Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The World Health Organization (WHO) proclaimed the new Coronavirus disease (COVID-19) a pandemic on March 11, 2020, after its emergence in China at the end of 2019. Many countries, including Turkey, have been impacted by the pandemic. Turkey reported 12,237,610 confirmed cases and 88,734 deaths as of February 7, 2022.1

The pandemic measures applied to reduce the spread rate and manage the process during the COVID-19 pandemic have greatly affected individuals socially, economically, and psychologically.2 Health care services have also been affected by the pandemic. The COVID-19 pandemic has had a significant impact on patient safety, particularly in health care-associated illnesses, that is, nosocomial infections.3 COVID-19-related anxiety could influence patients’ treatment decisions.4 Surgical interventions other than emergency surgeries have been postponed.5 The surgery and the pandemic process have become a source of uncertainty and anxiety for patients, their relatives, and health care professionals.5,6 During the COVID-19 pandemic, 30.3% of neurosurgery patients undergoing non-urgent surgery felt state anxiety.7 During the COVID-19 pandemic, the number of surgical patients decreased significantly due to patients’ aversion to going to the hospital for fear of infection.8

Patients have experienced anxiety and fear secondary to surgery and the pandemic due to long waiting times, fear of infection, and surgical procedure. This study aimed to determine the fear of surgery and Coronavirus in patients who underwent a surgical intervention.

Materials and Methods

Study Design and Sample

This descriptive and cross-sectional study was carried out with 103 patients who were hospitalized in the thoracic and cardiovascular surgery departments of a university hospital between July and December 2021 and underwent elective cardiac/thoracic surgery for various indications. The Patient Information Form, Surgical Fear Questionnaire, and Coronavirus (COVID-19) Fear Scale were used to collect data. One hundred three patients were reached within the scope of the study. Data were analyzed with the Mann Whitney U and Kruskal Wallis tests and Spearman’s correlation analysis in IBM SPSS (V.22.0) program.

Findings: The mean age of the participants was 57.8 ± 14.0 years (19-82), 68.0% (n = 70) were male, and 78.7% (n = 81) underwent thoracic surgery. The total mean score of the patients on the Surgical Fear Scale was 26.9 ± 20.5 while the total mean score on the Coronavirus Fear Scale was 18.2 ± 7.5. A weak positive correlation was identified between the patients’ total score averages on the Surgical Fear Scale and the Coronavirus Fear Scale (COVID-19) (P < .001).

Conclusions: Patients undergoing cardiothoracic surgery had a low fear of surgery and a close to moderate fear of Coronavirus. Patients’ fears of surgery and Coronavirus should be determined before surgery, and psychological support should be provided to patients with high levels of fear.

© 2022 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
December 2021 and underwent elective cardiac/thoracic surgery for various indications. A convenience sampling method was employed in data collection, which was performed on a voluntary basis. Using the G*Power 3.1.9.4 software, the minimum number of people to be sampled was found to be 89, predicting effect size = 0.353 at a 95% confidence level and a 95% power ratio. One hundred three patients were reached within the scope of the study.

The study population consisted of patients who were to undergo cardiac/thoracic surgery for various indications in thoracic surgery and cardiovascular surgery departments. Adult patients who were to undergo cardiac/thoracic surgery in thoracic surgery or cardiovascular surgery departments, had no neuropsychiatric diagnosis, were at least primary school graduates, had a negative preoperative COVID-19 test, and volunteered to participate in the study were enrolled in the study.

Data Collection Tools

The Patient Information Form, the Surgical Fear Questionnaire, and the Fear of Coronavirus (COVID-19) Scale were used to collect data.

Patient Information Form

The form included 10 questions prepared by the researchers in line with the literature on the subject. The questions were aimed at identifying the patients’ sociodemographic characteristics (age, sex, education level, smoking status, comorbidity), their experience with surgery (surgery to be performed, pain), their experience with COVID-19 (sources of information about COVID-19, COVID-19 infection status, and COVID-19 vaccination status).

Surgical Fear Questionnaire

The scale, which evaluates the fear levels of patients who will undergo a surgical intervention, was developed by Theunissen and others in 2014, and Bagdigen and Özül conducted its validity and reliability study for the Turkish population in 2018. The scale consists of eight items with a numerical scale of zero to 10. Items one to four on this scale, which consists of two subscales, measure the fear of the short-term consequences of surgery, while items five to eight measure the fear of the long-term consequences of surgery. These questions address fears of surgery, anesthesia, pain, side effects, worsening of health due to surgical intervention, unsuccessful surgical intervention, incomplete recovery after surgical intervention, and prolonged recovery. The lowest score that can be obtained from the scale is 0, and the highest score is 80. High scores on the Surgical Fear Questionnaire indicate high levels of fear. Cronbach’s alpha coefficient of the scale was determined as 0.76 to 0.92 for the original scale and 0.93 in the study by Bagdigen and Özül. In this study, Cronbach’s α value was calculated as 0.90.

Fear of Coronavirus (COVID-19) Scale

The scale consists of one dimension and seven items. It is a 5-point Likert-type scale, including (1) Strongly disagree, (2) Disagree, (3) Undecided, (4) Agree, and (5) Strongly agree. There is no reverse item on the scale. The total score obtained from all scale items reflects an individual’s level of fear of Coronavirus (COVID-19). The scores that can be obtained from the scale vary between seven and 35. A high score on the scale means a high level of fear of Coronavirus.

The scale was developed by Ahorsu et al in 2020, and Bakioglu et al performed the validity and reliability study of the Turkish version in 2020. Cronbach’s α value of the scale was found to be 0.88. In this study, Cronbach’s α value was determined as 0.87.

Data Collection

The Patient Information Form, Surgical Fear Questionnaire, and Fear of Coronavirus (COVID-19) Scale were used to collect data. The researcher informed the patients who met the inclusion criteria in the surgical units about the study’s objective. Data collection forms were given to the patients who volunteered to participate in the study, and they were asked to answer all the questions in the data collection forms. After the data collection process, which took about 15 minutes, the forms were received by the researcher. During the data collection process, mask, distance, and hygiene rules were followed.

Ethical Considerations

Ethics committee approval and institutional permission required for the study were obtained with the decision dated June 14, 2021, protocol no. TUMF-SREC 2021/290 (decision no. 13/28). The patients participating in the study were informed about the study, and their written consent for participation was obtained. It was explained to the patients that their answers would be kept confidential and the information provided would only be used within the scope of the study. They were told that participation in the study was voluntary and they could leave the study whenever they wanted. Throughout the process, the ethical principles of protecting patient rights, patient confidentiality, privacy, and informed consent were respected.

Data Analysis

Data were analyzed using the IBM SPSS Statistics version 22.0 (IBM, Armonk, NY, USA) packaged software. The descriptive data of the study were evaluated by number, percentage, mean and standard deviation calculations. The Kolmogorov-Smirnov test was used to investigate the compatibility of the data with the normal distribution, and the Mann-Whitney U and Kruskal-Wallis tests were used to evaluate the data that did not show normal distribution. Spearman’s correlation test examined the relationship between the total scale score and age. A statistical significance value was accepted as P < .05.

Findings

The participants’ mean age was 57.8 ± 14.0 years (19-82), 68.0% (n = 70) were male, 79.0% (n = 73) were primary school graduates, 50.5% (n = 52) did not have a chronic disease, and 78.7% (n = 81) underwent thoracic surgery. It was revealed that 7.8% (n = 8) of the patients had had COVID-19 infection and 89.3% (n = 92) had been vaccinated against COVID-19 (Table 1). The total mean score of the patients on the Surgical Fear Questionnaire was 26.9 ± 20.5, and the mean score on the Fear of Coronavirus (COVID-19) Scale was 18.2 ± 7.5. The total mean score of the Surgical Fear Questionnaire varied according to the presence of chronic disease (P = .043), while the total mean score of the Fear of Coronavirus (COVID-19) Scale varied according to educational status (P = .021) (Table 1). A weak positive correlation was identified between the total mean scores of the patients on the Surgical Fear Questionnaire and the Fear of Coronavirus (COVID-19) Scale (P < .001) (Table 2).

Discussion

Overall, patients had a low level of surgical fear. Lai et al. reported that patients who underwent urogynecological surgery during the pandemic period had a low level of surgical fear, and Colak and Vural reported that patients who underwent outpatient surgery had a low level of surgical fear. The study conducted by
The patients’ fear of Coronavirus was close to moderate. Likewise, Keskin et al.22 reported that neurosurgery patients experienced moderate fear of COVID-19. Another study by Kurtgöz and Ayvci23 reported that fear of COVID-19 in patients admitted to the emergency department was at a moderate level. Montalto et al.24 revealed that 55% of patients who underwent elective surgery during the pandemic were afraid of being infected with SARS-CoV-2. Dogan et al.25 found that liver transplant patients had a high level of fear of Coronavirus. Another study revealed that fear of infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affected 65% of solid organ transplant recipients.26 In their study conducted in the first 6 months of the pandemic, Guven et al.17 found that 90% of oncology patients experienced moderate or severe fear of being infected with COVID-19 and the disruption of their treatment due to the COVID-19 pandemic. The study by Raslan et al.28 which examined COVID-19 cases were treated in another public hospital in the same city, and not a pandemic hospital, that suspected and confirmed COVID-19 were higher than those without an oncologic disease.31 Al Rahimi et al.32 found that during the pandemic, fear and health anxiety were more common in patients taking immunosuppressants or those with chronic diseases (Crohn’s disease, cardiovascular

Table 1

Comparison of the Mean Scores of the Surgical Fear Questionnaire and the Coronavirus Fear (COVID-19) Scale According to the Individual Variables of the Patients (N = 103)

Variables	n (%)	Surgical Fear Questionnaire (Mean ± SD)	Statistical Value	Fear of Coronavirus (COVID-19) Scale (Mean ± SD)	Statistical Value
Sex					
Female	33 (32.0)	28.8 ± 19.8	P = .314	19.6 ± 7.5	P = .189
Male	70 (68.0)	25.6 ± 20.8	U = 980.500	17.6 ± 7.5	U = 969.500
Education level					
Primary school	73 (70.9)	26.5 ± 21.0	P = .774	19.3 ± 7.7	P = .048
High school	16 (15.5)	27.8 ± 20.1	KW = 0.083	14.6 ± 6.0	KW = 0.090
University	14 (13.6)	28.1 ± 19.4		16.5 ± 7.0	P23 = 0.021
Comorbidity					
Yes	51 (49.5)	30.8 ± 20.6	P = .043	19.4 ± 7.3	P = .097
No	52 (50.5)	23.2 ± 19.8	U = 998.000	17.0 ± 7.6	U = 1075.000
Smoking status					
Yes	18 (17.5)	34.7 ± 23.3	P = .106	18.5 ± 8.9	P = .865
No	85 (82.5)	25.2 ± 19.6	U = 572.000	18.1 ± 7.3	U = 745.000
Surgery to be performed					
Thoracic	81 (78.7)	27.0 ± 20.5	P = .980	17.9 ± 7.5	P = .451
Cardiovascular	22 (21.3)	26.6 ± 20.8	U = 877.000	19.3 ± 7.7	U = 797.500
Pain					
Yes	61 (61.2)	19.6 ± 7.5	P = .852	19.6 ± 7.5	P = .691
No	40 (38.8)	17.6 ± 7.5	U = 1201.500	17.6 ± 7.5	U = 1201.500
Sources of information about COVID-19					
Mass media	86 (83.5)	29.6 ± 20.2	P = .523	19.1 ± 7.6	P = .775
Others	17 (16.5)	27.5 ± 22.1	U = 293.500	18.5 ± 7.6	U = 323.000
COVID-19 infection status					
Yes	8 (7.8)	20.6 ± 13.1	P = .485	21.0 ± 8.0	P = .246
No	95 (92.2)	27.5 ± 20.9	U = 320.000	18.0 ± 7.5	U = 286.000
COVID-19 Vaccination status					
Yes	92 (89.3)	27.3 ± 20.6	P = .571	18.4 ± 7.7	P = .401
No	11 (10.7)	23.9 ± 20.0	U = 448.000	16.4 ± 5.2	U = 427.500
Age (in years)					
57.8 ± 14.0 (19-82)	7.5 U = 797.500	19.6 ± 7.5	P = .778	18.4 ± 7.7	P = .401

U, Mann Whitney U test; KW, Kruskal Wallis H test; r, Spearman correlation analysis

Table 2

Relationship Between Surgical Fear Questionnaire and Fear of Coronavirus (COVID-19) Scale (N = 103)

Scale	Fear of Coronavirus (COVID-19) Scale
Surgical Fear Questionnaire	P = .000
	r = 0.102

r, Spearman correlation analysis

A.G. Iskli et al. Journal of PeriAnesthesia Nursing 38 (2023) 134–138
A.G. Işık et al.

Conclusion

The pandemic continues to make its effects felt in the health system, as in many areas. At least one third (33%) of patients are very afraid of COVID-19. Perioperative nurses should identify patients’ fears of surgery and Coronavirus and support them. Particularly, patients with low education levels and chronic diseases should be carefully evaluated.

References

1. World Health Organisation (WHO). COVID-19 Homepage. WHO Health Emerg Dash-board. 2022. Available at: https://covid19.who.int/region/euro/country/tr. Accessed February 8, 2022.

2. El Keshky MES, Basyouni SS, Al Sabbam AM. Getting through COVID-19: the pandemic’s impact on the psychology of sustainability, quality of life, and the global economy – a systematic review. Front Psychol. 2020;11:585897. https://doi.org/10.3389/fpsyg.2020.585897.

3. Hölscher AH. Patient, surgeon, and health care worker safety during the COVID-19 pandemic. Ann Surg. 2021;274:681–687. https://doi.org/10.1097/SLA.0000000000003524.

4. COVIDSurg Collaborative. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans. Br J Surg. 2020;107:1440–1449. https://doi.org/10.1002/bjs.11746.

5. Koffman J, Gross J, Ekhind SN, Selman L. Uncertainty and COVID-19: how are we to respond? J R Soc Med. 2020;113:211–216. https://doi.org/10.1177/1410768220930665.

6. Shanafelt T, Ripp J, Trockel M. Understanding and addressing sources of anxiety among health care professionals during the COVID-19 pandemic. JAMA. 2020;323:2133–2134. https://doi.org/10.1001/jama.2020.5891.

7. Doglietto F, Vezzoli M, Biroli A, et al. Anxiety in neurosurgical patients undergoing nonurgent surgery during the COVID-19 pandemic. Neurosurg Focus. 2020;49:E19. https://doi.org/10.3171/2020.9.FOCUS20681.

8. Fersahoglu MM, Ciyiltepe H, Persahoglu AT, et al. A comparison of patients who have appendectomy during the COVID-19 pandemic period with the period before the pandemic. Tijdschr Chir. 2022;28:170–174. https://doi.org/10.17447/tijdschr.2021.57946.

9. Kızılçaylı MC, Somuncu E. Fear of Covid-19 in patients with obesity and the influence on bariatric surgery rates. Signe Vite. 2021;17:26–31. https://doi.org/10.22535/sv.2021.16.0104.

10. Bajidjen M, Karaman Olu Z. Validation of the Turkish Version of the Surgical Fear Questionnaire. J Perianesth Nurs. 2018;33:708–714. https://doi.org/10.1016/j.jopan.2017.05.007.

11. Theunissen M, Peters ML, Schouten EG, et al. Validation of the surgical fear questionnaire in adult patients waiting for elective surgery. PLoS One. 2014;24:100225. https://doi.org/10.1371/journal.pone.0100225.

12. Aborsu DK, Lin CY, Imam V, et al. The Fear of COVID-19 Scale: development and initial validation. Int J Ment Health Addict. 2020;1–9. https://doi.org/10.1007/s11469-020-00270-8.

13. Bakoglu F, Korkmaz O, Ercan H. Fear of COVID-19 and positive: Mediating role of intolerance of uncertainty, depression, anxiety, and stress. Int J Ment Health Addict. 2021;19:2369–2382. https://doi.org/10.1007/s11469-020-00313-y.

14. Lai E, Crimes C, Kasof M, et al. Assessment of level of fear in adult patients undergoing elective urogynaecologic and gynecologic procedures and surgeries during the COVID-19 pandemic using the validated surgical fear questionnaire. Female Pelvic Med. and Reconstr. Surg. 2022;28:88–92. https://doi.org/10.1097/SPV.0000000000001162.

15. Cetin F, Vural F. Determination of surgical fear levels of patients undergoing day surgery. Izmır: Dozuk Eyüd University Institute of Health Sciences (master’s thesis); 2019.

16. Theunissen M, Jonker S, Schepers J, et al. Validity and time course of surgical fear as measured with the surgical fear questionnaire in patients undergoing cataract surgery. PLoS One. 2018;13:e0201511. https://doi.org/10.1371/journal.pone.0201511.

17. Victoria W, Melinda L, Zoltan H, et al. Complex supportive care of patients with breast cancer. Orv Hetil. 2019;160:700–709. https://doi.org/10.5555/650.2019.31367.

18. Taylan S, Celik GK. The effect of preoperative fear and related factors on patients’ postcataract surgery comfort level: a regression study. J Perianesth Nurs. 2022. https://doi.org/10.1016/j.jopan.2021.08.014. (In press).

19. Cetin F, Yilmaz E. The effects of health literacy levels of patients in surgical clinic on health perception and surgical fear. Izmır Kaptı Keçi Kılıçlı University Faculty Health Sci J. 2022;7:61–67.

20. Merte Z, Isik SA. Determination of the relationship between surgical fear levels and postoperative pain levels in patients undergoing total knee prosthesis surgery. Türkiye Klinikleri J Nurs Sci. 2020;12:317–347. https://doi.org/10.5363/nurses.2019.73129.

21. Digin F, U Yıldız Findik. The effect of nurse telephone consultation after coronary artery bypass on the autonomy level of elderly patients: A quasi-experimental study. Med J Baskıyö. 2021;17:135–141. https://doi.org/10.4274/MBJ.gale-nos.2021.19970.

22. Keskin E, Celik S, Kostecki S. Surgical process anxiety from the perspective of neurosurgery patients in Covid-19 pandemic. Kocaeli Med J. 2021;10:72–84. https://doi.org/10.21608/kiom.2021.36034.

23. Kurtgoz A, Avci S. Determination of COVID-19 fear of patients applying to emergency department. Int Social Sci Studies J. 2021;7:405–412. https://doi.org/10.4274/iss.2021.29.

24. Montalto F, Ippolito M, Noto A, et al. Emotional status and fear in patients scheduled for elective surgery during COVID-19 pandemic: a nationwide cross-sectional survey (COVID-Surgery). J Anesth Analg Crit Care. 2021;11:17. https://doi.org/10.1186/s44158-021-00022-7.

25. Doğan R, Kaplan Serin E, Bağcı N. Fear of COVID-19 and social effects in liver transplant patients. Transpl Immunol. 2021;69:101479. https://doi.org/10.1016/j.tij.2021.101479.

26. Reuken PA, Rauchfuss F, Albers S, et al. Between fear and courage: Attitudes, beliefs, and behavior of liver transplantation recipients and waiting list candidates during the COVID-19 pandemic. Am J Transplant. 2020;20:3042–3050. https://doi.org/10.1111/ajt.16110.

27. Guver DC, Sahin TK, Aktepe OH, et al. Perspectives, knowledge, and fear of cancer patients about COVID-19. Front Oncol. 2020;10:1553. https://doi.org/10.3389/fonc.2020.01553.

28. Raslan HA, Abu Salem EM, AbdElaal A, Mahmoud O, Almamalzaawi HA. Preoperative anxiety level and fear of covid 19 among adult patients undergoing elective surgery. Egypt J Health Care. 2021;12:693–704. https://doi.org/10.21608/ehjc.2016900.

29. Sisto A, Viciananza F, Tuccinardi D, et al. The psychological impact of COVID-19 pandemic on patients included in a bariatric surgery program. Zur Weight Disord. 2021;26:1717–1747. https://doi.org/10.21608/zwie.2020-00988-3.

30. Pereira X, Lima DL, Morlan-Aktin E, Malcher F. Where have the surgical patients gone during the COVID-19 pandemic? Rev Col Bras Cir. 2020;47:2022733. https://doi.org/10.1590/0034-7291-2022733.

31. Del Zingaro M, Cochetti G, Maiolino G, et al. Influence of COVID-19 pandemic on stress levels of urologic patients. Open Med (Wars). 2021;16:1198–1205. https://doi.org/10.1515/med-2021-0288.
32. Al-Rahimi JS, Nass NM, Hassoubah SA, Wazqar DY, Alamoudi SA. Levels and predictors of fear and health anxiety during the current outbreak of COVID-19 in immunocompromised and chronic disease patients in Saudi Arabia: A cross-sectional correlational study. PLoS One. 2021;16: e0250554. https://doi.org/10.1371/journal.pone.0250554.

33. Kapıkıran G, Demir B, Bulbuloğlu S, Sarıtaş S. The effect of spiritual well-being on surgical fear in patients scheduled to have abdominal surgery. Int J of Health Serv Res and Policy. 2021;6:229–238. https://doi.org/10.33457/ijhsrp.930665.

34. Zehri AH, Peterson KA, Lee KE, et al. National trends in the surgical management of metastatic lung cancer to the spine using the national inpatient sample database from 2005 to 2014. J Clin Neurosci. 2022;95:88–93. https://doi.org/10.1016/j.jocn.2021.11.036.

35. Cerda A, Garcia L. Factors explaining the fear of being infected with COVID-19. Health Expect. 25:506-512. doi:10.1111/hex.13274.

36. Doğan MM, Düzel B. Fear-anxiety levels in Covid-19. Turkish Studies. 2020;15:739–752. https://doi.org/10.7827/TurkishStudies.44678.

37. Kasapoglu F. Examining the relationship between fear of COVID-19 and spiritual well-being. Spiritual Psychol Counseling. 2020;5:341–354. https://doi.org/10.37898/spc.2020.5.3.121.

38. Varşlı B. Transformation of education in the pandemic era: sociological reflections of online education. Int J Eurasian Res. 2021;9:237–249.

39. Alowendi A, Abu-Halaweh S, Almustafa M, et al. Preoperative anxiety among adult patients undergoing elective surgeries at a tertiary teaching hospital: a cross-sectional study during the era of COVID-19 vaccination. Healthcare. 2022;10:515. https://doi.org/10.3390/healthcare10030515.

40. Shih CL, Huang PJ, Huang HT, et al. Impact of the COVID-19 pandemic and its related psychological effect on orthopaedic surgeries conducted in different types of hospitals in Taiwan. J Orthop Surg. 2021;29:1–8. https://doi.org/10.1177/2309499021996072.

41. Vanni G, Materazzo M, Pellicciaro M, et al. Breast cancer and COVID-19: The effect of fear on patients’ decision-making process. In Vivo. 2020;34(3 Suppl):1651–1659. https://doi.org/10.21873/invivo.11957.

42. Wang TT, Wang SW. Applying behavioral economics to address covid-19 fear among oral and maxillofacial surgery patients. Perspective. 2021;79:741–742. https://doi.org/10.1016/j.joms.2020.12.020.