The effect of cycling hypoxia on MCF-7 cancer stem cells and the impact of their microenvironment on angiogenesis using human umbilical vein endothelial cells (HUVECs) as a model

Fuad M Alhawarat 1, Hana M Hammad 1, Majd S Hijjawi 2, Ahmad S Sharab 2, Duaa A Abuarqoub 1, Mohammad A Al Shhab 2, Malek A Zihlif Correspond. 2

1 Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
2 Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan

Corresponding Author: Malek A Zihlif
Email address: m.zihlif@ju.edu.jo

Background: Breast cancer is the most common type of cancer among females. Hypoxia mediates cancer hallmarks and results from reduced oxygen level due to irregularities in tumor vascularization or when the tumor size prevents oxygen diffusion and triggers angiogenesis to compensate for low oxygen. Cancer stem cells (CSCs) are a rare subpopulation, able to self-renew and to give rise to tumor-initiating cells. It is proposed that CSCs’ secretions help to recruit endothelial cells via angiogenic factors to establish tumor vascularization. In the tumor microenvironment, the effect of hypoxia on CSCs and the impact of their secretions on triggering angiogenesis and tumor vascularization remain questionable. In this study, the (3D) CSCs derived from MCF-7 were directly exposed to repetitive long-term cycles of hypoxia to assess its effect on CSCs and then to evaluate the role of the hypoxic CSCs’ (CSCshyp) secretions in angiogenesis using (HUVECs) as a model for tumor neovascularization response.

Methods: CSCs derived from MCF-7 cell-line were expanded under repetitive, strictly optimized, long-term/continuous and intermittent hypoxic shots for almost four months to assess hypoxic effect on CSCs, sorted based on CD44+/CD24- biomarkers. Hypoxic phenotype of CSCshyp was evaluated by assessing the acquired chemoresistance using MTT assay and elevated stemness properties were assessed by flow cytometry. To evaluate the effect of the secretions from CSCshyp on angiogenesis, HUVECs were exposed to CSCshyp conditioned-medium (CdM) -in which CSCs had been previously grown - to mimic the tumor microenvironment and to assess the effect of the secretions from CSCshyp on the HUVECs’ capability of tube formation, migration and wound healing. Additionally, co-culture of CSCshyp with HUVECs was performed.

Results: CSCshyp acquired higher chemoresistance, increased stemness properties and obtained greater propagation, migration, and wound healing capacities, when compared to CSCs in normoxic condition (CSCsnor). HUVECs’ tube formation and migration abilities were mediated by hypoxic (CSCs) conditioned media (CdM).

Discussion: This study demonstrates that chemoresistant and migrational properties of CSCs are enhanced under hypoxia to a certain extent. The microenvironment of CSCshyp contributes to tumor angiogenesis and migration. Hypoxia is a key player in tumor angiogenesis mediated by CSCs.
The effect of cycling hypoxia on MCF-7 cancer stem cells and the impact of their microenvironment on angiogenesis using human umbilical vein endothelial cells (HUVECs) as a model

Fuad M Alhawarat¹, Hana M Hammad¹, Majd S. Hijjawi², Ahmad S Sharab², Duaa A Abuarqoub¹, Mohammad A Al Shhab², Malek A Zihlif²

Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan

Corresponding author
Malek Zihlif
m.zihlif@ju.edu.jo

ABSTRACT

Background: Breast cancer is the most common type of cancer among females. Hypoxia mediates cancer hallmarks and results from reduced oxygen level due to irregularities in tumor vascularization or when the tumor size prevents oxygen diffusion and triggers angiogenesis to compensate for low oxygen. Cancer stem cells (CSCs) are a rare subpopulation, able to self-renew and to give rise to tumor-initiating cells. It is proposed that CSCs’ secretions help to recruit endothelial cells via angiogenic factors to establish tumor vascularization. In the tumor microenvironment, the effect of hypoxia on CSCs and the impact of their secretions on triggering angiogenesis and tumor vascularization remain questionable. In this study, the (3D) CSCs derived from MCF-7 were directly exposed to repetitive long-term cycles of hypoxia to assess its effect on CSCs and then to evaluate the role of the hypoxic CSCs’ (CSCs\(^{\text{HYP}}\)) secretions in angiogenesis using (HUVECs) as a model for tumor neovascularization response.
Methods: CSCs derived from MCF-7 cell-line were expanded under repetitive, strictly optimized, long-term/continuous and intermittent hypoxic shots for almost four months to assess hypoxic effect on CSCs, sorted based on CD44+/CD24− biomarkers. Hypoxic phenotype of CSCsHYP was evaluated by assessing the acquired chemoresistance using MTT assay and elevated stemness properties were assessed by flow cytometry. To evaluate the effect of the secretions from CSCsHYP on angiogenesis, HUVECs were exposed to CSCsHYP conditioned-medium (CdM) -in which CSCs had been previously grown - to mimic the tumor microenvironment and to assess the effect of the secretions from CSCsHYP on the HUVECs’ capability of tube formation, migration and wound healing. Additionally, co-culture of CSCsHYP with HUVECs was performed.

Results: CSCsHYP acquired higher chemoresistance, increased stemness properties and obtained greater propagation, migration, and wound healing capacities, when compared to CSCs in normoxic condition (CSCsNOR). HUVECs’ tube formation and migration abilities were mediated by hypoxic (CSCs) conditioned media (CdM).

Discussion: This study demonstrates that chemoresistant and migrational properties of CSCs are enhanced under hypoxia to a certain extent. The microenvironment of CSCsHYP contributes to tumor angiogenesis and migration. Hypoxia is a key player in tumor angiogenesis mediated by CSCs.

INTRODUCTION

Cancer Stem Cells (CSCs) are subpopulation in the cancer tissue that slowly divide with an ability to regenerate by uneven cell division (Huang & Rofstad 2017), contributing to cancer relapse, invasiveness and thus higher cancer mortality (Peitzsch et al. 2017). CSCs have the same intrinsic features as normal stem cell populations found throughout the body, including the ability of self-renewal and differentiation (Batlle & Clevers 2017).

In most solid tumors, including breast carcinoma, hypoxia is a mutual hallmark that is proven to associate with poor prognosis of cancer patients (Muz et al. 2015). Various stress-response pathways that drive cancer cells toward a self-stabilizing and anti-apoptotic phenotype are activated upon the exposure of cells to sub-physiologic concentrations of oxygen ($\leq 1\%$ O_2) or hypoxia (Crowder et al. 2014). Hypoxia stabilizes the hypoxia-inducible factor-α (HIF-α) proteins that contribute to various pro-survival processes in cancer cells, such as angiogenesis, abnormal proliferation and metabolic alterations (Bristow & Hill 2008; Kietzmann et al. 2016; Kong et al. 2014), and thus increases the expression of pro-survival factors that support radioresistance and chemoresistance (Crowder et al. 2014; Senthebane et al. 2017). The exact signaling pathways by which hypoxia activates its effects are complex and remain under investigation. Among well-recognized mechanisms are elevated genomic instability and irregular cell division (Crowder et
al. 2014; Hammer et al. 2007), uncontrolled reactive oxygen species and redox mechanisms, aerobic glycolysis metabolic shift (Denko 2008), and reduced expression caused by proapoptotic-factors (Gordan et al. 2008).

Cycling hypoxia determines the state of oxygen level and its dispersal in solid tumor tissues. Dysfunctional heterogenic blood supply and tumor irregular vascularity in cancer cause oxygen fluctuation for irregular periods with intermittent re-oxygenation intervals (Brurberg et al. 2004; Muz et al. 2015). Acute hypoxia is an immediate brief exposure to a short-term hypoxic status where the blood vessel occlusion lasts for at least few minutes and up to 72 hours (Chaplin et al. 1987; Muz et al. 2015). These changes in the bloodstream and the limited oxygen availability result in chronic hypoxia, which is more apparent in large-sized tumors and energizes long-term cellular changes (Eales et al. 2016). In experimental protocols, chronic hypoxic exposure is obtained by incubating cells in hypoxia up to several weeks (Cassavaugh & Lounsbury 2011). Indeed, clinical responses to cancer therapy are directly affected by both chronic and acute hypoxic sections in solid tumors, inducing their growth, metastatic ability, and cell death resistance (Al-Hajj et al. 2003).

Angiogenesis, which is defined as tumor neovascularization is essential for tumor development and maintenance (Kaur et al. 2005; Zhao & Adjei 2015). It is also considered an important cellular parameter of tumorigenesis (Wang et al. 2015). Elevated levels of vascular endothelial growth factors (VEGFs) are expressed by endothelial cells involved in angiogenesis and bone marrow-derived progenitor cells, and moreover, many types of human cancer cells can also secrete VEGFs (Kerbel 2008). Evidence from different studies indicates that CSCs show greater potential for tumor initiation, generation, and production of higher levels of VEGFs than the non-stem cells in cancer population, thus exhibiting more potent proangiogenic capability (Ping & Bian 2011; Wang et al. 2016). CSCs with elevated VEGF levels are typical example for the significance of angiogenesis in tumor progression (Ojha et al. 2017).

In conclusion, CSCs’ secretions help to recruit endothelial cells via angiogenic factors to establish tumor vascularization. Moreover, hypoxia triggers angiogenesis in cancer tissues. The studies that investigate the effect of long-term hypoxia on CSCs are extremely rare, so the cross-talk between long-term hypoxia and its effect on CSCs and their role in angiogenesis remains questionable. In this context, we hypothesized that repetitive exposure to cycles of hypoxia/normoxia conditions may be a driving force that promotes a highly resistant and invasive CSCs subpopulation, and CSCs are proposed to generate higher levels of tumor vascularization, due to induced angiogenesis, than regular cancer tissues.
Accordingly, the present study aims at investigating the effect of long-term hypoxia on CSCs and the impact of hypoxic CSCs (CSCsHYP) secretions on angiogenesis in the tumor microenvironment. CSCs were derived from MCF7 cell-line and were expanded under repetitive strictly optimized long-term and intermittent hypoxic shots to assess the effect of hypoxia on them. Both intermittent and long-term hypoxia were directly applied for almost four months on sorted and identified CSCs as (3D) mammospheres. Thereafter, to assess the impact of secretions of CSCsHYP on angiogenesis, we used the conditioned-medium (CdM) in which CSCsHYP were expanded and grown-as it comprises the CSCHYP secretions- to treat HUVECs and then examine their angiogenic ability.

MATERIALS AND METHODS

Workflow for the methodology adopted in this study is summarized in (Figure 1).

Culture Conditions

The breast cancer cell line (MCF-7) was purchased from the American Type Culture Collection (ATCC, USA), and was expanded as a monolayer in vented 75cm2 cell culture flasks (Membrane Solutions, USA) using RPMI 1640 media (HyClone, USA). The media was supplemented with heat-inactivated fetal bovine serum (FBS) 10\% (v/v) (HyClone, USA), antibiotics (100\(\mu\)g/ml streptomycin and 100U/ml penicillin) (HyClone, USA), and 1\% 2mM L-glutamine (HyClone, USA). The cells were incubated in a designated incubator (Nuaire, China) at (5\% CO\textsubscript{2} at 37\(^\circ\)C). All cell culture procedures were performed in sterile conditions under a class II biological safety cabinet (Heal-Force, China). All used materials and disposables were disinfected with ethanol 76\% before use.

Mammosphere Cultures

To obtain CSCs from MCF-7 cell line and propagate them as mammospheres, MCF-7 cells were expanded in complete growth media described above as a single-cell suspension in a standing flask to enhance the growth of CSCs as they tend to grow in non-adherent conditions. Two days later, remaining cells were collected by centrifugation, washed in phosphate buffer saline, and seeded in 6 well ultra-low adherence plates (Corning, NY) at a density of 10,000 cells/well. Cells were expanded in serum-free DMEM/F12 (Sigma-Aldrich) media, supplemented with 20 ng/mL basic fibroblast growth factor (GIBCO, USA), 20 ng/mL epidermal growth factor (MPBio, USA), 2\% B27 (GIBCO, USA), 10 \(\mu\)g/mL insulin (MPBio, USA), 0.5\(\mu\)g/mL hydrocortisone.
(Nacalai, Japan), 0.4% bovine serum albumin (Sigma, USA), and 2 mM L-Glutamine (Biowest Co., France). This is called mammospheres culture media. Cells were preserved in a humidified incubator at 37 °C, 5% CO₂. Every two days, fresh media (2 mL) were added to each well (without removal of the old one). At day seven, primary mammosphere clusters were counted, then collected and centrifuged to form a pellet. In order to obtain single cells, the pellet was enzymatically disaggregated with trypsin and dispersed by passing through a 40 μm pore-size filter (Millipore, Billerica, MA). Single cells of primary mammospheres were collected for sorting, using beads technique and identified by flow cytometry (detailed below) before and after sorting. Disaggregated cells were cultured in ultra-low adherence flask (Corning, NY) instead of well plates to obtain secondary mammospheres. Then, the same procedure was applied again to obtain tertiary and quaternary mammospheres.

To calculate the percentage of mammosphere forming efficiency (%MFE), the number of mammospheres was divided by the number of seeded cells and multiplied by hundred. Mammospheres were counted under 10x magnification of an inverted light microscope (Olympus, USA). Twenty one (21) days after initial seeding in ultra-low attachment and serum-free media, a sufficient mammospheres’ population was established.

Cell Viability

Cellular viability was evaluated using the trypan blue method. After de-attachment and good homogenization of cells until there was a single-cell suspension, a sample was taken and diluted in 1:1 ratio with trypan blue (Sigma-Aldrich, UK). Then 10uL of the diluted mixture was loaded on a hemocytometer (Neubauer Double, Zuzi, Spain) and inspected under an inverted light microscope (Olympus, USA). Cells with shiny white appearance were considered viable and counted because their cell membrane was impermeable to trypan blue, while blue-colored cells were disregarded. Hypoxic cells’ viability was checked upon every other split and compared to its normoxic counterparts to assess proliferation changes. While mammosphere cells were enzymatically disaggregated into single-cells in order to observe viability (Cassavaugh & Lounsbury 2011).

CSCs Sorting with Magnetic Beads

CD44⁺/CD24⁻ are the expression biomarkers of interest in MCF-7 derived mammospheres. At day seven of the initial culture of mammospheres in 6-well plate, CSCs enriched with CD44⁺/CD24⁻ were sorted from MCF-7 mammospheres using MagCellect CD24⁻/CD44⁺ Breast Cancer Stem Cell Isolation Kit (R&D System, Cat. MAGH111) according to their protocol.
Initially, CD24+ cells were labeled and removed magnetically. Then from the CD24– population, CD44+ cells were sorted magnetically using a biotinylated human CD44+ antibody and streptavidin-conjugated magnetic beads as a positive selection model. The efficiency of sorting was assessed by staining recovered cells with fluorochrome-conjugated anti-human CD44+ and CD24– antibodies. Isolated CD44+/CD24– cells were later identified via FACS analysis.

Exposure to Hypoxia

To create hypoxic conditions, an anaerobic atmosphere generating system, AnaeroGen Compact (Oxoid, UK) was used. The AnaeroGen system is used in microbiology area to create the low oxygen conditions needed for the growth of anaerobic bacteria. Here, we adopted the AnaeroGen system to induce hypoxia into CSCs. The system consists of a gas generating sachets and tightly sealable bags. The sachet reacts promptly upon contact with air and consumes oxygen thus reducing oxygen concentration to less than 1% inside the bag. It has been confirmed in previous studies by using biochemical and electronic testing that this technique reduces oxygen content in plastic bag to below 1% within 30 minutes (Chenevier-Gobeaux et al. 2013; Mellor et al. 2005). The vented ultra-low attachment 75 cm² tissue culture flasks were placed inside the plastic bags and the sachets were placed inside then sealed. After 21 days of culturing the mammosphere CSCs, they were divided into two groups and exposed to hypoxic conditions intermittently (INTR.) or continuously (CONT.). CSCs in the intermittent group were exposed to 10, 20, 30 or 40 hypoxic shots for 8 hours 3 times a week, denoted as (INTR.10, INTR.20, INTR.30, and INTR.40) respectively, while CSCs in the continuous group was exposed to 5, 10, or 15 hypoxic shots for 72 hours once per week, denoted as (CONT.5, CONT.10, and CONT.15). Apart from these optimized hypoxic shots, CSCs mammospheres were also incubated in normoxic conditions as control (CSCsNOR), using the same culture media and conditions that were used for expansion of mammospheres detailed above.

Flow Cytometry to Examine Enrichment of CSCs Mammosphere with CD44+/CD24– under Hypoxia/Normoxia

Flow cytometry was used to identify and characterize CD44+/CD24– surface phenotype, which is in direct proportion to stemness, and was performed for parental MCF-7 cells, un-sorted mammospheres, sorted CSCs mammospheres three days after sorting, CSCs mammospheres which were 21 days-old all under normoxic conditions and finally for CSCsHYP exposed to shots of INTR.20, INTR.40, CONT.5 and CONT.15. Mammospheres were dispersed to obtain single-cell populations as described above. The CSCs’ mammosphere pellet was washed in
phosphate-buffer saline (PBS) (HyClone, USA) with 2% bovine serum albumin and stained with
APC-anti-mouse CD24 and PE-anti-mouse CD44 antibodies (BD Pharmingen, CA). CSCs
mammospheres were incubated in ice for 30 minutes, washed twice with PBS and then fixed in
PBS containing paraformaldehyde. The flow cytometric analysis was performed on a BD
FACSCalibur system (BD Biosciences, CA), and the identification was performed with the BD
Cellquest software (BD Biosciences).

Cytotoxicity Evaluation Using MTT Assay

To examine the chemoresistance of MCF-7 parental cells and their derived CSCs, both CSCs^{NOR}
and CSCs^{HYP}, drug resistance towards doxorubicin was used as an indicator. A CellTiter Cell
Proliferation Assay Kit® (Promega, Madison, USA) was used. This assay includes 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) which is a yellow tetrazole
reduced by viable cells to purple formazan. Consequently, surviving cells
after being exposed to multiple concentrations of doxorubicin can be quantified by spectrophotometry. The MTT proliferation assay was performed on MCF-7 parental cells seeded as a monolayer in an adherent 96-well plate. Moreover, CSCsHYP were dissociated into single-cells, filtered, counted then seeded at a 7×10^3 cells/well density in a 96-well plate and incubated for 24 hours before treatment. Each concentration was tested in triplicate on CSCs exposed to (\textbf{INTR.10}, \textbf{INTR.20}, \textbf{INTR.30}, and \textbf{INTR.40}) or exposed to (\textbf{CONT.5}, \textbf{CONT.10}, and \textbf{CONT.15}). A control experiment was done for sorted and identified CSCsNOR from mammospheres cultured under normoxic conditions.

Incremental serial dilutions of doxorubicin concentrations from 0.01 μM to 200 μM were used. After 72 hours of incubation, old media was aspirated, and 100 μl of fresh media was added to each well. Then, 15μl of MTT reagent was added to each well and incubated for 4 hours. Solubilization/stop solution was added to each well and incubated for an hour. Absorbancy was read using an Elisa reader (Sunrise basic sciences, Austria) at 570 nm wavelength. The half maximal inhibitory concentration (IC_{50}) was calculated using GraphPad PRISM®7.04 software (GraphPad Software, Inc.).

\textbf{Endothelial Cells Isolation from Umbilical Cords}

Human umbilical cords were obtained from two delivering females at the Jordan University Hospital after getting the approval of their Institutional Review Board (IRB), decision number 98/2018 and approval number (67/2018/481) and both patients having signed an informed consent before sample collection. Enzyme digestion technique was used to isolate endothelial cells from the human umbilical cord. Debris on the outer surface of the cord was wiped using antiseptic solution. Any clots formed inside the vein were removed by slight squeezing. The umbilical vein was washed with RPMI medium (HyClone, USA) containing 1% penicillin/streptomycin (HyClone, USA) to remove excess blood and debris using 20 mL syringe inserted into the cord. Then, 0.1\% of type I collagenase (Sigma-Aldrich, USA) was put inside the vein where it was incubated for 20 minutes at 37$^\circ$C for digestion. Hereafter, the vein was washed with 20 mL RPMI media (HyClone, USA) to stop collagenase proteolytic activity and was centrifuged at 1500 rpm for 5 min. The resultant pellet was resuspended in 5 ml endothelial cell growth medium EGM-2 media (Lonza, Walkersville, MD, USA) which consists of the endothelial cell basal media EBM-2 with 10\% FBS and other additives (including VEGF, bFGF- Fibroblast Growth Factor, EGF-Epidermal Growth Factor, and IGF-Insulin Growth Factor). HUVECs were expanded on 0.2\% gelatin-coated T25 tissue culture flask and incubated overnight. Next day media was renewed to get rid of cells debris. Only passages earlier than 6 of HUVECs were used in all experiments.
Collection of Conditioned-Medium From Hypoxic/Normoxic CSCs

In order to obtain the conditioned-medium (CdM), CSCs were seeded as single cells at a density of 10,000 cells/cm² in an ultra-low adherence 75 cm² flasks with serum-free DMEM/F-12 and with supplements (mammospheres culture media detailed above). CSCs mammospheres were starved overnight by washing them twice with serum and supplement free DMEM/F-12 media, then centrifuged at 300 rpm for 10 minutes. Finally, the media was renewed without serum and without supplements for 8 hours for intermittent and 72 hours for the continuous hypoxic condition. The resultant CdM from where CSCs grown under hypoxia or normoxia were collected, centrifuged at 300 rpm for 10 min to remove cellular components and filtered through 0.2 μm pore-size filters (Millipore, Billerica, MA). CdM from flasks under normoxic conditions were used as a control. Aliquots of the CdM were stored at -80°C before being used. CdM were collected from eight sources, from CSCsNOR, and from CSCsHYP grown under the hypoxic shots (INTR.10, INTR.20, INTR.30, INTR.40, CONT.5, CONT.10, or CONT.15) and were utilized in successive experiments as discussed subsequently.

Capillary-Like Tube Structure Formation Assay using CSCs’ Mammospheres (CdM) on HUVECs

The effect of the factors secreted in the CdM obtained from CSCsHYP and from CSCsNOR on the angiogenic ability of HUVECs was examined through the formation of capillary tube-like structures by HUVECs, using the in vitro matrigel angiogenesis assay to mimic the microenvironment of CSCs. To eliminate the impact of growth factors in Matrigel, reduced growth factor Matrigel (BD Biosciences, USA) was used. HUVECs were incubated for 6 hours in endothelial basal medium (EBM-2, Lonza) without serum and supplements for starvation. Briefly, the Matrigel stored at -20°C was thawed in ice to prevent premature polymerization. Aliquots of 50μl were plated into each well of pre-chilled 96-well culture plates and were left to polymerize at 37°C for 2 hours. HUVECs were removed from confluent cultures by treatment with Trypsin 0.05% (HyClone, USA). HUVECs were collected using serum-containing media to stop trypsin effect, then counted, centrifuged and washed with phosphate buffer saline, then resuspended with CdM obtained from the different hypoxic episodes, including intermittent shots (INTR.10, INTR.20, INTR.30, INTR.40) and continuous shots (CONT.5, CONT.10, CONT.15) of hypoxia and from its normoxic counterparts as a control in triplicates. HUVECs were seeded at a density of 2×10^4 cells/well. For quantification of tube formation complex, three primary variables were used to determine the magnitude of tube formation, average of total
length of the branched tube, the number of loops and covered area. These variables were measured by Wimasis Image Analysis software.
VEGF Quantification By Enzyme-Linked Immunosorbent Assay

The CdM that was collected as described above, was used for the determination of VEGF levels secreted by CSC\(^{\text{HYP}}\) and CSC\(^{\text{NOR}}\) using the Enzyme-Linked Immunosorbent kit. Human VEGF quantitative ELISA assay (R&D Systems, Minneapolis, MN) was performed according to manufacturer’s instructions. A quantity of 200ul of the CdM from different CSCs\(^{\text{HYP}}\) treatments was tested.

Cell Migration Assay of HUVECs

HUVECs ability to migrate under the treatment of the CdM was investigated using a Transwell plate of 8 um pore-size chamber (Corning, USA). HUVECs were starved overnight using EBM-2 media serum and supplement free for 6 hours, then seeded in the upper chamber (insert) of the 24 well plate at density of 5x10^4 cells in 500 uL of EBM -2 media, each placed into lower wells containing 750 ul of CdM obtained from (INTR.10, INTR.20, INTR.30, INTR.40) intermittent hypoxic shots in addition to continuous hypoxic shots (CONT.5, CONT.10, CONT.15). The same procedure was applied to the control by using serum-free EBM-2 media in the lower well instead of CdM. Then, cells were allowed to migrate for 8 hours, then 70% cold ethanol was used for 10 minutes to fix the chambers. Membranes were stained with 0.5% (w/v) crystal violet (Sigma-Aldrich, St. Louis, MO, USA) for 30 minutes and afterward washed carefully with water. Cotton swabs were used to remove the cells that were not able to migrate to lower wells. Solubilizing bound crystal violet in methanol 100% (wt/vol) was used to quantify the migrated cells. Cells were inspected under an inverted light microscope (Olympus, USA) and photographed at 4x magnification. Each sample was done in triplicate and three fields were measured from each to calculate the migration.

Direct and Indirect Co-culture of HUVECs and CONT.5 CSCs Mammospheres

A co-culture system has been used to better understand how CSCs\(^{\text{HYP}}\) regulate their microenvironment and interact with HUVECs as a vascularization model for angiogenesis and migration.

Direct Co-culture:

HUVECs were seeded on 0.1% gelatin (Sigma, USA) coated 6-well plate until 40% confluence in EGM-2 media. From the CSCs\(^{\text{HYP}}\) subpopulation exposed to CONT.5, a single hypoxic CSC...
was co-cultured in contact with HUVECs. The plates were incubated for few hours to allow CSCsHYP adhere to the wells already seeded with HUVECs. Media was changed to a 1:1 mixture of EBM-2 and DMEM/F-12 free from serum and supplements and incubated for 72 hours.

Indirect Co-culture:

Transwell plates of 0.4 µm pore size chambers were seeded with HUVECs in lower wells after coating them with 0.1% gelatin, while CSCsHYP that were exposed to \textbf{CONT.5} were seeded in the upper chamber as co-cultured in a 1:1 mixture of EBM-2 and DMEM/F-12 free from serum and supplements.

Control HUVECs were cultured in EBM-2 without serum and without supplements in both the direct and indirect experiments.

Wound Healing Assay for HUVECs

In a 6-well plate, HUVECs at a density of 12x104 were seeded till confluency. Then they were incubated for 6 hours in EBM-2 media without serum to prevent any external factors from contributing to wound closure. After 6 hours, using a 200uL micropipette tip, a straight wound-like scratch was made into the cells. Then cells were treated with CSCsHYP CdM obtained from \textbf{INTR.10, INTR.20, INTR.30, INTR.40, CONT.5, CONT.10} and \textbf{CONT.15} hypoxic shots in which CSCsHYP were grown, in addition to the control which was treated with CdM obtained from CSCsNOR. Cells were carefully washed using phosphate buffer saline (HyClone, USA), before and after making the scratch. Wound healing was inspected under an inverted light microscope (Olympus, USA) and photographed after 48 hours and at the beginning of the experiment. The surface area of the wound could not be calculated by image analysis software because control cells started to die after 16 hours.

Wound Healing Assay for Hypoxic CSCs

In a 6-well plate coated with 1% gelatin, CSCs were seeded at a density of 8x104 and incubated overnight, using DMEM/F-12 media without serum to prevent any external factors from contributing to wound closure. The subpopulation of CSCs used was originally cultured under intermittent or continuous hypoxic conditions; \textbf{INTR.10, INTR.20, INTR.30, INTR.40, CONT.5, CONT.10}, and \textbf{CONT.15} in addition to the control CSCsNOR originally grown under normoxia. They were all used upon confluency before being seeded in a gelatin-coated 6-well plate to allow CSCs adherence as a 2D monolayer for wound healing assay. Using a 200uL micropipette tip, a straight wound-like scratch was made. Cells were washed using phosphate buffer saline, before and after making the scratch, and then relevant media was used; DMEM/F-
12 without serum. Wound healing was photographed at the beginning of the experiment and after 36 hours. The surface area of the wound was measured by image analysis (ImageJ 1.4.3.67 Launcher Symmetry Software).
Statistical Analysis

Results were presented as a mean ± SD. Experiments were performed in triplicate with comparable results unless indicated otherwise. An ANOVA test was used to compare the differences between replicates which were considered significant at $p \leq 0.05$. GraphPad Prism (version 7.04, San Diego, CA) was used for statistical analysis.

RESULTS

(3D) Mammospheres Derived from MCF-7 cells

Mammosphere culture has been widely used to enrich CSCs. Thereof, MCF-7 mammospheres were cultured in ultra-low adherence plates and flasks, in serum-free media with supplements and successfully formed rigid and compact (3D) structures within 3-7 days (Figure 2). The mammosphere multicellular spheroidal clumps became larger in size at day 7 compared to earlier days of growth as shown in (Figure 2) with 30 um scale bar comparison. Moreover, as a quantitative measure, at day seven the mammosphere formation efficiency (MFE) of MCF-7 cells was 0.012% (± 0.002%) only and after three weeks the MFE had increased to 5.30% (± 0.307%).

Sorting of CSCs From 3D Mammospheres Using Magnetic Beads

The magnetic beads separation protocol uses antibodies conjugated to a magnetic bead. CSCs were successfully sorted and isolated using the magnetic beads technique, but their number became sufficient only 3 days after sorting. Thereafter, sorted CSCs were identified via FACS analysis and were used for hypoxic-condition exposure. The expression of CD44+CD24- mammospheres is shown in (Table 1) and their morphology is shown in (Figure 2).

Enrichment of sorted CSCs mammospheres under Hypoxic/Normoxic Conditions

The morphology of CSCsHYP and the control in normoxia CSCsNOR is shown in (Figure 3). It is observed that CSCsHYP that underwent CONT.5 and INTR.20 hypoxic shots were denser and larger in number than CSCsNOR. CSCsHYP that underwent CONT.15 and INTR.40, that is the maximum and final hypoxic shots showed the least growth compared to other hypoxic exposures and CSCsNOR. The MFE could not be measured for CSCsHYP because long-term hypoxic exposure (INTR.40 and CONT.15) made mammospheres aggregate into clumps, thus, the single
mammosphere could not be distinguished and compared to control and to other hypoxic mammospheres.
Identification of CD44+/CD24- Phenotype Content by Flow Cytometry

Flow cytometry conducted for CSCs after 3 days of sorting showed a percentage of CD44+/CD24- expression equal to 81.0 (± 7.5%). Three weeks (21 days) after growing in ultra-low attachment flasks, the percentage decreased to approximately 35.5 (± 4.5%). In contrast, the parental MCF-7 cells had only 1 (± 0.1%) expression and the unsorted mammospheres had 33.2 (± 3%) expression. After exposure to hypoxic conditions, flow cytometry results based on CD44+/CD24- markers showed that the highest expression occurred in CSCsHYP exposed to INTR.20 shots, 39.8 (± 5.2%), and in CSCsHYP exposed to CONT.5, 51.6 (± 6.1%). On the other hand, the lowest percentages were observed in CSCsHYP that underwent or were exposed to INTR.40 shots, 0.3 (± 0.01%), and in CSCsHYP exposed to CONT.15, 0.5 (± 0.05 %). In conclusion, isolated and sorted CD44+/CD24- breast cancer cells only temporarily preserve this phenotype and ultimately revert to an equilibrium state in which the expanded sub-population regains the original cell surface profile of the parental cell line, which was deduced because the unsorted mammospheres and the 3-week old sorted CSCs both have similar CD44+/CD24- content (33.2% and 35.5%, respectively). The CD44+/CD24- percentage in unsorted mammospheres that were grown in ultra-low attachment plates in serum-free media for 7 days before sorting was 33.2 (± 3%), which is much higher than the percentage of parental MCF-7 cells 1.0 (± 0.1%). The expression of CD44+/CD24- content for all subpopulations is summarized in (Table 1) and demonstrated in (Figure 4).

Hypoxic CSCs Show Higher Drug Resistance to Conventional Chemotherapies

To examine whether self-renewing CSCs mammospheres have higher chemoresistance ability, and to assess if hypoxic treatment of CSCs would increase their stemness character and chemoresistance, MTT assay was implemented to test the sensitivity of parental MCF-7 versus the sorted CSCs mammosphere towards doxorubicin. In addition, we assessed the resistance towards doxorubicin acquired by CSCsHYP which underwent intermittent hypoxic shots (INTR.10, INTR.20, INTR.30 INTR.40), and CSCsHYP that underwent continuous hypoxic shots (CONT.5, CONT.10, CONT.15). Then we compared the inhibitory drug concentration (IC50) results for the CSCsHYP versus CSCsNOR mammospheres (as control) and compared the IC50 value of CSCsHYP versus parental MCF-7 cells, described in Table 2. Overall, the drug resistance of CSCsNOR was found to be higher (IC50=1.90 uM) when compared to the parental MCF-7 cells (IC50=0.46 uM) by 4.08 times. Comparing the IC50 values of CSCsNOR mammospheres with CSCsHYP, we observed significantly increased values under hypoxic conditions at INTR.20 (IC50=6.13 uM) and CONT.5 (IC50=7.12 uM) with (3.28) and (3.76) fold
increases respectively compared to IC\textsubscript{50} of CSCsNOR mammospheres. These increases were much higher upon comparing IC\textsubscript{50} for CSCsHYP with parental MCF-7. The lowest IC\textsubscript{50} values were observed at INTR.40 and CONT.15 which represent the final hypoxic treatments. Taken together, these results support the likelihood that enriching the mammospheres’ culture with CSCs contributed to the higher drug resistance toward doxorubicin when compared to the parental MCF-7.

Hypoxic Conditioned Medium (CdM) Induces HUVECs to Form Capillary-Like Tube Structures in Matrigel

In this study, HUVECs were treated with CdM in which CSCs were expanded under several hypoxic and normoxic conditions, as described in the method section. Our results showed that treating HUVECs with CdM obtained from CSCsHYP resulted in an increased construction of capillary-like tube structures that reached its peak at 8 hours of treatment and disappeared eventually in a time-dependent manner. However, HUVECs treated with CdM obtained from CSCsNOR (control), resulted in a reduced formation of complex tubular structures compared to the ones treated with the CdM obtained from CSCsHYP (Figure 5). The capillary-like tube structures were evaluated by quantitative analysis using Wimasis Image Analysis. The results showed that the highest increase of branched tube lengths, the number of loops and the covered area was with HUVECs that were cultured with CdM obtained from CSCsHYP culture that underwent INTR.20 and CONT.5 shots at each time point (as demonstrated in Figures 5 and 6).

A bar graph (data combined from three independent trials) (Figure 6) shows that “the total length of the tubes” underwent a remarkable increase upon the treatment with CdM from INTR.20 and CONT.5, by almost 2.4 fold in both INTR.20 and CONT.5 when compared to the control, moreover, the “covered area” significantly increased when HUVECs were cultured with CdM from CSCsHYP culture that underwent CONT.5 and INTR.20, by 3.5 and 2.7 times respectively. The total number of loops were significantly increased by 6.7 fold in INTR.20 and 8.9 fold in CONT.5 compared to control HUVECs incubated with CdM obtained from the CSCsNOR culture expanded in normoxic state. As shown in (Figures 5 & 6), CdM induced a significant increase in tube formation in HUVECs starting from the treatment with INTR.10 CdM and reaching a maximum at INTR.20 (Figure 5F), whereas CONT.5 (Figure 5B) caused the highest increase in tube formation.

Detection of Secreted VEGF in Conditioned-Medium (CdM) by ELISA

In order to identify the possible mediators of angiogenesis in breast cancer, a quantitative assay
was performed for the main angiogenic factor, VEGF-A. As the CdM obtained from the hypoxic episodes INTR.20, INTR.30 and CONT.5 had the highest VEGF concentrations, INTR.20, 1159 (± 90 pg/ml), INTR.30, 1013 (± 32 pg/ml) and CONT.5, 934 (± 28 pg/ml) are compared to control normoxic CdM 225 (± 24 pg/ml) as shown in (Figure 7).

Effect of Conditioned-Medium (CdM) on Migration of HUVECs

The role of the CdM in promoting migration of HUVECs was investigated using migration assay to confirm whether secretions of CSCsHYP enhance angiogenesis in the tumor microenvironment. HUVECs were tested for their ability to migrate toward CdM from different hypoxic episodes compared to their migration toward endothelial basal medium (EBM-2) serum and supplement free, as a control, using transwell migration assay. The Transwell migration assay is used to create a chemical gradient by putting the CdM in the lower chamber. Comparing the migration of HUVECs from upper chamber across the membrane upon using the EBM-2 without serum and without supplements (control) group versus using the CdM obtained from hypoxic shots, it was found that migration was much higher under the use of the hypoxic CdM (Figure 8). The assay results showed that there were more purple-stained cells migrating toward the CdM obtained from the CONT.5 shot than the other two episodes (CONT.10 and CONT.15). The CdM obtained from the INTR.20 episode had also more purple-stained cells migrating towards it, compared to the other three episodes (INTR.10, INTR.30, and INTR.40). Interestingly, a significant difference found was that the migrated-cell count in HUVECs towards CdM from CONT.5 vs control was 45000 (±2.1) vs. 4500 (±1.5), while the migrated cell count in INTR.20 vs control was 38000 (±2.6) vs. 4500 (±1.5). These findings suggest that the secretions presented in the CdM which were obtained from CONT.5 and INTR.20 episodes significantly promoted the migration of HUVECs. The data also showed that the migration capacity of HUVECs increased significantly (10-fold) when cultured using the CdM from CONT.5 shot and (8.4-fold) when cultured using the CdM from INTR.20 shot compared with HUVECs cultured with control (Figure 8).

Stimulation of HUVECs Growth & Morphological Alterations in Co-Culture With CSCsHYP

To clarify the interaction between endothelial cells and CSCsHYP in the tumor microenvironment, HUVECs were examined in direct and indirect co-cultures with the CSCsHYP subpopulation that underwent CONT.5 episode. The control of HUVECs was cultured in serum and supplement free media and possessed a ‘teardrop-like’ morphology. In the direct co-culture model, the
endothelial cell morphology changed and acquired elongated threadlike shape as a response to the influence of CSCsHYP secretions though the growth media was free from serum and any growth factors as shown in (Figure 9. A, B, C).

We also examined the growth of HUVECs indirectly co-cultured with CSCsHYP using a 0.4 \textmu M permeable membrane that was placed between HUVECs and CSCsHYP subpopulation. Indirect co-culture of the subpopulation of CONT.5 CSCsHYP with HUVECs induced sequential morphological changes. As a response to the influence of secretions from CSCsHYP thattrans-passed through the membrane, the morphology of HUVECs began to change at 72 hours, forming net-like structures resembling a vascular network, though the growth media was free from serum and any growth factors (Figure 9-D & E). Control HUVECs proliferation reached a plateau in 24 hours after which cells started to die.

In Vitro Wound-Healing Assay of HUVECs

This assay was done to assess how secretions from CSCsHYP in the tumor microenvironment would affect the ability of HUVECs to migrate in response to chemoattractants in the CdM obtained from different hypoxic shots. This model mimics the tumor microenvironment where angiogenic ability of endothelial cells is affected by secretions from CSCsHYP. In the control experiment, HUVECs were treated with CdM obtained from CSCsNOR. In the presence of the CdM obtained from hypoxic shots, HUVECs were able to migrate and the wound closure was enhanced after 48 hours. The wound closure was significantly enhanced by CdM obtained from INTR.20 (Figure 10-B) and CONT.5 (Figure 10-C) shots. Whereas in the case of the control, HUVECs that were treated with CdM media obtained from CSCsNOR, showed a weaker capacity to migrate. The wound surface area could not be calculated in order to assess wound closure because the HUVECs treated with CdM obtained from CSCsNOR and from CSCsHYP after long-term exposure (INTR.40 and CONT.15) started to die after 16 hours of treatment which prevented further quantitative measurements.

In Vitro Wound-Healing Assay of Hypoxic CSCs

Due to the significant role that CSCs play in tumor recurrence and metastasis, a wound-healing assay was performed. CSCs were seeded as a (2D) monolayer, scratched, and then cell migration was evaluated. The seeded CSCs were originally expanded and grown in hypoxic conditions, INTR.10, INTR.20, INTR.30, INTR.40, CONT.5, CONT.10, and CONT.15 in addition to the control CSCs in normoxia. The scratched CSCsHYP and CSCsNOR cultured in DMEM/F-12 without serum were assessed for wound closure ability which was determined by calculating the
ratio of the wound surface area at the endpoint (36 hours) to its surface area at the starting point of the experiment (zero hour). Images were analyzed by ImageJ software. Subpopulations of CSCsHYP showed greater ability for wound closure compared to CSCsNOR (Figure 11-12). CSCsHYP from \textbf{INTR.20} and from \textbf{CONT.5} manifested the greatest wound closure (Figure 11). At 36 hours, the wound closure of the control was only 40%, while it was 98% and 95% for \textbf{INTR.20} (Figure 12-C) and \textbf{CONT.5} (Figure 12-F), respectively.

DISCUSSION

The initial stage of our study focused on the formation and characterization of MCF-7 mammospheres enriched with CSCs. The mammosphere culture is an approach to culturing cancer cells in a three-dimensional (3D) conformation \textit{in vitro}. These 3D models have been well recognized in breast cancer research due to the great similarity of these models to the \textit{in vivo} solid tumors (Weiswald, Bellet et al. 2015, Boo, Ho et al. 2016). The 3D models are not only biologically spherical in shape, but also possess many shared features with solid tumors which were not observed in traditional 2D monolayer cultures (Baker and Chen 2012, Ekert, Johnson et al. 2014). Interestingly, several current reports have shown that CSCs are particularly enriched and maintained in cultures of 3D mammospheres (López, Poitevin et al. 2012, Liu, Ma et al. 2013). CSCs show a tendency to differentiate in the availability of serum, accordingly serum-free culture conditions are believed to maintain the CSCs in an undifferentiated stage supporting their enrichment, with recognizable loss and reduction in the size of the upper cell in the hierarchical structure (Kruyt & Schuringa 2010; Lin et al. 2012). The results of our study have shown a CD44+/CD24− expression (\textbf{Table 1}) for parental MCF-7 of (1%). After being cultured in a low-adherence, serum-free, with supplements media, CSCs were sorted and again identified with (FACS) and showed an extreme elevation of CD44+/CD24− expression to (81.3%) only three days after being grown in mammosphere culture conditions, while it was (33.2%) before being sorted as CSCs in mammosphere culture media. Interestingly, it reverted to (35.5%) at day 21. From these results, it is concluded that sorting of CSCs allows them to acquire stemness character that is much higher than their parental cells and their unsorted population, and declines over time. The interpretation is that CSCs upon repetitive and continuous growth are driven towards differentiation into regular cancer cells instead of bearing a CSC state. In another interpretation, a distinctive characteristic of mammosphere culture conditions - unlike the adherent cell culture- is that during the passaging of CSCs most of them die early (through apoptosis/anoikis) and the mitogen-responsive anoikis resistant cells that were supposed to be CSCs grow and form new mammospheres. Therefore, increased expression of CD44+/CD24−
within mammospheres compared to parent cells could be due to an enriched anoikis-resistant cancer stem cells proliferation process (Deleyrolle et al. 2011).

The second stage of our study was to investigate the role of cycling hypoxia on CSCs propagation, stemness character, drug resistance, and adequate motility to recruit new tumor growth at distant sites through migration and induction of VEGF expression level. In our study as detailed in methods, we divided CSCs into two groups to be exposed to intermittent or continuous shots of hypoxia. MTT cytotoxicity assay was performed to assess chemoresistance of CSCs in hypoxia vs. normoxia vs. parent MCF-7 cells using doxorubicin. Doxorubicin is a cytotoxic anthracycline, that is widely used drug to treat breast cancer. The cytotoxic effect of doxorubicin on malignant cells is due to nucleotide base intercalation and cell membrane lipid binding. Intercalation inhibits nucleotide replication and action of DNA and RNA polymerases. The interaction of doxorubicin with topoisomerase II to form DNA-cleavable complexes appears to be an important mechanism of doxorubicin cytocidal activity (Miglietta et al. 2000). Our results have shown that parent MCF-7 had the lowest drug resistance to doxorubicin (IC$_{50}$=0.46uM) compared to normoxic CSCs mammosphere (IC$_{50}$=1.90 uM), and when both were compared to CSCs$_{HYP}$ that underwent hypoxic episodes of INTR.20 and CONT.5, they had (IC$_{50}$=6.20 uM) and (IC$_{50}$=7.12 uM), respectively. Consequently, one concludes that hypoxia remarkably elevates chemoresistance not only upon comparison with parent MCF-7, but also upon comparison with the CSCs$_{NOR}$ (control). It is noteworthy to explain that the IC$_{50}$ values of CSCs$_{HYP}$ subjected to all these hypoxic episodes (INTR.10, INTR.20, INTR.30, CONT.5, and CONT.10) were higher than parental MCF-7 and than CSCs$_{NOR}$ (control), with an exception for the CSCs$_{HYP}$ that underwent (INTR.40 and CONT.15) episodes representing the finale of the hypoxic treatment which had IC$_{50}$ values that were less than the IC$_{50}$ of CSCs$_{NOR}$ (control) and close to parental MCF-7. It is notable to compare MTT assay results with flow cytometry results of the CSCs$_{HYP}$ as they reflect one another. MTT assay results for sorted CSCs have shown higher chemoresistance with (4-fold) increased IC$_{50}$ compared to parental MCF-7 whose CD44$^+$/CD24$^-$ expression was (1%). This proposes the likelihood that increased stemness is the contributor to the higher drug resistance in mammospheres as suggested previously (Calcagno et al. 2010). Moreover, identification of CD44$^+$/CD24$^-$ expression by flow cytometry applied on CSCs$_{HYP}$ that underwent CONT.5 and INTR.20 revealed their possession of the highest expression at 51.6% and 39.8%, respectively. Among all hypoxic episodes, the lowest expressions of 0.5% and 0.3% were for CSCs$_{HYP}$ that underwent CONT.15 and INTR.40, respectively. Interestingly, CSCs$_{HYP}$ that underwent CONT.5 and INTR.20, which had the
highest CD44+/CD24− expression also had the highest chemoresistance results in contrast to CONT.15 and INTR.40 which had the lowest CD44+/CD24− expression, and also the lowest chemoresistance results. These results agree with their counterparts in past studies which showed that chemoresistance is closely related to many fundamental or acquired characteristics of CSCs, such as DNA repair ability, quiescence, overexpression of antiapoptotic enzymes, drug efflux transporters and detoxifying enzymes (Vinogradov & Wei 2012). Our findings also agree with the study of (Hermann et al. 2007) that reported the existence of a subpopulation of pancreatic cancer cells which resembled stem cells and had higher gemcitabine resistance both in vitro and in vivo. Since CSCs play a significant role in tumor recurrence and metastasis, wound-healing was investigated to evaluate the behavior of CSCs after being exposed to different hypoxic shots. The adherent CSCsHYP showed greater ability of self-renewal and wound healing, especially after being exposed to INTR.20 and CONT.5 hypoxic shots. They also showed the slowestwound healing rate after being exposed to INTR.40 and CONT.15. The wound healing results were mirror-image reflection of the chemoresistance and stemness characteristics results relevant to each hypoxic episode discussed above.

The third phase of this study was performed to evaluate the role of secretions of CSCs after being subjected to different hypoxic shots on angiogenesis using (HUVECs) as a model proposed to modulate neovascularization phenotype. Increased VEGF secretion in CSCsHYP versus control CSCsNOR was confirmed. This finding demonstrated that CSCsHYP secretions increased the level of VEGF significantly which is linked to the angiogenic potential of the CdM reported in this study. In this manner, the study of (Bao et al. 2006) showed that CD133+ enriched stem cell-like glioma cells (SCLGC) produced tumors with an increased tumor vascularity, necrosis, and hemorrhage. Also, the authors showed that the VEGF expression was 10-20 fold up-regulated in CD133+ SCLGC.

The direct and indirect co-culture of CSCsHYP that underwent CONT.5 with endothelial HUVECs proved that this co-culture system comprised constituents that promoted angiogenic phenotype, such as proliferation and differentiation of endothelial cell into a net-like structure. Interestingly, the influence of the secretions from CSCsHYP modified the HUVECs morphology to a longer, mesenchymal-like appearance and enhanced their migration rate. The migration assay confirmed that CdM obtained from CSCsHYP enhanced the migration rate of HUVECs compared to its control group cultured in EBM-2. HUVECs migrated towards the chemoattractants that CSCsHYP secreted in the CdM that were obtained from all hypoxic episodes, except the CdM that were obtained from CONT.15 and INTR.40, which did not
enhance HUVECs migration. However, migration was distinctive upon the use of CdM obtained from CONT.5 and INTR.20. These results could be interpreted in light of the biological process in which the growth of a new blood vessel from pre-existing blood cells via “sprouting” of endothelial cells is led by a tip cell which is a single endothelial one. Tip cells drive vascular growth by detecting gradient proangiogenic mediators such as VEGF. Adjacent endothelial cells become stalk cells that can proliferate and migrate towards the tip cell which results in the elongation of the sprouting vessel (Gerhardt et al. 2003).

The wound healing assay has confirmed that the CdM obtained from CSCsHYP enhanced the repair of the scratch in HUVECs, and closure was significantly higher upon the use of CdM obtained from CONT.5 and INTR.20 episodes in comparison to wound closure treated with CdM media obtained from CSCsNOR. Moreover, the addition of CdM obtained from CSCsHYP cultures into HUVECs was also found to promote the endothelial cell proliferation and induce capillary-like tube structure formation by increasing total length of the formed branched-tube, the number of loops and the area covered by the tubes. This observation was distinctive in the use of CdM obtained from CSCsHYP exposed to CONT.5 and to INTR.20. Together, these results suggest that CSCsHYP cells produce pro-angiogenic factors that may directly alter the behavior of endothelial cells. Such findings are in agreement with the study of (Tu et al. 2009) which showed that A549 lung cancer cells hypoxic CdM improved HUVECs’ cell presence and wound healing migration ability.

In conclusion, the angiogenic components and the angiogenic switch were enhanced by the tumor microenvironment constructed by the CdM of CSCsHYP particularly after 5 hypoxic episodes of continuous 72-hours weekly exposure (CONT.5) and 20 episodes of intermittent 8-hours exposure to hypoxia, 3 times weekly (INTR.20).

In the context of the above-detailed findings and upon comparing the results of CSCs exposed to intermittent versus continuous hypoxic condition in terms of stemness, chemoresistance, tube formation and VEGF protein expression related to angiogenesis, wound healing and finally, cell migration, the results implied similarity among intermittent and continuous treatments between the early intervals (INTR.20 and CONT.5), between the intermediate intervals (INTR.30 and CONT.10), and also between the late intervals (INTR.40 and CONT.15).

The present study agrees with the study of (Liu et al. 2017) which demonstrated that intermittent and continuous hypoxic conditions significantly increased the migration of MDA-MB-231 breast cancer cells to a certain extent, either because of excessive long-term
exposure or because of the increased number of hypoxia-reoxygenation cycles. In this study, the maximum increase of these features by hypoxic effect was observed at early intervals (INTR.20 and CONT.5), whereas it started to decline at intermediate ones (INTR.30 and CONT.10), and drastically declined at late intervals (INTR.40 and CONT.15) to a rate even lower than the control group of CSCs in normoxia.

The previous study demonstrated that excessive long-term or high-frequency exposure to hypoxia leads to the generation of reactive oxygen species (ROS), which in turn, induces lipid peroxidation and increases the production of stress responding proteins, thus promotes DNA strand breakage, cellular injury, and apoptosis (Pires et al. 2010; Zepeda et al. 2013). Generally, low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Therefore, in the CSCs scenario, a low concentration of ROS enhances their stemness and contributes to tumorigenesis (Liu & Wang 2015). However, increased ROS production due to extensive hypoxia causes CSCs exhaustion, differentiation, senescence, and apoptosis (Zhou et al. 2014).

Thus, it is interpreted that the ROS level began to increase starting from the intermediate intervals (INTR.30 and CONT.10) and reached maximal rate in the late intervals (INTR.40 and CONT.15) proposing the manifestation of differentiation, senescence, and apoptosis in CSCs extensively exposed to hypoxia, based on the previous explanation.

CONCLUSION

This study has proven that the highly optimized hypoxia-reoxygenation system applied to CSCs has enriched their growth, enhanced their properties of self-renewal, increased the expression of stemness surface markers, and increased their chemoresistance. The findings of this study also demonstrated that the CSCsHYP microenvironment plays a major role in enhancing angiogenesis and tumor vascularization by recruiting endothelial cells into the tumor microenvironment, and in activating distinct molecular mechanisms that need further investigations. Whether the elevation of stemness in CSCsHYP results from the de-differentiation of differentiated MCF-7 cells, or from the enhanced proliferation of CSCs after hypoxic exposure is still unclear and needs further studies. The interactions between CSCs in tumor microenvironment and other contributing processes such as hypoxia and angiogenesis are still at the infancy stage and need in-depth future research.
REFERENCES

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, and Clarke MF. 2003. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 100:3983-3988.

Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, and Rich JN. 2006. Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer research 66:7843-7848.

Batlle E, and Clevers H. 2017. Cancer stem cells revisited. Nature medicine 23:1124.

Bristow RG, and Hill RP. 2008. Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nature Reviews Cancer 8:180.

Brurberg KG, Graff BA, Olsen DR, and Rofstad EK. 2004. Tumor-line specific pO2 fluctuations in human melanoma xenografts. International Journal of Radiation Oncology• Biology• Physics 58:403-409.

Calcagno AM, Salcido CD, Gillet J-P, Wu C-P, Fostel JM, Mumau MD, Gottesman MM, Varticovski L, and Ambudkar SV. 2010. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. Journal of the National Cancer Institute 102:1637-1652.

Cassavaugh J, and Lounsbury KM. 2011. Hypoxia-mediated biological control. Journal of cellular biochemistry 112:735-744.

Chaplin DJ, Olive PL, and Durand RE. 1987. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer research 47:597-601.

Chenevier-Gobeaux C, Simonneau C, Lemarechal H, Bonnefont-Rousselot D, Poiraudreau S, Rannou F, Ekindjian O, Anract P, and Borderie D. 2013. Effect of hypoxia/reoxygenation on the cytokine-induced production of nitric oxide and superoxide anion in cultured osteoarthritic synoviocytes. Osteoarthritis and cartilage 21:874-881.

Crowder SW, Balikov DA, Hwang Y-S, and Sung H-J. 2014. Cancer stem cells under hypoxia as a chemoresistance factor in the breast and brain. Current pathobiology reports 2:33-40.

Deleyrolle LP, Ericksson G, Morrison BJ, Lopez JA, Burrage K, Burrage P, Vescovi A, Rietze RL, and Reynolds BA. 2011. Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays. PloS one 6:e15844.

Denko NC. 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer 8:705.

Eales K, Hollinshead K, and Tennant D. 2016. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 5:e190.

Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, and Shima D. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology 161:1163-1177.

Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, and Keith B. 2008. HIF-α effects on c-Myc distinguish two subtypes
of sporadic VHL-deficient clear cell renal carcinoma. Cancer cell 14:435-446.

Hammer S, To KK, Yoo Y-G, Koshiji M, and Huang LE. 2007. Hypoxic suppression of the cell cycle gene CDC25A in tumor cells. Cell Cycle 6:1919-1926.

Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, and Heeschen C. 2007. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell stem cell 1:313-323.

Huang R, and Rofstad EK. 2017. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8:35351.

Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, and Van Meir EG. 2005. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 7:134-153.

Kerbel RS. 2008. Tumor angiogenesis. New England Journal of Medicine 358:2039-2049.

Kietzmann T, Mennerich D, and Dimova EY. 2016. Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Frontiers in cell and developmental biology 4:11.

Kong W, He L, Richards E, Challa S, Xu C, Permuth-Wey J, Lancaster J, Coppola D, Sellers T, and Djeu J. 2014. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33:679.

Kruyt FA, and Schuringa JJ. 2010. Apoptosis and cancer stem cells: Implications for apoptosis targeted therapy. Biochemical pharmacology 80:423-430.

Lin S-P, Lee Y-T, Wang J-Y, Miller SA, Chiou S-H, Hung M-C, and Hung S-C. 2012. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PloS one 7:e49605.

Liu J, and Wang Z. 2015. Increased oxidative stress as a selective anticancer therapy. Oxidative medicine and cellular longevity 2015.

Liu L, Liu W, Wang L, Zhu T, Zhong J, and Xie N. 2017. Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells. Oncology letters 14:7715-7722.

Mellor H, Snelling S, Hall M, Modok S, Jaffar M, Hambley T, and Callaghan R. 2005. The influence of tumour microenvironmental factors on the efficacy of cisplatin and novel platinum (IV) complexes. Biochemical pharmacology 70:1137-1146.

Miglietta A, Cavalli R, Bocca C, Gabriel L, and Gasco MR. 2000. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. International journal of pharmaceutics 210:61-67.

Muz B, de la Puente P, Azab F, and Azab AK. 2015. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3:83.
Ojha T, Pathak V, Shi Y, Hennink WE, Moonen CT, Storm G, Kiessling F, and Lammers T. 2017. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. *Advanced drug delivery reviews* 119:44-60.

Peitzsch C, Tyutyunnykova A, Pantel K, and Dubrovskaya A. 2017. Cancer stem cells: the root of tumor recurrence and metastases. *Semin Cancer Biol*: Elsevier. p 10-24.

Ping YF, and Bian XW. 2011. Concise review: contribution of cancer stem cells to neovascularization. *Stem Cells* 29:888-894.

Pires IM, Bencokova Z, Milani M, Folkes LK, Li J-L, Stratford MR, Harris AL, and Hammond EM. 2010. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. *Cancer research*:0008-5472. CAN-0009-2715.

Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Al Mazeedi MA, Almazyadi HA, Kallmeyer K, Dandara C, and Pepper MS. 2017. The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. *International journal of molecular sciences* 18:1586.

Tu ML, Wang HQ, Chen LJ, Lu JC, Jiang F, Liang JH, and Li DS. 2009. Involvement of Akt1/protein kinase Bα in tumor conditioned medium-induced endothelial cell migration and survival in vitro. *Journal of cancer research and clinical oncology* 135:1543-1550.

Voikoradov S, and Wei X. 2012. Cancer stem cells and drug resistance: the potential of nanomedicine. *Nanomedicine* 7:597-615.

Wang L, Zhang L, Shen W, Liu Y, and Luo Y. 2016. High expression of VEGF and PI3K in glioma stem cells provides new criteria for the grading of gliomas. *Experimental and therapeutic medicine* 11:571-576.

Wang Z, Butner JD, Kerketta R, Cristini V, and Deisboeck TS. 2015. Simulating cancer growth with multiscale agent-based modeling. Seminars in cancer biology: Elsevier. p 70-78.

Zepeda AB, Pessoa Jr A, Castillo RL, Figueroa CA, Pulgar VM, and Farias JG. 2013. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. *Cell biochemistry and function* 31:451-459.

Zhao Y, and Adjei AA. 2015. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. *The oncologist* 20:660-673.

Zhou D, Shao L, and Spitz DR. 2014. Reactive oxygen species in normal and tumor stem cells. *Advances in cancer research*: Elsevier, 1-67.
Summary of methodology workflow adopted in this project

The first stage was to establish CSCs sub-population from parental MCF-7 cells by several steps of culturing cells in ultra-low serum-free media and sorting to enrich stemness biomarker that was finally identified by flow cytometry after 21 days. Stage two included exposing CSCs to hypoxic and normoxic conditions in optimized intervals for over than four months and collecting conditioned starvation media in which they were grown. Also, multiple assays were performed using hypoxic and normoxic CSCs to test the hypoxia effect on CSCs. Stage three was performed to assess the effect of CSCs secretions in the conditioned-medium on angiogenesis.
Figure 2

The morphology of MCF-7 mammospheres

(A) MCF-7 floating cells in serum-free low adherent conditions required for mammospheres formation. (B) At Day-3 the (3D) mammospheres began to structure. (C) At Day-7 larger and denser (3D) mammospheres have structured in a rigid and compact form. Representative images magnification (10x objective) and 30 um scale bar by Olympus inverted microscope.
Figure 3

The 3D morphology of CSCs mammospheres under hypoxic condition (B, C, D, E) or in normoxia as in (A).

The (3D) morphology of CSCs clustered in multicellular spheroids in serum-free media. (A) CSCs under normoxia. (B) and (C) CSCs exposed to INTR.20 and INTR.40 hypoxic shots respectively. (D) and (E) CSCs exposed to CONT.5 and CONT.15 hypoxic shots respectively. CSCsHYP that underwent CONT.5 and INTR.20 were denser and larger in number than CSCsNOR. CSCsHYP that underwent CONT.15 and INTR.40 had the least growth compared to other hypoxic exposures and CSCsNOR. Representative images magnification (10x objective) and 30 um scale bar by Olympus inverted microscope.
Manuscript to be reviewed
Figure 4

Determination of the cancer stem cell-like properties in mammosphere forming cells based on surface marker CD44+/CD24-.

(A) parent MCF-7 cells. (B) unsorted mammospheres. (C) sorted CSCs mammospheres after 3 days of sorting. (D) CSCs mammospheres after 21 days of sorting. (E) CSCshyp underwent \textbf{INTR.20} shots. (F) CSCshyp underwent \textbf{CONT.5} shots. (G) CSCshyp underwent \textbf{INTR.40} shots. (H) CSCshyp underwent \textbf{CONT.15} shots.
Figure 5

Effect of normoxic and hypoxic CdM on capillary-like tube structure formation in HUVECs.

HUVECs were cultured in CdM obtained from CSCsHYP mammospheres that were previously grown and exposed to (B) CONT.5 (C) CONT.10 (D) CONT.15 (E) INTR.10 (F) INTR.20 (G) INTR.30 (H) INTR.40 hypoxic shots and compared to HUVECs cultured using CdM obtained from CSCsNOR as a control as shown in (A). Capillary-like tubular structures were the highest in using CdM obtained from CONT.5 and INTR.20 exposure. Representative images magnification (4x objective) Olympus inverted microscope
Figure 6

Assessment of capillary-like tubular structure formation

(A) Total tube lengths formed. (B) Number of loops intersections. (C) Covered area percentage. The results represent mean ± SD of three independent experiments. The symbol marks the statistical significance levels as follows: (*) indicates $p<(0.001)$ and (**) indicates $p<(0.0001)$ as compared to the control.
Figure 7

VEGF-A concentrations secreted by CSCs^{HYP} or CSCs^{NOR} were determined by ELISA assay. The results represent mean±SD of three independent experiments. Statistically significant differences among the treated versus control cells are shown by (*) (p < 0.05) and (**) (p < 0.0001).
Figure 8

Transmigration of HUVECs induction by CdM obtained from CSCs^{HYP} compared to control where EBM-2 serum-free served as control.

CdM from hypoxic shots **CONT.5** and **INTR.20** proved to be a potent chemoattractant compared to the control. All values were determined as averages of three independent experiments. The results represent mean±SD of three independent experiments. Statistically significant differences among the treated and control cells are shown by (**) (p < 0.0001).
Figure 9

Morphological changes of HUVECs after co-cultured with CSCs^{HYP} subpopulation that underwent CONT.5

Hypoxic episode (A-C) for direct co-culture and (D-E) for indirect co-culture. Direct co-culture model: (A) CSCs^{HYP} mammospheres were seeded directly above HUVECs monolayer at (0) time. (B) After 36 hours HUVECs proliferate normally with CSCs^{HYP}. (C) at 72 hours HUVECs obtained elongated threadlike shape mediated by CSCs^{HYP} secretions. Indirect co-culture where permeable membrane was placed between HUVECs and CONT.5 CSCs^{HYP} subpopulation: (D) HUVECs after 36 hours. (E) At 72 hours HUVECs morphology changed to form net-like structures resembling a vascular network as mediated by CSCs^{HYP} secretions that passed through the membrane. Representative images magnification (4x objective) Olympus inverted microscope.
Figure 10

HUVECs cell migration assessment using wound-healing assay

The upper group of images represents the wound at zero time of treatment with CdM while lower images represent the wound after 48 hours of treatment with CdM. (A) control treated with CdM obtained from CSCs$^{\text{NOR}}$. (B) Treated with CdM from INTR.20 shot. (C) Treated with CdM from CONT.5 shot. Representative images magnification (4x objective) Olympus inverted microscope.
Figure 11

Wound healing of CSCs

The upper group of images demonstrate the wound surface area of CSCs monolayer at the time of wound scratching (zero time). The lower group of images are for wound closure after 36 hours from scratching. (A) CSCsNOR used as control. (B-H) CSCsHYP exposed to various hypoxic treatments. CSCsHYP that were exposed to \textbf{INTR.20} shown in (C) and \textbf{CONT.5} shown in (F) both have had the highest wound closure capacity compared to the control CSCsNOR in (A).\textit{Representative images magnification (4x objective) Olympus inverted microscope.}
Figure 12

CSCs wound closure quantification

The quantification of wound closure was measured by ImageJ software and represented in bars expressing the percentage of gap closure. CSCsHYP subpopulation that was exposed to INTR.20 or CONT.5 manifested the highest wound closure capacity compared to the control CSCsNOR. After 36 hours, the wound closure was 98% for INTR.20 and 95% for CONT.5 whereas 40% for control. The results represent mean±SD of three independent experiments. Statistically significant differences among the treated and control cells are shown by (*) (p < 0.001) and (**) (p < 0.0001).
Table 1 (on next page)

The summary of CD44+/CD24- expression obtained by flow cytometry among different MCF-7 sub-population derived cells.
Cells Subpopulation	CD44+/CD24+ Expression %
Parent MCF-7 Cells	1.0 (± 0.1%)
Unsorted Mammospheres (Day 7 in ultra-low attachment, serum free media)	33.2 (± 3.0%)
Sorted CSCs mammospheres (3 days after sorting)	81.0 (± 7.5%)
Sorted CSCs mammospheres (After a total of 21 days)	35.5 (± 4.5%)
CSC₃HYP exposed to INTR.20 shots	39.8 (± 5.2%)
CSC₃HYP exposed to CONT.5 shots	51.6 (± 6.1%)
CSC₃HYP exposed to INTR.40 shots	0.3 (± 0.01%)
CSC₃HYP exposed to CONT.15 shots	0.5 (± 0.05%)
Table 2 (on next page)

The IC50 values (uM) of doxorubicin against MCF-7 parental, CSCsNOR mammospheres and CSCsHYP of different hypoxic shots after 72 hours treatment.
Cell Subpopulation	IC50 (uM) ± STD	Fold Change Compared to sorted normoxic Mammosphere (Control)	Fold Change Compared to Parental MCF-7
MCF-7 Parental	0.46 (±0.06)	N/A†	N/A*
CSCsNOR mammospheres (Control)	1.90 (±0.35)	N/A*	4.08 ↑
CSCsHYP exposed to INTR.10	4.64 (±0.15)	2.45 ↑	10.00 ↑
CSCsHYP exposed to INTR.20	6.2 (±0.29)	3.28 ↑	13.39 ↑
CSCsHYP exposed to INTR.30	4.101 (±0.22)	2.16 ↑	8.84 ↑
CSCsHYP exposed to INTR.40	0.334 (±0.02)	0.18 ↓	0.72 ↓
CSCsHYP exposed to CONT.5	7.124 (±0.19)	3.76 ↑	15.35 ↑
CSCsHYP exposed to CONT.10	4.486 (±0.11)	2.36 ↑	9.67 ↑
CSCsHYP exposed to CONT.15	0.441 (±0.04)	0.23 ↓	0.95 ↓

All data are expressed by means ± SD.; P<0.0001 compared to the parental group.

* N/A: Value not calculated; not applicable to compare the reference to its value
† N/A: Value not calculated because we refer and compare the IC\textsubscript{50} of sorted CSCsNOR mammospheres to MCF-7 Parental cells IC\textsubscript{50} not the contrary
(N/A: Not applicable, STD: Standard Deviation, uM: microMolar, ↑: Increased, ↓: Decrease)