Mobile Health Technology for Hypertension Management: A Systematic Review

Sohrab Almasi1, Azamossadat Hosseini2, Hassan Emami1, Azam Sabahi1,2

1 Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Ferdows Chamran Hospital, Birjand University of Medical Sciences, South Khorasan, Iran

Received: 14 Jan. 2020; Accepted: 04 Jun. 2020

Abstract- Hypertension is a chronic condition, and a major risk factor for other chronic conditions requires management. Considering the growth and extensive use of mobile health (mHealth) technologies and their capabilities, it is essential to examine the effects of these technologies on hypertension control and self-management. The present systematic review examined the effect of using mHealth technologies in controlling blood pressure and investigated the functionalities of mHealth technology on self-management aspects of patients with hypertension. A systematic search was conducted on PubMed, Web of Science, Embase, and Scopus databases. Clinical trials in English investigating the use of mHealth technologies for blood pressure control published from 2005 to 2018 were included in this study. The functionalities of these technologies were also investigated. These functionalities were divided into five categories of monitoring, alarms, feedbacks, education, and communication. The most frequently used technology for hypertension control was smartphones in the 15 articles examined. Moreover, the most frequent functionalities used for self-management of hypertension were communications and reminders, education, monitoring, and feedback, respectively. In the majority of the studies, these functionalities were employed in combination with mHealth technologies, a feature that affects hypertension control and self-management. The use of mHealth technologies, such as smartphones, positively affects hypertension self-management and reduces blood pressure. Functionalities such as communication and reminders, education, monitoring, and feedback are effective in hypertension self-management programs. The simultaneous use of these functionalities combined will be more effective in hypertension self-management programs.

Keywords: Hypertension; Self-management; Mobile health; Mobile technology

Introduction

Hypertension is a chronic disease and a major risk factor for chronic conditions such as kidney failure, cardiovascular diseases, and myocardial infarction. Based on the guidelines available for hypertension management, systolic and diastolic blood pressure equal to or above 140.90 is regarded as hypertension (1,2). Based on a report by the World Health Organization (WHO), 1.13 billion people suffer from hypertension, the majority of whom live in moderate- and low-income countries (3). Thus, preventive care and daily management are vital for controlling hypertension (4). Hypertension management can prevent and control the cardiovascular disease before the emergence of consequences and mortality (5). Although there are various methods for hypertension control, those with hypertension still have little control over this disease and its management (6,7).

Self-management refers to measures taken by a person to control and manage his/her disease and also include the support received from healthcare providers and the healthcare systems (8,9). Based on the definition of the US Institute of Medicine, self-management is regular support for patients by healthcare providers through education and support interventions to enhance their skills and self-confidence, determine the objectives, and support problem-solving for the management of health-related problems (10).

Self-management demonstrates one’s capability for managing his/her signs and symptoms, adherence to treatment, behavioral, psychological, and physiological outcomes, lifestyle changes, and establishment of
effective communication with healthcare providers and their families and friends in chronic conditions (9,11). It is one of the six essential elements in the care model for chronic conditions (12) and can affect various outcomes, including clinical outcomes, quality of life, and healthcare costs (13). Self-management requires active participation on the part of the patients in managing their signs and symptoms and changing their behaviors and lifestyle (11,14,15). Results of a systematic review performed on the effects of self-management on hypertension control showed that self-management improves hypertension control (16).

Mobile technologies are important tools for facilitating and promoting self-management in patients (17-19). Mobile health (mHealth) is defined as the use of mobile technology (telephones, personal digital assistants, smartphones, and sensors) for supporting and providing healthcare (20,21). Mobile technologies are employed for measurement, diagnosis, prevention, monitoring, and treatment at the personal and community level. They are also employed as a method for collecting environmental, behavioral, and biological data (22,23). These technologies include cell phones, personal digital assistants (PDAs), assistant-like cell phones (e.g., Blackberry, Palm Pilot), smartphones (e.g., iPhone), enterprise digital assistants (EDAs), portable media players (e.g., Mp3 players, iPod, mp4 players), game consoles and handheld and ultra-portable computers (e.g., PlayStation Portable, Nintendo), and portable computers (e.g., Tablets and smart-books). These technologies have a wide spectrum of functionalities, including communications, text messaging, as well as pictures, videos, Internet access, multimedia playing, and application (app) support (24).

Various studies have been conducted on the effect of using mobile technologies on the self-management activities of patients with hypertension, including monitoring activities, sending alarms and feedback, and patient education (25,26). Considering the ever-increasing expansion of mobile technologies and their positive effect on self-management in chronic diseases (27,28), the present study aimed to examine the effects of mobile technologies on reducing blood pressure and investigate the functionalities of mobile technologies on self-management aspects of patients with hypertension.

Materials and Methods

This systematic review was designed based on the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).

Data sources and search strategy

Four scientific databases (PubMed, Web of Science, Embase, and Scopus) were searched to find research articles in English published from 2005 to 2019. The search was focused on English articles in journals and conferences. The search strategy consisted of a combination of MeSH terms, Entree, and keywords related to hypertension and mobile technology. These keywords were combined using Boolean AND/OR operators to retrieve articles from the mentioned databases. Published articles were identified and retrieved using the search strategy developed by the authors (Table 1).

No.	Concept	Search strategy
1	Mobile health technology	Telephone OR Computers, Handheld OR Mobile Applications OR mobile health OR mobile applications OR mobile phone OR telephone OR mobile OR personal digital assistant* OR smartphone OR smartphone OR m-health OR mhealth OR m health OR iPad OR iPod OR tablet OR portable media players OR *phone OR "Cell Phone" OR mobile technology* OR tablet* OR apps OR Smart-books OR app OR PDA OR enterprise digital assistants OR tablet computer
2	Hypertension	Hypertension OR Hypertension OR hypertensive OR hypertension* OR escalated blood pressure OR elevated blood pressure OR Blood Pressure OR blood pressure OR high blood pressure OR abnormal blood pressure
3	1 and 2	--

Inclusion criteria

The inclusion criteria were based on PICOS (29).

Population

The target population in the examined articles comprised all patients with hypertension belonging to all age groups (children and adults), without any restriction as to age, sex, and demographic information.

Intervention

Studies included mobile technologies as an intervention tool for hypertension self-management; intervention tools included all mobile-based technologies such as cell phones, personal digital assistants (PDAs),...
assistant-like cell phones (e.g., Blackberry, Palm Pilot), smartphones (e.g., iPhone), enterprise digital assistants (EDAs), portable media players (e.g., Mp3 players, iPod, mp4 players), game consoles and handheld and ultra-portable computers (e.g., PlayStation Portable, Nintendo), and portable computers (e.g., Tablets and smart-books).

Comparator
In clinical trials, no intervention was offered to the control group via mobile technologies.

Outcomes
The primary outcomes of the intervention included reduced blood pressure (systolic and diastolic) and the effects of the intervention on self-management of patients with hypertension (symptom management, adherence to treatment, lifestyle changes, physical and physiological changes, and communication), and patients’ satisfaction with the type of intervention.

Study designs
All clinical trials were conducted with a control and an intervention group using mobile technologies for self-management of patients with hypertension.

Exclusion criteria
Articles in languages other than English, protocol studies, pre-post studies, systematic reviews, and studies whose full text was not available.

Studies in which the intervention included Windows- or Web-based apps, Websites, and email.

Studies whose main objective was not blood pressure control and blood pressure control were examined in addition to other chronic diseases such as cardiovascular disease and diabetes.

Study selection
All studies examining the status of hypertension and investigated the effects of using mobile technologies on blood pressure (systolic and diastolic) were included in this study. First, the title and abstract of the articles were examined by two authors. After eliminating irrelevant articles, the full text of the articles was examined. Cases of disagreement were resolved upon discussion.

Data extraction
For each article included in this study, the name of the first author, year of publication, location, number of participants, type of technology, duration of intervention, type of intervention, and intervention outcome and effect were extracted (Table 2). The functionalities used in mobile technologies for self-management of patients with hypertension were also extracted (Table 3).

Author and Year	Study Location	Age Group and Sample Size	Technology Used	Duration of Intervention	Intervention	Results
Meurer et al (2019)(30).	USA	IG: (mean=49 years) n=28; CG: (mean=50 years) n=27	Smartphone	4 months	The text message was used once a week for the experimental group. The text message included guidance on lifestyle, physical activities, nutrition, and the type of medication to be taken.	IG; a mean drop of 9.1 mmHg (95% CI 1.1 to 17.6) vs. 6.6 mm Hg (95% CI -2.4 to 15.6) Effect: positive
Márquez Contreras et al (2019)(31).	Spain	IG: (mean=57,7 years) n=77; CG: (mean=57,08 years) n=77	Smartphone	12 months	The intervention included installing the app on patients’ mobile phones and having the doctors teach them how to use it. This application included modules for recording personal information, recording doctor’s notes on medications, setting alarms, setting appointments, recording the results of blood pressure measurement, sending alarms to patients in case of high blood pressure, and education.	The mean BP at the beginning (134.4±14 mmHg in IG vs. 134.4±18 mmHg in CG) and the final (BP: 132.2±12, p<0.05 in IG v.s. 134.4±11 mmHg in CG) Effect: positive
Chandler et al., (2019)(32).	USA	IG: (mean= 44.4 years) n=26; CG: (mean= 46.8 years) n=28	Smartphone	9 months	The intervention included sending a text message to patients once every three days for measurement of blood pressure in the morning and evening. Then, the data were sent to healthcare providers.	SBP averages were significantly lower in IG versus CG groups (month 1: 125.3 vs. 140.6; month 3: 120.4 vs. 137.5; month 6: 121.2 vs. 145.7 mmHg; month 9: 121.8 vs. 145.7, respectively; all p-values <0.01) Effect: positive
Table 2

Study	Country	Intervention Details	Method of Communication	Duration	Outcomes
Scala et al.	Italy	The intervention included counseling/educational sessions depending on patients’ needs, about once every two months by pharmacists.	Telephone	12 months	Significant reduction in BP values in IG (p = 0.001)
	(2018)(33)	The app used in this study allowed manually entering the names of all medications, setting a reminder for taking them, tracking the measured blood pressure and other biometrics, alarms when taking a wrong dose, access to the history of taking drugs, and communication with other patients.			Effect: positive
Petrella et al.	Italy	The app allowed for entering demographic information first, followed by entering the blood pressure every week and sending alarms to patients if they failed to do so, online communicating with healthcare providers for counseling, history of medications, and displaying blood pressures in the form of charts and graphic tables.			The mean systolic blood pressure at the beginning 151.4 (9.0) mm Hg in IG v.s 151.3 (9.4) mm Hg in control participants and the final (SD) systolic blood pressure decreased by 10.6 (16.0) mm Hg among intervention participants and 10.1 (15.4) mm Hg among controls (between-group difference: -0.5, 95% CI, -3.7 to 2.7; P = .78). Effect: not different
	(2017)(37)				Mean BP control rates improved for patients who received HBPM from 42% to 67% compared with matched control patients who improved from 59% to 67% (p < 0.01) Effect: positive
Varleta et al.	USA	The intervention included sending a text message once every 12-14 days. The content of the text messages included educational information on healthy diets, salt consumption, scheduling the consumption of hypertension medication, the importance of consumption of medication, and adherence to treatment.			Baseline mean BP was 142.7/81.1 mm Hg and 140/7.84 mm Hg in the intervention group and 136.7/77.5 mm Hg in the non-SMS group. Effect: positive
	(2016)(38)				The intervention did not affect change in systolic blood pressure (mean net change -0.37 mm Hg [95% CI -2.15 to -1.40]; p=0.43) or diastolic blood pressure (0.01 mm Hg [1.29 to 1.32]; p=0.99) compared to usual care Effect: not different
Varleta et al.	USA				Intervention subjects achieved a greater decrease in systolic BP at 12 weeks than control subjects (26.3 mm Hg vs. 16.0 mm Hg, P = 0.009) Effect: positive
	(2014)(39)				Systolic BP decreased from baseline more among telemonitoring Intervention than Usual Care patients by 10.7 mm Hg at six months, 9.7 mm Hg at 12 months, and 6.6 mm Hg at 18 months, all P<0.001. Diastolic BP decreased from baseline more among telemonitoring Intervention than Usual Care patients by 6.0 mm Hg at six months, 5.1 mm Hg at 12 months, and 3.0 mm Hg at 18 months Effect: positive
	Canada				
	Canada				
	USA				
	USA				

Note: IG: Intervention Group, CG: Control Group, CI: Confidence Interval, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure.
Based on the results of the search strategy, 3686 articles were retrieved. The results for each database are given in the PRISMA diagram. All search results were inputted into EndNote. The results of each stage are presented in the PRISMA diagram. In the next phase, 954 duplicates were automatically identified and removed by the software, and 2732 articles remained for final analysis. In the next step, the title and abstract of the articles remained for final analysis.

Results

Table 3. Functionalities of mobile technologies

Authors	Functionalities	Authors	Functionalities
	Self-monitoring		
	Reminder and alert component		
	Automatic feedback		
	Educational information		
	Communication with a healthcare provider		
Bove et al., (2013)(42).	USA	IG (mean= 58 years)	Telephone 6 months
		CG (mean 58.2 years)	
		IG (n = 120)	
		CG (n =121)	
Piette et al., (2012)(43).	USA	IG (mean= 58 years)	Telephone 2 months
		CG (mean 57.1 years)	
		IG (n = 89)	
		CG (n =92)	
Brennan et al., (2010)(44).	USA	IG (mean= 55.3 years)	Telephone 12 months
		CG (mean 56.1 years)	
		IG (n = 318)	
		CG (n =320)	

The system used consisted of a Web site on which patients entered the blood pressure data using their phones. These data were then transferred to healthcare providers. The data were recorded by patients twice per week, and in case of abnormal blood pressure, a text or audio message would be sent to patients and healthcare providers. Then, the healthcare providers gave orders over the phone to control patients’ blood pressure. The intervention included the use of an automatic call system using a tree-structured algorithm for collecting data on patients’ blood pressure, self-monitoring the blood pressure, adherence to medication and diet, and offering to counsel based on patients’ response. During the call, patients regularly examined their blood pressure, and questions were asked on recent blood pressure values, higher or lower than the normal level, as well as adherence to medication and salt consumption. Over the call, patients received additional information on self-care with regard to alternative medications in case of increased blood pressure. In case of abnormal blood pressure, an email would be sent to healthcare providers.

Intervention subjects demonstrated a greater reduction in systolic BP (Intervention: -19 ± 19 mm Hg; Control: -12 ± 19 mm Hg; P = 0.037)

Effect: positive

Intervention patients’ average SBPs decreased 8.8 mm Hg (-14.2, -3.4; p<0.002)

Effect: positive

systolic BP was lower in the intervention group (adjusted means 123.6 vs. 126.7 mm Hg, P = 0.03) there was no difference for diastolic BP

Effect: positive

Authors	Functionalities	Authors	Functionalities
Meurer et al., (30).	✔	✔	✔
Márquez Contreras et al., (31).		✔	✔
Chandler et al., (32).	✔	✔	✔
Scala et al., (33).	✔	✔	✔
Morawski et al., (34).	✔	✔	✔
Lee et al., (35).	✔	✔	✔
Ciemins et al., (36).	✔	✔	✔
Varleta et al., (37).	✔	✔	✔
Rubinstein et al., (38).	✔	✔	✔
Petrella et al., (39).	✔	✔	✔
Moore et al., (40).	✔	✔	✔
Margolis et al., (41).	✔	✔	✔
Bove et al., (42).	✔	✔	✔
Piette et al., (43).	✔	✔	✔
Brennan et al., (44).	✔	✔	✔

Total (%)

---------------	--------------------------	--------------------------	--------------------------	
	11 (73%)	13 (86%)	9 (60%)	12 (80%)

Acta Medica Iranica, Vol. 58, No. 6 (2020) 253
remaining articles were examined by the authors. In this stage, 2637 articles were removed, and 95 cases remained. Based on the inclusion and exclusion criteria, irrelevant articles were eliminated. A number of articles were removed at this stage: 21 articles were removed since they were not suitable for clinical trials; 31 articles because they did not measure blood pressure as the primary goal and lacked self-management goals; three articles because they were duplicates; two articles because they provided intervention for healthcare providers; 15 articles because they examined other conditions such as stroke, diabetes, and pregnancy; four articles because they were protocols; three articles because they did not use mobile technology, and one article because its full text was not available. Finally, 15 articles that were compatible with the objectives and inclusion criteria of the present study remained for review (Figure 1).

![Figure 1. PRISMA flow diagram of literature search and selection](image)

Characteristics of the included studies

The majority of articles (n=10) (30,32,34,36,37,40-44) were conducted in the US, and one study in Spain (31), Italy (33), Vietnam (35), Argentina (38), and Canada (39). The number of patients in the experimental group and control group equaled 1936 and 2058, respectively. Participants aged from 21 to 62 years. The most frequently used mobile technology was smartphones in nine articles (30-32,34-39), followed by telephone in five articles (33,41-44) and PDA in one article (40). The duration of the intervention varied from 2 to 18 months.

Functionalities of mobile technology

The functionalities of mobile technologies for self-management of patients with hypertension were divided into five categories (monitoring the patients, providing alarms, providing feedback, education, and
Functionalities used in mobile technologies

Most functionalities used in mobile technologies for self-management of hypertension were communications and alarms, education, monitoring, and feedback, in that order. The majority of combination functions used by the studies was the simultaneous use of monitoring, alarm, education, and communication in eight studies (30,31,35,36,40-43).

The modules used in alarms and feedback included setting alarms for taking medications, alarms in the case of taking the wrong dose, sending encouraging messages in the case of taking the right dose, and sending messages in case of incomplete information and reminding time of visits (30-32,34-36,41,43).

The data collected on healthcare providers were delivered to the patients and included additional self-care information on alternative medications in case of increased blood pressure, questions on recent values of blood pressure higher or lower than the normal level, adherence to medications, amount of salt consumed, and lifestyle (30-32,35,36,43).

Education was provided to the patients through telephone calls or text messages. The content of the text messages included educational information on healthy diets, salt consumption, scheduling the consumption of hypertension medication, the importance of consumption of medication, and adherence to treatment (30,31,40-44).

In terms of monitoring, the intervention included installing the app on patients’ smartphones and having doctors teach them how to use it. This application included modules for recording personal information, recording doctor’s notes on medications, setting alarms, setting appointments, recording the results of blood pressure measurement, sending alarms to patients in case of high blood pressure, and education. Patients sent the measured value of blood pressure through the mobile app to healthcare centers. Then, if healthcare providers viewed abnormal blood pressure in patients’ data, they would call the patients and remind them to take the medications or provide the necessary education (30-32,34-36,41,43).

Intervention outcomes

Measurement and control of hypertension was the primary objective of all the reviewed articles. The results of using mobile technologies revealed that the majority of articles (n=12) noted the positive effect of using these technologies in controlling hypertension in the experimental group compared to the control group (30-33,35-37,40-44). The mean reduction in blood pressure was in the 2-26 mmHg range in the experimental groups (30-32,35,37,40-42).

In these studies, smartphones were the most frequently used technology (30-32,35-37). The most frequently used functions for the effective control of hypertension in mobile technologies was the simultaneous use of monitoring, alarms and reminders, education, and communication with healthcare providers (30,31,35,36,40-43). On the other hand, the results of three articles indicated that the use of mobile technologies in comparison with routine methods had no effect on controlling and lowering blood pressure (34,38,39).

Discussion

The present systematic review examined the effects of using mobile technologies on hypertension reduction as well as self-management aspects of this disease. Based on the findings, mobile technologies decrease blood pressure in comparison with routine treatment methods in the experimental group compared to the control group. The majority of the examined articles reported that mobile technologies decrease blood pressure. A review study was conducted by McLean et al., to examine the effect of digital interventions on supporting self-management in patients with hypertension and the reduction of blood pressure. Results demonstrated the positive effects of digital interventions on supporting self-management and reducing systolic and diastolic blood pressure (47). Moreover, Alessa et al., explored the effects of using mobile apps on self-management of patients with hypertension and reduction of blood pressure level. Based on the results, most apps effectively decreased blood pressure (25). Other studies have also reported the positive effect of using a tablet- and mobile-based interventions on controlling chronic conditions, including hypertension. These results reveal that mobile technologies have high potentials for use in self-management of chronic conditions (48-50). From among the mobile technologies examined, smartphones had the most effect on control and self-management of hypertension, and significantly reduced blood pressure and enhanced the self-management aspects of the disease. Mobile technologies are a beneficial and accessible solution for promoting the self-management aspects of chronic conditions (49,51). The literature shows that the growth and expansion of smartphones and their different functionalities can greatly contribute to self-management.

communication with healthcare providers). The same classification was adopted in other studies for conditions such as cancer (45) and pain management (46).

S. Almasi, et al.
Mobile health in hypertension management

in hypertension (52,53). In this study, mobile technologies employed various functionalities combined with controlling blood pressure. All studies used more than one functionality in these technologies. The majority of functionalities with the highest effect on hypertension control were monitoring, alarms, education, and communication with healthcare providers. Using smartphones, patients send their measured blood pressure values to healthcare providers who sent alarms or educational content to patients based on their information. Smartphones can support apps and thus employed for monitoring hypertension. By sending text messages, they improve and facilitate communications, alarms, and education (35-37). In similar studies, the use of combined functionalities of mobile apps has enhanced hypertension control (25). Moreover, the use of text messaging as reminders and for monitoring blood pressure using mobile apps greatly affect hypertension control (54,55). The review study by Abu Dagga et al., showed that the use of distant monitoring is effective for hypertension control, and patients actively participated in the process. Moreover, this distance monitoring provided patients with valuable information on hypertension management and control from healthcare providers (56). The use of distant monitoring establishes effective communication between patients and healthcare providers, and thus provide more rapid access to healthcare providers and offer timely educational information to patients to better control their blood pressure. It also controls costs and enhances adherence to the treatment plan (57). Mobile technologies have a wide spectrum of functionalities, including text messaging, pictures, videos, Internet access, multimedia playing, and app support (24). Various studies have evaluated the use of mobile technologies to be positive in supporting self-management of hypertension (58,59).

Strong points and limitations of the study

This systematic review examined the effect of mobile technologies on blood pressure and the self-management aspects of hypertension. Four databases were searched using a comprehensive search strategy, and relevant articles were retrieved. The functionalities used in mobile technologies for self-management of hypertension were also classified and introduced. The first limitation of this study was the exclusion of articles in languages other than English, which limited the sample size. The second limitation was the unavailability of the full text of some articles. The third limitation was restricting the search to clinical trials and excluding articles that had assessed comorbidities (such as stroke, diabetes, and pregnancy).

This study aimed to investigate the effect of mobile technologies on self-management in hypertension and the reduction of blood pressure. The results of this systematic review revealed that self-management supported by using mobile technologies positively affect blood pressure control. The use of mobile technologies for blood pressure control can help in different ways: setting reminders and alarms for taking the medication at the right time which enhances patients’ adherence to the treatment plan; establishing effective communication between patients and healthcare providers for receiving guidance on medications or education on lifestyle, nutrition, and behavior changes for reducing blood pressure; and the use of sensors for monitoring the trend of vital signs and physiological conditions for distance monitoring and receiving feedback.

References

1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 2003;289:2560-71.
2. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:e13-5.
3. World Health Organization. Hypertension: Key facts. [Accessed 20 September 2019 at: https://www.who.int/news-room/fact-sheets/detail/hypertension.]
4. Cappuccio FP, Kerry SM, Forbes L, Donald A. Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ 2004;329:145.
5. Mohammadi R, Ayatolahi Tafti M, Hoveidamanesh S, Ghanavati R, Pournik O. Reflection on Mobile Applications for Blood Pressure Management: A Systematic Review on Potential Effects and Initiatives. Stud Health Technol Inform 2018;247:306-10.
6. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959-68.
7. Bakris G, Sarafidis P, Agarwal R, Ruilope L. Review of blood pressure control rates and outcomes. J Am Soc
8. Franek J. Self-management support interventions for persons with chronic disease: an evidence-based analysis. Ont Health Technol Assess Ser 2013;13:1-60.
9. Grady PA and LL. Gough. Self-management: a comprehensive approach to management of chronic conditions. Am J Public Health 2014;104:e25-e31.
10. Adams K, Corrigan JM. Institute of Medicine. Priority Areas for National Action: Transforming Health Care Quality. Committee on Identifying Priority Areas for Quality Improvement. Washington, DC: National Academies Press; 2003.
11. Barlow J, Wright C, Sheasby J, Turner A, Hainsworth J. Self-management approaches for people with chronic conditions: a review. Patient Educ Couns 2002;48:177-87.
12. Wagner EH. Chronic disease management: what will it take to improve care for chronic illness? Eff Clin Pract 1998;2:4-2.
13. Trappenburg J, Jonkman N, Jaarsma T, van Os-Medendorp H, Kort H, de Wit N, et al. Self-management: one size does not fit all. Patient Educ Couns 2013;92:134-7.
14. Bodenheimer T, Lorig K, Holman H, Grumbach K. Patient self-management of chronic disease in primary care. JAMA 2002;288:2469-75.
15. Grady PA, Gough LL. Self-management: a comprehensive approach to management of chronic conditions. Am J Public Health 2014;104:e25-e31.
16. Shahaj O, Denneny D, Schwappach A, Pearce G, Epiphaniou E, Parke HL, et al., Supporting self-management for people with hypertension: a meta-review of quantitative and qualitative systematic reviews. J Hypertens 2019;37:264-79.
17. Whitehead L, Seaton P. The effectiveness of self-management mobile phone and tablet apps in long-term condition management: a systematic review. J Med Internet Res 2016;18:e97.
18. Logan AG. Transforming hypertension management using mobile health technology for telemonitoring and self-care support. Can J Cardiol 2013;29:579-85.
19. Liu S, Dunford SD, Leung YW, Brooks D, Thomas SG, Eysenbach G, et al. Reducing blood pressure with Internet-based interventions: a meta-analysis. Can J Cardiol 2013;29:613-21.
20. Akter S, D’Ambra J, Ray P. Development and validation of an instrument to measure user perceived service quality of mHealth. Information and Management 2013;50:181-95.
21. World Health Organization. mHealth: new horizons for health through mobile technologies. Global Observatory for eHealth Series–Volume 3. Geneva:WHO Press; 2011. [Accessed 20 September 2019 at: http://www.who.int/goe/publications/goe_mhealth_web.pdf]
22. Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M, et al. Mobile health technology evaluation: the mHealth evidence workshop. Am J Prev Med 2013;45:228-36.
23. Gurman TA, Rubin SE, Roessler AA. Effectiveness of mHealth behavior change communication interventions in developing countries: a systematic review of the literature. J Health Commun 2012;17:82-104.
24. Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med 2013;10:e1001362.
25. Alessa T, Abdi S, Hawley MS, de Witte L. Mobile Apps to Support the Self-Management of Hypertension: Systematic Review of Effectiveness, Usability, and User Satisfaction. JMIR Mhealth Uhealth 2018;6:e10723.
26. Parati G, Torlasco C, Omboni S, Pellegrini D. Smartphone Applications for Hypertension Management: A Potential Game-Changer That Needs More Control. Curr Hypertens Rep 2017;19:48.
27. Ryu S. Book Review: mHealth: New Horizons for Health through Mobile Technologies: Based on the Findings of the Second Global Survey on eHealth (Global Observatory for eHealth Series, Volume 3). Healthc Inform Res 2012;18:231-3.
28. Carroll JK, Moorhead A, Bond R, LeBlanc WG, Petrella RJ, Fiscella K. Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach. J Med Internet Res 2017;19:e125.
29. Tacconelli E. Systematic reviews: CRD’s guidance for undertaking reviews in health care. Lancet Infect Dis 2010;10:226.
30. Meurer WJ, Dome M, Brown D, Delemos D, Oska S, Gorom V, et al. Feasibility of Emergency Department-initiated, Mobile Health Blood Pressure Intervention: An Exploratory, Randomized Clinical Trial. Acad Emerg Me 2019;26:517-27.
31. Márquez Contreras E, Márquez Rivero S, Rodríguez García E, López-García-Ramos L, Pastoriza Vilas JC, Baldonado Suárez A, et al. Specific hypertension smartphone application to improve medication adherence in hypertension: a cluster-randomized trial. Curr Med Res Opin 2019;35:167-73.
32. Chandler J, Sox L, Kellam K, Feder L, Nemeth L, Treiber F. Impact of a Culturally Tailored mHealth Medication Regimen Self-Management Program upon Blood Pressure among Hypertensive Hispanic Adults. Int J Environ Res Public Health 2019;16:1226.
Mobile health in hypertension management

33. Scala D, Menditto E, Caruso G, Monetti VM, Orlando V, Guerriero F, et al. Are you more concerned about or relieved by medicines? An explorative randomized study of the impact of telephone counseling by pharmacists on patients’ beliefs regarding medicines and blood pressure control. Patient Educ Couns 2018;101:679-86.

34. Morawski K, Ghazinouri R, Krumme A, Lauffenburger JC, Lu Z, Durfee E, et al. Association of a Smartphone Application With Medication Adherence and Blood Pressure Control The MedISAFE-BP Randomized Clinical Trial. JAMA Intern Med 2018;178:802-9.

35. Lee HY, Kim JY, Na KY, Park HY, Han J, Pak Y, et al. The role of telehealth counselling with mobile self-monitoring on blood pressure reduction among overseas Koreans with high blood pressure in Vietnam. J Telemed Telecare 2018;25:241-8.

36. Ciemins EL, Arora A, Coombs NC, Holloway B, Mullette EJ, Garland R, et al. Improving Blood Pressure Control Using Smart Technology. Telemed J E Health 2018;24:222-8.

37. Varleta P, Acevedo M, Akel C, Salinas C, Navarrete C, García A, et al. Mobile phone text messaging improves antihypertensive drug adherence in the community. J Clin Hypertens (Greenwich) 2017;19:1276-84.

38. Rubinstein A, Miranda JJ, Beratarena A, Diez-Canseco F, Kanter R, Gutierrez L, et al. Effectiveness of an mHealth intervention to improve the cardiometabolic profile of people with prehypertension in low-resource urban settings in Latin America: A randomised controlled trial. Lancet Diabetes Endocrinol 2016;4(1):52-63. doi: 10.1016/S2213-8587(15)00381-2.

39. Petrella RJ, Stuckey MI, Shapiro S, Gill DP. Mobile health, exercise and metabolic risk: a randomized controlled trial. BMC public health 2014;14:1082.

40. Moore JO, Marshall MA, Judge DC, Moss FH, Gilroy SJ, Crocker JB, et al., Technology-supported apprenticeship in the management of hypertension: A randomized controlled trial. J Clin Outcomes Manag 2014;21:110-2.

41. Margolis KL, Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Groen SE, Kadrmas HM, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA 2013;310:46-56.

42. Bove AA, Homko CJ, Santamore WP, Kashem M, Kerper M, Elliott DJ. Managing hypertension in urban underserved subjects using telemedicine--a clinical trial. Am Heart J 2013;165:615-21.

43. Piette JD, Datwani H, Gaudioso S, Foster SM, Westphal J, Perry W, et al. Hypertension management using mobile technology and home blood pressure monitoring: results of a randomized trial in two low/middle-income countries. Telemed J E Health 2012;18:613-20.

44. Brennan T, Spettell C, Villagra V, Ofili E, McMahill-Walraven C, Lowy EJ, et al. Disease management to promote blood pressure control among African Americans. Popul Health Manag 2010;13:65-72.

45. Mehdizadeh H, Asadi F, Mehrvar A, Nazemi E, Emami H. Smartphone apps to help children and adolescents with cancer and their families: a scoping review. Acta Oncol 2019;58:1003-14.

46. Lalloo C, Jibb LA, Rivera J, Agarwal A, Stinson JN. "There's a Pain App for That": Review of Patient-targeted Smartphone Applications for Pain Management. Clin J Pain 2015;31:557-63.

47. McLean G, Band R, Saunders K, Hanlon P, Murray E, Little P, et al. Digital interventions to promote self-management in adults with hypertension systematic review and meta-analysis. J Hypertens 2016;34:600-12.

48. Fu H, McMahon SK, Gross CR, Adam TJ, Wyman JF. Usability and clinical efficacy of diabetes mobile applications for adults with type 2 diabetes: A systematic review. Diabetes Res Clin Pract 2017;131:70-81.

49. Whitehead L and Seaton P. The Effectiveness of Self-Management Mobile Phone and Tablet Apps in Long-term Condition Management: A Systematic Review. J Med Internet Res 2016;18:e97.

50. Bonoto BC, de Araújo VE, Godói IP, de Lemos LL, Godman B, Bennie M, et al. Efficacy of Mobile Apps to Support the Care of Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. JMIR Mhealth Uhealth 2017;5:e4.

51. Lee JA, Choi M, Lee SA, Jiang N. Effective behavioral intervention strategies using mobile health applications for chronic disease management: a systematic review. BMC Med Inform Decis Mak 2018;18:12.

52. Alessa T, Hawley MS, Hock ES, de Witte L. Smartphone Apps to Support Self-Management of Hypertension: Review and Content Analysis. JMIR Mhealth Uhealth 2019;7:e13645.

53. Kumar N, Khunger M, Gupta A, Garg N. A content analysis of smartphone-based applications for hypertension management. J Am Soc Hypertens 2015;9:130-6.

54. Vargas G, Cajita MI, Whitehouse E, Han HR. Use of Short Messaging Service for Hypertension Management: A Systematic Review. J Cardiovasc Nurs 2017;32:260-70.

55. Jamaladin H, van de Belt TH, Luijpers LC, de Graaff FR, Bredie SJ, Roeleveld N, et al. Mobile Apps for Blood Pressure Monitoring: Systematic Search in App Stores and Content Analysis. JMIR Mhealth Uhealth 2018;6:e187.

56. AbuDagga A, Resnick HE, Alwan M. Impact of blood pressure telemonitoring on hypertension outcomes: a
literature review. Telemed J E Health 2010;16:830-8.
57. Sivakumaran D, and Earle KA. Telemonitoring: use in the management of hypertension. Vasc Health Risk Manag 2014;10:217-24.
58. Thangada ND, Garg N, Pandey A, Kumar N. The Emerging Role of Mobile-Health Applications in the Management of Hypertension. Curr Cardiol Rep 2018;20:78.
59. Chandak A and Joshi A. Self-management of hypertension using technology enabled interventions in primary care settings. Technol Health Care 2015;23:119-28.