Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS

Luca Congedo

1 Independent Researcher

Summary

The Semi-Automatic Classification Plugin is a Python plugin for the software QGIS (QGIS Development Team, 2021) developed with the overall objective to facilitate land cover monitoring by people whose main field is not strictly remote sensing, but that could benefit from remote sensing analysis. The Semi-Automatic Classification Plugin provides a set of intertwined tools and a user interface for easing and automating the phases of land cover classification, from the download of remote sensing images, to the preprocessing (i.e. tools for preparing the data to the analysis or other calculations), the processing (i.e. tools for performing the classification of land cover or perform analysis), and postprocessing (i.e. tools for assessing the classification accuracy, refining the classification, or integrating additional data). The processing of remote sensing data can be computationally intensive, therefore most of the developed tools use Python multiprocessing to exploit the system CPU and RAM by splitting the work among multiple subprocesses. The aim of this paper is to describe the main characteristics of the Semi-Automatic Classification Plugin for the land cover classification of remote sensing images.

Statement of need

Remote sensing is the measurement, by a sensor installed on board of airplanes or satellites, of the energy that is emanated from the Earth’s surface (Richards & Jia, 2006). Remote sensing images are spatial data and require the use of a Geographic Information System (GIS) for visualization and processing. The free availability of satellite data (such as Landsat (United States Geological Survey, 2019), and Sentinel-2 (European Space Agency, 2018)) extended the use of remote sensing in various fields such as urban planning, agriculture, environmental monitoring, etc. (Nink et al., 2019; Pesaresi et al., 2016; Rogan & Chen, 2004; Weiss et al., 2020). Land cover is defined as the material at the Earth’s surface, such as soil, vegetation, water, asphalt, etc. (Fisher & Unwin, 2005). A supervised classification (also known as semi-automatic classification) is an image processing technique that aims at classifying land cover by training the algorithm with samples of material spectral signatures.

The development of open source GIS and processing software can foster environmental monitoring, which can be performed with no cost for software and remote sensing images considering the free data availability. QGIS is an open source GIS software which provides several tools for data visualization and analysis; it is mainly written in C++ code, but it also allows to extend the functions thereof through API and plugins written in Python (QGIS Development Team, 2021). QGIS has a large repository of plugins that improve data analysis and also provide access to several image processing tools included in other open source programs such as

Congedo, L., (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
as GRASS (GRASS Development Team, 2017), GDAL (GDAL/OGR contributors, 2021), and Orfeo Toolbox (OTB Development Team, 2020). These programs allow for the processing of satellite images, nevertheless their use can be difficult for people interested in land cover classifications but specialized in fields other than remote sensing, because of the several steps required for image processing.

The Semi-Automatic Classification Plugin aims to provide a complete suite of tools for processing remote sensing data, easing the phases related to the download, the preprocessing of images, and the postprocessing of classifications, with built-in algorithms developed in Python and third party algorithms for specific functions (e.g. Sentinel-1 preprocessing through ESA SNAP (European Space Agency, 2021)).

Several tutorials about the Semi-Automatic Classification Plugin are freely available on the official website, and the user manual is being translated into several languages by the user community.

The Semi-Automatic Classification Plugin has been cited in several studies about land cover, urban growth, and image processing (Arekhi et al., 2019; Damtew et al., 2021; Furukawa et al., 2020; Garilli et al., 2021; Huq et al., 2019; Leroux et al., 2018; Palafox-Juárez et al., 2021; Pelage et al., 2019; Teodoro & Amaral, 2019; Zhang et al., 2018).

Overview of the Semi-Automatic Classification Plugin

The Semi-Automatic Classification Plugin interfaces is composed of several modules (as illustrated in Figure 1). A module allows for searching and downloading freely available images (in particular ASTER, GOES, Landsat, MODIS, Sentinel-1, Sentinel-2, and Sentinel-3). It is possible to perform the preprocessing and raster calculations automatically after the download, by setting a few parameters in the user interface.

![Figure 1: User interface of the Semi-Automatic Classification Plugin for QGIS.](image)

The interface allows to define an image input (named band set) which is the set of raster bands to be processed.

The following tools are available for preprocessing:

Congedo, L., (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. *Journal of Open Source Software*, 6(64), 3172. https://doi.org/10.21105/joss.03172
Conversion to reflectance for ASTER, GOES, Landsat, MODIS, Sentinel-1, Sentinel-2, and Sentinel-3 images;
Clip multiple rasters at once;
Cloud masking based on the values of a raster mask;
Mosaic band sets, merging the corresponding bands of two or more band sets;
Statistic calculation for neighbor pixels;
Reprojection of the coordinates of raster bands;
Splitting or stacking raster bands in a unique file;
Vector to raster conversion.

The following processing tools are available:

- Band combination to get a raster where each value corresponds to a combination of input values;
- Clustering for unsupervised classification (i.e. without training input);
- Principal Component Analysis of band set;
- Calculation of the spectral distance between every corresponding pixel of two band sets;
- Classification using one of the available algorithms, such as Minimum Distance (Richards & Jia, 2006), Maximum Likelihood (Richards & Jia, 2006), Spectral Angle Mapping (Kruse et al., 1993), and Random Forest (Breiman, 2001).

Considering that semi-automatic classification algorithms require training pixels (i.e. spectral signatures), a specific dock interface for training input creation and spectral signature calculation is available, which allows to create polygons interactively (manually or through region growing) and import spectral libraries such as the USGS Spectral Library (Kokaly et al., 2017). The interface allows to create classification previews on small portion of the image to assess the results before launching the classification process for the whole image. In addition, the plot of spectral signatures can be visualized in order to assess the spectral separability of signatures.

A band calculator is available for performing mathematical and conditional calculation using input rasters, for instance for the calculation of spectral indices.

The following postprocessing tools are available for refining the classification output and further analyses:

- Accuracy assessment of the classification;
- Classification dilation, erosion, and sieve for refining the patches of the classes;
- Classification report for calculation of class statistics such as number of pixels, percentage and area;
- Conversion of classification from raster to vector;
- Manual editing of raster values;
- Assessment of land cover change comparing two classifications;
- Statistics related to an input raster for every unique value of a reference vector or raster;
- Reclassification of raster values.

Finally, the tool Batch allows for performing a series of functions consecutively and automatically through the definition of a script.

The Semi-Automatic Classification Plugin for QGIS is developed with Python 3 and requires the installation of GDAL, NumPy, SciPy, and Matplotlib (as illustrated in Figure 2). The user interface is developed using the Qt framework. The additional installation of SNAP (European Space Agency, 2021) is required for the Sentinel-1 preprocessing and random forest classification tools.
A testing tool is available for verifying the correct installation of the required dependencies and check the main functions of the Semi-Automatic Classification Plugin.

Acknowledgements

The first version of the Semi-Automatic Classification Plugin was developed by Luca Congedo in 2012 for the ACC Dar Project in order to create a tool for the classification of land cover in an affordable and automatic fashion; following versions 2, 3, 4, and 5 of Semi-Automatic Classification Plugin were developed by Luca Congedo as personal commitment to the remote sensing field and open source philosophy. Semi-Automatic Classification Plugin version 6 was developed in the frame of Luca Congedo’s PhD in Landscape and Environment at Sapienza University of Rome. Semi-Automatic Classification Plugin version 7 was developed by Luca Congedo as personal commitment to the remote sensing field and open source philosophy.

Special thanks to all the users for contributing to the Semi-Automatic Classification Plugin and translating the interface and user manual to other languages.

References

Arekhi, M., Goksel, C., Balik Sanli, F., & Senel, G. (2019). Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for Igneada Longos Forest. *ISPRS International Journal of Geo-Information, 8*(2). https://doi.org/10.3390/ijgi8020056

Breiman, L. (2001). Random Forests. *Machine Learning, 45*(1), 5–32. https://doi.org/10.1023/A:1010933404324
Damtew, Y. T., Verbeiren, B., Awoke, A., & Triest, L. (2021). Satellite Imagerys and Field Data of Macrophytes Reveal a Regime Shift of a Tropical Lake (Lake Ziway, Ethiopia). Water, 13. https://doi.org/10.3390/w13040396

European Space Agency. (2018). Sentinel-2 Products Specification Document. European Space Agency. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library

European Space Agency. (2021). SNAP - ESA sentinel application platform (Version 8.0.0) [Computer software]. http://step.esa.int

Fisher, P. F., & Unwin, D. J. (2005). Re-Presenting GIS (J. W. & Sons, Ed.). John Wiley & Sons. ISBN: 978-0-470-84847-0

Furukawa, F., Morimoto, J., Yoshimura, N., & Kaneko, M. (2020). Comparison of Conventional Change Detection Methodologies Using High-Resolution Imagery to Find Forest Damage Caused by Typhoons. Remote Sensing, 12(19). https://doi.org/10.3390/rs12193242

Garilli, E., Bruno, N., Autelitano, F., Roncella, R., & Giuliani, F. (2021). Automatic detection of stone pavement’s pattern based on UAV photogrammetry. Automation in Construction, 122, 14. https://doi.org/10.1016/j.autcon.2020.103477

GDAL/OGR contributors. (2021). GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. https://gdal.org

GRASS Development Team. (2017). Geographic resources analysis support system (GRASS GIS) software, version 7.2. Open Source Geospatial Foundation. http://grass.osgeo.org

Huq, N., Bruns, A., & Ribbe, L. (2019). Interactions between freshwater ecosystem services and land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-term (1973–2014) scale. Science of The Total Environment, 650, 132–143. https://doi.org/10.1016/j.scitotenv.2018.08.430

Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., & Klein, A. J. (2017). USGS spectral library version 7. In U. S. G. Survey (Ed.), Data Series (p. 68). http://pubs.er.usgs.gov/publication/ds1035

Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sensing of Environment, 44(1), 145–163. https://doi.org/10.1016/0034-4257(93)90013-N

Leroux, L., Congedo, L., Bellón, B., Gaetano, R., & Bégué, A. (2018). Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study. In QGIS and Applications in Agriculture and Forest (pp. 119–151). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119457107.ch4

Nink, S., Hill, J., Stoffels, J., Buddenbaum, H., Frantz, D., & Langshausen, J. (2019). Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region. Remote Sensing, 11(20). https://doi.org/10.3390/rs11202337

OTB Development Team. (2020). Orfeo ToolBox 7.2 (Version 7.2.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.4066373

Palacios-Juárez, E. B., López-Martínez, J. O., Hernández-Stefanoni, J. L., & Hernández-Nuñez, H. (2021). Impact of Urban Land-Cover Changes on the Spatial-Temporal Land Surface Temperature in a Tropical City of Mexico. ISPRS International Journal of Geo-Information, 10(2). https://doi.org/10.3390/ijgi10020076
Pelage, L., Domalain, G., Lira, A. S., Travassos, P., & Frédou, T. (2019). Coastal Land Use in Northeast Brazil: Mangrove Coverage Evolution Over Three Decades. *Tropical Conservation Science, 12*, 15. https://doi.org/10.1177/1940082918822411

Pesaresi, M., Corbane, C., Julea, A., Florczyk, A. J., Syrris, V., & Soille, P. (2016). Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. *Remote Sensing, 8*(4), 299. https://doi.org/10.3390/rs8040299

QGIS Development Team. (2021). *QGIS geographic information system*. QGIS Association. https://www.qgis.org

Richards, J. A., & Jia, X. (2006). *Remote Sensing Digital Image Analysis: An Introduction* (Springer, Ed.). Springer.

Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring landcover and land-use change. *Progress in Planning, 61*(4), 301–325. https://doi.org/10.1016/S0305-9006(03)00066-7

Teodoro, A., & Amaral, A. (2019). A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. *Environments, 6*(3). https://doi.org/10.3390/environments6030036

United States Geological Survey. (2019). *Landsat 8 (L8) Data Users Handbook. Version 5.0*. Department of the Interior U.S. Geological Survey. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf

Weiss, M., Jacob, F., & Duveiller, G. (2020). *Remote sensing for agricultural applications: A meta-review*. 236, 111402. https://doi.org/10.1016/j.rse.2019.111402

Zhang, Y., Zhang, H., & Sun, Z. (2018). Effects of Urban Growth on Architectural Heritage: The Case of Buddhist Monasteries in the Qinghai-Tibet Plateau. *Sustainability, 10*(5). https://doi.org/10.3390/su10051593

Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. *Journal of Open Source Software, 6*(64), 3172. https://doi.org/10.21105/joss.03172