Supporting Information (SI)

Freestanding Carbon Nanomembranes and Graphene Monolayers Nanopatterned via EUV Interference Lithography

Andreas Winter, Yasin Ekinci, Armin Gölzhäuser, and Andrey Turchanin*

A. Winter, A. Turchanin
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany
Abbe Center of Photonics (ACP), Albert-Einstein-Str. 6, 07745 Jena, Germany
*E-mail: andrey.turchanin@uni-jena.de

Y. Ekinci
Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen, Switzerland

A. Gölzhäuser
Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
Figure S1. Raman spectrum ($\lambda=532$ nm) of CVD grown graphene after the transfer onto a silicon oxide substrate. The G peak at 1591 cm$^{-1}$, 2D peak at 2686 cm$^{-1}$ and a small D peak at 1347 cm$^{-1}$ are present. The D/G ratio of 0.10 refers to a small amount of defects after the transfer. The 2D/G ratio of 2.4 is typical for this type of graphene preparation.
Figure S2. HIM image of a freestanding layered structure of CNM nanoribbons forming a 2D network. The structure was prepared by subsequent transfer of two rows of CNM nanoribbons. The nanoribbons are 20±5 nm wide, while the mesh has a width of approximately 200 nm × 400 nm.
Figure S3. HIM image of garland-like structures resulting from the overexposure with a 2D mask. The CNM garland with only 10 nm wide connections demonstrates a remarkable stability as a free-standing structure.
Table S1. Overview of the doses for the optimized pattern transfer into SAMs and CNMs.

Pattern	Typical dose for direct crosslinking	Typical dose for resist-based nanopatterning
125 nm nanoribbons	200 J/cm²	200 mJ/cm²
140 x 145 nm holes	80 J/cm²	80 mJ/cm²
45 x 50 nm dots	150 J/cm²	100 mJ/cm²
350 x 354 nm holes	80 J/cm²	20 mJ/cm²
200 x 225 nm holes	50 J/cm²	30 mJ/cm²
50 nm nanoribbons	not successful	1300 mJ/cm²