Evaluation of outcome reporting trends for femoroacetabular impingement syndrome—a systematic review

Ida Lindman1*, Sarantos Nikou2, Axel Öhlin1, Eric Hamrin Senorski3, Olufemi Ayeni4, Jon Karlsson1 and Mikael Sansone1

Abstract

Purpose: The aim of this systematic review was to evaluate the trends in the literature regarding surgical treatment for femoroacetabular impingement syndrome (FAIS) and to present which patient-reported outcome-measures (PROMs) and surgical approaches are included.

Methods: This systematic review was conducted with the PRISMA guidelines. The literature search was performed on PubMed and Embase, covering studies from 1999 to 2020. Inclusion criteria were clinical studies with surgical treatment for FAIS, the use of PROMs as evaluation tool and studies in English. Exclusion criteria were studies with patients < 18 years, cohorts with < 8 patients, studies with primarily purpose to evaluate other diagnoses than FAIS and studies with radiographs as only outcomes without using PROMs. Data extracted were author, year, surgical intervention, type of study, level of evidence, demographics of included patients, and PROMs.

Results: The initial search yielded 2,559 studies, of which 196 were included. There was an increase of 2,043% in the number of studies from the first to the last five years (2004–2008)—(2016–2020). There were 135 (69%) retrospective, 55 (28%) prospective and 6 (3%) Randomized Controlled Trials. Level of evidence ranged from I-IV where Level III was most common (44%). More than half of the studies (58%) originated from USA. Arthroscopic surgery was the most common surgical treatment (85%). Mean follow-up was 27.0 months (± 17 SD), (range 1.5–120 months). Between 1–10 PROMs were included, and the modified Harris Hip Score (mHHS) was most commonly used (61%).

Conclusion: There has been a continuous increase in the number of published studies regarding FAIS with the majority evaluating arthroscopic surgery. The mHHS remains being the most commonly used PROM.

Keywords: Femoroacetabular impingement syndrome, FAIS, Patient-reported outcome measures, PROM, Hip arthroscopy
Femoroacetabular impingement syndrome (FAIS) results from an abnormal morphology of either the femoral head (cam) or the acetabulum (pincer) or a combination of both. This causes an incongruence in the hip joint and is a common source of hip pain, especially in the young active population [216]. Surgical treatment of FAIS aims to restore the normal hip joint morphology and thereby reduce symptoms [154]. Open hip dislocation was initially considered the gold standard for surgical treatment of FAIS, however, the use of a minimally invasive approach with arthroscopy has increased during the 2010’s [46, 154].

With an escalation of the arthroscopic procedures performed, there has been a corresponding increase in the studies published regarding FAIS [106]. Furthermore, several registries have been developed to keep track of performed arthroscopies and evaluate the outcomes after the procedures [93, 126, 185]. Patient-reported outcome measures (PROMs) are commonly used for evaluating the patients’ perspective of outcome of surgical treatment [158]. According to the Warwick Agreement, defined in 2016, the Hip and Groin outcome score (HAGOS) [205], Hip Outcome Score (HOS) [134] and the international Hip Outcome Tool (iHOT) [84, 143] are recommended as preferable PROMs for evaluating the outcome after FAIS surgery [82]. These PROMs are noted to be valid, reliable and responsive after FAIS surgery [170]. Yet, the PROMs used for FAIS have most commonly been developed for an older patient category with osteoarthritis, such as Harris hip score (HHS), while the PROMs recommended for the younger population are gradually being adopted [206]. With the use of PROMs developed for another patient category or condition, there is a risk of ceiling or wash-out effects due to the inclusion of non-relevant items.

The aim of this systematic review was to evaluate the trends in the literature pertaining to FAIS. More specifically, the aim was to present trends for the PROMs used and which surgical approaches have been performed to treat patients with FAIS. The hypothesis was that an increase in the number of studies with arthroscopic procedures performed would be observed with the majority using hip specific PROMs.

Methods
The systematic review was governed in agreement with the Preferred Reporting Items for Systematic Review and Meta-Analysis protocols (PRISMA) [142].
to the author, year and journal of publication. After all full texts were independently decided by the two reviewers, any disagreements regarding inclusion of studies were solved with discussion between the two reviewers.

Data items

The data extracted included the level of evidence, title of the study, authors, year of publication, journal where study was performed, type of study (retrospective, prospective, RCT), included number of, and which different PROMs used in the study. The proportion of “hip specific” PROMs in the study was recorded in the extraction sheet. In addition to exploring the development of included PROMs over the years, 2016, when the Warwick agreement was stated, was used as a cut-off to evaluate the adoption of recommended PROMs. It was noted if the study had included any type of “rate of return to sport” (RTS) apart from using a regular PROM and if the study evaluated patient satisfaction. Inclusion of any RTS assessment was in this study defined dichotomously (yes or no). Type of interventions assessed in the study were divided into open, arthroscopic or a combination of arthroscopic/open. Further data as proportion of sex, follow-up time, and number of patients were collected. The number of patients were defined as the patients undergoing surgical intervention, i.e., if the control group consisted of patients without receiving intervention, the control group was not included.

Distribution of sex and mean follow-up for the last visit were recorded.

Statistical analyses

Interoobserver agreement for full-texts was calculated with the Cohen kappa coefficient (κ) [119]. According to previous recommendations the values of κ were set a priori with a κ of 0–0.2 equals slight agreement, 0.21–0.4 fair agreement, 0.41–0.6 moderate agreement, 0.61–0.8 substantial agreement and >0.8 equals to near perfect agreement. Descriptive statistics were used to present the data. Mean, standard deviation (SD), median and range values were presented when appropriate. Follow-up period was presented either as average follow-up period, or if not presented in the study, as minimum follow-up period. For studies comparing two or more groups, and no average follow-up period was mentioned for the entire cohort, a combined average follow-up was calculated. The analyses were performed with Microsoft Excel (version 16.40, Microsoft Corporation).

Results

Study identification and characteristics

The first search revealed 2,085 studies in PubMed and 2,218 studies in Embase. After removing duplicates, a total of 2,559 unique studies were eligible for the screening process. Figure 1 displays a flowchart of the screening process in accordance with the PRISMA guidelines. The agreement between the two readers for inclusion of full-text was 97% with a Cohen kappa value of 0.82, considered as near perfect agreement.

There were 6 (3%) RCTs, 55 (28%) prospective studies and 135 (69%) retrospective studies included in this systematic review. There were 6 (3%) Level I studies, 21 (11%) Level II studies, 86 (44%) Level III studies and 83 (42%) Level IV studies (Table 1). The included studies were published between 2004–2020. There was a large increase of published studies in the latter years where 143 (73%) of the studies were published in the last 5 years (2016–2020) compared to 7 (4%) in the first 5 years (2004–2008), an increase of 2,043% (Fig. 2).

More than half of the studies (58%) were conducted in USA. Most studies were published in The American Journal of Sports Medicine (21%), followed by Arthroscopy: The Journal of Arthroscopic and Related Surgery (19%). A total of 32,303 patients were included counting the patients in all studies together, with an average of 165 patients per study (range 8–1,102). The mean follow-up period was 27.0 months (±17 SD), (range 1.5–120) (Table 1).

Surgical procedure

The majority of the included studies (85%) were evaluating arthroscopic treatment. Only 5% of the included studies were examining solely open dislocation while the remaining 10% discussed either both open and arthroscopic or defined a mini-open technique with arthroscopic assistance. The procedure described in each study is reported in Table 1.

Patient-reported outcome measures

A total of 39 different PROMs were found in the studies, of these, 15 (38%) were hip-specific (Table 3, in Appendix). Between 1–10 PROMs were used in each study with an average of 3 (±1.8 SD) PROMs per study. Before 2016, the median of included PROMs was two per study, and after 2016 the median had increased to three per study.

The most common used hip-specific PROM was mHHS (used in 120 studies (61%)), followed by HOS (81 studies (41%)) (Fig. 3). An additional question of return to sport/return to activity was seen in 13% of the included studies. Of 196 studies, 40% included a question on satisfaction of which the majority used the visual analog scale.

During the first five years (2004–2008), the Merle d’Aubigné and Postel score and the Western Ontario
and McMaster Universities Osteoarthritis Index (WOMAC) were equally the most commonly used scores, reported in 3 (43%) of the studies during that period. During the last five years (2016–2020), the mHHS was the most commonly used, in 93 (65%) of the studies.

Of the 143 studies published during or after 2016, 67 (47%) studies have included the HOS, 46 (32%) included either iHOT-12 or iHOT-33 and 12 (8%) studies included the HAGOS (Fig. 3). Fifty-two of the 143 studies (36%) did not use any of the three PROMs recommended by the Warwick agreement [82] (Table 1).
Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMs	Men%	Surgery
Abrahamsson, J. [1]	2020	III	Sweden	Retrospective	23.4	y	551	HAGOS, iHOT-12, HSAS	3	77	ARTHROSCOPIC
Aguilera-Bohórquez, B. [2]	2020	IV	Colombia	Retrospective	12	n	17	WOMAC	1	47	ARTHROSCOPIC
Atzmon, R. [3]	2019	III	Israel	Retrospective	50°	n	64	HOS, mHHS, satisfaction	2	74	ARTHROSCOPIC
Avnieli, I. B. [4]	2020	III	Israel	Retrospective	24	y	133	HOS, mHHS, VAS satisfaction	2	62	ARTHROSCOPIC
Balázs, G. C. [5]	2018	II	USA	Prospective	1.5	n	59	HAGOS, iHOT-33, PCS, VAS pain	2	54	ARTHROSCOPIC
Barastegui, D. [6]	2018	IV	Spain	Retrospective	24	y	21	HOS (ADL + SS), mHHS, VAS pain	2	100	ARTHROSCOPIC
Bardakos, N. V. [7]	2008	III	England	Retrospective	12	n	71	mHHS	1	58	ARTHROSCOPIC
Basques, B. A. [8]	2019	III	USA	Retrospective	24	n	624	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	35	ARTHROSCOPIC
Beaulé, P. E [10]	2017	IV	Canada	Prospective	24.5	n	10	HOOS	1	100	ARTHROSCOPIC
Beaulé, P. E [9]	2007	IV	Canada	Retrospective	36	y	34	SF-12, UCLA, WOMAC	1	53	OPEN
Beck, E. C. [12]	2019	III	USA	Retrospective	32.9	n	108	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	x	ARTHROSCOPIC
Beck, E. C. [14]	2020	III	USA	Retrospective	24	n	249	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	35	ARTHROSCOPIC
Beck, E. C. [16]	2020	IV	USA	Prospective	6	n	74	HOS (ADL + SS), iHOT-12	2	23	ARTHROSCOPIC
Beck, E. C. [17]	2020	III	USA	Retrospective	24	n	647	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	24	ARTHROSCOPIC
Beck, E. C. [15]	2020	III	USA	Retrospective	24	n	384	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	32	ARTHROSCOPIC
Beck, E. C. [11]	2020	III	USA	Retrospective	50	n	264	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	34	ARTHROSCOPIC
Beck, E. C. [13]	2019	III	USA	Retrospective	24	n	336	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	30	ARTHROSCOPIC
Beck, M. [18]	2004	IV	Switzerland	Retrospective	564	n	19	The Merle d’Aubigné and Postel hip score	1	74	OPEN
Bennett, A. N. [19]	2016	IV	England	Prospective	12	n	101	FAA, NAHS, VAS pain	1	75	ARTHROSCOPIC
Bolla, I. K. [20]	2019	III	USA	Retrospective	80°	n	126	HOS (ADL + SS), mHHS, SF-12, VAS satisfaction	2	57	ARTHROSCOPIC
Boone, G. R. [21]	2012	IV	USA	Retrospective	45.6	n	21	UCLA	0	64	OPEN
Table 1 (continued)

Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMs	Merits	Surgery
Briggs, K. K. [22]	2019	III	USA	Retrospective	61.2	n	230	HOS (ADL + SS), mHHS, SF12, VAS satisfaction, WOMAC, Telegner	3	x	ARTHROSCOPIC
Bryan, A. J. [23]	2016	III	USA	Retrospective	24	n	201	HOS (ADL + SS), mHHS	2	69	ARTHROSCOPIC
Byrd, J.W. [24]	2009	IV	USA	Prospective	16	n	207	mHHS	1	67	ARTHROSCOPIC
Byrd, J.W. [25]	2016	III	USA	Retrospective	37³	n	108	mHHS	1	52	ARTHROSCOPIC
Byrd, J.W. [26]	2019	III	USA	Retrospective	18.9	n	42	iHOT, mHHS	2	52	ARTHROSCOPIC
Campoamor González, M. [27]	2020	III	Spain	Retrospective	6	n	57	HHS	1	68	INCLUDING BOTH
Cancienne, J. [28]	2019	III	USA	Retrospective	24	n	1102	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	35	ARTHROSCOPIC
Carreira, D. S. [29]	2018	IV	USA	Prospective	12	n	45	HOS (ADL + SS), mHHS, iHOT-12, SF-12	3	36	ARTHROSCOPIC
Casartelli N. [30]	2014	IV	Switzerland	Prospective	30	y	8	HOS (ADL + SS), satisfaction (1–5), pain change (1–5)	1	38	ARTHROSCOPIC
Catelli, D. S. [31]	2019	II	Canada	Prospective	24	n	11	HOOS	1	100	INCLUDING BOTH
Catelli, D. S. [32]	2019	II	Canada	Prospective	24	n	11	HOOS	1	100	INCLUDING BOTH
Cetinkaya, S. [33]	2016	III	Turkey	Retrospective	45.2	n	67	HOS, VAS pain	1	57	ARTHROSCOPIC
Chaharbakhsi, E. O. [34]	2019	III	USA	Retrospective	47³	n	107	HOS (SS), iHOT-12, mHHS, NAHS, VAS pain, VAS satisfaction	4	66	ARTHROSCOPIC
Chahla, J. [36]	2019	III	USA	Retrospective	27.8	n	634	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	33	ARTHROSCOPIC
Chahla, J. [37]	2019	III	USA	Retrospective	24	n	600	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	36	ARTHROSCOPIC
Chahla, J. [35]	2019	III	USA	Prospective	12	n	153	HOS (ADL + SS), HPSES, mHHS, VAS pain, VAS satisfaction	3	29	ARTHROSCOPIC
Chambers, C. C. [38]	2019	IV	USA	Retrospective	24	n	142	HOOS, mHHS, SF-12, VAS pain	2	51	ARTHROSCOPIC
Chiron, P. [39]	2012	IV	France	Prospective	26.4	y	108	HHS, MOS, NAHS, SF-36, satisfaction (1–5), VAS pain, WOMAC	3	85	MINIMALLY INVASIVE APPROACH
Chladek, P. [40]	2015	III	Czech Republic	Retrospective	40	n	100	NAHS, WOMAC	2	x	MINIMALLY INVASIVE SURGERY AND OPEN
Cho, S. H. [41]	2015	IV	Korea	Retrospective	24	n	11	mHHS, UCLA	1	36	ANTERIOR MINI-OPEN (AMO) AND OPEN
Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMs	Merit %	Surgery
-------------------------	------	-------------------	------------	------------	-----------	-----	--------------	--	-------------------	---------	------------------------------
Christensen, J. C. [43]	2019	III	USA	Retrospective	24	n	173	iHOT-12	1	0	ARTHROSCOPIC
Cappa, I. M. [44]	2020	III	USA	Prospective	199	n	85	HOS (ADL + SS), mHHS, iHOT-12, PCS, TSK, VAS pain, VAS satisfaction	3	25	ARTHROSCOPIC
Claßen, T. [45]	2016	II	Germany	Prospective	6	n	177	NAHS, WOMAC	2	46	ARTHROSCOPIC
Comba, F. [47]	2016	IV	Argentina	Prospective	91	n	42	mHHS, WOMAC	2	64	ARTHROSCOPIC
Cunningham, D. J. [48]	2017	III	USA	Prospective	1.5	n	62	iHOT-12, PCS, PHQ, VAS pain	1	33	ARTHROSCOPIC
Cvetanovich, G. L. [49]	2017	III	USA	Retrospective	31.2	n	348	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	42	ARTHROSCOPIC
Cvetanovich, G. L. [50]	2018	IV	USA	Prospective	24	n	386	HOS (ADL + SS), mHHS, VAS pain	2	39	ARTHROSCOPIC
Di Benedetto, P. [51]	2016	II	Italy	Prospective	12	n	65	mHHS, MHOT	2	x	ARTHROSCOPIC
Domb, B. G. [52]	2018	III	USA	Retrospective	50	n	130	HOS (SS), mHHS, NAHS, VAS pain, VAS satisfaction	3	28	ARTHROSCOPIC
Domb, B. G. [53]	2018	III	USA	Retrospective	24	n	148	HOS (SS), iHOT-12, mHHS, NAHS, SF-12, VAS pain, VAS satisfaction, VR-12	4	41	ARTHROSCOPIC
Dragé, T. [56]	2020	III	USA	Retrospective	12	n	346	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	28	ARTHROSCOPIC
Ellis, S. H. [57]	2020	III	Australia	Retrospective	12	n	79	iHOT-33	1	42	ARTHROSCOPIC
Ernat, J. J. [59]	2019	IV	USA	Retrospective	12	n	182	mHHS, SANE, satisfaction score, VAS pain, VR-12, WOMAC	2	74	MINI-OPEN ARTHROSCOPIC ASSISTED
Ernat, J. J. [58]	2015	IV	USA	Retrospective	43.2	n	93	mHHS, SANE, satisfaction, VAS pain, VR-12, WOMAC	2	70	MINI-OPEN ARTHROSCOPIC ASSISTED
Espinosa, N. [60]	2007	III	Switzerland	Retrospective	24	n	52	The Merle d’Aubigne–Postel score	1	x	OPEN
Essildie, A. A. [61]	2020	II	USA	Prospective	24	n	126	mHHS, NAHS	2	67	ARTHROSCOPIC
Fabbricant, P. D. [62]	2015	III	USA	Retrospective	21	n	243	HOS (ADL + SS), iHOT-33, mHHS	3	49	ARTHROSCOPIC
Fero, F. P. [63]	2015	IV	USA	Retrospective	30	n	184	mHHS, SF-12, WOMAC	2	x	ARTHROSCOPIC
Fiorentino, G. [64]	2015	IV	Italy	Retrospective	36	n	38	mHHS, patient satisfaction	1	59	ARTHROSCOPIC
Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMS	Men%	Surgery
----------------	------	-------------------	---------	------------	-----------	-----	--------------	--	-------------------	------	-------------
Flores, S. E.	2018	II	USA	Prospective	12	n	58	HOOS, mHHS, SF-12, VAS pain	2	53	ARTHROSCOPIC
Flores, S. E.	2020	II	USA	Prospective	24	n	131	HOOS, mHHS, SF-12, VAS pain	2	45	ARTHROSCOPIC
Flores, S. E.	2018	II	USA	Prospective	12	n	122	HOOS, mHHS, SF-12, VAS pain	2	47	ARTHROSCOPIC
Foreman, S.C.	2020	II	USA	Prospective	12	n	42	HOOS	1	64	ARTHROSCOPIC
Frank, R. M.	2019	III	USA	Retrospective	31.2	y	330	HOSS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	100	ARTHROSCOPIC
Frank, R. M.	2018	IV	USA	Retrospective	31.1	y	59	HOSS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	38	ARTHROSCOPIC
Fukui, K.	2016	II	USA	Prospective	33.6	n	150	HOSS (ADL + SS), mHHS, VAS satisfaction	2	50	ARTHROSCOPIC
Fukui, K.	2015	IV	USA	Retrospective	42	n	28	HOSS (ADL + SS), mHHS, SF-12, VAS satisfaction, WOMAC	3	57	ARTHROSCOPIC
Fukui, K.	2015	IV	USA	Retrospective	40	n	100	HOSS (ADL + SS), mHHS, SF-12, VAS satisfaction, WOMAC, VAS satisfaction	3	50	ARTHROSCOPIC
Gao, F.	2020	IV	China	Prospective	24	n	27	iHOT-12, mHHS, VAS pain	2	56	ARTHROSCOPIC
Gicquel, T.	2014	IV	France	Prospective	55.2	n	58	WOMAC satisfaction (1–4)	1	63	ARTHROSCOPIC
Gigi, R.	2016	III	Israel	Retrospective	30.4	n	106	HOSS (ADL), mHHS	2	65	ARTHROSCOPIC
Grace, T.	2018	IV	USA	Prospective	X	n	43	HOOS	1	58	ARTHROSCOPIC
Grace, T.	2018	II	USA	Prospective	X	n	46	HOOS, VAS pain	1	59	ARTHROSCOPIC
Grant, L. F.	2017	I	England	RCT	3	n	18	EQ-SD, NAHS	1	33	ARTHROSCOPIC
Graves, M. L.	2009	IV	USA	Retrospective	38	n	46	The Merle d’Aubigne’-Postel score	1	54	OPEN
Griffin, D. R.	2018	IV	England	RCT	12	n	213	EQ-SD, iHOT-33, SF12, UCLA	1	58	ARTHROSCOPIC
Gupta, A.	2014	IV	USA	Prospective	28.3			EQ-SD, iHOT-33, SF12, UCLA	1	60	ARTHROSCOPIC
Gupta, A.	2015	III	USA	Retrospective	23.1		680	HOSS (ADL + SS), mHHS, NAHS, VAS pain, VAS satisfaction	3	33	ARTHROSCOPIC
Ha, Y. C.	2020	IV	Korea	Retrospective	24	n	62	mHHS, UCLA, VAS pain, VAS satisfaction	1	90	ARTHROSCOPIC
Hamula, M. J.	2020	III	USA	Retrospective	31.6		226	mHHS, NAHS	2	39	ARTHROSCOPIC
Haskel, J. D.	2020	III	USA	Retrospective	24	n	149	mHHS, NAHS	2	25	ARTHROSCOPIC
Hassebrock, J. D.	2019	III	USA	Retrospective	24	n	133	HOSS (SS), iHOT-12, mHHS, NAHS, VAS pain, VAS satisfaction	4	47	ARTHROSCOPIC
Herrmann, S. J.	2016	IV	Germany	Retrospective	32		79	HOSS (ADL + SS)	1	62	ARTHROSCOPIC
Table 1 (continued)

Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants Included PROMs	Hip specific PROMS	Men (%)	Surgery	
Horisberger, M. [92]	2010	IV	Switzerland	Prospective	36	n	20	NAHS, VAS pain	1	80	ARTHROSCOPIC
Hwang, J. M. [94]	2019	IV	Korea	Retrospective	43.6	n	9	HOS (ADL), mHHS, VAS pain	2	75	ARTHROSCOPIC
Ilizaliturri, V. M. [95]	2008	IV	Mexico	Prospective	24	n	19	WOMAC	1	58	ARTHROSCOPIC
Inan, U. [96]	2016	IV	Turkey	Retrospective	48	n	21	HHS	1	33	OPEN
Ishai, L. [97]	2018	III	Denmark	Retrospective	33.1	y	189	HAGOS	1	51	ARTHROSCOPIC
Ishai, L. [98]	2019	III	Denmark	Retrospective	33.1	y	184	HAGOS	1	50	ARTHROSCOPIC
Javed, A. [99]	2011	IV	England	Retrospective	30	n	40	mHHS, NAHS, satisfaction y/n	2	65	ARTHROSCOPIC
Jochimsen, K. N. [100]	2019	III	USA	Retrospective	X	n	127	HOOS	1	26	ARTHROSCOPIC
Jäger, M. [101]	2011	IV	Germany	Prospective	12	n	22	HHS	1	32	OPEN
Kaldau, N. C. [102]	2018	IV	Denmark	Retrospective	82.9²⁵	n	84	EQ-5D, HAGOS, HSAS	2	54	ARTHROSCOPIC
Kaplan, D. J. [103]	2020	IV	USA	Retrospective	76.5	n	103	HHS, mHHS, NAHS	3	32	ARTHROSCOPIC
Keating, T. C. [104]	2019	IV	USA	Retrospective	24	y	22	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	0	ARTHROSCOPIC
Kekatpure, A. L. [105]	2017	III	Korea	Retrospective	25.4	n	83	mHHS, NAHS, WOMAC	3	66	ARTHROSCOPIC
Kierkegaard, S. [107]	2020	III	Denmark	Prospective	12	y	60	HAGOS	1	37	ARTHROSCOPIC
Kierkegaard, S. [108]	2019	III	Denmark	Prospective	12	n	60	HAGOS	1	40	ARTHROSCOPIC
Kockara, N. [109]	2018	IV	Turkey	Retrospective	72	n	33	HHS	1	58	OPEN
Kouk, S. [110]	2020	III	USA	Retrospective	24	n	62	mHHS, NAHS	2	44	ARTHROSCOPIC
Krishnamoorthy, V. P. [112]	2019	III	USA	Retrospective	24	n	830	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	31	ARTHROSCOPIC
Krishnamoorthy, V. P. [111]	2019	III	USA	Retrospective	36.8	n	743	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	32	ARTHROSCOPIC
Krych, A. J. [113]	2016	III	USA	Retrospective	24	n	104	HOS (ADL + SS), mHHS	2	38	ARTHROSCOPIC
Krych, A. J. [114]	2013	I	USA	RCT	32	n	36	HOS (ADL + SS)	1	0	ARTHROSCOPIC
Kunze, K. N. [115]	2019	III	USA	Retrospective	24	n	1094	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	34	ARTHROSCOPIC
Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMs	Men%	Surgery
---------------------	------	-------------------	----------	------------------	-----------	-----	--------------	--	-------------------	------	------------------------------
Kunze, K. N. [116]	2019	III	USA	Retrospective	24	n	306	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	42	ARTHROSCOPIC
Kunze, K. N. [117]	2019	IV	USA	Prospective	6	n	52	HOS (ADL + SS), iHOT-12, mHHS, PSQI, VAS pain	3	37	ARTHROSCOPIC
Lall, A. C. [118]	2020	III	USA	Retrospective	549	n	84	HOS (SS), iHOT-12, mHHS, NAHS, SF-12, VAS pain, VR-12	4	36	ARTHROSCOPIC
Lansdown, D. A. [120]	2018	IV	USA	Retrospective	24	n	707	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	36	ARTHROSCOPIC
Lansdown, D. A. [121]	2018	III	USA	Retrospective	24	n	301	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	36	ARTHROSCOPIC
Lee, S. [122]	2015	IV	USA	Retrospective	21	n	131	mHHS, VAS satisfaction	1	56	ARTHROSCOPIC
Lerch, S. [123]	2015	IV	Germany	Prospective	3.3	n	40	HOOS, WOMAC	2	x	ARTHROSCOPIC
Levy, D. M. [124]	2017	III	USA	Retrospective	24	n	84	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	36	ARTHROSCOPIC
Lindman, I. [125]	2020	IV	Sweden	Prospective	60	n	64	HAGOS, HSAS, iHOT-12, VAS hip function, EQ-5D, EQ VAS, satisfaction y/n	3	81	ARTHROSCOPIC
Malagelada, F. [127]	2015	IV	Spain	Prospective	12	y	14	LISOH, VAS pain	1	64	MINI-OPEN TECHNIQUE
Maldonado, D. R. [128]	2020	III	USA	Retrospective	24	n	145	HOS (SS), iHOT-12, mHHS, NAHS, SF-12, VAS pain, VAS satisfaction	4	12	ARTHROSCOPIC
Malloy, P. [129]	2019	IV	USA	Retrospective	26.4	n	50	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	36	ARTHROSCOPIC
Mannion, A. F. [130]	2013	II	Switzerland	Prospective	12	n	86	GTO, ORS, NASS	2	44	MINI-OPEN AND ARTHROSCOPIC
Marsell, N. S. [131]	2018	I	USA	RCT	12	n	40	GRC, HOUS, iHOT-12, PCS, Self-motivation inventory score, VAS pain	2	53	ARTHROSCOPIC
Mardones, R. [132]	2016	IV	Chile	Retrospective	52.8	n	23	mHHS, VAS pain	1	22	ARTHROSCOPIC
Mardones, R. [133]	2016	IV	Chile	Retrospective	48	n	15	mHHS, VAS pain, VHS	2	27	ARTHROSCOPIC
Martinez, D. [135]	2015	IV	Colombia	Prospective	23.8	n	179	WOMAC	1	35	ARTHROSCOPIC
Mas Martinez, J. [136]	2020	IV	Spain	Retrospective	24	y	185	HOS (ADL + SS), iHOT-12 mHHS	3	77	ARTHROSCOPIC
Matsuda, D. K. [137]	2013	III	USA	Retrospective	30	n	54	NAHS, satisfaction scale	1	59	ARTHROSCOPIC
Table 1 (continued)

Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants Included PROMs	Hip specific PROMs	Men%	Surgery	
Matsuda, D.K. [138]	2017	III	USA	Retrospective	12	n	77 NAHS, satisfaction (1–5)	1	52	ARTHROSCOPIC	
Matsuda, D.K. [139]	2019	III	USA	Retrospective	24	n	437 iHOT-12	1	67	ARTHROSCOPIC	
Menge, T.J. [140]	2017	III	USA	Retrospective	120	n	154 HOS (ADL + SS), mHHS, SF-12, VAS satisfaction	2	52	ARTHROSCOPIC	
Mladenović, D. [141]	2014	IV	Serbia	Retrospective	12	n	21 WOMAC	1	23	OPEN	
Naal, F.D. [144]	2017	III	Switzerland	Retrospective	444	n	232 EQ-5D, EQ-VAS, OHS, satisfaction scale (1–5), UCLA	1	49	INCLUDING BOTH	
Nabavi, A. [145]	2015	III	Australia	Retrospective	12	n	253 mHHS, NAHS	2	50	ARTHROSCOPIC	
Nakashima, H. [146]	2019	III	Japan	Retrospective	341	n	97 mHHS, NAHS	2	44	ARTHROSCOPIC	
Nawabi, D.H. [147]	2016	III	USA	Retrospective	24	n	177 HOS (ADL + SS), iHOT-33, mHHS	3	46	ARTHROSCOPIC	
Nepple, J.J. [148]	2015	IV	USA	Prospective	X	n	50 mHHS, SF-12	1	64	ARTHROSCOPIC AND LIMITED OPEN OSTEOCARTILAGE RESECTION	
Nepple, J.J. [149]	2009	III	USA	Retrospective	24\(^1\)	n	48 mHHS	1	60	ARTHROSCOPIC	
Nho, S.J. [150]	2019	III	USA	Retrospective	27.8	n	933 HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	37	ARTHROSCOPIC	
Nwachukwu, B.U. [151]	2020	III	USA	Retrospective	24	n	898 HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	35	ARTHROSCOPIC	
Nwachukwu, B.U. [152]	2018	III	USA	Retrospective	24	n	719 HOS (ADL + SS), iHOT-33, mHHS	3	47	ARTHROSCOPIC	
Nwachukwu, B.U. [153]	2017	III	USA	Retrospective	12	n	364 HOS (ADL + SS), iHOT-33, mHHS	3	43	ARTHROSCOPIC	
Palmer, A.J.R. [156]	2019	I	England	RCT	8	n	112 EQ-5D, EQ-VAS, HADS (anxiety + depression), HAGOS, HOS (ADL + SS), iHOT-33, NAHS, OHS, Pain detect score, UCLA	5	34	ARTHROSCOPIC	
Park, M.S. [157]	2014	IV	Korea	Retrospective	28.2	n	197 mHHS, VAS satisfaction	1	49	ARTHROSCOPIC	
Peeters, I. [160]	2019	III	USA	Retrospective	60	n	52 HOS (SS), iHOT-12, mHHS, NAHS, VAS pain, VAS satisfaction	4	72	ARTHROSCOPIC	
Peeters, I. [161]	2018	III	USA	Retrospective	71	n	148 HOS (SS), mHHS, NAHS, VAS pain, VAS satisfaction	3	39	ARTHROSCOPIC	
Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMS	Mer%	Surgery
-------------------	------	-------------------	---------	------------	-----------	-----	--------------	--	-------------------	------	--------------------
Perets, I. [159]	2018	IV	USA	Retrospective	60	n	94	HOS (SS), mHHS, NAHS, VAS pain, VAS satisfaction	3	45	ARTHROSCOPIC
Philippon, M. J.	2010	IV	USA	Retrospective	24	y	28	mHHS, VAS satisfaction	1	100	ARTHROSCOPIC
Philippon, M. J.	2009	IV	USA	Prospective	27.6	n	112	HOS (ADL + SS), mHHS, NAHS, VAS satisfaction	3	45	ARTHROSCOPIC
Philippon, M. J.	2012	IV	USA	Prospective	35.7	n	153	HOS (ADL + SS), mHHS, SF-12, VAS satisfaction	2	47	ARTHROSCOPIC
Polesello, G. C.	2012	IV	Brazil	Retrospective	34.3	y	47	mHHS, satisfaction	1	43	ARTHROSCOPIC
Polesello, G. C.	2009	IV	Brazil	Retrospective	27	n	28	HHS	1	67	ARTHROSCOPIC
Potter, M. Q.	2014	II	USA	Prospective	X	n	147	HOS (ADL + SS), mHHS, Modified zung depression scale, MSPQ	2	37	ARTHROSCOPIC
Przybyl, M.	2018	III	Poland	Retrospective	24	y	129	mHHS, NAHS	2	100	ARTHROSCOPIC
Ragab, R.	2018	IV	Egypt	Prospective	12.5	n	40	iHOT-12, mHHS	2	50	ARTHROSCOPIC
Ramos, N.	2020	III	USA	Retrospective	12	n	70	mHHS	1	47	ARTHROSCOPIC
Ramos, N.	2020	IV	USA	Retrospective	19.2	y	10	mHHS, satisfaction	1	100	ARTHROSCOPIC
Redmond, J. M.	2015	III	USA	Retrospective	24	n	190	HOS (ADL + SS), mHHS, NAHS, VAS pain, VAS satisfaction	3	37	ARTHROSCOPIC
Rego, P.A.	2018	III	Portugal	Retrospective	59	y	198	NAHS	1	56	INCLUDING BOTH
Ribas, M.	2007	IV	Spain	Retrospective	29.2	y	32	The Merle d’Aubigné–Postel score, WOMAC	2	72	MINI-OPEN-TECHNIQUE
Riff, A. J.	2018	IV	USA	Retrospective	24	y	32	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	40	ARTHROSCOPIC
Rivera, E.	2020	III	Spain	Retrospective	24	n	80	iHOT-33, mHHS, VAS pain	2	66	ARTHROSCOPIC
Roos, B. D.	2017	III	Brazil	Retrospective	36⁰	n	56	mHHS, NAHS	2	84	INCLUDING BOTH
Roos, B. D.	2015	IV	Brazil	Retrospective	29.1	n	40	mHHS, NAHS	2	87	ARTHROSCOPIC
Rylander, J. H.	2011	IV	USA	Prospective	12	n	11	Tegner	0	73	ARTHROSCOPIC
Saltzman, B. M.	2017	III	USA	Retrospective	31.2	n	381	HOS (ADL + SS), mHHS, VAS pain, VAS satisfaction	2	39	ARTHROSCOPIC
Samaan, M. A.	2020	II	USA	Prospective	7	n	10	HOOS	1	80	ARTHROSCOPIC
Table 1 (continued)

Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMS	Men%	Surgery
Sanders, T. L. [184]	2017	IV	USA	Retrospective	30 y	46	ADL, iHOT, mHHS, sport score, subjective level of function (1–4)	2	33	ARTHROSCOPIC	
Sansone, M. [186]	2015	IV	Sweden	Prospective	12.3 n	85	EQ-5D, HAGOS, HSAS, iHOT-12, VAS overall hip function, satisfaction y/n	3	80	ARTHROSCOPIC	
Sansone, M. [187]	2016	IV	Sweden	Prospective	26 n	75	EQ-5D, HAGOS, HSAS, iHOT-12, VAS overall hip function, satisfaction y/n	3	77	ARTHROSCOPIC	
Sansone, M. [188]	2017	IV	Sweden	Prospective	25.4 n	289	EQ-5D, HAGOS, HSAS, iHOT-12, VAS overall hip function, satisfaction y/n	3	66	ARTHROSCOPIC	
Sariali, E. [189]	2018	IV	France	Prospective	396 n	47	HHS, OHS	2	x	ARTHROSCOPIC	
Scannaliato, J. P. [190]	2018	III	USA	Retrospective	24 n	152	iHOT-12, mHHS, SF-12, VAS pain, VAS satisfaction	2	42	ARTHROSCOPIC	
Shaw, K. A. [191]	2017	IV	USA	Prospective	6 n	11	HOS, mHHS	2	73	ARTHROSCOPIC	
Shibata, K. R. [192]	2017	III	USA	Retrospective	189 y	98	HSAS, iHOT-33, mHHS	3	50	ARTHROSCOPIC	
Skendzel, J. G. [194]	2014	III	USA	Retrospective	73 n	559	HOS (ADL + SS), mHHS, SF-12, VAS satisfaction, WOMAC	3	44	ARTHROSCOPIC	
Skowronek, P. [195]	2017	IV	Poland	Retrospective	45 y	39	HHS, SF-36, VAS pain	1	64	MIN-OPEN DIRECT ANTERIOR APPROACH (DDA)	
Sochacki, K. R. [198]	2018	III	USA	Retrospective	X n	212	HOS (ADL + SS), iHOT-12, SF-36	2	44	ARTHROSCOPIC	
Sochacki, K. R. [197]	2018	III	USA	Retrospective	12 n	77	BDI-2, HOS (ADL + SS), iHOT-33	2	27	ARTHROSCOPIC	
Spencer-Gardner, L. [199]	2017	III	Australia	Retrospective	19 n	36	mHHS, NAHS	2	42	ARTHROSCOPIC	
Srinivasan, S. C. [200]	2013	IV	England	Retrospective	223 n	26	NAHS, UCLA, VAS pain	2	42	COMBINED ARTHROSCOPIC AND OPEN	
Stone, A. V. [201]	2019	IV	USA	Retrospective	24 n	626	HOS (SS), VAS pain, VAS satisfaction	1	31	ARTHROSCOPIC	
Stone, A. V. [202]	2019	III	USA	Retrospective	24 n	688	HOS (ADL + SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	35	ARTHROSCOPIC	
Stähelin, L. [203]	2008	IV	Switzerland	Prospective	6 n	22	NAHS, VAS pain	1	68	ARTHROSCOPIC	
Thomas, D. D. [204]	2017	IV	USA	Retrospective	30 n	469	SANE, VAS pain	0	66	ARTHROSCOPIC	
Table 1 (continued)

Author	Year	Level of evidence	Country	Study type	Follow-up	RTS	Participants	Included PROMs	Hip specific PROMS	Merits	Surgery
Tjong, V. K.	2016	IV	USA	Prospective	24	y	23	HOS (SS), iHOT-12, mHHS, VAS pain, VAS satisfaction	3	35	ARTHROSCOPIC
Vahedi, H.	2019	III	USA	Retrospective	49.9	n	601	mHHS, SF-36	1	54	ARTHROSCOPIC
Wadhawan, J.	2018	IV	Spain	Retrospective	12	n	105	mHHS	1	50	ARTHROSCOPIC
Westermann, R. W.	2018	III	USA	Retrospective	X	n	321	HOOS (pain + physical function), UCLA, VR-12	1	31	ARTHROSCOPIC
Wu, C. T.	2019	IV	Taiwan	Retrospective	44	n	36	HHS, VAS pain	1	56	MINI-OPEN ARTHROSCOPIC-ASSISTED
Wörner, T.	2019	III	Sweden	Retrospective	8.1	y	33	HAGOS, HSAS	2	88	ARTHROSCOPIC
Yoo, J. I.	2017	IV	Korea	Retrospective	24	n	40	mHHS, UCLA, VAS pain	1	63	ARTHROSCOPIC
Yun, H. H.	2009	IV	Korea	Retrospective	27.6	n	16	HHS	1	86	OPEN
Zhu, X.	2020	I	China	RCT	3	n	100	HHS, PGA, VAS pain	1	51	ARTHROSCOPIC
Zimmerer, A.	2018	II	Germany	Prospective	24.4	n	43	HOOS, WOMAC	2	72	ARTHROSCOPIC
Zusmanovich, M.	2020	III	USA	Retrospective	25.2	n	34	mHHS, NAHS, VAS pain	2	41	ARTHROSCOPIC
Öhlin, A.	2017	IV	Sweden	Prospective	24	n	198	iHOT-12, satisfaction y/h	1	62	ARTHROSCOPIC

Abbreviations: n no, PROM Patient-reported Outcome Measures, RCT randomized control trial, RTS Return to sport, y = yes. For abbreviations of PROMs, see Appendix, Table 3

a combined mean value was calculated

b median value
Discussion
The most important finding in this systematic review was the expected growth in the number of studies published over the years, where over 70% of the included studies were published between 2016–2020. Although the literature review included studies from 1999–2020, the first study meeting the inclusion criteria was published in 2004.

A total of 39 different PROMs were used among the studies, of which 15 were hip specific. The most common non-hip specific outcome was satisfaction, found in 40% of the studies. Previous studies have reported that satisfaction is the most frequently used non-hip specific outcome tool, although there is a variability how satisfaction is reported [175, 193]. The discrepancy in the use of different PROMs has previously been noted and the reason for this is unknown. The routinely use of a specific PROM, the difficulty in changing PROMs once norms have been established and the inevitable retention of the same PROMs to be able to follow a cohort and evaluate long-term outcomes are possible explanations for the divergence in use of PROMs [175].

After the Warwick agreement in 2016, three patient-reported outcome measures were considered suitable for the target population of FAIS and were recommended
to use when evaluating surgery for FAIS [82], 65% of the included studies in this systematic review used at least one of the recommended PROMs (HAGOS, iHOT-12 or iHOT-33 and HOS (ADL + SS)). Nonetheless, the mHHS remains being the most commonly used PROM, even though there is a well-known ceiling effect of mHHS described for young active patients [206]. It could be seen as both surprising and concerning that mHHS still is the most used PROM in studies on FAIS as its outcome's validity for young and active patients is considered low. Thorborg et al. [206] found HAGOS to be the best suited PROM for patients with FAIS, which only was used in 7% of the studies. This finding can guide future healthcare providers and researchers in using hip specific PROMs valid for the target population and diagnosis. Furthermore, there is a need for adoption of new validated scores, translated into the patients’ native language.

Only 13% of the included studies reported RTS specifically by using a clear definition. There is a current challenge in sports science regarding the definition of RTS, and the most optimal evaluation of RTS has not yet been decided. Activity scores such as the HOS (SS), Tegner activity scale or HSAS, with the purpose to evaluate the patients’ activity level or issues in sport specific activities, are not the best tools to evaluate the RTS. Mainly because these scores do not include training load or performance compared with preinjury status. This could possibly generate a ceiling effect if the patients rate the PROMs higher, yet still not being capable to fully return to their preinjury level of sport. Furthermore, the definition of RTS has been proposed to differ between elite and recreational athletes [42]. Athletes undergoing hip arthroscopic surgery for FAIS usually have a major interest whether they can RTS again, thus, a reliable method to determine RTS is thus needed.

The majority of the studies were published in USA or in Europe. This has previously been reported [106, 213]. Although USA and Europe have been in the front line of hip arthroscopic surgery and research, a small number of studies included in this systematic review were from Korea and China, indirectly indicating an upcoming trend in performed surgeries for FAIS in Asia. Moreover, only studies in the English language were included in this systematic review, which partly might explain the high percentage of studies from USA and Europe.

Although a few RCT:s have been published, retrospective studies are still the most common. Over the years, patient registries have facilitated prospective evaluation of FAIS and yielded important insight on PROMs [126, 185]. Öhlin et al. [155] assessed the methodological quality of prospective studies over a 5-year time period and found no improvement in the quality of the methods despite an increase in the number of published studies. With the dramatic increase seen in the number of published studies in this systematic review, it is of importance to also improve the quality of observational studies. New consensus meetings to enhance adoption of suitable PROMs and education of researchers and clinicians could benefit future research in the outcome of FAIS.

Strengths and limitations
The strength of this study is the methodological rigor using PRISMA guidelines, focus on an important topic and the longitudinal analysis of a 20-year time horizon.

This systematic review is not without limitations. One of the a-priori set exclusion criteria was age, excluding studies with patients < 18 years old, though the focus was on the adult population as validation of PROMs in the pediatric population is still emerging. Moreover, only publications in the English language were included and there is a risk of missing publications in non-English speaking countries. Due to the heterogeneity of the included studies no statistical meta-analysis was conducted.

Conclusion
There has been a continuous increase in the number of published studies regarding FAIS with the majority evaluating arthroscopic surgery. The mHHS remains being the most commonly used PROM.
Appendix

Table 2 Search strategy: pubmed

Search	Query	Results
#27	Search: #19 NOT #22 Filters: English Sort by: Most Recent	2,085
#23	Search: #19 NOT #22 Sort by: Most Recent	2,172
#22	Search: #20 OR #21 Sort by: Most Recent	5,073,653
#21	Search: animal(ti) OR animals(ti) OR rat(ti) OR rats(ti) OR mouse(ti) OR mice(ti) OR rodent(ti) OR rodents(ti) OR dog(ti) OR dogs(ti) OR cat(ti) OR cats(ti) OR koala(ti) OR hamster(ti) OR hamsters(ti) OR rabbit(ti) OR rabbits(ti) OR swine(ti) OR murine(ti) Sort by: Most Recent	1,886,518
#20	Search: (animals(mh) NOT (animals(mh) AND humans(mh))) Sort by: Most Recent	4,731,731
#19	Search: #5 AND #18 Sort by: Most Recent	2,177
#18	Search: #6 OR #7 OR #17 Sort by: Most Recent	2,006,557
#17	Search: surgery(tiab) OR surgical(tiab) OR operative(tiab) OR minimally invasive(tiab) Sort by: Most Recent	1,989,360
#7	Search: arthroscop*[tiab] Sort by: Most Recent	31,803
#6	Search: "Arthroscopy"[Mesh] Sort by: Most Recent	23,951
#5	Search: #2 OR #3 OR #4 Sort by: Most Recent	4,313
#4	Search: hip impingement(tiab) OR cam impingement(tiab) OR pincer impingement(tiab) OR FAI(tiab) OR FAIS(tiab) Sort by: Most Recent	2,865
#3	Search: (femoroacetabular(tiab) OR femoracetabular(tiab) OR femoral acetabular(tiab) OR femoro-acetabular(tiab)) AND impingement(tiab) Sort by: Most Recent	2,738
#2	Search: "Femoracetabular Impingement"[Mesh] Sort by: Most Recent	1,702

* Date of search: 7th of September 2020. Results: 2085 studies
| PROM | Name | Hip specific |
|-----------------|---|--------------|
| BDI-2 | Beck Depression Inventory | No |
| EQ-5D | European Quality of life index version 5D | No |
| FAA | Functional Activity Assessment | No |
| GRC | Global Rating of Change | No |
| GTO | Global Treatment Outcome | No |
| HADS | Hospital Anxiety and Depression Scale | No |
| HAGOS | The Copenhagen Hip and Groin Outcome Score | Yes |
| HHS | Harris Hip Score | Yes |
| HOOS | Hip Disability and Osteoarthritis Outcome Score | Yes |
| HOS (ADL + SS) | Hip Outcome Score (Activities of Daily Living + Sport Specific) | Yes |
| HPSES | Hip Preservation Surgery Expectations Survey | Yes |
| iHOT-12 | The international Hip Outcome Tool-12 | Yes |
| iHOT-33 | The international Hip Outcome Tool-33 | Yes |
| LISHO | Lequesne Functional Index for Hip Osteoarthritis | Yes |
| Merle d'Aubigne and Postel scale | | Yes |
| mHHS | modified Harris Hip Score | Yes |
| MHOT | Mahorn Hip Outcome Tool | Yes |
| MSPQ | Modified Somatic Perception Questionnaire | Yes |
| Modified zung depression scale | | No |
| NASS | North American Spine Society Lumbar Spine Questionnaire | No |
| MOS | Mean Opinion Score | No |
| NAHS | Non-Arthritic Hip Score | Yes |
| OHS | Oxford Hip Score | Yes |
| Pain detect score | | No |
| PCS | Pain Catastrophizing Scale | No |
| PGA | Patient Global Assessment | No |
| PHQ | Patient Health Questionnaire | No |
| PSQI | Pittsburgh Sleep Quality Index | No |
| SANE | Single Assessment Numeric Evaluation | No |
| Satisfaction | | No |
| SF-12 | 12-item Short-Form Health Survey | No |
| SF-36 | The Short Form 36 Health Survey | No |
| Tegner | | No |
| TSK | Tampa Scale of Kinesiophobia | No |
| UCLA | University of California Los Angeles activity scores. | No |
| VAS pain | Visual analogue scale | No |
| VHS | Vail Hip score | Yes |
| VR-12 | The Veterans RAND 12 Item Health Survey | No |
| WOMAC | Western Ontario and MacMaster Universities Osteoarthritis Index | Yes |
Received: 5 February 2021 Accepted: 8 April 2021

L8N 3Z5, Canada.

Sweden. 4 Division of Orthopaedic Surgery, McMaster University, Hamilton, ON and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 2 Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 3 Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 1 Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden. 2 Department of Orthopaedic Surgery, South Alvsborg Hospital, 501 82 Borås, Sweden. 3 Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 4 Division of Orthopaedic Surgery, McMaster University, Hamilton, ON L8N 3Z5, Canada.

Acknowledgments
Not applicable.

Authors' contributions
IL: Study idea, literature screening, data collection, data analysis, manuscript writing. SN: Literature screening, manuscript writing. AO: Study idea, manuscript writing. EHS: Manuscript writing. MS: Study idea, manuscript writing. All authors read and approved the final manuscript.

Funding
Open access funding provided by University of Gothenburg.

Availability of data and materials
All data analyzed is included in the published study and its supplementary information files or references.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
OA declare a potential conflict of interest as a non-financial arrangement of “Speakers Bureau of Conmed”. Other authors have no competing interest to declare.

Author details
1 Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden. 2 Department of Orthopaedic Surgery, South Alvsborg Hospital, 501 82 Borås, Sweden. 3 Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 4 Division of Orthopaedic Surgery, McMaster University, Hamilton, ON L8N 3Z5, Canada.

Received: 5 February 2021 Accepted: 8 April 2021

Published online: 23 April 2021

References
1. Abrahamsson J, Lindman I, Sansone M, Ohlin A, Jonasson P, Karlsson J, Baranto A (2020) Low rate of high-level athletes maintained a return to pre-injury sports two years after arthroscopic treatment for femoroacetabular impingement syndrome. J Exp Orthop 7(1):44. https://doi.org/10.1186/s40634-020-00263-5
2. Aguilera-Bohórquez B, Ramirez S, Cantor E (2020) Functional results of arthroscopic treatment in patients with femoroacetabular and subpine impingement diagnosed with a 3-dimensional dynamic study. Arthrosc Sports Med Rehabil 2(1):e39–e45. https://doi.org/10.1016/j. asmr.2019.10.007
3. Atzmon R, Shafirman ZT, Haviv B, Frankl M, Rotem G, Amar E, Drooler M, Rath E (2019) Does capsular closure influence patient-reported outcomes in hip arthroscopy for femoroacetabular impingement and labral tear? J Hip Preserv Surg 6(3):199–206. https://doi.org/10.1093/jhps/hnz025
4. Avnieli IB, Vidra M, Factor S, Atzmon R, Persitz J, Safran N, Rath E, Amar E (2020) Postoperative weightbearing protocols after arthroscopic surgery for femoroacetabular impingement does not affect patient outcome: a comparative study with minimum 2-year follow-up. Arthroscopy 36(1):159–164. https://doi.org/10.1016/j.arthro.2019.08.012
5. Balazs GC, Donohue MA, Brelin AM, Brooks DJ, McCabe MP, Anderson TD (2018) Reaction time and brake pedal depression following arthroscopic hip surgery: a prospective case-control study. Arthroscopy 34(5):1463–1470.e1–461. https://doi.org/10.1016/j.arthro.2018.02.030
6. Baratsegui D, Seijas R, Alvarez-Diaz P, Rivera E, Alentorn-Geli E, Steinbacher G, Cusco X, Cugat R (2018) Assessing long-term return to play after hip arthroscopy in football players evaluating risk factors for good prognosis. Knee Surg Sports Traumatol Arthosc 26(3):963–968. https://doi.org/10.1007/s00167-017-4573-2
7. Bardakos NV, Vanconcelos JC, Villar RN (2008) Early outcome of hip arthroscopy for femoroacetabular impingement: the role of femoral osteoplasty in symptomatic improvement. J Bone Joint Surg Br 90(12):1570–1575. https://doi.org/10.1302/0301-620x.90b12.21012
8. Basques BA, Waterman BR, Ukwuani G, Beck EC, Neal WH, Friel NA, Stone AV, Nho SJ (2019) Preoperative symptom duration is associated with outcomes after hip arthroscopy. Am J Sports Med 47(1):131–137. https://doi.org/10.1177/0363546518808046
9. Beaulé PE, Le Duff MJ, Zaragosa E (2007) Quality of life following femoral head-neck osteochondroplasty for femoroacetabular impingement. J Bone Joint Surg Am 89(4):773–779. https://doi.org/10.2106/jbjs.f00681
10. Beaulé PE, Speirs AD, Anwander H, Melkus G, Rakha K, Frei H, Lamontagne M (2017) Surgical correction of cam deformity in association with femoroacetabular impingement and its impact on the degenerative process within the hip joint. J Bone Joint Surg Am 99(16):1373–1381. https://doi.org/10.2106/jbjs.16.00415
11. Beck EC, Drager J, Nwachukwu BU, Rasio J, Jan K, Chahla J, Nho SJ (2020) Patients with borderline hip dysplasia achieve clinically significant improvement after arthroscopic femoroacetabular impingement surgery: a case-control study with a minimum 5-year follow-up. Am J Sports Med 48(7):1616–1624. https://doi.org/10.1177/0363546519865919
12. Beck EC, Kunze KN, Friel NA, Neal WH, Fu MC, Giordano BD, Chahla J, Nho SJ (2019) Is there a correlation between outcomes after hip arthroscopy for femoroacetabular impingement syndrome and patient cortical bone thickness? J Hip Preserv Surg 6(1):16–24. https://doi.org/10.1093/jhps/hnz010
13. Beck EC, Nwachukwu BU, Chahla J, Jan K, Keating TC, Suppauksorn S, Nho SJ (2019) Patients with borderline hip dysplasia achieve clinically significant outcome after arthroscopic femoroacetabular impingement surgery: a case-control study with minimum 2-year follow-up. Am J Sports Med 47(11):2636–2645. https://doi.org/10.1177/0363546519865919
14. Beck EC, Nwachukwu BU, Chapman R, Gowd AK, Waterman BR, Nho SJ (2020) The influence of lumbar sacral spine pathology on minimum 2-year outcome after hip arthroscopy: a nested case-control analysis. Am J Sports Med 48(2):403–408. https://doi.org/10.1177/0363546519892916
15. Beck EC, Nwachukwu BU, Jan K, Krivicich LM, Chahla J, Fu MC, Nho SJ (2020) The effect of postoperative opioid prescription refills on achieving meaningful clinical outcomes after hip arthroscopy for femoroacetabular impingement syndrome. Arthroscopy 36(6):1599–1607. https://doi.org/10.1016/j.arthro.2020.02.007
16. Beck EC, Nwachukwu BU, Krivicich LM, Malloy P, Suppauksorn S, Jan K, Nho SJ (2020) Preoperative hip extension strength is an independent predictor of achieving clinically significant outcomes after hip arthroscopy for femoroacetabular impingement syndrome. Sports Health 12(4):361–372. https://doi.org/10.1177/1941738120910134
17. Beck EC, Nwachukwu BU, Lee EK, Chapman R, Stubbs AJ, Gitelis M, Rasio J, Nho SJ (2020) Travel distance does not affect outcomes in hip preservation surgery: a case for centers of excellence. Orthop J Sports Med 8(3):232556712098821. https://doi.org/10.21091/0363546519892916
18. Beck M, Leung M, Parviz J, Boutier V, Wysy D, Ganz R (2004) Anterior femoroacetabular impingement: part II. Midterm results of surgical treatment. Clin Orthop Relat Res 418:67–73
on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med 50(19):1169–1176. https://doi.org/10.1136/bjsports-2016-096743

83. Griffin DR, Dickson EJ, Wall PDH, Achana F, Donovan JL, Griffin J, Hobson R, Hutchinson CE, Jepson M, Parsons NR, Petrous S, Realpe A, Smith J, Foster NE (2018) Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHION): a multicentre randomised controlled trial. Lancet 391(10136):2225–2235. https://doi.org/10.1016/S0140-6736(18)31202-9

84. Griffin DR, Parsons N, Mohtadi NG, Safran MR, Multicenter Arthroscopy of the Hip Outcomes Research N (2012) A short version of the International Hip Outcome Tool (iHOT-12) for use in routine clinical practice. Arthroscopy 28(5):616–618. https://doi.org/10.1016/j.arthro.2012.02.027

85. Gupta A, Redmond JM, Hammarstedt JE, Lindner D, Stake CE, Domb BG (2015) Does obesity affect outcomes after hip arthroscopy? A cohort analysis. J Bone Joint Surg Am 97(1):1–6. https://doi.org/10.2106/JBJS.N.00625

86. Gupta A, Redmond JM, Stake CE, Finch NA, Dunne KF, Domb BG (2014) Does the femoral cam lesion regrow after osteoplasty for femoroacetabular impingement? Two-year follow-up. Am J Sports Med 42(9):2149–2155. https://doi.org/10.1177/036354651451782

87. Ha YC, Lim JY, Won YS, Lee YK, Koo KH, Kim JW (2020) Outcomes of arthroscopic femoroplasty in patients with cam lesion: minimum 2-year follow-up. J Orthop Surg 28(2):2309499020942049. https://doi.org/10.1177/2309499020942049

88. Hamula MJ, Ryan MK, Baron SL, Bloom DA, Youm T (2020) Arthroscopic treatment for femoroacetabular impingement: a comparison of outcomes based on primary hip pain location. Am J Sports Med 48(1):167–172. https://doi.org/10.1177/0363546519887737

89. Haskel JD, Baron SL, Zusmanovich M, Youm T (2020) Does concomitant lumbar spine disease adversely affect the outcomes of patients undergoing hip arthroscopy? Am J Sports Med 48(9):2178–2184. https://doi.org/10.1177/0363546520929344

90. Hassebrock JD, Kyych AJ, Domb BG, Levy BA, Neville MR, Hartigan DE (2019) Bilateral hip arthroscopy: can results from initial arthroscopy for femoroacetabular impingement predict future contralateral results? Arthroscopy 35(6):1837–1844. https://doi.org/10.1016/j.arthro.2018.12.033

91. Herrmann SJ, Bernauer M, Erdle B, Südkamp NP, Helweg P, Hauschild O (2016) Osteoarthritic changes rather than age predict outcome following arthroscopic treatment of femoroacetabular impingement in middle-aged patients. BMC Musculoskelet Disord 17:253. https://doi.org/10.1186/s12891-016-1108-6

92. Horisberger M, Brunner A, Herzog RF (2010) Arthroscopic treatment of the Hip Outcomes Research N (2012) A short version of the International Hip Outcome Tool (iHOT-12) for use in routine clinical practice. Arthroscopy 28(5):616–618. https://doi.org/10.1016/j.arthro.2012.02.027

93. Humphrey JA, George MD, Bankes MJK (2018) Experience and outcome data of the British non-arthroplasty hip registry. Hip Int 28(4):429–436. https://doi.org/10.1007/s12891-016-1053-5

94. Hwang JM, Hwang DS, Kang C, Lee WY, Lee GS, Lee JK, Kim YK (2019) Bilateral hip arthroscopy: can results from initial arthroscopy for femoroacetabular impingement syndrome: a secondary analysis of a cross-sectional cohort study including 184 athletes. J Hip Preserv Surg 6(2):124–133. https://doi.org/10.1093/jhps/hnz017

95. Iaved A, O’Donnell JM (2011) Arthroscopic femoral osteochondroplasty for cam femoroacetabular impingement in patients over 60 years of age. J Bone Joint Surg Br 93(3):326–331. https://doi.org/10.1302/0301-620x.93b3.25262

96. Johimsen KN, Magnuson JA, Kocan KR, Mattacola CG, Noehren B, Duncan ST, Jacobs CA (2019) Anxiety and depression are associated with lower preoperative quality of life and function but not duration of symptoms in patients with femoroacetabular impingement syndrome. J Hip Preserv Surg 6(3):207–213. https://doi.org/10.1093/jhps/hnz027

97. İşhowi L, Thorborg K, Kraemer O, Hölmich P (2018) Return to sport and secondary analysis of a cross-sectional cohort study including 184 athletes. J Hip Preserv Surg 6(2):124–133. https://doi.org/10.1093/jhps/hnz017

98. İşhowi L, Thorborg K, Kraemer O, Hölmich P (2018) The association between specific sports activities and sport performance following hip arthroscopy for femoroacetabular impingement syndrome: a
hip arthroscopy in patients with femoroacetabular impingement? Am J Sports Med 44(2):454–459. https://doi.org/10.1177/0363543516612448

114. Krych AJ, Thompson M, Knutson S, Scoon J, Coleman SH (2013) Arthroscopic labral repair versus selective labral debridement in female patients with femoroacetabular impingement: a prospective randomized study. Arthroscopy 29(1):46–53. https://doi.org/10.1016/j.arthro.2012.07.011

115. Kunze KN, Beck EC, Okoroha KR, Chahla J, Suppaulsorn S, Bush-Joseph CA, Katakam A, Nho SJ (2018) Effect of prior ipsilateral lower extremity surgery on 2-year outcomes following hip arthroscopy for femoroacetabular impingement syndrome. J Hip Preserv Surg 6(3):241–248. https://doi.org/10.1093/jhps/hmn031

116. Kunze KN, Leong NL, Beck EC, Bush-Joseph CA, Katakam A, Nho SJ (2019) Hip arthroscopy for femoroacetabular impingement improves sleep quality postoperatively. Arthroscopy 35(2):461–469. https://doi.org/10.1016/j.arthro.2018.09.021

117. Lall AC, Secretov E, Battaglia MR, Maldonado DR, Perets I, Domb BG (2017) Arthroscopic labral repair versus selective labral debridement in female patients with femoroacetabular impingement syndrome: a randomized controlled trial with 2-year follow-up. Hip Int 30(4):457–468. https://doi.org/10.1007/s10752-019-05835-4

118. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374

119. Lansdown DA, Kunze K, Ukwuani G, Waterman BR, Nho SJ (2018) The importance of comprehensive cam correction: radiographic parameters are predictive of patient-reported outcome measures at 2 years after hip arthroscopy. Am J Sports Med 46(9):2072–2078. https://doi.org/10.1177/0363546518803117

120. Levy DM, Cvetanovich GL, Kuhns BD, Greenberg MJ, Alter JM, Nho SJ (2015) Evaluation of sexual function before and after hip arthroscopic surgery for symmetrical femoroacetabular impingement. Am J Sports Med 43(8):1850–1856. https://doi.org/10.1177/0363546515538402

121. Lherch S, Kaspersczyk A, Berndt T, Rühmann O (2015) Ultrasonography can quantify the extent of osteochondroplasty after treatment of Cam-type femoroacetabular impingement. Int Orthop 39(5):853–858. https://doi.org/10.1007/s00264-014-2588-3

122. Levy DM, Cvetanovich GL, Khuns BD, Greenberg MJ, Alter JM, Nho SJ (2017) Hip Arthroscopy for atypical posterior hip pain: a comparative matched-pair analysis. Am J Sports Med 45(7):1627–1632. https://doi.org/10.1177/0363546517692983

123. Lindman I, Öhlin A, Desai N, Samuelsson K, Ayeni OR, Holmich P, Lind M (2017) Danish Hip Arthroscopy Registry (DHAR): the outcome of patients with femoroacetabular impingement syndrome. J Hip Preserv Surg 4(2):170–177. https://doi.org/10.1093/jhps/hnx009

124. Malloy P, Stone AV, Kunze KN, Neal WH, Beck EC, Nho SJ (2019) Patients with unilateral femoroacetabular impingement syndrome have asymmetrical hip muscle cross-sectional area and compensatory muscle changes associated with preoperative pain level. Arthroscopy 35(3):1446–1453. https://doi.org/10.1016/j.arthro.2018.11.033

125. Mansell NS, Rhon DJ, Meyer J, Slevin JM, Marchant BG (2018) Arthroscopic surgery or physical therapy for patients with femoroacetabular impingement syndrome: a randomized controlled trial with 2-year follow-up. Am J Sports Med 46(6):1306–1314. https://doi.org/10.1177/0363546517751912

126. Mardones R, Via AG, Rivera A, Tomic A, Somarriva M, Camacho D (2016) Arthroscopic treatment of femoroacetabular impingement in patients older than 60 years. Muscles Ligaments Tendons J 6(3):397–401. https://doi.org/10.1111/mlt.12397

127. Mardones R, Via AG, Rodriguez C, Salineros M, Somarriva M (2016) Arthroscopic release of iliofemoral ligaments in patients with femoroacetabular impingement: clinical results at mid-term follow-up. Muscles Ligaments Tendons J 6(3):378–383. https://doi.org/10.11138/mlt.2016.6.3.378

128. Martin RL, Philippou MJ (2007) Evidence of validity for the hip outcome score in hip arthroscopy. Arthroscopy 23(8):822–826. https://doi.org/10.1016/j.arthro.2007.02.004

129. Mas Martinez J, Sanz-Reig J, Verdu Roman C, Suarez B, de Puga D, Gimenez E, Morales Santias M (2020) Recreational sports and intra-articular hip injuries in patients undergoing hip arthroscopy for femoroacetabular impingement. Arthrosc Revab 2(4):e321–e328. https://doi.org/10.1016/j.asr.2020.04.005

130. Matsuda DK, Burchette RJ (2013) Arthroscopic hip labral reconstruction with a gracilis autograft versus labral resection: 2-year minimum outcomes. Am J Sports Med 41(5):980–987. https://doi.org/10.1177/0363546513482884

131. Matsuda DK, Gupta N, Khatod M, Matsuda NA, Anthony F, Sampson J, Burchette R (2017) Poorer arthroscopic outcomes of mild dysplasia with cam femoroacetabular impingement versus mixed femoroacetabular impingement in absence of capsular repair. Am J Orthop 46(1):E47–E53

132. Matsuda DK, Kvanl BR, Nho SJ, Woff AB, Salvo JP, Christoforetti JE, Ellis TJ, Carreira DS (2019) Arthroscopic outcomes as a function of acetabular coverage from a large hip arthroscopy study group. Arthroscopy 35(8):2338–2345. https://doi.org/10.1016/j.arthro.2019.01.055

133. Menge TJ, Briggs RK, Dornan CJ, McNamara SC, Philippou MJ (2017) Survivorship and outcomes 10 years following hip arthroscopy for femoroacetabular impingement: labral debridement compared with labral repair. J Bone Joint Surg Am 99(2):997–1004. https://doi.org/10.2106/jbjs.16.01060

134. Mladenovic D, Andjelkovic Z, Vukasinovic Z, Mitkovic M, Mileenkovic S, Micic I, Mladenovic M (2014) Early clinical results of surgical treatment of patients with femoroacetabular impingement. Srp Arh Celok Lek 142(5–6):325–329. https://doi.org/10.2298/carh1405325m

135. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Mohtadi NG, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, Liberati D, Tetzlaff J, Altman DG (2014) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions. BMJ 348:g7647. https://doi.org/10.1136/bmj.g7647

136. Mohtadi NG, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, Sekiya JK, Kelly BT, Werle JR, Leunig M, McCarthy JC, Martin HD, Byrd JW, Philippou MJ, Martin RL, Guanche CA, Clohisy JC, Sampson TG, Kocher MS, Larson CM, Multicenter Arthroscopy of the Hip Outcomes Research (MHOR) Group (2012) The development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33). Acta Orthop 83(5):595–605. https://doi.org/10.1080/17433398.2012.695313 (quiz 606–610 e591)

137. Naal FD, Müller A, Varghese VD, Wellauer V, Impellizzeri FM, Leunig M (2017) Outcome of hip arthroscopic surgery: does generalization joint
209. Wadhawan J, Correa BP, Chicote HH (2018) Arthroscopic approach of femoroacetabular impingement: early clinical outcomes. A multicentric study. J Orthop 15(3):754–756. https://doi.org/10.1016/j.jor.2018.05.044

210. Westermann RW, Hu J, Hagen MS, Willey M, Lynch TS, Rosneck J (2018) Epidemiology and detrimental impact of opioid use in patients undergoing arthroscopic treatment of femoroacetabular impingement syndrome. Arthroscopy 34(10):2832–2836. https://doi.org/10.1016/j.arthro.2018.06.038

211. Wu CT, Mahameed M, Lin PC, Lu YD, Kuoc FC, Lee MS (2019) Treatment of cam-type femoroacetabular impingement using anterolateral mini-open and arthroscopic osteochondroplasty. J Orthop Surg Res 14(1):222. https://doi.org/10.1186/s13018-019-1257-2

212. Wörner T, Nilsson J, Thorborg K, Granlund V, Stålman A, Eek F (2019) Hip function 6 to 10 months after arthroscopic surgery: a cross-sectional comparison of subjective and objective hip function, including performance-based measures, in patients versus controls. Orthop J Sports Med 7(6):2523596719844821. https://doi.org/10.1177/2325967119844821

213. Yeung M, Khan M, Schreiber VM, Adamich J, Letkemann S, Simunovic N, Bhandari M, Musahl V, Philippou MJ, Safaran MR, Ayeni OR (2014) Global discrepancies in the diagnosis, surgical management, and investigation of femoroacetabular impingement. Arthroscopy 30(12):1625–1633. https://doi.org/10.1016/j.arthro.2014.06.008

214. Yoo JI, Ha YC, Lee YK, Lee GY, Yoo MJ, Koo KH (2017) Morphologic changes and outcomes after arthroscopic acetabular labral repair evaluated using postoperative computed tomography arthrography. Arthroscopy 33(2):337–345. https://doi.org/10.1016/j.arthro.2016.08.022

215. Yun HH, Shon WY, Yun JY (2009) Treatment of femoroacetabular impingement with surgical dislocation. Clin Orthop Surg 1(3):146–154. https://doi.org/10.4055/cios.2009.1.3.146

216. Zhou J, Melugin HP, Hale RF, Leland DP, Bernard CD, Levy BA, Krych AJ (2020) The prevalence of radiographic findings of structural hip deformities for femoroacetabular impingement in patients with hip pain. Am J Sports Med 48:647–653. https://doi.org/10.1177/0363546519896355

217. Zhu X (2020) Efficacy of preemptive analgesia versus postoperative analgesia of celecoxib on postoperative pain, patients’ global assessment and hip function recovery in femoroacetabular impingement patients underwent hip arthroscopy surgery. Inflammopharmacology 28(1):131–137. https://doi.org/10.1007/s10787-019-00648-8

218. Zimmerer A, Bock M, Hoffmann M, Miehlke W, Sobau C (2018) Return to work after arthroscopic surgery for femoroacetabular impingement in patients younger than 30 years (Return-to-Work* nach arthroskopischer FAI-Chirurgie bei Patienten unter 30 Jahren.). Sports Orthop Traumatol 34(1):31–37. https://doi.org/10.1016/j.jorht.2017.10.006

219. Zusmanovich M, Thompson K, Campbell A, Youm T (2020) Outcomes of preoperative opioid usage in hip arthroscopy: a comparison to opioid naive patients. Arthroscopy. https://doi.org/10.1016/j.arthro.2020.06.005

220. Öhlin A, Sansone M, Ayeni OR, Swärd L, Ahlén M, Baranto A, Karlsson J (2017) Predictors of outcome at 2-year follow-up after arthroscopic treatment of femoro-acetabular impingement. J Hip Preserv Surg 4(3):224–230. https://doi.org/10.1093/jhps/hnx016

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.