The role of tourism and renewable energy towards EKC in South Asian countries: fresh insights from the ARDL approach

Usman Mehmood¹,²*, Salman Tariq³, Zia Ul Haq³, Ayesha Azhar¹ and Ayesha Mariam¹

Abstract: Over the last few decades, it has become a hot topic that countries are getting economic growth by reducing air quality. This study is an attempt to find out the impact of economic growth (GDP), tourism (TO), and renewable energy (RE) in Pakistan, India, Nepal, and Sri Lanka in the context of EKC (Environmental Kuznets curve). This study utilized the Autoregressive Distributed Lag (ARDL) approach to present empirical results. The stationarity of all the variables was confirmed by the unit root test at first difference. The positive coefficient value of GDP and negative coefficient value of GDP square show the EKC existence in Pakistan and India. But in India, this association is not significant. The empirical results also endorsed the findings of past studies that RE is improving air quality by mitigating CO₂ emissions in Pakistan, India, Sri Lanka, and Nepal. The findings show mixed results regarding the tourism impacts on CO₂ emissions. The positive coefficient of tourism in Pakistan and Nepal implies that tourism is improving the air quality in these countries. Whereas, the negative coefficient of tourism in Sri Lanka and India indicates that tourism is stimulating the CO₂ emissions in these countries. Therefore, these countries need to launch RE resources in the tourist sector to reduce its adverse impacts.

Subjects: Tourism; Tourism Management; Tourism Planning and Policy; Economics of Tourism; Tourism and the Environment; Tourism Development/Impacts

Keywords: Tourism; renewable energy; South Asian countries; EKC; GDP

ABOUT THE AUTHOR

Mr. Usman Mehmood is working with the Project of (Remote Sensing, GIS and Climatic research Lab (National center of GIS and Space Applications) Center for Remote Sensing. This project aims to highlight the Socio Economic factors which are contaminating the climate in Pakistan.

PUBLIC INTEREST STATEMENT

This paper analyzes the associations of tourism, economic growth, renewable energy, and carbon emissions in Pakistan, Nepal, India, and Sri Lanka. The findings show that renewable energy and tourism is supporting the cleaner environment in Pakistan and Nepal. The findings are revealing that these countries need to revise their existing tourism and GDP related policies to lower the environmental pollution.
1. Introduction

Governments and policymakers are facing problems of drastic climatic variability (Destek & Sarkodie, 2019; Mariam et al., 2021; Mehmood & Tariq, 2020; Mehmood, Tariq et al., 2021). Over the last 100 years, the average temperature has risen from 0.5 to 0.9 degrees (Aziz et al., 2020). The prime reason behind this rapid increase in temperature is energy consumption by fossil fuels. The fossils burning creates greenhouse gasses (Rafindadi & Usman, 2019; Sarkodie & Adams, 2018). Carbon dioxide (CO₂) constitutes 70% of greenhouse gases. According to the Intergovernmental Panel on Climate change in 2014, the economic growth in developing countries is increasing almost 77% of carbon dioxide emissions (Nataly Echevarria Huaman & Xiu Jun, 2014). Therefore, the main driver of global environmental problems is CO₂ emissions. During the past few years, the nexus of energy-economic growth and environmental problems has been studied vastly. Economic growth achieved through the consumption of fossil fuels adversely affects the climatic quality (Koçak & Şarküneşi, 2018). However, renewable energy (RE) is lowering CO₂ emissions (Bélaïd & Youssef, 2017; Ben Jebli & Ben Youssef, 2017; Mehmood, 2021a; Mehmood, Mansoor et al., 2021; Tariq et al., 2022). RE has the potential to replace nonrenewable energy to reduce CO₂ emissions (Dong et al., 2018; Goh & Ang, 2018; Mehmood, 2021c).

The energy-environment and GDP nexus have been investigated by several studies, but the environment and energy nexus with particular sectors of the economy has been neglected (Kirikkaleli et al., 2020; Kongbuamai et al., 2020; Mehmood, 2021c; Mehmood, Mansoor et al., 2021). This gap needs attention and tourism is an important sector of the economy. Developed and developing countries are trying to develop their tourism sector. Different countries are developing their infrastructure to boost the tourism sector to gain economic objectives. According to UNWTO (2017) tourism has had a share of 10% of the world’s economy during the past few years. Apart from its contribution to national income, tourism is also increasing the share of energy use by consumption of fossil fuels especially in the transport sector (Gössling, 2013; Tsai et al., 2014). RE consumption can be enhanced in the transport sector to achieve a cleaner environment. According to Lin (2010) the modes of transport used by visitors can stimulate environmental problems.

Moreover, the energy usage in hotels for lighting and other purposes can put threats to environmental problems (Ozturk et al., 2016). These kinds of environmental impacts are making countries take appropriate actions to reduce tourism-induced pollution. This important tourism-environment nexus has been studied by very few studies in developing countries (Dogan et al., 2017). Moreover, the South Asian countries have great potential in terms of their tourism sector for economic gains. According to the World Bank in 2020, the number of tourists recorded in Pakistan, India, Nepal, and Sri Lanka is 1.9, 17.9, 1.1, and 2.0 million, respectively. At the same time, these countries are expected to develop their tourism in the coming years. South Asia is the most affected region by environmental problems.

In this regard, the nexus of tourism and environmental problems is crucial to examine in developing countries of South Asia, especially in the context of the Environmental Kuznets curve (EKC). South Asian countries are gaining rapid development in GDP, energy use, and tourism with increased CO₂ emissions. However, the association among these factors has not been investigated briefly. Therefore, considering this research gap, our study is an attempt to find out the association between tourism, RE consumption, and GDP in selected South Asian countries, i.e., Pakistan, Sri Lanka, India, and Nepal in the context of EKC. The contribution of this research to the existing literature is as follows: Firstly, this research will find out the level to which the tourism sector contributes to CO₂ emissions. Moreover, the inclusion of RE and GDP with tourism is the novelty of the current study. Furthermore, this research will present a country-specific analysis to find the impact of RE and tourism on CO₂ emissions. In addition to this, the current study will analyze the EKC significance for examined South Asian countries by incorporating the ARDL (Autoregressive Distributed Log) approach.

Our study is organized as follows: after the introduction in the 1st section, the 2nd section consists of a literature review, and the econometric technique and its significance is in the 3rd section. 4th section is of discussion and results. The last section comprises the conclusion and its policy implications.
2. Literature review

The EKC literature is continuously expanded over the last few decades due to the considerable attention of research scholars (Bekun et al., 2019; Bazoklu et al., 2020; Güngör et al., 2021; SA & V, 2018). Tourism and renewable-related past studies with the EKC hypothesis are described in this section.

Many studies have presented the suitable role of tourism for environmental quality. For example, Kongbuamai et al. (2020) studied the impact of natural resources, GDP, tourism, and energy use, on ecological footprints in ASEAN economies from 1995 to 2020. The results showed an inverted U shape association by showing that natural resources can be utilized properly to improve air quality. Similarly, Danish and Wang (2018) argued that tourism is improving air quality in BRICS and validated EKC over the annual data of 1995–2014. Ben Jebli et al. (2019) explored the causal linkage among CO₂ emissions, trade, tourism, RE, GDP, and foreign direct investment for 22 economies from 1995 to 2010. The scholars found that tourism, RE, and foreign direct investment are lowering CO₂ emissions in Central and South America. Whereas, Saudi et al. (2019) observed a direct association between CO₂ emissions and GDP in Malaysia. Moreover, other research by Ozturk et al. (2016), Raza and Shah (2017), Tariq et al. (2022), and U (2021) also found the same results.

Apart from the positive role of tourism on the environment, there is also available literature, which found the degrading role of tourism on the environment. Tourism as an economic sector can increase energy consumption (Aziz et al., 2020). Energy consumption from fossils will degrade the environment. In this line, Gulistan et al. (2020) investigated that tourism stimulates air pollution in 112 economies and Balsalobre-Lorente et al. (2020) in OECD economies. Mikayilov et al. (2019) also probed this association for Azerbaijan from 1996-to 2014. The scholars utilized the technique of time-varying coefficient and found that tourism is degrading climatic quality. Their study could not validate the EKC hypothesis in Azerbaijan. The linkages between tourism, energy use, and environmental pollution were validated by Shaheen et al. (2019). Dogan and Aslan (2017) also found that GDP increases energy use that increases CO₂ emissions but their results were not similar in terms of tourism-CO₂ linkages. Zhang and Liu (2019) found that tourism reduces environmental quality in Southeast Asia. However, according to the Dogan et al. (2017) tourism positively affects the environment of European countries. Some other studies by Durbarry and Seetanah (2015) in Turkey, Sharif et al. (2017) in Pakistan, and León et al. (2014) in underdeveloped and developed nations, also found that tourism stimulates CO₂ emissions. Recently, Fethi and Senyucel (2020) examined that tourism stimulates CO₂ emissions in 50 economies. At the same time, some research studies presented mixed results like Paramati et al. (2017) probed the association between tourism and CO₂ emissions in Eastern and Western European countries. The scholars found positive nexus between environmental degradation and tourism in Eastern Europe but negative linkages were found in western countries. Moreover, Azom et al. (2018) argued that the tourism nexus is direct in Malaysia but indirect in Singapore and Thailand. Sghaier et al. (2019) also found positive tourism-CO₂ emissions in Tunisia but negative linkages in Egypt. Moreover, Paramati et al. (2017) found mixed evidence of tourism-CO₂ emissions nexus in developing and developed countries. Developed countries are benefiting from tourism as compared to developing nations.

Hypothesis 1 (H-1): The tourism sector impacts environmental degradation by increasing CO₂ emissions.

Our study incorporated RE to find its association with environmental pollution. There exist several studies that included other economic variables in environmental functions. Like Gozgor (2018), M. Hussain et al. (2020), Mehmood, Mansoor et al. (2021), Mehmood, Tariq et al. (2021), and Riti et al. (2017), and Sarkodie and Adams (2018). The EKC purposes that the energy is the main determinant of CO₂ emissions (Pao & Tsai, 2010), which is degrading the environment rapidly (Cetin & Bakirtas, 2020; Koçak & Şarkgüneşi, 2018). In this regard, RE has become an important alternative for industrial production to improve environmental quality Farhani and Shahbaz (2014); Sulaiman (2013). These studies proved that RE contributes to improving the environmental quality continuously. In this regard,
Khattak et al. (2020) in BRICS excluding South Africa and India and S. Nathaniel et al. (2020) in CIVETS countries proved that REIs improving the air quality. The same results were found by the studies of Elshimy and El-Aasar (2020) in Arab countries, S. P. Nathaniel and Htheonu (2019) in Africa, Mehmood (2021c) in G11 countries, Asongu et al. (2019) in the Sub Sahara region, Aziz et al. (2020) in BRICS countries and Waheed et al. (2018) in Pakistan. However, Naz et al. (2019) cannot validate EKC in Pakistan and prove the pollution haven hypothesis. Moreover, some studies found mixed results on the influences of RE on environmental degradation, like Chen et al. (2019) found diverse impacts of RE in different regions of China. Moreover, Charfeddine and Kahia (2019) found marginal impacts of RE on environmental degradation in the MENA countries from 1980 to 2015.

Hypothesis 2 (H-2): RE has significantly improved the environmental quality.

In the US a nexus between GDP and environmental degradation is observed by Menyah and Wolde-Rufael (2010). According to Szymczyk et al. (2021) CO₂ emissions are triggered because of GDP. For developing countries, a positive GDP impact on CO₂ emissions has been observed by Saidi and Ben Mbarek (2016); Saidi and Mbarek (2017). A causal relation between GDP and CO₂ emissions is observed for 16 Asian countries. In the long run, a bidirectional relationship between CO₂ emissions and economic growth was observed by (Lu, 2017). A linkage among REC, CO₂ emissions, oil prices, and GDP has been analyzed for OECD countries by Zaghdoudi (2017). It confirms the EKC hypothesis and a quadratic long-run relationship between GDP and environmental degradation.

Hypothesis 3 (H-3): GDP has a significant positive impact on CO₂ emissions.

From the above-mentioned research studies, it can be observed that most of the studies used panel estimation. This technique can bring unreliable results and it is essential to conduct country-specific analysis to present robust results for accurate policy instruments. Moreover, very few studies have analyzed individual South Asian countries. Therefore, this study will analyze the impacts of tourism and RE on CO₂ emissions in the context of EKC for individual South Asian countries.

3. Data and methodology
After careful examination of past studies, the goal of the current study is to explore the association between tourism, GDP, RE, and environmental degradation in individual South Asian countries. Moreover, this study will also reevaluate the EKC in the study region. Therefore, we included per capita CO₂ emissions (CO₂), Renewable energy (RE) as a share of total energy, numbers of arrivals (TO), GDP (G) per capita, and square of GDP (G²) per capita, and. All data from 1995 to 2020 is acquired from World Development Indicators (WDI). Further, we transformed the annual data into quarterly data because it presents robust results (Mehmood, Tariq et al., 2021; Shahbaz et al., 2013). Following is the estimated equation of our study:

\[
CO₂_t = \beta_0 + \beta_1TO_t + \beta_2G^2_t + \beta_3RE_t + \beta_4G_t + \epsilon
\]

(1)

We utilized the ARDL method proposed by Pesaran and Pesaran (1997). The ARDL method is accompanied by an error correction term (ECT) and is capable to explore the long as well as short term dynamics (Liu et al., 2019). The ARDL model is superior to other cointegration-based methods. Such as, it provides one of the key rudiments for time series analysis known as variable stationarity. Although no stationarity testing of the selected variables is required by this method. Therefore, in the case of stationarity of all the variables at 1(0), 1(1), or a mixture of 1(0) & 1(1), the ARDL approach may be utilized (Ibrahim & Law, 2016; Mehmood, Tariq et al., 2021; Meo et al., 2018). However, one limitation of this approach is to not consider the stationarity of variables at 1(2). Moreover, the ARDL model does better results in the case of small sample sizes (Meo et al., 2018).

The ARDL model eliminates endogeneity issues, incorporates the lag length of independent as well as dependent variables, and yields consistent outcomes (Uzar, 2020). To find a long-run relationship, we prepare the following equation.
\[
\begin{align*}
\ln \text{CO}_2_t &= \beta_0 + \sum_{n=1}^{p} \delta_n \ln \text{CO}_2_{t-n} + \sum_{o=1}^{q_1} \delta_o \Delta \text{TO}_{t-o} + \sum_{p=1}^{q_2} \phi_p \Delta \text{G}_{t-p} + \sum_{r=1}^{q_3} \mu_r \Delta \text{REN}_{t-r} \\
&+ \sum_{s=1}^{q_4} \beta_s \text{G}_{t-s} + \epsilon_t
\end{align*}
\]

For short-run analysis we follow the equation as follows:

\[
\begin{align*}
\Delta (\ln \text{CO}_2)_t &= \beta_0 + \sum_{n=1}^{p} \delta_n \Delta (\ln \text{CO}_2_{t-n}) + \sum_{o=1}^{q_1} \delta_o \Delta (\text{TO}_{t-o}) + \sum_{p=1}^{q_2} \phi_p \Delta (\text{G}_{t-p}) \\
&+ \sum_{r=1}^{q_3} \mu_r \Delta (\text{REN}_{t-r}) + \sum_{s=1}^{q_4} \beta_s \Delta (\text{G}_{t-s}) + \epsilon_t
\end{align*}
\]

In this equation, \(\Delta \) represents the ECT and change operator, respectively.

4. Findings and discussion

To check co-integration among time series, it is essential to incorporate a unit root test (URT) to check the data stationarity. The empirical findings of the URT are reported in Table 1 at an I(0) and I(1). We conducted a stationarity test with structural breaks. These structure breaks may be due to some economic and environmental policies. Table 1 shows the stationarity of all the variables at the 1st difference, which shows the long-run association among the variables of interest for the study region. Studies by Adamu et al. (2019), Li et al. (2021), and Salehnia et al. (2020) for India, China, and MENA countries, respectively supported our results.

After the performance of the URT, it is compulsory to test the level of cointegration among variables. The current study utilized the Bounds test and presents the findings in Table 2. According to this, entire variables in Pakistan, India, and Nepal are co-integrated at a 1% level. The value of the F state ensures correlation among variables. If the F-state value is more as compared to the upper bound value so there is a strong association between variables. Moreover, a lesser F-state value as compared to the lower bound value in Sri Lanka shows no existence of co-integrated in Sri Lanka. Exploration by Aziz et al. (2020), Erdoğan et al. (2020), and Musah et al. (2021) for BRICS countries, G20 countries, and North Africa, respectively backed our findings.

The ARDL long-run results are reported in Table 3. It can be seen that RE is lowering CO₂ emissions in India, Pakistan, Nepal, and Sri Lanka. In Pakistan, India, Nepal, and Sri Lanka, a 1% increase in RE are lowering the CO₂ emissions by 0.6889%, 1.4244%, 4.2149%, and 2.358%, respectively. The empirical results of RE are in line with Aziz et al. (2020) for BRICS countries, Dogan and Seker (2016) for European Union, and Musah et al. (2021) for North Africa. The results showed that RE has the potential to lower CO₂ emissions. Our results are not similar to Charfeddine and Kahia (2019), that acquired marginal impacts of RE on CO₂ emissions. Moreover, tourism is also improving air quality in Nepal and Pakistan. But this association is not significant in the case of Pakistan. These countries need to incorporate RE sources to promote their tourism sector. Sufficient suitable outcomes will be achieved by the implementation of better communication and proper information technologies in the tourism sector. This result is similar to Aziz et al. (2020) for BRICS countries and Mehlood, Mansoor et al. (2021) for South Asian countries. Surprisingly, tourism is stimulating CO₂ emissions in India and Sri Lanka. However, the tourism-CO₂ emissions association is not significant in Sri Lanka. India needs to consider its tourist policy to contain its adverse effects on air quality. The number of arrivals in India is contributing to climatic pollution as a result of transportation. India needs to launch RE resources in the tourist sector to reduce its adverse impacts. Moreover, according to Table 3, EKC is validated in Pakistan and India. This result of the tourism-CO₂ emissions association is in line with Sharif et al. (2017), T. Hussain et al. (2018), and Mehlood, Mansoor et al. (2021). In Nepal, GDP is lowering the CO₂ emissions by 38% annually but more economic growth will start to decline air quality in Nepal. In this regard, Nepal needs to consider environmental
policies to sustain its economic growth. Nepal can overlook its environmental quality to get more economic growth in the future. Therefore, Nepal needs to check its environmental regulations while getting economic growth. In Pakistan GDP has not reached its threshold level and economic growth continues to degrade environmental quality. Currently, Pakistan is importing fossil fuels for industrial production, and the burning of fossils is contaminating its environmental quality. Pakistan needs to focus on available natural renewable resources in order to achieve sustainable development.

Table 4 reports short-run associations among our variables. In Pakistan RE use, GDP, and its square are decreasing CO2 emissions. In India, RE use and the square of GDP per capita are also lowering CO2 emissions. Tourism in India is stimulating CO2 emissions in the short run. GDP is also degrading environmental quality. In this regard, India needs to revise its economic policies to achieve sustainable development. In the context of Sri Lanka, in the short run, no significant relationship can be found between the variables. The negative ECT value validates the stability of our model.

5. Sub discussion
This study is an attempt to find out the impacts of tourism on CO2 emissions. Unlike the previous works, this work conducts a country-specific analysis by incorporating the other important variables of RE and economic growth. The results validate that tourism is environmentally friendly in Pakistan, India, and Nepal but not in Sri Lanka. These results are showing that Pakistan, India, and Nepal are improving their tourism sectors. Our results are consistent with Danish and Wang (2018), that argued that tourism is improving air quality in BRICS countries and validated EKC over the annual data of 1995–2014. A study by Ben Jebli et al. (2019) for 22 Central and South American countries also supports our findings. However, our findings are not in line with the findings of Katircioglu et al. (2020) for a small Island, Cyprus, Sheng Yin and Hussain (2021) for Southeast Asian countries. These works conducted panel studies for Cyprus and

Table 1. Stationary test

Economy	Variable	At level	1° difference		
		T-stat	Break year	T-stat	Break year
Pakistan	lnCO2t	-1.8421	2003Q4	-8.9471***	2007Q1
	lnRE	-3.9645	2002Q4	-9.9245***	2007Q1
	lnG2	-2.3964	2002Q4	-11.218***	1996Q1
	lnG2	-2.3276	2002Q4	-9.2088***	1996Q1
	lnTO	-3.6178	2003Q4	-9.4629***	2011Q1
India	lnCO2t	-1.3827	2007Q1	-10.6566***	2009Q1
	lnRE	-2.0043	2006Q4	-7.9673***	1996Q1
	lnG2	-1.5801	2002Q4	-4.2317***	2002Q4
	lnG2	-1.0937	2002Q4	-4.3123***	2002Q4
	lnTO	-1.2402	2013Q4	-16.5983***	2014Q1
Nepal	lnCO2t	-3.2411	2007Q4	-9.8851***	19991Q1
	lnRE	-2.9201	2008Q4	-9.6504***	2002Q1
	lnG2	-2.2376	2002Q4	-9.7921***	1996Q2
	lnG2	-2.2208	2007Q4	-9.7383***	1996Q2
	lnTO	-2.9723	2006Q4	-10.0144***	2015Q1
Sri Lanka	lnCO2t	-2.7775	2008Q4	-10.6784***	2015Q1
	lnRE	-3.7970	2009Q4	-9.6824***	2006Q1
	lnG2	-1.8323	2001Q4	-11.6408***	1996Q2
	lnG2	-1.6123	2001Q4	-11.5828***	1996Q2
	lnTO	-3.4487	2009Q4	-4.4813***	2009Q4

Note: ** and *** present the significance at 5 and 1% levels, respectively.
several South and East Asian countries and found that tourism is a contributing factor to environmental degradation. The results also validate the EKC’s existence in Pakistan and India.

Our results show that the Pakistani and Indian economy is on the right path because it will improve air quality in the future. These results have also been validated by Mehmood and Tariq (2020) for South Asia, Who found that the square of GDP is environmentally friendly in the presence of globalization. Similarly, Mehmood et al. (2022) support our finding that validates the existence of EKC for G-11 countries. Moreover, our results are in line with Saudi et al. (2019) for Malaysia, Ozturk et al. (2016) for the upper, middle, and high-income countries, Raza and Shah (2017) for top tourist

Table 2. Bounds test	Economies	Pakistan	India	Nepal	Sri Lanka
Length of lag	2	1	2	2	
Break year	2003Q4	2007Q1	2007Q4	2008Q4	
F-stats	7.3370***	8.8985***	9.7509***	1.3152	
R²	0.8367	0.8137	0.7780	0.4299	
Adj- R²	0.7885	0.7669	0.6917	0.3648	
D.W test	1.5381	1.7116	1.3265	1.9696	

Diagnostic Tests	X² NORMAL	4.0576	3.0783	20.9209	59.9580
X² SERIAL	3.3980	0.8081	3.2886	0.0283	
X² ARCH	0.4985	0.2551	0.0149	1.5607	
X² WHITE	2.1599	3.0033	1.4412	5.9665	
CUSUM	Stable	Stable	Stable	Stable	
CUSUMsq	Stable	Stable	Stable	Stable	

Table 3. Long run results	Economy	Variable	Coefficient	T-stat	Prob value
Pakistan	InREt	-0.6889***	-5.8509	0.0000	
	InGt	0.2153***	9.8905	0.0000	
	InG²t	-1.8725***	-9.7829	0.0000	
	InTOt	-0.0144	-0.7883	0.4341	
India	InREt	-1.4243***	-6.8756	0.0000	
	InGt	1.1311	1.0223	0.3107	
	InG²t	-0.0740	-0.8616	0.3923	
	InTOt	0.1230***	3.6702	0.0005	
Nepal	InREt	-2.2149***	-7.6737	0.0000	
	InGt	-0.5230***	-3.7970	0.0005	
	InG²t	0.5367***	4.5328	0.0000	
	InTOt	-0.1221**	-2.3549	0.0220	
Sri Lanka	InREt	-2.3598	-1.5238	0.1321	
	InGt	-0.0232	-0.0016	0.9987	
	InG²t	0.0285	0.0321	0.9744	
	InTOt	0.0460	0.2188	0.8274	

Note: ** and *** present the significance at 5 and 1% levels, respectively.
Economy	Variable	Coefficient	T stat	P-value
Pakistan	$\ln RE_t$	-0.7635***	-5.7223	0.0000
	$\ln G_t$	-0.9322***	-3.7878	0.0004
	$\ln G^2_t$	-5.2409***	-6.1765	0.0000
	$\ln TO_t$	-0.0105	-0.7787	0.4397
	ECM$^{-1}$	-0.7249***	-5.6703	0.0000
India	$\ln RE_t$	-1.3541***	-7.6607	0.0000
	$\ln G_t$	11.0462***	4.2613	0.0001
	$\ln G^2_t$	-1.0161***	-5.1352	0.0000
	$\ln TO_t$	0.0932***	3.9884	0.0002
	ECM$^{-1}$	-0.4374***	-5.6665	0.0000
Nepal	$\ln RE_t$	-7.1693***	-8.3647	0.0000
	$\ln G_t$	-2.1915	-0.1097	0.9130
	$\ln G^2_t$	-7.4182***	-3.1387	0.0027
	$\ln TO_t$	-0.1000**	-2.3850	0.0204
	ECM$^{-1}$	-0.8123***	-6.8912	0.0000
Sri Lanka	$\ln RE_t$	-0.8648***	-3.2112	0.0020
	$\ln G_t$	0.8351	0.5134	0.6061
	$\ln G^2_t$	0.0034	0.0324	0.9742
	$\ln TO_t$	-0.0577	-1.1362	0.2597
	ECM$^{-1}$	-0.1197**	-1.9284	0.0597

Note: ** and *** show the level of significance at 5 and 1%, respectively.
arrival countries, Menyah and Wolde-Rufael (2010) for the US, and Zaghoudi (2017) for OECD countries.

REis lowering CO₂ emissions in Pakistan, India, Nepal, and Sri Lanka. RE is mostly generated from hydro and solar energies and these sources do not hurt the environment. These findings are similar to the results of Anser et al., (2021) for BRICST countries, Mehmood (2021b) for South Asian countries, Murshed and Doo (2020), and Mehmood (2021c) for G11 countries.

6. Conclusion and policy recommendations
Over the last few decades, it has become a hot topic that countries are getting economic growth by reducing air quality. As a result, developed and developing economies are facing drastic environmental variability. South Asia is among the most vulnerable region to climatic impacts. South Asian countries are developing their tourist sector to gain economic growth. Therefore, the tourism sector can affect environmental quality in this region. Considering the gap in the literature, this study is an attempt to find out the association between tourism, RE use, and GDP in Pakistan, India, Nepal, and Sri Lanka in the context of EKC. This study utilized the ARDL approach to present empirical results. The URT confirmed that all variables are stationary at first difference. The positive value of GDP and negative value of GDP square show the existence of EKC in Pakistan and India. But in India, this association is not significant. After getting a certain level of economic growth, these countries may face improved air quality. The empirical results also endorsed the findings of past studies that RE is improving air quality by reducing CO₂ emissions in Pakistan, India, Nepal, and Sri Lanka. The findings show mixed results regarding the impacts of tourism on CO₂ emissions. Tourism is improving air quality in Pakistan and Nepal but degrading environmental quality in India. 1% increase in tourists will increase CO₂ emissions by 0.1230% in India and a 1% increase in tourists will lower CO₂ emissions by 0.0144% and 0.1231% in Pakistan and Nepal respectively, which implies that the potential effects of tourism on CO₂ emissions are not homogeneous in different countries in the same region. The specific environmental regulations facilitate bringing favorable environmental impacts.

Hence, this study proposes some important policy implications for South Asian countries in their tourist sector. These countries need to collaborate to learn from one another. In the race to get more economic development, these countries can enhance the share of RE to achieve sustainable development.

In the context of Pakistan and Nepal, this study presents that tourism can be an important factor to improve air quality. Moreover, these countries need to focus on every segment of tourism to achieve maximum sustainable economic goals. In the context of India, tourists are contaminating the environment. India needs to focus on environmentally friendly transportation. Moreover, other segments of Indian tourism need to be upgraded technologically.

Apart from the contribution, this study has some limitations. Firstly, we used CO₂ emissions as a proxy for environmental degradation variables and future research studies can utilize ecological footprints to know their association with tourism. Moreover, future research can include other economic variables for these countries, especially for Sri Lanka to present suitable environmental policies.

Funding
This work does not get any funding from any organization.

Author details
Usman Mehmood¹,²
E-mail: usmanmehmood.umt@gmail.com
ORCID ID: http://orcid.org/0000-0001-9034-5878
Salman Tariq¹
Zia Ul Haq³
ORCID ID: http://orcid.org/0000-0002-6787-9158
Ayesha Azhar¹
Ayesha Mariam¹

¹ Department of Political Science, University of Management and Technology, Lahore, Pakistan.
² Remote Sensing, GIS and Climatic Research Laboratory (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan.
³ Remote Sensing, GIS and Climatic Research Laboratory (National Center of GIS and Space Applications), Department of Space Science, University of the Punjab, Lahore, Pakistan.

Disclosure statement
No potential conflict of interest was reported by the author(s).
Citation information
Cite this article as: The role of tourism and renewable energy towards EKC in South Asian countries: fresh insights from the ARDL approach. Usman Mehmood, Salman Tanag, Zoi UI Hoq, Ayesh Azhar & Ayasha Mariam, Cogent Social Sciences (2022), 8: 2073669.

References
Adamu, T. M., U1 Hoq, I., & Shafiq, M. (2019). Analyzing the impact of energy, export variety, and FDI on environmental degradation in the context of environmental kuznets curve hypothesis: A case study of India. Energies, 12(6), 1076. https://doi.org/10.3390/en12061076
Anser, M. K., Apergis, N., Syed, Q. R., & Alola, A. A. (2021). Exploring a new perspective of sustainable development drive through environmental Phillips curve in the case of the BRICST countries. Environmental Science and Pollution Research, 28(35), 48112–48122. https://doi.org/10.1007/s11356-021-14056-5
Asongu, S. A., Iheonu, C. O., & Odo, K. O. (2019). The conditional relationship between renewable energy and environmental quality in Sub-Saharan Africa. Environmental Science and Pollution Research.
Azam, M., Mahmudul Alam, M., & Haroon Hafeez, M. (2018). Effect of tourism on environmental pollution: further evidence from Malaysia, Singapore and Thailand. Journal of Cleaner Production, 190, 330–338. https://doi.org/10.1016/j.jclepro.2018.04.168
Aziz, N., Mihardjo, L. W., Sharif, A., & Jermsittiparsert, K. (2020). The role of tourism and renewable energy in testing the environmental Kuznets curve in the BRICS countries: Fresh evidence from methods of moments quantile regression. Environmental Science and Pollution Research, 27(11), 39427–39441. https://doi.org/10.1007/s11356-020-10011-y
Balsolobre-Lorente, D., Driha, O. M., Shohbaz, M., & Sinha, A. (2020). The effects of tourism and globalization over environmental degradation in developed countries. Environmental Science and Pollution Research, 27(7), 7130–7144. https://doi.org/10.1007/s11356-019-07372-4
Bekun, F. V., Alola, A. A., & Sarkodie, S. A. (2019). Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Science of the Total Environment, 657(2), 1032–1029. https://doi.org/10.1016/j.scitotenv.2018.12.104
Belaid, F., & Youssef, M. (2017). Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria. Energy Policy, 102 (November 2016), 277–287 https://doi.org/10.1016/j.enpol.2016.12.012
Ben Jelbi, M., & Ben Youssif, S. (2017). Renewable energy consumption and agriculture: Evidence for cointegration and Granger causality for Tunisia economy. International Journal of Sustainable Development and World Ecology, 24(2), 149–158. https://doi.org/10.1080/13504509.2016.11696467
Ben Jelbi, M., Ben Youssif, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28(1) 1–19, https://doi.org/10.1111/laer.12063-7
Bozoku, S., Demir, A. O., & Atore, S. (2020). Reassessing the environmental Kuznets curve: A summability approach for emerging market economies. Eurasian Economic Review, 10(3), 513–531. https://doi.org/10.1007/s40822-019-00127-z
Cetin, M. A., & Bakirtas, I. (2020). The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets. Energy & Environment, 31(4), 634–655. https://doi.org/10.1080/09589250.2019.1682373
Charfeddine, L., & Kahia, M. (2019). Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renewable Energy, 139, 198–213. https://doi.org/10.1016/j.renene.2019.01.010
Chen, Y., Wang, Z., & Zhong, Z. (2019). CO2 emissions, economic growth, and renewable energy production and foreign trade in China. Renewable Energy, 131, 208–216. https://doi.org/10.1016/j.renene.2018.07.047
Donish, & Wang, Z. (2019). Dynamic relationship between tourism, economic growth, and environmental quality. Journal of Sustainable Tourism, 26(11), 1928–1943. https://doi.org/10.1080/09669582.2018.1526293
Dostek, M. A., & Sorkodie, S. A. (2019). Investigation of environmental Kuznets curve for ecological footprint and role of energy and financial development. Science of the Total Environment, 650, 2483–2489. https://doi.org/10.1016/j.scitotenv.2018.10.017
Dogan, E., & Aslan, A. (2017). Exploring the relationship among CO2 emissions, real GDP, energy consumption and tourism in the EU and candidate countries: Evidence from panel models robust to heterogeneity and cross-sectional dependence. In Renewable and sustainable energy reviews (Vol. 77, pp. 239–245). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.03. 311
Dogan, E., & Seker, F. (2016). Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. https://doi.org/10.1016/j.renene.2016.03. 078
Dogan, E., Seker, F., & Bulbul, S. (2017). Investigating the impacts of energy consumption, real GDP, tourism and trade on CO2 emissions by accounting for cross-sectional dependence: A panel study of OECD countries. Current Issues in Tourism, 20(16), 1701–1719. https://doi.org/10.1080/13683500.2015. 119103
Dong, K., Al-Momem, G., Zhang, Y., Sun, R. Li, H., & Liao, H. (2018). CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Economics, 75, 180–192. https://doi.org/10. 1016/j.eneco.2018.08.017
Durbary, R., & Seetanah, B. (2015). The impact of long haul destinations on carbon emissions: The case of mauritius. Journal of Hospitality Marketing and Management, 24(4), 401–410. https://doi.org/10. 1080/19368623.2014.914363
Elshemy, M., & El-Aasar, K. M. (2020). Carbon footprint, renewable energy, non-renewable energy, and livestock: Testing the environmental Kuznets curve hypothesis for the Arab world. Environment, Development and Sustainability, 22(7), 6985–7012. https://doi.org/10.1007/s10668-019-00523-0
Erdogan, S., Yildirim, S., Yildirim, D. C., & Gedikli, A. (2020). The effects of innovation on sectoral carbon emissions: Evidence from 620 countries. Journal of Environmental Management, 267, 110637. https:// doi.org/10.1016/j.jenvman.2020.110637
Farhani, S., & Shahbaz, M. (2014). What role of renewable and non-renewable electricity consumption and...
output is needed to initially mitigate CO2 emissions in MENA region? In Renewable and sustainable energy reviews (Vol. 40, pp. 80–90). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.07.170

Fethi, S., & Senyuce, E. (2020). The role of tourism development on CO2 emission reduction in an extended version of the environmental Kuznets curve: Evidence from top 50 tourist destination countries. Environment, Development and Sustainability, 21, 1–26. https://doi.org/10.1007/s10668-020-00633-0

Goh, T., & Ang, B. W. (2018). Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes. Energy Policy, 113, 651–662. https://doi.org/10.1016/j.enpol.2017.11.019

Gössling, S. (2013). National emissions from tourism: An overlooked policy challenge? Energy Policy, 59 B, 433–442. https://doi.org/10.1016/j.enpol.2013.03.058

Gozgor, G. (2018). A new approach to the renewable energy–growth nexus: Evidence from the USA. Environment and Development and Sustainability, 25(17), 16590–16600. https://doi.org/10.1007/s11668-018-1859-9

Gulliver, A., Tariq, Y. B., & Bashir, M. F. (2020). Dynamic relationship among economic growth, energy, trade openness, tourism, and environmental degradation: Fresh global evidence. Environment and Development and Sustainability, 22(12), 13477–13487. https://doi.org/10.1007/s11668-020-00785-5

Güngör, H., Abu-Goodman, M., Ölanpeçken, I. O., & Usman, O. (2021). Testing the environmental Kuznets curve with structural breaks: The role of globalization, energy use, and regulatory quality in South Africa. Environment and Development and Sustainability, 28(16), 20772–20783. https://doi.org/10.1007/s11668-020-11843-4

Hussain, T., Chen, S., & Nurunnabi, M. (2018). The role of social media for sustainable development in mountain region tourism in Pakistan. International Journal of Sustainable Development & World Ecology, 26(3), 226–231. https://doi.org/10.1080/13504509.2018.1550823

Hussain, M., Mir, G. M., Usman, M., Ye, C., & Mansoor, S. (2020). Analysing the role of environment-related technologies and carbon emissions in emerging economies: A step towards sustainable development. Environmental Technology (United Kingdom), 1–9. https://doi.org/10.1080/09593330.2020.1788171

Ibrahim, M. H., & Law, S. H. (2016). Institutional quality and co2 emission-trade relations: Evidence from Sub-Saharan Africa. South African Journal of Economics, 84(2), 323–340. https://doi.org/10.1111/soje.12095

Katircioglu, S., Saqib, N., Katircioglu, S., Kilinc, C. C., & Gul, H. (2020). Estimating the effects of tourism growth on emission pollutants: Empirical evidence from a small Island, Cyprus. Air Quality, Atmosphere and Health, 13(4), 391–397. https://doi.org/10.1007/s11869-020-00803-2

Khattak, S. I., Ahmad, M., Khan, Z. U., & Khan, A. (2020). Exploring the impact of innovation, renewable energy consumption, and income on CO2 emissions: New evidence from the BRICS economies. Environment and Development and Sustainability, 27(12), 13866–13881. https://doi.org/10.1007/s11668-020-00786-4

Kirikkaleli, D., Adabay, T. S., Khan, Z., & Ali, S. (2020). Does globalization matter for ecological footprint in Turkey? Evidence from dual adjustment approach. Environment and Development and Sustainability, 28(11), 14009–14017. https://doi.org/10.1007/s11668-020-11654-7

Koçak, E., & Şarküşü, A. (2018). The impact of foreign direct investment on CO2 emissions in Turkey: New evidence from cointegration and bootstrap causality analysis. Environmental Science and Pollution Research, 25(1), 790–804. https://doi.org/10.1007/s11356-017-0468-2

Kongbuamai, N., Bui, Q., Yousaf, H. M. A. U., & Liu, Y. (2020). The impact of tourism and natural resources on the ecological footprint: A case study of ASEAN countries. Environmental Science and Pollution Research 2020, 27(16), 19251–19264. https://doi.org/10.1007/s11356-020-08582-x

León, C. J., Arana, J. E., & Hernández Alemán, A. (2014). CO2 emissions and tourism in developed and less developed countries. Applied Economics Letters, 21(16), 1169–1173. https://doi.org/10.1080/13504851.2014.916376

Li, Z. Z., Li, R. Y. M., Malik, M. Y., Murshed, M., Khan, Z., & Umar, M. (2021). Determinants of carbon emission in china: How good is green investment? Sustainable Production and Consumption, 27, 392–401. https://doi.org/10.1016/j.spc.2020.11.008

Lin, T. P. (2010). Carbon dioxide emissions from transport in Taiwan’s national parks. Tourism Management, 31(2), 285–290. https://doi.org/10.1016/j.tourman.2009.03.009

Liu, C., Jiang, X., & Xie, R. (2019). Does income inequality facilitate carbon emission reduction in the US? Journal of Cleaner Production, 217, 380–387. https://doi.org/10.1016/j.jclepro.2019.01.242

Lu, W. C. (2017). Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis for 16 Asian countries. International Journal of Environmental Research and Public Health, 14(11), 1436. https://doi.org/10.3390/IJERPH1411436

Mariam, A., Tariq, S., Ul-haq, Z., & Mehmood, U. (2021). Spatio-temporal variations in fine particulate matter and evaluation of associated health risk over Pakistan. Integrated Environmental Research and Management, 00, 0–1. https://doi.org/10.1007/s11869-021-16898-5

Mehmood, U. (2021a). Examining the role of financial inclusion towards CO2 emissions: Presenting the role of renewable energy and globalization in the context of EKC. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16898-5

Mehmood, U. (2021b). Renewable-nonrenewable energy: Institutional quality and environment nexus in South Asian countries. Environmental Science and Pollution Research, 28(21), 26529–26536. https://doi.org/10.1007/s11356-021-12554-0

Mehmood, U. (2021c). Contribution of renewable energy towards environmental quality: The role of education to achieve sustainable development goals in G11 countries. Renewable Energy, 178, 600–607. https://doi.org/10.1016/j.renene.2021.06.118

Mehmood, U., Agyekum, E. B., Uhunamure, S. E., Shale, K., & Mariam, A. (2022). Evaluating the influences of natural resources and ageing people on Co2 emissions in G-11 nations: Application of CS-ARDL approach.

Mehmood, U., Mansoor, A., Tariq, S., & Ul-Haq, Z. (2021). The interactional role of globalization in tourism-CO2 nexus in South Asian countries. Environmental Science and Pollution Research International, 28(21), 26441–26448. https://doi.org/10.1007/s11356-021-12473-0
Mehmood, U., & Tariq, S. (2020). Globalization and CO2 emissions nexus: Evidence from the EKC hypothesis in South Asian countries. *Environmental Science and Pollution Research*, 2020, 27(29), 37044–37056. https://doi.org/10.1007/s11356-020-09774-1

Mehmood, U., Tariq, S., & Bao, Z. U. (2021). Effects of population structure on CO2 emissions in South Asian countries: Evidence from panel estimation. *Environmental Science and Pollution Research*, 28(7), 66858–66863. https://doi.org/10.1007/s11356-021-14976-2

Mehmood, U., Tariq, S., Ul-Haq, Z., & Meo, M. S. (2021). Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach. *Environmental Science and Pollution Research International*, 28(8), 10167–10174. https://doi.org/10.1007/s11356-020-11203-Y

Menyah, K., & Wolde-Rufael, Y. (2010). CO2 emissions, nuclear energy, renewable energy and economic growth in the US. *Energy Policy*, 38(6), 2911–2915. https://doi.org/10.1016/j.enpol.2010.01.024

Mee, M. S., Chowdhury, M. A. F., Shaikh, G. M., Ali, M., & Masood Sheikh, S. (2018). Asymmetric impact of oil prices, exchange rate, and inflation on tourism demand in Pakistan: New evidence from nonlinear ARDL. *Asia Pacific Journal of Tourism Research*, 23(4), 408–422. https://doi.org/10.1080/10941665.2018.1445652

Mikajlov, J. I., Mukhtarov, S., Mammadov, J., & Azizov, M. (2019). Re-evaluating the environmental impacts of tourism: Does EKC exist? *Environmental Science and Policy Research*, 26(19), 19389–19402. https://doi.org/10.1016/j.esper.2019-05-0269-w

Murshed, M., & Dao, N. T. T. (2020). Revisiting the CO2 emission-induced EKC hypothesis in South Asia: The role of export quality improvement. *GeoJournal*. https://doi.org/10.1007/s10708-020-10270-9

Musah, M., Owusu-Akomah, M., Boateng, F., Iddris, F., Mensah, I. A., Antwi, S. K., & Agyemang, J. K. (2021). Long-run equilibrium relationship between energy consumption and CO2 emissions: A dynamic heterogeneous analysis on North Africa. *Environmental Science and Policy Research*. https://doi.org/10.1007/s11356-021-16360-6

Nataly, Echevarria Huaman, R., & Xiu Jun, T. (2016). Energy related CO2 emissions and the progress on CCS projects: A review. In *Renewable and sustainable energy reviews* (Vol. 31, pp. 368–385). Elsevier Ltd. https://doi.org/10.1016/j.rser.2013.12.002

Nathaniel, S. P., & Iheou, C. O. (2019). Carbon dioxide abatement in Africa: The role of renewable and non-renewable energy consumption. *Science of the Total Environment*, 679, 337–345. https://doi.org/10.1016/j.scitotenv.2019.05.011

Nathaniel, S., Nwodo, O., Sharma, G., & Shah, M. (2020). Renewable energy, urbanization, and ecological footprint linkage in CIVETS. *Environmental Science and Policy Research*, 27(16), 1916–1926. https://doi.org/10.1007/s11356-020-08466-0

Naz, S., Sultan, R., Zaman, K., Aldakhil, A. M., Bassani, A. A., & Abrol, M. M. Q. (2019). Moderating and mediating role of renewable energy consumption, FDI inflows, and economic growth on carbon dioxide emissions: Evidence from robust least square estimator. *Environmental Science and Policy Research*, 26(3), 2808–2819. https://doi.org/10.1007/s11356-018-3837-6

Ozturk, I., Al-Mulali, U., & Saboori, B. (2016). Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. *Environmental Science and Policy Research*, 23(2), 1916–1928. https://doi.org/10.1007/s11356-015-5447-x

Poo, H.-T., & Tsai, C.-M. (2010). CO2 emissions, energy consumption and economic growth in BRIC countries. *Energy Policy*, 38(12), 7850–7860. https://doi.org/10.1016/j.enpol.2010.08.045

Paramati, S. R., Shohbazi, M., & Alam, M. S. (2017). Does tourism degrade environmental quality? A comparative study of Eastern and Western European Union. *Transportation Research Part D: Transport and Environment*, 50, 1–13. https://doi.org/10.1016/j.trd.2016.10.034

Pesarin, M. H., & Pesarin, B. (1997). Working with microfit 4.0: An introduction to econometrics. In *Oxford University Press, Oxford*.

Rafindadi, A. A., & Usman, O. (2019). Globalization, energy use, and environmental degradation in South Africa: Startling empirical evidence from the Maki-cointegration test. *Journal of Environmental Management*, 244, 265–275. https://doi.org/10.1016/j.jenvman.2019.05.048

Raza, S. A., & Shah, N. (2017). Tourism growth and income inequality: Does Kuznets Curve hypothesis exist in top tourist arrival countries. *Asia Pacific Journal of Tourism Research*, 22(8), 874–884. https://doi.org/10.1080/10941665.2017.1343742

Riti, J. S., Song, D., Shu, Y., & Kamah, M. (2017). Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? *Journal of Cleaner Production*, 166, 1448–1461. https://doi.org/10.1016/j.jclepro.2017.08.017

SA, S., & V. S. (2018). Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. *The Science of the Total Environment*, 639, 888–899. https://doi.org/10.1016/j.scitotenv.2018.05.204

Saidi, K., & Ben Mbarek, M. (2016). Nuclear energy, renewable energy, CO2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. *Progress in Nuclear Energy*, 86, 364–374. https://doi.org/10.1016/j.pnucene.2016.01.018

Saidi, K., & Mbarek, M. B. (2017). The impact of income, trade, urbanization, and financial development on CO2 emissions in 19 emerging economies. *Environmental Science and Pollution Research International*, 24(14), 12748–12757. https://doi.org/10.1007/s11356-016-6303-3

Salehnia, N., Karimi Alavijeh, N., & Salehnia, N. (2020). Testing porter and pollution haven hypothesis via economic variables and CO2 emissions: A cross-country review with panel quantile regression method. *Environmental Science and Pollution Research*, 27(25), 31527–31542. https://doi.org/10.1007/s11356-020-09302-1

Sarkodie, S. A., & Adams, S. (2018). Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. *Science of the Total Environment*, 643, 1590–1601. https://doi.org/10.1016/j.scitotenv.2018.06.320

Saud, M. H. M., Sinaga, O., & Jabbarullah, N. H. (2019). The role of renewable, non-renewable energy consumption and technology innovation in testing environmental Kuznets curve in Malaysia. *International Journal of Energy Economics and Policy*, 9(1), 299–307. https://ideas.repec.org/a/eco/journ2/2019-01-38.html

Sghaier, A., Guizani, A., Ben Jabeur, S., & Nurunnabi, M. (2019). Tourism development, energy
consumption and environmental quality in Tunisia, Egypt and Morocco: A trivariate analysis. GeoJournal, 84(3), 593–609. https://doi.org/10.1007/s10708-018-9878-z

Shahbaz, M., Kumar Tiwari, A., & Nasir, M. (2013). The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy Policy, 61, 1452–1459. https://doi.org/10.1016/j.enpol.2013.07.006

Shaheen, K., Zaman, K., Batool, R., Khurshid, M. A., Aamir, A., Shoukry, A. M., Sharkawy, M. A., Aldeek, F., Khader, J., & Goni, S. (2019). Dynamic linkages between tourism, energy, environment, and economic growth: Evidence from top 10 tourism-induced countries. Environmental Science and Pollution Research, 26(30), 31273–31283. https://doi.org/10.1007/s11356-019-06252-1

Shafiq, A., Afshan, S., & Nisha, N. (2017). Impact of tourism on CO2 emission: Evidence from Pakistan. Asia Pacific Journal of Tourism Research, 22(4), 408–421. https://doi.org/10.1080/10941665.2016.1273960

Sheng Yin, X., & Hussain, J. (2021). The implication of technological innovation and tourism development on FDI-growth-environment nexus in Association of Southeast Asian countries: A simultaneity modeling analysis. Energy Sources, Part B: Economics, Planning, and Policy, 16(9), 878–902. https://doi.org/10.1080/15567249.2021.1971801

Sulaiman, J. (2013). The potential of renewable energy: Using the environmental kuznets curve model. American Journal of Environmental Sciences, 9(2), 103–112. https://doi.org/10.3844/ajebsp.2013.103.112

Szymczyk, K., Şahin, D., Bağcı, H., & Kaygın, C. Y. (2021). The effect of energy usage, economic growth, and financial development on CO2 emission management: An analysis of OECD countries with a high environmental performance index. Energies 2021, 14(15), 4671. https://doi.org/10.3390/EN14154671

Teriq, S., Mehmood, U., Ul Haq, Z., & Mariam, A. (2022). Exploring the existence of environmental Phillips curve in South Asian countries. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-021-18099-6

Tsai, K. T., Lin, T. P., Huang, R. L., & Huang, Y. J. (2014). Carbon dioxide emissions generated by energy consumption of hotels and homestay facilities in Taiwan. Tourism Management, 42, 13–21. https://doi.org/10.1016/j.tourman.2013.08.017

U, M. (2021). Globalization-driven CO2 emissions in Singapore: An application of ARDL approach. Environmental Science and Pollution Research International, 28(9), 11317–11322. https://doi.org/10.1007/s11356-020-11368-W

UNWTO. (2017). UNWTO tourism highlights 2017 Edition. https://doi.org/10.18111/9789284419029

Uzar, U. (2020). Is income inequality a driver for renewable energy consumption? Journal of Cleaner Production, 255, 120287. https://doi.org/10.1016/j.jclepro.2020.120287

Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, agriculture, renewable energy, and CO2 emission. Journal of Cleaner Production, 172, 4231–4238. https://doi.org/10.1016/j.jclepro.2017.10.287

Zaghoudi, T. (2017). Internet usage, renewable energy, electricity consumption and economic growth: Evidence from developed countries. Economics Bulletin, 37(3), 1612–1619.

Zhang, S., & Liu, X. (2019). The roles of international tourism and renewable energy in environment: New evidence from Asian countries. Renewable Energy, 139, 385–394. https://doi.org/10.1016/j.renene.2019.02.046
