NATIVE HYMENOPTERAN PARASITOIDS ASSOCIATED WITH FRUIT FLIES (DIPTERA: TEPHRITIDAE) IN SANTA CATARINA STATE, BRAZIL

Authors: Garcia, Flávio R. M., and Corseuil, Elio

Source: Florida Entomologist, 87(4) : 517-521

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/0015-4040(2004)087[0517:NHPAWF]2.0.CO;2
The present paper describes the parasitoids of fruit flies from the western portion of Santa Catarina state, an area which is a growing producer of citrus in the state (Koller et al. 1999) and which has not been surveyed thoroughly in the past. We collected 9,197 mature fruit from trees or on the soil comprising 46 species belonging to 25 families in the six towns Anchiesta (26°53'S and 53°33'W), Chapecó (27°06'S and 53°16'W), Cunha Porã (26°07'S and 53°16'W), Palmitos (27°06'S and 53°16'W), São Carlos (27°07'S and 53°00'W), and Xanxerê (26°87'S and 52°40'W), Santa Catarina. Each fruit was weighed and put in a plastic container with about seven centimeters of sterilized sand, and covered with a net. The containers were kept in the entomology laboratory of the Agricultural and Environmental Science Center at the Universidade Comunitária Regional de Chapecó at 25 ± 3°C, 70 ± 10% and a 12-h photoperiod. After five days, the sand with pupae was transferred to lab Petri dishes containing filter
Vegetal specie	S	N	PaT	Braconidae	Figitidae and Diapriidae	%P	TIP
Fabaceae							
Inga sellowiana	5	246	2	L. anastrephae (100.0)		4.1	4.7
Myrtaceae							
Psidium cattleianum	11	635	42	D. areolatus (19.0)	A. pelleranoi (19.0)	1.9	2.1
				D. brasiliensis (33.3)			
				Opius sp. (9.7)			
				U. anastrephae (19.0)			
Eugenia involucrata	3	446	46	D. areolatus (69.6)		46.9	47.9
				Opius bellus (8.7)			
				Opius sp. (4.3)			
				U. anastrephae (17.4)			
Psidium guajava	17	190	147	D. brasiliensis (2.0)	A. pelleranoi (49.0)	20.1	20.3
				Opius bellus (1.1)	T. anastrephae (45.9)		
				Opius sp. (2.0)			
Feijoa sellowiana	2	80	58	D. areolatus (48.3)		11.6	14.3
				D. brasiliensis (48.3)			
				Opius bellus (3.4)			
Myrcianthes pungens	2	52	6	D. brasiliensis (100.0)		28.5	46.1
Campomanesia xanthocarpa	4	702	4	D. brasiliensis (100.0)		7.7	12.5
Britoa guazumaefolia	6	255	48	D. areolatus (16.7)	A. pelleranoi (3.5)	7.1	8.8
				D. brasiliensis (37.5)	O. anastrephae (8.3)		
Eugenia pyriformis	5	264	4	D. areolatus (100.0)	A. pelleranoi (100.0)	3.0	4.0
Rosaceae							
Prunus domestica	5	109	26	D. brasiliensis (23.1)		16.1	16.8
				U. anastrephae (76.1)			
Prunus avium	2	18	8	D. areolatus (75.0)		24.2	50.0
				U. anastrephae (25.0)			

1S—sample, 2n—number of fruit, 3PaT—parasitoids total, 4%P—Parasitism percentage, 5TIP—total index Parasitism.
Vegetal specie	S	N	PaT	%P	TIP
Eriobotrya japonica	9	1166	48	4.3	5.9
				D. areolatus (8.3)	
				D. brasiliensis (41.6)	
				Opius bellus (4.3)	
				Opius sp. (4.2)	
				U. anastrephae (41.6)	
Pyrus communis	2	62	4	14.8	33.3
				A. pelleranoi (100.0)	
Prunus persica	16	562	18	1.2	1.6
				A. pelleranoi (66.7)	
				O. anastrephae (11.1)	
Total	89	4787	461		

1S—sample, n—number of fruit, PaT—parasitoids total, %P—Parasitism percentage, TIP—total index Parasitism.
paper dampened with distilled water. Flies and parasitoids were counted after seven days.

The relationship between a fly species and its parasitoids was determined only when a single species of fly was held in an emergence container (Canal et al. 1994).

The total index of parasitism (TIP) was calculated as the number of parasitoids emerged × 100/number of flies emerged + number of parasitoids emerged. The relative frequency of fly species and parasitoids (RF) was defined as number of samples of a given species collected × 100/total number of collected species according to Matrangolo et al. (1998), and the parasitism percentage was calculated as %P = total parasitism × 100/total pupae, which was modified from Silveira Neto et al. (1997).

Species of Anastrepha were identified with Steyskal’s key (1997) and Zucchi’s key (2000b), which includes only Brazil species. The Braconidae were identified according to the key of Canal & Zucchi (2000). The flies and parasitoids belonging to other families were sent to Prof. Dr. Manoel Araécio Uchóa Fernandes, Biologist Jorge Anderson Guimarães, Dr. Allen Norrbom, and Prof. Dr. Roberto Antonio Zucchi for identification.

Of the 46 fruit species collected, 35 were infested by fruit flies, but only 14 of these fruit species contained parasitoids (Table 1). A total of 682 samples of parasitoids belonging to nine species and three families were obtained, as follows: D. areolatus, D. brasiiliensis, O. bellus, Opinius sp., U. anastrephae (Braconidae), A. pelleranoi, O. anastrephae (Figitidae), and Trichopria anastrephae (Diapriidae).

Of the 461 hymenopterans associated with a particular fruit fly, A. pelleranoi was the most common and represented 25.6% of the total, followed by D. brasiliensis, which was associated with 21.1% of the total. Aguiar-Menezes et al. (2001) previously reported the particular fruit fly, U. anastrephae, which was modified from Silveira Neto et al. (1997). The high percent parasitism in E. involucrata was previously observed in Eugenia involucrata, followed by Prunus avium and Myrcianthes pungens. These indexes are higher than those obtained by Leonel, Jr. et al. (1996), Salles (1996) and Matrangolo et al. (1998), but are similar to those of Guimarães et al. (1999).

The high percent parasitism in E. involucrata was previously observed by Salles (1996) in the Rio Grande do Sul state, and may be due, as he suggested, to the thin peel and small size of the fruit. Guimarães et al. (2000) previously observed affinity of A. pelleranoi to the Myrtaceae fruit, which we confirmed. Sivinski (1991), Sivinski et al. (1997, 2000) and Hickel (2002) found that braconid parasitism was negatively correlated to fruit pulp thickness, and we showed that weight data correlated to parasitism.

ACKNOWLEDGMENTS

We thank the following researchers for taxonomic identification: Professor Dr. Manoel Araécio Uchóa Fernandes—UFMS (Lonchaeidae), Biologist Jorge Anderson Guimarães—ESALQ/USP (Figitidae), Dr. Allen Norrbom—Systematic Entomology Laboratory, and Professor Dr. Roberto Antonio Zucchi—ESALQ/USP for some Anastrepha species confirmation. We thank Professors Lúcia S. Verona and Rosiane B. Denardin from the Botanic Department of UNOCHAPECÓ for identification of the plants.

REFERENCES CITED

AGUIAR-MENEZES, E., E. B. MENEZES, P. S. SILVA, A. C. BITTAR, AND P. C. CASSINO. Native hymenopteran parasitoids associated with Anastrepha spp.

![Table 2](image-url)

Table 2. Association between collected parasitoids and fruit flies in six different localities in the West of Santa Catarina, Brazil, during 1998-2000.

Parasitoids	A. fraterculus	Neosilba sp.
Braconidae	X	X
D. areolatus	X	X
D. brasiiliensis	X	X
O. bellus	X	X
Opinius sp.	X	X
U. anastrephae	X	X
Diapriidae		
T. anastrephae	X	
Figitidae		
A. pelleranoi	X	X
L. anastrephae		
O. anastrephae		X

The high percent parasitism in E. involucrata was previously observed by Salles (1996) in the Rio Grande do Sul state, and may be due, as he suggested, to the thin peel and small size of the fruit. Guimarães et al. (2000) previously observed affinity of A. pelleranoi to the Myrtaceae fruit, which we confirmed. Sivinski (1991), Sivinski et al. (1997, 2000) and Hickel (2002) found that braconid parasitism was negatively correlated to fruit pulp thickness, and we showed that weight data correlated to parasitism.
(Diptera: Tephritidae) in Seropedica city, Rio de Janeiro Brazil. Florida Entomol. 84: 706-711.

CANAL, N. A., AND R. A. ZUCCHI. 2000. Parasitóides Braconidae, pp. 119-126 In A. Malavasi and R. A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

CANAL, N. A., R. A. ZUCCHI, N. M. SILVA, AND F. L. LEONEL, Jr. 1994. Reconhecimento das espécies de parasitóides (Hym.: Braconidae) de moscas de las frutas (Dipt.: Tephritidae) en los municipios del Estado de Amazonas, Brasil. Bol. Mus. Entomol. Universidade del Valle 2: 1-17.

DE SANTIS, L. 1980. Catalogo de los Hymenopteros Brasileños de la Serie Parasitica Incluyendo Bethylloidea. UPFR, Curitiba. 395 pp.

GUIMARÃES, J. A., N. B. DIAZ, AND R. A. ZUCCHI. 2000. Parasitóides—Figitidae (Eucoilinae), pp. 127-134 In A. Malavasi and R.A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

GUIMARÃES, J. A., R. A. ZUCCHI, N. B. DIAZ, M. F. DE SOUZA FILHO, AND M. A. UCHÔA F. 1999 Espécies de Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) parasitóides de larvas frugívoras (Diptera: Tephritidae e Lonchaeidae) no Brasil. An. Soc. Entomol. Brasil 28: 263-273.

HICKEL, E. R. 2002. Espessura da polpa como condicionante do parasitismo de moscas-das-frutas (Diptera: Tephritidae) por Hymenoptera: Braconidae. Ciência Rural 32: 1005-1009.

KOLLER, O. L., E. SOPRANO, L. A. F. VERONA, L. A. CHIARADIA, A. BRANCHER, AND E. N. DE OLIVEIRA. 1999. Citros, pp. 49-52 In EPAGRI, Recomendações de Cultivares para o Estado de Santa Catarina 1999/2000. EPAGRI, Florianópolis.

LEONEL JR., F. L., R. A. ZUCCHI, AND N. A. CANAL. 1996. Parasitismo de moscas-das-frutas por Braconidae (Hymenoptera) em duas localidades do Estado de São Paulo. An. Soc. Entomol. Brasil 25: 199-206.

LEONEL JR., F. L., R. A. ZUCCHI, AND R. A. WHARTON. 1995. Distribution and tephritid hosts (Diptera) of braconid parasitoids (Hymenoptera) in Brazil. Intl. J. Pest Management 41: 208-213.

MATTRANGOLO, W. J. R., A. S. NASCIMENTO, R. S. CARVALHO, E. D. MELO, AND M. DE JESUS. 1998. Parasitóides de moscas-das-frutas (Diptera: Tephritidae) associados a frutíferas tropicais. An. Soc. Entomol. Brasil 27: 593-603.

NORA, I., E. R. HICKEL, AND H. F. PRANDO. 2000. Moscas-das-frutas nos estados brasileiros: Santa Catarina, pp. 271-275 In A. Malavasi and R. A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

SALLES, L. A. B. 1996. Parasitismo de Anastrepha fraterculus (Wied.) (Diptera: Tephritidae) por Hymenoptera, na região de Pelotas, RS. Pesq. Agrop. Brasileira 31: 769-774.

SILVEIRA NETO, S., NAKANO, O., BARBIN, D., AND N. A. VILLA NOVA. 1976. Manual de Ecologia dos Insetos Agronômica Ceres, Piracicaba, 419 pp.

SIVINSKI, J. 1991. The influence of host fruit morphology on parasitism rates in the Caribbean fruit fly (Anastrepha suspensa (Loew)). Entomophaga 36: 447-455.

SIVINSKI, J. M., M. ALUJA, AND M. LÓPEZ. 1997. Spatial and temporal distribution of Mexican Anastrepha species (Diptera: Tephritidae), within the canopies of fruit trees. Ann. Entomol. Soc. Amer. 90: 604-618.

SIVINSKI, J. M., J. PIÑERO, AND M. ALUJA. 2000. The distributions of parasitoids (Hymenoptera) of Anastrepha fruit flies (Diptera: Tephritidae) along an altitudinal gradient in Veracruz, Mexico. Biological control 18: 258-269.

STEYSKAL, G. C. 1977. Pictorial Key to Species of the Genus Anastrepha (Diptera: Tephritidae). The Entomol. Soc. of Washington, Washington, D.C. 35 pp.

ZUCCHI, R. A. 2000a. Espécies de Anastrepha, sinonimias, plantas hospedeiras e parasitóides, pp. 41-48 In A. Malavasi and R.A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.

ZUCCHI, R. A. 2000b. Taxonomia, pp. 13-24 In A. Malavasi and R.A. Zucchi [eds.], Moscas-das-frutas de Importância Econômica no Brasil, Conhecimento Básico e Aplicado. Holos, Ribeirão Preto.