ON THE ENERGY TRANSFER TO HIGH FREQUENCIES IN THE DAMPED/DRIVEN NONLINEAR SCHRÖDINGER EQUATION (EXTENDED VERSION)

GUAN HUANG AND SERGEI KUKSIN

Abstract. We consider a damped/driven nonlinear Schrödinger equation in an n-cube $K^n \subset \mathbb{R}^n$, n is arbitrary, under Dirichlet boundary conditions

$$u_t - \nu \Delta u + i|u|^2 u = \sqrt{\nu} \eta(t, x), \quad x \in K^n, \quad u|_{\partial K^n} = 0, \quad \nu > 0,$$

where $\eta(t, x)$ is a random force that is white in time and smooth in space. It is known that the Sobolev norms of solutions satisfy $\|u(t)\|_{H^s} \leq C \nu^{-s}$, uniformly in $t \geq 0$ and $\nu > 0$. In this work we prove that for small $\nu > 0$ and any initial data, with large probability the Sobolev norms $\|u(t, \cdot)\|_{H^s}$ of the solutions with $m > 2$ become large at least to the order of ν^{-n+m} with $\kappa_{n,m} > 0$, on time intervals of order $O(\nu^{-2})$.

1. Introduction

In this work we study a damped/driven nonlinear Schrödinger equation

$$u_t - \nu \Delta u + i|u|^2 u = \sqrt{\nu} \eta(t, x), \quad x \in K^n,$$ \hspace{1cm} (1.1)

where ν is any, $0 < \nu \leq 1$ is the viscosity constant and the random force η is white in time t and regular in x. The equation is considered under the odd periodic boundary conditions,

$$u(t, \ldots, x_j, \ldots) = u(t, \ldots, x_j + 2\pi, \ldots) = -u(t, \ldots, x_j + \pi, \ldots), \quad j = 1, \ldots, n.$$

The latter implies that u vanishes on the boundary of the cube of half-periods $K^n = [0, \pi]^n$,

$$u|_{\partial K^n} = 0.$$

We denote by $\{\varphi_d(\cdot), d = (d_1, \ldots, d_n) \in \mathbb{N}^n\}$ the trigonometric basis in the space of odd periodic functions,

$$\varphi_d(x) = (\frac{2}{\pi})^n \sin(d_1x_1) \cdots \sin(d_nx_n).$$

The basis is orthonormal with respect to the scalar product $\langle \cdot, \cdot \rangle$ in $L_2(K^n, \pi^{-n} dx)$,

$$\langle u, v \rangle = \int_{K^n} \langle u(x), v(x) \rangle \pi^{-n} dx,$$

where $\langle \cdot, \cdot \rangle$ is the real scalar product in \mathbb{C}, $(u, v) = \Re u \overline{v}$. It is formed by eigenfunctions of the Laplacian:

$$(-\Delta) \varphi_d = |d|^2 \varphi_d.$$

The force $\eta(t, x)$ is a random field of the form

$$\eta(t, x) = \frac{\partial}{\partial t} \xi(t, x), \quad \xi(t, x) = \sum_{d \in \mathbb{N}^n} b_d \beta(t) \varphi_d(x).$$

Here $\beta(t) = \beta_d^R(t) + i \beta_d^I(t)$, where $\beta_d^R(t), \beta_d^I(t)$ are independent real-valued standard Brownian motions, defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $\{\mathcal{F}_t; t \geq 0\}$. The set of real numbers $\{b_d, d \in \mathbb{N}^n\}$ is assumed to form a non-zero sequence, satisfying

$$0 < B_{m_*} < \infty, \quad m_* = \min\{m \in \mathbb{Z}: m > n/2\},$$ \hspace{1cm} (1.2)
where for \(k \in \mathbb{R} \) we set
\[
B_k := \sum_{d \in \mathbb{N}^n} |d|^{2k} |b_d|^2 \leq \infty.
\]

For \(m \geq 0 \) we denote by \(H^m \) the Sobolev space of order \(m \), formed by complex odd periodic functions, equipped with the homogeneous norm,
\[
|u|_m = \|(-\Delta)^{\frac{m}{2}} u\|_0,
\]
where \(\cdot \) is the \(L^2 \)-norm on \(K^n \), \(|u|_0^2 = \|u\| \). If we write \(u \in H^m \) as Fourier series, \(u(x) = \sum_{d \in \mathbb{N}^n} u_d \varphi_d(x) \), then \(\|u\|_m^2 = \sum_{d \in \mathbb{N}^n} |d|^{2m} |u_d|^2 \).

Equation (1.1) with small \(\nu > 0 \) is a natural model for the small-viscosity Navier–Stokes system with a random force in dimensions 2 and 3, describing 2d and 3d turbulence. Indeed, the former is obtained from the latter by replacing the Euler equation \(u_t + (u \cdot \nabla)u + \nabla p = 0 \), \(\text{div} \, u = 0 \), which is a 2-homogeneous Hamiltonian system \(\text{PDE} \), with the 3-homogeneous Hamiltonian system \(u_t + iu^{\nu} = 0 \). See more in [10, 7]. So a progress in the study of eq. (1.1) with small \(\nu \) should help to understand turbulence a bit better.

The global solvability of eq. (1.1) for any space dimension \(n \) is established in [6, 8]. It is proved there that if
\[
u(0, x) = u_0(x), \tag{1.3}
\]
where \(u_0 \in H^m, m > \frac{n}{2} \), and if \(B_m < \infty \), then the problem (1.1), (1.3) has a unique strong solution \(u(t, x) \) in \(H^m \) which we write as \(u(t, x; u_0) \) or \(u(t, u_0) \). Its norm satisfies
\[
\mathbb{E}\left[|u(t; u_0)|_m^2 \right] \leq C_m \nu^{-m}, \quad t \geq 0,
\]
where \(C_m \) depends on \(\|u_0\|_m, \|u_0\|_\infty \) and \(B_m, B_m \). Furthermore, denoting by \(C_0(K^n) \) the space of continuous complex functions on \(K^n \), vanishing at \(\partial K^n \), we have that the solutions \(u(t, x) \) define a Markov process in the space \(C_0(K^n) \). Moreover, if the noise \(\eta(t, \cdot) \) is sufficiently non-degenerate (depending on \(\nu \), see Theorem 10), then this process is mixing.

Our goal is to study the growth of higher Sobolev norms for solutions of the equation (1.1) as \(\nu \to 0 \) on time intervals of order \(O(\frac{1}{\nu}) \). The main result of this work is the following.

Theorem 1. For any real number \(m > 2 \), in addition to (1.2), assume that \(B_m < \infty \). Then there exists \(\kappa_{n, m} > 0 \) such that for every fixed quadruple \((\delta, \kappa, \mathcal{K}, T_0) \), where
\[
k \in (0, \kappa_{n, m}), \quad \delta \in (0, \frac{1}{2}), \quad \mathcal{K}, T_0 \geq 0,
\]
there exists \(\nu_0 > 0 \) with the property that if \(0 < \nu \leq \nu_0 \), then for every \(u_0 \in H^m \cap C_0(K^n) \), satisfying
\[
|u_0|_\infty \leq \mathcal{K}, \quad |u_0|_m \leq \nu^{-\kappa m}, \tag{1.4}
\]
the solution \(u(t, x; u_0) \) is such that
\[
\mathbb{P}\left\{ \sup_{t \in [t_0, t_0 + T_0^{1-\nu^{-1}}]} \|u_\nu(t)\|_m > \nu^{-\kappa m} \right\} \geq 1 - \delta, \quad \forall t_0 \geq 0.
\]

(2) If \(m \) is an integer, \(m \geq 3 \), then a possible choice of \(\kappa_{n, m} \) is \(\kappa_{n, m} = \frac{1}{m} \), and there exists \(C \geq 1 \), depending on \(k < \frac{1}{35}, \mathcal{K}, m, B_m, \) and \(B_m \), such that
\[
C^{-1} \nu^{-2m+1} \leq \mathbb{E}\left[\nu \int_{t_0}^{1+T_0^{1-\nu^{-1}}} \|u_\nu(s)\|_m^2 ds \right] \leq C \nu^{-m}, \quad \forall t_0 \geq 0. \tag{1.5}
\]

A similar result holds for the classical \(C^k \)-norms of solutions:
Proposition 2. For any integer \(m \geq 2 \) in addition to (1.2) assume that \(B_m < \infty \). Then for every fixed triplet \(K, \mathcal{K}, T_0 > 0 \) and any \(0 < \kappa < 1/16 \) we have
\[
P\left\{ \sup_{t \in [t_0, t_0 + T_0\nu^{-1}]} |u(t; u_0)|_{C^m} > K\nu^{-m\kappa} \right\} \to 1 \quad \text{as} \quad \nu \to 0, \tag{1.6}
\]
for each \(t_0 \geq 0 \), if \(u_0 \) satisfies \(|u_0|_{\infty} \leq \mathcal{K}, |u_0|_{C^m} \leq \nu^{-\kappa m} \). The rate of convergence depends only on the triplet and \(\kappa \).

The result is proved by adapting the argument from [7, Section 5] to the current settings and arguing similar to when proving Theorem 1; see in Appendix C. Due to (1.6), for any \(m > 2 + n/2 \) we have
\[
P\left\{ \sup_{T_0 \leq t \leq T_0/T_0\nu^{-1}} |u(t)|_{m} \geq K\nu^{-m\kappa} \right\} \to 1 \quad \text{as} \quad \nu \to 0,
\]
for every \(K > 0 \) and \(0 < \kappa < 1/16 \), where for \(a \in \mathbb{R} \) we denote \([a] = \max\{n \in \mathbb{Z} : n < a\}\). This result improves the first assertion of Theorem 1 for large \(m \).

We have the following two corollaries from Theorem 1, valid if the Markov process defined by the equation (1.1) is mixing:

Corollary 3. Assume that \(B_m < \infty \) for all \(m \) and \(b_d \neq 0 \) for all \(d \). Then eq. (1.1) is mixing and for any \(\kappa < 1/35 \) and \(0 < \nu \leq \nu_0 \) its unique stationary measure \(\mu_\nu \) satisfies
\[
C^{-1}\nu^{-2m\kappa + 1} \leq \int \|u\|_{m}^2 \mu_\nu(du) \leq C\nu^{-m}, \quad 3 \leq m \in \mathbb{N}. \tag{1.7}
\]
Here \(C \) and \(\nu_0 \) are as in Theorem 1.

Corollary 4. Under the assumptions of Corollary 3, for any \(u_0 \in C^\infty \) we have
\[
\frac{1}{2}C^{-1}\nu^{-2m\kappa + 1} \leq \mathbb{E}[|u(s; u_0)|_{m}^2] \leq 2C\nu^{-m}, \quad 3 \leq m \in \mathbb{N},
\]
if \(s \geq T(\nu, u_0, \kappa, B_m, B_m) \), where \(C \) is the same as in (1.7).

Remark 5. The exponent in the lower bound here can be slightly improved to \(-2m - 7.001\kappa\), see Remark 15.

Theorem 1 rigorously establishes the energy cascade to high frequencies for solutions of eq. (1.1) with small \(\nu \). Indeed, if \(u_0(x) \) and \(\eta(t, x) \) are smooth functions of \(x \) (or even trigonometric polynomials of \(x \), then in view of (1.5) for \(0 < \nu \ll 1 \) and \(t \geq \nu^{-1} \) a substantial part of the energy \(\frac{1}{2} \sum_{d} |u_d(t)|^2 \) of a solution \(u(t; x; u_0) \) is carried by high modes \(u_d, |d| \gg 1 \). Relation (1.5) (valid for all integer \(m \geq 3 \)) also means that the averaged in time–space-scale \(l_x \) of solutions for (1.1) satisfies \(l_x \in [\nu^{1/2}, \nu^{1/35}] \), and goes to zero with \(\nu \) (see [7] and [2, Section 7.1]). We recall that the energy cascade to high frequencies and formation of short space-scale is the driving force of the Kolmogorov theory of turbulence, see [4] and [2, Section 6].

Two-sided estimates, similar to (1.5), are known for solutions of the stochastic Burgers equation on \(S^1 \):
\[
u t - \nu u_{xx} + uu_x = \eta(t, x), \quad x \in S^1, \quad \int u \, dx = \int \eta \, dx = 0 \tag{1.8}
\]
(in view of the strong dissipativity in the small-viscosity Burgers equation, to get solutions of order one the force should be \(\sim 1 \), rather then \(\sim \sqrt{\nu} \) as in (1.1)). Due to some remarkable features of the Burgers equation, the lower and upper estimates for Sobolev norms of solutions for (1.8) are asymptotically sharp in the sense that they contain \(\nu \) in the same negative degree. Moreover, they hold after averaging on time–intervals of order one; see [2, Section 2].

Deterministic versions of the result of Theorem 1 for eq. (1.1) with \(\eta = 0 \), where \(\nu \) is a small non-zero complex number such that \(\Im \nu \geq 0 \) and \(\Re \nu \leq 0 \) are known, see [7]. In particular, if \(\nu \) is a positive real number and \(u_0 \) is a smooth function of
order one, then for any integer $m \geq 4$ a solution $u_\nu(t, x; u_0)$ satisfies estimates (1.5) with the averaging $\nu E \int_t^{t+\nu^{-1}} \ldots ds$ replaced by $\nu^{1/3} \int_0^{\nu^{-1/3}} \ldots ds$, with the same upper bound and with the lower bound $C_m \nu^{-m-\kappa_m}$, where $\kappa_m \to 1/3$ as $m \to \infty$. Moreover, it was then shown in [1] that the lower bounds remain true with $\kappa = 1/3$, and that the estimates $\sup_{t \in [0, \nu^{-1/3}]} \| u(t) \|_{C^m} \geq C_m \nu^{-m/3}$, $m \geq 2$, hold for smooth solutions of equation (1.1) with $\eta = 0$ and any non-zero complex “viscosity” ν.

The better quality of the lower bounds for solutions of the deterministic equations is due to an extra difficulty which occurs in the stochastic case: when time grows, simultaneously with increasing of high Sobolev norms of a solution, its L_2-norm may decrease, which accordingly would weaken the mechanism, responding to the energy transfer to high modes. Significant part of the proof of Theorem 1 is devoted to demonstration that the L_2-norm of a solution cannot go down without sending up the second Sobolev norm.

If $\eta = 0$ and $\nu = i \delta \in i \mathbb{R}$, then (1.1) is a Hamiltonian PDE (the defocusing Schrödinger equation), and the L_2-norm is its integral of motion. If this integral is of order one, then the results of [7] (see there Appendix 3) imply that at some point of each time-interval of order $\delta^{-1/3}$ the C^1-norm of a corresponding solution will become $\geq \delta^{m-\kappa_m}$ if $m \geq 2$, for any $\kappa < 1/3$. Furthermore, if $n = 2$ and $\delta = 1$, then due to [3] for $m > 1$ and any $M > 1$ there exists a $T = T(m, M)$ and a smooth $u_\nu(x)$ such that $\| u_\nu(0, m) \|_{M^{-1}}$ and $\| u(T; u_\nu) \|_M > M$.

The paper is organized as follows. In Section 2, we recall the results from [6, 8] on upper estimates for solutions of the equation (1.1). Next we show in Section 3 that if the noise η is non-degenerate, the L^2-norm of a solution of eq. (1.1) cannot stay too small on time intervals of order $O(\sqrt{t})$ with high probability, unless its H^2-norm gets very large (see Lemma 13). Then in Section 4 we derive from this fact the assertion (1) of Theorem 1, and prove assertion (2) and both corollaries in Section 5.

Constants in estimates never depend on ν, unless otherwise stated. For a metric space M we denote by $\mathcal{B}(M)$ the Borel σ-algebra on M, and by $\mathcal{P}(M)$ — the space of probability Borel measures on M. By $\mathcal{D}(\xi)$ we denote the law of a r.v. ξ.

We submit to a journal an abridged version of this paper, where we removed the proof of the lower bounds for the classical C^m-norms of solutions for eq. (1.1), presented in Appendix C, and made some other small diminutions.

2. Solutions and estimates

Strong solutions for the equation (1.1) are defined in the usual way:

Definition 6. Let $0 < T < \infty$ and $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathcal{P})$ be the filtered probability space as in the introduction. Let u_0 in (1.3) be a r.v., measurable in \mathcal{F}_0 and independent from the Wiener process ξ. Then a random process $u(t) = u(t, \cdot) \in C_0(K^n)$, $t \in [0, T]$, adapted to the filtration, is called a strong solution of (1.1), (1.3), if

1. a.s. its trajectories $u(t)$ belong to the space $\mathcal{H}([0, T]) := C([0, T], C_0(K^n)) \cap L^2([0, T], H^1)$;

2. we have

$$u(t) = u_0 + \int_0^t (\nu \Delta u - i [u^2] u) ds + \sqrt{\nu} \xi(t), \quad \forall t \in [0, T], \text{ a.s.,}$$

where both sides are regarded as elements of H^{-1}.

If (1)-(2) hold for every $T < \infty$, then $u(t)$ is called a strong solution for $t \in [0, \infty)$. In this case a.s. $u \in \mathcal{H}([0, \infty))$, where

$$\mathcal{H}([0, \infty)) = \{ u(t), t \geq 0 : u \mid_{[0, T]} \in \mathcal{H}([0, T]) \ \forall T > 0 \}.$$
Everywhere below when we talk about solutions for the problem (1.1), (1.3) we assume that the r.v. \(u_0 \) is as in the definition above. In particular, \(u_0(x) \) may be a non-random function.

The global well-posedness of eq. (1.1) was established in [6, 8]:

Theorem 7. For any \(u_0 \in C_0(K^n) \) the problem (1.1), (1.3) has a unique strong solution \(u^\omega(t, x; u_0) \), \(t \geq 0 \). The family of solutions \(\{ u^\omega(t; u_0) \} \) defines in the space \(C_0(K^n) \) a Fellerian Markov process.

In [6, 8] the theorem above is proved when (1.2) is replaced by the weaker assumption \(B_\ast < \infty \), where \(B_\ast = \sum |b_d| \) (note that \(B_\ast \leq C_n B_m^{1/2} \)).

The transition probability for the obtained Markov process in \(C_0(K^n) \) is

\[
P_t(u, \Gamma) = \mathbb{P}\{ u(t; u) \in \Gamma \}, \quad u \in C_0(K^n), \quad \Gamma \in \mathcal{B}(C_0(K^n)),
\]

and the corresponding Markov semigroup in the space \(\mathcal{P}(C_0(K^n)) \) of Borel measures on \(C_0(K^n) \) is formed by the operators \(\{ B^\ast_t, t \geq 0 \} \),

\[
B^\ast_t \mu(\Gamma) = \int_{C_0(K^n)} P_t(u, \Gamma) \mu(du), \quad t \in \mathbb{R}.
\]

Then \(B^\ast_t \mu = \mathcal{D} u(t; u_0) \) if \(u_0 \) is a r.v., independent from \(\xi \) and such that \(\mathcal{D}(u_0) = \mu \).

Introducing the slow time \(\tau = \nu t \) and denoting \(v(\tau, x) = u(\frac{\tau}{\nu}, x) \), we rewrite eq. (1.1) in the form below, more convenient for some calculations:

\[
\frac{\partial v}{\partial \tau} = \Delta v + i \nu^{-1} |v|^2 v = \tilde{v}(\tau, x), \quad (2.1)
\]

where

\[
\tilde{v}(\tau, x) = \frac{1}{\tau} \frac{\partial}{\partial \tau} \tilde{\xi}(\tau, x), \quad \tilde{\xi}(\tau, x) = \sum_{d \in \mathbb{N}^d} b_d \tilde{\beta}_d(\tau) \varphi_d(x),
\]

and \(\tilde{\beta}_d(\tau) := \nu^{1/2} \beta_d(\tau \nu^{-1}) \), \(d \in \mathbb{N}^d \), is another set of independent standard complex Brownian motions.

Let \(\Upsilon \in C^\infty(\mathbb{R}) \) be any smooth function such

\[
\Upsilon(r) = \begin{cases} 0, & \text{for } r < \frac{1}{2}; \\ r, & \text{for } r \geq \frac{1}{2}. \end{cases}
\]

Writing \(v \in \mathbb{C} \) in the polar form \(v = re^{i \phi} \), where \(r = |v| \), and recalling that \(\langle \cdot, \cdot \rangle \) stands for the real scalar product in \(\mathbb{C} \), we apply Itô’s formula to \(\Upsilon(|v|) \) and obtain that the process \(\Upsilon(r) := \Upsilon(|v(r)|) \) satisfies

\[
\Upsilon(r) = \Upsilon_0 + \int_0^r \left[\Upsilon'(r)(\nabla r - r |\nabla \phi|^2) + \frac{1}{2} \sum_{d \in \mathbb{N}^d} b_d \tilde{\beta}_d \left(\Upsilon''(r)(e^{i \phi}, \varphi_d)^2 + \Upsilon'(r) \frac{1}{r} (|\varphi_d|^2 - (e^{i \phi}, \varphi_d)^2) \right) ds + \mathbb{W}(r), \quad (2.2)
\]

where \(\Upsilon_0 = \Upsilon(|v(0)|) \) and \(\mathbb{W}(r) \) is the stochastic integral

\[
\mathbb{W}(r) = \sum_{d \in \mathbb{N}^d} \int_0^r \Upsilon'(s)b_d \varphi_d(e^{i \phi}, d \tilde{\beta}_d(s)).
\]

In [8] eq. (2.1) is considered with \(\nu = 1 \) and, following [6], the norm \(|v(t)|_\infty \) of a solution \(v \) is estimated via \(\Upsilon(|v|) \) (since \(|v| \leq \Upsilon + 1/2 \)). But the nonlinear term \(i \nu^{-1} |v|^2 v \) does not contribute to eq. (2.2), which is the same as the \(\Upsilon \)-equation (2.3) in [8] (and as the corresponding equation in [6, Section 3.1]). So the estimates on \(|\Upsilon(t)|_\infty \) and the resulting estimates on \(|v(t)|_\infty \), obtained in [8], remain true for solutions of (2.4) with any \(\nu \). Thus we get the following upper bound for a quadratic exponential moments of the \(L_\alpha \)-norms of solutions:\[^1\]

[^1]: In [6] polynomial moments of the random variables \(\sup_{r \leq s \leq r+\tau} |v(s)|_\alpha^2 \) are estimated, and in [8] these results are strengthened to the exponential bounds (2.3).
Theorem 8. For any $T > 0$ there are constants $c_\ast > 0$ and $C > 0$, depending only on B_\ast and T, such that for any r.v. $v_0' \in C_0(K^n)$ as in Definition 6, any $\tau \geq 0$ and any $c \in (0, c_\ast]$, a solution $v(\tau; v_0)$ of eq. (2.1) satisfies

$$
\mathbb{E}\exp(c \sup_{\tau \leq \tau + T} |v(s)|^2_{\infty}) \leq C \mathbb{E}\exp(5c |v_0|^2_{\infty}) \leq \infty. \quad (2.3)
$$

In [8] the result above is proved for a deterministic initial data v_0. The theorem’s assertion follows by averaging the result of [8] in v_0'.

The estimate (2.3) is crucial for derivation of further properties of solutions, including the given below upper bounds for their Sobolev norms, obtained in the work [6]. Since the scaling of the equation in [6] differs from that in (2.1) and the result there is a bit less general than in the theorem below, a sketch of the proof is given in Appendix B.

Theorem 9. Assume that $B_m < \infty$ for some $m \in \mathbb{N}$, and $v_0 = v_0' \in H^m \cap C_0(K^n)$ satisfies

$$
|v_0|_\infty \leq M, \quad |v_0|_m \leq M_m \nu^{-m}, \quad 0 < \nu \leq 1.
$$

Then

$$
\mathbb{E}\|v(\tau; v_0)\|_m^2 \leq C_m \nu^{-m}, \quad \forall \tau \in [0, \infty), \quad (2.4)
$$

where $C_{M,m}$ also depends on M, M_m and B_m, B_m.

Neglecting the dependence on ν, we have that if $B_m < \infty$, $m \in \mathbb{N}$, and a r.v. $v_0' \in H^m \cap C_0(K^n)$ satisfies $\mathbb{E}|v_0|_m^2 < \infty$ and $\mathbb{E}\exp(c |v_0|_{\infty}) < \infty$ for some $c > 0$, then eq. (2.1) has a solution, equal v_0 at $t = 0$, such that

$$
\mathbb{E}|v(\tau; v_0)|_m^2 \leq c^{-1}\mathbb{E}|v_0|_m^2 + C, \quad \tau \geq 0, \quad (2.5)
$$

$$
\mathbb{E}\sup_{0 \leq \tau \leq T} \|v(\tau; v_0)\|_m^2 \leq C', \quad (2.6)
$$

where $C > 0$ depend on $c, \nu, \mathbb{E}\exp(c |v_0|_{\infty}), B_m$, and B_m, while C' also depends on $\mathbb{E}|v_0|_m^2 < \infty$ and T. See Appendix (B).

As it is shown in [8], the estimate (2.3) jointly with an abstract theorem from [9], imply that under a mild nondegeneracy assumption on the random force the Markov process in the space $C_0(K^n)$, constructed in Theorem 7, is mixing:

Theorem 10. For each $\nu > 0$, there is an integer $N = N(B_\ast, \nu) > 0$ such that if $b_d \neq 0$ for $|d| \leq \mathcal{N}$, then the equation (1.1) is mixing. I.e. it has a unique stationary measure $\mu_\nu \in \mathcal{P}(C_0(K^n))$, and for any probability measure $\lambda \in \mathcal{P}(C_0(K^n))$ we have $\mathcal{B}_\nu \lambda \rightarrow \mu_\nu$ as $t \rightarrow \infty$.

Under the assumption of Theorem 9, for any $u_0 \in H^m$ the law $\mathcal{D}u(t; u_0)$ of a solution $u(t; u_0)$ is a measure in H^m. The mixing property in Theorem 10 and (2.4) easily imply

Corollary 11. If under the assumptions of Theorem 10 $B_m < \infty$ for some $m > n/2$ and $u_0 \in H^m$, then $\mathcal{D}(u(t; u_0)) \rightarrow \mu_\nu$ in $\mathcal{P}(H^m)$.

In view of Theorems 8, 9 with $v_0 = 0$ and the established mixing, we have:

Corollary 12. Under the assumptions of Theorem 10, if $v^\ast(\tau)$ is the stationary solution of the equation, then

$$
\mathbb{E}\exp(c_\ast \sup_{\tau \leq \tau + T} |v^\ast(s)|_{\infty}^2) \leq C,
$$

where the constant $C > 0$ depends only on T and B_\ast. If in addition $B_m < \infty$ for some $m \in \mathbb{N} \cup \{0\}$, then $\mathbb{E}|v^\ast(\tau)|_m^2 \leq C_m \nu^{-m}$, where C_m depends on B_\ast and B_m.
Finally we note that applying Itô’s formula to $\|\nu^s(\tau)\|_0^2$, where ν^s is a stationary solution of (2.1), and taking the expectation we get the balance relation
\[E[\nu^s(\tau)]^2 = B_0. \] (2.7)

We cannot prove that $E[\nu^s(\tau)]^2 \geq B' > 0$ for some ν-independent constant B', and cannot bound from below the energy $\frac{2}{\nu}E[\nu(\tau; \nu)]_0^2$ of a solution ν by a positive ν-independent quantity. Instead in next section we get a weaker conditional lower bound on the energies of solutions.

3. Conditional lower bound for the L^2-norm of solutions

In this section we prove the following result:

Lemma 13. Let $m \geq 2$ and $B_m < \infty$. Let $u(\tau) \in H^m$ be a solution of (2.1). Take any constants $\chi > 0, \Gamma \geq 1, \tau_0 > 0$, and define the stopping time
\[\tau_T := \inf\{\tau \geq \tau_0 : \|u(\tau)\|_2 \geq \Gamma\} \]
(as usual, $\tau_T = \infty$ if the set under the inf-sign is empty). Then
\[E \int_0^{\tau_T} I_{[0, \chi]}(\|u(s)\|_2^2)ds \leq 2(1 + \tau)B_0^{-1}\chi \Gamma, \] (3.1)
for any $\tau > \tau_0$. Moreover, if $u(\tau)$ is a stationary solution of the equation (2.1) and $E[\|u(\tau)\|_2] \leq \Gamma$, then
\[P\left(\|u(\tau)\|_2 \leq \chi\right) \leq 2B_0^{-1}\chi \Gamma, \quad \forall \tau \geq 0. \] (3.2)

Proof. We establish the result by adapting the proof from [13] (also see [9, Theorem 5.2.12]) to non-stationary solutions. The argument relies on the concept of local time for semi-martingales (see e.g. [11, Chapter VI.1] for details of the concept).

By $[\cdot]$, we denote the quasinorm $\|u\|_0^2 = \sum_d |u_d|^2 \beta^d$

Without loss of generality we assume $\tau_0 = 0$, otherwise we just need to replace $u(\tau, x)$ by the process $\tilde{u}(\tau, x) := u(\tau + \tau_0, x)$, apply the lemma with $\tau_0 = 0$ and with u_0 replaced by the initial data $\tilde{u}_0^0 = u^0(\tau_0; u_0)$, and then average the estimate in the random \tilde{u}_0^0. Let us write the solution $u(\tau; u_0)$ as $u(\tau, x) = \sum_{d \in \mathbb{N}} u_d(\tau) \varphi_d(x)$.

For any fixed function $g \in C^2(\mathbb{R})$, consider the process

\[f(\tau) = g(\|u(\tau) \& \tau_T\|_0^2) \]

Since
\[\partial_u g(\|u\|_0^2) = 2g'(\|u\|_0^2)\|u\|^2, \quad \partial_{uu} g(\|u\|_0^2) = 4g''(\|u\|_0^2)\|u\|^2 + 2g'(\|u\|_0^2), \]
then by Itô’s formula we have
\[f(\tau) = f(0) + \int_0^{\tau_T} A(s) ds + \sum_d b_d \int_0^{\tau_T} 2g'(\|u(s)\|_0^2)\nu(u_d(s), d\beta_d(s)), \] (3.3)

where
\[A(s) = 2g'(\|u\|_0^2)\|\Delta u - \frac{1}{\nu} |u|^2 u\|^2 + 2\sum_d b_d^2 (g''(\|u\|_0^2)\|u_d\|^2 + g'(\|u\|_0^2)))) = -2g'(\|u\|_0^2)\|u\|^2 + 2g''(\|u\|_0^2)\|u_d\|^2 + 2g'(\|u\|_0^2)\] (3.4)

Step 1: We firstly show that for any bounded measurable set $G \subset \mathbb{R}$, denoting by I_G its indicator function, we have the following equality
\[2E \int_0^{\tau_T} I_G(f(s))(g'(\|u(s)\|_0^2)\|u(s)\|_0^2) \] (3.5)
Let \(L(\tau,a) \), \((\tau,a) \in [0,\infty) \times \mathbb{R} \), be the local time for the semi martingale \(f(\tau) \) (see e.g. [11, Chapter VI.1]). Since in view of (3.3) the quadratic variation of the process \(f(\tau) \) is
\[
d(f,f)_s = \sum_d (2g'(\|u\|_0^2\|u_d\|b_d))^2 = 4(g'([u]_0^2))^2 [u]_0^2,
\]
then for any bounded measurable set \(G \subset \mathbb{R} \), we have the following equality (known as the occupation time formula, see [11, Corollary VI.1.6]),
\[
\int_0^{\tau_\vee \tau_\wedge} \mathbb{I}(f(s))4(g'([u(s)]_0^2))^2 [u(s)]_0^2 ds = \int_0^\infty \mathbb{I}(a)L(\tau,a)da.
\]
(3.6)
For the local time \(L(\tau,a) \), due to Tanaka’s formula (see [11, Theorem VI.1.2]) we have
\[
(f(\tau) - a)_+ = (f(0) - a)_+ + \sum_{d \in \mathbb{N}^n} b_d \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))2g'(\|u(s)\|_0^2)(u_d(s),d\beta(s)) ds
\]
\[
+ \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))(f(s))A(s)ds + \frac{1}{2}L(\tau,a).
\]
(3.7)
Taking expectation of both sides of (3.6) and (3.7) we obtain the required equality (3.5).

Step 2: Let us choose \(G = [\rho_0,\rho_1] \) with \(\rho_1 > \rho_0 > 0 \), and \(g(x) = g_{\rho_0}(x) \in C^2(\mathbb{R}) \) such that \(g'(x) \geq 0 \), \(g(x) = \sqrt{x} \) for \(x \geq \rho_0 \) and \(g(x) = 0 \) for \(x \leq \rho_0 \). Then due to the factors \(\tilde{\mathbb{I}}_G(f) \) and \(\mathbb{I}_G(a) \) in (3.5), we may there replace \(g(x) \) by \(\sqrt{x} \), and accordingly replace \(g([u]_0^2),g'([u]_0^2) \) and \(g''([u]_0^2) \) by \(\|u\|_0^2, \frac{1}{2}\|u\|_0^2 \) and \(-\frac{1}{4}\|u\|_0^{-3} \). So the relation (3.5) takes the form
\[
\mathbb{E} \int_0^{\tau_\vee \tau_\wedge} \tilde{\mathbb{I}}_G(f(s))\|u(s)\|_0^2 [u(s)]_0^2 = 2 \int_{\rho_0}^{\rho_1} \left[\mathbb{E}(f(\tau) - a)_+ - \mathbb{E}(f(0) - a)_+ \right] da
\]
\[
- 2 \int_{\rho_0}^{\rho_1} \left\{ \mathbb{E} \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))(f(s))\frac{1}{\|u(s)\|_0^2} \left(B_0 - \|u(s)\|_1^2 \right) - \frac{2}{4\|u(s)\|_0^2} [u(s)]_0^2 ds \right\} da.
\]
Since the l.h.s. of the above equality is non-negative, we have
\[
\int_{\rho_0}^{\rho_1} \mathbb{E} \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))(f(s))\frac{1}{\|u(s)\|_0^2} \left(B_0 - \|u(s)\|_1^2 \right) ds da \leq \int_{\rho_0}^{\rho_1} \mathbb{E} \left[(f(\tau) - a)_+ - (f(0) - a)_+ \right] + \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))(f(s))\frac{[u(s)]_1^2}{[u(s)]_0^2} ds da.
\]
(3.8)
Noting that
\[
B_0\|u\|_0^2 - \frac{1}{4}\|u(s)\|_0^2 = \sum_{d \in \mathbb{N}^n} (B_0 - \frac{1}{2}\|u_d\|)^2 \geq \frac{B_0}{2}\|u\|_0^2,
\]
that by the definition of the stopping time \(\tau_\vee \tau_\wedge \)
\[
(f(\tau) - a)_+ - (f(0) - a)_+ \leq \Gamma,
\]
and that by interpolation,
\[
\int_0^{\tau_\vee \tau_\wedge} \frac{[u(s)]_1^2}{[u(s)]_0^2} ds \leq \int_0^{\tau_\vee \tau_\wedge} \|u(s)\|_2 ds \leq (\tau \wedge \tau_\wedge)\Gamma,
\]
we derive from (3.8) the relation
\[
\frac{B_0}{2} \int_{\rho_0}^{\rho_1} \mathbb{E} \int_0^{\tau_\vee \tau_\wedge} \mathbb{I}((a,\infty))(f(s))\|u(s)\|_0^{-1} ds da \leq (\rho_1 - \rho_0)\Gamma(1 + \tau).
\]
When \(\rho_0 \to 0 \), we have \(g(x) \to \sqrt{x} \) and \(f(\tau) \to \|u(\tau \wedge \tau_T)\|_0 \). So sending \(\rho_0 \) to 0 and using Fatou’s lemma we get from the last estimate that
\[
\int_0^{\rho_1} \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) \|u(s)\|^{-1}_0 ds \right] \, da \leq 2\rho_1 (1 + \tau) B_0^{-1} \Gamma.
\]
As the l.h.s. above is not smaller than
\[
\frac{1}{\rho_1} \int_0^{\rho_1} \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] \, da,
\]
then
\[
\frac{1}{\rho_1} \int_0^{\rho_1} \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] \, da \leq 2(1 + \tau) B_0^{-1} \Gamma.
\]
By the monotone convergence theorem
\[
\lim_{a \to 0} \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] = \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] = \mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right],
\]
we get from (3.9) that
\[
\mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] \leq 2(1 + \tau) B_0^{-1} \Gamma \chi.
\]

Step 3: We continue to verify that
\[
\mathbb{E} \left[\int_0^{\tau_T} (\|u(s)\|_0) ds \right] = 0.
\]
To do this let us fix any index \(d \in \mathbb{N}^n \) such that \(b_d \neq 0 \). The process \(u_d(\tau) \) is a semimartingale, \(du_d = v_d ds + b_d d\beta_d \), where \(v_d(s) \) is the \(d \)-th Fourier coefficient of \(\Delta u + \frac{1}{2} |u|^2 u \) for the solution \(u(\tau) = \sum_d u_d(\tau) \varphi_d \) which we discuss. Consider the stopping time
\[
\tau_R = \inf \{ s \leq \tau : \|u(s)\|_\infty \geq R \}.
\]
Due to (2.3) and (2.6), \(\mathbb{P}(\tau_R = \tau \wedge \tau_T) \to 1 \) as \(R \to \infty \). Let us denote \(u_d^R(\tau) = u_d(\tau \wedge \tau_R) \). To prove (3.11) it suffices to verify that
\[
\pi(\delta) := \mathbb{E} \left[\int_0^{\tau_T} \mathbb{I}_{\{u_d(\tau) < \delta\}} ds \right] \to 0 \quad \text{as} \quad \delta \to 0.
\]
If we replace \(u_d \) by \(u_d^R \), then the obtained new quantity \(\pi^R(\delta) \) differs from \(\pi(\delta) \) at most by \(\mathbb{P}(\tau_R < \tau \wedge \tau_T) \). The process \(u_d^R \) is an Itô process with a bounded drift. So by [5, Theorem 2.2.2, p. 52], \(\pi^R(\delta) \) goes to zero with \(\delta \). Thus, given any \(\varepsilon > 0 \), we firstly choose \(R \) sufficiently big and then \(\delta \) sufficiently small to achieve \(\pi(\delta) < \varepsilon \). Suppose \(\pi(\delta) < \varepsilon \). So (3.11) is verified. Jointly with (3.10) this proves (3.1).

Step 4: We now consider the stationary case. Let \(u(\tau) \) be a stationary solution of (2.1). Then applying Itô’s formula to the process \(f(\tau) := g(|u(\tau)|^2) \), following the same argument as in Step 1, we obtain for any bounded measure set \(G \subset \mathbb{R} \),
\[
2 \mathbb{E} \left[\int_0^\tau G(f(s)) \left(g'(|u(s)|^2) \right)^2 |u(s)|^2 ds \right] + \mathbb{E} \left[\int_{\tau \wedge \tau_T} G(\tau) \mathbb{I}_{(\tau_0, \tau_T]}(f(\tau)) A(\tau) ds \right] = 0,
\]
which is exactly (3.5) without the stoping time \(\tau_T \). From the stationarity of the solution, we have
\[
\mathbb{E} (f(\tau) - a)_+ - \mathbb{E} (f(0) - a)_+ = 0,
\]
and
\[
\mathbb{E} \left(\int_0^\tau G(f(s)) \left(g'(|u(s)|^2) \right)^2 |u(s)|^2 ds \right) = \mathbb{E} \left(\int_{\tau \wedge \tau_T} G(\tau) \mathbb{I}_{(\tau_0, \tau_T]}(f(\tau)) A(\tau) ds \right), \quad \forall \tau \geq 0,
\]
and
\[
\mathbb{E} \left(\int_0^\tau G(f(s)) A(\tau) ds \right) = \tau \mathbb{E} \left(\mathbb{I}_{(\tau_0, \tau_T]}(f(s)) A(s) \right), \quad \forall \tau \geq 0.
\]
Therefore, with (3.4), we have
\[
\mathbb{E} \int_G \|u_0\|_2^2 g(\|u\|_2^2) (2g'(\|u\|_2^2) (B_0 - \|u\|_2^2) + 2g''(\|u\|_2^2) [0, 1) \right) \mathcal{D} a + \sum_{d \in \mathbb{N}} \mathbb{E} \left(\mathbb{I}_G (d \|u\|_2^2) (2g'(\|u\|_2^2) |u_d|^2) \right) = 0.
\]

Then proceeding as in Step 2, we obtain the inequality (3.2). Thus, we finished the proof of the theorem. \(\square \)

4. Lower bounds for Sobolev norms of solutions

In this section we work with eq. (1.1) in the original time scale \(t \) and provide lower bounds for the \(H^m \)-norms of its solutions with \(m > 2 \). This will prove the assertion (1) of Theorem 1. As always, the constants do not depend on \(\nu \), unless otherwise stated.

Theorem 14. For any \(m \geq 3 \), if \(B_m < \infty \) and
\[
0 < \kappa < \frac{1}{2}, \quad T_0 \geq 0, \quad T_1 > 0,
\]
then for any r.v. \(u_0(x) \in H^m \cap C_0(K^n) \), satisfying
\[
\mathrm{E} \|u_0\|_m^2 < \infty, \quad \exp(c |u_0|_\infty^2) \leq C < \infty \tag{4.1}
\]
for some \(c, C > 0 \), we have
\[
\mathbb{P} \left\{ \sup_{T_0 \leq t \leq T_0 + T_1 \nu^{-1}} \|u(t; u_0)\|_m \geq K \nu^{-m \kappa} \right\} \to 1 \quad \text{as} \quad \nu \to 0, \tag{4.2}
\]
for every \(K > 0 \).

Proof. Consider the complement to the event in (4.2):
\[
Q'' = \left\{ \sup_{T_0 \leq t \leq T_0 + T_1 \nu^{-1}} |u(t)|_m < K \nu^{-m \kappa} \right\}.
\]
We will prove the assertion (4.2) by contradiction. Namely, we assume that there exists a \(\gamma > 0 \) and a sequence \(\nu_j \to 0 \) such that
\[
\mathbb{P}(Q''_{j}) \geq 5 \gamma \quad \text{for} \quad j = 1, 2, \ldots, \tag{4.3}
\]
and will derive a contradiction. Below we write \(Q'^\nu_j \) as \(Q \) and always suppose that
\[
\nu \in \{ \nu_1, \nu_2, \ldots \}.
\]
The constants below may depend on \(K, K, \gamma, B_m, \), but not on \(\nu \).

Without loss of generality we assume that \(T_1 = 1 \). For any \(T_0 > 0 \), due to (2.5) and (2.3) the r.v. \(\tilde{u}_0 := u(T_1) \) satisfies (4.1) with \(c \) replaced by \(c/5 \). So considering \(\tilde{u}(t, x) = u(t + T_0, x) \) we may assume that \(T_0 = 0 \).

Let us denote \(J_1 = [0, \frac{1}{K}] \). Due to Theorem 8,
\[
\mathbb{P}(Q_1) \geq 1 - \gamma, \quad Q_1 = \{ \sup_{t \in J_1} |u(t)|_\infty \leq C_1(\gamma) \},
\]
uniformly in \(\nu \), for a suitable \(C_1(\gamma) \). Then, by the definition of \(Q \) and Sobolev’s interpolation,
\[
|u^{\omega}(t)|_l \leq C_{1, \gamma} \nu^{-l \kappa}, \quad \omega \in Q \cap Q_1, \quad t \in J_1, \tag{4.4}
\]
for \(l \in [0, m] \) (and any \(\nu \in \{ \nu_1, \nu_2, \ldots \} \)).

Denote \(J_2 = [0, \frac{1}{K}] \) and consider the stopping time
\[
\tau_1 = \inf\{ t \in J_2 : \|u(t)\|_2 \geq C_{2, \gamma} \nu^{-2 \kappa} \} \leq \frac{1}{K}.
\]
Then $\tau_1 = \frac{1}{2\nu}$ for $\omega \in Q \cap Q_1$. So due to (3.1) with $\Gamma = C_2\gamma^2\nu^{-2\kappa}$, for any $\chi > 0$, we have
\[
E(\nu \int_{J_2} I_{[0,\chi]}(|u(s)|_0) ds \mathbb{I}_{Q \cap Q_1}(\omega)) = E(\nu \int_0^{\frac{1}{2\nu} \tau_1} I_{[0,\chi]}(|u(s)|_0) ds \mathbb{I}_{Q \cap Q_1}(\omega)) \leq E(\nu \int_0^{\frac{1}{2\nu} \tau_1} I_{[0,\chi]}(|u(s)|_0) ds) \leq C\nu^{-2\kappa}\chi.
\]

Consider the event
\[
\Lambda = \{ \omega \in Q \cap Q_1 : |u(s)|_0 \leq \chi, \forall s \in J_2 \}.
\]

Due to the above, we have,
\[
P(\Lambda) \leq 2E(\nu \int_{J_2} I_{[0,\chi]}(|u(s)|_0) ds \mathbb{I}_{Q \cap Q_1}(\omega)) \leq 2C\nu^{-2\kappa}\chi.
\]

So $\mathbb{P}(\Lambda) \leq \gamma$ if we choose
\[
\chi = c_3(\gamma)\nu^{2\kappa}, \quad c_3(\gamma) = (2C)^{-1}.
\]

Let us set
\[
Q_2 = (Q \cap Q_1) \setminus \Lambda, \quad \mathbb{P}(Q_2) \geq 3\gamma,
\]

and for χ as in (4.5), consider the stopping time
\[
\tilde{\tau}_1 = \inf\{ t \in J_2 : |u(t)|_0 > \chi \}.
\]

Then $\tilde{\tau}_1 \leq \frac{1}{2\nu}$ for all $\omega \in Q_2$. Consider the function
\[
v(t, x) := u(\tilde{\tau}_1 + t, x), \quad t \in [0, \frac{1}{2\nu}].
\]

It solves eq. (1.1) with modified Wiener processes and with initial data $v_0(x) = u^\omega(\tilde{\tau}_1, x)$, satisfying
\[
\|v_0^\omega\|_0 \geq \chi = c\nu^{2\kappa} \quad \text{if} \quad \omega \in Q_2.
\]

Now we introduce another stopping time, in terms of $v(t, x)$:
\[
\tau_2 = \inf\{ t \in [0, \frac{1}{2\nu}] : \|v(t)\|_m \geq K\nu^{-m\kappa} \} \leq \frac{1}{2\nu}.
\]

For $\omega \in Q_2$, $\tau_2 = \frac{1}{2\nu}$ and in view of (4.4)
\[
\|v^\omega(t)\|_l \leq C_3(\gamma)\nu^{-2\kappa}, \quad t \in [0, \frac{1}{2\nu}], \quad l \in [0, m], \quad \forall \omega \in Q_2.
\]

Step 1: Let us estimate from above the increment $\delta(t, x) = |v(t \wedge \tau_2, x)|^2 - |v_0(x)|^2$. Due to Itô’s formula, we have that
\[
\delta(t, x) = 2\nu \int_0^{t \wedge \tau_2} \left(\left(v^2(s, x) - v(s, x)\right) + \sum_{d \in \mathbb{N}^n} b_d^2 \varphi_d^2(x) \right) ds + \sqrt{\nu} M(t, x),
\]
\[
M(t, x) = \int_0^{t \wedge \tau_2} \sum_{d \in \mathbb{N}^n} b_d \varphi_d(x) v(s, x) d\beta_d(s).
\]

We treat M as a martingale $M(t)$ in the space H^1. Since in view of (A.3) for $0 \leq s < \tau_2$ we have
\[
\|v(s)\|_{H^1} \leq C \left(|v(s)|_\infty \|\varphi_d\|_1 + |v(s)|_1 |\varphi_d|_\infty \right) \leq C (\xi d + (m-1)/m \nu^{-\kappa}),
\]

where $\xi = \sup_{0 \leq s < \tau_2} |u(s)|_\infty$ (the assertion is empty if $\tau_2 = 0$), then for any $0 < T_* \leq \frac{1}{2\nu}$
\[
E\|M(T_*)\|_1^2 \leq \int_0^{T_*} \mathbb{E} \sum_{d} b_d^2 \|\varphi_d v(s)\|^2 ds \leq CT_* \nu^{-2\kappa},
\]

where we used that $B_1 < \infty$. So by Doob’s inequality
\[
\mathbb{P}\left(\sup_{0 \leq s \leq T_*} |M(s)|_1^2 > r^2 \right) \leq CT_* r^{-2} \nu^{-2\kappa}, \quad \forall r > 0.
\]

Let us choose
\[
T_* = \nu^{-b}, \quad b \in (0, 1),
\]

Therefore, we have
where b will be specified later. Then $1 \leq T_\ast \leq \frac{1}{2\nu}$ if ν is sufficiently small, so due to (4.10)

$$
P(Q_3) \geq 1 - \gamma, \quad Q_3 = \{ \sup_{0 \leq \tau \leq T_\ast} \| M(\tau) \|_1 \leq C_4(\gamma) \nu^{-\kappa}/\sqrt{T_\ast} \},
$$

for a suitable $C_4(\gamma)$ (and for $\nu \ll 1$); thus $P(Q_2 \cap Q_3) \geq 2\gamma$. Since $||v(\Delta \nu)||_1 \leq C\|v\|_\infty$ by (A.2) and $\|\sum b_\Delta \nu d\|_1 \leq C$, then in view of (4.8) and the definition of Q_3,

$$
\|v^\omega(\tau)\|_1 \leq C(\gamma)(\nu^{1-3\varepsilon}T_\ast + \nu^{2-\kappa}T_\ast^{1/2}), \quad \forall \tau \in [0, T_\ast], \quad \forall \omega \in Q_2 \cap Q_3.
$$

\textbf{Step 2:} For any $x \in K^n$, denoting $R(t) = |v(t, x)|^2$, $a(t) = \Delta v(t, x)$ and $\xi(t) = \xi(t, x)$, we write the equation for $v(t) = v(t, x)$ as an Itô process:

$$
dv(t) = (-iRv + \nu a)dt + \sqrt{\nu} d\xi(t). \quad (4.12)
$$

Setting $w(t) = e^{-\int_0^t R(s)ds}v(t)$, we observe that w also is an Itô process, $w(0) = v_0$ and $dw = e^{-\int_0^t R(s)ds}dw - iRe dt$. From here and (4.12),

$$
w(t) = v_0 + \nu \int_0^t e^{\int_0^t R(s)ds}a(s)ds + \sqrt{\nu} \int_0^t e^{\int_0^t R(s)ds}d\xi(s).
$$

So $v(t \land \tau_2) = v(t \land \tau_2, x)$ can be written as

$$
v(t \land \tau_2, x) = I_1(t \land \tau_2, x) + I_2(t \land \tau_2, x) + I_5(t \land \tau_2, x), \quad (4.13)
$$

where

$$
I_1(t, x) = e^{-i\int_0^t |v(s, x)|^2ds}v_0, \quad I_2(t, x) = \nu \int_0^t e^{-i\int_0^t |v(s', x)|^2ds'}\Delta v(s, x)ds,
$$

$$
I_5(t, x) = \sqrt{\nu} e^{-i\int_0^t |v(s', x)|^2ds'}\int_0^t e^{i\int_0^t R(s')ds'}d\xi(s, x).
$$

Our next goal is to obtain a lower bound for $|v(T_\ast)|_1$ when $\omega \in Q_2 \cap Q_3$, using the above decomposition (4.13).

\textbf{Step 3:} We first deal with the stochastic term $I_3(t)$. For $0 \leq s \leq s_1 \leq T_\ast \land \tau_2$ we set

$$
W(s, s_1, x) := \exp(i \int_{s_1}^s |v(s', x)|^2ds'), \quad F(s, s_1, x) := \int_{s_1}^s |v(s', x)|^2ds'. \quad (4.14)
$$

then $W(s, s_1, x) = \exp \{ iF(s, s_1, x) \}$. The functions F and W are periodic in x, but not odd. Speaking about them we understand $\| \cdot \|_m$ as the non-homogeneous Sobolev norm, so $\|F\|_m = \|F\|_0 + \|(-\Delta)^{m/2}F\|_0$, etc. We write I_3 as

$$
I_3(t) = \sqrt{\nu} W(0, t \land \tau_2, x) \int_0^{t \land \tau_2} W(0, s, x)ds. \quad (4.15)
$$

In view of (A.1),

$$
|\exp(iF(s, s_1, \cdot))|_k \leq C_k(1 + |F(s, s_1, \cdot)|_\infty)^{k-1} |F(s, s_1, \cdot)|_k, \quad k \in \mathbb{N}. \quad (4.16)
$$

For any $s \in J = [0, T_\ast \land \tau_2]$, by (A.3) and the definition of τ_2, we have that $v := v(s)$ satisfies

$$
|v|^2 \leq C|v|_\infty \leq C|v|_1^2 \leq C|v|_\infty \|v\|_1, \quad \|v\|_1^2 \leq C'\|v\|_\infty^2 \left(\sum_{s \in J} v(s')^2 \right)^{2-k/m} \quad (4.17)
$$

(this assertion is empty if $\tau_2 = 0$ since then $J = \emptyset$). So for $s, s_1 \in J$, $|F(s, s_1, \cdot)|_\infty \leq |s_1-s| \sup_{s' \in J} |v(s')|_\infty^2, \quad |F(s, s_1, \cdot)|_k \leq C \nu^{-k} |s_1-s| \left(\sup_{s' \in J} |v(s')|_\infty \right)^{2-k/m}$ for $k \leq m$. Then, due to (4.16),

$$
\|W(0, s \land \tau_2, \cdot)\|_1 \leq C'T_\ast \nu^{-k}(1 + \sup_{s \in J} |v(s')|_\infty^2). \quad (4.18)
$$
Consider the stochastic integral in (4.15),
\[N(t, x) = \int_0^t W(0, s, x) d\xi(s, x). \]
The process \(t \mapsto W(0, t, x) \) is adapted to the filtration \(\{ \mathcal{F}_t \} \), and
\[dW(0, t, x) = i\nu(t, x)W(0, t, x)dt. \]
So integrating by parts (see, e.g., [11, Proposition IV.3.1]) we re-write \(N \) as
\[N(t, x) = W(0, t, x)\xi(t, x) - i \int_0^t \xi(s, x)|v(s, x)|^2 W(0, s, x)ds, \]
and we see from (4.15) that
\[I_3(t) = \sqrt{2} \xi(t \wedge \tau_2, x) + i \sqrt{\nu} \int_0^{t \wedge \tau_2} \xi(s, x)|v(s, x)|^2 W(s, t \wedge \tau_2, x)ds. \]
Due to (1.2) and since \(B_m < \infty \), the Wiener process \(\xi(t, x) \) satisfies
\[\mathbb{E}[|\xi(T_x, x)|^2] \leq CB_1 T_x, \]
and
\[\mathbb{E} \sup_{0 \leq t \leq T_x} \xi(t, x) \leq \sum_{d \in \mathbb{N}} b_d (\mathbb{E} \sup_{0 \leq t \leq T_x} |\beta_d(t)\varphi_d|_\infty) \leq CB_1 \sqrt{T_x}, \]
(we recall that \(B_x = \sum_{d \in \mathbb{N}} |b_d| < \infty \). Therefore,
\[P(Q_4) \geq 1 - \gamma, \quad Q_4 = \{ \sup_{0 \leq t \leq T_x} (|\xi(t)|_1 \vee |\xi(t)|_\infty) \leq CT_x^{1/2}\}, \]
with a suitable \(C = C(\gamma) \). Let
\[\tilde{Q} = \bigcap_{i=1}^4 Q_i, \]
then \(P(\tilde{Q}) \geq \gamma \). As \(\tau_2 = T_x \) for \(\omega \in \tilde{Q} \), then due to (4.17), (4.18), (4.19) and (A.3), for \(\omega \in \tilde{Q} \) we have
\[\sup_{0 \leq t \leq T_x} \| I_3^\nu(t) \|_1 \leq \sqrt{\nu} \sup_{0 \leq t \leq T_x} \left(\| \xi^\nu(t) \|_1 + \int_0^t \| \xi^\nu(s) |v^\nu(s)|^2 W^\nu(s, t) \|_1 ds \right) \leq CT_x^{3/2}\nu^{-\kappa}. \]
\[\text{Setp 4: We then consider the term } I_2 = \nu \int_0^{t \wedge \tau_2} \tilde{W}(s, t \wedge \tau_2, x) \Delta v(s, x) W(s, t \wedge \tau_2, x) ds. \text{ To bound its } H^1 \text{-norm we need to estimate } \| W \Delta v \|_1. \]
Since
\[\| \partial_x^a W \partial_x^b v \|_0 \leq C \| W \|_{1/3}^{1/3} \| v \|_{3/2}^{1/3} \| v \|_\infty^{1/3} \text{ if } |a| = 1, |b| = 2, \]
(see [14, Proposition 3.6]), we have
\[\| W \Delta v \|_1 \leq C (\| v \|_{3} + \| W \|_{1/3}^{1/3} \| v \|_{3/2}^{1/3} \| v \|_\infty^{1/3}). \]
Then in view of (4.16) and (4.8), for \(\nu \in \tilde{Q} \)
\[\| W \Delta v \|_1 \leq C (\nu^{-3\kappa} + (T_x^{3}\nu^{-3\kappa})^{1/3}\nu^{-2\kappa}) \leq C \nu^{-3\kappa} T_x, \]
and accordingly
\[\sup_{0 \leq t \leq T_x} \| I_2^\nu(t) \|_1 \leq \nu \sup_{0 \leq t \leq T_x} \int_0^t \| W^\nu(s, T_x) \Delta v^\nu(s) \|_1 ds \leq C \nu^{1-3\kappa} T_x^2, \quad \forall \omega \in \tilde{Q}. \]
\[\text{Setp 5: Now we estimate from below the } H^1 \text{-norm of the term } I_1^\nu(T_x, x), \omega \in \tilde{Q}. \]
Writing it as \(I_1^\nu(T_x, x) = e^{-iT_x|v_0|^2} e^{-i \int_0^{T_x} \mathcal{E}(s, x) ds} v_0(x) \) we see that
\[\| I_1^\nu(T_x) \|_1 \geq \| \nabla (\exp(-iT_x|v_0|^2) v_0) \|_0 - \| \nabla (\exp(-i \int_0^{T_x} \mathcal{E}(s) ds)) v_0 \|_0 - \| v_0 \|_1. \]
This first term on the r.h.s is
\[T_* \| v_0 \|_{L^2} \| \nabla v_0 \|_{L^2} \geq C T_* \| v_0 \|_{L^2}^2 \geq C T_* \| v_0 \|_2^2 \geq C T_* \nu^{6\kappa}, \quad C > 0, \]
where we have used the fact that \(u_{1,\kappa} = 0 \), Poincaré’s inequality and (4.7).

For \(\omega \in \hat{Q} \) and \(0 \leq s \leq T_* \), in view of (4.11), the second term is bounded by
\[\| (\int_0^{T_*} \nabla \delta(t) \text{d}s) v_0 \|_2 \leq \sup_{0 \leq s \leq T_*} \| \delta(t) \|_1 \leq C T_* (\nu^{1-3\kappa} T_* + \nu^{2-\kappa} T_*^{1/2}). \]

Therefore, using (4.11), we get for the term \(I_{s,1}^2(T_*) \) the following lower bound:
\[\| I_{s,1}^2(T_*) \|_1 \geq C (\nu^{6\kappa} T_* - T_* (\nu^{1-3\kappa} T_* + \nu^{2-\kappa} T_*^{1/2}) - \nu^{-\kappa}). \]

Recalling \(T_* = \nu^{-b} \) we see that if we assume that
\[
\begin{cases}
 6\kappa - b < -\kappa, \\
 6\kappa - b < 1 - 3\kappa - 2b, \\
 6\kappa - b < 1/2 - \kappa - \frac{1}{2}b,
\end{cases}
\]
(4.22)
then for \(\omega \in \hat{Q} \),
\[\| I_{s,1}^2(T_*) \|_1 \geq C \nu^{6\kappa} T_*, \quad C > 0, \]
(4.23)
provided that \(\nu \) is sufficiently small.

Step 6: Finally, remembering that \(\tau_2 = T_* \) for \(\omega \in \hat{Q} \) and combining the relations (4.20), (4.21) and (4.23) to estimate the terms of (4.13), we see that for \(\omega \in \hat{Q} \) we have
\[\| \nu^\alpha(T_*) \|_1 \geq \| I_{s,1}^2(T_*) \|_1 - \| I_{s,2}^2(T_*) \|_1 \geq \| I_{s,2}^2(\tau_2) \|_1 \geq \frac{1}{2} C_1 \nu^{6\kappa-\beta}, \quad C_1 > 0, \]
(4.24)
if we assume in addition to (4.22) that
\[6\kappa - b < \frac{1}{2} - \kappa - \frac{5}{2}b, \]
(4.25)
and \(\nu \) is small. Note that this relation implies the last two in (4.22).

Combining (4.8) and (4.24) we get that
\[\nu^{\beta + 7\kappa} \leq C_{\text{red}}^{-1}, \]
(4.26)
for all sufficiently small \(\nu \). Thus we have obtained a contradiction with the existence of the sets \(Q^N \) as at the beginning of the proof if (for a chosen \(\kappa \)) we can find a \(b \in (0,1) \) which meets (4.22), (4.25) and
\[-b + 7\kappa < 0. \]

Noting that this is nothing but the first relation in (4.22), we see that we have obtained a contradiction if
\[\kappa < \frac{1}{6}b, \quad \kappa < \frac{1}{10} - \frac{1}{10}b, \]
for some \(b \in (0,1) \). We see immediately that such a \(b \) exists if and only if \(\kappa < \frac{1}{10} \).

Amplification. If we replace the condition \(m \geq 3 \) with the weaker assumption
\[\mathbb{R} \ni m \geq 2, \]
then the statement (4.2) remains true for \(0 < \kappa < \kappa(n,m) \) with a suitable (less explicit) constant \(\kappa(n,m) > 0 \). In this case we obtain a contradiction with the assumption (4.3) by deriving a lower bound for \(\| \nu(T_*) \|_\alpha \), where \(\alpha = \min\{1,m-2\} \), using the decomposition (4.13). The proof remains almost identical except that now, firstly, we bound \(\| I_2 \|_\alpha \) (\(\alpha < 1 \)) from above using the following estimate from [12, Theorem 5, p. 206] (also see there p. 14):
\[\| W \Delta u \|_\alpha \leq C \| u \|_{2+\alpha} (\| W \|_\infty + \| W \|_\infty^{1-\frac{\alpha}{2\alpha}} \| W \|_2^{\frac{\alpha}{2\alpha}}); \]
and, secondly, estimate \(\| F_1^r (T_*) \|_\alpha (\alpha < 1) \) from below as

\[
\| F_1^r (T_*) \|_\alpha \geq \| F_1^r (T_*) \|_2^{1+\alpha} \| F_2^r (T_*) \|_2^{1-\alpha},
\]

which directly follows from Sobolev’s interpolation. The lower bound for \(\| F_2^r (T_*) \|_1 \) in (4.23) stays valid, so to bound \(\| F_2^r (T_*) \|_\alpha (\alpha < 1) \) from below, we just need to estimate the upper bound of \(\| F_2^r (T_*) \|_2 \). Since \(F_2^r (T_*, x) = W(0, T_*) v(x) \) (see (4.14)), then in view of (A.3) we have

\[
\| F_2^r (T_*) \|_2 \leq C (\| W(T_*) \|_\infty \| v \|_2 + \| W(T_*) \|_2 \| v \|_\infty).
\]

So by (4.18), \(\| F_2^r (T_*) \|_2 \leq C_{\gamma, \nu} \nu^{-2c} T_0^2 \). Therefore,

\[
\| F_2^r (T_*) \|_\alpha \geq C_{\gamma, \nu} \left(\nu^{-2c} T_0^2 \right)^{2-\alpha} \geq C_{\gamma, \nu} \nu^{(14-8\alpha) \alpha - \beta \alpha}.
\]

We can then complete the proof by an argument, similar to that at Step 6.

Remark 15. If eq. (1.1) is mixing and \(u(t) \) is a stationary solution, then if \(E \| u(t) \|_2 \leq \nu^{-2c} \), we have for \(m \geq 3 \),

\[
\mathbb{P} \left\{ \sup_{t_0 \leq t \leq t_0 + T_0 \nu^{-1}} \| u(t) \|_m \geq K \nu^{-m \alpha} \right\} \to 1 \quad \text{as} \quad \nu \to 0.
\]

Indeed, due to (3.2), in the stationary case, we can choose \(Q_2 \) as in (4.6) such that for the stopping time \(\tilde{T}_1 \) defined in (??), \(\tilde{T}_1 (\omega) = 0 \), if \(\omega \in Q_2 \). Then the same argument gives the above assertion.

5. **Lower bounds for time-averaged Sobolev norms**

In this section we prove the assertion (2) of Theorem 1. We provide a space \(H^r \), \(r \geq 0 \), with the scalar product

\[
\langle u, v \rangle_r := \| (-\Delta)^{\frac{r}{2}} u, (-\Delta)^{\frac{r}{2}} v \|,
\]

corresponding to the norm \(\| u \|_r \). Let \(u(t) = \sum u_d(t) \mathcal{A}_d \) be a solution of eq. (1.1). Applying Itô’s formula to the functional \(\| u \|_m \), we have for any \(0 \leq t < t' < \infty \) the relation

\[
\| u(t') \|_m^2 = \| u(t) \|_m^2 + 2 \int_t^{t'} \langle u(s), \nu \Delta u(s) - i |u(s)|^2 u(s) \rangle_m ds + 2 \nu B_m (t' - t) + 2 \sqrt{\nu} M(t, t'),
\]

where \(M \) is the stochastic integral

\[
M(t, t') := \int_t^{t'} \sum_{d \in \mathbb{N}} b_d |d|^{2m} \langle u_d(s), d \mathcal{A}_d(s) \rangle.
\]

Let us fix a \(\gamma \in (0, \frac{1}{2}) \). Due to Theorem 8 and 14, for small enough \(\nu \) there exists an event \(\Omega_1 \subset \Omega \), \(\mathbb{P} (\Omega_1) \geq 1 - \gamma/2 \), such that for all \(\omega \in \Omega_1 \) we have:

a) \(\sup_{t \in [0, T]} |u^\omega (t)|_\infty \leq C (\gamma) \), for a suitable \(C (\gamma) > 0 \);

b) there exist \(t_\omega \in [0, \frac{T}{2}] \) and \(t'_\omega \in [\frac{T}{2}, \frac{T}{2}] \) satisfying

\[
\| u^\omega (t_\omega) \|_m, \| u^\omega (t'_\omega) \|_m \geq \nu^{-m \alpha}.
\]

Since for the martingale \(M(0, t) \) we have that

\[
\mathbb{E} |M(0, \frac{1}{2})|^2 \leq B_m \mathbb{E} \int_0^{\frac{1}{2}} |u(s)|_m^2 ds =: X_m,
\]

then by Doob’s inequality

\[
\mathbb{P} (\Omega_2) \geq 1 - \frac{\gamma}{2}, \quad \Omega_2 = \left\{ \sup_{t \in [0, T]} |M(0, t)| \leq c (\gamma) X_1^{1/2} \right\}.
\]
Now let us set \(\hat{\Omega} = \Omega_1 \cap \Omega_2 \). Then \(P(\hat{\Omega}) \geq 1 - \gamma \) for small enough \(\nu \), and for any \(\omega \in \hat{\Omega} \) there are two alternatives:

i) there exists a \(t^o_\nu \in [0, \frac{1}{\nu}] \) such that \(\|u^\omega(t^o_\nu)\|_m \geq \frac{4}{3} \nu^{-m} \). Then from (5.1) and (5.2) in view of (A.4) we get

\[
\frac{8}{9} \nu^{-2m\kappa} + 2\nu \int_{t^o_\nu}^{\nu^\kappa} \|u^\omega(s)\|^2_{m+1} ds \leq C(m, \gamma) \nu \int_{t^o_\nu}^{\nu^\kappa} \|u^\omega(s)\|^2_m ds + 2B_m + 2\sqrt{\nu} \nu \nu^{-m} X_{m/2}.
\]

ii) There exists no \(t \in [0, \frac{1}{\nu}] \) with \(\|u^\omega(t)\|_m = \frac{1}{3} \nu^{-m} \). In this case, since \(\|u^\omega(t)\|_m \) is continuous with respect to \(t \), then due to (5.2) \(\|u^\omega(t)\|_m > \frac{4}{3} \nu^{-m} \) for all \(t \in [0, \frac{1}{\nu}] \), which leads to the relation

\[
\frac{1}{27} \nu^{-2m\kappa} \leq C'(m, \gamma) \frac{2}{\nu} \int_{t^o_\nu}^{\nu^\kappa} \|u^\omega(s)\|^2_m ds.
\]

In both cases for \(\omega \in \hat{\Omega} \) we have:

\[
\frac{1}{27} \nu^{-2m\kappa} \leq C'(m, \gamma) \frac{2}{\nu} \int_{t^o_\nu}^{\nu^\kappa} \|u^\omega(s)\|^2_m ds + 2B_m + \nu \nu^{-m} + X_m.
\]

This implies that

\[
\mathbb{E}\nu \int_{t^o_\nu}^{\nu^\kappa} \|u^\omega(s)\|^2_m ds \geq C' \nu^{-2m+1}
\]

(for small enough \(\nu \), and gives the lower bound in (1.5). The upper bound follows directly from Theorem 9.

Proof of Corollaries 3 and 4: Since \(B_k < \infty \) for each \(k \) and all coefficients \(b_k \) are non-zero, then eq. (1.1) is mixing in the spaces \(H^M \), see Theorem 10. As the stationary solution \(v^\mu \) satisfies Corollary 12 with any \(m \), then for each \(\mu \in \mathbb{N} \) and \(M > 0 \), interpolating the norm \(\|u\|_\mu \) via \(\|u\|_0 \) and \(\|u\|_m \) with \(m \) sufficiently large we get that the stationary measure \(\mu^\nu \) satisfies

\[
\int \|u\|_\mu^M \mu^\nu(du) < \infty \quad \forall \mu \in \mathbb{N}, \forall M > 0.
\]

(5.3)

Similar, in view of (2.5) and Theorem 8,

\[
\mathbb{E}\|u(t; u_0)\|_\mu^M \leq C_\nu(u_0) \quad \forall t \geq 0,
\]

(5.4)

for each \(u_0 \in C^\infty \) and every \(\mu \) and \(M \) as in (5.3). Now let us consider the integral in (1.5) and write it as

\[
J_t := \nu \int_{t^o}^{t+\nu^{-1}} \mathbb{E}\|u(s)\|_m^2 ds.
\]

Replacing the integrand in \(J_t \) with \(\mathbb{E}(\|u(s)\|_m \wedge N)^2 \), \(N \geq 1 \), using the convergence

\[
\mathbb{E}(\|u(s; v_0)\|_m \wedge N)^2 \to \int (\|u\|_m \wedge N)^2 \mu^\nu(du) \quad as \quad s \to \infty \quad \forall N,
\]

(5.5)

which follows from Corollary 11, and the estimates (5.3), (5.4) we get that

\[
J_t \to \int \|u\|_m^2 \mu^\nu(du) \quad as \quad t \to \infty.
\]

(5.6)

This convergence and (1.5) imply the assertion of Corollary 3.

Now convergence (5.5) jointly with estimates (5.3), (5.4) and (1.6) imply Corollary 4.
Indeed, to verify (A.1) it suffices to check that for any non-zero multi-indices \(\beta_1, \ldots, \beta_l \), where \(1 \leq l' \leq l \) and \(|\beta_1| + \cdots + |\beta_{l'}| = l \), we have

\[
\| \partial^\beta_x F \cdots \partial^\beta_{l'} v F \|_0 \leq C F_\infty^{l-1} \| F \|_1.
\]

(A.2)

But this is the assertion of Lemma 3.10 in [14]. Similarly, see [14, Proposition 3.7] (this relation is known as Moser’s estimate). Finally, since for \(|\beta| \leq m \) we have \(|\partial^\beta_x v|_{2m/|\beta|} \leq C |v|_{\infty}^{2 - |\beta|/m} |v|_{\infty}^{2/m} \) (see relation (3.17) in [14]), then

\[
\| \| v \|_{m}^2, v \|_{m} \| \leq C_m \| v \|_{m}^{2m}, \quad \| v \|_{m} \leq C'_m \| v \|_{\infty}^{2m+4}.
\]

(A.4)

Appendix B. Proof of Theorem 9

Applying Ito’s formula to a solution \(v(\tau) \) of eq. (2.1) we get a slow time version of the relation (5.1):

\[
\| v(\tau) \|_m^2 = \| v_0 \|_m^2 + 2 \int_0^\tau \left(- \| v \|_{m+1}^2 - \nu^{-1} \| i v \|_{m} \right) ds + 2B_m \tau + 2M(\tau),
\]

(B.1)

where \(M(\tau) = \int_0^\tau \sum \bar{b}_{ij} d\| v \|_{ij} \). Since in view of (A.4)

\[
\mathbb{E} \| v \|_{m}^2, v \|_{m} \| \leq C_m \left(\mathbb{E} \| v \|_{m+1}^2 \right)^{m/2},
\]

then denoting \(\mathbb{E} \| v(\tau) \|_m^2 = g_m(\tau), \) \(r \in \mathbb{N} \cup \{ 0 \} \), taking expectation of (B.1), differentiating the result and using (2.3), we get that

\[
\frac{d}{d\tau} g_m \leq -2g_{m+1} + C_m \nu^{-1} g_{m+1} + 2B_m \leq -2g_{m+1} \left(1 - C'_m \nu^{-1} g_{m+1} + 2B_m \right),
\]

(B.2)

which is negative if \(\nu \ll 1 \). So if

\[
g_m(\tau) < (2\nu^{-1} C'_m)^m
\]

(B.4)

at \(\tau = 0 \), then (B.4) holds for all \(\tau \geq 0 \) and (2.4) follows. If \(g_m(0) \) violates (B.4), then in view of (B.2) and (B.3), for \(\tau \geq 0 \), while (B.4) is false, we have that

\[
\frac{d}{d\tau} g_m \leq -C_m g_m^{m+1} + 2B_m,
\]

which again implies (2.4) (see details of this argument in the proof of Theorem 2.2.1 in [2]). Note that in view of (B.2),

\[
\frac{d}{d\tau} g_m \leq -g_m + C_m (\nu, \| v_0 \|_{\infty}, B_m),
\]

This relation immediately implies (2.5).

Now let us return to eq. (B.1). Using Doob’s inequality and (2.4) we find that

\[
\mathbb{E} (\sup_{0 \leq \tau \leq T} |M(\tau)|^2) \leq C < \infty.
\]

Next, applying (A.4) and Young’s inequality we get that

\[
\int_0^\tau \left(- \| v \|_{m+1}^2 - \nu^{-1} \| i v \|_{m} \right) ds \leq C_m \int_0^\tau \| v \|_{\infty}^{2m+3} ds, \quad \forall 0 \leq \tau \leq T.
\]
Finally, using in (B.1) the last two displayed formulas jointly with (2.3) we obtain (2.6).

APPENDIX C. LOWER BOUND FOR C^m-NORMS OF SOLUTIONS

In this appendix we work with eq. (2.1), in the time scale τ. Our goal is to prove the following result:

Theorem 16. If $m \geq 2$ is an integer and $\kappa < \frac{1}{12}$, then for any $\tau_0 \geq 0$ and $\tau' > 0$, every solution $u(\tau, x)$ of (2.1) with a smooth initial data $u_0(x)$ satisfies

$$P \left\{ \sup_{\tau_0 \leq \tau \leq \tau_0 + \tau'} |u(\tau)|_{C^m} \geq K\nu^{-\kappa m} \right\} \to 1 \quad \text{as} \quad \nu \to 0,$$

for each $K > 0$.

Proof. Step 1 (preliminaries): Consider the complement to the event in (C.1):

$$Q = Q^c = \left\{ \sup_{\tau_0 \leq \tau \leq \tau_0 + \tau'} |u(\tau)|_{C^m} < K\nu^{-\kappa m} \right\}.$$

To prove (C.1) we assume that there exists a $\gamma > 0$ and a sequence $\nu_j \to 0$ such that

$$P(Q^{\nu_j}) \geq \gamma_j \quad \text{for} \quad j = 1, 2, \ldots,$$

and will derive a contradiction. Below we write Q^{ν_j} as Q and always suppose that $\nu \in \{\nu_1, \nu_2, \ldots\}$.

Without lost of generality we assume that $\tau_0 = 0$ and $\tau' = 1$. The constants below may depend on K, on the norms $|u_0|_{\infty}$ and $|u_0|_1$, but not on ν.

Let us denote $J_1 = [0, 1]$. Due to Theorem 8,

$$P(Q_1) \geq 1 - \gamma, \quad Q_1 = \left\{ \sup_{\tau \in J_1} |u(\tau)|_{C^\infty} \leq C_1(\gamma) \right\}$$

uniformly in ν, for a suitable $C_1(\gamma)$. Then, due to the Hadamard-Landau-Kolmogorov interpolation inequality,

$$|u(t)|_{C^m} \leq C_\mu(\gamma)\nu^{-\kappa \mu} \quad \forall \omega \in Q \cap Q_1, \quad t \in J_1,$$

for any integer $\mu \in [0, m]$ (and any $\nu \in \{\nu_1, \nu_2, \ldots\}$).

Denote $J_2 = [0, \frac{1}{2}]$ and consider the stopping time

$$\tau_1 = \inf\{\tau \in J_2 : |u(\tau)|_{C^\infty} \geq K\nu^{-2\kappa} \}.\quad (C.4)$$

Then $\tau_1 \leq \frac{1}{2}$ and $\tau_1 = \frac{1}{2}$ for $\omega \in Q \cap Q_1$. So due to (3.1) with $\Gamma = K\nu^{-2\kappa}$, for any $\chi > 0$ we have

$$E\left(\int_{J_2} \mathbb{I}_{[0, \chi]}(\|u(s)\|_0)ds \mathbb{I}_{Q^{\nu}, Q_1}(\omega) \right) = E\left(\int_0^{\min(\frac{1}{2}, \tau_1)} \mathbb{I}_{[0, \chi]}(\|u(s)\|_0)ds \mathbb{I}_{Q^{\nu}, Q_1}(\omega) \right) \leq E\int_0^{\min(\frac{1}{2}, \tau_1)} \mathbb{I}_{[0, \chi]}(\|u(s)\|_0)ds \leq E\int_0^{\tau_1} \mathbb{I}_{[0, \chi]}(\|u(s)\|_0)ds \leq CK\nu^{-2\kappa} \chi.$$

Consider the event

$$\Lambda = \{ \omega \in Q \cap Q_1 : \|u(s)\|_0 \leq \chi \quad \forall s \in J_2 \}.$$

Due to the above,

$$P(\Lambda) \leq 2E\left(\int_{J_2} \mathbb{I}_{[0, \chi]}(\|u(s)\|_0)ds \mathbb{I}_{Q^{\nu}, Q_1}(\omega) \right) \leq 2C\nu^{-2\kappa} \chi.$$

So $P(\Lambda) \leq \gamma$ if we choose

$$\chi = c_3(\gamma)\nu^{2\kappa}, \quad c_3(\gamma) = \gamma(2CK)^{-1}.\quad (C.5)$$

Consider the event

$$Q_2 = (Q \cap Q_1) \setminus \Lambda, \quad P(Q_2) \geq \gamma.$$
For χ as in (C.5) consider the stopping time
\[\tau_2 = \inf\{ \tau \in J_1 : |u(s)|_0 \geq \chi \}. \tag{C.6} \]
Then $\tau_2 \leq \frac{1}{2}$ for all $\omega \in Q_2$. Now we consider the function $v(\tau, x) := u^\omega(\tau_2 + \tau, x)$, $\tau \in J_2 = [0, \frac{1}{2}]$. It satisfies the equation (2.1) with modified Wiener processes and with initial data $v_0(x) = u^\omega(\tau_2, x)$.

Step 2 (the radius-function $|v|((\tau, x))$: If $\omega \in Q_2$, then $|v_0(0)|_\infty \geq \chi$. We define the stopping time $\tau_1 \in J_2$ by relation (C.4) with u replaced by v. Then $\tau_1 \leq \frac{1}{2}$ and $\tau_1 = \frac{1}{2}$ for $\omega \in Q_2$.

Since $v_0(0) = 0$, we can find a point $x_0 \in K^n \subset \mathbb{R}^n$ such that $|v_0(x_0)| = \chi$. Considering the ray R in \mathbb{R}^n through this point, $R := \mathbb{R}, x_0 \sim \mathbb{R}_+$, we, firstly, find there the smallest point x_2 where $|v_0(x_2)| = \chi$, and, secondly, find on $[0, x_2]$ the biggest point x_1 such that $|v_0(x_1)| = \frac{1}{2} \chi$. We are interested in the behaviour of $v^\omega(t, x)$ for x in the segment $L = L(v_0^\omega) = [x_1^\omega, x_2^\omega] \subset \{ x : \frac{1}{2} \chi \leq |v_0(x)| \leq \chi \} \cap K^n$, $L \subset R$.

We will study this behaviour for τ from a time-interval $J_2 = [0, \tau_*]$ such that there still
\[\frac{1}{4} \chi \leq |v^\omega(\tau, x)|_L \leq 2 \chi \quad \text{for} \quad x \in L. \tag{C.7} \]

Applying Ito’s formula to $I(\tau, x) = |v(\tau \wedge \tau_1, x)|^2$ we have
\[
I(\tau, x) = I(0, x) + \int_0^\tau I_{(s \leq \tau_1)} \left[-2\langle \Delta v(s, x), v(s, x) \rangle + 2 \sum_d b_d^2 \|\varphi_d(x)\|^2 \right] ds \\
\quad = 2 \int_0^\tau I_{(s \leq \tau_1)} \sum_d b_d \varphi_d(x) \langle v(s, x), d\beta_d(s) \rangle = M(\tau, x). \tag{C.8}
\]

Now we extend the segment $L = [x_1, x_2] \subset R \sim \mathbb{R}_+$ to the segment $L^* = [x_1, \max(x_2, x_1 + 1)] \subset \mathbb{R}_+$, $1 \leq |L^*| \leq \sqrt{n\pi}$, and consider the space $H^\rho = H^\rho(L^*)$, $1/2 < \rho \leq 1$. We will regard I as a semimartingale $I(\tau) \in H^\rho$ and M as a martingale in H^ρ. As
\[|\varphi_d(\cdot)v(s, \cdot)|_{H^\rho} \leq C_\rho |\varphi_d|_{C^1} |v(s, \cdot)|_{H^\rho}, \]
and since for $s \leq \tau_1$
\[|v(s, \cdot)|_{H^\rho} \leq |v(s, \cdot)|_{L^2(L^*)}^{\rho} \|v(s, \cdot)|_{H^1(L^*)} \leq C |v(s, \cdot)|_{H^\rho} \|v(s, \cdot)|_{C^1(K^n)} \leq C |v(s, \cdot)|_{H^\rho} \leq C \sqrt{n} \nu^{-\rho \kappa}, \]
noting that
\[\sup_{0 \leq \tau \leq 1} |v(\tau)|_\infty \leq \sup_{0 \leq \tau \leq 1} |u(\tau)|_\infty, \]
then in view of Theorem 8 we have
\[\mathbb{E}|M(\tau)|_{H^\rho}^2 \leq C_\rho \int_{\tau_*}^{\tau} \nu^{-2\rho \kappa} \sum_d |d|^2 ds = C_\rho B_1 \nu^{-2\rho \kappa} \tau. \tag{C.9} \]

So by Doob’s inequality,
\[\mathbb{P} \left(\sup_{0 \leq \tau \leq \tau_*} |M(\tau)|_{H^\rho} \geq r^2 \right) \leq C_\rho \nu^{-2\rho \kappa} \tau r^{-2}. \]

Since $H \in C^0(L^*)$, then
\[\mathbb{P}(Q_{\alpha}) \geq 1 - \gamma, \quad Q_{\alpha} = \{ \sup_{0 \leq \tau \leq \tau_*} |M(\tau)|_{C^0(L^*)} \leq C^3(\gamma) \nu^{-\rho \kappa} \sqrt{\tau}, \tag{C.10} \]
for a suitable $C^3(\gamma)$ (depending on ρ).

Now let us choose
\[\tau_* = c^3(\gamma) \nu^{2(4\rho)\kappa} \leq \frac{1}{2}, \tag{C.11} \]
Then from (C.8) and (C.3),

$$|I(\tau, x) - I(0, x)| \leq C_\gamma (\tau, \nu^{-2k} + \nu^{-\alpha} \sqrt{\tau}) \leq \frac{1}{8} \chi^2, \quad \tau \in J_3 = [0, \tau_*], \quad x \in L, \quad (C.12)$$

for \(\omega \in Q_2 \cap Q_3 \), if \(e^\delta(\gamma) \ll 1 \). This implies (C.7) for \(\omega \in Q_2 \cap Q_3 \) with \(\tau_* \) as in (C.11), since \(|v_0| \geq \frac{1}{2} \chi| on L.

Step 3 (the angles): Finally we examine the behaviour of the angles \(\text{Arg } \nu^\omega(\tau, x) \) for \(x \) in \(L(v_0) \). To do this we consider the angle-function on the annulus

$$\text{Ann} = \{ z : \frac{1}{4} \chi \leq |z| \leq 2 \chi \},$$

i.e.

$$\Phi : \text{Ann} \to S^1, \quad z \mapsto \text{Arg } z,$$

and define the stopping time \(\tau_x = \inf \{ \tau \geq 0 : \nu^\omega(\tau, x) \in \mathbb{C} \setminus \text{Ann} \} \). Then \(\tau_x = 0 \) if \(x = 0 \) and \(\tau_x \geq \tau_* \) if \(x \in L(v_0) \) and \(\omega \in Q_2 \cap Q_3 \). For a fixed “past” \(v_0 \) and \(x \in L(v_0) \) let us consider the random process \(\nu^\omega(\tau) = \text{Arg } \nu^\omega(\tau \wedge \tau_x, x) \). Applying it to Ito’s formula, we get:

$$\varphi_x(\tau) = \varphi_x(0) + \nu^{-1} \int_0^{\tau \wedge \tau_x} d\Phi(v(s, x))(\|v\|^2 v(s, x)) ds$$

$$= \int_0^{\tau \wedge \tau_x} d\Phi(v(s, x))(\Delta v(s, x)) + \sum_d b_{d, x}^2 d\Phi(v(s, x))(\varphi_d, x) ds + \sum_d b_{d, x} d\Phi(v(s, x))(\varphi_d, x) ds, \quad \tau \geq 0, \quad x \in L(v_0).$$

Let us denote the stochastic integral in the r.h.s. as \(N_x(\tau) \). It is convenient to regard \(\varphi_x(\tau) \) as a point in the real line rather than in \(S^1 \). To do that, if \(\tau_x = 0 \) for some \(x \in L \), we take \(\varphi_x^\omega(0) \in [0, 2\pi) \). Otherwise we take for \(\varphi_x^\omega(0) \) the value of \(\text{Arg } v_0^\omega(\tau) \) \(x \in [0, 2\pi) \), continuously extend it to a function \(\varphi_x^\omega(0) \) on \(L \), and then construct \(\varphi_x^\omega(\tau) \) from (C.13) by continuity.

Since

$$|d\Phi(z)| \leq C\chi^{-1}, \quad |d^2\Phi(z)| \leq C\chi^{-2} \forall z \in \text{Ann},$$

then for \(\omega \in Q_2 \cap Q_3 \) and for \(\tau \leq \tau_* \), the sum of the two deterministic integrals in the r.h.s. of (C.13) is bounded by

$$C_\gamma \tau \chi^{-1} \nu^{-2k} + \chi^{-2} \leq C_\gamma \nu^{(4+2\rho)k}.$$

Now consider the stochastic integral \(N_x(\tau) \). Since \(\mathbb{E}\|d\Phi(v(s, x))(\varphi_d)\|^2 \leq C\chi^{-2} \), then \(\mathbb{E}(N_x(\tau))^2 \leq C_\gamma \chi^{-2} \tau \). So for any \(x \in L \),

$$\mathbb{P}(Q_{\gamma}^1) \geq 1 - \gamma/2, \quad Q_{\gamma}^1 = \{ \sup_{0 \leq \tau \leq \tau_*} |N_x(\tau)| \leq C_\gamma \chi^{-1} \sqrt{\tau} \},$$

for a suitable \(C_{\gamma}^4 \). Let us define \(Q = Q_{\gamma}^1 \cap Q_4 \) and consider

$$\hat{Q} = Q_2 \cap Q_3 \cap Q_4, \quad \mathbb{P}(\hat{Q}) \geq \gamma.$$

For any \(\omega \in \hat{Q} \) and \(j = 1, 2 \) we have \(\tau_{x_j} \geq \tau_\ast \), and

$$d\Phi(v(s, x_j))(\|v\|^2 v(s, x_j)) = \|v(s, x_j)\|^2,$$

for \(0 \leq s \leq \tau_* \). Due to (C.12), \(\|v(s, x_1)\|^2 \geq \frac{1}{8} \chi^2 \) and \(\|v(s, x_2)\|^2 \leq \frac{1}{8} \chi \). Therefore in view of the Ito’s formula for \(v_x \), for any \(\omega \in \hat{Q} \),

$$\varphi_x(\tau_\ast) \geq \nu^{-1} \tau_\ast \frac{7}{8} \chi^2 - C_\gamma (\nu^{(4+2\rho)k} + \chi^{-1} \sqrt{\tau}),$$

$$\geq \frac{7}{8} C_{\gamma}^4(\gamma) C_\gamma(\nu^{(4+2\rho)k} + \nu^{(2+4\rho)k});$$

$$\varphi_x(\tau_\ast) \leq \frac{7}{8} C_{\gamma}^4(\gamma) C_\gamma(\nu^{(12+2\rho)k} + \nu^{2k}).$$

Since \(k < 1/16 \), then choosing \(\rho \) close to \(1/2 \) we achieve that

$$\varphi_x(\tau_\ast) - \varphi_x(\tau_\ast) \geq C(\gamma) \nu^{-1} \chi^{(12+2\rho)}, \quad (C.14)$$
ENERGY TRANSFER IN NLS

if $\nu \ll 1$. From the other hand, since for $\omega \in \hat{Q}, |v(\tau_*, x)|_{C^1} \leq K\nu^{-\kappa}$ and $|v(\tau_*, \cdot)|$ is $\geq \frac{1}{4}\chi$ on the segment L, then

$$|\nabla \text{Arg} v(\tau_*, \cdot)|_L \leq 4K\nu^{-\kappa}\chi^{-1} = C(\gamma)\nu^{-3\kappa}.$$

So for any $\omega \in \hat{Q}$ we must have $|\varphi_{x_1}(\tau_*) - \varphi_{x_2}(\tau_*)| \leq C(\gamma)\nu^{-3\kappa}$. Combining here and (C.14), we obtain

$$\nu^{-1+\kappa(15+2\rho)} \leq C(\gamma).$$

As for ρ we can take any number $>1/2$ and the last relation holds for arbitrarily small ν, then $\kappa \geq \frac{1}{16}$. This conclusion has been obtained for any ω from the event \hat{Q}, where $P\hat{Q} > \gamma$. The obtained contradiction with the assumption of the theorem proves the assertion (C.1).

\[\square\]

Acknowledgment

GH is supported by NSFC (Significant project No.11790273) in China and SK thanks the Russian Science Foundation for support through the grant 18-11-00032.

References

[1] A. Biryuk. Lower bounds for derivatives of solutions for nonlinear Schrödinger equations. Proceedings A of the Royal Society of Edinburgh, 139:237–251, 2009.
[2] A. Boritchev and S. Kuksin. One-dimensional turbulence and stochastic Burgers equation. MS of a book, 2020.
[3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Inv. Math., 181:39–113, 2010.
[4] U. Frisch. Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 1995.
[5] N. V. Krylov. Controlled Diffusion Processes. Springer, 1980.
[6] S. Kuksin. A stochastic nonlinear Schrödinger equation. I. A priori estimates. Tr. Mat. Inst. Steklov, 225:232–256, 1999.
[7] S. Kuksin. Spectral properties of solutions for nonlinear PDEs in the turbulent regime. GAFA, 9:141–184, 1999.
[8] S. Kuksin and V. Nersesyan. Stochastic CGL equations without linear dispersion in any space dimension. Stoch PDE: Anal. Comp., 1(3):389–423, 2013.
[9] S. Kuksin and A. Shiriikyan. Mathematics of Two-Dimensional Turbulence. Cambridge University Press, 2012.
[10] C.D. Levermore and M. Oliver. The complex Ginzburg-Landau equation as a model problem. Lectures in Applied Math., 31:141–189, 1996.
[11] D. Revuz and M. Yor. Continuous martingales and Brownian Motion. Springer, 2005.
[12] T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin and New York, 2011.
[13] A. Shirikyan. Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit. J. Math. Anal. Appl., 384:130–137, 2011.
[14] M. E. Taylor. Partial Differential Equations III. Applied Mathematical Sciences. Springer, 2011.

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING, CHINA
E-mail address: huangguan@tsinghua.edu.cn

INSTITUT DE MATHEMATIQUES DE JUSSEU–PARIS RIVE GAUCHE, CNRS, UNIVERSITÉ PARIS DIDEROT, UMR 7586, SORBONNE PARIS CITÉ, F-75013, PARIS, FRANCE & SCHOOL OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG, CHINA & SAINT PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB., ST. PETERSBURG, RUSSIA
E-mail address: Sergei.Kuksin@imj-prg.fr