Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study

S Hossein Fatemi and Timothy D Folsom

Abstract

Background: Fragile X syndrome is caused by loss of function of the fragile X mental retardation 1 (FMR1) gene and shares multiple phenotypes with autism. We have previously found reduced expression of the protein product of FMR1 (FMRP) in vermis of adults with autism.

Methods: In the current study, we have investigated levels of FMRP in the superior frontal cortex of people with autism and matched controls using Western blot analysis. Because FMRP regulates the translation of multiple genes, we also measured protein levels for downstream molecules metabotropic glutamate receptor 5 (mGluR5) and γ-aminobutyric acid (GABA) A receptor β3 (GABRβ3), as well as glial fibrillary acidic protein (GFAP).

Results: We observed significantly reduced levels of protein for FMRP in adults with autism, significantly increased levels of protein for mGluR5 in children with autism and significantly increased levels of GFAP in adults and children with autism. We found no change in expression of GABRβ3. Our results for FMRP, mGluR5 and GFAP confirm our previous work in the cerebellar vermis of people with autism.

Conclusion: These changes may be responsible for cognitive deficits and seizure disorder in people with autism.

Background

Autism and fragile X syndrome (FXS) are two disorders that share several commonalities, including reduced cerebellar volume, altered dendritic spine morphology [1-4], presence of seizures, mental retardation and social anxiety [2-5], as well as other behavioral abnormalities [5,6]. People with both FXS and autism have been shown to have lower IQ scores [7], lower adaptive skills [7], lower expressive language skills [8] and greater autonomic dysfunction and hyperarousal [9] than people with FXS alone. The rate of FXS in people with autism varies from 2% to 8% [10,11]. The prevalence of autism in people with FXS has been estimated to be anywhere from 25% to 47% [5,12,13].

All diagnoses of FXS require loss of function mutation of the fragile X mental retardation 1 (FMR1) gene [14]. The product of the FMR1 gene, fragile X mental retardation protein (FMRP), has roles in multiple intranuclear and posttranscriptional events [15,16] and has been shown to bind to up to 4% of the mRNA expressed in the brain [17]. FMRP is thought to be involved in multiple developmental events, including normal differentiation, migration of subpopulations of neuronal cells and the development of cortical circuits [18]. FMRP may also have roles in synaptic pruning [19], and the results of multiple studies have supported a role for FMRP in synaptic plasticity [17,20]. All of these functions are relevant to the pathology of autism. Any abnormality in FMRP function could affect multiple genes and pathways [21]. For example, reduced FMRP expression has been shown to negatively affect the expression of γ-aminobutyric acid A (GABA_A) receptors in FXS animal models [22-24], and work done at our laboratory has...
shown significant reductions in protein for both FMRP and the GABA_A, β3 subunit (GABRβ3) in vermis of adults with autism [25].

In vermis of people with autism, our laboratory has recently demonstrated the following: (1) reduction in levels of FMRP and GABRβ3 in adults with autism, (2) increased expression of metabotropic glutamate receptor 5 (mGluR5) in children with autism and (3) increased glial fibrillary acidic protein (GFAP) in children and adults with autism [25]. In the current study, we have expanded our research to measure protein levels for the same molecules in the superior frontal cortex (Brodmann’s area 9 (BA9)). We hypothesized that FMRP would be reduced, potentially explaining deficits that are common in autism spectrum disorder and FXS.

Results
All values derived using Western blot analysis were normalized against two housekeeping proteins: NSE and β-actin. Previous studies of FMRP have shown that two to five distinct bands of FMRP may appear on SDS-PAGE (55% to 50%, 46 kDa for GFAP, and the FMRP/NSE ratio (55%, P < 0.017) and the FMRP/β-actin ratio (50%,
Case	Dx	Sex	Age	PMI, hours	Ethnicity	Medication History	Cause of Death	Seizure	MR
4670	Control	M	4	17	Caucasian	None	Commotio Cordis	No	No
1674	Control	M	8	36	Caucasian	None	Drowning	No	No
4787	Control	M	12	15	African American	Montelukast, Albuterol, Prednisone, Loratadine	Asthma	No	No
1823	Control	M	15	18	Caucasian	None	MVA	No	No
6396	Control	M	18	19.83	Unknown	None	Unknown	No	No
1846	Control	F	20	9	Caucasian	None	MVA	No	No
6316	Control	F	32	28.92	Unknown	None	Unknown	No	No
1169	Control	M	33	27	African American	Metoclopramide, Loratadine	Dilated Cardiomyopathy (morbid obesity)	No	No
1376	Control	M	37	12	African American	None	ASCVD	No	No
6420	Control	M	41	30.4	Unknown	None	Heart Attack	No	No
7002	Autism	F	5	32.73	Asian	None	Drowning	No	No
5569	Autism	M	5	39	Caucasian	None	Drowning	No	No
1174	Autism	F	7	14	Caucasian	None	Seizure disorder	Yes	No
5666	Autism	M	8	22.16	Caucasian	None	Cancer	Yes	No
4231	Autism	M	8	12	African American	Olanzapine, Galantamine	Drowning	No	Yes
4925	Autism	M	9	27	Caucasian	Clonidine, Sodium valproate, Phenytoin, Lamotrigine, Methylphenidate, Carbamazepine	Seizure disorder	Yes	No
4899	Autism	M	14	9	Caucasian	None	Drowning	No	No
6184	Autism	F	18	6.75	Caucasian	None	Seizure disorder	Yes	No
5144	Autism	M	20	23.66	Caucasian	Erythromycin gel, Minocycline	MVA	No	Yes
1638	Autism	F	20	50	Caucasian	None	Seizure disorder	Yes	Yes
6337	Autism	M	22	25	Caucasian	Aripiprazole, Lamotrigine, Zonisamide	Aspiration	Yes	No
6994	Autism	M	29	43.25	Caucasian	Fexofenadine, Ziprasidone HCl, Carbamazepine	Seizure (suspected)	Yes	No
6640	Autism	F	29	17.83	Caucasian	Fluvoxamine	Seizure disorder	Yes	No
6677	Autism	M	30	16.06	Caucasian	None	Heart Failure (congestive)	No	Yes
5173	Autism	M	30	20.33	Caucasian	Cisapride, Clorazepate, Sodium valproate, Phenytoin, Folic Acid, Primidone, Phenobarbital, Omeprazole, Cisapride, Metoclopramide	Gastrointestinal bleeding	Yes	No
5027	Autism	M	37	26	African American	None	Obstruction of bowel due to adhesion	No	No
6401	Autism	M	39	13.95	Caucasian	None	Cardiac Tamonade	No	No
5562	Autism	M	39	22.75	Caucasian	None	Sudden unexpected death	Yes	Yes
6469	Autism	F	49	16.33	Caucasian	Wafarin, Venlafaxine, Erythromycin, Lansoprazole, Risperidone, Meflofin, Gabapentin, Propranolol, Levothyroxine	Pulmonary Arrest	No	Yes
4498	Autism	M	56	19.48	Caucasian	Benztrapine mesylate, Haloperidol, Lithium, Chlorpromazine, Alprazolam	Anoxic encephalopathy	Yes	No

Children	Control	Autistic	Change	P value	Cohen’s d
Age ± SD (years)	11.4 ± 5.55	9.25 ± 4.53	↓18.9%	ns	–
PMI ± SD (years)	212 ± 8.47	186 ± 9.47	↓12.3%	ns	–
Gender	5M	5M, 3F	–	–	–
Table 1 Demographic data for people with autism and healthy controls (Continued)

Adults	Control	Autistic	Change	P value	Cohen’s d
Age ± SD (years)	32.6 ± 7.89	33.3 ± 11.2	↓21.1%	ns	–
PMI ± SD (years)	21.5 ± 10.1	24.6 ± 11.1	↓14.4%	ns	–
Gender	3M:2F	9M:3F	–	–	–

*aDx, diagnosis; PMI, postmortem interval; MVA, motor vehicle accident; MR, mental retardation; ns, not significant.

P < 0.042) in BA9 of adults with autism compared with controls (P < 0.026) (Figure 1 and Tables 2 and 3). In BA9 of children with autism, there were significant increases in the dimerized mGluR5/NSE ratio (159%, P < 0.013) and total mGluR5/NSE ratio (165%, P < 0.014) (Figure 2 and Table 2). Similarly, there were significant increases in both the dimerized mGluR5/β-actin ratio (168%, P < 0.023) and the total mGluR5/β-actin ratio (191%, P < 0.011) (Table 3). We previously observed a significant difference in dimerized mGluR5 vs. total mGluR5 in vermis of children with autism [25]; however, a similar result was not seen in BA9 (Table 2). GFAP was found to be significantly elevated in BA9 of both children (136%, P < 0.012) and adults (58%, P < 0.033) with autism (Figure 3 and Tables 2 and 3). We observed no significant differences in protein levels for NSE (Figure 3 and Table 2) or β-actin (Figure 3 and Table 3), suggesting that the observed changes were not due to changes in neuronal cell numbers between people with autism and matched controls. Finally, there was no significant change in GABRβ3 between people with autism and matched controls (Figure 4 and Tables 2 and 3), despite large effect sizes.

There were no significant differences between individuals with autism and controls related to age or postmortem interval (PMI) (Tables 2 and 3). We examined the confounding effects of age and PMI on our results and found no impact of age on the levels of any proteins (data not shown). There was an impact of PMI on the FMRP/β-actin ratio. However, as there was no significant difference in PMI between the two groups, the impact of PMI on the FMRP/β-actin ratio was not meaningful.

The effect of gender was examined in both children and adults. For children, there were no girls in the control group. However, when control boys were compared with boys with autism, the results for FMRP and GABRβ3 remained nonsignificant and total mGluR5 and GFAP remained significantly elevated, while the dimerized mGluR5/β-actin ratio lost significance (data not shown). In adults, it was impossible to evaluate the effect of gender on levels of FMRP and GFAP owing to low power, and mGluR5 and GABRβ3 remained nonsignificant (data not shown).

Mental retardation, seizures and use of anticonvulsants were all confounded within the autism group. Neither seizure disorder nor anticonvulsant use affected the Western blot analysis results (data not shown). In comparing people with autism who had seizure disorder with people with autism without seizure disorder, we found that there were no significant differences for FMRP in children, while this comparison could not be tested in adults because of the low sample size. However, there was a 47% reduction in FMRP in adults with autism and seizure disorder compared with adults with autism without seizure disorder (data not shown). In only one instance was mental retardation a significant predictor of differences in Western blot analysis results, and that was for the GFAP/β-actin ratio in adults. When that individual (subject 6469) was removed from the analysis, the difference remained significant between people with autism and controls.

Effect sizes were calculated for the comparisons using Cohen’s d statistic where an effect size >0.8 is considered a large effect [32]. In children, the comparisons of mGluR5 dimers/NSE ratio, mGluR5 total/NSE ratio, GABRβ3/NSE ratio, mGluR5 dimers/β-actin ratio, mGluR5 total/β-actin ratio, GABRβ3/β-actin ratio and GFAP/β-actin ratio displayed large effect sizes (Tables 2 and 3). In adults, the comparisons of FMRP/NSE ratio, mGluR5 total/NSE ratio, FMRP/β-actin ratio, mGluR5 dimers/β-actin ratio, mGluR5 total/β-actin ratio and GFAP/β-actin ratio between the two groups consisted of large or very large effect sizes (Tables 2 and 3).

Discussion

In the current study, we found reduced protein expression of FMRP in BA9 of adults with autism, increased expression of mGluR5 in children with autism, increased expression of GFAP in both children and adults with autism and no significant difference in GABRβ3 expression. With the exception of no change in GABRβ3 expression, these changes in the prefrontal cortex (PFC; that is, BA9) mirror what we have previously observed in cerebellar vermis of people with autism [25].

We are the first to demonstrate significant changes in protein for FMRP in BA9 of adults with autism. Recent imaging studies have shown reduced activation of the
PFC during cognitive performance tasks in individuals with FXS [35-37]. Hoeft et al. [36] found reduced activation in the right ventrolateral PFC in adolescent boys with FXS during a go vs. no go executive function task. Similarly, in a study of females with FXS, there was reduced activation of the PFC and striatum during a working memory task [35]. Reduced activation of the PFC has also been shown in females with FXS during mathematical processing [37]. Taken together, these studies indicate impairment of multiple PFC-mediated functions in people with FXS. The reduction in FMRP in BA9 in adults with autism may result in similar changes in brain activation and cognitive processing in individuals with autism.

Dopamine plays a critical role in cognitive functions in the PFC [38,39], and recent studies involving Fmr1-knockout mice have shown a role of FMRP in dopamine modulation in the PFC [40,41]. Such a role for FMRP may help to explain learning and memory deficits in people with FXS [40,41]. Our finding of reduced FMRP expression in BA9 of adults may help to explain cognitive deficits in people with autism.
In contrast to our studies of vermis, we did not observe a significant reduction in GABRβ3 in BA9 of adults with autism. However, previous experiments in our laboratory using a different set of BA9 tissue from controls and individuals with autism also failed to show any significant difference in protein expression of GABRβ3 (SHF and TJ Reutiman, unpublished data). These results may reflect regional differences in GABRβ3 protein expression in the brains of people with autism.

Our finding regarding GFAP confirms our earlier findings of significant elevation of GFAP in BA9 of a different set of people with autism [42]. This increased level of GFAP is consistent with previous findings of astrogial activation in the brains of individuals with autism [43-45], suggesting dysregulation of the immune system. Coexpression of GFAP and FMRP has been demonstrated by immunocytochemical studies in the hippocampi of embryonic and postnatal mice, but not in adults [46,47]. Significantly increased GFAP has been observed in the cerebellum [48] and in the striatum, hippocampus, and cerebral cortex [49] of fragile X-knockout mice. Ellegood et al. [48] suggested that the loss of FMRP and increase in cerebellar GFAP could contribute to anatomical changes in the cerebellum.

The significant elevation of mGluR5 protein in children with autism is an interesting finding in light of the connection between group 1 mGluRs and FMRP in FXS, which are believed to act in opposition to one another. It has been proposed that in the absence of FMRP, unchecked mGluR-dependent protein synthesis leads to the pathology of FXS [50,51]. A number of recent findings in Fmr1-knockout mice have shown that

Table 2 Western blot analysis results for FMRP, mGluR5, GABRβ3 and NSE and their ratios in BA9

Children							
FMRP/NSE	0.08 ± 0.057	0.123 ± 0.069	153%	0.013b	1.93b	ns	0.66
mGluR5 dimer/NSE	0.158 ± 0.175	0.409 ± 0.101	159%	ns	0.014b	1.90b	0.66
mGluR5 total/NSE	0.167 ± 0.182	0.443 ± 0.123	165%	0.014b	1.90b	0.66	
mGluR5 dimer/mGluR5 total	0.867 ± 0.154	0.93 ± 0.042	17.2%	ns	0.014b	1.90b	0.66
GABRβ3/NSE	0.095 ± 0.052	0.161 ± 0.086	169%	0.014b	1.90b	0.66	
NSE	17.4 ± 0.642	19.20 ± 2.67	10.4%	ns	0.66		

Table 3 Western blot analysis results for FMRP, mGluR5, GABRβ3, GFAP and β-actin and their ratios in BA9

Children							
FMRP/β-actin	0.073 ± 0.054	0.119 ± 0.062	153%	0.017b	1.74b	ns	0.66
mGluR5 dimer/β-actin	0.186 ± 0.099	0.309 ± 0.188	160%	0.013b	1.74b	ns	0.66
mGluR5 total/β-actin	0.191 ± 0.099	0.367 ± 0.187	192%	0.013b	1.74b	0.50	
mGluR5 dimer/mGluR5 total	0.974 ± 0.023	0.982 ± 0.011	10.8%	0.013b	1.74b	0.50	
GABRβ3/β-actin	0.177 ± 0.082	0.186 ± 0.103	15.1%	0.013b	1.74b	0.50	
GFAP/β-actin	1.75 ± 3.17	18.8 ± 2.3	11.3%	ns	0.66		

Table 2 Western blot analysis results for FMRP, mGluR5, GABRβ3 and NSE and their ratios in BA9

Children							
FMRP/NSE	0.24 ± 0.094	0.107 ± 0.068	155%	0.017b	1.74b	ns	0.66
mGluR5 dimer/NSE	0.186 ± 0.099	0.309 ± 0.188	160%	0.013b	1.74b	ns	0.66
mGluR5 total/NSE	0.191 ± 0.099	0.367 ± 0.187	192%	0.013b	1.74b	0.50	
mGluR5 dimer/mGluR5 total	0.974 ± 0.023	0.982 ± 0.011	10.8%	0.013b	1.74b	0.50	
GABRβ3/NSE	0.177 ± 0.082	0.186 ± 0.103	15.1%	0.013b	1.74b	0.50	
NSE	17.5 ± 3.17	18.8 ± 2.3	11.3%	ns	0.66		

Table 3 Western blot analysis results for FMRP, mGluR5, GABRβ3, GFAP and β-actin and their ratios in BA9

Children							
FMRP/β-actin	0.175 ± 0.075	0.087 ± 0.055	150%	0.042b	1.43b	ns	0.66
mGluR5 dimer/β-actin	0.136 ± 0.069	0.267 ± 0.175	190%	0.033b	1.46b	ns	0.66
mGluR5 total/β-actin	0.139 ± 0.069	0.272 ± 0.178	190%	0.033b	1.46b	ns	0.66
mGluR5 dimer/mGluR5 total	0.136 ± 0.069	0.159 ± 0.087	17%	0.033b	1.46b	ns	0.66
GFAP/β-actin	1.93 ± 0.762	3.04 ± 0.758	158%	0.033b	1.46b	ns	0.66
β-actin	232 ± 1.97	217 ± 3.28	65.5%	ns	0.66		

*FMRP, fragile X mental retardation protein; mGluR5, metabotropic glutamate receptor 5; GABRβ3, γ-aminobutyric acid (GABA) A receptor β3; NSE, neuron-specific enolase; BA9, Brodmann’s area 9; ns, not significant; *statistically significant.
Figure 2 Expression of mGluR5 in superior frontal cortex of people with autism and matched controls. (A) Representative samples of metabotropic glutamate receptor 5 (mGluR5) from controls (C) and people with autism (A). (B) Mean mGluR5 dimer and monomer/neuron-specific enolase (NSE) ratios for people with autism (filled histogram bars) and controls are shown for Brodmann’s area 9 (BA9). (C) Mean mGluR5/β-actin ratios for people with autism (filled histogram bars) and controls are shown for BA9. Error bars express standard error of the mean. **P < 0.05.
the use of mGluR5 inhibitors, such as 2-methyl-6-(phe-nylethynyl)-pyridine (MPEP), rescues FXS phenotypes [52,53]. Recent experiments by Silverman et al. [54,55] have shown that MPEP was useful in the treatment of repetitive grooming behavior in the BTBR mouse model of autism by antagonizing mGluR5 receptors. This new model adds to the previous animal models for autism and FXS and helps to expand our understanding of the role of mGluR5 dysfunction.

The increased expression of mGluR5 in children with autism suggests pathologic activation of mGluR5 which may be prenatal or early postnatal. This activation may lead to seizures, cognitive problems and perhaps brain morphological abnormalities in children with autism and FXS. While FMRP levels are similar in children with autism and controls, overactive mGluR5 signaling may be strong enough to overcome FMRP’s inhibitory effect. In adults, there continue to be elevated levels of dimerized mGluR5 (66% increase for mGluR5/NSE ratio and 92% increase for mGluR5/β-actin ratio) and total mGluR5 (96% increase for both mGluR5/NSE and mGluR5/β-actin ratios), although they do not reach the level of statistical significance. At the same time, adults with autism have significantly lower levels of FMRP. This reduction in FMRP reduces its inhibitory effect on mGluR5 signaling, resulting in a continuation of the phenotypes observed in children with autism and FXS.

The interaction between FMRP and mGluR5 also presents a potential means of treatment using allosteric modulators of mGluR5. In a pilot study, treatment of patients with FXS with lithium, which reduces mGluR-activated translation, led to improved scores on the

Figure 3 (A) Representative samples of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE) and β-actin from controls (C) and people with autism (A). (B) Mean GFAP/β-actin ratios for people with autism (filled histogram bars) and controls are shown for Brodmann’s area 9 (BA9). Error bars express standard error of the mean. **P < 0.05.
Aberrant Behavior Checklist-Community Edition and was well-tolerated [56]. Additionally, fenobam, an anxiolytic drug that acts as an inhibitor of mGluR5 [57], has been shown to correct prepulse inhibition deficits in people with FXS in a recent open-label pilot study [58]. Norbin is a positive modulator of endogenous mGluR5 that enhances mGluR5 signaling [59]. Reduction in norbin has been shown to lead to a consequent reduction in mGluR5 expression, and norbin-knockout mice show enhanced locomotor activity similar to that of mice treated with MPEP [59]. It may be the case that allosteric modulators of mGluR5 or targeting of naturally occurring modulators of mGluR5 could have similar effects on people with autism and warrant future exploration. A further avenue of treatment may be the use agents which raise the levels of GABA in the brains of individuals with autism. Recently, Heulens et al. [60] reported on ganaxolone as a potential GABA_A receptor agonist in the treatment of people with FXS. Certainly this agent, as well as GABA_B receptor agonists such as arbaclofen, could be investigated in the treatment of autism.

Figure 4 Expression of GABR_B3 in superior frontal cortex of people with autism and matched controls. (A) Representative samples of γ-aminobutyric acid (GABA) A receptor β3 (GABR_B3) from controls (C) and people with autism (A). (B) Mean GABR_B3/neuron-specific enolase (NSE) ratios for people with autism (filled histogram bars) and controls are shown for Brodmann’s area 9 (BA9). (C) Mean GABR_B3/β-actin ratios for people with autism (filled histogram bars) and controls are shown for BA9. Error bars express standard error of the mean.
Conclusions

We observed reduced expression of FMRP in BA9 of adults with autism, and increased expression of mGluR5 in children with autism, compared with matched controls. These findings mirror results observed in our laboratory in cerebellar vermis of people with autism. These observed changes in protein expression of FMRP in adults and mGluR5 in children are likely to contribute to cognitive deficits and the presence of comorbid seizure disorder in individuals with autism. The interaction between FMRP and mGluR5 provides a potential avenue for treatment through the use of allosteric modulators.

Acknowledgements

Human tissue was obtained from the National Institute of Child Health & Human Development (NICHD) Brain and Tissue Bank for Developmental Disorders, University of Maryland, Baltimore, MD, USA. (The role of the NICHD Brain and Tissue Bank is to distribute tissue, and therefore it cannot endorse the studies performed or the interpretation of results.) Human tissue was also obtained from the Harvard Brain Tissue Resource Center, which is supported in part by Public Health Service R24 MH086855, the Brain Endowment Bank, which is funded in part by the National Parkinson Foundation, Inc., Miami, FL, USA; and the Autism Tissue Program, and all are gratefully acknowledged. Grant support by NICHD grants SRO1HD052074-01A2 and SRO1HD052074-03S1 to SHF is gratefully acknowledged. Information regarding FMRP from Dr J Damell, Rockefeller University, New York, NY, USA, is greatly appreciated. Assistance with statistical analyses provided by Dr P Thuras is greatly appreciated. A brief summary of some of the findings presented here dealing with FMRP, mGluR5 and GABAA receptor expression in children with autism is previously presented in a review article [61] with permission from Elsevier.

Author details

1Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455, USA. 2Department of Pharmacology, University of Minnesota Medical School, 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455, USA. 3Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455, USA.

Authors’ contributions

SHF conceived of the study, participated in its design and contributed to the drafting of the manuscript. TDF performed the Western blot analysis, was involved in statistical analyses and contributed to the drafting of the manuscript. Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 15 October 2010 Accepted: 6 May 2011
Published: 6 May 2011

References

1. Irwin SA, Patel B, Idupulapati M, Harris JJ, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cas P, Kozlovski PB, Swain RA, Weiler SJ, Greenough WT: Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001, 98:161-167.
2. Gothelf D, Furfaro JA, Hoefl F, Eckert MA, Hall SS, O’Hara R, Erba HW, Ringel J, Hayashi KM, Patnaik S, Golanu B, Kraemer HC, Thompson PM, Piven J, Reiss AL: Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008, 63:40-51.
3. Haffahan B, Daly EM, McAlonan G, Loth E, Toal F, O’Brien F, Robertson D, Hales S, Murphy C, Murphy KC, Murphy DG: Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med 2008, 39:337-346.
4. Hutslar JJ, Zhang H: Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010, 1309:83-94.
5. Hatton DD, Sideris J, Skinner M, Maniokowski J, Bailey DB Jr, Roberts J, Minnett P: Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A 2006, 140A:1804-1813.
6. Bailey DB Jr, Mesibov GB, Hatton D, Clark RD, Roberts JE, Mayhew L: Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord 1998, 28:499-508.
7. Kau AS, Tierney E, Bukelis J, Stump MH, Kates WR, Trescher WH, Gray RM, Cox C, Capone GT, Stanard P: Social behavior profile in young males with fragile X syndrome: Characteristics and specificity. Am J Med Genet A 2004, 126A:9-17.
8. Philofsky A, Hepburn SL, Hayes A, Hagerman RJ, Rogers SJ: Linguistic and cognitive functioning and autism symptoms in young children with fragile X syndrome. Am J Ment Retard 2004, 109:208-218.
9. Roberts JE, Bocca ML, Bailey DB Jr, Hatton DD, Skinner M: Cardiovascular indices of physiological arousal in boys with fragile X syndrome. Dev Psychobiol 2001, 39:107-123.
10. Chudley AE, Gutierrez E, Jocelyn LI, Chodirker BN: Outcomes of genetic evaluation in children with pervasive developmental disorder. J Dev Behav Pediatr 1998, 19:321-325.
11. Wissink TH, Piven J, Paal SR: Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatr Genet 2001, 11:57-63.
12. Bailey DB, Hatton DD, Mesibov GB, Ament N, Skinner M: Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord 2000, 30:557-567.
13. Kaufman MW, Correll R, Kau A, Bukelis I, Tierney E, Gray R, Cox C, Capone G, Stanard P: Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. Am J Med Genet A 2004, 129A:225-234.
14. Hall SS: Treatments for fragile X syndrome: a closer look at the data. Dev Disabil Res Rev 2009, 15:353-360.
15. De Rubeis S, Bagri C: Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability. Mol Cell Neurosci 2010, 43:65-50.
16. Keene JD: RNA regulons: Coordination of post-translational events. Nat Rev Neurosci 2007, 8:533-543.
17. Bassell GJ, Warren ST: Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 2009, 28:501-507.
18. Till SM: The developmental roles of FMRP. Biochem Soc Trans 2010, 38:507-510.
19. Pfeiffer BE, Huber KM: Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 2007, 27:3120-3130.
20. Mecaldio V, Dessalci G, Zhuo M: Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 2009, 28:501-507.
21. Brown V, Jin P, Cennam S, Damel J, O’Donnell WT, Tensenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Damel RB, Warren SM: Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001, 107:477-487.
22. El Idrissi A, Ding XH, Scalia J, Trenkner E, Brown WT, Dobkin C: Decreased GABAa receptor expression in the seizure-prone fragile X mouse. Neurobiol Learn Mem 2005, 83:141-146.
23. D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, Kooy RF: Decreased expression of the GABAa receptor in fragile X syndrome. Brain Res 2006, 1121:238-245.
24. Gantois I, Vandecompel J, Speelman F, Reyniers E, D’Hooge R, Severijnen LA, Willemsen M, Tarsanne F, Kooy RF: Expression profiling suggests underexpression of the GABAa receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 2006, 21:346-357.
25. Fatemi SH, Folsom TD, Kneeland RE, Liesch SB: Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both fragile X mental retardation protein and GABAa receptor beta 3 in adults with autism. Anat Rec.
26. Fatemi SH, Reuteman TJ, Folsom TD, Thuras PD: GABA_A receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2009, 39:223-230.
27. Fatemi SH, Folsom TD, Reuteman TJ, Thuras PD: Expression of GABA_A receptors is altered in brains of subjects with autism. Cerebellum 2009, 8:64-69.
28. Fatemi SH, Reuteman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD: mRNA and Protein levels for GABA_A alpha 4, alpha 5, beta 1, and GABA_A receptor1 are altered in brains from subjects with autism. J Autism Dev Disord 2010, 40:743-750.
29. Bureau M, Olthen RW: Multiple distinct subunits of the y-aminobutyric acid-A receptor protein show different ligand-binding affinities. Mol Pharmacol 2002, 63:482-491.
30. Cohen J: A power primer. Psychol Bull 1992, 112:155-159.
31. Samaco RC, Hargat A, LaSalle JM: Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 2005, 14:483-492.
32. Sama T, Schwender L, Dogli E, Sieghart W: Homologous sites of GABA_A receptor alpha_1, beta_2, gamma_2 are important for assembly. Neuropsychopharmacology 2002, 28:394-399.
33. Watrous DJ, Duggal T, Kim SS, Zhuo M: Roles of fragile X mental retardation protein paralogs. Mol Autism 2011, 2:64-69.
34. Romero SM, Nelson DL, Oostra BA, Willemsen R: Rescue of behavioral phenotype and neuronal protrusion morphology in fmr1 KO mice. Neurobiol Dis 2008, 31:127-132.
35. Silverman JL, Tolu SS, Barkan CL, Crawley JN: Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGlur5 antagonist MPEP. Neuropsychopharmacology 2010, 35:976-989.
36. Sittler A, Devys D, Weber C, Mandel JC: mGluR1 and mGluR5 in prefrontal cortex. J Neurosci 2009, 29:15468-15478.
37. Rivera SM, Menon V, White CD, Glaser B, Reiss AL: Functional brain activation during cognition is related to FMR1 gene expression. Brain Res 2000, 877:267-370.
38. Hoef J, Hernandez A, Parthasaraty S, Watson CL, Hall SS, Reiss AL: Frontostriatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome. Hum Brain Mapp 2007, 28:543-554.
39. Rivera SM, Menon V, White CD, Glaser B, Reiss AL: Functional brain activation during arithmetic processing in females with fragile X syndrome is related to FMR1 protein expression. Hum Brain Mapp 2009, 28:206-218.
40. Huang YY, Simpson E, Kellendack K, Kandel ER: Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci USA 2004, 101:3236-3241.
41. Summer DJ: Dopamine and working memory mechanisms in prefrontal cortex. J Physiol 2007, 581:885.
42. Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M: FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuropharmacology 2008, 59:634-643.
43. Wang H, Kim SS, Zhuo M: Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Bio Chem 2010, 285:21888-21890.
44. Laurencea JA, Fatemi SH: Giall fibrillary acidic protein is elevated in brains of subjects with autism and other neuropsychiatric disorders. Biol Psychiatry 1993, 33:743-748.
45. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 2010, 171:1197-1208.
46. Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porres SW, Weng N, Weiler U, Greenough WT: Open-label treatment trial of lithium to target the underlying deficit in fragile X syndrome. J Dev Behav Pediatr 2008, 29:293-302.
47. Potter RH, Jachse C, Spoooren W, Ballard TM, Buitelmann B, Kolczewski S, Peters JU, Pressen E, Wichmann J, Veira E, Muhlemann A, Gati S, Mutel V, Malherpe P: Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlur5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 2005, 315:711-721.
48. Berry-Kravis E, Hessl D, Coffey S, Schneider A, Yuh E, Greengard P, Nobin in an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science 2009, 326:1554-1557.
49. Heukens I, D’Hulst C, Braat S, Rooms L, Kooy RF: Involvement and therapeutic potential of the GABAergic system in the fragile X syndrome. Science 2010, 329:2196-2206.
50. Fatemi SH, Reuteman TJ, Folsom TD: The role of fragile X mental retardation protein in major mental disorders. Neuropsychopharmacology 2011, 36:1221-1226.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

doi:10.1186/2040-2392-2-6

Cite this article as: Fatemi and Folsom: Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study. Molecular Autism 2011 2:6.