 m_{jl}^4 - \frac{1}{2} \gamma_2 (m_{jl} \cdot m_{j+1,l})^2 - \delta_1 m_{jl} \cdot (m_{j,l+1} - m_{jl}) - \delta_2 \hat{z} \cdot (m_{jl} \times m_{j,l+1}) \right]. \quad (2)$$

This expression differs in major respects from the mean–field expansion to fourth order in m (or (S)). On the one hand, we omit from the expansion many terms of the same order as the ones we keep, second–order terms as well as fourth–order terms; on the other, and more importantly, we add a fourth–order term which does not appear in the expansion. All seven terms are essential. The third term in Equation (2) is the Zeeman energy; the
Landau parameter h is proportional to the magnetic field H. The terms with coefficients α_1 and γ_1 are standard, while those with coefficients α_2, δ_1 and δ_2 result respectively from the in–plane antiferromagnetic interaction, the interplane ferromagnetic interaction and the DM interaction. The terms in α_1 and δ_1 are adjusted so that the latter makes no contribution to the energy of the commensurate state.

The remaining term, the biquadratic term $-\frac{1}{2}\gamma_2 (m_{jl} \cdot m_{j+l,l})^2$, appears neither in the Hamiltonian nor in the mean–field theory. It is introduced purely phenomenologically, to represent (to the extent possible) the effect of fluctuations (here thermal); the first such phenomenological use of the term was in Ref. 29. In the TAFM, fluctuations (quantum or thermal) act to favour the colinear phase at intermediate fields, and therefore we require $\gamma_2 > 0$; since the strength of the fluctuations is however unknown, γ_2 is otherwise adjustable (except that $\gamma_2 < 0.5$ for stability). In the TAFM, and in the C state of CsCuCl$_3$, the fluctuations break the classical degeneracy, selecting one state from the many. Their effect in the IC phase of CsCuCl$_3$ is far more subtle, for two reasons: first, the IC structure forbids the quantum selection possible in a C structure; second, the classical IC phase is unconventional, being well described as a continuous sequence of degenerate commensurate states. The fluctuations act to reorient the spins, giving a conventional IC phase with domain walls separating nearly commensurate regions. This is why LSW theory of the IC phase fails: a treatment beyond LSW theory is necessary to account for the reorientation.

The above Landau theory is of course related to the mean–field theory of the ferromagnetically stacked TAFM near T_N. Equation (3) of Ref. 36 (on the XY model), with $B_i = 9T_N/5$ for $i = 1$ to 6, reduces to our Equation (2) with the last three terms (coefficients γ_2, δ_1 and δ_2) omitted, although some effort is needed to see this. As discussed in Ref. 36, the colinear phase stable at intermediate fields cannot be obtained from this theory; it is obtained however if only B_4 is different from (less than) the other B_i, or if B_2 (or B_3) is different. Ref. 36 noted that some effects of fluctuations can be mimicked by allowing some Landau coefficients to depart from their mean–field values; these authors did not consider the biquadratic term explicitly, but their intention was like ours, to break the classical TAFM degeneracy.

From the Hamiltonian, we expect the coefficients α_2, δ_1 and δ_2 to be proportional to $6J_1$, $2J_0$ and D respectively. To reduce the number of parameters, we normalize the order parameter and the free energy so that $\alpha_2 = 1$ and $\gamma_1 = 1$. Then the interlayer coefficients are $\delta_1 = 2J_0/(6J_1) \approx 1.9$ and $\delta_2 = D/(6J_1) \approx 0.17$. Of the remaining parameters α_1, h, and γ_2, only α_1 depends on T. At $H = 0$, the IC–paramagnetic transition at $T_N(0)$ occurs at $\alpha_1 \approx 1.015$; $\alpha_1 = 1$ is the upper limit of the C phase at $H = 0$. In Landau theory, the transition at $T_N(0)$ is second–order. Experiment finds tricritical or weakly first–order behaviour; the latter is obtained in a recent Monte–Carlo analysis of a related model.

The unknown constants of proportionality involving m and h can be determined by comparing the Landau and mean–field theories. From Equation (2), the Landau energy (per spin) of the paramagnetic state at $\alpha_1 = 1$ is $\frac{3}{2}m^2 - hm + \frac{1}{4}m^4$. The corresponding mean–field expression is found by setting $\beta S^2 J_C = 1$ in Equation (3.2) of Ref. 26:

$$\frac{\mathcal{J}}{J_C} \left(18J_1\langle S \rangle^2 - 2g\mu_B H\langle S \rangle + \frac{4\mathcal{J}^3}{J_C^2} \langle S \rangle^4 + \cdots \right),$$

where $J_C = 4J_0 + 6J_1$ and $\mathcal{J} = 2J_0 - 6J_1$. Because the mean–field expression omits fluctuations, the term in γ_2 must be omitted from the Landau expression. On setting
\[\langle S \rangle = am \] and comparing coefficients, one finds \(h = k H/H_S(0) \) where \(k = 3S/a \) and \(k^2 = 4J^3/(J^2 J_1) \); the numerical value is \(k \approx 0.88 \).

The Euler–Lagrange equations of the above Landau theory have many solutions, namely the paramagnetic (P) solution \(\mathbf{m}_{ij} = m_p \hat{x} \), several commensurate (C) solutions, and many incommensurate (IC) solutions; the following provides some background for the last. In classical theory, the magnitudes of the site magnetizations are fixed and the phases suffice for a complete description. A single IC solution is optimal at all fields below the IC→C transition (predicted to occur at \(H \approx 0.47H_S \)); in this solution (called the 111 solution), the spins on all three sublattices wind through \(2\pi \) over a period \(L \) of the IC structure. Many other IC solutions exist at fields below the transition. In the 110 solution, which is never optimal, the spins on only sublattices 1 and 2 wind through \(2\pi \) over one period, while the spins on sublattice 3 wobble about the field without winding. The 111 and 110 solutions, and many other solutions generated from them by forming composite solutions, become degenerate at the IC→C transition, which is therefore a multi–phase point. In mean–field theory, for \(T > 0 \), the magnitudes of the magnetizations are no longer fixed; they can adjust to minimize the energy (for example by decreasing near a domain wall). The solution corresponding to the 111 solution is again optimal in all cases; it loses its winding character at larger \(T \) and \(H \) where the orbit in the \(m_x-m_y \) plane no longer encircles the origin. The infinite degeneracy at the IC→C transition remains at \(T > 0 \).

The Landau–theory states corresponding to the 111 and 110 solutions are most easily described at \(H = 0 \) (where the wavenumber is \(\phi_0 \) for both). For the first (IC₁),

\[
\mathbf{m}_{jl} = m_1 [\hat{x} \cos(q_0 l + \phi_j) + \hat{y} \sin(q_0 l + \phi_j)] \quad \text{for } j = 1, 2, 3 \tag{3}
\]

with \(\phi_j = \phi_0 + (j-1)2\pi/3 \). For the second (IC₂),

\[
\mathbf{m}_{1l} = -\mathbf{m}_{2l} = m_2 [\hat{x} \cos(q_0 l + \phi_0) + \hat{y} \sin(q_0 l + \phi_0)] \quad \text{, } \mathbf{m}_{3l} = 0 \tag{4}
\]

this is stable at \(H = 0 \) only for \(\alpha_1 \gtrsim 0.99 \), but solutions at lower \(\alpha_1 \) and \(H > 0 \) are easily found. The first has the lower energy at \(H = 0 \), for all \(T \). For the same amplitude, the first optimizes the \(\alpha_2 \) term in the density of Equation (2), while the second optimizes the biquadratic term; the respective energies are \(-3\alpha_2m^2 - \gamma_2m^4 \) and \(-\alpha_2m^2 - \frac{1}{2}\gamma_2m^4 \). It is then possible that the second can have the lower energy, though only for \(H > 0 \).

For \(H > 0 \), some analytical results can be found at small field, but full numerical solutions of the Euler–Lagrange equations are required at general values of \(H \). Solutions were found by repeated linearization about trial solutions and solution of the linearized equations for the corrections. With increasing \(H \), both solutions evolve, becoming increasingly nonsinusoidal; other solutions are found, but these are never optimal. In the second solution, the order parameter on the third sublattice increases from 0 and wobbles about \(\mathbf{H} \) with period \(L/2 \). Phase diagrams follow from comparison of the energies of the IC, P and C solutions.

IV. PHASE DIAGRAM AND OTHER RESULTS

Because Equation (2) cannot explain both the new IC phase and the increase of \(T_N \) with \(H \), and also because Equation (2) omits many terms of the same order as those kept, a detailed comparison with experiment is not attempted; fine details of the results should not
be taken seriously. The only parameter in the theory (apart from the unknown constant relating \(\alpha_1 \) to \(T \)), is the coefficient \(\gamma_2 \) which determines the strength of the fluctuations. The value \(\gamma_2 = 0.2 \) used in the following was chosen, with guidance from experiment\(^2\), to give a reasonable size to the IC\(_2\) region of the phase diagram, and also to the plateau in \(q/q_0 \) for the IC\(_1\) phase (as a function of \(h \)); 0.1 seems too small and 0.3 too large. Actually, the new phase appears even at \(\gamma_2 = 0 \), but only in a thin sliver \((\Delta h \leq 0.024)\) of the phase diagram, with re–entrance and with no sizeable plateau.

Figure 1 shows the theoretical phase diagram near \(T_N \); again, \(\alpha_1 \) is linear in \(T \) \([\alpha_1 = 1.015 \text{ at } T_N(H = 0)]\) and \(h \approx 0.88 H/H_S(0) \). The two IC phases (IC\(_1\) and IC\(_2\)), the P phase, and the C phase are optimal in the regions indicated; the C phase is the \(m_1 = m_2 \) phase of the stacked TAFM. The new feature here is the IC\(_2\) phase.

The companion article\(^5\) presents the strongest evidence for identifying the IC\(_2\) phase with the new IC phase discovered in Ref.\(^2\): the neutron–scattering intensity as a function of wavenumber is qualitatively that expected from the order parameter of the IC\(_2\) phase. The companion article compares theory and experiment in other respects as well. The following compares several aspects of the phase diagrams; it also presents results for the dependence of the IC wavenumbers on \(T \) and \(H \), and for the order parameters in the two IC phases.

Phase diagrams (qualitative aspects): In both Figure 1 and Figure 3 of Ref.\(^3\), the new phase appears in a small \(T–H \) region near \(T_N \). Landau theory misses the increase of \(T_N \) with \(H \) and therefore also the nose; experimentally, the region of the new phase is shaped more like a croissant than a pocket. In both theory and experiment, the new phase appears only above some field, and a narrow tail extends to the low–\(T \) side.

Phase diagrams (order of the transitions): The fields available in the high–\(T \) neutron measurements\(^2\) were not sufficient to observe the C phase, nor of course the IC\(_1\)\(\rightarrow \)C and C\(\rightarrow \)P transitions; the IC\(_1\)\(\rightarrow \)C transition was however observed\(^2\) at low \(T \), at \(H \approx 18 \text{T} \).

In theory, all four of the other transitions in Figure 1 are first–order. IC\(_1\)\(\rightarrow \)IC\(_2\) is strongly first–order, while the three transitions to the P state (IC\(_1\)\(\rightarrow \)P near \(T_N \), IC\(_2\)\(\rightarrow \)P and IC\(_1\)\(\rightarrow \)P at lower \(T \)) are weakly first–order (the free energies cross with almost the same slope); the IC\(_1\)\(\rightarrow \)P transition is second–order at \(H = 0 \).

In experiment, only IC\(_1\)\(\rightarrow \)IC\(_2\) is unambiguously first–order. The scan\(^2\) at 10.34 K can be interpreted in two ways\(^5\): either the tail of the IC\(_2\) phase was missed, or there is a first–order IC\(_1\)\(\rightarrow \)P transition at \(H \approx 12 \text{T} \). The IC\(_2\)\(\rightarrow \)P transition is almost certainly second–order, from the observation of critical scattering\(^3\).

Phase diagrams (other aspects): In theory, the IC\(_2\) phase is not found at any \(T \) if \(h < 0.10 \) or if \(h > 0.34 \), corresponding to \(H < 3.4 \text{T} \) and \(H > 11.6 \text{T} \). In experiment, the lower limit is \(H = 4.3 \pm 0.3 \text{T} \); if the IC\(_2\) phase does not appear at 10.34 K, then the upper limit is \(11.5 \pm 0.5 \text{T} \). The agreement is reasonable. Independent of the constant \(k \) relating \(h \) and \(H \), the relative widths in the field variable are comparable: \(11.5/4.3 \approx 0.34/0.10 \). The nose in the experimental phase diagram prevents a similar analysis for the temperature variable; for example, we cannot estimate reliably the upper \(T \) limit of the C phase (but none of our estimates disagrees with the data).

Wavenumbers of the IC phases: Figure 2 shows theoretical results for the reduced wavenumber \(q/q_0 \) as a function of \(h \), at four values of \(\alpha_1 \).

For \(\alpha_1 = 1.005 \), there are two transitions as \(h \) increases, IC\(_1\)\(\rightarrow \)IC\(_2\) at \(h \approx 0.137 \) and IC\(_2\)\(\rightarrow \)P at \(h \approx 0.202 \), both first–order in theory; at the first, \(q \) increases discontinuously to a value
less than the zero–field value q_0. In theory, q/q_0 for the IC$_2$ phase is roughly independent of h, for fixed α_1. The dependence on α_1 is stronger, but still weak; the value decreases roughly linearly with α_1, from $q/q_0 \approx 0.98$ at $\alpha_1 = 1.01$ to $q/q_0 \approx 0.88$ at $\alpha_1 = 0.995$. The experimental value for q/q_0 in the IC$_2$ phase is ≈ 0.87; this is larger than in the IC$_1$ phase, as in theory; on the other hand, no dependence on T or H was observed.

At lower T ($\alpha_1 = 0.98$ and 0.96), q decreases as h increases, flattens out, bends over, and then drops discontinuously in a first–order transition to the P phase. At $\alpha_1 = 0.93$ (apparently corresponding to lower T than used in Ref. 29), q forms a reasonable plateau before rounding and falling to zero in a weakly first–order transition to the C phase; at slightly larger h, a second–order transition occurs to the P phase.

Theoretically, the plateau in q/q_0 occurs at ≈ 0.6, almost independent of α_1; the level of the plateau is reasonably robust (for $\gamma_2 = 0.3$, the plateau occurs at $q/q_0 \approx 0.56$). Figure 1 of the preceding article compares these results with the available data. Experiment finds a plateau (as in theory), at about the theoretical level ($q/q_0 \approx 0.6$), for both $T = 10.34$ K and $T = 9.95$ K; the latter data are slightly rounded at higher H, as in theory for $\alpha_1 \lesssim 0.98$. Data were not obtained at low fields where q descends from the zero–field value to the plateau, preventing more detailed comparison with theory.

Order parameters: Figure 3 shows the order parameter for the IC$_1$ phase, for Landau parameters $\alpha_1 = 0.96$ and $h = 0.4$ (near the middle of the plateau in Figure 2). At maximum m_x, the configuration is almost colinear. Figure 4 shows the order parameter for the IC$_2$ phase, for $\alpha_1 = 1.005$ and $h = 0.18$ (near the middle of the pocket in Figure 1). The preceding article finds qualitative agreement between theory and experiment for both IC phases, but it is not possible to determine the order parameters uniquely from experiment. The theoretical order parameter in the IC$_1$ phase is too distorted (likely because of the loop at the right–hand side in Figure 3); that in the IC$_2$ phase agrees reasonably well, although the third sublattice is not visible in the available data.

V. SUMMARY

Landau theory with the biquadratic term (representing some effects of fluctuations) explains the appearance of the new IC phase found near T_N. The new phase is the Landau–theory counterpart of the 110 state studied in Ref. 25, but stabilized by fluctuations. Only coarse adjustment of the only available parameter (the coefficient γ_2 of the biquadratic term) is needed to obtain qualitative (in some cases quantitative) agreement with experiment.

In more detail: Landau theory finds a new IC phase to exist near T_N. It explains qualitatively the neutron–diffraction results in both IC phases. It does not explain the increase of T_N with field, but it explains other features of the phase diagram. It predicts moderately well the order of the transitions. It predicts that the wavenumber q of the IC$_2$ phase is larger than in the IC$_1$ phase, as observed; the experimental T dependence of q is however weaker than predicted. It predicts that the plateau in the wavenumber of the IC$_1$ phase occurs at $q/q_0 \approx 0.6$, as observed. Theory and experiment agree qualitatively with respect to the order parameters.
ACKNOWLEDGMENTS

We are grateful to U. Schotte and M. E. Zhitomirsky for discussions and to U. Schotte for informing us of the experimental results prior to publication. This research was supported by the Natural Sciences and Engineering Research Council of Canada and by the Japan Society for the Promotion of Science.

APPENDIX A: EXTENDED LANDAU THEORY

The Néel temperature T_N increases initially with field for the TAFM because of thermal fluctuations. It increases also for CsCuCl$_3$, for (one believes) the same reason. Since Equation (2) cannot explain the increase, it is natural to ask whether an extended Landau theory can do so. To investigate this question, we add the following fourth–order invariants to the square brackets in Equation (2):

$$
\frac{1}{4} \gamma_3 m_{jl}^2 \sum_{k=1}^{3} m_{kl}^2 + \gamma_4 m_{jl}^2 \sum_{k=1}^{3} m_{kl} \cdot m_{k+1,l} + \frac{1}{2} \gamma_5 m_{jl} \cdot m_{j+l} \sum_{k=1}^{3} m_{kl} \cdot m_{k+1,l} + \gamma_6 m_{jl}^2 (m_{j-1,l} \cdot m_{j+1,l}) ;
$$

(A1)

our coefficients are related to those of Ref. 36 by

$$
B_1 = \gamma_1 - \frac{1}{2} \gamma_2 + 3 \gamma_3 - 6 \gamma_4 + \frac{3}{2} \gamma_5 - 2 \gamma_6 ,
$$

$$
B_2 = \gamma_1 - 2 \gamma_2 + 4 \gamma_6 ,
$$

$$
B_3 = \gamma_1 - 2 \gamma_2 + 3 \gamma_3 + 12 \gamma_4 + 6 \gamma_5 - 4 \gamma_6 ,
$$

$$
B_4 = \gamma_1 - \frac{1}{2} \gamma_2 - 2 \gamma_6 ,
$$

$$
B_5 = \gamma_1 + \gamma_2 + 3 \gamma_3 + 3 \gamma_4 - 3 \gamma_5 + \gamma_6 ,
$$

$$
B_6 = \gamma_1 + \gamma_2 + \gamma_6 .
$$

(A2)

For the stacked TAFM, at T sufficiently below T_N, the phase sequence with decreasing H must be: P phase \rightarrow C phase with $m_1 = m_2$ \rightarrow colinear C phase \rightarrow low–field C phase; a little analysis gives the requirements $\gamma_2 > 0$, $B_3 > 0$ and $B_5 > 0$. If the P\rightarrowC transition is second–order (as at $h = 0$, $\alpha_1 = \alpha_2$), we find that the phase boundary is given by

$$
\alpha^2 = \left(\frac{\alpha_2 - \alpha_1}{B_5} \right) \left[(\alpha_1 + 2 \alpha_2) + \frac{B_3}{B_5 (\alpha_2 - \alpha_1)} \right]^2 .
$$

(A3)

Since $B_5 > 0$, the extended Landau theory cannot explain this effect of fluctuations (the increase of T_N with H) for the stacked TAFM; therefore we believe that it cannot explain either the increase of T_N with H for CsCuCl$_3$.

We also used the extended theory to determine several phase diagrams like Figure 1, for several different sets of parameters. The C, P and IC$_1$ phases always appear, as does the IC$_2$ phase (unless of course γ_2 is sufficiently negative). Generally, the more complicated free energies (those with more of the γ_i parameters $\neq 0$) give more complicated phase diagram (with for example re–entrant phases), but no new phases are found.
REFERENCES

* Electronic address: jacobs@physics.utoronto.ca
† Address after March 1998: Department of Physics, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo, Japan 152; nick@stat.phys.titech.ac.jp
1 Collins M F and Petrenko O A 1997 Can. J. Phys. 75 605
2 Achiwa N 1969 J. Phys. Soc. Jpn. 27 561
3 Motokawa M 1978 unpublished paper presented at the Annual Meeting of the Physical Society of Japan
4 Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241; Moriya T 1960 Phys. Rev. 120 91
5 Adachi K Achiwa N and Mekata M 1980 J. Phys. Soc. Jpn. 49 545
6 Lee D H Joannopoulos J D Negele J W and Landau D P 1984 Phys. Rev. Lett. 52 433; 1986 Phys. Rev. B 33 450
7 Kawamura H 1984 J. Phys. Soc. Jpn. 53 2452; 1991 J. Phys. Soc. Jpn. 61 1299
8 Kawamura H and Miyashita S 1984 J. Phys. Soc. Jpn. 53 4138; 1985 J. Phys. Soc. Jpn. 54 4530. Miyashita S and Kawamura H 1985 J. Phys. Soc. Jpn. 54 3385
9 Korshunov S E 1986 J. Phys. C: Solid State Phys. 19 5927
10 Nishimori H and Miyashita S 1986 J. Phys. Soc. Jpn. 55 4448
11 Golosov D I and Chubukov A V 1989 Pis’ma Zh. Eksp. Teor. Fiz. 50 416 (1990 JETP Lett. 55 451); Chubukov A V and Golosov D I 1991 J. Phys.: Condens. Matter 3 69
12 Fedoseeva N V Gekht R S Velikanova T A and Balaev A D 1985 JETP Lett. 41 406
13 Nojiri H Toku maga Y and Motokawa M 1988 J. Phys. (Paris) Colloq. 49 C8–1 459
14 Shiba H and Nikuni T 1993 Recent Advances in Magnetism of Transition Metal Compounds, edited by Kotani A and Suzuki N (World Scientific, Singapore) p. 372
15 Nikuni T and Shiba H 1993 J. Phys. Soc. Jpn. 62 3268
16 Tanaka H Schotte U and Schotte K-D 1992 J. Phys. Soc. Jpn. 61 1344
17 Ohta H Imagawa S Motokawa M and Tanaka H 1993 J. Phys. Soc. Jpn. 62 3011
18 Chiba M Ajiro Y and Morimoto T 1994 Physica B 201 200
19 Mino M Ubu kata K Bokui T Arai M Tanaka H and Motokawa M 1994 Physica B 201 213
20 Ohta H Imagawa S Motokawa M and Tanaka H 1994 Physica B 201 208
21 Schotte U Stüßer N Schotte K-D Weinfurter N Mayer H M and Winkelmann M 1994 J. Phys.: Condens. Matter 6 10 105
22 Chiba M Ajiro Y and Morimoto T 1995 J. Magn. Magn. Mater. 140–144 1673
23 Motokawa M and Arai M 1995 Physica B 213–214 1017
24 Weber H B Werner T Wosnitza J v Löhneysen H and Schotte U 1996 Phys. Rev. B 54 15 924
25 Jacobs A E Nikuni T and Shiba H 1993 J. Phys. Soc. Jpn. 62 4066
26 Ohyama T and Jacobs A E 1995 Phys. Rev. B 52 4389
27 Nojiri H Takahashi K Fukuda T Fujita M Arai M and Motokawa M 1997 paper presented at the International Conference on Neutron Scattering, Toronto, August
28 Werner T Weber H B Wosnitza J Kelnberger A Meschke M Schotte U Stüßer N Ding Y and Winkelmann M 1997 Solid State Commun. 102 609
29 Nikuni T and Jacobs A E 1998 Phys. Rev. B 57 ? (LANL preprint number 9702201)
30 Miyashita S 1986 J. Phys. Soc. Jpn. 55 3605
31 Schotte U Kelnberger A and Stüßer N 1998 preceding article
32 Hyodo H Iio K and Nagata K 1981 J. Phys. Soc. Jpn. 50 1545
33 Tazuke Y, Tanaka H, Iio K and Nagata K 1981 *J. Phys. Soc. Jpn.* **50** 3919
34 Mekata M, Ajiro Y, Sugino T, Oohara A, Ohara K, Yasuda S, Oohara Y and Yoshizawa H 1995 *J. Magn. Magn. Mater.* **140–144** 1987
35 Jensen J, unpublished
36 Plumer M L, Mailhot A and Caillé A 1994 *Phys. Rev. B* **49** 15133
37 Plumer M L and Mailhot A 1997 *J. Phys.: Condens. Matter* **9** L165
38 Schotte U, private communication
FIGURES

FIG. 1. Phase diagram in the α_1-h plane for $\gamma_2 = 0.2$. The Landau parameter α_1 is linear in the temperature T, and $h \approx 0.88H/H_S(0)$. The paramagnetic phase (P), the commensurate phase (C), and the two incommensurate phases (IC$_1$ and IC$_2$) are optimal in the regions indicated.

FIG. 2. Reduced wavenumber q/q_0 as a function of the Landau field h for four values of the Landau parameter α_1.

FIG. 3. IC$_1$ phase: orbit in the m_x-m_y plane for the order parameter on one of the three equivalent sublattices. The Landau parameters are $\alpha_1 = 0.96$ and $h = 0.4$ (near the middle of the plateau in Figure 2); the period L is 116. The order parameters on the other two sublattices are displaced by $l = \pm L/3$ from the first.

FIG. 4. IC$_2$ phase: orbits in the m_x-m_y plane for the order parameters on two of the three sublattices. The Landau parameters are $\alpha_1 = 1.005$ and $h = 0.18$ (near the middle of the pocket in Figure 1); the period L is 74. The outer loop is the orbit for one of the two equivalent sublattices; the orbit for the second is displaced by $l = L/2$. The order parameter on the third sublattice (inner loop) wobbles about the field with period $L/2$.

12
Figure 1
Figure 2

\[\alpha_1 = 0.93 \]
\[\alpha_1 = 0.96 \]
\[\alpha_1 = 0.98 \]
\[\alpha_1 = 1.005 \]
