ThinPrep Pap Test for Diagnosis of Cervical Cancer in Early Stages

Siamak Sabour1,2, Ommolbanin Abbasnezhad1, Ali Dastranj Tabrizi3, Amir Vahedi4, Elmira Mostafidi4

1Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran. 2Safety Promotions and Injury Prevention Research Center, Department of Clinical Epidemiology, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran. 3Women’s Reproduction Health Research Center, Tabriz University of Medical Science, Tabriz, I.R. Iran. 4Department of Pathology, School of Medicine, Tabriz University of Medical Science, Tabriz, I.R. Iran.

Abstract

Background: Cervical cancer is one of the world’s deadliest forms of cancer and Pap smear is the most popular screening test for diagnosis in early stages. Our study aimed to was to assess potential screening rule of ThinPrep Pap test. Methods: In this cross-sectional, study Cervical samples were collected from all women who referred to a pathology center for Papanicolaou test and all samples were prepared with ThinPrep process. To assess validity, biopsy was selected as gold standard. 131 women who had ThinPrep Pap test and biopsy were considered for the analysis. The participants were selected purposefully. Three thresholds were used to define test positivity: 1) Atypical squamous cells of undetermined significance (Asc-us) 2) Low grade squamous intraepithelial lesion (LSIL) 3) High grade squamous intraepithelial lesion (HSIL) and worse. Inter and intra observer reliability were evaluated using kappa (simple and weighted) as well as Fleiss kappa and validity were assessed by the well-known validity estimates for qualitative variables. Results: Intra observer reliability was moderate for pathologists with low and moderate experience (kappa was 0.44 and 0.46 respectively) and was good for experienced pathologist [kappa (WK) = 0.64]; however, inter observer reliability was poor (Fleiss kappa=0.12). For diagnosis of ASCUS and worse, the sensitivity was 96.3% and for diagnosis of HSIL and worse the sensitivity and specificity were 86.6% and 95.1%, respectively. Conclusion: ThinPrep pap is an acceptable screening test for diagnosis of cervical cancer in early stages. However, experience and specialty have an effect on reliability’s results.

Keywords: ThinPrep- Papanicolaou- Validity- Inter and intra observer reliability

Introduction

Cancer is one of the main causes of death in the world [1]. Cervical cancer is one of the world’s deadliest – but most easily preventable – forms of cancer for women, responsible for more than 270 000 deaths annually, 85% of which occur in developing countries [2]. In Iran, incidence rate of cervical cancer is less than other countries in the world but the risk of mortality of this cancer is high in this region. Also, because cervical cancer is preventable and it can be diagnosed in primary stages, the existence of a screening test is essential [3]. There are several available and affordable tests that can effectively detect pre-cancer, as well as several affordable treatment options [4]. The Pap smear (cytology) is the only test that has been used in large populations and that has been shown to reduce cervical cancer incidence and mortality [5]. It is generally accepted that pap programs have had significant impact on cervical cancer rates in high resource setting over the past several decades [6].

Liquid-based cytology preparations (LBCP) are replacing conventional Papanicolaou (CP) shown to improve detection rates of cervical intraepithelial neoplasia when compared with conventional preparations. Although the Validity and reliability of a test are one of the most important methodological issues in all research sciences, researchers didn’t use the correct statistical methods in many articles [7-11]. More than 170 scientific studies involving the Thin-Prep Pap test have demonstrated its benefits, including increased disease
Asian Pacific Journal of Cancer Care • Vol 4 • Issue 4
Siamak Sabour, et al: ThinPrep Pap Test for Diagnosis of Cervical Cancer in Early Stages

Materials and Methods

In this cross sectional study, cervical samples were collected from all women who referred to a pathology center for Papanicolaou test and all samples were prepared with Thin-Prep process (CytoFast Company). The women who had a past history of cervical neoplasia and radiation history were excluded from the study. The participants were enrolled between October 2015 and March 2017.

This study investigated reliability and validity of ThinPrep Papanicolaou test. For assessment of inter observer reliability, 97 ThinPrep slides in the pathology center were selected and given to 3 pathologists with different experiences (less experienced, with moderate experience and experienced). We considered pathologist with less than five-year experience as less experienced, five to ten years as moderate and finally more than ten years’ experience having fellowship in gynecology pathology as experienced pathologist. Cytology results were reported using the Bethesda system (TBS). Based on this system, pathologists reported the results in 9 categories: 1) Atypical squamous cells of undetermined significance (Asc-us), 2) Atypical squamous cells – cannot exclude HSIL (ASC-H), 3) Low grade squamous intraepithelial lesion (LSIL), 4) High grade squamous intraepithelial lesion (HSIL), 5) cervical intraepithelial neoplasia (CIN1), 6) CIN2,3, 7) Squamous cell carcinoma (SCC), 8) Atypical Glandular Cells not otherwise specified (AGC-NOS), 9) Adenocarcinoma. The pathologists reviewed the slides independently and in 3 different centers with a same way. All specimens were taken by two educated and expert health workers so that sampling errors would be low.

For investigation of intra observer reliability, 20 slides from 97 were selected randomly and gave to pathologists after about 4 to 6 weeks so that investigated them once again. In second time observing, the slides number were changed for blinding process.

For investigation of validity, the biopsy was selected as a gold standard. So, all women who had normal and abnormal ThinPrep Pap test and also biopsy were interned to our study. Finally, 131 women who had ThinPrep Pap test and biopsy attended in this study. The biopsy was taken by gynecologists and examination of pathology specimens were carried out by an expert and experienced pathologist. The biopsy results were reported in categories as the same as cytology (pap smear test) results. Therefore the results of histopathology and Pap smear were compared with each other and true and false positive and negative were computed. Three thresholds were used to define test positivity: 1) Atypical squamous cells of undetermined significance (Asc-us) and worse 2) Low grade squamous intraepithelial lesion (LSIL) and worse 3) High grade squamous intraepithelial lesion (HSIL) and worse.

Statistics

Inter and intra observer reliability was assessed using Fleiss and weighted kappa. For evaluation of validity, the Open Epi website was used. Then validity statistics, sensitivity, specificity, positive predictive value, negative predictive value, positive and negative likelihood ratio, diagnostic accuracy and odds ratio, were calculated for each threshold. We used SPSS version 16.0 for data analysis.

Results

Intra observer reliability

In this section, 3 pathologists observed 20 Pap smear slides twice with 4 to 6 weeks interval. The pathologists’ reports were considered binary, positive and negative, simple and weighted kappa for every pathologist was calculated. Kappa was 0.46 for the pathologist (with moderate experience), 0.44 for the little experienced pathologist and 0.64 for experienced pathologist.

Inter observer reliability

Fleiss kappa was 0.11 showing poor inter observer reliability.

Validity analysis

As for histopathology and thin perp pap smear test’s results and using the Open epi web site, sensitivity, specificity, positive and negative predictive value, positive and negative likelihood ratio, diagnostic accuracy and odds ratio were calculated for every three threshold. To diagnosis of ASCUS and worse, the sensitivity and specificity were 96.36% and 34.21%, respectively, for diagnosis of LSIL and worse sensitivity was 86.54% and specificity was 75.9% and for diagnosis of HSIL and worse the sensitivity and specificity were 86.67% and 95.05%, respectively. The results of validity were summarized in Table 1a, b.

Discussion

The Pap smear is generally accepted as the most successful screening test for cancer detection [12]. We showed that ThinPrep Pap smear is also an acceptable screening test for early detection of cervical cancer. Experienced pathologists in the pathology centers improve the reliability of the ThinPrep in diagnosis of cervical cancers in early stage. Our study will help to gynecologists, midwives and executive managers in public health system to select a correct diagnostic method and manage the patient and costs properly.

In our study, intra observer reliability in pathologists with low and moderate experience was moderate and in experienced pathologist was good. This result indicated that experience influenced on intra observer reliability [13-14]. While in previously published studies, intra
as sampling errors and low screening quality in compare with conventional Pap smear [24-25]. The sensitivity and other statistics in our study indicated that Thin-Prep Pap test is more valid than the conventional Pap smear. It is good to know that in many pathology centers screeners examine the pap smear slides to help the pathologists, but there is no supervise and quality control on their performance. This can have negative effect on the correct diagnosis of disease. So, it is recommended that monitor the performance of screeners and pathologists and quality control should be taken into account.

Because the patients’ characteristics and clinical data were not available, we could not estimate the added diagnostic value of the Thin-Prep Pap test. We consider this as one of the main limitations of our study.

In conclusion, in summary, based on our results Thin-Prep Pap test can be considered as a screening test for early detection of cervical cancer. However, poor inter observer reliability and moderate intra observer reliability should be taken into account. Experience and specialty affect reliability’s results. Therefore using of experienced and specialist pathologists in the pathology centers and quality control on their performance can improve the reliability of the test and help to use this test as a test in diagnosis of cervix cancer in early stages.

Acknowledgements

This study is a part of MSc thesis supported by Shahid Beheshti University of Medical Sciences.

Funding sources

This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest
The authors declare no conflict of interest.

References
1. Cervical Cancer 2017. Available from: https://www.cdc.gov/cancer/cervical/.
2. New WHO guide to prevent and control cervical cancer 2014. Available from: http://www.who.int/mediacentre/news/releases/2014/preventing-cervical-cancer/en/.
3. Khodakarami N, Farzaneh F, Yavari P, Khayamzadeh M, Taheripanah R, Akbari M. New Cervical Cancer Screening program for Low-risk Iranian Women. The Iranian Journal of Obstetrics, Gynecology And Infertility. 2014;17(95):10.
4. WHO. Comprehensive Cervical Cancer Control, guide to essential practice. second:[Available from: www.who.int/reproductivehealth.
5. Screening for cervical cancer 2017. Available from: http://www.who.int/cancer/detection/cervical_cancer_screening/en/.
6. New evidence on the impact of cervical cancer screening and treatment using HPV DNA tests, visual inspection, or cytology 2009.
7. Sabour S. Validity and reliability of the 13C-methionine breath test for the detection of moderate hyperhomocysteinemia in Mexican adults; statistical analysis and validity in reliability analysis. Clin Chem Lab Med. 2014;52(12): e295-6.
8. Sabour S. Validity and reliability of the new Canadian Nutrition Screening Tool in the 'real-world' hospital setting: Methodological issues. Eur J Clin Nutr. 2015;69(7): 864.
9. Sabour S. Adherence to guidelines strongly improves reproducibility of brachial artery flow-mediated dilation. Jatherosclerosis. 2016;251: 490.
10. Sabour S. Reliability of a new modified tear breakup time method: methodological and statistical issues. Graefes Arch Clin Exp Ophthalmo. 2016;254(3): 595-6.
11. Sabour S, Abbasnezad O, Mozaffarian S, Nazari H. Accuracy and Precision in Medical Researches; Common Mistakes and Misinterpretations. World Journal of Research and Review (WJRR). 2017;4(4):58-60.
12. Settakorn J, Rangdaeng S, Preekajorekun N, Nateewatana S, Pongvisalai K, Srismoonboon J, et al. Interobserver Reproducibility with LiquiPrepTM Liquid-based Cervical Cytology Screening in a Developing Country. Asian Pacific Journal of Cancer Prevention. 2008; Jan 1;60(3): 404-8.
13. van Grinsven S, Hagenmaier F, van Loon C, van Gorp M, van Kints M, van Kampen A. Does the experience level of the radiologist, assessment in consensus, or the addition of the abduction and external rotation view improve the diagnostic reproducibility and accuracy of MRA of the shoulder? Clinical radiology. 2014;69(11):1157-64.
14. Sabour S. Re: does the experience level of the radiologist, assessment in consensus, or the addition of the abduction and external rotation view improve the diagnostic reproducibility and accuracy of MRA of the shoulder? Clinical radiology. 2015;70(3):333.
15. Klinkhamer P, Vooijs G, Haan A. Intraobserver and interobserver variability in the diagnosis of epithelial abnormalities in cervical smears. Acta Cytol. 1988;32(6): 794-800.
16. Gupta D, Komaromy-Hiller G, Raab S, Nath M. Interobserver and intraobserver variability in the cytologic diagnosis of normal and abnormal metaplastic squamous cells in pap smears. Acta Cytol. 2001;45(5): 697-703.
17. Confortini M, Biggeri A, Carriaggi M, P., Carozzi iF, M., Minuti P A, Russo A, et al. Intralaboratory reproducibility in cervical cytology. Results of the application of a 100-slide set. Acta Cytol. 1992 Dec;37(1):49-54.
18. Sama D, Cotignoli T, Guerini L, Maioli P, Sintoni C, Bucchi L. Intralaboratory reproducibility of cervical cytology diagnoses in the external quality assurance scheme of the Emilia-Romagna region of Italy: Gynecol Oncol. 1996 Mar 1;60(3): 404-8.
19. Stoler H, Schiffman M. Interobserver Reproducibility of Cervical Cytologic and Histologic Interpretations. Jama. 2001 Mar 2;285(11):1500-5.
20. Educational curriculum of Pathology (in persian). Ministry of Health and Medical Education: 2013.
21. General Pathology. Available from: http://pathology.ubc.ca/educational-programs/residency-training/general-pathology/.
22. Arbyn M, Sankaranarayanan R, Muwonge R, Keita N, Dolo A, Mbalawa C, G., et al. Pooled analysis of the accuracy of five cervical cancer screening tests assessed in eleven studies in Africa and India. Int J Cancer. 2008 Jul 1;123(1):153-60.
23. Chen C, Yang Z, Li Z, Li L. Accuracy of several cervical screening strategies for early detection of cervical cancer: a meta-analysis. Int J Gynecol Cancer. 2012 Jul 1;22(6):908-21.
24. Hussein T, Desai M, Tomlinson A, Kitchener H. The comparative diagnostic accuracy of conventional and liquid-based cytology in a colposcopic setting. BJOG: An International Journal of Obstetrics & Gynaecology. 2005;112(11):1542-6.
25. Farzaneh F, Tamimi M, Amiri Z, Alizadeh K. The value of Pap smear in detecting cervical neoplasia compared with histopathologic findings in patients referred to Taleghani Hospital, Tehran 2007-2009. Pajoohandeh Journal. 2011;16(2):92-7.