Review

The Medicinal Natural Products of Cannabis sativa Linn.: A Review

Anwuli Endurance Odieka 1, Gloria Ukalina Obuzor 2, Opeoluwa Oyehan Oyedeji 3, Mavuto Gondwe 4, Yiseyon Sunday Hosu 5 and Adebola Omowunmi Oyedeji 1,*

1 Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa; endy_odieka@yahoo.com
2 Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria; gloria.obuzor@uniport.edu.ng
3 Department of Chemistry, Fort Hare University, Alice 5700, South Africa; ooyedeji@ufh.ac.za
4 Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa; mgondwe@wsu.ac.za
5 Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa; yhosu@wsu.ac.za
* Correspondence: aoyedeji@wsu.ac.za; Tel.: +27-764-260-279

Abstract: Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during childbirth, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of Cannabis sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of Cannabis sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.

Keywords: medicinal plant; Cannabis sativa; phytochemicals; bioactivity; extraction methods; characterization

1. Introduction

The applications of plants as medicines predate human history. A medicinal plant refers to any plant which contains substances of therapeutic potential in one or more of its parts for the synthesis of plant-based drugs [1]. Active medicinal plant ingredients are referred to as bioactive phytochemicals. [2]. These bioactive compounds are believed to increase the ability of plants to survive or adapt to their surroundings [3] and are used as medicines, flavorings, and recreational drugs in humans. One notable medicinal plant that has continued to garner attention over the years, and in recent times, is Cannabis sativa.

Cannabis sativa L. is known for its medicinal uses since ancient times, because of its rich supply of phytochemicals [4], hence the quest for harnessing its pharmacological potential by scientists. The term “Cannabis” is used to define the products (drugs and essential oils) that are prepared or obtained from the annual herb C. sativa and its variants, which are of the family Cannabaceae [5]. The utilization of this multipurpose plant has been restrained for a long time because of the psychoactive effects of a specific cannabinoid
(Δ9-tetrahydrocannabinol; C12H19O2) [6]. It was strongly prohibited in the twentieth century, and was removed from the British pharmacopoeia. The plant was demonized due to its high abuse liability and supposedly insufficient health benefits [7]. Furthermore, due to the inability to prepare standardized preparations, and the diffusion of the recreational use of cannabis below therapeutic concentrations from the end of the 19th to the first half of the 20th century, the medical use of cannabis began to decline [7]. In 1937, the “Marihuana Tax Act”, a federal legislation in the United States, functionally ended all medical uses of cannabis and was removed from the “National Formulary and Pharmacopoeia” in 1941 [7]. In 1961, cannabis resin, extracts, and tinctures were listed in the Schedule I of the single Convention on Narcotic Drugs, which prohibits the use, possession, production, manufacture, export, import, and trade of cannabis, except for medical and scientific purposes [7].

However, in multiple countries today, its cultivation and usage are regulated by laws [6,8]. Recent decriminalization policies and new scientific evidence have increased the interest in the medicinal potential of cannabis and have paved the way for the release of marketing authorizations for cannabis-based products [7]. In 1985, the United States Food and Drugs Administration (US FDA) reconsidered the medical use of cannabinoids, and approved Marinol (dronabinol) and Cesamet (nabilone), two synthetic analogues of tetrahydrocannabinol (THC), for the management of nausea and vomiting associated with cancer chemotherapy [7]. The Office of Medical Cannabis Research (OMC), a Dutch government agency in Europe, became the first organization to obtain the exclusive right to supply medical cannabis to research institutes and pharmacies, and, under the Single Convention on Narcotic Drugs of 1961, to import and export cannabis extracts and resin for medical purposes. Several medical cannabis products, all of which are dried female flowering tops, except Bediol (which is ground into small pieces for its easy manipulation by patients with spasticity), are exported by the OMC, with the proper licenses, to other member states of the European Union [7]. In Italy, the Military Pharmaceutical Chemical Works of Florence became the official national settlement for cultivating and manufacturing medical cannabis with a standard cannabinoid content [7,9]. The Italian Ministry of Health in November 2015, in a Ministerial Degree, authorized the indoor cultivation of cannabis flowering tops at a fixed temperature and at fixed light-dark cycles, leading to a standardized composition of different cannabinoids [9]. Two Italian products (FM1 and FM2) are currently available for consumers, and their use was approved for the treatment of chronic pain, neurological disorders, and other diseases resistant to standard therapies [7,9,10]. Non-psychoactive compounds found in C. sativa are associated with fewer side effects and can be used for several industrial applications [6]. The hemp stem supplies both cellulosic and woody fibers. The woody fibers are used for animal beddings, while the cellulosic fibers (bast fibers) are used as a substitute for fiberglass, and to produce bioplastics [4]. Its use as an anti-bacterial finishing agent and in functionalized textiles have also been reported [4]. The inflorescence was used, traditionally, for acute pain, insomnia, coughing, and wounds. The leaves were used for malaria, panting, roundworm, scorpion stings, hair loss, and the greying of hair. The stem bark was used for physical injury and strangury. Vaginal discharge, difficult births, strangury, the retention of the placenta, and physical injuries were treated using the roots [11]. In addition, Cannabis sativa contains essential oils of a high value, which can also improve the effectiveness of cannabinoids in pharmaceutical formulations [6].
Despite the influx of chemical-based medicines for treatments, the relevance of medicinal plants in drug development cannot be overemphasized. In recent years, commercial medicinal cannabis products with several variations in the phytocannabinoid content have been licensed and produced in Canada [7,8] and in several other countries. Several synthetic and standardized products are currently available on the market; however, patients’ preferences lean towards herbal preparations, because they are easy to handle and self-administer [7]. Thus, this review intends to highlight the phytochemicals present in the different plant parts, which potentiates their pharmacological activities, as well as the techniques for the extraction, isolation, and characterization of *C. sativa* compounds.

2. Methods

Literature on the published works of *Cannabis sativa* was obtained using electronic search engines, such as Google Scholar, the WSU online database (PubChem), and Science Direct. The keywords included, namely, *Cannabis sativa*, medicinal plants, Cannabis phytochemicals, ethnopharmacology bioactivity, and medicinal potentials, were used to source for data. An extensive review of the literature from 2011 through to 2021 (the last ten years) on *Cannabis sativa* L. was used to summarize its medicinal potential. Conversely, an emphasis will be placed on the isolation and characterization techniques from 1970 to 2021 to have a broadened view of the advancements in analytical techniques over the past years. Overall, twenty-nine (29) papers relating to the areas of our focus were chosen and were reviewed by all authors. The results from the search were carefully sorted, based on a general understanding, the review questions, and the related objectives.

3. Origin and Botanical Description of *C. sativa*

The genus name *Cannabis* means “cane-like” while *sativa* means “sown”, which signifies that the plant is propagated from the seed and not from the roots [12]. It is believed to have originated in Asia and occurs widely in Africa [12,13]. Central and south-east Asia are the potential natural origins for the domestication of the Cannabis genus [14] and it is known by different common names in different languages (hemp, marihuana, kannabis sativa, ganja, bhang, and al-bhango) [15]. In South Africa, it is colloquially known, in Afrikaans, as “daggag”; in isiXhosa as “umfincafincane”; and in Isizulu as “umunyane” [16,17]. Taxonomically, Carl Linnaeus, a Swedish botanist, was the first to coin the name *Cannabis sativa* [18]. Other botanists stated that different types of Cannabis existed based on their size, shape, and resin content (breeding and selection). This review discusses, in particular, *C. sativa*.

The Cannabis phenotype (its observable traits or characteristics, such as its leaf shape and flower color) is based on two main factors: its genetic code (genotype) and the external environmental factors [19].

The roots are branched and are about 30–60 cm deep (Farag and Kayser, 2017) [12]. Cannabis inflorescence is made up of several flower heads found on long leafy stems from each leaf axil. A single brownish fruit, about 2-5mm long, is produced per flower, and it contains a single seed tightly covered with a hard shell [12]. The fruit is propagated by bird and the seed germinates after 8–12 days [18]. The leaves, bracts, and stems of the plant are rich in trichome, which are a diverse set of structures containing the secondary metabolites (phytocannabinoids and terpenoids) responsible for the defense, plant interactions, and typical smell [18]. Figure 1, below, shows the plant parts of *C. sativa*.
To date, 125 cannabinoids have been identified and reported, in addition to five new plant parts in which they are present. However, previous studies have focused mainly on the cannabinoids, \(\Delta^9 \)-tetrahydrocannabinol (\(\Delta^9 \)-THC) and cannabidiol (CBD) in particular; hence, the female flower top is only harvested, while other parts of the plant are discarded [11].

Cannabinoids are a class of terpenophenolic compounds obtained by the alkylation of an alkyl-resorcinol with a monoterpenone unit [21]. They feature alkyl resorcinol and monoterpene moieties in their molecules [20,22]. This specific chemical class in Cannabis is present in the glandular trichomes, which are abundant in the female flower as phytocannabinoid acids, and in the vegetable matrix as neutral phytocannabinoids [6,13]. They are biosynthesized by the alkylation of olibetolic acid with geranyl-pyrophosphate by a prenyltransferase to produce cannabigerolic acid (CBGA). Decarboxylation, a chemical reaction, converts the acidic forms (\(\Delta^9 \) THCA, CBDA, CBCA, and CBGA) into their neutral forms, which are more active and efficient in terms of pharmacological activity [8,23].

To date, 125 cannabinoids have been identified and reported, in addition to five new cannabinoids reported in the past two years, 42 non-cannabinoid phenolics, 34 flavonoids, 120 terpenoids, 3 sterols, and 2 alkaloids [8,11,13]. Terpenoids are the second largest class of cannabis compounds and are responsible for their characteristic aroma [13]. Table 1 below summarizes the classes of compounds isolated from Cannabis sativa and the different plant parts in which they are present.
Table 1. Chemical compounds Isolated from *Cannabis sativa*.

S/N	Class of Compounds	Plant Part(s)	Isolated Compounds	References
1	Cannabinoids:	Leaves, flowers, resin, stembarks, and roots	Δ⁹-tetrahydrocannabinivarin, α/β-fenchyl, Δ⁹-tetrahydrocannabinolate, Δ⁸-tetrahydrocannabinol, α-terpenyl, (-)-Δ⁹-trans-trans-tetrahydrocannabinolate, γ-eudesmyl, (-)-Δ⁹-trans-tetrahydrocannabinol, 8α-hydroxy(-)-Δ⁹-trans-trans-tetrahydrocannabinol, 8β-hydroxy(-)-Δ⁹-trans-tetrahydrocannabinol, 8-oxo(-)-Δ⁹-trans-tetrahydrocannabinol, Cannabisol, (-)-Δ⁸-trans-trans-tetrahydrocannabinol, Δ⁸-trans-trans-tetrahydrocannabinolic acid, Cannabigerol, 6,7-trans/cis-epoxycannabinigerolic acid, Sesquicannabinigerol, Cannabigerolic acid, Cannabigerovarin, Cannabidiol, C₄-Cannabidiol, Cannabidiol, C₄-tetrahydrocannabinol, Cannabichromene, Cannabichromevarin, Cannabichromanone, -D₄-acetoxycannabinichromene, Cannabicitran, Cannabiripsol, Cannabicoumarone, Cannabifuran, Cannabielsoin, Cannabielsoic acid, Cannabicyclol, Cannabinodiol, bornyl/epi-bornyl-Δ⁹-tetrahydrocannabinolate Cannabinol, Cannabidiol, Cannabinovone, and Cannabioxepane	[8,11,13,24–31]
2	Non-cannabinoid phenol:	Leaves, flowers, stem, hemp pectin, resin, fruit, seed, and root	Dihydrostilbenes, Dihydrophenathrene, Cannabistilbene, Canniprene, Cannithrene, Denbinobin, Phloroglucinol β-D-glucoside, Cannabispiran, Cannabispiron, Cannabispirenone, Cannabispiron, Cannabispiron, Cannabispiron, Cannabispironol-4′-O-β-glucopyranose, prenylspiroidenone, 4,5-dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene, Cannabisin A–O 4,7-dimethoxy-1,2,5-trihydroxyphenanthrene, 5-methyl-4-pentyl-2,6,2-trihydroxybiphenyl, 5-methyl-4-pentylbiphenyl-2,6-triols, N-trans-coumaroyltyramine, N-trans-feruloyltyramine, N-trans-caffeoyltyramine, 3,3′-demethylheliotropamide, and Grossamide.	[8,13,28,32–34]
Table 1. Cont.

S/N *	Class of Compounds	Plant Part(s)	Isolated Compounds	References
3	Terpenoids (Terpenes):	Essential oils of fresh and dried leaves, flowers, stembarks, and roots	α-pinene, β-pinene, linalool, linalool oxide, myrcene, limonene, camphene, α-terpinene, γ-terpinene, α-terpinolene, α-terpineol, verpinene-4-ol, sabine, sabine hydrate, cis-sabinene hydrate, α-phellandrene, β-phellandrene, 2-methyl-2-heptene-6-one, borneol, piperitenone, geranil, carvacrol, carvone, cis-carveol, citronellol, bornyl acetate, ipsdienol, germacrene-B, clovandiol, α-bisabolol, β-eudesmol, γ-eudesmol, α-caryophyllene, β-caryophyllene oxide, α-Humulene, Phytol, neophytadiene, friedelin (friedelan-3-one), epifriedelanol, β-amyrin, Vomifoliol, dihydrovomifoliol, and dihydroactinidiolide	[8,11,13,28,29,35,36]
4	Flavonoids:	Leaves, flowers, seed, and fruit	Orientin, Vitexin, Isovitexin, Apigenin, Luteolin, Kaempferol, Quercetin, Cytisoside, Cytisoside glucoside, Canniflavone (Cannflavin), Naringenin, and Naringin	[8,11,13,28,29,35,37–39]
5	Sterols	Stembarks, roots, and leaves	Campsterol, Stigmasterol, and β-Sitosterol	[11,40]
6	Alkaloids	Roots, leaves, stembark	Cannabivativine and Anhydrocannabivativine	[13,40]
7	Fatty acids:	Seeds	Roughanic acid, Stearidonic acid, α-linolenic acid, and oxylipins.	[8,28]
8	Hydrocarbons (n-alkane)	-	Δ9-Tetrahydrocannabinolic acid	[8]

* S/N = Serial Number.

Figures 2–4 below show the structures of the different classes of bioactive compounds isolated from Cannabis sativa [13,29,41].

4.2. Extraction, Isolation, and Chemical Characterization of C. sativa

Many methods have been reported for the extraction of Cannabis in the literature. These include direct maceration (DM), soxhlet extraction, ultrasound-assisted extraction (UAE), supercritical fluid extraction, and microwave-assisted extraction (MAE) [41]. However, two methods of extracting Cannabis are differentiated in the literature [41]. The first is the maceration of the plant material in an organic solvent (direct maceration) and the subsequent removal of the solvent by the concentration of the extract under reduced pressure [41]. The second is the innovative supercritical fluid extraction (SFE) method, which involves the use of pressurized solvents [41]. It is necessary for cannabinoid compounds to be extracted with organic solvents instead of water, because the active compounds are less soluble in polar solvents [41]. The most commonly used solvents are ethanol, ether, chloroform, and methanol [42]. When used for extraction, various compounds, including some undesired substances, dissolve together with the cannabinoids [42]. The high solvent power of ethanol for cannabinoid compounds is the reason why it is frequently used in home-made extracts of Cannabis [41]. However, non-desired compounds (chlorophyll, lipids, and waxy materials) are also extracted which, therefore, requires further steps to
remove the co-extracted impurities for a high-purity medicinal product to be obtained [41]. A patent on the method for the isolation of herbal and cannabinoid medicinal extracts stated that the solubility of non-therapeutic substances (chlorophyll and waxy materials) is reduced when the solvent is selected from a group that includes acetonitrile, benzene, dichloromethane, diethyl ether, acetone, butanol, ethanol, chloroform, ethyl acetate, hexane, pentane, propanol, tetrahydrofuran, toluene, xylene, and various combinations of these solvents [41]. The International Conference on Harmonization (ICH) recommends the use of less toxic solvents in the manufacture of drug substances and dosage forms, and sets pharmaceutical limits for residual solvents in drug products [43]. Residual solvents pose risks to human health and are classified into three classes. Class 1 solvents (including carbon tetrachloride, benzene, and methyl chloroform) are regarded as human carcinogens and are environmentally hazardous [41]. Class 2 solvents include methanol and hexane, which are generally said to be limited, and they are possible causative agents of irreversible toxicity, such as neurotoxicity or teratogenicity [41]. Class 3 solvents (ethanol and ethyl acetate) are generally regarded as having a low toxic potential to humans [41]). Above all, ethanol is generally recognized as a safe (GRAS) solvent [41]. In a study by Brighenti et al., they compared the following four extraction techniques to obtain a high yield of medicinal cannabinoids: ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), and direct maceration (DM). They concluded that DM, with ethanol as the extraction solvent at room temperature for an overall time of 45 min, is the best extraction technique (in terms of a high yield) for non-psychoactive cannabinoids from hemp [44].

Over the last decade, compounds in Cannabis have been identified, isolated, and determined by various chromatographic techniques with different spectroscopic detection methods. C. sativa samples are analyzed for both legal and medicinal purposes [41]. Nevertheless, the knowledge of their exact composition remains very significant. In 2009, recommended methods for the identification and analysis of cannabis products were released by the United Nations Office on Drugs and Crime [45]. One notable technique that has been employed in identifying the diverse composition of the compounds found is high-performance liquid chromatography (HPLC) [41]. Spectroscopic approaches or methods are based on the variable absorbance or redirection of electromagnetic (EM) radiation by chemical bonds, resulting in the radiation or transition of the sample’s atoms to a higher energy state [46]. Some advantages are attributed to these spectroscopic methods, such as permitting spatial measurements of metabolites and offering a global metabolic fingerprint of a sample with rapid spectral acquisition [46]. Some of these approaches/methods include Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), HPLC, gas chromatography–mass spectrometry (GC–MS), and liquid chromatography–mass spectrometry (LS–MS) [41,46]. Taking into account the recommended methods and the mandatory requirement of the Ministerial decree to use only chromatographic techniques coupled with mass spectrometric detection, cannabinoid concentrations and its stability in cannabis tea and cannabis oil, prepared from standardized flowering tops obtained from the Military Pharmaceutical Chemical Works of Florence, were studied by Pacifici et al. using easy and fast ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) [9,10]. Table 2 is a summary of the reported extraction solvents, as well as the identification, isolation, and characterization methods of Cannabis.
Figure 2. Chemical structures of major cannabinoids; Δ^8 THC, tetrahydrocannabinol (a); Δ^9-THC, tetrahydrocannabinol (b); THCA, tetrahydrocannabinolic acid (c); CBD, cannabidiol (e); CBVA, cannabidiolic acid (d); CBDV, cannabidivaricin (f); THCV, tetrahydrocannabivarin (g); CBGA, cannabigerolic acid (h); CBG, cannabigerol (i); CBN, cannabinol (j); CBNA, cannabinolic acid (k); CBC, cannabichromene (I); CBCA, cannabichromenic acid (m); CBL, cannabicyclol (n); CBLA, cannabicyclolic acid (o). All structures drawn by Odieka, using ChemDraw Ultra 8.0.
Figure 3. Chemical structures of some Cannabis sativa terpenes (Monoterpenes, Sesquiterpenes, and Triterpenoids); Mycene (a), α-Pinene (b), D-Linalool (c), Limonene (d), α-Terpinene (e), α-Phellandrene (f), α-Terpinolene (g), β-Caryophyllene (h), α-Caryophyllene (i), β-Elemene (j), Guaiol (k), Friedelin (l), and Epifriedelanol (m). All structures drawn by Odieka, using ChemDraw Ultra 8.0.
Figure 4. Chemical structures of some non-cannabinoid phenols (Spirans, phenanthrenes, flavonoids, alkaloids); Cannabispiran (a), Cannabispiron (b), Canniprene (c), Cannithrene I (d), Cannithrene II (e), Debinobin (f), Canniflavin A (g), Canniflavin B (h), Cannabisativine (i), and Anhydro-cannabisativine (j). All structures drawn by Odieka, using ChemDraw Ultra 8.0.

Table 2. Reported methods of identification, isolation, and characterization of *C. sativa*.

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/ Analytical Techniques	Analytes	References
Phenolic Cannabinoids					
Methanol/ chloroform mixture.	*C. sativa* inflorescence	Qualitative, quantitative, and comparative derivatization study of cannabinoids	Fast GC–MS	CBDA, CBGA, CBG, CBD, THC, Δ8-THC, CBC, THCA, THC	[47]
Supercritical fluid extraction	Plant biomass and medicinal Cannabis resin	Quantitative and qualitative analysis of cannabinoids	UHPLC–DAD and statistical analysis	CBDA, THCA, CBD, CBN, CBC, THC	[48]
Methanol/chloroform solvent mixture	*Cannabis* flower samples	Qualitative and quantitative measurement of cannabinoids	HPLC–DAD	Δ9-THC, CBD, CBDA, THCA, CBN, CBG, CBGA, Δ8-THC	[49]
Ethanol/ ethanolic extracts	(i) Lebanese *C. sativa* (ii) *Cannabis* (iii) Decarboxylated hemp leaves	(i) Purified by counter-current distribution and silica gel chromatography (ii) Florisil and silica gel column chromatography	GCMS, IR, and 1H NMR comparison with an authentic sample	Cannabielsoin, (+)-trans-CBT and (−)-trans-CBT-OEt-C5(Cannabitril), Cannabicitran, and Monomethylether of CBD	[13,50–52]
Table 2. Cont.

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/Analytical Techniques	Analytes	References
Sequential extraction (hexanes, CH₂Cl₂, EtOAc, EtOH, EtOH/H₂O, and H₂O)	(i) Bud and leaves of high-potency variety of *C. sativa*	(i) Silica gel VLC, C₁₈-solid phase extraction (SPE), and HPLC (ii) VLC chromatography of hexane extract, TLC, flash silica gel, Sephadex LH-20 chromatography, and semipreparative reversed-phase (RP) and chiral HPLC	HRESIMS, 1D and 2D NMR, GC–MS	epi-bornyl Δ⁹-tetrahydrocannabinol, α-terpenyl Δ⁹-tetrahydrocannabinol, 4-terpenyl Δ⁹-tetrahydrocannabinol, α-cadinyl Δ⁹-tetrahydrocannabinol, γ-eudesmyl Δ⁹-tetrahydrocannabinol, γ-eudesmyl Δ⁹-tetrahydrocannabinol, α-cadinyl cannabigerolate, Δ⁹-tetrahydrocannabinol, α-cadinyl cannabigerolate, Δ⁹-tetrahydrocannabinol (Δ⁹-THC), Δ⁹-tetrahydrocannabinolic acid A (Δ⁹-THCA), Cannabinolic acid A (CBNA), and Cannabigerolic acid (CBGA), (+)-6,7-trans-epoxycannabigerolic acid, (+)-6,7-cis-epoxycannabigerolic acid, (+)-6,6-cis-epoxycannabinol, 5'-Methoxy-cannabigerolic acid, 5'-methyl-4-pentylbiphenyl-2, 2', 6-triol,2'-methoxy-cannabispironone, (+)-6,7-trans-epoxycannabigol, 8α-hydroxy-(−)-Δ⁹-trans-tetrahydrocannabinol, 8β-hydroxy-(−)-Δ⁹-trans-tetrahydrocannabinol, 8-oxo-(−)-Δ⁹-trans-tetrahydrocannabinol, 10α-hydroxy-Δ⁹-trans-tetrahydrocannabinol, 10β-hydroxy-Δ⁹-trans-tetrahydrocannabinol, 10α-hydroxy-Δ⁹-trans-tetrahydrocannabinol, (±)-3'-hydroxy-4',5'-cannabichromene, (±)-3'-hydroxy-4',5'-cannabichromene, (−)-7-hydroxy-cannabichromene, (−)-7-hydroxy-cannabichromene, 7α-media-cannabinolic acid A, 5-acetyl-4-hydroxycannabigerol, 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol, 8-hydroxycannabinol, 8-hydroxycannabinol acid A, and 2-geranyl-5-hydroxy-3-n-pentyl-1, 4-benzoquinone, (±)-4-acetoxy-cannabichromene, (±)-3'-hydroxy-Δ⁹-cannabichromene, (−)-7-hydroxy-cannabichromene, 8-hydroxycannabinol, 8-hydroxycannabinolic acid, 10β-hydroxy-cannabichromene, 9β,10β-epoxycannabinol, 8α-hydroxyhexahydrocannabinol, 9α-hydroxyhexahydrocannabinol, 9β-hydroxyhexahydrocannabinol, 10α-hydroxyhexahydrocannabinol, and 10aβ-hydroxyhexahydrocannabinol	[31,53–55]
Table 2. Cont.

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/Analytical Techniques	Analytes	References
Hexane extract					
	(i) C. sativa	Column chromatography using silica or alumina, TLC, then fractional distillation and preparative C18 HPLC		Δ9-THC, Δ8-THC aldehyde, Cannabinoid esters, Cannabinol, Δ3-trans-tetrahydrocannabinol, Δ3-trans-tetrahydrocannabinol, Δ3-trans-tetrahydrocannabinol, THCA, CBDA (CBHD) and Cannabidiol (CBDP), Cannabidiol, Cannabinol, and cannabinol (CNB), Cannabichromene (CBC), 9a-hydroxyhydrocannabinol, 7-oxo-9a-hydroxyhexahydrocannabinol, 10a-hydroxyhydrocannabinol, and 10a-R-hydroxyhydrocannabinol	[53,56–60]
	(ii) high-potency variety of C. sativa	(ii) VLC (vacuum liquid chromatography) silica gel column chromatography, C18 HPLC and chiral HPLC			
	(iii) Illicit Cannabis samples	(iii) Flash silica gel chromatography			
	(iv) C. sativa inflorescence (strain CINRO)	(iv) Florisil column chromatography			
	(v) Lebanese C. sativa	(v) Methanol dilution			
	(vi) Brazilian variety (carmagnola)	(vi) Hexane extract			
	(vii) Nepalese and Brazilian C. sativa	(vii) Hexane extract			
Ethyl acetate extracts	Cannabis resins, tinctures, and leaves	-	GC–MS and GC–FID analysis	Δ9-THC and Δ8-THCA	[61]
	(i) Cannabis tincture of Pakistani origin	(i) Silicic acid column chromatography	IR, NMR, MS, GC–MS confirmed by synthesis	Δ9-THCA, Δ9-THCO or Δ8-THC, Δ9-THCA (Δ9-THCA), Cannabichromene A (CBEAA), Cannabioin A, and Cannabicyclolevarin (CBLV)	[61–67]
	(ii) Brazilian C. sativa	(ii) Silica gel column chromatography, preparative TLC			
	(iii) Cannabis leaves and flowers (Maryland and Czechoslovakian origin)	(iii) Benzene extract			
	(iv) Congo C. sativa	(iv) Benzene extract			
	(v) Hashish and Cannabis sativa	(v) Benzene extract			
Petroleum ether					
	(i) Fresh C. sativa leaves from Thailand	(i) Polyamide and silica gel column chromatography	IR, UV, NMR, and comparing UV spectrum with that of derivatives	Δ9-THCA, CBDV, THCV, CBCV, Cannabigerovarin CBGV, cannabigerovarinic acid (CBGVA), CBDCA, cannabinolic acid (CBDVA), Cannabicyclolevarin (CBLA), and Cannabichromenic acid (CBCA)	[49,68,69]
	(ii) Fresh tops and leaves of C. sativa	(ii) Petroleum ether extract			
	(iii) Hemp	(iii) Petroleum ether extract			
Acetone extract					
	(i) Leaves of C. sativa (Mexican strain)	(i) Silica gel column chromatography	FAB-MS, 1H NMR, 13C-NMR, and ESI–MS semi-synthesis	Cannabigeronic acid (CBGA), dihydronarcabinergic derivative (camagenol), Sesquicannabigirol, Cannabimovone, and Cannabinol	[70–73]
	(ii) Wax of decarboxylated aerial parts of C. sativa (Carma strain)	(ii) Acetone extract			
	(iii) Cannabis variety (carmagnola)	(iii) Acetone extract			
Essential/volatile oils	cannabis sativa oil samples	Separation/quantiﬁcation of cannabinoids	Fast-GC–FID	CBD, CBN, and THC	[74]
Methanol dilutions	Fresh C. sativa L. from India	Fractional distillation and chromatography over alumina.	GC–MS and physico-chemical analyses	α-terpinene, β-phellandrene, γ-terpinene, α-terpinene, α-pinene, β-pinene, camphene, linalool, α-terpineol, terpine-4-ol, linalool oxide, and sabine hydrate	[13]
Essential oil	Fresh C. sativa	Capillary gas chromatography, GC–MS analysis		cis-β-ocimene, trans-β-ocimene, α-phellandrene, D9-carene, Δ9-carene, sabine, and α-thujene, carophyllene oxide, humulene, trans-β-bisabolene, cis-β-farnesene, δ-limonene, carophyllene oxide, linalool, trans-α-bisabolene, cis-β-farnesene, α-pinene, and trans-α-thujene	[13,75]
Volatile/essential oils	Cannabis (Dutch and Turkish)	(i) Hydrodistillation or through nitrogen extraction	Capillary gas chromatography, GC–MS analysis	cis-β-ocimene, trans-β-ocimene, α-phellandrene, D9-carene, Δ9-carene, sabine, and α-thujene, carophyllene oxide, humulene, trans-β-bisabolene, cis-β-farnesene, δ-limonene, carophyllene oxide, linalool, trans-α-bisabolene, cis-β-farnesene, α-pinene, and trans-α-thujene	[13,75]
	Cannabis indica	(iii) Hydrodistillation, steam distillation, and supercritical fluid extraction			
	Cannabis sativa and Cannabis indica	(ii) VOL/ES oil			
	Cannabis (marijuana fresh and dried buds)	(i) Essential oil			
		Steamdistillation	GC–MS and GC–FID	Ipodiol, cis-carveol, and cis-sabinene hydrate	[76]
Table 2. Cont.

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/Analytical Techniques	Analytes	References
Essential oil	C. sativa resin	Minor terpenic component analysis	GC–MS and GC retention time	α-gurjunene, α-bisabolol, α-cedrene, α-cubebene, δ-cadinene, epi-β-santalene, farnesol, γ-cadinene, γ-elemene, γ-eudesmol, guaiol, (E,E)-α-farnesene, (Z)-β-farnesene, and farnesyl acetone	[77]
Essential oil	Cannabis	Steam distillation and silica gel chromatography	GC, GC–MS	eugenol, methyleugenol, iso-eugenol, trans-anethol, and cis-anethol (simple phenols)	[78]
Essential oil	C. sativa	Column chromatography of the essential oil	GC and GC–MS analyses	Iso-caryophyllene, β-selinene, selina-3,7(11)-dien, and selina-4(14),7(11)-dien	[13,79]

Non-cannabinoid phenols

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/Analytical Techniques	Analytes	References
Ethanol/ethanolic extract	Cannabis variety grown in Mississippi (v)	Chromatographed on a polyamide column followed by silica gel chromatography	IR, GCMS, UV, 1D NMR (1H NMR, 13C NMR) and 2DNMR (COSY, HSQC, HMBC, and ROESY), ESI–MS, comparison with authentic samples, X-ray crystallography, and semi-synthesis	β-cannabispironal, β-cannabispironal, 5-hydroxy-7-methoxyindan-1-spiro-cyclohexane, 7-hydroxy-5-methoxyindan-1-spiro-cyclohexane, and 5,7-dihydroxyindan-1-spiro-cyclohexane, Cannabispireketal and the glycoside, a-cannabispironal-4′-O-β-glucopyranose, 3,4,5-trihydroxy-dihydrostilbene, 4,5-dihydroxy-2,3,7-trimethoxy-9,10-dihydrophenanthrene, 4-hydroxy-2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene and 4,7-dimethoxy-1,2,5-trihydroxyphenanthrene, Rutin, friedelin (friedelan-3-one) and epifriedelanol, Anhydrocannabisativine and cannabisativine, α,α′-dihydro-3′,4,5′-trihydroxy-3′-methoxy-3-isopentenylnitidine, α,α′-dihydro-3′,4,5′-trihydroxy-4′-methoxy-3-isopentenylnitidine, α,α′-dihydro-3′,4,5′-trihydroxy-4′-methoxy-3,3′-disopentenylnitidine, α,α′-dihydro-4′-5′-trihydroxy-4′-methoxy-2,3′-disopentenylnitidine, and combretastatin B-2	[32,33,55,80–84]
Benzene	Dried leaves of Japanese cannabis	Chromatographed on a polyamide column followed by silica gel chromatography	IR, 1H NMR, MS, UV.	Cannabispirol and acetyl Cannabispirol	[85]
Acetone	C. sativa (CARMA)	Gravity column chromatography on silica gel and purified by crystallization from ether and HPLC	Identified according to its physical and spectroscopic properties and synthesis	Debinoben (1,4-phenanthrenequinone)	[86]
Table 2. Cont.

Extraction Solvent(s)	Matrix and Species	Identification, Isolation, and Purification Methods	Elucidation/Analytical Techniques	Analytes	References
Sequential extraction (Hexane, EtOAc, CH₂Cl₂, EtOH, EtOH/H₂O, and H₂O)	High-potency variety of C. sativa (Mississippi)	VLC, silica gel column chromatography, and RP-HPLC	1D and 2D NMR, IR analysis	acetoxy-6-geranyl-3-methyl-1,4-benzoquinone, 4,5-dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene, 4-hydroxy-2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene, 4,7-dimethoxy-1,2,5-trihydroxyphenanthrene, Cannabis C and β-sitosterol-3-O-β-D-glucopyranoside-2'-O-palmitate, α-cannabispiran, Chrysosanol, 6-prenylapigenin, and Cannflavin A and β-acetyl cannabispiranol	[55]
Hexane extract	Leaves of Cannabis sativa	Isolation by normal-phase chromatography followed by C₁₈-HPLC	NMR and ESI-MS analysis	Prenylisopirodionone and 7-O-methyl-3-cannabispiran	[55,87]
Dichloromethane extract	(i) Decarboxylated leaves and stems of C. sativa (India) (ii) Thai Cannabis sativa leaves (iii) Panamanian variety of cannabis	C₁₈ flash chromatography, followed by silica gel gravity column chromatography and HPLC	HR-FSIMS and NMR (1H, 13C, HSQC, and HMBC) data, X-ray crystallography, and confirmation by hydrogenation	Isocannabispiradienone and α-Cannabispiran	[58,89]
Methanol/ methanolic extract	(i) Branches and leaves of hemp (ii) Pollen grains of Mexican variety of C. sativa (iii) Dried leaves of South African and Indian cannabis sativa (iv) Panamanian variant of C. sativa (v) Leaves and branches of C. sativa	(i) TLC, silica gel column chromatography, normal-phase preparative HPLC, and Sephadex LH-20 column chromatography (ii) Partitioning, silica gel chromatography, Sephadex LH-20 chromatography, semi preparative LC	MS, 1D and 2D NMR, UV experiments, IR, X-ray crystallography and confirmation by total synthesis	Rutin, Quercetin-3-O-α-L-rhamnose, kaempferol-3-O-α-L-rhamnose, apigenin-7-O-D-glucopyranoside, luteolin-7-O-β-D-glucopyranoside, 1,3,6,7-tetrahydroxyl-2-C-β-D-glucopyranosyl xanthone, vitexin, orientin, apigenin-6,8-di-C-β-D-glucopyranoside, vitexin-2'-O-α-L-rhamnose, orientin-2'-O-β-D-glucopyranoside, quebrachitol, inositol and uracil, kaempferol-3-O-hexoside (196) and quercetin-3-O-sophoroside, cannabispirenone, Cannabispiran, Iso-3-norisororoside, Cannabispirenone, Cannabinol, Cannabispiran Canniprene, Cannabis pistilane I and Cannabispirenne II, and 2,3,5,6-tetramethoxy-9,10-dihydrophenanthrene	[90–94]
Mixture of hydro-alcoholic and organic solvents	C. sativa inflorescence (Ferimon, Uso-31, Felina 32, and Fedora 17 cultivars)	Metabolic and chemical profiling to identify and quantify compounds of different classes	NMR, GC-MS, UHPLC, and HPLC-PDA	Sugars, organic acids, amino acids, cannabinoids, terpenoids, phenols, tannins, flavonoids (Quercetin, Naringenin, and Naringin) and biogenic amines	[35,37]
Diethyl ether	Stem exudate (greenhouse-grown C. sativa)	TLC and acid hydrolysis of the exudate	^1H NMR and GC-MS	Phloroglucinol-β-D-glucoside	[95]

4.3. Biological Evaluation/Potentials of C. sativa

From the biological point of view, the psychoactive cannabinoids reported include ∆⁹-THC, cannabiol (CBN), and cannabidiol (CBND), while cannabidiol (CBD) and other cannabinoids are non-psychoactive [8,11]. THC is the major psychoactive component and the toxicity of this metabolite of *Cannabis* is the most studied [11,28]. Its psychoactive component decreases in the order of inflorescence (the flower), leaves, stem, roots, and seeds, respectively [8]. The interest in the potential medical use of cannabis and cannabinoids rose significantly in the 1990s, following the discovery of the endocannabinoid (eCB) system in mammals [7]. The physiological effects of cannabinoids are exerted through...
various receptors, such as the cannabinoid receptors (CB1 and CB2), adrenergic receptors, and the recently discovered GPCRs (GPR5, GPR51, and GPR62) [8]. Historically, each part of the Cannabis plant is indicated mostly for pain killing, inflammation, and for mental illnesses. For example, the Cannabis root has been recommended for treating fever, inflammation, gout, arthritis, and joint pain, as well as skin burns, hard tumors, postpartum hemorrhage, difficult child labor, sexually transmitted diseases, gastrointestinal activity, and infections [40]. Cannabis has also been used to treat asthma, epilepsy, fatigue, glaucoma, insomnia, nausea, pain, and rheumatism, as well as being used as appetite stimulant and a digestive aid [7,11,13]. Since concentrations above 0.05% are pharmacologically interesting, Cannabis inflorescence and leaf material may contain sufficient cannabinoids, mono- and sesquiterpenoids, and flavonoids for therapeutic applications [11]. Cannabis terpenoids and flavonoids, mainly myrcene, limonene, pinene, β-caryophyllene, and cannflavin A, act in synergy with cannabinoids to induce pharmacological effects [7]. It was proven that these compounds, which are synthetized in the aerial parts of the plant, enhance CBD’s anti-inflammatory effects and antagonize THC dysphoric action [96]. Cannabidiol (CBD) and Cannabidavarin (CBDV) (neutral cannabinoids) have been reported to have the therapeutic potential for the treatment of epilepsy (focal seizures), as well as treating nausea and vomiting [97,98]. Conversely, THC and CBN have been found to be active in lowering intraocular pressure, and can be applied in all cases of glaucoma that are resistant to other therapies [9]. Cannflavin A and B are also notable flavonoids (prenylflavonoids) with medicinal potentials, such as their anti-inflammatory, anti-neoplastic, antioxidant, neuro-protective, anti-parasitic, and anti-viral effects [99]. Table 3, below, shows a summary of the reported bioactivities (biological potentials) of the bioactive compounds present in Cannabis sativa.

Table 3. Summary of reported bioactivities associated with isolated compounds and essential oils from Cannabis sativa.

Isolated Bioactive Compound	Bioactivity/Uses	References
Tetrahydrocannabinol THC	Antioxidant, anti-pruritic, and anti-inflammatory effects	[29,100]
Cannabidiol CBD	Anti-convulsive, anti-inflammatory, immunosuppressive properties, antioxidant, and anti-psychotic effects	[101–103]
Cannabigerol CBG	Anti-fungal effects, anti-cancer, anti-depressant, mild anti-hypertensive agent, analgesic, and anti-erythemic effects	[29,104]
Cannabichromene CBC	Anti-inflammatory and analgesic	[29]
Cannabinol CBN	Sedative, anti-convulsant, anti-inflammatory, antibiotic, and anti-MRSA activity	[29]
Tetrahydrocannabivarain THCV	Anti-convulsant	[29]
Tetrahydrocannabinolic acid THCA	Immunomodulatory, anti-inflammatory, neuroprotective, anti-neoplastic activity, and antiemetic effects	[29,105]
Cannabidavarin CBDV	Anti-convulsant (anti-epileptic) properties and anti-emetic properties	[106,107]
Cannabinolic acid CBDA	Anti-emetic effects	[104,108–110]
β-Myrcene	Anti-inflammatory and analgesic sedative agent	[7,29,111]
Isolated Bioactive Compound	Bioactivity/Uses	References
----------------------------	-----------------	------------
D-Limonene	Strongly anxiolytic, anti-depressant, antibiotic, and anti-cancer agent	[7,29]
β-Ocimene	Anti-convulsant activity, anti-fungal activity, anti-tumor activity, and pest resistance	[112,113]
γ-Terpinene	Anti-inflammatory activity, antioxidant, and anti-proliferative activity	[114,115]
α-Terpinene	Antioxidant	[29]
α-Pinene	Anti-inflammatory, bronchodilator, anti-microbial, and anxiolytic effects	[7,11,29,116]
Linalool	Analgesic and anticonvulsant, anxiolytic, anti-depressant, anti-glutamatergic, anti-leishmanial activity, anticancer agent, anti-nociceptive, and anti-depressant effects	[111,117–119]
α-Phellandrene	Anti-nociceptive, anti-depressant, anti-arthritic and allergic, and anti-hyperalgesic effects	[120–122]
Terpinolene	Anti-fungal and larvicidal, anti-nociceptive, anti-inflammatory antioxidant, and anti-cancer effects	[123,124]
β-Caryophyllene	Cardio-protective, hepato-protective, gastro-protective, neuro-protective, nephro-protective, antioxidant, anti-inflammatory, anti-microbial, anti-pruritic, and immunomodulatory activities	[7,125–127]
Caryophyllene Oxide	Anti-fungal, insecticidal/anti-feedant, and anti-platelet effects	[29]
β-Elemene	Anti-cancer and anti-tumor	[128]
Guaiol	Anti-inflammatory, antioxidant, anti-cancer anti-rheumatic, antiseptic, diaphoretic, diuretic, and laxative effects	[29,129]
Friedelin	Anti-inflammatory, anti-pyretic, and anti-tuberculosis agent	[130,131]
Epifriedelanol	Antioxidant	[132]
Cannflavin A and B	Anti-inflammatory, neoplastic, antioxidant, neuroprotective, anti-parasitic, and anti-viral agent	[4,7,29,99]
Apigenin	Anxiolytic and estrogenic properties, anti-tumor, antioxidant, anti-inflammatory, anti-osteoporosis, and immune regulation effects	[4,133]
Vitexin and Isovitexin	Antioxidant, anti-cancer, anti-inflammatory, anti-diabetic, anti-microbial, anti-viral, anti-hyperalgesic, and neuroprotective effects	[134]
Quercetin	Anti-cancer/anti-proliferator, antioxidative/anti-aging, anti-viral, anti-inflammatory, cardio-protective, skin-protective, anti-coagulant, and anti-platelet effects	[135]
Luteolin	Neuroprotective effects, anti-inflammatory, and antioxidant effects	[136]
Lignans	Antioxidant, anti-viral, anti-diabetic, anti-tumorigenic, and anti-obesity activities	[4]
Cannabis female flowering tops can be simply administered through commercially available vaporizers (e.g., Micro Vape, G Pen Herbal Vaporizer, and Volcano), buccal sprays (e.g., Sativex), oral capsules (e.g., Cannador), decoctions, or oils [7]. Only cannabis use through oral or inhalatory administration is allowed. Smoking reduces the bioavailability of cannabis ingredients by 40%, and its complete combustion can cause lung diseases and airway obstructions [7]. Homemade decoctions and pharmacy oils are currently the most widespread cannabis formulations in Europe, making the standardization of preparation difficult [7]. Cannabis pharmacological action is dose-dependent and can induce many adverse effects (AEs), principally related to THC, due to unintentional overdosing [7]. The typical symptoms of cannabis acute intoxication that have been reported are dizziness, confusion, tachycardia, postural hypotension, dysphoria, panic depression, hallucinations, allergic reactions, vomiting, and diarrhea [7,137,138]. Furthermore, withdrawal symptoms, such as irritability, aggression, anxiety, insomnia, decreased appetite, tremors, sweating, and headaches may appear after the abrupt cessation of the long-term administration of high doses of cannabis [7]. According to the ICH efficacy and safety guidelines, it is recommended to start with low doses and increase quantities after a satisfactory period of clinic evaluation, depending on the pharmacological effects and the possible adverse effects [139].

In the current COVID-19 pandemic, scientists are repurposing medicines (identifying new therapeutic use(s) of existing drugs) known for their biological potential (anti-viral or anti-inflammatory properties) to tackle the global issue and similar future viruses [140]. They have hypothesized that CBD could be used as an anti-viral agent [141] or anti-inflammatory [142,143] tool, or to inhibit pulmonary fibrosis in COVID-19 patients [144]. In addition, the known growing evidence of the anxiolytic effects of CBD have also been hypothesized to be used as a therapeutic option to treat long-lasting COVID-19-related anxiety and PTSD [145], which is likely to be a significant issue of the pandemic.

5. Conclusions

With the recent evaluation, acceptance, and legalization of Cannabis products for therapeutic purposes, researchers, particularly in the field of natural products, are challenged to improve and standardize the extraction and characterization of the bioactive compounds from Cannabis sativa. Despite various reports of its economic and therapeutic values, it is legal in a handful of jurisdictions (Uruguay, Canada, some US states, and parts of Africa). Presently, Cannabis remains illegal in several countries. This review summarized the biological potential and the techniques for the extraction, isolation, and characterization of Cannabis sativa compounds, and it describes the effectiveness of the various parts of the herb in pharmacotherapy. The usage of C. sativa roots and stem barks in present-day medical research, and the development of new Cannabis-based medicines or products, in contrast to the flowering part only, is highly recommended because they can be exploited for medicine and other uses. In addition, Cannabis-based pharmaceutical products must undergo long purification processes to eliminate unwanted components such as chlorophyll and residual organic solvents. The use of standardized reagents is also very crucial in the analytical studies of C. sativa. Furthermore, future research should seek to clarify the factors responsible for the complexity of C. sativa extracts in terms of their chemical compositions, the physical properties of their active ingredients, and their liability to photochemical oxidation.

Author Contributions: Conceptualization, A.E.O., A.O.O., G.U.O., O.O.O., M.G. and Y.S.H.; methodology, A.E.O., G.U.O., O.O.O., M.G., Y.S.H. and A.O.O.; validation, A.E.O., M.G., Y.S.H. and A.O.O.; data curation, A.E.O.; writing—original draft preparation, A.E.O.; writing—review and editing, A.E.O., A.O.O., O.O.O., G.U.O., M.G. and Y.S.H.; supervision, A.O.O., G.U.O., O.O.O., M.G. and Y.S.H.; project administration, A.O.O.; funding acquisition, A.E.O. and A.O.O. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by National Research Foundation (NRF), grant numbers 130205 and 137963.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the Directorate of Research and Innovation, Walter Sisulu University (WSU), South Africa and Govan Mbeki Research and Development Center, University of Fort Hare, South Africa.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [CrossRef]
2. Choudhary, N.; Siddiqui, M.; Bi, S.; Khatoon, S. Variation in preliminary phytochemicals screening of Cannabis sativa L. leaf, stem and root. Int. J. Pharmacogn. 2014, 1, 516–519.
3. Bandar, H.; Hijazi, A.; Rammal, H.; Hachem, A.; Saad, Z.; Badran, B. Techniques for the extraction of bioactive compounds from Lebanese Urtica Dioica. Am. J. Phytomed. Clin. Ther. 2013, 1, 507–513.
4. Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [CrossRef] [PubMed]
5. Elsohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Phytocannabinoids 2017, 103, 1–36.
6. Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Pharm. Fluids 2020, 165, 104960. [CrossRef]
7. Brunetti, P.; Pichini, S.; Pacifici, R.; Busardo, F.P.; del Rio, A. Herbal preparations of medical cannabis: A vademecum for prescribing doctors. Medicina 2020, 56, 237. [CrossRef]
8. Lewis, M.M.; Yang, Y.; Wasilewski, E.; Clarke, H.A.; Kotra, L.P. Chemical profiling of medical Cannabis extracts. ACS Omega 2017, 2, 6091–6103. [CrossRef] [PubMed]
9. Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardo, F.P.; Pichini, S. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2017, 55, 1555–1563. [CrossRef]
10. Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardo, F.P.; Pichini, S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2018, 56, 94–96. [CrossRef] [PubMed]
11. Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci. Rep. 2020, 10, 1–14.
12. Farag, S.; Kayser, O. The Cannabis plant: Botanical aspects. In Handbook of Cannabis and Related Pathologies; Academic Press: Cambridge, MA, USA, 2017; pp. 3–12.
13. Radwan, M.M.; Chandra, S.; Gul, S.; Elsohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [CrossRef]
14. Stevens, C.J.; Murphy, C.; Roberts, R.; Lucas, L.; Silva, F.; Fuller, D.Q. Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the bronze age. Holocene 2016, 26, 1541–1555. [CrossRef] [PubMed]
15. Chandra, S.; Lata, H.; Khan, I.A.; Elsohly, M.A. Cannabis sativa L.: Botany and horticulture. In Cannabis sativa L.—Botany and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–100.
16. Duvall, C.S. A brief agricultural history of Cannabis in Africa, from prehistory to canna-colony. Ethnogé 2019, 48, 1–25. [CrossRef]
17. Nsuala, B.N.; Enslin, G.; Viljoen, A. "Wild Cannabis": A review of the traditional use and phytochemistry of Leonotis leonurus. J. Ethnopharmacol. 2015, 174, 520–539. [CrossRef] [PubMed]
18. Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [CrossRef] [PubMed]
19. Dutch Passion. Understanding Cannabis Phenotypes, Genotypes and Chemotypes. 2020. Available online: https://dutch-passion.com/en/blog/understanding-cannabis-phenotypes-genotypes-and-chemotypes-n980 (accessed on 19 February 2022).
20. Hanus, L.O.; Meyer, S.M.; Muñoz, E.; Tagliatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [CrossRef] [PubMed]
21. Appendino, G.; Chiavese, G.; Tagliatela-Scafati, O. Cannabinoids: Occurrence and medicinal chemistry. Curr. Med. Chem. 2011, 18, 1085–1099. [CrossRef] [PubMed]
22. Hill, A.J.; Williams, C.M.; Whalley, B.J.; Stephens, G.J. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmaco col. Ther. 2012, 133, 79–97. [CrossRef]
23. Lewis-Bakker, M.M.; Yang, Y.; Vyawahare, R.; Kotra, L.P. Extractions of medical Cannabis cultivars and the role of decarboxylation in optimal receptor responses. Cannabis Cannabinoid Res. 2019, 4, 183–194. [CrossRef] [PubMed]
24. Elsohly, M.; Gul, W. Constituents of Cannabis sativa. *Handb. Cannabis* 2014, 3, 1093.

25. Elzinga, S.; Fischedick, J.; Podkaminski, R.; Raber, J.C. Cannabinoids and terpenes as chemotaxonomic markers in Cannabis. *Nat. Prod. Chem. Res.* 2015, 3, 1–9.

26. Hazekamp, A.; Tejkalová, K.; Papadimitriou, S. Cannabis: From cultivar to chemovar II—A metabolomics approach to cannabis classification. *Cannabis Cannabinoid Res.* 2016, 1, 202–215.

27. Lynch, R.C.; Vergara, D.; Títes, S.; White, K.; Schwartz, C.; Gibbs, M.J.; Ruthenburg, T.C.; Decesare, K.; Land, D.P.; Kane, N.C. Genomic and chemical diversity in Cannabis. *Crit. Rev. Plant Sci.* 2016, 35, 349–363. [CrossRef]

28. Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis phenolics and their bioactivities. *Curr. Med. Chem.* 2018, 25, 1160–1185.

29. Russo, E.B.; Marcu, J. Cannabis pharmacology: The usual suspects and a few promising leads. *Adv. Pharmacol.* 2017, 80, 67–134.

30. Upton, R.; Elsohly, M. (Eds.) *Cannabis Inflorescence: Cannabis spp.: Standards of Identity, Analysis, and Quality Control*; American Herbal Pharmacopoeia: Scotts Valley, CA, USA, 2014.

31. Radwan, M.M.; Elsohly, M.A.; El-Alfy, A.T.; Ahmed, S.A.; Slade, D.; Husni, A.S.; Manly, S.P.; Wilson, L.; Seale, S.; Cutler, S.J.; et al. Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa. *J. Nat. Prod.* 2015, 78, 1271–1276. [CrossRef] [PubMed]

32. Guo, T.; Liu, Q.; Hou, P.; Li, F.; Guo, S.; Song, W.; Zhang, H.; Liu, X.; Zhang, S.; Zhang, J.; et al. Stillbenoids and cannabinoids from the leaves of Cannabis sativa L. sativa of potential reverse cholesterol transport activity. *Food Funct.* 2018, 9, 6608–6617. [CrossRef]

33. Guo, T.T.; Zhang, J.C.; Zhang, H.; Liu, Q.C.; Zhao, Y.; Hou, Y.F.; Bai, L.; Zhang, L.; Liu, X.Q.; Liu, X.Y.; et al. Bioactive spirostanol and other constituents from the leaves of Cannabis sativa L. sativa. *J. Asian Nat. Prod. Res.* 2017, 19, 793–802. [CrossRef] [PubMed]

34. Yan, X.; Tang, J.; dos Santos Passos, C.; Nurriss, A.; Simoes-Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. *J. Agric. Food Chem.* 2015, 63, 1061–1069. [CrossRef]

35. Ingallina, C.; Sobolev, A.P.; Ciri, S.; Spano, M.; Fraschetti, C.; Filippi, A.; di Sotto, A.; Giacomo, S.; Mazzoccati, G.; Gasparrini, F.; et al. Cannabis sativa L. inflorescences from monoecious cultivars grown in central Italy: An untargeted chemical characterization from early flowering to ripening. *Molecules* 2020, 25, 1908. [CrossRef] [PubMed]

36. Menghini, I.; Ferrante, C.; Carradori, S.; D’antonio, M.; Orlando, G.; Cairone, F.; Cesà, S.; Filippi, A.; Fraschetti, C.; Zengin, G.; et al. Chemical and bioinformatics analyses of the anti-leishmanial and anti-oxidant activities of hemp essential oil. *Biomolecules* 2021, 11, 272. [CrossRef] [PubMed]

37. Di Giacomo, V.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; di Valerio, V.; Politi, M.; Antolini, M.D.; Acquaviva, A.; et al. Metabolomic profile and antioxidant/anti-inflammatory effects of industrial hemp seed extract in fibroblasts, keratinocytes and isolated mouse skin specimens. *Antioxidants* 2021, 10, 44. [CrossRef] [PubMed]

38. Weston-Green, K. The united chemicals of Cannabis: Beneficial effects of cannabis phytochemicals on the brain and cognition. In *Recent Advances in Cannabinoid Research*; IntechOpen: London, UK, 2018.

39. Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’angelo, V.; Ciricotta, C. Polyphenolic Compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. *Phytother. Res.* 2016, 30, 1298–1307. [CrossRef]

40. Ryz, N.R.; Remillard, D.J.; Russo, E.B. Cannabis roots: A traditional therapy with future potential for treating inflammation and pain. *Cannabis Cannabinoid Res.* 2017, 2, 210–216. [CrossRef] [PubMed]

41. Ramirez, C.L.; Fanovich, M.A.; Churio, M.S. Cannabinoids: Extraction methods, analysis, and physicochemical characterization. *Stud. Nat. Prod. Chem.* 2019, 66, 143–173.

42. Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with environmentally friendly solvents. *TrAC Trends Anal. Chem.* 2017, 91, 12–25. [CrossRef]

43. International Conference on Harmonisation (ICH). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonised Guideline. Impurities: Guideline for Residual solvents(R6). 2016. Available online: https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf (accessed on 20 January 2022).

44. Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and hplc method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L.(hemp). *J. Pharma. Biomed. Anal.* 2017, 143, 228–236. [CrossRef] [PubMed]

45. Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. 2009. Available online: www.unodc.org/documents/scientific/ST-NAR-40-Ebook.pdf (accessed on 1 November 2021).

46. Allwood, J.W.; Ellis, D.I.; Goodacre, R. Metabolomic technologies and their application to the study of plants and plant-host interactions. *Physiol. Plant.* 2008, 132, 117–135. [CrossRef] [PubMed]

47. Cardenina, V.; Toschi, T.G.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and validation of a fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. *J. Food Drug Anal.* 2018, 26, 1283–1292. [CrossRef] [PubMed]

48. Rochfort, S.; Isbel, A.; Ezernekis, V.; Elkins, A.; Vincent, D.; Deseo, M.A.; Spangenberg, G.C. Utilisation of design of experiments approach to optimise supercritical fluid extraction of medicinal Cannabis. *Sci. Rep.* 2020, 10, 1–7. [CrossRef] [PubMed]

49. Patel, B.; Dene, W.; Fan, Z.T. Qualitative and quantitative measurement of cannabinoids in Cannabis using modified hplc/dad method. *J. Pharma Biomed. Anal.* 2017, 146, 15–23. [CrossRef] [PubMed]
50. Bercht, C.; Lousberg, R.; Küppers, F.; Salemink, C.; Vree, T.; van Rossum, J. Cannabis: VII. Identification of cannabinoids and cannabiol methyl ether from hashish. J. Chromatogr. Anal. 1973, 81, 163–166.

51. Elsohly, M.; El-Feraly, F.; Turnier, C. Isolation and characterization of (+) cannabitriol and (10) ethoxy 9-hydroxy delta 6a tetrahydrocannabinol: Two new cannabinoids from Cannabis sativa L. extract. Lloydia 1977, 40, 275–280. [PubMed]

52. Shoyama, Y.; Kuboe, K.; Nishioka, I.; Yamauchi, T. Cannabidiol monomethyl ether. A new neutral cannabinoid. Chem. Pharm. Bull. 1972, 20, 2072. [CrossRef]

53. Ahmed, S.A.; Ross, S.A.; Slade, D.; Radwan, M.M.; Khan, I.A.; Elsohly, M.A. Minor oxygenated cannabinoids from high potency Cannabis sativa L. Phytochemistry 2015, 117, 119–199. [CrossRef] [PubMed]

54. Ahmed, S.A.; Ross, S.A.; Slade, D.; Radwan, M.M.; Zulfiqar, F.; Elsohly, M.A. Cannabinoid ester constituents from high-potency Cannabis sativa. J. Nat. Prod. 2008, 71, 536–542. [CrossRef] [PubMed]

55. Radwan, M.M.; Elsohly, M.A.; Slade, D.; Ahmed, S.A.; Wilson, L.; El-Alfy, A.T.; Khan, I.A.; Ross, S.A. Non-cannabinoid constituents from high-potency Cannabis sativa variety. Phytochemistry 2008, 69, 2627–2633. [CrossRef] [PubMed]

56. Chiarese, G.; Lopatriello, A.; Schiano-Moriello, A.; Caprioglio, D.; Mattoteia, D.; Benetti, E.; Ciceri, D.; Arnoldi, L.; de Combarieu, E.; Vitale, R.M.; et al. Cannabidinwino, a dimeric phytocannabinoid from hemp, Cannabis sativa L.; is a selective thermo-TRP modulator. J. Nat. Prod. 2020, 83, 2727–2736. [CrossRef] [PubMed]

57. Citti, C.; Linciano, P.; Russo, F.; Luongo, L.; Iannotta, M.; Maione, S.; Laganà, A.; Capriotti, A.L.; Forni, F.; Vandelli, M.A.; et al. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabinimimetic activity higher than Δ9-Δ1-tetrahydrocannabinol. J. Rep. 2019, 20335. [CrossRef] [PubMed]

58. Elsohly, M.A.; Ross, S.A. Method of Preparing Delta-9-Tetrahydrocannabinol. U.S. Patent US6365416B1, 4 March 2002.

59. Linciano, P.; Citti, C.; Russo, F.; Tolomeo, F.; Laganà, A.; Capriotti, A.L.; Luongo, L.; Iannotta, M.; Belardo, C.; Maione, S.; et al. Identification of a new cannabinoid n-hexyl homolog in a medicinal cannabis variety with an antinociceptive activity in mice: Cannabidihexol. Sci. Rep. 2020, 10, 22019. [CrossRef] [PubMed]

60. Zulfiqar, F.; Ross, S.A.; Slade, D.; Ahmed, S.A.; Radwan, M.M.; Ali, Z.; Khan, I.A.; Elsohly, M.A. Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa. Tetrahedron Lett. 2012, 53, 3560–3562. [CrossRef] [PubMed]

61. Harvey, D. Characterization of the butyl homologues of D-1-tetrahydrocannabinol, cannabiol and cannabidiol in samples of cannabis by combined gas chromatography and mass spectrometry. J. Pharm. Pharmacol. 1976, 28, 280–285. [CrossRef] [PubMed]

62. Archer, R.A.; Boyd, D.B.; Demarco, P.V.; Tyminski, I.J.; Allinger, N. Structural studies of cannabinoids. Theoretical and proton magnetic resonance analysis. J. Am. Chem. Soc. 1970, 92, 5200–5206. [CrossRef]

63. Elsohly, M.A.; Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [CrossRef] [PubMed]

64. Gill, E.W. Propyl homologue of tetrahydrocannabinol: Its isolation from Cannabis, properties, and synthesis. J. Chem. Soc. C 1971, 3, 579–582. [CrossRef]

65. Krejcí, Z.; Šantáry, F. Isolation of two new cannabinoid acids from Cannabis sativa L. of Czechoslovak origin. Acta Univ. Olomuc. Fac. Med. 1975, 74, 161–166.

66. Shani, A.; Mechoulam, R. Cannabiliac acids: Isolation and synthesis by a novel oxidative cyclization. Tetrahedron 1974, 30, 2437–2446. [CrossRef]

67. Vree, T.; Breimer, D.; van Ginneken, C.A.M.; van Rossum, J.M. Identification in hashish of tetrahydrocannabinol, cannabinol and cannabiol analogues with a methyl side-chain. J. Pharm. Pharmacol. 1972, 24, 7–12. [CrossRef] [PubMed]

68. Shoyama, Y.; Hirano, H.; Makino, H.; Umekita, N.; Nishioka, I. Cannabis. X. The isolation and structure of four new propyl cannabinoid acids, tetrahydrocannabinolic acid, cannabidiolic acid, cannabichromenic acid and cannabigerolic acid, from Thai Cannabis, ‘meao variant’. Chem. Pharma. Bull. 1977, 25, 2306–2311. [CrossRef]

69. Shoyama, Y.; Hirano, H.; Oda, M.; Somehara, T.; Nishioka, I. Cannabichromenic acid and cannabigerolic acid, two new propyl homologues of cannabichromene and cannabigerol. Chem. Pharm. Bull. 1975, 23, 1894–1895. [CrossRef]

70. Appendino, G.; Giana, A.; Gibbons, S.; Maffe, M.; Gnawi, G.; Grassi, G.; Sterm, O. A polar cannabinoid from Cannabis sativa Var. Carmna. Nat. Prod. Commun. 2008, 3, 1934578X0800301207. [CrossRef]

71. Pagani, A.; Scala, F.; Chianese, G.; Grassi, G.; Appendino, G.; Taglialetela-Scaffati, O. Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 2011, 67, 3369–3373. [CrossRef]

72. Taglialetela-Scaffati, O.; Pagani, A.; Scala, F.; de Petrocellis, L.; di Marzo, V.; Grassi, G.; Appendino, G. Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur. J. Org. Chem. 2010, 2010, 2023. [CrossRef]

73. Taura, F.; Morimoto, S.; Shoyama, Y. Cannabinoleric acid, a cannabinoid from Cannabis sativa. Phytochemistry 1995, 39, 457–458. [CrossRef]

74. Borges, G.R.; Birk, L.; Scheid, C.; Morés, L.; Carasek, E.; Kitamura, R.O.S.; Roveri, F.L.; Eller, S.; de Oliveira Merib, J.; de Oliveira, T.F. Simple and straightforward analysis of cannabinoids in medicinal products by fast-GC–FID. Forensic Toxicol. 2020, 38, 531–535. [CrossRef]

75. Naz, S.; Hanif, M.A.; Bhatti, H.N.; Ansari, T.M. Impact of supercritical fluid extraction and traditional distillation on the isolation of aromatic compounds from Cannabis indica and Cannabis sativa. J. Essent. Oil Bear. Plants 2017, 20, 175–184. [CrossRef]

76. Ross, S.A.; Elsohly, M.A. The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J. Nat. Prod. 1996, 59, 49–51. [CrossRef] [PubMed]
77. Strömbäck, M. Minor Components of Cannabis Resin: IV. Mass spectrometric data and chromatographic retention times of terpenic components with retention times shorter than that of cannabinol. J. Chromatogr. A 1974, 96, 99–114. [CrossRef]
78. Turner, C.E.; Elsohly, M.A.; Boeren, E.G. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J. Nat. Prod. 1980, 43, 169–234. [CrossRef]
79. Hendriks, H.; Malina, T.M.; Batterman, S.; Bos, R. Alkanes of the essential oil of Cannabis sativa. Phytochemistry 1977, 16, 719–721. [CrossRef]
80. El-Feraly, F.S.; El-Sherei, M.M.; Al-Muhtadi, F.J. Spiro-indans from Cannabis sativa. Phytochemistry 1986, 25, 1992–1994. [CrossRef]
81. Chen, B.; Cai, G.; Yuan, Y.; Li, T.; He, Q.; He, J.F. Chemical constituents in hemp pectin I. Chir. J. Exp. Tradit. Med. Form. 2012, 18, 98–100.
82. Boeren, E.; Elsohly, M.; Turner, C.; Salamink, C. ß-Cannabispiranol: A new non-cannabinoid phenol from Cannabis sativa L. Experimental 1977, 33, 848. [CrossRef] [PubMed]
83. Slatkin, D.J.; Doorenbos, N.J.; Harris, L.S.; Masoud, A.N.; Quimby, M.W.; Schiﬀ, P.L. Chemical constituents of Cannabis sativa L. root. J. Pharm. Sci. 1971, 60, 1891–1892. [CrossRef]
84. Lutter, H.L.; Abraham, D.J.; Turner, C.E.; Knapp, J.E.; Schiﬀ, P.L., Jr.; Slatkin, D.J. Cannabinativine, a new alkaloid from Cannabis sativa L. root. Tetrahedron Lett. 1975, 16, 2815–2818. [CrossRef]
85. Shoyama, Y.; Nishioka, I. Cannabis. XII. Three new spiro-compounds, cannabiacylpiro and acetyl cannabicylpiro. Chem. Pharm. Bull. 1978, 26, 3641–3646. [CrossRef]
86. Sánchez-Duffhues, G.; Calzado, M.A.; De Vinuesa, A.G.; Caballero, F.J.; Ech-Chahad, A.; Appendino, G.; Krohn, K.; Fiebich, B.L.; Muñoz, E. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kB-dependent pathway. Biochem. Pharmacol. 2008, 76, 1240–1250. [CrossRef] [PubMed]
87. Nalli, Y.; Arora, P.; Riyaz-Ul-Hassan, S.; Ali, A. Chemical investigation of Cannabis sativa leading to the discovery of a prenyldiopiron in anti-microbial potential. Tetrahedron Lett. 2018, 59, 2470–2472. [CrossRef]
88. Crombie, L.; Crombie, W.M.L. Natural products of Thailand high Δ1-THC strain Cannabis. The bibenzyl-spiran-dihydrophenanthrene group: Relations with cannabinoids and cannavlaines. J. Chem. Soc. Perkin Trans. 1982, 1, 1455–1466. [CrossRef]
89. Ross, S.; Elsohly, M.A. Constituents of Cannabis sativa L. XXVIII. A review of the natural constituents. Zagazig J. Pharm. Sci. 1995, 4, 1–10. [CrossRef]
90. Elsohly, H.N.; Ma, G.E.; Turner, C.E.; Elsohly, M.A. Constituents of Cannabis sativa, XXV. Isolation of two new dihydrostilbenes from a panamanian variant. J. Nat. Prod. 1984, 47, 445–452. [CrossRef] [PubMed]
91. Ottersen, T.; Aasen, A.; El-Feraly, F.S.; Turner, C.E. X-ray structure of cannabispiran: A novel Cannabis constituent. Chem. Commun. 1976, 15, 580–581. [CrossRef]
92. Ross, S.A.; Elsohly, M.A.; Sultana, G.N.; Mehmedic, Z.; Hossain, C.F.; Chandra, S. Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 1995, 6, 145–452. [CrossRef] [PubMed]
93. Cheng, L.; Kong, D.; Hu, G.; Li, H. A new 9,10-dihydrophenanthrenedione from Cannabis sativa. Chem. Nat. Compd. 1994, 37, 755–756. [CrossRef]
94. Bercht, C.; van Dongen, J.; Heerma, W.; Lousberg, R.C.; Küppers, F. Cannabispirene and cannabispirenone, two naturally occurring spiro-compounds. Tetrahedron 1976, 32, 2939–2943. [CrossRef]
95. Hammond, C.T.; Mahlberg, P.G. Phloroglucinol glucoside as a natural constituent of Cannabis sativa. Phytochemistry 1994, 43, 575–576. [CrossRef]
96. Namdar, D.; Voet, H.; Ajampura, V.; Nadarajan, S.; Mayzlish-Gati, E.; Mazuz, M.; Shalev, N.; Koltai, H. Terpenoids and phyto cannabinoids co-produced in Cannabis sativa strains show speciﬁc interaction for elicytotoxic activity. Molecules 2019, 24, 3031. [CrossRef]
97. Whalley, B.; Stephens, G.; Williams, C.; Guy, G.; Wright, S.; Kikuchi, T.; GW Pharma Ltd.; Otsuka Pharmaceutical Co Ltd. Use of One or a Combination of Phyto-Cannabinoids in the Treatment of Epilepsy. U.S Patent 9,066,920, 30 June 2015.
98. Parker, L.A.; Rock, E.M.; Limebeer, C.L. Regulation of nausea and vomiting by cannabinoids. Br. J. Pharmacol. 2011, 163, 1411–1422. [CrossRef] [PubMed]
99. Yeshurun, M.; Shpilberg, O.; Herscovici, C.; Shargai, L.; Dreyer, J.; Peck, A.; Israeli, M.; Levy-Assafar, M.; Gruenewald, T.; Mechoulam, R., et al. Cannabidiol for the prevention of graft-versus-host-disease after allogeneic hematopoietic cell transplantation: Results of a phase II study. Biol. Blood Marrow Transpl. 2015, 21, 1770–1775. [CrossRef] [PubMed]
104. Brierley, D.J.; Samuels, J.; Duncan, M.; Whalley, B.J.; Williams, C.M. Cannabigerol is a novel, well-tolerated appetite stimulant in pre-satiated rats. _Psychopharmacology_ 2016, 233, 3603–3613. [CrossRef] [PubMed]

105. Rock, E.; Kopstick, R.L.; Limebeier, C.L.; Parker, L.A. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in _S_ unis murinus. _Br. J. Pharmacol._ 2013, 170, 641–648. [CrossRef]

106. Rock, E.M.; Sticht, M.A.; Parker, L.A. Effect of Phytocannabinoids on Nausea and Vomiting; Oxford University Press: Oxford, UK, 2014.

107. Tsien, R.; Whalley, B.J.; Devinsky, O. Cannabinoids and Epilepsy. _Neurotherapeutics_ 2015, 12, 747–768.

108. Moreno-Sanz, G. Can you pass the acid test? critical review and novel therapeutic perspectives of Δ9-tetrahydrocannabinolic acid _A_. _Cannabis Cannabinoid Res._ 2016, 1, 124–130. [CrossRef] [PubMed]

109. Rock, E.; Parker, L.A. Effect of low doses of cannabidiolic acid and ondansetron on licl-induced conditioned gaping (a model of nausea-induced behaviour) in rats. _Br. J. Pharmacol._ 2013, 165, 685–692. [CrossRef] [PubMed]

110. Rock, E.M.; Connolly, C.; Limebeier, C.L.; Parker, L.A. Effect of combined oral doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models. _Psychopharmacology_ 2016, 233, 3353–3360. [CrossRef] [PubMed]

111. Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. _Br. J. Pharmacol._ 2011, 163, 1344–1364. [CrossRef] [PubMed]

112. Cascone, P.; Iodice, L.; Maffei, M.E.; Bossi, S.; Arimura, G.I.; Guerrieri, E. Tobacco overexpressing β-phellandrene in rodents: Possible mechanisms of action. _Cytotechnol._ 2016, 36, 5757–5763. [CrossRef] [PubMed]

113. Kasuya, H.; Okada, N.; Kubohara, M.; Satou, T.; Masuo, Y.; Koike, K. Expression of BDNF and TH mRNA in the Brain Following Inhaled Administration of A-Phellandrene. _Phytother. Res._ 2015, 29, 43–47. [CrossRef] [PubMed]

114. De Oliveira Ramalho, T.R.; de Oliveira, M.T.; de Araujo Lima, A.L.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-terpinene modulates acute inflammatory response in mice. _Planta Med._ 2015, 81, 1248–1254.

115. Fitisou, E.; Anastopoulos, I.; Chichilia, K.; Galanis, A.; Kourkoutas, I.; Panayiotidis, M.I.; Pappa, A. Antioxidant and antiproliferative properties of the essential oils of _Satureja thymbra_ and _Satureja pannassica_ and their major constituents. _Anticancer Res._ 2016, 36, 173–180. [CrossRef] [PubMed]

116. Han, H.D.; Cho, Y.J.; Cho, S.K.; Byeon, Y.; Jeon, H.N.; Kim, H.S.; Kim, B.G.; Bae, D.S.; Lopez-Berestein, G.; Sood, A.K.; et al. Linalool-incorporated nanoparticles as a novel anticancer agent for epithelial ovarian carcinoma. _Mol. Cancer Ther._ 2016, 15, 618–627. [CrossRef] [PubMed]

117. Lima, D.F.; Brandão, M.S.; Moura, J.B.; Leitão, J.M.; Carvalho, F.A.; Miura, L.M.; Leite, J.R.; Sousa, D.P.; Almeida, F.R. Antinociceptive activity of the monoterpene α-phellandrene in rodents: Possible mechanisms of action. _J. Pharm. Pharmacol._ 2012, 64, 283–292. [CrossRef] [PubMed]

118. Sudak, D.; Saneto, R.; Goldstein, B. The current status of artisanal Cannabis for the treatment of epilepsy in the United States. _Epilepsy Behav._ 2017, 70, 292–297. [CrossRef] [PubMed]

119. Piccinelli, A.C.; Santos, J.A.; Konkiewitz, E.C.; Oesterreich, S.A.; Formagio, A.S.; Croda, J.; Ziff, E.B.; Cassuya, C. Antihyperalgesic and antidepressive actions of (R)-(+)−limonene, A-phellandrene, and essential oil from _schinus terebinthifolius_ fruits in a neuropathic pain model. _Nutr. Neurosci._ 2015, 18, 24. [CrossRef] [PubMed]

120. Siqueira, H.D.; Neto, B.S.; Sousa, D.P.; Gomes, B.S.; da Silva, F.V.; Cunha, F.V.; Wanderley, C.W.; Pinheiro, G.; Cunha, F.V.; et al. A-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. _Life Sci._ 2016, 160, 27–33. [CrossRef] [PubMed]

121. Lima, D.F.; Brandão, M.S.; Moura, J.B.; Leitão, J.M.; Carvalho, F.A.; Miura, L.M.; Leite, J.R.; Sousa, D.P.; Almeida, F.R. Antinociceptive activity of the monoterpene α-phellandrene in rodents: Possible mechanisms of action. _J. Pharm. Pharmacol._ 2012, 64, 283–292. [CrossRef] [PubMed]

122. Aly, A.; Amin, M.; Niedzwiedzki, D. Antiphagocytic and antioxidant properties of terpinolene in rat brain cells. _Arch. Ind. Hyg. Toxicol._ 2013, 64, 415–424. [CrossRef] [PubMed]

123. Turk, H.; Aydin, E.; Geyikoglu, F.; Cetin, D. Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. _Cytotechnology_ 2015, 67, 409–418. [CrossRef] [PubMed]

124. Varga, Z.V.; Matyas, C.; Erdelyi, K.; Cinar, R.; Neri, D.; Chicca, A.; Nemeth, B.T.; Paloczi, J.; Lajtos, T.; Corey, L.; et al. Research Paper Themed Issue B-Caryophyllene-induced antinociception protects against alcoholic steatohepatitis by attenuating inflammation and metabolic dysregulation in mice. _Br. J. Pharmacol._ 2017, 175, 320–334. [CrossRef] [PubMed]

125. Katsuyama, S.; Mizoguchi, H.; Kuwahata, H.; Komatsu, T.; Nagaoaka, K.; Nakamura, H.; Bagetta, G.; Sakurada, T.; Sakurada, S. Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception. _Eur. J. Pain_ 2013, 17, 664–675. [CrossRef] [PubMed]

126. Xu, H.B.; Zheng, L.P.; Li, L.; Xu, I.Z.; Fu, J. Elemene, one ingredient of a chinese herb, against malignant tumors: A literature-based meta-analysis. _Cancer Invest._ 2013, 31, 156–166. [CrossRef] [PubMed]
129. Yang, Q.; Wu, J.; Luo, Y.; Huang, N.; Zhen, N.; Zhou, Y.; Sun, F.; Li, Z.; Pan, Q.; Li, Y. (-)-Guaiol Regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. *Oncotarget* 2016, 7, 62585. [CrossRef] [PubMed]

130. Chinsembu, K.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. *Acta Tropica* 2016, 153, 646–655. [CrossRef] [PubMed]

131. Semenya, S.; Potgieter, M.; Tshisikhawe, M.; Shava, S.; Maroyi, A. Medicinal utilization of exotic plants by bapedi traditional healers to treat human ailments in Limpopo province, South Africa. *J. Ethnopharmacol.* 2012, 144, 646–655. [CrossRef] [PubMed]

132. Yang, H.H.; Son, J.K.; Jung, B.; Zheng, M.; Kim, J.R. Epifriedelanol from the root bark of Ulmus davidiana inhibits cellular senescence in human primary cells. *Planta Medica* 2011, 77, 441–449. [CrossRef]

133. Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A current review on its beneficial biological activities. *J. Food Biochem.* 2017, 41, e12376. [CrossRef]

134. He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. *Fitoterapia* 2016, 115, 74–85. [CrossRef] [PubMed]

135. Sharma, A.; Kashyap, D.; Sak, K.; Tuli, H.S.; Sharma, A.K. Therapeutic charm of quercetin and its derivatives: A review of research and patents. *Pharm. Pat. Anal.* 2018, 7, 15–32. [CrossRef] [PubMed]

136. Ashaari, Z.; Hassanzadeh, G.; Alizamir, T.; Yousefi, B.; Keshavarzi, Z.; Mokhtari, T. The flavone luteolin improves central nervous system disorders by different mechanisms: A review. *J. Mol. Neurosci.* 2018, 65, 491–506. [CrossRef]

137. Rudroff, T.; Sosnoff, J.J. Cannabidiol to improve mobility in people with multiple sclerosis. *Front. Neurol.* 2018, 9, 183. [CrossRef] [PubMed]

138. Wong, K.U.; Baum, C.R. Acute Cannabis Toxicity. *Pediatr. Emerg. Care* 2019, 35, 799–806. [CrossRef] [PubMed]

139. International Conference on Harmonisation (ICH). All Guidelines. Available online: https://www.ich.org/page/ich-guidelines (accessed on 19 April 2020).

140. Schlag, A.K.; O’sullivan, S.E.; Zafar, R.R.; Nutt, D.J. Current controversies in medical cannabis: Recent developments in human clinical applications and potential therapeutics. *Neuropharmacology* 2021, 191, 108886. [CrossRef]

141. Hill, K.P. Cannabinoids and the coronavirus. *Cannabis Cannabinoid Res.* 2020, 5, 118–120. [CrossRef]

142. Costiniuk, C.T.; Jenabian, M.A. Acute inflammation and pathogenesis of SARS-CoV-2 infection: Cannabidiol as a potential anti-inflammatory treatment? *Cytokine Growth Factor Rev.* 2020, 53, 63. [CrossRef] [PubMed]

143. Byrareddy, S.N.; Mohan, M. SARS-CoV2 induced respiratory distress: Can cannabinoids be added to anti-viral therapies to reduce lung inflammation? *Brain Behav. Immun.* 2020, 87, 120. [CrossRef] [PubMed]

144. Esposito, G.; Pesce, M.; Seguella, L.; Sanseverino, W.; Lu, J.; Corpetti, C.; Sarnelli, G. The potential of cannabidiol in the COVID-19 pandemic. *Br. J. Pharmacol.* 2020, 177, 4967–4970. [CrossRef] [PubMed]

145. O’sullivan, S.E.; Stevenson, C.W.; Laviolette, S.R. Could cannabidiol be a treatment for coronavirus disease-19-related anxiety disorders? *Cannabis Cannabinoid Res.* 2021, 6, 7–18. [CrossRef] [PubMed]