The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart

Derek K. Zachman,* Adam J. Chicco,† Sylvia A. McCune,* Robert C. Murphy,§ Russell L. Moore,* and Genevieve C. Sparagna*†

Department of Integrative Physiology,* University of Colorado Cardiovascular Institute, University of Colorado at Boulder, Boulder, CO 80309-0354; Department of Health and Exercise Science,† Colorado State University, Fort Collins, CO 80523-1582; and Department of Pharmacology,§ University of Colorado Denver and Health Sciences Center, Aurora, CO 80045-0511

Abstract Cardiolipin (CL) is an essential phospholipid component of the inner mitochondrial membrane. In the mammalian heart, the functional form of CL is tetralino-leoyl CL [(18:2)4CL]. A decrease in (18:2)4CL content, which is believed to negatively impact mitochondrial energetics, occurs in heart failure (HF) and other mitochondrial diseases. Presumably, (18:2)4CL is generated by remodeling nascent CL in a series of deacylation-reacylation cycles; however, our overall understanding of CL remodeling is not yet complete. Herein, we present a novel cell culture method for investigating CL remodeling in myocytes isolated from Spontaneously Hypertensive HF rat hearts. Further, we use this method to examine the role of calcium-independent phospholipase A2 (iPLA2) in CL remodeling in both HF and nonHF cardiomyocytes. Our results show that 18:2 incorporation into (18:2)4CL is: a) performed singly with respect to each fatty acyl moiety, b) attenuated in HF relative to nonHF, and c) partially sensitive to iPLA2 inhibition by bromoehanol lactone. These results suggest that CL remodeling occurs in a step-wise manner, that compromised 18:2 incorporation contributes to a reduction in (18:2)4CL in the failing rat heart, and that mitochondrial iPLA2 plays a role in the remodeling of CL’s acyl composition.—Zachman, D. K., A. J. Chicco, S. A. McCune, R. C. Murphy, R. L. Moore, and G. C. Sparagna. The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J. Lipid Res. 2010. 51: 525–534.

Supplementary key words: linoleic acid • phospholipid remodeling • phosphatidylglycerol • bromoehanol lactone

Cardiolipin (CL, 1,3-bis[1′,2′-diacyl-3′-phosphoryl-sn-glycerol]-sn-glycerol) is a unique tetra-acyl phospholipid found in energy-transducing biological membranes (1). In mammals, CL accounts for approximately 15% of mitochondrial phospholipid mass and localizes largely to the inner mitochondrial membrane (IMM), although it has also been identified in the outer mitochondrial membrane (2–4). Within the IMM, CL physically associates with a number of proteins involved in mitochondrial energetics, including cytochrome c oxidase and the F$_1$F$_0$ ATPase (5–7).

A substantial body of evidence supports the presence of CL as essential for mitochondrial respiratory function. Paradis et al. (8) reported that cytochrome c oxidase activity was restored only when delipidated mitochondrial membranes were reconstituted in the presence of CL, and Sedlak and Robinson (9) have shown that a loss of CL destabilizes the noncovalent connections between cytochrome c oxidase subunits Vla and Vlb. In addition to its role in IMM protein activity, CL also serves as a proton trap (10), cytochrome c anchor (11, 12), is involved in protein import (13, 14), and is important for imparting a specific three-dimensional structure on the IMM (15).

The acyl composition and molecular symmetry of CL have received attention for their importance in proper CL function (6, 16, 17). In mammals, the majority of cardiac CL is enriched with the essential ω-6 fatty acid, linoleic

Abbreviations: ALCAT, acylCoA-hydrocardiolipin acyltransferase; AWTo, left ventricular anterior wall thickness in diastole; BEL, bromoehanol lactone; C-18:2, carbon stable isotope linoleic acid; CDP-DAG, cytidinediphosphate-diacylglycerol; CL, cardiolipin; CLS, CL synthase; EF, ejection fraction; FBN, Fisher Brown Norway; FS, fractional shortening; HF, heart failure; IMM, inner mitochondrial membrane; iPLA2, calcium-independent phospholipase A2; LV, left ventricle; LVIDd, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; MLCL, monolysocLL; MLCL-AT, MLCL-acyltransferase; PG, phosphatidylglycerol; PWTd, left ventricular posterior wall thickness in diastole; SHHF, Spontaneously Hypertensive HF.

*To whom correspondence should be addressed.

e-mail: sparagna@colorado.edu

Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org
acid (18:2) (2, 6, 16). Tetralinoleoyl CL [(18:2)4CL] accounts for 75–80% of total CL content in both rat and human cardiac mitochondria (2, 16). The notion that 18:2 is essential for CL’s function in the mammalian heart is based on three independent observations. First, the vast majority of CL is remodeled from its de novo form to (18:2) CL, subsequent to its biosynthesis. Second, the high prevalence of (18:2)4CL over other CL species is unlikely if one considers the remodeling process to be random with respect to acyl selection, which suggests that the loading of CL with 18:2 is purposeful. Lastly and most importantly, a loss of (18:2)4CL, along with an increase in 18:2-deficient CL species, occurs in a number of cardiac disease states (6, 18). The disease most directly associated with a loss of (18:2)4CL is Barth syndrome, caused by an X-linked mutation in the tafazzin gene (19–22). Levels of energetic disequilibrium. More recently, Malhotra et al. (36) observed concomitantly with symptoms of myocardial en-

The formation of (18:2)4CL is dependent on the coupling of CL biosynthesis and remodeling. The biosynthesis of CL occurs within the IMM (26–29), where nascent CL is formed from the condensation of phosphatidylglycerol (PG) and cytidinediphosphate-diacylglycerol (CDP-DAG) in a reaction catalyzed by CL synthase (CLS) (for review, see 30, 31). Neither the acyl composition of PG and CDP-DAG nor the acyl specificity of CLS results in an enrichment of CL with 18:2 de novo; thus, nascent CL must be converted to (18:2)4CL through an acyl remodeling cycle. Presumably, the remodeling of CL occurs through a series of deacylation-reacylation reactions, though the details of CL remodeling in vivo remain in question (18, 30). To date, three enzymes have been identified that are capable of adding 18:2 to a monolysocL (MLCL): tafazzin (32), MLCL-acyltransferase (MLCL-AT, 33), and acylCoA-lysocardiolipin acyltransferase (ALCAT-1, 34). None of these enzymes, however, possess phospholipase activity. In fact, very little research has examined the role of endoge-

Materials and Methods

All materials used in this study were purchased from the Sigma Chemical Co. with the following exceptions: Type-2 collagenase was purchased from Worthington, racemic bromoeno lactone (BEL) and the iPLAγ-specific enantiomer R-BEL were purchased from Cayman Chemical Co., and carbon stable isotope linoleic acid (13C18:2, >98% isotope enrichment, abbreviated in the text as 13C-18:2) was purchased from Spectra Stable Isotopes (Cambridge Isotope Laboratories).

Animals

The SHHF rat is a model of human HF that is genetically pre-

dispensed to death from hypertrophic followed by dilated cardio-

myopathy, the etiology of which has been described by McCune et al. (37). Briefly, female SHHF rats become hypertensive by approximately 3 months of age and this development progresses to overt hypertension by 5 months. Secondary to this hypertension, myocardial hypertrophy begins around 17 months of age and progresses to dilated cardiomyopathy between 23–25 months (38, 39). Female SHHF rats (colony kept at the University of Colorado by S.A.M.) were designated as nonHF or HF based on age (2–3 months and 21–23 months, respectively), left ventricular (LV) function as assessed by echocardiography, and the absence or presence, respectively, of at least one of the following symptoms: labored breathing, piloerection, or orthopnea. Age-matched (3 months and >22 months) female Fisher Brown Norway (Fisher 344 x Brown Norway F1, FBN) rats (Harlan) were used in select experiments as an aging control. The FBN rat was chosen as an aging control, rather than the Fisher 344, Wistar, or Sprague Dawley rat, because the documented incidence of cardiovascular dysfunction and disease is milder and of later onset in FBN rats relative to the other strains (40–42). All animals were housed in groups of 2–3 on a 12:12 h light:dark cycle with ad libitum access to chow and water. The n values for each experiment are located within figure legends. All animal treatment was conducted in conformity with the Public Health Service Policy on Humane Use and Care of Laboratory Animals and in accordance with guidelines set forth on animal care at the University of Colorado, Boulder.

Echocardiographic analysis

Transtracheal echocardiography was performed on all rats 2–5 days prior to euthanasia under inhaled isoflurane anesthesia (5% initial, 2% maintenance) using a 12 MHz pediatric transducer connected to a Hewlett Packard Sonos 5500 Ultrasound system. Short axis M-mode echocardiograms on the LV were obtained for measurement of LV internal diameters at diastole (LVId) and systole (LVIds), fractional shortening (FS), ejection fraction (EF), anterior wall thickness in diastole (AWTd), and posterior wall thickness in diastole (PWTd) as previously described (43).

Cardiomyocyte isolation

Cardiomyocytes were isolated from whole hearts with modifi-

ing in the Spontaneously Hypertensive HF (SHHF) rat as well as the potential remodeling role of iPLAγ in this model of cardiac stress. We report that the incorporation of 18:2 into (18:2)4CL in SHHF cardiomyocytes: a) occurs singly over time, b) is attenuated with the development of HF, and c) is partially sensitive to inhibition of iPLAγ.
Cardiomyocyte treatment

For each experimental group, three laminin-coated glass coverslips plated with cardiomyocytes were bathed in Springhorn medium in 100 × 15 mm sterile Petri dishes (final volume 12 ml). The first group served as a control and was incubated with 0.17 mM fatty acid-free BSA and 0.1% DMSO vehicle. The second group of cells was incubated with BSA-bound 13C-18:2 such that the final concentrations were 1 mM 13C-18:2 and 0.17 mM BSA (a 6:1 18:2:BSA ratio), with 0.1% DMSO vehicle. The third group of cells was treated in a manner similar to the second group, but was incubated for 30 min with 10 μM BEL or 0.1% DMSO prior to the addition of BSA-bound 13C-18:2 (13C-18:2 + BEL). The final group was treated exactly the same as the third group, except 5 μM of the iPLA2γ-specific BEL enantiomer, R-BEL, was used instead of the racemic BEL mixture (13C-18:2 + R-BEL). Data was not shown for a fifth, “BEL control” group (10 μM BEL or 5 μM R-BEL for 30 min preceding the addition of 13C-18:2 to solution. Myocytes remained in culture for up to 24 h, after which we examined 13C-18:2 uptake into (18:2) 4 CL by expressing (13C-18:2) (18:2) 3 CL as a fraction of total CL content, or by determining the initial rate of (13C-18:2) (18:2) 3 CL formation using the linear coefficient of a best-fit quadratic equation. For all experiments, total CL was calculated as previously described (16).

Cardiomyocyte harvest and lipid extraction

Following treatment, myocytes were scraped from coverslips and centrifuged at 1600 g for 5 min at room temperature. Pelleted myocytes were resuspended in HPLC-grade methanol and stored at −20°C until lipid extraction. Lipids were extracted according to Bligh and Dyer (46) and subject to ESI-MS for phospholipid content analysis.

Phospholipid analysis

Singly-ionized CL and PG species were quantified by ESI-MS as described by Sparagna et al. (46). Tetramyristoyl CL [(14:0)4CL] was included as an internal standard to verify the quality of the spectra. Differences in cell yield between groups were controlled for by expressing each analyte as a fraction of its total respective phospholipid content. The specific acyl compositions, mass to charge ratios (m/z), and text abbreviations for all phospholipids presented can be found in Table 1.

CL

In the first experiment, cardiomyocytes were incubated under control conditions for 48 h to verify that the CL composition in cell culture matched typical cardiac CL in the intact SHHF rat heart (16). To do this, we quantified the two predominant CL species in isolated SHHF cardiac mitochondria: (18:2) CL and (18:2)(22:6)CL (46). In the second experiment, we wished to examine the incorporation of 13C-18:2 into CL over a period of 72 h. As such, we quantified five different species of tetra-18:2 CL: (18:2)CL, (13C-18:2)(18:2)CL, (13C-18:2)(18:2)CL, (13C-18:2)(18:2)CL, and (13C-18:2)(18:2)CL. Each tetra-18:2 CL species contained a different number of 18:2 and 13C-18:2 moieties; thus, we were able to monitor the replacement of endogenous 18:2 in (18:2)CL with 13C-labeled 18:2. In the final experiment, cardiomyocytes were incubated in 10 μM BEL or 5 μM R-BEL for 30 min preceding the addition of 13C-18:2 to solution. Myocytes remained in culture for up to 24 h, after which we examined 13C-18:2 uptake into (18:2)CL by expressing (13C-18:2)(18:2)CL as a fraction of total CL content, or by determining the initial rate of (13C-18:2)(18:2)CL formation using the linear coefficient of a best-fit quadratic equation. For all experiments, total CL was calculated as previously described (16).

PG

To determine whether our method monitors the incorporation of 13C-18:2 into (18:2)CL at the level of CL remodeling or CL biosynthesis, we examined 13C-18:2 content in PG following up to 72 h of incubation with 13C-18:2 or 24 h of incubation with 15C-18:2 plus BEL or R-BEL. For these experiments, we quantified five different species of PG (listed in Table 1) and expressed each as a fraction of their sum, which accounts for the vast majority of PG detected in the mass spectra.

Statistical analysis

For echocardiography data, data corresponding to control CL composition, and data involving the incorporation of 13C-18:2 into PG, a multivariate ANOVA was used to test for an omnibus F-ratio. Rates of CL remodeling in the presence of BEL or R-BEL were evaluated with a two-factor repeated measures ANOVA. A two-factor ANOVA was used to examine differences in remodeling between young and aged SHHF and FBN cardiomyocytes. In the event of a statistically significant F-ratio, post hoc multiple comparisons were made using Tukey’s Honestly Significant Difference or simple comparisons. Where necessary, absolute p-values were adjusted with a Bonferroni correction. In all cases, α = 0.05 was set as the marker for statistical significance.

RESULTS

Cardiac function and cardiomyocyte viability

Cardiac function. Rats were subjected to echocardiography to assess LV function preceding sacrifice. SHHF echocardiography data clearly demonstrate significant LV hypertrophy and systolic dysfunction in HF compared with nonHF animals (Table 2), consistent with the late stages of hypertensive heart disease and early HF in this animal model (47). In contrast, aged FBNs exhibited neither LV thickening nor functional deficits when compared with young FBNs, and the LV morphological and functional
values reported here are consistent with previously reported values for this animal strain (48).

Cardiomyocyte viability. Isolated myocytes were photographed preceding and subsequent to each treatment period. No large differences in myocyte viability were witnessed between the pre- and post-treatment time points (representative micrographs shown in Fig. 1).

Cardiolipin composition in isolated myocytes

Figure 2 shows (18:2)_4 CL, (18:2)_3 (22:6) CL, and the ratio of the two species in SHHF nonHF and HF myocytes after 48 h under control conditions. With consistent CL composition in mitochondria isolated from whole hearts (16), (18:2)_4 CL is depressed with the development of HF (P < 0.05), along with trends for statistically significant increases in (18:2)_3 (22:6) CL and the (18:2)_3 (22:6) CL / (18:2)_4 CL ratio (P = 0.097 and 0.070, respectively).

Incorporation of _13_ C-18:2 into (18:2)_4 CL

In a time-course experiment, we incubated SHHF cardiomyocytes in _13_ C-18:2 for up to 72 h, monitoring the incorporation of _13_ C-18:2 into (18:2)_4 CL via the formation of _13_ C-labeled CL species. The results from these experiments are presented in Figs. 3 and 4. Figure 3 shows representative ESI mass spectra from nonHF myocytes under varying conditions. As shown, _13_ C-labeled (18:2)_4 CL peaks not present under control conditions (Fig. 3A) appear after 24 h and 48 h incubations with _13_ C-18:2 (Figs 3B and 3C, respectively), and this appearance is partially prevented by preincubation with BEL (Fig. 3D). Figure 4 shows the quantitative results from these spectra for nonHF (Fig. 4A) and HF (Fig. 4B) cardiomyocytes. In addition to _13_ C-labeled (18:2)_4 CL species, Fig. 4A and 4B also display the levels of endogenous (18:2)_4 CL and the sum of all labeled and nonlabeled (18:2)_4 CL species throughout the incubation period. With added _13_ C-18:2, nonHF SHHF myocytes were able to raise and sustain total (18:2)_4 CL levels to 80.4 ± 1.5 % of total CL, whereas levels in myocytes isolated from HF animals peaked at 64.8 ± 5.1 %.

TABLE 1. Phosphatidylglycerol and cardiolipin species measured using ESI mass spectrometry

Phosphatidylglycerol	Mass to Charge Ratio (m/z)	Abbreviation in Text
1-2-di-13_ C-linoleoyl phosphatidylglycerol	805.5	(13C-18:2)_2PG
1-3_ C-linoleoyl-2-oleyl phosphatidylglycerol	789.5	(13C-18:2)(18:1)PG
1-3_ C-linoleoyl-2-palmitoyl phosphatidylglycerol	763.5	(13C-18:2)(16:0)PG
1-palmitoyl-2-oleoyl phosphatidylglycerol	747.5	(16:0)(18:1)PG
1-3_ C-linoleoyl-2-linoleoyl phosphatidylglycerol	787.5	(13C-18:2)(18:2)PG

Cardiolipin

1-2-, 3-, 4-tetralinoleoyl cardiolipin	1448.0	(18:2)_4 CL
1-3_ C-linoleoyl, 2-, 3-, 4-trilinoleoyl cardiolipin	1466.0	(13C-18:2)(18:2)_2CL
1-, 2-, 3-, 4-trilinoleoyl, 4-docosahexaenoyl cardiolipin	1484.0	(13C-18:2)(18:2)_2CL
1-, 2-, 3-trilinoleoyl, 4-docosahexaenoyl cardiolipin	1502.0	(13C-18:2)(18:2)_3CL
1-, 2-, 3-trilinoleoyl, 4-docosahexaenoyl cardiolipin	1520.0	(13C-18:2)(18:2)_4CL
1-, 2-, 3-, 4-tetralinoleoyl cardiolipin	1496.0	(18:2)_2(18:2)_2CL

Singly-ionized CL and PG species were quantified using ESI mass spectrometry. 16:0, palmitoyl; 18:1, oleoyl; 18:2, linoleoyl; 13_ C-18:2, carbon stable isotope linoleoyl; 22:6, docosahexaenoyl.

TABLE 2. Analysis of left ventricular function in young and aged SHHF and FBN rats

Group	LVIDd (mm)	LVIDs (mm)	FS (%)	EF (%)	AWTd (mm)	PWTd (mm)	
SHHF	Non-HF	6.4 ± 0.1*	3.9 ± 0.2**	39 ± 2**	77 ± 2**	1.4 ± 0.1*	1.4 ± 0.1*
	HF	8.0 ± 0.2*	6.1 ± 0.2**	24 ± 2**	56 ± 3**	1.9 ± 0.1*	1.8 ± 0.1*
	Young	5.3 ± 0.1*	2.5 ± 0.3**	54 ± 3**	89 ± 3**	1.5 ± 0.04	1.5 ± 0.06
	Aged	6.3 ± 0.2*	2.9 ± 0.2**	54 ± 3**	89 ± 3**	1.6 ± 0.1	1.7 ± 0.06*

Data for various markers of LV morphology and function are presented as mean ± SE (n = 8 per group SHHF, n = 4–6 per group FBN). LVIDd, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; FS, fractional shortening; EF, ejection fraction; AWTd, left ventricular anterior wall thickness in diastole; PWTd, left ventricular posterior wall thickness in diastole. *P < 0.05 versus SHHF non-HF; **P < 0.05 versus SHHF HF; †P < 0.05 versus FBN young; ‡P < 0.05 versus FBN aged within same column.
Cardiolipin and iPLA₂ in heart failure

529

Incorporation of ¹³C-18:2 into (18:2)₄CL is partially iPLA₂-dependent

We examined ¹³C-18:2 incorporation into singly-labeled CL [(¹³C-18:2)₄(18:2)₃CL] in the presence of the iPLA₂ inhibitor, BEL. Preincubation with 10 µM BEL attenuated ¹³C-18:2 incorporation in myocytes isolated from both nonHF and HF rat hearts for up to 10 h of incubation (Fig. 6A, B). Interestingly, the percent of total ¹³C-18:2 incorporation inhibited by BEL after 10 h was significantly less in nonHF versus HF (61.2 ± 2.9% and 79.6 ± 2.3%, respectively, P < 0.01). After 24 h of incubation, ¹³C-18:2 incorporation was still sensitive to BEL in nonHF myocytes; however, BEL sensitivity was diminished in myocytes isolated from HF SHHF rats. To further quantify the differential effects of BEL treatment in nonHF and HF, we measured the initial rates of singly-labeled CL formation after 10 h and 24 h of incubation in ¹³C-18:2 with and without BEL. In both nonHF and HF, the rate of singly-labeled CL formation was significantly reduced by BEL throughout the first 10 h of incubation; however, this incorporation was sensitive to BEL after 24 h in only nonHF myocytes (Fig. 6 table inserts). Finally, because data from Mancuso et al. (35) suggested a role of iPLA₂ in CL remodeling, we examined ¹³C-18:2 incorporation in the presence of the iPLA₂-specific enantiomer, R-BEL. R-BEL had very similar effects on CL remodeling when compared with BEL in nonHF myocytes, and was capable of significantly preventing ¹³C-18:2 incorporation into singly-labeled CL following up to 24 h of incubation with respect to both total incorporation over 24 h and the initial rate of incorporation (Fig. 7). Racemic BEL and R-BEL had the same effects on the initial rates of incorporation and resulted in similar rates of 18:2 incorporation after both 10 h and 24 h of incubation (P > 0.05). Neither 10 µM BEL nor 5 µM R-BEL had an effect on cardiomyocyte viability during the 24 h treatment period (micrographs not shown).

DISCUSSION

The maintenance of cardiac (18:2),CL levels appears to be extremely important in mitochondrial energetics; however, the exact mechanism by which CL is remodeled to contain 18:2 remains to be determined. We conducted this study, first, to develop a method for monitoring CL remodeling in the isolated rat cardiomyocyte, and next, to use this method to examine both changes in CL remodeling in the context of HF and the role of iPLA₂ in CL remodeling. We presented data that show CL is remodeled singly with respect to its fatty-acyl moieties; the rate of 18:2 incorporation into CL is depressed in HF; and iPLA₂ is partly involved in the incorporation of ¹³C-18:2 into (18:2)₄CL in SHHF cardiomyocytes.

In this report, we presented a new method for studying the remodeling of CL at the level of the individual cardio-
Presumably, the remodeling of nascent CL to (18:2)_4 CL occurs through a series of four discreet deacylation-reacylation cycles, such that MLCL is the only necessary intermediate. In fact, dilysoCL is not readily acylated to CL (52). As far as we know, however, there is no direct evidence for a step-wise incorporation of 18:2 into CL. The results from our time-course experiment are the first to show that CL is remodeled in this step-wise manner. Rather than the sporadic appearance of 13C-labeled CL with one, two, three, or four 13C-18:2 moieties, the incorporation of 13C-18:2 into (18:2)_4 CL occurs singly over time.

There exists a large descriptive precedent documenting abnormal CL composition in the context of disease (6, 16, 20, 53); however, aside from Barth syndrome, no research has resulted in a mechanism for this decline. In this report, we have shown that 18:2 incorporation into CL is attenuated in myocytes isolated from failing rat hearts. Total (18:2)_4 CL levels peaked at approximately 65% of total CL in HF myocytes, which was much lower than the corresponding value (80%) in nonfailing myocytes. These observations show that the failing myocardium has an attenuated ability to traffic and/or incorporate 18:2 into CL. Interestingly, the incorporation of 18:2 into PG was also lower in HF myocytes, indicating that acyl-chain remodeling abnormalities are not limited to CL in the failing rat heart.

In a recent two-part publication, Schlame and colleagues (54, 55) provided evidence that the acyl composition of CL depends more on the composition of the local lipid environment than the acyl specificity of CL remodeling.
Cardiolipin and iPLA$_2$ in heart failure

531

In our previous publication, we also reported a 5-fold increase in MLCL-AT activity in HF (56), which may represent a compensatory response to the reduction in tafazzin content. Regardless of this, HF myocytes were still unable to properly remodel CL; therefore, we postulate that in the absence of tafazzin, the bioavailability of 18:2-CoA for MLCL-AT acyl transfer may be regulated by an additional, currently unknown mechanism.

In addition to alterations in CL acyl composition during disease states, data also exist demonstrating declines in 18:2 content in CL with age (57). To investigate a potential aging effect on CL remodeling, we measured 18:2 incorporation into (18:2)$_4$ CL in a nonpathological model of aging, the FBN rat. Both young and aged FBN myocytes incorporated 18:2 into CL more readily than HF SHHF myocytes. Although these data suggest that attenuated CL remodeling is associated only with HF, we also noted a trend for lower 18:2 incorporation with age in FBN myocytes. Overall, our data suggest that both aging and the development of HF may impact CL remodeling, although the relative reduction due to aging alone is only half that due to the development of HF (14.7% and 27.7% respectively).

In our previous publication, we also reported a 5-fold increase in MLCL-AT activity in HF (56), which may represent a compensatory response to the reduction in tafazzin content. Regardless of this, HF myocytes were still unable to properly remodel CL; therefore, we postulate that in the absence of tafazzin, the bioavailability of 18:2-CoA for MLCL-AT acyl transfer may be regulated by an additional, currently unknown mechanism.

In addition to alterations in CL acyl composition during disease states, data also exist demonstrating declines in 18:2 content in CL with age (57). To investigate a potential aging effect on CL remodeling, we measured 18:2 incorporation into (18:2)$_4$ CL in a nonpathological model of aging, the FBN rat. Both young and aged FBN myocytes incorporated 18:2 into CL more readily than HF SHHF myocytes. Although these data suggest that attenuated CL remodeling is associated only with HF, we also noted a trend for lower 18:2 incorporation with age in FBN myocytes. Overall, our data suggest that both aging and the development of HF may impact CL remodeling, although the relative reduction due to aging alone is only half that due to the development of HF (14.7% and 27.7%).

Fig. 4. Incorporation of 13C-18:2 into (18:2)$_4$ CL. Isolated cardiomyocytes from nonHF and HF SHHF rats were incubated in 13C-18:2 for up to 72 h. At different time intervals after the initial incubation, cells from (A) nonHF and (B) HF SHHF rat hearts were harvested and five different species of (18:2)$_4$CL, as well as their sum, were analyzed and expressed as a fraction of total CL. Data presented as mean ± SE. n = 5–8 for each time point for both nonHF and HF. (C) Levels of (18:2)$_4$CL after 48 h of incubation in 13C-18:2 were taken from the graphs in (A) and (B) and plotted against one another, along with corresponding data from young and aged FBN myocytes. Data are presented as mean ± SE. (n = 4 nonHF SHHF, 3 HF SHHF, 4 young FBN, 6 aged FBN). *P < 0.05 versus SHHF HF.

Fig. 5. Incorporation of 13C-18:2 into phosphatidylglycerol. Cardiomyocytes isolated from (A) nonHF and (B) HF SHHF rat hearts were incubated in 13C-18:2, 13C-18:2 + BEL, or 13C-18:2 + R-BEL for up to 72 h. Incorporation of 13C-18:2 into PG was measured by quantifying different species of PG with either 16:0, 18:1, 18:2, or 13C-18:2. Data are presented as mean ± SE (n = 4). *P < 0.05 versus control value within analyte; *#P < 0.05 versus 13C-18:2, 24 h value within analyte.
rat hearts, which is consistent with data put forth by Mancuso et al. (35). Interestingly, the percent of (\(^{13}\)C-18:2)(18:2)\textsubscript{3} CL formation that is inhibited by BEL after 10 h of incubation is significantly greater in HF versus nonHF myocytes. These results indicate a potential increase in the quantity or activity of iPLA\(_2\) in the failing myocardium. Theoretically, increased phospholipase activity would be cytoprotective by preventing an accumulation of lipid peroxidation end products; however, prior research on the role of iPLA\(_2\) in models of cellular stress have yielded conflicting results. Williams and Gottlieb (58) reported that inhibition of iPLA\(_2\) during ischemia reduced mitochondrial phospholipid loss and was cardioprotective, whereas Selezniev et al. (59) reported that the presence of iPLA\(_2\) was cytoprotective during apoptotic induction by staurosporine. In our model of HF, increased iPLA\(_2\) activity may be beneficial to the mitochondrial membrane in the absence of other abnormalities; however, when coupled with a lack of lysophospholipid reacylation (e.g., reduction in taftazzin) increased iPLA\(_2\) activity may result in the net degradation of CL or other mitochondrial phospholipids. Pretreatment of cardiomyocytes with BEL was more potent in HF myocytes for the first 10 h, but after 24 h of incubation, BEL-sensitive CL remodeling disappears in HF, but not in nonHF. Polysaturated fatty acids and their derivatives are known ligands for nuclear receptors (60–62) and the apparent loss of iPLA\(_2\)-dependent CL remodeling may be caused by upregulation of peroxisome proliferator-activated receptor binding and alterations in cellular levels of lipid-metabolizing enzymes.

Because Mancuso et al.'s ablation of the \(\gamma\)/H9253 isoform of iPLA\(_2\) resulted in CL abnormalities, we also treated myocytes with R-BEL in the presence of \(^{13}\)C-18:2. Specific inhibition of iPLA\(_2\)/H9253 resulted in similar effects on 18:2 incorporation in nonHF myocytes with respect to total isotope incorporation and the initial rate of 18:2 incorporation, consistent with the notion that iPLA\(_2\)/H9253 is the calcium-independent phospholipase isozyme involved in remodeling CL. Although iPLA\(_2\)/H9253 seems to be involved in CL remodeling, its specific role in the process is still unknown. Namely, does iPLA\(_2\)/H9253 directly hydrolyze CL to MLCL for acylation, or is it involved in the remodeling of other glycerophospholipids that act as 18:2 donors for CL remodeling? We have shown that iPLA\(_2\)/H9253 does not remodel PG; however, its potential role in remodeling 18:2 donors such as phosphatidylcholine or phosphatidylethanolamine (32) remains to be determined.

The use of BEL as an inhibitor of iPLA\(_2\) is somewhat controversial. Although BEL’s selective nature for iPLA\(_2\) over cytosolic PLA\(_2\) or secretory PLA\(_2\) is well accepted (65–65), previous investigators have warned against the use of BEL as a specific inhibitor of iPLA\(_2\). These reports suggest that BEL inhibits the magnesium-dependent, cytosolic isoform of a lipid phosphate phosphatase, PAP-1, thereby perturbing cellular lipid homeostasis (by inhibiting the formation of DAG from phosphatidate) and promoting apoptosis in prolonged cell culture (66, 67). Indeed, we have unpublished observations that concentrations of BEL at or exceeding 30 \(\mu\)M are toxic to SHHF cardiomyocytes.
after 10 h, which is consistent with observations published by these researchers. However, investigation by Gross et al. (68) showed that BEL neither diminishes whole cell lipid phosphate phosphatase activity at concentrations up to 100 μM, nor the activities of either PAP-1 or its membrane-bound relative, PAP-2, at concentrations up to 200 μM in purified subcellular fractions. In our study, we used a concentration of BEL (10 μM) below that which was previously reported to promote apoptosis or attenuate PAP-1 activity (25 μM) (68) showed that BEL neither diminishes whole cell lipid phosphate phosphatase activity at concentrations up to 100 μM, nor the activities of either PAP-1 or its membrane-bound relative, PAP-2, at concentrations up to 200 μM in purified subcellular fractions. In our study, we used a concentration of BEL (10 μM) below that which was previously reported to promote apoptosis or attenuate PAP-1 activity.

In closing, we have used a novel cell culture method to generate data suggesting a necessary but partial role of iPLA2γ in CL remodeling in the SHHF rat heart. Further, 18:2 incorporation into (18:2)ψ CL is decreased largely in all proceed through the intermediate MLCL. Future re-

derase, the current body of literature suggests that nascent greater percentage of total CL remodeling in HF versus

eties, and iPLA2-dependent CL remodeling accounts for a concentration of BEL (10 μM) below that which was previously reported to promote apoptosis or attenuate PAP-1 activity.

REFERENCES

1. Mileykovskaya, E., M. Zhang, and W. Dowhan. 2005. Cardiolipin in energy transducing membranes. Biochemistry, 70: 154–158.
2. Mileykovskaya, E. G., and W. Dowhan. 2004. Cardiolipin remodeling in the heart. J. Cardiovasc. Pharmacol. 44: 207–213.
3. Hatch, G. M. 1994. Cardiolipin biosynthesis in the isolated heart. J. Biol. Chem. 269: 378–382.
4. Hatch, G. M. 1996. Cardiolipin metabolism and its resynthesis in growing HeLa cells. Biochem. J. 310: 76–77.
5. Musatov, A. 2006. Contribution of peroxided cardiolipin to inact-

ivation of bovine heart cytochrome c oxidase. Free Radic. Biol. Med. 41: 238–246.
6. Chico, A. J., and G. C. Sparagons. 2007. Role of cardiolipin alter-

ations in mitochondrial dysfunction and disease. Am. J. Physiol. 292: C33–C44.
7. Zhang, M., E. Mileykovskaya, and W. Dowhan. 2002. Gluing the res-

piratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277: 43553–43556.
8. Paradies, G., G. Petrozillo, M. Pistolese, N. Di Venosa, D. Secena, and F. M. Ruggiero. 1999. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic. Biol. Med. 27: 42–50.
9. Sredlak, E., and N. C. Robinson. 1999. Phospholipase A2 diges-

tion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry, 38: 14966–14972.
10. Haines, T. H., and N. A. Dencher. 2002. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 528: 35–39.
11. Brown, L. R., and K. Wuthrich. 1977. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidy-

choline vesicles. Biochem. Biophys. Acta. 468: 389–410.
12. Petrozillo, G., F. M. Ruggiero, and G. Paradies. 2003. Role of reac-

tive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 17: 2202–2208.
13. Ardail, D., F. Lerne, and P. Louisot. 1992. Phospholipid import into mitochondria: possible regulation mediated through lipid polymorphism. Biochem. Biophys. Res. Commun. 186: 1384–1390.
14. Eilers, M., T. Endo, and G. Sacht. 1989. Adriamycin, a drug inter-

acting with acidic phospholipids, blocks import of precursor pro-

teins by isolated yeast mitochondria. J. Biol. Chem. 264: 2945–2950.
15. Mannella, C. A. 2006. Structure and dynamics of the mitochondrial inner membrane cristae. Biochem. Biophys. Acta. 1763: 542–548.
16. Sparagons, G. C., A. J. Chico, R. C. Murphy, M. R. Ristow, C. A. Johnson, M. L. Rees, M. L. Maxey, S. A. McCune, and R. L. Moore. 2007. Loss of cardiac tetrailnooleoyl cardiolipin in human and experi-

mental heart failure. J. Lipid Res. 48: 1559–1570.
17. Schlae, M., R. I. Kelley, A. Feigenbaum, J. A. Trowin, P. M. Heerdt, T. Schieble, R. A. Wanders, S. DiMauro, and T. J. J. Blanck. 2006. Phospholipid abnormalities in children with Barth syndrome. J. Am. Coll. Cardiol. 42: 1994–1999.
18. J. Lesnefsky, E. M., and W. Dowhan. 2008. Cardiolipin remodeling in the heart. J. Cardiovasc. Pharmacol. In press.
19. Hauff, K. D. 2006. Cardiolipin metabolism and Barth syndrome. Prog. Lipid Res. 45: 91–101.
20. Schlae, M., and M. Ren. 2006. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580: 5450–5455.
21. Barth, P. G., F. Valianpour, V. M. Bowen, J. Lam, M. Duran, F. M. Vaz, and R. J. Wanders. 2004. X-linked cardiomyopathy with myopathy and neutropenia (Barth syndrome): an update. Am. J. Med. Genet. A. 126A: 349–354.
22. Van, Q. J., L. G. Nijtmans, L. A. Grivel, B. Plecko, R. A. Wanders, and P. G. Barth. 2000. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun. 279: 378–382.
23. Heerdt, P. M., M. Schlae, R. Jehle, A. Barbone, D. Burkhoff, and T. J. J. Blanck. 2002. Disease-specific remodeling of cardiac mito-

chondria after a left ventricular assist device. Ann. Thorac. Surg. 73: 1216–1221.
24. Nasa, Y., Y. Sakamoto, A. Sanbe, H. Sasaki, F. Yamaguchi, and S. Takeo. 1997. Changes in fatty acid compositions of myocardial lip-

ids in rats with heart failure following myocardial infarction. Mol. Cell. Biochem. 176: 179–189.
25. Han, X., J. Yang, K. Yang, Z. Zhongdan, D. R. Abendschein, and R. W. Gross. 2007. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry. 46: 6417–6428.
26. Hatch, G. M. 1994. Cardiolipin biosynthesis in the isolated heart. Biochem. J. 297: 201–208.
27. Hatch, G. M., and G. McClarty. 1996. Regulation of cardiolipin biosynthesis in h92c2 cardiac myoblasts by cytidine 5-triphosphate. J. Biol. Chem. 271: 25810–25816.
28. Hostetler, K. Y., H. Van Den Bosch, and L. M. L. Van Deenen. 1972. The mechanism of cardiolipin biosynthesis in liver mitochondria. Biochem. Biophys. Acta. 260: 507–513.
29. Schlae, M., and K. Y. Hostetler. 1997. Cardiolipin synthase from mammalian mitochondria. Biochim. Biophys. Acta. 1348: 207–213.
30. Hatch, G. M. 1998. Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Int. J. Mol. Med. 1: 33–41.
31. Hatch, G. M. 1996. Regulation of cardiolipin biosynthesis in the heart. Mol. Cell. Biochem. 159: 139–148.
32. Xu, Y., A. Malhotra, M. Ren, and M. Schlae. 2006. The enzymatic function of tafazzin. J. Biol. Chem. 281: 39217–39224.
33. Taylor, W. A., and G. M. Hatch. 2003. Purification and character-

ization of monohydroxyacyl cardiolipin acyltransferase from pig liver mito-

ochondria. J. Biol. Chem. 278: 12716–12721.
34. Cao, J., Y. Liu, J. Lockwood, P. Burn, and Y. Shi. 2004. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lyso cardiolipin acyl-

transferase (ALCAT-1) in mouse. J. Biol. Chem. 279: 31727–31734.
35. Mancuso, D. J., H. F. Sims, X. Han, C. M. Jenkins, S. P. Guan, K. Yang, S. H. Moon, T. Pietka, N. A. Abumrad, P. H. Schlesinger, et al. 2007. Genetic ablation of calcium-independent phospholipase Cardiolipin and iPLA2 in heart failure.
A γ-gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. *J. Biol. Chem.* **282**: 34611–34622.

36. Malhotra, A., I. Edelman-Novemsky, Y. Xu, H. Plesken, J. Ma, M. Schlane, and M. Ren. 2009. Role of calcium-independent phospholipase A2 γ in the pathogenesis of Barth syndrome. *Proc. Natl. Acad. Sci. USA* **106**: 2337–2341.

37. McCune, S. A., S. Park, M. J. Radin, and J. J. Jurin. 1995. The SHHF model of heart failure. In *Mechanisms of Heart Failure*. P. K. Singal, I. M. C. Dixon, M. A. Kluver, and N. S. Dhallia, editors. Kluwer Academic Publishers, Boston. 91–106.

38. Haas, G. J., S. A. McCune, D. M. Brown, and R. J. Cody. 1995. Echocardiographic characterization of left ventricular adaptation in a genetically determined heart failure rat model. *Am. Heart J.* **130**: 806–811.

39. Gomez, A. M., H. H. Valdiva, H. Cheng, M. R. Lederer, L. F. Santana, G. J. Haas, S. A. McCune, D. M. Brown, and R. J. Cody. 1995. Pathologic characterization of Brown Norway, Brown Norway x Fischer 344, and Fischer 344 x Brown Norway rats with relation to age. *J. Gerontol. A Biol. Sci. Med. Sci.* **51**: B54–B59.

40. Lee, H.-J., J. Mayette, S. I. Rapoport, and R. P. Bazinet. 2006. Selective remodeling of cardiolipin fatty acids in the aged rat heart. *Lipids Health Dis.* **5**: 2.

41. Sample, J., J. G. Cleland, and A. M. Seymour. 2006. Metabolic remodeling in the aging heart. *J. Mol. Cell. Cardiol.* **40**: 56–65.

42. Lipman, R. D., C. E. Chrisp, D. G. Hazzard, and R. T. Bronson. 2001. Decreased cardiolipin synthesis corresponds and function resulting in a deficient mitochondrial bioenergetic phenotype. *Circ. Physiol. Pharmacol.* **222**: 271–278.

43. Saini-Chohan, H. K., M. G. Holmes, J. A. Chicco, W. A. Taylor, G. M. Hatch, and G. C. Sparagna. 2009. Cardiolipin biosynthesis and remodeling enzymes are altered during the development of heart failure. *J. Lipid Res.* **50**: 1600–1608.

44. Lee, J. W., J. M. Dzau, S. I. Rapoport, and R. P. Bazinet. 2006. Selective remodeling of cardiolipin fatty acids in the aged rat heart. *Lipids Health Dis.* **5**: 2.

45. Williams, S. D., and R. A. Gottlieb. 2002. Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and cardioprotective. *Biochem. J.* **362**: 23–32.

46. Haas, G. J., S. A. McCune, C. A. Amoscato, J. B. McMillin, and W. J. Lederer. 2001. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in mitochondria during apoptotic induction by staurosporine. *J. Biol. Chem.* **281**: 22275–22288.

47. Clarke, S. D. 2000. Polysaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. *Br. J. Nutr.* **83**: 559–566.

48. Forman, B. M., J. Chen, and R. M. Evans. 1997. Hypolipidemic drugs, polysaturated fatty acids, and eicosanoids are ligands for peroxisome proliferators-activated receptors alpha and delta. *Proc. Natl. Acad. Sci. USA* **94**: 4512–4517.

49. Sampath, H., and J. M. Ntambi. 2005. Polysaturated fatty acid regulation of genes of lipid metabolism. *Annu. Rev. Nutr.* **25**: 317–340.

50. Balsinde, J., and E. A. Dennis. 1996. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. *J. Biol. Chem.* **271**: 6758–6765.

51. Hazen, S. L., L. A. Zupan, R. H. Weiss, D. P. Getman, and R. W. Gross. 1991. Suicide inhibition of canine myocardial cytosolic calcium-independent phospholipase A2. Mechanism-based discrimination between calcium-dependent and –independent phospholipases A2. *J. Biol. Chem.* **266**: 7227–7232.

52. Balsinde, J., M. A. Balboa, P. A. Isel, and E. A. Dennis. 1999. Regulation and inhibition of phospholipase A2. *Annu. Rev. Pharmacol. Toxicol.* **39**: 178–189.