Renormalization of Fermion-Flavour Mixing

Andrea A. Almasy
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK

DOI: will be assigned

We report on an explicit on-shell framework to renormalize the fermion-flavour mixing matrices in the Standard Model and its extensions, at one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave-function renormalization contributions.

1 Introduction

Renormalizability endows the Standard Model (SM) with enhanced predictive power due to the fact that ultraviolet (UV) divergences from quantum effects can be eliminated by a redefinition of a finite number of independent parameters, such as masses and coupling constants. Furthermore, it has been known for a long time that, in the most frequently employed formulations in which the complete bare mass matrices of quarks are diagonalized, the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix must be also renormalized. In fact, this problem has been the object of several interesting studies over the last two decades. A matter of considerable interest is the generalization of these considerations to minimal renormalizable extensions of the SM.

2 On-shell renormalization prescription

The on-shell renormalization framework we propose is a generalization of Feynman’s approach in QED [1]. Recall that in QED the self-energy contribution to an outgoing fermion is given by

\[\Delta M^{\text{leg}} = \bar{u}_i(p)\Sigma(p)\frac{1}{\bar{p} - m}, \quad \Sigma(p) = A(p^2) + B(p^2)(\bar{p} - m) + \Sigma^{\text{fin}}(\bar{p}) \]

where \(\Sigma(p) \) is the self-energy, \(A \) and \(B \) are divergent constants, and \(\Sigma^{\text{fin}} \) is a finite part which is proportional to \((p - m)^2 \) in the vicinity of \(p = m \) and therefore does not contribute to \(\Delta M^{\text{leg}} \). The contribution of \(A \) to \(\Delta M^{\text{leg}} \) is singular at \(p = m \) and gauge independent and that of \(B \) is regular but gauge dependent. They are called self-mass (sm) and wave-function renormalization (wfr) contributions. \(A \) is cancelled by the mass counterterm \(\delta m \) while \(B \) is combined with proper vertex diagrams leading to a finite and gauge-independent physical amplitude.

In the case of fermion-flavour mixing we encounter not only diagonal terms as in QED but also off-diagonal contributions. The self-energy corrections to an external fermion leg are now

\[\Delta M^{\text{leg}}_{ij} = \bar{u}_i(p)\Sigma_{ij}(\bar{p})\frac{1}{\bar{p} - m_j}. \]
where i denotes the external fermion of momentum p and mass m_i, and j the virtual fermion of mass m_j. Using a simple algorithm that treats i and j on an equal footing, we write the self-energy as:

$$\Sigma_{ij}(p) = A_{ij}(p^2) + (\not{p} - m_i)B_{1,ij}(p^2) + B_{2,ij}(p^2)(\not{p} - m_j) + (\not{p} - m_i)\Sigma_{ij}^{\text{fin}}(p^2)(\not{p} - m_j),$$

in analogy to QED. Similarly, we identify the contributions to ΔM^{leg} coming from A as sm and those coming from $B_{1,2}$ as wrf contributions. Again, Σ_{ij}^{fin} gives zero contribution.

We consider next the cancellation of the sm contributions with the mass counterterms. We start from the bare mass term in the Lagrangian, $-\bar{\Psi}'m_0\Psi'$, and decompose the bare mass into a so-called renormalized mass and a corresponding counterterm, $m_0' = m' + \delta m'$. We then apply a bi-unitary transformation on the fermion fields $\bar{\Psi}'$, Ψ' that diagonalizes m' leading to the transformed mass term $-\bar{\Psi}(m + \delta m^{(-)}P_L + \delta m^{(+)}P_R)\Psi$. Here $P_{R,L} = (1 \pm \gamma_5)/2$ are the chiral projectors, m is real, diagonal and positive and $\delta m^{(\pm)}$ are arbitrary non-diagonal matrices subject to the Hermiticity constraint

$$\delta m^{(+)} = \delta m^{(-)\dagger}.$$ \hspace{1cm} (1)

Further we adjust $\delta m^{(\pm)}$ to cancel, as much as possible, the sm contributions to ΔM^{leg}.

The diagonalization of the complete mass matrix $M = m + \delta m^{(-)}P_L + \delta m^{(+)}P_R$ by means of a bi-unitary transformation of the form:

$$\psi_{L,R} = U_{L,R}\hat{\psi}_{L,R} \approx (1 + ih_{L,R})\hat{\psi}_{L,R},$$ \hspace{1cm} (2)

naturally induces a mixing counterterm matrix. Note that the second equality holds only at one-loop level. The matrices $h_{L,R}$ are chosen such that \hat{M} is diagonal and are found to be:

$$i(h_{L,R})_{ij} = -\frac{m_i \delta m^{(\mp)}_{ij} + \delta m^{(\pm)}_{ij} m_j}{m_i^2 - m_j^2}, \quad (h_{L,R})_{ii} = 0.$$ \hspace{1cm} (3)

Due to the transformation in Eq. (2) the $V_{if}f_j^\dagger$ bare interaction term in the Lagrangian transforms as well

$$\mathcal{L}_{V_{if}f_j^\dagger} \propto \bar{\psi}_L^f K_0 \gamma^\lambda \psi_L^j V_\lambda + \text{H.c.} \quad \xrightarrow{U_{L,R}} \quad \bar{\psi}_L^f (K + \delta K) \gamma^\lambda \psi_L^j V_\lambda + \text{H.c.},$$

with $\delta K = i(K h_{L}^{fj} - h_{L}^{if} K)$. $K_0 = K + \delta K$ and K are explicitly gauge independent and preserve the basic properties of the theory. K is finite and identified with the renormalized mixing matrix. δK is identified with the mixing counterterm matrix.

3 Particular cases

Following the procedure outlined in Sec. 2 a CKM counterterm matrix was proposed in Ref. 2:

$$\delta V = i(V h_L^{D^T} - h_L^{U} V),$$

with $h_L^{D^U}$ given by Eq. (3). Both $V_0 = V + \delta V$ and V satisfy the unitarity condition and are explicitly gauge independent.
Some years later an alternative approach based on a gauge-independent quark mass counterterm expressed directly in terms of the Lorentz-invariant self-energy functions was proposed [3]. The mass counterterms so defined obey three important properties: (i) they are gauge independent, (ii) they automatically satisfy the Hermiticity constraint of Eq. (1) and thus are flavour-democratic, and (iii) they are expressed in terms of the invariant self-energy functions and thus useful for practical applications.

A comparative analysis of the W-boson hadronic widths in various CKM renormalization schemes, including the ones discussed above, and the study of the implications of flavour-mixing renormalization on the determination of the CKM parameters are presented in Ref. [4].

We have also considered the mixing of leptons in a minimal, renormalizable extension of the SM that can naturally accommodate heavy Majorana neutrinos. Here mixing appears both in charged- and neutral-current interactions and is described by the bare mixing matrices B_0 and C_0. Following ones more the prescription of Sec. [2] we found that the charged-lepton mass counterterm is identical to that of quarks, up to particle content. However, in the case of the Majorana-neutrino there are two important modifications due to the Majorana condition $\nu = \nu^C$ (here C denotes charge conjugation): (i) in addition to the Hermiticity constraint of Eq. (1) the mass counterterm should be symmetric, and (ii) now only one unitary transformation, $U^\nu = 1 + i h^\nu$, is needed to diagonalize the complete mass matrix \hat{M}^ν. Keeping in mind the two changes, the mixing counterterm matrices are [5]

$$\delta B = i (B h^\nu - h_L^L B) \quad \text{and} \quad \delta C = i (C h^\nu - h^\nu C).$$

Once δB is fixed, δC is fixed as well. Note that both, the bare and renormalized mixing matrices, are gauge independent and preserve the basic properties of the theory.

4 Conclusions

We proposed an explicit on-shell framework to renormalize the fermion-flavour mixing matrices in the SM and its extensions, at one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent sm and gauge-dependent wfr contributions. An important property is that this formulation complies with UV finiteness and gauge-parameter independence, and also preserves the basic structure of the theory.

Acknowledgements

The author thanks B.A. Kniehl and A. Sirlin for the collaboration on the work presented here.

References

[1] R.P. Feynman, Phys. Rev. 76 769 (1949).
[2] Bernd A. Kniehl and Alberto Sirlin, Phys. Rev. Lett. 97 221801 (2006);
Bernd A. Kniehl and Alberto Sirlin, Phys. Rev. D74 116003 (2006).
[3] Bernd A. Kniehl and Alberto Sirlin, Phys. Lett. B673 208 (2009).
[4] A.A. Almasy, B.A. Kniehl and A. Sirlin, Phys. Rev. D79 076007 (2009).
[5] Andrea A. Almasy, Bernd A. Kniehl and Alberto Sirlin, Nucl. Phys. B818 115 (2009).