Inhibition of Advanced Glycation End Products (AGEs) Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice

Simone Pereira-Simon1☯, Gustavo A. Rubio1☯, Xiaomei Xia1, Weijing Cai2, Rhea Choi3, Gary E. Striker2, Sharon J. Elliot1*

1 Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America, 2 Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Care, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York, United States of America, 3 Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America

☯ These authors contributed equally to this work.
* selliot@med.miami.edu

Abstract

Age-related increases in oxidant stress (OS) play a role in regulation of estrogen receptor (ER) expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2) replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous). We hypothesized that advanced glycation end product (AGE) accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr), a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1) and advanced glycation receptor 1 (AGER1) were also upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.
Introduction

Normal aging is associated with an increase in oxidant stress in multiple organs including the kidneys [1, 2]. This effect is observed in both sexes, however, young men have higher levels of oxidant stress markers compared with pre-menopausal age-matched women [3, 4]. These parameters of oxidant stress increase in women after menopause [5]. We previously reported that an age-related increase in oxidant stress mediates a decrease in estrogen receptor alpha (ERα) expression and function in the kidneys [6]. However, the consequences of differences in oxidant stress in the kidneys between pre- and post-menopausal women have not been well-studied.

Advanced glycation end products (AGEs) are a well-known cause of chronic renal oxidant stress and inflammation [7]. Their source is thought to be the high-AGE modern diet [4, 7–9]. Circulating levels of AGEs correlate with the AGE content of common foods, especially those of animal origin [10]. Food AGEs are accumulated by routine methods of industrial and/or home food processing, especially dry heat [11–14]. The amount of orally-absorbed AGEs that interact with tissues is estimated to be 2 to 3-fold greater than the amount in the circulation, an amount that far exceeds the kidney’s excretion capacity [15–17]. Chronic ingestion of excess AGEs is associated with a marked down-regulation of important anti-oxidant defense mechanisms. These include Sirtuin 1 (SIRT1), an NAD+-dependent histone deacetylase, advanced glycation receptor 1 (AGER1), and other anti-oxidant systems such as nuclear factor erythroid 2-related factor 2 (Nrf2) [10, 18]. Reduction of renal SIRT1 results in multiple downstream effects including inhibition of ER signaling and reduction of mitochondrial biogenesis and function [19]. In addition, SIRT1 plays a role in preventing NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation, which may also regulate ER expression [20, 21].

In this study, we investigated the potential role of AGEs as a mechanism of glomerular ER regulation. First, we determined the time course of age-related loss of 17β-estradiol (E2)-stimulated ER expression regulation in the glomerulus of aged female mice. This phenomenon was observed in 21-month old female mice that were ovariectomized at 19 months at the advent of their anestrous period and prolonged exposure to oxidant stress. We therefore selected 21-month old ovariectomized female mice and fed them a regular mouse diet (high in AGEs) with or without pyridoxamine (Pyr), which is a potent anti-AGE that is currently used in patients with kidney disease. Additional mice were administered E2 alone or E2 in addition to pyridoxamine. We found that in vivo treatment with Pyr and E2 increased glomerular ERα expression, while administration of E2 alone did not. The combination of Pyr and E2 also lowered the glomerular mRNA expression of transforming growth factor beta (TGFβ), a profibrotic cytokine. Moreover, this combination treatment prevented type IV collagen accumulation, which is associated with age-related glomerulosclerosis [22, 23]. SIRT1 and AGER1, important anti-AGE defenses, were upregulated in the Pyr and E2 group. Finally, we demonstrate a decrease in ERα and SIRT1 expression in response to AGEs in vitro using mesangial cells isolated from young female kidneys, suggesting that AGE accumulation is involved in oxidant stress-related changes in the aged kidney.

Materials and Methods

Mice

Female C57Bl/6 mice were obtained from the National Institute of Aging, National Institutes of Health (Bethesda, MD). Mice were ovariectomized at either 12 or 19 months of age using the previously described procedure that has been approved by the Institutional Animal Care and Use Committee at the University of Miami Miller School of Medicine (protocol 12–043).
The mice were divided into 2 groups and received either placebo or 17β-estradiol (E2) 90-day release pellets (Innovative Research of America, Sarasota FL) as previously described [25]. The 19-month group was further divided and were provided water with or without pyridoxamine (200 mg/kg per day in 10 ml H2O; Biostratum). Mice were euthanized by intraperitoneal injection of ketamine and xylazine as approved by protocol.

Mouse Sacrifice. Mice were housed under pathogen-free conditions with food and water ad libitum. Mice were sacrificed 2 months after treatment (at 14 or 21 months of age). Left kidneys were perfused with a buffered solution containing collagenase and RNase inhibitors for micro dissection of glomeruli, as previously described [25]. Right kidneys were perfused in situ with 6 ml of phosphate-buffered saline and 3 ml of 4% paraformaldehyde, post-fixed in 4% paraformaldehyde solution for at least 12 hours and embedded in methacrylate. 4 μm thick sections were stained with periodic acid–Schiff stain. Other kidney fragments were immediately frozen in OCT [26]. Glomeruli were microdissected to isolate mesangial cells from each group.

Measurements of Urinary Albumin and Creatinine

Spot urine samples were collected at the same hour on a weekly basis and at time of sacrifice. Urine albumin was measured by ELISA following manufacturer’s instructions (Bethyl, Houston, TX) and was corrected for the concentration of urine creatinine. This was expressed as the urinary albumin/creatinine excretion ratio (UAE).

Kidney tissue histological analysis of type collagen IV

Deparaffinized kidney sections (4 μm) were blocked for endogenous peroxidases. Sections were stained with either rabbit anti-mouse (Biodesign, Saco, ME) or rabbit anti-mouse collagen IV. After 1 h, the slides were washed and incubated for 30 min at room temperature with biotinylated-labeled goat anti-rabbit, followed by Vectastain ABC reagent (Vector Labs, Burlingame, CA) and 3,3’-diamino-benzidine chromogen solution (Sigma, St. Louis, MO). The sections were examined and graded on a scale of 0 to 4, as previously described [26], by a renal pathologist (GS) who was blinded to the treatment group.

Real time PCR

Amplification and measurement of target RNA was performed on the Step 1 Real Time-PCR System, as previously described [25]. The mRNA sequence was obtained from the National Center for Biotechnology Information (Bethesda, MD) to acquire the copy number for each ER subtype, as previously described [27]. The number of occurrences of each of the four nucleobases was counted and multiplied by its respective molecular weight. These four numbers were then summed together to obtain the mass of 1 mol of each subtype of the ER. The mass of the purified plasmid of each subtype and the unknown samples was calculated by the A260 method on a Molecular Devices SpectraMax PLUS (Ramsey, MI, USA) [27]. TGFβ, SIRT1 and AGER1 primers were purchased from Life Technologies (Carlsbad, CA). Specific primer sequences used were as previously described for ER [28], TGF-β [23], SIRT1 and AGER1 [8].

Isolation of Mesangial Cells

Mesangial cells were isolated from each group of mice treated with and without Pyr in the presence and absence of E2 pellets, as previously described [29]. Mesangial cells previously isolated from young female C57/B6 mice (3 months old) were treated with increasing concentrations of AGE-BSA (50–200 μg/ml) to determine effective dose for downregulating ERα protein.
expression [30]. Once the effective dose was established at 100 μg/ml of AGE-BSA, cells were treated with AGE-BSA for 24 hours. This treatment time frame was determined by exposing cells to increasing time intervals (2–48 hours) of AGE-BSA and determining its effect on ERα protein expression.

Western Blot Analysis

For protein analyses, cell lysates were extracted and protein quantity assessed using the Pierce BCA protein assay kit (Rockford, IL). Equal amounts of protein were applied to precast SDS polyacrylamide gels (Life Technologies, Grand Island, NY) and analyzed as previously described for ERα, AGER1, SIRT1, and β-actin [31]. In some experiments, cells were treated overnight with AGE-BSA (100 μg/ml for 18 hours). Western blots were also exposed to β-actin (Sigma Chemical, St. Louis MO.) to control for protein loading. Human recombinant ERα was used as a control (PanVera, Madison, WI). Immunoreactive bands were determined by exposing nitrocellulose blots to a chemiluminescent solution (Denville Scientific Inc., Metuchen, NJ) followed by exposure to Amersham Hyperfilm ECL (GE Healthcare Limited, Buckinghamshire, UK). Relative amounts of protein were determined by densitometry using ImageJ software version 1.48 (National Institutes of Health, Bethesda, MD).

Statistical analysis

All values are expressed as mean ± standard error of the mean (SEM). Significance of overall differences within experimental groups was determined by analysis of variance (ANOVA) in combination of Tukey’s multiple comparison test. Student’s t-test was used to determine differences between groups, using Welch’s correction as appropriate. P values < 0.05 were considered significant.

Results

Glomerular ERα mRNA upregulation by 17β-estradiol replacement is lost by anestrous period (21 months of age)

To determine the time course of age-related loss of 17β-estradiol (E2)-stimulated glomerular ER expression regulation, we replaced E2 for 2 months in 12-month old (pre-anestrous) and 19-month old (anestrous) female mice. All mice were ovariectomized two weeks prior to E2 administration to ensure equivalent replacement. E2 replacement was only effective in upregulating glomerular ERα mRNA expression in 12-month old mice prior to entering the anestrous period (at approximately 18 months of age), and thus correlating with a shorter exposure to endogenous oxidant stress (Fig 1). By 21 months of age (anestrous) E2 replacement failed to upregulate ERα mRNA expression (Fig 1).

Effect of pyridoxamine and 17β-estradiol replacement on body, kidney, uterine weight and albumin/creatinine ratio

Treatment of mice did not alter body weight, however, kidney weight increased in Pyr+E2 treatment compared to placebo and Pyr alone (p<0.05). Uterine weight as a marker of estrogen replacement was increased in all mice receiving E2 regardless of whether they were also receiving Pyr (Table 1). Urinary albumin excretion did not change between groups (Table 1).
Inhibition of AGE accumulation with pyridoxamine and 17β-estradiol increases glomerular ERα mRNA expression and reduces TGFβ mRNA expression

Our previous study showed an oxidant stress-related glomerular ERα downregulation associated with aging [6]. In this study, in vivo inhibition of AGEs, a source of oxidant stress, with Pyr and E2 administration increased ERα mRNA expression (Fig 2A) in 21 month-old ovariectomized female mice. TGFβ, a profibrotic cytokine, was decreased in an inverse manner to ERα mRNA expression in the group receiving Pyr and E2 (Fig 2B). There was no significant

Table 1. Effect of pyridoxamine and 17β-estradiol replacement on body, kidney, uterine weight and albumin/creatinine ratio.

	Pla (n = 10)	E2 (n = 12)	Pyr (n = 10)	Pyr+E2 (n = 6)
Body weight (g)	31 ±1.3	30±0.9	31±1.5	30±1.4
Kidney weight (g)	0.28±0.01	0.29±0.01	0.27±0.009	0.34±0.2a
Uterine weight (g)	0.02±0.00b	0.14±0.02c	0.02±0.001d	0.15±0.02
Albumin/Creatinine ratio	0.43±0.32	0.26±0.06	0.34±0.06	0.25±0.05

a *p<0.05 compared to placebo (pla) and pyridoxamine (Pyr)
b***p<0.005 compared to 17β-estradiol (E2) and Pyr+E2
c***p<0.005 compared to Pyr
d ***p<0.005 compared to Pyr+E2.

doi:10.1371/journal.pone.0159666.t001
difference in ERα or TGFβ mRNA expression between placebo group and mice receiving either Pyr or E2 alone.

Type IV collagen deposition decreases with pyridoxamine and 17β-estradiol treatment in aged estrogen-deficient female mice

Type IV collagen, one of the hallmarks of glomerulosclerosis, increased in placebo-treated glomeruli of ovariectomized aged female mice as expected (3+ staining; Fig 3A). Treatment with the antioxidant pyridoxamine decreased the accumulation of type IV collagen in glomeruli and tubules (1 and 2+ staining; Fig 3C). E2 replacement, with or without pyridoxamine, also prevented accumulation of type IV collagen in estrogen-deficient (ovariectomized) aged female mice (1 and 2+ staining; Fig 3B–3D).

Prevention of AGE accumulation with pyridoxamine in the presence of E2 replacement increases glomerular SIRT1 and AGER1 mRNA

AGE accumulation down-regulates anti-oxidant stress defenses such as SIRT1 and AGER1 [8, 18]. Therefore, we measured glomerular SIRT1 and AGER1 mRNA expression in our 4 groups of ovariectomized 21-month old female mice. Glomerular expression of SIRT1 mRNA was increased in mice treated with pyridoxamine and E2 replacement compared to all other groups (Fig 4A, *p < 0.05). Similarly, AGER1 mRNA expression was increased in the glomeruli of mice receiving pyridoxamine and E2 replacement compared to placebo or E2 alone groups (Fig 4B, #p < 0.05). AGER1 expression also increased in mice treated with pyridoxamine alone (Pyr) versus placebo or E2 alone (Fig 4B, #p < 0.05).
Mesangial cells isolated from aged female mice treated with Pyr + E2 maintain a phenotypic switch with increased ERα, SIRT1 and AGER1 mRNA expression.

At the time of sacrifice, glomeruli were isolated and cells propagated from the four groups of mice described above. ERα mRNA copy number and protein expression was increased only in mesangial cells isolated from mice that were treated with both Pyr and E2 (Fig 5A and 5B). Similarly, we found an increase in SIRT1 and AGER1 protein expression in cells derived from mice treated with Pyr + E2 (Fig 5C).

AGEs reduce glomerular ERα protein expression in vitro

To further confirm that AGEs reduce glomerular ERα expression, mesangial cells isolated from young female mice were treated with AGEs in vitro. ERα protein expression was decreased after treatment with AGE-BSA (Fig 6A). There was also a decrease in SIRT1 and AGER1 protein expression in these cells (Fig 6B).

Discussion

We have previously shown that E2 upregulates glomerular ERα mRNA and protein expression in young mice [28], but during aging there is a steady decline in both [6]. In the present study, we demonstrate that timing of estrogen replacement in relation to reproductive age is critical for regulation of glomerular ER expression. E2 replacement at 14 months (before anestrus) was effective in upregulating ERα. This effect, however, was lost by 21 months of age coinciding with the anestrus period and prolonged exposure to oxidant stress. These data derived in
Experimental animals may provide insight into the findings of the Women’s Health Initiative (WHI) and Heart and Estrogen/Progestin Replacement Study (HERS). In those trials, women that received estrogen replacement up to 10 years after menopause exhibited some adverse clinical outcomes. The KEEPs trial, on the other hand, studied women not more than three years after menopause and found benefits in terms of cardiovascular outcomes. Inhibition of AGEs reduces oxidant stress and modulates glomerular estrogen receptor α expression.

Fig 4. Glomerular AGER1 and SIRT-1 mRNA are upregulated by reduction of AGEs in vivo. Glomeruli were isolated from 4 groups of mice; placebo (pla), 17β-estradiol (E2), pyridoxamine (Pyr) or E2+Pyr. SIRT1, AGER1 and 18s were measured by RT-PCR as described in Methods. Data are graphed as mean ± SEM of ratio of SIRT1/18s (*p<0.05 compared to all groups) or AGER1/18s (#p<0.05 compared to placebo and E2 treatments). n = 5/group.

doi:10.1371/journal.pone.0159666.g004
years post menopause and suggested that this window of time for initiation of hormone replacement may lead to a beneficial effect for disease prevention [32]. Our previous data showed that increased oxidant stress is associated with reduced ERα expression in the kidney of aging mice [6]. Therefore, it is possible that administration of estrogen during this time of increased age-related oxidant stress leading to decrease in ER expression and action may exacerbate downstream deleterious events.

Based on our previous findings, we designed the current study to further investigate the role of oxidant stress and regulation of glomerular ERα expression in vivo. We examined the effect on glomerular ERα expression of pyridoxamine, a derivative of vitamin B6, that prevents intracellular accumulation of AGEs and scavenges reactive oxygen species [33]. Pyridoxamine treatment coupled with E2 replacement increased glomerular ERα expression, while E2 replacement alone did not. Furthermore, ERα expression in mesangial cells isolated from in vivo treated
mice followed a similar expression pattern as in the glomeruli. This was expected, as we have previously reported that a phenotypic switch in glomerular ERα expression occurring in vivo is maintained in vitro [25, 34].

Aged female mice (24 months of age and older) have increased urinary albumin excretion and collagen types I and IV deposition leading to glomerulosclerosis [23]. This increase in glomerulosclerosis markers associated with age can be observed in experimental models and humans [23] [35, 36]. Although baseline urinary albumin excretion was higher in our aged female mice compared to young female mice (data not shown), this was not affected by treatment with pyridoxamine and/or E2 in aged ovariectomized female mice. It is possible that prolonged treatment period and sacrifice at an older age may have revealed an effect. In contrast, all treatment combinations prevented glomerular type IV collagen deposition in aged females. Of note, despite the effectiveness of oral pyridoxamine in preserving kidney function in type 1 and 2 diabetic rat and mouse models [37–39], recent clinical trials in patients with type 1 and type 2 diabetes produced mixed results [40, 41]. Williams et al. [40] showed a reduction of baseline serum creatinine without a change in urine albumin excretion. A larger study failed to
show any change in renal function after 1 year, although the authors suggested that patients with less severe renal damage may respond to the drug [41].

In the present study, in vivo pyridoxamine treatment along with E₂ replacement decreased TGFβ mRNA expression in kidneys of aged ovariectomized female mice. Accumulation of gene expression of growth factors and cytokines such as TGFβ and vascular endothelial growth factor (VEGF) are associated with the formation of AGEs [42]. We and others have shown that kidney disease in mice and humans is often associated with increased TGFβ expression [26, 43–45]. In fact, TGFβ signaling can be initiated by reactive oxygen species, which could ultimately increase extracellular matrix protein (ECM) accumulation through direct upregulation of collagen synthesis and/or decreased matrix metalloproteinase activity. In addition, TGF-β1 contributes to glomerulosclerosis by stimulating podocyte apoptosis [44, 46]. Finally, TGF-β receptor 2 is increased in isolated mesangial cells and in glomeruli of diabetic mice, suggesting an increased sensitivity due to the effects of endogenous TGF-β1 [47, 48]. Interestingly, there was an inverse relationship in our study between the NAD+-dependent deacetylase SIRT1 and TGFβ expression. Negative cross-talk between TGFβ signaling and SIRT has been previously demonstrated in the kidney, liver, and lung [49–51]. SIRTs have been shown to downregulate TGFβ either by degradation or inhibition of transcriptional activity and further studies are ongoing in our laboratory to understand these findings.

SIRT1 and ERα expression were positively correlated in both glomeruli and mesangial cells. We postulate that SIRT may have a direct effect on ER regulation. Estrogen receptors are dynamically modulated by post-translational modification, i.e. phosphorylation, methylation, acetylation, ubiquitination, or sumoylation [52]. For instance, hyperactivation of ERK/MAPK (Extracellular-signal-regulated kinases/Mitogen-activated protein kinases) causes functional repression of ER transcription through NFκB activation [53, 54], which we have shown to be increased in 28-month old female mice [22]. In contrast, SIRT1 prevents undue activation of NFκB [55, 56]. AGEs promote NFκB activation [57] but suppress SIRT1 and its deacetylase activity on NFκB-p65 [58]. This could influence ER transcription, given that decreased SIRT1 expression can disrupt the basal transcription factor complex of ERα promoter in some cells [20]. These studies are currently under investigation.

The concentration of AGEs and their cross-linked products increases with aging and leads to higher basal levels of oxidant stress [10, 59]. Importantly, levels of AGEs are elevated in post-menopausal women compared to healthy young women. This increase is more pronounced in diabetic post-menopausal women [3–5]. These data correlate with the higher female to male ratio in patients with diabetic end-stage renal disease, which increases sharply in the postmenopausal age groups [60]. To confirm our in vivo data suggesting an important role for AGEs in regulation of glomerular ERα expression in aged females, we examined the direct effects of AGEs in vitro. Mesangial cells isolated from young (estrogen replete) female mice were treated with increasing concentrations of AGEs. We observed a dose- and time-dependent reduction in ERα expression in response to AGEs. Similarly, levels of the major cellular anti-AGE/oxidant stress defenses, anti-AGE receptor AGER1 and SIRT1 protein expression were decreased in response to AGE. This correlates with the inverse relationship between SIRT1/AGER1 and AGEs both in the current study and other experimental and human studies [2, 8, 61].

In summary, the ability of pyridoxamine to reverse a fibrotic marker of glomerulosclerosis (TGFβ) and ERα expression in aged female mice (21 months old) suggests that oxidant stress-related damage in the aging kidney is reversible. Furthermore, it is possible that reduced antioxidant defenses, such as SIRT1 and AGER1, in postmenopausal women could impair glomerular E₂/ER activity.
Acknowledgments

The authors would like to thank Dr. Helen Vlassara for her guidance and support in this study. All authors have no financial conflicts of interest to disclose.

Author Contributions

Conceived and designed the experiments: SJE GES. Performed the experiments: SP XX WC RC. Analyzed the data: SP GR SJE. Contributed reagents/materials/analysis tools: SJE GES. Wrote the paper: SJE GR.

References

1. Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood). 2007; 232(5):592–606.
2. Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007; 170(6):893–902.
3. Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992; 13(12):2241–7. PMID: 1473230
4. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007; 62(4):427–33.
5. Helmersson J, Mattsson P, Basu S. Prostaglandin F(2alpha) metabolite and F(2)-isoprostane excretion rates in migraine. Clin Sci (Lond). 2002; 102(1):39–43.
6. Pereira-Simon S, Xia X, Catanuto P, Elliot S. Oxidant Stress and Mitochondrial Signaling Regulate Reversible Changes of ERα Expression and Apoptosis in Aging Mouse Glomeruli and Mesangial Cells. Endocrinology. 2012; 153(11):5491–9. doi: 10.1210/en.2012-1379 PMID: 23027807
7. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997; 94(12):6474–9.
8. Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci USA. 2012.
9. Vlassara H, Cai W, Goodman S, Pyzik R, Yong A, Chen X, et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab. 2009; 94(11):4483–91. doi: 10.1210/jc.2009-0089 PMID: 19820033
10. Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011; 7(9):526–39. doi: 10.1038/nrendo.2011.74 PMID: 21610689
11. Cai W, Gao QD, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002; 8(7):337–46. PMID: 12393931
12. Brants CM, Alink GM, van Boekel MA, Jongen WM. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction. J AgricFood Chem. 2000; 48(6):2271–5.
13. Finot PA. Historical perspective of the Maillard reaction in food science. Ann NY Acad Sci. 2005; 1043:1–8.
14. Pouillart P, Mauprivaz H, it-Ameur L, Cayzeele A, Lecerf JM, Tessier FJ, et al. Strategy for the study of the health impact of dietary Maillard products in clinical studies: the example of the ICARE clinical study on healthy adults. Ann NY Acad Sci. 2008; 1126:173–6.
15. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004; 104(8):1287–91.
16. Uribarri J, Tuttle KR. Advanced glycation end products and nephrotoxicity of high-protein diets. Clin J Am Soc Nephrol. 2006; 1(6):1293–9.
17. Kosch M, Levers A, Fokker M, Barenbrock M, Schaefer RM, Rahn K, et al. Dialysis filter type determines the acute effect of haemodialysis on endothelial function and oxidative stress. Nephrology Dialysis Transplantation. 2003; 18(7):1370–5.
33. Kang Z, Li H, Li G, Yin D. Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of SIRT1. Diabetes Care. 2011; 34(7):1610–6. doi: 10.2337/dc11-0091 PMID: 21709297

19. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, et al. Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews. 2012; 92(3):1479–514. doi: 10.1152/physrev.00022.2011 PMID: 22811431

20. Yao Y, Li H, Gu Y, Davidson NE, Zhou Q. Inhibition of SIRT1 deacytase suppresses estrogen receptor signaling. Carcinogenesis. 2010; 31(3):382–7. doi: 10.1093/carcin/bgp308 PMID: 19995796

21. Moore RL, Dai Y, Faller DV. Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. Journal of Endocrinology. 2012; 213(1):37–48. doi: 10.1530/JOE-11-0217 PMID: 22159506

22. Zheng F, Cheng QL, Platì AR, Ye SQ, Berho M, Banerjee A, et al. The glomerulosclerosis of aging in females: contribution of the proinflammatory mesangial cell phenotype to macrophage infiltration. Am J Pathol. 2004; 165(5):1789–98.

23. Zheng F, Platì AR, Potier M, Schultmann Y, Berho M, Banerjee A, et al. Resistance to glomerulosclerosis in B6 mice disappears after menopause. Am J Pathol. 2003; 162(4):1339–48.

24. Elliot SJ, Berho M, Korach K, Doublier S, Lupia E, Striker GE, et al. Gender-specific effects of endogenous testosterone: Female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int. 2007; 72(4):464–72. PMID: 17495854

25. Karl M, Berho M, Pignac-Kobinger J, Striker GE, Elliot SJ. Differential effects of continuous and intermittent 17beta-estradiol replacement and tamoxifen therapy on the prevention of glomerulosclerosis: modulation of the mesangial cell phenotype in vivo. Am J Pathol. 2006; 169(2):351–61.

26. Elliot SJ, Karl M, Berho M, Xia X, Pereria-Simon S, Espinosa-Heidmann D, et al. Smoking induces glomerulosclerosis in aging estrogen-deficient mice through cross-talk between TGF-beta 1 and IGF-I signaling pathways. J Am Soc Nephrol. 2006; 17(12):3315–24.

37. C P., Doublier S, Fornoni A, Lupia E, Berho M, Striker GE, et al. 17b-estradiol and Tamoxifen upregulate estrogen receptor â and regulate podocyte signaling pathways in a model of type 2 diabetes. Kidney International. 2009; 75:1194–201. doi: 10.1038/ki.2009.69 PMID: 19279558

28. Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ, et al. Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol. 2001; 12(2):241–51.

30. MacKay K, Striker LJ, Elliot S, Pinkert CA, Brinster RL, Striker GE. Glomerular epithelial, mesangial, and endothelial cell lines from transgenic mice. Kidney Int. 1988; 33(3):677–84. PMID: 2835539.

31. Potier M, Karl M, Zheng F, Elliot SJ, Striker GE, Striker LJ. Estrogen-Related Abnormalities in Glomerulosclerosis-Prone Mice: Reduced Mesangial Cell Estrogen Receptor Expression and Prosclerotic Response to Estrogens. Am J Path. 2002; 160:1877–85. PMID: 12000739

32. Wharton W, Gleason CE, Miller VM, Asthana S. Rationalization and design of the Kronos Early Estrogen Prevention Study (KEEPS) and the KEEPS cognitive and affective sub study (KEEPS Cog). Brain Research. (0:).

33. Kang Z, Li H, Li G, Yin D. Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of formation of advanced lipoxidation end-products. AminoAcids. 2006; 30(1):55–61.

34. Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, et al. Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology. 1993; 133(4):1783–8. PMID: 7691581

35. Eikmans M, Baelde HJ, de Heer E, Bruijn JA. Effect of age and biopsy site on extracellular matrix mRNA and protein levels in human kidney biopsies. Kidney Int. 2001; 60(3):974.

36. Alderson NL, Chachich ME, Frizzell N, Canning P, Metz TO, Januszewski AS, et al. Effect of antioxidants and ACE inhibition on chemical modification of proteins and progression of nephropathy in the streptozotocin diabetic rat. Diabetologia. 2004; 47(8):1385–95. PMID: 15309289

37. Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR, et al. The AGE inhibitor pyridoxamine inhibits lipoaemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. 2003; 63(6):2123–33. PMID: 12753299

38. Tanimoto M, Gohda T, Kaneko S, Hagiwara S, Murakoshi M, Aoki T, et al. Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice. Metabolism. 2007; 56(2):160–7. PMID: 17224327
Inhibition of AGEs Reduces Oxidant Stress and Modulates Glomerular Estrogen Receptor α Expression

40. Williams ME, Bolton WK, Khalifah RG, Degenhardt TP, Schotzinger RJ, McGill JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007; 27(6):605–14. PMID: 17823506

41. Lewis EJ, Hunsicker LG, Rodby RA. A clinical trial in type 2 diabetic nephropathy. Am J Kidney Dis. 2001; 38(Suppl 1):S191–S4.

42. Kovacic P, Somanathan R. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): alpha-dicarbonyls, radicals, oxidative stress and antioxidants. J Recept SignalTransductRes. 2011; 31(5):322–9.

43. Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J. Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int. 2004; 66(6):2148–54. PMID: 15569304

44. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. JClinInvest. 2001; 108(6):807–16.

45. Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, et al. TGF-beta signal transduction in chronic kidney disease. Front Biosci. 2009; 14:2448–65.

46. Poncoet AC, Schnaper HW. Regulation of human mesangial cell collagen expression by transforming growth factor-beta1. AmJPhysiol. 1998; 275(3 Pt 2):F458–66.

47. Cohen MP, Sharma K, Guo J, Ettayeb BO, Ziyadeh FN. The renal TGF-beta system in the db/db mouse model of diabetic nephropathy. ExpNephrol. 1998; 6(3):226–33.

48. Goldfarb S, Ziyadeh FN. TGF-beta: a crucial component of the pathogenesis of diabetic nephropathy. TransAmClinClimatealAssoc. 2001; 112:27–32.

49. Casalena G, Daehn I, Bottinger E. A Crucial Component of the Pathogenesis of Diabetic Nephropathy. TransAmClinClimatealAssoc. 2001; 112:27–32.

50. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isshiki K, et al. SIRT1 inhibits transforming growth factor-beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. The Journal of biological chemistry. 2007; 282(1):151–8. doi: 10.1074/jbc.M605904200 PMID: 17098745.

51. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. American journal of physiology Lung cellular and molecular physiology. 2011; 300(3):L391–401. doi: 10.1152/ajplung.00097.2010 PMID: 21224216; PubMed Central PMCID: PMC3284316.

52. Yang XJ, Seto E. Lysine Acetylation: Codified Crosstalk with Other Posttranslational Modifications. Molecular Cell. 2008; 31(4):449–61. doi: 10.1016/j.molcel.2008.07.002 PMID: 18722172

53. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El Ashry D. Hyperactivation of MAPK induces loss of E2Falpha expression in breast cancer cells. MolEndocrinol. 2001; 15(8):1344–59.

54. Holloway JN, Murthy S, El-Ashry D. A cytoplasmic substrate of mitogen-activated protein kinase is responsible for estrogen receptor-alpha down-regulation in breast cancer cells: the role of nuclear factor-kappaB. Mol Endocrinol. 2004; 18(6):1396–410. PMID: 15056731

55. Kawahara TL, Michishita E, Adler AS, Damian M, Barber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009; 136(1):62–74. doi: 10.1016/j.cell.2008.10.052 PMID: 19135889

56. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23(12):2369–80. PMID: 15152190

57. Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(32):11767–72. PMID: 15289604

58. Guarente L. Sirtuins, Aging, and Medicine. New England Journal of Medicine. 2011; 364(23):2235–44. doi: 10.1056/NEJMra1100831 PMID: 21651395

59. Turgut F, Bolton WK. Potential new therapeutic agents for diabetic kidney disease. American journal of nephrology. 2001; 38(5):928–40. doi: 10.1053/ajkd.2009.11.021 PMID: 20138415.

60. Yu M. Gender differences in chronic kidney disease and progression in type 2 diabetes. Journal of American Society of Nephrology. 2011.

61. Uribarri J, Cai W, Pyzik R, Goodman S, Chen X, Zhu L, et al. Suppression of native defense mechanisms, SIRT1 and PPARγ, by dietary glycoxidants precedes disease in adult humans; relevance to lifestyle-engendered chronic diseases. Amino Acids. 2013;1:9. doi: 10.1007/s00726-013-1502-4