Introduction

Perioperative chemotherapy significantly increased the median overall survival (OS) and complete resection rate (R0) over surgery alone for resectable gastroesophageal adenocarcinoma (GEA) patients. In 2006, the randomized phase III MAGIC study compared three preoperative and ORIGINAL RESEARCH

Docetaxel, Cisplatin, and 5-Fluorouracil as perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma

Frédéric Fiteni1,2, Sophie Paget-Bailly2, Mathieu Messager3,4, Thierry N’Guyen1, Zaher Lakkis5, Pierre Mathieu6, Najib Lamfichekh6, Alain Picard7, Bilell Benzidane8, Denis Cléau9, Franck Bonnetain2,10, Christophe Borg1,11,12, Christophe Mariette3,4 & Stefano Kim1,11,12

1Department of Medical Oncology, University Hospital of Besançon, Besançon, France
2Methodology and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France
3Lille University Hospital, Department of Digestive Surgery, Lille, France
4FREGAT (French Esophageal and Gastric Tumour) working group, Paris, France
5Department of Digestive Surgery and Liver Transplantation, University Hospital of Besançon, Besançon, France
6Department of Surgery, Nord Franche Comté Hospital, Montbeliard, France
7Department of Surgery, Nord Franche Comté Hospital, Belfort, France
8Department of Oncology and Radiotherapy, Nord Franche Comté Hospital, Montbeliard, France
9Department of Gastroenterology, Hospital of Vesoul, Vesoul, France
10University of Franche-Comté, Besançon, EA 3181, France
11Unit 1098, INSERM, University of Franche-Comté, Besançon, France
12Clinical Investigational Center, University Hospital of Besançon CIC-1431, France

Abstract

Docetaxel, cisplatin, and 5-fluorouracil (DCF) significantly improved overall survival in metastatic gastroesophageal adenocarcinoma (GEA). The aim of this study was to assess efficacy of DCF regimen as perioperative chemotherapy compared with surgery alone in patients with resectable GEA. We identified 789 patients who underwent surgery alone and 62 patients who received at least one cycle of DCF regimen consisting of docetaxel (75 mg/m² on day 1), cisplatin (75 mg/m² on day 1), and 5-fluorouracil (750 mg/m²/day on continuous perfusion on days 1 to 5), every 3 weeks. Overall survival was compared using Cox proportional hazards regression model with adjustments for confounding factors provided by two propensity score methods: inverse probability of treatment weighting (IPTW) and matched-pair analysis. In Cox multivariate analysis weighted by IPTW, DCF group was associated with favorable overall survival (OS) compared with the surgery group (HR = 0.59; 95% CI, 0.45–0.78; P = 0.0003). For the matched-pair analysis (comparing 41 patients for each group with the same baseline characteristics), median OS was 22 months and 57 months for the surgery group and DCF group, respectively (log-rank P = 0.0011). In Cox multivariate analysis, DCF group was associated with favorable OS compared with the surgery group (HR = 0.29; 95% CI, 0.14–0.64; P = 0.0019). In the matched-pair population, major complications (Dindo-Clavien grade 3–5) arose in six patients (14.63%) in the DCF group and seven patients (17.07%) in the surgery group (P = 1). Perioperative DCF chemotherapy is superior to surgery alone in terms of OS. A randomized phase III trial should compare DCF to standard perioperative regimens.
three postoperative cycles of intravenous epirubicin, cisplatin, continuous infusion fluorouracil combination (ECF), versus surgery alone and reported an improvement in OS (hazard ratio (HR), 0.75; 95% CI, 0.60–0.93; \(P = 0.0009 \)) and disease-free survival (DFS) (HR for progression, 0.66; 95% CI, 0.53–0.81; \(P < 0.001 \)) for the chemotherapy group [1]. In 2011, Ychou et al. demonstrated that perioperative chemotherapy using fluorouracil plus cisplatin (CF) significantly increased OS (HR, 0.69; 95% CI, 0.50–0.95; \(P = 0.02 \)) and DFS (HR, 0.65; 95% CI, 0.48–0.89; \(P = 0.003 \)) [2]. Despite these encouraging results, the long-term outcome remains dismal, with less than 40% of patients alive at 5 years. These two trials (MAGIC and FNCLCC 94012 FFCD 9703) were the first studies to demonstrate better survival rates with a perioperative systemic approach for the treatment of localized GEA. The meta-analysis by Li et al. confirmed the benefit of neoadjuvant or perioperative chemotherapy in terms of survival rate [3], and neoadjuvant chemotherapy is now considered as standard treatment for resectable GEA in Europe.

At the metastatic setting, the V325 study demonstrated that docetaxel, cisplatin, and 5-fluorouracil (DCF) significantly improved OS, time to progression, and quality of life over CF regimen [4].

At the preoperative setting, encouraging results were observed with DCF in a phase II trial including 43 patients. Surgery was carried out in 95% of patients, 95% had R0 resection and 9% had a pathologic complete response (pCR). Three-year overall survival was 60%. No surgical mortality was observed in this study [5].

To date, perioperative DCF was not compared to surgery alone. Thus, to gain insight into the relative efficacy of DCF regimen, the aim of this study was to assess efficacy of DCF regimen as perioperative chemotherapy compared with surgery alone in a large multicenter comparative cohort of patients with resectable GEA.

Patients and Methods

Patient selection

Two French databases, including consecutive GEA patients in a multicentric setting, were used: the retrospective national survey conducted at 19 French surgical centers between January 1997 and January 2010, and a retrospective regional Franche-Comté survey in 5 surgical centers, not included in the first survey, between January 1999 and December 2012.

Main inclusion criteria were as follows: resectable GEA (of the lower third of the esophagus or gastroesophageal junction or stomach), a proven histology of gastric adenocarcinoma, and absence of metastases. We identified patients who underwent surgery alone and those who received at least one cycle of DCF regimen consisted of docetaxel (75 mg/m² on day 1), cisplatin (75 mg/m² on day 1), and 5-fluorouracil (750 mg/m²/day on continuous perfusion on days 1–5), every 3 weeks. No patient received DCF regimen before 2003, so patients who underwent a surgery before 2003 were excluded. From a total of 2874 patients, 851 patients fulfilled our eligibility criteria (Fig. 1).

Study analysis

We used clinical records to obtain at baseline the gender, age at diagnosis, tumor localization, signed ring cell histology, and clinical stage (by American Joint Committee on Cancer classification version 6). We also obtained the type of surgery approach, the extension of lymph node dissection, respectability and metastases at surgery, pathological stage, and pathological complete resection characteristic. We used Clavien-Dindo classification to grade surgical complications.

Statistical analysis

Qualitative variables were described using frequency and percentage with 95% CI, and continuous variables were described using mean (SD) and median (Min-Max). The differences in baseline characteristics between groups were tested using Fisher exact test or Student t test for categorical and continuous variables, respectively.

Propensity score analysis adjusts for the bias induced by nonrandom treatment assignment by comparing patients who had a similar likelihood of receiving a treatment but who received different treatments [6]. For this analysis, we used logistic regression to predict the likelihood that a given patient would receive treatment with DCF. In order to take into account all baseline covariates in a nonparsimonious way, the multivariate model included the following variables: age, gender, site of tumor, tumor stage (cT) (T0 + T1 vs. T2 + T3 vs. T4), nodal stage (cN) (N0 vs. N+), signet ring cell, and year of diagnosis (≤2006, 2006–2009, and ≥2009). The Hosmer and Lemeshow goodness-of-fit statistics and the area under the ROC curve were calculated to evaluate the adequacy of the model.

The primary outcome was OS, defined as time interval between start of preoperative treatment and death from any cause for patients who received DCF and time interval between surgery and death of all causes for patients who underwent surgery only. The secondary outcome was to assess compliance of DCF regimen.

We estimated the effect of treatment on survival using the following two approaches: matching and weighting by inverse probability of treatment (IPTW). OS was estimated using Kaplan-Meier estimation and described by median and 95% CI.
For the matched-pair analysis, we matched each patient who received DCF with one who received surgery alone using caliper method with no replacement, with a caliper of 0.2 and a ratio of 1:1. To compare the groups, log-rank test, and univariate and multivariate Cox models were performed.

For the IPTW analysis, in the univariate and multivariate Cox models, patients who received DCF were weighted by 1/propensity score, whereas patients who underwent surgery only were weighted by 1/(1- propensity score).

In both matched-pair and IPTW analyses, variables associated with OS in univariate analyses with a significance level of \(P < 0.20 \) were included in multivariate analysis.

All of the tests were two sided, and \(P < 0.05 \) was regarded as significant. The analyses were conducted using SAS 9.3 (SAS, Cary, NC).

Results

Patients’ characteristics

Among the 851 patients included, 789 were treated with surgery alone and 62 patients received DCF perioperative chemotherapy (Fig. 1). Patients’ characteristics are summarized in Table 1.

In the multiple logistic regression analysis, younger age, esogastric junction and lower third esophagus location of tumor, more advanced stage, and later year of diagnosis were associated with the decision to use DCF regimen (Table S1). The AUC was equal to 0.93 and \(P \) value of Hosmer-Lemeshow test was equal to 0.52, showing a good adequacy of the model.

For the matched-pair analysis, 41 patients treated with DCF regimen and 41 patients treated with surgery only were matched based on their propensity score. This analysis eliminated the differences seen in the larger cohort (Table 1).

Survival analysis

For the IPTW analysis, in the Cox multivariate analysis, the DCF group was associated with a favorable OS compared with the surgery group (HR=0.59; 95% CI, 0.45–0.78; \(P = 0.0003 \)) (Table 2). The other variables associated with favorable OS were as follows: younger age, gastric location of tumor, adenocarcinoma histology, lower cT stage, and later year of diagnosis (Table 2).
For the matched-pair analysis, 20 and 13 deaths were observed in the surgery group and DCF group, respectively. Median OS was 22 months and 57 months for the surgery group and DCF group, respectively (log-rank P = 0.0011) (Fig. 2). In Cox multivariate analysis, the DCF group was associated with favorable OS compared with the surgery group (HR = 0.29; 95% IC, 0.14–0.64; P = 0.0019) (Table 3).

Surgical results

The type of surgery, the extent of resection, and the pathologic tumor stage and nodal status for the observational dataset are described in the Table 4. The incidence of postoperative morbidity was 52% in surgery group and 34% in the DCF group. Major complications (Dindo-Clavien grade 3–5) arose in nine patients (14.5%) in the DCF group, and 89 patients (11.2%) in the surgery group (P = 0.57). The incidence of postoperative mortality was 3.2% in the DCF group and 2.9% in surgery group (P = 1).

The characteristics of surgery for the matched-pair population are described in the Table 5. Major complications (Dindo-Clavien grade 3–5) arose in six patients (14.63%) in the DCF group and seven patients (17.07%) in the surgery group (P = 1). In the matched-pair analysis, R0 resection rate was 85% in surgery group and 93% in the DCF group (P = 0.48).
Compliance to DCF regimen

Among the 62 patients, 25 (40%) patients received three or more preoperative and postoperative DCF cycles, Table 5.

Discussion

This study is the first head-to-head comparison between DCF regimen and surgery alone in resectable GEA. Being in the context of a retrospective study, we used propensity score analysis, a method designed to eliminate the bias caused by measured patient characteristics that affect both treatment and outcomes.

We showed a survival benefit with the use of DCF perioperative regimen with a HR of 0.29 (95% CI, 0.14–0.64) in the matched-pair analysis and 0.59 (95% CI, 0.45–0.78) in the IPTW analysis. The consistency of these two analyses strengthens our conclusions. In the large phase III MAGIC trial, the HR for OS with ECF regimen was 0.75 (95% CI, 0.60–0.93) compared to surgery [1]. In the phase III FFCD 9073 trial, the HR for OS with CF regimen was 0.69 (95% CI, 0.50–0.95) compared to surgery [2]. Even though the improvement of R0 rate observed in DCF group was not statistically significant compared to surgery group, it is one of the highest reported in the literature (93%). In MAGIC and FFCD 9073 trials, R0 rates were 69% and 84%, respectively [1, 2]. In 2012, Ferri et al.

Table 2. Cox regression for the IPTW analysis (n = 464).

Parameters	Univariate Cox analysis		Multivariate Cox analysis			
	HR	IC95%	P	HR	IC95%	P
Treatment	Surgery alone	1	<0.0001	1	<0.0001	0.0003
	DCF	0.602 (0.474–0.763)	<0.0001	0.590 (0.445–0.784)	0.0003	
Age	≤55	1	<0.0001	1	<0.0001	0.0001
	55–65	2.711 (2.000–3.675)	0.0001	2.878 (2.094–3.955)	0.0001	
	>65	1.628 (1.199–2.211)	0.1544	1.898 (1.373–2.623)	0.0001	
Gender	Men	1	0.7400	1	<0.0001	0.0001
	Women	1.049 (0.792–1.388)	0.0003	1	<0.0001	0.0001
Localization	Gastroesophageal	0.709 (0.565–0.890)	0.0007	0.597 (0.467–0.765)	0.0007	
	junction and	0.0047 (0.0260–0.1526)	0.0001	1	0.0001	0.0001
	lower third of	1.792 (1.196–2.687)	0.0001	1	0.0001	0.0001
	esophagus	1.964 (1.286–3.350)	0.0001	1	0.0001	0.0001
	stomach	2.433 (1.680–3.507)	0.0001	1	0.0001	0.0001
	T0	4.568 (3.086–6.876)	0.0001	1	0.0001	0.0001
	T1	10.026 (6.802–15.471)	0.0001	1	0.0001	0.0001
	T2	4.568 (3.086–6.876)	0.0001	1	0.0001	0.0001
	T3	15.547 (11.992–19.709)	0.0001	1	0.0001	0.0001
	T4	15.547 (11.992–19.709)	0.0001	1	0.0001	0.0001
T4a	15.547 (11.992–19.709)	0.0001	1	0.0001	0.0001	
T4a	15.547 (11.992–19.709)	0.0001	1	0.0001	0.0001	
cN	N0	1	0.0001	1	0.0001	0.0001
	N+	1.333 (0.920–1.947)	0.0001	1	0.0001	0.0001
Year of diagnosis	≤2006	0.503 (0.396–0.638)	0.0001	0.556 (0.424–0.728)	0.0001	
	2006–2009	0.623 (0.480–0.808)	0.0001	0.623 (0.480–0.808)	0.0001	
	>2009	0.729 (0.551–0.956)	0.0001	0.933 (0.707–1.217)	0.0001	

Figure 2. Overall survival according to Docetaxel, cisplatin, and 5-fluorouracil (DCF) and surgery among matched sample (n = 82).
conducted a phase II single-arm trial with DCF as perio-
perative chemotherapy in resectable GEA [5]. In this study,
3-year OS was 60%, which is comparable with our results
(3-year OS = 67%). In MAGIC and FFCD 9073 trials,
3-year OS was 45% and 50%, respectively [1, 2]. These
results suggest the potential additional benefit of docetaxel
in perioperative setting in terms of OS.

The DCF regimen is generally considered to be a toxic
regimen due to high rates of myelosuppression. In our study,
the toxicities were not reported because of a high rate of
missing data in the clinical records. However, compliance rate
(40%) was comparable with that reported in the MAGIC trial
(41.6%) and no treatment-related death was observed [1].

Other docetaxel-containing perioperative regimens were
assessed in phase II trials in resectable GEA. They dem-
strated the feasibility of these regimens, and a high R0
rate (90–96%) [7, 8]. Pathological complete responses
(pCR) were 10–17% in these taxane-based regimens [5,
7–10]. In our study, the pCR was lower than these trials
(7%). However, it was higher than surgery group (1.4%),
as well as MAGIC ECF protocol (no pCR reported) and
FFCD 9703 CF protocol (3%) [1, 2]. Previous reports
confirmed the pCR rate as an independent prognostic
factor of OS in GEA patients [11–14].

In our study, postoperative morbidity and mortality were
observed in 14.5% and 3.2% of the patients in DCF group.
Even though these rates are slightly higher than 10% of
morbidity and 0% of mortality reported by Ferri et al.
in selected patients, they are similar to S group [5].

Our study does have other limitations. First, sample
size of DCF arm was only 62. Then, as it is a retrospec-
tive study and even though different validated statistically
analyses were applied to eliminate differences between two
groups, uncontrolled biases are still possible and PS method
cannot provide the level of evidence of randomized trials.
However, the efficacy of DCF regimen is concordant to
previous results observed in different phase II trials. Then,
reverse events of DCF regimen could not be estimated.

The neoadjuvant approach with docetaxel-based chemo-
therapy continues to be investigated in prospective rand-
omized trials. The German AIO phase II/III FLOT4 study
randomized 714 patients with resectable GEA either to the
standard six cycles of perioperative ECF or to four cycles
of 5-FU, leucovorin, oxaliplatin, and docetaxel (FLOT) pre-
operatively and four cycles of FLOT postoperatively. Phase
II data presented at the 2015 ASCO Annual Meeting showed
that pCR rates were 12.8% with FLOT versus 5.1% with
ECF. Korean investigators are combining docetaxel, oxali-
platin, and S-1 as neoadjuvant therapy in addition to standard
S-1 adjuvant therapy for resectable but locally advanced
GEA (T2–3/N+ or T4/N either +/-) in the PRODIGY trial.
Finally, the German NEO-FLOT trial mirrors the PRODIGY
trial, but uses 5-FU and leucovorin instead of S-1, with
slightly lower doses of oxaliplatin. The results of all three

Parameters	Univariate Cox analysis	Multivariate Cox analysis				
	HR	IC95%	P	HR	IC95%	P
Treatment						
Surgery alone	1		0.0019	1		0.0019
DCF	0.297	0.138–0.640	0.0925	2.354	1.072–5.167	0.0932
Age						
≤55	1		1			
55–65	2.363	1.083–5.158	1.818	0.689–4.793		
>65	1.717	0.655–4.504	1.818	0.689–4.793		
Gender						
Men	1		0.9903	1		0.9903
Women	1.005	0.435–2.323	0.8876	1		0.8876
Localization						
Gastroesophageal junction and stomach	1.051	0.529–2.085	0.4751	1		0.4751
Signet ring cell						
No	1		1.478	0.9016	0.506–4.322	0.2989
Yes	2.363	1.083–5.158	1.818	0.689–4.793		
cT						
T1	1		2.354	1.072–5.167	0.0932	
T2	1014628		1.818	0.689–4.793		
T3	1601500		1.818	0.689–4.793		
T4	9659415		1.818	0.689–4.793		
T4a	1068538		1.818	0.689–4.793		
cN						
N0	1		1.645	0.760–3.560	0.2067	
N+	1.645	0.760–3.560	0.7410	1		0.7410
Year of diagnosis						
≤2006	1		0.7410	1		0.7410
>2009	0.679	0.219–2.105	0.186–4.292	1		0.186–4.292
>2009	0.893	0.186–4.292	0.186–4.292	1		0.186–4.292
trials are awaited to see whether newer combinations bring superior efficacy with tolerable toxicity.

Conclusion

In conclusion, this population-based study showed that perioperative DCF chemotherapy in resectable GEA is superior to surgery alone in terms of survival. A randomized phase III trial is needed to compare DCF to standard ECF or CF regimens to investigate the potential survival benefit of docetaxel in perioperative setting in resectable GEA. Future trials should also include a quality-of-life analysis to evaluate the clinical benefit between these regimens.

Ethical Statements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed
Table 5. Surgical characteristics in the matched-pair population.

	Patients with surgery only	DCF Patients	P value	
	n = 41	n = 41		
	n	%	n	%
Surgical procedure				
Subtotal gastrectomy	7	17.95	6	15.00
Total gastrectomy	17	43.59	25	62.50
Lewis-Santi esophagectomy	15	38.46	9	22.50
Missing	2	1		
Lymphadenectomy				
Yes	23	95.83	31	96.88
No	1	4.17	1	3.13
Missing	17	9		
Lymphadenectomy extent				
D1	8	34.78	6	20.69
>D1	15	65.22	23	79.31
Missing	2			
Resection extent				
R0	35	85.37	38	92.68
R1	5	12.20	3	7.32
R2	1	2.44	0	0
Major surgical complications (grade 3–5 Dindo-Clavien)				
Yes	6	14.63	7	17.07
No	35	85.37	34	82.9
Ratio of number of invaded lymph nodes				
<0.20	23	66.67	22	68.75
≥0.20	13	33.33	10	31.25
Missing	2	9		
pT				
T1	0	0	3	8.11
T2	12	30.77	4	10.81
T3	13	33.33	21	56.76
T4	12	30.77	8	21.62
T4a	2	5.13	1	2.70
Missing	2	4		
pN				
N0	17	43.59	15	41.67
N1	12	30.77	12	33.33
N2	5	12.82	5	13.89
N3	5	12.82	4	11.11
Missing	2	5		

consent or substitute for it was obtained from all patients for being included in the study.

Acknowledgments

The authors would like to thank the investigators and their team. The authors would like to thank Guadalupe Tizon for English writing assistance.

Conflict of Interests

The authors declare that they have no competing interests.

References

1. Cunningham, D., W. H. Allum, S. P. Stenning, J. N. Thompson, C. J. H. Van de Velde, M. Nicolson, et al. 2006. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355:11–20.

2. Ychou, M., V. Boige, J.-P. Pignon, T. Conroy, O. Bouché, G. Lebreton, et al. 2011. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 29:1715–1721.
3. Li, W., J. Qin, Y.-H. Sun, and T.-S. Liu. 2010. Neoadjuvant chemotherapy for advanced gastric cancer: a meta-analysis. World J. Gastroenterol. 16:5621–5628.
4. Van Cutsem, E., V. M. Moiseyenko, S. Tjulandin, A. Majlis, M. Constenla, C. Boni, et al. 2006. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J. Clin. Oncol. 24:4991–4997.
5. Ferri, L. E., S. Ades, T. Alcindor, M. Chasen, V. Marcus, M. Hickeson, et al. 2012. Perioperative docetaxel, cisplatin, and 5-fluorouracil (DCF) for locally advanced esophageal and gastric adenocarcinoma: a multicenter phase II trial. Ann. Oncol. 23:1512–1517.
6. D'Agostino, R. B. 1998. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 17:2265–2281.
7. Homann, N., C. Pauligk, K. Luley, T. Werner Kraus, H.-P. Bruch, A. Atmaca, et al. 2012. Pathological complete remission in patients with oesophagogastric cancer receiving preoperative 5-fluorouracil, oxaliplatin and docetaxel. Int. J. Cancer 130:1706–1713.
8. Thuss-Patience, P. C., R. D. Hofheinz, D. Arnold, A. Florschütz, S. Daum, A. Kretzschmar, et al. 2012. Perioperative chemotherapy with docetaxel, cisplatin and capecitabine (DCX) in gastro-oesophageal adenocarcinoma: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO) [dagger]. Ann. Oncol. 23:2827–2834.
9. Biffi, R., N. Fazio, F. Luca, A. Chiappa, B. Andreoni, M. G. Zampino, et al. 2010. Surgical outcome after docetaxel-based neoadjuvant chemotherapy in locally-advanced gastric cancer. World J. Gastroenterol. 16:868–874.
10. Jary, M., F. Ghiringhelli, M. Jacquin, F. Fein, T. Nguyen, D. Cleau, et al. 2014. Phase II multicentre study of efficacy and feasibility of dose-intensified preoperative weekly cisplatin, epirubicin, and paclitaxel (PET) in resectable gastroesophageal cancer. Cancer Chemother. Pharmacol. 74:141–150.
11. Becker, K., R. Langer, D. Reim, A. Novotny, C. Meyer zum Buschenfelde, J. Engel, et al. 2011. Significance of histopathological tumor regression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summary of 480 cases. Ann. Surg. 253:934–939.
12. Lowy, A. M., P. F. Mansfield, S. D. Leach, R. Pazdur, P. Dumas, and J. A. Ajani. 1999. Response to neoadjuvant chemotherapy best predicts survival after curative resection of gastric cancer. Ann. Surg. 229:303–308.
13. Fields, R. C., V. E. Strong, M. Gönen, K. A. Goodman, N. P. Rizk, D. P. Kelsen, et al. 2011. Recurrence and survival after pathologic complete response to preoperative therapy followed by surgery for gastric or gastroesophageal adenocarcinoma. Br. J. Cancer 104:1840–1847.
14. Lorenzen, S., P. Thuss-Patience, S. E. Al-Batran, F. Lordick, B. Haller, T. Schuster, et al. 2013. Impact of pathologic complete response on disease-free survival in patients with esophagogastric adenocarcinoma receiving preoperative docetaxel-based chemotherapy. Ann. Oncol. 24:2068–2073.

Supporting Information

Additional supporting information may be found in the online version of this article:

Table S1. Multivariate logistic regression to estimate the propensity score