K0_{S} and \Lambda Production in Charged Particle Jets in p–Pb Collisions at \(\sqrt{s_{NN}} = 5.02\) TeV with ALICE

Xiaoming Zhang (for the ALICE Collaboration)1

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A.

Abstract

We study the production of K0_{S} mesons and \Lambda baryons in jets in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV with ALICE at the LHC. The \(p_T\)-differential density of the particles produced in jets is compared to the inclusive distributions and the \(\Lambda/K0_{S}\) ratio is reported in bins of multiplicity of the collisions. The hard scatterings are selected on an event-by-event basis using the anti-\(k_T\) clustering algorithm with resolution parameter \(R = 0.2, 0.3\) and 0.4, reconstructed from charged particles with a minimum \(p_T\) of 10 (or 20) GeV/c.

Keywords: p–Pb collisions, particle production, jet fragmentation, baryon anomaly

1. Introduction

The strong suppression of high \(p_T\) charged particles \([1,2]\) and jets \([3]\) measured in heavy-ion collisions at the LHC is not present in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV \([4]\). However, the “double-ridge” structure observed in the long-range two-particle correlations in high multiplicity p–Pb collisions \([5,6]\) resembles collective features found in Pb–Pb collisions \([7]\). It has been suggested that some final state effects, such as parton-induced interactions \([8]\) and strong correlations in particle production characteristic of a high density system \([9,10]\) may be present in p–Pb collisions. In addition, an enhancement of the baryon-to-meson yield ratio at intermediate \(p_T \sim 3\) GeV/c in high multiplicity p–Pb collisions as compared to pp collisions \([11]\) has been observed. This effect is qualitatively similar to the enhancement observed in Pb–Pb collisions \([12]\) that has been discussed in terms of collective flow \([13]\), which could be presented in small systems like pp collisions \([14]\), and/or parton recombination \([15]\). To discriminate between hard and soft processes contributing to the baryon and meson production, we study the \(\Lambda/K0_{S}\) ratio within jets and compare it to inclusive distributions measured in p–Pb and minimum-bias simulations generated by PYTHIA8 (tune 4C) \([16]\) for pp collisions at \(\sqrt{s} = 5.02\) TeV.

2. Experimental Setup and Analysis Strategy

This analysis is performed for minimum bias p–Pb events at \(\sqrt{s_{NN}} = 5.02\) TeV, corresponding to integrated luminosity of \(L_{\text{int}} = 51\) \(\mu\)b. For a detailed description of the ALICE detector and its performance, see \([17, 18]\). The event multiplicity classes are determined by the VZERO-A detector (V0A) covering pseudorapidity of \(2.8 < \eta < 5.1\).

1A list of members of the ALICE Collaboration and acknowledgements can be found at the end of this issue.
in the Pb-going direction. The uncertainty of multiplicity estimation is made using energy deposition in the Pb-going side Zero Degree Calorimeter (ZNA) and determined by the so-called hybrid method [19].

Charged particles are measured using the Inner Tracking System (ITS) and the Time Projection Chamber (TPC). The ITS also provides measurement of the primary vertex. The selection of tracks used for the jet reconstruction (see [20] for details) ensures an almost uniform tracking efficiency in full azimuth. Tracks with $p_{T} > 150$ MeV/c are retained in the analysis. Charged particle jets are reconstructed with the anti-k_{T} algorithm [21], with resolution parameter $R = 0.2$, 0.3 and 0.4. To remove combinatorial jets a cut on the jet area A_{jet} [22] is applied and only jets with $A_{jet} > 0.6\pi R^{2}$ are retained. The reconstructed jet p_{T} is obtained by subtracting the energy of the underlying background according to the approach introduced in [22]: $p_{T}^{ch\ jet} = p_{T}^{det\ jet} - \rho \times A_{jet}$, where $p_{T}^{det\ jet}$ is the measured jet p_{T}, and ρ is the underlying background density obtained with the median occupancy method [23]. The analysis is performed separately for two selections of jets: with $p_{T}^{ch\ jet} > 10$ GeV/c and with $p_{T}^{ch\ jet} > 20$ GeV/c. A fiducial cut was applied requiring the jet centroid to be within the detector acceptance $|\eta_{jet}| < 0.75 - R$.

The Λ and K_{S}^{0} ($V^{0}s$) are reconstructed via the hadronic decays, $\Lambda \rightarrow p\pi^{-}$ and $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$. Decay daughters are identified by their specific ionization, dE/dx, in the TPC. The yield of V^{0} signal is extracted using an invariant mass analysis with the bin counting method [24]. Tracks used for jet reconstruction are required to point to the primary vertex. Since this selection removes tracks from secondary weak decays, the $V^{0}s$ produced in jets (red points) after the underlying background subtraction is given by the invariant mass of $V^{0}s$ produced in jets (black points). A much harder spectrum is observed for the $V^{0}s$ produced in jets (red points) after the underlying background subtraction.
Figure 1. The p_T-differential density of K_0^0 and Λ ($\bar{\Lambda}$) in jets with $p_{T,\text{jet}}^{\text{ch}} > 10 \text{ GeV/c}$ in p–Pb collisions. Jets are reconstructed using charged particles and the anti-k_T algorithm with $R = 0.3$. Results are shown for two V0A multiplicity classes of p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$: 0 – 10% (left), and 40 – 100% (right). Results are compared to the inclusive V_0^0 p_T distribution.

Figure 2. Λ/K_0^0 ratio in jets with $p_{T,\text{jet}}^{\text{ch}} > 10 \text{ GeV/c}$ (left) and $p_{T,\text{jet}}^{\text{ch}} > 20 \text{ GeV/c}$ (right) for events in the 0 – 10% V0A multiplicity class of p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$. Jets are reconstructed using charged particles and the anti-k_T algorithm. Results are shown for different jet R of 0.2, 0.3, and 0.4. The ratios in jets are compared to the inclusive distributions and the corresponding PYTHIA8 simulations (the pp collisions).

The Λ/K_0^0 ratios in jets with $R = 0.2$, 0.3 and 0.4 are presented in Fig. 2. The results are obtained in the $0 – 10\%$ event multiplicity class with $p_{T,\text{jet}}^{\text{ch}} > 10 \text{ GeV/c}$ and $> 20 \text{ GeV/c}$ and compared to the inclusive V_0^0 in data and in PYTHIA8 [10] simulations. The ratios in jets do not depend on the jet radii and do not vary with $p_{T,\text{jet}}$. At the intermediate p_T ($2 < p_T < 4 \text{ GeV/c}$) the inclusive ratio in p–Pb collisions is much larger than in PYTHIA-generated pp collisions. This is consistent with previously reported baryon-to-meson enhancement in p–Pb collisions as compared to pp collisions [11]. On the other hand, the measured Λ/K_0^0 ratio in jets is significantly smaller than that of inclusive distribution. Moreover, it is compatible with the result of the analysis applied to the PYTHIA-generated pp collisions.

4. Conclusions

In contrast to the inclusive distribution, the Λ/K_0^0 ratio within jets in high-multiplicity p–Pb collisions does not exhibit baryon enhancement. The ratio in jets has similar magnitude and p_T dependence to the ratio in low-multiplicity p–Pb collisions, and to the inclusive ratio found in pp collisions. It is also consistent with the analysis performed on the pp collisions simulated with PYTHIA8 event generator. It is plausible that the baryon enhancement may therefore be attributable to the soft (low Q^2) component of the collision as discussed in [23]. This result disfavors...
the hard-soft recombination models while it is consistent with a picture in which the value of baryon/meson ratio has two independent mechanisms: i) the expansion of the soft particles of the underlying event within a common velocity field (radial flow), and ii) the production of particles via hard parton–parton scatterings and the subsequent jet fragmentation.

References

[1] ALICE Collaboration, K. Aamodt, et al., Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb–Pb Collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 106 (2011) 032301. doi:10.1103/PhysRevLett.106.032301
[2] ALICE Collaboration, B. Abelev, et al., Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at √sNN = 2.76 TeV, Phys. Lett. B720 (2013) 52–62. arXiv:1208.2711 doi:10.1016/j.physletb.2013.05.051
[3] ALICE Collaboration, B. Abelev, et al., Measurement of charged jet suppression in Pb–Pb collisions at √sNN = 2.76 TeV, JHEP 1403 (2014) 013. arXiv:1311.0530 doi:10.1007/JHEP03(2014)013
[4] ALICE Collaboration, B. Abelev, et al., Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at √sNN = 5.02 TeV, CERN-EP-2014-088 (2014). arXiv:1405.2737
[5] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations on the near and away side in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B719 (2013) 29–41. arXiv:1212.2001 doi:10.1016/j.physletb.2013.01.012
[6] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations of π, K and p in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B726 (2013) 164–177. arXiv:1307.3327 doi:10.1016/j.physletb.2013.08.024
[7] ALICE Collaboration, K. Aamodt, et al., Elliptic Flow of Charged Particles in Pb–Pb Collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302. doi:10.1103/PhysRevLett.105.252302
[8] M. Strikman, Transverse Nucleon Structure and Multiparton Interactions, Acta Phys. Polon. B42 (2011) 2607–2630. arXiv:1112.3834 doi:10.5506/APhysPolB.42.2607
[9] F. Bozek, W. Broniowski, Collective dynamics in high-energy proton–nucleus collisions, Phys. Rev. C88 (2013) 014903. arXiv:1304.3044 doi:10.1103/PhysRevC.88.014903
[10] E. Sharyak, I. Zahed, High-multiplicity pp and pA collisions: Hydrodynamics at its edge, Phys. Rev. C88 (2013) 044915. arXiv:1303.4470 doi:10.1103/PhysRevC.88.044915
[11] ALICE Collaboration, B. Abelev, et al., Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p–Pb Collisions at √sNN = 5.02 TeV, Phys. Lett. B728 (2014) 25–38. arXiv:1307.6796 doi:10.1016/j.physletb.2013.11.020
[12] ALICE Collaboration, B. Abelev, et al., K0 and Λ production in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301. arXiv:1307.5530 doi:10.1103/PhysRevLett.111.222301
[13] P. Bozek, Hydrodynamic flow from RHIC to LHC, Acta Phys. Polon. B43 (2012) 689. arXiv:1111.4398 doi:10.5506/APhysPolB.43.689
[14] A. Ortiz Velasquez, P. Christianisen, E. Cuautle Flores, I. Maldonado Cervantes, G. Paice, Color Reconnection and Flowlike Patterns in pp Collisions, Phys. Rev. Lett. 111 (4) (2013) 042001. arXiv:1303.6526 doi:10.1103/PhysRevLett.111.042001
[15] R. Fries, B. Muller, C. Nonaka, S. Bass, Hadronization in heavy ion collisions: Recombination and fragmentation of partons, Phys. Rev. Lett. 90 (2003) 202303. arXiv:nucl-th/0301087 doi:10.1103/PhysRevLett.90.202303
[16] T. Sjostrand, S. Mrenna, P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852–867. arXiv:0710.3820 doi:10.1016/j.cpc.2008.01.036
[17] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, JINST 3 (2008) S08002. doi:10.1088/1748-0221/3/08/S08002
[18] ALICE Collaboration, B. Abelev, et al., Performance of the ALICE Experiment at the CERN LHC, CERN-PH-EP-2014-031 (2014). arXiv:1406.4476
[19] A. Toia for the ALICE Collaboration, Centrality Dependence of Charged Particle Production in p–A collisions measured by ALICE, these proceedings (2014).
[20] ALICE Collaboration, B. Abelev, et al., Measurement of the inclusive differential jet cross section in pp collisions at √s = 2.76 TeV, Phys. Lett. B722 (2013) 262–272. arXiv:1301.3475 doi:10.1016/j.physletb.2013.04.026
[21] M. Cacciari, G. P. Salam, G. Soyez, The Anti-kr jet clustering algorithm, JHEP 0804 (2008) 063. arXiv:0802.1189 doi:10.1088/1126-6708/2008/04/063
[22] M. Cacciari, G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B659 (2008) 119–126. arXiv:0707.1378 doi:10.1016/j.physletb.2007.09.077
[23] CMS Collaboration, S. Chatrchyan, et al., Measurement of the underlying event activity in pp collisions at √s = 0.9 and 7 TeV with the novel jet-area/median approach, JHEP 1208 (2012) 130. arXiv:1207.2392 doi:10.1007/JHEP08(2012)130
[24] D. D. Cinelliato, K0 and Λ production in proton–proton collisions at √s = 7 TeV, ALICE-ANA-501 (2012).
[25] E. Cuautle, R. Jimenez, I. Maldonado, A. Ortiz, G. Paic, et al., Disentangling the soft and hard components of the pp collisions using the sphericity approach (2014). arXiv:1404.2372