Complete genome sequence of *Ignisphaera aggregans* type strain (AQ1.S1T)

Markus Göker1, Brittany Held2,4, Alla Lapidus2, Matt Nolan2, Stefan Spring1, Montri Yasawong1, Susan Lucas2, Tijana Glavina Del Rio2, Hope Tice2, Jan-Fang Cheng2, Lynne Goodwin2,4, Roxanne Tapia2,4, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Natalia Mikhailova2, Amrita Pati2, Amy Chen2, Krishna Palaniappan5, Evelyne Brambilla1, Miriam Land2,4, Loren Hauser2,4, Yun-Juan Chang2,4, Cynthia D. Jeffries2,4, Thomas Brettin2, John C. Detter2, Cliff Han2, Manfred Rohde3, Johannes Sikorski1, Tanja Woyke2, James Bristow2, Jonathan A. Eisen2,7, Victor Markowitz5, Philip Hugenholtz2, Nikos C. Kyrpides2, and Hans-Peter Klenk1*

1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
2 DOE Joint Genome Institute, Walnut Creek, California, USA
3 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
7 University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Hans-Peter Klenk

Keywords: hyperthermophile, obligately anaerobic, moderately acidophilic, fermentative, cocci-shaped, hot spring, Crenarchaeota, Desulfurococaceae, GEBA

Ignisphaera aggregans Niederberger et al. 2006 is the type and sole species of genus *Ignisphaera*. This archaeal species is characterized by a coccoid-shape and is strictly anaerobic, moderately acidophilic, heterotrophic hyperthermophilic and fermentative. The type strain AQ1.S1T was isolated from a near neutral, boiling spring in Kuirau Park, Rotorua, New Zealand. This is the first completed genome sequence of the genus *Ignisphaera* and the fifth genome (fourth type strain) sequence in the family *Desulfurococaceae*. The 1,875,953 bp long genome with its 2,009 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain AQ1.S1T (= DSM 17230 = JCM 13409) is the type strain of the species *Ignisphaera aggregans*, which is the type species of the genus *Ignisphaera* [1], one out of nine genera in the family *Desulfurococaceae* [2-5]. The generic name derives from the Latin word ‘ignis’ meaning ‘fire’, and ‘sphaera’ meaning ‘ball’, referring to coccoid cells found in the high-temperature environment such as hot springs [1]. The species epithet is derived from the Latin word ‘aggregans’ meaning ‘aggregate forming or aggregating clumping’, referring to the appearance of the cells when grown on mono-, di- or polysaccharides [1]. Strain AQ1.S1T is of particular interest because it is able to ferment quite a number of polysaccharides and complex proteinaceous substrates [1]. Here we present a summary classification and a set of features for *I. aggregans* AQ1.S1T, together with the description of the complete genomic sequencing and annotation.

Classification and features

Strain AQ1.S1T was isolated from a near neutral, boiling spring situated in Kuirau Park, Rotorua, New Zealand [1]. Interestingly, strains of *I. aggregans* could not be cultivated from pools with similar characteristics in Yellowstone National Park [1]. Only three cultivated strains are reported for the species *I. aggregans* in addition to AQ1.S1T,
these are strains Tok37.S1, Tok10A.S1 and Tok1 [1]. The 16S rRNA sequence of AQ1.S1 is 99% identical to Tok37.S1, 98% to Tok10A.S1 and 98% to Tok1. Sequence similarities between strain AQ1.S1 and members of the family Pyrodictiaceae range from 93.0% for Pyrodictium occultum to 93.4% for P. abyssi [6] but from 89.7% for Ignicoccus islandicus to 93.5% for Staphylothermus helle nicus [6] with members of the family Desulfuro cocccaceae in which I. aggregans is currently classified (Table 1). Genbank [16] currently contains only three 16S rRNA gene sequences with significantly high identity values to strain AQ1.S1: clone YNP_BP_A32 (96%, DQ243730) from hot springs of Yellowstone National Park, clone SSW_L4_A01 (95%, EU635921) from mud hot springs, Nevada, USA, and clone DDP-A02 (94%, AB462559) from a Japanese alkaline geothermal pool, which does not necessarily indicate the presence of I. aggregans but probably the presence of yet to be identified other species in the genus Ignisphaera. Environmental samples and metagenomic surveys featured in Genbank contain not a single sequence with >87% sequence identity (as of June 2010), indicating that I. aggregans might play a rather limited and regional role in the environment.

The cells of strain AQ1.S1 are regular to irregular cocci which occur singly, in pairs or as aggregates of many cells [1]. They usually have dimensions between 1-1.5 μm (Figure 1). Aggregation of cells is common when AQ1.S1 is grown on mono-, di- or polysaccharides [1]. Strain AQ1.S1 is hyperthermophilic and grows optimally between 92°C and 95°C, the temperature range for growth is 85-98°C. The pH range for growth is 5.4-7.0, with an optimum at pH 6.4. The strain grows in the presence of up to 0.5% NaCl, however, it grows optimally without NaCl. The doubling time is 7.5 h under optimal conditions [1]. I. aggregans strain AQ1.S1 is strictly anaerobic and grows heterotrophically on starch, trypticase peptone, lactose, glucose, konjac glucomannan, mannose, galactose, maltose, glycogen, and β-cyclodextrin. Growth on beef extract and glucose is weak and not observed on yeast extract, cellobiose, methanol, ethanol, trehalose, pyruvate, acetate, malate, casamino acids (0.1% w/v), carboxymethylcellulose, amylopectin (corn), xanthan gum, locust gum (bean), guar gum, dextran, xylan (oat spelts, larch or birch), xylitol, xylose or amylose (corn and potato) [1]. Mono- and disaccharides are accumulated in AQ1.S1 cultures grown in media containing konjac glucomannan, but not in sterile media that had been exposed to the same temperature as the inoculated medium or the stock of konjac glucomannan [1]. As hypothesized by Niederberger et al. [1], this most probably indicates that the konjac glucomannan is being hydrolyzed enzymatically by AQ1.S1 into sugars for metabolism. Removal of cystine from the growth medium does not affect cell density significantly. Hydrogen sulfide is also detected in AQ1.S1 cultures grown in enrichment media. Strain AQ1.S1 is resistant to novobiocin and streptomycin but sensitive to erythromycin, chloramphenicol and rifampicin [1].

Figure 1. Scanning electron micrograph of I. aggregans AQ1.S1
Chemotaxonomy

No chemotaxonomic data are currently available for *I. aggregans* strain AQ1.S1T. Also, chemotaxonomic information for the family Desulfurococaceae is scarce. What is known is that the type species of this family, *Desulfurococcus mucosus*, lacks a murein cell wall and contains phytanol and polyisoprenoid dialcohols as major components of the cellular lipids [3].

Figure 2 shows the phylogenetic neighborhood of *I. aggregans* AQ1.S1T in a 16S rRNA based tree. The sequence of the single 16S rRNA gene copy in the genome of strain AQ1.S1 does not differ from the previously published 16S rRNA sequence from DSM 17230 (DQ060321).
sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. Draft assemblies were based on 177 Mb 454 draft data, and 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The initial assembly contained 20 contigs in 1 scaffold. The initial 454 assembly was converted into a phrap assembly by making fake reads from the consensus, collecting the read pairs in the 454 paired end library. The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment [29] in the following finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution, Dupfinisher [29], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epicentre Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F. Chan, unpublished). A total of 32 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to improve the final consensus quality using an in-house developed tool (the Polisher [30]). The error rate of the final genome sequence is less than 1 in 100,000.

Table 1. Classification and general features of *I. aggregans* AQ1.S1T according to the MIGS recommendations [7]

MIGS ID	Property	Term	Evidence code
	Domain	Archaea	TAS [8]
	Phylum	Crenarchaeota	TAS [9,10]
	Class	Thermoprotei	TAS [10,11]
Current classification	Order	Desulfurococcales	TAS [10,12]
	Family	Desulfurococcaceae	TAS [2,3,5]
	Genus	Ignisphaera	TAS [1]
	Species	*Ignisphaera aggregans*	TAS [1]
	Type strain	AQ1.S1T	TAS [1]
Gram stain		not reported	
Cell shape		regular or irregular cocci that occur singly, in pairs or in aggregates	TAS [1]
Motility		none	NAS
Sporulation		not reported	
Temperature range		85°C–98°C	TAS [1]
Optimum temperature		92-95°C	TAS [1]
Salinity		< 0.5% NaCl	TAS [1]
MIGS-22	Oxygen requirement	obligate anaerobic	TAS [1]
Carbon source		starch, trypticase, peptone, lactose, glucose, konjac glucomannan, amongst others (see text)	TAS [1]
Energy source		carbohydrates, amino acids	TAS [1]
MIGS-6	Habitat	boiling spring	TAS [1]
MIGS-15	Biotic relationship	free-living	TAS [1]
MIGS-14	Pathogenicity	none	TAS [13]
Biosafety level		1	TAS [13]
Isolation		pool water	TAS [14]
MIGS-4	Geographic location	Kuirau Park, Rotorau, New Zealand	TAS [1]
MIGS-5	Sample collection time	2002	TAS [1]
MIGS-5.1	Latitude	176.24	TAS [14]
MIGS-5.2	Longitude	-38.13	TAS [14]
MIGS-5.3	Depth	≤ 2 m	TAS [14]
MIGS-5.4	Altitude	268 m	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [15]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library, one 454 paired end 15 kb library, and one Illumina library
MIGS-29	Sequencing platforms	454 Titanium; Illumina GAii
MIGS-31.2	Sequencing coverage	94.5× pyrosequence and Illumina
MIGS-30	Assemblers	Newbler version 2.0.00.20- PostRelease-11-05-2008-gcc-3.4.6/, phrap, Velvet
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
	INSDC ID	CP002098
	Genbank Date of Release	August 24, 2010
	GOLD ID	Gc01330
	NCBI project ID	33361
	Database: IMG-GEBA	2502171146
MIGS-13	Source material identifier	DSM 17230
	Project relevance	Tree of Life, GEBA

Genome annotation

Genes were identified using Prodigal [31] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [32]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [33].

Genome properties

The genome consists of a 1,875,953 bp long chromosome with a 35.7% G+C content (Table 3 and Figure 3). Of the 2,061 genes predicted, 2,009 were protein-coding genes, and 52 RNAs; 79 pseudogenes were also identified. The majority of the protein-coding genes (56.2%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	1,875,953	100.00%
DNA coding region (bp)	1,623,145	86.52%
DNA G+C content (bp)	669,463	35.69%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,061	100.00%
RNA genes	52	2.52%
rRNA operons	1	
Protein-coding genes	2,009	97.48%
Pseudo genes	79	3.83%
Genes with function prediction	1,158	56.19%
Genes in paralog clusters	190	9.22%
Genes assigned to COGs	1,220	59.19%
Genes assigned Pfam domains	1,280	62.11%
Genes with signal peptides	147	7.13%
Genes with transmembrane helices	454	22.03%
CRISPR repeats	9	
Insights from the genome sequence

Even though the tree depicted in Figure 1 is not particularly well resolved, the fact that *I. aggregans* does not cluster with the *Desulfurococcaceae* in 16S rRNA gene sequence-based phylogenies calls for a more detailed whole-genome-based analysis [34]. Both, in Figure 1 and in the All-Species-Living-Tree [35], *I. aggregans* is located deep on the branch leading to the *Thermoproteaceae* (and *Sulfolobaceae*). By circumstance, the class *Thermoprotei* within the phylum *Crenarchaeota* already offers a reasonably large set of reference genomes required for such an analysis. We thus assembled a dataset comprising all publicly available genomes from the set of organisms represented in the 16S rRNA tree (Fig. 1). Pairwise distances were calculated using the GBDP algorithm [36,37], which has recently been used to mimic DNA-DNA-hybridization values [37,38]. Here we applied the logarithmic version of formula (3) in [34,38]. The NeighborNet algorithm as implemented in SplitsTree version 4.10 [39] was used to infer a phylogenetic network from the distances, which is shown in Fig. 4.
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	158	11.9	Translation, ribosomal structure and biogenesis
A	2	0.2	RNA processing and modification
K	64	4.8	Transcription
L	70	5.3	Replication, recombination and repair
B	2	0.2	Chromatin structure and dynamics
D	9	0.7	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	22	1.7	Defense mechanisms
T	23	1.7	Signal transduction mechanisms
M	31	2.3	Cell wall/membrane/envelope biogenesis
N	11	0.8	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	16	1.2	Intracellular trafficking, secretion, and vesicular transport
O	56	4.2	Posttranslational modification, protein turnover, chaperones
C	82	6.2	Energy production and conversion
G	80	6.0	Carbohydrate transport and metabolism
E	135	10.2	Amino acid transport and metabolism
F	46	3.5	Nucleotide transport and metabolism
H	64	4.8	Coenzyme transport and metabolism
I	13	1.0	Lipid transport and metabolism
P	89	6.7	Inorganic ion transport and metabolism
Q	4	0.3	Secondary metabolites biosynthesis, transport and catabolism
R	209	15.8	General function prediction only
S	140	10.6	Function unknown
-	841	40.8	Not in COGs

The results indicate that the placement of *I. aggregans* as sister group of *Thermoproteales* (Fig. 1) is an artifact of the 16S rRNA analysis. The whole-genome network, while showing some conflicting signal close to the backbone, is in agreement with the splitting of the considered genera into the orders *Desulfurococcales* and *Thermoproteales*. However, the analysis provides some evidence that *Aeropyrum pernix* (*Desulfurococcales*) is more closely related to *Pyrodictiaceae* (represented by *Hyperthermus* and *Pyrolobus*) than to the remaining *Desulfurococcales*. The numerous additional type strain genome sequencing projects in the *Desulfurococcales* (Fig. 1) are likely to shed even more light on the phylogenetic relationships within this group by enabling future whole-genome phylogenies based on many more taxa.

A separate status of *I. aggregans* within the *Desulfurococcales* is supported by a lack of genes encoding membrane-bound multienzyme complexes that are thought to participate in the energy metabolism of members of this group. Operons encoding a MBX-related ferredoxin-NADPH oxidoreductase and a dehydrogenase-linked MBX complex are lacking in *I. aggregans*, although both are present in the completed genome sequences of *Thermosphaera aggregans* [24], *Staphylothermus marinus* [25] and *Desulfurococcus kamchatkensis*. The genome of *A. pernix* also lacks genes for the MBH-related energy-coupling hydrogenase, which are found in most members of the *Desulfurococcales* including *I. aggregans* (Igag_1902 – Igag_1914).
Acknowledgements

We would like to gratefully acknowledge the help of Maren Schröder (DSMZ) for growth of *I. aggregans* and the help of Alexander Auch (Tübingen, Germany) in creating a local version of the GBDP software. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2 and SI 1352/1-2 and Thailand Research Fund Royal Golden Jubilee Ph.D. Program No. PHD/0019/2548 for MY.

References

1. Niederberger TD, Götz DK, McDonald IR, Ronimus RS, Morgan HW. *Ignisphaera aggregans* gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. *Int J Syst Evol Microbiol* 2006; 56:965-971. PubMed doi:10.1099/ijs.0.63899-0

2. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 10. *Int J Syst Bacteriol* 1983; 33:438-440. doi:10.1099/00207713-33-2-438

3. Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janevovic D, Holz I, Palm P. *Desulfurococccaeae*, the second family of the extremely thermophilic, anaerobic, sulfur-respiring *Thermoproteales*. *Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt* 1982; 1 Orig. C:304-317.

4. List Editor. Validation List no. 10. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. *Int J Syst Bacteriol* 1983; 33:438-440. doi:10.1099/00207713-33-2-438

5. Burggraf S, Huber H, Stetter KO. Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data. *Int J Syst Bacteriol* 1997; 47:657-660. PubMed doi:10.1099/00207713-47-3-657

6. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. *Int J Syst Evol Microbiol* 2007; 57:2259-2261. PubMed doi:10.1099/ijs.0.64915-0

7. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, An-
8. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

9. Garrity GM, Holt JG. 2001. The Road Map to the classification of Bacteria and Archaea in risk groups. http://www.baua.de TRBA 466.

10. List Editor. Validation List no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2002; 52:685-690. PubMed doi:10.1099/ijs.0.02358-0

11. Reysenbach AL. 2001. Class I. Thermoprotei class. nov., p. 169. In GM Garrity, DR Boone, and RW Castenholz (eds), Bergey's Manual of Systematic Bacteriology, 2 ed, vol. 1. Springer, New York.

12. Huber H, Stetter O. 2001. Order II. Desulfovococcales ord. nov., p. 179-180. In G. M. Garrity, D. R. Boone, and R. W. Castenholz (ed.), Bergey's Manual of Systematic Bacteriology, 2 ed, vol. 1. Springer, New York.

13. Classification of Bacteria and Archaea in risk groups. http://www.baua.de TRBA 466.

14. Niederberger TD, Ronimus RS, Morgan HW. The microbial ecology of a high-temperature neutral spring situated in Rotorua, New Zealand. Microbiol Res 2008; 163:594-603. PubMed doi:10.1016/j.micres.2006.09.001

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

16. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2009; 37:D26-D31. PubMed doi:10.1093/nar/gkn723

17. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

18. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

19. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1007/978-3-642-02008-7_13

20. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

21. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346-D354. PubMed doi:10.1093/nar/gkp848

22. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk HP. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic crenarchaeote growing up to 108°C. Archaea 2007; 2:127-135. PubMed doi:10.1155/2007/459587

23. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, et al. Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 1999; 6:83-101, 145-152. PubMed doi:10.1093/dnares/6.2.83

24. Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, Cheng IF, Lucas S, Chen F, Nolan M, et al. Complete genome sequence of Thermoplasma aggregans type strain (M11TLâ‘). Stand Genomic Sci 2010; 2:245-259. doi:10.4056/sigs.821804

25. Anderson II, Dharmarajan L, Rodriguez J, Hoover S, Porat I, Ulrich LE, Elkins JG, Mavromatis K, Sun H, Land M, et al. Complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genomics 2009; 10:145. PubMed doi:10.1186/1471-2164-10-145

26. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

27. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature
Ignisphaera aggregans type strain (AQ1.S1T)

2009; 462:1056-1060. PubMed doi:10.1038/nature08656

28. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.

29. Sims D, Brettin T, Detter J, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of Kytococcus sedentarius type strain (541T). Stand Genomic Sci 2009; 1:12-20. doi:10.4056/sigs.761

30. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

31. Hyatt D, Chen GL, Locascio PF, Land ML, Larkin FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

32. Pati A, Ivanova N, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. Nat Methods 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

33. Markowitz VM, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393

34. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142-148. doi:10.4056/sigs.541628

35. Yarza P, Richter M, Pepiles J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241-250. PubMed doi:10.1016/j.syapm.2008.07.001

36. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21:2329-2335. PubMed doi:10.1093/bioinformatics/bth324

37. Auch AF, Henz SR, Holland BR, Göker M. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 2006; 7:350. PubMed doi:10.1186/1471-2105-7-350

38. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117-134. doi:10.4056/sigs.531120

39. Huson DH, Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol 2005; 23:254-267. PubMed doi:10.1093/molbev/msj030