Determination of Mechanical Properties of Industrial Ash Brick

1Vidhya K, 2Thamarai selvan R, 3Saradha P, 4Revathi S, 5Nithya B
1Professor, Department of Civil Engineering
Mahendra Engineering College, Mallasamudram, India
2M.E Student, Department of Civil Engineering
Mahendra Engineering College, Mallasamudram, India
3Assistant Professor, Department of Civil Engineering
Mahendra Engineering College, Mallasamudram, India
4Research Scholar, Department of Civil Engineering
Mahendra Engineering College, Mallasamudram, India
5Assistant Professor, Department of Civil Engineering
Mahendra Engineering College, Mallasamudram, India

Abstract
Standard sort mud blocks need to make more topsoil domains, and there is a lousy situation for headway. Materials from "Fly Ash and Pond Ash" are used to decide the above issue and limit discharges. Sand is displaced by quarry dust in light of gravity, fineness modulus and water ingestion of lake debris were separated and Indian Standard qualities. The thickness of the squares with coal debris,

Keywords:
Pond ash, fly ash, quarry mud, power of compression, water absorption, efflorescence, density of weight

I. Introduction
Fly trash impedes passing on units can be set close by warm force stations. Because friendly force stations in huge aggregate make the crucial harsh materials Pond decline. Lake trash gave by warm force stations liberated from cost the money supervisor needs to reveal just transportations charges from friendly effect stations to the fly junk blocks producing unit. The idea among individuals is required, and in like manner at the same time, the alliance needs to give some fantastic motivations for such exercises. The advances are eco inviting. Reduces strong waste and improvement in nature. Stood isolated from the void square and earth block, the expense is sensible. Development for divider development without concrete between the courts has been made by GODWIN affiliations, Auto Nagar, Guntur. The result of dividers with these squares is particularly head and financial sharp. Progress is indigenously accessible. At present, an immense level of lake junk is being passed on by warm force plants worldwide. Cutoff of lake deny requires goliath land region, and liberating from debris gets perilous. What’s more, it creates ecological dangers. This waste material, utilized thinking about everything will adequately lessen the colossal land locale required for its gathering in this advancement industry. Also, this will diminish the particular standard dangers made. Fly refuse, Pond waste; Quarry cleans are utilized to make the I-trash block with no issue.

II. Literature Review
Gaurav and Jayeshkumar (2013) made a comparative assessment of brand name sand and lake debris. The particular gravity, fineness modulus and water ingestion of lake debris were separated and Indian Standard qualities. The thickness of lake junk respect was less wandered from standard sand in any case inside the IS code. It was mulled over that the joint sand could be uprooted by lake debris halfway or absolutely in strong cement. Vidhya et al (2013) examined the microstructure and mechanical properties of lake garbage block. The analysts found that the compressive idea of lake rubbish block gets stretched out with increment in lime content. The thicknesses of lake trash block get lessened with
increment in level of lake junk. The water assimilation appraisal of lake rubbish blocks was under 10 %. The shrouded development of assimilation and sorptivity evaluations of lake waste squares were lower stood apart from those of typical earth blocks. Bharathi et al (2011) considered the arranging properties of lake junk for reasonable reliable creation. Coal trash material is legitimate for street and bank works what’s more shows sensible by halfway substitution of concrete and sand. Coal trash material shows better prospects in geotechnical applications and nuances paying little brain to its material properties. Henry et al (2009) considered the trademark appraisals of fly debris obstructs and separated the proportionate and that of ordinary earth blocks. The greenest fly debris block mitigates air polluting and an unnatural environmental change issues accomplished by utilizing fuel in radiator in the gathering of typical earth blocks. Class C fly debris blocks address remarkable principal properties including compressive quality, flexural quality, shear quality, security quality and freeze-defrost obstruction. The assessment expected that the drawn out nature of fly refuse is gotten from carbonation accomplished by CO2 in the environment. Rafat (2003) drove an exploratory appraisal on the impact of fine hard and fast superseding with Class F fly trash. Tests were facilitated to pick properties of new concrete and its quality on five stand-out movements of fly rubbish uprooting sufficient total. The outcomes exhibited that the expansion of fly trash improves the quality properties of cement. The appraisal expected that the best compressive quality and split rigidity were seen with half substitution at all ages and Class F fly trash could be utilized in bare cement adequately

Qualities of Brick

The square should be of standard apparent sizes. Courts should be freed from breaks.

- Brick should be uniform perfectly healthy and should be of standard size.
- Bricks should be homogeneous and released from voids and corn feast.
- Brick should not ingest water more than 20 % by weight when doused in cold water for 24 hours.
- Brick should have low warm conductivity. Square should give clear ringing sound when hit with each other.
- Brick should be sufficiently hard. No impact should be had on block surface, when it is scratched with finger nail.
- Bricks should not break when dropped level on hard ground from a height of around one meter.

Advantages of I - Ash Brick Over Conventional Brick

The I -ash bricks have the following advantages:

Reduction in air pollution

Much oil-based commodity is used in warming earth blocks in heaters. Devouring such fuel makes air defilement and ozone hurting substance (CO2), adding to an overall temperature change. By gathering coal flotsam and jetsam blocks (at room temperature) instead of mud blocks (at over 2,000o F), the release of air toxins and ozone draining substance is avoided at block plants, decreasing air pollution and a risky air deviation. More on the biological focal points will be watched out for later in this report.

Use Less Energy

Much energy is consumed in heating clay bricks in kilns. By using a I - ash brick instead of clay bricks, much energy is saved in brick manufacturing. Details on energy saving will be addressed later in this document.

Cost less to produce and save in construction

I - trash blocks are at any rate 10-15%, not regular mud blocks. Due to the uniform shape and size of the coal garbage block, it saves work in laying blocks by about 15%. These proselyte into an average 7 percent decline in labor cost in laying each square, too liberal.

Cleans Indoor Air

In light of the past, the coal garbage block isn’t only a negligible exertion, the first-class block; moreover, the "Green Square" of what might be on the horizon. Later on, extensive usage of the Green Square would contribute to cutting down improvement costs for housing, yet notwithstanding a cleaner and more valuable condition.
Experimental Investigation

Materials Used

Fly flotsam and jetsam and lake trash were conveyed from Mettur warm power plant, Tamil Nadu, India. The concrete was used is Ordinary Portland Cement, with 43 assessments. The compound formation of fly garbage, lake trash, and cement is given in Table 1.

S. No	Content	Compositions in Percentage		
	Fly ash	Pond ash	Cement	
1	Silica	29.51	29.76	22
2	Iron oxide	-	1.43	3
3	Alumina oxide	36.34	34.29	5
4	Lime	-	-	62
5	Calcium sulphate	-	-	4
6	Magnesia and Sulphur	-	-	2

Locally available, Lime and Quarry dust is assembled. Lime is a critical constituent in the block, having CaO more imperative than 20% was used in the course of test models' action. Consumable water was used for block gathering and reestablishing. The properties of the quarry dust are given in Table 2.

S. No	Properties of Quarry Dust	Value
1	Specific gravity	2.167
2	Co-efficient of uniformity	26.50
3	Co-efficient of Curvature	0.91

Accelerator

Accelerating admixture are added to increase the rate of early strength development in concrete to

- The period of curing is reduced.
- The structure can be placed in service in advanced time.
- The removal of formwork is earlier.
- The structure can be placed in service in advance time.
- The acceleration admixture can be used in emergency repair work.

Some of the accelerators produced these days are so powerful that it is possible to make the cement set into stone hard in a matter of five minutes or less.

Mix Proportion

The specimens are casted after finding the mixing proportions from the standard sample. There is no specific method to find out the mix design using I - ash brick materials. The method adopted for the design of conventional bricks mixes is not applicable to coal ash brick. By trail and error process mix proportions are arrived for various samples. Table 3 shows the mix proportion for casting a I - ash bricks.
allowing the material to flow and form. The machine structure is designed to take up heavy cyclic loads. The compressive force is uniformly developed to hold pressure for the required time.

It is a hydraulically operated, automatic and controlled by electronic circuits. The electronic circuit is self-diagnosing.

Pan Mixer

A sturdily machine constructed with heavy rollers to grind and mix material thoroughly. Drive through quality worm reducing gear box. Changeable bottom gear plates with scrappers fitted with TC tips. Easy bottom loading mechanism with rap pinion door arrangement. Pan mixer is used to mix the all ingredients with uniform mixing. Then the mix is homogeneous. Figure 1 shows the pan mixer.

![Figure 1 Pan mixer](image1)

Conveyor

Frames and intermittent bins are fabricated sturdily. The fly ash mix can be regulated according to the speed of the brick making machine. Nylon with rubber top conveyor belts is fixed between pan mixer and brick moulder. It acts as a friction less idlers. Figure 2 shows the belt conveyor.

![Figure 2 Conveyor](image2)

Brick Moulder

It is a hydraulically operated, automatic and controlled by electronic circuits. The electronic circuit is self-diagnosing. Brick making machine develops 30 T of compressive force over the bricks uniformly to hold pressure for the required time allowing the material to flow and form. The machine structure is designed to take up heavy cyclic loads. The compressive ratio (1:1.6- brick height: filling height) can be varied infinitely within the limits of the moulds. Size of moulds can be fitted with maximum size 230mm x 110mm x 70mm. Monogram on the brick can be embossed. Efficient water cooling system

Table 3 Details of various mix proportions for I – ash bricks

S. no	Fly ash	Pond ash	Lime	Quarry dust	Cement	Accelerator (5% of wt of cement)
1.	40	42	12	4	2	0.15
2.	40	40	12	6	2	0.15
3.	40	38	12	8	2	0.15
4.	40	36	12	10	2	0.15

Casting of test Specimens

Pan Mixer

A sturdily machine constructed with heavy rollers to grind and mix material thoroughly. Drive through quality worm reducing gear box. Changeable bottom gear plates with scrappers fitted with TC tips. Easy bottom loading mechanism with rap pinion door arrangement. Pan mixer is used to mix the all ingredients with uniform mixing. Then the mix is homogeneous. Figure 1 shows the pan mixer.

![Figure 1 Pan mixer](image1)

Conveyor

Frames and intermittent bins are fabricated sturdily. The fly ash mix can be regulated according to the speed of the brick making machine. Nylon with rubber top conveyor belts is fixed between pan mixer and brick moulder. It acts as a friction less idlers. Figure 2 shows the belt conveyor.

![Figure 2 Conveyor](image2)

Brick Moulder

It is a hydraulically operated, automatic and controlled by electronic circuits. The electronic circuit is self-diagnosing. Brick making machine develops 30 T of compressive force over the bricks uniformly to hold pressure for the required time allowing the material to flow and form. The machine structure is designed to take up heavy cyclic loads. The compressive ratio (1:1.6- brick height: filling height) can be varied infinitely within the limits of the moulds. Size of moulds can be fitted with maximum size 230mm x 110mm x 70mm. Monogram on the brick can be embossed. Efficient water cooling system

Table 3 Details of various mix proportions for I – ash bricks

S. no	Fly ash	Pond ash	Lime	Quarry dust	Cement	Accelerator (5% of wt of cement)
1.	40	42	12	4	2	0.15
2.	40	40	12	6	2	0.15
3.	40	38	12	8	2	0.15
4.	40	36	12	10	2	0.15
is to ensure the continuous running of the machine. Figure 3 shows the brick moulder. The bricks are handled by pallet truck for easy transportation of coal ash bricks.

![Figure 3 Brick Moulder](image)

Curing of I-ash bricks

I-ash brick should be cured 28 days. In this first three days bricks should not kept in direct sunlight. This is done to avoid hair cracks in bricks. Then it is kept in ordinary conditions and cured.

Testing of Bricks

The following are the various tests conducted on the I-ash bricks.

- Compression test
- Water absorption test
- Shape and size test
- Efflorescence test
- Weight density of brick

Compression Test

Compression test is the most common test conducted on brick. The brick is placed with flat face horizontally placed carefully centered between the plates of compression testing machine. Load is applied uniformly. The load is noted when the brick failed or crushed. The compressive strength of the brick is calculated by ultimate load to bed surface area of the brick. The above observations are tabulated and calculated average strength of I-ash bricks. Figure 4 shows the compressive strength test.

![Figure 4 Compressive strength test](image)

Water Absorption Test

The completely dried bricks are immersed in clean water at a temperature of 27° C for 16 hours. The brick is removed and wiped out of a trace of water with a damp cloth and weighted within 3 minutes. The above procedure is repeated on a fresh brick and all observations are tabulated and average percentage water absorption is worked out. The water
absorption was calculated by the ratio of difference in weight of the brick to original weight of the brick.

Shape and Size Test

In this test, a l-ash brick closely inspected. Its shape is truly rectangular with sharper edges. For this purpose, 20 bricks of selected in random manner and tested the size of the brick. The standard size is checked 230mm x 110mm x 70mm and all bricks are maintained the standard size.

Efflorescence Test

After 24 hours l-ash bricks immersed in water, it is taken out and allowed to dry. The absence of grey or white deposits on its surface indicates absence of soluble salts. As the result after immersing bricks in water for 24hours, there is no presence of white deposits over the brick.

Weight Density Test

The weight density of the l-ash brick is calculated by the ratio of weight of the coal ash brick to volume of the brick. The weight density of the brick is measured by kN/mm3.

III. Result and Discussion

Table 4 shows the test result of compressive strength, water absorption and weight density of the l-ash brick with various mix proportion.

Sample	Compressive strength N/mm²	Water absorption In percentage	Weight density kN/m³
I	5.50	13.00	12.37
II	4.03	12.50	12.88
III	3.79	11.40	12.64
IV	3.50	10.00	13.73

From the result, the squares' compressive nature is not the same as 5.50 N/mm² to 3.50 N/mm², and water maintenance changes from 13 % to 10 23 %, and the weight thickness of the square vary from 13.73 kN/m3 to 12.37 kN/m3. The Quarry dust rate regard is extended in mix degree. The compressive quality lessened. The weight thickness regarding coal garbage blocks reduced with growing the lake trash rate is developed in mix degree. Using these l-garbage blocks, oneself heap of the divider segment decreased appeared differently concerning the conventional mud block.

IV. Conclusion

Lake garbage is not entirely superseding by fly flotsam and jetsam material. Quarry dust is replacing material of sand. Lake garbage and quarry dust is current waste material. By growing Quarry dust's extent, the square’s compressive nature is getting diminished as 5.5 N/mm² to 3.5 N/mm².63. The weight thickness assessment of Mix 1 is reduced 7 % than Mix 4. All mixed blends of l-trash squares should have the square’s compressive nature more noticeable than 3.5 N/mm². Like this, a broad scope of mix blend is used for load-bearing structures. When stood out from earth blocks, 20 % of the cost is lessened using these waste materials. The dirtying materials like lake trash and quarry dust are sufficiently used in collecting l-garbage blocks.

V. References

1. A. Ghosh, (2010), Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. Journal of Materials in Civil Engineering. 22, 343–351.
2. Henry Liu, Shankha K Banerji, William J Burkett & Jesse VanEngelenhoven 2009, ’Environmental properties of fly ash bricks’, World of Coal Ash (WOCA) Conference, Lexington, USA, http://www.flyash.info/
3. N. Sudharsan, T. Palanisamy, S. C. Yaragal, Environmental sustainability of waste glass as a valuable construction material - A critical review. Ecology, Environment and Conservation. 24 (2018), pp. S331–S338.
4. Vidhya, K., & Kandasamy, S. (2014). Study on the flexural strength of coal ash brick masonry wall elements. Journal of Structural Engineering (India), 41(4), 410–419.
5. Mohamad, G., Lourenço, P. B., & Roman, H. R. (2007). Mechanics of hollow concrete block masonry prisms under compression: Review and prospects. Cement and Concrete Composites, 29(3), 181–192.

6. Rangawala, S.C. 2012, “Engineering materials” published by Charotar Publishing House, Anand.

7. Sudharsan, N., & Saravanaganesh, S. (2019). Feasibility studies on waste glass powder. International Journal of Innovative Technology and Exploring Engineering, 8(8), 1644–1647.

8. Pandey, P. K., & Agrawal, R. K. (2002). Utilization of mixed pond ash in integrated steel plant for manufacturing superior quality bricks. Bulletin of Materials Science, 25(5), 443–447.

9. Rafat Siddique 2003, ‘Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete’, Cement and Concrete Research, vol. 33, pp. 539-547.

10. Vidhya, K., & Kandasamy, S. (2013). Study on properties of bricks manufactured using fly ash and pond ash. Pollution Research, 32(2), 405–409.

11. Gumaste, K. S., Rao, K. S. N., Reddy, B. V. V., & Jagadish, K. S. (2007). Strength and elasticity of brick masonry prisms and wallets under compression. Materials and Structures/Materiaux et Constructions, 40(2), 241–253.

12. Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19(9), 728–739.

13. Sarangapani, G., Venkatarama Reddy, B. V., & Jagadish, K. S. (2005). Brick-mortar bond and masonry compressive strength. Journal of Materials in Civil Engineering, 17(2), 229–237.

14. Sudharsan, N., & Palanisamy, T. (2018). A comprehensive study on potential use of waste materials in brick for sustainable development. Ecology, Environment and Conservation, 24, S339–S343.

15. Santhakumar, A. R. 2007, “Concrete Technology (theory and practice)”, published by Oxford University Press-New Delhi.

16. Xiao, J., & Wang, C. (2012). Seismic test on a damaged structure with recycled concrete blocks. In Key Engineering Materials (Vol. 517, pp. 528–535).

17. Praburanganathan, S., & Chithra, S. (2020). Synergy of waste glass powder and waste rubber: A research on loading, perseverance and morphological features of unburnt fly-ash-based masonry units. Materiali in Tehnologije, 54(1), 99–106.

18. Ghosh, A. (2010). Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. Journal of Materials in Civil Engineering, 22(4), 343–351.

19. Bharathi Ganesh, Sharada Bai, H & Nagendra, R 2011, ‘Effective utilization of pond ash for sustainable construction-need of the hour’, International Journal of Earth Science and Engineering, vol.4, no. 6, pp. 151-154.

20. Sarkar, R., Singh, N., & Das, S. K. (2007). Effect of addition of pond ash and fly ash on properties of ash-clay burnt bricks. Waste Management and Research, 25(6), 566–571.

21. Goñi, S., Lorenzo, M. P., & Sagrera, J. L. (1994). Durability of hydrated portland cement with copper slag addition in NaCl + Na2SO4 medium. Cement and Concrete Research, 24(8), 1403–1412.

22. Goñi, S., Guerrero, A., & Hernández, M. S. (2001). Spanish LLW and MLW disposal: Durability of cemented materials in (Na, K)Cl simulated radioactive liquid waste. Waste Management, 21(1), 69–77.

23. Vidhya, K., & Kandasamy, S. (2016). Experimental Investigations on the Properties of Coal-Ash Brick Units as Green Building Materials. International Journal of Coal Preparation and Utilization, 36(6), 318–325.

24. Kumar, S. (2002). A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Construction and Building Materials, 16(8), 519–525.

25. Singh, M., & Garg, M. (1995). Phosphogypsum - Fly ash cementitious binder - Its hydration and strength development. Cement and Concrete Research, 25(4), 752–758.

26. Huang, Y., & Lin, Z. (2011). A binder of phosphogypsum-ground granulated blast furnace slag-ordinary portland cement. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 548–551.

27. Singh, M., & Garg, M. (1999). Cementitious binder from fly ash and other industrial wastes. Cement and Concrete Research, 29(3), 309–314.

28. Sudharsan, N., & Sivalingam, K. (2019). Potential utilization of waste material for sustainable development in construction industry. International Journal of Recent Technology and Engineering, 8(3), 3435–3438.

29. Guerrero, A., Hernandez, M. S., & Goñi, S. (2000). The role of the fly ash Pozzolanic activity in simulated sulphate radioactive liquid waste. Waste Management, 20(1), 51–58.

30. Special Committee for Implementation of science and Technology Projects. (SCIP).

31. IS: 3495 (Part 1, 2 and 3)-1992, Methods of tests of Burnt Clay Building Bricks Specification, Bureau of Indian Standards, New Delhi.

32. Gaurav Kantial Patel & Jayeshkumar pitroda 2013, ‘Assessment of natural sand and pond ash in Indian context’, International Journal of Engineering Trends and Technology, vol. 4, no. 10, pp. 4287-4291.