Clinical Features and Duration of Traveler's Diarrhea in Relation to Its Etiology

Leena Mattila

Clinical features of traveler’s diarrhea (TD) were studied among 126 adult Finnish tourists who developed this illness during or shortly after a visit to Morocco. Enteric pathogens were identified in 76 (60%) of cases, whereas the etiology remained unidentified in 50 cases (40%). Patients with an identified pathogen did not differ from those with TD of unknown etiology in terms of the time of onset of illness or the median frequency of unformed stools in the first 24 hours. In contrast, the median frequency of unformed stools between 24 and 48 hours (i.e., on the second day) was 1.0 among patients with no pathogen and 2.0 among those with enteric pathogens identified ($P < .001$). A similar difference was evident on the third day (1.0 vs. 2.5). Moreover, a lower proportion of patients with no pathogen identified had watery stools (28% vs. 55%). The durations of diarrhea and concomitant symptoms were significantly shorter and the recovery from TD was significantly quicker among the patients without an identified pathogen. Patients with one or more invasive pathogens had disease that was clearly more severe than that of patients with no pathogen identified; the difference in severity of disease was less marked for patients with invasive vs. noninvasive pathogens. Individuals with diarrhea due to *Campylobacter* species tended to have the most severe disease, whereas diarrhea caused by enterotoxigenic *Escherichia coli* seemed milder than that caused by other agents. Unfortunately, the clinician has only a limited opportunity to predict the etiology of TD and thus to assess the need for antimicrobial therapy at the onset of disease.

Traveler’s diarrhea (TD) is a frequent medical problem for tourists in developing countries [1–3] and is costly to both the traveler and the host country. High-risk areas for TD include Africa, Latin America, and Asia [4]. Various infectious agents may cause TD, but bacteria are responsible for ~80% of cases [5, 6]. Although techniques for identifying the bacteria, viruses, and parasites responsible for TD have improved, the etiology remains unknown in 15%–55% (and, in rare instances, up to 75%) of cases [7–12]. The etiology of TD varies both geographically and seasonally [13–16].

Investigators have long attempted to correlate the symptoms and signs of diarrheal diseases with a specific etiology, usually with little success [17–23]. Although adequate comparisons of patients with TD of different etiologies generally have not been possible, a few trends have been noted. *Campylobacter* enteritis has been described as intense diarrhea with abdominal pain and fever in more than 50% of cases. *Salmonella* has been associated with classic enteric fever or severe diarrhea with abdominal pain, whereas *shigella* enteritis typically has an abrupt onset with bloody or watery stools, abdominal pain, and fever. Enteritis associated with enterotoxigenic *Escherichia coli* (ETEC) varies considerably but is usually of relatively short duration. Little is known about diarrhea associated with *Aeromonas* species.

A recent study of TD among Finnish travelers to Morocco [24] offered an opportunity to compare the clinical presentation of TD cases according to etiology: no identified pathogen, invasive pathogen(s), or noninvasive pathogen(s).

Patients and Methods

The population studied consisted of 126 individuals from a group of 978 Finnish tourists participating in two packaged tours to Agadir, Morocco [15, 24]. Of the 254 travelers who developed TD during or within 1 week after the tours, 71 were excluded from the study because they had received norfloxacin in a randomized trial of treatment [25]. (The disease was initially as severe in this group as it was in the group that was included in the study.) Follow-up data were available for 126 of the remaining 183 patients with TD. Of these 126 persons, 39 had received B-subunit/whole-cell cholera vaccine. Although that vaccine reduced the risk of TD caused by ETEC alone or in combination with other pathogens [24], it had no effect on the clinical features of the cases that did develop (author’s unpublished observation). Thus these patients were not excluded from the study.

The tours took place in January and February 1989 and in October and November 1989 and lasted for 1 or 2 weeks. An office for the study’s personnel (two Finnish physicians, a
Diarrhea was defined as the passage of four or more unformed stools in a period of 24 hours or of three or more unformed stools in a period of 8 hours. In addition to diarrhea, at least one of the following signs or symptoms had to be present for inclusion of a patient in the study: abdominal pain or cramps, nausea, vomiting, or fever [26].

Patients were instructed to contact the study personnel as soon as symptoms developed. One of the study’s physicians interviewed and examined the patient within a few hours. Each patient kept a diary during the illness and met with a physician or nurse at least twice before recovery. Individuals who developed gastrointestinal symptoms within a week after returning home were asked to submit a stool specimen and to fill in a questionnaire. If the symptoms fit the case definition, the patient was included in the study. Twenty-two of the 126 patients were enrolled in this manner.

Self-medication was not allowed. Five patients received metoclopramide, six patients received loperamide, and three patients received metamizole during the course of diarrhea; these medications were given by the physician to alleviate the symptoms of TD during the long flight home or a long day trip. In no other case was the use of a drug for TD reported.

A stool sample collected at the diagnosis of TD was examined macroscopically for mucus, blood, and/or a watery or loose appearance and was cultured by standard methods for Salmonella, Shigella, Campylobacter, Yersinia, Aeromonas, and Plesiomonas species [27]. Standard culture methods were used for detecting enteroviruses or adenoviruses [28] in the first 43 samples, which were collected during the first trip (January and February 1989). As culture of specimens did not yield viruses with these standard methods, the latex agglutination test was used for specimens collected during the second trip (October and November 1989).

Final identification of bacterial pathogens took place in the National Public Health Institute in Helsinki. ETEC was identified by ELISAs for heat-labile and heat-stable enterotoxins, enteropathogenic E. coli (EPEC) serogroups and enterohemorrhagic E. coli (EHEC) serogroup O157 by serotyping, and enteroinvasive E. coli (EIEC) by tissue culture [29-33].

In statistical analyses, proportional data were compared with the \(\chi^2 \) test. The \(t \) test or the Mann-Whitney U test was used for the comparison of continuous variables. For multiple pairwise comparison of quantitative variables, analysis of variance was followed by Scheffe’s method. For the comparison of variables with highly skewed distributions, logarithmic transformation or nonparametric tests (Kruskal-Wallis analysis of variance or the Kruskal-Wallis test adjusted for multiple comparisons) were employed. The independent dis-

Table 1. Etiology of 126 cases of traveler’s diarrhea in Finnish tourists to Morocco.

Pathogen(s) identified*	No. (%) of patients
No pathogen	50 (40)
Single pathogen	
E. coli	1
Campylobacter jejuni	11
Campylobacter coli	1
ETEC	10
ST	5
LT	2
EIEC	1
Salmonella enterica	12
Shigella species	1
Aeromonas species	7
Rotavirus	4
Multiple pathogens	22 (17)
ST-ETEC + C. jejuni	1
ST-ETEC + EPEC	1
ST-ETEC + S. enterica	3
ST-ETEC + Shigella species	1
ST-ETEC + Aeromonas species	1
ST-ETEC + S. enterica + C. jejuni	1
LT-ETEC + S. enterica	1
LT-ETEC + EPEC	1
LT/ST-ETEC + S. enterica	3
LT/ST-ETEC + S. enterica + EPEC	1
LT/ST-ETEC + S. enterica + Aeromonas species	1
S. enterica + EPEC	1
S. enterica + C. jejuni	2
S. enterica + Aeromonas species	2
S. enterica + rotavirus	1
C. jejuni + EHEC	1

* ETEC = enterotoxigenic Escherichia coli; ST = heat-stable enterotoxin; LT = heat-labile enterotoxin; EIEC = enteroinvasive E. coli; EPEC = enteropathogenic E. coli; and EHEC = enterohemorrhagic E. coli.

Table 2. Demographic characteristics of 126 Finnish tourists to Morocco who developed traveler’s diarrhea.

Characteristic:	Value for indicated group	
No pathogen identified (n = 50)	Pathogen(s) identified (n = 76)	
Median age (range): y	44.1 (20-69)	44.0 (15-71)
Sex: male/female	11/39	29/47
Season: no. of cases		
Winter	14	29
Fall	36	47
Length of stay in Morocco: no. (%) of patients		
≤1 w	37 (74)	51 (67)
≤2 w	13 (26)	25 (33)
Mean duration of diarrhea ± SD		
before collection of first stool sample: h	14.5 ± 14.7	14.5 ± 14.4
Previous visits abroad within 1 y: no. of patients (%)		
30 (60)	41 (54)	
Table 3. Clinical profile of etiologic groups of patients with traveler's diarrhea.

Variable: unit of measure	Two-group comparison	Three-group comparison					
	No pathogen identified (n = 50)	Pathogen(s) identified (n = 76)	P	No pathogen identified (n = 50)	Noninvasive pathogen(s) (n = 31)	Invasive pathogen(s) (n = 45)	P*
Median time (95% CI) from arrival to onset of diarrhea: d	6.0 (5.0, 7.0)	6.0 (5.0, 6.0)	NS	5.0 (5.0, 7.0)	6.0 (5.0, 7.0)	6.0 (5.0, 7.0)	NS
Median frequency of unformed stools (95% CI): no. of stools							
First day (24 h)	7.0 (5.0, 8.0)	8.0 (7.0, 8.0)	NS	7.0 (5.0, 8.0)	6.5 (5.0, 11.0)	10.0 (7.0, 12.0)	NS
Second day	1.0 (0, 1.0)	2.0 (1.0, 4.0)	< .001	1.0 (0, 1.0)	1.0 (1.0, 5.0)	3.5 (2.0, 6.0)	< .001
Third day	1.0 (0, 1.0)	2.5 (1.0, 4.0)	< .001	1.0 (0, 1.0)	1.0 (1.0, 4.0)	3.0 (1.0, 5.0)	< .001
Median duration of symptoms (95% CI): d							
Diarrhea	1.6 (1.0, 3.0)	3.4 (3.0, 4.0)	< .001	1.6 (1.0, 3.0)	3.2 (2.9, 4.0)	4.0 (2.8, 5.0)	< .001
Abdominal pain	1.3 (1.0, 2.0)	3.2 (2.9, 3.7)	< .001	1.3 (1.0, 2.0)	3.1 (2.0, 3.5)	3.2 (2.9, 5.4)	< .001
Nausea	0.4 (0, 1.0)	1.3 (0.8, 2.1)	< .01	0.4 (0, 1.0)	1.3 (0.3, 2.4)	1.3 (0.9, 2.3)	< .01
Fever	0.3 (0, 0.9)	0.3 (0.1, 1.2)	< .05	0.3 (0, 0.9)	0.3 (0.1, 1.3)	1.0 (0.4, 1.8)	< .05
Description of stools: % of patients							
Watery	28	55	28	49	60		
Loose	58	30	58	29	29		
Mucous	14	12	14	19	9		
Bloody	0	3	0	3	2		
Concomitant symptoms: % of patients							
Abdominal pain	80	76	NS	80	70	80	NS
Nausea/vomiting	32	43	NS	32	45	42	NS
Fever	18	37	< .01	18	29	42	< .05
Other symptoms: % of patients							
Headache	36	39	NS	36	33	43	NS
Myalgia	27	40	NS	27	26	49	NS
Meteorisms	28	31	NS	28	35	29	NS
Sleep disturbances	10	19	NS	10	15	21	NS
Flu-like symptoms	15	13	NS	15	11	14	NS

NOTE. For comparison of continuous variables, the t test, the Mann-Whitney U test, or Kruskal-Wallis analysis of variance was used. For comparison of proportional data, the x² test was used. NS = not significant.

* Values refer to overall comparison between the three subgroups.

† As the appearance of stools was roughly classified, only an overall comparison between the subgroups was considered meaningful.

criminatory power of each risk factor was assessed by stepwise discriminant analysis. The relation between the number of unformed stools and the duration of diarrhea was expressed as the Spearman-rank correlation. The Kaplan-Meier life-table method was used for the comparison of cumulative proportions of patients recovering from TD.

Results

On the basis of microbiological results, the 126 patients with TD were divided into two groups: those with an identified enteropathogen (76 patients, 60%) and those without an identified pathogen (50 patients, 40%). The pathogens isolated are listed in table 1. The group with identified pathogens was further divided into two subgroups: those with one or more invasive pathogens (45 patients) and those with one or more noninvasive pathogens (31 patients). (The isolation of any invasive pathogen qualified a patient for the former category.) Shigella species, Salmonella enterica, Campylobacter species, and EIEC were considered invasive pathogens, whereas ETEC, EPEC, EHEC, Aeromonas species, and rotavirus were considered noninvasive [34].

ETEC, the most common single pathogen, was identified alone in 17 (31%) of 54 cases. It was followed in frequency by S. enterica (22%) and Campylobacter species (22%). ETEC and S. enterica were also the most common isolates in the 22 cases in which multiple pathogens were identified. Rotavirus was the only viral agent detected; it was found alone in four cases and together with S. enterica in one case.

The mean age of the 126 patients was 44.0 years; 86 (68%) were female (table 2). Eighty-eight patients (70%) spent 1 week in Morocco, and the rest spent 2 weeks. No differences in age, sex, or duration of stay in Morocco were documented among the three groups (no pathogen, invasive pathogen, and noninvasive pathogen).

The median time of onset of TD was 6.0 days after the
Forty-five patients had at least one invasive pathogen identified, and 50 had no pathogen identified. The P value was obtained by the Kaplan-Meier life-table method (Mantel-Cox test).

The number of unformed stools during the first 24 hours of TD correlated with the ultimate duration of diarrhea ($r = 0.3015; P < .01$) but not with etiology. In an evaluation of the clinical features of the etiologic groups, a stepwise discriminant analysis was performed; the presence and severity of abdominal pain, nausea, and fever and the frequency of unformed stools were included in the model. None of these parameters was associated with etiology during the first 24 hours of illness; however, the number of unformed stools on the second day proved a significant independent discriminator among the etiologic groups. Discriminant analysis based on this variable correctly classified 64% of all cases: 92% of those with no pathogen identified and 48% of those with one or more pathogens identified.

The clinical profile of TD caused by single specific pathogens was evaluated (table 4). ETEC was isolated in 17 of these cases, and Campylobacter species and S. enterica were identified in 12 cases each. Despite these relatively small numbers, some clinical features were significantly associated with each pathogen. On the first day of illness, the clinical features in all groups were quite similar. In cases in which ETEC was identified, diarrhea proved to be quite mild, to be associated with mucous stools in many cases, and to be associated with nausea or vomiting, fever, and other systemic symptoms in few cases. Campylobacter species tended to cause the most severe disease, with a large number of unformed stools on the first, the second, and especially the third day and a frequent association with abdominal pain, nausea or vomiting, and fever. S. enterica was associated with moderately severe disease. In seven cases, diarrhea was associated with Aeromonas species. These cases were quite severe, with a large number of unformed stools and nausea documented on the first day.

Four cases of diarrhea were associated with rotavirus. The clinical features of these cases were not distinguishable from those of cases with a bacterial etiology. All four of the patients involved had nausea and abdominal pain, and three of the four had fever. Three patients had watery stools, and one patient had bloody stools.

Discussion

In this study, the durations of diarrhea and of concomitant symptoms of TD (nausea, abdominal pain, and fever) were significantly shorter among cases without than among those with an identified etiology. The clinical features of TD on the first day of illness were quite similar in these two groups,
Table 4. Clinical profile of TD caused by a single specific pathogen.

Variable: unit of measure	ETEC \((n = 17)\)	Campylobacter \(\text{species}(n = 12)\)	Salmonella \(\text{enterica}(n = 12)\)	Aeromonas \(\text{species}(n = 7)\)	Other \((n = 6)\)	\(P^t\)	
Sex: no. male/no. female	4/13	5/7	8/4	2/5	2/4		
Median time \((95\% \text{ CI})\) from arrival to onset of diarrhea: \(d\)	6.0 \((4.0, 8.0)\)	7.0 \((5.0, 11.0)\)	6.0 \((5.0, 9.0)\)	5.0 \((2.0, 9.0)\)	4.0 \((2.0, 9.0)\)	NS	
Median frequency of unformed stools \((95\% \text{ CI})\): no. of stools	First day \((24 \text{ h})\)	5.5 \((3.0, 8.0)\)	9.5 \((4.0, 13.0)\)	7.0 \((4.0, 12.0)\)	11.0 \((4.0, 15.0)\)	12 \((7.0, 23.0)\)	NS
	Second day	1.0 \((1.0, 3.0)\)	5.0 \((0, 9.0)\)	2.0 \((0, 4.0)\)	3.0 \((1.0, 4.0)\)	3.5 \((0, 9.0)\)	NS
	Third day	1.0 \((0, 5.0)\)	5.5 \((1.0, 10.0)\)	3.0 \((0, 4.0)\)	2.0 \((1.0, 4.0)\)	3.5 \((0, 8.0)\)	NS
Median duration of symptoms \((95\% \text{ CI})\): \(d\)	Diarrhea	3.1 \((1.7, 4.0)\)	3.8 \((2.7, 6.2)\)	3.5 \((1.7, 7.4)\)	3.8 \((2.0, 5.3)\)	4.1 \((3.1, 6.3)\)	NS
	Abdominal pain	3.2 \((1.1, 4.2)\)	4.2 \((1.5, 5.8)\)	2.4 \((1.0, 4.0)\)	2.3 \((0, 3.8)\)	3.3 \((2.9, 5.3)\)	<.05
	Nausea	0.3 \((0, 1.5)\)	1.1 \((0.4, 3.1)\)	0.7 \((0, 1.3)\)	2.3 \((0, 2.8)\)	3.3 \((2.0, 5.3)\)	<.05
	Fever	0.3 \((0, 1.5)\)	2.0 \((0.4, 3.0)\)	1.2 \((0, 2.8)\)	0.3 \((0, 2.3)\)	1.8 \((0.1, 4.3)\)	NS
Description of stools: % of patients	Watery	24	92	59	86	83	
	Loose	41	8	33	14	0	
	Mucous	35	0	8	0	0	
	Bloody	0	0	0	0	17	
Concomitant symptoms: % of patients	Abdominal pain	71	91	58	33	83	NS
	Nausea/vomiting	18	58	8	71	100	<.001
	Fever	18	67	33	29	67	<.05
Other symptoms: % of patients	Headache	24	50	58	29	60	NS
	Myalgia	19	64	42	17	100	<.05
	Meteorisms	39	10	50	50	0	NS

* ETEC = enterotoxigenic \(E.\) \(\text{coli}\). “Other” includes four cases due to rotavirus, one due to enteroinvasive \(E.\) \(\text{coli}\), and one due to \(S.\) \(\text{enterica}\) species.

+ Quantitative variables were compared by analysis of variance and Scheffe’s method or Kruskal-Wallis analysis of variance; proportional data were compared by \(\chi^2\) test.

\(^t\) As the appearance of stools was roughly classified, only an overall comparison between the subgroups was considered meaningful.

but the number of unformed stools was significantly smaller on the second and third days in the group without an identified etiology. As in earlier studies [19, 35, 36], disease was less severe in cases without an identified etiology than in those with at least one identified pathogen. The differences between cases due to invasive pathogens and those due to noninvasive pathogens were less marked. \(C.\) \(\text{jejuni}\) species caused the most severe disease and ETEC the mildest disease.

Ericsson et al. compared clinical and laboratory features of TD in 56 patients infected with \(S.\) \(\text{enterica}\) species, 103 patients infected with ETEC, 19 patients with TD due to species other than \(S.\) \(\text{enterica}\) or ETEC, and 82 patients with TD of unknown etiology [21]. In their analysis, nausea and abdominal cramps were equally common in all etiologic groups, and patients with a mild clinical presentation—regardless of etiology—recovered sooner than those who initially were moderately or severely ill. In our study, \(\sim 33\%\) of patients without an identified pathogen and \(\sim 43\%\) of those with an identified pathogen reported nausea. Nausea was common among cases associated with \(A.\) \(\text{species}\) (71%) or \(C.\) \(\text{jejuni}\) species (58%) but was uncommon among cases associated with \(S.\) \(\text{enterica}\) (8%) or ETEC (18%). Moreover, abdominal pain was frequent both with (76%) and without (80%) an identified etiology.

Kollaritsch studied the clinical features of enteritis among 1,455 Austrian tourists visiting various developing countries between 1986 and 1988 [37]. In this questionnaire-based study, 57% of patients had abdominal cramps, 13% had fever, and 30% had nausea or vomiting. The onset of TD came around the ninth day of travel; in contrast, the median time to onset in our study was 6 days. During the acute illness of the patients in our study, the frequency of stools was about four per day, and the mean duration of diarrhea ± SD was 3.6 ± 2.7 days. Fever was rather uncommon; it was more common among cases with than among those without an identified pathogen (37% vs. 18%) and was most common among cases due to an invasive pathogen (42%).
What causes cases of TD in which no pathogen is identified? In the present study, the stool specimen for culture was taken after the passage of three or four unformed stools, and the culture methods used were of high quality. Thus major enteropathogens would very likely have been detected. However, the use of methods for the detection of some other potential pathogens (e.g., astrovirus, coronavirus, Norwalk virus, Hafnia alvei, Campylobacter upsaliensis, Campylobacter butzleri, Cryptosporidium species, and enterotoxigenic E. coli) might have revealed the etiology of a few more cases [38–46]. Processing of more than one stool specimen per patient might also have been fruitful. It remains unclear whether TD can be due to changes in the normal flora without the involvement of enteric pathogens.

In conclusion, the first day of TD was fairly similar regardless of etiology, but recovery was significantly quicker among patients without an identified pathogen. In other words, a lower frequency of unformed stools after the first 24 hours distinguished the group with an unknown etiology from that with an identified etiology. Fifty percent of patients with fewer than three stools on the second day had no identifiable pathogen. Unfortunately, the clinician has only a limited opportunity to predict the etiology of TD and thus to assess the need for antimicrobial therapy in individual patients at the onset of disease.

Acknowledgments

The author thanks Professors P. Helena Mäkelä and Heikki Peltola for critical reading of the manuscript and Anja Siitonen, Ph.D., for valuable help in preparing the manuscript.

References

1. Steffen R, van der Linde F, Gyr K, Schürm E. Epidemiology of diarrhea in travelers. JAMA 1983;249:1176–80.
2. Peltola H, Kyrönenpp H, Hölsä P. Trips to the South—a health hazard. Morbidity of Finnish travellers. Scand J Infect Dis 1983;15:375–81.
3. Steffen R. Epidemiologic studies of travelers' diarrhea, severe gastrointestinal infections, and cholera. Rev Infect Dis 1986;8(suppl 2):S122–30.
4. Stoll BJ, Glass RI, Huq M, Khan MU, Banu H, Holt J. Epidemiologic and clinical features of patients infected with Shigella who attended a diarrheal disease hospital in Bangladesh. J Infect Dis 1982;146:177–83.
5. Ericsson CD, DuPont HL, Sullivan P, Galindo E, Evans DG, Evans DJ Jr, Bicozamycin, a poorly absorbable antibiotic, effectively treats travelers' diarrhea. Ann Intern Med 1983:98:20–5.
6. Watson B, Ellis M, Mandle B, Dunbar E, Wheale K, Brennand J. A comparison of the clinico-pathological features with stool pathogens in patients hospitalised with the symptom of diarrhoea. Scand J Infect Dis 1986:18:553–9.
7. Ericsson CD, Patterson TF. DuPont HL. Clinical presentation as a guide to therapy for travelers' diarrhea. Am J Med Sci 1987;294:91–6.
8. Schwec E, Thorén A, Castor B, et al. Acute diarrhoea in adults: aetiology, clinical appearance and therapeutic aspects. Scand J Infect Dis 1988; 20:303–14.
9. Mathan VI, Mathan MM. Intestinal manifestations of invasive diarrhoea and their diagnosis. Rev Infect Dis 1991:13(suppl 4):S311–3.
10. Peltola H, Siitonen A, Kyrönenpp H, et al. Prevention of travellers’ diarrhoea by oral B-subunit/whole-cell cholera vaccine. Lancet 1991:338:1285–9.
11. Mattila L, Peltola H, Siitonen A, Kyrönenpp H, Simula I, Kataja M. Short-term treatment of traveler's diarrhea with norfloxacin: a double-blind, placebo-controlled study during two seasons. Clin Infect Dis 1993;17:779–82.
12. DuPont HL, Ericsson CD, Mathewson JJ, de la Cabada FJ, Conrad DA. Oral aztreonam, a poorly absorbed yet effective therapy for bacterial diarrhea in US travelers to Mexico. JAMA 1992;267:1932–5.
13. Lenette EH, Balows A, Hausler WJ Jr, Shadomy HJ, eds. Manual of clinical microbiology. 4th ed. Washington, DC: American Society for Microbiology, 1985.
14. Specter S, Lancz GJ, eds. Clinical virology manual. New York: Elsevier Science Publishing, 1986:31–6.
15. Svennerholm A-M, Wiklund G. Rapid GM1-enzyme-linked immunosorbent assay with visual reading for identification of Escherichia coli heat-labile enterotoxin. J Clin Microbiol 1983:17:596–600.
16. Svennerholm A-M, Wikström M, Lindblad M, Holmgren J. Monoclonal antibodies against Escherichia coli heat-stable toxin (STa) and their use in a diagnostic ST ganglioside GM1-enzyme-linked immunosorbent assay. J Clin Microbiol 1986;24:585–90.
17. Ørskov F, Ørskov J. Serotyping of Escherichia coli. In: Bergan T, ed. Methods in microbiology. Vol 14. London: Academic Press, 1984:43–112.
18. Kleanthous H, Smith HR, Scotland SM, et al. Haemolytic uraemic syndromes in the British Isles, 1985–8: association with Verocytoto-
toxin producing Escherichia coli. Part 2: Microbiological aspects. Arch Dis Child 1990;65:722–7.

33. Day NP, Scotland SM, Rowe B. Comparison of an HEp-2 tissue culture test with the Serény test for detection of enteroinvasiveness in Shigella spp. and Escherichia coli. J Clin Microbiol 1981;13:596–7.

34. Guerrant RL. Principles and syndromes of enteric infection. In: Mandell GL, Douglas RG Jr, Bennett JE, eds. Principles and practice of infectious diseases. 3rd ed. New York: Churchill Livingstone, 1990:837–51.

35. DuPont HL, Reves RR, Galindo E, Sullivan PS, Wood LV, Mendiola JG. Treatment of travelers' diarrhea with trimethoprim/sulfamethoxazole and with trimethoprim alone. N Engl J Med 1982;307:841–4.

36. DuPont HL, Ericsson CD, Mathewson JJ, DuPont MW. Five versus three days of ofloxacin therapy for traveler's diarrhea: a placebo-controlled study. Antimicrob Agents Chemother 1992;36:87–91.

37. Kollaritsch H. Traveller's diarrhea among Austrian tourists to warm climate countries: II. Clinical features. Eur J Epidemiol 1989;5:355–62.

38. Caul EO, Clarke SKR. Coronavirus propagated from patient with non-bacterial gastroenteritis. Lancet 1975;2:953–4.

39. Ryder RW, Oquist CA, Greenberg H, et al. Traveler's diarrhea in Panamanian tourists in Mexico. J Infect Dis 1981;144:442–8.

40. Jokipi I, Pohjola S, Jokipi AMM. Cryptosporidiosis associated with traveling and giardiasis. Gastroenterology 1985;89:838–42.

41. Johnson PC, Hoy J, Mathewson JJ, Ericsson CD, DuPont HL. Occurrence of Norwalk virus infections among adults in Mexico. J Infect Dis 1990;162:389–93.

42. Goossens H, Vlaes L, De Bock M, et al. Is 'Campylobacter upsaliensis' an unrecognised cause of human diarrhoea? Lancet 1990;335:584–6.

43. Herrmann JE, Taylor DN, Echeverria P, Blacklow NR. Astroviruses as a cause of gastroenteritis in children. N Engl J Med 1991;324:1757–60.

44. Albert MJ, Alam K, Islam M, et al. Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun 1991;59:1507–13.

45. Kiehlbauch JA, Brenner DJ, Nicholson MA, et al. Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J Clin Microbiol 1991;29:376–85.

46. Cohen MB, Hawkins JA, Weckbach LS, Staneck JL, Levine MM, Heck JE. Colonization by enteraggregative Escherichia coli in travelers with and without diarrhea. J Clin Microbiol 1993;31:351–3.