Multi-Modal Route Planning in Road and Transit Networks

Daniel Tischner

Master's thesis
SS 18
Contents

- What's it about?
- Models
- Routing
- Experiments
- Conclusion
 - Demo
What's it about?

- Finding *optimal* route from A to B

- Road networks
 - Well understood, many algorithms
 - Dijkstra, A*, ALT, Arc-Flags, CH, SHARC, CHASE, HLC, TNR

- Public Transit networks (train, bus, tram, ...)
 - Differ a lot from road networks
 - Transfer Patterns, RAPTOR, CSA
What's it about?

- Multi-modal routing
 - Combining road and transit networks

- Hard to combine
 - Algorithms exploit network properties
 - Network structure is very different

- Access Node Routing
 - Compute route piecewise in isolated networks
Models

- Road graph
 - Nodes: Road junctions
 - Edges: Roads connecting the junctions
Models

- Transit graph (realistic time expanded)
 - One node per event
 - arrival
 - departure
 - transfer
 - Edges indicating
 - traveling
 - transfer
Models
Models

- Link graph
 - Find road node for every transit stop
 - For example: nearest
 - Link edges
 - From road node to all arrival nodes of transit stop

- Graph based combined network
Models

- Timetable
 - non-graph based transit network
 - tuple \((S, T, C, F) \)

- Stops \(S = \{ f, o, k \} \)

- Trips \(T = \{ t_{104}, t_{17024}, t_{17322}, t_{79} \} \)
Models

- **Connections C**
 - (f, o, 3:56 pm, 4:28 pm, t104)
 - (o, k, 4:29 pm, 4:58 pm, t104)
 - (f, o, 4:03 pm, 4:50 pm, t17024)
 - (o, k, 4:35 pm, 5:19 pm, t17322)
 - (k, f, 7:10 pm, 8:10 pm, t79)

- **Footpaths F**
 - (f, 300, f)
 - (o, 300, o)
 - (k, 300, k)
Routing

- Multi-modal route planning
 - Combining road and transit networks
 - Queries have transportation mode restrictions

- Modified Dijkstra
 - Simple baseline
 - Runs on Link graph
 - Combinable with optimizations (A*, ALT, ...)

Routing

- Access Node Routing
 - Generic approach
 - Piecewise computation on isolated networks
 - Any road algorithm for road network (ALT)
 - Any transit algorithm for transit network (CSA)

- Access nodes for A and B
 - A and B in road network
 - Access nodes in transit network
Routing

- *Good* access nodes
 - Difficult to find, focus of research
 - Simple solution: k-nearest nodes ($k = 3$)

- Route consists of
 - A to access nodes (road network)
 - Access nodes of A to access nodes of B (transit network)
 - Access nodes to B (road network)
Routing
Experiments

- Generic route planning framework Cobweb
 - Data formatted as OSM or GTFS
 - Database for metadata
 - Represented in models (with serialization)
 - Extensive configuration and documentation

- Several algorithms
 - Dijkstra, A*, ALT,
 - CSA,
 - Modified Dijkstra, ANR,
 - Cover Trees,
 - Fuzzy prefix search
Experiments

- Model sizes

	data (MB)	Road graph		
	raw	filtered	nodes	edges
Freiburg	2260	86	743003	1494883
Stuttgart	2420	118	973142	1950978
Switzerland	5530	279	2627645	5226060

	data (KB)	Transit graph		
	raw	nodes	edges	
Freiburg	1713	613329	1006862	
Stuttgart	32213	4517511	7415894	
Switzerland	75477	32688498	53370236	

	Transit timetable			
	stops	trips	connections	footpaths
Freiburg	713	13249	191194	255495
Stuttgart	7877	90475	1415362	1926611
Switzerland	30227	1014699	9881467	3793581
Experiments

- Dijkstra rank
 - Measure for distance
 - The higher the rank, the greater the distance

- Experiments
 - Time independent (Dijkstra, A*, ALT)
 - Time dependent (Dijkstra, CSA)
 - Multi-modal (Modified Dijkstra, ANR)
Experiments

- Bad scaling for increasing range
- \(A^* \) is bad, ALT can perform better
Experiments

- CSA is way faster than Dijkstra
- CSA is viable
Experiments

- CSA is subject to traffic congestion
Experiments

- ANR has much overhead
- If used with good algorithms, faster and feasible
Conclusion

- Multi-modal routing
 - Difficult, networks are very different

- Instead, hybrid approach
 - Isolate networks
 - Specialized algorithms for individual networks

- ANR is a promising technique
Conclusion

- However, still a lot to do
 - Turn penalties
 - Multi-criteria routing
 - Complex transportation mode restriction models
 - Integrating real-time data

- Many subproblems
 - Leading to many specialized techniques
 - So far, no viable approach that addresses all problems
Related links

- Cobweb, a multi-modal journey planner
 - Daniel Tischner. Cobweb. https://github.com/ZabuzaW/Cobweb, 2018.
 - https://github.com/ZabuzaW/Cobweb

- Route Planning in Transportation Networks
 - Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Transportation Networks, pages 19-80. Springer International Publishing, Cham, 2016.
 - https://arxiv.org/abs/1504.05140
Related links

- Connection Scan Algorithm
 - Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. *Connection scan algorithm*. CoRR, abs/1703.05997, 2017.
 - https://arxiv.org/abs/1703.05997

- Accelerating Multi-modal Route Planning by Access-Nodes
 - Daniel Delling, Thomas Pajor, and Dorothea Wagner. *Accelerating multi-modal route planning by access-nodes*. In Amos Fiat and Peter Sanders, editors, *Algorithms - ESA 2009*, pages 587-598, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
 - https://link.springer.com/chapter/10.1007/978-3-642-04128-0_53
Contents

- What's it about?
- Models
- Routing
- Experiments
- Conclusion
 - Demo