An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat

Kuldeep Kumar1†, Irfat Jan1,2†, Gautam Saripalli1,3, P. K. Sharma1, Reyazul Rouf Mir2, H. S. Balyan1 and P. K. Gupta1*

1Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India, 2Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India, 3Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States

Wheat is one of the most important cereal crops in the world. The production and productivity of wheat is adversely affected by several diseases including leaf rust, which can cause yield losses, sometimes approaching >50%. In the present mini-review, we provide updated information on (i) all Lr genes including those derived from alien sources and 14 other novel resistance genes; (ii) a list of QTLs identified using interval mapping and MTAs identified using GWAS (particular those reported recently i.e., after 2018) and their association with known Lr genes; (iii) introgression/pyramiding of individual Lr genes in commercial/prominent cultivars from 18 different countries including India. Challenges and future perspectives of breeding for leaf rust resistance are also provided at the end of this mini-review. We believe that the information in this review will prove useful for wheat geneticists/breeders, not only in the development of leaf rust-resistant wheat cultivars, but also in the study of molecular mechanism of leaf rust resistance in wheat.

Keywords: bread wheat, leaf rust, genes, QTLs, markers, molecular breeding

INTRODUCTION

Leaf rust caused by the fungal pathogen Puccinia triticina Eriks. & E. Henn is an important disease in wheat, which causes significant yield losses, sometimes approaching up to >50% (Riaz and Wong 2017). The study of the genetic basis of this disease and breeding for leaf rust resistance in wheat has been an important area of research (Dyck 1993; Kolmer and Liu, 2002; Oelke and Kolmer 2005; Datta et al., 2008; Rosa et al., 2016; Aoun et al., 2017). Each individual Lr gene apparently shows resistance against a specific race of P. triticina (Pt), which must carry the corresponding avirulence (Avr) gene, such that a specific Lr gene in the host and the corresponding specific Avr gene in the pathogen always follow a “gene-for-gene” relationship (Flor 1946). The pathogen Pt keeps on developing new virulent races through mutations or recombination involving Avr genes; new strains may also migrate from other geographical areas, and may carry one or more new Avr genes for which the corresponding R gene may be absent in the host (Samborski 1985; Bolton et al., 2008). Therefore, the host resistance breaks down and is short-lived. It is thus obvious that a majority of race specific Lr genes individually do not provide durable resistance (Johnson 1984).

Lr genes provide either seedling resistance (SR), also described as all stage resistance (ASR), or adult plant resistance (APR genes), the latter expressed only at the adult plant stage, particularly after booting. It is also known that ASR genes provide resistance, which breaks down within a few years, while APR provides long-term durable resistance (Ellis et al., 2014). Some of the APR genes like Lr34 and Lr67 have also been cloned and were found to be complex loci including Lr34/Sr57/Yr18/Pm38.
TABLE 1 | Details of leaf rust (Lr) resistant genes including novel Lr genes identified in bread wheat.

Gene	Chr	Marker	References
Lr1	5DL	psr567	Sylvie Cloutier et al. (2007)
Lr2a	2DS	Xwmc453 - XwPt0330	Tsilo et al. (2014)
Lr3	6BL	Xmwg798	Sacco et al. (1998)
Lr3a	6BL	UBC 540	Khan et al. (2005)
Lr6	6BL	SSR	Gupta et al. (2005)
Lr10	1AS	Lrk10D1	Schachermayr et al. (1997)
Lr11	2DS	SCAR2/35	Darino et al. (2015)
Lr12	2BS	Xgwm251 - Xgwm149	Singh and Bownen (2011)
Lr13	2BS	Xbarc55-2B	Seyfarth et al. (1998); Seyfarth et al. (1999)
Lr14a	7BL	wPt-4038-HRM	Terracciano et al. (2013)
Lr15	2DS	Xgwm5662 - Xgwm102	Dholakia et al. (2013)
Lr16	2BS	Xwmc764, Xgwm210, and Xwmc661	McCracken-Barrett et al. (2008)
Lr17	2AS	Xgwm614 - gwm407	Carpenter et al. (2017)
Lr19	7DL	SCS265 and SCS263	Gupta et al. (2006)
Lr20	7AL	STS638	Neu et al. (2002)
Lr21	1DS	Lr21_Q6044819_2175_G/A KASPar assay and Lr21_Q6044819_3146_C/T KASPar assay	Neeleman et al. (2013)
Lr22a	2DS	gwm296	Heibert et al. (2007)
Lr23	2BS	Xtam72	Nelson et al. (1997)
Lr24	3DL	SCS1302	Prabhu et al. (2004)
Lr25	4BS	Xgwm251	Singh et al. (2012)
Lr26	1BL	P6M12-P	Mago et al. (2002), Zhou et al. (2014)
Lr27	2BL	cdo480	Nielson et al. (1997)
Lr28	4AL	SCS421	Naik et al. (1998), Cherukuri et al. (2005)
Lr29	7DS	ubc219	Procurier et al. (1995)
Lr30	4AL	IWA4359 - IWA2585	Aoun et al. (2019)
Lr31	4BL	XksuG10	Nelson et al. (1997)
Lr32	3DS	Xbcd1278	Autrique et al. (1995)
Lr33	7DS	cslLV34	Lagudah et al. (2006, 2009)
Lr35	3BL	Xbcd260	Seyfarth et al. (1999)
Lr36	6BS	cfd1, gwm508	Dadkhodaie et al. (2011)
Lr37	2AS	VENTRLFPLYN2	Héguérea et al. (2003)
Lr38	6DL	wmc773 - barc273	Mebrate et al. (2008)
Lr39	2DS	Xgwm210	Rapp et al. (2001)
Lr41	2DS	Xbarc124	Sun et al. (2009)
Lr42	2DS	Xwmc432	Sun et al. (2010)
Lr45	2AS	cfd168, G372 and G372 165	Naik et al. (2015)
Lr46	1BL	XSTS19L8	Mateos-Hernandez et al. (2006)
Lr47	3AL	PS10	Héguérea et al. (2003)
Lr48	2BL	Xksm58 - Xstm773-2	Bansal et al. (2008)
Lr49	4BL	Xbarc163 - Xwmc349	Bansal et al. (2008)
Lr50	2BS	Xgwm392	Brown-Guedira et al. (2003)
Lr51	1BL	e XAga7	Héguérea et al. (2003)
Lr52	5BS	Xwmc149, Xtwx200	Tar et al. (2008)
Lr53	6BS	cfd1, gwm508	Dadkhodaie et al. (2011)
Lr54	5DS	Lr57/Yr40-MAS-CAPS16	Kurapartih et al. (2009)
Lr55	5DS	Xst150	Kurapartih et al. (2007)
Lr56	6BS	IWA1495, IWA6704	Poudel (2015)
Lr57	1DS	Xbarc149	Heibert et al. (2008)
Lr58	6BS	PP1/M70	Herrera-Foessen et al. (2008)
Lr59	6AS	Xgwm334	Marais et al. (2009)
Lr60	3AS	barc 57 and barc 321	Kolmer et al. (2019)
Lr61	3AL	K-IWB59855	Kolmer et al. (2019)
Lr62	6AS	barc124, barc212, gwm614	Mohler et al. (2012)
Lr63	6AS	barc124	Marais et al. (2010)
Lr64	4AL	S13-R16	Marett et al. (2008)
Lr65	4DL	cfd71	Heibert et al. (2010)
Lr66	7BL	Psy1-1 - gwm146	Herrera-Foessen et al. (2012)
Lr67	7BS	barc130	Heibert et al. (2014)
Lr68	7BL	gwm18 - barc187	Singh et al. (2012)
Lr69	7BS	wmc606	Herrera-Foessen et al. (2014)
Lr70	5DS	wPt8760 - wPt-8235	Park et al. (2014)
Lr71	1AS	Xcbl5006 - Xgwm533	Li et al. (2017)
Lr72	1BS	gwm604 - swm271	Singh et al. (2017)
Lr73	1BS	gwm604 - swm271	(Continued on following page)
TABLE 1 | (Continued) Details of leaf rust (Lr) resistant genes including novel Lr genes identified in bread wheat.

Gene	Chr	Marker	References
Lr78	5DL	Lr57/H140-MAS-CAPS16	Kuraparthi et al. (2009)
Lr77	3BL	IWB10344	Kolmer et al. (2018a)
Lr78	5DS	IWA6289	Kolmer et al. (2018b)
Lr79	3BL	sun786-sun770	Qureshi et al. (2016)
Lr80	2DS	KASP_17425, KASP_17148	Kumar et al. (2021)
LrX	1DS	K-IWB38437	Kolmer et al. (2019)
LrTla276-2	1DS	Xcfd15 - Xcfd61	Dinkar et al. (2020)
LrK328	1AL	IWB20487	Sapkota et al. (2020)

Novel Lr genes

Gene	Chr	Marker	References
LZhH84	1BL	Xgwm582 - Xbarc8	Zhao et al. (2008)
LjB16	7BL	Xcfd2257	Zhang et al. (2011)
LrSV1	2DS	Xgwm261	Ingala et al. (2012)
LrSV2	3BL	Xgwm389, Xgwm533, Xgwm493	Ingala et al. (2012)
LrG6	2BL	Xgwm526	Ingala et al. (2012)
LrFun	7BL	Xgwm344	Xing et al. (2014)
LrN187	1BL	Xwmc317 - Xbarc159	Zhao et al. (2013)
Lr5R	3DL	Xbarc71 - OPJ-09	Wang et al. (2014)
LrScH2	2BS	Xgwm794	Toor et al. (2016)
LrE1	7BL	Xgwm131	Wang et al. (2016)
LrP	5DS	BS00163389	Narang et al. (2019)
Lrace-4A	4AS	IWA232, IWA1793	Aoun et al. (2019)
LrM	2AS	SNP_A948171722AS	Rani et al. (2020)

and Lr67/Sr55/Yr46/Pm46 (Lagudah et al., 2006; Moore et al., 2015). These gene complexes confer durable resistance not only against leaf rust, but also against stripe rust, stem rust, powdery mildew, and barley yellow dwarf virus (Singh and Rajaram, 1993). The use of APR genes along with 4–5 Lr genes is a strategy that provides durable resistance.

A number of reviews on leaf rust resistance in wheat have already been published (Kolmer 1996; Kolmer 2013; McCallum et al., 2016; Pinto da Silva et al., 2018; Dinh et al., 2020; Figlan et al., 2020; Ghimire et al., 2020; Prasad et al., 2020). Information about QTLs for leaf rust resistance has also been recently reviewed (Pinto da Silva et al., 2018). However, considerable literature has appeared during the last 3–4 years, where many more QTLs and as many as 600 new MTAs have been added thus warranting a fresh look on the subject, hence this minireview.

According to some recent reports, currently more than 80 Lr genes and 14 other genes for leaf rust resistance are known in wheat (McIntosh et al., 2017, 2020). The above 14 genes have not been assigned a new number in Lr series, perhaps because these genes have not been subjected to test of allelism with the known Lr genes to ascertain their novelty. Since literature on Lr genes keep on appearing on a regular basis, any review published soon becomes out of date thus creating the need for a fresh review. The present mini-review caters to this need and provides an updated information on all Lr genes and other genes including genes derived from alien species. The mini-review includes information about chromosomal location of all these genes (including 14 other resistance genes, which could not be assigned to any of the known Lr genes; modified names were used for these 14 genes based on the cultivar in which they were identified). We also provide information about the wild relatives of wheat as a source of Lr genes and the molecular markers associated with most of these genes (whenever known). Information about cloning and characterisation of Lr genes has also been included, wherever available. The wheat varieties carrying different Lr genes developed in 18 different countries are also listed.

LR GENES/NOVEL LR GENES CATALOGUED SO FAR

More than 80 Lr genes (~50% derived from alien species) are already known to be distributed on all the 21 wheat chromosomes, with majority of genes located on the short arms of individual chromosomes (Table 1; Supplementary Tables S1, S2). Most of the Lr genes are located on the B sub-genome, relative to those located on either A sub-genome or D sub-genome. Maximum number of ten Lr genes (including two novel genes LrZH22 and LrG6) are located on chromosome 2B. At least two of these genes, namely Lr18 and LrZH22, are known to be temperature sensitive; Lr18 exhibits resistance at 15–18°C, ineffective at >18°C (Carpenter et al., 2017). The other gene LrZH22 confers resistance at higher temperatures (22–25°C; Wang et al., 2016). Lr genes conferring APR include the following: Lr34, Lr46, Lr67, Lr68, Lr74, Lr75, Lr77 and Lr78. Information on QTLs/MTAs was also included in an earlier review (Pinto da Silva et al., 2018) and has been compiled by us also in this mini-review (Supplementary Tables S1, S2). A set of 14 novel resistance genes (including three genes from alien species) are known, which differ from other available Lr genes, since they show seedling reaction pattern, which was different from reaction patterns known for different Lr genes studied so
These 14 genes along with associated markers are also listed in Table 1. These genes were mapped on 10 out of the 21 wheat chromosomes with maximum number of these genes available on B sub-genome (8) followed by sub-genome D (4) and sub-genome A (2).

QTLs/MTAs LINKED TO LR GENES

In recent years, a number of newer approaches (based on DNA markers) led to the discovery of a large number of QTLs/QRLs and marker-trait associations (MTAs) for resistance against plant diseases including leaf rust. Qualitative resistance provided by Lr genes is generally compromised within a short period of time (Goyeau et al., 2006; Goyeau and Lannou, 2011), but quantitative disease resistance (QDR) provides effective and durable resistance involving major reduction in the level of disease (Mundt et al., 2002; Parlevliet, 2002; Stuthman et al., 2007). The QDR generally depends upon the presence of a few major QTLs genes and a fairly large number of minor QTLs (Ballini et al., 2008; Clair, 2010). Only a solitary example, where QDR for leaf rust resistance has been utilized is the French wheat cultivar Apache, which carried sustained resistance against leaf rust for a fairly long time (Papaix et al., 2011). The availability of large number of QTLs/MTAs in wheat, as demonstrated in several studies, suggests that QDR against leaf rust is common in this crop, but has not been fully exploited.

A large number of QTLs, mostly associated with Lr genes were listed in some earlier reviews. For instance, in one report, 250 QTLs (reported till 2017) were listed, which were reported in 70 different studies (Pinto da silva et al., 2018). In another study, 35 meta-QTLs (MQTLs) were listed, which were identified using QTLs reported in several studies (Soriano and Royo, 2015). During the last 4 years (after 2017), additional 103 QTLs were reported in 18 studies; 29 of these QTLs were shown to be associated with Lr genes and Lr/Yr genes (Supplementary Table S1).

In addition to QTLs, ~200 MTAs based on GWAS involving seven association panels (AM) were also reported earlier (Pinto da silva et al., 2018). As mentioned earlier, after publication of this review, ~600 MTAs were reported in eight genome-wide association studies (GWAS); 42 of these MTAs were found to be linked to Lr genes (Supplementary Table S2). The maximum number of QTLs and Lr genes for leaf rust resistance are present in the B sub-genome. The PVE of the individual QTLs ranged from 4.63% to 75.3%; 29 of these QTLs had a PVE >20% suggesting their utility in MAS for breeding (Supplementary Table S1).

WILD RELATIVES AS A SOURCE OF LR GENES

At least 50% of Lr genes are derived from wild relatives (alien resources). One of the important alien sources from Fertile Crescent region is Sharon goatgrass (Aegilops sharonensis), which is a very valuable source of unique genes/QTLs for resistance to several wheat diseases including leaf rust (for reviews see Ghimire et al., 2020; Figlan et al., 2020). Following other important wild relatives of wheat have also been identified as sources of Lr genes/QTLs: (i) Tausch’s goatgrass (Ae. tauschii) (Lr21, Lr22a, and Lr39), (ii) wheatgrass (Thinopyrum ponticum) (Lr24), (iii) Ae. geniculata (Lr57), (iv) Ae. ventricosa (Lr37/Yr17), (v) Ae. umbellulata (Lr9), (vi) Thinopyrum elongatum Zhuk. (Lr19), (vii) Agropyron elongatum (Lr24), (viii) Secale cereale L. (Lr26), (ix) Ae. peregrina (Lr59), (x) Ae. kotchyi (Lr54), (xi) Ae. sharonensis (Lr56), (xii) Ae. triuncialis (Lr58), and (xiii) Ae. neglecta (Lr62); however this list is not exclusive (McIntosh, 1975; Autrique et al., 1995; McIntosh et al., 1995; Marais and Botes, 2003; Kumar et al., 2022).

MAS FOR PRE-BREEDING

There are ~700 cultivars/varieties from 18 different countries (including India), each cultivar carrying one to six resistance genes for leaf rust including both ASR and APR genes (the details of varieties and their country of origin, are available in Supplementary Tables S2, S4). Two different approaches (including conventional breeding and marker assisted breeding, including pre-breeding) are available for developing resistant cultivars (Figure 1). Since markers associated with each of a number of Lr genes and QTLs including MTAs are available, MAS has become routine for supplementing conventional breeding (Supplementary Table S5). These markers are particularly useful for pyramiding of resistance genes, since introgression of additional resistance genes in the presence of existing resistance genes using phenotypic selection is rather difficult. There are at least a dozen examples (seven from India involving PBW343 and HD2329), where associated markers have been used to supplement conventional breeding including pre-breeding. A number of wheat varieties belonging to hard red winter or soft red winter wheats from United States were also developed using MAS (USDA website; https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1124692/1/Doc188-online-Sandra-Brammer.pdf. Using MAS, up to 10 Lr genes could be pyramided into the same wheat cultivar.

CONCLUSION AND FUTURE PERSPECTIVES

The present mini-review is yet another effort to provide a summary of updated published literature on resistance against leaf rust in wheat, including known R genes (~80 Lr genes and 14 novel genes) (Supplementary Table S1), known QTLs/MTAs (Supplementary Tables S1, S2) and details of varieties containing one or more of these important leaf rust genes/ QTLs/MTAs (Supplementary Tables S3, S4). Some details about the use of MAS for introgression of Lr genes into wheat varieties are also included (Supplementary Table S5).

One of the major challenges for wheat breeders is the regular development of new cultivars or improvement of old cultivars using new resistance genes, since new virulence pathotypes and
races keep on appearing (Figlan et al., 2020; Ghimire et al., 2020). Therefore, continuous rigorous efforts are needed to locate sources for novel genes/QTLs to overcome new emerging races of pathogen and gain long-term resistance in the field. There are several other areas, which need attention and will certainly be the subject for future research. These will be briefly discussed as the future perspectives.

Although most R genes encode NLR proteins (with NBS-LRR domain), there are several other mechanisms involved as shown in a recent review, where work done during last 25 years involving >300 cloned R genes is reviewed. At least 60% of these R genes were shown to encode NLR proteins, the remaining 40% encoding RLKs/RLPs (Kourelis and van der Hoorn, 2018). Based on the study of these cloned R genes and the corresponding Avr genes of the pathogens, nine different mechanisms for the function of R genes have also been identified and summarised (Kourelis and van der Hoorn, 2018). However, the resistance mechanism of reported Lr genes is not clear and therefore can be a subject for future research.

The most common product of R genes, the NLRs have recently been shown to function through an assembly of a high-resolution structure called ‘resistosome’ which was first resolved in Arabidopsis and is responsible for providing resistance (Wang et al., 2019). Two additional examples of the high-resolution structures of interaction between NLRs and the effector molecules, through formation of resistosome also became available, thus suggesting that formation of the resistosome may be of wide occurrence (Ma et al., 2020; Martin et al., 2020). These three recent studies improved our understanding of the action of NLR at the molecular level. However, no Lr gene has been subjected to such studies involving formation of a resistosome. Therefore this is also an important area of future research.

Another important challenge in breeding for leaf rust resistance is the limited number of Lr genes that have been cloned (Lr1, Lr10, Lr21, Lr22a, Lr34, Lr67) and therefore cloning more genes is needed to understand the variation between such a large number of Lr genes and the mechanism used for their operation for providing resistance (Dinh et al., 2020; Prasad et al., 2020). According to some optimistic views, it will be possible in the next 15 years to clone most of the ~460 known wheat resistance genes and their corresponding effectors, making it possible to design suitable strategies for resistance.

FIGURE 1 | Various pre-breeding steps involved in use of wild relatives in the development of leaf rust resistant wheat varieties. The panels show how wheat genetic resources including wild relatives belonging to primary (GP1), secondary (GP2) and tertiary (GP3) gene pools conserved in different gene banks can be used in pre-breeding programs. The panels also shows the advantages of use of marker—assisted breeding (only 3–4 years in developing new cultivars) over conventional breeding (taking 10–12 years in cultivar development).
breeding in wheat (Wulff and Krattinger 2022). We, however feel that cloning of so many genes in a short period of 15 years may not be immediately possible. Therefore, closely linked markers may be used to identify which of the Lr genes encode NLR proteins and which other proteins may be encoded by other Lr genes. Bioinformatics may be used for this purpose and the results of this exercise may then be verified using suitable experiments. Genomics of the pathogen is another important area, since genomes of a number of races of the pathogen have already been sequenced (Kiran et al., 2016; Wu et al., 2020; Fellers et al., 2021). This should facilitate use of bioinformatics for identification of effectors, using knowledge about conserved domains that have been discovered to be present in effector molecules. The genome sequences of different races of Pt have been worked out and many more genomes from the pathogen will also allow us to know the pangeneome of Pt, which includes core genome, dispensible genome and unique genome. This knowledge will also allow to identify effectors and in planning suitable strategies for wheat breeding involving resistance against leaf rust.

It may also be necessary to study the effect of environment on expression of many resistance genes in the host since expression of genes has been found to vary with changing temperature (Figlan et al., 2020). This will involve study of the mode of action of resistance genes in the host, their interactions with other host genes, interactions with Avr gene while providing stable and durable resistance across environments. The recent advances in genomics tools and techniques including whole genome sequencing, genome annotation and high-throughput genomics tools like pathogenomics, gene cloning, genome editing are expected to offer deeper insights into host-pathogen interactions. This should eventually help in achieving durable rust resistance (Dinh et al., 2020). Molecular biology tools including HIGS/VIGS have also become very important for understanding and analyzing different facets of host and pathogen biology that includes secretome analysis, transcriptional profiling, putative virulence gene identification, structural gene annotation, and alternative transcript splicing. Another important area of future research is identification of vir genes, and effectors, which together make the subject of effectoromics and effector based breeding. This will allow the use of knowledge about effectors to screen the germplasm for resistance.

Epigenomics is another area, which has started attracting the attention of wheat geneticists. This will allow us to understand the role of DNA methylation, histone modifications, noncoding RNAs (e.g., miRNAs, IncRNAs) and chromatin states, thus further resolving the mechanism of resistance at the molecular level (Saripalli et al., 2020a; Saripalli et al., 2020b; Jain et al., 2020; Prasad et al., 2020).

AUTHOR CONTRIBUTIONS

PG, HB, and PS conceived and outlined the review. KK, IJ, and GS collected the literature and wrote the first draft of the review. PG, HB, PS, and RM edited and finalized the manuscript with the help of KK, IJ, and GS.

FUNDING

Department of Biotechnology (DBT), Govt. of India provided funds in the form of a research project (Award number: BT/PR21024/AGIII/103/925/2016). No grant has been received for publishing this review.

ACKNOWLEDGMENTS

Thanks are due to the Department of Biotechnology (DBT), Govt. of India for providing funds in the form of a research project (Award number: BT/PR21024/AGIII/103/925/2016) and fellowships to KK and IJ for undertaking the research work related to this review, to National Agricultural Science Fund (NASF)-Indian Council of Agricultural Research (ICAR) for providing fellowship to GS and to Indian National Science Academy (INSA) for the award of position of INSA Honorary Scientist to HB.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.816057/full#supplementary-material

REFERENCES

Aoun, M., Kolmer, J. A., Rouse, M. N., Chao, S., Bulbula, W. D., and Elias, E. M. (2017). Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes. *Phytopathology* 107, 1496–1506. doi:10.1094/phyto-12-16-0444-r

Aoun, M., Kolmer, J. A., Rouse, M. N., Elias, E. M., Breiland, M., Bulbula, W. D., et al. (2019). Mapping of Novel Leaf Rust and Stem Rust Resistance Genes in the Portuguese Durum Wheat Landrace. *G. 9, 2535–2547. doi:10.1534/g3.119. 400292.

Autrique, E., Tankley, S. D., Sorrells, M. E., and Singh, R. P. (1995). Molecular Markers for Four Leaf Rust Resistance Genes Introggressed into Wheat from Wild Relatives. *Genome* 38 (1), 75–83. doi:10.1139/g95-009

Ballini, E., Morol, J. B., Droo, G., Price, A., Courtois, B., Notteghem, J. L., et al. (2008). A Genome-wide Meta-Analysis of rice Blast Resistance Genes and Quantitative Trait Loci Provides New Insights into Partial and Complete Resistance. *Mol. Plant Microbe Interact* 21, 859–868. doi:10.1094/mpmi-21-7-0859

Bansal, U. K., Hayden, M. J., Venkata, B. P., Khanna, R., Saini, R. G., and Bariana, H. S. (2008). Genetic Mapping of Adult Plant Leaf Rust Resistance Genes *Lr48* and *Lr49* in Common Wheat. *Theor. Appl. Genet.* 117 (3), 307–312. doi:10.1007/s00122-008-0775-6

Bhardwaj, S. C., Prashar, M., Jain, S. K., Kumar, S., and Datta, D. (2010). Adult Plant Resistance in Some Indian Wheat Genotypes and Postulation of Leaf Rust Resistance Genes. *Indian Phytopathol.* 63, 174–180.

Bhardwaj, S. C., Singh, G. P., Gangwar, O. P., Prasad, P., and Kumar, S. (2019). Status of Wheat Rust Research and Progress in Rust Management-Indian Context. *J. Agron.* 9, 892. doi:10.3390/agronomy9120892
Clair, St. D. A. (2010). Quantitative Disease Resistance and Quantitative Resistance
Loci in Breeding. *Ann. Rev. Phytopathol.* 48, 247–268. doi:10.1146/annurev-
phytopath-080508-081904
Cloutier, S., McCallum, B. D., Loutre, C., Banks, T. W., Wicker, T., Feuillet, C., et al.
(2020). Marker-assisted Pyramiding of Genes/QTL for Grain Quality and Rust
Resistance in Wheat (*Triticum aestivum* L.). *Crop Sci.* 60, 10. doi:10.1007/s10694-
020-04631-7
Clay, St. D. A. (2010). Quantitative Disease Resistance and Quantitative Resistance
Loci in Breeding. *Ann. Rev. Phytopathol.* 48, 247–268. doi:10.1146/annurev-
phytopath-080508-081904
Cloutier, S., McCallum, B. D., Loutre, C., Banks, T. W., Wicker, T., Feuillet, C., et al.
(2007). Leaf Rust Resistance Gene *Lr1*, Isolated from Broad Wheat (*Triticum
aestivum* L.) is a Member of the Large *Prsr67* Gene Family. *Plant Mol. Biol.* 65
(1), 93–106. doi:10.1007/s11100-007-9201-8
Cuddy, W., Park, R., Rariana, H., Bansal, U., Singh, D., Roake, J., et al. (2016).
Expected Responses of Australian Wheat, Triticale and Barley Varieties to the
Cereal Rust Diseases and Genotypic Data for Oat Varieties. *Cereal Rust Rep.*
14, 1–8.
Dadhkioaie, N. A., Karagouli, H., Wellings, C. R., and Park, R. F. (2011). Mapping
Genes *Lr53* and *Yr35* on the Short Arm of Chromosome 6B of Common Wheat
with Microsatellite Markers and Studies of Their Association with *Lr36*. *Theor.
Appl. Genet.* 122 (3), 479–487. doi:10.1007/s00122-010-1462-y
Darino, M. A., Dieuguez, M. J., Singh, D., Ingala, L. R., Pergolesi, M. F., Park, R. F.,
et al. (2015). Detection and Location of *Lr11* and Other Leaf Rust Resistance
Genes in the Durably Resistant Wheat Cultivar Buck Poncho. *Euphytica* 206
(1), 135–147. doi:10.1007/s10681-015-1486-0
Datta, D., Nayar, S. K., Bhardwaj, S. C., Prashar, M., and Kumar, S. (2008). Detection
and Inheritance of Leaf Rust Resistance in Common Wheat Lines Agra Local and
IWP94. *Euphytica* 150, 343–351. doi:10.1007/s10681-007-9522-3
Dholakia, B. B., Rajwade, A. V., Hosmani, P., Khan, R. R., Chavan, S., Reddy, D. M.,
and Gupta, V. S. (2013). Molecular Mapping of Leaf Rust Resistance Gene *Lr15*
in Hexaploid Wheat. *Mol. Breed.* 31 (3), 743–747. doi:10.1007/s10810-
012-9813-9
Dinh, H. X., Singh, D., Periyannan, S., Park, R. F., and Pourkheirandish, M. (2020).
Genetic Mechanisms of Leaf Rust Resistance in Wheat and Barley. *Theor.
Appl. Genet.* 133, 2035–2050. doi:10.1007/s00122-020-05370-8
Dinkar, V., Jha, S. K., Mallick, N., Niranjana, M., Agarwal, P., and Sharma, J. R.
(2020). Molecular Mapping of a New Durable Wheat Leaf Rust Resistance
Gene Originating from Triticumumspeltoides. *Sci. Rep.* 10, 1–9. doi:10.1038/s41598-
020-07867-9
Draz, I. S., Abou-elseoud, M. S., Kamaara, A. E., Alaa-Eldeen, O. A., and El-Behany,
A. F. (2015). Screening of Wheat Genotypes for Leaf Rust Resistance along with
Grain Yield. *Afr. Agric. Sci.* 60, 29–39. doi:10.1016/j.aas.2015.01.001
Dyck, P. L. (1993). The Inheritance of Leaf Rust Resistance in the Wheat Cultivar
Pasqua. *Canad. J. Plant Sci.* 73, 903–906. doi:10.4141/cjps93-118
El-Oraby, W. M., and Nagaty, H. H. (2013). Detection of the Leaf Rust Resistance Gene
Lr9 in Some Egyptian Wheat Varieties. *Mimosa J. Agric. Res.* 38, 895–907.
Herrera-Foessel, S. A., Huerta-Espino, J., Calvo-Salazar, V., Lan, C. X., and Singh, R. P. (2014). Lr72 Confers Resistance to Leaf Rust in Durum Wheat Cultivar ATII 22000. Plant Dis. 98 (5), 631–635. doi:10.1094/ptd-07-13-0741-re

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Rosewarne, G. M., Periyanann, S. K., Viccars, L., et al. (2012). Lr68: A New Gene Conferring Slow Rusting Resistance to Leaf Rust in Wheat. Theor. Appl. Genet. 124 (8), 1475–1486. doi:10.1007/s00122-012-1802-1

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., William, H. M., Djurle, A., and Yuen, J. (2008). Molecular Mapping of a Leaf Rust Resistance Gene on the Short Arm of Chromosome 6B of Durum Wheat. Plant Dis. 92 (12), 1650–1654. doi:10.1094/ptd-92-12-1650

Hiebert, C. W., McCullam, B. D., and Thomas, J. B. (2014). Lr70, a New Gene for Leaf Rust Resistance Mapped in Common Wheat Accession KU31989. Theor. Appl. Genet. 127 (9), 2065–2009. doi:10.1007/s00122-014-2356-1

Hiebert, C. W., Thomas, J. B., McCullam, B. D., Humphreys, D. G., DePaauw, R. M., Hayden, M. J., et al. (2010). An introgression on Wheat Chromosome 4DL into RL6077 (Thatcher* 6/Pi540143) Confers Adult Plant Resistance to Stripe Rust and Leaf Rust (Lr67). Theor. Appl. Genet. 121 (6), 1083–1091. doi:10.1007/s00122-010-1373-y

Hiebert, C. W., Thomas, J. B., McCullam, B. D., and Somers, D. J. (2008). Genetic Mapping of the Wheat Leaf Rust Resistance Gene Lr60 (LrW2). Crop Sci. 48 (3), 1020–1026. doi:10.2135/cropsci2007.08.0480

Hiebert, C. W., Thomas, J. B., Somers, D. J., McCullam, B. D., and Fox, S. L. (2007). Microsatellite Mapping of Adult-Plant Leaf Rust Resistance Gene Lr22a in Wheat. Theor. Appl. Genet. 115 (6), 877–884. doi:10.1007/s00122-007-0604-3

Ingala, L., López, M., Darino, M., Pergolesi, M. F., Diéguez, M. J., and Sacco, F. (2012). Genetic Analysis of Leaf Rust Resistance Genes and Associated Markers in the Durable Resistant Wheat Cultivar Sinvalocho MA. Theor. Appl. Genet. 124, 1305–1314. doi:10.1007/s00122-012-1788-8

Jain, N., Sinha, N., Krishna, H., Singh, P. K., Gautam, S., and Bansal, U. (2020). A Study of miRNAs and IncRNAs during Lr28-Mediated Resistance against Leaf Rust in Wheat (Triticum aestivum L.). Physiol. Mol. Plant Pathol. 112, 101552. doi:10.1016/j.pmpp.2020.101552

Johnson, R. A. (1984). A Critical Analysis of Durable Resistance. Ann. Rev. Phytopathol. 22, 309–330. doi:10.1146/annurev.phyto.22.090184.001521

Joukhadar, R., Holloway, G., Shi, F., Kant, S., Forrest, K., Wong, D., et al. (2020). Genome-wide Association Reveals a Complex Architecture for Rust Resistance in Bread Wheat Accessions Screened under Various Australian Conditions. Theor. Appl. Genet. 133, 2695–2712. doi:10.1007/s00122-020-05226-9

Kandiah, P., Chhetri, M., Hayden, M., Ayliffe, M., Bariana, H., and Bansal, U. (2020). Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Overlapping Loci by In-Planta Fungal Biomass Accumulation. Agronomy 10, 943. doi:10.3390/agronomy10070943

Khan, H., Bhardwaj, S. C., Gangwar, O. P., Bhadwaj, S. C., Sivasamy, M., et al. (2020). Genome-wide Association Studies in Diverse spring Wheat Panel for Stripe, Stem, and Leaf Rust Resistance. Front. Plant Sci. 11, 748. doi:10.3389/fpls.2020.00748

Kumar, A., Choudhary, A., Kaur, H., and Mehta, S. (2022). A Walk towards Wild Germplasm to Unlock the Clandestine of Gene Pools for Wheat Improvement: A Review. Plant Stress 3 (1). doi:10.1007/s42478-021-00048-7

Kuraparthy, V., Sood, S., Chhuneja, P., Dhaliwal, H. S., Kaur, S., Bowden, R. L., et al. (2007). A Cryptic Wheat–Aeglopos Triuncialis Translocation with Leaf Rust Resistance Gene Lr58. Crop Sci. 47 (5), 1995–2003. doi:10.2135/cropsci2007.01.0038

Kuraparthy, V., Sood, S., See, D. R., and Gill, B. S. (2009). Development of a PCR Assay and Marker-assisted Transfer of Leaf Rust and Stripe Rust Resistance Genes Lr57 and Yr40 into Hard Red winter Wheats. Crop Sci. 49 (1), 120–126. doi:10.2135/cropsci2008.03.0143

Lagudah, E. S., Krattinger, S. G., Herrera-Foessel, S., Singh, R. P., Huerta-Espino, J., Spielmeyer, W., et al. (2009). Gene-specific Markers for the Wheat Gene Lr34/ Yr18/Pm38 Which Confers Resistance to Multiple Fungal Pathogens. Theor. Appl. Genet. 119 (5), 889–898. doi:10.1007/s00122-009-1097-z

Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bari, H. S., and Spielmeyer, W. (2006). Molecular Genetic Characterization of the Lr34/Yr18 Slow Rusting Resistance Gene Region in Wheat. Theor. Appl. Genet. 114 (1), 21–30. doi:10.1007/s00122-006-0406-z

Li, C., Wang, Z., Li, C., Bowden, R., Bai, G., Li, C., et al. (2017). Mapping of Quantitative Trait Loci for Leaf Rust Resistance in the Wheat Population Ning7840× Clark. Plant Dis. 101 (12), 1974–1979. doi:10.1094/ptd-12-16-1743-re

Li, J., Shi, L., Wang, X., Zhang, N., Wei, X., Zhang, L., et al. (2018). Leaf Rust Resistance of 35 Wheat Cultivars (Lines). J. Plant Pathol. Microbiol. 9, 429.

Li, Z., Yuan, C., Herrera-Foessel, S. A., Randhawa, M. S., Huerta-Espino, J., Liu, D., et al. (2020). Four Consistent Loci confer Adult Plant Resistance to Leaf Rust in the Durum Wheat Lines Helder-1 and Dunkler. Phytopathology 110, 892–899. doi:10.1094/phyto-09-19-0348-r

Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., et al. (2020). Direct Pathogen-Induced Assembly of an NLR Immune Receptor Complex to Form a Holoenzyme. Science 370 (6521), eabe3069. doi:10.1126/science.abe3069

Mago, R., Spielmeyer, W., Lawrence, G., Lagudah, E., Ellis, J., and Pryor, A. (2002). Identification and Mapping of Molecular Markers Linked to Rust Resistance Genes Located on Chromosome 1RS of rye Using Wheat-rye Translocation Lines. Theor. Appl. Genet. 104 (8), 1317–1324. doi:10.1007/s00122-002-0979-3

Malaker, P. K., and Reza, M. M. (2011). Resistance to Rusts in Bangladesh Wheat. Czech J. Genet. Plant Breed. 47, S155–S159. doi:10.17221/3271-cggb
Mallick, N., Sharma, J. B., Tomar, R. S., Sivasamy, M., and Prabhu, K. V. (2015). Marker Assisted Back-Cross Breeding to Combine Multiple Rust Resistance in Wheat. Plant Breed 134, 172–177. doi:10.1111/pbr.12242
Marais, G. F., and Botes, W. C. (2003). "Recent Mass Selection as a Means to Pyramid Major Genes for Pest Resistance in Spring Wheat," in Proceedings of the 10th International Wheat Genetics Symposium, September, 1–6.
Marais, F., Marais, A., McCallum, B. D., Hiebert, C. W., Cloutier, S., Bakkeren, G., Rosa, S. B., McIntosh, R. A., Friebe, B., Jiang, J., and Gill, B. S. (1995). Cytogenetical Studies in Wheat with Rust Resistance from Aegilops Speltoides. Euphytica 171 (1), 71–85. doi:10.1007/bf001681-009-9996-2
Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., and Staskawicz, B. J. (2009). Fine Mapping of Aegilopspergigina Co-segregating Leaf and Stripe Rust Resistance Genes to Distal-Most End of 5DS. Theor. Appl. Genet. 132, 1473–1485. doi:10.1007/s00122-019-03293-5
Neelam, K., Brown-Guedira, G., and Huang, L. (2013). Development and Validation of a Breeder-Friendly KASPar Marker for Wheat Leaf Rust Resistance Locus Lr21. Mol. Breed 31 (1), 233–237. doi:10.1007/s11032-012-9773-0
Nelson, J. C., Singh, R. P., Autrique, J. E., and Sorrells, M. E. (1997). Mapping Genes Conferring and Suppressing Leaf Rust Resistance in Wheat. Crop Sci. 37 (6), 1928–1935. doi:10.2135/cropsci1997.0011883x00700060043x
Neu, C., Stein, N., and Keller, B. (2002). Genetic Mapping of the Lr20 Pm1 Resistance Locus Reveals Suppressed Recombination on Chromosome Arm 7AL in Hexaploid Wheat. Genome 45 (4), 737–744. doi:10.1093/g02-040
Novcete, F., Gassa, L., and Pasquini, M. (2007). Evaluation of Leaf Rust Resistance Genes Lr1, Lr9, Lr24, Lr47 and Their Introgression into Common Wheat Cultivars by Marker-Assisted Selection. Euphytica 155, 329–336. doi:10.1007/s10681-006-9334-x
Oelke, L. M., and Kolmer, J. A. (2005). Genetics of Leaf Rust Resistance in spring Wheat Cultivars Alsen and Norm. Phytopathol 95, 773–778. doi:10.1094/phyto-95-0773
Parlevliet, J. E. (2002). Durability of Resistance against Fungal, Bacterial and Viral Pathogens; Present Situation. Euphytica 124, 147–156. doi:10.1023/a:101560731446
Pathan, A., and Prabhu, K. V. (2006). Evaluation of Seedling and Adult Plant Resistance to Leaf Rust in European Wheat Cultivars. Euphytica 149, 327–342. doi:10.1007/s10681-005-9981-4
Pietrusińska, A., Czembor, H. J., and Czembor, P. C. (2011). Pyramiding Two Genes for Leaf Rust and Powdery Mildew Resistance in Common Wheat. Cereal Res. Commun. 39, 577–588.
Pinto da Silva, G. B., Zanella, C. M., Martinelli, J. A., Chaves, M. S., Hiebert, C. W., McCallum, B. D., et al. (2018). Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. Phytopathology 108, 1344–1354. doi:10.1094/phyto-06-18-0208-rvw
Ponce-Molina, L. J., Huerta-Espino, J., Singh, R. P., Basnet, B. R., Alvarado, G., Randhawa, M. S., et al. (2018). Characterisation of Leaf Rust and Stripe Rust Resistance in spring Wheat ‘Chiler’. Plant Dis. 102, 421–427. doi:10.1094/pdis-11-16-1545-re
Poudel, R. S. (2015). The Acquisition of Useful Disease Resistance Genes for Hard Red Winter Wheat Improvement. Fargo, North Dakota: North Dakota State University. Doctoral dissertation.
Prabhu, K. V., Gupta, S. K., Charpe, A., and Koul, S. (2004). SCAR Marker Tagged to the Alien Leaf Rust Resistance Gene Lr19 Uniquely Marking the Agropyron Elongatum-derived Gene Lr24 in Wheat: a Revision. Plant Breed 123 (5), 417–420. doi:10.1111/j.1439-0523.2004.00971.x
Prasad, P., Savadi, S., Bhardwaj, S. C., and Gupta, P. K. (2020). The Progress of Leaf Rust Research in Wheat. Fungal Biol. 124 (6), 537–550. doi:10.1016/j.fbi.2020.02.013
Procunier, J. D., Townley-Smith, T. F., Fox, S., Prashar, S., Gray, M., Kim, W. K., et al. (1995). PCR-based RAPD/DGGE Markers Linked to Leaf Rust Resistance Genes Lr29 and Lr25 in Wheat (Triticum aestivum L.). J. Genet. Breed. 49 (1), 87–91.
Qureshi, N., Bariana, H., Kumran, V. V., Muruga, S., Forrest, K. L., Hayden, M. J., et al. (2018). A New Leaf Rust Resistance Gene Lr79 Mapped in Chromosome 3BL from the Durum Wheat Landrace Aus26582. Theor. Appl. Genet. 131 (5), 1091–1098. doi:10.1007/s00122-018-10600-3
Rani, K., Raghu, B. R., Jha, S. K., Agarwal, P., Mallick, N., Niranjana, M., et al. (2020). A Novel Leaf Rust Resistance Gene Introgressed from
Aegilopsmarkgrafii Maps on Chromosome Arm 2AS of Wheat. *Theor. Appl. Genet.* 133, 2885–2894. doi:10.1007/s00122-020-03625-w

Raupp, W. J., Brown-Guedira, G. L., and Gill, B. S. (2001). Cytogenetic and Molecular Mapping of the Leaf Rust Resistance Gene Lr39 in Wheat. *Theor. Appl. Genet.* 102 (2), 347–352. doi:10.1007/s001220051652

Revathi, P., Tomar, S. M. S., and Singh, N. K. (2010). Marker Assisted Pyramiding of Leaf Rust Resistance Genes Lr24, Lr28 along with Stripe Rust Resistance Gene Yr15 in Wheat (*Triticum aestivum* L.). *Ind. J. Genet.* 70, 349–354.

Riaz, M., and Wong, Y. (2017). Estimation of Yield Losses Due to Leaf Rust and Late Seeding on Wheat (*Triticum aestivum* L.) Variety Seher-06 in District Faisalabad, Punjab, Pakistan. *Adv. Biotech. Microf.* 4. doi:10.19080/ABM.2017.0435567

Rofils, A. P. (1992). *Rust Diseases of Wheat: Concepts and Methods of Disease Management*. Mexico: CIMMYT.

Rosa, S. B., McCallum, B., Brülé-Babel, A., Hiebert, C., Shorter, S., Randhawa, H. S., et al. (2016). Inheritance of Leaf Rust and Stripe Rust Resistance in the Brazilian Wheat Cultivar Toropi. *Plant Dis.* 100, 1132–1137. doi:10.1094/pdis-10-15-1128-re

Rosa, S. B., Zanella, C. M., Hiebert, C. W., Brülé-Babel, A. L., Randhawa, H. S., Shorter, S., et al. (2019). Genetic Characterization of Leaf and Stripe Rust Resistance in the Brazilian Wheat Cultivar Toropi. *Phytopathol* 109, 1760–1768. doi:10.1094/phyto-05-19-0159-r

Sacco, F., Suárez, E. V., and Naranjo, T. (1998). Mapping of the Leaf Rust Resistance Gene Lr3 on Chromosome 6B of Sinvaloca MA Wheat. *Genome* 41 (5), 686–690. doi:10.1139/g97-0067

Samborski, D. J. (1985). "Wheat Leaf Rust," in *Diseases, Distribution, Epidemiology, and Control* (Academic Press), 39–59. doi:10.1016/b978-0-12-148402-6.50010-9

Samsampour, D., Sanjani, B. M., Singh, A., Pallavi, J. K., and Prabhu, K. V. (2009). Marker Assisted Selection to Pyramidal Seedling Resistance Gene Lr24 and Adult Plant Resistance Gene Lr48 for Leaf Rust Resistance in Wheat. *Ind. J. Genet.* 69, 1–9.

Sapkota, S., Hao, Y., Johnson, J., Buck, J., Aoun, M., and Mergoum, M. (2019). Genome-wide Association Study of a Worldwide Collection of Wheat Genotypes Reveals Novel Quantitative Trait Loci for Leaf Rust Resistance. *Plant Genomics* 12, 190033. doi:10.1007/s00122-019-0033-7

Sun, X., Bai, G., and Carver, B. F. (2009). Molecular Mapping of Wheat Leaf Rust Resistance Gene Lr42. *Crop Sci.* 50 (1), 59–66. doi:10.2135/cropsic2009.01.0049

Singla, J., Gregorova, E., Bartos, P., and and Kraic, J. (2003). Marker-assisted Selection for Leaf Rust Resistance in Wheat by Transfer of Gene Lr19. *Plant Protect. Sci.* 39, 13–17.

Sorio, J. M., and Royo, C. (2015). Dissecting the Genetic Architecture of Leaf Rust Resistance in Wheat by QTL Meta-Analysis. *Phytopathol* 105, 1585–1593. doi:10.1094/phyto-05-15-0130-r

Suthman, D. D., Leonard, K. J., and Miller-Garvin, J. (2007). Breeding Crops for Durable Resistance to Disease. *Adv. Agron.* 95, 319–367. doi:10.1016/S0065-2113(07)95004-x

Teracciano, I., Maccapi, F., Bassi, F., Mantovani, P., Sanguineti, M. C., Salvi, S., et al. (2013). Development of COS-SNP and HRM Markers for High-Throughput and Reliable haplotype-Based Detection of Lr14a in Durum Wheat (*Triticum durum* Desf.). *Theor. Appl. Genet.* 126 (4), 1077–1101. doi:10.1007/s00122-012-2038-9

Tomar, S. M. S., Singh, S. K., and Sivasamy, M. (2014). Wheat Ruts in India: Resistance Breeding and Gene Deployment-A Review. *Ind. J. Genet. Plant Breed.* 74, 129–156. doi:10.5958/0975-6906.2014.01950.3

Toor, P. L., Kaur, S., Bansal, M., Yadav, B., and Chhuneja, P. (2016). Mapping of Stripe Rust Resistance Gene in an Aegilops Caudate Introgression Line in Wheat and its Genetic Association with Leaf Rust Resistance. *J. Genet.* 95, 933–938. doi:10.1016/j.jgenet.2015.12.001

Tulio, T. J., Klomner, J. A., and Anderson, J. A. (2014). Molecular Mapping and Improvement of Leaf Rust Resistance in Wheat Breeding Lines. *Phytopathol* 104 (8), 865–870. doi:10.1094/phyto-10-13-0276-r

Wang, C., Yin, G., Xia, X., He, Z., Zhang, P., Yao, Z., et al. (2016). Molecular Mapping of a New Temperature-Sensitive Gene LrZH22 for Leaf Rust Resistance in Chinese Wheat Cultivar Zhoumai 22. *Mol. Breed.* 36, 18. doi:10.1007/s11032-016-0437-3

Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., and Chai, J. (2019). Reconstitution and Structure of a Plant NLR Resistant Conferring Immunity. *Science* 364 (6435), eaax5870. doi:10.1126/science.aax5870

Wang, J., Shi, L., Li, X., and Liu, D. (2014). Genetic Analysis and Molecular Mapping of Leaf Rust Resistance Genes in the Wheat Line Sb618. *Czech J. Genet. Plant Breed.* 50, 262–267. doi:10.17221/164/2014-cjgb

Wu, J. Q., Dong, C., Song, L., and Park, R. F. (2020). Long-Read Genome Assembly and Comparative Genomics of the Wheat Leaf Rust Pathogen Puccinia Triticina Identifies Candidates for Three Avirulence Genes. *Front. Genet.* 11, 521. doi:10.3389/fgene.2020.00521

Wulf, B. B., and Krattinger, S. G. (2022). The Long Road to Engineering Durable Disease Resistance in Wheat. *Curr. Opin. Biotechnol.* 73, 270–275. doi:10.1016/j.copbio.2021.09.002

Xing, L., Wang, C., Xia, X., He, Z., Chen, W., Liu, T., et al. (2014). Molecular Mapping of Leaf Rust Resistance Gene LrFun in Romanian Wheat Line Funeado 900. *Mol. Breed.* 33, 931–937. doi:10.1007/s11032-013-0007-x

Yuan, C., Singh, R. P., Liu, D., Randhawa, M. S., Huerta-Espino, J., and Lan, C. (2020). Genome-wide Mapping of Adult Plant Resistance to Leaf Rust and
Stripe Rust in CIMMYT Wheat Line Arableu# 1. *Plant Dis.* 104, 1455–1464. doi:10.1094/pdis-10-19-2198-re

Zhang, H., Xia, X., He, Z., Li, X., Li, Z., and Liu, D. (2011). Molecular Mapping of Leaf Rust Resistance Gene *LrBi16* in Chinese Wheat Cultivar Bimai 16. *Mol. Breed.* 28, 527–534. doi:10.1007/s11032-010-9501-6

Zhang, P., Yin, G., Zhou, Y., Qi, A., Gao, F., Xia, X., et al. (2017). QTL Mapping of Adult-Plant Resistance to Leaf Rust in the Wheat Cross Zhou 8425B/Chinese Spring Using High-Density SNP Markers. *Front. Plant Sci.* 8, 793. doi:10.3389/fpls.2017.00793

Zhao, X. L., Zheng, T. C., Xia, X. C., He, Z. H., Liu, D. Q., Yang, W. X., et al. (2013). Molecular Mapping of Leaf Rust Resistance Gene *LrNJ97* in Chinese Wheat Line Neijiang 977671. *Theor. Appl. Genet.* 126, 2141–2147. doi:10.1007/s00122-013-2124-7

Zhao, X. L., Zheng, T. C., Xia, X. C., He, Z. H., Liu, D. Q., Yang, W. X., et al. (2008). Molecular Mapping of Leaf Rust Resistance Gene *LrZH84* in Chinese Wheat Line Zhou 8425B. *Theor. Appl. Genet.* 117, 1069–1075. doi:10.1007/s00122-008-0845-9

Zhou, Y., Ren, Y., Lillemo, M., Yao, Z., Zhang, P., Xia, X., et al. (2014). QTL Mapping of Adult-Plant Resistance to Leaf Rust in a RIL Population Derived from a Cross of Wheat Cultivars Shanghai 3/Catbird and Naxos. *Theor. Appl. Genet.* 127 (9), 1873–1883. doi:10.1007/s00122-014-2346-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Kumar, Jan, Saripalli, Sharma, Mir, Balyan and Gupta. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.