Repeated-root constacyclic codes over the chain ring \(\mathbb{F}_{p^m}[u]/\langle u^3 \rangle \)

Anuradha Sharma* and Tania Sidana

Department of Mathematics, IIIT-Delhi
New Delhi 110020, India

Abstract

Let \(R = \mathbb{F}_{p^m}[u]/\langle u^3 \rangle \) be the finite commutative chain ring with unity, where \(p \) is a prime, \(m \) is a positive integer and \(\mathbb{F}_{p^m} \) is the finite field with \(p^m \) elements. In this paper, we determine all repeated-root constacyclic codes of arbitrary lengths over \(R \), their sizes and their dual codes. As an application, we list some isodual constacyclic codes over \(R \). We also determine Hamming distances, RT distances, and RT weight distributions of some repeated-root constacyclic codes over \(R \).

Keywords: Cyclic codes; Negacyclic codes; Local rings.

1 Introduction

Berlekamp [4] first introduced and studied constacyclic codes over finite fields, which have a rich algebraic structure and are generalizations of cyclic and negacyclic codes. Calderbank et al. [6], Hammons et al. [14] and Nechaev [18] related binary non-linear codes (e.g. Kerdock and Preparata codes) to linear codes over the finite commutative chain ring \(\mathbb{Z}_4 \) of integers modulo 4, with the help of a Gray map. Since then, codes over finite commutative chain rings have received a great deal of attention. However, their algebraic structures are known only in a few cases.

Towards this, Dinh and López-Permouth [12] studied algebraic structures of simple-root cyclic and negacyclic codes of length \(n \) over a finite commutative chain ring \(R \) and their dual codes. In the same work, they determined all negacyclic codes of length \(2^t \) over the ring \(\mathbb{Z}_{2^m} \) of integers modulo \(2^m \) and their dual codes, where \(t \geq 1 \) and \(m \geq 2 \) are integers. In a related work, Batoul et al. [3] proved that when \(\lambda \) is an \(n \)th power of a unit in a finite chain ring \(R \), repeated-root \(\lambda \)-constacyclic codes of length \(n \) over \(R \) are equivalent to cyclic codes. Apart from this, many authors [1, 2, 5, 15, 22] investigated algebraic structures of linear and cyclic codes over the finite commutative chain ring \(\mathbb{F}_2[v]/\langle v^2 \rangle \).

To describe the recent work, let \(p \) be a prime, \(s, m \) be positive integers, \(\mathbb{F}_{p^m} \) be the finite field of order \(p^m \), and let \(\mathbb{F}_{p^m}[v]/\langle v^2 \rangle \) be the finite commutative chain ring with unity. Dinh [10] determined all constacyclic codes of length \(p^s \) over \(\mathbb{F}_{p^m}[v]/\langle v^2 \rangle \) and their Hamming distances. Later, Chen et al. [9], Dinh et al. [11] and Liu et al. [10] determined all constacyclic codes of length \(2p^s \) over the ring \(\mathbb{F}_{p^m}[v]/\langle v^2 \rangle \), where \(p \) is an odd prime. Recently, Sharma and Rani [19] determined all constacyclic codes of length \(4p^s \) over \(\mathbb{F}_{p^m}[v]/\langle v^2 \rangle \) and their dual codes, where \(p \) is an odd prime and \(s, m \) are positive integers. Using a technique different from that employed in [9,10,11,15,19], Cao et al. [8] determined all \(\alpha \)-constacyclic codes of length \(np^s \) over \(\mathbb{F}_{p^m}[v]/\langle v^2 \rangle \) and their dual codes by writing a canonical form decomposition for each code, where \(\alpha \) is a non-zero element of \(\mathbb{F}_{p^m} \) and \(n \) is a positive integer with \(\gcd(p,n) = 1 \). In a recent work, Zhao et al. [23] determined all \((\alpha + \beta v) \)-constacyclic codes...
codes of length \(np^s \) over \(\mathbb{F}_{p^m}[v]/(v^3) \) and their dual codes, where \(n \) is a positive integer coprime to \(p \), and \(\alpha, \beta \) are non-zero elements of \(\mathbb{F}_{p^m} \). This completely solves the problem of determination of all constacyclic codes of length \(np^s \) over \(\mathbb{F}_{p^m}[v]/(v^3) \) and their dual codes, where \(n \) is a positive integer coprime to \(p \). In a subsequent work [20], we determined all repeated-root constacyclic codes of arbitrary lengths over finite commutative chain rings with nilpotency index 2 and their dual codes. In the same work, we also listed some isodual repeated-root constacyclic codes and obtained Hamming distances, RT distances and RT weight distributions of some repeated-root constacyclic codes over finite commutative chain rings with nilpotency index 2.

In a related work, Cao [14] established algebraic structures of all \((1 + aw)\)-constacyclic codes of arbitrary lengths over a finite commutative chain ring \(R \) with the maximal ideal as \(\langle w \rangle \), where \(a \) is a unit in \(R \). Later, Dinh et al. [13] studied repeated-root \((\alpha + aw)\)-constacyclic codes of length \(p^s \) over a finite commutative chain ring \(R \) with the maximal ideal as \(\langle w \rangle \), where \(p \) is a prime number, \(s \geq 1 \) is an integer and \(\alpha, a \) are units in \(R \). The results obtained in Dinh et al. [13] can also be obtained from the work of Cao [14] and by establishing a ring isomorphism from \(R[x]/(x^{p^s} − 1 − \alpha a^{-1} w) \) onto \(R[x]/(x^{p^s} − \alpha - aw) \) as \(A(x) \mapsto A(\alpha_0^{-1} x) \) for each \(A(x) \in R[x]/(x^{p^s} − 1 − \alpha a^{-1} w) \), where \(\alpha = \alpha_0^p \) (such an element \(\alpha_0 \) always exists in \(\mathbb{F}_{p^m} \)). The constraint that \(a \) is a unit in \(R \) restricts their study to only a few special classes of repeated-root constacyclic codes over \(R \). When \(a \) is a unit in \(R \), the codes belonging to these special classes are direct sums of (principal) ideals of certain finite commutative chain rings. However, when \(a \) is a non-unit in \(R \), repeated-root constacyclic codes over \(R \) can also be direct sums of non-principal ideals. In another related work, Sobhani [21] determined all \((\alpha + \gamma u^2)\)-constacyclic codes of length \(p^s \) over \(\mathbb{F}_{p^m}[u]/(u^3) \) and their dual codes, where \(\alpha, \gamma \) are non-zero elements of \(\mathbb{F}_{p^m} \).

The main goal of this paper is to determine all repeated-root constacyclic codes of arbitrary lengths over \(\mathbb{F}_{p^m}[u]/(u^3) \), their sizes and their dual codes, where \(p \) is a prime and \(m \) is a positive integer. The Hamming distances, RT distances, and RT weight distributions are also determined for some repeated-root constacyclic codes over \(\mathbb{F}_{p^m}[u]/(u^3) \). Some isodual repeated-root constacyclic codes over \(\mathbb{F}_{p^m}[u]/(u^3) \) are also listed.

This paper is organized as follows: In Section 2, we state some basic definitions and results that are needed to derive our main results. In Section 3, we determine all repeated-root constacyclic codes of arbitrary lengths over \(\mathbb{F}_{p^m}[u]/(u^3) \), their dual codes and their sizes (Theorems 3.1-3.3). As an application, we also determine some isodual repeated-root constacyclic codes over \(\mathbb{F}_{p^m}[u]/(u^3) \) (Corollaries 3.1-3.3). In Section 4, we determine Hamming distances, RT distances, and RT weight distributions of some repeated-root constacyclic codes over \(\mathbb{F}_{p^m}[u]/(u^3) \) (Theorems 4.1-4.3). In Section 5, we mention a brief conclusion and discuss some interesting open problems in this direction.

2 Some preliminaries

A commutative ring \(R \) with unity is said to be (i) a local ring if it has a unique maximal ideal (consisting of all the non-units of \(R \)), and (ii) a chain ring if all the ideals of \(R \) form a chain with respect to the inclusion relation. Then the following result is well-known.

Proposition 2.1. [12] For a finite commutative ring \(R \) with unity, the following statements are equivalent:

(a) \(R \) is a local ring whose maximal ideal \(M \) is principal, i.e., \(M = \langle w \rangle \) for some \(w \in R \).

(b) \(R \) is a local principal ideal ring.

(c) \(R \) is a chain ring and all its ideals are given by \(\langle w^i \rangle \), \(0 \leq i \leq e \), where \(e \) is the nilpotency index of \(w \).

Furthermore, we have \(|\langle w^i \rangle| = |R/\langle w \rangle|^{e-1} \) for \(0 \leq i \leq e \). (Throughout this paper, \(|A| \) denotes the cardinality of the set \(A \).)

Now let \(R \) be a finite commutative ring with unity and let \(N \) be a positive integer. Let \(R^N \) be the \(R \)-module consisting of all \(N \)-tuples over \(R \). For a unit \(\lambda \in R \), a \(\lambda \)-constacyclic code \(C \) of length \(N \) over \(R \) is defined as an \(R \)-submodule of \(R^N \) satisfying the following property: \((a_0, a_1, \cdots, a_{N-1}) \in C \) implies that
(\lambda a_{N-1}, a_0, a_1, \cdots, a_{N-2}) \in \mathcal{C}. The Hamming distance of \mathcal{C}, denoted by \textit{d}_H(\mathcal{C}), is defined as \textit{d}_H(\mathcal{C}) = \min \{w_H(c) : c \in \mathcal{C} \setminus \{0\}\}, where \textit{w}_H(c) is the number of non-zero components of \(c\) and is called the Hamming weight of \(c\). The Rosenbloom-Tsfasman (RT) distance of the code \(\mathcal{C}\), denoted by \textit{d}_RT(\mathcal{C}), is defined as \textit{d}_RT(\mathcal{C}) = \min \{w_{RT}(c) : c \in \mathcal{C} \setminus \{0\}\}, where \textit{w}_{RT}(\mathcal{C}) is the RT weight of \(c\) and is defined as
\[
\textit{w}_{RT}(c) = \begin{cases}
1 + \max \{j | c_j \neq 0\} & \text{if } c = (c_0, c_1, \cdots, c_{N-1}) \neq 0; \\
0 & \text{if } c = 0.
\end{cases}
\]
The Rosenbloom-Tsfasman (RT) weight distribution of \(\mathcal{C}\) is defined as the list \(A_0, A_1, \cdots, A_N\), where for \(0 \leq \rho \leq N\), \(A_\rho\) denotes the number of codewords in \(\mathcal{C}\) having the RT weight as \(\rho\). The Hamming distance of a code is a measure of its error-detecting and error-correcting capabilities, while RT distances and RT weight distributions have applications in uniform distributions.

The dual code of \(\mathcal{C}\), denoted by \(\mathcal{C}^\perp\), is defined as \(\mathcal{C}^\perp = \{u \in R^N : u.c = 0 \text{ for all } c \in R^N\}\), where \(u.c = u_0c_0 + u_1c_1 + \cdots + u_{N-1}c_{N-1}\) for \(u = (u_0, u_1, \cdots, u_{N-1})\) and \(c = (c_0, c_1, \cdots, c_{N-1})\) in \(R^N\). It is easy to observe that \(\mathcal{C}^\perp\) is a \(\lambda^{-1}\)-constacyclic code of length \(N\) over \(R\). The code \(\mathcal{C}\) is said to be isodual if it is \(R\)-linearly equivalent to its dual code \(\mathcal{C}^\perp\). Under the standard \(R\)-module isomorphism \(\psi : R^N \rightarrow R[x]/\langle x^N - \lambda \rangle\), defined as \(\psi(a_0, a_1, \cdots, a_{N-1}) = a_0 + a_1x + \cdots + a_{N-1}x^{N-1} + \langle x^N - \lambda \rangle\) for each \((a_0, a_1, \cdots, a_{N-1}) \in R^N\), the code \(\mathcal{C}\) can be identified as an ideal of the ring \(R[x]/\langle x^N - \lambda \rangle\). Thus the study of \(\lambda\)-constacyclic codes of length \(N\) over \(R\) is equivalent to the study of ideals of the quotient ring \(R[x]/\langle x^N - \lambda \rangle\). From this point on, we shall represent elements of \(R[x]/\langle x^N - \lambda \rangle\) by their representatives in \(R[x]\) of degree less than \(N\), and we shall perform their addition and multiplication modulo \(x^N - \lambda\). Further, it is easy to see that the Hamming weight \(w_H(c(x))\) of \(c(x) \in R[x]/\langle x^N - \lambda \rangle\) is defined as the number of non-zero coefficients of \(c(x)\) and the RT weight \(w_{RT}(c(x))\) of \(c(x) \in R[x]/\langle x^N - \lambda \rangle\) is defined as \(w_{RT}(c(x)) = \begin{cases} 1 + \deg f(x) & \text{if } c(x) \neq 0; \\
0 & \text{if } c(x) = 0.
\end{cases}\) (throughout this paper, \(\deg f(x)\) denotes the degree of a non-zero polynomial \(f(x) \in R[x]\)). The dual code \(\mathcal{C}^\perp\) of \(\mathcal{C}\) is given by \(\mathcal{C}^\perp = \{u(x)c^*(x) = 0 \text{ in } R[x]/\langle x^N - \lambda \rangle\} \text{ for all } c(x) \in \mathcal{C}\}, where \(c^*(x) = x^{\deg c(x)}c(x^{-1})\) for all \(c(x) \in \mathcal{C} \setminus \{0\}\) and \(c^*(x) = 0\) if \(c(x) = 0\). The annihilator of \(\mathcal{C}\) is defined as \(\text{ann}(\mathcal{C}) = \{f(x) \in R[x]/\langle x^N - \lambda \rangle : f(x)c(x) = 0 \text{ in } R[x]/\langle x^N - \lambda \rangle\} \text{ for all } c(x) \in \mathcal{C}\}. One can easily observe that \(\text{ann}(\mathcal{C})\) is an ideal of \(R[x]/\langle x^N - \lambda \rangle\). Further, for any ideal \(I\) of \(R[x]/\langle x^N - \lambda \rangle\), we define \(I^* = \{f^*(x) : f(x) \in I\}\), where \(f^*(x) = x^{\deg f(x)}f(x^{-1})\) if \(f(x) \neq 0\) and \(f^*(x) = 0\) if \(f(x) = 0\). It is easy to see that \(I^*\) is an ideal of the ring \(R[x]/\langle x^N - \lambda \rangle\). Now the following holds.

Lemma 2.1. [4] If \(\mathcal{C} \subseteq R[x]/\langle x^N - \lambda \rangle\) is a \(\lambda\)-constacyclic code of length \(N\) over \(R\), then we have \(\mathcal{C}^\perp = \text{ann}(\mathcal{C})^*\).

From this point on, throughout this paper, let \(R\) be the ring \(\mathcal{R} = \mathbb{F}_{p^m}[u]/(u^3)\). It is easy to observe that \(\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}\) with \(u^3 = 0\), and that any element \(\lambda \in \mathcal{R}\) can be uniquely expressed as \(\lambda = \alpha + u\beta + u^2\gamma\), where \(\alpha, \beta, \gamma \in \mathbb{F}_{p^m}\). Now we make the following observation.

Lemma 2.2. [9] Let \(\lambda = \alpha + u\beta + u^2\gamma \in \mathcal{R}\), where \(\alpha, \beta, \gamma \in \mathbb{F}_{p^m}\). Then the following hold.

(a) \(\lambda\) is a unit in \(\mathcal{R}\) if and only if \(\alpha \neq 0\).

(b) There exists \(\alpha_0 \in \mathbb{F}_{p^m}\) satisfying \(\alpha_0^{p^m} = \alpha\).

The following theorem is useful in the determination of Hamming distances of repeated-root constacyclic codes over \(\mathcal{R}\) and is an extension of Theorem 3.4 of Dinh [10].

Theorem 2.1. For \(\eta \in \mathbb{F}_{p^m} \setminus \{0\}\), there exists \(\eta_0 \in \mathbb{F}_{p^m}\) satisfying \(\eta = \eta_0^{p^m}\). Suppose that the polynomial \(x^n - \eta_0\) is irreducible over \(\mathbb{F}_{p^m}\). Let \(\mathcal{C}\) be an \(\eta\)-constacyclic code of length \(np^m\) over \(\mathbb{F}_{p^m}\). Then we have \(\mathcal{C} = ((x^n - \eta_0)^v)^o\), where \(0 \leq v \leq p^m\). Moreover, the Hamming distance \(d_H(\mathcal{C})\) of the code \(\mathcal{C}\) is given by
Moreover, the polynomials f into pairwise coprime polynomials in R.

Next we observe that for $1 \leq 1 \leq p - 1$ and $1 \leq k \leq s - 1$; we have $\lambda \cdot x^{p}$.

3 Constacyclic codes of length np^s over R

Throughout this paper, let p be a prime and let n, s, m be positive integers with $\gcd(n, p) = 1$. Let \mathbb{F}_{p^m} be the finite field of order p^m, and let $\mathcal{R} = \mathbb{F}_{p^m}[u]/\langle u^3 \rangle$ be the finite commutative chain ring with unity. Let $\lambda = \alpha + \beta u + \gamma u^2$, where $\alpha, \beta, \gamma \in \mathbb{F}_{p^m}$ and α is non-zero. In this section, we will determine all λ-constacyclic codes of length np^s over \mathcal{R} and their dual codes. We will also determine the number of codewords in each code. Apart from this, we shall list some isodual constacyclic codes of length np^s over \mathcal{R}.

To do this, we recall that a λ-constacyclic code of length np^s over \mathcal{R} is an ideal of the quotient ring $\mathcal{R}_\lambda = \mathcal{R}[x]/\langle x^{np^s} - \lambda \rangle$. Further, by Lemma 2.2(b), there exists $\alpha_0 \in \mathbb{F}_{p^m}$ satisfying $\alpha_0^{p^s} = \alpha$. Now let $x^n - \alpha_0 = f_1(x)f_2(x) \cdots f_r(x)$ be the irreducible factorization of $x^n - \alpha_0$ over \mathbb{F}_{p^m}, where $f_1(x), f_2(x), \ldots, f_r(x)$ are pairwise coprime monic (irreducible) polynomials over \mathbb{F}_{p^m}. In the following lemma, we factorize the polynomial $x^{np^s} - \lambda$ into pairwise coprime polynomials in $\mathcal{R}[x]$.

Lemma 3.1. We have $x^{np^s} - \lambda = \prod_{j=1}^{r} \left(f_j(x)^{p^s} + ug_j(x) + u^2 h_j(x) \right)$, where the polynomials $g_1(x), g_2(x), \ldots, g_r(x), h_1(x), h_2(x), \ldots, h_r(x) \in \mathbb{F}_{p^m}[x]$ satisfy the following for $1 \leq j \leq r$:

- $\gcd(f_j(x), g_j(x)) = 1$ when $\beta \neq 0$.
- $g_j(x) = h_j(x) = 0$ when $\beta = \gamma = 0$.
- $g_j(x) = 0$ and $\gcd(f_j(x), h_j(x)) = 1$ in $\mathbb{F}_{p^m}[x]$ when $\beta = 0$ and γ is non-zero.

Moreover, the polynomials $f_1(x)^{p^s} + ug_1(x) + u^2 h_1(x), f_2(x)^{p^s} + ug_2(x) + u^2 h_2(x), \ldots, f_r(x)^{p^s} + ug_r(x) + u^2 h_r(x)$ are pairwise coprime in $\mathcal{R}[x]$.

Proof. To prove the result, we see that

$$x^{np^s} - \lambda = (x^n - \alpha_0)^{p^s} - \beta u + \gamma u^2 = f_1(x)^{p^s} f_2(x)^{p^s} \cdots f_r(x)^{p^s} - \beta u - u^2 \gamma. \quad (1)$$

Next we observe that for $1 \leq j \leq r - 1$, the polynomials $f_j(x)^{p^s}$ and $\prod_{i=j+1}^{r} f_i(x)^{p^s}$ are coprime in $\mathbb{F}_{p^m}[x]$, which implies that there exist $v_j(x), w_j(x) \in \mathbb{F}_{p^m}[x]$ satisfying $\deg w_j(x) < \deg f_j(x)^{p^s}$ and

$$v_j(x)f_j(x)^{p^s} + w_j(x) \prod_{i=j+1}^{r} f_i(x)^{p^s} = 1. \quad (2)$$

Now by (1) and (2), we obtain

$$x^{np^s} - \lambda = \left\{ f_1(x)^{p^s} - \beta u w_1(x) - u^2 w_1(x)(\gamma + \beta^2 v_1(x)w_1(x)) \right\} \left(\prod_{i=2}^{r} f_i(x)^{p^s} - u\beta v_1(x) - u^2 v_1(x)(\gamma + \beta^2 v_1(x)w_1(x)) \right).$$

Further, using (2) again, we get

$$\prod_{i=2}^{r} f_i(x)^{p^s} - u\beta v_1(x) - u^2 v_1(x)(\gamma + \beta^2 v_1(x)w_1(x)) = \left\{ f_2(x)^{p^s} - u\beta v_1(x)w_2(x) - u^2 v_1(x)w_2(x)(\gamma + \beta^2 v_1(x)w_1(x)) \right\}. $$
Lemma 3.2. \[\text{more explicitly, we observe that} \quad g_j(x) = -\beta w_j(x) \prod_{i=1}^{j-1} v_i(x) \quad \text{and} \quad h_j(x) = -w_j(x) \prod_{i=1}^{j-1} v_i(x) \left(\gamma + \beta^2 \sum_{i=1}^{j} v_1(x)v_2(x) \cdots v_i(x)w_i(x) \right) \]

for \(1 \leq j \leq r \) when \(r \geq 2 \). From this, the desired result follows. \(\Box \)

From now on, we define \(k_j(x) = f_j(x)p^r + ug_j(x) + u^2h_j(x) \) for \(1 \leq j \leq r \). Then we have \(x^{np^r} - \lambda = \prod_{j=1}^{r} k_j(x) \).

Further, if \(\deg f_j(x) = d_j \), then we observe that \(\deg k_j(x) = d_jp^r \) for each \(j \). By Lemma 3.1 we see that \(k_1(x), k_2(x), \ldots, k_r(x) \) are pairwise coprime in \(\mathcal{R}[x] \). This, by Chinese Remainder Theorem, implies that

\[\mathcal{R}_\lambda \cong \bigoplus_{j=1}^{r} \mathcal{K}_j, \]

where \(\mathcal{K}_j = \mathcal{R}[x]/\langle k_j(x) \rangle \) for \(1 \leq j \leq r \). Then we observe the following:

Proposition 3.1. (a) Let \(C \) be a \(\lambda \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \), i.e., an ideal of the ring \(\mathcal{R}_\lambda \). Then \(C = C_1 \oplus C_2 \oplus \cdots \oplus C_r \), where \(C_j \) is an ideal of \(\mathcal{K}_j \) for \(1 \leq j \leq r \).

(b) If \(I_j \) is an ideal of \(\mathcal{K}_j \) for \(1 \leq j \leq r \), then \(I = I_1 \oplus I_2 \oplus \cdots \oplus I_r \) is an ideal of \(\mathcal{R}_\lambda \) (i.e., \(I \) is a \(\lambda \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \)). Moreover, we have \(|I| = |I_1||I_2| \cdots |I_r| \).

Proof. Proof is trivial. \(\Box \)

Next if \(C \) is a \(\lambda \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \), then its dual code \(C^\perp \) is a \(\lambda^{-1} \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \). This implies that \(C^\perp \) is an ideal of the ring \(\mathcal{R}_{\lambda^{-1}} = \mathcal{R}[x]/\langle x^{np^r} - \lambda^{-1} \rangle \). In order to determine \(C^\perp \) more explicitly, we observe that \(x^{np^r} - \lambda^{-1} = -\alpha^{-1}k_1(x)k_2^*(x) \cdots k_r^*(x) \). By applying Chinese Remainder Theorem again, we get \(\mathcal{R}_{\lambda^{-1}} \cong \bigoplus_{j=1}^{r} \widehat{\mathcal{K}}_j \), where \(\widehat{\mathcal{K}}_j = \mathcal{R}[x]/\langle k_j^*(x) \rangle \) for \(1 \leq j \leq r \). Then we have the following:

Proposition 3.2. Let \(C \) be a \(\lambda \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \), i.e., an ideal of the ring \(\mathcal{R}_\lambda \). If \(C = C_1 \oplus C_2 \oplus \cdots \oplus C_r \) with \(C_j \) an ideal of \(\mathcal{K}_j \) for each \(j \), then the dual code \(C^\perp \) of \(C \) is given by \(C^\perp = C_1^\perp \oplus C_2^\perp \oplus \cdots \oplus C_r^\perp \), where \(C_j^\perp = \{ a_j(x) \in \widehat{\mathcal{K}}_j : a_j(x)c_j^*(x) = 0 \text{ in } \widehat{\mathcal{K}}_j \text{ for all } c_j(x) \in C_j \} \) is the orthogonal complement of \(C_j \) for each \(j \).

Furthermore, \(C_j^\perp \) is an ideal of \(\mathcal{K}_j = \mathcal{R}[x]/\langle k_j^*(x) \rangle \) for each \(j \).

Proof. Its proof is straightforward. \(\Box \)

In view of Propositions 3.1 and 3.2, we see that to determine all \(\lambda \)-constacyclic codes of length \(np^s \) over \(\mathcal{R} \), their sizes and their dual codes, we need to determine all ideals of the ring \(\mathcal{K}_j \), their cardinalities and their orthogonal complements in \(\widehat{\mathcal{K}}_j \) for \(1 \leq j \leq r \). To do so, throughout this paper, let \(1 \leq j \leq r \) be a fixed integer. From now onwards, we shall represent elements of the rings \(\mathcal{K}_j \) and \(\widehat{\mathcal{K}}_j \) (resp. \(\mathbb{F}_{p^m}[x]/\langle f_j(x)p^r \rangle \)) by their representatives in \(\mathcal{R}[x] \) (resp. \(\mathbb{F}_{p^m}[x] \)) of degree less than \(d_jp^r \) (resp. \(d_jp^s \)) and we shall perform their addition and multiplication modulo \(k_j(x) \) and \(k_j^*(x) \) (resp. \(f_j(x)p^r \)), respectively. To determine all ideals of the ring \(\mathcal{K}_j \), we need to prove the following lemma.

Lemma 3.2. Let \(1 \leq j \leq r \) be fixed. In the ring \(\mathcal{K}_j \), the following hold.

(a) Any non-zero polynomial \(g(x) \in \mathbb{F}_{p^m}[x] \) satisfying \(\gcd(g(x), f_j(x)) = 1 \) is a unit in \(\mathcal{K}_j \). As a consequence, any non-zero polynomial in \(\mathbb{F}_{p^m}[x] \) of degree less than \(d_j \) is a unit in \(\mathcal{K}_j \).

(b) \(\langle f_j(x)p^r \rangle = \begin{cases} \langle u \rangle & \text{if } \beta \neq 0; \\ \langle u^2 \rangle & \text{if } \beta = 0 \text{ and } \gamma \neq 0; \\ \{0\} & \text{if } \beta = \gamma = 0. \end{cases} \)

As a consequence, \(f_j(x) \) is a nilpotent element of \(\mathcal{K}_j \) with the nilpotency index as \(3p^s \) when \(\beta \neq 0 \), the nilpotency index of \(f_j(x) \) is \(2p^s \) when \(\beta = 0 \) and \(\gamma \neq 0 \), while the nilpotency index of \(f_j(x) \) is \(p^s \) when \(\beta = \gamma = 0 \).
Proof. (a) As \(f_j(x) \) is irreducible over \(\mathbb{F}_{p^m} \) and \(\gcd(g(x), f_j(x)) = 1 \), we have \(\gcd(g(x), f_j(x)^p) = 1 \) in \(\mathbb{F}_{p^m}[x] \), which implies that there exist polynomials \(a(x), b(x) \in \mathbb{F}_{p^m}[x] \) such that \(a(x)g(x) + b(x)f_j(x)^p = 1 \). This implies that \(a(x)g(x) + b(x)f_j(x)^p + ug_j(x) + u^2h_j(x) = 1 + ub(x)(g_j(x) + uh_j(x)) \). From this, we get \(a(x)g(x) = 1 + ub(x)(g_j(x) + uh_j(x)) \) in \(K_j \). As \(u^3 = 0 \) in \(K_j \), we see that \(1 + ub(x)(g_j(x) + uh_j(x)) \) is a unit in \(K_j \), which implies that \(g(x) \) is a unit in \(K_j \).

(b) It follows immediately from Lemma 3.1 and part (a).

Next for a positive integer \(k \), let \(\mathcal{P}_k(\mathbb{F}_{p^m}) = \{ g(x) \in \mathbb{F}_{p^m}[x] : \text{ either } g(x) = 0 \text{ or } \deg g(x) < k \} \). Note that every element \(a(x) \in K_j \) can be uniquely expressed as \(a(x) = a_0(x) + ua_1(x) + u^2a_2(x) \), where \(a_0(x), a_1(x), a_2(x) \in \mathcal{P}_d, p^e(\mathbb{F}_{p^m}) \). Further, by repeatedly applying division algorithm in \(\mathbb{F}_{p^m}[x] \), for \(d \in \{ 0, 1, 2 \} \), we can write \(a(x) = \sum_{i=0}^{p^{d-1}} A_i(x)f_j(x)^i \), where \(A_i(x) \in \mathcal{P}_d, p^e(\mathbb{F}_{p^m}) \) for \(0 \leq i \leq p^d - 1 \). That is, each element \(a(x) \in K_j \) can be uniquely expressed as \(a(x) = \sum_{i=0}^{p^{d-1}} A_i(x)f_j(x)^i + u \sum_{i=0}^{p^{d-1}} A_i(x)f_j(x)^{i+1} + u^2 \sum_{i=0}^{p^{d-1}} A_i(x)f_j(x)^{i+2} \), where \(A_i(x) \in \mathcal{P}_d, p^e(\mathbb{F}_{p^m}) \) for each \(i \) and \(d \). Now to determine cardinalities of all ideals of \(K_j \), we prove the following lemma.

Lemma 3.3. Let \(1 \leq j \leq r \) be a fixed integer. If \(\mathcal{I} \) is an ideal of \(K_j \), then \(\text{Res}_u(\mathcal{I}) = \{ a_0(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle : a_0(x) + u a_1(x) + u^2 a_2(x) \in \mathcal{I} \text{ for some } a_0(x), a_1(x), a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \} \), \(\text{Tor}_u(\mathcal{I}) = \{ a_1(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle : a_1(x) + u^2 a_2(x) \in \mathcal{I} \text{ for some } a_0(x), a_1(x), a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \} \) and \(\text{Tor}_{u^2}(\mathcal{I}) = \{ a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle : a_2(x) \in \mathcal{I} \} \) are ideals of \(\mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \). Moreover, we have \(|\mathcal{I}| = |\text{Res}_u(\mathcal{I})||\text{Tor}_u(\mathcal{I})||\text{Tor}_{u^2}(\mathcal{I})| \).

Proof. One can easily observe that \(\text{Res}_u(\mathcal{I}), \text{Tor}_u(\mathcal{I}) \) and \(\text{Tor}_{u^2}(\mathcal{I}) \) are ideals of \(\mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \). In order to prove the second part, we define a map

\[
\phi : \mathcal{I} \rightarrow \text{Res}_u(\mathcal{I})
\]

as \(\phi(a(x)) = a_0(x) \) for each \(a(x) = a_0(x) + u a_1(x) + u^2 a_2(x) \in \mathcal{I} \) with \(a_0(x), a_1(x), a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \).

We observe that \(\phi \) is a surjective \(\mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \)-module homomorphism and its kernel is given by \(K_\mathcal{I} = \{ u a_1(x) + u^2 a_2(x) \in \mathcal{I} : a_1(x), a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \} \). This implies that

\[
|\mathcal{I}| = |\text{Res}_u(\mathcal{I})||K_\mathcal{I}|. \tag{3}
\]

We further define a map

\[
\psi : K_\mathcal{I} \rightarrow \text{Tor}_u(\mathcal{I})
\]

as \(\psi(u a_1(x) + u^2 a_2(x)) = a_1(x) \) for each \(a_1(x), a_2(x) \in K_\mathcal{I} \), where \(a_1(x), a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \). We see that \(\psi \) is also a surjective \(\mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \)-module homomorphism with the kernel as \(\ker \psi = \{ u^2 a_2(x) \in K_\mathcal{I} : a_2(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^p \rangle \} \). From this, it follows that

\[
|K_\mathcal{I}| = |\text{Tor}_u(\mathcal{I})||\ker \psi| = |\text{Tor}_u(\mathcal{I})||\text{Tor}_{u^2}(\mathcal{I})|,
\]

which, by (3), implies that

\[
|\mathcal{I}| = |\text{Res}_u(\mathcal{I})||\text{Tor}_u(\mathcal{I})||\text{Tor}_{u^2}(\mathcal{I})|.
\]

To determine orthogonal complements of all ideals of \(K_j \), we need the following lemma.

Lemma 3.4. Let \(1 \leq j \leq r \) be a fixed integer. Let \(\mathcal{I} \) be an ideal of the ring \(K_j \) with the orthogonal complement as \(\mathcal{I}^\perp \). Then the following hold.

(a) \(\mathcal{I}^\perp \) is an ideal of \(K_j \).

(b) \(\mathcal{I}^\perp = \{ a^*(x) \in K_j^* : a^*(x) \in \text{ann}(\mathcal{I}) \} = \text{ann}(\mathcal{I})^* \).

(c) If \(\mathcal{I} = \langle f(x), ug(x), u^2h(x) \rangle \), then we have \(\mathcal{I}^\perp = \langle f^*(x), ug^*(x), u^2h^*(x) \rangle \).

(d) For non-zero \(f(x), g(x) \in K_j \), let us define \(\langle fg(x) \rangle = f(x)g(x) \) and \(\langle f + g(x) \rangle = f(x) + g(x) \). If \((fg)(x) \neq 0 \), then we have \(f^*(x)g^*(x) = x^{\deg f(x) + \deg g(x)} f(x)^*(x)g(x)^*(x) \). If \((f + g)(x) \neq 0 \), then we have

\[
(f + g)^*(x) = \begin{cases}
 f^*(x) + x^{\deg f(x) + \deg g(x)} g^*(x) & \text{if } \deg f(x) > \deg g(x); \\
 x^{\deg (f + g)(x)} f(x)^*(x) + g(x)^*(x) & \text{if } \deg f(x) = \deg g(x).
\end{cases}
\]
Proof. Its proof is straightforward. □

By the above lemma, we see that to determine \mathcal{I}^\perp, it is enough to determine $\text{ann}(\mathcal{I})$ for each ideal \mathcal{I} of K_j. Further, to write down all ideals of K_j, we see, by Lemma 5.3, that for each ideal \mathcal{I} of K_j, $\text{Res}_u(\mathcal{I})$, $\text{Tor}_u(\mathcal{I})$ and $\text{Tor}_u(\mathcal{I})$ all are ideals of the ring $\mathbb{F}_{p^n}[x]/(f_j(x)p^s)$, which is a finite commutative chain ring with the maximal ideal as $(f_j(x))$. Next by Proposition 2.1, we see that all the ideals of $\mathbb{F}_{p^n}[x]/(f_j(x)p^s)$ are given by $\langle f_j(x)^i \rangle$ with $0 \leq i \leq p^s$ and that $|\langle f_j(x)^i \rangle| = p^{md_j(3p^s - i)}$ for each i. This implies that $\text{Res}_u(\mathcal{I}) = \langle f_j(x)^a \rangle$, $\text{Tor}_u(\mathcal{I}) = \langle f_j(x)^b \rangle$ and $\text{Tor}_u(\mathcal{I}) = \langle f_j(x)^c \rangle$ for some integers a, b, c satisfying $0 \leq c \leq b \leq a \leq p^s$.

First of all, we shall consider the case $\beta \neq 0$. Here we see that when $\alpha_0 = \mu^n$ for some $\mu \in \mathbb{F}_{p^m}$, each λ-constacyclic code of length np^s over R is equivalent to a cyclic code of length np^s over R and can be determined by using the results derived in Cao [7] via the map $\Psi : R[x]/(x^{np^s} - 1 - \alpha x - \alpha^{-1}u - \alpha^{-1}u^2) \rightarrow R[x]/(x^{np^s} - 1 - \alpha x - \alpha^{-1}u - \alpha^{-1}u^2)$, defined as $a(x) \rightarrow a(\mu^{-1}x)$ for each $a(x) \in R[x]/(x^{np^s} - 1 - \alpha x - \alpha^{-1}u - \alpha^{-1}u^2)$. However, when α_0 (and hence α) is not an nth power of an element in \mathbb{F}_{p^m}, this method cannot be employed to determine all $(\alpha + \beta u + \gamma u^2)$-constacyclic codes of length np^s over R. In fact, the problem of determination of all $(\alpha + \beta u + \gamma u^2)$-constacyclic codes of length np^s over R and their dual codes is not yet completely solved. Propositions 5.1 & 3.2 and the following theorem completely solves this problem when β is non-zero.

Theorem 3.1. When $\beta \neq 0$, all ideals of the ring K_j are given by $\langle f_j(x)^i \rangle$, where $0 \leq i \leq 3p^s$. Furthermore, for $0 \leq i \leq 3p^s$, we have $|\langle f_j(x)^i \rangle| = p^{md_j(3p^s - i)}$ and $\text{ann}(\langle f_j(x)^i \rangle) = \langle f_j(x)^{3p^s - i} \rangle$.

Proof. To prove this, we first observe that an element $a(x) \in K_j$ can be uniquely expressed as $a(x) = a_0(x) + u_1(x) + u_1^2(x)$, where $a_0(x), a_1(x), a_2(x) \in P_{d_j,p}(\mathbb{F}_{p^n})$. By division algorithm in $\mathbb{F}_{p^n}[x]$, there exist unique polynomials $q(x), r(x) \in \mathbb{F}_{p^n}[x]$ such that $a(x) = f_j(x)q(x) + r(x)$, where either $r(x) = 0$ or $\deg r(x) < d_j$. This implies that $a(x) = f_j(x)q(x) + r(x) + u_1(x) + u_1^2(x)$. Now in view of Lemma 5.2(b), we see that $a(x)$ is a unit in K_j if and only if $r(x)$ is a unit in K_j. Further, by Lemma 5.2(a), we see that $r(x) \in \mathbb{F}_{p^n}[x]$ is a unit in K_j if and only if $r(x) \neq 0$. This shows that $a(x)$ is a non-unit in K_j if and only if $r(x) = 0$ if and only if $a(x) = (f_j(x))$. That is, all the non-units of K_j are given by $\langle f_j(x) \rangle$. Now using Proposition 2.1 and Lemma 5.2(b), we see that K_j is a chain ring and all its ideals are given by $\langle f_j(x)^i \rangle$ with $0 \leq i \leq 3p^s$. Furthermore, we observe that the residue field of K_j is given by $\overline{K_j} = K_j/(f_j(x))$, and that $|\overline{K_j}| = p^{md_j}$. Now using Proposition 2.1 and Lemma 5.2(b) again, we obtain $|\langle f_j(x)^i \rangle| = p^{md_j(3p^s - i)}$ for $0 \leq i \leq 3p^s$. Further, it is easy to observe that $\text{ann}(\langle f_j(x)^i \rangle) = (f_j(x)^{3p^s - i})$, which completes the proof of the theorem. □

As a consequence of the above theorem, we deduce the following:

Corollary 3.1. Let $n \geq 1$ be an integer and $\alpha_0 \in \mathbb{F}_{p^n}$ be such that the binomial $x^n - \alpha_0$ is irreducible over \mathbb{F}_{p^n}. Let $\alpha = \alpha_0^p$, and $\beta(\neq 0), \gamma \in \mathbb{F}_{p^n}$. Then there exists an isodual $(\alpha + \beta u + u^2\gamma)$-constacyclic code of length np^s over R if and only if $p = 2$. Moreover, when $p = 2$, the ideal $\langle (x^n - \alpha_0)^{3 \cdot 2^{s-1}} \rangle$ is the only isodual $(\alpha + \beta u + u^2\gamma)$-constacyclic code of length $n2^s$ over R.

Proof. On taking $f_j(x) = x^n - \alpha_0$ in Theorem 3.1, we see that all $(\alpha + \beta u + u^2\gamma)$-constacyclic codes of length np^s over R are given by $\langle (x^n - \alpha_0)^{3p^s} \rangle$, where $0 \leq l \leq 3p^s$. Furthermore, for $0 \leq l \leq 3p^s$, the ideal $\langle (x^n - \alpha_0)^{3p^s} \rangle$ has $p^{mn(3p^s - l)}$ elements and the annihilator $\langle (x^n - \alpha_0)^{3p^s} \rangle$ is given by $\langle (x^n - \alpha_0)^{3p^s - l} \rangle$. Next we see that if a code $C = \langle (x^n - \alpha_0)^{3p^s} \rangle$ is isodual, then we must have $|C| = |C^\perp|$. This gives $p^{mn(3p^s - l)} = p^{mn l}$. This implies that $3p^s = 2l$, which holds if and only if $p = 2$. So when p is an odd prime, there does not exist any isodual $(\alpha + \beta u + u^2\gamma)$-constacyclic code of length np^s over R. When $p = 2$, we get $l = 3 \cdot 2^{s-1}$. On the other hand, when $p = 2$, we observe that $(x^n - \alpha_0)^{3 \cdot 2^{s-1}}$ is an isodual $(\alpha + \beta u + u^2\gamma)$-constacyclic code of length $n2^s$ over R, which completes the proof.

Remark 3.1. By Theorem 3.75 of [17], we see that the binomial $x^n - \alpha_0$ is irreducible over \mathbb{F}_{p^n} if and only if the following two conditions are satisfied: (i) each prime divisor of n divides the multiplicative order e of α_0, but not $(p^m - 1)/e$ and (ii) $p^m \equiv 1 (mod 4)$ if $n \equiv 0 (mod 4)$.
In the following theorem, we consider the case $\beta = \gamma = 0$, and we determine all non-trivial ideals of the ring K_j, their cardinalities and their annihilators.

Theorem 3.2. Let $\beta = \gamma = 0$, and let I be a non-trivial ideal of the ring K_j with $Res_u(I) = \langle f_j(x)^a \rangle$, $Tor_n(I) = \langle f_j(x)^b \rangle$ and $Tor_{n,2}(I) = \langle f_j(x)^c \rangle$ for some integers a, b, c satisfying $0 \leq c \leq b \leq a \leq p^s$. Suppose that $B_i(x), C_k(x), Q_k(x), W_s(x)$ run over $P_d_j(\mathbb{F}_{p^m})$ for each relevant i, k, ℓ and e. Then the following hold.

Type I: When $a = b = p^s$, we have

$$I = \langle u^2 f_j(x)^c \rangle,$$

where $c < p^s$. Moreover, we have

$$|I| = p^{md_j(p^s - c)} \text{ and } \text{ann}(I) = \langle f_j(x)^{p^s - c}, u \rangle.$$

Type II: When $a = p^s$ and $b < p^s$, we have

$$I = \langle uf_j(x)^b + u^2 f_j(x)^d G(x), u^2 f_j(x)^c \rangle,$$

where $c + b - p^s \leq t < c$ if $G(x) \neq 0$ and $G(x)$ is either 0 or a unit in K_j of the form $\sum_{k=0}^{c-1} B_i(x) f_j(x)^i$. Moreover, we have

$$|I| = p^{md_j(2p^s - b - c)} \text{ and } \text{ann}(I) = \langle f_j(x)^{p^s - c - t} - u f_j(x)^{p^s - t - b} G(x), u f_j(x)^{p^s - b}, u^2 \rangle.$$

Type III: When $a < p^s$, we have

$$I = \langle f_j(x)^a + uf_j(x)^{t_1} D_1(x) + u^2 f_j(x)^{t_2} D_2(x), uf_j(x)^b + u^2 f_j(x)^d G(x), u^2 f_j(x)^c \rangle,$$

where $a + b - p^s \leq t_1 < b$ if $D_1(x) \neq 0$, $0 \leq t_2 < c$ if $D_2(x) \neq 0$, $b + c - p^s \leq \theta < c$ if $V(x) \neq 0$, $D_1(x)$ is either 0 or a unit in K_j of the form $\sum_{k=0}^{c-1} C_k(x) f_j(x)^k$, $D_2(x)$ is either 0 or a unit in K_j of the form $\sum_{k=0}^{c-1} Q_k(x) f_j(x)^k$. Furthermore, we have $u^2 (f_j(x)^{p^s - a + t_1 - b} V(x) D_1(x) - f_j(x)^{p^s - a + t_2} D_2(x)) \in \langle u^2 f_j(x)^c \rangle$, i.e., there exists $A(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x)^{p^s} \rangle$ such that $u^2 (f_j(x)^{p^s - a + t_1 - b} V(x) D_1(x) - f_j(x)^{p^s - a + t_2} D_2(x)) = u^2 f_j(x)^c A(x)$. Moreover, we have

$$|I| = p^{md_j(3p^s - a - b - c)}$$

and the annihilator of I is given by

$$\text{ann}(I) = \langle f_j(x)^{p^s - c} - uf_j(x)^{p^s - c - t - b} V(x) + u^2 A(x), uf_j(x)^{p^s - b} - u^2 f_j(x)^{p^s - a + t_1 - b} D_1(x), u^2 f_j(x)^{p^s - a} \rangle.$$

Proof. As I is a non-trivial ideal of K_j, we note that neither $a = 0$ nor $a = b = c = p^s$ hold. Further, by Lemma 3.3, we have $|I| = p^{md_j(3p^s - a - b - c)}$. Now to write down all such non-trivial ideals of K_j and to determine their annihilators, we shall distinguish the following three cases: (i) $a = p^s$, (ii) $a = p^s$ and $b < p^s$, and (iii) $a < p^s$.

1. **(i) When $a = b = p^s$, we have $I \subseteq \langle u^2 \rangle.$** In this case, we have $0 \leq c < p^s$. Here we observe that $I = \langle u^2 f_j(x)^c \rangle$. Now to find $\text{ann}(I)$, we consider the ideal $B_1 = \langle f_j(x)^{p^s - c}, u, u^2 \rangle$, and we see that $B_1 \subseteq \text{ann}(I)$ and that $|B_1| = p^{md_j(2p^s + c)}$. As

$$p^{md_j(p^s - c)} = |I| = \frac{|K_j|}{|\text{ann}(I)|} \leq \frac{p^{md_j(p^s)}}{|B_1|} = p^{md_j(p^s - c)},$$

we obtain $\text{ann}(I) = B_1 = \langle f_j(x)^{p^s - c}, u, u^2 \rangle$.
(ii) When \(a = p^s \) and \(b < p^s \), we have \(\mathcal{I} \subseteq \langle u \rangle \) and \(\mathcal{I} \nsubseteq \langle u^2 \rangle \). Here we observe that

\[
I = \langle uf_j(x)^b + u^2r(x), u^2f_j(x)^c \rangle
\]

for some \(r(x) \in \mathcal{K}_j \). Let us write \(u^2r(x) = u^2 \sum_{i=0}^{c-1} G_i(x)f_j(x)^i \), where \(G_i(x) \in \mathcal{P}_j(\mathbb{F}_p^n) \) for \(0 \leq i \leq p^s - 1 \). Note that for all \(i \geq c \), we have \(u^2f_j(x)^i = u^2f_j(x)^{c}f_j(x)^{i-c} \in \mathcal{I} \), which implies that \(\mathcal{I} = \langle uf_j(x)^b + u^2 \sum_{i=0}^{c-1} G_i(x)f_j(x)^i, u^2f_j(x)^c \rangle \). If \(u^2 \sum_{i=0}^{c-1} G_i(x)f_j(x)^i \neq 0 \) in \(\mathcal{K}_j \), then choose the smallest integer \(t \) with \(0 \leq t < c \) satisfying \(G_t(x) \neq 0 \), which gives \(u^2 \sum_{i=0}^{c-1} G_i(x)f_j(x)^i = u^2f_j(x)^tG(x) \), where \(G(x) = \sum_{i=0}^{c-1} G_i(x)f_j(x)^{i-t} \) is a unit in \(\mathcal{K}_j \). On the other hand, when \(u^2 \sum_{i=0}^{c-1} G_i(x)f_j(x)^i = 0 \) in \(\mathcal{K}_j \), let us choose \(G(x) = 0 \). From this, it follows that

\[
\mathcal{I} = \langle uf_j(x)^b + u^2f_j(x)^tG(x), u^2f_j(x)^c \rangle,
\]

where \(G(x) \) is either 0 or a unit in \(\mathcal{K}_j \) of the form \(\sum_{i=0}^{c-t-1} a_i(x)f_j(x)^i \) with \(a_i(x) \in \mathcal{P}_j(\mathbb{F}_p^n) \) for \(0 \leq i \leq c-t-1 \).

Further, as \(f_j(x)^{p^s-b} \{ uf_j(x)^b + u^2f_j(x)^tG(x) \} = u^2f_j(x)^{t-b+t}G(x) \in \mathcal{I} \), we have \(p^s - b + t \geq c \) when \(G(x) \neq 0 \).

Moreover, let \(B_2 = \langle f_j(x)^{p^s-c} - uf_j(x)^{p^s-c+t-b}G(x), uf_j(x)^{p^s-b}, u^2 \rangle \). We observe that \(B_2 \subseteq \langle u \rangle \) and \(|B_2| \geq p^{md_j(p^s+b+c)} \).

Since

\[
p^{md_j(2p^s-b-c)} = |\mathcal{I}| = \frac{|\mathcal{K}_j|}{|\langle u \rangle|} \leq \frac{p^{md_j(p^s)}}{|B_2|} \leq p^{md_j(2p^s-b-c)},
\]

we obtain \(|\langle u \rangle| = |B_2| = p^{md_j(p^s+b+c)} \) and \(|\langle u \rangle| = B_2 = \langle f_j(x)^{p^s-c} - uf_j(x)^{p^s-c+t-b}G(x), uf_j(x)^{p^s-b}, u^2 \rangle \).

(iii) When \(a < p^s \), we have \(\mathcal{I} \nsubseteq \langle u \rangle \). In this case, we see that \(a > 0 \). Here we observe that

\[
\mathcal{I} = \langle f_j(x)^a + ur_1(x) + u^2r_2(x), uf_j(x)^b + u^2q(x), u^2f_j(x)^c \rangle
\]

for some \(r_1(x), r_2(x), q(x) \in \mathcal{K}_j \). Let us write \(ur_1(x) = u \sum_{\ell=0}^{p^s-1} A_{\ell}(x)f_j(x)^{\ell} \), where \(A_{\ell}(x) \in \mathcal{P}_j(\mathbb{F}_p^n) \) for \(0 \leq \ell \leq p^s - 1 \). Now for all \(\ell \geq b \), we observe that \(uf_j(x)^{\ell} = f_j(x)^{\ell-b} \{ uf_j(x)^b + u^2q(x) \} = u^2f_j(x)^{\ell-b}q(x) \). This implies that

\[
\mathcal{I} = \langle f_j(x)^a + u \sum_{\ell=0}^{b-1} A_{\ell}(x)f_j(x)^{\ell} + u^2 \{ r_2(x) - q(x) \sum_{\ell=0}^{p^s-1} A_{\ell}(x)f_j(x)^{\ell-a} \}, uf_j(x)^b + u^2q(x), u^2f_j(x)^c \rangle.
\]

Next we write \(u^2 \{ r_2(x) - q(x) \sum_{\ell=0}^{p^s-1} A_{\ell}(x)f_j(x)^{\ell-a} \} = u^2 \sum_{k=0}^{p^s-1} B_k(x)f_j(x)^k \), where \(B_k(x) \in \mathcal{P}_j(\mathbb{F}_p^n) \) for \(0 \leq k \leq p^s - 1 \). Further, for all \(k \geq c \), we see that \(u^2f_j(x)^k = u^2f_j(x)^c f_j(x)^{k-c} \in \mathcal{I} \), which implies that

\[
\mathcal{I} = \langle f_j(x)^a + u \sum_{\ell=0}^{b-1} A_{\ell}(x)f_j(x)^{\ell} + u^2 \sum_{k=0}^{p^s-1} B_k(x)f_j(x)^k, uf_j(x)^b + u^2q(x), u^2f_j(x)^c \rangle.
\]

Next we write \(u^2q(x) = u^2 \sum_{i=0}^{p^s-1} W_i(x)f_j(x)^i \). We further observe that \(\mathcal{I} = \langle f_j(x)^a + u \sum_{\ell=0}^{b-1} A_{\ell}(x)f_j(x)^{\ell} + u^2 \sum_{k=0}^{p^s-1} B_k(x)f_j(x)^k, uf_j(x)^b + u^2 \sum_{i=0}^{p^s-1} W_i(x)f_j(x)^i, u^2f_j(x)^c \rangle \). If \(u \sum_{\ell=0}^{b-1} A_{\ell}(x)f_j(x)^{\ell} \neq 0 \), then there exists a smallest integer \(t_1 \) satisfying \(0 \leq t_1 < b \) and \(A_{t_1}(x) \neq 0 \), and we can write \(u \sum_{\ell=0}^{b-1} A_{\ell}(x)f_j(x)^{\ell} = uf_j(x)^{t_1}D_1(x) \), where \(D_1(x) = \sum_{\ell=t_1}^{b-1} A_{\ell}(x)f_j(x)^{\ell-t_1} \) is a unit in \(\mathcal{K}_j \). Moreover, if \(u^2 \sum_{k=0}^{p^s-1} B_k(x)f_j(x)^k \neq 0 \), then there exists a smallest integer \(t_2 \) satisfying \(0 \leq t_2 < c \) and \(B_{t_2}(x) \neq 0 \), and we can write \(u^2 \sum_{k=0}^{p^s-1} B_k(x)f_j(x)^k =
$u^2 f_j(x)^{t_2} D_2(x)$, where $D_2(x) = \sum_{k=t_2}^{c-1} B_k(x) f_j(x)^{k-t_2}$ is a unit in K_j. Further, if $u^2 \sum_{i=0}^{c-1} W_i(x) f_j(x)^i \neq 0$, then there exists a smallest integer θ satisfying $0 \leq \theta < c$ and $W_\theta(x) \neq 0$, and we can write $u^2 \sum_{i=0}^{c-1} W_i(x) f_j(x)^i = u^2 f_j(x)^\theta V(x)$, where $V(x) = \sum_{i=0}^{c-1} W_i(x) f_j(x)^{i-\theta}$ is a unit in K_j. From this, it follows that

$$I = \langle f_j(x)^a + u f_j(x)^{t_1} D_1(x) + u^2 f_j(x)^{t_2} D_2(x), u f_j(x)^b + u^2 f_j(x)^\theta V(x), u^2 f_j(x)^c \rangle,$$

where $D_1(x)$ is either 0 or a unit in K_j of the form $\sum_{k=t_1}^{b-1} A_k(x) f_j(x)^{k-t_1}$. $D_2(x)$ is either 0 or a unit in K_j of the form $\sum_{k=t_2}^{c-1} B_k(x) f_j(x)^{k-t_2}$ and $V(x)$ is either 0 or a unit in K_j of the form $\sum_{i=0}^{c-1} W_i(x) f_j(x)^{i-\theta}$ with $A_k(x), B_k(x), W_i(x) \in K_j$ for each ℓ, k and i.

In order to determine $\text{ann}(I)$, we first observe that $u f_j(x)^{p^\ell-a+t_1} D_1(x) + u^2 f_j(x)^{p^\ell-a+t_2} D_2(x) \in I$, which implies that $p^\ell - a + t_1 \geq b$ when $D_1(x) \neq 0$. Next we see that $f_j(x)^{p^\ell-b} \{ u f_j(x)^b + u^2 f_j(x)^\theta V(x) \} \in I$, which gives $p^\ell - b + \theta \geq c$ when $V(x) \neq 0$. Moreover, as $u f_j(x)^a + u^2 f_j(x)^{t_1} D_1(x) \in I$ and $f_j(x)^{p^\ell-b} \{ u f_j(x)^b + u^2 f_j(x)^\theta V(x) \} \in I$, we note that $u^2 \{ f_j(x)^{t_1} D_1(x) - f_j(x)^{a-b+\theta} V(x) \} \in I$, which implies that $u^2 \{ f_j(x)^{t_1} D_1(x) - f_j(x)^{a-b+\theta} V(x) \} \in (u^2 f_j(x)^c)$. From this, we obtain $u^2 f_j(x)^{p^\ell-c} \{ f_j(x)^{t_1} D_1(x) - f_j(x)^{a-b+\theta} V(x) \} = 0$.

Further, we see that $u f_j(x)^{p^\ell-a+t_1} D_1(x) + u^2 f_j(x)^{p^\ell-a+t_2} D_2(x) \in I$ can be rewritten as $f_j(x)^{p^\ell-a+t_1-b} D_1(x) \{ u f_j(x)^{b} + u^2 f_j(x)^{p^\ell-b} D_2(x) \} = u^2 f_j(x)^c A(x)$, where $A(x) \in \mathbb{F}_{p^m}[x]/\langle f_j(x) \rangle$. Now consider the ideal

$\mathcal{B}_3 = \langle f_j(x)^{p^\ell-c} - u f_j(x)^{p^\ell-c-b} A(x), u f_j(x)^{p^\ell-b} - u^2 f_j(x)^{p^\ell-a+t_1-b} D_1(x), u^2 f_j(x)^{p^\ell-a} \rangle$. Here we note that $|\mathcal{B}_3| \geq p^{md_j(a+b+c)}$ and $\mathcal{B}_3 \subseteq \text{ann}(I)$. Further, as

$$p^{md_j(3p^\ell-a-b-c)} = |I| = \frac{|K_j|}{|\text{ann}(I)|} \leq \frac{p^{3md_j p^\ell}}{|\mathcal{B}_3|} \leq p^{md_j(3p^\ell-a-b-c)},$$

we get $|\text{ann}(I)| = |\mathcal{B}_3| = p^{md_j(a+b+c)}$ and $\text{ann}(I) = \mathcal{B}_3$.

This completes the proof of the theorem.

In the following corollary, we obtain some isodual α-constacyclic codes of length np^s over \mathcal{R} when the binomial $x^a - \alpha_0$ is irreducible over \mathbb{F}_{p^m}.

Corollary 3.2. Let $n \geq 1$ be an integer and $\alpha_0 \in \mathbb{F}_{p^m} \setminus \{0\}$ be such that the binomial $x^a - \alpha_0$ is irreducible over \mathbb{F}_{p^m}. Let $\alpha = \alpha_0^{p^s} \in \mathbb{F}_{p^m}$. Following the same notations as in Theorem 3.2, we have the following:

(a) There does not exist any isodual α-constacyclic code of Type I over \mathcal{R}.

(b) There exists an isodual α-constacyclic code of Type II over \mathcal{R} if and only if $p = 2$. In fact, when $p = 2$, the code $\langle x^{a_0} - \alpha_0 \rangle^{2^{s-1}} \langle u \rangle$ is the only isodual α-constacyclic code of Type II over \mathcal{R}.

(c) There exists an isodual α-constacyclic code of Type III over \mathcal{R} if and only if $p = 2$. Moreover, when $p = 2$, the codes $\mathcal{C} \subseteq \langle x^{a_0} - \alpha_0 \rangle^{2^{s-1}}, u^2 (x^{10} - \alpha_0^{2^{s-1}}), 2^{s-1} \leq a < 2^s$, are isodual α-constacyclic codes of Type III over \mathcal{R}.

Proof. Let \mathcal{C} be an α-constacyclic code of length np^s over \mathcal{R}. For the code \mathcal{C} to be isodual, we must have $|\mathcal{C}| = |\mathcal{C}^\perp| = |\text{ann}(\mathcal{C})|$.

10
(a) Let C be of Type I, i.e., $C = \langle u^2(x^n - \alpha_0)^c \rangle$ for some integer c satisfying $0 \leq c < p^s$. By Theorem 3.2, we see that $|C| = p^{mn(p^s-c)}$ and $|\text{ann}(C)| = p^{mn(2p^s+c)}$. Now if the code C is isodual, then we must have $|C| = |\text{ann}(C)|$. This implies that $p^s + 2c = 0$, which is a contradiction. Hence there does not exist any isodual α-constacyclic code of Type I over R.

(b) If the code C is of Type II, then $C = \langle u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^t G(x) \rangle$, where $0 \leq c \leq b < p^s$ and $0 \leq t < c$ if $G(x) \neq 0$. By Theorem 3.2 we have $|C| = p^{mn(2p^s-b-c)}$, $|\text{ann}(C)| = (|C| - n)^{(t+1)} = p^{mn(p^s+c)}$. Now if the code C is isodual, then we must have $|C| = |\text{ann}(C)|$, which gives $p = 2$ and $c = 2s - b$. Further, if the code C is R-linearly equivalent to $\text{ann}(C)$, then $\text{Res}_u(\text{ann}(C)) = \langle (x^n - \alpha_0)^{2s} \rangle$, which implies that $c = 0$. This gives $b = 2s - 2s = 2s - 1$.

On the other hand, when $p = 2$, $c = 0$ and $b = 2s - 1$, by Theorem 3.2 again, we see that $C = \text{ann}(C)$ holds, which implies that the codes $C(\subseteq R_n)$ and $C(\subseteq R_n)$ are R-linearly equivalent.

(c) If the code C is of Type III, then $C = \langle (x^n - \alpha_0)^a + u(x^n - \alpha_0)^t D_1(x) + u^2(x^n - \alpha_0)^t D_2(x), u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^t V(x), u^2(x^n - \alpha_0)^c \rangle$, where $0 \leq b \leq a < p^s$, $0 \leq t_1 < b$ if $D_1(x) \neq 0$, $0 \leq t_2 < c$ if $D_2(x) \neq 0$ and $0 \leq \theta < c$ if $V(x) \neq 0$.

Here by Theorem 3.2 we have $|C| = p^{mn(3p^s-a-b-c)}$ and $|\text{ann}(C)| = p^{mn(a+b+c)}$. From this, we see that if the code C is isodual, then we must have $3p^s = 2(a + b + c)$, which implies that $p = 2$.

On the other hand, when $p = 2$, we see, by Theorem 3.2 again, that for $2s - 1 \leq a < 2s$, the code $C = \langle (x^n - \alpha_0)^a + u^2(x^n - \alpha_0)^t D_2(x), u(x^n - \alpha_0)^{2s-m} - u^2(x^n - \alpha_0)^c \rangle$ satisfies $C = \text{ann}(C)$, from which part (c) follows.

In the following theorem, we consider the case $\beta = 0$ and $\gamma \neq 0$, and we determine all non-trivial ideals of the ring K_j, their orthogonal complements and their cardinalities.

Theorem 3.3. Let $\beta = 0$ and γ be a non-zero element of \mathbb{F}_{p^s}. Let I be a non-trivial ideal of the ring K_j with $\text{Res}_u(I) = \langle f_j(x)^a \rangle$, $\text{Tor}_n(I) = \langle f_j(x)^b \rangle$ and $\text{Tor}_2(I) = \langle f_j(x)^c \rangle$ for some integers a, b, c satisfying $0 \leq c \leq b \leq a < p^s$. Suppose that $B_i(x), C_k(x), Q_\ell(x), W_e(x)$ run over $\mathcal{P}_{d_j}(\mathbb{F}_{p^s})$ for each relevant i, k, ℓ and e. Then the following hold.

Type I: When $a = b = p^s$, we have

$$I = \langle a^2 f_j(x)^c \rangle,$$

where $0 \leq c < p^s$. Moreover, we have

$$|I| = p^{md_j(p^s-c)} \quad \text{and} \quad \text{ann}(I) = \langle f_j(x)^{p^s-c}, u \rangle.$$

Type II: When $a = p^s$ and $b < p^s$, we have

$$I = \langle u f_j(x)^b + u^2 f_j(x)^t G(x), u^2 f_j(x)^c \rangle,$$

where $c + b - p^s \leq t < c$ if $G(x) \neq 0$ and $G(x)$ is either 0 or a unit in K_j of the form $\sum_{i=0}^{c-1} B_i(x) f_j(x)^i$. Moreover, we have

$$|I| = p^{md_j(2p^s-b-c)} \quad \text{and} \quad \text{ann}(I) = \langle f_j(x)^{p^s-c} - u f_j(x)^{p^s-c+t-b} G(x), u f_j(x)^{p^s-b}, u^2 \rangle.$$

Type III: When $a < p^s$, we have

$$I = \langle f_j(x)^a + u f_j(x)^t D_1(x) + u^2 f_j(x)^t D_2(x), u f_j(x)^b + u^2 f_j(x)^c \rangle,$$

where $0 \leq c < p^s$ and $G(x) \neq 0$.
where \(a + b - p^s \leq t_1 < b \) if \(D_1(x) \neq 0 \), \(0 \leq t_2 < c \) if \(D_2(x) \neq 0 \), \(b + c - p^s \leq \theta < c \) if \(V(x) \neq 0 \), \(D_1(x) \) is either 0 or a unit in \(K_j \) of the form \(\sum_{k=0}^{c-t_2-1} C_k(x) f_j(x)^k \), \(D_2(x) \) is either 0 or a unit in \(K_j \) of the form \(\sum_{k=0}^{c-\theta-1} W_k(x) f_j(x)^k \). Furthermore, we have \(u^2(h_j(x) + f_j(x)^{p^s-a+t_1-b+\theta} V(x) D_1(x) - f_j(x)^{p^s-a+t_2} D_2(x)) \in \langle u^2 f_j(x)^c \rangle \), i.e., there exists \(B(x) \in F_{p^m}[x]/\langle f_j(x)^p \rangle \) such that \(u^2 (h_j(x) + f_j(x)^{p^s-a+t_1-b+\theta} V(x) D_1(x) - f_j(x)^{p^s-a+t_2} D_2(x)) = u^2 f_j(x)^c B(x) \). Moreover, we have
\[
|\mathcal{I}| = p^{md_1}(3p^s-a-b-c)
\]
and the annihilator of \(\mathcal{I} \) is given by
\[
\text{ann}(\mathcal{I}) = \langle f_j(x)^{p^s-c} - u f_j(x)^{p^s-c+\theta} V(x) + u^2 B(x), u f_j(x)^{p^s-b} - u^2 f_j(x)^{p^s-a+\theta} D_1(x), u^2 f_j(x)^{p^s-a} \rangle.
\]

Proof. Working as in Theorem 3.2 and by applying Lemmas 3.2(c) and 3.3 the desired result follows. □

In the following corollary, we list some isodual \((\alpha + \gamma u^2)\)-constacyclic codes of length \(np^s \) over \(\mathcal{R} \) when \(\beta = 0, \gamma \neq 0 \) and the binomial \(x^n - \alpha_0 \) is irreducible over \(F_{p^m} \).

Corollary 3.3. Let \(n \geq 1 \) be an integer and \(\alpha_0 \in F_{p^m} \setminus \{0\} \) be such that the binomial \(x^n - \alpha_0 \) is irreducible over \(F_{p^m} \). Let \(\alpha = \alpha_0^\gamma \in F_{p^m} \), and let \(\gamma \) be a non-zero element of \(F_{p^m} \). Following the same notations as in Theorem 3.3, we have the following:

(a) There does not exist any isodual \((\alpha + \gamma u^2)\)-constacyclic code of Type I over \(\mathcal{R} \).

(b) There exists an isodual \((\alpha + \gamma u^2)\)-constacyclic code of Type II over \(\mathcal{R} \) if and only if \(p = 2 \). Furthermore, when \(p = 2 \), the code \(\langle u(x^n - \alpha_0)^{2r-1}, u^2 \rangle \) is the only isodual \((\alpha + \gamma u^2)\)-constacyclic code of Type II over \(\mathcal{R} \).

(c) There exists an isodual \((\alpha + \gamma u^2)\)-constacyclic code of Type III over \(\mathcal{R} \) if and only if \(p = 2 \). Furthermore, when \(p = 2 \), the codes \(\mathcal{C} = \langle (x^n - \alpha_0)^a + u(x^n - \alpha_0)^{a-2^{r-1}} \gamma x^{2^{r-1}}, u^2(x^n - \alpha_0)^{2s-1} + u^2 \gamma x^{2^{r-1}}, u^2(x^n - \alpha_0)^{2s-1} \rangle, 2s-1 \leq a < 2^r \), are isodual \((\alpha + \gamma u^2)\)-constacyclic codes of Type III over \(\mathcal{R} \).

Proof. Working in a similar manner as in Corollary 3.2 and by applying Theorem 3.3 the desired result follows. □

4 Hamming distances, RT distances and RT weight distributions

Throughout this section, let \(n \geq 1 \) be an integer and \(\alpha_0 \in F_{p^m} \setminus \{0\} \) be such that the binomial \(x^n - \alpha_0 \) is irreducible over \(F_{p^m} \). Let \(\alpha = \alpha_0^\gamma \) and \(\beta, \gamma \in F_{p^m} \). When \(\beta \neq 0 \), Sharma & Sidana [20] explicitly determined Hamming distances, RT distances and RT weight distributions of all repeated-root \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes over \(\mathcal{R} \). In this section, we shall consider the case \(\beta = 0 \), and we shall determine Hamming distances, RT distances and RT weight distributions of all non-trivial \((\alpha + \gamma u^2)\)-constacyclic codes of length \(np^s \) over \(\mathcal{R} \).

Now let \(\mathcal{C} \) be an \((\alpha + \gamma u^2)\)-constacyclic code of length \(np^s \) over \(\mathcal{R} \). It is easy to see that \(d_H(\mathcal{C}) = d_{RT}(\mathcal{C}) = 0 \) when \(\mathcal{C} = 0 \), while \(d_H(\mathcal{C}) = d_{RT}(\mathcal{C}) = 1 \) when \(\mathcal{C} = \langle 1 \rangle \). In the following theorem, we determine Hamming distances of all non-trivial \((\alpha + \gamma u^2)\)-constacyclic codes of length \(np^s \) over \(\mathcal{R} \).

Theorem 4.1. Let \(\mathcal{C} \) be a non-trivial \((\alpha + \gamma u^2)\)-constacyclic code of length \(np^s \) over \(\mathcal{R} \) with \(\text{Tor}_{\gamma}(\mathcal{C}) = \langle (x^n - \alpha_0)^c \rangle \) for some integer \(c \) satisfying \(0 \leq c < p^s \) (as determined in Theorems 3.2 and 3.3). Then the Hamming distance \(d_H(\mathcal{C}) \) of the code \(\mathcal{C} \) is given by
\[
d_H(\mathcal{C}) = \begin{cases}
1 & \text{if } c = 0; \\
\ell + 2 & \text{if } \ell p^{s-1} + 1 \leq c \leq (\ell + 1) p^{s-1} \text{ with } 0 \leq \ell \leq p - 2; \\
(i + 1) p^k & \text{if } p^{s-k} + (i - 1) p^{s-k-1} + 1 \leq c \leq p^{s-k} + i p^{s-k-1} \text{ with } 1 \leq i \leq p - 1 \text{ and } 1 \leq k \leq s - 1.
\end{cases}
\]
Proof. To prove the result, we assert that

$$d_H(C) = d_H(\text{Torr}_{u^2}(C)).$$

To prove this assertion, we note that \(\langle u^2(x^n - \alpha_0)^c \rangle \subseteq C \), which implies that

$$d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \geq d_H(C).$$

Next we observe that

$$w_H(Q(x)) \geq w_H(uQ(x))$$

for each \(Q(x) \in \mathcal{R}_{\alpha+\gamma u^2} \).

When \(C \) is of Type I, we have \(C = \langle u^2(x^n - \alpha_0)^c \rangle \). Here we have \(d_H(C) = d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \).

When \(C \) is of Type II, we have \(C = \langle u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^4G(x), u^2(x^n - \alpha_0)^c \rangle \), where \(c \leq b < p^s \), \(c + b - p^s \leq t < c \) if \(G(x) \neq 0 \) and \(G(x) \) is either 0 or a unit in \(\mathbb{F}_{p^n}[x]/(f_j(x)^{p^s}) \). Here for each codeword \(Q(x) \in C \setminus \langle u^2(x^n - \alpha_0)^c \rangle \), we see, by (i), that \(w_H(Q(x)) \geq w_H(uQ(x)) \geq d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \). From this, we obtain \(d_H(C) \geq d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \).

When \(C \) is of Type III, we have \(C = \langle (x^n - \alpha_0)^a + u(x^n - \alpha_0)^t D_1(x) + u^2(x^n - \alpha_0)^t D_2(x), u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^6V(x), u^2(x^n - \alpha_0)^c \rangle \), where \(c \leq b < p^s \), \(a + b - p^s \leq t_1 < b \) if \(D_1(x) \neq 0 \), \(0 \leq t_2 < c \) if \(D_2(x) \neq 0 \), \(b + c - p^s \leq \theta < c \) if \(V(x) \neq 0 \) and \(D_1(x), D_2(x), V(x) \) are either 0 or a units in \(\mathbb{F}_{p^n}[x]/(f_j(x)^{p^s}) \). Here for each codeword \(Q(x) \in C \setminus \langle u^2(x^n - \alpha_0)^c \rangle \) and \(Q(x) \in \langle u \rangle \), by (ii), we see that \(w_H(Q(x)) \geq w_H(uQ(x)) \geq d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \). Further, for a codeword \(Q(x) \in C \setminus \langle u \rangle \), by (iii) again, we note that \(w_H(Q(x)) \geq w_H(u^2Q(x)) \geq d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \). This implies that \(d_H(C) \geq d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \).

From this and by (iii), we get \(d_H(C) = d_H(\langle u^2(x^n - \alpha_0)^c \rangle) \). Further, we observe that \(d_H(\langle u^2(x^n - \alpha_0)^c \rangle) = d_H(\text{Torr}_{u^2}(C)) \), from which the assertion (ii) follows. Now by applying Theorem 2.1 we get the desired result.

In the following theorem, we determine RT distances of all non-trivial \((\alpha+\gamma u^2) \)-constacyclic codes of length \(np^s \) over \(\mathcal{R} \).

Theorem 4.2. Let \(C \) be a non-trivial \((\alpha+\gamma u^2) \)-constacyclic code of length \(np^s \) over \(\mathcal{R} \) with \(\text{Torr}_{u^2}(C) = \langle (x^n - \alpha_0)^c \rangle \) for some integer \(c \) satisfying \(0 \leq c < p^s \) (as determined in Theorems 2.2 and 2.3). Then the RT distance \(d_{RT}(C) \) of the code \(C \) is given by

$$d_{RT}(C) = nc + 1.$$

Proof. To prove the result, we first observe that

$$w_{RT}(Q(x)) \geq w_{RT}(uQ(x))$$

for each \(Q(x) \in \mathcal{R}_{\alpha+\gamma u^2} \).

(i) When \(C \) is of Type I, we have \(C = \langle u^2(x^n - \alpha_0)^c \rangle \). Here we note that \(C = \langle u^2(x^n - \alpha_0)^c \rangle = \{ u^2(x^n - \alpha_0)^c f(x) \mid f(x) \in \mathbb{F}_{p^n}[x] \} \). Now for each non-zero \(Q(x) \in C \), by (7), we see that \(w_{RT}(Q(x)) \geq w_{RT}(u^2(x^n - \alpha_0)^c) = nc + 1 \), which implies that \(d_{RT}(C) \geq nc + 1 \). Since \(u^2(x^n - \alpha_0)^c \in C \), we obtain \(d_{RT}(C) = nc + 1 \).

(ii) When \(C \) is of Type II, we have \(C = \langle u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^4G(x), u^2(x^n - \alpha_0)^c \rangle \), where \(c \leq b < p^s \), \(c + b - p^s \leq t < c \) if \(G(x) \neq 0 \) and \(G(x) \) is either 0 or a unit in \(\mathbb{F}_{p^n}[x]/(f_j(x)^{p^s}) \). Here by (7), we note that \(w_{RT}(Q(x)) \geq w_{RT}(uQ(x)) \) for each \(Q(x) \in C \setminus \langle u \rangle \), which implies that \(w_{RT}(Q(x)) \geq d_{RT}(u^2(x^n - \alpha_0)^c) \) for each \(Q(x) \in C \setminus \langle u^2 \rangle \). From this, we get \(d_{RT}(C) \geq d_{RT}(u^2(x^n - \alpha_0)^c) \). Since \(u^2(x^n - \alpha_0)^c \subseteq C \), we have \(d_{RT}(u^2(x^n - \alpha_0)^c) \geq d_{RT}(C) \). This implies that \(d_{RT}(C) = d_{RT}(u^2(x^n - \alpha_0)^c) \). From this and by case (i), we get \(d_{RT}(C) = nc + 1 \).

(iii) When \(C \) is of Type III, we have \(C = \langle (x^n - \alpha_0)^a + u(x^n - \alpha_0)^t D_1(x) + u^2(x^n - \alpha_0)^t D_2(x), u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^6V(x), u^2(x^n - \alpha_0)^c \rangle \), where \(c \leq b \leq a < p^s \), \(a + b - p^s \leq t_1 < b \) if \(D_1(x) \neq 0 \), \(0 \leq t_2 < c \) if \(D_2(x) \neq 0 \), \(b + c - p^s \leq \theta < c \) if \(V(x) \neq 0 \) and \(D_1(x), D_2(x), V(x) \) are either 0 or a units in \(\mathbb{F}_{p^n}[x]/(f_j(x)^{p^s}) \). For each \(Q(x) \in C \setminus \langle u \rangle \), by (7), we see that \(w_{RT}(Q(x)) \geq w_{RT}(u^2Q(x)) \). From this, we get
$w_{RT}(Q(x)) \geq d_{RT}(u^2(x^n - \alpha_0)^c)$ for each $Q(x) \in \mathcal{C} \setminus \langle u \rangle$. Further, for a codeword $Q(x) \in \mathcal{C} \setminus \langle u^2(x^n - \alpha_0)^c \rangle$ with $Q(x) \notin \langle u \rangle$, by (17) again, we see that $w_{RT}(Q(x)) \geq w_{RT}(uQ(x)) \geq d_{RT}(u^2(x^n - \alpha_0)^c)$. This implies that $d_{RT}(\mathcal{C}) \geq d_{RT}(u^2(x^n - \alpha_0)^c)$. On the other hand, as $\langle u^2(x^n - \alpha_0)^c \rangle \subseteq \mathcal{C}$, we have $d_{RT}(u^2(x^n - \alpha_0)^c) \geq d_{RT}(\mathcal{C})$, which implies that $d_{RT}(\mathcal{C}) = d_{RT}(u^2(x^n - \alpha_0)^c)$. From this and by case (i), we get $d_{RT}(\mathcal{C}) = nc + 1$.

This completes the proof of the theorem. □

In the following theorem, we determine RT weight distributions of all $(\alpha + \gamma u^2)$-constacyclic codes of length np^s over \mathcal{R}.

Theorem 4.3. Let \mathcal{C} be an $(\alpha + \gamma u^2)$-constacyclic code of length np^s over \mathcal{R} with Res$_u(\mathcal{C}) = \langle (x^n - \alpha_0)^a \rangle$, Tor$_u(\mathcal{C}) = \langle (x^n - \alpha_0)^b \rangle$ and Tor$_a(\mathcal{C}) = \langle (x^n - \alpha_0)^c \rangle$ for some integers a, b, c satisfying $0 \leq c \leq b \leq a \leq p^s$ (as determined in Theorems 3.2 and 3.3). For $0 \leq \rho \leq np^s$, let A_ρ denote the number of codewords in \mathcal{C} having the RT weight as ρ.

(a) If $\mathcal{C} = \langle \emptyset \rangle$, then we have $A_0 = 1$ and $A_\rho = 0$ for $1 \leq \rho \leq np^s$.

(b) If $\mathcal{C} = \langle 1 \rangle$, then we have $A_0 = 1$ and $A_\rho = (p^{\rho m} - 1)p^{\rho n(n-1)}$ for $1 \leq \rho \leq np^s$.

(c) If $\mathcal{C} = \langle u^2(x^n - \alpha_0)^c \rangle$ is of Type I, then we have

$$A_\rho = \begin{cases} 1 & \text{if } \rho = 0; \\ 0 & \text{if } 1 \leq \rho \leq nc; \\ (p^m - 1)p^{\rho(n-nc-1)} & \text{if } nc + 1 \leq \rho \leq np^s. \end{cases}$$

(d) If $\mathcal{C} = \langle u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^c \rangle$ is of Type II, then we have

$$A_\rho = \begin{cases} 1 & \text{if } \rho = 0; \\ 0 & \text{if } 1 \leq \rho \leq nc; \\ (p^m - 1)p^{\rho(n-nc-1)} & \text{if } nc + 1 \leq \rho \leq nb; \\ (p^{2m} - 1)p^{\rho(2n-nb-nc-2)} & \text{if } nb + 1 \leq \rho \leq np^s. \end{cases}$$

(e) If $\mathcal{C} = \langle (x^n - \alpha_0)^a + u(x^n - \alpha_0)^b D_1(x) + u^2(x^n - \alpha_0)^c D_2(x), u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^b V(x), u^2(x^n - \alpha_0)^c \rangle$ is of Type III, then we have

$$A_\rho = \begin{cases} 1 & \text{if } \rho = 0; \\ 0 & \text{if } 1 \leq \rho \leq nc; \\ (p^m - 1)p^{\rho(n-nc-1)} & \text{if } nc + 1 \leq \rho \leq nb; \\ (p^{2m} - 1)p^{\rho(2n-nb-nc-2)} & \text{if } nb + 1 \leq \rho \leq na; \\ (p^{3m} - 1)p^{\rho(3n-na-nb-nc-3)} & \text{if } na + 1 \leq \rho \leq np^s. \end{cases}$$

Proof. Proofs of parts (a) and (b) are trivial. To prove parts (c)-(e), by Theorem 4.2(c), we see that $d_{RT}(\mathcal{C}) = nc + 1$, which implies that $A_\rho = 0$ for $1 \leq \rho \leq nc$. So from now on, we assume that $nc + 1 \leq \rho \leq np^s$.

To prove (c), let $\mathcal{C} = \langle u^2(x^n - \alpha_0)^c \rangle$. Here we see that $\mathcal{C} = \langle u^2(x^n - \alpha_0)^c \rangle = \{u^2(x^n - \alpha_0)^c F(x) \mid F(x) \in F_{p^m}[x]\}$. This implies that the codeword $u^2(x^n - \alpha_0)^c F(x) \in \mathcal{C}$ has RT weight ρ if and only if $\deg F(x) = \rho - nc - 1$. From this, we obtain $A_\rho = (p^m - 1)p^{\rho(n-nc-1)}$.

To prove (d), let $\mathcal{C} = \langle u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^b G(x), u^2(x^n - \alpha_0)^c \rangle$. Here we observe that each codeword $Q(x) \in \mathcal{C}$ can be uniquely expressed as $Q(x) = (u(x^n - \alpha_0)^b + u^2(x^n - \alpha_0)^b G(x)) A_Q(x) + u^2(x^n - \alpha_0)^b B_Q(x)$, where $A_Q(x), B_Q(x) \in F_{p^m}[x]$ satisfy $\deg A_Q(x) \leq n(p^s - b) - 1$ if $A_Q(x) \neq 0$ and $\deg B_Q(x) \leq n(p^s - c) - 1$ if $B_Q(x) \neq 0$. From this, we see that if $nc + 1 \leq \rho \leq nb$, then the RT weight of the codeword $Q(x) \in \mathcal{C}$ is ρ if and only if $A_Q(x) = 0$ and $\deg B_Q(x) = \rho - nc - 1$. This implies that $A_\rho = (p^m - 1)p^{\rho(n-nc-1)}$ for $nc + 1 \leq \rho \leq nb$. Further, if $nb + 1 \leq \rho \leq np^s$, then the RT weight of the codeword $Q(x) \in \mathcal{C}$ is ρ if and only if one of the following two conditions are satisfied: (i) $\deg A_Q(x) = \rho - nb - 1$ and $B_Q(x)$ is either 0 or $\deg B_Q(x) \leq \rho - nc - 1$ and (ii) $A_Q(x)$
is either 0 or \(\deg A_\theta(x) \leq p - nb - 2\) and \(\deg B_\theta(x) = p - nc - 1\). From this, we get \(A_\rho = (p^{2m} - 1)p^{m(2p - nb - nc - 2)}\) for \(nb + 1 \leq \rho \leq np^s\).

To prove (e), let \(C = \langle (x^n - \alpha^n)^a + u(x^n - \alpha^n)^{ib}D_1(x) + u^2(x^n - \alpha^n)^{ib}D_2(x), u(x^n - \alpha^n)^b + u^2(x^n - \alpha^n)^9V(x), u^2(x^n - \alpha^n)^c \rangle\). Here, we see that each codeword \(Q(x) \in C\) can be uniquely expressed as \(Q(x) = ((x^n - \alpha^n)^a + u(x^n - \alpha^n)^{ib}D_1(x) + u^2(x^n - \alpha^n)^{ib}D_2(x))M_Q(x) + (u(x^n - \alpha^n)^b + u^2(x^n - \alpha^n)^9V(x))N_Q(x) + u^2(x^n - \alpha^n)^cW_Q(x)\), where \(M_Q(x), N_Q(x), W_Q(x) \in \mathbb{F}^{pm}\) satisfy \(\deg M_Q(x) \leq n(p^s - a) - 1\) if \(M_Q(x) \neq 0\), \(\deg N_Q(x) \leq n(p^s - b) - 1\) if \(N_Q(x) \neq 0\), and \(\deg W_Q(x) \leq n(p^s - c) - 1\) if \(W_Q(x) \neq 0\). From this, we see that if \(nc + 1 \leq \rho \leq na\), then the codeword \(Q(x) \in C\) has RT weight \(\rho\) if and only if \(M_Q(x) = N_Q(x) = 0\) and \(\deg W_Q(x) = p - nc - 1\). This implies that \(A_\rho = (p^{2m} - 1)p^{m(p - nc - 1)}\) for \(nc + 1 \leq \rho \leq na\). Further, if \(nb + 1 \leq \rho \leq na\), then the RT weight of the codeword \(Q(x) \in C\) is \(\rho\) if and only if \(M_Q(x) = 0\) and one of the following two conditions are satisfied: (i) \(\deg N_Q(x) = p - nb - 1\) and \(\deg W_Q(x) = p - 1 - nc\); and (ii) \(N_Q(x) = 0\) or \(\deg N_Q(x) \leq p - nb - 2\) and \(\deg W_Q(x) = p - nc - 1\). This implies that \(A_\rho = (p^{2m} - 1)p^{m(2p - na - nb - 2)}\) for \(nb + 1 \leq \rho \leq np^s\). Here the RT weight of the codeword \(Q(x) \in C\) is \(\rho\) if and only if one of the following three conditions are satisfied: (i) \(\deg M_Q(x) = p - na - 1\), \(N_Q(x) = 0\), and \(\deg W_Q(x) = p - nb - 1\); and \(\deg M_Q(x) = 0\) or \(\deg M_Q(x) \leq p - na - 2\), \(\deg N_Q(x) = p - nb - 1\), and \(\deg W_Q(x) = p - nc - 1\); and (iii) \(M_Q(x) = 0\), \(\deg M_Q(x) \leq p - na - 2\), \(\deg N_Q(x) = 0\), and \(\deg W_Q(x) = p - nb - 2\). This implies that \(A_\rho = (p^{3m} - 1)p^{m(3p - na - nb - nc - 3)}\) for \(na + 1 \leq \rho \leq np^s\).

This completes the proof of the theorem. \(\square\)

5 Conclusion and Future work

Let \(p\) be a prime, \(n, s, m\) be positive integers with \(\gcd(n, p) = 1\), \(\mathbb{F}_{pm}\) be the finite field of order \(p^m\), and let \(R = \mathbb{F}_{pm}[u]/(u^3)\) be the finite commutative ring chain ring with unity. Let \(\alpha, \beta, \gamma \in \mathbb{F}_{pm}\) and \(\alpha \neq 0\). When \(\alpha\) is an \(n\)th power of an element in \(\mathbb{F}_{pm}\) and \(\beta \neq 0\), one can determine all \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) by applying the results derived in Cao [7] and by establishing a ring isomorphism from \(R[x]/(x^{np^s} - 1 - \alpha^{-1}\beta u - \alpha^{-1}\gamma u^2)\) onto \(R[x]/(x^{np^s} - \alpha - \beta u - \gamma u^2)\). However, when \(\alpha\) is not an \(n\)th power of an element in \(\mathbb{F}_{pm}\) and \(\beta \neq 0\), algebraic structures of all \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) and their dual codes were not established. In this paper, we determined all \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) and their dual codes when \(\beta \neq 0\). We also considered the case \(\beta = 0\) in this paper, and we determined all \((\alpha + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) and their dual codes. We also listed some isodual \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) when the binomial \(x^n - \alpha_0\) is irreducible over \(\mathbb{F}_{pm}\).

In another work [20], we obtained Hamming distances, RT distances and RT weight distributions of \((\alpha + \beta u + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\) when the binomial \(x^n - \alpha_0\) is irreducible over \(\mathbb{F}_{pm}\) and \(\beta\) is non-zero. In this case, we considered the case \(\beta = 0\) and we explicitly determined these parameters for all \((\alpha + \gamma u^2)\)-constacyclic codes of length \(np^s\) over \(R\), provided the binomial \(x^n - \alpha_0\) is irreducible over \(\mathbb{F}_{pm}\). Another interesting problem would be to study their duality properties and to determine their homogeneous distances.

References
[1] M. M. Al-Ashker, Simplex codes over the ring \(\mathbb{F}_2 + u\mathbb{F}_2\), Arab. J. Sci. Eng. Sect. A Sci. 30(2), pp. 277-285 (2005).
[2] E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa and M. Oura, Type II codes over \(\mathbb{F}_2 + u\mathbb{F}_2\) and applications to Hermitian modular forms, Abh. Math. Semin. Univ. Hambg. 73(1), pp. 13-42 (2003).
[3] A. Batoul, K. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, arXiv:1212.3704v1 [cs.IT].

[4] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York (1968).

[5] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory 45(4), pp. 1250-1255 (1999).

[6] A. R. Calderbank, A. R. Hammons Jr., P. V. Kumar, N. J. A. Sloane and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. 29, pp. 218-222 (1993).

[7] Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl. 24, pp. 124-135 (2013).

[8] Y. Cao, Y. Cao, J. Gao and F. Fu, Constacyclic codes of length p^n over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, arXiv:1512.0140v1 [cs.IT] (2015).

[9] B. Chen, H. Q. Dinh, H. Liu and L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields Appl. 37, pp. 108-130 (2016).

[10] H. Q. Dinh, Constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, J. Algebra 324(5), pp. 940-950 (2010).

[11] H. Q. Dinh, L. Wang and S. Zhu, Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields Appl. 31, pp. 178-201 (2015).

[12] H. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50(8), pp. 1728-1744 (2004).

[13] H. Q. Dinh, H. D. T. Nguyen, S. Sribounchitta and T. M. Vo, Repeated-root constacyclic codes of prime power lengths over finite chain rings, Finite Fields Appl. 43, pp. 22-41 (2017).

[14] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The \mathbb{Z}_4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40(2), pp. 301-319 (1994).

[15] W. C. Huffman, On the decomposition of self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$ with an automorphism of odd prime order, Finite Fields Appl. 13(3), pp. 681-712 (2007).

[16] X. Liu and X. Xu, Cyclic and negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Acta Math. Sci. 34B(3), pp. 829-839 (2014).

[17] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press (2000).

[18] A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1, pp. 365-384 (1991).

[19] A. Sharma and S. Rani, Constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, arXiv:1707.06133 [cs.IT].

[20] A. Sharma and T. Sidana, Repeated-root constacyclic codes over finite commutative chain rings and their distances, submitted.

[21] R. Sobhani, Complete classification of $(\delta + au^2)$-constacyclic codes of length p^k over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$, Finite Fields Appl. 34, pp. 123-138 (2015).

[22] P. Udaya and A. Bonnecaze, Decoding of cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory 45(6), pp. 2148-2157 (1999).

[23] W. Zhao, X. Tang and Z. Gu, All $(\alpha + \beta u)$-constacyclic codes of length np^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, arXiv:1606.06428v1 [cs.IT].