Antibacterial and antibiotic-modifying activities of fractions and compounds from *Albizia adianthifolia* against MDR Gram-negative enteric bacteria

Cedric F. Tchinda¹,², Gaiëlle Sonfack³, Ingrid K. Simo³, İlhami Çelik⁴, Igor K. Voukeng¹, Blaise K. Nganou³, Gabin T. M. Bitchagno³, Sultan Funda Ekti⁴, Mathieu Tene³, Pierre Tane³, Veronique P. Beng² and Victor Kuete¹*

Abstract

Background: *Albizia adianthifolia* (Schum.) is medicinally used in Cameroon to manage bronchitis and skin diseases. Our previous study documented the antibacterial potential of its roots’ methanol extract. In this study, methanol roots extract was subjected to chromatography techniques and fractions (AARa and AARb), sub-fractions (AARa1–4, AARb1–2 and AARb11–14) together with isolated phytochemicals were assessed for their antimicrobial as well as their antibiotic-potentiating effects towards Gram-negative multidrug resistant (MDR) bacteria.

Methods: The antibacterial activities of the samples (determination of Minimal Inhibitory « MIC » and Minimal Bactericidal Concentration « MBC ») were determined by the modified rapid p-iodonitrotetrazolium chloride (INT) colorimetric assay, as well as those of antibiotics in association with the compounds. Column chromatography was applied to isolate phytochemicals from roots extract and their chemical structures were determined using spectroscopic techniques.

Results: The phytochemicals isolated were stearic acid (1), a mixture (1:1) of stigmasterol and β-sitosterol (2 + 3), β-sitosterol 3-O-β-D-glucopyranoside (4), palmatin (5), homomangiferin (6) and mangiferin (7). Fraction AARa exhibited selective inhibitory effects whilst all tested bacteria were inhibited by AARb in MIC ranges of 8 to 1024 μg/mL. Sub-fractions AARb1–2 had MIC values between 8 μg/mL and 1024 μg/mL on all tested bacteria. Phytochemicals 4, 2 + 3 and 7 inhibited the growth of 54.54% (6/11), 45.45% (5/11) and 27.27% (3/11) tested bacterial strains, respectively. When tested with an efflux pumps inhibitor (Phenylalanine-Arginine-β-Naphthylamide or PAβN), the inhibitory effects of compounds 2 + 3 and 4 increased towards all the tested bacteria. In association with erythromycin (ERY), streptomycin (STR) and tetracycline (TET), compounds 2 + 3 and 4 had the most significant synergistic activity on the seven selected bacteria.

Conclusion: The present study provides information on the possible use of *Albizia adianthifolia* and its constituents in the control of Gram-negative infections including MDR phenotypes.

Keywords: *Albizia adianthifolia*, Antibiotic modifying activity, Fabaceae, Multi-drug resistance, Phytochemicals

* Correspondence: kuetevictor@yahoo.fr
 ¹ Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
 Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Bacteria infectious still constitute a serious health concern worldwide and is responsible for the high morbidity and mortality. In spite of the progress achieved by pharmaceutical industries in the synthesis of new antibacterial agents in recent years, the resistance to available drugs remains a major problem globally [1]. Besides, the continuous emergence of multi-resistant bacteria considerably reduces the efficiency of antibiotics, increases the frequency of therapeutic failures and incurs economic burden, all of this in association with undesired side effects of synthetic antibiotics makes the fight against bacterial infection complicated [2, 3]. The resistance of these bacteria to the antimicrobial agents can be associated to the presence of membrane transporting systems called efflux pumps that would be responsible for the over expression of the multi-resistance phenomenon [4]. It is worth noting that among Gram-negative bacteria, the effect of the combination of efflux pumps and the reduction of membrane permeability is responsible for the high resistance against antibiotics often associated to these groups of organisms [5]. Among the Gram-negative bacteria, those presenting multi-resistance phenotype belong mostly to the RND (Resistance Nodulation-Cell division) family which is a tripartite efflux pump. The increasing multi-drug resistance (MDR) and the lack of novel antibiotics propel the restoration of this phenomenon [6]. It is worth noting that among Gram-negative bacteria, those presenting multi-resistance phenotype belong mostly to the RND (Resistance Nodulation-Cell division) family which is a tripartite efflux pump. The increasing multi-drug resistance (MDR) and the lack of novel antibiotics propel the research of new antibacterial agents from medicinal plants. This is especially prominent as plants and their derived substances have long been used by humans for medicinal purposes [6]. Today, it is estimated that about 80% of the world’s population have integrated the use of medicinal plant as primary healthcare modality [7]. Recently, several bioactive compounds have been reported to fight against MDR bacteria [8]. Some examples include Paullinia pin-nata [9, 10], Combretum mole [11] and Harungana madagas-cariensis [12]. In our continuous endeavors to identify antibacterial agents from plants traditionally used to fight microbial infection targeted Albizia adianthifolia (Schum.) (Fabaceae). The plant is used in traditional medicine to treat skin diseases, bronchitis, inflamed eyes, tapeworm, headaches and sinusitis [13, 14]. In earlier studies on this plant, adianthifoliosides A, B and D [15, 16], lupeol, aurantiamide acetate [17] and prosapogenins [18] were isolated. Previously, we demonstrated the antibacterial activity of the methanol extract from the roots (AAR) [19]. Herein, a bioassay guided fractionation was conducted for in-depth analysis of the antibacterial as well as antibiotic-modulating effect of the methanol extract from the roots of Albizia adianthifolia.

Methods
General procedure
The spectrometers were used to register the high resolution mass spectra (HRMS) (Shimadzu hybrid LC-MS-IT-TOF) and NMR Spectra (Agilent DD2 NMR (400 MHz) spectrometer). The silica gel Merck 60 F254 [(0.2–0.5 mm) and (0.2–0.063 mm)] 70,230 and 230–400 mesh (Darmstadt, Germany) was used in column chromatography (CC) while pre-coated silica gel 60 F254 was used to analyze on thin layer chromatography (TLC) plates (Merck, Germany). The TLC was revealed with 20% sulphuric acid (H2SO4), heated at 100°C.

Plant material and extraction
The roots of Albizia adianthifolia were harvested in Mont Kala, Center Region (Cameroon) on April 2015. The botanical identification was confirmed by Dr. Marie Florence Sandrine Ngo Ngwe at the National herbarium of Cameroon (Yaoundé) by comparison with the voucher specimen available under the reference number 24729/ SRF/Cam (roots, leaves, bark). No permission was necessary for sample’s collection. The powdered roots of A. adianthifolia (3000 g) were soaked in methanol (MeOH; 8 L) for 48 h. After filtration and removal of the solvent using a rotary evaporator under reduced pressure, 124 g of crude extract (AAR) was obtained.

Isolation and purification of bioactive compounds from the roots extract of A. adianthifolia
A portion of AAR (122.50 g) was dissolved in water (100%), followed by liquid-liquid exhaustion in ethyl acetate (AcOEt). Two new fractions named AARa (36.50 g, EtOAc) and a AARb (82.5 g; residual portion) were obtained. Fraction AARb fraction (82.5 g) was further dissolved in water (100%), followed by liquid-liquid exhaustion in n-butanol (n-BuOH) to afford two sub-fractions named AARb1 (49.3 g; n-BuOH) and AARb2 a residual fraction (28.5 g).

Part of the fraction AARa (33.50 g) was subjected to silica gel column chromatography (CC) eluting with gradient of Hexane-EtOAc then EtOAc-MeOH. Sixty-one fractions of 300 mL each were collected and combined on the basis of their thin layer chromatography (TLC) profiles into four main fractions (frs) coded AARa1–4 [AARa1 (1–12, 4.80 g), AARa2 (13–30, 4.60 g), AARa3 (31–39, 4 g) and AARa4 (40–61, 8 g)]. Fraction AARa1 was filtered and washed with EtOAc to yield compound 1 as white powder (20 mg). Fraction AARa2 was filtered and washed with EtOAc to yield a mixture of phytosterols 2 and 3 (50 mg) as white powder. Fraction AARa4 (8 g) was subjected to silica gel CC eluting with a gradient of EtOAc-MeOH (100:0, 97: 3; 94: 6, 91: 9, 85: 15, 0: 100) affording six new sub-fractions (sub-frs) (AARa41-AARa46). Sub-fraction AARa41 was filtered and washed with ethyl acetate to yield compound 4 (25 mg) as a white powder. Sub-fractions AARa43 was further subjected to Sephadex LH-20 eluted with MeOH to yield compound 5 as a yellow powder (30 mg).
Part of the sub-fraction AARB1 (47 g) was subjected to silica gel CC eluting with gradient of EtOAc-MeOH. Ninety-two fractions of 300 mL each were collected and combined based on their TLC profiles into four main fractions coded AARB1–4 [AARB1 (1–12; 5.40 g), AARB2 (13–34; 8.50 g), AARB3 (35–76; 14.50 g) and AARB4 (77–92; 12.70 g)]. Fraction AARB3 (13 g) was subjected to silica gel column chromatography eluting with a gradient of EtOAc-MeOH (100: 0, 95: 5, 90: 10, 85: 15, 80: 20, 70: 30, 0: 100) affording five sub-fractions with a gradient of EtOAc-MeOH (100: 0, 95: 5, 90: 10, 85: 15, 80: 20, 70: 30, 0: 100) affording five sub-fractions subjected to silica gel column chromatography eluting with a gradient of EtOAc-MeOH. These inhibitory activities were observed on 68.66% (13/19) of them. MICs ≤256 μg/mL were noted with AARB on some of the bacteria including resistant strains in order to evaluate the role of efflux pumps in their resistance ability.

Antibacterial activity

The inhibitory potential towards 15 Gram-negative bacteria of fractions (AARa-b), sub-fractions fractions (AARa1–4, AARB1–2 and AARB11–14) as well as phytochemicals from the roots of A. adianthifolia, and CHL is given in Tables 1 and 2. It appears from data in Table 1 that the tested botanicals (crude extract, fractions and sub-frs) and phytochemicals were selectively active. The recorded MIC values were in the range of 8 to 1024 μg/mL. However, fraction AARB was active on 15 of the 15 (100%) bacteria tested, while AARa was active on 73.33% (11/15) of them. MICs ≤256 μg/mL were obtained with CHL on 100% (15/15) of the bacteria tested. MBC ≤1024 μg/mL were noted with AARa-b on some of the studied bacteria. Table 1 shows the MICs and MBCs of AARa sub-frs (AARa1–4) on the panel of 15 bacteria. As a result, the AARa2 and AARa3 sub-frs had MICs ≤32 μg/mL on all tested pathogens contrary to other sub-frs showed selective activities. These inhibitory activities were observed on 68.66% (13/19), 80% (12/15), 40% (6/15) and 33.33% (5/15) bacteria.
tested with the sub-fractions AARa2, AARa3, AARa4 and AARa1 respectively. MICs and MBCs as seen in Table 1 for AARb sub-fractions (AARb1–2) on the panel of 15 bacteria indicated that AARb1–2 had MICs ranged from 8 to 1024 μg/mL on all the tested bacteria. They were active on 93.33% (14/15) of the tested bacteria. The investigation of sub-fractions of AARb11-AARb14 is summarized in Table 1 as well. MICs varying from 8 to 1024 μg/mL were obtained and the recorded inhibitory effects were noted on 100% (15/15), 93.33% (14/15), 80% (12/15) and 60% (9/15) of the bacteria tested with AARb13, AARb14, AARb11 and AARb12 respectively. In general, the MBCs were above 1024 μg/mL.

The antibacterial activity of compounds isolated from the roots of *A. adianthifolia* is compiled in Table 2. Compounds 4, 2 + 3 and 7 respectively inhibited the growth of 54.5% (6/11), 45.4% (5/11) and 27.3% (3/11) of tested bacteria, whereas compounds 5 and 6 exhibited similar activities by inhibiting each 36.7% (4/11) bacteria tested. The activity of the compound (2 + 3) vis-à-vis *K. pneumoniae* KP55 (MIC of 32 μg/mL); compounds 2 + 3 and 4 vis-a-vis *P. aeruginosa* PA01 (MIC of 16 μg/mL and MIC of 2 μg/mL respectively) and compound 4 vis-à-vis *P. aeruginosa* PA124 (MIC of 128 μg/mL) were greater compared to that of CHL. At a concentration as high as 128 μg/mL, compound 1 had no antibacterial activity. The bactericidal effect of 2 + 3, 4 and 5 were noted vis-à-vis 3/11, 2/11 and 1/11 pathogens tested respectively.

Influence of the bacterial efflux pumps on the activity of the tested phytochemicals

Ten selected MDR bacteria were tested in the presence of EPI (PAβN). It appears that in the combination with PAβN, the activities of compounds 2 + 3 and 4 were ameliorated against 100% (10/10) of tested MDR strains (Table 3) while the other compounds (5, 6 and 7) displayed moderate activity in the presence of EPI.

Potentiating effect of phytochemicals

Based on results obtained from a preliminary study carried out on *Pseudomonas aeruginosa* PA124, three isolated molecules were associated with seven antibiotics (CIP, ERY, GEN, KAN, NOR, STR, and TET) to ascertain the ability to potentiate their activities. Tables 4 and 5 show synergies between phytochemicals and the majority of antibiotics. These synergistic effects varied from 28.57 to 100% on the various microorganisms with all the compounds. In combination with ERY and STR antibiotics, all compounds 2 + 3 and 4 showed the most significant synergistic effects (100%) at their different sub-inhibitory concentrations (MIC/2 and MIC/4). Besides, these samples, namely compounds 2 + 3 and 4 in association with KAN, presented the weakest synergistic effects, ranging from 28.57 to 71.42% compared to the
Table 1: MIC and MBC (in μg/mL) of fractions, sub-fractions of *A. adansonii* roots and chloramphenicol against the panel of 15 Gram-negative bacteria

Bacterial strains	Tested samples, MIC and MBC in parenthesis (in μg/mL)	Fractions Fractions and sub-fractions	CHL
	AARa AARb AARa1 AARa2 AARa3 AARa4 AARb1 AARb2 AARb11 AARb12 AARb13 AARb14		
E. coli	AG100 Atet 1024(–) 64(512) 1024(–) 512(–) 512(–) 1024(–) 64(512) 64(–) 512(–) 1024(–) 64(–) 256(–) 32(256)		
	AG102 256(1024) (–) 512(–) 512(–) 1024(–) 128(–) 512(–) 1024(–) (–) 128(1024) 256(–) 32(256)		
	ATCC8739 512(–) 256(–) (–) 512(–) 512(1024) 1024(–) 16(256) 64(512) 64(1024) 128(–) 16(1024) 16(1024) 256(–)		
	ATCC 10536 1024(–) 128(1024) (–) 512(1024) 512(1024) 1024(–) 32(1024) 64(1024) 128(–) 256(–) 32(–) 64(–) 2(32)		
	ATCC13048 512(1024) 128(1024) (–) 256(1024) 256(–) (–) 16(512) 32(1024) 128(–) 512(1024) 64(256) 128(512) 16(128)		
	OM64 1024(–) 256(1024) (–) 256(512) 512(1024) (–) 32(–) 64(–) 256(1024) 512(–) 32(128) 256(1024) 256(–)		
	EA27 512(–) 8(128) 1024(–) 32(512) 16(512) 128(512) 32(–) 64(–) 128(–) (–) 32(1024) 128(–) 32(256)		
	EA289 256(1024) (–) (–) (–) (–) 32(–) 64(–) 512(–) (–) 64(–) 128(–) 128(–) 32(256)		
P. stuartii	ATCC11296 512(1024) 256(–) (–) 1024(–) (–) (–) 16(–) 64(–) 128(–) 512(–) 32(512) 32(256) 32(256)		
	KP55 256(–) 128(–) (–) 256(–) 256(–) (–) 16(1024) 32(–) 128(–) 256(–) 16(512) 32(1024) 64(256)		
	KP63 256(–) 128(–) 512(1024) 256(–) 512(–) 1024(–) 8(512) 16(–) 128(–) 128(1024) 8(128) 128(–) 32(256)		
P. aeruginosa	ATCC29916 1024(–) 128(1024) 1024(–) 512(–) 512(1024) (–) 128(–) 256(–) (–) (–) 256(–) 512(–) 64(256)		
	NEA 16 1024(–) 256(1024) 1024(–) (–) (–) 128(–) 256(–) (–) (–) 128(1024) 256(–) 64(256)		
	PA01 1024(–) 256(–) (–) 512(–) 512(–) (–) 64(–) 64(–) 256(–) 512(–) 32(–) 64(–) 64(–)		
	PA124 256(–) (–) 512(–) 512(–) (–) (–) (–) (–) (–) 1024(–) (–) 256(–)		

Tested samples were ethyl acetate fraction (AARa), residual ethyl acetate fraction (AARb), sub-fractions of ethyl acetate fraction (AARa1–4), sub-fractions of residual ethyl acetate fraction (n-butanol fraction « AARb1 » and residual n-butanol fraction «AARb2»), sub-fractions of n-butanol fraction (AARb11–14) and chloramphenicol (CHL); ––: MIC or MBC values above 1024 μg/mL.
with antibiotics. However, indifference effects were ob-

vis-à-vis E. coli AG100Atet (64 μg/mL) and E. aerogenes EA27 (8 μg/mL), AARa2 and AARa3 against E. aerogenes EA27 (32 μg/mL and 16 μg/mL respectively), AARb1 and AARb2 against K. pneumoniae KP63 (8 μg/mL and 16 μg/mL respectively), AARb14 and AARb11 against E. coli ATCC8739 (16 μg/mL and 64 μg/mL respectively) and AARb13 against K. pneumoniae KP63 (8 μg/mL).

Antibacterial effects

The need to search for new effective phytochemicals to combat MDR bacteria is timely. Thus, the activities of plant samples could be attributable to the presence of their phytochemical constituents [33, 34]. Previously we documented the antibacterial effects of crude extracts of *Albizia adianthifolia* leaves, bark and roots extracts [19]. This was the rationale for performing, in the present work, the bioguided purification of the roots extract. The inhibitory effect of the root extract of *Albizia adianthifolia* (AAR) was moderate [35], with MICs ≤625 μg/mL against various Gram-negative bacteria [19]. In the present study, fractionation of AAR afforded more effective fractions and sub-frs (Table 1). The recorded MIC values highlight the good activities of AARb vis-à-vis *E. coli* AG100Atet (64 μg/mL) and *E. aerogenes* EA27 (8 μg/mL), AARa2 and AARa3 against *E. aerogenes* EA27 (32 μg/mL and 16 μg/mL respectively), AARb1 and AARb2 against *K. pneumoniae* KP63 (8 μg/mL and 16 μg/mL respectively), AARb14 and AARb11 against *E. coli* ATCC8739 (16 μg/mL and 64 μg/mL respectively) and AARb13 against *K. pneumoniae* KP63 (8 μg/mL).

Discussion

Phytochemicals

Several compounds (seven compounds) were identified in the present work, this include; fatty acid (1), mixture of steroids (2 + 3), one steroid glycoside (4), one alkaloid (5), and two xanthones (6, 7). The isolation of com-

Table 2

Bacterial strains	Compounds, MIC and MBC in parenthesis (in μg/mL)						
	2+3	4	5	6	7	CHL	
E. coli	AG102 –	128 (−)	–	–	–	–	32 (−)
	ATCC8739 –	16 (32)	–	–	–	–	2 (64)
	ATCC10536 16(32)	–	128 (−)	–	–	–	2 (32)
E. aerogenes	ATCC13048 128 (−)	128 (−)	128 (−)	128 (−)	128 (−)	16 (−)	
	EA27 –	–	–	–	–	–	32 (−)
K. pneumoniae	ATCC11296 –	128 (−)	–	–	–	–	32 (−)
	KP55 32(64)	–	128 (−)	128 (−)	128 (−)	64 (−)	64 (−)
P. stuartii	ATCC29916 64(128)	–	64(128)	128 (−)	–	64 (−)	64 (−)
	N/A 16 –	–	–	–	–	–	64 (−)
P. aeruginosa	PA01 16(64)	2(64)	–	–	–	–	64 (−)
	PA124 128(−)	–	–	–	–	–	

Table 2: MIC and MBC (in μg/mL) of compounds isolated from *A. adianthifolia* roots against the panel of 11 Gram-negative bacteria.

Table 3

Bacterial strains	Tested samples, MIC alone, MIC in the present of PAßN (μg/mL), and ameliorating factor (FA)								
	2+3	4	5	6	7	CHL			
E. coli	AG102 –	128 > 1	128 64	2	–	–	–	32 4	
	ATCC10536 16	4	16 8	2	128 > 1	32 4	64 8	8	2 < 1 < 2
E. aerogenes	ATCC13048 128	64 2	128 32	4	128 64	2	128 64	2	128 32
	EA27 –	128 > 1	128 > 1	128 32	4	–	–	–	32 16
K. pneumoniae	ATCC11296 128	128 > 1	128 > 1	128 32	4	–	–	–	32 8
	KP55 32	8	–	128 > 1	128 64	2	128 128	1	128 16
P. stuartii	ATCC29916 64	2	16 > 16	16 > 8	64 16	4	128 32	4	–
	NEA16 –	8	16 > 16	16 > 8	128 > 1	128 > 1	128 > 1	128 > 1	16 64
P. aeruginosa	PA01 16	8	2	> 1	> 2	–	–	–	64 8
	PA124 –	2	> 64	128 64	2	128 > 1	–	–	256 16

Table 3: MIC in μg/mL of compounds and chloramphenicol in the presence of PAßN.

Chl: chloramphenicol, PAßN: Phenylalanine arginyl ß-Naphthylamide. Ameliorating factor: correspond to the ratio MIC of sample tested alone/ MIC of sample in presence of PAßN. –< 1024 μg/mL (case of crude extract), –< > 128 μg/mL (case of compounds). PAßN was tested at 30 μg/mL.
Antibiotics	Bacterial strains	MIC (μg/mL) of antibiotics in the absence and presence of compound 2 + 3					
CIP	PA124, KP55, ATCC11296, EA27, ATCC13048, AG102, ATCC10536	PBSS (%)					
0	2	0.5	0.5	0.5	4	2	0.125
CM/2	0.5(0.25)S	0.5(5)I	0.5(0.5)S	0.5(0.25)S	0.125(0.5)S	0.5(0.25)S	0.125 (1)I (5/7) 71.42%
CM/4	0.5(0.25)S	0.5(5)I	0.5(0.5)S	0.5(0.25)S	0.125(0.5)S	0.5(0.25)S	0.125 (1)I (4/7) 57.14%
ERY	0	> 32	> 32	> 32	> 32	16	16
CM/2	32(0.5)S	2(0.5)S	4(< 0.125)S	32(0.5)S	8(0.5)S	8(0.5)S	7/7 100%
CM/4	32(0.5)S	2(0.5)S	4(< 0.125)S	32(0.5)S	8(0.5)S	8(0.5)S	7/7 100%
GEN	0	> 4	> 4	> 4	> 4	4	4
CM/2	4(0.5)S	1(0.5)S	0.125(< 0.03)S	4(1)I	2(0.5)S	4(0.5)S	2(0.5)S
CM/4	4(0.5)S	1(0.5)S	0.125(< 0.03)S	4(1)I	2(0.5)S	4(0.5)S	2(0.5)S
KAN	0	0.5	2	4	16	16	4
CM/2	< 0.125(0.25)S	2(1)I	2(0.5)S	4(1)I	16(1)I	8(0.5)S	4(1)I
CM/4	< 0.125(0.25)S	2(1)I	2(0.5)S	4(1)I	16(1)I	8(0.5)S	4(1)I
NOR	0	> 16	16	16	16	2	1
CM/2	< 0.125(0.007)S	8(0.5)S	1(1)I	4(0.25)S	2(0.125)S	2(1)I	1(1)I
CM/4	< 0.125(0.007)S	8(0.5)S	1(1)I	4(0.25)S	4(0.25)S	2(1)I	1(1)I
STR	0	> 32	> 32	> 32	> 32	> 32	
CM/2	32(0.5)S	16(< 0.5)S	32(0.5)S	16(< 0.5)S	4(< 0.062)S	7/7 100%	
CM/4	32(0.5)S	32(0.5)S	32(0.5)S	16(< 0.5)S	4(< 0.125)S	7/7 100%	
TET	0	8	0.125	> 16	> 16	> 16	
CM/2	4(0.5)S	0.0625(0.5)S	8(< 0.5)S	16(0.5)S	4(< 0.25)S	1(< 0.062)S	
CM/4	4(0.5)S	0.0625(0.5)S	8(< 0.5)S	16(0.5)S	4(< 0.25)S	1(< 0.062)S	

*Antibiotics: CIP: Ciprofloxacin, ERY: Erythromycin, GEN: Gentamycin, KAN: Kanamycin, NOR: Norfloxacin, STR: Streptomycin, TET: Tetracycline. *Bacteria: Escherichia coli (ATCC10536, AG102), Pseudomonas aeruginosa (PA124), Enterobacter aerogenes (ATCC13048, EA27), Neisseria meningitidis (ATCC11296, KP55). PBSS: Percentage of bacteria strain on which synergism has been observed; S: Synergy; I: Indifference; 0: FIC (Fractional Inhibitory Concentration) of the antibiotics after association with compounds; 0: MIC of the antibiotic alone.
Antibiotics	Bacterial strains	Compounds concentration	PA124	KP55	ATCC11296	EA27	ATCC13048	AG102	ATCC10536	PBSS (%)
CIP		0	2	0.5	0.5	0.5	4	2	0.125	
		CMI/2	2 (1)I	0.5(1)I	0.25(0.5)S	0.25(0.5)S	0.5(0.125)S	0.5(0.25)S	0.125(1)I	(4/7) 57.14%
		CMI/4	2 (1)I	0.5(1)I	0.25(0.5)S	0.25(0.5)S	0.5(0.125)S	0.5(0.25)S	0.125(1)I	(4/7) 57.14%
ERY		0	> 32	> 32	> 32	> 32	> 32	> 32	> 32	> 32
		CMI/2	32 (0.5)S	2(0.5)S	4(< 0.125)S	32 (0.5)S	4(< 0.125)S	4 (0.25)S	8 (0.5)S	(7/7) 100%
		CMI/4	32 (0.5)S	2(0.5)S	4(< 0.125)S	32 (0.5)S	8(< 0.25)S	4 (0.25)S	8 (0.5)S	(7/7) 100%
GEN		0	> 4	> 4	> 4	> 4	> 4	> 4	> 4	> 4
		CMI/2	40.5S	1(0.5)S	00625(< 0.015)S	1 (0.25)S	2(0.5)S	40.5S	0.5(0.125)S	(7/7) 100%
		CMI/4	40.5S	2(1)I	00625(< 0.015)S	1 (0.25)S	0.5(S)	40.5S	2(0.5)S	(6/7) 85.71%
KAN		0	0.5	2	4	4	16	16	4	
		CMI/2	< 0.125(0.25)S	1(0.5)S	20.5S	4(1)I	16(1)I	4(1)I	(3/7) 42.85%	
		CMI/4	< 0.125(0.25)S	2(1)I	20.5S	4(1)I	16(1)I	4(1)I	(2/7) 28.57%	
NOR		0	> 16	16	16	16	2	1		
		CMI/2	8(< 0.5)S	2(0.125)S	0.5(S)	4(0.25)S	8(0.5)S	2(1)I	0.5(0.5)S	(6/7) 85.71%
		CMI/4	8(< 0.5)S	2(0.125)S	0.5(S)	8(0.5)S	2(1)I	0.5(0.5)S	(6/7) 85.71%	
STR		0	> 32	> 32	> 32	> 32	> 32	> 32	> 32	> 32
		CMI/2	32(0.5)S	32(0.5)S	32(0.5)S	16(< 0.5)S	32(0.5)S	2(< 0.062)S	(7/7) 100%	
		CMI/4	32(0.5)S	32(0.5)S	32(0.5)S	16(< 0.5)S	32(0.5)S	2(< 0.062)S	(7/7) 100%	
TET		0	8	0.125	> 16	> 16	> 16	> 16	16	
		CMI/2	40.5S	0.0625(0.5)S	0.5(< 0.031)S	4(< 0.25)S	0.5(< 0.031)S	2(< 0.125)S	0.125(0.007)S	(7/7) 100%
		CMI/4	40.5S	0.0625(0.5)S	0.5(< 0.031)S	8(< 0.5)S	0.5(< 0.031)S	2(< 0.125)S	0.125(0.007)S	(7/7) 100%

*Antibiotics: [CIP] Ciprofloxacin, [ERY] Erythromycin, [GEN] Gentamycin, [KAN] Kanamycin, [NOR] Norfloxacin, [STR] Streptomycin, [TET] Tetracycline. *1Bacteria: *Escherichia coli* [ATCC10536, AG102], *Pseudomonas aeruginosa* [PA124], *Enterobacter aerogenes* [ATCC13048, EA27], *Klebsiella pneumoniae* [ATCC11296, KP55]. PBSS: Percentage of bacteria strain on which synergism has been observed; S: Synergy; I: Indifference; (): FIC (Fractional Inhibitory Concentration) of the antibiotics after association with compounds; 0: MIC of the antibiotic alone.
This clearly demonstrates the increase in the activity related to the subsequent fractionation of the plant extract, thus reflecting the good antibacterial potential of *Albizia adianthifolia*. It should also be noted that AARb1 and AARb2 showed MICs < 100 μg/mL on the majority of bacteria (11/15) (Table 1). The MBC/MIC ratios obtained were generally greater than 4, highlighting the bacteriostatic effects of extracts studied as well as the active fractions [36, 37]. According to established cutoff points [38], the antibacterial activity of phytochemicals are significant when MICs < 10 μg/mL, moderate when MICs are between 10 and 100 μg/mL, and low if the MICs > 100 μg/mL. On the basis of this scale, compound 4 had significant antibacterial effects against *P. aeruginosa* PA01 (MIC of 2 μg/mL) strain. Overall MIC data obtained with the compounds were much higher than those of the most active sub-fractions from where they were isolated (AARb1–2 and AARb13). This suggests that the antibacterial activity of its sub-fractions could be due to the synergistic effects of its different constituents. This is also an indication that the fight against the pathogens tested with fractions, sub-fractions and mainly AARb13 (sub-fraction) could be more effective than with isolated compounds.

Role of efflux pumps in the susceptibility of gram-negative bacteria to the tested samples

The efflux systems involved in this mechanism are tripartite complexes, including the AcrAB-ToIC and MexAB-oprM pumps of Enterobacteriaceae and *P. aeruginosa* respectively [39, 40], which play a central role in the multidrug resistance of Gram-negative bacteria. The restoration of the sensitivity of bacteria by the use of efflux pumps inhibitors (IPE) to allow an achievement of flux inhibitor [23]. The antibacterial potential of compounds (2 + 3 and 4) in the inhibition of resistant Gram-negative bacteria is reported here for the first time, as well as their antibiotic-modulatory effects. This study also provides more information on the antibacterial activity of compounds (2 + 3 and 4) against MDR bacteria.

Effects of association of compounds with antibiotics

Synergistic effects following the combination of the compounds (2 + 3 and 4) with ERY, STR, as well as with GEN and compounds 2 + 3 and 4 with TET with respect to all the bacteria tested were noted. Synergistic or modulatory effects of the compounds (2 + 3 and 4) with other antibiotics were found on more than 70% of bacteria tested in several cases, with FIC values, ranging mostly from 0.5 to 0.007. These results suggest that those compounds could be considered as a potential efflux inhibitor [23]. The antibacterial potential of compounds (2 + 3 and 4) in the inhibition of resistant Gram-negative bacteria is reported here for the first time, as well as their antibiotic-modulatory effects. This study also provides more information on the antibacterial activity of compounds (2 + 3 and 4) against MDR bacteria.

Conclusion

Data reported in the present investigation suggest that bioactives from root of *Albizia adianthifolia* are potential sources of antibacterials to tackle resistant phenotypes. To overcome bacterial resistance, compounds 2 + 3 and 4 could also possibly be used in association with antibiotics.
Funding
This study was partially funded by the Scientific Research Projects Commission of Anadolu University, Eskisehir, Turkey (1306F110).

Availability of data and materials
All data generated or analysed during this study are included in this published article and its Additional files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
VK is a Section Editor of BMC Complementary and Alternative Medicine; all the other authors declare that they have no competing interests.

Author details
1Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon. 2Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon. 3Department of Chemistry, Faculty of Science, Eskisehir Technical University, 26470 Eskisehir, Turkey.

Received: 21 March 2019 Accepted: 29 May 2019

References
1. Adwan G, Mhanna M. Synergistic effects of plant extracts and antibiotics on staphylococcus aureus strains isolated from clinical specimens. J Sci Res. 2008;3:134–9.
2. Falagas ME, Ilkitis IA. Pandrug-resistant gram-negative bacteria the dawn of the post antibiotic era. Inter J Antimicro Agts. 2007;29:630–6.
3. Amgad AA, Martin RPJ, Ismail MM, Abdelkareem MA, Ahmad MA, Mohamed EH. Antibacterial activities of seed extracts of mango (MangiferaindicaL.). Adv Microbiol. 2012;5:71–6.
4. Cattori V. Pompes d’efflux et résistance aux antibiotiques chez les bactéries. Path Biol. 2004;5:2607–16.
5. O. Lomovskaya O, Bostan KA. Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochem Pharmacol 2006; 71:910–918.
6. Dzotam KJ, Simo KI, Bitchagno G, Ihami C, Sandjo PL, Tane P, Kuete V. In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3’, 4’, 7- trihydroxyflavone from Myristica fragrans Houtt against MDR gram-negative enteric bacteria. BMC Complement Altern Med. 2018;18:15.
7. Kadhim MI, Rana KN, Amaal SA. Antibacterial activity of nutmeg (Myristica fragrans) seed extracts against some pathogenic bacteria. J Al-Nahrain Univ. 2013;16(2):188–92.
8. Djeusdi SD, Sandjo PL, Noumedem AJ, Omosa KL, Kuete V. Antibacterial activities of the methanol extracts and compounds from Euryhina sigmoidea against gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med. 2015.
9. Voukeng IK, Kuete V, Dzoyem GA, Noumedem AJ, Kuate RI, Pages MJ. Antibacterial and antibiotic-potentiation activities of the methanol extract of some Cameroonian spices against gram-negative multidrug resistant phenotypes. BMC Complement Altern Med. 2012;5:299.
10. Voukeng IK, Beng VP, Kuete V. Antibacterial activity of six medicinal Cameroonian plants against gram-positive and gram-negative multidrug resistant phenotypes. BMC Complement Altern Med. 2016.
11. Fankam GA, Kuate RG, Kuete V. Antibacterial and antibiotic resistance modifying activity of the extracts from Allantoblastoa gabonensis, Combretum mole and Glãœsdolus quenzinsius against gram-negative bacteria including multidrug resistant phenotypes. BMC Complement Altern Med. 2015.
12. Tankeo BS, Damen F, Sandjo PL, Ilhami C, Tane P, Kuete V. Antibacterial activities of the methanol extracts, fractions and compounds from Harungana madagascariensis lam. Ex pair (Hypericaceae). J Ethnopharmacol. 2016;90:100–5.
13. Van-Wyk B, Gerick N. People’s plants: a guide to useful plants of southern Africa. Pretoria: Bliiza publications; 2000.
14. Watt J, Breyer-Brandwyt M. The medicinal and poisonous plants of southern and Eastern Africa. 2nd ed. London: Livingstone; 1962.
15. Haddad M, Laurens V, Lacaille -Dubois AM. Induction of apoptosis in a leukemia cell line by tetterpen saponins from Albizia adianthifolia. Bioorg Med Chem. 2004;12:75–34.
16. Shaddad M, Miyamoto T, Laurens V, Lacaille-Dubois AM. Two new biologically active tetterpenoid saponins acylated with salicylic acid from Albizia adianthifolia. J Nat Prods. 2003;66:372–7.
17. Tamokou DJ, Simo JDM, Keilah PL, Tane M, Tane P, Kuiate RJ. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoidea). BMC Complement Altern Med. 2012.
18. Haddad M, Khan AJ, Lacaille-Dubois AM. Two new proapopgens from Albizia adianthifolia. Pharmazie. 57:705–8.
19. Tchinda CF, Voukeng IK, Beng VP. Kuete V antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant gram-negative bacteria. Saudi J Biol Sci. 2016. https://doi.org/10.1016/j.sjbs.2016.01.033.
20. Kuete V, Wabo FG, Ngameni B, Mbaveng TA, Metuno R, Etoka F-X, Halll N. Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (bonnanaeaceae). J Ethnopharmacol. 2007;114(1):54–60.
21. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64(7):1–3.
22. Kuete V, Nana F, Ngameni B, T, A, Mbaveng AT, Keumedjio F, Ngadjui BT. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovate (Moraceae). J Ethnopharmacol 2009; 124:556–56.
23. Noumedem J, Mihasan M, Kuate J, Stefan M, Cojocaru D, Dzoyem J, Kuete V. In vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complement Altern Med. 2013;13:1990.
24. Seukpe JA, Sandjo LP, Ngadjui BT, Kuete V. Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea obeguinii against gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med. 2016;16:193. https://doi.org/10.1186/s12906-016-1173-2.
25. Coutinho HD, Vasconcellos A, Freire-Pessoa HL, Gadelha CA, Gadelha TS, Almeida-Filho GG. Natural products from the termite Nasutitermes coniger lower aminoglycoside minimum inhibitory concentrations. Pharmacoyn Mag. 2010;1:6–41.
26. Braga LC, Leite AA, KGS X, Takahashi JA, Bernquerer MP, Chartone-Souza E, Nascimento AM. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol. 2005;51(7):541–7.
27. Weast RC, Astle JM. CRC handbook of data on organic compounds. Weast & Co., Cleveland, Ohio; 1975.
28. De-Ekmamkul W, Potduang B. Biosynthesis of beta-sitosterol and myristic acid from Myristica fragrans. J Sci Res. 2006;71:910–918.
29. Ramaiarantsoa H, Koffi AB, Assi AM, Djakoure LA. Les 3-0-b-D-glucoside of the ß-sitosterol isoles of the feuilles de Rauvastina madagascariensis. Journal de la Société Ouest-africaine de chine. 2008;26:99–103.
30. Ling-Ling Y, Rong-Tao L, Yuan-Bao A, Wei L, Zhang-Shuang D, Zhong-Mei Z. Protoberberine isoquinoline alkaloids from Arcangelisia gusantul, Molecules. 2014;19:13332–41.
31. Dinesh Kumar B, Anilava M, Manjunatha M. Studies on the anti-diabetic and hypolipidemic potentials of mangiferin (Kanthoxide Gluclde) in streptozotocin-induced type 1 and type 2 diabetic model rats. Inter J Adv Pharm Sci. 2010;1:73–85.
32. De Souza JRJ. Mangiferin: Microencapsulation in Pectin/Chitosan Systems, in vitro intestinal metabolism and anticancer activity. Ph.D in Chemistry, University of Ceará, 2012. 1–242.
33. Cowan MM. Plants products as antimicrobial activity. Clin Microbiol Rev. 1999;12(4):564–82.
34. Sharma SK, Singh AP. Antimicrobial investigations on rhizomes of Cyperus rotundus Linn. Pharm Lett. 2011;3(3):427–31.
35. Kuete V, Ngameni B, Tagomwou GJ, Bolla JM, Alibert-Franco S, Ngadjui TB, Pagès JM. Efflux pumps are involved in the defense of gram-negative Bacteria against the natural products Isobavachalcone and Diospyrone. Antimicrob Agents Chemother. 2010;54(5):1749–52.
36. Mims C, Playfair J, Roitt I, Wakelin D, Williams R. Antimicrobials and chemotherapy. In: Mims, C.A. (Eds.). Med Microbiol Rev 1993; 35:1–34.
37. Mbaveng AT, Kuete V, Mapunya BM, Beng VP, Nikengfack AE, Meyer JJ, Lall N. Evaluation of four Cameroonian medicinal plants for anticancer, antgonorheal and antireverse transcriptase activities. Envr Toxicol and Pharmacol. 2011;32:162–7.
38. Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med. 2010;76:1–13.
39. Chevalier J, Pagès JM, Euraud A, Malilla M. Membrane permeability modifications are involved in antibiotic resistance in Klebsiella pneumoniae. Biochem Biophys Res Commun. 2000;274:496–9.
40. Ghisalberti D, Masi M, Pagès JM, Chevalier J. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun. 2005;328:1113–8.
41. Pagès JM, Amiral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of gram-negative bacteria. Biochem and Biophys Acta. 2009;1794:826–33.
42. Lammers RP, Cavallari JF, Burrows LL. The efflux inhibitor phenylalanine arginine beta-naphthyamide permeabilizes the outer membrane of gram-negative bacteria. PLoS One. 2013;8:e60666.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.