INTRODUCTION

Surgical ablation of locally advanced breast cancer often results in huge defects, however immediate reconstruction of the breast mound is controversial, particularly its relationship to clinical indications and type of reconstruction. Adequately covering any large chest wall defect is the main clinical issue, and a variety of techniques have been implemented over the last four decades, including skin grafts, local skin or fasciocutaneous flaps, omens-
detail our experiences using bilateral advancement (BA), thoracoabdominal (TA), and thoracoepigastric (TE) flaps with a specific focus on outcomes, advantages, disadvantages, and proper patient selection.

METHODS

All mastectomies that required immediate reconstruction by a plastic surgeon at a single center between June 2008 and October 2013 were retrospectively reviewed. Breast mound reconstructions that used flaps and/or implants were excluded. Forty-three patients (45 breasts) were referred to plastic surgeons during the study period to receive chest wall reconstructions because of failed direct wound closure after mastectomy. Of these cases, 14 breasts received split-thickness skin grafts and 6 breasts received full-thickness grafts. A total of 25 local flaps were performed on 24 patients: 6 BA flaps, 9 TA flaps, and 10 TE flaps (a flap and a skin graft were performed on each breast in 1 patient) (Table 1).

Chart review was performed to obtain data on sex, age, diagnosis, oncological status, adjuvant therapy, location and size of the defects, and complications. Outcomes were compared between all three groups based on the flap type. Due to small number of patients in each group, statistical comparisons were only performed to assess the overall incidence of complications and duration before the initiation of the adjuvant therapy. Analyses were performed using SPSS software (SPSS Inc., Chicago, IL, USA).

Table 1. Patient data

Patient no.	Age (yr)	Defect size (cm²)	Operation method	Pathology	Start of adjuvant therapy	Stage	Mastectomy weight (g)	Complication
1	44	20 × 15	Bilateral advancement	Phyllodes	Observe	Phyllodes	774.0	None
2	40	12 × 12	Bilateral advancement	IDC	POD 28	T1N0M0	78.5	None
3	51	23 × 12	Bilateral advancement	IDC	Observe	T4N1M0	580.0	None
4	53	29 × 24	Bilateral advancement	Phyllodes	Observe	Phyllodes	3,916.0	Wound dehiscence
5	45	22 × 21	Bilateral advancement	IDC	POD 25	T4N3M0	1,525.0	None
6	47	14 × 14	Bilateral advancement	IDC	POD 31	T4N1M0	221.0	None
7	53	21 × 15	Thoracoabdominal	IDC	POD 50	T3N0M1	432.0	Tip necrosis
8	36	15 × 11	Thoracoabdominal	IDC	POD 35	T4N2M0	110.0	None
9	44	26 × 26	Thoracoabdominal	IDC	POD 27	T3N2M0	837.0	None
10	34	22 × 17	Thoracoabdominal	IDC	POD 31	T4N2M1	827.0	None
11	40	21 × 20	Thoracoabdominal	Phyllodes	POD 27	Phyllodes	1,184.0	None
12	41	21 × 19	Thoracoabdominal	IDC	POD 40	T4N0M0	1,950.0	Tip necrosis
13	36	26 × 20	Thoracoabdominal	IPLC	POD 26	T3N0M0	1,095.0	None
14	41	18 × 17	Thoracoabdominal	Angiosarcoma	POD 18	T3N0M0	587.0	None
15	38	23 × 20	Thoracoabdominal	IDC	POD 23	T3N0M0	1,093.0	None
16	34	25 × 23	Thoracoepigastric	IDC	POD 37	T4N1M0	661.0	None
17	42	24 × 22	Thoracoepigastric	IDC	POD 36	T3N0M0	728.0	None
18	32	21 × 20	Thoracoepigastric	IDC	POD 21	T4N3M0	664.0	Tip necrosis
19	48	19 × 19	Thoracoepigastric	Phyllodes	POD 38	Phyllodes	434.0	None
20	53	22 × 21	Thoracoepigastric	IDC	POD 38	T4N3M0	1,525.0	Tip necrosis
21	46	14 × 14	Thoracoepigastric	IDC	POD 55	T4N1M0	221.0	Tip necrosis
22	39	24 × 23	Thoracoepigastric	IDC	POD 35	T4N3M0	1,031.0	Tip necrosis
23	51	25 × 20	Thoracoepigastric	IDC	POD 46	T3N0M0	330.0	None
24	38	24 × 24	Thoracoepigastric	IDC	POD 44	T2N3M0	408.0	Tip necrosis
25	45	19 × 18	Thoracoepigastric	IDC	POD 47	T4N3M0	209.0	Tip necrosis

IDC, intraductal carcinoma; POD, postoperative day; TNM, tumor, node, metastasis; IPLC, invasive pleomorphic lobular carcinoma.
Surgical techniques

BA flap
For the BA flap, sufficient dissection begins at the margins of the mastectomy defect and progresses upward over the clavicle and downward almost to the level of the umbilicus without additional incisions. The plane of dissection is prefascial, and perforators from the epigastric and intercostal vessels are preserved whenever possible. The created cephalic and caudal flaps are sutured together, leaving a horizontal scar (Fig. 2). Trimming of “the dog ear” is usually necessary. This flap is indicated when the vertical dimensions of the flap do not exceed approximately 15 cm and its shape is approximately elliptical. If excessive tension develops during closure, a TA or TE flap should be considered.

TA flap
The TA flap is basically a rotation-advancement flap that uses the lateral intercostals, subcostal, and lumbar arteries. An incision is made at the midline of the abdomen all the way down to the umbilicus, and further dissection proceeds inferiorly and laterally across a prefascial plane. The pedicle of this flap can be identified at the medial edge of the external oblique muscle and preserved. The flap is rotated clockwise for left chest wall defects, or counterclockwise for right chest wall defects (Fig. 3). This flap is usually indicated when a higher portion of the defect lies medial, or a large amount of medial advancement is required.

TE flap
The TE flap is like a mirror image of the TA flap and uses perforators from the superior epigastric artery. The incision starts at the lower lateral angle of the defect and curves laterally down along the midaxillary line. Dissection continues medially and inferiorly, thereby preserving the superior epigastric perforators that pierce the rectus abdominis fascia (Fig. 4). This flap is usually indicated when the required medial advancement is relatively small and a higher portion of the defect lies laterally toward the axilla.

RESULTS

Between June 2008 and October of 2013, 25 local flaps were performed on 24 patients to cover chest wall defects after surgical ablation for locally advanced breast cancer. Among 24 patients, 23 were female and the mean age was 42.6 years (range, 32–53 years). Nineteen patients were diagnosed with invasive ductal carcinoma of the breast, 4 with an invasive phyllodes tumor, and 1 with a bilateral recalcitrant invasive phyllodes tumor. The mean follow-up period was 14 months (range, 4–66 years). The mean specimen weight was 1,382.5 g (range, 110–7,500 g; median, 894.5 g). The mean defect size was 400.1 cm² (range, 90–696 cm²): 321 cm² in BA flap group (n = 6) vs. 462 cm² in TA flap group (n = 9) vs. 391 cm² in TE flap group (n = 10).
The thoracoepigastric flap uses the superior epigastric vessels as perforators. The vertical scar is at the midaxillary line.

The thoracoabdominal flap uses the lateral intercostal vessels and leaves a vertical midline scar.

Total, 9 complications were recorded (36% of patients): 1 case of wound dehiscence (16.6%) in the BA flap group; 2 cases (22%) of distal flap necrosis in the TA flap group; and 6 cases (60%) of distal flap necrosis in TE flap group (P = 0.17; Fisher exact test). All complications (except in 3 patients in the TE group) spontaneously healed in less than 3 weeks with conservative wound
management (Fig. 5). Among the 6 patients with distal flap necrosis in the TE flap group, 1 patient underwent surgical debridement to promote wound healing and 2 patients eventually required skin grafts before initiating adjuvant radiation. Adjuvant chemotherapy and/or radiation were indicated for 3, 9, and 9 patients in the BA, TA, and TE groups, respectively. Adjuvant therapy commenced when sufficient wound healing was confirmed by the plastic surgeons. Adjuvant therapy was initiated after an average of 28, 30.1, or 41.4 postoperative days in BA, TA, and TE groups, respectively, and this difference was statistically significant between the TA and TE groups (P = 0.02).

DISCUSSION

In contrast to the dramatic evolution in the field of breast reconstruction, less attention has been paid to reconstructing large chest wall defects following a so-called “toilet mastectomy,” wherein the mastectomy is performed on locally advanced breast cancer patients with the aim of ablating the breast and skin tissues and minimizing oncologic recurrence [10,11]. A variety of locoregional tissue transfers have been introduced, and the common goal is to provide early wound healing and a low risk of total flap failure [1-5,8,9,12,13]. The BA flap is a straightforward way of closing the wound that only leaves a horizontal scar in the chest wall [4]. However, defects with greater vertical dimensions cannot be covered using this technique, and tension may result in wound dehiscence: as was the case here when the vertical dimension of the defect was 19 cm (Fig. 6).

The TA flap uses the skin, subcutaneous tissue of the anterior abdominal wall, and the direct perforating vessels of the segmental arteries that arise from the subcostal, intercostals, and lumbar arteries [2,3]. Epigastric perforators can also be preserved whenever possible. Deo et al. [2] reported that this flap is better than the myocutaneous flap in terms of mean blood loss, operating time, and length of hospital stay, and Persichetti et al. [3] have described using extended TA flaps to repair extensive defects ≤ 600 cm². We treated 2 patients (22%) with small distal flap tip necrosis, and both spontaneously healed within 3 weeks. We believe perfusion to the TA flap is relatively robust, but the main drawback of this flap is the vertical midline scar.

The TE flap is mainly supplied by perforators from the superior epigastric arteries [1,5,6]. This flap has been confused with the TA flap because of its similar nomenclature: the two terms have been called a “medially based TA flap” or “laterally based TE flap” [1,5]. The TE flap is traditionally a transversely designed transposition flap supplied by the superior epigastric artery, which was previously used to repair upper extremity defects [14]. When transversely designed, the donor site often requires skin grafts or surgery on the opposite side of the abdomen [1,5,6]. Using a midaxillary incision, the vertical scar can be concealed when the arm is in a neutral position. Our large rotation-advancement flap design has the additional advantage in that the majority of the flap can be reelevated and reused by the time scarring occurs. However, this flap is hemodynamically weak, as reported by Baroudi et al. [15], and behaves more like a random flap.

Here, 60% of the patients in the TE flap group developed distal flap necrosis. Among these, 2 patients required skin grafts because healing was delayed for more than 3 weeks due to significant necrosis. We do not know the exact reasons for this high in-
The incidence of flap-tip necrosis, although the problem could be due to the design or innate blood supply to the flap. However, considering the perforator theory, our design transfers the exact same anatomic region as the transverse or oblique design and uses the same perforator. The distal portion of this flap usually goes around the axillary area, where some redundancy in the local tissues allows relatively less closing tension (Fig. 7). So, we believe the cause of tip necrosis in the TE flap is its innate vulnerability to perfusion despite the inclusion of the superior epigastric perforators, especially when the defect extends too far laterally. We recommend debridement and skin grafting when perfusion in the distal part of the flap is suspected during the primary operation (Fig. 8).

Oncological safety is the primary concern in patients with locally advanced breast cancer, with notable advances now made in multimodality anticancer therapy, but patients who receive mastectomy followed by chest wall reconstruction using grafts or flaps may want to delay the breast reconstruction [16]. Therefore, the primary donor sites for subsequent reconstructions should be preserved whenever possible, such as the lower abdominal tissues and/or latissimus dorsi, in order to maximize the final outcomes.

In summary, the three types of local skin flap described here could be applied to locally advanced breast cancer surgeries that leave a large chest wall defect. Each flap has its own advantages and disadvantages, and selection should be based on the dimensions and location of the defect.

REFERENCES

1. Skoracki RJ, Chang DW. Reconstruction of the chest wall and thorax. J Surg Oncol 2006;94:455-65.
2. Deo SV, Purkayastha J, Shukla NK, et al. Myocutaneous versus thoraco-abdominal flap cover for soft tissue defects following surgery for locally advanced and recurrent breast cancer. J Surg Oncol 2003;83:31-5.
3. Persichetti P, Tenna S, Cagli B, et al. Extended cutaneous 'thoracoabdominal' flap for large chest wall reconstruction.
4. Ryan JJ. A lower thoracic advancement flap in breast reconstruction after mastectomy. Plast Reconstr Surg 1982;70:153-60.
5. Matros E, Disa JJ. Uncommon flaps for chest wall reconstruction. Semin Plast Surg 2011;25:55-9.
6. Rivas B, Carrillo JF, Escobar G. Reconstructive management of advanced breast cancer. Ann Plast Surg 2001;47:234-9.
7. Foster RD, Hansen SL, Esserman LJ, et al. Safety of immediate transverse rectus abdominis myocutaneous breast reconstruction for patients with locally advanced disease. Arch Surg 2005;140:196-8.
8. Micali E, Carramaschi FR. Extended V-Y latissimus dorsi musculocutaneous flap for anterior chest wall reconstruction. Plast Reconstr Surg 2001;107:1382-90.
9. Leinster SJ, Webster DJ. Thoraco-abdominal and thoraco-epigastric flaps: alternatives to skin grafting after mastectomy. Clin Oncol 1982;8:145-8.
10. Lee MC, Newman LA. Management of patients with locally advanced breast cancer. Surg Clin North Am 2007;87:379-98.
11. Godfrey PM, Godfrey NV, Romita MC. Immediate autogenous breast reconstruction in clinically advanced disease. Plast Reconstr Surg 1995;95:1039-44.
12. McCraw JB, Bostwick J 3rd, Horton CE. Methods of soft tissue coverage for the mastectomy defect. Clin Plast Surg 1979;6:57-69.
13. Strauch B, Vasconez LO, Hall-Findlay EJ, et al. Thoraco-epigastric skin/fascia flap to the arm. In: Strauch B, Vasconez L, Hall-Findlay E, et al., editors. Grabb's encyclopedia of flaps: upper extremities. Philadelphia, PA: Lippincott Williams & Wilkins; 2009. p.981-4.
14. Halsted WS. I. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg 1894;20:497-555.
15. Baroudi R, Pinotti JA, Keppke EM. A transverse thoraco-abdominal skin flap for closure after radical mastectomy. Plast Reconstr Surg 1978;61:547-54.
16. Newman LA, Kuerer HM, Hunt KK, et al. Feasibility of immediate breast reconstruction for locally advanced breast cancer. Ann Surg Oncol 1999;6:671-5.